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Preface

 

The treatment of uncertainty in analysis, design, and decision making is going
through a paradigm shift from a probabilistic framework to a generalized framework
that includes both probabilistic and nonprobabilistic methods. Presently, analysts,
including engineers and scientists, recognize the presence of uncertainty and treat
it formally. For example, engineers analyze and model uncertainty in many of their
specialty fields, such as the development of building codes, analysis of natural
hazards (e.g., floods, wind, and earthquakes), decision making in infrastructure
maintenance expenditure, homeland security and protection of assets, and environ-
mental risks. Similarly, scientists analyze and model uncertainty in many of their
specialty fields, such as the diagnostics of diseases, health effects of food additives
and toxins, pharmaceutical research for developing new drugs, understanding of
physical phenomena, prediction and forecasting in economy and weather, and socio-
political changes, trends, and evolutions. The interest in uncertainty will continue
to increase as we continue to design complex systems and deal with new technolo-
gies, systems, and materials, and are increasingly required to make critical decisions
with potentially high adverse consequences. Also, political, societal, and financial
requirements are increasing, thereby adding new dimensions of complexity in meet-
ing the societal demands. The expectations of society are becoming larger than ever,
and its tolerance to errors is diminishing. The aggregate of these factors produces
an environment that requires the formal consideration of uncertainty in decision
making at all levels in a systems framework.

Problems that are commonly encountered by engineers and scientists require
decision making under conditions of uncertainty, lack of knowledge, and ignorance.
The lack of knowledge and ignorance can be related to the definition of a problem,
the alternative solution methodologies and their results, and the nature of the solution
outcomes. Based on present trends, analysts will need to solve complex problems
with decisions made under conditions of limited resources, thus necessitating
increased reliance on the proper treatment of uncertainty and the use of expert
opinions. This book is therefore intended to better prepare future analysts, as well
as assist practitioners in understanding the fundamentals of knowledge and igno-
rance, how to model and analyze uncertainty, and how to select appropriate analytical
tools for a particular problem.

Traditionally, intelligence is defined as the ability to understand and adapt to
the environment by using a combination of inherited abilities and learning experi-
ences. This ability certainly includes the analysis of uncertainty and making deci-
sions under conditions of uncertainty. This is true of many organisms — from ants
to aardvarks to humans. Any organism that survives the remorseless rigors of evo-
lution is sufficiently intelligent for its role in life. Likewise, machines need to be
sufficiently intelligent to make decisions suitable for their functions and adapt to
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and deal with the presence of uncertainty. Any collectives of human decision makers
and their decision-aiding machines must make, in the aggregate, good decisions.
But these decisions are almost always made under conditions of uncertainty.

The term 

 

uncertainty

 

 can be viewed as a component of ignorance. A taxonomic
breakdown of ignorance can reveal many components having a strong association
with human cognition of information and knowledge construction philosophies and
practices. Uncertainty and information as a pair, and ignorance and knowledge as
another pair, are studied in this book since they are tightly interconnected, as the
former component of each pair describes a deficiency in the respective latter com-
ponent, while the latter component of a pair can be viewed as the respective capacity
available to reduce the respective former component. The identification and treatment
of this duality of the respective components of a pair offer opportunities to enhance
understanding of underlying problems or issues and our ability to make decisions.
This book covers primary components of ignorance and their impact on our practice
and our ability to make decisions. This book gives an overview of the current state
of uncertainty modeling and analysis, and covers emerging theories with emphasis
on practical applications in engineering and the sciences.

The complexity of a particular decision situation could increase substantially by
the inclusion of uncertainties, thus requiring, in many cases, the reliance on experts
to shed light on the situation. The complexity of our society and its knowledge base
requires its members to specialize and become experts to attain recognition and reap
rewards to the society and themselves. We commonly deal with or listen to experts
on a regular basis, such as weather forecasts by weather experts, stock and financial
reports by seasoned analysts, suggested medication or procedures by medical pro-
fessionals, policies by politicians, and analyses by world affairs experts. We know
from our own experiences that experts are valuable sources of information and
knowledge, and can also be wrong in their views rendered to us. Expert opinions,
therefore, can be considered to include or constitute nonfactual information. The
fallacy of these opinions might disappoint us, but does not surprise us since issues
that require experts tend to be difficult or complex, with a lot of uncertainty, and
sometimes with divergent views. The nature of some of these complex issues could
only yield views that have subjective truth levels; therefore, they allow for contra-
dictory views that might all be somewhat credible. In political and economic world
affairs and international conflicts, such issues are of common occurrence. For exam-
ple, we have recently witnessed the debates that surrounded the membership of the
People’s Republic of China to the World Trade Organization in 1999, or experts
airing their views on the insoluble Arab–Israeli affairs for the last century, or
analysts’ views on the war in Iraq in 2003, or future oil prices in 2005. These issues
have a common feature of the presence of complexity and uncertainties requiring
the use of expert opinions. Such issues and situations are also encountered in
engineering, the sciences, medical fields, social research, stock and financial markets,
and the legal practice.

Experts, with all their importance and value, can be viewed as double-edged
swords. Not only do they bring in a deep knowledge base and thoughts, but also
they could infuse biases and pet theories. The selection of experts, elicitation, and
aggregation of their opinions should be performed and handled carefully by recog-

 

C6447_C000.fm  Page vi  Wednesday, April 19, 2006  9:53 AM

© 2006 by Taylor & Francis Group, LLC



 

nizing uncertainties associated with this type of information, and sometimes with
skepticism. A primary reason for using expert opinions is to deal with uncertainty
in selected technical issues related to a system of interest. Issues with significant
uncertainty, issues that are controversial or contentious, issues that are complex,
issues with limited objective information, or issues that can have a significant effect
on risk are most suited for expert opinion elicitation. The value of the expert opinion
elicitation comes from its initial intended uses as a heuristic tool, not a scientific
tool, for exploring vague and unknowable issues that are otherwise inaccessible. It
is not a substitute to scientific, rigorous research.

Current techniques for visualizing information commonly do not include degrees
of certainty (or the degrees and types of ignorance) associated with individual or
aggregated information. For example, for a commander in a battlefield to command,
she or he needs to choose. To choose is to decide — almost always on the basis of
imperfect information — and momentous decisions require knowledge of threats
with a degree of certainty that might not be a requisite for decisions less momentous
than waging war. Battlespace visualization techniques should allow both information
and uncertainty to be portrayed effectively and grouped intuitively. Intelligent agents
are promising technologies that may facilitate visualization of data and information
uncertainty. Civilian applications can also be constructed to meet societal needs,
such as Internet information metatagging for uncertainty and uncertainty visualiza-
tion of search results.

In preparing this book, the authors strove to achieve the following objectives:

1. To develop a philosophical foundation for the meaning, nature, and hier-
archy of knowledge and ignorance

2. To provide background information and historical developments related
to knowledge, ignorance, and the elicitation of expert opinions

3. To provide a systems framework for the analysis and modeling of
uncertainty

4. To summarize and illustrate methods for encoding data and expressing
information

5. To provide and illustrate methods for uncertainty and information
synthesis

6. To develop and illustrate methods for uncertainty measures and related
criteria for knowledge construction

7. To examine and illustrate methods for uncertainty propagation in
input–output systems

8. To guide the readers of the book on how to effectively elicit opinions from
experts in such a way that would increase the truthfulness of the outcomes

9. To provide methods for visualizing uncertainty
10. To provide practical applications in these areas based on recent studies

The book introduces fundamental concepts of classical sets, fuzzy sets, rough
sets, probability, Bayesian methods, interval analysis, fuzzy arithmetic, interval prob-
abilities, evidence theory, open-world models, sequences, and possibility theory.
These methods are presented in a style tailored to meet the needs of practitioners in
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many specialty fields, such as engineering, physical and social sciences, economics,
law, and medicine. The book emphasizes the practical use of these methods, and
establishes their limitations, advantages, and disadvantages. Although the applica-
tions at the end of the book were developed with emphasis on engineering, techno-
logical, and economics problems, the methods can also be used to solve problems
in other fields, such as social sciences, law, insurance, business, and management.

 

STRUCTURE, FORMAT, AND MAIN FEATURES

 

This book was written with a dual use in mind, as both a self-learning guidebook
and a required textbook for a course. In either case, the text has been designed to
achieve important educational objectives of introducing theoretical bases, guidance
and applications of the analysis, and modeling of uncertainty.

The eight chapters of the book lead the readers from the definition of needs, to
the foundations of the concepts covered in the book, to theory and guidance and
applications. The first chapter provides an introduction that discusses systems,
knowledge (its sources and acquisition), and ignorance (its categories as bases for
modeling and analyzing uncertainty). The practical use of concepts and tools pre-
sented in the book requires a framework and a frame of thinking that deals holistically
with problems and issues as systems. Background information on system modeling

historical perspective on knowledge.

tion using classical set theory, fuzzy sets, and rough sets. Basic operations for these
sets are defined and demonstrated. Fuzzy relations and fuzzy arithmetic can be used
to express and combine collected information. The fundamentals of probability
theory, possibility theory, interval probabilities, and monotone measures are sum-
marized as they relate to uncertainty analysis. Examples are used in this chapter to
demonstrate the various methods and concepts.

based system definition. The chapter starts by introducing measure theory and
monotone measures and includes possibility theory and Dempster–Shafer theory of
evidence, and then compares and contrasts them with probability theory with some
of its variations and special applications, including linguistic probabilities, Bayesian
probabilities, imprecise probabilities (including interval probabilities), interval
cumulative distribution functions, and probability bounds. This chapter also dis-
cusses various multivariate dependence types and their models and describes fuzzy
measures and fuzzy integrals.

ing nonspecificity measures, such as the Hartley, evidence, possibility, and fuzzy
sets’ nonspecificity measures; entropy-like measures, such as Shannon entropy,
discrepancy measure, and entropy measures for evidence theory of dissonance and
confusion; and fuzziness measure. The chapter also includes applications relating
to combining expert opinions.

that include a minimum uncertainty criterion, maximum uncertainty criterion, and
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Chapter 2 presents the fundamentals of encoding data and expressing informa-

Chapter 3 covers uncertainty and information synthesis based on a mission-

Chapter 4 provides definitions and classification of uncertainty measures, includ-

Chapter 5 introduces uncertainty-based criteria for the construction of knowledge

is provided also in Chapter 1. Appendix A is called out in Chapter 1 to offer a



 

uncertainty invariance criterion, with demonstrative examples of aggregating expert
opinions. The chapter also introduces methods for open-world analysis, including
statistical estimators for sequences and patterns, such as the Laplace model, add-c
model, and Witten–Bell model, and an analytical estimator based on the theory of
evidence, i.e., the transferable belief model for evidential reasoning and belief

input variables to output variables for a system, building on knowing the underlying
physical laws, such as material mechanics, and utilizing constraints, such as bound-
ary conditions. The numerical computations might be based on finite element meth-
ods that are used to model the entire system. The model complexity can be increased
by considering nonlinearity in behavior and other special considerations, such as
bifurcation, instability, logic rules, and across-discipline or across-physics interac-
tions. This chapter also presents methods for propagating uncertainty in input–output
systems. The methods presented in this chapter are illustrated using simple linear
systems. These methods form the basis for potential extensions to complex cases.

processes can be viewed as variations of the Delphi technique, with scenario analysis
based on uncertainty models, ignorance, knowledge, information and uncertainty
modeling related to experts and opinions, and nuclear industry experiences and
recommendations. This chapter also demonstrates the applications of expert opinion
elicitation by summarizing results from practical examples.

alization techniques are needed to allow both information and uncertainty to be
portrayed effectively and grouped intuitively. This need is demonstrated, and icons
are introduced for uncertainty and ignorance that are called uncerticons and ignori-
cons, respectively.

In each chapter of the book, computational examples are given in the individual
sections of the chapter, with more detailed engineering applications provided in
some of the key chapters. Also, each chapter includes a set of exercise problems
that cover topics discussed in the chapter. The problems were carefully designed to
meet the needs of instructors in assigning homework and the readers in practicing
the fundamental concepts.

For the purposes of teaching, the book can be covered in one semester. The
chapter sequence can be followed as a recommended sequence. However, if needed,
instructors can choose a subset of the chapters for courses that do not permit a
complete coverage of all chapters, or a coverage that cannot follow the order
presented. In addition, selected chapters can be used to supplement courses that do
not deal directly with uncertainty modeling and analysis, such as risk analysis,
reliability assessment, expert opinion elicitation, economic analysis, systems anal-
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Chapter 6 focuses on a class of models in engineering and the sciences of relating

Chapter 7 provides guidance on using expert opinion elicitation processes. These

Chapter 8 provides techniques for visualizing uncertainty in information. Visu-

revision. Applications to diagnostics are discussed.

ysis, litigation analysis, and social research courses. Chapters 1 and 2 can be covered
concurrently, or preferably, Chapter 2 covered after Chapter 1. Appendix A is called
out in Chapter 1 to offer historical perspective on knowledge. Chapter 3 builds on
some of the materials covered in Chapter 2. Chapter 4 builds on some of the
materials covered in Chapter 3. Chapter 5 builds on Chapters 3 and 4 and should
be covered after completing Chapter 4. Chapter 6 requires knowledge of materials



 

chapters in terms of their interdependencies.
The authors invite users of the book to send any comments on its structure

developing future editions of the book. Also, users of the book are invited to visit
the website of the Center for Technology and System Management at the Univer-
sity of Maryland, College Park, to find information posted on various projects
and publications that can be related to uncertainty and risk analysis. The URL
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FIGURE 1

 

Sequence of chapters.

Chapter 1. 
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Knowledge, and
Ignorance

Chapter 2. 
Encoding Data 
and Expressing
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Chapter 3. 
Uncertainty and 
Information
Synthesis

Chapter 6. Uncertainty
Propagation for Systems

Chapter 7. 
Expert Opinions 
and Elicitation
Methods

Chapter 8. Visualization
of Uncertainty

Bibliography

Chapter 4. 
Uncertainty
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Chapter 5. Uncertainty-
Based Principles and
Knowledge
Construction

Appendix A. Historical 
Perspectives on 
Knowledge
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covered in Chapters 2 and 3. Chapter 7 provides guidance on using expert opinion
elicitation and can be introduced independently. Chapter 8 also can be introduced
after Chapter 1. The book also contains an extensive bibliography at its end. The

address is http://www.ctsm.umd.edu.

accompanying schematic diagram (Figure 1) illustrates possible sequences of these

or content to the e-mail address ba@umd.edu. These comments will be used in

http://www.ctsm.umd.edu
mailto:ba@umd.edu
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Systems, Knowledge, 
and Ignorance

 

The greatest enemy of knowledge is not IGNORANCE, it is the ILLUSION of
knowledge.

 

— Stephen Hawking

 

1.1 DATA ABUNDANCE AND UNCERTAINTY

 

Intelligence is defined as the ability to understand and adapt to the environment by
using a combination of inherited abilities and learning experiences. This ability
certainly includes the analysis of uncertainty and making decisions under conditions
of uncertainty. The definition of intelligence is applicable to living systems — from
ants to aardvarks to humans — as well as machines. Any organism that survives the
remorseless rigors of evolution is sufficiently intelligent for its role in life. Likewise,
machines need to be sufficiently intelligent to make decisions suitable for their
functions and adapt to and deal with the presence of uncertainty. Any collectives of
human decision makers and their decision-aiding machines must make, in the aggre-
gate, good decisions.

The ability of a living system or machine to make appropriate decisions can
be taken as a measure of intelligence. This decision-making ability requires the
processing of data and information, construction of knowledge, and assessment of
associated uncertainties and risks. The analysis and modeling of uncertainty
enhances this ability of making appropriate decisions, thereby increasing intelli-
gence. This need to model and analyze uncertainties also stems from the awareness
that data abundance does not necessarily give us certainty, and sometimes can lead
to error in decision making, with undesirable outcomes due to either overwhelming,
confusing situations or a sense of overconfidence leading to an improper informa-
tion use. The former situations can be an outcome of the limited capacity of a
human mind in some situations to deal with complexity and data abundance,
whereas the latter can be attributed to a higher order of ignorance, called the
ignorance of self-ignorance.

As our society advances in many scientific dimensions and invents new tech-
nologies, human knowledge is being expanded through observation, discovery, infor-
mation gathering, and propositional logic. Also, the access to newly generated
information is becoming easier than ever as a result of computers and the Internet.
We have entered an exciting era where electronic libraries, online databases, and
information on every aspect of our civilization, such as patents, engineering products,
literature, mathematics, physics, medicine, philosophy, and public opinions, are
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becoming a mouse-click or a few clicks away. In this era, computers can generate
even more information from abundantly available online data. Society can act or
react based on this information at the speed of its generation, creating sometimes
nondesirable situations, for example, price or political volatilities. There is a great
need to assess uncertainties associated with information and quantify our state of
knowledge or ignorance. The accuracy, quality, and incorrectness of such informa-
tion, and knowledge incoherence are coming under focus by philosophers, scientists,
engineers, technologists, decision and policy makers, regulators and lawmakers, and
our society as a whole. As a result, uncertainty and ignorance analyses are receiving
a lot of attention by our society. We are moving from emphasizing the state of
knowledge expansion and creation of information to a state that includes knowledge
and information assessment by critically evaluating them in terms of relevance,
completeness, nondistortion, coherence, and other key measures.

Our society is becoming less forgiving and more demanding from our knowledge
base. The use of noncredible information, leading to questionable decisions, could
place decision makers on the defensive. On the other hand, untimely processing and
use of any available information, even if it might be inconclusive, can be treated
worse than a lack of knowledge and ignorance. In the January 2003 State of the
Union address, U.S. President George W. Bush stated, “The British government has
learned that Saddam Hussein recently sought significant quantities of uranium from
Africa.” A few months later, after the conclusion of the war on Iraq in May 2003,
senior White House officials conceded the information that former Iraqi president
Hussein tried to buy uranium from Niger was inaccurate, but they said Bush’s State
of the Union speech was based on a broader range of intelligence. The argument
that Iraq was trying to reconstitute its nuclear weapons program was a key point in
the administration’s rationale for war. These statements and decisions were made
despite the March 2003 International Atomic Energy Agency dismissal as forgeries
documents that alleged Iraq may have tried to buy 500 tons of uranium from Niger.
The news elevated the problem to scandalous levels for this action on uncertain
information, although inaction on uncertain intelligence, such as the “intelligence
failure” in the case of the 2001 World Trade Center attacks, was treated as scandalous
and was investigated due to its unacceptability. Any inaction due to noncredible
information can be easily taken by our demanding society to be as erroneous as an
action based on noncredible information — hence the need for uncertainty assess-
ment, modeling, and analysis.

Making appropriate decisions commonly entails risks requiring risk control and
management. Although people have control over the levels of some technology-
caused risks to which they are exposed, reduction of risk needs to be pursued by
governments and corporations in response to increasing demands by our society.
Risk reduction generally entails a reduction of benefits to people, thus posing a
serious dilemma. Moreover, the public and policy makers are required, with increas-
ing frequency, to subjectively weigh benefits against risks and assess associated
uncertainties when making decisions. Not using a systems or holistic approach,
vulnerability exists for overpaying to reduce one set of risks that may introduce
offsetting or larger risks of another kind. Such risk-based decisions require uncer-
tainty modeling and analysis.
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The objective of this chapter is to present a systems framework for uncertainty
modeling and analysis, and to discuss knowledge, its sources and acquisition, and
ignorance and its categories. The practical use of concepts and tools presented in
the book requires a framework and a frame of thinking that deals holistically with
problems and issues as systems.

 

1.2 SYSTEMS FRAMEWORK

1.2.1 S

 

YSTEMS

 

 D

 

EFINITIONS

 

 

 

AND

 

 M

 

ODELING

 

The definition and articulation of problems in engineering and the sciences is a critical
task in the processes of analysis and design, and can be systematically performed
within a systems framework. “The mere formulation of a problem is often far more
essential than its solution,” Albert Einstein said. “What we observe is not nature itself,
but nature exposed to our method of questioning,” Werner Karl Heisenberg said.
Commonly, an engineering project can be modeled to include a segment of its
environment that interacts significantly with it to define an underlying system. The
boundaries of the system are drawn based on the mission, goals, and objectives of
the analysis, and the class of performances (including failures) under consideration.

A generalized systems formulation allows scientists and engineers to develop
a complete and comprehensive understanding of the nature of a problem, and
underlying physical phenomena, processes, and activities. In a system formulation,
an image or a model of an object that emphasizes some important and critical
properties is defined. System definition is usually the first step in an overall meth-
odology formulated for achieving a set of objectives. This definition can be based
on observations at different system levels that are established based on these
objectives. The observations can be about the different elements (or components)
of the system, interactions among these elements, and the expected behavior of the
system. Each level of knowledge that is obtained about an engineering problem
defines a system to represent the project or the problem. As additional levels of
knowledge are added to previous ones, higher epistemological levels of system
definition and description are attained that, taken together, form a hierarchy of the
system descriptions.

Informally, what is a system? The term 

 

system

 

 originates from the Greek word

 

systma

 

, which means an organized whole. According to

 

 Webster’s Dictionary

 

, a

 

system

 

 is defined as “a regularly interacting or interdependent group of items forming
a unified whole,” such as a solar system, school system, or system of highways. For
scientists and engineers, the definition can be stated as “a regularly interacting or
interdependent group of items forming a unified whole that has some attributes of
interest.” Alternatively, a system can be defined as a group of interacting, interrelated,
or interdependent elements that together form a complex whole that can be a complex
physical structure, process, or procedure of some attributes of interest. All parts of
a system are related to the same overall process, procedure, or structure, yet they
are different from one another and often perform completely different functions. It
follows from these definitions that the term 

 

system

 

 stands, in general, for a 

 

set of
things 

 

and a 

 

relation among the things

 

. It can be formally stated as
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S

 

 = (

 

T

 

, 

 

R

 

) (1.1)

where 

 

S

 

,

 

 T

 

,

 

 

 

and 

 

R 

 

denote, respectively, a 

 

system

 

,

 

 

 

a

 

 set of things

 

,

 

 

 

and a 

 

relation 

 

(or
possibly a set of relations) defined on 

 

T

 

. This 

 

commonsense expression

 

 by the pair
(

 

T

 

, 

 

R

 

) seems overly simple. Its simplicity, however, is only on the surface. While
the definition is very simple in its form, it contains symbols, 

 

T

 

 and 

 

R

 

, that are
extremely rich in content. 

 

T

 

 stands not only for a single set with arbitrary elements,
finite or infinite, but also, for example, for a power set, a power set of a power set,
etc., or any arbitrary set of sets. Furthermore, things in 

 

T

 

 may have special properties
by which systems are distinguished from one another. These properties can be
referred to as 

 

thinghood properties

 

.

 

 

 

The content of symbol 

 

R

 

 is even richer. For each
set 

 

T

 

, with its special characteristics, the symbol stands for any conceivable relation
defined on 

 

T

 

. Formally, a relation is a subset of some Cartesian product of given
sets. Even if 

 

T 

 

is only a single set, 

 

R

 

 stands for a relation from a family of distinct
types of relations: 

 

R

 

 

 

⊂

 

 

 

T 

 

×

 

 T

 

 (

 

binary relations

 

), 

 

R

 

 

 

⊂

 

 

 

T

 

 

 

×

 

 

 

T

 

 

 

×

 

 

 

T

 

 (

 

ternary relations

 

),
etc. When 

 

T

 

 is a set of sets, the variety of distinct types of relations virtually explodes.
For example, when 

 

T

 

 consists of just two sets, say 

 

T = 

 

{

 

X

 

, 

 

Y

 

},

 

 

 

the number of types
of relations grows quite rapidly, including, for example, the following types:

 

R

 

 

 

⊂

 

 

 

X

 

 

 

×

 

 

 

Y

 

(1.2a)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 

 

Y

 

(1.2b)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 (

 

Y 

 

×

 

 

 

Y

 

) (1.2c)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 (

 

X 

 

×

 

 

 

Y

 

) (1.2d)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

Y

 

) 

 

×

 

 (

 

X 

 

×

 

 

 

Y

 

) (1.2e)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 (

 

Y

 

 

 

×

 

 

 

Y

 

 

 

×

 

 

 

Y

 

) (1.2f)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

× Y) × (X × Y) × (X × Y) (1.2g)

Although these few examples illustrate the great variety of possibilities repre-
sented by the single symbol R, they still do not capture the full richness of this
symbol. The form of the Cartesian product on which a relation is defined is only
one property of the relation. Other properties depend on the nature of elements of
the relevant Cartesian product that are included in the relation. All these properties
of relations can be subsumed under the suggestive name systemhood properties.

The simplicity of the commonsense expression of a system is, paradoxically, its
weakness as well as its strength. The definition is weak because it is too general
and, consequently, of little pragmatic value. It is strong because it encompasses all
other, more specific definitions of systems. Due to its full generality, the common-
sense expression qualifies for a criterion by which we can determine whether any
given object is a system or not: an object is a system if and only if it can be described
in the form that conforms to Equation 1.1.
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Once we have the capability of distinguishing objects that are systems from
those that are not, it is natural to define systems science as a science whose objects
of study are systems. It is significant that this definition refers to systems, but not
to any particular types of systems, such as physical systems, biological systems,
social systems, or economic systems. This implies that these distinctions of systems,
which are expressed solely in terms of the things involved, are not significant in
systems science. This means, in turn, that systems science is concerned with sys-
temhood properties of systems rather than their thinghood properties.

Classical science, which is predominately oriented to thinghood properties,
and systems science, which is predominately oriented to systemhood properties,
are two distinct perspectives from which scientific inquiry can be approached.
These perspectives are complementary. Although classical scientific inquiries are
almost never devoid of issues involving systemhood properties, these issues are
not of primary interest in classical science and have been handled in an opportu-
nistic, ad hoc fashion. There is no place in classical science for a comprehensive
and thorough study of the various properties of systemhood. The systems perspec-
tive thus cannot be fully developed within the confines of classical science. It was
liberated only through the emergence of systems science. While the systems per-
spective was not essential when science dealt with simple systems, its significance
increases with the growing complexity of systems of our current interest. From
the standpoint of the disciplinary classification of classical science, systems science
is clearly cross-disciplinary.

Systems are traditionally grouped in various overlapping categories, such as:

1. Natural systems, e.g., river systems and energy systems
2. Human-made systems that can be embedded in the natural systems, e.g.,

hydroelectric power systems and navigation systems
3. Physical systems that are made of real components occupying space, e.g.,

automobiles and computers
4. Conceptual systems that could lead to physical systems
5. Static systems that are without any activity, e.g., bridges subjected to dead

loads
6. Dynamic systems, e.g., transportation systems
7. Closed- or open-loop systems, e.g., a chemical equilibrium process and

logistic systems, respectively.

Blanchard (1998) provides additional information on these categories.

1.2.2 REALISM AND CONSTRUCTIVISM IN SYSTEMS THINKING

The emergence of systems science is from two different views about the nature of
knowledge: realism and constructivism. According to realism, a system that is
obtained by applying correctly the principles and methods of science represents
some aspect of the real world. This representation is only approximate, due to limited
resolution of our sensors and measuring instruments, but the relation comprising the
system is a homomorphic image of its counterpart in the real world. Using more
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6 Uncertainty Modeling and Analysis in Engineering and the Sciences

refined instruments, the homomorphic mapping between entities of the system of
concern and those of its real-world counterpart (the corresponding real system)
becomes also more refined, and the system becomes a better representation of its
real-world counterpart. Realism thus assumes the existence of systems in the real
world, which are usually referred to as real systems. It claims that any system
obtained by sound scientific inquiry is an approximate (simplified) representation
of a real system via an appropriate homomorphic mapping.

According to constructivism, all systems are artificial abstractions. They are not
made by nature and presented to us to be discovered, but we construct them by our
perceptual and mental capabilities within the domain of our experiences. The concept
of a system that requires correspondence to the real world is illusory because there
is no way of checking such correspondence. We have no access to the real world
except through experience. It seems that the constructivist view has become pre-
dominant, at least in systems science, particularly in the way formulated by von
Glasersfeld (1995). According to this formulation, constructivism does not deal with
ontological questions regarding the real world. It is intended as a theory of knowing,
not a theory of being. It does not require the denial of ontological reality. Moreover,
the constructed systems are not arbitrary: they must not collide with the constraints
of the experiential domain. The aim of constructing systems is to organize our
experiences in useful ways. A system is useful if it helps us to achieve some aims,
for example, to predict, retrodict, control, make proper decisions, etc.

1.2.3 TAXONOMY OF SYSTEMS

Since systems science is oriented to the study of systemhood properties, its aim is
to understand these properties as completely as possible. The following are key steps
in pursuing this aim:

1. Dividing the spectrum of conceivable systems into significant categories
defined in terms of systemhood properties

2. Studying individual categories of systems and their relationship
3. Organizing these categories into a coherent whole
4. Studying systems problems that emerge from the underlying set of orga-

nized systems categories
5. Studying methodological issues regarding the various types of systems

problems
6. Studying metamethodological issues emerging from systems methodology

A prerequisite for dividing systems by their systemhood properties into signif-
icant categories is developing a conceptual framework within which these properties
can properly be codified. Each framework determines the scope of systems con-
ceived. It captures some basic categories of systems, each of which characterizes a
certain type of knowledge representation, and provides a basis for further classifi-
cation of systems within each category. To establish firm foundations of systems
science, a comprehensive framework is needed to capture the full scope of system-
hood properties.
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Systems, Knowledge, and Ignorance 7

1.2.3.1 Epistemological Categories of Systems

Several conceptual frameworks that attempt to capture the full scope of systems
currently conceived have been proposed by Klir (1985), Mesarovic and Takahara
(1975, 1988), Wymore (1976), and Zeigler (1976). In spite of differences in termi-
nology and in the way in which these frameworks evolved, they have essentially the
same expressive power. As an example, a particular framework developed by Klir
(1985) is described here, which is known in the literature as the general systems
problem solver (GSPS). The kernel of the GSPS is a hierarchy of epistemological
categories of systems, which represents the most fundamental taxonomy of systems.
The following is a brief outline of the basic levels in this hierarchy.

At the lowest level of the epistemological hierarchy, an experimental frame is
defined in terms of appropriate variables and their state sets (value sets). In addition,
some supporting medium (such as time, space, or population) within which the
variables change their states is also specified. Furthermore, variables may be clas-
sified as input and output variables.

An experimental frame (also called a source system) may be viewed as a data
description language. When actual data described in this language become avail-
able, we move to the next level in the hierarchy. Systems on this level are called
data systems.

When variables of an experimental frame are characterized by a relationship
among them, we move to a level that is still higher in the hierarchy. It is assumed
on this level that the relationship among the variables is invariant with respect to
the supporting medium involved. That is, it is time invariant, space invariant, space-
time invariant, population invariant, etc. The relationship may involve not only
variables contained in the experimental frame, but also additional variables defined
in terms of the former by specific translation rules in the supporting medium. When
the supporting medium is time, for example, we obtain lagged variables. Systems
on this level are called behavior systems. Some of these systems can also be char-
acterized conveniently as state transition systems.

A data system is represented by a behavior system if, under appropriate initial
or boundary conditions, the support-invariant relation of the latter can be utilized
for generating the data of the former. The generative capability of a behavior system
extends, of course, beyond any given data. That is, a behavior system is capable to
generate, for example, predictions or retrodictions of the variables involved. More-
over, it provides us with an explanation of the behavior of the variables within the
given supporting medium.

Climbing further up the hierarchy involves two principles of integrating systems
as components in larger systems. According to the first principle, several behavior
systems (or sometimes lower-level systems) that may share some variables or interact
in some other way are viewed as subsystems integrated into one overall system.
Overall systems of this sort are called structure systems. The subsystems forming a
structure system are often called its elements.

When elements of a structure system are themselves structure systems, this
overall system is called a second-order structure system. Higher-order structure
systems are defined recursively in the same way.
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8 Uncertainty Modeling and Analysis in Engineering and the Sciences

According to the second integrating principle, an overall system is viewed as
varying (in time, space, etc.) within a class of systems of any of the other types.
The change from one system to another in the delimited class is described by a
replacement procedure that is invariant with respect to the supporting medium
involved (time, space, etc.). Overall systems of this type are called metasystems.

In principle, the replacement procedure of a metasystem may also change. Then,
an invariant (changeless) higher-level procedure is needed to describe the change.
Systems of this sort, with two levels of replacement procedures, are called metasys-
tems of second order. Higher-order metasystems are then defined recursively in the
same way. Structure systems whose elements are metasystems are also allowed by
the framework, similarly as metasystems defined in terms of structure systems.

The key feature of the epistemological hierarchy is that every system defined

systems on lower levels and, at the same time, contains some knowledge that is not
available in any of these lower-level systems.

The number of levels in the epistemological hierarchy is potentially infinite. In
practice, however, only a small number of levels is considered. For each particular
number of levels, the hierarchy is a semilattice. For five levels, for example, a part

represent the various epistemological categories of systems, and the arrows indicate
the ordering from lower to higher categories. Symbols E, D, and B denote experi-
mental frames (source systems), data systems, and behavior systems, respectively.
Symbol S, used as a prefix, stands for structure systems. For example, SD denotes
structure systems whose elements are data systems. Symbol S2 denotes structure
systems of second order. For example, S2B denotes structure systems of structure
systems whose elements are behavior systems. Symbols M and M2 denote metasys-
tems and metametasystems, respectively. The combination SM and MS denotes
structure systems whose elements are metasystems and metasystems whose elements
are structure systems, respectively. The diagram in Figure 1.1 describes only a part
of the first five levels in the epistemological hierarchy; it can be extended in an
obvious way to combinations such as S3B, S2MB, SMSB, M2SB, S2MB, etc.

Categories of systems captured by the epistemological hierarchy are actually
categories in the strong sense of mathematical category theory. It is useful to further
classify systems subsumed under each epistemological category by relevant meth-
odological distinctions. The aim of this classification is to capture the relationship
between classes of systems and methods applicable to problems associated with the
systems. Examples of methodological distinctions are those between systems based
on discrete variables and systems based on continuous variables, between determin-
istic and nondeterministic systems, and between dynamic and spatial systems.

In the subsequent sections, the source, data, generative, structure, and metasys-
tems are described and illustrated in Examples 1.1 and 1.2.

1.2.3.2 Source (or Experimental Frame) Systems

At the first level of knowledge, which is usually referred to as level 0, the system
is known as a source system. Source systems comprise three different components,
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of the semilattice is expressed by the Hasse diagram in Figure 1.1. The circles
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namely, object systems, specific image systems, and general image systems, as shown

composed of an object, attributes, and a backdrop. The object represents the specific
problem under consideration. The attributes are the important and critical properties
or variables selected for measurement or observation as a model of the original
object. The backdrop is the domain or space within which the attributes are observed.
The specific image system is developed based on the object. This image is built
through observation channels that measure the attribute variation within the back-
drop. The attributes when measured by these channels correspond to the variables
in the specific image system. The attributes are measured within a support set that
corresponds to the backdrop. The support can be either time or space, or can be
population. Combinations of two or more of these supports are also possible. Before
upgrading the system to a higher knowledge level, the specific image system can
be abstracted into a general format. A mapping function is utilized for this purpose
among the different states of the variables to a set of generals that is used for all
the variables.

There are some methodological distinctions that could be defined in this level.
Ordering is one of these distinctions that is realized within state or support sets. Any

FIGURE 1.1 Epistemological hierarchy of systems categories. E = experimental frame or
source system; D = data system; B = behavior system; SE, SD, SB = structure systems based
on source, data, and behavior systems, respectively; S2E, S2D, S2B = second-order structure
systems of the three types; ME, MD, MB = metasystems based on source, data, and behavior
systems, respectively; M2E, M2D, M2B = second-order metasystems of the three types; SME,
SMD, SMB = structure systems based on metasystems of the three types; MSE, MSD, MSB
= metasystems based on structure systems of the three types.
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set can be either ordered or not ordered, and those that are ordered may be partially
ordered or linearly ordered. An ordered set has elements that can take real values,
or values on an interval or ratio scale. A partially ordered set has elements that take
values on an ordinal scale; for example, military ranks are partially ordered. A
nonordered set has components that take values on a nominal scale, such as gender
classification of people or political party affiliations of people. Distance is another
form of distinction, where the distance is a measure between pairs of elements of
an underlying set. It is obvious that if the set is not ordered, the concept of distance
is not valid. Continuity is another form of distinction, where variables or support
sets could be discrete or continuous. The classification of the variables as input or
output variables forms another distinction. Those systems that have classified
input–output variables are referred to as directed systems; otherwise, they are
referred to as neutral systems. The last distinctions that could be realized in this
level are related to the observation channels, which could be classified as crisp or
fuzzy, corresponding to nonvague and vague information channels, respectively. For
example, the number of hurricanes in a year hitting a region is uncertain, but takes
on discrete crisp counts, whereas the fit or comfort level associated with wearing a
piece of garment can only be measured in vague terms using linguistic terms such

methodological distinctions realized in the first level of knowledge.

FIGURE 1.2 Source system components.
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1.2.3.3 Data Systems

The second level of a hierarchical system classification is the data system. The data
system includes a source system together with actual data used for the states of
variables for each attribute. The actual states of the variables at the different support
instances yield the overall states of the attributes. Special functions and techniques
are used to infer information regarding an attribute, based on the states of the
variables representing it. A formal definition of a data system could be expressed
as follows:

D = {S, a} (1.3)

where D = data system, S = the corresponding source system, and a = observed data
that specify the actual states of the variables at different support instances.

1.2.3.4 Generative Systems

At the generative knowledge level, support-independent relations are defined to
describe the constraints among the variables. These relations could be utilized in
generating states of the basic variables for a prescribed initial or boundary condition.
The set of basic variables includes those defined by the source system and possibly
some additional variables that are defined in terms of the basic variables. There are
two main approaches for expressing these constraints. The first approach consists
of a support-independent function that describes the behavior of the system. A
function defined as such is known as a behavior function. The second approach
consists of relating successive states of the different variables. In other words, this
function describes a relationship between the current overall state of the basic
variables and the next overall state of the same variables. A function defined as such
is known as a state transition function. For example, a state transition function can

FIGURE 1.3 Methodological distinctions of source systems.
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be used to model repairable systems. Such systems can be assumed for the purpose
of demonstration to exit in either a normal, i.e., operating, state or failed state, as
shown in Figure 1.4. A system in a normal state makes transitions to either normal
states that are governed by its reliability level (i.e., it continues to be normal) or
failed states through failure. Once it is in a failed state, the system makes transitions
to either failed states that are governed by its repairable-ease level (i.e., it continues
to be failed) or normal states through repair. Therefore, four transition probabilities
are needed for the following cases:

• Normal-to-normal state transition
• Normal-to-failed state transition
• Failed-to-failed state transition
• Failed-to-normal state transition

The sum of probabilities for transitions originating from the same state must
add up to 1. These probabilities can be determined by testing the system or based
on analytical modeling of the physics of failure and repair logistics as provided by
Kumamoto and Henley (1996).

A generative system defined by a behavior function is referred to as a behavior
system, whereas if it is defined by a state transition function, it is known as a state
transition system. State transition systems can always be converted into equivalent
behavior systems, which makes the behavior systems more general.

The constraints among the variables at this level can be represented using many
possible views or perspectives that are known as masks. A mask represents the
pattern in the support set that defines sampling variables that should be considered.
The sampling variables are related to the basic variables through translation rules
that depend on the ordering of the support set. A formal definition of a behavior
system could be expressed as

EB = (I, K, fB) (1.4a)

where EB = the behavior system defined as the triplet of three items, I = the
corresponding general image system or the source system as a whole, K = the chosen
mask, and fB = the behavior function. If the behavior function is used to generate

FIGURE 1.4 A Markov transition diagram for repairable systems.
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data or states of the different variables, the sampling variables should be partitioned
into generating and generated variables. The generating variables represent initial
conditions for a specific generating scheme. The system in this form is referred to
as a generative behavior system. The formal definition for such a system could be
expressed as

EGB = (I, KG, fGB) (1.4b)

where EGB = the generative behavior system defined as the triplet of three items;
I = the corresponding general image system or the source system as a whole; KG =
the chosen mask partitioned into submasks, namely, a generating submask that
defines the generating sampling variables and a generated submask that defines the
generated variables; and fGB = the generative behavior function, which should relate
the occurrence of the general variables to that of the generating variables in a
conditional format.

Most engineering and scientific models, such as the basic Newton’s law of force
computed as the product of mass of an object and its acceleration, or computing the
stress in a rod under axial loading as the applied force divided by the cross-sectional
area of the rod, can be considered generative systems that relate basic variables such
as mass and acceleration to force, or axial force and area to stress, respectively. In
these examples, these models can be considered behavior systems.

Several methodological distinctions can be identified in this level. One of these
distinctions is the type of behavior function used. For nondeterministic systems
where variables have more than one potential state for the same support instant, a
degree of belief or a likelihood measure to each potential state in the overall state
set of the sampling variables should be assigned. They can be used to quantify

of these measures is considered to form a certain distinction within the generative
system. Probability distribution functions and possibility distribution functions are

determination of a suitable behavior function for a given source system, mask, and
data is not an easy task. Potential behavior functions should meet a set of conditions
to be satisfactorily accepted. These conditions should be based on the actual con-
straints among the variables. They also relate to the degree of generative uncertainty
and complexity of the behavior system. Another distinction at this level could be
identified in relation to the mask used. If the support set is ordered, the mask is
known as memory dependent; otherwise, the mask is referred to as memoryless.

1.2.3.5 Structure Systems

Structure systems are sets of smaller systems or subsystems, as previously discussed.
The subsystems could be source, data, or generative systems. These subsystems may
be coupled due to having common variables or due to interaction in some other
form. A formal definition of a structure system could be expressed as follows:
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uncertainty using uncertainty measures, discussed in detail in Chapter 4. Each one

widely used to construct behavior functions as introduced in Chapters 3 and 4. The

Figure 1.5 summarizes the different distinctions identified in this knowledge level.
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SEB = {(Vi, EB
i), for all i ∈ e} (1.5)

where SEB = a structure system whose elements are behavior systems, Vi = the set
of sampling variables for the element of the behavior system, EB

i = ith behavior
system, and e = the total number of elements or subsystems in the structure system
with all i that belong to e, i.e., for all i ∈ e.

1.2.3.6 Metasystems

Metasystems are introduced for the purpose of describing changes within a given
support set. The metasystem consists of a set of systems defined at some lower
knowledge level and some support-independent relation. Referred to as a replace-
ment procedure, this relation defines the changes in the lower-level systems. All the
lower-level systems should share the same source system. There are two different
approaches whereby a metasystem could be viewed in relation to the structure
system. The first approach is introduced by defining the system as a structure
metasystem. The second approach consists of defining a metasystem of a structure
system whose elements are behavior systems.

FIGURE 1.5 Example methodological distinctions for generative systems.
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EXAMPLE 1.1 SYSTEM DEFINITION OF CONSTRUCTION OPERATIONS

Construction management concerns itself, among other things, with the real-time
control of construction or production activities. However, in order to develop a control
system for a construction activity, this activity has to be suitably defined depending
on its nature and methods of control using a hierarchical control system (Abraham et
al., 1989; Ayyub and Hassan, 1992a, 1992b, 1992c). The hierarchical system classifi-
cation enables the decomposition of the overall construction activity into subsystems
that represent the different processes involved in each activity. Then each process could
be decomposed into tasks that are involved in performing the process. For construction
activities, a set theory framework is suitable for representing the variables of the
problem. The ability to infer information about the overall system, knowing the
behavior of its components, can be dealt with using special system prediction tech-
niques (Chestnut, 1965; Hall, 1962, 1989; Klir, 1969, 1985; Wilson, 1984). In this
example, levels of an epistemological hierarchy are defined for the purpose of real-
time control.

Source Systems

For the purpose of illustration, the construction activities of concrete placement are
considered and their knowledge level upgraded throughout the course of this example.
The first step in defining the system for these construction activities is to identify a
goal, in this case construction control by safely placing high-quality concrete effi-
ciently and precisely. This goal can be defined through some properties or attributes
of interest that can include safety, quality, productivity, and precision. Considering
only two attributes of construction activities, i.e., safety and quality, the variables or
factors that affect those attributes should be identified. Only two variables are assumed
to affect the safety attribute. These variables could be quantitatively or qualitatively
defined depending on their nature. For qualitative variables, linguistic terms are used

a quantitative equivalent for each state (Klir, 1985; Klir and Folger, 1988; Zimmerman,
1985). An example of this variable type is labor experience (v1), which is used herein.
This variable is assumed to have four potential states: fair, good, moderate, and
excellent. These linguistic measures can be defined using fuzzy sets. Using a scale of

experience value belongs to the fuzzy sets of fair, good, moderate, or excellent
experience, where experience is on a scale of 0 to 10 (0 = absolutely no experience
and 10 = the absolute highest experience). A mathematical operator can then be defined
in order to get a quantitative equivalent for each state. A one-to-one mapping function
is used in order to define the corresponding general states of the variable (v1). The
second variable (v2) is the method of construction. This variable could have three
potential states, e.g., a traditional method, slip form method, and precast element
method. This is a crisp variable, and its observation channel is represented by an
engineer who decides which method should be used. A similar one-to-one mapping
function is used to relate the different construction methods to the corresponding
general states of the variable (v2).
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and can be modeled using fuzzy set theory (which is formally introduced in Chapter
2) to define the potential states, together with a suitable observation channel that yields

0 to 10 for the level of experience, these measures can be defined as shown in Figure
1.6. The vertical axis in the figure represents the degree of belief that the corresponding
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The next step in the definition of this system is the identification of the different
supports, i.e., backdrops. In this example, the supports include time, space, and pop-
ulation. The time support is needed in measuring the progress of the different variables
during the construction period. Assuming a construction period of 2 months with
weekly observations, the time support set has eight elements that correspond to the
weeks during the construction period. In other words, the elements are week 1, week
2, …, week 8. The space support is used in relating the current state of each variable
at a specific time support instant to a specific location in space within the system. As
an example, a space support set with elements that represent the type of structural
element under construction is considered. These elements are columns, beams, slabs,
and footings. Such a classification constitutes a space support set with four potential
elements. The population support is used to represent the performance of units having
the same structure with respect to the same variables. The population support set in
this example can represent the set of different crews involved in the construction
activity. This support set could have four potential elements: a falsework crew, a rebar
crew, a concreting crew, and a finishing crew. The overall support set, which represents
the domain within which any of the defined variables can change, is defined by the
Cartesian product of the three support sets. In other words, each variable is measured
at a specific time instant in a specific location for a specific working crew. Therefore,
the overall state of the attribute at a specific time instant is related to the performance
and location of the working crew at that time. This fine classification allows for a
complete identification of the reasons and factors that are responsible for a measured
state of an attribute. This process enables construction control, and results in much

states for each variable together with observation channels (oi), a specific variable (vi),
and corresponding general variables (vi′). This example is based on the assumption that

vation channel is taken as a maximum operator to obtain the specific variable (vi). For
example, using the maximum operator on poor produces 2 from Figure 1.6. The
mapping from vi to vi′ is a one-to-one mapping that can be made for abstraction purposes
to some generalized states. The tabulated values under vi′ in Table 1.1 were selected

combination of two of the supports considered in this example of time and space. For

FIGURE 1.6 Fuzzy definitions of experience.
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more precise and accurate corrective actions. Table 1.1 summarizes different potential

personnel with poor experience are not used in the construction activities. The obser-

different elements for each support set. Table 1.3 shows the overall support set for a
arbitrarily for demonstration purposes of such a mapping. Table 1.2 summarizes the
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according to Table 1.2) and week 1 (i.e., general element 11 according to Table 1.2).

The source system defined as such is classified as neutral since an input–output
identification was not considered. The variables used herein are discrete. The time
support set is linearly ordered, while the space and population support sets are not
ordered. Observation channels for variable v1 are linearly ordered, while those for
variable v2 are not ordered. Observation channels for variable v1 are fuzzy, while those

2

for this example.

TABLE 1.1
States of Variables

Variable States
Observation
Channel oi

Specific 
Variable vi

Mapping 
Type

General 
Variable vi′

v1 Poor
Fair
Good
Moderate
Excellent

Maximum
Maximum
Maximum
Maximum
Maximum

2
5
8
9

10

One-to-one
One-to-one
One-to-one
One-to-one
One-to-one

0
1
2
3
4

v2 Traditional method
Slip form method
Precast method

One-to-one
One-to-one
One-to-one

Method 1
Method 2
Method 3

One-to-one
One-to-one
One-to-one

10
20
30

TABLE 1.2
Elements of the Different Support Sets

Support Specific Element Mapping Type General Element

Time Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8

One-to-one
One-to-one
One-to-one
One-to-one
One-to-one
One-to-one
One-to-one
One-to-one

11
21
31
41
51
61
71
81

Space Columns
Beams
Slabs
Footings

One-to-one
One-to-one
One-to-one
One-to-one

12
22
32
42

Population Falsework crew
Rebar crew
Concreting crew
Finishing crew

One-to-one
One-to-one
One-to-one
One-to-one

13
23
33
43
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for variable v  are crisp. Figure 1.7 shows a procedure diagram of the source system

example, the pair [12, 11] in Table 1.3 indicates columns (i.e., general element 12
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Data Systems

Considering the two variables previously defined, v1 for labor experience and v2 for
method of construction, example data are introduced to illustrate the formulation of
the data system. Variable v1 was defined as a fuzzy variable with fuzzy observation
channels. This variable can transition to potential states at any support instant with
some degrees of belief. Considering the combination of time and space supports, this
formulation results in a three-dimensional data matrix for variable v1. Any two-dimen-
sional data matrix has the degrees of belief of each potential state as its entries. Variable
v2 was defined as a crisp variable with crisp observation channels. As a result, the

TABLE 1.3
The Overall Support Set of Time and Space

Space

Time (Week)

 11  21  31  41  51  61  71  81

Columns (12)
Beams (22)
Slabs (32)
Footings (42)

[12, 11]
[22, 11]
[32, 11]
[42, 11]

[12, 21]
[22, 21]
[32, 21]
[42, 31]

[12, 31]
[22, 31]
[32, 31]
[42, 41]

[12, 41]
[22, 41]
[32, 41]
[42, 41]

[12, 51]
[22, 51]
[32, 51]
[42, 51]

[12, 61]
[22, 61]
[32, 61]
[42, 61]

[12, 71]
[22, 71]
[32, 71]
[42, 71]

[12, 81]
[22, 81]
[32, 81]
[42, 81]

FIGURE 1.7 A source system of a construction activity.
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corresponding observed data were also crisp. Considering the combination of time and
space supports, this formulation results in a two-dimensional data matrix for variable
v2 as its entries.

Data systems can be classified based on the level of available data. If all entries in a
data matrix are specified, the system is known as completely specified. However, if
some of the entries in a data matrix are not specified, the system is known as incom-

data matrices representing two of the potential states of variable v1. Table 1.4 provides
degrees of belief in having the state of good for v1 as an example. Similar matrices are

for variable v2. Obviously in this example, all of the considered systems have completely
specified data. Another classification or distinction that could be realized for data
systems with linearly ordered support sets is periodic or nonperiodic data. Data are
considered to be periodic, if they repeat in the same order by extending the support
set. From the data matrices specified in this example, such a property does not exist.

Generative Systems

the labor experience variable (v1) was defined as a fuzzy variable that can take state 1
at different support instances with the degrees of belief shown in the table. This state

TABLE 1.4
The Data Matrix of Labor Experience (v1) as 
Degrees of Belief in Having the State Good

Space

Time (Week)

11 21 31 41 51 61 71 81

12
22
32
42

0.7
1.0
0.2
0.9

0.5
0.4
0.7
0.5

0.6
0.7
1.0
0.8

0.1
0.5
0.9
0.7

0.3
0.7
0.3
0.5

0.2
1.0
0.5
0.2

0.8
0.9
1.0
0.1

1.0
0.3
0.6
0.3

TABLE 1.5
The Data Matrix of Labor Experience (v1) as 
Degrees of Belief in Having the State Moderate

Space

Time (Week)

11 21 31 41 51 61 71 81

12
22
32
42

0.3
0.9
0.3
0.3

0.7
0.5
0.9
0.5

0.9
0.7
1.0
0.7

1.0
0.6
0.8
1.0

0.5
1.0
0.2
0.6

0.3
0.9
0.7
0.8

0.2
0.5
0.9
0.4

0.8
0.6
1.0
0.2
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pletely specified. Table 1.4 and Table 1.5 show two examples for the two-dimensional

provided for other states, as shown in Table 1.5. Table 1.6 shows a crisp data matrix

A memoryless mask was chosen in this example for illustration purposes. In Table 1.7,
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was accompanied by state 10 for the construction method variable (v2), as shown in
the table. Accordingly, the overall state C1 = (1, 10) has support-variant degrees of
belief. Using a minimum operator, for example, as an aggregation function, the degree
of belief of state (C1) can be calculated at the different support instants as shown in
Table 1.7. In other words, the degree of belief of the combination of states 1 and 10
is the minimum of the two degrees of belief of the separate states. It should be noted
that since variable v2 is a crisp variable. Its degree of belief was taken to be one at any
support instant. The likelihood of occurrence of each overall state C1 was then calcu-
lated as follows:

(1.6)

where Nc = likelihood of occurrence, ds,t = aggregated degree of belief of state(s) at
support instant t, and the summation was performed over the support instances. The

TABLE 1.6
The Data Matrix of Method of Construction (v2)

Space

Time (Week)

11 21 31 41 51 61 71 81

12
22
32
42

10
20
10
10

10
20
10
10

10
20
20
10

20
10
20
10

20
10
20
10

20
10
10
10

20
20
10
10

20
20
10
10

TABLE 1.7
A Behavior Function Evaluation for Variables v1 and v2

Overall 
State (Ci)

Variable v1 Variable v2 Degree of 
Belief of 
Overall 

State (C)

Likelihood of
Occurrence

(Nc)

Behavior
Function

(fB)State
Degree
of Belief State

Degree
of Belief

C1 (1, 10) 1
1
1
1

0.8
0.7
0.5
0.3

10
10
10
10

1
1
1
1

0.8
0.7
0.5
0.3

2.3 0.354

C2 (3, 10) 3
3
3

0.4
0.7
0.6

10
10
10

1
1
1

0.4
0.6
0.7

1.7 0.262

C3 (2, 10) 2
2
2

0.5
0.8
0.9

10
10
10

1
1
1

0.5
0.8
0.9

2.2 0.338

C4 (0, 10) 0
0

0.2
0.1

10
10

1
1

0.2
0.1 0.3 0.046

N dc s t

all t

= ∑ ,
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corresponding probability of overall state (C1) is then calculated using the following
formula (Klir, 1969, 1985):

(1.7)

where fB(C1) = probability of having state C1, which corresponds to the value of the
behavior function for that state; Nc = likelihood of occurrence of state C1; and the
summation was performed over all the overall states. The expressions provided by
Equations 1.6 and 1.7 were chosen for illustration purposes. The resulting probabilities

B

A state transition system can be expressed as

En = (I, K, fn) (1.8)

where En = a state transition system, I = the corresponding general image system, K
= the chosen mask, and fn = the state transition function. An important interpretation
of the state transition concept in construction is the state table approach as used by
Abraham et al. (1989). The state table format could be viewed as a state transition
function in a feedback control framework. Table 1.8 shows an example of such a table
that describes the process of giving some command, the current state of a certain
variable, the next state for the same variable, and feedback information for control
purposes. The main concept in this framework is the relationship developed through

procedure diagram for constructing a generative system. It should be emphasized here
that although variables 1 and 2 for attribute 1 have the same names as variables 3 and
4 for attribute 2, this does not mean that they would take the same values. In other
words, the same variables have different impacts on different attributes according to
the nature of each attribute.

TABLE 1.8
A State Table Format

Command State Feedback Next State Output Report

Place concrete 
for a foundation

Forms without 
concrete

Concrete 
overflow

Structural
member

Concrete 
member

Concrete 
quantities

Place concrete 
for a column

Forms without 
concrete

Concrete 
overflow

Structural 
member

Concrete 
member

Concrete 
quantities

Place concrete 
for a beam

Forms without 
concrete

Concrete
overflow

Structural 
member

Concrete 
member

Concrete 
quantities

Place concrete 
for a slab

Forms without 
concrete

Concrete 
overflow

Structural 
member

Concrete
member

Concrete
quantities

Source: Adapted from Abraham, D.M. et al., J. Comput. Civ. Eng., 3, 320–332, 1989.

f C
N

N
B

c

c

all c

( )1 =
∑

C6447_book.fm  Page 21  Tuesday, April 4, 2006  1:39 PM

© 2006 by Taylor & Francis Group, LLC

the table, between the consecutive states of the different variables. Figure 1.8 shows a

(f ) for selected potential overall states are shown in Table 1.7.
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Structure Systems

construction activity consists of a number of processes that should be accomplished.
These processes depend on each other in some manner. Considering concrete placement
as a construction activity, the different processes involved include falsework construc-
tion, rebar placement, concrete pouring, and concrete finishing. These processes rep-
resent interrelated subsystems within the structure system. Each process is defined as
a generative system. The interrelation among the subsystems represents the dependence
of each process on the preceding one. Another form of the interrelationship is the
input–output relation between the successive processes. A nested structure system could
also be defined on the same example by defining each of the subsystems as another
structure system whose elements are generative systems. It should be noted that each
of the described subsystems and their corresponding elements should be defined on
the same source system.

Metasystems

The construction activity is defined as a structure system whose elements are metasys-
tems. Each metasystem represents the change in its behavior system. For a concrete
placement activity, the processes include falsework construction, rebar placement, and
concrete pouring. However, in order to represent the actual behavior of this system
within the overall support set required, the behavior system in this case can only be
defined using more than one behavior function. Each one of these functions is valid
for only a subset of the overall support set. Stating the problem in this format, a
metasystem should be defined to describe the change in each one of these subsystems.

FIGURE 1.8 A generative system for a construction activity.

Construction activity for
concrete placement

Attribute 1
for safety 

Variable 1
for labor

experience  

Attribute 2
for quality 

Variable 2
for method of
construction 

Variable 3
for labor

experience  

Variable 4
for method of
construction 

Data

Or
operatorBehavior function State-transition

function

C6447_book.fm  Page 22  Tuesday, April 4, 2006  1:39 PM

© 2006 by Taylor & Francis Group, LLC

Structure systems are sets of smaller systems or subsystems, as illustrated in Figure
1.9. The subsystems could be source, data, or generative systems. In this example, the
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The replacement procedure is required in order to decide which behavior function
should be used. This decision should be taken based on the states of some basic variables
specified for this purpose. Referring to the behavior functions previously defined, i.e.,
the probability/possibility distributions, more than one distribution might be necessary
to fit the available data. Each one of these distributions is valid within a subset of the
overall support set. For example, some distribution might fit variable v1 for the first
month, i.e., 4 weeks, while a different distribution might more appropriately represent
the same variable during the next four weeks. Thus, a replacement procedure is required
in order to calculate the current time and choose the appropriate distribution that

a metasystem.

The metasystem can be defined as a structure system whose elements are behavior
systems. Applying this concept to the example under consideration, a metasystem is
defined on the construction activity that represents a structure system. In other words,
the construction activity is the structure system with the different processes defined as
subsystems. This structure system changes with time, where time is an example support.
At some instant of time, falsework construction and rebar replacement as two sub-
systems might be in progress, whereas the other processes, i.e., concrete pouring and
concrete finishing, might not be started yet. Therefore, the components of the structure
system at this instant of time do not include the ones that have not been started. This

FIGURE 1.9 A structure system for a construction activity.
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represents the data during this period. Figure 1.10 shows a graphical representation of
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composition would probably be different after some time, where all the processes might
be in progress at the same time. The replacement procedure in this case should observe
the change in each process such that the composition of the structure system could be
defined at any support instant.

EXAMPLE 1.2 SYSTEM DEFINITION OF AN OFFICE BUILDING

An information-based system can be defined for an office building in a hierarchical
manner consisting of five knowledge levels, in which the higher level contains more
details than the lower levels. For an office building, each level is briefly defined as follows:

• The source system defines the physical objects comprising an office building
for the purpose of structural analysis. The objects herein include the column,

FIGURE 1.10 A metasystem for a construction activity.
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beams, slabs, connections, occupancy loads, and the ground assumed as a fixed
support. The system boundaries herein exclude the soil properties and the
soil–structure interactions.

• The data system contains the actual data relating to the defined source system.
For example, the data include member sizes, material properties, and struc-
tural details.

• The generative systems define and relate the constraints among the variables
of the system and their use to predict behavior attributes of interest. For
example, the stiffness matrix and its use to compute member forces and stresses
are included in this system definition level.

• The structure systems are sets of subsystems. For an office building, these
subsystems are the stiffness matrices of all the components assembled in the
global stiffness matrix, loads and their characteristics, and other components,
such as window and cladding.

• The metasystem describes the changes in the lower-knowledge-level sub-
systems due to some time-dependent characteristics or subsystems included in
the definitions, for example, changes in climate or environmental conditions,
properties of construction materials, and degradation of materials.

1.2.4 DISCIPLINARY ROOTS OF SYSTEMS SCIENCE

Systems science as a phenomenon emerged from what is usually referred to as
systems movement. In general, systems movement may be characterized as a loose
association of people from different disciplines of science, engineering, philosophy,
and other areas, who share a common interest in ideas (concepts, principles, methods,
etc.) that are applicable to all systems and that, consequently, transcend the bound-
aries between traditional disciplines.

Systems movement emerged from three principal roots: mathematics, computer
technology, and a host of ideas that are well captured by the general term systems
thinking. Mathematics is clearly a source of the various systemhood properties. It
also provides us with methodological tools pertaining to these properties. While the
classical (analytic) mathematical methods are applicable only to problems that
involve a small number of variables related to each other in a predictable way, the
applicability of statistical methods has exactly opposite characteristics: they require
a very large number of variables and a high degree of randomness. These two types
of methods are thus highly complementary. When one of them excels, the other
totally fails. Unfortunately, despite their complementarity, these types of methods
cover only problems that are clustered around the two extremes of the complexity
and randomness scales. Most problems are somewhere in between these two
extremes. They are typical in life, behavioral, social, and environmental sciences,
as well as in applied fields such as modern technology or medicine.

To deal with the broader range of problems mathematically required more
expressive mathematical theories, and that required, in turn, to generalize existing
theories. The following are some of these generalizations:

• From quantitative theories to qualitative theories
• From functions to relations
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• From classical (additive) measures to nonadditive measures
• From classical set theory to fuzzy set theory
• From graphs to hypergraphs
• From ordinary geometry (Euclidean as well as non-Euclidean) to fractal

geometry
• From ordinary automata to dynamic cellular automata
• From linear theories to nonlinear theories
• From regularities to singularities (catastrophe theory)
• From precise analysis to interval analysis and to fuzzy analysis
• From regular languages to developmental languages
• From special algebras to universal algebra and to category theory
• From single-objective criteria optimization to multiple-objective criteria

optimization

Each generalization of a mathematical theory usually results in a conceptually
simpler theory. This is a consequence of the fact that some properties of the former
theory are not required in the latter. At the same time, the more general theory always
has a greater expressive power, which, however, is achieved only at the cost of
greater computational demands. This explains why these generalizations are closely
connected with the emergence of computer technology and steady increases in
computing power.

In addition to mathematics and computer technology, systems science has also
been influenced by a host of ideas for which we use the general term systems thinking.
Perhaps the most important of them are ideas associated with holism, which emerged
at the beginning of this century as an antithesis of reductionism, a methodological
view predominant in science since about the 16th century. The latter claims that
properties of a whole are explicable in terms of properties of constituent elements.
Holism rejects this claim and maintains that a whole cannot be analyzed in terms
of its parts without some residuum.

There were other developments besides holism that paved the way for systems
science. Among them was the increasing awareness that there were many phenomena
and problems that could not be studied within the boundaries of individual disciplines
of science. This eventually leads to the emergence of interdisciplinary areas such
as biophysics, biochemistry, physiological psychology, or social psychology. The
existence of these interdisciplinary areas was probably the first step leading to the
recognition that systems may be defined across disciplinary boundaries. We may
say that it was the first step in recognizing the notion of systemhood. Another step
was the recognition of analogies (isomorphies) between systems describing different
phenomena (e.g., mechanical, electrical, acoustic, thermal), which made it possible
to construct and use analog computers and resulted eventually in the formulation of
the theory of similarity. Further progress was made by actually identifying some
fundamental systemhood properties, such as information and control in Wiener’s
Cybernetics (1948).

The ideas of holism, the emergence of interdisciplinary areas in science, and the
increasing recognition of the existence and utility of isomorphies between disciplines
of science created a growing awareness among some scholars that certain concepts,
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ideas, principles, and methods were applicable to systems in general, regardless of
their disciplinary categorization. This eventually led to the notions of general systems,
general theory of systems, general systems research, and the like. These notions,
originated and promoted primarily by Ludwig Von Bertalanffy (1968), formed an
intellectual basis from which the organized systems movement emerged.

1.2.5 SYSTEMS KNOWLEDGE, METHODOLOGY, AND 
METAMETHODOLOGY

As explained previously, systems science is not a new science in the traditional
sense, but rather a new dimension in science. Yet, the two dimensions of science
have significant parallels: systems science, as any of the classical sciences, contains
a body of knowledge regarding its domain, a methodology for acquisition of new
knowledge and for dealing with relevant problems within the domain, and a
metamethodology, by which methods and their relationship to problems are charac-
terized and critically examined.

In every traditional discipline of science, we develop systems models of various
phenomena of the real world. Each of these models, when properly validated,
represents some specific knowledge regarding the relevant domain of inquiry. In
systems science, the domain of inquiry consists of knowledge structures themselves
— the various categories of systems that emerge from the conceptual framework
employed. That is, the objects of investigation in systems science are not objects of
reality, but systems of certain specific types.

Knowledge pertaining to systems science, or systems knowledge, is thus different
from knowledge in traditional science. It is not knowledge regarding various aspects
of reality, as in traditional science, but rather knowledge regarding the various types
of systems in terms of which knowledge in traditional science is organized. That is,
it is knowledge concerning knowledge structures. This knowledge is, of course,
applicable to the processes of acquisition, management, and utilization of knowledge
in every discipline of traditional science.

Systems knowledge can be obtained either mathematically or experimentally.
Mathematically derived systems knowledge is the subject of the various mathemat-
ical systems theories, each applicable to some class of systems. It consists of
theorems regarding issues such as controllability, stability, state equivalence, infor-
mation transmission, decomposition, homomorphism, self-organization, self-repro-
duction, and many others.

Systems knowledge can also be obtained experimentally. Although systems
(knowledge structures) are not objects of reality, they can be simulated on computers
and in this sense made real. We can then experiment with the simulated systems for
the purpose of discovering or validating various hypotheses in the same way as other
scientists do with objects of their interests in their laboratories. In this sense, com-
puters may be viewed as laboratories of systems science. Experimentation with
systems on computers is not merely possible, but it may give us knowledge that is
otherwise unobtainable.

The computer has, in fact, a dual role in systems science. In one of the roles, it
is a methodological tool for dealing with systems problems. In the other role, it
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serves as a laboratory for experimenting with systems. The purpose of this experi-
mentation is to discover or validate laws of systems science. In contrast to laws of
nature, laws of systems science characterize properties of various categories of
systems rather than categories of real-world objects. We perform experiments of
some kind on the computer with many different systems of the same category. The
aim of this experimentation is to discover useful properties characterizing the cate-
gory of systems or, alternatively, to validate some conjectures regarding the category.

Experimentation with systems on computers to expand systems knowledge is
only one of two sides of systems methodology. The other side consists of methods
developed for dealing with various systems problems. These are problems that
involve primarily systemhood properties.

An expertise in systems knowledge and systems problem-solving methodology
may, in principle, be implemented on a computer in the form of an expert system.
Such an expert system is complementary to the usual expert system, which is
predominantly oriented to thinghood expertise in some special area of classical
science, engineering, or some other profession. The two types of expert systems
together should form a far better computer support for dealing with overall problems
than either of them alone.

The primacy of problems in systems methodology is in sharp contrast with the
primacy of methods in applied mathematics. It is the most fundamental commitment
of systems methodology to develop methods for solving genuine systems problems
in their natural formulation. Simplifying assumptions, if unavoidable, are introduced
carefully, for the purpose of making the problem manageable, and yet distort it as
little as possible. The methodological tools for dealing with a problem are of
secondary importance; they are chosen in such a way as to best fit the problem rather
than the other way around. Moreover, the tools need not be only mathematical in
nature. They may consist of a combination of mathematical, computational, heuristic,
experimental, or any other desirable methodological traits.

In order to choose an appropriate method for a specific problem, relevant char-
acteristics of prospective methods must be determined. This is a subject of systems
metamethodology — the study of systems methods as well as methodologies (inte-
grated collections of methods). Let any particular study whose aim is to determine
some specific characteristics of a method (or methodology) be called a metamethod-
ological inquiry. Examples of the most fundamental characteristics of methods,
which are relevant to virtually all problems, are computational complexity, perfor-
mance, and generality of the methods involved.

Computational complexity is a characterization of the time or space (memory)
requirements for solving a problem by a particular method. Either of these require-
ments is usually expressed in terms of a single parameter that represents the size of
the problem, e.g., the number variables in the given systems. The dependence of the
required time or memory space on the problem size is usually called a time com-
plexity function or space complexity function, respectively. Either of these functions
can be used for comparing different methods for dealing with the same problem type.

Performance of a method is characterized by the degree of its success in dealing
with the class of problems to which it is applicable. It can be expressed in various
ways, typically by the percentage of cases in which the desirable solution is reached,
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by the average closeness to the desirable solution, or by a characterization of the worst-
case solution. Methods whose performance is not perfect are usually called heuristic
methods. They are employed as a means for reducing computational complexity.

Generality of a method is determined by the assumptions under which it operates,
e.g., by the axioms of a mathematical theory upon which the method is based. A
particular set of assumptions, upon which several different methods may be based,
is often referred to as a methodological paradigm. Each assumption contained in a
methodological paradigm restricts the applicability of the associated methods and,
consequently, restricts the set of possible solutions in some specific way.

In some instances, characteristics of methods or methodologies can be obtained
mathematically. For example, worst-case complexity functions have been determined
for many methods involved in systems problem solving. In many cases, however,
mathematical treatment is not feasible. For example, it is often impossible to deter-
mine mathematically the performance of a heuristic method or the complexity func-
tion of a method for typical (average) problems of a given type. One way of obtaining
the desired characteristics in these cases is to perform experimental investigations of
the methods involved. That is, the application of the investigated method or method-
ology is simulated on a computer for a set of typical problems of a given type. Results
obtained for these problems are then summarized in a desirable form to characterize
the method or methodology and, possibly, compare it with its various competitors.

1.2.6 COMPLEXITY AND SIMPLIFICATION OF SYSTEMS

Our most troubling long-range problems, such as economic forecasting and trade
balance, defense systems, and genetic modeling, center on systems of extraordinary
complexity. The systems that host these problems — computer networks, economics,
ecologies, and immune systems — appear to be as diverse as the problems. Humans
as complex, intelligent systems have the ability to anticipate the future and learn
and adapt in ways that are not yet fully understood. Engineers and scientists, who
study or design systems, have to deal with complexity more often than ever, hence
the interest in the field of complexity. Understanding and modeling system com-
plexity can be viewed as a pretext for solving complex scientific and technological
problems, such as finding a cure for the acquired immune deficiency syndrome
(AIDS) or solving long-term environmental issues or using genetic engineering
safely in agricultural products. The study of complexity led to, for example, chaos
and catastrophe theories. Even if complexity theories did not produce solutions to
problems, they can still help us to understand complex systems and perhaps direct
experimental studies. Theory and experiment go hand in glove, therefore providing
opportunities to make major contributions.

Complexity is perhaps as important a concept for systems science as the concept
of a system. It is a difficult concept, primarily because it has many possible meanings.
While various specific meanings of complexity have been proposed and discussed
on many occasions, there is virtually no sufficiently comprehensive study that
attempts to capture its general characteristics.

To begin with a broad perspective, a dictionary (Webster’s Third International
Dictionary) defines the quality or state of being complex as follows:
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• “Having many varied interrelated parts, patterns, or elements and conse-
quently hard to understand fully”

• “Marked by an involvement of many parts, aspects, details, notions, and
necessitating earnest study or examination to understand or cope with”

These commonsense characterizations of complexity do not contain any quali-
fication regarding the kind of entities to which they are applicable. As such, the
entities could be material or abstract, natural or human-made, products of art or
science. Regardless of their types, the degree of complexity according to the com-
monsense characterizations is associated with the number of recognized parts as
well as the extent of their interrelationship; in addition, complexity is given a
somewhat subjective connotation since it is related to the ability to understand or
cope with the thing under consideration. The commonsense characterizations of
complexity assume an interaction between an object (a part of the world that may
have “many varied interrelated parts”) and a human being (or, perhaps, a computer),
for whom it may be difficult “to understand or cope with” the object. This means
that the complexity of an object for a particular human being depends on the way
he interacts with it (i.e., on his interests and capabilities). More poetically, we may
say that the complexity of an object is in the eyes of the observer.

In most cases, there is virtually an unlimited number of ways one can interact
with an object. As a consequence, the interaction is almost never complete. It is
based on a limited (and usually rather small) number of attributes that the observer
is capable of distinguishing on the object and that are relevant to his interests. These
attributes are not available to the observer directly, but only in terms of their abstract
images, which are results of perception or some specific measurement procedures.
These abstract images are usually called variables. When a set of variables is
established as a result of our interaction with an object of interest, we say that a
system (or, more precisely, a source system) is distinguished on the object.

Since we deal with systems distinguished on objects and not with the objects
themselves (in their totality), it is not operationally meaningful to view complexity
as an intrinsic property of objects. While complexities of objects may exist in the
ontological sense, they are epistemologically and methodologically vacuous, in
contrast to complexities of systems.

Two general principles of systems complexity can be recognized; they are appli-
cable to any of the systems types and can thus be utilized as guidelines for a
comprehensive study of systems complexity. According to the first general principle,
the complexity of a system (of any type) should be proportional to the amount of
information required to describe the system. Here, the term information is used
solely in a syntactic sense; no semantic or pragmatic aspects of information are
employed. One way of expressing this descriptive complexity is to define it by the
size of the shortest description of the system in some standard language or, alterna-
tively, the size of the smallest program in a standard language by which the system
can be simulated on a canonical universal computer. The primary advantage of this
definition of descriptive complexity is that it is theoretically sound and applicable
to all systems, regardless of their classification. Its primary weakness is method-
ological: it is rather difficult to determine in many cases the shortest description of
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a system. According to the second general principle, systems complexity should be
proportional to the amount of the information needed to resolve any uncertainty
associated with the system involved for predictive, retrodictive, or prescriptive pur-
poses. Here, again, syntactic information is used, but information that is based on
a measure of uncertainty.

Uncertainty is an inherent property of nondeterministic systems. Such systems
describe situations that offer multiple choices. Several mathematical theories are now
available within which various types of uncertainty can be formalized and measured.

Both descriptive complexity and uncertainty-based complexity are connected
with information, i.e., information needed to describe a system (descriptive or
algorithmic information) and information needed to resolve uncertainty embedded
in it (uncertainty-reducing information). Simplifying a system, then, should be based
on reducing both the complexity based on descriptive information and the complexity
based on the uncertainty information. Unfortunately, these two complexities conflict
with each other. In general, when we reduce one, the other increases or, at best,
remains unchanged. Hence, a general problem of simplification is multiobjective
criteria optimization.

One way of reducing the descriptive complexity of a system of any type is to
exclude some variables from the system. Excluding variables from any relation
reduces the relation in two ways. First, its dimension is reduced since some sets in
its Cartesian product are excluded. Second, its cardinality is reduced since overall
states that were distinguished only by the excluded variables become equivalent.

Reducing the uncertainty-based complexity involves an inverse procedure. That
is, it requires adding input variables to the system, which contribute, at least potentially,
some information that in turn reduces the uncertainty regarding the output variables.

Another way of reducing descriptive complexity of a system is to partition states
of some variables of the system into equivalence classes and to replace each equiv-
alence class with one state. This simplification strategy is usually referred to as
coarsening or quantizing of variables; it reduces cardinalities of relations involved,
but it leaves their dimensions intact. While descriptive complexity is always reduced
by coarsening of variables, uncertainty-based complexity may be affected by coars-
ening of variables in either way.

An important strategy for reducing descriptive complexity of a system is to break
the system down into appropriate subsystems. That is, a particular overall system is
approximated with a structure system. The key issue in employing this strategy is
to minimize the increase in uncertainty (or loss of information) while achieving the
desired reduction of descriptive complexity. This process is called reconstructability
analysis (Klir, 1985).

Conceptualizing systems as structure systems, possibly of higher orders, is cer-
tainly an efficient way of managing complexity. Such systems are organized hierar-
chically, with each system consisting of a network of interconnected subsystems,
each of which consists again of a network of its own subsystems, and so on, until
some ultimate subsystems are reached that are not further divided into more primitive
subsystems. The power of organizing systems hierarchically has been recognized and
utilized with great success in the sciences of the artificial. This organizing principle
has undoubtedly been one of the basic tools of good designers, artists, and managers.
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It has also played a key role in the process of developing efficient mass production
by allowing the division of labor in manufacturing complex products.

The significance of hierarchically organized systems has also been recognized
for a long time in the sciences of the natural; e.g., virtually all complex systems that
we recognize in the real world (that is, models of the real world) have the tendency
to organize hierarchically. Thus, for example, biological cells seem to group naturally
into organs, while organs group into organisms, organisms group into populations
of animals, and the animals group into ecosystems. The fact that we tend to perceive
the world as hierarchically organized might have some ontological significance, but
it may as well be solely of epistemological nature, reflecting the way the human
brain and mind have evolved to deal with the complexity of the real world. Regardless
of its ontological significance, it is undeniable that hierarchically organized systems
play an important pragmatic role in our comprehension and management of reality,
be it natural or human-made.

Another way of dealing with very complex systems, perhaps the most significant
one, is to allow imprecision in describing properly aggregated data. Here, the impre-
cision is not of a statistical nature, but rather of a more general modality, even though
the possibility of imprecise statistical descriptions is included as well. The mathe-
matical frameworks for this new modality are, as already mentioned, the theories
of fuzzy sets and nonadditive measures.

1.2.7 COMPUTATIONAL COMPLEXITY AND LIMITATIONS

The two types of complexity introduced thus far, the descriptive complexity and the
uncertainty-based complexity, pertain to systems. Yet another face of complexity
exists, a complexity that pertains to systems problems. This complexity, which is
usually referred to as computational complexity, is a characterization of the time or
space (memory) requirements for solving a problem by a particular algorithm. Either
of these requirements is usually expressed by a function, f, of a single parameter,
n, that represents the size of the problem. This function is called a time (or space)
complexity function. The main distinction is between algorithms whose complexity
function can be expressed in terms of a polynomial as follows:

f(n) = aknk + ak–1 nk–1 + … + a1n + a0 (1.9)

for some positive integer k, and algorithms for which f(n) is expressed by an
exponential form, e.g., 2n, 10n, 2e(n), where f(n) is an exponential function of n. Due
to the essential differences between polynomial and exponential time complexity
functions, polynomial time algorithms are considered efficient, while exponential
time algorithms are considered inefficient. As a consequence, problems for which it
can be proven that they are not solvable by polynomial time algorithms are viewed
as intractable, while problems for which polynomial time algorithms are known are
viewed as tractable. Computational complexity has been extensively investigated
since the early 1970s. Many important results regarding tractability of various
systems problems are covered in the classic book on computational complexity by
Garey and Johnson (1979).
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From a broader and more realistic perspective, the size of a problem instance is
not the only determinant of its computational complexity. That is, problem instances
of the same type and size may have very different computational demands. Most
studies in the area of computational complexity are oriented primarily to the char-
acterization of the worst-case problem instances. Although this orientation is theo-
retically sound, it usually results in estimates that are rarely reached in practice and
are therefore too pessimistic. To ameliorate this situation, the worst-case estimates
are sometimes supplemented with average-case estimates. However, such estimates
are based on the assumption that all problem instances are equally likely, which
does not necessarily reflect the actual probability distribution of problem instance
encountered in practice. The problem of determining the actual distribution for
various problem types is predominantly an empirical problem. This problem can be
studied, in principle, by monitoring and analyzing problem instances requested by
users of the various systems problem packages. Any such study is an example of a
metamethodological inquiry.

Complexity can also be classified into two broad categories: (1) complexity with
structure and (2) complexity without structure. The complexity with structure was
termed organized complexity by Weaver (1948). Organized complexity can be
observed in a system that involves nonlinear differential equations with a lot of
interactions among a large number of components and variables that define the
system, such as in life, behavioral, social, and environmental sciences. Such systems
are usually nondeterministic in their nature. Advancements in computer technology
and numerical methods have enhanced our ability to obtain solutions of these
problems effectively and inexpensively. As a result, engineers design complex sys-
tems in simulated environments and operations, such as a space mission to a distant
planet, and scientists can conduct numerical experiments involving, for example,
nuclear blasts. In the area of simulation-based design, engineers are using parallel
computing and physics-based modeling to simulate fire propagation in engineering
systems, or the turbulent flow of a jet engine using molecular motion and modeling
(Garey and Johnson, 1979). These computer and numerical advancements are not
limitless, as the increasing computational demands lead to what is termed transcom-
putational problems capped by the Bremermann’s limit (Bremermann, 1962). This
Bremermann’s limit, which was derived on the basis of quantum theory, is expressed
by the following proposition (Bremermann, 1962):

No data processing systems, whether artificial or living, can process more than
1.36 × 1047 bits per second per gram of its mass.

Here, data processing is defined as transmitting bits over one or several of a system’s
channels. Bremermann (1962) provides additional information on the theoretical
basis for this proposition. Considering a hypothetical computer that has the entire
mass of the Earth (6 × 1027 g) operating for a time period equal to an estimated age
of the Earth (3.14 × 1017 seconds), this imaginary computer would be able to process
2.56 × 1092 bits, or rounded to the nearest power of 10, 1093 bits, defining the
Bremermann’s limit. Many scientific and engineering problems defined with a lot
of details can exceed this limit. Klir and Folger (1988) provide the examples of
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pattern recognition and human vision that can easily reach transcomputational
levels. In pattern recognition, consider a square q × q spatial array defining n = q2

cells that partition the recognition space. Pattern recognition often involves color.
Using k colors, as an example, the number of possible color patterns within the
space is kn. In order to stay within the Bremermann’s limit, the following inequality
must be met:

kn ≤ 1093 (1.10)

Figure 1.11 shows a plot of this inequality for values of k = 2 to 10 colors. For
example, using only two colors, a transcomputational state is reached at q = 18 cells.
These computations in pattern recognition can be directly related to human vision
and the complexity associated with processing information by the retina of a human
eye. According to Klir and Folger (1988), if we consider a retina of about 1 million
cells, with each cell having only two states of active and inactive in recognizing an
object, modeling the retina in its entirety would require the processing of

21,000,000 ≈ 10300,000 (1.11)

bits of information, far beyond the Bremermann’s limit.
Organized complexity in nature offers another interesting aspect of complexity

in that it can be decomposed into an underlying repeated unit (Flake, 1998). For
example, economic markets that defy prediction, the pattern recognition capabilities
of any of the vertebrates, the human immune system’s response to viral and bacterial
attack, and the evolution of life on our planet are emergent in that they contain
simple units that, when combined, form a more complex whole. They are examples
of the whole of the system being greater than the sum of the parts, which is a fair
definition of holism — the very opposite of reductionism. They are similar to an
ant colony. Although a single ant exhibits a simple behavior that includes a very
small number of tasks, depending on its caste, such as foraging for food, caring for
the queen’s brood, tending to the upkeep of the nest, defending against enemies, or,

FIGURE 1.11 The Bremermann’s limit for pattern recognition.
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in the case of the queen, lay eggs, the behavior of the ant colony as a whole is very
complex. The ant colony includes millions of workers that can sweep whole regions
clean of animal life, and the fungus-growing ants that collect vegetable matter as
food for symbiotic fungi and then harvest a portion of the fungi as food for the
colony. The physical structure of the colony that ants build often contains thousands
of passageways and appears mazelike to human eyes but are easily navigated by the
inhabitants. The point herein is that an ant colony is more than just a bunch of ants.
An organized complexity exists that is challenging to scientists. Knowing how each
caste in an ant species behaves would not enable a scientist to magically infer that
ant colonies possess so many sophisticated patterns of behavior.

Another dimension to this complexity is that agents that exist on one level of
understanding are very different from agents on another level; for example, cells are
not organs, organs are not animals, and animals are not species. The interactions on
one level of understanding are often very similar to the interactions on other levels,
as illustrated by finding:

• Self-similar structures in biology, such as trees, ferns, leaves, and twigs
• Self-similarity in inanimate objects, such as snowflakes, mountains, and

clouds

branching fractals using a constant angle. The figure illustrates the progression of
self-similarity to produce structures that can be observed in nature. Flake (1998)
provides many other examples similar to Figure 1.12. Examining this self-similarity
might enhance our understanding of complexity, and might help us to unravel com-
plexities associated with predicting the stock market and the weather. Is the challenge
posed herein due to limited knowledge, or is it somehow inherent in these systems?

FIGURE 1.12 Plantlike branching fractals based on self-similarity.
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This complexity is also self-organization, such as the collectives of ant colo-
nies, human brains, and economic markets self-organizing to create enormously
complex behavior that is much richer than the behavior of the individual compo-
nent units. The complexity also exhibits evolution, learning, and the adaptation
found in social systems.

Flake (1998) concludes that nature is frugal in that of all the possible rules that
could be used to govern the interactions among agents, scientists are finding that
nature often uses the simplest. Moreover, the same rules are repeatedly used in very
different places.

Generally, an engineering system needs to be modeled with a portion of its
environment that interacts significantly with it in order to assess some system attributes
of interest. The level of interaction with the environment can only be subjectively
assessed. By increasing the size of the environment and level of details in a model of
the system, the complexity of the system model increases, possibly in a manner that
does not have a recognizable or observable structure. This complexity without struc-
ture is more difficult to model and deal with in engineering and sciences. By increasing
the complexity of the system model, our ability to make relevant assessments of the
system’s attributes can diminish. Therefore, there is a trade-off between relevance and
precision in system modeling in this case. Our goal should be to model a system with
a sufficient level of detail that can result in sufficient precision and can lean to relevant
decisions in order meet the objective of the system assessment.

Living systems show signs of these trade-offs between precision and relevance
in order to deal with complexity. The survival instincts of living systems have evolved
and manifest themselves as processes to cope with complexity and information
overload. The ability of a living system to make relevant assessments diminishes
with the increase in information input, as discussed by Miller (1978). Living systems
commonly need to process information in a continuous manner in order to survive.
For example, a fish needs to process visual information constantly in order to avoid
being eaten by another fish. When a school of larger fish rushes toward the fish,
presenting it with images of threats and dangers, the fish might not be able to process
all the information and images and becomes confused. Considering the information
processing capabilities of living systems as input–output black boxes, the input and
output to such systems can be measured and plotted in order to examine such
relationships and any nonlinear characteristics that they might exhibit. Miller (1978)
described these relationships for living systems using the following hypothesis,
which was analytically modeled and experimentally validated:

As the information input to a single channel of a living system — measured in bits
per second — increases, the information output — measured similarly — increases
almost identically at first but gradually falls behind as it approaches a certain output
rate, the channel capacity, which cannot be exceeded. The output then levels off at that
rate, and finally, as the information input rate continues to go up, the output decreases
gradually towards zero as breakdown or the confusion state occurs under overload.

The above hypothesis was used to construct families of curves to represent the
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the input overload is removed, most living systems recover instantly from the
overload and the process is completely reversible; however, if the energy level of
the input is much larger than the channel capacity, a living system might not fully
recover from this input overload. Living systems also adjust the way they process
information in order to deal with an information input overload using one or more
of the following processes by varying degrees, depending on the level of a living
system in terms of complexity:

1. Omission by failing to transmit information
2. Error by transmitting information incorrectly
3. Queuing by delaying transmission
4. Filtering by giving priority in processing
5. Abstracting by processing messages with less than complete details
6. Multiple channel processing by simultaneously transmitting messages

over several parallel channels
7. Escape by acting to cut off information input
8. Chunking by transforming information into meaningful chunks

These actions can also be viewed as simplification means to cope with complexity
or an information input overload.

1.3 KNOWLEDGE

1.3.1 TERMINOLOGY AND DEFINITIONS

Philosophers have concerned themselves with the study of knowledge, truth and
reality, and knowledge acquisition since the Greek era of the early days of the Greek
philosophers, such as Thales (c. 585 B.C.), Anaximander (611 to 547 B.C.), and

FIGURE 1.13 A schematic relationship of input and output information transmission rates
for living systems.
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Anaximenes (c. 550 B.C.), who first proposed a rational explanation of the natural
world and its powers. This section provides a philosophical introduction to knowl-
edge, epistemology, their development, and related terminology to form a basis for
analyzing and understanding ignorance and uncertainty.

Philosophy (philosophia) is a Greek term and literally means “love of wisdom.”
It deals with the careful thought about the fundamental nature of the world, the
grounds for human knowledge, and the evaluation of human conduct. Philosophy,
as an academic discipline, has chief branches that include logic, metaphysics, epis-
temology, and ethics. Selected terms related to knowledge and epistemology are
defined in Table 1.9.

Philosophers defined knowledge, its nature, and methods of acquisition that

adapted from Ayyub (2001), briefly summarizes these developments along a histor-
ical timeline, referring only to what was subjectively assessed as primary departures
from previous schools. As new schools were introduced, they could be treated as
new alternatives, since in some cases they could not invalidate previous ones.

TABLE 1.9
Selected Knowledge and Epistemology Terms

Term Definition

Philosophy The fundamental nature of the world, the grounds for human knowledge, and the 
evaluation of human conduct

Epistemology A branch of philosophy that investigates the possibility, origins, nature, and extent 
of human knowledge

Metaphysics

• Ontology

• Cosmology
• Cosmogony

The investigation of ultimate reality; a branch of philosophy concerned with 
providing a comprehensive account of the most general features of reality as a 
whole, and the study of being as such; questions about the existence and nature 
of minds, bodies, God, space, time, causality, unity, identity, and the world are 
all metaphysical issues

A branch of metaphysics concerned with identifying, in the most general terms, 
the kinds of things that actually exist

A branch of metaphysics concerned with the origin of the world
A branch of metaphysics concerned with the evolution of the universe

Ethics A branch of philosophy concerned with the evaluation of human conduct
Aesthetics A branch of philosophy that studies beauty and taste, including their specific 

manifestations in the tragic, the comic, and the sublime, where beauty is the 
characteristic feature of things that arouse pleasure or delight, especially to the 
senses of a human observer, and sublime is the aesthetic feeling aroused by 
experiences too overwhelming (i.e., awe) in scale to be appreciated as beautiful 
by the senses

Knowledge A body of propositions that meet the conditions of justified true belief
Priori Knowledge derived from reason alone
Posteriori Knowledge gained by reference to the facts of experience
Rationalism Inquiry based on priori principles, or knowledge based on reason
Empiricism Inquiry based on posteriori principles, or knowledge based on experience
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1.3.2 ABSOLUTE REALITY AND ABSOLUTE KNOWLEDGE

The absolute reality of things is investigated in a branch of philosophy called
metaphysics, which is concerned with providing a comprehensive account of the
most general features of reality as a whole. The term metaphysics is believed to have
originated in Rome about 70 B.C. by the Greek Peripatetic philosopher Andronicus
of Rhodes in his edition of the works of Aristotle (384 to 322 B.C.).

Metaphysics typically deals with issues such as the ultimate nature of things,
identification of objects that actually exist, things that compose the universe, the
ultimate reality, the nature of mind and substance, and the most general features of
reality as a whole. On the other hand, epistemology is a branch of philosophy that
investigates the possibility, origins, nature, and extent of human knowledge. Meta-
physics and epistemology are very closely linked and, at times, indistinguishable, as
the former speculates about the nature of reality and the latter speculates about the
knowledge of it. Metaphysics is often formulated in terms of three modes of reality,
the mind (or consciousness), the matter (or physical substance), and a higher nature
(one that transcends both mind and matter), according to three specific philosophical
schools of thought: idealism, materialism, and transcendentalism, respectively.

Idealism is based on a theory of reality, derived from Plato’s Theory of Ideas
(427 to 347 B.C.), that attributes to consciousness, or the immaterial mind, a primary
role in the constitution of the world. Metaphysical idealism contends that reality is
mind dependent and that true knowledge of reality is gained by relying upon a
spiritual or conscious source.

The school of materialism is based on the notion that all existence is resolvable
into matter, or into an attribute or effect of matter. Accordingly, matter is the ultimate
reality, and the phenomenon of consciousness is explained by physiochemical
changes in the nervous system. In metaphysics, materialism is the antithesis of
idealism, in which the supremacy of mind is affirmed and matter is characterized
as an aspect or objectification of mind. The world is considered to be entirely mind
independent, composed only of physical objects and physical interactions. Extreme
or absolute materialism is known as materialistic monism, the theory that all reality
is derived from one substance. Modern materialism has been largely influenced by
the theory of evolution.

Plato developed the school of transcendentalism by arguing for a higher reality
(metaphysics) than that found in sense experience, and for a higher knowledge of
reality (epistemology) than that achieved by human reason. Transcendentalism stems
from the division of reality into a realm of spirit and a realm of matter, and affirms
the existence of absolute goodness characterized as something beyond description
and as knowable ultimately only through intuition. Later, religious philosophers
applied this concept of transcendence to divinity, maintaining that God can be neither
described nor understood in terms that are taken from human experience. This
doctrine was preserved and advanced by Muslim philosophers, such as Al-Kindi
(800 to 873), Al-Farabi (870 to 950), Ibn Sina (980 to 1037), and Ibn Rushd (1128
to 1198), and adopted and used by Christian and Jewish philosophers, such as
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The interest in knowledge and its theory resulted in the creation of a branch of
philosophy called epistemology that investigates the possibility, origins, nature, and
extent of human knowledge. It deals with issues such as the definition of knowledge
and related concepts, the sources and criteria of knowledge, the kinds of knowledge
possible and the degree to which each is certain, and the exact relation between the
one who knows and the object known. Knowledge can be based on priori, knowledge
derived from reason alone, and posteriori, knowledge gained by reference to the
facts of experience. Epistemology can be divided into rationalism, inquiry based on
priori principles or knowledge based on reason, and empiricism, inquiry based on
a posteriori principles or knowledge based on experience.

purposes. According to realism, a system that is obtained by applying correctly the
principles and methods of science actually represents some aspect of the real world.
According to constructivism, all systems are artificial abstractions and are not nec-
essarily existent in reality. That is, systems are not presented to us to be discovered,
but we construct them by our perceptual and mental capabilities within the domain
of our experiences.

Humans perceive reality as a continuum in its composition of objects, concepts,
and propositions. Humans construct knowledge in quanta to meet constraints related
to their cognitive abilities and limitations, producing what can be termed as quantum
knowledge. This quantum knowledge leads to and contains ignorance — manifested
in two forms: (1) ignorance of some state of ignorance and (2) incompleteness or

ignorance is called blind ignorance. The incompleteness form of ignorance stems
from quantum knowledge that does not cover the entire domain of inquiry. The
inconsistency form of ignorance rises from specialization and focusing on a partic-
ular science or discipline or phenomenon without accounting for interactions with
or from other sciences or disciplines or phenomena.

1.3.3 KNOWLEDGE, INFORMATION, AND OPINIONS

Many disciplines of engineering and the sciences rely on the development and use
of predictive models that in turn require knowledge and information, and sometimes
subjective opinions of experts. Working definitions for knowledge, information, and
opinions are provided in this section.

Knowledge can be based on evolutionary epistemology (Honderich, 1995) using
an evolutionary model. Knowledge can be viewed to consist of two types, nonprop-
ositional and propositional knowledge. The nonpropositional knowledge can be
further broken down into know-how and concept knowledge and familiarity knowl-
edge (commonly called object knowledge). The know-how and concept knowledge
requires someone to know how to do a specific activity, function, procedure, etc.,
such as riding a bicycle. The concept knowledge can be empirical in nature. In
evolutionary epistemology the know-how knowledge is viewed as a historical ante-
cedent to propositional knowledge. The object knowledge is based on a direct
acquaintance with a person, place, or thing; for example, Mr. Smith knows the
president of the U.S. The propositional knowledge is based on propositions that can
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be either true or false; for example, Mr. Smith knows that the Rockies are in North
America (Sober, 1991; di Carlo, 1998). This proposition can be expressed as

Mr. Smith knows that the Rockies are in North America (1.12a)

S knows P (1.12b)

where S is the subject, i.e., Mr. Smith, and P is the claim “the Rockies are in North
America.” Epistemologists require the following three conditions for making this
claim in order to have a true proposition:

• S must believe P.
• P must be true.
• S must have a reason to believe P; i.e., S must be justified in believing P.

The justification in the third condition can take various forms; however, simplistically
it can be taken as justification through rational reasoning or empirical evidence.
Therefore, propositional knowledge is defined as a body of propositions that meet
the conditions of justified true belief (JTB). This general definition does not satisfy
a class of examples called the Gettier problem, initially revealed in 1963 by Edmund
Gettier (Austin, 1998). Gettier showed that we can have highly reliable evidence
and still not have knowledge (Ayyub, 2001). Also, someone can skeptically argue
that as long as it is possible for S to be mistaken in believing P (i.e., not meeting
the third condition), the proposition is false. This argument, sometimes called a
Cartesian argument, undermines empirical knowledge. In evolutionary epistemology,
this high level of scrutiny is not needed, and need not be satisfied in the biological
world. According to evolutionary epistemology, true beliefs can be justified causally
from reliably attained law-governed procedures, where law refers to a natural law.
Sober (1991) noted that there are very few instances, if ever, where we have perfectly
infallible evidence. Almost all of our commonsense beliefs are based on evidence
that is not infallible, even though some may have overwhelming reliability. The
presence of a small doubt in meeting the justification condition does not make our
evidence infallible, but only reliable. Evidence reliability and infallibility arguments

of knowledge by types, sources, and objects that was based on a summary provided
by Honderich (1995).

In engineering and the sciences, knowledge can be defined as a body of justified
true beliefs (JTB), such as laws, models, objects, concepts, know-how, processes,
and principles, acquired by humans about a system of interest, where the justification
condition can be met based on the reliability theory of knowledge. The most basic
knowledge category is called cognitive knowledge (episteme), that which can be
acquired by human senses. The next level is based on correct reasoning from
hypotheses, such as mathematics (dianoi). The third category moves us from intel-
lectual categories to categories that are based on the realm of appearances and
deception, and are based on propositions. The third category is belief (pistis). Pistis,
the Greek word for faith, denotes intellectual or emotional acceptance of a propo-
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form the bases of the reliability theory of knowledge. Figure 1.14 shows a breakdown
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sition. It is followed by conjecture (eikasia), where knowledge is based on inference,
theorization, or prediction based on incomplete or unreliable evidence. The four

might be different from a future state of knowledge achieved by an evolutionary
process, as shown in Figure 1.16. The pistis and eikasia categories are based on
expert judgment and opinions regarding system issues of interest. Although the pistis
and eikasia knowledge categories might by marred with uncertainty, they are cer-
tainty sought after in many engineering disciplines and the sciences, especially by
decision and policy makers.

Information can be defined as sensed objects, things, places, processes, and
thoughts and knowledge communicated by language and multimedia. Information
can be viewed as a preprocessed input to our intellect system of cognition, and
knowledge acquisition and creation. Information can lead to knowledge through
investigation, study, and reflection. However, knowledge and information about a
system might not constitute the eventual evolutionary knowledge state about the
system, as a result of not meeting the justification condition in JTB or the ongoing
evolutionary process, or both. Knowledge is defined in the context of the humankind,
evolution, language and communication methods, and social and economic dialectic
processes, and cannot be removed from them. As a result, knowledge would always
reflect the imperfect and evolutionary nature of humans that can be attributed to

FIGURE 1.14 Knowledge types, sources, and objects. (From Ayyub, B.M., Elicitation of
Expert Opinions for Uncertainty and Risks: Theory, Applications, and Guidance, CRC Press,
Boca Raton, FL, 2001. With permission.)
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categories are shown in Figure 1.15. They also define the knowledge box in Figure
1.16. These categories constitute the human cognition of human knowledge that
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their reliance on their senses for information acquisition; their dialectic processes;
and their mind for extrapolation, creativity, reflection, and imagination, with asso-
ciated biases as a result of preconceived notions due to time asymmetry, specializa-
tion, and other factors. An important dimension in defining the state of knowledge
and truth about a system is nonknowledge or ignorance.

Opinions rendered by experts, which are based on information and exiting
knowledge, can be defined as preliminary propositions with claims that are not fully
justified or justified with adequate reliability but are not necessarily infallible. Expert
opinions are seeds of propositional knowledge that do not meet one or more of the
conditions required for the JTB with the reliability theory of knowledge. They are
valuable, as they might lead to knowledge expansion, but decisions made based on
them sometimes might be risky propositions, since their preliminary nature might
lead to proving them false by others or in the future.

The relationships among knowledge, information, opinions, and evolutionary

include communication methods such as languages, visual and audio formats, and
other forms. Also, they include economics, classes, schools of thought, and political
and social dialectic processes within peers, groups, colonies, societies, and the world.

1.3.4 REASONING, SCIENCE, AND UNCERTAINTY

Philosophers and social scientists have been trying to define approaches for knowl-
edge construction through mathematical formulations and scientific theories, based

FIGURE 1.15 Knowledge categories and sources. (From Ayyub, B.M., Elicitation of Expert
Opinions for Uncertainty and Risks: Theory, Applications and Guidance, CRC Press, Boca
Raton, FL, 2001. With permission.)
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epistemology are schematically shown in Figure 1.16. The dialectic processes
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on human decisions under uncertain circumstances and outcomes. As C.S. Peirce
said, “The object of reasoning is to find out, from the consideration of what we
already know, something else which we do not know” (Ramsey, 1931). Emile Borel
(1871 to 1956) developed the first effective theory of measure for a set of points,
and the systematic theory for a divergent series in 1899 (New School University,
2003c). This work, along with the works of mathematicians Rene Baire and Henri
Lebesgue, marked the beginning of the modern theory of functions of real variables.

Based on the theory of measure, J.M. Keynes (1883 to 1946) defined probability
as being subject to human interpretations by stating that “probability is relative in
a sense to the principles of human reason. The degree of probability, which it is
rational for us to entertain, does not presume perfect logical insight, and is relative
in part to the secondary propositions which we in fact know.” Analysts make probable
inferences, for which they claim objective validity, and proceed from full belief in
one proposition to partial belief in another and claim the procedure is objectively
right. Taking two propositions, one as a premise and another as a conclusion, a
probability relation exits between the two with only some degree of belief based on
a full belief in the premise. Rationally, someone should proceed from the premise
to the conclusion only with the limited degree of belief. A fundamental criticism of
this theory is the difficulty to perceive these degrees of belief connecting premises

FIGURE 1.16 Knowledge, information, opinions, and evolutionary epistemology. (From
Ayyub, B.M., Elicitation of Expert Opinions for Uncertainty and Risks: Theory, Applications,
and Guidance, CRC Press, Boca Raton, FL, 2001. With permission.)
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and conclusions. In his book Treatise on Probability (1921), Keynes provided an
explanation for probability as constituting a “part of our knowledge which we obtain
by argument.”

Keynes’s work aroused the interest of logician F.P. Ramsey (1903 to 1930) to
outline his own subjective theory of probability. K. Popper (1902 to 1994) introduced
induction in his book The Logic of Scientific Discovery in 1934 (Popper, 2002
release) and stated that scientific theories can never be proven, merely tested and
corroborated. Scientific discovery is distinguished from all other types of investiga-
tion by the falsifiability of its theories, where falsifiability is analogous to testability,
while irrefutability is associated only with a notion being untestable. In this context,
therefore, untestable theories are unscientific. B. De Finetti (1906 to 1985) contended
that probability does not exist objectively independent of the human mind (Nau,
2001). The subjective theory of probability is jointly attributed to de Finetti, Ramsey,
and Leonard Savage (1917 to 1971) by incorporating it in the von Neumann and
Morgenstern expected utility theory.

Science was an integral part of philosophy until recently, up to the start of the
20th century, since intellectual enterprise of science is essentially the progressive
improvement of understanding nature. This relationship formed what can be termed
natural philosophy, as distinguished from moral philosophy and metaphysical phi-
losophy. As a result of specialization in natural sciences in the last century, the
philosophy of science became recognized as a separate discipline. The philosophy
of science “attempts first to elucidate the elements involved in scientific inquiry (i.e.,
observational procedures, patterns of argument, methods of representation and cal-
culation, metaphysical presuppositions), and then to evaluate the grounds of their
validity from the points of view of formal logic, practical methodology, and meta-
physics” (Nau, 2001). The philosophy of science found roots in the 1890s and early
1900s when serious doubts grew up about the finality of the Newtonian synthesis
in the writings of Ernst Mach, Heinrich Hertz, Max Planck, Henri Poincaré, Pierre
Duhem, and others. The philosophy of science had three branches based on how
uncertainty and unknowns were supposed to be handled and interpreted: empiricism,
qualified realism, and conventionalist position. Mach and Avenarius expounded a
sensationalist form of empiricism and stated that all ideas must be traceable to
impressions, i.e., sensations, where theoretical concepts were intellectual fictions,
introduced only to achieve economy in the intellectual organization of sensory
impressions or observations (Pléh, 2003). Theories had cognitive validity only so
long as they could be grounded in sensory impressions. This thinking resulted in
skepticism about the reality of atoms. On the other hand, Planck, who developed
the quantum theory, argued for a qualified realism where an ideal exists toward
which all conceptual developments in physics should proceed. Without such a belief
in the enduring reality of external nature, all motives for theoretical improvement
in science would vanish. Poincaré and Duhem argued for an intermediate position
of the so-called conventionalist position, which expressed reservations about the
arbitrary elements in theory construction while avoiding the radical doubt about the
status of theoretical entities.

Quantum mechanics emerged in the early part of the 20th century to explain
three important problems in physics that could not be solved by the methods of
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classical physics: the problem of black body radiation (explained by Max Planck
by his theory of electromagnetic radiation and energy quanta), the photoelectric
effect (explained by Albert Einstein in 1905 using Planck’s formula and the principle
of conservation of energy), and the formula for the spectral lines of the hydrogen
atom, provided by Rydberg in 1890 (the first acceptable explanation was provided
by Niels Bohr in 1913) (Schaefer, 2003). These works were followed by Louis de
Broglie’s particle waves (1924), Erwin Schroedinger’s equation governing the
motions of electrons and protons (1926), Paul Dirac’s incorporation of relativity into
quantum mechanics (1927), and Werner Heisenberg’s uncertainty principle (1927).
The views of the developers of the theory of quantum mechanics, however, differed
about the existence of uncertainty (Pearcey and Thaxton, 1994). Einstein, Planck,
and de Broglie considered uncertainty in quantum mechanics to be merely a state-
ment of human ignorance; for example, Einstein resisted a probabilistic interpretation
of quantum mechanics by stating that “God does not play dice with the universe.”
Niels Bohr, however, maintained that uncertainty is not a result of transient igno-
rance, solvable by further research, but a fundamental and unavoidable limitation
on human knowledge. Werner Heisenberg, on the other hand, stated that nature is
not deterministic, as classical physics assumed; it is indeterminate since when a
scientist intrudes a measuring device into any system, a particular outcome is forced
to be actualized from what was before a fuzzy realm of potentialities. According to
quantum mechanics, the results of a particular experiment cannot be predicted with
absolute certainty; however, the probability of obtaining a specific result can be
precisely computed. The theory of relativity evolved as an extension of the quantum
mechanics theory by emphasizing that physical quantities must be defined from the
perspective of an observer using a specific set of measuring instruments. Therefore,
quantities like length and speed cannot be defined in absolute terms. Moreover, units
and dimensions of measurement, which are commonly believed to be independent,
are actually connected, particularly in conditions that are extreme to ordinary expe-
rience (Nau, 2001).

1.3.5 COGNITION AND COGNITIVE SCIENCE

Cognition can be defined as mental processes of receiving and processing informa-
tion for knowledge creation and behavioral actions. Cognitive science is the inter-
disciplinary study of mind and intelligence (Stillings, 1995). Cognitive science deals
with philosophy, psychology, artificial intelligence, neuroscience, linguistics, and
anthropology. The intellectual origins of cognitive science started in the mid-1950s
when researchers in several fields began to develop theories on how the mind works
based on complex representations and computational procedures.

The origin of cognitive science can be taken as the theory of knowledge and the
theory of reality of the ancient Greeks, when philosophers such as Plato and Aristotle
tried to explain the nature of human knowledge. The study of the mind remained
the province of philosophy until the 19nth century, when experimental psychology
was developed by Wilhelm Wundt and his students by initiating laboratory methods
for studying systematically mental operations. A few decades later, experimental
psychology became dominated by behaviorism, by which the existence of the mind
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was virtually denied. Behaviorists, such as J.B. Watson, argued that psychology
should restrict itself to examining the relation among observable stimuli and observ-
able behavioral responses, and should not deal with consciousness and mental
representations. The intellectual landscape began to change dramatically in 1956,
when George Miller summarized numerous studies showing that the capacity of
human thinking is limited, with short-term memory, for example, limited to around
seven items. He proposed that memory limitations are compensated for by humans
through their ability to recode information into chunks, and mental representations
that require mental procedures for encoding and decoding the information. Although
at this time primitive computers had been around for only a few years, pioneers such
as John McCarthy, Marvin Minsky, Allen Newell, and Herbert Simon were founding
the field of artificial intelligence. Moreover, Noam Chomsky rejected behaviorist
assumptions about language as a learned habit and proposed instead to explain
language comprehension in terms of mental grammars consisting of rules.

Cognitive science is based on a central hypothesis that thinking can best be
understood in terms of representational structures in the mind and computational
procedures that operate on those structures (Johnson-Laird, 1988). The nature of
the representations and computations that constitute thinking are not fully under-
stood. The central hypothesis is general enough to encompass the current range of
thinking in cognitive science, including connectionist theories that model thinking
using artificial neural networks. This hypothesis assumes that the mind has mental
representations analogous to computer data structures, and computational proce-
dures similar to computational algorithms. The mind is considered to contain such
mental representations as logical propositions, rules, concepts, images, and analo-
gies. It uses mental procedures such as deduction, search, matching, rotating, and
retrieval for interpretation, generation of knowledge, and decision making. The
dominant mind–computer analogy in cognitive science has taken on a novel twist
from the use of another analog, that is, the brain. Cognitive science then works
with a complex three-way analogy among the mind, brain, and computers. Con-
nectionists have proposed a brainlike structure that uses neurons and their connec-
tions as inspirations for data structures, and neuron firing and spreading activation
as inspirations for algorithms. There is not a single computational model for the
mind, since different kinds of computers and programming approaches suggest
different ways in which the mind might work, ranging from serial processors, such
as the commonly used computers that perform one instruction at a time, to parallel
processors, such as some recently developed computers that are capable of doing
many operations at once.

Cognitive science claims that the human mind works by representation and
computation using empirical conjecture. Although the computational-representa-
tional approach to cognitive science has been successful in explaining many aspects
of human problem solving, learning, and language use, some philosophical critics
argue that it is fundamentally flawed based on the following limitations (Thagard,
1996; Von Eckardt, 1993):

• Emotions: Cognitive science neglects the important role of emotions in
human thinking.
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• Consciousness: Cognitive science ignores the importance of conscious-
ness in human thinking.

• Physical environments: Cognitive science disregards the significant role
of physical environments on human thinking.

• Social factors: Human thought is inherently social and has to deal with
various dialectic processes in ways that cognitive science ignores.

• Dynamical nature: The mind is a dynamical system, not a computational
system.

• Quantum nature: Researchers argue that human thinking cannot be com-
putational in the standard sense, so the brain must operate differently,
perhaps as a quantum computer.

These open issues need to be considered by scientists and philosophers in
developing new cognitive theories and a better understanding of how the human
mind works.

1.4 IGNORANCE

1.4.1 KNOWLEDGE AND IGNORANCE

Generally, engineers and scientists, and even almost all humans, tend to focus on
and emphasize what is known, and not what is unknown. Even the English language
lends itself for this emphasis. For example, we can easily state that Expert A informed
Expert B, whereas we cannot directly state the contrary. We can only state it by
using the negation of the earlier statement: Expert A did not inform Expert B.
Statements such as “Expert A misinformed Expert B” or “Expert A ignored Expert
B” do not convey the same (intended) meaning. Another example is “John knows
David,” for which a meaningful direct contrary statement does not exist. The empha-
sis on knowledge and not on ignorance can also be noted in sociology by having a
field of study called the sociology of knowledge and not having a sociology of
ignorance field, although Weinstein and Weinstein (1978) introduced the sociology
of nonknowledge and Smithson (1985) introduced the theory of ignorance.

Engineers and scientists tend to emphasize knowledge and information, and
sometimes intentionally or unintentionally brush aside uncertainty and not acknowl-
edge ignorance. In addition, information (or knowledge) can be misleading in some
situations because it does not have the truth content that was assigned to it — leading
potentially to overconfidence. In general, knowledge and ignorance can be classified

illustration. The shapes and boundaries can be made multidimensional, irregular, or
fuzzy. The evolutionary infallible knowledge (EIK) about a system is shown as the
top-right square in the figure and can be intrinsically unattainable due to the fallacy
of humans and the evolutionary nature of knowledge. The state of reliable knowledge
(RK) is shown using another square, i.e., the bottom-left square, for illustration
purposes. The reliable knowledge represents the present state of knowledge in an
evolutionary process, i.e., a snapshot of knowledge as a set of know-how, objects,
and propositions that meet justifiable true beliefs within reasonable reliability levels.
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At any stage of human knowledge development, this knowledge base about the
system is a mixture of truth and fallacy. The intersection of EIK and RK represents
the knowledge base with the infallible knowledge components (i.e., know-how,
objects, and propositions). Therefore, the following relationship can be stated using
the notations of set theory:

Infallible knowledge (IK) = EIK I RK (1.13)

where I means intersection. Infallible knowledge is defined as knowledge that can
survive the dialectic processes of humans and societies, and passes the test of time
and use. This infallible knowledge can be schematically defined by the intersection
of these two squares of EIK and RK. Based on this representation, two primary
types of ignorance can be identified: (1) ignorance within the knowledge base RK,
due to factors such as irrelevance, and (2) ignorance outside the knowledge base,
due to unknown objects, interactions, laws, dynamics, and know-how.

Expert A of some knowledge about the system can be represented as shown in
Figure 1.17, using ellipses for illustrative purposes. Three types of ellipses can be
identified: (1) a subset of the evolutionary infallible knowledge (EIK) that the expert
has learned, captured, or created; (2) self-perceived knowledge by the expert; and
(3) perception by others of the expert’s knowledge. The EIK of the expert might be
smaller than the self-perceived knowledge by the expert, and the difference between
the two types is a measure of overconfidence that can be partially related to the
expert’s ego. Ideally, the three ellipses should be the same, but commonly they are

FIGURE 1.17 Human knowledge and ignorance.
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not. They are greatly affected by communication skills of experts and their successes
in dialectic processes that with time might lead to evolutionary knowledge marginal
advances or quantum leaps. Also, their relative sizes and positions within the infal-

expert’s knowledge can extend beyond the reliable knowledge base into the EIK
area as a result of creativity and imagination of the expert. Therefore, the intersection
of the expert’s knowledge with the ignorance space outside the knowledge base can
be viewed as a measure of creativity and imagination. Another expert (i.e., Expert
B) would have her or his own ellipses that might overlap with the ellipses of Expert
A, and might overlap with other regions by varying magnitudes.

1.4.2 IGNORANCE CLASSIFICATION AND HIERARCHY

1.4.2.1 Ignorance Classification

The state of ignorance for a person (or a society) can be unintentional or deliberate,
due to an erroneous cognition state and not knowing relevant information, or ignoring
information and deliberate inattention to something for various reasons, such as
limited resources or cultural opposition, respectively. The latter type is a state of
conscious ignorance, which is not intentional, and once recognized, evolutionary
species try to correct for that state for survival reasons, with varying levels of success.
The former ignorance type belongs to the blind ignorance category. Therefore,
ignoring means that someone can either unconsciously or deliberately refuse to
acknowledge or regard, or leave out an account or consideration for relevant infor-
mation (di Carlo, 1998). These two states should be treated in developing a hierarchal
breakdown of ignorance.

Using the concepts and definitions from evolutionary knowledge and epistemol-
ogy, ignorance can be classified based on the three knowledge sources as follows:

• Know-how ignorance: It can be related to the lack of know-how knowl-
edge or having erroneous know-how knowledge. Know-how knowledge
requires someone to know how to do a specific activity, function, proce-
dure, etc., such as riding a bicycle.

• Object ignorance: It can be related to the lack of object knowledge or
having erroneous object knowledge. Object knowledge is based on a direct
acquaintance with a person, place, or thing; for example, Mr. Smith knows
the president of the U.S.

• Propositional ignorance: It can be related to the lack of propositional
knowledge or having erroneous propositional knowledge. Propositional
knowledge is based on propositions that can be either true or false; for
example, Mr. Smith knows that the Rockies are in North America.

The above three ignorance types can be cross-classified against two possible
states for a knowledge agent, such as a person, of knowing their state of ignorance.
These two states are as follows:
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• Nonreflective (or blind) state: The person does not know of self-ignorance,
a case of ignorance of ignorance.

• Reflective state: The person knows and recognizes self-ignorance. Smith-
son (1985) termed this type of ignorance conscious ignorance, and the
blind ignorance was termed meta-ignorance. As a result, in some cases
the person might formulate a proposition but still be ignorant of the
existence of a proof or disproof, i.e., ignoratio elenchi. A knowledge
agent’s response to reflective ignorance can be either passive acceptance
or a guided attempt to remedy one’s ignorance that can lead to four
possible outcomes:
1. A successful remedy that is recognized by the knowledge agent to be

a success, leading to fulfillment
2. A successful remedy that is not recognized by the knowledge agent to

be a success, leading to searching for a new remedy
3. A failed remedy that is recognized by the knowledge agent to be a

failure, leading to searching for a new remedy
4. A failed remedy that is recognized by the knowledge agent to be a

success, leading to blind ignorance, such as ignoratio elenchi or irrel-
evant conclusion.

forms that can be used interchangeably. Although the blind state does not feed directly
into the evolutionary process for knowledge, it represents a becoming knowledge
reserve. The reflective state has a survival value to evolutionary species; otherwise,
it can be argued that it never would have flourished (Campbell, 1974). Ignorance
emerges as a lack of knowledge relative to a particular perspective from which such
gaps emerge. Accordingly, the accumulation of beliefs and the emergence of igno-
rance constitute a dynamic process resulting in old ideas perishing and new ones
flourishing (Bouissac, 1992). According to Bouissac (1992), the process of scientific
discovery can be metaphorically described as not only a cumulative sum (positivism)
of beliefs, but also an activity geared toward relentless construction of ignorance
(negativism), producing architecture of holes, gaps, and lacunae, so to speak.

Hallden (1986) examined the concept of evolutionary ignorance in decision
theoretic terms. He introduced the notion of gambling to deal with blind ignorance
or lack of knowledge, according to which there are times when, in lacking knowl-
edge, gambles must be taken. Sometimes gambles pay off with success, i.e., con-
tinued survival, and sometimes they do not, leading to sickness or death.

According to evolutionary epistemology, ignorance has factitious, i.e., human-
made, perspectives. Smithson (1988) provided a working definition of ignorance
based on “Expert A is ignorant from B’s viewpoint if A fails to agree with or show
awareness of ideas which B defines as actually or potentially valid.” This definition
allows for self-attributed ignorance, and either Expert A or B can be attributer or
perpetrator of ignorance. Our ignorance and claimed knowledge depend on our
current historical setting, which is relative to various natural and cultural factors,
such as language, logical systems, technologies, and standards that have developed
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The cross-classification of ignorance is shown in Figure 1.18 in two possible
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and evolved over time. Therefore, humans evolved from blind ignorance through
gambles to a state of incomplete knowledge, with reflective ignorance recognized
through factitious perspectives. In many scientific fields, the level of reflective
ignorance becomes larger as the level of knowledge increases. Duncan and Weston-
Smith (1977) stated in the Encyclopedia of Ignorance that compared to our pond of
knowledge, our ignorance remains Atlantic. They invited scientists to state what they
would like to know in their respective fields, and noted that the more eminent they
were, the more readily and generously they described their ignorance. Clearly, before
solving a problem, it needs to be articulated.

1.4.2.2 Ignorance Hierarchy

as they are socially or factitiously constructed and negotiated. Ignorance can be
viewed to have a hierarchal classification based on its sources and nature, as shown

classified into two types, blind ignorance (also called meta-ignorance) and conscious
ignorance (also called reflective ignorance).

Blind ignorance includes not knowing relevant know-how, objects-related infor-
mation, and relevant propositions that can be justified. The unknowable knowledge
can be defined as knowledge that cannot be attained by humans based on current
evolutionary progressions, or cannot be attained at all due to human limitations, or
can only be attained through quantum leaps by humans. Blind ignorance also

FIGURE 1.18 Classifying ignorance.
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Figure 1.17 and Figure 1.18 express knowledge and ignorance in evolutionary terms

in Figure 1.19, with the brief definitions provided in Table 1.10. Ignorance can be
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includes irrelevant knowledge that can be of two types: (1) relevant knowledge that
is dismissed as irrelevant or ignored and (2) irrelevant knowledge that is believed
to be relevant through nonreliable or weak justification, or as a result of ignoratio
elenchi. The irrelevance type can be due to untopicality, taboo, and undecidability.
Untopicality can be attributed to intuitions of experts that could not be negotiated
with others in terms of cognitive relevance. Taboo is due to socially reinforced
irrelevance. Issues that people must not know, deal with, inquire about, or investigate
define the domain of taboo. The undecidedness type deals with issues that cannot
be designated true or false because they are considered insoluble, or solutions that
are not verifiable, or as a result of ignoratio elenchi. A third component of blind
ignorance is fallacy that can be defined as erroneous beliefs due to misleading
notions. In its 2003 quotes of the year, Newsweek magazine (December 29, 2003)
selected a quote by U.S. Secretary of Defense Donald Rumsfeld, used to clarify the
U.S. policy on the war on terror at a Pentagon briefing; it includes elements related
to Figure 1.19:

There are known knowns. These are things that we know. There are known unknowns.
That is to say, there are things that we know we don’t know. But there are also unknown
unknowns. There are things we don’t know we don’t know.

Thomas Sowell, a senior fellow on public policy at the Hoover Institution

It takes considerable knowledge to realize the extent of your ignorance.

Kurt Gödel (1906 to 1978) showed that a logical system could not be both
consistent and complete, and could not prove itself complete without proving itself

FIGURE 1.19 Ignorance hierarchy. (From Ayyub, B.M., Elicitation of Expert Opinions for
Uncertainty and Risks: Theory, Applications, and Guidance, CRC Press, Boca Raton, FL,
2001. With permission.)
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TABLE 1.10
Taxonomy of Ignorance

Term Meaning

1. Blind ignorance Ignorance of self-ignorance, or called meta-ignorance
1.1. Unknowable Knowledge that cannot be attained by humans based on current 

evolutionary progressions, or cannot be attained at all due to 
human limitations, or can only be attained through quantum 
leaps by humans

1.2. Irrelevance Ignoring something
1.2.1. Untopicality Intuitions of experts that could not be negotiated with others 

in terms of cognitive relevance
1.2.2. Taboo Socially reinforced irrelevance; issues that people must not 

know about, deal with, inquire about, or investigate
1.2.3. Undecidedness Issues that cannot be designated true or false because they are 

considered insoluble, or solutions that are not verifiable, or 
ignoratio elenchi

1.3. Fallacy Erroneous belief due to misleading notions
2. Conscious ignorance A recognized self-ignorance through reflection

2.1. Inconsistency Inconsistency in knowledge can be attributed to distorted 
information as a result of inaccuracy, conflict, contradiction, 
or confusion

2.1.1. Confusion Wrongful substitutions
2.1.2. Conflict Conflicting or contradictory assignments or substitutions
2.1.3. Inaccuracy Bias and distortion in degree

2.2. Incompleteness Lacking or nonwhole knowledge in its extent due to absence 
or uncertainty

2.2.1. Absence Incompleteness in kind
2.2.2. Unknowns The difference between the becoming knowledge state and 

current knowledge state
2.2.3. Uncertainty Knowledge incompleteness due to inherent deficiencies with 

acquired knowledge
2.2.3.1. Ambiguity The possibility of having multioutcomes for processes or 

systems
a) Unspecificity Outcomes or assignments that are incompletely defined
b) Nonspecificity Outcomes or assignments that are improperly or incorrectly 

defined
2.2.3.2. Approximations A process that involves the use of vague semantics in language, 

approximate reasoning, and dealing with complexity by 
emphasizing relevance

a) Vagueness Noncrispness of belonging and nonbelonging of elements to a 
set or a notion of interest

b) Coarseness Approximating a crisp set by subsets of an underlying partition 
of the set’s universe that would bound the set of interest

c) Simplifications Assumptions needed to make problems and solutions tractable
2.2.3.3. Likelihood Defined by its components of randomness, statistical and 

modeling
a) Randomness Nonpredictability of outcomes
b) Sampling Samples vs. populations
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inconsistent, and vice versa. Also, he showed that there are problems that cannot be
solved by any set of rules or procedures; instead, for these problems one must always
extend the set of axioms. This philosophical view of logic can be used as a basis
for classifying the conscious ignorance into inconsistency and incompleteness. This
classification is also consistent with the concept of quantum knowledge, discussed

Inconsistency in knowledge can be attributed to distorted information as a result

sistency can result from assignments and substitutions that are wrong, conflicting,
or biased, producing confusion, conflict, or inaccuracy, respectively. The confusion
and conflict results from in-kind inconsistent assignments and substitutions, whereas
inaccuracy results from a level bias or error in these assignments and substitutions.

Incompleteness is defined as lacking or nonwhole knowledge in its extent.
Knowledge incompleteness consists of (1) absence and unknowns as incompleteness
in kind and (2) uncertainty. The unknowns or unknown knowledge can be viewed
in evolutionary epistemology as the difference between the becoming knowledge
state and current knowledge state. The knowledge absence component can lead to
one of the following scenarios: (1) no action and working without the knowledge,
(2) unintentionally acquiring irrelevant knowledge, leading to blind ignorance, or
(3) acquiring relevant knowledge that can be with various uncertainties and levels.
The fourth possible scenario of deliberately acquiring irrelevant knowledge is not
listed since it is not realistic.

Uncertainty can be defined as knowledge incompleteness due to inherent defi-
ciencies with acquired knowledge. Uncertainty can be classified based on its sources
into three types: ambiguity, approximations, and likelihood. The ambiguity comes
from the possibility of having multioutcomes for processes or systems. Recognizing
some of the possible outcomes creates uncertainty. The recognized outcomes might
constitute only a partial list of all possible outcomes, leading to unspecificity. In this
context, unspecificity results from outcomes or assignments that are incompletely
defined. The improper or incorrect definition of outcomes, i.e., error in defining
outcomes, can be called nonspecificity. In this context, nonspecificity results from
outcomes or assignments that are improperly defined. The unspecificity is a form
of knowledge absence and can be treated similarly to the absence category under
incompleteness. The nonspecificity can be viewed as a state of blind ignorance.

The human mind has the ability to perform approximations through reduction
and generalizations, i.e., induction and deduction, respectively, in developing knowl-
edge. The process of approximation can involve the use of vague semantics in
language, approximate reasoning, and dealing with complexity by emphasizing
relevance. Approximations can be viewed to include vagueness, coarseness, and
simplification. Vagueness results from the imprecise nature of belonging and non-
belonging of elements to a set or a notion of interest, whereas coarseness results
from approximating a set by subsets of an underlying partition of the set’s universe
that would bound the crisp set of interest. Simplifications are assumptions introduced
to make problems and solutions tractable.

The likelihood can be defined in the context of chance, odds, and gambling.
Likelihood has primary components of randomness and sampling. Randomness
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of inaccuracy, conflict, contradiction, or confusion, as shown in Figure 1.19. Incon-

in Section 1.3.2.
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stems from the nonpredictability of outcomes. Engineers and scientists commonly
use samples to characterize populations, hence the last type.

1.4.3 UNCERTAINTY THEORIES AND CLASSIFICATIONS

1.4.3.1 Ignorance Types, Mathematical Theories, and 
Applications

Systems analysis provides a general framework for modeling and solving various

framework should identify what is known about a system and associated uncertain-

trative purposes a matrix of applications and mathematical theories and methodol-

effectively deal with ambiguity by modeling nonspecificity, whereas fuzzy and rough
sets can be used to model vagueness, coarseness, and simplifications. The theories
of probability and statistics are commonly used to model randomness and sampling
uncertainty applied to quality control and reliability analysis. Bayesian methods can
be used to combine randomness or sampling uncertainty with subjective information
that can be viewed as a form of simplification and can be applied to reliability
analysis. Ambiguity, as an ignorance type, forms a basis for randomness and sam-
pling, as shown in the table, with classical sets, probability, statistics, Bayesian,
evidence, and interval analysis methods. Inaccuracy, as an ignorance type, can be
present in many problems, such as forecasting, risk analysis, and validation. The
theories of evidence, possibility, and monotone measures can be used to model
confusion and conflict in diagnostics, and vagueness in control. Interval probabilities
and interval analysis can be used to model inaccuracy in risk analysis and validation,
vagueness, and simplification in risk analysis.

1.4.3.2 Aleatory and Epistemic Uncertainties

Uncertainty in engineering analysis and design is commonly defined as knowledge
incompleteness due to inherent deficiencies in acquired knowledge. It can also be
used to characterize the state of a system as being unsettled or in doubt, such as the
uncertainty of the outcome. Uncertainty is an important dimension in the analysis
of risks. In this case, uncertainty can be present in the definition of the hazard threats
and threat scenarios, the asset vulnerabilities and their magnitudes, failure conse-
quence types and magnitudes, prediction models, underlying assumptions, effective-
ness of countermeasures and consequence mitigation strategies, decision metrics,
and appropriateness of the decision criteria. Traditionally, uncertainty in risk analysis
processes is classified as follows:

• Inherent randomness (i.e., aleatory uncertainty): Some events and mod-
eling variables are perceived to be inherently random and are treated to
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ogies that are introduced in Chapters 2 and 3. For example, classical sets theory can

ties and unknowns. Any identified ignorance types according to Figure 1.19 and

selected to effectively model this ignorance content. Table 1.11 provides for illus-
Table 1.10 would require the use of a mix of mathematical theories appropriately

problems and making appropriate decisions, as discussed in Section 1.2. Such a
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TABLE 1.11
Theories and Example Applications to Model and Analyze Ignorance Types

Selected Theories and Methodologies

Ignorance Type

Confusion and
Conflict Inaccuracy Ambiguity

Randomness and
Sampling Vagueness Coarseness Simplification

Classical sets Modeling
Probability Forecasting Modeling Quality control Modeling
Statistics Analysis Sampling
Bayesian Modeling Reliability analysis Modeling
Fuzzy sets Control Modeling Modeling
Rough sets Classification Modeling
Evidence Diagnostics Modeling
Possibility Target tracking Forecasting Control
Monotone measure
Interval probabilities Risk analysis Risk analysis Modeling Risk analysis Risk analysis
Interval analysis Risk analysis Validation Analysis Risk analysis

C
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be nondeterministic in nature. The uncertainty in this case is attributed to
the physical world because it cannot be reduced or eliminated by enhanc-
ing the underlying knowledge base. This type of uncertainty is sometimes
referred to as aleatory uncertainty. An example of this uncertainty type is
strength properties of materials such as steel and concrete, and structural
load characteristics such as wave loads on an offshore platform. For a
probability or consequence parameter of interest, the aleatory uncertainty
is commonly represented probabilistically by a random variable .

• Subjective (or epistemic) uncertainty: In many situations, uncertainty is
also present as a result of a lack of complete knowledge. In this case, the
uncertainty magnitude could be reduced as a result of enhancing the state
of knowledge by expending resources. Sometimes, this uncertainty cannot
be reduced due to resource limitations, technological infeasibility, or
sociopolitical constraints. This type of uncertainty, sometimes referred to
as epistemic uncertainty, is the most dominant type in risk analysis. For
example, the probability of an event can be computed based on many
assumptions. A subjective estimate of this probability can be used in risk
analysis; however, the uncertainty in this value should be recognized. With
some additional modeling effort, this value can be treated as a random
variable bounded using probability intervals or percentile ranges. By
enhancing our knowledge base about this potential event, these ranges
can be updated. For a probability or consequence parameter of interest,
the epistemic uncertainty is commonly represented probabilistically by a
random variable .

When uncertainty is recognizable and quantifiable, the framework of probability
can be used to represent it. Objective or frequency-based probability measures can
describe uncertainties associated with the aleatory uncertainty, and subjective prob-

uncertainties associated with the epistemic uncertainty. Sometimes, however, uncer-
tainty is recognized, but cannot be quantified in statistical terms. Examples include
risks far into the future, such as those for radioactive waste repositories, where risks
are computed over design periods of 1000 or 10,000 years, or risks aggregated across
sectors and over the world, such as the cascading effects of a successful terrorist
attack on a critical asset, including consequent government changes and wars
(National Research Council, 1995).

The two primary uncertainty types of aleatory and epistemic can be combined
for a parameter of interest as follows (Ang and Tang, 1975, 1984):

(1.14)

where P is a random variable representing both uncertainty types, i.e., the combined
uncertainty. is a random variable to represent the aleatory uncertainty, and is a
random variable to represent the epistemic uncertainty. For example, the following
lognormal distributions can be used for this purpose:

P

P̂

P P P= ˆ

P P̂
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ability measures (based on expert opinion, as provided in Chapter 7) can describe
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(1.15)

where COV is the coefficient of variation of and LN means lognormal. In Equation
1.15, the random variable is assumed to be an unbiased estimate of the true value.
The aleatory uncertainty can be represented in a similar manner using COV( ). The
total COV (P) can be computed as follows:

(1.16)

However, it is often important to treat the aleatory uncertainty separately from
the epistemic uncertainty; for example, in light of the epistemic uncertainty, the
pertinent result, such as the true or correct expected value of P, will also be a random
variable. If the two types of uncertainties were combined as indicated in Equation
1.16, however, then the expected value of P would be a deterministic value. In the
case where P is the risk R, it is important that the decision maker be able to select
or specify a risk-aversive value, such as the 90% value of the risk. This latter aspect
can be provided only if the two types of uncertainty are treated separately.

1.4.3.3 Uncertainty in System Abstraction

1.4.3.3.1 Abstraction for System Modeling
Engineers use information for the purpose of system definition, analysis, and design.
Information in this case is classified, sorted, analyzed, and used to predict system
behavior and performances; however, classifying, sorting, and analyzing uncertainty
in this information, and using it to assess uncertainties in our predictions, is a far
more difficult task. Uncertainty in engineering was traditionally classified into objec-
tive and subjective types, i.e., aleatory and epistemic uncertainty. This classification
was still deficient in completely capturing the nature of uncertainty and covering all
its aspects. This difficulty stems from its complex nature and its invasion of almost
all epistemological levels of a system by varying degrees.

Analysis of an engineering project commonly starts with a definition of a system
that can be viewed according to realism (or constructivism) as an abstract represen-
tation of an object of interest (or a construction from the experimental domain). The
abstraction is performed at different epistemological levels (Ayyub, 1992, 1994).

A resulting model from this abstraction depends largely on the engineer (or analyst)
who performed the abstraction, hence on the subjective nature of this process. During
the process of abstraction, the engineer needs to make decisions regarding what
aspects should or should not be included in the model. These aspects are shown in
Figure 1.20. Aspects that are abstracted and not abstracted include the previously
identified uncertainty types. In addition to the abstracted and nonabstracted aspects,
unknown aspects of the system can exist due to blind ignorance, and they are more
difficult to deal with because of their unknown nature, sources, extents, and impact
on the system.

ˆ [ . , ( ˆ)]P LN COV P= 1 0

P̂

P

COV P COV P COV P( ) [ ( )] [ ( ˆ)]= +2 2
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The process of abstraction can be graphically represented as shown in Figure 1.20.
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In engineering, uncertainty modeling and analysis are performed on the
abstracted aspects of the system with some consideration of the nonabstracted
aspects of a system. The division between abstracted and nonabstracted aspects can
be a division of convenience that is driven by the objectives of the system modeling,
or simplification of the model; however, the unknown aspects of the systems are
due to blind ignorance that depends on the knowledge of the analyst, and the state
of knowledge about the system in general. The effects of the unknown aspects on
the ability of the system model to predict the behavior of the object of interest can
range from none to significant.

1.4.3.3.2 Ignorance and Uncertainty in Abstracted 
System Aspects

Engineers and researchers dealt with the ambiguity and likelihood types of uncer-
tainty in predicting the behavior and designing engineering systems using the theories
of probability and statistics and Bayesian methods. Probability distributions were
used to model system parameters that are uncertain. Probabilistic methods that
include reliability methods, probabilistic engineering mechanics, stochastic finite
element methods, reliability-based design formats, and other methods were developed
and used for this purpose. In this treatment, however, a realization was established
of the presence of the approximation’s type of uncertainty. Subjective probabilities
were used to deal with this type that are based on mathematics used for the frequency

FIGURE 1.20 Abstraction and ignorance in modeling an object.
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type of probability. Uniform and triangular probability distributions were used to
model this type of uncertainty for some parameters. The Bayesian techniques were
also used, for example, to deal with combining empirical and subjective information
about these parameters. The underlying distributions and probabilities were therefore
updated. Regardless of the nature of uncertainty in the gained information, similar

Approximations arise from human cognition and intelligence. They result in
uncertainty in mind-based abstractions of reality. These abstractions are therefore
subjective and can lack crispness, or they can be coarse in nature, or they might be
based on simplifications. The lack of crispness, called vagueness, is distinct from
ambiguity and likelihood in source and natural properties. The axioms of probability
and statistics are limiting for the proper modeling and analysis of this uncertainty
type and are not completely relevant, nor completely applicable. The vagueness type
of uncertainty in engineering systems can be dealt with appropriately using fuzzy

a useful tool in solving problems that involve the vagueness type of uncertainty. To
date, many applications of the theory in engineering have been developed, such as
(Ayyub, 1991; Brown, 1979, 1980; Brown and Yao, 1983; Blockley, 1975, 1979a,
1979b, 1980; Blockley et al., 1983; Furuta et al., 1985, 1986; Ishizuka et al., 1981,
1983; Itoh and Itagaki, 1989; Kaneyoshi et al., 1990; Shiraishi and Furuta, 1983;
Shiraishi et al., 1985; Yao, 1979, 1980; Yao and Furuta, 1986):

1. Strength assessment of existing structures and other structural engineering
applications

2. Risk analysis and assessment in engineering
3. Analysis of construction failures, scheduling of construction activities,

safety assessment of construction activities, decisions during construction,
and tender evaluation

4. The impact assessment of engineering projects on the quality of wildlife
habitat

5. Planning of river basins
6. Control of engineering systems
7. Computer vision
8. Optimization based on soft constraints

Coarseness in information can arise from approximating an unknown relationship
or set by partitioning the universal space with associated belief levels for the parti-
tioning subsets in representing the unknown relationship or set (Pawlak, 1991). Such
an approximation is based on rough sets as described in Chapter 2. Pal and Skowron
(1999) provide background and detailed information on rough set theory, its appli-
cations, and hybrid fuzzy–rough set modeling. Simplifying assumptions are common
in developing engineering models. Errors resulting from these simplifications are
commonly dealt with in engineering using bias random variables that are assessed
empirically. A system can also be simplified by using knowledge-based if–then rules
to represent its behavior based on fuzzy logic and approximate reasoning.
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mathematical assumptions and tools were used that are based on probability theory.

set theory, as discussed in Chapter 2. In engineering, this theory was proven to be



62 Uncertainty Modeling and Analysis in Engineering and the Sciences

1.4.3.3.3 Ignorance and Uncertainty in Nonabstracted 
System Aspects

In developing a model, an analyst needs to decide at the different levels of modeling
a system upon the aspects of the system that need to be abstracted, and the aspects
that need not be abstracted. This division is for convenience and to simplify the
model, and is subjective depending on the analysts, as a result of their background,
and the general state of knowledge about the system. The abstracted aspects of a
system and their uncertainty models can be developed to account for the nonab-
stracted aspects of the system to some extent. Generally, this accounting process is
incomplete. Therefore, a source of uncertainty exists due to the nonabstracted aspects
of the system. The ignorance categories and uncertainty types in this case are similar
to the previous case of abstracted aspects of the system. These categories and types

nonabstracted aspects of a system are more difficult to deal with than the uncertainty
types due to the abstracted aspects of the system. The difficulty can stem from a
lack of knowledge or understanding of the effects of the nonabstracted aspects on
the resulting model in terms of its ability to mimic the object of interest. Poor
judgment or human errors about the importance of the nonabstracted aspects of the
system can partly contribute to these uncertainty types, in addition to contributing
to the next category, uncertainty due to the unknown aspects of a system.

1.4.3.3.4 Ignorance due to Unknown System Aspects
Some engineering failures have occurred because of failure modes that were not
accounted for in the design stage of these systems. Failure modes were not accounted
for due to various reasons, including (1) blind ignorance, negligence, using irrelevant
information or knowledge, human errors, or organizational errors, or (2) a general
state of knowledge about a system that is incomplete. These unknown system aspects
depend on the nature of the system under consideration, the knowledge of the analyst,
and the state of knowledge about the system in general. Not accounting for these
aspects in the models results in varying levels of impact on the ability of these
models to mimic the behavior of the systems. The effects of the unknown aspects
on these models can range from none to significant. In this case, the ignorance
categories include wrong information and fallacy, irrelevant information, and
unknowns, as shown in Figure 1.20.

Engineers dealt with nonabstracted and unknown aspects of a system by assess-
ing what is commonly called the modeling uncertainty, defined as the ratio of a
predicted system’s variables or parameter (based on the model) to the value of the
parameter in the object of interest. This empirical ratio, which is called the bias, is
commonly treated as a random variable that can consist of objective and subjective
components. Factors of safety are intended to safeguard against failures. This
approach of bias assessment is based on two implicit assumptions: (1) the value of
the variable or parameter for the object of interest is known or can be accurately
assessed from historical information or expert judgment, and (2) the state of knowl-
edge about the object of interest is complete and reliable. For some systems, the
first assumption can be approximately examined through verification and validation,
whereas the second assumption generally cannot be validated.
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are shown in Figure 1.20. The ignorance categories and uncertainty types due to the
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1.5 FROM DATA TO KNOWLEDGE FOR 
DECISION MAKING

A decision-making process can be represented as shown Figure 1.21 to include an

anies, resulting in decisions whose quality may be characterized in a spectrum of
appropriate to inappropriate, and the goal of achieving optimum decisions, which
are deemed either right (the optimum decision under conditions of certainty — the
God’s-eye view) or correct (the optimum decision under conditions of uncertainty).
While there are many definitions for concepts such as information and knowledge,
including technical definitions provided in previous sections, the following brief
definitions are convenient for the purposes of Figure 1.21:

• Data: Unconnected numbers or symbols (e.g., names, dates, positions) rep-
resenting objects and entities with appropriate levels of reliability or belief.

• Facts: Connected data.
• Information: Facts in context.
• Knowledge: A particular assemblage of information that forms justified

true beliefs, information in context, and actionable information.
• Experience: Primarily from self-directed interaction with the real world,

including internalization of knowledge and subsequent beliefs.
• Shared visions: Philosophical and emotional collective understandings

founded on our universality and not individuality, and producing motivat-
ing forces in organizations that give purpose needed by leaders.

• Epiphanies: Level of perception beyond logic and intuition, and the rare
creative brilliance.

These definitions imply a special cognitive process or operation (denoted as *). Data
form the basis for this hierarchy of knowing, with the following sets of relationships:

FIGURE 1.21 A decision-making process.
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ignorance hierarchy of Figure 1.19, a set of processes that transform data to epiph-
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• (data) * (order) = facts
• (facts) * (context) = information
• (information) * (synthesis) = knowledge
• (knowledge) * (perspective) = experience
• (experience) * (unifying principles) = shared vision
• (shared vision) * (meta-logic) = epiphanies

Order, appropriate to the problem at hand, imposed on data generates facts. Facts
in the appropriate context create information. Information that is aggregated and
synthesized properly, with respect to the situation of interest, leads to knowledge.
Knowledge that is contemplated in the perspective of other relevant knowledge, past
and present, provides experience, i.e., experience in the active sense of acquiring
broad knowledge, not simply in the passive sense of observing or living through an
event. Unifying principles, such as developed through social induction, lead to shared
vision, i.e., imagining what is possible. Meta-logic in conjunction with shared vision
can lead to epiphanies and new solutions to problems.

quality. The ignorance hierarchy impinges on the hierarchy of knowing and contrib-
utes to the generation of faulty data, processes that act on data and the hierarchy of
knowing, tools used as decision aids, perceptions that arise from the hierarchy of
knowing, and the ultimate decisions. The outcomes of this decision-making process
are of two kinds: right decisions and correct decisions. Right decisions are optimum
decisions given a God’s-eye view of the situation, where all of the relevant data are
known. Correct decisions, however, are the best decisions that can be expected of
most mortals — optimum decisions where only some of the relevant data are known
to the decision maker, whether due to blind or conscious ignorance, as previously

unit to an objective over a certain path. If the path is optimum in terms of selected
metrics (e.g., safety, timeliness, etc.) and the unit arrives safely, then the decision
may be considered to be a right decision. If the unit were ambushed and destroyed
along the path, the decision selecting the path could still be a correct decision if the
decision maker did not (or could not) possess relevant data about the prospective
ambush. If a faulty sensor, for example, did not detect an ambush, and the decision
maker had no reason to suspect that the sensor was faulty (which should cause a
prudent decision maker to take compensating actions to gather the critical data),
then the decision was still correct. The decision maker should not be pilloried for
making the best, most prudent decision possible given the data available, regardless
of whether the outcome is fortunate or unfortunate. This no-fault decision making
also assumes that the decision maker has taken prudent action to gather all relevant
data, has processed the data appropriately into relevant information or knowledge,
and has used the best human associates and tools available as decision aids. Decision
makers who are consistently able to make decisions that are either right or correct
have achieved the exalted state of wisdom.
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Emerging from this process, as shown in Figure 1.21, are decisions of varying

described in Section 1.4. For example, assume there is a decision to send a military
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EXERCISE PROBLEMS

1.1. Describe three engineering systems that can be modeled using the state-
based method. What are the states for each system?

1.2. Build an information-based hierarchical system definition for a residential
building by defining the source system, data system, generative system,
structure system, and metasystem.

1.3. Repeat Problem 1.2 for a highway bridge.
1.4. Repeat Problem 1.2 for a residential house.
1.5. Provide engineering examples of structured and unstructured complexity.
1.6. Provide examples in science of structured and unstructured complexity.
1.7. Provide two cases of transcomputational problems. Why are they

transcomputational in nature?
1.8. Using Plato’s theory of reality, provide three examples of forms or ideas.
1.9. What is skepticism? Describe its origin and progression through the times.
1.10. Write an essay of about 400 words on the book Tuhafut al-Tuhafut by Ibn

Rushd, summarizing primary arguments in it, its significance, and its
effect on Europe.

1.11. What is positivism? Describe its origin and progression.
1.12. What is the theory of meaning?
1.13. What are the differences between knowledge, information, and opinions?
1.14. What is ignorance?
1.15. What are knowledge types and sources? Provide examples.
1.16. What are the primary differences between appropriate decisions and right

decisions. Provide engineering examples of appropriate decisions and
right decisions.

1.17. Provide engineering examples of the various ignorance types in the hier-

1.18. Provide examples from the sciences of the various ignorance types in the
hierarchy provided in Figure 1.19.

1.19. What are the differences between an unknown and an unknowable? Pro-
vide examples.

C6447_book.fm  Page 65  Tuesday, April 4, 2006  1:39 PM

© 2006 by Taylor & Francis Group, LLC

archy provided in Figure 1.19.
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2

 

Encoding Data and 
Expressing Information

 

2.1 INTRODUCTION

 

This chapter provides background information, mathematical methods, and analyt-
ical tools that can be used to encode data and express information for the purpose
of creating some structure or order needed to solve problems in engineering and the
sciences. The various ways of encoding and expressing data and information are
important components of uncertainty modeling and analysis, and sometimes are
termed as 

 

formalized languages

 

.
Encoding data also includes the expression of an opinion of an expert that can

be defined in a numeric or nonnumeric manner, including a representation in natural
language or a picture, or a figure representing or symbolizing the opinion. The
expression in this case might be sensitive to the choice of a particular word, phrase,
sentence, symbol, or picture. It can also include a show of feeling or character. It
can be in the form of a symbol or a set of symbols expressing some mathematical
or analytical relationship, as a quantity or operation.

In this chapter, we present formalized languages and selected functions of
formalized languages that include the fundamentals of classical set theory, fuzzy
sets, generalized measures, rough sets, and gray systems. These languages can be
used to express and encode data and information. Basic operations for these theories
are defined and demonstrated. Operations relating to these theories are presented for
the purpose of combining collected information or data for solving problems or
system modeling. Relations and operations can be used to express and combine
collected information. In addition, methods for dealing with system complexity and
simplification are provided in this chapter. Examples are used in this chapter to
demonstrate the various methods and concepts. The level of coverage detail of a
particular method was set based on the maturity and potentials of the method.

 

2.2 IDENTIFICATION AND CLASSIFICATION 
OF THEORIES

 

for solving many problems in engineering and the sciences. System definition com-
monly involves data collection and encoding, and expressing information in a suit-
able format or manner for a problem or the system under consideration. The process
of encoding data and information expression needs to be performed for each aspect
of the system in the context of a universe or a universal set. In probability theory,
the universal set is called the sample space. A universal set can be defined as the
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Defining a system, as discussed in Chapter 1, commonly constitutes a starting point
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totality of all the things that exist pertaining to the domain of interest. Mathemati-
cally, a universal set is defined as the set of all objects or elements considered in a
given problem or for a given system. The universal set is commonly treated as a
complete set that is known with absolute certainty, termed in this case the closed-
world assumption. This assumption can be relaxed to allow for cases of an uncertain
universal set definition that involve models based on an open-world assumption.

theories that are based on the closed-world assumption, as shown in the first column
of Figure 2.1.

The elements of the universal set (

 

X

 

) are commonly assumed as precise objects
without any uncertainty in defining such objects. The meaning of the term 

 

precisely
defined elements

 

 might vary by application. It could mean that the elements are
(1) strictly described, (2) accurately stated, (3) definite, (4) distinctly defined with
no variation, or (5) strictly conform to usage and rules. This case of precise
elements defining 

 

X

 

 is shown in Figure 2.1 as the first branching of a tree repre-
senting several cases that are discussed in this section. The second branch in the
first level of branching in the second column is the case of imprecise elements.
Imprecisely defined elements carry a contrary meaning to precisely defined ele-
ments. This term could mean, depending on the application, (1) not clearly,
precisely, or definitely expressed or stated; (2) indefinite in shape, form, or char-
acter; (3) hazily or indistinctly seen or sensed; (4) not sharp, certain, or precise
in thought, feeling, or expression; (5) imprecisely determined or known; or (6)
uncertain in nature. In this case, the elements of the universal set cannot be defined
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This latter case is considered in Chapter 5. In this chapter, all modeling cases involve
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precisely, and are defined nevertheless in meaningful terms. Examples of the
precise elements are integer numeric values or letters of the alphabet. For the case
of vague elements, an example is the illnesses and diseases that could infect
humans that are of varying imprecision levels. Some diseases are characterized
by viruses, others by bacteria, and others by only symptoms attributed to many
factors, including genetic disorder.

expressed by a set or an event that is defined herein as a collection of elements from
a universal set of interest. Such a notion can be precisely or imprecisely expressed.
This second level of branching should be viewed distinctly from the precise or
imprecise nature of the element comprising the universal set, and provides an added
layer of classification to the first branching level to produce the next tree segment
in Figure 2.1. The next column addresses the two cases related to belonging (i.e.,
membership) of an element to a set (or notion or event) of interest. Two cases are
considered: the case of binary belonging (i.e., 0 for nonbelonging and 1 for belonging
to a set) and the case of nonbinary belonging (e.g., graded belonging, where it is
assigned a membership value in the continuous interval 0 to 1). Adding this belonging
branching to the tree produces the eight cases shown in Figure 2.1, with branches
corresponding to various theories that are built on the assumptions enumerated along
each branch. The top branch of precisely defined elements in a universal set with
precisely defined notions and binary belonging forms the basis for crisp set theory.
For example, the set of integers {0, 1, 2, …, 10} from the universal set of integers
is a case of precisely defined notions and binary belonging. In cases where a set is
not fully known in terms of what elements belong to it, the set can be approximated
using bounding by rough sets (Pawlak, 1991). For example, the Milky Way Galaxy,
which is the home of our solar system together with at least 200 to 400 billion other
stars and their planets, and thousands of clusters and nebulae can be considered to
form the universal set of interest. The notion of planets that have or had water is a
precisely defined notion and uncertain belonging that can be represented by graded
membership, whereas the notion of planets that were physically probed by humans
is a precisely defined notion and binary belonging.

Cases involving imprecise notions with graded membership can be modeled by
fuzzy sets (Zadeh, 1965). For example, the imprecise, but meaningful, notion of
high-quality products produced by a manufacturing plant is an example of this case.
The branch of precisely defined elements in a universal set with imprecisely defined
notions and binary belonging is illogical since imprecise notions lead to graded
membership, and therefore is disregarded. Imprecisely defined elements in a univer-
sal set with precisely defined notions and graded belonging form the basis for fuzzy
rough sets. Making the notions in this case imprecise also leads to rough fuzzy sets.
For example, the set of fatal human diseases is a crisp notion, but with imprecise
elements. The remaining two cases under imprecisely defined elements in a universal
set are illogical.

This chapter covers the fundamentals of these theories as bases for introducing
other theories, uncertainty measures, and computational methods in subsequent
chapters. Examples to illustrate these types of sets and measures are provided in
subsequent sections.
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The third column of Figure 2.1 addresses a notion of interest that can be
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2.3 CRISP SETS AND OPERATIONS

2.3.1 A U

 

NIVERSE

 

 

 

AND

 

 I

 

TS

 

 E

 

LEMENTS

 

A universe or universal set (

 

X

 

) can be defined as the totality of all the things that
exist pertaining to the attribute of interest for a system. A universal set can be
mathematically defined as the set of all objects or elements considered in a given
problem or for modeling an attribute of interest for the system. The elements of the

fundamental properties of these elements need to be defined and introduced. The
number of elements is either 

 

finite

 

 or 

 

infinite

 

. The universal set can be either 

 

bounded

 

or 

 

unbounded

 

. Also, the set can be either 

 

discrete

 

 (i.e., countable) or 

 

continuous

 

(i.e., noncountable). The elements can be of the following types:

1. Unordered, such as a nominal scale for data collection that could include,
for example, gender and political party affiliation

2. Partially ordered, such as an ordinal scale for data collection that could
include, for example, military ranks and education level

3. Ordered, such as interval and ratio scales used in data collection that could
include weight and height of a person

The unordered type represents elements or measurements at the lowest level,
because there is no order to the information. Measurements consist of simply iden-
tifying the elements as individual objects or categories. Nominal measurement scales
are commonly both discrete and qualitative. However, numbers may be assigned to
the categories for the purpose of coding. Frequently used examples of variables
measured on a nominal scale include (1) gender (female or male), (2) political
affiliation (Republican, Democrat, Independent, or other), and (3) college major
(engineering, sciences, physical education, or others). Engineering data are some-
times provided using a nominal scale, for example, (1) project failed or did not fail,
(2) fatal and nonfatal accidents, and (3) land use (urban, rural, forest, institutional,
commercial, or others).

The partially ordered type represents elements or measurements at a higher scale
than the nominal scale because it has the added property that there is order among
the elements. However, the magnitude of the differences between elements is not
meaningful. For example, military ranks are measured on an ordinal scale. The major
is above the sergeant, and the sergeant is above the private, but we cannot say that
a major is two or three times higher than a sergeant. Variables of interest in engi-
neering that are measured on an ordinal scale include the infiltration potential of
soil texture classes and hazard classifications for dam design (high hazard, moderate
hazard, low hazard). Soils are classified into one of several categories, such as sand,
sandy loam, clay loam, and clay. In this respect, soil texture is measured on a nominal
scale. However, if we consider the infiltration potential of the soil, then we can put
the soil textures in order according to the infiltration potential, high to low.

The ordered type represents elements or measurements that have the character-
istics of the ordinal scale, in addition to having a meaningful separation between
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any two numbers on the scale. Temperature is defined on the interval scale. We
recognize that a difference in temperature of 5˚C is less than a difference of 10˚C.
Values on an interval scale may be treated with arithmetic operators. For example,
the mean value of a set of test grades requires addition and division. Engineering
data are frequently recorded on an interval scale. The yield strength of steel, the
compressive strength of concrete, and the shear stress of soil are variables measured
on an interval scale. The annual number of traffic fatalities and the number of lost
worker-hours on construction sites due to accidents are also engineering variables
recorded on an interval scale. A special case of ordered elements is 

 

linearly

 

 ordered
elements, where the relationship between two elements of the universe is governed
by a linear equation, i.e., first-order polynomial. Linearly ordered elements are
commonly used in engineering and the sciences. The ratio scale is used in cases
where the zero value has a physical meaning, not a notational meaning, such as in
the case of error measurement.

As was previously discussed, the elements of the universe are commonly
assumed as precise objects without any uncertainty in defining such objects. In
engineering and the sciences, cases of imprecisely or vaguely defined objects could
be encountered. In this case, the elements of the universe cannot be defined precisely,
and are defined in vague terms that are nevertheless meaningful. Examples of precise
elements are the number of automobiles crossing a highway bridge and the number
of cars waiting to make a left turn at an intersection. The vague elements are
exemplified by the conditions of aging structures in the inventory of some legal
district or an organization. A universal set consisting of vaguely defined elements
introduces uncertainty at a fundamental level that impacts subsequent models con-
structed based on this universal set.

 

2.3.2 C

 

LASSICAL

 

 (C

 

RISP

 

) S

 

ETS

 

 

 

AND

 

 E

 

VENTS

 

Sets constitute a fundamental concept needed for uncertainty analysis. Any collection
of distinct individuals is called a 

 

set

 

, the individuals being termed its 

 

elements 

 

(or

 

members

 

). A set can be defined as a collection of elements or members from a universe
of interest. If it is possible to determine uniquely whether any given individual is or
is not a member of a given set, the set is called 

 

classical 

 

or

 

 crisp

 

; otherwise, it is
called 

 

fuzzy

 

. If members of a set are sets, the set is called a 

 

family of sets

 

.
Capital letters are usually used to denote sets, e.g., 

 

A

 

, 

 

B

 

, 

 

X

 

, 

 

Y

 

, etc. Small letters
are commonly used to denote their members, e.g., 

 

a

 

, 

 

b

 

, 

 

x

 

, 

 

y

 

, etc., respectively. An
individual member is expressed as belonging to a crisp set 

 

A

 

 as follows:

 

x

 

 

 

∈

 

 

 

A

 

(2.1)

The opposite case (

 

x

 

 is not a member of 

 

A

 

) is written as

 

x

 

 

 

∉

 

 

 

A

 

(2.2)

A crisp set can be described either by naming all its members (the 

 

list method

 

)
or by specifying certain well-defined properties of the members (the 

 

rule method

 

).
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In either case, the description is written within braces. Thus, the crisp set 

 

A

 

 whose
members are 

 

a

 

1

 

, 

 

a

 

2

 

, …, 

 

a

 

n

 

 is written as

 

A

 

 = {

 

a

 

1

 

, 

 

a

 

2

 

, …, 

 

a

 

n

 

} (2.3)

and the set 

 

B 

 

whose members satisfy the properties 

 

p

 

1

 

, 

 

p

 

2

 

, …, 

 

p

 

m

 

 is written as

 

B

 

 = {

 

b

 

⏐

 

b

 

 has properties 

 

p

 

1

 

, 

 

p

 

2

 

, …, 

 

p

 

m

 

} (2.4)

The symbol 

 

⏐

 

 stands for the phrase “such that.” The set 

 

B

 

 is thus defined as the
set of all individuals 

 

b

 

 such that each 

 

b

 

 satisfies the properties 

 

p

 

1

 

, 

 

p

 

2

 

, …, 

 

p

 

m

 

. If no
logical connectives between the listed properties are specified, it is assumed that all
the properties must be satisfied by each member of the set. Alternatively, appropriate
logical connectives are used. A family of sets can be defined in the form {

 

A

 

i

 

⏐

 

i 

 

∈

 

I

 

}, where 

 

i

 

 and 

 

I

 

 are called the 

 

set identifier

 

 and the 

 

identification 

 

(or

 

 index

 

)

 

 set

 

,
respectively.

 

E

 

XAMPLE

 

 2.1 S

 

ELECTED

 

 C

 

RISP

 

 S

 

ETS

 

The following are example sets:

 

A

 

 = {2, 4, 6, 8, 10} (2.5)

 

B

 

 = {

 

b

 

⏐

 

 

 

b

 

 is a real number > 0}, where 

 

⏐

 

 means “such that” (2.6)

 

C

 

 = {Maryland, Virginia, Washington, D.C.} (2.7)

 

D

 

 = {P, M, 2, 7, U, E} (2.8)

 

F

 

 = {1, 3, 5, 7, …}; the set of odd numbers (2.9)

 

In these example sets, each set consists of a collection of elements. In set 

 

A

 

, 2 belongs
to it and 12 does not belong to it. Using mathematical notations, this is usually expressed
as 2 

 

∈ 

 

A

 

 and 12 

 

∉ 

 

A

 

.

The set of integers greater than 2 and smaller than 10 can be written as {3, 4, 5, 6, 7,
8, 9} or as {

 

a

 

⏐

 

a

 

 is an integer, 

 

a

 

 > 2, 

 

a

 

 < 10}. Similarly, the set {

 

b⏐b is an integer
greater than 1 and smaller than 20 and either b is divisible by 2 or b is divisible by 3}
can also be written as {2, 3, 4, 8, 9, 10, 14, 15, 16}. Other examples of sets are {*, [,
/, ⏐}, {a⏐a is a lowercase script letter of the Russian alphabet}, and {b⏐b is a state
of the U.S.}. Specification of a set as {a, a, b} is redundant and represents, essentially,
the set {a, b} (members of a set are required to be distinct individuals).

2.3.3 PROPERTIES OF SETS AND SUBSETS

A crisp set whose members can be labeled by the positive integers is called a
countable set. If such labeling is not possible, the set is called uncountable. For
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instance, the set {a⏐a is a real number, 0 ≤ a ≤ l} is uncountable. Every uncountable
set is infinite; countable sets are classified into finite and countably infinite (also
called denumerable). The singular set that does not contain any member is called
the empty set and is denoted by φ.

For any finite set A, its number of elements is called a cardinality of A, and it
is denoted by ⏐A⏐. The cardinality of a set is a measure of its size. For a finite,
discrete set A with n elements belonging to it, the cardinality of the set is n, i.e.,
⏐A⏐ = n. For uncountable sets, such as {x⏐x is a real number, a ≤ x ≤ b}, the size
of the set can be quantified by the Lebesgue measure as (b – a).

If every member of a crisp set A is also a member of crisp set B, i.e., if a ∈ A
implies that a ∈ B, A is called a subset of B and is expressed as

A ⊆ B (2.10)

If both A ⊆ B and B ⊆ A, the sets A and B contain the same members and are
called equal sets expressed as

A = B (2.11)

If A and B are not equal, the following expression is used:

A ≠ B (2.12)

If both A ⊆ B and A ≠ B, then B contains at least one individual that is not a
member of B; A is called a proper subset of B, and this property is denoted as

A ⊂ B (2.13)

Every set is considered to be a subset of itself. The null set Ø is considered to
be a subset of every set.

EXAMPLE 2.2 EXAMPLE SUBSETS

For example, sets A, C, and D in Example 2.1 are finite sets, whereas sets B and F are
infinite sets.

The following are example subsets:

A1 = {2, 4} is a subset of A = {2, 4, 6, 8, 10} (2.14)

B1 = {b⏐7 < b < 200} is a subset of B = {b⏐b is real value > 0} (2.15)

F = {1, 2, 3, 4, 5, 6, 7, …} is a subset of F = {1, 2, 3, 4, 5, 6, 7, …} (2.16)

Other examples are {0, 1} ⊂ {0, 1, 2} ≠ {1, 2, 3} = {2, 1, 3} = {3, 1, 2} ⊂ {a⏐a is
a real number, 1 ≤ a ≤ 3}.
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2.3.4 CHARACTERISTIC FUNCTION

If all sets under consideration within a certain context are subsets of a set X, then
X is referred to as the universal set (within that context). Every universal set is
required to be a crisp set. A crisp set of some elements of X, say set A, can be defined
by a characteristic function (or a discrimination function) of the form

A: X → {0, 1} (2.17)

which assigns to each x ∈ X a value A(x) ∈ {0, 1}, such that

(2.18)

where means for all. This mapping is defined from the universe X to the integer
values {0, 1}, where 0 means a value x does not belong to A and 1 means a value
x belongs to A. The meaning of this membership function is that there are only two
possibilities for an element x, either being a member of A, i.e., A(x) = 1, or not being
a member of A, i.e., A(x) = 0. In this case the set A has sharp boundaries.

The difference between fuzzy sets and classical (crisp or nonfuzzy) sets is that
the membership function takes on values in the interval [0, 1] instead of one of the
two values {0, 1}. This assumption that elements belong or do not belong to sets in
a binary manner constitutes a basis for the classical set theory. Relaxing this assump-
tion to allow some form of degradation in belonging and nonbelonging to sets leads

2.3.5 SAMPLE SPACE AND EVENTS

In probability theory, the set of all possible outcomes (or events) constitutes the
universal set or the sample space. A sample space consists of sample points that
correspond to the possible outcomes. A subset of the sample space is called an event.
These definitions form the set basis of probabilistic analysis. An event without
sample points is an empty set and is called the impossible set φ. A set that contains
all the sample points is called the certain event, i.e., the equivalent of the universe
X. The certain event is equal to the sample space.

EXAMPLE 2.3 EXAMPLE SAMPLE SPACES AND EVENTS

The following are example sample spaces:

A = {a⏐a = number of vehicles making a left turn at
a specified traffic light within an hour} (2.19)

B = {b⏐b = number of products produced by an assembly line
within an hour} (2.20)

C = {the strength of concrete delivered at a construction site} (2.21)

A x
x A

x A
( ) =

∀ ∈
∀ ∉

⎧
⎨
⎩⎪

1

0

∀
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Based on the sample space A, the following events can be defined:

A1 = {number of cars making a left turn at the specified 
traffic light within an hour without waiting at the light} (2.22)

A2 = {number of vehicles making a left turn at the specified traffic light 
within an hour after waiting more than 2 minutes} (2.23)

2.3.6 EUCLIDEAN VECTOR SPACE AND SET CONVEXITY

A frequently used universal set is the space defined by all n-tuples of real numbers
as points in the n-dimensional Euclidean vector space Rn, where R is the set of real
numbers. Sets belonging to this space are commonly required to possess the property
of convexity. A set A is said to be convex, if for every pairs of points that belong to
A, a straight line that connects these two point stays within the bounds of A. Convex
sets are illustrated in Example 2.4.

2.3.7 VENN–EULER DIAGRAMS

Events and sets can be represented using spaces that are bounded by closed shapes, such
as circles or ellipses for plane geometry, i.e., two-dimensional spaces, or spheres or
cubes for solid geometry, i.e., three-dimensional spaces. These shapes are called
Venn–Euler (or simply Venn) diagrams. Belonging, nonbelonging, and overlaps between
events and sets can be represented by these diagrams. For elements defined on n-
dimensional Euclidean vector space Rn, sets can be classified as convex and nonconvex.

EXAMPLE 2.4 A FOUR-EVENT VENN DIAGRAM

In the Venn diagram shown in Figure 2.2, four sets, A, B, C, and D, belong to a two-
dimensional Euclidean sample space S. The event C ⊂ B and A ≠ B. Also, the events
A and B have an overlap in the sample space S. Events A, B, and C are convex sets,
whereas D is not.

FIGURE 2.2 Crisp events or sets in two-dimensional Euclidean space.

Sample space S 

A

BC

D
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2.3.8 BASIC OPERATIONS ON SETS

In this section, basic operations that can be used for sets are introduced. These
operations can, of course, be applied to events as well.

The union of sets A and B is the set A ∪ B of all elements that belong to A or
B, or both. It is denoted by A ∪ B and expressed as

A ∪ B = {x⏐x ∈ A or x ∈ B} (2.24)

where the logical connective or is inclusive, standing for either-or-both. Several
events are called collectively exhaustive events if the union of these events results
in the sample space.

The intersection of sets A and B is the set A ∩ B of all elements that belong to
both A and B. It is denoted by A ∩ B and expressed as

A ∩ B = {x⏐x ∈ A, x ∈ B} (2.25)

Events are called mutually exclusive if the occurrence of one event precludes
the occurrence of other events. Two sets A and B are called disjoint if they have no
common member, i.e., if

A ∩ B = Ø (2.26)

The difference of events A and B is the set of all elements that belong to A but
that do not belong to B. It is also called the relative complement of a crisp set A
with respect to a crisp set B; it is denoted by B − A, and defined formally as

B − A = {x⏐x ∈ B, x ∉ A} (2.27)

If the set X is the universal set in a certain discussion, the complement is called
absolute, and it is usually denoted by rather than X − A for that discussion.

A collection of disjoint nonempty subsets (Ai⏐i ∈ I) of A is called a partition
on A, written as π(A), if and only if the union of these subsets forms the original
set A. Thus,

π(A) = {Ai⏐i ∈ I; Ai ⊆ A, Ai ≠ Ø} (2.28)

is a partition on A if and only if

Ai ∩ Aj = Ø (2.29)

for each pair i ≠ j (i, j ∈ I), and

A
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Fundamental rules of these basic operations on sets are shown in Table 2.1.
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(2.30)

The Cartesian product of sets A and B is the set of all ordered pairs (a, b) such
that a ∈ A and b ∈ B. In mathematical notations, this can be expressed as

A × B = {(a, b): a ∈ A and b ∈ B} (2.31a)

For example, if A = {a1, a2} and B = {b1, b2}, A × B = {(a1, b1), (a1, b2), (a2,
b1), (a2, b2)}. Clearly, if A ≠ B, then A × B ≠ B × A. The Cartesian product of a
family {A1, A2, …, An} of crisp sets is the set of all n-tuples (a1, a2, …, an) such that
ai ∈ Ai (i = 1, 2, …, n). It is written as A1 × A2 × … × An. For finite sets,

⏐A1 × A2 × L × An⏐ = ⏐A1⏐⏐A2⏐L⏐An⏐ (2.31b)

Cartesian products are commonly used to define spaces for the purpose of
constructing relationships between the underlying sets.

TABLE 2.1
Other Operational Rules

Rule Type Operations
Identity rules A ∪ Ø = A

A ∩ Ø = Ø
A ∪ S = S
A ∩ S = A

Idempotent rules A ∪ A = A
A ∩ A = A

Complement rules A ∪ = S
A ∩ = Ø

= A

Commutative rules A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associative rules (A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Distributive rules (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

de Morgan’s rules

Combinations of rules

A
A

A

S = ∅
∅ = S

A B A B∪ = ∩
E E E E E En n1 2 1 2∪ ∪…∪ = ∩ ∩…∩
A B A B∩ = ∪
E E E E E En n1 2 1 2∩ ∩…∩ = ∪ ∪…∪
A B C A B C A B A C∪ ∩ = ∩ ∩ = ∩ ∪ ∩( ) ( ) ( ) ( )

A Ai

i I

=
∈
U

C6447_C002.fm  Page 77  Tuesday, April 4, 2006  2:56 PM

© 2006 by Taylor & Francis Group, LLC



78 Uncertainty Modeling and Analysis in Engineering and the Sciences

EXAMPLE 2.5 OPERATIONS ON SETS

Let A = {1, 3, 5, 7} and B = {b⏐b is an real number, b > 3}, then

A − B = {1, 3}

B − A = {x⏐x is a real number, 3 < x < 5 or 5 < x < 7 or x > 7}

A ∪ B = {x⏐x = 1 or x ≥ 3}

A ∩ B = {5, 7}

Let A1 = {1, 3, 5, 7}, A2 = {2, 3, 6, 7}, and A3 = {4, 5, 6, 7}, then

= A1 ∪ A2 ∪ A3 = {1, 2, 3, 4, 5, 6, 7}

= A1 ∩ A2 ∩ A3 = {7}

EXAMPLE 2.6 PARTITIONS

Let A = {1, 2, 3, 4, 5}, then

π1 = {{1, 3}, {2, 4, 5}}

is a partition on A. Another partition on A is

π2 = {{1, 2, 3, 4}, {5}}

The set {{1, 2, 3}, {3, 4, 5}} is not a partition because {1, 2, 3} ∩ {3, 4, 5} ≠ φ. The
set {{2, 3}, {4, 5}} is also not a partition because {2, 3} ∪ {4, 5} ≠ A.

EXAMPLE 2.7 CARTESIAN PRODUCT

Let A = {0, 1} and B = {a, b, c}, then

A × B = {(0, a), (1, a), (0, b), (1, b), (0, c), (1, c)}

A × A = A2 = {(0, 0), (0, 1), (1, 0), (1, 1)}

2.3.9 POWER SETS

For a given set A, the set of all subsets of A is called the power set of A and is
denoted PA. For a finite, discrete set A with n elements belonging to it, its power set

Ai

i=1 2 3, ,
U

Ai

i=1 2 3, ,
I
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contains 2n subsets. Each member of PA is represented by an ⎜A⎢-tuple of binary
digits (values of the membership function A). There are 2⎜A ⎢ such tuples; therefore,

⏐PA⏐ = 2⏐A⏐ (2.32)

Notice that both the empty set Ø and the set A are members of PA.

EXAMPLE 2.8 POWER SET AND CARDINALITY

For example, the following set A is used to determine its power set and cardinality:

A = {1, 2, 3} (2.33a)

The set A has the following power set:

PA = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} (2.33b)

These sets have the following respective cardinalities:

⏐A⏐ = 3 (2.34)

⏐PA⏐ = 8 (2.35)

Another example, the power set of

A = {2, 4, 6, 8, 10} (2.36a)

as provided in Equation 2.5, is

PA = {Ø, {2}, {4}, {6}, {8}, {10}, {2, 4}, {2, 6}, {2, 8}, {2, 10}, {4, 6},
{4, 8}, {4, 10}, {6, 8}, {6, 10}, {8, 10}, {2, 4, 6}, {2, 4, 8}, {2, 4, 10},

{2, 6, 8}, {2, 6, 10}, {2, 8, 10}, {4, 6, 8}, {4, 6, 10}, {4, 8, 10},
{6, 8, 10}, {2, 4, 6, 8}, {2, 4, 6, 10}, {2, 4, 8, 10}, {2, 6, 8, 10},

{4, 6, 8, 10}, {2, 4, 6, 8, 10}} (2.36b)

The power set contains 25 = 32 subsets.

2.4 FUZZY SETS AND OPERATIONS

Classical sets are defined in terms of characteristic functions by which elements
that belong to a given set are labeled by 1 and those that do not belong to it are
labeled by 0. However, these numbers, 1 and 0, play in classical set theory a purely
symbolic role. They are convenient, but may be as well replaced by any other pair
of symbols (e.g., m for members and n for nonmembers, ∈ for members and ∉ for
nonmembers, etc.). Contrary to classical sets, fuzzy sets are not required to have
sharp boundaries that distinguish their members from other objects. The membership
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in a fuzzy set is not a matter of affirmation or denial, as it is in any classical set,
but it is a matter of degree. As stated earlier, the difference between fuzzy sets and
classical (crisp or nonfuzzy) sets is that the membership function takes on values in
the interval [0, 1] instead of one of the two values {0, 1}. A degenerate fuzzy set A
in which the membership function takes values of either A(x) = 0 or A(x) = 1 for all
x ∈ X is called a crisp set.

2.4.1 MEMBERSHIP FUNCTION

The degree of membership of objects in fuzzy sets is most commonly expressed by
real numbers in the unit interval [0, 1]. Fuzzy sets in which membership degree is
expressed in this way are predominant in the literature and are called standard fuzzy sets.

Let X be a universe (classical, nonfuzzy) of all elements that are relevant in the
context of a particular application. For each application, set X forms the universe of
discourse of that application. Let A be a subset of X. Each element of X, x, is
associated with a membership value to the subset A, A(x). For a standard fuzzy set,
the membership function is given by

A: X → [0, 1] (2.37)

as a mapping from the universe X to the interval of real values [0, 1], where a value
in this range means the grade of membership of each element x of X to the set A;
i.e., the value of A(x) for each x ∈ X can be viewed as a measure of the degree of
compatibility of x with respect to the concept represented by A, where a value of 1
= the highest degree of compatibility and 0 = no compatibility. The number A(x)
represents the grade of membership of x in A. The larger this number, the higher
the grade of membership of x in A (the more evident it is that x is a member of A,
the more compatible is x with the concept represented by A). If A(x) = 1, then x ∈
A; if A(x) = 0, then x ∉ A. Hence, crisp sets may be viewed as special cases of fuzzy
sets. When they are viewed in this way, symbols 0 and 1 obtain their numerical
significance. This is contrary to their strictly symbolic meaning in classical set theory.
The assignment of values A(x) to members x of the universal set X is called a
membership function.

For a fuzzy set A consisting of m discrete elements, the membership function is
often expressed as

A = {x1/A(x1), x2/A(x2), …, xm/A(xm)} (2.38)

in which = should be interpreted as “is defined to be” and / is a delimiter. For an
infinite A with elements x ∈ X, the membership function of A can be expressed as

A = {x/A(x), for all x ∈ X} (2.39)

in which the function A(x) takes values in the range [0, 1]. In the case of fuzzy sets,
the boundaries of A are not sharp, and the membership of any x to A is fuzzy. The
support of a fuzzy set is defined as all x ∈ X such that A(x) > 0.
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Fuzzy sets are capable to express more realistically gradual transitions from
membership to nonmembership. For example, experts sometimes might provide their
opinions using vague terms, phrases, or words in natural languages, such as, likely,
large, and poor quality. The meanings of these expressions, which are strongly context
dependent, cannot be modeled by crisp sets. Membership functions can be constructed
subjectively based on experience and judgment as described in subsequent sections.

Other examples of fuzzy sets include the set of fast swimmers, the set of beautiful
women, and the set of large universities in the U.S.

EXAMPLE 2.9 FUZZY SETS TO REPRESENT EXPERIENCE

As an example of fuzzy sets, let X be the universal set of experience of an individual
to perform some job, such that x ∈ X can take a real value in the range from x = 0,
meaning absolutely no experience in performing the job, to x = 100, meaning absolutely
the highest level of experience. The range 0 to 100 was selected for representation
convenience. Other ranges could be used, such as 0 to 1. Five levels of experience are

experience. These experience classifications are meaningful although vague. A fuzzy
set representation offers a means of translating this vagueness into meaningful numeric
expressions using membership functions.

Another method of presenting fuzzy sets can be based on dividing the range of
experience into increments of 10. Therefore, a linguistic variable of the type “low or
short experience,” designated as A, can be expressed using the following illustrative
fuzzy definition that does not correspond to Figure 2.3:

Short experience, A = {x1 = 100/A(x1) = 0, x2 = 90/A(x2) = 0, 
x3 = 80/A(x3) = 0, x4 = 70/A(x4) = 0, x5 = 60/A(x5) = 0, x6 = 50/A(x6) = 0,

x7 = 40/A(x7) = 0.1, x8 = 30/A(x8) = 0.5, x9 = 20/A(x9) = 0.7,
x10 = 10/A(x10) = 0.9, x11 = 0/A(x11) = 1.0} (2.40)

FIGURE 2.3 Experience levels as fuzzy sets.
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This expression can be written in an abbreviated form by showing experience levels
with only nonzero membership values as follows:

Short experience, A = {40/0.1, 30/0.5, 20/0.7, 10/0.9, 0/1} (2.41a)

The fuzziness in the definition of short experience is obvious from Equation 2.40 or
2.41, as opposed to a definition in the form of Equation 2.17. Based on the fuzzy
definition of short experience, different grades of experience have different membership
values to the fuzzy set “short experience A.” The membership values are decreasing as
a function of increasing grade of experience. In this example, the values of x with
nonzero membership values are 40, 30, 20, 10, and 0, and the corresponding member-
ship values are 0.1, 0.5, 0.7, 0.9, and 1.0, respectively. Other values of x larger than
40 have zero membership values to the subset A. These membership values should be
assigned based on subjective judgment with the help of experts and can be updated
with more utilization of such linguistic measures in real-life applications. If a crisp set
were used in this example of defining short experience, the value of x would be 0 with
a membership value of 1.0. Similarly, long experience, B, can be defined as

Long experience, B = {100/1, 90/0.9, 80/0.7, 70/0.2, 60/0.1} (2.41b)

It should be noted that Equations 2.40 and 2.41 show experience taking discrete values
for convenience only, since values between these discrete values have membership
values that can be computed using interpolation between adjacent values. In order to
use fuzzy sets in practical problems, some operational rules similar to those used in

EXAMPLE 2.10 MEMBERSHIP FUNCTIONS OF FUZZY SETS

Let X be the set of all real numbers, and let A be the fuzzy set of real numbers that
are much greater than 1. Then one can give a precise, although subjective or problem
oriented, characterization of A by defining its membership function A(x), defined as

(2.42)

From Equation 2.42, the following can be stated: A(12) = 0.22, A(20) = 0.11, A(50) =
0.44, and A(90) = 0.89.

EXAMPLE 2.11 MEMBERSHIP FUNCTIONS OF REAL-VALUED SETS

These fuzzy sets are defined on the set of real numbers, which is the universal set in

A x

x

x
x

x

( ) =

≤
− < <

≥

⎧0 10
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90

10 100

1 100
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classical set theory (Table 2.1) need to be defined.

Examples of fuzzy sets (membership functions) are shown graphically in Figure 2.4.
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this case. They may represent the concept “around 1” (or “close to 1”). Which of these
or other possible membership functions is actually an appropriate representation of the
concept must be determined in the context of each particular application.

Membership functions in Figure 2.4 are quite typical. Each of them is defined by a set
of formulas as follows:

(2.43a)

(2.43b)

(2.43c)

FIGURE 2.4 Example membership functions for the set “around 1.”
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2.4.2 α-CUT REPRESENTATION OF SETS

Fuzzy sets can be described effectively using an important concept called an α-cut
that is needed also to facilitate the performance of fuzzy set operations. For a fuzzy
set A defined on universe X and a number α in the unit interval of membership [0,
1], the α-cut of A, denoted by αA, is the crisp set that consists of all elements of A
with membership degrees in A greater than or equal to α, i.e.,

αA = {x⏐A(x) ≥ α} (2.44)

This crisp set is a set of x values such that the membership value A(x) is greater
than or equal to α. A strong α-cut of A is denoted and defined as

α+A = {x⏐A(x) > α} (2.45)

The α-cut of A, with α = 1.0, is called the core set of the fuzzy set A. A fuzzy
set with an empty core is called a subnormal fuzzy set since the largest value of its
membership function is less than 1; otherwise, the fuzzy set is called a normal set.
It follows directly from the definition provided in Equation 2.45 that by increasing
α the next α-cut is always contained in the previous one. Hence, the set of all α-
cuts of any given fuzzy set always forms a nested family of sets, which uniquely
represents the fuzzy set where, for example, is a family of n
nested sets. The strong α-cut, with α = 0, is called the support set of the fuzzy set A. 

A set of nested α-cuts of A, i.e., αA, can be constructed by incrementally changing
the value of α. A convenient representation of such nested sets at quartile α values
is as follows:

Nested αA =

(2.46)

where the five sets of triplets correspond to α values of 1, 0.75, 0.50, 0.25, and 0+,
respectively, and the underlined and overlined a refer to lower and upper values of
an interval, respectively, for each α value. Other quartile levels can be termed upper
quartile set, mid-quartile set, and lower quartile set.

The significance of the α-cut representation of fuzzy sets is that it connects
fuzzy sets with crisp sets. While each crisp set is a collection of objects that are
conceived as a whole, each fuzzy set is a collection of nested crisp sets that are also
conceived as a whole. Fuzzy sets are thus wholes of a higher category.

The α-cut representation of fuzzy sets allows us to extend the various properties
of crisp sets, established in classical set theory, into their fuzzy counterparts. This
is accomplished by requiring that the classical property be satisfied by all α-cuts of
the fuzzy set concerned. Any property that is extended in this way from classical
set theory into the domain of fuzzy set theory is called cutworthy property. For

A A A An1 2 3⊆ ⊆ …⊆

{( , ( ), ( )), ( , ( ), ( )), (α α α α α α α1 1 1 1 1 2 2 2 2 2a a a a 33 3 3 3 3

4 4 4 4 4 5

, ( ), ( )),

( , ( ), ( )), ( ,

a a

a a a

α α

α α α α 55 5 5 5( ), ( ))}α αa
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example, when convexity of fuzzy sets is defined by the requirement that all α-cuts
of a fuzzy convex set be convex in the classical sense, this conception of fuzzy
convexity is cutworthy. Other important examples are cutworthy definitions of fuzzy
equivalence, fuzzy compatibility, and various kinds of fuzzy orderings. It is important
to realize that many (perhaps most) properties of fuzzy sets, perfectly meaningful
and useful, are not cutworthy. These properties do not have any counterparts in
classical set theory.

EXAMPLE 2.12 αααα-CUT OF EXPERIENCE

on the subjective assessment of an expert. The fuzzy set has a core set defined by the
real range [40, 60], and a support defined by [20, 80]. The α-cuts of A are shown in

Nested αA for medium experience =

EXAMPLE 2.13 αααα-CUT OF FUZZY SETS

obtain them in this case by determining the inverse functions corresponding to the
endpoints of the intervals. For example,

(2.47a)

(2.47b)

(2.47c)

2.4.3 FUZZY VENN–EULER DIAGRAMS

Similar to crisp events, fuzzy events and sets can be represented using spaces that
are bounded by closed shapes, such as circles with fuzzy boundaries showing the
transitional stage from membership to nonmembership. Belonging, nonbelonging,
and overlaps between events and sets can be represented by these diagrams. Figure
2.5b shows an example fuzzy event (or set) A with fuzzy boundaries. The various
nested shapes can be considered similar to contours in topographical representations
that correspond to the five-quartile α-cuts of A.

2.4.4 OPERATIONS ON FUZZY SETS

Each of the three basic operations of complement, intersection, and union is unique
in classical set theory; however, the counterparts of these operations in fuzzy set

{( , , ),( . , , ),( . , , ),( . ,1 40 60 0 75 35 65 0 5 30 70 0 25 255 75 0 20 80, ),( , , )}+

α α αA = −[ , ]2

α α αC = − − + −[ , ]1 1 1 1

α α αF = −[ , ]2
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Table 2.2 for all the quartile values and can be expressed as

Figure 2.5a shows a fuzzy set representation or expression of medium experience based

The α-cuts of all fuzzy sets in Figure 2.4 are closed intervals of real numbers. We can
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theory are not unique. Each of them consists of a class of functions that satisfy
certain properties. In this section, only some notable features of these operations are
described. A more comprehensive coverage can be found, for example, in the text
by Klir and Yuan (1995a). These operations are defined in an analogous form to the

The standard union of sets A ⊂  X and B ⊂  X is the set A ∪ B ⊂ X, which
corresponds to the connective or, and its membership function is defined for each
x ∈ X as follows:

FIGURE 2.5 α-Cut for medium experience and a fuzzy event.
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(A ∪ B)(x) = max[A(x), B(x)] (2.48)

This definition can be generalized to obtain what is called the triangular
conorms, or for short, the t-conorms, such as the Yager class of fuzzy unions (Yager,
1980a), provided by

(2.49)

where β ∈ (0, ∞) is called the intensity factor. Equation 2.49 reduces to Equation
2.48 as β → ∞. The union based on Equation 2.49 depends on β and can take any
value in the following range with lower and upper limits that correspond to β → ∞
and β → 0, respectively:

(2.50)

involving parameters similar to the intensity factor β used in the Yager class. The

computing the union of two fuzzy sets, including the Yager class.
The standard intersection of sets A ⊂ X and B ⊂ X is the set A ∩ B ⊂ X, which

corresponds to the connective and, and its membership function is defined by

(A ∩ B)(x) = min[A(x), B(x)] (2.51)

This definition can be generalized to obtain what is called the triangular norms,
or for short, the t-norms, such as the Yager class of fuzzy intersections (Yager,
1980a), provided by

TABLE 2.2
αααα-Cuts of Medium Experience as Provided in 

α Lower Limit Upper Limit Name of Set

1. 40 60 Core set
0.75 35 65 Upper quartile set
0.50 30 70 Mid-quartile set
0.25 25 75 Lower quartile set
0+ 20 80 Support set

(a) (a)
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fundamentally different and could require different values to achieve similar com-
same notation β is used for these parameters in these classes, although they are

The Yager class is one of several available classes for performing unions, all

putational objectives. Table 2.3 provides a summary of some of these classes for

Figure 2.5
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(2.52)

where β ∈ (0, ∞) is called the intensity factor. Equation 2.52 reduces to Equation
2.51 as β → ∞. The intersection based on Equation 2.52 depends on β and can take
any value in the following range with lower and upper limits that correspond to β →
0 and β → ∞, respectively:

(2.53)

The Yager class for the intersection of two fuzzy sets is one of several available
classes for performing intersections, all involving parameters similar to the intensity
factor β used in the Yager class. The same notation, β, is used for these parameters
in these classes, although they are fundamentally different and could require different

TABLE 2.3
Classes of Fuzzy Unions of t-Conorms

Membership Function
(A ∪ B)(x)

Parameters 
(e.g., Intensity Factor) Source

β ∈ (0, ∞) Hamacher (1978)

β ∈ (0, ∞), β ≠ 1 Frank (1979)

β ∈ (0, ∞) Yager (1980a)

β ∈ [0, 1] Dubbois and Prade (1980)

β ∈ (0, ∞) Dombi (1982)

β ≠ 0 Schweizer and Sklar (1983)
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values to achieve similar computational objectives. Table 2.4 provides a summary
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of some of these classes for computing the intersection of two fuzzy sets, including
the Yager class.

The difference between sets A and B is the set A-B of all elements that belong
to A but do not belong to B. The difference is mathematically expressed as

(2.54)

The membership function of the standard complement of a fuzzy set A is
defined by

(2.55)

This definition has the property of involution expressed as

TABLE 2.4
Classes of Fuzzy Intersections of t-Norms

Membership Function
(A ∩ B)(x)

Parameters 
(e.g., Intensity Factor) Source

β ∈ (0, ∞) Hamacher (1978)

β ∈ (0, ∞), β ≠ 1 Frank (1979)

β ∈ (0, ∞) Yager (1980a)

β ∈ [0, 1] Dubbois and Prade (1980)

β ∈ (0, ∞) Dombi (1982)

β ≠ 0 Schweizer and Sklar (1983)
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The definition can be generalized to obtain the Yager class of fuzzy complements
(Yager, 1980a) as follows:

(2.56)

where β ∈ (0, ∞) is called the intensity factor. Equation 2.56 reduces to Equation
2.55 for β = 1. The definition of the complement can also be generalized, for example,
by the Sugeno class of fuzzy complements as follows:

(2.57)

where β ∈ (0, ∞) is called the intensity factor. Equation 2.57 reduces to Equation
2.55 as β = 0. Complements stand for logical negations of concepts represented by
fuzzy sets. Which of possible complements to choose is basically an experimental
question. The choice is determined in the context of each particular application by
eliciting the meaning of negating a given concept by employing a suitable parame-
terized class of complementation functions.

The selection of a β value in the generalized definitions of fuzzy set operations
requires the use of experts to calibrate these operations based on the context of
use and application. The generalized definitions offer softer and harder forms of
union, intersection, and complement by changing the value of β. The generalized
unions and intersections for two fuzzy sets produce membership values as shown
in Figure 2.6.

Figure 2.6 shows also the averaging operations that span the gap between the
unions and intersections for the case of two arguments A and B (Klir and Folger,
1988; Klir and Yuan, 1995a). A special case of interest, herein, is the averaging

FIGURE 2.6 Examples of generalized fuzzy operations.
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operations for two arguments, A∇B, called the generalized means, for all x ∈ X,
defined as

(2.58)

where β is an intensity factor whose range is the set of all real numbers excluding
0. Averaging operations including the generalized means are not associative. They
are generalized to more than two arguments in Equation 2.61. Equation 2.58 becomes
the geometric mean

(2.59)

as β → 0, and it becomes the arithmetic mean when β = 1. Equation 2.58 converges
to the min and max operations as β → –∞ and β → ∞, respectively. Other generalized
operations and additional information on this subject are provided by Klir and Yuan
(1995a), Klir and Folger (1988), Yager (1980a), Schweizer and Sklar (1983), Frank
(1979), Dubois and Prade (1980), and Dombi (1982).

The following cases are examples of some common fuzzy intersections with
their usual names (each defined for all A(x) and B(x) ∈ [0, 1]):

Standard fuzzy intersection: (A ∩ B)(x) = min[A(x), B(x)]

Algebraic product: (A ∩ B)(x) = A(x)B(x)

Bounded difference: (A ∩ B)(x) = max(0, A(x) + B(x) – 1]

Drastic intersection: (A ∩ B)(x) = 

The following cases are examples of some common fuzzy unions with their
usual names (each defined for all A(x) and B(x) ∈ [0, 1]):

Algebraic sum: (A ∪ B)(x) = A(x) + B(x) – A(x)B(x)

Bounded sum: (A ∪ B)(x) = min(1, a + b) min[1, A(x) + B(x)]

Drastic union: (A ∪ B)(x) = 
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Averaging operations can be generalized to several arguments, i.e., membership
values A1(x) = a1, A2(x) = a2, …, An(x) = an. They are monotone nondecreasing and
idempotent, but are not associative operations. Due to the lack of associativity, they
must be defined as functions of n arguments for any n ≥ 2. It is well known that
any averaging operation, h, satisfies the following inequalities:

min(a1, a2, …, an) ≤ h(a1, a2, …, an) ≤ max(a1, a2, …, an) (2.60)

for any n-tuple (a1, a2, …, an) ∈ [0, 1]n. This means that the averaging operations
fill the gap between intersection operations and union operations. This concept was
introduced as the generalized means by Equation 2.58 for the case of n = 2. One
class of averaging operations, hλ, which covers the entire interval between min and
max operations, is defined for each n-tuple (a1, a2, …, an) in [0, 1]n by the formula

(2.61)

where λ is a parameter whose range is the set of all real numbers except 0. For λ
= 0, function hλ is defined by the limit

(2.62)

which is the well-known geometric mean. Moreover,

(2.63a)

(2.63b)

Therefore, the standard operations of intersection and union may also be viewed
as extreme opposites in the range of averaging operations. Other classes of averaging
operations are now available, some of which use weight factors to express relative
importance of the individual fuzzy sets involved. For example, the averaging function
can be expressed as

(2.64a)

where the weighting factors wi usually take values in the unit interval [0, 1], and
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(2.64b)

h(ai, wi⏐i = 1, 2, …, n) expresses for each choice of values wi the corresponding
weighted average of values ai (i = 1, 2, …, n). Again, the choice is an experimental issue.

Additional types of operations applicable to fuzzy sets are modifiers. Modifiers
are unary operations that are order preserving. Their purpose is to modify fuzzy sets
to account for linguistic hedges, such as very, fairly, extremely, more or less, etc.
The most common modifiers either increase or decrease all values of a given mem-
bership function A(x). A convenient class of functions, mλ, that qualify as increasing
or decreasing modifiers is defined for each A(x) ∈ [0, 1] by the formula

mλ(A(x)) = (A(x))λ (2.65a)

or, denoting A(x) = a,

mλ(a) = (a)λ (2.65b)

where λ > 0 is a parameter whose value determines which way and how strongly
mλ modifies a given membership function. Clearly, mλ(a) > a when λ ∈ (0, 1), mλ(a)
< a when λ ∈ (1, ∞), and mλ(a) = a when λ = 1. The farther the value of λ from
1, the stronger the modifier mλ. For example, to modify the set A “close to 1” provided

values of A(x) should be increased. This can be done by modifiers according to
Equation 2.65a and b provided that λ > 1. Applying these modifiers to A results in
a new membership function whose shape is exemplified by the function labeled as
F in Figure 2.4, and provided by Equation 2.43c using λ = 2. The smaller the value
of λ, the wider is the modified membership function.

EXAMPLE 2.14 OPERATIONS ON FUZZY EXPERIENCE LEVELS

Two experts provided the following assessments of long experience using fuzzy sets
B and C:

Long experience, B = {100/1, 90/0.9, 80/0.7, 70/0.2, 60/0.1} (2.66)

Long experience, C = {100/1, 90/0.8, 80/0.6, 70/0.4, 60/0.2} (2.67)

The union and intersection of these two sets can be computed according to the maxi-
mum and minimum operators of Equations 2.48 and 2.51, respectively, to obtain the
following:

B ∪ C = {100/1, 90/0.9, 80/0.7, 70/0.4, 60/0.2} (2.68)

B ∩ C = {100/1, 90/0.8, 80/0.6, 70/0.2, 60/0.1} (2.69)

wi

i

n

=
∑ =

1

1
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The above definitions of the union and intersection of fuzzy sets are the hard definitions.
The difference of the two sets is the empty set and can be stated as

B – C = Ø (2.70)

The complement of B according to Equation 2.55 is given by

= {90/0.1, 80/0.3, 70/0.8, 60/0.9, 50/1, 40/1, 30/1, 20/1, 10/1, 0/1} (2.71)

The α-cut of B at α = 0.7 according to Equation 2.43a is given by an interval of values
as follows:

B0.7 = {80, 90, 100} (2.72)

EXAMPLE 2.15 ADDITIONAL OPERATIONS ON FUZZY SETS

Figure 2.7 shows examples of fuzzy operations on two fuzzy events A and B. The
intersection and union are shown using the min and max rules of Equations 2.51 and
2.48, respectively. The complement is also shown based on Equation 2.55. The last

FIGURE 2.7 Examples of fuzzy operations.
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two figures show the unique properties of fuzzy sets with respect to standard operations

EXAMPLE 2.16 FAILURE DEFINITION FOR RELIABILITY AND SAFETY STUDIES OF

STRUCTURES

Classical structural reliability assessment techniques are based on precise and crisp
definitions of failure and survival of a structure in meeting a set of strength, functional,
and serviceability criteria. Consider the following performance function:

Z = g(X1, X2,…, Xn) (2.73)

where X1, X2, …, Xn = basic random variables and Z = performance measure or safety
margin as the difference between structural strength as a response (R) to applied loads
(L), i.e., Z = R – L. Both R and L are functions of the basic random variables. Equation
2.73 is defined such that failure occurs where Z < 0, survival occurs where Z > 0, and
the limit state equation is defined as Z = 0. The probability of failure can then be
determined by computing the integral:

(2.74)

where is the joint probability density function of {X1, X2, …, Xn} and the integration
is performed over the region where Z < 0. Ayyub and McCuen (2003), Ayyub and Haldar
(1984), and White and Ayyub (1985) provide additional information on this model.

The model for crisp failure consists of two basic, mutually exclusive events, i.e., complete
survival and complete failure. The transition from one to another is abrupt rather than
continuous. This model is illustrated in Figure 2.8, where Rf is the structural response

FIGURE 2.8 A crisp failure definition.
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at the limiting state for a selected design criterion. If the structural response R is smaller
than Rf, i.e., R < Rf, the complete survival state exists, and it is mapped to the zero failure
level (α = 0). If the structural response R is larger than Rf, i.e., R > Rf, the complete
failure state occurs and it is mapped to α = 1. The limit state is defined where R = Rf.

The fuzzy failure model is illustrated by introducing a subjective failure level index α
as shown in Figure 2.9, where RL and RR are the left (lower) bound and right (upper)
bound of structural response for the region of transitional or partial failure, respectively.
The complete survival state is defined where R ≤ RL, the response in the range (RL <
R < RU) is the transitional state, and the response (R ≥ RU) is the complete failure state.
In Figure 2.9, the structural response is mapped to the failure-level scale to model some
performance event as follows:

Performance event A: R → A = {α: α ∈ [0, 1]} (2.75)

where 0 = failure level for complete survival, 1 = failure level for complete failure,
and [0, 1] = all real values in the range of 0 to 1 for all failure levels.

The index α can also be interpreted as a measure of degree of belief in the occurrence
of some performance condition. In this case, α = 0 is interpreted as no belief of the
occurrence of an event, and α = 1 means absolute belief in the occurrence of the event.

and vagueness types of uncertainty was suggested by Alvi and Ayyub (1990), Ayyub

over a damage spectrum. Since the structural reliability assessment is based on the

Lai (1992) to assess the structural reliability of ship hull girders.

FIGURE 2.9 A fuzzy failure definition.
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fuzzy failure model, the probability of failure, in this case, is a function of α. Figure

and Lai (1992) and Lai and Ayyub (1994). The model results in the likelihood of failure

A mathematical model for structural reliability assessment that includes both ambiguity

2.10 shows various grades of failures expressed as fuzzy events as used by Ayyub and
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2.4.5 CARDINALITY OF FUZZY SETS

For crisp sets, the cardinality of a set is defined as a measure of its size. For example,
a finite, discrete crisp set A with n elements has a cardinality of n, i.e., ⏐A⏐ = n.

For discrete fuzzy sets defined on a finite universe, two types of cardinality are
used: (1) the scalar cardinality (also called the sigma count), denoted ⏐A⏐ for a
fuzzy set A, and (2) the cardinality as a fuzzy number, denoted CA.

The scalar cardinality for a discrete, bounded set A is defined as

(2.76)

In many applications using the sum of the membership grades is a good approx-
imation for the cardinality; however, the resulting cardinality is not necessarily an
integer. This scalar cardinality might not have an appropriate interpretation in some
applications. For example, using a fuzzy subset A of high-quality items produced
by a factory to determine how many high-quality items in a universal set X are used
to define A could produce a value greater than 1, although the individual membership
values are small numbers. In this case, the cardinality does not provide a reasonable
count of high-quality items.

The fuzzy cardinality for a discrete, finite set A is a fuzzy nonnegative integer
number defined as follows:

(2.77)

where is the cardinality of the α-cut of A.

FIGURE 2.10 Fuzzy failure definitions for structural reliability assessment.
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EXAMPLE 2.17 CARDINALITY OF FUZZY SETS

For example, the finite set A = {40/0.1, 30/0.4, 20/0.7, 10/0.9, 0/1.0} has a scalar
cardinality of ⏐A⏐ = 0.1 + 0.4 + 0.7 + 0.9 + 1.0 = 3.1. It has a fuzzy cardinality
calculated at the given membership values as follows:

CA(⏐1A⏐) = 1 for 1A = {0} and ⏐1A⏐ = 1

CA(⏐0.9A⏐) = 0.9 for 0.9A = {0, 10} and ⏐0.9A⏐ = 2

CA(⏐0.7A⏐) = 0.7 for 0.7A = {0, 10, 20} and ⏐0.7A⏐ = 3

CA(⏐0.5A⏐) = 0.5 for 0.5A = {0, 10, 20, 30} and ⏐0.5A⏐ = 4

CA(⏐0.1A⏐) 0.1 for 0.1A = {0, 10, 20, 30, 40} and ⏐0.1A⏐ = 5

Thus, the fuzzy cardinality is

CA = ⏐A⏐ = {5/0.1, 4/0.5, 3/0.7, 2/0.9, 1/1}}

It can be also computed as other membership values (e.g., quartiles) as follows:

CA(⏐1A⏐) = 1 for 1A = {0} and ⏐1A⏐ = 1

CA(⏐0.75A⏐) = 0.75 for 0.75A = {0, 10} and ⏐0.75A⏐ = 2

CA(⏐0.5A⏐) = 0.5 for 0.5A = {0, 10, 20} and ⏐0.5A⏐ = 3

CA(⏐0.25A⏐) = 0.25 for 0.25A = {0, 10, 20, 30} and ⏐0.25A⏐ = 4

CA(⏐0+A⏐) 0+ for 0+A = {0, 10, 20, 30, 40} and ⏐0+A⏐ = 5

The result in this case can be expressed as

CA = {1/1, 2/0.75, 3/0.5, 4/0.25, 5/0}

2.4.6 FUZZY SUBSETS

A fuzzy set A is called to be a subset of or equal to a fuzzy set B, A ⊆ B, if and
only if A(x) ≤ B(x) for all x ∈ X. A fuzzy set A is called to be equal to fuzzy set B,
A = B, if and only if A(x) = B(x) for all x ∈ X. The set of all fuzzy subsets of X is
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called the fuzzy power set of X. This set is crisp, even though its members are fuzzy
sets. Moreover, this set is always infinite, even if X is finite.

In many situations involving two fuzzy sets A and B, neither of the sets is a
subset of the other. In such cases, the extent to which one set, say A, is a subset of
a set B can be measured by a scalar quantity called subsethood measure (sub) that
is based on the scalar cardinality definition of Equations 2.76 and 2.77 as follows:

(2.78a)

Similarly, the subsethood measure of B in A is

(2.78b)

The negative term in the numerator describes the sum of the degrees to which the
subset inequality A(x) ≤ B(x) is violated, the positive terms describe the largest
possible violation of the inequality, the difference in the numerator describes the
sum of the degrees to which the inequality is not violated, and the term in the
denominator is a normalizing factor to obtain the range. This subsethood measure
has the following property:

0 ≤ sub (A ⊂ B) ≤ 1 (2.78c)

The minimum, sub (A ⊂ B) = 0, occurs where sets A and B do not intersect, and
the maximum, sub (A ⊂ B) = 1, occurs where a set A is a complete subset of B.
When sets A and B are defined on a bounded subset of real numbers (i.e., X is a
closed interval of real numbers), the three Σ terms in Equation 2.78a and b are
replaced with integrals over X.

2.4.7 FUZZY INTERVALS, NUMBERS, AND ARITHMETIC

Fuzzy sets that are defined on either the set of real numbers, R, or the set of integers,
I, have a special significance in fuzzy set theory. Among them, the most important
are cutworthy fuzzy intervals that are defined by requiring that each α-cut be a single
closed and bounded interval of real numbers for all α ∈ [0, 1]. A fuzzy interval, A,
may conveniently by represented for each x ∈ R by the canonical form
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(2.79)

where a, b, c, and d are specific real numbers such that a ≤ b ≤ c ≤ d, fA is a real-
valued function that is increasing, and gA is a real-valued function that is decreasing.
In most applications, functions fA and gA are continuous, but in general, they may
be only semicontinuous from the right and left, respectively. When A(x) = 1 for
exactly one x ∈ R (i.e., b = c in the canonical representation), A is called a fuzzy
number. If the shape of the membership function is triangular, it is called a triangular
fuzzy number.

For any fuzzy interval A expressed in the canonical form, the α-cuts of A are
expressed for all α ∈ [0, 1] by the formula

(2.80)

where are the inverse functions of fA and gA, respectively. An α-cut of a
fuzzy interval A can be expressed for an individual α as follows:

(2.81)

where the interval range , is a function at α.
A triangular fuzzy number A can be denoted as A[aL, am, aR], where aL = the

left (i.e., the lowest) value of support, aR = the right (i.e., the highest) value of
support, and am = the middle value at the mode of the triangle. A trapezoidal fuzzy
interval A can similarly be denoted as A[aL, amL, amR, aR], where aL = the left (i.e.,
the lowest) value of support, aR = the right (i.e., the highest) value of support, and
amL and amR = the left and right middle values at the mode range of the trapezoid.
A triangular fuzzy number is commonly used to represent an approximate number,
such as the weight of a machine is approximately 200 pounds, whereas a trapezoidal
fuzzy interval is an approximate interval, such as the capacity of a machine is
approximately 200 to 250 pounds. These examples of fuzzy numbers and fuzzy

be represented mathematically as

A = am (2.82)

A fuzzy number A[aL, am, aR] can be represented mathematically as
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(2.83)

The α-cuts for this fuzzy number are

(2.84)

FIGURE 2.11 (a) Crisp number, (b) fuzzy number, (c) crisp interval, and (d) fuzzy interval.
Continued.
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A crisp interval can be represented mathematically as

(2.85)

A fuzzy interval A[aL, amL, amR, aR] can be represented mathematically as

(2.86)

FIGURE 2.11 Continued.
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The α-cuts for this fuzzy interval are

(2.87)

For two fuzzy numbers or intervals A and B, let
where a and b are real numbers on the lower and upper ends of the ranges for α ∈
[0, 1]. The fuzzy arithmetic of addition, subtraction, multiplication, and division,
respectively, can be defined as follows (Kaufmann and Gupta, 1985) based on
interval-valued arithmetic (Moore, 1966, 1979):

(2.88)

(2.89)

(2.90)

(2.91)

Equation 2.91 requires that The above equations can be used to prop-
agate interval input into input–output models to obtain interval outputs using meth-
ods such as the vertex method (Dong and Wong, 1986a, 1986b, 1986c). Equations
2.88 to 2.91 can also be used to perform fuzzy arithmetic when one of the numbers
is a real number (i.e., when either

In order to use fuzzy arithmetic in numerical methods for the purpose of accom-
modating fuzzy coefficients, for example, solving a system of linear equations with
fuzzy coefficients, the fuzzy subtraction, multiplication, and division of Equations
2.89 to 2.91, respectively, should be revised to the constrained type (Ayyub and
Chao, 1998) as defined by Klir and Cooper (1996) and Klir and Pan (1998). For
example, the definition of fuzzy division for a fuzzy number by another fuzzy number
of the same magnitude can be different than the fuzzy division of a fuzzy number
by itself. Such a difference for αA/αA can be provided for
and for all x ∈ αA and y ∈ αA as follows:

1. For nonconstrained x and y, the unconstrained fuzzy division based on
Equation 2.91 can be expressed as

(2.92a)

α α αA a a a a a aL mL L R R mR= + − − −[ ( ), ( )]
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α α

α α α

A B
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2. For a constrained case where x = y, the fuzzy division is given by

(2.92b)

For fuzzy subtraction, a similar definition for αA – αA can be given for all x ∈
αA and y ∈ αA as follows:

1. For nonconstrained x and y, the unconstrained fuzzy subtraction based on
Equation 2.89 is given by

(2.92c)

2. For a constrained case where x = y, the constrained fuzzy subtraction is

(2.92d)

For fuzzy multiplication, a similar definition for αA × αA can be given for all
x ∈ αA and y ∈ αA as follows:

1. For nonconstrained x and y, the unconstrained fuzzy multiplication based
on Equation 2.90 is given by

(2.92e)

2. For a constrained case where x = y, the constrained fuzzy multiplication is

(2.92f)

Computing the square root and nth power requires the use of constrained arith-
metic. the square root is defined as follows, respectively:

(2.93)

For fuzzy addition, the definition for αA × αA can be given for all x ∈ αA, and
y ∈ αA is the same for the constrained and nonconstrained types as follows:

(2.94)
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Many problems in engineering and the sciences can be modeled based on
physical laws that would require constrained fuzzy arithmetic for propagating fuzzy
input into these models. For example, a system of linear equations with fuzzy
coefficients and other numerical problems can be constructed to solve such problems
requiring constrained fuzzy arithmetic. General formulations of constrained fuzzy
arithmetic are needed. The constraint does not need to be limited to x = y. The
concept can be extended to any constraint, such as equalities of the type x + y =
100 and x2 + y2 = 1, or inequalities of the type x < y and x2 + y2 ≤ 1. The inequality
constraints require the use of union operations to deal with numerical answers that
can be produced by several x and y combinations, i.e., lack of uniqueness or mapping
from many to one. Fuzzy arithmetic can be used to develop methods for aggregating
expert opinions that are expressed in linguistic or approximate terms. This aggrega-
tion procedure retains uncertainties in the underlying opinions by obtaining a fuzzy
combined opinion. Klir and Cooper (1996), Klir (1997a, 1997b), and Klir and Pan
(1998) provide additional information on constrained arithmetic.

EXAMPLE 2.18 ADDITIONAL OPERATIONS ON FUZZY SETS

The following two fuzzy numbers are used to perform a series of arithmetic operations
as provided below for demonstration purposes:

A = [1, 2, 3], a triangular fuzzy number

B = [2, 4, 6], a triangular fuzzy number

A + B = B + A = [3, 6, 9], a triangular fuzzy number

A – B = [–5, –2, 1], a triangular fuzzy number

The multiplication and division do not produce triangular numbers, and they need to
be evaluated using α-cuts. The computations can also be performed using the α-cuts
of Equations 2.84 and 2.87. For example, at α = 0, 0.5, and 1, the intervals for the
product and division are

At α = 0, A × B = [2, 18]

At α = 0.5, A × B = [4.5, 12.5]

At α = 1, A × B = [8, 8]

At α = 0, B/A = [2/3, 6]

At α = 0.5, B/A = [1.2, 10/3]

At α = 1, B/A = [2, 2]
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106 Uncertainty Modeling and Analysis in Engineering and the Sciences

Figure 2.12 shows graphically the results of addition, subtraction, multiplication, divi-
sion, constrained addition, and constrained multiplication at various α-cuts. As an
example for the case of constrained addition, the following is provided:

At α = 0, A + B = [1, 3] + [1, 3] = [2(1), 2(3)] = [2, 6]

At α = 0.2, A × B = [1.2, 2.8] × [1.2, 2.8] = [1.22, 2.82] = [1.44, 7.84]

results are in these cases exactly the same as with standard fuzzy arithmetic. A simple
example, such as (A + B)/B, would be very illustrative because this function is
increasing in A and decreasing in B for this case, where A and B are positive for all
α-cuts, and hence the result based on constraint fuzzy arithmetic can be expressed in
terms of the endpoints of α-cuts of A and B. The standard and constrained fuzzy
arithmetic give different results, but if the expression is rewritten as A/B + 1, the
standard and constrained fuzzy arithmetic give the same results. The computations in
this example were performed at discrete points for illustration purposes, but they can
be performed to deal with both kinds of fuzzy arithmetic by working with analytic

FIGURE 2.12 Example fuzzy arithmetic. Continued.
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forms of the membership functions (such as Equations 2.42 to 2.45), rather than with
the discrete forms.

2.4.8 FUZZY RELATIONS

Fuzzy sets defined on a universal set in the form of a Cartesian product of two or
more sets are called fuzzy relations. Individual sets in the Cartesian product of a
fuzzy relation are called dimensions of the relation. When n-sets are involved in the
Cartesian product, we call the relation n-dimensional (n ≥ 2). Fuzzy sets may be
viewed as degenerate, one-dimensional relations.

A relation between two or more sets is defined as an expression of association,
interrelationship, interconnection, or interaction among these sets. The expression can
be made in a crisp format indicating the presence or absence of such a relation, or it
can be made in a fuzzy format indicating the strength of the relationship. An n-dimen-
sional fuzzy relation R is thus defined by a membership function of the general form

R: X1 × X2 × … × Xn → [0, 1] (2.95)

FIGURE 2.12 Continued.
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The strength of a relationship R between x ∈ X and y ∈ Y is commonly expressed
using R(x, y) ∈ [0, 1]. If R(x, y) ∈ {0, 1}, i.e., R(x, y) can take one of two values 0
or 1, then R is considered to be a crisp relation, whereas if R(x, y) ∈ [0, 1], i.e., R(x,
y) can take any real value in the range [0, 1], then R is considered to be a fuzzy relation.
A fuzzy relation R between two sets A ⊂ X and B ⊂ Y is defined on the Cartesian
product of A and B: the set of all ordered pairs (a, b) such that a ∈ A and b ∈ B. In
mathematical notations, the Cartesian product is expressed by the following set:

A × B = {(a, b): a ∈ A and b ∈ B} (2.96)

For discrete A and B, relations can be expressed in a matrix form as follows:

(2.97)

FIGURE 2.12 Continued.
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in which A = {a1, a2, …, an}, B = {b1, b2, …, bm}, and R(ai, bj) = strength of
relationship for the ordered pair (ai, bj). The membership value can be determined
based on judgment.

The membership degree R(x1, x2, …, xn) of a particular n-tuple (x1, x2, …, xn),
where xi ∈ Xi for all i, indicates the strength of relation among elements of the n-
tuple. Relations that are two-dimensional have special significance; they are usually
called binary relations.

All concepts and operations applicable to fuzzy sets are applicable to fuzzy
relations as well. However, fuzzy relations involve additional concepts and opera-
tions due to their multidimensionality.

The union of two relations, say R and S, is denoted by R ∪ S and has the
following membership function:

(R ∪ S)(x, y) = max[R(x, y), S(x, y)] (2.98)

where both relations R and S are defined on the Cartesian product space X × Y. On
the other hand, the intersection of two fuzzy relations, R ∩ S, has the following
membership function:

(R ∩ S)(x, y) = min [R(x, y), S(x, y)] (2.99)

These soft definitions of the union and intersection of two fuzzy relations can
be generalized to perform the union and intersection of several relations using the
max and min operators, respectively. The soft definitions of these operations can
also be generalized using the Yager classes, similar to the union and intersection of
fuzzy sets.

The complement of fuzzy relation R has the following membership function:

(x, y) = 1 – R(x, y) (2.100)

Among the additional operations, two of them are applicable to any n-dimen-
sional fuzzy relations (n ≥ 2). They are called projections and cylindric extensions.
For the sake of simplicity, they are discussed here in terms of two- and three-
dimensional relations; a generalization to higher dimensions is quite obvious.

Let R denote a three-dimensional (ternary) fuzzy relation on X × Y × Z. A
projection of R is an operation that converts R into a lower-dimensional fuzzy relation,
which in this case is either a two-dimensional or one-dimensional (degenerate)
relation. In each projection, some dimensions are suppressed (not recognized), and
the remaining dimensions are consistent with R in the sense that each α-cut of the
projection is a projection of α-cut of R in the sense of classical set theory. Formally,
the three two-dimensional projections of R on X × Y, X × Z, and Y × Z, RXY , RXZ, and
RYZ are defined for all x ∈ X, y ∈ Y, and z ∈ Z by the following formulas:

(2.101a)

R

R

R x y R x y zXY
z Z

( , ) max ( , , )=
∈
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(2.101b)

(2.101c)

Moreover, the three one-dimensional projections of R on X, Y, and Z, RX, RY ,
and RZ can then be obtained by similar formulas from the two-dimensional
projections:

(2.102a)

(2.102b)

(2.102c)

Any relation on X × Y × Z that is consistent with a given projection of R is called
an extension of R. The largest among the extensions is called a cylindric extension.
Let REXY and REX denote the cylindric extensions of projections RXY and RX, respec-
tively. Then REXY and REX are defined for all triples (x, y, z) ∈ X × Y × Z by the formula

REXY(x, y, z) = RXY(x, y) (2.103a)

REX(x, y, z) = RX(x) (2.103b)

Cylindric extensions of the other two-dimensional and one-dimensional projec-
tions are defined in a similar way. This definition of cylindric extension for fuzzy
relations is a cutworthy generalization of the classical concept of cylindric extension.

Given any set of projections of a given relation R, their standard fuzzy intersec-
tion (expressed by the minimum operator) is called a cylindric closure of the
projections. This is again a cutworthy concept. Regardless of the given projections,
it is guaranteed that their cylindric closure contains the fuzzy relation R.

Projections, cylindric extensions, and cylindric closures are the main operations
for dealing with n-dimensional relations. For dealing with binary relations, an addi-
tional important operation is a relational composition.

R x z R x y zXZ
y Y

( , ) max ( , , )=
∈

R y z R x y zYZ
x X

( , ) max ( , , )=
∈
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Consider two binary fuzzy relations P and Q that are defined on sets X × Y and
Y × Z, respectively. Any such relations that are connected via the common set Y can
be composed to yield a relation on Y × Z. The standard composition of these relations,
which is denoted by P o Q, produces a relation R on X × Z defined by the following
formula for all pairs (x, z) ∈ X × Z:

R(x, z) = (P o Q)(x, z) = (2.104)

Other definitions of a composition of fuzzy relations, in which the min and
max operations are replaced with other unions (t-conorms) and intersections
(t-norms), respectively, are possible and useful in some applications. All composi-
tions are associative, i.e.,

(P o Q) o Q = P o (Q o Q) (2.105)

However, the standard fuzzy composition is the only one that is cutworthy. Sets
of Equation 2.104, which describe R = P o Q, are called fuzzy relation equations.
Normally, it is assumed that P and Q are given and R is determined by Equation
2.104. However, two inverse problems play important roles in many applications. In
one of them, R and P are given and Q is to be determined; in the other one, R and
Q are given and P is to be determined. Various methods for solving these problems
exactly as well as approximately have been developed, but are out of this book’s

An interesting case of fuzzy composition is the composition of a fuzzy subset
A defined on the universe X, with a relation R defined on the universe X × Y. The
result is a fuzzy subset B defined on the universe Y, with a membership function
given by

(A o R)(y) = (2.106)

A common application of the above operations of fuzzy relations is in construct-
ing an approximate logic based on conditional propositions of the following type:
if A1, then B1; else, if A2, then B2 … else, if An, then Bn. This statement can be
modeled using the operations of fuzzy sets and relations in the following form:

(A1 × B1) ∪ (A2 × B2) … ∪ (An × Bn) (2.107)

where A1, A2, …, An and B1, B2, …, Bn are fuzzy sets. Equation 2.106 is used for
developing controllers based on fuzzy logic (Klir and Folger, 1988; Hassan et al.,
1992; Hassan and Ayyub, 1993a, 1993b, 1994, 1997; Ayyub and Hassan, 1992a,
1992b, 1992c).

max[min[ ( , ), ( , )]]
y Y

P x y Q y z
∈

max{min[ ( ), ( , )]}
all x X

A x R x y
∈
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Additional information about the above operations and other operations with
examples are provided by Kaufmann (1975), Kaufmann and Gupta (1985), and Klir
and Folger (1988).

EXAMPLE 2.19 FUZZY RELATION FOR EXPERIENCE AND QUALITY

A fuzzy relation can be expressed in a conditional form. For example, the relation R
can be defined as if experience of workers on a production line is short, then the quality
of the product is medium. Defining short experience and a medium product quality,
respectively, as

Short experience, A = {40/0.1, 30/0.5, 20/0.7, 10/0.9, 0/1} (2.108)

Medium quality = {70/0.2, 60/0.7, 50/1, 40/0.7, 30/0.2} (2.109)

the fuzzy relation R can be computed based on the minimum operator according to
cylindric closure as follows:

(2.110)

Note that the fuzzy sets “short experience” and “medium product quality” are from
two different universes, namely, experience and quality, respectively. The membership
values of the first row in Equation 2.110 were evaluated as follows:

R(70, 40) = min (0.2, 0.1) = 0.1

R(70, 30) = min (0.2, 0.5) = 0.2

R(70, 20) = min (0.2, 0.7) = 0.2 (2.111)

R(70, 10) = min (0.2, 0.9) = 0.2

R(70, 0) = min (0.2, 1.0) = 0.2

2.4.9 FUZZIFIED AND FUZZY FUNCTIONS

Engineers and scientists are commonly interested in developing relationships among
underlying variables for a system. These relationships are based on the underlying
physics of modeled problems or system behavior, such as economic forecasts, power

short experience
40 30 20 10 0

R = 
medium 70 0.1 0.2 0.2 0.2 0.2
product 60 0.1 0.5 0.7 0.7 0.7
quality 50 0.1 0.5 0.7 0.9 1.0

40 0.1 0.5 0.7 0.7 0.7
30 0.1 0.2 0.2 0.2 0.2
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consumption forecasting, extreme loads on a structure, etc. Approximate functions
can be developed using fuzzified functions. In engineering and the sciences, we are
interested in cause–effect relationships expressed as

f: X → Y (2.112a)

This function can be expressed as

y = f(x) (2.112b)

where X and Y are crisp sets; y is the value of the criterion variable, also called
dependent variable; x is the predictor variable, also called independent variable; and
f is the functional relationship. The function is fuzzified when it is extended to act
on fuzzy sets defined on X and Y. That is, the fuzzified function maps, in general,
fuzzy sets defined on X to fuzzy sets defined on Y. Formally, the fuzzified function,
F, has the form

F: F(X) → F(Y) (2.113)

where F(X) and F(Y) denote the fuzzy power sets (the sets of all fuzzy subsets) of
X and Y, respectively. To qualify as a fuzzified version of f, function F must conform
to f within the extended domain F(X) and F(Y) using the extension principle that
employs the maximum operator.

Another functional form is the concept of fuzzy functions defined using α-cuts.
A fuzzy function can be expressed using the following triplet functions:

(2.114)

where is the lower α-cut function at α = 0, is the upper α-cut function
at α = 0, and αfm(x) is the middle α-cut function at α = 1. Other α-cut functions can
be developed using linear interpolation as follows:

(2.115)

Fuzzy functions can be used to extrapolate empirical function to regions beyond
data availability, for example, developing forecasting models. Functional operations
such as derivatives, integrals, roots, maximums, and minimums can be defined using
the α-cut concepts. These computations can be performed using numerical tech-
niques performed on the function values at the α-cuts. Ayyub and McCuen (1996)
describe commonly used numerical methods with practical examples.
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114 Uncertainty Modeling and Analysis in Engineering and the Sciences

EXAMPLE 2.20 FORECASTING POWER NEEDS USING A FUZZY FUNCTION

The power needs of a city can be forecasted to help city planners in making zoning
and power plant construction decisions. Figure 2.13 shows an empirical power con-
sumption trend over time and a subjectively developed forecast of the city’s needs. The
forecasted segment of the curve is provided for demonstration purposes. The following
fuzzy function is used to develop Figure 2.13:

(2.116)

where Year is in a four-digit number format. The figure shows the empirical data and
three functions that correspond to middle, and top and bottom at α-cuts of 0 and 1,
respectively.

2.5 GENERALIZED MEASURES

A generalized measure is defined as a function μ from a family of subsets C of a
universal set X to the interval [0, 1]. Commonly C is the power set of X as defined

X

analytical objective and exhibits some algebraic structure. This mapping relation
can be expressed as

(2.117)

This function must have the following properties in addition to continuity from
above and continuity from below:

FIGURE 2.13 A fuzzy function for forecasting power needs.
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in Section 2.3.9, i.e., P . The family of subsets usually is constructed to meet some
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(2.118a)

(2.118b)

(2.118c)

For some historical reasons of little significance, generalized measures that
satisfy the monotonicity requirement (Equation 2.118c) are often called fuzzy mea-
sures. This name is somewhat confusing since no fuzzy sets are involved in defining
these generalized measures. It is more appropriate to refer to them as monotone
measures. Wang and Klir (1992) provide additional information on generalized (or
fuzzy) measures.

EXAMPLE 2.21 FUZZY MEASURES FOR SETS

For a universal set X of objects that are vague and numbered by integer values from
1 to n for identification purposes, the set can be expressed as

(2.119)

The power set of P(X) can be defined, and for any set E ∈ P(X), the following fuzzy
measure μ can be defined for illustration purposes for a notion related to its number
of elements:

(2.120)

where ⏐E⏐ is the cardinality of E, i.e., the number of elements in E. In this case the
measure function of Equation 2.120 is called a regular measure since it meets all the

2.6 ROUGH SETS AND OPERATIONS

2.6.1 ROUGH SET DEFINITIONS

Rough sets were introduced by Pawlak (1991) and are described with examples by
Pal and Skowron (1999). Rough sets provide the means to represent crisp sets under
restricted resolution capability. The representation is based on a partition of the
universal space involved that should be constructed to facilitate this representation.
Each rough set represents a given crisp set by two subsets of the partition, a lower
approximation and an upper approximation. The lower approximation consists of
all subsets of the partition that are included in the crisp set represented, whereas the

μ( )∅ = ∅ ∈1 if C

μ( )X X C= ∈1 if
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conditions stated in Section 2.5.
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upper approximation consists of all subsets that overlap with the set represented.
Figure 2.14 shows a crisp set A that belongs to a universal space S. The universal
space is partitioned using the grid shown in Figure 2.14. The lower and upper
approximations of A, respectively, are shown in the figure. These
two subsets of approximations constitute the rough set approximation of A. The set
difference is called a rouph boundary of set A.

Fuzzy sets are different from rough sets. The former represents vagueness of
a quantity, such as obtaining linguistic quantities from experts, whereas the latter
represents coarseness as an approximation of a crisp set. Since both types can be
relevant in some applications, they can be combined as either fuzzy rough sets or

FIGURE 2.14 Rough set approximations.
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rough fuzzy sets. Fuzzy rough sets are rough sets that are based on fuzzy partitions,
whereas rough fuzzy sets are rough set approximations of fuzzy sets based on
crisp partitions.

2.6.2 ROUGH SET OPERATIONS

Rough sets can be manipulated using operations of unions, intersections, and com-

and upper set approximations of A can be written as

(2.121)

where and are the lower and upper approximations of A. The subset
includes all the sets of the universal space (S) that are contained in A. The

subset includes all the sets of the universal space that contain any part of A.
Based on this definition, the following operations can be provided for two crisp sets
A and B (Pal and Skowron, 1999):

(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

R A A R A( ) ( )⊆ ⊆

R A( ) R A( )
R A( )

R A( )

R R( ) ( )∅ = ∅ = ∅

R S S R S( ) ( )= =

R A B R A R B( ) ( ) ( )∪ = ∪

R A B R A R B( ) ( ) ( )∩ = ∩

A B R A R B R A R B⊆ ⇒ ⊆ ⊆( ) ( ) ( ) ( )and

R A B R A R B( ) ( ) ( )∪ ⊇ ∪

R A B R A R B( ) ( ) ( )∩ ⊆ ∩

R A R A( ) ( )=
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plements. Figure 2.14 shows a rough set approximation of the crisp set A. The lower
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A measure of the accuracy of an approximation (δ) can be expressed as

(2.133)

where is the cardinality of , i.e., the number of elements in . The
range of δ is [0, 1].

2.6.3 MEMBERSHIP FUNCTIONS FOR ROUGH SETS

In classical sets, the concept of a characteristic function was introduced as provided
by Equations 2.17 and 2.18. For each element, the membership function in the case
of crisp sets takes on either 1 or 0, which correspond to belonging and not belonging
of the element to a set A of interest. The membership function for rough sets has a
different meaning than in the case of crisp sets.

EXAMPLE 2.22 ROUGH SETS TO REPRESENT INFORMATION SYSTEMS

This example deals with a quality assurance department in a factory that inspects all
hand-made products produced by the factory. For each item produced, the inspectors
of the department record who made it and the result of the inspection, either acceptable
or unacceptable. Skilled workers are used to produce these items who have varying
levels of experience in terms of the number of months at the job and number of items
that each has produced. The data shown in Table 2.5 were collected based on inspecting
10 items. For each item, the table shows the experience level for the person who made
the item, measured as the number of months at the job and number of items that have
been produced by this person, and the outcome of the inspection. Representing each

TABLE 2.5
Inspection Data for Quality

Item Number
Experience

(Number of Months)
Experience (Number
of Items Produced)

Inspection
Outcome

x1 5 10 Unacceptable
x2 5 10 Unacceptable
x3 12 5 Unacceptable
x4 12 12 Acceptable
x5 12 12 Unacceptable
x6 20 10 Acceptable
x7 24 12 Acceptable
x8 6 8 Unacceptable
x9 18 10 Acceptable
x10 10 10 Unacceptable

δ = R A
R A

( )
( )

R A( ) R A( ) R A( )
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item by its pair of the number of months and number of items, Figure 2.15 can be
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developed using rough sets. The figure shows x1, x2, x3, x8, and x10 as items that are
unacceptable, x4 and x5 as borderline items of the rough set that are either acceptable
or unacceptable, and x6, x7, and x9 as items that are acceptable. Based on this figure,
the following rough set of unacceptable items (A) can be defined:

(2.134)

Similarly, the following rough set of acceptable items can be defined:

(2.135)

These rough sets are shown in Figure 2.15.

2.6.4 ROUGH FUNCTIONS

The concept of rough functions was introduced by Pawlak (1999) to present a coarse
approximation of unknown functions. Rough functions can be an effective means
to meet the needs of engineers and scientists, as an example, for the purpose of
expressing expert opinions. In developing relationships among variables underlying
an engineering system, these rough functions can be used to articulate and express
the opinion of experts in cases such as economic forecasts, power consumption
forecasting, and assessing extreme loads on a structure.

This section provides a format for presenting these subjective relationships.
Although the mathematics needed to manipulate these functions are not provided,
they can be obtained and developed based on the work of Pawlak (1999). In engi-
neering and science, we are interested in cause–effect relationships expressed as

FIGURE 2.15 Rough sets for presenting product quality.

x1 = (5, 10), x2 = (5, 10),
x3 = (12, 5), x8 = (6, 8),

x10 = (10, 10)

Unacceptable

x4 = (12, 12), x5 = (12, 12)

Acceptable/unacceptable

x6 = (20, 10), x7 = (24, 12), x9 = (18, 10)

Acceptable

R A x x x x x

R A x x x x x

( ) { , , , , }

( ) { , , , , ,

=

=

1 2 3 8 10

1 2 3 4 5 xx x8 10, }

( )A

R A x x x

R A x x x x x

( ) { , , }

( ) { , , , , }

=

=

6 7 9

4 5 6 7 9

C6447_C002.fm  Page 119  Tuesday, April 4, 2006  2:56 PM

© 2006 by Taylor & Francis Group, LLC



120 Uncertainty Modeling and Analysis in Engineering and the Sciences

y = f(x) (2.136)

where y is the value of the criterion variable, or dependent variable; x is the predictor
variable, or independent variable; and f is the functional relationship. Using the
concept of lower and upper approximations of f, a rough function can be expressed
using the following pair:

(2.137)

are lower and upper approximations of f. Rough functions can be
used to extrapolate empirical functions to regions beyond data availability for devel-
oping forecasting models. Functional operations such as derivatives, integrals, roots,
maximum, and minimum can be defined on the two approximations. Also, they can
be performed using numerical techniques performed on values at the lower and
upper approximations. Ayyub and McCuen (1996) describe commonly used numer-
ical methods with practical examples.

EXAMPLE 2.23 FORECASTING POWER NEEDS USING A ROUGH FUNCTION

The power needs of a city can be forecasted to help city planners in making zoning
and power plant construction decisions, as discussed in Example 2.20. Figure 2.16
shows an empirical power consumption trend over time and a subjectively developed
forecast of the city’s needs using lower and upper approximations of the needs (f). The
forecasted segment of the curve is provided for demonstration purposes. The rough
function was developed by establishing convenient grid lines, every 10 units of power
and every 5 years, as shown Figure 2.16. Then, lower and upper approximations of the
unknown city’s needs of power were made by identifying the coordinate points that
would include the unknown function.

FIGURE 2.16 A rough function for forecasting power needs.
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2.7 GRAY SYSTEMS AND OPERATIONS

Many systems in engineering and the sciences, such as social, economic, agricul-
tural, industrial, ecological, and biological systems, are modeled with incomplete
information about the system and interactions among variables within the system
and with other systems. Commonly, not even all such variables are known with
certainty to analysts performing the modeling. Systems that are not fully understood
by engineers and scientists can be viewed as black boxes that receive an input and
produce an output. In this case, what goes inside the system is unknown. Such
systems are called black systems according to this theory. For a black system,
internal structure and information processing is unknown, appearance is dark, and
the process is unknown or new, and might have the property of chaotic behavior.
For example, in control theory, the darkness of colors has been commonly used to
indicate the degree of clarity of information. An accepted representation in control
is the so-called black box method, which stands for an object with its internal
relations or structure totally unknown to analysts. Contrarily, white can be used for
cases involving completely known structure, and gray can be used for cases that
are partially known and partially unknown. Accordingly, systems with complete
knowledge on structure are called white systems, systems with completely unknown
structure are called black systems, and systems with partially known and partially
unknown structure are called gray systems. For example, prediction of yield of
agricultural projects and consequent annual income is quite difficult, even with
known information such as the quality of seeds, fertilizers, temperature, and irriga-
tion distribution, due to various unknown or vague information related to labor
quality, technology level employed, natural environment, infestation, weather con-
ditions, etc. Another example is the effectiveness of pesticide to control insects.
Economic and social systems display such uncertainty that might require the use
of gray system modeling methods. A complete treatment of gray systems is beyond
the scope of this book; however, Deng (1993) and Forrest (1997) provide additional
information and examples.

EXERCISE PROBLEMS

2.1. A construction manager needs to procure building materials for the con-
struction of an office building. The following sources are identified:

Define the sample space of all possible combinations of sources supplying
the construction project, assuming that each material type can be procured

Material Type Sources

Concrete Sources A and B
Reinforcing steel Sources C and D
Timber Sources D and E
Structural steel Sources C and F
Hardware Sources F, G, and H
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from one source only, but a source may supply more than one material
type at the same time.

2.2. A construction tower crane can operate up to a height H of 300 feet, a range
(radius) R of 50 feet, and an angle φ of +90˚ in a horizontal plane. Sketch
the sample space of operation of the crane. Sketch the following events:

2.3. Construct Venn diagrams for each of the following:
a. A deck of playing cards
b. The roll of a die
c. Letter grades on a test assuming equal probabilities for each grade
d. Letter grades on a test assuming the following probabilities:

A: 15%
B: 25%
C: 30%
D: 20%
E: 10%

e. Options at an intersection with the following probabilities:
Left turn: 20%
Straight ahead: 40%
Right turn: 25%
U-turn: 10%
Remain stopped: 5%

2.4. For the data and events of Problem 2.2, sketch the following events:

A ∪ B, A ∩ B, C ∪ D, C ∩ D, A ∪ C, A ∪ (B ∩ C), , and ∩ B

2.5. The traffic that makes a left turn at an intersection consists of two types
of vehicles, types A and B. A type A vehicle is twice the length of type
B. The left-turn lane can accommodate eight vehicles of type B, four of
type A, or combinations of A and B. Define the sample space of all possible
combinations of vehicles waiting for a left turn at the intersection. Also
define the following events: (1) at least one vehicle of type A waiting for
left turn, (2) two vehicles of type B waiting for left turn, and (3) exactly
one of type A and one of type B waiting for left turn.

2.6. Construct a Venn diagram for a deck of playing cards (4 suits, 13 cards
per suit). Show the following events:
a. A = All diamonds and all aces
b. B = All face cards

Event Definition

A 30 < H < 80 and R < 30
B H > 50 and 0˚ < φ <50˚
C H < 40 and R > 60
D H > 80 and –30˚ < φ < 50˚

A A
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c. C = The intersection of red cards and face cards
d. D = The union of black cards and cards with values of 4 or smaller
What are the cardinalities of these events?

2.7. Using the α-cut concept, compute the intersection, union, and comple-
ments of the following fuzzy sets:
a. Triangular sets defined as A = [10, 15, 20] and B = [15, 18, 22]
b. Trapezoidal sets defined as C = [10, 12, 18, 20] and D = [15, 18, 20, 22]
Plot your results.

2.8. Using the α-cut concept, compute the intersection, union, and comple-
ments of the triangular set defined as A = [10, 15, 20] and trapezoidal set
defined as B = [10, 12, 18, 20]. Plot your results.

2.9. Using the α-cut concept, evaluate the following operations on the trian-
gular set defined as A = [10, 15, 20] and trapezoidal set defined as B =
[10, 12, 18, 20], and plot your results:
a. A + B
b. A – B
c. A × B
d. A/B
e. A + A, with the equality constraint
f. A – A, with the equality constraint
g. A × A, with the equality constraint
h. A/A, with the equality constraint

2.10. Using the α-cut concept, evaluate the following operations on the trian-
gular number defined as A = [–10, 15, 20] and trapezoidal number defined
as B = [10, 12, 18, 20], and plot your results:
a. A + B
b. A – B
c. A × B
d. A/B
e. A + A, with the equality constraint
f. A – A, with the equality constraint
g. A × A, with the equality constraint
h. A/A, with the equality constraint

2.11. Compute the cardinality of the following sets:

A = {100/0.1, 80/0.2, 60/0.4, 40/0.6, 20/0.8, 0/1}

B = {50/0.1, 60/0.2, 70/0.4, 80/0.6, 90/0.8, 100/1}

2.12. Compute the cardinality of the following sets:

A = {I/0.1, II/0.2, III/0.4, IV/0.6, V/0.8, VI/1}

B = {c/0.1, d/0.2, e/0.4, f/0.6, g/0.8, h/1}
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2.13. Compute the cardinality of the following sets:

A = {1/0.1, 2/0.2, 3/0.4, 4/0.6, 5/0.8, 6/1}

B = {6/0.1, 5/0.2, 4/0.4, 3/0.6, 2/0.8, 1/1}

2.14. Develop two illustrative computational examples from engineering or the

2.15. Use two illustrative computational examples to compare the t-conorms

dations on when each type should be used by stating limitations, advan-
tages, and disadvantages.

2.16. Use two illustrative computational examples to compare the t-norms

ommendations on when each type should be used by stating limitations,
advantages, and disadvantages.

2.17. Using the α-cut concept, compute the complements of the following fuzzy
sets using the Yager and Sugeno classes:
a. Triangular sets defined as A = [10, 15, 20]
b. Trapezoidal sets defined as B = [10, 12, 18, 20]
Discuss your results. Provide recommendations on when each type should
be used by stating limitations, advantages, and disadvantages.

2.18. Using the α-cut concept, evaluate the generalized fuzzy operations of

the Yager classes for the following two triangular sets:

A = [10, 15, 18]

B = [12, 18, 24]

Discuss your results.
2.19. Using the α-cut concept, evaluate the generalized fuzzy operations of

Figure 2.6 and display the results in a figure similar to Figure 2.6 using
the Yager classes for the following two triangular sets:

A = [5, 10, 15]

B = [10, 15, 25]

Discuss your results.
2.20. Construct a fuzzy relation A × B based on the triangular set defined as A

= [10, 15, 20] and the trapezoidal set defined as B = [10, 12, 18, 20], and
plot your results.

2.21. Develop an equation to compute an average of n fuzzy data points that
are of:
a. Triangular fuzzy membership functions
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sciences that requires the use of constrained fuzzy arithmetic.

(unions) provided in Table 2.3. Discuss your results. Provide recommen-

(intersections) provided in Table 2.4. Discuss your results. Provide rec-

Figure 2.6 and display the results in a figure similar to Figure 2.6 using
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b. Trapezoidal fuzzy membership functions
c. Mixed triangular and trapezoidal fuzzy membership functions

2.22. Building on Problem 2.21, develop equations needed to compute variance
of n fuzzy data points that are of:
a. Triangular fuzzy membership functions
b. Trapezoidal fuzzy membership functions
c. Mixed triangular and trapezoidal fuzzy membership functions
What are the limitations of your equations?

2.23. Provide two examples of unknown set and function that can be represented
by a rough set and a rough function, respectively, with sample computations.

2.24. Provide two examples of systems that can be modeled using generalized
measures with sample computations.

2.25. Provide two examples of gray systems.
2.26. Develop a spreadsheet for performing fuzzy arithmetic without constraints

for the following types of fuzzy numbers:
a. Two triangular fuzzy numbers
b. Two trapezoidal fuzzy numbers
Demonstrate and validate your spreadsheet.

2.27. Develop a spreadsheet for performing fuzzy arithmetic with constraints
for the following types of fuzzy numbers:
a. Two triangular fuzzy numbers
b. Two trapezoidal fuzzy numbers
Use the following constraints:
a. x = y
b. x ≤ y
Demonstrate and validate your spreadsheet.

2.28. Develop a spreadsheet for solving two simultaneous linear equations with
fuzzy coefficients using fuzzy arithmetic with constraints. Demonstrate
and validate your spreadsheet.

2.29. Develop a spreadsheet for solving three simultaneous linear equations
with fuzzy coefficients using fuzzy arithmetic with constraints. Demon-
strate and validate your spreadsheet.
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3

 

Uncertainty and 
Information Synthesis

 

3.1 SYNTHESIS FOR A GOAL

 

Data and information collected about a system require synthesis for the purpose of
achieving an analytical goal or a mission. Engineers and scientists are always
interested in understanding and predicting system behavior (or performance) for the
purpose of making appropriate decisions. The behavior or performance of the system
can only be assessed according to available information, thereby involving some
uncertainty, and to the best of their knowledge, that involves some aspects of
ignorance. This synthesis requires the employment of fundamental measures to
assess these uncertainties and ignorance types. Various measures, including proba-
bility measures as special and commonly used measures, are introduced in this
chapter, building on data-encoding and information expression methods, i.e., for-

appropriate measures for uncertainty-based synthesis of information requires the
definition of an analytical goal that can be used as a basis for recognizing ignorance
types most relevant to the system under consideration, developing universal spaces
and appropriate structures, and selecting and using appropriate measures.

 

3.2 KNOWLEDGE, SYSTEMS, UNCERTAINTY, AND 
INFORMATION

 

The recognition that 

 

scientific knowledge

 

 is organized, by and large, in terms of

    

retrodicting, prescribing, diagnosing, controlling, etc. Every system involves a 

 

rela-
tion

 

 among some variables, which is utilized in a given purposeful way for deter-
mining unknown states of some variables on the basis of known states of other
variables. When the unknown states are determined uniquely, the systems are called

 

deterministic

 

. Otherwise, they are called 

 

nondeterministic. 

 

It is a common observa-
tion that nondeterministic systems are far more prevalent than deterministic systems
in contemporary science and technology.

Each nondeterministic system inevitably involves some 

 

uncertainty

 

, which is
associated with the purpose for which the system has been constructed. In each
nondeterministic system, the relevant uncertainty must be properly incorporated into
the formal description of the system in set theoretic terms or in terms of some other
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malized languages, presented in Chapter 2. The identification (or selection) of

in Chapter 1. Systems are constructed for various purposes, such as predicting,
systems of various types is an important outcome of systems science, as discussed

formalized language, as was discussed in Chapters 1 and 2.
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Although nondeterministic systems have been accepted in science and engineer-
ing since the early 20th century (primarily under the influence of statistical mechan-
ics), it was tacitly assumed for a long time that uncertainty in these systems can be
adequately formalized and dealt with by probability theory. This assumption was
challenged shortly after World War II, when the emerging computer technology
opened new methodological possibilities. It was increasingly realized, as most elo-
quently described by Weaver (1948), that the established methods of science were
not applicable to a broad class of important problems for which Weaver coined the
suggestive term 

 

organized complexity

 

. These are problems that involve considerable
numbers of entities that are interrelated in complex ways. They are typical in life,
cognitive, social, and environmental sciences, as well as in applied fields such as
modern technology, medicine, and management. They almost invariably involve
uncertainties of various types, but rarely uncertainties resulting from randomness,
which can yield meaningful statistical averages. That is, they cannot be adequately
represented by probability theory alone.

Uncertainty liberated from its probabilistic confines is a phenomenon of the
second half of the 20th century. It is closely connected with two important gener-
alizations in mathematics. One of them is the generalization of classical measure
theory (Halmos, 1950) to the theory of generalized measures, which was first sug-
gested by Gustave Choquet (1953–1954) in his theory of capacities. The second one
is the generalization of classical set theory to fuzzy set theory, introduced by Lotfi

abandoning the requirement of additivity of classical measures. Fuzzy sets are
obtained by abandoning the requirement of sharp boundaries of classical sets. These
generalizations enlarged substantially the framework for formalizing uncertainty. As
a consequence, they made it possible to conceive of new theories of uncertainty.

In general, uncertainty is an expression of some information deficiency. This
suggests that information could be measured in terms of uncertainty reduction. To
reduce relevant uncertainty in a situation formalized within a mathematical theory
requires that some relevant action be taken by a cognitive agent, such as performing
a relevant experiment, searching for a relevant fact, or accepting and interpreting a
relevant message. If results of the action taken (an experimental outcome, a discov-
ered fact, etc.) reduce uncertainty involved in the situation, then the amount of
information obtained by the action is measured by the amount of uncertainty reduced

 

⎯

 

 the difference between 

 

a priori

 

 and 

 

a posteriori

 

 uncertainty. Measuring informa-
tion in this way is clearly contingent upon our capability to measure uncertainty
within the various mathematical frameworks. Information measured solely by uncer-
tainty reduction is an important, even though restricted, notion of information. To
distinguish it from the various other conceptions of information, it is common to
refer to it as 

 

uncertainty-based information

 

 (Klir and Wierman, 1999, Klir, 2006).
A research program whose objective is to develop a broader treatment of uncer-

tainty-based information, not restricted to probabilistic formalization of uncertainty,
was introduced in the early 1990s under the name generalized information theory
(GIT) (Klir, 1991a). The ultimate goal of GIT is to develop the capability to deal
with any type of uncertainty-based information that is recognized on intuitive
grounds. To be able to deal with each recognized type of uncertainty (and the
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associated type of information) in an operational way, relevant issues must be
addressed at each of the following four levels:

•

 

Level 1

 

: Find an appropriate mathematical representation of the conceived
type of uncertainty.

•

 

Level 2

 

: Develop a calculus by which this type of uncertainty attributes
can be properly quantified and manipulated.

•

 

Level 3

 

: Find a meaningful way of measuring relevant uncertainty in any
situation formalized in the theory.

•

 

Level 4

 

: Develop methodological aspects of the theory, including proce-
dures for making the various uncertainty principles operational within
the theory.

In this book, our aim is to view uncertainty and uncertainty-based information
from the broad perspective of GIT and to illustrate the utility of results emerging
from GIT in science and engineering. In this chapter, GIT is introduced in more
specific terms and surveys some of the uncertainty theories that are subsumed under

chapter examines several well-developed uncertainty theories, including the classical
theories based on the notions of possibility and probability. The fundamentals of
measure theory and various measures that are appropriate for uncertainty modeling
are presented. The chapter introduces monotone measures, evidence theory and
random sets, possibility theory, probability theory, Bayesian methods, interval prob-
abilities, interval cumulative distribution functions, and probability bounds. Exam-
ples are used in this chapter to demonstrate the various methods and concepts.

 

3.3 MEASURE THEORY AND CLASSICAL MEASURES

 

In mathematics, a 

 

measure

 

 is a function that assigns a number to quantify a 

 

notion

 

of a 

 

metric

 

 representing a subset of a given set, e.g., a size, volume, or probability.
The concept is important in mathematical analysis, including uncertainty analysis.

 

Classical measures

 

 that are used in 

 

probability theory

 

 meet axiomatic constraints
as discussed in this section.

Measures, in general, build on the concepts of a universal set (

 

X

 

), a nonempty
family 

 

C

 

 of subsets of 

 

X

 

 with an appropriate algebraic structure, sets (such as 

 

A

 

),
and the power set (

 

P

 

A

 

), in order to establish a logical measure that can be used to
characterize some system attributes of interest, i.e., uncertainty, likelihood, proba-
bility, possibility, belief, etc. Classical measures are formulated for a universal set

 

X

 

 and a family of subsets 

 

C 

 

such that if 

 

A

 

i

 

 

 

∈

 

 

 

C

 

, it leads to 

 

A

 

i

 

 

 

⊂

 

 

 

X

 

. The family 

 

C

 

 is
called an 

 

algebra

 

 if the following conditions are met:

 

C

 

 contains the empty set, i.e., Ø 

 

∈

 

 

 

C

 

(3.1)

 

C

 

 contains the entire set 

 

X

 

, i.e., 

 

X

 

 

 

∈

 

 

 

C

 

(3.2)
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it. After introducing the concept of a monotone measure in Section 3.4.1 and
describing a broad framework for formalizing uncertainty in Section 3.4.2, this
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For any 

 

A

 

i

 

 

 

∈

 

 C

 

, the complementary set (3.3)

The family is called a 

 

σ

 

-algebra

 

 if it has the following additional property:

For 

 

A

 

i

 

 

 

∈

 

 C

 

, 

 

i

 

 = 1, 2, …, (3.4)

In other words, Equation 3.4 states that the countable union of any family of subsets
in 

 

C

 

 belongs to 

 

C

 

 (Halmos, 1950; Royden, 1988).
A measure 

 

μ

 

 can be defined in its broadest form as a function that maps 

 

C

 

 to
the real line (

 

R

 

). This function can be defined mathematically as follows:

 

μ

 

 : 

 

C

 

 

 

→

 

 

 

R

 

(3.5)

Of special interest for the purposes of this book is a function that is limited to
nonnegative real values (

 

R

 

+

 

) as follows:

 

μ

 

 : 

 

C

 

 

 

→

 

 

 

R

 

+

 

 = [0, 

 

∞

 

] (3.6)

In probability theory, the probability measure that is introduced in a later section
imposes additional requirements on 

 

μ

 

 consisting of the following:

 

μ

 

 : 

 

C

 

 

 

→

 

 [0, 1] (3.7)

 

μ

 

(Ø) = 0 (3.8)

For disjoint 

 

A

 

i

 

 

 

∈

 

 C

 

, 

 

i

 

 = 1, 2, …, (3.9)

where any events 

 

A

 

i

 

 and 

 

A

 

j

 

 meet the following condition:

(3.10)

Equation 3.7 limits the mapping to the closed interval of [0, 1], with the measure
for the null set being zero according to Equation 3.8. Equation 3.9 states that the
function 

 

μ 

 

for the union of several disjoint (i.e., with null intersections) subsets is
the sum of the measures (i.e., 

 

μ

 

 values) of these subsets. This 

 

additive property

 

 is
unique to this 

 

classical measure

 

 of 

 

probability

 

. Although the development and
evolution of probability theory was based more on intuition than on mathematical
axioms during its early development, an axiomatic basis for probability theory was
established, and it is now universally accepted.

A Ci ∈

A Ci

all i

∈U

μ μA Ai

all i

i

all i
U

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= ∑ ( )

A Ai j∩ = ∅
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3.4 MONOTONE MEASURES AND THEIR 
CLASSIFICATION

3.4.1 D

 

EFINITION

 

 

 

OF

 

 M

 

ONOTONE

 

 M

 

EASURES

 

When generalized measures are employed for representing uncertainty, it makes
sense to require that the additivity property of classical measures be replaced with
a weaker property of monotonicity with respect to the subsethood relationship. Such
measures are called 

 

monotone measures

 

. Their range is usually the unit interval [0,
1], as in probability measures, and it is required that the measure of the universal
set be 1. Such measures are called 

 

regular monotone measures

 

. They are formally
defined in this section.

A

 

 regular monotone measure

 

 (the kind suitable for formalizing uncertainty) can
be defined based on a nonempty family 

 

C

 

 of subsets from 

 

P

 

X

 

 (i.e., the power set of

 

X

 

) for a given universal set 

 

X

 

, that contains 

 

φ

 

 and 

 

X

 

, with an appropriate algebraic
structure as a mapping from 

 

C

 

 to [0, 1], as follows:

 

μ

 

: 

 

C 

 

→

 

 [0, 1] (3.11)

A monotone measure must satisfy the following conditions:

1.

 

Boundary conditions

 

: The monotone measure must meet the following

 

μ

 

(Ø) = 0 and

 

μ

 

(

 

X

 

) = 1 (3.12a)

2.

 

Monotonicity:

 

(3.12b)

3.

 

Continuity from below

 

:

(3.12c)

4.

 

Continuity from above

 

:

For any decreasing sequence … of sets in 

 

C

 

,

(3.12d)

For all and if thenA A C A A Ai j i j i∈ ⊆ ≤, ( ) (μ μ AAj )

For any increasing sequence of setA A1 2⊆ ⊆ … ss in 

if then

C

A C A Ai
i

i i

all i

,

, lim ( )∈ =
⎛

→∞
μ μ U

⎝⎝
⎜
⎜

⎞

⎠
⎟
⎟

all i
U

A A1 2⊇ ⊇

if then, lim ( )A C A Ai
i

i i

all ia

∈ =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟→∞

μ μ I
lll i
I
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Functions μ that satisfy requirements of Equation 3.12a, Equation 3.12b, and
either Equation 3.12c or Equation 3.12d, which are called semicontinuous from
below and from above, respectively, are functions that allow us to formalize upper
and lower probabilities of various types.

For any pair A1 and A2 ∈ C such that A1 ∩ A2 = Ø, a monotone measure μ is
capable of capturing any of the following situations (Wang and Klir, 1992; Klir and
Wierman, 1999):

μ(A1 ∪ A2) > μ(A1) + μ(A2) (3.13)

called superadditivity, which expresses a cooperative action or synergy between A1

and A2 in terms of the measured property;

μ(A1 ∪ A2) = μ(A1) + μ(A2) (3.14)

called additivity, which expresses the fact that A1 and A2 are noninteractive with
respect to the measured property; and

μ(A1 ∪ A2) < μ(A1) + μ(A2) (3.15)

called subadditivity, which expresses some sort of inhibitory effect or incompatibility
between A1 and A2 as far as the measured property is concerned.

Probability theory, which is based on the classical measure theory, is capable of
capturing only situations of Equation 3.14. This demonstrates that the theory of
monotone measures provides us with a considerably broader framework than prob-
ability theory for formalizing uncertainty. As a consequence, it allows us to capture
types of uncertainty that are beyond the scope of probability theory. In general,
lower probabilities are superadditive and upper probabilities are subadditive.

For some historical reasons of little significance, monotone measures are often
referred to in the literature as fuzzy measures (Wang and Klir, 1992). This name is
somewhat confusing since no fuzzy sets are involved in the definition of monotone
measures. To avoid this confusion, the term fuzzy measures should be reserved for
measures (additive or nonadditive) that are defined on families of fuzzy sets. That
is, the term fuzzy measures should refer to monotone measures that are fuzzified
(Wang and Klir, 1992).

Monotone measures are needed to model inconsistency and incompleteness

abandoning the requirement that sets have sharp boundaries. As a consequence,
objects may belong to fuzzy sets with various degrees of membership, which in
standard fuzzy sets are expressed by numbers in the unit interval of real numbers
[0, 1]. Monotone measures allows for superadditivity and subadditivity in its ana-
lytical computations.

3.4.2 CLASSIFYING MONOTONE MEASURES

of classical sets (or classical propositions), each with the underlying structure of a
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ignorance types, as shown in Figure 1.19. Fuzzy sets generalize classical sets by

Based on Section 3.4.1, probability theory builds on two requirements: (1) families
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Boolean algebra, and (2) classical (additive) measures defined on these families of
sets, as shown in Figure 3.1. These two components define the framework within
which probability theory operates.

The emergence of fuzzy set theory and the theory of monotone measures made
it possible to expand this classical framework considerably. This expansion is two-
dimensional. In one dimension, the formalized language of classical set theory is
expanded to the more expressive language of fuzzy set theory, where further dis-
tinctions (and the underlying algebraic structures) are based on special types of fuzzy
sets. In the other dimension, the classical (additive) measure theory is expanded to
the less restrictive theory of monotone measures, within which various branches can
be distinguished by monotone measures with different special properties, as shown
in Figure 3.1.

The two-dimensional expansion of possible uncertainty theories is illustrated by

measures, while the columns represent various types of formalized languages (Klir,
2006). Under the entry of nonadditive measures in Figure 3.2, only a few represen-
tative types are listed. Some of them are presented as pairs of dual measures
employed jointly in some uncertainty theories. Under formalized languages in Figure
3.2, not only theories of classical sets and standard fuzzy sets are listed, but also
theories based on some of the nonstandard fuzzy sets. Nonstandard fuzzy sets are
still less common and are not covered in this book.

An uncertainty theory of a particular type is formed by choosing a formalized
language of a particular type and expressing relevant uncertainty (predictive, pre-
scriptive, diagnostic, etc.) involved in situations described in this language in terms
of a measure (or a pair of measures) of a certain type. This means that each entry
in the matrix in Figure 3.2 represents an uncertainty theory of a particular type.

Figure 3.2 classifies uncertainty theories, including some fairly well developed
ones. Among them are two classical uncertainty theories: classical probability theory
and classical (crisp) possibility theory. Figure 3.2 shows a cross-classification of

FIGURE 3.1 Probability theory and its generalizations.

Boolean algebras:
Classical sets and propositions

Classical
probability theory

Classical measures:
Additive

Weaker algebras:
Fuzzy sets or propositions

of various types

Weaker measures:
Monotone with various

special properties

Generalizations

Generalizations
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the matrix in Figure 3.2, where the rows represent various types of monotone
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available uncertainty theories according to the classification of monotone mea-
sures provided in Equations 3.13 to 3.15 and an underlying formalized language
describing the structure of a problem. Not all the theories are fully mature and
developed for practical use by engineers and scientists. As a result, only the mature
and fully developed ones are discussed in subsequent sections of this chapter.

it shows what assumptions or generalizations are needed to obtain one theory
from another. The following example theories are presently used in practice to
model uncertainty:

1. Classical probability theory: Classical probability (additive) functions
defined on classical (crisp) sets.

FIGURE 3.2 Classification of uncertainty theories.

Formalized languages  
Non-classical sets  Uncertainty theories  

Classical sets Standard fuzzy 
sets  

Non-standard 
fuzzy sets  
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ve

 

Classical 
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Crisp probability 
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fuzzy events NA 

Possibility and 
necessity 

Crisp possibility 
theory 

Graded possibility 
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Sugeno λ-
measures

Sugeno λ-
measures

Fuzzified λ-
measures NA 

Belief and
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(capacities of
order ∞ ) 

Dempster-
Shafer theory

(DST)
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order ∞) 

Fuzzified 
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various finite 

orders  
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finite orders,
such as 1, 2,
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distributions 

Feasible 
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distribution 

Feasible fuzzy 
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General lower 
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2. Probability theory based on fuzzy events: Classical probability (additive)
functions defined on fuzzy sets.

3. Classical possibility theory: A pair of classical (crisp) possibility and
necessity functions defined on classical sets.

4. Theory of graded possibilities: A pair of possibility and necessity func-
tions defined on fuzzy sets.

5. Dempster–Shafer theory (DST) of evidence: A pair of special semicontin-
uous monotone measures, called belief and plausibility measures, which
are defined on classical sets and which conveniently represent lower and
upper probabilities, respectively.

6. Fuzzified Dempster–Shafer theory of evidence: Belief and plausibility
functions of DST defined on fuzzy sets.

FIGURE 3.3 Ordering uncertainty theories by levels of their generality.

Crisp possibility 
theory  

Graded possibility 
theory  

Classical probability 
theory Fuzzy sets Probability of fuzzy 

events 

Sugeno λ- measures

Fuzzified λ-
measures 

Feasible interval- 
valued probability 

distributions 

Non-additive 

Dempster-Shafer
theory (DST)

(capacities of an
infinite order) 

Fuzzy sets Fuzzified DST 

An infinite order 

A lower order 

Capacities of order k 

A lower order 

Capacities of order 
2 

General lower 
and 

upper probabilities  

Feasible fuzzy 
probability 

distributions  
Fuzzy sets 

Fuzzy sets 

Non-additive 
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7. Theory based on feasible interval-valued probability distributions
(FIPDs): According to the FIPD, lower and upper probabilities  and

are determined for all sets A ∈ PX by intervals of
probabilities on singletons (x ∈ X).

8. Fuzzified FIPD: Feasible interval-valued probability distributions defined
on fuzzy sets.

9. Other uncertainty theories: Including a theory based on λ-measures, a
theory based on probability boxes, theories based on various decomposable
fuzzy measures, and theories based on p-additive measures (Klir, 2006).

The evidence, probability, possibility, and imprecise probability theories are the
ones primarily featured in this chapter for their potential use in synthesizing infor-
mation based on modeling and measuring uncertainties within the framework of
ignorance types. The theory of evidence is introduced in the next section to form
the basis for introducing the other theories.

3.5 DEMPSTER–SHAFER EVIDENCE THEORY

The theory of evidence, also called the Dempster–Shafer theory (DST), was devel-
oped by Shafer (1976) and Dempster (1976a, 1976b). This theory is based on belief
measures and plausibility measures.

3.5.1 BELIEF MEASURES

A belief measure (Bel) is defined on a universal set X as a function that maps the
power set of X to the range [0, 1]. Formally,

Bel: PX → [0, 1] (3.16)

where PX is the power set of X. Belief functions have to meet the following three
conditions:

Bel(Ø) = 0 (3.17)

Bel(X) = 1 (3.18)

(3.19)
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where φ is the null set and A1, A2, …, AN is any possible family of subsets of X. The
inequality provided by Equation 3.19 shows that belief measures have the property
of being superadditive, i.e.,

3.5.2 PLAUSIBILITY MEASURE

Each belief measure (Bel) has a dual measure, called a plausibility measure (Pl),
which is defined by the following equations:

(3.20a)

(3.20b)

(3.20c)

(3.20d)

where A is a subset that belongs to the power set PX. Plausibility measures must
satisfy the following conditions:

Pl(Ø) = 0 (3.21)

Pl(X) = 1 (3.22)

(3.23)

where A1, A2, …, AN is any family of subsets of X. The pair Bel and Pl forms a
duality. The inequality provided by Equation 3.23 shows that the plausibility measure
has the property of being subadditive, i.e., It can be
shown that the belief and plausibility functions satisfy the following condition:

Pl(A) ≥ Bel(A) (3.24)

for each A in the power set.

3.5.3 INTERPRETATION OF BELIEF AND PLAUSIBILITY MEASURES

Belief and plausibility measures characterized by Equations 3.16 to 3.24 can be
interpreted in some applications as a lower limit (Bel) and upper limit (Pl) on the
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strength of evidence at hand. For example, Dong and Wong (1986a, 1986b, 1986c)
and Bogler (1987) use this interpretation to develop lower and upper limits on
probabilities in earthquake and target identification applications, as described in
Examples 3.1 and 3.2, respectively. This probability interpretation of evidential
measures can be justified based on the work of Dempster (1976a, 1976b).

3.5.4 MÖBIUS REPRESENTATION AS A BASIC ASSIGNMENT

In engineering and science, a body of evidence represented by a family of sets (A1,
A2, …, AN) can be characterized by a Möbius representation called a basic assignment
constructed for convenience and for facilitating the synthesis of data and information.
A basic assignment is given to the sets (i.e., not the elements) and is termed a Möbius
(m) representation. A basic assignment can be related to the belief and plausibility
measures; however, its creation is commonly easier and more relevant to problems
than directly developing the belief and plausibility measures. A basic assignment
provides an assessment of the likelihood of each set in a family of sets identified
by the analyst. The family of sets are crisp sets, whereas the element of interest x
of X can be imprecise in its boundaries, and hence uncertain in its belonging to the
sets in the family of sets. Nguyen (1978) interpreted the basic assignment as prob-
ability masses assigned to subsets of the power set, calling this interpretation and
representation random sets.

A basic assignment (m) can be conveniently characterized by the following
function that maps the power set (PX) to the range [0, 1]:

m: PX → [0, 1] (3.25)

A basic assignment must satisfy the following two conditions:

m(Ø) = 0 (3.26)

(3.27)

If m(Ai) > 0 for an i, Ai is also called a focal element. The belief measure and
plausibility measure can be computed based on a particular basic assignment m, for
any set Ai ∈ PX, as follows:

(3.28)

(3.29)

m A
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The summation in Equation 3.28 should be performed over all sets Aj that are
contained or equal to Ai, whereas the summation in Equation 3.29 should be per-
formed over all sets Aj that belong to or intersect with the set Ai. The three functions
Bel, Pl, and m can be viewed as alternative representations of the same information
or evidence regarding the element x. These functions express the likelihood that x
belongs to each Ai as a belief measure (strongest), plausibility measure (weakest),
and a basic assignment (collected evidence). Once one of the three functions is
defined, the other two functions can be uniquely computed. For example, the basic
assignment m for Ai ∈ PX can be computed based on the belief function as follows:

(3.30)

where is the cardinality of the difference between the two sets. Equation
3.20 can be used to compute the Bel from the Pl for cases where Pl values are given,
then Equation 3.30 can be used to compute m.

3.5.5 COMBINATION OF EVIDENCE

Several evidence combination methods are available without having a universally
accepted single method. In this section four methods are presented.

3.5.5.1 Dempster’s Rule of Combination

Basic assignments (m1 and m2) produced by two experts on the same element and
a family of sets of interest can be combined using Dempster’s rule of combination
to obtain a combined opinion (m1,2) as follows:

(3.31)

where Ai must be a nonempty set and m1,2(Ø) = 0. The term  m1(Aj)m2(Ak)

of Equation 3.31 is a normalization factor that can be interpreted as a normalization
factor for the contradiction or conflict among the evidential information (Shafer,
1976; Wang and Klir, 1992; Klir and Folger, 1988). Equation 3.31 provides an
example rule to combine expert opinions that does not account for the reliability of
the source and other relevant considerations.

The Dempster rule of combination provides a unique solution that can be proven
under the axiomatic conditions of the Dempter–Shafer theory and under the assump-
tion that the two sources of information are independent of each other. Independence
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in this case means that observations made by one source do not constrain observa-
tions made by the other source (Dubois and Prade, 1986a). On the other hand, the
requirement that m1,2(Ø) = 0 in Equation 3.31 leads to the normalization factor in
this equation. This requirement of m1,2(Ø) = 0 is considered unnecessarily restrictive
and could lead, in some cases, to counterintuitive results, as was demonstrated by
Zadeh (1979b, 1986) and Smets (1990). Allowing m1,2(Ø) ≠ 0 can be interpreted as
the nonzero value of m1,2(Ø) supporting a combined evidence of the hypothesis of
having a value outside the universal set under consideration. Contrarily, requiring
m1,2(Ø) = 0 implies that all relevant hypotheses in a given context are included in
the accepted universal set (i.e., a closed-world assumption or position); on the other
hand, allowing m1,2(Ø) ≠ 0 recognizes that the universal set might be incomplete in
a given context (i.e., an open-world assumption or position). The assumption of an

3.5.5.2 Yager’s Rule of Combination

The primary difference between Dempster’s rule and Yager’s rule of combination

is in the handling of the contradiction provided by m1(Aj)m2(Ak) in

Equation 3.31. Yager (1987c) suggested allocating the contradiction to the universe
X by introducing what is called the ground probability mass function (q1,2) for
combining evidence from two sources that can be computed as follows with the
property q1,2(Ø) ≥ 0:

(3.32a)

(3.32b)

(3.32c)

3.5.5.3 Inagaki’s Rule of Combination

Inagaki (1991) introduced a unified combination rule with Dempster’s rule and
Yager’s rule of combination as special cases based on a combination parameter k
0. By setting this parameter to zero, Yager’s rule of combination is obtained,
whereas by setting this parameter to 1/(1– q(Ø)), Dempster’s rule of combination
is obtained. Other combinations can be obtained for values of this parameter in
the following range:

(3.33a)

1−
∩ =∅
∑

all A Aj k

q A m A m Ai j k

all A A Aj k i

1 2 1 2, ( ) ( ) ( )=
∩ =
∑

m A q A A A Xi i i i1 2 1 2, ,( ) ( )= ≠ ∅ ≠for and

m X q X q1 2 1 2 1 2, , ,( ) ( ) ( )= + ∅

0
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open world for the universal set is discussed further in Chapter 5.
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This unified rule of combination is given by

(3.33b)

(3.33c)

(3.33d)

The procedure to assign a k value is not well justified, and Inagaki’s rule is not
associative except at the k values that correspond to Dempster’s rule.

3.5.5.4 Mixed or Averaging Rule of Combination

According to this method, the combination is performed based on the assumption
that all sources are not equally credible and any contradiction or conflict among them
is not taken into account. The combination rule is expressed as (Bae et al., 2004):

(3.34)

The weight factors are assigned based on the credibility of the evidence and its
source.

EXAMPLE 3.1 ESTIMATING THE LOCATION OF AN EARTHQUAKE EPICENTER

In some applications, expert opinions in the form of subjective information, such as
the location of an epicenter of an earthquake or the probability of an event, need to be
combined into a single value, and perhaps confidence intervals for their use in proba-
bilistic and risk analyses. Cooke (1991) and Rowe (1992) provided a summary of
methods for combining expert opinions. The methods can be classified into consensus
methods and mathematical methods (Clemen, 1989; Ferrell, 1985). The mathematical
methods can be based on assigning equal weights to the experts or different weights.
Sometimes it might be desirable to elicit probabilities or consequences using linguistic
terms, such as linguistic probabilities discussed in subsequent sections. Linguistic terms
of this type can be translated into intervals or fuzzy numbers. Intervals are considered
a special case of fuzzy numbers that are in turn a special case of fuzzy sets.

Assessing the potential consequences of an earthquake requires knowing the location
of its epicenter. Dong and Wong (1986a) developed an example for estimating the
location of the epicenter based on the opinions of experts that was summarized by
Wang and Klir (1992). In this example, a group of 15 experts provided their estimates
of possible location of the epicenter of the earthquake in the form of zones, as provided

1 15. The location estimates are both nonspecific (i.e.,
provided as regions) and conflicting (i.e., not in agreement) with each other. The expert

m A kq q A A Ai i i1 2 1 2 1 21, , ,( ) [ ( )] ( )= + ∅ ≠ ∅for  and ii X≠

m X kq q X kq k q1 2 1 2 1 2 1 21 1, , , ,( ) [ ( )] ( ) [ ( ) ]= + ∅ + + ∅ − 11 2, ( )∅

m1 2 0, ( )∅ =

m A
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in Figure 3.4, called E  to E
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opinions can be treated as a body of evidence in this case. This evidence body can be
used to estimate the likelihood that the epicenter is inside particular areas of interest
representing two cities or densely populated areas A and B, as shown in Figure 3.4.
The experts can be assumed for the purposes of this example to have an equal level
of credibility and reliability, therefore assigning their respective regions equal weights
of evidence of 1/15 — in other words, equally credible and reliable (i.e., equally
equivalent in their opinions).

The degrees of belief and plausibility can be calculated based on this assignment of
evidence and the areas provided in Figure 3.4. The belief that the epicenter is in region
A is given by

Bel(A) = 2/15 = 0.13 (3.35a)

The plausibility that the epicenter is in region A is given by

Pl(A) = 5/15 = 0.33 (3.35b)

Similarly for region B, the belief and plausibility are

Bel(B) = 1/15 = 0.07 (3.35c)

Pl(B) = 3/15 = 0.2 (3.35d)

These belief and plausibility values can be used to construct the following interval-
valued estimates of respective probabilities of A and B:

0.13 ≤ P(A) ≤ 0.33 (3.36)

0.07 ≤ P(B) ≤ 0.2 (3.37)

FIGURE 3.4 Estimates of the locations of the epicenter of an earthquake.
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EXAMPLE 3.2 CAUSES OF A BRIDGE FAILURE DURING CONSTRUCTION

Bridges can collapse during construction due to many causes (Eldukair and Ayyub,
1991). Consider three common causes: (1) design error (D), (2) construction error (C),
and (3) human error (H). A database of bridges failed during construction can be
created. For each bridge failure case, the case needs to be classified in terms of its
causes and entered in the database. The sets D, C, and H belong to the universal set
X of failure causes. Two experts were asked to review a bridge failure case and
subjectively provide basic assignments for this case in terms of the sets D, C, and H.
The experts provided the assignments in Table 3.1 for D, C, H, D ∪ C, D ∪ H, and
C ∪ H. The assignment for D ∪ C ∪ H was computed based on Equation 3.27 to
obtain a total of 1 for the assignments provided by each expert. The Bel values for
each expert in Table 3.1 were computed using Equation 3.28.

In order to combine the opinions of the experts according to Equation 3.31, the
normalizing factor needs to be computed as follows:

(3.38)

Substituting the values of m produces the following normalizing factor:

TABLE 3.1
Belief Computations for Classifying Bridge Failures

Subseta

(Failure Cause)

Expert 1 Expert 2 Combined Judgment

m1 Bel1 m2 Bel2 m1,2 Bel1,2

Design error (D) 0.10 0.10 0.05 0.05 0.167147 0.167147

Construction error (C) 0.05 0.05 0.10 0.10 0.152738 0.152738

Human error (H) 0.10 0.10 0.15 0.15 0.181556 0.181556

D ∪ C 0.20 0.35 0.25 0.40 0.230548 0.550433

D ∪ H 0.10 0.30 0.10 0.30 0.086455 0.435158

C ∪ H 0.05 0.20 0.10 0.35 0.066282 0.400576

D ∪ C ∪ H 0.40 1. 0.25 1. 0.115274 1.

a The subsets could also be written as {D}, {C}, {H}, {D, C}, {D, H}, {C, H},
and {D, C, H}.
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(3.39)

The combined opinions can then be computed using Equation 3.31 as follows:

(3.40)

or

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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(3.46)

(3.47)

The values provided by Equations 3.41 to 3.47 must add up to 1. The Bel1,2 values in

classifying bridge failures are shown in Table 3.2 and were based on Equation 3.29.

EXAMPLE 3.3 TARGET IDENTIFICATION

The identification of targets can be based on data from sensors. Bogler (1987) provides
an example involving multiple-sensor target identification in which intelligence reports
are also employed as a source of information. For the purposes of the example, a list
of 100 possible target types are considered and denoted as X = {x1, x2, …, x100}, i.e.,
X = the universal set. A primary intelligence source (called source 1), which can identify
only 40% of these 100 target types, i.e., {x1, x2, …, x40}, indicates that a target type
belonging to {x1, x2, …, x40} has entered a relevant tactical area. The information from
this source can be formulated according to the Dempster–Shafer theory by defining A
= {x1, x2, …, x40}. Based on the evidence of this source, the assignment m1(A) = 0.4
and m1(X) = 0.6 can be made. This assignment can be used to construct the following
belief and plausibility values for this primary intelligence source:

(3.48a)

(3.48b)

TABLE 3.2
Plausibility Computations for Classifying Bridge Failures

Subseta Expert 1 Expert 2 Combined Opinion

(Failure Cause) m1 Pl1 m2 Pl2 m1,2 Pl1,2

Design error (D) 0.10 0.80 0.05 0.65 0.167147 0.599424
Construction error (C) 0.05 0.70 0.10 0.70 0.152738 0.564842
Human error (H) 0.10 0.65 0.15 0.60 0.181556 0.449567
D ∪ C 0.20 0.90 0.25 0.85 0.230548 0.818444
D ∪ H 0.10 0.95 0.10 0.90 0.086455 0.847262
C ∪ H 0.05 0.90 0.10 0.95 0.066282 0.832853
D ∪ C ∪ H 0.40 1. 0.25 1. 0.115274 1.

a The subsets could also be written as {D}, {C}, {H}, {D, C}, {D, H}, {C, H},
and {D, C, H}.

m C H1 2
0 05 0 1 0 05 0 25 0 4 0 1

0, ( )
[ . ( . ) . ( . ) . ( . )]

.
∪ = + +

88675
0 066282= .

m C D H1 2
0 4 0 25
0 8675

0 115274, ( )
[ . ( . )]

.
.∪ ∪ = =

Bel A1 0 4( ) .=

Pl A1 1( ) =

C6447_C003.fm  Page 145  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC

Table 3.1 were computed using Equation 3.28. The plausibility computations for
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(3.49a)

(3.49b)

Interpreting these values of belief and plausibility as lower and upper limits on prob-
abilities, the following probability ranges can be constructed:

(3.50)

(3.51)

The model can be expanded by introducing a secondary intelligence source (called
source 2) that indicates not only target type x1 being in the population of incoming
targets, but also 10 other target types, defining B = {x1, x2, …, x50} with m2(B) = 0.5,
and subsequently Bel2(B) = 0.5, Pl2(B) = 1, These val-
ues are summarized in Table 3.3. Using the rule of combination as provided by Equation

A variant to this example was also introduced by considering only two types of targets
of the 100 possible targets, say a fighter (F) or a bomber (B). In this case, a short-
range sensor and a radar warning system identified an incoming and fast-moving target.
The short-range sensor provides a support of 0.6 that the target is a fighter, and the
radar warning provides a support of 0.95 that it is a bomber. The degrees of support
for the target types based on this combined evidence can be computed using Equation
3.31 as summarized in Table 3.4.

TABLE 3.3
Evidence for Target Identification

Subset Measures

(Evidence)
Assignment

(mi)
Belief 
(Beli)

Plausibility
(Pli)

Probability
(Pi)

(1) A primary intelligence source
Event (A) 0.4 0.4 1 [0.4, 1]

0* 0 0.6 [0, 0.6]
Universal set (X) 0.6 1 1 [1, 1]

(2) A secondary intelligence source
Event (B) 0.5 0.5 1.0 [0.5, 1]

0a 0.0 0.5 [0, 0.5]
Universal set (X) 0.5 1 1 [1, 1]

a Not provided in the assignment.

A

B

Bel A1 0( ) =

Pl A1 0 6( ) .=

0 4 11. ( )≤ ≤P A

0 0 61≤ ≤P A( ) .

Bel B Pl B2 20 0 5( ) , ( ) . .= =and
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3.31, a combined body of evidence can be computed as shown in Table 3.4.
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3.6 POSSIBILITY THEORY

3.6.1 CLASSICAL POSSIBILITY THEORY

Classical possibility theory and its monotone measures of necessity and possibility
are based on crisp sets and the nonadditive properties of Equations 3.12 and 3.15
as described by Klir (2006). Assume that, according to given evidence, we know
that alternatives in a particular set E (such that E ⊆ X) are possible, while those
outside E are not possible. This means that, according to the evidence, the true
alternative is in set E. This simple evidence can be formalized by defining a possi-
bility measure, PosE, based on evidence focusing on E:

(3.52)

for all x ∈ X.
The outcome is called a possibility distribution function, r(x), defined as a

mapping from the universal set X to the values {0, 1} according to the following
equation:

(3.53)

The function r(x) assigns either 0 or 1 to each element, describing its occurrence
as either possible or impossible, respectively. The possibility measure (Pos) for a
subset Ai ⊆ X can be uniquely determined based on r(x) as follows:

(3.54)

TABLE 3.4
Combined Evidence for Identification of a Fighter and a Bomber

Subset
(Evidence)

Measures

Short-Range 
Sensor

Assignment
(m1)

Radar Warning
System

Assignment
(m2)

Assignment
(m12)

Belief 
(Bel12)

Plausibility
(Pl12)

Probability
(P12)

Fighter (F) 0.6 0 0.07 0.07 0.12 [0.07, 0.12]
Bomber (B) 0 0.95 0.88 0.88 0.93 [0.88, 0.93]
Universal set (X) 0.4 0.05 0.05 1 1 [1, 1]

Pos x
x E

x E
E ({ }) =

∈
∈

⎧
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1

0
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The possibility measure is therefore a mapping from the power set of X to the
values {0, 1}. The corresponding necessity (Nec) measure for a crisp subset Ai ⊆ X
can be defined as

(3.55)

where is the complement of A. Therefore, the necessity measure is also a mapping
from the power set of X to the values {0, 1}.

3.6.2 THEORY OF GRADED POSSIBILITIES

The evidence E used in Equation 3.52a is a crisp evidence. Representing the evidence
using a standard, normal fuzzy set E requires defining the possibility measure based
on the α-cut of E, PosE, as follows:

(3.56)

for all x ∈ X. For a set A ∈ PX, the graded possibility measure for A based on the
evidence αE is

(3.57)

where sup is the supremum of A defined as the least upper bound of the set. Using
the α-cut representation of E, the membership function of E is given by

(3.58)

for all x ∈ X, where αE denotes the characteristic function of the crisp α-cut of E.
Equation 3.56 can be rewritten as

(3.59)

for α ∈ (0, 1] and x ∈ X. Hence, the possibility measure, PosE, can be defined in
terms of αPosE, for α ∈ (0, 1], as follows:

(3.60)

or

Nec A Pos Ai i( ) ( )= −1

Ai
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α

α
Pos x

x E
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(3.61)

This definition of possibility (Zadeh, 1987) is referred to as the standard fuzzy
set interpretation of possibility theory. Given the PosE({x}) for all x ∈ X, PosE(A)
can be computed by

(3.62)

for all A ∈ PX. Where A is fuzzy, the following general equation should be used:

(3.63)

The associated necessity measure, NecE, is defined by

(3.64)

for each set A, which may be crisp or fuzzy.
The possibility theory can also be viewed as a special case of the Dempster–Sha-

fer theory of evidence and its monotone measures of belief and plausibility by
requiring the underlying subsets of a universe X to be nested, i.e., A1 ⊂ A2 ⊂ … ⊂
X. Nested subsets on X are called chains. Nested subsets for an evidence body
result in minimal conflicts with each other; therefore, their belief and plausibility
measures, called necessity and possibility measures, respectively, in this case are
described to be consonant. An example of five nested sets (Ai) with 10 discrete

j

plausibility measures, i.e., necessity and possibility measures, respectively, satisfy
the following conditions:

(3.65)

and

(3.66)

The following properties of possibility and necessity measures are provided for
any pairs of subsets Ai ⊆ X and Aj ⊆ X:

(3.67a)

Pos x E xE ({ }) ( )=

Pos A Pos xE
x X

E( ) sup ({ })=
∈

Pos A A x Pos xE
x X

E( ) supmin[ ( ), ({ })]=
∈

Nec A Pos AE E( ) ( )= −1

Bel A A Bel A Bel A A( ) min[ ( ), ( )]1 2 1 2 1∩ = for any annd A PX2 ∈

Pl A A Pl A Pl A A( ) max[ ( ), ( )]1 2 1 2 1∪ = for any and AA PX2 ∈

Pos A A Pos A Pos Ai j i j( ) max[ ( ), ( )]∪ =
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elements (x ) is shown in Figure 3.5. For nested subsets, the associated belief and
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(3.67b)

(3.67c)

(3.67d)

(3.67e)

(3.67f)

(3.67g)

(3.67h)

(3.67i)

(3.67j)

(3.67k)

The nested structure of a family of sets, i.e., A1 ⊂ A2 ⊂ … ⊂ X, is compatible
with the α-cuts of convex fuzzy sets, making fuzzy set interpretation of possibility
theory logical. Klir and Folger (1988), Klir and Wierman (1999), Dubois and Prade

FIGURE 3.5 Nested sets and singletons for a possibility distribution.
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(1988), and De Cooman (1997) provide additional details on possibility theory and
its applications.

3.7 PROBABILITY THEORY

Probability theory and related concepts are briefly introduced in this section for the
purpose of comparing and discussing probabilistic methods with nonprobabilistic
methods. The coverage of probability theory is not intended to be complete, and
readers should consult other sources for a more complete coverage, such as Ayyub
and McCuen (2003).

3.7.1 RELATIONSHIP BETWEEN EVIDENCE THEORY AND 
PROBABILITY THEORY

Probability theory can be treated as a special case of the theory of evidence. For the
cases where all focal elements for a given basic assignment, m, i.e., body of evidence,
are singletons, the associated belief measure and plausibility measure collapse into
a single measure, a classical probability measure. The term singleton means that
each subset Ai of the family A of subsets, presenting an evidence body, contains only
one element. The resulting probability measure is additive in this case; i.e., it follows
Equation 3.14. The following differences between evidence theory and probability
theory can be noted based on this reduction of evidence theory to probability theory:

1. A basic assignment in evidence theory can be used to compute the belief
and plausibility measures that map the power set of X to the range [0, 1].

2. A probability assignment, such as a probability mass function, in prob-
ability theory is a mapping function from the universal set X to the
range [0, 1].

Dempster (1976a, 1976b) examined the use of evidence theory to construct a
probability distribution for singletons based on a basic assignment for some subsets
of a universal set. The solution can be expressed in the form of minimum and
maximum probabilities for the singletons for cases where the evidence body, i.e.,
the basic assignment, is not contradictory.

3.7.2 CLASSICAL DEFINITIONS OF PROBABILITY

The concept of probability has its origin in games of chance. In these games,
probabilities are determined based on many repetitions of an experiment and count-
ing the number of outcomes of an event of interest. Then, the probability of the
outcome of interest can be measured by dividing the number of occurrences of an
event of interest by the total number of repetitions. Quite often, probability is
specified as a percentage; for example, when the weather bureau indicates that there
is a 30% chance of rain, experience indicates that under similar meteorological
conditions it has rained 3 of 10 times. In this example, the probability was estimated
empirically using the concept of relative frequency, expressed as
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(3.68)

in which n = number of observations on the random variable X that results in an
outcome of interest x, and N = total number of observations of x. The probability
of a value associated with an event x in this equation was defined as the relative
frequency of its occurrence. Also, probability can be defined as a subjective proba-
bility (also called judgmental probability) of the occurrence of the event. The type
of definition depends on the nature of the underlying event. For example, in an
experiment that can be repeated N times with n occurrences of the underlying event,
the relative frequency of occurrence can be considered the probability of occurrence.
In this case, the probability of occurrence is n/N. However, there are many engi-
neering problems that do not involve large numbers of repetitions, and still we are
interested in estimating the probability of occurrence of some event. For example,
during the service life of an engineering product, the product either fails or does not
fail in performing a set of performance criteria. The events of unsatisfactory perfor-
mance and satisfactory performance are mutually exclusive and collectively exhaus-
tive of the universal set (that is, the space of all possible outcomes). The probability
of unsatisfactory performance (or satisfactory performance) can be considered a
subjective probability.

Another example is the failure probability of a dam due to an extreme flooding
condition. An estimate of such probabilities can be achieved by modeling the under-
lying system, its uncertainties and performances. The resulting subjective probability
is expected to reflect the status of our knowledge about the system regarding occur-
rence of the events of interest. Therefore, subjective probabilities can be associated
with degrees of belief and can form a basis for Bayesian methods (Ayyub and
McCuen, 2003). It is important to keep in mind both definitions, so that results are
not interpreted beyond the range of their validity.

An axiomatic definition of probability is commonly provided in the literature,
such as Ayyub and McCuen (2003). For an event A, the notation P(A) means the
probability of occurrence of the event A. The probability P should satisfy the
following axioms, i.e., Equations 3.7 to 3.9:

1. 0 ≤ P(A) ≤ 1, for any A that belongs to the set of all possible outcomes
(i.e., universal set X) for the system.

2. The probability of having X, P(X) = 1.
3. The occurrence probability of the union of mutually exclusive events is

the sum of their individual occurrence probabilities.

The first axiom states that the probability of any event is inclusively between 0
and 1. Therefore, negative probabilities or probabilities larger than 1 are not allowed.
The second axiom comes from the definition of the universal set. Since the universal
set is the set of all possible outcomes, one or more of these outcomes must occur,
resulting in the occurrence of S. If the probability of the universal set does not equal
1, this means that the universal set was incorrectly defined. The third axiom sets a

P X x
n
N

( )= =
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basis for the mathematics of probability. These axioms as a single entity can be
viewed as a definition of probability; i.e., any numerical structure that adheres to
these axioms will provide a probability structure. Therefore, the relative frequency
and subjective probability meet this definition of probability.

The relative frequency and subjective probability concepts are tools that help
engineers and planners to deal with and model uncertainty, and should be used
appropriately as engineering systems and models demand. In the case of relative
frequency, increasing the number of repetitions according to Equation 3.68 would
produce an improved estimate with a diminishing return on invested computational
and experimental resources until a limiting (i.e., long-run or long-term) frequency
value is obtained. This limiting value can be viewed as the true probability, although
the absolute connotation in this terminology might not be realistic and cannot be
validated. Philosophically, a true probability might not exist, especially when dealing
with subjective probabilities. This, however, does not diminish the value of proba-
bilistic analysis and methods since they provide a consistent, systematic, rigorous,
and robust framework for dealing with uncertainty and decision making.

3.7.3 LINGUISTIC PROBABILITIES

Probability as described in the previous section provides a measure of the likelihood
of occurrence of an event. It is a numerical expression of uncertainty; however, it
is common for subjects (such as experts) to express uncertainty verbally using
linguistic terms, such as likely, probable, improbable, etc. Although, these linguistic
terms are somewhat fuzzy, they are meaningful. Lichtenstein and Newman (1967)
developed a table that translates commonly used linguistic terms into probability
values using responses from subjects. The Lichtenstein and Newman (1967) sum-

sistency in defining each term; however, the ranges of responses are large. Moreover,
mirror-image pairs sometimes produce asymmetric results. The term “rather
unlikely” is repeated in the table, as it was used twice in the questionnaire to the
subjects, at almost the start and at the end of the questionnaire, to check consistency.
It can be concluded from this table that verbal descriptions of uncertainty can be
useful as an initial assessment, but other analytical techniques should be used to
assess uncertainty; for example, the linguistic terms in Table 3.5 can be modeled
using fuzzy sets (Haldar et al., 1997; Ayyub et al., 1997; Ayyub and Gupta, 1997;
Ayyub, 1998).

3.7.4 FAILURE RATES

A failure rate can be defined as the number of failures per unit time or a unit of
operation, such as cycle, revolution, rotation, start-up, etc. For example, a constant
failure rate for an electronic device of 0.1 per year means that on average, the device
fails once per 10 years. Another example that does not involve time is an engine
with a failure rate of 10–5 per cycle of operation (or it can be in terms of mission
length). In this case, the failure rate means that on average, the engine fails once
per 100,000 cycles. Due to manufacturing, assembly, and aging effects, failure rates
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TABLE 3.5
Linguistic Probabilities and Translations

Rank Phrase
No. of

Responses Mean Median
Standard
Deviation Range

1 Highly probable 187 0.89 0.90 0.04 0.60–0.99
2 Very likely 185 0.87 0.90 0.06 0.60–0.99
3 Very probable 187 0.87 0.89 0.07 0.60–0.99
4 Quite likely 188 0.79 0.80 0.10 0.30–0.99
5 Usually 187 0.77 0.75 0.13 0.15–0.99
6 Good chance 188 0.74 0.75 0.12 0.25–0.95
7 Predictable 146 0.74 0.75 0.20 0.25–0.95
8 Likely 188 0.72 0.75 0.11 0.25–0.99
9 Probable 188 0.71 0.75 0.17 0.01–0.99

10 Rather likely 188 0.69 0.70 0.09 0.15–0.99
11 Pretty good chance 188 0.67 0.70 0.12 0.25–0.95
12 Fairly likely 188 0.66 0.70 0.12 0.15–0.95
13 Somewhat likely 187 0.59 0.60 0.18 0.20–0.92
14 Better than even 187 0.58 0.60 0.06 0.45–0.89
15 Rather 124 0.58 0.60 0.11 0.10–0.80
16 Slightly more than half the time 188 0.55 0.55 0.06 0.45–0.80
17 Slight odds in favor 187 0.55 0.55 0.08 0.05–0.75
18 Fair chance 188 0.51 0.50 0.13 0.20–0.85
19 Toss-up 188 0.50 0.50 0.00 0.45–0.52
20 Fighting chance 186 0.47 0.50 0.17 0.05–0.90
21 Slightly less than half the time 188 0.45 0.45 0.04 0.05–0.50
22 Slight odds against 185 0.45 0.45 0.11 0.10–0.99
23 Not quite even 180 0.44 0.45 0.07 0.05–0.60
24 Inconclusive 153 0.43 0.50 0.14 0.01–0.75
25 Uncertain 173 0.40 0.50 0.14 0.08–0.90
26 Possible 178 0.37 0.49 0.23 0.01–0.99
27 Somewhat unlikely 186 0.31 0.33 0.12 0.03–0.80
28 Fairly unlikely 187 0.25 0.25 0.11 0.02–0.75
29 Rather unlikely 187 0.24 0.25 0.12 0.01–0.75
30 Rather unlikely 187 0.21 0.20 0.10 0.01–0.75
31 Not very probable 187 0.20 0.20 0.12 0.01–0.60
32 Unlikely 188 0.18 0.16 0.10 0.01–0.45
33 Not much chance 186 0.16 0.15 0.09 0.01–0.45
34 Seldom 188 0.16 0.15 0.08 0.01–0.47
35 Barely possible 180 0.13 0.05 0.17 0.01–0.60
36 Faintly possible 184 0.13 0.05 0.16 0.01–0.50
37 Improbable 187 0.12 0.10 0.09 0.01–0.40
38 Quite unlikely 187 0.11 0.10 0.08 0.01–0.50
39 Very unlikely 186 0.09 0.10 0.07 0.01–0.50
40 Rare 187 0.07 0.05 0.07 0.01–0.30
41 Highly improbable 181 0.06 0.05 0.05 0.01–0.30

Source: Adapted from Lichtenstein, S. and Newman, J.R., Psychonometric Sci., 9, 563–564, 1967.
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can generally be variant with time (or other units of operation), therefore requiring
sometimes a statement of limitation on their applicability. Failure rates can be used
in probabilistic analysis. There are analytical methods to convert failure rates into
probabilities of some events of interest.

3.7.5 CENTRAL TENDENCY MEASURES

A very important descriptor of data is central tendency measures. The central ten-
dency can be measured using, for example, (1) the mean (or average) value or (2)
the median value.

The average value is the most commonly used central tendency descriptor. The
definition of the sample mean (or average) value herein is based on a sample of size
n. The sample consists of n values of a random variable X. For n observations, if
all observations are given equal weights, then the average value is given by

(3.69a)

where xi = a sample point, i = 1, 2, …, n, and

(3.69b)

Since the average value is based on a sample, it has statistical error due to
two reasons: (1) it is sample dependent, i.e., a different sample might produce a
different average, and (2) it is sample-size dependent, i.e., as the sample size is
increased, the error is expected to reduce. The mean value has another mathematical
definition that is based on probability distributions according to probability theory,
which is not described herein.

The average time between failures can be computed as the average , where
xi = a sample point indicating the age at failure of a failed component and i = 1, 2,
…, n. The failed components are assumed to be replaced by new identical ones or
repaired to a state “as good as new.” The average time between failures is related
to the failure rate as its reciprocal. For example, a component with a failure rate of
0.1 per year has an average time between failures of 1/0.1 = 10 years. Similar to
failure rates, the average time between failures can be constant or time dependent.

According to probability theory, the mean (μ) can be computed from a proba-
bility mass function (P(x)) or a probability density function (f(x)) for a random
variable (X) according to the respective equations:

(3.70a)

X
n

xi

i

n

=
=

∑1

1

x x x x xi

i

n

n

=
∑ = + + +…+

1

1 2 3

( )X

( )X

μ = ∑ x P x Xi i

all x

( ) for discrete

C6447_C003.fm  Page 155  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC



156 Uncertainty Modeling and Analysis in Engineering and the Sciences

(3.70b)

The median value xm is another measure of central tendency. It is defined as the
point that divides the data into two equal parts, i.e., 50% of the data are above xm

and 50% are below xm. The median value can be determined by ranking the n values
in the sample in decreasing order, 1 to n. If n is an odd number, then the median is
the value with a rank of (n + 1)/2. If n is an even number, then the median equals
the average of the two middle values, i.e., those with ranks n/2 and (n/2) + 1.

The advantage of using the median value as a measure of central tendency over
the average value is its insensitivity to extreme values such as outliers. Consequently,
this measure of central tendency is commonly used in combining expert judgments
in an expert opinion elicitation process.

3.7.6 DISPERSION (OR VARIABILITY)

Although the central tendency measures convey certain information about the under-
lying sample, they do not completely characterize the sample. Two random variables
can have the same mean value, but different levels of data scatter around the
computed mean. Thus, measures of central tendency cannot fully characterize the
data. Other characteristics are also important and necessary. The dispersion measures
describe the level of scatter in the data about the central tendency location.

The most commonly used measure of dispersion is the variance and other
quantities that are derived from it, such as the standard deviation and coefficient of
variation. For n observations in a sample that are given equal weight, the variance
(S2) is given by

(3.71a)

The units of the variance are the square of the units of the variable x; for example,
if the variable is measured in pounds per square inch (psi), the variance has units
of (psi)2. Computationally, the variance of a sample can be determined using the
following alternative equation:

(3.71b)

By definition the standard deviation (S) is the square root of the variance as
follows:
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(3.72)

It has the same units as both the underlying variable and the central tendency
measures. Therefore, it is a useful descriptor of the dispersion or spread of a sample
of data. The coefficient of variation (COV) is a normalized quantity based on the
standard deviation and the mean and is different from the covariance (discussed in

(3.73)

It is also used as an expression of the standard deviation in the form of a percent
of the average value. For example, consider and S to be 50 and 20, respectively;
therefore, COV(X) = 0.4, or 40%. In this case, the standard deviation is 40% of the
average value.

According to probability theory, the variance (σ2) can be computed from a
probability mass function (P(x)) or a probability density function (f(x)) for a random
variable (X) according to the respective equations:

(3.74a)

(3.74b)

3.7.7 PERCENTILE VALUES

A p-percentile value (xp) for a random variable based on a sample is the value of the
parameter such that p% of the data is less or equal to xp, where 0 ≤ p ≤ 1. On the
basis of this definition, the median value is considered to be the 50th percentile value.

Aggregating information or data, such as the opinions of experts, sometimes
requires the computation of the 25th, 50th, and 75th percentile values. The compu-

i

means the opinion of an expert with the ith smallest value; i.e., X1 ≥ X2 ≥ X3 ≥ … ≥
xn, where n = number of experts. In the table, the arithmetic average was used to
compute the percentiles of the powers of the values. In some cases, where the values
of xi differ by power order of magnitude, the geometric average can be used.
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tation of these values depends on the number of experts providing opinions. Table
3.6 provides a summary of the needed equations for 4 to 20 experts. In the table, x

Section 3.8.7). Therefore, the COV is dimensionless and is defined as
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Values of random variables obtained from sample measurements are commonly used
in making important decisions. For example, samples of river water are collected to
estimate the average level of a pollutant in the entire river at that location. Samples
of stopping distances are used to develop a relationship between the speed of a car
at the time the brakes are applied and the distance traveled before the car comes to
a complete halt. The average of sample measurements of the compressive strength
of concrete collected during the pouring of a large concrete slab, such as the deck
of a parking garage, is used to help decide whether the deck has the strength specified
in the design specifications. It is important to recognize the random variables
involved in these cases. In each case, the individual measurements or samples are
values of a random variable, and the computed mean is also the value of a random
variable. For example, the transportation engineer measures the stopping distance;
each measurement is a sample value of the random variable. If 10 measurements
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are made for a car stopping from a speed of 50 mph, then the sample consists of
10 values of the random variable. Thus, there are two random variables in this
example, the stopping distance and the estimated mean of the stopping distance; this
is also true for the water quality pollutant and compressive strength examples.

The estimated mean for a random variable is considered by itself to be a random
variable, because different samples about the random variable can produce different
estimated mean values, hence the randomness in the estimated mean. When a sample
of n measurements of a random variable is collected, the n values are not necessarily
identical. The sample is characterized by variation. For example, let us assume that
five independent estimates of the compressive strength of the concrete in a parking
garage deck are obtained from samples of the concrete obtained when the concrete
was poured. For illustration purposes, let us assume that the five compressive strength
measurements are 3250, 3610, 3460, 3380, and 3510 psi. This produces a mean of
3442 psi and a standard deviation of 135.9 psi. Assume that another sample of five
measurements of concrete strength was obtained from the same concrete pour;
however, the values were 3650, 3360, 3328, 3420, and 3260 psi. In this case, the
estimated mean and standard deviation are 3404 and 149.3 psi, respectively. There-
fore, the individual measurement and the mean are values of two different random
variables, i.e., X and

It would greatly simplify decision making if the sample measurements were
identical; i.e., there was no sampling variation, so the standard deviation was zero.
Unfortunately, that is never the case, so decisions must be made in the presence of
uncertainty. For example, let us assume in the parking garage example that the
building code requires a mean compressive strength of 3500 psi. Since the mean of
3442 psi based on the first sample is less than the required 3500 psi, should we
conclude that the garage deck does not meet the design specifications? Unfortunately,
decision making is not that simple. If a third sample of five measurements had been
randomly collected from other locations on the garage deck, the following values
are just as likely to have been obtained: 3720, 3440, 3590, 3270, and 3610 psi. This
sample of five produces a mean of 3526 psi and a standard deviation of 174.4 psi.
In this case, the mean exceeds the design standard of 3500 psi. Since the sample
mean is greater than the specified value of 3500 psi, can we conclude that the
concrete is of adequate strength? Unfortunately, we cannot conclude with certainty
that the strength is adequate any more than we could conclude with the first sample
that the strength was inadequate. The fact that different samples lead to different
means is an indication that we cannot conclude that the design specification is not
met just because the sample mean is less than the design standard. We need to have
more assurance.

The data that are collected on some variable or parameter represent sample
information, but it is not complete by itself, and predictions are not made directly
from the sample. The intermediate step between sampling and prediction is the
identification of the underlying population. The sample is used to identify the
population, and then the population is used to make predictions or decisions. This
sample-to-population-to-prediction sequence is true for the univariate methods of
this chapter.

X.
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The need then is for a systematic decision process that takes into account the
variation that can be expected from one sample to another. The decision process
must also be able to reflect the risk of making an incorrect decision. This decision
can be made using, for example, hypothesis testing as described by Ayyub and
McCuen (2003).

3.7.9 BAYESIAN PROBABILITIES

Engineers commonly need to solve a problem and make decisions based on limited
information about one or more of the parameters of the problem. The types of
information available to them can be classified using the common terminology in
the Bayesian literature as follows:

1. Objective or empirical information based on experimental results or
observations

2. Subjective information based on experience, intuition, other previous
problems that are similar to the one under consideration, or the physics
of the problem

The first type of information can be dealt with using the theories of probability
and statistics, as described in the previous chapters. In this type, probability is
interpreted as the frequency of occurrence assuming sufficient repetitions of the
problem, its outcomes, and parameters, as a basis of the information. The second
type of information is subjective and can depend on the engineer or analyst studying
the problem. In this type, uncertainty that exists needs to be dealt with using
probabilities. However, the definition of probability is not the same as the first type
because it is viewed herein as a subjective probability that reflects the state of
knowledge of the engineer or the analyst.

It is common in engineering to encounter problems with both objective and
subjective types of information. In these cases, it is desirable to utilize both types
of information to obtain solutions or make decisions. The subjective probabilities
are assumed to constitute a prior knowledge about a parameter, with gained objective
information (or probabilities). Combining the two types produces posterior knowl-
edge. The combination is performed based on Bayes’ theorem, as described by
Ayyub and McCuen (2003). If A1, A2, …, An represents the prior (subjective) infor-
mation, or a partition of a universal set X, and E ⊂ X represents the objective

ability states that

P(E) = P(A1) P(E⏐A1) + P(A2) P(E⏐A2) + … + P(An) P(E⏐An) (3.75)

where P(Ai) = the probability of the event Ai and E⏐A = the occurrence of E given
Ai, where i = 1, 2, …, n. This theorem is very important in computing the probability
of the event E, especially in practical cases where the probability cannot be computed
directly, but the probabilities of the partitioning events and the conditional proba-
bilities can be computed.
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information (or arbitrary event) as shown in Figure 3.6, the theorem of total prob-
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Bayes’ theorem is based on the same conditions of partitioning and events as
the theorem of total probability and is very useful in computing the posterior (or
reverse) probability of the type P(Ai⏐E), for i = 1, 2, …, n. The posterior probability
can be computed as follows:

(3.76)

The denominator of this equation is P(E), which is based on the theorem of total
probability. According to Equation 3.75, the prior knowledge, P(Ai), is updated using
the objective information, P(E), to obtain the posterior knowledge, P(Ai⏐E).

EXAMPLE 3.4 DEFECTIVE PRODUCTS IN MANUFACTURING LINES

A factory has three production lines. The three lines manufacture 20, 30, and 50% of
the components produced by the factory, respectively. The quality assurance department
of the factory determined that the probability of having defective products from lines
1, 2, and 3 are 0.1, 0.1, and 0.2, respectively. The following events were defined:

L1 = Component produced by line 1 (3.77a)

L2 = Component produced by line 2 (3.77b)

L3 = Component produced by line 3 (3.77c)

D = Defective component (3.77d)

Therefore, the following probabilities are given:

P(D⏐L1) = 0.1 (3.78a)

P(D⏐L2) = 0.1 (3.78b)

P(D⏐L3) = 0.2 (3.78c)

FIGURE 3.6 Bayes’ theorem.
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Since these events are not independent, the joint probabilities can be determined as
follows:

P(D I L1) = P(D⏐L1) P(L1) = 0.1(0.2) = 0.02 (3.79a)

P(D I L2) = P(D⏐L2) P(L2) = 0.1(0.3) = 0.03 (3.79b)

P(D I L3) = P(D⏐L3) P(L3) = 0.2(0.5) = 0.1 (3.79c)

The theorem of total probability can be used to determine the probability of a defective
component as follows:

P(D) = P(D⏐L1) P(L1) + P(D⏐L2) P(L2) + P(D⏐L3) P(L3)

= 0.1(0.2) + 0.1(0.3) + 0.2(0.5) = 0.02 + 0.03 + 0.1 (3.80)

= 0.15

Therefore, on average, 15% of the components produced by the factory are defective.

Because of the high contribution of line 3 to the defective probability, a quality
assurance engineer subjected the line to further analysis. The defective probability for
line 3 was assumed to be 0.2. An examination of the source of this probability revealed
that it is subjective and also is uncertain. A better description of this probability can
be as shown in Figure 3.7, in the form of a prior discrete distribution for the defective
probability (pd), with the prior distribution denoted PP(p). The mean defective compo-
nent probability based on this distribution is

(3.81)

FIGURE 3.7 Prior probability distribution for defective probability of line 3.
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Now assume that a component from line 3 was tested and found to be defective (called

1

(objective) information. The revised distribution is called the posterior distribution
Pp′(p) and can be computed using Equation 3.76 as follows:

(3.82a)

Similarly, the following posterior probabilities can be computed:

(3.82b)

(3.82c)

(3.82d)

(3.82e)

(3.82f)

The resulting probabilities in Equation 3.82a to f add up to 1. Also, the average
probability of 0.2 can be viewed as a normalizing factor for computing these proba-
bilities. The mean defective component probability based on the posterior dis-
tribution is

(3.83)

The posterior mean probability (0.325) is larger than the prior mean probability (0.200).
The increase is due to the failure detected by testing. Now assume that a second
component from line 3 was tested and found to be defective; the posterior distribution
of Equation 3.82a to f needs to be revised to reflect the new (objective) information.
The revised posterior distribution builds on the posterior distribution of Equation 3.82a
to f by treating it as a prior distribution. Performing similar computations as in Equa-

“Post. 2 D.” The average defective component probability is also given in the

′ = =P P p d
P d p P p
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d d

( . ) ( )
( ) ( )

( )
. ( .

0 1
0 45 0

1 1
1 1 1 11

0 2
0 225

)
.

.=

′ = =Pp( . )
. ( . )

.
.0 2

0 43 0 2
0 2

0 430

′ = =Pp( . )
. ( . )

.
.0 4

0 05 0 4
0 2

0 100

′ = =Pp( . )
. ( . )

.
.0 6

0 04 0 6
0 2

0 120

′ = =Pp( . )
. ( . )

.
.0 8

0 02 0 8
0 2

0 08

′ = =Pp( . )
. ( . )

.
.0 9

0 01 0 9
0 2

0 045

p D( )

p D( ) . ( . ) . ( . ) . ( . ) . (= + + +0 1 0 225 0 2 0 430 0 4 0 100 0 6 0.. )

. ( . ) . ( . )

.

120

0 8 0 080 0 9 0 045

0 325

+

+

=

p D( )

C6447_C003.fm  Page 163  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC

d ); the subjective prior distribution of Figure 3.7 needs to be revised to reflect the new

tions 3.81 and 3.82 results in the posterior distribution shown in Table 3.7 in the column
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table. The last row in the table is the average nondefective component probabili-
ty for cases where a nondefective component results from a test. This val-
ue can be computed similar to Equation 3.81 or 3.83. For example, the
in case of a nondefective test according to the prior distribution is

(3.84)

should be noted that

(3.85)

Now assume that a third component from line 3 was tested and found to be nondefec-
tive; the posterior distribution in column “Post. 2 D” of Table 3.7 needs to be revised
to reflect the new (objective) information. The revised distribution is the posterior
distribution and can be computed using Equation 3.76 as follows:

(3.86a)

Similarly, the following posterior probabilities can be computed:

(3.86b)

(3.86c)

(3.86d)

(3.86e)

(3.86f)

The resulting probabilities in Equation 3.86a to f add up to 1. The probability of
0.4883 was used in these calculations. The results of these calculations and the mean
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The computations for other cases are similarly performed as shown in Table 3.7. It
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TABLE 3.7
Prior and Posterior Distributions for Line 3

Probability,
p P(p)

Post. 1
D

Post. 2
D

Post. 3
ND

Post. 4
D

Post. 5
D

Post. 6
D

Post. 7
D

Post. 8
D

Post. 9
D

Post. 10 
D

0.1 0.45 0.225 0.0692308 0.127599244 0.035809 0.0070718 0.0011355 0.0001638 2.22693E-05 2.912E-06 3.703E-07
0.2 0.43 0.43 0.2646154 0.433522369 0.2433245 0.0961062 0.0308633 0.0089068 0.002421135 0.0006332 0.0001611
0.4 0.05 0.1 0.1230769 0.151228733 0.1697613 0.1341016 0.08613 0.0497125 0.027026626 0.0141359 0.0071914
0.6 0.04 0.12 0.2215385 0.18147448 0.3055703 0.3620744 0.3488266 0.3020033 0.246280127 0.1932203 0.1474458
0.8 0.02 0.08 0.1969231 0.080655325 0.1810787 0.2860835 0.3674882 0.4242131 0.461254413 0.482506 0.4909318
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defective component probability decreases as nondefective components are obtained
through testing.

If the next seven tests result in defective components, the resulting posterior distribu-
tions are shown in Table 3.7. The results are also shown in Figure 3.8. It can be observed
from the figure that the average probability is approaching 1 as more and more defective
tests are obtained. Also, the effect of a nondefective component on the posterior
probabilities can be seen in this figure.

3.8 IMPRECISE PROBABILITIES

The theory of imprecise probabilities was developed by Walley (1991) as a gener-
alization of probability theory for cases where probability assignments to elements
(x) of a set (A) are not available in a precise manner. For a finite set (A) from a
universe X, the probability measure for its elements is defined as

P : X → [0, 1] (3.87)

The function P assigns a probability value to each element x ∈ X according to
the axioms of probability theory. In cases where P is uncertain and can only be
assessed in imprecise terms, lower and upper probability values can be used, i.e.,

respectively. These two functions are defined respectively as follows:

(3.88a)

(3.88b)

FIGURE 3.8 Posterior distributions for line 3.
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probability p N( )D are shown in Table 3.7. It can be noted from the table that the mean
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It can be shown that for a given lower probability a unique dual (i.e., conju-
gate) upper probability exists for all A ∈ PX according to the following relationship:

(3.89)

Imprecise probabilities can be used to construct a Möbius representation m for
all A ∈ PX as follows:

(3.90)

where is the cardinality of the set of elements of A that do not belong to B.
Equation 3.90 results in meeting the following conditions:

(3.91a)

(3.91b)

The inverse of Equation 3.90 is

(3.92)

In subsequent subsections, modeling frameworks that utilize these concepts are
provided and discussed.

3.8.1 INTERVAL PROBABILITIES

The term interval probabilities has more than one usage, as reported by Dempster
(1976a, 1976b), Cui and Blockley (1990), and Ferson et al. (1999), and within a
broader framework of interval arithmetic as provided by Moore (1979). Various models
for dealing with interval probabilities are provided in subsequent sections, although
this section is devoted to summarize the model suggested by Cui and Blockley (1990),
who introduced interval probabilities based on the axioms of probability and by
maintaining the additive condition of Equation 3.14. For an event A that represents a
proposition on a universal set X, the probability measure for A is given by

(3.93)

where are the lower (left) and upper (right) estimates of the proba-
bility of A, P(A), respectively. According to Equation 3.93, the probability of A falls
in this range as follows:

P,
P

P A P A( ) ( )= −1

m A P B
A B

all Bsuchthat B A

( ) ( ) ( )= − −

⊆
∑ 1

A B−

m( )φ = 0

m A
all A PX

( ) =
⊆

∑ 1

P B m A
all Bsuchthat B A

( ) ( )=
⊆

∑

P A P A P A( ) [ ( ), ( )]∈

P A P A( ) ( )and
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(3.94a)

The probability of the complement of A can be computed as follows:

(3.94b)

The interval probability can be interpreted as a measure of belief in having a
true proposition A as follows:

P(A) ∈ [0, 0] represents a belief that A is 
certainly false or not dependable (3.95a)

P(A) ∈ [1, 1] represents a belief that A is 
certainly true or dependable (3.95b)

P(A) ∈ [0, 1] represents a belief that A is known (3.95c)

The use of the term belief in Equation 3.95a to c should not be confused with the
belief measure provided in the theory of evidence. Interval probabilities are related
to probability theory. Hall et al. (1998) provided an example application of interval
probabilities, discussed at the end of the section.

The theory presented herein can be used to propagate uncertainty in the form
of interval probabilities into a logical structure using inference. The underlying
mathematics for inference in this case requires the use of the theorem of total
probability for an event A for a partition that involves a set E and its complement

as follows:

(3.96a)

Equation 3.96a can be extended for multiple sets similar to E. Dubois and Prade
(1991) developed the following expressions for computing an interval P(A) based
on intervals for P(A⏐E) and

(3.96b)

(3.96c)

P A P A P A( ) ( ) ( )≤ ≤

1 1− ≤ ≤ −P A P A P A( ) ( ) ( )

E

P A P A E P E P A E P E( ) ( ) ( ) ( ) ( )= +

P A E( ) :

P A
P A E P E P A E P E P A E P A E

P
( )

( ) ( ) ( )( ( )) ( ) ( )
=
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(( ) ( ) ( )( ( )) ( ) ( )A E P E P A E P E P A E P A E+ − >

⎧
⎨
⎪
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The conditional probabilities in Equation 3.96b and c can be interpreted in logical
inference as provided in Table 3.8, depending on the application or situation. In this
table, necessity is defined as a measure of the extent to which E will cause A, whereas
sufficiency is defined as a measure of influence amount of E on A. These definitions
might require further refinement in a context-dependent manner.

Interval probably computations can account for dependency by introducing a
parameter ρ that represents the degree of dependency between two events A and B.
Cui and Blockley (1990) defined this parameter as follows:

(3.97)

The parameter ρ has the following properties:

(3.98)

(3.99a)

(3.99b)

(3.100)

(3.101)

(3.102)

TABLE 3.8
Situation for Logical Inference

Logical Relationship between E and A

E may be a necessary condition for A

E may be a sufficient condition for A

E is a necessary and sufficient condition for A

E is a relevant or partially sufficient condition for A

P A E( ) P A E( )

P A E( ) ≤ 1 P A E( ) = 0

P A E( ) = 1 P A E( ) ≥ 0

P A E( ) = 1 P A E( ) ≥ 0

0 1< ≤P A E( ) 0 1≤ ≤P A E( )

ρ = ∩P A B
P A P B
( )

min( ( ), ( ))

0 1≤ ≤ρ

ρ = ⊆1 for (i.e., nested propositions)A B

ρ = ⊆1 for (i.e., nested propositions)B A

ρ = ∩ = ∅0 for A B

ρ = max( ( ), ( ))P A P B A Bfor fully dependent and

P A B P A P B A B( ) ( ) ( )∩ = for independent and
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(3.103)

In cases where the parameter ρ is defined as an interval the following relations
can be used:

(3.104)

(3.105)

(3.106)

(3.107)

Dependency in inference can be related to common sources used to obtain data
or information, or the two sets being influenced by common factors.

EXAMPLE 3.5 FAULT TREE ANALYSIS

Equations 3.104 to 3.107. The basic events A, B, C, D, and E have occurrence prob-
abilities that are provided in the form of the following intervals:

Prob(Event A) = [0.25, 1.00]

Prob(Event B) = [0.50, 0.75]

Prob(Event C) = [0.30, 0.50]

Prob(Event D) = [0.60, 0.70]

Prob(Event E) = [0.50, 0.50]

The following assumptions are made regarding dependencies among the events:

• Events A and B have possible dependency.
• Events C and D have possible dependency.
• Events A and C have no dependency.
• Events A and D have no dependency.
• Events B and C have no dependency.
• Events B and D have no dependency.
• Event E is independent of all other events (A, B, C, and D).

ρmin max
( ) ( )

min( ( ), ( ))
,= + −⎡

⎣
⎢

⎤

⎦
⎥

P A P B
P A P B

1
0

[ , ],ρ ρ

P A B P A P B( ) (min( ( ), ( )))∩ = ρ

P A B P A P B( ) (min( ( ), ( )))∩ = ρ

P A B P A P B P A P B( ) ( ) ( ) (min( ( ), ( )))∪ = + − ρ

P A B P A P B P A P B( ) ( ) ( ) (min( ( ), ( )))∪ = + − ρ
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The fault tree provided in Figure 3.9 is used in this example to illustrate the use of

The concept of dependency is discussed and fully developed in Section 3.7.3.



Uncertainty and Information Synthesis 171

The following intervals specify the dependency between A and B, and C and D:

ρ(A, B) = [0.50, 0.75]

ρ(C, D) = [0.25, 0.65]

Using Equations 3.104 to 3.107 and the logic of the fault tree in Figure 3.9, the interval
probabilities of the top event can be computed as follows:

Similarly,

R = C and D = [0.08, 0.33]

and

T = Q or R or E = [0.60, 0.85]

3.8.2 INTERVAL CUMULATIVE DISTRIBUTION FUNCTIONS

Probabilistic models are effective in expressing uncertainties in various variables
that appear in engineering and science problems. Such models can be viewed as
certain representations of uncertainty that demand knowledge of underlying distri-
butions, parameters, or a lot of data. Systems that are represented by these models
might not be known fully to the levels demanded by the models, hence the need of
methods to deal with limited or incomplete information. Analysts commonly encoun-
ter situations where data are not available, limited, or available in intervals only.

FIGURE 3.9 Fault tree model.

Top event 

E R Q 

A B C D

T 

Q A B P A P B P A P B= =and [ (min( ( ), ( ))), (min( ( ), (ρ ρ ))))]
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This section provides methods that were selected or developed to deal with such
situations. It covers three cases as follows: (1) uncertain parameters of a known
probability distribution, (2) an uncertain probability distribution for known param-
eters, and (3) uncertain parameters and probability distribution due to limited data.
These three cases are discussed with illustrative examples.

For some random variables, the distribution type might be known from historical
information; however, the parameters relevant to a problem under consideration
might not be known and can only be subjectively assessed using intervals or fuzzy
numbers. The presentation herein is provided for interval parameters, but can be
easily extended to fuzzy parameters expressed as fuzzy numbers using the α-cut
concept. If we consider a concrete structural member with an unknown strength, the
following state of knowledge can be used to demonstrate the construction of an
interval-based distribution:

Normal probability distribution:
Mean value = [3000, 4000] psi
Standard deviation = 300 psi

The bounds of the cumulative distribution function (FX(x)) are shown in Figure
3.10 based on evaluating the following integral:

(3.108)

using the following assumptions:

Normal probability distribution:
Mean value = [3000, 4000] psi

Standard deviation = [300, 400] psi, i.e., coefficient of variation = 0.10

FIGURE 3.10 Normal cumulative distribution function using an interval mean.
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where μ = mean and σ = standard deviation. Another case is shown in Figure 3.11
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Some random variables might have known moments with unknown or uncertain
distribution types. If data are available, someone could use hypothesis testing to
select a distribution that best fits the data (Ayyub and McCuen, 2003). However,
data might not be available, requiring the use of a bounding method. In this case, a
short list of distributions can be subjectively identified. The cumulative distribution
functions based on the known parameters can be determined, and a range on possible
values of the cumulative distribution function can be assessed.

Some random variables might have limited data that are not sufficient to construct
a histogram and select a probability distribution. In this case, the Kolmog-
orov–Smirnov (KS) one-sample method can be used to construct a confidence
interval on the cumulative distribution function, also called bounds. The KS method,
as described by Ayyub and McCuen (2003), constructs a sample cumulative distri-
bution function as follows:

(3.109)

where xi = ith largest value based on rank-ordering the sample values from the smallest
(x1) to the largest (xn) for a sample of size n, and FS(x) = the sample cumulative
distribution function. The KS method provides tabulated limits on the maximum
deviation between the sample cumulative distribution function and an acceptable
model for the cumulative distribution function. These tabulated limits correspond to
various sample sizes and significance levels, i.e., 1 minus the confidence level defined
as the conditional probability of accepting a model given it is an incorrect model.

the significance levels.

FIGURE 3.11 Normal cumulative distribution function using interval mean and standard
deviation.
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Table 3.9 shows critical values for the KS method as a function of sample sizes and
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EXAMPLE 3.6 WATER QUALITY

The following set of five measurements of a water quality parameter in ppm can be
used to construct KS bounds on a cumulative distribution function: {47, 53, 61, 57,
65}. If a level of significance of 5% is used, a sample cumulative distribution function

the calculations for sample cumulative distribution function and the two bounds. For
a 5% level of significance, the critical value is 0.565. The sample, left, and right

3.8.3 DEPENDENCE MODELING AND MEASURES

The two events A and B (subsets of a universe X) are used in this section to develop
models and measures for various dependency levels between them, starting from
the extreme cases of independence and perfect dependence, followed by other cases
of opposite dependence and partial dependence.

TABLE 3.9
Critical Values for the Kolmogorov–Smirnov Test

Sample Size, n

Level of Significance

0.20 0.10 0.05 0.01

1 0.900 0.950 0.975 0.995
2 0.684 0.776 0.842 0.929
3 0.565 0.642 0.708 0.828
4 0.494 0.564 0.624 0.733
5 0.446 0.510 0.565 0.669
6 0.410 0.470 0.521 0.618
7 0.381 0.438 0.486 0.577
8 0.358 0.411 0.457 0.543
9 0.339 0.388 0.432 0.514

10 0.322 0.368 0.410 0.490
11 0.307 0.352 0.391 0.468
12 0.295 0.338 0.375 0.450
13 0.284 0.325 0.361 0.433
14 0.274 0.314 0.349 0.418
15 0.266 0.304 0.338 0.404
20 0.231 0.264 0.294 0.356
30 0.195 0.222 0.248 0.298
40 0.169 0.193 0.215 0.258
50 0.151 0.173 0.192 0.231
60 0.138 0.158 0.176 0.210
70 0.125 0.146 0.163 0.195
80 0.120 0.136 0.152 0.182
90 0.113 0.129 0.143 0.172

100 0.107 0.122 0.136 0.163
>50 1.07/ 1.22/ 1.36/ 1.63/n n n n
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cumulative distribution functions are shown in Figure 3.12.

and bounds can be computed using Equation 3.109 and Table 3.9. Table 3.10 shows
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3.8.3.1 Perfect Independence

For the two events A and B with perfect independence, the probabilities of these
events can be used to compute the probabilities of their intersection and union, i.e.,
conjunction and disjunction, respectively, as follows:

(3.110a)

(3.110b)

TABLE 3.10
Left and Right Bounds Using the 
Kolmogorov–Smirnov Limits

Sorted Data
Point Rank i

Sample 
Value x

Sample
CDF

Right
CDF

Left
CDF

0 20 0 0 0.565
1 47 0 0 0.565
1 47 0.2 0 0.765
2 53 0.2 0 0.765
2 53 0.4 0 0.965
3 57 0.4 0 0.965
3 57 0.6 0.035 1
4 61 0.6 0.035 1
4 61 0.8 0.235 1
5 65 0.8 0.235 1
5 65 1 0.435 1

FIGURE 3.12 The Kolmogorov–Smirnov bounds on a cumulative distribution function.
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Figure 3.13 shows this case of independence using a Venn diagram. The overlap
between the two events represents the intersection, and the total area of the two
events represents the union.

3.8.3.2 Mutual Exclusion

The two events A and B do not have an overlap if they are mutually exclusive; i.e.,
the occurrence of one event precludes the other from occurring. In order for the
events to have no overlap, the sum of their probabilities must be less than 1. The
probabilities of these events can be used to compute the probabilities of their
intersection and union, i.e., conjunction and disjunction, respectively, as follows:

(3.111a)

(3.111b)

Figure 3.14 shows this case using a Venn diagram. The overlap between the
two events represents the intersection, and the total area of the two events represents
the union.

FIGURE 3.13 Perfect independencies of two events.

FIGURE 3.14 Mutually exclusive events.

A

B

P A B( )∩ = 0

P A B P A P B( ) ( ) ( )∪ = +

A

B

C6447_C003.fm  Page 176  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC



Uncertainty and Information Synthesis 177

3.8.4 OPPOSITE DEPENDENCE

In this case, the two events A and B have the minimum possible overlap. The case
of mutually exclusive events is a special case of opposite dependence if the sum of
their probabilities is less than 1. The probabilities of these events can be used to
compute the probabilities of their intersection and union, i.e., conjunction and
disjunction, respectively, as follows:

(3.112a)

(3.112b)

Figure 3.15 shows this case using a Venn diagram. The overlap between the
two events represents the intersection, and the total area of the two events represents
the union.

3.8.5 PERFECT DEPENDENCE

For the two events A and B with perfect dependence, the Venn diagram is shown
in Figure 3.16. The probabilities of these events can be used to compute the

FIGURE 3.15 Opposite dependence for two events.

FIGURE 3.16 Perfect dependence of two events.

A

B

P A B P A P B( ) max( ( ) ( ) , )∩ = + −1 0

P A B P A P B( ) min( , ( ) ( ))∪ = +1

A B
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probabilities of their intersection and union, i.e., conjunction and disjunction,
respectively, as follows:

(3.113a)

(3.113b)

The overlap between the two events represents the intersection, and the total
area of the two events represents the union.

3.8.6 PARTIAL DEPENDENCE

The previous cases of perfect dependence, perfect independence, and opposite
dependence, including its special case of mutual exclusion, can be used to bound
cases involving partial dependence. These cases are used in subsequent sections to
measure correlations between events and between random variables.

3.8.7 CORRELATION BETWEEN RANDOM VARIABLES

3.8.7.1 Correlation Based on Probability Theory

The covariance (Cov) of two random variables X1 and X2 is defined in terms of
mathematical expectation as

Cov(X1, X2) = (3.114)

It is common to use the notation σ12, or Cov(X1, X2) for the covariance
of X1 and X2. The covariance for two random variables can also be determined using
the following equation that results from Equation 3.114:

Cov(X1, X2) = E(X1X2) – (3.115)

where the expected value of the product (X1X2) is given by

(3.116)

If X1 and X2 are statistically uncorrelated, then

Cov(X1, X2) = 0 (3.117a)

and

E(X1X2) = (3.117b)

P A B P A P B( ) min( ( ), ( ))∩ =

P A B P A P B( ) max( ( ), ( ))∪ =

E X XX X[( )( )]1 21 2
− −μ μ

σX X1 2
,

μ μX X1 2

E X X x x f x x dx dxX X( ) ( , )1 2 1 2 1 2 1 21 2
=

−∞

+∞

−∞

+∞

∫∫

μ μX X1 2
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The correlation coefficient is defined as a normalized covariance with respect
to the standard deviations of X1 and X2 and is given by

(3.118)

The correlation coefficient ranges inclusively between –1 and +1, i.e.,

(3.119)

If the correlation coefficient is zero, then the two random variables are described
to be uncorrelated. From the definition of correlation, in order for to be zero,
the Cov(X1, X2) must be zero. Therefore, X1 and X2 are statistically uncorrelated.
However, the converse of this finding does not hold. The correlation coefficient can
also be viewed as a measure of the degree of linear association between X1 and X2.
The sign (– or +) indicates the slope for the linear association. It is important to
note that the correlation coefficient does not give any indications about the presence
of a nonlinear relationship between X1 and X2 (or the lack of it).

EXAMPLE 3.7 COVARIANCE AND CORRELATION

The universal set for two random variables, X and Y, is defined by the region between
the two curves shown in Figure 3.17. Assume that any pair (x, y) in this region is
equally likely to occur; i.e., a uniform distribution is assumed over the region between
the two curves. The two curves are given by the following equations:

(3.120)

and

(3.121)

FIGURE 3.17 The two curves in Example 3.7.

0
0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1 1.2
X variable

Y 
va

ria
bl

e

y = x^n 
y = x^(1/n) 

ρ
σ σX X

X X

X X
1 2

1 2

1 2= Cov( , )

− ≤ ≤ +1 1
1 2

ρX X

ρX X1 2

y x xn= ≤ ≤1 0 1/ for

y x xn= ≤ ≤for 0 1

C6447_C003.fm  Page 179  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC



180 Uncertainty Modeling and Analysis in Engineering and the Sciences

Therefore, the joint density value for these random variables can be viewed on a third

function in this case takes on a constant value over this region. The range of y for both
curves is [0, 1]. Therefore, the value of the density function can be determined based
on the following condition:

(3.122a)

where fXY(x, y) = constant (c). Therefore,

(3.122b)

Solving for c, the following expression can be obtained:

(3.123)

Therefore, the density function is given by

(3.124)

The marginal density function of X is given by

(3.125)

Similarly, the marginal density function of Y is given by

(3.126)

Therefore, fY(y) is similar to fX(x). Thus, the expected value of X is equal to the expected
value of Y and is given by

(3.127a)
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axis that is perpendicular to the plane of the curves in Figure 3.17. The joint density
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or

(3.127b)

Also, the second moments of X and Y are equal and given by

(3.128a)

or

(3.128b)

Therefore, the variances of X and Y are

Var(X) = E(X2) – [E(X)]2 (3.129a)

Var(Y) = E(Y2) – [E(Y)]2 (3.129b)

The expected value of the product XY is

(3.130a)

or

(3.130b)

Therefore, the covariance of X and Y is

Cov(X, Y) = E(XY) – E(X) E(Y) (3.131)

For n = 2, these moments take the following values:

E(X) = E(Y) = (3.132)
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E(X2) = E(Y2) = (3.133)

Var(X) = Var(Y) = 0.0546 (3.134)

E(XY) = (3.135)

Cov(X, Y) = 0.0475 (3.136)

Therefore, the correlation coefficient is

(3.137)

For n = 3, the correlation coefficient ρXY is 0.71. Figure 3.18 shows selected probability
descriptors, including ρXY, as functions of n. It is interesting to note that as the power
order n approaches 1, the area between the two curves diminishes and the correlation
coefficient approaches 1. Also, by increasing n, the area between the two curves
increases, approaching a limiting case where it covers the entire area of Figure 3.18,
and the correlation coefficient approaches zero.

3.8.7.2 Statistical Correlation

A set of observations on a random variable Y has a certain amount of variation,
which may be characterized by the variance of the sample. The variance equals the
sum of squares of the deviations of the observations from the mean of the observa-
tions divided by the degrees of freedom. Ignoring the degrees of freedom, the
variation in the numerator can be separated into two parts: (1) variation associated

FIGURE 3.18 Probability descriptors as functions of n.
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with a second variable X and (2) variation not associated with X. That is, the total
variation (TV), which equals the sum of the squares of the sample data points about
the mean of the data points, is separated into the variation that is explained by
variation in the second variable (EV) and the variation that is not explained, that is,
the unexplained variation (UV). Thus, TV can be expressed as

TV = EV + UV (3.138)

Using the general form of the variation of a random variable, each of the three
terms in this equation can be represented by a sum of squares as follows:

(3.139)

where yi = an observation on the random variable, = the value of Y estimated from
the best linear relationship with the second variable X, and = the mean of the
observations on Y.

The separation of variation concept is useful for quantifying the Pearson corre-
lation coefficient. Specifically, dividing both sides of Equation 3.138 by the total
variation TV gives

(3.140)

The ratio represents the fraction of the total variation that is explained by

the linear relationship between Y and X; this is called the coefficient of determination
and is given by

(3.141)

The square root of the ratio is the correlation coefficient, R. If the explained
variation equals the total variation, the correlation coefficient will equal 1. If the
relationship between X and Y is inverse, and the explained variation equals the total
variation in magnitude, R will equal –1. These represent the extremes, but both
values indicate a perfect association, with the sign only indicating the direction of
the relationship. If the explained variation equals zero, R equals zero. Thus, a
correlation coefficient of zero, which is sometimes called the null correlation, indi-
cates no linear association between the two variables X and Y.
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While Equation 3.141 provides the means to compute a value of the correlation
coefficient, it can be shown that Equation 3.141 can be rearranged to the following
form using a linear model for that minimizes the unexplained variation (UV):

(3.142)

The linear model that minimizes UV is based on the principle of least squares.

3.8.8 CORRELATION BETWEEN EVENTS

The correlation between two events was introduced in Equation 3.97 (Cui and
Blockley, 1990; Ferson et al., 2004; Davis and Hall, 2003; Lucas, 1995). The

dart hitting or missing the events, respectively (Ferson et al., 2004). The resulting
data of zeros and ones for the two events can be used to compute the correlation
coefficient, such as the Pearson correlation coefficient provide in Equation 3.142.
The resulting correlation coefficient (ρ) can be alternately computed using the
following expression for two events A and B, modeled after Equation 3.118:

(3.143a)

where measure the standard deviations asso-
ciated with the generated streams of zeros and ones for the two events. The term

measures the covariance associated with the generated
streams of zeros and ones for the two events. Equation 3.143a can be used to compute

as follows (Lucas, 1995):

(3.143b)

Equation 3.143a and b does offer an approximate solution and could violate the
axioms in probability by producing negative probabilities in cases when ρ = –1.
These negative values result from assigning values to ρ beyond a feasible range for
ρ. Therefore, ρ must be limited to a range that is smaller than [1, –1] (Feller, 1968;
Nelson, 1999). These limits on ρ can be demonstrated statistically using the dart
example previously discussed by sorting the values of zeros and ones in the two
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imagining the throwing of darts on one of the Venn diagrams provided in Figure
correlation can be measured using statistical methods based on data constructed by

3.13 to Figure 3.16, and keeping scores of 0 or 1 for both events for the cases of a
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columns for the two events in two extreme cases: (1) all zeros at the top of the
columns and (2) all zeros at the bottom of the columns. These extreme cases will
not produce the end of the range [1, –1], but a smaller nested range. The smaller
nested range defines the limits on ρ to meet the axioms of probability theory. Values
outside this range are problematic and not realistic. These limits on ρ can be
computed as follows:

(3.144a)

(3.144b)

Frank (1979) offered an alternate model to compute the probability of the
intersection of two correlated events (A and B) based on the concept of copulas,
which is used to characterize the dependence or association among random variables.
The alternate model is expressed as (Frank, 1979):

(3.145)

where s = tan(π(1 – ρ)/4), with the last expression approaching the values for the
extreme cases of ρ. The probability of the union of two correlated events (A and B)
based on the concept of copulas can be computed as follows:

(3.146)

3.8.9 UNKNOWN DEPENDENCE BETWEEN EVENTS

In cases where the dependence is unknown, the conjunction (i.e., intersection) and
disjunction (i.e., union) probabilities for two events A and B can be bounded,
respectively, as follows based on the classical Fréchet inequalities (Fréchet, 1935,
1951), as provided by Ferson et al. (2004):

(3.147a)
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(3.147b)

3.8.10 UNKNOWN POSITIVE DEPENDENCE BETWEEN EVENTS

In cases where the dependence is known to be only positive, the conjunction (i.e.,
intersection) and disjunction (i.e., union) probabilities for two events A and B can
be bounded, respectively, as follows based on the work of Williamson (1989) and
Wise and Henrion (1986), as provided by Ferson et al. (2004):

(3.148a)

(3.148b)

3.8.11 UNKNOWN NEGATIVE DEPENDENCE BETWEEN EVENTS

In cases where the dependence is known to be negative, the conjunction (i.e.,
intersection) and disjunction (i.e., union) probabilities for two events A and B can
be bounded, respectively, as follows based on the work of Williamson (1989) and
Wise and Henrion (1986), as provided by Ferson et al. (2004):

(3.149a)

(3.149b)

3.8.12 PROBABILITY BOUNDS

Probability bounds can be viewed as a mix of probability theory and interval analysis
(Ferson et al., 1999). They have similar bases as interval probabilities and concepts
covered in probabilistic analysis using limited or incomplete information. Probabil-
ities in this case are uncertain, and hence represented by probability bounds. Where
random variables are used, cumulative distribution functions (CDFs) offer a complete
description of their probabilistic characteristics. Uncertainty in underlying parame-
ters or limited knowledge about these variables results in the need to construct
bounds on them.

For example, a random variable X might be known only to the extent of the
minimum (e.g., x = 50) and maximum (e.g., x = 70) values that the variable could
possibly take. The probability bounds for this random variable can be expressed in

preted as the left and right limits on any possible CDF that meet the constraint given
by the minimum and maximum values of X. These CDF bounds can be denoted

for left (or called lower on x) and right (or called upper on x)
approximations of the CDF (i.e., F) of X. Increasing the level of information in this
constraint results in reducing the gap between these bounds. For example, adding a
median value at x = 60 to the minimum–maximum constraint produces the CDF

P A B P A P B P A P B( ) [max( ( ), ( )),min( , ( ) ( ))]∪ = +1

P A B P A P B P A P B( ) [ ( ) ( ),min( ( ), ( ))]∩ =

P A B P A P B P A P B( ) [max( ( ), ( )), ( ( ))(( ( ))]∪ = − − −1 1 1

P A B P A P B P A P B( ) [max( ( ) ( ) ), ( ) ( )]∩ = + −1

P A B P A P B P A P B( ) [ ( ( ))(( ( )),min( ( ), ( ))]∪ = − − −1 1 1

F x F xX X( ) ( )and

C6447_C003.fm  Page 186  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC

the form of CDF bounds, as shown in Figure 3.19. The CDF bounds can be inter-

bounds of Figure 3.20. Figure 3.10 to Figure 3.12 offer additional examples of CDF
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the underlying random variable X so that the resulting CDF bounds have the general

To facilitate the probability calculus for these probability bounds, left and right
approximations of the CDF of a random variable can be represented as step functions
with an added restriction, for computational convenience, that the steps for both left
and right functions occur at the same CDF values. Using an underlying independence
assumption for, say, two variables X and Y allows for computing, for example, X +

FIGURE 3.19 Bounds on a cumulative distribution function based on minimum and maxi-
mum values.

FIGURE 3.20 Bounds on a cumulative distribution function based on minimum, median,
and maximum values.
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bounds. Figure 3.10 and Figure 3.11 can be approximated using interval values on

step function shapes provided in Figure 3.12.
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Y, by portioning the spaces of X and Y to convenient intervals, performing interval
arithmetic on all the combinations of the Cartesian space of X and Y, and computing
the corresponding probabilities of the resulting intervals as the product of the respec-
tive pairs.

The case of underlying, but unknown, dependencies between two random vari-
ables such as X and Y requires arithmetic operations on X and Y to be conducted
using a probability-bound convolution with the constraint that the sum of probabil-
ities must be 1. Frank et al. (1987), Nelson (1999), and Williamson and Downs
(1990) provided the following probability bounds on Z = X * Y, where * ∈ [+, –, ×,
÷], for arithmetic operations without a dependence assumption between two random
variables, such as X and Y:

(3.150)

(3.151)

(3.152)

(3.153)

(3.154)

(3.155)

(3.156)

(3.157)

where sup = supremum, defined as the least upper bound of a set, and inf = infimum,
defined as the greatest lower bound of a set. Williamson and Downs (1990) and
Regan et al. (2000) showed that the above bounds hold for the arithmetic operation
of addition and multiplication for both positive and negative X and Y, and the
arithmetic operation of subtraction and division regardless of the sign of X and Y,
by using the interval mathematics of Equations 2.37 to 2.40 that, in the case of
subtraction and division, combine the lower bound of one variable with the upper
bound of another, and vice versa, as required by these equations. For two events A

F z F u F vX Y
suchthat z u v

X Y+
= +

= + −( ) sup {max[ ( ) ( ) ,1 00]}

F z F u F vX Y
suchthat z u v

X Y+ = +
= +( ) inf {min[ ( ) ( ), ]1 }}

F z F u F vX Y
suchthat z u v

X Y−
= −

= −( ) sup {max[ ( ) ( ), ]0 }}

F z F u F vX Y
suchthat z u v

X Y− = −
= + −( ) inf {min[ ( ) ( ),1 00]}

F z F u F vX Y
suchthat z u v

X Y×
= ×

= + −( ) sup {max[ ( ) ( ) ,1 00]}

F z F u F vX Y
suchthat z u v

X Y× = ×
= +( ) inf {min[ ( ) ( ), ]1 }}

F z F u F vX Y
suchthat z u v

X Y÷
= ÷

= −( ) sup {max[ ( ) ( ), ]0 }}

F z F u F vX Y
suchthat z u v

X Y÷ = ÷
= + −( ) inf {min[ ( ) ( ),1 00]}
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and B with given probabilities P(A) and P(B), the limits provided by Equations 3.150
to 3.157 are partially based on the conjunction and disjunction (Fréchet) inequalities,
introduced as Equation 3.147a and b, as follows, respectively:

(3.158)

(3.159)

Equations 3.158 and 3.159 usually result in wide limits, and their use for CDFs
can violate the constraint that the sum of probabilities must be 1, whereas Equations
3.150 to 3.157 do not violate this constraint. Regan et al. (2000) showed the equiv-
alency of Equations 3.150 to 3.157 in propagating uncertainty to methods offered
by Walley (1991) for imprecise probabilities, and Dempster–Shafer belief functions
as provided by Yager (1986).

Ferson et al. (2004) provide methods to address partial knowledge of dependence
between two variables X and Y, and the use of this knowledge to tighten the bounds
computed by Equations 3.150 to 3.157. The methods result in decreasing the range
between the bounds.

EXAMPLE 3.8 COMPUTATIONS OF PROBABILITY BOUNDS FOR INDEPENDENT

VARIABLES

figures express uncertainty in the CDF. For example, Figure 3.21 provides the CDF
bounds at x = 3.5 of [0.2, 0.6]. Also, the same figure expresses the uncertainty in the
value of X at a given CDF value. For a CDF value, i.e., percentile value, of 0.90, the
value of x belongs to the interval [5, 6].

Random variables defined by CDF bounds can be combined using arithmetic operations
such as addition, subtraction, multiplication, and division; however, information on
underlying dependencies between the two random variables is needed in order to assess
the combined result. Two cases are considered in this section as follows: (1) the case
of an underlying independence between two random variables such as X and Y, and (2)
the case of underlying, but unknown, dependencies between two random variables such
as X and Y. The first case is covered below, whereas the second case is provided as an
exercise at the end of the chapter.

The underlying independence assumption for X and Y allows for computing, for exam-
ple, X + Y, by portioning the spaces of X and Y to convenient intervals, performing

computing the corresponding probabilities of the resulting intervals as the product of
the respective pairs. The computational procedure is demonstrated using the random
variables X and Y of Figure 3.21 to evaluate their addition, i.e., X + Y, as shown in

the range of Z from Table 3.11, from 3 to 18, generally in increments of 1. Then for

Conjunction: max( , ( ) ( ) ) ( ) min(0 1P A P B P A B+ − ≤ ∩ ≤ PP A P B( ), ( ))

Disjunction: max( ( ), ( )) ( ) min( , (P A P B P A B P≤ ∪ ≤ 1 AA P B) ( ))+

C6447_C003.fm  Page 189  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC

Figure 3.21 provides examples of CDF bounds for two random variables X and Y. These

Table 3.11. The left and right probability bounds of the CDF of the addition result Z

interval arithmetic on all the combinations of the Cartesian space of X and Y, and

can be evaluated as shown in Table 3.12. Table 3.12 was constructed by identifying



190 Uncertainty Modeling and Analysis in Engineering and the Sciences

FIGURE 3.21 Bounds on the cumulative distribution functions of X and Y.
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TABLE 3.11
Addition (Z = X + Y) Using CDF Bounds with Underlying Independence 
Expressed as Intervals with Probabilities

Intervals for
Y and Their 
Probabilities

Intervals for X and Their Probabilities

P(1 ≤ X < 3) = 
0.2

P(2 ≤ X < 4) = 
0.2

P(3 ≤ X < 5) = 
0.2

P(5 ≤ X < 6) = 
0.4

P(2 ≤ Y < 4) = 0.3 P(3 ≤ Z < 7) = 
0.06

P(4 ≤ Z < 8) = 
0.06

P(5 ≤ Z < 9) = 
0.06

P(7 ≤ Z < 10) = 
0.12

P(4 ≤ Y < 8) = 0.1 P(5 ≤ Z < 11) = 
0.02

P(6 ≤ Z < 12) = 
0.02

P(7 ≤ Z < 13) = 
0.02

P(9 ≤ Z < 14) = 
0.04

P(6 ≤ Y < 10) = 
0.3

P(7 ≤ Z < 13) = 
0.06

P(8 ≤ Z < 14) = 
0.06

P(9 ≤ Z < 15) = 
0.06

P(11 ≤ Z < 16) = 
0.12

P(8 ≤ Y < 12) = 
0.3

P(9 ≤ Z < 15) = 
0.06

P(10 ≤ Z < 16) = 
0.06

P(11 ≤ Z < 17) = 
0.06

P(13 ≤ Z < 18) = 
0.12

TABLE 3.12
Probability Bounds for the Addition
(Z = X + Y)

Addition Result of
Z = X + Y Left Bound Right Bound

2 0 0
3 0.06 0
4 0.12 0
5 0.20 0
6 0.22 0
7 0.42 0.06
8 0.48 0.12
9 0.64 0.18

10 0.70 0.30
11 0.88 0.32
12 0.88 0.34
13 1.00 0.42
14 1.00 0.52
15 1.00 0.64
16 1.00 0.82
17 1.00 0.88
18 1.00 1.00
19 1.00 1.00
20 1.00 1.00
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each Z value, such as z, the left bound was constructed as the cumulative sum of all

are less than or equal to z. The right bound for Z can be constructed in a similar manner
as the cumulative sum of interval probabilities from Table 3.11, where the upper (right)
values of the intervals are less than or equal to z. The resulting probability bounds of

multiplication, and division, can be performed in a manner similar to the above process
for addition.

FIGURE 3.22 Bounds on the cumulative distribution functions of Z = X + Y.

FIGURE 3.23 Bounds on the cumulative distribution functions of Z = X – Y.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

2 10 11 12 13 14 15 16 17 18 19 20 
z 

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n 
(C

D
F)

 

Right CDF 

Left CDF 

3 4 5 6 7 8 9

0 

0.1 

0.2 
0.3 

0.4 

0.5 

0.6 

0.7 
0.8 

0.9 

1 

–7 –6 –5 –4 –3 –2 –1 
z 

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n 
(C

D
F)

 

0 41 2 3 5 6 7 8 9 10

C6447_C003.fm  Page 192  Tuesday, April 4, 2006  3:44 PM

© 2006 by Taylor & Francis Group, LLC

interval probabilities for Z in Table 3.11, where the lower (left) limits of the intervals

Z = X + Y are shown in Figure 3.22. Other arithmetic operations, such as subtraction,
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3.9 FUZZY MEASURES AND FUZZY INTEGRALS

C of a universal set X to the interval [0, 1]. Commonly, C is the power set of X, i.e.,
P(X). This mapping can be expressed mathematically as

FIGURE 3.24 Bounds on the cumulative distribution functions of Z = X × Y.

FIGURE 3.25 Bounds on the cumulative distribution functions of Z = X ÷ Y.
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The results for the cases of addition, multiplication, and division are provided in Figure
3.23 to Figure 3.25.

A fuzzy measure is defined in Chapter 2 as a function μ from a family of subsets
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(3.160)

This function must have the following properties in addition to continuity from
above and continuity from below:

(3.161a)

(3.161b)

(3.161c)

Another function f can be introduced on the elements of X as follows:

(3.162)

For this function f, an α-cut and a strict α-cut can be defined, similar to fuzzy
sets, as the following respective sets:

αf = {x: f(x) ≥ α} (3.163a)

α+f = {x: f(x) > α} (3.163b)

A primary difference between μ and f is that in addition to quantifying two
different attributes, the former relates to a subset of X and the latter refers to the
elements of X.

A fuzzy integral of f based on the μ values attached to the power set can be
defined as

(3.164)

where sup = supremum of A, defined as the least upper bound of the set, and =
minimum operator. Since the equation can be simplified to the follow-
ing by also dropping the X below the integral:

(3.165)

The integral provided in Equations 3.164 and 3.165 is called a Sugeno integral
or a fuzzy integral (Wang and Klir, 1992). This integral can be computed over a
subset A of X as follows:

μ : [ , ]C → 0 1

μ( )∅ = ∅ ∈0 if C

μ( )X X C= ∈1 if

μ μ( ) ( ) &A B A B C A B≤ ∈ ⊆if and

f X: [ , ]→ 0 1

fd a X f
X

μ μ
α

α∫ = ∧ ∩
∈
sup [ ( )]

[ , ]0 1

∧
X f f∩ =α α ,

fd fμ α μ
α

α∫ = ∧
∈
sup [ ( )]

[ , ]0 1
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(3.166)

EXAMPLE 3.9 QUALITY OF CHINESE CUISINE

Wang and Klir (1992) provide examples of using fuzzy integrals to measure the quality
of Chinese cuisine based on an assumed universal set X that includes three elements:
taste (T), smell (S), and appearance (A). The appearance is assumed to consist of color,
shape, and general arrangement of a dish. Therefore, the universal set is

(3.167)

The following fuzzy measure (μ) of importance in defining the quality of Chinese
cuisine was subjectively defined based on the power set X:

(3.168a)

(3.168b)

(3.168c)

(3.168d)

(3.168e)

(3.168f)

(3.168g)

(3.168h)

These importance measures were subjectively assessed and assigned values based on
intuition, but interestingly are not additive, e.g.,

(3.169a)

(3.169b)

An expert was asked to assess four dishes. The expert provided the following assess-
ment for the first dish:

fd a A f
A

μ μ
α

α∫ = ∧ ∩
∈
sup [ ( )]

[ , ]0 1

X T S A= { , , }

μ({ }) .T = 0 7

μ({ }) .S = 0 1

μ({ })A = 0

μ({ , }) .T S = 0 9

μ({ , }) .T A = 0 8

μ({ , }) .S A = 0 3

μ μ({ , , }) ( )T S A X= = 1

μ( )∅ = 0

μ μ μ({ , }) ({ }) ({ })T S T S≠ +

μ μ μ({ , }) ({ }) ({ })S A S A≠ +
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(3.170a)

(3.170b)

(3.170c)

The quality of the first dish (Q1) can be assessed using the following fuzzy integral
based on Equation 3.164:

(3.171a)

or by substituting values from Equation 3.170a to c, Q1 becomes

(3.171b)

where αf can be evaluated using Equation 3.163a. The second dish was assessed to
have f(T) = 1, f(S) = f(A) = 0, and has the following quality value:

(3.172)

The third dish was assessed to have f(T) = f(S) = 1, f(A) = 0, and has the following
quality value:

(3.173)

The fourth dish was assessed to have f(T) = f(S) = f(A) = 1 and has the following quality
value:

f T{ } .= 0 9

f S{ } .= 0 6

f A{ } .= 0 8

Q fd a f
X

1
0 1

= = ∧∫ ∈
μ μ

α

αsup [ ( )]
[ , ]

Q fd f f
X

1
0 6 0 80 6 0 8 0 9= = ∧ ∨ ∧ ∨ ∧∫ μ μ μ μ[ . ( )] [ . ( )] [ .. . (( )]

[ . ( )] [ . ({ , })] [ . ({

.0 9

0 6 0 8 0 9

f

X T A T= ∧ ∨ ∧ ∨ ∧μ μ }})]

[ . ] [ . . ] [ . . ]

.

= ∧ ∨ ∧ ∨ ∧

=

0 6 1 0 8 0 8 0 9 0 7

0 8

Q f

T

2
11 0

0 7

= ∧ ∨

=

=

[ ( )]

({ })

.

μ

μ

Q T S

T S

3 1 0

0 9

= ∧ ∨

=

=

[ ({ , })]

({ , })

.

μ

μ
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(3.174)

EXERCISE PROBLEMS

3.1. Develop a creative nested or relational hierarchy for various measures
covered in this chapter, including at least the classical measure, monotone
measure, belief measure, plausibility measure, fuzzy measure, fuzzy inte-
grals, probability measure, and possibility measure. Your hierarchical
representation should clearly show under what conditions would one type
reduce to another type.

3.2. Two judges classified a case to three possible motivations as provided in
the following table in the form of basic assignments m1 and m2:

Compute the belief measures for judges 1 and 2. Compute the basic assign-
ment for the combined judgment and the corresponding belief measure.

3.3. Two experts classified a bird species to three possible causes for its
population decline, as provided in the following table in the form of basic
assignments m1 and m2:

Compute the belief measures for Experts 1 and 2. Compute the basic assign-
ment for the combined judgment and the corresponding belief measure.

Subset Judge 1 Judge 2
(Motivation) m1 m2

Greed (G) 0.05 0.15
Love (L) 0.10 0.05
Self defense (S) 0.15 0.05
G ∪ L 0.25 0.15
G ∪ S 0.15 0.20
L ∪ S 0.05 0.30
G ∪ L ∪ S Not provided Not provided

Subset Expert 1 Expert 2
(Cause) m1 m2

Changes in land use (C) 0.10 0.15
Hunting (H) 0.15 0.15
Disease (D) 0.15 0.15
C ∪ H 0.25 0.15
C ∪ D 0.15 0.10
H ∪ D 0.15 0.20
C ∪ H ∪ D Not provided Not provided

Q X

X

4 1

1

= ∧

=

=

[ ({ })]

({ })

μ

μ
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3.4. Two experts classified the bird species of problem 3.3 to three possible
causes for its population decline, as provided in the following table in the
form of basic assignments m1 and m2:

Compute the belief measures for Experts 1 and 2. Compute the basic assign-
ment for the combined judgment and the corresponding belief measure.

3.5. Three experts classified a bird species to three possible causes for its
population decline, as provided in the following table in the form of basic
assignments m1, m2, and m3:

Compute the belief measures for Experts 1, 2, and 3. Provide procedures
for computing the basic assignment for the combined judgment and the
corresponding belief measure, and demonstrate the procedures using the
above table.

3.6. Three sensory sources are used to identify targets. Using a formulation

using the following assignment:

Subset Expert 1 Expert 2
(Cause) m1 m2

Changes in land use (C) 0.10 0.10
Hunting (H) 0.20 0.30
Disease (D) 0.10 0.10
C ∪ H 0.20 0.10
C ∪ D 0.10 0.10
H ∪ D 0.20 0.10
C ∪ H ∪ D Not provided Not provided

Subset Expert 1 Expert 2 Expert 3
(Cause) m1 m2 m3

Changes in land use (C) 0.05 0.05 0.05
Hunting (H) 0.25 0.30 0.50
Disease (D) 0.05 0.10 0.05
C ∪ H 0.25 0.05 0.01
C ∪ D 0.05 0.05 0.05
H ∪ D 0.25 0.20 0.01
C ∪ H ∪ D Not provided Not provided Not provided

Subset
(Evidence)

Measures

Assignment
(m1)

Assignment
(m2)

Fighter (F) 0.4 0.10
Reconnaissance (R) 0.2 0.0
Bomber (B) 0.0 0.80
Universal set (X) 0.4 0.10
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similar to Table 3.4 of Example 3.3, determine the combined probability
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3.7. Assume that the x’s are users or intruders of information network with
specific nested characteristics, such as x1 = a legitimate user from an
authorized IP address, x2 = an intruder from an authorized IP address or
an intruder from an IP address that is masked by an authorized IP address,
x3 = a legitimate user with an authorized access protocol (username and
password), and x4 = an intruder from an authorized IP access protocol.

gathering methods and their probabilities of affirmative detection, false
detection, affirmative nondetection, and false nondetection. These proba-
bilities can be constructed as basic assignments to meet the requirements
of the theory of evidence. They are then used to compute belief and
plausibility measures for having any of the events A1 … A5 of Figure 3.5.
Develop the mathematical formulation needed for this application with
an illustrative example.

3.8.
that have the following probabilities:

Probability A = likely

Probability B = seldom

Treat the above probabilities as fuzzy sets and use the α-cut method to
compute the probability of A and B, assuming that they are independent
events. Express your result using a fuzzy set and linguistically based on
Table 3.5. What are the limitations of such a hybrid use of linguistic
probabilities and fuzzy sets?

3.9. The accident probability at a new intersection is of interest to a traffic
engineer. The engineer subjectively estimated the weekly accident prob-
ability as follows:

Solve the following:
a. What is the average accident probability based on the prior information?
b. Given an accident in the first week of traffic, update the distribution

of the accident probability.
c. What is the new average accident probability based on the posterior

information?

Weekly Accident
Probability

Subjective Probability
of Accident Probability

0.1 0.3
0.2 0.4
0.4 0.2
0.6 0.05
0.8 0.04
0.9 0.01
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The nested structure of Figure 3.5 can be used to construct evidence-

Using Table 3.5, compute the joint probability of the two events A and B
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d. Given an accident in the first and second weeks and no accidents in the
third week of traffic, update the distribution of the accident probability.

e. What is the average accident probability after the second week?
f. Given no additional accidents for weeks 4, 5, 6, 7, 8, 9, and 10, update

the distribution and average accident probability. Plot your results.
3.10. Develop an inference spreadsheet for assessing the condition of a piece

of equipment based on three factors that are related to equipment condition
as follows:

3.11. Plot an interval distribution for the following random variable:

Logormal probability distribution:
Mean value = [3000, 4000] psi
Standard deviation = [300, 300]

3.12. Plot an interval distribution for the following random variable:

Logormal probability distribution:
Mean value = [3000, 4000] psi

Standard deviation = [300, 400] psi, i.e., coefficient of variation = 0.10

3.13. Plot an interval distribution for the following random variable:

Exponential probability distribution:
Mean value = [3000, 4000]

3.14.
operation, i.e., Z = X – Y.

3.15.
operation, i.e., Z = X × Y.

3.16.
operation, i.e., Z = X ÷ Y.

3.17.
for the addition operation assuming (1) perfect positive dependence and
(2) unknown dependence between X and Y. Hint: Construct the probabil-
ities in Table 3.11 so that they are on a diagonal for the perfect dependence
case, and determine bounds on the probabilities for the unknown depen-
dence case.

Factor No.
Logical Relationship between

Factor and Condition

1 Necessary
2 Sufficient
3 Maybe necessary
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Reproduce the example results shown in Figure 3.23 for the subtraction

Reproduce the example results shown in Figure 3.24 for the multiplication

Reproduce the example results shown in Figure 3.25 for the division

Redo the example shown in Table 3.11 and Table 3.12 and Figure 3.22
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3.18.
ing unknown dependence between X and Y.

3.19. The value of a line of designer pants to potential users depends on five
elements: fabric feel to skin, color, fit, appearance, and price. Subjectively
assign fuzzy measures of importance to these five elements. Using the
following assessment for these elements, assess the value of a line of
pants: 0.8, 0.7, 0.5, 0.7, and 0.8. Reevaluate the value for another line
design that has the following assessment for these elements: 0.5, 0.9, 0.9,
0.9, and 0.3.
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Redo the example shown in Figure 3.24 for the product operation assum-
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Uncertainty Measures

 

4.1 INTRODUCTION

 

methods for data and information encoding and expression, and uncertainty-based

and scientists often need means to quantify uncertainty. Uncertainty measures can
be viewed as similar to scales or measures used to quantify physical quantities, such
as temperature, pressure, or dimensions; however, they are unique in that they
measure conceived or abstract notions rather than a physical quantity. The objective
of this chapter is to present methods for measuring uncertainty contents in the form
of basic models.

 

4.2 UNCERTAINTY MEASURES: DEFINITION 
AND TYPES

 

A 

 

measure of uncertainty

 

 of some conceived type represented within a given math-
ematical theory (e.g., probability theory, possibility theory, Dempster–Shafer theory,
etc.) is a function (

 

u

 

) that assigns to each representation of evidence in the theory
(

 

μ

 

 according to Equation 3.6) (e.g., a probability distribution, a possibility distribu-
tion, a body of evidence in Dempster–Shafer theory, etc.) a nonnegative real number.
Intuitively, numbers obtained by this function should be inversely proportional to
the strength and consistency in evidence, as expressed in the theory employed: the
stronger and more consistent the evidence, the smaller the amount of uncertainty.
An uncertainty measure can be defined formally as a function that maps the set (

 

U

 

)
of all uncertainty functions 

 

μ

 

, as defined by Equation 3.6, to the nonnegative real
line (

 

R

 

+

 

) as follows:

(4.1)

where 

 

μ

 

 is given by Equation 3.6.
It should be mentioned that measures of uncertainty have been almost exclusively

investigated in terms of 

 

disjunctive variables

 

. A disjunctive variable has at any given
time a single value, but we are often uncertain about it due to limited evidence.
Probability theory, possibility theory, Dempster–Shafer theory, and the various the-
ories of imprecise probabilities allow us to describe different types of evidence
regarding disjunctive variables. Some examples of disjunctive variables are the age

u U R: ( )μ → +
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synthesis of information as discussed in Chapters 2 and 3, respectively. Engineers

Ignorance and uncertainty types as described in Chapter 1 were used to develop
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of a person, the weight of an object, the speed of a car, the humidity at a given place
in the Earth, and the arrival time of a flight.

Distinct from disjunctive variables are 

 

conjunctive variables

 

 (Yager, 1987b).
They are characterized by simultaneously assuming multiple values from a given
universal set. Some examples of conjunctive variables are friends of a person, the
time period a person spent waiting for a flight, components that form a compound,
and books written by an author. Since uncertainty theories for conjunctive variables
are virtually undeveloped, all results presented in this chapter are based on the
assumption that we deal with disjunctive variables.

Uncertainty measures are distinguished from one another by the mathematical
representation employed and by the type of uncertainty involved. Although each
uncertainty measure should make sense on intuitive grounds, it is even more impor-
tant that it satisfies certain axiomatic requirements. In the rest of this section, the
most fundamental requirements are described. Since the mathematical form of each
of these requirements depends on the uncertainty theory employed, they are
described in generic terms, independent of the various uncertainty calculi. The
following requirements are essential in the sense that they apply to all uncertainty
theories (Klir and Smith, 1999):

•

 

Subadditivity

 

: The amount of uncertainty in a joint representation of
evidence (defined on a Cartesian product) cannot be greater than the sum
of the amounts of uncertainty in the associated marginal representations
of evidence.

•

 

Additivity

 

: The two amounts of uncertainty considered under subadditivity
become equal if and only if the marginal representations of evidence are
noninteractive according to the rules of the uncertainty calculus involved.

•

 

Range

 

: The range of uncertainty is [0, M], where M depends on the car-
dinality of the universal set involved and on the chosen unit of measurement.

•

 

Continuity

 

: Any measure of uncertainty must be a continuous function.
•

 

Expansibility

 

: Expanding the universal set by alternatives that are not
supported by evidence must not affect the amount of uncertainty.

•

 

Branching/consistency

 

: When uncertainty can be computed in several
ways, all intuitively acceptable, the results must be the same (consistent).

The remaining two requirements are applicable only to some theories of
uncertainty:

•

 

Monotonocity

 

: When evidence can be ordered in the uncertainty theory
employed (as in possibility theory), the relevant uncertainty measure must
preserve this ordering.

•

 

Coordinate invariance

 

: When evidence is described within the 

 

n

 

-dimen-
sional Euclidean space (

 

n

 

 

 

≥

 

 1), the relevant uncertainty measure must not
change under isometric transformation of coordinates.

Uncertainty measures are available for three uncertainty classes as follows: (1)
imprecision or nonspecificity associated with sizes or cardinalities, (2) fuzziness or
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vagueness associated with imprecision in boundaries, and (3) conflict or strife and
discord among various sets. Although the area of uncertainty measures is an active
research area and is evolving, many concepts are mature and could be used to some
problems in engineering the sciences. Uncertainty measures were provided in this
chapter for selected uncertainty types and theories covered in this book. The pre-
sentation in this section is limited to three relatively mature uncertainty types: (1)
nonspecificity that results from imprecision connected with set sizes, i.e., cardinal-
ities, and can be represented by the Hartley-like measure; (2) uncertainty expressed
in terms of conflict among evidential claims, i.e., Entropy-like measures; and (3)
fuzziness as a result of nonsharp boundaries of fuzzy sets. Commonly, engineering
and science problems simultaneously contain these uncertainty types and other types.

 

4.3 NONSPECIFICITY MEASURES

 

A fundamental uncertainty type stems from lack of specificity as a result of providing
several alternatives, with one alternative being the true one. This uncertainty type
vanishes, and complete certainty is achieved, when only one alternative is possible.
Therefore, the nonspecificity uncertainty type results from having imprecision due
to alternative sets that have cardinalities greater than 1.

 

4.3.1 H

 

ARTLEY

 

 M

 

EASURE

 

A fundamental measure of uncertainty based on cardinality was conceived as a
measuring of nonspecificity by Hartley (1928). This fundamental measure can there-
fore be defined for a 

 

finite

 

 set of all possible alternatives, i.e., universal space 

 

X

 

 of
alternatives under consideration, with only one of the alternatives being correct,
although the correct alternative is unknown to us. In the context of possibility theory,
the finite set 

 

X

 

 of conceived alternatives includes only one alternative in a given
situation that is true. Assume that, according to given evidence, we know that
alternatives in a particular set 

 

E

 

 (such that 

 

E

 

 

 

⊆

 

 

 

X

 

) are possible, while those outside

 

E

 

 are not possible. This means that, according to the evidence, the true alternative
is in set 

 

E

 

. This simple evidence can be formalized by defining a 

 

possibility measure

 

,

 

r

 

E

 

(

 

x

 

), based on evidence focusing on 

 

E

 

:

(4.2)

for all 

 

x 

 

∈ 

 

X

 

, and

(4.3)

for all 

 

A 

 

∈

 

 

 

P

 

X

 

, i.e., 

 

A

 

 is a subset of 

 

X

 

. In this case, only the alternatives that belong
to 

 

A

 

 are considered possible candidates for this true alternative. Moreover, it is
convenient to introduce a dual 

 

necessity measure

 

, 

 

Nec

 

E

 

, via the formula

r x
x E

x E
E ( ) =

∈
∈

⎧
⎨
⎩⎪
1

0

when

when

r A r xE
x A

E( ) max( ( ))=
∈
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(4.4)

for all 

 

A 

 

∈

 

 

 

P

 

X

 

.
Clearly, the larger the set 

 

E

 

, the less specific the evidence, and the more uncertain
we are about the true alternative. Uncertainty is thus caused in this case by the

 

nonspecificity

 

 of evidence. Hartley (1928) showed that the only sensible way to
measure uncertainty of this nonspecificity type is to use function 

 

H

 

, defined as follows:

(4.5)

where log

 

2

 

 is the logarithm to the base 2, resulting in a measurement unit in 

 

bits

 

,
and ln is the natural logarithm. A 

 

bit

 

 is defined as a single digit in a binary number
system and can be viewed as a unit of information equal to the amount of information
obtained by learning or resolving which of two equally has occurred. Similarly, the
measure of uncertainty associated with any finite set 

 

A

 

 of possible alternatives can
be defined as follows:

(4.6)

or

(4.7)

 

Bits

 

 form the basis for a 

 

byte

 

 in computer language, where a 

 

byte

 

 is a string of
binary digits (bits), usually eight, operated on as a basic unit by a digital computer.
The logarithm (log

 

2

 

) of 

 

i 

 

is given by

(4.8a)

It is the power to which the base, in this case 2, must be raised to obtain 

 

i

 

 as
provided by

2

 

x

 

 = 

 

i

 

(4.8b)

The Hartley measure (

 

H

 

) reaches its maximum for the universal set 

 

X

 

; i.e., the
Hartley measure takes values in the following range:

(4.9)

Nec A r AE E( ) ( )= −1

H r x E
E

E( ( )) log ( )
ln( )

ln( )
= =2 2

H U r R: ( ) → +

H r x r x

r x

E E

x X

E

x X( ( )) log ( )

ln ( )

ln( )
= =

∈

∈∑
∑

2 2

log ( )2 i x=

0 2≤ ≤ ⊆H r x X A XE( ( )) log ( ) for any
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The measure has the properties of being additive, monotonic, and normal (i.e.,
taking a value of 1 at 

 

⏐

 

A

 

⏐

 

 = 2).
The Hartley measure can be defined in the context of a relation (

 

R

 

) defined over
all the possible combinations of two universal sets 

 

X

 

 and 

 

Y

 

 of discrete elements and
of finite sizes, represented as the Cartesian product of 

 

X

 

 and 

 

Y

 

. Two sets can be
defined as follows:

(4.10)

(4.11)

These sets are called the projections of 

 

R

 

 on the sets 

 

X

 

 and 

 

Y

 

, respectively. The
relation is defined between these two sets 

 

A

 

X

 

 and 

 

B

 

Y

 

. The

 

 joint Hartley measure 

 

of 

 

R

 

 is

(4.12)

where 

 

⏐

 

R

 

⏐

 

 is the cardinality if 

 

R

 

 is defined as the number of ordered pairs in 

 

R

 

.
The 

 

marginal Hartley measures

 

 associated with subsets of two respective universal
sets are

(4.13a)

(4.13b)

The 

 

conditional Hartley measures

 

 based on Equations 4.12 and 4.13 can be
defined as follows:

(4.14a)

(4.14b)

The ratio in Equation 4.14a represents the average number of elements
of 

 

X

 

 that are possible alternatives under the condition that a possible element of 

 

Y

 

is known. Therefore, Equation 4.14a measures the average nonspecificity regarding
possible choices from 

 

X

 

 for all possible choices from 

 

Y

 

. Similar observations can be
made relating to Equation 4.14b. The following general relations can be constructed
based on these definitions:

A x X x y R y YX = ∈ ∈ ∈{ ( , ) }for some

B y Y x y R x XY = ∈ ∈ ∈{ ( , ) }for some

H R H X Y R( ) ( , ) log ( )= = 2

H A AX X( ) log ( )= 2

H B BY Y( ) log ( )= 2

H A B
R

B
X Y

Y

( ) log=
⎛

⎝
⎜

⎞

⎠
⎟2

H B A
R

A
Y X

X

( ) log=
⎛

⎝
⎜

⎞

⎠
⎟2

R BY/
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(4.15a)

(4.15b)

(4.15c)

Some relations might display noninteractive behavior between X and Y, produc-
ing the following relations:

(4.16a)

(4.16b)

(4.16c)

The relations of interactive sets in X and Y have the following characteristics:

(4.17a)

(4.17b)

(4.17c)

A function can be defined to indicate the level of Hartley-based information
transmission (T), i.e., uncertainty resolution, based on a relation R as follows (Klir
and Wierman, 1999):

(4.18)

The information transmission takes a value of zero for noninteractive sets;
otherwise, it is greater than zero. It can also be computed as follows:

(4.19a)

(4.19b)

H A B H A B H BX Y X Y Y( ) ( , ) ( )= −

H B A H A B H AY X X Y X( ) ( , ) ( )= −

H A H B H A B H B AX Y X Y Y X( ) ( ) ( ) ( )− = −

H A B H AX Y X( ) ( )=

H B A H BY X Y( ) ( )=

H A B H A H BX Y X Y( , ) ( ) ( )= +

H A B H AX Y X( ) ( )<

H B A H BY X Y( ) ( )<

H A B H A H BX Y X Y( , ) ( ) ( )< +

T A B H A H B H A BH X Y X Y X Y( , ) ( ) ( ) ( , )= + −

T A B H A H A BH X Y X X Y( , ) ( ) ( )= −

T A B H B H B AH X Y Y Y X( , ) ( ) ( )= −
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EXAMPLE 4.1 CAUSES OF STRUCTURAL FAILURES

Structures could fail as a result of several causes that include design errors, construction
errors, weather conditions, and extreme loads, among other factors. A set A can be
defined to include three factors. The Hartley measure of A is

(4.20)

The uncertainty measure can be interpreted as a measure of diagnostic uncertainty. The

uncertainty can be reduced based on performing tests or analytical studies to eliminate
some of the factors that are not relevant. For example, several candidate tests can be
conducted to assess these factors. The tests could help in assessing varying numbers
of factors (⏐F⏐) for a set of factors F. The test that has the greatest potential to reduce
the uncertainty needs to be identified and considered in conjunction with its cost and
potential benefit for implementation. Uncertainty measures, among other information,
can therefore be used in making this decision. For example, for a test that resolves a
nonempty subset A of the factors, i.e., ⏐A⏐ ≥ 1, the uncertainty reduction gained can
be assessed as follows:

(4.21)

TABLE 4.1
Hartley Measure

Cardinality (⏐A⏐) Hartley Measure (H)

1 0
2 1
3 1.584963
4 2
5 2.321928
6 2.584963
7 2.807355
8 3
9 3.169925

10 3.321928
197 7.622052
198 7.629357
199 7.636625
200 7.643856

1000 9.965784
2000 10.96578

10,000 13.28771
1,000,000 19.93157

H r x A
A

E( ( )) log ( )
ln( )

ln( )
ln( )
ln( )

.= = = =2 2
3
2

1 5844963

H r x r x H F A F AF A( ( ), ( )) ( ) log ( )= − = −2
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level of uncertainty increases as the number of factors is increased. Table 4.1 and Figure
4.1 show the relationship between the number of factors and Hartley measure. The



210 Uncertainty Modeling and Analysis in Engineering and the Sciences

4.3.2 HARTLEY-LIKE MEASURE

The Hartley measure is applicable only to finite sets. Its counterpart for subsets of
the n-dimensional Euclidean space Rn(n ≥ 1) was suggested by Klir and Yuan (1995a)
in terms of a function called a Hartley-like measure (HL). The function produces
an uncertainly value of 1 for any closed interval of real numbers whose length is 1,
a value of 2 in the case of a unit square, a value of 3 in the case of a unit cube, etc.
The Hartley-like function measures nonspecificity in situations in which the con-
ceived alternatives are points of an n-dimensional Euclidean space and the evidence
is expressed in terms of a bounded and convex subset E of possible points (alterna-
tives) of Rn. The function is defined by

(4.22a)

or

(4.22b)

where μ denotes the Lebesgue measure, T denotes the set of all transformations
from one orthogonal coordinate system to another, and denotes the ith one-dimen-
sional projection of E within the coordinate systems.

For any universal set X and a convex subset of Rn, a normalized Hartley-like
measure (NHL) is defined for each convex subset E of X by

(4.23a)

FIGURE 4.1 Hartley measure.
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Clearly, NHL is independent of the chosen unit and satisfies the following
condition:

(4.23b)

4.3.3 EVIDENCE NONSPECIFICITY

an element to a family of subsets. The nonspecificity in evidence can be constructed
by extending the Hartley measure to each subset, and computing a weighted sum
of all the resulting measures of the subsets using the basic assignment as weight
factors. The nonspecificity measure (He) can therefore be defined for a basic assign-
ment m for a family of subsets, A1, A2, …, An ∈ PX, according to the theory of
evidence as follows:

(4.24)

where m is the evidence body defined in this case as

(4.25a)

or for short

(4.25b)

where

(4.26)

Equation 4.24 provides an assessment of the nonspecificity in evidence. The
nonspecificity in evidence results from associating the basic assignment values to
subsets that each can contain more than one element. This uncertainty can be
eliminated by making the assignments m to singletons, i.e., individual elements of X.

EXAMPLE 4.2 CAUSES OF A BRIDGE FAILURE DURING CONSTRUCTION

Example 3.1 dealt with modeling the causes of a bridge failure during construction
using the theory of evidence. Three common causes — design error (D), construction

an assignment based on the opinion of two experts. Considering the assignments in

0 1≤ ≤NHL E( )

H m m A Ae i i

i

n

( ) ( ) log ( )=
=

∑ 2

1

m m A m A m An= { ( ), ( ), , ( )}1 2 …

m m m mn= { , , , }1 2 …

m m A i ni i= = …( ) , , ,for 1 2
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The theory of evidence was introduced in Chapter 3. It was demonstrated to classify

error (C), and human error (H) — were considered and used in Table 3.1 for defining
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Therefore, the nonspecificity in evidence for the first expert can be computed as

(4.27)

Similarly, for the second expert the nonspecificity in evidence is

(4.28)

Based on these results, expert 1 in this case is providing more nonspecificity in evidence

using a combination rule, and the He(m12) for the combined evidence can be computed.

4.3.4 NONSPECIFICITY OF GRADED POSSIBILITY

A nonspecificity uncertainty that is associated with more than one subset in the

p 1 2 n i i+1)
of possibility values for all i = 1, 2,..., n, the possibilistic measure of nonspecificity
Hp is defined by the formula

TABLE 4.2
Nonspecificity in Evidence Computations

Subset
(Failure Cause)

Notation
Ai

Expert 1 Expert 2

m1(Ai) ⏐Ai⏐ m(Ai)log2(⏐Ai⏐) m2(Ai) ⏐Ai⏐ m(Ai)log2(⏐Ai⏐)

Design error (D) A1 0.1 1 0 0.05 1 0
Construction error 
(C)

A2 0.05 1 0 0.1 1 0

Human error (H) A3 0.1 1 0 0.15 1 0
D ∪ C A4 0.2 2 0.2 0.25 2 0.25
D ∪ H A5 0.1 2 0.1 0.1 2 0.1
C ∪ H A6 0.05 2 0.05 0.1 2 0.1
D ∪ C ∪ H A7 0.4 3 0.633985 0.25 3 0.396240625

H m m A Ae i i

i

n

( ) ( ) log ( )

ln( )
ln( )

( . .

1 2

1

1
2

0 1 0

=

= +

=
∑

005 0 1
2
2

0 2 0 1 0 05
3
2

+ + + + +. )
ln( )
ln( )

( . . . )
ln( )
ln( ))

( . )

.

0 4

0 983985=

H me ( ) .2 0 846240625=
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than expert 2. The two evidence bodies can be combined as discussed in Chapter 2

Table 3.1 by the two experts, Equation 4.24 can be evaluated as shown in Table 4.2.

a special function, H . Assuming that X = {x , x , …, x } and ordering r(x ) ≥ r(x

family of sets can be defined within the framework of possibility theory of Section
3.6. If all focal elements are nested, then it is convenient to replace function H with



Uncertainty Measures 213

(4.29)

where r(xn+1) = 0 by convention. Hp(r) is also referred to as the U-uncertainty.

4.3.5 NONSPECIFICITY OF FUZZY SETS OR U-UNCERTAINTY

Higashi and Klir (1983) provided the following nonspecificity measure, also called
U-uncertainty, for a normal, finite fuzzy set (A):

(4.30a)

where ⏐αA⏐ = the cardinality of the α-cut of A for finite sets. Formally, U(A) defined
by Equation 4.30a is equivalent to defined by Equation 4.29 under the fuzzy
set interpretation of possibility theory.

For fuzzy intervals or numbers on the real line, the measure is

(4.30b)

where μ(αA)is the Lebesgue measure of αA.

EXAMPLE 4.3 FUZZY-BASED NONSPECIFICITY FOR A SYMMETRIC FUZZY NUMBER

The triangular fuzzy number A[aL, am, aR], as represented mathematically in
Equation 2.82,

(4.31a)

can be simplified for a symmetric triangular fuzzy number for the following case:

(4.31b)

H r r x r x ip i i

i

n

( ) [( ( ) ( )) log ( )]= − +
=
∑ 1 2

2

U A A d( ) log ( )= ∫ 2

0

1

α α

H rp( )

HL A A d( ) log ( ( ))= +∫ 2

0

1

1 μ αα

A x

x a
a a

a x a

x a
a a

a x

L

m L
L m

R

m R
m( ) =

−
−

≤ ≤

−
−

≤ ≤

for

for aaR

0 otherwise

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

a
a a

m
L R= +

2
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The α-cut for a symmetric triangular fuzzy number can be expressed as

(4.32a)

or

(4.32b)

The HL-uncertainty can be evaluated according to Equation 4.30b as follows:

(4.33)

where μ(αA) is the Lebesgue measure of αA. The Lebesgue measure of αA is the length
of the interval as follows:

(4.34)

Substituting Equation 4.32 into Equation 4.33 produces

(4.35)

For nonsymmetric triangular fuzzy numbers, the same Equation 4.35 applies since

(4.36)

α α αA a
a a

a a a
a a

L
L R

L R R
L R= + + −

⎛
⎝⎜

⎞
⎠⎟

− − +⎛
⎝⎜

⎞
⎠⎟

⎡
2 2

,
⎣⎣
⎢

⎤

⎦
⎥ ∈for α [ , ]0 1

α α αA a
a a

a a
a a

L
R L

R R
R L= + −⎛

⎝⎜
⎞
⎠⎟

− − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤
2 2

,
⎦⎦
⎥ ∈for α [ , ]0 1

HL A A d( )
ln( )

ln( ( ))= +∫1
2

1
0

1

μ αα

μ α αα( ) ( ) ( )( )A a a
a a

a aR L
R L

R L= − − −⎛
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⎞
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= − −2
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1

HL A a a d
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R L
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(

= + − −

=
−
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1 1

1
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α α

)) ln( )
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Equation 4.36 is the same as Equation 4.34.

For a trapezoidal fuzzy number A = [aL, amL, amR, aR], the α-cut of A is

(4.37)

The corresponding cardinality is

(4.38)

The HL-uncertainty can be evaluated according to Equation 4.30b as follows:

(4.39)

or

(4.40)

The following expression can be obtained:

(4.41)

It can be shown that Equation 4.41 reduced to Equation 4.36 by substituting amL = amR

= am.

4.4 ENTROPY-LIKE MEASURES

Probability mass functions are used to provide likelihood measures associated with
all possible outcomes. Assuming that there are n possible outcomes, the probability
assignment (P) can be expressed as pi, i = 1, 2, …, n. The uncertainty in this case
has two aspects: (1) nonspecificity due to the existence of more than one possible
outcome and (2) conflict as described by the probability distribution provided by
the probability mass function. The Hartley measure as provided in the previous
section is well suited for the former aspect, but it does not cover the latter. The
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216 Uncertainty Modeling and Analysis in Engineering and the Sciences

Shannon entropy was developed to measure the conflict uncertainty associated with
a probability assignment for finite sets (Shannon, 1948). The Shannon entropy was
extended to measure uncertainty based on basic assignments in evidence theory.
The basic Shannon entropy and its extensions to evidence theory are discussed in
this section.

4.4.1 SHANNON ENTROPY FOR PROBABILITY DISTRIBUTIONS

Shannon (1948) provided an uncertainty measure for conflict that arises from a
probability mass function. This measure is commonly known as the entropy measure,
or the Shannon entropy measure. The entropy measure, S(p), for a probability
distribution of a random variable with discrete values defined over x ∈ X is given by

(4.42)

This entropy measure takes on values larger than 0. Its value is zero if pi = 1
for exactly an i ∈ {1, 2, …, n}, and is maximum for equally likely outcomes of pi

= 1/n for all i. Equation 4.42 can be expressed as

(4.43)

The term in this equation expresses the total evidential claim pertain-

ing to all alternatives that are different from alternative x. This evidential claim
fully conflicts with the evidential claim p(x). Therefore, Equation 4.43 measures
conflict between

(4.44)

where in Equation 4.44 is expressed via its monotone transformation

Equation 4.43 measures the mean (expected) value of the conflict among the evi-
dential claims expressed by a probability distribution function for a finite set of
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mutually exclusive alternatives. This type of uncertainty whose amount is measured
by the Shannon entropy is thus conflict.

Although the Shannon entropy for the equally likely case produces the same
numerical value as the Hartley measure according to Equation 4.7, the two measures
are fundamentally different in that the Hartley measure provides an estimate of the

the conflict type of uncertainty. The relationship between the Hartley measure and
the measure of conflict is illustrated in Figure 4.2. The total of the two types is

It is obvious that the Shannon entropy is applicable only to finite sets of alter-
natives. At first sight, it seems suggestive to extend it to probability density functions,
f, on R (or, more generally, on Rn, n ≥ 1), by replacing in Equation 4.42 p with f
and the summation with integration. This entropy is called the Boltzmann (1894)
entropy as given by (Harr, 1987)

(4.45)

where a = lower limit, b = upper limit, and fX = probability density function on X.
However, there are several reasons why the resulting functional does not qualify
as a measure of uncertainty: (1) it may be negative, (2) it may be infinitely large,
(3) it depends on the chosen coordinate system, and most importantly, (4) the limit
of the sequence of its increasingly more refined discrete approximations diverges
(Klir and Wierman, 1999). These problems can be overcome by the following
modified functional:

(4.46)

which involves two probability density functions, f and f′. Uncertainty is measured
by B in relative rather than absolute terms.

FIGURE 4.2 Relationships among aggregated uncertainty, nonspecificity, and conflict.
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nonspecificity type of uncertainty and the Shannon entropy provides an estimate of

called the aggregated uncertainty, which is discussed in Section 4.4.4.
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When f in Equation 4.46 is a joint probability density function on R2 and f′ is
the product of the two marginal distributions of f, we obtain the information
transmission:

(4.47)

EXAMPLE 4.4 COMPUTATIONAL ASPECTS OF SHANNON ENTROPY

For the probability mass function provided in Table 4.3 (case a), the Shannon entropy
can be computed as follows:

(4.48)

The Shannon entropy becomes largest for equally likely elements (i.e., case b of Table
4.3). For this case, the maximum value is

(4.49)

TABLE 4.3
Probability Mass Function in Example 4.4

Element (xi)
Probability

(case a)
Equally Likely Probabilities

(case b)

x1 0.2 1/3
x2 0.4 1/3
x3 0.4 1/3
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n = 3, although they measure totally different types of uncertainty.

4.4.2 DISCREPANCY MEASURE

This measure is used in expert opinion elicitation (Ayyub, 2001). An expert can be
used to estimate a probability distribution function (P) expressed as pi, i = 1, 2, …,
n. This function is an estimate of a true, yet unknown, probability distribution
function (S) expressed as si, i = 1, 2, …, n. The discrepancy measure is between the
true and provided probability values as given by

(4.50)

This discrepancy measure (SD) is based on the Shannon entropy measure. It can
be used to obtain assessments of opinions obtained from a set of experts with equal
circumstances and conditions, although equal circumstances and conditions might
not be attainable. It provides an assessment of the degree of surprise that someone
would experience, if an estimate pi, i = 1, 2, …, n, is obtained, whereas the real values
are si, i = 1, 2, …, n (Cooke, 1991).

4.4.3 ENTROPY MEASURES FOR EVIDENCE THEORY

4.4.3.1 Measure of Dissonance

Dissonance is a state of contradiction between claims, beliefs, or interests (Yager,
1983). The measure of dissonance, D, can be defined based on evidence theory
as follows:

(4.51)

where m(Ai) > 0; {A1, A2, …, An} = a family set of subsets, i.e., focal points, that
contains some or all elements of the universal set X; m(Ai) = a basic assignment
that is interpreted either as the degree of evidence supporting the claim that a specific
element belongs to the subset Ai but not to any special subset of Ai, or as the degree

of belief that such a claim is warranted; and Pl(Ai) = plausibility

measure, which represents the total evidence or belief that the element of concern
belongs to the set Ai or to any other sets that intersect with Ai, as provided by
Equation 3.29.
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The results in Equation 4.49 match the value in Table 4.1 for the Hartley measure using
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4.4.3.2 Measure of Confusion

The measure of confusion characterizes the multitude of subsets supported by evi-
dence as well as the uniformity of the distribution of strength of evidence among
the subsets. The greater the number of subsets involved and the more uniform the
distribution, the more confusing the presentation of evidence (Klir and Folger, 1988).
The measure of confusion, C, is defined as

(4.52)

where Bel(Ai) = belief measure, which represents the total evidence or belief that
the element of concern belongs to the subset Ai as well as to the various special
subsets of Ai, as provided by Equation 3.28.

EXAMPLE 4.5 UNCERTAINTY MEASURES ASSOCIATED WITH

EXPERT OPINIONS

The assignment provided in Example 4.2 by expert 1 is used to demonstrate the

The measure of dissonance, D, can be computed as follows based on the values in
Table 4.4:

(4.53)

Similar computations can be made for the measure of confusion as follows based on

(4.54)
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computations of the measures of dissonance. Table 4.4 summarizes the computations.

the values in Table 4.5:
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4.4.4 AGGREGATE AND DISAGGREGATE UNCERTAINTY IN 
EVIDENCE THEORY

An aggregate uncertainty (AU) in evidence theory measures the combined nonspec-
ificity and conflict provided by a given body of evidence. The function AU is defined
as a mapping from the set of all belief measures (B) to the nonnegative real line
(R+) as follows:

(4.55)

The measure is given by (Klir and Wierman, 1999)

(4.56)

where PBel is the set of all probability distributions (px) defined over X that satisfy
the following two constraints:

TABLE 4.4
Dissonance Computations for Example 4.5

Subset
(Failure Cause)

Notation

Ai m(Ai) Pl log2(Pl(Ai)) m(Ai) log2(Pl(Ai))

Design error (D) A1 0.1 0.8 –0.32193 –0.032192809
Construction error (C) A2 0.05 0.7 –0.51457 –0.025728659
Human error (H) A3 0.1 0.65 –0.62149 –0.062148838
D ∩ C A4 0.2 0.9 –0.152 –0.030400619
D ∩ H A5 0.1 0.95 –0.074 –0.007400058
C ∩ H A6 0.05 0.9 –0.152 –0.007600155
D ∩ C ∩ H A7 0.4 1 0 0

TABLE 4.5
Confusion Computations for Example 4.5

Subset
(Failure Cause)

Notation

Ai m(Ai) Bel log2(Bel(Ai)) m(Ai) log2(Bel(Ai))

Design error (D) A1 0.1 0.1 –3.32193 –0.332192809
Construction error (C) A2 0.05 0.05 –4.32193 –0.216096405
Human error (H) A3 0.1 0.1 –3.32193 –0.332192809
D ∩ C A4 0.2 0.35 –1.51457 –0.302914635
D ∩ H A5 0.1 0.3 –1.73697 –0.173696559
C ∩ H A6 0.05 0.2 –2.32193 –0.116096405
D ∩ C ∩ H A7 0.4 1 0 0

AU B R: → +

AU Bel p p
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x x

x X
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(4.57a)

(4.57b)

The evaluation of Equation 4.56 can be performed using an iterative process to
obtain the maximum value over the set of all probability distributions. The iterative
process is summarized in the following seven steps, and illustrated using the example
at the end of the section (Harmanec et al., 1996):

Input: A frame of discernment X, and a belief function Bel on X.
Output: AU(Bel), and px for x ∈ X, that satisfies Equation 4.57a and b.

Step 1. Find a nonempty set A ⊆ X such that Bel(A)/⏐A⏐ is maximal. If
more than one set have maximal Bel(A)/⏐A⏐, use the set with the max-
imum cardinality.

Step 2. For x ∈ A, define px = Bel(A)/⏐A⏐.
Step 3. For each B ⊆ X – A, compute Bel(B) = Bel(B ∪ A) – Bel(A).
Step 4. Define a new X as the set difference between the current X and A,

i.e., X – A.
Step 5. If X from step 4 is nonempty and Bel(X) > 0, then go to step 1.
Step 6. If Bel(X) = 0 and X ≠ Ø, then define px = 0 for all x ∈ X.

Step 7. Calculate

The concept of uncertainty disaggregation can be used to determine the com-

Equation 4.56 and the Hartley measure (H) is computed, the measure of conflict
can be evaluated as the difference AU – H. It should be noted that AU is not
sensitive to changes to Bel as used in Equation 4.56. The lack of sensitivity is
attributed to the reallocation of this AU uncertainty to its two components of
nonspecificity and conflict. Klir (2006) provides additional information on disag-
gregation of uncertainty.

EXAMPLE 4.6 AGGREGATE UNCERTAINTY FOR A PARTICULAR ASSIGNMENT

For a universal set X = {a, b, c, d} with the following assignment m

m({a}) = 0.26
m({b}) = 0.26
m({c}) = 0.26
m({a, b}) = 0.07
m({a, c}) = 0.01
m({a, d}) = 0.01

p x X px x

x X

∈ ∈ =
∈
∑[ , ]0 1 1for all and

Bel A p Bel A A Xx

x A

( ) ( )≤ ≤ − ⊆
∈
∑ 1 for all

AU Bel p px x
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( ) log ( ).= −
∈
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ponents of AU as provided in Figure 4.2. Once AU is computed as provided in
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The belief values (Bel) of a particular set (A), and estimates of the probability of
singletons comprising A as the belief divided by the cardinality for the set (A) can be
computed as follows:

The maximum values occur at A = {a, b}. Therefore, the following probabil-

ities can be assigned:

These probabilities can be used to update the belief values as follows:

m({b, c}) = 0.01
m({b, d}) = 0.01
m({c, d}) = 0.01
m({a, b, c, d}) = 0.10

A Bel(A)

{a} 0.26 0.26
{b} 0.26 0.26
{c} 0.26 0.26
{a, b} 0.59 0.295
{a, c} 0.53 0.265
{a, d} 0.27 0.135
{b, c} 0.53 0.265
{b, d} 0.27 0.135
{c, d} 0.27 0.135
{a, b, c} 0.87 0.29
{a, b, d} 0.61 0.203
{a, c, d} 0.55 0.183
{b, c, d} 0.55 0.183
{a, b, c, d} 1 0.25

A Bel(A)

{c} Bel({a, b, c}) – Bel({a, b}) = 0.87 – 0.59 = 0.28 0.28
{d} Bel({a, b, d}) – Bel({a, b}) = 0.61 – 0.59 = 0.02 0.02
{c, d} Bel({a, b, c, d}) – Bel({a, b}) = 1 – 0.59 = 0.41 0.205

Bel A
A
( )

Bel A

A

( )

p pa b= =0 295 0 295. .and

Bel A
A
( )

C6447_C004.fm  Page 223  Tuesday, April 4, 2006  4:10 PM

© 2006 by Taylor & Francis Group, LLC



224 Uncertainty Modeling and Analysis in Engineering and the Sciences

The maximum values occur at A = {c}. Therefore, the following probability

can be assigned:

pc = 0.28

Using the value pc = 0.28, the Bel({d}) can be computed as follows:

Bel({d}) = Bel({a,b,c,d}) – Bel({a,b}) – Bel({d}) = 1 – 0.59 – 0.28 = 0.13

Evaluating Equation 4.56 produces the following aggregate uncertainty:

(4.58)

4.5 FUZZINESS MEASURE

Fuzziness as represented by fuzzy set theory results from uncertainty in belonging
to a set. Fuzzy sets are sets that have imprecise boundaries. For a given fuzzy set

may also be viewed as a measure of compatibility between x and the concept

complement. Yager (1979, 1980b) employed this property to define the following
measure of fuzziness:

(4.59)

where f = fuzziness measure of a fuzzy, finite set A; X = universal set; = comple-
ment of A; and A(x) membership value of x to A. Fuzziness is measured here by the
lack of distinction between a fuzzy set and its complement. Using the definition of
the standard complement provided by Equation 2.54, Equation 4.59 can be written as

(4.60a)
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represented by A. The membership value is in the range [0, 1], as described in Section

A, each element x of the universal set X has a membership value A(x) to A, which

2.4. Each fuzzy set has a unique property of having nonempty intersection with its



Uncertainty Measures 225

The fuzziness measure becomes zero as the set becomes crisp with A(x), taking
only values of zeros and ones, and reaches maximum at A(x) = 0.5 for all x ∈ X.
For uncountable sets, the measure is

(4.60b)

EXAMPLE 4.7 FUZZINESS OF A SYMMETRIC FUZZY NUMBER

The symmetric triangular fuzzy number A = [aL, am, aR], with X = [aL, aR], is provided
in Equation 4.31a as

where

The measure of fuzziness according to Equation 4.60b is

(4.61)

Substituting Equation 4.31a into Equation 4.61 produces

(4.62)

The expression provided by Equation 4.62 is applicable to both symmetric and non-
symmetric fuzzy numbers.

For a trapezoidal fuzzy number A = [aL, amL, amR, aR], the measure is
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(4.63)

4.6 APPLICATION: COMBINING EXPERT OPINIONS

In some applications, expert opinions in the form of subjective probabilities of an
event need to be combined into a single value, and perhaps confidence intervals for
their use in probabilistic and risk analyses. Cooke (1991) and Rowe (1992) provided
a summary of methods for combining expert opinions. The methods can be classified
into consensus methods and mathematical methods (Clemen, 1989; Ferrell, 1985).
The mathematical methods can be based on assigning equal weights to the experts
or different weights. This section provides a summary of classical methods for
combining expert opinions.

4.6.1 CONSENSUS COMBINATION OF OPINIONS

A consensus combination of opinions is arrived at through a facilitated discussion
among the experts to some agreeable common values, with perhaps a confidence
interval or outer quartile values. The primary shortcomings of this method are (1)
socially reinforced irrelevance or conformity within a group, (2) dominance of
strong-minded or strident individuals, (3) group motive of quickly reaching an
agreement, and (4) group-reinforced bias due to common background of group
members. The facilitator of an expert opinion elicitation session should play a major
role in reducing group pressure, individual dominance, and biases.

4.6.2 PERCENTILES FOR COMBINING OPINIONS

A p-percentile value (xp) for a random variable based on a sample is defined as the
value of the parameter such that p% of the data is less than or equal to xp. On the

value. Aggregating the opinions of experts can be based on computing the 25th,
50th, and 75th percentile values of the gathered opinions. The computation of these

summary of the needed equations for 4 to 20 experts. For example, seven experts
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basis of this definition, the median value is considered to be the 50th percentile

values depends on the number of experts providing opinions. Table 3.6 provides a
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provided the following subjective probabilities of an event, which are sorted in
decreasing order:

Probabilities =
{1.0E-02, 5.0E-03, 5.0E-03, 1.0E-03, 1.0E-03, 5.0E-04, 1.0E-04} (4.64)

given by

25th percentile = 5.0E-03 (4.65a)

50th percentile (median) = 1.0E-03 (4.65b)

75th percentile = 7.5E-04 (4.65c)

4.6.3 WEIGHTED COMBINATIONS OF OPINIONS

French (1985) and Genest and Zidek (1986) provided summaries of various methods
for combining probabilities and example uses. For E experts with the ith expert
providing a vector of n probability values, p1i, p2i, …, pni, for sample space outcomes
A1, A2, …, An, the E expert opinions can be combined using weight factors w1, w2,
…, wE, that sum up to 1, using one of the following selected methods:

1. Weighted arithmetic average: The weighted arithmetic mean for outcome
j can be computed as follows:

(4.66)

The weighted arithmetic means are then normalized using their total to
obtain the 1-norm probability for outcome for each outcome as follows:

(4.67)

2. Weighted geometric average: The weighted geometric mean for outcome
j can be computed as follows:

(4.68)

Weighted arithmetic mean for outcome j M j= 1( )) =
=

∑w pi ji

i

E

1

1-norm probability for outcome j P j
M j= =1

1( )
( ))

( )M k
k

n

1

1=
∑

Weighted geometric mean for outcome j M j= 0( ) ==
=

∏ ( )pji
w

i

E

i

1
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The median and arithmetic quartile points according to Table 3.6 are respectively
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The weighted geometric means are then normalized using their total to
obtain the 0-norm probability for outcome for each outcome as follows:

(4.69)

3. Weighted harmonic average: The weighted harmonic mean for outcome
j can be computed as follows:

(4.70)

The weighted harmonic means are then normalized using their total to
obtain the –1-norm probability for outcome for each outcome as follows:

(4.71)

4. Maximum value: The maximum value for outcome j can be computed as
follows:

(4.72)

The maximum values are then normalized using their total to obtain the
∞-norm probability for outcome for each outcome as follows:

(4.73)

5. Minimum value: The minimum value for outcome j can be computed as
follows:

(4.74)
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The minimum values are then normalized using their total to obtain the
–∞-norm probability for outcome for each outcome as follows:

(4.75)

6. Generalized weighted average: The generalized weighted average for
outcome j can be computed as follows:

(4.76)

The generalized weighted averages are then normalized using their total
to obtain the r-norm probability for outcome for each outcome as follows:

(4.77)

where for r = 1, 0, –1, ∞, and –∞, cases 1 to 5 result, respectively.

EXAMPLE 4.8 AGGREGATION OF EXPERT OPINIONS

Five experts provided the following occurrence probabilities for an event E:

P(E) = [0.001, 0.01, 0.002, 0.008, 0.005] (4.78)

The experts were assigned the following weight factors based on their abilities as
perceived by an analyst:

Weight factors = [0.1, 0.3, 0.25, 0.15, 0.2] (4.79)

The weighted, aggregated opinion of the five experts can be computed using applicable

the experts are spread out over one order of magnitude. Therefore, the geometric or
the harmonic means, in this case, provide a better representation of the aggregated
means. Since only one value is one order of magnitude higher than the lowest value,
the arithmetic mean is giving a likable answer. Maximum and minimum aggregates
provide the extreme values and are useful only for cases where the risk associated with
any decision made based on the aggregated result is high, and therefore the aggregation
process is desired to represent the best or the worst situation, as the case may be.
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−-norm probability for outcome j P j

M
( ) ∞∞

−∞
=

∑
( )

( )

j

M k
k

n

1

Generalized weighted average for outcome j = MM j w pr i ji
r

i

E
r

( )

/

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑

1

1

r j P j
M j

r
r-norm probability for outcome = =( )
( ))

( )M kr

k

n

=
∑

1

C6447_C004.fm  Page 229  Tuesday, April 4, 2006  4:10 PM

© 2006 by Taylor & Francis Group, LLC

methods of Section 4.6.3 as provided in Table 4.6. The probability values provided by
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EXERCISE PROBLEMS

4.1. For the following five possible alternatives represented by the x values in
the table, compute the Hartley uncertainty measure for these possible
alternatives:

Now assume that the above probability mass function applies to these five
values; compute the Shannon entropy uncertainty measure. Discuss their
meanings.

4.2. For the following five possible alternatives represented by the x values in
the table, compute the Hartley uncertainty measure for these possible
alternatives:

Now assume that the above probability mass function applies to these five
values; compute the Shannon entropy uncertainty measure. Discuss their
meanings.

4.3. For the following assignment, compute the evidence nonspecificity mea-
sure for each expert and for the combined opinion:

TABLE 4.6
Aggregation of Expert Opinions for Example 4.8

Weighted Averages

Arithmetic Geometric Harmonic Maximum Minimum
No. p(i) w(i) [w(i)][p(i)] [p(i)]w(i) w(i)/p(i) p(i) p(i)

1 0.001 0.1 0.0001 0.50119 100.00 0.0010 0.0010

2 0.01 0.3 0.0030 0.25119 30.00 0.0100 0.0100

3 0.002 0.25 0.0005 0.21147 125.00 0.0020 0.0020

4 0.008 0.15 0.0012 0.48469 18.75 0.0080 0.0080

5 0.005 0.2 0.0010 0.34657 40.00 0.0050 0.0050

Aggregated opinion 0.0058 0.00447 0.00319 0.0100 0.0010

x 10 20 30 40 50

PX(x) 0.40 0.30 0.20 0.05 0.05

x 1 2 3 4 5

PX(x) 0.10 0.20 0.40 0.20 0.10
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4.4. For the following assignment, compute the evidence nonspecificity mea-
sure for each expert and for the combined opinion:

4.5. Redo Example 4.6 using the following assignment:

4.6. For the triangular set defined as A = [10, 15, 20] and the trapezoidal set
defined as B = [10, 12, 18, 20], compute their fuzziness uncertainty measures.

4.7. For the triangular set defined as A = [10, 15, 20] and the trapezoidal set
defined as B = [10, 12, 18, 20], compute the fuzziness uncertainty mea-
sures for outcomes of the following:
a. A + B
b. A – B

Subset Expert 1 Expert 2
Ai m1(Ai) m2(Ai)

A 0.05 0.1
B 0.05 0.1
C 0.05 0.1
A ∪ B 0.2 0.3
A ∪ C 0.2 0.1
B ∪ C 0.05 0.1
A ∪ B ∪ C 0.4 0.2

Subset Expert 1 Expert 2
Ai m1(Ai) m2(Ai)

A 0.1 0.1
B 0.1 0.1
C 0.1 0.1
A ∪ B 0.3 0.1
A ∪ C 0.2 0.1
B ∪ C 0.1 0.1
A ∪ B ∪ C 0.1 0.4

m({a}) = 0.25
m({b}) = 0.25
m({c}) = 0.25
m({a, b}) = 0.05
m({a, c}) = 0.1
m({a, d}) = 0.05
m({b, c}) = 0.01
m({b, d}) = 0.01
m({c, d}) = 0.01
m({a, b, c, d}) = 0.02
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c. A × B
d. A/B
e. A + B, with the constraint that a = b where a ∈ A and b ∈ B
f. A – B, with the constraint that a = b where a ∈ A and b ∈ B
g. A × B, with the constraint that a = b where a ∈ A and b ∈ B
h. A/B, with the constraint that a = b where a ∈ A and b ∈ B
Compare and discuss your results.

4.8. Redo Problem 4.7 with A = [1, 2, 3] and B = [2, 3, 4, 5].
4.9. Redo Problem 4.3 and compute the measure of dissonance.
4.10. Redo Problem 4.3 and compute the measure of confusion.
4.11. Redo Problem 4.4 and compute the measure of dissonance.
4.12. Redo Problem 4.4 and compute the measure of confusion.
4.13. Compute the 25th percentile, median, and 75th percentile aggregation of

the following expert opinions: [0.1, 0.2, 0.1, 0.3, 0.1, 0.2, 0.15].
4.14. Compute the 25th percentile, median, and 75th percentile aggregation of

the following expert opinions: [100, 120, 110, 100, 90, 150, 110, 120,
105].

4.15. Five experts provided the following occurrence probabilities for an event
E: [0.001, 0.001, 0.002, 0.003, 0.003].
The experts were assigned the following weight factors based on their
abilities as perceived by an analyst: [0.2, 0.2, 0.2, 0.2, 0.2].
Compute the weighted, aggregated opinion of the five experts using all

methods and discuss. Provide recommendations on the use of various
methods.
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applicable methods of Section 4.7.3. Compare the results from the various
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5

 

Uncertainty-Based 
Principles and 
Knowledge Construction

 

5.1 INTRODUCTION

 

relating to knowledge construction. Knowledge can be constructed based on infor-
mation and data using synthesis and cognitive abilities. Uncertainty measures offer
the means to analyze information and data content and associated uncertainties. For
example, expert opinions are propositions that do not necessarily meet the justified
true belief (JTB) requirements of knowledge, and hence can contain both useful
information and uncertainties. In combining these opinions, we have a vested interest
in using a process that utilizes all the information contents provided by the experts
and that can account for the various uncertainties in producing a combined opinion.
The uncertainties can include nonspecificity, conflict, confusion, vagueness, biases,
varying reliability levels of sources, and other types.

Chapter 4 presents methods for measuring uncertainty. These measures deal with
the various uncertainty types. In combining expert opinions, we can develop expert
opinion aggregation methods that are either information based or uncertainty based.
In fact, information and uncertainty can be argued to represent a duality, since
information can be considered useful by a cognitive agent if this information results
in reducing its uncertainty under prescribed conditions. Therefore, the amount of
relevant information gained by the agent is related and can be measured by the
amount of uncertainty reduced. This concept of uncertainty-based information was
introduced by Klir (1991a). The various uncertainty measures presented in Chapter
4 can deal with various uncertainty types and offer strengths and weaknesses with
commensurate complexity and computational demands. The selection of an appro-
priate uncertainty measure or combinations thereof is problem dependent, and a
trade-off decision between the computational effort needed and the return on this
effort in the form of a refined decision or a combination of expert opinions needs
to be made.

The objective of this chapter is to present methods for constructing knowledge
based on uncertainty and information synthesis. Three 

 

uncertainty-based principles

 

(also called criteria) can be used to combine expert opinion: (1) the principle of
minimum uncertainty, (2) the principle of maximum uncertainty, and (3) the principle
of uncertainty invariance. These three principles are described in subsequent sec-
tions. The principles of minimum and maximum uncertainty were developed and
had great utilities in classical information theory, commonly referred to as 

 

the
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The uncertainty measures discussed in Chapter 4 can be used for decision making
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principles of minimum and maximum entropy

 

. In addition, the assumption of closed
world is examined and discussed, and open-world modeling methods for knowledge
construction are provided.

 

5.2 CONSTRUCTION OF KNOWLEDGE

 

Decision situations commonly require constructing knowledge from information.
Knowledge construction starts with data collection and information gathering

rance types need to be identified, and their levels should be assessed in order to
quantify and qualify their contribution to modeling the decision situation. Klir
(2006) provide analytical methods that can be used for modeling various igno-
rance types and assessing their magnitudes or levels. Also, uncertainty measures
are provided to assess magnitudes or levels of uncertainty. These uncertainty
measures can be defined to be nonnegative real numbers and should be inversely
proportional to the strength and consistency in evidence as expressed in the
theory employed; i.e., the stronger and more consistent the evidence, the smaller
the amount of uncertainty. Such uncertainty measures can be constructed to assess
collected information, such as opinions rendered by one expert on some issue
of interest, or opinions rendered by several experts on the same issue, or collected
data and information.

Ignorance models, uncertainty measures, and data collected can be entered into
a systematic process to construct knowledge. This knowledge construction process

can be defined as sensed objects, things, places, processes, and information and
knowledge communicated by language and multimedia. Information can be viewed
as a preprocessed input to our intellect system of cognition, and knowledge acqui-
sition and creation. Information can lead to knowledge through investigation, study,
and reflection. However, knowledge and information about the system might not
constitute the eventual evolutionary knowledge state about the system as a result of
not meeting the justification condition in JTB or the ongoing evolutionary process
or both. Knowledge is defined in the context of the humankind, evolution, language
and communication methods, and social and economic dialectic processes, and
cannot be removed from them. As a result, knowledge would always reflect the
imperfect and evolutionary nature of humans that can be attributed to their reliance
on their senses for information acquisition; their dialectic processes; and their mind
for extrapolation, creativity, reflection, and imagination with associated biases as a
result of preconceived notions due to time asymmetry, specialization, and other
factors. An important dimension in defining the state of knowledge and truth about
a system is nonknowledge or ignorance.

Opinions rendered by experts that are based on information and existing knowl-
edge can be defined as preliminary propositions with claims that are not fully justified
or justified with adequate reliability but are not necessarily infallible. Expert opinions
are seeds of propositional knowledge that do not meet one or more of the conditions
required for the JTB with the reliability theory of knowledge. They are valuable, as
they might lead to knowledge expansion, but decisions made based on them some-
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that can include various sources and formats as identified in Figure 1.14. Igno-

must have a dialectic nature, as schematically depicted in Figure 1.16. Information
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them false by others or in the future.
The relationships among knowledge, information, opinions, and evolutionary

include communication methods such as languages, visual and audio formats, and
other forms. Also, they include economic schools of thought and political and social
dialectic processes within peers, groups, colonies, societies, and the world.

Complex decision situations can challenge human ability to construct knowl-
edge from information. Humans as complex, intelligent systems have the ability
to anticipate the future and learn and adapt in ways that are not yet fully understood.
Engineers and scientists who study or design systems have to deal with complexity
more often than ever, hence the interest in the field of complexity. The study of
complexity led to developing theories, such as chaos and catastrophe theories.
Even if complexity theories do not produce solutions to problems, they can still
help us to understand complex systems and perhaps direct experimental studies.
Theory and experiment go hand in glove, therefore providing opportunities to
make major contributions.

Complexity can be classified into two broad categories: (1) complexity with

complexity can be dealt with to some extent, but our analytical and cognitive abilities
are limited, as also discussed in Chapter 1.

 

5.3 MINIMUM UNCERTAINTY PRINCIPLE

 

The

 

 principle of minimum uncertainty

 

 is basically an arbitration basis. It facilitates
the selection of meaningful alternatives from solution sets obtained by solving
problems in which some of the initial information is inevitably reduced in the
solutions to various degrees. According to this principle, we should accept only
those solutions in a given solution set for which the loss of the information is as
small as possible. This means, in turn, that we should accept only solutions with
minimum uncertainty.

Examples of problems for which the principle of minimum uncertainty is appli-
cable are simplification problems and conflict resolution problems of various types,
for example, in simplifying a finite-state nondeterministic system by coarsening state
sets of its variables. This simplification requires that each state set be partitioned in
a meaningful way (e.g., preserving a given order of states) into a given number of
subsets. This simplification can usually be accomplished in many different ways.
The minimum uncertainty principle allows us to compare the various competing
partitions by their amount of relevant uncertainty (predictive, diagnostic, etc.) and
consider only those with minimum uncertainty. As another example, let us consider
a set of systems, 

 

S

 

1

 

, 

 

S

 

2

 

, …, 

 

S

 

n

 

, that share some variables. These systems may be
locally inconsistent in the sense that projections from individual systems into vari-
ables they share (e.g., marginal probabilities, marginal bodies of evidence, etc.) are
not the same. To resolve the local inconsistencies, we need to replace each system

 

S

 

i

 

 

 

with another system, 

 

C

 

i

 

, such that systems 

 

C

 

1

 

, 

 

C

 

2

 

, …, 

 

C

 

n

 

 be locally consistent.
This simplification, of course, can be done in many different ways, but the proper
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structure and (2) complexity without structure, as discussed in Chapter 1. The

times might be risky propositions since their preliminary nature might lead to proving

epistemology are schematically shown in Figure 1.16. The dialectic processes
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way to do that is to minimize the loss of information caused by these replacements.
Denoting the relevant uncertainty measure by 

 

U

 

, the principle of minimum uncer-
tainty is applicable to deal with this problem by formulating the following optimi-
zation problem:

(5.1)

subject to the following three types of constraints:

1. Axioms of the respective theory in which systems 

 

S

 

i

 

 

 

and 

 

C

 

i

 

 (

 

i

 

 = 1, 2, …,

 

n

 

) are formulated
2. Equations by which all conditions of local consistency among systems

 

C

 

1

 

, 

 

C

 

2

 

, …, 

 

C

 

n 

 

are defined
3.

 

U

 

(

 

C

 

i

 

) 

 

≥

 

 

 

U

 

(

 

S

 

i

 

) for all 

 

i

 

 = 1, 2, …, 

 

n

 

 to avoid introducing bias

Other examples include conflict resolution problems in cases of gathering evi-
dence in failure classification.

An analogy can be made in engineering and the sciences where there is the
need to select among alternative solutions based on information given on a
problem for which each solution has a different level of information retention,
bias, and error uncertainties. In this analogy, engineers and scientists often encoun-
ter a need to fit a curve representing an analytical model to empirical results. This
curve fitting commonly involves the computation of model parameters with each
set of parameters, leading to various levels of information retention and uncer-
tainty. An optimal solution in this case can be defined as the solution that maxi-
mizes information retention, i.e., minimizes uncertainty. This is analogous to the
principle of least squares in regression analysis (Ayyub and McCuen, 2003),
although it should be noted that the least squares principle is not an information
uncertainty principle. Christensen (1985) used maximum and minimum entropy
in dealing with curve fitting.

 

5.4 MAXIMUM UNCERTAINTY PRINCIPLE

 

The 

 

principle of maximum uncertainty

 

 is essential for any problem that involves

 

ampliative reasoning

 

 involving the drawing of conclusions that are not entailed in
the given premises. In such cases, we should intuitively use all information supported
by available evidence, but without unintentionally adding information unsupported
by the given evidence. This principle employs the relationship between information
and uncertainty by requiring any conclusion resulting from any ampliative inference
to maximize the relevant uncertainty within constraints representing given premises.
As a result, we fully limit our inference ability by our ignorance when making
inferences beyond the premise information domain, and we fully utilize information

Minimize [ ( ) ( )U C U Si i

i

n

−
=

∑
1
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provided by the premises. This principle therefore provides us with assurances of
maximizing our nonreliance on information not contained in the premises.

Let 

 

f

 

 and 

 

U

 

(

 

f

 

) denote, respectively, a relevant uncertainty function (probability
or possibility distribution function, basic probability assignment function, etc.) and
the associated measure of uncertainty. Then, the principle of maximum uncertainty
is operationally formulated in terms of a generic optimization problem of determin-
ing 

 

f

 

, for which 

 

U

 

(

 

f

 

) reaches its maximum under the following constraints:

1. Axioms upon which the uncertainty function 

 

f

 

 is based
2. Constraints 

 

E

 

1

 

, 

 

E

 

2

 

, …, which represent partial information about 

 

f

 

 (e.g.,
marginal distributions, lower or upper bounds, values of 

 

f

 

 for some
sets, etc.)

The principle of maximum uncertainty appeals to engineers and scientists since
it results in inferences and solutions that do go beyond premises given. For example,
whenever we make predictions based on a given scientific model, we employ ampli-
ative reasoning. Similarly, estimating microstates from the knowledge of relevant
macrostates and partial knowledge of the microstates (as in image processing and
many other problems) requires ampliative reasoning. The problem of the identifica-
tion of an overall system from some of its subsystems is another example that
involves ampliative reasoning, and hence the principle of maximum uncertainty. For
example, predictive, scientific models can be viewed as inference models using
premises. In system identification, statements on a system or subsystems need to be
made based on partial knowledge of the system, hence the need to make sure that
our inferences do not go beyond information and premises available to us. In
selecting a likelihood distribution, the principle of maximum uncertainty can provide
us with the means of complete uncertainty retention and not using information that
we do not possess.
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The principle of maximum uncertainty can be used to select the distribution type that
maximizes uncertainty for given constraints. The entropy uncertainty measure can be
used for this purpose. Although the Boltzman measure of Equation 4.45 does not meet

is used in the example to illustrate the use of the maximum uncertainty principle based
on readily available works by Harr (1987). The deficiencies of this measure include
lack of invariance with respect to transformation of the coordinate system, taking

types that maximize uncertainty for a selected list of constraints. For example, the
constraints 
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 and

 

(5.2)f x dxX
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all the requirements of a formal uncertainty measure, as discussed in Section 4.4.1, it

negative values, and not a limiting case of a finite set. Table 5.1 summarizes distribution
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can be used to maximize the entropy according to Equation 4.35 as follows:

 

(5.3)

 

Using the method of Lagrange multipliers, the following equation can be obtained:

 

(5.4)

 

This equation has the following solutions:

 

TABLE 5.1
Maximum Entropy Probability Distributions

 

Constraints
Maximum Entropy

Distribution

 

Minimum value = 

 

a

 

Maximum value = 

 

b

 

Uniform

Expected value = 

 

μ

 

Exponential

Expected value = 

 

μ

 

Standard deviation = 

 

σ

 

2

 

Normal

Expected value = 

 

μ

 

Standard deviation = 

 

σ

 

2

 

Finite range of a minimum value = 

 

a

 

 and a maximum value = 

 

b

 

Beta

where 

 

p

 

i 

 

= probability of 

 

i

 

 independent and identical events 
occurring in an interval 

 

T

 

 with an expected rate of occurrence 
of events of 

 

λ
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(5.5a)

(5.5b)

 

Since 

 

λ

 

 is a constant, 

 

f

 

 must be a constant; i.e., 

 

f 

 

= 

 

c

 

, leading to the following expression
for 

 

f

 

:

 

(5.6a)

 

Therefore,

 

(5.6b)

 

The corresponding entropy is

 

(5.6c)

 

The cases in Table 5.1 were developed by Reza (1961), Goldman (1968), and Tribus
(1969).
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This section contains an example use of uncertainty measure for aggregating expert
opinions (Lai, 1992; Ayyub and Lai, 1992; Lai and Ayyub, 1994). The example dem-
onstrates the use of uncertainty measure to combine opinions in defining failures.

The measures of dissonance and confusion, which are constructed in the framework
of the theory of evidence, are applied herein for aggregating the expert opinions.

Let 

 

α

 

1

 

, 

 

α

 

2

 

, …, 

 

α

 

N

 

 be fuzzy failure definitions for some specified failure mode expressed
as structural response and degree of belief for failure definitions that are obtained from

  

however, it can be viewed as a degree of belief for failure occurrence. These definitions
can be viewed as functions representing the same failure state expressed by the 

 

N
experts. The combined failure definition or function can be obtained by aggregating
the N expert opinions as shown in Figure 5.1. The aggregated function is noted as α0

in Figure 5.1. The lower bound, rL, and the upper bound, rU, of structural response for
the entire ranges of all functions, and some specified structural response r* within the
lower bound and the upper bound, are shown in the figure. In this approach, the values
of the N fuzzy failure functions at the specified structural response r* are interpreted
as a basic assignment for experts 1, 2, …, N, i.e., m({1}) = α1(r*), m({2}) = α2(r*),
…, m({N}) = αN(r*). Since each basic assignment is given for the corresponding set
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experts 1, 2, …, N, as shown in Figure 5.1. The vertical axis is called the failure level;
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of individual experts, there is no evidence supporting the unions of any other combi-
nations of expert opinions. This means that the basic assignment corresponds to the
sets of singletons only; however, the summation of all the basic assignments is required
to be equal to 1.0. Therefore, if the summation of the basic assignment is less than
1.0, i.e., m({1}) + m({2}) + … + m({N}) < 1.0, the difference between the summation
of the basic assignment and 1 should be distributed to the set of singletons. Since there
is no particular preference for any set of individual experts, the difference should be
distributed to the sets of singletons by normalization with respect to the summation
such that the normalized summation is equal to 1.0.

Once the basic assignments are properly determined, Equations 4.51 and 4.52 are used,
respectively, to calculate the measure of dissonance (D) and the measure of confusion
(C) for the specified structural responses. It should be noted that the measure of
dissonance is equal to the measure of confusion in this case, since the nonzero basic
probability assignments exist only for the sets of singletons. Under this circumstance,
both the measures are equal to the Shannon entropy (S) (Shannon, 1948). Therefore,
the measure of uncertainty can be calculated as the following:

(5.7)

where m({i}) is the adjusted basic assignment for expert i. It is expected that the
maximum measure of uncertainty occurs wherever all the expert opinions and a com-
bined opinion are of the same value at some structural response level, i.e., α1(r*) =
α2(r*) = … = αN(r*) = α0(r*). Therefore, the closer the experts’ opinions and their
combination to some common level, the larger the measure of uncertainty. The total
measure of uncertainty that is calculated by integrating the measure of uncertainty over
the entire range of no common opinion can be treated as some kind of index to measure
the uniformity (or agreement) of the experts’ opinions. The closer the experts’ opinions
and the combined opinion to uniformity, the larger the total measure of uncertainty.

FIGURE 5.1 Fuzzy failures according to several experts.

0

0.25

0.5

0.75

1

Structural response, such as, deflection

Fa
ilu

re
 le

ve
l

α1 α2 α3
α0

αN

rL rUr∗

D C S m i m i
i

N

= = = −
=

∑ ({ }) log ( ({ }))2

1

C6447_C005.fm  Page 240  Tuesday, April 4, 2006  4:16 PM

© 2006 by Taylor & Francis Group, LLC



Uncertainty-Based Principles and Knowledge Construction 241

Therefore, the aggregated linear function α0 can be obtained by maximizing the total
measure of uncertainty.

Now let us examine a particular case by considering the resisting moment vs. curvature
relationship of the hull structure of a ship subjected to a hogging moment only. The
transition from survival to failure in the crisp case was assumed to be attained at a
curvature level of φf = 0.3 × 10–5. In order to illustrate the application of uncertainty
measure in aggregating expert opinions, two fuzzy failure definitions are selected as
α1 and α2 in Figure 5.2. A linear function α0 of fuzzy failure definition is considered
to be the aggregated expert opinion. The lower bound and the upper bound of curvature
range for the fuzzy failure function α0 are also shown as φL and φU in the figure. In
this example, the two fuzzy failure definitions are expressed by the following equations:

Fuzzy definition 1: α1 = 5 × 105 φ – 1 (5.8a)

Fuzzy definition 2: α2 = 20 × 105 φ – 5.5 (5.8b)

The aggregation failure function is assumed in the following linear form:

α0 = a φ – b (5.9)

where a = slope of the linear function of fuzzy failure definition and b = intercept. The
slope a and the intercept b can then be derived as:

(5.10a)

b = a φL (5.10b)

FIGURE 5.2 Fuzzy failures according to two experts.
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In addition, the aggregated linear function was selected to pass through the point (φ,
α) = (0.3 × 10–5, 0.5) since the two fuzzy failure functions proposed by experts pass
through the same point. Therefore, the parameters φL and φU (or a and b) are related.
Only one parameter is needed to uniquely define the function α0. The lower bound φL

of curvature range is chosen as the independent variable that controls the curve α0.
Once the lower bound φL is assumed, the upper bound φU can be calculated using the
following equation:

φU = φL + 2 (0.3 × 10–5 – φL) = 0.6 × 10–5 – φL (5.11)

The corresponding slope and intercept can then be evaluated using Equation 5.10a and
b. The basic probability assignments for all possible sets of expert opinions are shown
in the following:

(5.12a)

(5.12b)

(5.12c)

m({1,2}) = m({2,0}) = m({0,1}) = m({1,2,0}) = 0 (5.12d)

L

of uncertainty can be calculated using Equation 5.7 using integration over the entire
range φ as follows:

(5.13)

φ
range φL to φU. The results of the total measure of uncertainty for different fuzzy failure
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where m  is the assignment at the φ value and the integration is performed over the

For a particular lower bound φ , the basic assignments are constructed and the measure

definitions are shown in Figure 5.3 and Table 5.2. The aggregated linear function was
obtained at the maximum total measure of uncertainty. From the results shown in Figure
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4.3, the maximum total measure of uncertainty occurs where the range of curvature is
from 0.255 to 0.345, as indicated in Table 5.2. The resulting aggregated fuzzy failure
function is therefore expressed as

α0 = 11.1 × 105 φ – 2.83

The slope of this aggregated fuzzy failure function (a = 11.1 × 105), which is in between
the two slopes proposed by the experts (a = 5 × 105 for α1 and 20 × 105 for α2), is
consistent with intuition.

FIGURE 5.3 Total measure of uncertainty for fuzzy failure definitions.

TABLE 5.2
Total Measure of Uncertainty for Fuzzy Failure Definitions

Lower Bound of
Curvature for αααα0

Slope (a) 
for αααα0 Intercept (b) for αααα0

Total Uncertainty
Measure (Equation 5.13)

0.200 × 10–5 5.000 × 10–5 1.000 0.30795
0.205 × 10–5 5.263 × 10–5 1.079 0.30833
0.210 × 10–5 5.556 × 10–5 1.167 0.30868
0.215 × 10–5 5.882 × 10–5 1.265 0.3090
0.220 × 10–5 6.250 × 10–5 1.375 0.30928
0.225 × 10–5 6.667 × 10–5 1.500 0.30954
0.230 × 10–5 7.143 × 10–5 1.643 0.30976
0.235 × 10–5 7.692 × 10–5 1.808 0.30995
0.240 × 10–5 8.333 × 10–5 2.000 0.3101
0.245 × 10–5 9.091 × 10–5 2.227 0.31022
0.250 × 10–5 10.000 × 10–5 2.500 0.3103
0.255 × 10–5 11.111 × 10–5 2.833 Max = 0.31032
0.260 × 10–5 12.500 × 10–5 3.250 0.31028
0.265 × 10–5 14.286 × 10–5 2.786 0.31017
0.270 × 10–5 16.667 × 10–5 4.500 0.30995
0.275 × 10–5 20.000 × 10–5 5.500 0.30957
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EXAMPLE 5.3 FAILURE CLASSIFICATION BASED ON EXPERT OPINIONS

The example demonstrates the use of uncertainty measures to classify failure to pre-
defined failure categories (Lai, 1992; Ayyub and Lai, 1992; Lai and Ayyub, 1994).

Consider an actual structural response φA that is an observed level that can be repre-
sented as event A in Figure 5.4. Categories I and II represent serviceability failure and
partial collapse, respectively, according to the expert opinions. Category I is called the
lower failure category, and Category II is called the higher failure category. Since the
magnitude of the structural response φA is located in the intersection of serviceability
failure and partial collapse, confusion exists for the given body of evidence represented
by event A and performance categories I and II. Using the measure of confusion, the
less distinguishable the two events, the larger the degree of confusion between them.
Therefore, if event A is less distinguishable with category I than with category II, event
A has a higher level of confusion with category I than with category II. In this case,
event A is classified into category I (serviceability failure). One the contrary, if event
A has a higher level of confusion with category II, event A is classified into category
II (partial collapse).

A

0.35 × 10–5, is an assumed actual structural response. Since this level of damage is
located in the intersection of two categories, i.e., high serviceability failure and partial
collapse, confusion exists in classifying the observed (specified) structural response to
a failure category. The measure of confusion is therefore computed herein for the
purpose of failure classification. The measure of confusion for each body of evidence

from Table 5.3 that the measure of confusion for high serviceability failure (CA,H =
0.9183) is larger than the measure of confusion for partial collapse (CA,P = 0.5586).

In this case example, six events of structural performance are defined for convenience
to track and model structural performance. The following fuzzy events are defined for

FIGURE 5.4 Two failure events.
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can also be evaluated and compared. The results are shown in Table 5.3. It is evident

As an example, consider Figure 5.5; a specified (or observed) curvature level, φ  =

this purpose as shown in Figure 5.6: complete survival, low serviceability failure,
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serviceability failure, high serviceability failure, partial collapse, and complete collapse.
These events are not necessarily mutually exclusive, as shown in the figure, since
intersections might exist between adjacent events. It is of interest to classify some
actual (or observed) structural performance or response to one of these failure catego-
ries, i.e., events. If the structural response is located within the range of just one event
of structural performance, the structural response is classified to this failure category.
If the structural response is located over two or more failure events, confusion in
classifying the actual structural response into any of the failure categories results.
Therefore, the measure of confusion is used in this case for the purpose of failure
classification. These six events were selected for the purpose of illustrating a damage
spectrum. The definitions of the six events are not interpreted as “at least”; e.g., although
the event serviceability failure is commonly interpreted as at least serviceability failure,
it is not treated as such in this example. Therefore, the failure events are treated as not
nested. Lai (1992) examined both nested and nonnested failure events.

FIGURE 5.5 Computational example using two failure events.

TABLE 5.3
The Measure of Confusion for an Actual Response
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Partial Collapse
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Equation 5.7
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0.3333 ln(0.333)]
= 0.9183

= [0.8696 ln(0.8696) + 
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For the nonnested case, measures of confusion for the six categories are computed as
φA = 0.35 × 10–5 and were incrementally increased from the left to the right in Figure
5.6. Since the event with the largest measure of confusion is selected for the structural
response classification, the domains of all six classification events can be determined
by comparing the degrees of confusion. Event A has a confusion measure with each
event gradually increasing until a maximum is reached, followed by a decrease as φ

a step function. The numbers in boxes indicate the event classification: 1 = complete
survival, 2 = low serviceability failure, 3 = serviceability failure, 4 = high serviceability
failure, 5 = partial collapse, and 6 = complete collapse. The confusion measure was

the classification of an event changes from a lower failure category to an adjacent
higher failure category at a curvature level located near the intersection of the two
adjacent failure categories.

5.5 UNCERTAINTY INVARIANCE PRINCIPLE

The principle of uncertainty invariance (also called the principle of information
preservation) was developed to facilitate meaningful transformations among various
uncertainty measures (Brown, 1980; Klir, 1990). It was introduced to facilitate
meaningful transformations between the various uncertainty theories. According to
this principle, the amount of uncertainty (and the associated uncertainty-based infor-
mation) should be preserved in each transformation of uncertainty from one math-
ematical framework to another. Examples of applications of this principle are prob-
ability–possibility transformations and probabilistic or possibilistic approximations
of general bodies of evidence in Dempster–Shafer theory (DST) or, more generally,

FIGURE 5.6 Six events of structural response.
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computed similar to the case presented in Table 5.3. It is evident from Figure 5.7 that

increases. Figure 5.7 shows the classification of A based on the confusion measure as
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approximations of imprecise probabilities formalized in a particular theory by their
counterparts in a less general theory.

This principle utilizes uncertainty measures that should be carefully constructed
in terms of appropriate scale and units to allow for transforming one uncertainty
type to another; therefore, once all uncertainties are consistently measured, they can
be added, manipulated, and treated using the most convenient theory. The principle
of uncertainty invariance was used in probability–possibility transformations in
combining objective and subjective information that are represented using probabil-
ity and possibility theories (Brown, 1980).

Thus far, significant results have been obtained for uncertainty-invariant proba-
bility–possibility transformations. It was determined by a thorough mathematical
analysis (Geer and Klir, 1992) that these transformations do exist and are unique
only under log-interval scales. They are also meaningful, but not unique, under
ordinal scales (Klir and Parviz, 1992). In this case, additional, context-dependent
requirements may be used to make the transformations unique.

Klir and Wierman (1999) show that a probability mass function P = (p1, p2, …,
pn), such that p1 ≥ p2 ≥ … ≥ pn, defined on a universal set X of i = 1, 2, …, n
elements, can be uniquely transformed to a possibility function r using the uncer-
tainty invariance principle based on the aggregate measure AU. Assume that k unique
values exist in (p1, p2, …, pn) that are given k integer values, i.e., s1, s2, …, sn, where
k ≥ n. Therefore, the following condition holds:

(5.14a)

FIGURE 5.7 Classifying an actual response to the six events of structural response.
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The ordinal equivalence requires having k distinct possibility values (r) as
follows:

(5.14b)

These unique possibility values can be computed as follows:

(5.14c)

where any elements that have the same probabilities are lumped together and
assigned the same possibility values, as illustrated in the example at the end of
the section.

EXAMPLE 5.4 TRANSFORMATION OF PROBABILITIES TO POSSIBILITIES

This example illustrates the use of Equation 5.14c for transforming probabilities to
possibilities. Consider the following universal set (Klir and Wierman, 1999):

(5.15)

with the following probability mass function:

(5.16)

bution r, which preserves the uncertainty provided by P, given by

(5.17)

As an illustration, for j = 3, r3 can be computed as

(5.18)

5.6 METHODS FOR OPEN-WORLD ANALYSIS

The simulated performance of a system depends heavily upon the information
available at hand about the problem under consideration. Complete information is
difficult to come by and is generally not available even for simple applications. For
instance, database systems use the closed-world assumptions and introduce null
values to deal with incomplete information, such as in diagnostics. In this section,
methods used to model open-world problems are introduced and demonstrated.
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According to Equation 5.14c, Table 5.4 can be constructed with the possibility distri-
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5.6.1 STATISTICAL ESTIMATORS FOR SEQUENCES AND PATTERNS

5.6.1.1 Laplace Model

An example is used in this section to introduce a class of statistical estimators that
are suitable for a bounded open universe for certain applications. In this example,
an owner of a processing plant intends to protect the plant from external sabotage
by adversaries (e.g., terrorists). Records of previous attacks on this industry show
that adversaries have employed attack methods that included four cyber attacks on
plants’ control systems, two bomb attacks, and two attempts to breach the perimeter
through the gate by fraudulent documents. The owner would like to estimate the
respective probabilities of observing any of these attacks for the purpose of asset
protection. A naively constructed probability distribution based on the closed-world
assumption and the empirical evidence at hand produces the following probability
mass function:

(5.19)

This poor estimator of Equation 5.19 does not account for the unseen elements,
such as potentially using a rifle to attack storage vessels to initiate an explosion.

To account for the unseen elements, Laplace (1825) suggested an estimator that
adds 1 for each type of the seen elements (denoted as k = 3) and 1 to the collective
of unseen elements. Based on this formulation for a sample size of n = 8, the
following probability mass function is produced:

(5.20)

TABLE 5.4
Transforming Probabilities to Possibilities

i 1 2 3 4 5 6 7 8

pi 0.3 0.2 0.2 0.1 0.08 0.04 0.04 0.04
sj s1 s2 s3 s4 s5

1 0.7 0.3 0.2 0.12
ri 1 0.7 0.7 0.3 0.2 0.12 0.12 0.12
rs j

Attack Type (x) Probability (P(x))

Cyber attack (C) 4/8 = 0.5
Perimeter breach (P) 2/8 = 0.25
Bomb attack (B) 2/8 = 0.25

Attack Type (x) Probability (P(x))

Cyber attack (C) = (4+1)/(k + n + 1)
= (4 + 1)/12 = 0.4167

Perimeter breach (P) = (2 + 1)/12 = 0.25
Bomb attack (B) = (2 + 1)/12 = 0.25
Unseen elements = (0 + 1)/12 = 0.0833
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5.6.1.2 Add-c Model

The concept of adding 1 can be generalized to adding any constant c, called the
add-c model (Gale and Church, 1994; Orlitsky et al., 2003). The concept of a pattern
and a sequence is introduced herein to facilitate the presentation of this model. A
sequence (S) is defined as follows:

(5.21)

where Xi = a possible outcome of some type. The number of types is unknown, but
bounded, i.e., a bounded open world. According to Equation 5.19, the attack
sequence in this case is assumed to be

S = C, C, P, C, B, B, P, C (5.22)

where C = cyber attack, P = perimeter breach, and B = bomb attack. A pattern (PS)
can be constructed as follows based on Equation 5.22:

PS = 11213321 (5.23)

where 1 denotes a cyber attack, 2 denotes a bomb attack, and 3 denotes a perimeter
breach. The total number of observed types (k) is 3. The following patterns are valid:
11213211, 12313, and 121121. However, 213, 31212, and 2311 are invalid patterns
since a number cannot be introduced for the first time before having already intro-
duced all the numbers preceding it. Denoting n as the sample size, in this case n is
8; ni = number of observations of each type, and in this case the numbers of
observations for the three types are 4, 2, and 2 for cyber attack, perimeter breach,
and bomb attack, respectively. The add-c model produces the following probabilities
for the ith type and for unseen elements, respectively:

(5.24a)

(5.24b)

where

(5.24c)

Where the number of possible elements is large compared to the sample size; add-
constant, including add-1 estimators, are lacking. Orlitsky et al. (2003) used an
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example of studying the DNA (i.e., deoxyribonucleic acid) sequences to demonstrate
this deficiency as was initially reported by Gale and Church (1994). Observing the
DNA sequences of a large number (n) of animals, and predictably finding that each
sequence is unique, each observed sequence has ni =1. The add-c estimator would
assign probability (1)(1 + c)/(n + nc + c) according to Equation 5.24a to each
observed sequence, and a probability of c/(n + nc + c) to all unseen sequences.
From this assignment, the probability (n + nc)/(n + nc + c) that the estimator assigns
to all observed sequences is close to 1, whereas the probability it assigns to all
unseen sequences is close to zero, contrary to the truth.

5.6.1.3 Witten–Bell Model

The Witten–Bell model as an enhancement of the Good–Turing model (Chen and
Goodman, 1996) was introduced to address the shortcomings of the add-c model.
It equates the probabilities of zero-frequency items with one-frequency items, and
uses frequency of things observed once to estimate frequency of things we have not
observed yet. This distribution allocates uniform probability mass to as yet unseen
events by using the number of events that have only been observed once. The
probability mass reserved for unseen events is given by

(5.25)

where k is the number of observed event types, and n is the total number of observed
events. This probability equates to the maximum likelihood estimate of a new type
event occurring. The remaining probability mass is discounted such that all proba-
bility estimates sum to 1, yielding

(5.26a)

(5.26b)

z is the number of element types with zero observed frequency, i.e., requiring the
knowledge of and bounding the open world. The summation of Equation 5.26a and
b is 1, as expected, i.e.,

(5.27)
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EXAMPLE 5.5 PROBABILITIES USING ADD-C MODEL

In this example, the add-c model is illustrated using selected patterns of n sample sizes

are performed using Equation 5.19a to c, with c = 1. It can be observed from cases 4
and 5 of Table 5.5 that the order of the pattern does not have any effect on the resulting
probabilities. This property might not be realistic for some applications. Also, we can
observe from cases 6 and 7 that the probability assigned to having a value of 1 or all

is close to zero.

5.6.2 TRANSFERABLE BELIEF MODEL

In general, an intelligent system must be able to make plausible propositions that
may turn out to be incorrect when more information becomes available. The trans-
ferable belief model provides a basis for a class of methods for making such
propositions when faced with incomplete information. The transferable belief model
(TBM) is a nonprobabilistic approach that derives from the Dempster–Shafer math-
ematical theory of evidence (Shafer, 1976). It is a means for representing quantified
degrees of belief. Degrees of belief are obtained from agents providing evidence at
a given time within a given frame of discernment. The method is capable of treating
inconsistency in data by introducing the open-world assumption. In TBM, a set of
all propositions consists of three subsets: (1) a subset of propositions known as
possible propositions (PP), (2) a subset of propositions known as impossible prop-
ositions (IP), and (3) a subset of unknown propositions (UP). The content of the
subsets depends not only on the given problem, but also on the evidence, which is
available at a given time. As evidence becomes available, propositions are redistrib-

The closed-world assumption postulates an empty UP set. The open-world
assumption admits the existence of a nonempty UP set, and the fact that the truth
might be in UP. In this assumption, unknown refers to none of the known propositions.

The UP set can be considered to be empty where the truth is necessarily in the
PP set, and the PX power set of 2|X| is PP. The selection of the type of the world
depends on the problem at hand. The closed-world assumption can be selected for
a quality condition problem where the condition cannot be other than one or more
of the ratings, e.g., poor, poor or good, etc. For diagnosing the degradation underlying
causes, the open-world assumption can be a suitable selection since an analyst trying
to solve the problem cannot always consider all the possibilities; i.e., one or more
underlying causes might exist that are not known to the analyst.

The degree of conflict between two or more evidence sources, k, implies the
existence of a proposition not defined in the frame of discernment. In the idealized
closed-world assumption, that amount of conflict is redistributed among the known
propositions. In the open-world assumption, the degree of conflict corresponds to
the amount of belief allocated to the proposition that none of the known propositions
has the truth. One must keep in mind that the actual underlying physics might be
something else other than the causes considered; i.e., the solution is in the set Ø =
UP and not in the set X = PP.
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of 1, 2, 3, 4, 4, 100, and 100, as shown in Table 5.5. The computations in Table 5.5

is, respectively, is close to 1, whereas the probability of having an unseen value element

uted between the three sets, as shown in Figure 5.8.
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Table 5.5 
Probabilities Using the Add-c Model

Case

Sample
Size
(n) Pattern Probabilities

1 1 1

2 2 11

3 3 111

4 4 1112

5 4 1121

6 100
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5.6.3 OPEN-WORLD ASSUMPTION MATHEMATICAL FRAMEWORK

The known possible propositions set PP is based on X and is a finite set of elementary
propositions. The set Ø is defined as the null or impossible event. In the Demp-
ster–Shafer framework, the mass of the null set, m(Ø), is defined as zero when belief
functions are normalized, and correspondingly Bel(X) = 1. In contrast, under an
open-world assumption, the mass of the null set may be nonzero if the frame of
discernment X does not contain the truth (Smets, 1998). A set of focal elements can
be defined based on m(A) > 0 as follows:

(5.28)

7 100

FIGURE 5.8 Mapping of evidence space.

Table 5.5 (Continued)
Probabilities Using the Add-c Model

Case

Sample
Size
(n) Pattern Probabilities

1234 100
100

…
6 74 84

P i
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The elements of F(m) are called the focal elements of m. Shafer (1976) initially
imposed a normality condition for belief structures, i.e., Ø ∉ F(m). Smets (1998)
proposed to relax this condition and to interpret m(Ø) as the part of belief committed
to the assumption that none of the hypotheses in X might be true, to allow for an
open-world assumption. If, however, the truth is known with absolute certainty to
lie in X, i.e., closed-world assumption, then the normality condition can be justified.

The belief and plausibility functions satisfy the following conditions: (1) Bel(Ø)
= 0, (2) Bel(X) = 1 – m(Ø) ≤ 1, and (3) Bel(B) ≤ Pl(B). By definition, Bel(Ø) = 0,
even though m(Ø) might be positive. If the frame of discernment X is defined such
that it included the unknown propositions set X, then this would lead to the same
belief function as with the open-world assumption, if one takes care to never allocate
any masses to propositions of X that did not include Ø.

5.6.4 EVIDENTIAL REASONING MECHANISM, BELIEF REVISION, 
AND DIAGNOSTICS

In evidence–hypothesis reasoning, an evidence space E is a set of mutually exclusive
and collectively exhaustive evidential elements that can arise from a source of
evidence, e.g., the set of all possible results of a laboratory test. A hypothesis space
H is a set containing all the mutually exclusive and collectively exhaustive hypoth-
eses possible in the situation under consideration. Evidence–hypothesis reasoning
is a mapping from an evidence space E to a hypothesis space H, which describes
the relationships between evidence and hypothesis subsets. An example mapping is

Evidence usually exists in two forms as either a linguistic observation such as
“high rusted member” or a measured parameter such as “chloride ion concentration
rate equals 0.6 kg Cl–/m3 (1 lb Cl–/yd).” Accordingly, the handling of evi-
dence–hypothesis reasoning differs depending on the particularities of an application.

The evidence–hypothesis reasoning mechanism is the task of inferring the belief
in some hypotheses by collecting relevant evidence for or against these hypotheses.
The inexact relationships among hypotheses and evidence are classified depending
on the nature of evidence, i.e., measurement or observation. Linguistic hypothe-
sis–evidence reasoning manipulates if–then rules to manifest the uncertainty associ-
ated with hypothesis–evidence relationships. Numerical hypothesis–evidence reason-
ing deals with computations based on measurements, where the inexact relationships
between evidence and hypotheses are presented by two-dimensional plots.

Information is subject to change due to inherent uncertainty in information, or
because of the various in ignorance types, or due to an environment that is volatile
and dynamic. Current nonmonotonic reasoning systems cannot adequately treat
changes in information. Once a change in the knowledge base, however minor, is
performed, one must begin from scratch to deal with a problem at hand as a result
of evidence fusion being computationally nonmonotonic, with perhaps consequen-
tially changing system architecture. Belief revision methods can be used to deal with
changing information (Dubois and Prade, 1997).

Diagnostics is the task of inferring plausible explanations based on a body of
evidence, or to decide which explanation accounts for given evidence. Observations
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of distress and results of laboratory tests can be considered evidence for possible
degradation underlying causes. The problem is then to infer the belief in the possible
underlying causes producing the observed evidence. A classical method of diagnostic
analysis is based on Bayesian analysis. In this case, the relations between evidence
and underlying causes are described by conditional probabilities. Since mechanical,
physical, and chemical processes of degradation can act in a synergistic manner,
assigning a degradation cause might not be a clear-cut case. Since distresses might
bear on a set of causes rather than on an individual cause and since evidences are
not infallible, one can conclude that the Bayesian theorem is not an appropriate tool
for diagnostic problems. In addition, the Bayesian theorem postulates an exhaustive
frame of discernment that constitutes a complete set of well-defined causes. The
reality is that the actual underlying causes might be something else other than the
defined or identified causes. An open-world assumption might be more appropriate
for such cases, as described in an earlier section. In addition, the Bayesian theorem
can be generalized within the framework of evidence theory where conditional
probabilities are replaced by belief functions (Pearl, 1990, 1992; Smets, 1992, 1993).
Another generalization is obtained by extending the generalized Bayesian theorem
to handle all types of belief functions, i.e., precise, interval, and fuzzy.

EXERCISE PROBLEMS

5.1. Describe the method of Lagrange multipliers used in the derivation of
Equation 5.4, and rederive Equation 5.6 in detail.

5.2. Show that the maximum entropy probability distribution that corresponds
to the following constraints is the exponential distribution, as provided in

Mean value = μ.
5.3. Show that the maximum entropy probability distribution that corresponds

to the following constraints is the normal distribution, as provided in Table
5.1:

Mean value = μ.
Standard deviation = σ.

5.4.
5.5.

f x dxX ( )
0

1

∞

∫ =

f x dxX ( )
−∞

∞

∫ = 1
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Table 5.1:

Derive the values in Table 5.2.
Derive the values in Table 5.3.
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5.6. For the universal set X = {1, 2, 3, 4, 5, 6, 7, 8} with the probability mass
function P = {0.2, 0.2, 0.2, 0.2, 0.08, 0.04, 0.04, 0.04}, compute the
corresponding uncertainty invariant possibility distribution r.

5.7. Develop a computational problem to illustrate the open-world assumption.
5.8. Redo Example 5.5 using c values of 2, 3, 4, 5, 10, 20, and 100. What are

your observations and conclusions?
5.9. Redo Example 5.5 using the Witten–Bell model with a bounded open

world of 100, i.e., z + k = 100.
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6

 

Uncertainty Propagation 
for Systems

 

6.1 INTRODUCTION

 

Historically, engineers and scientists have built analytical models to represent natural
and human-made systems using a combination of physical laws and empirical tools
based on observing system attributes of interest (called system output variables).
The intent of these models is to relate output variables (also called criterion or
dependent variables) for a system with a set of other input variables (called predictor
or independent variables). The input variables are either physically controllable or
uncontrollable. For example, a structural engineer might observe the deflection of
a bridge as an output of an input, such as a load at the middle of its span. By varying
the intensity of the load, the deflection changes. Empirical test methods would vary
the load incrementally, and the corresponding deflections are measured, thereby
producing a relationship such as

 

y

 

 = 

 

g

 

(

 

x

 

) (6.1)

where 

 

x

 

 = input variable, 

 

y

 

 = output variable, and 

 

g

 

 = a function that relates input
to output. In general, a system might have several input variables that can be
represented as a vector 

 

X

 

, and several output variables that can be represented by

  

Sometimes, the system is viewed as a whole entity without any knowledge on
how the input variables are processed within the system to produce the output
variables. This black box view of the system has the advantage of shielding an
analyst from the physics governing the system, and providing the analyst with the
opportunity to focus on relating the output to the input within some range of
interest for the underlying variables. The primary assumptions according to this
model in this case are (1) causal relationships exist between input and output
variables as defined by the function 

 

g

 

, and (2) the effect of time, i.e., time lag or
time prolongation within the system, is accounted for by methods of measurement
of input and output variables.

For complex engineering systems or natural systems, the numbers of input and
output variables might be large with varying levels of importance. In such cases, a
system engineer would be faced with the challenge of identifying the most significant
variables, and how they should be measured. Establishing a short list of variables
might be a most difficult task, especially for novel systems. Some knowledge of the
physics of the system might help in this task of system identification. Then, the
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a vector Y. A schematic representation of this model is shown in Figure 6.1.
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analyst needs to decide on the nature of time relation between input and output by
addressing questions such as the following:

• Is the output instantaneous as a result of the input?
• If the output lags behind the input, what is the lag time? Are the lag times

for the input and output related, i.e., exhibiting nonlinear behavior?
• Does the function 

 

g

 

 depend on time, number of input applications, or
magnitude of input?

• Does the input produce an output and linger within the system, affecting
future outputs?

These questions are important for the purpose of defining the model, its applicability
range, and validity.

Many models in engineering and the sciences build on knowing the underlying
physical laws and utilize methods such as material mechanics and constraints such
as boundary conditions to relate input to output variables. The numerical computa-
tions might be based on finite element methods that are used to model the entire
system. These models can also be viewed according to Equation 6.1. The model
complexity can be increased by considering nonlinearity in behavior and other
special considerations, such as bifurcation, instability, logic rules, and across-disci-
pline or across-physics interactions. The objective of this chapter is to present
methods for propagating uncertainty in input–output systems represented by Equa-
tion 6.1.

 

6.2 FUNDAMENTAL METHODS FOR PROPAGATING 
UNCERTAINTY

6.2.1 A

 

NALYTIC

 

 P

 

ROBABILISTIC

 

 M

 

ETHODS

 

Many problems in engineering and the sciences deal with a dependent variable that
is a function of one or more independent random variables. In this section, analytical
tools for determining the probabilistic characteristics of the dependent random vari-
able based on given probabilistic characteristics of independent random variables,
and a functional relationship between them, are provided. The discussion in this
section is divided into the following cases: (1) probability distributions for dependent
random variables, (2) mathematical expectations, and (3) approximate methods.
Cases 1 and 2 result in complete distributions and moments without any approxi-
mations, respectively, whereas the third case results in approximate moments.

 

FIGURE 6.1

 

Black box system model.

Input x Output ySystem g
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6.2.1.1 Probability Distributions for Dependent Random 
Variables

 

A random variable 

 

X

 

 is defined as a mapping from a sample space of an engineering
system or experiment to the real line of numbers. This mapping can be one-to-one
mapping or many-to-one mapping. If 

 

Y

 

 is defined to be a dependent variable in terms
of a function 

 

Y

 

 = 

 

g

 

(

 

X

 

), then 

 

Y

 

 is also a random variable. Assuming that both 

 

X

 

 and

 

Y

 

 are discrete random variables, for a given probability mass function of 

 

X

 

, i.e.,

 

P

 

X

 

(

 

x

 

), the objective herein is to determine the probability mass function of 

 

Y

 

, i.e.,

 

P

 

Y

 

(

 

y

 

). This objective can be achieved by determining the equivalent events of 

 

Y

 

 in
terms of the events of 

 

X

 

 based on the given relationship between 

 

X

 

 and 

 

Y

 

, i.e., 

 

Y =
g

 

(

 

X

 

). For each value 

 

y

 

i

 

, all of the values of 

 

x

 

 that result in 

 

y

 

i

 

 should be determined,
say Therefore, the probability mass function of 

 

Y

 

 is given by

(6.2)

If 

 

X

 

 is continuous but 

 

Y

 

 is discrete, the probability mass function for 

 

Y

 

 is given by

(6.3)

where 

 

R

 

e

 

 = the region of 

 

X 

 

that defines an equivalent event to the value 

 

Y = y

 

i

 

.
If 

 

X

 

 is continuous with a given density function 

 

f

 

X

 

(

 

x

 

) and the function 

 

g

 

(

 

X

 

) is
continuous, then 

 

Y = g

 

(

 

X

 

) is a continuous random variable with an unknown density
function 

 

f

 

Y

 

(

 

y

 

). The density function of 

 

Y

 

 can be determined by performing the
following four steps:

1. For any event defined by 

 

Y 

 

≤

 

 y

 

, an equivalent event in the space of 

 

X 

 

needs
to be defined.

2.

 

F

 

Y

 

(

 

y

 

)

 

 = P

 

(

 

Y < y

 

) can then be calculated.
3.

 

f

 

Y

 

(

 

y

 

) can be determined by differentiating 

 

F

 

Y

 

(

 

y

 

) with respect to 

 

y

 

.
4. The range of validity of

 

 f

 

Y

 

(

 

y

 

) in the 

 

Y

 

 space should be determined.

Formally stated, if 

 

X

 

 is a continuous random variable, 

 

Y = g

 

(

 

X

 

) is differentiable
for all 

 

x

 

, and 

 

g

 

(

 

X

 

) is either strictly (i.e., monotonically) increasing or strictly (i.e.,
monotonically) decreasing for all 

 

x

 

; then 

 

Y = g

 

(

 

X

 

) is a continuous random variable
with the following density function:

(6.4)
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where

 

 g

 

–1

 

(

 

y

 

)

 

 = x

 

. Equation 6.4 can be derived by developing an expression for the
cumulative distribution function of 

 

Y

 

 as

(6.5)

This result can be expressed as

(6.6)

By taking the derivative Equation 6.4 results. The derivative is

known as the Jacobian of the transformation (or inverse) and can be alternatively
determined as follows:

(6.7)

Then the limits on 

 

Y

 

 should be determined based on the limits of 

 

X

 

 and 

 

Y =
g

 

(

 

X

 

). If the inverse 

 

g

 

–1

 

(

 

y

 

) is not unique (say = 

 

x

 

1

 

,

 

 x

 

2

 

, …, 

 

x

 

m

 

), then the density function
of 

 

Y

 

 is determined as follows:

(6.8)

where

(6.9)

The following cases are selected special functions of single and multiple random
variables that are commonly used, where the resulting variable (

 

Y

 

) can have known
distribution types for some cases:

1. For multiple independent random variables 

 

X

 

 = 

 

(

 

X

 

1

 

,

 

 X

 

2

 

, …, 

 

X

 

n

 

), where
the function 
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Y = g(X) = a0 + a1 X1 + a2 X2 + … + an Xn (6.10)

a0, a1, a2, …, an are real numbers, and the mean value and variance of Y are

E(Y) = a0 + a1 E(X1) + a2 E(X2) + … + an E(Xn) (6.11)

and

(6.12) 

where Cov(Xi,Xj) = covariance of Xi and Xj. It should be noted that
Cov(Xi,Xi) = Var(Xi) = Equation 6.12 can be expressed in terms of
the correlation coefficient as follows:

(6.13)

where = correlation coefficient of Xi and Xj. If the random variables
of the vector X are statistically uncorrelated, then the variance of Y is

(6.14)

2. In Equations 6.11 to 6.14, if the random variables X1, X2, X3, …, Xn have
normal probability distributions, then Y has a normal probability distribu-
tion with a mean and variance as given by Equations 6.11 to 6.14.

3. If X has a normal distribution, and Y = g(X) = exp(X), then Y has a
lognormal distribution.

4. If Y = X1 X2 X3 … Xn, the arithmetic multiplication of X1 X2 X3 … Xn with
lognormal distributions, then Y has a lognormal distribution.

5. If X1 X2 X3 … Xn are independent random variables that have Poisson
distributions with the parameters λ1, λ2, …, λn, respectively, then Y = X1

+ X2 + … + Xn has a Poisson distribution with the parameter λ = λ1+
λ2+ …+ λn.

EXAMPLE 6.1 MEAN AND VARIANCE OF A LINEAR FUNCTION

Consider the following function:

Z = 2X + 5Y + 10 (6.15)
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where X, Y, and Z are random variables. The means of X and Y are 3 and 5, respectively,
and the standard deviations are 1 and 2, respectively. The random variables X and Y
are assumed to be uncorrelated. Therefore, the mean of Z, μZ, is computed using
Equation 6.11 as

μZ = 2(3) + 5(5) +10 = 41 (6.16)

The variance of Z, is computed using Equation 6.14 as

(6.17)

The standard deviation of Z is = 10.20, and the coefficient of variation is
= 0.25.

EXAMPLE 6.2 PROBABILITY DENSITY FUNCTION OF A NONLINEAR FUNCTION

For the following nonlinear function,

Y = a X2 + b (6.18)

where a and b are constants and X has an exponential distribution with a parameter λ,
the probability density function of Y is developed in this example.

In order to use Equation 6.8 to determine fY(y), we need to determine X as a function
of Y and the derivative of X with respect to Y. The inverse of the function in Equation
6.18 is

(6.19)

The derivative of X with respect to Y is

(6.20)

Therefore, the density function of Y can be determined based on the density function
of the exponential distribution and by substituting in Equation 6.8:
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(6.21b)

The resulting function fY(y) is not an exponential density function.

6.2.1.2 Mathematical Expectations

In certain engineering applications, we might be interested in knowing only the
moments, specifically the mean and variance, of a random variable Y, based on known
probabilistic characteristics of a random variable X and a function Y = g(X). In such
cases, mathematical expectation (E) is very effective in achieving this objective.

The mathematical expectation of an arbitrary function g(X) of a continuous
random variable X is given by

(6.22)

The corresponding equation for a discrete random variable is

(6.23)

Mathematical expectation can be used to determine the moments of Y for a given
probabilistic characteristics of X and the function Y = g(X). The mean (or expected
value) can be determined by the direct use of Equations 6.22 and 6.23. The variance
can be determined, respectively, for continuous and discrete X random variables as

(6.24)

and

(6.25)

If we consider a special case where the function, g(X), is the following linear
function,
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Y = g(X) = a X + b (6.26)

where a and b = real numbers, mathematical expectation can be used to determine,
respectively, the mean and variance of Y as follows:

E(Y) = a E(X) + b (6.27)

Var(Y) = a2 Var(X) (6.28)

Equations 6.27 and 6.28 are valid regardless of the distribution type of X. Also,
they can be used for both cases of discrete and continuous X. Based on Equation
6.26, it can be stated that mathematical expectation, E(.), is a linear operator.
However, the variance, Var(.), is not a linear operator. Equations 6.26 to 6.28 can
be generalized top produce Equations 6.11 to 6.14.

6.2.1.3 Approximate Methods

The closed-form solutions for the distribution types of dependent random variables,
as well as mathematical expectation, provide solutions for the simple cases of
functions of random variables. Also, they provide solutions for simple distribution
types or a mixture of distribution types for the independent random variables. For
cases that involve a more general function g(X) or a mixture of distribution types,
these methods are not suitable for obtaining solutions due to the analytical complex-
ity according to these methods. Also, in some engineering applications, precision
might not be needed. In such cases, approximate methods based on Taylor series
expansion, with or without numerical solutions of needed derivatives, can be used.
The use of Taylor series expansion, in this section, is divided into the following two
headings: (1) single random variable X and (2) multiple random variables, i.e., a
random vector X.

6.2.1.3.1 Single Random Variable X
The Taylor series expansion of a function Y = g(X) about the mean of X, i.e. E(X),
is given by

(6.29)

in which the derivatives are evaluated at the mean of X. Truncating this series at the
linear terms, the first-order mean and variance of Y can be obtained by applying the
mathematical expectation and variance operators. The first-order (approximate) mean is

E(Y) ≈ g(E(X)) (6.30)
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The first-order (approximate) variance is

(6.31)

Again the derivatives in Equations 6.30 and 6.31 are evaluated at the mean of X.

6.2.1.3.2 Random vector X
The Taylor series expansion of a function Y = g(X) about the mean values of X, i.e.,
E(X1), E(X2), …, E(Xn), is given by

(6.32)

in which the derivatives are evaluated at the mean values of X. Truncating this series
at the linear terms, the first-order mean and variance of Y can be obtained by applying
the mathematical expectation and variance operators. The first-order (approximate)
mean is

E(Y) ≈ g[E(X1), E(X2), …, E(Xn)] (6.33)

The first-order (approximate) variance is

(6.34a)

in which the derivatives are evaluated at the mean values of X, i.e., E(X1), E(X2),
…, E(Xn). For uncorrelated random X variables, Equation 6.34a can be simplified
as follows:

(6.34b)

in which the derivatives are evaluated at the mean values of Xi.
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EXAMPLE 6.3 STRESS IN A BEAM

The stress, F, in a beam subjected to an external bending moment M is

(6.35)

where y is the distance from the neutral axis of the cross section of the beam to the
point where the stress is calculated, and I is the centroidal moment of inertia of the
cross section. Assume that M and I are random variables with means μM and μI,
respectively, and variances respectively. Also assume that y is not a random
variable. The mean value of the stress, μF, based on first-order approximations (Equation
6.33) is

(6.36)

The first-order variance of the stress, is (see Equation 6.34b)

(6.37)

6.2.2 SIMULATION METHODS

The interest in simulation methods started in the early 1940s for the purpose of
developing inexpensive techniques for testing engineering systems by imitating their
real behavior. These methods are commonly called Monte Carlo simulation tech-
niques. The principle behind the methods is to develop an analytical model, which
is computer based, that predicts the behavior of a system. Then, the model is
evaluated using data measured from a system, and then the model predicts the
behavior of the system, usually for many simulation runs. Each evaluation (or
simulation cycle) is based on a certain randomly selected set of conditions for the
input parameters of the system. Certain analytical tools are used to ensure the random
selection of the input parameters according to their respective probability distribu-
tions for each evaluation. As a result, several predictions of the behavior are obtained.
Then, statistical methods are used to evaluate the moments and distribution type for
the system’s behavior.

The analytical and computational steps that are needed for performing Monte
Carlo simulation are:

1. Definition of the system using an input–output numerical model
2. Generation of random numbers
3. Generation of random variables using transformation methods from ran-

dom numbers to random variates
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4. Evaluation of the model multiple times (N simulation cycles)
5. Statistical analysis of the resulting behavior
6. Study of simulation efficiency and convergence

The definition of the system should include its boundaries, input parameters,
output (or behavior) measures, architecture, and models that relate the input param-
eters and architecture to the output parameters. The accuracy of the results of sim-
ulation is highly dependent on having an accurate definition for the system. All
critical parameters should be included in the model. The definition of the input
parameters should include their statistical or probabilistic characteristics, i.e., knowl-
edge of their moments and distribution types. It is common to assume the architecture
of the system in Monte Carlo simulation to be nonrandom. However, modeling
uncertainty can be incorporated in the analysis in the form of bias factors and
additional variability, e.g., coefficients of variation. The results of these generations
are a set of specific values for the input parameters. These values should then be
substituted in the model to obtain an output measure. By repeating the procedure N
times (for N simulation cycles), N response measures are obtained. Statistical meth-
ods can now be used to obtain, for example, the mean value, variance, or distribution
type for the response. The accuracy of the resulting measures for the behavior is
expected to increase by increasing the number of simulation cycles. The convergence
of the simulation methods can be investigated by studying their limiting behavior as
N is increased. Also, the efficiency of simulation methods can be increased by using
variance reduction techniques. Simulation methods and variance reduction techniques
are described in more detail in other sources, such as Ayyub and McCuen (2003).

EXAMPLE 6.4 WAREHOUSE CONSTRUCTION

A warehouse is to be constructed from precast concrete elements that are produced by
a nearby precast factory. The following construction tasks are identified for building
the warehouse:

A: Excavation of foundations
B: Construction of foundations
C: Construction of precast elements at factory
D: Transportation of precast elements to construction site
E: Assembly of elements at site
F: Construction of roof
G: Exterior and interior finishing

cates that tasks C and D can be performed in parallel to tasks A and B; i.e., as excavation
and construction of the footings are being performed at the site, the precast elements

Normal probability distributions and statistical noncorrelation are assumed for these
times. In this section, simulation is used to compute these moments.
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Figure 6.2 shows the logical network for performing these activities. The figure indi-

can be constructed at the factory and then transported to the construction site. Table
6.1 shows the means and standard deviations for the completion times of these tasks.
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The project completion time, T, is a dependent random variable that is given by

T = max{A + B, C + D} + E + F + G (6.38)

where A, B, C, D, E, F, and G are random variables that model the times for completing
the corresponding tasks. The random numbers used for generating the completion times

cycles were used. The random numbers were used to generate the random times as

processes resulted in some activity times taking negative values, these values were not
removed from the analysis, but retained to illustrate the process. Truncated probability
distribution could be used to enhance the process and make it more realistic so that
such negative values are not encountered. Then, Equation 6.38 was used to compute
the completion time for the project for each simulation cycle, as shown in Table 6.3.
The mean value and variance of the completion time of the project were computed
using values in the last column of Table 6.3. The resulting statistics are

Mean value = 14.59 days (6.39)

Variance = 5.55 (days)2 (6.40)

The approximate mean duration of the project, can be computed as

(6.41)

FIGURE 6.2 Construction network.

TABLE 6.1
Moments of Completion Times

Task Name
Mean
(days)

Standard Deviation
(days)

A Foundation excavation 3 1
B Foundation construction 2 0.5
C Precast elements construction 4 1
D Transportation of elements 0.5 0.5
E Assembly of elements 4 1
F Roofing 2 1
G Finishing 3 1

1.Start of 
project

7. End of
project

2

3
C

A
4

B

D
4 4E F G

T ,

T = + + + + + =max{ , . }3 2 4 0 5 4 2 3 14 days
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for tasks A, B, C, D, E, F, and G are shown in Table 6.2. In this example, 20 simulation

shown in Table 6.3 utilizing the inverse transformation method. Although the simulation
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The approximate variance of the project duration, Var(T), was computed as

Var (T) = (1)2 + (0.5)2 + (1)2 + (1)2 + (1)2 = 4.25 (days)2 (6.42)

These values differ from the computed values using simulation. The simulation results
are also approximate because of the small number of cycles used to compute the results.
By increasing the number of simulation cycles, the accuracy of the results is expected
to increase. Also, the simulation results in the case of a small number of cycles are
dependent on the used random numbers. For example, by using a different set of random

statistics in this case are

Mean value = 13.98 days (6.43)

Variance = 3.67 (days)2 (6.44)

6.2.3 VERTEX METHOD FOR FUNCTIONS OF FUZZY VARIABLES

Some problems in engineering and the sciences can be expressed using functions
of fuzzy variables in the same input–output format expressed in Equation 6.1. In
this case, the functional relationship is given by

TABLE 6.2
Random Numbers Used for Completion Time of Tasks

Task A Task B Task C Task D Task E Task F Task G

0.642707 0.758002 0.547225 0.510713 0.924981 0.44491 0.671304
0.240297 0.092418 0.84715 0.071252 0.98112 0.793358 0.780596
0.169051 0.446979 0.990008 0.079644 0.391058 0.793205 0.276989
0.457609 0.52127 0.606333 0.006137 0.47927 0.121284 0.34367
0.386325 0.395759 0.956544 0.432595 0.723067 0.448813 0.008538
0.313708 0.061922 0.343042 0.230356 0.538481 0.63629 0.211676
0.137571 0.078837 0.471558 0.383158 0.203166 0.500447 0.101354
0.296782 0.610994 0.785467 0.282056 0.282186 0.560465 0.539651
0.908314 0.124274 0.709123 0.508328 0.496352 0.886927 0.720611
0.763968 0.327695 0.506164 0.246872 0.743617 0.275227 0.218178
0.139498 0.935402 0.789508 0.966422 0.440431 0.682035 0.476614
0.220256 0.040641 0.347426 0.282962 0.178687 0.092735 0.96486
0.344963 0.100168 0.963482 0.569873 0.933351 0.64664 0.858627
0.095613 0.791418 0.726318 0.376506 0.872995 0.895403 0.962331
0.22554 0.262949 0.63276 0.550859 0.198235 0.077169 0.08673
0.239485 0.985236 0.212528 0.445724 0.66247 0.32561 0.025242
0.191603 0.108613 0.897544 0.990706 0.933851 0.557361 0.050711
0.94601 0.241317 0.187334 0.015071 0.228146 0.832563 0.816427
0.973859 0.343243 0.19794 0.177672 0.125638 0.099943 0.747989
0.484109 0.214928 0.020997 0.424466 0.893968 0.866459 0.706856
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numbers, as shown in Table 6.4, the results shown in Table 6.5 are obtained. The

Var (T) = Var(A) + Var(B) + Var(E) + Var(F) + Var(G)
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(6.45)

where X1, X2, …, Xn = input fuzzy variables, Y = output variable, and f = a continuous
function that relates input to output in the n-dimensional rectangular region and has
no extreme points in this region, including the boundaries. The α-cut and interval
arithmetic can be used as provided in Equations 2.87 to 2.90 (Dong and Shah, 1987;
Dong and Wong, 1986a, 1986b, 1986c). An α-cut of a fuzzy number (or set) X1 can
be expressed for convenience as

(6.46)

The ordinates of all the vertices are defined as the combinations of n pairs of
endpoints of interval numbers at the α-cut. For example, in the case of n = 3, eight
vertices (i.e., 23) exist as follows:

v1 = (a1, a2, a3) (6.47a)

v2 = (a1, a2, b3) (6.47b)

TABLE 6.3
Generated Random Values for Completion Time of Tasks

Task A Task B Task C Task D Task E Task F Task G

Project
Completion

Time

3.36526 2.3498042 4.1183849 0.5133909 5.4396627 1.8617675 3.443086 16.45958
2.2949296 1.3368915 5.0242746 –0.2334048 6.0778971 2.817944 3.7739874 17.460698
2.0421427 1.933497 6.3270846 –0.2038625 3.7238635 2.8174073 2.4085497 15.073043
2.8937885 2.0266006 4.2693511 –0.7523029 3.9481516 0.8313093 2.5979742 12.297824
2.7115217 1.8680395 5.7122992 0.4152843 4.5916169 1.8716254 0.6144956 13.205321
2.5150499 1.2304214 3.596267 0.1312882 4.0963777 2.3481148 2.1995787 12.389543
1.9086613 1.2934043 3.9288268 0.3516179 3.1698067 2.001117 1.7259547 11.177323
2.4667156 2.1407416 4.7905834 0.2118119 3.4240093 2.1518299 3.0993185 13.677553
4.3306524 1.4230146 4.5504403 0.5104081 3.9908831 3.2104754 3.5842925 16.539318
3.7188585 1.7770724 4.0154067 0.1579639 4.6542217 1.4032765 2.2218555 13.775285
1.9173874 2.7587914 4.8045186 1.4155181 3.8504386 2.472975 2.9415001 15.48495
2.2288943 1.1281585 3.6081638 0.2131524 3.079716 0.6756985 4.8105053 12.387236
2.6014871 1.3596149 5.793009 0.5878512 5.5015181 2.3758197 4.0742012 18.332399
1.6928452 2.4055804 4.601361 0.3428837 5.1407426 3.2559441 4.7787973 18.119729
2.2466222 1.6830249 4.3387303 0.5637742 3.1522166 0.5753632 1.6386032 10.268687
2.2923139 3.0884019 3.2025201 0.4319117 4.4187744 1.5483608 1.0437219 12.391573
2.128135 1.3829576 5.2678487 1.6770614 5.5053989 2.143973 1.3616434 15.955925
4.6076817 1.6491037 3.1123607 –0.5843253 3.2552784 2.9642836 3.9017196 16.378067
4.9412389 1.798406 3.1511551 0.0379101 2.8526594 0.7179441 3.6678706 13.978119
2.9602643 1.6053855 1.9659854 0.4049415 5.2480626 3.109864 3.5438339 16.46741

Y f X X Xn= ( , , , )1 2 …

αX a bi i i= [ , ]
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v3 = (a1, b2, a3) (6.47c)

v4 = (a1, b2, b3) (6.47d)

v5 = (b1, a2, a3) (6.47e)

v6 = (b1, a2, b3) (6.47f)

v7 = (b1, b2, a3) (6.47g)

v8 = (b1, b2, b3) (6.47h)

where vj is the jth vertex. In general, the number of vertices is given by

Number of vertices = 2n (6.48)

Equation 6.45 can be evaluated at the α-cut as follows:

(6.49)

TABLE 6.4
A Second Set of Random Numbers Used for Completion Time of Tasks

Task A Task B Task C Task D Task E Task F Task G

0.606883 0.093464 0.125703 0.736216 0.585157 0.033755 0.719628
0.277315 0.682777 0.75993 0.485396 0.288004 0.697372 0.101427
0.725585 0.326737 0.091488 0.718726 0.819744 0.9123 0.910932
0.179915 0.471119 0.07271 0.293896 0.559946 0.441863 0.749723
0.152424 0.240208 0.294833 0.769227 0.786163 0.12152 0.663357
0.168486 0.035771 0.51356 0.880006 0.748794 0.115441 0.953369
0.915682 0.2436 0.610186 0.848375 0.102922 0.009326 0.801494
0.124135 0.682049 0.610019 0.203327 0.081627 0.86644 0.514767
0.342101 0.739733 0.131999 0.569512 0.388688 0.518582 0.204704
0.985961 0.613146 0.914132 0.898415 0.543517 0.091718 0.97092
0.336867 0.616759 0.402409 0.268781 0.913337 0.0987 0.545388
0.583809 0.471045 0.343964 0.278476 0.128413 0.359243 0.341192
0.798033 0.053788 0.467997 0.405734 0.923671 0.587813 0.126547
0.688703 0.028898 0.021365 0.039026 0.483284 0.54659 0.267746
0.959589 0.749079 0.914929 0.72902 0.917082 0.870119 0.652013
0.331024 0.626462 0.697033 0.771629 0.382801 0.702866 0.060994
0.201754 0.233297 0.417021 0.770881 0.034672 0.724181 0.395496
0.633503 0.38085 0.538246 0.326588 0.633842 0.176778 0.346776
0.840578 0.895108 0.071531 0.714916 0.400981 0.243865 0.211002
0.531249 0.46347 0.952944 0.07302 0.345216 0.578557 0.214954

αY f v f v
j

n

j
j

n

jmin ( ),max ( )
= =

⎡

⎣
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⎤

⎦
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1 1
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EXAMPLE 6.5 THREE FUZZY VARIABLES

The vertex method is illustrated using the following function with three fuzzy variables
(Dong and Shah, 1987):

(6.50)

For an α-cut that results in the following respective intervals for the three fuzzy
variables:

The X1 interval = [1, 2] with a1 = 1 and b1 = 2 (6.51a)

The X2 interval = [2, 3] with a2 = 2 and b2 = 3 (6.51b)

The X3 interval = [1, 4] with a3 = 1 and b3 = 4 (6.51c)

In this case, the eight vertices are

TABLE 6.5
A Second Set of Generated Random Values for Completion Time of Tasks

Task A Task B Task C Task D Task E Task F Task G

Project
Completion

Time

3.2707799 1.34004 2.8529732 0.8156949 4.2147164 0.171328 3.5813727 12.578237
2.4095244 2.2375281 4.7058017 0.481743 3.4411537 2.5164544 1.7263661 12.871519
3.5991597 1.775744 2.6681462 0.7893469 4.9142851 3.3552784 4.3467318 17.991199
2.0844111 1.9638631 2.54382 0.2291748 4.1505155 1.8540637 3.6733168 13.72617
1.9739182 1.6473216 3.4610715 0.8680251 4.7929741 0.8324813 3.4212035 13.375756
2.0399005 1.0987845 4.0339016 1.0875602 4.6703954 0.8017872 4.6788003 15.272445
4.3768346 1.6527585 4.2793768 1.0147408 2.7347579 –0.3528514 3.8468091 12.258309
1.8453495 2.2365066 4.2789404 0.0851884 2.6055421 3.1097732 3.0369229 13.116367
2.593705 2.3210996 2.8829455 0.5873924 3.7176888 2.0464701 2.1752441 12.854208
5.1966454 2.1435484 5.366874 1.1363712 4.1090447 0.6695408 4.8949117 17.013691
2.5794094 2.1482732 3.7532931 0.1919199 5.3618234 0.7108243 3.113757 13.914087
3.2112634 1.96377 3.598772 0.2064942 2.8660028 1.6399625 2.5912269 12.272226
3.8344438 1.1952375 3.9198922 0.3809357 5.4304724 2.2215315 1.8570525 14.538738
3.4917621 1.0511701 1.9732268 –0.3812494 3.9582012 2.116783 2.3806975 12.998614
4.7463211 2.3356456 5.3719798 0.8047524 5.3859459 3.1270236 3.3903168 18.985253
2.5633476 2.1610288 4.5154829 0.8719888 3.7023022 2.5322679 1.4531975 13.075239
2.1647959 1.6361127 3.7908605 0.870752 2.1834205 2.5949514 2.7353984 12.175383
3.3407015 1.8485931 4.0957866 0.2755382 4.341604 1.0723773 2.6064022 13.209678
3.9968036 2.6271607 2.5352335 0.7837149 3.7496031 1.3063624 2.1972483 13.877178
3.0782144 1.9542634 5.674461 –0.2269675 3.6021733 2.1978306 2.2108603 13.458358

Y f X X X X X X= = −( , , ) ( )1 2 3 1 2 3
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v1 = (1, 2, 1) (6.52a)

v2 = (1, 2, 4) (6.52b)

v3 = (1, 3, 1) (6.52c)

v4 = (1, 3, 4) (6.52d)

v5 = (2, 2, 1) (6.52e)

v6 = (2, 2, 4) (6.52f)

v7 = (2, 3, 1) (6.52g)

v8 = (2, 3, 4) (6.52h)

The function evaluations can now be performed. For example, for v1 = (1, 2, 1), the
function evaluation is

f(v1) = 1(2 – 1) = 1 (6.53)

Then, Equation 6.49 can be used to obtain the final result at this α-cut as follows:

(6.54)

It can be observed from this example that the vertex method has the property of
invariance when the form of the expression is changed to

(6.55)

The same result of [–4, 4] can be obtained using Equation 6.55, although requiring the
evaluation of 16 vertices.

6.3 PROPAGATION OF MIXED UNCERTAINTY TYPES

6.3.1 A FUNDAMENTAL INPUT–OUTPUT SYSTEM

A fundamental input–output system is introduced in this section to facilitate the
introduction and discussion of using methods of propagating uncertainty in systems
of the type that can be modeled by Equation 6.1. The system is represented using
an algebraic problem set, as was identified by Sandia National Laboratories to be a
basic building block for uncertainty propagation in computational mechanics
(Oberkampf et al., 2003). The problem set is based on a model structure that is
known with certainty and provided as follows:

αY = − − − − − −[min( , , , , , , , ),max( , , , ,1 2 2 1 2 4 4 2 1 2 2 1 22 4 4 2 4 4, , , )] [ , ]− − = −

Y f X X X X X X X= = −( , , )1 2 3 1 2 1 3
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(6.56)

where A and B are the parameters that are independent, and positive and real
numbers. This model represents the response Y of a system. Six problem types that
reflect various uncertainty representations of A and B are examined and solved in
subsequent sections. The solutions presented in this section are based on methods
that propagate uncertainties using endpoints of the input intervals to demonstrate
the propagation processes. In order to obtain the output interval endpoints, all
possible combinations of all values in the input intervals should to propagated using
the respective methods, and solutions as output interval endpoints can be obtained
through incremental, numerical evaluations throughout the input intervals and using
max or min operators. In some of the problems, the endpoints of the output intervals
might not correspond to the input interval endpoint evaluations.

6.3.2 INTERVAL PARAMETERS

The parameters in Equation 6.56 in this case are provided in the form of intervals
as follows:

(6.57a)

(6.57b)

The interval arithmetic definition of the power of a positive real-valued interval
[b1, b2] using a positive real-valued power (a) can be defined as

(6.58)

Using an interval, positive real-valued power [a1, a2], the interval arithmetic
definition of the power of a positive real-valued interval [b1, b2] is

(6.59)

Based on Equations 6.58 and 6.59, the response Y can be computed utilizing
interval addition as follows:

(6.60)

where

(6.61a)

Y A B A= +( )

A a a= [ , ]1 2

B b b= [ , ]1 2

[ , ] [ , ]b b b ba a a
1 2 1 2=

[ , ] [ , ][ , ]b b b ba a a a
1 2 1 2

1 2 1 2=

Y a a b b y ya a= + =[[ , ] [ , ]] [ , ][ , ]
1 2 1 2 1 2

1 2

y a b a
1 1 1

1= +[ ]
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(6.61b)

A pseudo-computational code is as follows:

a = [al, ar]

b = [bl, br]

al = left(a)

ar = right(a)

bl = left(b)

br = right(b)

cl = min((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

cr = max((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

c = [cl, cr]

EXAMPLE 6.6 UNCERTAINTY PROPAGATION USING INTERVAL PARAMETERS

This problem is illustrated using the following values for the parameters A and B:

A = [0.1, 1.0]

B = [0.0, 1.0]

The response based on the endpoints can be computed as follows:

where y1 = [0.1 + 0.0]0.1 = 0.7943282, and y2 = [1.0 + 1.0]1.0 = 2.0. The endpoint
evaluation does not produce the correct value. The minimum value occurs at values
not at the ends. The true solutions based on incremental numerical evaluations are y1

= 0.692201, and y2 = 2.0.

6.3.3 A POWER AS AN INTERVAL AND A SET OF INTERVALS

The parameters of Equation 6.56 in this case are provided as follows:

(6.62a)

(6.62b)

y a b a
2 2 2

2= +[ ]

Y y y= + = =[[ . , . ] [ . , . ]] [ , ] [[ . , . ]0 1 1 0 0 0 1 0 00 1 1 0
1 2 .. , . ]7943282 2 0

A a a= [ , ]1 2

B b b i ni i i= = …[ , ] , , ,1 2 1 2for
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The information on B is provided based on n independent sources. The universal
set of B is defined as the union of the n intervals. Three cases are considered herein
based on specific additional information on B.

6.3.3.1 A Consonant or Nested Set of Intervals

The Bi intervals are nested according to the following structure:

(6.63)

Since the Bi intervals are equally credible, they can be given a basic assignment
m = 1/n. The belief and plausibility measures, i.e., necessity and possibility, respec-
tively, can be computed as follows:

(6.64)

(6.65)

Equations 6.64 and 6.65 can be evaluated as follows:

(6.66)

Equation 6.66 can now be used to compute the response according to each Bi,
and the resulting interval should be associated with the corresponding Bel and Pl.

A pseudo-computational code is as follows:

a = [al, ar]

b(1) = [bl1, br1]

b(2) = [bl2, br2]

b(3) = [bl3, br3]

b(4) = [bl4, br4]

al = left(a)

ar = right(a)

B B i ni i⊆ = … −+1 1 2 1for , , ,

Bel B m Bi j

all B Bj i

( ) ( )=
⊆

∑

Pl B m Bi j

all B Bj i

( ) ( )=
∩ ≠∅
∑

i Bi Bel(Bi) Pl(Bi)

1 B1 1/n 1
2 B2 2/n 1
3 B3 3/n 1
M M M M

n Bn 1 1
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for i = 1 to 4 do begin

bl = left(b(i))

br = right(b(i))

cl = min((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

cr = max((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

continue

c = [cl, cr]

EXAMPLE 6.7 UNCERTAINTY PROPAGATION USING A CONSONANT OR NESTED SET

OF INTERVALS

This case is illustrated herein using the following values for the parameters A and B:

as an approximation. The true answer can be obtained using a search algorithm to
determine the minimum and maximum of the output intervals by considering all the
values in the intervals, called interval evaluation, as opposed to the previous endpoint

FIGURE 6.3 A consonant nested set of intervals.

TABLE 6.6A
Endpoint Uncertainty Propagation for a 
Consonant or Nested Set of Intervals

i Bi Bel(Bi) Pl(Bi) y1 y2

1 [0.6, 0.8] 0.25 1.00 0.9649611 1.80
2 [0.4, 0.85] 0.50 1.00 0.9330329 1.85
3 [0.2, 0.9] 0.75 1.00 0.8865681 1.90
4 [0.0, 1.0] 1.00 1.00 0.7943282 2.00

A = [ . , . ]0 1 1 0

B B B1 2 30 6 0 8 0 4 0 85 0 2 0 9= = =[ . , . ], [ . , . ], [ . , . ], andd B4 0 0 1 0= [ . , . ]

B1

B4
B3

B2

0.6 0.8
0.4 0.85

0.2 0.9
0.0 1.0
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These intervals are nested as provided in Figure 6.3. The response can be computed
using Equations 6.60 and 6.66 as provided in Table 6.6A based on endpoint evaluations

evaluations. The results in this case are shown in Table 6.6B.
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6.3.3.2 A Consistent Set of Intervals

The B intervals according to Equation 6.56 are structured such that

(6.67)

Similar to the previous case, since the B intervals are equally credible, they can
be given a basic assignment m = 1/n. The belief and plausibility measures can be
computed using Equations 6.64 and 6.65. Then, Equation 6.60 can be used to
compute the response according to each B interval, and the resulting interval should
be associated with the corresponding Bel and Pl.

EXAMPLE 6.8 UNCERTAINTY PROPAGATION USING A CONSISTENT SET OF

INTERVALS

This case is illustrated using the following values for the parameters A and B:

These intervals have a common range as provided in Figure 6.4. The response can be

intervals based on endpoint evaluations as an approximation. The true answer can be

TABLE 6.6B
Interval Uncertainty Propagation for a Consonant or 
Nested Set of Intervals

Interval
Bi

Output Intervals
Based on A = [0.1, 1.0]

a value that 
produced

y1

b value that 
produced

y2y1 y2

B1 = [0.6, 0.8] 0.956196 1.80 0.187900 0.60
B2 = [0.4, 0.85] 0.897511 1.85 0.268900 0.40
B3 = [0.2, 0.9] 0.810958 1.90 0.334700 0.20
B4 = [0.0, 1.0] 0.692201 2.00 0.367900 0.00

FIGURE 6.4 A consistent set of intervals.

B B i n j ni j∩ ≠ = … = …φ for 1 2 1 2, , , , , ,and

A = [ . , . ]0 1 1 0

B B B1 2 30 6 0 9 0 4 0 8 0 1 0 7= =[ . , . ], [ . , . ], [ . , . ], and BB4 0 0 1 0= [ . , . ]

B1

B4
B3

B2

0.6 0.9
0.4 0.8

0.1 0.7
0.0 1.0
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computed using Equations 6.63, 6.64, and 6.65 as provided in Table 6.7a for all the B
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obtained using a search algorithm to determine the minimum and maximum of the
output intervals by considering all the values in the intervals, called interval evaluation,
as opposed to the previous endpoint evaluations. The results in this case are shown in
Table 6.7b. The common range (Bc) among all the B intervals might be of special
interest, and its response can be assessed as provided in Table 6.8 based on Table 6.7a.

In cases involving a common range for all intervals, the belief and plausibility of the
common range (Bc) were computed based on extension from possibility theory con-
cepts, since Bc is common to all B intervals as follows:

(6.68a)

TABLE 6.7A
Endpoint Uncertainty Propagation for a 
Consistent Set of Intervals

i Bi Bel(Bi) Pl(Bi) y1 y2

1 [0.6, 0.9] 0.25 1.00 0.9649611 1.90
2 [0.4, 0.8] 0.25 1.00 0.9330329 1.80
3 [0.1, 0.7] 0.25 1.00 0.8513399 1.70
4 [0.0, 1.0] 1.00 1.00 0.7943282 2.00

TABLE 6.7B
Interval Uncertainty Propagation for a Consistent Set 
of Intervals

Interval
Bi

Output Intervals
Based on A = [0.1, 1.0]

a value that 
produced

y1

b value that 
produced

y2y1 y2

B1 = [0.6, 0.9] 0.956196 1.90 0.187900 0.60
B2 = [0.4, 0.8] 0.897511 1.80 0.268900 0.40
B3 = [0.1, 0.7] 0.756118 1.70 0.357700 0.10
B4 = [0.0, 1.0] 0.692201 0.692201 2.00 0.367900

TABLE 6.8
Uncertainty Propagation for a Consistent 
Set of Intervals for the Common Interval Bc

i Bi Bel(Bi) Pl(Bi) y1 y2

c [0.6,0.7] 0.25 1.00 0.9649611 1.70

Bel B Bel Bc i( ) min[ ( )]=
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(6.68b)

Equation 6.68a and b is provided as a preliminary solution, and additional investigation
is needed in order to qualify it for a particular application.

A pseudo-computational code is as follows:

a = [al, ar]

b(1) = [bl1, br1]

b(2) = [bl2, br2]

b(3) = [bl3, br3]

b(4) = [bl4, br4]

al = left(a)

ar = right(a)

for i = 1 to 4 do begin

bl = left(b(i))

br = right(b(i))

cl = min((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

cr = max((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

continue

c = [cl, cr]

6.3.3.3 An Arbitrary Set of Intervals

In this case, the B intervals are provided in any arbitrary structure. Similar to the
previous case, since the Bi intervals are equally credible, they can be given a basic
assignment m = 1/n. The belief and plausibility measures can be computed using
Equations 6.64 and 6.65. Then, Equation 6.60 can be used to compute the response
according to each Bi, and the resulting interval should be associated with the corre-
sponding Bel and Pl.

A pseudo-computational code is as follows:

a = [al, ar]

b(1) = [bl1, br1]

b(2) = [bl2, br2]

Pl B Pl Bc i( ) max[ ( )]=
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b(3) = [bl3, br3]

b(4) = [bl4, br4]

al = left(a)

ar = right(a)

for i = 1 to 4 do begin

bl = left(b(i))

br = right(b(i))

cl = min((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

cr = max((ar + br)^ar, (ar + bl)^ar, (al + br)^al, 
(al + bl)^al)

continue

c = [cl, cr]

EXAMPLE 6.9 UNCERTAINTY PROPAGATION USING AN ARBITRARY SET OF

INTERVALS

This case is illustrated using the following values for the parameters A and B of
Equation 6.56:

These intervals do not have a common range and can be represented as provided in

answer can be obtained using a search algorithm to determine the minimum and
maximum of the output intervals by considering all the values in the intervals, called
interval evaluation, as opposed to the previous endpoint evaluations. The results in this

FIGURE 6.5 An arbitrary set of intervals.

A = [ . , . ]0 1 1 0

B B B1 2 30 6 0 8 0 5 0 7 0 1 0 4= = =[ . , . ], [ . , . ], [ . , . ], and B4 0 0 1 0= [ . , . ]

B1

B4
B3

B2

0.6 0.8
0.5 0.7

0.1 0.4
0.0 1.0
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Figure 6.5. The response can be assessed using Equations 6.60, 6.64, and 6.65 as
provided in Table 6.9a based on endpoint evaluations as an approximation. The true

case are shown in Table 6.9b.
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6.3.4 SETS OF INTERVALS

In this case, the parameters are provided as follows:

(6.69a)

(6.69b)

The information on A and B is provided based on k and n independent sources,
respectively. The universal sets of A and B are defined as the union of the respective
k and n intervals. Three cases are considered herein based on specific additional
information on A and B.

6.3.4.1 Consonant or Nested Sets of Intervals

The Ai and Bi intervals are nested according to the following structure:

(6.70a)

(6.70b)

TABLE 6.9A
Endpoint Uncertainty Propagation for an 
Arbitrary Set of Intervals

i Bi Bel(Bi) Pl(Bi) y1 y2

1 [0.6, 0.8] 0.25 0.75 0.9649611 1.80
2 [0.5, 0.7] 0.25 0.75 0.9502002 1.70
3 [0.1, 0.4] 0.25 0.50 0.8513399 1.40
4 [0.0, 1.0] 1.00 1.00 0.7943282 2.00

TABLE 6.9B
Interval Uncertainty Propagation for an Arbitrary Set 
of Intervals

Interval
Bi

Output Intervals
Based on A = [0.1, 1.0]

a value that 
produced

y1

b value that 
produced

y2y1 y2

B1 = [0.6, 0.8] 0.956196 1.80 0.187900 0.60
B2 = [0.5, 0.7] 0.930174 1.70 0.229800 0.50
B3 = [0.1, 0.4] 0.756118 1.40 0.357700 0.10
B4 = [0.0, 1.0] 0.692201 0.692201 2.00 0.367900

A a a i ki i i= = …[ , ] , , ,1 2 1 2for

B b b i ni i i= = …[ , ] , , ,1 2 1 2for

A A i ki i⊆ = … −+1 1 2 1for , , ,

B B i ni i⊆ = … −+1 1 2 1for , , ,
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Since the Ai and Bi intervals are equally credible, they can be given the basic
assignments mA = 1/k and mB = 1/n, respectively. The belief and plausibility measures,
i.e., necessity and possibility, respectively, can be computed according to Equations
6.64 and 6.65 as follows:

(6.71a)

and

(6.71b)

Equation 6.6 can now be used to compute the response according to each com-
bination of Ai and Bi, and the resulting interval should be associated with the corre-
sponding Bel and Pl using the intersection relationships from the following rules:

(6.72a)

(6.72b)

(6.72c)

(6.72d)

EXAMPLE 6.10 UNCERTAINTY PROPAGATION USING CONSONANT OR NESTED SETS

OF INTERVALS

This case is illustrated using the following values for the parameters A and B:

i Ai Bel(Ai) Pl(Ai)

1 A1 1/k 1
2 A2 2/k 1
3 A3 3/k 1
M M M M

n An 1 1

i Bi Bel(Bi) Pl(Bi)

1 B1 1/n 1
2 B2 2/n 1
3 B3 3/n 1
M M M M

n Bn 1 1

Bel A B Bel A Bel B( ) min[ ( ), ( )]∩ =

Bel A B Bel A Bel B( ) max[ ( ), ( )]∪ ≥

Pl A B Pl A Pl B( ) min[ ( ), ( )]∩ ≤

Pl A B Pl A Pl B( ) max[ ( ), ( )]∪ =

A A A1 2 30 5 0 7 0 3 0 8 0 1 1 0= = =[ . , . ], [ . , . ], [ . , . ]and

B B B1 2 30 6 0 8 0 4 0 85 0 2 0 9= = =[ . , . ], [ . , . ], [ . , . ], andd B4 0 0 1 0= [ . , . ]
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The Bi intervals are the same as the previous corresponding case. The response can be
computed with the Pl, for the resulting interval is an upper bound according to Equation

The true answer can be obtained using a search algorithm by evaluating Equation 6.72a
and c to determine the minimum and maximum of the output intervals by considering
all the values in the intervals, called interval evaluation, as opposed to the previous
endpoint evaluations. The results in this case are shown in Table 6.10b.

6.3.4.2 Consistent Sets of Intervals

The Ai and Bi intervals are structured such that

(6.73a)

(6.73b)

Similar to the previous case, since the Ai and Bi intervals are equally credible,
they can be given the basic assignments mA = 1/k and mB = 1/n, respectively. The

TABLE 6.10A
Endpoint Uncertainty Propagation for a Consonant or Nested Sets 
of Intervals

Ai Intervals
B1 = [0.6, 0.8] B2 = [0.4, 0.85] B3 = [0.2, 0.9] B4 = [0.0, 1.0]

(Bel, Pl) = (0.25, 1.00) (0.50, 1.00) (0.75, 1.00) (1.00, 1.00)

A1 = [0.5, 0.7] (0.33, 1.00) y1 = 1.048809
y2 = 1.328201
(0.25, 1.00)

y1 = 0.948683
y2 = 1.359040
(0.33, 1.00)

y1 = 0.836666
y2 = 1.389581
(0.33, 1.00)

y1 = 0.707107
y2 = 1.449821
(0.33, 1.00)

A2 = [0.3, 0.8] (0.67, 1.00) y1 = 0.968886
y2 = 1.456451
(0.25, 1.00)

y1 = 0.898523
y2 = 1.492750
(0.50, 1.00)

y1 = 0.812252
y2 = 1.528830
(0.67, 1.00)

y1 = 0.696845
y2 = 1.600361
(0.67, 1.00)

A3 = [0.1, 1.0] (1.00, 1.00) y1 = 0.964961
y2 = 1.80
(0.25, 1.00)

y1 = 0.933033
y2 = 1.85
(0.50, 1.00)

y1 = 0.886568
y2 = 1.90
(0.75, 1.00)

y1 = 0.794328
y2 = 2.00
(1.00, 1.00)

TABLE 6.10B
Interval Uncertainty Propagation for a Consonant or Nested Sets of Intervals

Ai Intervals

B1 = [0.6, 0.8] B2 = [0.4, 0.85] B3 = [0.2, 0.9] B4 = [0.0, 1.0]

y1 y2 y1 y2 y1 y2 y1 y2

A1 = [0.5, 0.7] 1.048809 1.328201 0.948683 1.359040 0.836660 1.389581 0.707107 1.449821
A2 = [0.3, 0.8] 0.968886 1.456451 0.898523 1.492750 0.810958 1.528830 0.692201 1.600361
A3 = [0.1, 1.0] 0.956196 1.80 0.897511 1.85 0.810958 1.90 0.692201 2.00

A A i k j ki j∩ ≠ = … = …φ for and1 2 1 2, , , , , ,

B B i n j ni j∩ ≠ = … = …φ for and1 2 1 2, , , , , ,

C6447_C006.fm  Page 286  Tuesday, April 4, 2006  4:20 PM

© 2006 by Taylor & Francis Group, LLC

6.72c, as shown in Table 6.10a based on endpoint evaluations as an approximation.
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belief and plausibility measures can be computed using Equations 6.64 and 6.65.
Then, Equation 6.60 can be used to compute the response according to pair of Ai

and Bi, and the resulting interval should be associated with the corresponding Bel
and Pl using Equation 6.72a and c.

EXAMPLE 6.11 UNCERTAINTY PROPAGATION USING CONSISTENT SETS OF INTERVALS

This case is illustrated using the following values for the parameters A and B:

The response can be computed using Equations 6.60, 6.64, and 6.65 as shown in Table
6.11a based on endpoint evaluations as an approximation. The true answer can be
obtained using a search algorithm to determine the minimum and maximum of the
output intervals by considering all the values in the intervals, called interval evaluation,
as opposed to the previous endpoint evaluations. The results in this case are shown in
Table 6.11b. The common ranges (Ac and Bc) can be treated similarly to the case

TABLE 6.11A
Endpoint Uncertainty Propagation for a Consistent Sets of Intervals

B1 = [0.6, 0.9] B2 = [0.4, 0.8] B3 = [0.1, 0.7] B4 = [0.0, 1.0]
Ai Intervals (Bel, Pl) = (0.25, 1.00) (0.50, 1.00) (0.75, 1.00) (1.00, 1.00)

A1 = [0.5, 1.0] (0.33, 1.00) y1 = 1.048809
y2 = 1.90
(0.25, 1.00)

y1 = 0.948683
y2 = 1.80
(0.33, 1.00)

y1 = 0.774597
y2 = 1.70
(0.33, 1.00)

y1 = 0.707107
y2 = 2.00
(0.33, 1.00)

A2 = [0.2, 0.7] (0.67,1.00) y1=0.956353
y2=1.389581
(0.25,1.00)

y1=0.902880
y2=1.328201
(0.50,1.00)

y1=0.786003
y2=1.265580
(0.67,1.00)

y1=0.724780
y2=1.449821
(0.67,1.00)

A3=[0.1,0.6] (1.00, 1.00) y1 = 0.964961
y2 = 1.275426
(0.25, 1.00)

y1 = 0.933033
y2 = 1.223705
(0.50, 1.00)

y1 = 0.851340
y2 = 1.170485
(0.75, 1.00)

y1 = 0.794328
y2 = 1.325782
(1.00, 1.00)

TABLE 6.11B
Interval Uncertainty Propagation for a Consonant or Nested Sets of Intervals

Ai Intervals

B1 = [0.6, 0.9] B2 = [0.4, 0.8] B3 = [0.1, 0.7] B4 = [0.0, 1.0]

y1 y2 y1 y2 y1 y2 y1 y2

A1 = [0.5, 1.0] 1.048809 1.90 0.948683 1.80 0.774597 1.70 0.707107 2.00
A2 = [0.2, 0.7] 0.956353 1.389581 0.897511 1.328201 0.756118 1.265580 0.692201 1.449821
A3 = [0.1, 0.6] 0.956196 1.275426 0.897511 1.223705 0.756118 1.170485 0.692201 1.325782

A A A1 2 30 5 1 0 0 2 0 7 0 1 0 6= = =[ . , . ], [ . , . ], [ . , . ]and

B B B1 2 30 6 0 9 0 4 0 8 0 1 0 7= = =[ . , . ], [ . , . ], [ . , . ], and B3 0 0 1 0= [ . , . ]
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6.3.4.3 Arbitrary Sets of Intervals

In this case, the Ai and Bi intervals are provided in any arbitrary structures. Similar
to the previous case, since the Ai and Bi intervals are equally credible, they can be
given the basic assignments mA = 1/k and mB = 1/n, respectively. The belief and
plausibility measures can be computed using Equations 6.64 and 6.65. Then, Equa-
tion 6.60 can be used to compute the response according to the pair of Ai and Bi,
and the resulting interval should be associated with the corresponding Bel and Pl
using Equations 6.73a and 6.74c.

6.3.5 A POWER AS AN INTERVAL AND AS A SET OF INTERVALS

Three cases of Equation 6.56 are considered in this section: (1) a power as an interval
and a lognormally distributed parameter, (2) an interval power and an uncertain
lognormally distributed parameter, and (3) a set of power intervals and an uncertain
lognormally distributed parameter.

6.3.5.1 Power Intervals and Lognormally Distributed Parameter

In this case, the parameters are provided as follows:

(6.74)

(6.75)

where B according to Equation 6.75 is lognormally distributed with the parameters
μ and σ. The mean (μB) and variance of B can be computed from the parameters
as follows:

(6.76a)

(6.76b)

Equation 6.76a and b can be inverted as follows:

(6.77a)

(6.77b)

A a a= [ , ]1 2

ln( ) ~ ( , )B N μ σ

( )σB
2

μ μ σB = +
⎛
⎝⎜

⎞
⎠⎟

exp
1
2

2

σ μ σB B
2 2 2 1= −(exp( ) )

σ σ
μ

2

2

1= +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ln B

B

μ μ σ= −ln( )B

1
2

2
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Monte Carlo simulation can be used to evaluate the response according to the
following steps:

• Randomly generate B to obtain b values according to its probability
distribution as provided in Equation 6.75.

• Compute the response interval as follows:

(6.78)

where

(6.79a)

(6.79b)

• Repeat the simulation process N times and compute the moments and
distribution types of y1 and y2.

EXAMPLE 6.12 UNCERTAINTY PROPAGATION USING A POWER AS AN INTERVAL

AND A LOGNORMALLY DISTRIBUTED PARAMETER

For the following parameters,

simulation was used to compute the response. A total of 100 simulation cycles produced
the response moments and histograms that show bimodal characteristics, as summarized

TABLE 6.12
Uncertainty Propagation for an Interval Power 
and a Lognormally Distributed Parameter

Moment B y1 y2

Mean 1.923245 1.062593 2.923245
Standard deviation 1.009403 0.049313 1.009403
Coefficient of variation 0.5248 0.0464 0.3453

Y a a b y ya a= + =[[ , ] ] [ , ][ , ]
1 2 1 2

1 2

y a b a
1 1

1= [ , ]

y a b a
2 2

2= +[ ]

ln( ) ~ ( . , . )B N 0 5 0 5
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A = [ .0 1, . ]1 0

and shown in Table 6.12 and Figure 6.6.
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6.3.5.2 A Power as an Interval and an Uncertain Lognormally 
Distributed Parameter

In this case, the parameters are provided as follows:

(6.80)

(6.81)

The second-order uncertainty provided in characterizing the lognormal param-
eter can be rolled into the parameters using Monte Carlo simulation to obtain

Then, the computational procedure presented in the previous section
can be used to solve the problem.

6.3.5.3 A Set of Power Intervals and an Uncertain Lognormally 
Distributed Parameter

The parameters, in this case, are provided as follows:

FIGURE 6.6 Uncertainty propagation for an interval power and a lognormally distributed
parameter.
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(6.82)

(6.83)

The information on A and B is provided based on k and n independent sources,
respectively. The universal sets of A and B are defined as the union of the respective
k and n intervals. Three cases can be developed as combinations of the computational
procedures of previous cases.

EXERCISE PROBLEMS

6.1. The change in the length of a rod due to axial force P is given by

where L = length of rod, P = applied axial force, A = cross-sectional area
of the rod, and E = modulus of elasticity. If P and E are normally
distributed with known moments, determine the moments (i.e., mean and
variance) of the change in length using first-order approximation for two
cases: (1) uncorrelated P and E and (2) correlated P and E. Assume A
and L are nonrandom.

6.2. The ultimate moment capacity, M, of an underreinforced concrete rectan-
gular section is given by

where

in which the following are random variables: As is the cross-sectional area
of the reinforcing steel, fy is the yield stress (strength) of the steel, d is the
distance from the reinforcing steel to the top fibers of the beam, b is the
width of the beam, and fc′ is the ultimate stress (strength) of the concrete.
If the random variables are assumed to be statistically noncorrelated,
determine the first-order mean and variance of the moment capacity.

6.3. For the change in the length of a rod due to axial force P provided in
problem 6.1, use 20 simulation cycles to determine the mean and variance

A a a i ki i i= = …[ , ] , , ,1 2 1 2for

ln( ) ~ ([ , ],[ , ]) , , ,B N i ni i i i iμ μ σ σ1 2 1 2 1 2for = …

ΔL
PL
AE

=

M A f d
a

s y= −
⎛
⎝⎜

⎞
⎠⎟2

a
A f

bf
s y

c

=
′0 85.
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of ΔL assuming noncorrelated random variables with the following prob-
abilistic characteristics:

6.4. For the rod in problem 6.1, study the effect of increasing the number of
simulation cycles on the estimated mean and variance of the deformation.
Use the following numbers of simulation cycles: 20, 100, 500, 1000, 2000,
and 10,000. Provide your results in the form of plots of estimated statistics
as a function of the number of simulation cycles.

6.5. For the ultimate moment capacity, M, of an underreinforced concrete
rectangular section provided in problem 6.2, assume the random variables
to be statistically noncorrelated and determine the mean and variance of
the moment capacity using the following information:

Use 100 simulation cycles. Is this a sufficient number of cycles? Why?
Discuss.

6.6. Demonstrate that the vertex method property of invariance holds in Exam-
ple 6.5 based on using the two expressions of the function as follows:

6.7. Redo Example 6.5 using the following function:

Random 
Variable

Mean
Value

Coefficient
of Variation

Distribution
Type

P 100 kips 0.35 Lognormal
L 20 in. 0.05 Normal
E 30,000 ksi 0.10 Lognormal
A 1 in.2 0.05 Normal

Random
Variable

Mean
Value

Coefficient 
of Variation

Distribution 
Type

As 0.25 in.2 0.10 Lognormal
fy 40,000 psi 0.10 Normal
d 20 in. 0.05 Lognormal
b 12 in. 0.05 Normal
fc′ 4000 psi 0.20 Lognormal

Y f X X X X X X= = −( , , ) ( )1 2 3 1 2 3

Y f X X X X X X X= = −( , , )1 2 3 1 2 1 3

Y f X X X X X X= = −( , , )1 2 3 1
2

2 3
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6.8. Redo Example 6.5 using the following function:

6.9. Redo Example 6.6 using the following values for the parameters A and B:

6.10. Redo Example 6.7 using the following values for the parameters A and B:

6.11. Redo Example 6.8 using the following values for the parameters A and B:

6.12. Redo Example 6.9 using the following values for the parameters A and B:

6.13. Redo Example 6.10 using the following values for the parameters A and B:

6.14. Redo Example 6.11 using the following values for the parameters A and B:

Y f X X X X X X= = −( , , )1 2 3 1 2 3

A = [ . , . ]0 1 2 0

B = [ . , . ]0 0 2 0

A = [ . , . ]0 1 2 0

B B B1 2 30 6 0 8 0 4 1 0 0 2 1 5= = =[ . , . ], [ . , . ], [ . , . ], and B4 0 0 2 0= [ . , . ]

A = [ . , . ]0 1 2 0

B B B1 2 30 6 0 9 0 4 1 5 0 1 1 8= = =[ . , . ], [ . , . ], [ . , . ], and B4 0 0 2 0= [ . , . ]

A = [ . , . ]0 1 2 0

B B B1 2 30 6 0 8 0 9 1 2 0 1 0 8= = =[ . , . ], [ . , . ], [ . , . ], and B4 0 0 2 0= [ . , . ]

A A A1 2 30 5 0 7 0 3 0 8 0 1 1 0= = =[ . , . ], [ . , . ], [ . , . ]and

B B B1 2 30 6 0 8 0 4 1 0 0 2 1 5= = =[ . , . ], [ . , . ], [ . , . ], and B4 0 0 2 0= [ . , . ]

A A A1 2 30 5 0 7 0 3 0 8 0 1 1 0= = =[ . , . ], [ . , . ], [ . , . ]and
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6.15. Provide a solution procedure of Equation 6.56 with uncertain parameters
and demonstrate the procedure for the case of arbitrary sets of intervals

6.16. The solution procedures described in previous sections of Equation 6.56
with uncertain parameters are based on computing the ends of the inter-
vals. Reexamine and modify the solution procedure as needed or provide

6.17. Provide a solution procedure of Equation 6.56 with uncertain parameters
and demonstrate the procedure for the case of an interval power and an

6.18.
and demonstrate the procedure for the case of a set of power intervals and

6.19. Select a physics-based input–output system and demonstrate the use of
the following cases for the model parameters:
a.

c.
6.20. Select a physics-based input–output system and demonstrate the use of

the following cases for the model parameters:
a.

c.
6.21. Select a physics-based input–output system and demonstrate the use of

the following cases for the model parameters:
a. An interval power and a lognormally distributed parameter (Section

6.3.5.1)
b. An interval power and an uncertain lognormally distributed parameter

(Section 6.3.5.2)
c. A set of power intervals and an uncertain lognormally distributed

parameter (Section 6.3.5.3)
6.22. Use the following input–output regression model with two parameters a

and b and demonstrate the use of the following cases for the model
parameters:

a. A consonant or nested set of intervals (Section 6.3.3.1)
b. A consonant set of intervals (Section 6.3.3.2)
c. An arbitrary set of intervals (Section 6.3.3.3)

B B B1 2 30 6 0 9 0 4 1 5 0 1 1 8= = =[ . , . ], [ . , . ], [ . , . ], and B4 0 0 2 0= [ . , . ]

y aX b X= + ≤ ≤where 1 2
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(Section 6.3.4.3).

case of an interval power and a lognormally distributed parameter (Section
6.3.5.1).

uncertain lognormally distributed parameter (Section 6.3.5.2).

an uncertain lognormally distributed parameter (Section 6.3.5.3).

an alternate solution procedure, and demonstrate the procedure for the

A consonant or nested set of intervals (Section 6.3.3.1)

Provide a solution procedure of Equation 6.56 with uncertain parameters

b. A consonant set of intervals (Section 6.3.3.2)
An arbitrary set of intervals (Section 6.3.3.3)

Consonant or nested sets of intervals (Section 6.3.4.1)
b. Consonant sets of intervals (Section 6.3.4.2)

Arbitrary sets of intervals (Section 6.3.4.3)
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6.23. Use the following input–output regression model with two parameters a
and b and demonstrate the use of the following cases for the model
parameters:

a.

c.
6.24. Use the following input–output regression model with two parameters a

and b and demonstrate the use of the following cases for the model
parameters:

a.

b. An interval power and an uncertain lognormally distributed parameter

c. A set of power intervals and an uncertain lognormally distributed

y aX b X= + ≤ ≤where 1 2

y aX b X= + ≤ ≤where 1 2
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Consonant or nested sets of intervals (Section 6.3.4.1)

Arbitrary sets of intervals (Section 6.3.4.3)

An interval power and a lognormally distributed parameter (Section

b. Consonant sets of intervals (Section 6.3.4.2)

6.3.5.1)

(Section 6.3.5.2)

parameter (Section 6.3.5.3)
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7

 

Expert Opinions and 
Elicitation Methods

 

7.1 INTRODUCTION

 

Dealing with uncertainty and system complexity requires us to rely on 

 

experts

 

 to
address issues. Experts are sought out when encountering uncertainty, ignorance,
and complexity. We commonly deal with or listen to experts on a regular basis, such
as weather forecasts by weather experts, stock and financial reports by analysts and
experts, suggested medication or procedures by medical professionals, policies by
politicians, and analyses by world affairs experts. We know from our own experi-
ences that experts are valuable sources of information and knowledge, and can also
be wrong in their views rendered to us. Expert opinions, therefore, can be considered
to include or constitute nonfactual information. The fallacy of these opinions might
disappoint us, but do not surprise us, since issues that require experts tend to be
difficult or complex, sometimes with divergent views. The nature of some of these
complex issues could only yield views that have subjective truth levels; therefore,
they allow for contradictory views that might be all somewhat credible.

Experts, with all their importance and value, can be viewed as double-edged
swords. Not only do they bring in a deep knowledge base and thoughts, but also
they could provide biases and 

 

pet

 

 theories. The selection of experts, elicitation of
their opinions, and aggregation of the opinions should be performed and handled
carefully by recognizing uncertainties associated with the opinions, and sometimes
with skepticism.

Expert opinion elicitation can be defined as a heuristic process of gathering
information and data or answering questions on issues or problems of concern. In
this chapter, a focus on occurrence probabilities and adverse consequences of events
as primary elements in risk analysis is provided to demonstrate the process presented.
Expert opinion elicitation should not be used in lieu of rigorous studies, but should
be used to supplement them and to prepare for them, or in cases where data are
lacking and cannot be collected.

The expert opinion elicitation process presented in this chapter is a variation of
the Delphi technique (Helmer, 1968) with scenario analysis (Kahn and Wiener, 1967)
based on uncertainty models (Ayyub, 2001, 2003

 

;

 

 Cooke, 1991), social research
(Bailey, 1994), U.S. Army Corps of Engineers (USACE) studies (Ayyub et al., 1996),

try recommendations (NRC, 1997), NUREG/CR-6372 (Budnitz et al., 1997

 

)

 

 and
NUREG/CR-1563 (Kotra et al., 1996

 

)

 

, and the Stanford Research Institute protocol
(Spetzler and Stael von Holstein, 1975). Ayyub (2001) provides additional informa-
tion on expert opinion elicitation.
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the ignorance, knowledge, information, and uncertainty of Chapter 1, nuclear indus-
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7.2 TERMINOLOGY

 

process. The 

 

expert opinion elicitation

 

 (EE) process is defined as a formal, heuristic
process of gathering information and data or answering questions on issues or problems
of concern. The EE process requires the involvement of a 

 

leader

 

 of the EE process
who is an entity having managerial and technical responsibility for organizing and
executing the project, overseeing all participants, and intellectually owning the results.

An 

 

expert

 

 is defined as a skillful person who has a lot of training and has
knowledge in some special field. The expert is the provider of an opinion in the
process of expert opinion elicitation. An 

 

evaluator

 

 is an expert who has the role of
evaluating the relative credibility and plausibility of multiple hypotheses to explain
observations. The process involves 

 

evaluators

 

, who consider available data, become
familiar with the views of proponents and other evaluators, question the technical
bases of data, and challenge the views of proponents, as well as 

 

observers

 

, who can
contribute to the discussion but cannot provide expert opinion that enters into the
aggregated opinion of the experts. The process might require peer reviewers who
can provide an unbiased assessment and critical review of an expert opinion elicita-
tion process, its technical issues, and results. Some of the experts might be 

 

propo-
nents

 

, experts who advocate a particular hypothesis or technical position. In science,
a proponent evaluates experimental data and professionally offers a hypothesis that
would be challenged by the proponent’s peers until proven correct or wrong. 

 

Resource
experts

 

 can be used who are technical experts with detailed and deep knowledge of
particular data, issue aspects, particular methodologies, or use of evaluators.

The 

 

sponsor

 

 of EE process is an entity that provides financial support and owns
the rights to the results of the EE process. Ownership is in the sense of property
ownership. A 

 

subject

 

 is a person who might be affected or might affect an issue or
question of interest for the process.

A 

 

technical facilitator

 

 (TF) is an entity responsible for structuring and facilitating
the discussions and interactions of experts in the EE process, staging effective inter-
actions among experts, ensuring equity in presented views, eliciting formal evalua-
tions from each expert, and creating conditions for direct, noncontroversial integration
of expert opinions. A 

 

technical integrator 

 

(TI) is an entity responsible for developing
the composite representation of issues based on informed members and sources of

results to experts and outside experts, peer reviewers, regulators, and policy makers;
and obtaining feedback and revising composite results. A 

 

technical integrator and
facilitator 

 

(TIF) is an entity responsible for both functions of TI and TF.

 

7.3 CLASSIFICATION OF ISSUES, STUDY LEVELS, 
EXPERTS, AND PROCESS OUTCOMES

 

The NRC (1997) classified issues for expert opinion elicitation purposes into three
complexity degrees (A, B, or C), with four levels of study in the expert opinion

a complexity degree and a level of study that depends on (1) the significance of the
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The terminology of Table 7.1 is needed for defining the expert opinion elicitation

elicitation process (I, II, III, and IV), as shown in Table 7.2. A given issue is assigned

related technical communities and experts; explaining and defending composite
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TABLE 7.1
Terminology and Definitions

 

Term Definition

 

Evaluators Evaluators consider available data, become familiar with the views of 
proponents and other evaluators, question the technical bases of data, and 
challenge the views of proponents

Expert A person with related or unique experience to an issue or question of interest 
for the process

Expert opinion 
elicitation (EE) process

A formal, heuristic process of gathering information and data or answering 
questions on issues or problems of concern

Leader of EE process An entity having managerial and technical responsibility for organizing and 
executing the project, overseeing all participants, and intellectually 

 

owning

 

 
the results

Observers Observers can contribute to the discussion but cannot provide expert opinion 
that enters into the aggregated opinion of the experts

Peer reviewers Experts that can provide an unbiased assessment and critical review of an 
expert opinion elicitation process, its technical issues, and results

Proponents Experts who advocate a particular hypothesis or technical position; in science, 
a proponent evaluates experimental data and professionally offers a 
hypothesis that would be challenged by the proponent’s peers until proven 
correct or wrong

Resource experts Technical experts with detailed and deep knowledge of particular data, issue 
aspects, particular methodologies, or use of evaluators

Sponsor of EE process An entity that provides financial support and 

 

owns

 

 the rights to the results 
of the EE process; ownership is in the sense of property ownership

Subject A person who might be affected or might affect an issue or question of 
interest for the process

Technical facilitator 
(TF)

A person responsible for structuring and facilitating the discussions and 
interactions of experts in the EE process, staging effective interactions 
among experts, ensuring equity in presented views, eliciting formal 
evaluations from each expert, and creating conditions for direct, 
noncontroversial integration of expert opinions

Technical integrator (TI) A person responsible for developing the composite representation of issues 
based on informed members and sources of related technical communities 
and experts; explaining and defending composite results to experts and 
outside experts, peer reviewers, regulators, and policy makers; and obtaining 
feedback and revising composite results

Technical integrator and 
facilitator (TIF)

A person responsible for both functions of TI and TF
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tainty level, (3) the amount of nontechnical contention about the issue in the technical
community, and (4) important nontechnical consideration, such as budgetary, regu-
latory, scheduling, public perception, or other concerns. Experts can be classified
into five types (NRC, 1997): (1) proponents, (2) evaluators, (3) resource experts, (4)

The study level as shown in Table 7.2 involves a technical integrator (TI) or a
technical integrator and facilitator (TIF). A TI can be one person or a team (i.e., an
entity) that is responsible for developing the composite representation of issues based
on informed members and sources of related technical communities and experts;
explaining and defending composite results to experts and outside experts, peer
reviewers, regulators, and policy makers; and obtaining feedback and revising com-
posite results. A TIF can be one person or a team (i.e., an entity) that is responsible
for the functions of a TI, and structuring and facilitating the discussions and inter-
actions of experts in the EE process, staging effective interactions among experts,
ensuring equity in presented views, eliciting formal evaluations from each expert,
and creating conditions for direct, noncontroversial integration of expert opinions.
The primary difference between the TI and the TIF is in the intellectual responsibility
for the study, where it lies with only the TI or with the TIF and the experts,

 

TABLE 7.2
Issue Degrees and Study Levels

 

a. Issue Complexity Degree

 

b. Study Level

Degree Description Level Requirements

 

A Noncontroversial
Insignificant effect on risk

I A technical integrator (TI) evaluates and weighs 
models based on literature review and experience 
and estimates needed quantities

B Significant uncertainty
Significant diversity
Controversial
Complex

II A technical integrator (TI) interacts with proponents 
and resource experts, assesses interpretations, and 
estimates needed quantities

C Highly contentious
Significant effect on risk
Highly complex

III A technical integrator (TI) brings together 
proponents and resource experts for debate and 
interaction; TI focuses the debate, evaluates 
interpretations, and estimates needed quantities

IV A technical integrator (TI) and technical facilitator 
(TF) (that can be one person, i.e., TIF) organize a 
panel of experts to interpret and evaluate, focus 
discussions, keep the experts’ debate orderly, 
summarize and integrate opinions, and estimate 
needed quantities
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observers, and (5) peer reviewers. These types are defined in Table 7.1.

issue to the final goal of the study, (2) the issue’s technical complexity and uncer-
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respectively. The TIF also has the added responsibility of maintaining the profes-
sional integrity of the process and its implementation.

The TI and TIF processes are required to utilize peer reviewers for quality
assurance purposes. Peer review can be classified according to peer review method
and according to peer review subject. Two methods of peer review can be performed:
(1) participatory peer review, which would be conducted as an ongoing review
throughout all study stages, and (2) late-stage peer review, which would be per-
formed as the final stage of the study. The former method allows for affecting the
course of the study, whereas the latter one might not be able to affect the study
without a substantial rework of the study. The second classification of peer reviews
is by peer review subject and has two types: (1) technical peer review, which focuses
on the technical scope, coverage, contents, and results, and (2) process peer review,
which focuses on the structure, format, and execution of the expert opinion elici-
tation process. Guidance on the use of peer reviewers is provided in Table 7.3
(NRC, 1997).

The expert opinion elicitation process should preferably be conducted to include
a face-to-face meeting of experts that is developed specifically for the issues under
consideration. The meeting of the experts should be conducted after communicating
to the experts in advance of the meeting background information, objectives, list of
issues, and anticipated outcome from the meeting. The expert opinion elicitation
based on the technical integrator and facilitator (TIF) concept can result in consensus

in Figure 7.1 (NRC, 1997). Commonly, the expert opinion elicitation process has
the objective of achieving consensus type 4; i.e., experts agree that a particular
probability distribution represents the overall scientific community. The TIF plays
a major role in building consensus by acting as a facilitator. Disagreement among
experts, whether it is intentional or unintentional, requires the TIF to act as an
integrator by using equal or nonequal weight factors. Sometimes, expert opinions

 

TABLE 7.3
Guidance on Use of Peer Reviewers

 

Expert Opinion
Elicitation Process

Peer Review
Subject

Peer Review
Method Recommendation

 

Technical integrator Technical Participatory Recommended

and facilitator Late stage Can be acceptable
Process Participatory Strongly recommended

Late stage Risky: unlikely to be successful

Technical integrator Technical Participatory Strongly recommended
Late stage Risky but can be acceptable

Process Participatory Strongly recommended
Late stage Risky but can be acceptable
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or disagreement, as shown in Figure 7.1. Consensus can be of four types, as shown
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need to be weighed for appropriateness and relevance rather than strictly weighted
by factors in a mathematical aggregation procedure.

 

7.4 PROCESS DEFINITION

 

information or answers to specific questions about certain quantities, called issues,
such as failure rates, failure consequences, and expected service lives. The suggested
steps for an expert opinion elicitation process depend on the use of a technical

Table 7.4 was constructed based on NRC (1997), supplemented with details, and
added steps. The details of the steps involved in these two processes are defined in
subsequent subsections.

 

7.5 NEED IDENTIFICATION FOR EXPERT OPINION 
ELICITATION

 

The primary reason for using expert opinion elicitation is to deal with uncertainty
in selected technical issues related to a system of interest. Issues with significant
uncertainty, issues that are controversial or contentious, issues that are complex,
and issues that can have a significant effect on risk are most suited for expert
opinion elicitation. The value of the expert opinion elicitation comes from its initial
intended uses as a heuristic tool, not a scientific tool, for exploring vague and
unknown issues that are otherwise inaccessible. It is not a substitute to scientific,
rigorous research.

 

FIGURE 7.1

 

Outcomes of the expert opinion elicitation process.

Expert elicitation
process

ConsensusNo consensus

Equal weights Non-equal
weights

Quantitative
weights Weighing

Type1: Each expert
believes in same

deterministic value
or model.

Type 2: Each expert
believes in same

probability 
distribution for a 
variable or model

parameter.

Type 3: Experts agree
that a particular

probability distribution
represents their views

as a group.

Type 4: Experts agree 
that a particular

probability distribution
represents the overall
scientific community.
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Expert opinion elicitation was defined as a formal, heuristic process of obtaining

integrator (TI) or a technical integrator and facilitator (TIF), as shown in Table 7.4.
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The identification of need and its communication to experts are essential for the
success of the expert opinion elicitation process. The need identification and com-
munication should include the definition of the goal of the study and relevance of
issues to this goal. Establishing this relevance would make the experts stakeholders,
and thereby increase their attention and sincerity levels. The relevance of each issue

essential to enhancing the reliability of collected data from the experts. Each question

with diverse views and backgrounds.

 

7.6 SELECTION OF STUDY LEVEL AND STUDY LEADER

 

(TF), or a combined technical integrator and facilitator (TIF). The leader of the study
is an entity having managerial and technical responsibility for organizing and exe-
cuting the project, overseeing all participants, and intellectually 

 

owning

 

 the results.
The primary difference between the TI and the TIF is in the intellectual responsibility
for the study, where it lies with only the TI or with the TIF and the experts,
respectively. The TIF also has the added responsibility of maintaining the profes-
sional integrity of the process and its implementation. The TI is required to utilize
peer reviewers for quality assurance purposes. A study leader should be selected
based on the following attributes:

1. An outstanding professional reputation and wide recognition and compe-
tence based on academic training and relevant experience

 

TABLE 7.4
Expert Opinion Elicitation Process

 

Technical Integration (TI) Process
Technical Integration and Facilitation 

(TIF) Process

 

Need identification for expert opinions Need identification for expert opinions
Select study leader and study level Select study leader and study level
Select technical integrator Select technical integrator and facilitator
Identify and select peer reviewers Identify and select experts and peer reviewers
Define technical issues Define technical issues
Collect information and analyze Discuss with experts and refine issues
Perform data diagnostics and summarize results Train experts for elicitation
Administer peer review Facilitate expert group discussion 
Revise based on reviews Aggregate results, discuss, and summarize
Document and communicate results Administer peer review

Address comments of reviewers
Document and communicate results
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or question to the study needs to be established. This question-to-study relevance is

or issue needs to be relevant to each expert, especially when dealing with subjects

The goal of a study and nature of issues determine the study level as shown in Table
7.2. The study leader can be either a technical integrator (TI), technical facilitator
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2. Strong communication skills, interpersonal skills, flexibility, impartiality,
and ability to generalize and simplify

3. A large contact base of industry leaders, researchers, engineers, scientists,
and decision makers

4. Ability to build consensus, and leadership qualities

The study leader does not need to be a subject expert, but should be knowledge-
able of the subject matter.

 

7.7 SELECTION OF PEER REVIEWERS AND EXPERTS

7.7.1 S

 

ELECTION

 

 

 

OF

 

 P

 

EER

 

 R

 

EVIEWERS

 

Peer review can be classified according to peer review method and according to peer
review subject. Two methods of peer review can be performed: (1) participatory peer
review, which would be conducted as an ongoing review throughout all study stages,
and (2) late-stage peer review, which would be performed as the final stage of the
study. The second classification of peer reviews is by peer review subject and has
two types: (1) technical peer review that focuses on the technical scope, coverage,
contents, and results, and (2) process peer review that focuses on the structure,
format, and execution of the expert opinion elicitation process. These classifications

Peer reviewers are needed for both the TI and TIF processes. The peer reviewers
should be selected by the study leader in close consultation with perhaps the study
sponsor. The following individuals should be sought after as peer reviewers:

1. Researchers, scientists, or engineers that have an outstanding professional
reputation and widely recognized competence based on academic training
and relevant experience

2. Researchers, scientists, and engineers with a general understanding of the
issues in other related areas and with relevant expertise and experiences
from other areas

3. Researchers, scientists, and engineers who are available and willing to
devote the needed time and effort

4. Researchers, scientists, and engineers with strong communication skills,
interpersonal skills, flexibility, impartiality, and ability to generalize
and simplify

 

7.7.2 I

 

DENTIFICATION

 

 

 

AND

 

 S

 

ELECTION

 

 

 

OF

 

 E

 

XPERTS

 

The size of an expert panel should be determined on case-by-case basis. The size
should be large enough to achieve a needed diversity of opinion, credibility, and
result reliability. In recent expert opinion elicitation studies, a nomination process
was used to establish a list of candidate experts by consulting archival literature,
technical societies, governmental organization, and other knowledgeable experts
(Trauth et al., 1993). Formal nomination and selection processes should establish
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appropriate criteria for nomination, selection, and removal of experts. For example,
the following criteria were used in an ongoing Yucca Mountain seismic hazard
analysis (NRC, 1997) to select experts:

1. Strong relevant expertise through academic training, professional accom-
plishment and experiences, and peer-reviewed publications

2. Familiarity and knowledge of various aspects related to the issues of interest
3. Willingness to act as proponents or impartial evaluators
4. Availability and willingness to commit needed time and effort
5. Specific related knowledge and expertise of the issues of interest
6. Willingness to effectively participate in needed debates, to prepare for

discussions, and provide needed evaluations and interpretations
7. Strong communication skills, interpersonal skills, flexibility, impartiality,

and ability to generalize and simplify

In this NRC study, criteria were set for expert removal that include failure to
perform according to commitments and demands as set in the selection criteria, and
unwillingness to interact with members of the study.

The panel of experts for an expert opinion elicitation process should have a
balance and broad spectrum of viewpoints, expertise, technical points of view, and
organizational representation. The diversity and completeness of the panel of experts
is essential for the success of the elicitation process. For example, it can include
the following:

1. Proponents who advocate a particular hypothesis or technical position
2. Evaluators who consider available data, become familiar with the views

of proponents and other evaluators, question the technical bases of data,
and challenge the views of proponents

3. Resource experts who are technical experts with detailed and deep knowl-
edge of particular data, issue aspects, particular methodologies, or use of
evaluators

The experts should be familiar with the design, construction, operational, inspec-
tion, maintenance, reliability, and engineering aspects of the equipment and com-
ponents of a facility of interest. It is essential to select people with basic engineering
or technological knowledge; however, they do not necessarily need to be engineers.
It might be necessary to include one or two experts from management with engi-
neering knowledge of the equipment and components, consequences, safety aspects,
administrative and logistic aspects of operation, expert opinion elicitation process,
and objectives of this study. One or two experts with a broader knowledge of the
equipment and components might be needed. Also, one or two experts with a
background in risk analysis and risk-based decision making, and their uses in areas
related to the facility of interest, might be needed.

Observers can be invited to participate in the elicitation process. Observers can
contribute to the discussion, but cannot provide expert opinion that enters into the
aggregated opinion of the experts. The observers provide expertise in the elicitation
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process, probabilistic and statistical analyses, risk analysis, and other support areas.
The composition and contribution of the observers are essential for the success of
this process. The observers may include the following:

1. Individuals with a research- or administrative-related background from
research laboratories or headquarters of the U.S. Army Corps of Engi-
neers with engineering knowledge of equipment and components of
Corps facilities

2. Individuals with expertise in probabilistic analysis, probabilistic compu-
tations, consequence computations and assessment, and expert opinion
elicitation

A list of names with biographical statements of the study leader, technical
integrator, technical facilitator, experts, observers, and peer reviewers should be
developed and documented. All attendees can participate in the discussions during
the meeting. However, only the experts can provide the needed answers to questions
on the selected issues. The integrators and facilitators are responsible for conducting
the expert opinion elicitation process. They can be considered to be a part of the
observers or experts, depending on the circumstances and the needs of the process.

 

7.7.3 I

 

TEMS

 

 N

 

EEDED

 

 

 

BY

 

 E

 

XPERTS

 

 

 

AND

 

 R

 

EVIEWERS

 

 

 

BEFORE

 

 

 

THE

 

 E

 

XPERT

 

 
O

 

PINION

 

 E

 

LICITATION

 

 M

 

EETING

 

The experts and observers need to receive the following items before the expert
opinion elicitation meeting:

1. An objective statement of the study.
2. A list of experts, observers, integrators, facilitators, study leader, sponsors,

and their biographical statements.
3. A description of the facility, systems, equipment, and components.
4. Basic terminology; definitions should include probability, failure rate,

average time between unsatisfactory performances, mean (or average)
value, median value, and uncertainty.

5. Failure consequence estimation.
6. A description of the expert opinion elicitation process.
7. A related example on the expert opinion elicitation process and its results,

if available.
8. Aggregation methods of expert opinions, such as computations of

percentiles.
9. A description of the issues in the form of a list of questions with

background descriptions. Each issue should be presented on a separate
page with spaces for recording an expert’s judgment, any revisions, and
comments.

10. Clear statements of expectations from the experts in terms of time, effort,
responses, communication, and discussion style and format.
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It might be necessary to personally contact individual experts for the purpose
of establishing a clear understanding of expectations.

 

7.8 IDENTIFICATION, SELECTION, AND 
DEVELOPMENT OF TECHNICAL ISSUES

 

The technical issues of interest should be carefully selected to achieve certain objec-
tives. In these guidelines, the technical issues are related to the quantitative assessment
of failure probabilities and consequences for selected components, subsystems, and
systems within a facility. The issues should be selected such that they would have a
significant impact on the study results. These issues should be structured in a logical
sequence, starting with background statement, followed by questions, and then answer
selections or answer format and scales. Personnel with risk analysis background who
are familiar with the construction, design, operation, and maintenance of the facility
need to define these issues in the form of specific questions. Also, background mate-
rials about these issues need to be assembled. The materials will be used to familiarize
and train the experts about the issues of interest, as described in subsequent steps.

An introductory statement for the expert opinion elicitation process should be
developed that includes the goal of the study and establishes relevance. Instructions
should be provided with guidance on expectations, answering the questions, and
reporting. The following are guidelines on constructing questions and issues-based
social research practices (Bailey, 1994):

1. Each issue can include several questions; however, each question should
consist of only one sought-after answer. It is a poor practice to include
two questions in one.

2. Questions and issue statements should not be ambiguous. Also, the use
of ambiguous words should be avoided. In expert opinion elicitation of
failure probabilities, the word 

 

failure

 

 might be vague or ambiguous to
some subjects. Special attention should be given to its definition within
the context of each issue or question. The level of wording should be kept
to a minimum. Also, the choice of the words might affect the connotation
of an issue, especially by different subjects.

3. The use of factual questions is preferred over abstract questions. Questions
that refer to concrete and specific matters result in desirable concrete and
specific answers.

4. Questions should be carefully structured in order to reduce biases of
subjects. Questions should be asked in a neutral format, sometimes more
appropriately without lead statements.

5. Sensitive topics might require stating questions with lead statements that
would establish supposedly accepted social norms in order to encourage
subjects to answer the questions truthfully.

Questions can be classified into 

 

open-ended questions

 

 and 

 

closed-ended ques-
tions

 

, as was previously discussed. The format of the question should be selected
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carefully. The format, scale, and units for the response categories should be selected
to best achieve the goal of the study. The minimum number of questions and question
order should be selected using the above guidelines.

Once the issues are developed, they should be pretested by administering them
to a few subjects for the purpose of identifying and correcting flaws. The results of
this pretesting should be used to revise the issues.

 

7.9 ELICITATION OF OPINIONS

 

The elicitation process of opinions should be systematic for all the issues according
to the steps presented in this section.

 

7.9.1 I

 

SSUE

 

 F

 

AMILIARIZATION

 

 

 

OF

 

 E

 

XPERTS

 

The background materials that were assembled in the previous step should be sent
to the experts about 1 to 2 weeks in advance of the meeting with the objective of
providing sufficient time for them to become familiar with the issues. The objective
of this step is also to ensure that there is a common understanding among the experts
of the issues. The background material should include the objectives of the study;
a description of the issues and lists of questions for the issues; a description of
systems and processes, their equipment and components, the elicitation process, and
selection methods of experts; and biographical information on the selected experts.
Also, example results and their meaning, methods of analysis of the results, and
lessons learned from previous elicitation processes should be made available to them.
It is important to break down the questions or issues into components that can be
easily addressed. Preliminary discussion meetings or telephone conversations
between the facilitator and experts might be necessary in some cases in preparation
for the elicitation process.

 

7.9.2 T

 

RAINING

 

 

 

OF

 

 E

 

XPERTS

 

This step is performed during the meeting of the experts, observers, and facilitators.
During the training the facilitator needs to maintain flexibility to refine wording or
even change approach based on feedback from experts. For instance, experts may
not be comfortable with “probability,” but they may answer on “events per year” or
a “recurrence interval.” This indirect elicitation should be explored with the experts.
The meeting should be started with presentations of background material to establish
relevance of the study to the experts, and study goals in order to establish rapport
with the experts. Then, information on uncertainty sources and types, occurrence
probabilities and consequences, the expert opinion elicitation process, technical
issues and questions, and the aggregation of expert opinions should be presented.
Also, experts need to be trained on providing answers in an acceptable format that
can be used in the analytical evaluation of the failure probabilities or consequences.
The experts need to be trained in certain areas, such as the meaning of probability,
central tendency, and dispersion measures, especially to experts who are not familiar
with the language of probability. Additional training might be needed on conse-
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quences, subjective assessment, logic trees, problem structuring tools such as influ-
ence diagrams, and methods of combining expert evaluations. Sources of bias,
including overconfidence and base rate fallacy, and their contribution to bias and
error should be discussed. This step should include a search for any motivational
bias of experts, for example, due to previous positions experts have taken in public,
experts wanting to influence decisions and funding allocations, preconceived notions
that experts will be evaluated by their superiors as a result of their answers, or experts
wanting to be perceived as authoritative. These motivational biases, once identified,
can sometimes be overcome by redefining the incentive structure for the experts.

 

7.9.3 E

 

LICITATION

 

 

 

AND

 

 C

 

OLLECTION

 

 

 

OF

 

 O

 

PINIONS

 

The opinion elicitation step starts with a technical presentation of an issue and, by
decomposing the issue to its components, discussing potential influences and
describing event sequences that might lead to top events of interest. These top events
are the basis for questions related to the issue in the next stage of the opinion
elicitation step. Factors, limitations, test results, analytical models, and uncertainty
types and sources need to be presented. The presentation should allow for questions
to eliminate any ambiguity and clarify scope and conditions for the issue. The
discussion of the issue should be encouraged. The discussion and questions might
result in refining the definition of the issue. Then, a form with a statement of the
issue should be given to the experts to record their evaluation or input. The experts’
judgment along with their supportive reasoning should be documented about the
issue. It is common that experts would be asked to provide several conditional
probabilities in order to reduce the complexity of the questions and thereby obtain
reliable answers. These conditional probabilities can be based on fault tree and event
tree diagrams. Conditioning has the benefit of simplifying the questions by decom-
posing the problems. Also, it results in a conditional event that has a larger occurrence
probability than its underlying events, therefore making the elicitation less prone to
biases since experts tend to have a better handle on larger probabilities than very
small ones. It is desirable to have the elicited probabilities in the range of 0.1 to 0.9
if possible. Sometimes it might be desirable to elicit conditional probabilities using
linguistic terms. If correlation among variables exists, it should be presented to the
experts in great detail, and conditional probabilities need to be elicited.

Issues should be dealt with one issue at a time, although sometimes similar or
related issues might be considered simultaneously.

 

7.9.4 A

 

GGREGATION

 

 

 

AND

 

 P

 

RESENTATION

 

 

 

OF

 

 R

 

ESULTS

 

The collected assessments from the experts for an issue should be assessed for
internal consistency, analyzed, and aggregated to obtain composite judgments for
the issue. The means, medians, percentile values, and standard deviations need to
be computed for the issues. Also, a summary of the reasoning provided during the
meeting about the issues needs to be developed. Uncertainty levels in the assessments
should also be quantified. Methods for combining expert opinions are provided in
previous chapters. The methods can be classified into consensus methods and math-
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ematical methods. The mathematical methods can be based on assigning equal
weights to the experts or different weights.

 

7.9.5 G

 

ROUP

 

 I

 

NTERACTION

 

, D

 

ISCUSSION

 

, 

 

AND

 

 R

 

EVISION

 

 

 

BY 

 

E

 

XPERTS

 

The aggregated results need to be presented to the experts for a second round of
discussion and revision. The experts should be given the opportunity to revise their
assessments of the individual issues at the end of discussion. Also, the experts should
be asked to state the rationale for their statements and revisions. The revised assess-
ments of the experts need to be collected for aggregation and analysis. This step can

aggregation procedure might require eliciting weight factors from the experts. In
this step the technical facilitator plays a major role in developing a consensus and
maintaining the integrity and credibility of the elicitation process. Also, the technical
integrator is needed to aggregate the results without biases with reliability measures.
The integrator might need to deal with varying expertise levels for the experts,
outliers (i.e., extreme views), nonindependent experts, and expert biases.

 

7.10 DOCUMENTATION AND COMMUNICATION

 

A comprehensive documentation of the process is essential in order to ensure
acceptance and credibility of the results. The document should include complete
descriptions of the steps, the initial results, revised results, consensus results, and
aggregated results spreads and reliability measures.

 

E

 

XAMPLE

 

 7.1 R

 

ISK

 

-B

 

ASED

 

 A

 

PPROVAL OF PERSONAL FLOTATION DEVICES

With the introduction of inflatable personal flotation devices (PFDs), the U.S. Coast
Guard (USCG) and the PFD industry were faced with limitations inherent within the
current PFD approval practice. Inflatable PFDs perform better than inherently buoyant
PFDs in some aspects, but they involve new hazards that were not present in the
traditional inherently buoyant PFDs. For the approval of inflatable PFDs, it became
apparent that in some areas such devices offered performance advantages over inher-
ently buoyant PFDs, but had some disadvantages in other areas. The need to perform
equivalency analysis of engineering designs is a common problem for the regulation
of engineering systems. Therefore, an improved process for evaluating and comparing
PFD performance is needed. The introduction of this concept applied to PFD analysis
required the use of expert opinion elicitation to model the relationships between
performance variables of PFDs and the probability of the PFDs meeting the needs of
a person from the population of potential users, i.e., relationships between the perfor-
mance levels of a PFD and respective fractions of the population — that their needs
will be met at these levels. Example performance measures include (1) freeboard,
defined as a distance measured perpendicular to the surface of the water to the lowest
point where the PFD user’s respiration may be impeded; (2) face plane angle, defined
as the angle, relative to the surface of the water, of the plane formed by the most
forward part of the forehead and chin of a user floating in the attitude of static balance;
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produce either consensus or no consensus, as shown in Figure 7.1. The selected
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(3) chin support, defined as the PFD device being in direct contact with the jaw line
while the subject is in either the vertical upright or relaxed face-up position; (4) torso
angle, defined as the angle between a vertical line and a line passing through the
shoulder and hip; and (5) turning time, defined as the average time required for a device
to turn a facedown wearer to a position in which the wearer’s respiration is not impeded
and the proportion of test subjects are turned face up. These sample performance
measures are used in this example to illustrate the use of expert opinion elicitation to
develop relationships between varying performance levels and the respective fractions
of the population — that their needs will be met at these levels.

Personal Flotation Device Freeboard (FB)

Freeboard is defined as a distance measured perpendicular to the surface of the water
to the lowest point where the user’s respiration may be impeded. The objective of
freeboard is to minimize the probability of drowning. Greater freeboard means that
user movement and water movement are less likely to cause mouth immersion and
water inhalation. Figure 7.2 shows a linear relationship between FB and the probability
of meeting the needs of a PFD user based on expert opinion elicitation. Defining this
linear relationship requires two points that were elicited from experts, as shown in

freeboard, and the probability that corresponds to the absolute minimum freeboard.

Personal Flotation Device Face Plane Angle (FPA)

Face plane angle is defined as the angle, relative to the surface of the water, of the
plane formed by the most forward part of the forehead and chin of a user floating in
the attitude of static balance. The face plane angle’s objective is to decrease the
probability of drowning. A positive angle is achieved when a user’s forehead is higher
than his or her chin. Proper face plane angle decreases chances of water inhalation.

needs of a PFD user based on expert opinion elicitation. Defining this linear relationship

FIGURE 7.2 Probability of meeting the needs of a PFD user and freeboard.
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Figure 7.3 shows a linear relationship between FPA and the probability of meeting the

Table 7.5, for the freeboard needed to achieve a probability of 1, the absolute minimum
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TABLE 7.5
Expert Opinion Elicitation for Freeboard

Values to Define 
Model

Expert Opinion Collection Expert Opinion Aggregation

Expert
1

Expert
2

Expert
3

Expert
4

Expert
5

Expert
6

Expert
7

Expert
8

Expert
9 Minimum  25th 50th  75th Maximum

Freeboard at probability
of 1

5 5 3.5 4.5 4 4.75 4.75 5 4.75 3.5 4.25 4.75 5 5

Absolute minimum 
freeboard

0.5 0.5 1 1 0.5 0.75 1 1 1 0.5 0.5 1 1 1

Probability at absolute 
minimum freeboard

0.85 0.8 0.95 0.8 0.8 0.85 0.8 0.9 0.9 0.8 0.8 0.85 0.9 0.95
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FIGURE 7.3 Probability of meeting the needs of a PFD user and face plane angle.

TABLE 7.6
Expert Opinion Elicitation for Face Plane Angle

Values to Define Model

Expert Opinion Collection Expert Opinion Aggregation

Expert
1

Expert
2

Expert
3

Expert
4

Expert
5

Expert
6

Expert
7

Expert
8

Expert
9  Minimum  25th 50th  75th Maximum

Face plane angle at 
probability of 1

35 90 30 45 25 60 90 45 45 25 32.5 45 75 90

Absolute minimum face 
plane angle

5 –5 –10 0 –5 3 15 0 15 –10.0 –5 0 10 15

Probability at absolute 
minimum face plane angle

0.8 0.75 0.9 0.9 0.8 0.9 0.85 0.9 0.5 0.5 0.775 0.85 0.9 0.9

y = 0.0033x + 0.85 
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plane angle at probability of 1, absolute minimum face plane angle, and the probability
at the absolute minimum.

Personal Flotation Device Chin Support (CS)

Chin support is defined as the PFD device is in direct contact with the jaw line while
the subject is in either the vertical upright or relaxed face-up position. Chin support is
to aid the unconscious or exhausted user from allowing the face to fall in the water
and then inhaling water. Chin support is also considered adequate if the device prevents
the subject from touching the chin to the chest while the subject is in the relaxed face-

provided by the PFD design or not provided by the PFD design. Defining this rela-

without chin support.

Personal Flotation Device Torso Angle (TA)

Torso angle is the angle between a vertical line and a line passing through the shoulder
and hip. A desirable torso angle aids in preventing both mouth immersions due to
waves and being tipped facedown by wearer or wave movement. A positive torso angle
is achieved when a test participant’s hips are forward with respect to his or her

meeting the needs of a PFD user based on expert opinion elicitation. Defining this
linear relationship requires two points that were elicited from experts, as shown in

probability at the absolute minimum.

Personal Flotation Device Turning Time (TT) from Facedown

Turning time is defined as the average time required for a device to turn a facedown
wearer to a position in which the wearer’s respiration is not impeded and the proportion
of test subjects are turned face up. The faster the turning time on as large a portion of
the population as possible, the more likely the PFD is to prevent drowning for an

ability of meeting the needs of a PFD user based on expert opinion elicitation. Defining
this linear relationship requires two points that were elicited from experts, as shown

the probability at the absolute maximum.
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up position of static balance. Figure 7.4 shows two cases for the chin support: either

shoulders. Figure 7.5 shows a linear relationship between TA and the probability of

unconscious person. Figure 7.6 shows a linear relationship between TT and the prob-

requires two points that were elicited from experts, as shown in Table 7.6, for face

tionship requires eliciting one value, as shown in Table 7.7, for PFD effectiveness

Table 7.8, for torso angle at probability of 1, absolute minimum torso angle, and the

in Table 7.9, for torso angle at probability of 1, absolute maximum torso angle, and
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FIGURE 7.4 Probability of meeting the needs of a PFD user without chin support.

TABLE 7.7
Expert Opinion Elicitation for Chin Support

Values to Define Model

Expert Opinion Collection Expert Opinion Aggregation

Expert
1

Expert
2

Expert
3

Expert
4

Expert
5

Expert
6

Expert
7

Expert
8

Expert
9  Minimum  25th 50th  75th Maximum

Probability that the PFD
is effective with no chin
support

0.7 0.6 0.7 0.7 0.5 0.5 0.7 0.7 0.5 0.5 0.55 0.7 0.7 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No chin support Chin support
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FIGURE 7.5 Probability of meeting the needs of a PFD user and face plane angle.

TABLE 7.8
Expert Opinion Elicitation for Face Plane Angle

Values to Define Model

Expert Opinion Collection Expert Opinion Aggregation

Expert
1

Expert
2

Expert
3

Expert 
4

Expert 
5

Expert 
6

Expert 
7

Expert 
8

Expert 
9  Minimum  25th 50th  75th Maximum

Torso angle at probability 
of 1

85 75 60 45 45 80 60 80 75 45 52.5 75 80 85

Absolute minimum torso 
angle

30 30 20 20 20 10 15 45 15 10 15 20 30 45

Probability at absolute 
minimum torso angle

0.75 0.8 0.85 0.9 0.8 0.8 0.85 0.8 0.5 0.5 0.775 0.8 0.85 0.9

y = 0.0036x + 0.7273 

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

Torso angle (degrees)
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FIGURE 7.6 Probability of meeting the needs of a PFD user and turning time.

TABLE 7.9
Expert Opinion Elicitation for Turning Time

Values to Define Model

Expert Opinion Collection Expert Opinion Aggregation

Expert
1

Expert
2

Expert 
3

Expert 
4

Expert 
5

Expert 
6

Expert 
7

Expert 
8

Expert 
9  Minimum  25th 50th  75th Maximum

Turning time at 
probability of 1

2.5 3 3 3 5 5 4 5 5 2.5 3 4 5 5

Absolute maximum 
turning time

6 8 6.5 8 10 10 7 10 10 6 6.75 8 10 10

Probability at absolute 
maximum turning time

0.85 0.6 0.5 0.8 0.8 0.75 0.8 0.8 0.9 0.5 0.675 0.8 0.83 0.9

y = − 0.05x + 1.2 

0.7

0.75

0.8

0.85

0.9

0.95

1

Mouth out of water (seconds)
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EXERCISE PROBLEMS

7.1. What are the differences between technical facilitator, and technical inte-
grator and facilitator in an expert opinion elicitation process?

7.2. What are the success requirements for selecting experts and developing
an expert panel? How many experts would you recommend? For your
range on the number of experts, provide guidance in using the lower and
upper ends of the range.

7.3. Working in teams, select five classmates as a panel of experts and elicit
their opinions on five forecasting issues in engineering. Select these issues
such that the classmates can pass the tests of experts on these issues.
Perform all the steps of expert opinion elicitation and document your
process and results as a part of solving this problem.

7.4. You are asked to form an expert panel and perform expert opinion elici-
tation about the issues provided below that are concerned with develop-
ments by humanity in the current century. In addition to obtaining answers
to these questions, you are also being asked to assess the confidence of
the participants in their answers on a scale from 1 to 7, corresponding to
the highest and smallest confidences, respectively.
a. In your opinion, in what year will the median family income reach

twice its present amount?
b. In what year will the percentage of electric automobiles among all

automobiles in use reach 50%?
c. In what year will the percentage of intelligent and autonomous (without

a driver) automobiles among all automobiles in use reach 50%?
d. By what year will the average life expectancy of a human reach more

than 120 years?
e. By what year will it be possible to have commercial carriers to outer

space?
f. In what year will a human for the first time travel to Mars, stay at least

several days, and return to Earth?
Provide a formal report summarizing the process, listing the experts, and
providing answers to these questions.

7.5. Develop a list of communication forecasting issues and elicit opinions
similar to that in problem 7.4.

7.6. Develop a list of bioengineering and health forecasting issues and elicit
opinions similar to that in problem 7.4.

7.7. Develop a list of power sources and technologies forecasting issues and
elicit opinions similar to that in problem 7.4.

7.8. An optimal clearance between the bottom of an overpass bridge and the
water surface of a navigation channel needs to be determined to permit
safe navigation. A group of seven navigation experts was consulted to
offer their opinions about an appropriate design clearance. A formal expert
opinion elicitation session resulted in the following opinions:
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Aggregate the opinions of the experts by computing the minimum, max-
imum, 25th percentile, 50th percentile, and 75th percentile values.

7.9. A management consultant is in the process of restructuring the organiza-
tional hierarchy of a large corporation. She identified three possible types
of organizational structures that are suitable for this large corporation:
vertical structure, flat structure, and matrix structure. The selection of a
type needs to be based on achieving the highest satisfaction level by
employees and their managers. She conducted an expert elicitation session
using seven experts and elicited opinions about the best type of structure
suitable for the company. The level of satisfaction was measured on a
scale of 100 points (lowest level = 0, highest level = 100) with regard to
each structure type, as provided in the following table:

Aggregate the opinions of the experts by computing the minimum, max-
imum, 25th percentile, 50th percentile, and 75th percentile values.

7.10. The probability of performance failure of a newly designed vertical orga-
nizational system of a large corporation needs to be assessed by the
research and development department of the corporation. The research
and development department identified potential sources of this organi-
zational system failure at three management levels: top, middle, and lower
management. Nine experts in organizational performances were consulted
to offer their opinions and provide probability values. The results are
summarized in the following table:

Aggregate the opinions of the experts by computing the minimum, max-
imum, 25th percentile, 50th percentile, and 75th percentile values.

Clearance Issue

Expert Opinion

1 2 3 4 5 6 7

Clearance (in meters) 50 55 65 70 70 75 80

Structural 
Organization 

Type

Expert Opinions

1 2 3 4 5 6 7

Vertical structure 65 70 70 75 75 80 75
Flat structure 70 85 85 60 75 80 85
Matrix structure 80 70 75 75 90 85 85

Failure Probability of 
Vertical Structure

Expert Opinions

1 2 3 4 5 6 7 8 9

Top management level 0.55 0.50 0.45 0.65 0.70 0.65 0.65 0.50 0.65
Middle management level 0.70 0.65 0.65 0.75 0.80 0.70 0.75 0.65 0.70
Lower management level 0.85 0.70 0.85 0.85 0.90 0.80 0.80 0.75 0.80
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8

 

Visualization of 
Uncertainty

 

8.1 INTRODUCTION

 

Intelligence as the ability to understand and adapt to the environment by using a
combination of inherited abilities and learning experiences certainly includes the
analysis of uncertainty and making decisions under conditions of uncertainty. Cur-
rent techniques for visualizing information commonly do not include degrees of
certainty (or the degrees and types of ignorance) associated with individual or
aggregated information.

For example, for a commander in a battlefield to command, she or he needs to
choose. To choose is to decide — almost always on the basis of imperfect information
— and momentous decisions require knowledge of threats with a degree of certainty
that might not be a requisite for decisions less momentous than waging war. Also,
decisions in warfare are commonly made under stress. As warfare grows more
complex with networks of ill-defined foes and fronts, battlefield intelligence of both
sorts (for decision making and gathering information about the enemy) grows increas-
ingly critical. Sensors and sources, both human and machine, on numerous platforms
— manned and unmanned, in the air, on the ground, and under the water — track
multitudes of entities and events. Overwhelmed commanders must quickly absorb
the flood of data and make life-and-death decisions concerning a fluid and confusing
mix of entities: friendly, enemy, civilian, and neutral forces and individuals. The
commander must develop a set of goals (or missions) and a mental model of the
battle space, and then use this model to make decisions. Forming this mental model,
the commander needs to account for the disposition and capability of friendly, enemy,
nongovernment organization (NGO), civilian, and neutral forces. Uncertainty is a
key element of all of these components of information. However, current information
visualization techniques fail to provide the commander with information concerning
the degrees of certainty associated with individual or aggregated information ele-
ments. Battle space visualization techniques are needed that allow both information
and uncertainty to be portrayed effectively and grouped intuitively. Modeling and
simulation are promising technologies to host the development of potential visual-
ization technologies, such as intelligent agents, able to assess data uncertainty. Civil-
ian applications can also be constructed to demonstrate this complexity and difficulty.

The present practice of battlefield visualization is illustrated in TRADOC Pam
525-70 (Department of the Army, 1995).

Battle space visualization techniques should allow both information and uncer-
tainty to be portrayed effectively and grouped intuitively. Intelligent agents are
promising technologies to host the development of potential visualization technol-
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ogies to assess data and information uncertainty. Civilian applications can also be
constructed to meet societal needs such as Internet 

 

information tagging for uncer-
tainty

 

 and uncertainty visualization of search results.
Ignorance is a key element of data and its processed forms (e.g., information).

Current techniques for visualizing information do not help a decision maker suffi-
ciently because they do not include degrees of certainty (or the degrees and types
of ignorance) associated with individual or aggregated decision situation entities.

hierarchy, a set of processes that transform data to epiphanies, resulting decisions
whose quality may be characterized in a spectrum of appropriate to inappropriate,
and the goal of achieving optimum decisions, which are deemed either right (the
optimum decision under conditions of certainty — the God’s-eye view) or correct
(the optimum decision under conditions of uncertainty).

Decision making in the modern age is becoming more difficult. The decision
makers’ problem is further complicated as each event in a dynamic decision situation
is associated with some varying degree of uncertainty. Example dynamic decision
situations include waging wars, homeland security applications, disaster management,
and air traffic control. In addition, the uncertainty value of potentially important events
cannot be assessed in isolation, but must be judged in relation to other events happening
at the same time in the same location, as well as events happening at the same time
at other locations, to assess conflicting information and confusing situations. Because
objects and events in any given decision situation interact, and change rapidly, this
degree of complexity can easily overwhelm commanders and other decision makers.

Visualization is any technique for creating images, diagrams, or animations to
communicate a message that can be used for the purpose of decision making. A
diagram is a simplified and structured visual representation of concepts, ideas,
constructions, relations, statistical data, anatomy, etc., used in all aspects of human
activities to visualize and clarify a topic. Example diagram types include histograms,
probability distributions, tree diagrams, graphs, matrices, networks, flows, and icons.
Animation is the technique in which each frame of a film or movie is produced
individually, whether generated as a computer graphic, or by photographing a drawn
image, or by repeatedly making small changes to a model unit and then photograph-
ing the result with a special animation camera. Visualization through visual imagery
has been an effective way to communicate both abstract and concrete ideas to
enhance decision-making abilities. These methods can be applied to the visualization
of uncertainty. The visualization in this case would retain an appropriate level of
information and associated uncertainties that are essential to decision makers, and
should be tailored for specific applications and types of decision situations under
consideration. This chapter provides an introduction to this emerging field of uncer-
tainty visualization.

 

E

 

XAMPLE

 

 8.1 B

 

ATTLEFIELD

 

 U

 

NCERTAINTY

 

 

 

AND

 

 I

 

GNORANCE

 

 T

 

YPES

 

Symbology in the warfare domain is used for making decisions in battlefields. The
primary attributes of objects or units in a battlefield that are communicated by sym-
bology are:
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• The identification (ID) attributes of a unit, including:
• Type
• Size
• Intentions

• The position attributes of a unit, including:
• Location
• Movement direction
• Speed

of the relevance of the ignorance components to the above object attributes communi-
cated by symbology.

The blind ignorance category in Figure 1.19 cannot be represented since information
is nonexistent or not adequately processed; however, other attributes, such as conflict
and confusion, could be used to infer a state of blind ignorance.

The conscious ignorance with its primary components of inconsistency and incom-
pleteness should be included in proposed visualization methods. Inconsistency results
from distortions due to inaccuracy, imprecision, conflict, contradiction, or confusion.
Incompleteness results from the absence of knowledge, unknown knowledge (incom-
pleteness in kind), and uncertainty (incompleteness in amount), which can be classified
into three types based on its sources of ambiguity (unspecificity and nonspecificity),
approximations, and likelihood. Ambiguity arises from having multiple possible out-
comes of an event.

Table 8.1 shows a cross-examination of the attributes and selected ignorance types that
were judged to be relevant for visualizing ignorance. The table primarily identifies two
ignorance types of inconsistency (particularly conflict) and uncertainty in magnitude. In
addition to these two primary items, any suggested ignorance symbology should convey
the extent (i.e., level) of the ignorance or uncertainty. Movement direction and speed

 

TABLE 8.1
Battlefield Uncertainty and Ignorance Types

 

Symbol/Unit

 

Uncertainty and Ignorance Types

Attribute Inconsistency Incompleteness

 

Type Inconsistency (conflict) NA
Size Inconsistency (conflict) Uncertainty in magnitude
Intentions Inconsistency (conflict) NA
Location NA Uncertainty in magnitude
Movement direction NE NE
Speed NE NE

 

Note:

 

NA = not applicable; NE = not essential and covered by update rates
and links.
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In this section, the ignorance hierarchy provided in Figure 1.19 is examined in terms
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were judged to be already covered by updates provided by battlefield displays through
the update links, and therefore should not be covered by the ignorance symbology.

 

8.2 VISUALIZATION METHODS

8.2.1 S

 

TATISTICAL

 

 

 

AND

 

 P

 

ROBABILITY

 

-B

 

ASED

 

 V

 

ISUALIZATION

 

Traditionally histograms and probability distributions were used to visualize uncer-
tainty represented by random variables. Figure 8.1 shows a histogram that commu-
nicates the central tendency, dispersion, skewness, and modal characteristics of a

functions of a random variable using a mean value of 3000 and a standard deviation
of 300. These functions are commonly used to visualize uncertainty.

 

8.2.2 P

 

OINT

 

 

 

AND

 

 G

 

LOBAL

 

 V

 

ISUALIZATION

 

Visualization in scientific computing is defined as a method of computing that offers
a way for seeing the unseen. It enriches the process of discovery and fosters profound
and unexpected insights. Wertheimer (1958), involved with mathematic reasoning
in relation with the perception, observed that when elements were gathered into a
figure, the figure took on a perceptual salience that exceeded the sum of its parts,
leading to what is termed 

 

Gestalt

 

 psychology or theory. It was demonstrated that
people extract the global aspects of a scene before smaller (local) details are per-
ceived. The most important aspects of this theory is that in the process of decision
making, the solution will never occur unless we add to the given situation some
certain contexts and syntheses that eventually change the original meaning and make
us cognize the situation and make the correct decision. Such a decision emerges
only when our attention has the right direction based on this process.

The global aspects of a scene have processing dominance over local elements.
Not only does global perception precede feature-by-feature analysis, but it is also
thought to be preattentive in that it occurs without the cognitive effort characteristic
of a serial search and analysis of individual elements. The utilizing gestalt theory

 

FIGURE 8.1
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random variable. Figure 8.2 shows a cumulative probability distribution and density
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of organizing visual presentations supports the emergence of global figures from the
chaotic array of discrete elements and allows their perception at very low cognitive
cost. In order to apply this approach to the problem of situation awareness and
decision making, we 

 

extract a global gestalt from the chaos of moving units in the
battlefield

 

. Wertheimer (1958) has put forward some principles in order to account
for the way that humans organize perceptual stimuli. The following three principles
are especially important in geometric reasoning and can be helpful in designing the
tutoring component of the dynamic environment:

• Principle of proximity, which explains why humans tend to organize
elements that are close to each other

• Principle of similarity, which predicts that elements that have a similar
structure are perceived together

• Principle of good form, by which, in a complex diagram with multiple
configurations, humans tend to perceive only the ones that form closed
shapes

The visualization of knowledge (and its components) and ignorance (and its
components) must build on these attributes in order to create a system that conveys
intuitive meanings leading to correct decisions. We postulate that changes, over time
and space in the form of density changes, form such a global gestalt.

 

FIGURE 8.2

 

Probability distributions (mean = 3000, standard deviation = 300). (a) Proba-
bility density function. (b) Cumulative distribution function.
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Hoffman et al. (1998) used two perceptual domains, spatial and temporal. In the
spatial domain, the global preference phenomenon was exploited. Color is used to
identify each group (e.g., the traditional red for enemy and blue for friendly). Taking
additional advantage of the preattentive global processing ability of humans, the
density distribution of troops within a geographical area can be made instantly
apparent. Rather than showing the location of each local element, the level of color
saturation can represent the density of elements contained within a figure. The user
can thus determine troop concentrations with less visual interrogation and cognitive
effort because the differential saturation of the figures is immediately apparent. A
commander viewing such figures would no doubt come to an immediate, albeit quite
different, conclusion as to what is happening. The value in this type of coding
becomes more apparent when viewed in a compressed time format. This format is
achieved by processing each positional update and saving the rendering as part of
an MPEG (Moving Picture Experts Group) movie. The commander can then use
the movie to quickly view troop movement and density changes over time.

 

8.2.3 U

 

SE

 

 

 

OF

 

 C

 

OLORS

 

Color has a long history of use for visually communicating information. To this end,
the American Meteorological Society Interactive Information and Processing Sys-
tems Subcommittee for Color Guidelines was formed to poll the meteorological
community to determine the most commonly used sets of color assignments that are
used in depicting meteorological information. The following recommendations are
suggested for the use of colors:

• When selecting color to represent various features or conditions, choose
colors that have familiar relationships (Krebs and Wolf, 1979; Rice, 1991;
Hoffman, 1991; Travis, 1991). For example, the red, yellow, and green
set should be used when depicting dangerous, cautionary, and safe con-
ditions, respectively. Another example relates to the directionality of gray
shading used on monochrome satellite imagery: common practice is for
light shading to represent high clouds and dark shading to represent low
clouds. Bear in mind that across multiple meteorological display products,
color may interact with critical values and thereby affect the attention
afforded them (Hoffman and Lipton, 1992).

• Use selected colors consistently everywhere they are used (Travis, 1991).
For example, if green is used to represent landmasses in one place, it
should not be used to represent water bodies in another instance.

• Use time-proven color combinations for color-coding symbols with com-
binations of different colors (Krebs and Wolf, 1979; Rice, 1991). For
example, for a set of eight different colors, the recommended selection is
cyan, green, yellow, orange, red, mauve, purple, and blue.

• Avoid color-coding tiny symbols, since color discrimination decreases
with the size of the object (Rice, 1991). Also, the use of darker symbols
on lighter background usually works better than the reverse (Hoffman and
Lipton, 1992).
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• Limit the number of different colors that are used in any single visual
display or product (Krebs and Wolf, 1979; Hoffman, 1991; Rice, 1991;
Grossman, 1992). Four is a desirable limit for complete accuracy in color
identification, and more than eight different colors should be avoided.

• Consider the perceived brightness of colors for portraying the relative
values of parameters on a quantitative scale (Levkowitz, 1988; Levkowitz
and Herman, 1992). For example, the ordered set of five colors brown-
red-orange-yellow-white progresses from low to high perceived brightness
at its endpoints, while the common spectral set red-orange-yellow-green-
blue has its maximum of perceived brightness in the middle (yellow).

• Consider how the color set will map to gray shades if some users will
ultimately view the color set in monochrome mode (i.e., monochrome
television or hard copy). Pay particular attention to the adequacy of con-
trast for the monochrome conversion.

• In choosing color palettes, consider how to accommodate the 8% of the
population that is color blind. The Human Factors Society recommends
(Miller-Jacobs, 1984; Weitzman, 1985; Hoffman, 1991) using blue, green,
red, cyan, and yellow-green as an appropriate set of five colors.

• Since visual acuity is best for yellow-green hues, try to use this color for
critical information (Hoffman and Lipton, 1992). Conversely, since visual
acuity is poor for blue hues, use blue hues for either large areas or large
symbols.

• Avoid using red and blue adjacent to each other, because of the three-
dimensional illusion that results from what is known as chromostereopsis
(Rice, 1991; Tannas, 1992).

• Use bright-colored backgrounds cautiously (Hoffman and Lipton, 1992).
• When color is used to code intensity in an image, such as to create bands

of temperature ranges, use perceptually equal steps among the different
colors chosen (Levkowitz, 1988; Kaiser and Proffitt, 1989; Travis, 1991).

• Experienced users need to be able to manipulate colors to enhance certain
contrasts as they struggle to comprehend the displayed information (Hoff-
man and Lipton, 1992).

For additional detail on the human factors issues related to applying the color
guidelines presented in this report, we recommend Hoffman and Lipton’s (1992)
essay.

 

8.2.4 F

 

INANCIAL

 

 V

 

ISUALIZATION

 

Color and intensity are used in financial information visualization, such as 

 

Heatmaps

 

that organize financial instruments or positions into color-coded cells or spots. Using
live data, Heatmaps perform calculations in real-time and display the results as color.
They are called Heatmaps because they show what is hot. Users can set visual alerts
to highlight important opportunities, critical information, or current results. Heat-
maps focus time and attention on the few pieces of information that are most
important at this moment.
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8.2.5 I

 

CONS

 

, O

 

NTOLOGY

 

, 

 

AND

 

 L

 

EXICON

 

Icons, ontology, and lexicon can be used to portray and communicate types of
ignorance and uncertainty. In this section, only icons are discussed.

 

8.2.5.1 Emoticons

 

Examples of icons used for displaying emotion (

 

emoticons

 

) are provided as follows
(Nofi, 2000):

:-O Dismay
<G> Grin
:-C Incredulity
:-) Smile
:-J Tongue in cheek
(””””) Raised eyebrows
;-) Wink
:-x Kiss
(zzz) Boredom
:-( Frown
O:-) Innocence
[ ] Hug

Emotions can also be displayed using graphical icons; for example, icons could

 

8.2.5.2 Ignoricons and Uncerticons

 

As for ignorance and uncertainty, some conceptual icons were developed for the
purposes of this study as a starting point for further development and refinement.

    

tion, or knowledge having dubious origins and quality could display ignorance and
uncertainty levels using these icons in various sizes, colors, and motions to indicate
desired attributes. Visualization techniques for ignoricons and others forms need to
be identified, selected, and used from glyphs, adding geometry, modifying geometry,
and modifying attributes, animation, sonification, and psychovisual approaches.
They could also include environmental visualization, surface interpolation, global
illumination with radiosity, flow visualization, and figure animation. The visualiza-
tion methods should satisfy the following principles: (1) apprehension, (2) clarity,
(3) consistency, (4) efficiency, (5) necessity, and (6) truthfulness. The following
attributes of icons can be used to communicate information on uncertainty and
ignorance: (1) form, (2) orientation, (3) color, (4) texture, (5) value, (6) size, (7)
position, (8) motion, (9) intensity, (10) shading, and (11) special effects (such as
blinking, animation, etc.).
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be constructed based on images, as illustrated in Figure 8.3.

which is based on the ignorance hierarchy of Figure 1.19. Visualized data, informa-
These icons are called ignoricons and uncerticons and are provided in Figure 8.4,
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FIGURE 8.3

 

Images for constructing emotion icons. (By Ziad B. Ayyub, 2005.)
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8.3 CRITERIA AND METRICS FOR ASSESSING 
VISUALIZATION METHODS
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The goal of using a method to portray essential information uncertainty is to effec-
tively and efficiently communicate information by visual means. Suggested visual-
ization methods should be assessed according to selected criteria that represent their
effectiveness, efficiency, and consistency in communicating information uncertainty.
The following list provides an initial set of criteria:

• Intuitive
• Accurate and precise
• Complete
• Consistent
• Not confusing
• Single/unique meaning
• Fewer errors
• Faster comprehension/decision
• Multiuse or applications or services
• Platform independent
• Established meaning or use

From this initial list of potential assessment criteria, a short list of criteria and
subcriteria for evaluating prospective icons for the visualization of uncertainty was
assembled as follows:

• Apprehension (mental grasp)
• Clarity
• Consistency

 

FIGURE 8.4

 

Suggested ignoricons and uncerticons. (Copyright © BMA Engineering, Inc.,
2003. With permission.)
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• Efficiency
• Necessity
• Truthfulness
• Perturbation probability
• Compatibility with military standards, including MIL-STD-2525B

Using the analytic hierarchy process (AHP), and for the goal of selecting icons
for uncertainty in data visualization, the criteria and subcriteria shown in a tree
diagram in Figure 8.5 were constructed. The abbreviated labels in the diagram are
defined in the figure. Three primary criteria are suggested, represented by the 3E:
essentials, effectiveness, and efficiency.

The essentials criterion is defined to encompass exogenous, customer-based
requirements for military icons and symbology, and it has two subcriteria: (1)
standards and regulations and (2) user needs and wants. The former refers to any
military standards and regulations for symbols, icons, and digital displays, such as
MIL-STD2525B. The latter encompasses whatever the military user wants or needs
with respect to icons used to display uncertainty and ignorance, regardless of
military standards and regulations (which may be changed based on new technology,
such as outcomes from this project, or user needs, such as needs identified from
this project).

The effectiveness criterion (doing the “right thing,” in the words of Drucker)
focuses on the ability of the icon to impart to the user its intended meaning, while
the efficiency criterion (doing “things right,” again in the words of Drucker) focuses
on the ability of the icon to impart its meaning rapidly and easily. That is, an effective
icon is able to map accurately, via the observer’s visual sense, its semiotic repre-

 

FIGURE 8.5

 

A criteria hierarchy for assessing methods for information uncertainty portrayal.
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sentation into the observer’s mind. An efficient icon accomplishes the semiotic
mapping, for example, faster or cheaper.

Table 8.2 shows the results of pair-wise comparison of primary criteria according
to the analytic hierarchy process in terms to their relative importance to the goal.
The table uses an ordinal scale of 1 = equal, 3 = moderate, 5 = strong, 7 = very
strong, and 9 = extremely strong. In Figure 8.6, the essentials and effectiveness
criteria are judged to be of equal importance, with a weight of 0.40, while the
efficiency criterion has a weight of 0.20. It is important to provide the user with
symbology that is acceptable under the prevailing rules — although it may be
possible (albeit difficult) to change the rules if necessary. But following the rules is
insufficient if the resulting icons do not perform as desired or intended — thus the
importance of their being effective as well as following military standards. Given
that the icons perform as intended, they should do so simply and easily, but their
efficiency is not as important as their effectiveness. The AHP inconsistency ratio is
satisfactorily below 0.10 (0.0 in this case), as it is for all of the criterion evaluations.

 

TABLE 8.2
Pair-Wise Comparison of Primary Criteria according to 
the Analytic Hierarchy Process

 

Essential
Requirements Effectiveness Efficiency

 

Essential requirements 1 1 2
Effectiveness 1 1 2
Efficiency 1/2 1/2 1

 

Note:

 

1 = equal; 3 = moderate; 5 = strong; 7 = very strong; and 9 =
extremely strong.

 

FIGURE 8.6

 

Weight factors for primary decision criteria.
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The essentials subcriteria are evaluated in Figure 8.7. The standards and regulations
subcriterion, with a value of 0.60, is judged more important than the user needs and
wants subcriterion, with a value of 0.40, because it represents an official constraint,
which supersedes the admittedly important objective of satisfying the immediate user.

the 4C metrics for evaluating diamonds (cut, clarity, color, and carat), we have the
4C subcriteria for evaluating icon effectiveness: clarity, cognition, consistency, and
correspondence. Clarity, judged the most important of the four, with a score of 0.39
(rounding), is defined to mean the ability of the icon, on any specified display, to
impart the intended meaning without confusion with respect to other symbols or
noise. Cognition, deemed second in importance, with a score of 0.28, is the ability
of the icon to impart its intended meaning intuitively to the human mind so that
extensive training or memorization is not required of typical users. Consistency, with
a score of 0.20, is defined as the ability of the icon to maintain its ability to impart

 

FIGURE 8.7

 

Weight factors for essential requirements subcriteria.

 

TABLE 8.3
Pair-Wise Comparison of Effectiveness Subcriteria according to 
the Analytic Hierarchy Process

 

Clarity Cognition Consistency Correspondence

 

Clarity 1 2 2 2
Cognition 1/2 1 2 2
Consistency 1/2 1/2 1 2
Correspondence 1/2 1/2 1 1

 

Note:

 

1 = equal; 3 = moderate; 5 = strong; 7 = very strong; and 9 = extremely strong.
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its meaning clearly and intuitively over many different kinds of displays and in many
different viewing environments and conditions (e.g., high stress). This is analogous
to displaying a standard digit (e.g., 5) on all kinds of displays and monitors and
being able to recognize it without confusing it with an 

 

S

 

 or other symbol. The
correspondence subcriterion, with a score of 0.14, describes whether the icon’s
design embeds the ground truth that it represents in its design (as a currently abstract

 

A

 

 might resemble an ox head in an ancient alphabet). This specific way of imparting
meaning to the user is not consequential if other attributes of the icon give it the
ability to impart its meaning clearly to the user.

subcriteria: perception, presentation, programming, and perturbation. The perception
subcriterion, judged most important of the four, with a value of 0.33, is defined as
the user’s rate (or speed) in perceiving the intended meaning of an icon, and the
probability that the user perceives the icon erroneously. The presentation subcrite-
rion, deemed to be of equal importance with the perception subcriterion (with a
value of 0.33), represents the simplicity (as opposed to complexity) of the icon’s
design (e.g., few components, linearity, simple colors, etc.). The program simplicity

 

FIGURE 8.8

 

Weight factors for effectiveness subcriteria.
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Note:
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The efficiency subcriteria are evaluated in Table 8.4 and Figure 8.9 with the 4P
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subcriterion (with a value of 0.20) means that the icon can be generated on many
different displays with a relatively simple software code. The perturbation probability
subcriterion is the likelihood that the icon may be disrupted or causes an error or
confusion because of its design in relation to its display or environment (e.g., a
dropped pixel or insufficient resolution, or a monochrome display instead of color
could alter the icon’s meaning or the perception of its meaning).
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computed weight factors. It should be noted that the weight factors at the lowest
level, i.e., at the subcriteria level, add up to 1. These weight factors are also shown
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After the (initially filtered) prospective icons are selected, they will be evaluated
against the weighted criteria and subcriteria. And in performing the pair-wise com-
parisons against the weighted criteria and subcriteria, relevant iconic attributes will
be considered, including:

• Geometric form
• Orientation
• Color
• Texture
• Shading
• Size
• Position
• Intensity

 

FIGURE 8.9

 

Weight factors for efficiency subcriteria.
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Figure 8.10 shows a summary of the criteria and their respective subcriteria and

in Figure 8.11.
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FIGURE 8.10

 

Summary of criteria and weight factors.

 

FIGURE 8.11

 

Synthesis of the subcriteria weight factors.
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• Motion
• Special effects (e.g., blinking, animation)

Additional considerations include:

• Shapes that permit scaling
• Shapes that permit reduction
• Shapes that are common or have been used
• Color, but the gray scale version should be meaningful
• Shapes suitable for in-print and electronic media use
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Three assessments methods will be explored as part of the experimental protocol in
Phase II of the project, as follows:

• Expert opinions (e.g., see Ayyub, 2001)
• Focus groups (Krueger and Casey, 2000)
• The analytic hierarchy process (AHP) (Saaty, 1996)

Some fundamental concepts of expert opinion elicitation and focus group use
are provided by Ayyub (2001).

employing the AHP (B) and generating a large list of prospective icons (C) to
symbolically visualize uncertainty in data and information. As part of the AHP, we
defined and weighted metrics and submetrics for evaluating the alternative icons.
We then filtered down the initial large list of icons to a smaller list (D). If there
were insufficient useful icons remaining (E), we could have generated more icons,
but this was not necessary.

The experimental protocol (F) can be refined. We can start by selecting and
assembling a focus group (G), where the subjects are prospective users and devel-
opers of tactical and strategic displays, as well as two groups of prospective users
(for two different key applications) and one control group populated by undergrad-
uate and graduate students (H). Key applications for the experimental subjects
include the Command Post of the Future and the Future Combat System (especially
for the robotic vehicle control system displays). The focus group subjects will
evaluate the filtered, shorter list of icons, and their comments and suggestions will
be recorded on videotape and then transcribed (the usual practice for focus groups).
The focus group exercise will result in a short list of icons suitable for use with the
experimental subjects (I); if not, the process will be iterated. The selected icons will
be integrated with selected data streams (J) for the experimental subjects. Domain
partners can assist us in defining the objectives and scope of the experiments, the
evaluation criteria and metrics, and how the icons should be displayed in operational
contexts (K).

C6447_C008.fm  Page 337  Tuesday, April 4, 2006  4:24 PM

© 2006 by Taylor & Francis Group, LLC

As shown in Figure 8.12, an icon selection protocol (A) can be used by
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We can then design a series of experiments to select the ultimate icon (and its
variants, such as color quadrants) for visualizing uncertainty. In testing the icons with
the user and control groups (L), for example, the subjects might be shown a digital
map display, with the usual terrain and military symbology, and with various friendly
and enemy units displayed for a selected order of battle and tactical situation. A pair
of different prospective ignoricons will be flashed on the display for a dwell time
interval, after which the subject indicates, by pushing a button (for example), which
icon is easier to perceive and how well the subject understands the information content

FIGURE 8.12 Icon selection and experimental protocol.
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of the symbol and its variants. Experimental variables include the subjects; display
type, resolution, and size; icons and icon variants (e.g., color, size, position); and
dwell time on the display. In addition to testing alternative icons, we will experiment
with the use of textual blurbs in conjunction with mouse rolling over symbols (e.g.,
font type, size, and position). Such features offer the potential to communicate
additional information on an as-needed basis without cluttering displays. The series
of experiments should result in the selection of a suitable icon, but if the experiments
result in more than one potentially suitable icon (M), we will use the AHP and our
expert judgment for the final selection (O) and concluding the selection protocol (P).

Agreements will be negotiated and developed with one or two domain partners
for the purpose of selecting and finalizing the ignorance and uncertainty symbology.

8.3.6 CANDIDATE SHAPES FOR IGNORICONS AND UNCERTICONS

This section provides candidate shapes of ignoricons and uncerticons that should be
examined further using expert opinion or focus group studies. A comprehensive,
long list of icons and symbols was filtered from a larger set of icons, consisting of
military unit symbols; map symbols; written alphabets, pictograms, and other sym-
bols from ancient languages; road and transportation symbols; consumer and warn-
ing symbols; religious symbols; heraldry; and modern symbols invented for various
purposes (e.g., shorthand, Braille, science fiction alien languages, etc.). The long
list contained several thousand icons. The sources used for this purpose include

Fishel and Gardner (2003), Maruyama (2003), and UN (2000). The long list con-
tained several thousand icons. An intermediate list was subjectively culled from the

some of the metrics that can be used in the final evaluation of suitable icons. In
particular, apprehension, clarity, consistency, efficiency, and perturbation potential
influenced the initial filtering. Simple geometric shapes, able to display a number
of different states (such as by color changes among, for example, red, yellow, and
green) were preferred. For example, simple circles, ellipses, rectangles, squares, or
diamonds with quadrants, where the quadrants might be filled with symbolic colors,
perhaps with the addition pennants, also filled with color, would be visible, intuitive
(with minimal instruction and training for operators), and robust. The short list was
obtained by further filtering the intermediate list. The short list included the inter-
robang punctuation mark, which can be used for representation of symbology and
creating the ignoricons and uncerticons by using parts of the mark, varying the sizes
of its components, and filling or color-coding the shapes. The interrobang, a rarely
used punctuation mark that has been in existence for several decades, can be modified
to accommodate colors in three areas: the question mark, the exclamation mark, and
the point that is a part of the exclamation mark. Depending on the number of colors
and how they are distributed (e.g., red in the question mark would represent a
different condition than red in the exclamation mark or point), many different states
of information could be represented.

and question mark. The interrobang has been described as an obscure punctuation
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those listed at http://www.symbols.net/military.html, Muller (2003), Thomas (2000),

long list based on initial criteria provided in Figure 8.11. The initial criteria include

The interrobang is shown in Figure 8.13. It is combined exclamation mark

http://www.symbols.net
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mark. The purpose of this page is to move the interrobang from the obscure to
the ubiquitous.

As an advocate of precision in communication, the concept of the interrobang
was introduced by Martin K. Speckter in 1962 in an article written for TYPEtalks
Magazine. The interrobang was created to fill a gap in our punctuation system
where writers often used typographically cumbersome and unattractive combina-
tions of the question mark and exclamation mark to punctuate rhetorical statements
where neither the question nor an exclamation alone exactly served the writer (e.g.,
How about that?!). Mr. Speckter called his mark interrobang from the Latin for
query and the proofreader’s term for exclamation. Most dictionaries have spelled
the word correctly, although several other spellings with no logical genesis have
appeared. At the time the interrobang was introduced in 1962, a number of graphic
designs were sent to the magazine from many sources. Many newspapers, maga-
zines, and talk shows reported on the new mark. In an April 1962 editorial, the
Wall Street Journal deemed this punctuation exactly right for “‘Who forgot to put
gas in the car?’ where the question mark alone just isn’t adequate.” The interrobang
can convey in print an attitude, curiosity, and wonder. American Type Founders
issued a metal typeface in 1966 called Americana, which included the interrobang.
Remington Rand included the key as an option on its 1968 typewriters, commenting
that the interrobang ”expresses Modern Life’s Incredibility.” In 1996, a New York
art studio designed variations of the mark for each of the fonts in its computer
library. You can find an interrobang in Microsoft Word’s Fonts: go to Format, choose
Fonts, then Wingdings 2. You will find four different versions of the interrobang.
Hit the ` ~ key, the ] } key, the 6 ^ key, or the - _ key.

8.4 INTELLIGENT AGENTS FOR ICON SELECTION, 
DISPLAY, AND UPDATING

8.4.1 INTELLIGENT AGENTS

An intelligent agent is a computer program or system situated in some environment
that is capable of autonomous actions in this environment in order to meet its design
objectives. An intelligent agent could have several of the following characteristics:
autonomous behavior, information collection, information processing, decision mak-
ing, adaptive internal state of logic, and communicative with users or agents. Auton-

FIGURE 8.13 The interrobang punctuation mark.
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omy herein means simply to indicate the agent’s ability to act without the direct
intervention of users (or other agents), and should have control over its own actions
and internal state.

The notion of autonomy for an agent is different from the notion of encapsulation
with respect to object-oriented computer program or system. An object encapsulates
some states and has some control over these states in that they can only be accessed
or modified via the methods that the object provides. Agents encapsulate states in
just the same way; however, the agents also encapsulate behaviors, whereas an object
does not encapsulate behaviors. Encapsulating behavior means that an agent has
control over the execution; i.e., it has control over what actions it performs. Because
of this distinction, incoming information does not invoke actions on agents, but
rather results in requesting actions to be performed. The decision about whether to
act upon the request lies with the recipient, i.e., the agent.

Agents could contain some level of intelligence, from fixed rules to learning
engines that allow them to adapt to changes in the environment. Agents not only act
reactively, but also sometimes proactively. Agents have communicative or social
ability; that is, they communicate with the user, the system, and other agents as
required (e.g., they may cooperate with other agents to carry out more complex tasks
than they themselves can handle). In addition, agents may move from one system
to another to access remote resources or even to meet other agents. Intelligent agents
are expected to be flexible by meeting the following requirements:

• Responsiveness, by their ability to perceive their environment (which may
be the physical world, a user, a collection of agents, the Internet, etc.) and
respond in a timely fashion to changes that occur in it

• Proactiveness, by their ability to not only act in response to their envi-
ronment, but also exhibit opportunistic, goal-directed behavior and take
the initiative where appropriate

• Communicativeness, by their ability to interact, when they deem appro-
priate, with other artificial agents and humans in order to complete their
own problem solving and to help others with their activities

8.4.2 INFORMATION UNCERTAINTY AGENT

Information uncertainty agents should be designed to process information from
multiple sources, and manipulate or collate information from many distributed
sources to assess inconsistency and incompleteness in the attributes of a symbol or

• Type
• Size
• Intentions
• Location
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unit, as provided in Table 8.1. The attributes could include the unit’s:

Figure 8.14 shows a classification of agents (Jennings and Wooldridge, 1998).
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A schematic representation of the interfaces is shown in Figure 8.15.

8.4.3 PROCESSING INFORMATION FOR SYMBOLOGY SELECTION

Computational algorithms are needed to map incoming information into a selection
among available symbology options. Uncertainty in information methods, including

1988; Klir and Wierman, 1999). Uncertainty measures are available for three uncer-
tainty classes: (1) imprecision or nonspecificity associated with sizes or cardinalities,

FIGURE 8.14 A classification of agents.

FIGURE 8.15 A classification of agents.
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the uncertainty measures of Chapter 4, can be used for this purpose (Klir and Folger,
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(2) fuzziness or vagueness associated with imprecision in boundaries, and (3) conflict
or strife and discord among various sets.

8.5 IGNORANCE MARKUP LANGUAGE

Markup languages are used to display information in a way that is accessible to
humans and machines. The most common markup language is the Hypertext Markup
Language (HTML), which is designed to display information in a way that is
accessible to humans for viewing via web browsers. Although HTML enables the
visualization of information on the web, it does not provide much capability to
describe the information in ways that facilitate the machine access. The Extensible
Markup Language (XML) was therefore recently developed by the World Wide Web
Consortium (W3C) to allow information to be more accurately described using tags.
XML is formatted for machine processing but has a very limited semantics capability
(for describing relationships or ontologies). The Deference Advanced Research
Projects Agency (DARPA) Agent Markup Language (DAML) was recently devel-
oped to allow the use of ontologies, which provides very powerful means of describ-
ing objects and their relationships to other objects. The DAML, developed as an
extension to XML, is formatted for machine processing with very rich semantics to
support agents for intelligence analysis and production; military planning and oper-
ations; software agents; and sensor fusion (Anken, 2003). These markup languages
discussed above do not consider ignorance or uncertainties associated with the
domain knowledge; therefore, the development of a markup language based on
uncertainty tagging of information will facilitate the communication of uncertainty
and its visualization.

EXERCISE PROBLEMS

8.1.
8.2.

8.3.
8.4. Develop a methodology to using uncertainty measures for making appro-

priate selection of ignoricons and uncerticons for the purpose of aiding
decision makers.

8.5. Develop a research plan for proposing a markup language based on uncer-
tainty tagging of information to facilitate the communication of uncer-
tainty and its visualization.
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Develop ignoricons and uncerticons similar to those in Figure 8.2 for

Provide examples to demonstrate the use of ignoricons in making decisions.

Develop alternate ignoricons to the ones provided in Figure 8.4.

others types of ignorance shown in Figure 1.19.
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Appendix A:
Historical Perspectives on 
Knowledge

 

Philosophical views on knowledge evolved over time. This section summarizes these
views on knowledge and describes the evolution of these views to contemporary
schools. The presentation in this section is drawn on the works of selected philos-
ophers who were either great influences or representatives of their respective periods,
and it is not intended to provide a comprehensive coverage of all views. Solomon
and Higgins (1996), Russell (1975), Popkin (2000), Durant (1991), and Honderich
(1995) are recommended sources for additional details on any of the views presented
in these sections.
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.). Views on knowledge during this period

  

ophy, 

 

Platonism

 

 is virtually equivalent to idealism or intrinsicism, since Plato was
the first Western philosopher to claim that reality is fundamentally something ideal
or abstract, and that knowledge largely consists of insight into or perception of the
ideal. In common usage, the adjective 

 

Platonic

 

 refers to the ideal; for example,
Platonic love is the highest form of love that is nonsexual or nonphysical. The works
of Plato formed the basis for 

 

Neoplatonism

 

, founded by Plotinus (205 to 270), which
greatly influenced medieval philosophers. Aristotle followed Plato as his student;
however, he maintained that knowledge can be derived from sense experiences —
a departure from Plato’s thoughts. Knowledge can be gained either directly or
indirectly by deduction using logic. For Aristotle, form and matter were inherent in
all things and inseparable. Aristotle rejected the Platonic doctrine that knowledge is
innate and insisted that it can be acquired only by generalization from experiences,
emphasizing empiricism by stating that “there is nothing in the intellect that was
not first in the senses.” Table A.3 provides a summary of the views during this period.

The 

 

Hellenistic

 

 period includes Epicurus (341 to 271 

 

B

 

.

 

C

 

.), Epictetus (55 to 135

        

The 

 

Medieval

 

 period can be characterized as an Islamic-Arabic period that resulted
in translating, preserving, commenting on, and providing Europe with the works of
Greek philosophers. Also, the philosophers of this period maintained and strength-
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475 B.C.), and Empedocles (c. 450 B.C.), as summarized in Table A.1. The Socrates

(430 to 360 B.C.). The works of these philosophers are summarized in Table A.2.

are captured in Table A.3. The word Platonism refers both to the doctrines of Plato

B.C.), and Pyrrho (360 to 270 B.C.), with a summary of views provided in Table A.4.

and to the manner or tradition of philosophizing that he founded. Often, in philos-
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TABLE A.1
Knowledge Views during the Pre-Socratics Period

 

Philosophers (Year) Nature of Knowledge

 

Gorgias (483–378 

 

B

 

.

 

C

 

.)

Heraclitus (535–475 

 

B

 

.

 

C

 

.)

Empedocles (c. 450 

 

B

 

.

 

C

 

.)

Stated that knowledge does not exist, nor can it be communicated if it
does exists

Maintained that wisdom is not the knowledge of many things; it is the
clear knowledge of one thing only; perfect knowledge is only given to
the Gods, but a progress in knowledge is possible for humans

Distinguished between the world as presented to our senses (

 

kosmos
aisthetos

 

) and the intellectual world (

 

kosmos noetos

 

)

 

TABLE A.2
Knowledge Views during the Socrates Period

 

Philosophers (Year) Nature of Knowledge

 

Antisthenes (440–370 

 

B

 

.

 

C

 

.)

Euclides (430–360 

 

B

 

.

 

C

 

.)

Maintained that happiness is a branch of knowledge that could be taught,
and that once acquired could not be lost

Maintained that virtue is knowledge; if virtue is knowledge, therefore, it
can only be the knowledge of the ultimate being

 

TABLE A.3
Knowledge Views during the Plato and Aristotle Period

 

Philosophers (Year) Nature of Knowledge

 

Protagoras (485–415 

 

B

 

.

 

C

 

.)

Plato (427–347 

 

B

 

.

 

C

 

.)

Aristotle (384–322 

 

B

 

.

 

C

 

.)

Maintained that knowledge is relative since it is based on individual expe-
riences

Maintained that knowledge can exist based on unchanging and invisible
forms or ideas; objects that are sensed are imperfect copies of the pure
forms; genuine knowledge about these forms can only be achieved by
abstract reasoning through philosophy and mathematics

Followed Plato, however maintained that knowledge is derived from sense
experiences; knowledge can be gained either directly or indirectly by
deduction using logic

 

TABLE A.4
Knowledge Views during the Hellenistic Period

 

Philosophers (Year) Nature of Knowledge

 

Epicurus (341–271 

 

B

 

.

 

C

 

.) and Epictetus (55–135 

 

C

 

.

 

E

 

.)
Pyrrho (360–270 

 

B

 

.

 

C

 

.)
Said philosophy is a means not an end
Argued for skepticism in logic and philosophy

 

C6447_A001.fm  Page 346  Tuesday, April 4, 2006  4:26 PM

© 2006 by Taylor & Francis Group, LLC



 

Appendix A: Historical Perspectives on Knowledge

 

347

 

ened the school of rationalism and laid down the foundation of 

 

empiricism

 

. The
philosophers of this period were influenced by Plato, Aristotle, and Plotinus, who
founded 

 

Neoplatonism

 

. This period included leading philosophers such as Al-Kindi
(800 to 873), Al-Farabi (870 to 950), Ibn Sina (named Avicenna by the West, 980
to 1037), Ibn Rushd (named Averroes by the West, 1128 to 1198), and Aquinas
(1224 to 1274), as summarized in Table A.5.

The 

 

Renaissance

 

 period included Bacon (1561 to 1626), Galileo (1564 to 1642),
Newton (1642 to 1727), and Montaigne (1533 to 1592), as summarized in Table
A.6, and was followed by the 

 

17th-century

 

 period of Descartes (1596 to 1650),

The 

 

18th-century

 

 period includes leading philosophers such as Berkeley (1685 to

 

TABLE A.5
Knowledge Views during the Medieval Period

 

Philosophers (Year) Nature of Knowledge

 

Plotinus (205–270)

Al-Kindi (800–873)
Al-Farabi (870–950)

Ibn Sina (980–1037)
Ibn Rushd (1128–1198)

Aquinas (1224–1274)

Created Plotinus’ principle with assumptions stated crudely as follows: (1)
truth exists and is the way the world exists in the mind or the intellect; (2)
the awareness of the world as it exists in the intellect is knowledge; and (3)
two kinds of truth exist, the contingent and the necessary truth, for example,
the contingent truth that 10 coins are in my pocket, and the necessary truth
that 4 + 6 equals 10

Translated, preserved, and commented on Greek works
Carried the thoughts of Aristotle and was named the second teacher, with
Aristotle being the first; according to him, logic was divided into idea
and proof

Synthesized Aristotelian, Neoplatonic, and Islamic thoughts
Wrote a primary work (

 

Tuhafut al-Tuhafut

 

) that was critical of the works of
medieval philosophers on limiting rationalism and moving to faith, and
prepared Europe for modern philosophy

Followed the schools of Plato and Aristotle, and added religious belief
and faith

 

TABLE A.6
Knowledge Views during the Renaissance Period

 

Philosophers (Year) Nature of Knowledge

 

Bacon (1561–1626)

Galileo (1564–1642)

Newton (1642–1727)
Montaigne (1533–1592) 

Criticized Aristotelian logic as useless for the discovery of new laws, and
formulated rules of inductive inference

Explained and defended the foundations of a thoroughly empirical view of
the world by creating the science of mechanics, which applied the principles
of geometry to the motions of bodies

Applied mathematics to the study of nature
Belonged to the skepticism school with his motto “What do I know?”
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knowledge summarized in Table A.8. The 

 

19th-century

 

 period includes leading
philosophers such as Hegel (1770 to 1831), Comte (1798 to 1857), Marx (1818 to
1883), Engels (1820 to 1895), and Nietzsche (1844 to 1900), with views summarized

The 

 

20th-century

 

 period includes leading philosophers such as Bradley (1846
to 1924), Royce (1855 to 1916), Peirce (1839 to 1914), Dewey (1859 to 1952),
Husserl (1859 to 1938), Russell (1872 to 1970), Wittgenstein (1889 to 1951), and

Bradley maintained that reality was a product of the mind rather than an object
perceived by the senses. Like Hegel, he also maintained that nothing is altogether

 

TABLE A.7
Knowledge Views during the 17th-Century Period

 

Philosophers (Year) Nature of Knowledge

 

Descartes (1596–1650)

Spinoza (1632–1677)

Locke (1632–1704)

As the father of modern philosophy, identified rationalism as a system of
thought that emphasized the role of reason 

 

and a priori

 

 principles in obtaining
knowledge; he also believed in the dualism of mind (thinking substance) and
body (extended substance)

Termed metaphysical (i.e., cosmological) concepts such as substance and
mode, thought and extension, causation and parallelism, and essence and
existence

Identified empiricism as a doctrine that affirms all knowledge is based on
experience, especially sense perceptions, and on 

 

a posteriori

 

 principles;
Locke believed that human knowledge of external objects is always subject
to the errors of the senses, and concluded that one cannot have absolutely
certain knowledge of the physical world

 

TABLE A.8
Knowledge Views during the 18th-Century Period

 

Philosophers (Year) Nature of Knowledge

 

Berkeley (1685–1753)

Hume (1711–1776)

Kant (1724–1804)

Agreed with Locke that knowledge comes through ideas (i.e., sensation of the
mind), but denied Locke’s belief that a distinction can be made between ideas
and objects

Asserted that all metaphysical things that cannot be directly perceived are
meaningless; divided all knowledge into two kinds: relations of ideas (i.e.,
the knowledge found in mathematics and logic, which is exact and certain
but provides no information about the world) and matters of fact (i.e., the
knowledge derived from sense perceptions); furthermore, he held that even
the most reliable laws of science might not always remain true

Provided a compromise between empiricism and rationalism by combining
both types, and distinguished three knowledge types: (1) an analytical

 

 priori

 

,
(2) a synthetic

 

 posteriori

 

, and (3) a synthetic

 

 priori
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real except the 

 

absolute

 

, the totality of everything that transcends contradiction.
Everything else, such as religion, science, moral precept, and even common sense,
is contradictory. Royce believed in an 

 

absolute truth

 

 and held that human thought
and the external world were unified. Peirce developed 

 

pragmatism as a theory of
meaning

 

, in particular, the meaning of concepts used in science. The only rational
way to increase knowledge is to form mental habits that would test ideas through

 

observation and experimentation

 

, leading to an 

 

evolutionary process

 

 of knowledge
for 

 

humanity

 

 and 

 

society

 

, i.e., a 

 

perpetual state of progress

 

. He believed that the
truth of an idea or object could only be measured by empirical investigation of
its usefulness. 

 

Pragmatists

 

 regarded all theories and institutions as tentative
hypotheses and solutions, and that efforts to improve society must be geared
toward problem solving in an ongoing process of progress. Pragmatism sought a
middle ground between traditional metaphysical ideas about the nature of reality,
and the radical theories of 

 

nihilism

 

 and 

 

irrationalism

 

, which had become popular
in Europe at that time. Pragmatists did not believe that a single absolute idea of
goodness or justice existed, but rather that these concepts were relative and
depended on the context in which they were being discussed. Peirce influenced
a group of philosophers, called 

 

logical positivists

 

, who emphasized the importance
of 

 

scientific verification

 

 and rejected personal experience as the basis of true
knowledge. Dewey further developed 

 

pragmatism

 

 into a comprehensive system
of thought that he called 

 

experimental naturalism

 

, or 

 

instrumentalism

 

. 

 

Naturalism

 

regards human experience, intelligence, and social communities as ever-evolving
mechanisms; therefore, human beings could solve social problems using their
experience and intelligence, and through 

 

inquiry

 

. He considered traditional ideas
about knowledge and absolute reality or absolute truth to be incompatible with a

 

Darwinian

 

 worldview of progress, and therefore, they must be discarded or
revised. Husserl developed 

 

phenomenology

 

 as an elaborate procedure by which

 

TABLE A.9
Knowledge Views during the 19th-Century Period

 

Philosophers (Year) Nature of Knowledge

 

Hegel (1770–1831)

Comte (1798–1857)

Marx (1818–1883) and
Engels (1820–1895)

Nietzsche (1844–1900)

Claimed as a rationalist that absolutely certain knowledge of reality can be
obtained by equating the processes of thought, nature, and history; his
absolute idealism was based on a dialectical process of thesis, antithesis,
and synthesis as cyclical and ongoing process

Brought attention to the importance of sociology as a branch of knowledge,
and extended the principles of positivism, the notion that empirical sciences
are the only adequate source of knowledge

Developed the philosophy of dialectical materialism, based on the logic of
Hegel

Concluded that traditional philosophy and religion are both erroneous and
harmful, and traditional values (represented primarily by Christianity) had
lost their power in the lives of individuals; therefore, there are no rules for
human life, no absolute values, no certainties on which to rely
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one is said to be able to distinguish between the way things appear to be and the
way one thinks they really are.

Russell revived 

 

empiricism

 

 and expanded to 

 

epistemology 

 

as a field. He
attempted to explain all factual knowledge as constructed out of immediate experi-
ences. Wittgenstein developed 

 

logical positivism 

 

that maintained (1) only scientific
knowledge exists, (2) any valid knowledge must be verifiable in experience, and (3)
a lot of previous philosophy was neither true nor false but literally meaningless,
expressed by him as “philosophy is a battle against the bewitchment of our intelli-
gence by means of language.” He viewed philosophy as a 

 

linguistic analysis

 

 and

 

TABLE A.10
Knowledge Views during the 20th-Century Period

 

Philosophers (Year) Nature of Knowledge

 

Bradley (1846–1924)

Royce (1855–1916)

Peirce (1839–1914)

Dewey (1859–1952)

Husserl (1859–1938)

Russell (1872–1970)
Wittgenstein (1889–1951)

Austin (1911–1960)

Maintained that reality was a product of the mind rather than an object
perceived by the senses; like Hegel, nothing is altogether real except the
absolute, the totality of everything that transcends contradiction; every-
thing else, such as religion, science, moral precept, and even common
sense, is contradictory

Believed in an absolute truth and held that human thought and the external
world were unified

Developed pragmatism as a theory of meaning, in particular the meaning
of concepts used in science; the only rational way to increase knowledge
was to form mental habits that would test ideas through observation and
experimentation, leading to an evolutionary process for humanity and
society, i.e., a perpetual state of progress. He believed that the truth of an
idea or object could only be measured by empirical investigation of its
usefulness

Further developed pragmatism into a comprehensive system of thought that
he called experimental naturalism, or instrumentalism; naturalism regards
human experience, intelligence, and social communities as ever-evolving
mechanisms; therefore, human beings could solve social problems using
their experience and intelligence and through inquiry

Developed phenomenology as an elaborate procedure by which one is said
to be able to distinguish between the way things appear to be and the way
one thinks they really are

Revived empiricism and expanded to epistemology as a field
Developed logical positivism that maintained that only scientific knowledge
exists verifiable by experience; he viewed philosophy as a linguistic anal-
ysis and “language games,” leading to his work 

 

Tractatus Logico-Philo-
sophicus

 

 (1921), which asserted language and the world are composed of
complex propositions or facts that can be analyzed into less complex
propositions arriving at elementary propositions, and into less complex
facts arriving at simple “picture atomic facts or states of affairs,” respec-
tively

Developed the speech-act theory, where language utterances might not
describe reality and can have an effect on reality
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“language games,” leading to his work 

 

Tractatus Logico-Philosophicus

 

 (1921),
which asserted language is composed of 

 

complex propositions

 

 that can be analyzed
into less complex propositions until one arrives at simple or elementary propositions.
This view of decomposing complex language propositions has a parallel in our view
of the world to be composed of 

 

complex facts

 

 that can be analyzed into less complex
facts until one arrives at simple “picture atomic facts or states of affairs.” His 

 

picture
theory of meaning

 

 required and built on atomic facts pictured by the 

 

elementary
propositions

 

. Therefore, only propositions that picture facts are the propositions of
science that can be considered cognitively meaningful. Metaphysical, ethical, and
theological statements, on the other hand, are not meaningful assertions. Wittgen-
stein’s work influenced that of Russell in developing the 

 

theory of logical atomism

 

.
Russell, Wittgenstein, and others formed the core of the 

 

Vienna Circle

 

, which

 

developed logical positivism

 

, with philosophy being defined by its role in clarifica-
tion of meaning, not the discovery of new facts or the construction of traditional
metaphysics. They introduced strict principles of 

 

verifiability

 

 to reject as meaningless
the nonempirical statements of metaphysics, theology, and ethics, and regarded as
meaningful only statements reporting empirical observations, taken together with
the 

 

tautologies

 

 of 

 

logic

 

 and 

 

mathematics

 

.
Austin developed the 

 

speech-act theory

 

, where he considered that many utter-
ances do not merely describe reality, but they also have an effect on reality, insofar
as they too are the performance of some act. In addition, the period includes the
foundational work of Keynes, Borel, Von Mises, Ramsey, Von Neumann and Mor-
genstern, Popper, De Finetti, and Savage. The modern philosophy of science, includ-
ing semantic analysis, formulated by Mach and applied by Einstein and Bohr to
enable the revolutions of relativity and quantum mechanics, is a central component
in the modern philosophy of science. It could supply conceptual tools for a critical
evaluation of the many putative representations of uncertainty.

The question regarding the meaning of systems is one of the most fundamental
epistemological issues of science, particularly of systems science. Two opposing
positions on this issue have been advanced and debated since the emergence of
systems science and are based on two very different views about the nature of
knowledge: realism and constructivism. According to realism, each system that is
obtained by applying correctly the principles and methods of science represents
some aspect of the real world. According to constructivism, all systems are artificial
abstractions and are not made by nature, but we construct them by our perceptual
and mental capabilities within the domain of our experiences.

The philosopher Karl Popper (Popper, 1963) introduced the concept of three
worlds: World 1 consists of physical objects and phenomena; World 2 consists of
subjective experiences and mental phenomena; and World 3 consists of mathematical
structures (“truths in themselves”). These three worlds form a base for developing
his philosophical views. According to him, scientific hypotheses cannot be validated;
they can only be falsified.
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