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Preface

The intent of this book is to present recent results in the control theory for the long-
run average continuous control problem of Piecewise Deterministic Markov
Processes (PDMPs). This is neither a textbook nor a complete account of the state-
of-the-art on the subject. Instead, we attempt to provide a systematic framework
for an understanding of the main concepts and tools associated with this problem,
based on previous works of the authors. The limited size of a book makes it
unfeasible to cover all the aspects in this field and therefore some degree of
specialization was inevitable. Due to that, the book focuses mainly on the long-run
average cost criteria and tries to extend to the PDMPs some well-known techni-
ques related to discrete-time and continuous-time Markov decision processes,
including the so-called ‘‘average inequality approach,’’ ‘‘vanish discount
technique,’’ and ‘‘policy iteration algorithm.’’

Most of the material presented in this book was scattered throughout a variety
of sources, which included journal articles and conference proceedings papers.
This motivated the authors to write this text, putting together systematically these
results. Although the book is mainly intended to be a theoretically oriented text, it
also contains some motivational examples. The notation is mostly standard
although, in some cases, it is tailored to meet specific needs. A glossary of symbols
and conventions can be found at the end of the book.

The book is targeted primarily for advanced students and practitioners of
control theory. In particular, we hope that the book will be a valuable source for
experts in the field of Markov decision processes. Moreover, we believe that the
book should be suitable for certain advanced courses or seminars. As background,
one needs an acquaintance with the theory of Markov decision processes and some
knowledge of stochastic processes and modern analysis.

The authors are indebted to many people and institutions which have contrib-
uted in many ways to the writing of this book. We gratefully acknowledge the
support of the IMB, Institut Mathématiques de Bordeaux, INRIA Bordeaux Sud
Ouest, team CQFD, and the Laboratory of Automation and Control—LAC/USP at
the University of São Paulo. This book owes much to our research partners, to
whom we are immensely grateful. Many thanks go also to our former Ph.D.
students. We acknowledge with great pleasure the efficiency and support of Donna

v



Chernyk, our contact at Springer. We are most pleased to acknowledge the
financial support of ARPEGE program of the French National Agency of Research
(ANR), project ‘‘FAUTOCOES’’, number ANR-09-SEGI-004, USP COFECUB
project 2013.1.3007.1.9, the Brazilian National Research Council—CNPq, under
grant 301067/2009-0, and USP project MaCLinC.

Last, but not least, we are very grateful to our families for their continuing and
unwavering support. To them we dedicate this book.

São Paulo, Brazil O. L. V. Costa
Bordeaux, France F. Dufour
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Notation and Conventions

As a general rule, lowercase greek and roman letters are used for functions while
uppercase greek are used for selectors. Sets and spaces are denoted by capital
roman letters. Blackboard and calligraphic letters represent Borel measurable
spaces or a r-algebra. Sometimes it is not possible or convenient to adhere
completely to this rule, but the exceptions should be clearly perceived based on
their specific context.

The following lists present the main symbols and general notation used throughout
the book, followed by a brief explanation and the number of the page of their
definition or first appearance.

Symbol Description
h End of proof
N The set of natural numbers
N� The set of positive real numbers
R The real numbers
Rþ The positive real numbers
R

d The d-dimensional euclidian space

Rþ ¼ Rþ [ fþ1g
BðXÞ r-algebra generated by the open sets of X
BðX; YÞ Borel bounded functions from X into Y
BðXÞ ¼ BðX;RÞ
BðXÞþ ¼ BðX;RþÞ
MðXÞ The set of all finite measures on ðX;BðXÞÞ
MðX; YÞ Borel measurable functions from X into Y
MðXÞ ¼MðX;RÞ
MðXÞþ ¼MðX;RþÞ
BgðXÞ Functions t such that supx2X

jvðxÞj
gðxÞ \þ1

CðXÞ Continuous functions from X to R

PðXÞ Set of all probability measures on ðX;BðXÞÞ
hþ The positive part of a function h
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h� The negative part of a function h
g The Lebesgue measure on the real numbers
IA The indicator function of the set A
E The state space of a PDMP: an open subset of Rn

oE The boundary of the state space E
E The closure of the state space E
/ðx; tÞ The flow of a PDMP
t�ðxÞ The time the flow / takes to reach the boundary oE starting

from x
X Vector field associated with the flow /
U The set of control actions
UðxÞ The set of feasible control actions that can be taken when the

state process is in x 2 E
k The jump rate
Q The transition measure Q
M

acðEÞ Functions absolutely continuous along the flow with limit
toward the boundary

k A upper bound of k with respect to the control variable
D An arbitrary fixed point in qE
K The set of feasible state/action pairs
U The class of admissible control strategies
b/ The flow of the controlled PDMP

bkU The jump rate of the controlled PDMP

bQU The transition measure of the controlled PDMP

PU
x̂ The probability of the probability space on which the PDMP is

defined
EU

x̂ The expectation under the probability PU
x̂

bXUðtÞ The controlled PDMP

X(t) The state of the system
Z(t) The value of X(t) at the last jump time before t
s(t) The time elapsed between the last jump and time t
N(t) The number of jumps of the process fXðtÞg at time t
ðTnÞn2N The sequence of jump times of the PDMP
f, r The running and boundary costs
Ja(U,t) The finite horizon cost function
J(U,t) ¼ J0ðU; tÞ
p*(t) The counting process associated with the number of times the

process hits the boundary up to time t
AðU; xÞ The long-run average cost function
JAðxÞ The value function associated with the long-run average cost

function
DaðU; xÞ The a-discounted cost function
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J a
DðxÞ The value function associated with the a-discounted cost

function
Da

mðU; xÞ The truncated version of the a-discounted cost function
L1ðRþ;CðUÞÞ The set of Bochner integrable functions with values in CðUÞ
L1ðRþ;MðUÞÞ The space of bounded measurable functions from Rþ toMðUÞ
Vr;VrðxÞ;VðxÞ See Definition 2.12
V

r; VrðxÞ The set of relaxed controls
V;VðxÞ The set of ordinary controls
½H�t Shifted control strategy (see Definition 2.7)
K The set of feasible state/relaxed-control pairs
wðx; lÞ See equation (2.8)
Qh(x,l) See equation (2.9)
kQh(x,l) See equation (2.10)
Klðx; tÞ See equation (2.11)
Ga x;H; Að Þ See equation (2.12)
Gah x;Hð Þ See equation (2.13)
Lav x;Hð Þ See equation (2.14)
Haw x;Hð Þ See equation (2.15)
La x;Hð Þ See equation (2.16)
G, L, H, L G ¼ G0; L ¼ L0;H ¼ H0;L ¼ L0

T aðq; hÞðxÞ The one-stage optimization operator
Raðq; hÞðxÞ The relaxed one-stage optimization operator
T andR T ¼ T 0 andR ¼ R0

SU;SV;SVr The sets of measurable selectors
u/ See Definition 2.22
U/ See Definition 2.23
JU

m ðt; x; kÞ The truncated version of finite horizon a-discounted cost
function

ðfjÞj2N The approximating sequence of the running cost f

ðrjÞj2N The approximating sequence of the running cost r

k A lower bound of k with respect to the control variable
f A upper bound of f with respect to the control variable
buðw; hÞ 2 SU See definition 3.12
bu/ðw; hÞ 2 SV See definition 3.12
bU/ðw; hÞ 2 U See definition 3.12

Wg ¼ Rað0; gÞ
haðxÞ ¼ J a

DðxÞ � J a
Dðx0Þ, the relative difference of the a-discount

value functions J a
D

Kh A lower bound for ha

h A upper bound for ha

g Test function for the so-called expected growth condition
r Test function for the so-called expected growth condition
mu Invariant probability measure of the kernel Gð:; u/; :Þ
j See equation (4.18)
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Abbreviation Description
MDP(s) Markov Decision Process(es)
PDMP(s) Piecewise Deterministic Markov Process(es)
PIA Policy Iteration Algorithm
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Chapter 1
Introduction

1.1 Preliminaries

Dynamical systems that are subject to abrupt changes have been a theme of increasing
investigation in recent years. For instance, complex technological processes must
maintain an acceptable behavior in the event of random structural perturbations,
such as failures or component degradation. Aerospace engineering provides numer-
ous examples of such situations: an aircraft has to pursue its mission even if some
gyroscopes are out of order, a space shuttle has to succeed in its reentry with a failed
on-board computer. Failed or degraded operating modes are parts of an embedded
system history and should therefore be accounted for during the control synthesis.
These few basic examples show that complex systems like embedded systems are
inherently vulnerable to failure of components, and their reliability has to be improved
through a control process. Complex systems require mathematical representations
that are in essence dynamic, multimodel, and stochastic.

Different approaches have emerged over the last decades to analyze multimodel
stochastic processes. A particularly interesting one, and the main theme of this book,
is the application of piecewise deterministic Markov processes (PDMPs), introduced
in [23, 25] as a general family of nondiffusion stochastic models, suitable for formu-
lating many optimization problems in queuing and inventory systems, maintenance–
replacement models, and many other areas of engineering and operations research.

PDMPs are determined by three local characteristics: the flow φ, the jump rate
λ, and the transition measure Q. Starting from x , the motion of the process follows
the flow φ(x, t) until the first jump time T1, which occurs either spontaneously in
a Poisson-like fashion with rate λ or when the flow φ(x, t) hits the boundary of
the state space. In either case, the location of the process at the jump time T1 is
selected by the transition measure Q(φ(x, T1), .), and the motion restarts from this
new point as before. As shown in [25], a suitable choice of the state space and the
local characteristics φ, λ, and Q provides stochastic models covering a great number
of problems of engineering and operations research.

O. L. V. Costa and F. Dufour, Continuous Average Control of Piecewise 1
Deterministic Markov Processes, SpringerBriefs in Mathematics,
DOI: 10.1007/978-1-4614-6983-4_1, © Oswaldo Luiz do Valle Costa, François Dufour 2013



2 1 Introduction

As pointed out by Davis in [25, p. 134], there exist two types of control for
PDMPs: continuous control, in which the control variable acts at all times on the
process through the characteristics (φ,λ, Q), and impulse control, used to describe
control actions that intervene in the process by moving it to a new point of the state
space at some specific times. This book is devoted to the long-run average continuous
control problem of PDMPs taking values in a general Borel space. At each point x
of the state space, a control variable is chosen from a compact action set U(x) and is
applied to the jump parameter λ and transition measure Q. The goal is to minimize
the long-run average cost, which is composed of a running cost and a boundary cost
(which is added each time the PDMP touches the boundary). Both costs are assumed
to be positive but not necessarily bounded.

The main approach in this book is, using the special features of PDMPs, to trace a
parallel with the general theory of discrete-time Markov decision processes (MDPs)
(see, for instance, [45, 49]) rather than the continuous-time case (see, for instance,
[44, 70]). The two main reasons for doing that are to use the powerful tools devel-
oped in the discrete-time framework (see, for example, the references [6, 34, 49,
51]) and to avoid working with the infinitesimal generator associated with a PDMP,
which in most cases has a domain of definition that is difficult to characterize. We
follow a similar approach to that used for studying continuous-time MDPs, which
consists in reducing the original continuous-time control problem to a semi-Markov
or discrete-time MDP [5, 36, 59, 64, 66]. For a detailed discussion about these reduc-
tion techniques, the reader is referred to the reference [36]. The reduction method
proposed in [36] consists of two steps. First, the original continuous-time MDP is
converted into a semi-Markov decision process (SMDP) in which the decisions are
selected only at the jump epoch. Second, within the discounted cost context, the
SMDP is reduced to a discrete-time MDP. Regarding PDMPs, the idea developed by
Davis in [24] is somehow related to the reduction technique previously described in
the context of MDPs. It consists in reformulating the optimal control problem of a
PDMP for a discounted cost as an equivalent discrete-time Markov decision model
in which the stages are the jump times Tn of the PDMP.

A somewhat different approach to the problem of controlling a PDMP through an
embedded discrete-time MDP is also considered in [1], in which the decision function
space is made compact by permitting piecewise construction of an open-loop control
function. It must be stressed that one of the key points in the development of these
methods is that the control problem under consideration is concerned with discounted
cost criteria. Discounted cost criteria are usually easier to deal with since, as pointed
out in [36], it is well known that an SMDP with discounted cost criteria can be
reduced to an MDP with discounted cost. The approach adopted in [24] for PDMPs
with discounted cost is somehow related to these ideas, since the key point in [24] is
to rewrite the integral cost as a sum of integrals between two consecutive jump times
of the PDMP and by doing this, to obtain naturally the one-step cost function for the
discrete-time Markov decision model. However, this decomposition for the long-run
average cost is no longer possible, and therefore, a more specific approach has to
be developed. This is one of the goals of the present book. It must be pointed out
that there exists another framework for studying continuous-time MDPs in which the
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controller can choose continuously in time the actions to be applied to the process.
There exists an extensive literature within this context; see, for example, [42–44,
58] and the references therein. This could be another way of studying the control
problem for PDMPs with average cost. However, as far as the authors are aware, it
is an open problem to convert a control problem for a PDMP into a continuous-time
MDP. In particular, the main problem is how to write explicitly the transition rate of a
PDMP in terms of its parameters: the state space E , its boundary ∂E , and (φ,λ, Q).

We assume in this book that the control acts only on (λ, Q). The main difficulty
in considering the control acting also on the flow comes from the fact that in such a
situation, the time t∗(x) that the flow takes to hit the boundary starting from x and the
first-order differential operator X associated to the flow would depend on the control.
Under these conditions, it is not obvious how to write an optimality equation for the
long-run average cost in terms of a discrete-time optimality equation related to the
embedded Markov chain given by the postjump location of the PDMP. This step is
easier to derive in the situation studied in [24], which considers the control acting
on all the local characteristics (φ,λ, Q) of the PDMP, since, as noted previously,
for a discounted cost, it is very natural to rewrite the integral cost as a sum of
integrals between two consecutive jump times of the PDMP, obtaining naturally the
one-step cost function for the discrete-time Markov decision model. However, this
decomposition for the long-run average cost is no longer possible, and consequently,
due to this technical difficulty, the present approach may be applied only to PDMPs
in which the control acts on the jump rate and transition measure.

1.2 Overview of the Chapters

The book is organized in the following way.
In Chap. 2, we introduce some notation, basic assumptions, and the control prob-

lems to be considered. The definitions of ordinary and relaxed control spaces as well
as some operators required for characterizing the optimality equation are also pre-
sented in this chapter. The results of this chapter are based on the papers [17] and
[20].

Chapter 3 presents the main characterization results regarding the optimality equa-
tion for the long-run average cost. The first main result in presented in Sect. 3.2, which
obtains an optimality equation for the long-run average cost in terms of a discrete-
time optimality equation. The second main result of this chapter presents conditions
to guarantee the existence of a feedback measurable selector (that is, a selector that
depends on the present value of the state variable) for this optimality equation. This
is done by establishing a link between the discrete-time optimality equation and an
integrodifferential equation (using the weaker concept of absolute continuity along
the flow of the value function). The common approach for proving the existence of
a measurable selector is to impose semicontinuity properties of the cost function
and to introduce the class of relaxed controls to get a compactness property for the
action space. It should be pointed out that other approaches without the compactness
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assumption would also be possible; see, for instance, [35]. By doing this, one obtains
an existence result, but within the class of relaxed controls. However, what it is desired
is to show the existence of an optimal control in the class of ordinary controls. Com-
bining the existence result within the class of relaxed controls with the connection
between the integrodifferential equation and the discrete-time equation, we can show
that the optimal control is nonrelaxed and in fact an ordinary feedback control. In
Sect. 3.3, we introduce continuity assumptions, while in Sect. 3.4, we derive sufficient
conditions for the existence of an ordinary feedback optimal control and establish a
connection between the discrete-time optimality equation and an integrodifferential
equation.

In general, it is a hard task to obtain equality in the solution of the discrete-time
optimality equation and verify the extra condition. A common approach to avoiding
this is to consider an inequality instead of an equality for the optimality equation and
to use an Abelian result to get the reverse inequality (see, for instance, [49]). Chapter 4
is devoted to deriving sufficient conditions for the existence of an optimal control
strategy for the long-run average continuous control problem of PDMPs by applying
the so-called vanishing discount approach (see [49]). Combining our result with
the link between the integrodifferential equation and the discrete-time equation, we
obtain the existence of an ordinary optimal feedback control for the long-run average
cost (see Theorem 4.10). In order to do this, we need first to establish, in Sect. 4.2, an
optimality equation for the discounted control problem. Two sets of assumptions are
considered in Chap. 4. The first one is presented in Sect. 4.3 and is mainly expressed
in terms of the relative difference of the α-discount value functions. From a practical
point of view, this result is not completely satisfactory, due to the fact that these
conditions depend on the α-discount value function, which may be difficult to obtain
explicitly even for simple examples. The second set of assumptions is presented
in Sect. 4.4.2. These are written in terms of some integrodifferential inequalities
related to the so-called expected growth condition and geometric convergence of the
postjump location kernel associated to the PDMP. The results of this chapter are
based on the papers [16] and [17].

Chapter 5 seeks to apply the so-called policy iteration algorithm (PIA) to the
long-run average continuous control problem of PDMPs. In order to do this, we
first derive some important properties for a pseudo-Poisson equation associated with
the problem. In the sequel, it is shown that the convergence of the PIA to a solution
satisfying the optimality equation holds under some classical hypotheses and that this
optimal solution yields an optimal control strategy for the average control problem
for the continuous-time PDMP in a feedback form. The results of this chapter are
based on the paper [18].

Examples are presented in Chap. 6 illustrating the possible applications of the
results developed in Chap. 4.
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1.3 General Comments and Historical Remarks

There is by now an extensive theory surrounding PDMPs. For a general overview
on PDMPs, the reader is referred to the book [25] and the references therein. Some
stability topics for PDMPs are dealt with in [11, 15, 33]. For optimal stopping and
impulse control problems for PDMPs, the reader is referred to [10, 21, 22, 30, 38–41,
46]. For numerical approximations related to these problems, we can mention [12–
14, 27, 28]. For continuous control problems with discounted cost criteria the reader
is referred to [1, 24, 29, 31, 37, 62, 67, 68]. The expected discounted continuous
control of PDMPs using a singular perturbation approach for dealing with rapidly
oscillating parameters was considered in [19]. Applications of PDMPs can be found
in [3, 26, 62].

Regarding MDPs, we recommend, without attempting to be exhaustive, the sur-
veys [2, 43] and the books [6, 49, 51, 59, 63] and the references therein to get a rather
complete view of this research field.

As mentioned above, we have considered in this book some compactness con-
ditions for the existence of measurable selectors, but other approaches, without the
compactness assumption, would also be possible (see, for instance, [35]).

A paper closely related to the approach adopted in Chap. 3, but which considers
the discounted control case, is the paper by Forwick et al. [37], which also considers
unbounded costs and relaxed controls and obtains sufficient conditions for the exis-
tence of ordinary feedback controls. However, in [37], the authors consider neither
the long-run average cost case nor the related limit problem associated with the van-
ishing discount approach. Moreover, in contrast to [37], we consider here boundary
jumps and the control action space depending on the state variable. Note, however,
that control on the flow is not considered here, while it was studied in [37].

The idea of using the vanishing discount approach to get an optimality condition
(i.e., a condition for the existence of an average policy) has been widely developed in
the literature. Different methods have been proposed based on conditions for ensuring
the existence of a solution to the average cost optimality equality (see, for example,
[2, 52]) and to the average cost optimality inequality (see, for example, [44, 45,
47–49, 57]).

The PIA has received considerable attention in the literature and consists of three
steps: initialization; policy evaluation, which is related to the Poisson equation (PE)
associated with the transition law defining the MDP; and policy improvement. With-
out attempting to present here an exhaustive panorama of the literature for the PIA,
we can mention the surveys [2, 8, 51, 52, 59] and the references therein and more
specifically the references [50, 55], which analyze in detail the PIA for general MDPs
and provide conditions that guarantee its convergence.
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Chapter 2
Average Continuous Control of PDMPs

2.1 Outline of the Chapter

This chapter is devoted to the presentation of some notation, basic assumptions, and
the control problems to be considered in this book. In Sect. 2.2, we present some
standard notation and some basic definitions related to the motion of a piecewise
deterministic Markov process (PDMP). In Sect. 2.3, the definitions of ordinary and
relaxed control spaces as well as some operators required for characterizing the
optimality equation are presented. Some proofs of auxiliary results are presented in
Sect. 2.4.

2.2 Notation, Assumptions, and Problem Formulation

In this section, we present some standard notation, basic definitions, and some
assumptions related to the motion of a PDMP {X (t)}, and the control problems
we will consider throughout the book. For further details and properties, the reader
is referred to [25]. The following notation will be used in this book: N is the set of
natural numbers, and N∗ = N−{0}. Also, R denotes the set of real numbers, R+ the
set of positive real numbers, and �R+ = R+ ∪ {+∞}, R

d d-dimensional Euclidian
space, and η the Lebesgue measure on R. For X a metric space, we denote by B(X)

the σ-algebra generated by the open sets of X ; M(X) (respectively P(X)) denotes
the set of all finite (respectively probability) measures on (X,B(X)). Let X and Y be
metric spaces. The set of all Borel measurable (respectively bounded) functions from
X into Y is denoted by M(X; Y ) (respectively B(X; Y )). Moreover, for notational
simplicity, M(X) (respectively B(X), M(X)+, B(X)+) denotes M(X; R) (respec-
tively B(X; R), M(X; R+), B(X; R+)). Also, C(X) denotes the set of continuous
functions from X to R. For g ∈ M(X) with g(x) > 0 for all x ∈ X , Bg(X) is the

set of functions v ∈ M(X) such that ||v||g = sup
x∈X

|v(x)|
g(x)

< +∞. For h ∈ M(X),

O. L. V. Costa and F. Dufour, Continuous Average Control of Piecewise 7
Deterministic Markov Processes, SpringerBriefs in Mathematics,
DOI: 10.1007/978-1-4614-6983-4_2, © Oswaldo Luiz do Valle Costa, François Dufour 2013
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h+ (respectively h−) denotes the positive (respectively negative) part of h; IA is the
indicator function of the set A: IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.

For the definition of the state space of the PDMP, we will consider for notational
simplicity that E is an open subset of R

n with boundary ∂E and closure �E . This
definition could be easily generalized to include some boundary points and countable
union of sets as in [25, Section 24]. In the examples of Chap. 6, we illustrate how the
state space could be generalized in this direction.

Let us introduce some data that will be used to define a PDMP:

• The flow φ(x, t) is a function φ : R
n × R+ −→ R

n continuous in (x, t) and such
that φ(x, t + s) = φ(φ(x, t), s).

• For each x ∈ E , the time the flow takes to reach the boundary starting from x is
defined as

t∗(x)
.= inf{t > 0 : φ(x, t) ∈ ∂E}.

For x ∈ E such that t∗(x) = ∞ (that is, the flow starting from x never touches the
boundary), we set φ(x, t∗(x)) = Δ, where Δ is a fixed point in ∂E .

• The set U of control actions is a Borel space. For each x ∈ �E , we define the subsets
U(x) of U as the set of feasible control actions that can be taken when the state
process is in x ∈ �E .

• → The jump rate λ is a mapping in M(�E × U)+.
• The transition measure Q is a stochastic kernel on E given �E × U.

Definition 2.1 We define M
ac(E) as the space of functions absolutely continuous

along the flow with limit toward the boundary:

M
ac(E) =

{
g ∈ M(E); g(φ(x, t)) : [0, t∗(x)) �→ R is absolutely continuous for

each x ∈ E and when t∗(x) < ∞ the limit lim
t→t∗(x)

g(φ(x, t)) exists in R

}
.

For g ∈ M
ac(E) and z ∈ ∂E for which there exists x ∈ E such that z = φ(x, t∗(x)),

where t∗(x) < ∞, we define g(z) = limt→t∗(x) g(φ(x, t)) (note that the limit exists
by assumption).

We introduce in the next lemma the function X g for every function g ∈ M
ac(E);

X can be seen as the vector field associated to the flow φ. The proof of this lemma
can be found in Sect. 2.4.

Lemma 2.2 Assume that w ∈ M
ac(E). Then there exists a function Xw in M(E)

such that for all x ∈ E and t ∈ [0, t∗(x)),

w(φ(x, t)) − w(x) =
t∫

0

Xw(φ(x, s))ds. (2.1)



2.2 Notation, Assumptions, and Problem Formulation 9

A controlled PDMP is determined by its local characteristics (φ,λ, Q), to be
presented in the sequel. The following assumptions, based on the standard theory of
MDPs (see [49]), will be made throughout the book.

Assumption 2.3 For all x ∈ �E, U(x) is a compact subspace of a compact set U.

Assumption 2.4 The set K = {
(x, a) : x ∈ �E, a ∈ U(x)

}
is a Borel subset of

�E × U.

The following assumption will also be required throughout the book.

Assumption 2.5 There exist �λ ∈ M(�E)+, λ ∈ M(�E)+, and Kλ ∈ R+ such that for
every (x, a) ∈ K ,

(a) λ(x, a) ≤ �λ(x), and for t ∈ [0, t∗(x)),
∫ t

0
�λ(φ(x, s))ds < ∞, and if t∗(x) < ∞,

then
∫ t∗(x)

0
�λ(φ(x, s))ds < ∞.

(b) λ(x, a) ≥ λ(x) and
∫ t∗(x)

0 e− ∫ t
0 λ(φ(x,s))dsdt ≤ Kλ.

Since U(x) is not defined for x /∈ E , we introduce the following notation.

Definition 2.6 Consider x ∈ E with t∗(x) < +∞. Then with a slight abuse of
notation, U(φ(x, t)) is defined for t > t∗(x) by {Δu}, where Δu is an arbitrary fixed
point in U.

We present next the definition of an admissible control strategy and the associated
motion of a controlled process.

Definition 2.7 A control strategy U is a pair of functions

(u, u∂) ∈ M(N × E × R+; U) × M(N × E; U).

It is admissible if for every (n, x, t) ∈ N × E × R+,

u(n, x, t) ∈ U(φ(x, t)) and u∂(n, x) ∈ U(φ(x, t∗(x))).

The class of admissible control strategies will be denoted by U .

Given a control strategy U = (u, u∂)∈ U , the motion of a piecewise deterministic
process X (t) is described in the following manner. Define T0 = 0 and X (0) = x .
Assume that the process {X (t)} is located at Zn at the nth jump time Tn . Then select
a random variable Sn having distribution

F(t) = 1 − I{t<t∗(Zn)}e
−

t∫
0
λ(φ(Zn ,t),u(n,Zn ,s))ds

.

Define Tn+1 = Tn + Sn , and for t ∈ [Tn, Tn+1),

X (t) = φ(Zn, t − Tn).
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Let Zn+1 be a random variable having distribution

Q(φ(Zn, Tn+1), u(n, Zn, Sn)); .)

if φ(Zn, Tn+1) ∈ E and

Q(φ(Zn, Tn+1), u∂(n, Zn); .)

if φ(Zn, Tn+1) ∈ ∂E . At time Tn+1, the process {X (t)} is defined by

X (Tn+1) = Zn+1.

Now we give a more precise definition of the controlled piecewise deterministic

Markov process described above. Consider the state space Ê = E × E × R+ × N.
For a control strategy U = (u, u∂), let us introduce the following parameters for
x̂ = (x, z, s, n) ∈ Ê :

• the flow φ̂(x̂, t) = (φ(x, t), z, s + t, n),
• the jump rate λ̂U (x̂) = λ(x, u(n, z, s)),
• the transition measure

Q̂U (x̂, A × B × {0} × {n + 1}) =
{

Q(x, u(n, z, s); A ∩ B) if x ∈ E,

Q(x, u∂(n, z); A ∩ B) if x ∈ ∂E,

for A and B in B(E).

From [25, section 25], it can be shown that for every control strategy U =
(u, u∂)∈ U , there exists a filtered probability space (�,F, {Ft }, {PU

x̂ }x̂∈Ê ) such
that the PDMP {X̂U (t)} with local characteristics (φ̂, λ̂U , Q̂U ) may be constructed
as follows. For notational simplicity, the probability PU

x̂0
will be denoted by PU

(x,k) for

x̂0 = (x, x, 0, k) ∈ Ê . Moreover, EU
x̂0

denotes the expectation under the probability

PU
x̂0

, and EU
x̂0

will be denoted by EU
(x,k) for x̂0 = (x, x, 0, k) ∈ Ê .

Take a random variable T1 such that

PU
(x,k)(T1 > t)

.=
{

e−ΛU (x,k,t) for t < t∗(x),

0 for t ≥ t∗(x),

where for x ∈ E and t ∈ [0, t∗(x)[, ΛU (x, k, t)
.= ∫ t

0 λ(φ(x, s), u(k, x, s))ds. If T1

is equal to infinity, then for t ∈ R+, X̂U (t) = (
φ(x, t), x, t, k

)
. Otherwise, select

independently an Ê-valued random variable (labeled X̂U
1 ) having distribution

PU
(x,k)(X̂U

1 ∈ A × B × {0} × {k + 1}|σ{T1})

(where σ{T1} is the σ-field generated by T1) defined by
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{
Q(φ(x, T1), u(k, x, T1); A ∩ B) if φ(x, T1) ∈ E,

Q(φ(x, T1), u∂(k, x); A ∩ B) if φ(x, T1) ∈ ∂E .

The trajectory of {X̂U (t)} starting from (x, x, 0, k), for t ≤ T1, is given by

X̂U (t)
.=

{(
φ(x, t), x, t, k

)
for t < T1,

X̂U
1 for t = T1.

Starting from X̂U (T1) = X̂U
1 , we now select the next interjump time T2 − T1 and

postjump location X̂U (T2) = X̂U
2 in a similar way. The sequence of jump times

of the PDMP is denoted by (Tn)n∈N. Let us define the components of the PDMP
{X̂U (t)} by

X̂U (t) = (
X (t), Z(t), τ (t), N (t)

)
. (2.2)

From the previous construction of the PDMP {X̂U (t)}, it is easy to see that X (t)
corresponds to the trajectory of the system, Z(t) is the value of X (t) at the last jump
time before t , τ (t) is time elapsed between the last jump and time t , and N (t) is the
number of jumps of the process {X (t)} at time t . As in Davis [25], we consider the
following assumption to avoid accumulation points of the jump times.

Assumption 2.8 For every x ∈ E, U = (u, u∂)∈ U , and t ≥ 0, we have

EU
(x,0)

[ ∞∑
i=1

I{Ti ≤t}

]
< ∞.

Remark 2.9 In particular, a consequence of Assumption 2.8 is that Tm → ∞ as
m → ∞, PU

(x,0) for all x ∈ E , U ∈ U .

The costs of our control problem will contain two terms: a running cost f and a
boundary cost r , satisfying the following properties.

Assumption 2.10 f ∈ M(�E × U)+ and r ∈ M(∂E × U)+.

Define for α ≥ 0, t ∈ R+, and U ∈ U , the finite-horizon α-discounted cost
function

Jα(U, t) =
t∫

0

e−αs f
(
X (s), u(N (s), Z(s), τ (s))

)
ds

+
t∫

0

e−αsr
(
X (s−), u∂(N (s−), Z(s−))

)
dp∗(s),

where p∗(t) = ∑∞
i=1 I{Ti ≤t} I{X (Ti −)∈∂E} counts the number of times the process

hits the boundary up to time t , and for notational simplicity, set J(U, t) = J0(U, t).
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The long run expected average cost to minimize over U is given by

A(U, x) = lim
t→+∞

1

t
EU

(x,0)[J(U, t)],

and the average value function is defined by

JA(x) = inf
U ∈ U

A(U, x).

For the infinite-horizon expected α-discounted case, with α > 0, the cost we want
to minimize is given by

Dα(U, x) = EU
(x,0)[Jα(U,∞)], (2.3)

and the α-discount value function is

J α
D(x) = inf

U ∈ U
Dα(U, x). (2.4)

We also consider a truncated version of the discounted problem defined, for each
m ∈ N, as

Dα
m(U, x) = EU

(x,0)[Jα(U, Tm)]. (2.5)

We need the following assumption to avoid infinite costs for the discounted case.

Assumption 2.11 For all α > 0 and all x ∈ E, J α
D(x) < ∞.

It is clear that for all x ∈ E , 0 ≤ infU ∈ U Dα
m(U, x) ≤ J α

D(x) < ∞.

2.3 Discrete-Time Markov Control Problem

The class of strategies denoted by U was introduced in the previous section as the
set of admissible control strategies for a PDMP. As mentioned in the introduction,
we will study in Sect. 3.2 how the original continuous-time control problem can
be associated to an optimality equation of a discrete-time problem related to the
embedded Markov chain given by the postjump location of the PDMP. In this section,
we first present the definitions of the discrete-time ordinary and relaxed control sets
used in the formulation of the optimality equation of the discrete-time Markov control
problem as well as the characterization of some topological properties of these sets.
In particular, using a result of the theory of multifunctions (see the book by Castaing
and Valadier [9]), it is shown that the set of relaxed controls is compact. In what
follows, we present some important operators associated to the optimality equation
of the discrete-time problem as well as some measurability properties.
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2.3.1 Discrete-Time Ordinary and Relaxed Controls

We present in this subsection the set of discrete-time relaxed controls and the subset
of ordinary controls. Let C(U) be a Banach space equipped with the topology of uni-
form convergence. Consider the Banach space L1(R+; C(U)) of Bochner integrable
functions with values in the Banach space C(U), see [32]. Let M(U) be equipped
with the weak∗ topology σ(M(U), C(U)). The subset P(U) of M(U) is endowed
with the induced topology. We denote by L∞(R+;M(U)) the linear space of equiv-
alence classes of bounded measurable functions from R+ to M(U). It is the dual of
L1(R+; C(U)) (see [4, pp. 94–95]). We make the following definitions:

Definition 2.12 Define Vr as the set of all measurable functions μ defined on R+
with values in P(U) such that μ(t, U) = 1 for all t ∈ R+. For x ∈ E, Vr (x) is
defined as the set of all measurable functions μ defined on R+ with values in P(U)

such that μ(t, U(φ(x, t))) = 1.

We have the following proposition.

Proposition 2.13 For every fixed x ∈ E,

(i) the multifunction �x from R+ to U defined by �x (t) = U(φ(x, t)) is measurable.
(ii) Vr and Vr (x) are compact metric spaces with metric compatible with the weak∗

topology σ(L∞(R+;M(U)), L1(R+; C(U))).

Proof Let us prove (i). Considering any open set G in U, we have from Assumption
2.4 that U

−1[G] .= {y ∈ E : U(y)∩G �= ∅} ∈ B(E). Consequently, if t∗(x) = +∞,
then

{t ∈ R+ : U(φ(x, t)) ∩ G �= ∅} = {t ∈ R+ : φ(x, t) ∈ U
−1[G]} ∈ B(R+),

since φ is continuous, so that (i) holds. Now if t∗(x) < +∞ and Δu /∈ G, then

{t ∈ R+ : U(φ(x, t)) ∩ G �= ∅} = {t ∈ [0, t∗(x)] : φ(x, t) ∈ U
−1[G]} ∈ B(R+),

since φ is continuous, giving (i). Finally, if t∗(x) < +∞ and Δu ∈ G, then

{t ∈ R+ : U(φ(x, t)) ∩ G �= ∅}
= {t ∈ [0, t∗(x)] : φ(x, t) ∈ U

−1[G]}∪]t∗(x),+∞[∈ B(R+),

since φ is continuous, so that (i) also holds for this case.

Let us now prove (ii). From Theorem V-2 in [9], it follows that Vr and Vr (x)

for x ∈ E are compact sets with respect to the weak∗ topology σ(L∞(R+;M(U)),

L1(R+; C(U))). Notice that L1(R+; C(U)) is separable, since U is compact.
Consequently, from Bishop’s theorem (see Theorem I.3.11 in [65]), there exists
a metric compatible with the topology σ(L∞(R+;M(U)), L1(R+; C(U))) on Vr .
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This shows that Vr is a compact metric space and therefore a Borel space and that
Vr (x) is a compact set of Vr for all x ∈ E , completing the proof of (ii). �

Note that a sequence
(
μn

)
n∈N

in Vr (x) converges to μ if and only if

lim
n→∞

∫

R+

∫

U(φ(x,t))
g(t, u)μn(t, du)dt =

∫

R+

∫

U(φ(x,t))
g(t, u)μ(t, du)dt, (2.6)

for all g ∈ L1(R+; C(U)).
Therefore, the set of relaxed controls are defined as follows. For x ∈ E ,

V
r (x) = Vr (x) × P(

U(φ(x, t∗(x)))
)
,

V
r = Vr × P(

U
)
.

The set of ordinary controls, denoted by V (or V(x) for x ∈ E), is defined as above
except that it is composed of deterministic functions instead of probability measures.
More specifically, we have

V(x) =
{
ν ∈ M(R+, U) : (∀t ∈ R+), ν(t) ∈ U(φ(x, t))

}
,

V(x) = V(x) × U(φ(x, t∗(x))),

V = M(R+, U) × U.

Consequently, the set of ordinary controls is a subset of the set of relaxed controls
V

r (or V
r (x) for x ∈ E) by identifying every control action u ∈ U with the Dirac

measure concentrated on u. Thus we can write that V ⊂ V
r (or V(x) ⊂ V

r (x) for
x ∈ E), and from now, on we will consider that V (or V(x) for x ∈ E) will be
endowed with the topology generated by V

r .
The necessity to introduce the class of relaxed controls V

r is justified by the fact
that in general, there does not exist a topology for which V and V(x) are compact
sets. However, from the previous construction, it follows that V

r and V
r (x) are

compact sets.
We present next the definition of a shifted control strategy, which will be useful in
the following sections.

Definition 2.14 For every x ∈ E, t ∈ [0, t∗(x)), and Θ = (
μ,μ∂

) ∈ V
r (x), define

[
Θ

]
t = (

μ(. + t),μ∂
)
. (2.7)

Clearly,
[
Θ

]
t ∈ V

r (φ(x, t)).

As in [49], page 14, we need that the set of feasible state/relaxed-control pairs is a
measurable subset of B(E) × B(Vr ); that is, we need the following assumption.
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Assumption 2.15

K .= {
(x,Θ) : Θ ∈ V

r (x), x ∈ E
}

is a Borel subset o f E × V
r .

2.3.2 Discrete-Time Operators and Measurability Properties

In this section, we present some important operators associated with the optimality
equation of the discrete-time problem as well as some measurability properties.

We consider the following notation:

w(x,μ)
.=

∫

U

w(x, u)μ(du), (2.8)

Qh(x,μ)
.=

∫

U

∫

E
h(z)Q(x, u; dz)μ(du), (2.9)

λQh(x,μ)
.=

∫

U

λ(x, u)

∫

E
h(z)Q(x, u; dz)μ(du), (2.10)

for x ∈ �E , μ ∈ P(
U

)
, h ∈ M(E)+, and w ∈ M(�E × U)+.

The following operators will be associated with the optimality equations of the
discrete-time problems that will be presented in the following sections. For α > 0,
Θ = (

μ,μ∂
) ∈ V

r , (x, A) ∈ E × B(E), define

Λμ(x, t)
.=

t∫

0

λ(φ(x, s),μ(s))ds, (2.11)

Gα(x,Θ; A)
.=

t∗(x)∫

0

e−αs−Λμ(x,s)λQ IA(φ(x, s),μ(s))ds

+ e−αt∗(x)−Λμ(x,t∗(x))Q(φ(x, t∗(x)),μ∂; A). (2.12)

For x ∈ E , Θ = (
μ,μ∂

) ∈ V
r , h ∈ M(E)+, v ∈ M(E × U)+, w ∈ M(∂E × U)+,

α > 0, set

Gαh(x,Θ)
.=

∫

E
h(y)Gα(x,Θ; dy), (2.13)

Lαv(x,Θ)
.=

t∗(x)∫

0

e−αs−Λμ(x,s)v(φ(x, s),μ(s))ds, (2.14)

Hαw(x,Θ)
.= e−αt∗(x)−Λμ(x,t∗(x))w(φ(x, t∗(x)),μ∂). (2.15)
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For h ∈ M(E) (respectively v ∈ M(E × U)), Gαh(x,Θ) = Gαh+(x,Θ) −
Gαh−(x,Θ) (respectively Lαv(x,Θ) = Lαv+(x,Θ) − Lαv−(x,Θ)), provided
the difference has a meaning.
It will be useful in what follows to define the function Lα(x,Θ) as

Lα(x,Θ)
.= Lα IE×U(x,Θ). (2.16)

Similarly, for α = 0, Θ = (
μ,μ∂

) ∈ V
r , (x, A) ∈ E × B(E), we define

G0(x,Θ; A)
.=

t∗(x)∫

0

e−Λμ(x,s)λQ IA(φ(x, s),μ(s))ds

+ e−Λμ(x,t∗(x))Q(φ(x, t∗(x)),μ∂; A),

and for x ∈ E , Θ = (
μ,μ∂

) ∈ V
r , h ∈ M(E)+, v ∈ M(E×U)+, w ∈ M(∂E×U)+,

set

G0h(x,Θ)
.=

∫

E
h(y)G0(x,Θ; dy),

L0v(x,Θ)
.=

t∗(x)∫

0

e−Λμ(x,s)v(φ(x, s),μ(s))ds,

H0w(x,Θ)
.= e−Λμ(x,t∗(x))w(φ(x, t∗(x)),μ∂).

For h ∈ M(E) (respectively v ∈ M(E × U)), G0h(x,Θ) = G0h+(x,Θ) −
G0h−(x,Θ) (respectively L0v(x,Θ) = L0v

+(x,Θ) − L0v
−(x,Θ)), provided the

difference has a meaning. Moreover, L0(x,Θ)
.= L0 IE×U(x,Θ). We write for sim-

plicity G0 = G, L0 = L , H0 = H , L0 = L.

Remark 2.16 A consequence of item (b) of Assumption 2.5 is that for every α ∈ R+
and x ∈ E with t∗(x) = +∞, limt→+∞ e−αt−∫ t

0 λ(φ(x,s))ds = 0. Therefore, for
every x ∈ E with t∗(x) = +∞, A ∈ B(E), α ∈ R+, Θ = (μ,μ∂) ∈ V

r (x), w ∈
M(∂E × U)+, we have Gα(x,Θ; A) = ∫ t∗(x)

0 e−αs−Λμ(x,s)λQ IA(φ(x, s),μ(s))ds
and Hαw(x,Θ) = 0.

The next proposition presents some important measurability properties of the
operators Gα, Lα, and Hα (defined in (2.12), (2.14), and (2.15)), and its proof can
be found in Sect. 2.4.

Proposition 2.17 Let α ∈ R+, w0 ∈ M(E) be bounded from below, w1 ∈ M(E ×
U)+, and w2 ∈ M(∂E × U)+. Then the mappings Gαw0(x,Θ), Lαw1(x,Θ), and
Hαw2(x,Θ) defined on E×V

r with values in R ∪ {+∞} are B(E×V
r )-measurable.
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We now present the definitions of the one-stage optimization operators in terms
of the running cost f and the boundary cost r introduced in Sect. 2.2.

Definition 2.18 For α ∈ R+, the (ordinary) one-stage optimization function asso-
ciated with the pair (ρ, h) is defined by

Tα(ρ, h)(x) = inf
Υ ∈V(x)

{
−ρLα(x, Υ ) + Lα f (x, Υ ) + Hαr(x, Υ ) + Gαh(x, Υ )

}
,

and the relaxed one-stage optimization function associated with (ρ, h) is defined by

Rα(ρ, h)(x) = inf
Θ∈Vr (x)

{
−ρLα(x,Θ) + Lα f (x,Θ) + Hαr(x,Θ) + Gαh(x,Θ)

}
,

for ρ ∈ R and h ∈ M(E) bounded from below.

In particular, for α = 0, we write for simplicity T0 = T and R0 = R.

Definition 2.19 Let us introduce the following sets of measurable selectors associ-
ated with

(
U(x)

)
x∈E (respectively

(
V(x)

)
x∈E ,

(
V

r (x)
)

x∈E ):

SU = {
u ∈ M(�E, U) : for all x ∈ �E, u(x) ∈ U(x)

}
,

SV = {
(ν, ν∂) ∈ M(E, V) : for all x ∈ E,

(
ν(x), ν∂(x)

) ∈ V(x)
}
,

SVr = {
(μ,μ∂) ∈ M(E, V

r ) : for all x ∈ E,
(
μ(x),μ∂(x)

) ∈ V
r (x)

}
.

Remark 2.20 The set SU characterizes a control law u(x) that depends only on the
value of the state variable x . On the other hand, (ν, ν∂) ∈ SV characterizes an ordi-
nary control law for the control problem associated with the one-stage optimization
operator. Indeed, starting from x , it defines the control law for all t ∈ [0, t∗(x))

through the function ν(x, t), and at t = t∗(x) (if t∗(x) < ∞) through ν∂ . Finally,
(μ,μ∂) ∈ SVr characterizes a relaxed control law for the control problem associated
with the relaxed one-stage optimization operator. Since it starts from x , it defines a
probability over the feasible control actions for all t ∈ [0, t∗(x)) through the prob-
ability measure μ(x, t), and at t = t∗(x) (if t∗(x) < ∞) through the probability
measure μ∂ .

Since for u ∈ SU, u(x) is not defined for x /∈ �E , we introduce the following
notation.

Definition 2.21 Consider u ∈ SU, x ∈ E with t∗(x) < +∞. Then with a slight
abuse of notation, u(φ(x, t)) is defined for t > t∗(x) by Δu.

For α ∈ R+, ρ ∈ R, and h ∈ M(E) bounded from below, the one-stage optimiza-
tion problem associated with the operator Tα(ρ, h) (respectively Rα(ρ, h)) consists
in finding a measurable selector Υ ∈ SV (respectively Θ ∈ SVr ) such that for all
x ∈ E ,
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Tα(ρ, h)(x) =−ρLα(x, Υ (x))+ Lα f (x, Υ (x))+ Hαr(x, Υ (x))+ Gαh(x, Υ (x)),

and respectively

Rα(ρ, h)(x)=−ρLα(x,Θ(x))+ Lα f (x,Θ(x))+ Hαr(x,Θ(x))+ Gαh(x,Θ(x)).

Finally, we conclude this section by showing that there exist two natural mappings
from SU to SV and from SU to U .

Definition 2.22 For u ∈ SU, define the mapping

uφ : x → (
u(φ(x, .)), u(φ(x, t∗(x)))

)

of the space E into V.

Definition 2.23 For u ∈ SU, define the mapping

Uuφ : (n, x, t) → (
u(φ(x, t)), u(φ(x, t∗(x)))

)

of the space N × E × R+ into U.

We have the following proposition, proved in Sect. 2.4.

Proposition 2.24 If u ∈ SU, then uφ ∈ SV. If u ∈ SU, then Uuφ ∈ U .

Remark 2.25 The measurable selectors of type uφ as in Definition 2.22 are called
feedback measurable selectors in the class SV ⊂ SVr , and the control strategies of
type Uuφ as in Definition 2.23 are called feedback control strategies in the class U .

Remark 2.26 For u ∈ SU and h ∈ M(E)+, we have the following identity:

E
Uuφ
(x,0)

( ∫ T1

0
e−αs f (φ(x, s), u(φ(x, s)))ds + e−αT1 h(X (T1))

+ e−αT1r(φ(x, t∗(x)), u(φ(x, t∗(x)))I{T1=t∗(x)}
)

= Lα f (x, uφ) + Hαr(x, uφ) + Gαh(x, uφ). (2.17)

Iterating (2.17) and using the strong Markov property of the process {X̂Uuφ (t) =
(X (t), Z(t), τ (t), N (t))}, it follows that for m ∈ N∗,

m−1∑
k=0

Gk
α(Lα f + Hαr)(x, uφ) = E

Uuφ
(x,0)

[ Tm∫

0

e−αs f
(
X (s), u(N (s), Z(s), τ (s))

)
ds

+
Tm∫

0

e−αsr
(
X (s−), u∂(N (s−), Z(s−))

)
dp∗(s)

]
.
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2.4 Proofs of the Results of Section 2.3

Proof of Lemma 2.2: Define

wsup(x)
.= lim

n→+∞ n

[
w

(
φ

(
x, t∗(x) ∧ 1

n + 1

))
− w(x)

]

win f (x)
.= lim

n→+∞
n

[
w

(
φ

(
x, t∗(x) ∧ 1

n + 1

))
− w(x)

]
.

Since
{
w

(
φ
(
x, t∗(x) ∧ 1

n+1

))}
n∈N

is a sequence in M(E), it follows that wsup(x)

and win f (x) are Borel measurable functions from E into R ∪ {∞} ∪ {−∞}. Conse-

quently, the set Dw
.=

{
x ∈ E : wsup(x) = win f (x)

}
∩

{
x ∈ E : wsup(x) ∈ R

}

belongs to B(E).
Define the function Xw(x) by

Xw(x) =
{

wsup(x), if x ∈ Dw,

g(x), otherwise,

where g is any function in M(E).
Clearly, Xw belongs to M(E). Since w ∈ M

ac(E), we have that for every x ∈ E ,
there exists a set T w

x ∈ B([0, t∗(x))) such that η((T w
x )c ∩ [0, t∗(x))) = 0 and

w(φ(x, .)) admits derivatives in T w
x . Let us show now that for every x ∈ E and

t0 ∈ T w
x , we have that φ(x, t0) ∈ Dw and Xw(φ(x, t0)) = dw(φ(x,t))

dt |t=t0 . First,
recall that w(φ(x, t0 + ε)) = w(φ(φ(x, t0), ε)). Since w(φ(t, x)) admits derivative
in t = t0, we have that

dw(φ(x, t))

dt
|t=t0 = lim

ε→0
ε>0

1

ε

[
w(φ(x, t0 + ε)) − w(φ(x, t0))

]

= lim
ε→0
ε>0

1

ε

[
w(φ(φ(x, t0), ε)) − w(φ(x, t0))

]

= wsup(φ(x, t0)) = win f (φ(x, t0)) = Xw(φ(x, t0)).

Therefore, Xw satisfies (2.1), which establishes the result. �

We proceed to the proof of Proposition 2.17. First we need the following lemmas.

Lemma 2.27 Let h ∈ B(R+ × U) be such that h(t, .) ∈ C(U) for every t ∈ R+.
Then �h : R+ → C(U) defined by �h(t) = h(t, .) is measurable.

Proof Since C(U) is separable, there exists a countable family (ci )i∈N dense in
C(U). From Proposition D.5 in [49], the R+-valued mapping defined on R+ by
t → supu∈U

∣∣ci (u) − h(t, u)
∣∣ is B(R+)-measurable. Consequently,

{
t ∈ R+ :

supu∈U

∣∣ci (u)−h(t, u)
∣∣ < 1

n+1

}
belongs to B(R+) for every (i, n) ∈ N

2. Therefore,
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{
t ∈ R+ : h(t, .) ∈ B(ci ,

1
n+1 )

} ∈ B(R+), where B(ci ,
1

n+1 )
.= {

f ∈ C(U) :
‖ f − ci‖ < 1

n+1

}
for every (i, n) ∈ N

2. Clearly, the family
(
B(ci ,

1
n+1 )

)
(i,n)∈N2 is

a base for the topology of C(U), which proves the result. �

Lemma 2.28 Let h ∈ B(R+ × U). Then the real-valued mapping defined on Vr by

μ →
∫

R+

∫

U

e−sh(s, u)μ(s, du)ds

is B(Vr )-measurable.

Proof Let H be the class of functions h ∈ B(R+ × U) such that the real-valued
mapping defined on Vr by

μ →
∫

R+

∫

U

e−sh(s, u)μ(s, du)ds

is B(Vr )-measurable. The set H is a closed linear subspace of B(R+ × U) equipped
with the supremum norm. Moreover, the limit of every increasing uniformly bounded
sequence of nonnegative functions of H belongs to H. Let H0 denote the set of
functions g

.= g1g2, g1 ≥ 0 belongs to B(R+) and g2 ≥ 0 is a lower semicontinuous
function defined on U. Clearly, H0 is closed with respect to multiplication. Moreover,
every g ∈ H0 can be written as an increasing sequence of functions f = f1 f2,
where f1 ≥ 0 belongs to B(R+) and f2 ≥ 0 belongs to C(U). For every function
f satisfying the above decomposition, we have from Lemma 2.27 that the mapping
h ∈ B(R+ × U) defined by h(t, u) = e−t f (t, u) is in L1(R+; C(U)), and so the
real-valued mapping defined on Vr by

μ →
∫

R+

∫

U

e−s f1(s) f2(u)μ(s, du)ds

is continuous (by definition of the topology of Vr ) and so B(Vr )-measurable. This
shows that H0 is a subset of H. Finally, notice that the σ-algebra generated by H0 is
given by B(R+ × U). Now by applying the functional monotone class theorem (see
Theorem 2.12.9 in [7]), the result follows. �

Lemma 2.29 Let h ∈ M(R+ × E ×Vr ×R+ ×U)+. Then the �R+-valued mapping
defined on R+ × E × Vr by

(t, x,μ) →
∫

R+

∫

U

h(t, x,μ, s, u)μ(s, du)ds

is B(R+ × E × Vr )-measurable.

Proof Let H be the class of functions h ∈ B(R+ × E × Vr × R+ × U) such that
the mapping
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(t, x,μ) ∈ R+ × E × Vr →
∫

R+
e−s

∫

U

h(t, x,μ, s, u)μ(s, du)ds ∈ R

is B(R+ × E × Vr )-measurable. The set H is a closed linear subspace of B(R+ ×
E ×Vr ×R+ ×U) equipped with the supremum norm. Moreover, the limit of every
increasing uniformly bounded sequence of nonnegative functions of H belongs to
H. Consider the class H0 of functions h such that h = h1h2 with h1 = B(R+ ×
E × Vr ) and h2 = B(R+ × U). Then from Lemma 2.28, H0 ⊂ H. Moreover,
H0 is closed relative to multiplication. Finally, notice that the σ-algebra generated
by H0 is given by B(R+ × E × Vr × R+ × U). Now applying the functional
monotone class theorem (see Theorem 2.12.9 in [7]), it follows that H contains
B(R+ × E ×Vr ×R+ ×U). Consider g ∈ M(R+ × E ×Vr ×R+ ×U)+ and define
gk(t, x,μ, s, u) = (

esg(t, x,μ, s, u)
) ∧ k. Therefore, the mapping

(t, x,μ) ∈ R+ × E × Vr →
∫

R+
e−s

∫

U

gk(t, x,μ, s, u)μ(s, du)ds ∈ R+

is B(R+×E ×Vr )-measurable. Using the monotone convergence theorem, it follows
that

lim
k→∞

∫

R+
e−s

∫

U

gk(t, x,μ, s, u)μ(s, du)ds =
∫

R+

∫

U

g(t, x,μ, s, u)μ(s, du)ds,

which yields the result. �

Proof of Proposition 2.17 Applying Lemma 2.29 to h(t, x,μ, s, u) = I{s≤t}
λ(φ(x, s), u) implies that the mapping Λμ(x, t) defined on R+ × E × Vr with
value in �R+ is measurable with respect to B(R+ × E × Vr ). Notice that the

integral
∫ t∗(x)

0
e−αs−Λμ(x,s)λ(φ(x, s),μ(s))ds is finite for every (x,μ) ∈ E × Vr

and α ∈ R+. First assume that w0 is positive and bounded. Clearly, Qw0(., .) is
measurable with respect to B(�E × U). Therefore, for the function

h(t, x,μ, s, u) = I{s≤t∗(x)}e−αs−Λμ(x,s)λ(φ(x, s), u)Qw0(φ(x, s), u),

Lemma 2.29 shows that the �R+-valued mapping defined on E × Vr by

(x,μ) →
t∗(x)∫

0

e−αs−Λμ(x,s)λQw0(φ(x, s),μ(s))ds

is B(E × Vr )-measurable. Moreover, the mapping

(x,μ, u) ∈ E × Vr × U → e−αt∗(x)−Λμ(x,t∗(x))Qw0(φ(x, t∗(x)), u) ∈ R+
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is clearly B(E × Vr × U)-measurable. Consequently, it follows that for w0 bounded
and positive, the function Gαw0(x,Θ) defined on E ×V

r is B(E ×V
r )-measurable.

If w0 is positive but not bounded, we can easily get the result using the sequence of
functions wk

0
.= w0 ∧ k ↑ w0 and the monotone convergence theorem. Finally, if

w0 is bounded below by a constant −c ≤ 0, we can get the result by observing that
Gαc(x,Θ) ∈ R+, and for w0c

.= w0 + c, we have Gαw0(x,Θ) = Gαw0c(x,Θ) −
Gαc(x,Θ). Using the same arguments, the same property can be proved for the
mappings Lαw1(x,Θ) and Hαw2(x,Θ). �

Proof of Proposition 2.24 From item (2) of Theorem I.5.25 in [65], the space
L1(R+, C(U)) is isometrically isomorphic to the space of real-valued functions f
defined on R+ × U satisfying f (t, .) ∈ C(U) for every t ∈ R+, f (., u) is measur-
able for every u ∈ U, and

∫
R+ supu∈U | f (t, u)|dt < ∞. Consequently, the topology

of V induced by the weak∗ topology σ(L∞(R+;M(U)), L1(R+; C(U))) is iden-
tical to the Young topology as defined in [37, p. 255]. Having this in mind, we
can use Lemma A.3 in [37] to get that the V-valued mapping h defined on E by
x → δu(φ(x,.)) is measurable if and only if the R-valued mappings defined on E by
x → ∫

R+ e−sg(s, u(φ(x, s)))ds are measurable for every g ∈ B(R+ × U). Using

Lemma 2.29, it follows that h is measurable. Moreover, for all (x, t) ∈ E × R+,
u(φ(x, t)) ∈ U(φ(x, t)). Therefore, uφ belongs to SV. The second statement is a
straightforward consequence of the measurability properties of u and φ and the fact
that u(x) ∈ U(x). �



Chapter 3
Optimality Equation for the Average
Control of PDMPs

3.1 Outline of the Chapter

This chapter presents the main characterization results regarding the optimality
equation for long-run average cost. It is shown in Sect. 3.2 (see Theorem 3.1) that if
there exist a measurable function h, a parameter ρ, and a measurable selector satisfy-
ing a discrete-time optimality equation related to the embedded Markov chain given
by the postjump location of a PDMP, and if also an extra condition involving the
function h is satisfied, then an optimal control can be obtained from the measurable
selector, and ρ is the optimal cost. The hypothesis of the existence of a measurable
selector in Theorem 3.1 is removed in Sect. 3.4 (see Theorem 3.15). This is done
by establishing a link (see the proof of Theorem 3.14) between the discrete-time
optimality equation and an integrodifferential equation (using the weaker concept of
absolute continuity along the flow of the value function). This yields the existence of
a feedback measurable selector (that is, a selector that depends on the present value
of the state variable; see Remark 2.25), provided that the function h and parameter
ρ satisfy the optimality equation.

In order to establish the existence of a measurable selector, we follow a common
approach adopted in the literature that consists in assuming semicontinuity proper-
ties for the cost function (see Sect. 3.3) and introducing the class of relaxed controls
to get a compactness property for the action space (it should be noticed that other
approaches without the compactness assumption would also be possible as presented,
for instance, in [35]). This yields the existence result for the measurable selector, but
within the class of relaxed controls instead of the desired class of ordinary con-
trols. By going one step further, we combine the existence result within the class of
relaxed controls with the connection between the integrodifferential equation and the
discrete-time equation to obtain that the optimal control is nonrelaxed and in fact, is
an ordinary feedback control.

O. L. V. Costa and F. Dufour, Continuous Average Control of Piecewise 23
Deterministic Markov Processes, SpringerBriefs in Mathematics,
DOI: 10.1007/978-1-4614-6983-4_3, © Oswaldo Luiz do Valle Costa, François Dufour 2013
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3.2 Discrete-Time Optimality Equation
for the Average Control

In this section, we obtain an optimality equation for the long-run average cost prob-
lem defined in Sect. 2.2 in terms of a discrete-time optimality equation related to
the embedded Markov chain given by the postjump location of the PDMP, and an
additional condition on a limit over the solution of the optimality equation divided by
the time t . Note that in this section, we assume the existence of a measurable selector
for the optimality equation, in particular the existence of an ordinary (discrete-time)
optimal control.

The main result of this section reads as follows:

Theorem 3.1 Suppose that there exists a pair (ρ, h) ∈ R+ ×M(E) with h bounded
from below satisfying the discrete-time optimality equation

T (ρ, h)(x) = h(x), (3.1)

and for all U ∈ U ,

lim
t→+∞

1

t
lim

m→+∞ EU
(x,0)

[
h
(
X (t ∧ Tm)

)] = 0. (3.2)

Moreover, assume that there exists a solution to the one-stage optimization function
associated to (ρ, h), that is, the existence of an optimal measurable selector Γ̂ =
(γ̂, γ̂∂) in SV such that for all x ∈ E,

T (ρ, h)(x) = −ρL(x, Γ̂ (x))+L f (x, Γ̂ (x))+Hr(x, Γ̂ (x))+Gh(x, Γ̂ (x)). (3.3)

Define the control strategy Û by (û, û∂) with û(n, x, t) = γ̂(x, t), û∂(n, x) = γ̂∂(x)

for (n, x, t) ∈ N × E × R+, and assume that Û belongs to U . Then Û is optimal.
Moreover, ρ = JA(x) = A(Û , x).

The proof of this theorem is presented at the end of this section.
In Theorem 3.1, notice that (3.1) can be seen as the optimality equation of a

discrete-time problem related to the embedded Markov chain given by the postjump
location of the PDMP with transition kernel G, and (3.2) as an additional technical
condition.

The problem of existence of an optimal measurable selector for the optimality
Eq. (3.1) will be considered in Sect. 3.4.

In order to prove the previous theorem, we first need to present several intermediate
results. These results will be written in terms of an extra parameter α ≥ 0 that will
be useful for the discounted control problem, to be analyzed in Sects. 4.2, 4.3, and
4.4. The proofs of these intermediate results can be found in Sect. 3.5.

The next proposition presents some important properties of the one-stage opti-
mality function (see Eq. (3.4)). It is shown that it has a special time representation
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displayed in Eq. (3.6). As a consequence, it follows that it is absolutely continuous
along trajectories with a limit on the boundary (that is, it belongs to M

ac(E)).

Proposition 3.2 Let ρ ∈ R+ and h ∈ M(E) be bounded from below by −Kh with
Kh ∈ R+. For α ≥ 0 and x ∈ E, define

w(x) = Tα(ρ, h)(x). (3.4)

Assume that w ∈ M(E) and that there exists Γ̂ ∈ SV such that

w(x) = −ρLα(x, Γ̂ (x))+Lα f (x, Γ̂ (x))+ Hαr(x, Γ̂ (x))+Gαh(x, Γ̂ (x)). (3.5)

Then w ∈ M
ac(E), and for all x ∈ E and t ∈ [0, t∗(x)),

w(x) =
t∫

0

e−αs−Λγ̂(x)(x,s)
[
−ρ+ f (φ(x, s), γ̂(x, s)) + λQh(φ(x, s), γ̂(x, s))

]
ds

+ e−αt−Λγ̂(x)(x,t)w(φ(x, t)) (3.6)

= inf
ν∈V(x)

{ t∫

0

e−αs−Λν (x,s)
[
−ρ+ f (φ(x, s), ν(s)) + λQh(φ(x, s), ν(s))

]
ds

+ e−αt−Λν (x,t)w(φ(x, t))

}
, (3.7)

where Γ̂ (x) = (
γ̂(x), γ̂∂(x)

)
.

The next two propositions deal with two inequalities of opposite directions for the
one-stage optimality equation. Roughly speaking, these two results show that if h is
a solution for an optimality inequality (see Eq. (3.8) or (3.10)), then this inequality is
preserved, in one case for every control strategy and in the other case for a specific
control strategy, along the jump time iterations for a cost conveniently defined; see
(3.9) or (3.11).

Proposition 3.3 Let h ∈ M(E) be bounded from below. For ρ ∈ R+ and α ∈ R+,
assume that Tα(ρ, h) ∈ M(E) and that there exists Γ̂ = (γ̂, γ̂∂) ∈ SV such that for
all x ∈ E,

h(x) ≤ Tα(ρ, h)(x)

= −ρLα(x, Γ̂ (x)) + Lα f (x, Γ̂ (x)) + Hαr(x, Γ̂ (x)) + Gαh(x, Γ̂ (x)).

(3.8)
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For U ∈ U , m ∈ N, and (t, x, k) ∈ R+ × E × N, define

JU
m (t, x, k) = EU

(x,k)

[ t∧Tm∫

0

e−αs
[

f
(
X (s), u(N (s), Z(s), τ (s))

) − ρ
]
ds

+
t∧Tm∫

0

e−αsr
(
X (s−), u∂(N (s−), X (s−))

)
dp∗(s)

+ e−α(t∧Tm )Tα(ρ, h)
(
X (t ∧ Tm)

)]
.

Then for all m ∈ N and (t, x, k) ∈ R+ × E × N,

JU
m (t, x, k) ≥ h(x). (3.9)

The next proposition considers the reverse inequality referred to in the literature
as the average cost optimality inequality (ACOI).

Proposition 3.4 Let h ∈ M(E) be bounded from below. For ρ ∈ R+ and α ∈ R+,
assume that Tα(ρ, h) ∈ M(E) and that there exists Γ̂ = (γ̂, γ̂∂) ∈ SV such that for
all x ∈ E,

h(x) ≥ Tα(ρ, h)(x)

= −ρLα(x, Γ̂ (x)) + Lα f (x, Γ̂ (x)) + Hαr(x, Γ̂ (x)) + Gαh(x, Γ̂ (x)).

(3.10)

Introduce the control strategy Û by (û, û∂) with û(n, x, t) = γ̂(x, t), and û∂(n, x) =
γ̂∂(x) for (n, x, t) ∈ N × E × R+, and assume that Û belongs to U . Moreover,
defining

JÛ
m (t, x, k) = EÛ

(x,k)

[ t∧Tm∫

0

e−αs
[

f
(
X (s), û(N (s), Z(s), τ (s))

) − ρ
]
ds

+
t∧Tm∫

0

e−αsr
(
X (s−), û∂(N (s−), X (s−))

)
dp∗(s)

+ e−α(t∧Tm )Tα(ρ, h)
(
X (t ∧ Tm)

)]
,

we have, for all m ∈ N and (t, x, k) ∈ R+ × E × N, that

J Û
m (t, x, k) ≤ h(x). (3.11)
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Combining the previous propositions with α = 0, we get the proof of
Theorem 3.1.

Proof of Theorem 3.1 From Proposition 3.3, it follows that

EU
(x,0)

[
J(U, t ∧ Tm)

]
+ EU

(x,0)

[
h
(
X (t ∧ Tm)

)] ≥ ρEU
(x,0)

[
t ∧ Tm

]
+ h(x).

Consequently, we have from Assumption 2.8 (which implies that Tm → ∞
PU

(x,0) a.s.) that

lim
t→+∞

1

t
EU

(x,0)

[
J(U, t)

]
+ lim

t→+∞
1

t
lim

m→+∞ EU
(x,0)

[
h
(
X (t ∧ Tm)

)] ≥ ρ,

showing that ρ ≤ JA(x), where we have used (3.2). Since h is bounded below, it is
easy to show that

lim
t→+∞

1

t
lim

m→+∞ −EU
(x,0)

[
h
(
X (t ∧ Tm)

)] ≤ 0. (3.12)

Applying Proposition 3.4, we obtain from Eq. (3.11) that

EÛ
(x,0)

[
J(Û , t ∧ Tm)

]
≤ ρEÛ

(x,0)

[
t ∧ Tm

]
+ h(x) − EÛ

(x,0)

[
h
(
X (t ∧ Tm)

)]
.

Using Eq. (3.12), this gives ρ ≥ A(Û , x), completing the proof. �

3.3 Convergence and Continuity Properties of the Operators:
Lα, Lα, Gα, Hα

In the previous section, we assumed the existence of an ordinary optimal measurable
selector for the one-stage optimization problem associated with T (ρ, h) (see (3.3))
for (ρ, h) satisfying the optimality equation T (ρ, h)(x) = h(x). In the following
sections, we will suppress this hypothesis. In order to do so, we need to consider
relaxed controls so that we can take advantage of the compactness property of the sets
V

r (x) and V
r as presented in Sect. 2.3.1. Note, however, that we also need the cost

function to be lower semicontinuous. Thus in this section, we present the assumptions
and results that will guarantee some convergence and lower semicontinuity properties
of the operators Gα, Lα, and Hα that appear in the one-stage optimization function
with respect to the topology defined in (2.6). Combining the compactness of the sets
V

r (x) with the lower semicontinuity of the operators Gα, Lα, and Hα, we can use a
selection theorem like that presented in Proposition D.5 of [49] to get the existence of
a relaxed optimal control and measurability of the one-stage optimization equation.
Moreover, in parallel, we get some important convergence properties that will be
applied with the vanishing discount approach in Sect. 4.3.
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From now on, we will consider the following assumptions on the parameters of
the PDMP (φ,λ, Q) and on the running cost f and the boundary cost r introduced
in Sect. 2.2.

Assumption 3.5 For each x ∈ E, the restriction of λ(x, .) to U(x) is continuous.

Assumption 3.6 There exists a sequence of measurable functions ( f j ) j∈N in M(	E×
U)+ such that for all y ∈ 	E, f j (y, .) ↑ f (y, .) as j → ∞ and the restriction of
f j (y, .) to U(y) is continuous.

Assumption 3.7 There exists a sequence of measurable functions (r j )j∈N in M(∂E×
U)+ such that for all z ∈ ∂E, r j (z, .) ↑ r(z, .) as j → ∞ and the restriction of
r j (z, .) to U(z) is continuous.

Assumption 3.8 For all x ∈ 	E and � ∈ B(E), the restriction of Q�(x, .) to U(x) is
continuous.

Assumption 3.9 There exists 	f ∈ M(	E)+ such that for every (x, a) ∈ K , f (x, a) ≤
	f (x) and

∫ t∗(x)

0 e− ∫ t
0 λ(φ(x,s))ds 	f (φ(x, t))dt < ∞.

The next proposition presents convergence results of the operators Gα, Lα, and
Hα with respect to the topology defined in Sect. 2.3.1. Note that the convergence is
taken not only with respect to a sequence of controls but also with respect to some
functions and the parameter α. This is justified by the fact that we will need this
convergence for the vanishing discount approach in Sects. 4.3 and 4.4. The proof of
the proposition is in Sect. 3.5.

Proposition 3.10 Consider α ∈ R+ and a nonincreasing sequence of nonnegative
numbers {αk}, αk ↓ α, and a sequence of functions hk ∈ M(E) uniformly bounded
from below by a positive constant Kh (that is, hk(y) ≥ −Kh for all y ∈ E). Set
h = limk→∞ hk. For x ∈ E, consider Θn = (

μn,μ∂,n
) ∈ V

r (x) and Θ = (
μ,μ∂

) ∈
V

r (x) such that Θn → Θ . We have the following results:

(a) limn→∞ Lαn (x,Θn) = Lα(x,Θ).
(b) limn→∞ Lαn f (x,Θn) ≥ Lα f (x,Θ).
(c) limn→∞ Hαn r(x,Θn) ≥ Hαr(x,Θ).
(d) limn→∞ Gαn hn(x,Θn) ≥ Gαh(x,Θ).

The lower semicontinuity properties mentioned at the beginning of this section follow
easily from this proposition, as stated in the next corollary.

Corollary 3.11 Consider h ∈ M(E) bounded from below. We have the following
results:

(a) Lα(x,Θ) is continuous on V
r (x).

(b) Lα f (x,Θ) is lower semicontinuous on V
r (x).

(c) Hαr(x,Θ) is lower semicontinuous on V
r (x).

(d) Gαh(x,Θ) is lower semicontinuous on V
r (x).
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Proof By taking αk = α ≥ 0, hαk = h in Proposition 3.10, it is easy to obtain the
result. �

3.4 Existence of an Ordinary Optimal Feedback Control

The main result of this section is Theorem 3.15, which strengthens Theorem 3.1 by
assuming only that the discrete-time optimality equation T (ρ, h) = h has a solution
in order to ensure the existence of an optimal control strategy for the long-run aver-
age control problem. Moreover, it is shown that this optimal control strategy is in the
feedback class and can be characterized as in item (D3) of Definition 3.12. These
results are obtained by establishing a connection (see the proof of Theorem 3.14)
between the discrete-time optimality equation and an integrodifferential equation
(using the weaker concept of absolute continuity along the flow of the value func-
tion). The basic idea is to use the set of relaxed controls V

r (x). The advantage of
considering V

r (x) is that it is compact, so that together with the assumptions we
have made in Sect. 3.3, we can apply a measurable selector theorem to guarantee
the existence of an optimal measurable selector (see Proposition 3.13). The price to
pay is that this measurable selector belongs to the space of relaxed controls. How-
ever, we can show that in fact there exists a nonrelaxed feedback selector for the
discrete-time optimality equation T (ρ, h) = h by establishing a connection between
the discrete-time optimality equation and the integrodifferential equation (see the
proof of Theorem 3.14).

Definition 3.12 Consider w ∈ M(E) and h ∈ M(E) bounded from below.

(D1) Denote by û(w, h) ∈ SU the measurable selector satisfying

inf
a∈U(x)

{
f (x, a) − λ(x, a)

[
w(x) − Qh(x, a)

]}

= f (x, û(w, h)(x)) − λ(x, û(w, h)(x))
[
w(x) − Qh(x, û(w, h)(x))

]
,

inf
a∈U(z)

{r(z, a) + Qh(z, a)} = r(z, û(w, h)(z)) + Qh(z, û(w, h)(z)).

(D2) ûφ(w, h) ∈ SV is the measurable selector derived from û(w, h) through
Definition 2.22.

(D3) Ûφ(w, h) ∈ U is the control strategy derived from û(w, h) through
Definition 2.23.

The existence of û(w, h) follows from Assumptions 3.5–3.8 and Proposition D.5
in [49], and the fact that ûφ(w, h) ∈ SV and Ûφ(w, h) ∈ U comes from Proposition
2.24. Notice that ûφ(w, h) is a feedback measurable selector and Ûφ(w, h) is a
feedback control strategy.
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The proof of the next proposition is presented in Sect. 3.5. It shows the existence
of an optimal relaxed measurable selector for the relaxed one-stage optimization
function Rα(ρ, h)(x) and that Rα(ρ, h) ∈ M

ac(E).

Proposition 3.13 Let α ≥ 0, ρ ∈ R+, and h ∈ M(E) be bounded from below. For
x ∈ E, define w(x) = Rα(ρ, h)(x). Assume that for all x ∈ E, w(x) ∈ R. Then
there exists Θ̂ ∈ SVr such that

w(x) = −ρLα(x, Θ̂(x)) + Lα f (x, Θ̂(x)) + Hαr(x, Θ̂(x)) + Gαh(x, Θ̂(x)).

(3.13)
Moreover, w ∈ M

ac(E) and satisfies, for all x ∈ E and t ∈ [0, t∗(x)),

w(x) = inf
μ∈Vr (x)

{ t∫

0

e−αs−Λμ(x,s)
[
−ρ+ f (φ(x, s),μ(s)) + λQh(φ(x, s),μ(s))

]
ds

+ e−αt−Λμ(x,t)w(φ(x, t))

}
(3.14)

=
t∫

0

e−αs−Λμ̂(x)(x,s)
[
−ρ+ f (φ(x, s), μ̂(x, s)) + λQh(φ(x, s), μ̂(x, s))

]
ds

+ e−αt−Λμ̂(x)(x,t)w(φ(x, t)), (3.15)

where Θ̂(x) = (μ̂(x), μ̂∂(x)).

The following theorem shows the existence of a feedback measurable selector
for the one-stage optimization problems associated with Tα(ρ, h) and Rα(ρ, h). Its
proof is presented in Sect. 3.5.

Theorem 3.14 Let α ≥ 0, ρ ∈ R+, and h ∈ M(E) be bounded from below by −Kh

with Kh ∈ R+. Define
w(x) = Rα(ρ, h)(x), (3.16)

for x ∈ E, and suppose that w(x) ∈ R for all x ∈ E. Then w ∈ M
ac(E), and

the feedback measurable selector ûφ(w, h) ∈ SV satisfies the following one-stage
optimization problems:

Rα(ρ, h)(x) = Tα(ρ, h)(x) = −ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+ Hαr(x, ûφ(w, h)(x)) + Gαh(x, ûφ(w, h)(x)). (3.17)

The main result of this section is as follows:

Theorem 3.15 Suppose that there exists a pair (ρ, h) ∈ R × M(E) with h bounded
from below satisfying the discrete-time optimality equation
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T (ρ, h)(x) = h(x),

and for all U ∈ U ,

lim
t→+∞

1

t
lim

m→+∞ EU
(x,0)

[
h
(
X (t ∧ Tm)

)] = 0.

Then h ∈ M
ac(E), the feedback optimal control strategy Ûφ(ρ, h) (see item (D3) of

Definition 3.12) is optimal, and

ρ = JA(x) = A(Ûφ(ρ, h), x).

Proof The proof of this result is straightforward, obtained by combining Theorem
3.1 of Sect. 3.2 and Theorem 3.14. �

3.5 Proof of Auxiliary Results

In this section, we present the proof of some auxiliary results needed in this chapter.

3.5.1 Proofs of the Results of Sect. 3.2

The following lemma applies the semigroup property of the flow φ into the operators
Gα, Lα, and Hα (defined in (2.12), (2.14), and (2.15)). Recall also the definition of
[Θ]t in Definition 2.14.

Lemma 3.16 For every α ≥ 0, x ∈ E, t ∈ [0, t∗(x)), Θ = (
μ,μ∂

) ∈ V
r (x), and

g ∈ M(E) bounded from below, we have that

Lα(x,Θ) =
t∫

0

e−αs−Λμ(x,s)ds + e−αt−Λμ(x,t)Lα
(
φ(x, t),

[
Θ

]
t

)
, (3.18)

Lα f (x,Θ) =
t∫

0

e−αs−Λμ(x,s) f (φ(x, s),μ(s))ds

+ e−αt−Λμ(x,t)Lα f
(
φ(x, t),

[
Θ

]
t

)
,

Hαr(x,Θ) =e−αt−Λμ(x,t) Hαr
(
φ(x, t),

[
Θ

]
t

)
,
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Gαg(x,Θ) =
t∫

0

e−αs−Λμ(x,s)λQg(φ(x, s),μ(s))ds

+ e−αt−Λμ(x,t)Gαg((φ(x, t)), [Θ]t ).

Proof For every x ∈ E and Θ = (
μ,μ∂

) ∈ V
r (x), using the semigroup property of

φ, we have for t + s < t∗(x),

Λμ(x, t + s) =
t∫

0

λ(φ(x, �),μ(�))d� +
t+s∫

t

λ(φ(x, �),μ(�))d�

= Λμ(x, t) +
s∫

0

λ(φ(φ(x, t), �),μ(� + t))d�.

Notice that t∗(x) − t = t∗(φ(x, t)). Consequently, combining the previous equation
and Definition 2.14, we obtain for t ∈ [0, t∗(x)) that

Lα(x,Θ) =
t∫

0

e−αs−Λμ(x,s)ds +
t∗(φ(x,t))∫

0

e−α(t+s)−Λμ(x,t+s)ds,

=
t∫

0

e−αs−Λμ(x,s)ds

+e−αt−Λμ(x,t)

t∗(φ(x,t))∫

0

e
−αs−

s∫
0
λ(φ(φ(x,t),�),μ(�+t))d�

ds

=
t∫

0

e−αs−Λμ(x,s)ds + e−αt−Λμ(x,t)Lα(φ(x, t),
[
Θ

]
t ),

proving Eq. (3.18). The other equalities can be obtained by similar arguments. �
Next we present the proof of Proposition 3.2.

Proof of Proposition 3.2 From Lemma 3.16, it follows that for every x ∈ E , t ∈
[0, t∗(x)), and Υ = (

ν, ν∂
) ∈ V(x),

− ρLα(x, Υ ) + Lα f (x, Υ ) + Hαr(x, Υ ) + Gαh(x, Υ )

=
[
−ρLα

(
φ(x, t),

[
Υ

]
t

) + Lα f
(
φ(x, t),

[
Υ

]
t

)

+ Hαr
(
φ(x, t),

[
Υ

]
t

) + Gαh(φ(x, t), [Υ ]t )
]
e−αt−Λν (x,t)
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+
t∫

0

e−αs−Λν (x,s)
[
−ρ+ f (φ(x, s), ν(s))

+ λ(φ(x, s), ν(s))Qh(φ(x, s), ν(s))
]
ds. (3.19)

Notice now that we must have

w(φ(x, t)) = −ρLα
(
φ(x, t),

[
Γ̂ (x)

]
t

) + Lα f
(
φ(x, t),

[
Γ̂ (x)

]
t

)

+ Hαr
(
φ(x, t),

[
Γ̂ (x)

]
t

) + Gαh(φ(x, t), [Γ̂ (x)]t ), (3.20)

since otherwise, we would have a contradiction to the fact that the infimum is reached
in (3.4) for Γ̂ (x). Indeed, if Eq. (3.20) were not satisfied, then there would exist
Ψ = (

β,β∂
) ∈ V(φ(x, t)) such that

−ρLα
(
φ(x, t),

[
Γ̂ (x)

]
t

) + Lα f
(
φ(x, t),

[
Γ̂ (x)

]
t

) + Hαr
(
φ(x, t),

[
Γ̂ (x)

]
t

)

+ Gαh(φ(x, t), [Γ̂ (x)]t ) > −ρLα
(
φ(x, t), Ψ

) + Lα f
(
φ(x, t), Ψ

)

+ Hαr
(
φ(x, t), Ψ

) + Gαh(φ(x, t), Ψ ). (3.21)

Now defining ν(s) = I[0,t[(s)γ̂(x, s) + I[t,∞[(s)β(s), we would get that Υ̂ =
(ν,β∂) ∈ V(x), and by equation (3.21),

w(x) > −ρLα(x, Υ̂ ) + Lα f (x, Υ̂ ) + Hαr(x, Υ̂ ) + Gαh(x, Υ̂ ),

in contradiction to Eq. (3.4). Consequently, by taking Υ = Γ̂ (x) in (3.19), we obtain
(3.6).

From Assumption 2.5, we have that for all x ∈ E and t ∈ [0, t∗(x)),

e−Λγ̂(x)(x,t) > 0, and so (3.6) implies that for all x ∈ E , w(φ(x, t)) is absolutely
continuous on [0, t∗(x)). Recalling that r ∈ M(∂E × U)+ (see Assumption 2.10), it
is easy to obtain from Eq. (3.5) that

t∗(x)∫

0

e−αs−Λγ̂(x)(x,s)[−ρ+ f (φ(x, s), γ̂(x, s)) + λQh(φ(x, s), γ̂(x, s))]ds

≤ w(x) + Kh . (3.22)

If t∗(x) < ∞, we have by Assumption 2.5 that for all 0 ≤ t < t∗(x),

eαt+Λγ̂(x)(x,t) ≤ eαt∗(x)+∫ t∗(x)
0

	λ(φ(x,s))ds < ∞. (3.23)

From (3.6), we get that
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w(φ(x, t)) = eαt+Λγ̂(x)(x,t)
(
w(x)

−
t∫

0

e−αs−Λγ̂(x)(x,s)
[
−ρ+ f (φ(x, s), γ̂(x, s)) + λQh(φ(x, s), γ̂(x, s))

]
ds

)
.

(3.24)

Combining (3.22), (3.23), and (3.24), we have that the limit of w(φ(x, t)) as t →
t∗(x) exists in R, showing that w ∈ M

ac(E).
Let ν ∈ V(x). Define ν̃ by ν̃(s) = I[0,t[(s)ν(s) + I[t,∞[(s)γ̂(x, s). Then ν̃ ∈

V(x), and Υ defined by
(
ν̃(x), γ̂∂(x)

)
belongs to V(x) and satisfies

[
Υ

]
t = [

Γ̂
]

t .
Consequently, combining (3.4), (3.19), and (3.20), it follows that for all ν ∈ V(x),

w(x) ≤ −ρLα(x, Υ ) + Lα f (x, Υ ) + Hαr(x, Υ ) + Gαh(x, Υ )

= e−αt−Λν (x,t)w(φ(x, t)) +
t∫

0

e−αs−Λν (x,s)
[
−ρ+ f (φ(x, s), ν(s))

+ λ(φ(x, s), ν(s))Qh(φ(x, s), ν(s))

]
ds.

Now from the previous inequality and (3.6), we obtain (3.7). �
Next we present the proof of Proposition 3.3.

Proof of Proposition 3.3 Set w = Tα(ρ, h). By hypothesis, w is bounded from
below, and so JU

m (t, x, k) is well defined. For U = (u, u∂) ∈ U , defined for ŷ =
(x, z, s, n) ∈ Ê , f̂ U (ŷ) = f (x, u(n, z, s)), r̂U (ŷ) = r(x, u∂(n, z)), ĥ(ŷ) = h(x),
ŵ(ŷ) = w(x), and for t ∈ [0, t∗(x)], Λ̂U (y, t) = ΛU (x, n, t). Clearly, we have that
JU

0 (t, x, k) = w(x) ≥ h(x) for all (t, x, k) ∈ R+ × E × N. Now assume that for
m ∈ N, JU

m (t, x, k) ≥ h(x) for all (t, x, k) ∈ R+× E ×N. Defining x̂ = (x, x, 0, k),
we have that

JU
m+1(t, x, k) = EU

(x,k)

[
I{t<T1}

( t∫

0

e−αs
[

f̂ U (φ̂(x̂, s)) − ρ
]
ds + e−αt ŵ(φ̂(x̂, t))

)

+ I{t≥T1}
( t∧Tm+1∫

0

e−αs
[

f̂ U (X̂U (s)) − ρ
]
ds

+
t∧Tm+1∫

0

e−αs r̂U (
X̂U (s−)

)
dp∗(s)

+ e−α(t∧Tm+1)ŵ
(
X̂U (t ∧ Tm+1)

))]
.
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Therefore,

JU
m+1(t, x, k) = EU

(x,k)

[
I{t<T1}

( t∫

0

e−αs
[

f̂ U (φ̂(x̂, s)) − ρ
]
ds + e−αt ŵ(φ̂(x̂, t))

)

+ I{t≥T1}
( T1∫

0

e−αs
[

f̂ U (φ̂(x̂, s)) − ρ
]
ds

+ I{T1=t∗(x)}e−αt∗(x) r̂ U (
φ̂(x̂, t∗(x))

))

+ I{t≥T1}
( t∧Tm+1∫

T1

e−αs
[

f̂ U (X̂U (s)) − ρ
]
ds

+
t∧Tm+1∫

T1

e−αs r̂U (
X̂U (s−)

)
dp∗(s)

+ e−α(t∧Tm+1)ŵ
(
X̂U (t ∧ Tm+1)

))]
. (3.25)

However, by the strong Markov property of the process {X̂U (t)}, it follows that

I{t≥T1}e−αT1 JU
m (t − T1, X̂U

1 , k + 1)

= EU
(x,k)

[
I{t≥T1}

( t∧Tm+1∫

T1

e−αs
[

f̂ U (X̂U (s)) − ρ
]
ds

+
t∧Tm+1∫

T1

e−αs r̂U (
X̂U (s−)

)
dp∗(s) + e−α(t∧Tm+1)ŵ

(
X̂U (t ∧ Tm+1)

))|F X̂U

T1

]
.

(3.26)

Combining Eqs. (3.25) and (3.26) and the fact that

I{t≥T1} JU
m (t − T1, X̂U

1 , k + 1) ≥ I{t≥T1}ĥ(X̂U
1 ),

we obtain that

JU
m+1(t, x, k) ≥ EU

(x,k)

[ t∧T1∫

0

e−αs
[

f̂ U (φ̂(x̂, s)) − ρ
]
ds
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+ I{t<T1}e−αt ŵ(φ̂(x̂, t)) + I{t≥T1=t∗(x)}e−αt∗(x) r̂ U (
φ̂(x̂, t∗(x))

)

+ I{t≥T1}e−αT1 ĥ(X̂U
1 )

]
. (3.27)

However,

EU
(x,k)

[ t∧T1∫

0

e−αs
[

f̂ U (φ̂(x̂, s)) − ρ
]
ds + I{t<T1}e−αt ŵ(φ̂(x̂, t))

]

=
t∧t∗(x)∫

0

[
f̂ U (φ̂(x̂, s)) − ρ

]
e−αs−Λ̂U (x̂,s)ds

+ I{t<t∗(x)}e−αt−Λ̂U (x̂,t)ŵ(φ̂(x̂, t)), (3.28)

and

EU
(x,k)

[
I{t≥T1}e−αT1 ĥ(X̂U

1 ) + I{t≥T1=t∗(x)}e−αt∗(x)r̂U (
φ̂(x̂, t∗(x))

)]

= e−αt∗(x)−Λ̂U (x̂,t∗(x))r̂(φ̂(x̂, t∗(x)))I{t≥t∗(x)}

+
∫ t∧t∗(x)

0
Q̂U ĥ(φ̂(x̂, s))̂λU (φ̂(x̂, s))e−αs−Λ̂U (x̂,s)ds

+ e−αt∗(x)−Λ̂U (x̂,t∗(x)) Q̂U ĥ(φ̂(x̂, t∗(x)))I{t≥t∗(x)}. (3.29)

Combining Eqs. (3.27)–(3.29), it follows that for t ∈ R+,

JU
m+1(t, x, k) ≥

t∧t∗(x)∫

0

[
f̂ U (φ̂(x̂, s)) − ρ

+ Q̂U ĥ(φ̂(x̂, s))̂λU (φ̂(x̂, s))
]
e−αs−Λ̂U (x̂,s)ds

+ I{t≥t∗(x)}e−αt∗(x)−Λ̂U (x̂,t∗(x))
[

Q̂U ĥ(φ̂(x̂, t∗(x))) + r̂(φ̂(x̂, t∗(x)))
]

+ I{t<t∗(x)}e−αt−Λ̂U (x̂,t)ŵ(φ̂(x̂, t))

=
t∧t∗(x)∫

0

e−αs−Λνk (x,s)
[
−ρ+ f (φ(x, s), νk(s))

+ λ(φ(x, s), νk(s))Qh(φ(x, s), νk(s))

]
ds

+ I{t≥t∗(x)}e−αt∗(x)−Λνk (x,t∗(x))
[

Qh(φ(x, t∗(x)), u∂(k, x))
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+ r(φ(x, t∗(x)), u∂(k, x))
]

+ I{t<t∗(x)}e−αt−Λνk (x,t)w(φ(x, t)), (3.30)

with νk(.) = u(k, x, .). Clearly, νk(.) ∈ V(x).
Now if t < t∗(x), then

JU
m+1(t, x, k) ≥

t∫

0

e−αs−Λνk (x,s)
[
−ρ+ f (φ(x, s), νk(s))

+ λ(φ(x, s), νk(s))Qh(φ(x, s), νk(s))

]
ds

+ e−αt−Λνk (x,t)w(φ(x, t)),

and by applying Proposition 3.2, it follows that JU
m+1(t, x, k) ≥ w(x) ≥ h(x).

If t ≥ t∗(x), then by defining Υ = (νk, u∂(k, x)) ∈ V(x) and using Eq. (3.8), we
have that

JU
m+1(t, x, k) ≥ e−αt∗(x)−Λνk (x,t∗(x))

[
Qh(φ(x, t∗(x)), u∂(k, x))

+ r(φ(x, t∗(x)), u∂(k, x))
]

+
t∗(x)∫

0

e−αs−Λνk (x,s)
[
−ρ+ f (φ(x, s), νk(s))

+ λ(φ(x, s), νk(s))Qh(φ(x, s), νk(s))
]
ds

=−ρLα(x, Υ ) + Lα f (x, Υ ) + Hαr(x, Υ ) + Gαh(x, Υ ) ≥ w(x) ≥ h(x),

proving the result. �
Next we present the proof of Proposition 3.4.

Proof of Proposition 3.10 Set w = Tα(ρ, h). It is easy to check that w is bounded
from below, and so J Û

m (t, x, k) is well defined. Note that J Û
0 (t, x, k) = w(x) ≤ h(x)

for all (t, x, k) ∈ R+ × E × N. Now assume that for m ∈ N, J Û
m (t, x, k) ≤ h(x) for

all (t, x, k) ∈ R+×E×N; then from this hypothesis, it follows that the inequalities in
(3.30) can be inverted for the control process given by Û . Consequently, if t < t∗(x),
the last statement of Proposition 3.2 implies that

J Û
m+1(t, x, k) ≤ w(x) ≤ h(x).

If t ≥ t∗(x), then

J Û
m+1(t, x, k) ≤ −ρLα(x, Γ̂ (x)) + Lα f (x, Γ̂ (x)) + Hαr(x, Γ̂ (x))

+ Gαh(x, Γ̂ (x)) = w(x) ≤ h(x),

establishing the desired result. �
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3.5.2 Proofs of the Results of Sect. 3.3

Next we present the proof of Proposition 3.10.

Proof of Proposition 3.10 Item (a) Consider x ∈ E and t ∈ [0, t∗(x)) if t∗(x) = ∞,
and t ∈ [0, t∗(x)] if t∗(x) < ∞. We have from Assumptions 2.5 and 3.5 that the
mapping λ̂ defined on K by λ̂(y, u) = λ(y,u)

	λ(y)
is a Carathéodory function on K (that

is, measurable and bounded on K and continuous for u in U(x); see ([69], p. 459) for
the definition of a Carathéodory function). By Theorem 2 in [69], λ̂ can be extended
to a Carathéodory function on E × U, denoted by λ̃, such that maxa∈A λ̃(x, a) =
maxa∈A(x) λ̂(x, a). Consequently, the mapping s → λ̃(φ(x, s), .)	λ(φ(x, s))I{s≤t}
belongs to L1(R+; C(U)). Therefore,

lim
n→∞

t∫

0

∫

U(φ(x,s))
λ(φ(x, s), u)μn(s, du)ds

= lim
n→∞

t∫

0

∫

U(φ(x,s))
λ̂(φ(x, s), u)	λ(φ(x, s))μn(s, du)ds

= lim
n→∞

t∫

0

∫

U(φ(x,s))
λ̃(φ(x, s), u)	λ(φ(x, s))μn(s, du)ds

=
t∫

0

∫

U(φ(x,s))
λ̃(φ(x, s), u)	λ(φ(x, s))μ(s, du)ds

=
t∫

0

∫

U(φ(x,s))
λ(φ(x, s), u)μ(s, du)ds,

or in other words,
lim

n→∞ Λμn (x, t) = Λμ(x, t).

From item (b) of Assumption 2.5, we have that

e−αn t−Λμn (x,t) ≤ e
−

t∫
0
λ(φ(x,s))ds

and
t∗(x)∫

0

e
−

t∫
0
λ(φ(x,s))ds

dt < ∞.
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Consequently, by the dominated convergence theorem, we obtain that

lim
n→∞ Lαn (x,Θn) =

t∗(x)∫

0

lim
n→∞ e−αn t−Λμn (x,t)dt

=
t∗(x)∫

0

e−αt−Λμ(x,t)dt = Lα(x,Θ),

proving item (a).

Item (b) We have from Assumption 3.6 that there exists a sequence of measurable
functions ( f j ) j∈N such that for all y ∈ 	E , f j (y, .) ↑ f (y, .) and f j (y, .) ∈ C(U(y)).
We have for (n, j) ∈ N

2, x ∈ E ,

Lαn f j (x,Θn) =
t∗(x)∫

0

[
e−αn t−Λμn (x,t) − e−αt−Λμ(x,t)] f j (φ(x, t),μn(t))dt

+
t∗(x)∫

0

e−αt−Λμ(x,t) f j (φ(x, t),μn(s))dt. (3.31)

However, Assumptions 2.5 and 3.9 give

|e−αn t−Λμn (x,t) − e−αt−Λμ(x,t)| f j (φ(x, t),μn(t)) ≤ 2e− ∫ t
0 λ(φ(x,s))ds 	f (φ(x, t)).

By item (a) and the dominated convergence theorem, we obtain that

lim
n→∞

t∗(x)∫

0

[
e−αn t−Λμn (x,t) − e−αt−Λμ(x,t)] f j (φ(x, t),μn(t))dt = 0. (3.32)

Now by the fact that supa∈U(x) f j (x, a) ≤ 	f (x) (see Assumptions 3.6 and 3.9), we
can proceed as for item (a) to show that

lim
n→∞

t∗(x)∫

0

e−αt−Λμ(x,t) f j (φ(x, t),μn(s))dt

=
t∗(x)∫

0

e−αt−Λμ(x,t) f j (φ(x, t),μ(s))dt. (3.33)
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Therefore, from Eqs. (3.31)–(3.33), it follows that

lim
n→∞ Lαn f j (x,Θn) = Lα f j (x,Θ).

However, notice that Lαn f (x,Θn) ≥ Lαn f j (x,Θn), and the result follows by the
monotone convergence theorem.

Item (c) Let us consider first that t∗(x) = ∞. From item (b) of Assumption 2.5 and
Remark 2.16, it follows that

e−Λμn (x,t∗(x)) ≤ e− ∫ t∗(x)
0 λ(φ(x,s))ds = 0, and

e−Λμ(x,t∗(x)) ≤ e− ∫ t∗(x)
0 λ(φ(x,s))ds = 0,

and the result follows immediately, since Hαn r(x,Θn) = Hr(x,Θ) = 0.
Suppose now that t∗(x) < ∞ and set z = φ(x, t∗(x)). We have from Assumption 3.7
that there exists a sequence of measurable functions (r j ) j∈N such that for all y ∈ ∂E ,
r j (y, .) ↑ r(y, .) and r j (y, .) ∈ C(U(y)). Consequently, r(z,μ∂,n) ≥ ri (z,μ∂,n),
and so limn→∞r(z,μ∂,n) ≥ ri (z,μ∂). From the monotone convergence theorem,
we obtain (c).

Item (d) From Remark 2.16 it is easy to show that

Lαn (λ+ αn)(x,Θn) =
{

1 − e−αn t∗(x)−Λμn (x,t∗(x)) if t∗(x) < ∞,

1 otherwise.

Consequently, if t∗(x) < ∞, then

lim
n→∞ Lαnλ(x,Θn) = lim

n→∞ Lαn (λ+ αn)(x,Θn) − αLα(x,Θ)

= 1 − e−αt∗(x)−Λμ(x,t∗(x)) − αLα(x,Θ)

= Lα(λ+ α)(x,Θ) − αLα(x,Θ)

= Lαλ(x,Θ).

If t∗(x) = ∞, then limn→∞ Lαnλ(x,Θn) = Lαλ(x,Θ). In any case, we have that

lim
n→∞ Lαnλ(x,Θn) = Lλ(x,Θ). (3.34)

Set h̃k = hk + Kh , h̃ = h + Kh , and ĥk = inf j≥k h̃ j . Therefore, ĥk ↑ h̃ and
ĥk ≤ h̃n for n ≥ k. By hypothesis, ĥk(y) ≥ 0 for all y ∈ E . Define λm = m ∧ λ
and ĥk,m = m ∧ ĥk . From Assumptions 3.5 and 3.8, we have that for each k and
m, λm Qĥk,m ∈ B(E × A)+, and for every y ∈ E , λm Qĥk,m(y, .) is continuous on
U(y). Consequently, we can proceed as for the proof of item (b) to show that

lim
n→∞

Lαn (λm Qĥk,m)(x,Θn) ≥ Lα(λm Qĥk,m)(x,Θ).
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Recalling that λ ≥ λm and h̃n ≥ ĥk ≥ ĥk,m for n ≥ k, we have

lim
n→∞

Lαn (λQh̃n)(x,Θn) ≥ lim
n→∞

Lαn (λm Qĥk,m)(x,Θn),

and so
lim

n→∞
Lαn (λQh̃n)(x,Θn) ≥ Lα(λm Qĥk,m)(x,Θ).

From the monotone convergence theorem and taking the limit over m and k, we get
that

lim
n→∞

Lαn (λQh̃n)(x,Θn) ≥ Lα(λQh̃)(x,Θ). (3.35)

Notice that Lαnλ(x,Θn) and Lαλ(x,Θ) are finite by Assumption 2.5, and thus

Lαn (λQh̃αn )(x,Θn) = Lαn (λQhαn )(x,Θn) + Kh Lαnλ(x,Θn), (3.36)

and similarly,

Lα(λQh̃α)(x,Θ) = Lα(λQhα)(x,Θ) + Kh Lαλ(x,Θ). (3.37)

By combining Eqs. (3.34)–(3.37), we get that

lim
n→∞

Lαn (λQhαn )(x,Θn) ≥ Lα(λQh)(x,Θ).

Using similar arguments as above and (c), we can show that

lim
n→∞

Hαn Qhn(x,Θn) ≥ H Qh(x,Θ),

which completes the proof of (d). �

3.5.3 Proofs of the Results of Sect. 3.4

We present first the proof of Proposition 3.13.

Proof of Proposition 3.13 From Assumption 2.15 and Proposition 2.17, it follows
that the mapping V defined on K by

V (x,Θ) = −ρLα(x,Θ) + Lα f (x,Θ) + Hαr(x,Θ) + Gαh(x,Θ)

is measurable. Moreover, by Corollary 3.11, it follows that for all x ∈ E , V (x, .)

is lower semicontinuous on V
r (x). Recalling that V

r (x) is a compact subset of V
r
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and by Assumption 2.15, we obtain from Proposition D.5 in [49] that there exists
Θ̂ ∈ SVr such that (3.13) is satisfied.

The rest of the proof is similar to the proof of Proposition 3.2 and is therefore
omitted. �

Before presenting the proof of Theorem 3.14, we need the following auxiliary
results.

Lemma 3.17 For every μ ∈ P(U(x)) and x ∈ 	E, λ(x,μ) < ∞.

Proof From Assumption 2.3, U(x) is a compact subspace of U, and from Assump-
tion 3.5, λ(x, .) : U(x) �→ R+ is continuous. Therefore, there exists â ∈ U(x) such
that maxa∈U(x) λ(x, a) = λ(x, â), and thus

0 ≤ λ(x,μ) =
∫

U(x)

λ(x, a)μ(da) ≤ λ(x, â).

�

Lemma 3.18 Suppose that w ∈ M(E) and h ∈ M(E) is bounded from below −Kh

with Kh ∈ R+. Then

inf
a∈U(x)

{
f (x, a) + λ(x, a)Qh(x, a) − λ(x, a)w(x)

}

= inf
μ∈P(U(x))

{
f (x,μ) − λ(x,μ)w(x) + λQh(x,μ)

}
, (3.38)

inf
a∈U(φ(x,t∗(x)))

{r(φ(x, t∗(x)), a) + Qh(φ(x, t∗(x)), a)}
= inf

μ∈P(U(φ(x,t∗(x))))
{r(φ(x, t∗(x)),μ) + Qh(φ(x, t∗(x)),μ)}.

(3.39)

Proof For simplicity, set ϑ(x, a) = f (x, a) + λ(x, a)Qh(x, a) − λ(x, a)w(x).
Notice that from Lemma 3.17, for every μ ∈ P(U(x)), λ(x,μ) < ∞, and thus,
recalling that f and h + Kh are positive,

f (x,μ) − λ(x,μ)w(x) + λQh(x,μ)

= f (x,μ) + λQ(h + Kh)(x,μ) − λ(x,μ)(w(x) + Kh)

=
∫

U(x)

[
f (x, a) + λ(x, a)Q(h + Kh)(x, a) − λ(x, a)(w(x) + Kh)

]
μ(da)

=
∫

U(x)

ϑ(x, a)μ(da). (3.40)

However, as in Lemma 5.7 of [37], we have that
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inf
a∈U(x)

ϑ(x, a) = inf
μ∈P(U(x))

∫

U(x)

ϑ(x, a)μ(da). (3.41)

Combining (3.40) and (3.41), we get (3.38). Similarly, we have (3.39). �

Next we present the proof of Theorem 3.14.

Proof of Theorem 3.14 According to Proposition 3.13, w ∈ M
ac(E), and there

exists Θ̂ ∈ SVr such that for all x ∈ E and t ∈ [0, t∗(x)), we have

e−αt−Λμ̂(x)(x,t)w(φ(x, t)) − w(x) (3.42)

=
t∫

0

e−αs−Λμ̂(x)(x,s)
[
ρ− f (φ(x, s), μ̂(x, s)) − λQh(φ(x, s), μ̂(x, s))

]
ds,

where Θ̂(x) = (μ̂(x), μ̂∂(x)). Since w ∈ M
ac(E), it follows from Lemma 2.2 that

there exists a function Xw in M(E) satisfying Eq. (2.1). Therefore, we obtain from
Eq. (3.42) that

Xw(φ(x, t)) − [α+ λ(φ(x, t), μ̂(x, t))]w(φ(x, t)) = ρ− f (φ(x, t), μ̂(x, t))

− λQh(φ(x, t), μ̂(x, t)),

η − a.s. on [0, t∗(x)), implying that

−Xw(φ(x, t)) + αw(φ(x, t))

≥ inf
μ∈P(U(φ(x,t)))

{
f (φ(x, t),μ) − λ(φ(x, t),μ)w(φ(x, t)) + λQh(φ(x, t),μ)

}
−ρ.

From Lemma 3.18, we obtain that

inf
μ∈P(U(φ(x,t)))

{
f (φ(x, t),μ) − λ(φ(x, t),μ)w(φ(x, t)) + λQh(φ(x, t),μ)

}
− ρ

= inf
a∈U(φ(x,t))

{
f (φ(x, t), a) − λ(φ(x, t), a)

[
w(φ(x, t)) − Qh(φ(x, t), a)

]} − ρ.

Consequently, by considering the measurable selector 	u ∈ SU given by 	u = û(w, h)

(see Definition 3.12, (D1)), we have

−Xw(φ(x, t)) + αw(x) ≥ −ρ+ f (φ(x, t),	u(φ(x, t)))

− λ(φ(x, t),	u(φ(x, t)))
[
w(φ(x, t)) − Qh(φ(x, t),	u(φ(x, t)))

]
, (3.43)

η-a.s. on [0, t∗(x)). Let Ξ be the set in B([0, t∗(x))) such that the previous inequality
is strict. If η(Ξ) > 0, then there would exist t ∈ [0, t∗(x)) such that
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w(x) − e−(αt+Λ(x,t))w(φ(x, t)) >

t∫

0

e−(αs+Λ(x,s))[ f (φ(x, s),	u(φ(x, s)))

+ λ(φ(x, s),	u(φ(x, s)))Qh(φ(x, s),	u(φ(x, s))) − ρ
]
ds,

where Λ(x, t) denotes
∫ t

0 λ(φ(x, s),	u(φ(x, s)))ds. However, this would lead to a
contradiction with (3.14). Thus we have that

−Xw(φ(x, t)) + αw(φ(x, t)) = −ρ+ f (φ(x, t),	u(φ(x, t)))

− λ(φ(x, t),	u(φ(x, t)))
[
w(φ(x, t)) − Qh(φ(x, t),	u(φ(x, t)))

]
,

η − a.s. on [0, t∗(x)). Consequently, for all t ∈ [0, t∗(x)),

w(x) = e−(αt+Λ(x,t))w(φ(x, t)) +
t∫

0

e−(αs+Λ(x,s))[ f (φ(x, s),	u(φ(x, s)))

+ λ(φ(x, s),	u(φ(x, s)))Qh(φ(x, s),	u(φ(x, s))) − ρ
]
ds. (3.44)

First, consider the case in which t∗(x) < ∞. Recalling that w ∈ M
ac(E), we obtain,

by taking the limit as t tends to t∗(x) in the previous equation, that the feedback
measurable selector ûφ(w, h) ∈ SV (see item (D2) of Definition 3.12) satisfies

w(x) = e−(αt∗(x)+Λ(x,t∗(x)))w(φ(x, t∗(x))) − ρLα(x, ûφ(w, h)(x))

+ Lα f (x, ûφ(w, h)(x))

+
t∗(x)∫

0

e−(αs+Λ(x,s))λ(φ(x, s),	u(φ(x, s)))Qh(φ(x, s),	u(φ(x, s)))ds.

(3.45)

Define the control Θ(x) by (μ̂(x),μ) for μ ∈ P(
U(φ(x, t∗(x)))

)
, where μ̂ was

introduced in Proposition 3.13 as the first component of Θ̂ . From Eq. (3.16), we
obtain that

w(x) ≤ − ρLα(x,Θ(x)) + Lα f (x,Θ(x)) + Hαr(x,Θ(x)) + Gαh(x,Θ(x)),

and from the definition of Θ(x) and Θ̂(x), it follows that

w(x) ≤ −ρLα(x, Θ̂(x)) + Lα f (x, Θ̂(x))

+
t∗(x)∫

0

e−αs−Λμ̂(x)(x,s)λQh(φ(x, s), μ̂(x, s))ds
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+ e−αt∗(x)−Λμ̂(x)(x,t∗(x))
[
Qh(φ(x, t∗(x)),μ) + r(φ(x, t∗(x)),μ)

]
. (3.46)

From Eq. (3.15), we have that

w(x) =
t∫

0

e−αs−Λμ̂(x)(x,s)
[
−ρ+ f (φ(x, s), μ̂(x, s)) + λQh(φ(x, s), μ̂(x, s))

]
ds

+ e−αt−Λμ̂(x)(x,t)w(φ(x, t)).

Since w ∈ M
ac(E) and t∗(x) < ∞, we obtain

w(x) = lim
t→t∗(x)

t∫

0

e−αs−Λμ̂(x)(x,s)
[
−ρ+ f (φ(x, s), μ̂(x, s))

+ λQh(φ(x, s), μ̂(x, s))

]
ds + lim

t→t∗(x)
e−αt−Λμ̂(x)(x,t)w(φ(x, t))

= −ρLα(x, Θ̂(x)) + Lα f (x, Θ̂(x))

+
t∗(x)∫

0

e−αs−Λμ̂(x)(x,s)λQh(φ(x, s), μ̂(x, s))ds

+ e−αt∗(x)−Λμ̂(x)(x,t∗(x))w(φ(x, t∗(x))). (3.47)

From Assumption 2.5, we have that e−Λμ̂(x)(x,t∗(x)) > 0. Therefore, combining (3.46)
and (3.47), it follows that for all x ∈ E and μ ∈ P(

U(φ(x, t∗(x)))
)
,

w(φ(x, t∗(x))) ≤ Qh(φ(x, t∗(x)),μ) + r(φ(x, t∗(x)),μ).

Clearly, by (3.13), it can be claimed that the previous inequality becomes an equality
for μ = μ̂∂(x), and from Lemma 3.18 we obtain that

w(φ(x, t∗(x))) = inf
μ∈P(U(φ(x,t∗(x))))

{r(φ(x, t∗(x)),μ) + Qh(φ(x, t∗(x)),μ)}
= inf

a∈U(φ(x,t∗(x)))
{r(φ(x, t∗(x)), a) + Qh(φ(x, t∗(x)), a)}.

Consequently, we have that

w(φ(x, t∗(x))) = r(φ(x, t∗(x)),	u(φ(x, t∗(x))))+ Qh(φ(x, t∗(x)),	u(φ(x, t∗(x)))).

(3.48)
Combining Eqs. (3.16), (3.45), and (3.48), it follows that
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Rα(ρ, h)(x) = − ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+ Hαr(x, ûφ(w, h)(x)) + Gαh(x, ûφ(w, h)(x)).

Consider now the case in which t∗(x) = ∞. From item (b) of Assumption 2.5, we
obtain that the limit as t tends to infinity of

t∫

0

e−(αs+Λ(x,s))[ f (φ(x, s),	u(φ(x, s)))

+ λ(φ(x, s),	u(φ(x, s)))Qh(φ(x, s),	u(φ(x, s))) − ρ
]
ds

exists in R ∪ {+∞} and that w(φ(x, t)) ≥ −ρKλ − Kh for all t ∈ [0,+∞). There-
fore, by (3.44), we obtain that

w(x) ≥ −e−(αt+Λ(x,t))[ρKλ + Kh] +
∫ t

0
e−(αs+Λ(x,s))[ f (φ(x, s),	u(φ(x, s)))

+ λ(φ(x, s),	u(φ(x, s)))Qh(φ(x, s),	u(φ(x, s))) − ρ
]
ds.

Consequently, from Remark 2.16, the feedback measurable selector ûφ(w, h) ∈ SV

satisfies

w(x) ≥ − ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+
∫ t∗(x)

0
e−(αs+Λ(x,s))λ(φ(x, s),	u(φ(x, s)))Qh(φ(x, s),	u(φ(x, s)))ds

= − ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x)) + Hαr(x, ûφ(w, h)(x))

+ Gαh(x, ûφ(w, h)(x)).

From Eq. (3.16), this yields

Rα(ρ, h)(x) = − ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+ Hαr(x, ûφ(w, h)(x)) + Gαh(x, ûφ(w, h)(x)).

In any case,

Rα(ρ, h)(x) = − ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+ Hαr(x, ûφ(w, h)(x)) + Gαh(x, ûφ(w, h)(x)).

Since V(x) ⊂ V
r (x), it follows that

Rα(ρ, h)(x) ≤ Tα(ρ, h)(x).

However, ûφ(w, h) ∈ SV, proving the desired result. �



Chapter 4
The Vanishing Discount Approach for PDMPs

4.1 Outline of the Chapter

This chapter is devoted to the existence of an optimal control strategy for the long-
run average continuous control problem of PDMPs using the vanishing discount
approach. This is done by first establishing in Sect. 4.2 an optimality equation for the
discounted control problem. In the sequel, two sets of assumptions are considered. In
Sect. 4.3, the first one is presented, expressed mainly in terms of the relative difference
hα(x) = J α

D(x) − J α
D(x0) of the α-discount value functions J α

D (see Assumption
4.7). Roughly speaking, it is shown that if there exists a fixed state x0 such that
αJ α

D(x0) is bounded in a neighborhood of α = 0 and if the relative difference hα
satisfies −Kh ≤ hα(x) ≤ b(x) for a nonnegative constant Kh and a measurable
function b, then there exists an optimal control. Two examples will be presented in
Sects. 6.3 and 6.4, illustrating the possible applications of this first set of assumptions.
The second set of assumptions is presented in Sect. 4.4; they are written in terms of
some integrodifferential inequalities related to the so-called expected growth condi-
tion and geometric convergence of the postjump location kernel associated with the
PDMP. More precisely, in Sect. 4.4, the assumptions are based on integrodifferential
inequalities related to a positive test function g and r (see Assumption 4.13), and
on the geometric convergence of the postjump location kernel associated with the
PDMP (see Assumption 4.14), so that under these hypotheses, we can show that
αJ α

D(x0) is bounded in a neighborhood of α = 0 and that the relative difference
of the α-discount value function hα belongs to a weighted-norm space of functions,
denoted by Bg(E). Notice that an important difference with respect to Sect. 4.3 is
that in this case, hα is not necessarily bounded below by a constant. An example
is presented in Sect. 6.5, illustrating the possible applications of this second set of
assumptions.

O. L. V. Costa and F. Dufour, Continuous Average Control of Piecewise 47
Deterministic Markov Processes, SpringerBriefs in Mathematics,
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4.2 Optimality Equation for the Discounted Case

In this section, we consider the discounted optimal control problem posed in Sect. 2.2,
Eqs. (2.3), (2.4), and under the assumptions made in Chaps. 2 and 3, we derive an
optimality equation for this problem. As is usual in this kind of problem, we charac-
terize first the optimality equation for the problems truncated on the jump time Tm

and then take the limit as m → ∞.
Throughout this section, we consider α > 0 fixed. For every g ∈ M(E)+, we set

Wg as the function on E defined as Wg(x) = Rα(0, g)(x) for x ∈ E . The following
proposition is an immediate consequence of the results derived in Sect. 3.4.

Proposition 4.1 For g ∈ M(E)+, consider w = Wg, and suppose that for all
x ∈ E, w(x) ∈ R. Under these conditions, w ∈ M(E)+ and ûφ(w, g) ∈ SV.
Moreover, w satisfies

w(x) = Lα f (x, ûφ(w, g)(x)) + Hαr(x, ûφ(w, g)(x)) + Gαg(x, ûφ(w, g)(x)).

(4.1)

Proof Notice that f ∈ M(�E × U)+ and r ∈ M(∂E × U)+, and so Wg ∈ M(E)+.
The proof of this proposition is then a direct consequence of Theorem 3.14. �

Define the sequence of functions (vm)m∈N as

vm+1 = Wvm, v0 = 0.

We have the following proposition (recall the definition of Dα
m(U, x) in (2.5)).

Proposition 4.2 For all x ∈ E and m ∈ N, we have that

vm(x) = inf
U∈U

Dα
m(U, x).

Proof From Proposition 4.1, we have for every m ∈ N∗, that vm ∈ M(E)+,
ûφ(vm, vm−1) ∈ SV, and for every Γ = (γ, γ∂) ∈ SV, that

vm(x) = Lα f (x, ûm
φ (x)) + Hαr(x, ûm

φ (x)) + Gαvm−1(x, ûm
φ (x))

≤ Lα f (x, Γ (x)) + Hαr(x, Γ (x)) + Gαvm−1(x, Γ (x)), (4.2)

where ûm
φ = ûφ(vm, vm−1). Using similar arguments as in the proof of Propositions

3.3 and 3.4, we get that for an arbitrary U = (u, u∂) ∈ U ,

Dα
m(U, x) = Lα f (x, Γ (x))+Hαr(x, Γ (x))+GαDα

m−1(T (U ), .)(x, Γ (x)), (4.3)

with Γ (x) = (u(0, x, .), u∂(0, x)) and T (U ) = (T (u), T (u∂)), where for n ∈ N∗,
T (u)(n, ., .) = u(n + 1, ., .) and T (u∂)(n, .) = u∂(n + 1, .). For m ∈ N, set
Û m = (um, um

∂ ) ∈ U , where
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(um(k, ., .), um
∂ (k, .)) =

{
ûm+1−k
φ , if k ∈ {1, . . . , m}

(ν(., .), ν∂(.)), otherwise,

for an arbitrary (ν, ν∂) ∈ M(E ×R+; U)×M(E; U) satisfying ν(x, t) ∈ U(φ(x, t))
and ν∂(x) ∈ U(φ(x, t∗(x))). Notice that

T (Û m) = Û m−1. (4.4)

Let us show by induction on m ∈ N that

vm(x) = inf
U∈U

Dα
m(U, x) = Dα

m(Û m, x). (4.5)

Clearly, (4.5) holds for m = 0. Suppose it holds for m − 1, so that by the induction
hypothesis, Dα

m−1(T (U ), .) ≥ vm−1(.). From (4.3) and (4.2), we get that

Dα
m(U, x) ≥ Lα f (x, Γ (x)) + Hαr(x, Γ (x)(x)) + Gαvm−1(x, Γ (x))

≥ vm(x). (4.6)

From the induction hypothesis for m − 1 and (4.4), we have that

vm−1(x) = Dα
m−1(Û

m−1, x) = Dα
m−1(T (Û m), x). (4.7)

From (4.3), (4.2), and (4.7), we have that

Dα
m(Û m, x) = Lα f (x, ûm

φ (x)) + Hαr(x, ûm
φ (x)) + GαDα

m−1(Û
m−1, .)(x, ûm

φ (x))

= Lα f (x, ûm
φ (x)) + Hαr(x, ûm

φ (x)) + Gαvm−1(x, ûm
φ (x))

= vm(x). (4.8)

Combining (4.6) and (4.8), we obtain (4.5), completing the proof. �

Notice that vm(x) = infU∈U Dα
m(U, x) ≤ J α

D(x) and that the functions vm ∈
M(E)+ are nondecreasing. Consequently, there exists v ∈ M(E)+ such that vm ↑ v,
and it follows that v ≤ J α

D. We need the following propositions.

Proposition 4.3 If h ∈ M(E)+ is such that h(x) ≥ Wh(x), then h(x) ≥ J α
D(x).

Proof By using Theorem 3.14 with ρ = 0, we obtain that

h(x) ≥ Tα(0, g)(x) = Lα f (x, ûφ(x)) + Hαr(x, ûφ(x)) + Gαh(x, ûφ(x)),

where for notational convenience, ûφ denotes ûφ(Wh, h) and ûφ ∈ SV. Define

w(x) = Lα f (x, ûφ(x)) + Hαr(x, ûφ(x)) + Gαh(x, ûφ(x)).
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Clearly w(x) ≥ 0. Moreover, Ûφ(Wh, h), denoted by Û , belongs to U and therefore
the hypotheses of Proposition 3.4 are satisfied with ρ = 0. Consequently, it follows
that for all m ∈ N, (t, x) ∈ R+ × E ,

EÛ
(x,0)

[ t∧Tm∫

0

e−αs
[

f
(
X (s), û(N (s), Z(s), τ (s))

)]
ds

+
t∧Tm∫

0

e−αsr
(
X (s−), û∂(N (s−), X (s−))

)
d p∗(s)

]

≤ h(x),

or in other words, EÛ
(x,0)

[
Jα(Û , t ∧ Tm)

] ≤ h(x). From Assumption 2.8 (which

implies that Tm → ∞, PÛ
(x,0) a.s.) and the monotone convergence theorem, we have,

by taking the limit as m → ∞, that

EÛ
(x,0)

[ t∫

0

e−αs
[

f
(
X (s), û(N (s), Z(s), τ (s))

)]
ds

+
t∫

0

e−αsr
(
X (s−), û∂(N (s−), X (s−))

)
d p∗(s)

]

≤ h(x).

Finally, we obtain the result h(x) ≥ J α
D(x) by taking the limit as t → ∞. �

Proposition 4.4 The following equality holds: v(x) = Wv(x).

Proof Let us show first that v(x) ≤ Wv(x). By the definition of W , we have for
every Υ ∈ V

r (x) that

vm+1(x) ≤ Lα f (x, Υ ) + Hαr(x, Υ ) + Gαvm(x, Υ ).

Recalling that vm ↑ v, we get by taking the limit as m ↑ ∞ that

v(x) ≤ Lα f (x, Υ ) + Hαr(x, Υ ) + lim
m→∞ Gαvm(x, Υ ).

Now by the monotone convergence theorem, it follows that

v(x) = Lα f (x, Υ ) + Hαr(x, Υ ) + Gαv(x, Υ ),

showing that v(x) ≤ Wv(x).
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From Proposition 4.1, there exists for every m ∈ N, um
φ ∈ SV such that

Wvm(x) = Lα f (x, um
φ (x)) + Hαr(x, um

φ (x)) + Gαvm(x, um
φ (x)). (4.9)

Fix x ∈ E . Since um
φ (x) ∈ V(x) ⊂ V

r (x) and V
r (x) is compact, we can find

a further subsequence, still written as um
φ (x) for notational simplicity, such that

um
φ (x) → Θ̂ ∈ V

r (x). From Proposition 3.10,

v(x) = lim
m→∞ vm+1(x)

= lim
m→∞

{
Lα f (x, um

φ (x)) + Hαr(x, um
φ (x)) + Gαvm(x, um

φ (x))
}

,

and so

v(x) ≥ Lα f (x, Θ̂) + Hαr(x, Θ̂) + Gαv(x, Θ̂) ≥ Rα(0, g)(x) = Wv(x), (4.10)

giving the result. �

Finally, we have the following theorem characterizing the (discrete-time) optimal-
ity equation for the discounted optimal control problem and showing the convergence
of the truncated problems.

Theorem 4.5 We have that vn ↑ J α
D and J α

D(x) = WJ α
D(x).

Proof All we need to show is that J α
D(x) ≤ v(x). However, this is immediate from

Propositions 4.4 and 4.3. �

4.3 The Vanishing Discount Approach: First Case

In general, it is hard to obtain a solution for the discrete-time optimality equation
(see 3.1) for the long-run average cost. A common approach is to deal with an
optimality inequality of the kind h ≥ T (ρ, h). In the literature, this equation is
referred to as the average cost optimality inequality (ACOI). We present sufficient
conditions, mainly expressed in terms of the relative difference of the α-discount
value functions, for the existence of a solution to this inequality, using the so-called
vanishing discount approach (see Theorem 4.10). Combining this result with the
connection between the integrodifferential equation and the discrete-time equation,
we obtain the existence of an ordinary optimal feedback control for the long-run
average cost (see Theorem 4.10). Moreover, a proposition is presented showing the
existence of a solution to the discrete-time optimality equation (3.1). In Sect. 4.4,
the vanishing discount approach is revisited, but under conditions directly related to
the primitive data of the PDMP.
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First we have the following result, which traces a parallel with an Abelian theorem
(see [49]).

Proposition 4.6 We have that limα↓0 αJ α
D(x) ≤ JA(x).

Proof Let us show that for every U ∈ U ,

lim
α↓0

αDα(U, x) ≤ A(U, x). (4.11)

Clearly, the previous equation is satisfied if A(U, x) = +∞. Let us assume now
that A(U, x) < +∞. For notational convenience, let us denote J(U, t) by β(t) for
t ∈ R+. By assumption, we have that there exist M ∈ R+ and T ∈ R+ such that 0 ≤
β(t) ≤ t M for every t ≥ T . This implies that for everyα > 0, limt→∞ e−αtβ(t) = 0.
Now by the integration by parts formula, we obtain that

t∫

0

e−αsdβ(s) = e−αtβ(t) + α

t∫

0

e−αsβ(s)ds.

Therefore, for every K ∈ R+,

α

∞∫

0

e−αsdβ(s) = α2

∞∫

0

e−αsβ(s)ds

≤ α2

K∫

0

e−αsβ(s)ds + sup
K≤s<∞

β(s)

s
,

and thus limα↓0 α
∫ ∞

0 e−αsdβ(s) ≤ supK≤s<∞
β(s)

s . Consequently, we have that

lim
α↓0

α

∞∫

0

e−αsdβ(s) ≤ lim
t→∞

β(t)

t
= A(U, x).

Now notice that β(0) = 0 and β is right continuous, which implies that for every
t1 < t2 in [0, t],

t∫

0

I]t1,t2[(s)dβ(s) = EU
(x,0)

[ t∫

0

I]t1,t2[(s) f (X (s), u(N (s), Z(s), τ (s))) ds

]

+ EU
(x,0)

[ t∫

0

I]t1,t2[(s)r (X (s−), u∂(N (s−), Z(s−))) d p∗(s)
]
,

showing that for every α > 0,
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t∫

0

e−αsdβ(s) = EU
(x,0)

[ t∫

0

e−αs f (X (s), u(N (s), Z(s), τ (s))) ds

]

+ EU
(x,0)

[ t∫

0

e−αsr (X (s−), u∂(N (s−), Z(s−))) d p∗(s)
]
.

Therefore it follows that for every α > 0,

∞∫

0

e−αsdβ(s) = Dα(U, x),

giving (4.11). Since J α
D(x) ≤ Dα(U, x), we obtain that for every U ∈ U ,

limα↓0 αJ α
D(x) ≤ A(U, x), and thus limα↓0 αJ α

D(x) ≤ JA(x), proving the
result. �

We add the following assumptions in addition to those presented in Chaps. 2 and 3,
for discounted problems.

Assumption 4.7 There exist a state x0 ∈ E, numbers β > 0, C ≥ 0, Kh ≥ 0, and
a nonnegative function �h(.) such that for all x ∈ E and α ∈ (0,β], ρα ≤ C, where

ρα = αJ α
D(x0)

and
−Kh ≤ hα(x) ≤ �h(x),

where
hα(x) = J α

D(x) − J α
D(x0)

is the so-called relative difference of the α-discount value functions.

We have the following propositions.

Proposition 4.8 There exists a decreasing sequence of positive numbers αk ↓ 0
such that ραk → ρ and for all x ∈ E, limk→∞ αkJ αk

D (x) = ρ.

Proof See the lemma in [49, p. xx]. �

Proposition 4.9 Set h = limk→∞ hαk . Then for all x ∈ E, h(x) ≥ −Kh and
h(x) ≥ T (ρ, h)(x).

Proof From Proposition 4.1 and Theorem 4.5, we have that the following equation
is satisfied for each α > 0 and x ∈ E :

J α
D(x) = Lα f (x, uαφ(x)) + Hαr(x, uαφ(x)) + GαJ α

D(x, uαφ(x))
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for uαφ ∈ SV. Moreover, notice that for every constant γ, we have

Gαγ(x, uαφ(x)) = γ[1 − αLα(x, uαφ(x))].

Therefore, choosing γ = J α
D(x0), we get

hα(x) = − ραLα(x, uαφ(x)) + Lα f (x, uαφ(x)) + Hαr(x, uαφ(x))

+ Gαhα(x, uαφ(x)). (4.12)

For x ∈ E fixed and for all k ∈ N, uαk
φ (x) ∈ V(x) ⊂ V

r (x), since V
r (x) is compact,

we can find a further subsequence, still written as uαk
φ (x) for notational simplicity,

such that uαk
φ (x) → Θ̂ ∈ V

r (x). Combining Proposition 3.10 and Eq. (4.12) yields

h(x) = lim
k→∞

hαk (x)

= lim
k→∞

{
−ραk Lαk (x, uαk

φ (x)) + Lαk f (x, uαk
φ (x)) + Hαk r(x, uαk

φ (x))

+ Gαk hαk (x, uαk
φ (x))

}

≥ −ρL(x, Θ̂) + L f (x, Θ̂) + Hr(x, Θ̂) + Gh(x, Θ̂). (4.13)

Therefore, from Theorem 3.14, we have that

h(x) ≥ R(ρ, h)(x) = T (ρ, h)(x),

establishing the result. �

Our next result establishes the existence of an optimal feedback control strategy
for the long-run average cost problem. Let h and ρ be as in Propositions 4.8 and 4.9,
and w = T (ρ, h).

Theorem 4.10 The feedback control strategy Ûφ(w, h) ∈ U as defined in (D3) of
Definition 3.12 is such that

ρ = JA(x) = A(Ûφ(w, h), x).

Proof From Proposition 4.9, it follows that h is bounded below by −Kh . Therefore,
applying Theorem 3.14, we obtain that the hypotheses of Proposition 3.4 are satisfied
for α = 0. Setting for simplicity Û = Ûφ(w, h), we obtain that

EÛ
(x,0)

[
J(Û , t ∧ Tm)

] + EÛ
(x,0) [w (X (t ∧ Tm))] ≤ ρEÛ

(x,0) [t ∧ Tm] + w(x).

Combining Proposition 4.9 and item (b) of Assumption 2.5, we obtain that w(x) ≥
−ρKλ − Kh . Moreover, we have from Assumption 2.8 that Tm → ∞, PÛ

(x,0) a.s.
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Consequently,
EÛ

(x,0)

[
J(Û , t)

] ≤ ρ t + ρKλ + Kh + w(x),

showing that ρ ≥ A(Û , x). From Propositions 4.6 and 4.8, we have ρ ≤ JA(x),
completing the proof. �

Under the following hypothesis, the next proposition shows the existence of a
solution to the discrete-time optimality equation (3.1).

Assumption 4.11 The function �h introduced in Assumption 4.7 is measurable and
satisfies

∫ t∗(x)

0 e−Λν (x,s)λ(φ(x, s), ν(s))Q�h(φ(x, s), ν(s))ds < ∞ for all x ∈ E
and ν ∈ V(x), and the sequence (hαk )k∈N is equicontinuous.

Proposition 4.12 There exists a pair (ρ, h) ∈ R+ × M(E) such that for all x ∈ E,
h(x) ≥ −Kh and h(x) = T (ρ, h)(x).

Proof From Assumptions 4.7 and 4.11, it follows that there exist a function h
and a subsequence of (αk)k∈N, still denoted by (αk)k∈N, such that for all x ∈ E ,
limk→∞ hαk (x) = h(x), limk→∞ ραk = ρ, and limk→∞ αkJ αk

D (x) = ρ. Conse-
quently, from Proposition 4.9, we have h(x) ≥ T (ρ, h)(x) for all x ∈ E .

Let us prove the reverse inequality. For all k ∈ N, x ∈ E , Υ = (
ν, ν∂

) ∈ V(x),

hαk (x) = Tαk (ραk , hαk )(x)

≤ −ραk Lαk (x, Υ ) + Lαk f (x, Υ ) + Hαk r(x, Υ ) + Gαk hαk (x, Υ ).

From item (a) of Proposition 3.10, limk→∞ Lαk (x, Υ ) = L(x, Υ ). Moreover, we
clearly have that limk→∞ Hαk r(x, Υ ) = Hr(x, Υ ). By the monotone conver-
gence theorem, limk→∞ Lαk f (x, Υ ) = L f (x, Υ ). Using Assumption 4.11 and the
dominated convergence theorem, it is easy to show that limk→∞ Gαk hαk (x, Υ ) =
Gh(x, Υ ). Consequently, we obtain that for all x ∈ E , Υ = (

ν, ν∂
) ∈ V(x),

h(x) ≤ −ρL(x, Υ ) + L f (x, Υ ) + Hr(x, Υ ) + Gh(x, Υ ),

showing that h(x) ≤ T (ρ, h)(x) and giving the result. �

4.4 The Vanishing Discount Approach: Second Case

As previously mentioned, we want to obtain sufficient conditions for the existence
of an optimal control for the long-run average control problem of a PDMP posed
in Sect. 2.2. In this section, this is done by assuming hypotheses directly on the
parameters of the PDMP, instead of, as in Assumption 4.7, considering assumptions
based on the α-discount value functions J α

D. The purpose of the next subsection is to
introduce these several assumptions. The basic idea is that they will yield to tractable
conditions that may be easier to check in practice.
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4.4.1 Assumptions on the Parameters of the PDMP

The following assumption is somehow related to the so-called expected growth condi-
tion (see, for instance, Assumption 3.1 in [45] for the discrete-time case, or Assump-
tion A in [44] for the continuous-time case). It will be used, among other things,
to guarantee the uniform boundedness of αJ α

D (x) with respect to α (see Theorem
4.20).

Assumption 4.13 There exist b ≥ 0, c > 0, δ > 0, M ≥ 0 and g ∈ M
ac(E), g ≥ 1,

and r ∈ M(∂E)+ satisfying for all x ∈ E,

sup
a∈U(x)

{
X g(x) + cg(x) − λ(x, a) [g(x) − Qg(x, a)]

}
≤ b, (4.14)

sup
a∈U(x)

{
f (x, a)

}
≤ Mg(x), (4.15)

and for all x ∈ E with t∗(x) < ∞,

sup
a∈U(φ(x,t∗(x)))

{r(φ(x, t∗(x))) + Qg(φ(x, t∗(x)), a)} ≤ g(φ(x, t∗(x))), (4.16)

sup
a∈U(φ(x,t∗(x)))

{
r(φ(x, t∗(x)), a)

}
≤ M

c + δ
r(φ(x, t∗(x))). (4.17)

In the next assumption, notice that for every u ∈ SU, G(., uφ; .) can be seen as the
stochastic kernel associated with the postjump location of a PDMP. This assumption
is related to geometric ergodic properties of the operator G (see, for example, the
comments on p. xxx in [51] or Lemma 3.3 in [45] for more details on this kind of
assumption). This assumption is very important, because it will be used in particular
to ensure that the relative difference of the α-discount value functions hα, defined by
hα(x) = J α

D(x) − J α
D(x0), belong to the weighted-norm space of functions Bg(E)

(see Theorem 4.21).

Assumption 4.14 For each u ∈ SU, there exists a probability measure νu such that
νu(g) < +∞ and

|Gkh(x, uφ) − νu(h)| ≤ a‖h‖gκkg(x), (4.18)

for all h ∈ Bg(E) and k ∈ N, with a > 0 and 0 < κ < 1 independent of u.

Throughout this section, we consider again all the assumptions of Chap. 2 and
Assumptions 3.5, 3.6, 3.7, 3.8, and 3.9 introduced in Sect. 3.3. As seen in Sect. 3.3,
they are needed to guarantee some convergence and semicontinuity properties of
the one-stage optimization operators, the equality between the operators Tα and Rα,
and the existence of an ordinary feedback measurable selector (see Sect. 4.5.3 and
in particular Theorem 4.35). Furthermore, we need the following assumptions:
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Assumption 4.15 For the function g as in Assumption 4.13,

(i) the restriction of Qg(x, .) to U(x) is continuous for every x ∈ �E;
(ii) there exists�g ∈ M(�E)+ such that λQg(y, a) ≤ �g(y) for every y ∈ E, a ∈ U(y)

and
∫ t∗(x)

0 e− ∫ t
0 λ(φ(x,s))ds�g(φ(x, t))dt < ∞, for all x ∈ E.

The next result extends Proposition 3.10 to the case of functions that are not
necessarily bounded below but belong to Bg(E).

Proposition 4.16 Consider α ∈ R+ and a nonincreasing sequence of nonnegative
numbers (αk)k∈N, αk ↓ α, and a sequence of functions (hk)k∈N ∈ Bg(E) such
that ‖hk‖g ≤ Kh for some positive constant Kh. Set h = limk→∞ hk. For x ∈ E,
consider Θn = (

μn,μ∂,n
) ∈ V

r (x) and Θ = (
μ,μ∂

) ∈ V
r (x) such that Θn → Θ .

We have the following results:

(i) limn→∞ Gαng(x,Θn) = Gαg(x,Θ);
(ii) limn→∞ Gαn hn(x,Θn) ≥ Gαh(x,Θ).

Proof Item (a) We have for n ∈ N, x ∈ E ,

Gαng(x,Θn) =
t∗(x)∫

0

[
e−αn t−Λμn (x,t) − e−αt−Λμ(x,t)]λQg(φ(x, t),μn(t))dt

+
t∗(x)∫

0

e−αt−Λμ(x,t)λQg(φ(x, t),μn(s))dt

+ Hαn Qg(x,Θn). (4.19)

From Assumption 2.5 and Assumption 4.15 (i), we have that

|e−αn t−Λμn (x,t) − e−αt−Λμ(x,t)|λQg(φ(x, t),μn(t))

≤ 2e
−

t∫
0
λ(φ(x,s))ds

�g(φ(x, t)).

Using the same arguments as in the proof of item (a) in Proposition 3.10 and the
dominated convergence theorem, we obtain that

lim
n→∞

t∗(x)∫

0

[
e−αn t−Λμn (x,t) − e−αt−Λμ(x,t)]λQg(φ(x, t),μn(t))dt = 0. (4.20)

Now by the fact that supa∈U(x) λQg(x, a) ≤ �g(x) (see Assumption 4.15), we can
proceed as in item (a) of Proposition 3.10 to show that
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lim
n→∞

t∗(x)∫

0

e−αt−Λμ(x,t)λQg(φ(x, t),μn(s))dt

=
t∗(x)∫

0

e−αt−Λμ(x,t)λQg(φ(x, t),μ(s))dt. (4.21)

Now by item (i) of Assumption 4.15, it follows easily that

lim
n→∞ Hαn Qg(x,Θn) = HαQg(x,Θ). (4.22)

Therefore, combining Eqs. (4.19)–(4.22), it follows that

lim
n→∞ Gαng(x,Θn) = Gαg(x,Θ),

proving item (a).

Item (b) Set h̃n = hn + Khg, h̃ = h + Khg. We can apply item (d) of Proposition
3.10 to get

lim
n→∞

Gαn h̃n(x,Θn) ≥ Gαh̃(x,Θ).

Combining the previous equation with item (a), we get the result. �

The objective of the next remark is to extend the definition of û(w, h) in item
(D1) of Definition 3.12 the case in which the function is not only bounded below
but belongs to Bg(E). This generalization will be important in characterizing the
optimal feedback measurable selector and optimal control strategy for our problem.

Remark 4.17 Consider w ∈ M(E) and h ∈ Bg(E). We define:

(D1) û(w, h) ∈ SU as the measurable selector satisfying

inf
a∈U(x)

{
f (x, a) − λ(x, a)

[
w(x) − Qh(x, a)

]}

= f (x, û(w, h)(x)) − λ(x, û(w, h)(x))
[
w(x) − Qh(x, û(w, h)(x))

]
,

inf
a∈U(z)

{r(z, a) + Qh(z, a)} = r(z, û(w, h)(z)) + Qh(z, û(w, h)(z));

(D2) ûφ(w, h) ∈ SV as the measurable selector derived from û(w, h) through the
Definition 2.22.

Notice that from Assumptions 3.8 and 4.15 and Lemma 8.3.7 in [51], we have that
Qh(x, .) is continuous in U(x). From this and Assumptions 3.5, 3.6, and 3.7, we get
that the existence of û(w, h) in (D1) follows from Proposition D.5 in [49].
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The final assumption is the following.

Assumption 4.18 Consider λ, as in Assumption 2.5. Then

(i) lim
t→+∞ ect−∫ t

0 λ(φ(x,s))ds = 0, for all x ∈ E with t∗(x) = +∞;

(ii) lim
t→+∞ e− ∫ t

0 λ(φ(x,s))dsg(φ(x, t)) = 0, for all x ∈ E with t∗(x) = ∞;

(iii)
∫ t∗(x)

0
ect−∫ t

0 λ(φ(x,s))dsdt ≤ Kλ, for all x ∈ E.

Remark 4.19 In this section, the definitions of the operators Gα, Lα, and Hα are
extended to α ≥ −c, where c was introduced in Assumption 4.13. Notice the fol-
lowing consequences of Assumptions 4.18:

(i) Assumption 4.18 (i) implies that

Gα(x,Θ; A) =
t∗(x)∫

0

e−αs−Λμ(x,s)λQ IA(φ(x, s),μ(s))ds,

and Hαw(x,Θ) = 0, for every x ∈ E with t∗(x) = +∞, A ∈ B(E), α ≥ −c,
Θ = (μ,μ∂) ∈ V

r (x), w ∈ M(∂E × U).
(ii) Assumption 4.18 (iii) implies that Lα(x,Θ) ≤ Kλ for every α ≥ −c, x ∈ E ,

Θ ∈ V
r (x).

4.4.2 Main Results

In this subsection we present the main results related to the vanishing discount
approach, supposing that the assumptions on the parameters of the PDMP presented
in Sect. 4.4.1 are satisfied. Our first main result, Theorem 4.20, consists in showing
that there exists a fixed state x0 such that αJ α

D(x0) is bounded in a neighborhood
of α = 0. Notice that this property was considered to be an assumption in Sect. 4.3
(Assumption 4.7), while in the present section, this is a consequence of the assump-
tions made on the primitive data of the PDMP. Our second main result, Theorem
4.21, states that the relative difference hα(x) = J α

D(x) − J α
D(x0) of the α-discount

value function J α
D belongs to Bg(E). This is a major difference with respect to the

results developed in Sect. 4.3, where we assumed in Assumption 4.7 the stronger
hypothesis that hα(x) is bounded below by a constant. Next, as a consequence of
Theorems 4.20 and 4.21, it is shown in Proposition 4.22 that there exists a pair (ρ, h)

satisfying the ACOI h ≥ T (ρ, h), where ρ ∈ R+ and h ∈ Bg(E). Here we have again
some important differences with respect to the results obtained in Sect. 4.3, since the
hypothesis imposed in Assumption 4.7, that hα(x) is bounded below by a constant,
implied that a solution for the ACOI was also bounded below by a constant. From
this, one could easily prove the existence of an optimal control for the average cost
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control problem of PDMP. Under the hypotheses of this section, we have only that
h(x) is bounded below by −Cg(x) for some C > 0, and consequently, the approach
developed previously in Sect. 4.3 cannot be used. The idea to overcome this difficulty
is to show in Proposition 4.24 that under the assumptions presented in Sect. 4.4.1,
one can get that for û ∈ SU,

lim
t→+∞

1

t
lim

m→∞ −E
Uûφ
(x,0)

[
T (ρ, h)

(
X (t ∧ Tm)

)] ≤ 0.

This technical result will lead in Theorem 4.25 to the main result of this section,
which is the existence of an optimal ordinary feedback control strategy for the long-
run average cost problem of a PDMP.

In order to prove the first two main theorems, several intermediate and technical
results are required. For the sake of clarity in the exposition, the proofs of these
intermediate results and of these two main theorems are presented in Sect. 4.5.
The following theorem states that for every discount factor α and for every state
x ∈ E , αJ α

D (·) is bounded.

Theorem 4.20 For every α > 0 and x ∈ E,

J α
D (x) ≤ M

c + α
g(x) + Mb

cα
. (4.23)

Proof The proof of this result can be found in Sect. 4.5.1. �

Now it is shown that for every state y fixed in E , the difference J α
D (·)-J α

D (y) belongs
to Bg(E).

Theorem 4.21 For every α > 0, x ∈ E, and y ∈ E, there exists M ′ such that

|J α
D (x) − J α

D (y)| ≤ aM ′

1 − κ
(1 + g(y))g(x). (4.24)

Proof The proof of this result can be found in Sect. 4.5.2. �

The purpose of the next result is to show that by combining the two previous theorems,
there exists a pair (ρ, h) in R+ × Bg(E) satisfying the ACOI h ≥ T (ρ, h). A crucial
intermediate result is Theorem 4.35, presented in Sect. 4.5.3 for the sake of clarity
in the exposition, which states that for every function h ∈ Bg(E), the one-stage
optimization functions Rα(ρ, h)(x) and Tα(ρ, h)(x) are equal, and that there exists
an ordinary feedback measurable selector for the one-stage optimization problems
associated with these operators. This theorem can be seen as an extension of the
results obtained in Sect. 3.4, Theorem 3.14, to the case in which the functions under
consideration are not necessarily bounded below, as was supposed in Sect. 3.4, but
instead belong to Bg(E).

Proposition 4.22 Set ρα = αJ α
D(x0) and hα(·) = J α

D(·)−J α
D(x0) for a fixed state

x0 ∈ E. Then,
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(i) there exists a decreasing sequence of positive numbersαk ↓ 0 such that ραk → ρ
and for all x ∈ E, limk→∞ αkJ αk

D (x) = ρ;
(ii) h defined by h = lim

k→∞
hαk belongs to Bg(E) and satisfies for every x ∈ E,

h(x) ≥ T (ρ, h)(x)

= −ρL(x, ûφ(x)) + L f (x, ûφ(x)) + Hr(x, ûφ(x)) + Gh(x, ûφ(x)),

where û = û(T (ρ, h), h) and ûφ = ûφ(T (ρ, h), h) (see Remark 4.17).

Proof Item (i) is a straightforward consequence of Theorem 4.20.
From Theorem 4.21, one now obtains that there exists a constant C independent of
k and x such that |hαk (x)| ≤ Cg(x). This implies that h = lim

k→∞
hαk belongs to

Bg(E). By using Theorem 4.35 and Proposition 4.16, it can be shown following the
same arguments as in the proof of Proposition 4.9 that h(x) ≥ R(ρ, h)(x). Applying
Theorem 4.35, it follows that

h(x) ≥ R(ρ, h)(x) = T (ρ, h)(x)

≥ −ρL(x, ûφ(x)) + L f (x, ûφ(x)) + Hr(x, ûφ(x)) + Gh(x, ûφ(x)).

where û is defined by û(T (ρ, h), h). This gives item (ii), yielding the result. �

In what follows, recall the definition of Uûφ in Definition 2.23. Next we need to
derive a technical result, which is

lim
t→+∞

1

t
lim

m→∞ −E
Uûφ
(x,0)

[
T (ρ, h)

(
X (t ∧ Tm)

)] ≤ 0,

in order to get the existence of an optimal control for the PDMP (this would be easily
obtained if h were bounded from below). Proposition 4.24 provides this result, but
first we need to prove the following lemma:

Lemma 4.23 Consider an arbitrary u ∈ SU and let uφ and Uuφ be as in Definitions
2.22 and 2.23 respectively. For all x ∈ E, define ĝ(x) = −bL−c(x, uφ(x)) +
G−cg(x, uφ(x)). Then ĝ ∈ Bg(E), and Uuφ satisfies

E
Uuφ
(x,0)

[
ĝ
(
X (t ∧ Tm)

)] ≤ e−ctg(x) + b

c

[
1 − e−ct ] + a‖̂g‖gg(x)κm

+ ‖̂g‖gνu(g) + bKλ. (4.25)

Proof From Corollary 4.28 with α = −c and the fact that r(z) ≥ 0, we obtain that
−bL−c(x, uφ(x)) + G−cg(x, uφ(x)) ≤ g(x). Clearly, ĝ ∈ M(E) is bounded from
below by −bKλ from Assumption 4.18 (iii) (see Remark 4.19), and thus ĝ ∈ Bg(E).
Since ĝ ∈ M(E) is bounded from below, it is easy to show that
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−bE
Uuφ
(x,0)

[ t∧Tm∫

0

ecsds
]

+ E
Uuφ
(x,0)

[
ec(t∧Tm )ĝ

(
X (t ∧ Tm)

)] ≤ g(x),

using the same arguments as in the proof of Proposition 3.4. Combining the monotone
convergence theorem and Assumption 2.8, we obtain that

E
Uuφ
(x,0)

[
ĝ
(
X (t)

)] ≤ e−ctg(x) + b

c

[
1 − e−ct ]. (4.26)

Clearly, we have

E
Uuφ
(x,0)

[
ĝ
(
X (t ∧ Tm)

)] = E
Uuφ
(x,0)

[
I{t<Tm }ĝ

(
X (t)

)] + E
Uuφ
(x,0)

[
I{t≥Tm }ĝ

(
X (Tm)

)]
.

Consequently, we get

E
Uuφ
(x,0)

[
ĝ
(
X (t ∧ Tm)

)] ≤ E
Uuφ
(x,0)

[
ĝ
(
X (t)

)] + Gm ĝ(x, uφ(x)) + bKλ

by recalling that ĝ is bounded from below by −bKλ. The result follows by Assump-
tion 4.14 and Eq. (4.26). �

As a consequence of Lemma 4.23, we get the following result:

Proposition 4.24 For all x ∈ E, E
Uûφ
(x,0)

[
T (ρ, h)

(
X (t ∧ Tm)

)]
is well defined and

satisfies

lim
t→+∞

1

t
lim

m→∞ −E
Uûφ
(x,0)

[
T (ρ, h)

(
X (t ∧ Tm)

)] ≤ 0. (4.27)

Proof By definition, we have that T (ρ, h)(x) ≥ −ρL(x, ûφ(x)) + Gh(x, ûφ(x)).
Therefore, using the definition of ĝ in Lemma 4.23 with u = û, we obtain that

− T (ρ, h)(x) ≤ (ρ+ b‖h‖g)Kλ + ‖h‖gĝ(x). (4.28)

Consequently, combining Lemma 4.23 and Eq. (4.28), we obtain the result. �

The next theorem, which is the main result of this section, shows that the feedback
control strategy Uûφ is optimal for the long-run average cost problem of a PDMP.

Theorem 4.25 For all x ∈ E,

ρ = JA(x) = A(Uûφ , x).
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Proof Define

J
Uûφ
m (t, x) =E

Uûφ
(x,0)

[ t∧Tm∫

0

[
f
(
X (s), û(X (s))

) − ρ
]
ds

+
t∧Tm∫

0

r
(
X (s−), û∂(X (s−))

)
d p∗(s) + T (ρ, h)

(
X (t ∧ Tm)

)]
.

From Proposition 4.24, we have that E
Uûφ
(x,0)

[
T (ρ, h)

(
X (t ∧ Tm)

)]
is well defined.

Consequently, by Proposition 4.22, we can show that J
Uûφ
m (t, x) ≤ h(x) for all

m ∈ N, (t, x) ∈ R+ × E . Therefore,

E
Uûφ
(x,0)

[ t∧Tm∫

0

[
f
(
X (s), û(X (s))

)]
ds +

t∧Tm∫

0

r
(
X (s−), û∂(X (s−))

)
d p∗(s)

]

≤ ρE
Uûφ
(x,0)

[
t ∧ Tm

]
+ h(x) − E

Uûφ
(x,0)

[
T (ρ, h)

(
X (t ∧ Tm)

)]
,

and so

lim
t→+∞

1

t
lim

m→∞ E
Uûφ
(x,0)

[ t∧Tm∫

0

[
f
(
X (s), û(X (s))

)]
ds

+
t∧Tm∫

0

r
(
X (s−), û∂(X (s−))

)
d p∗(s)

]

≤ ρ+ lim
t→+∞

1

t
lim

m→∞ −E
Uûφ
(x,0)

[
T (ρ, h)

(
X (t ∧ Tm)

)]
.

From the monotone convergence theorem and Proposition 4.24, it follows that

lim
t→∞

1

t
E

Uûφ
(x,0)

[ t∫

0

[
f
(
X (s), û(X (s))

)]
ds +

t∫

0

r
(
X (s−), û∂(X (s−))

)
d p∗(s)

]
≤ ρ,

showing that JA(x) ≤ A(Uûφ , x) ≤ ρ. From Proposition 4.6 and item (i) of Propo-
sition 4.22, we get easily the reverse inequality, completing the proof. �
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4.5 Proof of the Results of Section 4.4.2

In this section, we present the proofs of the main results in Sect. 4.4.2.

4.5.1 Proof of Theorem 4.20

The next two propositions establish a connection between a general integrodifferen-
tial inequality (respectively equality) related to the local characteristics of the PDMP
and an inequality (respectively equality) related to the operators Gα, Lα, and Hα.
They will be crucial for the boundedness results on J α

D (·) to be developed in the
sequel.

Proposition 4.26 Suppose that there exist v ∈ M
ac(E, R+), � ∈ M(E), k ∈

M(E)+, p ∈ M(∂E)+, Θ = (μ,μ∂) ∈ SVr , d ≥ 0, and α ≥ −c such that
Lα�(x,Θ(x)) is well defined with values in R ∪ {+∞} for every x ∈ E and

X v(φ(x, t))− [α+ λ(φ(x, t),μ(x, t))] v(φ(x, t)) + �(φ(x, t))

+ λQk(φ(x, t),μ(x, t)) ≤ d, (4.29)

for all x ∈ E, t ∈ [0, t∗(x)), and

v(φ(x, t∗(x))) ≥ p(φ(x, t∗(x))) + Qk(φ(x, t∗(x)),μ∂(φ(x, t∗(x)))), (4.30)

for all x ∈ E with t∗(x) < ∞. Then

v(x) ≥ −dLα(x,Θ(x))+Lα�(x,Θ(x))+Hα p(x,Θ(x))+Gαk(x,Θ(x)). (4.31)

Proof Since Lα�(x,Θ(x)) is well defined with values in R ∪ {+∞} for every

x ∈ E , then for every s ∈ [0, t∗(x)),
∫ s

0
e−αt−Λμ(x)(x,t)�(φ(x, t))dt ∈ R ∪ {+∞}.

Consequently, multiplying both sides of Eq. (4.29) by e−αt−Λμ(x)(x,t) and integrating
over [0, s] for s ∈ [0, t∗(x)), we get that

d

s∫

0

e−αt−Λμ(x)(x,t)dt ≥ e−αs−Λμ(x)(x,s)v(φ(x, s)) − v(x)

+
s∫

0

e−αt−Λμ(x)(x,t)[�(φ(x, t)) + λQk(φ(x, t),μ(x, t))
]
dt. (4.32)

Consider the case in which t∗(x) < ∞. From the fact that v ∈ M
ac(E), we obtain

from Remark 4.19 (ii) and Eq. (4.32) that
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v(x) ≥ − dLα(x,Θ(x)) + Lα�(x,Θ(x)) + e−αt∗(x)−Λμ(x)(x,t∗(x))v(φ(x, t∗(x)))

+
t∗(x)∫

0

e−αt−Λμ(x)(x,t)λQk(φ(x, t),μ(x, t))dt. (4.33)

However, from Eq. (4.30), it follows that

v(x) ≥ −dLα(x,Θ(x)) + Lα�(x,Θ(x)) + Hα p(x,Θ(x)) + Gαk(x,Θ(x)).

Now consider the case in which t∗(x) = +∞. From Eq. (4.32) (and recalling that v

is positive), we have that

d

s∫

0

e−αt−Λμ(x)(x,t)dt ≥ −v(x) +
s∫

0

e−αt−Λμ(x)(x,t)[�(φ(x, t))

+ λQk(φ(x, t),μ(x, t))
]
dt,

and so by taking the limit as s tends to infinity in the previous equation, we obtain

v(x) ≥ −dLα(x,Θ(x)) + Lα�(x,Θ(x))

+
t∗(x)∫

0

e−αt−Λμ(x)(x,t)λQk(φ(x, t),μ(x, t))dt.

However, by the fact that t∗(x) = +∞ and Remark 4.19 (i), we have that
Hα p(x,Θ(x)) = 0 and

Gαk(x,Θ(x)) =
t∗(x)∫

0

e−αt−Λμ(x)(x,t)λQk(φ(x, t),μ(x, t))dt,

establishing the result. �

If the inequalities in (4.29) and (4.30) are replaced by equalities, then the hypotheses
of Proposition 4.26 must be restricted to α ≥ 0 to show that the inequality in (4.31)
becomes an equality. More specifically, we have the following result:

Proposition 4.27 Suppose that there exist v ∈ M
ac(E, R+) ∩ Bg(E), � ∈ M(E),

k ∈ M(E)+, p ∈ M(∂E)+, Θ = (μ,μ∂) ∈ SVr , d ≥ 0, and α ≥ 0 such that
Lα�(x,Θ(x)) ∈ R ∪ {+∞} for every x ∈ E and

X v(φ(x, t)) − [α+ λ(φ(x, t),μ(x, t))] v(φ(x, t)) + �(φ(x, t))

+ λQk(φ(x, t),μ(x, t)) = d, (4.34)
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for all x ∈ E, t ∈ [0, t∗(x)), and

v(φ(x, t∗(x))) = p(φ(x, t∗(x))) + Qk(φ(x, t∗(x)),μ∂(φ(x, t∗(x)))), (4.35)

for all x ∈ E with t∗(x) < ∞. Then

v(x) = −dLα(x,Θ(x))+Lα�(x,Θ(x))+Hα p(x,Θ(x))+Gαk(x,Θ(x)). (4.36)

Proof By following the same steps as in the first part of the proof of Proposition
4.26, we have that for all s ∈ [0, t∗(x)),

d

s∫

0

e−αt−Λμ(x)(x,t)dt = e−αs−Λμ(x)(x,s)v(φ(x, s)) − v(x)

+
s∫

0

e−αt−Λμ(x)(x,t)[�(φ(x, t)) + λQk(φ(x, t),μ(x, t))
]
dt. (4.37)

The case in which t∗(x) < ∞ can be treated in the same manner as in the proof of
Proposition 4.26. However, the case in which t∗(x) = +∞ is different. By Assump-
tion 4.18 (ii) and the fact that 0 ≤ v ≤ ‖v‖gg, we have that for every α ≥ 0,

lim
s→+∞ e−αs−Λμ(x)(x,s)v(φ(x, s)) ≤ ‖v‖g lim

s→+∞ e
−

t∗(x)∫
0

λ(φ(x,t))dt
g(φ(x, s)) = 0.

Therefore, taking the limit as s tends to infinity in Eq. (4.37), we have that

dLα(x,Θ(x)) = − v(x) + Lα�(x,Θ(x))

+
s∫

0

e−αt−Λμ(x)(x,t)λQk(φ(x, t),μ(x, t))dt,

and this proves Eq. (4.36) on account of Remark 4.19 (i). �

Applying Proposition 4.26 to the inequalities (4.14) and (4.16), we obtain the
following corollary:

Corollary 4.28 For every u ∈ SU, α ≥ −c, and x ∈ E,

g(x) ≥ −bLα(x, uφ(x)) + (c + α)Lαg(x, uφ(x)) + Hαr(x, uφ(x))

+ Gαg(x, uφ(x)), (4.38)

and for all Θ ∈ SVr ,
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(c + α)Lαg(x,Θ(x)) + Hαr(x,Θ(x)) + Gαg(x,Θ(x)) ≤ bKλ + g(x). (4.39)

Proof Clearly, from Proposition 2.24 and Remark 2.25, it follows that uφ ∈ SVr .
Consequently, by Assumption 4.13 and setting d = b, v = g, � = (c + α)g, p = r ,
k = g, and Θ = uφ in Proposition 4.26, we get Eq. (4.38). Similarly, from Remark
4.19 (ii) and Assumption 4.13, the inequality (4.39) is a straightforward consequence
of the inequality (4.31). �

The next theorem provides bounds in terms of α and g for a sequence of functions
defined by a general recursive equation and for the functions L f , Hr and Lg.

Theorem 4.29 Define the sequence (qαm(x))m∈N by

qα0 (x) = 0,

qαm+1(x) = Lα f (x, um
φ (x)) + Hαr(x, um

φ (x)) + Gαqαm(x, um
φ (x)), (4.40)

where x ∈ E, (um)m∈N ∈ SU, and α > 0.
Then the following assertions hold:

(i) For every x ∈ E, m ∈ N and α ∈ [0, δ), we have that

qαm(x) ≤ M

c + α
g(x) + Mb

cα
. (4.41)

(ii) For every x ∈ E, u ∈ SU,

0 ≤ L f (x, uφ(x)) + Hr(x, uφ(x)) ≤ M(1 + bKλ)

c
g(x), (4.42)

0 ≤ Lg(x, uφ(x)) ≤ (1 + bKλ)

c
g(x). (4.43)

Proof Let us prove (4.41) by induction. For m = 0, it is immediate, since qα0 = 0.
Suppose it holds for m. Combining (4.40) and (4.41), we have

qαm+1(x) ≤Lα f (x, um
φ (x)) + Hαr(x, um

φ (x)) + M

c + α
Gαg(x, um

φ (x))

+ Mb

cα
Gα1(x, um

φ (x)). (4.44)

Moreover, from Eqs. (4.38) and (4.39), we obtain that

Gαg(x, um
φ (x)) ≤g(x) + bLα(x, um

φ (x)) − (c + α)Lαg(x, um
φ (x))

− Hαr(x, um
φ (x)). (4.45)

Substituting (4.45) into (4.44), we get
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qαm+1(x) ≤ Lα( f − Mg)(x, um
φ (x)) + Hα(r − M

c + α
r)(x, um

φ (x)) + M

c + α
g(x)

+ Mb
( 1

cα
Gα1(x, um

φ (x)) + 1

c + α
Lα(x, um

φ (x))
)
,

and so by (4.15) and (4.17),

qαm+1(x) ≤ M

c + α
g(x) + Mb

cα

(
Gα1(x, um

φ (x)) + αLα(x, um
φ (x))

)

≤ M

c + α
g(x) + Mb

cα
, (4.46)

since Gα1(x, um
φ (x)) + αLα(x, um

φ (x)) = 1.
Let us now prove (4.42) and (4.43). For α = 0, it follows from Remark 4.19 (ii)

and Eq. (4.38) that

g(x) + bKλ ≥ g(x) + bL(x, uφ(x)) ≥ cLg(x, uφ(x))

+ Hr(x, uφ(x)) + Gg(x, uφ(x)), (4.47)

proving equation (4.43), since g ≥ 1 and r ≥ 0. Combining Eqs. (4.15), (4.17) and
(4.47), we get (4.42), proving the last part of the result. �

Proof of Theorem 4.20 By Propositions 4.1 and 4.4, it can be shown that there
exists um

φ ∈ SV such that the sequence
(
vαm(x)

)
m∈N

defined by

vαm+1(x) = Lα f (x, um
φ (x)) + Hαr(x, um

φ (x)) + Gαv
α
m(x, um

φ (x))

and vα0 (x) = 0 satisfies vαm+1 ↑ J α
D (x) as m ↑ ∞. Therefore, considering qαm = vαm

in Theorem 4.29 and taking the limit as m ↑ ∞, we get (4.23). �

4.5.2 Proof of Theorem 4.21

The following technical lemma shows that J α
D (x) can be written as an infinite sum of

iterates of the stochastic kernel Gα. Using this result, J α
D (x) is characterized in terms

of the Markov kernel G in Proposition 4.31. This is an important property. Indeed,
by classical hypotheses on G such as the geometric ergodic condition in Assumption
4.14, it will be shown in Theorem 4.21 that the mapping defined by J α

D (·)-J α
D (y)

for y fixed in E belongs to Bg(E).

Lemma 4.30 For each α > 0, there exists uα ∈ SU such that

J α
D (x) =

∞∑
k=0

Gk
α(Lα f + Hαr)(x, uαφ(x)). (4.48)
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Proof As shown in Theorem 4.5, J α
D ∈ M(E) and J α

D(x) = Rα(0,J α
D)(x). More-

over, from Theorem 3.14, there exists uα ∈ SU such that the ordinary feedback
measurable selector uαφ ∈ SV satisfies

J α
D (x) = Rα(0,J α

D )(x) = Tα(0,J α
D )(x)

= Lα f (x, uαφ)(x) + Hαr(x, uαφ) + GαJ α
D(x, uαφ). (4.49)

Iterating (4.49) and recalling that J α
D(y) ≥ 0 for every y yields for every m ∈ N∗

that

J α
D (x) =

m−1∑
k=0

Gk
α(Lα f + Hαr)(x, uαφ(x)) + Gm

αJ α
D(x, uαφ(x))

≥
m−1∑
k=0

Gk
α(Lα f + Hαr)(x, uαφ(x)). (4.50)

For the control Uuαφ
∈ U (see Definition 2.23), it follows from Remark 2.26 that

m−1∑
k=0

Gk
α(Lα f + Hαr)(x, uαφ(x))

= E
Uuα

φ

(x,0)

[ Tm∫

0

e−αs f
(
X (s), u(N (s), Z(s), τ (s))

)
ds

+
Tm∫

0

e−αsr
(
X (s−), u∂(N (s−), Z(s−))

)
d p∗(s)

]
. (4.51)

From Assumption 2.8, Tm → ∞, P
Uuα

φ

(x,0) a.s. Therefore, from the monotone conver-
gence theorem, Eq. (4.51) implies that

∞∑
k=0

Gk
α(Lα f + Hαr)(x, uαφ(x)) = Dα(Uuαφ

, x),

and from Eq. (4.50),

J α
D (x) ≥

∞∑
k=0

Gk
α(Lα f + Hαr)(x, uαφ(x)) = Dα(Uuαφ

, x). (4.52)

But since Uuαφ
∈ U andJ α

D (x) = inf
U∈U

Dα(U, x) it is clear thatDα(Uuαφ
, x) ≥ J α

D (x),

so that (4.52) yields (4.49). �
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The next proposition gives a characterization of J α
D (x) in terms of G.

Proposition 4.31 For α > 0 and uαφ as in Lemma 4.30, define the sequence(
sαm(x)

)
m∈N

for x ∈ E by sα0 (x) = 0 and

sαm+1(x) = Lα f (x, uαφ(x)) + Hαr(x, uαφ(x)) + Gαsαm(x, uαφ(x)).

Then

J α
D (x) = lim

m→∞

m∑
k=0

Gk(L( f − αsαm+1−k) + Hr)(x, uαφ(x)). (4.53)

Proof By definition, for all m ∈ N, sαm ∈ M(E) and

sαm+1(x) =
m∑

k=0

Gk
α(Lα f + Hαr)(x, uαφ(x)),

and clearly from Lemma 4.30, we have that sαm ↑ J α
D as m ↑ ∞. Applying Lemma

3.16, it can be shown that for all x ∈ E and t ∈ [0, t∗(x)),

sαm+1(x) =
t∫

0

e
−αs−

s∫
0
λ(φ(x,θ),uα(φ(x,θ)))dθ[

f (φ(x, s), uα(φ(x, s)))

+ λ(φ(x, s), uα(φ(x, s)))Qsαm(φ(x, s), uα(φ(x, s)))
]
ds

+ e
−αt−

t∫
0
λ(φ(x,s),uα(φ(x,s)))ds

sαm+1(φ(x, t)). (4.54)

Notice that we have sαm ∈ Bg(E) by Theorem 4.20, and so from Assumption 4.14
and Eq. 4.42, we get that

t∗(x)∫

0

e
−αs−

s∫
0
λ(φ(x,θ),uα(φ(x,θ)))dθ[

f (φ(x, s), uα(φ(x, s)))

+ λ(φ(x, s), uα(φ(x, s)))Qsαm(φ(x, s), uα(φ(x, s)))
]
ds < ∞.

Moreover, from Assumption 2.5, we have that e− ∫ t∗(x)
0 λ(φ(x,s),uα(φ(x,s)))ds > 0 for

t∗(x) < ∞, and so from Eq. (4.54), we have sαm ∈ M
ac(E).

Again by Eq. (4.54), it follows that

X sαm+1(x) − [
α+ λ(x, uα(x))

]
sαm+1(x) + f (x, uα(x))

+ λ(x, uα(x))Qsαm(x, uα(x)) = 0. (4.55)
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Consider the case in which t∗(x) < ∞. Since sαm+1 ∈ M
ac(E), this yields that

sαm+1(x) =Lα f (x, uαφ(x))

+ e
−αt∗(x)−

t∗(x)∫
0

λ(φ(x,s),uα(φ(x,s)))ds
sαm+1(φ(x, t∗(x)))

+
t∗(x)∫

0

e
−αs−

s∫
0
λ(φ(x,θ),uα(φ(x,θ)))dθ

×

λ(φ(x, s), uα(φ(x, s)))Qsαm(φ(x, s), uα(φ(x, s)))ds. (4.56)

From Assumption 2.5, we have that e− ∫ t∗(x)
0 λ(φ(x,s),uα(φ(x,s)))ds > 0. Therefore,

combining the definition of sαm(x) and Eq. (4.56), we obtain

sαm+1(φ(x, t∗(x))) = Qsαm(φ(x, t∗(x)), u(φ(x, t∗(x))))

+ r(φ(x, t∗(x)), u(φ(x, t∗(x)))). (4.57)

Notice that f (., uα(.)) − αsαm+1(.) ∈ Bg(E), and so from Eq. (4.43), we have that
L( f − αsαm+1)(x, uαφ(x)) is finite. Consequently, by Proposition 4.27, we get from
(4.55), (4.57) that

sαm+1(x) = L( f − αsαm+1)(x, uαφ(x)) + Hr(x, uαφ(x)) + Gsαm(x, uαφ(x)). (4.58)

Iteration of (4.58) over m yields (4.53). �

Before showing that the mapping defined by J α
D (·)-J α

D (y) for y fixed in E belongs
to Bg(E), we need to prove that the mapping L( f −αsαm+1)(., uαφ(.))+ Hr(., uαφ(.))

belongs to Bg(E).

Lemma 4.32 Define M ′ = M(1+ b
c )(1+bKλ)

c . For α > 0, uαφ as in Lemma 4.30, sαm as
in Lemma 4.31, and x ∈ E, we have that

|L( f − αsαm+1)(x, uαφ(x)) + Hr(x, uαφ(x))| ≤ M ′g(x). (4.59)

Proof Notice that

−αLsαm+1(x, uαφ(x)) ≤ L( f − αsαm+1)(x, uαφ(x)) + Hr(x, uαφ(x))

≤ L f (x, uαφ(x)) + Hr(x, uαφ(x)). (4.60)

Considering qαm = sαm in Theorem 4.29 and recalling that g ≥ 1, we get from
Eq. (4.41) that

sαm(x) ≤ M

c + α
g(x) + Mb

cα
≤ M(1 + b

c )

α
g(x). (4.61)
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Therefore, from (4.61), we have that αsαm ≤ M(1 + b
c )g, and thus from (4.43),

αLsαm+1(x, uαφ(x)) ≤ M(1 + b
c )(1 + bKλ)

c
g(x). (4.62)

By combining Eqs. (4.42), (4.60), and (4.62), the result follows. �

Proof of Theorem 4.21 From Assumption 4.14 and Lemma 4.32, we get that for
all x ∈ E ,

|Gk(L( f − αsαm+1−k) + Hr)(x, uαφ(x)) − πuα
(
L( f − αsαm+1−k) + Hr

)|
≤ aM ′κkg(x).

Consequently,

∣∣∣∣
m∑

k=0

Gk(L( f − αsαm+1−k) + Hr)(x, uαφ(x))

− Gk(L( f − αsαm+1−k) + Hr)(y, uαφ(y))

∣∣∣∣

≤ aM ′(g(x) + g(y))
1 − κm+1

1 − κ
.

Taking the limit as m ↑ ∞ in the previous equation and recalling that g ≥ 1, we get
the desired result from Proposition 4.31. �

4.5.3 Existence of an Ordinary Feedback Measurable Selector

The main goal of this subsection is to show that for every function h ∈ Bg(E), the
one-stage optimization operators Rα(ρ, h)(x) and Tα(ρ, h)(x) are equal and that
there exists an ordinary feedback measurable selector for the one-stage optimization
problems associated with these operators (see Theorem 4.35). This theorem is an
extension of a result obtained in Chap. 3, Theorem 3.14, to the case in which the
functions under consideration are not necessarily bounded below, as was supposed
in Chap. 3, but instead, belong to Bg(E). The next two technical lemmas will be used
to derive Theorem 4.35.

Lemma 4.33 Let α ≥ 0, ρ ∈ R+, h ∈ Bg(E), and set w = Rα(ρ, h). Then there
exists Θ̂ ∈ SVr such that

w(x) = −ρLα(x, Θ̂(x)) + Lα f (x, Θ̂(x)) + Hαr(x, Θ̂(x)) + Gαh(x, Θ̂(x)).

(4.63)
Moreover, w ∈ M

ac(E), and for all x ∈ E and t ∈ [0, t∗(x)), we have
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w(x) = inf
μ∈Vr (x)

{ t∫

0

e−αs−Λμ(x,s)
[
−ρ+ f (φ(x, s),μ(s))

+ λQh(φ(x, s),μ(s))

]
ds + e−αt−Λμ(x,t)w(φ(x, t))

}
(4.64)

=
t∫

0

e−αs−Λμ̂(x)(x,s)
[
−ρ+ f (φ(x, s), μ̂(x, s)) + λQh(φ(x, s), μ̂(x, s))

]
ds

+ e−αt−Λμ̂(x)(x,t)w(φ(x, t)), (4.65)

where Θ̂(x) = (μ̂(x), μ̂∂(x)).

Proof For every h ∈ Bg(E), we have that h = h+ − h− with 0 ≤ h+ ≤ ‖h‖gg,
0 ≤ h− ≤ ‖h‖gg. From Corollary 4.28, we have that Gαg(x,Θ) < ∞, and therefore
Gαh+(x,Θ) < ∞, Gαh−(x,Θ) < ∞, and we can conclude that Gαh(x,Θ) =
Gαh+(x,Θ)−Gαh−(x,Θ) takes values in R. From Proposition 2.17, it follows that
Gαh+(x,Θ) and Gαh−(x,Θ) are measurable, and thus Gαh(x,Θ) is measurable.
From Corollary 4.28 again, the mapping V defined on K by

V (x,Θ) = −ρLα(x,Θ) + Lα f (x,Θ) + Hαr(x,Θ) + Gαh(x,Θ)

takes values in R, and from Proposition 2.17, it is measurable. Furthermore, com-
bining Corollary 3.11 and Proposition 4.16, it follows that for all x ∈ E , V (x, .)

is lower semicontinuous on V
r (x). Recalling that V

r (x) is a compact subset of V
r

and using Proposition D.5 in [49], we obtain that there exists Θ̂ ∈ SVr such that
Eq. (4.63) is satisfied. The rest of the proof is similar to the proof of Proposition 3.2
and it is therefore omitted. �

Lemma 4.34 Let α ≥ 0, ρ ∈ R+, and h ∈ Bg(E). Then for all x ∈ E,

Rα(ρ, h)(x) ≥ −(ρ+ b‖h‖g)Kλ − ‖h‖gg(x), (4.66)

and for all x ∈ E such that t∗(x) = ∞ and Θ = (μ,μ∂) ∈ V
r (x),

− ρLα(x,Θ) + Lα f (x,Θ) + Hαr(x,Θ) + Gαh(x,Θ)

= lim
t→+∞

t∫

0

e−αs−Λμ(x,s)
[
−ρ+ f (φ(x, s),μ(s)) + λQh(φ(x, s),μ(s))

]
ds.

(4.67)

Proof From Eq. (4.39), we have

Gαg(x,Θ) ≤ bKλ + g(x), (4.68)
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for all x ∈ E and Θ ∈ V
r . Consequently, by Eq. (4.63) and the fact that f ≥ 0 and

r ≥ 0, it follows that

Rα(ρ, h)(x) ≥ −ρLα(x, Θ̂(x))+ Gαh(x, Θ̂(x)) ≥ −(ρ+ b‖h‖g)Kλ −‖h‖gg(x),

establishing the first part of the result.
From Assumptions 2.5 and 3.9, we have that

lim
t→+∞

t∫

0

e−αs−Λμ(x,s)[−ρ+ f (φ(x, s),μ(s))
]
ds

exists in R, and from Assumption 4.15,

lim
t→+∞

t∫

0

e−αs−Λμ(x,s)λQg(φ(x, s),μ(s))ds

exists in R. By the fact that h ∈ Bg(E), it follows that the limit on the right-hand
side of Eq. (4.67) exists in R. Finally, from Remark 4.19 (i), we get the last part of
the result. �

The next result shows that for every function h ∈ Bg(E), the one-stage optimization
operators Rα(ρ, h)(x) and Tα(ρ, h)(x) are equal and that there exists an ordinary
feedback measurable selector for the one-stage optimization problems associated
with these operators.

Theorem 4.35 Let α ≥ 0, ρ ∈ R+, h ∈ Bg(E), and set

w = Rα(ρ, h). (4.69)

Then w ∈ M
ac(E), and the ordinary feedback measurable selector ûφ(w, h) ∈ SV

(see item (D2) of Remark 4.17) satisfies the one-stage optimization problems

Rα(ρ, h)(x) = Tα(ρ, h)(x)

= −ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+ Hαr(x, ûφ(w, h)(x)) + Gαh(x, ûφ(w, h)(x)).

Proof According to Lemma 4.33, there exists Θ̂ ∈ SVr such that for all x ∈ E and
t ∈ [0, t∗(x)), we have
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e−αt−Λμ̂(x)(x,t)w(φ(x, t)) − w(x) =
t∫

0

e−αs−Λμ̂(x)(x,s)

× [
ρ− f (φ(x, s), μ̂(x, s)) − λQh(φ(x, s), μ̂(x, s))

]
ds, (4.70)

where Θ̂(x) = (μ̂(x), μ̂∂(x)). Since w ∈ M
ac(E), we obtain from Eq. (4.70) that

− Xw(φ(x, t)) + αw(φ(x, t)) ≥
inf

μ∈P
(
U(φ(x,t))

)
{

f (φ(x, t),μ) − λ(φ(x, t),μ)w(φ(x, t)) + λQh(φ(x, t),μ)
}

− ρ

η − a.s. on [0, t∗(x)). However, notice that

inf
μ∈P

(
U(φ(x,t))

)
{

f (φ(x, t),μ) − λ(φ(x, t),μ)w(φ(x, t)) + λQh(φ(x, t),μ)
}

− ρ

= inf
a∈U(φ(x,t))

{
f (φ(x, t), a) − λ(φ(x, t), a)

[
w(φ(x, t)) − Qh(φ(x, t), a)

]} − ρ.

Consequently, by considering the measurable selector �u ∈ SU given by �u = û(w, h)

(see Remark 4.17, (D1)), we have that

−Xw(φ(x, t))+αw(φ(x, t)) = −ρ+ f (φ(x, t),�u(φ(x, t)))

− λ(φ(x, t),�u(φ(x, t)))
[
w(φ(x, t)) − Qh(φ(x, t),�u(φ(x, t)))

]
,

η − a.s. on [0, t∗(x)). Otherwise, this would lead to a contradiction with Eq. (4.64)
as in the proof of Theorem 3.14. Consequently, for all t ∈ [0, t∗(x)), it follows that

w(x) = e−(αt+Λ(x,t))w(φ(x, t)) +
t∫

0

e−(αs+Λ(x,s))
[

f (φ(x, s),�u(φ(x, s)))

+ λ(φ(x, s),�u(φ(x, s)))Qh(φ(x, s),�u(φ(x, s))) − ρ
]
ds, (4.71)

where we set Λ(x, t) =
∫ t

0
λ(φ(x, s),�u(φ(x, s)))ds.

First consider the case in which t∗(x) < ∞. Following similar steps as in the proof
of Theorem 3.14, we obtain, by taking the limit as t tends to t∗(x) in the previous
equation, that the ordinary feedback measurable selector ûφ(w, h) ∈ SV (see item
(D2) of Remark 4.17) satisfies
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w(x) = e−(αt∗(x)+Λ(x,t∗(x)))w(φ(x, t∗(x)))

− ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+
t∗(x)∫

0

e−(αs+Λ(x,s))λ(φ(x, s),�u(φ(x, s)))Qh(φ(x, s),�u(φ(x, s)))ds.

(4.72)

Define the control Θ(x) by (μ̂(x),μ) for μ ∈ P(
U(φ(x, t∗(x)))

)
. Therefore, we

have by definition of w (see Eq. (4.69)) that

w(x) ≤ −ρLα(x, Θ̂(x)) + Lα f (x, Θ̂(x))

+
t∗(x)∫

0

e−αs−Λμ̂(x)(x,s)λQh(φ(x, s), μ̂(x, s))ds

+ e−αt∗(x)−Λμ̂(x)(x,t∗(x))
[
Qh(φ(x, t∗(x)),μ) + r(φ(x, t∗(x)),μ)

]
.

(4.73)

From Eq. (4.65) and since w ∈ M
ac(E), we have that

w(x) = −ρLα(x, Θ̂(x)) + Lα f (x, Θ̂(x))

+
t∗(x)∫

0

e−αs−Λμ̂(x)(x,s)λQh(φ(x, s), μ̂(x, s))ds

+ e−αt∗(x)−Λμ̂(x)(x,t∗(x))w(φ(x, t∗(x))). (4.74)

By Assumption 2.5, we have that e−Λμ̂(x)(x,t∗(x)) > 0. Therefore, combining
Eqs. (4.73) and (4.74), we obtain that for all x ∈ E and μ ∈ P(

U(φ(x, t∗(x)))
)
,

w(φ(x, t∗(x))) ≤ Qh(φ(x, t∗(x)),μ) + r(φ(x, t∗(x)),μ).

Clearly, using Eq. (4.63), it can be claimed that the previous inequality becomes an
equality for μ = μ̂∂(x), implying that

w(φ(x, t∗(x))) = inf
μ∈P(U(φ(x,t∗(x))))

{r(φ(x, t∗(x)),μ) + Qh(φ(x, t∗(x)),μ)}
= inf

a∈U(φ(x,t∗(x)))
{r(φ(x, t∗(x)), a) + Qh(φ(x, t∗(x)), a)}.

Consequently, we have that

w(φ(x, t∗(x))) = r(φ(x, t∗(x)),�u(φ(x, t∗(x))))+ Qh(φ(x, t∗(x)),�u(φ(x, t∗(x)))).

(4.75)
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Combining Eqs. (4.69), (4.72), and (4.75), it follows that

Rα(ρ, h)(x) = − ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+ Hαr(x, ûφ(w, h)(x)) + Gαh(x, ûφ(w, h)(x)).

Consider now the case in which t∗(x) = ∞. From Eqs. (4.71) and (4.66), we obtain
that

w(x) ≥ −e−(αt+Λ(x,t))[(ρ+ b‖h‖g)Kλ + ‖h‖gg(φ(x, t))
]

+
t∫

0

e−(αs+Λ(x,s))
[

f (φ(x, s),�u(φ(x, s)))

+ λ(φ(x, s),�u(φ(x, s)))Qh(φ(x, s),�u(φ(x, s))) − ρ
]
ds. (4.76)

However, from item (b) of Assumption 2.5 and Assumption 4.18 (i) and (ii), we
obtain that

lim
t→+∞ e−(αt+Λ(x,t))[(ρ+ b‖h‖g)Kλ + ‖h‖gg(φ(x, t))

] = 0. (4.77)

Consequently, combining Eqs. (4.67), (4.76), and (4.77), we see that the ordinary
feedback measurable selector ûφ(w, h) ∈ SV satisfies

w(x) ≥ − ρ+ Lα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x)) + Hαr(x, ûφ(w, h)(x))

+ Gαh(x, ûφ(w, h)(x)).

From Eq. (4.69), it follows that the inequality in the previous equation is in fact an
equality.

Finally, in every case,

Rα(ρ, h)(x) = − ρLα(x, ûφ(w, h)(x)) + Lα f (x, ûφ(w, h)(x))

+ Hαr(x, ûφ(w, h)(x)) + Gαh(x, ûφ(w, h)(x)).

Since V(x) ⊂ V
r (x), it follows that Rα(ρ, h)(x) ≤ Tα(ρ, h)(x). However, we have

shown that ûφ(w, h) ∈ SV, implying Rα(ρ, h)(x) = Tα(ρ, h)(x), which gives the
desired result. �
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Chapter 5
The Policy Iteration Algorithm for PDMPs

5.1 Outline of the Chapter

The main goal of this chapter is to apply the so-called policy iteration algorithm
(PIA) for the long run average continuous control problem of PDMPs. The first
step in this direction is to derive some important properties for a pseudo-Poisson
equation associated with the problem. The next step is to show that the convergence
of the PIA to a solution satisfying the optimality equation holds and that this optimal
solution yields an optimal control strategy for the average control problem for the
continuous-time PDMP in feedback form. To derive this result, we need to assume
the same integrodifferential inequalities related to the so-called expected growth
condition and geometric convergence of the postjump location kernel associated
with the PDMP as seen in Sect. 4.13 (see Assumptions 4.13 and 4.14). Moreover,
we need to assume a Lyapunov-like inequality condition (Assumption 5.2) and a
convergence condition on the relative difference of the α-discount value functions
(see Assumption 5.8). Section 5.2 introduces the assumptions that will be needed
later on in this chapter and derives some important properties for a pseudo-Poisson
equation associated with the problem. In Sect. 5.3, it is shown that the convergence
of the PIA to a solution satisfying the optimality equation holds. Moreover, it is
shown that this optimal solution yields an optimal control strategy for the average
continuous control problem of a PDMP in feedback form.

5.2 Assumptions and a Pseudo-Poisson Equation

The two main results of this chapter, to be presented in Sect. 5.3 (Theorems 5.9
and 5.14), will rely on the assumptions of Chap. 2, Assumptions 3.5, 3.8, and 3.9
considered in Sect. 3.3, and Assumptions 4.13, 4.14, 4.15, and 4.18 considered in
Sect. 4.4.1. Moreover, we assume the following:

O. L. V. Costa and F. Dufour, Continuous Average Control of Piecewise 79
Deterministic Markov Processes, SpringerBriefs in Mathematics,
DOI: 10.1007/978-1-4614-6983-4_5, © Oswaldo Luiz do Valle Costa, François Dufour 2013



80 5 The Policy Iteration Algorithm for PDMPs

Assumption 5.1 For all y ∈ �E, the restriction of f (y, .) to U(y) is continuous and
for all z ∈ ∂E, the restriction of r(z, .) to U(z) is continuous.

Notice that this assumption is a strengthened version of Assumptions 3.6 and 3.7. The
following hypothesis is given by a Lyapunov-like inequality yielding an expected
growth condition on the function g with respect to G (for further comments on this
kind of assumption, see, for example, Sect. 10.2 in [51, p. 121]).

Assumption 5.2 Let g be as in Assumption 4.13. There exist 0 < kg < 1 and Kg ≥ 0
such that for all x ∈ E, Γ ∈ V(x),

Gg(x, Γ ) ≤ kgg(x) + Kg. (5.1)

We introduce in Definition 5.3 a pseudo-Poisson equation associated with the
stochastic kernel G. Proposition 5.5 shows that there exists a solution for such an
equation. Moreover, it is proved in Proposition 5.6 that this equation has the important
characteristic of ensuring the policy improvement property in the set SU.

Definition 5.3 Consider u ∈ SU. A pair (ρ, h) ∈ R × Bg(E) is said to satisfy the
pseudo-Poisson equation associated with u if

h(x) = −ρL(x, uφ(x)) + L f (x, uφ(x)) + Hr(x, uφ(x)) + Gh(x, uφ(x)). (5.2)

Remark 5.4 This equation is clearly different from a classical Poisson equation
encountered in the literature on discrete-time Markov control processes; see, for
example, Eq. (2.13) in [50]. In particular, the constant ρ, which will be shown to be
the optimal cost, appears here as a multiplicative factor of the mapping L(x, uφ(x)),
and the costs f and r appear through the terms L f (x, uφ(x)) and Hr(x, uφ(x)).
However, it will be shown in the following propositions that this pseudo-Poisson
equation still has the good properties that we might expect it to satisfy in order to
guarantee the convergence of the policy iteration algorithm.

Proposition 5.5 For arbitrary u ∈ SU, the following assertions hold:

(a) Set Du =
∫

E
L(y, uφ(y))νu(dy). Then 0 < Du ≤ Kλ.

(b) If v ∈ Bg(E) and b ∈ R are such that for all x ∈ E,

v(x) = bL(x, uφ(x)) + Gv(x, uφ(x)), (5.3)

then b = 0, and for some c0 ∈ R, v(x) = c0 for all x ∈ E.
(c) Define (ρu, hu) by

ρu =

∫

E

[
L f (y, uφ(y)) + Hr(y, uφ(y))

]
νu(dy)

Du
≥ 0, (5.4)
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hu(x) =
∞∑

k=0

Gkwu(x, uφ(x)), (5.5)

where the mapping wu in M(E) is given by

wu(x) = L f (x, uφ(x)) + Hr(x, uφ(x)) − ρuL(x, uφ(x))

for x ∈ E. Then (ρu, hu) ∈ R × Bg(E), and it is the unique solution to the
Poisson equation (5.2) associated with u that satisfies

νu(hu) = 0. (5.6)

Moreover,

‖hu‖g ≤ aMu

1 − κ
, with Mu := max

{
ρu Kλ,

M(1 + bKλ)

c

}
. (5.7)

Proof Item (a) is easy to obtain. Indeed, from Remark 4.19 (ii), we get that
L(x, uφ(x)) ≤ Kλ, and from Assumption 2.5, it follows that 0 < L(x, uφ(x))

for every x ∈ E .
For (b), let us suppose that b ≥ 0. Since 0 < L(x, uφ(x)) for all x ∈ E , it

follows from (5.3) that v(x) ≥ Gv(x, uφ(x)) for all x ∈ E , and from Lemma 4.1
(a) in [50], v(x) = c0 νu-a.s. for some c0 ∈ R. Returning to (5.3) and integrating
with respect to νu , we have that 0 = bDu , and so b = 0. Therefore, from (5.3),
v(x) = Gv(x, uφ(x)), that is, v is a νu-harmonic function, and therefore v(x) = c0
for all x ∈ E (see Lemma 4.1 (a) in [50]). If b < 0, then from (5.3), it follows that
v(x) ≤ Gv(x, uφ(x)) for all x ∈ E , and from Lemma 4.1 (a) in [50], v(x) = c0
νu-a.s. for some c0 ∈ R. Returning to (5.3) and integrating with respect to νu , we
have that 0 = bDu , and since Du > 0, we have a contradiction.
For (c), we first note that from Theorem 4.29,

0 ≤ L f (x, uφ(x)) + Hr(x, uφ(x)) ≤ M(1 + bKλ)

c
g(x),

so that clearly,

∫

E

[
L f (y, uφ(y)) + Hr(y, uφ(y))

]
νu(dy) < ∞,

and thus ρu is well defined by item (a). Moreover, 0 ≤ ρuL(x, uφ(x)) ≤ ρu Kλ, and
thus from Eq. 4.42, we have wu ∈ Bg(E) with ‖wu‖g ≤ Mu , where Mu is defined
in (5.7). We also have from (5.4) that
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∫

E
wu(y)νu(dy) =

∫

E

[
L f (y, uφ(y)) + Hr(y, uφ(y))

]
νu(dy) − ρu Du

= 0, (5.8)

and thus from (4.18),

|Gkwu(x, uφ(x))| = |Gkwu(x, uφ(x)) − νu(wu)| ≤ aMuκ
kg(x), (5.9)

for all x ∈ E and k ∈ N. From (5.5) and (5.9), it is clear that

|hu(x)| ≤ aMu

1 − κ
g(x), (5.10)

showing that hu is in Bg(E) and satisfies (5.6) and (5.7). We also have from (5.5)
that

hu(x) − wu(x) =
∞∑

k=1

Gkwu(x, uφ(x)) = Guhu(x, uφ(x)),

showing that (ρu, hu) ∈ R × Bg(E) satisfies (5.2).
If (ρi , hi ) ∈ R × Bg(E), i = 1, 2, are two solutions to the Poisson equation

(5.2), then setting v = h1 − h2 and b = ρ2 − ρ1, we get that (5.3) is satisfied, and
uniqueness follows from (b). �

From now on, (ρu, hu) will denote the unique solution of the pseudo-Poisson equation
(5.2) that satisfies νu(hu) = 0.

The properties given in the following proposition are important for showing the
convergence of the PIA.

Proposition 5.6 Consider u ∈ SU. Then there exists û ∈ SU such that

R(ρu, hu)(x) = −ρuL(x, ûφ(x)) + L f (x, ûφ(x)) + Hr(x, ûφ(x))

+Ghu(x, ûφ(x)), (5.11)

and ρ û ≤ ρu.

Proof From Theorem 4.35, we have that there exists û ∈ SU such that (5.11) holds.
Clearly, we have for every x ∈ E that hu(x) ≥ R(ρu, hu)(x), that is, from (5.11),

hu(x) ≥ −ρuL(x, ûφ(x)) + L f (x, ûφ(x)) + Hr(x, ûφ(x)) + Ghu(x, ûφ(x)).

Integrating the previous equation with respect to ν û and recalling the definition
of Du (see item (a) in Proposition 5.5) and

∫

E
Ghu(y, ûφ(y))ν û(dy) =

∫

E
hu(y)ν û(dy),
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we get that

∫

E
hu(y)ν û(dy) ≥ −ρu Dû + ρ û Dû +

∫

E
hu(y)ν û(dy),

that is, ρu Dû ≥ ρ û Dû , and since Dû > 0, we get that ρu ≥ ρ û . �

5.3 The Policy Iteration Algorithm

Having studied the pseudo-Poisson equation defined in Sect. 5.2, we are now in a
position to analyze the policy iteration algorithm. In the first part of this section, it is
shown that the convergence of the policy iteration algorithm holds under a classical
hypothesis (see, for example, assumption (H1) of Theorem 4.3 in [50]). Roughly
speaking, this means that if the PIA computes a solution (ρn, hn) at the nth step,
then (ρn, hn) → (ρ, h) and (ρ, h) satisfies the optimality equation (5.15). However,
it is far from obvious that ρ is actually the optimal cost for the long-run average
cost problem of the PDMP {X (t)} and that there exists an optimal control. In the
second part of this section, these two issues are studied. In particular, we show that
ρ = inf

U ∈U
A(U, x) and that the measurable selector ûφ of the optimality equation

(5.15) provides an optimal control strategy of the feedback form U ûφ for the process
{X (t)}: inf

U ∈U
A(U, x) = A(U ûφ , x).

The policy iteration algorithm performs the following steps:

S1: Initialize with an arbitrary u0 ∈ SU, and set n = 0.
S2: Policy Evaluation—At the nth iteration, consider un ∈ SU and evaluate

(ρn, hn) ∈ R × Bg(E), the (unique) solution of the Poisson equations (5.2),
(5.6) given by (5.4) and (5.5), replacing u by un . Thus we have that

hn(x) = −ρnL(x, (un)φ(x)) + L f (x, (un)φ(x)) + Hr(x, (un)φ(x))

+ Ghn(x, (un)φ(x)), (5.12)

with νun (hn) = 0.
S3: Policy Improvement—Determine un+1 ∈ SU such that

R(ρn, hn)(x) = −ρnL(x, (un+1)φ(x)) + L f (x, (un+1)φ(x))

+ Hr(x, (un+1)φ(x)) + Ghn(x, (un+1)φ(x)). (5.13)

Notice that from Propositions 5.5 and 5.6, the sequences (ρn, hn) ∈ R+ × Bg(E)

and un ∈ SU are well defined and moreover, ρn ≥ ρn+1 ≥ 0. We set ρ = limn→∞ ρn .



84 5 The Policy Iteration Algorithm for PDMPs

5.3.1 Convergence of the PIA

First, we present in the next result some convergence properties of G, H , L , and L.

Proposition 5.7 Consider h ∈ Bg(E) and a sequence of functions
(
hk

)
k∈N

∈ Bg(E)

such that for all x ∈ E, lim
k→∞ hk(x) = h(x) and there exists Kh satisfying |hk(x)| ≤

Khg(x) for all k and all x ∈ E. For x ∈ E, consider Θn = (
μn,μ∂,n

) ∈ V
r (x) and

Θ = (
μ,μ∂

) ∈ V
r (x) such that Θn → Θ . We have the following results:

(a) lim
n→∞ L(x,Θn) = L(x,Θ), (b) lim

n→∞ L f (x,Θn) = L f (x,Θ),

(c) lim
n→∞ Hr(x,Θn) = Hr(x,Θ), (d) lim

n→∞ Ghn(x,Θn) = Gh(x,Θ).

Proof These results can be easily obtained by similar arguments as in Propositions
3.10 and 4.16. �

We shall consider now the following assumption.

Assumption 5.8 There exists h ∈ M(E) such that for each x ∈ E,

lim
n→∞ hn(x) = h(x). (5.14)

The following theorem is the first main result of this chapter. It shows the convergence
of the PIA and ensures the existence of a measurable selector for the optimality
equation.

Theorem 5.9 We have that (ρ, h) ∈ R × Bg(E) satisfies the optimality equation

h(x) = R(ρ, h)(x). (5.15)

Moreover, there exists û ∈ SU such that

h(x) = −ρL(x, ûφ(x)) + L f (x, ûφ(x)) + Hr(x, ûφ(x)) + Gh(x, ûφ(x)). (5.16)

Proof From (5.7) and recalling that ρn ≥ ρn+1, we get that for all n,

‖hn‖g ≤ M̃ := aMu0

1 − κ
, Mu0 := max

{
ρ0 Kλ,

M(1 + bKλ)

c

}
. (5.17)

From (5.17), we get that h ∈ Bg(E), where h is as in (5.14). Consider un ∈ SU, the
measurable selector associated with (ρn, hn) as in (5.12), that is,

hn(x) = −ρnL(x, (un)φ(x)) + L f (x, (un)φ(x)) + Hr(x, (un)φ(x))

+ Ghn(x, (un)φ(x)). (5.18)
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We have that for each x ∈ E , Vr (x) is compact and {(un)φ} is a sequence in SVr . Then
according to Proposition 8.3 in [50] (see also [61]), there exists Θ ∈ SVr such that
Θ(x) ∈ V

r (x) is an accumulation point of {(un)φ(x)} for each x ∈ E . Therefore, for
every x ∈ E , there exists a subsequence ni = ni (x) such that limi→∞(uni )φ(x) =
Θ(x). We fix now x ∈ E , and we consider the subsequence ni = ni (x) as above.
From Proposition 5.7 and taking the limit in (5.18) for ni as i → ∞, we have that

h(x) = −ρL(x,Θ(x)) + L f (x,Θ(x)) + Hr(x,Θ(x)) + Gh(x,Θ(x)), (5.19)

and thus clearly h(x) ≥ R(ρ, h)(x). On the other hand, from (5.12) and (5.13), we
have that

R(ρn−1, hn−1)(x) + (ρn−1 − ρn)L(x, (un)φ(x)) + G(hn − hn−1)(x, (un)φ(x))

= − ρnL(x, (un)φ(x)) + L f (x, (un)φ(x)) + Hr(x, (un)φ(x))

+ Ghn(x, (un)φ(x)) = hn(x). (5.20)

From (5.20), it is immediate that for every Θ̃ ∈ SVr ,

hn(x) ≤ −ρn−1L(x, Θ̃(x)) + L f (x, Θ̃(x)) + Hr(x, Θ̃(x)) + Ghn−1(x, Θ̃(x))

+ (ρn−1 − ρn)L(x, (un)φ(x)) + G(hn − hn−1)(x, (un)φ(x)). (5.21)

Fix x and ni = ni (x) as before, and notice that limi→∞(hni (y)− hni −1(y)) = 0 for
every y ∈ E and that from (5.17), ‖hni − hni −1‖g ≤ M̃ . Applying Proposition 5.7
to Eq. (5.21), replacing n by ni and taking the limit as i → ∞, yields that

h(x) ≤ −ρL(x, Θ̃(x)) + L f (x, Θ̃(x)) + Hr(x, Θ̃(x)) + Gh(x, Θ̃(x)), (5.22)

and from (5.22), we get that h(x) ≤ R(ρ, h)(x). Thus we have (5.15). �

Remark 5.10 A possible way of getting Assumption 5.8 would be to show that
under some conditions, the sequence of functions {hn}, or a modification thereof,
is monotone or “nearly monotone” (see [55], p. 1667), so that {hn} itself satisfies
(5.14). This approach was adopted for MDPs in [55] and [59], and it is possible that
in some cases, similar arguments could be applied to PDMP.

5.3.2 Optimality of the PIA

Let us recall that the PDMP {X̂U (t)} and its associated components X (t), Z(t),
N (t), τ (t) were introduced in Sect. 2.2 (see in particular Eq. (2.2)). We need several
auxiliary results (Propositions 5.11, 5.12 and Corollary 5.13) to show that the PIA
actually provides an optimal solution for the average cost problem of the PDMP
{X (t)}. With a slight abuse of notation, the definition of a shifted control strategy
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(see Definition 2.14) will be extended to every Θ = (
u, u∂

) ∈ V by setting
[
Θ

]
t =(

u(. + t), u∂
)

for s ∈ R+ and every Θ = (
u, u∂

) ∈ V.

Proposition 5.11 For ŷ = (y, z, s, n) ∈ Ê and U = (u, u∂) ∈ M(N × E ×
R+; U) × M(N × E; U), define Γ U (n, z) = (

u(n, z, .), u∂(n, z)
) ∈ V. For ε ∈

(0, c), introduce

ŵ U (ŷ) = �c L−ε f (y,
[
Γ U (n, z)

]
s) + H−ε�r (y,

[
Γ U (n, z)

]
s) + G−εg(y,

[
Γ U (n, z)

]
s)

− bL−ε(y,
[
Γ U (n, z)

]
s), (5.23)

where �c = c − ε and L−ε(y,
[
Γ U (n, z)

]
s) is finite. Then for all x ∈ E, U ∈ U , we

have

EU
(x,0)

[
ŵ U (

X̂U (t)
)] ≤ e−εtg(x) + b

ε

[
1 − e−εt ]. (5.24)

Proof First for notational convenience, we introduce the following definition:
f̂ U (ŷ) = f (y, u(n, z, s)), r̂U (ŷ) = �r(y, u∂(n, z)), ĝ(ŷ) = g(y), and �̂U (y, t) =
�U (x, n, t), for ŷ = (y, z, s, n) ∈ Ê , U = (u, u∂) ∈ M(N× E ×R+; U)×M(N×
E; U), and t ∈ R+.

It can be shown that ŵ U ∈ M(Ê). Indeed, for U = (u, u∂) ∈ M(N ×
E × R+; U) × M(N × E; U), the V-valued mapping defined on Ê by ŷ =
(y, z, s, n) → [

Γ U (n, z)
]

s is measurable, and so by Proposition 2.17, we have
the desired measurability property of ŵ U . Consider ŷ = (y, z, s, n) ∈ Ê and
U = (u, u∂) ∈ M(N× E ×R+; U)×M(N× E; U), satisfying

[
Γ U (n, z)

]
s ∈ V(y).

Notice that L−ε(y,
[
Γ U (n, z)

]
s) is finite, since from Remark 4.19 (ii),

0 < L−ε(y,
[
Γ U (n, z)

]
s) ≤ L−c(y,

[
Γ U (n, z)

]
s) ≤ Kλ. (5.25)

Moreover, we have by similar arguments as in Corollary 4.28 that

�c L−ε f (y,
[
Γ U (n, z)

]
s) + H−ε�r(y,

[
Γ U (n, z)

]
s) + G−εg(y,

[
Γ U (n, z)

]
s)

− bL−ε(y,
[
Γ U (n, z)

]
s) ≤ g(y). (5.26)

From now on, consider U = (u, u∂) ∈ U . For every x̂ = (x, x, 0, k) ∈ Ê ,
we get from Eq. (5.25) that L−ε(x,

[
Γ U (k, x)

]
0) is finite, since

[
Γ U (k, x)

]
0 =

(u(k, x, .), u∂(k, x)) ∈ V(x) and so ŵ U ( x̂ ) is well defined by

ŵ U ( x̂ ) = �c L−ε f (x, Γ U (k, x)) + H−ε�r(y, Γ U (k, x))

+ G−εg(x, Γ U (k, x)) − bL−ε(x, Γ U (k, x))

=
t∗(x)∫

0

eεs−�νk (x,s)
[
−b +�c f (φ(x, s), νk(s))
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+ λ(φ(x, s), νk(s))Qg(φ(x, s), νk(s))

]
ds

+ eεt∗(x)−�νk (x,t∗(x))
[

Qg(φ(x, t∗(x)), u∂(k, x))

+�r(φ(x, t∗(x)), u∂(k, x))
]
, (5.27)

with νk(.) = u(k, x, .). Since for all k ∈ N, x ∈ E , Γ U (k, x) ∈ V(x), it follows
from Eqs. (5.26) and (5.25) that

− bKλ ≤ ŵ U ( x̂ ) ≤ g(x). (5.28)

Moreover, since
[
Γ U (N (t), Z(t))

]
τ (t) ∈ V(X (t)), the inequality (5.25) implies that

0 ≤ L−ε
(
X (t),

[
Γ U (N (t), Z(t))

]
τ (t)

) ≤ Kλ,

and so ŵ U
(
X̂U (t ∧ Tm) ≥ −bKλ

JU
m (t, x̂) := EU

(x,k)

⎡
⎣

t∧Tm∫

0

eεs
[
�c f̂ U (X̂U (s)) − b

]
ds

+
t∧Tm∫

0

eεs r̂U (
X̂U (s−)

)
dp∗(s) + eε(t∧Tm )ŵ U (

X̂U (t ∧ Tm)
))

⎤
⎦ ,

is well defined for every x̂ = (x, x, 0, k) ∈ Ê .
Let us show by induction on m ∈ N that JU

m (t, x̂) ≤ g(x) for all t ∈ R+,
x̂ = (x, x, 0, k) ∈ Ê . Clearly, we have that JU

0 (t, x̂) = ŵ U ( x̂ ). Consequently,
from Eq. (5.28), we have that JU

0 (t, x̂) ≤ g(x) for all t ∈ R+, x̂ = (x, x, 0, k) ∈ Ê .
Now assume that for m ∈ N, we have that JU

m (t, x̂) ≤ g(x) for all t ∈ R+, x̂ =
(x, x, 0, k) ∈ Ê . Following the same arguments as in the proof of Proposition 3.3, it
is easy to show that for t ∈ R+,

JU
m+1(t, x̂) ≤

t∧t∗(x)∫

0

eεs−�νk (x,s)
[
−b +�c f (φ(x, s), νk(s))

+ λ(φ(x, s), νk(s))Qg(φ(x, s), νk(s))

]
ds

+ I{t≥t∗(x)}eεt∗(x)−�νk (x,t∗(x))
[

Qg(φ(x, t∗(x)), u∂(k, x))

+�r(φ(x, t∗(x)), u∂(k, x))
]

+ I{t<t∗(x)}eεt−�νk (x,t)ŵ U (φ̂(x̂, t)).

(5.29)
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Now if t < t∗(x), then by the fact that φ̂(x̂, t) = (
φ(x, t), x, t, k

)
, we get by the

definition of ŵ U (see Eq. (5.23)) that

ŵ U (φ̂(x̂, t)) = �c L−ε f (φ(x, t),
[
Γ U (k, x)

]
t ) + H−ε�r(φ(x, t),

[
Γ U (k, x)

]
t )

+G−εg(φ(x, t),
[
Γ U (k, x)

]
t ) − bL−ε(φ(x, t),

[
Γ U (k, x)

]
t ),

and it follows by Lemma 3.16 that

ŵ U (x̂) =
t∫

0

eεs−�νk (x,s)
[
−b +�c f (φ(x, s), νk(s))

+λ(φ(x, s), νk(s))Qg(φ(x, s), νk(s))

]
ds

+eεt−�νk (x,t)ŵ U (φ̂(x̂, t)). (5.30)

Therefore, combining Eqs. (5.29) and (5.30), we get that

JU
m+1(t, x̂) ≤ ŵ U (x̂),

and by Eq. (5.28), we have that JU
m+1(t, x̂) ≤ g(x).

If t ≥ t∗(x), then Eqs. (5.27) and (5.29) yield JU
m (t, x̂) ≤ ŵ U (x̂). By Eq. (5.28),

we have JU
m (t, x̂) ≤ g(x), showing that for all m ∈ N, JU

m (t, x̂) ≤ g(x) for all
t ∈ R+, x̂ = (x, x, 0, k) ∈ Ê .

Consequently, this implies that

−bEU
(x,0)

⎡
⎣

t∧Tm∫

0

eεsds

⎤
⎦ + EU

(x,0)

[
eε(t∧Tm )ŵ U (

X̂U (t ∧ Tm)
)] ≤ g(x).

Similarly to the proof of Lemma 4.23, we obtain that

−b

ε

[
eεt − 1

] + eεt EU
(x,0)

[
ŵ U (

X̂U (t)
)] ≤ g(x),

establishing the result. �

Proposition 5.12 For all x ∈ E, U ∈ U , we have that

EU
(x,0)

[
ŵ U (

X̂U (t ∧ Tm)
)]

exists in R+ for every (t, m) ∈ R+ × N and

lim
t→∞

1

t
lim

m→∞ EU
(x,0)

[
ŵ U (

X̂U (t ∧ Tm)
)] = 0. (5.31)
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Proof Clearly, we have

EU
(x,0)

[
ŵ U (

X̂U (t ∧ Tm)
)] = EU

(x,0)

[
I{t<Tm }ŵ U (

X̂U (t)
)]

+ EU
(x,0)

[
I{t≥Tm }ŵ U (

X̂U (Tm)
)]

,

and thus by Remark 4.19 (ii),

0 ≤ EU
(x,0)

[
ŵ U (

X̂U (t ∧ Tm)
)] ≤ EU

(x,0)

[
ŵ U (

X̂U (t)
)]

+ EU
(x,0)

[
ŵ U (

X̂U (Tm)
)] + bKλ. (5.32)

Iterating Assumption 5.2, we obtain that for all m ∈ N,

EU
(x,0)

[
ŵ U (

X̂U (Tm)
)] ≤ g(x) + Kg

1 − kg
.

The result follows by combining Eqs. (5.24) and (5.32) with the previous
inequality. �

Corollary 5.13. For all U ∈ U ,

lim
t→∞

1

t
lim

m→∞ EU
(x,0)

[
h
(
X (t ∧ Tm)

)] ≤ 0 (5.33)

and

lim
t→∞

1

t
lim

m→∞ −E
U ûφ
(x,0)

[
h
(
X (t ∧ Tm)

)] ≤ 0. (5.34)

Proof From Eq. (5.16), it follows that for all x ∈ E , Γ ∈ V(x),

−ρL(x, ûφ(x)) + Gh(x, ûφ(x)) ≤ h(x) ≤ L f (x, Γ ) + Hr(x, Γ ) + Gh(x, Γ ).

(5.35)

Consequently, by Remark 4.19 (ii), the definition of ŵ, and Assumption 4.13, we
obtain that there exists M1 > 0 such that for every U ∈ U ,

h
(
X (t ∧ Tm)

) ≤ M1

[
ŵ U (

X̂U (t ∧ Tm)
) + bKλ

]
.

Consequently, combining the previous equation and (5.31), we obtain Eq. (5.33).
Moreover, notice that

[
Γ

U ûφ (N (t), Z(t))
]
τ (t) = ûφ(X (t)) ∈ V(X (t)) and so

Eq. (5.35) and the definition of ŵ U (see Eq. (5.23)) give that

‖h‖g
[
ŵ

U ûφ
(
X̂U ûφ (t ∧ Tm)

) + bKλ

]
+ ρKλ ≥ −h

(
X (t ∧ Tm)

)
,
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and so

lim
t→∞

1

t
lim

m→∞ −E
U ûφ
(x,0)

[
h
(
X (t ∧ Tm)

)]

≤ ‖h‖g lim
t→∞

1

t
lim

m→∞ E
U ûφ
(x,0)

[
ŵ

U ûφ
(
X̂U ûφ (t ∧ Tm)

)]
.

The result follows by combining the previous inequality with (5.31). �

Finally, we can now present the second main result of this chapter. It states that the
measurable selector ûφ of the optimality equation (5.15) associated with (ρ, h) gives
an optimal feedback control strategy U ûφ for the process {X (t)}.
Theorem 5.14 The control U ûφ is an optimal control strategy for the long-run aver-
age control problem

ρ = inf
U ∈U

A(U, x) = A(U ûφ , x),

for all x ∈ E.

Proof From Proposition 5.12, we have that EU
(x,0)

[
h
(
X (t ∧ Tm)

)]
is well defined.

Therefore, following the same arguments as in Proposition 3.3, it can be shown that

EU
(x,0)

⎡
⎣

t∧Tm∫

0

f
(
X (s), u(N (s), Z(s), τ (s))

)
ds

+
t∧Tm∫

0

r
(
X (s−), u∂(N (s−), X (s−))

)
dp∗(s)

⎤
⎦

+ EU
(x,0)

[
h
(
X (t ∧ Tm)

)] ≥ EU
(x,0)

[
ρ[t ∧ Tm]

]
+ h(x),

where U = (
u, u∂

) ∈ U . From Eq. (5.33), it follows that

lim
t→∞

1

t
EU

(x,0)

⎡
⎣

t∫

0

f
(
X (s), u(N (s), Z(s), τ (s))

)
ds

+
t∫

0

r
(
X (s−), u∂(N (s−), X (s−))

)
dp∗(s)

⎤
⎦ ≥ ρ,

showing that inf
U ∈U

A(U, x) ≥ ρ.
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By the same arguments as in the proof of Proposition 3.4, we obtain that

E
U ûφ
(x,0)

⎡
⎣

t∧Tm∫

0

f
(
X (s), û(X (s))

)
ds +

t∧Tm∫

0

r
(
X (s−), û(X (s−))

)
dp∗(s)

⎤
⎦

≤ E
U ûφ
(x,0)

[
ρ[t ∧ Tm]

]
+ h(x) − E

U ûφ
(x,0)

[
h
(
X (t ∧ Tm)

)]
.

Now from Eq. (5.34), we get that

lim
t→∞

1

t
E

U ûφ
(x,0)

⎡
⎣

t∫

0

f
(
X (s), û(X (s))

)
ds +

t∫

0

r
(
X (s−), û(X (s−))

)
dp∗(s)

⎤
⎦

≤ ρ+ lim
t→∞

1

t
lim

m→∞ −E
U ûφ
(x,0)

[
h
(
X (t ∧ Tm)

)] ≤ ρ,

and so inf
U ∈U

A(U, x) ≤ ρ. Therefore, it follows that

ρ = inf
U ∈U

A(U, x) = A(U ûφ , x)

for all x ∈ E . �
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Chapter 6
Examples

6.1 Outline of the Chapter

This chapter will present three examples illustrating the possible applications of
the results in Chap. 4. They are based on the capacity expansion model, analyzed
in [26] and [25, Example (34.45)], and by the authors from the stability point of
view in [15, 33]. Typical examples are electrical power generating stations, water
resource facilities, computer and communication systems, and large manufacturing
facilities. The interested reader may consult the references [26, 53] for a survey
on capacity expansion including theoretical results and applications. For the first
example, it is shown that from Proposition 4.9, there exists a solution for the discrete-
time optimality inequality, and from Theorem 4.10, there exists an ordinary optimal
feedback control for the long-run average cost problem. Moreover, it illustrates how
the setup developed in this section could cover some problems in which it is desired to
control a flow. For the second example, it is shown that Assumption 4.11 is satisfied,
so that from Proposition 4.12, there exists a solution for the discrete-time optimality
equation. The third example satisfies the assumptions of Sect. 4.4, so that the results
obtained in Sect. 4.4.2 can be applied. Some numerical procedures are also presented.

6.2 The Capacity Expansion Problem

Capacity expansion consists in general processes of adding facilities to meet a rising
demand. This demand is met by consecutive construction of expansion projects.
A point process models the arrivals of the demand with intensity λ, which could
depend on the present level of demand and on the control variable. At each arrival,
the demand increases by one unit. The construction of a new project is accomplished
at a rate γ (which could also depend on the control variable), and it is completed after
the cumulative investment in the current project reaches a value τ . On completion, the
present level of demand is reduced by κ units. We will assume in the next examples

O. L. V. Costa and F. Dufour, Continuous Average Control of Piecewise 93
Deterministic Markov Processes, SpringerBriefs in Mathematics,
DOI: 10.1007/978-1-4614-6983-4_6, © Oswaldo Luiz do Valle Costa, François Dufour 2013
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κ = 1 (without loss of generality) and that τ does not depend on the present level of
demand. We consider that when there is no demand, no construction will take place.

We will present now the modeling of the control problem that will be considered in
Sect. 4.3. Another capacity expansion control problem will be considered in Sect. 4.4,
with the modeling following very closely the example that will be presented next.

In the example of Sect. 4.3, we will assume that λ is constant and that the con-
struction of a new project is done at one of the possible rates γ j per unit of time,
j = 1, . . . , ι. The PDMP {X (t)} with the state space E ⊂ R

3 is defined as follows.
We take x3 = 0 to denote that no construction is taking place and the process just waits
for a new arrival. In this situation, the vector x = (x1, x2, x3) ∈ E has the following
interpretation: x1 = 0 (this is just for notational convenience), x2 ∈ N represents the
demand level, and x3 = 0 represents that no construction is taking place. The other
possibility is that construction proceeds at the rate γ j , and we denote this situation
again by a 3-dimensional vector x = (x1, x2, x3) ∈ E , with x1 ∈ [0, τ ) denoting the
amount of cumulative investment in the current project, x2 ∈ {1, 2, 3, . . .} represent-
ing the demand level (note that by assumption, no construction takes place whenever
there is no demand level, that is, x2 = 0), and x3 = j representing that construction
is taking place at the rate γ j . On completion of a new project, the control variable a
will act on the transition measure at the boundary to send the process either to the
“no construction” space (in this case a = x3 = 0) or to the “construction space” at
the rate γ j (in this case a = x3 = j). We assume that once a project starts, it cannot
be interrupted or to have the rate changed.

On the “no construction” space, at the arrival of a new demand, the control variable
a will act on the transition measure either to start a new project at the rateγ j (a = x3 =
j) or not start (a = x3 = 0) a new project. We consider that a running cost per unit of
time C(i) ≥ 0 is paid whenever the demand level is at i ∈ N, with C(i + 1) ≥ C(i)
and C(0) = 0 (this represents no loss of generality, since the addition of a constant
to the running cost does not alter the optimal solution of the problem). Moreover,
a “construction” cost K ( j) ≥ 0 per unit of time is paid whenever construction is
proceeding at the rate γ j . For convenience, we set K (0) = 0. We also assume that
there is an upper bound for the costs, that is, C(i) ≤ C̄ for some C̄ ≥ 0 and all i ∈ N,
and that the stability condition λ τ

γ j
< 1, j = 1, . . . , ι, is satisfied (see Proposition

34.46 of [25]).
The goal is to choose the optimum demand level at which it is worth constructing

at a rate in the set {γ j ; j = 1, . . . , ι}. By deciding through the transition measure Q
whether either a = 0 = x3 (no construction) or a = j = x3 (start construction at
the rate γ j ), we are actually controlling the flow in a “bang-bang” fashion. It is easy
to see that for this problem, whenever x3 = 0, we have t∗(x) = ∞, φ(x, t) = x ,
and whenever x3 = j , we have t∗(x) = τ−x1

γ j
, φ(x, t) = (x1 + γ j t, x2, j). When

x3 = j , j ∈ {1, . . . , ι}, the control variable acts on the transition measure Q at the
frontier, so that at the point x = (τ , i, j) and with action a ∈ {0, 1, . . . , ι}, we have
Q(x, a; (0, i − 1, a)) = 1, except for the case i = 1, in which the only possible
action is a = 0 (by hypothesis, no construction takes place when there is no demand).
Since a running project cannot be interrupted, we have that there is no control for
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the points x = (�, i, j), 0 ≤ � < τ , and in this case, Q(x; (�, i + 1, j)) = 1. When
x3 = 0, the control variable acts on the transition measure Q so that at the point
x = (0, i, 0) and with action a ∈ {0, 1, . . . , ι}, we have Q(x, a; (0, i + 1, a)) = 1.

Consequently, E is defined by {x ∈ R
3 : x = (0, i, 0) or x = (�, i ′, j) for i ∈ N,

i ′ ∈ N∗, � ∈ [0, τ )}, j ∈ {1, . . . , ι}, φ(
(0, i, 0), t

) = (0, i, 0), t∗
(
(0, i, 0)

) = ∞ for
i ∈ N, and

φ
(
(�, i ′, j), t

) = (� + γ j t, i ′, j), t∗
(
(�, i ′, j)

) = τ − �

γ j

for i ′ ∈ N∗, � + γ j t ∈ [0, τ ). Moreover, λ is a constant, and for every A ∈ B(E),
i ∈ N, we have for j ∈ {1, . . . , ι},

Q
(
(0, i, 0), a; A

) = I{a=0}δ{(0,i+1,0)}(A) + I{a= j}δ{(0,i+1, j)}(A),

and for � ∈ [0, τ ), i ∈ N∗,

Q
(
(�, i, j), j; A

) = δ{(�,i+1, j)}(A),

for � = τ , i ≥ 2,
Q

(
(τ , i, j), a; A

) = δ{(0,i−1,a)}(A),

and finally, for � = τ , i = 1,

Q
(
(τ , i, j), a; A

) = δ{(0,0,0)}(A).

Furthermore, we have f (x, a) = C(x2) + K (x3) and r(x, a) = 0.

6.3 First Example

6.3.1 Verification of the Assumptions in Sect. 4.3

The goal of this subsection is to show that the assumptions in Sect. 4.3 are satisfied
for the capacity expansion problem posed in Sect. 6.2. It is easy to check that the
assumptions of Chaps. 2 and 3 are satisfied. One needs only to check that Assumption
4.7 is satisfied in order to show that there exist a solution to the discrete-time opti-
mality inequality and an ordinary optimal feedback control for the long-run average
cost problem.

Let the functions vαm be as defined in Sect. 4.2, where we write the superscript α
to highlight the dependence on the discount factor α > 0. Set K = max{K ( j); j =
1, . . . , ι} and I = {0, 1, . . . , ι}. Clearly, we have that
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J α
D(x) ≤ 1

α
(C̄ + K ), (6.1)

and as seen in Sect. 4.2, vαm ↑ vα = J α
D. It is also easy to see that (recall that

vα0 (x) = 0) for m = 0, 1, . . . ,

vαm+1((0, i, 0)) = C(i)

λ+ α
+

( λ

λ+ α

)
min
a∈I

vαm((0, i + 1, a)), i = 0, 1, . . . , (6.2)

vαm+1((�, i, j)) =C(i) + K ( j)

λ+ α
(1 − e

−(λ+α)
(
τ−�
γ j

)
)

+ λ

τ−�
γ j∫

0

e−(λ+α)svαm((� + γ j s, i + 1, j))ds

+ e
−(λ+α)

(
τ−�
γ j

)
min
a∈I

vαm((0, i − 1, a)), i = 2, 3, . . . , (6.3)

vαm+1((�, 1, j)) = C(1) + K ( j)

λ+ α
(1 − e

−(λ+α)
(
τ−�
γ j

)
)

+ λ

τ−�
γ j∫

0

e−(λ+α)svαm((� + γ j s, 2, j))ds

+ e
−(λ+α)

(
τ−�
γ j

)
vαm((0, 0, 0)). (6.4)

Proposition 6.1 For all x = (x1, x2, x3) ∈ E, j = 1, . . . , ι, and m = 0, 1, . . . , we
have that

vαm((x1, x2 + 1, x3)) ≥ vαm((x1, x2, x3)), vαm((0, 1, j)) ≥ vαm((0, 0, 0)),

and consequently,

vα((x1, x2 + 1, x3)) ≥ vα((x1, x2, x3)), vα((0, 1, j)) ≥ vα((0, 0, 0)).

Proof For m = 0, the result is immediate. Suppose it holds for m. We notice from
(6.2) and C(0) = 0 that

vαm+1((0, 0, 0)) ≤ vαm+2((0, 0, 0)) ≤ vαm+1((0, 1, j)).

By the induction hypothesis, it is easy to see that

vαm+1((x1, x2 + 1, x3)) ≥ vαm+1((x1, x2, x3))

for all x = (x1, x2, x3) ∈ E , completing the proof. �
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Proposition 6.2 For i = 1, 2, . . ., j = 1, . . . , ι, and 0 ≤ s ≤ t < τ ,

vα((t, i, j)) − vα((s, i, j)) ≤ 1

γ j

(
(C̄ − C(i)) + (K − K ( j))

)
(t − s). (6.5)

Proof As seen in Sect. 4.2, vα satisfies the equation vα(x) = Rα(0, vα)(x). Since
vα is positive, it follows from Theorem 3.14 that vα ∈ M

ac(E), and there exists a
feedback measurable selector ûφ(w, vα) ∈ SV such that (3.5) is satisfied for �̂(x) =
ûφ(w, vα)(x). From Proposition 3.2 and by differentiating (3.6), it follows that

X vα((t, i, j))−(λ+α)vα((t, i, j))+ K ( j)+C(i)+λvα((t, i +1, j)) = 0. (6.6)

Recalling that αvα(x) ≤ C̄ + K and from Proposition 6.1 that

vα((�, i, j)) − vα((�, i + 1, j)) ≤ 0,

we have from (6.6) that

vα((γ j t ′, i, j)) − vα((γ j s′, i, j)) =
t ′∫

s′
X vα((γ j �, i, j))d�

=
t ′∫

s′

(
αvα((γ j �, i, j)) − (C(i) + K ( j))

)
d�

+ λ

t ′∫

s′

(
vα((γ j �, i, j)) − vα((γ j �, i + 1, j))

)
d�

≤
t ′∫

s′

(
(C̄ − C(i)) + (K − K ( j))

)
d�

=
(
(C̄ − C(i)) + (K − K ( j))

)
(t ′ − s′), (6.7)

and setting t = γ j t ′, s = γ j s′, we obtain from (6.7) that

vα((t, i, j)) − vα((s, i, j)) ≤ 1

γ j

(
(C̄ − C(i)) + (K − K ( j))

)
(t − s),

establishing the result. �

In what follows, set Ĉ = max
{

1
γ j

; j = 1, . . . , ι
}

(C̄ +K ). We have the following

proposition.
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Proposition 6.3 For all x = (x1, x2, x3) ∈ E,

vα((0, 0, 0)) ≤ vα((x1, x2, x3)) + Ĉτ .

Proof For x3 = 0, the result is evident, since from Proposition 6.1,

vα((0, 0, 0)) ≤ vα((0, i, 0)).

From (6.4), we have that limt→τ vα((t, 1, j)) = vα((0, 0, 0)). From this and (6.5),
we have for every 0 ≤ s < τ that

vα((0, 0, 0)) − vα((s, 1, j)) ≤ Ĉτ .

Recalling from Proposition 6.1 that vα((s, i, j)) − vα((s, i + 1, j)) ≤ 0, we have
that for every i = 1, 2, . . . ,

vα((0, 0, 0)) ≤ vα((s, 1, j)) + Ĉτ ≤ vα((s, i, j)) + Ĉτ ,

completing the proof. �

Consider a control strategy U1 such that we always choose a = 1 and the stopping
time S = inf{t ≥ 0; X (t) = (0, 0, 0)}. As shown in Example 34.50 in [25], under
the stability assumption (λ τ

γ1
< 1), we have that EU1

x (S) < ∞ for all x ∈ E . From
this, it follows that

vα(x) ≤ EU1
x

( S∫

0

e−αt (C̄ + K )ds + e−αSvα((0, 0, 0))

)

≤ EU1
x (S)(C̄ + K ) + vα((0, 0, 0)). (6.8)

Defining hα(x) = vα(x)−vα((0, 0, 0)) and ρα = αvα((0, 0, 0)), it follows from
Proposition 6.3 and (6.8) that for all α > 0 and x ∈ E ,

− Ĉτ ≤ hα(x) ≤ EU1
x (S)(C̄ + K ) (6.9)

and ρα ≤ C̄ + K , so that Assumption 4.7 is satisfied. It is easy to see that all the
other conditions in Sect. 4.3 are satisfied, so that from Proposition 4.9, there exists
a solution for the discrete-time optimality inequality, and from Theorem 4.10, there
exists an ordinary optimal feedback control for the long-run average cost problem.
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6.3.2 Numerical Example

Let us consider now a numerical example. To solve the optimization problem numer-
ically, we must restrict ourselves to a finite-dimensional state space. Consider a high
level of demand N . For the case in which no construction is taking place and the
demand level is N − 1 (that is, x = (0, N − 1, 0)), we assume that if there is a new
arrival, then the next decision must be to start a new construction (that is, the process
must move to one of the “construction” states (0, N , j), with j = 1, . . . , ι). Further-
more, when the process is at one of the “construction” states with level of demand N
(that is, x = (t, N , j), with j = 1, . . . , ι), we assume that no new arrivals are allowed
(that is, λ = 0 in these states), and on completion of the present project, the process
must move to the state x = (0, N − 1, j). For N sufficiently large, this truncation
of the state space should have negligible influence on the value function, since the
stationary probability should be concentrated on moderate levels of demand. With
this truncation, we have from (6.2) and (6.3) that

vαm+1((0, N − 1, 0)) = C(N − 1)

λ+ α
+

( λ

λ+ α

)
min

a∈{1,...,ι} v
α
m((0, N , a)), (6.10)

vαm+1((�, N , j)) = C(N ) + K ( j)

α
(1 − e

−α
(
τ−�
γ j

)
)

+ e
−α

(
τ−�
γ j

)
vαm((0, N − 1, j)). (6.11)

Set
v̂αm((�, i, j)) = e(λ+α)�vαm((τ − γ j�, i, j)). (6.12)

After some algebraic manipulations, we get from (6.3) and (6.4) that for � ∈ [0, τ
γ j

),

v̂αm+1((�, i, j)) = C(i) + K ( j)

λ+ α
(e(λ+α)� − 1) + λ

�∫

0

v̂αm((s, i + 1, j))ds

+ min
a∈I

vαm((0, i − 1, a)), i = 2, . . . , N − 1, (6.13)

v̂αm+1((�, 1, j)) = C(1) + K ( j)

λ+ α
(e(λ+α)� − 1) + λ

�∫

0

v̂αm((s, 2, j))ds

+ vαm((0, 0, 0)), (6.14)

and from (6.11) that

v̂αm+1((�, N , j)) = C(N ) + K ( j)

α
(e(λ+α)� − eλ�) + eλ�vαm((0, N − 1, j)). (6.15)
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For j ∈ {1, . . . , ι}, define

a j (N ) = C(N ) + K ( j)

α
,

a j (i) = C(i) + K ( j)

λ+ α
, i = 1, . . . , N − 1,

b j
m(N ) = 0,

b j
m(i) = min

a∈I
vαm((0, i − 1, a)) − C(i) + K ( j)

λ+ α
, i = 2, . . . , N − 1,

(6.16)

b j
m(1) = vαm((0, 0, 0)) − C(1) + K ( j)

λ+ α
, (6.17)

c j
m = vαm((0, N − 1, j)) − C(N ) + K ( j)

α
. (6.18)

Notice that from (6.13)–(6.15) and for i = 1, . . . , N − 1,

v̂αm+1((�, N , j)) = a j (N )e(λ+α)� + c j
meλ�, (6.19)

v̂αm+1((�, i, j)) = a j (i)e(λ+α)� + b j
m(i) + λ

�∫

0

v̂αm((s, i + 1, j))ds. (6.20)

Set recursively for i = N , . . . , 2,

â j (N ) = a j (N ) = C(N ) + K ( j)

α
,

â j (i − 1) = a j (i − 1) + λ

λ+ α
â j (i),

b̂ j
m(N ) = 0,

b̂ j
m(i − 1, 0) = b j

m(i − 1) − λ

λ+ α
â j

m(i) − c j
m . (6.21)

Set also for i = N − 1, . . . , 2 and k = 1, . . . , N − i ,

b̂ j
m(i − 1, k) = λ

k
b̂ j

m(i, k − 1). (6.22)

We have the following proposition.

Proposition 6.4 For i = N , . . . , 1 and j = 1, . . . , ι,

v̂αm+1((�, i, j)) = â j (i)e(λ+α)� +
N−i−1∑

k=0

b̂ j
m(i, k)�k + c j

meλ�. (6.23)
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Proof We can prove (6.23) by induction on i . For i = N , we have from (6.19) that
(6.23) holds. Suppose that (6.23) holds for i . From (6.19), it follows that

v̂αm+1((�, i − 1, j)) = a j (i − 1)e(λ+α)� + b j
m(i − 1)

+ λ

�∫

0

[
â j (i)e(λ+α)s +

N−i−1∑
k=0

b̂ j
m(i, k)sk + c j

meλs
]
ds

= a j (i − 1)e(λ+α)� + b j
m(i − 1) + λ

λ+ α
â j (i)

(
e(λ+α)� − 1

)

+ λ

N−i−1∑
k=0

b̂ j
m(i, k)

�k+1

k + 1
+ c j

m

(
eλs − 1

)

=
(

a j (i − 1) + λ

λ+ α
â j (i)

)
e(λ+α)� +

(
b j

m(i − 1)

− λ

λ+ α
â j (i) − c j

m

)
+ λ

N−i∑
k=1

b̂ j
m(i, k − 1)

�k

k
+ c j

meλ�

= â j (i − 1)e(λ+α)� +
N−i∑
k=0

b̂ j
m(i − 1, k)�k + c j

meλ�,

establishing the result. �

From (6.12) and (6.23), we get that

vαm+1((0, i, j)) = â j (i)+e
−(λ+α)

(
τ
γ j

) N−i−1∑
k=0

b̂ j
m(i, k)

( τ
γ j

)k +c j
me

−α
(
τ
γ j

)
. (6.24)

The algorithm to obtain ρα goes as follows:

Algorithm 1 (1) Start with vα0 (x) = 0.
(2) Suppose that we have vαm((0, i, 0)), i = 0, . . . , N − 1, and vαm((0, i, j)),

i = 1, . . . , N − 1, j = 1, . . . , ι. Calculate b j
m(i), c j

m , b̂ j
m(i − 1, k) from (6.16),

(6.17), (6.18), (6.21), (6.22).
(3) Evaluate vαm+1((0, i, 0)), i = 0, . . . , N − 1, from (6.2), and vαm+1((0, i, j)),

i = 1, . . . , N − 1, j = 1, . . . , ι, from (6.24).
(4) If ‖vαm+1 − vαm‖ < ε, where ε is a specified threshold level, stop and set ρα =

αvαm+1((0, 0, 0)). Otherwise, return to step 2).

We have implemented the above algorithm for the following numerical example:

(a) λ = 0.15, τ = 6.
(b) ι = 2, K (1) = 5, γ1 = 1, K (2) = 17, γ2 = 2.
(c) C(i) = 0.5i .
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Fig. 6.1 Convergence of ρα

(d) N = 40.

We have varied α from 0.05 to 0.000001. In Fig. 6.1, we present the values of
log10

( 1
α

)
on the x-axis and ρα on the y-axis. We can see, as expected, that ρα →

5.9825 as α → 0. The optimal policy is to construct at the rate γ1 = 1 whenever the
demand is less than or equal to 3, and to construct at the rate γ2 = 2 whenever the
demand is greater than or equal to 4.

6.4 Second Example

6.4.1 Verification of the Assumptions in Sect. 4.3

Our second example is based on the one presented in [60, pp. 164–165] and has a
setup very close to the capacity expansion problem presented in Sects. 6.2 and 6.3, so
for this reason, we will omit the details and will use the same notation and definitions
as presented in Sects. 6.2 and 6.3. Suppose that letters arrive at a post office according
to a Poisson process with rate λ. At any time, the post office may, at a cost of K per
unit of time, summon a truck to pick up all letters presently in the post office. The
truck takes τ units of time to arrive, and every letter arriving during this time interval
will also be collected by the truck. The post office incurs a running cost C(i) per unit
of time when there are i letters waiting to be picked up. The decision is to select the
optimum moment to call the truck in order to minimize the long-run average cost. It
is easy to see that this problem has a very similar setup to that of the previous one
with ι = 1, γ1 = 1, the difference being (6.3), which in this case, is given by
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vαm+1((�, i, 1)) =C(i) + K

λ+ α
(1 − e−(λ+α)(τ−�))

+ λ

τ−�∫

0

e−(λ+α)svαm((� + s, i + 1, 1))ds

+ e−(λ+α)(τ−�)vαm((0, 0, 0)), i = 2, 3, . . . . (6.25)

The reason for this is that the truck takes all the letters from the post office when
leaving, bringing the process to the state (0, 0, 0). We assume the same conditions
as in the previous example and set, for i ∈ N, ci = C(i + 1) − C(i) ≥ 0. We also
assume that ci+1 ≤ ci for each i ∈ N. Define ξα = 1 − e(λ+α)τ , ξ = 1 − eλτ ,
and am,i = ( 1−ξm

α
1−ξα

)( ci
λ

)
for m ∈ N and i ∈ N. By the assumption that ci+1 ≤ ci , it

follows that am,i+1 ≤ am,i . We have the following proposition.

Proposition 6.5 For each m ∈ N and i ∈ N, we have that

|vαm((t, i + 1, 1)) − vαm((t, i, 1))| ≤ am,i . (6.26)

Proof We prove this by induction on m. For m = 0, this is clearly true, since a0,i = 0
and vα0 = 0. Suppose it holds for m. Then by the induction hypothesis and (6.25), it
is easy to see that

|vαm+1((t, i + 1, 1)) − vαm+1((t, i, 1))| ≤ ξαci

λ
+ λ

λ+ α
ξαam,i+1 ≤ ci

λ
+ ξαam,i

≤ ci

λ

(
1 + ξα

1 − ξm
α

1 − ξα

)
= am+1,i ,

establishing the result. �

From (6.26) and taking the limit as m → ∞, it is immediate that |vα((t, i +
1, 1)) − vα((t, i, 1))| ≤ ai , where ai = ci

λ(1−ξ) . From this and (6.7), it follows that
for some constant c independent of α, we have that |vα((t, i, 1)) − vα((s, i, 1))| ≤
c|t−s|, and from this, it follows that the sequence hα(x) is equicontinuous. Moreover,
considering, as in the previous example, U1 such that we always choose a = 1
and the stopping time S = inf{t ≥ 0; X (t) = (0, 0, 0)}, we have, as before, that
�h(x) = EU1

x (S) < ∞ for all x ∈ E . Furthermore,

�h(x) =
τ−t∫

0

λe−λs(s + �h((t + s, i + 1, 1)))ds + e−λ(τ−t)(τ − t)

for x = (t, i, 1) ∈ E . Consequently,
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τ−t∫

0

λe−λs�h((t + s, i + 1, 1))ds =
t∗(x)∫

0

e−Λ(x,s)λ(φ(x, s))Q�h(φ(x, s))ds < ∞.

Therefore, Assumption 4.11 is satisfied, so that from Proposition 4.12, there exists
a solution for the discrete-time optimality equation.

6.4.2 Numerical Example

For the numerical example, we consider again a truncation at a high level of letters
N , as was done in Sect. 6.3.2. For the case in which there are N − 1 letters (that is,
x = (0, N − 1, 0)), we assume that if there is a new arrival, then the next decision
must be to collect the letters (that is, the process must move to state (0, N , 1)).
Furthermore, while the truck is picking up all the N letters (that is, the process
is in state x = (t, N , 1)), we assume that no new arrivals are allowed (that is,
λ = 0 in these states), and on completion of the trip, the process must move to state
x = (0, 0, 0). For N sufficiently large, this truncation of the state space should have
negligible influence on the value function, since the stationary probability should be
concentrated on moderate levels of wanting letters.

Algorithm 2 can also be used to solve this problem. Notice that we can suppress
the superscript j , since ι = 1. The update for bm(i) and cm in step (2) would be as
follows:

bm(i) = vαm((0, 0, 0)) − C(i) + K

λ+ α
, i = 1, . . . , N − 1,

cm = vαm((0, 0, 0)) − C(N ) + K

α
.

We have implemented the above algorithm for the following numerical example:

(a) λ = 0.15, τ = 6.
(b) K = 15.
(c) C(i) = 0.5i .
(d) N = 40.

We have varied α from 0.01 to 0.000001. In Fig. 6.2, we present the values of
log10

( 1
α

)
on the x-axis and ρα on the y-axis. We can see, as expected, that ρα →

3.4621 as α → 0. The optimal policy is to call the truck whenever the number of
letters is greater than or equal to 7.
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Fig. 6.2 Convergence of ρα

6.5 Third Example

In this section, we present an example that satisfies the assumptions of Sect. 4.4, so
that the results obtained in Sect. 4.4.2 can be applied. This example is also based
on the capacity expansion model described in Sect. 6.2. As posed there, the demand
for some utility is modeled as a random point process, i.e., it increases by one
unit at random times. This demand is met by consecutive construction of identical
expansion projects. In this subsection, the intensity λ of the point process is supposed
to be the controlled variable, and it can assume values in a compact set [λa,λb] with
λb ≥ λa > 0 (notice that in Sect. 6.3,λwas assumed to be constant). The construction
of a new project is accomplished at a rate γ per unit of time, and it is completed after
the cumulative investment in the current project reaches a value τ . On completion,
the present level of demand is reduced κ units. We will consider for simplicity in
this example that κ = 1, γ = 1, and that τ does not depend on the present level of
demand. Moreover, we suppose that no construction will take place whenever there
is no demand, and we say in this case that the system is in a standby situation. In
this case, it is assumed for simplicity that a new demand will occur according to a
point process with a fixed uncontrolled rate equal to μ. Regarding the cost, roughly
speaking, the idea is to penalize high levels of demand and the controller whenever
it slows down the demand by choosing a lower intensity. It is also supposed that an
immediate (boundary) cost is incurred whenever a project is finished, and that there
are no costs when the system is in the standby situation.

As the state space of the process we take E = ∪i∈N

[{i} × [0, τ )
]
. A point

(0, t) ∈ E denotes that the system is in standby. A point (i, t) ∈ E with i ≥ 1
indicates that the level of demand for the system is i , and the amount of elapsed
time of the present project is t . For all x ∈ E , U(x) = U = [λa,λb]. The costs are
defined for x = (i, t) ∈ E and a ∈ U by f (x, a) = αi + hi (a) and r(x, a) = ri .
It is assumed that (αi )i∈N is an increasing sequence of nonnegative real numbers



106 6 Examples

satisfying for each i ∈ N, αi ≤ iα for a constant α, hi (a) is a decreasing mapping
in a with nonnegative values that satisfies hi (a) ≤ iψ for a constant ψ, and (ri )i∈N

is a sequence of nonnegative real numbers satisfying ri ≤ iξ for a constant ξ. The
flow φ of the PDMP is defined by φ(x, s) = (i, t + s) for x = (i, t) ∈ E , s ≤ τ − t .
For t ∈ [0, τ ), a ∈ U, the intensity of the jump is given by λ((i, t), a) = a when
i ≥ 1 and by λ(x, a) = μ when i = 0. Finally, the transition measure is defined by

Q
(
(0, t), a; A

) = δ{(1,0)}(A), Q
(
(i, t), a; A

) = δ{(i+1,t)}(A)

when t ∈ [0, τ ) and by

Q
(
(0, τ ), a; A

) = δ{(0,0)}(A), Q
(
(i, τ ), a; A

) = δ{(i−1,0)}(A).

The standby situation of the system is represented by the set {0} × [0, τ ) for math-
ematical convenience. It should be noted that it does not affect the optimization
problem due to the memoryless property of the exponential distribution. Finally, we
assume the classical stability condition λbτ < 1 (see [25, Proposition 34.36]).

We show next that all the assumptions of Sect. 4.4 are satisfied for this example.
Assumptions 2.3, 2.4, and 2.10 are trivially satisfied. Moreover:

(i) There exists a set A = {y ∈ E : t∗(y) = τ } such that for all z ∈ ∂E and for all
a ∈ U(z), Q(z, a; A) = 1. Moreover, for all x ∈ E , a ∈ U(x), λ(x, a) ≤ λb.
Consequently, the hypotheses of Proposition 24.6 in [25] are satisfied, implying
that Assumption 2.8 is satisfied.

(ii) Since U(x) does not depend on x , Assumption 2.15 is clearly satisfied.
(iii) Now notice that for all x ∈ E , t∗(x) ≤ τ < ∞. For all x ∈ E , the mapping

λ(x, .) is continuous on U(x) = [λa,λb]. Taking for x ∈ E , �λ(x) = λb, we

have that

t∫

0

�λ(φ(x, s))ds ≤
t∗(x)∫

0

�λ(φ(x, s))ds = λbτ < ∞. Define λ(x) =

λa , �f (x) = (α + ψ)i for x = (i, t) ∈ E , and Kλ = τecτ . Then we have
λ(x, a) ≥ λ(x), f (x, a) ≤ �f (x), and

t∗(x)∫

0

e
ct−

t∫
0
λ(φ(x,s))ds

dt ≤ τecτ = Kλ,

t∗(x)∫

0

e
−

t∫
0
λ(φ(x,s))ds �f (φ(x, t))dt ≤ �f (x)τ < ∞.

Recalling that t∗(x) ≤ τ < ∞ for all x ∈ E , it follows that Assumptions 2.5,
3.5, 3.9, and 4.18 are satisfied.

(iv) By definition, f (x, .), r(x, .) are continuous on U(x) = [λa,λb] for all x ∈ E ,
implying that Assumptions 3.6 and 3.7 are satisfied.
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(v) Q does not depend on the control, and consequently, Assumptions 3.8 and 4.15
(i) are trivially satisfied.

It remains to show that Assumptions 4.13, 4.14, and 4.15 (ii) are satisfied. In order
to verify these assumptions, we need to define appropriately the test functions g and
r . We need first the following proposition.

Proposition 6.6 There exist d1 > 0, d2 > 0, and c > 0 such that

ed1
λb

λb + d2
< e−d1+d2τ < 1, (6.27)

c < d2 − λb(e
d1 − 1), (6.28)

ed1(1 − e−μτ ) − e−a1 ≤ 0. (6.29)

Proof Consider the function c(z) = z
τ − λb(ez − 1). Then under the assumption

that λbτ < 1, we can find z0 > 0 such that c(z0) > 0 and 1 − e−μτ ≤ e−2z0 by
observing that c(0) = 0 and c′(0) > 0. This implies that we can find 0 < ε < z0

2
such that

c(z0) − 2ε

τ
= z0 − 2ε

τ
− λb(e

z0 − 1) > 0.

We set d1 = z0 − ε > 0 and d2 = z0−2ε
τ > 0. Since 1 − e−μτ ≤ e−2z0 , we have

1 − e−μτ ≤ e−2z0+2ε = e−2a1 , giving (6.28). Notice that

−d1 + d2τ = −(z0 − ε) + z0 − 2ε = −ε,

and thus e−d1+d2τ = e−ε < 1. From c(z0) − 2ε
τ > 0, we get that d2 + λb > λbed1+ε

and thus ed1 λb
λb+d2

< e−d1+d2τ , proving (6.27). Moreover, choosing c > 0 such that

c < c(z0) − 2ε
τ , we get that

c < d2 − λb(e
d1+ε − 1) < d2 − λb(e

d1 − 1),

yielding (6.29). �

We can now define the test functions g, r and the parameters required in Assump-
tions 4.13 and 4.14. Consider d1, d2, c satisfying Eqs. (6.27) and (6.28) and define
b = ed2τ (μ[ed1 −1]+c) > 0, δ = c, d3 = 1−e−d1+d2τ > 0, M = max(

α+ψ
d1

,
2cξ
d3d1

),
and

g(x) =
{

ed2τ if x = (0, t) ∈ E,

ed1i+d2(τ−t) if x = (i, t) ∈ E, and i ≥ 1,

r(z) =
{

0 if z = (0, τ ),

d3ed1i if z = (i, τ ), and i ≥ 1.
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By taking�g(i, t) = λbed1(i+1)+d2τ , Assumption 4.15 (ii) is satisfied. For the constants
b, c, δ, M defined previously, we have the following result:

Proposition 6.7 The functions g and r satisfy Assumption 4.13.

Proof Consider first x = (0, t) ∈ E and z = (0, τ ). Then in this case, X g(x) = 0
and

X g(x) + cg(x) − λ(x, a) [g(x) − Qg(x, a)] = ed2τ (μ[ed1 − 1] + c) = b,

and so (4.14) holds. Clearly, f (x, a) = 0 ≤ Mg(x), and so Eq. (4.15) is satisfied.
Since r(z) = 0, we have r(z) + Qg(z, a) = ed2τ = g(z), which proves Eq. (4.16).
Finally, Eq. (4.17) is trivially satisfied, since r(z, a) = 0.
Consider now x = (i, t) ∈ E and z = (i, τ ) with i ≥ 1. Notice that X g(x) =
−d2g(x) and

X g(x) + cg(x) − λ(x, a) [g(x) − Qg(x, a)] = ed1i+d2(τ−t)(c − d2 + a(ed1 − 1)
)
.

From Eq. (6.28), it follows that

max
a∈[λa ,λb]

{
ed1i+d2(τ−t)

(
c − d2 + a(ed1 − 1)

)}

≤ ed1i+d2(τ−t)
(

c − d2 + λb(e
d1 − 1)

)

≤ 0,

yielding (4.14). Moreover, f (x, a) ≤ (α+ψ)i ≤ Mg(x), proving Eq. (4.15). Equa-
tion (4.16) also holds, since

r(z) + Qg(z, a) = d3ed1i + ed1(i−1)+d2τ = ed1i ≤ g(z).

Finally, r(z, a) = ri ≤ ξi ≤ Mr(z), implying Eq. (4.17) and establishing the
result. �

Next we want to show that Assumption 4.14 is satisfied. We need first the following
proposition.

Proposition 6.8 Set β = e−d1+d2τ < 1 (see (6.27)). For every u ∈ SU, we have
that

Gg(x, uφ) ≤ βg(x), for x = (i, t) ∈ E, with i ≥ 1, (6.30)

Gg(x, uφ) ≤ βg(x) + l(x)g(0, 0), for x = (0, t) ∈ E, (6.31)

where l(x) = e−μ(τ−t) for x = (0, t), and l(x) = 0 otherwise.
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Proof Let us show first that (6.30) holds. Consider u ∈ SU and x = (i, t) ∈ E , with
i ≥ 1 fixed. For notational simplicity, we write λi (t + s) = λ(φ(x, s), u(φ(x, s)))

and Λi (t, s) =
s∫

0
λ(φ(x, v), u(φ(x, v)))dv. Noticing that λi (t+s)

λb
≤ 1, we have from

Eq. (6.27) that

Gg(x, uφ) = ed1i
{

ed1+d2(τ−t)

τ−t∫

0

λi (t + s)e−(Λi (t,s)+d2s)ds

+ e−Λi (t,τ−t)−d2(τ−t)e−d1+d2τ
}

= g(i, t)
{

ed1
λb

λb + d2

τ−t∫

0

(1 + d2

λb
)λi (t + s)e−(Λi (t,s)+d2s)ds

+ e−Λi (t,τ−t)−d2(τ−t)e−d1+d2τ
}

≤ βg(i, t)
{ τ−t∫

0

(λi (t + s) + d2)e
−(Λi (t,s)+d2s)ds

+ e−Λi (t,τ−t)−d2(τ−t)
}

= βg(i, t),

proving Eq. (6.30).
Now, for x = (0, t) ∈ E , we have

Gg(x, uφ) = ed1+d2τ [1 − e−μ(τ−t)] + ed2τ e−μ(τ−t)

= βg(x) − e−d1+d2τ ed2τ + ed1+d2τ [1 − e−μ(τ−t)] + l(x)g(0, 0),

since ed2τ e−μ(τ−t) = l(x)ν(g). From Eq. (6.29), we get

ed1+d2τ [1 − e−μ(τ−t)] − e−d1+d2τ ed2τ ≤ 0,

proving Eq. (6.31) and completing the proof. �

The next proposition shows that Assumption 4.14 is satisfied.

Proposition 6.9 For every u ∈ SU, there exists a probability measure νu such that
Assumption 4.14 is satisfied.

Proof Clearly, it is easy to see that for fixed u ∈ SU, the Markov kernel G(., uφ; .)

is irreducible. Moreover, we have G(x, uφ; A) ≥ l(x)δ(0,0)(A), where the function
l was defined in Proposition 6.8. Define the set C = {(0, t) : 0 ≤ t < τ }. Therefore,
we have for all x ∈ C , G(x, uφ; A) ≥ e−μτ δ(0,0)(A), implying that the set C is a
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petite set; see [56, p. 121]. Now since β < 1, we get from Proposition 6.8 that there
exists a constant K such that

Gg(x, uφ) ≤ g(x) + K IC (x).

By Theorem 4.1(i) in [54] and Theorem 11.0.1 in [56], the previous inequality shows
that the Markov kernel Gg(., uφ; .) is positive Harris recurrent. Consequently, there
exists a unique invariant probability measure for Gg(., uφ; .). Notice that g(x) ≥ 1,
0 ≤ l(x) ≤ 1. Moreover, for every u ∈ SU and x ∈ E , we have G(x, uφ, A) ≥
l(x)δ(0,0)(A),

∫

E
l(y)δ(0,0)(dy) > 0, and that

∫

E
g(y)δ(0,0)(dy) = g((0, 0)) < ∞.

Now from Proposition 6.8, it follows that for every u ∈ SU and x ∈ E ,

Gg(x, uφ) ≤ βg(x) + l(x)

∫

E
g(y)δ(0,0)(dy), (6.32)

implying that the hypotheses and items (i)–(iv) of Proposition 10.2.5 in [51] are
satisfied. Consequently, by Proposition 10.2.5 in [51], the result follows. �
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