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Preface

Jean-Pierre Minier * and Sergio Chibbaro †
* EDF R&D, MFEE, 6 Quai Watier 78400 Chatou, France

† Institut Jean Le Rond D’Alembert, University Paris 6, 4, place jussieu 75252
Paris Cedex 05

A student trying to get first ideas on, for example, reactive two-phase
flow modelling by browsing through available literature is easily faced with
a number of terms such as PDF approaches, Monte Carlo methods, stochas-
tic models, Kinetic or Langevin equations, etc., which, further compounded
by the regrettable but usual opposition between Eulerian and Lagrangian
points of view, create a rather confused picture. Then, even as acronyms be-
come more and more familiar (when PDF is decoded as Probability Density
Function thus pointing to the fact the aim of a PDF method is to simulate
the probablility density function of some variables), the relations between
these different aspects are not straightforward. By opening reference text-
books, the situation is not immediately improved as names such as Liouville,
Fokker-Planck or Master equations seem to appear without necessarily any
clear order or hierarchy between them. Furthermore, identical concepts
can be referred to quite differently in Physics and in Mathematics: for in-
stance, what is usually (but loosely) named Langevin equations in physical
applications corresponds to stochastic differential equations of a stochastic
diffusion process in mathematical works. Therefore, finding one’s way in
this attractive but intricate landscape may not be an uneventful journey...

This situation can be explained by historical developments. Indeed,
stochastic processes were first introduced in natural sciences and engineer-
ing through the work of Einstein on Brownian motion in 1905. Statistical
analysis had started before with Maxwell and Boltzmann but a specific con-
sideration of ‘fluctuations’ and of stochastic effects can be said to have been
initiated by Einstein’s work. At about the same period, further works, in
particular by Langevin, Smoluchowski and others, extended this first break-
through to the broader class of general diffusion processes, opening the way
to one of the most fruitful branch of modern science with developments
in chemistry, condensed-matter, statistical mechanics, applied physics, me-
chanics and engineering. These first steps were made in the absence of any



strict theory and it is only a few years later that mathematical develop-
ments started to cast these notions into a rigorous framework, in particular
through the work of Wiener (1921). Later on, probability was set on a
rigorous axiomatic basis by Kolmogorov in 1933 and, still later, Ito (1942)
proposed the first clear definition of a stochastic integral. Like a delayed
echo in Physics, another formulation of stochastic integrals was later put for-
ward by Stratonovich (1965) and this illustrates the corresponding but not
always well connected developments made from a mathematical or a phys-
ical point of view. Since these early attempts, stochastic processes have
been used in several areas of science though they are often introduced in
different frameworks which have, apparently, little in common. Stochastic
processes are a current subject of intense research activity in mathemat-
ics, with a typical outlook towards Finance and Economics issues, but the
highly involved and mathematically-oriented formulation may render their
presentation somewhat difficult to grasp for researchers with a more physical
viewpoint. On the other hand, in physics (whether it is theoretical, applied
physics or in some domains of Engineering) stochastic processes have been
also developed but mostly from each separate problems at hand. For exam-
ple, they have been applied in chemical studies, under the name of a Master
Equation which deals with discrete processes, or in Fluid Turbulence and
for Combustion and Reactive Flows, under the term of PDF Methods which
handles diffusion processes and are related to Fokker-Planck PDF models.
Relations between these developments can be missed and, as a consequence,
new ideas are not easy to carry from one field to the next one.

The purpose of the course held at the CISM in Udine (2-6 July 2012)
was to provide a general and unified framework in which stochastic processes
are presented as modelling tools for various issues in physics, chemistry
and engineering with a particular focus on fluid mechanics. The aim was
therefore to develop what can referred to as Stochastic Modelling for a
whole range of applications. It is a middle-of-the-road approach between
rigorous mathematical studies (which aim at proving properties on stochas-
tic processes) and the various physical and engineering studies (which aim
at using directly some properties of stochastic processes for specific issues).
In that respect, the purpose of the course was to propose a mathemati-
cally correct but yet simplified picture of the key aspects and properties of
stochastic processes so that they can be manipulated without risks of slip-
ping into mistakes and applied to provide insights into physical situations
and practical problems.

In this general framework, a precise objective of the course was to show
how stochastic modelling allows us to address various issues related to the
derivation of statistical models in a new and powerful way. In particular,



one purpose was to show that stochastic modelling introduces naturally a
mesoscopic level where models can be formulated in a stochastic language
which is very helpful for the expression of macroscopic constitutive rela-
tions. Indeed, in the context of statistical formulations, stochastic modelling
provides an interesting frame which, once mathematical aspects have been
understood, turn out to be a major help for physical analysis and concerns.

For these reasons, the course started with a presentation of important
mathematical issues related to stochastic processes. This is reflected in
Chapter 1 of this volume which aims at putting forward key notions of
stochastic processes and at clarifying the common points between exist-
ing formulations (PDF models, Lagrangian models, Monte Carlo methods,
etc). A second specific course was devoted to the development of numer-
ical schemes for practical simulations of stochastic processes. This part is
not reproduced within this volume but a detailed account can be found in
Peirano et al. (2006). The rest of the course was devoted to illustrating
the interest and the range of possible applications in several domains of ap-
plied physics and mechanics. Two complete courses concerned the subject
of colloidal particle agglomeration and deposition/resuspension. They are
not reproduced in this volume but details be found in specific articles (see
Mohaupt et al. (2011) for colloidal particle collision and agglomeration) and
in a recent comprehensive review article (Henry et al., 2012) on the gen-
eral issue of particulate fouling. Among the various domains of interest,
particular attention was concentrated on the specific issue of polydisperse
turbulent two-phase flows which is a subject of great practical interest while
proposing fascinating theoretical challenges. Apart from the range of ap-
plications that are directly related to it, this subject is a direct illustration
of the importance of having physical modelling ideas which are based on
a rigorous and well-developed mathematical basis, as emphasised in this
Introduction. Indeed, earlier attempts to propose PDF descriptions made
interesting and, in that sense, pioneering steps but have failed to set up a
rigorous basis and have thus been hampered and even sapped by internal
inconsistencies. During the course, detailed presentations were proposed
where the same issue is addressed based on a more rigorous mathemati-
cal foundation (such as the choice of a Markovian description) and on the
key physical notions of scale-separation and of fast/slow variables which are
gathered in the central notion of the choice of a proper mesoscopic descrip-
tion and, more specifically, on the importance of a relevant choice of the
state vector. This is proposed in detail in Chapter 2. Another presentation
dealing with the same subject of polydispere two-phase flows was made by
Pr. Fox who developed Quadrature-based Moments methods which, as in-
dicated by their names, are trying to capture moments in relation with a



stochastic description and are, in that sense, interesting illustrations of how
stochastic modelling can be used for a consistent formulation of macroscopic
quantities. These recent ideas and developments are detailed in Chapter 3.
In illuminating presentations, Pr. Succi described first how stochastic ideas
were used in the development of lattice-gas methods and, later, with the
more powerful Lattice-Bolztmann Methods (LBM) and, second, how meth-
ods such as Dissipative Particle Dynamics (DPD) provide an interesting
modelling framework at a mesoscopic level which bridges the gap between
molecular and hydrodynamical levels. These subjects are presented in detail
in Chapter 4.
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Mathematical background on stochastic
processes
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1 Why study mathematical aspects?

As mentioned in the introduction to this volume, the purpose of the for-
mation was mainly to provide an in-depth presentation of stochastic pro-
cesses as modelling tools. The chosen standpoint is thus a physical point
of view. However, it has also been emphasised that, in order to be able
to follow the details of specific models and build bridges between different
subjects where new ideas related to stochastic modelling can appear, re-
searchers must have a sound knowledge of the mathematical properties of
stochastic processes. This represents a middle-of-the-road approach. In-
deed, even though the subject is still relatively young, a vast mathematical
literature exists on stochastic processes (Arnold, 1974; Klebaner, 1998; Ok-
sendal, 1995; Karatzas and Shreve, 1991) but these works may not be easily
accessible to physically-oriented readers. On the other hand, stochastic
processes have been used in separated fields of Applied Physics but not al-
ways with a clear presentation or resorting to some ‘recipes’. Yet, in recent
decades, attempts have been made to come up with improved introductions
to stochastic processes in the Physics community. In particular, the books
by Van Kampen (1992) and especially by Gardiner (1990) marked a first
step in addressing the issue from a general perspective (thus the name hand-
book appearing in Gardiner’s title) but are still subject to some critics from
a strict mathematical standpoint. In terms of the level of details provided
and of mathematical rigour, an improved presentation (in the present au-
thors’ opinion) was later made by Ottinger (1996) who, interestingly enough,
proposed a introduction to stochastic modelling out of a specific physical
issue related to polymer study. Yet, perhaps as the consequence of this very
issue, only diffusion stochastic processes were considered. It may also be
noted that other presentations can be found in review articles on stochastic

S. Chibbaro, J. Minier (Eds.), Stochastic Methods in Fluid Mechanics, CISM International Centre  
for Mechanical Sciences, DOI 10.1007/978-3-7091-1622-7_1, © CISM, Udine 2014 



2 J.P. Minier and S. Chibbaro

methods for fluid dynamics (Pope, 1985; Minier and Peirano, 2001) where,
in particular in the latter one, a unified version of so-called PDF equations
is proposed. In this chapter, following this middle-of-the-road approach,
a mathematical introduction to the main characteristics of stochastic pro-
cesses is presented.

Before outlining some basic characteristics of stochastic processes, a few
words to illustrate where stochastic processes come into play are in order.
From a physical point of view, stochastic processes and stochastic differen-
tial equations (SDE) appear naturally in systems where a so-called ‘white-
noise’ is acting. At this stage, it is worth making the distinction between
two situations.

On the one hand, if we consider a classical mechanical description where
a mechanical object is described by a certain state-vector, say X, whose
evolution equation is under the influence of an external random force that
can be expressed by

dX(t)

dt
= f(t,X(t), Y (t)) (1)

and if the random functions, Y (t), are ‘smooth-enough’, then the above
equations are meaningful and classical calculus, as well as the theory of
Ordinary Differential Equations (ODE), are still applicable. In other terms,
such noises are referred to as ‘coloured noise’ and no new theory is needed.

On the other hand, if we consider the same mechanical system but under
the influence of a ‘white-noise’, for example through an evolution equation
of the type

dX(t)

dt
= f(t,X(t)) + g(t,X(t)) ζt (2)

where ζt represents a very-fast noise (constant spectral density and infinite
energy but with a zero-correlation timescale), then a new theory is
needed to define and handle these equations!

2 An introduction to Stochastic Processes

2.1 Random variables

Simplified presentation. In most physically-oriented textbooks, ran-
dom variables are often introduced directly and loosely defined as one vari-
able, say X, which can take different possible values, say x, in a corre-
sponding sample space. This sample space can be discrete or continuous,
for example R or Rd for a d-dimensional vector variable. The distribution of
all possible values, x, of the random variable X is measured by introducing
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the probablity density function (pdf) pX(x) which is defined by

P [x ≤ X ≤ x+ dx ] = pX(x) dx. (3)

As can be seen, the pdf is a density and only integrated values over a
small intervals are meaningful, although pX(x) is loosely referred to as the
probablity to have X = x (which is mathematically meaningless or would
always be 0 since the ‘length’ of the interval is zero in that case!). The pdf
is the key quantity to characterise the random variable (in a weak sense)
since it gives access to all statistics derived from X, and we have for any
chosen function, say Q, that

〈Q(X)〉 =
∫

Q(x)pX(x) dx. (4)

The approach is extended to joint random variables, say Z = (X,Y ), by
introducing their joint probablity density function, pX,Y (x, y), defined as

P [x1 ≤ X < x2 ; y1 ≤ Y < y2 ] =

∫ x2

x1

∫ y2

y1

p(X,Y )(x, y) dx dy. (5)

Once joint random variables are characterised (by their joint pdf), in-
formation is retrieved on each separate random variables as marginals

pX(x) =

∫
p(X,Y )(x, y) dy pY (y) =

∫
p(X,Y )(x, y) dx. (6)

Then, conditional random variables can also be introduced (from two joint
variables) by defining for example the probability distribution of one vari-
able, say Y , but conditioned on the event X = x (accepting the loose
notation already mentioned above) as

pY |(X=x) =
p(X,Y )(x, y)

pX(x)
. (7)

It must be noted that mean conditional statistics of Y |(X = x) are also
random variables (basically as a function of the conditioned event) and that
we have

〈Q(X,Y )|(X = x)〉 =
∫

Q(x, y)pY |X(y) dy (8)

from which the unconditional statistics are obtained by further integration
over all possible values of the condition

〈Q(X,Y )〉 =
∫
〈Q(X,Y )|(X = x)〉 pX(x) dx. (9)
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Many related notions can be found in more details in most classical tetxt-
books on the subject. Yet, some useful relations (which often serve as start-
ing points for the derivation of PDF equations in sample-space, see Pope
(1985); Minier and Peirano (2001)) can be already obtained, for example:

〈 δ(X − x) 〉 = pX(x). (10)

In spite of its apparently obvious nature, this is an intricate result since the
left-hand side of the equation involves the expectation operator, the Dirac
distribution (since it is rigourously a distribution rather than a function),
the random variable and one of its possible value in its corresponding sample
space. A further result involves two-joint random variables and is given by
the following relation

〈Y δ(X − u) 〉 = 〈Y |(X = u) 〉 pX(u). (11)

However, this simplified and short-cut presentation of random variables
can be faced with severe problems when more involved notions come into
play. For example, the notion of the different modes of convergence of a
series of random variables cannot be understood. Furthermore, conditional
random variables can only be understood when we start with two (joint)
random variables whereas the real notion can involve only a coarse-grained
version of a single random variable. This important notion is completely
missed by such a simplified presentation. Finally, and this is a key point for
our present concern, this simplified presentation is a severe limitation when
we want to introduce stochastic processes and, in particular, the natural
correspondance between the trajectory and the pdf points of view.

Rigorous presentation. From a rigorous point of view, a random vari-
able X is defined as a measurable function

(Ω,F , P ) −→ (A,G)
ω −→ X(ω) (12)

and PX(B) = P (X−1(B)) is the probablity measure induced where B ∈ G
is a subset (or an ‘event’) of the σ-algebra A.

When for example the arrival ensemble A is equal to R (or Rd) then, by
considering the Borel σ-algebra (generated by intervals) and by assuming
a density with respect to the Borel measure dx, we retrieve the simplified
notion of probablity density functions

P ([a, b[) =

∫ b

a

px(u) du. (13)
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A very detailed and easily-accessible presentation can be found in the
book by Ottinger (1996). It is seen that, from a mathematical point of view,
a random variable is defined as the map from an underlying (or reference)
probability space, Ω, equipped with a set of subsets that form a σ-algebra
A and with a reference probability measure P which is a measure of this
reference ‘chance’ or ‘randomness’. Even though this reference probability
space is not explicitely detailed, the idea of having a random variable as
a measurable function is actually quite natural. As beautifully explained
in particular in the first part of Ottinger (1996), the introduction of σ-
algebras corresponds to the intuitive notion of the ‘level of information’
that is resolved by one description (that is by the specific choice of a random
variable) and, therefore, corresponds directly to the notion of coarse-grained
and fine-grained descriptions of the same object (represented directly here
by different σ-algebras, one being contained in the other one).

Having rigorously defined random variables, we are now in a position to
introduce and understand the various modes with which a series of random
variables can be said to converge to a limit random variable. For that
purpose, let us consider (Xn)n∈N and X, random variables with values in �
and defined on the same probablity space. Four modes of convergence can
be defined:

1. X is the almost sure limit of the sequence (Xn), if

P ({ω||Xn(ω)−X(ω)| → 0 as n → ∞}) = 1

2. X is the mean-square limit of the sequence (Xn), if

〈 |Xn −X|2 〉 → 0 as n → ∞
3. X is the stochastic limit of the sequence (Xn), if

P ({ω||Xn(ω)−X(ω)| ≥ ε}) → 0 as n → ∞
4. X is the limit in distribution of the sequence (Xn) if

∀g, lim
n→∞〈g(Xn)〉 = 〈g(X)〉

For the first three modes of convergence, it is clear that (Xn)n∈N and X
must be defined on the same probability space (a notion that escapes the
simplified presentation) while this is not necessary for the convergence in law
or in distribution (fourth mode of convergence). These modes of convergence
have been considered in detail, for example in (Ottinger, 1996), and they
are essential as they enter important results or concepts in stochastics. The
first mode corresponds to the strongest possible mode and is often referred
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to as convergence ‘for each ω’ or ‘almost everywhere’. The second mode
is important since the second-order moment corresponds to the notion of
energy in physics and because this mean-square limit plays a central role in
the definition of the stochastic integral, as we will see later. Loosely speaking
(and leaving aside the third mode), the almost-sure and mean-square modes
of convergence can be described as strong modes of convergence. The fourth
mode of convergence introduces a different notion: in this approach, we are
basically interested not directly in the random variables themselves but in
the statistics extracted from the random variables. This corresponds to a
convergence in the weak sense, or in the distribution sense. The convergence
in law is often the relevant mode of convergence in many applications in
Physics where approximations of some statistics are being sought. The
convergence in law is referred to as a weak mode of convergence.

2.2 Stochastic processes

Having briefly recalled some notions about random variables, we now
turn to stochastic processes. Following what has been done for random
variables, we will first consider a simplified presentation, then put forward
some definitions and useful notions about stationary processes, before in-
troducing a more rigorous presentation that is the key to understanding the
most important characteristics of stochastic processes.

Simplified presentation. First of all, what is a stochastic process? The
answer to that question is actually rather straightforward: a stochastic pro-
cess is a sequence (or family) of random variables indexed with a continuous
parameter which is usually time and is thus written as (Xt)t∈T (where T
stands for a time interval).

The second immediate question is: what is the information needed to
characterise a stochastic process? This is not such an obvious question
and it will be seen that this question is directly related to the important
separation between Markovian and non-Markovian processes. Let us now
consider the amount of information that is implied by the notion that a
given stochastic process is known:

1. At each given time, say t, X(t) is a random variable and (in this
simplified presentation) we must know its pdf, that is p(t;x) where x
represents the value of the random variable in its sample space. And,
of course, this must be valid for each time which means that we must
know the family of functions: p(t;x), ∀t.

2. For each couple of times, say t1 and t2, we must the law of the joint
two random variables Xt1 and Xt2 , which means that we must know
the joint pdf p(t1, x1 ; t2, x2), ∀t1 and t2.
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3. The same if true for any number of chosen times (t1, t2, . . . , tN ) . . .
This reasoning reveals that knowing a stochastic process amounts to the

knowledge of the joint law of the joint random variables (Xt1 , Xt2 , . . . , XtN ),
that is to the knowledge of the joint law p(t1, x1; t2, x2; . . . , tN , xN ) for any
chosen set of N times and for any values of the times (t1, t2, . . . , tN )! If we
regard the joint pdfs as pieces of information, it appear therefore that the
amount of information that is needed to characterise a general stochastic
process is huge!

As a first consequence, it can be understood that, for a general stochastic
process, we can always define or construct the one-time pdfs, p(t, x), t ∈
T but, without any specific property, this information is not sufficient to
characterise the stochastic process.

A note on stationary processes. Before going into a more rigorous
presentation of stochastic processes, it is worth considering the subclass of
stationary processes since they allow to introduce key physical notions such
as the integral timescale and the energy spectrum.

By definition, a stochastic process is said to be stationary if its law is in-
variant by a shift of time. Since we have just seen that the law of a stochastic
process is the joint pdf of the joint random variables (Xt1 , Xt2 , . . . , XtN ) for
any value of N and for any choice of the times (t1, t2, . . . , tN ), this condition
can be formulated as: ∀T, ∀N and ∀(t1, t2, . . . , tN )

p(t1 + T, x1; t2 + T, x2; . . . ; tN + T, xN ) = p(t1, x1; t2, x2; . . . ; tN , xN ). (14)

As a consequence, the one-time statistics of a stationary process, such as
the mean value 〈X(t)〉 or any moment 〈Xn(t)〉, are constant while correla-
tions between different times depend only on time lags. One key example is
the auto-correlation of the process 〈X(t)X(t+ s)〉 which is only a function
of the time lag

R(s) = 〈X(t)X(t+ s)〉.
Since one-time statistics are constant, the auto-correlation coefficient is also
a function only of the time lag

ρ(s) =
〈X(t)X(t+ s)〉√〈X2(t)〉〈X2(t+ s)〉 =

〈X(t)X(t+ s)〉
〈X2〉 .

The integral timescale of the process is then defined as the integral of
the auto-correlation coefficient over all (positive) time lag

T =

∫ +∞

0

ρ(s) ds. (15)
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A typical shape of the auto-correlation coefficient is dispayed in Fig. 1,
where the dotted square indicates the rectangle having the same size as the
integral below the curve of the auto-correlation coefficient. The parameter
λ represents the time where the osculating parabola intersects the time
coordinate and is related to the value of the Taylor timescale, along with
several properties which can be found in more detailed presentations (Pope,
1985, 2000; Minier and Peirano, 2001).

Figure 1. Typical shape of the auto-correlation function of a stationary
process, with TL indicating the integral timescale

The integral timescale is an essential characteristic since it measures the
‘memory’ of the stochastic process and allows us to give a precise meaning
to the intuitive notion of small and large time lags. Indeed, when s � T ,
then two successive values of the process X(t) and X(t + s) are highly
correlated (since ρ(s) � 1) whereas when s  T , then X(t) and X(t + s)
are nearly uncorrelated (since ρ(s) � 0). For a stationary process, the
integral timescale T appears therefore as the reference time during which
successive values remain correlated. Then, with respect to a fixed time T0, a
stationary process having an integral timescale T much smaller than T0 will
be seen as a rapidly-changing process, or a fast process, while a stationary
process with an integral timescale T much larger than T0 will be regarded
as a slow process.

Another important notion is the energy spectrum of a stationary process
which is defined as the Fourier-transform of the auto-correlation function

E(ω) =
1

π

∫ +∞

−∞
R(s)e−i ωs ds =

2

π

∫ +∞

0

R(s) cos(ωs) ds. (16)
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By writing the inverse Fourier-transform we have that

R(s) =

∫ +∞

0

E(ω)ei ωs dω (17)

and, in particular, the value of the origin yields the important relation

R(0) = 〈X2(t)〉 =
∫ +∞

0

E(ω) dω (18)

which shows that E(ω) represents the density of the energy (〈X2(t)〉) in its
wave-function space.

Rigorous presentation. One of the interests of having introduced a rig-
orous definition of random variables is that it paves the way for a straightfor-
ward definition of stochastic processes. As already written above, a stochas-
tic process is a family of random variables indexed by a parameter which is
usually time and, thus, appears as a function of two variables

T × (Ω,F , P ) −→ (A,G)
(t, ω) −→ X(t, ω) (19)

Based on this rigorous definition, it is now clear that there are two
possible ways to handle a stochastic process by fixing one variable and
studying the variations with respect to the second variable. Thus, for the
same stochastic process Xt we can make the following choices:

1. we can first fix the variable t indicating time. Then, for each t ∈ T ,
we have now a function

ω −→ Xt(ω) = X(t, ω)

which shows that Xt(.) is a random variable with a pdf p(t, x). From
this first point of view, we are thus led to handle the family of the
pdfs, as time evolve, and search for the PDF equation satisfied by
p(t, x) in the corresponding sample space;

2. we can also decide to fix the other variable ω which indicates a subset
of the sigma algebra of the probablity space on which the stochastic
process is defined. This apparently abstract notion represents in fact
one ‘elementary event’, or one outcome, of the underlying randomness
governing the process. Then, for each fixed ω ∈ Ω, we have now a
function of time only

t −→ Xω(t) = X(t, ω)
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Each of these functions define what is called a trajectory, or a sample
path, of the stochastic process. From this second point of view, we
are led to handle a number of trajectories (corresponding to various
choices or outcomes of the elementary events ω). This second point of
view is the one followed in Monte Carlo methods and, in particular, in
the characterisation of a stochastic process by dynamical Monte Carlo
approaches.

These two different points of view define what can referred to as ‘the PDF
point of view’ and the ‘trajectory point of view’ (Minier and Peirano, 2001)
and, from the rigorous definition of a stochastic process, it is now obvious
that they correspond to two descriptions of the same mathematical object,
namely the stochastic process itself, and not characterisations of two differ-
ent processes.

2.3 Markov processes

We have seen that the information required to characterise a general
stochastic process is huge. As a consequence, not much can be said about
general stochastic processes and attention has been focused on classes of
stochastic processes for which the information can be reduced to a tractable
level. In that sense, the most important class of stochastic process is made
up by Markov processes.

A markov process corresponds to a process where ‘the present is enough
to predict the future’. In terms of conditional pdfs, this statement is trans-
lated into the definition of a Markov process

Definition 2.1. A stochastic process Xt is a Markov process if for all n
and for any chosen set of times (t1, t2, . . . , tn), we have that

p(tn, xn | (t1, x1; t2, x2; . . . ; tn−1, xn−1)) = p(tn, xn | tn−1, xn−1). (20)

In the above formula, it is seen that (tn−1, xn−1) represents the present
state while (tn, xn) represents the future and (t1, x1; t2, x2; . . . , tn−2, xn−2)
the past. The Markov property is often described by stating that the future
is independent from the past, but a better formulation is to say that the
past is actually contained in the present.

Though surprising at first, the Markov property is actually a rather
natural concept and a direct extension of classical mechanics. Indeed, in
classical mechanics (say Lagrange Mechanics), one expresses the evolution
in time of a given mechanical object by giving an initial condition and its
time rate of change. This is translated in an Ordinary Differential Equation
(ODE) by saying that, if we know the initial condition and the time rate of
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change, then the whole history of a mechanical object is known or, in other
terms, that the past is contained in the present.

The fundamental property of Markov processes is that the huge amount
of information needed to characterise a stochastic process is reduced to the
knowledge of just two functions: an initial distribution at a given initial time
t0, p(t0, x0), and the transitional density p(t, x | s, y) (for t ≥ s). Following
what has just been said about classical mechanics, it is seen that the initial
distribution represents the extension of the initial condition in ODE while
the transitional pdf represents the equivalent of the time rate of change.

It is worth showing that the knowledge of the two functions, p(t0, x0)
and p(t, x | s, y), added to the Markov property is enough to generate all
information about the stochastic process. Indeed, we can first obtain all
one-time pdfs at times t ≥ t0 since

p(t, x) =

∫
p(t, x | t0, x0) p(t0, x0) dx0. (21)

Then, the transitional pdf gives access to any two-time pdfs

p(t2, x2; t1, x1) = p(t2, x2 | t1, x1) p(t1, x1). (22)

So far, these relations are valid for any stochastic process and do not rely on
the Markov property which only comes into play when we consider three-
time pdfs and, more generally, n-time pdfs

p(t3, x3; t2, x2; t1, x1) = p(t3, x3 | (t2, x2; t1, x1)) p(t2, x2; t1, x1)

(Markov property)

= p(t3, x3 | t2, x2) p(t2, x2; t1, x1)

= p(t3, x3 | t2, x2) p(t2, x2 | t1, x1) p(t1, x1). (23)

This last relation is easily extended to the general case of n-time pdfs,
showing that at, any discrete time, the joint pdf is obtained through a
chain rule using only the initial pdf and the transitional pdf whose name is
justified since it carries the information from one time to another:

p(tn, xn; tn−1, xn−1; . . . ; t1, x1) = p(tn, xn | tn−1, xn−1)

× p(tn−1, xn−1 | tn−2, xn−2) × . . .× p(t2, x2 | t1, x1) p(t1, x1). (24)

This is a fundamental property which shows that, apart from an initial con-
dition, the huge amount of information needed to characterise a stochastic
process is fully retrieved by one key function: the transitional pdf. Thus, for
a Markov process, knowing the process is reduced to knowing a single pdf
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function which can be obtained by a PDF equation or by the simulation of
a large number of trajectories. However, it must be emphasised that this is
only true for Markov processes. For a non-Markov process, one can always
consider the transitional pdf, p(t, x | s, y) (for t ≥ s) but, in that case, this
function is not sufficient to characterise the stochastic process: it is then an
incomplete description of the process itself! In practice, this means that, to
describe a given object, the art of modelling starts by trying to choose rele-
vant state-vectors which can be regarded as Markov processes with a good
approximation rather than developing advanced and complex closure meth-
ods for a given and fixed state-vector which has very little chance of being
a Markov process. It will be seen that this question and the whole issue of
choosing a relevant state-vector is at play in two-phase flow modelling.

For Markov processes, the fundamental function is thus the transition
pdf which can be shown to satisfy the non-linear equation (Gardiner, 1990;
Ottinger, 1996), known as the Chapman-Kolmogorov equation:

p(t, x | t0, x0) =

∫
p(t, x | t1, x1) p(t1, x1|t0, x0) dx1. (25)

More elaborate and important relations are obtained by considering the
so-called Infinitesimal Operator which is defined by

Ltg(x) = lim
dt→0

〈(g(Xt+dt)|Xt = x)〉 − g(x)

dt
(26)

where it is seen that the Infinitesimal Operator ‘mesures’ the effect of a
conditional increment of the (Markov) stochastic process over a test function
g (thus characterising these increments in a weak sense). As indicated by its
name, this operator Lt generates the properties of the stochastic process.
In particular, it can be shown (Arnold, 1974; Gardiner, 1990; Ottinger,
1996) that the transition pdf p(t, x | s, y), which is a function of two sets
of variables the ‘forward ones’ (t, x) and the ‘backward ones’ (s, y), is the
solution of two fundamental equations. When we consider (t, x) as being
fixed and the transition pdf as a function of (s, y), then p(t, x | s, y) is the
solution of the following equation⎧⎨

⎩
∂p

∂s
+ Lsp = 0

end cd. p(t, x | s, y) = δ(x− y) s → t
(27)

which is known as the Kolmogorov backward equation. When we consider
(s, y) as being fixed and the transition pdf as a function of (t, x), then
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p(t, x | s, y) is the solution of the following equation

⎧⎨
⎩

∂p

∂t
= L∗

t p

initial cd. p(t, x | s, y) = δ(x− y) t → s
(28)

which is known as the Kolmogorov forward equation and where L∗
t stands

for the adjoint operator of Lt. From a physical point of view, we are often
more interested in the second equation since the problem we are faced with
can usually be formulated as: given an initial state and a certain evolution,
where do we have a chance to end up? However, the first formulation finds
also a natural place in many applications (finance, inverse problems, . . . ).
One noteworthy aspect is that the two equations are obtained, as adjoints,
from the same operator and, therefore, any modelling through the choice of
a particular operator Lt yields naturally information on both the forward
and backward problems.

2.4 Two key processes: the Poisson and the Wiener processes

We have seen that, starting from general stochastic processes, attention
is focused on the important class of Markov processes. Then, within this
class, it is worth making a distinction between two branches or subclasses:
processes whose trajectories remain constant but jump at random instants
and processes with continuous trajectories and infinitesimal changes within
each time step. The first branch corresponds to processes whose trajectories
have a small probability to change in an infinitesimal time interval but then
evolve with a finite-size jump if a change happens. The second branch corre-
sponds to processes whose trajectories are continuous, therefore with small
changes over an infinitesimal time interval, but these changes occur with
probability one in any time interval. For each of these two main categories,
one process stands out as the canonical example over which generalisations
can be built: the Poisson process for jump processes and the Wiener process
for diffusion processes.

In the applications with which we are mostly concerned in the present
course (such as transport, diffusion, dispersion), we are naturally inclined
to consider and handle stochastic processes belonging to the second branch
mentioned above, and this will be developed below with a detailed presen-
tation of so-called stochastic diffusion process. It will be seen as the end of
this chapter that these two categories are not necessarily separated and can
be gathered by considering jump-diffusion processes. However, a few words
on the Poisson process itself are first in order.
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The Poisson process. The Poisson process N(t) is the basic process that
counts random discrete events with no simultaneous multiple occurences
being possible (there is a small but non-zero probability to have one jump
but multiple jumps at one time are not possible). The trajectories of the
Poisson process are therefore piecewise constant with jumps (having a step
of one unity in the standard Poisson process) occuring at random times.
Some key properties are illustrated in Fig. 2.

Figure 2. Some properties of the Poisson process N(t): example of one
trajectory of the process jumping at random times Ti which follow an ex-
ponential distribution and the resulting pdf of N(t) at each time t being a
Poisson distribution.

The Poisson process has a number of key properties which are worth
mentioning (Gardiner, 1990; Klebaner, 1998):

• the increments, ΔN(t) = N(t+Δt)−N(t), of the Poisson process are
stationary and independent;

• a Poisson process is characterised by its intensity, λ, which is the mean
value of the number of events occuring per unit time: the number of
events in a time interval [t , t+Δt ] is a Poisson random variable

P[ ΔN(t) = k ] =
(λΔt)k

k!
e−λΔt (29)

from which it derives that the mean and variance of the increments
are identical and linear with respect to the time increment Δt

〈ΔN(t)〉 = λΔt 〈(ΔN(t)− 〈ΔN(t)〉)2〉 = λΔt. (30)
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• on any finite interval, the individual events are uniformly distributed;
• The waiting times (the time intervals between successive random events
or occurences) are random variables which follow an exponential dis-
tribution with parameter λ

P[Ti = t ] = λe−λt ⇒ 〈Ti〉 = 1

λ
(31)

• the reference timescale is thus 1/λ and by taking a time interval Δt
much smaller than this reference timescale (λΔt � 1), we retrieve
the usual presentation of the statistics of the increments

P[ ΔN(t) = 0 ] � 1− λΔt

P[ ΔN(t) = 1 ] � λΔt (32)

P[ ΔN(t) = k ] = 0 (k ≥ 2)

The standard Poisson process is the building block for generalised Poisson
processes where the jumps can take random discrete values (Gardiner, 1990;
Klebaner, 1998). As such, it represents the main process to simulate dis-
crete jump events. Given the fundamental discrete nature of elementary
Physical processes (Nature is made of atoms; the discrete jumps involved in
Quantum Mechanics; etc.), this has led to consider the corresponding PDF
equation as a Master Equation, from which diffusion processes would only
appear as coarse-grained approximations (Van Kampen, 1992). However, in
terms of stochastic modelling, this appear as misleading since it is based on
the point of view of one application (even if continuum fluid mechanics is
indeed always a coarse-grained version of discrete molecular events . . . but
can also be regarded as a fundamental starting point for further deriva-
tions), leading to possible confusion concerning the status and the relations
between various PDF equations. Recent attempts have been made to clarify
this issue (Minier and Peirano, 2001) and it is emphasised here that, in fact,
jump processes and diffusion processes are stochastic models for two differ-
ent properties of the phenomena which are modelled (without considering
whose phenomenon is more fundamental than the other ones). They can
be chosen separately or handled together, as will be recalled at the end of
this chapter, defining a stochastic description that encompasses the two key
processes (Gardiner, 1990; Minier and Peirano, 2001).

The Wiener process. In Physics, the Wiener process represents Brown-
ian motion (first introduced in an heuristic way by Einstein in 1905 and later
put on solid mathematical grounds by Wiener in 1921) while it is the corner-
stone of the construction of stochastic differential equations (Arnold, 1974;
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Oksendal, 1995). Brownian motion has been the subject of comprehen-
sive studies (Karatzas and Shreve, 1991) detailing many specific properties.
In the present context, we will define the Wiener process by the following
properties:
(i) the process has independent increments: (Wt3 −Wt2) and (Wt1 −Wt0)

are independent when t0 < t1 < t2 < t3
(ii) the trajectories of the process are continuous functions (almost every-

where)
(iii) the increments of the Wiener process (Wt2−Wt1) are Gaussian random

variables, centered and with a variance equal to (t2 − t1)
The Wiener process has fundamental properties:
• it is a Gaussian, Markov process, with mean and covariance

M(t) = 〈Wt〉 = 0 C(t, t′) = 〈WtWt′〉 = min(t, t′) (33)

• the transitional density is a Gaussian pdf

p(t, x | t0, x0) =
1√

2π(t− t0)
exp

(
− (x− x0)

2

2(t− t0)

)
(34)

• the transitional density p(t, x | t0, x0) is the solution of the heat equa-
tion, revealing the diffusive nature of the pdf evolution

∂p

∂t
=

1

2

∂2p(x)

∂x2
with p(t, x | t0, x0) = δ(x− x0) t → t0 (35)

• the increments dWt are stationary and independent

〈dWt〉 = 0, 〈(dWt)
2〉 = dt, 〈(dWt)

n〉 = o(dt) (36)

• the trajectories are continuous but non-differentiable at any point!
Furthermore, trajectories have unbounded total variations in any in-
terval!

The last three properties reveal the equivalence between the smooth
evolution in sample space of the pdf (through a pure diffusion equation) and
the wildly fluctuating behaviour (at any scale!) of the trajectories. The fact
that the variance of the increments 〈(dWt)

2〉 is linear in dt instead of scaling
with dt2 is an indication that the trajectories are nowhere differentiable
or, in other terms, that the ‘velocity’ of a Brownian particle is infinite at
any instant. From a physical point of view, it is precisely the infinitive
‘velocity’, or the ‘infinitively fast’ behaviour of each trajectory (or sample
or ‘molecule’), that leads to a smooth but irreversible diffusive evolution of
the pdf and, therefore, of any moments at a continuum level, see Minier
and Peirano (2001, chap. 4). The non-differentiability and infinite total
variation of the trajectories of the Wiener process have deep consequences
for the construction of the stochastic integral, as will be seen below. A
typical example of a trajectory of the Wiener process is displayed in Fig. 3
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Figure 3. One trajectory of the Wiener process showing a continuous but
ragged shape. The window, where a zoom of the trajectory is displayed,
indicates the self-similar nature and the (infinitively) fast fluctuations of
the trajectories of the Wiener process.

2.5 Stochastic Differential Equations

Motivation. Before moving into the mathematical aspects of the defi-
nition of stochastic integrals, it is worth outlining the motivation and the
main ideas from a more physical point of view. For that purpose, following
what has been put forward in the introduction of this chapter, we recall
that the aim is to give sense to equations where a white-noise ζt is acting

dXt

dt
= A(t,Xt) +B(t,Xt) ζt. (37)

We can consider the historical example of the motion of Brownian particles
in Langevin’s description (see Gardiner (1990, chap. 1))

dVt

dt
= −αVt + Ft (38)

where the total force acting on a Brownian particle (from molecular colli-
sions) is written as the sum of a friction term and a random term. From an
initial condition, V0 = 0, an heuristic integration gives

Vt =

∫ t

0

e−α(t−t
′
) F (t

′
) dt′ = e−αt

∫ t

0

eαt
′
F (t

′
) dt′ (39)

and from the chaotic nature of molecular impacts (at the scale of a Brown-
ian particle which is assumed to be much larger than the fluid molecules and
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having a typical timescale much larger than intercollision times) we expect
that 〈F (t′)〉 = 0 which implies that 〈Vt〉 = 0. From thermodynamic con-
siderations, we also expect that the energy 〈V 2

t 〉 of the Brownian particles
reaches an equilibrium value (since the particles are in contact with a heat
bath). The particle energy is given by

〈V 2
t 〉 = e−2αt

∫ t

0

dt′
∫ t

0

e−α(t′+t”) 〈F (t′)F (t”)〉 dt”. (40)

The first idea is to consider Ft as a stationary, Gaussian, process with
independent values at each time but with a finite value:

〈F (t)F (t′)〉 = 0 if t �= t′ (41)

= 1 if t = t′ (42)

This irregular process can be approximated by a series of ‘regular’ stationary
Gaussian processes Y n

t

〈Y n
t 〉 = 0 (43)

〈Y n
t Y n

t′ 〉 = e−n|t−t′| (n → ∞) (44)

from which the particle energy is then approximated by

〈(V n
t )2〉 = e−2αt

∫ t

0

dt′
∫ t

0

e−α(t′+t”) e−n|t′−t”| dt”. (45)

However, we end up with the result that 〈(V n
t )2〉 → 0 when n → ∞. Since

Vt is a Gaussian process, with a mean 〈Vt〉 = 0 and a variance 〈V 2
t 〉 = 0,

this implies that the approximation of the noise yields that Vt = 0! This is
of course a ludicrous result from a physical point of view, showing that the
assumption that the noise F (t) could be thought of as a process with finite
energy and no memory is not acceptable. We are thus led to consider that
the energy of the random term is infinite, in such a way that

〈F (t)F (t′)〉 = αB δ(t− t′) (46)

Using this form of the auto-correlation function of the noise in the expression
for the Brownian particle energy, we obtain now that

〈V 2
t 〉 =

αB

2α

[
1− e−2αt

]
(47)

from which the long-time stationary value is indeed a non-zero finite value,
in agreement with Statistical Mechanics

〈V 2
t 〉 −→

αB

2α
, t → ∞. (48)
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Heuristic formulation. The previous manipulations led to interesting
results but raise some questions:

1. Is it justified to handle Ft as a well-defined process?
2. Is it correct to integrate the initial equation as a deterministic one?
The main idea is not to handle the noise term directly but to manipulate

the integration of the noise over a time interval, that is to consider

Bt =

∫ t

0

F (t′) dt′. (49)

This idea is simply making use of the smoothing properties of the integration
operator. Then, in an heuristic approach, Bt is a Gaussian process with a
mean function value 〈Bt〉 = 0 and a correlation function expressed by

〈BtBt′〉 =
∫ t

0

du

∫ t′

0

δ(u− v) dv = min(t, t′). (50)

However, we have seen in the preceeding section that this corresponds to the
properties of the Wiener process and this suggests a possible identification of
the integration of the white-noise term with the Wiener process, something
which can be loosely written as

Wt =

∫ t

0

F (t′) dt′ (1) or Ft =
dWt

dt
(2) (51)

At first sight, these two formulations seem equivalent. Yet, since the trajec-
tories of Wt are not differentiable, how can we give sense to these relations
and, in particular, to the relation (2) above?

The answer to that question is that we will not try to give sense to the
form (2) but, using the smoothing properties of the integration operator, we
will try to give a precise meaning to the form (1). In more physical terms,
we cannot give sense directly to the white-noise term but we may give sense
to its effects over a small time interval. Translated back to the original
equation we were considering, this means that we will not try to give a
meaning to the equation

dXt

dt
= A(t,Xt) +B(t,Xt) ζt (52)

but to its integrated form based on the now-meaningful relation ζt dt = dWt

Xt = Xt0 +

∫ t

t0

A(ts, Xs) ds+

∫ t

t0

B(s,Xs) dWs︸ ︷︷ ︸
stochastic integral

. (53)
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As a short-hand notation, this last expression is usually written in an in-
crement form:

dXt = A(t,Xt) dt+B(t,Xt) dWt. (54)

The task ahead is now to define properly the stochastic integral.

2.6 Definition of the stochastic integal

The aim is to come up with a definition of the stochastic integral

I =

∫ t

t0

B(s,Xs) dWs (55)

or, using the more rigorous mathematical notations introduced at the be-
ginning of this chapter, to define more generally the following integral

I(t, ω) =

∫ t

t0

f(s, ω) dWs(ω). (56)

For each trajectory (that is for each ω), the first idea that comes to mind
is to resort to a classical Riemann-Stieltjes definition of the integral, that is
to propose I(t, ω) = limN→∞ IN with

IN =

N∑
i=1

f(τi, ω) (Wi+1 −Wi) where τi ∈ [ti; ti+1]. (57)

Such a definition would make sense if the discrete approximations IN con-
verge to a limit, independently of the choice of the intermediate times τi.
In classical integration theory, this is ensured when the integrand function
has bounded variation (Klebaner, 1998). However, as noted in the preceed-
ing section, one property of the Wiener process is precisely that the sample
paths are of unbounded variation in any interval! Consequently, classical
Riemann-Stieltjes approach cannot be applied. Furthermore, it can even be
shown that, if the limit of the discrete approximations IN exist, this limit
depends explicitely on the choice of the intermediate times τi. . .

The best way to illustrate this point is to consider the canonical example
of stochastic integration, which is I =

∫ t

0
Ws dWs. The classical Riemann-

Stieltjes approximations are then given by

IN =

N∑
i=1

Wτi

(
Wti+1

−Wti

)
, τi = α ti + (1− α) ti+1 0 ≤ α ≤ 1. (58)

It is straightforward to show that even the mean value of the stochastic
integral is explicitely dependent on the value of the parameter α. Indeed,
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by using the properties of the Wiener process and in particular the form of
the auto-correlation function, we have that

〈IN 〉 =
N∑
i=1

(τi − ti) = (1− α) t. (59)

As a consequence, new approaches and new definitions of the stochastic
integral are required. Two such definitions have been proposed, first by Ito
(1941) with a rigorous mathematical basis, and later by Stratonovich (1965)
with what can be loosely taken as a more physical standpoint. In the follow-
ing, we will follow Ito’s point of view which is now regarded as the standard
definition and must always be assumed if nothing else is explicitely speci-
fied. Both definitions are developed for so-called non-anticipating processes:
a stochastic process Xt is said to be non-anticipating if Xt is independent
of the future of the Wiener process, which means that Xs is independent of
(Wt −Ws) for s < t.

Ito definition of the stochastic integral. For a non-anticipating pro-
cess Xt, the stochastic integral is defined in the Ito sense as∫ t

t0

B(s,Xs) dWs = ms- lim
N→∞

N∑
i=1

B(ti, Xti)
(
Wti+1 −Wti

)
(60)

where the limit must be understood as a limit in the mean-square sense
(Arnold, 1974; Oksendal, 1995; Ottinger, 1996) and not any more as a
convergence trajectory by trajectory. By comparison with the classical
Riemann-Stieltjes expression, it is seen that the Ito definition consists in
taking the value of the integrated function at the beginning of each time
interval τi = ti. This means that the increments dWi ‘points into the fu-
ture’ while the function to integrate is frozen at the beginning of the small
time interval. As a consequence of the properties of the Wiener increments
and of the non-anticipating nature of the process, Xti depends only on
Wt′ , t

′ ≤ ti and therefore Xti and ΔWi = Wti+1
− Wti are independent.

The non-symetrical choice in the Ito definition is not only essential for the
mathematical justification of the existence of the limit but results in two
fundamental properties of the integral:

〈
∫ t1

t0

XtdWt〉 = 0 (61)

〈
(∫ t1

t0

XtdWt

)(∫ t3

t2

YtdWt

)
〉 =
∫ t1

t2

〈XtYt〉dt t0 ≤ t2 ≤ t1 ≤ t3. (62)
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As an example of the calculation of a stochastic integral with Ito def-
inition, let us consider again the classical example of I =

∫ t

0
Ws dWs by

developing the form of the discrete approximations

IN =

N∑
i=1

Wti

(
Wti+1

−Wti

)

=
N∑
i=1

1

2

{
(Wti +Wti+1

−Wti)
2 −W 2

ti − (ΔWi)
2
}

=
N∑
i=1

1

2

{
W 2

ti+1
−W 2

ti − (ΔWi)
2
}

=
1

2

(
W 2

t −W 2
t0

)− 1

2

N∑
i=1

(ΔWi)
2

︸ ︷︷ ︸
AN

(63)

If the Wiener process was differentiable, then the variance of each incre-
ment entering the term AN would be of order (Δt)2 (considering a regular
partition of the time interval [0, t] with a constant time step Δt) and AN

would vanish as Δt → 0. However, as emphasised before, this is not the
case and the linear scaling of the variance of each increment with respect to
Δt implies that AN is not vanishing. Actually, it is possible to show that
ms-limN→∞ AN = t. Indeed, the random term AN has a mean value

〈AN 〉 =
N∑
i=1

〈(ΔWi)
2〉 =

N∑
i=1

Δt = t (64)

and by considering the variance of the difference, we get that

〈(AN − t)2〉 = 〈(
N∑
i=1

{
(ΔWi)

2 −Δt
}
)2〉 =

N∑
i=1

2Δt2 = 2
t2

N
→ 0 (65)

which proves that, in the mean-square sense, the random term AN is equal
to the deterministic value t. Therefore, in the Ito sense, the integral is

equal to I =
1

2

(
W 2

t −W 2
t0

) − 1

2
t! If the first term on the right-hand side

is the usual term we would expect from a direct application of the rules of
classical calculus, the existence of the second term is an indication that the
Ito definition implies new calculus rules. These new rules are referred to as
the rules of ‘stochastic calculus’.
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Stochastic calculus. Altough tricky at first, the rules of stochastic cal-
culus are actually easy to understand. Let us first formulate the rules of Ito
calculus: If Xt is a stochastic process, solution of the following Stochastic
Differential Equation (SDE) defined in the Ito sense

dXt = A(t,Xt) dt+B(t,Xt) dWt (66)

and if g a smooth-enough function (say g ∈ C2), then Yt = g(t,Xt) is the
solution of the following SDE

dg(t,Xt) =
∂g

∂t
dt+A(t,Xt)

(
∂g

∂x

)
(t,Xt) dt+B(t,Xt)

(
∂g

∂x

)
(t,Xt) dWt

+
1

2
B2(t,Xt)

(
∂2g

∂x2

)
(t,Xt) dt︸ ︷︷ ︸

new term

. (67)

Thus, Ito calculus (or stochastic calculus) differ from classical calculus by
the existence of an additional term which involves the second-order deriva-
tive. As illustrated by the example of the integral I (where it was equal to
−t/2), this terms is crucial and corresponds to a (usually) non-zero deter-
ministic term. Forgetting this extra term leads to drastic errors and false
drifts with dramatic consequences in the manipulation of stochastic pro-
cesses. The existence of the extra term entering Ito calculus compared to
classical calculus is actually simple to understand: it stems from a Taylor-
series development made to the second-order in dt since it must be remem-
bered that (dWt)

2 = dt in a mean-square sense and, therefore (contrary
to the rules of classical calculus with differentiable functions), second-order
terms of the development can give contributions to the first order in dt. As
a practical rule-of-the-thumb, it is often written that dWt ∼

√
dt.

As an application of Ito calculus for the simple SDE dXt = Adt+B dWt,
a direct calculation for X2

t shows that

d(Xt)
2 = (Xt + dXt)

2 −X2
t = 2Xt dXt + (dXt)

2 = 2Xt dXt +B2 dt (68)

where the last term on the right-hand side stems from the property of the
Wiener increments.

We are now in a position to come back to our manipulation of the
Langevin equation for Brownian motion that was the motivation for the
introduction of white-noise terms

dVt = −αVt dt+ αB dWt. (69)
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With a proper formulation of the stochastic integral and a precise math-
ematical definition, we can now develop a well-defined calculation of the
energy of the Brownian particles. Indeed, from Ito calculus

d(Vt)
2 = 2Vt dVt + α2

B dt ⇒ d〈V 2
t 〉 = −2α〈V 2

t 〉 dt+ α2
B dt (70)

which shows that statistical equilibrium is reached when

α2
B = 2α〈V 2

t 〉 = 2α
kB T

mp
. (71)

This results, which is also known as the fluctuation-dissipation theorem,
shows that the noise and friction terms are related

dVt = −αVt dt︸ ︷︷ ︸
dissipative term

+
√

2αkB T/mp dWt︸ ︷︷ ︸
fluctuating term

(72)

3 Diffusion Stochastic Processes

3.1 Langevin and Fokker-Planck equations

Having properly defined SDEs, the correspondence between the trajec-
tory point of view (which in physically-oriented presentations is often re-
ferred to as Langevin equations) and the PDF point of view (known as the
Fokker-Planck equation) can be worked out.

Let us take Xt the solution of the SDE, dXt = Adt + B dWt, with
X(t0) = x0. For any smooth function g, we consider 〈g(Xt)〉 and, since we
are considering particles starting from a certain initial condition, this mean
value can be expressed with the transitional pdf as

〈g(Xt)〉 =
∫

g(x)p(t, x | t0, x0) dx (73)

from which it derives that

d

dt
〈g(Xt)〉 =

∫
g(x)

∂p

∂t
(t, x | t0, x0) dx. (74)

On the other hand, from the application of Ito calculus, we have that

d〈g(Xt)〉 = 〈A(t,Xt)(
∂g

∂x
)(t,Xt) +

1

2
B2(t,Xt)(

∂2g

∂x2
)(t,Xt)〉 dt (75)

since the mean term involving dWt vanishes thanks to the nice properties
of Ito definition of the stochastic integral. By collating the two expressions



Mathematical Background on Stochastic Processes 25

for 〈dg(Xt)〉, we end up with the identity∫
g(x)

∂p

∂t
(t, x | t0, x0)dx =

∫ {
A(t, x)

∂g

∂x
+

1

2
B2(t, x)

∂2g

∂x2

}
p(t, x | t0, x0) dx

=

∫
g(x)

{
−∂ [A(t, x) p ]

∂x
+

1

2

∂2
[
B2(t, x) p

]
∂x2

}
dx.

(76)

Since this identity is valid for any smooth test function g, we obtain that,
in a weak sense (or as a distribution), there is an equivalence between the
trajectory point of view (the Langevin equations)

dXt = A(t, Xt) dt+B(t, Xt) dWt with X(t0) = x0 (77)

and the PDF point of view (the Fokker-Planck equation)⎧⎨
⎩

∂p

∂t
= −∂[A(t, x) p ]

∂x
+

1

2

∂2[B2(t, x) p ]

∂x2

p(t, x | t0, x0) = δ(x− x0) when t → t0.

(78)

The coefficients A and B in the Langevin and Fokker-Planck equations are
explained by the statistics of the conditional increments

〈ΔX|X(t) = x〉 = A(t, x)Δt, (79)

〈(ΔX)2|X(t) = x〉 = B2(t, x)Δt. (80)

As a result and as displayed in Fig. 4, it is seen that these two coefficients
represent two clear physical phenomena:

• The ‘determistic’ term, A(t, x), governs the mean evolution of the
conditional increments of the process: it is a drift term

• The ‘random’ term, B(t, x), governs the spread of the conditional
increments around its mean value: it is a diffusion term

It is worth clarifying an important point related to the Gaussian hypothesis
and which, unfortunately, can lead to repeated confusion in the literature
when the mathematical aspects have been skipped. From the properties of
the Wiener process, it is clear that the increments ΔWt over a time step Δt
are indeed Gaussian random variables. As a consequence, there is a Gaus-
sian hypothesis built in the Langevin equations. However, as clarified by the
relations written above, only the conditional increments ΔX|(X(t) = x)
of the process Xt are assumed to follow a Gaussian spread over the time in-
terval Δt. In the very special case when the diffusion coefficient is constant
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Figure 4. Some conditional trajectories of a stochastic diffusion process,
or Langevin equations, illustrating the physical meaning of the drift and
diffusion coefficients.

for example (as in the case of the original Langevin equation), then the pro-
cess Xt itself becomes Gaussian. However, in the general case when B(t, x)
is not constant, the Gaussian hypothesis is only valid for the conditional in-
crements and the resulting process Xt can (and usually does) deviate from
Gaussianity!

The correspondence between Langevin and Fokker-Planck equations can
easily been extended to the multi-dimensional case. For instance, we con-
sider the SDEs written for a n-dimensional process X(t) = (X1, . . . , Xn)

dXi = Ai(t,X(t)) dt+Bij(t,X(t)) dWj (81)

where A = (Ai) is the drift vector and B = (Bij) the diffusion matrix. Ito
stochastic calculus for a process g(t,Xt) takes a similar form:

dg(t,Xt) =
∂g

∂t
dt+

d∑
i=1

∂g

∂xi
(t,Xt) dXi(t)

+
1

2

d∑
i,j=1

∂2g

∂xi∂xj
(t,Xt)(BBT )ij dt. (82)

Following the same reasoning as in the one-dimensional case, it is straight-
forward to derive the multi-dimensional PDF equation (the Fokker-Planck
equation)

∂p

∂t
= −∂[Ai(t,x) p ]

∂xi
+

1

2

∂2[ (BBT )ij(t,x) p ]

∂xi∂xj
. (83)
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3.2 Non-linear PDF equations and McKean diffusion processes

The mathematical theory is well-established when the drift and diffusion
coefficients are functions of the value of the process: A(t, x) and B(t, x).
This was the case presented in the previous subsection and it can be seen
that the resulting Fokker-Planck equation is a linear equation with respect
to p(t, x). However, in many physical applications, we need to consider cases
when the drift and diffusion coefficients become also functions of averages
of the process: A(t, x, 〈F(Xt)〉) and B(t, x, 〈G(Xt)〉).

To provide a simple example we may wish to go for a standard Ornstein-
Uhlenbeck process (Gardiner, 1990)

dX = −X

T
dt+B(t,X) dW (84)

to a generalised Ornstein-Uhlenbeck process such as:

dX =

(
d〈X〉(t)

dt
− X − 〈X〉(t)

T

)
︸ ︷︷ ︸

A(t,x,〈X〉)

dt+B(t,X) dW (85)

where the drift term depends on the average 〈X〉(t) =

∫
x p(t, x) dx and,

therefore, on the law (or the pdf) of the process.
The theory developed so far for the definition of the SDEs (the Langevin

equations) as well as the derivation of the PDF equation (the Fokker-Planck
equation) can be extended and remain valid but the Fokker-Planck equation,
which can written as⎧⎨

⎩
∂p

∂t
= −∂[A(t, x,HA(p)) p ]

∂x
+

1

2

∂2[B2(t, x,HB(p)) p ]

∂x2

p(t, x | t0, x0) = δ(x− x0) when t → t0.

(86)

to exhibit the dependence of the drift and diffusion coefficients with p, is
now a non-linear equation with respect to the transitional pdf of the process.
Correspondingly, the evolution equations for the trajectories of the process
have the general form

dXt = A(t,Xt, 〈F(Xt)〉) dt+B(t,Xt, 〈G(Xt)〉) dW. (87)

In many physically-oriented texts, this distinction is hardly ever men-
tioned. However, it is worth being aware that this general case is in fact an
extension of the well-established Langevin-Fokker-Planck framework. In the
mathematical literature, these processes are referred to as McKean diffusion



28 J.P. Minier and S. Chibbaro

processes and in careful physical presentations (Ottinger, 1996) they are re-
ferred to as processes with mean-field interactions. In practical simulations
and using classical Monte Carlo methods, these processes are approximated
by weakly interacting processes and the evolution SDE for a trajectory la-
belled (i) is given by

dX
(i)
t = A(t,X

(i)
t ,

1

n

n∑
j=1

F(X
(j)
t )) dt+B(t,X

(i)
t ,

1

n

n∑
j=1

G(X(j)
t )) dW (88)

with ms− limn→∞
1

n

∑n
j=1 F(X

(j)
t ) = 〈F(Xt)〉.

3.3 General jump-diffusion processes

When discussing Markov processes, we have introduced and discussed
separately the Poisson process, which leads to jump processes, and the
Wiener process, which leads to diffusion processes. Such a distinction is
helpful to study the specific characteristics of each subclass of Markov pro-
cesses. However, these characteristics can be gathered in so-called jump-
diffusion processes. Once again, these processes can be addressed from a
trajectory or a PDF point of view. If we first consider the PDF point of
view, then the extension of the Fokker-Planck equation to include jumps
is known as the general Chapman-Kolmogorov equations and is discussed
for example in Gardiner (1990, chap. 3.4). The drift, diffusion and jump
amplitudes are defined from the transitional pdf p(t+ dt, y | t, x) by

lim
dt→0

1

dt
p(t+ dt, y | t, x) = W (y | t, x), for |x− y| ≥ ε (89)

lim
dt→0

1

dt

∫
|y−x|<ε

(y − x)p(t+ dt, y | t, x) dy = A(t, x), (90)

lim
dt→0

1

dt

∫
|y−x|<ε

(y − x)2p(t+ dt, y | t, x) dy = B2(t, x) (91)

where the last two conditions are identical to the definitions of the drift
and diffusion coefficients already introduced as the first and second-order
moments of the conditional increment while the first condition defines the
probablity of making a jump from state x to state y at time t. It can
be shown that the general Chapman-Kolmogorov equation satisfied by the
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transitional pdf p(t+ dt, y | t, x) has the form

∂p

∂t
= −∂[A(t, x) p ]

∂x
+

1

2

∂2[B2(t, x) p ]

∂x2

+

∫
[W (x | t, y)p(t, y | t0, x0)−W (y | t, x)p(t, x | t0, x0) ] dy. (92)

The relation of this PDF equation with classical PDF equations is discussed
in more details elsewhere (Minier and Peirano, 2001).

From the trajectory point of view, the SDEs for a jump-diffusion process
are written as

dXt = A(t,Xt) dt+B(t,Xt) dWt + C(t,Xt) dNt (93)

where Nt a Poisson process with intensity λ and C(t,Xt) is the amplitude
of the jumps. The jumps contribute to the statistics of the conditional
increments over a time step Δt

〈ΔXt |X(t) = x〉 = (A(t, x) + C(t, x)λ) Δt (94)

〈(ΔXt)
2 |X(t) = x〉 = (B2(t, x) + C2(t, x)λ

)
Δt (95)

The introduction of jumps is illustrated in Fig. 5 which displays sample
paths of a pure diffusion process and in Fig. 6 which displays similar sample
paths for a jump-diffusion process, revealing the discontinuous nature of the
trajectories and their diffusive behaviour between successive jumps.

Figure 5. Four trajectories, or sample paths, of a diffusion process.
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Figure 6. Four trajectories, or sample paths, of a jump-diffusion process.

Over an infinitesimal time increment dt, as explained above, the incre-
ments of a Poisson process can take only two possible values

P[ dN(t) = k ] = (1− λdt) δk,0 + λ dt δk,1 ⇒ 〈(dN(t))m〉 = λ dt ∀m. (96)

Thus, the Poisson jumps contribute to any order in dt (while it is interesting
to remember that the increments of the Wiener process contributes only to
the second order in dt)!

The stochastic differential equations can be further generalised by con-
sidering random amplitudes for the jump, based on what is referred to as a
compound Poisson process

dXt = A(t,Xt) dt+B(t,Xt) dWt + C(t,Xt, Q) dNt (97)

where Q is an independent random variable (in particular, independent of
Nt). For such a general jump-diffusion process, the law of the random jumps
is expressed by

W (y |X(t) = x) = P[C = y|X(t) = x]λ (98)

where the probability P is taken with respect to the law of the independent
random variable Q.
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4 Monte Carlo solutions of partial differential
equations

4.1 Monte Carlo method for random variables

In this part, we briefly recall the key aspects of classical Monte Carlo
methods, as applied to random variables. The basic idea is to use random
numbers, or copies of a random variable, to estimate integrals and, in par-
ticular, statistics derived from this random variable. Indeed, if we consider
a random variable X having a pdf p(x), where x denotes the possible val-
ues taken by the random variable in its sample space, any statistics can be
expressed as

I = 〈 g(X) 〉 =
∫
D
g(x) p(x) dx. (99)

The Monte Carlo method consists in generatingN identical and independent
random variables, (Xi)1≤i≤N , with the same law p(x) (basically N samples
or copies of X) and to approximate the statistics by

I ≈ IN =
1

N

N∑
i=1

g(Xi ). (100)

Once the approximation has been proposed, the two main questions are

1. when does this algorithm converge?

2. what is the precision or what is the rate of convergence?

It is worth pointing out that, in the above approximation, the statistics
〈g(X)〉 are numbers but the discrete sums IN are actually random variables
and should be rigorously noted as IN (ω). Consequently, the meaning of the
convergence expected in the two questions above must be carefully precised.

The positive answer to the first question is ensured by the Law of the
large numbers which states that: let (Xi)1≤i≤N , N independent random
variables with the same law p(x) as a random variable X, and such that
〈X3〉 < ∞, then, for almost every ω, we have that

〈X〉 = lim
N→∞

1

N

N∑
i=1

Xi(ω). (101)

This result is often referred to as the strong law of the large numbers since
it is seen that convergence is to be understood here as the almost-sure mode
of convergence (see the discussion on the different modes of convergence),
therefore a strong mode of convergence.
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To obtain the precision of the method, the error εN is defined as

εN = 〈X 〉 − 1

N

N∑
i=1

Xi(ω) (102)

and the answer to the second question is provided by the Central Limit
Theorem (CLT) which states that: let (Xi)1≤i≤N , N independent random
variables with the same law p(x) as a random variable X, and such that
σ2 = 〈X2〉 − 〈X〉2 < ∞, then

√
N

σ
εN → N (0, 1) (103)

where N (0, 1) denotes the Gaussian distribution of zero mean and unit stan-
dard deviation. From the CLT, it is thus clear that the mode of convergence
of the error εN is to be understood as a convergence in law, that is in a weak
sense. From the CLT, we get an immediate estimation of the error

lim
N→∞

P

(
σ√
N

c1 ≤ εN ≤ σ√
N

c2

)
=

∫ c2

C1

1√
2π

e−x2/2 dx (104)

from which we obtain the well-known confidence intervals: any Monte Carlo
estimation of the integral, IN , has a 95%-chance to be found within the
interval [

IN − 2
σ√
N

; IN + 2
σ√
N

]
(105)

The rate of convergence of Monte Carlo estimations is slow (εN ∼ N−1/2)
but this rate does not depends on the regularity of the functions g and, more
importantly, it does depend on the space dimension! Monte Carlo methods
are therefore fairly general and, though not the best choices in some cases
in low-dimensions, they are always applicable and remain at the moment
the only real possibility for problems in high-dimensional spaces.

For our later purposes, the key point is that the standard Monte Carlo
method corresponds to an estimation, in a weak sense, of the pdf of the
random variable. Indeed, Monte Carlo approximations consist in writing
that

∀Q, 〈Q(X)〉 ≈ 1

N

N∑
i=1

Q(Xi). (106)

By introducing the discrete pdf pN (x) as a sum of dirac masses centered on
the N samples

pN (x) =
1

N

N∑
i=1

δ(x−Xi) (107)
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we have therefore that

∀Q,

∫
Q(x)p(x) dx ≈

∫
Q(x)pN (x) dx (108)

from which it derives that p(x) � pN (x) in the weak sense (or as a distri-
bution).

4.2 Dynamical Monte Carlo methods for stochastic processes

The weak approximation of the pdf by a sum of dirac distributions is
the central point for practical simulations of stochastic processes, which
corresponds to what can be referred to as dynamical Monte Carlo methods.
This method is a direct extension of the standard Monte Carlo approach
for random variables and can be used for any Markov stochastic processes.
However, for the sake of clarity and since we have been mostly concerned
with diffusion stochastic processes, we will present and illustrate the dy-
namical Monte Carlo method for these processes.

As detailed in the preceeding sections, a stochastic diffusion process can
be described by two equivalent points of view: the PDF point of view and
the trajectory point of view. The PDF point of view is acting in sample-
space through the Fokker-Planck equation and the trajectory point of view
is acting in physical space through the Langevin equations. The equivalence
(in a weak sense) between the two points of view can be sketched as follows:⎧⎨
⎩

p(0,x) = p0(x0) at t = 0

∂p(t,x)

∂t
= L∗

t [ p(t,x) ]︸ ︷︷ ︸
sample space

⇔
{
X(0) = X0 at t = 0

dXi(t) = Ai(t,X(t)) dt+Bij(t,X(t)) dWj︸ ︷︷ ︸
physical space

where L∗
t stands for the operator acting in phase-space on p(t,x)

L∗
t = −∂ [Ai(t,x) .]

∂xi
+

∂2
[
(BBT )ij(t,x) .

]
∂xi∂xj

as an example of a forward Kolmogorov equation. It was stressed above that
for a Markov process, the key function is the transitional pdf p(t,x | t0,x0).
However, for the sake of clarity and in order to avoid the more cumbersome
notations of the transitional pdf, we have considered here the one-time pdf
p(t,x). Actually, the equations satisfied by the transitional pdf and by the
one-time are identical since the latter one is derived from the former one by
integration over all possible initial conditions. Therefore, the presentation
that follows will be developed in terms of p(t,x), as a sort of short-cut, but
remains valid and applicable for the transitional pdf itself.
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The dynamical Monte Carlo method is illustrated by the sketch below.
At the initial time (t = 0), we have a random variable and we can thus
apply the standard Monte Carlo method and introduce a (large) number
of samples, from which the initial pdf is approximated by a sum of Dirac
masses. As time evolves (t > 0), the initial random variable becomes a
stochastic process and the dynamical aspects can be addressed from two
points of view. As illustrated by the left part of the sketch, one could solve
the evolution equation in sample space, that is the Fokker-Planck equation
for our example of a stochastic diffusion process. This means solving one
equation but in a space which can have a very high dimension (indeed, it will
be seen that typical PDF models in two-phase flows involves a state-vector
having at least 9 dimensions). . . . This road becomes quickly impossible
for numerical solutions unless we limit ourselves to very small dimensional
spaces. However, one could address the same evolution problem following
the second point of view which is illustrated on the right part of the sketch.
This amounts to tracking in time the evolution of the N initial samples or, in
other terms, to simulating the trajectories of these N samples or ‘particles’.
At a later time t, we have thus N updated samples (written as X(k)(t)) and
we can apply the standard Monte Carlo method at that time, using these
samples, to obtain directly a weak approximation of the pdf p(t, x).

sample space︷ ︸︸ ︷⎧⎪⎪⎨
⎪⎪⎩

X(0) r.vwith a density

p(0,x) = p0(x)

⇐⇒
(t = 0)

physical space︷ ︸︸ ︷⎧⎪⎪⎨
⎪⎪⎩

N samples : X(k)(0), k = 1, . . . N

p(0,x) ≈ 1

N

N∑
k=1

δ(x−X(k)(0))

⇓ (t > 0)

solution of the PDE advance of the SDEs
(1 equation in (t,x) in a Nd-space) (N equations in t, in 3D-space)

⎧⎪⎪⎨
⎪⎪⎩

X(t) r.vwith a density

p(t,x)
⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

N samples : X(k)(t), k = 1, . . . N

p(t,x) ≈ 1

N

N∑
k=1

δ(x−X(k)(t))

In that sense, it can be seen that the dynamical Monte Carlo method
corresponds to making an approximation for the solution of a PDF equa-
tion, which is a partial differential equation in sample-space, without actu-
ally ‘solving’ the PDF equation. In practise, this dynamical Monte Carlo
method is often referred to as particle stochastic method. Since the cost
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is primarily related to the number of ‘stochastic particles’ used (the num-
ber N of samples) rather than the dimensional of the sample space, the
dynamical Monte Carlo is a universal method, particularly attractive for
high-dimensions, and thus more or less the only general approach available
if one is to make a real PDF simulation. In this approach, the issue is there-
fore to be able to integrate the values along the trajectories of the process,
based on specific numerical schemes devoted to SDEs (Peirano et al., 2006).

4.3 Probabilistic solutions of Partial Differential Equations

The relation between Langevin equations (SDEs) and Fokker-Planck
equation (PDE) is the source of many interesting solutions of Partial Dif-
ferential Equations. For example, the solution of the evolution problem⎧⎨

⎩
∂u

∂t
= −∂[A(t, x)u ]

∂x
+

1

2

∂2[B2(t, x)u ]

∂x2

u(0, x) = h(x) when t = 0,

(109)

is built from the transitional pdf of the diffusion process Xt, which has A
and B as drift and diffusion coefficients, and is given by

u(t, x) =

∫
p(t, x | t0, x0)h(x0) dx0 (110)

since p(t, x | t0, x0) is the solution of the corresponding forward Kolmogorov
equation (with a Dirac function as an initial condition). Therefore, the
solution can be expressed as

u(t, x) = 〈h(X(0)) |Xt = x 〉 (111)

where the expectation is taken with respect to the diffusive trajectories,
which are solution of the SDE

dX(t) = A(t, x) dt+B(t, x) dWt

and arriving at location x at time t.
It may be interesting to illustrate this result with a discrete (or parti-

cle) formulation by considering that we assign a given value, say a ‘scalar’
variable φ, to each stochastic particle following the diffusive evolution. The
corresponding state-vector is thus extended to include both location and
scalar (X,φ). The scalar is given an initial value equal to the local value
of the field h at the initial location X(0) and remains constant along each
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particle trajectory. The particle SDEs are therefore expressed by⎧⎪⎨
⎪⎩

X(0) = X0 and Φ(0) = h(X0) at t = 0

dX(t) = A(t,X(t)) dt+B(t,X(t)) dW

dΦ(t) = 0

(112)

From the dynamical Monte Carlo method, the discrete joint pdf is

pN (t, x, φ) =
1

N

N∑
k=1

δ(x−X(k)(t)) δ(φ− Φ(k)(t)) (113)

We define the field u(t, x) = 〈φ |Xt = x 〉, which represents the ‘averaged’
value of the ‘scalar’ for particles arriving at x at time t (this is an example
of an Eulerian statistics defined as a conditional Lagrangian statistics). In
the Monte Carlo simulation, this field is estimated by

u(t, x) =
1

p(t, x)

∫
φ p(t, x, φ)dφ � 1

pN (t, x)

1

N

N∑
k=1

δ(x−X(k)(t)) Φ(k)(t)

(114)
The dirac functions are ‘smoothed’ around x: we consider a small volume
δVx) around the position x which contains Nx particles in it. Then, we
approximate the dirac functions with

δ(y − x) � 1

δVx
1(y∈δVx), pN (t, x) � Nx

N δVx
(115)

which gives for the local value of the field u(t, x)

u(t, x) � 1

pN (t, x)

1

N δVx

Nx∑
k=1

Φ(k)(t) =
1

Nx

Nx∑
k=1

Φ(k)(t) (116)

Thus, we retrieve naturally the Monte Carlo estimation of the solution of
the PDE since

u(t, x) =
1

Nx

Nx∑
k=1

h(X(0)) � 〈h(X(0)) |Xt = x 〉. (117)

The backward point of view can also be applicable. Indeed, if we consider
the following partial differential equation with an end condition⎧⎨

⎩
∂u

∂s
+A(s, x)

∂u

∂x
+

1

2
B2(s, x)

∂2u

∂x2
= r(s, x)u(s, x)

u(T, x) = g(x) when s = T

(118)
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then the solution can be built from the transitional pdf of the diffusion
process Xt (using the Kolmogorov backward equation) and is expressed by

u(s, x) =

∫
g(y) e−

∫ T
s

r(X(t′,X(t′))dt′︸ ︷︷ ︸
w(X(T ))

p(T, y | s, x) dy. (119)

The solution is thus given by

u(s, x) = 〈w(X(T )) g(X(T )) |Xs = x 〉 (120)

where the expectation is taken now with respect to trajectories leaving the
location x at time s. In the above formula, it is seen that the function
w(X(T )) plays the role of a statistical weight attached to each diffusive
trajectory (similar therefore to a sort of death-birth process along each
trajectory). In the case when r = 0, the statistical weights remain equal
to 1 for all particle trajectory and we retrieve a formula which appears
as the ‘adjoint’ of the one developed above for the initial value problem.
The expression in Eq. (119) played an historical role in the development of
stochastic models and of path-integral formulations: this is the celebrated
Feynman-Kac formula!

5 Summary and conclusion

Many applications in Fluid Mechanics (turbulence, particle transport, dis-
persion, ...) involve processes with continuous changes and stochastic dif-
fusion processes can therefore be interesting modelling tools, while jump
processes are natural candidates to model particle collisions for example.

It has been recalled or emphasised that stochastic diffusion processes
can be addressed from two equivalent points of view: the PDF point of
view and the trajectory point of view. From the trajectory point of view,
the characterisation of the process is obtained with stochastic differential
equations, referred to as Langevin equations

dXt = A(t,Xt) dt+B(t,Xt) dWt

which require a proper definition of the stochastic integral. From the PDF
point of view, the evolution in sample-space is given by the Fokker-Planck
equation. Both points of views are meaningful only for Markov processes
since the transitional pdf is indeed the key function from which all informa-
tion about the stochastic process can be retrieved.

In order to understand and manipulate properly stochastic diffusion pro-
cesses, a sound knowledge of the mathematical definition of the stochastic
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integral and, in particular of Ito definition, is a mandatory step. Such a step
not only allows researchers to be free from any misconceptions (whereas even
distinguished physicists fell into the poor belief that Ito definition was ‘a
mathematical vagary’. . . ) but, more importantly, will avoid them to in-
duce spurious drifts by flawed mathematical calculus and also potentially
inconsistent numerical schemes.
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† Electricité de France, Div. R&D, MFEE, 6 Quai Watier, 78400 Chatou, France

1 Introduction

In this chapter we focus on the Lagrangian stochastic approach to turbulent
polydispersed two-phase flows. This chapter has several objectives. The first
important objective is to use this interesting and relevant physical subject
to apply the mathematical techniques presented in the first chapter. It is
important to understand how the stochastic approach actually works and
what are the main issues related to it. The second objective is to offer
the reader the possibility to become more familiar with particle-laden flows,
a sub-field of fluid mechanics which is quite fascinating and important in
many industrial and environmental applications. Third, this chapter offers
a comprehensive but concise description of the whole formalism needed to
develop the stochastic approach to turbulent polydispersed flows. While
Lagrangian stochastic models have been put forward since the sixties for
single-phase flows (Lundgren, 1967) and applied with success to reactive
flows since the seventies (Pope, 1985, 1994), their development and diffusion
for polydispersed flows is much more recent (Minier and Pozorski, 1999;
Minier and Peirano, 2001). In this sense, the formalism generalises the
reactive flow one. Finally, the study of a typical industrial application is
shown. This test-case helps to clarify that stochastic models can be used to
investigate realistic phenomena (they are computationally performing), and,
at the same time, give satisfactory answers in complex problems, for which
less refined approaches like two-fluid models are not able to give acceptable
results.
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2 Basic Concepts

2.1 Basic Equations

Dispersed two-phase flows are met when a continuous phase (a gas or a
liquid) carries discrete particles (solid particles, droplets, bubbles, . . . ).

The basic equations of these flows are given by the Navier-Stokes equa-
tions together with the elementary behaviour of a single particle. The conti-
nuity and the Navier-Stokes equations where the different fields are density
ρf (t,x), pressure P (t,x) and velocity Uf (t,x),

∂Uf,j

∂xj
= 0, (1a)

∂Uf,i

∂t
+ Uf,j

∂Uf,i

∂xj
= − 1

ρf

∂P

∂xi
+ ν

∂2Uf,i

∂x2
j

, (1b)

The equations for particles are less well-founded than Navier-Stokes
equations for fluid particles and remain a subject of current research. For
small particle-based Reynolds numbers Rep (whose definition is specified be-
low) and particle diameters that are of the same order of magnitude as the
Kolmogorov length scale, a general form of the particle momentum equation
has been proposed (Gatignol, 1983; Maxey and Riley, 1983). For the case
considered of heavy particles, the equations of motion can be generalised to
large Reynolds number and reduce to :

dxp

dt
= Up, (2a)

dUp

dt
=

1

τp
(Us −Up) + g, (2b)

where Us = U(xp(t), t) is the fluid velocity seen, i.e. the fluid velocity
sampled along the particle trajectory xp(t), not to be confused with the
fluid velocity Uf = U(xf (t), t) denoted with the subscript f . The particle
relaxation time is defined as

τp =
ρp

ρf

4dp

3CD|Ur| , (3)

where the local instantaneous relative velocity is Ur = Us −Up and the
drag coefficient CD is a non-linear function of the particle-based Reynolds
number, Rep = dp|Ur|/νf , which means that CD is a complicated function
of the particle diameter dp, (Clift et al., 1978). For example, a very often
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retained empirical form for the drag coefficient is

CD =

⎧⎨⎩
24

Rep

[
1 + 0.15Re0.687

p

]
if Rep ≤ 1000,

0.44 if Rep ≥ 1000.
(4)

In this chapter, we choose to limit ourselves to the case of dilute particle-
laden flows, for the sake of clarity. However, it is worth underling that
general Lagrangian stochastic approach and the formalism developped af-
terwards represent a framework of general scope and can be applied to more
general situations. On the other hand, the modelling details are dependent
on the specific physical phenomena which are considered and on the objec-
tives.

Given the equations, an “exact approach” (in the spirit of DNS) is pos-
sible (Boivin et al., 1998; Marchioli and Soldati, 2002; Toschi and Boden-
schatz, 2009), but in practice, the exact equations of motion are not of great
help. Indeed, in the case of a large number of particles and of turbulent
flows at high Reynolds numbers, the number of degrees of freedom is huge
and a contracted probabilistic description is needed.

The presence of non-linear terms in the equations (2), leads to the known
problem of hierarchy in the mean field equations, as in single-phase turbu-
lence, so that an eventual Eulerian averaged approach to the problem would
require a closure at this level. As explained by Pope (1994) for the turbulent
reactive case (which is conceptually analogous to polydispersed turbulent
two-phase flows case), a Lagrangian stochastic or PDF approach to the
problem overcomes this issue with a general exact treatment of the non-
linear terms. Moreover, since in the case of polydispersed two-phase flows
the exact mean equations are not a priori known, mean field level closure
appears often unsatisfactory.

2.2 Brownian Motion

Let us now turn our attention to a remarkable phenomenon, that is
Brownian motion, which is quite useful to introduce the main themes of
stochastic modelling, other than being a paradigmatic success of modern
statistical physics. Observed on a microscope, pollen suspended in a glass
of water moves erratically and incessantly, although the water appears to
be still, and no work is done on pollen particles, to balance the energy
dissipated by the viscosity of the fluid. This phenomenon was named af-
ter Robert Brown, the botanist who first tried to explain it as a form of
life, which seemed to animate pollen particles suspended in a fluid (Brown,
1828). Among many other issues, the Brownian motion constitutes the ul-
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timate evidence of the existence of atoms and led to the determination of
the Boltzmann constant kB in macroscopic experiments.

Why doesn’t the motion of the pollen rapidly stops? The equation for
the velocity of one spherical particle of mass m and radius R, subjected to
no other forces than that exerted by the viscosity η of the liquid,

dv

dt
+

6πRη

m
v = 0 , (5)

predicts the exponentially decaying behaviour

v(t) = v(0) exp(−t/τ) , with τ =
m

6πRη
, (6)

where v(0) is the initial velocity, v(t) the velocity at a subsequent time t
and τ is a characteristic time depending on the properties of both water and
pollen. For pollen of radius R ∼ 10−4 metres, one obtains τ ∼ 10−4 seconds,
which means that v(t) should practically vanish in a few milliseconds.

The observation made in the second half of the nineteenth century, that
the velocity of pollen increases with temperature, while it decreases with
the pollen size and with the fluid viscosity, suggested that the kinetic theory
of gases could explain the phenomenon. At the beginning of the twentieth
century, Einstein and Smoluchowski proposed a theory, which Langevin put
forward in modern terms as follows: the motion of pollen is determined by
two forces:
• the deterministic viscous force obtained from Stokes law,

• a stochastic force due to the collisions with water molecules, which
bears no memory of events occurring at different times.

This implies that Eq.(5) should be modified as:

dv

dt
+

6πRη

m
v = fR(t) , (7)

where fR is a random force representing the action of the water molecules
on the pollen grains which, in accord with kinetic theory, is more energetic
at higher temperatures. The randomness is reflected in the lack of correla-
tions between the action of the water molecules at different time instants
and is justified by the vast separation of the temporal scales concerning mi-
croscopic impacts (of order 10−12−10−11 seconds) and those concerning the
macroscopic viscous damping (of order 10−5− 10−4 seconds). Furthermore
the average of the random force is required to vanish so that: the average
work vanishes, there is no loss of energy in time, and pollen may then persist
in its motion forever.
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The result of this theory is the Einstein-Smoluchowski diffusion law (Cas-
tiglione et al., 2008; Boffetta and Vulpiani, 2012),

〈x2(t)〉 � 6Dt , where D =
kBT

6πηR , (8)

in which x(t) is the displacement of a pollen grain at time t from its initial
position, x(0), and T is the common temperature of water and pollen. The
constant D is known as the diffusion coefficient. To solve the problem,
Einstein and Smoluchowski used a bold hypothesis: the equilibrium between
fluid molecules and the pollen grain, which allowed the use of equipartition
theorem (Castiglione et al., 2008).

Equation (8) turned out to be extremely important, since it connected
easily measurable macroscopic quantities, such as 〈x2(t)〉, with Avogadro’s
number, which could at last be estimated.1 Interestingly, Einstein had cor-
rectly anticipated that relations concerning fluctuations could be used to in-
vestigate the microscopic realm by means of macroscopic observations (Ein-
stein, 1956a).

The agreement between theory and experiments was demonstrated by
Perrin only a few years later, a result which convinced everyone that atoms
could indeed be “counted” and “measured”, hence, that they had to ex-
ist. To prove (or disprove) the existence of atoms was indeed Einstein’s
purpose (Einstein, 1956b).

This means that qualitatively different representations of matter, like
thermodynamics and kinetic theory, are required to describe observations
which take place on the corresponding hugely different scales.

Observing Eq.(7), one finds that there are two different limiting situa-
tions, involving the mass of pollen particles. The first is the limit of large
mass, which makes the effect of the molecular impacts negligible, compared
to that of the fluid viscosity. The second is that of small pollen mass, which
makes dominant the effect of the molecular impacts, with respect to the
viscous forces.

In such a way, the Brownian motion shows in a clear manner that, when
a large separation of scale is present, the effect of fast scales can be correctly
modelled by a stochastic term acting on large scales.

Hence, the theory of Brownian motion unveils one level of description,
the mesoscopic level, which is as hard to connect to the microscopic and
the macroscopic levels. The ingenuity of the Einstein-Smoluchowsky the-
ory lies in its ability to identify three separate scales concerning objects in
thermodynamic equilibrium, and to link them, by allowing microscopic and

1At that time, NA was but a parameter of the atomic theory, whose value was unknown.
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macroscopic forces act at once on pollen, and by using kinetic theory to
determine the viscosity of the fluid. The phenomena which can be observed
at the different scales, obviously coexist, but correspond to such widely sep-
arated scales that completely different kinds of description are required to
understand them. This is what makes Brownian motion possible: the sep-
aration of scales. The mass of pollen is so much larger than the mass of
liquid molecules, that the relaxation time τ of Eq.(6) is much larger than
the molecular collision times and, at the same time, the mass of pollen is
so much lighter than any macroscopic object, that the energy exchanged in
molecules-pollen impacts suffices for thermal equilibrium to be established
in times much shorter than τ .

2.3 State-vector

In the Langevin treatment of the Brownian motion (Langevin, 1908),
the relevant variables to describe the whole physics are the velocity and
the position: x,v. These two variables define therefore the state-vector of
the system. Of course other choices can be possible, for instance the sole
position as it was done by Einstein, or adding other variables like accelera-
tion. It appears that a hierarchy between state-vectors naturally arises with
regard to the information content desired in the physical approach (Minier
and Peirano, 2001): the more information is detailed, the larger the number
of variables possibly contained in the state vector. Resorting to Brownian
motion, if we restrict ourselves to follow the position of the particle, the
state vector is Z(t) = (X(t)), the particle velocity is an external variable
and the pdf equation for p(t,y) is unclosed

∂p(t,y)

∂t
+

∂

∂y
(〈U |y 〉 p(t,y)) = 0. (9)

To obtain a closed model, the effect of the particle velocity has to be replaced
by a model

dX+(t)

dt
= U+(t) =⇒ dX(t)

dt
= F [t, X(t)] (10)

where the superscript + denotes the exact equation and F [t, X(t)] represents
a functional of the position X(t). If the functional F is deterministic we
end up with a reduced Liouville equation. If this first picture is believed
to be too crude, one can include the velocity of the particle in the state
vector that becomes then Z(t) = (X(t),U(t)) (Langevin’s point of view).
In this picture, the particle acceleration A(t) is an external variable and the
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corresponding pdf equation for p(t,y,V) is unclosed

∂p(t,y,V)

∂t
+

∂ (Vip(t,y,V))

∂yi
+

∂

∂Vi
(〈A |y,V 〉 p(t,y,V)) = 0. (11)

To obtain a closed form, the acceleration has to be eliminated or replaced
by a model

⎧⎪⎪⎨⎪⎪⎩
dX+(t)

dt
= U+(t)

dU+(t)

dt
= A+(t)

=⇒

⎧⎪⎨⎪⎩
dX(t)

dt
= U(t)

dU(t)

dt
= F [t, X(t), U(t)].

It is thus clear that the second description encompasses the first one. It
contains more information and in physical terms corresponds to a descrip-
tion performed with a finer resolution. From a modelling point of view the
task is also different depending upon the choice of the one-particle state
vector. In the first case (Einstein’s point of view), one has to model particle
velocities. In the second case (Langevin’s point of view) one has to model
particle accelerations.

From the above example, a general picture emerges. We consider a one-
particle reduced description but with many internal degrees of freedom, i.e

Z = (Z1, Z2, . . . , Zp, . . .). If the time rate of change of the particle degrees
of freedom has the following form

dZ1

dt
= g(t, Z1, Z2), (12a)

dZ2

dt
= g(t, Z1, Z2, Z3), (12b)

... (12c)

dZp

dt
= g(t, Z1, . . . , Zp, Zp+1), (12d)

... (12e)

and if the chosen one-particle reduced state vector contains only a limited
number of degrees of freedom, say p, Zr = (Z1, . . . , Zp) then the corre-
sponding pdf equation for pr(t, z1, z2, . . . , zp) is generally unclosed since it
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involves an external variable, namely Zp+1

∂pr

∂t
+

∂ (g(t, z1, z2) pr)

∂z1

+ . . .

+
∂ (g(t, z1, . . . , zp) pr)

∂zp−1

+
∂ (〈g(t, Z1, . . . , Zp, Zp+1) |Zr = zr〉 pr)

∂zp
= 0.

(13)

To obtain a closed model, the external variable Zp+1 must be expressed as
a function of the variables contained in the chosen state vector, and the
equations for the modelled system have the form with a model written gm

for the time rate of change of Zp

dZ1

dt
= g(t, Z1, Z2), (14a)

dZ2

dt
= g(t, Z1, Z2, Z3), (14b)

... (14c)

dZp

dt
= gm(t, Z1, . . . , Zp). (14d)

We have seen considering the Brownian motion that the choice of state-
vector impacts the nature of the model and that the introduction of a
stochastic term is related to the presence of a separation of scales. In some
cases, the hierarchy stops, that is at a certain level p, Zp is a function only of
the first p−1 variables. In this case, the closure is exact and the set of equa-
tions can be considered closed. However, in the general case of nonlinear
systems, the hierarchy is infinite.

We have considered so far the case of one particle described by many
variables. In general, the dimension of the system (or the number of degrees
of freedom), d = dim(Z), is given by d = N × p where N is the number of
particles included in the system and p represents the number of variables at-
tached to each particle. For this system, the complete vector which gathers
all available information is then

Z = (Z1
1 , Z1

2 , . . . , Z1
p ; Z2

1 , Z2
2 , . . . , Z2

p ; . . . ; ZN
1 , ZN

2 , . . . , ZN
p ).

This vector is the state vector of the N -particle system. The vector defined
by the p variables attached to each particle, Zi = (Zi

1, Z
i
2, . . . , Z

i
p), is called

the one-particle state vector, in this case for the particle labelled i. In
practice the dimension of the system is huge (it might be infinite) and one
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has to come up with a reduced (or contracted) description, or in other
words to consider a subset of dimension d ′ = s × p ′ 	 d. To illustrate
this problem, let us consider a N -particle system where the time evolution
equation involves simply a deterministic force

dZ(t)

dt
= A (t,Z(t)) . (15)

The dimension of the complete state vector Z is equal to d, and the corre-
sponding pdf p(t, z) verifies the Liouville equation:

∂p(t, z)

∂t
+

∂

∂z
(A(t, z) p(t, z)) = 0. (16)

This equations is closed since in fact all the degrees of freedom of the sys-
tem are explicitly tracked. We consider now a reduced pdf pr(t, zr) where
dim(Zr) = d ′ and p(t, z) = p(t, zr,y) with, of course, dim(Y) = d− d ′. By
integration of the previous equation on y, the transport equation for the
marginal (reduced) pdf becomes

∂pr(t, zr)

∂t
+

∂

∂zr
[〈A | zr 〉 pr(t, zr)] = 0, (17)

where the conditional expectation is defined by,

〈A | zr 〉 =

∫
A(t, zr ,y) p(y | t, zr) dy =

1

p(t, zr)

∫
A(t, zr,y) p(t, zr ,y) dy.

(18)
Eq. (17) is now unclosed. This illustrates the fact that when a reduced
description (in terms of a subset of degrees of freedom) is performed, infor-
mation is lost, and one has to come up with a closure equation for higher
order pdfs. In the Brownian motion exemple, we have just one particle with
a different number of variable attached. In other situations, it is the number
of particles which is reduced. A classical example is given by the BBGKY
hierarchy (Bogoliubov, Born, Green, Kirkwood and Yvon) encountered in
kinetic theory (Chapman and Cowling, 1970; Liboff, 1998).

2.4 Fast variables

In summary, we have seen that many systems are characterised by many
degrees of freedom but also by the presence of several significant scales,
which means that there are groups of distinct degrees of freedom charac-
terised by very different time scales. In such a situation one says that the
system has a multiscale character (E and Engquist, 2003) and a coarse-
graining procedure can be effectively carried out in order to come up with
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a reduced statistical description. It is possible to say that variables charac-
terised by very small time scales are fast, and that ”slow” dynamics can be
treated in terms of effective equations.

Multiscale approach is an important chapter of statistical physics with
deep applications also in engineering. Castiglione et al. (2008) have recently
explained in a clear a rigorous manner this approach. Here we present a
brief account of the fast variable elimination which allows to start from
molecular level to arrive to Brownian motion. The next section largely
follows this reference (Castiglione et al., 2008), to which we refer for more
details, notably the reader can find the derivation of Navier-Stokes equations
from molecular level and the Smoluchowsky equation from Kramers’ one.

2.5 Multiscale modelling: From molecular level to Brownian mo-

tion

We consider again the paradigmatic case of molecules. A rigorous general
derivation of the Brownian motion from the first principles is a formidable
task. Here we want to discuss the steps (via coarse-graining procedures)
from molecular dynamics up to Brownian motion, stressing mainly the con-
ceptual aspects (Espanol, 2004).

Consider a system of colloidal particles suspended in a liquid. At the mi-
croscopic level we introduce the canonical coordinates (Qi,Pi) and (qn,pn)
of colloidal particles and solvent molecules respectively. Omitting external
potentials, the complete Hamiltonian is

H =
∑

i

P2
i

2M
+

∑
n

p2
n

2m
+

∑
n,l,i,j

(
V ss(qj−qi)+V cc(Qn−Ql)+V sc(Qn−qi)

)
,

(19)
where m is the mass of a solvent molecule, M is the mass of a colloidal
particle (we assume M 
 m), V ss, V sc and V cc are the potentials of the
forces between solvent molecules, solvent and colloidal particles, colloidal
particles, respectively.

The evolution of such a system is ruled by the Hamilton equations:

dQi

dt
=

∂H

∂Pi
,

dqn

dt
=

∂H

∂pn

,

(20)

dPi

dt
= − ∂H

∂Qi

,
dpn

dt
= − ∂H

∂qn

.

The solutions of these equations give the most detailed description of the
system. The problem can be simplified if one is interested on the colloidal
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subsystem alone. This coarsened level of description is obtained by inte-
grating over the degrees of freedom of the solvent particles. In this case,
the future state of the suspended particles is not determined by a given
{Qi,Pi} configuration, but also depends on the past history of the subsys-
tem (a unique evolution is obtained only if one knows the complete micro-
scopic state of the system at a given time). This means that the dynamical
equations for the variables (Qi,Pi) must contain memory effects and, in
general, cannot be first order in time. However, since in comparison with
the solvent molecules the colloidal particles have a much larger mass, they
have a much slower evolution. Then, because of this time-scale separation
between the two subsystems, and because of the huge number of the solvent
particles, we can suppose that the fast solvent dynamics can be consistently
decoupled from the slow colloid dynamics, by approximating its effects on
the big suspended particles by means of an effective force. This force may
be decomposed into a systematic part, of viscous type, and a truly stochas-
tic fluctuating part. In such a limit of very different masses, we recover a
Markovian evolution (i.e. first order in time) for the colloidal subsystem,
that is driven by a stochastic equation:

dQi

dt
= Vi

(21)

dPi

dt
= Fi −

∑
j

ζ̃ijVj + Gi

where Vi = Pi/M , Fi is the force on the i-th particle due to the interactions

with other colloidal particles (and possibly external potentials), and ζ̃ij is
the friction tensor (originating from the interaction of the solvent with the
colloidal particles) that can depend on the Q variables. The stochastic
component of the force, Gi, is a Gaussian process with 〈Gk

i (t)〉 = 0 and
〈Gk

i (t) Gl
j(t

′)〉 = αkl
ij δ(t − t′), where Gk

i (k = 1, 2, 3) indicates the k-th
spatial component of Gi. Here α̃ij is a tensorial quantity in the spatial

indices, like the friction tensor ζ̃ij . The Fluctuation-Dissipation theorem
requires that αkl

ij = 2kBTζkl
ij , where T is the temperature of the solvent, kB

the Boltzmann constant (Van Kampen, 1992).
If the colloidal suspension is dilute then we expect that the mutual influ-

ence among the colloidal particles is negligible. In this case, Fi is due only
to possible external potentials and the solvent can be considered homoge-
neous, what implies that the friction tensor reduces to a scalar quantity:
ζkl
ij = ζδijδ

kl, being ζ the friction coefficient. In this case eq.(21) becomes
the well known Langevin equation, for the independent evolution of each
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colloidal particle

dQ

dt
= V

(22)

dP

dt
= F(Q)− ζV +

√
2kBTζ g

where, for the components of the random vector g, one has 〈gk(t)〉 = 0 and
〈gk(t)gl(t′)〉 = δklδ(t− t′).

However, at this point we observe that, for typical colloidal suspension,
the time scale over which the variables P evolve is very short, O(10−6s), as
compared to the time scale, O(10−3s), of Q evolution. This separation of
scales allows to consider another coarser level of description, only looking
at the Q variables. In this case, a suitable equation for the colloid position
variables is:

dQi

dt
=

1

kBT

∑
j

D̃ijFj +
∑

j

∂

∂Qj

D̃ij + Wi , (23)

where the force Fi is the same as in eq. (21), D̃ij is the diffusion tensor
(which, in general, depends on Q) and Wi is a gaussian stochastic contri-
bution to the velocity of the particle. We require that 〈Wi〉 = 0 and, by the
Fluctuation-Dissipation theorem, 〈W k

i (t)W l
j (t

′)〉 = 2Dkl
ij δ(t − t′). Also in

this case, for a dilute suspension equations simplify, since the diffusion ten-
sor becomes a scalar quantity: Dkl

ij = δijδ
klD, where D is the self-diffusion

coefficient of the colloidal particles. Equation (23) becomes

dQ

dt
=

D

kBT
F +

∂D

∂Q
+
√

2D w , (24)

where the random vector w enjoys the same properties as the above defined
g vector.

In summary, the large difference between molecule and colloid masses
and, the large number of molecules allow to disregard the memory effects,
which can be well approximated by a stochastic markov process for the
colloidal particles. Therefore, the unpredictability remains, but the future
state of the subsystem only depends on its present state.

It is important to note that the coarsening procedure transforms the
original deterministic problem into a stochastic one. Therefore, it is un-
avoidable to reason in terms of probabilities for the state of the studied
(sub)system. This means that, for instance, in the first level of graining,
the problem to be posed is: given the colloid system in the state {Qi,Pi}0
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at time t = 0, what is the probability density function p({Qi,Pi}, t) to find
it in the state {Qi,Pi} at a later time t, omitting the dependence of p on
the initial state2.

So far, we have analysed the multiscale approach to this problem from
a trajectory point of view. As seen in previous chapters, that has a precise
correspondence with a pdf approach in the phase-space. In this frame-
work, the probability density at time t = 0 is defined in the whole Γ space
pL(t = 0) = pL({Qi,Pi}0 , {qn,pn}0) and evolves according to the Liouville
equation

∂pL

∂t
= −{

pL , H
}

, (25)

where
{
pL , H

}
is the Poisson bracket between pL and H , with respect to

the full set of canonical variables. If one is able to find the solution pL(t),
then one also has the density involving only the variables of the colloidal
particles. For the first level of approximation one gets:

pc({Qi,Pi}, t) =

∫
pL({Qi,Pi} , {qn,pn}, t) dqndpn , (26)

and, for the second level:

p({Qi}, t) =

∫
pc({Qi,Pi}, t) dPi . (27)

Of course, when the exact solution is not attainable, one can resort to an
approximate one.

In the first graining level one has to solve the evolution equation for the
PdF of systems evolving according to the random dynamics (21), that is the
Fokker-Planck equation (in the Ito sense, see chapter 1 (Gardiner, 1990)):

∂pc

∂t
= −

∑
i

(
Vi

∂

∂Qi
+Fi

∂

∂Pi

)
pc + kBT

∑
i,j

∂

∂Pi
ζ̃ij

(
∂

∂Pj
+

Pj

MkBT

)
pc .

(28)
When the system (21) is a satisfying approximation of the dynamics, the
solution of equation (28), with initial condition obtained by pL(t = 0), must
be a good approximation of the density (26).

2Moreover, usually one does not know the initial microscopic state of a system, so

that another different source of uncertainty has to be considered, in the form of a

distribution on the possible initial states. This is not an uncertainty springing from

the randomness of the dynamics: indeed it is present also when the detailed dynamical

equations (20) drive the system. It is at the base of the ensemble point of view, à la

Gibbs.
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At the next level of graining, where the stochastic dynamics is given
by Eq. (23), the PdF p({Qi}, t) of the colloidal particles positions evolves
according to the so-called Smoluchowski equation:

∂

∂t
p = −

∑
ij

∂

∂Qi

[
D̃ijFj

kBT
p

]
+

∑
ij

∂

∂Qi

D̃ij
∂

∂Qj

p . (29)

When the dilute approximation is appliable, the interesting probability
densities depend only on a single particle variables, and the Fokker-Planck
equations above simplify accordingly.

3 Polydispersed Turbulent Two-Phase: Formalism

3.1 Basic Principles

We have seen in the previous section that it is of capital importance
to determine the relevant state vector to get an appropriate contracted
description of a phenomenon. Furthermore, a multiscale approach can be
followed if a separation of scales is present.

It is of course necessary to start from basic equations. We have seen
that for heavy particles, equations of motion are

dUp

dt
=

1

τp
(Us −Up) + g. (30)

It is clear that in this case, the system is completely known if xp,Up,Us

are exactly given. Us is the velocity fluid seen by particles and can be
calculated through the solution of Navier-Stokes equations. This approach,
full solution of Navier-Stokes eqs. and Lagrangian particle tracking, is in
principle possible but appears out of question for many particle diameters
(polydispersion), in non-trivial geometries, for high Reynolds number flows.
While DNS is a formidable and useful tool to obtain physical insights, a
contracted statistical description is needed. Again, we see that the starting
problem is deterministic for the particle phase.

In this chapter, we want to present the modelling effort as being part of
a more general framework consisting of a formalism, thus using a deductive
approach rather than an inductive one, as more often encountered in lit-
erature. Thus, we introduce first a general formalism which includes both
fluid and particle phase, and after we detail the state-of-the-art model form.
This formalism was first put forward by Peirano and Minier (2002); Minier
and Peirano (2001), and the formal approach has the merit to indicate a
safe way to develop models, avoiding flaws which often characterise more
heuristic approaches.
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The plan of the section is the following: first, we summarise the complete
formalism for both phases, fluid and particles; then we show the correspon-
dence with average equations, as they are generally used in engineering cal-
culations; in this framework, we put forward the state-of-the-art modelling
approach. Finally, we show some numerical results.

3.2 Formalism

The first point is to define the appropriate state vector. Considering
the whole system, including the fluid and the particle phase, we can give
a general expression for the two-particle state vector (one fluid particle
and one discrete particle). In the case of turbulent, reactive, compressible,
dispersed two-phase flows, an appropriate state vector is

Z = (xf ,Uf ,φf ,xp,Up,φp), (31)

where φp has a given dimension. We distinguish between physical space
and sample space, Z = (yf ,Vf ,ψf ,yp,Vp,ψp). It will be seen that ψp

can consist of the fluid velocity seen and several scalars relevant to the
discrete particles, for example diameter, enthalpy, mass fractions and so on.
It is worth underlying that it is necessary to introduce two independent
variables for the positions of the fluid and the discrete particles since the
two kind of particles are not convected by the same velocities.

Furthermore, in any case we are considering a two-particle PDF picture
(in a Lagrangian sense) of the whole system composed of the fluid and of
the particles, since we are considering one particle in each phase. Generally
speaking, N-particle approaches consider N particles of the same phase (for
instance two fluid particles or two discrete particles, in the case of a 2-
particle approach). That means considering N positions at the same time.
The general state vector proposed here can be made a N-particle approach,
adding in ψf ,ψp the necessary coordinates. However, while two-particle
approaches may be relevant in homogeneous fluid turbulence (Pedrizzetti
and Novikov, 1994), for practical purposes it is in general impossible to treat
systems with more than one particle for phase. Hence, in the following, we
limit ourselves to this case.

Eulerian and Lagrangian descriptions

There are two possible points of view for the description of a fluid-particle
mixture. The Lagrangian one where one is interested in, at a fixed time, the
probability to find two particles (a fluid particle and a discrete particle) in
a given state and the Eulerian description (field approach) where one seeks
the probability to find, at a given time and at two fixed points in space
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(a ’fluid point’, xf , and a ’discrete-particle point’, xp), the fluid-particle
mixture in a given state.

In the case of the Lagrangian description, we define the following pdf:

pL
fp(t;yf ,Vf ,ψf ,yp,Vp,ψp), (32)

where the probability to find a pair of particles (a fluid particle and a discrete
particle) at time t, whose positions are in the range [y,y + dy], whose
velocities are in the range [V,V + dV] and whose associated quantities
(scalars and other variables) are in the range [ψ,ψ + dψ], is

pL
fp(t;yf ,Vf ,ψf ,yp,Vp,ψp) dyf dVf dψf dyp dVp dψp. (33)

For the field description (Eulerian point of view), the following distribu-

tion function is introduced:

pE
fp(t,xf ,xp;Vf ,ψf ,Vp,ψp), (34)

where the probability to find at time t and at positions xf and xp the system
in a given state in the range [V,V + dV] and [ψ,ψ + dψ] is

pE
fp(t,xf ,xp;Vf ,ψf ,Vp,ψp) dVf dψf dVp dψp. (35)

pE
fp is not a PDF since, in a fluid-particle mixture, one cannot always find

with probability 1, at a given time and at two different locations, a fluid
and a discrete particle in any state. Therefore, there are some constraints to
be applied, for a pair composed of a fluid and a discrete particle, since the
two particles can not be located at the same position in physical space for
a given time t. For the Lagrangian pdf when yf = yp = y, the argument
developed above implies that pL

fp(t;y,Vf ,ψf ,y,Vp,ψp) = 0, and conse-
quently, in terms of the Eulerian distribution function (for xf = xp = x)
pE

fp(t,x,x;Vf ,ψf ,Vp,ψp) = 0. A direct consequence is that, at a given
point x in physical space and a given time t, the sum of the probabilities to
find a fluid particle or a discrete particle in any state is one. This can be
expressed in terms of the marginals of the Eulerian distribution function as∫

pE
f (t,x;Vf ,ψf ) dVf dψf +

∫
pE

p (t,x;Vp,ψp) dVp dψp = 1. (36)

where

pE
k (t,xk;Vk,ψk) =

∫
pE

fp(t,xk,xk̄;Vk,ψk,Vk̄,ψk̄) dxk̄ dVk̄ dψk̄, (37)
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where k is the phase index (either f or p) and k̄ is its complement (i.e. for
k = p, k̄ = f). Eq. (36) can also be re-written by introducing the normal-
ization factors of pE

f and pE
p , namely αf (t,x) and αp(t,x) respectively, to

yield

αf (t,x) + αp(t,x) = 1. (38)

αk(t,x) represents the probability to find the k phase, at time t and position
x, in any state (0 ≤ αk(t,x) ≤ 1). It is defined

αk(t,x) =

∫
pE

k (t,x;Vk,ψk) dVkdψk. (39)

As a consequence, this probability in not always one as in single-phase flows
where the physical space is continuously filled by the fluid.

Marginal pdfs and mass density functions

For a complete description of the fluid particles, a mass density function
FL

k (t;yk,Vk,ψk) is introduced where

FL
k (t;yk,Vk,ψk) dyk dVk dψk, (40)

is the probable mass of k-phase particles in an element of volume dyk dVk dψk.
Both mass density functions are normalized by the total mass of the

respective phases, Mk

Mk =

∫
FL

k (t;yk,Vk,ψk) dyk dVk dψk, (41)

where the mass density functions are given by

FL
k (t;yk,Vk,ψk) = Mk pL

k (t;yk,Vk,ψk), (42)

The total masses are of course defined by Mf =
∫
Vf

ρf (xf )dxf and Mp =∑Np

i=1 mp,i where Np is the total number of discrete particles, mp,i the mass
of the discrete particle i, and where the integration which gives Mf is per-
formed over the domain occupied by the continuous fluid phase.

At last, we define a two-point fluid-particle mass density function

FL
fp(t;yf ,Vf ,ψf ,yp,Vp,ψp) = MpMk pL

fp(t;yf ,Vf ,ψf ,yp,Vp,ψp),
(43)

whose marginals are related to the mass density function of the continuous
phase FL

f and the mass density function of the discrete phase FL
p
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General relations between Eulerian and Lagrangian pdfs

The quantities introduced so far are related to Lagrangian pdfs (or mdfs).
Since we are interested in the derivation of field equations (Eulerian equa-
tions) for the local moments of both phases and this can only be done by
means of Eulerian tools, we need to provide the link between the Lagrangian
quantities introduced and the Eulerian ones.

Following Balescu (1997), we can write

FE
fp(t,xf ,xp;Vf ,ψf ,Vp,ψp)

= FL
fp(t;yf = xf ,Vf ,ψf ,yp = xp,Vp,ψp)

=

∫
FL

fp(t;yf ,Vf ,ψf ,yp,Vp,ψp) δ(xf − yf ) δ(xp − yp) dyf dyp,

(44)

where FE
fp is the Eulerian two-point fluid-particle mass density function.

By direct integration of the previous equation, relations for the associated
marginals, the Eulerian one-point k-phase mass density function, FE

k are
obtained

FE
k (t,xk;Vk,ψk) = FL

k (t;yk = xk,Vk,ψk)

=

∫
FL

k (t;yk,Vk,ψk) δ(xk − yk) dyk,
(45)

By recalling thatFL
k = Mk̄FL

k , the relation implies FE
k = Mk̄FE

k . There-
fore the relations between Eulerian and Lagrangian mass density functions
Fk are also given by eq. (45).

The basic elements are now given. In order to derive mean equations
there are two equivalents strategies: starting always from Lagrangian two-
point pdf pL

fp, in the first, relations between Eulerian and Lagrangian mdfs
are worked out using,

FE
fp(t;xf = x,xp;Vf ,ψf ,Vp,ψp),

FE
fp(t;xf ,xp = x;Vf ,ψf ,Vp,ψp).

(46)

These two mdfs can give both marginals at the same point in physical space,
i.e. FE

k (t,x;Vk,ψk).
In the second, relations between Eulerian and Lagrangian mdfs are

worked out at the one-point pdf level, with Eq. (42) and Eqs. (45). In-
formation is obtained in the form of the one-point k-phase mass density
functions, FE

k (t,x;Vk,ψk), from pL
k .
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Two-point relations between Eulerian and Lagrangian pdfs

Following the first procedure, one can write

FE
fp(t,xf ,xp;Vf ,ψf ,Vp,ψp) =∫

p|Lfp(t;xf ,Vf ,ψf ,xp,Vp,ψp| t0;xf0,Vf0,ψf0,xp0,Vp0,ψp0)

FE
fp(t,xf0,xp0;Vf0,ψf0,Vp0,ψp0) dxf0 dVf0 dψf0 dxp0 dVp0 dψp0.

(47)

This relation shows that the Eulerian mass density function FE
fp is ’propa-

gated’ by the transitional pdf, that is the transitional pdf p|Lfp is the propa-

gator of the two-point fluid-particle Eulerian mass density function. Conse-
quently the partial differential equation which is verified by the transitional
pdf is also verified by the Eulerian mass density function FE

fp.
The definitions of the expected densities, 〈ρf 〉(t,x) and 〈ρp〉(t,x), and

the probability of presence of both phases αf (t,x) and αp(t,x), can be
expressed in terms of the two-point Eulerian mdf.

αk(t,x)〈ρk〉(t,x) =

1

Mk̄

∫
FE

fp(t,x,xp;Vf ,ψf ,Vp,ψp) dxk̄ dVp dψp dVf dψf ,

αk(t,x) =

1

Mk̄

∫
1

ρf (ψf )
FE

fp(t,x,xp;Vf ,ψf ,Vp,ψp) dxk̄ dVp dψp dVf dψf

(48)

Finally, the expected densities and the probability of presence of both phases
can be written in terms of the marginals of FE

fp

αk(t,x)〈ρk〉(t,x) =

∫
F E

k (t,x;Vk,ψk) dVk dψk,

αk(t,x) =

∫
1

ρk(ψk)
FE

k (t,x;Vk,ψk) dVk dψk,

(49)

Relations between Eulerian and Lagrangian marginals

Following the second procedure, Using Eq. (45), the definition of the La-
grangian mdf FL

k = Mk pL
k , and introducing the fluid transitional pdf p|Lf ,
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one can write

FE
k (t,x;Vk,ψk) =

∫
p|Lk (t;x,Vk,ψk| t0;xk0,Vk0,ψk0)

FE
k (t,x0;Vk0,ψk0) dx0 dVk0 dψk0.

(50)

This relation shows that the fluid Eulerian mass density function FE
k is

’propagated’ by the fluid transitional pdf.
The integral of FE

k over phase space (Vk,ψk) is the expected density at
(t,x), denoted 〈ρk〉(t,x), which is defined by the following equation

αk(t,x)〈ρk〉(t,x) =

∫
ρk(ψk) pE

k (t,x;Vk,ψk)dVkdψk, (51)

where the Eulerian mass density function FE
k is given by

FE
k (t,x;Vk,ψk) = ρ(ψk) pE

k (t,x;Vk,ψk). (52)

Integration of FL
k and FE

k over phase space (Vk,ψk) yields (where the
notation y = x in the Lagrangian pdfs is, from now on, dropped most of
the time for the sake of clarity)

pL
k (t;x) =

1

Mk
αk(t,x)〈ρk〉(t,x), (53)

and therefore the conditional expectation pL
k (t;Vk,ψk|x) is given by

pL
k (t;Vk,ψk|x) =

ρk(ψk)

αk(t,x)〈ρk〉(t,x)
pE(t,x;Vk,ψk). (54)

Therefore, we find that in a compressible flow, the fluid Lagrangian pdf
conditioned by the position is not the fluid Eulerian distribution function
but the density-weighted fluid Eulerian pdf, pE

k /αk. Furthermore, even in
an incompressible flow, particles are in general a compressible phase.

PDF equation in dispersed two-phase flows

The existence of a propagator (p|Lfp for the fluid-particle mixture or p|Lk
for the phase k) indicates that the Lagrangian point of view is the natural
choice and from now on this point of view is retained. No emphasis is put
on modeling for the moment. This will be discussed in the following section.

For the sake of simplicity, only dispersed two-phase flows with two-way
coupling are considered. The possible influence of collisional mechanisms
(between discrete particles) can be accounted for in the frame of the present
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formalism, but it is not discussed here. The reader can find some details
elsewhere (Minier and Peirano, 2001). In order to write the partial differ-
ential equation verified by the propagator, we recall the exact equations for
the trajectories of fluid and discrete particles:

dx+
f,i = U+

f,i dt,

dU+
f,i = A+

f,i dt + A+
p→f (t,Z, 〈Z〉) dt,

dφ+
f,l = ΓfΔφ+

f,l dt + Sf (φ+

f ) dt,

dx+
p,i = U+

p,i dt,

dU+
p,i = A+

p,i dt,

dφ+
p,k = ΓpΔφ+

p,k dt + Sp(φ
+
p ) dt,

(55)

where the indexes l and k refer to the dimensions of φf and φp, respectively.
As in the previous sections, the + subscript is used to indicate the exact
trajectories in contrast to the modelled ones. Exact accelerations are given
by:

A+
f,i = − 1

ρf

∂P+

∂xi
+ νΔU+

f,i,

A+
p,i =

1

τp
(U+

s,i − U+
p,i) + gi.

(56)

A new term is added in the momentum equation of the fluid to account
for the influence of the particles on the fluid. The exact expression for this
acceleration, which is induced by the presence of the discrete particles, is
not a priori known and possible models for the trajectories of stochastic
fluid particles are discussed by Minier and Peirano (2001) and by Peirano
et al. (2006).

Using the techniques presented in Chapter 1, the transitional pdf p|L+
fp

verifies the following partial differential equation

∂p|L+
fp

∂t
+Vf,i

∂p|L+
fp

∂yf,i
+ Vp,i

∂p|L+
fp

∂yp,i
= − ∂

∂Vf,i
(〈A+

f,i|Z = z〉 p|L+
fp )

− ∂

∂Vf,i
(〈A+

p→f (t,Z, 〈Z〉)|Z = z〉 p|L+
fp )− ∂

∂Vp,i
(〈A+

p,i|Z = z〉 p|L+
fp ) (57)

− ∂

∂ψf,l
(〈ΓfΔφ+

f,l |Z = z〉 p|L+
fp )− ∂

∂ψf,l
(Sf,l(ψf

+) p|L+
fp )

− ∂

∂ψp,k
(〈ΓpΔφ+

p,k |Z = z〉 p|L+
fp )− ∂

∂ψp,k
(Sp,k(ψp

+) p|L+
fp ),
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Then, introducing the definition of the exact fluid-particle pdf in terms of
the transitional pdf

pL+
fp (t;xf ,Vf ,ψf ,xp,Vp,ψp) =∫

p|L+
fp (t;xf ,Vf ,ψf ,xp,Vp,ψp| t0;xf0,Vf0,ψf0,xp0,Vp0,ψp0)

(58)

pL+
fp (t;xf0,Vf0,ψf0,xp0,Vp0,ψp0) dxf0 dVf0 dψf0 dxp0 dVp0 dψp0,

and using Eq. (47), it can be shown that Eq. (57) is satisfied by the the
Lagrangian pdf, pL+

fp , and by the Eulerian mass density function, FE+
fp .

From this equation, it is therefore possible to derive all mean equations.

General modelling guidelines

Even if the details of the modeling are postponed, it essential here to an-
ticipate at least the form of the model, before deriving mean equations.
Eq. (57) is exact, and if all the relevant variables were included in the state
vector, it could be considered closed. As explained before, this would in-
volve a N-particles approach which is not the scope of present discussion.
A much coarser state vector is to be considered.

As we will see in more details soon, Kolmogorov theory tells us that
the acceleration of fluid particles (Monin and Yaglom, 1975) and the ac-
celeration of the fluid sampled along discrete particle trajectories are fast
variables (with dt being the reference time scale). Both accelerations are
external variables which have to be modelled and the two-particle (one fluid
particle and one discrete particle) state vector is defined by

Z = (xf ,Uf ,xp,Up,Us, dp), (59)

and in sample space, (x,U, dp) ↔ (y,V, δp). We have neglected the reac-
tive variables, since the extension is straightforward. The selection of the
velocity of the fluid seen by the discrete particles, namely Us, as an inde-
pendent variable linked to the discrete particles is a noteworthy point. One
could thus wonder whether the introduction of the velocity of the fluid seen
as an independent variable is justified when Uf is already included. Yet,
the statistics of the velocity of the fluid seen are different from the statis-
tics of a fluid particle due to particle inertia and crossing-trajectory effects.
Furthermore, these two fluid velocities do not correspond to the same tra-
jectories: Uf is the velocity along the fluid particle trajectory xf , while
Us is the velocity along the discrete particle trajectory xp. That justifies
the presence of these two fluid velocities which are treated as independent
variables.
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Stochastic model for Uf and Us

In the trajectory point of view, an useful approach is to use a Langevin equa-
tion. Then, the Langevin equation model consists in writing the increments
in time of Uf and Us as diffusion processes,

dxf,i = Uf,i dt, (60a)

dUf,i = [Af,i(t,Z) + Ap→f,i(t,Z, 〈Z〉)] dt + Bf,ij(t,Z) dW ′
j , (60b)

dxp,i = Up,i dt, (60c)

dUp,i = Ap,i(t,Z), dt (60d)

dUs,i = [As,i(t,Z) + Ap→s,i(t,Z, 〈Z〉)] dt + Bs,ij(t,Z) dWj , (60e)

where the drift vectors Af,i,Ap→f,i, Ap→s,i, As,i and the diffusion matrices
Bf,ij , Bs,ij have to be modelled. Hereafter we consider dp = constant. The
details concerning drift and diffusion terms are not necessary at this level.
It is worth noting just that the two-way coupling term enters the equations
of Uf and Us, Ap→f which reflects the influence of the discrete particles
on the fluid. This is a simple consequence of Newton’s third law: the fluid
exerts a force Ff→p on the discrete particles and, in return, the particles
exert a force Fp→f = −Ff→p on the fluid. The force exerted by one particle
on the fluid corresponds to the drag force written here as

Fp→f = −mpA
D
p = −mp

Us −Up

τp
. (61)

The issue of two-way coupling is out of the present scope and the reader
can find details in Minier and Peirano (2001) and in Peirano et al. (2006).

Summarising, the complete Langevin equation model is equivalent to a
Fokker-Planck equation given in closed form for the transitional pdf, p|Lfp.

As demonstrated previously, the Fokker-Planck equation verified by p|Lfp

is also verified by the two-point fluid-particle Eulerian mass density func-
tion FE

fp and the two-point fluid-particle Lagrangian pdf pL
fp. This Fokker-

Planck equation is, for the transitional pdf

∂p|Lfp

∂t
+Vf,i

∂p|Lfp

∂yf,i
+ Vp,i

∂p|Lfp

∂yp,i
= − ∂

∂Vf,i
([Af,i + 〈Ap→f,i |yf ,Vf 〉 ] p|Lfp )

− ∂

∂Vp,i
(Ap,i p|Lfp )− ∂

∂Vs,i
(
[
As,i + 〈Ap→s,i |yp,Vp,ψp〉

]
p|Lfp )

+
1

2
(

∂2

∂Vf,i∂Vf,j
([BfBT

f ]ij p|Lfp ) +
1

2

∂2

∂Vs,i∂Vs,j
([BsB

T
s ]ij p|Lfp ).

(62)
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Computations of the two-point fluid-particle pdf pL
fp can now be performed

using the trajectory point of view, that is by Lagrangian/Lagrangian sim-
ulations. Time evolution equations, Eqs. (60) are written for an ensemble
made up of fluid and discrete particles which are tracked together. Both
have specified variables attached to them which appear as independent vari-
ables in the pdf.

By direct integration of Eq. (62) the Fokker-Planck equations verified
by the one-particle transitional pdfs (the fluid transitional pdf p|Lf and the

particle transitional pdf p|Lp ) can be obtained. In the case of the fluid

transitional pdf, p|Lf ,

∂p|Lf
∂t

+Vf,i

∂p|Lf
∂yf,i

= − ∂

∂Vf,i
(Af,i p|Lf )

− ∂

∂Vf,i
(〈Ap→f,i |yf ,Vf 〉 p|Lf ) +

1

2

∂2

∂Vf,i∂Vf,j
([BfBT

f ]ij p|Lf ).

(63)

When two-way coupling is accounted for, the two-point (one fluid particle
and one discrete particle) information is necessary since the dynamics of the
fluid phase involve variables attached to the discrete particles. In the case
of the particle transitional pdf, p|Lp ,

∂p|Lp
∂t

+ Vp,i

∂p|Lp
∂yp,i

= − ∂

∂Vp,i
(Ap,i p|Lp )

− ∂

∂Vs,i
(
[
As,i + 〈Ap→s,i|yp,Vp,ψp〉

]
p|Lp )+

1

2

∂2

∂Vp,i∂Vp,j
([BpB

T
p ]ij p|Lp ),

(64)

where ψp ↔ (Vs, δp).

Mean field equations

The use of the two-point fluid-particle pdf allows an equal treatment of both
phases and it is a compact way to derive a set of field equations. These
field equations are often referred to as the ’Eulerian model’ or sometimes
’two-fluid model’. Here, we would like to call it a two-field model : this term
describes the spirit of the approach which is to derive field equations for both
phases. Now, let us discuss how such equations are derived. We consider
here the particular case of one-way coupling, i.e. Ap→f = Ap→s = 0
(for incompressible flows with particles of constant density but variable
diameter), for the sake of simplicity. The case of two-way coupling does not



S. Chibbaro and J.P. Minier 63

present any difficulty from a formal point of view, and it has been addressed
(Minier and Peirano, 2001; Peirano and Minier, 2002; Peirano et al., 2006).

Let us recall that two possible strategies are possible to derive mean
equation: from the two-point mass density function or from the respective
one-point FDF. In the first, it is indeed possible to keep the joint (one fluid
point-one particle point) information for the field description by treating
the two-point fluid-particle Eulerian mass density function, FE

fp. We study,
as mentioned previously, the cases where xf = x for the fluid, and xp = x

for the discrete phase, that is the following mass density functions

FE
fp(t,xf = x,xp;Vf ,ψf ,Vp,ψp),

FE
fp(t,xf ,xp = x;Vf ,ψf ,Vp,ψp).

(65)

By direct integration, the Fokker-Planck equations verified by the marginals
FE

f and FE
p can be obtained from the Fokker-Planck equation verified by

FE
pf which is, in its turn, obtained from the partial differential equation

verified by the transitional pdf p|Lfp. The latter equations are also verified

by FE
f and FE

p .

In the second, FL
f and FL

p have been obtained as well as their correspon-
dence with the field (Eulerian) description could be made. After that, we
have found that each Eulerian mass density function, FE

f and FE
p , is propa-

gated by the corresponding transitional pdf (p|Lf and p|Lp respectively). This
allows us to write immediately the Fokker-Planck (partial differential) equa-
tion verified by FE

f and FE
p from the Fokker-Planck equations verified by

the transitional pdfs p|Lf and p|Lp or from the Fokker-Planck equation veri-

fied by the transitional pdf p|Lfp. From that, averaging mean field equations
can be written.

Fluid and discrete particle expectations

In the present case (discrete particle of constant density but variable diame-
ter in an incompressible flow) all information is contained in the distribution
functions pE

p (t,x;Vp,ψp) (with ψp = (Vs, δp) for the discrete phase and

pE
f (t,x;Vf ) for the fluid but the derivation will be addressed in terms of

the mass density function FE
k (t,x;Vk,ψk) = ρk pE

k (t,x;Vk,ψk) for both
phases. The mathematical definition of the expected Eulerian value of a
function H(Vk,ψk) (a sufficiently smooth function attached to a given par-
ticle, i.e., a fluid or a discrete particle) is

αk(t,x)〈ρk〉〈H〉(t,x) =

∫
H F E

k (t,x;Vk,ψk) dVk dψk, (66)
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Therefore, in the present formalism, all expected values must be understood
as mass-weighted mean values. All the velocity moments can be obtained
accordingly. For instance, the fluid seen-particle velocity moments (of order
n + m) can be defined

αp(t,x)ρp〈us,i1 . . . us,in
up,j1 . . . up,jm

〉(t,x) =∫ n∏
k=1

vs,ik

m∏
l=1

vp,jl
FE

p (t,x;Vp,ψp) dVp dψp, (67)

where jl ∈ {1, 2, 3} ∀l. Considering also the diameter in the state-vector, a
general definition is introduced, that is a moment of order n + m + q,

αp(t,x)ρp〈(d
′

p )n us,i1 . . . us,im
up,j1 . . . up,jq

〉(t,x) =∫
(δ

′

p )n
m∏

k=1

vs,ik

q∏
l=1

vp,jl
FE

p (t,x;Vp,ψp) dVp dψp, (68)

Different moments can be easily computed. For instance, the velocity mo-
ments of order n read

αf (t,x)〈uf,i1 . . . uf,in
〉(t,x) =

∫ n∏
k=1

vf,ik
pE

f (t,x;Vf ) dVf . (69)

It is now necessary to clarify the correspondence between the mathe-
matical expectations, Eq.(66), and Monte Carlo estimations drawn from a
finite ensemble of particles. It is easy to show (Minier and Peirano, 2001;
Peirano and Minier, 2002) that

αp(t,x) ρp〈Hp〉 � 1

δVx

Np
x∑

i=1

mi
pH(Ui

p(t),φ
i
p(t)), (70)

and with

αp(t,x) ρp �
∑Np

x

i=1 mi
p

δVx
, (71)

we have

〈Hp〉 � Hp,N =

∑Np
x

i=1 mi
pH(Ui

p(t),φ
i
p(t))∑Np

x

i=1 mi
p

. (72)

For a polydispersed particle phase, particles have different masses even when
ρp is constant since their diameter varies. The important consequence is
that, even for constant density particles, the natural definition or under-
standing of a mean quantity is the mass-weighted -average, or the volume-
weighted average when ρp is constant.
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Field equations for the fluid phase

With Eqs. (50) and (63), it is straightforward to write the Fokker-Planck
equation verified by FE

f (t,x;Vf )

∂FE
f

∂t
+ Vf,i

∂FE
f

∂xf,i
= − ∂

∂Vf,i
(Af,i FE

f ) +
1

2

∂2

∂Vf,i∂Vf,j
([BfBT

f ]ij FE
f ). (73)

In the case of constant fluid density, ρf , the same equation is verified by
pE

f (t,x;Vf ). It is more convenient to make a change of coordinates in
velocity space, vf = Vf − 〈Uf 〉(t,x), and it is straightforward to prove
that the Fokker-Planck equation verified by pE

f (t,x;vf ) reads

dpE
f

dt
+ vf,i

∂pE
f

∂xi
=− ∂

∂vf,i
(Af,i pE

f ) +
1

2

∂2

∂vf,ivf,j

(
(BfBT

f )ij pE
f

)
+

d〈Uf,i〉
dt

∂pE
f

∂vf,i
+ vf,i

∂〈Uf,j〉
∂xi

∂pE
f

∂vf,j
,

(74)

where d/dt = ∂/∂t + 〈Uf,i〉∂/∂xi is the Eulerian derivative along the path
of a fluid particle.

Let us multiply Eq. (74) by Hf and apply the 〈 · 〉 operator, Eq. (66).
Assuming that all generalized integrals converge to zero in the limit vf,i →
±∞ and that uniform convergence is verified, after some derivations, one
finds

d

dt
(αf 〈Hf 〉)+ ∂

∂xi
(αf 〈vf,iHf 〉 ) = αf 〈Af,i

∂Hf

∂vf,i
〉+ 1

2
αf 〈(BfBT

f )ij
∂2Hf

∂vf,i∂vf,j
〉

− αf
d〈Uf,i〉

dt
〈 ∂Hf

∂vf,i
〉 − αf

∂〈Uf,j〉
∂xi

〈∂(vf,iHf )

∂vf,j
〉.

(75)

By replacing Hf by Hf = 1, Hf = Vf,i and Hf = vf,ivf,j , the continuity
equation, the momentum equations and the Reynolds-stress equations are
obtained, respectively. Multiplying these equations by ρf yields for the
continuity equation,

∂

∂t
(αfρf ) +

∂

∂xi
(αf ρf 〈Uf,i〉) = 0, (76)

for the momentum equation

αfρf
d

dt
〈Uf,i〉 = − ∂

∂xj
(αf ρf 〈uf,iuf,j〉) + αf ρf 〈Af,i〉. (77)
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and for the Reynolds-stress equations

αfρf
d

dt
〈uf,iuf,j〉 = − ∂

∂xk
(αf ρf 〈uf,iuf,juf,k〉)− αfρf 〈uf,iuf,k〉∂〈Uf,j〉

∂xk

−αfρf 〈uf,juf,k〉∂〈Uf,i〉
∂xk

+ αf ρf 〈Af,i vf,j + Af,j vf,i〉+ αf ρf 〈(BfBT
f )ij〉.

(78)

Field equations for the discrete phase

Here, we wish to derive the field equations for the discrete particles (the
partial differential equations for the expected values of the variables at-
tached to a discrete particle) for the following quantities: the mean discrete
particle velocity 〈Up,i〉, the second order velocity moment for discrete par-
ticles 〈up,iup,j〉, the mean of the fluid velocity seen 〈Us,i〉, the second order
velocity moment for the fluid seen 〈us,ius,j〉, the fluid seen-discrete particle
velocity correlation tensor, 〈us,iup,j〉, the mean diameter 〈dp〉, the diameter-

fluid velocity seen correlation vector, 〈d ′

p us,i〉, the diameter-particle velocity

correlation vector, 〈d ′

p up,i〉 and the diameter second order moment 〈(d ′

p )2〉.
This procedure (Chapman and Cowling, 1970; Liboff, 1998) is general

and allows to calculate any moment, but as the present task is to derive
an Eulerian-like model, closure is performed at the second order level. It
is straightforward to prove that FE

p (t,x;Vp,Vs, δp) verifies the following
partial differential equation,

∂FE
p

∂t
+ Vp,i

∂FE
p

∂xi
=− ∂

∂Vp,i
(Ap,i FE

p )

− ∂

∂Vs,i
(As,i FE

p ) +
1

2

∂2

∂Vs,i∂Vs,j

(
(BsB

T
s )ij FE

p

)
.

(79)

Like for the fluid phase, using Eq. (66), one can write

∂

∂t
(αpρp〈Hp〉) +

∂

∂xi
(αpρp〈Vp,iHp〉 ) = αpρp〈Ap,i

∂Hp

∂Vp,i
〉+

αpρp〈As,i
∂Hp

∂Vs,i
〉+ αpρp〈(BsB

T
s )ij

∂2Hp

∂Vs,i∂Vs,j
〉.

(80)

The partial differential equations for the specified discrete particle expecta-
tions can now be derived, simply by choosing the right function for Hp. For
Hp = 1, the continuity equation is obtained,

∂

∂t
(αpρp) +

∂

∂xi
(αp ρp〈Up,i〉) = 0. (81)
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WithHp = Vp,i, the momentum equation for the discrete phase reads (where
the Eulerian derivative along the path of a discrete particle is denoted d/dt
with d/dt = ∂/∂t + 〈Up,m〉∂/∂xm)

αp ρp
d

dt
〈Up,i〉 = − ∂

∂xj
(αp ρp〈up,iup,j〉) + αp ρp〈Ap,i〉. (82)

The partial differential equation of the expected fluid velocity seen, 〈Us,i〉,
is derived with Hp = Vs,i

αp ρp
d

dt
〈Us,i〉 = − ∂

∂xj
(αp ρp〈us,iup,j〉) + αp ρp〈As,i〉, (83)

and with Hp = δp, the partial differential equation for the mean diameter
reads

αp ρp
d

dt
〈dp〉 = − ∂

∂xi
(αp ρp〈d

′

p up,i〉). (84)

The partial differential equations verified by the second order moments
(n+m+ q = 2 in Eq. (68)) can not be obtained directly from the procedure
presented above. A change of coordinates in sample space is introduced,
vp = Vp − 〈Up〉(t,x), vs = Vs − 〈Us〉(t,x) and δ

′

p = δp − 〈dp〉(t,x). It
is straightforward to prove that the partial differential equation verified by
FE

p (t,x;vp,vs, δ
′

p ) reads

dFE
p

dt
+ vp,i

∂FE
p

∂xi
=− ∂

∂vp,i
(Ap,i FE

p )− ∂

∂vs,i
(As,i FE

p )

+
1

2

∂2

∂vs,ivs,j

(
(BsB

T
s )ij FE

p

)
+

d〈Up,i〉
dt

∂FE
p

∂vp,i
+

d〈Us,i〉
dt

∂FE
p

∂vs,i
+

d〈dp〉
dt

∂FE
p

∂δ ′

p

+ vp,i
∂〈Up,j〉

∂xi

∂FE
p

∂vp,j
+ vp,i

∂〈Us,j〉
∂xi

∂FE
p

∂vs,j
+ vp,i

∂〈dp〉
∂xi

∂FE
p

∂δ ′

p

.

(85)

With FE
p (t,x;vp,vs, δ

′

p ) dvp dvs dδ
′

p = FE
p (t,x;Vp,ψp) dVp dψp, because

we have ∣∣∣∣∣∂(Vf ,Vp,Vs, δp)

∂(vf ,vp,vs, δ
′

p )

∣∣∣∣∣ = 1, (86)

the moments of order n+m+q can also be defined with FE
p (t,x;vp,vs, δp).

The partial differential equation for a function Hp(vp,vs, δp) is derived in
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the same fashion as for Eq. (80). Once again, assuming that all general-
ized integrals converge and that uniform convergence is verified, after some
derivations, the partial differential equation verified by Hp(vp,vs, δ

′

p ) be-
comes

d

dt
(αpρp〈Hp〉) +

∂

∂xi
(αpρp〈vp,iHp〉 ) =

αpρp〈Ap,i
∂Hp

∂vp,i
〉+ αpρp〈As,i

∂Hp

∂vs,i
〉+

1

2
αpρp〈(BsB

T
s )ij

∂2Hp

∂vs,i∂vs,j
〉

− αpρp
d〈Up,i〉

dt
〈 ∂Hp

∂vp,i
〉 − αpρp

d〈Us,i〉
dt

〈 ∂Hp

∂vs,i
〉 − αpρp

d〈dp〉
dt

〈∂Hp

∂δ ′

p

〉

− αpρp
∂〈Up,j〉

∂xi
〈∂(vp,iHp)

∂vp,j
〉 − αpρp

∂〈Us,j〉
∂xi

〈∂(vp,iHp)

∂vs,j
〉

− αpρp
∂〈dp〉
∂xi

〈∂(vp,iHp)

∂δ ′

p

〉.
(87)

The partial differential equations for the velocity moments of order 2 can
now be obtained. Inserting Hp = vp,ivp,j , Hp = vs,ivp,j and Hp = vs,ivs,j

in Eq. (87), the partial differential equations verified by the second order
velocity moment for the discrete particles 〈up,iup,j〉, for the second order
velocity moment of the fluid seen 〈us,ius,j〉 and for the fluid seen-discrete
particle velocity correlation tensor 〈us,iup,j〉, can be derived. After some
algebra, one finds for 〈up,iup,j〉

αpρp
d

dt
〈up,iup,j〉 = − ∂

∂xk
(αp ρp〈up,iup,jup,k〉)− αpρp〈up,iup,k〉∂〈Up,j〉

∂xk

−αpρp〈up,jup,k〉∂〈Up,i〉
∂xk

+ αp ρp〈Ap,i vp,j + Ap,j vp,i〉,
(88)

for 〈up,ius,j〉p

αpρp
d

dt
〈us,iup,j〉 = − ∂

∂xk
(αp ρp〈us,iup,jup,k〉)− αpρp〈us,iup,k〉∂〈Up,j〉

∂xk

−αpρp〈up,jup,k〉∂〈Us,i〉
∂xk

+ αp ρp〈As,i vp,j〉+ αp ρp〈Ap,j vs,i〉,
(89)
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and for 〈us,ius,j〉p

αpρp
d

dt
〈us,ius,j〉 = − ∂

∂xk
(αp ρp〈us,ius,jus,k〉)− αpρp〈us,ius,k〉∂〈Us,j〉

∂xk

−αpρp〈us,jus,k〉∂〈Us,i〉
∂xk

+ αp ρp〈As,j vs,i + As,i vs,j〉+ αp ρp〈(BsB
T
s )ij〉.

(90)

By replacingHp byHp = δ
′

p vp,i,Hp = δ
′

p vs,i andHp = (δ
′

p )2 in Eq. (87),
the partial differential equations verified by the second order discrete par-
ticle velocity-diameter moment 〈d ′

p up,i〉, by the second order fluid velocity

seen-diameter moment 〈d ′

p us,i〉 and by the second order diameter moment

can be written. After some calculus, one finds for 〈d ′

p up,i〉

αpρp
d

dt
〈d ′

p up,i〉 = − ∂

∂xj
(αp ρp〈d

′

p up,iup,j〉)− αpρp〈d
′

p up,j〉∂〈Up,i〉
∂xj

−αpρp〈up,iup,j〉∂〈dp〉
∂xj

+ αp ρp〈Ap,i d
′

p 〉,
(91)

for 〈d ′

p us,i〉

αpρp
d

dt
〈d ′

p us,i〉 = − ∂

∂xj
(αp ρp〈d

′

p us,iup,j〉)− αpρp〈d
′

p up,j〉∂〈Us,i〉
∂xj

−αpρp〈us,iup,j〉∂〈dp〉
∂xj

+ αp ρp〈As,i d
′

p 〉,
(92)

and for 〈(d ′

p )2〉

αpρp
d

dt
〈(d ′

p )2〉 = − ∂

∂xi
(αp ρp〈(d

′

p )2up,i〉)− 2αpρp〈d
′

p up,i〉∂〈dp〉
∂xi

. (93)

Closure of the two-field model

Mean field equations have now been written, up to the second order mo-
ments, in the case of a non-reactive dispersed two-phase flow where the
fluid is incompressible and the discrete particles are hard spheres of con-
stant density. The set of equations and the associated unclosed terms are
given in Table 1. Table 1 should convince the reader of the necessity of a
Lagrangian approach when one attempts to simulate turbulent reactive dis-
persed two-phase flows: the physics of the problem are quite simplified and
the system of equation is already nearly intractable: 13 partial differential
equations (the dimension of the system is 46) with 23 terms to be closed.
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Table 1. Two-field model: list of the mean field equations and related
unclosed terms

variable unclosed terms third order tensors

αf

αp

〈Uf 〉 〈Af,i〉 IM
pf,i

〈Up〉 〈Ap,i〉
〈Us〉 〈As,i〉 〈AD

p,i〉
〈dp〉 〈d ′

p up,i〉
〈uf,iuf,j〉 〈Af,iuf,j〉 IR

pf,ij 〈(BfBT
f )ij〉 〈uf,iuf,juf,k〉

〈up,iup,j〉 〈Ap,iup,j〉 〈up,iup,jup,k〉
〈us,ius,j〉 〈As,ius,j〉 〈AD

p,jus,i〉 〈(BsB
T
s )ij〉 〈us,ius,jus,k〉

〈us,iup,j〉 〈As,iup,j〉 〈Ap,jus,i〉 〈AD
p,jup,i〉 〈us,iup,jup,k〉

〈d ′

p up,i〉 〈Ap,id
′

p 〉 〈d ′

p up,iup,j〉
〈d ′

p us,i〉 〈As,id
′

p 〉 〈AD
p,id

′

p 〉 〈d ′

p us,iup,j〉
〈(d ′

p )2〉 〈(d ′

p )2up,i〉

However, in the case of industrial applications which fall into the cat-
egory of the simplified case under consideration (for example in fluidised
beds), the mean field field equations can be furthermore simplified, pro-
vided some additional restrictions and hypotheses. In this case, the model
consists in partial differential equations for αp, αf , for the expected veloc-
ities 〈Uf 〉, 〈Up〉, 〈Us〉 and the traces of the contracted tensors, that is the
turbulent kinetic energies in both phases 〈uf,iuf,i〉/2, 〈up,iup,i〉/2 and the
fluid-particle velocity covariance 〈us,iup,i〉. The treatment of the closures is
out of the scope of the present paper and can be found in Peirano and Leck-
ner (1998). An interesting treatment of the issue of moments is discussed
in the chapter written by R Fox.

3.3 State-of-the-art Modelling

With the present choice of the state vector, the stochastic process used
to describe the system has been chosen Z = (xp,Up,Us). Following the
trajectory point of view, we must now propose a time-evolution equation
for Us that together with Eqs. (2) will give the complete SDE for the
components of Z. Compared to most Lagrangian models which are often
built in a discrete setting, we are looking for a model written in continuous
time to be consistent with our mathematical framework.

From the physical point of view, a time-evolution equation for Us amounts
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to modelling turbulent dispersion, an issue which is more complicated than
turbulent diffusion. Indeed, particle inertia (τp) and the effect of an exter-
nal force field induce a separation of the fluid element and of the discrete
particle initially located at the same point, as represented in Fig. 1. In the
asymptotic limit of small particle inertia, τp → 0, and in absence of external
forces this separation effect disappears and the problem of modelling diffu-
sion is retrieved, for which the stochastic model discussed by Pope (1994)
can be applied. For that reason, dispersion models (simulation of Us) are
extensions of diffusion models (simulation of Uf ).

P
F’

P

F
t

dt

n
F

discrete particle trajectory

fluid particle trajectory tn+1

r = (U  -U  )p s

Figure 1. Fluid element and particle paths.

An extensive description of the physical aspects of turbulent dispersion
can be found elsewhere (Pozorski and Minier, 1998; Minier and Peirano,
2001), so we recall just the key points that are used to device a stochas-
tic model. It is proposed to consider separately the two physical effects of
particle inertia and external forces. Two non-dimensional numbers have in-
troduced for that purpose: particle inertia is measured by the Stoke number

St =
τp

TL
, and external forces by ξ = |Vr |

u′
, u′ being a characteristic fluid tur-

bulent velocity (u′ =
√

2/3k). Then, we consider successively the influence
of these two effects on the characteristics of Us:

(i) in the absence of external forces (ξ = 0), only particle inertia plays
a role. We expect then that the characteristic, or integral, timescale
of the velocity of the fluid seen, say T ∗

L(ξ = 0) varies between the
fluid Lagrangian timescale TL, in the limit of low St numbers, and
the Eulerian timescale TE in the limit of high St numbers.

(ii) Leaving out particle inertia, external forces creates mean drifts (ξ �= 0)
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and induce a decorrelation of the velocity of the fluid seen with respect
to the velocity of fluid particles. This effect is called CTE (crossing
trajectory effect) and is related to a mean relative velocity between
particles and the fluid rather than an instantaneous one.

In the model presented here, we consider that TE remains of the same
order as TL, which seems actually a reasonable choice since there is little
information for complex flows. Detailed models have been proposed for
particle inertia effect (Pozorski and Minier, 1998), and the present model
can be easily extended accordingly. Here we consider that T ∗

L(ξ = 0) = TL.
The representative picture is now sketched in Fig. 2 where only mean-drifts
induce separation.

P
F’

P
dt

F
tn

F

tn+1

r = <U  >r

Figure 2. Mean fluid and particle paths.

Langevin equation model

Using the physical description of the CTE effect as due to a mean-drift (Fig.
2), we can now, as in single phase case, apply the Kolmogorov theory to
suggest a dispersion model. Indeed, if we introduce v(τ, r) = uf (t0 +τ,x0 +
u(t0,x0)τ + r)−uf (t0,x0), the fluid velocity field relative to the velocity of
the fluid particle F at time tn, that is with uf (t0,x0) = us(t0) Fig. 2, we
can write that:

dUs = v(dt, 〈Ur〉 dt), (94)

where 〈Ur〉 = 〈Up〉−〈Uf 〉 is the mean relative velocity between the discrete
particle and the surrounding fluid element. Then, the differential change,
and so the Eulerian statistics, of the fluid velocity seen depends on 〈ε〉 and ν,
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and on the mean drift due to the CTE effect, but not on the instantaneous
particle or fluid velocities. Since it is the mean velocity Ur that appears in
Eq. (94), the Kolmogorov theory can then be applied (Monin and Yaglom,
1975), to show that in high-Reynolds number flows and for a time increment
dt that belongs to the inertial range, we have

〈dUs,idUs,j〉 = Dij(dt), (95)

where the matrix Dij is determined by the two scalars functions D|| and
D⊥ through

Dij = D⊥δij +
[
D|| −D⊥

]
rirj . (96)

The separation vector r being in the direction of the mean relative velocity
r = 〈Ur〉/|〈Ur〉|. Being the functions D|| and D⊥ respectively the aligned
and transverse velocity correlation. Dimensional analysis yields that in the
inertial range, we have

D||(dt) = 〈ε〉 dt α||

( |〈Ur〉|2
〈ε〉dt

)
, D⊥(dt) = 〈ε〉 dt α⊥

( |〈Ur〉|2
〈ε〉dt

)
. (97)

For the two function α|| and α⊥ there is no exact prediction, but in two limit
cases they can be explicitely computed. When the mean relative velocity is
small, |〈Ur〉| 	 (〈ε〉dt)1/2 for a given time interval dt, the statistics of the
velocity of the fluid seen are expected to be close to the fluid ones, and thus

|〈Ur〉|2
〈ε〉dt

	 1, ⇒ α|| � α⊥ � C0. (98)

On the other hand, when the relative mean velocity is large (|〈Ur〉| 

(〈ε〉dt)1/2), we can resort to the frozen turbulence hypothesis. In that case,
we obtain that

D||(dt) � C(〈ε〉 〈Ur〉 dt)2/3, D⊥(dt) � 4

3
C(〈ε〉 〈Ur〉 dt)2/3, (99)

which shows that, in that limit, the two functions α||(x) and α⊥(x) vary

as x1/3. Some comments are in order. The same procedure applied to
fluid phase leads to a time correlation which is linear in time, that which
supports a diffusion model (Monin and Yaglom, 1975; Pope, 1994). In the
particle case, this remains true for small relative velocity, whereas a different
behaviour is predicted in the limit of frozen turbulence.

Nevertheless, a useful approximation can be proposed. Indeed, if we
freeze the values of the functions α|| and α⊥ for a certain value of the time
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interval, say Δtr and write

D||(dt) � 〈ε〉 dt α||

( |〈Ur〉|2
〈ε〉Δtr

)
, D⊥(dt) � 〈ε〉 dt α⊥

( |〈Ur〉|2
〈ε〉Δtr

)
,

(100)
we have now a linear variation of D||(dt) and D⊥(dt) with respect to the
time interval dt. The reference time lag may be the Lagrangian timescale
which is the timescale over which fluid velocities are correlated. And since
〈ε〉TL � k, we have

D||(dt) � 〈ε〉 dt α||

( |〈Ur〉|2
k

)
, D⊥(dt) � 〈ε〉 dt α⊥

( |〈Ur〉|2
k

)
.

(101)
This result suggests now a Langevin equation model which consists in simu-
lating Us as a diffusion process. With respect to fluid case, a supplementary
hypothesis has been made. As a consequence, the Langevin model does not
yield the correct spectrum in the limit of large relative velocity or frozen
turbulence. However, it is important to underline that this is not a much
relevant feature for engineering purposes, where the macroscopic behaviour
is the real subject of interest, the important properties are the integral time
scales rather than the precise form of the spectrum. Thus, present Langevin
models are not affected in practice by this limit. That has been largely
shown by numerical simulations, as it will be seen soon. It is also clear that
much work remains to be done to improve present stochastic models.

The general stochastic differential equations for the velocity seen process
have the form

dUs,i = As,i(t,Z) dt + Bs,ij(t,Z) dWj (102)

where the drift vector As and the diffusion matrix Bs have to be modelled.
Now, referring for all details to reach this form to Minier and Peirano

(2001), we can propose the complete form of the stochastic model:

dUs,i = − 1

ρf

∂〈P 〉
∂xi

dt + (〈Up,j〉 − 〈Uf,j〉) ∂〈Uf,i〉
∂xj

dt

− 1

T ∗
L,i

(Us,i − 〈Uf,i〉) dt

+

√
〈ε〉

(
C0bik̃/k +

2

3
(bik̃/k − 1)

)
dWi. (103)

The CTE has been modelled with the changing of timescales in drift and
diffusion terms according to Csanady’s analysis. Assuming for the sake of
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simplicity that the mean drift is aligned with the first coordinate axis, the
modelled expressions for the timescales are, in the longitudinal direction:

T ∗
L,1 =

TL√
1 + β

|〈Ur〉|2
2k/3

(104)

and in the transversal directions (axis labeled 2 and 3)

T ∗
L,2 = T ∗

L,3 =
TL√

1 + 4β
|〈Ur〉|2
2k/3

(105)

where β is the ratio of the Lagrangian and the Eulerian timescales of the
fluid β = TL/TE. In the diffusion matrix we have introduced a new kinetic
energy:

bi
TL

T ∗
L

; k̃ =
3

2

∑3

i=1 bi〈u2
f,i〉∑3

i=1 bi

. (106)

The case of general axis direction is discussed in Minier and Peirano (2001).
As a final remark, in the absence of mean drifts, the stochastic model

for Us reverts to the Langevin equation model used in single phase PDF
modelling (Pope, 1994) and is thus free of any spurious drift by construction.

Equivalence with PDF approach

According to the arguments developed in the first chapter, the complete
Langevin equation model (for the state vector Z = (xp,Uf ,Us)) can be
written

dxp,i = Up,i dt (107a)

dUp,i =
1

τp
(Us,i − Up,i) dt + gi dt (107b)

dUs,i = [As,i(t,Z) + Ap→s,i(t,Z, 〈Z〉)] dt + Bs,ij(t,Z) dWj . (107c)

This formulation is equivalent to a Fokker-Planck equation given in closed
form for the corresponding pdf p(t;yp,Vp,Vs) which is, in sample space

∂pL
p

∂t
+ Vp,i

∂pL
p

∂yp,i
= − ∂

∂Vp,i
(Ap,i pL

p )

− ∂

∂Vs,i
([As,i + 〈Ap→s,i|yp,Vp,Vs〉] pL

p ) +
1

2

∂2

∂Vp,i∂Vp,j
([BpB

T
p ]ij pL

p ).

(108)
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3.4 Numerical example: the Hercule experiment

The numerical simulation of this interesting test-case has been presented
in detail elsewhere (Minier et al., 2004), and we only report here the main re-
sults. The theoretical model developed previously represents a PDF model
for the particle phase only. It does not contain any description of the con-
tinuous or fluid phase. As we have explained in previous sections, a full
Lagrangian formalism and model is available and, thus, it is in principle
possible to extend the PDF description to both fluid and particle phases.
However, at the moment, this complete PDF approach is limited for prac-
tical calculations, and, in the present work, a classical second-moment ap-
proach is followed for the continuous phase. The complete numerical model
is therefore a hybrid method and corresponds to a classical approach referred
to as Eulerian/Lagrangian in literature. The terminology is not actually ad-
equate to describe the complete model, and it would be better to talk of
a Moment/pdf hybrid model, but corresponds to the numerical approach.
Indeed, from the numerical point of view, the fluid phase is modelled by
mean fluid, obtained by solving partial differential equations on a grid with
an Eulerian approach, while the particle phase is modelled by a large num-
ber of Lagrangian particles distributed in the domain and whose properties
are obtained by solving stochastic differential equations. It is worth empha-
sizing that these particles are now stochastic particles, or more precisely
samples of the underlying pdf, rather than precise models of the actual
particles. The overall numerical method is therefore an example of Monte
Carlo particle/mesh technique.

In particular, the stochastic modelling together with the hybrid nature
of the global approach raise specific issues. Notably, it is very important
not to overlook consistency issues (Chibbaro and Minier, 2011a). Although
a detailed analysis of the numerical approach is out of the present scope,
it is important to retain that the numerical approach involves many issues
(Hockney and Eastwood, 1988; Peirano et al., 2006), which have not been
always investigated or may have been overlooked, such as consistent discrete
averages and mass-continity constraint.

General Algorithm

The flow-chart of the code is shown in fig. 3. At each time step, the fluid
mean fields are first computed by solving the corresponding partial differ-
ential equations (RSM model) with a classical finite volume aproach. The
Eulerian solver then provides the Lagrangian solver with the mean fields
that are necessary to advance particles properties. Within the Lagrangian
solver, the dispersed phase is represented by a large number of particles
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Figure 3. Sketch of the algorithm for one time step.

and, as proposed by the model, the state vector attached to each particle is
Z = (xp,Uf ,Us). Once particle properties have been updated, particles are
located in the grid cells used also for the fluid computation, and mean statis-
tical properties, such as the mean particle velocity field 〈Up〉, are extracted
by calculating ensemble averages from the set of particles present in each
cell. In the case of two-way coupling, where particles modify the fluid flow,
source terms accounting for momentum and energy exchange between the
two phases are also calculated and are fed back into the Eulerian solver for
the next time step computation. It is then seen that the two solvers are only
loosely-coupled. This may lead to numerical difficulties when the particle
loading is increased, consequently the source terms become important and
the equations stiff. However, our present aim is to model moderate parti-
cle loading phenomena, and particle-particle collisions have been neglected.
In this range, particles can still modify the fluid flow in a noticeable way
but source terms remain low enough so that the loosely-coupled algorithm
works well.

For stationary flows, such as the one considered later on, ensemble aver-
ages computed in every cell are then averaged in time, once the stationary
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regime has been reached. This time-averaging procedure is very helpful to
reduce statistical noise to a negligible level (Muradoglu et al., 1999; Jenny
et al., 2001; Muradoglu et al., 2001).

Within the particle solver, the particle properties are modelled by a
vectorial SDE that we can write as

dZi = Ai(t,Z), 〈f(Z)〉, 〈X〉)dt + Bij(t,Z, 〈f(Z)〉, 〈X〉)dWj (109)

where f is a general function depending on the model and X stands for
fluid fields. It is worth emphasizing that the drift and diffusion depend
on statistics derived from the pdf that is implicitly calculated. Therefore,
these SDE are different from standard ones (Arnold, 1974; Talay, 1995).
Updating particles properties implies three steps:

1. projection of 〈f(Z)〉 and 〈X〉 at particle positions,
2. time integration of eq. (109),
3. averaging to compute the new values of 〈f(Z)〉.

These steps involve many issues, whose discussion is out of the present scope
(Kloeden and Platen, 1992; Talay, 1995; Minier et al., 2003; Peirano et al.,
2006; Hockney and Eastwood, 1988)

Experimental setup

The experimental setup is typical for pulverized coal combustion where pri-
mary air and coal are injected in the center and secondary air is introduced
on the periphery, Figure 4.

The experimental setup is typical for pulverised coal combustion where
primary air and coal are injected in the centre and secondary air is intro-
duced on the periphery, Fig. 4a. This is a typical bluff-body flow where the
gas (air at ambient temperature, T = 293 K) is injected in the inner region
and also in the outer region where the inlet velocity is high enough to create
a recirculation zone downstream of the injection. Solid particles (glass par-
ticles of density ρp = 2450 kg/m3) are then injected from the inner cylinder
with a given mass flow rate and from there interact with the gas turbulence.
This is a coupled turbulent two-phase flow since the particle mass loading
at the inlet is high enough (22%) for the particles to modify the fluid mean
velocities and kinetic energy. This is also a polydispersed flow where parti-
cle diameters vary according to a known distribution at the inlet, typically
between dp = 20μm and dp = 110μm around an average of dp ∼ 60 μm.
Further details on the experimental setup and the measurement techniques
can be found in (Borée et al., 2001). This test-case has been also discussed
elsewhere (Minier et al., 2004). In figure 5a, we show the effect of the choice
of the turbulence model for fluid velocity. For fluid phase, as previsible, the
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Figure 4. The ’Hercule’ experimental setup: two stagnation points
Experimental data are available for radial profiles of different statisti-
cal quantities at five axial distances downstream of the injection (x =
0.08, 0.16, 0.24, 0.32, 0.40m)

recirculation point is much better captured with a Reynolds stress model.
For this reason, all the following calculations are performed with this fluid
turbulence model. It is worth saying that there are possible consistency
issues in hybrid Eulerian/Lagrangian (Chibbaro and Minier, 2011a). The
Reynolds stress model used is consistent with the Lagrangian model and
thus assures the global consistency of the method. For the particle phase,
we show in figure 5b the mean axial velocity for two Lagrangian models. It
is possible to appreciate that the CTE included in the mean gradient term in
eq. (103) plays a role. The agreement with experimental results is fair but
not perfect. In figure 6, the fluctuating particle velocity is shown along the
radial direction at different positions on the axis. Typically this quantity is



80 Stochastic Modelling of Polydispersed Turbulent Two-phase Flows

Figure 5. (a)Mean axial fluid velocity computed through k − ε and Rij

model. (b) Mean axial particle velocity computed coupling with a Rij tur-
bulence fluid model. Standard model neglects the gradient correction in the
model, which is instead retained in the complete one.

not accessible through standard two-fluid simulations and is of much inter-
est. Considering that this test-case is particularly challenging and that the
radial velocity appears as the most difficult to predict (even the experiments
show very noisy data), the results obtained are quite good. The qualita-
tive behaviour is always captured and, at least at some positions, profiles
are recovered quantitatively. Moreover, we can use the present numerical
simulation to outline the kind of information that is available. As already
indicated, in a number of engineering applications and notably in sediment
flows, one is usually interested in having far more information than simply
one or two moments. One of the interests of present stochastic models is to
provide such information. For example, one would like to know how much
time particles found in a certain volume have actually spent in that volume,
or even how many of the particles present have previously entered another
specific zone. This is illustrated in Fig. 7 which presents a plot of the in-
stantaneous locations of the particles that are simulated at that time step.
In this plot, particles are coloured by their residence time which reveals
the recirculation. The denser plot indicates the accumulation of particles
in the recirculation zone. In the same figure, two distributions of particle
residence time are extracted and shown at two locations. In a cell near the
inlet, the distribution is highly peaked: most of the particles present in that
cell have just been injected and their residence time is small contributing
to the near delta-value close to the origin of time. A smaller number of
particles are found with larger residence times: these are particles which
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Figure 6. Fluctuating particle radial velocity

have recirculated and have gone back to the selected cell following different
trajectories and thus having different residence times. A second distribu-
tion is also shown in Fig. 7, for a location near the outlet of the domain. In
that case, we do not find different subclasses but rather a continuous spread
of the particle residence time distribution. Particles have been well mixed
since the injection and the distribution are smooth.

3.5 Conclusions and perspectives

In this chapter, we have applied a certain number of classical techniques
of the stochastic approach to come up with a statistical description of tur-
bulent polydispersed two-phase flows. We have named this approach meso-
scopic, to distinguish it from the coarser RANS approach, and the much
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Figure 7. A snapshot of particle locations at one time step of the calculation
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finer DNS one. The stochastic model has been presented only after the
general formalism has been put forward. This rigorous approach helps to
develop in a safe manner the modelling step. Multiscale arguments have
been used to make the choice of the state vector.

Some relevant specific points and perspectives have not been discussed
or only marginally, for the sake of clarity. We want to point out some of
them:

• The choice of the state vector for particle phase has been discussed at
length. The choice made here is to keep in the state-vector the follow-
ing variables: xp, Up, Us. Historically, the first attempts to develop
a PDF approach to polydispersed flows have been made gathering
only xp, Up. This approach is usually called kinetic, in analogy with
Boltzmann approach to gas dynamics. The kinetic approach has the
merit to have advocated a PDF approach to polydispersed flows but
is affected by many drawbacks which make it useless for simulations
and not adequate for general non-homogeneous flows. In fact, it is
not an actual PDF approach, since only moments equations derived
from the kinetic equations can be used in practice. For these rea-
sons, we consider the present choice xp, Up, Us as the strict minimum
for a consistent stochastic approach. On the contrary more general
state vector could be considered to improve present Langevin models.
Some elements of these problems can be found in literature (Minier
and Pozorski, 1999; Minier and Peirano, 2001). A more detailed crit-
ical revision will be published soon.

• The stochastic model presented here, eq. (103) has not an isotropic
diffusion coefficient. This is a very important point very often over-
looked (Chibbaro and Minier, 2011b). Indeed, the isotropic form of
the diffusion coefficient taken from single-phase models does not guar-
antee consistency with the simple decaying isotropic turbulence.

• Considering the perspectives, and with the nowadays computer per-
formances, the present stochastic approach can be considered as the
”standard” approach to collisionless particle-laden flows, with regard
to two-fluid models. Instead, for more fundamental-based studies,
its extension to a hybrid LES/PDF approach is certainly interest-
ing and subject of present research (Pozorski and Apte, 2009; Chib-
baro and Minier, 2011a; Bianco et al., 2012). Two-point fluid models
can also be considered. Finally, a very promising route is the devel-
opment of stochastic models within smooth-particle-hydrodynamics
(SPH) framework. Given that this approach is full Lagrangian, it
seems to offer the best field on which build up a consistent and effi-
cient Lagrangian stochastic approach (Szewc et al., 2012).
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Abstract We provide a brief introduction to quadrature-based mo-
ment methods that can be used to model polydisperse multiphase
flows. A more detailed description can be found in Marchisio and
Fox (2013). Our focus here is to introduce the reader to the prin-
cipal topics and to provide insight into the numerial algorithms.
An example application of gas-particle flow is used to illustrate the
methods.

1 Introduction

Quadrature-based moment methods (QBMM) can be used to model poly-
disperse multiphase flows. The list of references provided at the end of the
chapter contains a relatively complete list of the author’s publications on
this topic, including many applications to chemical engineering systems.

1.1 Polydisperse multiphase flows

By polydisperse multiphase flow, we mean that the flow has a continuous
phase and at least one disperse phase consisting of entities of varying mass,
volume, composition, etc. In general, we refer to the disperse-phase entities
as particles and the collective behavior of all particles is referred to as the
disperse phase. Such flows arise in many practical situations. Examples of
industrial multiphase flows include fluid catalytic cracking, catalytic com-
bustion, coal gasification, Fischer-Tropsch synthesis, chemical-looping pro-
cesses, dust incineration, pneumatic transport and spray drying. Important
aerospace applications include helicopter brown-out wherein sand and dust
are lifted by the helicopter rotor causing reduced visibility while landing
and extremely high risk of accidents, and propulsion systems such as spray
combustion and rocket boosters. Examples of environmental polydisperse
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Figure 1. Modeling approach based on a kinetic equation at the mesoscale.

multiphase flows include gravity currents, volcanic eruptions, pollutant dis-
persion in the atmosphere (e.g., aerosols), and sand and dust storms.

The modeling challenges associated with polydisperse multiphase flows
are numerous. For example, the volume occupied by the disperse phase can
vary widely from point to point in the the same flow. In many cases, the
particles will have an inertia very different from the continuous phase as
measured by the wide range of Stokes numbers of the particles. Depending
on the nature of the flow, the behavior of the particles can be dominated
by collisions (or particle-particle interactions) or, in the opposite extreme,
it can be collision-less with the two regimes coexisting in same flow. Also,
depending on the properties of the particles, their instantaneous velocity
fluctuations (or granular temperature) can be very small and very large in
same flow. Finally, almost all disperse multiphase flows of practical interest
are polydisperse (size, density, shape, etc.), which can have a strong effect
on the fluid mechanical properties of the disperse phase. Thus, we will need
a modeling framework that can handle all of the challenges that can occur
simultaneously in the applications mentioned above.
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1.2 Kinetic theory models

The modeling approach described in this chapter is based on using ki-
netic theory models for the disperse phase. As shown in Figure 1, a kinetic
theory model is a mesoscale model that uses a kinetic equation to describe
the properties of the particles. In contrast to a microscale model that con-
tains a complete description of each individual particle and the flow of the
continuous phase around the particles, the mesoscale model describes the
evolution of a single particle coupled to the continuous phase through cor-
relations such as for fluid drag on the particle or heat and mass transfer
between phases, and interactions with other particles through a collision
model (e.g., the Boltzmann hard-sphere collision integral). As shown in
Figure 1 the mesoscale model is related to the macroscale model through
the moments of the kinetic equation. For example, the zero-order moment
leads to the diperse-phase continuity equation, while the first-order moments
with respect to velocity lead to the disperse-phase momentum equation. It
is important to recognize that the formal process of taking the moments of
the kinetic equation results in a loss of information concerning the mesoscale
properties of the flow (i.e., the macroscale model describes only a limited
set of disperse-phase variables needed to represent “average” properties of
the multiphase flow). Likewise, the mesoscale model contains much less
information than the microscale model since, for example, two-particle cor-
relations are not represented at the level of the one-particle kinetic equation.

The procedure used to develop a mesoscale model starting from the
complete microscale description is shown schematically in Figure 2. By def-
inition, the microscale model uses the complete set of equations needed to
predict all relevant aspects of the multiphase flow (e.g., Navier-Stokes equa-
tion for the continuous phase along with boundary conditions at surface of
each particle, Newton’s second law for the momentum of each particle along
with an exact description of particle collisions, etc.), but cannot be used to
model a realistic application due, for example, to the large number of par-
ticles present. In order to find a tractable model, the set of independent
variables must be drastically reduced to include only the mesoscale variables
that describe a single particle. However, reducing the number of variables
implies a loss of information that must be modeled in terms of the mesoscale
variables. For example, the fluid forces exerted on the surface of each par-
ticle are exactly captured in the microscale description, but are modeled as
an effective drag term that depends on the particle velocity and size in the
mesoscale model. Likewise, for problems with heat and mass transfer, the
microscale description must resolve the boundary layers around each parti-
cle and can predict the exact rates of exchange of heat and mass to/from
each particle. In the mesoscale model, heat and mass transfer are modeled
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Closure occurs at the level of the one-particle density function 

Figure 2. Passage from microscale description to the mesoscale model.

using a correlation expressing the rates as functions of the particle’s tem-
perature, concentration and velocity relative to the average local values in
the fluid phase.

In kinetic theory, the space containing all possible values of the mesoscale
variables is referred to as phase space. Depending on the number of mesoscale
variables needed to describe a polydisperse multiphase flow, the dimension
of phase space can be large. (We give some examples below.) In con-
trast, since the macroscale model is found by integrating over all of phase
space, leaving only real space and time as the independent variables, the
macroscale model uses a smaller set of independent variables. In summary,
going from the microscale to the macroscale requires two levels of simplifica-
tion. First, the complete microscale description is replaced with mesoscale
variables that describe how each particle evolves through phase space, real
space and time. In this step, the physics of the problem are simplified to re-
tain only the quantities needed to represent the important properties of the
flow. Second, information about individual particles is lost by integrating
over the phase space containing all of the mesoscale variables, leaving only
the average or collective properties of the disperse phase. This step results
in unclosed terms in the transport equations for the moments that must be
closed using only the knowledge available from the finite set of transported
(or solved) moments. By definition, the solution to the kinetic equation
contains a complete description of all moments. Thus, the moment-closure
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problem is mathematical (as opposed to physical as in the first step) because
we need to represent the solution to the kinetic equation using a reduced
set of information (i.e., weighted integrals over phase space). In compari-
son to classical methods used to derive the macroscale model directly from
the microscale description wherein the physical and mathematical closures
are mixed together in one step, using a mesoscale model allows for a clear
separation between the two types of closure (Marchisio and Fox, 2013).

1.3 Example mesoscale models

There are many types of mesoscale transport equations depending on
the mesoscale variables needed to describe a polydisperse multiphase flow.
However, it is possible to identify three types that occur in many applica-
tions.

1. Population balance equation (PBE): In this case, the particles
follow the continuous phase so it is not necessary to include their ve-
locity as a mesoscale variable. Letting ξ denote a generic size variable,
the number density function (NDF) is denoted by n(t,x, ξ) and rep-
resents the number concentration of particles with size in the range ξ
to ξ + dξ at time t and position x. The NDF is found by solving a
PBE:

∂n

∂t
+

∂

∂xi
[ui(t,x, ξ)n] +

∂

∂ξ
[G(t,x, ξ)n] =

∂

∂xi

(
D(t,x, ξ)

∂n

∂xi

)
+ S

(1)
where repeated Roman indices imply summation. The particle veloc-
ity u, growth rate G, diffusivity D and source term S (e.g., aggrega-
tion, breakage, etc.) are known mesoscale models. In this case, the
phase space is one dimensional, but in many applications the num-
ber of mesoscale variables must be expanded to include other particle
properties such as temperature, concentration and surface area. The
mesoscale models depend explicitly on ξ and thus the PBE is more
complicated than the corresponding macroscale model that depends
only on t and x.

2. Kinetic equation (KE): In this case, all particle properties except
velocity are the same for every particle. The only relevant mesoscale
variable is particle velocity v. The NDF is denoted by n(t,x,v) and
found by solving a KE:

∂n

∂t
+

∂

∂xi
(vin) +

∂

∂vi
[Ai(t,x,v)n] = C (2)

with a mesoscale acceleration model A and collision model C. The
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classical example for mesoscale acceleration is Stokes drag:

A =
1

τD
(uf − v) (3)

where τD is characteristic time scale for fluid drag and uf is the lo-
cal fluid velocity for the continuous phase. A widely used model for
collisions is the BGK model:

C =
1

τC
(neq − n) (4)

where τC is a characteristic collision time scale, and neq is the equilib-
rium NDF. For the KE, the phase space is usually three dimensional,
making the total number of independent variables equal to seven.

3. Generalized population balance equation (GPBE): The most
general type of mesoscale model includes particle velocity and size.
The corresponding NDF is denoted as n(t,x,v, ξ) and is found by
solving a GPBE:

∂n

∂t
+

∂

∂xi
(vin) +

∂

∂vi
[Ai(t,x,v, ξ)n] +

∂

∂ξ
[G(t,x,v, ξ)n] = C (5)

with mesoscale models for acceleration A, growth G and collisions
and/or aggregation C. Due to the dependence on size, the mesoscale
models can be much more complicated than in the monodisperse KE.
In particular, collisions leading to aggregation and/or breakage can
lead to complex expressions for C (Marchisio and Fox, 2013). The
usual minimum number of mesoscale variables for a GPBE is four, but
it is not uncommon to have many more when describing multiphase
flows with heat and mass transfer.

1.4 Example macroscale models

Each type of mesoscale model introduced above will lead to a set of
moment transport equations that defines the macroscale model. Here we
look at the simplest possible forms for each type.

• With a 1-D phase space and 1-D real space, the integer moments of
the NDF are defined by

Mk =

∫ ∞

0

ξkn dξ. (6)
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Figure 3. QBMM are used to reconstruct the density function.

Integrating the PBE in (1) over phase space leads to

∂Mk

∂t
+

∂

∂x

(∫ ∞

0

ξkun dξ

)
=

k

∫ ∞

0

ξk−1Gn dξ +
∂

∂x

(∫ ∞

0

ξkD
∂n

∂x
dξ

)
+

∫ ∞

0

ξkS dξ (7)

where we have assumed that G ≥ 0 (i.e., particles do not decrease
in size). The reader can observe that there are four unclosed terms
involving integrals in (7). The first unclosed term (on the left-hand
side) is the advective flux of the moments, and will only be closed if
u is independent of ξ. Likewise, the diffusive flux involving D will
be closed only if the diffusivity does not depend on size. In QBMM,
the unclosed terms are closed by reconstructing n from a finite set of
moments for each value of t and x. Once the functional form for n
is known, the integrals can be evaluated using quadrature formulas.
The overall closure procedure is shown in Figure 3.

• With a 1-D phase space and 1-D real space, the integer moments of
the NDF are defined by

Mk =

∫ +∞

−∞
vkn dv. (8)
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Integrating the KE in (2) over phase space leads to

∂Mk

∂t
+

∂Mk+1

∂x
= k

∫ +∞

−∞
vk−1An dv +

∫ +∞

−∞
vkC dv (9)

from which we can clearly see that the spatial advection term will
never be closed for a fixed maximum value of k. With the simple
models in (3) and (4), the integrals on the right-hand side of (9)
will be closed, but this need not always be true. With QBMM, the
reconstruction shown in Figure 3 is employed to find n from a finite set
of moments. Once n is known, Mk+1 can be found from the definition
in (8).

• With a 2-D phase space and 1-D real space, the integer moments of
the NDF are defined by

Mkl =

∫ +∞

−∞

∫ ∞

0

vkξln dvdξ. (10)

Integrating the GPBE in (5) over phase space leads to

∂Mkl

∂t
+

∂Mk+1l

∂x
= k

∫ +∞

−∞

∫ ∞

0

vk−1ξlAn dvdξ

+ l

∫ +∞

−∞

∫ ∞

0

vkξl−1Gn dvdξ +

∫ +∞

−∞

∫ ∞

0

vkξlC dvdξ (11)

wherein all of the terms except the first must be closed. With QBMM,
it is necessary to reconstruct the joint NDF involving velocity and size.
However, once this is done, the reconstructed NDF is used to close the
moment transport equation as shown in Figure 3.

1.5 Focus of chapter

The preceding sections provided a brief overview of QBMM and the
philosophy behind the closure procedure used to solve the macroscale model.
In the remainder of this chapter we will focus on two of the key technical
points needed to solve practical problems, namely, how NDF reconstruction
is achieved with QBMM and how to solve the closed moment transport
equations. While algorithmically different in nature, these two points are
strongly coupled by the requirement that the NDF reconstruction can only
be successful for a set of realizable moments. In practice, accurate solutions
to the moment transport equations require high-order numerical algorithms
to reduce numerical diffusion. However, as a general rule, only first-order
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algorithms will guarantee that numerical errors do not make the moment set
unrealizable. It is thus necessary to use only realizable schemes (Marchisio
and Fox, 2013), and in Sec. 3 we discuss realizable finite-volume methods.
In Sec. 2, we begin by looking at NDF reconstruction algorithms that use
a finite set of realizable moments.

2 Quadrature-Based Moment Methods

In this section we discuss moment-inversion algorithms that are used to
reconstruct the NDF from a finite set of moments. Some important things
to consider when devising an algorithm are as follows.

• Which moments should we choose to solve for?

• What method should we use to reconstruct the NDF?

• How can we extend the algorithm to a multivariate phase space?

• Can we improve the accuracy of the closure without increasing (dras-
tically) the number of moments?

Moreover, since it will be used repeatedly when solving the moment trans-
port equations, we must be able to demonstrate a priori that the moment-
inversion algorithm is robust and accurate for any arbitrary set of realizable
moments.

This section is organized as follows. We start with 1-D phase space where
the mathematical theory is well understood and the available algorithms
are very robust. Next we look at how these algorithms can be extended
to multidimensional phase space where the existing mathematical theory
is less well developed. The basic algorithms represent the NDF by a sum
of point distributions (i.e., delta functions). Thus, we finish the section by
looking at extended algorithms that yield a continuous NDF. The material
in this section is covered in much more detail in Marchisio and Fox (2013).

2.1 Gaussian quadrature in 1-D phase space

Let g(v) be a smooth function of v and n(v) ≥ 0 be an unknown NDF.
The formula ∫

g(v)n(v) dv =
N∑

α=1

nαg(vα) +RN (g) (12)

is a Gaussian quadrature if and only if the N nodes vα are the roots of
an N th-order orthogonal polynomial PN (v) (⊥ with respect to n(v)). The
recursion formula for PN (v) is defined by

Pα+1(v) = (v − aα)Pα(v)− bαPα−1(v), α = 0, 1, 2, . . . (13)
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where aα and bα are the unique recursion coefficients that define the poly-
nomial. There exists an inversion algorithm for the moments (see Marchisio
and Fox (2013) for details)

Mk =

∫
vkn(v)dv (14)

that proceeds as follows:

{M0,M1, . . . ,M2N−1} =⇒ {a0, a1, . . . , aN−1}, {b1, b2, . . . , bN−1}
=⇒ {n1, n2, . . . , nN}, {v1, v2, . . . , vN}. (15)

In words, given 2N sequential integer moments, it is possible to find the
recursion coefficients (an ill-conditioned step) and then to find the weights
and abscissas (a well-conditioned step). (See Marchisio and Fox (2013) for
details.)

Once the weights and abscissas are known, we can use Gaussian quadra-
ture to approximate the unclosed terms in the moment equations. For
example,

dM

dt
=

∫
S(v)n(v)dv ≈

N∑
α=1

nαS(vα) (16)

where M = {M0,M1, . . . ,M2N−1} is the moment vector and S is a generic
source term. This Gaussian quadrature approximation has the following
properties.

• It is exact if S is a polynomial of order ≤ 2N − 1.
• It provides a good approximation for most other cases with a small
N ≈ 4.

• Complications can arise in particular cases (e.g. spatial fluxes, evapo-
ration).

• In all cases, the momentsMmust be realizable for moment inversion.
The method for solving (16) consists of advancing the moment vector M
in time by evaluating the right-hand side using the weights and abscissas
found by inverting the moments at the current time step. For 1-D phase
space, the inversion algorithm can be done with low computational cost (see
Marchisio and Fox (2013)), making the numerical solution both tractable
and accurate.

Note that the Gaussian quadrature is equivalent to a reconstructed N -
point distribution function:

n∗(v) =
N∑

α=1

nαδ(v − vα), (17)
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and the moments will be realizable if nα ≥ 0 for all α. As mentioned
earlier, with standard Gaussian quadrature the reconstructed NDF is not a
smooth function of v, and thus it cannot be evaluated point-wise in phase
space. Below, we will introduce an extended quadrature that can be used
to reconstruct a smooth NDF.

2.2 Quadrature in multiple dimensions

Unfortunately, there is no method equivalent to Gaussian quadrature
for multiple dimensions. However, it is still possible to develop moment-
inversion algorithms with the following desirable properties.

• Given a particular moment set M = {Mijk : i, j, k ∈ 0, 1, . . . }, find
non-negative weights nα and vector abscissas vα such that

Mijk =

∫
vi1v

j
2v

k
3n(v)dv =

N∑
α=1

nαv
i
1αv

j
2αv

k
3α (18)

for all of the moments in the set.
• If the moment set M corresponds to an N -point distribution, then
the inversion method should be exact (i.e., it should find the exact
distribution).

• We should avoid brute-force nonlinear iterative solvers (poor conver-
gence, ill-conditioned, too slow, etc.) in favor of direct solvers (like
the 1-D Gaussian quadrature described above).

• The algorithm must yield a realizable quadrature (i.e. non-negative
weights with abscissas in the region of phase space where the NDF is
nonzero).

The strategy that we have developed for multidimensional quadrature is to
choose an optimal moment set to avoid ill-conditioned systems (Fox, 2009b).
In the next few sections, we show some example multivariate moment-
inversion algorithms that have some or all of the desirable properties.

Brute-force QMOM In the brute-force (BF) quadrature method of mo-
ments (QMOM), a nonlinear equation solver is used to solve (18) for an
optimal moment set (see Marchisio and Fox (2013) for the definition of op-
timal moments). For a 2-D phase space, the BFQMOM works as follows.
Given 3n2 bivariate optimal moments (n = 2):⎛

⎜⎜⎝
M00 M01 M02 M03

M10 M11 M12 M13

M20 M21

M30 M31

⎞
⎟⎟⎠ , (19)
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solve twelve moment equations:

4∑
α=1

|nα|ui
αv

j
α = Mij

to find {n1, . . . , n4;u1, . . . , u4; v1, . . . , v4}. Because BFQMOM is not direct,
the iterative solver often converges slowly (or not at all). Moreover, the
system of equations can be singular for (nearly) degenerate cases (e.g., for
N -point distributions). In general, BFQMOM is not a good choice for use
with QBMM.

Tensor-product QMOM A multivariate tensor-product (TP) QMOM
uses multiple 1-D direct quadratures to construct a scaffold in phase space
using the TP of the abscissas in each direction (Fox, 2008, 2009a). For a 2-
D phase space, TPQMOM proceeds as follows. Given univariate moments,
compute 1-D Gaussian quadratures (n = 2):

1. {M00,M10,M20,M30} =⇒ {ui : i = 1, 2},
2. {M00,M01,M02,M03} =⇒ {vj : j = 1, 2}.

Using these results, construct N = 4 TP abscissas: vα = {ui, vj} : α =
1, . . . , 4. Given the TP abscissas, use N = 4 moments {Mij : i, j ∈ 0, 1} to
define a linear system for the weights:

A(v)

⎡
⎢⎢⎣
n1

n2

n3

n4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
M00

M10

M01

M11

⎤
⎥⎥⎦ . (20)

The matrix A will be full rank if the abscissas are distinct, and thus the
weights are well defined.

Despite its apparent simplicity, the TPQMOM has some important draw-
back. First, the solution to the linear system in (20) can yield negative
weights. In such cases, it is necessary to develop a correction algorithm to
remove the negative weights while solving for the maximum possible num-
ber of moments. Another drawback of TPQMOM is that it cannot find
the exact N -point distribution in cases where it exists (unless the abscis-
sas just happen to be a tensor product). Finally, even if the weights are
positive, TPQMOM in the above example only satisfies eight of the twelve
optimal moments in (19). Fortunately it is possible to do better than BF
and TPQMOM as we describe next.

Conditional QMOM Currently the best choice for constructing a mul-
tidimensional quadrature using the optimal moment set is the conditional
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quadrature method of moments (CQMOM) (Yuan and Fox, 2011). For a
2-D phase space, the CQMOM works as follows. Define the conditional
density function and conditional moments:

n(u, v) = f(v|u)n(u) =⇒ 〈V j |U = u〉 =
∫

vjf(v|u) dv. (21)

The strategy behind CQMOM is to find the conditional moments for par-
ticular values of u, and then to use the 1-D quadrature method to find
the weights and abscissas for each value of u. Thus, we start with a 1-D
adaptive quadrature for the U direction (n = 2):

{M00,M10,M20,M30} =⇒ find weights ρα, abscissas uα (22)

where the “adaptive” part of the algorithm controls for small weights (Marchi-
sio and Fox, 2013) and reduces the number of abscissas if necessary. For
example, if the U direction is a 1-point distribution, only one abscissa is
needed and the adaptive QMOM will find the correct abscissa. As noted
earlier, the 1-D quadrature representation of n(u) is

n(u) =

2∑
α=1

ραδ(u− uα), (23)

so that the reconstructed NDF is

n(u, v) =
2∑

α=1

ραδ(u− uα)f(v|uα). (24)

It now remains to find a reconstruction for f(v|uα) for each α.
Using the reconstruction of n(u, v) in (24), the moments are

Mij =

∫ ∫ 2∑
α=1

ραu
ivjδ(u− uα)f(v|uα)dudv =

2∑
α=1

ραu
i
α

∫
vjf(v|uα)dv.

(25)
Thus, once the weights and abscissas in the first direction are known, we
can solve linear systems for the conditional moments 〈V j |uα〉:[

ρ1 ρ2
ρ1u1 ρ2u2

] [〈V |u1〉 〈V 2|u1〉 〈V 3|u1〉
〈V |u2〉 〈V 2|u2〉 〈V 3|u2〉

]
=

[
M01 M02 M03

M11 M12 M13

]
. (26)

Thus, in principle, CQMOM controls ten of the twelve optimal moments:⎛
⎜⎜⎝
M00 M01 M02 M03

M10 M11 M12 M13

M20

M30

⎞
⎟⎟⎠ , (27)
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unless the adaptive QMOM reduces the number of abscissas in the first
direction. The latter may happen when u1 and u2 are nearly equal. The
linear system in (27) is well defined as long as u1 �= u2, but is ill-conditioned
when u1 and u2 are nearly equal.

The solution to (26) provides the conditional moments. Then, using 1-D
adaptive quadrature in the V direction for each α:

{1, 〈V |uα〉, 〈V 2|uα〉, 〈V 3|uα〉} =⇒ find weights ραβ , abscissas vαβ , (28)

we find the final reconstruction for the NDF. The adaptive quadrature may
set some of the weights ραβ equal to zero if a subset of conditional moments
is not realizable. The reconstructed density is

n∗(u, v) =
2∑

α=1

2∑
β=1

ραραβδ(u− uα)δ(v − vαβ) (29)

and the weights nαβ = ραραβ are always non-negative. The extension of the
above formulas to include more nodes in each direction is straightforward.

In the formulas given above, we have conditioned on the U direction.
Conditioning on V = vα also uses ten of the twelve optimal moments:⎛

⎜⎜⎝
M00 M01 M02 M03

M10 M11

M20 M21

M30 M31

⎞
⎟⎟⎠ . (30)

However, the union of two sets is exactly equal to the 2-D optimal moment
set. Extension of CQMOM to higher-dimensional phase space is straight-
forward (Marchisio and Fox, 2013) and also uses the optimal moment set
for all permutations of the conditioning variables. For example with N = 4
nodes in 2-D, the optimal moment set is⎛

⎜⎜⎝
M00 M10 M20 M30

M01 M11 M21 M31

M02 M12

M03 M13

⎞
⎟⎟⎠

while for N = 9 nodes in 2-D the 27 optimal moments are⎛
⎜⎜⎜⎜⎜⎜⎝

M00 M10 M20 M30 M40 M50

M01 M11 M21 M31 M41 M51

M02 M12 M22 M32 M42 M52

M03 M13 M23

M04 M14 M24

M05 M15 M25

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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In summary, CQMOM offers a direct algorithm for reconstructing a multi-
variate NDF that is always realizable.

CQMOM with N-point distributions In addition to being realizable,
CQMOM has the additional property that it can reproduce an exact N -
point distribution (assuming that at least N abscissas are used). By defini-
tion, the 2-D N -point density function (uα distinct) is

n(u, v) =
N∑

α=1

nαδ(u−uα)δ(v− vα) =⇒ f(v|U = uα) = δ(v− vα) (31)

where the conditional distribution follows directly from the definition in
(21). The moments and conditional moments are thus equal to

Mi0 =

∫
uin(u, v)dudv =

N∑
α=1

nαu
i
α =⇒ 〈V |U = uα〉 = vα. (32)

Using the 1-D adaptive quadrature for the U direction, we can find the N
nodes:

Mi0, i ∈ {0, 1, . . . , 2N − 1} =⇒ find weights nα, abscissas uα.

Here we assume that the uα are distinct. If this is not the case, the adaptive
quadrature will return less than N nodes, in which case the conditional
moments in the second direction will yield the missing nodes. The final
step is to solve the following linear system for vα:⎡

⎢⎣
n1 . . . nN

...
...

n1u
N−1
1 . . . nNuN−1

N

⎤
⎥⎦
⎡
⎢⎣ v1...
vN

⎤
⎥⎦ =

⎡
⎢⎣ M01

...
MN−1 1

⎤
⎥⎦ (33)

where we have used the fact that the first-order conditional moment is just
the abscissa. In general, this correspondence between the first-order moment
in the second direction and the conditional first-order moment can be used
advantageously with CQMOM to solve problems where only the conditional
first-order moments are required (e.g., the conditional moment closure used
in turbulent combustion).

In Figure 4, examples of 2-D quadratures constructed with the methods
described above are presented (Marchisio and Fox, 2013). The exact NDF
is a bivariate Gaussian centered at (10,20). When the correlation coefficient
ρ is zero, all methods yield the same reconstructed NDF. However, when
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(a) ρ = 0 and N = 4 (b) ρ = 0 and N = 9

(c) ρ = 0.5 and N = 4 (d) ρ = 0.5 and N = 9

Figure 4. Approximations for bivariate Gaussian: BFQMOM (green dia-
mond) TPQMOM (blue circle) CQMOM (red square).

ρ �= 0, the reconstructed NDFs are different for each method. For this
example, when ρ = 0.5 the TPQMOM has negative weights for the two
points with the smallest probability. Note also that the BFQMOM has two
points with very small weights located at large distances from the center.
When used with QBMM, such points can result in small time steps for
numerical stability, even though they contain very little information about
the NDF. Overall, the weights and abscissas found with CQMOM offer the
best reconstruction for QBMM.

2.3 Extended quadrature method of moments

The NDF reconstructions presented in the preceding sections use a point
distribution, and thus they are not continuous functions. We can improve
the reconstructed distribution (Yuan et al., 2012) using kernel density func-
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tions (KDF) by defining

n(v) =
N∑

α=1

nαδσ(v, vα) (34)

with N weights nα ≥ 0, N abscissas vα but only one spread parameter
σ ≥ 0. For example, the KDF can take one of the following forms.

• Gaussian (−∞ < v < +∞) (Chalons et al., 2010):

δσ(v, vα) ≡ 1√
2πσ

exp

[
− (v − vα)

2

2σ2

]
. (35)

• Gamma (0 < v < ∞) (Yuan et al., 2012):

δσ(v, vα) ≡ vλα−1e−v/σ

Γ(λα)σλα
with λα =

vα
σ
. (36)

• Beta (0 < v < 1) (Yuan et al., 2012):

δσ(v, vα) ≡ vλα−1(1− v)μα−1

B(λα, μα)
with λα =

vα
σ

and μα =
(1− vα)

σ
.

(37)
In the limit σ → 0, the KDF behaves like a delta function. The choice to
use a single σ is made in order to have a (nearly) direct inversion algorithm
whose computational cost is comparable to 1-D Gaussian quadrature. Ex-
amples of a two-node beta-EQMOM for different values of σ are shown in
Figure 5.

EQMOM algorithm The total number of parameters appearing in N -
node EQMOM is 2N + 1. Thus, an equal number of the moments of n(v)
(denoted by mi) can be controlled. For two-node beta-EQMOM, these
moments are

m0 = m∗
0

m1 = m∗
1

m2 =
1

1 + σ
(m∗

2 + σm∗
1)

m3 =
1

(1 + 2σ)(1 + σ)

(
m∗

3 + 3σm∗
2 + 2σ2m∗

1

)
m4 =

1

(1 + 3σ)(1 + 2σ)(1 + σ)

(
m∗

4 + 6σm∗
3 + 11σ2m∗

2 + 6σ3m∗
1

) ≡ m†
2N (σ)

(38)
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Figure 5. Example beta-EQMOM with N = 2 and n1 = n2 = 1/2, ξ1 =
1/3, ξ2 = 2/3 for different values of σ.

where the starred moments (i.e. the QMOM moments) are defined by

m∗
i ≡

N∑
α=1

nαv
i
α. (39)

The moments and starred moments can be written as linear systems:

m = A(σ)m∗

m∗ = A(σ)−1m

with a coefficient matrix that depends only on σ. Thus, given mi for i =
0, . . . , 2N , the EQMOM algorithm proceeds as follows (Yuan et al., 2012).

1. Guess σ.
2. Solve for m∗

i for i = 0, . . . , 2N − 1.
3. Solve for nα and vα using 1-D Gaussian quadrature with m∗

i for i =
0, . . . , 2N − 1.

4. Compute m∗
2N and the resulting estimate m†

2N .

5. Iterate on σ until m2N = m†
2N .

As described elsewhere (Yuan et al., 2012), a realizability constraint is ap-
plied when iterating to find σ with beta- and gamma-EQMOM. Using this
algorithm, the first 2N moments are always exact with maxσ : m2N ≥
m†

2N (σ). Since the solution to a 1-D nonlinear equation can be done rapidly,
the EQMOM moment-inversion algorithm is nearly as fast as 1-D Gaussian
quadrature with the advantage that the reconstructed NDF is smooth. Like
Gaussian quadrature, EQMOM becomes increasingly more accurate as N
is increased.
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Closure with EQMOM With EQMOM, the following unclosed integrals
(given ni, vi and σ) must be evaluated:

∫
g(v)n(v)dv =

N∑
α=1

nα

∫
g(v)δσ(v, vα)dv (40)

where g(v) is an arbitrary smooth function of v (see (12)). Because of the
choice for the KDF, we can use classical Gaussian quadrature with known
weights wαβ and abscissas vαβ to evaluate these integrals:

∫
g(v)δσ(v, vα)dv =

Nα∑
β=1

wαβg(vαβ) (41)

where Nα can be chosen arbitrarily large to control the integration error
(Marchisio and Fox, 2013). The dual-quadrature representation of EQ-
MOM is thus

n(v) =
N∑

α=1

Nα∑
β=1

nαwαβδ (v − vαβ) (Nα = 1 when σ = 0), (42)

and will be exact for integration of polynomials of order ≤ 2N . We shall
see that the dual-quadrature representation has many advantages when de-
riving numerical schemes for solving the moment transport equations. An
important point to keep in mind is that Nα is independent of the number
of moments transported so that the additional accuracy attained by us-
ing a smooth NDF does not require us to increase greatly the number of
transported moments.

Phase-space flux with EQMOM The need for a continuous NDF is
most strongly evident for problems involving a continuous flux in phase
space. For example, droplet evaporation is advection in surface-area phase
space:

∂tn+ ∂ξ[R(ξ)n] = 0. (43)

The corresponding moments:

mi =

∫ ∞

0

ξin dξ (44)

obey an unclosed moment equation:

∂tmi = −R(0)n(t, 0)δi,0 + i

∫ ∞

0

ξi−1Rn dξ (45)
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Figure 6. Beta-EQMOM reconstruction at different times starting with a
smooth initial NDF: N = 4, N1,2 = 80, N3,4 = 5 (Yuan et al., 2012).
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Figure 7. Beta-EQMOM reconstruction at t = 1/2 starting with a non-
smooth initial NDF: N = 4, N1,2 = 80, N3,4 = 5 (Yuan et al., 2012).
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where R(0)n(t, 0) is the rate of loss of particles of zero size. Thus, in order
to solve for m0 we must be able to evaluate the reconstructed NDF at
ξ = 0, which is not possible with QMOM. However, using the EQMOM
dual-quadrature representation, we have

n(ξ) =

N∑
α=1

nαδσ(ξ, ξα) and δσ(ξ, ξα) ≈
Nα∑
β=1

wαβδ(ξ − ξαβ). (46)

With pure advection, the weights and abscissas evolve according to

dwαβ

dt
= 0 and

dξαβ
dt

= −R(ξαβ). (47)

The unclosed flux at ξ = 0 is found from the “particle” representation as
described in Yuan et al. (2012). Example results with R = 1 are shown in
Figures 6 and 7. By choosing Nα sufficiently large in the dual-quadrature
representation, EQMOM predicts the correct evaporative flux at ξ = 0 with
very little additional computational cost relative to QMOM.

2.4 EQMOM in multiple dimensions

The extension of EQMOM to multiple dimensions makes use of the same
ideas as CQMOM (Chalons et al., 2011; Laurant et al., 2013; Marchisio and
Fox, 2013; Vié et al., 2012). For example, the bivariate NDF can be written
as

n(u, v) =
N∑

α=1

nαδσu
(u, uα)

⎡
⎣Nα∑
β=1

nαβδσv,α
(v, vαβ)

⎤
⎦ = n(u)f(v|u) (48)

with N abscissas uα, N =
∑N

α=1 Nα weights wαβ = nαnαβ ≥ 0 and N
abscissas vαβ , but only one parameter σu ≥ 0 and N parameters σv,α.
The bivariate moments are then given by

Mij =

∫
uivjn(u, v)dudv =

N∑
α=1

Nα∑
β=1

wαβm
(α)
1,i m

(αβ)
2,j (49)

where

m
(α)
1,i ≡

∫
uiδσu(u, uα)du and m

(αβ)
2,j ≡

∫
vjδσv,α(v, vαβ)dv (50)

are known functions of the EQMOM parameters found by integrating over
the KDF.
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Bivariate EQMOM algorithm The parameters appearing in the bi-
variate EQMOM reconstruction are found using the following algorithm.

1. Apply univariate EQMOM for the moments in u:

Mi0 =

N∑
α=1

nαm
(α)
1,i for i = 0, . . . , 2N =⇒ nα, uα and σu. (51)

2. Use CQMOM to find the conditional moments defined by

〈V j〉α ≡
Nα∑
β=1

nαβm
(αβ)
2,j . (52)

This is done as follows. Starting from the bivariate moments, solve
the linear system defined by

N∑
α=1

nαm
(α)
1,i 〈V j〉α = Mij for i = 0, . . . , N − 1, (53)

for 〈V j〉α with j = 1, . . . , 2Nα.
3. For each α, apply univariate EQMOM to the conditional moments

defined by (52):

{1, 〈V 〉α, . . . , 〈V 2Nα〉α} =⇒ nαβ , vαβ and σv,α.

This algorithm uses the extended optimal moment set (Marchisio and Fox,
2013). For example, with N = 4 nodes in 2-D phase space, 16 moments are
required: ⎛

⎜⎜⎜⎜⎝
M00 M10 M20 M30 M40

M01 M11 M21 M31 M41

M02 M12

M03 M13

M04 M14

⎞
⎟⎟⎟⎟⎠ ,

and with N = 9 nodes in 2-D phase space, 33 moments are required:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M00 M10 M20 M30 M40 M50 M60

M01 M11 M21 M31 M41 M51 M61

M02 M12 M22 M32 M42 M52 M62

M03 M13 M23

M04 M14 M24

M05 M15 M25

M06 M16 M26

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, when applying EQMOM to multivariate problems, only the extended
optimal moment set is transported.
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Monokinetic EQMOM The definition of multivariate EQMOM in the
preceding section treats all variables equally. In some applications, such
as particles with very small Stokes number, the velocity will be a unique
function of particle size. For such cases, the joint velocity-size NDF can be
written as

n(v, ξ) =
N∑

α=1

nαδ(v − u(ξ))δσ(ξ, ξα) (54)

where the size-conditioned velocity u(ξ) is found from velocity-size moments
(Marchisio and Fox, 2013). For example, we can approximate the velocity as
u(ξ) = u0+u1ξ+u2ξ

2+u3ξ
3 with unknowns (u0, u1, u2, u3). The bivariate

moments of the NDF are then equal to

Mi1 =

∫
ξiu(ξ)n dvdξ = u0Mi,0 + u1Mi+1,0 + u2Mi+2,0 + u3Mi+3,0. (55)

The velocity parameters can be found by solving a linear system (Marchisio
and Fox, 2013). For example, using EQMOM for ξ with N = 3 nodes, the
linear system is⎡

⎢⎢⎣
M00 M10 M20 M30

M10 M20 M30 M40

M20 M30 M40 M50

M30 M40 M50 M60

⎤
⎥⎥⎦
⎡
⎢⎢⎣
u0

u1

u2

u3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
M01

M11

M21

M31

⎤
⎥⎥⎦ . (56)

The coefficient matrix involves only univariate moments and will be non-
singular if the NDF for ξ is a smooth function (i.e., if σ > 0 in the EQMOM
reconstruction of n(ξ)). This example of the monokinetic EQMOM algo-
rithm requires a total of ten bivariate moments:

{M00,M10,M20,M30,M40,M50,M60,M01,M11,M21,M31}.
It is interesting to note that monokinetic EQMOM uses the same moments
as CQMOM for the N -point distribution discussed in Sec. 2.2. This is
a result of the fact that u(ξ) is just an approximation of the true size-
conditioned velocity, which is the same quantity evaluated at the conditional
abscissas in CQMOM.

2.5 Summary of quadrature-based moment methods

To summarize our discussion of QBMM, the reader should keep in mind
the following important points.

1. In QBMM, an extended optimal moment set is used to reconstruct
the NDF.
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2. The NDF must be realizable and the moment-inversion algorithm
must be robust.

3. Brute-force QMOM is slow and ill-conditioned, and therefore not rec-
ommended for QBMM.

4. Tensor-product QMOM can have negative weights and can not repro-
duce an N -point NDF.

5. Conditional QMOM is always realizable (but may not reproduce all
moments).

6. Extended QMOM gives a smooth NDF with relatively low computa-
tional cost.

7. The current “best” moment-inversion algorithms for use with QBMM
are as follows.

• For a 1-D phase space, use univariate EQMOM.

• For a multivariate phase space, use multivariate EQMOM.

• With small Stokes numbers (e.g., bubbly flow), use a monokinetic
EQMOM.

8. In all cases, the dual-quadrature representation provided by EQMOM
should be used to close the integral terms in the GPBE.

The use of QBMM as described above is predicated on the ability to solve
the moment transport equations in a manner that guarantees realizable
moments. Thus, in the following section, we introduce kinetics-based finite-
volume methods that can be used for this purpose.

3 Kinetics-Based Finite-Volume Methods

The moment-inversion algorithms introduced in the preceding section re-
quire realizable moment sets, which is only guaranteed with standard first-
order finite-volume methods (Desjardins et al., 2006, 2008; Vikas et al.,
2012b, 2011a). However, first-order methods suffer from excess numerical
diffusion and thus we need to use high-order schemes to produce accurate
solutions to the moment transport equations. In this section, we give an
overview of kinetics-based finite-volume methods that can achieve high-
order accuracy while guaranteeing realizable moments (Vikas et al., 2012b,
2011a). Here, we will assume that QBMM can be applied to the moment
set to find a quadrature representation of the NDF of the form

n∗(v, ξ) =
N∑

α=1

nαδ(v − vα)δ(ξ − ξα) (57)

where, for clarity, we limit the phase space to at most two dimensions. (See
Marchisio and Fox (2013) for a more general discussion.) The reader can
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note that the dual-quadrature representation used with EQMOM allows us
to express the NDF in the form of (57). Furthermore, for clarity, throughout
this section we will limit ourselves to 1-D real space with a uniform grid.
The extension to 3-D unstructured grids is described in Vikas et al. (2012b,
2011a).

The set of 2-D extended optimal moments, defined by (10), will be de-
noted by M(t, x). To simplify the notation, we introduction a matrix func-
tion K(v, ξ) defined such that

M =

∫
K(v, ξ)n dvdξ ⇒ Kij(v, ξ) = viξj (58)

where the integral is over all of 2-D phase space. In words, the expected
value of K is equal to the extended optimal moments. Thus, the expected
value of K times the GPBE is eqaul to the moment transport equations.

3.1 Moment transport equations

Given a set of extended optimal moments, we want to solve the moment
transport equation found from the GPBE:

∂Mij

∂t
+

∂Mi+1j

∂x
= k

∫
vi−1ξjAn dvdξ+ l

∫
viξj−1Gn dvdξ+

∫
viξjC dvdξ

(59)
where the right-hand side is closed using QBMM:

∂Mij

∂t
+

∂Mi+1j

∂x
=

N∑
α=1

nα

{
ivi−1

α ξjαAα + jviαξ
j−1
α Gα + viαξ

j
αCα

}
. (60)

Here we assume that the functional forms for the models used to describe
acceleration, growth and collisions are known in terms of v and ξ. (See
Marchisio and Fox (2013) for numerous examples.) Thus, Aα = A(vα, ξα),
etc., are known functions of the abscissas.

When developing a numerical method to solve (60), we must consider
the following questions.

• How should we discretize the spatial fluxes on the left-hand side?

• How should we update the moments in time?

• How can we ensure that the moments are always realizable while con-
trolling the numerical diffusion?

In this section, we discuss finite-volume methods that can be used to answer
these questions in a general way. These methods are based on the NDF
reconstruction in (57) and the underlying properties of the GPBE.
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3.2 Kinetics-based spatial fluxes

In order to compute the spatial fluxes we can use a kinetic formulation.
For example, the advection equation

∂tM00 + ∂xM10 = 0 (61)

has the spatial flux M10, which can be decomposed into two contributions:

M10 = Q−
10 +Q+

10

=

∫ 0

−∞
v

(∫
n∗(v, ξ)dξ

)
dv +

∫ +∞

0

v

(∫
n∗(v, ξ)dξ

)
dv.

(62)

In words, the integral over negative velocities is the flux in the negative x
direction (i.e., downwind), while the integral over positive velocities is the
flux in the positive x direction (i.e., upwind). Using the reconstructed NDF
n∗, the downwind and upwind flux components are

Q−
10 =

N∑
α=1

nαvαI(−∞,0) (vα) and Q+
10 =

N∑
α=1

nαvαI(0,+∞) (vα) (63)

where IS(x) is the indicator function for the interval S. Because they are
defined in terms of n∗, we refer to these fluxes as the kinetics-based fluxes.
The extension to arbitrary flux moments is straightforward:

Mij = Q−
ij +Q+

ij

=

∫ 0

−∞
viξj

(∫
n∗(v, ξ)dξ

)
dv +

∫ +∞

0

viξj
(∫

n∗(v, ξ)dξ
)
dv

(64)

and

Q−
ij =

N∑
α=1

nαv
i
αξ

j
αI(−∞,0) (vα) Q+

ij =

N∑
α=1

nαv
i
αξ

j
αI(0,+∞) (vα) . (65)

We can now use these definitions of the spatial fluxes to propose a numerical
scheme to solve (60).

3.3 Realizable finite-volume methods

Consider the 1-D advection problem defined for the extended moment
set M by

∂M

∂t
+

∂F(M)

∂x
= 0 (66)
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where the flux function is defined by

F(M) =

∫
vK(v, ξ)n∗(v, ξ) dvdξ. (67)

Note that F is indeed a nonlinear function of M through the moment-
inversion algorithm used to reconstruct n∗. The finite-volume representa-
tion of the moment vector is

Mn
k ≡ 1

Δx

∫ xk+
1
2Δx

xk− 1
2Δx

M(tn, x) dx (68)

where xk is the center of cell k with uniform width Δx. From this definition,
we can observe that Mn

k is the cell-average value of the extended optimal
moment set in cell k at time t = tn. If and only if Mn

k is a realizable
moment set will we be able to use QBMM to reconstruct the corresponding
cell-average NDF nn

k .

Finite-volume formula The first-order, time-explicit, finite-volume for-
mula for (66) is

Mn+1
k = Mn

k − λ
[
G
(
Mn

k+ 1
2 ,l

,Mn
k+ 1

2 ,r

)
−G

(
Mn

k− 1
2 ,l

,Mn
k− 1

2 ,r

)]
(69)

where λ = Δt/Δx and the numerical flux function is defined by

G (Ml,Mr) =

∫
v+K(v, ξ)nl(v, ξ) dvdξ +

∫
v−K(v, ξ)nr(v, ξ) dvdξ (70)

with v+ = max(0, v) and v− = min(0, v). In these expressions, the subscript
l corresponds to the left side of the interface between cells and the subscript r
corresponds to the right side of the interface. Because the moment transport
equation is hyperbolic, the values on the left and right of the interface need
not be equal. For example, at the interface xk + Δx/2 the moments on
the left are Mn

k+ 1
2 ,l

and on the right Mn
k+ 1

2 ,r
. The former are related to

cell k, while the latter to cell k + 1. A very important technical point in
finite-volume methods is the spatial reconstruction of the moments at the
interface (which are unknown) given the known cell-average moments Mn

k .
In kinetics-based finite-volume methods, the numerical flux function given
by (70) depends on the reconstructed NDF on the left (nl) and right (nr)
of the cell interface. As we shall see below, the choice of how to define these
based on nn

k will determine whether or not the updated moments Mn+1
k are

realizable.
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Realizability and spatial fluxes GivenMn
k we want to defineG (Ml,Mr)

to achieve high-order spatial accuracy, but at the same time keeping Mn+1
k

realizable. We can define the discrete distribution function hk as

Mn+1
k ≡

∫
K(v, ξ)hk(v, ξ) dvdξ. (71)

Using this definition on the left-hand side of (69), the finite-volume formula
can be rewritten as

hk =
(
λ|v−|nn

k+ 1
2 ,r

+ λv+nn
k− 1

2 ,l
+ nn

k

)
− λ|v−|nn

k− 1
2 ,r

− λv+nn
k+ 1

2 ,l
. (72)

A sufficient condition for realizable moments Mn+1
k is that hk ≥ 0 for all v,

ξ and k. In (72), the terms inside the parentheses are always nonnegative.
Thus, the final two terms will determine whether hk is nonnegative.

In a first-order finite-volume scheme, the cell interface values are the
same as the cell-average values in the same cell:

nn
k− 1

2 ,r
= nn

k+ 1
2 ,l

= nn
k (73)

so that (72) becomes

hk = λ|v−|nn
k+1 + λv+nn

k−1 +
(
1− λ|v−| − λv+

)
nn
k . (74)

Thus, hk will be nonnegative if the following realizability condition is satis-
fied:

1

|v−|+ v+
≥ λ for all k. (75)

This condition is the same as the stability condition on the time step size.
With the first-order scheme, the moments are realizable, but the scheme is
very diffusive and an extremely fine grid is needed to get reasonably accurate
results.

In order to reduce the numerical diffusion, we can use a quasi-high-order
scheme based on the quadrature reconstruction of the NDF. Let

nn
k =

∑
α

ρnα,kδ(v − vnα,k)δ(ξ − ξnα,k) (76)

where vnα,k and ξnα,k are the abscissas found from the cell-average moments
Mn

k using QBMM. We then define the interface NDF as

nn
k− 1

2 ,r
=
∑
α

ρnα,k− 1
2 ,r

δ(v − vnα,k)δ(ξ − ξnα,k) (77)
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and
nn
k+ 1

2 ,l
=
∑
α

ρnα,k+ 1
2 ,l

δ(v − vnα,k)δ(ξ − ξnα,k), (78)

where the abscissas use the first-order formula but the weights use a high-
order spatial reconstruction. Substituting in (72), we find

hk = λ|v−|nn
k+ 1

2 ,r
+ λv+nn

k− 1
2 ,l

+
∑
α

(
ρnα,k − λ|v−|ρnα,k− 1

2 ,r
− λv+ρnα,k+ 1

2 ,l

)
δ(v − vnα,k)δ(ξ − ξnα,k). (79)

This reconstruction will be nonnegative if the following realizability condi-
tion is satisfied:

min
α

(
ρnα,k

|v−α,k|ρnα,k− 1
2 ,r

+ v+α,kρ
n
α,k+ 1

2 ,l

)
≥ λ. (80)

We can use any available high-order, finite-volume scheme for the spatial
reconstruction of the interface weights ρn

α,k− 1
2 ,r

and ρn
α,k+ 1

2 ,l
. For example,

a second-order spatial reconstruction uses

ρnα,k− 1
2 ,r

= ρnα,k − 1

2
Sn
α,kΔx

ρnα,k+ 1
2 ,l

= ρnα,k +
1

2
Sn
α,kΔx

(81)

where Sn
α,k is the estimate for the gradient of the weight α in the cell k

(Marchisio and Fox, 2013). These slope estimates are found using the values
in the neighboring cells along with a slope limiter to avoid overshoots.

In summary, the quasi-high-order schemes result in an explict formula
for hk from which we can guarantee realizability by applying a realizability
condition on the time step (which is usually more restrictive that the stabil-
ity condition). In practice, the time step Δt at step n is fixed as a fraction
(e.g., 1/2) of the first-order condition in (75):

Δt =
Δx

2maxα,k |vnα,k|
, (82)

which fixes the value of λ = Δx/Δt at step n. Then, if λ satisfies (80) in
cell k, a second-order spatial reconstruction is used in that cell. Otherwise,
the first-order spatial reconstruction is used. Note that this procedure is
applied at each step n so that the order of the spatial reconstruction used
in a given cell may change as the simulation progresses.
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3.4 Realizable time-stepping schemes

In the discussion above, we have used the first-order explicit time-stepping
scheme:

Mn+1
k = Mn

k − λ
[
G
(
Mn

k+ 1
2 ,l

,Mn
k+ 1

2 ,r

)
−G

(
Mn

k− 1
2 ,l

,Mn
k− 1

2 ,r

)]
, (83)

which is always realizable if the moments Mn
k are computed from the

quadrature formula

Mn
k =

∑
α

ρnα,kK(vnα,k, ξ
n
α,k). (84)

To go to higher order in time, we might try the second-order Runga-Kutta
(RK2); however, it does not always give realizable moments (Vikas et al.,
2011a). Fortunately, the strong stability preserving version (RK2SSP) de-
fined by

M∗
k = Mn

k − λ
[
G
(
Mn

k+ 1
2 ,l

,Mn
k+ 1

2 ,r

)
−G

(
Mn

k− 1
2 ,l

,Mn
k− 1

2 ,r

)]
M∗∗

k = M∗
k − λ

[
G
(
M∗

k+ 1
2 ,l

,M∗
k+ 1

2 ,r

)
−G

(
M∗

k− 1
2 ,l

,M∗
k− 1

2 ,r

)]
Mn+1

k =
1

2
(Mn

k +M∗∗
k )

(85)

is always realizable (Vikas et al., 2011a). This is because the first two steps
are exactly the same as the first-order formula, and the third step is just
the average of two moment sets. Since moment space is convex, all three
steps are guaranteed to be realizable if λ is chosen to satisfy the realizability
condition. In summary, by generalizing the methods described above it is
possible to achieve second-order in space and time on unstructured grids
(Vikas et al., 2012b, 2011a).

3.5 Summary of kinetics-based finite-volume methods

We end this section with a review of the most important points.
1. When solving moment transport equations, we must guarantee real-

izability in order to have robust solutions.
2. First-order finite-volume methods are realizable, but too diffusive for

most applications.
3. Standard high-order finite-volume methods lead to unrealizable mo-

ments.
4. Kinetics-based flux functions can be designed to be realizable for ar-

bitrary moment sets.
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5. The dual-quadrature representation with high-order spatial recon-
struction of the weights is recommended for solving the moment trans-
port equations.

6. High-order time-stepping schemes are also possible, but must be checked
for realizability.

7. Kinetics-based finite-volume methods provide a robust treatment of
shocks and discontinuous solutions on unstructured grids.

Having described QBMM and the algorithms used to solve moment trans-
port equations, we will now look at an application of these methods.

4 Application to Gas-Particle Flow

In this section we present a brief overview of the mesoscale models used
to describe gas-particle flows. For clarity, we will consider only the sim-
plest forms of the physical processes, namely, fluid drag and gravity for
acceleration, and hard-sphere collisions.

4.1 Gas-particle flow model

Consider a disperse phase composed of mono- or bidisperse particles
(e.g. different diameters and/or densities). The disperse-phase KE for the
ith particle type can be written as

∂ni

∂t
+ v · ∂ni

∂x
+

∂

∂v
· (Aini) = Cii + Cij (86)

where ni(t,x,v) is the velocity NDF for particle type i = 1, 2, v is the parti-
cle velocity (which is the only mesoscale variable because the particle prop-
erties do not change), Ai is the acceleration model (drag, gravity) for type
i particles, and Cii, Cij are the rates of change of ni due to particle-particle
collisions between like and unlike particles, respectively. By definition, the
zero-order moments are the particle-phase volume fractions for each particle
type:

αi =

∫
nidv (87)

and we define the disperse-phase volume fraction as αp = α1 + α2. The
first-order moments define the disperse-phase velocities for each particle
type Upi:

αiUpi =

∫
vnidv. (88)

The total mass and momentum of the disperse phase can be related to
the corresponding quantities for the particle types by using the material
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densities ρi:

ρp = ρ1α1 + ρ2α2, (89)

ρpUp = ρ1α1Up1 + ρ2α2Up1. (90)

In the following, we will assume that there is no mass transfer between
particle types or between phases. Thus, only momentum transfer between
phases is considered in the fluid mass and momentum balances.

The disperse-phase KE is coupled to the gas-phase governing equations:

∂

∂t
(ρgαg) +∇ · (ρgαgUg) = 0, (91)

∂

∂t
(ρgαgUg) +∇ · (ρgαgUgUg) = ∇ · αgτ g + βg + ρgαgg, (92)

where the gas density ρg is assumed constant, the gas-phase volume fraction
is αg = 1−αp, and the exchange of momentum with the disperse phase due
to the fluid drag is βg. The conservation of momentum between the gas
and particles yields the following definition:

βg = −
2∑

i=1

ρi

∫
(Ai − g)nidv (93)

where Ai − g is the acceleration model for drag (i.e., without body forces).
The fluid-phase models given above are the simplest possible extension of the
Navier-Stokes equations for single-phase flow. The fluid stress tensor τ g can
be modeled as a Newtonian fluid with an effective viscosity that accounts for
the pseudo-turbulent velocity fluctuations generated by individual particle
wakes (Marchisio and Fox, 2013; , 2010). An important point to note is that
the KE is coupled to the gas-phase model only through low-order moments
of the NDF. For this reason, a closure of the KE that accurately predicts
the low-order moments should yield good predictions for gas-particle flows.

4.2 Collision models

The collision terms in (86) require a mesoscale model to achieve closure in
terms of ni. However, conservation of mass and momentum during collisions
yield the following constraints on the model:∫

Ciidv = 0,

∫
Cijdv = 0,∫

vCiidv = 0,

∫
v(ρ1C12 + ρ2C21)dv = 0.

(94)
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The last constraint is a statement of conservation of momentum during col-
lisions of unlike particles. However, during such collisions, the momentum
of a given particle type can change, resulting in a net exchange of momen-
tum between particle types. We now look at two mesoscale models for the
collision terms.

Boltzmann-Enskog inelastic, hard-sphere collision integral The
exact Boltzmann-Enskog collision integral for monodisperse hard-sphere col-
lisions is (Fox and Vedula, 2010; Marchisio and Fox, 2013)

C =
6

πdp

∫
R3

∫
S+

[
χ f (2)(x,v′′

1 ;x− dpn,v
′′
2 )

− f (2)(x,v1;x+ dpn,v2)
]
|k · n| dndv2 (95)

where f (2) is the two-particle density function, dp is the particle diameter,
k is the relative velocity vector, n is the unit vector along the direction of
particles centers, S+ is unit half sphere where k · n > 0, and χ is a factor
relating pre- and post-collisional velocities. There are two important issues
related to the closure of this collision integral. First, the two-particle density
function is not known, so it must be approximated in terms of the known
one-particle NDF. Second, the two-particle density function in (95) is eval-
uated at two different spatial locations separated by the particle diameter
dp. The usual closure expands the two-particle density function around the
point of contact (Fox and Vedula, 2010; Marchisio and Fox, 2013), which
leads to two terms referred to as point collisions and the collisional flux.
The point collision term is the same as the Boltzmann collision integral,
which approximates the two-particle density by

f (2)(x,v1;x+ dpn,v2) ≈ f (2)(x,v1;x,v2) ≈ n(x,v1)n(x,v2). (96)

This collision model is valid for very dilute systems where the average dis-
tance between particles is very large compared to dp. In contrast, the colli-
sional flux term becomes important for moderately dense systems wherein
the finite size of the particles cannot be ignored (Fox and Vedula, 2010). The
closure of the Boltzmann-Enskog collision integral for polydisperse particles
is described in Marchisio and Fox (2013).

Even with the inelastic Boltzmann model for the collisions:

C(v1) =
6

πdp

∫
R3

∫
S+

[χn(v′′
1 )n(v

′′
2 )− n(v1)n(v2)] |k · n| dndv2, (97)

the remaining integrals over n and v2 are difficult to work with in a nu-
merical solver. Using QBMM, the integral over n can be done analytically
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for integer moments (Fox and Vedula, 2010; Marchisio and Fox, 2013), and
then the moments of C(v) can be computed using quadrature (Icardi et al.,
2012; Marchisio and Fox, 2013; Passalacqua and Fox, 2012; Passalacqua et
al., 2011). As shown in Passalacqua and Fox (2012), the full Boltzmann
collision integral is needed for polydisperse systems when the particle diam-
eters are different. Otherwise, for monodisperse systems, a simpler linear
model can be used.

Linear collision model For monodisperse particles, the collision term
can be approximated by the linear model given in (4). The collision time
scale for hard-sphere collisions is

τC =
γ
√
πdp

12g0αpΘ
1/2
p

, (98)

and the inelastic equilibrium distribution (Marchisio and Fox, 2013) is

neq =
αp

[det (2πλ)]
1/2

exp

[
−1

2
(v −Up) · λ−1 · (v −Up)

]
. (99)

The covariance matrix λ is defined by

λ = γω2ΘpI+
(
γω2 − 2γω + 1

)
σp (100)

where ω = (1 + e)/2 and e is the coefficient of restitution for particle-
particle collisions. For e = 1, the parameter γ can take on values in the
range 0 < γ < 3/2. The value of γ = 1 corresponds to the BGK model, and
γ = 3/2 is the ES-BGK model (Passalacqua et al., 2011). The remaining
variables in (100) are the velocity covariance matrix σp, the granular tem-
perature Θp and the identity tensor I. In (98) g0 is the radial distribution
function that depends on the value of αp. In fact, due to the dependence
of τC on αp and Θp, the collision model is nonlinear in the moments of the
NDF. The linear collision model yields good approximations to the hard-
sphere collision integral when the velocity distribution is near the equilib-
rium distribution (i.e., when the collision term is dominant in the kinetic
equation). For highly non-equilibrium systems, the full Boltzmann collision
integral with quadrature-based closure is needed for good results (Icardi et
al., 2012). Unfortunately, for polydisperse systems the linear models do not
perform adequately (Passalacqua and Fox, 2012) and thus the full Boltz-
mann integral is preferred for such systems whenever the term for collisions
is dominant.
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4.3 Dimensionless numbers and flow regimes

From the KE for the disperse phase and the mass and momentum bal-
ance for the gas phase, it is possible to identify the following dimensionless
numbers that will be important for determining the flow characteristics.

• The gas-phase Reynolds number determines whether the single-phase
gas flow is laminar or turbulent. It is defined as

Reg =
ρgUgLg

μg

where the gas-phase time scale is written in terms of a characteristic
velocity Ug and a characteristic length scale Lg. μg is the gas-phase
viscosity and ρg is the gas density.

• The particle Stokes number determines how fast a particle will respond
to changes in the fluid motion. It is defined as

Stp =
ρpd

2
pUg

18μgLg

where dp is the particle diameter and ρp is the particle material den-
sity.

• The particle-phase Mach number, which determines whether the par-
ticle transport is convective versus diffusive, is defined by

Map =
|Up|
Θ

1/2
p

where Θp is the granular temperature.

• The particle Knudsen number determines whether the particle flow is
collisional or free transport. It is defined by

Map < 1 ⇒ Knp =

√
π

2

τCΘ
1/2
p

Lp

or

Map > 1 ⇒ Knp =

√
π

2

τC|Up|
Lp

where Lp is the characteristic length scale for the particle phase. The
hydrodynamic regime corresponds to very small Knudsen number and
occurs when collisions occur much faster than all other physical pro-
cesses.



122 R.O. Fox

Gas-particle flows with Map  1 are very common because the granular
temperature is often small due to the fluid drag. It is thus necessary to
use numerical methods adapted to high-Mach-number flows (such as finite-
volume methods).

In the hydrodynamic limit, the Chapman-Enskog expansion can be used
to simplify the moment transport equations. Indeed, for very small Knudsen
numbers, only the zero- and first-order moments (e.g., conservation of mass
and momentum) and the trace of the second-order moments (total energy)
are needed to describe the flow. For example, the following two regimes are
often cited in the literature on granular flows.

• Continuous regime (Knp < 0.01): Navier-Stokes-Fourier (NSF) equa-
tions with no-slip BC.

• Slip regime (0.01 < Knp < 0.1): NSF equations with partial-slip
conditions at walls

For Knp > 0.1: Higher-order approximations of the kinetic equation or
direct solutions are required. Gas-particle flows with Knp  0.1 are very
common. For such flows, the above-mentioned regimes do not apply and the
full set of moment equations should be solved using QBMM and realizable
finite-volume schemes.

Based on the dimensionless numbers introduced above, we can classify
gas-particle flows into the following regimes.

• Very dilute (or weakly collisional) flow:

– Knp  1

– volume fraction < 1%

– very small Θp (e.g., due to small Stp) and Map > 1

• Dilute flow:

– 0 < Knp < 1

– volume fraction < 1% (negligible collisional flux)

– moderate Θp

• Moderately dense flow:

– 0 < Knp < 1

– volume fraction > 1% (non-negligible collisional flux due to g0 >
1)

– moderate Θp

• Dense flow:

– 0 < Knp � 1

– volume fraction > 20% (strong collisional flux due to g0  1)

– moderate Θp
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The reader should keep in mind that all of these regimes could occur in the
same physical system. For example, the system could contain a fluidized
bed (dense flow), a riser (dilute and very dilute), and a cyclone (moderately
dense). Thus, in order to simulation the entire system with the same code,
it will be necessary to use numerical methods that can handle all regimes
simultaneously.

4.4 Lagrangian versus Eulerian simulations

For gas-particle flows, it is possible to use either Lagrangian or Eulerian
simulation methods. For example, the kinetic equation

∂n

∂t
+ v · ∂n

∂x
+

∂

∂v
· (An) = C (101)

can be simulate by a Lagrangian method. For a large ensemble of sam-
ple particles, the position and velocity of particle α are tracked using the
equations

dx(α)

dt
= v(α)

dv(α)

dt
= A(α) + C(α)

(102)

where C(α) is a Lagrangian collision model that generates the same evolution
for the moments as C. The principal limitation of Lagrangian approaches
is the statistical noise present due to the finite sample size, and coupling
errors caused by passing noisy data back to the Eulerian gas-phase solver.
The latter are especially important when the mass loading is high enough
to result in significant momentum coupling between phases.

In the Eulerian method, a finite set of velocity moments are tracked:

M0 = αp =

∫
n dv,

M1
i = αpUpi =

∫
vi n dv,

...

Mγ
ij... =

∫
(vivj · · · )n dv,

and the unknown moments closed using QBMM. While the Eulerian method
is free from statistical noise and can handle strongly coupled flows in an
accurate and robust manner, the accuracy of the moment closure limits
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the overall accuracy of the Eulerian simulation. In practice, Lagrangian
simulations of canonical flows can be used to test the moment closures
employed in Eulerian methods. The latter can then be applied to complex
non-canonical flows that occur in practical applications.

For the Eulerian solver, the transport equations for the extended optimal
moment set with N = 8 nodes can be obtained from the kinetic equation
in (101):

∂M0

∂t
+

∂M1
i

∂xi
= 0

∂M1
i

∂t
+

∂

∂xj

(
M2

ij +G2
ij

)
= giM

0 +D1
i

∂M2
ij

∂t
+

∂

∂xk

(
M3

ijk +G3
ijk

)
= giM

1
j + gjM

1
i +D2

ij + C2
ij

∂M3
ijk

∂t
+

∂

∂xl

(
M4

ijkl +G4
ijkl

)
= giM

2
jk + gjM

2
ik + gkM

2
ij

+D3
ijk + C3

ijk

∂M4
ijkl

∂t
+

∂

∂xm

(
M5

ijklm +G5
ijklm

)
= giM

3
jkl + gjM

3
ikl + gkM

3
ijl + glM

3
ijk

+D4
ijkl + C4

ijkl

(103)
where (i, j, k, l) take on integer values corresponding to the optimal moments
and repeated indices imply summation. As described earlier, QBMM are
used to close the spatial fluxes, drag and collision terms. In (103), the terms
on the left-hand side denoted by G are the collisional fluxes, and must be
included to treat moderately dense flows (Fox and Vedula, 2010). Note that
(103) is valid for monodisperse particles, for which the linear collision model
provides good accuracy (Passalacqua and Fox, 2012).

In the very dilute regime, collisions are negligible and hence the hydro-
dynamic model is not valid. However, if the hydrodynamic model is used
to simulate very dilute jets in a cross flow, the result shown in Figure 8 is
found. The hydrodynamic model uses the following five moment equations
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Figure 8. Hydrodynamic model (left) predicts artificial collisions where
there are none with the QBMM closure (right).

(Fan and Fox, 2008):

∂M0

∂t
+

∂M1
i

∂xi
= 0,

∂M1
i

∂t
+

∂

∂xj

(
M2

ij +G2
ij

)
= giM

0 +D1
i ,

∂M2
ii

∂t
+

∂

∂xj

(
M3

iij +G3
iij

)
= 2giM

1
i +D2

ii + C2
ii,

(104)

where repeated indices imply summation. The unclosed spatial fluxes are
approximated by a gradient-viscosity model found using the Chapman-
Enskog expansion. These five equations can be written in terms of the
disperse-phase density �p = ρpM

0, disperse-phase momentum �pUp =
ρp(M

1
1 ,M

1
2 ,M

1
3 ), and granular energy �pep = 1

2ρpM
2
ii =

1
2ρp(M

2
11 +M2

22 +
M2

22). In the very dilute limit, the disperse-phase viscosity and all other con-
tributions due to collisions are negligible because they depend on (M0)2 =
α2
p (see the definition of the linear collision model). Otherwise, for elastic

collisions C2
ii = 0. Except for the drag terms (which are closed for Stokes

drag (Marchisio and Fox, 2013)), the resulting system of equations is equiv-
alent to the Euler equation of gas dynamics. In most gas-particle flow codes,
the granular energy equation is replaced by an equivalent equation for the
granular temperature. However, it is better to solve for the granular en-
ergy because it is a conserved quantity in the absence of drag and inelastic
collisions. As is evident from Figure 8, the hydrodynamic model predicts so-
called “sticky” particles (i.e., they accumulate at the mean velocity instead
of crossing). In comparison, the Eulerian model with the QBMM closure
allows the particle jets to cross, as is found using Lagrangian simulations.
The crossing jets example clearly illustrates the importance of the closures
used in moment methods, and the need to use closures that work over the
entire range of possible flow regimes.
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4.5 Boundary conditions and coupling with fluid solver

When using Eulerian moment methods, the issue of how to set the
boundary conditions for the moments arises. With classical moment meth-
ods for which the reconstructed NDF is not available, it is difficult to fix the
moments at boundaries. However, for QBMM for which the reconstructed
NDF in the interior of the domain is known, any boundary conditions used
in Lagrangian simulations can be used. In other words, if the fate of par-
ticles interacting with a boundary is known in the context of a Lagrangian
simulation, exactly the same rule can be used with QBMM. For example,
Maxwell proposed wall boundary conditions for the velocity NDF at a solid
wall moving with zero velocity of the form

fw(v) =

{
ξfeq,w(v) + (1− ξ)f∗

w(vw) if v · nw > 0,

f∗
w(−vw) if v · nw ≤ 0,

(105)

where nw is the outward-directed wall-normal vector, f∗
w is the (known)

reconstructed velocity NDF at the wall, vw = v − 2(v · nw)nw, and the
accommodation coefficient is defined as follows.

• ξ = 0 yields specular reflections for which the velocity component
normal to wall is reversed (i.e. v → vw).

• ξ = 1 yields diffuse reflections for which particles are reflected with a
given wall temperature and Maxwellian distribution feq,w.

The top line in (105) corresponds to particles that move towards the wall
and thus interact with it through the boundary condition, while the bottom
line corresponds to particle moving away from the wall.

The velocity NDF fw and f∗
w in (105) correspond to the values located

exactly at the interface with the wall. In a finite-volume method, these val-
ues are not known but rather the cell-average NDF in the cell next to the
wall nn

1 and in a ghost cell representing the wall nn
0 are known. It is thus

necessary to compute the kinetics-based fluxes at the interface in a consis-
tent manner by reconstructing the NDFs at the interface. For example, for
a solid surface the mean wall-normal velocity at the wall should be null,
which is equivalent to specifying that the mass flux across the interface is
null. In terms of the cell-average NDFs, this constraint is∫

v·nw>0

|v · nw|nn
1 dv =

∫
v·nw<0

|v · nw|nn
0 dv, (106)

which is exact if nn
0 = fw from (105) with f∗

w = nn
1 . More generally,

any constraint used in the Lagrangian simulation must be consistent with
the reconstruction of the cell-average wall NDF nn

0 at every time step n.
Nonetheless, if the wall NDF is defined consistently with the Lagrangian
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model, the computation of the boundary conditions for QBMM and kinetics-
based finite-volume methods is relatively straightforward.

The numerical algorithm for coupling the disperse-phase and continuous-
phase solvers is described in detail in Passalacqua and Fox (2011a,b); Pas-
salacqua et al. (2010). The transport step for the velocity moments is
handled as described in Section 3. On the particle side, the drag force is
modeled by

FD =
3mpρg
4ρpdp

Cd |Ur|Ur (107)

with drag coefficient

Cd =
24

Rep

(
1 + 0.15Rep

0.687
)
. (108)

The mass of a particle is mp and the particle Reynolds number is defined
by

Rep =
ρgdp |Ur|

μg
. (109)

Note that FD,α is different for each abscissa because the relative velocity is
defined by Ur = Ug−vα. Since the drag force does not change the weights,
i.e.,

dnα

dt
= 0, (110)

each velocity abscissa can be updated independently using

dvα

dt
=

FD,α

mp
. (111)

Note that other forces on the particles (e.g., lift, virtual mass, buoyancy, etc.
(Marchisio and Fox, 2013; Vikas et al., 2011b)) can be treated in the same
manner. At the end of the drag step, the optimal moment set is updated
using the new values for the velocity abscissas.

On the gas side of the flow solver, the continuity equation (91) and
momentum equation (92) with the momentum exchange term defined by

βg =
βQMOM

Vp
(112)

are solved using standard CFD algorithms. The total drag term for all
abscissas is found from

βQMOM =

N∑
α=1

nαFD,α. (113)
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A partial elimination algorithm is used to improve the stability of the it-
erative solver when the drag coefficient becomes large. Overall, mass and
momentum are fully conserved between the two phases. More details, along
with applications of the gas-particle flow solver, can be found in Passalacqua
and Fox (2011a,b, 2012); Passalacqua et al. (2010); Vikas et al. (2011a,b).

5 Conclusions

We conclude our presentation of quadrature-based moment methods and
their application to polydisperse multiphase flows with a few comments on
the extension to turbulent flows and some remarks concerning open ques-
tions.

5.1 Extension to turbulent flows

In this chapter, we have focused on using QBMM to develop mesoscale
models for multiphase flows. Such models are equivalent to laminar flow
models using in single-phase flows. When applied to turbulent multiphase
flows, the computational cost of resolving all relevant scales is prohibitive,
and alternative models are needed. In practice, Reynolds-average (RA)
or large-eddy simulations (LES) are used to handle high-Reynolds-number
flows.

LES/RA turbulence modeling of the mesoscale kinetic equation for gas-
particle flow leads to

∂n

∂t
+ v · ∂n

∂x
+

∂

∂v
· (An

)
= C[n, n] (114)

where the overbar indicates some type of averaging process that loses infor-
mation about the unresolved scales. (In the following, we use RA quantities,
but these could be replaced by filtered quantities for LES.) Observing this
RA kinetic equation, we note the following.

• The free-transport term has same form as before and appears in closed
form.

• QBMM can be directly applied to the RA moments of n.
• Particle acceleration and collisions are unclosed and thus require tur-
bulence models to close the terms involving fluctuations:

An = An+A′n′ RA fluid-velocity fluctuations

C = C[n, n] + C′ RA particle-velocity fluctuations

where A′n′ affects the single-particle acceleration model, while C′ is
a second-order process that depends on two-particle statistics.
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The current approach for modeling these terms is to modify existing Euler-
Lagrange models by adding stochastic-based closures. (See other chapters in
this book for examples.) However, due to the large range of flow conditions
that can be modeled by the mesoscale kinetic equation (e.g., very dilute
to dense granular flow), current turbulence closures are limited in their
ability to extend beyond small ranges of flow conditions. It will therefore
be necessary to revisit this research topic in order to develop more general
closures.

An important technical point that has been completely overlooked in the
literature on turbulence models for collisional gas-particle flows is the need
to have separate models for the RA granular temperature and the turbulent
kinetic energy of the disperse phase. In order to see why this is necessary,
it suffices to consider the RA second-order velocity moments:

M ij =

∫
vivjn dv =

∫
vivjn dv (115)

where the last equality follows from the linearity properties of Reynolds av-
erages. Using the definition of the granular temperature, we can decompose
Mii as follows:

Mii = M11 +M22 +M33 = αp(|Up|2 + 3Θp). (116)

The RA of this result is

M ii = αp|Up|2 + 3αpΘp = αp〈|Up|2〉p + 3αp〈Θp〉p (117)

where the second equality defines the phase averages 〈|Up|2〉p and 〈Θp〉p.
The phase-average mean square velocity can be further decomposed as

〈|Up|2〉p = 〈|〈Up〉p + u′′
p|2〉p = 〈Up〉p · 〈Up〉p + 2kp (118)

where u′′
p is the fluctuating component of the disperse-phase velocity and

kp = 1
2 〈|u′′

p|2〉p is the turbulent kinetic energy of the disperse phase. Com-
bining these results yields

M ii = αp(〈Up〉p · 〈Up〉p + 2kp + 3〈Θp〉p). (119)

Because both kp and 〈Θp〉p appear in this expression, it is clear that knowl-
edge of the trace of the RA velocity covariance is not sufficient to determine
both of these quantities. In fact, it will be necessary to solve an additional
turbulence model for kp. In the literature on turbulent gas-particle flows,
it is almost always assumed that kp and 〈Θp〉p are equivalent. Because the
phase-average granular temperature appears in the linear collision model in
the definition of the τC, this incorrect assumption will lead to an overpre-
diction of the collision rate in turbulent flows.
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5.2 Final remarks

Throughout this chapter we have attempted to provide the reader with
a relatively comprehensive description of QBMM as applied to multiphase
flow modeling. In summary, the principal points of interest are as follows.

• Mesoscale models have a direct link with the underlying physics and
result in a kinetic equation for the one-particle NDF.

• QBMM solve the kinetic equation by reconstructing the distribution
function from a finite set of its moments.

• NDF reconstruction algorithms based on quadrature require realizable
moments.

• Numerical schemes (e.g. finite volume, time integration) used to solve
the moment equations must ensure that the moments are always re-
alizable.

• QBMM – combined with a fluid solver – handle fully coupled fluid-
particle flows for all Stokes and Knudsen numbers.

• Because of the underlying physical model at the mesoscale, quadrature-
based multiphase models are always mathematically well defined.

• Properly closed moment-based Eulerian models should agree with La-
grangian simulations that use the same mesoscale model.

Readers interested in more details on QBMM are referred to Marchisio and
Fox (2013).

Because QBMM are relatively new, there are still many open questions.
A short list of questions that need to be answered in the near future are as
follows.

• Under what conditions will CQMOM yield unrealizable abscissas for
bounded supports?

• Can we do better than extended CQMOM for multi-dimensional quadra-
ture?

• Can we find better realizable high-order numerical fluxes for multi-
variate moments?

• When should we use QBMM instead of Lagrangian methods (or hybrid
methods) to simulate a multiphase flow?

• Is it possible to find predictive turbulence models that are generally
valid in the context of moment methods?

The reader can undoubtedly think of other important questions. However,
given the generality and flexibility of QBMM, it is almost certain that an-
swers to these questions will be found soon due to the growing number of
researchers interested in this topic.
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Abstract We review the general ideas behind coarse-grained repre-
sentations of fluid dynamics, with special focus on two mesoscopic
techniques which have proven particularly successful over the last
two decades for the simulation of complex fluid flows, namely Dis-
sipative Particle Dynamics and the Lattice Boltzmann method.

1 Introduction

Computational physics strives to imitate nature on a comparatively string-
shoe budget: the gap between the degrees of freedom available to Nature
and those affordable by our even most powerful foreseeable computers re-
mains daunting, something of the order of the Avogadro number versus its
square root, at best. Fortunately, Nature is kind to us and offers a huge
amount of redundancy; very many of these degrees of freedom are not nec-
essary, nor even desirable to know, to the purpose of understanding the
actual behavior of fluids, and matter in general. This means that there
is wide scope for devising stylized models of fluid behavior. Technically,
the general procedure to remove redundant degrees of freedom goes by the
name of coarse-graining, i.e. the process of distilling the essential physics,
while relinquishing irrelevant details (1). A general procedure to perform
such task in a systematic way is not available, and, strictly speaking, it
might not even exist, since it does not correspond to any natural process:
Nature does not need coarse-graining! As a result, coarse-graining is, to
some extent, as much an art as a science.

The key issue is non-linearity and its distinctive property of transferring
energy (and information) across different scales of motion. Because of this,
upon coarse-graining, non-linear interactions generate new correlated inter-
actions, which we shall call scaling forces, because they arise exquisitely
from lack of scale invariance of non-linear interactions. As a general trend,
coarse graining leads to modified forms of conservative interactions plus
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qualitatively new interactions, usually classified under the rubric of dissipa-
tive forces, typically representd by memory kernels and noise sources, the
well-known Langevin approach. By design, coarse-graining leads to (many)
less degrees of freedom, and under most circumstances, also more weakly in-
teracting than the original ones. This is readily appreciated by considering
that coarse-grained variables are ”fatter”, as they embody many microscopic
degrees of freedom, and, by the very same reason, they interact on longer
distances, hence more weakly. This is the very point of Renormalization-
Group (RG) analysis; by recursive application of coarse-graining, one can
hope that the interactions eventually become so weak that they can be
handled perturbatively. However, this only works if correlations reorga-
nize nicely, i.e. they lend themselves to a sensible regrouping within the
same formal structure of the original ones, only with renormalized cou-
plings. Unfortunately, this is not the rule, but a precious exception; usually
correlations organize in a very tangled web of correlations, which does not
fit within the same formal structure of the microscopic equations. That is
why, the bottom-up (from micro to Macro) strategy to coarse-graining is
often replaced and complemented by heuristic approaches, which postulate
effective equations of motions based on general requirements of symmetry
at the macroscopic level. Computational fluid dynamics falls plain within
this framework.

Historically, the computational study of fluid-dynamic problems was al-
most invariably identified with the numerical solution of the Navier-Stokes
equations of continuum mechanics. This is fairly reasonable, since contin-
uum mechanics provides, in principle, the most economical description of
the physics of fluids. A few continuum fields, density, pressure and the fluid
velocity, provide a complete macroscopic description. Yet, several decades
of continued efforts on the computational and analytical sides have taught
us a hard-core lesson: despite their innocent-looking appearance, and very
transparent physical meaning, the Navier-Stokes equations are exceedingly
hard to solve. The reason, by and large, can be traced back to the strength
of non-linear effects over dissipation, as measured by the Reynolds num-
ber, easily in the order of millions and above for most daily-life fluid phe-
nomena, such as flows past cars and airplanes. The lesson taught by the
Navier-Stokes equations is that the most economic level of representation
from the conceptual viewpoint does not necessarily offer the most efficient
computational scenario. Sometimes, coarse-grained equations turn out to
be so complicated to solve, to the point of defeating the whole ordeal of
having less degrees of freedom to solve for.

That is why coarse-graining is a fascinating and challenging task at a
time.
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2 Coarse-graining atomistic equations in space

Let us consider the equations of motion for a system of i = 1, N classical
point-particles (vector notation relaxed for simplicity):

dri

dt
= vi (1)

mi
dvi

dt
=

N∑
j>i

fij (2)

where fij = f(ri, rj) are pairwise forces. Once the trajectory of each particle
is known, based on initial and boundary conditions, this set of 6N discrete
degrees of freedom can be organized in terms of continuum fields, such as
the fluid mass density, momentum and energy (kinetic plus potential).

With reference to a region of space of volume Ω(x), centered about
position x, we have:

ρ(x; t) = 1
Ω(x)

∑N
i=1 miSi(x; t) (3)

ρ(x; t)V (x; t) = 1
Ω(x)

∑N
i=1 miviSi(x; t) (4)

ρ(x; t)e(x; t) = 1
Ω(x)

∑N
i=1

miv
2
i

2 Si(x; t)) +
∑N

i=1;j>i FijrijSi(x; t)Sj(x; t)(5)

where Si(x; t) ≡ S(x− ri(t)) is a suitable shape function, normalized to the
total numbers of particles, i.e.

∑N
i=1 S(x−ri(t)) = N . The simplest instance

of shape-function is the Dirac-delta, but smoother options, such as piecewise
linear or cubic functions, are better suited for numerical implementations.
The Navier-Stokes equations need no more than the above: five continuum
fields instead of Avogadro’s numbers of particles! However, so far we have
performed no coarse-graining at all; in fact, we have inflated the amount
of information, because continuum fields contain in principle an infinite
amount of degrees of freedom, since they are formally defined in the idealized
limit V ol(x) → 0. The actual reduction can only be appraised by attaching
the fields to a discrete partition of space where no volume is allowed to
shrink to zero size. A simple and natural way to coarse-grain this system
is to partition the geometrical domain into a collection of subdomains ΩI ,
I = 1, NB = N/B << N .

The dynamical state of each subdomain (the mesoparticle, sometimes
called simply blob) is characterized by its total mass, position and velocity,
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defined as follows:

MI(t) =
N∑

i=1

miSiI(t) (6)

RI(t) =
1

MI

N∑
i=1

riSiI(t) (7)

VI(t) =
1

MI

N∑
i=1

mivi(t)SiI(t) (8)

where SiI(t) ≡ S(ri(t) − RI). The next step is to devise the equations of
motion for the mesoparticleis, based on the microscopic equations (1). By
summing over all molecules in the mesoparticle, we obtain

dRI

dt
= (d/dt)

∑
i

riSiI =
∑

i

(dri/dt)SiI =
∑

i

viSiI = VI (9)

Note that dSIi/dt = 0 because the space derivative of the shape function
is by design zero at x = ri. Thus, the first equation of motion remains
unchanged upon coarse-graining, which has to be the case, owing to its
linearity. The momentum equation tells us a different story:

MI
dVI

dt
= (d/dt)

∑
i

viSiI =
∑

i

∑
j

fijSiI(t)SjJ(t) (10)

where we have taken MI = const = mB for simplicity. To compute the
right hand side, it proves expedient to split the actual coordinates in terms
of a mesoparticle coordinate plus a fluctuation around it, namely

rIi = RI + ξIi, i = 1, NI (11)

Note that the microscopic index i now runs locally in the I-th blob it belongs
to. One can ithen expand the microscopic force around the barycentric
coordinate r = RIJ :

fij = fIJ + f
′
IJξIJ,ij + f

′′
IJξ2

IJ,ij + f
′′′
IJξ3

IJ,ij + . . . (12)

where primes stand for radial derivatives, divided by the corresponding
factorial coefficient, and where we have set fIJ ≡ f(RIJ) and ξIJ,ij =
ξIi − ξJj .

The force on the I-th blob writes as follows:

FI =
NI∑
i=1

NB∑
J �=I

NJ∑
j=1

{fIJ + f
′
IJξIJ,ij + f

′′
IJξ2

IJ,ij + f
′′′
IJξ3

IJ,ij + . . . } (13)
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This also rewrites as:

FI =
NB∑
J �=I

NINJ(fIJ + gIJ) (14)

where we have set:

gIJ =
1

NINJ

NI∑
i=1

NJ∑
j=1

(f
′′
IJξ2

IJ,ij + f
′′′
IJξ3

IJ,ij + . . . ) ≡< fij > −fIJ (15)

The term gIJ collects all the effects of the non-linear terms which do not
cancel out upon coarse-graining. We shall call this scaling forces, since they
arise exquisitely from the lack of scaling invariance of non-linear interac-
tions.

Summarizing, the coarse-grained equations for the blobs take the final
form

dRI

dt
= VI (16)

MI
dVI

dt
=

∑
J �=I

FIJ =
NB∑
J �=I

NINJ(fIJ + gIJ) (17)

Several remarks are in order.
First, we see that the blobs interact more weakly than the original

molecules, because, after factoring out MI/NI = m, the coarse-grained
forces FIJ are weaker than the microscopic ones, fij simply because, on
average, RIJ > rij . Note indeed that intra-blob forces cancel out because
of third Newton’s law fij + fji = 0, so that the self-interaction term J = I,
carrying the strongest interactions, is excluded by the summation.

This argument makes abstraction of the scaling forces. The latter, how-
ever, are expected to decay even faster with distance, because they are
driven by higher order derivatives of the force. Thus, for decaying in-
teractions of the form fij ∼ r−α

ij , with α > D in D space dimensions
(definition of short-range), the arguments holds solid. For long-range in-
teractions, however, this is not necessarily true, because the cumulants
< ξp >IJ≡ 1

NINJ

∑
i

∑
j ξp

IJ,ij , p = 2, 3... may diverge beyond a given
p. This is the typical non-RG scenario, in which coarse-graining brings in
non-ignorable terms at every iteration. Thus, we see that the coarse-grained
equations, besides the original coarse-grain dof (RI , VI) also involve a bag of
additonal fields, namely the cumulants of the relative positions within each
blob. These are sometimes called auxiliary variables, and can be assimilated
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Figure 1. The basic splitting between fast and slow variables for spatial
coarse-graining of atomistic dynamics

to a reservoir of fast degrees of freedom. The coupling to this reservoir, as
we shall see, gives rise to qualitatively new effects, memory, noise and dis-
sipation, which have no counterpart in the microscopic world. To better
clarify this crucial item, it proves convenient to analyse the correlations
arising by coarse-graining in time.

3 Coarse-graining in time

The correlation web emerging from coarse-graining in time can be illustrated
for the case of a single degree of freedom, obeying Newton’s equation:

mẍ = f(x) (18)

Coarse-graining in time, over a time lapse T is defined as follows:

X(t) =
1
T

∫ t+T/2

t−T/2

x(t′)dt′ (19)

In the above, X is the slow variable (all modes with ωT >> 2π are filtered
out) and ξ = x − X is the fast degree of freedom, obeying < ξ >= 0 by
definition.

The dynamic equations for the slow variable read as follows:

Ẋ = V (20)

mV̇ = f(X) +
∑
n≥2

f (n)(X) < ξn > (21)
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By subtracting the coarse grained equations from the microscopic ones, we
obtain the equations of motion of the fluctuations, namely:

ξ̇ = η (22)

mη̇ = (f− < f >) = f1(X)ξ +
∑
n≥2

fn(X)(ξn− < ξn >) (23)

where we have set η ≡ v − V . To be noted that the first derivative of the
force at x = X, i.e. the second derivative of the potential, controls the
linear stability of the fluctuations, as per the condition f1(X) < 0. Depend-
ing on the strength of the remainder, this term may receive perturbative
corrections, or, under less smooth circumstances, it might even overturn
in sign, corresponding to the onset of local instabilities. As to the web of
correlations, it is apparent from eq. (22) that the time derivative of the
second order spatial cumulant, < ξ2 >, is driven by the mixed cumulant
< ξη >. The dynamic equation for the latter, on the other hand, involves
cumulants of the form < ξf(X +ξ) >, which give rise to a complex tangle of
correlations at all orders, since f(x) is generally a non-polynomial function
of x. The dynamics of the hierarchy of correlations can be written in exact
form as follows (2):

μ̇lm = lμl−1,m+1 + m

∞∑
k=1

fk(X)μl+k,m−1 (24)

where we have set μlm =< ξlηm >, the mixed cumulant of order (l, m).
Note, that this is a system of first-order linear equations, whose coefficients
depend non-linearly on the coarse-grain position X. From eq. (20), it is
apparent that the slow motion is driven by the spatial cumulants μl,0. The
system (20), augmented with the equations of motion of the cumulants (24),
is completely equivalent to the original problem (18). The solution to the
cumulant dynamics in a time interval [t, t + Δt], reads formally as follows:

μlm(t + Δt) = eLlm,l′m′ (X(t))Δt μl′m′(t) (25)

where Llm,l′m′(X) is the Liouville matrix of the cumulants, as defined by
the rhs of the system (24). Note that, in the above, we have assumed that
X(t) does not vary appreciably on a time scale Δt, which is indeed the
case by the very definition of X, so long as Δt < T . By inserting (25)
in the time-discretized version of (20), we obtain a self-contained equation
for the slow degree of freedom in each discrete interval [t, t + Δt]. Such a
self-contained equation looks more cumbersome than the original one. The
advantage, however, is that it is better suited to systematic approximations.
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For instance, one could simply truncate the hierarchy by setting to zero the
cumulants beyond a given order, so as to keep the Liouville matrix down to
a low-order rank. A more sensible procedure is to appeal to an enslaving
argument and express the higher-order cumulants via a closure relation of
the form:

μlm(t) = Clmμ20(t)l/2 μ02(t)m/2 (26)

and generalizations thereof (3). The validity of such a closure can be as-
sessed as follows: i) Solve the original equation of motion (18), ii) Coarse-
grain the outcome x(t) to obtain X(t) and iii) coarse-grain the cumulants
according to their definition, namely, μlm = 1

T

∫ t+T/2

t−T/2
(x(t′)−X(t′))l(v(t′)−

V (t′))mdt′.
Once this calibration is performed (say, by optimizing the coefficients

Clm in some suitable variational sense), the coarse-grained equations can
then be solved using a time-step of the order of T , i.e. much larger than
the one required to track the original system (taken 1 for convenience). To
the best of the author’s knowledge, such kind of ”bootstrap” strategy has
not received much attention in the current literature.

So much for coarse-graining in time.
When coarse-graining is performed in both space and time, the tangle

becomes correspondingly more complicated, as each scaling force gIJ de-
pends on a tower of cumulants μIJ,lm, thus a sequence of large arrays, of
size NB ×NB , to be tracked in time. The information-compression factor,
BT , can be as large as 1020: from 1023 to 109 in space, and easily another
106 in time (from femtoseconds to nanoseconds). It is only natural that such
an enormous compression cannot be bought for free! Details of the coarse-
graining procedure matter a lot, and a variety of different techniques, using
different shape functions, Voronoi tesselations and other technical devices,
have been developed in the literature (5; 6), but none of them escapes the
tangle, hence the need for some form of closure. Leaving aside details,
which do matter, two qualitatively emergent effects of coarse-graining can
be identified in full generality, namely Non-locality (in space and time), and
Dissipation, which we now illustrate in a pedagogical form.

3.1 Memory and Dissipation: elimination of fast modes

Non locality is apparent through the chain of auxiliary equations; as is
well known, a chain of first order ODE’s is equivalent to a single ODE with
memory kernel (7), a so called non-Markovian formulation. This is apparent
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Figure 2. The tangled web of time-correlations for a general Hamiltonian of
the form H(p, q) = K(p) + V (q). Only the lowest-lying layer of cumulants
couples to the coarse-grained variables (X, V ). However, each cumulant
couples to the others, according to the ”butterfly” pattern depicted in the
figure. In the figure we have indicated three levels of coupling along mo-
mentum (vertical axis), but for Newtonian mechanics they reduce to just
one, because the kinetic energy is a quadratic function of the momentum.
The coupling along position space can run to infinity whenever the potential
V (q) is a non-polynomial function of the position q.



146 S. Succi

already by a simple model 2× 2 (linear!) problem

dx

dt
= −ax + by (27)

dy

dt
= bx− cy (28)

where we take a, c > 0 on account of stability. We shall further assume
that c >> a, which configures y as the fast variable and x as the slow
one. The basic idea is to eliminate the fast variable, to obtain an effective
equation for the slow one. Solving the second, we obtain y(t) = y(0)e−at +
b
∫ t

0
e−c(t−s)x(s)ds, which, upon insertion into the first, delivers an integro-

differential equation for x(t). The memory kernel K(t, s) = e−c(t−s) decays
in a time lapse 1/c, and can be replaced by a Dirac delta in the limit
|t−s| >> 1/c, thereby returning the Markovian form y(t) = bx(t)/c, namely
ẋ = (−a + b2/c)x, i.e. a plain renormalization of the damping coefficient
a → a− b2/c. To be noted that the effect of the eliminated variable is not
exausted by the memory kernel, but includes the initial condition y(0) as
well. Thus, in order to obtain an effective equation for x(t), an average over
the initial conditions, y(0), has to be taken too. Note that the effect of initial
conditions fades away for t >> 1/|c|. This entails a loss of information,
which is tantamount to irreversibility, hence dissipation. The toy model
27 is of course only a pale cartoon of the coarse-grained equations (16),
but it illustrates nonetheless the two main points, namely i) a chain of
ODE’s is equivalent to a single non-Markov integro-differential iequation,
with memory kernel, and ii) the elimination of fast variables, entails a loss
of information which shows up as dissipation at a macroscopic level.

A physically more penetrating example is provided by the Brownian
motion of a test particle in a bath of harmonic oscillators (7). The global
system (test particle plus oscillators) is described by the overall Hamiltonian
H = H1 + HB , where

H1 =
p2

2m
+ V (x) (29)

HB =
N∑

j=1

p2
j

2
+

N∑
j=1

ω2
j

2
(qj − ajx)2 (30)

In the above, the mass of the N harmonic oscillators has been set to 1 for
simplicity, and the frequencies ωj and amplitudes aj are free-parameters.
Since the coupling between the particle and the j-th oscillator in the bath
is simply xqj , the model can be solved exactly, to deliver the following
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analytical solution:

dp

dt
= −V ′(x)−

∫ t

0

K(t− s)p(s)ds + fn(t) (31)

where the memory kernel and the noise term are explictly given by (γj =
ajω

2
j ):

K(t) =
N∑

j=1

a2
jω

2
j cos(ωjt) (32)

fn(t) =
N∑

j=1

γjpj(0)t
sin(ωjt)

ωjt
+

N∑
j=1

γj(qj(0)− ajx(0))cos(ωjt) (33)

It is thus appreciated that, by properly choosing the sequences aj and ωj ,
one can generate virtually any sort of memory kernel. It is also clear that the
noise term is in fact perfectly deterministic, as long as the initial positions
and momenta of the oscillators are known. Since N is a huge number, this
is however unrealistic, and one is naturally led to average over the initial
conditions. On the assumption that they obey Gaussian statistics, by the
central limit theorem, their overall effect is assimilitated to an uncorrelated
white noise. This is the assumption behind the emergence of the stochastic
source in the Langevin equation.

This example is very precious, as it delivers an exact and very insightful
expression of the memory kernel and stochastic source. However, it is per-
haps even more for the limitations it exposes. namely that such insightful
analytical treatment depends crucially on the linearity of the equations of
motion. For the general case, there is no chance to extract such a clean in-
sight; however, one can still appeal to universality arguments and postulate
that some heuristic form of Langevin equation would capture the essence of
the coarse-grained physics.

Coming back to the mesoparticle dynamics, the blob position-velocity
(RI , VI) play the role of slow variables, while the auxiliary variables are the
fast ones. The microscopic and coarse-grained representations, namely

{ri, vi} → {RI , VI , μ
lm
IJ }, I, J = 1, NB , l, m = 1, 2 . . . (34)

are formally equivalent, as they contain the same amount of physical
information. However, from the computational standpoint, they are surely
not. The original microscopic system is under most circmusances, com-
putationally unmanageable. The coarse-grained one, presents a tangle of
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space-time correlations which leaves little chance for exact analytical treat-
ment. It does, however, open up plenty of room for informed approxi-
mations. Whence the motivation for heuristic models based on fictitious
(meso)-particle dynamics.

4 Dissipative Particle Dynamics

Dissipative Particle Dynamics (DPD) was introduced in the seminal 1992
paper by Hoogerbrugge and Koelman (8), to cope with the main weaknesses
of then existing mesoscopic methods, mainly Lattice Gas Cellular Automata
and lattice Boltzmann, to be discussed shortly. The former was known to be
faced with an exponential wall of computational complexity, while the latter
was allegedly at odds with a proper account of thermal effects in fluids . The
starting point of DPD is to formulate equations of motion for mesoscopic
particles, each representing a large number of actual molecules, in terms of
meso-particle centermass position and velocity, i.e a ”blown-up” version of
molecular dynamics. The distinctive feature of DPD is to acknowledge the
presence of dissipative and random forces at the outset, and postulate the
following heuristic equations of motion (vector notation reinstated):

d	RI

dt
= 	VI (35)

MI
d	VI

dt
=

∑
J

(	F c
IJ + 	F d

IJ + 	F r
IJ) (36)

where superscripts c, d, r, stand for conservative, dissipative and random,
respectively.

The conservative forces read as follows:

	F c
IJ = fW c(RIJ)êIJ (37)

where êIJ is the unit vector along 	RI− 	RJ and W c(RIJ) is a shape function,
giving the radial distribution of the conservative forces, with strength f . A
popular choice is the piecewise linear function

W c(r) = (1− r/rc)H(r − rc) (38)

where rc is cutoff distance and H is the Heavyside distribution. More sophis-
ticated inplementations make use of soft-core repulsive Lennard-Jones po-
tentials. By soft-core, we imply that the interaction range scales up approx-
imately as rc ∼ (M/m)1/3σm, σm being the microscopic range of interaction
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between molecules of mass m, and M being the mass of the mesoparticle.
With a blocking ratio B = M/m ∼ 1015, (Avogadro molecules versus, say,
108 dissipative particles), a naive spatial magnification gives B1/3 ∼ 105, i.e.
tens of microns, so that the system would reach up to centimeter size. The
time magnification can be estimated as B1/2 ∼ 107 leading from femtosec-
onds, the typical time-step in molecular dynamics, to tens of nanoseconds.
Thus, a one-million DPD steps would span tens of milliseconds. So much
for conservative interactions.

The friction forces reads as follows

	F d
IJ = −γW d(RIJ)(	eIJ · (	VI − 	VJ))êIJ (39)

where γ is the friction coefficient, and the shape function W d(r) gives the
interaction range of dissipative interactions. This is usually be taken in
the form of a piecewise linear function, like W c(r), eventually raised to an
integer power.

Finally, the random force is given by:

	F r
IJ = ηW r(RIJ)ξIJ êIJ (40)

where ξIJ = ξJI is a Brownian (Wiener) noise term, with non-zero average,
and obeying the fluctuation-dissipation-theorem (FDT), ξIJ(t)ξKL(t′) =
ηIJ,KL

kT
M δ(t− t′).

In the above, η is the strength of the noise, W r(RIJ) gives the in-
teraction range of random forces and ηIJ,KL is the fourth-order viscous
stress tensor. Compliance with the fluctuation-dissipation theorem implies
W r(r)2 = W d(r). It is possible to show that the above set of stochastic
ordinary differential equations (SODE’s), conserve not only mass, but also
total momentum. Consequently, they are capable of reproducing hydrody-
namic motion at a macroscopic scale. In this sense, DPD can be regarded
as a set of Langevin equations with momentum conservation.

4.1 Time-marching

Formally, the DPD model leads to a large set of SODE’s, for which many
time-integration schemes are available in the literature (9). A popular one
is the dissipative-stochastic extension of the velocity Verlet scheme used in
Molecular Dynamics (MD-VV). It reads as follows (superscripts k = 1/2, 1
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denote the next half and full time-step, t + kΔt, respectively):

V 1/2 = V +
1
2
ΔV (41)

R1 = R +
Δt

2
V 1/2 (42)

V 1 = V + ΔV (R1, V 1/2) (43)

In the above, ΔV is a short-hand for the velocity change in a time-step Δt,
due to the acceleration F/M . It reads as follows:

ΔV =
1
M

[(F c + F f )Δt + F r(Δt)1/2] (44)

Note the Ito exponent 1/2 which reflects the stochastic nature of the equa-
tion. Many variants have been discussed in the literature, which go beyond
the scope of the present paper. The qualitative point to be made is that
DPD time-marcher can borrow from the MD literature, but not import as-is
from it, because of the friction and stochastic terms. The former requires
particular care, since, at variance with standard Langevin formulations, the
the friction force depends on both the relative velocity and position of the
interacting particles, which implies some subtle modifications to the stan-
dard MD and Langevin integrators. It is worth to point out that, depending
on the different type of time-integrator, the discreteness of the time-step Δt
may have different implications for the energy equipartion and the struc-
tural properties of the DPD fluid.

4.2 Macroscopic limit

The DPD fluid can be shown to obey an equation of state of the form

P = ρc2
s + Pnid(ρ) (45)

where the sound speed is given by cs ∼ r̄
Δt < ξ >, with r̄ =

∫
W (r)rdr

(Koelman and Hoogerbrugge take W d(r) = W r(r), both piecewise linear
with support rc) and the non-ideal pressure is dictated by the conservative
potential. The viscosity of the DPD fluid scales with

ν ∼ γ
r̄2

Δt
(46)

with Δt a fraction of tc = rc/cs. Apparently, these values are realized pretty
closely (within percents) already with small ensembles of particles, i.e. for
time scales not much longer than tc and spatial scales not much larger than
rc, a nice feature which still begs for a clear theoretical explanation.
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The statistical mechanics of DPD, as a genuine classical many-body sys-
tem, was formally worked out by Espanol and Warren, who derived the
associated Fokker-Planck equation and the explicit form of canonical equi-
libria (10). The same authors also pointed out a few interesting anomalies,
notably lack of energy equipartition, due to the discreteness of the time
step. In particular, they noted that even with a timestep of one thousands
of rc/cs, the error δT/T due to lack of equipartition is still in the order
of a few percent, indicating the need for recalicabrating the temperature,
T → T + δT . A rigorous bottom-up approach, starting from the atomistic
equations of motion, was subsequently developed by Flekkoy and Coveney,
by means of an advanced coarse-graining procedure based on (dynamic)
Voronoi tesselation (4). This has several appealing properties, including
the potential capability of adjusting the mesoparticle size dynamically in
space-time, depending on the actual resolution demand: a natural form of
adaptive computing. On the critical side; from the theoretical viewpoint,
the rigorous bottom-up procedure still needs to invoke some heuristic closure
on the stress tensor (viscosity). From the practical one, the use of adaptive
Voronoi tesselations in three-dimensions faces with a major computational
burden. This is still very much an open front of basic and applied research
in the field.

5 DMD at work

DMD can achieve major computational savings over molecular dynamics.
These can be estimated as follows. Space is upscaled by a factor B1/3, while,
with diffusive processes in mind, time upscales by a factor B2/3. As a result
the space-time volume of the simulation, V4 = L3T , grows by a factor B5/3.
With an algorithmic complexity scaling like V a

4 , and an exponent a between
1 and 2, we obtain a DPD/MD gain of about G = B5a/3. With a = 1 (fully
local algorithm) and B = 103, this gives G = 105. If, on the other hand,
a = 2 (fully non-local), then, even a mild blocking ratio B = 10 already
gives G ∼ 2 104. Thus, computational savings are potentially conspicuous.

However, in order to realize them in actual practice, one needs to make
sure that the DPD model is capable of reproducing the major equilibrium
and non equilibrium properties of coarse-grained fluids, namely, the equa-
tion of state, compressibility factors, diffusivity, viscosity and other trans-
port coefficients. To this purpose, a validation-calibration procedure is re-
quired, before DMD can be operated at larger scales. This procedure con-
sists of the following three basic steps:

1. Run nanoscale MD simulations
2. Coarse grain the MD data to produce CGMD (Coarse-Grained MD)
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datasets for different values of the blocking ratio B.

3. Run DMD and fine-tune the DMD parameters so as to minimize the
discrepancy between DPD and CGMD data, across the explored range
of B values.

Once the above procedure is completed, one can finally apply DMD to
larger scale problems (the validation procedure is usually performed with
no more than a few thousands particles, on volumes of the order of (10rc)3).
The DMD free parameters are the strengths f and η of the conservative and
random interactions, respectively, and eventually the shape functions W c(r)
and W f (r) as well. Further tuning parameters are often employed in the
time-marching scheme (a not-so elegant, yet pretry effective, feature).

A full match between CGMD and DPD across the whole set of target ob-
servables is hardly achieved, but partial matches are acceptable, depending
on the specific problem at hand. A particularly remarkable case of success-
ful match is reported for the case of the Flory-Huggins model of polymer
flows (11).

5.1 DPD summary

Summarizing, DPD is explicitly patterned after coarse-graining of molec-
ular dynamics, although, failing a rigorous coarse-graining, it only retains
the essential features: friction, noise and dissipation (in Markov form). In
principle, one could also account for memory effects, by turning the fric-
tion coefficient into a memory kernel (non-Markovian DPD). However, this
entails a significant computational burden, and to date, standard DPD typ-
ically comes in non-Markovian form. Thus, despite its explicit particle-like
format, DPD is most appropriately regarded as a top-down scheme, i.e. a
microscopic formalism designed based on macroscopic requirements. Never-
theless, compliance with fluctuation-dissipation theorem, as combined with
momentum conservation, confers DPD the capability to account for ther-
mal fluctuations, which is of great value in fluid simulations at the micro
and nanoscale. Another practical plus is the fact of looking formally very
similar to molecular dynamics, which permits to import a wide array of
numerical techniques developed by the MD community for about half a
century. On the minus side, the difficulty of realizing small viscosities, a
common problem of particle methods based on direct interactions, either
via soft-core potentials or hard-core collisions. To date, DPD has found sig-
nificant use for the simulation of soft-matter systems, such as amphiphilic
mixtures, polymer melts and similar. As a side-bonus, DPD is often used
as a momentum-conserving thermostat for molecular dynamics simulations.
For a review see (12).
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6 Lattice Gas Cellular Automata

As noted above, DPD is explicitly patterned after molecular dynamics, in
the sense that it retains in full the notion of particles trajectories evolving
under the action of smooth potentials, plus non-smooth stochastic sources.
However, other forms of coarse-graining are available, which appeal to the
notion of probability distribution functions, rather than particle trajectories.
In particular, one can sit in a given cell of phase-space, and keep record of
the statistics of time-evolving populations in that cell: an Eulerian versus
Lagrangian approach in phase-space.

Perhaps, the most radical instance of this statistical coarse-graining is
provided by Lattice Gas Cellular Automata (LGCA) (13).

The crucial idea is to formulate a fictitious particle dynamics, disregard-
ing irrelevant microscopic details except those that are essential to preserve
the basic symmetries of the equation of motion of fluids. A strong call to
universality.

LGCA came to a pinnacle of this idea by formulating the pseudo-particle
dynamics in Boolean algebra! Dissipation is not built-in, but emergent from
elimination of high-order kinetic moments via the assumption of weak depar-
ture from local equilibrium. The basic objects are the occupation numbers
ni(x; t), which take value 1 or 0 depending on whether a particle sitting
at lattice site 	x at time t with discrete speed 	ci, is there or not. The dis-
crete speeds are identified with the links connecting each lattice sites to
its b neighbors 	xi = 	x + 	ci. Being a pure yes/no quantity, ni, can be en-
coded within a single bit: a boolean variable. Quite remarkably, provided
the lattice affords sufficient symmetry, the basic equations of fluids, as ex-
pressed by mass, momentum and energy conservations, as well as rotational
invariance, can be encoded within a fully boolean equation of motion of the
form:

ni(	x + 	ci, t + 1)− ni(	x, t) = Ci[n] (47)

In the above, the left hand side stands for the free motion of the particles,
whereas the right hand side describes their interactions, in the form of local
multi-body collisions. The specific form of the collision operator Ci can be
rather cumbersome, but its essential properties are not,

∑
i

Ci{1,	ci, c
2
i } = {0,	0, 0} (48)

These can be secured compatibly with the constraint Ci = {−1, 0, 1}, which
preserves the boolean nature of the occupation numbers.
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A typical boolean collision in the prototypical hexagonal lattice, may
look like follows:

C(1, 4 → 2, 5) = n1n4(1− n2)(1− n5), (49)

This expression is readily checked to take the value 1 if and only if there are
two head-on particles moving right and left (1 and 4) prior to the collision
and one right-east (2) and south-west (5), afterwards. For any other con-
figuration, C = 0. The collisional contribution +1 is then added to states 2
and 4, subtracted to states 1 and 2, while leaving all others unchanged. It is
readily checked that this is obtained by applying the ”exclusive OR” (XOR)
operator to the string of bits representing the state of the automaton. Thus,
the post collisional state is simply n′ = (XOR) n. Each potential collision
turning the pre-collisional configuration s (a string of 6 bits in the hexagonal
lattice), into the post-collisional s′, comes with its own operator C(s→ s′)
attached.

How does the LGCA reproduce the true equations of fluids?
The procedure is basically the standard Chapman-Enskog asymptotics,

as adapted to the lattice. This is widely documented in the literature, so
that here we shall just outline the basic conceptual steps. First one defines
the probability distribution function

fi(	x; t) =< ni(	x; t) > (50)

namely, the probability (density) of finding a particle at site 	x ad time t,
with discrete speed 	ci. In the above, brackets stand for ensemble averag-
ing over microscopic configurations. One readily recognizes fi as a lattice
analogue of the Boltzmann distribution f(	x,	v; t). With fi at hand, all fluid
quantitities of interest, such as the mass, momentum and energy, follow
by linear combinations of the discrete velocity states (latin subscripts label
spatial dimensions):

ρ(	x; t) = m
∑

i

fi(	x; t) (51)

ρua(	x; t) = m
∑

i

fi(	x; t)cia (52)

ρe(	x; t) =
m

2

∑
i

fi(	x; t)c2
i (53)

(54)

The discrete Boltzmann distribution is postulated to obey the analogue
of the LGCA microdynamics, namely:
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Figure 3. A set of possible collisions in the FHP hexagonal lattice. Left:
pre-collision, right: post-collision.

fi(	x + 	ci, t + 1)− fi(	x, t) = Ci[f ] (55)

This is of course true only upon neglecting many-body correlations, the
usual molecular-chaos assumption. Next one makes the assumption that f
never departs too strongly from the local equilibrium, feq

i , the discrete ana-
logue of the local Maxwell-Boltzmann equilibria, dictated by the condition
C[feq] = 0. By writing f = f0 + εf1, with ε a smallness parameter of the
order of the Knudsen number, i.e. the ratio between the molecular mean
free path and a typical scale of change of fluid quantities, the Chapman-
Enskog procedure permits to derive the Euler equations of inviscid fluid to
order zero, and the Navier-Stokes equations of dissipative fluids at order
one. This makes a long story very short, but since all details are fully doc-
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umented in the vast literature on the subject, here it is sufficient to provide
only a few general considerations. The LGCA promises revolutionary sce-
narios, mostly on account of its Boolean nature and the resulting freedom
from round-off errors, plaguing floating-point simulations. However, a closer
inspection revealed a number of practical issues, such as i) statistical noise
(Boolean systems need massive averaging to be produce smooth signals)
and ii) unsustainable (exponential) complexity of the collision operator in
three dimensions. In fact, the operator C requires of the order of 2b boolean
operations at each lattice site and time instant, and since b = 24 in D = 3,
this makes about 16 Million operations per lattice sites and time-step. And
this for just one fluid! Among others, this major weakness thwarted the
development of LGCA and its application to high-Reynolds flows.

7 Lattice Boltzmann

Historically, LB was born on the wake of the noise problem of LGCA’s.
However, in the subsequent years, it rapidly evolved into a self-standing
method, with applications throughout fluid dynamics at virtually all scales
of motion (16). Here again, we only give the essentials. The first LBE
takes exactly the form (55), i.e. a pre-averaged LGCA. By definition, this
form faces the very same computational wall experienced by LGCA, hence
it is equally unviable for practical computations in three dimensions. In the
subsequent years, a small of group of researchers realized that by appealing
again to the notion of weak departure from local equilibria, the collision
operator could be brought down to a simple matrix-relaxation around local
lattice equilibria.

The resulting LBE reads as follows:

fi(	x + 	ci, t + 1)− fi(	x, t) = Ωij(f
eq
j − fj)(	x; t) (56)

This makes a world of a difference, since the rhs can now be computed
with order b2 operations, instead of 2b!. The relaxation matrix Ωij was
initially derived directly from LGCA rules, i.e the boolean collision matrix
C(s, s′). This results in a severe penalty on the number of collisions allowed
by the scheme, hence on the minimum viscosity which can be attained on
the lattice (in which many less collisions are allowed, due to conservation
constraints). We remind that viscosity, namely momentum diffusivity, scales
with the molecular mean-free path, which, in turn, decreases with increasing
collisionality. Hence small viscosities can only be attained by performing
many collisions per time-step.

This problem was lifted by realizing that the relaxation matrix can be
designed top-down, solely based on symmetry requirements of the Navier-
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Stokes equations. By doing so, the viscosity can be brought as low as allowed
by the lattice resolution and not by inherent collisional constraints. In other
words, hydrodynamics settles down at the level of a single lattice cell, which
was not the case for LGCA, nor for any previous LBE. This marks a very
distinctive point for LB versus other particle methods: the mean free path is
no longer dictated by the actual collisions that can be realized in the lattice,
but can be chosen at the outset as a free parameter, i.e. by prescribing the
rate of convergence to local equilibrium. Of course, since the equilibrium
is no longer attained through explicit collisions, this top-down approach is
exposed to a realizability issue, which we shall comment upoin shortly.

The final step in the development of basic LBE theory was brought about
by the realization that the relaxation matrix can be taken in diagonal form,
giving rise to the so-called lattice BGK (Bhatnagar-Gross-Krook) scheme,
by far the most popular form of LBE to this date.

It reads as follows (17):

fi(	x + 	ci, t + 1)− fi(	x, t) = −ω(fi − feq
i )(	x; t) (57)

In this version, all symmetries securing compliance with macroscopic hy-
drodynamics are in charge of local equilibria, which must obey the following
mass, momentum and momentum-flux conservations:

∑
i

feq
i = ρ (58)

∑
i

feq
i cia = ρua (59)

∑
i

feq
i ciacib = ρ(uaub + c2

sδab) (60)

where latin indices run over spatial dimensions.
A suitable expression fulfilling these rules is:

feq
i = ρwi(1 + ui + qi) (61)

where ui = uacia/c2
s and qi = (u2

i−u2/c2
s)/2. In the above, c2

s =
∑

i wic
2
ia, is

the lattice sound speed, and wi is a set of lattice-specific weights normalized
to unity.

Note that these equilibria are second-order expansions in the Mach-
number M = u/cs, of the continuum Maxwell-Boltzmann distribution. In-
deed, the mere replacement va = cia in Maxwell-Boltzmann distribution
would -not- and can-not fulfill the constraints (58), for any generic value
of the fluid speed. The reason is basic: Maxwell-Boltzmann equilibria are
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gaussian, hence correspond an infinite series in powers of the Mach number
u/cs, the coefficient of the n-th term, being a rank n Hermite tensor. By
construction, the standard LB lattices ensure isotropy to 4th order only,
which means that higher order terms would break isotropy and Galilean
invariance. Going to higher speeds and/or thermal fluids, is of course pos-
sible, but necessarily involves the use of higher order lattices (See section
on thermal flows).

The eq. (57) describes a fluid with equation of state P = ρc2
s and a

viscosity

ν = c2
s(

1
ω
− 1

2
) (62)

in lattice units, Δx = Δt = 1.
A very remarkable property of this expression, which proves crucial for

high-Reynolds applications, is the −1/2 shift, which permits to realize small
viscosities, ν = O(ε), with time-steps still order O(1), by choosing ω ∼ 2−ε.
Note that, unlike the original LB in pre-averaged format, here collisions are
not performed directly, but are expressed instead as a relaxation around a
-given- local equilibrium. This cuts down dramatically the computational
cost, and permits to reach very low viscosities, but also exposes LB to
numerical instabilities, due to the potential lack of an underlying H-theorem
(microscopic realizability). It is a very lucky instance that the top-down
LB can work at very-low viscosities, typically of the order of 1/N with N
lattice sites per dimension, before such instabilities become manifest. Most
importantly, in the subsequent years, LB versions compliant with the H-
theorem and the entropic principle, have been discovered and vigorously
developed (18). This marked a major progress in the LB theory, as it closed
the realizability gap opened up by the top-down approach.

The ability to reach down very low viscosities confers LB its unique
capability of straddling across virtually all scales of motion, from nanofluids
all the way up to very high-Reynolds turbulent flows completely out of reach
for particle methods.

7.1 Non-ideal fluids

Another major asset of LB is its flexibilty towards the inclusion of ad-
ditional interactions, on top of plain fluid-dynamics. We are referring to
the interaction term S(x, v) ≡ (F (x)/m)∂vf in the continuum Boltzmann
equation, expressing the coupling of the fluid to an external (or internal)
force field F (x). This can either represent an external field, such as grav-
ity, or more complex interactions, such as the effective forces resulting from
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Figure 4. The basic set of discrete velocities for three-dimensional LB
simulations. These include one zero-speed rest particle (center), six speed-1
face-center, and twelwe speed-2 edge-centers, for a total of nineteen (D3Q19)

intermolecular interactions, eventually driving dynamic phase-transitions
(gas-liquid) within the flow.

To this regard, a particularly successful LB model for non-ideal fluids,
is the one due to Shan-Chen (SC) (19). In this model, the interaction force
is taken in the form

Fa(x) = ψ[ρ(x)]
∑

i

wiGiciaψ[ρ(x + ci)] (63)

where subscript a runs over spatial dimensions. In the above, ψ[ρ] is a
generalized density, reducing to the physical one in the limit ρ → 0, and G is
the strength of the non-ideal interactions. In the original SC model the sum
extends over the first Brillouin region, with Gi = G, although multi-range
generalizations have recently proven to encode a very rich phenomenology,
relevant to soft-glassy materials, such as foams and emulsions. It is clear
that (63) is a lattice analogue of the effective one-body force, with Gi ≡
G(c2

i ) playing the role of the two-body radial correlation. The original SC
model only caters for attractive interactions, G < 0, and can be shown to
contribute a non-ideal pressure:

P ∗(ρ) =
G

2
c2
sψ

2(ρ) (64)

With the choice ψ = 1−e−ρ, this can be shown to support a phase-transition
at ρcrit = log2 for G < Gcrit = −4. The beauty of this model is that
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the non-ideal interaction is readily introduced with a few lines of code, by
computing the bias on the i-the population due to the interaction term,
namely:

Si = wi(S1
acia + S2

ab(ciacib − c2
sδab)) (65)

where S1
a, S2

ab are the mass, momentum and momentum-flux input rates per
unit time due to the force term.

This source simply adds to the rhs of the LBE.
The SC model shines for its conceptual transparence and computational

efficiency. Of course, this does not make it immune from criticism, primar-
ily the existence of spurious currents near interfaces with strong density-
contrasts, which hamper stability for density jumps beyond 1 : 50. Many
remedies have been proposed in the recent literature, and make the object
of an intense activity in modern LB research.

The SC model and extensions thereof are currently used for a wide range
of complex multiphase and multicomponent fluid simulations.

7.2 Thermal flows

The simulation of thermal phenomena with lattice fluids meets with some
conceptual and practical subtleties.

Indeed, the central idea of LGCA and LBE methods is to constrain the
molecular velocities within a given crystallographic structure, the lattice.
Since these velocities are ”frozen”, with no dispersion around them, the
very notion of temperature, as we know it from continuum kinetic theory,
has to be handled with great care. In fact, strictly speaking, it simply does
not apply. Indeed, the original LB method was intended mostly for iso-
thermal (or better yet, a-thermal) flows, in which the temperature is just a
control parameter, with no dynamic meaning. In fact, for ideal fluids, the
thermal speed identifies with the sound speed, kT

m ≡ v2
T = c2

s, the latter
being fixed by the discrete lattice speeds. In order for the temperature
to acquire a dynamical status, further macroscopic quantities need to be
recovered within the lattice structure. More precisely, third order kinetic
moments (heat flux), which require isotropic sixth-order lattice tensors of
the form Tabcdef = ciacibciccidciecif . This calls for higher order lattices,
extending beyond the first Brillouin cell, i.e. with more than 33 = 27
neighbors. The corresponding lattice thermal equilibria read as follows

feq
i = ρwi(1 + ui + qi + ti) (66)

where ti = ciacibcicuaubuc − c2
sP [uaδbc] and P means permutations.
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The thermal speed, defined by:

ρv2
T =

∑
i

fi(ci − u)2 (67)

and the corrsponding heat flux

qa =
∑

i

fi(cia − ua)(ci − u)2 (68)

acquire a dynamic meaning, and the lattice fluid is freed from the isother-
mal constraint v2

T = c2
s. This, however does not full circle the story. In fact,

stability issues remain open, as signalled by the strong numerical instabili-
ties which develop as soon as one tries to insert the dynamic thermal speed,
vT , in the local equilibria, instead of the static one, cs. This is no acci-
dent, since the dynamic temperature, defined through (67), coincides with
the equilibrium temperature (the one appearing in the Maxwell-Boltzmann
equilibria), only if local equilibria are Maxwellian, which is not the case in
the lattice. Several recipes have been devised to cope with this problem.
The earliest thermal LB models just made use of higher order lattices, to
match third order kinetic moments (20). As hinted above, they face severe
stability problems as soon as the temperature departs significantly from the
reference value kT0/m = c2

s. Subsequently, it was shown that the stability
problem can considerably be alleviated by introducing two separate discrete
distributions, one for the ordinary mass and momentum carrier, and one for
the energy and energy-flux carriers (21). The advantage of using two dis-
tinct populations is that none of them has to match sixth order tensors,
so that ordinary isothermal lattices can be employed and stability issues
considerably mitigated. The price is doubling of the degrees of freedom. To
be noted, that even in this case, substitution of the dynamic temperature
in the local equilibria leads to stability problems. Finally, a third, very
pragmatic solution, is to solve the temperature equation by an independent
method, typically finite-differences, while leaving the LB treatment only for
the fluid. Each of these options has merits and downsides, but it appears
like the double-distribution approach is presently the most popular one.
To the best of the author’s knowledge, despite significant progress (22), a
fully consistent thermal LB scheme, meaning by this one in which the local
equilibrium responds to the dynamic temperature, remains to be developed.

7.3 Fluctuating LB

Under the relentless drive of moder science and technology and minia-
turization, there has a growing motivation to explore fluid behavior at the
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micro and nanoscale. Ironically, this has prompted the need for reinstating
the effect of fluctuations, whose elimination was at the origin of LB itself!.
The need for accounting for fluctuations is readly appreciated by noting
that each LB particle corresponds to

Blb =
nΔx3

nlb
(69)

fluid molecules. In the above, n and nlb are the fluid density in physical
and LB units respectively. The customary choice is nlb = 1. This is the
blocking factor of LB simulations.

For macroscopic flows, say Δx = 1 mm, this is indeed a huge number,
easily in order of 1020. However, things change as the nanoscale is ap-
proached. With a reference mesh spacing Δx = 1 nm, a typical fluid, say
water, would yield Blb = 30, which gives a signal/noise ratio of the order
of 1/

√
30 ∼ 0.2. This is somewhat pessimistic, since one should also con-

sider time-averaging, but by and large, it shows that taking LB applications
below the nanometer scale should handled with great caution. Trailbalz-
ing work in this direction was performed by A. Ladd (23), who introduced
a fluctuating Lattice Boltzmann (FLB) by making an explicit connection
with Landau-Lifshitz fluctuating hydrodynamics (24). The basic idea is to
introduce a fluctuating source term in the form:

S̃i = wiS̃abQiab (70)

where the fluctuating stress tensor obeys the tensor FDT relation:

S̃ab(	x; t)S̃cd(	x′, t′) =
kT

m
ηab,cdδ(	x− 	x′)δ(t− t′) (71)

where ηab,cd is a fourth-order isotropic tensor parametrized by the fluid
shear and bulk viscosity. Although conceptually transparent, the actual
lattice implementation of such term meets with a number of subtleties.
First, it was recognized that the term Sab coincides with the hydrodynamic
stress tensor, only up to a normalization constant, depending on the shear
and bulk viscosities, respectively. This is because the FDT appeals to a
white-noise expression on a mesoscopic scale, which corresponds to a finite-
memory kernel at the microscale. Second, it was discovered that the expres-
sion (71), which only acts on the momentum-flux tensor, leads to violations
of FDT at small scales, of the order of a few lattices sites. This is due to
the extra-dissipation carried by high-order kinetic moments, which probe
the fine-grain structure of the lattice. This problem, which can be relevant
to the dynamics of fluctuations in the vicinity of solid walls, was cleverly
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solved by introducing an extra-term in (71), coupling explicitly to high-order
kinetic moments (25). This heuristic procedure has been subsequently ex-
plained by a very elegant treatment of the statistical dynamics foundations
of FLB (26). The FLB theory is still in flux, expecially with concern to
its application to strong non-equilibrium situations, such as nano-confinded
fluids under shear. This is a difficult tangle of physics and numerics, be-
cause under such conditions it is the FDT itself which goes under question
on physical grounds, and requires local modifications, to the very least. On
the other hand, the dynamics of fluctuations under strong confinement is
exposed to a number of technical issues, such as the specific implementation
of the boundary conditions, the nature of the collision operator (single ver-
sus multiple-time relaxation), to name but a few. In addition a more robust
time marching procedure would also be needed, to operate the scheme under
a strong-fluctuating regime. So, far, FLB is indeed limited to weak fluctu-
ations, with noise/signal ratios of the order of θ ≡ kT/mc2

s ∼ 10−4. This
is partly inherent to the one-body character of the distribution function,
but can probably be significantly raised by proper technical upgrades. At
the moment, it appears like locally adapted multi-time collision operators,
carrying a dependence on the local fluid speed and possibly stress tensor as
well, might lead to improved stability. This remains an open front of LB
research in nanofluids.

7.4 LB summary

LB is a sort of heterotic hybrid between particle and grid methods. Since
it is based on lattice-bound particle trajectories, it inherits the efficiency of
particle methods. In particular, the streaming step is an exact operation
on the lattice because particles hop from site to site with zero loss of in-
formation. On the other hand, by propagating a probability rather than
a black/white presence/absence information as in LGCA, LB imports the
resolution power of field-grid methods. In a nutshell, it is a smooth field
moving along straight trajectories. This stands in stark contrast with the
fluid dynamic representation, in which any physical quantity, including the
fluid momentum itself, is transported along material fluid lines, which can
develop wild space-time dependencies in complex flows. Such space-time
dependencies can significantly undermine the stability of the scheme. On
the other hand, despite this simplicity, the LB is capable of reaching very
small viscosities, because local equilibria are not realized through collisions,
but prescribed at the outset. This property is unique to LB within meso-
scopic fluid methods. Of course, despite its mounting success, LB is not
free from pitfalls and limitations; LB formulations on non-cartesian grids
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are typically less efficient than the standard version, which can prove to be a
stringent limitation for many engineering applications dealing with real-life
geometries. Also, as previously discussed, computing flows with strong heat
exchange and compressibility effects, still raises a very serious challenge to
LB methods.

8 Summary

Summarizing, the last two decades have witnessed a vigorous growth of
mesoparticle methods for the simulation of complex fluid flows. These
methods stem from a completely new conceptual paradigm to the physics of
fluids: statistical physics rather than continuum mechanics. Mesoparticle
methods appear well placed to tackle problems for which the continuum
fluid equations are called into question on physical grounds, such as mi-
cro and nanoflows, or prove simply too complex to be solved efficiently by
discretization of continuum partial differential equations. Multiphase, mul-
ticomponent, colloidal and polymer flows at low-Reynolds number and in
complex geometries are typical examples in point. Owing to its particle-field
nature, the lattice Boltzmann method can handle the above complexities
also in conjunction with high Reynolds flows. One of the most promising
directions for future research in the field concerns the development of multi-
scale methods, combining the strengths of each method. This will permit to
tackle a variety of complex problems at the interface between fluid dynam-
ics, condensed matter and material science, with numerous applications in
many fields of science and engineering.
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