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Preface

Declarative query interfaces to Sensor Networks (SN) have become a com-
modity. These interfaces allow access to SN deployed for collecting data using
relational queries. However, SN are not confined to data collection, but may
track object movement, e.g., wildlife observation or traffic monitoring. While
relational approaches are well suited for data collection, research on Moving
Object Databases (MOD) has shown that relational operators are unsuit-
able to express information needs on object movement, i.e., spatio-temporal
queries. In this paper, we study declarative access to SN that track moving
objects. The properties of SN prevent a straightforward application of MOD,
e.g., node failures, limited detection ranges and accuracy which vary over
time etc. Furthermore, point sets used to model MOD-entities like regions
assume the availability of very accurate knowledge regarding the spatial ex-
tend of these entities. As we show, assuming such knowledge is unrealistic
for most SN. This paper is the first that defines a complete set of spatio-
temporal operators for SN while taking into account their properties. Based
on these operators, we systematically investigate how to derive query results
from object detections by SN. Finally, we show how process spatio-temporal
queries in SN efficiently, i.e., reduce the communication between nodes. Our
evaluation shows that our measures reduce communication by 45%-89%.
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Querying Moving Objects Detected
by Sensor Networks

1 Introduction

Many sensor-network installations (SN) observe moving objects. For instance,
scientists observe animal movement [14, 37, 43], or authorities monitor sol-
diers, pedestrians or vehicles [24, 34, 35]. In such applications, users are inter-
ested in object movements, i.e., the queries have spatio-temporal semantics.

A promising way to access SN are declarative queries [9, 10, 23]. But
research has focused on relational queries so far. Formulating spatio-tempo-
ral information needs with relational operators results in very complex query
statements [25, 54]. Moving object databases (MOD) have solved this problem
by proposing operators with concise spatial and spatio-temporal semantics.

There are several characteristics of SN that are in the way of a straight-
forward application of MOD concepts to SN: MOD tend to assume that
information on objects and regions is complete and accurate. Data collected
with SN in turn typically does not have this characteristic. First, unobserved
areas due to failed nodes and the inaccuracy of detection mechanisms re-
sult in inaccurate/incomplete information on the movement of an object. For
instance, laser scanners detect the distance of an object such as a vehicle
to the node equipped with the scanner, but not the exact position of the
object. Other mechanisms are even less accurate, e.g., acoustic vehicle detec-
tion only detects if a vehicle is in the vicinity of the node [16]. Second, MOD
model regions as point sets which implies that precise information on the
spatial extend of the region is available at any time. As we show, acquiring
such information for many SN deployments is unfeasible or even impossible.
To circumvent this problem, these SN typically observe object movement in
relation to a set of nodes instead of a set of points. We refer to such a set of
nodes as zone to distinguish it from the term region which denotes a point set.
Since zones are a peculiarity of SN, they have not been addressed by research
on MOD. Third, the inaccuracy of object detection sometimes prevents the
SN from determining whether an object is inside, on the border or outside
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2 Moving Objects Sensor Databases

of a region. It is challenging to provide spatio-temporal operators for SN

with clear semantics for regions and zones while coping with the intricacies
of object detection.

In this paper we propose Moving Objects Sensor Databases (MOSD), i.e.,
declarative access to sensor networks that track moving objects. More specif-
ically, we make the following contributions:
Applicability: Different detection mechanisms use different hardware

with different properties and varying accuracy. Furthermore, deployments
of SN themselves vary regarding several characteristics. We define mean-
ingful abstractions applicable to all kinds of detection mechanisms and
deployment types without sacrificing conciseness and expressiveness.

Semantics: We provide a set of spatio-temporal operators for SN with
concise semantics. These operators allow users to express spatio-temporal
queries in SN. The systematic translation of object detections into results
for queries interested in object movement in relation to a zone or region is
the core contribution of this paper.

Optimality: In some cases, the SN is unable to determine whether the
movement of such an object conforms to a query or not due to the inac-
curacy of detection mechanisms. We identify these cases and provide an
approximate query result by dividing objects into three sets: The first set
contains objects that definitely conform and the second those that defi-
nitely do not conform to the query. The third set consists of objects where
the SN cannot provide a definite result. We prove that our approximation
is optimal, i.e., the aforementioned translations minimize the third set.

Efficiency: Processing spatio-temporal queries must be energy-efficient,
because sensor nodes are typically battery-powered [1, 41]. We provide two
different execution strategies to compute spatio-temporal query results
in-network and reduce communication by exploiting spatial correlation
of object detections. Our evaluation shows that these strategies reduce
communication by 45%-89% compared to processing the query at the base
station.

Finding a solution to the problem addressed by each contribution is challeng-
ing itself. However, it is important to note that these underlying problems
cannot be solved independently from each other one by one. This paper pro-
vides an integral approach that addresses all of them.

2 Applications for MOSD

We now describe two applications of object-tracking SN and provide exam-
ples for spatio-temporal queries. The scenarios illustrate the core differences
between the two main classes of spatio-temporal queries in SN and introduce
two important subclasses for each class.
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2.1 Application Example 1: Surveillance

Figure 1 illustrates an application from vehicle detection and classification
called ”A line in the Sand” [5]. Sensor nodes track vehicles moving in an area.
An example of a spatio-temporal query is ”Which vehicles Vi have entered
the restricted access region R?”.

Fig. 1 Illustration of a surveillance application

As we show in Section 3.1, there exist various mechanisms that allow
the detection of objects such as vehicles, humans or animals. While some of
them, e.g., radar [17], allow precise localization of objects detected, most of
them only determine if an object is in the vicinity of a sensor node, e.g.,
microphones [11, 16]. Hence, sensor nodes might be unable to determine if
an object detected is inside the region, on the border or outside. Another
issue, which is discussed in [5] as well, is the possibly uncontrolled deployment
of sensor nodes for surveillance applications: For military deployments in
particular, it is often infeasible to deploy nodes manually, e.g., because the
area of interest is controlled by enemy forces. Hence, sensor nodes may be
dropped out of an airplane. This may result in unobserved areas [3]. Summing
up, MOSD must cope with inaccurate and incomplete information on the
movement of objects.

For the query above, the region R is a set of points that does not change
over time. We call such a region static. Another way to define a region is by
means of constraints referring to values which change over time. For example,
a user could define a region as all points of space with a temperature below
0◦C. In this case, the region changes over time (dynamic region).

2.2 Application Example 2: Animal Tracking

Tracking animals at large temporal and spatial scale is important to under-
stand their behavior [14, 33]. SN can be deployed over large areas and allow
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the monitoring of animals such as caribous [44, 47] without much intrusion.
The following is an example of a spatio-temporal query scientists could issue:
”Which caribous Ci have moved into the tree-covered swamp area on the
south-western side of the river?”

Fig. 2 Illustration of an animal-tracking application

It is possible, but impractical, to model this swamp area as a point set.
This is because such a model would require exact recording of the locations of
all trees, the swamp and the river. Typically, scientists solve this problem by
carefully planning the node positions and placing them manually [22]. This
controlled deployment allows recording properties of the surroundings of each
node during deployment, i.e., before the nodes start sensing. Based on this
information, one can derive a set of nodes inside the area of interest, e.g., all
nodes in the tree-covered swamp area on the south-western side of the river
(black colored circles in Figure 2). It is sufficiently accurate for its purpose if
the SN observes caribou movement in relation to this set of nodes. As stated
in the introduction, we refer to such a set of nodes as zone to distinguish it
from the term region which describes a point set. In Figure 2, the zone is
the set of black circles. Analogously to regions, there are static and dynamic
zones.

2.3 Scope and Assumptions

We are interested in a declarative interface for sensor networks that observe
moving objects and its efficient implementation. We study queries on the
spatio-temporal relationship of a moving object and a region or zone which
may be static or dynamic.
Definition 1 (Spatio-Temporal Query): A spatio-temporal query for SN

is a tuple Q = {O,C,P}:
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1. Object Description O: A description of objects whose movement is
queried. The description must allow sensor nodes to identify relevant
objects using their sensing hardware.

2. Query Context C: This is a region or zone.
3. Predicates P: A set of predicates and operators that define movement

the user is interested in.
An object matching the description O is part of the result if it has moved as
described by P in relation to the region or zone described by C. �

Sections 3.2 and 5 will elaborate on query contexts for regions and zones
respectively. The spatio-temporal predicates and operators which describe
the movement of interest will be addressed in Sections 6 and 7. Note that
the query definition deliberately excludes queries interested in the topological
relationship of two regions, two zones, lines and regions etc., since such queries
are outside of the scope of this paper.

Additionally, there are some assumptions resulting from the applications
envisioned in a natural way: Nodes are stationary, i.e., they do not move
once they have started sensing. Nodes are able to distinguish between query-
relevant objects and irrelevant ones. This means that if the query is interested
in vehicles, the detection mechanism can distinguish vehicles from other kinds
of moving objects, e.g., pedestrians. This is realistic, because detection mecha-
nisms typically are designed for a specific type of object. For example, mecha-
nisms for the detection of animals, e.g., acoustic animal recognition [37], filter
irrelevant events. Other mechanisms for animals use collars [38, 44] attached
to individuals of the species observed, i.e., animals without a collar remain
undetected.

In addition, the various detection technologies typically allow the iden-
tification of individuals. This is important for spatio-temporal queries. In
particular, if node Si detects an object, and another node Sj detects the
same object later on, the SN can derive that the object is the same. Such an
identification is typically available, e.g., through identification numbers on
the collars, characteristic noise patters or ferro-magnetic signatures (see [5]
for examples).

3 Background

This section reviews related work and introduces concepts/mechanisms our
work is based on. There are three areas of research related to ours; the num-
bers are in line with the ones of the corresponding subsections:
3.1 Detection Mechanisms: There exist detection mechanisms for various

kinds of objects. We review some of them and summarize their prop-
erties.

3.2 Moving Object Databases: MOD facilitate the processing of queries with
spatio-temporal semantics. We introduce core concepts of MOD and dis-
cuss why these are not readily applicable to SN. For further details on
MOD see [19, 25, 26].
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3.3 Declarative Query Processing in SN: Research has shown that accessing
SN declaratively is advantageous. We discuss the advantages and show
why existing work is insufficient for SN that track moving objects.

Section 3.3 reviews our own previous work on spatio-temporal query process-
ing in SN.

3.1 Detection Mechanisms

Object detection has received a lot of attention from research [5, 11, 17, 27,
28, 36, 37, 48, 49, 57]. For example, magnetometers have been used to detect
and identify the magnetic field generated by moving vehicles [28]. Most of
the research in the area aims at increasing the accuracy of detection or at
efficiency, particularly if readings from several nodes must be combined to
detect an object. Spatio-temporal query processing as proposed in this paper
is on top of these approaches: The existing mechanisms try to detect objects.
We propose operators to let users access this information declaratively. We
use some of the mechanisms just mentioned for illustration.

In [37], microphones have been installed on sensor nodes to detect, classify
and identify animals, in this case frogs. Similarly, one can generate sound sig-
natures from the noise of engines and propulsion gear of vehicles using micro-
phones [11, 49]. All these mechanisms cannot determine the exact position
of the object detected. This is different with other mechanisms that allow
distance estimation like Laser Scanners or even provide precise locations of
objects detected, like radar [17].

[5] investigates limitations regarding detection using magnetometers and
micropower-impulse (MI) radar (TWR-ISM-002-I): Their magnetometers
have become desensitized over time, and this effect is even stronger if the
sensor was exposed to heat. While this could be fixed by circuitry that re-
calibrated the magnetometers at certain intervals, the area observed by a
sensor node has become significantly smaller temporarily. Furthermore, the
MI-radar and the magnetometer have influenced each other when both were
used simultaneously. While the documentation of the TWR-ISM-002-I [2]
states a maximum range of 60 feet, the actual range has been significantly
lower during their experiments. External influences, e.g., rain, reduced the
range even more. Hence, one has to take into account that detection ranges
change over time. This may result in areas that are temporarily or perma-
nently unobserved even if the SN has been deployed manually.

3.2 Moving Object Databases

Moving object databases are based on point-set topology [21]. According to
it, a space is composed of infinitely many points, e.g., the d-dimensional
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Euclidean space E
d. We will use E

2 for illustrations. All concepts, those of
MOD as well as our own, can be extended to other spaces or more dimensions.

Point-set topology distinguishes subsets of space, i.e., sets of points, which
are called entities. There are three different types of entities: objects1, lines
and regions. We leave aside lines in the following, since we are interested in
queries related to object movement in relation to a region/zone.
Definition 2 (Object): An object O is an entity that is represented by its
position p ∈ E

d at a given time t. �

A region is a point set where every point p satisfies a set of conditions that
describe an entity covering more than one point of space, e.g., a security area
or storm. We denote the set of conditions that define a region R as CR and
the function that checks for a point p if it fulfills CR as CR (p):

CR (p) =
{
T iff p fulfills CR
F Otherwise (1)

Defining regions as arbitrary point sets is problematic, because such point
sets could contain anomalies like dangling lines, cuts and punctures. To avoid
this, [51] introduce regularization which adds or removes points from regions
until the aforementioned anomalies are corrected. To ease our presentation,
we assume that one condition in CR corrects these anomalies, i.e., all regions
are assumed to be regular in the following.
Definition 3 (Region): A region R is a set of points which satisfy a set of
conditions CR:

R =
{

p ∈ E
d | CR (p) = T

}
(2)

�

Every entity e partitions the space into three pair-wise disjoint subsets: the
interior eI , the border eB and the exterior eE . For a region R, the border
RB is the line that encompasses the interior RI . Any point of space that
is neither in RB nor RI is part of the exterior RE . In the context of an
object O positioned at a point p ∈ E

d, the interior OI contains only p. The
border OB of O is empty and the exterior OE contains every point of space
except p, i.e., OE = E

d \{p}. See [18, 21] for formal definitions of these space
partitions.

3.2.1 Spatio-Temporal Predicates

The 9-intersection model [18] describes the topological relationship of two
entities A and B: As illustrated in Figure 3, there are nine possible inter-
sections of the exterior, the border and the interior of A with the exterior,
the border and the interior of B, respectively. Each of these intersections is

1 Entities represented by a single point in space are typically called point by publications
on this subject. We refer to such an entity as object to clearly distinguish it from a point
which is an element of space.
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either empty or not. Hence, a matrix of nine boolean values identifies the
relationship of A and B.

AB BB ≠ AB BI ≠ AB BE ≠
AI BB ≠ AI BI ≠ AI BE ≠
AE BB ≠ AE BI ≠ AE BE ≠

Fig. 3 9-Intersection Model for two entities A and B

While there exist 29 = 512 unique intersection matrices, only three ma-
trices describe a possible topological relationship between an object and a
region [19]. Every matrix that describes a possible topological relationship is
associated with a predicate, i.e., there are three predicates that describe the
relationship between an object O and a region R: Inside (O,R), Meet (O,R)
and Disjoint (O,R). Figure 4 shows the intersection matrices associated with
these predicates and Example 1 explains them.

RI

O1 RB

RE

F F F
F F T
T T T

Disjoint (O1, R)

RI

O2
RB

RE

F F F
F T F
T T T

Meet (O2, R)

RIO3

RB

RE

F F F
T F F
T T T

Inside (O3, R)

Fig. 4 Illustrations and 9-Intersection representations of the three predicates that
describe the topological relationship of an object and a region (A = Oi and B = R)

Example 1: The left-most matrix in Figure 4 describes Disjoint (O1,R).
As mentioned before, the border of an object is empty, i.e., O1

B does
not intersect with any partition of R. This is reflected by the first row of
the 9-intersection matrix for Disjoint (O1,R). The second row implies that
O1

I∩RE �= ∅, i.e., O1 is outside of R. The last row of the 9-intersection ma-
trix describing Disjoint (O1,R) shows that O1

E intersects with all partitions
of R.

The matrices for Meet (O2,R) and Inside (O3,R) only differ from the
matrix for Disjoint (O1,R) in the second row: The topological relation of O2
and R conforms to Meet (O2,R) if O2

I ∩ RB �= ∅, i.e., the object O2 is on
the border of R. Similarly, O3

I ∩RI �= ∅ implies that O3 is inside of R, i.e.,
Inside (O3,R). ◆
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3.2.2 Spatio-Temporal Developments

In MOD, users formulate a query by describing the movement they are inter-
ested in. To express arbitrary changes of relationships between entities, [19]
defines the concatenation operator, as follows:
Definition 4 (Concatenation): The concatenation of two predicates,
P �Q, is true if P is true for some time interval [t0; t1[, and Q is true at t1. �

Using this operator, one can construct sequences of spatio-temporal pred-
icates P1 � P2 � . . . � Pq. In line with [19], we refer to such a sequence as
spatio-temporal development.
Example 2: In Section 2.1, the user wants to know which vehicles V have
moved into region R. To fulfill the query, a vehicle V must be outside of R,
then move over the border RB into the interior RI .

Disjoint (V,R) � Meet (V,R) � Inside (V,R) (3)
This spatio-temporal development usually is referred to as Enter (V,R).

Disjoint (V,R) � Meet (V,R) � Disjoint (V,R) (4)
Inside (V,R) � Meet (V,R) � Disjoint (V,R) (5)

Other sequences are constructed similarly: Equations (4) and (5) define
the predicate sequences for Touch (V,R) and Leave (V,R) respectively. ◆

While infinite sequences of spatio-temporal predicates are possible, [19]
has shown that it is sufficient to explicitly consider a canonical collection of
28 developments. From these 28 developments, more complex ones can be
constructed by means of concatenation, as illustrated in Example 3.
Example 3: Suppose that a user is interested in objects O that enter a region
R, move around inside the region and then leave the region. To express this
using the aforementioned developments, the user concatenates Enter (O,R)
and Leave (O,R):

Cross (O,R) = Enter (O,R) � Leave (O,R) (6)
The concatenation Enter (O,R) � Leave (O,R) is typically denoted as

Cross (O,R). The expression in (6) translates to the predicate sequence
in (7). Note that Inside (O,R)�Inside (O,R) = Inside (O,R) at the junction
between Enter (O,R) and Leave (O,R), since P = P � P [19]. ◆

As in [19], we provide a canonical collection of spatio-temporal develop-
ments for SN in Section 7. This allows us to limit the number of predicate
sequences we must consider explicitly.

Disjoint (O,R) � Meet (O,R) �
Leave(O,R)︷ ︸︸ ︷

Inside (O,R)︸ ︷︷ ︸
Enter(O,R)

�Meet (O,R) � Disjoint (O,R) (7)
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3.2.3 Applying Moving Object Databases to Sensor Networks

MOD model an object as a point in space. For moving objects, this implies
that the position is known precisely at any point in time. Most of the detection
mechanisms used in SN cannot provide this accuracy (cf. Section 3.1). There
has been work aimed at processing spatio-temporal queries if object positions
are only known at some instants of time [4, 13, 52, 53]. These approaches are
insufficient in our context: First, they still require precise object positions
from time to time. Second, they are based on relatively strict assumptions.
For instance, [53] assumes that an object whose position is p1 at t1 and p2
at t2 moves between p1 and p2 on a straight line ”at a constant speed”.

To conventional notion of a border that completely encompasses a re-
gion does not readily carry over to our context. This is because (some of)
the border of a region may be unobserved. For example, a user may query
Enter (O,R). Let us assume that O moves from the outside of R into the
region, but it is never observed on the border, e.g., because a node that has
been deployed to observe the border has failed. Another problem with the
border is that it is a line. The time it takes an object to move over a line
is infinitely short. Capturing this moment would require an infinitely high
temporal resolution of the detection hardware.

Capturing the spatial extent of regions is problematic as well in some
applications. In the examples in Section 2, users formulate queries regarding
the object movement relative to a set of nodes. These queries are unique
to SN. Summing up, while MOD concepts serve as a foundation, significant
work is required to apply them to SN.

3.3 Query Processing in Sensor Networks

Research has shown that declarative access to SN is advantageous, but has
been limited to relational queries so far [9, 10, 23, 39–41, 56]. For traditional
database systems, research has shown that expressing spatio-temporal in-
formation needs using relational operators results in unnecessarily complex
queries that are difficult to process [25, 54].

The situation is comparable for existing relational query processors for
SN, e.g., TinyDB [41]. One reason is the lack of continuous or time-aware
data types in purely relational systems, i.e., a value is assumed to be constant
unless it is updated explicitly. For continuously moving objects, this implies
frequent updates. Furthermore, relational systems lack operators and data
types for point sets: Relational systems for SN only feature simple data types,
e.g., integer, float or string for attributes. Storing point sets would require
the decomposition of the point set into separate values stored in different
tuples. Processing spatio-temporal queries would then require reconstructing
these point sets prior to processing the actual query. Such a reconstruction
is complex since it requires subqueries and many join operations. Summing
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up, storing data on moving objects detected by SN would result in frequent
updates, and queries would be unnecessarily complex.

Our own work has addressed spatio-temporal queries in the context of
static regions [7] and static zones [8] separately. This paper provides an in-
tegral approach that is applicable to static/dynamic regions and zones. This
requires significant modifications and extensions to previous concepts. Ad-
ditionally, we describe new evaluations with deployments of Sun SPOT [50]
sensor nodes and optimization strategies.

4 Generic Model of a Sensor Network

This section provides a generic model of a SN which is fundamental for our
Applicability contribution.
Notation (Sensor Network): A sensor network is a set SN = {S1, . . . ,Sn}
of sensor nodes and a base station. Every Si ∈ SN has a position POSi ∈ E

d.

Fig. 5 Illustration of the node model

Each node is equipped with hardware that allows it to detect and identify
objects in its vicinity.
Definition 5 (Detection Area): The detection area DAi of node Si is the
set of points DAi ⊆ E

d where Si can detect an object. �

As discussed in Section 3.1, the detection area of a node may have any
shape or size and is subject to external influences. For example2, S1 in
Figure 5 has been deployed close to a rock and thus cannot detect objects
moving behind that rock. A node Si detects the object O at time t if O ∈ DAi

at t.

2 To avoid clutter in the figures, we refer to nodes in figures without subscript indices,
i.e., nodes S1,S2, . . . are S1, S2, . . . in the figures.
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Definition 6 (Detection Function): The detection function detect (Si,O, t)
is defined as follows:

detect (Si,O, t) =
{
T iff O ∈ DAi at t
F otherwise (8)

�

An object O is detected at time t if detect (Si,O, t) = T for at least one i ∈
{1, . . . , n}. Depending on the deployment, detection areas may overlap. An
object within this overlap is detected by more than one node simultaneously.
Definition 7 (Detection Set): The detection set DetSet

O
t ⊆ SN is the set

of all nodes that detect an object O at some time t.

DetSet
O
t = {Si ∈ SN | detect (Si,O, t) = T } (9)

�
For some detection mechanisms it is not possible to determine the de-

tection area accurately. However, the maximum detection range is typically
available prior to deployment, e.g., because the manufacturer has conducted
a calibration [2].
Definition 8 (Maximum Detection Range): The maximum detec-
tion range Dmax is the maximum distance of an object to a node to be
detected. �

Fig. 6 DetResOt (S1) based on Dmax Fig. 7 DetResOt (S1) with a distance
estimating detection mechanism

Detection mechanisms are used to localize objects detected as accurately
as possible. It depends on several factors, e.g., hardware, weather etc., how
accurate such a localization is [5]. To deal with any kind of detection mech-
anism, we model the result of an object detection as a point set.
Definition 9 (Detection Result): The detection result for an object O
detected by Si at time t ∈ T is the set DetResOt (Si) of all points p ∈ E

d

where O could be according to the detection mechanism of Si. �
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The shape and size of DetResOt (Si) depends on the detection mechanism,
as Example 4 illustrates.
Example 4: Simple mechanisms like acoustic vehicle detection [11, 49] or
PIR-based motion detectors cannot determine their detection area. They only
determine whether an object O is in the vicinity, i.e., in the detection area, of
a node or not. As shown in Figure 6, when S1 detects an object O at time t,
DetResOt (S1) is the circle with center POS1 and radius Dmax. More sophisti-
cated mechanisms, e.g., laser scanners, determine the distance d of the node to
the object. Taking into account a certain deviation ε, DetResOt (S1) is ring-
shaped, see Figure 7. Note that some parts of DetResOt (S1) in Figure 7 are
not part of the detection area DA1 of S1. If S1 cannot determine its detection
area, it cannot distinguish between points in DetResOt (S1) that are in its
detection area and those that are not. ◆

If several nodes detect an object simultaneously, the sensor network can
refine the information on the object position by intersecting the various de-
tection results.
Definition 10 (Possible Object Positions): The set of possible object
positions POPO

t ⊆ E
d of object O at time t ∈ T is the intersection of all

detection results DetResOt (Si) of nodes Si ∈ DetSet
O
t .

POPO
t =

⎧⎪⎨
⎪⎩

⋂
Si∈DetSetOt

DetResOt (Si) iff DetSet
O
t �= ∅

∅ iff DetSet
O
t = ∅

(10)

�

If the detection set for an object O is empty, O is undetected. There can
be various reasons for this, e.g., the object does not exist anymore or has
moved into an unobserved area. Independently of the reason, the SN cannot
make any statement regarding the position of the object and we model this
with POPO

t = ∅.
Definition 11 (Communication Area): The communication area CAi ⊆
E
d of node Si is the set of points where a node Sj can receive messages sent

by Si. �

A node Si can directly communicate with another node Sj if POSj ∈ CAi.
Communication areas can have any shape or size and may change over time.
Furthermore, nodes typically cannot determine their communication area.
There exist several routing protocols that determine the set of nodes that a
node Si can directly communicate with [20, 45]. These protocols allow for-
warding of messages via multiple hops, e.g., to send results to the base station.
To accomplish this, each node must store a list of nodes it can communicate
directly with and some routing information about the connectedness of each
neighbor to the rest of the network.
Definition 12 (Communication Neighbors): The communication neigh-
bors CNi of a node Si are the nodes that Si can directly communicate with.

�
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5 Point Set Topology for Sensor Networks

While we borrow the concept of a region as well as its interior, border and
exterior from MOD, the notion of a zone remains to be defined. We then pro-
pose a space partitioning based on zones and classify the spatio-temporal
queries that occur in SN. This is a prerequisite toward the contribution
Semantics.

A zone Z is a set of nodes satisfying a set of conditions CZ, e.g., all nodes
inside a swamp area (cf. Section 2.2). Similarly to regions, we refer to the
function that checks for a given node Si if it satisfies CZ as CZ (Si):

CZ (Si) =
{
T iff Si satisfies CZ

F Otherwise (11)

Definition 13 (Zone): A zone Z is a set of nodes which satisfy a set of
conditions CZ:

Z = {Si ∈ SN | CZ (Si)} (12)
�

A node Si is inside of Z if Si ∈ Z, outside otherwise. We refer to the set
of nodes that are outside of the zone as Z:

Z = {Si ∈ SN | CZ (Si) = F}

To define the semantics of predicates that express the topological rela-
tionship of objects and zones, it is necessary to partition the space. The core
idea is as follows: Any point p ∈ E

d can be either in no detection area, only
in detection areas of nodes in Z, only in those of nodes in Z, or in detection
areas of nodes in Z and Z. Thus, every zone partitions space as follows:
Definition 14 (Unobserved Partition): The unobserved partition Z

∅ of
a zone Z contains all points not contained in any detection area:

Z
∅ =

{
p ∈ E

d | �Si ∈ SN : p ∈ DAi

}
(13)

�

Definition 15 (Interior of a Zone): The interior Z
I of a zone Z contains

all points exclusively observed by nodes in Z:

Z
I =

{
p ∈ E

d | p /∈ Z
∅ ∧ �Si ∈ Z : p ∈ DAi

}
(14)

�

Definition 16 (Exterior of a Zone): The exterior Z
E of a zone Z contains

all points exclusively observed by nodes in Z.

Z
E =

{
p ∈ E

d | p /∈ Z
∅ ∧ �Si ∈ Z : p ∈ DAi

}
(15)

�
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Definition 17 (Border of a Zone): The border Z
B of a zone Z contains

all points of space observed by nodes from Z and Z.

Z
B =

{
p ∈ E

d | ∃Si ∈ Z,∃Sj ∈ Z : p ∈ DAi ∧ p ∈ DAj

}
(16)

�

Fig. 8 Illustration of the space partitions for a zone Z

Figure 8 illustrates this partitioning for a zone: Circles and squares3 rep-
resent nodes. Black circles/squares represent nodes in Z while grey ones rep-
resent nodes outside of Z. Every node has a detection area of a certain shape
and the space partitions of Z depend on the intersections of these detection
areas.

Lemma 1. The point sets Z
∅, Z

I , Z
E and Z

B partition the space, i.e., every
p ∈ E

d is only in one partition.

Proof. A point p ∈ E
d is either included in at least one detection area or

unobserved. Z
∅ covers all points E

d \
⋃

1≤i≤n DAi. The observed points⋃
1≤i≤n DAi are covered by one of the remaining partitions: All points exclu-

sively observed by nodes outside of Z are covered by Z
E . Similarly, Z

I covers
all points solely observed by nodes in Z. All points observed by nodes inside
and outside of Z are covered by Z

B . Each of these point sets is pair-wise
disjoint with the others, and thus they partition the space. �

Lemma 1 is important: 1) It implies that there cannot exist any other
other partitions. 2) The true position of an object is always in exactly one
partition of a zone.

Table 1 summarizes the different types of query contexts. It contains two
columns that separate the main classes of spatio-temporal queries in SN de-
ployed to observe object movement in relation to an area of interest: The first
class contains queries interested in the movement of an object in relation to
a region. Queries aiming at object movement in relation to a zone constitute
the second class. Both, regions and zones, can be either static or dynamic.

3 The difference between squares and circles is irrelevant here; we explain it in Section 8.4.
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Zone Region
Formula Node Set Z= {Si ∈ SN | CZ (Si) = T } Point set R =

{
p ∈ E

d | CR (p) = T
}

Partitions Z∅, ZE , ZI , ZB RE , RI , RB

Type static dynamic static dynamic
Example A set of unique

node identifiers
Nodes measuring
a temperature
greater than 0◦C

All points in-
side a polygon
defined by GPS-
coordinates

All points where
the temperature
is greater than
0◦C

Table 1 Summary of query contexts in SN

Partitions of zones and regions have in common that they are point sets.
This allows for a uniform approach for the definition of predicates and de-
riving result for them based on object detections as Section 6 shows. An
important difference is that the partitioning for a region does not include a
partition containing unobserved areas. As we show in Section 7, the lack of
such a partition is the main challenge when it comes to deriving results for
developments related to regions: The SN must decide if the trajectory of an
object conforms to a development even if the object was undetected for some
time. For example, an object conforms to Enter (O,R) (cf. Equation 3) even
if the object was not detected while crossing the border of R.

6 Deriving Predicate Results

In this section, we show how to derive predicate results based on object
detections. By introducing detection scenarios, we formalize the information
acquired through object detections. This constitutes our final step toward
the contribution Applicability. The detection scenarios allow us to address
the semantics of single predicates and their results, i.e., the contributions
Semantics and Optimality for predicates.

6.1 Detection Scenarios

When one or more nodes detect an object O at time t, the actual position of
O is in the set of possible object positions POPO

t . To derive predicate results
from POPO

t , one has to determine how the set of possible object positions
POPO

t intersects with different partitions of the region or zone.
Definition 18 (Detection Scenario): A detection scenario DS is a function
that returns a boolean value based on the intersection of the set of possible
object positions POPO

t with the partitions of the query context, i.e., a region
or zone. �
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We say that a specific detection scenario DS∗ occurs for an object O and
a time t if the detection scenario returns T . Regardless of whether the query
context is a region or zone, there are five different detection scenarios. In the
following, we define the set of detection scenarios first and show that this set
is exhaustive afterward.
Definition 19 (DS∅): The detection scenario DS∅ occurs if POPO

t does not
intersect with the interior, exterior or border of the query context.(

Z
E ∪ Z

B ∪ Z
I
)
∩ POPO

t = ∅

(
RE ∪ RB ∪ RI

)
∩ POPO

t = ∅ (17)

�

Definition 20 (DSE): The detection scenario DSE occurs if POPO
t is a

subset of the exterior of the query context.
POPO

t ⊆ Z
E POPO

t ⊆ RE (18)

�

Definition 21 (DSI): The detection scenario DSI occurs if POPO
t is a subset

of the interior of the query context.

POPO
t ⊆ Z

I POPO
t ⊆ RI (19)

�

Definition 22 (DSB): The detection scenario DSB occurs if POPO
t is a

subset of the border of the query context.

POPO
t ⊆ Z

B POPO
t ⊆ RB (20)

�

Definition 23 (DS•): The detection scenario DS• occurs if POPO
t intersects

with two or more partitions of the query context, i.e., the detection mech-
anism cannot determine if O is inside, on the border or outside of a query
context.

POPO
t ∩ Z

E �= ∅ ∧ POPO
t ∩ Z

B �= ∅ ∧ POPO
t ∩ Z

I �= ∅

POPO
t ∩ RE �= ∅ ∧ POPO

t ∩ RB �= ∅ ∧ POPO
t ∩ RI �= ∅ (21)

�

According to the point-set topology for regions, the border of a region is a
line. DS• typically occurs in SN if the object detected is somewhere near the
border. Only few detection mechanisms, e.g., radar, are sufficiently accurate
to distinguish such an object from one on the border. Example 5 illustrates
how to derive detection scenarios from object detections with a detection
mechanism that cannot distinguish between objects on the border and those
close to it.
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Example 5: Let SN = {S1,S2,S3,S4}, and the node positions are as illus-
trated in Figure 9. Each node only detects objects in its vicinity. Thus, if
Si detects an object O, DetResOt (Si) contains all points in the circle with
radius Dmax and center POSi. Suppose each Si exclusively detects a vehicle
Vi, 1 ≤ i ≤ 4. Then the following scenarios occur:

V1 : DetResV1
t (S1) contains only points from RE . Since S1 is the only

node that detects V1, POPV1
t = DetResV1

t (S1), and thus DSE occurs.
V2 : DetResV2

t (S2) contains only points from RI . Analogously to V1, this
means DSI .

V3 : DetResV3
t (S3) contains points from all three partitions of R. This

means that the detection mechanism is not sufficiently accurate to de-
termine on which side of the border of R the vehicle V3 is. Thus, DS•

occurs.
V4 : Analogously to V3.

Simultaneous detection of a single object can change the detection scenario.
For instance, if S4 and S2 detect V4 at the same time, POPV4

t is the inter-
section of DetResV4

t (S4) and DetResV4
t (S2). This is a subset of RI and

results in DSI .

Fig. 9 Example of detection areas, detection ranges and a region

More sophisticated detection mechanisms influence the resulting detection
scenario as well. If S3 could determine its detection area DA3, POPV3

t does
not overlap with RB any more. The detection scenario for V3 changes from
DS• to DSI . ◆

The intersection of two sets A and B is empty, if A = ∅ or B = ∅. Thus,
the detection scenario DS∅ only occurs if POPO

t = ∅ or if all partitions of
the query context are empty.
Lemma 2. DS∅ implies that POPO

t = ∅.
Proof. The partitioning of space by regions is complete and unambiguous
for regions, i.e., there always exists at least one partition that is non-empty.
According to Lemma 1, the partitioning for zones is complete as well. Thus,
DS∅ implies POPO

t = ∅. �
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Lemma 3. For any object O and point of time t, exactly one of the detection
scenarios DS∅, DSE, DSI , DSB or DS• holds.
Proof. The lemma holds if the partitions of space, where O could be at t
based on the detection scenario currently valid, are pair-wise disjoint. If DS∅

occurs, the object is undetected at time t. A point p ∈ E
d is either in at least

one detection area or unobserved. DS∅ covers all points E
d \

⋃
1≤i≤n DAi.

Thus, only those parts of space that are observed must be considered in the
following, i.e.,

⋃
1≤i≤n DAi. We prove the lemma for the observed part of

space in the context of zones and regions separately.
In the context of a region R, the detection scenario DSI covers all points

from RI . Similarly, DSE covers all points from RE . DSB occurs if the sensor
network can determine that O is on the border for sure. Contrary to that,
DS• occurs if the accuracy of the object detection is insufficient to provide a
definite statement if O is on the border, or close to it on either side. In this
case an area around RB is not part of RI and RE . All of these point sets
are pair-wise disjoint.

For a zone Z, the points covered by the respective detection scenarios are
analogous to those described above. The only difference is that DS• cannot
occur, because the border Z

B is explicitly defined as those parts of space
where objects are detected by nodes in Z and Z. The lemma holds, because
all parts of space are covered by the respective detection scenarios. �

The detection scenarios abstract from the details of object detection and
other issues. They also take into account simultaneous detection of an object
by more than one node. The remainder of this section, we show how to derive
predicate results based on detection scenarios, which is the first step towards
addressing our contribution Semantics. Based on this, Section 7 says how to
derive results for spatio-temporal developments.

6.2 Predicate Results for Regions

This section shows how to evaluate predicates that describe the topological
relationship of a region R and an object O, given detection scenarios. DSE ,
DSB and DSI guarantee that the object detected is in a certain partition.
Thus, objects detected with these detection scenarios conform to a predicate
P (O,R) in question or not. As illustrated in Example 5, this is not true for
DS•, because POPO

t overlaps with more than one partition. Objects detected
according to DS• could fulfill P (O,R), but this is not certain. We take this
disparity regarding the certainty of object positions into account by adding
a third value M (”maybe”) to the possible results of P (O,R):
T : P (O,R) returns T if the SN can guarantee that O fulfills P (O,R).
F : P (O,R) returns F if the SN can guarantee that O does not fulfill

P (O,R).
M: P (O,R) returns M otherwise.
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Example 6: Continuing Example 5, suppose the user is interested in vehicles
Vi that fulfill Inside (Vi,R). Recall that a node Si can only determine if a
vehicle is in its vicinity or not: DetResVi

t (Si) is the circle with radius Dmax

around the position POSi of the detecting node Si. If node Si in Figure 9
detects Vi, 1 ≤ i ≤ 4, the results are as follows:
V1: The distance between S1 and R is greater than Dmax. Thus, it is certain

that V1 is outside of R. This yields Inside (V1,R) = F .
V2: DetResV2

t (S2) and thus POPV2
t ⊆ RI . Hence, Inside (V2,R) = T .

V3: Since the distance between S3 and the border of R is less than Dmax,
the detection area could overlap the border. If a vehicle is detected only
by S3, the SN cannot determine on which side of the border it is. Thus,
Inside (V3,R) = M.

V4: Analogously to V3. ◆

The mapping of each detection scenario to a result for any predicate is spec-
ified in the following. We prove for each predicate P (O,R) that the set of
objects O where P (O,R) = M is minimal, i.e., the result obtained this way
is optimal. This mapping gives way to meaningful results for spatio-temporal
developments in Section 7.

6.2.1 Deriving Results for Inside (O, R)

Considering the five detection scenarios, there are two scenarios where an
object could be in a region R and one where this is certain:

DSI : POPO
t only intersects with RI , i.e., POPO

t ⊆ RI . Hence, O is in R
for sure.

DS•: POPO
t overlaps with RI but also overlaps with other partitions of R.

Thus, it is possible that O fulfills Inside (O,R) but is not guaranteed.
DS∅: Objects may be in R without being detected, i.e., O might fulfill

Inside (O,R) while being undetected.
Equation 22 summarizes the mapping of detection scenarios to predicate
results for Inside (O,R):

Inside (O,R) =

⎧⎨
⎩

T iff DSI

F iff DSE , DSB

M iff DS•, DS∅

(22)

Lemma 4. Let ΩR
Inside be the set of objects in R. The set of objects where

Inside (O,R) yields T or M is the smallest superset of ΩR
Inside that the SN

can derive.
Proof. The lemma is true if the objects detected with DSE and DSB do not
fulfill Inside (O,R) for sure. DSE means that POPO

t is a subset of RE , i.e.,
POPO

t does not intersect with RI . The detection scenario DSB occurs for
objects that are on the border, i.e., POPO

t is a subset of RB . Hence, the
object is not in R in both cases for sure. �
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Lemma 5. The set of objects where Inside (O,R) = T is the largest subset
of ΩR

Inside that the SN can derive.
Proof. Only objects detected according to DSI correspond to object that fulfill
Inside (O,R) for sure. The remaining detection scenarios cannot guarantee
that the detected object is in R. DS∅ and DS• may occur for objects outside
of R as well. Objects detected according to DSE or DSB are not in R for
sure. Thus, there does not exist a detection scenario of O that guarantees
Inside (O,R) except DSI . �

6.2.2 Deriving Results for Meet (O,R)

The predicate Meet (O,R) is true if O is on the border RB of the region R.
From the set of detection scenarios, there is one that guarantees that O is on
the border and two others where it is possible:
DSB : In this case POPO

t ⊆ RB , i.e., Meet (O,R) = T .
DS•: In contrast to the previous case, POPO

t also contains points that are
not part of the border. Thus, the object could be on the border, but the
limited accuracy of the detection mechanism does not allow a definitive
answer, i.e., Meet (O,R) = M.

DS∅: The object could be on the border while not being detected by any
sensor node, and therefore Meet (O,R) = M in this case.

Equation (23) summarizes this:

Meet (O,R) =

⎧⎨
⎩

T iff DSB

F iff DSI , DSE

M iff DS•, DS∅

(23)

Lemma 6. Let ΩR
Meet be the set of objects on the border RB. The set of

objects where Meet (O,R) yields T or M is the smallest superset of ΩR
Meet

that a SN can derive based on detection scenarios.
Proof. Analogously to Lemma 4, we prove this by considering DSI and DSE :
DSI ensures that POPO

t only contains points from RI , i.e., O is not on the
border RB . Similarly, we derive from DSE that POPO

t is a subset of RE and
thus does not intersect with RB . Thus, the set of objects where Meet (O,R)
yields T or M is the smallest superset of ΩR

Meet the sensor network can
compute. �
Lemma 7. The set of objects where Meet (O,R) = T is the largest subset of
ΩR

Meet identifiable by the SN.
Proof. Only DSB yields Meet (O,R) = T . Objects O detected according to
DS• could be on RB , but it is not sure, because POPO

t also contains points
from other partitions. Undetected objects could be on the border as well,
but since they are not detected, it is not certain. For the other two detection
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scenarios, it is sure that the detected object is not on the border because
POPO

t ∩ RB = ∅. Thus, a sensor network cannot compute a larger subset
of ΩR

Meet. �
As stated above, most detection mechanisms used in SN cannot determine

that some object O is on RB . Thus, once the distance of an object O to
RB falls below a certain limit, the detection mechanism cannot determine
if the object is on the border or just close to it. Even if the sensor nodes
can distinguish between stationary objects on RB and those close to RB ,
the result of the detection would be DS• in most cases instead of DSB : The
border RB is a line. The time it takes for an object to move over this line
is infinitely short. Capturing this moment reliably would require hardware
with infinitely high temporal resolution. Thus, even with very sophisticated
detection mechanisms, SN cannot detect objects on the border reliably.

Summing up, the set of objects detected with DSB is typically very small or
empty. But there are cases where a SN might be able to guarantee that an ob-
ject is on the border and therefore we cannot ignore DSB . One might consider
removing Meet (O,R) from the set of predicates for SN where it is impossible
to detect an object with DSB , since the only case where Meet (O,R) = T will
not occur. However, removing it is problematic as it would reduce the set of
spatio-temporal queries expressible in SN significantly. For example, without
Meet (O,R) one cannot express the development Touch (O,R). We show in
Section 7 that there exist developments containing Meet (O,R) whose mean-
ing can be guaranteed despite these problems. We conclude that the mapping
in (23) for Meet (O,R) is as accurate as the detection mechanisms allow.

6.2.3 Deriving Results for Disjoint (O,R)

To conform to Disjoint (O,R), object O must be in RE . The mapping to
detection scenarios is analogous to Inside (O,R):

Disjoint (O,R) =

⎧⎨
⎩

T iff DSE

F iff DSI , DSB

M iff DS•, DS∅

(24)

There are lemmas analogous to Lemmas 4 and 5 for Disjoint (O,R).
Hence, we conclude that the result in (24) is as accurate as possible as well.

6.2.4 Static and Dynamic Regions

The application scenarios in Section 2 have shown that there are static and
dynamic regions. A static region R is a point set that does not change over
time, while the point set representing a dynamic region does. The predicate
results defined above apply to static and dynamic regions. Computing the
detection scenario to obtain a predicate result implicitly assumes that the
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point set representing the region is known. Thus, prior to computing a de-
tection scenario, it is necessary to determine which points p ∈ E

d are in the
region R.

For a static region R, computing a polygon encompassing R before query
processing is straightforward. Each node can store the polygon and compute
the intersection POPO

t ∩ R, i.e., derive a detection scenario.
Checking if a point p is inside or outside of R becomes problematic if R is

dynamic, i.e., changes over time. The problem is illustrated in Example 7.
Example 7: Suppose R is the point set that contains all points with a
temperature below 0◦C. If Si detects an object O at time t and computes
POPO

t , it is not possible to intersect POPO
t with the partitions of R: If

Si measures a temperature below 0◦C, it is not certain that O also is at a
position where the temperature is less than 0◦C. Analogously, Si cannot rule
out that O is at a position where the temperature is below 0◦C. ◆

Solving the problem described in Example 7 requires restrictive assump-
tions regarding the SN: There must be at least one node that can check
CR (p) for every p ∈ E

d. This implies that nodes must be equipped with so-
phisticated hardware that allows checking CR (p) for points p where no node
has been deployed. For instance, infra-red cameras allow a node to determine
the temperature in its vicinity. However, nodes equipped with these cam-
eras must have considerably more computational power than those available
today to process the images taken by the cameras. Additionally, the nodes
must be deployed in such a way that there is at least one camera that can
measure the temperature for any point in space at any time. Summing up,
processing spatio-temporal queries targeting at the relationship of an object
and a dynamic region has strict prerequisites. However, it is sufficient for
most SN if the movement of an object is observed in relation to a zone. We
now define the respective predicates and show how to derive results for them
based on detection scenarios.

6.3 Predicate Results for Zones

Section 5 has proposed a space partitioning induced by a given zone Z, based
on detection areas. Even if sensors cannot determine their detection areas,
we can derive the partition of the zone where an object detected is located by
using the following concept: If a node Si ∈ Z detects O at time t, the position
estimate DetResOt (Si) intersects with Z

I , i.e., DetResOt (Si)∩Z
I �= ∅. The

actual position of O is either exclusively observed by nodes in Z, or nodes
inside and outside of Z observe it. Thus, the object is either in Z

I or in Z
B . If

there exists a node outside of Z that detects O, O is located in Z
B, otherwise

it is in Z
I . Summing up, one has to consider how the detection set DetSet

O
t

(cf. Definition 7) intersects with Z and Z to determine how POPO
t intersects

with the partitions of the zone, i.e., compute the corresponding detection
scenario.
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Lemma 8. The intersection of Z and DetSet
O
t determines the detection sce-

nario for some object O at some time t:

DetSet
O
t ∩ Z = ∅ ∧ DetSet

O
t ∩ Z �= ∅ ⇒ POPO

t ⊆ Z
E

DetSet
O
t ∩ Z �= ∅ ∧ DetSet

O
t ∩ Z = ∅ ⇒ POPO

t ⊆ Z
I

DetSet
O
t ∩ Z �= ∅ ∧ DetSet

O
t ∩ Z �= ∅ ⇒ POPO

t ⊆ Z
B

Proof. We prove DetSet
O
t ∩ Z = ∅ ∧DetSet

O
t ∩ Z �= ∅ ⇒ POPO

t ⊆ Z
E : The

left-hand side of the implication means that only nodes in Z detect O, i.e,
DetSet

O
t ⊆ Z. Hence, we prove DetSet

O
t ⊆ Z ⇒ POPO

t ⊆ Z
E by contradic-

tion4, i.e., we have to prove that if POPO
t is not a subset of Z

E then DetSet
O
t

is not a subset of Z. Let Si ∈ Z detect O at t, i.e., detect (Si,O, t) = T . Thus,
O is somewhere in DAi. Since POPO

t is the intersection of the detection
areas of all nodes that detect O at t, POPO

t must contain at least one
p ∈ DAi. Hence, POPO

t is not a subset of Z
E , because Z

E contains only
points exclusively observed by nodes in Z. If POPO

t would not contain at
least one p ∈ DAi then detect (Si,O, t) = F . Summing up, DetSet

O
t ⊆ Z

implies POPO
t ⊆ Z

E . The other two implications can be proven similarly.
�

Note that the right-hand side of each implication equals the formal expres-
sion associated with the detection scenarios DSE , DSI and DSB respectively.

Lemma 9. In the context of a zone Z, POPO
t can never intersect with more

than one partition of Z:

POPO
t ∩ Z

E �= ∅ ⇒ POPO
t ⊆ Z

E

POPO
t ∩ Z

I �= ∅ ⇒ POPO
t ⊆ Z

I

POPO
t ∩ Z

B �= ∅ ⇒ POPO
t ⊆ Z

B

Proof. We prove POPO
t ∩ Z

E �= ∅ ⇒ POPO
t ⊆ Z

E : According to Defini-
tion 16, Z

E only contains points that are exclusively observed by nodes in Z.
Hence, if POPO

t contains points from Z
E , the object is at a position that is

exclusively observed by nodes in Z. If there exists a node Si ∈ Z that detects
O, POPO

t does not intersect with Z
E anymore. The proofs for the remaining

two implications are analogous. �
Due to Lemma 9, DS• cannot occur with zones. Thus, we omit DS• for the

definition of predicates which express the relationship between an object and
a zone.

4 To prove A ⇒ B by contradiction, it is sufficient to prove B ⇒ A.
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Definition 24 (Disjoint (O,Z)): The object O conforms to Disjoint (O,Z)
if O is exclusively detected by nodes in Z, i.e., if DSE occurs (cf. Lemma 8):

Disjoint (O,Z) =
{
T iff DSE

F otherwise (25)

�

Definition 25 (Inside (O,Z)): The object O conforms to Inside (O,Z) if O
is exclusively detected by nodes in Z, i.e., if DSI occurs (cf. Lemma 8):

Inside (O,Z) =
{
T iff DSI

F otherwise (26)

�

Definition 26 (Meet (O,Z)): The object O conforms to Meet (O,Z) if O is
detected by nodes in Z and Z simultaneously, i.e., if DSB occurs (cf. Lemma 8):

Meet (O,Z) =
{
T iff DSB

F otherwise (27)

�

Let ΩZ
Disjoint be the set of objects in Z

E . Since there is no detection sce-
nario where Disjoint (O,Z) = M, we conclude that the set of objects where
Disjoint (O,Z) yields T equals ΩZ

Disjoint. Similarly, the sets of objects where
Meet (O,Z) and Inside (O,Z) yield T equal ΩZ

Meet and ΩZ

Inside respectively.
The space partitioning for regions divides all points of space into three

partitions. Every resulting partition is associated with a predicate. For zones,
we have introduced a fourth partition Z

∅ which contains all points that are
unobserved. To allow users to express that an object movement includes that
the object is unobserved at some point in time, we define a fourth predicate:
Definition 27 (Undetected (O)): An object O conforms to Undetected (O)
if there is no node Si ∈ SN that detects O:

Undetected (O) =
{
T iff DS∅

F Otherwise (28)

�

In the following, we will write Undetected (O) instead of Undetected (O, Z),
because an object O with Undetected (O) = T is undetected in relation to
any other zone as well.

MOD-concepts like concatenation (cf. Definition 4) are applicable to the
aforementioned predicates as well. Thus, one can construct developments that
query the spatio-temporal relationship of objects and zones. For instance, one
could define:

Enter (O,Z) = Disjoint (O,Z) � Meet (O,Z)
� Inside (O,Z) (29)

Undetected (O) is particularly useful in the context of spatio-temporal de-
velopments. For example, a user could be interested in objects that fulfill
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Inside (O,Z) first and then move into an unobserved area:

Disappear (O,Z) = Inside (O,Z) � Undetected (O) (30)

Further examples for the use of this predicate are provided in Section 7 where
spatio-temporal developments in sensor networks are discussed.

6.3.1 Static and Dynamic Zones

As with regions, there are dynamic and static zones. Users define a static
zone Z by providing a set of conditions such that the set of nodes fulfilling
it does not change over time. A dynamic zone changes over time, typically
because it depends on a measurable value, e.g., a temperature threshold. As
with regions, the predicates defined above are applicable in both cases.

Recall that dynamic regions have resulted in extremely strict requirements
regarding the capabilities and deployment of nodes. Dynamic zones do not
have such requirements, because every node only has to determine if it is
inside the zone or not. For example, the dynamic zone in Table 1 requires
each node to determine at certain points of time if it measures a temperature
below 0◦C. Measuring the temperature is a standard feature of sensor nodes
available, e.g., Sun SPOT sensor nodes [50]. We conclude that commercially
available sensor nodes can deal with dynamic zones, but not necessarily with
dynamic regions.

6.4 Summary

Table 2 summarizes the mapping of detection scenarios to results of predi-
cates expressing the relation between objects and regions in SN. Each row
corresponds to a predicate and every column to a detection scenario that
describes how POPO

t overlaps with the partitions of the region R.

P (O,R) DS∅ DSE DSI DSB DS•

Inside (O,R) M F T F M
Meet (O,R) M F F T M

Disjoint (O,R) M T F F M

Table 2 Mapping detection scenarios to predicate results
for an object O and a region R

Predicates that describe the relation between an object and a zone are
summarized similarly in Table 3. Since DS• cannot occur in the context of
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zones, the corresponding column contains ’-’ entries. Based on these results,
we now focus on spatio-temporal developments, i.e., sequences of predicates
that describe an object movement in relation to a query context.

P (O,Z) DS∅ DSE DSI DSB DS•

Inside (O,Z) F F T F -
Meet (O,Z) F F F T -

Disjoint (O,Z) F T F F -
Undetected (O,Z) T F F F -

Table 3 Mapping detection scenarios to predicate results for an object O and a zone Z

7 Spatio-Temporal Developments

As illustrated in Section 3.2.2, users express queries through spatio-temporal
developments, i.e., by concatenating predicates. One core contribution of this
paper is the translation of sequences of object detections to results for spatio-
temporal developments.

There are some preliminary steps for such a translation: First, we show
that the concatenation operator � (cf. Definition 4) is insufficient to ex-
press certain information needs in SN. We address this by introducing a
new concatenation operator. Second, we develop a canonical collection of
spatio-temporal developments for SN similar to the existing collection for
moving object databases [19]. We need this collection to obtain a finite set of
developments which we must translate to sequences of object detections. The
last step is the actual translation of each element of the canonical collection
and a proof that this translation is correct.

7.1 Irregularity of Zones and Concatenation

The difference between the partitioning of space for regions and the one
for zones is that regularity [51] cannot be assumed for zones: Among other
things, regularity means that the interior RI is completely encompassed by
the border RB of a region R. As shown in Figure 8, this is different with
zones: The interior Z

I adjoins to the border Z
B and Z

∅.
The semantics of developments like Enter (O,R) are affected by this: Sup-

pose that a user is interested in all objects O that move into the zone Z. For
regions, the space partitions are regular, i.e., an object O must cross the bor-
der RB . In the context of a zone, a user could express an interest similar to
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Enter (O,R) with Enter (O,Z), as defined in (29). This is problematic, be-
cause Enter (O,Z) restricts the result to objects that are observed explicitly
while crossing the border. However, an object O might fulfill Disjoint (O,Z)
at some time, then move through an unobserved area and fulfill Inside (O,Z)
afterward. From a semantical perspective, O has entered the zone, but does
not fulfill Enter (O,Z).

One might solve this by querying for all objects that either fulfill
Enter (O,Z) or HiddenEnter (O,Z), which is defined in (31):

HiddenEnter (O,Z) = Disjoint (O,Z) � Undetected (O)
� Inside (O,Z) (31)

HiddenEnter (O,Z) is insufficient as well: O could fulfill Disjoint (O,Z) first,
then Undetected (O) followed by Meet (O,Z) and finally Inside (O,Z). In this
case, O neither fulfills HiddenEnter (O,Z) nor Enter (O,Z). A user with the
aforementioned query who does not care if the object is detected or not while
crossing the border would have to provide an infinite number of predicate
sequences. This is because an object can move an arbitrary number of times
between Undetected (O) and Meet (O,Z) before fulfilling Inside (O,Z). The
development in (32) is not an option either:

Disjoint (O,Z) � Inside (O,Z) (32)

The sequence in (32) never occurs, because � requires Inside (O,Z) to follow
Disjoint (O,Z) immediately.

Lemma 10. For any object O and a region R, there does not exist a
movement that fulfills Inside (O,R) � Disjoint (O,R). Objects cannot fulfill
Disjoint (O,R) � Inside (O,R) as well.

Proof. According to Definition 4, the movement of an object O in relation
to a region R satisfies Inside (O,R)�Disjoint (O,R) if Inside (O,R) = T for
some interval [t0, t1[ and Disjoint (O,R) = T at t1. Due to the partitioning
of space defined for regions (cf. Section 3.2), to satisfy Inside (O,R) at ti
and Disjoint (O,R) later at tj , the object must cross the border at ti < t <
tj . Thus, if Inside (O,R) = T for [t0, t1[, Meet (O,R) = T at t1. Hence,
Disjoint (O,R) is not possible at t1. For Disjoint (O,R) � Inside (O,R), the
proof is analogous. �
Definition 28 (Relaxed Concatenation): The relaxed concatenation of
two predicates, P �̃ Q, is true if P is true for some time interval [t0; t1[, and
Q is true at t2 ≥ t1. �

Equation (33) defines a development that expresses the query discussed
above:

SNEnter (O,Z) = Disjoint (O,Z) �̃ Inside (O,Z) (33)
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In combination with the predicate Undetected (O), this new operator in-
creases the semantical depth. Users now can explicitly define if the object
must be observed or not while moving, as illustrated next.
Example 8: Figure 2 shows a SN deployed close to a river with several
bridges. Suppose that nodes are deployed in a controlled way so that caribous
moving over a bridge are detected, but caribous swimming are not, i.e., the
river itself is unobserved. A user only interested in caribous C entering Z

by crossing bridges can use Enter (C,Z). If only caribous that enter Z by
swimming are of interest, the user can express this with HiddenEnter (C,Z).
A user interested in all caribous entering Z can query SNEnter (C,Z). ◆

Lemma 11. P1 � P2 ⇒ P1 �̃P2

Proof. According to Definition 28, the right-hand side is true if P1 is true
for some interval [t0, t1[ and P2 is true at t2 ≥ t1. The left-hand side of the
implication states that P1 is true for some interval [t0, t1[ and P2 is true at
t2 = t1. Hence, if the left-hand side is true, the right-hand side is true as well.

�

Lemma 12. P1 �̃ (P2 �̃P3) = (P1 �̃P2) �̃P3.

Proof. The left-hand side means ∃ [t0, t1[ : P1 and ∃t2 ≥ t1 : (P2 �̃P3).
Furthermore, ∃ [t2, t3[ : P2 and ∃t4 ≥ t3 : P3. The right-hand side expresses
that ∃

[
t′

0, t
′

3

[
: (P1 �̃P2) and ∃t′

4 ≥ t′

3 : P3. Additionally, ∃
[
t′

0, t
′

1

[
, t′

1 ≤ t′

3 :

P1 and ∃t′

2 ≥ t′

1 ∧ t′

2 ≤ t′

3 : P2. If the left-hand side is true for t′

0 = t0, t
′

1 =
t1, t

′

2 = t2, t
′

3 = t3 the right-hand side is fulfilled also (and vice versa). �

Lemma 13. P1 � (P2 �̃P3) = (P1 � P2) �̃P3

Proof. By applying Lemma 11, we derive that P1 � (P2 �̃P3) implies
P1 �̃ (P2 �̃P3). Analogously applying Lemma 11 to the right-hand side
of the implication results in (P1 �̃P2) �̃P3. Thus, we get P1 �̃ (P2 �̃P3) =
(P1 �̃P2) �̃P3 which is true according to Lemma 12. �

Users can formulate queries using both concatenation operators. Thus, we
define spatio-temporal developments in the context of SN as follows:
Definition 29 (Spatio-Temporal Development): A spatio-temporal de-
velopment P is a sequence of predicates P = P1 θ P2 θ . . . θ Pq with
θ ∈ {�, �̃ }. The movement of an object O conforms to P if each pair
Pi−1 θ Pi with 2 ≤ i ≤ q is true in the order defined by P. �

We denote developments that describe the relation of an object O and
a region R with P (O,R). In this case, all predicates refer to O and R as
well, i.e., Pi = Pi (O,R) with 1 ≤ i ≤ q. Similarly, P (O,Z) describes the
spatio-temporal relationship of O and a zone Z.

We use this definition to derive a canonical collection of developments for
SN. This collection limits the set of developments which must be translated
into sequences of object detections.
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7.2 A Canonical Collection of Spatio-Temporal
Developments

To obtain a canonical collection of spatio-temporal developments, [19] con-
structs a development graph which represents possible spatio-temporal de-
velopments. A development is possible if an object can move such that the
corresponding sequence of predicates P1 θ P2 θ . . . θ Pq is satisfied.
Definition 30 (Development Graph): A development graph is a graph
DG = (V,E) that expresses possible predicate sequences:
V: Each possible predicate is represented by a vertex.
E: There is an edge (Pi,Pj) if an object can move such that Pi θ Pj is

satisfied. �

As shown above, the set of predicates applicable to regions and objects
differs from the one for zones and objects: While there are equivalents to
Inside (O,R), Meet (O,R) and Disjoint (O,R), the set of predicates for zones
also contains Undetected (O). Thus, the development graph for zones is dif-
ferent from the one for regions.

7.2.1 The Object/Region Development Graph

The set of vertices VR of the object/region development graph DGR =(
VR,ER)

has three elements:

VR = {Inside (O,R), Meet (O,R), Disjoint (O,R)}

Lemma 10 implies that there does not exist an edge from Disjoint (O,R)
to Inside (O,R) and vice versa. Figure 10 shows the object/region develop-
ment graph. For all graphs that follow, we use different lines to distinguish
between the different concatenation operators: Solid lines represent concate-
nations that exist for both operators � and �̃ . The dotted lines stand for
concatenations only possible with �̃ . Similarly, dashed lines represent con-
catenations with �.

Disjoint (O,R) Meet (O,R) Inside (O,R)

Fig. 10 Development Graph for an object O and a region R

Comparing this graph to the development graph in Figure 11 for ob-
jects and regions in MOD shows that they only differ in one vertex: MOD
distinguish between meet (o, r) and Meet (O,R) [19]. meet (o, r) = T if o
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Disjoint (O,R)

Meet (O,R)meet (O,R)

Inside (O,R)

Fig. 11 Development Graph for an object O and a region R in MOD according to [19]

is on the border of R for exactly one instant of time. Contrary to that,
Meet (O,R) = T if O is on the border of R for a time interval. We omit de-
velopments with meet (o, r) for SN, since this would assume detection mech-
anisms with infinite temporal resolution.

7.2.2 The Object/Zone Development Graph

As shown in Section 6.3, there are four predicates that express the relation-
ship between an object and a zone. Thus, for the object/zone development
graph DGZ =

(
VZ,EZ

)
, the set of vertices VZ contains the four predicates

Inside (O,Z), Meet (O,Z), Undetected (O) and Disjoint (O,Z). Figure 12
shows the development graph for an object and a zone.

Disjoint (O,  )

Inside (O,  )

Meet (O,  )Undetected (O)

Fig. 12 Development graph for an object O and a zone Z

Contrary to regions, zones are not regular (cf. Section 7.1). As we have
shown, this irregularity necessitates the usage of two different concatenation
operators. The edges in Figure 12 are explained as follows: The reason-
ing for the edges between Inside (O,Z), Meet (O,Z) and Disjoint (O,Z) is
analogous to Section 7.2.1. Contrary to the development graph for regions,
edges in Figure 10 are solid, i.e., they represent � and �̃ . This is correct,
because Lemma 11 has shown that P1 �P2 ⇒ P1 �̃P2. Additional solid edges
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connect Undetected (O) to the other three predicates, because objects can
move into or out of an undetected area at any time. The dotted line between
Inside (O,Z) and Disjoint (O,Z) reflects the fact that these predicates are
only concatenable with �̃ , but not with �.

7.2.3 Enumeration of Possible Developments

Every path through a development graph represents a possible development.
The number of these paths is infinite, due to cycles. Hence, one has to restrict
the set of paths to obtain a finite set of developments. Similarly to [19], we
obtain such a finite set by constructing development trees as follows:
1. Pick each element in V as the root of a development tree.
2. Generate a child node of this root for every vertex connected to this

element in the development graph.
3. For each child node, construct a set of child nodes – the adjacent vertices

in the development graph.
4. A node is a leaf node, i.e., node generation stops if

a. every predicate exists on the path from the root to the current node,
or

b. the predicate corresponding to the current node already appears on
the path from the root to the current node, i.e., there is a cycle.

To obtain the canonical collection, we generate all these trees based on the
respective development graph. For regions, each node in such a tree represents
one spatio-temporal development. As we show, a node in the trees for zones
may represent more than one development.

Disjoint (O,R)

Meet (O,R)

Disjoint (O,R) Inside (O,R)

only

Fig. 13 Development tree with root Disjoint (O,R)

Figures 13-15 show the development trees with roots Disjoint (O,R),
Meet (O,R) and Inside (O,R) respectively. The sum of nodes in these three
trees is 13, i.e., there are 13 unique spatio-temporal developments that de-
scribe the relationship of an object and a region in a SN over time. These
13 developments include three developments consisting of a single predicate.
Semantics of single predicates have been the focus of Section 6.2 already. The
left column of Table 4 shows the ten developments consisting of more than
one predicate. Section 7.4 shows how to derive results for these developments.
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Meet (O,R)

Disjoint (O,R)

Meet (O,R)

Inside (O,R)

Meet (O,R)

only

Fig. 14 Development tree with root Meet (O,R)

Inside (O,R)

Meet (O,R)

Disjoint (O,R) Inside (O,R)

only

Fig. 15 Development tree with root Inside (O,R)

Figures 16-19 show the development trees for developments related to
zones: Each tree has 31 nodes, i.e., the total number of nodes in all trees
is 4 · 31 = 124. Contrary to the object/region development tree, each node
represents more than one unique development because solid lines may be ei-
ther � or �̃ . The value above each node in Figure 16 indicates the number of
developments represented by the node.

Lemma 14. Every development tree related to zones represents 146 unique
spatio-temporal developments.

Proof. The sum of the numbers above the vertices of each development tree
is 147. The value above each root vertex is 1, but contrary to all other ver-
tices, this node does not represent a development, since it only represents a
single predicate. Hence, to obtain the number of developments represented
by the tree, one has to subtract 1 from the sum of the numbers above the
vertices. The lemma holds if the number above every non-root vertex equals
the number of developments represented by it. In the following, we suppose
that the number above vi is ki.

If vi is connected to vj via a solid edge, then kj = 2 · ki. The vertex vi
represents a set of ki predicate sequences that end with the predicate Pi

associated with the vertex vi. Since the edge between vi and vj is solid, it is
possible to concatenate Pi with Pj using � and �̃ . Thus, one can ”append”
Pj to each of these ki predicate sequences using either � or �̃ . Hence, we
conclude that the vertex vj represents 2 · ki developments that end with Pj .

If vi is connected to vj via a dotted edge, then kj = ki. Again, vi represents
a set of ki predicate sequences that end with the predicate Pi associated with
the vertex vi. Contrary to the case above, the dotted edge indicates that one
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Fig. 16 Development tree with root Disjoint (O, Z)

can only concatenate Pj to each of these ki predicate sequences using �̃ .
Hence, vj represents ki developments that end with Pj .

Summing up, the number above each node vi equals the number of devel-
opments represented by the path from the root node to vi. Hence, we obtain
the 146 spatio-temporal developments represented by every path in these
development trees. �

We illustrate Lemma 14 using Figure 16: The root Disjoint (O,Z) in
Figure 16 has edges to three predicates Undetected (O), Inside (O,Z) and
Meet (O,Z). The edge between Disjoint (O,Z) and Meet (O,Z) is solid, i.e.,
both predicates may be concatenated using � and �̃ . Thus, there are two
developments represented by this path:
1. Disjoint (O,Z) � Meet (O,Z)
2. Disjoint (O,Z) �̃Meet (O,Z).
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Fig. 17 Development tree with root Meet (O,Z)

The path from Disjoint (O,Z) to Undetected (O) via Meet (O,Z) represents
four developments. This is because one can ”append” Undetected (O) to each
of the two developments above using either � or �̃ .

The edge between the root node Disjoint (O,Z) and Inside (O,Z) is dotted.
Thus, this path represents a single spatio-temporal development:

Disjoint (O,Z) �̃ Inside (O,Z)

While the structure of the trees in Figures 16-19 varies slightly, each tree
represents 146 unique spatio-temporal developments. Hence, users can ex-
press 4 · 146 = 584 unique spatio-temporal developments that describe the
relationship between an object and a zone over time.
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Fig. 18 Development tree with root Undetected (O)

7.3 Formal Description of Object Detection Sequences

The trajectory of on object matches a development if the object fulfills the
predicates in the order specified by the development. We use the following
operator to describe object trajectories formally:
Definition 31 (Detection Concatenation): The concatenation of two de-
tection scenarios, DS1 � DS2, expresses that an object was detected according
to DS1 in the time period [t1, t2[ and detected according to DS2 at t2.5 �

5 We have chosen right-open intervals here to be in line with the definition of predicate
sequences and the concatenation operator � (cf. Definition 4). This does not cause any
problems since the temporal resolution of any detection mechanism is limited in any
case.



Spatio-Temporal Developments 37

Inside (O,  )
1

Disjoint (O,  )
1

Undetected (O)
2

Disjoint (O,  )
4

Meet (O,  )
4

Inside (O,  )
4Inside (O,  )

1

Meet (O,  )
2

Inside (O,  )
4

Undetected (O)
4

Disjoint (O,  )
4

Undetected (O)
2

Disjoint (O,  )
4

Undetected (O)
8

Meet (O,  )
8

Inside (O,  )
4Inside (O,  )

4

Meet (O,  )
4

Undetected (O)
8

Disjoint (O,  )
8

Inside (O,  )
8

Meet (O,  )
2

Disjoint (O,  )
4

Inside (O,  )
4

Undetected (O)
8

Meet (O,  )
8Inside (O,  )

4

Undetected (O)
4

Inside (O,  )
8

Disjoint (O,  )
8

Meet (O,  )
8

and

only

Fig. 19 Development tree with root Inside (O,Z)

Lemma 15. DS1 � DS1 = DS1

Proof. The left-hand side means that there is an interval [t1, t2[ where an
object is detected according to DS1 and another interval [t2, t3[ where the
object is detected according to DS1 as well. This means that the object is
detected according to DS1 during [t1, t3[ which equals the right-hand side.

�
Definition 32 (Detection Sequence): A detection sequence D= DS1
� . . .� DSk is a concatenation of detection scenarios. It formalizes the in-
formation on the movement of an object with regard to a query context. D
means that DS1 occurred for some time interval [t1, t2[, DS2 occurred for some
interval [t2, t3[ etc. �



38 Moving Objects Sensor Databases

In the following, we assume that any detection sequence has been normal-
ized according to Lemma 15. We use D

R
O to denote that a detection sequence

refers to the movement of an object O in relation to a region R. Analogously,
D

Z

O describes the movement of O in the context of a zone Z.

Lemma 16. For any object O, there exists exactly one detection sequence
DO that represents the information on the movement of O acquired by the
sensor network.

Proof. According to Lemma 3, at each t ∈ T exactly one detection scenario
holds. The detection sequence DO is the concatenation of these detection
scenarios and hence there can be only one. �

Given a development P, there exists an infinite number of detection se-
quences that conform to P. This is because an object may move arbitrarily
before or after conforming to P, e.g., before conforming to Enter (O,R), the
object O could alternate between DSE and DS∅ any number of times. To
summarize detection sequences that contain a certain pattern, we introduce
the notion of a detection term.
Definition 33 (Detection Term): A detection term is a detection sequence
or represents a (possibly infinite) set of detection sequences described using
the following syntax:
t1|t2: The operator | means an alternative, e.g., t1|t2 denotes that either the

detection term t1 occurs or the detection term t2.
{t}: The detection term t occurs an arbitrary number of times, i.e., {t} =

ε|t|t � t|....
The operator � may be used to link detection terms as well with the same
semantical meaning. �

Example 9: Consider the development Enter (O,R). The detection se-
quences DSE

� DS•
� DSI as well as DSE

� DS∅
� DSI describe object tra-

jectories that conform to Enter (O,R). Additionally, there exists an infinite
number of detection sequences that conform to Enter (O,R) as well, like
DSE

� DS•
� DS∅

� DSI . The following detection term reflects this:
DSE

�

{
DSB |DS•|DS∅

}
� DSI (34)

Definition 34 (Detection-Term Conformance): A detection sequence D

conforms to a detection term t iff D contains a substring of detection scenarios
that is represented by t. �

It is sufficient if a substring of a detection sequence conforms to the detec-
tion term because objects may move arbitrarily before or after conforming to
the term.
Example 10: Continuing Example 9, suppose that object O crosses R, i.e,
D

R
O = DSE

� DS•
� DSI

� DS•
� DSE . The substring DSE

� DS•
� DSI conforms

to the detection term in (34) for Enter (O,R). ◆

There exist various algorithms, e.g., [32], to find a substring that conforms
to a pattern. Section 7.4 provides detection terms similar to the one for
Enter (O,R) above for every spatio-temporal development.
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The detection term in (34) means that any O detected with DSE at some
time and later with DSI conforms to Enter (O,R). It is not important which
detection scenarios occur between DSE and DSI for O as long as the order
described above is maintained. For a more concise presentation, we propose
a relaxed version of the concatenation operator for detection scenarios:
Definition 35 (Relaxed Detection Scenario Concatenation): The re-
laxed concatenation of two detection scenarios DS1 �̃ DS2 means that an ob-
ject was detected according to DS1 at t1 and later according to DS2 at t2 with
t1 < t2. �

Lemma 17. Let DS = {DS1,DS2,DS3,DS4,DS5} be the domain of detection
scenarios. If d = DS3|DS4|DS5 for DSi �= DSj with i �= j, then DS1� {d}� DS2 =
DS1 �̃ DS2.

Proof. Follows directly from Lemma 3. �
We illustrate the use of Lemma 17 by applying it to the detection term in

(34): DSE
�

{
DSB |DS•|DS∅

}
� DSI . In this case, d = DSB |DS•|DS∅, DS1 = DSE

and DS2 = DSI . Thus, we rewrite the term in (34) as DSE
�̃ DSI .

Lemma 18. DS1 � DS2 ⇒ DS1 �̃ DS2

Proof. According to Definition 35, the right-hand side is true if DS1 occurs
for some interval [t0, t1[ and DS2 occurs at t2 ≥ t1. The left-hand side of the
implication states that DS1 occurs for some interval [t0, t1[ and DS2 occurs at
t2 = t1. Hence, if the left-hand side is true, the right-hand side is also true.

�

7.4 Detection Terms

The inaccuracy of object detection or unobserved areas sometimes prevent a
definite answer whether an object conforms to a given development or not.
Given a development P, the SN classifies objects detected into those that
definitely conform (P = T ), definitely do not conform (P = F) and maybe
conform (P = M). In the following, we denote the true set of objects that
conform to a development P with ΩP.
Definition 36 (Optimal Result): The result derived by the SN is optimal
iff a.) the set of objects where P = T is a subset of ΩP, b.) the set of objects
where P = F does not intersect with ΩP and c.) the set of objects where
P = M is minimal. �

In the following, we derive a maximal detection term for every element P

in the canonical collection of developments.
Definition 37 (Maximal Detection Term): detection term d is maximal
for a predicate sequence P iff it meets two conditions:
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• There cannot exist an object O whose movement conforms to P, but the
corresponding detection sequence DO does not conform to d.

• There cannot exist an object O whose movement does not conform to P,
but the corresponding detection sequence DO conforms to d. �

Example 11: As we will show in Section 7.4.1, the term in (34) is maximal
for Enter (O,R). Contrary to (34), the following two terms are not maximal
for Enter (O,R):

DSE
�

{
DSB |DS•}

� DSI (35)
DSE

�

{
DSB |DS•|DS∅

}
(36)

The term in (35) is not maximal, because an object O detected with D
R
O =

DSE
� DS•

� DS∅
� DSI conforms to Enter (O,R), but DR

O does not conform
to (35). Similarly, (36) is not maximal, because objects with D

R
O = DSE

�

DS•
� DSE do not conform to Enter (O,R), but D

R
O conforms to (36). ◆

In the following, we address detection terms for developments in relation
to regions and then those related to zones. For both types, we show that the
derived result is optimal.

7.4.1 Detection Terms for Regions

Recall that the canonical collection of developments that describe the re-
lationship of an object O and a region R has ten elements, listed in the
left-hand column of Table 4. For each of these developments P (O,R), there
is a detection term in the right-hand column such that P (O,R) = T . We
prove for each term that it is maximal in the context of the correspond-
ing development P (O,R). Detection terms that indicate P (O,R) = F are
addressed afterward.

Determining whether P (O,R) = T .

The following Lemma is auxiliary, helping us to prove that the detection
terms in Table 4 are maximal.
Lemma 19. To ensure that Meet (O,R) = T , the detection sequence D

R
O of

an object O must meet one of the following requirements:
1. DR

O contains DSB.
2. DR

O conforms to DSI
�̃ DSE.

3. DR
O conforms to DSE

�̃ DSI .
For any other sequence, Meet (O,R) yields M or F .
Proof. DSB guarantees Meet (O,R) = T according to (23). The other two
cases imply that O has been detected on both sides of the border RB . Hence,
between these detections there was a time when O was on RB even if DSB
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did not occur. For instance, the object crossed the border while not being
detected by any node. Detection sequences that do not meet either of these
requirements conform to one of the two following terms:
•
{

DSE |DS•|DS∅
}

•
{

DSI |DS•|DS∅
}

Neither
{

DSE |DS•|DS∅
}

nor
{

DSI |DS•|DS∅
}

allow the SN to guarantee that
Meet (O,R) = T according to (23). �

Lemma 19 states that the SN can only guarantee Meet (O,R) = T if DSB

occurs, or if the object has been detected on both sides of the border. In any
other case, Meet (O,R) yields M or F .
Lemma 20. P (O,R) = T iff D

R
O conforms to the corresponding detection

term in Table 4.
Proof. We prove this for every P (O,R) in the left-hand column of Table 4
separately: The movement of O conforms to Disjoint (O,R)�Meet (O,R) iff
the detection sequence D

R
O conforms to DSE

�

{
DS•|DS∅

}
�

(
DSB |DSI

)
. The

reasoning for this is as follows: DSE is the only detection scenario where
Disjoint (O,R) = T . According to Lemma 19, the SN can only guarantee
Meet (O,R) = T after DSE if DSB or DSI occurs. In the latter case, the
detection term DSE

�̃ DSI occurs. By applying Lemma 17, we rewrite this
to DSE

�

{
DS•|DSB |DS∅

}
� DSI . The only detection sequence not addressed

by this term is DSE
� DSB . Removing DSB from

{
DS•|DSB |DS∅

}
and adding

it to the end of the detection term solves this. Hence, the resulting term is
DSE

�

{
DS•|DS∅

}
�

(
DSB|DSI

)
. The proof of correctness for detection terms

related to all other developments consisting of two predicates is analogous.
According to Lemma 19, to derive that Enter (O,R) = T or Leave (O,R) =

T , O must be detected conforming to DSE
�̃ DSI and DSI

�̃ DSE respectively.
By applying Lemma 17, both terms are rewritten to the corresponding
detection terms in Table 4.

For Disjoint (O,R) � Meet (O,R) � Disjoint (O,R), the SN must detect
O with DSE first immediately followed by DSB and DSE . If either DS• or DS∅

occur in between, O could have moved into R for some time. Such a move-
ment would not conform to Disjoint (O,R) � Meet (O,R) � Disjoint (O,R).
Thus, the term in Table 4 is correct. The proof for the detection term of
Inside (O,R) � Meet (O,R) � Inside (O,R) is analogous.

We consider Meet (O,R) � Disjoint (O,R) in the development Meet (O,R)
� Disjoint (O,R) � Meet (O,R) first: To conform to this first part, the ob-
ject O must be detected with DSI

�̃ DSE or DSB
� DSE (cf. Lemma 19).

Hence,
(

DSI |DSB
)

�

{
DS•|DS∅

}
� DSE guarantees the first part, i.e.,

Meet (O,R) � Disjoint (O,R). Similarly, to conform to Disjoint (O,R) �
Meet (O,R), the object O must be detected with DSE

�̃ DSI or DSE
� DSB .

Rewriting this by applying Lemma 17 yields the corresponding detection term
in Table 4. The proof for the detection term for Meet (O,R) � Inside (O,R)
� Meet (O,R) is analogous. �
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Summing up, we have shown how SN can derive P (O,R) = T by provid-
ing a detection term for every spatio-temporal development.

Determining whether P (O,R) = F .

Now we show how SN derive P (O,R) = F . The most important difference
to P (O,R) = T is that one must consider the whole detection sequence
instead of a substring: While it is sufficient to find a substring in the detection
sequence that conforms to a detection term to determine that P (O,R) = T ,
to compute P (O,R) = F the SN must rule out that any part of the detection
sequence could conform to P (O,R).

Lemma 21. An object O which is detected according to DS• could conform
to any spatio-temporal development P (O,R).

Proof. According to Definition 23, DS• means that POPO
t intersects with

all partitions of R. This means that the position of O is so ”close” to the
border that the sensor network cannot provide a definite answer on which
side of the border O is. Thus, an object could repeatedly move around and
over the border of R in any way while the sensor network can only determine
DS•. During this time, O could fulfill any development that describes the
relationship between O and R. �

Lemma 21 implies that detection sequences that do not conform to a
development must not contain DS•. Looking at Table 2, this also applies to
DS∅. Typically detection areas may have any shape or size, i.e., objects can
cross the border of a region in arbitrary ways while being undetected. This
changes if assumptions about the space covered by detection areas are viable,
e.g., for controlled deployments. We discuss three such coverage assumptions
(CA) in the following:
No assumption (CA∅): We assume that nodes have been deployed ran-

domly, and it is not fixed a priori which parts of space are observed.
Coverage Assumption Border (CAB): Nodes have been deployed in

such a way that their detection areas cover the border RB entirely.
Coverage Assumption Border Interior (CABI): The deployment gua-

rantees that objects inside as well as objects on the border are detected.
Thus, DS∅ only occurs for objects that are in RE .

Lemma 22. In case of CA∅, an object O that is temporarily undetected, i.e.,
DS∅ occurs at least once in D

R
O, could conform to any development P (O,R).

Proof. As stated above, detection areas may have any size or shape and thus
the set of points that is unobserved could intersect with any partition of R.
An undetected object O could be at any of these unobserved points in space



44 Moving Objects Sensor Databases

and thus in any partition of R. Hence, O may conform to any development
that describes the relation between O and R. �

According to Lemma 22, any occurrence of DS∅ or DS• in the detection
sequence rules out P (O,R) = F if assumptions about the coverage of space
are not viable. SN with CA∅ can only derive P (O,R) = F if the object is
detected according to either DSI , DSB or DSE at all times. Hence, DR

O must
equal

{
DSI |DSB |DSE

}
as shown in Equation (37).

For SN with CAB , we can assume that objects do not cross the border
while being undetected. To derive that P (O,R) = F , the SN must ensure
first that the detection sequence of O does not conform to the correspond-
ing detection term in Table 4. Once this condition is met, it is certain that
P (O,R) = F if the detection sequence D

R
O does not contain DS• (cf. Equa-

tion (38)).
The reasoning for CAB applies to SN with CABI as well. Additionally,

any undetected object must be outside of the region R, i.e., in RE . Thus, we
replace any occurrence of DS∅ with DSE prior to determining if the detection
sequence of O conforms to the term in Table 4 associated with P (O,R).

Summary – Development results for queries with regions.

Given a detection term d associated with a development P (O,R), Equa-
tions 37-39 summarize our findings regarding the translation of sequences of
object detections into the result of a development P (O,R).

PCA∅ (O,R) =

{ T iff D
R
O conforms to the corresponding detection term d in Table 4

F iff D
R
O does not conform to d and D

R
O =

{
DSI |DSB |DSE

}
M Otherwise

(37)

PCAB (O,R) =

{ T iff D
R
O conforms to the corresponding detection term d in Table 4

F iff D
R
O does not conform to d and D

R
O =

{
DSI |DSE |DS∅|DSB

}
M Otherwise

(38)

PCABI (O,R) =

⎧⎪⎨
⎪⎩

T iff D
R
O conforms to the corresponding detection term d

in Table 4 with DS∅ replaced by DSE

F iff D
R
O does not conform to d and D

R
O=

{
DSI |DSE |DSB

}
M Otherwise

(39)

Theorem 1. The results for developments that describe the relationship of
an object and region derived according to Equations 37-39 are optimal.

Proof. Let ΩP(O,R) be the set of objects that conform to a development
P (O,R) in question. The set of objects where P (O,R) = T is the largest
subset of ΩP(O,R) a sensor network can derive according to the lemmas in
Section 7.4.1. Similarly, the set of objects where P (O,R) = F is the largest
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superset of ΩP(O,R) the sensor network can derive. Therefore, the set of ob-
jects where P (O,R) = M is minimal, i.e., contains only objects where the
accuracy of the object detection prevents a definitive answer. �

7.4.2 Detection Terms for Zones

According to Table 3, all predicates that express the relationship between an
object and a zone yield T or F , but never M. Furthermore, the table shows
that for any predicate P (O,Z), there exists exactly one detection scenario
DSi which yields P (O,Z) = T . All other detection scenarios DSj �= DSi yield
P (O,Z) = F . Compared to regions, this eases the translation of detection
sequences to development results considerably.

Lemma 23. Let DSi be the detection scenario which yields Pi (O,Z) = T ,
and DSj is the detection scenario which yields Pj (O,Z) = T . If the de-
tection sequence D

Z

O conforms to the term DSi � DSj (cf. Definition 34),
then Pi (O,Z) � Pj (O,Z) = T . If D

Z

O does not conform to DSi � DSj, then
Pi (O,Z) � Pj (O,Z) = F .

Proof. We prove Pi (O,Z) � Pj (O,Z) = T first: According to Definitions 31
and 34, conformance of DZ

O to DSi� DSj means that the object O was detected
with DSi during [t1, t2[ and then with DSj at t2. Since DSi yields Pi (O,Z) = T ,
we derive that Pi (O,Z) = T for the interval [t1, t2[ and Pi (O,Z) = T at t2.
Hence, Pi (O,Z) � Pj (O,Z) = T .

If DZ

O does not conform to DSi � DSj , there is no substring in D
Z

O where
DSi is followed by DSj . This means that either DSj never follows DSi, or DSi

or DSj never occur. For all of these cases, the sensor network can guarantee
that O does not fulfill Pi (O,Z) � Pj (O,Z) and thus return F . �

Lemma 24. Let DSi be the detection scenario which yields Pi (O,Z) =
T , and DSj is the detection scenario which yields Pj (O,Z) = T .
Pi (O,Z) �̃Pj (O,Z) = T if DZ

O of O conforms to DSi �̃ DSj

Proof. Analogous to Lemma 23. �
Lemmas 23 and 24 ease the definition of detection terms for any of the

584 developments with zones. Due to the large number of developments with
zones, we do not list a detection term for each one in this paper and explain
how to derive maximal detection terms based on these lemmas: Consider
a development P (O,Z) = P1 (O,Z) θ1P2 (O,Z) θ2 . . . θq−1Pq (O,Z) where θi
represents any concatenation operator, i.e., θi ∈ {�, �̃ }. Let DSi be the detec-
tion scenario where Pi (O,Z) = T according to Table 3. Thus, the detection
term starts with DS1 and the second detection scenario in the term is DS2.
If the concatenation operator between P1 (O,Z) and P2 (O,Z) is �, then the
detection term starts with DS1 � DS2. Otherwise, the detection terms starts
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with DS1 �̃ DS2. Next, we consider P3 (O,Z) and how it is concatenated to
P2 (O,Z). This continues until a detection scenario corresponding to Pq (O,Z)
terminates the detection term. For example, Enter (O,Z) defined in (29) has
the detection term DSE

� DSB
� DSI .

Theorem 2. Suppose ΩP(O,Z) is the set of objects that conform to a develop-
ment P (O,Z). The set of objects determined by the SN where P (O,Z) = T
equals ΩP(O,Z).

Proof. Directly follows from Lemmas 23 and 24 and the fact that there does
not exist a predicate P (O,Z) which yields M for any detection scenario. �

This concludes our discussion regarding the contributions Semantics
and Optimality. The remainder of this paper addresses the contribution
Efficiency.

8 Spatio-Temporal Query Processing in SN

We have implemented a distributed query processor for spatio-temporal
queries in SN. This section outlines the core mechanisms of the query proces-
sor as follows: First, Section 8.1 proposes a set of data structures used for the
computation of detection scenarios (Section 8.2). Second, we describe how
to to collect the information required for this computation at the base sta-
tion (Section 8.3). The core contribution of this section is a proposal how to
process spatio-temporal queries. This includes two execution strategies that
reduce the number of messages required to process such queries (Section 8.4).
Reducing the number of messages is important, since energy consumption
due to communication typically dominates the overall energy consumption of
sensor nodes [1, 41]. Mechanisms that aim at regions or dynamic zones are
omitted here due to lack of space.

The query processor must return every object O that conforms to P (O,Z).
Prior to processing a query, the following steps must be completed:
1. Definition of a zone Z.
2. Specification of the movement of interest as a spatio-temporal develop-

ment P (O,Z).
3. Dissemination of a list of nodes representing Z and the query P (O,Z) to

all nodes.
The SN must compute the detection scenario whenever an object is detected.
Based on the detection scenario, the SN determines if a predicate of the
query is true using Table 3. Thus, it is sufficient to limit the discussion in the
following to deriving detection scenarios from object detections.

The distributed strategies notify the base station whenever a predicate
P (O,Z) in P (O,Z) is satisfied. The base station determines if O has ful-
filled a development P (O,Z) using these notifications. Note that a node may
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send several notifications regarding a predicate to the base station because
it detects the same object more than once. This is intended, for two reasons:
First, the query P (O,Z) may contain a single predicate more than once, e.g.,
Touch (O,Z). Second, coordinating nodes to prevent such redundant notifi-
cations requires communication. A pre-study of ours has shown that such a
coordination only pays off if the network is very small, the zone is small, and if
the object moves through detection areas of most nodes repeatedly. Thus, we
do not intend to prevent this. On the other hand, we show in Section 8.4 how
to exploit spatio-temporal semantics to reduce the number of notifications.

8.1 Data Structures and Algorithms

To store the information on objects detected, we use a list Detections. It de-
pends on the strategy where Detections is stored: For the centralized strategy,
it is at the base station. Contrary to that, the distributed strategies share and
replicate the elements of Detections in such a way that sensor nodes can com-
pute detection scenarios based on it. Every element of Detections represents
the detection of an object O by a node Si during a time interval [tentry, texit].
Thus, every element of Detections has the following structure:

NodeID: Identifier of the node Si detecting O.
ObjectID: An identifier of the object O that has been detected by Si.

tOentry: The time at which O has entered the detection area of Si.
tOexit: This value either equals Ø or a time t > tentry. If it equals Ø, this

indicates that Si is still detecting O. Otherwise, this value equals
the time texit at which O has left the detection area of Si.

We say an element E of Detections originates from node Si if E.NodeID = Si.
When an object O enters the detection area DAi at t1, the corresponding
node Si generates a list entry [Si,O,t1,Ø] and stores it in Detections. Once
O leaves DAi at t2, this list entry is updated to [Si,O,t1,t2]. Note that an
object that repeatedly enters and leaves the detection area of a node may
result in several list elements originating from the same node.

For non-continuous detection mechanisms nodes can determine tentry and
texit by temporal interpolation: Suppose Si checks periodically at t0, t1, . . . for
objects. An entry occurs at tj if Si did not detect an object at tj−1 but detects
it at tj , i.e., tentry = tj . An exit occurs at tj if Si detected an object at tj and
does not detect it at tj+1, i.e., texit = tj+1. Research on detection mechanisms
reviewed in Section 3.1 has yielded approaches to detect continuously moving
objects using non-continuous detection mechanisms with limited temporal
resolution.
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8.2 Computing Detection Scenarios

According to Section 6.3, the sensor network must compute how the detection
set DetSet

O
t intersects with Z and Z, to compute a detection scenario at time

t for a given object O. We refer to this computation as isDetecting (S∗, t,O).
Its result is as follows:

isDetecting (S∗, t,O) =
{
T iff ∃Si ∈ S

∗ : detect (Si,O, t)
F Otherwise

The input parameter S
∗ is either Z or Z. The implementation of the func-

tion isDetecting (S∗, t,O) is straightforward: It consists of a single iteration
over Detections and Z. Due to this simplicity, an algorithm is omitted here.
By computing isDetecting (Z, t,O) and then isDetecting

(
Z, t,O

)
, we obtain

two boolean values which indicate whether Z and Z intersect with DetSet
O
t .

According to Lemma 8, this is sufficient to compute a detection scenario in
the context of a zone, and Table 5 illustrates this: Each cell corresponds to a
pair of booleans that represent the result of the calls to isDetecting (Z, t,O)
and isDetecting

(
Z, t,O

)
and contains the corresponding detection scenario.

isDetecting
(
Z, t,O

)
T F

isDetecting (Z, t,O) T DSB DSI

F DSE DS∅

Table 5 Deriving detection scenarios using isDetecting (S∗, t,O) with S
∗ ∈

{
Z,Z

}

We now address the collection of the elements in Detections to ensure
that the result of the detection-scenario computation according to Table 5 is
correct.
Definition 38 (Correctness): The computation of a detection scenario DS∗

is correct if the space partition that corresponds to DS∗ (cf. Definitions 24-26)
contains the position p ∈ E

d of the object detected. �

Definition 39 (Completeness): The list Detections is complete regard-
ing an object O and a time t if Detections contains all existing elements
[Si, O, t1, t2] with t1 ≤ t and t ≤ t2 or t2 = Ø. �

Lemma 25. If Detections is complete, the detection scenario computed ac-
cording to Table 5 is correct.

Proof. Without loss of generality, assume the computed detection scenario
regarding an object O and a time t is DSE . According to Definition 16, this
means that O is in Z

E . Considering Lemma 8, this implies that there is at
least one node Si ∈ Z that detects O. The computed detection scenario would



Spatio-Temporal Query Processing in SN 49

be incorrect, if there existed another node Sj ∈ Z which detects O at t as
well. Such a node cannot exist since Detections and Zones are complete. For
the other detection scenarios, the proof is similar. �

Summing up, the base station or an arbitrary sensor node must store a
complete list Detections to compute a detection scenario for a given object O
and a time t. Our goal in the following is acquiring a complete list Detections
while minimizing the number of messages.

8.3 Centralized data collection

Notifying the base station whenever an object enters or leaves the detec-
tion area of an arbitrary node Si is a straightforward approach to achieve
completeness. For every incoming notification, the base station can mod-
ify its version of Detections and compute a detection scenario, as shown in
Algorithm 8.1.

The first part of Algorithm 8.1 is executed by any node Si detecting ob-
jects and results in a notification for every object detection. If Si is not a
communication neighbor of the base station, the notification is forwarded to
the base station via multiple hops. The base station executes the second part
once it receives the notification and modifies Detections accordingly. Prior to
computing the detection scenario, the base station has to wait tdelay. This en-
sures that notifications of nodes which simultaneously detect an object have
arrived before the detection scenario is computed. tdelay is the maximum
time a notification may need to be forwarded to the base station. Its actual
value depends on factors such as communication hardware, SN size, routing
protocol etc. For our reference implementation we use a delay of 30 seconds.

Algorithm 8.1: Centralized data collection
1 When O enters/leaves DAi of Si at t do
2 Si sends corresponding notification to base station
3 end
4 When base station receives notification from Si do
5 Modify Detections at base station
6 Wait tdelay
7 Compute [isDetecting (Z, t,O) , isDetecting

(
Z, t,O

)
]

8 end
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8.4 Distributed data collection

In the following, we show how to distribute Detections in a way that allows
nodes to compute detection scenarios while only storing a part of Detections.
This reduces communication for two reasons:
• Nodes only notify the base station of objects that at least fulfill one

P (O,Z) ∈ P (O,Z).
• To compute detection scenarios, nodes only communicate with nodes in

their vicinity, i.e., multi-hop messages only occur if an object fulfills a
predicate of the query.

The latter point stems from the following idea: When a node Si detects an
object O, only nodes in its vicinity can detect the object at the same time.
This is because O at position p ∈ E

d can be detected only by nodes whose
detection area contains p. Even though p is typically unknown due to the
inaccuracy of the detection mechanism, one can derive that only nodes close
to Si could possibly detect O at the same time.
Definition 40 (Detection Neighbor): Node Sj is a detection neighbor
of Si if the detection areas of both nodes overlap, i.e., DAi ∩ DAj �= ∅.
DetNeighi is the set of detection neighbors of Si. �

As discussed in Section 3.1, detection areas are indeterminable for some
SN. We show in Section 8.4.1 how a node can approximate its detection
neighbors.
Notation (Detection Neighbor Subsets): The subset of detection neigh-
bors of a node Si that are in Z are denoted by DetNeigh

Z

i . Similarly,
DetNeigh

Z

i contains all detection neighbors of Si that are outside of Z.
Every node Si can derive for each detection neighbor Sj ∈ DetNeighi if it

is in Z or not since the query has been disseminated to all nodes previously.

Lemma 26. Detections stored at Si is complete regarding the object O and
time t if Si detects O at t and obtains all list elements for Detections regarding
O originating from its detection neighbors DetNeighi.

Proof. We prove this by showing that there cannot exist a node Sj /∈
DetNeighi that detects O at t. Sj /∈ DetNeighi implies that the detection
areas of Si and Sj do not overlap, i.e., DAi ∩ DAj = ∅. Thus, there does
not exist a p ∈ E

d where Si and Sj can detect O simultaneously. Hence, Sj

cannot detect O at t. �
Lemma 26 limits the nodes from which Si must acquire list elements for

Detections to the detection neighbors DetNeighi. By taking into account that
Si is either in Z or Z, we actually can compute a correct detection scenario
without Detections being complete.
Definition 41 (Semi-Completeness): Detections regarding O and t stored
at a node Si ∈ Z is semi-complete if it contains all list elements [Sj ,O,t1,t2]
with t1 ≤ t ≤ t2 where Sj ∈ DetNeigh

Z

i . Analogously, Detections regarding O
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and t stored at a node Si ∈ Z is semi-complete if it contains all list elements
[Sj ,O,t1,t2] with t1 ≤ t ≤ t2 where Sj ∈ DetNeigh

Z

i . �

Lemma 27. Let Si detect O at t. Without loss of generality, let Si ∈ Z. If
Detections stored at Si is semi-complete regarding O and t, the computation
of the detection scenario at Si according to Table 5 is correct.

Proof. Since Si detects O, one can deduct isDetecting (Z, t,O) = T .
Thus, only isDetecting

(
Z, t,O

)
remains to be computed by Si. Comput-

ing isDetecting
(
Z, t,O

)
only requires list elements originating from nodes

in Z. �
Lemma 27 implies that the detection scenario computation is still correct

if Detections contains only list elements from a subset of certain detection
neighbors. This reduces the number of messages, in particular because this
subset is empty for most nodes.
Definition 42 (Border Node): A border node is
• a node Si ∈ Z with DetNeigh

Z

i �= ∅, or
• a node Si ∈ Z with DetNeigh

Z

i �= ∅.

Figure 8 illustrates the concept of border nodes: Non-border nodes inside Z

are represented by black-colored circles. Black-colored squares correspond to
border nodes inside Z. Similarly, gray-colored squares and circles correspond
to border and non-border nodes outside of Z, respectively. A significant share
of the nodes in this scenario are non-border nodes. This is important, because
non-border nodes compute detection scenarios without obtaining elements for
Detections originating from any detection neighbor.

Lemma 28. If a non-border node Si detects O at t and modifies Detections
accordingly, Detections stored at Si is semi-complete.

Proof. Without loss of generality let Si ∈ Z and DetNeigh
Z

i = ∅, i.e., Si is not
a border node. DetNeigh

Z

i = ∅ implies that there does not exist a node Sj ∈ Z

whose detection area overlaps with the detection area of Si. Thus, simultane-
ous detection of an object by Si and some Sj ∈ Z is not possible by definition.
Hence, detection of an object O by Si implies isDetecting

(
Z, t,O

)
= F and

isDetecting (Z, t,O) = T . �
Depending on the structure of the development in question, the concept

of border nodes allows for further reduction of communication, as follows:

Lemma 29. Let P (O,Z) = P1 (O,Z)�P2 (O,Z). Detections and the resulting
list elements stored in Detections originating from non-border nodes are not
necessary to process P (O,Z).

Proof. Without loss of generality, assume the non-border node Si detects O
at time t1 and derives a detection scenario DS∗ that yields P1 (O,Z) = T

�
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according to Table 3. If O fulfills P (O,Z) at some time t2 > t1, there will
be a border node Sj that detects O and computes DS∗. Thus, Sj derives
P1 (O,Z) = T as well and if O fulfills P (O,Z) this must be followed directly
by P2 (O,Z) = T . If no such border node exists, O does not fulfill P (O,Z)
and therefore O is irrelevant regarding the users interest. Hence, the detection
of a non-border node is irrelevant for developments like P (O,Z). �

Summing up, non-border nodes are inactive when developments like
Enter (O,Z) are processed.

8.4.1 Approximation of Detection Neighbors

There exist detection mechanisms where the detection area is indeterminable,
i.e., nodes cannot determine their detection neighbors. We solve this by using
a superset ApproxDetNeighi which contains at least all detection neighbors
DetNeighi, i.e., DetNeighi ⊆ ApproxDetNeighi. Results obtained while using
ApproxDetNeighi instead of DetNeighi are still correct, because those nodes
in ApproxDetNeighi that are not detection neighbors of Si cannot detect an
object at the same time as Si. Several approaches to derive such a superset
are conceivable, and we outline two of them:
Communication Neighbors: If the communication range can be assumed

to be much larger than the maximum detection range, a valid superset is
CNi, i.e., ApproxDetNeighi = CNi. This approach is applicable to most
detection mechanisms used in SN, and we use it for our evaluation.

Node Positions: Another approach is applicable if the nodes know their
position: The set ApproxDetNeighi contains all nodes with a distance of
at most 2 · Dmax to Si. The factor 2 ensures that the circles around POSi
with radius Dmax do not overlap.

Next, we propose two strategies to obtain the list elements for Detections
originating from detection neighbors.

8.4.2 Reactive Data Collection

Algorithm 8.2 outlines the reactive strategy, and its core idea is as follows:
According to Table 3, for each predicate P (O,Z) there is one detection sce-
nario where P (O,Z) = T . Thus, each node can determine which predicates
and thus the detection scenarios that are relevant to process the query. For
instance, for P (O,Z) = SNEnter (O,Z) each node knows that only DSE and
DSI are relevant. When an object O enters or leaves the detection area of Si

at time t, Si checks if this possibly results in a predicate P (O,Z) of the query
being true. If so, Si requests Detections-entries on O from a subset of its de-
tection neighbors. We denote this subset as DetNeigh

sub
i . After receiving and

storing the entries requested from DetNeigh
sub
i , Si computes the detection
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Algorithm 8.2: Reactive Strategy
1 When O enters or leaves the detection area of Si do
2 Modify Detections as described in Section 8.1;
3 DetNeigh

sub
i ← Detection neighbors that must be queried according to Table 6;

4 Request tuples on O from every node in DetNeigh
sub
i ;

5 Wait for response from every node in DetNeigh
sub
i ;

6 Determine detection scenario according to Table 5;
7 Notify base station if O fulfills a predicate of the query according to Table 3;
8 end

Reactive Si ∈ Z Si ∈ Z

DSI Entry DetNeigh
Z

i ∅

Exit ∅ DetNeighi

DSB Entry DetNeigh
Z

i DetNeigh
Z

i

Exit ∅ ∅

DSE Entry ∅ DetNeigh
Z

i

Exit DetNeighi ∅

Table 6 Detection-neighbor partitions
for the reactive strategy Fig. 20 Detection Events

(S1 ∈ Z, S2 ∈ Z)

scenario as described above. If the detection scenario computed indicates that
a predicate in P (O,Z) is true, the base station is notified. The core question
is: ”When Si detects O, which detection neighbors could have tuples that
are relevant to compute the detection scenario, i.e., which nodes must be in
DetNeigh

sub
i ?”

We can derive DetNeigh
sub
i based on (1) the detection scenario to compute,

(2) whether O entered or left the detection area of Si and (3) whether Si is
in Z or Z. Table 6 shows DetNeigh

sub
i for any combination of these three

parameters. We use Figure 20 to explain each entry: The first row is related
to DSI , i.e., P (O,Z) contains Inside (O,Z). DSI can only occur (1) if O enters
the detection area of a node in Z, or (2) if O leaves the detection area of
a node in Z. Case (1) is illustrated at t2 and t5 in Figure 9. To determine
if DSI has occurred, S2 only has to communicate with detection neighbors
outside of Z, i.e., with S1. This is reflected by DetNeigh

Z

i in Table 6. Case (2)
occurs at t3 and t8 in Figure 20. The node whose detection area the object
has left must send a request to all detection neighbors, i.e., DetNeighi. This
is because there must be at least one detection neighbor in Z and no detection
neighbor outside of Z that still detects the object. The reasoning for DSE is
analogous. DSB only occurs if nodes inside and outside of Z are in DetSet

O
t .

Hence, any Si ∈ Z requests only tuples from DetNeigh
Z

i and vice versa.
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8.4.3 Proactive Data Collection

The core idea of the proactive strategy is that a nodes whose detection area
was entered or left by an object send this information to some of their de-
tection neighbors (cf. Algorithm 8.3). This allows each receiver of the update
to check if a predicate of the query was true. Algorithm 8.3 illustrates the
strategy.

Proactive Si ∈ Z Si ∈ Z

DSI Entry ∅ DetNeigh
Z

i

Exit ∅ DetNeigh
Z

i

DSB Entry DetNeigh
Z

i DetNeigh
Z

i

Exit DetNeigh
Z

i DetNeigh
Z

i

DSE Entry DetNeigh
Z

i ∅

Exit DetNeigh
Z

i ∅

Table 7 Detection-neighbor partitions for the proactive strategy

The computation of DetNeigh
sub
i is the most important step. As with the

reactive strategy, it depends on the three aforementioned parameters which
detection neighbors must be in DetNeigh

sub
i . For any combination of these

parameters, there is an entry in Table 7. We briefly explain each entry: Recall
that DSI can either occur (1) when an object enters the detection area of
a node in Z or (2) when the detection area of a node in Z is left. Using
Figure 20 again, Case (1) occurs at t2 and t5. To compute the detection
scenario correctly at t2, S2 must know that S1 ∈ Z currently detects X1.
Case (2) occurs when X1 leaves the detection area of S1 at t3 and t8. Thus, if
the query requires DSI , nodes in Z must receive updates from their detection
neighbors outside of Z, i.e., DetNeigh

Z

i . The entries for DSE are explained

Algorithm 8.3: Proactive Strategy
1 When O enters/leaves detection area of Si do
2 Modify Detections as described in Section 8.1;
3 DetNeigh

sub
i ← detection neighbors whose information must be updated

according to Table 7;
4 Send updated list entries to every node in DetNeigh

sub
i ;

5 Goto Line 9;
6 end
7 When Si receives updated tuples about O do
8 Insert updated tuples into Detections;
9 Determine detection scenario according to Table 5;

10 Notify base station if O fulfills a predicate of the query;
11 end
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analogously: Nodes outside of Z must be informed about object detections of
their detection neighbors inside Z, i.e., DetNeigh

Z

i . DSB requires simultaneous
detection by nodes in Z as well as Z. Thus, every Si ∈ Z must be informed
about detections of detection neighbors in Z and vice versa.

8.5 Impact of Node Failures

Node failures can have two consequences: (1) An object O that would have
been detected is not detected. (2) Nodes detect O, but the detection-scenario
computation is possibly incorrect because it is based on an incomplete list
Detections. Section 7 has shown how users can express queries if they are
interested in objects that are temporarily unobserved. Thus, we focus on (2),
i.e., we notify the user if query results returned could be incorrect due to node
failures. We discuss the detection of failures first and continue with failure
handling.

8.5.1 Failure Detection

The reactive strategy implicitly supports failure detection because a node
Si expects responses from a set of detection neighbors DetNeigh

sub
i . Si can

derive that detection neighbors which have not sent such a response after a
timeout have failed.

Failure detection requires additional measures with the proactive strat-
egy, because failed detection neighbors cannot be identified based on missing
responses. One such measure is sending beacon messages periodically and
assuming node failures if beacons are missing. We include this overhead in
our evaluation. This problem also occurs with the centralized strategy, i.e.,
additional messages are required to detect node failures.

8.5.2 Failure Handling

Our goal is to notify the user if a failure could have an impact on the query
result and mark the corresponding result accordingly. We refer to the node
whose failure has been detected as Sfail. Any detection scenario DSerr com-
puted by a node Si with Sfail ∈ DetNeighi may be incorrect because the list
Detections was incomplete.

Lemma 30. If DSerr = DSB, the failure of Sfail did not affect the computa-
tion of the detection scenario.

Proof. According to Table 3, DSB occurs if there exists at least one node in
Z and one node outside of Z that detect the object. This is independent from
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the potential detection of Sfail and thus the detection scenario computation
is not affected by the failure of Sfail. �

Lemma 31. If DSerr = DSI and Sfail ∈ Z or DSerr = DSE and Sfail ∈ Z, the
failure of Sfail did not affect the computation of the detection scenario.

Proof. We prove this only for the case of DSerr = DSI . The reasoning for
DSerr = DSE is analogous. DSerr = DSI implies that there exists a node
Sj ∈ Z that currently detects O. Since Sfail ∈ Z, an additional list entry
originating from Sfail would not change the result of the detection scenario
computation. Hence, the failure of Sfail cannot affect the result. �

We infer that the base station must be notified only if one of the following
two cases occurs:
• DSerr = DSI , and Sfail ∈ Z

• DSerr = DSE , and Sfail ∈ Z

If one of these cases occurs, the notification to the base station contains DSerr

and Sfail.

9 Evaluation

Our evaluation investigates the communication required for spatio-temporal
query processing. Communication is the most important factor regarding the
lifetime of battery-powered nodes. We address the following hypotheses:
H1 The centralized strategy does not scale as well as the distributed strate-

gies regarding network size and node density.
H2 For Inside (O,Z) and Disjoint (O,Z), the proactive strategy is most-

energy efficient.
H3 The reactive strategy is the most energy-efficient for Meet (O,Z).
H4 Distributed strategies reduce communication required for processing

spatio-temporal developments.
We use the number of messages as a proxy for communication. This is
justified in Appendix A. It analyses the energy consumption of sensor nodes
and energy measurements with Sun SPOT [50] and Mica [55] nodes. In the
following, we present results from experiments using simulations as well as
Sun SPOT deployments.

9.1 Simulation Configuration

We have used the KSN Sun SPOT simulator [6] to obtain our results. This
is because it allows the usage of the same software for simulations as well as
Sun SPOT deployments. Each simulation run consists of the following steps:
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1. Randomly deploy 100-300 nodes over an area of constant size. Using an
area of constant size ensures different node densities for different network
sizes, i.e., varying numbers of detection and communication neighbors.

2. Define a zone containing between 2 and 30 nodes.
3. Generate 50 different object paths using a random walk model with start-

ing points randomly chosen.
4. For each object path, evaluate each detection scenario using each strategy.

The results presented here are based on more than 100.000 simulation runs.
Recall that determining the detection area is not possible for certain de-

tection mechanisms. Our simulations take this into account by using the set
of communication neighbors as a proxy for the set of detection neighbors:
Every node sends a beacon periodically, and every receiver of such a beacon
adds the node to the list of detection neighbors. We report the additional
communication related to beacons separately. Note that in case of proactive
data collection, the beacon messages can be used for failure detection as well.

9.2 Simulation Results

Figure 21 shows that H1 holds: The graph plots the average number of mes-
sages per simulation run to compute Inside (O,Z). We omit similar graphs
for the other predicates. The number of messages required by the central-
ized strategy increases linearly with network size. This is expected, because
objects are detected by more nodes. This results in many messages which
must be forwarded to the base station. Despite the additional communication
to approximate detection neighbors, the increasing network size (and node
density) affects both distributed strategies only marginally. We leave more
sophisticated measures to determine detection neighbors more efficiently for
future work.
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Fig. 21 Scalability of data-collection strategies for Inside (O,Z) for SN with 100-300
nodes
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Fig. 22 Comparison of communication costs for the evaluation of different detection
scenarios

To investigate H2 and H3, we compare the average number of messages
required to process a given predicate. The result in Figure 22 indicates that
distributed strategies reduce communication by 45%−85%, compared to the
centralized strategy. As expected, the proactive strategy is advantageous for
Inside (O,Z) and Disjoint (O,Z). This is because S

∗ is smaller for the proac-
tive strategy compared to the reactive one when objects leave a detection
area of a node Si ∈ Z (cf. Tables 6 and 7). These roles are reversed for DSB ,
because the proactive strategy is triggered more often than the reactive one.
These results confirm H2 and H3.

Our simulation results support H4 as well: Table 8 shows the aver-
age number of messages to determine that O conforms to Enter (O,Z) or
SNEnter (O,Z) (cf. equations (29) and (33)), respectively. Compared to the
centralized strategy, the distributed strategies reduce communication by 51%
to 89%. This is because only few nodes send messages to the base sta-
tion via multiple hops. The proactive strategy is most efficient, because
SNEnter (O,Z) does not contain Meet (O,Z). According to Lemma 29, all
non-border nodes can stay inactive for Enter (O,Z). This explains the differ-
ence between the results for SNEnter (O,Z) and Enter (O,Z).

Strategy Number of Messages per Object for
Enter (O,Z) SNEnter (O,Z)

centralized 334 334
proactive 44,3 123,8
reactive 39,1 163,1

Table 8 Avg. number of messages for Enter (O,Z) and SNEnter (O,Z)
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Fig. 23 Node distribution and object paths for the Sun SPOT case study conducted
at the Karlsruhe Institute of Technology

9.3 Sun SPOT Case Study

Simulations abstract from certain real-world phenomena which may impact
performance, e.g., interferences or collisions. We have conducted a case study
using several indoor and outdoor deployments to confirm our simulation re-
sults in a real SN. We now present the most important results.

The node distribution of an outdoor deployment is shown in Figure 23:
We have mounted 50 Sun SPOT sensor nodes on trees over an area of more
than 2500m2 and positioned the base station (black square) in the middle of
the SN. Nodes inside and outside of Z are represented by triangles and circles
respectively. Two remote controlled cars O1 (solid line) and O2 (dashed line)
moved through the SN. We have processed the developments Enter (O1,Z)
and Touch (O2,Z) with all strategies and counted the messages required.

The centralized strategy always requires significantly more communica-
tion than the other two strategies. This is surprising, because the experiment
favors the centralized strategy: Experiments with the base station at the bor-
der of the SN result in even larger differences compared to the distributed
strategies. Objects that are detected by more nodes or that move in patterns
intensify this effect. Considering Tables 6 and 7, the results of the distributed
strategies are expected: As shown above, the proactive strategy requires less
communication for Disjoint (O1,Z) and Inside (O1,Z) than the reactive one.
For Meet (O1,Z), these roles are reversed. The proactive strategy is better for
Enter (O1,Z) than the reactive strategy because Meet (O1,Z) only occurs a
few times. This is different for O2: Meet (O2,Z) is true for a long time due to
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the trajectory of O2 which results in many messages with the proactive strat-
egy. This confirms our simulation results. We conclude that the evaluation
supports all hypotheses.

Strategy Number of Messages
Enter (O1,Z) Touch (O2,Z)

centralized 264 302
proactive 159 217
reactive 184 178

Table 9 Results for Enter (O1,Z) and Touch (O2,Z)

10 Conclusions

There exist many SN applications that track moving objects. While research
has shown that accessing SN declaratively is advantageous, only relational
queries have been addressed so far. Relational operators are insufficient to
express the spatio-temporal semantics required by applications that track
objects. This paper provides the foundations for spatio-temporal queries in
SN. By developing an abstract detection model and introducing the concept
of detection scenarios, we have formalized the information obtained by object
detection mechanisms in SN. Furthermore, we systematically investigated
different types of spatio-temporal queries in SN: Based on detection scenarios,
we have translated object detections into results for every type of query. There
are cases where the inaccuracy of object detection is in the way of a definite
answer to a query, i.e., the query result is approximate. As we have proven,
the results derived by our techniques are optimal in these cases. As a last
step, we have proposed concepts for energy-efficient in-network processing
of spatio-temporal queries in SN. We have evaluated our measures using
simulations as well as real deployments of sensor nodes. The results how that
our in-network processing reduces communication by 45%-89% compared to
collecting all information on object detections at the base station.
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Energy-Consumption in Sensor Networks

Prior to the energy efficient implementation of the query dissemination and
spatio-temporal query processor, we conducted a set of experiments to de-
termine the important aspects of energy efficiency in sensor networks. The
setup and the results of these experiments are provided in this section and
justify our approach to evaluate our measures by counting the number of mes-
sages sent and received. More precisely, the following hypotheses are proven
experimentally:

H.1 Exchanging information via wireless communication reduces the
time until batteries are depleted significantly.

H.2 Energy consumption for sending a message is marginally higher than
receiving a message.

H.3 The number of bytes contained in a single message has a minor
impact on energy consumption, particularly if energy-efficient MAC
protocols are used.

A.1 Experimental Setup

To measure the energy consumption of a sensor node we used the Sensor
Node Management Device (SNMD) [29]. The SNMD was attached between
the battery and energy consuming components of the sensor nodes, e.g., CPU,
memory, wireless communication chip and sensing board. Figure 24 illus-
trates a simplified circuit diagram of the setup and Figure 25 shows the
energy measurement device with a Mica mote attached to it1. We measured
the voltage drawn by the node at a high temporal resolution of up to 20 kHz
and computed the energy consumption based on this.

1 The experiments were conducted at a time when the SNMD was still in development
and had a less compact appearance, but the basic features have not been changed since
then.

M. Bestehorn, Querying Moving Objects Detected by Sensor Networks,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-4927-0,
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Fig. 24 Circuit diagram for energy
measurements

Fig. 25 Sensor Node Management De-
vice [29] and attached Mica Mote

A.2 Results and Analysis

For each measurement, we ran different applications with different properties
regarding energy consumption on the nodes. We describe these applications
first and the analyze the results of the energy measurement in the context of
our hypotheses.

A.2.1 Impact of Communication on node lifetime

For this experiment, we fully charged the batteries of three Sun SPOTs ac-
cording to the specification of the battery. Afterwards, we assigned one of the
following applications to one of the SPOTs:
High: This application prevented the usage of any power conservation fea-

tures of the SPOTs. To increase power consumption, the radio and CPU
were in use permanently.

Medium: This application raised an event on the SPOT every five min-
utes. After the event was raised, the SPOT sends data and then uses the
shallow sleep mode to conserve energy while waiting for the next event.
Note that the radio is not switched off during shallow sleep.

Low: A SPOT running this application is put into shallow sleep mode at
all times.

While shallow sleep mode reduces energy consumption considerably, the
overall power consumption is still orders of magnitude higher than in deep
sleep mode. Table 10 compares both power saving modes.

SPOTs that run mainly in deep sleep mode can run for up to 900 days.
Figure 26 shows the measured voltage over time (in hours). The experiment

ends when the battery reaches a critical voltage at ≈ 3.3V . If this occurs, the
battery hardware shuts the SPOT down. The application “high” depleted the
battery an hour while each of the other applications ran 15 hours or more.
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Fig. 26 Node lifetime measurement result

Shallow Sleep Deep Sleep
CPU On with CPU clock stopped Off
Master System Clock On Off
Low-level firmware On Ona

RAM On, but inactive Main power off, RAM con-
tent preserved with low power
standby

Flash memory On, but inactive Off
CC2240 radio chip On Off
AT91 peripheral clocks On, if in use, otherwise off Off
External/sensor board On Off
Power consumption ≈ 24 mA ≈ 32 μA

Table 10 Energy saving modes for Sun SPOTs

a This is required to wake up the SPOT, e.g., at a given time.

Thus, constant usage of the CPU and radio drastically reduce the lifetime of
the node. Comparing the “medium” and the “low” application shows that the
additional use of the radio compared to using the sleep mode continuously
reduces node lifetime considerably.

Regarding the absolute values in Figure 26 it must be noted, that in shal-
low sleep certain parts of the hardware are still switched on and consume
energy as shown in Table 10. Most importantly, the radio is still switched
on. Switching the radio off would require energy-aware MAC protocols, e.g.,
B-MAC [46], that ensure communication between nodes while switching off
the radio for certain periods of time. Initial tests of the three applications
with B-MAC resulted in the following: The “high” application was unaffected,
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since the radio is constantly in use and B-MAC cannot shut down the radio
chip. Both, the “medium” and the “low” applications achieved lifetimes of
more than two weeks and the experiment was stopped. While these proto-
cols increase node lifetime by reducing energy consumption for idle listening,
they increase energy consumption for sending messages due to synchroniza-
tion overhead as we show in the following. We investigate this overhead in
Section A.2.3 and conclude that the results of this experiment confirm H.1.
Similar results have been obtained for Mica motes in [42].

A.2.2 Energy consumption of sending and receiving

This experiment used two nodes where a sender sends a message of varying
size to a receiver. The size of the message was increased from 1 packet to 10
packets. The experiment was conducted as follows:
1. Sender and receiver are started and switch off their radio.
2. The energy measurement using the SNMD is started and both SPOTs

switch their radio back on.
3. After the radio is ready at the sender, the sender tries to deliver the first

packet to the receiver.
4. After receiving an acknowledgement for the first packet, the next packet

is sent. This procedure continues until all packets are sent.
5. After the last packet has been acknowledged by the receiver, the energy

measurement is stopped.
Switching off the radio before the start of the experiment simulates the fact
that before nodes can send messages the radio must be switched on. Keeping
the radio on at all times is not a viable option as the experiment above
has shown. Therefore the energy consumption for switching the radio on
before sending a message must be taken into account to measure the energy
consumed for sending a message. On both nodes, the usage of sleep modes
or any other power-saving mechanism was prevented, i.e., all components of
the nodes were on at any time. Both nodes used the default Sun SPOT MAC
protocol, i.e., no energy-aware MAC protocol was used.

Figure 27 shows the result of the experiment. The difference regarding
energy consumption between the sender and the receiver is marginal even
for 10 packets. This confirms H.2. In addition to the result also shows that
the size of the message has a minor impact on energy consumption even if
there is no energy-aware MAC protocol. Sending a message consisting of a
single packet consumed 9.14 mAs. Doubling the size to two packets leads to
an energy consumption of 9.94 mAs, i.e., an increase of 8.8%. Increasing the
message size by an order of magnitude only doubles the energy consumption.
Thus, even without energy-aware MAC protocols H.3 is confirmed. With
energy-aware MAC protocols this relative increase becomes even smaller since
these protocols induce a large constant overhead for sending and receiving.
We investigate energy consumption of these protocols in the following.



A.2 Results and Analysis 69

0

 5

 10

 15

 20

 25

30

0 2 4 6 8 10

E
ne

rg
y 

C
on

su
m

ed
 [m

A
s]

Number of Packets

Energy Consumption (Unicast)

Send
Receive

Fig. 27 Energy Consumption for communication

A.2.3 Impact of energy-aware MAC protocols

So far, all experiments used a default implementation of a 802.15.4 compatible
MAC protocol which was not energy-aware, i.e., the radio chip was on at all
times. This section investigates the impact of energy-aware MAC protocols
such as B-MAC [46] or X-MAC [12]. Contrary to the previous experiments, we
use Mica motes for this to ease presentation. This is because energy readings
are difficult to interpret on Sun SPOTs because parallel processes such as
garbage collection distort the readings. Experiments with SUN SPOTs had
similar results which is expected since both node types use the CC2420 radio
chip. Again, we used the Sensor Node Management Device (SNMD) [29] to
obtain energy measurements.

We used two Mica Motes where the access to the wireless medium was
controlled by a B-MAC implementation [31] provided with TinyOS [30]. One
of the nodes broadcasts (sender) a single packet and the other mote (receiver)
just receives the message broadcasted. Figure 28 shows the energy readings
of both nodes and Figure 29 illustrates the schema of B-MAC.We explain the
important points in time (marked with [T1] , [T2] , [T3] , [T4]) for sender and
receiver in the following.

The time interval t at which each node checks the medium for incoming
messages is 1 second. The point in time where sender and receiver switch on
the radio and check if there are incoming messages are marked with [T1]. For
the first two intervals, both nodes switch off the radio immediately and save
energy. After 2.3 seconds (at [T2]), the sender application starts the sending
process by switching the radio on, listening to the medium. Since there is no
other node currently sending a message, the sender starts with the preamble.
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Fig. 29 Illustration of B-MAC [46]

Since the radio chip is packet-based, it sends short packets to indicate that
a.) no other node should send at this time and b.) the intended receivers (in
this case all surrounding nodes since it is a broadcast) should keep the radio
on. The length of the preamble is longer than 1 second to ensure that all
receivers have time to switch their radio on. At [T3], the receiver wakes up
the radio since 1 second has elapsed since the last wake up. Contrary to the
last two times, this time the radio is kept on since the preamble of the sender
indicates that the receiver is an intended recipient of a message. Broadcasting
the actual message happens in a few milliseconds at [T4]. Both nodes switch
the radio off a few milliseconds after the message is broadcasted/received.

The readings from sender and receiver show two important points with
regard to our hypotheses H.2 and H.3: While the radio is switched on, both
nodes consume an almost equal amount of energy, i.e., H.2 is confirmed.
Compared to the preamble of more than 1 second and the waiting for the ac-
tual message at the receiver, the time and energy spent for sending/receiving
the message is negligible. An increase of the message size would result in a
longer time spent sending the actual message. The time/energy spent previ-
ously for preamble and waiting is bigger by at least an order of magnitude
unless hundreds of packets must be sent. With this we conclude that H.3 is
confirmed as well.

A.3 Lessons Learned

This section investigated the energy consumption characteristics of sensor
nodes in particular with regard to communication. As expected, communi-
cation has by far the largest impact on node lifetime. More accurately, the
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amount of time a sensor node has to switch the radio chip on significantly
reduces its lifetime. As observed by [15] and our experiments, keeping the
radio on at all times is not a viable option. The networking community has
taken major steps to reduce idle listening, i.e., time where the radio chip is
on but there no message to receive. While these efforts reduce idle listening
and thereby increase node lifetimes significantly, they come at the cost of
a large overhead for sending and receiving messages. Thus, the number of
messages exchanged between sensor nodes is the most important factor for
the evaluation of the energy efficiency of an application. Within reasonable
limits, the actual size of the messages does not affect energy consumption
significantly which is a common misconception, particularly of the database
community.

This confirms our approach for the evaluation of our mechanisms for in-
network processing: We count the number of messages sent and received to
measure its impact on the sensor networks lifetime.
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