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V – Differential and Integral Calculus

§ 1. The Riemann integral – § 2. Integrability conditions –
§ 3. The “Fundamental Theorem” (FT) – § 4. Integration by parts –
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§ 9. Radon Measures on R or C – § 10. Schwartz distributions

§ 1. The Riemann Integral

The theory of integration expounded in this Chapter dates from the XIXth

century; it was, and remains, of great use in classical mathematics, and its
simplicity has rewarded all who have written for beginners in the subject.
For professional mathematicians it has been dethroned by the much more
powerful, and in some respects simpler, theory invented by Henri Lebesgue
around 1900, and perfected in the course of the first half of the XXth century
by dozens of others; we present a small part of it in the Appendix to this
Chapter. The “Riemann” theory expounded in this Chapter therefore has
only a pedagogic interest.

1 – Upper and lower integrals of a bounded function

Let us first recall the definitions of Chap. II, n◦ 11.
A scalar (i.e. complex-valued) function ϕ defined on a compact, or more

generally, bounded, interval I is said to be a step function if one can find a
partition (Chap. I) of I into a finite number of intervals Ik such that ϕ is
constant on each Ik; no conditions are imposed on the Ik. Such a partition
will be said to be adapted to ϕ.

When I = (a, b) this is the same as requiring the existence of a finite
sequence of points of I satisfying

a = x1 ≤ x2 ≤ . . . ≤ xn+1 = b(1.1)

and such that ϕ is constant on each open interval ]xk, xk+1[, because the
values it takes at a point xk have no connection with those it takes to the
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right or left of this point, and are irrelevant to the calculation of traditional
integrals1.

A sequence of points satisfying (1) is called a subdivision of the interval I.
A subdivision by the points yh is said to be finer than the subdivision (1)
when the xk appear among the yh, in other words when the second subdivi-
sion is obtained by subdividing each of the component intervals in (1). The
definition is similar for two partitions (Ik) and (Jh) of I: the second is said
to be finer than the first if every Jh is contained in one of the Ik, in other
words if the second partition of I is obtained by partitioning each of the Ik

themselves into intervals (namely, those Jh contained in Ik).
If ϕ(x) = ak for every x ∈ Ik one calls the number

m(ϕ) =
∑

akm(Ik) =
∑

ϕ(ξk)m(Ik)(1.2)

the integral of ϕ over I, where, for every interval J = (u, v), the number
m(J) = v − u denotes the length or measure of J , and where ξk is any point
of Ik. Since the Ik of zero measure do not matter in (2) one can replace the
partition by a subdivision (1) and write

m(ϕ) =
∑

ϕ(ξk)(xk+1 − xk) with xk < ξk < xk+1(1.3)

since ϕ is constant, so equal to ϕ(ξk), on ]xk, xk+1[.
Since there are infinitely many ways of choosing the Ik – every finer

partition, for example, will equally be adapted to calculating the integral –,
we have to show that the sum (2) does not depend on the choice of the Ik. So
let (Jh) be another partition of I into intervals such that ϕ(x) = bh for every
x ∈ Jh. Since each Ik is the union of the pairwise disjoint intervals Ik ∩ Jh,
as is shown by the relation

X = X ∩ I = X ∩
⋃

Jh =
⋃

X ∩ Jh,

valid for every subset X of I, we have

m(Ik) =
∑

h

m(Ik ∩ Jh)

and similarly
m(Jh) =

∑
k

m(Ik ∩ Jh)

where, by convention, m(∅) = 0. Thus∑
akm(Ik) =

∑
akm(Ik ∩ Jh),(1.4) ∑

bhm(Jh) =
∑

bhm(Ik ∩ Jh),(1.5)

1 This is not the same in generalisations of the classical theory. See n◦ 30.
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where, on the right hand sides, we sum over all the pairs (k, h). We thus have
only to prove that

m(Ik ∩ Jh) �= 0 implies ak = bh,

which is clear: on Ik ∩ Jh, which is nonempty since its length is not zero, the
function ϕ is equal simultaneously to ak and to bh.

This argument shows immediately that

m(λϕ + µψ) = λm(ϕ) + µm(ψ)(1.6)

for any step functions ϕ and ψ and constants λ and µ: consider partitions
(Ik) and (Jh) of I adapted to ϕ and ψ, write ak for the value of ϕ on Ik and
bh for that of ψ on Jh, and calculate the integrals of ϕ, ψ and λϕ+µψ using
the intervals Ik ∩Jh on which ϕ, ψ and λϕ+µψ are equal respectively to ak,
bh and λak +µbh; in effect we are adding the relations (4) and (5), multiplied
respectively by λ and µ, term-by-term.

Since it is clear that the integral of a positive function (i.e. one whose
values are all positive) is positive, we see that

ϕ ≤ ψ implies m(ϕ) ≤ m(ψ)(1.7)

for real-valued ϕ and ψ, since m(ψ)−m(ϕ) = m(ψ−ϕ) ≥ 0 by (6) and ψ−ϕ
is positive.

Finally, the triangle inequality applied to (2) shows that

|m(ϕ)| ≤
∑

|ϕ(ξk)|m(Ik) = m(|ϕ|) ≤
∑

‖ϕ‖Im(Ik)

always, where, as in Chap. III, n◦ 7, we write in a general way that

‖f‖I = sup
x∈I

|f(x)|.

Since
∑

m(Ik) = m(I) we finally obtain the inequality

|m(ϕ)| ≤ m(|ϕ|) ≤ m(I)‖ϕ‖I .(1.8)

This completes the “theory” of integration as it applies to step functions.
It rests on two properties of lengths which are the starting point for all later
generalisations:

(M 1): the measure of an interval is positive;
(M 2): measure is additive, i.e. if an interval J is the union of a finite number

of pairwise disjoint intervals Jk then m(J) =
∑

m(Jk).

There are many other interval-functions which have these properties. One
can, for example, choose a continuous function µ(x) which is increasing in
the wide sense on I and put2

2 For an arbitrary increasing function one has to take account of its discontinuities
and modify the formula to obtain a reasonable theory. See n◦ 32 on Stieltjes
measures.



4 V – Differential and Integral Calculus

µ(J) = µ(v) − µ(u) if J = (u, v).

One can also take a finite or countable set D ⊂ I and assign to each ξ ∈ D
a “mass” c(ξ) > 0, with

∑
c(ξ) < +∞, and then put

µ(J) =
∑
ξ∈J

c(ξ)

for every interval J , so that the measure of a singleton interval can very well
be > 0; in this example property (M 2) reduces to the associativity formula
for absolutely convergent series. We obtain discrete measures in this way.

For a “measure” µ satisfying (M 1) and (M 2) the integral of a step func-
tion is, by definition, the number µ(ϕ) given by the formula (2), replacing
the letter m by the letter µ. For a discrete measure, one clearly finds that
µ(ϕ) =

∑
c(ξ)ϕ(ξ), summing over all the ξ ∈ D. These generalisations will

be studied at the end of this chapter, but the reader may be interested to ob-
serve, every time we use the traditional integral, those results which depend
only on the properties (M 1) and (M 2) of “Euclidean” or “Archimedean”
measure, or, as one now calls it, of “Lebesgue measure” (since it was for
this that Lebesgue constructed his grand integration theory) because these
properties extend to the general case. Certain results which, on the contrary,
use the explicit construction starting from the usual measure, mainly concern
the relations between integrals and derivatives, Fourier series and integrals,
partial differential equations, almost all applications to physical sciences, etc.
They rest on an obvious though fundamental property of the usual measure:
it is invariant under translation; see below, (2.20).

Now let us pass on to arbitrary bounded real functions on a bounded
interval I (in general compact).

Given a bounded real-valued function f on I there exist step functions,
even constant functions, ϕ and ψ, such that ϕ ≤ f ≤ ψ, i.e. ϕ(x) ≤ f(x) ≤
ψ(x) for every x ∈ I. By (7) we must have m(ϕ) ≤ m(ψ), and every rea-
sonable definition of m(f) must satisfy m(ϕ) ≤ m(f) ≤ m(ψ). We therefore
examine the lower and upper integrals of f over I defined by the formulae

m∗(f) = sup
ϕ≤f

m(ϕ), m∗(f) = inf
ψ≥f

m(ψ)(1.9)

where ϕ and ψ range over the sets of step functions such that ϕ ≤ f ≤ ψ.
As we have seen in Chap. II, n◦ 11, we have m∗(f) ≤ m∗(f) since every

number m(ϕ) is less than the m(ψ), so is less than their lower bound m∗(f),
which, larger than all the m(ϕ), is also larger than their upper bound m∗(f).
Since the constant functions equal to −‖f‖I and +‖f‖I feature among the
functions ϕ and ψ respectively, we even have

−m(I)‖f‖I ≤ m∗(f) ≤ m∗(f) ≤ m(I)‖f‖I .(1.10)
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Relation (6) does not extend to the lower and upper integrals of arbitrary
functions; if it did, the theory of integration would finish with n◦ 2 of this
chapter. However, we always have the inequalities

m∗(f + g) ≥ m∗(f) + m∗(g), m∗(f + g) ≤ m∗(f) + m∗(g).(1.11)

Among the step functions less than f + g are the sums ϕ+ψ, where ϕ is less
than f and where ψ is less than g; consequently, m∗(f + g) is greater than
all the numbers of the form m(ϕ + ψ) = m(ϕ) + m(ψ). It remains to note
that if A and B are two sets of real numbers, and if one writes A+B for the
set of numbers x + y where x ∈ A and y ∈ B, then

sup(A + B) = sup(A) + sup(B)

with a similar relation for the lower bounds (exercise!), so that every number
larger than the x+y is larger than sup(A)+sup(B). Whence the first relation
(11). The second is proved in the same way, reversing the inequalities.

It is easier to show that

m∗(cf) = cm∗(f), m∗(cf) = cm∗(f) for every c ≥ 0(1.12)

and

m∗(−f) = −m∗(f);(1.13)

it is enough to note that multiplication by −1 transforms the step functions
below f into those above −f .

2 – Elementary properties of integrals

The most natural definition of integrable functions with real values is that
they should satisfy the condition

m∗(f) = m∗(f),

the common value of the two sides then being the value of the integral m(f)
of f ; one extends the definition to functions f = g + ih with complex values
by requiring both g and h to be integrable and putting

m(f) = m(g) + im(h).

This definition, adopted in the First French Edition for reasons of simplicity,
has several drawbacks; in particular, it is not obvious — although, of course,
true — that the absolute value |f | = [Re(f)2+Im(f)2]

1
2 of a complex-valued

integrable function is again integrable, as Michel Ollitrault, a reader of the
First Edition, has justly remarked to me. We shall therefore abandon this
definition temporarily, to recover it later, and we shall adopt a method used
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in the modern theory too. We shall develop it for complex-valued functions,
but it will also apply to functions with values in a finite dimensional vector
space, or even a Banach space, which is not the case for the first simplistic
definition.

We shall say that a function f is integrable if, for any r > 0, there is
a step function ϕ (with values in the same space as f if one is integrating
vector-valued functions) such that

m∗(|f − ϕ|) < r.(2.1)

If f has real values this means, intuitively, that the numerical (and not al-
gebraic) measure of the area in the plane included between the graphs of f
and ϕ is < r; there is no point in assuming ϕ “above” or “below” f . It comes
to the same to require the existence of a sequence of step functions ϕn such
that

limm∗(|f − ϕn|) = 0(2.1’)

or, as one says, which converges in mean to f . One says “in mean” because
the fact that the upper integral of a positive function h(x) is very small
does not prevent h from taking very large values on very small intervals:
1010010−200 = 10−100.

To define the integral of an integrable function f one uses the relation
(1’). By the triangle inequality we have

|ϕp − ϕq| ≤ |ϕp − f | + |f − ϕq|
and so

|m(ϕp) − m(ϕq)| = |m(ϕp − ϕq)| ≤ m∗(|ϕp − f |) + m∗(|f − ϕq|),
by (1.11). The sequence with general term m(ϕn) therefore satisfies Cauchy’s
convergence criterion (Chap. III, n◦ 10, Theorem 13). Its limit depends only
on f . For if ψn is another sequence of step functions satisfying (1’) the relation

|ϕn − ψn| ≤ |f − ϕn| + |f − ψn|
shows, in a similar way, that m(ϕn) − m(ψn) tends to 0.

It is natural to call the limit of the m(ϕn) (common to all sequences of
step functions converging to f in mean) the integral of f , and to denote it by
m(f). This kind of argument, used in many other places, is similar to the one
we used to define ax for a > 0 and x ∈ R, by approximating x by a sequence
of rational numbers xn and showing that the sequence axn converges to a
limit independent of x (Chapter IV, § 1, end of n◦ 2).

If an integrable function f has real (resp. positive) values then its integral
is real (resp. positive). If f is real, and if in (1’) one replaces ϕn by Re ϕn

one decreases the function |f − ϕn| and so its upper integral, so that the
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sequence of real functions Re(ϕn) again converges to f in mean, whence the
first result. If, moreover, f is positive, in which case one may assume the ϕn

real, one argues in the same way, replacing the ϕn(x) by 0 on the intervals
where ϕn < 0: this can only decrease the value of |f(x) − ϕn(x)|, and so of
the upper integral.

If f and g are integrable then f + g is integrable and

m(f + g) = m(f) + m(g).

Take step functions ϕn and ψn converging in mean to f and g, write

|(f + g) − (ϕn + ψn)| ≤ |f − ϕn| + |g − ψn|

to show that ϕn + ψn converges to f + g in mean, and use (1.6).
If f is integrable then so is αf for any α ∈ C, and m(αf) = αm(f).

Obvious: multiply f and ϕ by α in (1) and apply (1.12).
These first results already show, for real integrable f and g, that

f ≤ g implies m(f) ≤ m(g),

since 0 ≤ m(g − f) = m(g) + m(−f) = m(g) − m(f).
If f is integrable then so is |f |, and

|m(f)| ≤ m(|f |) ≤ m(I) ‖f‖I(2.2)

where, we recall, ‖f‖I = sup |f(x)| is the norm of uniform convergence on I
(Chap. III, n◦ 7). For any complex numbers α and β we have

∣∣|α| − |β|∣∣ ≤
|α − β|, whence, in the notation of (1’),∣∣|f(x)| − |ϕn(x)|∣∣ ≤ |f(x) − ϕn(x)| for all x ∈ I

and so m∗(|f | − |ϕn|) ≤ m∗(|f − ϕn|); this proves that |f | is integrable like
f , since the |ϕn| are also step functions. Since the integrals of ϕn and |ϕn|
converge to those of f and |f |, by definition of the latter, and since (2) applies
to the ϕn, one obtains the first inequality (2) in the limit. The second follows
from the fact that |f(x)| ≤ ‖f‖I everywhere on I, so that m(|f |) is less than
the integral of the constant function x 
→ ‖f‖I .

The complex-valued function f is integrable if and only if the functions
Re(f) and Im(f) are. If so,

m(f) = m[Re(f)] + i.m[Im(f)].

Since |Re(f) − Re(ϕn)| ≤ |f − ϕn|, with a similar relation for the imaginary
parts, it is clear that Re(f) and Im(f) are integrable if f is; the relation to
be shown then follows from the linearity properties already obtained; these
show no less trivially that f is integrable if Re(f) and Im(f) are.
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A real function f is integrable if and only if m∗(f) = m∗(f).
Suppose first that m∗(f) = m∗(f). Then, for every r > 0 there are step

functions ϕ and ψ framing f whose integrals are equal to within r. Since
|f −ψ| = f −ψ ≤ ϕ−ψ it follows that m∗(|f −ψ|) ≤ m(ϕ−ψ) < r, whence
the integrability of f .

Suppose conversely that f is integrable and consider a step function ϕ
such that

m∗(|f − ϕ|) < r;

one may assume ϕ real as above. Since m∗(|f −ϕ|) is, by definition, the lower
bound of the numbers m(ψ) over all step functions ψ ≥ |f − ϕ|, the strict
inequality proves the existence of a step function ψ such that

|f − ϕ| < ψ & m(ψ) < r.

Since ϕ− ψ ≤ f ≤ ϕ + ψ we have thus framed f between two step functions
whose difference has integral ≤ 2r; so m∗(f) = m∗(f). Moreover,

m(ϕ − ψ) ≤ m∗(f) ≤ m(ϕ + ψ);

since f is integrable we already know that this relation is preserved if one
replaces m∗(f) by m(f), whence m(f) = m∗(f), since the extreme terms in
the preceding relation are equal to within 2r.

To sum up:

Theorem 1. Let I be a bounded interval. (i) If the bounded functions f and
g are integrable on I, then so likewise is αf + βg for any constants α and β,
and

m(αf + βg) = αm(f) + βm(g).(2.3)

(ii) If f is defined, bounded and integrable on I, then the function |f | is
integrable, and

|m(f)| ≤ m(|f |) ≤ m(I)‖f‖I = m(I). sup |f(x)|.(2.4)

(iii) The integral of a positive function is positive.

The standard notation

m(f) =
∫

I

f(x)dx

will be explained later (n◦ 3).
The definition of integrable functions shows immediately that, on a com-

pact interval, every regulated function is integrable; for every r > 0 there
exists, by the definition (Chap. III, n◦ 12) a step function ϕ such that
|f(x) − ϕ(x)| < r for every x; then, by (1.10), m∗(|f − ϕ|) < m(I)r, whence
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the result. We shall prove later (n◦ 7) that, on a compact interval, every con-
tinuous function is regulated, so integrable. One hardly needs more subtle
results in elementary analysis.

It is not difficult to construct non-integrable functions: it is enough to
take the Dirichlet function f(x) on I, equal to 0 if x ∈ Q and to 1 if x /∈ Q.
Now, if a step function ϕ ≤ f is constant on the intervals Ik of a partition
of I, it must be ≤ 0 on every nonsingleton Ik since such an interval contains
rational numbers where f(x) = 0; likewise, every step function ψ ≥ f must be
“almost” everywhere ≥ 1. Thus m∗(f) = 0 and m∗(f) = m(I). The Lebesgue
theory allows one to integrate the function f , with the same result as if one
had f(x) = 1 everywhere, and this because Q is countable. It may appear
bizarre to consider such functions – Newton would have said that one does
not meet them in Nature3 –, but it is one of those which led Cantor towards
his great set theory, not to be confused with the trivialities of Chap. I. Even
though the function in question is strange, one cannot deny it the merit of
simplicity; if analysis is incapable of integrating such functions, one might
begin to suspect that this is the fault of analysis and not of the function . . .

We said above that the integral of a positive function is positive; could it
perhaps be zero? This is one of the fundamental questions which the complete
Lebesgue theory allows one to resolve. For the moment we make just two
elementary remarks.

If the integral of a continuous positive function f is zero, then f = 0. For
if we have f(a) = r > 0 for some a ∈ I, then the continuity of f shows that
f(x) > r/2 on an interval J ⊂ I of length > 0; if ϕ is the step function equal
to r/2 on J and to 0 elsewhere then m(f) ≥ m(ϕ) = r m(J)/2 > 0.

This result (which presupposes the integrability of the continuous func-
tions and uses the fact that, in the traditional theory, the measure of a non-
empty open interval is > 0) does not extend to discontinuous functions. For a
positive step function for example, it is clear that the integral vanishes if and
only if the points where the function does not vanish are finite in number. In
the much more general case of a regulated function, the apposite condition
is that the set defined by the relation f(x) �= 0 should be countable (n◦ 7).

Before stating the next theorem let us note that if we have real functions
f and g defined on any set X we can construct the functions

sup(f, g) : x 
→ max[f(x), g(x)],
inf(f, g) : x 
→ min[f(x), g(x)];

these definitions generalise in the obvious way to a finite number of functions
(and even to an infinite number on replacing max and min by sup and inf) and

3 We will meet them in computer science when there exist machines capable of
distinguishing the rational numbers automatically from the others.
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Fig. 1.

lead us to the upper and lower envelopes of the given functions. In particular,
for every real function f we can define the functions

f+ = sup(f, 0) : x 
→ f(x)+,

f− = sup(−f, 0) : x 
→ f(x)−,

|f | : x 
→ |f(x)|
where, for every real number, we put (Chap. II, n◦ 14)

x+ = max(x, 0), x− = max(−x, 0);

it is trivial to show that, for every x ∈ R,

x = x+ − x−, |x| = x+ + x−

with similar relations for real-valued functions. An elementary argument,
which Figure 1 makes obvious, shows that

sup(f, g) = f + (g − f)+, inf(f, g) = g − (g − f)+;

these operations are defined pointwise, using only the values taken at each
x ∈ X by f and g, so these relations follow from the same relations for real
numbers. See Chap. II, n◦ 14, where this notation has already been used.

Theorem 2. If the real functions f and g are integrable on I, so are the
functions sup(f, g) and inf(f, g).

By Theorem 1 and the formula above it is enough to show that if f is
integrable then so is f+. This follows immediately from the definition, (1) or
(1’), and from the inequality |f+ − ϕ+| ≤ |f − ϕ|.

The preceding “theorem” shows more generally that the upper and lower
envelopes of a finite number of integrable real functions are again integrable.
When we try to extend this result to a countable family of functions we
embark on integration theory proper; see Appendix (L 16).

Theorem 3. Let f and g be two bounded integrable functions on a compact
interval I. Then the function fḡ is integrable and (Cauchy-Schwarz inequal-
ity4)
4 Hermann Amadeus Schwarz, German mathematician of the end of the XIXth cen-

tury. The Soviet mathematicians remarked several decades ago that one ought to
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|m(fḡ)|2 ≤ m(|f |2)m(|g|2).(2.5)

In checking that fḡ is integrable we may assume f and g real, and even
positive, since every integrable real function f is the difference of the in-
tegrable functions f+ and f−. Given r > 0 we may choose positive step
functions ϕ′ and ϕ′′ framing f , and ψ′ and ψ′′ framing g, both less than a
fixed constant M which simultaneously majorises f and g. The product fg
is framed by ϕ′ψ’ and ϕ′′ψ′′, so we need only evaluate the integral of the
difference

ϕ′′ψ′′ − ϕ′ψ′ = ψ′′(ϕ′′ − ϕ′) + ϕ′(ψ′′ − ψ′)
≤ M(ϕ′′ − ϕ′) + M(ψ′′ − ψ′).

The integrals of ϕ′′ − ϕ′ and ψ′′ − ψ′ can be chosen to be < r/2M , making
that of ϕ′′ψ′′ − ϕ′ψ′ < r by a suitable choice of these functions, whence the
integrability of the product.

An immediate consequence of this result is that if f is integrable on I
and if J ⊂ I is an interval, then the function

χJ(x)f(x) = f(x) on J, = 0 on I − J,(2.6)

is again integrable. On multiplying step functions ϕn converging in mean to f
on I by the characteristic function χJ of J (Chap. I) one finds step functions
converging in mean to χJf . Since it is clear that∫

J

f(x)dx =
∫

I

χJ(x)f(x)dx(2.7)

is true for the ϕn we get the same result for f . From this we deduce that∫
J

f(x)dx =
∑∫

Jp

f(x)dx(2.8)

if the intervals Jp form a partition5 of J : the function χJ is actually the sum
of the characteristic functions of the Jp. This is the additivity (it would be

speak of the Cauchy-Buniakowsky-Schwarz inequality, but their ancestor being
less known, even unknown, compared to the other two, the “Matthew effect” to
which we have alluded in Chap. III, n◦ 10, has applied in his case. Moreover,
in my youth, we spoke simply of the Schwarz inequality, despite the fact that
Cauchy already had quite a reputation . . .

5 This hypothesis is not needed in the case of the usual measure – it is enough
that the intersections Jp∩Jq contain at most one point – for the integral over an
interval J ⊂ I is clearly unchanged if one adjoins the end-points to J . But it is
essential in the case of a measure which includes discrete masses. This explains
the need to integrate over bounded rather than compact intervals: it is impossible
to construct a non-trivial finite partition of an interval into compact intervals.
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better to say: the associativity) of the integral considered as a function of
the interval of integration, and not of the function being integrated. This
confirms in passing the existence of many interval functions that enjoy the
properties (M 1) and (M 2) of n◦ 1: choose a positive integrable function ρ
and put

µ(J) =
∫

J

ρ(x)dx;

physically, this is a “distribution of mass” having a “density” ρ(x) at each
point x ∈ I; we write µ(J) for the total mass of the interval J ; the traditional
integral is obtained when ρ(x) = 1, a “homogeneous” distribution of mass.

The proof of (5) is an exercise in algebra (Appendix to Chap. III) not
specifically to do with integration theory; more exactly, it follows from the
formal properties (i) and (iii) of Theorem 1 alone, and not from the explicit
definition of an integral. We call the number

(f | g) = m(fḡ)(2.9)

the scalar product of the functions f and g on the interval I. The inequality
to be established is then

|(f | g)|2 ≤ (f | f)(g | g).(2.10)

It is clear that (f | g) is a linear function of f for g given, that (f | g) = (g, f),
and that (f | f) ≥ 0 for any f . For every constant z ∈ C we then have

(f + zg, f + zg) = (f | f) + (f, zg) + (zg, f) + (zg, zg) =(2.11)
= c + bz̄ + b̄z + azz̄ > 0 for every z ∈ C,

with c = (f | f), b = (f | g) and a = (g | g), notation chosen to evoke the
well-known second degree trinomials, although here the variable is complex;
we know in advance that a and c are ≥ 0.

If a �= 0 we can put z = −b/a, a value for which the right hand side of
(11) can be written c−bb̄/a−bb̄/a+abb̄/a2 = (ac−bb̄)/a; since the left hand
side of (11) is ≥ 0 like a, the numerator of the result is ≥ 0, whence (10) in
this case.

If a = 0, the expression (11) cannot be ≥ 0 for every z unless b = 0, in
which case (10) does not require proof. Indeed, if we replace z by tz with
t ∈ R, we must then have (bz̄ + b̄z)t ≥ −c for any t, which forces bz̄ + b̄z = 0,
whence b = 0 since z ∈ C is arbitrary.

The Cauchy-Schwarz inequality shows that

(f + g | f + g) = (f | f) + (f | g) + (g, f) + (g | g) =
= (f | f) + 2Re(f | g) + (g | g) ≤ (f | f) + 2|(f | g)| + (g | g) ≤
≤ (f | f) + 2(f | f)1/2(g | g)1/2 + (g | g),
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whence, on taking the square roots of the two sides,

(f + g | f + g)1/2 ≤ (f | f)1/2 + (g | g)1/2.(2.12)

The expression

‖f‖2 = (f | f)1/2 = m
(|f |2)1/2

=
(∫

I

|f(x)|2dx

)1/2

(2.13)

is called the L2 norm of the function f on I; the inequality (12) shows that

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2(2.14)

and clearly ‖λf‖2 = |λ|.‖f‖2 for every constant λ ∈ C. This justifies the
word “norm”, apart from the fact that the norm can be zero for functions
which are not identically zero. The calculation preceding formula (12) also
shows that

(f | g) = 0 =⇒ ‖f + g‖2
2 = ‖f‖2

2 + ‖g‖2
2,(2.15)

the integral version of Pythagoras’ Theorem; one says then that f and g are
orthogonal.

We define the L1 norm also, by

‖f‖1 = m(|f |);(2.16)

and we again have (14) in this case, and much more easily, since |f + g| ≤
|f | + |g|.

For every real number p > 1, one defines more generally the Lp norm
by

Np(f) = m (|f |p)1/p = ‖f‖p;(2.17)

n◦ 14 on convex functions will show that again in this case

‖f + g‖p ≤ ‖f‖p + ‖g‖p(2.18)

and that

|(f | g)| ≤ ‖f‖p.‖g‖q if 1/p + 1/q = 1;(2.19)

these are the famous (but, at our level, largely useless) Minkowski
and Hölder inequalities.

As for the notation L2, or L1 or Lp, these allude to the “grand” inte-
gration theory. These calculations play a fundamental rôle in the theory of
Fourier series, as we shall see a little below.
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On several occasions we have remarked that the explicit construction of
the integral does not feature in establishing Theorems 2 and 3, nor, as we
shall see, in many other cases. It occurs elsewhere because of the translation
invariance of the Euclidean measure of length. To translate this into the
language of integration one writes the formula∫ b+c

a+c

f(x)dx =
∫ b

a

f(x + c)dx,(2.20)

to be interpreted as follows: if x 
→ f(x) is integrable on [a + c, b + c], then
x 
→ f(x + c) is integrable on [a, b] and (20) holds. In other words, if one has
an integrable function f on an interval I and if one submits both I and the
graph of f to the same horizontal translation, then nothing changes. This is
quite clear for step functions, and we leave the epsilontics for the reader to
check.

This result may appear (and is) trivial. Yet not only is it of constant use,
it characterises Euclidean measure up to a constant factor among all those
measures which satisfy conditions (M 1) and (M 2) of n◦ 1. This is also the
key to the generalisations of Fourier analysis to group theory, a boom topic
for more than fifty years.

To give an application we shall use in n◦ 5, let us consider a function f(x)
of period 1 on R and show that∫ a+1

a

f(x)dx =
∫ 1

0

f(x)dx,(2.21)

in other words that the left hand side is independent of a. To do this we
consider the integer n such that a ≤ n < a+1. By the additivity formula (8),
the integral over [n, n + 1] is the sum of the integrals over [n, a + 1] and
[a+1, n+1]. By (20), the second is also the integral over [a, n] of the function
x 
→ f(x + 1) = f(x). The integral over [n, n + 1], equal for the same reason
of periodicity to the integral over [0, 1], is thus the sum of the integrals of f
over [a, n] and [n, a + 1], which is the integral on [a, a + 1], qed.

3 – Riemann sums. The integral notation

The relation (1.2) or (1.3) allows one to show how to calculate the integral
of a complex-valued function f approximately from the Riemann sums (or
Cauchy, not to go back to Fermat or even to Archimedes . . .). Assume f
regulated, enough for elementary use, and, given a number r > 0, let (Ik)
be a partition of I into intervals on each of which f is constant to within
r. Choose a ξk ∈ Ik at random in each Ik and consider the step function ϕ
which on each Ik takes the value ck = f(ξk); now |f(x) − ϕ(x)| < r for each
x ∈ I, so ‖f − ϕ‖I < r, whence, by (2.4),
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∣∣m(f) −
∑

m(Ik)f(ξk)
∣∣ ≤ m(I)r.(3.1)

On replacing this partition by a subdivision

a = x1 ≤ x2 ≤ . . . ≤ xn+1 = b(3.2)

of I as in n◦ 1, and choosing a point ξk at random in the open inter-
val ]xk, xk+1[, we obtain∣∣m(f) −

∑
f(ξk)(xk+1 − xk)

∣∣ < m(I)r;(3.3)

the fact that a singleton interval is of zero measure, which does not feature
in deriving (1), justifies (3) in the case of the usual measure. We may note
that this argument applies verbatim to vector-valued functions.

What is more, these inequalities remain valid for every partition finer
than (Ik); for they rely only on the hypothesis that f is constant to within
r on each of these intervals, a hypothesis true also for every partition finer
than (Ik).

Relation (3) explains the notation

m(f) =
∫

I

f(x)dx =
∫ b

a

f(x)dx

used to denote an integral. In this notation,

(f | g) =
∫

I

f(x)g(x)dx, ‖f‖2 =
(∫

I

|f(x)|2dx

)1/2

, ‖f‖1 =
∫

I

|f(x)|dx.

The analogy with the notation for series would be complete if one wrote∫ x=b

x=a

f(x)dx or
∫

a≤x≤b

f(x)dx or
∫

x∈I

f(x)dx.

It seems quite curious that the sign
∫

, invented by Leibniz in 1675, appeared
fully 150 years before the sign

∑
of which one finds no trace in Fourier nor

in Cauchy’s Cours d’analyse of 1821. On the other hand, Leibniz and his
XVIIIth century successors never wrote the limits of integration explicitly,
which can be rather a nuisance; the modern notation appeared in Fourier’s
Théorie analytique de la chaleur of 1822; but in 1807, when he was composing
his fundamental memoir, refused by the Académie des sciences, Fourier still
wrote, for example, S(sin .xϕxdx) for what we now write as∫ 2π

0

ϕ(x) sin x dx.

Leibniz’ notation is explained by his conception of the integral, inherited
from certain of his predecessors and notably from the Italian Cavalieri. For
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them it was to calculate the area bounded by the axis Ox, the graph of f ,
and the verticals through the end-points of I. They imagined I to be com-
posed of “infinitely small” or “indivisible” intervals, which Leibniz denoted
by (x, x + dx) and, consequently, that the area to be calculated is composed
of infinitely thin vertical slices having these intervals for bases and the num-
bers f(x) as their heights. The area of such a slice is “clearly” f(x)dx, so
that the area to be calculated is the “continuous sum” (in contrast to the
“discrete sum”, i.e. to the series) of these infinitesimal areas; whence the
notation, in which the sign

∫
is an abbreviation of the word “sum” or of

its Latin equivalent. All this is metaphysics. But since, three centuries after
Leibniz, Mankind has not felt the need to change his notation, whether deal-
ing with integrals for neophytes or with their most abstract generalisations,
it looks as though no one knows how to do better.

Before Leibniz, Cavalieri used the word “omnia”, all, or “omn.”, instead
of the sign

∫
; after reading Cavalieri, Leibniz wrote in 1675 in a Latin that

one can understand untaught, “Utile erit scribi
∫

pro omn. ut
∫

l pro omn.
l id est summa ipsorum l” (Cantor, III, p. 166; chez Cavalieri, one adds the
lengths, denoted l). Others, like Wallis and Newton, wrote a square before
the integrand6, as in the formula

�x2 = b3/3 − a3/3,

the square evoking the word “quadrature” which, at the time, meant pre-
cisely: to construct a square whose area is equal to the area bounded by a
curve, as in the problem of the “quadrature of the circle”. Here again we see
to what extent the choice of good notation can contribute to the advancement
and to the comprehension of mathematics.

Further, Leibniz’ notation led directly to the definition of the integral
given by Cauchy. Instead of considering the infinitesimal expressions f(x)dx
Cauchy used a subdivision of I as above, and considered the sum∑

f(xk)(xk+1 − xk),

traditionally denoted
∑

f(xk)∆xk because the letter ∆ is the initial of the
word “difference”. The integral of f is, for him, the limit of these sums as
the subdivision becomes finer – which is indeed the case, as we shall see, for
continuous functions.

4 – Uniform limits of integrable functions

The relation
6 During his controversies with Leibniz at the start of the XVIIIth century, Newton

claimed to be the first to have invented a symbol to denote an integral. Quite
possible, but his was perfectly unusable, principally because of its typographical
clumsiness. Leibniz’ notation is furthermore neatly adapted to the change of
variable formula, to multiple integrals, etc.
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|m(f)| ≤ m(|f |) ≤ m(I)‖f‖I ,(4.1)

valid for every bounded integrable function f on a compact (or more generally
bounded) interval I, is fundamental; it allows one, in many situations, to
argue without recourse to the explicit construction of the integral expounded
in n◦ 1 and 2. Here is an immediate consequence:

Theorem 4. Let (fn) be a uniformly convergent sequence of integrable func-
tions on a bounded interval I. Then the function f(x) = lim fn(x) is inte-
grable and

m(f) =
∫

I

f(x)dx = lim
∫

I

fn(x)dx = limm(fn).(4.2)

For r > 0 given, and for every n, let us choose a step function ϕn such
that m(|fn − ϕn|) < r, and let N be an integer such that

n > N =⇒ ‖f − fn‖I < r

from the definition of uniform convergence. For n > N we have

m∗(|f − ϕn|) ≤ m∗(|f − fn|) + m∗(|fn − ϕn|)
≤ m(I)r + r,

whence the integrability of f . Now (4.2) follows from the fact that

|m(f) − m(fn)| ≤ m(|f − fn|) ≤ m(I)‖f − fn‖I < m(I)r,

qed.
Proper integration theory will allow us to prove a much stronger result

than the preceding: one can replace uniform convergence by simple conver-
gence (and even much less) on condition that one assumes that there is an
integrable function g ≥ 0 such that

|fn(x)| ≤ g(x)

for every n and every x (Appendix, L19). The limit function f , though inte-
grable in the modern sense of the term, need not be so in the archaic sense
expounded here, even if the fn and g are. Nevertheless this can happen, in
which case we have a result for Riemann integrals:

(Dominated convergence). Let (fn) be a sequence of functions defined
and integrable on an interval I; assume that (i) the fn converge simply to an
integrable function f ; (ii) there exists an integrable function g such that

|fn(x)| ≤ |g(x)| for every n and every x ∈ I.

Then
m(f) = limm(fn).
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Since we cannot prove this very handy result yet, simple in appearance
though it is – it is the analogue for “continuous sums” of the theorems on
passage to the limit for sequences of normally convergent series, Chap. III,
n◦ 13 and Chap. IV, n◦ 12 – , we shall not use it, except, sometimes, to
show how it would greatly simplify those “elementary” proofs that require
recourse to uniform convergence. The necessity of a hypothesis such as (ii)
is quite clear from Figure 2: the functions fn converge simply to 0 but their
integrals are all equal to 1.

Fig. 2.

Theorem 4 is nevertheless prodigiously useful as we shall see immediately
and in the following n◦. In particular, it applies to a uniformly convergent,
or a fortiori normally convergent, series

∑
un(x) of integrable functions: the

sum of such a series is again integrable and

m(
∑

un) =
∑

m(un),(4.3)

i.e. ∫
I

[∑
un(x)
]
dx =
∑∫

I

un(x)dx,(4.3’)

the series on the right hand side being convergent and even, in the case of
normal convergence, absolutely convergent, since

|m(un)| ≤ m(I)‖un‖I

with
∑ ‖un‖I < +∞ by hypothesis.

Example 1. Consider a power series

f(z) =
∑

cnzn/n! =
∑

cnz[n](4.4)

which converges on a disc |z| < R of nonzero radius, and let us calculate
the integral of f(x) over an interval [a, b] with −R < a < b < R. We know
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that the series converges normally on every disc |z| ≤ r < R, so on the
interval considered: we can therefore integrate term-by-term. But we also
know (Chap. II, n◦ 11) that∫ b

a

xndx =
bn+1

n + 1
− an+1

n + 1
(4.5)

or, equivalently, that ∫ b

a

x[n]dx = b[n+1] − a[n+1].(4.5’)

Thus we find ∫ b

a

f(x)dx = F (b) − F (a)(4.6)

where
F (z) =

∑
cnz[n+1] =

∑
cn−1z

[n]

is the primitive power series of f in the sense of Chap. II, n◦ 19. Since we
also know that the function F is differentiable (in the complex sense on C
so a fortiori in the real sense on R) and that f is its derivative, (6) is just a
particular case of the “fundamental theorem” which we will establish later:

F ′ = f =⇒
∫ b

a

f(x)dx = F (b) − F (a).

It was this kind of calculation that led Newton and Mercator to the series

log(1 + x) = x − x2/2 + x3/3 − . . .(4.7)

They knew (and we know: Chap. II, n◦ 11) that the left hand side is the
integral of the function t 
→ 1/(1 + t) over the interval [0, x] and they were
aware of (5). The calculation is then obvious, particularly if one does not
worry about Theorem 4 any more than they did. Conversely, if one first
knew the formula (7), one might deduce that the integral of the function
1/(1 + x) between x = a and x = b is equal to log(1 + b) − log(1 + a), but
this assumes that a and b lie in the interval of convergence of (7): a direct
calculation, in Chap. II, n◦ 11, has already provided the result free from this
restriction. The reader may amuse himself by applying (6) in the same way
to the series representing ex, sin x, cos x, etc., since their primitive series can
be calculated immediately; one obtains the formulae∫ b

a

cos x.dx = sin b − sin a,

∫ b

a

sin x.dx = cos a − cos b,

∫ b

a

etxdx = (etb − eta)/t (t ∈ C, t �= 0),(4.8)
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∫ b

a

dx/(1 + x2) = arctan b − arctan a,

etc., which confirm the “fundamental theorem”.

To conclude these trivialities on uniform limits we remark that the relation

lim fn = f =⇒ limm(fn) = m(f),(4.9)

valid in the framework of the uniform convergence, remains so under much
less restricted hypotheses.

If one replaces g by 1 in the Cauchy-Schwarz inequality one obtains the
relation

|m(f)| ≤ m(I)1/2‖f‖2.(4.10)

From this one deduces that

lim ‖fn − f‖2 = 0 =⇒ lim m(fn) = m(f);(4.11)

the same result holds for the Lp norms, p > 1, and for the norm ‖f‖1 since

|m(fn) − m(f)| ≤ ‖fn − f‖1

in this case. In other words, to obtain (9) it is enough to assume that there
exists a real number p ≥ 1 such that the integral of the function |fn(x)−f(x)|p
tends to 0.

When lim ‖fn − f‖p = 0, one says that fn converges to f in mean of
order p (“in mean” for short if p = 1, “in quadratic mean” if p = 2). This is
clearly the case if we have uniform convergence, but the converse is false since
the value of an integral has no direct connection with that of the function
at a given point or even on the neighbourhood of a point. If for example
we take on I = [0, 1] the functions fn(x) = n for 0 ≤ x ≤ 1/n2, = 0 if
not, then we have m(fn) = 1/n and convergence to 0. What is essential to
ensure convergence in mean is that, for n large, the difference |fn(x)− f(x)|
should not be > 10100 except on intervals of total length much smaller than
10−100. All electricians know this, particularly in the case p = 2, since, for
example, to calculate the power dissipated by an electric current of variable
intensity I(t) passing through a resistance during an interval of time [a, b],
one integrates the function I(t)2 over it; “surges of current” have no influence
on the result if they are concentrated on sufficiently small intervals of time.
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5 – Application to Fourier series and to power series

For a long time it was believed, and neophytes sometimes still believe, if they
trust to low level books, that integrals serve to calculate areas, volumes, cen-
tres of gravity, magnetic flux, etc. This is not false, it was even positively true
in the XVIIth century, but for ages they have served quite another purpose,
namely: to do mathematics, in other words, to prove theorems. At the point
where we now are in expounding the theory, we still know almost nothing.
Yet nevertheless . . .

Consider an absolutely convergent Fourier series of period 1, i.e. of the
form

f(x) =
∑

ane2πinx with
∑

|an| < +∞,(5.1)

where one sums over all n ∈ Z and where the factor 2π has been introduced
into the exponents to simplify the formulae a little. Note in passing that
the Euler relation eix = cos x + i. sin x allows us to write (1) in the more
traditional form

f(x) = a0 +
∞∑

n=1

bn cos 2πnx + cn sin 2πnx

which is less convenient computationally.
The first problem of the theory is to calculate the coefficients in (1) from f .

To this purpose we remark that, for any p, q ∈ Z and a ∈ R, we have7

∫ a+1

a

e2πipxe2πiqxdx =
∫ a+1

a

e2πi(p−q)xdx =
{

1 if p = q
0 if p �= q

.(5.2)

If p = q we are integrating the constant function 1. If p �= q, we can put
t = 2πi(p − q) and apply (4.8); we find the variation between x = a and
x = a + 1 of the function etx/t; since t is a multiple of 2πi this function is
of period 1, so takes the same values at a and a + 1 – there is no point in
calculating them explicitly, except to increase the chance of error – so that
the integral in question is zero. If, to simplify the notation, one puts

en(x) = e2πinx = exp(2πinx)(5.3)

and if one uses the notation

(f | g) =
∫ a+1

a

f(x)g(x)dx = m(fḡ)(5.4)

of the end of n◦ 2 to denote the scalar product of two functions f and g of
period 1, then the preceding formulae can be written
7 The integral over an interval [a, a+1] depends only on the integrand if the latter

is of period 1, as we saw at the end of n◦ 2.
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(ep | eq) =
{

1 if p = q.
0 if p �= q.

(5.2’)

With this notation the series (1) can be written

f(x) =
∑

anen(x).

For p ∈ Z given, let us consider the scalar product

(f | ep) = m(fep) = m(fe−p).

Since
∑ |an| < +∞, and since the exponentials are all of modulus 1 because

the exponents are purely imaginary, the series

f(x)ep(x) =
∑

anen(x)ep(x)

converges normally, so can be integrated term-by-term; in view of (2’) the
only term which yields a nonzero result in the integration is that for which
n = p, so finally we find the relation

ap = (f | ep) =
∫ a+1

a

f(x)e−2πipxdx.(5.5)

This formula is the basis of the theory of Fourier series: one starts from a
given periodic function f(x), uses (5) to define the coefficients an and hopes
that the function f is represented by the series (1). This heavenly vision of
the theory does not, alas, correspond to reality once one leaves the domain of
periodic functions of class C1. To begin with, the series

∑
an may well not

be absolutely convergent: the case of the square waves of Chap. III, n◦ 2.
Let us now consider two absolutely convergent Fourier series

f(x) =
∑

anen(x), g(x) =
∑

bnen(x)

and calculate their scalar product. The multiplication theorem for absolutely
convergent series shows that

f(x)g(x) =
∑

apbqep(x)eq(x) =
∑

apbqep−q(x)

on using the relations

ep(x)eq(x) = ep+q(x), en(x) = e−n(x) = en(−x).

The double series converges unconditionally and normally since by hypothesis
the series

∑
an and

∑
bn converge absolutely. We can then integrate term-

by-term over [0, 1], whence

(f | g) =
∑

apbq (ep | eq);
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the terms for which p �= q disappear and the Parseval-Bessel formula

(f | g) =
∫ a+1

a

f(x)g(x)dx =
∑

anbn(5.6)

remains. In particular, for any a ∈ R,

‖f‖2
2 = (f | f) =

∫ a+1

a

|f(x)|2dx =
∑

|an|2.(5.7)

These proofs do not apply to the square wave series of Chap. III, n◦ 2
and n◦ 11, but one can always examine what the results might mean in this
case. To reduce to a Fourier series of period 1, one has to replace x by 2πx
in the series cos x − cos 3x/3 + cos 5x/5 − . . ., i.e. to consider the series

f(x) = cos 2πx − cos(6πx)/3 + cos(10πx)/5 − . . .

= [e1(x) + e−1(x)] /2 − [e3(x)/3 + e−3(x)/3] /2 + . . .(5.8)

whose sum8, if one believes Fourier, is given by

f(x) = π/4 for |x| < 1/4, = −π/4 for 1/4 < |x| < 3/4,(5.9)

and by periodicity for the other values of x. If one accepts (9), the formula
(5) with a = −1/4 here gives, up to a factor π/4 and using (4.8),

ap =
∫ 1/4

−1/4

e−2πipxdx −
∫ 3/4

1/4

e−2πipxdx =

=
e−πip/2 − eπip/2

−2πip
− e−3πip/2 − e−πip/2

−2πip
=

=
(
eπip/2 − e−πip/2

)
/2πip − e−πip

(
eπip/2 − e−πip/2

)
/2πip =

= [1 − (−1)p] sin(pπ/2)/πp,

zero if p is even, and equal to 2(−1)(p−1)/2/πp if p is odd; since we omitted
a factor π/4, we finally have

ap = 0 (p even) or (−1)(p−1)/2/2p (p odd),

which agrees with (8). Thus here

∑
|an|2 =

1
2
(
1 + 1/32 + 1/52 + . . .

)
8 One might be tempted to write this series in the form

∑
(−1)(n−1)/2en(x)/2n

where one sums over all odd n ∈ Z, but this unordered sum is no more convergent
than the harmonic series; only on grouping the symmetric terms do we obtain a
convergent Fourier series.
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since each term is repeated twice. To apply (7), we again have to calculate
the integral, which is immediate since |f(x)|2 = π2/16 for every x. Hence the
formula

1 + 1/32 + 1/52 + . . . = π2/8.(5.10)

Since one knows that

π2/6 =
∑

1/n2 =
∑

1/(2n)2 +
∑

1/(2n − 1)2 = π2/24 +
∑

1/(2n − 1)2,

it remains to observe that 1/6 − 1/24 = 1/8 to confirm that the result is
indeed correct, even if the argument is unsupported for the moment; this
indicates that the hypothesis of absolute convergence in (5), (6) or (7), is
probably too restricting. And this is what the theory of Fourier series will
show.

Now let

f(z) =
∑

anzn(5.11)

be a power series which converges on a disc |z| < R and therefore normally
on every disc |z| ≤ r < R. Consider the function f on the circle of radius r;
again putting e2πit = e(t) with t real one finds

f [re(t)] =
∑

anrnen(t),(5.12)

an absolutely convergent Fourier series having exponentials only of index
n ≥ 0. Therefore, by (5),∫ 1

0

f [re(t)]en(t)dt =
{

anrn if n ≥ 0,
0 if n < 0.

(5.13)

In particular, for n = 0,∫ 1

0

f
(
re2πit
)
dt = a0 = f(0),(5.14)

which means that the “mean value” of f on the circle |z| = r is equal to its
value at the centre of the circle, a curious property of the analytic functions.
But there is better: since (13) allows us to calculate the coefficients an from
the values of f on the circle of radius r it must be possible to calculate f(z),
and not just f(0), in the same way.

Calculating formally for the moment, i.e. interchanging the
∫

and
∑

signs, applying (13) for a given r < R and substituting in (11) for a z such
that |z| < r, we obtain
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f(z) =
∞∑
0

anzn =
∑

(z/r)nanrn =
∞∑
0

∫ 1

0

f [re(t)][z/re(t)]ndt =

=
∫ 1

0

f [re(t)]
(∑

[z/re(t)]n
)

dt =(5.15)

=
∫ 1

0

re(t)
re(t) − z

f [re(t)]dt for |z| < r,

since z and r do not depend on the variable of integration t. To justify
this calculation, i.e. Cauchy’s integral formula, which we shall write in an-
other way below, it suffices to show that we are integrating a normally con-
vergent series over [0, 1], see (4.3). The factor f [re(t)], bounded because
it is a continuous function of t, is not important. The geometric series∑

(z/re(t))n must converge, which forces |z| < r. If this is the case, the
formula |[z/re(t)]n| = (|z|/r)n = qn with q = |z|/r < 1 implies the normal
convergence of the series that we are integrating, qed.

Formula (15) shows that, on the disc |z| < r < R, we can calculate f
from its values on the circumference |z| = r using an explicit formula of the
simplest kind. One normally states it in terms of re(t) = ζ, a function of t
whose differential is

dζ = 2πire(t)dt;

then Cauchy’s formula is written, à la Leibniz, in the form

f(z) =
1

2πi

∫
f(ζ)dζ

ζ − z
(5.16)

where one integrates along the circumference |ζ| = r and where |z| < r. This
is, as we shall see later, a “curvilinear integral” (Chap. VIII, n◦s 2 and 4).

Conversely, any function f that is continuous for |z| ≤ r and satisfies (16)
for |z| < r is a power series, i.e. is analytic in |z| < r : compute as in (15), but
in the opposite order. This will later be used to prove that a uniform limit of
analytic functions is analytic (Chap. VII, n◦ 19, where a more precise result
will be found).
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§ 2. Integrability Conditions

6 – The Borel-Lebesgue Theorem

As we have seen in Chap. II, n◦ 11, a very simple sufficient condition for the
integrability of a real function f is the existence for every r > 0 of a step
function ϕ such that

|f(x) − ϕ(x)| ≤ r for every x ∈ I;(6.1)

for then ϕ − r ≤ f ≤ ϕ + r and since the integrals of ϕ − r and ϕ + r are
equal to within 2rm(I) the relation m∗(f) = m∗(f) follows.

The preceding property means that f is the uniform limit of step func-
tions, so that the integrability of f would also follow from Theorem 4. The
functions possessing this property, i.e. the regulated functions of Chap. II,
n◦ 11, have (Chap. III, n◦ 12) both left and right limits at every point of I.
In this n◦ and the following, we shall show that this property characterises
them, if I is compact.

The idea of the proof is very simple: the whole problem is to show that, for
every r > 0, one can decompose I into a finite number of subintervals Ik such
that the given function f is constant to within r on each Ik. This condition
is clearly necessary if the condition (1) is to be satisfied; if, conversely, it is
satisfied, and if one assumes, as one may, that the Ik are pairwise disjoint,
one obtains (1) on taking ϕ to be equal to f(ξk) on Ik, where ξk is a point
chosen arbitrarily in Ik.

Now, given a function f that has right and left limits at every x ∈ I, it is
very easy to construct such intervals. Since, for every a ∈ I, the limits f(a+)
and f(a−) exist, there is an open interval ]a, a + r′[ with left end-point a
and an open interval ]a− r′′, a[ with right end-point a on which the function
is constant to within9 r. And of course it is constant to within r on the
interval [a, a]. If one then considers the open interval U(a) = ]a− r′′, a + r′[
one obtains the following results: (i) each U(a) is the union of at most three
intervals on each of which f is constant to within r; (ii) U(a) contains a for
every a ∈ I. The theorem at which we aim would therefore be established if
we could find a finite number of points ak such that

I ⊂
⋃

U(ak)

since then I would be the union of its intersections with the U(ak), which
are composed of at most three intervals on which f is constant to within r.

9 If a is the right (resp. left) end-point of I, one may take any number > 0 for
r′ (resp. r′′). If the function f is continuous, one can even find an open interval
with centre a on which f is constant to within r, but this detail does not simplify
the following proof.
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This kind of question certainly set mathematicians a-thinking from about
1850 onwards, at least those who were concerned about the foundations of
analysis and, in particular, about the properties of continuous functions.
In their research on the “grand” integration theory, Emile Borel and Henri
Lebesgue came to isolate the crucial point which their predecessors (see The-
orem 8 below) had more or less used, without appreciating the generality of
the statement; it was later extended, like the Bolzano-Weierstrass theorem,
to much more general spaces than R or C where the notion of a compact set
has meaning (see for example Dieudonné, Vol. I, Chap. III, n◦ 16).

Theorem 5 (Borel-Lebesgue). Let K be a compact subset of R (resp. C)
and (Ui)i∈I a family of open sets in R (resp. C). Suppose that K is contained
in the union of the Ui. Then there is a finite subset F of the set of indices
I such that K is contained in the union of the Ui, i ∈ F . This property
characterises the compact subsets of R (resp. C).

First we show that if K is bounded one can, for every r > 0, find a finite
number of points xk of K such that K is contained in the union of the open
balls B(xk, r). Since K is certainly contained in a compact interval or square,
it is clear that one can find a finite number of open balls of radius r/2 which
cover K, i.e. whose union contains K. Let us choose an xk ∈ K in each of
those of these balls Bk which actually intersect K. Since Bk is of radius r/2,
so of diameter r, we have Bk ⊂ B(xk, r), so that the B(xk, r) cover K as
desired.

To prove the existence of F , it thus suffices to show that there exists a
number r > 0 possessing the following property:

(∗) for every x ∈ K the open ball B(x, r) is contained in one of
the Ui.

If this is so, then it is enough to choose a Ui containing B(xk, r) for each k
to obtain the first assertion of the theorem.

Suppose (*) is false. For every n ∈ N there then must exist an x(n) ∈ K
such that the ball B(x(n), 1/n) is not contained in any of the Ui. By BW,
since K is compact, one can extract from the sequence x(n) a subsequence
x(pn) which converges to an a ∈ K (Chap. III, n◦ 9). Since one of the Ui

contains a, and is open, it contains a ball B(a, r) of radius r > 0. For n large
one has both |a − x(pn)| < r/2 and 1/pn < r/2. It follows that the ball
B(x(pn), 1/pn) is contained in B(a, r) and a fortiori in Ui, a contradiction.

It remains to show that the compact sets are the only ones to have the
BL property. In the first place, a set K which has it is bounded; indeed, K
is covered by the family of the open balls B(x, 1), x ∈ K, since any ball
contains its centre; there is then a finite number of xk ∈ K such that the
B(xk, 1) cover K, whence this property.

On the other hand, K is closed, i.e. contains every adherent point a. Let
us assume the opposite and let a /∈ K be an adherent point of K. For every
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n ∈ N, denote by Un the set of x ∈ R (or C) such that d(x, a) > 1/n, i.e.
the exterior of the ball B(a, 1/n). The Un are open and cover K: for every
x ∈ K one has d(x, a) > 0 since a /∈ K, whence, for n large, d(x, a) > 1/n,
i.e. x ∈ Un. If then K has the Borel-Lebesgue property one can cover it by
a finite number of sets Un; but since these form an increasing sequence this
means that K ⊂ Un for n large, in other words that the closed ball B(a, 1/n)
complementing Un in R (or C) does not meet K. Contradiction, since a is
adherent to K, qed.

By a curious coincidence, the essential tool in this proof is the Bolzano-
Weierstrass theorem, which, as we know (Chap. III, n◦ 9), characterises the
compact subsets of R or C. We may therefore wonder whether, conversely, it
is possible to deduce BW from BL, which would allow the reader to add BL
to the list of the statements equivalent to the axiom (IV) of R (Chap. III, end
of n◦ 10). For a proof, see Dieudonné, Eléments d’analyse, Vol. I, Chap. III,
n◦ 16.

Corollary 1. Let (Ki)i∈I be a family of nonempty compact sets in R or C.
Suppose that the intersection of the Ki is empty. Then there is a finite subset
F of I such that the intersection of the Ki, i ∈ F , is empty.

We choose any index j and replace each Ki by Ki ∩ Kj . If one of these
intersections is empty, the corollary is proved. So assume they are nonempty.
This is equivalent to assuming that all the Ki are contained in the same
compact set K, namely Kj .

Let Ui be the complement of Ki in R (or C). It is open since Ki is closed.
The union of the Ui is the complement of the intersection of the Ki. If this
is itself empty then the Ui cover R (or C) and thus K. By BL, there exists
a finite set F ⊂ I such that the Ui, i ∈ F , cover K. The complement of the
union of these Ui is the intersection of the Ki, i ∈ F . This cannot intersect
K; and since it is contained in K it must be empty, qed.

If we put
KF =

⋂
i∈F

Ki

for every finite subset F of I we can reformulate the preceding corollary
as follows: the Ki have a point in common if and only if KF is nonempty
irrespective of F . The case where the Ki are intervals in R has already been
treated in Chap. III, n◦ 9.

The reader will perhaps wonder why it is necessary to assume the Ui open
in the BL theorem. A trivial counterexample: cover K by the closed sets {x},
x ∈ K; if K is infinite it is clearly impossible to cover it by a finite number
of such sets. One might prefer a less crude counterexample. Take K = [−1, 1]
and cover it by the intervals ]1/2, 1], ]1/3, 1/2], . . . and [−2, 0]. Every x > 0 in
K belongs to one and only one interval ]1/n, 1/(n+1)], and every x < 0 to the
interval [−2, 0]; the obstacle would fall if one had chosen [−2, r] with an r > 0.
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Another important consequence of BL is the local character of uniform
convergence on a compact set:

Corollary 2. Let X be a subset of C and (fn) a sequence of scalar functions
defined on X, converging simply to a limit f . Assume that, for every a ∈ X,
there exists a ball B(a) of centre a such that the fn converge to f uniformly
on B(a) ∩ X. Then the fn converge uniformly on every compact K ⊂ X
(“compact convergence” on X).

We may assume the B(a) open. By BL, one can cover K by a finite
number of balls B(ai). For r > 0 given, the assertion

|fn(x) − f(x)| < r for every x ∈ B(ai) ∩ K(6.2)

is, for each i, true for n large. Since, for r given, these relations are finite
in number, they are thus simultaneously true for n large (Chap. II, n◦ 3),
and since the union of the B(ai) ∩ K is K, it follows that, for n large, the
inequality (2) is true for all the x ∈ K simultaneously, qed.

Corollary 2 is particularly useful in the theory of analytic functions; X is
then an open subset of C and it is often easy to show that, for every a ∈ X,
the convergence of the fn is uniform on a sufficiently small disc with centre
a, whence compact convergence on X.

7 – Integrability of regulated or continuous functions

The arguments which led us to formulate the BL theorem at the beginning
of the preceding n◦ lead to the following result:

Theorem 6. Let f be a scalar function defined on an interval I of R. The
two following properties are equivalent: (i) f has left and right limits at every
point of I; (ii) there is a sequence of step functions on I which converges to
f uniformly on every compact subset of I. The function f is then continuous
on the complement of a countable subset of I.

The implication (ii) =⇒ (i) was established from Cauchy’s criterion in
Chap. III, n◦ 12 (Corollary of Theorem 16). The implication (i) =⇒ (ii)
is obtained, when I is compact, by observing, as at the beginning of the
preceding n◦, that for every r > 0, there exists for every x ∈ I an open
interval U(x) =]x− r′′, x + r′[ such that f is constant to within r on each of
the three intervals ]x − r′′, x[, [x, x] and ]x, x + r′[; it remains only to apply
BL to the U(x) to obtain a finite number of intervals covering I and on each
of which f is constant to within r; this argument also shows that f is bounded
on every compact K ⊂ I.

In the case of a not necessarily compact interval I one clearly has to work
on an arbitrary compact interval K contained in I. One sees then that the
following two properties are equivalent for a scalar function f defined on I:



30 V – Differential and Integral Calculus

(i) f has right and left limits at every point of I, in other words, by definition,
is regulated on I;

(ii) for every compact interval K ⊂ I there exists a sequence of step functions
on K which converges to f uniformly on K.

One can then find a sequence (ϕn) of step functions on I (i.e. such that one
can partition I into a finite number of intervals on each of which the function
is constant) which, for every compact K ⊂ I, converges to f uniformly on K:
choose an increasing sequence of compact intervals Kn with union I and, for
each n, a step function ϕn on Kn satisfying |f(x) − ϕn(x)| < 1/n for every
x ∈ Kn, and then define ϕn on all of I by agreeing that ϕn(x) = 0 for every
x ∈ I − Kn. Again limϕn(x) = f(x) for every x ∈ I because x ∈ Kp for p
large, whence |f(x) − ϕn(x)| < 1/n for every x ∈ Kp and every n ≥ p since
then Kp ⊂ Kn.

It remains to prove the continuity of f . For every n, let Dn be the finite
set of the points of I where ϕn is discontinuous. The union D of the Dn is
countable (Chap. I) and the ϕn, as functions defined on I, are all continuous
at every x ∈ I − D. Similarly10 for f , qed.

Note that the theorem applies to monotone functions in particular.

Corollary. Every bounded and regulated function f on a bounded interval
I = (a, b) is integrable on I, and∫ b

a

f(x)dx = lim
u→a+,v→b−

∫ v

u

f(x)dx.(7.1)

Choose an r > 0 and a compact interval K = [u, v] contained in I and such
that m(I)−m(K) < r. By Theorem 6 the function f is integrable on K. There
must therefore exist on K a step function ϕ such that mK(|f−ϕ|) < r, where
mK is the integral over K. We define a step function ϕ′ on I by requiring it
to be equal to ϕ on K and zero off K. Since |f(x)−ϕ′(x)| ≤ ‖f‖I off K, we
see, separating the contributions over K and I − K, that∫

I

|f(x) − ϕ′(x)| dx ≤ r + [m(I) − m(K)] ‖f‖I ≤ (1 + ‖f‖I) r,

whence f is integrable on I. Relation (1) follows on remarking that the dif-
ference between the integrals over I and [u, v] is the sum of the integrals over
]a, u] and [v, b[, intervals whose lengths tend to 0, qed.

We will rediscover this in § 7 à propos the integration of not necessarily
bounded functions over arbitrary intervals. Up to then integrals over a com-
pact interval will almost always be sufficient for our needs, but it is good
to know that in spite of its unorthodox behaviour on a neighbourhood of 0,
the function sin(1/x) is integrable over ]0, 1] in the sense of n◦ 2, the most
elementary that there is.
10 To avoid all confusion, recall that we are dealing with the continuity of f as a

function on I and not only on I − D. See n◦ 5 of Chap. III again.
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The arguments showing that (i) =⇒ (ii) also serve to establish the fol-
lowing result, already mentioned in n◦ 3:

Theorem 7. The integral of a regulated (resp. continuous) positive function
f is zero if and only if the set D = {f(x) �= 0} is countable (resp. empty).

The condition is sufficient. For consider a step function ϕ ≤ f . One can
have ϕ(x) > 0 only if x ∈ D. Since the set of points of a nonsingleton
interval is uncountable (Chap. I), the function ϕ is necessarily negative on
all the intervals of nonzero length where it is constant. Thus m(ϕ) ≤ 0 and,
since m(f) is the upper bound of these m(ϕ), we also have m(f) ≤ 0, whence
m(f) = 0 since f is positive.

To show that it is necessary, we assume first that I is compact and con-
struct a sequence (ϕn) of step functions on I such that ‖f − ϕn‖I ≤ 1/n.
Replacing ϕn by ϕn − 1/n, we may assume that ‖f − ϕn‖I ≤ (1 + m(I))/n
and ϕn ≤ f . Since f ≥ 0 one can even assume ϕn ≥ 0 (replace them by
the ϕ+

n ). Then m(ϕn) = 0 since m(f) = 0. Each ϕn is then zero outside
a finite set Dn. The union D of the Dn is countable (Chap. I) and since
f(x) = limϕn(x) for every x ∈ I it is clear that f(x) = 0 for every x /∈ D.

If now I is not compact it is the union of a sequence of compact Kn. The
integral of f over each Kn is clearly zero; the D∩Kn are therefore countable,
so D =

⋃
D ∩ Kn (Ch. I) is too.

If f is continuous then D is open and so, if not empty, must contain an
interval of length > 0, which would have to be countable like D, contrary to
Cantor’s most famous theorem, qed.

A corollary of Theorem 7 is that if two regulated functions f and g are
equal outside a countable set D then m(f) = m(g). For the function |f −g| is
again regulated11 and it is positive; Theorem 7 then shows that m(|f−g|) = 0,
whence m(f) = m(g).

One might be tempted to believe that conversely, if one modifies the values
of a regulated function f on a countable set D of points, one will again find
an integrable or even regulated function. False: the constant function equal
to 1 is as regulated as it is possible to be, but if you change it to have the
value 0 at rational points you will obtain the Dirichlet function which is
neither regulated nor Riemann integrable.

8 – Uniform continuity and its consequences

The principal interest of Theorem 6 is to show that every regulated function
is integrable. In particular this is the case for continuous functions. The proof
11 Obvious. Note, in this circle of ideas, that if f is regulated and if g is continuous

then the composite function g ◦ f is again regulated, since if x tends to c+ or
c−, then f(x) tends to f(c+) or f(c−), so that g[f(x)] tends to a limit, namely
g[f(c+)] or g[f(c−)], qed. This result may not follow if g is only regulated.
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of the implication (i) =⇒ (ii) of Theorem 6 allows us to isolate an important
property that they have, namely uniform continuity.

Consider, generally, a scalar function f defined and continuous on a subset
X of R or C. For every r > 0 and every x ∈ X there exists a number r′ > 0
such that, for y ∈ X,

d(x, y) ≤ r′ =⇒ d[f(x), f(y)] ≤ r.(8.1)

The number r′ depends a priori on the choice of r and of x. One says that
f is uniformly continuous on X if, for every r > 0, you can choose the same
r′ > 0 for all x ∈ X, so that

{(x ∈ X) & (y ∈ X) & (d(x, y) ≤ r′)} =⇒ d[f(x), f(y)] ≤ r.(8.2)

Suppose for example that X = R and let us put y = x − h. Then (2) means
that

|h| ≤ r′ =⇒ |f(x − h) − f(x)| ≤ r for every x ∈ R.(8.3)

Now let us introduce the translated functions

fh(x) = f(x − h)(8.4)

of f whose graphs are derived from the graph of f by horizontal translations.
This said, the fact that d[fh(x), f(x)] ≤ r for every x means simply, in the
notation of Chap. III, n◦ 7, that

dR(f, fh) = ‖f − fh‖R ≤ r.(8.5)

The existence, for every r > 0, of an r′ > 0 satisfying (3) thus means that as
h tends to 0 the function fh(x) converges to f(x) uniformly on R. One would
like to formulate uniform continuity on an arbitrary set X in a similar way,
but in this case the function fh(x) is defined only on the set �= X formed from
X by the horizontal translation of amplitude h, and convergence, uniform or
not, no longer has a meaning.

Uniform continuity is very far from being a universal property of contin-
uous functions. If you take the function f(x) = ex on R for example, when
fh(x) = e−hf(x), it is clear that, as h tends to 0, fh converges simply to f –
this is continuity –, but for a given h the difference |f(x)−fh(x)| = |e−h−1|ex

is not even bounded on R, which rules out uniform convergence: in this case
‖f − fh‖R = +∞ for any h �= 0.

We always have:

Theorem 8 (Heine12). Every scalar function defined and continuous on a
compact set K ⊂ C is uniformly continuous on K.
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Fig. 3.

Given r > 0 let us choose for each x ∈ K an open ball B(x) with centre x
such that f is constant to within r in B(x) ∩ K. Let B′(x) be the open ball
with centre x and of radius half that of B(x). Since the B′(x) cover K, one
can, by BL, find points x1, . . . , xn of K such that the balls B′(xi) cover K.
Let r′ > 0 be the smallest of their radii, and let x, y be two points of K such
that d(x, y) < r′. The point x belongs to one of the balls B′(xi). Since the
radius of B(xi) is twice that of B′(xi), itself ≥ r′, the ball B(xi) contains y
too, by the triangle inequality. Since f is constant to within r on B(xi) we
have |f(x) − f(y)| ≤ r, qed.

Corollary 1. Let f be a scalar function defined and continuous on R (resp.
C) and zero for |x| large. Then f is uniformly continuous on R (resp. C).

We need only treat the case of C. Let K be a compact set outside which
f = 0, and H the set of x ∈ C such that d(x,K) ≤ 1. Since d(x,K) is a
continuous function of x (Chap. III, n◦ 10), the set H is closed. It is clearly
bounded like K, so is compact. For every r > 0 there is thus an r′ > 0 such
that, for x, y ∈ H, the relation d(x, y) ≤ r′ implies d[f(x), f(y)] ≤ r. We
may assume r′ < 1. Now let x, y be two points of C such that d(x, y) < r′.
If both are in H, the question is settled. If x /∈ H we have d(x,K) > d(x, y),
so y /∈ K, whence f(x) = f(y) = 0, qed.

It is easy to understand why Theorem 8 does not apply to noncompact
sets. Consider such a set X and a uniformly continuous function f on it; and
let a be an adherent point of X; then f tends to a limit when x ∈ X tends
to a. For, take an r > 0; in view of Cauchy’s criterion (Chap. III, n◦ 10,
Theorem 13’), we need to prove the existence of an r′ > 0 such that, for
x, y ∈ X,

{(|x − a| < r′) & (|y − a| < r′)} =⇒ |f(x) − f(y)| < r.

But since f is uniformly continuous there is an r′′ > 0 such that the right
hand inequality holds for |x − y| < r′′; it then suffices to take r′ = r′′/2.
12 Heine published in 1872, but Dugac tells us that Weierstrass had already taught

the theorem in 1865, that Riemann and Dirichlet had actually used it without
proof by 1854, and that it had been used implicitly by Cauchy, who had not
perceived the difficulty (Chap. III, n◦ 6).
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In these circumstances it is natural to define a function F on the closure13

X of X by putting
F (a) = lim

x→a,x∈X
f(x)

for every a ∈ X; we have F (a) = f(a) if a ∈ X. Let us show that the function
F is continuous on X. For every r > 0 we choose an r′ > 0 such that, for
x, y ∈ X,

|x − y| < r′ =⇒ |f(x) − f(y)| < r

and consider two points a, b of X such that |a− b| < r′ (strict inequality). If
x, y ∈ X are sufficiently close to a and b respectively, we again have |x−y| < r′

and so |f(x)− f(y)| < r; since f(x) and f(y) tend to F (a) and F (b), we find
in the limit that |F (a) − F (b)| ≤ r, whence the result.

This shows that the notion of uniform convergence in reality concerns only
continuous functions on a closed set, or, equivalently, which can be extended
to a closed set while remaining continuous (and even uniformly continuous).
In particular:

Corollary 2. Let f be a function defined and continuous on a bounded set
X ⊂ C. The following two properties are equivalent: (i) f is uniformly con-
tinuous on X; (ii) f is the restriction to X of a continuous function on the
compact set X.

We have just seen that (i) implies (ii). The converse implication follows
from Theorem 8 since X is compact.

If, for example, X =]0, 1], the function f(x) = sin(1/x) manifestly has no
limit when x tends to 0; this does not prevent it from being integrable since
it is continuous and bounded (Corollary to Theorem 6), but does prevent
it from being uniformly continuous on X. To verify this by a subtle use of
inequalities is a gymnastic exercise in the Weierstrass tradition; Corollary 2
makes this quite unnecessary: there are enough serious occasions for dealing
with inequalities that one prefers not to when one can obtain the result free.
One might, otherwise, advise the amateurs to examine such functions as

sin(sin(1/x)), sin(exp(sin(1/x))), etc.

“by hand”.
Corollary 2 allows us to answer an approximation problem: can one ap-

proximate a given continuous function on X by polynomials uniformly on
X? We shall show in n◦ 28 that this is so if X is a compact interval in R (or
C so long as one uses polynomials in x and y, and not in z = x + iy). But if
X is bounded without being compact?

Let p be a polynomial satisfying |f(x)− p(x)| ≤ r for every x ∈ X. Since
the function p is continuous on R and so on the compact closure of X, it
13 Recall that this is the set of points that one can approximate by the x ∈ X, or,

again, the smallest closed set containing X.
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is uniformly continuous on X. There is therefore an r′ > 0 such that, for
x, y ∈ X, the relation |x− y| < r′ implies |p(x)− p(y)| < r and consequently
|f(x) − f(y)| < 3r. In other words, if f is the uniform limit of polynomi-
als (or, more generally, of uniformly continuous functions on X), then f is
uniformly continuous on X. Conversely, f may then be extended to a con-
tinuous function on the compact set X and Weierstrass’ theorem provides
the desired approximation on X, so a fortiori on X. The question thus lacks
interest: when the answer is affirmative it results from Weierstrass’ theorem
for a compact set. On the other hand we have shown in Chap. III, n◦ 5 that
if X is an unbounded interval in R then the only uniform limits of polyno-
mials in X are the polynomials themselves. Moral: do not try to “improve”
Weierstrass’ theorem . . .

Another consequence of Heine’s theorem is the possibility of defining the
integral of a continuous function f over a compact interval I by means of the
standard Riemann sums.

One can, for example, like Cauchy, consider arbitrary subdivisions of I
and the sums

∑
f(xk)(xk+1 − xk) which irresistibly evoke Leibniz’ notation∫

f(x)dx (the evocation, as concerns Cauchy, would rather go in the inverse
sense . . .) or even the more general sums

∑
f(ξk)(xk+1 −xk) with the points

ξk chosen arbitrarily in the closed intervals14 [xk, xk+1]. If, on each of these
intervals, the function is constant to within r, the function f is everywhere
equal to within r to the step function equal to f(ξk) on [xk, xk+1[, so that the
integral of f is equal to the sum considered to within m(I)r. But since f is
uniformly continuous this condition will be satisfied so long as |xk+1−xk| < r′

for a suitably chosen r′ > 0. In other words:

Corollary 3. Let f be a scalar function defined and continuous on a compact
interval I. For every r > 0 there exists an r′ > 0 such that∣∣∣∣

∫
I

f(x)dx −
∑

f(ξk)(xk+1 − xk)
∣∣∣∣ < r(8.6)

for any points ξk ∈ [xk, xk+1] so long as the subdivision (xk) of I satisfies
|xk+1 − xk| < r′ for every k.

For example one can decompose I into n equal intervals I1, . . . , In and
choose a ξk ∈ Ik at random for each k. The corresponding Riemann sum is
just

m(I)
f(ξ1) + . . . + f(ξn)

n
.

It tends to the integral of f as n increases indefinitely. This remark explains
why the ratio m(f)/m(I) between the integral of f and the measure of I is
called the mean value of the function f on I .
14 For a general regulated function we have seen above that the ξk must be interior

to the intervals of the subdivision because the function f may be discontinuous
at the points xk.
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9 – Differentiation and integration under the
∫

sign

We shall continue to explain various important consequences of uniform conti-
nuity. We have established them not only in R, but also in C, i.e. for functions
of two real variables.

Consider a function f(x, y) defined and continuous on a rectangle K × J
in C, where K and J are intervals in R, and K is assumed compact as its
name suggests. We can integrate f(x, y) with respect to x for given y, and
more generally consider the function

ϕ(y) =
∫

K

f(x, y)µ(x)dx(9.1)

where µ is an arbitrary integrable function on K (if not a Radon measure
. . .).

Theorem 9. Let K be a compact interval, J an arbitrary interval of R, and
let f(x, y) be a continuous function on K × J . Then

(i) the function (1) is continuous in J ;
(ii) if f has a continuous partial derivative D2f(x, y) on K × J then ϕ is of

class C1 on J and

ϕ′(y) =
∫

K

D2f(x, y)µ(x)dx.(9.2)

Continuity and differentiability at a point y being local properties we can
replace J in what follows by a compact interval H ⊂ J containing all points
of J sufficiently close to y.

Generally, put µ(f) =
∫

f(x)µ(x)dx for every function f continuous on K,
whence, omitting the K under the

∫
sign,

|µ(f)| ≤
∫

|f(x)|.|µ(x)|dx ≤ M(µ)‖f‖K

where M(µ) =
∫ |µ(x)|dx. Then ϕ(y) = µ(fy) where fy(x) = f(x, y).

Since f is continuous and so uniformly continuous on the compact set
K × H, one can associate with every r > 0 an r′ > 0 such that, on K × H,

(|x′ − x′′| < r′) & (|y′ − y′′| < r′) =⇒ |f(x′, y′) − f(x′′, y′′)| < r.(9.3)

For |y′−y′′| < r′ one then has |f(x, y′)−f(x, y′′)| < r, i.e. |fy′(x) − fy′′(x)| < r,
for every x ∈ K; consequently,

|y′ − y′′| < r′ =⇒ ‖fy′ − fy′′‖K ≤ r.(9.4)

This means that, as y′′ tends to y′, the function fy′′ converges to fy′ uniformly
on K. The continuity of ϕ follows from this since
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|ϕ(y′) − ϕ(y′′)| = |µ(fy′) − µ(fy′′)| ≤ M(µ)‖fy′ − fy′′‖K ≤ M(µ)r

for |y′ − y′′| < r′.
As to differentiability, we put D2f = g, gy(x) = g(x, y) and denote the

right hand side of (2) by ψ(y) = µ(gy), a continuous function of y by (i)
applied to g. Then

ϕ(y + h) − ϕ(y)
h

− ψ(y) =
µ(fy+h) − µ(fy)

h
− µ(gy) =(9.5)

= µ [(fy+h − fy)/h − gy]

by the linearity of f 
→ µ(f). To show that the left hand side tends to 0 with
h, it suffices to show that, as h tends to 0, the function of x to be integrated
(in the third term) tends to 0 uniformly on K for y given.

Now we proved in Chap. III, n◦ 16 (Corollary 4 of the Mean Value The-
orem) that for every differentiable function p on a compact interval [a, b], we
have

|p(b) − p(a) − p′(c)(b − a)| ≤ |b − a|. sup |p′(x) − p′(c)|
for every c ∈ [a, b], the sup being taken over the x ∈ [a, b]. We apply this
result to the function y 
→ f(x, y) for x given; we obtain

|f(x, y + h) − f(x, y) − D2f(x, y)h| ≤ |h|. sup |D2f(x, y + k) − D2f(x, y)|,
the sup being taken over the k lying between 0 and h. The function D2f
being continuous and so uniformly continuous on the compact set K × H,
there exists for every r > 0 an r′ > 0 such that

|k| ≤ r′ =⇒ |D2f(x, y + k) − D2f(x, y)| ≤ r

for any x ∈ K and y ∈ H. We deduce that

|h| ≤ r′ =⇒ |f(x, y + h) − f(x, y) − D2f(x, y)h| ≤ r|h|,
i.e. that

|h| ≤ r′ =⇒ |fy+h(x) − fy(x) − hgy(x)| ≤ r|h|,
for any x ∈ K. On taking the sup for x ∈ K and dividing by |h|, we deduce
that

|h| ≤ r′ =⇒ ‖(fy+h − fy)/h − gy‖K ≤ r,(9.6)

which proves uniform convergence as announced, or, if one prefers, shows
that the left hand side of (5) is ≤ M(µ)r, qed.

Let now K and H be two compact intervals, µ and ν two integrable
functions on K and H and f a continuous function in K × H. We can then
consider the iterated integral which we denote by
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∫
H

ν(y)dy

∫
K

f(x, y)µ(x)dx rather than
∫

H

(∫
K

f(x, y)µ(x)dx

)
ν(y)dy

as, in principle, one should. One can also perform these operations in the
opposite order.

Theorem 10. Let K and H be two compact intervals in R and f a contin-
uous function on K × H. Then∫

H

ν(y)dy

∫
K

f(x, y)µ(x)dx =
∫

K

µ(x)dx

∫
H

f(x, y)ν(y)dy.(9.7)

for any integrable functions µ and ν on K and H.

This is the analogue of the theorem on absolutely convergent double series
(Chap. II, n◦ 18).

To prove the equality of the two sides of (7), note that, by (3), there exist
finite partitions of K and H into intervals Kp and Hq such that f is constant
to within r on each rectangle Kp × Hq. Then∫

H

f(x, y)ν(y)dy =
∑∫

Hq

f(x, y)ν(y)dy

and therefore∫
K

µ(x)dx

∫
H

f(x, y)ν(y)dy =
∑∫

Kp

µ(x)dx

∫
Hq

f(x, y)ν(y)dy.(9.8)

Now let us choose points ξp ∈ Kp and ηq ∈ Hq. If we replace f(x, y) by
f(ξp, ηq) in the general term, the error is clearly bounded by

r

∫
Kp

|µ(x)|dx

∫
Hq

|ν(y)|dy(9.9)

The left hand side of (8) is thus equal to the “double Riemann sum”

∑
f(ξp, ηq)

∫
Kp

µ(x)dx

∫
Hq

ν(y)dy =
∑

f(ξp, ηq)µ(Kp)ν(Hq)(9.10)

(obvious notation!), with an error less than the sum of the expressions (9),
so less than

r

∫
K

|µ(x)|dx

∫
H

|ν(y)|dy = M(µ)M(ν)r,

the product of the integrals of |µ| and |ν| over K and H. One would find the
same result on calculating in the same way from the right hand side of (7).
Since r > 0 is arbitrary, they must be equal, qed.

The preceding theorem justifies the definition
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∫∫
K×H

f(x, y)µ(x)ν(y)dxdy =
∫

µ(x)dx

∫
f(x, y)ν(y)dy =(9.11)

=
∫

ν(y)dy

∫
f(x, y)µ(x)dx

of the double integrals taken over a compact rectangle K × H with respect
to the “product measure” µ(x)ν(y)dxdy. On might define them in a more
general framework on replacing K × H by a not too barbarous bounded
subset of C, or, equivalently, extend the theorem to discontinuous functions,
but one runs quickly into great difficulties if one remains in the framework
of the Riemann integral.

Consider for example the following very trivial problem: one takes a pos-
itive continuous function ϕ(x) on K with values in H and seeks to calculate
the area A contained between the x axis and the curve y = ϕ(x) by means of
a double integral rather than by the usual simple integral. Writing E ⊂ R2

for the set of (x, y) such that x ∈ K and 0 ≤ y ≤ ϕ(x) and χE for its char-
acteristic function, equal to 1 on E and to 0 elsewhere, it is “geometrically
obvious” that

A =
∫∫
K×H

χE(x, y)dxdy;(9.12)

Fig. 4.

moreover, if one calculates the double integral by
∫

dx
∫

dy, the integral with
respect to y, for x given, involves the function equal to 1 between 0 and ϕ(x)
and zero elsewhere, whence

∫
dy = ϕ(x); on integrating with respect to x

one thus finds the integral of the function ϕ, which is precisely the area in
question. But let us first integrate with respect to x. For y = b ∈ H given,
one has χE(x, b) = 1 if ϕ(x) ≥ b and = 0 if not; if one then considers the set
F (b) ⊂ K of x ∈ K such that ϕ(x) ≥ b, one has to integrate with respect to
x the characteristic function of F (b), a compact set since ϕ is continuous and
K compact. Now there is no reason why this function should be Riemann
integrable. In fact, for every compact set F ⊂ K, there exists a function ϕ
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such that F = F (1); it suffices for this that ϕ(x) = 1 on F and ϕ(x) < 1 for
x /∈ F . To prove the existence of ϕ, consider the function

d(x, F ) = inf
u∈F

|x − u|;

it is continuous, zero on F and strictly positive outside F (Chap. III, n◦ 10,
Example 1). Now let M be the maximum of d(x, F ) for x ∈ K; on K the
function

ϕ(x) = 1 − d(x, F )/M

Fig. 5.

is continuous, positive, equal to 1 on F and < 1 elsewhere. For this choice of
ϕ the set {ϕ ≥ 1} is just F . Figure 5 gives no idea of the complexity of ϕ in
the general case.

So we see that for it to be possible to invert the order of integration in a
double integral in the Riemann theory so that∫∫

E

f(x, y)dxdy =
∫∫
K×H

χE(x, y)f(x, y)dxdy

for every “reasonable”, for example compact or open, subset E, of the com-
pact rectangle K ×H, as “users” unquestioningly believe, it is necessary, for
a start, that the characteristic function of every compact or open subset of R
should be integrable in the sense of this chapter. If such had been the case,
no one would ever have invented the Lebesgue integral, and certainly not he
himself, since this is precisely the problem which led him to his theory.

Of course, the objection does not arise for the “usual” functions: you can
calculate the area of a semicircle centred on the x axis by integrating first
with respect to x then with respect to y, since in this case the sets F (b) are
inoffensive intervals; for curves a little less convex or concave the F (b) can
be finite unions of closed intervals, which poses no greater problem, though
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again one has to justify it. But the general case lies beyond the elementary
theory; we shall treat it in n◦ 33.

Finally we remark that all the results of this n◦ remain valid, with the
same proofs (n◦ 30), when one integrates with respect to a general “Radon
measure” i.e. when one replaces the integral f 
→ m(f) by a function
f 
→ µ(f) satisfying the properties of linearity and continuity of Theorem 1
which, alone, feature in all that we have just done (except for calculating
the “double Riemann sums”, when we have to modify a little to eliminate
discontinuous functions). In other words, it is not the explicit construction
of the integral which matters in these problems, but its formal properties.
Mathematicians needed two hundred and fifty years to understand this, but
we now have a century of experience.

10 – Semicontinuous functions15

To know that the regulated functions are integrable is almost always enough
in elementary practice, but it is not difficult, where we now are, to anticipate
the “grand” integration theory. The essential tool is a famous theorem which
would have been of great use to Cauchy:

Dini’s Theorem. 16 Let (fn) be a monotone sequence of continuous real-
valued functions defined on a compact set K ⊂ C and converging simply
to a limit function f . Then f is continuous if and only if the fn converge
uniformly on K.

We can assume that the given sequence is increasing, whence f(x) =
sup fn(x) for every x ∈ K. For every r > 0 and every a ∈ K, we then have

f(a) ≥ fn(a) > f(a) − r for n large.

If f is continuous, this relation is, for n given, again true on a neighbourhood
of a. By BL, we can then find a finite number of points ap ∈ K and open
balls B(ap) covering K such that each relation
15 The contents of n◦ 10 and 11, preparation for the Lebesgue theory, will be

repeated in a more general framework in § 9, and in the Appendix to this chapter;
we shall use neither the results of these two n◦ nor those of § 9 before the chapter
devoted to them. Our aim here is to show the reader that it is not difficult to go
rather further than the traditional theory, the essential being to know how far
too far not to go . . .

16 Having followed the analysis courses of Joseph Bertrand and J.A. Serret at Paris
in 1866, as Dugac tells us in his thesis, p. 106, and having conceived serious
doubts as to the rigour of their ideas, doubts which his youth dissuaded him from
making public, Ulisse Dini, professor at Pisa (where there is an “Ecole normale
supérieure” which has produced a number of excellent Italian scientists), read
the Germans, educated himself on Weierstrass’ course, and, in 1878, published in
Italian the first exposition of analysis according to Weierstrass’ ideas and those
of his numerous disciples, followed in 1880 by a book on Fourier series. His book
was widely read because neither Weierstrass nor his disciples published anything
beyond duplicated manuscript courses of very limited distribution.
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x ∈ K ∩ B(ap) =⇒ f(x) ≥ fn(x) > f(x) − r(10.1)

is separately true for n large. These relations being finite in number, they
are simultaneously true for n large – unnecessary to rely on the Np and their
maximum . . . – and since the B(ap) cover K, this means that, for n large,
we have

f(x) ≥ fn(x) > f(x) − r

for every x ∈ K, therefore ‖f − fn‖K ≤ r, qed.
Exercise. Prove the theorem using BW.
Consider for example, for x > 0, the sequence fn(x) = n(x1/n − 1) of

Chap. II, n◦ 10; for x ≥ 1, it is decreasing and tends to log x; the convergence
is therefore uniform on [1, b] for any b > 1 (try to prove this “by hand” . . . ).
The case of an interval [a, 1] (a > 0) reduces to the preceding on putting
x = 1/y. We therefore have uniform convergence on every compact K ⊂ R∗

+.
Same conclusion for the sequence (1 + x/n)n for x ≥ 0.

Dini’s Theorem holds not only for increasing sequences but also for what
we shall call increasing philtres 17 of continuous functions; this terminology18

denotes any family (fi)i∈I (not necessarily countable) or set Φ of real func-
tions defined on an arbitrary set and possessing the following property: for
any functions f and g in the family, or the set, there exists in the family,
or the set, a function h that majorises f and g simultaneously. The most
frequent case is that where

(f ∈ Φ) & (g ∈ Φ) =⇒ sup(f, g) ∈ Φ.

The definition applies to functions defined on any set: the values of the func-
tion, not of the variable, have to be real. This is trivially the case for an
increasing sequence. This is also the case, on an interval of R (or, more gen-
erally, in a metric space), of the set of continuous functions which are less
than a given function. Similarly one defines decreasing philtres by reversing
the sense of the inequalities.

To extend Dini’s Theorem to this general case, let us consider an increas-
ing philtre Φ of continuous real functions on the compact set K ⊂ C and
assume that the function

ϕ(x) = sup
f∈Φ

f(x),

the upper envelope of Φ (i.e., in the case of an increasing sequence, its limit),
is everywhere finite and continuous. For every r > 0 and every a ∈ K there
17 Translator’s note: shades of Isolde & Brangaene!
18 A little less barbarous than N. Bourbaki’s “increasing filtering sets”; I use the

spelling “philtre” because the word “filter” is employed in a different sense in
general topology. I have known the Bourbaki milieu well, and myself absorbed
bourbachique philtres during the “grande époque” of filters enough to think that
my spelling corresponds better to the psychological background of the subject
. . .
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exists an f ∈ Φ such that ϕ(a)− r < f(a); since f and ϕ are continuous this
inequality is again valid on a neighbourhood of a in K. By BL, one can then
find a finite number of ap ∈ K and a finite number of fp ∈ Φ and balls B(ap)
covering K, such that

ϕ(x) − r < fp(x) on K ∩ B(ap)

for every p. Since Φ is an increasing philtre and since the fp are finite in
number, there exists a f ∈ Φ which majorises19 the fp. Then a fortiori
ϕ(x)−r < f(x) in K∩B(ap) for any p, so in all K. Since anyhow f(x) ≤ ϕ(x),
one finds finally that ‖ϕ−f‖K ≤ r and, trivially, that ‖ϕ−g‖K ≤ r for every
g ∈ Φ majorising f . This is Dini’s Theorem in this more general framework.

Since the continuous functions are integrable over a compact interval K
of R the result we have just obtained shows that, in this case,

m(ϕ) = supm(f),

where we revert to the notation m(f) =
∫

f(x)dx of n◦ 2 for integration
over K. The left hand side is greater than the right hand side since ϕ ma-
jorises all the f ∈ Φ; but the existence of an f such that ‖ϕ − f‖K ≤ r,
hence such that the integrals of ϕ and f are equal to within m(K)r, shows
that in fact the two sides are equal. This argument calls on no more than
Theorem 1; the explicit construction of the integral features here no more
than in the preceding n◦.

Dini’s Theorem serves, in the Bourbaki version which we shall follow
approximately, as the point of departure on the “grand” theory of integration
in view of the following result, in which connection the reader is invited to
revise the generalities of Chap. II, n◦ 17 on infinite limits:

Corollary 1. Let K be a compact interval and (fn), (gn) two everywhere in-
creasing or two everywhere decreasing sequences of real continuous functions
on K. Assume that lim fn(x) = lim gn(x) for every x ∈ K. Then

lim m(fn) = limm(gn)

or, in traditional notation,

lim
∫

K

fn(x)dx = lim
∫

K

gn(x)dx.

Consider for example the case of increasing sequences, put

ϕ(x) = sup fn(x) ≤ +∞
19 If for example one has three functions f, g, h in Φ, then there exists a k ∈ Φ

which majorises f and g, then a p ∈ Φ which majorises k and h, so majorising
f , g and h.
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and consider the set Cinf(ϕ) of all real functions h defined and continuous on
K such that h(x) ≤ ϕ(x) for every x; we shall show that

supm(fn) = sup
h∈Cinf(ϕ)

m(h),(10.2)

which will establish the corollary since the result does not involve the par-
ticular sequence (fn).

Put
M = supm(fn) = limm(fn) ≤ +∞

and hn = inf(h, fn) for every continuous function h ≤ ϕ. The hn are ≤ h
and form an increasing sequence of continuous functions like the fn. For
every x ∈ K and every r > 0, we have h(x) − r < fn(x) for n large since
h(x) ≤ ϕ(x) = sup fn(x): this is condition (SUP 2’) in the definition of an
upper bound (Chap. II, n◦ 9). Therefore h(x) − r ≤ hn(x) for n large, and
since hn(x) ≤ h(x) we conclude that h(x) = suphn(x) for every x.

By Dini’s Theorem the hn ≤ fn converge uniformly to h, whence m(h) =
lim m(hn) ≤ lim m(fn) = M . This inequality holding for every continuous h
≤ ϕ we may deduce that the right hand side of (2) is ≤ M . But among the
h ∈ Cinf(ϕ) are the fn themselves, so that the right hand side of (2) majorises
m(fn) for every n; it is therefore ≥ M . Whence (2) and the corollary, with,
moreover, the more precise result (2), qed.

It is almost obvious that the preceding corollary still holds if one sub-
stitutes increasing philtres Φ and Ψ of continuous functions in place of the
sequences fn and gn:

sup
f∈Φ

f(x) = sup
g∈Ψ

g(x) =⇒ sup
f∈Φ

m(f) = sup
g∈Ψ

m(g).

To see this, first consider an h ∈ Cinf(ϕ) and the functions inf(f, h) where
f ∈ Φ; if f ′, f ′′ ∈ Φ and if f ∈ Φ majorises f ′ and f ′′, it is clear (sketch!) that
inf(f, h) majorises inf(f ′, h) and inf(f ′′, h); the functions inf(f, h) thus form,
for h given, an increasing philtre of continuous functions whose upper enve-
lope is, as above, the function h itself. By Dini’s Theorem for philtres, m(h) is
then the upper bound of the integrals of the inf(f, h), themselves majorised by
the integrals of the f ∈ Φ; we conclude that sup m(h) ≤ supm(f); but since
Φ ⊂ Cinf(ϕ), the opposite relation is obvious, whence sup m(f) = supm(h)
and, likewise, = sup m(g).

The preceding corollary leads to a simple proof of a result which the
Lebesgue theory allows one to extend to arbitrary series of integrable func-
tions, though clearly with more work:

Corollary 2. Let
∑

un(x) be a series of continuous functions on a compact
interval K. Assume that the series converges simply to a continuous function
s(x) and that
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∑∫
K

|un(x)|dx < +∞.(10.3)

Then ∫
K

s(x)dx =
∑∫

K

un(x)dx.(10.4)

To prove (4), one may assume s = 0 by replacing u1 by u1 − s, which
is again continuous. One may also assume the un real and then use the
decomposition un = u+

n−u−
n of n◦ 2. These positive functions again satisfy the

hypothesis (3), since |u+
n | ≤ |un|; and since s(x) = 0 we now have

∑
u+

n (x) =∑
u−

n (x) ≤ +∞ for every x. Since a series with positive terms leads to an
increasing sequence on considering its partial sums, Corollary 1 shows that∑

m(u+
n ) =
∑

m(u−
n ).

Since the two sides are finite by (3) and the inequality m(u+
n ) ≤ m(|un|), we

have
∑

m(un) = 0 on subtracting, qed.
Once again, only the formal properties of Theorem 1 are needed for the

proof.
Condition (3) is satisfied if the given series is normally convergent on K,

but the hypothesis (3) is weaker, even though in elementary practice one
almost always verifies (3) by normal convergence.

Corollary 1 for increasing sequences, or its “philtrological” version, and,
more precisely, the relation (2), lead us to put

m∗(ϕ) = sup
f∈Cinf(ϕ)

m(f)(10.5)

for every function ϕ which can be exhibited as the limit of an increasing
sequence of continuous functions or, more generally (?), for which

ϕ(x) = sup
f∈Cinf(ϕ)

f(x)(10.6)

for every x ∈ K; such a function takes its values in ]−∞,+∞]. As we saw in
Corollary 1 one might define m∗(ϕ) replacing Cinf(ϕ) by any other increasing
philtre Φ of continuous functions with upper envelope ϕ. If m∗(ϕ) < ∞ we
shall say that ϕ is integrable and put m(ϕ) = m∗(ϕ), the integral of ϕ. As
we shall see in the following n◦ this generalisation20 of the Riemann integral
has even simpler properties than the former, despite the fact that it applies
only to very particular functions; but all these properties will be extended
later to general integrable functions.
20 Generalisation — since if ϕ is continuous the “new” definition of m(ϕ) reduces

to the old, for then ϕ ∈ Cinf(ϕ).
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First, let us elucidate a crucial point: how to characterise those functions ϕ
satisfying (6) by properties of an “internal” nature? These are the lower
semicontinuous functions, or, for short, the lsc functions of Baire.

Let us work on a not necessarily compact interval X of R, and consider
on X a function ϕ with values in ] − ∞,+∞] satisfying (6), i.e. which is
the upper envelope of a family of continuous real functions (which clearly
excludes the value −∞); for example the function 1/x2(x − 1)2 on R, with
value +∞ for x = 1 or 0. For every a ∈ X and every M < ϕ(a), there is, by
the definition of an upper bound, a continuous function f on X satisfying

f(x) ≤ ϕ(x) for every x, f(a) > M.

Since f is continuous, we again have f(x) > M on a neighbourhood of a, and
since ϕ majorises f , it follows that

ϕ(a) > M =⇒ ϕ(x) > M for every x ∈ X near a.(10.7)

This is the property which defines the lsc functions; equivalently, one may
demand that, for every finite M , the set {ϕ > M} of the x ∈ X where
ϕ(x) > M must be open in X since then, if it contains a, it must also
contain all the points of X sufficiently near a. Whence we deduce that the
sets {ϕ ≤ M} are closed21.

If ϕ(a) is finite, we may, in (7), choose M = ϕ(a) − r with an arbitrary
r > 0, whence

ϕ(x) > ϕ(a) − r on a neighbourhood of a,(10.8)

i.e. for every x ∈ X such that |x − a| < r′, in our usual notation. Continuity
would force ϕ(x) < ϕ(a)+r too, but this is precisely what we do not demand
of the lsc functions, whence their name. The continuous functions are char-
acterised by the fact that both f and −f are lsc. For a regulated function ϕ
condition (8) is equivalent to saying that the right and left limit values of ϕ
are ≥ ϕ(a) at every a ∈ X.

The reader can easily check that

(i) the sum of a finite number of lsc functions is lsc,
(ii) if ϕ and ψ are lsc, then so are the functions sup(ϕ,ψ) and inf(ϕ,ψ),
(iii) the upper envelope sup ϕi(x) of a finite or infinite family (ϕi) of lsc

functions is again lsc,
(iv) the sum, finite or not, of a series of positive lsc functions is again lsc.

Properties (i) and (ii) are proved by imitating what we have established
for continuous functions. (iii) is a direct application of the definition of upper
bounds – one can never say too often that the only useful “property” of upper
21 To distinguish weak from strict inequalities is as crucial in all these questions as

to distinguish open from closed sets.
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bounds is their definition; (iv) follows from (i) and (iii) since the partial sums
of the series form an increasing sequence. Property (ii) shows in particular
that if ϕ is lsc, then the functions inf[ϕ(x), n] obtained by “truncating” the
graph of ϕ above a horizontal n are again lsc; the converse follows from (iii).

(v) the characteristic function χU of a subset U of X, equal to 1 on U and
to 0 elsewhere, is lsc on X if and only if U is open in X.

The set {χU > M} is X if M < 0, U if 0 ≤ M < 1 and empty22 if M ≥ 1.
One must pay attention to the fact that “open in X” does not mean the
same as “open in R”, unless X itself is open.

Since the lsc functions are “half continuous”, one might assume that they
“half” satisfy the theorems applicable to continuous functions. This is some-
times justified:

(vi) let ϕ be an lsc function on an interval X and K a compact subset of
X; then ϕ is bounded below on K and there exists a point of K where ϕ
attains its minimum.

For every n ∈ N the set An = {ϕ ≤ −n} is closed in X, so that An ∩K is
compact; these intersections form a decreasing sequence so have a common
point a if they are all nonempty (Corollary 1 of BL). Absurd, since then we
would have ϕ(a) = −∞, an eventuality excluded by the definition of the lsc
functions.

Now let m be the lower bound of the ϕ(x), x ∈ K. For every n ∈ N the set
Kn of the x ∈ K where ϕ(x) ≤ m + 1/n is nonempty (definition of a lower
bound) and closed (definition of the lsc functions); since the Kn decrease
they have a common point c ∈ K, and clearly ϕ(c) = m, qed.

We have seen above that every function ϕ satisfying (6) on an interval X
is lsc; the converse holds if one assumes that there is a continuous function
f ≤ ϕ on X, and thus, by (vi), if X is compact. Since ϕ − f = ϕ + (−f)
is lsc, it suffices to treat the case of a positive function. For a ∈ X and
M < ϕ(a) given, it reduces to constructing a continuous function f ≤ ϕ
satisfying f(a) > M . Now there exists an r > 0 such that we again have
ϕ(x) > M for those x ∈ X such that |x − a| < r. Figure 6 shows the
construction of f , and does not require comment. We could in fact construct
an increasing sequence of continuous functions converging to ϕ [Dieudonné,
Vol. 2, (12.7.8)], but this is quite unnecessary for the needs of integration
theory, because of (2).

22 The empty set is open because, not containing any point, it has no difficulty in
satisfying the definition of an open set (all who live at least 500 years end up
dying in a car accident). Moreover, since the complement of the empty set is the
whole space, which is closed, it must be open. This argument also shows that
the empty set is closed.
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Fig. 6.

In all the above we have dealt with the upper envelopes of continuous
functions, but of course the lower envelopes of such functions, the upper
semicontinuous functions or usc functions, are no less important. These take
their values in [−∞,+∞[. One passes trivially from lsc to usc by remarking
that

ϕ is lsc ⇐⇒ −ϕ is usc.

You may therefore, if it appeals to you, translate all the properties of the
lsc functions into properties of the usc functions: it is enough to reverse the
sense of all the inequalities and to replace the word “increasing” by the word
“decreasing” everywhere. There is a theorem on the maximum, and not on the
minimum, for usc functions on a compact set. Every usc function majorised
by a continuous function is the lower envelope of the continuous functions
which majorise it; this is always the case of a usc function on a compact
interval by the maximum theorem. Likewise, the characteristic function of a
set is usc if and only if the set is closed.

Finally, it is clear that the continuous functions are the only functions
that are simultaneously lsc and usc.

For a usc function ψ on a compact interval K let Csup(ψ) be the set of
continuous functions f ≥ ψ; we then put

m∗(ψ) = inf
f∈Csup(ψ)

m(f) ≥ −∞,(10.9)

so that m∗(ψ) = −m∗(−ψ) where the right hand side is the integral of an
lsc function.

11 – Integration of semicontinuous functions

Let us now return to the integrals of lsc functions over a compact interval
K; these functions are bounded below but not above, so that their integrals,
defined by (10.5), are > −∞ but ≤ +∞. The essential point in the proofs is
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that, in (10.5), one can replace Cinf(ϕ) by any increasing philtre of continu-
ous functions having upper envelope ϕ.

(i) Additivity of the integral:

m∗(ϕ + ψ) = m∗(ϕ) + m∗(ψ).(11.1)

Let Φ be the set of functions of the form f + g with f ∈ Cinf(ϕ) and
g ∈ Cinf(ψ). It is clear that Φ is an increasing philtre of continuous functions
– apply the definitions – whose upper envelope is23 ϕ + ψ. Hence

m∗(ϕ + ψ) = supm(f + g) = supm(f) + supm(g) = m∗(ϕ) + m∗(ψ).

Similarly one can show that m∗(λϕ) = λm∗(ϕ) for every constant λ > 0,
and even if λ = 0 so long as we define 0.+∞ = 0. (Multiplying an lsc function
by −1 makes it usc.)

(ii) Passage to the limit under the
∫

sign in an increasing sequence:

m∗(supϕn) = supm∗(ϕn) ≤ +∞.(11.2)

Let ϕ(x) = supϕn(x). Put Φn = Cinf(ϕn) for every n and let Φ be the
union of the Φn, i.e. the set of continuous functions f satisfying f ≤ ϕn

for some n. This is an increasing philtre: for if f ≤ ϕp and g ≤ ϕq then
sup(f, g) = h ≤ ϕr for r ≥ max(p, q), and consequently h ∈ Φ. Finally, ϕ is
the upper envelope of the f ∈ Φ, for

ϕ(x) = supϕn(x) = sup
n

sup
f∈Φn

f(x) = sup
f∈⋃ Φn

f(x)

by the associativity of upper bounds (Chap. II, end of n◦ 9). We conclude
that

m∗(ϕ) = sup
f∈Φ

m(f) = sup
n

sup
f∈Φn

m(f) = sup
n

m∗(ϕn)

by the definition of m∗(ϕn), qed.

(iii) Integration term-by-term

m∗
(∑

ϕn

)
=
∑

m∗(ϕn) ≤ +∞(11.3)

for every series of positive lsc functions. Write s and sn for the total sum
and the partial sums of the series of the ϕn. Since the ϕn are positive these
partial sums form an increasing sequence of lsc functions of which s is the
limit. The integral of the left hand side is thus the limit of the integrals of
23 We have already mentioned that if A and B are two subsets of R and A + B is

the set of u + v with u ∈ A and v ∈ B, then sup(A + B) = sup A + sup B.
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the sn by (ii), i.e., by (i), of the partial sums of the series of the integrals,
qed. Note that if the ϕn are not positive the sum of the series need not even
be lsc.

If, in particular, the functions ϕn satisfy m∗(ϕn) < +∞, i.e. are m-
integrable (by definition), and if

∑
m∗(ϕn) < +∞, then the sum of the series

is again integrable and one may integrate it term-by-term. In particular, for
positive lsc functions,

m∗(ϕn) = 0 for every n =⇒ m∗
(∑

ϕn

)
= 0.(11.4)

Since the characteristic function of an open set U in K is lsc one may
define the measure of an open set by putting

m(U) = m∗(χU ),(11.5)

a number clearly lying between 0 and m(K); it is clear more generally that

U ⊂ V =⇒ m(U) ≤ m(V )(11.6)

since then χU ≤ χV . It is easy to see that, when U is an interval, m(U) reduces
to its usual length; for this obviously majorises m(f) for every continuous
function f ≤ χU (i.e. ≤ 1 on U and ≤ 0 elsewhere), but on replacing the
discontinuities of the graph of the characteristic function at the end-points
of U by almost vertical line segments joining 0 to 1, one constructs functions
f whose integral is arbitrarily close to the length of U .

Properties (i), (ii) and (iii) above translate immediately:

(i’) if U and V are open in K then m(U ∪ V ) ≤ m(U) + m(V ) and

m(U ∪ V ) = m(U) + m(V ) if U and V are disjoint.(11.7)

Obvious, since, in the last case, we have χU∪V = χU + χV .

(ii’) if (Un) is an increasing sequence of open sets then

m(
⋃

Un) = limm(Un) = supm(Un).(11.8)

Obvious since the characteristic function of the union is the limit of the se-
quence, increasing, of those of the Un.

(iii’) if (Un) is any sequence of open sets then

m
(∑

Un

)
≤
∑

m(Un)(11.9)

with equality if the Un are pairwise disjoint.
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Obvious, since the characteristic function of the union is less than the sum of
the characteristic functions of the Un and is equal to it if the Un are pairwise
disjoint.

This allows us to calculate the measure of any open U ⊂ K explicitly.
First, note that for every a ∈ U the union of all the intervals containing a
and contained in U is again an interval U(a), clearly open in K like U itself,
and of length > 0; U is the union of these U(a). It is immediate that, for
a �= b, either U(a) = U(b) or U(a)∩U(b) = ∅. The set (and not the family) of
the U(a) is countable, for those of these intervals which are of length > 1/p
are at most m(K)p in number since they are pairwise disjoint. Thus we see
that every open subset U of K (and, in fact, of any interval, compact or not,
and in particular of R) is the union of a finite or countable family of open
pairwise disjoint intervals. The measure of U is then, by (iii’), the sum of the
measures of these intervals.

We leave the reader the task of translating all these properties into terms
of usc functions and of closed sets. To go further along this path would
oblige us to develop all the Lebesgue theory. The reader may find these
considerations insufficient: for, at this point of the exposition, (i) we are not
yet able to integrate the difference of two lsc functions for the reason that it
is neither lsc nor usc24, (ii) we have considered integrals only over compact
intervals. These limitations will be removed in the Appendix to this Chapter.

Exercise. We say that a set N ⊂ K is of measure zero if, for every r > 0
there is an open U ⊂ N such that m(U) < r. (i) Show that the union of a
finite or denumerable family of sets of measure zero is of measure zero (use
the fact that r =

∑
r/2n). Show that Q∩K is of measure zero. (ii) Let ϕ be a

positive lsc function such that m∗(ϕ) < +∞; show that the set {ϕ(x) = +∞}
is of measure zero (use the sets {ϕ(x) > n}.

24 The ingenious reader will observe that if ϕ′, ϕ′′, ψ′ and ψ′′ are lsc functions
with finite values such that ϕ′ − ψ′ = ϕ′′ − ψ′′, then ϕ′ + ψ′′ = ϕ′′ + ψ′, so
m(ϕ′) + m(ψ′′) = m(ϕ′′) + m(ψ′), so m(ϕ′) − m(ψ′) = m(ϕ′′) − m(ψ′′). One
may thus define m(θ) = m(ϕ′) − m(ψ′) without ambiguity for every function θ
which can be expressed in the form of a difference of two positive lsc functions
with finite values. These functions form a vector space over R, etc. But this is
not the best method for obtaining the general integrable functions: we still lack
“almost everywhere zero” functions.
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§ 3. The “Fundamental Theorem” (FT)

12 – The fundamental theorem of the differential and integral cal-
culus

Let us return to much more elementary considerations and introduce the
notion of an oriented integral, analogous to that of a vector on a line. To do
this, first observe that we always have∫ b

a

f(x)dx +
∫ c

b

f(x)dx =
∫ c

a

f(x)dx(12.1)

if a ≤ b ≤ c. This is geometrically obvious, and has been proved in n◦ 2,
additivity formula (2.8).

(1) shows that ∫ c

b

=
∫ c

a

−
∫ b

a

;

we may then write this relation in the form∫ c

b

=
∫ a

b

+
∫ c

a

agreeing that ∫ v

u

f(x)dx = −
∫ u

v

f(x)dx if u > v.(12.2)

As in the case of the vectors, the relation (1) remains valid with no hypothesis
on the respective positions of a, b and c.

Having said this, let f be a scalar function defined on an interval I (of
any kind), and assume that f has right and left limits at each point of I, i.e.
that f is regulated. We may then, for a given a ∈ I, consider the function

F (x) =
∫ x

a

f(t)dt(12.3)

on I, with an oriented integral in the preceding sense, so the opposite of
the ordinary integral for x < a. We have denoted the phantom variable of
integration by t so as not to confuse it with the variable x in F ; one can
replace t by y, u, $ or anything one likes, except x, f or d . . .

By the properties of oriented integrals

F (x + h) − F (x) =
∫ x+h

x

f(t)dt.

This relation shows first of all that F is continuous: since f is bounded on
every compact interval K ⊂ I, the preceding integral is O(h) when h tends
to 0.
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If, on the other hand, h is > 0 and small enough, then the function f is,
on ]x, x + h], almost equal to the limit value f(x+), so that its integral is
almost equal to hf(x+) since the value taken by f at the point x, or at any
other individual point, has no influence on that of the integral; the quotient
[F (x+h)−F (x)]/h is therefore almost equal to f(x+), so tends to this limit
as h > 0 tends to 0.

Weierstrass’s Epsilontik is missing from this argument. To introduce it,
first observe that ∫ x+h

x

f(x+)dt = hf(x+)

because f(x+) is not a function of the variable of integration t, in other
words, behaves like a constant function of t for x given. (Whence, once more,
the necessity of not mixing the phantom or bound variables like t and the
free variables like x.) Then

F (x + h) − F (x)
h

− f(x+) =
1
h

∫ x+h

x

[f(t) − f(x+)]dt.(12.4)

Now for every r > 0, there exists an r′ > 0 such that

x < t ≤ x + r′ =⇒ |f(t) − f(x+)| ≤ r.

The right hand side of (4) is then, in modulus, ≤ r. We argue similarly for
h < 0, replacing the interval ]x, x + r′[ by an interval ]x − r′′, x[ and f(x+)
by f(x−). The left hand side then tends to 0, whence:

Theorem 11. Let f be a regulated function on an interval I in R. Then the
function F defined by the relation (3) is continuous and has right and left
derivatives equal to f(x+) and f(x−) at each point x ∈ I.

This result, for functions as then understood, is already in Newton in
1665–66 with essentially the same proof, phrased in his language of fluentes
and fluxions (Chap. III, n◦ 14): if y is the fluent which defines the curve
[y = f(x) in the language of today] and if z is the area [i.e. the integral]
between a fixed abscissa and the abscissa of the fluent x, then the infinitesi-
mal increase żo of z is the product of y by the infinitesimal increase ẋo of x,
which means that ż/ẋ = y; if one assumes that ẋ = 1, in other words that
x is the “time” with respect to which one derives one’s fluentes to calculate
their fluxions, one has ż = y, which, even in his conception of derivatives as
“speeds of variation in time”, means that the derivative of the area z with
respect to the variable x is the ordinate y of the graph at the point x; in
Leibniz’ style, dz/dx = y. For them, calculating the area is the same as cal-
culating a fluent z satisfying this relation. Newton justifies nothing, not even
the fact that the relation ż = y determines z up to an additive constant,
which is, however, the crucial point; a few lines suffice for him to formulate
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his result25 which he illustrates by examples. Chez Leibniz, everything is sim-
ple too: since F (x) is the “continuous sum” of the infinitely small quantities
f(t)dt where t varies from the left hand end of the area to x, the infini-
tesimal increase in F when one passes from x to x + dx is f(x)dx, whence
dF = f(x)dx and f(x) = dF/dx. Here again, the justifications awaited the
XIXth century, but since the method worked admirably, for 150 years no one
bothered to provide the rigorous proofs by “exhaustion” of Chap. II, n◦ 11 . . .

Recall that the set D of discontinuities of a regulated function f is finite
or countable (Theorem 6 or Chap. III, n◦ 12). Outside D the function F is
therefore differentiable, with F ′(x) = f(x).

When the function f is continuous, the function F is even differentiable
on all the interval considered, and

F ′(x) = f(x) for every x(12.5)

in this case. One says then that F is a primitive of f . These arguments prove
the existence of a primitive for every continuous function. This result is not
at all clear for a function which, though continuous, may be so savage that
one cannot represent it graphically.

Now, in contrast to Newton, who did not even pose the question since he
did not see (and one still does not see it . . .) how a graph all of whose tangents
are horizontal could be anything other than a line, we know (Chap. III, n◦ 16)
that if two everywhere differentiable functions on an interval have the same
derivatives everywhere, then their difference is constant. Since the addition
of a constant to the function F defined by (3) does not change the difference
F (x) − F (a), we obtain the following result:

Theorem 12 (FT). Let f be a scalar function defined and continuous on
an interval I in R and let F be a primitive of f , i.e. a differentiable function
such that F ′(x) = f(x) for every x ∈ I. Then

∫ b

a

f(x)dx = F (b) − F (a)(12.6)

for any a, b ∈ I.

In this way we find the results of n◦ 4, Example 1, again, for analytic
functions, but in a much more general framework.

Example 1. For x > 0 and s ∈ C, the function

xs = exp(s. log x)

25 Tractatus de Methodis Serierum et Fluxionum, pp. 195–197 and 211 of Vol. III
of the Mathematical Papers.
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has derivative sxs−1 [Chap. IV, formula (10.10)]. The function xs+1/(s + 1)
is therefore, for s �= −1, a primitive of xs. Whence the formula∫ b

a

xsdx =
bs+1 − as+1

s + 1
(0 < a, b; s ∈ C, s �= −1)(12.7)

already obtained for s ∈ N by a direct calculation of the integral (Chap. II,
n◦ 11), but now valid for any s ∈ C, s �= 1.

Example 2. For x > 0 the function log x has derivative 1/x; hence again the
formula ∫ b

a

dx/x = log b − log a (0 < a, b)

of Chap. II, n◦ 11.

Example 3. The derivative of the function arctanx is 1/(1 + x2); whence∫ b

a

dx

1 + x2
= arctan b − arctan a;

we must pay attention to the fact that, in this calculation, we take the “prin-
cipal determination” of arctanx, that given by the relation

y = arctan x ⇐⇒ {(x = tan y) & (|y| < π/2)}
or, equivalently, the inverse function of

tan : ] − π/2, π/2[ −→ R.

Example 4. For c ∈ C, c �= 0, the derivative of ecx/c is ecx; we again find the
formula ∫ b

a

ecxdx = (ecb − eca)/c.

In practice, we often use the notation

F (b) − F (a) = F (x)
∣∣∣b
a
;(12.8)

this contradicts all the most elementary rules of mathematical logic with its
x which might be a t, a # or a £ and which, despite its clearly phantom
character, is not linked visibly to any of its occurrences. It would be more
correct to write

F (x)
∣∣∣∣ x = b

x = a
or even F (�)

∣∣∣∣ � = b
� = a

,

especially when F depends on several variables x, y, etc. But as we have said
already, one does not change society, even mathematical society, by ukase.
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To denote a primitive of f , there is another notation, long universal, and
even more catastrophic, namely

F (x) =
∫

f(x)dx,

omitting the limits of integration. Since the letter x on the right hand side
denotes a bound variable and that on the left hand side a free variable, all the
tabus are violated26. The inventors of this system probably knew what they
were doing; Leibniz printed it for the first time in 1686 in his aptly named
Geometria recondita, and for example wrote that∫

xdx = x2/2,

the word “integral” being introduced by Jakob Bernoulli in 1690 (Cantor,
pp. 197, 218). But their principal reason is that they were much more con-
cerned to calculate primitives rather than integrals between well defined lim-
its, and, as we have already said, one had to wait for Fourier for the idea of
displaying the integration limits in the integral notation. Imagine the con-
fusions that this system must have provoked among less brilliant people, if
not chez Leibniz, the Bernoullis or Euler – brains of this calibre are not born
everyday. Not to ignore that relations such as∫

cos x.dx = sin x,

∫
dx/x = log x,

etc. may induce the same confusions even nowadays. . .

Another way of formulating the preceding theorem starts from a function
f of class C1, i.e. having a continuous derivative. Since f is a primitive of f ′

one finds the relation

f(b) − f(a) =
∫ b

a

f ′(x)dx,(12.9)

as fundamental as the FT, for any a and b in the interval I considered, or,
in the language of indefinite integrals,

f(x) =
∫

f ′(x)dx,(12.10)

26 We shall use this notation frequently, and have already used it, though in quite
another context, namely to denote an integral extended over an interval men-
tioned repeatedly in the calculations, and where no ambiguity is possible. This
convention or abbreviation, which often allows us to write the integrals in the
body of the text in clear language instead of using an extra line each time,
economises on type and paper.
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or even f(x) =
∫

df(x). In this form, the reciprocity between derivative
and integral appears clearly. In the version (9) one chooses a subdivision
a = x1 ≤ x2 ≤ . . . ≤ xn+1 = b of [a, b], writes that

f(b) − f(a) =
∑

[f(xi+1) − f(xi)](12.11)

and observes that the difference f(xi+1) − f(xi) is “almost” equal to
f ′(xi)(xi+1 − xi) and, in fact, exactly equal to f ′(ξi)(xi+1 − xi) for some
ξi ∈]xi, xi+1[ by the mean value theorem if f is real. Substituting in the
above expression for f(b)− f(a), one finds exactly the Riemann sums which
define the integral (9). This type of argument was clearly known to Leibniz;
it is linked to “the calculus of finite differences” so popular in the XVIIth

and XVIIIth centuries. Leibniz’ notation makes these results as intuitive as
they must have been almost obvious in the eyes of the contemporaries who
did not worry about arithmetising analysis, whence their popularity.

The formula (9) explains Theorem 19 of Chap. III, n◦ 17 on differentiating
a uniform limit. Suppose we are given a sequence of functions fn of class C1

on an interval I, and assume that the f ′
n converge to a limit g uniformly on

every compact K ∈ I. Then, by Theorem 4 of n◦ 4,∫ x

a

g(t)dt = lim
∫ x

a

f ′
n(t)dt = lim[fn(x) − fn(a)](12.12)

for any a, x ∈ I. If the sequence fn converges at the point a, it must then
converge everywhere to a function f , which, satisfying

f(x) − f(a) =
∫ x

a

g(t)dt(12.13)

by (12), is a primitive of g; in other words, the derivative of the limit is the
limit of the derivatives. An immediate estimate of the integral of g− f ′

n then
shows that the sequence fn converges uniformly on every compact set. But
Theorem 19 of Chap. III only assumes the existence of the f ′

n, and not their
continuity.

We established a theorem on “differentiation under the
∫

sign” for inte-
grals of the form

∫
f(x, y)dx above. We may combine this with the FT to

obtain the following occasionally useful result:

Theorem 13. Let I and J be two intervals, f a continuous function on I×J
and let ϕ,ψ : I → J be two differentiable functions. Suppose that f has a
continuous derivative D1f on I × J . Then the function

g(x) =
∫ ψ(x)

ϕ(x)

f(x, y)dy(12.14)

is differentiable on I, and

g′(x) =
∫ ψ(x)

ϕ(x)

D1f(x, y)dy + f [x, ψ(x)]ψ′(x) − f [x, ϕ(x)]ϕ′(x).(12.15)
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By subtracting, one need only prove this in the case where ϕ(x) = b is
constant. Put

F (x, y) =
∫ y

b

f(x, t)dt,

whence g(x) = F [x, ψ(x)]. Since f is continuous the FT shows that

D2F (x, y) = f(x, y).(12.16)

Theorem 9 shows on the other hand that

D1F (x, y) =
∫ y

b

D1f(x, t)dt.(12.17)

By Theorem 9 (i) D1F is continuous on I × J , and since D2F = f is also
continuous we see that F is a function of class C1 on I × J . We may thus
apply the chain rule to g(x) = F [x, ψ(x)] (Chap. III, n◦ 21), whence

g′(x) = D1F [x, ψ(x)] + D2F [x, ψ(x)]ψ′(x);

one obtains the desired formula on substituting ψ(x) for y in (16) and (17).

Exercise. By the theorem, the function

g(x) =
∫ x3

x2
sin(xy)dy

has derivative

g′(x) =
∫ x3

x2
cos(xy)ydy + 3x2 sin(x4) − 2x sin(x3).

Check this result by calculating the integrals that appear in g and g′ (for the
second, integrate by parts).

Exercise. Prove (15) directly by writing

g(x + h) − g(x) =
∫ ψ(x+h)

b

f(x + h, y)dy −
∫ ψ(x)

b

f(x, y)dy.

Since we have just made a new incursion into the functions of two real
variables, let us show how one may exploit the FT to establish one of the
fundamental results of Chap. III, n◦ 23:

Theorem 14. Let f(x, y) be a function defined and continuous on I × J
where I and J are two intervals in R. Assume that f has continuous second
derivatives D1D2f and D2D1f on I × J . Then they are equal.
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Since it is enough to verify the statement on a neighbourhood of an ar-
bitrary point of I × J one may reduce to the case where I = [a, b] and
J = [c, d] are compact. The FT applied to the functions y 
→ D2D1f(x, y)
and x 
→ D1f(x, y) then shows that∫ u

a

dx

∫ v

c

D2D1f(x, y)dy =(12.18) ∫ u

a

[D1f(x, v) − D1f(x, c)] dx = f(x, v) − f(x, c)
∣∣∣∣x=u

x=a

for any u ∈ I and v ∈ J . A similar calculation will show that∫ v

c

dy

∫ u

a

D1D2f(x, y)dx = f(u, y) − f(a, y)
∣∣∣∣y=v

y=c

,(12.19)

a result obviously identical to that furnished by (18). But we already know
that the order of integration is unimportant in these double integrals. Putting

g(x, y) = D2D1f(x, y) − D1D2f(x, y),

we thus obtain a continuous function on I × J such that∫ u

a

dx

∫ v

c

g(x, y)dy = 0(12.20)

for any u ∈ I and v ∈ J . On differentiating with respect to u one finds that
the integral of g(x, y) between c and v is zero for any v. On differentiating
with respect to v, one obtains g(x, y) = 0, qed. [Note that Chap. III, n◦ 23,
only requires D1f and D2f to be differentiable at the point (x, y) considered].

13 – Extension of the fundamental theorem to regulated functions

Let us return to the usual integral and to the “fundamental theorem”. The
hypothesis that f is of class C1 is not indispensable in justifying formula
(12.9); it still holds if, for example, f ′(x) is a regulated function. For this, and
as N. Bourbaki and also Dieudonné (Eléments d’analyse, Vol. 1, Chap. VIII,
n◦ 7) do, let us say that for a regulated function f defined on an arbitrary
interval I any continuous function F which has a derivative equal to f(x)
outside a countable subset D of I is a primitive of this regulated function.

Theorem 12 bis. Let f be a regulated function on an interval I ⊂ R. Then
(i) f has a primitive F in I; (ii) any two primitives of f are equal up to an
additive constant; (iii) we have∫ b

a

f(x)dx = F (b) − F (a)

for any a, b ∈ I; (iv) every primitive F of f has right and left derivatives
F ′

d(x) = f(x+), F ′
g(x) = f(x−) at every point.
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Point (i) follows from Theorem 11: the continuous function F of Theo-
rem 11 satisfies (iv) and since f is continuous outside a countable set D, F
has a derivative F ′(x) = f(x) for x /∈ D.

Since (iii) is valid for a particular primitive, (iii) will be established if we
prove (ii), in other words that a continuous function having a zero derivative
outside a countable set D is constant. For this it is enough to show that if
the derivative is ≥ 0 outside D, then the function is increasing, for a function
which is simultaneously increasing and decreasing has no choice.

We shall give two rather different and extremely ingenious proofs of this
theorem27.

It is enough to establish this result when f ′(x) is strictly positive every-
where on I−D, since if f(x)+εx, which satisfies this hypothesis, is increasing
for every ε > 0, then so clearly is f in the limit. One may also restrict oneself
to examining the case where I is compact, since, to show that a ≤ b implies
f(a) ≤ f(b), it is enough to argue on the interval [a, b].

The basic idea is that the ratio [f(x+h)−f(x)]/h is > 0 for h small enough
since it tends to f ′(x) > 0; then f(x) < f(x+h) for every small enough h > 0;
it remains to pass from “locally” increasing to “globally”increasing, which the
Founding Fathers considered obvious.

First proof. Assume that f ′(x) > 0 for x ∈ I − D. If f is not increasing,
there exist points c, d of I such that c < d, f(c) > f(d). For every number
ξ ∈ ]f(d), f(c)[, the equation f(x) = ξ has at least one solution between c
and d (intermediate value theorem). The set E(ξ) of these solutions is closed
since f is continuous, and it is bounded since ⊂ [c, d]; it therefore contains
the number supE(ξ) = dξ, and we have dξ < d since f(dξ) = ξ > f(d).

Let us show that if h > 0 is small enough that dξ +h < d then f(dξ +h) <
f(dξ) = ξ. If in fact f(dξ + h) ≥ ξ, a number > f(d), then the equation
f(x) = ξ would have a solution between dξ+h and d; absurd since sup E(ξ) =
dξ < dξ + h.

It follows from this that, for every ξ ∈ ]f(d), f(c)[ and every sufficiently
small h > 0,

[f(dξ + h) − f(dξ)]/h < 0.

This is impossible if the derivative f ′(dξ) (or even only the right derivative)
exists, since by hypothesis it is > 0; the function f is thus not differentiable
at any of the points dξ, which proves that dξ ∈ D.

Now the map ξ 
→ dξ of ]f(d), f(c)[ in D is injective because

27 I find the first in Walter, Analysis I, pp. 354–359, who attributes it to L. Scheef-
fer, 1885, the date when arguments à la Cantor began to be fashionable. For
the second I have simplified the method of Dieudonné, Eléments . . ., Vol. 1,
Chap. VIIII, n◦ 6, which treats the case of functions with values in Banach
spaces, and could in fact be deduced from the result for real-valued functions
with the help of the Hahn-Banach theorem. Both authors prove the mean value
theorem, below, directly.
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ξ �= η =⇒ f(dξ) = ξ �= η = f(dη) =⇒ dξ �= dη.

If the theorem were false we would have constructed an injective map of an
interval ]f(d), f(c)[ of R into a countable set, absurd if one believes Cantor . . .

As we have seen in passing, it would suffice, to obtain (2), to assume that
f has a positive right derivative outside D. The same remark applies to the
proof that follows.

Second proof. Here again we reduce to showing that f(a) ≤ f(b) if
f ′(x) > 0 on I = [a, b].

Let us first explain the method in the simplest case (already explained
in another way in Chap. III, n◦ 16) where f is differentiable for every x ∈ I
without exception. The set E of the x ∈ [a, b] such that f(a) ≤ f(x) contains
a and is closed since f is continuous. Let c = sup(E) ≤ b, whence c ∈ E;
assume that c < b. For all x > c near enough to c, one has f(x) > f(c) ≥ f(a)
since f ′(c) > 0, whence x ∈ E if x ∈ I. If c < b then E contains points
x > c = sup(E), absurd. Whence c = b, qed.

Now let us pass to the general case, where the derivative exists only
outside D. First notice that if f(u) ≥ f(a) at a point u ∈ [a, b], then again
f(x) > f(u) [and so > f(a)] for every x > u close enough to u if f ′(u) exists;
in the contrary case, one may only guarantee, for every ε > 0, that one has
f(x) > f(u)− ε [and so > f(a)− ε] for every x > u near enough to u since f
is continuous. This indicates that if one moves from a to b, one is forced, in
seeking to prove the inequality f(x) ≥ f(a), to subtract an error term from
f(a) each time that one meets a point of D. If one can contrive that the sum
of these errors will be ≤ r when one arrives at the point b, one obtains the
inequality f(b) ≥ f(a) − r, which, valid for every r > 0, proves the theorem.

One must therefore, for each ξ ∈ D, allow an error r(ξ) chosen so that∑
r(ξ) ≤ r. Since D is finite or countable, one need only write the points of

D in the form of a sequence (ξn) and choose, for example, r(ξn) = r/2n. We
will find this technique again in the Lebesgue theory.

Let us now pass on to the formal proof. We denote by E the set of x ∈ [a, b]
satisfying the relation

f(x) ≥ f(a) −
∑
ξ<x

r(ξ) = g(x);(13.1)

the series converges since it is a subseries of a convergent series of positive
terms. All we have to prove is that b ∈ E.

The first claim to make is that the function g defined by the right hand
side of (1) is decreasing: for y < x, the ξ < y are themselves < x; consequently,
g(x) is obtained by subtracting from g(y) the numbers r(ξ) > 0 for the ξ ∈ D
such that x ≥ ξ > y. This argument even shows that

x > y =⇒ g(x) ≤ g(y) − r(y),(13.2)
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agreeing to put r(y) = 0 if y /∈ D.
Now, as above, let c = sup(E); we show first that c ∈ E. For every x ∈ E

we have x ≤ c and so g(x) ≥ g(c), whence f(x) ≥ g(x) ≥ g(c); since c is the
limit of points of E, we also have f(c) ≥ g(c) since f is continuous.

It remains to prove that c = b. Now assume that c < b, and let us consider
the x ∈ ]c, b]. There are two possible cases.

(i) f is differentiable at c. If x is near enough to c, we have on the one
hand that f(x) > f(c) since f ′(c) > 0, and on the other hand g(x) ≤ g(c)
since x > c; whence, for these x, f(x) > f(c) ≥ g(c) ≥ g(x) and so x ∈ E;
absurd since sup(E) = c < x.

(ii) f is not differentiable at c, i.e. c ∈ D. For c < x ≤ b, one has
f(x) < g(x) because x /∈ E. Since c < x, we have g(x) ≤ g(c) − r(c) by (2).
Thus f(x) < g(c) − r(c). But g(c) ≤ f(c) since c ∈ E, see (1). Consequently

c < x ≤ b =⇒ f(x) < f(c) − r(c);

since r(c) > 0 because c ∈ D, this relation contradicts the continuity of f at
the point c if c < b, qed.

As we have said, most authors deduce the preceding results from a state-
ment which appears more general and which we have already met for every-
where differentiable functions:

Mean value theorem. Let f be a scalar function defined and continuous
on an interval I ⊂ R; assume that f is differentiable at every point of I −D,
where D is a countable subset of I. Then, for any a, b ∈ I with a ≤ b,

|f(b) − f(a)| ≤ M(b − a)(13.3)

where M ≤ +∞ is the upper bound of |f ′(x)| on the interval [a, b].

First assume that the function f is real and that, for x ∈ [a, b], f ′(x) has
its values in a compact interval [m,M ] (there is nothing to prove if f ′ is not
bounded in [a, b]); we show that then

m(y − x) ≤ f(y) − f(x) ≤ M(y − x)(13.4)

for a ≤ x ≤ y ≤ b. Now this means that the function f(x)−mx is increasing
and the function f(x) − Mx is decreasing in [a, b]. The derivatives of these
functions being respectively positive and negative outside D, we can write
the final qed in the real case.

The case of a function f with complex values reduces to the preceding
case by an artifice already employed in the same context [Chap. III, n◦ 16,
proof of (16.5)]: one applies the result already established for real functions
to the function fz(x) = Re[z̄f(x)], where z is an arbitrary complex constant;
its derivative Re[z̄f ′(x)] lies, outside D, between −M |z| and M |z| where
M = sup |f ′(x)|, so that
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|Re[z̄f(b)] − Re[z̄f(a)]| ≤ M |z|(b − a),

i.e.
|Rez̄[f(b) − f(a)]| ≤ M |z|(b − a);

it remains to choose z = f(b) − f(a) and to divide by |f(b) − f(a)|.
Corollary. Let f be a function with complex values defined and continuous
on an interval I ⊂ R; assume f differentiable at every point of I −D, where
D is a countable subset of I. If f ′(x) = 0 for every x ∈ I − D, then f is
constant in I.

Note that this corollary does not assume that f ′ is a regulated function
even though in practice . . .

To establish the existence of a primitive, we have employed Theorem 11,
i.e. integration theory. We are going to expound the Dieudonné method (or
Bourbaki, Functions of a real variable) to resolve these problems without
using this, a most instructive exercise28. The idea of the proof is to establish
the result for step functions, which is easy, then to pass to uniform limits.
First we assume I = [a, b] compact, the general case being deduced easily as
will be seen.

Fig. 7.

It is first of all clear that every step function ϕ admits a primitive: using
a subdivision of I adapted to ϕ, one considers, on each interval [xk, xk+1], a
linear function Φ whose value at xk is equal to that of the primitive already
constructed on the interval [a, xk], to ensure the continuity of the function Φ
constructed piecewise in this way. Φ is a piecewise linear continuous function
and it is not difficult to check by banal calculations that

Φ(v) − Φ(u) =
∫ v

u

ϕ(x)dx(13.5)

28 The rest of this n◦ is more a “bonus for the reader” than an essential element of
the theory.
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for any u, v ∈ I. Even if one ignores, in the French or English sense, the mean
value theorem, which would allow one to show that the preceding construction
provides all the primitives29 of ϕ, it provides, for every step function ϕ, at
least one standard primitive defined up to an additive constant. This is the
one we shall use in the course of the proof, and for good reason, since there
is nothing else!

With this convention, by (5)

|Φ(u) − Φ(v)| ≤ ‖ϕ‖I .|u − v|(13.6)

for any u, v ∈ I.
To pass from this to the case of an arbitrary regulated function f one

chooses a sequence of step functions ϕn converging to f uniformly on I = [a, b]
and, for each n, a primitive Φn of ϕn; since we obviously want the Φn to
converge to a primitive of f , it is prudent to impose the condition Φn(a) = 0.
We shall show that the functions Φn converge uniformly on I to a primitive
F of f , which will prove its existence.

Now the piecewise linear function Φpq = Φp−Φq is a primitive of the step
function ϕpq = ϕp − ϕq. By (6) for v = a we have

|Φpq(u)| ≤ ‖ϕpq‖I .(u − a) ≤ m(I)‖ϕpq‖I(13.7)

for every u ∈ I, whence ‖Φp − Φq‖I ≤ m(I)‖ϕp − ϕq‖I , which shows that
the Φn satisfy Cauchy’s criterion. Hence their uniform convergence to a limit
function F , continuous like the Φn.

We must now prove that F ′(x) = f(x) outside a countable set of points
of I. Of course there is Theorem 19 of Chap. III, n◦ 17, but that assumes
the ϕn to be differentiable everywhere, which is not the case here except
outside a finite set Dn ⊂ I for each n. Outside the union D of the Dn one
may imitate the proof of the theorem in question, Theorem 19, the essential
being, in the present notation, to show that at every point t /∈ D one has a
relation analogous to formula (17.4) of Chap. III:

lim
x→t

lim
n→∞

Φn(x) − Φn(t)
x − t

= lim
n→∞ lim

x→t

Φn(x) − Φn(t)
x − t

;(13.8)

on the left hand side the limit over n is [F (x)−F (t)]/(x−t), so that the limit
over x, if it exists, must be F ′(t); on the right hand side the limit over x is
the derivative in t of Φn, i.e. ϕn(t), which exists since we are outside D and
a fortiori outside Dn, so that the limit over n is f(t); whence F ′(t) = f(t)
modulo proving (8).

We have to argue as in Chap. III, i.e. to apply Theorem 16 of n◦ 12 on
the “limits of limits”. Again we put (for a given t)
29 Note that while it is easy to construct a primitive of a step function “without

knowing anything”, to show that it is unique up to a constant reduces, even in
this particularly elementary case, to proving that a function with everywhere
zero derivative is constant.
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cn = Φ′
n(t), un(x) = [Φn(x) − Φn(t)]/(x − t),

u(x) = [F (x) − F (t)]/(x − t)

and work on the set X = I − (D ∪ {t}) obtained by omitting from I on the
one hand the points of D where the Φn are not all differentiable, on the other
hand the point t where the quotients (8) are meaningless30. We know that
un(x) tends to cn when x → t, and that un(x) tends to u(x) for every x ∈ I
when n → +∞. To deduce that the cn tend to a limit c and that u(x) tends
to c when x → t, it is enough to show that the un converge to u uniformly
on X and, for this, to verify the corresponding Cauchy criterion. But again
putting Φpq = Φp − Φq, ϕpq = ϕp − ϕq, the general relation (6) shows that

|Φpq(x) − Φpq(t)| ≤ ‖ϕpq‖I .|x − t| = ‖ϕp − ϕq‖I .|x − t|.
Since clearly

up(x) − uq(x) = [Φpq(x) − Φpq(t)]/(x − t),

it follows that

|up(x) − uq(x)| ≤ ‖ϕp − ϕq‖I for every x ∈ X,

and thus ‖up − uq‖X ≤ ‖ϕp − ϕq‖I . Hence the uniform convergence of the
un on X. The relation (8) is thus justified at every point where the limits
appearing on the right hand side of (8) exist, i.e. on I − D.

Since, what is more, the relation (5) is valid for every ϕn, it is clear that
it is also valid for f and F by passage to the uniform limit. This finishes the
proof in the case of a compact interval I.

The case of a noncompact interval I reduces to this immediately. One
chooses a point a ∈ I and writes I =

⋃
In where the In are compact intervals

containing a and such that In ⊂ In+1. On each In the function f has a
primitive Fn such that Fn(a) = 0, unique since F ′ = 0 implies F = const
even if F ′(x) does not exist on the points of a countable set. Thus Fn = Fn+1

on In for any n, whence the existence on I of a function F which, on each
In, coincides with Fn. It is clear that F satisfies Theorem 9 bis, etc.

14 – Convex functions; Hölder and Minkowski inequalities

Let a and b be two distinct points in a Cartesian space Rp. A point x ∈ Rp

lies on the line joining a and b if and only if the vector x − b is proportional
to the vector a − b, i.e. x − a = t(b − a) or

x = (1 − t)a + tb(14.1)
30 Note in passing the usefulness of defining uniform convergence for functions

defined on any set, and not only on an interval of R. Nor is it any more difficult
. . .
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for some t ∈ R. Since the points a and b correspond to the values 0 and 1
of t, we conclude that the points of the line segment [a, b] joining a to b are
obtained for t ∈ [0, 1]. One might even consider this statement as a definition
of [a, b].

We have said (Chap. III, n◦ 10, Example 1) that a subset X of Rp is
convex if

[a, b] ⊂ X for any a, b ∈ X.(14.2)

In R, the only convex sets are the intervals. In C, the interiors (also if one
includes the boundary) of a circle, of an ellipse, of a triangle, of a rectangle,
etc. are convex. A circular ring is not.

One may generalise (2) and show that31

t1x1 + . . . + tnxn ∈ X(14.3)

for any xi ∈ X and ti satisfying ti > 0,
∑

ti = 1; one shows this by induction
on n, introducing the point

x = (t1x1 + . . . + tn−1xn−1)/(t1 + . . . + tn−1),

which is in X by hypothesis, and observing that the point (3) is precisely
tx + (1 − t)xn where t = t1 + . . . + tn−1 = 1 − tn.

Fig. 8.

Let f be a real-valued function defined on a convex set X ⊂ Rp; its graph
is then the set of points of Rp×R = Rp+1 of the form (x, f(x)), and the subset
of Rp+1 situated “above” the graph is the set of (x, y) such that x ∈ X and
y ≥ f(x). One says that f is a convex function if this set is convex. One sees
immediately that this is so if and only if

f [(1 − t)x + ty] ≤ (1 − t)f(x) + tf(y)(14.4)
31 The point (3) is, in mechanics, the “centre of gravity” of the “masses” ti ≥ 0

placed at the points xi. When their sum is not equal to 1 one clearly has to
divide the result by the total mass. Exercise: show that the medians of a triangle
are concurrent.
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for any x, y ∈ X and 0 < t < 1. Arguing as we did to establish (3), we deduce
that

f(t1x1 + . . . + tnxn) ≤ t1f(x1) + . . . + tnf(xn)(14.5)

for any xi ∈ X and ti > 0 of sum 1.
In the case where X is an open interval of R one may characterise the

convex functions completely by differentiability properties:

Theorem 15. The real-valued function f defined on an open interval X of
R is convex if and only if it is a primitive of an increasing function. The
function f is continuous32, has right and left derivatives everywhere, and is
differentiable outside a countable subset of X.

Fig. 9.

Consider Figure 9. When B tends to M , the slope of MB, which decreases
while remaining above that of AM , tends to a limit, whence the existence
at every x ∈ X of a right derivative f ′

d(x) and, likewise, of a left derivative
f ′

s(x) ≤ f ′
d(x); whence also the continuity of f . The slopes of the lines AM ,

MB, MC, BC, CN and ND increase since the point M , for example, lies
below the segment [A,B]. Since on the other hand the slope of MB is less
than that of CN , itself less than its limit f ′

s(y) when C tends to N , so

f ′
s(x) ≤ f ′

d(x) ≤ f ′
s(y) ≤ f ′

d(y) for x < y;(14.6)

the functions f ′
s and f ′

d are therefore increasing33. On letting y tend to x in
(6) one finds

f ′
s(x) ≤ f ′

d(x) ≤ f ′
s(x+) ≤ f ′

d(x+);(14.7)

on letting x tend to y, one finds likewise
32 This is not necessarily the case if X is a non-open interval. On X = [0, 1] the

function equal to 0 for 0 < x < 1, and to 1 at the end-points, is convex.
33 For functions of class C1 the reader may pass directly to (9).
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f ′
s(y−) ≤ f ′

d(y−) ≤ f ′
s(y) ≤ f ′

d(y),

which, applied to x, allows us to complete (7) as

f ′
s(x−) ≤ f ′

d(x−) ≤ f ′
s(x) ≤ f ′

d(x) ≤ f ′
s(x+) ≤ f ′

d(x+).

Now we have f ′
d(y) ≤ f ′

s(z) for y < z by (6); on letting y and z tend to x+
one finds f ′

d(x+) ≤ f ′
s(x+), whence

f ′
s(x+) = f ′

d(x+) and likewise f ′
s(x−) = f ′

d(x−)

for every x; finally

f ′
s(x−) = f ′

d(x−) ≤ f ′
s(x) ≤ f ′

d(x) ≤ f ′
s(x+) = f ′

d(x+).(14.8)

The functions f ′
s and f ′

d being increasing, and so regulated, can be discon-
tinuous only on a countable set D of points of X (Chap. III, n◦ 12, Corollary
to Theorem 16 or n◦ 7, Theorem 6 of the present Chap.); (8) shows more-
over that the points where they are discontinuous are the same for the two
functions. Outside D, the six terms of (8) are equal, and f is differentiable
since its right and left derivatives are equal.

The function f being continuous, and admitting, outside D, a derivative
equal, at one’s choice, to the regulated function f ′

s or to f ′
d, it must be a

primitive of f ′
s and of f ′

d in the sense of n◦ 13; in other words,

f(y) − f(x) =
∫ y

x

f ′
s(u)du =

∫ y

x

f ′
d(u)du

for any x, y ∈ X.
Conversely, let us start from an increasing, so regulated, function g on X

and let f be a primitive of g. Consider two points x, y of X and suppose for
example x < y. For t ∈ [0, 1] one has

f [(1 − t)x + ty] − {(1 − t)f(x) + tf(y)} =
= {f [x + t(y − x)] − f(x)} − t[f(y) − f(x)] =(14.9)

=
∫ y−x

0

tg(x + tv)dv − t

∫ y−x

0

g(x + v)dv

as one sees on differentiating the functions f(x+tv) and f(x+v) with respect
to v and applying the FT. But since g is increasing, and since v ≥ 0 on the
interval of integration, we have

g(x + tv) ≤ g(x + v) for t ∈ [0, 1].

The difference between the two last integrals is thus ≤ 0 so the function f is
convex, qed.
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Corollary 1. A differentiable function f is convex on an open interval if and
only if its derivative is increasing. A twice differentiable function is convex
if and only if f ′′(x) ≥ 0 for every x.

For if f ′(x) exists everywhere, and is increasing, so regulated, then f is a
primitive of f ′ and is therefore convex. If f ′ is differentiable it is increasing
if and only if f ′′(x) ≥ 0 everywhere, by the mean value theorem (Chap. III,
n◦ 16).

The case (a bonus for the reader) of a function f defined on a convex
open subset X of Rp, for example of C, reduces to the preceding if
one assumes f of class C2 on X. In the first place, the convexity of f
obviously means that, for any x, y ∈ X, the function t 
→ f [(1−t)x+
ty], defined on a convex open subset (i.e. an open interval) of R, is
convex. Since f is of class C1, this function has a derivative equal to

d

dt
f [(1−t)x1+ty1, . . . , (1−t)xp+typ] =

∑
Dif [(1−t)x+ty](yi−xi)

by the chain rule of Chap. III, n◦ 21. The result obtained is again
differentiable if f is of class C2, with, for the same reason,

d2

dt2
. . . =
∑
i,j

DjDif [(1 − t)x + ty](yj − xj)(yi − xi).(14.10)

By Corollary 1, this result must be ≥ 0; in particular, we must have
(take t = 0) ∑

DjDif(x)uiuj ≥ 0(14.11)

whenever the ui can be put in the form yi − xi for some y ∈ X.
But since X is open these differences can, for x given, take all values
sufficiently close to 0, so that, for arbitrary ui ∈ R, (11) must be
satisfied by the tui for every t ∈ R sufficiently close to 0; since this
substitution multiplies (11) by t2 > 0, we conclude that (11) must
be satisfied for any ui ∈ R: the quadratic form (11) must be positive
semidefinite, as one says in algebra. Conversely, it is clear that if (11)
is satisfied for any x ∈ X and ui ∈ R, then the derivative (10) is ≥ 0
so long as (1 − t)x + ty ∈ X; the function

t 
→ f [(1 − t)x + ty]

is thus convex, so f is too. Consequently:

Corollary 2. Let f be a real-valued function defined and of class C2

in a convex open set X ⊂ Rp. Then f is convex on X if and only if∑
DiDjf(x)uiuj ≥ 0

for any ui ∈ R and x ∈ X.
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Theorem 15 allows us to establish the famous inequalities of Hölder and
of Minkowski, which are not very useful at our level – but general culture
. . . The function ex has an everywhere positive second derivative and so is
convex on R, whence

etx+(1−t)y ≤ tex + (1 − t)ey

for any x, y ∈ R and 0 < t < 1. We can also write this in the form

atb1−t ≤ ta + (1 − t)b(14.12)

for a, b > 0 and even for 0 ≤ a, b ≤ +∞ on agreeing that 0t = 0, (+∞)t =
+∞, t.(+∞) = +∞ for t > 0 and that 0.(+∞) = 0.

Now consider an arbitrary set X and suppose that to every function f
defined on X and with values in [0,+∞] one has associated a number µ∗(f)
possessing the following properties34:

(IS 1): 0 ≤ µ∗(f) ≤ +∞;
(IS 2): the relation f ≤ g implies µ∗(f) ≤ µ∗(g);
(IS 3): µ∗(f + g) ≤ µ∗(f) + µ∗(g) for any f, g;
(IS 4): µ∗(cf) = cµ∗(f) for every constant c ≥ 0.

If F and G are functions on X with values in [0,+∞] one has

F tG1−t ≤ tF + (1 − t)G

by (12); whence, using (IS 2), (IS 3) and (IS 4),

µ∗(F tG1−t) ≤ µ∗[tF + (1 − t)G] ≤ µ∗(tF ) + µ∗[(1 − t)G]
≤ tµ∗(F ) + (1 − t)µ∗(G)

for 0 < t < 1. In particular we see that

µ∗(F ) = µ∗(G) = 1 =⇒ µ∗(F tG1−t) ≤ 1.

If one assumes only that µ∗(F ) and µ∗(G) are finite and nonzero, and if
one applies the last result to the functions F/µ∗(F ) and G/µ∗(G), which
is legitimate by (IS 4), the function F tG1−t is divided by the constant
µ∗(F )tµ∗(G)1−t, whence, using (IS 4) again,

µ∗(F tG1−t) ≤ µ∗(F )tµ∗(G)1−t.(14.13)

Now put

34 These conditions generalise the properties of the upper integral established in
n◦ 11 and are met in the general theory of integration. It is not really necessary
to assume that µ∗(f) is defined for every positive function on X; it is enough
that the formulae that we are going to write should be meaningful.
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Np(f) = µ∗ (|f |p)1/p ≤ +∞(14.14)

for every function f with complex values on X and every real number p > 0.
If f and g are two such functions and if p and q are real numbers > 0, let us
choose F = |f |p, G = |g|q and t = r/p, 1 − t = r/q where r > 0 is such that
r/p + r/q = 1, i.e. such that

1/p + 1/q = 1/r.(14.15)

Then F tG1−t = |f |pr/p|g|qr/q = |fg|r, so that (13) becomes

µ∗(|fg|r) ≤ µ∗ (|f |p)r/p
µ∗ (|g|q)r/q

,

whence, on raising both sides to the power 1/r,

Nr(fg) ≤ Np(f)Nq(g) for 1/p + 1/q = 1/r.(14.16)

Note that Nr(f) is finite if Np(f) and Nq(g) are finite because (12), applied
to F = |f |p, G = |g|q, t = r/p, 1 − t = r/q, shows that

|fg|r/r ≤ |f |p/p + |g|q/q,(14.17)

so that it remains to apply the axioms (IS).
(16) is the inequality of (Otto) Hölder, most often used only for r = 1:

µ∗(|fg|) ≤ µ∗ (|f |p)1/p
µ∗ (|g|q)1/q = Np(f)Nq(g);(14.18)

this inequality assumes that 1/p + 1/q = 1 and thus p, q > 1 (conjugate
indices). The case where p = q = 2 is just the Cauchy-Schwarz inequality
extended to the functions µ∗.

From (18) one may deduce the inequality

Np(f + g) ≤ Np(f) + Np(g) for p > 1(14.19)

of (Hermann) Minkowski, one of Einstein’s professors at the Polytechnic of
Zürich, and, at Göttingen in 1907–1908, the inventor of the interpretation
of Relativity in R4 endowed with the quadratic form x2 + y2 + z2 − c2t2.
He would probably have gone much further if he had not died soon after . . .
There is nothing to prove if the right hand side is infinite or if the left hand
side is zero. If the right hand side is finite, so too is the left hand side, for,
the function xp being convex in x ≥ 0 for p > 1, one has( |f | + |g|

2

)p

≤ 1
2

(|f |p + |g|p) .

This done, we write

|f + g|p ≤ (|f | + |g|)p = |f |.|f + g|p−1 + |g|.|f + g|p−1.
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Since |f + g|(p−1)q = |f + g|p, we have Nq(|f + g|p−1) < +∞; Hölder’s
inequality (18) then shows that

µ∗(|f + g|p) ≤ [Np(f) + Np(g)]Nq(|f + g|p−1)

= [Np(f) + Np(g)].µ∗
(
|f + g|(p−1)q

)1/q

= [Np(f) + Np(g)].µ∗(|f + g|p)1−1/p;

on multiplying both sides by µ∗ (|f + g|p)−1+1/p we obtain

µ∗(|f + g|p)1/p ≤ Np(f) + Np(g),

i.e. (19).

It is probable that the reader has not truly understood these proofs; he
may console himself in knowing that the majority of the professionals are in
the same state, having only checked the argument step-by-step, registered
the results, and forgotten the proofs for the rest of their lives (unless needing
to expound them to students . . .).

Example 1. If f and g are regulated functions on a bounded interval I∣∣∣∣
∫

I

f(x)g(x)dx

∣∣∣∣ ≤ Np(f)Nq(f), Np(f + g) ≤ Np(f) + Np(g)(14.20)

where one puts

Np(f) =
(∫

I

|f(x)|pdx

)1/p

,

the Lp norm of the function f . You might replace the traditional integral
m(f) by the expression

µ(f) =
∫

|f(x)|µ(x)dx

where µ is a given positive integrable function; it clearly satisfies conditions
(IS 1) to (IS 4) above. One thus finds the inequalities (20) where the symbol
dx is replaced everywhere by µ(x)dx. Without doubt we will be made to
observe that this “generalisation” is illusory since it follows from the classical
case on replacing f(x) by f(x)µ(x)1/p and g(x) by g(x)µ(x)1/q; precisely.
But the objection falls if one defines µ(f) from an arbitrary Radon measure
(n◦ 30).

Example 2. Take for X a finite set and µ∗(f) =
∑ |f(x)|. One obtains, in

more traditional notation, the original versions of the inequalities:∣∣∣∑xkyk

∣∣∣ ≤ (∑ |xk|p
)1/p (∑

|yk|q
)1/q

,(14.21)
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(∑
|xk + yk|p

)1/p

≤
(∑

|xk|p
)1/p

+
(∑

|yk|p
)1/p

.(14.22)

Example 3. Like the preceding, but with an infinite set X and, again, µ∗(f) =∑ |f(x)| ≤ +∞ for every function f with positive values. If the series
∑ |xn|p

and
∑ |yn|q converge then the series

∑
xnyn converges absolutely and

∣∣∣∑xnyn

∣∣∣ ≤ (∑ |xn|p
)1/p (∑

|yn|q
)1/q

.(14.23)

All this assumes p, q > 1 and 1/p + 1/q = 1. The case p = q = 2 is the
Cauchy-Schwarz inequality for series, which may be proved much more easily
by passing to the limit starting from the case of a finite sum.
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§ 4. Integration by parts

15 – Integration by parts

The chain rule shows that if f and g are two functions of class C1 then fg is
a primitive of the function f ′g + fg′; consequently, in Leibniz’ style,∫

[f ′(x)g(x) + f(x)g′(x)]dx = f(x)g(x),

which can be rewritten in the form∫
f ′(x)g(x)dx = f(x)g(x) −

∫
f(x)g′(x)dx;(15.1)

this relation between primitives can be transformed into a relation between
definite integrals:

∫ b

a

f ′(x)g(x)dx = f(x)g(x)
∣∣∣∣b
a

−
∫ b

a

f(x)g′(x)dx.(15.2)

This is the formula for integration by parts, which allows us to calculate very
many elementary integrals. It remains valid when f and g are the primitives
of two regulated functions, since then the function fg is continuous and has
as derivative the regulated function f ′g+fg′ outside a countable set of points,
so is a primitive of f ′g + fg′ (Theorem 12 bis).

Example 1. Let us calculate the primitive∫
log(x)dx =

∫
log(x).1.dx =

∫
log(x).(x)′.dx =

= log(x)x −
∫

log′(x)xdx = x log x −
∫

1dx,

whence ∫
log(x)dx = x log x − x.(15.3)

It is not difficult to check that log x is indeed the derivative of x log x − x.

Example 2. We have∫
x5exdx =

=
∫

x5(ex)′dx = x5ex −
∫

(x5)′exdx = x5ex − 5
∫

x4exdx =

= x5ex − 5x4ex + 5.4
∫

x3exdx =
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= x5ex − 5x4ex + 5.4x3ex − 5.4.3
∫

x2exdx =

= x5ex − 5x4ex + 5.4x3ex − 5.4.3x2ex + 5.4.3.2
∫

xexdx =

= x5ex − 5x4ex + 5.4x3ex − 5.4.3x2ex + 5.4.3.2xex − 5.4.3.2.1
∫

exdx =

= x5ex − 5x4ex + 5.4x3ex − 5.4.3x2ex + 5.4.3.2xex − 5.4.3.2.1ex.

The reader can generalise this to xnex for n ∈ N.
And for n < 0? Let’s try our luck.∫

x−2exdx =

=
∫

(−x−1)′exdx = −ex/x +
∫

x−1exdx =

= −ex/x +
∫

log′(x)exdx = −ex/x + ex log x −
∫

ex log(x)dx =

= −ex/x + ex log x −
∫

ex[x log(x) − x]′dx =

= −ex/x + ex log x − ex[x log(x) − x] +
∫

ex[x log(x) − x]dx,

and you may continue indefinitely without ever managing to eliminate the
function ex log x. It would certainly be enough to know one primitive, which
the theory of the power series allows us to find theoretically; but in practice
one naturally tries to express the given integral in terms of a simple combi-
nation of “elementary”, i.e. already known, functions. This is impossible for
the functions xsex with s /∈ N, or ex log x, or exp(exp(x)), etc.

Moral: one does not have to go very far to find oneself face to face with
elementary functions whose primitives are not elementary. To be able to cal-
culate a primitive explicitly is almost always a miracle, and even, in teaching
analysis, a contrived miracle: the calculation put to you as an exercise is fea-
sible because the author of the exercise knows it in advance, generally from
having read through the older authors to extract some from the very many
exercises of the same kind.

In fact, mathematicians who have sought in vain to calculate a primitive
or a definite integral of a function which is important to their applications – as
happens often in mechanics or in physics – always end up changing their tac-
tics: they give a name once and for all to the mysterious primitive or integral
in question, and, instead of calculating it, try to establish its useful proper-
ties (differential equation, series expansions, asymptotic behaviour, integrals
linked to these functions, etc.); these are the special functions. At the lowest
level, this is what has always been done for the trigonometric functions: one
gives them a name, and, instead of calculating them from beautiful simple
algebraic formulae which do not exist, one derives their properties. This is
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also what the theory of the elliptic functions has allowed mathematicians
to do for the primitives of the functions of the form P (x)1/2, where P is a
polynomial of degree 3 or 4.

Example 3. Let us try to calculate the functions

In =
∫

xn cos x.dx, Jn =
∫

xn sin x.dx.(15.4)

We may write

In =
∫

xn sin′ x.dx = xn sin x − n

∫
xn−1 sin x.dx

and continue. It is more economical to observe that

In + iJn =
∫

xneixdx

and to calculate as in Example 2 or, for good measure, to calculate
∫

xnetxdx
for every t ∈ C. We find easily∫

xnetxdx =(15.5)

= etx
[
xn/t − nxn−1/t2 + n(n − 1)xn−2/t3 + . . . + (−1)nn!/tn+1

]
,

whence, for t = i, on separating the real and imaginary parts,

In = xn sin x + nxn−1 cos x − n(n − 1)xn−2 sin x −(15.6’)
− n(n − 1)(n − 2)xn−3 cos x + . . . ,

Jn = −xn cos x + nxn−1 sin x + n(n − 1)xn−2 cos x −(15.6”)
− n(n − 1)(n − 2)xn−3 sin x − . . . .

Example 4. Put log2 x = (log x)2 and calculate∫
x. log2 x.dx =

∫ (
1
2
x2

)′
log2 x.dx =

1
2
x2 log2 x − 1

2

∫
x2(log2 x)′dx =

=
1
2
x2 log2 x − 1

2

∫
x22 log x(log′ x)dx =

=
1
2
x2 log2 x −

∫
x. log x.dx =

=
1
2
x2 log2 x − 1

2
x2 log x +

1
2

∫
x2 log′ x.dx =

=
1
2
x2 log2 x − 1

2
x2 log x +

1
2

∫
xdx =

=
1
2
x2 log2 x − 1

2
x2 log x + x2/4.

One should not forget that an arbitrary constant may be added to the result
in all these formulae.
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16 – The square wave Fourier series

We are now in a position to justify the square wave series [Chap. III, eqn. (2.4)
and n◦ 11, Example 1]

s(x) = cos x − cos 3x/3 + cos 5x/5 − . . . = π/4 for |x| < π/2(16.1)

which Fourier first obtained by breathtaking meaningless calculations; its
value for π/2 < |x| < π, namely −π/4, follows from (1) on replacing x by
π − x. Fourier himself did not mention this explicitly in his memoir, but one
has to believe that he had some doubts since he later felt the need to justify
his result by patently more reasonable methods. We shall follow him.

We start quite naturally by calculating the partial sum

sn(x) = cos x − cos 3x/3 + . . . + (−1)n−1 cos(2n − 1)x/(2n − 1),(16.2)

not by an impossible direct calculation, but by differentiating it. We have

s′n(x) = − sin x + sin 3x − . . . + (−1)n sin(2n − 1)x,

whence, putting q = eix and using Euler’s formulae,

−2is′n(x) =
(
q − q−1

)− (q3 − q−3
)

+ . . . + (−1)n−1
(
q2n−1 − q−2n+1

)
=

= q
[
1 − q2 + . . . + (−1)n−1q2n−2

]− q−1
[
1 − q−2 + . . .

]
=

= q
1 − (−1)nq2n

1 + q2
− q−1 1 − (−1)nq−2n

1 + q−2
=

=
1 − (−1)nq2n

q−1 + q
− 1 − (−1)nq−2n

q + q−1
=

= (−1)n+1 q2n − q−2n

q + q−1
= (−1)n+12i sin 2nx/2 cos x.

Thus
s′n(x) = (−1)n sin 2nx

2 cos x
.

This calculation assumes cos x �= 0, which is the case in the interval of inter-
est.

From this we deduce, by the FT, that

sn(y) − sn(x) = (−1)n

∫ y

x

sin 2nt

2 cos t
dt(16.3)

for x and y in the open interval I =]− π/2, π/2[. Since the sum of the series
is supposed to be a constant function we ought to show that the difference
(3), which tends to s(y) − s(x), tends to 0 as n increases indefinitely.

This is not obvious at first sight, but let us integrate by parts; we get∫ y

x

sin 2nt

cos t
dt =

− cos 2nt

2n. cos t

∣∣∣∣y
x

− 1
2n

∫ y

x

cos 2nt
sin t

cos2 t
dt.
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As n increases indefinitely the first term of the right hand side tends to 0
because of the factor n in the denominator. Likewise for the second term,
for, in the interval of integration, we have

| cos 2nt. sin t| ≤ 1, cos2 t ≥ m

where m is the minimum of cos2 t between x and y; it is > 0 because a
continuous function attains its minimum on a compact interval, and the
interval [x, y] contains no odd multiple of π/2. The factor 1/2n therefore
provides an upper bound O(1/n).

The sum s(x) of the series (1) is therefore constant on the interval
|x| < π/2. Its value must be

s(0) = 1 − 1/3 + 1/5 − . . . = π/4,(16.4)

Leibniz’ series.
We proved (4), more or less, in Chap. IV, n◦ 14 using the series expansion

arctan y = y − y3/3 + y5/5 − . . . ;(16.5)

one obtains this by starting from the formula

arctan′ y = 1/(1 + y2) = 1 − y2 + y4 − . . .

and applying the method valid for every power series. Nevertheless one must
be aware of the fact that this applies to the interior of the disc of convergence,
i.e. for |y| < 1; now Leibniz’ formula corresponds precisely to the value y = 1,
where arctan y = π/4. To justify this one has to argue as we did à propos the
series log(1+x), which, for x = 1, yields the series log 2 = 1−1/2+1/3− . . .
by passage to the limit: for 0 ≤ y ≤ 1 the series (5) is alternating and has
decreasing terms, the difference between its total sum and its n-th partial
sum is thus majorised by its n-th term, so by 1/(2n + 1) for any y, whence
one concludes that the partial sums of (5) converge to the total sum uni-
formly on the closed interval [0, 1]. The total sum of the series is therefore
a continuous function there; likewise for the function arctan y; now, if two
functions are continuous for y ≤ 1, and coincide for y < 1, then they remain
equal at y = 1. Whence (4).

Starting from the series (1), one may obtain others by integration. Cal-
culating formally,∫ x

0

s(t)dt = sin x − sin 3x/32 + sin 5x/52 − . . .(16.6)

and since s(t) is a step function, it will not be difficult to calculate the integral
directly. But first one has to justify integrating the series (1) term-by-term.
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Recall (Chap. III, n◦ 11) that the square wave series, though not uniformly
convergent on all R since its sum is discontinuous, converges uniformly on
every interval [−π/2 + r, π/2 − r] with r > 0. The formula (6) is therefore
legitimate for |x| < π/2−r, so for |x| < π/2 since r is arbitrarily small. Since,
moreover, s(x) = π/4 on this interval, the integral is equal to πx/4. Whence

sin x − sin 3x/32 + sin 5x/52 − . . . = πx/4 for |x| ≤ π/2.(16.7)

The series is this time normally convergent on R because it is dominated by
the series

∑
1/(2n + 1)2; its sum is thus continuous everywhere, and this,

by passage to the limit, justifies the value π2/8 which (7) attributes to it for
x = π/2.

For π/2 ≤ |x| ≤ 3π/2, one puts x = y + π, which brings one back to the
preceding case:

sin x − sin 3x/32 + sin 5x/52 − . . . = π(π − x)/4(16.8)
for π/2 ≤ |x| ≤ 3π/2.

The left hand side being periodic, it is unnecessary to continue the calcula-
tion; it would be better to sketch the “curve”, displayed by Fourier himself:

Fig. 10.

Note that for x = π/2 we again find the relation

1 + 1/32 + 1/52 + . . . = π2/8

obtained in n◦ 5, eqn. (5.10) by applying the Parseval-Bessel formula to the
square wave series even though we had not yet justified formula (1).

Let us continue on the same track. Being normally convergent the series
(7) can be integrated term-by-term, for example on [−π/2, x], which produces
the series − cos x + cos 3x/33 + . . . . For −π/2 ≤ x ≤ π/2 the formula (7)
yields an integral equal to πx2/8 − π3/32, whence

cos x − cos 3x/33 + . . . =
π

8
(π/2 + x)(π/2 − x) for |x| ≤ π/2.(16.9)

For x = 0 one finds

1 − 1/33 + 1/53 − . . . = π3/32.(16.10)
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On continuing to integrate the reader would find infinitely many other
formulae of the same kind, the first already in Euler, by other methods, of
course. One may also examine what the Parseval-Bessel formula of (5.6) or
(5.7) of this Chap. V may provide; there is no problem since the successive
primitive series of the square wave series are (more and more) absolutely
convergent. This kind of exercise is appreciably more instructive than calcu-
lating a primitive of a rational fraction chosen only to make the candidate
stumble over calculations of no other interest.

17 – Wallis’ formula

Let us put

In =
∫ π/2

0

sinn x.dx(17.1)

for n ∈ N. First,

I0 = π/2, I1 = 1.(17.2)

Next, integrate by parts, whence

In = −
∫ π/2

0

sinn−1 x. cos′ x.dx =

= − sinn−1 x. cos x
∣∣π/2

0
+
∫ π/2

0

(sinn−1 x)′ cos x.dx =

= (n − 1)
∫ π/2

0

sinn−2 x. cos2 x.dx = (n − 1)(In−2 − In).

Finally we obtain In = In−2(n − 1)/n, whence

I2n =
(2n − 1)(2n − 3) . . . 1

2n(2n − 2) . . . 2
I0 with I0 = π/2

and

I2n+1 =
2n(2n − 2) . . . 2

(2n + 1)(2n − 1) . . . 3
I1 with I1 = 1.

Since 0 ≤ sin x ≤ 1 on the interval of integration it is clear that In+1 ≤ In,
thus that I2n+1 ≤ I2n ≤ I2n−1, whence

1 ≤ I2n/I2n+1 ≤ I2n−1/I2n+1 = 1 + 1/2n.

The ratio

I2n/I2n+1 =
(2n + 1)(2n − 1)2(2n − 3)2 . . . 32

(2n)2(2n − 2)2 . . . 22

π

2

thus tends to 1, whence Wallis’ famous formula
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2
π

= lim
1.3.3.5.5.7 . . . (2n − 1)(2n + 1)

2.2.4.4.6.6 . . . 2n.2n
.(17.3)

Fourier, who used it, wrote it in the form

2
π

= 3.3.5.5.7.7..../2.2.4.4.6.6....;

though neither the numerator nor the denominator makes any sense, one
may try to interpret it as an infinite product (Chap. IV, n◦ 17). In the form
3/2.3/2.5/4.5/4 . . . it is clearly divergent since the general term is of the form
(p + 1)/p = 1 + 1/p. One may then try the product of all the expressions
3.3/2.2, etc., i.e. the infinite product with general term (2n + 1)2/4n2 =
(1 + 1/2n)2; but

(1 + 1/2n)2 = 1 + 1/n + 1/4n2 = 1 + un

where the series
∑

un is divergent since un ∼ 1/n; new catastrophe. One
might prefer the groupings 3.3/4.4, etc., which leads to the product of the

(2n+1)2/(2n+2)2 = [1 − 1/(2n + 2)]2 = 1−1/(n+1)+1/4(n+1)2 = 1+un,

which diverges as much as the preceding ones, and for the same reason,
namely that un ∼ −1/n. The solution is to write (3) in the form

2/π = lim
1.3
2.2

3.5
4.4

5.7
6.6

. . .
(2n − 1)(2n + 1)

2n.2n
,

or

2/π =
∞∏

n=1

(1 − 1/4n2) = (1 − 1/4)(1 − 1/16)(1 − 1/36) . . .(17.4)

The infinite product is this time absolutely convergent like the series
∑

1/n2

and is greatly preferable to the formula (3), which would lead you to perdition
as we have just seen.

A very fast proof Wallis’ formula comes from starting from the infinite
product

sin πx = πx
∏

(1 − x2/n2);

one recovers Wallis when x = 1/2.
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§ 5. Taylor’s Formula

18 – Taylor’s Formula

Chap. II, n◦ 19, has shown us that if a function f(z) is analytic on an open
set in C containing a point a, then the power series which represents it on a
neighbourhood of a has the form

f(z) = f(a) + f ′(a)(z − a)/1! + f ′′(a)(z − a)2/2! + . . . .(18.1)

This result applies in particular to functions which are defined and analytic
on an interval in R.

One obviously cannot hope for so much for every function defined on such
an interval, even if it is indefinitely differentiable, since all the derivatives of
such a function may well be zero at a without the function being zero on a
neighbourhood of a, as Cauchy showed (Chap. IV, end of n◦ 5). The situation
is still more desperate when we deal with functions which are not indefinitely
differentiable.

But let us start from the formula

f(t)
∣∣∣x
a

=
∫ x

a

f ′(t)dt =
∫ x

a

f ′(t)P0(t)dt

where P0(t) = 1, and let P1(t) be a primitive of P0. An integration by parts
shows that

f(t)
∣∣∣x
a

= f ′(t)P1(t)
∣∣∣x
a
−
∫ x

a

f ′′(t)P1(t)dt.

If P2(t) is a primitive of P1 and if one integrates again by parts, one finds

f(t)
∣∣∣x
a

= f ′(t)P1(t) − f ′′(t)P2(t)
∣∣∣x
a

+
∫ x

a

f ′′′(t)P2(t)dt.

If f is of class Cn+1, i.e. has continuous derivatives of order ≤ n + 1 on
the interval I of R where it is defined, one may continue up to the integral
involving f (n+1). The result is clearly that, if one chooses polynomials Pk(t)
satisfying

P ′
k = Pk−1, P0 = 1,(18.2)

then

f(t)
∣∣∣x
a

= f ′(t)P1(t) − f ′′(t)P2(t) + . . . + (−1)n−1f (n)(t)Pn(t)
∣∣∣x
a

+

+ (−1)n

∫ x

a

f (n+1)(t)Pn(t)dt.(18.3)

Since we would like to express f(x) in terms of its derivatives at a and of
the factors (x − a)k, we ought to choose the Pk so as to make the terms
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f ′(x), . . . , f (n)(x) that appear in the integrated parts disappear from the
right hand side of (3); to do this we have to choose the Pk to vanish for
t = x, in other words

Pk(t) = (t − x)k/k! = (t − x)[k].(18.4)

After this calculation we obtain the following result:

Theorem 16. Let f be a function defined and of class Cn+1 on an interval
I of R. Then, for any a, x ∈ I,

f(x) = f(a) + f ′(a)(x − a) + f ′′(a)(x − a)[2] + . . .(18.5)
. . . + f (n)(a)(x − a)[n] + rn(x)

where

rn(x) =
∫ x

a

f (n+1)(t)(x − t)[n]dt.(18.6)

This is Taylor’s formula with integral remainder for functions of class Cn+1,
and is due, with this very proof, to Cauchy.

An expression for the remainder that is sometimes more useful comes
from putting x = a + h and replacing the function f(x) by the function
g(u) = f(a + uh), where u now varies in [0, 1]. The limits a and x become 0
and 1 and we have g(p)(u) = hpf (p)(a + uh) by the most trivial form of the
chain rule. On applying the formula to g between u = 0 and u = 1 one finds
the following version of Taylor’s formula for f :

f(a + h) = f(a) + f ′(a)h + . . . + f (n)(a)hn/n! + rn(a + h),(18.5’)

where

rn(a + h) =
hn+1

n!

∫ 1

0

f (n+1)(a + uh)(1 − u)ndu.(18.6’)

The simplest and most useful particular case is

f(x + h) − f(x) − f ′(x)h =
1
2
h2

∫ 1

0

f ′′(x + uh)(1 − u) du.(18.6”)

For a = 0, (5) becomes a formula of Maclaurin type:

f(x) = f(0) + f ′(0)x + f ′′(0)x2/2! + . . . + f (n)(0)xn/n! + rn(x)(18.7)

with

rn(x) =
∫ x

0

f (n+1)(t)(x − t)[n]dt =(18.8)

=
xn+1

n!

∫ 1

0

f (n+1)(ux)(1 − u)ndt.
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This expresses f as the sum of a polynomial

p(x) = f(0) + f ′(0)x + . . . + f (n)(0)x[n]

of degree n having at x = 0 (or, in the general case, at x = a) the same
derivatives of order ≤ n as f , and a “remainder” given by (8). It is called the
“remainder” because, if f is analytic, rn(x) is actually the n-th remainder of
the Taylor series of f ; but here there is no series. Moreover, when one speaks
of the partial sums and of the remainders of a series, one very much hopes
that these will be increasingly negligible as n increases.

The true situation is less impressive. If you apply (7) to an indefinitely
differentiable function all of whose derivatives are zero at the origin, you will
find f(x) = rn(x). Far from being negligible, the “remainder” is then the
predominant term.

All the same, one can estimate it. Since f (n+1) is continuous it is bounded
on every compact set contained in the interval I where f is defined. If then
x remains in a compact interval K contained in I and containing a (for
example, an interval of centre a if a is interior to I), and if, as always, one
puts ∥∥f (p)

∥∥
K

= sup
x∈K

∣∣f (p)(x)
∣∣,(18.9)

then
∣∣f (n+1)(t)(x − t)n

∣∣ ≤ ∥∥f (n+1)
∥∥

K
. |(x − t)n| on the interval of integra-

tion; but on this interval we have |(x − t)n| = ±(x − t)n with the + sign if
x > a and the − sign if x < a, in which case the + sign is reestablished from
the fact that the oriented integral from a to x is accounted negatively. The
function t 
→ (x − t)[n] having as a primitive the function

t 
→ −(x − t)[n+1]

which vanishes for t = x, one finds finally that

|rn(x)| ≤ ∥∥f (n+1)
∥∥

K
.|x − a|n+1/(n + 1)! for x ∈ K.(18.10)

(6) makes the result even more obvious.
Modifying the notation, in particular we have

f(a + h) = f(a) + f ′(a)h + f ′′(a)h[2] + . . .(18.11)
. . . + f (n)(a)h[n] + O(hn+1)

as h tends to 0. If, for example, a function f of class C∞ vanishes together
with all its successive derivatives at x = a, then

f(x) = O
(
(x − a)n

)
for every n

as x tends to a, which shows that, even in this case, Taylor’s formula does
provide information: f(a+h) tends to 0 more rapidly than every power of h.
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We say then that the function f is flat at the point a. The aeroplane which
will never be built follows a trajectory of this kind on landing.

Exercise. Prove that

p(h) = f(a) + f ′(a)h + . . . + f (n)(a)h[n]

is the only polynomial satisfying

f(a + h) = p(a) + o(hn), d◦(p) ≤ n.

These results assume that f (n+1) exists and is continuous. One can in
fact prove the formula otherwise, without this last hypothesis, in the case
of a real-valued function; the practical usefulness of the result in relation to
the preceding one is weak, to speak moderately, but the proof is ingenious.
To simplify we restrict to the Maclaurin case, and, for x = b given, let us
consider the functions

g(t) = f(b) − f(t) − f ′(t)(b − t) − . . . − f (n)(t)(b − t)[n],

h(t) = g(t) − g(0)(b − t)[n+1]/b[n+1]

like Cauchy and his uniformed students, most of whom were probably doz-
ing. By hypothesis, g, and so h also, have first derivatives, not necessarily
continuous, between 0 and b. We have h(0) = 0 by a direct calculation, and
h(b) = g(b) = f(b) − f(b) = 0. Therefore there is a number ξ between 0 and
b where h′(ξ) = 0 (mean value theorem, or even Rolle’s theorem, Chap. III,
n◦ 16). Now a calculation similar to the one that led us to (3) shows that

g′(t) = −f (n+1)(t)(b − t)[n],

whence

h′(t) = −f (n+1)(t)(b − t)[n] + g(0)(b − t)[n]/b[n+1]

=
[
g(0) − f (n+1)(t)b[n+1]

]
(b − t)[n]/b[n+1].

Since h′(ξ) = 0 we therefore have g(0) = f (n+1)(ξ)b[n+1] for a ξ between 0
and b = x, and since

g(0) = f(x) −
{

f(0) + f ′(0)x + . . . + f (n)(0)x[n]
}

,

finally we have

f(x) = f(0) + f ′(0)x + . . . + f (n)(0)x[n] + f (n+1)(ξ)x[n+1];(18.12)

this is Maclaurin’s formula with Lagrange remainder. In the general case one
obtains
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f(a + h) = f(a) + f ′(a)h + f ′′(a)h[2] + . . .(18.13)
. . . + f (n)(a)h[n] + f (n+1)(a + θh)h[n+1]

where, yet again, f has real values, is (n + 1) times differentiable, and where
the number traditionally denoted by θ is between 0 and 1 so that the point
ξ = a + θh lies between a and x = a + h.

Applied to a function of class C∞ these results sometimes allow us to
pass to a Taylor series.

Example 1. Take a = 0 and f(x) = sinx. For n = 2p one finds |rn(x)| ≤
|x|2p/(2p)! since the successive derivatives are everywhere less than 1 in mod-
ulus. On passing to the limit one thus recovers the formula

sin x = lim
[
x − x3/3! + . . . + (−1)p−1x2p−1/(2p − 1)!

]
.

This argument can be generalised. For a C∞ function the Taylor formula
with remainder applies for any n. To pass from this to a power series expan-
sion, it suffices – but this is the crucial point – to know that the remainder
tends to 0 as n increases indefinitely, in other words to have a suitable es-
timate of the successive derivatives. If for example there exist constants M
and q such that |f (n)(x)| ≤ Mqn for any n, then the formula (10), for a = 0,
shows that

|rn(x)| ≤ Mqn|x|n/n! = M(q|x|)n/n!

and the passage to the limit is justified. In other cases one has to argue in
some other way.

Example 2. Take f(x) = ex. All the derivatives are equal to f , so that, for K
given, the factor

∥∥f (n+1)
∥∥

K
in (10) does not depend on n. Thus lim rn(x) = 0

for every x and one recovers the power series for the exponential function.

Example 3. Take f(x) = (1 + x)s with s ∈ C and −1 < x, whence

f (n+1)(x) = s(s − 1) . . . (s − n)(1 + x)s−n−1.

Here, by (8),

rn(x) = s(s − 1) . . . (s − n)
xn+1

n!

∫ 1

0

(1 + ux)s−n−1(1 − u)ndt,

or

rn(x) =
s(s − 1) . . . (s − n)

n!
xn+1

∫ 1

0

(1 + xu)s−1

(
1 − u

1 + xu

)n

du.

For x > −1 we have 1 + xu > 1 − u on the interval of integration, so that
0 < (1 − u)n/(1 + xu)n < 1 for every n. The modulus of the integral is
therefore less than a number independent of n. Since the series with general
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term s(s − 1) . . . (s − n)xn+1/n! converges for |x| < 1 (use the un+1/un

criterion, this is not exactly the binomial series), its general term tends to 0.
Likewise therefore for rn(x). On passing to the limit in Taylor’s formula of
order n one thus recovers Newton’s series

(1 + x)s = 1 + sx + s(s − 1)x2/2! + . . .

for |x| < 1, x real, s complex.

We said above that if f is of class Cn+1 then the remainder in the Taylor
formula is O

((
x − a)n+1

))
as x tends to a. One may improve this result for

f real, assuming f (n+1)(a) �= 0. The ratio rn(x)/(x − a)n+1 = f (n+1)(ξ) then
tends to f (n+1)(a) since the derivative of order n + 1 is continuous and ξ lies
between a and x, so tends to a. If one assumes f (n+1)(a) �= 0, then, in the
Maclaurin case, for simplicity,

f(x) − f(0) − f ′(0)x − . . . − f (n)(0)x[n] ∼ f (n+1)(0)x[n+1](18.14)

as x tends to 0, the ∼ sign signifying, we recall, that the ratio between the
two sides of (14) tends to 1.

This formula sometimes allows one to calculate the limits of quotients
f(x)/g(x) as x tends to a point a where f(a) = g(a) = 0. For f and g of
class Cn, suppose that we have

f(a) = f ′(a) = . . . = f (n−1)(a) = 0,
g(a) = g′(a) = . . . = g(n−1)(a) = 0, g(n)(a) �= 0.

On a neighbourhood of a one has g(x) ∼ g(n)(a)(x − a)[n]. If f (n)(a) �= 0,
then likewise f(x) ∼ f (n)(a)(x − a)[n]. Consequently

lim f(x)/g(x) = f (n)(a)/g(n)(a).(18.15)

If f (n)(a) = 0 then f(x) = o ((x − a)n) and the result remains valid. For
example, to find the limit of the ratio

tan x − x

x − sin x

as x tends to 0. Here f(0) = f ′(0) = f ′′(0) = 0, f ′′′(0) = 2 and
g(0) = g′(0) = g′′(0) = 0, g′′′(0) = 1. The limit is therefore 1/2.

This is the famous l’Hôpital’s rule (he proved it for n = 1, the general
case being apparently due to Maclaurin), named for a Parisian marquis who,
in 1696, earned himself an enviable mathematical reputation by publishing
a book entitled Analyse des infiniment petits, pour l’intelligence des lignes
courbes, the first exposition to the public of what one then knew as the
differential calculus chez Leibniz and the Bernoullis. The author made no
mystery of the fact that he had learned everything from his correspondence
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and conversations with them: “I have simply appropriated their discoveries
and those of Mr. Leibnis [sic]”, he wrote, skimping the name of his hero,
not even giving him a francophone t. This did not prevent Johann Bernoulli
from accusing him of having plagiarised one of his manuscripts and from
attacking him in 1742, which was 38 years after the death of the presumed
culprit. Since Johann and Jakob Bernoulli did not hesitate to accuse each
other of plagiarism in the years from 1695, it is probably better to reserve
one’s judgement, as does Moritz Cantor, pp. 222–228 of his Vol. III.

“Science is a cruel game. One shoots one’s adversaries down in flames,
one grills one’s competitors, one demolishes one’s rivals”, Loup Verlet tells us,
p. 97 of La malle de Newton. One should not disdain disputes over priority;
they reveal one of the most permanent and pervasive traits of the psychology
of scientists: the defence of their intellectual property. They are an obligatory
corollary of the following principle: the second person to prove a theorem or
to discover an AIDS vaccine will not enhance his reputation; he has lost his
time, except insofar as the necessary work may have taught him techniques
of future application. One has to be the first35. Moreover, since scientists,
and particularly “pure” mathematicians, derive no capital from their work
other than the recognition of their prowess by their peers36, those who value
this have no choice. Those who patent their discoveries – again not the case
of the pure mathematicians, except recently in cryptology37 – or depend on
35 The subject is expounded with raw clarity in an interview with a Franco-

American biologist, Portrait of a biologist as capitalist savage, to be found in
Bruno Latour, Petites leçons de sociologie des sciences (Paris, La Découverte,
1993). The subject had inspired Robert K. Merton much earlier. In the real world
it happens that a new result is obtained almost simultaneously by researchers
working independently of one another; questions of priority are of more interest
to them than to spectators. A particularly extreme case is described by Nicholas
Wade, The Nobel Duel (Doubleday, 1981). In an other domain, let us quote
the immortal declaration of the heroic Frenchman, who, on account of a young
German, missed first place in the cyclists’ Tour de France of 1997: “What is
missing, I think, is the opportunity to chance on a year without someone better
than oneself.”

36 This is the function of prizes, medals of gold or of chocolate, colloquia in honour
of, seats in academies, etc. which scientists dish out for mutual reward and
admiration. In mathematics, it has even happened, over the last fifteen years,
that the complete works of great men have been published before their deaths,
despite having to add supplementary volumes later. This facilitates colleagues’
work, but the psychological effect on the person so honoured is probably not
negligible. The Science Citation Index, moreover, allows every scientist to know
how many times his papers have been cited each year. When the total exceeds a
hundred (for Einstein, the record holder, the total even exceeded nine hundred
some years ago), one might think that the “reward” is sufficient.

37 Neal Koblitz, A Course in Number Theory and Cryptography (Springer, 2d. ed.,
1994), propounds the hypothesis that publications in certain parts of number
theory may some day have to be submitted to preliminary censoring by the
National Security Agency. This idea is not so wild, since, when the public key
systems invented by mathematicians – their own enterprise – appeared some
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subventions from organisations advised by scientists have no more: if the
hormone you are trying to synthesise may bring you fifty thousand dollars a
year for seventeen years it is urgent not to be second.

With the passion for their profession, which, throughout history, has led
scientists – not all, of course – to accept unworthy or mediocre conditions of
life or work, this is the reason why you will see first class people spend sixty
hours per week in the laboratory, for forty years, for a CNRS “director of
research” salary, which any Polytechnic student or former pupil of an Haute
Ecole des Etudes Commerciales Libérales et Avancées can obtain in industry
or in a bank two years after leaving the institution. And so one lauds the
disinterestedness of these “heroes of science” who have no choice.

No choice? After all, as a garage owner who presented an unconscionably
overinflated account explained to the present author (who, scion of the lower
middle class, was not a customer of great standing and did not care to accept
it), “with your brain, you should have chosen another profession”. Garage
owner, for example. The garage owners could, in exchange, write the mathe-
matics which sells itself cheap, teach the chemistry of polymers or the history
of the Middle Ages to two hundred students every year, or try to understand
Alzheimer’s disease. Then we might praise the disinterestedness of the garage
owners.

Others say that the ill-paid scientists are recompensed in that they enjoy
themselves; this may often be true while they are working, but their families
do not always appreciate this, and the argument does not have a universal
validity. Marcel Dassault, the famous French aeroplane manufacturer, said,
and repeated during his life, that what “amused him”, was to “make aero-
planes” and one does not doubt this. This did not stop him from going to
his office in a Rolls Royce, and this did not stop his son, who also amuses
himself as he can and continues to make man-hunting fighter planes, from

dozen years ago, the reactions of the NSA have been (i) to try to forbid them
(in France, their use is subject to prior authorisation), (ii) to impose limits on
the degree of security, (iii) to take charge of research contracts in this field.
Remember that the NSA, created in 1952 and with an enormous budget, has
the mission of ensuring the security of the telecommunications of the American
government and the insecurity of those of others; see James Bamford, The Puzzle
Palace (Houghton Mifflin, 1982) and Body of Secrets (Arrow Books, 2003). In
“militarily sensitive”areas, access to an American thesis, or to certain courses or
seminars, may be limited to people who have submitted to a “security clearance”
guaranteeing their “loyalty”. In the USSR, all scientific or technical publications
were, in principle, subject to prior censorship. Koblitz notes that, up to very
recently, number theory had never lent itself to any application outside pure
mathematics. The interest of some mathematicians in cryptology is however
longstanding – Viète and Wallis for example – and one knows the part played
during the War by the Turing team; as for those of our contemporaries who are
involved, they do not have to proclaim it urbi et orbi. The novelty is the recourse
to very advanced mathematics, with, necessarily, the cooperation of professionals
in the theory, simply to understand it; the bridge players of the Enigma project
are probably not enough.
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setting himself as the aim of his animal hunting for 1998 to kill, from a tur-
reted (armoured?) 4 × 4, one hundred and eighty-five head of large game in
his modest property of eight hundred hectares near Paris, which landed him
in trouble38. Mr. Gates, despite his N(t)1010 dollars, also seems to amuse
himself.

Another long trivial theme – though not in the XVIIth century for Fer-
mat –, the question of the maxima and minima of functions. If a differentiable
function f has a local maximum or minimum at a point a i.e. if, on a neigh-
bourhood of a, one has f(x) ≤ f(a) in the first case and f(x) ≥ f(a) in
the second, it is clear that f ′(a) = 0. But this condition does not suffice,
as shown by the function x3 at x = 0. To elucidate the question one has to
examine the higher derivatives. If

f ′(a) = f ′′(a) = . . . = f (n)(a) = 0, f (n+1)(a) �= 0,

then f(x) − f(a) ∼ f (n+1)(a)(x − a)[n+1] as we have seen; consequently, the
difference f(x) − f(a) has the sign of the right hand side for x sufficiently
near a, whence the conclusion: maximum if n is even and f (n+1)(a) < 0,
minimum if n is even and f (n+1)(a) > 0, while the graph of f crosses a
horizontal tangent (point of inflexion) if n is odd.

38 Le Monde of 23 April 1997; the officials of the National Water and Forests Office
apparently do not appreciate that the methods honoured in military aviation
since the Great War are being applied to deer and boar.
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§ 6. The change of variable formula

19 – Change of variable in an integral

As we said above, the rules for calculating derivatives can be interpreted
in the language of integrals. We have seen the interpretation of the rela-
tion (fg)′ = f ′g + fg′ in terms of primitives. The other fundamental rule
of calculus, namely that the derivative of a composite function f [u(x)] is
f ′[u(x)].u′(x), likewise leads to an almost trivial integral formula, but it fa-
cilitates many explicit evaluations. It also has very important applications,
mainly in the theory of line integrals (Vol. III).

Theorem 17. Let u be a real function defined and of class C1 on a compact
interval I = [a, b], and f a function defined and continuous on the interval
J = u(I). Then ∫ u(b)

u(a)

f(y)dy =
∫ b

a

f [u(x)]u′(x)dx.(19.1)

For, let F be a primitive of f on J , so that the left hand side is equal to
F [u(b)] − F [u(a)]. The function G(x) = F [u(x)] is differentiable on I and
G′(x) = F ′[u(x)]u′(x) = f [u(x)]u′(x). The right hand side of (1) is thus
equal to G(b) − G(a) = F [u(b)] − F [u(a)], i.e. to the left hand side, qed.

Note that we are dealing with oriented integrals in this formula, since,
even if a < b, one may well have u(a) > u(b).

In the Leibniz notation for primitives one would write∫
f(y)dy =

∫
f ′[u(x)]u′(x)dx.(19.2)

The formula is self-explanatory: one replaces y by its expression as a function
of x, simultaneously in f(y) and in dy (Chap. III, n◦ 14 and 15). This is
one of the great advantages of Leibniz’ system, with the analogous formula
dy/dx = dy/du.du/dx.

One may widen the hypotheses of Theorem 17 a little when applying it
to regulated functions, but the reader new to the subject would be better to
keep to the very simple Theorem 17 for the moment.

The whole question is to reassure oneself that, F being a primitive of
the regulated function f and u a primitive of the regulated function u′ in
the sense of n◦ 13, then G(x) = F [u(x)] is again a primitive of f [u(x)]u′(x).
Since G is continuous, because u and F are, it is enough to convince oneself
that (i) the function f [u(x)]u′(x) is regulated, (ii) G′(x) exists and is equal
to f [u(x)]u′(x) outside a countable set of values of x.

Point (i): assume that u′(x) and f [u(x)] are regulated. The first condition
is satisfied if u is a primitive of a regulated function. So is the second if f is
continuous since then f ◦ u is continuous; if f is only regulated one has to
check that f ◦u has right and left limit values; now, as h tends to 0 through,
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let us say, positive values, u(x+h) tends to u(x), though not necessarily in a
monotone way; to be certain that f [u(x)] is regulated it is therefore prudent
to assume u monotone, which is the most general case in practice.

Point (ii): the derivative G′(x) exists provided that u′(x) and F ′[u(x)]
exist. The derivative u′(x) exists outside a countable set D and the derivative
F ′(y) exists either everywhere if f is continuous, or outside a countable set
D′ if f is only regulated. If f is continuous then G′(x) = f [u(x)]u′(x) outside
D, and since, in this case, the function f [u(x)]u′(x) is regulated as we have
seen à propos the point (i), everything works. If f is only regulated, in which
case we had better assume u monotone (as we have seen in point (i) for
f [u(x)]u′(x) to be regulated), the existence of G′(x) assumes x /∈ D and
u(x) /∈ D′, i.e. x /∈ D ∪ u−1(D′). If u is strictly monotone, so injective, the
inverse image u−1(D′) is countable like D′, so also is its union with D; then
G′(x) = f [u(x)]u′(x) outside a countable set and everything works again.
If u is not strictly monotone there are intervals on which u is constant, so
also f [u(x)] and the relation G′(x) = f [u(x)]u′(x) can be written on these
intervals as 0 = 0, which shows that it is not false . . .

In conclusion, we see that the change of variable formula is valid in the
two following cases: (a) f is continuous and u is a primitive of a regulated
function; (b) f is regulated and u is a monotone primitive of a regulated
function.

In practice, one most often assumes the function u to be strictly monotone,
or, almost equivalently, that its derivative is always > 0 or always < 0. On
writing a and b for what we wrote as u(a) and u(b) in (1), we then find the
relation ∫ b

a

f(y)dy =
∫ u−1(b)

u−1(a)

f [u(x)]u′(x)dx(19.3)

where u−1 : J −→ I denotes the inverse map of u.

Example 1. Calculate the indefinite integral
∫

(x2 + 1)3xdx. Putting u(x) =
x2 + 1 we have u′(x)dx = 2xdx, so we need to calculate 1

2

∫
u(x)3u′(x)dx;

this is situation (2) with f(y) = y3. Thus∫
(x2 + 1)3xdx =

1
2

∫
y3dy = y4/8 with y = x2 + 1.

To calculate the given integral between the limits x = 2 and x = 3, for
example, one notes that, in this case, u(a) = 5 and u(b) = 10, whence∫ 3

2

(x2 + 1)3xdx = y4/8
∣∣∣∣
10

5

= (104 − 54)/8.

In practice, one puts it as follows: make the change of variable y = x2 + 1;
then dy = 2xdx and (x2 + 1)3 = y3 and consequently∫

(x2 + 1)3xdx =
1
2

∫
y3dy = y4/8 = (x2 + 1)4/8.
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Example 2. Let f be a real function of class C1 on an interval I, not vanish-
ing on I. To calculate

∫
f ′(x)/f(x).dx one performs the change of variable

y = f(x), whence dy = f ′(x)dx and∫
f ′(x)
f(x)

dx =
∫

dy/y.

It remains to find a primitive of the function 1/y on the interval J = f(I).
Since f does not vanish it has constant sign on I. If it is positive, the function
log y will serve. If it is negative, it is the function log |y| which suits, since
for y < 0 the derivative of the latter, i.e. of log(−y), is − log′(−y) = 1/y. In
conclusion, one finds ∫

f ′(x)
f(x)

dx = log |f(x)|.(19.4)

For example,∫ 4

1/2

dx

x. log x
=
∫ 4

1/2

log′ x
log x

dx = log(| log x|)
∣∣∣4
1/2

= log
log 4
log 2

= log 2

since 4 = 22.
Likewise ∫

tan x.dx = −
∫

cos′ x/ cos x.dx = − log | cos x|,

so long as one works on an interval where the function cosx does not vanish,
say ] − π/2, π/2[. Whence for example

∫ π/4

0

tan x.dx = − log(cos x)
∣∣∣π/4

0
= − log

(
1/
√

2
)

=
1
2

log 2.

Example 3. To calculate
∫

dx/ sin x on an interval where the sine function
does not vanish, for example on ]0, π[. If one is inspired, or if one has read
all the books, one observes that

1/ sin x = 1/2 sin(x/2) cos(x/2) = 1/2 tan(x/2) cos2(x/2) = f ′(x)/f(x)

where f(x) = tanx/2 and f ′(x) = 1/2 cos2(x/2), whence∫
dx/ sin x = log | tan x/2|.

This kind of recourse to Providence will not take one very far if one has no
general procedure for calculating integrals of the form∫ ∑

apq cosp x. sinq x∑
bpq cosp x. sinq x

dx(19.5)
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with a finite number of nonzero coefficients apq and bpq, in other words a
rational function of cosx and of sinx. The method is to perform the change
of variable

x = 2arctan y, y = tan(x/2).(19.6)

Trigonometry then shows that

sin x = 2y/(y2 + 1), cos x = (1 − y2)/(y2 + 1)(19.7)

using the relations

sin 2t = 2 sin t. cos t = 2 tan t. cos2 t = 2 tan t/(tan2 t + 1),
cos 2t = 2 cos2 t − 1 = 2/(tan2 t + 1) − 1 = (1 − tan2 t)/(tan2 t + 1).

Further,
dx = 2dy/(y2 + 1).

On substituting in (5) one reduces to calculating an integral of a rational
function of y, which will be the aim of the following n◦.

Example 4. To calculate ∫
x4 + 1√

(x + 1)(x − 5)
dx;

we have to work in the interval x < −1, or in the interval x > 5 to obtain a
real result. We have (x + 1)(x− 5) = (x− 3)2 − 4, which suggests the change
of variable x = 3 + 2y, whence dx = 2dy and reduction to∫

(2y + 3)4 + 1√
y2 − 1

dy.

A second change of variable y = cosh z reduces us to∫
(2 cosh z + 3)4 + 1

sinh z
sinh z.dz = z +

∫
(2 cosh z + 3)4dz

and to calculating the primitives of the functions coshn x, which can be done
in several ways, the banal method – expanding as exponentials – most often
being the best.

If, in this example, the denominator had been the square root of a tri-
nomial without real roots we would have put it into the standard form
(x − a)2 + b2 and the change of variable x − a = by would have led us
to (y2 + 1)1/2, in which case it is the change of variable y = sinh z which
leads us to the result.

There are also cases where, in the given trinomial, the coefficient of x2 is
< 0. The same changes of variable lead this time to integrals in (1 − y2)1/2

or in (−1 − y2)1/2 = i(1 + y2)1/2. The second case is treated by putting
y = sinh z as above. In the first the change of variable y = sin z leads us to
the result.
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Example 5 (Darboux, 1875). Consider the integral∫ 1

0

2n2x. exp(−n2x2)dx;

the change of variable y = n2x2, for which 2n2xdx = dy, transforms it into
the integral of e−y taken from 0 to n2. The result, 1 − exp(−n2), tends to 1
as n increases indefinitely, although the function being integrated tends to 0.
How do you explain this strange phenomenon which Gaston Darboux was,
apparently, the first to discover?

20 – Integration of rational fractions

One does need these from time to time in real mathematics; but very rarely.
In teaching they are useful only to (i) accustom students to algebraic calcu-
lation, which will always be useful elsewhere, (ii) provide examiners with an
inexhaustible reservoir of exercises built up over the generations, so enabling
them, according to point (i), to test the candidate’s virtuosity. They may
also be needed in certain electrotechnical calculations, for example, but this
is surely not the principal motivation of the subject, inaugurated by Leibniz
who was not thinking of the XIXth and XXth century students who were
obliged to suffer the fallout . . .

Let f(x) = P (x)/Q(x) be a rational function of x, where P and Q
are polynomials. By using the d’Alembert-Gauss theorem which we shall
prove later, and a few ideas from algebra, we may write Q in the form
Q(x) = Q1(x) . . . Qr(x) where each of the Qi is, up to a constant factor,
of the form

Qk(x) = (x − ak)nk ;
the ak are the various distinct roots of Q, perhaps complex, and the integers
nk are their orders of multiplicity, by definition. It is shown in all the algebra
textbooks that one may write f in the form

f(x) = p(x) +
∑ pk(x)

(x − ak)nk
(20.1)

with a polynomial p, the quotient of the Euclidean division of P by Q, and
polynomials pk of degrees < nk. On writing pk as a polynomial in x−ak one
finally finds a decomposition into simple elements of the form

f(x) = p(x) +
∑
k,n

Akn/(x − ak)n(20.2)

with a finite number of constants Akn
39. The search for a primitive of f thus

reduces to that of a primitive of the polynomial p – immediate calculation –
and of functions of the form (x− a)−n where n is an integer ≥ 1. The result
39 Let p and q be two polynomials in one variable with coefficients in K = Q, R, C

or any other field.
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∫
dx

(x − a)n
= − 1

(n − 1)(x − a)n−1
(20.3)

is obvious if n �= 1, but less so for n = 1.
It is first of all prudent – even if n > 1 – to work in an interval I of R not

containing a. If a is real, then∫
dx

x − a
= log |x − a| if a ∈ R(20.4)

since, for y �= 0, the function log |y| has derivative 1/y. In (4) we therefore
have to take log(a − x) for the primitive if a is to the right of the interval I
and log(x − a) if it is to the left.

If a is complex the business is more complicated.
Recall first (Chap. IV, n◦ 14, section (x) and § 4) that, for nonzero z ∈ C,

one defines the expression Log z by

Log z = w ⇐⇒ z = ew.

There are infinitely many possible values, differing by a multiple of 2iπ.
Putting w = u + iv, we have z = eueiv, whence u = log |z| and v = arg z, i.e.

(i) Consider the set of polynomials of the form up + vq, where u and v are
arbitrary polynomials with coefficients in K. Among those which are not identi-
cally zero let d = u0p+ v0q be a polynomial of minimal degree, not greater than
the degrees of p and q since p = 1p + 0q, q = 0p + 1q. Every polynomial which
divides p and q divides all the up + vq, so divides d. On the other hand, d itself
divides p and q, because the Euclidean division algorithm yields a relation of the
form p = du + d′, with d′ of degree strictly less than the degree of d, and the
relation d′ = (1 − uu0)p − uv0q shows then that d′ = 0 since d is of minimum
degree among the nonzero polynomials which can be written in the form up+vq.
In brief, d is the gcd of p and q.

(ii) If d is constant, i.e. if p and q have no common nonconstant divisor, i.e. if
p and q are mutually prime, one may assume d = 1 whence

r/pq = r(u0p + v0q)/pq = rv0/p + ru0/q;

every rational fraction with denominator pq is thus the sum of two rational
fractions whose denominators are respectively p and q. More generally, every
rational fraction whose denominator is a product p1 . . . pk of pairwise mutually
prime polynomials is the sum of rational fractions having only one of the pi in its
denominator: p1, for example, is prime to p2 . . . pk, which allows us to simplify
the denominators step-by-step.

(iii) Suppose q(X) = (X − a1)
? . . . (X − ak)? with pairwise distinct roots ai

and integer exponents. The polynomials (X − ai)
? are pairwise mutually prime

since their divisors are obvious. Every rational fraction of the form p/q thus
decomposes as a sum of fractions of the form pi(X)/(X−ai)

?. On writing pi(X)
as a polynomial in X − ai one obtains the desired decomposition into “simple
elements”, qed.
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Log z = log |z| + i arg z.(20.5)

If z = x + iy we conclude that

Log z =
1
2

log(x2 + y2) + i arg z,(20.6)

all this up to 2kiπ. For example, for x real,

Log(x − i) =
1
2

log(x2 + 1) + i arg(x − i).(20.7)

Now we saw in Chap. IV, § 4 (v) that in the open set G = C − R− obtained
by removing the real half axis x ≤ 0 from C there are uniform branches
of the pseudofunction Log; such a branch is a (true) continuous function
(and in fact analytic) L(z) which, on G, satisfies the relation z = eL(z) for
every z; every other solution is obtained by adding a constant multiple of 2πi
to L(z), and the simplest solution, which one generally calls the principal
determination of the log in G, is that for which

L(z) = log |z| + i arg z with | arg z| < π;(20.8)

this function is even analytic and satisfies

L′(z) = 1/z,(20.9)

the derivative being taken, of course, in the complex sense (Chap. II, n◦ 19).
To extend the formula (4) to the case where a is complex it is enough to

consider the function x 
→ L(x−a) on R. Since a is not real, the points x−a,
situated on the horizontal through a, all lie in the open set G = C−R−; the
function

L(x − a) = log |x − a| + i arg(x − a) with | arg(x − a)| < π,(20.10)

obtained by composing x 
→ x − a and the analytic function L, is ipso facto
of class C∞ in R and its derivative is the function L′(x − a) = 1/(x − a)
by Chap. III, n◦ 21, Example 1, where we showed generally that if g(z) is
holomorphic and f(t) is differentiable then

d

dt
g[f(t)] = g′[f(t)]f ′(t).

From this we deduce that up to an additive constant∫
dx

x − a
= L(x − a) = log |x − a| + i arg(x − a), a /∈ R,(20.11)

where the argument must be chosen between −π and +π so that the right
hand side will, at least, be a continuous function of x, and so in fact C∞.
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Suppose for example that we are to integrate 1/(x−i) from x = 1 to x = 2.
We have to calculate the variation of the function log |x − i| + i arg(x − i)
between these values. That of the log is

log |(2 − i)/(1 − i)| =
1
2

log(5/2).

The points x − i lie below the real axis, so that one has to choose their
arguments between −π and 0; then arg(2−i) = −π/6 and arg(1−i) = −π/4.
Finally the desired integral equals

1
2
(log 5 − log 2) + iπ/12.

Let us now give two examples of application to primitives of rational
functions.

Example 1. Calculate ∫
dx

(x2 + 1)2
.

We write

1/(x2 + 1)2 = A/(x − i)2 + B/(x − i) +(20.12)
+ B′/(x + i) + A′/(x + i)2

with coefficients to be determined. Multiplying through by (x− i)2 one finds
1/(x + i)2 on left hand side and, on the right hand side, A plus terms con-
taining factors x − i, so zero for x = i. Consequently A = 1/(2i)2 = −1/4.
Similarly, A′ = −1/4. The terms in A and A′ have sum

−i
[
(x − i)2 + (x + i)2

]
/4(x2 + 1)2 = −1

2
(x2 − 1)/(x2 + 1)2;

on substituting this in the left hand side of (12) one obtains the relation

1
2
(x2 + 1) = B/(x − i) + B′/(x + i);

here again, one multiplies through by x− i and puts x = i in the result; this
gives B = 1/4i = −i/4 and likewise B′ = i/4. Whence finally

1/(x2 + 1)2 = −1/4(x − i)2 − i/4(x − i) + i/4(x + i) − 1/4(x + i)2.

Consequently,

I =
∫

dx

(x2 + 1)2
=

1
4

(
1

x − i
+

1
x + i

)
+

1
4

[L(x + i) − L(x − i)].

The rest of the problem is now to express this result in real terms. Now
L(x + i) = 1

2 log(x2 + 1) + i arg(x + i) with a similar formula for L(x − i);
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it is clear on the other hand (sketch!) that arg(x − i) = − arg(x + i) if one
chooses the arguments between −π and +π. The expression between [ ] is
therefore equal to 2i arg(x + i), the argument being chosen between 0 and π
since x + i is above the real axis. Thus, up to an additive constant (we are
calculating a primitive),

I = x/2(x2 + 1) − 1
2

arg(x + i) with 0 < arg(x + i) < π.

To reduce to a more familiar expression we note that the argument t of x+ i
satisfies tan t = 1/x, whence

arg(x + i) = arctan(1/x) = π/2 − arctan x + 2kπ.

The left hand side having to be a continuous function of x ∈ R and the
function arctanx also being so, if one insists on values between −π/2 and
+π/2, the integer k must be independent of x; for k = 0, one actually finds
for the right hand side a value between 0 and π, as it must be. The constant
π/2 being unimportant in calculating the desired primitive, we conclude that

I = x/2(x2 + 1) +
1
2

arctan x + const.

The reader may, as an elementary prudence, check the result by calculating
its derivative; the fact that it is real is already a good sign . . .

The reader will find very many examples of this technique in all the
textbooks, although the great majority of authors recoil from the complex
log. Moreover one is not always forced to use these when the denominator Q of
the given real rational function has complex roots. For then, taking together
the conjugate imaginary terms of the decomposition (2) in the case of a real
function, one is led to sums of expressions of the form (Ax+B)/(x2+px+q)n

where the trinomial x2 + px + q, with p and q real, has no real roots, i.e. can
be written (x − a)2 + b2 with a, b real and b �= 0. The change of variable
x = ay + b then reduces it to calculating integrals of the form

In =
∫

dx/(x2 + 1)n, Jn =
∫

xdx/(x2 + 1)n.

Since 1 is the derivative of the function x, an integration by parts gives

In = x/(x2 + 1)n − 2n

∫
x2dx/(x2 + 1)n+1 =

= x/(x2 + 1)n − 2nIn + 2nIn+1

since x2 = (x2 + 1) − 1; on replacing n by n − 1, this relation can again be
written as

(2n − 2)In = (2n − 1)In−1 − x/(x2 + 1)n−1,

which allows us to calculate step-by-step, starting from I1 = arctanx; one
can even calculate the general formula for In directly, but it is clearly not
worth doing. A similar method applies to the Jn.
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Example 2. Leibniz having believed he would flabbergast Newton with his
series for π/4, the latter retorted that he knew others, and better ones, es-
pecially the formula

π/2
√

2 = 1 + 2(1/3.5 − 1/7.9 + 1/11.13 − . . .),(20.13)

but of course without presenting the proof.
But we know that he derived it from integrating the function

1 + x2

1 + x4
=

1
2

1
x2 − x

√
2 + 1

+
1
2

1
x2 + x

√
2 + 1

.

Putting ε = ±1, one has x2 − εx
√

2+1 =
(
x − ε/

√
2
)2

+1/2, which suggests
the change of variable x− ε/

√
2 = y/

√
2; then dx = dy/

√
2 and x2 − εx

√
2+

1 = 1
2 (y2 + 1); consequently,

√
2
∫

dx/
(
x2 − εx

√
2 + 1
)

=
∫

dy/(y2+1) = arctan y = arctan
(
x
√

2 − ε
)

.

One deduces

√
2
∫

1 + x2

1 + x4
dx = arctan

(
x
√

2 + 1
)

+ arctan
(
x
√

2 − 1
)

.

But the addition formula

tan(u + v) =
tan u + tan v

1 − tan u. tan v

shows that
arctan x + arctan y = arctan

x + y

1 − xy
+ kπ.

An easy calculation then shows that

√
2
∫

1 + x2

1 + x4
dx = arctan

[
x
√

2/(1 − x2)
]
,(20.14)

whence

√
2
∫ t

0

1 + x2

1 + x4
dx = arctan

[
t
√

2/(1 − t2)
]

(20.15)

for 0 ≤ t < 1. As t tends to 1, t
√

2/(1− t2) tends to +∞, its arctan tends to
π/2 and finally one finds ∫ 1

0

1 + x2

1 + x4
dx = π/2

√
2.(20.16)

On the other hand, the integrand is represented by the power series
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(1+x2)
(
1 − x4 + x8 − x12 + . . .

)
= (1−x4+x8−. . .)+

(
x2 − x6 + x10 − . . .

)
;

Can one integrate this term-by-term between 0 and 1?
There is no problem in integrating over [0, t] with t < 1. One finds

(t − t5/5 + t9/9 − . . .) + (t3/3 − t7/7 + t11/11 − . . .).

It remains to pass to the limit in each series as t tends to 1. Once again
we have alternating series with decreasing terms: by Leibniz’ estimate of the
remainder, namely tn/n < 1/n, the partial sums sn(t), clearly continuous
for |t| ≤ 1, converge to the total sum s(t) uniformly on the closed interval
|t| ≤ 1, so that it is a continuous function of t for t ≤ 1. One may then write
that

lim
t→1−0

s(t) = lim
t→1−0

lim
n

sn(t) [by definition of s(t)] =

= lim
n

lim
t

sn(t) [Chap. III, n◦ 12, Theorem 16 ] =

= lim
n

sn(1) [since sn is continuous ] = s(1).

By (16), one finally finds

π/2
√

2 = (1 − 1/5 + 1/9 − . . .) + (1/3 − 1/7 + 1/11 − . . .)

and has only to rearrange the terms to obtain Newton’s series.
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§ 7. Generalised Riemann integrals

Up to now we have attempted to integrate only bounded functions on a
bounded and, most often, compact interval. To get further we have to free
ourselves from these restrictions. The method is quite similar to that for pass-
ing from the partial sums to the total sum of a series. To avoid complications
which would not be helpful at this level, we restrict ourselves to regulated
functions, i.e. those having right and left limits at each point, and so are
integrable on every compact interval (or even bounded interval, if they are
themselves bounded: n◦ 7, corollary to Theorem 6); if we really wanted to
generalise, we would have to go to the grand integration theory (Appendix).
This would moreover allow us to simplify many proofs very appreciably, also
the somewhat artificial statements needed in order to remain at the “elemen-
tary” level.

21 – Convergent integrals: examples and definitions

Suppose for example that we wish to assign a meaning to the integral∫ b

0

dx/x.

It is natural, if only for a geometric reason, to consider it as the limit of the
integral over (u, b) as u > 0 tends to 0. This is equal to log b− log u and, hard
luck, therefore tends to +∞, which is not the result hoped for, even if, after
all, we have attributed the sum +∞ to divergent series with positive terms.
One could also attribute to 1/x the value +∞ at x = 0, so obtaining a lower
semicontinuous function on [0, b] to which one applies the definition of the
integral given in n◦ 11; the result is the same, as one sees on calculating the
integrals over [0, b] of the functions inf(n, 1/x) and then passing to the limit
as n → +∞. Replacing 1/x by xs with s real, a function of which a primitive
is xs+1/(s + 1), one obtains the same result if s + 1 < 0. For s + 1 > 0 the
integral over the interval [u, b], equal to bs+1/(s + 1)−us+1/(s + 1), tends to
bs+1/(s + 1); whence “clearly”, i.e. by definition,

∫ b

0

xsdx = bs+1/(s + 1) if s > −1 and b > 0.(21.1)

Consider next the integral ∫ +∞

a

xsdx

with a > 0 to eliminate a possible difficulty at x = 0, and where s is real.
It is natural to consider this as the limit of the integral over (a, v) as v
increases indefinitely. If s = −1, one finds log v − log a, which tends to +∞.
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If s �= −1, one finds vs+1/(s+1)−as+1/(s+1). If s > −1, the result increases
indefinitely. If s < −1, it tends to −as+1/(s + 1), whence the formula∫ +∞

a

xsdx = −as+1/(s + 1) for s < −1, a > 0.(21.2)

We remark in passing that the hypotheses on s that give a meaning to the
integrals (1) and (2) are mutually exclusive; in other words, the integral∫ +∞

0

xsdx IS NEVER FINITE.

Let us generalise. Let f be a regulated function on a noncompact interval
X = (a, b), either not bounded, or bounded but not closed. If one argues as
we did in defining convergence of a series, one is led to associate a “partial
integral”

s(K) =
∫

K

f(x)dx =
∫ v

u

f(x)dx = s(u, v) = F (v) − F (u),(21.3)

to every compact interval K = [u, v] contained in X, where F is a primitive
of f in X. We then say that the integral

s(X) =
∫

X

f(x)dx =
∫ b

a

f(x)dx(21.4)

converges if s(K) tends to a limit – which, by definition, will be the inte-
gral (4) – as K “tends to” X, i.e. when u and v tend respectively to40 a and
b. As in the case of a series [Chap. II, eqn. (15.4)], this means41 that for every
r > 0 there exists a compact interval K ⊂ X such that, for every compact
interval K ′ ⊂ X,

K ⊂ K ′ =⇒ |s(K ′) − s(X)| < r.(21.5)

One could also then say that f is “integrable” on X, but it is better to
abstain carefully from this when the integral of |f | does not converge, this
term having been reserved, in the only theory which has counted for a long
time, that of Lebesgue, for absolutely integrable functions. It would be better
to speak of semiconvergent integrals when

∫ |f(x)| dx does not converge.
(5), again, means that, for every r > 0, one has |s(X)− s(u, v)| < r once

u is close enough to a and v close enough to b. If, for example, a is finite
40 If X and f are bounded, in which case f is integrable on X in the sense of n◦ 2

(n◦ 7, corollary to Theorem 6), this definition is compatible with that of n◦ 2.
41 One can define this type of limit precisely. Let ϕ(K) be a function of a variable

compact set K ⊂ X. One says that it tends to a limit u as K tends to X if
for every r > 0 there exists a compact K ⊂ X such that K ⊂ K′ ⊂ X =⇒
|u − ϕ(K′)| < r. This is definition (21.5).
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and b = +∞, this means that, for every r > 0, there exists an r′ > 0 and an
N > 0 such that

{(u − a < r′) & (v > N)} =⇒ |s(X) − s(u, v)| < r.

In terms of primitives,∫ b

a

f(x)dx = lim
v→b,v<b

F (v) − lim
u→a,u>a

F (u),(21.6)

so that the integral converges if and only if F has finite limit values at a and
b. These limits actually exist if the integral converges, for, in this case, one
has |s(u′, v′) − s(u′′, v′′)| < r if u′ and u′′ are close enough to a and v′ and
v′′ close enough to b; taking v′ = v′′, one sees then that |F (u′)−F (u′′)| < r,
so that Cauchy’s criterion is satisfied by F (u) as u tends to a. It is clear
conversely that the integral converges if F has limits at the end-points of X.

This is exactly what we have verified in the preceding examples. The
method also works for integrating an exponential function ecx with c real
and nonzero, since the behaviour of the primitive ecx/c as x tends to +∞
or −∞ has been elucidated in Chap. IV. In particular, one may integrate ex

from −∞ to any finite limit, but one cannot integrate from −∞, nor from a
finite limit, to +∞.

But in general one does not know F , so the usefulness of (6) is heavily
constrained; it is better, in most cases, to examine the order of magnitude of
f(x) as x tends to a or to b, just as one does for series.

22 – Absolutely convergent integrals

The theory of series is particularly simple when they are absolutely con-
vergent. Likewise here. We shall say that the integral (21.4) is absolutely
convergent if the integral of |f(x)| is convergent, in which case one may say
that f is integrable over X (or, to reassure the reader who is starting these
topics, absolutely integrable) without risking a collision with the Lebesgue
theory.

Theorem 18. (i) Let f be a positive regulated function defined on an inter-
val X = (a, b). Then f is integrable on X if and only if the integrals over the
compact subsets K ⊂ X are bounded above; and then∫

X

f(x)dx = sup
K⊂X

∫
K

f(x)dx;(22.1)

(ii) let f be a regulated function defined on an interval X; if the integral∫
f(x)dx extended over X is absolutely convergent (i.e. if f is absolutely

integrable on X) then it is convergent and∣∣∣∣
∫

X

f(x)dx

∣∣∣∣ ≤
∫

X

|f(x)|dx.(22.2)
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To prove point (i) we observe that, f being positive, s(K) is an increasing
function of K:

K ⊂ K ′ =⇒ s(K) ≤ s(K ′).

The arguments of Chap. II, n◦ 9 on increasing sequences transpose immedi-
ately to here without our needing to expound them all again. One might also
observe that, if f is positive, its primitives are increasing functions; these
tend to finite limits at the end-points of X if and only if they are bounded
on X.

To establish the assertion (ii) one can reduce to the case of a real function,
then to that of a positive function by writing f = f+ − f−. Since f+ and
f− are majorised by |f |, point (i) shows that the integrals of these functions
converge, so that of f too. One could also use directly one of the numerous
variants of Cauchy’s criterion adapted to the situation, namely that the par-
tial integrals s(K) tend to a limit if and only if for every r > 0 there exists
a compact subset K ⊂ X such that

|s(K ′) − s(K ′′)| < r for any K ′ ⊃ K and K ′′ ⊃ K;

but, since K ′ and K ′′ contain K, we have42

|s(K ′) − s(K ′′)| =
∣∣∣∣
∫

K′−K

f(x)dx −
∫

K′′−K

f(x)dx

∣∣∣∣
≤
∫

(K′−K)∪(K′′−K)

|f(x)|dx,

the integral of |f | being extended over the set (K ′ ∪ K ′′) − K; if we write
S(K) for partial integrals relative to |f | we have

|s(K ′) − s(K ′′)| ≤ S(K ′ ∪ K ′′) − S(K),

an arbitrarily small quantity for any K ′,K ′′ ⊃ K for K “large enough” if
the S(K) are bounded above.

The inequality (2) is obvious when integrating over a compact interval
K ⊂ X, hence propagates to the limit, qed.

Theorem 18 has some trivial consequences, which we use constantly.

Corollary 1. Let f be a bounded regulated function on an interval X, and µ
an absolutely integrable regulated function on X. Then the function f(x)µ(x)
is absolutely integrable on X and∫

|f(x)µ(x)dx| ≤ ‖f‖X

∫
|µ(x)|dx.

42 In what follows, we will have occasion to integrate over a set which is a finite
union of intervals having, pairwise, at most one point in common; the integral will
clearly, by definition, be the sum of the integrals extended over these intervals.
This, furthermore, is equivalent to multiplying the integrand by the characteristic
function, a step function, of this union.
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Obvious. As we shall do on various occasions in the rest of this §, we have
used the

∫
sign to denote integrals extended over X.

Example: the Fourier transform

µ̂(y) =
∫

R

e−2πixyµ(x)dx(22.3)

of an absolutely integrable function on X = R is defined for every y ∈ R.
In the following statement one says that a function f is square (under-

stood: absolutely) integrable on an interval X if the function |f |2 is integrable
on X. One may then generalise Cauchy-Schwarz:

Corollary 2. Let f and g be two regulated square integrable functions on an
interval X; then the function f(x)g(x) is absolutely integrable on X and∣∣∣∣

∫
f(x)g(x)dx

∣∣∣∣2 ≤
∫

|f(x)|2dx.

∫
|g(x)|2dx.

One replaces f and g by |f | and |g|, writes the Cauchy-Schwarz inequality
for every compact interval K ⊂ X and notes that the left hand side is, for
any K, majorised by the right hand side of the inequality to be established,
whence the result on passage to the limit. Or else, see the end of n◦ 14, which
will prove more generally that if the functions |f |p and |g|q are integrable for
1/p + 1/q = 1, then fg is also integrable, and a Hölder inequality is valid.

The convergence conditions for the integrals involving xs established
above for s real can be transformed immediately into conditions for absolute
convergence in the case of a complex exponent, since

|xs| = xRe(s) for x > 0.

On the other hand, point (ii) of Theorem 18 shows that if, on a neighbourhood
of one of the limits of integration, one has a relation of the form

f(x) = O(g(x)),

then absolute convergence (on a neighbourhood of this end-point) of the
integral of g(x) implies that of the integral of f(x); if one has the more
precise relation f(x) � g(x) then the integrals are of the same nature as
concerns absolute convergence. (It might, on the other hand, happen that
one of them converges non-absolutely and that the other diverges, as can
occur with series.)

In elementary practice the absolute convergence of an integral is almost
always shown by comparing the behaviour of the integrand with that of a
combination of classical functions: exponentials, powers, logarithms, etc. It
is worth having these results permanently available, and to have understood
their reasons.
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First of all, putting X = (a, b), one may always choose a c such that a <
c < b and decompose the integral into integrals extended over (a, c) and over
(c, b). If the integrand is regulated there will be no problem of convergence
on a neighbourhood of c, and this allows us to isolate the difficulties. One
may always, in the case where c is the right endpoint, reduce to the case
where c = +∞ by the change of variable c−x = 1/y. If c is the left endpoint,
one may reduce to the case where c = 0 by x − c = y, or to c = −∞ by
x − c = −1/y.

Now consider the prototype integral∫ +∞

a

logm x.xne−sxdx (a > 0)(22.4)

where m, n, s are a priori complex but can in fact be assumed real, since
the modulus of the integrand is obtained by replacing the exponents by their
real parts. In view of the orders of increase of the three functions involved,
it is pretty clear that the convergence of the integral is, for s �= 0, governed
by the exponential factor. It follows immediately from Chap. IV, n◦ 5, that

logm x.xn = o(erx) as x → +∞ for every r > 0;

the integral will thus converge if there exists an r > 0 making the integral
of e(r−s)x converge, i.e. if r − s < 0, whence convergence for s > 0, strict
inequality. For s < 0, the integrand grows indefinitely, whence divergence.

In the case where s = 0, the change of variable x = ey leads us to integrate
the function yme(n+1)y on a neighbourhood of infinity; the integral is thus
convergent for n < −1 and divergent for n > −1.

If, finally, we have n = −1, so that we are dealing with the integral of
x−1 logm x, the same change of variable reduces to the function ym, whence
convergence for m < −1 and divergence for m ≥ −1.

In conclusion, convergence is governed by the exponential function if this
is actually present or, if it is absent (s = 0), by the power function if that is
actually present; if these two functions are absent, the integral converges if
and only if m < −1.

One might study integrals similar to (4), but containing more simple
factors, by the same method; you could, for example, introduce the factors
log log x, or log log log x, etc. . . ., which grow more and more slowly and do
not affect the result so long as there are factors present which decrease much
more rapidly than them. You might also insert a factor x−x, which tends
to 0 fast enough to annihilate even the most vertical exponential functions
. . . Etc.

The study of an integral such as∫ b

0

| log x|mxndx (0 < b < +∞)(22.5)
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reduces to the preceding case; the change of variable x = 1/y transforms it
into the integral of the function logm y.y−n−2 on a neighbourhood of +∞.
The integral (5) is thus convergent if −n− 2 < −1, i.e. if n > −1; it diverges
if n < −1. If n = −1, the integral converges if m < −1 and diverges in
the contrary case. Note in passing that (5) always converges for n = 0, i.e.
when the term xn is absent, a result due to the fact that on a neighbourhood
of 0 a power of the log grows less quickly than any negative power of x, for
example than the function x−1/2 whose integral converges (primitive: 2x1/2).
For n = 0, m = 1, note that log x has primitive x log x− x, a function which
tends to a limit, namely 0, when x → 0.

Exercise: extend this calculation to the case of an arbitrary integer m > 0
by integrating by parts.

The case of rational functions is particularly simple: if p and q are poly-
nomials and q has no real roots then the absolute convergence of the integral∫ +∞

−∞

p(x)
q(x)

dx

depends only on the integer n = d◦(q)−d◦(p) since the function is equivalent
to 1/xn to within a constant factor; so absolute convergence is equivalent to
the condition n ≥ 2.

Example 1. Consider Euler’s ubiquitous Gamma function

Γ (s) =
∫ +∞

0

e−xxs−1dx.(22.6)

Absolute convergence at infinity is automatic, but, at 0, requires Re(s) > 0.
An integration by parts43 then shows that

Γ (s + 1) =
∫ +∞

0

e−xxsdx = −e−xxs

∣∣∣∣
+∞

0

+ s

∫ +∞

0

e−xxs−1dx

and since the integrated-out part is clearly zero, we have

Γ (s + 1) = sΓ (s).(22.7)

Since it is clear that Γ (1) = 1 we deduce that

Γ (n) = (n − 1)!(22.8)

for every integer n > 1. This is Euler’s method for defining the “factorial” of
an arbitrary complex number. We shall see in n◦ 25 that the Γ function is
holomorphic in the half plane Re(s) > 0 and that it is even the restriction of
a function holomorphic on C − {0,−1,−2, . . .} .
43 The formula

∫
f ′g = fg − ∫ fg′ for integration by parts applies to the integrals

considered here, on condition that we check that the function fg has limit values
at the end-points of the interval of integration X: integrate over a compact
K ⊂ X and pass to the limit.
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Example 2. Euler also studied the integral

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1dt(22.9)

where x and y are a priori complex (and rational for him). Absolute conver-
gence on a neighbourhood of 0 requires Re(x) > 0 and, on a neighbourhood
of 1, Re(y) > 0. Clearly

B(x, y) = B(y, x)(22.10)

(change of variable t 
→ 1 − t). The change of variable t 
→ sin2 t shows that

B(x, y) = 2
∫ π/2

0

sin2x−1 t. cos2y−1 t.dt.(22.11)

We shall see later (n◦ 26, Example 1) that

B(x, y) = Γ (x)Γ (y)/Γ (x + y),(22.12)

a famous formula due to Euler with, as always, a proof which posterity,
principally Jacobi, has rectified. It immediately provides the explicit value of
(11) for x, y ∈ N.

23 – Passage to the limit under the
∫

sign

For generalised or “improper” Riemann integrals there are theorems on pas-
sage to the limit which the Lebesgue theory has rendered obsolete, but remain
usable at a more elementary level. For example:

Theorem 19 (Poor man’s dominated convergence). Let (fn) be a se-
quence of regulated functions, absolutely integrable on an interval X ⊂ R.
Assume that

(i) the fn converge to a limit f uniformly on every compact K ⊂ X,
(ii) there exists a positive function p, integrable on X, and such that

|fn(x)| ≤ p(x) for any x and n.
Then the function f is absolutely integrable on X and∫

f(x)dx = lim
∫

fn(x)dx.(23.1)

First of all, it is clear that f , being regulated like the fn, is absolutely
integrable on X since |f(x)| ≤ p(x) for every x. Since p is positive and
integrable, for every r > 0 there exists a compact interval K ⊂ X such that∫

X−K

p(x)dx < r(23.2)
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(and even for every K ′ ⊃ K), whence the same relation for each |fn(x)| and
for |f(x)|. On the other hand∫

K

|f(x) − fn(x)|dx < r for n large(23.3)

since fn converges uniformly to f on K. Now∣∣∣∣
∫

X

f(x)dx −
∫

X

fn(x)dx

∣∣∣∣ ≤
∫

X

|f(x) − fn(x)|dx

is the sum of the analogous integrals extended over K and X − K; by (2),
the second is < 2r since |f(x) − fn(x)| ≤ 2p(x) for any x and n; the first is
< r for n large by (3). The left hand side of the preceding relation (and even
the right hand side) thus tends to 0, qed.

Example 1. Consider the function

Γ (s) =
∫ +∞

0

e−xxs−1dx, Re(s) > 0,

again, and observe that

e−xxs−1 = lim(1 − x/n)nxs−1.

We cannot just bluntly apply Theorem 19 since the functions on the right
hand side are not integrable between 0 and +∞: convergence at 0 presupposes
Re(s) > 0 and convergence at infinity Re(s) < −n. For x < n we always have
[Chap. III, n◦ 16]

log[(1 − x/n)n] = n. log(1 − x/n) = −x − x2/2n − . . . < −x

and so (1 − x/n)n < e−x. Now consider the functions

fn(x) =
{

(1 − x/n)nxs−1 for 0 < x ≤ n,
0 for x > n;(23.4)

they converge to the absolutely integrable function e−xxs−1 and satisfy
|fn(x)| ≤ |e−xxs−1|. To be able to apply Theorem 19 it therefore suffices
to show that convergence is uniform on every compact subset of ]0, +∞[. If
we accept this point provisionally we then find

Γ (s) = lim
∫ n

0

(1 − x/n)nxs−1dx = limns

∫ 1

0

(1 − u)nus−1du;

on integrating by parts à la Leibniz, i.e. without limits of integration, we find
that ∫

(1 − u)nus−1du = (1 − u)nus/s +
n

s

∫
(1 − u)n−1usdu
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and since the integrated-out part is zero for u = 0 [because Re(s) > 0] and
u = 1, we find ∫ 1

0

(1 − u)nus−1du =
n

s

∫ 1

0

(1 − u)n−1xsdx;

whence, iterating,∫ 1

0

(1 − u)nus−1du =
n!

s(s + 1) . . . (s + n)
.(23.5)

A little less than two centuries after 1812 and Gauss, who did not know
that Euler, ever present, had preceded him along this path about 1776, as
Remmert, Funktionentheorie 2, pp. 34–36, tells us, we find that

Γ (s) = limn!ns/s(s + 1) . . . (s + n)(23.6)

for Re(s) > 0. We can derive an expansion of Γ as an infinite product, but
we still lack the necessary “Euler’s constant” which will appear in Chap. VI,
n◦ 18.

We still have to show that the functions (4) converge uniformly on every
compact interval K = [a, b] with 0 < a < b < +∞. The factor xs−1 being
bounded on K since a > 0, it is enough to examine the factor (1 − x/n)n.
For n > b we have |x/n| < 1 in K and thus

log [(1 − x/n)n] = n. log(1 − x/n) = − (x + x2/2n + x3/3n2 + . . .
)
;

the sequence of functions log [(1 − x/n)n], thus also that of the functions
(1 − x/n)n, is therefore increasing on K, and even on [0, b], for n > b. Since
it converges to the continuous function e−x uniform convergence on K follows
from Dini’s Theorem of n◦ 10.

More elementarily, so more complicated: first remark that log [(1 − x/n)n] =
−x − x2/2n − . . . converges uniformly to −x on [0, b], since, for n > b,

∣∣x2/2n + x3/3n2 + . . .
∣∣ ≤ b2

n

(
1 + b/n + b2/n2 + . . .

)
=

b

n − b

for every x ∈ [0, b]. Since (1− x/n)n = exp[n. log(1− x/n)], it remains either
to “dirty one’s hands” by calculating (exercise!), or to establish a general
lemma to bypass the calculations:

Lemma. Let K be a compact subset of C, let (fn) be a sequence of functions
which converges uniformly on K to a bounded limit function f on K, and
let g be a function defined and continuous on an open set U containing the
closure of f(K). Then the composite function gn = g ◦fn is defined on K for
n large and converges uniformly to g ◦ f .
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The limit f being bounded, the closure H of f(K) is compact so that,
for every integer p, the set Hp of the z ∈ C such that d(z,H) ≤ 1/p is
also compact. Since U is open and contains H, it contains44 an Hp. Since
‖f−fn‖K ≤ 1/p for n large, we therefore have fn(K) ⊂ Hp ⊂ U , which allows
us to define gn(x) = g[fn(x)]. Now the function g is uniformly continuous
on the compact Hp; for every r > 0 there is therefore an r′ > 0 such that
|g(z′) − g(z′′)| ≤ r if z′, z′′ ∈ Hp satisfy |z′ − z′′| ≤ r′; now this, for n large,
is the case for any x ∈ K if one takes z′ = f(x) and z′′ = fn(x). Hence
‖g ◦ f − g ◦ fn‖K ≤ r for n large, qed.

Note in passing that the lemma makes no hypothesis as to the nature of
the fn; in particular, they are not assumed continuous; it is g which must be.
But if the fn are continuous, the function f is so too, and the closure H of
f(K) is in fact the compact set f(K) itself.

If, instead of integrating a sequence of functions one integrates a series,
one has to consider the partial sums sn(x) of the series and apply the pre-
ceding theorem to them. The simplest result is the following:

Theorem 20. Let
∑

un(x) be a series of absolutely integrable regulated
functions on an interval X. Assume that (i) the series converges uniformly
on every compact K ⊂ X; (ii) there exists a positive function p(x), inte-
grable on X, such that

∑ |un(x)| ≤ p(x) for every x ∈ X. Then the function
s(x) =

∑
un(x) is absolutely integrable on X and∫

s(x)dx =
∑∫

un(x)dx.(23.7)

The hypothesis (i) shows that the partial sums sn(x) converge uniformly
on every compact K ⊂ X; since (ii) shows that |sn(x)| ≤ p(x), one need only
apply the preceding theorem to the sn.

Condition (ii) is analogous to normal convergence on all of X, but more
restrictive. In fact, and in contrast to the case of integrals extended over a
compact interval, normal convergence in X is not enough to assure (7) if
X is not bounded. We do know then, of course, that for n large the differ-
ence between the total sum s(x) and the partial sum sn(x) is < r for any
x ∈ X since this is majorised by the n-th remainder of the series

∑
vn which

dominates the series
∑

un(x). But we cannot extract any estimate for the
difference between their integrals over X if X is not bounded.

One may however establish a useful result whose formulation is very close
to that of one of the fundamental results of the Lebesgue theory:
44 The Hp ∩ (C − U) are closed and bounded and form a decreasing sequence of

compacta; their intersection, contained simultaneously in H (because H = ∩Hp

for every compact H) and in C−U , is empty; thus Hp∩(C−U) = ∅, i.e. Hp ⊂ U ,
for p large: Chap. III, n◦ 9 or corollary 1 of BL.
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Theorem 21. Let X be an interval and un(x) a series of regulated functions
which converges normally on every compact K ⊂ X. Assume that

∑∫
|un(x)|dx < +∞.(23.8)

Then the function s(x) =
∑

un(x) is absolutely integrable on X and∫
s(x)dx =

∑∫
un(x)dx.

Let us put, generally,

mI(f) =
∫

I

f(x)dx

and consider a compact interval K ⊂ X. Since the given series converges
normally on K (“uniformly” would suffice) and one may integrate term-by-
term on a compact set (n◦ 4), the relation |s(x)| ≤∑ |un(x)| shows that

mK(|s|) ≤ mK

(∑
|un|
)

=
∑

mK(|un|) ≤
∑

mX(|un|) = M < +∞

by (8). The regulated function s is therefore absolutely integrable on X [The-
orem 18, (i)], with mX(|s|) ≤∑mX(|un|). Omitting the first N terms from
the series, one finds in the same way that

mX

(∣∣∣s − N∑
p=1

up

∣∣∣) ≤ ∞∑
p=N+1

mX(|un|).

The result is ≤ r for N large since
∑

mX(|un|) < +∞. It follows that

∣∣∣mX(s) −
N∑

p=1

mX(up)
∣∣∣ ≤ mX

(∣∣∣s − N∑
p=1

up

∣∣∣) ≤ r for N large,

whence the theorem.
In the Lebesgue theory, the two preceding theorems are valid without the

hypothesis of uniform or normal convergence, which would considerably sim-
plify the arguments of Example 1; simple (or even only “almost everywhere”)
convergence is enough to assure the result; in fact, the hypothesis (8) even
implies “almost everywhere” absolute convergence of the series

∑
un(x), as

we shall see. On the other hand, hypothesis (ii), “dominated convergence”,
is essential even in the “grand” integration theory, where one ignores (in the
English sense) the “semiconvergent” integrals, so specific to R.

Instead of integrating a function of x depending on an integer n one may
consider more generally an integral of the form
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∫
X

f(x, y)dx

where y varies in an arbitrary subset Y of R or even of C, and examine what
happens when y tends to a closure point b of Y . The hypotheses to make are
obvious:

(i) the function x 
→ f(x, y) is regulated for every y;
(ii) limy→b f(x, y) = g(x) exists for every x ∈ X and the limit is uniform on

every compact K of X, i.e. for every r > 0 there is an r′ > 0 such that

|f(x, y) − g(x)| ≤ r for every x ∈ K

for every y such that |y − b| ≤ r′;
(iii) there exists a positive integrable function p on X such that |f(x, y)| ≤

p(x) on X for every y ∈ Y close enough to b.

Then we may write

lim
y→b

∫
f(x, y)dx =

∫
dx lim

y→b
f(x, y).

The hypotheses (i), (ii) and (iii) show that g is regulated and absolutely
integrable, after which it is enough to copy the proof of Theorem 21, replacing
fn(x) everywhere by f(x, y) and the expression “for n large” by “for y close
enough to b” (or “for y large” if y tends to infinity). We could have established
this general result directly; the theorem for sequences can be deduced from
it on taking Y = N and b = +∞.

In the most frequent applications of this result one seeks to show that the
integral is a continuous function of y:

Theorem 22. Let X be an interval, H a compact subset of C, f a function
defined and continuous on X × H and µ a function defined and regulated in
X. Assume that there is a positive function p on X such that |f(x, y)| ≤ p(x)
on X×H and

∫
p(x)|µ(x)|dx < +∞. Then the function y 
→ ∫ f(x, y)µ(x)dx

is continuous on H.

Hypotheses (i) and (iii) above are clearly satisfied by f(x, y)µ(x) when
y tends to a b ∈ H. If K is a compact subset of X, then the function f is
uniformly continuous on the compact K × H; consequently, the hypothesis
(ii) is satisfied also45. Thus lim

∫
f(x, y)µ(x)dx =

∫
f(x, b)µ(x)dx, qed.

45 Recall why. For every r > 0 there exists an r′ > 0 such that the values of f at
two points of K × H distant at most r′ from each other are equal to within r.
It follows that |y − b| < r′ =⇒ |f(x, y) − f(x, b)| < r for every x ∈ K, which
means that, as y tends to b, f(x, y) tends to f(x, b) uniformly on K. The factor
µ(x), which is bounded on every compact set, like every regulated function, does
not change the conclusion. Note in passing that if we have introduced a function
µ(x), it is because we do not yet know how to treat an integral

∫
f(x, y)dµ(x)

with respect to an arbitrary measure on a noncompact interval.
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In practice, the continuous function f is defined on X × Y where Y ⊂ C
is not necessarily compact: the case of an arbitrary interval in R or of an
open subset of C for example. To apply the theorem, it is enough to work
on an arbitrarily small neighbourhood of a point b ∈ Y since continuity is a
property of local nature. So everything works if every b ∈ Y has a compact
neighbourhood in Y . Now a neighbourhood of b in Y contains, by definition,
all the points of Y whose distance to b is sufficiently small. The hypothesis
in question thus means that there exists an r > 0 such that the set of y ∈ Y
such that d(b, y) ≤ r (weak inequality) is compact. A subset of C having this
property at each of its points is said to be locally compact. This is the case
if Y = F ∩ U with F closed and U open46: choose r so that the closed disc
d(b, y) ≤ r is in U , then take for a neighbourhood of b in Y the intersection of
this disc with F : it is closed in C, so compact. In R, every interval is locally
compact; Q is not (exercise!). In C, the union Y of the open disc D : |z| < 1
and of the compact interval [1, 3] is not, even though both these two sets are:
the intersection of Y with a closed disc of centre 1 is never closed. We might
have said all this in Chap. III, but the reader is perhaps grateful to have been
spared this at the beginning of the theory . . .

In conclusion, Theorem 22 remains valid if one assumes H only locally
compact. By a happy coincidence, the locally compact sets are, among the
subsets of C, those on which one may construct an integration theory à la
Lebesgue and, for a start, give a reasonable definition of Radon measures, as
we shall see in n◦ 31.

24 – Series and integrals

One may sometimes compare an integral to a series, and vice-versa, to decide
on its convergence or divergence. If, for example, f is a regulated function on
an interval X = [a,+∞[ with a finite, then f has a limit value at a and the
convergence of the integral on a neighbourhood of a poses no problem; it is
then clear that∫

X

|f(x)|dx < +∞ ⇐⇒
∑
n≥a

∫ n+1

n

|f(x)|dx < +∞

because the partial sums of the series are, more or less, the partial integrals
over the intervals [a, n].

Consider now a function f defined for x ≥ a finite, positive, decreasing,
and tending to 0 at infinity (without this, for a decreasing function, the
integral has no chance of converging); being monotone, f is regulated (and,
in applications, is always continuous). For every n ≥ a the integral of f over
the interval [n, n + 1] lies between f(n) and f(n + 1) since f is positive and
decreasing. The series (1) is therefore of a similar nature to the series

∑
f(n)

46 One can prove the converse, but it is hardly worthwhile.
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and consequently, the integral of f on the interval [a,+∞] converges if and
only if the series

∑
f(n) converges, with

∑
n≥a

f(n) ≤
∫ +∞

a

f(x)dx ≤ f(a) +
∑
n>a

f(n);(24.1)

the term f(a) comes from the interval [a, p] where p is the smallest integer
≥ a. A sketch will make the result obvious.

If for example f(x) � c/xs with s real, the integral converges like the
Riemann series

∑
1/ns, i.e. for s > 1.

There are also the integrals of “oscillating” functions. Consider for exam-
ple the integral

I =
∫ +∞

a

f(x) sin(πx)dx(24.2)

where f is again positive, decreasing, and tends to 0 at infinity. The integral
between n and n+1 this time lies up to sign between f(n) and f(n + 1) since,
on the interval considered, sin(πx) is either everywhere between 0 and 1, or
everywhere between −1 and 0. This suggests comparison with the alternating
series
∑

(−1)nf(n), which converges since f decreases and tends to 0. But it
is better to compare with the series with general term

un =
∫ n+1

n

f(x) sin(πx)dx.

It is clear that the un are alternately positive and negative. On the other
hand

un+1 = −
∫ n+1

n

f(x + 1) sin(πx)dx

thanks to the change of variable x 
→ x+1. Since f(x+1) ≤ f(x), we conclude
that |un+1| ≤ |un|. Finally, and as we have seen, |un| always lies between f(n)
and f(n+1), so tends to 0. The alternating series un is therefore convergent.
Now let p be the smallest integer ≥ a. For p ≤ n ≤ v < n + 1 we have∫ v

a

f(x) sin(πx)dx =
∫ p

a

. . . + (up + . . . + un−1) +
∫ v

n

f(x) sin(πx)dx.

Since the last integral is, in modulus, ≤ f(n) and so tends to 0, and since
the series un converges, it is clear that the left hand side tends to a limit as
v → +∞, namely

I =
∫ p

a

f(x) sin(πx)dx +
∑
n≥p

un.

The “remainder” of an alternating series being, in absolute value, less than
the first term neglected, one thus obtains, for every n > a, the inequality
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∣∣∣∣I −
∫ n

a

f(x) sin(πx)dx

∣∣∣∣ ≤ f(n).(24.3)

From this one can deduce an important result on the Fourier transform:

Theorem 23. Let f be a positive regulated function, defined for x ≥ a > −∞,
decreasing, and tending to 0 at infinity. Then the integral

ϕ(y) =
∫ +∞

a

f(x) sin(2πxy)dx

converges for any y �= 0, and is a continuous function of y.

To see this, assume y > 0 and perform the change of variable 2xy = u,
whence

2yϕ(y) =
∫ +∞

2ay

f(u/2y) sin(πu)du.

Convergence is clear, and (3) can now be written∣∣∣∣2yϕ(y) −
∫ n

2ay

f(u/2y) sin(πu)du

∣∣∣∣ ≤ f(n/2y).(24.4)

Let us work on an interval y ≥ b > 0. We have f(n/2y) ≤ f(n/2b), so that
f(n/2y) converges uniformly to 0 on this interval. Thus it remains to show
that the integral in (4) is a continuous function of y for any n; for then 2yϕ(y)
will be the uniform limit of continuous functions on y > b. Now, returning to
the initial variable of integration x = u/2y, the integral in question can be
written ∫ n/2y

a

sin(2πxy)f(x)dx,

and its continuity as a function of y is clear, even though the upper limit of
integration depends on y. The reader may provide the ε, inspired by Theo-
rem 13 of n◦ 12.

Dirichlet’s integral ∫ +∞

0

sin(2πxy)dx/x

fits into this framework, for the function sin(2πxy)/x tends to 2πy at the
origin, so that it is enough to examine its behaviour at infinity, given by the
preceding theorem. (Note that in fact the integral does not depend on y).
Same remark for the Fresnel integrals of the kind∫ +∞

0

cos(2πx2y)dx, y �= 0;

the change of variable x2 = t leads to
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∫ +∞

0

cos(2πyt)t−1/2dt;

there is no problem at t = 0 since −1
2 > −1. The problem is to calculate the

integral explicitly.
The preceding theorem applies also to the Fourier integrals

f̂(y) =
∫ +∞

−∞
f(x)e−2πixydx,

which, by Euler’s formulae, reduce to four integrals of the preceding type.
Theorem 25 thus applies here when f(x) tends to 0 at infinity in a monotone
fashion for |x| large: the integral converges for y �= 0 and f̂(y) is continuous on
R∗ = R−{0}. This is the case, for example, if f(x) = p(x)/q(x) is a rational
function for which d◦(q) = d◦(p) + 1; the function f tends to 0 monotonely
at infinity because its derivative has only a finite number of roots, so has
constant sign on a neighbourhood of +∞ or −∞. We should not forget that
the integral does not converge absolutely.

25 – Differentiation under the
∫

sign

To extend the theorem on differentiation under the
∫

sign to “improper”
integrals one considers as in n◦ 9 a continuous function f on a rectangle
X × J where, this time, X is no longer compact, and one assumes that D2f
exists and is continuous on X × J . In ignorance of what a measure is one
may always examine an integral of the form

g(y) =
∫

f(x, y)µ(x)dx,(25.1)

where µ is a regulated function on X, and seek hypotheses to assure that

g′(y) =
∫

D2f(x, y)µ(x)dx.(25.2)

We assume of course that (1) and (2) are convergent integrals for any y ∈ J . In
problems of this kind the principle is the same as for the analogous problems
for series: one replaces X = (a, b) by a compact interval K = [u, v] contained
in X, applies Theorem 9 of n◦ 9 to the function47

gK(y) =
∫

K

f(x, y)µ(x)dx,(25.3)

47 We remarked at the end of n◦ 9 that Theorem 9 does not rest on the explicit
construction of the usual integral, but only on its properties of linearity and
continuity. These would be equally valid if one defined the integral by the for-
mula µ(f) =

∫
f(x)µ(x)dx. Theorem 9 does not apply directly to the function

f(x, y)µ(x), since it is no longer necessarily continuous, but the result still holds.
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then one passes to the limit as u and v tend respectively to a and b, i.e. as
K tends to X. Since

g′K(y) =
∫

K

D2f(x, y)µ(x)dx(25.4)

by Theorem 9 of n◦ 9, we have to show that the derivative of a limit is the
limit of the derivatives, a problem which Theorem 19 of Chap. III, n◦ 17 is
there to resolve: since gK(y) tends to g(y) for every y, it is enough to show
that g′K(y) converges to the integral (2) uniformly on every compact subset
H of J as K tends to X. Equivalently, that for every r > 0 there exists a
compact interval K ⊂ X such that∣∣∣∣

∫
X−K′

D2f(x, y)µ(x)dx

∣∣∣∣ ≤ r for every y ∈ H and every K ′ ⊃ K;(25.5)

the integral (5) is actually the difference between g′K(y) and the integral (2)
to which it must converge [and which we will have the right to denote g′(y)
after having justified the passage to the limit]. A brutal way of guaranteeing
(5) is to assume the existence of a positive function pH(x) such that

|D2f(x, y)| ≤ pH(x) with
∫

X

pH(x)|µ(x)|dx < +∞(25.6)

for any x ∈ X and y ∈ H; the left hand side of (5) is then majorised by the
integral of pH |µ| over X −K ′, so is < r for any y ∈ H if K ′ contains a large
enough compact interval K ⊂ X.

This is the argument used to show that if, for a series of differentiable
functions the series of its derivatives converges normally, then one may dif-
ferentiate it term-by-term. The integrals of D2f on the compact sets play
the rôle of the partial sums of the derived series; the existence of a function
pH satisfying (3) plays the rôle of normal convergence and guarantees that
for K ⊂ X large enough the “remainder” of the “sum” of the D2f(x, y), i.e.
the integral on X −K, is in modulus ≤ r for any y. One cannot recommend
the reader too strongly to let himself be guided by these analogies between
“continuous sums”, i.e. integrals, and “discrete sums”, i.e. series.

We thus obtain a simple but useful result:

Theorem 24. Let X and J be two intervals in R, let µ be a regulated func-
tion on X and f a function defined and continuous on X × J . Assume that

(i) the integral

g(y) =
∫

X

f(x, y)µ(x)dx

converges for every y ∈ J ;
(ii) the function f has a continuous partial derivative D2f(x, y) on X × J ;
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(iii) for every compact H ⊂ J there exists a positive function pH on X
such that |D2f(x, y)| ≤ pH(x) for every x ∈ X and every y ∈ H, and∫

pH(x)|µ(x)|dx < +∞.

Then the function g is differentiable and

g′(y) =
∫

X

D2f(x, y)µ(x)dx.(25.7)

Example 1. If X = Y = R, if µ is an absolutely integrable regulated function
on R and if f(x, y) = e−2πixy, then the function g(y) is just the Fourier
transform µ̂ of µ. Here

D2f(x, y) = −2πixe−2πixy

and so |D2f(x, y)| = 2π|x| = p(x), and this is clearly the smallest positive
function which dominates x 
→ D2f(x, y) for a (or for all) y ∈ Y . Conclusion:
if ∫

R

|xµ(x)|dx < +∞,

then µ̂ is differentiable and

µ̂′(y) = −2πi

∫
R

xµ(x)e−2πixydx

is the Fourier transform of −2πixµ(x).

Example 2. In particular choose µ(x) = exp(−πx2), an integrable function
on R since it decreases at infinity more rapidly than |x|−n for any n > 0. We
have −2πixµ(x) = iµ′(x), whence, integrating by parts,

µ̂′(y) = i

∫ +∞

−∞
µ′(x) exp(−2πixy)dx = −2πy

∫ +∞

−∞
µ(x) exp(−2πixy)dx

since the integrated-out part is zero because of the decrease of µ at infinity.
One obtains the relation

µ̂′(y) = −2πyµ̂(y),

a relation satisfied equally by µ. The function µ̂/µ therefore has derivative
zero, whence

µ̂(y) = cµ(y) = c exp(−πy2)(25.8)

with a constant

c = µ̂(0) =
∫

R

exp(−πx2)dx.(25.9)
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It will emerge later that c = 1, and this without the least calculation, thanks
to the general Poisson summation formula∑

µ(n) =
∑

µ̂(n),

where the sums are over Z. In part this explains the rôle of the function
exp(−πx2) in the calculus of probabilities (Gauss’ normal law).

The preceding theorem can be used to show that a function is holomor-
phic:

Theorem 24 bis. Let X be an interval in R, U an open subset of C, µ a
regulated function in X, and f a function defined and continuous on X × U
satisfying the following conditions:

(i) the integral

g(z) =
∫

X

f(t, z)µ(t)dt

converges absolutely for every z ∈ U ;
(ii) the function z 
→ f(t, z) is holomorphic on U for every t ∈ X and its

derivative f ′(t, z) with respect to z is continuous on X × U ;
(iii) for every compact H ⊂ U , there exists on X a positive function pH(t)

such that |f ′(t, z)| ≤ pH(t) for every t ∈ X and every z ∈ H and∫
pH(t)|µ(t)|dt ≤ +∞.

Then g is holomorphic on U and

g′(z) =
∫

X

f ′(t, z)µ(t)dt.(25.10)

Putting z = x + iy, Theorem 24 shows that one may differentiate under
the
∫

sign, either with respect to x for y given, or with respect to y for x given.
Since z 
→ f(t, z) satisfies the Cauchy’s holomorphy condition [Chap. II, eqn.
(19.10)], so clearly g does too, qed.

Example 3. If µ is a regulated function on the closed interval [0,+∞[ and
is O(tN ) at infinity for some N , its Laplace transform or complex Fourier
transform

Lµ(z) =
∫ +∞

0

e2πitzµ(t)dt

is defined on U : Im(z) > 0 since then |e2πitzµ(t)| = O(e−2πtytN ) at infinity.
Here f(t, z) = e2πitz, whence |f ′(t, z)| = 2πte−2πty. Since every compact
subset H of U is contained in a half plane Im(z) ≥ σ > 0, we have, in H,
that |f ′(t, z)| ≤ 2πte−2πσt = pH(t) with

∫
pH(t)|µ(t)|dt < +∞ since the

function pH(t)µ(t) = O(e−2πσttN+1) is absolutely integrable on R+. The
function Lµ is therefore holomorphic on U .



122 V – Differential and Integral Calculus

This calculation, iterated, shows further that the (complex) derivatives
of Lµ are given by

L(n)
µ (z) = (2πi)n

∫ +∞

0

e2πitztnµ(t)dt.(25.11)

Example 4. The function Γ (s) =
∫

e−xxs−1dx is holomorphic in the half
plane Re(s) > 0 where it is defined. It is clear that

(i) the function s 
→ e−xxs−1 = e−x exp[(s − 1) log x] is holomorphic for
every x > 0 since it is the composite of two holomorphic functions;

(ii) its complex derivative48 e−xxs−1 log x is continuous;
(iii) if s remains in a compact subset H of the half plane Re(s) > 0, strict

inequality, then s is subject to conditions a ≤ Re(s) ≤ b with 0 < a <
b < +∞, so that

∣∣e−xxs−1 log x
∣∣ ≤ pH(x) =

{
e−xxa−1| log x| if 0 < x ≤ 1,
e−xxb−1 log x if 1 < x < +∞ .

Now the integral of xa−1 log x converges at 0 for a > 0 and that of
e−xxb−1 log x converges at infinity for any b. Whence dominated convergence
and the result.

One sees at the same time that

Γ ′(s) =
∫ +∞

0

e−xxs−1 log x.dx.(25.12)

Example 5. Let us write

Γ (s) =
∫ 1

0

e−xxs−1dx +
∫ +∞

1

e−xxs−1dx.(25.13)

The second integral converges for any s ∈ C. So, as in the preceding example,
is a holomorphic function of s in all of C. In the first integral, term-by-term
integration of the exponential series gives, for Re(s) > 0,∫ 1

0

e−xxs−1dx =
∑ (−1)n

n!

∫ 1

0

xn+s−1dx =
∑

N

(−1)n

n!(s + n)
;(25.14)

the operation is justified because (i) the series
∑

(−1)nxn+s−1/n! to be inte-
grated over X =]0, 1] converges normally on every compact K ⊂ X, (ii) the
series ∑

|(−1)nxn+s−1/n!| = exxRe(s)−1 = p(x)

48 Recall (Chap. III, n◦ 21, Theorem 22) that the chain rule valid for functions of
a real variable is also valid for holomorphic functions of a complex variable.
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is integrable on X since Re(s) > 0: so Theorem 20 applies.
The result (14) is a series of holomorphic functions on the open set

U = C − {0,−1,−2, . . . , },(25.15)

a series which converges normally on every compact49 H ⊂ U . If we knew
generally that the sum of such a series is again holomorphic, we could deduce
from this and from (13) that Γ (s) is the restriction to the half plane Re(s) > 0
of a holomorphic function on U . We do not know this yet, even though we
know (Chap. III, n◦ 22) that if a sequence or series of holomorphic functions
on an open subset U of C converges uniformly on every compact set and so
does its derived series, then the sum of the given series is holomorphic, and its
derivative is obtained by differentiating term-by-term. We stated then that
this result, a trivial consequence of the Cauchy equation and of the much
more general theorem on sequences or series of C1 functions in the plane, is
much too weak to be of interest, but here it will suffice for our needs. It all
reduces to showing that the derived series∑

(−1)n+1/n!(s + n)2

of (14) converges normally on every compact H ⊂ U , which is clear.
Another procedure. An integration by parts shows immediately that∫ 1

0

e−xxs−1dx =
1
s

+
1
s

∫ 1

0

e−xxsdx

for Re(s) > 0; but the integral obtained converges for Re(s) > −1 and de-
pends holomorphically on s in this half plane as in Example 4; this allows us
to extend the function50 Γ analytically (it would be better to say holomor-
phically at this stage of the exposition) to the half plane Re(s) > −1 minus
the point 0. This done, a new integration by parts yields the relation∫ 1

0

e−xxs−1dx =
1
s

+
1

s(s + 1)
+

1
s(s + 1)

∫ 1

0

e−xxs+1dx(25.16)

with an integral converging now for Re(s) > −2 and so holomorphic in this
half plane. Pursuing the calculations, one defines Γ (s) in all the half planes

49 It suffices to prove the existence of an r > 0 such that |s + n| ≥ r for any s ∈ H
and n ∈ N. This is equivalent to saying that the distance d(H,−N) between the
closed set H and −N is > 0, which follows from the fact that they are disjoint,
with H compact. One may also argue directly.

50 Given two open sets U ⊂ V in C and an analytic (resp. holomorphic) function on
U , to extend f to V analytically (resp. holomorphically) consists of constructing
an analytic (resp. holomorphic) function on V coinciding with f on U . If V
is connected the analytic extension, if one exists, is unique (Chap. II, n◦ 20).
Recall also (Chap. VII, n◦ 14) that the terms “analytic” and “holomorphic” are
synonymous.
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Re(s) > −n, apart from the points 0,−1, etc. where the rational fractions
1/s, 1/s(s + 1), 1/s(s + 1)(s + 2) etc. appear.

The final result is that one may extend the function Γ holomorphically
to the open set (15) and that it is given there by the formula

Γ (s) =
∫ +∞

1

e−xxs−1dx +
∞∑

n=0

(−1)n

n!(s + n)
(25.17)

in which everything converges for any s �= 0,−1, . . .. As we shall see in
Chap. VII, n◦ 20, Example 4, these various methods of defining Γ (s) be-
yond the half plane Re(s) > 0 all lead to the same function.

26 – Integration under the
∫

sign

We saw in n◦ 9, Theorem 10, that if f is a continuous function on K × H,
where K and H are compact intervals, then∫

dx

∫
f(x, y)dy =

∫
dy

∫
f(x, y)dx.

Does this result extend to arbitrary intervals? Yes, on condition that, as
always, one imposes hypotheses of domination by fixed integrable functions.

Theorem 25 (Poor man’s Lebesgue-Fubini). Let X and Y be two in-
tervals and f a continuous function on X × Y . Suppose that the following
conditions are satisfied:

(i) for every compact K ⊂ X there exists a positive integrable function
qK(y) on Y such that |f(x, y)| ≤ qK(y) in K × Y ;

(ii) for every compact H ⊂ Y there exists a positive and integrable function
pH(x) on X such that |f(x, y)| ≤ pH(x) on X × H;

(iii) one of the two relations

∫
X

dx

∫
Y

|f(x, y)|dy < +∞,

∫
Y

dy

∫
Y

|f(x, y)|dx < +∞,(26.1)

is satisfied.

Then the two relations (1) are also satisfied, and∫
X

dx

∫
Y

f(x, y)dy =
∫

Y

dy

∫
X

f(x, y)dx.(26.2)

In what follows we shall put

gJ(x) =
∫

J

f(x, y)dy, hI(y) =
∫

I

f(x, y)dx(26.3)
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for any intervals I ⊂ X and J ⊂ Y . We shall also employ the notation mI to
denote an integral over I.

First we note that, by Theorem 22 of n◦ 23 for µ = 1, and by the hy-
potheses (i) and (ii), the functions (3) are continuous for any I and J . Let
us start from the relation

mK(gH) =
∫

K

dx

∫
H

f(x, y)dy =
∫

H

dy

∫
K

f(x, y)dx = mH(hK)(26.4)

valid for any compact51 K ⊂ X and H ⊂ Y (n◦ 9, Theorem 9). The whole
problem is to pass to the limit under the

∫
signs as K and H tend to X

and Y .
(a) First we show that we may pass to the limit with respect to H for

K fixed. Hypothesis (i) shows that f(x, y) is absolutely integrable on Y for
every x ∈ X and that, further,∣∣∣∣

∫
Y

f(x, y)dy −
∫

H

f(x, y)dy

∣∣∣∣ ≤
∫

Y −H

qK(y)dy for every x ∈ K,(26.5)

a result ≤ r for H large enough since qK is integrable on Y . Since the left
hand side can also be written as |gY (x) − gH(x)|, (5) shows that

‖gY − gH‖K ≤ r

for H large enough. Since we may pass to the limit under the
∫

sign when
we integrate uniformly convergent continuous functions on a compact set, we
obtain

lim
H→Y

mK(gH) = mK(gY ).(26.6)

(b) Next we have to pass to the limit along K. By (4) and the definition
of an integral extended to X or Y , we have

mY (hK) = lim
H→Y

mH(hK) = lim
H→Y

mK(gH);(26.7)

there is no problem of convergence since, on the left hand side, the integral
on K, i.e. the function hK(y), is majorised in modulus by m(K)qK(y) by
hypothesis (i), whence the absolute convergence of the integral over Y .

Comparing (6) and (7), we find

mY (hK) = mK(gY )(26.8)

for every compact interval K ⊂ X, which would be (2) if X were compact.
Likewise we find

51 The reader will already no doubt have observed that we often omit the word
“interval”.
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mX(gH) = mH(hX)(26.9)

for every compact H ⊂ Y . It remains to pass from here to (2), a relation
which can again be written

mX(gY ) = mY (hX).(26.9’)

(c) These results do not rely on hypothesis (iii) of the statement and
remain valid if one replaces f by the function |f |, which satisfies (i) and (ii)
like f . Suppose now that

∫
dx
∫ |f(x, y)|dy < +∞. Applying (9) to |f |, we

obtain ∫
H

dy

∫
X

|f(x, y)|dx =
∫

X

dx

∫
H

|f(x, y)|dy ≤(26.10)

≤
∫

X

dx

∫
Y

|f(x, y)|dy

for every compact H ⊂ Y . Taking the upper bound of the left hand side as
H varies in Y , we obtain (Theorem 18, (i))∫

Y

dy

∫
X

|f(x, y)|dx ≤
∫

X

dx

∫
Y

|f(x, y)|dy < +∞.(26.11)

So we see that if the first integral (1) is finite, the second is too. But now
one may argue starting from second as we have just done, starting from the
first. Obviously one obtains the reverse inequality to (11), which must then
in fact be an equality. Whence (2) for the function |f |.

(d) It remains to obtain (2) for the function f itself. An easy method is to
reduce to a real function by considering Re(f) and Im(f), functions which,
bounded in modulus by |f |, again satisfy the hypotheses of the theorem. The
function f being now assumed real, we write f = f+ − f− as always; these
two positive functions, majorised by |f |, also satisfy the hypotheses of the
theorem, and since they are identical to their absolute values (11) reduces to
(2) for these two functions; whence (2) for f .

Another method, which, unlike the preceding, could be applied to func-
tions with values in Banach spaces, even of infinite dimension, consists of
starting from (9) and showing that, as H → Y , the two sides of (9) converge
to the two sides of (9’). This is the case of the right hand side by definition
of mY (hX). To examine the left hand side, first note that

|mX(gY ) − mX(gH)| ≤ mX (|gY − gH |) ≤(26.12)

≤
∫

X

dx

∫
Y −H

|f(x, y)|dy

for every compact H ⊂ Y . Since we are already able to invert the integrations
for the function |f |, we can apply it to the “intervals” X and Y −H (the fact
that Y −H is the union of two disjoint intervals does not change anything).
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One may thus interchange the order of the integrations in the third term
of (12); and thus obtain the integral on Y − H of a positive integrable func-
tion on Y , a result < r for H large enough. The first term of (12) therefore
tends to 0 as H → Y , so that the left hand side of (9) tends to that of (9’), qed.

Given the conditions of the preceding theorem, one often says that f(x, y)
is absolutely integrable on X × Y and puts∫∫

X×Y

f(x, y)dxdy =
∫

Y

dx

∫
Y

f(x, y)dy =
∫

Y

dy

∫
X

f(x, y)dx.(26.13)

In practice, one may often substitute the following condition for the hypothe-
ses (i), (ii) and (iii): there exist positive, regulated and integrable functions p
and q on X and Y respectively such that |f(x, y)| ≤ p(x)q(y) on X × Y . The
hypotheses (i) and (ii) are satisfied on choosing

pH(x) = ‖q‖Hp(x) and qK(y) = ‖p‖Kq(y)

for any K and H (the uniform norms are finite since p and q are regulated).
The hypothesis (iii) is also satisfied, since, for example,

∫ |f(x, y)|dy ≤ Mp(x)
where M =

∫
q(y)dy, whence the absolute convergence of the repeated inte-

grals.
The hypotheses (i) and (ii) are unnecessary in the complete Lebesgue-

Fubini theorem and one contents oneself with hypothesis (iii), but one cannot
again obtain a Rolls for the price of a VW. N◦ 33 of § 9 will provide, an
inevitable intermediate stage, the LF theorem for semicontinuous functions,
thanks to which one can justify what all the users do instinctively when they
integrate a continuous function on a simple compact set in C.

Exercise. Extend Theorem 10 of n◦ 9 to noncompact intervals X and Y .

Example 1. First note that if the continuous functions f(x) and g(y) are
defined and absolutely integrable on the intervals X and Y then the function
f(x)g(y) is absolutely integrable on X × Y , and clearly∫∫

X×Y

f(x)g(y)dxdy =
∫

X

f(x)dx.

∫
Y

g(y)dy,

the product of the integrals of f and g. Now let us choose X = Y =]0,+∞[,
f(x) = e−xxa−1 and g(y) = e−yyb−1, with Re(a) > 0 and Re(b) > 0. We
obtain the relation

Γ (a)Γ (b) =
∫∫
X×Y

e−x−yxa−1yb−1dxdy =
∫

dx

∫
. . . dy.(26.14)

If, for each x, one effects the change of variable y = (u−1 − 1)x in the
y-integration, one finds
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Γ (a)Γ (b) =
∫ +∞

0

dx

∫ 1

0

e−u/xxa+b−1(1 − u)b−1u−b−1du =(26.15)

=
∫ 1

0

(1 − u)b−1u−b−1du

∫ +∞

0

e−u/xxa+b−1dx;

the change of variable x = tu in the x integral for u given then yields

Γ (a)Γ (b) =
∫ 1

0

(1 − u)b−1u−b−1du

∫ +∞

0

e−tta+b−1ua+bdt =

=
∫ 1

0

(1 − u)b−1ua−1du

∫ +∞

0

e−tta+b−1dt,

whence the famous formula

Γ (a)Γ (b) = Γ (a + b)B(a, b)(26.16)

announced above.



§ 8. Approximation Theorems 129

§ 8. Approximation Theorems

27 – How to make C∞ a function which is not

In about 1926–1927 the physicist Paul-Adrien-Maurice Dirac, in Dublin, had
the idea of introducing a function δ(x) on R (and even on R3 or R4) possessing
two supernatural properties: on the one hand

δ(x) = 0 for x �= 0, δ(0) = +∞,

while on the other hand52 ∫
f(x)δ(x)dx = f(0)

for every just-a-little-reasonable function f ; a little later, Dirac and the
theoretical physicists juggled, in Relativity space, with “functions” such as
δ(c2t2 − x2 − y2 − z2) and, as the inventor of the theory of distributions53

has written, “lived in a fantastic universe which they knew how to man-
age admirably, practically faultlessly, though never able to justify it at all”.
Dirac had, to be sure, explained how one could “approximate” his function
by considering, for ε > 0, the function equal to 1/2ε for |x| < ε and zero else-
where, or the “bell curve” functions exp(−πx2/ε)/

√
ε, whose integral over R

is equal to 1 and whose graph, as ε → 0, more and more closely resembles
a sky-scraper of infinite height and of zero base representing the function δ,
but since furthermore he allowed himself to differentiate his “function” and
to write formulae such as∫

f(x)δ′(x)dx = −f ′(0),

those mathematicians who tried to understand him understood nothing. It
was twenty years later that the distributions of which we speak below gave a
meaning to these calculations, and it was 1954 when the formulae in several
variables of theoretical physics were at last justified – but not for nothing . . .
– by the Swiss mathematician Paul Méthée.

Leaving differentiation aside for the moment, Dirac’s idea raises the ques-
tion of whether one may approximate the value of a function f at a point, say
x = 0, with the help of integrals involving f , for example by using functions
un(x) such that

lim
∫

f(x)un(x)dx = f(0)(27.1)

52 In this n◦ and in the following, we write a simple
∫

for an integral extended over
R.

53 Laurent Schwartz, Un mathématicien aux prises avec le siècle (Paris, Odile Ja-
cob, 1997), pp. 230–231 (trans. A Mathematician Grappling with his Century,
Birkhäuser, 2001).
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for every “reasonable” function f .
Since as yet we know how to integrate only regulated functions, we shall

suppose in what follows that f and the un are such. To give a meaning to (1)
for every “reasonable” function f – let us say bounded on R –, we impose on
them the condition

(D1) the un(x) are absolutely integrable on R,

a superfluous condition if, as is often the case, the un are zero outside a
compact interval.

The most “reasonable” functions being the constants, we must conse-
quently impose on the un the condition

lim
∫

un(x)dx = 1(D 2)

if we want (1) to hold. Then trivially

f(0) = lim
∫

f(0)un(x)dx,(27.2)

so, to obtain (1), we are led to examine the difference∫
[f(x) − f(0)]un(x)dx =

∫
|x|≤r

+
∫
|x|≥r

(r > 0).(27.3)

Dirac’s idea, that “almost all” the mass of the measure un(x)dx is concen-
trated on a neighbourhood of the origin for n large, leads us to introduce the
condition

(D 3) for any r > 0,

lim
n→∞

∫
|x|≥r

|un(x)|dx = 0.(27.4)

If this is the case, and if, as always, one writes ‖f‖ for the uniform norm of f
on R, the second integral on the right hand side of (3) is majorised by 2‖f‖ε
for n large.

Assume now that f is continuous at the origin, and consider, in (3), the
integral over the interval |x| ≤ r. For ε > 0 given one may choose r so that

|f(x) − f(0)| ≤ ε for |x| ≤ r.(27.5)

The integral is then, in absolute value, majorised by ε
∫ |un(x)|dx where one

integrates over |x| ≤ r and a fortiori if one integrates over all R. To be sure
that the result is arbitrarily small, it is thus enough to assume that

sup
∫

|un(x)|dx = M < +∞,(D 4)
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a superfluous condition, by (D 2), if the un are positive.
To recapitulate: ε > 0 being given, one chooses r > 0 to ensure (5); on

the right hand side of (3) the first integral is then ≤ Mε for any n, and since,
for r given, the second tends to 0 as n increases, by (4), we see finally that
the integral (3) tends to 0, whence (1), in view of (2).

A sequence of regulated functions satisfying the conditions (D 1) to (D 4)
is called a Dirac sequence on R. We have established the following result:

Dirac’s lemma. Let (un) be a Dirac sequence. For every regulated function
f that is defined and bounded on R, and is continuous at the origin, we have

f(0) = lim
∫

f(x)un(x)dx.(27.6)

In practice, the Dirac sequences that one uses often satisfy more restrictive
conditions, namely

(i) un is positive;
(ii) for every r > 0, un is zero outside [−r, r] for n large;
(iii) the integral of un is equal to 1 for every n.

Conditions (i) and (iii) imply properties (D 1), (D 2) and (D 4) imposed in
the general case, and (ii) implies (D 3). Condition (ii) is not satisfied in some
important cases, as is shown by the exponential functions that we shall use
in the following n◦.

If the un satisfy (i), (ii) and (iii), if, more generally, they are all zero for
|x| ≥ A, it is unnecessary to assume f bounded in the above statement since
nothing changes if one replaces f(x) by 0 for |x| ≥ A.

Example 1. Consider on R a function u(x) which is regulated, positive, with
total integral 1, and put un(x) = nu(nx). The condition (D 1) is satisfied,
also (D2) (change of variable nx = y in the integral) and condition (D 3) is
satisfied because ∫

|x|≥r

un(x)dx =
∫
|x|≥nr

u(x)dx,

a result which tends to 0 for every r > 0 since u is integrable on R. Conse-
quently,

f(0) = limn

∫
f(x)u(nx)dx(27.7)

for every regulated function f which is continuous at the origin.
If u is of compact support the function un(x) = nu(nx) is zero for

|x| ≥ A/n, i.e. outside an ever-shrinking interval with centre 0; the factor
n in its definition shows that, on the other hand, it takes very large values on
a neighbourhood of 0, an indispensable condition if its integral is to remain
equal to 1. The lemma which we have generously attributed to Dirac shows
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Fig. 11.

that in a certain sense Dirac’s δ “function” is the “limit” of the functions
un(x); indeed, if u is zero for |x| > A, then

lim un(x) = 0 for x �= 0

since un is zero outside [−A/n,A/n]. If one has chosen u so that u(0) > 0 it
is also clear that un(0) = nu(0) increases indefinitely.

Most authors choose ultraregular positive functions for the un, with pretty
bell-shaped graphs symmetric with respect to the origin, growing higher and
higher, and whose base shrinks more and more, so that the area contained
between the graph and the x axis remains equal to 1. One may, for example,
choose un(x) = cn(1 − x2)n for |x| < 1, = 0 for |x| > 1, the constant cn

being chosen so that
∫

un = 1; the method of Example 1 would lead to the
functions un(x) = cn(1 − x2/n2) for |x| < 1/n, = 0 elsewhere, with c = 3/4.
One often also chooses un(x) = cn exp(−nx2), with the appropriate choice
of cn; it would be better to take

un(x) = n exp(−πn2x2)

since the integral over R of the function exp(−πx2) is equal to 1, as we
shall see later; these functions do not have compact support but nevertheless
form Dirac sequences, and, up to notation, had already appeared, not only in
Dirac but also, a half-century earlier, in Weierstrass, in the proof of his the-
orem on approximation by polynomials (following n◦). In fact, none of this
is necessary because Dirac’s lemma, which assumes nothing as to the “ele-
mentary”, “classical”, or other nature of the un, generalises to all measures
defined over all locally compact spaces, i.e. to situations where polynomi-
als, exponentials and other curiosities of the real line are unknown. Let us
add that if the reader were to restrict himself to proving Dirac’s lemma for
the functions n exp(−πn2x2) for example, he might possibly be tempted to
perform explicit calculations offering no benefit other than the risk of error.

The most important consequence of Dirac’s lemma is provided by the
following statement:
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Theorem 26. Let (un) be a Dirac sequence. For every function f defined
and continuous on R one has

f(x) = lim
∫

f(x − y)un(y)dy(27.8)

uniformly on every compact subset of R if f is bounded or just if the un

vanish outside the same compact set.

To establish (8) for f bounded it is enough to apply the lemma to the
function y 
→ f(x−y). The little calculation in Dirac’s lemma shows moreover
that ∣∣∣∣f(x)

∫
un(y)dy −

∫
f(x − y)un(y)dy

∣∣∣∣ ≤(27.9)

≤
∫

|f(x) − f(x − y)| |un(y)| dy

and since the integral of un tends to 1, we reduce to proving that the right
hand side converges uniformly to 0 when x remains in a compact subset K
of R.

Take an ε > 0. Since f is uniformly continuous on every compact K in R
there is an r > 0 such that |f(x − y) − f(x)| ≤ ε for x ∈ K and |y| ≤ r. By
virtue of property (D 4) of Dirac sequences, the contribution of the interval
|y| ≤ r is thus ≤ Mε for any n and x ∈ K.

For such a choice of r the contribution of the set |y| ≥ r to the right hand
side of (9) is less than the product of 2‖f‖ by the integral of |un| extended
over |y| ≥ r; for n large it is therefore < ε for any x ∈ R, by (D 3).

Finally one obtains an estimate for (9) valid for all the x ∈ K simultane-
ously, whence the theorem in this case.

If the un are all zero for |y| ≥ A, the first part of the argument survives
unchanged. In the second, one remarks that the contribution of the set |y| ≥ r
is in fact an integral over r ≤ |y| ≤ A; if x remains in the compact |x| ≤ B,
the integral (9) involves only the pairs (x, y) satisfying |x| ≤ B, |y| ≤ A + B,
a set on which the difference |f(x) − f(x − y)| is bounded, which allows one
to conclude as in the preceding case.

The interest of Theorem 26 is that it allows one to approximate the func-
tion f by C∞ functions, or even polynomials, much more “regular” than
itself. The idea had already been met in 1926 chez the American Norbert
Wiener, the future inventor of “cybernetics”, whom Dirac no doubt had not
read.

In the first case, one remarks for a start, that thanks to the function

u(x) = exp(−1/x) for x > 0, = 0 for x ≤ 0,

which is C∞ on R as we saw a long time ago, there are “many” C∞ func-
tions of compact support54 on R: to obtain one it suffices to multiply a C∞

54 Recall that the “support” of a function f is the smallest closed set outside which
it is zero, i.e. the closure of the set {f �= 0}.
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function vanishing for x < a by a C∞ function zero vanishing for x > b. The
set of these functions is a vector space which, since Schwartz, has been de-
noted D(R) or simply D. There are clearly even positive C∞ functions, zero
outside arbitrarily given intervals; on dividing by their integral over R one
may assume that the integral is equal to 1. Thus there exist Dirac sequences
formed of functions ϕn ∈ D. Using the function u(x) above, one may for
example take ϕn(x) = cnu(x + 1/n)u(1/n − x) with a constant cn such that∫

ϕn(x)dx = 1.
The functions (8) which, for every continuous function f on R, converge

to f , are then C∞, as we shall see. It all amounts to showing that for every
ϕ ∈ D zero for |x| ≥ A and every continuous function f , the convolution
product

f � ϕ(x) =
∫

f(x − y)ϕ(y)dy =
∫ A

−A

f(x − y)ϕ(y)dy(27.10)

is C∞; this is the method of regularising an “arbitrary” function; it even
provides a C∞ result for every regulated function f on R.

We remark that the change of variable x − y = t transforms (10) into

f � ϕ(x) =
∫

f(t)ϕ(x − t)dt =
∫

ϕ(x − t)f(t)dt = ϕ � f(x)(27.10’)

(one has dy = −dt, but the integral changes orientation and the factor −1 is
eliminated on reestablishing the natural orientation). To check that the inte-
gral is a C∞ function of x one may restrict to a compact interval J = [−A,A].
Since ϕ(x−t) is zero for |x−t| ≥ B, because ϕ is of compact support, the inte-
gral (10’) is, for every x ∈ J , extended over the interval K = [−A−B, A+B].
We are then in the situation of Theorem 9 of n◦ 9: the function ϕ(x−t) plays
the rôle of the function f(x, y) of the theorem and f(t) that of µ.

The convolution product is therefore differentiable, so, returning to (10’),

(f � ϕ)′ = f � ϕ′ or D(f � ϕ) = f � Dϕ.(27.11)

Since the derivative Dϕ of a function in D is again in D, one may iterate
(11), which leads to the general relation

(f � ϕ)(n) = f � ϕ(n) or Dn(f � ϕ) = f � Dnϕ(27.12)

hypothesising only that f is regulated on R. It is not the differentiability or
the continuity of f which matters, it is that of ϕ.

Theorem 27. For every function f defined and continuous on R there exists
a sequence fn of C∞ functions which converges to f uniformly on every
compact subset of R. If f is of compact support one may assume that the fn

are zero outside a fixed compact set.
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Obvious: one applies Theorem 26 to a Dirac sequence formed by functions
of D, bearing in mind what we want to establish. If f is zero for |x| > A and
if one assumes, for example, that the ϕn vanish for |x| ≥ 1/n, it is clear that
the fn are all zero for |x| ≥ A + 1, qed.

If the function f is C1, one can, in formula (10), differentiate directly
with respect to x, again thanks to Theorem 9 of n◦ 9, which shows that

D(f � ϕ) = Df � ϕ(27.13)

in this case. Replacing ϕ by the ϕn ∈ D of a Dirac sequence one sees that
the Dfn converge to Df uniformly on every compact set. Therefore:

Corollary. Let f be a function of class Cp (p ≤ +∞) on R. There exists a
sequence fn of C∞ functions such that

lim f (r)
n (x) = f (r)(x)

uniformly on every compact for every finite r ≤ p.

All these results extend, with the same proofs, to functions defined on
Rp.

28 – Approximation by polynomials

We shall now prove Weierstrass’ theorem on the uniform approximation of
continuous functions by polynomials on a compact set. The proof we shall
give of this – Weierstrass’, up to a few details – also uses approximation by
convolution products.

(i) We start from a function u which is positive, integrable, has integral 1
over R, but is not zero for |x| large because we shall choose for u an every-
where convergent power series. For every function f(x) which is continuous
on R and zero for |x| ≥ A given, we put

fn(x) = n

∫
f(y)u(nx − ny)dy.(28.1)

These functions being the convolution products of f by the functions
un(x) = nu(nx), which form a Dirac sequence, the fn converge to f uni-
formly on every compact set.

(ii) We assume that u(x) =
∑

apx
p is the sum of a power series that

converges for every x ∈ C; then

fn(x) = n

∫
f(y)dy

∑
p

apn
p(x − y)p.

For x and n given, the power series in x − y converges normally on every
compact set, and in particular on the interval |y| ≤ A outside which f(y) = 0.
Since f is bounded we may integrate term-by-term, whence
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fn(x) =
∑

p

napn
p

∫
(x − y)pf(y)dy =

∑
fn,p(x),(28.2)

where we integrate over |y| ≤ A. For |x| ≤ A we have |x − y| ≤ 2A, whence

|fn,p(x)| ≤ 2An‖f‖.|ap|(2nA)p,(28.3)

the factor 2A coming from the integration over |y| < A. Since the power
series u(x) converges for any x, so for example at the point 2nA, the right
hand side of (3) is the general term of a convergent series. The series (2)
therefore converges normally on |x| ≤ A.

(iii) The general term of the series (2) is a polynomial in x, as we see
on expanding (x − y)p. Since it converges normally on |x| ≤ A, its partial
sums converge to fn uniformly on this interval. Since the fn converge to
f uniformly in |x| ≤ A, by (i), we can, replacing them by partial sums of
sufficiently high order, obtain a sequence of polynomials converging to f
uniformly on |x| ≤ A.

(iv) We still have to show the existence of u. The function
u(x) = c. exp(−πx2) meets the requirements. It is clearly positive, integrable,
has total integral 1 for c suitably chosen (c = 1, in fact) and is expandable
as an everywhere convergent power series.

Theorem 28 (Weierstrass, 1885). Let f be a real function defined and
continuous on a compact interval K ⊂ R. Then there exists a sequence of
polynomials which converges to f uniformly on K.

It is enough to observe that f can be extended to a continuous function
on all R, zero for |x| large: complete the graph of f by linear functions.

For a function f defined and continuous on all R, or, more generally, on
an unbounded interval I, it is impossible to find a sequence of polynomials
pn which converges uniformly to f on I except in the trivial case where f
is itself a polynomial (Chap. III, n◦ 5, end). As we then noted, it is always
possible to demand that the pn should converge to f uniformly on every
compact K ⊂ I.

If the interval I is bounded but not compact, we have seen in n◦ 8, as
a consequence of Corollary 2 of the uniform continuity theorem, that ap-
proximation by polynomials is possible only if f is uniformly continuous on
I; f then extends to be a continuous function on the compact interval ob-
tained by adjoining the endpoints to I, and Weierstrass’ theorem applied to
this compact interval yields the result. In short, Weierstrass’ theorem is best
possible. Having said this, there are more difficult approximation theorems,
where, instead of considering polynomials, one considers for example, lin-
ear combinations of exponential functions exp(anx) with given an (suitably
chosen . . . ).

Up to details, the proof of Weierstrass’ theorem which we have presented
is that of Weierstrass himself; his aim was to show that, though it is certainly
impossible to represent every continuous function by simple analytic formulae
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(algebraic, power series, etc.), it is however possible to find series of simple
functions – as it happens, polynomials and not only monomials – which
represent them.

There are many other proofs of the theorem; Hairer and Wanner, Analysis
by Its History, p. 264, cited a dozen (from G. Meinardus, 1964), the latest
dating from 1934. This leads me to suspect, without having checked, that
perhaps one should add to their list the one and only model proof, applicable
in the much more general framework of compact topological spaces, namely
the Stone-Weierstrass theorem, a generalisation obtained in the 1930s by a
Chicago mathematician who notably wrote in this period the first system-
atic exposition of the theory of “abstract” Hilbert spaces; he did much after
1945 to invite or recruit foreign mathematicians – I benefitted in 1950 – and
moreover had a pronounced taste for gastronomy in general and French in
particular; this was a good sign in an American, but one has to say that he
was the son of a Chief Justice of the Supreme Court and not of a corn farmer
from the Bible Belt. The theorem is as follows. Assume given on a compact
space X, (Appendix to Chap. III, n◦ 7) a set A – the initial letter of the
word “algebra” – of continuous functions with complex values satisfying the
following conditions:

(a) the complex constants are in A;
(b) the sum and the product of two functions of A are again in A;
(c) for every f ∈ A, the complex conjugate function f̄ is in A;
(d) for any distinct points x, y ∈ X there exists an f ∈ A such that

f(x) �= f(y).

Then every continuous function on X is the uniform limit on X of a sequence
of functions fn ∈ A. For a proof with hardly any calculations, see Dieudonné,
Vol. 1, Chap. VII, n◦ 3, or Serge Lang, Analysis I (Addison-Wesley, 1968),
Chap. VIII, n◦ 5. If X is a compact subset of C, one may take for A the set of
polynomials in x and y [but not just the polynomials in z: they do not satisfy
condition (c), without mentioning the fact that, in an open subset of C, a
uniform limit of polynomials in z is holomorphic, as we shall see], whence
Weierstrass’ theorem for two variables, or for p variables on taking X in Rp.

In particular let us take for X the circle |z| = 1, the set of complex
numbers of the form z = e2πit with t ∈ R defined modulo Z. A function f
defined and continuous on X is transformed into a function g(t) = f(e2πit)
defined, continuous and of period 1 on R, and vice-versa as is easy to see –
one has only to check continuity. On X, a polynomial in x = (z + z̄)/2 and
y = (z − z̄)/2i, i.e. in z and z̄, clearly reduces to a finite sum of the form∑

ane2πint with the n ∈ Z, in other words to a trigonometric polynomial
(Chap. III, n◦ 5). Corollary: every function defined, continuous and peri-
odic on R is the uniform limit of trigonometric polynomials, as announced in
Chap. III, n◦ 5. This is the result on which one may base the whole theory
of Fourier series. One may also, we shall see this in the chapter dedicated to
the subject, prove it by explicit elementary calculations, as did Weierstrass
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himself. But Stone’s method applies to generalisations of Fourier series (har-
monic analysis on compact groups for example) where direct and explicit
calculations would be impossible. Moreover, in this way one has no need of
providential functions like exp(−πx2).

This kind of “nonconstructive” proof naturally does not satisfy the calcu-
lators. There is a proof with calculations in Hairer and Wanner, pp. 264–268,
and, moreover, the graphs showing the approximations they provide.

29 – Functions having given derivatives at a point

To end this section with a nonobvious theoretical exercise we shall prove the
following result55:

Theorem 29 (Emile Borel, 1895). For every sequence (an) of complex
numbers there exists an indefinitely differentiable function f of compact sup-
port on R such that f (n)(0) = an for every n ∈ N.

Our first move, faced by this theorem, is to put

f(x) =
∑

anxn/n!(29.1)

in accordance with Maclaurin’s formula. Bad idea: the series has every chance
of diverging for x �= 0.

All the same, (1) contains the germ of an idea for a proof. The function
anxn/n! = anx[n] has the virtue that, at the origin, all its derivatives are zero
except for the n-th, which is equal to an. We shall replace it by a function
fn ∈ D, the space of C∞ functions of compact support on R, possessing
the same properties but making the series converge. And since we will have
to calculate the successive derivatives of the series it will be necessary to
differentiate it term-by-term, i.e. to apply Theorem 20 of Chap. III, n◦ 17.
In other words, the function f will be given by the formula

f(x) =
∑

fn(x)(29.2)

where the fn ∈ D satisfy, for example,

fn(x) = 0 for |x| ≥ 1(29.3)

to yield a result of compact support, satisfy also
55 The proof which follows (H. Mirkil, 1956) develops the one that one finds for ex-

ample in Lars Hörmander, The Analysis of Linear Partial Differential Operators
(Vol. 1, Springer-Verlag, 1983, p. 16), where it takes sixteen lines. Borel’s com-
plete result is much stronger but requires difficult results on analytic functions:
one may assume f to be of class C∞ on a neighbourhood of 0 and real-analytic
apart from at the origin. See Remmert, Funktionentheorie II, p. 237.
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f (r)
n (0) =

{
an if r = n
0 if r �= n

(29.4)

and finally, and this is the crucial point, are chosen so that, for every r ≥ 0,
the series of the derivatives

∑
f

(r)
n (x) converges uniformly on |x| ≤ 1 [or on

R, which comes to the same by (3)]. The proof divides into several parts.

(i) Construction of f0 or, equivalently, of a function h which is zero for
|x| ≥ 1, equal to 1 at x = 0 and all of whose derivatives are zero at the origin.
We start with a function of the type

g(x) =
{

1 for |x| ≤ A
0 for |x| > A

(29.5)

and “regularise” it with the help of a convolution product

h(x) =
∫

ϕ(x − y)g(y)dy(29.6)

with a ϕ ∈ D, positive, of total integral equal to 1, and zero for |x| > C,
where C will be chosen later. The integral is taken over the interval |y| ≤ A
and cannot be �= 0 for a given x unless there exists a y satisfying |y| ≤ A and
|x − y| ≤ C simultaneously, which requires |x| ≤ A + C. Then

h(x) =
∫ +A

−A

ϕ(x − y)dy =
∫ x+A

x−A

ϕ(z)dz.

The support [−C, C] of ϕ is contained in [x − A, x + A] so long as x − A ≤
−C < C ≤ x + A, i.e. C − A ≤ x ≤ C + A; choosing A = 3/4 and C = 1/4,
one sees then that the function h is zero for |x| > 1 and equal to

∫
ϕ(z)dz = 1

for |x| < 1/2. Its graph is of the type below (fig. 12).

Fig. 12.

(ii) Choice of the fn. We put
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fn(x) = h(bnx)anx[n].(29.7)

with the bn > 0 to be chosen later. Since we want the fn to be zero for
|x| ≥ 1, it is prudent to impose the condition

bn > 1(29.8)

on them. Let us calculate the derivatives of the fn at the origin. They are
obtained from Leibniz’ formula: (fg)[r] =

∑
f [r−p]g[p]. At x = 0 all the

derivatives of x[n] are zero except the n-th, equal to 1. Those of h(bnx) are all
zero at the origin starting from the first. The derivative of order r of fn cannot
be �= 0 unless there exists a p such that p = n and p = r simultaneously, in
other words if r = n. In this case, there remains f

(n)
n (0) = an, so that the fn

do satisfy condition (4), and this whatever the bn.
(iii) Convergence of the series

∑
f

(r)
n (x). We shall show that one may

choose the bn so that

|f (r)
n (x)| ≤ 1/2n for every x, every r, and every n > r,(29.9)

the sole significance of the numbers 1/2n being that they form a convergent
series. As this is the case, it is clear that the series

∑
fn(x) will be normally

convergent as will be all the derived series, the sum of the series will therefore
be in D and its derivatives, calculated by differentiating the series term-by-
term, will be the an at the origin, by the relations (4).

It remains to choose the bn. By (7) and Leibniz, we have

f (r)
n (x) =

∑
?h(r−p)(bnx)br−p

n anx[n−p](29.10)

with numerical coefficients denoted ? and whose exact values are of little
importance. Since h(bnx) = 0 for |x| > 1/bn, it suffices, to evaluate the
result, to work on the interval |x| ≤ 1/bn, which allows us to estimate the
monomials appearing in (10). In this interval we have |br−p

n xn−p| ≤ br−n
n , an

expression independent of p, whence, passing to the uniform norms,∥∥∥f (r)
n

∥∥∥ ≤ br−n
n |an|

∑
?
∥∥∥h(r−p)

∥∥∥ = Mr,nbr−n
n ≤ Mr,n/bn(29.11)

for r < n. Since, for n given, the conditions (9) to be satisfied involve only the
r < n, so are finite in number, it then suffices, to satisfy them simultaneously,
to choose Mr,n/bn ≤ 1/2n for every r < n, i.e.

bn ≥ max
0≤r<n

2nMr,n,

qed.
This proof is typical of the current techniques in analysis. All the work

consists of rigorously controlling the orders of magnitude of the numbers or
functions that one is manipulating. Nothing is calculated explicitly. We are
at the antipodes of the analysis of the Founders.
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30 – Radon measures on a compact set

As we have already observed on several occasions, many of the results of
integration theory use only a few quasi-algebraic properties of the integral
m(f) of a function: linearity, positivity and continuity with respect to uniform
convergence, in other words, Theorem 1 of n◦ 2.

We have also observed on occasion that there are curious analogies be-
tween integrals and series. Let us work on a compact interval of R and con-
sider, for example, the two following situations:

(i) Theorem 9 of n◦ 9 and Theorem 24 of n◦ 25 which allow one to calculate
the derivative of a “continuous” sum

ϕ(y) =
∫

f(x, y)µ(x)dx(30.1)

of functions by the formula

ϕ′(y) =
∫

D2f(x, y)µ(x)dx,(30.2)

(ii) Theorem 19 of Chap. III, n◦ 17 which, translated into the language
of series, allows one to differentiate a “discrete” sum

ϕ(y) =
∑

fn(y)(30.3)

of functions by the formula

ϕ′(y) =
∑

f ′
n(y).(30.4)

The analogy would be even clearer if, starting from a finite or denumerable
set D of points of R, a scalar function µ(ξ) on D satisfying

∑ |µ(ξ)| < +∞,
and a function f(ξ, y) defined on D × Y , one put

ϕ(y) =
∑

f(ξ, y)µ(ξ)(30.3’)

when one would have

ϕ′(y) =
∑

D2f(ξ, y)µ(ξ)(30.4’)

of course under suitable hypotheses as in the case (i).
One may unify the two cases formally by writing, for every reasonable

function f of a “continuous” or “discrete” variable, µ(f) =
∫

f(x)µ(x)dx
in the first case and µ(f) =

∑
f(ξ)µ(ξ) in the second; using the notation

fy(x) = f(x, y) one then has

ϕ(y) = µ(fy) and ϕ′(y) = µ [(D2f)y]
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in both cases.
We are led to introduce, in a general way, functions f 
→ µ(f) in which

the variable f is a more or less arbitrary function on a given interval X (or
a metric space, or even, in the “abstract” theory of integration, an arbitrary
set) possessing properties formally analogous to those of integrals and series.
Clearly one has to impose some restrictions on the category of functions f
considered: it is not possible to define the expression

∫
f(x)dx in a natural

way for every function f on R. On the other hand, the problem, whether
dealing with series or integrals, has always been the following: one is given
µ(f) for particularly simple functions f (finite sums in the discrete case, step
functions in the continuous case) and one hopes to extend the construction
in a natural way to more complicated functions (series in the discrete case,
integrals of regulated or semicontinuous functions, or even more general in
the Lebesgue theory, in the case of continuous sums).

In the simplest case, of a compact interval K ⊂ R, the constructions in
n◦ 1 and 2 of this Chapter led us to associate to each step function ϕ a num-
ber µ(ϕ) possessing the following properties:

(i) linearity: µ(αϕ + βψ) = αµ(ϕ) + βµ(ψ) for any constants α and β
and step functions ϕ and ψ;

(ii) continuity with respect to uniform convergence: there exists a constant
M(µ) ≥ 0 such that

|µ(ϕ)| ≤ M(µ)‖ϕ‖K(30.5)

for any ϕ. If, for every interval I ⊂ K, we write χI for the function equal to
1 on I and to 0 in K − I, we may then associate a “measure”

µ(I) = µ(χI)

to I, which manifestly has the additivity property (M 2) of n◦ 1:

I = I1 ∪ . . . ∪ In =⇒ µ(I) = µ(I1) + . . . + µ(In)

if the Ik are pairwise disjoint, because χI is then the sum of the characteristic
functions of the Ik. From this one can calculate the integral µ(ϕ) of every
step function using a finite partition of K into intervals Ik on which ϕ is
constant; on choosing points ξk ∈ Ik, one has

µ(ϕ) =
∑

ϕ(ξk)µ(Ik)

since
ϕ(x) =

∑
ϕ(ξk)χIk

(x)

for every x ∈ K, whence the formula by the linearity of ϕ 
→ µ(ϕ).
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Starting from this data one may then define µ(f) for every regulated
function f on K by passing to uniform limits: if the step functions ϕn converge
uniformly to f then the relation (5), which implies

|µ(ϕp) − µ(ϕq)| ≤ M(µ)‖ϕp − ϕq‖K ,

shows that the integrals µ(ϕn) form a Cauchy sequence, so converge; the limit
depends only on f since, if (ψn) is another uniform approximation to f , the
relation (5) shows that µ(ϕn)−µ(ψn) tends to 0. (Compare the construction
of the real numbers starting from Cauchy sequences of rational numbers.)
Whence µ(f), with, quite clearly, the two usual properties of linearity and
continuity:

|µ(f)| ≤ M(µ)‖f‖K .

Note in passing that this construction, which does not involve the “lower”
and “upper” integrals of n◦ 1, but applies – no big deal! – only to regulated
functions, does not use the hypothesis of positivity of µ, namely that

ϕ ≥ 0 =⇒ µ(ϕ) ≥ 0.(30.6)

If this is satisfied then the relation ϕ ≤ ψ implies µ(ϕ) ≤ µ(ψ) and all the
arguments of n◦ 1 concerning the lower and upper integrals of a bounded func-
tion apply unchanged. As we have observed since n◦ 1, the three conditions
imposed on our functions µ(I) would be satisfied if one put µ(I) = µ(v)−µ(u)
for I = (u, v), where µ(x) is an increasing function on K. Note also that this
construction mingles the discrete and the continuous sums: for example, put

µ(ϕ) =
∫

K

ϕ(x)µ(x)dx +
∑

ϕ(ξ)c(ξ)

where one integrates over K and where
∑ |c(ξ)| < +∞; if ϕ is the charac-

teristic function of an interval I ⊂ K of any type, one finds clearly

µ(I) =
∫

I

µ(x)dx +
∑
ξ∈I

c(ξ).

Physically, this comes down to considering that one has, on the one hand, a
distribution of masses on K whose density in the usual sense (the ratio of the
mass of an “infinitely small” segment of K to its length) is given by the regu-
lated function µ(x) and, on the other hand, a countable set of “point” masses
c(ξ). One also meets this kind of situation in the most modern physics: in the
spectrum of the radiation emitted by the Sun, there are “bands”, whose inten-
sity is a continuous function of the frequency, and “lines” which concentrate
a nonzero intensity on an interval consisting of a single frequency. Nothing
very artificial here; Newton would have said that one meets this in Nature . . .
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In elementary practice one is above all interested in integrating continu-
ous functions; when, in the theorems on differentiation under the

∫
sign for

example, we have introduced an arbitrary regulated function µ(x) in front of
the symbol dx of Lebesgue measure

f 
−→ m(f) =
∫

X

f(x)dx

on an interval X, this was not for the pleasure of integrating discontinuous
functions; it was in order to obtain a theorem applicable to the measure

f 
−→ µ(f) =
∫

X

f(x)µ(x)dx.

There are other more technical reasons to think that in a “good” integration
theory the starting point is not the measure µ(I) of an arbitrary interval
I ⊂ K, but rather the integral µ(f) of an arbitrary continuous function
f on K; anyway, and as we have just seen, the passage from measures of
intervals to the integration of continuous (or even regulated) functions is
quasi-instantaneous, once one has understood the construction of the classical
integral.

Fig. 13.

The real problem, solved by Lebesgue, is to integrate functions much more
general than the continuous or regulated functions (start with the semicon-
tinuous functions). Chez Lebesgue, a century ago, one started by extending
the concept of the measure of an interval to that of the measure of a much
more complicated set E ⊂ K, for example to the sets which are countable
unions of countable intersections of countable unions of countable intersec-
tions of open intervals (it can get even worse, but this is not important).
Starting from this one integrates a function f – assumed bounded for sim-
plicity – as follows: for every integer n ≥ 1, consider for any p ∈ Z the set
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En,p = {p/n ≤ f(x) < p/n + 1/n} on which f is equal to p/n to within 1/n;
these sets form a finite partition of K; if they belong to the category of those
for which one can define m(E) [or µ(E) in the case of an arbitrary measure],
one may consider the Lebesgue sum,

∑
p m(Ep,n)p/n (as against the Riemann

sum); geometrically, one considers the set of the points (x, y) in the plane ly-
ing between K and the graph of f , cuts it by the lines y = p/n into horizontal
slices having the Ep,n as bases, and approximates the required area

∫
f(x)dx

by the sum of the areas of these horizontal slices (fig. 13). Lebesgue’s genius
was not just to have replaced the decomposition into vertical slices by decom-
position into horizontal slices; it was to have understood that this innocent
modification of the traditional procedure provided a method formidably more
powerful than that of Riemann. It has been generalised ad libitum, but no
one has ever progressed in a way that would be useful beyond certain ad hoc
problems. The mode of exposition has only been modified from that chosen
by Lebesgue in an age when the concepts of vector space, of linear form and
of norm had not yet been isolated: analysis had been arithmetised and was
now, in Germany rather more than in France, as rigorous as number theory,
but it had not yet been algebraised; in fact, integration theory was probably
the impetus that forced the analysts to learn, even to invent, what a vector
space of infinite dimension ought to be, starting with Hilbert spaces.

Since, for every compact set K ⊂ C (or in Rp, or for every metric compact
space), one has available the space56 L(K) = C0(K) of the scalar continuous
functions on K and the norm

‖f‖K = sup |f(x)|
of uniform convergence on K, one is led to define a Radon measure on K in
the following way: it is a map

µ : L(K) 
−→ C

which is linear in the general sense of algebra and continuous in the general
sense of the theory of normed vector spaces: there exists a constant M(µ)
such that

|µ(f)| ≤ M(µ)‖f‖K

for every f ∈ L(K). Such a measure is said to be positive if

f ≥ 0 =⇒ µ(f) ≥ 0.

One shows without much difficulty (Chap. XI, n◦ 17, Theorem 29) that every
measure µ can be put in the form µ(f) = µ1(f)−µ2(f)+iµ3(f)−iµ4(f) with
56 The notation L(X) was introduced in André Weil, L’integration dans les groupes

topologiques et ses applications (Paris, Hermann, 1940), a book from which many
of my generation learned integration and generalised Fourier analysis. I assume
that Weil chose it not only in homage to Lebesgue, but also because he composed
directly onto the typewriter . . .
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positive measures µk. It is generally worth restricting oneself – or reducing
– to the case of positive measures, by far the most important, and the only
ones for which a grand theory has been constructed.

Leibniz’ notation having amply proved its usefulness, one imitates it by
writing

µ(f) =
∫

K

f(x)dµ(x),

a notation which will justify itself better below, but which one may use
without understanding its origin. So, by definition, we have the relation∫

K

(3 sin x − 5 log x) dµ(x) = 3
∫

K

sin x dµ(x) − 5
∫

K

log x dµ(x)(30.7)

for any constants 3 and −5 and continuous functions sin and log on K, also
that ∣∣∣∣

∫
K

f(x)dµ(x)
∣∣∣∣ ≤ M(µ)‖f‖K(30.8)

for every continuous function f on K, with a constant M(µ) to be chosen
as small as possible; this is the norm of the measure µ, notation ‖µ‖; for the
usual measure m on an interval of R, we have ‖m‖ = m(K). The object of this
condition is to guarantee that Theorem 4 concerning uniform limits applies
again here: if a sequence of continuous functions fn converges uniformly on
K to a necessarily continuous limit f one has

|µ(f) − µ(fn)| = |µ(f − fn)| ≤ M(µ)‖f − fn‖K ,(30.9)

whence µ(f) = limµ(fn). If, likewise, a series s(x) =
∑

un(x) of continuous
functions on K converges normally, one may integrate term-by-term:

µ
(∑

un

)
=
∑

µ(un).(30.10)

In short, we have transformed Theorems 1 and 4 of § 1 into definitions.

Example 1. Choose a function µ(x), integrable (in the usual sense) on an
interval K ⊂ R, and put

µ(f) =
∫

f(x)µ(x)dx(30.11)

for every f ∈ L(K). Linearity is obvious and continuity follows from the
inequalities

|µ(f)| ≤
∫

|f(x)|.|µ(x)|dx ≤ ‖f‖K .

∫
|µ(x)|dx.

Here ‖µ‖ ≤ ∫ |µ(x)|dx (and, in fact, we have equality).
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The simplest case is obtained by choosing µ(x) = 1; this is the measure
m which appears in all of classical analysis and has been the subject of
this chapter. It is called the Lebesgue measure on K, not, of course, because
poor Henri Lebesgue had discovered that the length of an interval (a, b) is
equal to b − a, but because it is for this particularly important measure
that he invented the grand integration theory that was later extended to all
measures defined on all reasonable topological spaces. In the general case (11)
one speaks of the measure of density µ(x) with respect to Lebesgue measure:
obvious physical interpretation.

Example 2. Choose a countable set D of points of K and, for every ξ ∈ D, a
number c(ξ) ∈ C; assuming

∑ |c(ξ)| < +∞ one may define

µ(f) =
∑

c(ξ)f(ξ)(30.12)

for every continuous function f on K, the series being taken over D. No
hypothesis on the compact set K is necessary here.

Example 3. Take K = A×B where A and B are compact intervals in R and
put

m(f) =
∫∫
A×B

f(x, y)dxdy

for every continuous function f on K (n◦ 9, Theorem 10).

Example 4. Choose for K the set T : |z| = 1 of complex numbers of modulus 1
(unit circle); the “parametric representation” z = exp(2πit) = e(t) of the
points of T transforms any function f ∈ L(T) into a continuous function
f [e(t)] of period 1 on R. One thus obtains a very privileged measure on T by
putting

m(f) =
∫ 1

0

f [e(t)]dt =
1
2π

∫ 2π

0

f(eit)dt(30.13)

for every f ∈ L(T); this is what dominates the theory of Fourier series. One
could clearly replace T by any other parametrised curve, but it is better to
defer this type of example to when we shall need it (mainly line integrals of
holomorphic functions).

We shall see later how, in the case of an interval, one may construct all
the measures on K by a procedure analogous to that of n◦ 1 and 2 concerning
Lebesgue measure.

We shall now show quickly how some of the theorems on Lebesgue mea-
sure extend to Radon measures.

Differentiation under the
∫

sign. Theorem 9 of n◦ 9 extends trivially (i.e.
with the same proof) to the functions
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g(y) =
∫

f(x, y)dµ(x),(30.14)

where we have not indicated that the integral is extended over K; f is a
continuous function on K×J and J an interval of R. The result is a continuous
function and it is of class C1 if D2f exists and is continuous, with, in this
case,

g′(y) =
∫

D2f(x, y)dµ(x).(30.15)

To reproduce the proofs verbatim here would be to waste our time and that
of the reader. The simplest case is that of an interval K ⊂ R, but in fact the
argument and the result apply to every compact set K if one knows that,
on every compact set (for example, here, K × H where H ⊂ J is a compact
interval), a continuous function is uniformly continuous.

Exercise. The function f � µ(x) =
∫

f(x − y)dµ(y) is C∞ if f is C∞ and
of compact support on R.

Double integrals. A slightly less easy exercise consists of generalising The-
orem 10 to measures:

Theorem 30. Let K and H ⊂ R be two compact sets, µ and ν measures on
K and H, and f a continuous function on K × H. Then∫

K

dµ(x)
∫

H

f(x, y)dν(y) =
∫

H

dν(y)
∫

K

f(x, y)dµ(x).(30.16)

Inspired by the proof of Theorem 10 one is led, for a given r > 0, to take
partitions (Kp) of K and (Hq) of H, and to compare each member of (16) to
the sum of the analogous expressions obtained on replacing K and H by Kp

and Hq, i.e. by multiplying f(x, y) by χp(x)θq(y) where χp and θq are the
characteristic functions of Kp and Hq. Since∑

χp(x) = 1 on K,
∑

θq(y) = 1 on H,(30.17)

we have f(x, y) =
∑

f(x, y)χp(x)θq(y) on K × H, which explains why the
sum of the integrals over the products Kp×Hq is the integral of f over K×H.

This method is not directly applicable here: for an arbitrary measure we
don’t yet know how to integrate discontinuous functions. The solution is to
replace the discontinuous functions which frustrate us by continuous positive
functions kp and hq on K and H still satisfying (17) and zero outside sets
Ap or Bq which are small enough that the function f is constant to within r
on each product Ap ×Bq. By (17) and the linearity of µ and ν, we will then
have ∫

dµ(x)
∫

f(x, y)dν(y) =(30.18)

=
∑∫

dµ(x)
∫

f(x, y)kp(x)hq(y)dν(y),
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this is all meaningful, and we can imitate the proof of Theorem 10.
Let us be more precise. Choose an r > 0 and an r′ > 0 such that (uniform

continuity: n◦ 8)

(|x′ − x′′| ≤ r′) & (|y′ − y′′| ≤ r′) =⇒ |f(x′, y′) − f(x′′, y′′)| ≤ r.(30.19)

Cover K by a finite number of closed sets Fp of diameters57 ≤ r′/2 (we
are not dealing with a partition) and, for each p, let us choose an open set
Up ⊃ Fp of diameter ≤ r′; we may, but there is no point, assume that these
sets are intervals. For every p there exists a continuous positive function
ϕp on K which is strictly positive on Fp and zero outside Up, for example
ϕp(x) = d(x,K −Up ∩K), the distance from the point x to the complement
of Up ∩K in K, closed and disjoint from Fp. The continuous function k(x) =∑

ϕp(x) being > 0 at all x ∈ K, since the Fp cover K, we need only put
kp(x) = ϕp(x)/k(x) to obtain the functions we seek.

Fig. 14.

Similarly we construct continuous positive functions hq on H, with sum 1
and zero outside open sets Vq of diameters < r′. Finally, we choose points
ξp ∈ Ap = Up ∩ K and ηq ∈ Bq = Vq ∩ H.

In the general term of the sum (18) the integrand cannot be �= 0 at a point
(x, y) unless gp(x) and hq(y) are so, i.e. if (x, y) ∈ Ap×Bq. Then |x−ξp| ≤ r′

and |y − ηq| ≤ r′ and thus, by (19),

|f(x, y)kp(x)hq(y) − f(ξp, ηq)kp(x)hq(y)| ≤ rkp(x)hq(y).(30.20)

In fact, this inequality is valid for any (x, y) ∈ K × H since outside Ap ×
Bq either kp(x) = 0 or hq(y) = 0. On adding the inequalities (20) and
remembering that

∑
kp(x)hq(y) = 1 one finds∣∣∣f(x, y) −

∑
f(ξp, ηq)kp(x)hq(y)

∣∣∣ ≤ r

for any x and y. Put g(x, y) =
∑

f(ξp, ηq)kp(x)hq(y); then

‖f − g‖K×H ≤ r.(30.21)
57 The diameter of a set X ⊂ C is the number sup d(x, y) where x, y vary in X.
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Denote the two sides of (16) by λ′(f) and λ′′(f). These are measures
on K × H: linearity is obvious, and continuity follows from |λ′(f)| ≤
M(µ)M(ν)‖f‖K×H , with the same inequality for λ′′. By (21), we then have
λ′(f) = λ′(g) and λ′′(f) = λ′′(g) to within M(µ)M(ν)r. Since r > 0 is
arbitrary it is then enough to show that λ′(g) = λ′′(g) to establish (16).

But this is obvious: for any k ∈ L(K) and h ∈ L(H) we have∫
dµ(x)
∫

k(x)h(y)dν(y) =
∫

dµ(x)k(x)
∫

h(y)dν(y) =

=
∫

dµ(x)k(x)ν(h) = ν(h)
∫

k(x)dµ(x) = µ(k)ν(h)

and the same calculation, with the same result, on interchanging the order
of the integrations; since g is a linear combination of functions of the form
k(x)h(y) we have λ′(g) = λ′′(g), qed.

This proof generalises fully: in every metric space one may find systems
of continuous positive functions satisfying (17) and zero outside arbitrarily
small given open sets; such systems of functions are called partitions of unity.
The method applies to triple, quadruple, integrals etc.

The two essential points in the proof are that (i) the identity (16) is
obvious if f(x, y) is a finite sum of functions of the form g(x)h(y), (ii) every
f ∈ L(K×H) is, by (21), the limit of such functions, uniformly on K×H. The
general Stone-Weierstrass theorem provides (ii) without the least calculation:
it is enough to check that the set A of functions of the form

∑
gp(x)hq(y),

with gp ∈ L(K) and hq ∈ L(H) complex-valued, satisfies the conditions (a),
(b), (c), (d) of n◦ 28; a very easy exercise.

Finally one has to observe that the map

f 
−→ λ(f) =
∫ ∫

f(x, y)dµ(x)dν(y)

– it is now unnecessary to specify the order of the integrations – is a mea-
sure on the compact set K × H, the product measure or Cartesian product
of µ and ν. On choosing dµ(x) = dx and dν(y) = dy one recovers Lebesgue
measure in the plane.

All the theory expounded in n◦s 10 and 11 extends to general positive
measures, with the very same proofs: we have established what we need and
only have to replace m(f) everywhere by µ(f) and m(K) by M(µ) or ‖µ‖.

31 – Measures on a locally compact set

Since Lebesgue measure allows one to integrate over intervals which are nei-
ther compact nor even bounded we should be able to extend the definition of
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Radon measures to this case. First we examine the classical situation more
closely, it being a little less simple than the compact case.

If X = (a, b) ⊂ R is an arbitrary interval one cannot define the integral∫
f(x)dx over X for just any continuous function f on X: there must be

convergence conditions at the endpoints of X if these do not belong to X or
are infinite. A radical method to eliminate them is to assume the function
f(x) to be zero when x is close enough to a or b, i.e. that there exists a
compact58 interval K = [u, v] ⊂ X such that f(x) = 0 for x /∈ K. Then∫

K′
f(x)dx =

∫
K

f(x)dx for K ⊂ K ′ ⊂ X,(31.1)

so that the integral taken over X converges absolutely for a trivial reason
and reduces to the integral over any compact set outside which f is zero.
The functions of this kind are called of compact support on X (n◦ 27); the
set of these is a vector space which we again denote by L(X) and which many
other authors denote C0

c (X), with a suffix c whose significance is obvious. For
every compact K ⊂ X the set of f ∈ L(X) which vanish outside K is a vector
subspace L(X,K) of L(X).

In this way Lebesgue measure on X gives us a (positive) linear form
f 
→ m(f) on L(X). We have a norm on L(X)

‖f‖X = sup
x∈X

|f(x)|,(31.2)

but if X is not bounded the linear form m is not continuous relative to this
norm, in other words, there is no finite constant M such that

|m(f)| =
∣∣∣∣
∫ v

u

f(x)dx

∣∣∣∣ ≤ M. sup
x∈X

|f(x)| = M‖f‖X(31.3)

for every continuous function f on X which is zero outside some compact
interval K = [u, v] ⊂ X and otherwise arbitrary. For example take X =
]0,+∞[, with 0 < u < v < +∞; you can clearly find a function f with
values everywhere between 0 and 1, equal to 1 on K and zero outside a
compact K ′ ⊂ X a little larger than K (make the characteristic function of
K continuous by replacing its discontinuities at u and v by line segments); for
such a function the left hand side of the preceding inequality is > m(K) =
v − u and the right hand side is equal to M ; impossible if u and v can take
arbitrary values between 0 and +∞. For X = [0,+∞[, one may take u = 0,
but the difficulty remains.

Failing (3), one may all the same observe that

58 If a is finite one must have a ≤ u if a ∈ X, a < u if not; if b is finite similarly
one must have b ≥ v if b ∈ X, b > v if not. In the case where a or b is infinite
both u and v must be finite. If for example X = [0, +∞[, a continuous function
on X is so in particular at 0, so that the only difficulty in integrating it over X
comes from the other endpoint of X.
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|m(f)| ≤ m(K)‖f‖X for every f ∈ L(X,K)(31.4)

since in fact the integral over X involves only the compact K ⊂ X off which
f is zero. This is the result we can generalise.

We shall call a Radon measure on X any linear form µ on the vector space
L(X) having the following property: for every compact K ⊂ X there exists
a constant MK(µ) such that

|µ(f)| ≤ MK(µ)‖f‖X(31.5)

for every f ∈ L(X,K). In other words, we assume that the linear form µ
is continuous on each subspace L(X,K), though not necessarily on all of
L(X) =

⋃
L(X,K).

Example 1. Take for X the open interval ]0,+∞[ and

µ(f) =
∫ +∞

0

f(x)dx/x.(31.6)

There is no problem with convergence for f ∈ L(X) since f(x) is zero on a
neighbourhood of 0 and for x large. If f is zero outside K = [u, v] then

|µ(f)| ≤ (log v − log u)‖f‖X ,

whence continuity.
One could clearly replace the function 1/x by any regulated function p

on X; if the function p is absolutely integrable in X then

|µ(f)| ≤ M(µ)‖f‖X

where M(µ) =
∫ |p(x)|dx no longer depends on the support K of f . In this

particular case the linear form µ is continuous on L(X) and not just on the
subspaces L(X,K). A measure possessing this property is said to be bounded
or of finite total mass on X.

Example 2. If one replaces the open interval ]0,+∞[ by the closed interval
[0,+∞[ the formula (6) is no longer meaningful, since, in this case, a function
f ∈ L(X) is required to be zero for x large but not on a neighbourhood of 0,
so allowing every chance of making the integral (6) divergent.

But one can replace 1/x by a function that poses no problem at the origin,
and, for example, put

µ(f) =
∫ +∞

0

f(x)xsdx with Re(s) > −1.(31.7)

If f is zero outside K = [0, v] then

|µ(f)| ≤ MK(µ)‖f‖X
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with

MK(µ) =
∫ v

0

|xs|dx =
vRe(s)+1

Re(s) + 1
.

One obtains a bounded measure on replacing xs by an absolutely integrable
function on X, for example xse−x with Re(s) > −1.

Example 3. Choose a compact interval K ⊂ X, a measure µ on K and con-
sider the linear form f 
→ ∫ f(x)dµ(x), where one integrates over K, so
involving only the values of f on this fixed compact set. This example shows
that a measure on K may also be considered as a measure on X: all the mass
is supported by K.

Example 4. For X = R put

µ(f) =
∑

f(n),(31.8)

summing over Z. If f is zero outside a compact K, only the n ∈ K count,
whence |µ(f)| ≤ MK(µ)‖f‖X where MK(µ) is the number of integers in K.

More generally one may put

µ(f) =
∑

c(ξ)f(ξ)(31.9)

assuming only that for every compact K ⊂ X the series taken over the ξ ∈ K
converges absolutely. Then, for f ∈ L(X,K),

|µ(f)| ≤ MK(µ)‖f‖X where MK(µ) =
∑
ξ∈K

|c(ξ)|

since the ξ /∈ K do not appear in (9). If the total series
∑ |c(ξ)| converges

one obtains a bounded measure as in Example 2, for example

µ(f) =
∑

n−2 sin(1/n)f(1/n) for X = [0,+∞[, where one sums over the
integers > 0.

In all this, the fact that X is an interval of R hardly plays a rôle. One
could assume that X is a locally compact subset of C (end of n◦ 23) – an open
set, a closed set, or, the general case, the intersection of an open and of a
closed59 set – and consider the vector space L(X) of continuous functions on
X which are zero outside some compact subset of X, with its obvious vector
subspaces L(X,K). A Radon measure on X is then again a linear form on
L(X) whose restriction to each L(X,K) satisfies a relation (5).

The assumption that X is locally compact is needed to assure the exis-
tence of “many” functions f ∈ L(X). The proof rests on the following lemma:
59 Exercise. Show from the definition that the intersection of two locally compact

subsets of C is locally compact.
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Lemma. Let X be a subset of C, K a compact subset of X and F a subset
of X disjoint from K and closed in60 X. There exists a continuous function
f on X such that

f = 1 on K, 0 ≤ f < 1 on X − K, f = 0 on F.(31.10)

If X is locally compact one may assume f ∈ L(X).

Consider the function d(x,K); it is continuous, zero on K and > 0 outside
K. Let us show that there exists an r > 0 such that d(x,K) ≥ r for every
x ∈ F . If not, there exist points xn ∈ F and yn ∈ K such that d(xn, yn)
tends to 0. Since K is compact, one can (Bolzano-Weierstrass) assume that
yn tends to a limit b ∈ K ⊂ X; it is clear that then the xn ∈ F tend to b.
But since F is closed in X this implies b ∈ F ∩ K = ∅, absurd.

This done, we put f(x) = ϕ[d(x,K)] with a function ϕ(t) defined and
continuous for t ≥ 0. For f to satisfy the conditions (10) it is enough that ϕ
should satisfy the following conditions: (i) ϕ(0) = 1; (ii) 0 ≤ ϕ(t) < 1 for any
t > 0; (iii) ϕ(t) = 0 for t ≥ r. The existence of such functions is clear.

Now assume X locally compact. Since F is closed in X for every a ∈ X−F
there exists an open ball BX(a) of X [the set of x ∈ X such that d(a, x) < r]
such that the corresponding closed ball BX(a) [the set of x ∈ X such that
d(a, x) ≤ r] does not meet F . Since X is locally compact one may assume
BX(a) compact by choosing r small enough. Since K is also compact one
may (Borel-Lebesgue) cover it with a finite number of balls BX(ap) [these
are the intersections of X with open balls of C]. The union U of these balls is
open in X and contained in the compact union H of the BX(ap), which does
not meet F . If one applies the lemma to K and X −U ⊃ X −H one obtains
a function f which satisfies (10) and is zero outside the compact subset H of
X, qed.

Exercise – Let X be the (not locally compact) union of the open disc
|z| < 1 and of the interval [1, 2] of R. Show that f(1) = 0 for every function
f continuous in X and zero outside a compact K ⊂ X.

Examples of measures on a locally compact subset of C are not always as
obvious as in R. Certainly there are discrete measures like those of Example 4
of n◦ 31. It is easy to obtain measures analogous to those of Examples 1 and
2 if X is open: choose an arbitrary continuous function ρ on X (for we do
not yet know how to integrate anything else) and put

µ(f) =
∫ ∫

f(x, y)ρ(x, y)dxdy

for every f ∈ L(X); for every compact K ⊂ X the set X − K is open in C
so that on agreeing to attribute to f(x, y)ρ(x, y) the value 0 outside X one
60 This means that every limit in X of points of F is in F , or again, that F is the

intersection of X and of a closed set in C. This is the general concept of closed
set in the metric space obtained by endowing the set X with its usual distance.



§ 9. Radon measures in R or C 155

defines a continuous function of compact support on C; the integral µ(f) is
then obtained by integrating over any compact rectangle A × B containing
the support of f .

If X = I × J , where I and J are arbitrary intervals of R, and if one has
measures µ and ν on I and J , one can define a product measure

f 
−→
∫

dµ(x)
∫

f(x, y)dν(y) =
∫

dν(y)
∫

f(x, y)dµ(x)

as in the case where I and J are compact; to legitimise this construction one
has to prove an analogue of Theorem 30, which is hardly necessary since f ,
being zero outside a compact subset of I×J , is zero outside a rectangle K×H
where K ⊂ I and H ⊂ J are compact61; the arguments of Theorem 30 are
thus directly applicable here. Starting from these products of measures, you
can choose a continuous function ρ on X = I × J and consider the linear
form

f 
−→
∫ ∫

f(x, y)ρ(x, y)dµ(x)dν(y)

as we did for Lebesgue measure. For example, take I =]0,+∞[ open,
J = [0,+∞[ closed and

µ(f) =
∫

f(x)dx/x, ν(f) =
∫

f(x)x−1/2dx;

on the square I×J ⊂ C, neither open nor closed in C but nevertheless locally
compact, one obtains the measure

Fig. 15.

f 
−→
∫ ∫

f(x, y)dxdy/xy1/2.

The integral is defined since the points of a compact subset of I × J cannot
approach indefinitely close to the subset x = 0 of the frontier of I × J where
61 Proof: the projections (x, y) �→ x and (x, y) �→ y are continuous maps of C into

R and, in particular, of I ×J into I and J respectively; they therefore transform
every compact subset of I ×J into compacta K ⊂ I and H ⊂ J (Chap. III, n◦ 9,
Theorem 11), so that the given compact set is contained in K × H.
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the integration in x would diverge. In particular, a compact subset remains
separated from the point (0, 0), which does not belong to I × J .

Exercise (less easy). Choose X = C and try to define a measure on X by
the formula

µ(f) =
∫ ∫

f(x, y) (x2 + y2)−s dxdy;

find the real values of s for which this is meaningful.

The integration of semicontinuous functions in the case of a noncompact
interval X, more generally of a locally compact subset of C, proceeds more
or less as in the compact case. Dini’s Theorem shows that if an increasing
sequence of continuous functions fn has a continuous function f for its upper
envelope, then convergence is uniform on every compact K ⊂ X. As in the
case where X is compact, one deduces that if f and the fn are in L(X) then
µ(f) = limµ(fn) = supµ(fn) for every positive measure µ on X.

On replacing the fn by fn − f1, so replacing f by f − f1 and µ(fn) by
µ(fn) − µ(f1), we may assume the fn positive. Since they are majorised by
f they are all zero outside a compact K of X independent of n. Thus

|µ(f) − µ(fn)| ≤ MK(µ)‖f − fn‖X ,

which yields the result, clearly applicable to increasing philtres as in n◦ 10.
To pass from this to the lsc functions we shall restrict ourselves to func-

tions ϕ which are positive outside a compact K ⊂ X for otherwise one cannot
hope that L(X) contains an f ≤ ϕ. Being lsc, such a function is bounded
below on the compact set K = {ϕ ≤ 0} [n◦ 10, (vi)], whence the existence of
a f0 ∈ L(X) majorised by62 ϕ. If one writes Linf(ϕ) for the set of f ∈ L(X)
satisfying f ≤ ϕ one sees, as in n◦ 10, on considering ϕ− f0 which is lsc and
positive, that ϕ is the upper envelope of the f ∈ Linf(ϕ): in the case of an
arbitrary locally compact X ⊂ C, the lemma above, applied taking for K the
set {a} and for F the set of x ∈ X such that d(a, x) ≥ r, replaces the figure
of n◦ 10. Then one puts

µ∗(ϕ) = sup
f∈Linf(ϕ)

µ(f).(31.11)

The crucial point, as in n◦ 10, is that one may calculate µ∗(ϕ) using any
increasing philtre Φ ⊂ Linf(ϕ) having ϕ for upper envelope. First, the sup of
the µ(f) for f ∈ Φ is clearly ≤ µ∗(ϕ). Oppositely, for every h ∈ Linf(ϕ) the set
of functions inf(f, h), where f ∈ Φ, is an increasing philtre (obvious) whose
upper envelope is h (obvious); the version of Dini’s Theorem just obtained
then shows that µ(h) is the upper bound of the integrals of the inf(f, h);

62 Let −m, m ≥ 0, be the minimum of ϕ on K, i.e. on X. By the lemma above
there exists an f ≥ 0 in L(X) which is equal to m on K. The function −f is the
one we need.
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since inf(f, h) ≤ f we conclude that the upper bound of the µ(f), f ∈ Φ,
majorises µ(h) for every h ∈ Linf(ϕ), so majorises µ∗(ϕ), whence the result.

From here, the machine turns on its own and yields the three properties
(i), (ii) and (iii) of n◦ 11. No need to reproduce the proofs: you replace m by
µ and Cinf by Linf .

One may also consider on X the usc functions ψ which are lower envelopes
of continuous functions of compact support; this assumes these ψ negative
outside a compact (so zero outside a compact if they are positive everywhere),
and since they are bounded above on it, the existence in L(X) of functions
which majorise it is obvious as in the other case. Writing Lsup(ψ) for the set
of f ∈ L(X) which majorise ψ, one denotes by µ∗(ψ) the lower bound of the
µ(f) when f runs through Lsup(ψ). Replacing ψ by −ψ would bring us back
to the previous case.

These constructions apply in particular to the everywhere continuous
functions on X. Such a function ϕ is, in many ways, the difference of two
positive continuous functions ϕ′ and ϕ′′, for example ϕ+ and ϕ−, to which
the definition of the integral of an lsc function applies. It is therefore nat-
ural to define µ(ϕ) = µ(ϕ′) − µ(ϕ′′), but the definition has no meaning if
µ(ϕ′) = µ(ϕ′′) = +∞, and depends a priori on the choice of ϕ′ and ϕ′′. To
eliminate the first objection one limits oneself to integrable continuous func-
tions for µ (understood: absolutely) for which one may choose ϕ′ and ϕ′′ to
have finite integrals; since 0 ≤ ϕ+ ≤ ϕ′ we have the same for ϕ+ and ϕ−, so
that |ϕ| = ϕ+ + ϕ− is also integrable. The second objection is not one: for

ϕ′′ − ϕ′ = ψ′′ − ψ′ =⇒ ϕ′′ + ψ′ = ψ′′ + ϕ′,

whence the result thanks to the additivity of the integral.
In the case of Lebesgue measure on an interval X we recover the defini-

tions of n◦ 22. We may restrict ourselves to the case of a positive continuous
function ϕ. N◦ 22 defines convergence of the integral

∫
ϕ(x)dx by insisting

that the integrals on the compact sets K ⊂ X be bounded above; here we
assume that the integrals of the functions f ∈ L(X) majorised by ϕ are
bounded above. Since each of these f is zero outside a compact of X it is
clear that convergence in the sense of n◦ 22 implies convergence in the present
sense. Moreover, it is clear, since ϕ is continuous, that, for every compact in-
terval K ⊂ X, there exists an f ∈ L(X) equal to ϕ on K and ≤ ϕ everywhere
elsewhere: multiply ϕ by a continuous function of compact support with val-
ues in [0, 1] and equal to 1 on K. Whence the implication in the reverse sense,
and the equality of the integrals of ϕ on X defined by the two methods.

32 – The Stieltjes construction

Returning to the case of R, let us take an increasing function µ(x) (in the
wide sense) on X = (a, b) and show how, in generalising the definition of
the usual integral, one may associate with it a measure on X which we shall
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again denote by µ. One can show that in this way one obtains all the positive
measures on X. The results of this n◦ are rarely useful and will not be used
in this volume, so the reader may go directly on to the following n◦; but the
arguments brought into play are excellent exercises in analysis.

(i) Definition of the measure. Instead of defining µ(f) directly for every
f ∈ L(X) we shall first do so for the step functions which vanish outside
a compact subset63 of X. As in n◦ 1, this is equivalent to attributing a
“measure” to each bounded interval I = (u, v) such that [u, v] ⊂ X; this
condition is superfluous if X is compact, but if X is open at one of its
endpoints where the function µ(x) may tend to +∞ or −∞, it avoids infinite
measures. This said, one puts

µ(]u, v[) = µ(v−) − µ(u+),(32.1)
µ(]u, v]) = µ(v+) − µ(u+),
µ([u, v[) = µ(v−) − µ(u−),
µ([u, v]) = µ(v+) − µ(u−),

agreeing that µ(a−) = µ(a) at the left endpoint of X and µ(b+) = µ(b) at
the right endpoint when X contains a or b. Then µ[(u, v)] = µ(v) − µ(u)
if the function µ is continuous, but, as one sees immediately, the definition
chosen in the general case permits point masses at the points where µ is
discontinuous: the measure of a singleton interval [u, u] is equal to the jump

µ(u+) − µ(u−) = ∆µ(u)(32.2)

of the function µ at this point. One may note in passing that these formulae
involve only the right and left limit values of µ; one could for example assume
µ continuous on the right, replacing µ(x) by µ(x+) for every x.

The main merit of these definitions is that, if one has a partition of I =
(u, v) into pairwise disjoint intervals I1, . . . , In, then

µ(I) =
∑

µ(Ip).(32.3)

One may actually assume that Ip = (xp, xp+1) with weak inequalities

u = x1 ≤ x2 ≤ . . . ≤ xn+1 = v

to allow for the possibly singleton intervals. In calculating µ(I1) + µ(I2), for
example, two cases are possible; if x2 belongs to I2, then it does not belong
to I1, and the sum is equal to

[µ(x2−) − µ(u?)] + [µ(x3??) − µ(x2−)] = µ(x3??) − µ(u?),

63 The reader may assume X compact to start with, which simplifies the arguments
a little.
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where ? is the sign − or + as I contains x1 = u or not, and where ?? is
likewise + or − as I2 contains x3 or not. If, on the contrary, x2 does not
belong to I2, and so belongs to I1, one finds

[µ(x2+) − µ(u?)] + [µ(x3??) − µ(x2+)] = µ(x3??) − µ(u?).

On pursuing these small calculations step-by-step one finds finally that the
right hand side of (3) is equal to µ(v??) − µ(u?), i.e. to µ(I).

This being so, one defines the integral of a step function ϕ by the obvious
formula: one chooses intervals Ip ⊂ X, pairwise disjoint, finite in number,
and with compact union K ⊂ X, such that ϕ is constant on the Ip and zero
outside K, and puts

µ(ϕ) =
∑

ϕ(ξp)µ(Ip)(32.4)

where ξp ∈ Ip for every p. The additivity formula (3) guarantees as in n◦ 1
that the integral depends only on ϕ and not on the partition chosen; it is then
obvious that the map ϕ 
→ µ(ϕ) is linear, that µ(ϕ) ≥ 0 for every ϕ ≥ 0, and
that it is continuous in the sense that if ϕ is zero outside a compact interval
K ⊂ X then

|µ(ϕ)| ≤ µ(K)‖ϕ‖X(32.5)

since the Ip are, or may be assumed to be all contained in K, so that∑
µ(Ip) ≤ µ(K).
With these conventions, one may construct a Riemann integration theory

as in n◦ 2 of this chapter. To define µ(f) for an f ∈ L(X,K) for instance,
choose a sequence of step functions ϕn which vanish outside K and con-
verge uniformly to f ; then µ(f) = limµ(ϕn) exists (Cauchy’s criterion) and
depends only on f .

To proceed further, let us consider a finite partition of K into intervals
Ip sufficiently small for f to be constant to within r on each Ip and let us
choose an xp in each Ip. Then

∥∥f −∑ f(xp)χIp

∥∥
K

≤ r, whence

|µ(f) −
∑

µ(Ip)f(xp)| ≤ µ(K)r.(32.6)

From here, the fact that the map f 
→ µ(f) of L(X,K) into C satisfies The-
orem 1 is too obvious to deserve yet another model proof.

(ii) History. The measures that we have just described were published
in 1895 by the Dutchman Thomas Stieltjes (1856–1894), then professor at
Toulouse, in a long memoir on certain analytic functions which he represents
by a formula

f(z) =
∫

dµ(t)
t − z
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and also studies series and true integrals. In the Louis XIV typography64 of
the Annales de la Faculté des Sciences de Toulouse of the period, he devoted
no more than two pages to explaining the construction of his integral with
respect to a monotone function; although remarking on the analogy with a
distribution of masses and the fact that the discontinuities of the function
µ correspond to discrete masses, Stieltjes restricts himself to saying that,
to integrate a function f(x) over a bounded interval (a, b), one considers a
subdivision a = x1 < x2 < . . . < xn = b (strict inequalities) of it, chooses
points ξp such that xp ≤ ξp ≤ xp+1 (weak inequalities) and one calculates
the sum ∑

f(ξp) [µ(xp+1) − µ(xp)]

which, according to him, converges to the integral
∫

f(x)dµ(x) as the subdi-
vision becomes ever finer; he proves nothing, refrains from detailing the rôle
of the discontinuities of µ, and says only that one argues as in the usual case,
which is a little optimistic if one starts from his formula; after this he returns
to his analytic functions.

This first generalisation of the Riemann integral provoked no interest,
notably not even on the part of Lebesgue who passed over it in silence in
his 1903 book, where he expounds his own work. But in 1909, a Hungarian
mathematician, Frigyes Riesz (1880–1956), one of the creators of functional
analysis, showed in a note in the Comptes rendus de l’Académie des sciences
de Paris that, if K is a compact interval, then every continuous linear form on
L(K) is a difference of Stieltjes integrals f 
→ ∫ f(x)dµ(x) (i.e. is defined by a
not necessarily positive measure µ 65); at the same period, Hilbert, Hellinger
and Toeplitz, who began to generalise the classical “diagonalisation” in finite
dimensions to the linear operators on a Hilbert . . . space, proclaimed the use-
fulness of Stieltjes integrals in their theory; we shall explain why in volume
IV [Chap. XI, n◦ 22, (iv)]. As a result, Lebesgue remarked in the second edi-
tion of his book, rather roundaboutly, that his theory extends to the Stieltjes
integrals, which was incontestable but a little delayed. In 1913 Radon gen-
eralised the Stieltjes integral to the case of several variables starting in Rn

from a function µ(E) defined on reasonable subsets E of the space and sat-
isfying additivity conditions analogous to those of Lebesgue measure66; he
64 Many French administrations still have a tendency to use it; it minimises the

import of the text, i.e. the information made public. The comparison with official
American documents, parliamentary reports for example, is edifying: several
thousand pages of dense text every year for the discussion in committee of the
defence budget, several dozen with wide margins in France.

65 For a proof, see Walter Rudin, Real and Complex Analysis (McGraw Hill, 1966),
Chap. 2.

66 This is the method that one finds in Hans Grauert and Ingo Lieb, Differential-
und Integralrechnung III (Springer, 1968), Chap. I. Playing with half open and
semi closed parallelipipeds is not exactly relaxing. It is easier in Rudin, but since
he first devotes a whole chapter to “abstract” measures which he never uses in
his book, the energy expended in pure loss is about the same.
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shows how to integrate with respect to such a measure. One could then easily
liberate oneself from the hypothesis that X ⊂ Rn (Maurice Fréchet, 1915),
after which the general theory would occupy a generation of mathematicians,
not to say two67, which vied to generalise them, even though the results are
not always of great use, or put to work principles very different from those
of Lebesgue or Radon.

(iii) The increasing function associated with a discrete measure. Consider
the discrete measure (31.9) of the preceding n◦, assuming that the c(ξ), ξ ∈ D,
are positive so as to obtain a positive measure. To obtain the increasing
function µ(x) which, according to F. Riesz (there was also a Marcel Riesz,
his brother, a first class analyst and great lover of spirits, at Lund, while
Frigyes served his whole career in Hungary) defines it, let us choose once and
for all a c ∈ X (it is simplest to choose c = a if a ∈ X) and put68

µ(x) =
{ ∑

ξ∈[c,x] c(ξ) if c ≤ x,

−∑ξ∈]x,c[ c(ξ) if x < c.
(32.7)

The series is the partial sum of an unconditionally convergent series, so con-
verges. It is an increasing function since, as x increases, the sum (7) contains
more and more positive terms if x ≥ c and fewer and fewer negative terms if
x < c. It is even right continuous. For consider two points x and x + h > x
and assume first that c ≤ x; now µ(x + h) − µ(x) is the sum of the masses
c(ξ) contained in the interval ]x, x + h]; since the series

∑
c(ξ) converges

unconditionally there is, for every r > 0, a finite subset F of D∩]x, x + h]
such that the sum of the c(ξ) for ξ /∈ F is < r; the elements of F being finite
in number, ]x, x + h] contains no element of F if h is small enough. The dif-
ference µ(x + h)− µ(x) is thus < r for h > 0 small enough, whence the right
continuity of µ in this case. If x < x + h < c, the difference µ(x + h) − µ(x)
is again the sum of the masses contained in ]x, x + h] and the argument is
the same. Note in passing the importance of not confusing the signs [ and ],
the classical pitfall in this subject . . .

To calculate µ(x−), note that for h > 0, µ(x) − µ(x − h) is the sum of
the masses contained in ]x − h, x], a sum which always contains the mass
c(x), possibly zero, placed at the point x and which, for h small enough, is
arbitrarily close as above. In other words, µ(x) − µ(x−) = c(x), whence

µ(x+) = µ(x) = µ(x−) + c(x),(32.8)
67 The book of Jean-Paul Pier, Histoire de l’intégration (Masson, 1996) contains

a very rich and useful bibliography, but cites numerous not always illuminating
commentaries, especially when written in the “academic eulogy” style; no one
ever needed Darboux to know that Riemann was a great mathematician (and,
moreover, not on account of his integral . . .).

68 Compare with the function (13.1) used in extending the FT to the primitives of
regulated functions, in which the weak inequality is replaced by a strict inequal-
ity.
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so that µ(x) has a discontinuity of amplitude ∆µ(ξ) = c(ξ) at each point
ξ ∈ D and is continuous at the other points of I.

(Since the ξ might well be all the rational points of X, this shows in
passing that the increasing functions are not just those suggested by the
usual naive sketches.)

This done, it remains to apply the definitions (1) and to check that one
recovers the formula

µ(I) =
∑
ξ∈I

c(ξ)(32.9)

for every bounded interval I = (u, v) such that [u, v] ⊂ X.
Next we have to check that the integral of a function f ∈ L(X,K) is

well defined by formula (31.9) of the preceding n◦. For this, let us consider
a partition of K into intervals Ip on which f is constant to within r and
apply the approximation (6); the only intervals which count are those which
contain points of D and (9) shows that

µ(f) =
∑

p

f(xp)
∑
ξ∈Ip

c(ξ)

to within µ(K)r. But for ξ ∈ Ip one has f(xp) = f(ξ) to within r; on replacing
f(xp) by f(ξ) for all the ξ ∈ Ip in the preceding formula, one commits, for
each p, an error less than r times the sum of the c(ξ) for ξ ∈ Ip, so a total
error less than µ(K)r. Since f is zero outside K we have

µ(f) =
∑
ξ∈D

c(ξ)f(ξ)(32.10)

to within 2µ(K) r, whence the equality since r > 0 is arbitrary.

(iv) The discrete and continuous components of a measure. The sums (9)
appear again in the general case of an arbitrary increasing function µ when
one wants to make the rôle of the discontinuities of µ in calculating µ(f)
more precise. Furthermore we shall see that as well as a “continuous sum”,
as in the classical case, µ(f) includes a “discrete sum”, namely the sum

µd(f) =
∑

∆µ(ξ)f(ξ)(32.11)

extended over all the discontinuities of the increasing function µ; recall that
∆µ(ξ) = µ(ξ+) − µ(ξ−).

First note that the set D of these points of discontinuity is countable69

and that ∑
ξ∈K

∆µ(ξ) ≤ µ(K)

69 This also results from the fact that a monotone function is regulated.



§ 9. Radon measures in R or C 163

for every compact K = [u, v] ⊂ X. To see this, one first remarks that the
partial sum extended over a finite subset F of D ∩ K is ≤ µ(K); for if one
orders the points ξ1 < . . . < ξn of F one has

µ(ξ1−) < µ(ξ1+) ≤ . . . ≤ µ(ξn−) < µ(ξn+);

the sum in question is thus majorised by µ(ξn+)−µ(ξ1−) and so by µ(v+)−
µ(u−) = µ(K) since µ(x) is increasing. For every integer n ≥ 1, the ξ ∈ K
where µ(ξ) > 1/n are therefore finite in number, whence simultaneously
the denumerability of D ∩ K, so of D since X is the union of a sequence
of compact sets; hence the desired inequality, which makes the series (11)
absolutely convergent for every bounded function f vanishing outside K, so
for f ∈ L(X,K).

Now the expression (11) reenters the preceding framework (iii). One is
thus led to associate to the expression (11), a discrete measure on X, the
corresponding increasing function (7), here with c(ξ) = ∆µ(ξ). Now assume
µ(x) right continuous, which we may, as we have seen above, and put

µ(x) = µd(x) + µc(x);(32.12)

we thus define a continuous function µc since µ and µd have the same points
of discontinuity ξ ∈ D, are both right continuous, and have the same “jumps”
at these points. The function µc is moreover increasing. To see this, we have
to check that, for x ≤ y, we have µ(x) − µd(x) ≤ µ(y) − µd(y), i.e.

µd(y) − µd(x) ≤ µ(y) − µ(x) = µ(y+) − µ(x+),

which, by (7), means that the sum of the jumps of the function µ at the
points of the interval ]x, y] where it is discontinuous is less than its variation
between x and y, which is clear as we saw in proving (8).

This done, the functions µ(x), µd(x) and µc(x) define Radon measures on
X and it is obvious – use Riemann sums – that, for every continuous function
f ∈ L(X), one has

µ(f) = µd(f) + µc(f) = µc(f) +
∑

∆µ(ξ)f(ξ).(32.13)

Since the function µc(x) is continuous, the formulae (1) simplify:

µc(I) = µc(v) − µc(u) if I = (u, v),(32.14)

whether I is open, or closed, or . . ., and it is vain, in the “Riemann sums”
for µc, to allow for the nonexisting discontinuities of µc(x). The measure µd

provides the “discrete sum” and the measure µc the “continuous sum” to
which we alluded above.

The ideal case is where the function µc(x) is of class C1. The mean value
theorem then shows that if I = (u, v)
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µc(I) = µ′
c(w)(v − u) = µ′

c(w)m(I)

for a w ∈ I, where m(I) is Euclidean length. The Riemann sum
∑

µc(Ip)f(xp)
relative to a sufficiently fine partition of K, and in which xp can be assumed
equal to wp, becomes

∑
f(wp)µ′

c(wp)m(Ip); on decorating this calculation
with the inevitable ε and δ and calling µ what we would call µc, one then
finds that for every increasing function µ of class C1 (so continuous), one
has ∫

f(x)dµ(x) =
∫

f(x)µ′(x)dx;(32.15)

in 1697, but not in 1997, Leibniz would have said to you: obvious since
dµ(x) = µ′(x)dx . . . But here like elsewhere, it is not the notation which
makes the formula obvious; it the formula that explains the notation.

Consider for example on X =]0,+∞[ the measure

f 
−→
∫

f(x)dx/x

where one integrates over X. It corresponds to the monotone function µ(x) =
log x: this is of class C1 and has derivative 1/x, whence the result by (15).
For this measure, the measure of an interval I = (u, v) with 0 < u < v < +∞
is µ(v) − µ(u) = log(v/u). One could extend this argument to any positive
continuous function p other than 1/x: the increasing function defining the
Radon measure

f 
−→
∫

f(x)p(x)dx

is any primitive P (x) of p; the measure P (v) − P (u) of an interval I is the
integral of p extended over I.

Exercise. Prove (15) assuming that µ(x) is a primitive of a regulated
function ≥ 0.

Finally we remark that there are much more complicated monotone func-
tions than the preceding, and for which the nondiscrete component of the
corresponding integral

∫
f(x)dµ(x) is not of the form

∫
f(x)p(x)dx, even if

you permit “densities” p(x) that are Lebesgue integrable on every compact
set (“singular” measures concentrated on sets of measure zero). The general
theory of integration treats them exactly like the others.

33 – Application to double integrals

As we saw at the end of n◦ 9 and in n◦ 30, one may integrate any continuous
function f(x, y) on a rectangle X×Y with respect to Lebesgue measure dxdy
or, more generally, with respect to a product measure dµ(x)dν(y), where X
and Y are compact intervals, and even if X and Y are noncompact, provided
that f ∈ L(X×Y ). But to integrate over an arbitrary compact set K ⊂ X×Y
– in other words, and by definition, to integrate the function equal to f on K



§ 9. Radon measures in R or C 165

and to 0 elsewhere over X × Y – is not as simple, unless one imposes ad hoc
hypotheses on K as the physicists and engineers do, or, like a mathematician
of the last century, declares that “the possibility of inverting the integrations
rests on the obvious principle that a sum remains the same for any order in
which one adds the parts70”. The end of n◦ 9 has demonstrated the difficulty
of the general problem.

The first problem is to define an integral over a compact set K ⊂ X ×Y ,
in other words to integrate the function ϕ equal to f on K and to 0 at the
other points of X×Y . Most luckily, it is upper semicontinuous if f is positive.
For, consider a point a ∈ X×Y . If a /∈ K, then ϕ(x) = 0 on a neighbourhood
of a in X × Y since K is closed, whence the continuity of ϕ at a. At a point
a ∈ K, since f is continuous on K, for every r > 0 there exists an open disc
B(a) such that ϕ(x) = f(x) < f(a)+r on K∩B(a); since ϕ(x) = 0 for x /∈ K
and f(a) ≥ 0, we have ϕ(x) < f(a)+r = ϕ(a)+r for every x ∈ B(a), whence
the result. If f is negative, the function ϕ is on the contrary lsc since it is the
negative of the usc function constructed starting from −f . If f changes sign,
catastrophe: we do not know how to integrate a function which is neither lsc
nor usc. But one may always write f = f+ − f− and deal with f+ and f−,
for lack of a less crude method.

In these circumstances, as much to generalise and establish the standard
result:

Theorem 31. Let X and Y be two intervals, µ and ν positive measures
on X and Y , and λ the product measure on X × Y . Let ϕ be an lsc (resp.
usc) function on X × Y which is71 the upper (resp. lower) envelope of the
f ∈ L(X×Y ) which minorise (resp. majorise) it. Then we have the following
properties:

(i) For every x ∈ X, the function y 
→ ϕ(x, y) is lsc (resp. usc);
(ii) the function

x 
−→
∫

Y

ϕ(x, y)dν(y),(33.1)

with values > −∞ (resp. < +∞), is lsc (resp. usc);

(iii) we have

λ(ϕ) =
∫

X

dµ(x)
∫

Y

ϕ(x, y)dν(y),(33.2)

the two members being simultaneously finite or infinite;
70 Joseph Bertrand in his Traité de calcul différentiel et intégral (1870), cited by

Jean-Paul Pier, Histoire de l’intégration (Masson, 1997), p. 104. Bertrand taught
analysis at the Ecole polytechnique from 1856 to 1894, which indicates the ca-
pacity for renewal of the institution at this period. There also, in parallel, were
Charles Hermite (1869–1876) and Camille Jordan (1876–1911), who introduced
some notions of set theory before 1900.

71 a condition always satisfied if X and Y are compact or if ϕ is positive (resp.
negative), etc.
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(iv) we may invert the order of the integrations in (2).

We shall examine the case of an usc function, the other being trivial
to deduce from it: multiply the function by −1. As always, the two crucial
points will be that (a) a lower envelope of continuous functions is usc; (b) one
may calculate the integral of an usc function from any decreasing philtre of
continuous functions having ϕ as lower envelope. It remains to combine these
tools with the definitions; there is nothing more to the very short proof.

That the function y 
→ ϕ(x, y) = ϕx(y) is usc on Y for every x ∈ X may
be seen either by using the definition in terms of inequalities, or from the
fact that ϕ is the lower envelope of the set Φ = Lsup(ϕ) of the functions
f ∈ L(X × Y ) which majorise it.

One may therefore integrate ϕx, the result being < +∞, though it can
be −∞ for an usc function. For x given, it is clear that the set of functions
fx(y) = f(x, y), where f ∈ Φ, is a decreasing philtre of continuous functions
on Y whose lower envelope is ϕx. Thus

ν(ϕx) = inf ν(fx).(33.3)

Let us now put Ff (x) = ν(fx) =
∫

f(x, y)dν(y) and Fϕ(x) = ν(ϕx). Since
the f vary in a decreasing philtre, it is the same for the Ff , because

f ≤ g =⇒ fx ≤ gx =⇒ Ff (x) ≤ Fg(x)

since ν is positive. Now the functions Ff (x) = ν(fx) are continuous on X
because, f being in L(X × Y ), the fx are zero outside the same compact
subset of Y , which allows us to argue as in n◦ 9, Theorem 9. Since

Fϕ(x) = ν(ϕx) = inf ν(fx) = inf Ff (x),

one concludes both that Fϕ is usc – point (ii) of the statement – and that

µ(Fϕ) = inf µ(Ff ).(33.4)

But (4) can again be written∫
dµ(x)
∫

ϕ(x, y)dν(y) = inf
∫

dµ(x)
∫

f(x, y)dν(y) = inf λ(f)(33.5)

where the inf is relative to the f ∈ Φ. Since, in (5), f runs through the set of
f ∈ L(X ×Y ) which majorise ϕ, the right hand side of (5) is, by definition of
the integral of an usc function, equal to the integral λ(ϕ) of ϕ with respect
to λ. The relation (5) therefore establishes (2). Point (iv) of the statement is
then obvious, qed.

To complete the enunciation of Theorem 31, assume that the function ϕ
is lsc, positive and integrable on X × Y , i.e., that λ(ϕ) < +∞. By (2) we
then have
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∫
X

dµ(x)
∫

Y

ϕ(x, y)dν(y) < +∞;

adopting the notation of the proof, this means that the function Ff (x) =∫
ϕ(x, y)dν(y), which is lsc and positive, has finite integral and so is integrable

with respect to µ. As we have seen (n◦ 11, Exercise) for the case of Lebesgue
measure on a compact interval – but it generalises immediately – we can
deduce that Fϕ is finite outside a set N of µ-measure zero, and therefore the
function y 
−→ ϕ(x, y), which is lsc, is integrable with respect to ν for every
x ∈ X − N .

In the case we started from at the beginning of this n◦, where ϕ is equal
to a continuous positive function f on a compact set K ⊂ X × Y and to 0
outside K, which ought, by definition, lead to the integral of f on K, it is
helpful to make (2) a little more explicit, where everything is now finite since
ϕ is bounded above and below. Now, to integrate ϕ(x, y) with respect to y
for x given is equivalent to integrating over Y the function equal to f(x, y)
if (x, y) ∈ K and to 0 elsewhere. If one denotes by K(x) the compact set of
the y ∈ Y such that (x, y) ∈ K – the “section” of K by the vertical through
the point x – the number

∫
ϕ(x, y)dy is then obtained by integrating over Y

the function equal to f(x, y) for y ∈ K(x) and to 0 elsewhere, and this is usc
(same argument as in X × Y ). It is natural to denote this integral by∫

K(x)

f(x, y)dy;(33.6)

the Lebesgue-Fubini formula is then written∫ ∫
K

f(x, y)dxdy =
∫

X

dx

∫
K(x)

f(x, y)dy(33.7)

according to tradition. But as we have already observed at the end of n◦ 9 the
sets K(x) can be arbitrary compact sets in Y , so that, as intuitive as it may
seem, formula (7) masks an integration theory already much more advanced
than that of Riemann. And we have had to assume f positive to establish it!
Of course, this restriction, which may seem ridiculous, will be eliminated by
the complete Lebesgue theory (Chap. XI, § 4, n◦ 10).
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§ 10. Schwartz distributions

34 – Definition and examples

We showed in the preceding § how one may introduce the concept of the
integral, classical or not, into a particularly simple general framework: that
of linear continuous forms on a vector space endowed with a “topology”.

In analysis there is another operation bearing on functions and possessing
analogous linearity and continuity properties: derivation. This is not defined
for every continuous function but it is easy to introduce it into the present
framework. Consider for simplicity a compact interval K ⊂ R and the vector
space C1(K) of the functions of class C1 in K, endpoints included. Choose
measures µ and ν in K and, for every f ∈ C1(K), put

T (f) =
∫

K

f(x)dµ(x) +
∫

K

f ′(x)dν(x).(34.1)

It is clear that f 
→ T (f) is linear and that

|T (f)| ≤ M(µ)‖f‖K + M(ν)‖f ′‖K ≤ M (‖f‖K + ‖f ′‖K)(34.2)

where M is a constant independent of f , whence, for any f, g ∈ C1(K),

|T (f) − T (g)| ≤ M (‖f − g‖K + ‖f ′ − g′‖K) .

If a sequence of functions fn ∈ C1(K) converges uniformly to a limit f and if
the f ′

n converge uniformly to a limit g, in which case f ∈ C1(K) and g = f ′

(Theorem 19 of Chap. III, n◦ 17), then T (f) = limT (fn).
These results can be interpreted on defining a norm on C1(K) by the

formula
|||f ||| = ‖f‖ + ‖f ′‖

where the norms on the right hand side are the uniform norms on K. The
relation (2) shows that T is a continuous linear form on C1 for this norm.
Theorem 19 of Chap. III, on the other hand, shows that Cauchy’s criterion
holds in C1(K): if indeed one has |||fp − fq||| < r for p and q large, then also
‖fp − fq‖ < r and ‖f ′

p − f ′
q‖ < r; consequently, the fn and their derivatives

converge uniformly to functions f and g and it is clear, as above, that f
is the limit of the fn in the sense that lim |||f − fn||| = 0. In other words,
C1(K) is a complete normed vector space – in short, a Banach space. It can
be shown that there are no continuous linear forms on C1(K) other than the
expressions of the form (1).

This kind of analogy between measures and derivations directly inspired
Laurent Schwartz, the inventor of the theory of distributions. In the period
when he created his theory one already knew of similar, but limited, attempts,
due, for example, to the German Salomon Bochner who emigrated to the USA
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before 1940, and much more to the Soviet Sergei Sobolev72 in his work on
partial differential equations. But it was Schwartz, during and after W.W. II,
who understood the enormous generality of the concept of distribution and
formulated it in a perfectly clear way, placing it in the framework of the
theory of topological vector spaces73.

To obtain a satisfactory theory it is clearly necessary to allow for deriva-
tions of any order. One therefore has to replace the C1 functions envisaged
above by C∞ functions; when one works on R, to which we confine ourselves
in this §, we have, as in integration theory, to restrict ourselves to C∞ func-
tions of compact support, i.e. zero for |x| large: this is the vector space D
or D(R) we have already used in n◦ 27 to “regularise” i.e. make C∞, with
the help of convolution products, functions which are not. For Schwartz, a
distribution on R is a linear form on D, i.e. a map T of D into C such that74

T (αϕ + βψ) = αT (ϕ) + βT (ψ)

and satisfying a continuity condition analogous to that imposed on measures
in n◦ 31, but distinctly less obvious.

In the first place, one wants the measures to be particular distributions.
This indicates that a distribution cannot have a continuity property unless
one restricts to the vector subspace D(R,K) = D(K) of the functions which
vanish outside a given compact subset K of R.

Since every ϕ ∈ D, and all its successive derivatives, are continuous and so
bounded (compact support), for every integer r ≥ 0 one may define a norm

‖ϕ‖(r) = ‖ϕ‖ + ‖ϕ′‖ + . . . + ‖ϕ(r)‖(34.3)

on D, where, as in all the rest of this §, the notation

‖ϕ‖ = sup |ϕ(x)| = ‖ϕ‖R

denotes the norm of uniform convergence on R; definition (3) directly gen-
eralises the norm |||ϕ|||, which we introduced temporarily above, on C1(K).
Clearly

‖ϕ + ψ‖(r) ≤ ‖ϕ‖(r) + ‖ψ‖(r),

so that the expression dr(ϕ,ψ) = ‖ψ − ϕ‖(r) satisfies the triangle inequal-
ity; to say that dr(ϕ,ψ) ≤ ε implies that, for every h ≤ r, one has∣∣ϕ(h)(x) − ψ(h)(x)

∣∣ ≤ ε for every x ∈ R. Also
72 S. Bochner Vorlesungen über Fouriersche Integrale (Leipzig, Akademie Ver-

lagsgesellschaft, 1932), S. Sobolev Méthode nouvelle à résoudre le probléme de
Cauchy . . . (Mat. Sbornik, 1936, 1(43), pp. 39-71). According to a recent Russian
book on the history of Soviet nuclear weapons, Sobolev was in charge of the
mathematical and computational part of the project in 1943-1953. (Courtesy of
Jean-Marie Kantor.)

73 Schwartz describes his discovery in detail in Chapter 6 of his memoirs, Un
mathématicien aux prises avec le siècle (Paris, Odile Jacob, 1997) (trans.
A Mathematician Grappling with his Century, Birkhäuser, 2001).

74 It has been standard usage since Schwartz to denote the elements of D by Greek
letters and to denote “arbitrary” functions by Roman letters.
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‖ϕ‖(r) ≤ ‖ϕ‖(r+1)(34.4)

for any r and ϕ, and ‖cϕ‖(r) = |c|.‖ϕ‖(r) for every constant c ∈ C.
The introduction of these norms ‖ϕ‖(r) on D allows one to verify the

continuity of linear functions T (ϕ) much more general than (1): choose p+1
measures µi (0 ≤ i ≤ p) on R and put

T (ϕ) =
∑∫

ϕ(i)(x)dµi(x) =
∑

µi

(
ϕ(i)
)
.(34.5)

Then ∥∥ϕ(i)
∥∥ ≤ ‖ϕ‖(p)

for every i ≤ p and consequently

|T (ϕ)| ≤ MK(T )‖ϕ‖(p) where MK(T ) =
∑

MK(µi)(34.6)

by definition (31.5) of a measure.
One might wonder whether it is possible to construct more sophisticated

linear forms on D, involving, maybe, infinitely many derivatives of ϕ. This is
sometimes possible:

T (ϕ) =
∑

ϕ(n)(n),

the series taken over N. There is no problem of convergence since, for a
function zero outside a compact set, all the terms of large enough rank are
zero; and in a given subspace D(K) the preceding formula is just a particular
case of (5), with Dirac measures at the points n situated in K. Another
attempt: put

T (ϕ) =
∑

cnϕ(n)(0)

with the coefficients cn chosen to make the series converge for any ϕ. Now
the derivatives at a point of a ϕ ∈ D can be chosen arbitrarily (n◦ 29); the
series
∑

cnan would therefore have to converge for any an ∈ C, for example
if an = 1/cn; absurd.

These remarks and, of course, a now more extensive experience, show that,
in a given subspace D(K), one should not hope to go further than expressions
of the form (5); in fact, one of the first theorems proved by Schwartz – and
very easy thanks to the theory of Banach spaces75 – was that, in his theory,
every distribution reduces, on a compact K, to the form (5), with measures
µi depending on K.

This indicates that the continuity condition to impose on a distribution T
is the following: for every compact K ⊂ R there exist a p ∈ N and a constant
MK(T ) such that

75 The corresponding theorem for distributions on T (C∞ functions of period 1)
can be proved elementarily with the help of Fourier series, as we shall see in
Chap. VII, end of n◦ 10.
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|T (ϕ)| ≤ MK(T ).‖ϕ‖(p) for every ϕ ∈ D(K).(34.7)

Why is this a “continuity” property ? Because it is natural to define the
notion of convergence of a sequence on each D(K) in the following way:

a sequence of functions ϕn ∈ D(K) converges to a ϕ ∈ D(K) if for
every r ∈ N the sequence of derivatives ϕ

(r)
n converges uniformly

to ϕ(r).

This definition is inspired by Theorem 19 of Chap. III, n◦ 17 and presents
the advantage that, as in C1(K), there is an analogue of Cauchy’s criterion
for this concept of convergence: to verify that a sequence of functions ϕn ∈ D
converges in the preceding sense it suffices (and is necessary) to check that∥∥ϕ(r)

p − ϕ(r)
q

∥∥ ≤ ε for p, q large,

for every r ∈ N and every ε > 0; the ϕn and all their successive derivatives
then converging uniformly to functions vanishing outside K, the theorem in
question assures that the limit ϕ of the ϕn is C∞ and that ϕ

(r)
n converges

uniformly to ϕ(r) for any r; in other words, the sequence ϕn converges to ϕ
in D(K) in the preceding sense.

This said, it is clear that this concept of convergence means that the
uniform distance ‖ϕ(r) −ϕ

(r)
n ‖ tends to 0 for any r; it is clearly equivalent to

requiring

lim ‖ϕ − ϕn‖(r) = 0 for every r.(34.8)

The condition (4) imposed on the distributions then implies that, if a
sequence ϕn ∈ D(K) converges to a limit ϕ ∈ D(K) in the preceding sense,
one has

T (ϕ) = limT (ϕn).

Conversely, one may prove – it is not totally obvious – that this property
forces the existence of a majorisation (7) for every compact K ⊂ R.

One should pay attention to the fact that to formulate this continuity
condition one must work in the vector subspaces D(K), failing which one
would restrict considerably the definition of distributions as in integration
theory. The distribution – in fact, a measure – T (ϕ) =

∑
ϕ(p), where one

sums over Z, provides a counterexample: take for ϕn a C∞ function with
values in [0, 1/n], vanishing outside [n−1, 2n], and equal to 1/n on [n, 2n−1];
the ϕn converge to 0 uniformly on R, but T (ϕn) = 1 for every n.

Example 1. Every absolutely integrable function f on every compact inter-
val of R (for example log |x| despite its singularity at the origin) defines a
distribution76 which is in fact a measure
76 In all the rest of this chapter, the

∫
sign will denote an integral extended over

all R.
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Tf (ϕ) =
∫

ϕ(x)f(x)dx.

More generally, it is clear that every measure, restricted to D(R) ⊂ L(R), is
a distribution.

Example 2. Choose an a ∈ R, an integer k ∈ N and put

T (ϕ) = ϕ(k)(a).

For k = 0 one obtains the Dirac measure at the point a, denoted by δa or εa:

δa(ϕ) = ϕ(a).

One could consider more generally distributions of the form

T (ϕ) =
∑

cnϕ(kn)(an)

with a finite number of points an, given constants cn, and arbitrary orders
of differentiation kn, for example

T (ϕ) = ϕ(0) + 3ϕ′′(4) − ϕ′′′(π).

One may even allow a countable infinity of points ak subject to a few pre-
cautions. A formula such as

T (ϕ) =
∑

cnϕ(k)(n),

where one sums over the n ∈ Z, with a k independent of n, defines a distrib-
ution because, for every compact K, the “series” in reality reduces to a finite
sum for the ϕ vanishing outside K. More subtly, let us choose an arbitrary
sequence of points an ∈ R, also cn such that

∑ |cn| < +∞, and orders of
differentiation kn all less than the same integer k and let us put

T (ϕ) =
∑

cnϕ(kn)(an).

Since the derivatives involved are all of order ≤ k, the general term of the
series is, in modulus, less than |cn|.‖ϕ‖(k), whence |T (ϕ)| ≤ M‖ϕ‖(k) where
M =
∑ |cn|, which proves continuity.

These elementary examples and the formula (5) are enough to show how
the theory of distributions allows one to unify the differential and integral
calculus.

Exercise. Given an interval X ⊂ R write D(X) for the set of functions
defined on X, indefinitely differentiable (including at the endpoints of X
if they belong to X), and zero outside some compact subset of X. Find a
reasonable definition for distributions on X. Find a distribution on X =]0, 1]
which is not the restriction to the ϕ ∈ D(X) of a distribution on R.
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35 – Derivatives of a distribution

One of the conjuring tricks (it is nothing else, despite its usefulness, and it
is already in Sobolev) which the concept of distribution allows is to attribute
derivatives to functions which do not have them. To understand this, let us
start from a function f of class C1 on R and consider the distribution

Tf ′(ϕ) =
∫

ϕ(x)f ′(x)dx

associated to its derivative. In view of the fact that ϕ(x) = 0 for |x| large, an
integration by parts shows that

Tf ′(ϕ) = −
∫

ϕ′(x)f(x)dx.

If, as above, one associates the distribution

Tf : ϕ 
−→
∫

ϕ(x)f(x)dx(35.1)

to any f ∈ C1(R), then

Tf ′(ϕ) = −Tf (ϕ′).(35.2)

Starting from this, one defines the derivative T ′ of a distribution T by putting

T ′(ϕ) = −T (ϕ′) for every ϕ ∈ D.(35.3)

Since obviously
‖ϕ′‖(r) ≤ ‖ϕ‖(r+1)

for every r, the continuity of T propagates immediately to T ′. One may then
repeat this operation and define the successive derivatives of T , clearly given
by

T (p)(ϕ) = (−1)pT (ϕ(p)).(35.4)

If then you associate to each regulated function f on R the distribution Tf

given by (1), you can define the “derivative” of f . . . But this is no longer a
function in the usual sense – miracles exist even less in Nature than infinitely
small numbers . . . –, it is a distribution which can be fearfully complicated
and which, for this reason, one refrains in general from calculating explicitly.
The difficulty does not appear if f is C∞; in this case, one may apply the
traditional formula for integration by parts ad libitum and obtain the formula

(Tf )(k) = Tf(k) ,(35.5)

which shows that the definition of the successive derivatives of a distribution
is compatible with that of the successive derivatives of a C∞ function.
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Example 1. Take for T the Dirac measure

T (ϕ) = ϕ(0)

at the origin. We find T ′(ϕ) = −ϕ′(0) in accordance with Dirac’s baroque
formula to which we alluded at the beginning of n◦ 27. One might, like Dirac
himself, continue:

T ′′(ϕ) = +ϕ′′(0), T ′′′(ϕ) = −ϕ′′′(0), etc.

One may ask why it was twenty years before a mathematician justified this
“obvious” calculation. In Dirac’s time, some theoretical physicists had begun
to understand what was already called a functional space, i.e. a vector space
of infinite dimension whose elements are, not the usual vectors in Euclidean
or relativistic space or in the configuration space of a system of particles,
but functions of one or several real variables; and in which one has a concept
of “convergence” coming from a “norm”. From 1930 on, it was clear that
the probabilistic interpretation of the Schrödinger equation of quantum me-
chanics associates with every system of physical particles a square integrable
function (in the sense of the Lebesgue theory) on a Cartesian space E of
finite dimension whose points correspond to all the possible configurations of
the system; when one integrates the square of this function over a subset M
of the space of possible configurations one obtains the probability that the
configuration of the system at the instant considered is one of those in M .
This is what the mathematicians already called a Hilbert space, an infinite
dimensional generalisation of Euclidean spaces endowed with a scalar prod-
uct77 (see the Appendix to Chap. III, n◦ 5, and the chapter on Fourier series).
But the right functional space, which would have allowed one to understand
Dirac’s acrobatics, namely Schwartz’ space D, had not yet been invented,
either because no one had thought of it, or, more probably, because no one
77 A very important part of quantum mechanics was invented by physicists working

either permanently or temporarily at Göttingen or nearby, or regularly appear-
ing as participants at the international meetings that took place in Copenhagen,
Cambridge, Münich, Hamburg, Zürich, but not in France – the “travelling semi-
nar” of the physicists of the period, where many Americans of the Second World
War learned their trade; see Donald Fleming and Bernard Bailyn, The Intellec-
tual Migration (Harvard UP, 1969), Daniel J. Kevles, The Physicists (MIT Press,
1971) or Richard Rhodes, The Making of the Atomic Bomb (Simon & Schuster,
1986, 886 pp.), who explains the system and where you will find much other
information. It happens that Hilbert and other well-informed mathematicians in
the latest progress in “modern” mathematics were also professors at Göttingen or
nearby; the famous Methoden der Mathematischen Physik of Courant and Hilbert
appeared at this time, the “abstract” theory of Hilbert spaces was constructed in
1927–1930 by von Neumann at Göttingen and Hamburg, and was integrated into
quantum mechanics in his Grundlagen der Quantenmechanik (Springer, 1929).
Von Neumann was in the USA from 1933, like Richard Courant who founded
an institute of applied mathematics at the University of New York, which, after
1945, prospered in the regular American way of the time: military contracts.
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had had the idea of considering vector spaces in which convergence is defined
not by a single distance, as in the Hilbert or Banach spaces already known
(the second ones only by few mathematicians), but by infinitely many func-
tions dr(f, g) as in Schwartz’ space D. To understand this kind of situation
it would have been necessary simultaneously to master integration theory,
partial differential equations in several variables to have really interesting
examples, the “abstract” algebra linear then in development, and the gen-
eral theory of topological vector spaces where one is given in advance a family
of “distances” that determine convergence.

This was much too much for the physicists and even for the immense ma-
jority of the mathematicians of the time, the main exception being possibly
Sobolev in the 1930s. The theory of partial differential equations was in an al-
most total state of chaos. That of “locally convex topological vector spaces”,
a natural extension of the work of Stephan Banach and of the Polish school
between the two Wars, was not invented until during the War by George
W. Mackey in the USA and, independently, by Dieudonné and Schwartz a
little later78, then powerfully developed by Alexandre Grothendieck; so it
was constructed at the same time as the distributions were, and under their
influence. Afterwards Schwartz’ theory spread everywhere, including in the
USSR where I. M. Gelfand and his school published several volumes on the
subject filled with examples, until it became a fundamental tool in the theory
of partial differential equations; see for example the formidable volumes of
Lars Hörmander, one of the principal proponents of the theory. Even more
extraordinary, the general theory of distributions itself, which brought the
first French Fields Medal to Schwartz in 1950, contained no truly “profound”
theorem – not, though, its applications – and required “only” the ability to
detect analogies between a dozen disparate domains and to isolate the general
principle which unified all. The philosophers of science call this a paradigm,
a new vision which not only puts order and clarity into chaos, but also and
above all allows one to pose new problems. Universal gravity, the analysis of
Newton and Leibniz, the atomic theory in chemistry, the theories of evolu-
tion of Darwin, of heredity of Mendel, the bacteria of Pasteur, relativity and
quantum mechanics, etc.

Example 2. Take for f the function equal to 1 for x > 0 and to 0 for x < 0.
Then

Tf (ϕ) =
∫ +∞

0

ϕ(x)dx,

whence
78 In 1943–1945 one did not yet have the Internet and, in 1946, while my thesis was

almost complete, I discovered it, and in Russian, in a Soviet article of 1943 which
had just arrived in paris after an inexplicable delay. Being naturally curious, and
its authors being not entirely unknown to me, thanks to some work from before
1940, I had the good idea of reading it (i.e., then, of having it translated).
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T ′
f (ϕ) = −Tf (ϕ′) = −

∫ +∞

0

ϕ′(x)dx = ϕ(0)

since the primitive ϕ of ϕ′ is zero for x large. In other words, the derivative
of the distribution associated to f is the Dirac measure at the origin, and not
a function in the usual sense. Obvious extension to the distributions defined
by a step function; its derivatives are linear combinations of Dirac measures
at the points where the function is discontinuous. For an arbitrary regulated
function f , the uniform limit on every compact of a sequence of step functions
fn, one has

Tf ′(ϕ) = −Tf (ϕ′) = −
∫

f(x)ϕ′(x)dx = − lim
∫

fn(x)ϕ′(x)dx

since in fact one integrates over a compact interval, whence

Tf ′(ϕ) = limTf ′
n
(ϕ),

a result practically impossible to explain in the general case.

Example 3. Consider the distribution

T (ϕ) =
∫ +∞

0

ϕ(x) log x.dx;

the integral converges absolutely on a neighbourhood of 0 (no problem at in-
finity) since |ϕ(x) log x| ≤ ‖ϕ‖.| log x|. To calculate T ′ one integrates naively
by parts (if necessary passing to the limit on the interval [u, +∞[ as u → 0+):

−T ′(ϕ) =
∫ +∞

0

ϕ′(x) log x.dx = ϕ(x) log x
∣∣∣+∞

0
−
∫ +∞

0

ϕ(x)x−1dx

and one obtains infinite expressions. This shows that it would be better
to use a primitive of ϕ which vanishes at the origin in order to neutralise
the logarithm; simplest would be to choose ϕ(x) − ϕ(0), which is O(x), but
then the difficulty reemerges at infinity because of the term ϕ(0) log x in the
integrated-out part and of the term ϕ(0)/x in the last integral79. To cut the
Gordian knot one divides the integral in two; first∫ 1

0

ϕ′(x) log x.dx = [ϕ(x) − ϕ(0)] log x
∣∣∣1
0
−
∫ 1

0

[ϕ(x) − ϕ(0)]dx/x =

= −
∫ 1

0

[ϕ(x) − ϕ(0)]dx/x

since the integrated-out part is zero by ϕ(x) − ϕ(0) = O(x) and log 1 = 0.
The integral obtained converges since [ϕ(x)−ϕ(0)]/x is bounded on a neigh-
bourhood of 0 (and even tends to a limit as x → 0). On the other hand,
without any problem of convergence,
79 It is very rare to see Dieudonné deceive himself, but he does so in his Eléments

d’analyse, Vol. 3, p. 247 à propos the same example.



§ 10. Schwartz distributions 177

∫ +∞

1

ϕ′(x) log x.dx = ϕ(x) log x
∣∣∣+∞

1
−
∫ +∞

1

ϕ(x)dx/x = −
∫ +∞

1

ϕ(x)dx/x

since ϕ(x) is zero for x large. Finally,

T ′(ϕ) =
∫ 1

0

[ϕ(x) − ϕ(0)]dx/x +
∫ +∞

1

ϕ(x)dx/x,

which shows that the derivative in the sense of distributions of the function
log x is not what one might have believed. We recommend the reader to redo
the calculation using an arbitrary point a > 0 as intermediate, and to verify
that one finds the same result.

Exercise. For every ϕ ∈ D put

T (ϕ) = lim
ε→0

∫
|x|>ε

ϕ(x)dx/x.

Show that the limit exists and that T is a distribution. Calculate its deriva-
tive, and a “primitive”.
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Introduction to the Lebesgue Theory

In Volume IV, Chapter XI we shall expound in detail the theory invented
in about 1900 by Henri Lebesgue, which all mathematicians have used for
a long time. One can, nevertheless, give a good idea of it in fifteen or so
pages since, apart from Dini’s Theorem, the arguments used are technically
very simple: the usual operations of set theory (including the generalities of
Chap. I on countable sets), very simple inequalities (the triangle inequality,
the generalities of Chap. II, n◦ 17 on infinite limits), the definition and prop-
erties of upper bounds and of absolutely convergent series. The difficulty is
not in proving the theorems; it is to present them in a logically coherent
order, as in any theory when one wants to reach difficult theorems starting
from almost nothing. We shall adopt the method perfected about fifty years
ago by N. Bourbaki.

In what follows we shall write X for the set on which we intend to develop
the integration theory; X is then a locally compact subset of C, for example
an interval of any kind in R or, in the general case, the intersection of an open
and a closed set in C. We shall write L(X) for the set of complex continuous
functions defined on X and zero outside a compact subset of X; a positive
measure on X is thus, by definition, a linear map

µ : L(X) −→ C

such that µ(f) ≥ 0 for every f ≥ 0. The most important case at our level
is naturally that of the usual Lebesgue measure on an interval of R, but to
restrict oneself to this does not simplify anything in the proofs or their state-
ments. Recall that for every function f with complex values the symbol |f |
denotes the function x 
→ |f(x)|.

(i) Integration of lsc functions . As we saw in n◦ 31, we can immediately
define the upper integral µ∗(ϕ) of a real lsc function on X so long as we
assume ϕ positive outside a compact K ⊂ X; we shall write I (X) = I for
the set of these functions. The upper integral

µ∗(ϕ) = sup
f≤ϕ,f∈L(X)

µ(f)
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is always defined for ϕ ∈ I , and we have −∞ < µ∗(ϕ) ≤ +∞. The whole
Lebesgue theory can be constructed with the help of these functions and of
their upper integrals. Their properties are strictly the same as in n◦ 11:

(L 1) We have µ∗(ϕ + ψ) = µ∗(ϕ) + µ∗(ψ) for any ϕ,ψ ∈ I .

(L 2) If Φ ⊂ I is an increasing philtre

µ∗(supϕ) = supµ∗(ϕ)(1)

and in particular µ∗(supϕn) = supµ∗(ϕn) for every increasing sequence.

(L 3) We have µ∗(
∑

ϕn) =
∑

µ∗(ϕn) for any positive ϕn ∈ I .

(L 1) and (L 2) are proved as in n◦ 11, using Dini’s theorem (n◦ 30).

(ii) Measure of an open set. For every open set U in X one puts

µ∗(U) = µ∗(χU )

where the function χU , equal to 1 on U and to 0 on X − U , is lsc since U
is open in X. The statements (i’), (ii’) and (iii’) of n◦ 11 are still valid here
because they are mere translations of (L 1), (L 2) and (L 3). Note that if X
is not compact then µ∗(U) can take the value +∞.

(iii) Upper integral of a positive function Now consider a function f on
X, with values in [0,+∞]. There exist functions ϕ ∈ I such that ϕ ≥ f ,
for example the function everywhere equal to +∞. So we define the upper
integral of f by putting

µ∗(f) = inf
ϕ≥f

µ∗(ϕ) ≤ +∞.(2)

Despite the notation, this definition is not identical to that of n◦ 1: for the
Dirichlet function one has µ∗(f) = 1 in the Riemann theory, but µ∗(f) = 0 in
the Lebesgue theory as we shall see below. If f is lsc and a fortiori continuous,
the definition (2) provides the same value as (1) since f appears among those
ϕ ∈ I which majorise f . Another trivial point, always useful, is that

f ≤ g =⇒ µ∗(f) ≤ µ∗(g).

For every set A ⊂ X one similarly puts

µ∗(A) = µ∗(χA),(3)

the upper integral of the characteristic function of A; as in the case of open
sets, the properties of the measures of sets will be obtained immediately, at
the end of this Appendix, by applying to their characteristic functions the
statements valid for arbitrary functions. For the moment let us just note that
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A ⊂ B =⇒ µ∗(A) ≤ µ∗(B).

For a function f with complex (or even vector) values one puts80

N1(f) = µ∗(|f |) ≤ +∞.(4)

We always have

N1(f + g) ≤ N1(f) + N1(g);(5)

this is clear if one of the terms on the right hand side is infinite; in the
opposite case, and by definition, for any r > 0 there exist lsc functions ϕ and
ψ such that

|f | ≤ ϕ, µ∗(ϕ) ≤ µ∗(|f |) + r, |g| ≤ ψ, µ∗(ψ) ≤ µ∗(|g|) + r;

then |f + g| ≤ ϕ + ψ, whence, from (L 1),

µ∗(|f + g|) ≤ µ∗(ϕ + ψ) = µ∗(ϕ) + µ∗(ψ) ≤ µ∗(|f |) + µ∗(|g|) + 2r,

qed.
We also have

N1(λf) = |λ|N1(f)(6)

for every scalar λ so long as we agree, as everywhere in this context, that

0. + ∞ = 0

since N1(0) = 0. This convention must particularly be respected when cal-
culating a product fg of two functions: if for example we have f(x) = 0 and
g(x) = +∞ for an x ∈ X we must agree that fg is zero at the point x.

If one denotes by F 1(X;µ) = F 1 the set of complex functions such that
N1(f) < +∞ one obtains a vector space on which the function N1 is a norm
– up to one “detail”: the relation N1(f) = 0 does not imply f = 0.

The first important statement is the following:

(L 4) If f(x) =
∑

fn(x) ≤ +∞ is the sum of a series of positive functions,
then

µ∗(f) ≤
∑

µ∗(fn).(7)

There is nothing to prove if the right hand side is infinite. If it is finite there
exists, for r > 0 given, and for every n, a function ϕn ∈ I satisfying fn ≤ ϕn,
µ∗(ϕn) ≤ µ∗(fn) + r/2n: this is definition (2); the function ϕ =

∑
ϕn is lsc,

it majorises f , and, from (L 3),
80 N1(f) is often written ‖f‖1 in spite of the fact that N1(f) = 0 does not imply

f = 0. We shall also use the notation N1(f) = µ∗(f) for functions with values
in [0, +∞].
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µ∗(f) ≤ µ∗(ϕ) =
∑

µ∗(ϕn) ≤
∑

[µ∗(fn) + r/2n] = r +
∑

µ∗(fn),

qed. Here we note the appearance of a “trick” apparently unknown before
Borel and Lebesgue, despite its simplicity: to use the formula r =

∑
r/2n to

estimate the sum of a series in a controlled way. The only importance of the
numbers 1/2n is that their sum is 1. (7) implies

µ∗(
⋃

An) ≤
∑

µ∗(An)(7’)

for any sets An ⊂ X, because the characteristic function χ of the union of
the An is majorised by the sum of the characteristic functions χn of the An.
Do not believe that you will obtain an equality if you assume that the An

are pairwise disjoint: for this you have also to assume that the An are “mea-
surable”, as we shall see.

(iv) Sets of measure zero. The relation (15’) suggests the notion of a set
of measure zero or negligible, i.e., such that

µ∗(N) = µ∗(χN ) = 0.(8)

This is equivalent to requiring that, for every r > 0, there exists an open set
U in X such that

N ⊂ U & µ∗(U) ≤ r.(8’)

First of all, (8’) implies (8) since µ∗(N) ≤ µ∗(U). If, conversely, N satisfies
(8), there exists for every r > 0 a ϕ ∈ I such that ϕ ≥ χN and µ∗(ϕ) ≤ r;
the relation ϕ(x) > 1/2 defines an open U ⊃ N for which χU ≤ 2ϕ, whence

µ∗(U) = µ∗(χU ) ≤ 2µ∗(ϕ) ≤ 2r

and (8’).

(L 5) Every subset of a negligible set is negligible; the union of a finite or
countable family of negligible sets is negligible.

Use (3) and (7’).
For the usual Lebesgue measure (8’) shows that a singleton set is negli-

gible. Then so is every countable set, for example the set of {x ∈ X} with
rational coordinates, even though this set is everywhere dense in X. But the
converse is false. The most famous counterexample (see the end of this (viii))
is Cantor’s triadic set in X = [0, 1] consisting of the x ∈ X which can be
written in base 3 enumeration without using the digit 1. For all that, one
cannot deduce from this that every union of negligible sets is negligible: if
such were the case, every set would be negligible, being the union of singleton
sets! Countability is essential in (L 5).

When one has a relation P{x} depending on a variable x ∈ X, for example
f(x) ≥ g(x), one says that P{x} is true almost everywhere (a.e.) if the set
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of x such that P{x} is not true is of measure zero. If one has a finite or
countable family of statements Pn{x} and if each of them, taken separately,
is true almost everywhere, i.e., outside a negligible set Nn, then they are
simultaneously true outside N =

⋃
Nn, so almost everywhere, from (L 5).

For example, the sum of a series of functions that are zero almost everywhere
is zero almost everywhere, similarly the product of two almost everywhere
zero functions, their upper envelope, etc.

The set of complex-valued functions that are almost everywhere zero,
or, as one says, negligible, is thus a vector subspace N of F 1. One might
prefer never to meet these functions, known to exist only in the sense of
mathematical logic, but it is not generally the theory of integration which
allows one to eliminate, even less to exhibit them. They serve essentially
to camouflage the horrors “of no importance” since they do not count in
calculating integrals: even in the simple Riemann theory one knows that if
two regulated functions are equal outside a countable set their integrals are
equal (n◦ 7, Theorem 7).

(L 6) Let f be a function with complex values; then

N1(f) = 0 ⇐⇒ f(x) = 0 a.e.(9)

If f is a function with values in [0,+∞] then

N1(f) < +∞ =⇒ f(x) < +∞ a.e.(10)

Assuming µ∗(|f |) = 0, for every integer p ≥ 1 consider the set Np =
{|f(x)| > 1/p} and write χp for its characteristic function. We have |f | >
χp/p, whence µ∗(Np) = µ∗(χp) ≤ pµ∗(|f |) = 0. Being the union of the Np

the set N = {f(x) �= 0} is of measure zero, by (L 5). Assume conversely that
N is of measure zero, and now put

Np = {p < |f(x)| ≤ p + 1} ⊂ N

for every p ≥ 0, and let χp be the characteristic function of Np. It is clear that
|f |χp ≤ (p + 1)χp whence µ∗(|f |χp) ≤ (p + 1)µ∗(χp) = 0 since Np, contained
in N, is of measure zero, by (L 5). Since |f | =

∑ |f |χp we have µ∗(|f |) = 0
by (L 4), whence (9).

To prove (10), put Ap = {f(x) > p} for every p ≥ 1 and again let χp be the
characteristic function of Ap. We have f > pχp, whence µ∗(χp) ≤ µ∗(f)/p.
Since the set N = {f(x) = +∞} is the intersection of the Ap, we obtain
µ∗(N) ≤ µ∗(f)/p for every p, whence µ∗(N) = 0 if µ∗(f) < +∞, qed.

(L 6) shows that if two functions f and g are equal almost everywhere
then N1(f) ≤ N1(g)+N1(f −g) = N1(g), by (9); by symmetry, one sees that

f = g a.e. =⇒ N1(f) = N1(g).(11)

The number N1(f) thus depends only on the equivalence class of f modulo
the vector subspace N of negligible functions; on writing f̃ for this class, i.e.
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the set of all the functions almost everywhere equal to f (Chap. I, end of
n◦ 4), we put (but see footnote80)

||f̃ ||1 = N1(f).(12)

The relations (5) and (6) are valid for these classes, and as we have done
what was strictly necessary for ||f̃ ||1 = 0 to imply f(x) = 0 a.e., i.e. f̃ = 0,
we see that the quotient space

F 1 = F 1/N

is a true normed vector space (Appendix to Chap. III, n◦ 5).

(v) Integrable functions . This done, a function f with complex values will
be said to be integrable on X for the measure considered if, for every r > 0,
there exists a continuous function g ∈ L(X) such that

N1(f − g) = µ∗(|f − g|) < r(13)

or, equivalently, if there exists a sequence of continuous functions fn ∈ L(X)
such that

lim N1(f − fn) = 0;(13’)

if so one defines the integral of f by

µ(f) =
∫

f(x)dµ(x) = limµ(fn).(14)

As in n◦ 2 of § 1, this limit exists and does not depend on the sequence (fn)
chosen. For

|µ(fp) − µ(fq)| = |µ(fp − fq)| ≤ µ(|fp − fq|) = N1(fp − fq)
≤ N1(fp − f) + N1(f − fq);

the sequence µ(fn) thus satisfies Cauchy’s criterion. If another sequence (gn)
of continuous functions satisfies (13’), then similarly

|µ(fn) − µ(gn)| ≤ µ(|fn − gn|) = N1(fn − gn)
≤ N1(fn − f) + N1(f − gn),

whence lim µ(fn) − µ(gn) = 0, qed.
Integrable functions have properties which are almost trivial, and others

which are less so. Let us start with the first.
It is immediately obvious that every function f ∈ L(X) is integrable [take

g = f in (13)] and that its Lebesgue integral is equal to the number µ(f),
the value at f of the linear form µ : L(X) −→ C.
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If f and g are equal almost everywhere and if f is integrable, then g is
integrable and µ(f) = µ(g) because, in (13’), N1(f − fn) is unchanged if we
replace f by g. This allows us to say that a function f defined outside a
negligible set N ⊂ X is integrable if any function g everywhere defined and
such that f = g outside N is so; one then defines µ(f) = µ(g).

(13’) shows further that N1(f) = limN1(fn) = limµ(|fn|). Now we know
that |µ(fn)| ≤ µ(|fn|) since we are dealing with continuous functions (same
proof as in n◦ 2, Theorem 1). Thus

|µ(f)| = lim |µ(fn)| ≤ lim µ(|fn|) = limN1(fn),

whence

|µ(f)| ≤ N1(f)(15)

for every integrable function f.

(L 7) If f is integrable then so is |f | and

N1(f) = µ(|f |) =
∫

|f(x)|dµ(x).(16)

To prove this we go back again to (13’) and (14). Using the fact that∣∣|u| − |v|∣∣ ≤ |u − v| for any u, v ∈ C we obtain the inequality
∣∣|f | − |fn|

∣∣ ≤
|f − fn|; this shows that limN1(

∣∣|f | − |fn|
∣∣) = 0; since the functions |fn| are

in L(X), |f | is integrable and we have µ(|f |) = limµ(|fn|) by definition of the
integral. Now N1(fn) converges to N1(f). Like (16), the definition of N1(f)
for every continuous function f applies to the fn so

N1(f) = limN1(fn) = limµ(|fn|) = µ(|f |),
qed.

(L 8) If f and g are integrable then so are αf + βg for any α, β ∈ C and

µ(αf + βg) = αµ(f) + βµ(g).(17)

Let (fn) and (gn) be sequences in L(X) such that limN1(f − fn) =
lim N1(g − gn) = 0. The triangle inequality

N1[(αf + βg) − (αfn + βgn)] ≤ |α|N1(f − fn) + |β|N1(g − gn)

proves the integrability of αf+βg. Moreover, by the definition of the integral,

µ(αf + βg) = limµ(αfn + βgn) = limαµ(fn) + βµ(gn),

whence (17).

(L 9) Let (fn) be a sequence of integrable functions and f a function such
that lim N1(f − fn) = 0. Then f is integrable and
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∫
f(x)dµ(x) = lim

∫
fn(x)dµ(x).(18)

For every r > 0 we have N1(f − fn) < r for all sufficiently large n; on
the other hand, for every n there exists a function gn ∈ L(X) such that
N1(fn − gn) < 1/n; for n large we thus have N1(f − gn) < r + 1/n < 2r,
whence the integrability of f. Moreover, from (L 8) and (15),

|µ(f) − µ(fn)| = |µ(f − fn)| ≤ N1(f − fn),

whence (18).

(L 10) If f and g are integrable and real-valued then inf(f, g) and sup(f, g)
are integrable.

Since we know that f − g and |f − g| are integrable, it is enough, as in
n◦ 2, Theorem 2, to show that f+ is integrable. To do this one uses (13’) and
the inequality |f+ − g+| ≤ |f − g|, valid for any real f and g, qed.

(L 11) A function ϕ ∈ I is integrable if and only if µ∗(ϕ) < +∞. If so,
µ(ϕ) = µ∗(ϕ).

Whether ϕ is or is not lsc, the condition µ∗(ϕ) < +∞ is necessary. If it is
satisfied there exists for every r > 0 a continuous function f ≤ ϕ such that

µ(f) ≤ µ∗(ϕ) ≤ µ(f) + r;

since ϕ = f + (ϕ − f) = f + |ϕ − f | and since f and ϕ − f are lsc since f is
continuous, we have µ∗(ϕ) = µ(f) + µ∗(|ϕ − f |) and so

N1(ϕ − f) = µ∗(|ϕ − f |) = µ∗(ϕ) − µ(f) ≤ r

from (L 1); whence the integrability of ϕ. The preceding relation also shows
that

|µ(ϕ) − µ(f)| ≤ N1(ϕ − f) = |µ∗(ϕ) − µ(f)| ≤ r,

whence µ(ϕ) = µ∗(ϕ), qed.

(vi) Convergence in mean: Cauchy’s criterion. We say that the functions
fn converge in mean to a function f when lim N1(f − fn) = 0, i.e.

lim
∫

|f(x) − fn(x)|dµ(x) = 0

from (L 7); sometimes one writes the preceding relation in the simpler form

f(x) = l.i.m. fn(x),

the limit in mean.
We shall show that Cauchy’s criterion is valid for convergence in mean;

this is not so in the Riemann theory and this is one of the fundamental break-
throughs accomplished by Lebesgue (or rather by his immediate successors).
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First we prove the following result:

(L 12) Let (fn) be a series of integrable functions such that

∑∫
|fn(x)|dµ(x) =

∑
N1(fn) < +∞.

Then
∑ |fn(x)| < +∞ a.e., every function f such that f(x) =

∑
fn(x) a.e.

is integrable, and

limN1(f − f1 − ... − fn) = 0,∫
f(x)dµ(x) =

∑∫
fn(x)dµ(x),

∑∣∣∣ ∫ fn(x)dµ(x)
∣∣∣ < +∞.

We put F (x) =
∑ |fn(x)| ≤ +∞; from (L 4) we have N1(F ) ≤∑

N1(fn) < +∞, so F (x) < +∞ a.e. from (L 6), so that the series
∑

fn(x)
converges absolutely almost everywhere. Let f be a function almost every-
where equal to the sum of this series. Since |f(x)| ≤ F (x) a.e. we have

N1(f) = µ∗(|f |) ≤ µ∗(|F |) = N1(F ) ≤
∑

N1(fn).

If we suppress the first p terms of the given series we replace f by a function
equal almost everywhere to f −(f1 + ...+fp), whence, by the same argument,

N1(f − f1 − ... − fp) ≤
∑
q>p

N1(fq),(19)

which is arbitrarily small for p large. Since f1 + ... + fp is integrable, so is f ,
by (L 9), and

µ(f) = limµ(f1 + ... + fp) =
∑

µ(fp).(20)

The series is absolutely convergent since |µ(fp)| ≤ N1(fp), qed.
One should notice the difference between (L 12) and the elementary the-

orems on term-by-term integration of normally convergent series (n◦ 4): con-
vergence (almost everywhere!) of the series

∑ |fn(x)| is a consequence, and
no longer a cause, of the relation

∑
m(|fn|) < +∞.

We can now establish Cauchy’s criterion for the convergence in mean.

(L 13) (Riesz-Fischer Theorem81) If a sequence (fn) of integrable func-
tions satisfies Cauchy’s criterion for convergence in mean then it converges
81 This result shows that the the normed vector space of classes of integrable func-

tions is complete, i.e. is a Banach space (Appendix to Chap. III, n◦ 5). His-
torically, a large part of the theory of Banach spaces has been motivated by
integration theory.
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in mean to an integrable function f and one can extract a subsequence dom-
inated by an integrable function and converging almost everywhere to f.

Suppose that for every r > 0

N1(fs − ft) < r for s and t large.

We are to prove the existence of an integrable function f such that limN1(f−
fn) = 0. As in every metric space it is enough to show that from the given
Cauchy sequence we can extract a subsequence which converges in mean: see
the first proof of the usual Cauchy criterion in Chap. III, n◦ 10, Theorem 13.

For every s ∈ N denote by ns the least integer such that

k ≥ ns & h ≥ ns =⇒ N1(fk − fh) ≤ 1/2s.

It is clear that ns ≤ ns+1. So

N1(fns+1 − fns
) ≤ 1/2s for every s.(21)

For the differences

gs = fns+1 − fns
,(22)

which are integrable, by (L 8), we therefore have
∑

N1(gs) < +∞. By (L 12),
the series

∑
gn converges absolutely almost everywhere and its sum g is also

the limit in mean of its partial sums. But (22) shows that

g1(x) + ... + gs(x) = fns+1(x) − fn1(x).(23)

Since the left hand side tends to g(x) a.e., we deduce that

lim fns
(x) = g(x) + fn1(x)

exists almost everywhere; if we denote by f the function on the right hand
side – its values at the points where the limit does not exist can be chosen
arbitrarily –, we have

g − g1 − ... − gs = f − fns+1 a.e.(24)

by (23), so
lim N1(f − fns+1) = 0,

by (L 11). We have thus extracted from fn a subsequence which converges
to f both almost everywhere and in mean. It remains to show the existence
of an integrable function p ≥ 0 such that

|fns
(x)| ≤ p(x)

for every s and every x. But (24) shows that
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|fns+1 | ≤ |f | + |g| +
∑

|gn|

and we know that f , g and the sum of the series
∑ |gn| are integrable, qed.

The statement (L 13) applies in particular to every sequence (fn) which
converges in mean since such a sequence trivially satisfies Cauchy’s criterion.
It does not follow that it converges almost everywhere: we know only that we
can extract a subsequence converging a.e. But if, for some other reason, one
also knows that lim fn(x) = g(x) exists a.e. then g is necessarily the limit in
mean of fn. Indeed, the limit in mean f is actually the limit a.e. of a sequence
gn extracted from the given sequence; if lim fn(x) = g(x) outside a negligible
set N and lim gn(x) = f(x) outside of negligible set N ′ then f(x) = g(x)
outside N

⋃
N ′. In other words:

(L 14) If a sequence of integrable functions fn converges in mean to a
function f and almost everywhere to a function g, then f = g almost every-
where.

Since every integrable function f is, by definition, the limit in mean of
functions belonging to L(X), the Riesz-Fischer theorem shows the existence
of a sequence (fn) of continuous functions of compact support such that
f(x) = lim fn(x) almost everywhere; one can even assume the fn dominated
by an integrable function.

Exercise. Let f be an integrable real function. (i) Show that there are
fn ∈ L(X) such that∑

N1(fn) < +∞,
∑

fn(x) = f(x) a.e.

(ii) Put ϕ′(x) =
∑

f+
n (x) and ϕ′′(x) =

∑
f−

n (x). Show that ϕ′ and ϕ′′ are
lsc, integrable, and that f = ϕ′ − ϕ′′ almost everywhere (compare with note
23 of n◦ 11).

(vii) Lebesgue’s grand theorem. Theorem (L 19) below, without doubt the
most useful of the whole theory, is the definitive version of the “dominated
convergence” theorem of which we gave a pale unproven glimpse in n◦ 4.

(L 15) Let (fn) be an increasing sequence of integrable real functions.
For f = sup fn = lim fn to be integrable it is necessary and sufficient that
supµ(fn) < +∞. If so

lim N1(f − fn) = 0, µ(f) = limµ(fn).

The necessity of the condition is clear since fn ≤ f for every n. If it is satisfied
the relation

N1(fq − fp) = µ(fq − fp) = µ(fq) − µ(fp),

valid for p < q by (23), shows that (fn) is a Cauchy sequence for convergence
in mean. It therefore converges in mean, necessarily to the function f(x) =
lim fn(x) by (L 14), qed.
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(L 16) Let (fn) be a countable family of integrable real functions; for the
upper envelope f(x) = sup fn(x) to be integrable it is necessary and sufficient
that the fn be dominated by a function with finite upper integral.

If f is integrable, it is clear that the condition is satisfied. If con-
versely we have fn ≤ p where µ∗(p) < +∞, the partial upper envelopes
gn = sup(f1, ..., fn), which are integrable by (L 10), form an increasing se-
quence whose integrals are all ≤ µ∗(p); since sup(fn) = sup(gn), we need
only apply (L 15).

(L 17) Every decreasing sequence (fn) of positive integrable functions
converges in mean to the integrable function f(x) = lim fn(x).

Recall first that in R every decreasing sequence with positive terms con-
verges (even when all the terms are equal to +∞) and therefore satisfies
Cauchy’s criterion if its limit is finite. This said, for p < q we have

N1(fq − fp) = µ(|fq − fp|) = µ(fq − fp) = µ(fq) − µ(fp)

by (L 7) and (L 8). Now the sequence µ(fn) ∈ R is decreasing and has positive
terms, hence converges; so N1(fq − fp) ≤ r for p and q large. The function
f(x) = lim fn(x) is almost everywhere finite since µ∗(f) ≤ µ∗(fn) for every
n; it therefore converges almost everywhere to f ; by (L 14) this is the limit
in mean of fn, qed.

(L 18) The lower envelope of a countable family of positive integrable
functions is integrable.

Apply (L 17) to the functions inf(f1, ..., fn).

(L 19) (Lebesgue’s dominated convergence theorem) Let (fn) be a se-
quence of integrable functions which converges almost everywhere to a func-
tion f. Assume that there exists a positive function p such that

µ∗(p) < +∞ & |fn(x)| ≤ p(x) a.e. for every n.

Then f is integrable and

f(x) = l.i.m. fn(x),
∫

f(x)dµ(x) = lim
∫

fn(x)dµ(x).

We first show how to write the usual Cauchy criterion in a form adapted
to the following proof.

If (un) is a sequence of complex numbers, this says that, for every r > 0,
there exists an integer n such that |ui − uj | ≤ r for any i, j ≥ n. By the
definition of an upper bound this is equivalent to the relation

sup
i,j ≥n

|ui − uj | ≤ r.

If then one puts
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sup
i,j ≥n

|ui − uj | = vn

for every n, one obtains a decreasing sequence of positive numbers and
Cauchy’s criterion is equivalent to the relation

lim vn = 0.

This established, let us prove (L 19). By (L 14) it is enough to show that
(fn) is a Cauchy sequence for convergence in mean. The sequence of functions

gn = sup
i,j≥n

(|fi − fj |) ≤ 2p

is decreasing. Since N1(|fi −fj |) ≤ N1(gn) for any i, j ≥ n, the proof reduces
to showing that the gn converge in mean to 0. By Cauchy’s criterion in R,
gn(x) converges to 0 at every x where lim fn(x) exists, so almost everywhere.
It is then enough, by (L 14), to show that the gn converge in mean, which
(L 17) guarantees so long as the gn are integrable. Now gn is the upper
envelope of the countable family of the |fi−fj | (i, j ≥ n), and these integrable
functions are dominated by the function 2p, whence the result by (L 16), qed.

(viii) Integrable sets. A set A ⊂ X is said to be integrable if its character-
istic function is integrable; then one puts µ(A) = µ(χA). If A and B ⊂ A are
integrable then so is A − B, by (L 8), and

µ(A − B) = µ(A) − µ(B).

If A and B are integrable so are A∩B and A∪B, by (L 10). If A and B are
equal up to a negligible set, and if one of them is integrable, then so is the
other.

(L 20) Every open or closed set A such that µ∗(A) < +∞ is integrable.
The first case follows from (L 11). The second follows from the first if one

shows that there exists an open integrable U ⊃ A, since then A = U−(U−A)
where U and U −A are open and have finite outer measure, so are integrable.
In fact, more generally,

µ∗(A) = inf
A⊂U

µ∗(U)

for every set A. This is clear if the left hand side is infinite. If it is finite, there
exists for every r > 0 an lsc function ϕ ≥ χA such that µ∗(A) ≤ µ∗(ϕ) ≤
µ∗(A) + r; the open sets Un = ϕ(x) > 1 − 1/n contain A for every n and
µ∗(ϕ) ≥ (1 − 1/n)µ∗(Un), whence

(1 − 1/n)µ∗(Un) ≤ µ∗(A) + r

and therefore µ∗(Un) ≤ µ∗(A) + 2r for n large, qed.
In particular, the set X itself is integrable if and only if µ∗(X) < +∞;

since the function 1 is the upper envelope of f ∈ L(X) such that 0 ≤ f ≤ 1,
and since |f | ≤ ||f ||1 for every f ∈ L(X), we then have
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|µ(f)| ≤ µ(X)||f ||X
for every f ∈ L(X); the measure µ is therefore bounded or of finite total
mass. If, conversely, we have a bound |µ(f)| ≤ M ||f ||X then it is clear that
µ(1) ≤ M.

We also see (in the general case) that every compact set is integrable.

(L 21) The intersection A =
⋂

An of every countable family of integrable
sets is integrable.

The characteristic function χA of A is of course the lower envelope of the
functions χn of the An, whence the result by (L 18). If the sequence (An) is
decreasing, then, by (L 17),

µ(
⋂

An) = limµ(An) = inf µ(An).

(L 22) For the union A =
⋃

An of a countable family of integrable sets to
be integrable it is necessary and sufficient that there exists a set B such that

µ∗(B) < +∞ and An ⊂ B for every n.(25)

Necessity is clear: choose B =
⋃

An. If it is satisfied the characteristic
functions of the An are dominated by the function χB, whence the result by
(L 16).

Further,
µ(
⋃

An) ≤
∑

m(An)

by (3’), with equality if the An are pairwise disjoint, by (L 12).
When the sequence An is increasing (L 15) allows one to replace the

condition (25) by supµ(An) < +∞; then

µ(A) = limµ(An) = supµ(An).

Let us show for example that the Cantor set C is of measure zero (for
Lebesgue measure on R). This set is constructed by removing from [0, 1]
its middle interval ]1/3, 2/3[, then from each of the two remaining intervals
their middle interval, then from each of the four remaining intervals their
middle interval, and and so on indefinitely. The total sum of the lengths of
the excluded intervals is equal to

1/3 + 2/32 + 22/33 + ... = 1,

and since they are pairwise disjoint, we have m([0, 1] − C) = 1, whence
m(C) = 0.

(viii) Measurable sets. We say that a set A ⊂ X is measurable if A ∩ K
is integrable for every compact set K ⊂ X. It is clear that every integrable
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set is measurable, as well as X, or the complement of any measurable set, or
the union and intersection of a countable family of measurable sets.

Every open or closed set M is measurable; if M is closed, M∩K is compact
and so integrable for every compact K ⊂ X, so that M is measurable. If M
is open then X − M is closed, so measurable, hence M is too.

These results allow us, starting from open sets, closed sets and from sets
of measure zero, to construct extraordinarily complicated measurable sets:
countable intersections of countable unions of countable intersections of open
sets, for example. In fact, the difficulty is rather to construct nonmeasurable
sets explicitly, a practically impossible task without using transfinite induc-
tion as in Chap. I in some form or another. In current practice one has no
chance of meeting nonmeasurable sets; even so this is no excuse for evading
proofs of measurability . . .

(L 23) For a measurable set A to be integrable it is necessary and sufficient
that µ∗(A) < +∞.

Assume we have proved that X is the union of a countable family of
compact Kn; since the A ∩ Kn are by hypothesis integrable, the set

A =
⋃

A ∩ Kn

is then integrable by (L 22). It remains to prove the existence of Kn. It is
obvious if X is an interval in R. If X is an open subset of C let D be the
set, countable, of x ∈ X with rational coordinates. For every x ∈ X there
exists an n such that the closed disc B(x, 1/n) is contained in U, then a
d ∈ D such that |x− d| ≤ 1/2n; the closed disc D(d, 1/2n) is then contained
in B(x, 1/n) ⊂ X and contains x. This shows that X is the union of a
countable family of compact discs of the form B(d, 1/p), whence the result.
If finally X = U ∩ F with U open and F closed, and if U =

⋃
Kn, then

X =
⋃

Kn ∩ F, qed.
The preceding result shows that the notion of measurable set does not

differ from that of an integrable set except when µ(X) = +∞.
To conclude, let us give a characterisation of integrable real functions

which will lead us back to Lebesgue’s original point of view:

(L 24) Let f be a real function such that N1(f) < +∞. For f to
be integrable it is necessary and sufficient that, for any a and b the set
{a ≤ f(x) ≤ b} should be measurable.

To establish the necessity of the condition one chooses a sequence of
functions fn ∈ L(X) and a negligible set N such that f(x) = lim fn(x) for
every x ∈ X − N. Since

[a, b] =
⋂

]a − 1/p, b + 1/p[,

the relation a ≤ f(x) ≤ b means that for every p one has

a − 1/p < fn(x) < b + 1/p for every sufficiently large n.(26)
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For n and p given (26) defines an open Up,n and the x ∈ X − N such that
(26) is satisfied for every n ≥ q are the points of the measurable set

Up,q ∩ Up,q+1 ∩ ... = Ap,q.

For p given the x satisfying (26) are thus the elements of the measurable set

Ap,1 ∪ Ap,2 ∪ ... = Bp.

Finally, to say that (26) holds for every p means that x belongs to the mea-
surable set B =

⋂
Bp. Since the set defined by the condition a ≤ f(x) ≤ b is

equal to B to within a negligible set, it is measurable.
Suppose conversely that the set {a ≤ f(x) ≤ b} is measurable for any a

and b, and assume first that f ≥ 0. For n, p ≥ 1 let us put

An,p =
{ p

n
≤ f(x) <

p + 1
n

}
.

Since
[a, b[=

⋃
[a, b − 1/q]

the set An,p is the union of a countable family of sets of the form {u ≤ f(x) ≤ v},
so is measurable. If χn,p is the characteristic function of An,p then χn,p ≤
nf(x)/p; since we have assumed N1(f) finite the function χn,p is integrable
by (L 23), and so also is the function

fn(x) =
∑

1≤p≤n2

p

n
χn,p.

We have fn(x) ≤ f(x) for any n and x, as well as

f(x) − fn(x) ≤ 1/n if f(x) ≤ n

as a figure, that of n◦ 30 for example, will show better than a calculation.
It follows that f(x) = lim fn(x) for every x, whence the integrability of f+,
by the dominated convergence theorem. Finally, if f is not positive, apply (L
24) to f+ and f−, qed.

If one accepts that every reasonable set is measurable, it follows that in
practice all the functions one meets in classical analysis are integrable, so
long, of course, as N1(f) < +∞.

Exercise. Assume that X is an interval R, choose an a ∈ X, and, for every
x ∈ X, define

µ(x) =
{

µ([a, x]) if x ≥ a
−µ(]a, x[) if x < a.

Show that µ(x) is increasing, right continuous, and that, for every f ∈ L(X),
µ(f) is the Stieltjes integral of f with respect to the function µ(x).



VI – Asymptotic Analysis

§ 1. Truncated expansions – § 2. Summation formulae

§ 1. Truncated expansions

1 – Comparison relations

Recall that in Chap. II, n◦ 3 and 4, we introduced relations which, given
scalar functions defined on a set X ⊂ R, allowed us to compare their “orders
of magnitude” on a neighbourhood of a point a adherent to X, the case
a = +∞ or −∞ not excluded, quite the contrary. These are the following:

f(x) = O(g(x)) when x → a,(1.1)

which is equivalent to the existence of a constant M ≥ 0 such that |f(x)| ≤
M |g(x)| for every x ∈ X near to a;

f(x) � g(x) when x → a,(1.2)

which means that simultaneously f(x) = O(g(x)) and g(x) = O(f(x));

f(x) ∼ g(x) when x → a,(1.3)

equivalent to
lim
x→a

f(x)/g(x) = 1;

and finally

f(x) = o(g(x)) when x → a,(1.4)

which is equivalent to lim f(x)/g(x) = 0.
We also saw that (3) can be expressed as

f(x) = g(x) + o(g(x))
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since |f(x)/g(x) − 1| ≤ ε can be written as |f(x) − g(x)| ≤ ε|g(x)|.
Chapter IV provided us with formulae of this type applicable to the power,

exponential and logarithmic functions:

xb = O(xa), x → 0 ⇐⇒ Re(b) ≥ Re(a),(1.5)
xb = o(xa), x → 0 ⇐⇒ Re(b) > Re(a),(1.6)
xb = O(xa), x → +∞ ⇐⇒ Re(b) ≤ Re(a),(1.7)
xb = o(xa), x → +∞ ⇐⇒ Re(b) < Re(a),(1.8)
xs = o(ax), x → +∞ if a > 1, s ∈ C,(1.9)

log x = o(xs), x → +∞ if Re(s) > 0,(1.10)
log x = o(1/xs), x → 0 if Re(s) > 0.(1.11)

It is useful to remember the three last formulae as:

lim a−xxs = 0 when x → +∞ if a > 1, s ∈ C,

lim xs log x = 0 when x → +∞ if Re(s) < 0,

lim xs log x = 0 when x → 0 if Re(s) > 0.

The theory of power series and Taylor’s formula provide other general
results. For a power series

f(x) = amxm + . . . + apx
p + arx

r + . . .

where we write only the nonzero terms, we have

f(x) − (amxm + . . . + apx
p) ∼ arx

r when x → 0(1.12)

since the left hand side can be written arx
r(1+?x + . . .) with a series which

tends to 1; this leads to formulae such as

ex = 1 + x + x2/2 + x3/6 + o(x3),
log(1 + x) = x − x2/2 + x3/3 − x4/4 + O(x5),

etc. when x → 0. As for Taylor’s Formula, this shows that if a function f is
of class Cn+1 on a neighbourhood of a point a ∈ R, then

f(a + h) = f(a) + f ′(a)h + . . . + f (n)(a)hn/n! + O
(
hn+1
)

(1.13)

as h → 0 and even

f(a + h) −
[
f(a) + f ′(a)h + . . . + f (n)(a)hn/n!

]
∼(1.14)

∼ f (n+1)(a)hn+1/(n + 1)!

if f (n+1)(a) �= 0 [Chap. V, eqn. (18.11) and (18.14)].
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2 – Rules of calculation

The symbols O and o obey rules of calculation which are easy to remember
and also to prove, with the exception of those which apply to the quotients of
asymptotic relations. We shall restrict ourselves to stating them in telegraphic
style – there is little point in discussing them at length when we have already
used them on several occasions in the preceding chapters – with minimal
indications of their proofs.

f = O(g) & g = O(h) =⇒ f = O(h).(2.1)

For if |f(x)| ≤ A|g(x)| and if |g(x)| ≤ B|h(x)|, then |f(x)| ≤ AB|h(x)|.

f = O(g) & g = o(h) =⇒ f = o(h).(2.2)

For if |f(x)| ≤ A|g(x)| and if |g(x)| ≤ r|h(x)|, then |f(x)| ≤ ε|h(x)| provided
r ≤ ε/A.

f = O(h) & g = O(h) =⇒ f + g = O(h).(2.3)
f = o(h) & g = o(h) =⇒ f + g = o(h).(2.4)
f ′ = O(g′) & f ′′ = O(g′′) =⇒ f ′f ′′ = O(g′g′′).(2.5)
f ′ = O(g′) & f ′′ = o(g′′) =⇒ f ′f ′′ = o(g′g′′).(2.6)

One might also write some of these rules in the following way, remem-
bering the fact that a symbol such as O(g) denotes any function f such that
f = O(g):

O(h) + O(h) = O(h), o(h) + o(h) = o(h),

O(o(h)) = o(O(h)) = o(h),

O(g)O(h) = O(gh), O(g)o(h) = o(gh).

Example 1. Let us multiply term-by-term the relations

ex = 1 + x + x2/2 + O(x3), sin x = x − x3/6 + O(x5)

valid for x → 0; calculating à la Newton one finds

ex sin x = (1 + x + x2/2)(x − x3/6) + (1 + x + x2/2)O(x5) +
+ (x − x3/6)O(x3) + O(x3)O(x5) =

= x + x2 + x3/3 − x4/6 − x5/12 + O(x4) + O(x5) + . . . + O(x8);

but as xn = O(x4) for n ≥ 4 we have

ex sin x = x + x2 + x3/3 + O(x4);

one cannot derive anything more precise starting from these relations.



198 VI – Asymptotic Analysis

Example 2. When x → 0,(
x4 + x2

)1/3
= x2/3

(
1 + x2
)1/3

= x2/3
[
1 + x2/3 − x4/9 + O(x6)

]
by the binomial series, whence(

x4 + x2
)1/3

= x2/3 + x8/3/3 − x14/3/9 + O(x20/3).

In these calculations we have used the fact that xaO(xb) = O(xa+b), a par-
ticular case of (5).

There are also rules concerning the relation f ∼ g.

f ∼ g & g ∼ h =⇒ f ∼ h.(2.7)

For f = g + o(g) = h + o(h) + o(h + o(h)) = o(h) + o(O(h)) = h + o(h).

f ′ ∼ g′ & f ′′ ∼ g′′ =⇒ f ′f ′′ ∼ g′g′′ and f ′/f ′′ ∼ g′/g′′.(2.8)

For f ′f ′′/g′g′′ = (f ′/g′)(f ′′/g′′), the product of two ratios tending to 1, etc.
Or simply multiply the relations f ′ = g′ + o(g′) and f ′′ = g′′ + o(g′′).

Example 3. Consider the ratio

x2 − x + log x

x2 − (log x)2

as x tends to +∞. In the numerator, x and log x are o(x2), so it is ∼ x2. In
the denominator, log x is o(x), so (log x)2 is o(x2), so that the denominator
also is ∼ x2. The fraction we are considering therefore tends to 1 as x → +∞.

As we have already noted elsewhere, at infinity a polynomial is equivalent
to its term of highest degree; a rational fraction is therefore equivalent to the
quotient of the terms of highest degree in its numerator and denominator.

3 – Truncated expansions

The preceding examples – and more so those which follow – show that to
study the behaviour of a function on a neighbourhood of a point a, it is
useful to compare it to functions as simple as possible. If for example the
function is represented by a convergent power series in x−a, one compares it
to the partial sums of the latter, i.e. to polynomials. In general, and even in
the most elementary situations, it is necessary to choose comparison functions
a little less simple.

Assume that one wishes to study the behaviour of a function f near
x = 0, or only when x → 0+. It may happen that there are a constant
a �= 0 and a real exponent s such that f(x) ∼ axs. Then – by definition –
f(x) = axs+o(xs), which encourages us to consider the difference f(x)−axs.
It may happen that there are a constant b �= 0 and a real exponent t such
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that f(x) − axs ∼ bxt; necessarily t > s. It may then happen that there are
a constant c �= 0 and a real exponent u > t such that f(x)−axs − bxt ∼ cxu,
and so on.

In this context we shall call a generalised polynomial any function of the
form

p(x) = a1x
s1 + . . . + anxsn(3.1)

where the ak are nonzero constants and where the real exponents sk satisfy

s1 < s2 < . . . < sn;

we shall then say that f admits a truncated expansion of order s at the origin
if there exists a generalised polynomial p such that

f(x) = p(x) + o(xs) when x → 0.(3.2)

Since xt = o(xs) for t > s, we may assume that, in (1),

s1 < s2 < . . . < sn ≤ s;(3.3)

we then say that p is the principal part of order s of f at the origin.
It is unique, for (2) clearly implies

f(x) = a1x
s1 + o (xs1) ∼ a1x

s1

and so
a1 = lim f(x)/xs1 ,

which determines a1; the higher coefficients are obtained similarly from the
relations

f(x) − a1x
s1 − . . . − akxsk ∼ ak+1x

sk+1 .

It is clear that if one has two expansions f(x) = p(x) + o(xs) and g(x) =
q(x) + o(xs) of the same order, then adding gives a truncated expansion of
f + g. If the orders are different, naturally it is the smallest which is valid for
the sum: from the relations

ex = 1 + x + x2/2 + x3/6 + o(x3), cos x = 1 − x2/2 + x4/24 + o(x5)

one can deduce no more than

ex + cos x = 2 + x + x3/6 + o(x3)

since it might be that ex has a truncated expansion of order 5 containing
nonzero terms in x4 and x5 . . .

It is also easy to multiply truncated expansions term-by-term. An example
will suffice to indicate the method. One writes
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ex cos x =
[
1 + x + x2/2 + x3/6 + o(x3)

]
.
[
1 − x2/2 + x4/24 + o(x5)

]
(3.4)

and multiplies mentally term-by-term; first one sees the terms of the form
axs, then the terms of the form axso(xt) = o(xs+t), and finally a term
o(xs)o(xt) = o(xs+t). Among the terms of the form o(xu) only that or those
having the smallest exponent u are retained since all the others are themselves
o(xu); and among the terms of the form axs, only those of exponent s ≤ u
are to be retained, for the same reason. In the case (4), obviously u = 3
because of the product o(x3).1, so that

ex cos x = 1 + x − x3/3 + o(x3)

without needing to calculate any more terms. The fact that the exponents
may be neither integers nor positive does not change the method at all, since
it rests on the fact that xa = o(xb) for a > b when x tends to 0.

4 – Truncated expansion of a quotient

Suppose we are given two truncated expansions

f(x) = p(x) + o(xs), g(x) = q(x) + o(xt)

on a neighbourhood of x = 0 and seek to deduce the most precise truncated
expansion possible of h(x) = f(x)/g(x). Let bxα be the term of lowest degree
in the generalised polynomial q(x); then

h(x) = f1(x)/g1(x)

where the truncated expansion of g1(x) = b−1x−αg(x) begins with the mono-
mial 1 and is of order t−α, and that of f1(x) = b−1x−αf(x) is now of order
s−α. So we reduce to finding a truncated expansion of 1/g1 in the case where
g1 is of the form

g1(x) = 1 − r(x) + o(xu), r(x) = b2x
u2 + . . . + bnxun ,(4.1)

with nonzero coefficients and exponents satisfying

0 < u2 < . . . < un ≤ u.(4.2)

On putting g2(x) = r(x) + o(xu), whence g1 = 1 − g2, one has

1/g1(x) = 1 + g2(x) + . . . + g2(x)N−1 + g2(x)N/g1(x)(4.3)

for every integer N > 0. The function g2(x)k is a sum of monomials whose
degrees are of the form k2u2+. . .+knun with

∑
ki = k, ki ≥ 0, and of similar

monomials where at least one of the factors is o(xu), so are themselves o(xu).
Since o(xu) already figures in the second term g2(x) of (3) one cannot hope
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to deduce a truncated expansion of the left hand side of order > u from (3).
The last term of (3) is equivalent to its numerator since g1(x) ∼ 1; in the
numerator, g2(x) is equivalent to the term of lowest degree of r(x), whence

g2(x)N/g1(x) ∼ bN
2 xNu2 = bN

2 xNu2 + o
(
xNu2
)
.(4.4)

(3) thus yields a relation of the form

1/g1(x) = 1 + c2x
u2 + . . . + o(xu) + bN

2 xNu2 + o
(
xNu2
)
,

where the inexplicit terms are of degrees > u2.
If Nu2 < u, the term o(xu) is negligible with respect to the second o

and we have only obtained a truncated expansion of order Nu2 < u; if on
the contrary Nu2 ≥ u, the last term of (4) is itself o(xu). Since we have no
wish to spend our energy in vain, nor to lose information, we must choose for
N the smallest integer ≥ u/u2: going further adds only terms all negligible
with respect to xu arising from the powers of g2(x), while not going so far
diminishes the order of the expansion we obtain.

The method is general, but, to gain an understanding, it will be better
to remember the principle and apply it to examples.

Example 1. We seek a truncated expansion of order 1 at x = 0 of the function
h(x) = ex/x2 sin x. Here h(x) ∼ x−3, so that a relation of the form h(x) =
p(x) + o(x) can be written as x3h(x) = q(x) + o(x4). We have to find a
truncated expansion of order 4 for

x3h(x) = ex/(sin x/x),

so for

ex = 1 + x + x2/2 + x3/6 + x4/24 + o(x4),(4.5)

for

sin x/x = 1 − x2/3! + x4/5! + o(x4) = 1 − r(x) + o(x4)(4.6)

and for the reciprocal of (6). Since r(x) is ∼ x2 up to a constant factor, its
square is ∼ x4 and its cube ∼ x6 = o(x4). One may simply write

x/ sin x = 1 +
(
x2/3! − x4/5!

)
+
(
x2/3! − x4/5!

)2
+ o(x4) =

= 1 + x2/3! +
[
(1/3!)2 − 1/5!

]
x4 + o(x4) =

= 1 + x2/6 + 7x4/360 + o(x4).

It remains to multiply by (5) and by x−3, which gives

ex/x2 sin x =
= x−3
(
1 + x + x2/2 + x3/6 + x4/24

) (
1 + x2/6 + 7x4/360

)
+ o(x) =

= 1/x3 + 1/x2 + 2/3x + 1/3 + x/5 + o(x).(4.7)
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This formula provides very precise information on the behaviour of f(x) =
ex/x2 sin x as x tends to 0. To a first approximation, f(x) ∼ 1/x3, which
means that the ratio between the two members tends to 1. But their difference
increases indefinitely, and in a precise way is ∼ 1/x2, which does not prevent
the difference f(x)− 1/x3 − 1/x2 from growing indefinitely and, in fact from
being ∼ 2/3x; this time, the difference f(x) − 1/x3 − 1/x2 − 2/3x tends to
1/3, etc.

We remark, to conclude these generalities, that in practice one does not
confine oneself to using the power functions xs; frequently, particularly when
examining the behaviour of a function “at infinity”, one has to compare
a given function with the functions esx or log x, log log x, etc, and more
generally with functions of the form esxxt logn x, mainly when having to
determine the convergence of an integral on an interval unbounded to the
right (Chap. V, n◦ 22). The idea is always to order these monomials by
order of decreasing magnitude, so that, in a sum of monomials, each term is
negligible with respect to the preceding term.

5 – Gauss’ convergence criterion

The un+1/un criterion allows us to determine whether many simple series
converge, but, as we know, it is inconclusive if the ratio tends to 1. In his
research on the hypergeometric series, C. F. Gauss obtained a very useful
result for this case; the proof rests on simple, but ingenious, asymptotic
evaluations.

Gauss’ convergence criterion. Let
∑

un be a series with positive terms
and suppose that there exists a number s such that

un+1/un = 1 − s/n + O(1/n2).(5.1)

Then the series converges if s > 1 and diverges if s ≤ 1.

Note that in this case the d’Alembert ratio tends to 1. It is easy to re-
member the criterion: remember that for the series to converge it is preferable
for the ratio not to tend to 1 too rapidly, in other words that s it should be
greater than a certain limit, namely 1.

First let us present two examples – we need them in the proof – of series
for which we have a relation (1). For the series vn = 1/nα

vn+1/vn = (1 + 1/n)−α = 1 − α/n + O(1/n2)(5.2)

by Newton’s binomial formula. For wn = 1/n. log n we have

wn+1/wn = [1 − 1/(n + 1)] log(n)/ log(n + 1);

then

1 − 1
n + 1

= 1 − 1
n

1
1 + 1/n

= 1 − 1
n

(1 − 1/n + . . .) = 1 − 1/n + O(1/n2),



§ 1. Truncated expansions 203

log n

log(n + 1)
=

log n

log n + log(1 + 1/n)
=

1
1 + log(1 + 1/n)/ log n

=

= 1 − log(1 + 1/n)
log n

+ O

(
log(1 + 1/n)

log n

)2

=

= 1 − 1/n + O(1/n2)
log n

+ O

(
1/n + O(1/n2)

log n

)2

=

= 1 − 1/n. log n + O(1/n2),

whence

wn+1/wn = 1 − 1/n − 1/n. log n + O(1/n2).(5.3)

Note that the term 1/n. log n is o(1/n) but not O(1/n2).
To establish Gauss’ criterion we also need a

Lemma. Let
∑

un and
∑

vn be two series with positive terms; if

un+1/un ≤ vn+1/vn for n large(5.4)

and if the series
∑

vn converges, then so does the series
∑

un.

We may assume that (4) holds for any n. On multiplying the first n
relations we obtain un/u1 ≤ vn/v1, whence un = O(vn), qed.

Now we come to Gauss’ criterion. If s > 1 there is an α such that
1 < α < s and on comparing (1) and (2) we see that

vn+1/vn − un+1/un = (s − α)/n + O(1/n2) ∼ (s − α)/n,

so that the left hand side is > 0 for n large. Since the series vn converges for
α > 1, so does the series un.

For s < 1, one chooses α between s and 1. The results are the opposite, so
that if the series

∑
un were convergent, so would be the series

∑
vn, absurd

for α < 1.
If s = 1, the above comparison is unusable because one does not know

the sign of an expression such as O(1/n2). But using (3) one has

un+1/un − wn+1/wn = 1/n. log n + O(1/n2) ∼ 1/n. log n,

a result > 0 for n large. Since
∑

1/n. log n diverges (Chap. II, n◦ 12), so does∑
un, qed.
Exercise. Show that, for a, b real, b not a negative integer, the series

un =
a2(a + 1)2 . . . (a + n)2

(n + 1)1/2b2(b + 1)2 . . . (b + n)2

converges if and only if b − a > 1/4.
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6 – The hypergeometric series

The series

F (a, b, c; z) =

= 1 +
∞∑

n=1

a(a + 1) . . . (a + n − 1) b(b + 1) . . . (b + n − 1)
c(c + 1) . . . (c + n − 1)

zn

n!
=(6.1)

=
∑

anzn,

already found in Euler, plays a much more important rôle in mechanics,
astronomy, physics, etc. than in mathematics proper, for the majority of the
users’ “special functions” are particular cases of it. Moreover, it is probably
the first series whose convergence was studied correctly – by Gauss who, in
1813, showed that it converges for |z| < 1, diverges for |z| > 1 and, much less
easy, examined what happens for |z| = 1.

First

|un+1/un| = |z|.|(a + n)(b + n)/(c + n)(n + 1)|,(6.2)

an expression which tends to |z|, whence the radius of convergence. We shall
therefore suppose |z| = 1 in what follows, and also that a, b, c are real,
to reduce the difficulties. Clearly we have to eliminate the case where one
of these parameters is a negative integer since then the series reduces to a
polynomial or is meaningless.

(i) We have

an+1/an =

= (a + n)(b + n)/(c + n)(n + 1) =
(1 + a/n)(1 + b/n)
(1 + c/n)(1 + 1/n)

=

=
(

1 +
a + b

n
+

ab

n2

)[
1 − c/n + c2/n2 + O(1/n3)

] ·
· [1 − 1/n + 1/n2 + O(1/n3)

]
=

= 1 − c + 1 − a − b

n
+

ab − (c + 1)(a + b) + c2 + c + 1
n2

+ O(1/n3).(6.3)

Since |un+1/un| = 1− s/n+O(1/n2) with s = c+1−a− b, we obtain a first
result from Gauss’ criterion:

c > a + b ⇐⇒ absolute convergence for |z| = 1.(6.4)

(ii) Suppose s < 0; then 1 − s/n > 1 and since

|un+1/un| ∼ 1 − s/n,

so is the left hand side for n large, so the un increase. Whence
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c < a + b − 1 =⇒ diverges for |z| = 1.(6.5)

(iii) It remains to examine the interval a + b − 1 ≤ c ≤ a + b, on which
0 ≤ s ≤ 1 and where the series does not converge absolutely. First assume
s > 0 and write

an+1/an = 1 − vn with vn ∼ s/n,

whence
an+1 = ap(1 − vp) . . . (1 − vn)

for n > p. For n large, vn is > 0 like s and tends to 0, so is < 1, so that for
p well chosen, the product (1 − vp) . . . (1 − vn) is positive, decreases when
n increases and so tends to a limit. Since log(1 − vn) ∼ −vn ∼ −s/n,
the series with negative terms

∑
log(1 − vn) diverges, which shows that

lim(1− vp) . . . (1− vn) = 0 (see the similar arguments on infinite products in
Chap. IV, n◦ 17). Consequently, an tends to 0, decreasing, up to a factor ap.

For s > 0, the hypergeometric series
∑

anzn is then decidable by Dirich-
let’s theorem (Chap. III, n◦ 11, Theorem 15 or Corollary 1). Consequently

a + b − 1 < c ≤ a + b =⇒
{

convergence for |z| = 1, z �= 1,
divergence for z = 1.(6.6)

Divergence for z = 1 follows from the fact that the series
∑

an has negative
terms for n large, so we may apply Gauss’ criterion here with s ≤ 1.

(iv) If s = 0, then, by (3),

an+1/an = 1 + k/n2 + O(1/n3),(6.7)

with
k = ab − (c + 1)(a + b) + c2 + c + 1 = (a − 1)(b − 1)

since c = a + b − 1. We have to distinguish three cases.
If k > 0, the left hand side of (7), which is ∼ 1 + k/n2, is > 1 for n large.

Consequently, the series
∑

anzn diverges for |z| = 1.
If k = 0, i.e. if a = 1 (in which case c = b) or if b = 1 (in which case

c = a), it is clear that the series reduces to
∑

zn, so diverges for |z| = 1.
If k < 0 we have |un+1/un| = 1+ vn where vn ∼ k/n2 is the general term

of a convergent series all of whose terms are negative for n large; the infinite
product of the 1+vn is then absolutely convergent, from which it follows that
|un| tends to a nonzero limit (Chap. IV, n◦ 17, Theorem 13), which prevents
the series from converging.

To sum up, for a, b, c real, we obtain the following table, which the reader
is not asked to memorise:

a + b < c absolute convergence for |z| = 1
a + b − 1 < c ≤ a + b convergence for |z| = 1, z �= 1

c ≤ a + b − 1 divergence for |z| = 1.
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We said above that the hypergeometric series includes many important
series as particular cases. The first is the binomial series

(1 + z)s =
∑

s(s − 1) . . . (s − n + 1) z[n] =

=
∑

−s(−s + 1) . . . (−s + n − 1)(−z)[n] =

= F (−s, 1, 1;−z).

For s real, we have complete results as to the behaviour of the series for
|z| = 1:

s > 0 absolute convergence on |z| = 1,

−1 < s ≤ 0 convergence for |z| = 1, z �= 1,

s ≤ −1 divergence for |z| = 1.

7 – Asymptotic study of the equation xex = t

In this n◦ we shall detail a most ingenious exercise1 whose principal interest,
at our level, is to make full use of the O and o techniques; as we said above,
in this domain it is much less useful to learn the general theorems than to
perform practical work.

The problem is to study the behaviour as t → +∞ of the root x of the
equation

xex = t.(7.1)

The method consists of first obtaining a very crude estimate of the order
of magnitude of x as a function of t, then to substitute the result in (1) to
derive a second more precise estimate, then to substitute the second result
in (1) to derive a third estimate more precise than the second, and so on.

First we show that for every t ≥ 0, the equation (1) has a unique solution
x ≥ 0 and that this is a continuous function of t. For x ≥ 0, the map x 
→ xex

is continuous and strictly increasing, zero for x = 0 and it increases indef-
initely with x: it therefore maps R+ onto R+ and has a continuous inverse
map, whence the existence, uniqueness and continuity of x as a function of
t.

Since x = 1 for t = e, we see that

t > e =⇒ x > 1 =⇒ ex < xex = t =⇒ x < log t,

whence, for t large (t > e), 0 < log x < log log t and thus

log x = O(log log t).
1 taken from N.G. of Bruijn, Asymptotic Methods in Analysis (Gröningen, Nord-

hoof, 1960). We also advise reading Chap. III of the Calcul infinitésimal of
J. Dieudonné (Paris, Hermann, 1968), mainly n◦ 8.
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But xex = t implies x = log t − log x whence

x = log t + O(log log t).(7.2)

Since log log t = o(log t), we have x ∼ log t at infinity.
Putting log t = y, we have x = y+O(log y), a result that we can substitute

into the equation (1), put in the form x = log t − log x. To do this we have
to evaluate

log x = log[y+O(log y)] = log{y[1+O(log y/y)]} = log y+log[1+O(log y/y)]

and since in general log(1 + z) ∼ z = O(z) as z → 0, we have

log x = log y + O(log y/y).

Since x = log t − log x and y = log t, we now obtain

x = log t − log log t + O(log log t/ log t),(7.3)

a more precise result than (2).
Now we substitute (3) in x = log t − log x, all the work being to deduce

information on log x from (3). Again putting y = log t we have x = y− log y+
O(log y/y), i.e.

x = y(1 + z) with z = − log y/y + O(log y/y2).

Since z tends to 0 we have

log x = log y + z − z2/2 + O(z3) =
= log y − log y/y + O

(
log y/y2

)−
− 1

2
[− log y/y + O

(
log y/y2

)]2
+ O(z3) =

= log y − log y/y + O
(
y−2 log y

)−
− 1

2
y−2 log2 y + O

(
y−3 log2 y

)
+ O
(
y−4 log2 y

)
+ O(z3).

Since z ∼ −y−1 log y we have O(z3) = O
(
y−3 log3 y

)
= y−2 log y.O

(
y−1 log2 y

)
,

a term negligible with respect to the term O
(
y−2 log y

)
figuring in the result

like the other terms in O. Thus in actual fact we have

log x = log y − log y/y − 1
2
y−2 log2 y + O

(
y−2 log y

)
,

a relation in which each term is negligible with respect to the preceding. The
relation x = log t − log x therefore leads to

x = log t − log log t + log log t/ log t +(7.4)

+
1
2

(log log t/ log t)2 + O
(
log log t/ log2 t

)
,
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an estimate again more precise than (3).
If he continues one stage further the courageous reader will find that

x = log t − log log t +
log log t

log t
+

1
2

(
log log t

log t

)2

−

− log log t

log2 t
+

1
3

(
log log t

log t

)3

− 3
2

(log log t)2

log3 t
+ O

(
log log t

log3 t

)
.

8 – Asymptotics of the roots of sin x. log x = 1

(de Bruijn, p. 33, exercise 1). On examining the graphs of the functions sinx
and 1/ log x one sees immediately that for every n > 1 the equation has two
roots between 2nπ and (2n + 1)π; one of them, xn, lies between 2nπ and
2nπ + π/2, the other, yn, between 2nπ + π/2 and 2nπ + π. Let us examine,
for example, the behaviour of xn.

Fig. 1.

Since it is geometrically clear that xn ∼ 2πn, let us put

xn = 2πn + un = 2πn(1 + vn)(8.1)

with 0 < un < π/2, 0 < vn < 1 and

log xn = log(2πn) + log(1 + vn), sin xn = sin un = 1/ log xn.(8.2)

Now

1/ log(2πn). sin un = log(xn)/ log(2πn) = 1+log(1+vn)/ log(2πn) = 1+wn.

Since 1 + vn < 2, the third member tends to 1, thus also the first, which
shows that

un ∼ sin un ∼ 1/ log(2πn),(8.3)

then that un ∼ 1/ log(2πn) tends to 0 and that

vn = un/2πn ∼ 1/2πn. log(2πn).(8.4)
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Hence

wn = log(1 + vn)/ log(2πn) =
[
vn + O

(
v2

n

)]
/ log(2πn).

Since wn tends to 0 we have

log(2πn). sin un =
= 1/(1 + wn) = 1 − wn + O

(
w2

n

)
= 1 − vn/ log(2πn) + O

(
v2

n

)
/ log(2πn) + O

(
v2

n

)
/ log2(2πn) =

= 1 − vn/ log(2πn) + O
(
v2

n

)
/ log(2πn),

whence

sin un = 1/ log(2πn) − vn/ log2(2πn) + O
(
v2

n

)
/ log2(2πn).(8.5)

But sin un = un + O
(
u3

n

)
= un + O

(
1/ log3(2πn)

)
by (3), whence

un = 1/ log(2πn) − vn/ log2(2πn) +
+ O
(
v2

n

)
/ log2(2πn) + O

(
1/ log3(2πn)

)
=

= 1/ log(2πn) + O
(
1/n log3(2πn)

)
+

+ O
(
1/n2 log4(2πn)

)
+ O
(
1/ log3(2πn)

)
.

On the right hand side the second and the third terms are negligible with
respect to last, which therefore dominates. At the point where we are now
we cannot say anything more precise than

un = 1/ log(2πn) + O
(
1/ log3(2πn)

)
,(8.6)

which nevertheless improves on (3).
To get further we write that sinun = un −u3

n/6+O
(
u5

n

)
. Using (6) gives

sin un = un − [1/ log(2πn) + O
(
1/ log3(2πn

)]3
/6 + O

(
1/ log5(2πn)

)
=

= un − [1/ log3(2πn) + O
(
1/ log5(2πn)

)]
/6 + O

(
1/ log5(2πn)

)
,

whence, by (5),

un = 1/ log(2πn) − vn/ log2(2πn) + O
(
v2

n

)
/ log2(2πn) +

+ 1/6 log3(2πn) + O
(
1/ log5(2πn)

)
+ O
(
1/ log5(2πn)

)
;

since vn = O
(
1/n. log(2πn)

)
by (4), the terms containing vn are negligible

with respect to O
(
1/ log5(2πn)

)
and there remains

un = 1/ log(2πn) + 1/6 log3(2πn) + O
(
1/ log5(2πn)

)
,(8.7)

which improves (6). Here, as in the preceding n◦, the reader can continue the
calculations and/or examine the behaviour of the other series of roots yn.
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9 – Kepler’s equation

We saw in Chap. II, at the end of n◦ 16, that Kepler’s equation u−e. sin u = ωt
has one and only one root u provided that the eccentricity e of the elliptical
motion is < 1. To simplify the notation a little, and to avoid confusing e with
2, 71828 . . ., let us write it as

u = ϕ + ε sin u.(9.1)

Laplace (see the 130-page notice by Gillispie in the supplement to DSB),
the author of a treatise on celestial mechanics much more advanced than
Newton’s Principia, proved (?) that u is the sum of a power series in ε whose
coefficients, depending on ϕ, are determined by an extraordinarily simple
formula:

u = ϕ + ε(sin ϕ)/1! + ε2(sin2 ϕ)′/2! + ε3(sin3 ϕ)′′/3! + . . . .(9.2)

One can make (2) plausible by putting u = ϕ + v, so that v = ε sin u
tends to 0 with ε, and seeking an asymptotic evaluation of v; this does not
replace a power series, but one works with the tools at one’s disposal.

Clearly v = O(ε) and indeed

v = ε(sin ϕ. cos v + cos ϕ. sin v) =
= ε sin ϕ

(
1 + O(ε2)

)
+ ε cos ϕ.O(ε) = ε sin ϕ + O(ε2),

whence

u = ϕ + ε sin ϕ + O(ε2) = ϕ + ε sin ϕ + ε2w with w = O(1).

Then by (1)

ε sin ϕ + ε2w = ε sin ϕ
(
ϕ + ε sin ϕ + ε2w

)
=

= ε sin ϕ. cos
(
ε sin ϕ + ε2w

)
+ ε cos ϕ. sin

(
ε sin ϕ + ε2w

)
=

= ε sin ϕ.
[
1 − (ε sin ϕ + ε2w

)2
/2 + O(ε4)

]
+

+ ε cos ϕ.
[
ε sin ϕ + ε2w + O(ε3)

]
,

whence

ε2w = ε2 sin ϕ cos ϕ + ε3
(
w cos ϕ − sin3 ϕ/2

)
+ O(ε4)

i.e.
w = sin ϕ cos ϕ + ε

(
w cos ϕ − sin3 ϕ/2

)
+ O(ε2).

Since w = O(1), i.e. is bounded, one infers immediately that w = sin ϕ cos ϕ+
O(ε), whence, substituting in the right hand side of the preceding relation,

w = sin ϕ cos ϕ + ε
(
sin ϕ. cos2 ϕ − sin3 ϕ/2

)
+ O(ε2).
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Thus

u = ϕ + ε sin ϕ + ε2 sin ϕ cos ϕ + ε3
(
sin ϕ. cos2 ϕ − sin3 ϕ/2

)
+ O(ε4),

which yields the first terms of formula (2). The calculation becomes more
and more painful as one pushes further and further.

The result was then extended by Lagrange to much more general equa-
tions, namely, in his notation,

z = x + yf(z).(9.3)

Since, for these Gentlemen, all functions arising in Nature, or even in math-
ematics, are analytic outside isolated points – as it happens, they were right
to believe so if f is, but then to prove this . . . –, Lagrange set himself to
calculate the expansion of z =

∑
anyn as a power series, where the coeffi-

cients an of course depend on x. The direct way would be, for x given, to
differentiate (3) indefinitely with respect to y, and to deduce the relations

z′ = f(z) + yf ′(z)z′, z′′ = 2f ′(z)z′ + y
[
f ′′(z)z′2 + f ′(z)z′′

]
,

z′′′ = 2f ′′(z)z′2 + 2f ′(z)z′′ + f ′′(z)z′2 + f ′(z)z′′ +
+ y
[
f ′′′(z)z′3 + 2f ′′(z)z′z′′ + f ′′(z)z′z′′ + f ′(z)z′′′

]
,

etc. and to find successively their values for y = 0:

z(0) = x, z′(0) = f(x), z′′(0) = 2f ′(x)f(x) =
[
f(x)2
]′

,

z′′′(0) = 3f ′′(x)f(x)2 + 6f ′(x)2f(x) =
[
f(x)3
]′′

,

etc. This is, in an other form, what we have done above for Kepler’s equation.
The first results suggest the formula

z = x +
∑

yn [f(x)n](n−1)
/n!(9.4)

using Maclaurin. But one falls rapidly, as above, into impossible calculations.
Lagrange’s method of establishing (4), at least formally, is considerably more
ingenious.

His idea was to consider z as a function of y and of x and to differentiate
(3) with respect to each of these two variables in order to calculate the
coefficients Dn

2 z(x, 0) of the Maclaurin series of z with respect to y.
To start with, thanks to the Chain Rule (Chap. III, n◦ 21), one finds

D1z = 1 + yf ′(z)D1z, D2z = f(z) + yf ′(z)D2z,(9.5)

whence (D1z − 1)D2z = [D2z − f(z)] D1z, and consequently

D2z = f(z)D1z.(9.6)



212 VI – Asymptotic Analysis

For y = 0, (5) gives

D1z(x, 0) = 1, D2z(x, 0) = f(x)(9.7)

since then z = x. Differentiating (6) with respect to y,

D2
2z = f ′(z)D2zD1z + f(z)D2D1z = f ′(z)D2zD1z + f(z)D1D2z =

= D1 [D2z.f(z)] = D1

[
D1z.f(z)2

]
by (6) and D1D2 = D2D1 (Chap. III, n◦ 23). Whence D2

2z(x, 0) =
[
f(x)2
]′

since, for y = 0, we have D2z.f(z) = f(x)2 by (7). Suppose we have proved
that

Dn
2 z = Dn−1

1 [D1z.f(z)n](9.8)

for any x and y, and differentiate. Using (6) again, and D1D2 = D2D1, we
get

Dn+1
2 z = Dn−1

1 D2 [D1z.f(z)n] =
= Dn−1

1

[
D2D1z.f(z)n + D1z.nf(z)n−1f ′(z)D2z

]
=

= Dn−1
1

[
D1D2z.f(z)n + D2z.nf(z)n−1f ′(z)D1z

]
=

= Dn
1 [D2z.f(z)n] = Dn

1

[
D1z.f(z)n+1

]
,

which is (8) for n + 1.
The relation (8) is therefore valid for any n and yields the formula

Dn
2 z(x, 0) = [f(x)n](n−1)

which justifies (4), at least formally.
In fact, Lagrange went even further; instead of just expanding z he ex-

panded an “arbitrary” function of z, say u = ϕ(z). Since D1u = ϕ′(z)D1z
and D2u = ϕ′(z)D2z, the relation (6) becomes

D2u = f(z)D1u,

which allows one to calculate as we have just done, this time with

Dn
2 u(x, 0) = [ϕ′(x)f(x)n](n−1)(9.9)

and “thus”
ϕ(z) = ϕ(x) +

∑
yn [ϕ′(x)f(x)n](n−1)

/n!.

The proof consists of establishing the relation

Dn
2 u = Dn−1

1 [D1u.f(z)n] ,

which replaces (8), by induction as above; for y = 0 we have D1u =
ϕ′(z)D1z = ϕ′(x), whence (9).



§ 1. Truncated expansions 213

10 – Asymptotics of the Bessel functions

Consider the differential equation

x′′ + (1 − c/t2)x = 0,(10.1)

where x is an unknown function of the real variable t �= 0 and c is a nonzero
constant. We set ourselves to study the asymptotic behaviour of its solutions
for t large. We shall divide this relatively difficult but highly instructive ex-
ercise into several parts.

Passage to an integral equation

Since (1) can be written

x′′ + x = cx/t2,(10.1’)

one may assume that at infinity its solutions resemble those of the much
simpler equation y′′ +y = 0, which has as its solutions at least (and, we shall
see, at most) the functions

y(t) = aeit + be−it, whence y′(t) = iaeit − ibe−it,

where a and b are arbitrary constants. In the general case one puts

x(t) = a(t)eit + b(t)e−it, x′(t) = ia(t)eit − ib(t)e−it(10.2)

where a(t) and b(t) are now functions that one may easily calculate from x
and x′, by multiplying the relations (2) by eit or e−it. This is the method
of variation of constants (Johann Bernoulli, end of the XVIIth century, for
equations of the first order, Lagrange in the general case) which applies to
all differential equations in which the unknown function and its derivatives
occur linearly, but which one applies here in a nonclassical way since one is
making believe that the function cx(t)t−2 occurring on the right hand side
of (1’) is known [if it were the method would provide all the solutions of (1’)
in terms of integrals involving the right hand side].

The second relation (2), which seems to contradict the Chain Rule grossly,
is in fact equivalent to

a′(t)eit + b′(t)e−it = 0.(10.3)

It then follows that

x′′ = −aeit − be−it + ia′eit − ib′e−it = −x + ia′eit − ib′e−it

by the relations (2). Equation (1) can therefore be written as

ia′(t)eit − ib′(t)e−it = cx(t)/t2.(10.4)
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One deduces from (3) and (4) that

2ia′(t) = ct−2x(t)e−it, 2ib′(t) = −ct−2x(t)eit,(10.5)

whence, using the FT,

2ia(t) − 2ia(t0) = c

∫ t

t0

x(u)e−iuu−2du,

2ib(t) − 2ib(t0) = −c

∫ t

t0

x(u)eiuu−2du.

We must assume t0 �= 0 and t of the same sign as t0 because of the factor
u−2, not integrable on a neighbourhood of 0. We shall assume them > 0 in
all that follows, the opposite case being treated similarly. Substituting in the
first relation (2), one finds

x(t) = p0(t) + c

∫ t

t0

x(u) sin(t − u)u−2du(10.6)

with p0(t) = a0e
it + b0e

−it, where a0 = a(t0), b0 = b(t0). Instead of, like (1),
involving the function x and its derivatives, (6) involves x and an integral
featuring the function x itself; this is an integral equation. It does not even
assume x to be differentiable: the continuity of x is enough for (6) to make
sense. It is (6) which will allow us to examine the behaviour of x at infinity.

One may conversely verify that every continuous solution of (6) is in fact
C∞ and satisfies (1). The theorem on differentiation under the

∫
sign with

variable limits (Chap. V, n◦ 12, Theorem 13) in fact shows that the right
hand side is differentiable and that

x′(t) = p′0(t) + c

∫ t

t0

x(u) cos(t − u)u−2du,(10.7)

since the function integrated in (6) is zero for u = t. This relation in its turn
shows that x′ is differentiable and that

x′′(t) = p′′0(t) − c

∫ t

t0

x(u) sin(t − u)u−2du + cx(t)t−2(10.8)

since x(u) cos(t− u)u−2 = x(t)t−2 for u = t. Since p0 + p′′0 = 0, one finds (1)
again, on adding the result to (6). The fact that x is C∞ is then obvious,
either because the function integrated in (6) has continuous derivatives of
arbitrary order with respect to t, or because the differential equation shows
that if x is Cp, then it is automatically Cp+2 away from the origin.

First bound for the solutions
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Let us agree provisionally that there is a solution of (6) defined for t > 0
and then show it is bounded at infinity. Indeed, let M(t) be the upper bound
of |x(u)| on the interval [t0, t] and M0 that of |p0(u)| in R, clearly finite.
(6) shows that, for t0 ≤ t′ ≤ t,

|x(t′)| ≤ M0 + |c|M(t)
∫ t′

t0

u−2du ≤ M0 + |c|M(t)/t0,

whence, passing to the sup,

M(t) ≤ M0 + |c|M(t)/t0.(10.9)

If we have chosen t0 large enough that |c|/t0 ≤ 1
2 we may deduce that M(t) ≤

2M0, qed.
Now let us show that there exist constants a1, b1 such that

x(t) = a1e
it + b1e

−it + O(1/t) = p1(t) + O(1/t).(10.10)

Since x(t) is indeed bounded, the integral in (6), taken from t0 to +∞, is
absolutely convergent like that of the function 1/u2. Thus

x(t) = p0(t) + c

∫ +∞

t0

x(u) sin(t − u)u−2du −(10.11)

− c

∫ +∞

t

x(u) sin(t − u)u−2du.

Expressing sin(t − u) in terms of complex exponentials, we see that the first
integral is, like p0(t), a linear combination of eit and e−it with coefficients
independent of t, whence

x(t) = p1(t) − c

∫ +∞

t

x(u) sin(t − u)u−2du(10.12)

where p1(t) is a linear combination of eit and e−it with constant coefficients.
Since the function x(u) sin(t − u) is bounded for u ≥ t0 > 0, the integral is,
up to a constant factor, majorised by that of u−2, i.e. by 1/t, qed.

The relation (12) allows us to complete the existence theorem for solutions
– we shall prove it below – with a uniqueness theorem: there exists only one
solution of (12) for p1 given. Since p1 depends on two arbitrary constants,
this means that the set of solutions is a vector space of dimension 2 over C.

On subtraction we reduce to proving that, if p1 is zero, then so likewise
is x. But denote now by M(t) the upper bound of |x(u)| for u ≥ t. For t′ ≥ t
we clearly have

|x(t′)| ≤ |c|M(t)/t

since the integral of u−2 between t′ and +∞, equal to 1/t′, is ≤ 1/t. Whence,
on passing to the sup, M(t) ≤ |c|M(t)/t. Substituting this result in the
integral equation, we now find
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|x(t′)| ≤ |c|2M(t)
∫ +∞

t′
u−3du,

whence M(t) ≤ |c|2M(t)/2t2. Substituting again in the equation, we will
find M(t) ≤ |c|3M(t)/3!t3, etc. In short, M(t) ≤ M(t)|c/t|n/n! for any n.
Since, for t �= 0 given, the right hand side tends to 0 when n → +∞, we find
M(t) = 0 for any t > 0, whence x(t) = 0, qed.

Existence of solutions

To go further than (10) in studying x(t) at infinity, one might, as always,
iterate the calculation, i.e. substitute (10) in (12) and so on indefinitely.
We are going to adopt a slightly different method which will at the same
time show the existence of the solutions; this is the method of successive
approximations, which consists of extending the method of constructing the
roots of an equation x = f(x) expounded in Chap. II, n◦ 16, Theorem 12 and
in Chap. III, n◦ 24 (implicit functions) to integral equations; it can be used to
show the existence, at least locally, of the solutions of almost all reasonable
differential or integral equations. Since all the integrals which now appear
are extended over [t, +∞], we shall adopt the simplified notation∫

=
∫ +∞

t

up to the end of this n◦, clearly not confusing this with an indefinite integral
à la Leibniz. In this notation∫

u−n−1du = t−n/n

for n ≥ 1 by the FT.
The method of successive approximations consists of starting from the

function p1(t) in (12), to which x(t) is equal up to the addition of a O(1/t)
term, constructing a sequence of functions xn(t) on t > 0 by putting x1 = p1

and

xn+1(t) = p1(t) − c

∫
xn(u) sin(t − u)u−2du,(10.13)

and showing that the xn converge to a solution of (6).
For n = 1

|x2(t) − x1(t)| ≤ M |c|
∫

u−2du = M |c/t|

where M = ‖p1‖R
< +∞. It follows that

|x3(t) − x2(t)| = |c|.
∣∣∣∣
∫

[x2(u) − x1(u)] sin(t − u)u−2du

∣∣∣∣ ≤
≤ M |c|2

∫
u−3du = M |c/t|2/2!.
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If one has proved that

|xn(t) − xn−1(t)| ≤ M |c/t|n−1/(n − 1)!(10.14)

one finds

|xn+1(t) − xn(t)| = |c|.
∣∣∣∣
∫

[xn(u) − xn−1(u)] sin(t − u)u−2du

∣∣∣∣ ≤
≤ M |c|n/(n − 1)!

∫
u−n−1du = M |c/t|n/n!,

which shows in passing that

xn+1(t) = xn(t) + O(t−n)(10.15)

at infinity. Since the series
∑

[xn+1(t) − xn(t)] is, by (14), dominated by the
series exp(M |c|/t), it converges normally on every interval t ≥ t0 > 0, so
that xn(t) converges to a limit x(t) for every t > 0, and does so uniformly
on every interval [t0,+∞[. One may then pass to the limit under the

∫
sign

in (13) because of the presence of the integrable2 factor u−2. It is then clear
that x(t) satisfies (6).

Further, by (14),

|x(t) − xn(t)| ≤
∑
p≥0

|xn+p+1(t) − xn+p(t)| ≤

≤ M
∑
p≥0

|c/t|n+p
/(n + p)! ≤ M

∑
p≥0

|c/t|n+p
/n!p! =

= M. exp(|c/t|)|c/t|n/n!,

a result which implies

x(t) = xn(t) + O(t−n)(10.16)

at infinity since the factor exp(|c/t|) tends to 1.
Exercise. Let I be a compact interval, p a continuous function on I and

K(t, u) a continuous function on I × I. Put

M = sup
t∈I

∫
|K(t, u)|du.

Show that, if M < 1, the integral equation
2 Let I be an arbitrary interval, µ(x) an absolutely integrable function on I,

and (fn) a sequence of bounded functions which converges uniformly on I to
a limit f , clearly bounded. The functions fnµ and fµ, majorised up to con-
stant factors by µ, are then integrable and one has

∣∣∫ [fn(u) − f(u)] µ(u)du
∣∣ ≤

‖fn − f‖ .
∫ |µ(u)|du, whence lim

∫
fn(u)µ(u)du =

∫
f(u)µ(u)du. Cf. Chap. V,

n◦ 31, Example 1.
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x(t) = p(t) +
∫

K(t, u)x(u)du

has one and only one solution (the integrals are over I). Analogy with a sys-
tem of linear equations?

Asymptotics of the solutions: general form

It is clear that in order to obtain asymptotic evaluations of x(t) one should
seek them for the xn(t). To simplify the calculations we shall assume that
we are in the case where the “trigonometric binomial” p1(t) in (10) reduces
to eit; the case where it is equal to e−it is treated in the same way (the two
solutions are even complex conjugates if c ∈ R), and in the general case it is
clear that x is a linear combination of the functions corresponding to these
two particular cases.

Since x1(t) = eit, the relation (13) shows that

2ix2(t) = 2ieit − 2ic

∫
eiu sin(t − u)u−2du =(10.17)

= 2ieit − c

∫ (
eit − e2iu−it

)
u−2du =

= 2ieit − ceit/t + ce−it

∫
e2iuu−2du.

Here we meet, and we will meet again, an integral of the form
∫

e2iuu−pdu
extended over [t,+∞[. By repeatedly integrating by parts it is easy to find a
truncated expansion of arbitrarily high order when t tends to infinity. Gen-
erally, if Re(α) ≤ 0 to ensure the convergence of the integrals, one has, using
exceptionally the

∫
sign à la Leibniz,∫

eαuu−pdu = eαu/αup +
p

α

∫
eαuu−p−1du =

= eαu/αup + peαu/α2up+1 +
p(p + 1)

α2

∫
eαuu−p−2du

etc3. When one integrates from t to +∞, the integrated-out parts, zero at
infinity, yield the product of eαt/tp by a polynomial in 1/t; the integral of
eαuu−N−2, majorised by that of u−N−2, is O

(
t−N−1
)
. One deduces from this

that, for any N > p, there is a relation
3 Note that instead of trying to pass from an integral in u−p to an integral in u−p+1

as was done in Chap. V, n◦ 15, Example 2 in the illusory hope of calculating
a primitive explicitly, here one passes from an integral in u−p to integrals in
u−p−1, u−p−2, etc. whose order of magnitude one may evaluate, even if unable
to calculate them explicitly.
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e−it

∫ +∞

t

e2iuu−pdu = −eit
(
?/tp+?/tp+1 + . . . +?/tN

)
+(10.18)

+ O
(
t−N−1
)

with coefficients ? which depend on p, but not on N ; the reader may calculate
them: we don’t need them now. Returning to (17), the case where p = 2, we
finally find

2ix2(t) = 2ieit + eit
(
?/t+?/t2 + . . . +?/tN

)
+ O
(
t−N−1
)

(10.19)

for any N .
It is the same for xn(t) for any n. One shows this by induction using (13):

2ixn+1(t) =

= 2ieit − 2ic

∫
xn(u) sin(t − u)u−2du =

= 2ieit − c

∫
eiu
[
?−?/u − . . .−?/uN + O

(
u−N−1

)]
2i sin(t − u)u−2du =

= 2ieit + c
∑

0≤p≤N

?
∫ (

eit − e2iu−it
)
u−p−2du +

∫
O
(
u−N−3

)
du.

The integrals
∫

eitu−p−2du yield the product of eit by a polynomial in
1/t without constant term. The integrals

∫
e2iu−itu−p−2du likewise by (18)

have truncated expansions of arbitrarily high order. Finally, the integral∫
O
(
u−N−3

)
du is O

(
t−N−2
)
. So for every n and every N there is a relation

of the form

xn(t) = eit
(
1+?/t+?/t2 + . . . +?/tN

)
+ O
(
t−N−1
)
.(10.20)

In view of (16) one obtains an expansion

x(t) = eit
(
1 + a1/t + a2/t2 + . . . + aN/tN

)
+ O
(
t−N−1
)

(10.21)

for x(t), whose coefficients do not depend on N ; for if one has this for e−itx(t)
or for every other function with truncated expansions of order 12 and 15, the
second, with its terms of degree > 12 removed, yields a truncated expansion
of order 12; now a given function can have only one truncated expansion of
given order, as we saw in n◦ 3; the two expansions must therefore have the
same terms of degree ≤ 12.

One sometimes expresses this fact by writing (21) in the form of an as-
ymptotic series

e−itx(t) ≈
∞∑

n=0

an/tn;(10.22)

this way of writing by no means states that the series on the right hand side
represents the function considered: in almost every case of this kind, including
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the one which now occupies us, as we shall see when all will be calculated, the
series is divergent. The form (22) is, by definition, equivalent to the fact that
the relation (21) is valid for any N . In other words, the difference between
the left hand side of (22) and the N -th partial sum of the second member,
instead of tending to 0 for t given when N increases, tends to 0 for N given
when t increases, and as rapidly as the first term neglected; a nuance not to
be forgot . . .

This is for example what happens on a neighbourhood of t = 0 when one
writes the Maclaurin formula for a function x(t) which is not analytic but is
of class C∞. For any N , one has

x(t) = x(0) + x′(0)t + . . . + x(N)(0)tN/N ! + O
(
tN+1
)
,

in other words
x(t) ≈

∑
x(n)(0)tn/n!,

but the series has no reason to represent the function if it converges – the
case of exp(−1/t2) – and even less if it diverges, which is the general case
since the derivatives at the origin can be chosen arbitrarily (Chap. V, n◦ 29).

Term-by-term differentiation of asymptotic expansions

The problem now arises of calculating the coefficients an in the expansion
(22) explicitly, preferably without drowning oneself in calculation. In doing
this in a more explicit way than we have done above we could find the recur-
rence relations allowing us to calculate the an. A more elegant4 and above
all more instructive, method, consists of showing that on differentiating (22)
term-by-term, one obtains the analogous asymptotic expansions for x′ and
x′′; on substituting into the differential equation (1) one will find the needed
recurrence relations immediately.

It is not at all obvious, and it is generally false, that one can deduce
an asymptotic series for the derivative from the asymptotic series of a given
function by differentiating term-by-term. The derivative of a function O(tr)
at infinity (r ∈ R) has no reason to be O

(
tr−1
)
: the function x(t) = sin(t2)/t

is O(1/t) at infinity, but its derivative x′(t) = 2 cos(t2) − sin(t2)/t2 is O(1)
and not O(1/t2) at infinity. This is the problem we have already met in
connection with differentiating term-by-term the sum of a series of differen-
tiable functions: one may, thanks to FT, majorise a function starting from a
majoration of its derivative, but the inverse operation is impossible.
4 One of the Goncourt brothers, famous literary critics of the XIXth century, relates

in his Journal that during the reception of a new immortal, X, into the Académie
française, the academician Y charged with delivering the eulogy on X had the
regrettable idea of describing the oratorical style of X as elegant. The latter,
furious, stood up and replied: Elegant yourself, Sir! (I quote from memory).
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The reality is that here, as in the case of a convergent series or sequence,
it is the existence of an asymptotic series for the derivative which enables
us to obtain one for the function itself. For assume that the derivative of a
function f(t) has an expansion

f ′(t) = a0 + a1/t + . . . + aN+1/tN+1 + O
(
1/tN+2

)
(10.23)

at infinity. One cannot integrate it from t to +∞ because of the first two
terms, but one reduces to the case where they are zero on replacing f(t) by
g(t) = f(t) − a0t − a1 log t. Then g′(t) = O(t−2), the derivative is integrable
from t to +∞, the function g tends to a finite limit g(+∞) when t → +∞
and, by the FT extended to the interval [t,+∞[ (by passage to the limit),

g(+∞)− g(t) =
∫

g′(u)du = a2/t + a3/2t2 + . . . + aN+1/NtN + O
(
1/tN+1

)
since the integral from t to +∞ of an O(u−k) function is majorised up to a
constant factor by that of u−k. Returning to the original function f(t), the
relation (23) implies

f(t) = a0t + a1 log t + b − a2/t − a3/2t2 − . . . −(10.24)
− aN+1/NtN + O

(
1/tN+1

)
for any N , with an inevitable constant b, since knowing f ′ determines f
only up to a constant. It is then clear, on comparing (23) and (24), that the
asymptotic expansion of f ′ is obtained by differentiating that of f term-by-
term.

Returning to the function x(t) which concerns us, we must show directly
that x′(t) and x′′(t) have asymptotic expansions analogous to (22). To do
this, let us again consider the integral equation (10.12)

x(t) = eit − c

∫ +∞

t

x(u) sin(t − u)u−2du

and apply to it the formula of differentiation under the
∫

sign with variable
limits in the case of an infinite interval, namely

d

dt

∫ +∞

ϕ(t)

f(t, u)du =
∫ +∞

ϕ(t)

D1f(t, u)du − f [t, ϕ(t)]ϕ′(t)

(Chap. V, n◦ 12, Theorem 13, which extends immediately to the case of an
infinite interval using5 n◦ 25, Theorem 24, of the same Chap. V). The latter
assumes that, when t remains in a compact set the function D1f(t, u) is
majorised by a fixed integrable function of u. Now, in the case of (12),

5 One writes that the integral of ϕ(t) to +∞ is the difference between the integrals
from a to +∞ and from a to ϕ(t) for a fixed a.



222 VI – Asymptotic Analysis

|D1f(t, u)| =
∣∣x(u) cos(t − u)u−2

∣∣ ≤ Mu−2

since the function x(u) is bounded on every interval t ≥ t0 > 0; there is
no problem. The function f(t, u) which we are integrating here from t to
+∞ vanishes for u = ϕ(t), the wholly integrated part of the differentiation
formula disappears, and there remains

x′(t) = ieit − c

∫
x(u) cos(t − u)u−2du(10.25)

where one integrates from t to +∞; compare to (7) and (8).
Exercise. By differentiating the recurrence relation between the xn(t)

show that

x′′
n+1(t) + xn+1(t) = axn(t)t−2

and that, for every r, the derivatives x
(r)
n (t) of the xn converge to x(r)(t)

uniformly on t ≥ t0 > 0.
On substituting (21) in (25), one has

x′(t) =

= ieit − c

∫ [
1 + a1/t + a2/t2 + . . . + aN/tN + O

(
t−N−1

)]
eiu cos(t − u)u−2du

= ieit − c

∫ (
1 + a1/t + a2/t2 + . . . + aN/tN

)
eiu cos(t − u)u−2du + O

(
t−N−2

)
.

Arguing as above – replacing the sinus by a cosinus clearly changes the
method not at all –, one obtains an asymptotic series

e−itx′(t) ≈
∑

bn/tn(10.26)

similar to (22). As for x′′(t) = −(1 − c/t2)x(t), one obtains an asymptotic
series for it directly starting from that for x(t).

Coefficients of the asymptotic expansion

Let us now put e−itx(t) = y(t). We have y(t) ≈∑ ant−n by (22), and on
the other hand we know that the derivatives

y′(t) = e−it [x′(t) − ix(t)] , y′′(t) = e−it[x′′(t) − 2ix′(t) − x(t)](10.27)

also have asymptotic expansions of the same type. They too can be derived
from the expansion of y(t) by differentiating the latter term-by-term as for
a power series in 1/t. [This means that the expansion of x′′(t) too can be
derived from that of x(t) by differentiating term-by-term, not forgetting to
differentiate the factors eit]. The expansions of y′ and y′′ must thus be
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y′(t) ≈
∑

−nant−n−1, y′′(t) ≈
∑

n(n + 1)ant−n−2.

Now let us exploit the differential equation we started from. Since we put
x(t) = eity(t) we have x′′(t) + x(t) = eit[y′′(t) + 2iy′(t)], whence ct−2y =
y′′ + 2iy′. Thus

c
(
a0t

−2 + a1t
−3 + a2t

−4 + . . .
)

≈ (2.1a1t
−3 + 3.2a2t

−4 + . . .
)− 2i
(
a1t

−2 + 2a2t
−3 + 3a3t

−4 + . . .
)
.

Because the asymptotic series of a given function is unique it is legitimate to
calculate as for a formal series. Since a0 = 1 we find

−2ia1 = c, −2ia2 = (c − 1.2)a1/2, −2ia3 = (c − 2.3)a2/3

and generally
an/an−1 = i[c − n(n − 1)]/2n;

one deduces an by multiplying together the first n relations.
Note that the ratio |an+1/an| tends to +∞. The radius of convergence

of the power series
∑

anzn is therefore zero, which confirms that the expan-
sion as an asymptotic series x(t) ≈ eit

∑
ant−n is the exact opposite of an

expansion as a convergent series.
Exercise. Show that the differential equation (1) is satisfied by convergent

series of the form ta
∑

n>0 antn, with a non integer exponent a and coefficients
to be determined.

The method used here in the case of the Bessel equation has given rise
to an ocean of literature concerning either other special functions, or general
linear differential equations; Chapters XIV and XV of Dieudonné, Calcul
infinitésimal, give a faint glimpse of the general case and of the theory of the
Bessel functions, about which voluminous treatises have been written.

The best classical reference on these and the other “special functions”
is the “Bateman Project”, Higher Transcendental Functions (McGraw Hill,
1953–1955, 3 vols). To understand the subject, it would be better to read
N. Vilenkin, Special functions and the theory of group representations (Amer-
ican Mathematical Society, 1968) (translated from original Russian edition
(Moscow, 1965)), which is based on ideas which are totally foreign to the
“experts” on the classical theory and of much more general scope than these
(harmonic analysis on non commutative Lie groups). Since they are well
above the level of this book, there is no point in citing more recent and
inaccessible references.
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§ 2. Summation formulae

11 – Cavalieri and the sums 1k + 2k + . . . + nk

In Chapter II, n◦ 11 we gave a very effective direct method for integrating the
function xk when k is a positive integer: one divides the interval of integra-
tion [a, b] by points aqk forming a geometric progression, with q = (b/a)1/n,
and lets n tend to infinity. But the first mathematicians to perform this cal-
culation proceeded in another way: like Archimedes in the case k = 2, they
used a subdivision of [a, b] by the points of an arithmetic progression. In the
simple case where the interval of integration is of the form [0, a] one puts
q = a/n and uses the points q, 2q, . . . nq; the integral sought is then clearly
the limit of the sums

σn =
[
qk + (2q)k + . . . + (nq)k

]
a/n =(11.1)

=
(
1k + 2k + . . . + nk

)
ak+1/nk+1.

For k = 1 it had been known for a long time that

1 + 2 + . . . + n = n(n + 1)/2 = n2/2 + n/2,(11.2)

whence σ1 = a2n(n + 1)/2n2, an expression which tends to a2/2. For n = 2,
the case treated by Archimedes, who already knew that

12 + . . . + n2 = n(n + 1)(2n + 1)/6 = n3/3 + n2/2 + n/6,(11.3)

one has σ2 = a3
(
1/3 + 1/2n + 1/6n2

)
, which tends to a3/3.

The Italian Cavalieri studied the case where k = 4 around 1630, using
the formula

13 + . . . + n3 = n2 (n + 1)2 /4 = n4/4 + n3/2 + n2/4,(11.4)

which gave him the value a4/4 for the integral. Around 1646 he extended the
calculations up to k = 9, with the help of the formula

19 + . . . + n9 = n10/10 + n9/2 + 3n8/4 − 7n6/10 + n4/2 − 3n2/20.(11.5)

These calculations are all the more praiseworthy than the modern mechanism
of algebra, with its condensed notation was then strongly in flux. John Wallis
set out the method in his Arithmetica Infinitorum of 1656, but no one was
yet able to find the formula (5) corresponding to an arbitrary value of the
exponent k.

Fermat, who did not publish, took up the problem around 1636 – it was
his idea to use a geometric progression –, but instead of trying to calculate
1k + . . . + nk exactly he was content to find an approximate value adequate
to solve the problem, namely
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1k + . . . + (n − 1)k < nk+1/(k + 1) <(11.6)
< 1k + . . . + nk < (n + 1)k+1/(k + 1).

This shows that up to a factor ak+1 the Riemann sum (1) lies between the
products of 1/(k + 1) by 1 and (n + 1)k+1

/nk+1, which tend to 1.
(6) is proved by induction on n > 2. The case n = 2 is obvious. If (6) has

been proved for an integer n it follows that

1k + . . . + nk <
nk+1

k + 1
+ nk and

nk+1

k + 1
+ (n + 1)k < 1k + . . . + (n + 1)k.

It is therefore enough to show that

nk+1

k + 1
+ nk <

(n + 1)k+1

k + 1
<

nk+1

k + 1
+ (n + 1)k,

and then, putting x = 1/n, that

1 + (k + 1)x < (1 + x)k+1
< 1 + (k + 1)(1 + x)k.

Since x > 0 the binomial formula proves the first inequality. The second can
be written as

1 +
k∑

p=0

(
k + 1
p + 1

)
xp+1 < 1 + (k + 1)

k∑
p=0

(
k

p

)
xk+1

and reduces to the inequality(
k + 1
p + 1

)
=

k + 1
p + 1

(
k

p

)
< (k + 1)

(
k

p

)

between binomial coefficients.
Exercise6. (a) Prove the equalities

S1
n := 1 + 2 + . . . + n =

1
2
n(n + 1)

S2
n := 12 + 22 + . . . + n2 = n(n + 1)(2n + 1)/6

S3
n := 13 + 23 + . . . + n3 =

[
1
2
n(n + 1)

]2
= (1 + 2 + . . . + n)2 .

(b) For
Sp

n := 1p + 2p + . . . + np,

establish the identity
6 Walter, Analysis I, p. 36. The signs := mean that the expression which follows

the sign = is the definition of that which precedes the sign :.
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(p + 1)Sp
n +
(

p + 1
2

)
Sp−1

n + . . . + S0
n = (n + 1)p+1 − 1

discovered by Pascal in 1654.
(c) Show that for every p > 1 there exist p real numbers c1, . . . , cp such

that
Sp

n = np+1/(p + 1) + np/2 + c1n
p−1 + . . . + cp−1n + cp.

Hints:

(x + 1)p+1 − xp+1 =
(

p + 1
1

)
xp +
(

p + 1
2

)
xp−1 + . . . + 1 (p, n ∈ N, n ≥ 1).

Add these equations term-by-term for x = 1, 2, . . . , n. The assertions (a) and
(c) can be proved by induction or from Pascal’s identity.

12 – Jakob Bernoulli

In 1713, in his Ars Conjectandi, the most famous, if not the first, of the
treatises on the calculus of probabilities, Jakob Bernoulli published – rather,
it was published for him, for he died in 1705 before finishing his book – the
general method which allows one, for k ∈ N, to express 1k + . . . + nk as a
polynomial of degree k+1 in n. He calculated the first sums afresh and noted
in passing that he had been able to calculate “in less than half a quarter hour”
that

110 + . . . + 100010 = 91 409 924 241 424 243 424 241 924 242 500.

Exercise. If the human species had had thirteen fingers instead of ten,
Bernoulli would have had to calculate the sum 113 + . . . + 219713. Find the
result in less than half an hour using numeration to base 13.

His general method7 was to start from the relation

(
n

k

)
=

n−1∑
p=0

(
p

k − 1

)
=

n∑
p=1

(
p − 1
k − 1

)
(12.1)

between the binomial coefficients (which he wrote explicitly, as everyone did
then); one may prove this easily by induction on n, writing that

(
n

k

)
=
(

n − 1
k − 1

)
+
(

n − 1
k

)
=
(

n − 1
k − 1

)
+

n−2∑
p=0

(
p

k − 1

)
.

For k = 3, one thus finds
7 See Vol. III of Moritz Cantor, pp. 343–347.
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n(n − 1)(n − 2)/3! =
∑

(p − 1)(p − 2)/2! =(12.2)

=
∑(

p2/2 − 3p/2 + 1
)
,

which, using the formulae for the exponents k = 0 and 1, yields the formula
for k = 2. The formula (1) for k = 4 then allows one to calculate the

∑
p3

from the formulae already obtained, and so on.
But Bernoulli went much further. He stated that

n∑
1

pk = nk+1/(k + 1) + nk/2 +
k

2
Ank−1+(12.3)

+
k(k − 1)(k − 2)

2.3.4
Bnk−3 +

k(k − 1) . . . (k − 4)
6!

Cnk−5 + . . .

with coefficients A, B, C, . . . independent of k, and exponents k − 1, k − 3,
k − 5, . . . The two first terms were obvious because he knew the explicit
formulae for k ≤ 10, but no one knows how he divined the relation (3) from
them, which he merely stated after a list of explicit formulae. Of course, if
one accepts (3), the first formulae easily give the values

A = 1/6, B = −1/30, C = 1/42, D = −1/30, E = 5/66, etc.

A much less magical method is to postulate that, in conformity with the
first formulae, one has8

1k + . . . + nk = Ak+1(n)(12.4)

with A1(x) = x for k = 0 and, for k ≥ 1, a polynomial of degree k + 1
without constant term, then to establish those properties of these conjectured
polynomials which allow one to calculate them “without calculations” and,
to finish, to verify that they satisfy (4).

To start with, the relation

nk =
(
1k + . . . + nk

)− (1k + . . . + (n − 1)k
)

implies the polynomial identity

Ak+1(x) − Ak+1(x − 1) = xk(12.5)

since the difference of the two sides is a polynomial which vanishes at every
x ∈ N. This relation already determines the Ak up to additive constants, for
the difference between two solutions is a polynomial of period 1, so constant;
8 Bernoulli uses the notation S nk = 1k + . . . + nk, which, once again, violates all

the tabus concerning phantom and free variables. See Hairer and Wanner, p. 15,
for a photographic reproduction of Bernoulli’s table of the first ten formulae.
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if one then assumes Ak(0) = 0 for k ≥ 1 then the Ak are entirely determined
by (5). Now in deriving (5) one sees that A′

k+1(x)/k satisfies it for k − 1. If
one writes ak for the constant term of A′

k+1(x)/k, then

A′
2(x) = x + a1, A′

k+1(x)/k = Ak(x) + ak for k ≥ 2.(12.6)

The Ak having zero constant term, one obtains step-by-step, by straightfor-
ward calculation of the successive primitives,

A1(x) = x,

A2(x) = x2/2 + a1x,

A3(x) = x3/3 + a1x
2 + 2a2x,

A4(x) = x4/4 + a1x
3 + 3a2x

2 + 3a3x,

A5(x) = x5/5 + a1x
4 + 4a2x

3 + 6a3x
2 + 4a4x;

etc. The general formula

Ak(x) = xk/k +
k−1∑
p=1

(
k − 1
p − 1

)
apx

k−p,(12.7)

now obvious, is just (3) with

a1 = 1/2, a2 = A/2, a3 = 0, a4 = B/4, a5 = 0, a6 = C/6,

etc.
Though not immediately providing the numerical values of the ap, at

least (6) proves the existence of a relation (7) with the same coefficients ap

for all the formulae. This, Moritz Cantor calls it Jakob Bernoulli’s “idea of
genius”, seems relatively humdrum to me, even for the period; for if there
was anything they knew how to do, it was to calculate the derivatives or
primitives of polynomials in x . . .

To obtain the numerical values of the coefficients one uses a remark which,
here again, was surely within the scope of the genial inventor: by (5) one must
have

Ak(0) = Ak(−1) for k ≥ 2(12.8)

and so Ak(−1) = 0. Whence, by (7), a relation9

1/k − a1 +
(

k − 1
1

)
a2 −
(

k − 1
2

)
a3 + . . . +(12.9)

+ (−1)k−1

(
k − 1
k − 2

)
ak−1 = 0 (k ≥ 2)

9 Bernoulli clearly knew this, for he wrote, without proof, that to calculate the
coefficients in his first ten formulae one uses the fact that Ak(1) = 1; he details
the calculation for A8. See the text in Walter, Analysis I, pp. 162–163.
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which enables one to calculate the coefficients step-by-step.
It remains to show that with this choice of the ak the Ak do indeed satisfy

(4). Since

Ak+1(n) = [Ak+1(n) − Ak+1(n − 1)] +(12.10)
+ [Ak+1(n − 1) − Ak+1(n − 2)] + . . . +
+ [Ak+1(1) − Ak+1(0)] + Ak+1(0)

and since Ak+1(0) = 0, (4) will in fact be a consequence of (5), clearly true
for k = 0. We shall prove (5) by induction on k.

First, by the simplest of the relations between binomial coefficients,
(7) defines polynomials satisfying (6) for any ap. If one has already ver-
ified that Ak(x) − Ak(x − 1) = xk−1 then the formula (6) shows that
A′

k+1(x)−A′
k+1(x− 1) = kxk−1, whence Ak+1(x)−Ak+1(x− 1) = xk up to

an additive constant. This must be zero for k = 0 since A1(x) = x. It is zero
for k ≥ 1 because the choice (9) of the ap is equivalent to Ak(0) = Ak(−1)
and shows that (5) is valid for x = 0. Hence (5), and consequently (4) for
any k.

Posterity has preferred, for reasons which will appear later, to use the
polynomials Bk(x), k ≥ 0, of degree k, possibly with nonzero constant terms

Bk(0) = bk,(12.11)

and chosen so as to replace (6) by

B′
k(x) = kBk−1(x), k ≥ 1,(12.12)

and (8) by

Bk(1) = Bk(0), k ≥ 2,(12.13)

for every k ≥ 0. One chooses

B0(x) = 1 = b0

to simplify the formulae as much as possible. Again calculating straightfor-
wardly one obtains

B1(x) = b0x + b1,

B2(x) = b0x
2 + 2b1x + b2,

B3(x) = b0x
3 + 3b1x

2 + 3b2x + b3,

B4(x) = b0x
4 + 4b1x

3 + 6b2x
2 + 4b3x + b4,

B5(x) = b0x
5 + 5b1x

4 + 10b2x
3 + 10b3x

2 + 5b4x + b5

and more generally
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Bk(x) =
k∑

p=0

(
k

p

)
bpx

k−p,(12.14)

a formula which, here again, implies (12) for any choice of the bk. It depends
only on (12) and is not sufficient to determine the bp; but (13) can be written

b0 +
(

k

1

)
b1 + . . . +

(
k

k − 1

)
bk−1 = 0 for k ≥ 2,(12.15)

i.e.

1 + 2b1 = 0,
1 + 3b1 + 3b2 = 0,
1 + 4b1 + 6b2 + 4b3 = 0,

etc., which allows one to calculate the Bernoulli numbers bp afresh, step-by-
step. Euler, who discovered them in another way as we shall see, and must
certainly have sought an explicit “formula” for the solution, had come to
the conclusion that there probably was none; posterity has confirmed this,
and has even quasi-proved it, by observing that the bp increase with a speed
too prodigiously fast to be expressible by algebraic, exponential and other
functions. You will find a little later their values for p ≤ 30, calculated by
Euler; it seems quite implausible, considering the taste of the Bernoullis for
numerical calculations, that Jakob had not pushed the calculations beyond
b10 = 5/66, but he did not publish them.

Let us now show that instead of (5) one has

Bk(x + 1) − Bk(x) = kxk−1.(12.16)

This is clear for k = 0. If (16) holds for k−1 the relation (12) shows that it is
true up to an additive constant. But by (13) it is correct without an additive
constant for x = 0. Whence (16).

Finally, (16) shows that

Bk(n + 1) = [Bk(n + 1) − Bk(n)] + [Bk(n) − Bk(n − 1)] + . . . +
+ [Bk(2) − Bk(1)] + Bk(1) = k

(
nk−1 + . . . + 1k−1

)
+ bk,

whence

1k−1 + . . . + nk−1 = [Bk(n + 1) − bk] /k.(12.17)

A comparison with (4) shows that

Bk(x + 1) = kAk(x) + bk

or, by (16),
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Bk(x) = kAk(x) − kxk−1 + bk

= xk +
k−1∑
p=1

k

(
k − 1
p − 1

)
apx

k−p + bk.(12.18)

(14) then shows that kb1 = ka1 − k, whence

a1 = b1 + 1 = 1/2

and, for p > 2,

k

(
k − 1
p − 1

)
ap =
(

k

p

)
bp,

whence
ap = bp/p.

In view of Bernoulli’s relations between the ap and the coefficients A, B, C,
etc. we see that they are just b2, b4, b6, etc.

We still have to show that, according to the first formulae,

b3 = b5 = . . . = 0.(12.19)

Since bk = Bk(0) = Bk(1) this will follow from the relation

Bk(1 − x) = (−1)kBk(x).(12.20)

To establish this one puts Ck(x) = (−1)kBk(1 − x) and confirms by a one-
line calculation that the Ck satisfy the conditions (12) and (13) as well as
C0(x) = 1. Now these conditions determine the Bk fully.

Here, to conclude, are the values of the Bernoulli numbers as calculated
by Euler:

b0 = 1, b1 = −1/2, b2 = 1/6, b4 = −1/30, b6 = 1/42,

b8 = −1/30, b10 = 5/66, b12 = −691/2730, b14 = 7/6,

b16 = −3617/510, b18 = 43867/798, b20 = −174611/330,

b22 = 854513/123, b24 = −236364091/2730, b26 = 8553103/6,

b28 = −23749461029/870, b30 = 8615841276005/14322,

b32 = −7709321041217/510, b34 = 2577687858367/6.

13 – The power series for cot z

By the definition of the binomial coefficients the recurrence relation

b0 +
(

n + 1
1

)
b1 + . . . +

(
n + 1

n

)
bn = 0 for n > 0
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can be rewritten as∑
0≤p≤n

bp

p!
1

(n + 1 − p)!
=
{

1 if n = 0
0 if n ≥ 1

and, in this form, evokes the formula for the multiplication of formal power
series; to be precise, it is equivalent to the identity

∞∑
0

bpX
p/p!

∞∑
0

Xq/(q + 1)! = 1,(13.1)

or, multiplying by X, to

[exp(X) − 1] .
∑

bpX
[p] = X

where, we recall, we have put X [p] = Xp/p!. We do not know the radius of
convergence of the series bpz

[p] a priori, but we know that the power series

z−1(ez − 1) = 1 + z/2! + z2/3! + . . .(13.2)

converges for any z. By the general theorems on analytic functions (Chap. II,
n◦ 22, particular case of Theorem 17), we know that the reciprocal of the
function (2) admits an expansion in a power series on a neighbourhood of
z = 0; by (1), this series must be

∑
bpz

[p]. This shows on the one hand that
the radius of convergence R of this series is not zero – a nonobvious result
since for the moment we do not know the order of magnitude of the bn – and
on the other hand that

z/(ez − 1) =
∑

bnz[n] = 1 − z/2 + z2/12 − z4/720 + . . .(13.3)

for |z| small enough. In fact, and as we shall see with the help of general
theorems on analytic functions, the relation (3) is valid in the largest disc of
centre 0 where the left hand side is analytic or holomorphic, i.e. where ez −1
does not vanish, whence

R = 2π,

a result which we shall find again a little later, without recourse to Cauchy
or Weierstrass.

In the formula (1), let us replace the constants bp by the Bernoulli poly-
nomials

Bp(t) =
∑(p

k

)
bp−ktk = p!

∑
m+n=p

bmtn/m!n!;

it follows that∑
Bp(t)Xp/p! =

∑
bmtnXm+n/m!n! =

∑
bmX [m](tX)[n] =

= exp(tX)
∑

bmX [m],
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whence, in view of of (3),∑
Bp(t)z[p] = zetz/(ez − 1),(13.4)

a relation valid, here again and for the same reasons as above, for |z| < 2π;
on the contrary, t can be an arbitrary complex number.

From this one may deduce the power series expansions of the functions
coth z and cot z. For the first, observe that, by (3),

z. coth z = z.
ez + e−z

ez − e−z
= z.

e2z + 1
e2z − 1

= z +
2z

e2z − 1
= z +
∑

bn(2z)n/n!

whence

z. coth z = 1 + z2/3 − z4/45 + 2z6/945 −(13.5)
− z8/4725 + 2z10/18711 − . . . .

For z. cot z = iz. coth iz one then obtains

z. cot z = 1 − z2/3 − z4/45 − 2z6/945 − z8/4725 − . . . ,(13.6)

= 1 −
∑

|b2n| (2z)[2n].

Now we saw at the end of n◦ 22 of Chap. II that if one puts

cot x = 1/x − c1x − c3x
3 − . . . ,

then
π2pc2p−1 = 2

∑
1/n2p = 2ζ(2p).

Comparing with (6), we see that c2p−1 = |b2p| 22p/(2p)!, whence

|b2p| =
2(2p)!
(2π)2p

ζ(2p),(13.7)

which reduces the calculation of the sums
∑

1/n2p to that of the Bernoulli
numbers. Stirling’s formula, which we shall establish in a little while, will
show that b2p increases very rapidly when p → +∞, as the first numerical
values have already suggested.

The formula (7) enables one to calculate the radius of convergence R = 2π
of the power series

∑
bnzn/n! directly; indeed,

1
2

∑
n≥2

|bnzn| /n! =
∞∑

n=2

ζ(2n) (|z|/2π)2n =
∑

n

∑
p

(|z|/2πp)2n
,
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and since this is a series with positive terms, the convergence of the left
hand side is equivalent to the unconditonal convergence of the double series
obtained (Chap. II, n◦ 18, Theorem 13) so presupposes, in particular, that
of the partial series obtained by summing over n for given p; this requires
|z|/2πp < 1 for every p ≥ 1 and thus |z| < 2π. Convergence for |z| < 2π is
then obtained by interchanging the summations with respect to n and p and
recognising the convergence of the series

∑ |z|2/ (4π2p2 − |z|2).
An even quicker method is to remark that, for s > 1,

1
s − 1

=
∫ +∞

1

x−sdx < ζ(s) < 1 +
∫ +∞

1

x−sdx =
s

s − 1

(Chap. V, (24.1)), so that ζ(2p) lies between 1 and 2 for any p ≥ 1, whence
b2pz

2p/(2p)! � (z/2π)2p and

b2p � (2p)!/(2π)2p.

14 – Euler and the power series for arctan x

The sums of powers and the Bernoulli numbers reappear chez Euler in 1739
when he calculates the integral

arctan x =
∫ x

0

dt

1 + t2

by the method of Cavalieri and others, i.e. as the limit of the Riemann sums
sn =
∑

nx/
(
n2 + p2x2

)
corresponding to the subdivisions of [0, x] into in-

tervals of length x/n, the sum being extended over the p ∈ [1, n]. Since

nx

n2 + p2x2
=

x/n

1 + p2x2/n2
=

x

n

∑
k≥0

(−1)k p2kx2k

n2k
,

the Riemann sum considered can be written

sn =
∞∑

k=0

(−1)k
(
12k + 22k + . . . + n2k

)
x2k+1/n2k+1,(14.1)

which reintroduces the sums of powers, here the even powers, of the first
n integers. One remarks in passing that the first series converges only if
|px/n| < 1, i.e. |x| < 1 since p ∈ [1, n], but this is a detail.

Without referring explicitly to the Bernoulli formulae, Euler uses them
to write that

sn = nx/n − (n3/3 + n2/2 + n/6
)
x3/n3 +

+
(
n5/5 + n4/2 + n3/3 − n/30

)
x5/n5 + . . .

= x − (1/3 + 1/2n + 1/6n2
)
x3 +
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+
(
1/5 + 1/2n + 1/3n2 − 1/30n4

)
x5 − . . .

=
(
x − x3/3 + x5/5 − . . .

)− (x − x3 + x5 − x7 + . . .
)
x2/2n −

− (x − 2x3 + 3x5 − 4x7 + . . .
)
x2/6n2 −

− (x − 5x3 + 14x5 − 30x7 + . . .
)
x4/30n4 −

− (x − 28x3/3 + 42x5 − 132x7 + . . .
)
x6/42n6 + &c.

The expressions between ( ) may seem bizarre to you, but for Euler it is
obvious that the coefficient of xm/?nm (m = 2, 4, . . .) is the series

vm(x) = x − (m + 1)(m + 2)
2.3

x3 +
(m + 1)(m + 2)(m + 3)(m + 4)

2.3.4.5
x5 − . . . ,

so obvious that he does not prove it, and for good reason: he would have
to use (12.14) and (12.17), which he does not write. Moritz Cantor, though,
who has seen many other displays of acrobatics, tells us (p. 673) “its infinite
form does not please Euler and he launches into a stunning [verblüffende]
transformation” of his formulae.

Indeed, using the binomial series for a negative integral exponent,

mvm(x) = mx − m(m + 1)(m + 2)x3/3! +
+ m(m + 1)(m + 2)(m + 3)(m + 4)x4/4! − . . . =

=
[
(1 − ix)−m − (1 + ix)−m

]
/2i =

= [(1 + ix)m − (1 − ix)m] /2i
(
1 + x2
)m

=

=
[
mx − m(m − 1)(m − 2)x3/3! +

+ m(m − 1) . . . (m − 4)x4/4! + . . .
]
/
(
1 + x2
)m

by the binomial theorem. Finally one finds easily that

sn =
(
x − x3/3 + x5/5 − x7/7 + . . .

)−(14.2)

− x3

2n(1 + x2)
− x2

2.6n2(1 + x2)2
.

2x

1
−

− x4

4.30n4(1 + x2)4

(
4x

1
− 4.3.2

1.2.3
x3

)
− . . . .

For x = 1 for example, in which case the first term of (3) equals π/4, one
finds

π =
4n

n2 + 1
+

4n

n2 + 4
+

4n

n2 + 9
+ . . . +

4n

n2 + n2

+
1
6
.

1
1n2

− 1
42

.
1

23.3n6
+

5
66

.
1

5n10
− . . . ,

a formula “correspondingly more exact as n is large” according to Euler who
immediately adds that despite appearances, the series (2) converges only “up
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to a certain rank”, “whatever that means” after which its terms again start
to increase . . .

Recall that if one expands 1/(1+t2) as a geometric progression the integral
for arctanx immediately gives

arctan x = x − x3/3 + x5/5 − . . .

for |x| < 1, which is the first term of (2). I do not know what Euler had in
mind in publishing his “stunning” calculations, but one has to admit that
his introduction of the Bernoulli numbers into the machine leads, as always
with him, to mathematical pyrotechnics.

The situation and the calculations would in fact be more lucid if instead
of starting from the function 1/(1 + x2) one started from an “arbitrary”
function f . For let us write

∫ 1

0

f(t)dt = lim
1
n

n−1∑
p=0

f(p/n) = limµn(f)(14.3)

and use the Maclaurin series

f(x) =
∑

f (k)(0)xk/k!(14.4)

which replaces the geometric series 1/(1+x2) = 1−x2 +x4− . . . Calculating
formally – Euler never did otherwise –, we find, using (12.14) and (12.17),

µn(f) =
∑
k≥0
p<n

f (k)(0)
nk+1k!

pk =
∑
k≥0

f (k)(0)
nk+1k!(k + 1)

[Bk+1(n) − bk+1] =

=
∑
k≥0
p≤k

f (k)(0)
nk+1(k + 1)!

(
k + 1

p

)
bpn

k+1−p =

=
∑
p≥0

bp

np

∞∑
k=p

(
k + 1

p

)
f (k)(0)/(k + 1)!

or, putting k = p + h,

µn(f) =
∞∑

p=0

n−pbp
∞∑

h=0

(
h + p + 1

p

)
f (h+p)(0)/(h + p + 1)!

=
∞∑

p=0

bp

p!np

∞∑
h=0

f (h+p)(0)/(h + 1)!.

The series
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f (p)(0)/1! + f (p+1)(0)/2! + f (p+2)(0)/3! + . . . ,(14.5)

involving h is the Maclaurin series of f (p−1)(1) without its first term f (p−1)(0).
Thus one finds

µn(f) =
∞∑

p=0

bp

p!np

[
f (p−1)(1) − f (p−1)(0)

]
.(14.6)

For p = 0, one has b0 = 1 and there remains f (−1)(1) − f (−1)(0), where
f (−1) is in reality a primitive F of f as one sees on putting p = 0 in (5).
The term p = 0 in (6) is precisely the integral of f over [0, 1] that we are
calculating, so that (6) actually expresses the difference between the latter
and the sum µn(f). For p = 1, one has b1 = − 1

2 and one finds [f(0)−f(1)]/2n.
For p ≥ 2, the odd p do not feature. By the definition of µn(f), multiplying
the two sides by n and adding f(1) to the two sides, one thus finds in the
final analysis the formula

f(0) + f(1/n) + . . . + f(n/n) =(14.7)

= n

∫ 1

0

f(t)dt +
1
2
[f(0) + f(1)] +

+
∞∑

p=1

b2p

(2p)!n2p−1

[
f (2p−1)(1) − f (2p−1)(0)

]
.

One would find Euler’s results again – apart of course from the “stunning”
transformation which is very specific to the function 1/(1 + t2) – replacing
the function t 
→ f(t) by t 
→ f(tx), whose derivatives are the functions
f (k)(tx)xk; this transforms the integral (3) of f over [0, 1] into its integral
over [0, x].

If on the other hand one applies this formula to t 
→ f(nt), which replaces
f (k)(x) by nkf (k)(nx), one obtains

f(0) + f(1) + . . . + f(n) =(14.8)

=
∫ n

0

f(t)dt +
1
2
[f(n) + f(0)] +

+
∞∑

p=1

b2p

(2p)!

[
f (2p−1)(n) − f (2p−1)(0)

]
.

It goes without saying that these purely formal calculations are in general
meaningless apart from the case where f is a polynomial and where the
Maclaurin series reduces to a finite sum. (Exercise. Verify the formula for
f(x) = xk.) Even if the function f is represented everywhere by a convergent
Maclaurin series, it is not clear that these permutations and groupings of
terms are legitimate, and in fact the result (8) is almost always a divergent
series. If on the other hand you apply (8) to a function of period 1, all the
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terms of the right hand side are zero apart from the first two, and you will
find, for n = 1 for example, the fanciful formula

1
2

[f(0) + f(1)] =
∫ 1

0

f(t)dt . . .

But this is a beautiful exercise in calculation, and we shall see later that one
can, as one does in replacing the Taylor series by a finite sum with a con-
trollable “remainder”, obtain a result which yields a very precise asymptotic
evaluation of the left hand side of (8).

15 – Euler, Maclaurin and their summation formula

The relation (14.8), which is the formal version of the Euler-Maclaurin sum-
mation formula, had in fact already been published by Euler in 1736 in the
Commentarii Academiae Petropolitanae and would appear again in Maclau-
rin’s Treatise of Fluxions of 1741; their methods are almost identical, and
there is every reason to believe that Maclaurin had not seen Euler’s memoir
before sending his manuscript to the printer. In both cases we have formal
calculations. Let us, for example, set out the heroic Scot’s method, who, at
this late date, still militates on Newton’s side.

Starting (in modern notation) from the formula

∫ 1

0

f (p)(t)dt =
∞∑

n=0

f (p+n)(0)/(n + 1)!(15.1)

which one obtains by integrating the Taylor (or, on this occasion, Maclaurin)
series of f (p)(t) or, for p = 0, of a primitive of f as in (14.5), Maclaurin tries
to express f(0) as an (infinite . . .) linear combination

f(0) =
∞∑

p=0

ap

∫ 1

0

f (p)(t)dt(15.2)

of the left hand sides, with universal constants ap, i.e. valid for every func-
tion f . On substituting the expressions (1) in (2), he finds the identity∑

apf
(p+n)(0)/(n + 1)! = f(0)(15.3)

summing over all pairs of integers p, n ≥ 0. Since the derivatives can be
chosen arbitrarily, as Emile Borel proved a little later, it is necessary (or it
suffices) that the terms containing the derivatives of order ≥ 1 disappear, i.e.
that for every k ≥ 1 the total coefficient of f (k)(0) corresponding to the pairs
(n, p) such that n + p = k should be zero. This can be written

a0/(k + 1)! + a1/k! + . . . + ak/1! =
∑

ap/(k − p + 1)! = 0;(15.4)
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now clearly a0 = 1 since f(0) occurs in (3) only for the pair (0, 0). Maclaurin
and Euler then deduced the numerical values of the ap, and if one puts
ap = bp/p!, though they did not, one again finds that the coefficients satisfy

b0 = 1,
∑

0≤p≤k

(
k + 1

p

)
bp = 0(15.5)

since the binomial coefficient equals (k + 1)!/p!(k − p + 1)!. Miracle: the bp

are the Bernoulli numbers!
This done, (2) can be written

f(0) =
∫ 1

0

f(t)dt − 1
2
[f(1) − f(0)] +(15.6)

+
∑ b2p

(2p)!

[
f (2p−1)(1) − f (2p−1)(0)

]
as these Gentlemen clearly affirm, after calculating the first bp, that they
vanish for p = 3, 5, &c. However, like everyone else at the time, they provided
only the first terms of the series.

On replacing t 
→ f(t) by t 
→ f(t + x) one obtains

f(x) =
∫ x+1

x

f(t)dt − 1
2

[f(x + 1) − f(x)] +(15.7)

+
∑ b2p

(2p)!

[
f (2p−1)(x + 1) − f (2p−1)(x)

]
;

on replacing x by p and adding from 0 to n − 1 one recovers (14.8).

16 – The Euler-Maclaurin formula with remainder

Following these excursions into the history of the subject, let us move on to
the correct methods, due to Jacobi (1834) for the expression of the remainder,
and to H. Wirtinger (1902) for the method of integration by parts, as Hairer
and Wanner tell us (p. 162). This is exactly the method we explained for
obtaining Taylor’s formula (Chap. V, n◦ 18), except that instead of choosing
polynomials Pk satisfying P0 = 1, P ′

k = Pk−1 and vanishing at the right end
of the interval of integration, one chooses polynomials taking the same value
at its two end-points. If these are 0 and 1, we must then assume Pk = Bk

and the method expounded in Chap. V leads, under the same hypotheses, to
the relation

f(1) − f(0) =
r∑

p=1

(−1)p−1

p!
f (p)(x)Bp(x)

∣∣∣∣1
0

+
(−1)r

r!

∫ 1

0

f (r+1)(x)Br(x)dx.

Since B1(x) = x − 1
2 and Bp(0) = Bp(1) = bp for p ≥ 2, it follows that
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f(1) − f(0) =
1
2
[f ′(0) + f ′(1)] +

r∑
p=2

(−1)p−1bp

[
f (p)(1) − f (p)(0)

]
/p! +

+
(−1)r

r!

∫ 1

0

f (r+1)(x)Br(x)dx.

Since b3 = b5 = . . . = 0 one can replace (−1)p−1 by −1 in the
∑

; by applying
the result to a primitive of f , which transforms f(1)− f(0) into the integral
of f over [0, 1], and f ′(0) + f ′(1) into f(0) + f(1), one finally finds

1
2
[f(0) + f(1)] =

∫ 1

0

f(x)dx +
p=r∑
p=2

bp

[
f (p−1)(1) − f (p−1)(0)

]
/p!(16.1)

− (−1)r

r!

∫ 1

0

f (r)(x)Br(x)dx.

To obtain the Euler-Maclaurin formula one considers a function f defined
and of class Cr on an interval [0, n], applies (1) to each function f(x + k),
and adds the relations so obtained. On the left hand side one finds

1
2
[f(0)+f(1)]+ . . .+

1
2
[f(n−1)+f(n)] = f(0)+ . . .+f(n)− 1

2
[f(0)+f(n)].

On the right hand side the sum of the integrals in f yields that of f over
[0, n]. In the

∑
on the right hand side all the terms cancel in pairs, except

for the values of the derivatives at n and 0. Finally, to write the sum of the
integrals conveniently in terms of Br, one introduces the function B∗

r (x) of
period 1 equal to Br(x) on [0, 1], clearly given by

B∗
r (x) = Br(x − [x])(16.2)

where [x] is the integer part of x; then∫ 1

0

f (r)(x + k)Br(x)dx =
∫ k+1

k

f (r)(x)B∗
r (x)dx,(16.3)

which, by addition, yields the integral of the same function over [0, n]. For f
of class C2r one then has the final result, namely

f(0) + . . . + f(n) =
∫ n

0

f(x)dx +
1
2
[f(0) + f(n)] +(16.4)

+
p=r∑
p=1

b2p

(2p)!

[
f (2p−1)(n) − f (2p−1)(0)

]
−

− 1
(2r)!

∫ n

0

f (2r)(x)B∗
2r(x)dx.

For r = 3, for example,
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f(0) + . . . + f(n) =

=
∫ n

0

f(x)dx + [f(0) + f(n)]/2 + [f ′(n) − f ′(0)]/12 −
− [f ′′′(n) − f ′′′(0)] /720 + [f ′′′′′(n) − f ′′′′′(0)] /30240 −
− 1

6!

∫ n

0

f (6)(x)B∗
6(x)dx.

Exercise. Let f be a function of class C2r on R. Show that

∑
n∈Z

f(n) =
∫ ∞

−∞
f(x)dx − 1

(2r)!

∫ ∞

−∞
f (2r)(x)B∗

2r(x)dx

subject to hypotheses to be found.

17 – Calculating an integral by the trapezoidal rule

If, in (16.4), one transfers the term 1
2 [f(0) + f(n)] to the left hand side, it

becomes
1
2
[f(0) + f(1)] + . . . +

1
2
[f(n − 1) + f(n)]

and is simply the sum of the areas of the trapezia constructed on the verti-
cals joining the integer points of the x axis to the corresponding points of the
curve. If f is a function of class C2r on [0, 1] and if one applies the preced-
ing results to the function f(x/n), defined between 0 and n, which replaces
f (k)(x) by n−kf (k)(x/n), one immediately finds the relation∫ 1

0

f(x)dx = [f(0) + f(1/n)]/2n + . . . + [f(1 − 1/n) + f(1)]/2n −

− [f ′(1) − f ′(0)]/12n2 + [f ′′′(1) − f ′′′(0)]/720n4 − . . . −(17.1)

− b2r

[
f (2r−1)(1) − f (2r−1)(0)

]
/(2r)!n2r +

+
1

(2r)!n2r+1

∫ 1

0

f (2r)(x)B∗
2r(nx)dx.

The left hand side represents the “curvilinear” area m(f) bounded by the
graph of f , the x axis and the verticals x = 0 and x = 1. On the right hand
side one then has the sum Tn(f) of the areas of the trapezia inscribed in the
graph of f and having as vertical sides the lines x = k/n. If generally one
puts

cp(f) = b2p

[
f (2p−1)(1) − f (2p−1)(0)

]
/(2p)!,

one then finds

Tn(f) = m(f) + c1(f)/n2 + . . . + cr(f)/n2r + (. . .)/n2r+1(17.2)
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where

(. . .) = − 1
(2r)!

∫ 1

0

f (2r)(x)B∗
2r(nx)dx.(17.3)

This expression remains bounded as n increases indefinitely, for the functions
B∗ are of period 1 and are polynomials on [0, 1], so bounded in R. The relation
(2) then can be written

Tn(f) = m(f) + c1(f)/n2 + . . . + cr(f)/n2r + O
(
1/n2r+1

)
(17.4)

and shows that, if f is C∞, the difference Tn(f)−m(f) is represented by the
asymptotic series

∑
cp(f)/np in the sense of n◦ 10. This also means that

Tn(f) − m(f) ∼ c1(f)/n2, Tn(f) − m(f) − c1(f)/n2 ∼ c2(f)/n4,

etc.
The situation becomes curious if f is the restriction to [0, 1] of a periodic

function that is indefinitely differentiable on R and not only on [0, 1]. Then
f (k)(1) = f (k)(0) for any k, so (4) reduces to

m(f) = Tn(f) + O(1/nk) for any k.

18 – The sum 1 + 1/2 + . . . + 1/n, the infinite product for the Γ
function, and Stirling’s formula

By simple arguments one may prove the existence of a constant C, or γ,
Euler’s constant, such that

lim(1 + 1/2 + . . . + 1/n − log n) = C = γ,(18.1)

a result which provides an excellent order of magnitude for 1 + . . . + 1/n for
n large. But the Euler-Maclaurin formula provides a complete asymptotic
expansion for it.

First of all, consider again the general formula (16.4) and assume that
in it the derivative f (2r)(x) is absolutely integrable on the interval [0,+∞].
This is then true for f (2r)(x)B∗

2r(x) too, since the functions B∗ are bounded.
The integral from 0 to n is then the difference between the integrals from 0
to +∞ and from n to +∞. Putting

C(f) =
1
2
f(0) −

r∑
p=1

b2pf
(2p−1)(0)/(2p)! −(18.2)

− 1
(2r)!

∫ +∞

0

f (2r)(x)B∗
2r(x)dx,

it follows that
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f(0) + . . . + f(n) =
∫ n

0

f(x)dx + C(f) +
1
2
f(n) +(18.3)

+
r∑

p=1

b2pf
(2p−1)(n)/(2p)! + ρr(n)

with a “remainder” ρr(n) given by

ρr(n) =
1

(2r)!

∫ +∞

n

f (2r)(x)B∗
2r(x)dx.(18.4)

If f and its successive derivatives tend to 0 at infinity then

C(f) = lim
[
f(0) + . . . + f(n) −

∫ n

0

f(x)dx

]

for every r: the “remainder” ρr(n) tends to 0 since the function under the∫
sign is by hypothesis absolutely integrable at infinity. This shows that the

constant C(f) does not depend on the number r chosen. One might call it
“Euler’s constant for f” because he had already exhibited it (notation C
or γ) in the case where f(x) = 1/x.

In this particular case, and in other similar cases of functions which are
defined for x > 0 but infinite at x = 0, one has to modify the formulae, i.e.
consider the sum f(1) + . . . + f(n). This comes down to applying the initial
formula to the function f(x+1) or, equivalently, to replacing the limit 0 by 1
in the derivatives and integrals. For f(x) = 1/x the derivatives at x = n are
easily calculated and the remainder is O

(
n−2r
)

since the function integrated
is O
(
x−2r−1

)
. On replacing r by r + 1 the formula (3) can in this case be

written

1 + 1/2 + . . . + 1/n =(18.5)
= log n + C + 1/2n − 1/12n2 + 1/120n4 −
− 1/252n6 + 1/240n8 − 1/132n10 + 691/32760n12 −
− 1/12n14 + . . . − b2r/2r.n2r + O

(
1/n2r+2

)
.

Thus one sees that the sum 1 + 1/2 + . . . + 1/n = sn is approximately equal
to log n, the error being approximately equal to Euler’s constant

C = γ = 0, 577 215 664 . . . .

But (5) is much more precise. For example, in the simplest formula

sn = log n + C + 1/2n +
∫ +∞

n

x−2B∗
1(x)dx,(18.6)

one has |B∗
1(x)| ≤ 1

2 since B∗
1(x) = B1(x) = x − 1

2 between 0 and 1. The
integral in (6) therefore lies between −1/2n and 1/2n, so that, on adding the
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term 1/2n to the formula, one obtains a result between 0 and 1/n. In other
words,

sn = log n + C + θn/n with 0 ≤ θn ≤ 1.(18.7)

For n = 106 one thus finds sn = 6. log 10 + C to within 10−6; since 10
lies between e2 and e3 its log lies between 2 and 3, which shows that sn

lies between 12 and 19; certainly a not very exact result, but obtained in
probably less time than it would take a machine to calculate a million terms
of the harmonic series to a dozen decimal places so as to obtain the result to
within 10−6.

To improve this rough estimate one needs to know that

log 10 = 2, 302 585 092,

a result generously provided, among many others, by the Founders, whence
one deduces sn = 14, 392 726 . . . The same argument shows that on calculat-
ing the sum of the first 10100 terms of the harmonic series one finds a result
equal, to within 1, to 100. log 10 ∼ 230. One finds in Hairer and Wanner,
II.10, apart from the very precise numerical results, a reproduction p. 167 of
a letter from Euler to Johann Bernoulli, dating from 1740, in Latin, and in
an impeccable script, where the former informs the latter of his numerical
results.

From this one may deduce an expansion of the function Γ as an infinite
product. We have already seen [Chap. V, eqn. (23.6)] that

Γ (s) = limn!ns/s(s + 1) . . . (s + n)(18.8)

for Re(s) > 0. The reciprocal of the right hand side can again be rewritten
as

s. lim(1 + s)(1 + s/2) . . . (1 + s/n)n−s;(18.9)

now n−s = e−s. log n and log n = (1 + 1/2 + . . . + 1/n) − C + o(1) by (6); so

n−s ∼ e−s(1+1/2+...+1/n−C) = eCse−se−s/2 . . . e−s/n,

whence

(9) = seCs. lim
n∏

p=1

(1 + s/p)e−s/p.

But, for p large,

(1 + s/p)e−s/p = (1 + s/p)
(
1 − s/p + O

(
1/p2
))

= 1 + O
(
1/p2
)

is, for Re(s) > 0 and even for every s ∈ C, the general term of an absolutely
convergent infinite product (Chap. IV, n◦ 17, Theorem 13), a product whose
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value is �= 0 for every s �= −1,−2, . . . Returning to (8), we conclude that, for
Re(s) > 0, the Γ function is everywhere �= 0, and is given by

1/Γ (s) = seCs
∞∏
1

(1 + s/n)e−s/n(18.10)

where C = γ is Euler’s constant, a famous result due to the latter.
This formula is in fact valid for any s ∈ C. First, it is clear that on

retracing the calculations which brought us from (10) to (8), we have

seCs
∞∏
1

(1 + s/n)e−s/n = lim s(s + 1) . . . (s + n)/nsn!(18.11)

for any s ∈ C; the limit exists, like the infinite product, on all C and not
only for Re(s) > 0. But if one denotes the right hand side of (11) by f(s),
one has, for any s ∈ C,

sf(s + 1) = lim s(s + 1) . . . (s + n + 1)/ns+1n! = f(s)

since ns+1n! ∼ (n + 1)s(n + 1)! as one sees immediately. Now we know
(Chap. V, n◦ 22, Example 1) that Γ (s + 1) = sΓ (s) for Re(s) > 0. The
two members of this formula being holomorphic in C, the negative integers
removed, (Chap. V, n◦ 25, Example 5), and therefore analytic – in mathemat-
ics, one may stoop to swindles so long as one warns the victims in advance
– the equality is valid without restriction (principle of analytic continuation:
Chap. II, n◦ 20). Now consider the product g(s) = f(s)Γ (s). We know that
g(s) = 1 for Re(s) > 0 by (10), and that g(s + 1) = g(s) for any nonnegative
integer s. It follows clearly that g(s) = 1 everywhere, qed.

Combining (10) and (11), one also finds that

1/Γ (s) = lim s(s + 1) . . . (s + n)/nsn!(18.12)

for any s ∈ C. Consequently,

1/Γ (s)Γ (1 − s) =
= lim s(s + 1)(s + 2) . . . (s + n)(1 − s)(2 − s) . . . (n + 1 − s)/n(n!)2 =
= s. lim

(
12 − s2

) (
22 − s2

)
. . .
(
n2 − s2

)
(n + 1 − s)/n(n!)2 =

= s. lim
(
1 − s2
) (

1 − s2/22
)
. . .
(
1 − s2/n2

)
since (n + 1 − s)/n tends to 1. Whence

1/Γ (s)Γ (1 − s) = s
∏(

1 − s2/n2
)

=
1
π

sin πs

[Chap. IV, eqn. (18.16)], a formula due to Euler and which one also writes

Γ (s)Γ (1 − s) = π/ sin πs.(18.13)
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There are all sorts of other ways to establish these properties of the Gamma
function, among many others.

Among the functions whose derivatives are integrable at infinity there
appears f(x) = log x, for which

f (r)(x) = (−1)r−1(r − 1)!x−r.

Formula (18.3) clearly applies for r > 1 and immediately gives

log(n!) = n log n − n + 1 +
1
2

log n + C(f) +(18.14)

+
∑

b2p/2p(2p − 1)n2p−1 + ρr(n);

the first three terms come from calculating the integral of log x from 1 to
n (primitive: x. log x − x) and then ρr(n) = O

(
1/n2r−1

)
since f (2r)(x) =

O
(
x−2r
)

at infinity; this assumes that r ≥ 1 for otherwise the integral for
the remainder would be divergent.

Rather than going over the expansion again, let us just deduce Stirling’s
formula from it, for r = 2. In this case we obtain

log(n!) − n log n + n − 1
2

log n − c = 1/12n + O
(
1/n3
)

(18.15)

where c = 1 + C(f). The left hand side is the log of

un = n!en−c/nn+ 1
2

and since the right hand side tends to 0, we see that un tends to 1, whence

n! ∼ ecnne−n
√

n.(18.16)

While we have no information on Euler’s constant γ for the harmonic
series – one does not even know whether it is algebraic or transcendental –,
we can, here, calculate

c = log
√

2π, whence n! ∼
√

2πn(n/e)n,(18.17)

but the method is not particularly transparent. We start from Wallis’ formula
(Chap. V, n◦ 17)

π/2 = lim
2242 . . . (2n)2

1232 . . . (2n − 1)2(2n + 1)
=

= lim
2444 . . . (2n)4

122232 . . . (2n)2(2n + 1)
= lim

24n(n!)4

((2n)!)2 (2n + 1)

and write (2n!)2 ∼ (2n)2n+ 1
2 e−2n+c by (16). It follows that

π/2 ∼ 24nn4n+2e−4n+4c

(2n)4n+1e−4n+2c(2n + 1)
=

ne2c

2(2n + 1)
∼ e2c/4,

whence e2c = 2π and Stirling’s formula (17).
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19 – Analytic continuation of the zeta function

In the Euler-Maclaurin formula let us choose f(x) = 1/xs with Re(s) > 1,
so that the series

ζ(s) =
∑

1/ns =
∑

f(n)(19.1)

converges. Since here

f (r)(x) = (−1)rs(s + 1) . . . (s + r − 1)/xs+r,(19.2)

(16.4) can be written

f(1) + . . . + f(n) =
∫ n

1

x−sdx +
1
2
(1 + n−s) +(19.3)

+
r∑

p=1

b2ps(s + 1) . . . (s + 2p − 2)
(
n−s−2p+1 − 1

)
/(2p)! + ρr(n)

with a remainder

ρr(n) =
s(s + 1) . . . (s + 2r − 1)

(2r)!

∫ n

1

B∗
2r(x)x−s−2rdx.

When n increases indefinitely, the left hand side tends to ζ(s), the first in-
tegral on the right hand side tends to 1/(s − 1) since Re(s) > 1, the terms
containing a power of n tend to 0, and the integral in the remainder converges.
Multiplying by s − 1, one finds, in the limit,

ζ(s) =
1

s − 1
+

1
2
−

−
r∑

p=1

b2p(s + 1)s . . . (s + 2p − 2)/(2p)! + σr(s)

or, writing out the first terms,

ζ(s) =
1

s − 1
+

1
2

+
s

6.2!
− s(s + 1)(s + 2)

30.4!
(19.4)

+
s(s + 1)(s + 2)(s + 3)(s + 4)

42.6!
+ . . .

+b2r
s(s + 1) . . . (s + 2r − 2)

(2r)!
+ σr(s),

where we have put

σr(s) =
s(s + 1) . . . (s + 2r − 1)

(2r)!

∫ +∞

1

B∗
2r(x)x−s−rdx.(19.5)
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These formulae assume Re(s) > 1, but the integral (5) converges for Re(s) >
1− r, and the other terms of (4) are polynomials in s. We may therefore use
(4) to define ζ(s) in the half plane Re(s) > 1− r, apart from the point s = 1;
and since r is an arbitrary integer > 0, in this way we obtain a definition of
the zeta function valid in the whole complex plane, the point s = 1 deleted.

The point of these calculations is that they furnish a holomorphic function
on C − {1}, equal to ζ(s) on the half plane Re(s) > 1 where the series
converges; to see this it suffices to argue from the integral (5) as we did in
Chap. V, n◦ 25 for the function Γ (s): since Bernoulli’s function is bounded on
R, the function which one integrates, holomorphic in s, is, on the whole half
plane Re(s) + r > 1 + ε, dominated up to a constant factor by the function
x−1−ε, integrable on [1,+∞]; Theorem 24 bis of Chap. V, n◦ 25 then yields
the result.

In fact, the function ζ is even (sic) analytic. Not yet having the general
Cauchy-Weierstrass theory at our disposal we have to use a workaday method
to prove it. We write

x−s = exp(−s. log x) =
∑

(−1)nsn logn x/n!,

substitute this result in the integral (5), and integrate it term-by-term, leav-
ing the justification of this operation until later. We obtain the series

∑
ansn/n! where an = (−1)n

∫ +∞

1

B∗
2r(x) logn x.x−rdx.(19.6)

Putting M = sup |B∗
2r(x)|, we then have

|an| ≤ M

∫ +∞

1

logn x.x−rdx(19.7)

and since, at the least, we have to satisfy ourselves that the radius of con-
vergence of the power series (6) does not reduce to 0, we need to evaluate
the integral (7). Convergence is obvious for r > 1 since logn x is O(xα) at
infinity, for every α > 0. The change of variable x = eu reduces this integral
to
∫

une(1−r)udu where one integrates now from 0 to +∞. A second change
of variable (r − 1)u = v reduces us to

(r − 1)−n−1

∫ +∞

0

vne−vdv = (r − 1)−n−1Γ (n + 1) = (r − 1)−n−1n!

by Chap. V, n◦ 22, Example 1. The inequality (7) then becomes

|an| ≤ Mn!/(r − 1)n+1.

The series (6) is therefore majorised up to a constant factor by the series
with general term |s|n/(r − 1)n, which converges for |s| < r − 1.
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The term-by-term integration used to obtain (6) is justified by Theo-
rem 20 of Chap. V, n◦ 23. On the one side, the series to be integrated, with
general term

un(x) = (−1)nB∗
2r(x) logn x.x−rsn/n!,

converges normally on every compact subset of [1,+∞[ i.e. on every interval
[1, b] with b < +∞, for, putting M = sup |B∗

2r(x)|, one has, on this interval,

|un(x)| ≤ M logn b.|s|n/n!,

the general term of a convergent series independent of x ∈ [1, b]. On the other
hand, ∑

|un(x)| ≤ M. exp(|s|. log x)x−r = Mx|s|−r = p(x)

is a function integrable on [1,+∞[ since, to make the power series (6) con-
verge, we have already had to assume |s| < r − 1 and thus |s| − r < −1. The
formal calculation above is therefore justified.

The integral (5) is therefore an analytic function of s in the disc |s| < r−1.
So likewise by (4) is the function (s − 1)ζ(s). But since r is an integer that
may be chosen arbitrarily large, it follows that (s − 1)ζ(s) is analytic on all
of C, qed.

We have thus shown that the function (s− 1)ζ(s) is the restriction to the
half plane Re(s) > 1 of an analytic function on all of C. The latter is unique
by the principle of analytic continuation of Chap. II, n◦ 20. Later we shall
see that there is a simple relation between ζ(s) and ζ(1 − s).

Formula (19.4), valid for every s �= −1, applies mainly when s is an integer
≤ 0. The remainder (5) is then zero if one chooses r suitably, when one finds
a rational value for ζ(s). One can calculate it for the small values of r:

ζ(0) = −1/2, (r = 1)
ζ(−1) = −1/2 + 1/2 − 1/6.2! = −1/12, (r = 1)
ζ(−2) = −1/3 + 1/2 − 2/6.2! = 0, (r = 2)
ζ(−3) = −1/4 + 1/2 − 3/6.2! + 3.2/30.4! = 1/120, (r = 2)

etc. In fact,
ζ(1 − 2r) = −b2r/2r, ζ(−2r) = 0

for any r ≥ 1, as we shall see in Chapter XII, using other methods.



VII – Harmonic Analysis
and Holomorphic Functions

§ 1. Analysis on the unit circle – § 2. Elementary theorems on
Fourier series – § 3. Dirichlet’s method – § 4. Analytic and holo-
morphic functions – § 5. Harmonic functions and Fourier series
– § 6. From Fourier series to integrals

1 – Cauchy’s integral formula for a circle

It is not the tradition to treat Fourier series and the theory of analytic func-
tions together. Nevertheless the two theories are closely related. If

f(z) =
∑

anzn

is a power series of radius of convergence R > 0 the function

f
(
re2πit
)

=
∑

anrne2πint(1.1)

which, for 0 ≤ r < R, represents f on the circle |z| = r is an absolutely
convergent trigonometric series of period 1. It follows [Chap. V, eqn. (5.13)]
that ∫ 1

0

f
(
re2πit
)
e−2πintdt =

{
anrn for n ≥ 0,
0 for n < 0.

(1.2)

The integral (2) is zero for n < 0 since only positive powers n appear in the
series (2); this shows, in passing, that the function t 
→ f

(
re2πit
)

is very far
from being the most general periodic function.

As we have seen in Chap. V, it follows from this that for |z| < r

f(z) =
∫ 1

0

re2πit

re2πit − z
f
(
re2πit
)
dt.(1.3)

If we perform the change of variable ζ = re2πit in (3) (a priori forbidden
since the values are complex) and if we calculate à la Leibniz, we have dζ =
2πire2πitdt, which allows us to write (3) in Cauchy’s form
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∫
|ζ|=r

f(ζ)
dζ

ζ − z
=
{

2πif(z) for |z| < r
0 for |z| > r

(1.4)

where we integrate along of the circumference |ζ| = r oriented traditionally;
we are in fact dealing with a particular case of a much more general formula
– one may integrate along arbitrary closed curves1 –, obtained by Cauchy
much later than (4), and which cannot be obtained by calculations of the
preceding type. But (4) nevertheless shows that, in the disc |z| < r < R,
one may calculate f from its values on the circumference |z| = r through an
explicit formula of the simplest kind.

Why does one find 0 for |z| > r in (4)? Because, putting u = e2πit, one
may write

ru

ru − z
= − ru/z

1 − ru/z
= −
∑

(ru/z)n+1(1.5)

and obtain a convergent series which can be integrated term-by-term in (3).
Therefore∫ 1

0

re2πit

re2πit − z
f
(
re2πit
)
dt = −

∑
(r/z)n+1

∫ 1

0

f
(
re2πit
)
e2π(n+1)itdt,(1.6)

which causes the coefficients of index < 0 in the Fourier series representing
f
(
re2πit
)

to appear; but by (2) they vanish.
If for example f(z) = zn with n ∈ N, one finds

2πizn =
∫
|ζ|=r

ζndζ

ζ − r
for |z| < r(1.7)

(and 0 for |z| > r) or, putting a = z/r,

an =
∫ 1

0

e2πi(n+1)t

e2πit − a
dt for |a| < 1, n ∈ N.(1.8)

1 Let t �→ γ(t) = (x(t), y(t)) be a differentiable map of a compact interval I into
C, whence a “curve”, the trajectory of the point γ(t). If f(z) is a continuous
function of z defined on an open set containing the curve we put∫

γ

f(z)dz =

∫
I

f [γ(t)] γ′(t)dt

and more generally∫
γ

u(x, y)dx + v(x, y)dy =

∫
I

{
u [γ(t)] x′(t) + v [γ(t)] y′(t)

}
dt

if u and v are continuous on a neighbourhood of γ(I). Formula (4) corresponds
to the case where γ(t) = re2πit. If s = θ(t) is a map of class C1 of I onto an
interval J , the integral

∫
f(z)dz does not change if one replaces t �→ γ(t) by

s �→ γ [θ(s)], by the Chain Rule: we have
∫

ϕ [θ(t)] θ′(t)dt =
∫

ϕ(s)ds, where the
integrals are taken over I and J respectively. See Vol. III, Chap. VIII, n◦ 2.
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One may go further and also calculate the derivatives

f (k)(z) =
∑

n(n − 1) . . . (n − k + 1)anzn−k(1.9)

of f . One proceeds in the same way, but this time using the relation∑
n(n − 1) . . . (n − k + 1)qn−k = k!/ (1 − q)k+1

,(1.10)

which follows by differentiation (Chap. II, eqn. (19.14)) in place of the formula∑
qn = 1/(1 − q); one substitutes the an given by (2) in (9), whence

f (k)(z) =

=
∑

n(n − 1) . . . (n − k + 1)zn−kr−n

∫
f
(
re2πit
)
e−2πintdt =

=
∑

n(n − 1) . . . (n − k + 1)
∫ (

z/re2πit
)n−k (

re2πit
)−k

f
(
re2πit
)
dt

where one integrates over [0, 1]; one verifies, as for k = 0, that one may
integrate the series term-by-term, whence, using (10),

f (k)(z) = k!
∫ (

1 − z/re2πit
)−k−1 (

re2πit
)−k

f
(
re2πit
)
dt,

i.e.

f (k)(z) = k!
∫ 1

0

re2πit

(re2πit − z)k+1
f
(
re2πit
)
dt(1.11)

or again, à la Leibniz,

2πif (k)(z) = k!
∫
|ζ|=r

f(ζ)
dζ

(ζ − z)k+1
for |z| < r.(1.11’)

(11’) can be deduced formally from (4) by differentiating the factor 1/(ζ − z)
appearing in the integral (4) k times with respect to z. In fact, Theorem 9
of Chap. V, n◦ 9 (differentiation under the

∫
sign) would allow us to justify

this operation a priori, starting from (6) without intermediate calculations,
since to differentiate an analytic function with respect to z is the same as
differentiating it with respect to x = Re(z).

The preceding assumes that the function f is analytic; what happens if it
is only holomorphic, i.e. C1 in the real sense on a disc |z| < R and a solution
of the Cauchy equation

D2f = iD1f ?(1.12)

As we want to show that f is in fact analytic we are forced to reverse the
procedure, i.e. to introduce the Fourier coefficients
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an(r) =
∫ 1

0

f
(
re2πit
)
e−2πintdt(1.13)

for r < R, and to show that
(i) they are of the form

an(r) = anrn(1.14)

with numerical coefficients an independent of r,
(ii) we have an = 0 for n < 0,
(iii) and

f
(
re2πit
)

=
∑

an(r)e2πint(1.15)

for any t ∈ R and r < R. On substituting (14) in (15) we will find an
expansion of f(z) as an entire series, by (ii).

We might establish points (i) and (ii) as of now, the first using (12), the
second by observing that, by (13), the function an(r) must remain bounded
as r tends to 0. Point (iii), on the other hand, assumes known the fact that the
Fourier series of a function of class C1 is absolutely convergent and represents
the given function. These points will be justified later.

All this shows that the foundations of the theory of the analytic or holo-
morphic functions rests on Fourier series or can be deduced therefrom. We
shall see that conversely one may use the Cauchy formula to obtain the first
theorems on Fourier series.

In this chapter you will find only those properties of holomorphic func-
tions which can be derived from the theory of Fourier series. Everything
that depends on integrals over arbitrary curves (the Cauchy theory) will be
expounded in Volume III.



§ 1. Analysis on the unit circle 255

§ 1. Analysis on the unit circle

2 – Functions and measures on the unit circle

The purpose of this § is to present some definitions and notations which we
shall use constantly, and to clarify a number of preliminary questions.

We shall adopt the notation T (the one-dimensional “torus”) to denote
the set of the complex numbers u such that |u| = 1; some other authors
denote it by U (the “unitary” group in one variable), not to speak of those
who prefer to write R/Z . . . The aim of the theory of Fourier series is to
expand “arbitrary” functions defined on T in series whose general term is a
multiple of e2πint = un, putting u = e2πit. Note that if one puts

χ(u) = un for every u ∈ T(2.1)

for n ∈ Z one obtains a continuous function on T such that

χ(uv) = χ(u)χ(v) for any u, v ∈ T.(2.2)

We shall see a little later that this equation has no continuous solutions other
than the functions u 
→ un, and it is this remark which is at the origin of the
contemporary generalisations of the theory.

(i) How to eliminate the factors 2π

As far as possible I intend neither to bore the reader with the factors 2π
and the exponentials which uselessly encumber this kind of mathematics, nor
to inflict them on my two typists. I will therefore use the notation

e(t) = e2πit, en(t) = e2πint = e(nt) = e(t)n(2.3)

where the factors 2π, relegated to the exponents, are invisible and can be
absorbed into “macros” that can be typed globally; this convention is already
to be found in Hardy and Wright.

I earnestly advise the reader to reread n◦ 14 of Chap. IV on the imagi-
nary exponentials, since it will be used constantly. The exponentials (1) have
period 1 and in the sequel we shall consider functions of period 1 alone: a
function f of period T is transformed into a function of period 1 on consid-
ering t 
→ f(Tt) instead of f(t). Users may have excellent reasons to drag
cohorts of functions cos(2πnt/T ) after themselves, but we have none here.

(ii) Functions on T and periodic functions

To every function f on T there corresponds, on R, a function t 
→ f [e(t)]
of period 1. Conversely, every function f(t) of period 1 on R can be considered
as a function on the unit circle T: one puts

f(u) = f(t) if u = e(t), whence f(t) = f [e(t)];(2.4)
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since f(t + 1) = f(t) there is no ambiguity, t being determined modulo an
integer when one knows u. This is an abuse of notation since a function on R
is not, strictly speaking, a function on T; but it is indispensable to be able to
adopt both of these two points of view; and to use different notations for the
two functions which correspond “canonically” according to (4) would make
the text unreadable.

This correspondence between functions defined on these different sets
preserves continuity. Since the map t 
→ e(t) of R on T is continuous, the
continuity of f at a point of T trivially implies its continuity at the corre-
sponding points of R. On the other hand, even though the map t 
→ e(t) is
not globally bijective, it maps every compact interval I ⊂ R of length strictly
< 1 bijectively onto a closed arc K ⊂ T of the circle. Restricted to I, the
map t 
→ e(t) therefore has an inverse map K → I which is also continuous
(Chap. III, n◦ 9). The map t 
→ e(t) thus inversely transforms every contin-
uous function on I into a continuous function on K. This is equivalent to
saying that a function defined on the circle |u| = 1 is continuous if and only
if it is a continuous function of the polar angle, or argument, of the point u,
as is obvious from a sketch. § 4 of Chap. IV on the uniform branches of the
“function” Arg z also shows that on a neighbourhood of each point u0 ∈ T
or even on T with a point removed, for example on T − {1}, but not on the
whole of T, one may choose t so that it is a continuous function of u = e(t).

(iii) Characterisation of the exponentials

The correspondence (4) allows us to show that the functional equation
(2) has no continuous solutions apart from the functions (1). To start with,
note that for every continuous solution of (2)

|χ(u)| = 1 for every u ∈ T;

this relates to the fact that, endowed with the usual multiplication and topol-
ogy of the complex numbers, T is a “compact group”: since the continuous
function χ is bounded on the compact set T, it follows that for every u ∈ T,
the family of the numbers χ(un) = χ(u)n for n ∈ Z is likewise bounded; it
remains then to show that the only complex numbers z such that

sup
n∈Z

|zn| < +∞

are those of modulus 1, which is clear. Since (2) implies χ
(
u−1
)

= χ(u)−1,
it follows that every continuous solution of (2) also satisfies

χ
(
u−1
)

= χ(u)(2.5)

and more generally

χ
(
uv−1
)

= χ(u)χ(v)(2.6)
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for any u, v ∈ T.
On the other hand, the continuous function χ(x) = χ(e(x)) = χ

(
e2πix
)

on R satisfies the functional equation

χ(x + y) = χ(x)χ(y)

of Chap. IV, n◦ 13. We have shown there that every solution of the latter is
of the form

χ(x) = exp(cx)(2.7)

with a constant c ∈ C, on condition that we know that the function χ has a
derivative at the origin.

But, in fact, continuity suffices, and implies much more than differentia-
bility at the origin. To see this, one chooses on R a function ϕ ∈ D(R) and,
as in Chap. V, n◦ 27, one regularises χ by means of the convolution product

χ � ϕ(x) =
∫

R

χ(x − y)ϕ(y)dy =
∫

R

χ(x)χ(y)−1ϕ(y)dy = c.χ(x);(2.8)

the constant c =
∫

χ(y)−1ϕ(y)dy may be assumed to be nonzero, since, if
χ�ϕ were zero for every ϕ ∈ D(R), then so would be the function χ (Chap. V,
n◦ 27, Theorem 26). Now the function χ � ϕ is C∞ for every ϕ ∈ D(R). So
likewise is χ.

We may now apply the result of Chap. IV, n◦ 13 and write (7). But
in the present case |χ(x)| = 1 for every x ∈ R. Putting c = a + ib with
a and b real, we have | exp(cx)| = exp(ax) for x ∈ R, whence a = 0 and
χ(x) = exp(ibx) with b real. For the result to be of period 1 it is necessary
and sufficient that exp(ib) = 1, i.e. that b = 2πn with an n ∈ Z. Finally we
find χ(x) = exp(2πinx), whence χ(u) = un, qed.

We shall later call every function of the form u 
→ un = χ(u) a char-
acter of T. This terminology comes from the theory of commutative groups
(Chap. XI), where one considers the solutions of the functional equation (2)
systematically on the given group G. If one assumes G commutative and
finite – the simplest case, involving only algebra –, every function on G is,
and in a unique way, a linear combination of characters of G, of which there
are Card(G); this is the simplest version of the Fourier transform, though
dating from very much later than Fourier himself (even though Dirichlet
had used this idea for the group Z/nZ in proving his theorem on arithmetic
progressions).

(iv) Mean value of a function on a circle

In the theory of analytic functions one often considers the mean value of
a function over a circle, and, in that of the periodic functions, over a period
interval. There is no difference between these two ways of integrating.

First, on a circle |z| = r, a function of z, analytic or not, can, as we have
seen, be transformed into a function of period 1 by putting
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z = re(t) = re2πit(2.9)

or into a function of period 2π on putting z = reit. Its mean value around
the circle |z| = r is, by definition, the number which we denote by∫

T

f(ru)dm(u) =
∫ 1

0

f(re(t))dt =
1
2π

∫ 2π

0

f(reit)dt(2.10)

where T, we recall, denotes the unit circle |u| = 1 in the complex plane. More
generally we put

m(f) =
∫

T

f(u)dm(u) =
∫ 1

0

f(e(t))dt =
1
2π

∫ 2π

0

f(eit)dt(2.11)

for every “reasonable”, for example regulated2, function f on T. We will use
the norms

‖f‖ = ‖f‖T = sup |f(u)|, ‖f‖1 =
∫

T

|f(u)|dm(u),

‖f‖2 =
(∫

T

|f(u)|2 dm(u)
)1/2

as in R.
We may in fact, in (11), integrate over any interval of length 1, since∫ 1

0

f(t)dt =
∫ a+1

a

f(t)dt =
∫ a+1

a

f(b + t)dt(2.12)

for any a, b ∈ R for every function f of period 1 on R (Chap. V, end of n◦ 2).
Besides, even in the case of arbitrary functions of period T on R, the

formulae only mention the mean values of the functions over a period interval;
it is convenient to write, here again,

m(f) =
∫ 1

0

f(t)dt =
1
2π

∫ 2π

0

=
1
T

∫ T

0

=
∮

,(2.13)

as we study functions of period 1, 2π or T ; the sign
∮

dispenses us from
writing the limits of integration since, by definition, it denotes the mean
2 This means, as one prefers, that the corresponding periodic function is regulated,

i.e. has left and right limit values at every point of R, or that the function given
on T enjoys the same property, the limit values at a point of T being defined in
the obvious way. The BL theorem being valid for the compact set T, it comes
to the same to require that for every r > 0 there exists a partition of T into a
finite number of arcs of circles, of any kind, on each of which the given function
is constant to within r. One may also define, using such partitions, the notion
of step function on T, and, generally, transpose to T the arguments of Chap. V,
n◦ 7.
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value over a period (or even over several periods) of the integrand. In fact,
and without express mention to the contrary, all the integrals in dt will be, in
the rest of this chapter, apart from § 6, extended over any interval of length
1.

As we have seen in Chap. V, n◦ 5, which the reader is invited to read
again, the essential formulae in the theory of absolutely convergent Fourier
series (calculation of the coefficients and of the scalar product) stem from the
“orthogonality relations” of the exponentials, the relation (5.2) of Chap. V.
With the notation just introduced, they can be written∫

ep(u)eq(u)dm(u) =
{

1 if p = q,
0 if p �= q.

The scalar product (f | g) of two periodic functions introduced in Chap. V,
eqn. (5.4), will now be written

(f | g) =
∫

f(u)g(u)dm(u) = m(fḡ).

The orthogonality relations thus signify that if χ and χ′ are two characters of
T, then (χ |χ′) = 1 or 0 according to whether χ and χ′ are equal or different.

(v) Measures on T

The notation dm(u) in (11) indicates that we are integrating with respect
to a measure on T. We have defined this notion in Chap. V, n◦ 30 in the case
of a compact set X ⊂ C: one considers the vector space C0(X) of scalar
functions defined and continuous on X, endowed with the norm

‖f‖X = sup
x∈X

|f(x)|(2.14)

of uniform convergence on X; a measure on X is then, by definition, a map
µ of C0(X) into C which is linear and continuous, i.e. satisfies an inequality

|µ(f)| ≤ M(µ) ‖f‖X(2.15)

which allows one to pass to the limit under the
∫

sign when integrating a
uniformly convergent sequence of functions fn ∈ C0(X) with respect to µ. A
measure is said to be positive if µ(f) ≥ 0 for every function f ≥ 0. It is clear
that formula (11) defines such a measure on T.

In the case of the measure m, all that we have said in Chap. V trans-
poses immediately to integration on T, starting with the notion of integrable
function (Chap. V, n◦ 2); it will be the same for an arbitrary measure µ once
we have defined the integrable functions in this case. The proper theory of
Fourier series uses the Lebesgue integral – for m or any other measure on
T – and has, historically, constituted one of the principal justifications or
motivations for it. Since we cannot yet do this here, we shall confine our-
selves, in this chapter, without exceptions, to considering regulated, mostly
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continuous, functions, when we integrate with respect to an arbitrary mea-
sure: there is no benefit in complicating one’s existence in exploiting to the
full the possibilities of the Riemann integral by circuitous and complicated
methods when one can obtain much more complete results more easily using
the Lebesgue integral (a principle of Dieudonné’s).

We may also define distributions in the sense of Schwartz on T, as we
shall see in n◦ 9.

(vi) Invariance of the measure m on T

For the measure m defined on T by (11), we have∫
f(au)dm(u) =

∫
f(u)dm(u) for every a ∈ T;(2.16)

this is the analogue of the translation invariance∫
f(x + a)dx =

∫
f(x)dx(2.17)

of Lebesgue measure on R and of the analogous property∫ ∫
f(x + a, y + b)dxdy =

∫ ∫
f(x, y)dxdy

on R2: the maps u 
→ au, where |a| = 1 (geometrically: rotations about
the origin), play the same rôle in T as the translations x 
→ a + x in R or
(x, y) 
→ (x+a, y+b) in R2. The reader who knows what a group is (additive
in the case of R or R2, multiplicative in the case of T) will understand. On
the multiplicative group R∗ of nonzero real numbers the invariant measure
is dx/|x| as one sees on making the change of variable x 
→ ax with a ∈ R∗.

To prove (16), it is enough to reduce to (12) by putting u = e(t) and
a = e(α) with α ∈ R.

One can show that, among the measures on T, the measure m is the
only one that satisfies (16) and attributes the value 1 to the integral of the
constant function 1. For this reason, one calls m the invariant measure on T.
The relation (17) likewise characterises Lebesgue measure up to a constant
factor. The measure m is also invariant under symmetries, i.e. satisfies∫

f
(
u−1
)
dm(u) =

∫
f(u)dm(u)(2.18)

for any f . This follows from the corresponding property of Lebesgue measure
on R: the change of variable t 
→ −t replaces the integral of f(t) on a period
interval by the integral of f(−t) on the symmetric interval, so again on a
period interval. Also

∫
f(−t)dt =

∫
f(t)dt when one integrates over all of R.

Finally, we shall need double integrals, for example à propos the con-
volution product on T. In Chap. V, n◦ 30, we showed that if I and J are
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compact intervals in R and f(x, y) is a function defined and continuous on
the rectangle I × J , then∫

dµ(x)
∫

f(x, y)dν(y) =
∫

dν(y)
∫

f(x, y)dµ(x)(2.19)

for any measures µ and ν on I and J , the common value of the two sides being
by definition the double integral

∫∫
f(x, y)dµ(x)dν(y) over I × J . Since, in

the case of the invariant measure, integration on T reduces to an integration
over [0, 1], it is clear that, for every function f(u, v) defined and continuous3

on T × T we will have∫
T

dm(u)
∫

T

f(u, v)dm(v) =
∫

T

dm(v)
∫

T

f(u, v)dm(u),(2.19’)

the common value being denoted by
∫∫

f(u, v)dm(u)dm(v). In the general
case4 of two arbitrary measures, it is necessary, to establish (19) on T, to use
as in Chap. V, n◦ 30 partitions of unity on T in order to show that every
continuous function on T×T is the uniform limit of finite sums of functions
of the type g(u)h(v), with g and h continuous on T; the proofs are the same
as in Chap. V: one replaces the intervals of R by arcs of the circle. You may
even, if you think it worthwhile, use the diagram in Chap. V, n◦ 30, so long
as you do not forget that, when working on T, the graph of a real function
is drawn on the cartesian product T × R, i.e. on the surface of the vertical
cylinder in R3 having T as base.

3 – Fourier coefficients

The Fourier coefficients of a regulated function f(t) of period 1 will be de-
noted

f̂(n) =
∮

f(t)en(t)dt =
∫ a+1

a

f(t)e−2πintdt;(3.1)

3 A function f defined on T × T is continuous at a point (a, b) of T × T if for any
r > 0, there exists an r′ > 0 such that

{|u − a| < r′ & |b − v| < r′} =⇒ |f(a, b) − f(u, v)| < r.

This is the general notion of continuity in a metric space if one defines the
distance of two elements of T × T by d [(u′, v′), (u′′, v′′)] = |u′ − u′′| + |v′ − v′′|
as in the Appendix to Chap. III. The definition amounts to continuity on R×R
on considering the function f [e(s), e(t)], which is periodic in s and t.

4 Despite appearances, a measure µ on T is not a measure on I = [0, 1], for
C0(T) is identified with the vector subspace of C0(I) formed by the functions
such that f(0) = f(1). But every continuous function f on I can be written
f(t) = f0(t)+c(f)t, with f0 “periodic” and c(f) = f(1)−f(0). If µ is a continuous
linear form on the periodic functions, one may then extend it to C0(I) by putting
µ(f) = µ(f0) + γ[f(1) − f(0)], where γ is a constant. One might remove the
ambiguity by agreeing to choose γ = 0, but this is a little artificial.
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it is sometimes useful to use a notation such as an(f). In the “functions on T”
version the formula becomes

f̂(n) =
∫

T

f(u)u−ndm(u) (n ∈ Z)(3.1’)

where m is the invariant measure defined above. If one uses the notation χ(u)
to denote a character u 
→ un of T, one may put

f̂(χ) =
∫

χ(u)f(u)dm(u) = (f |χ),(3.1”)

the scalar product of the functions f and χ.
The first relation to establish is the trivial but useful inequality

|f̂(n)| ≤
∫

|f(u)|dm(u) = ‖f‖1 ≤ ‖f‖T.(3.2)

In fact, we shall soon prove much more: the series
∑ |f̂(n)|2 converges, so

that f̂(n) tends to 0 when |n| increases indefinitely (n◦ 7).
More generally one may define the Fourier coefficients of an arbitrary

measure µ on T by

µ̂(n) =
∫

u−ndµ(u) or µ̂(χ) =
∫

χ(u)dµ(u).(3.1”’)

Compatibility with (1’) is obtained by associating with every regulated func-
tion5 f the measure f(u)dm(u) of density f with respect to the invariant
measure m.

If for example µ is the Dirac measure at the point6 u = 1 of T, given by
µ(f) = f(1), then we have

µ̂(n) = 1 for every n ∈ Z,(3.3)

which shows that, in contrast to those of a function, the Fourier coefficients of
a measure need not tend to 0 at infinity. In this case, one may only say that the
function µ̂ is bounded on Z since the existence of a bound7 |µ(f)| ≤ M.‖f‖
clearly implies |µ̂(n)| ≤ M for every n.

The notation8 f̂(n) is intended to display the fact that the theory of
Fourier series consists of associating to every function f on the multiplicative
5 In fact it would be enough for f to be absolutely integrable on T (i.e. on [0, 1] for

example) in the sense of Chap. V, n◦ 22, which allows us to extend the definition
(1) of the Fourier coefficients to this case.

6 Do not confuse this with the Dirac measure on R. The latter is a linear form
on C0(R) while here we are concerned only with linear forms on C0(T). For this
reason we resist the temptation of again writing δ for the Dirac measure at the
point u = 1 of T.

7 One almost always writes ‖f‖ instead of ‖f‖T.
8 It was introduced by André Weil, L’integration dans les groupes topologiques et

ses applications (Hermann, 1940) in the framework of the most general version of
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compact group T or, equivalently, to every periodic function on R, a function
f̂ on the discrete additive group Z, its Fourier transform9. Conversely, one
may associate to every function g on Z which tends rapidly enough to 0 at
infinity a function ĝ on T, namely the Fourier series

ĝ(u) =
∑

g(n)un(3.4)

whose coefficients are the values of the given function on Z; this is the essence
of the subject as its contemporary generalisations have shown. On the addi-
tive group R, the Fourier transform associates to every absolutely integrable
(or even Lebesgue integrable) function f a function

f̂(y) =
∫

R

f(x)e(xy)dx =
∫

R

e−2πixyf(x)dx(3.5)

defined on the same additive group R; this also appears in the same general
framework, also in the Fourier transform in Rn or the theory of multiple
Fourier series for periodic functions of several real variables, etc.

The first fundamental problem of the theory is to decide whether every
“reasonable” function f on T, or periodic on R, is represented by its Fourier
series, i.e. if one has

f(u) =
∑

f̂(n)un or f(t) =
∑

f̂(n)en(t).(3.6)

This is the case, we shall see, if f is C1. When one does not know if the
Fourier series of a function f converges and represents f it is prudent to
confine oneself to writing something like

f(u) ≈
∑

f̂(n)un or f(t) ≈
∑

f̂(n)en(t)(3.6’)

to avoid confusion (no connection with asymptotic expansions!).
Note that, in (4), one adds over all the rational integers and not over N.

Since

en(t) = cos(2πnt) + i sin(2πnt),(3.7)

harmonic analysis on commutative topological groups, invented independently
at the same period, with better methods, by the Soviet school (D. A. Räıkov)
and, in other way by H. Cartan and R. Godement, Théorie de la dualité et
analyse harmonique dans les groupes abéliens [= commutative] localement com-
pacts (Ann. Ecole Norm. Sup., 64 (1947)), which expounds the whole topic in
twenty pages. See Chap. XI, §7.

9 In the classical theory, one speaks of the “Fourier transform” only in the case
of R. But this notion applies to any commutative locally compact group (or even
non commutative group, but this is far more complicated).
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the series (4) can always be put in the traditional trigonometric form

a0 +
∞∑
1

bn cos(2πnt) + cn sin(2πnt)(3.8)

(take the terms with indices n and −n together), or, if the bn and cn are real,∑
In cos[2πn(t − ωn)]

with “phase lags” ωn and “intensities” In ≥ 0 for n > 0, but using this form
complicates the calculations; the formulae

en(x + y) = en(x)en(y), en(t) = en(t)−1 = e−n(t),(3.9)
ep(t)eq(t) = ep+q(t)

are simpler than the analogous trigonometric formulae and lend themselves
to the generalisations to group theory10.

As we have already said elsewhere, one has always to observe that the
series (4) being extended over Z and not over N, it has a meaning only if it
converges unconditionally, i.e. if∑∣∣∣f̂(n)

∣∣∣ < +∞.(3.10)

This is the case for the functions f ∈ C1(T) as we shall see in n◦ 8, but (10)
is very likely to be false when one attempts to study more general functions.
In this case, one gives a sense to the series by putting, by definition,

∑
Z

f̂(n)en(t) = lim
N→+∞

N∑
−N

f̂(n)en(t) = lim fN (t),(3.11)

which considerably increases the chances of convergence and amounts, in
fact, to considering the traditional series (8) and its usual partial sums fN (t).

10 If G is a commutative group endowed with a locally compact topology, one calls
a character of G any continuous map χ : G −→ T such that χ(uv) = χ(u)χ(v).
It is clear that if χ′ and χ′′ are two characters, then so likewise is the product
function χ(u) = χ′(u)χ′′(u); endowed with this multiplication, the set of the
characters of G becomes a group; on endowing this with the topology of compact
convergence one obtains a new commutative locally compact group, the “dual”

Ĝ of G. Since there always exists a positive measure dm(u) on G invariant

under the translations u �→ uv, one may associate a “Fourier transform” f̂(χ) =∫
χ(u)f(u)dm(u) to every function f on G decreasing rapidly enough at infinity.

One may then choose a positive invariant measure dm(χ) on Ĝ so that conversely

f(u) =
∫

χ(u)f̂(χ)dm(χ) under reasonable hypotheses on f . In the case where

G = T, the characters are the en(t), whence Ĝ = Z, and the last formula (9)

shows that the “multiplication” on Ĝ is precisely the addition on Z.
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These are trigonometric polynomials since only a finite number of nonzero
coefficients feature in fN . If one knew that for every continuous function f
on T, the fN converged uniformly on T to f , one would obtain Weierstrass’
approximation theorem of Chap. V, n◦ 28 for periodic functions. Unfortu-
nately not, even if one demands only simple convergence; to obtain uniform
convergence when f is continuous it is enough to substitute for the fN their
arithmetic means (f1 + . . . + fN )/N as we shall see (Fejér’s theorem), which
will provide a proof – there are others – of the approximation theorem.

In a general way, and as we have already said elsewhere, we have to warn
the reader to exercise the most extreme prudence once he steps outside the
framework of the C1 functions: most of the statements that one might believe
obvious are false and, when they are correct, they are never obvious. This is
one of the charms of the theory for those whom it attracts, and the reason
why it played such large rôle in the development of analysis during all the
XIXth century and a large part of the following one: when one does not
understand one tries to understand, and this often brings one much further
than one had imagined. One of the first traps of the theory is to believe that
if a trigonometric series

a0 +
∑

bn cos 2πnt + cn sin 2πnt,

with arbitrarily given coefficients converges for any t, than it must be the
Fourier series of its sum. False: though a simple limit of continuous functions
and so “measurable” in the sense of Lebesgue, the sum of the series can fail
to be integrable. The first theorems proved by Cantor in 1870 say that, for a
trigonometric series,

(i) the coefficients bn and cn tend to 0 if the general term bn cos(2πnt) +
cn sin(2πnt) tends to 0 at every point of an interval I of nonzero length,
and therefore if the series converges on I,

(ii) if the series converges to 0 for every t ∈ R, then all the coefficients are
zero (“obvious”, but try to prove it . . .).

It was in trying to weaken the hypothesis of the statement (ii), i.e. in trying
to characterise the sets E ⊂ [0, 1] such that

f(t) = 0 for every t ∈ E =⇒ an = bn = 0

(“sets of uniqueness”), that Cantor was led to construct more and more
baroque sets in R, then to his theory of transfinite numbers. Do not confuse
this, as we have already said, with the näıve trivialities of Chap. I, which
would not have led him to the edge of sanity if he had not been already pre-
disposed. This kind of question continues to be the object of much research11;
most mathematicians and a fortiori users are happy with much less subtle
results of universal use.
11 See for example J-P. Kahane and R. Salem, Ensembles parfaits and séries

trigonometriques (Paris, Hermann, nouvelle éd. 1987) and J.-P. Kahane and P.
G. Lemarié-Rieusset, Séries de Fourier et ondelettes (Paris, Cassini, 1997).
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4 – Convolution product on T

The invariance of the measure m under translation leads to useful formulae.
For example, the left hand side of formula (2.19’) does not change if in it one
replaces f(u, v) by f(u, av) for an a ∈ T independent of v; in particular, one
can, for each u, replace v by uv, or u−1v, since u is a variable independent
of v, whence the formulae∫ ∫

f(u, v)dm(u)dm(v) =
∫ ∫

f
(
u, u−1v

)
dm(u)dm(v),(∗) ∫ ∫

f(u, v)dm(u)dm(v) =
∫ ∫

f
(
uv, v−1

)
dm(u)dm(v) :(∗∗)

one integrates first with respect to u, makes the change of variable u 
→ uv−1,
then integrates with respect to v, finally one replaces v by v−1. Similar result
in R: if f(x, y) is, for simplicity, continuous and of compact support in R2,
then ∫ ∫

f(x, y)dxdy =
∫ ∫

f(x + y,−y)dxdy

for ∫ ∫
f(x, y)dxdy =

=
∫

dy

∫
f(x, y)dx =

∫
dy

∫
f(x − y, y)dx (using x 
−→ x − y)

=
∫

dx

∫
f(x − y, y)dy =

∫
dx

∫
f(x + y,−y)dy (using y 
−→ −y)

=
∫ ∫

f(x + y,−y)dxdy.

The invariant measure allows us, as in R (Chap. V, n◦ 27), to define the
convolution product12

f � g(u) =
∫

f
(
uv−1
)
g(v)dm(v) =

∫
f(w)g
(
uw−1
)
dm(w) = g � f(u)(4.1)

of two regulated functions on T or, in the “periodic functions on R” version,

f � g(t) =
∮

f(t − s)g(s)ds =
∮

g(t − s)f(s)ds,(4.1’)

integrating over a period. The equality of the two integrals in (1) is obtained
by means of the change of variable v 
→ uv−1 = w (or s 
→ t − s), the
composition of a translation v 
→ uv followed by a symmetry v −→ v−1;
12 A symbol such as f 	 g(u) denotes the value at the point u of the function f 	 g

and replaces the expression (f 	 g)(u).
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see (∗). A convenient way to simplify the theoretical calculations on Fourier
series is to remark that if χ is a character of T, the convolution product

f � χ(u) =
∫

χ
(
uv−1
)
f(v)dm(v) =(4.2)

= χ(u)
∫

χ(v)f(v)dm(v) = f̂(χ)χ(u)

is the general term of the Fourier series of f . The relation (3.6) can then,
when it is true, be written

f(t) =
∑

f � en(t) or f(u) =
∑

f � χ(u)(4.3)

where, in the second case, one sums over all the characters of T. Symbolically,
one may also write it as f =

∑
f � en =

∑
f � χ, which has the advantage

of not presupposing the mode of convergence that one chooses: simple con-
vergence, uniform convergence, convergence in mean, etc. It is precisely the
choice of the mode of convergence to make (3) correct that is the whole theory
of Fourier series; (3) is always correct in the sense of distributions as we shall
see, but the convergence of a sequence or series of distributions is, in prac-
tice, the weakest invented from Newton to nowadays. (Paradoxically, this is in
fact the interest of distributions: everything which converges in a reasonable
sense, or does not converge, converges in the sense of distributions).

The convolution product has properties similar to those13 obtained in
Chap. II, n◦ 18, Example 3, for functions defined on Z: but the proofs are
less easy. We shall restrict ourselves to functions which are regulated and so
bounded; going further requires recourse to the Lebesgue integral and will
be expounded in Chap. XI, n◦ 25 in the general framework of group theory
– for this is a matter of group theory as the case of the convolution product
on Z has already shown.

First of all the inequality |f(uv−1)g(v)| ≤ ‖f‖ |g(v)|, valid for all u and v,
shows that, always,

‖f � g‖ ≤ ‖f‖ ‖g‖1 ≤ ‖f‖ ‖g‖ ·

We shall deduce from this that the function f � g is continuous. If f is con-
tinuous this follows directly from Chap. V, n◦ 9 (Theorem 9, (i)) since we
are integrating the continuous function f(uv−1) with respect to the measure
g(v)dm(v). In the general case there exists a sequence (fn) of continuous
functions (see the lemma in n◦ 8 below) such that lim ‖f − fn‖1 = 0; then,
by (4),

‖f � g − fn � g‖ ≤ ‖g‖ ‖f − fn‖1 ,

13 apart from the existence of a unit element: this would be a function e(u) such
that one had

∫
f
(
uv−1
)
e(v)dv = f(u) for any f ; the only candidate is the Dirac

“function”, which is a measure and not a function.
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from which f ∗g is the uniform limit of the continuous functions fn�g, whence
the result.

Now let us establish the relations

f � (g + h) = f � g + f � h, (f � g) � h = f � (g � h)(4.5)

for f , g and h regulated. The first is obvious. To obtain the associativity
formula let us first consider an integral of the form∫ ∫

ϕ(uv)f(u)g(v)dm(u)dm(v)(4.6)

where ϕ is continuous and f and g are regulated. Theorem 10 of Chap. V,
n◦ 9, and the invariance of the measure show that it is equal to∫

g(v)dm(v)
∫

ϕ(uv)f(u)dm(u)

=
∫

g(v)dm(v)
∫

ϕ(z)f(zv−1)dm(z)

=
∫

ϕ(z)dm(z)
∫

f(zv−1)g(v)dm(v);

whence the relation∫ ∫
ϕ(uv)f(u)g(v)dm(u)dm(v) =

∫
ϕ(z).f � g(z)dm(z).(4.7)

This done, let us consider the triple integral

I(ϕ) =
∫ ∫ ∫

ϕ(uvw)f(u)g(v)h(w)dm(u)dm(v)dm(w)(4.8)

where f , g and h are regulated. Theorem 10 of Chap. V, n◦ 9, which is clearly
valid for multiple integrals, shows us that on the one hand

I(ϕ) =
∫

h(w)dm(w)
∫ ∫

ϕ(uvw)f(u)g(v)dm(u)dm(v)

=
∫

h(w)dm(w)
∫

ϕ(xw)f � g(x)dm(x) by (7)

=
∫ ∫

ϕ(xw) · f � g(x) · h(w)dm(x)dm(w)

=
∫

ϕ(z).(f � g) � h(z)dm(z)

applying (7) again, to the functions f � g and h.

But one can also calculate I(ϕ) alternatively as
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I(ϕ) =
∫

f(u)dm(u)
∫ ∫

ϕ(uvw)g(v)h(w)dm(v)dm(w)

=
∫

f(u)dm(u)
∫

ϕ(ux).g � h(x)dm(x) by (7)

=
∫ ∫

ϕ(ux)f(u)g � h(x)dm(u)dm(x)

=
∫

ϕ(z).f � (g � h)(z)dm(z)

by applying (7) now to f and g � h. Comparing these results we see that the
function F = f � (g � h)− (f � g) � h satisfies

∫
ϕ(z)F (z)dm(z) = 0 for every

continuous ϕ on T. Now F is itself continuous. One may therefore choose ϕ
to be the conjugate of F , whence

∫ |F (z)|2dm(z) = 0 and F = 0 (Chap. V,
n◦ 7, Theorem 7), which proves associativity for regulated functions, if not
yet for all the integrable functions of the Appendix to Chap. V.

Along with (4) for the uniform norm, we also have

‖f � g‖1 ≤ ‖f‖1.‖g‖1.(4.9)

Replacing f and g by their absolute values does not change the right hand
side, but increases the left hand side, since

|f � g(u)| ≤
∫

|f(uv−1)|.|g(v)|dm(v) = |f | � |g|(u);

so it is enough to prove (8) for positive f and g. Relation (7) with ϕ = 1
shows that

‖f � g‖1 = ‖f‖1 ‖g‖1

in this case, qed.
The Fourier series of a convolution product is calculated very simply from

the formula

f̂ � g(n) = f̂(n)ĝ(n).(4.10)

To see this, use the associativity of the convolution product:

f̂ � g(n)en = (f � g) � en = f � (g � en) =

= f � (ĝ(n)en) = ĝ(n)f � en = ĝ(n)f̂(n)en.

For the inverse Fourier transform, which starts from a function f(n) in L1(Z),
i.e. such that

∑ |f(n)| < +∞, and leads to a function

f̂(u) =
∑

f(n)un,(4.11)

one has likewise, for the convolution product on Z (Chap. II, n◦ 18, Exam-
ple 3),
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f̂ � g(u) =
∑

f � g(n)un =
∑

f(p)g(n − p)un =
∑

f(p)g(q)up+q =

=
∑

f(p)g(q)upuq =
∑

f(p)up
∑

g(q)uq = f̂(u)ĝ(u).

The Fourier transform thus interchanges convolution products and ordinary
products.

This last result is particularly obvious in the framework of measures. Let
µ and ν be two measures on T and let us calculates the product

µ̂(χ)ν̂(χ) =
∫

χ(u)dµ(u)
∫

χ(v)dν(v) =(4.12)

=
∫ ∫

χ(u)χ(v)dµ(u)dν(v) =

=
∫ ∫

χ(uv)dµ(u)dν(v)

of their Fourier transforms. This leads us to consider more generally the map

λ : f 
−→
∫ ∫

f(uv)dµ(u)dν(v)(4.13)

of C0(T) into C; this is clearly a linear form on C0(T), and it is continuous:

|λ(f)| ≤
∣∣∣∣
∫

dµ(v)
∣∣∣ ∫ f(uv)dν(u)

∣∣∣∣∣∣∣ ≤ M(µ)M(ν)‖f‖.

Consequently, λ is again a measure which one calls the convolution product
of the measures µ and ν, notation λ = µ � ν. Clearly λ is positive if µ and ν
are. With these conventions the formula (12) can be written

µ̂(χ)ν̂(χ) = λ̂(χ) where λ = µ � ν.(4.14)

One finds (4) again on considering the measures dµ(u) = f(u)dm(u) and
dν(u) = g(u)dm(u), as the reader can easily verify.

There is no simple formula analogous to (1) for defining or calculating
the convolution product of two measures; the simplicity of the definition (13)
shows once more the advantage in defining measures as linear forms on the
continuous functions and not starting from a function of sets.

5 – Dirac sequences in T

As in R, the convolution product is linked to Dirac sequences on T, formed
by regulated functions ϕn(u) such that

f(1) = lim
∫

f(u)ϕn(u)dm(u)(5.1)

for every regulated function f continuous at the point u = 1.
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The conditions to impose on them are the same as in Chap. V, n◦ 27.
The first is that ∫

ϕn(u)dm(u) = 1 for every n;(D 1)

and then f(1) =
∫

f(1)ϕn(u)dm(u), whence∣∣∣∣
∫

f(u)ϕn(u)dm(u) − f(1)
∣∣∣∣ ≤
∫

|f(u) − f(1)|.|ϕn(u)|dm(u).(5.2)

Let us take an r > 0, and, on the right hand side of (2), distinguish the
contributions of the arcs |u−1| < δ and |u−1| > δ of T for some δ > 0 yet to
be decided. Since f is continuous at the origin, one can, for r given, choose
δ so that

|u − 1| < δ =⇒ |f(u) − f(1)| < r.(5.3)

If one assumes that

sup
∫

|ϕn(u)| dm(u) = M < +∞,(D 2)

the contribution of this “small” arc to the total integral is ≤ Mr. On the
“large” arc |u − 1| > δ we have |f(u) − f(1)| ≤ 2‖f‖ since f is bounded;
the corresponding integral is thus, up to a factor 2‖f‖, bounded by that of
|ϕn(u)|. Assume now that, for any r and δ, there exists an integer N(δ, r)
such that

n > N(δ, r) =⇒
∫
|u−1|>δ

|ϕn(u)| dm(u) < r,

in other words that

lim
n→∞

∫
|u−1|>δ

|ϕn(u)| dm(u) = 0 for every δ > 0.(D 3)

The preceding arguments now show that for every r and every δ satisfying
(3) we will have∫

|f(u) − f(1)|. |ϕn(u)| dm(u) ≤ (M + 2‖f‖)r(5.4)

for every n > N(δ, r), whence (1).
The conditions (D 1), (D 2) and (D 3) may therefore be taken as the

definition of the Dirac sequences on T.
The most frequent case is that where the ϕn are all positive; (D 1) then

implies (D 2) with M = 1. To achieve (D 3) it is simplest to assume that for
every δ > 0 the functions ϕn converge uniformly to 0 on the arc |u − 1| ≥ δ
of T, in other words that

lim ϕn(u) = 0 uniformly on every compact K ⊂ T − {1}(5.5)
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since the points of a compact subset of T not containing the point u = 1
remain “standing off” from it.

If one applies (1) to the function u 
→ f
(
vu−1
)

for a given v ∈ T, one
obtains more generally the formula

f(v) = lim
∫

f
(
vu−1
)
ϕn(u)dm(u) = lim f � ϕn(v),(5.6)

so long as f is assumed continuous at the point v.
In practice, one needs a more precise result.

Lemma. If f is continuous on an open arc J of T then

f(v) = lim f � ϕn(v)(5.7)

uniformly on every compact K ⊂ J , for every Dirac sequence on T.

Applied to the function u 
→ f
(
vu−1
)
, the relation (4) shows that, if f is

continuous at the point v,

|f � ϕn(v) − f(v)| ≤ (M + 2‖f‖)r(5.8)

for n large; but to obtain uniform convergence on K one has to find an integer
N such that (8) will be valid for n > N for all the v ∈ K simultaneously.
Now, for r and v given, the integer N depends only, as we have seen, on the
choice of a δ such that∣∣f (vu−1

)− f(v)
∣∣ < r for |u − 1| < δ.(5.9)

So it all reduces to showing that, for any r, there exists a δ satisfying (9)
for all v ∈ K simultaneously. Since vu−1 is “close” to v for u “close” to 1,
we are manifestly dealing with a uniform continuity property of f .

Assume now that f continuous on the open arc J of T and let K be a
compact arc contained in J (figure 1). Since T − J and K are compact and
disjoint, the distance d(T − J, K) = d is strictly positive. Since∣∣vu−1 − v

∣∣ = |v − vu| = |1 − u|

for every u ∈ T, we see that

(v ∈ K) & (|u − 1| < d) =⇒ vu−1 ∈ J.

For every δ < d, the set K(δ) ⊃ K of points vu−1 with v ∈ K and |u−1| ≤ δ
is thus contained in J ; moreover it is compact like K and the arc |u−1| ≤ δ of
T (use BW or, more elementarily, define the arcs of T by inequalities between
the polar angles of their points). But since f is continuous in J it is uniformly
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Fig. 1.

continuous on K(δ). So we see that for any given r > 0 there exists a δ > 0
such that (8) holds for all v ∈ K, qed.

We leave to the reader the task of verifying, as in Chap. V, n◦ 27, that if
the ϕn are indefinitely differentiable, then so likewise are the functions f �ϕn.
This follows in the usual way from the standard theorem on differentiation
under the

∫
sign (Chap. V, n◦ 9).



274 VII – Harmonic Analysis and Holomorphic Functions

§ 2. Elementary theorems on Fourier series

6 – Absolutely convergent Fourier series

Almost all the simultaneously simple and important results in the theory of
Fourier series, especially those which can be generalised, can be deduced from
one fundamental statement:

Theorem 1 (Weierstrass). Every continuous periodic function is the uni-
form limit of trigonometric polynomials.

Instead of proving this now, we shall, in this §, show how one may use it;
we shall present an “elementary” proof later (n◦ 12, Theorem 8 and n◦ 23),
more complicated than the general “abstract” Stone-Weierstrass theorem of
Chap. V, n◦ 28.

The most immediate consequence of Theorem 1 is the following:

Theorem 2. If f is a continuous function on T such that
∑ |f̂(n)| < +∞,

then
f(u) =

∑
f̂(n)un for every u ∈ T.

Let us denote the right hand side by g(u). This is the sum of an absolutely
convergent Fourier series, whence (Chap. V, n◦ 5) ĝ(n) = f̂(n) for every n.
Putting f = g + h, we see that all the Fourier coefficients of the function h
vanish.

The relation ĥ(n) = 0 for every n means that, with respect to the standard
scalar product

(f | g) =
∫

f(u)g(u)dm(u)

of two functions on T, the function h is “orthogonal” to all the characters
u 
→ un of T : (h |χ) = 0. It is therefore also orthogonal to every linear
combination of a finite number of these functions, i.e. to every trigonometric
polynomial p.

Now h is continuous like f (by hypothesis) and g (the sum of a normally
convergent series of continuous functions). By Theorem 1, there therefore
exists a sequence (pn) of trigonometric polynomials which converges to h
uniformly on T. Since the functions h(u)pn(u) convergent to |h(u)|2 uniformly
on T we deduce that∫

|h(u)|2dm(u) = lim
∫

h(u)pn(u)dm(u) = lim(h | pn) = 0.

The function |h(u)|2 being continuous and positive, we have h = 0 (Chap. V,
n◦ 2), whence f = g, qed.

Here is an easy consequence of Theorem 2: for a continuous function f
to be represented by an absolutely convergent Fourier series, it is necessary
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and sufficient that
∑ |f̂(n)| < +∞. The condition is sufficient by Theorem 2.

We know on the other hand (Chap. V, n◦ 5) that if a function f , necessarily
continuous, is the sum of an absolutely convergent Fourier series, then the
coefficients of the latter must be the numbers f̂(n); the one and only series
which represents f is then the Fourier series of f .

The theorem of Cantor mentioned above shows much more: two distinct
trigonometric series (i.e. not having the same coefficients) and everywhere
convergent (absolutely or not) cannot have the same sum.

7 – Hilbertian calculations

Let us denote by H the complex vector space (of infinite dimension) of reg-
ulated functions on T and let us endow it with the usual scalar product

(f | g) =
∫

f(u)g(u)dm(u).(7.1)

It has the same properties as in Chap. V, n◦ 3: it is a linear function of f for
g given, we also have

(g, f) = (f | g)(7.2)

and finally

(f | f) =
∫

|f(u)|2dm(u) ≥ 0(7.3)

for any f . As in Chap. V and, more generally, as in every pre-Hilbert space
(Appendix to Chap. III), it therefore satisfies the Cauchy-Schwarz inequality

|(f | g)|2 ≤ (f | f)(g | g).(7.4)

We deduce that the expression

‖f‖2 = (f | f)1/2 =
(∫

|f(u)|2dm(u)
)1/2

(7.5)

has the properties

‖λf‖2 = |λ|.‖f‖2, ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2,(7.6)

of a “norm” on the vector space H of regulated functions on T, except that the
relation ‖f‖2 = 0 shows only that the set {f(u) �= 0} is countable (Chap. V,
n◦ 7, Theorem 7) and not that f = 0. This is not important since two
regulated functions which are equal outside a countable set have the same
integrals and so the same Fourier series.

As in the case of the norm of uniform convergence, the second relation
(6) shows that the expression
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d2(f, g) = ‖f − g‖2 =
(∫

|f(u) − g(u)|2 dm(u)
)1/2

is a “distance” between f and g (distance in quadratic mean).
This done, one says that two functions f and g are orthogonal if (f | g) = 0,

a concept we have already used above. We now have the Pythagoras relation

‖f + g‖2
2 = ‖f‖2

2 + ‖g‖2
2(7.7)

since (f +g | f +g) = (f | f)+(f | g)+(g | f)+(g | g). This extends to a finite
sum of pairwise orthogonal functions fi: indeed(∑

fi |
∑

fi

)
=
∑

(fi | fj) =
∑

(fi | fi) if (fi | fj) = 0 for i �= j.

In particular, (ep | eq) = 0 or 1, whence(∑
apep |
∑

bqeq

)
=
∑

apbp(7.8)

at least when dealing with finite sums, i.e. trigonometric polynomials.
With these definitions, the Fourier coefficients of a function f are, as

we have already seen, given by f̂(n) = (f | en) where en is the exponential
function en(t), in version R, or un, in version T. If we consider the partial
sum

fN =
∑

|n|≤N

f̂(n)en(7.9)

of the Fourier series of f , we have (fN | en) = f̂(n) = (f | en) for |n| ≤ N
by (8), and so (f − fN | en) = 0. The function f − fN being orthogonal to
the exponentials en such that |n| ≤ N it is also orthogonal to every linear
combination of the these, and in particular to the function fN itself. Since
f = (f − fN ) + fN , Pythagoras’ theorem shows that

(f | f) = (fN | fN ) + (f − fN | f − fN ) ≥ (fN | fN ).(7.10)

But by (8)

(fN | fN ) =
∑

|n|≤N

∣∣∣f̂(n)
∣∣∣2 .(7.11)

The partial sums of the series with positive terms
∑∣∣∣f̂(n)

∣∣∣2 are therefore
bounded above by (f | f); they consequently converge, and we have

∑∣∣∣f̂(n)
∣∣∣2 ≤ (f | f) =

∫
|f(u)|2dm(u) =

∮
|f(t)|2dt(7.12)

for every regulated function on T.
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These calculations, which generalise the traditional ones in R3 starting
from the “unit vectors” of a system of rectangular coordinates, are valid
in every pre-Hilbert space. If for example you have a sequence of contin-
uous functions Pn(t) on a compact interval I ⊂ R – these are often, in
practice, polynomials or the solutions of differential equations – satisfying∫

Pk(t)Ph(t)dt = 0 or 1 according to whether k �= h or k = h, and if for every
continuous function f in I you put

cn(f) =
∫

I

f(t)Pn(t)dt,(7.13)

then you obtain the inequality
∑ |cn(f)|2 ≤ ∫ |f(t)|2dt. In the good cases,

one hopes – while there is life there is hope – to obtain not only an equality
but even an expansion

f(t) =
∑

cn(f)Pn(t)(7.14)

in a convergent series. The Fourier series were, historically, the first case to
present themselves, and have, of course, inspired the many later generalisa-
tions of which we have just described the simplest.

8 – The Parseval-Bessel equality

The inequality (7.12) is in reality an equality as we have seen in Chap. V, n◦ 5
in the simple case of absolutely convergent Fourier series. We shall now prove
this for every regulated function, using Weierstrass’ approximation theorem.

By (7.10) and (7.11), it reduces to proving that ‖f − fN‖2 tends to 0, i.e.
that

lim
N→∞

∫ 1

0

∣∣∣f(t) −
∑

|n|≤N

f̂(n)en(t)
∣∣∣2dt = 0,(8.1)

but to write integrals of this kind explicitly would be the best method of not
understanding the proof, and to avail oneself of Knuth’s software in vain.

In the complex vector space H of the preceding n◦, let HN be the set of
trigonometric polynomials involving only the en, |n| ≤ N , in other words, the
vector subspace generated by these 2N + 1 functions; it contains fN . Since
f − fN is orthogonal to the en ∈ HN , it is orthogonal to every p ∈ HN as
we saw above. On writing f − p = (f − fN ) + (fN − p) and observing that
fN − p ∈ HN we then have

(f − p | f − p) = (f − fN | f − fN ) + (fN − p | fN − p)(8.2)
≥ (f − fN | f − fN )

for any p ∈ HN . In other words, fN is the point of the vector subspace HN

lying at the minimum distance from f , which is plausible (figure 2) since it
the “orthogonal projection” of f onto HN .
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Fig. 2.

It follows that, to establish (1), it is enough to prove that, for every r > 0,
there exists a (indefinite article) trigonometric polynomial p such that

(f − p | f − p) < r2;(8.3)

such a polynomial p belongs of course to every HN of sufficiently large index,
so that, by (7.10),

0 ≤ (f | f) − (fN | fN ) = (f − fN | f − fN ) ≤ (f − p | f − p) < r2(8.4)

for N large, which will establish the Parseval-Bessel equality.
Relation (3) is a theorem on approximation by trigonometric polynomials;

but instead of measuring the “distance” between two functions f and g by the
uniform convergence norm – which is doomed to failure if f is not continuous
–, one measures it by the function ‖f − g‖2 which leads to convergence in
quadratic mean, while on using the distance

‖f − g‖1 =
∫

|f(u) − g(u)|dm(u)

one obtains convergence in mean (Chap. V, end of n◦ 4), much less easy to
manipulate than the preceding in this context.

Let us return to the proof of (3). There is no problem if f is continuous:
Weierstrass provides a trigonometric polynomial p such that |f(u)− p(u)| <
r for any u, which is incomparably better than (3). In the general case,
it reduces to showing that f can be approximated in quadratic mean by
continuous functions g, for if ‖f − g‖2 < r and ‖g − p‖2 < r, it follows that
‖f−p‖2 < 2r. To do this it is enough to have a general result which could also
well be obtained from the definition of the integrable functions at Chap. V:

Lemma. Let f be a regulated function on a compact interval I ⊂ R (resp.
on T). Then, for every r > 0, there exists a continuous function g on I (resp.
T) such that ‖f − g‖2 < r, or ‖f − g‖1 < r.
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Fig. 3.

One may assume I = [0, 1]. There exists a step function ϕ on I such that

|f(t) − ϕ(t)| ≤ r

for any t ∈ I, whence
‖f − ϕ‖1 ≤ r

and the same inequality for the other norm. It therefore suffices to estab-
lish the lemma for the step function ϕ. Figure 3 indicates the method: one
replaces ϕ by a continuous piecewise linear function equal to ϕ except on
neighbourhoods of the discontinuities of ϕ; if one puts M = sup |ϕ(t)| and
if ϕ has n discontinuities in [0, 1], one may choose the n intervals on which
one modifies it so that their lengths are less than r/Mn; the contribution
of such an interval to the integral of |f − ϕ| is then less than the length
r/Mn of the latter multiplied by the maximum of |f − ϕ| on this interval,
so to Mr/Mn = r/n, whence, for the n intervals which actually contribute
to the integral of |f − ϕ|, a total contribution of ≤ r. For approximation
in quadratic mean, one chooses intervals of length < r2/M2n2. The case of
periodic functions is treated similarly, arguing on T instead of on I.

[Artificial proof of too limited a result. In the Lebesgue theory (Bourbaki
model), an integrable (resp. square integrable) function is, almost by defi-
nition, a limit in mean (resp. in quadratic mean) of continuous functions.
There is nothing else to prove, except perhaps the integrability of the regu-
lated functions, a “result” whose proof takes three lines and which, at this
level, is totally uninteresting.]

However it may be, these roundabout procedures provide a result, which,
fundamental though it is, is still too limited:
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Theorem 3 (Parseval-Bessel14). Let f be a regulated periodic function.
Then the series

∑ |f̂(n)|2 is convergent and

∑
|f̂(n)|2 = ‖f‖2

2 =
∫

|f(u)|2dm(u) =
∮

|f(t)|2dt,(8.5)

lim
N→∞

∫ 1

0

∣∣∣f(t) −
∑

|n|≤N

f̂(n)en(t)
∣∣∣2dt = 0.(8.5’)

Corollary. Let f and g be two regulated periodic functions. Then the series∑
f̂(n)ĝ(n) converges absolutely and

∑
f̂(n)ĝ(n) = (f | g) =

∫
f(u)g(u)dm(u) =

∮
f(t)g(t)dt.(8.6)

The proof consists of using the algebraic identity

4(f | g) = (f + g | f + g) − (f − g | f − g) +(8.7)
+ i(f + ig | f + ig) − i(f − ig | f − ig)

which follows formally – calculate mechanically by expanding the squares
without writing any integrals – from the fact that the scalar product (f | g)
is, for g given, a linear function of f and satisfies (g | f) = (f | g); the relation
(7) generalises the identity

4uv̄ = |u + v|2 − |u − v|2 + i|u + iv|2 − i|u − iv|2(8.8)

between complex numbers. Having done this, one applies Parseval-Bessel to
the functions f + g, f − g, f + ig and f − ig that appear in (7), and applies
(8) to u = f̂(n) and v = ĝ(n). Next one remarks that the series

∑
f̂(n)ĝ(n)

is a linear combination of four absolutely convergent series, so converges
absolutely, and that its sum is the scalar product (f | g).
14 This equality was published by M.-A. Parseval (1755–1836) in 1805 in the

Mémoires de l’Académie des Sciences; Parseval considered two series of the form
P (t) =

∑
antn and Q(t) =

∑
bnt−n (summing over N), and remarked, up to

notation, that P (t)Q(t) =
∑

cntn (summing over Z) with c0 =
∑

anbn, and
then considered it obvious that∑

anbn =
1

π

∫ π

0

[
P
(
eiu
)

Q
(
eiu
)

+ P
(
e−iu
)

Q
(
e−iu
)]

du;

just a simple formal calculation. The astronomer Friedrich Wilhelm Bessel (1784–
1846), ultrafamous for his work in celestial mechanics, published the inequality∑∣∣∣f̂(n)

∣∣∣2 < ‖f‖2 in a memoir of 1828 on periodic phenomena, where he used

the expansion in Fourier series without reference to its proof or to problems of
convergence. I. Grattan-Guinness, Joseph Fourier 1768–1830 (MIT Press, 1972),
pp. 240 and 376. It was at the end of the century, with the appearance of the
first works on “functional” Hilbert spaces, that the theorem would be proved
correctly and its importance highlighted.
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Another corollary: assume that the Fourier series of a regulated function f
converges absolutely, i.e. that∑∣∣∣f̂(n)

∣∣∣ < +∞

and let g be the sum of the latter. By n◦ 5 of Chap. V, we must have
ĝ(n) = f̂(n), which suggests that g = f “more or less”; this is precisely what
we proved in Theorem 2 assuming f continuous.

In the general case, let us again consider the function h = f − g. It is
regulated and its Fourier coefficients ĥ(n) = f̂(n)−ĝ(n) are all zero. Parseval-
Bessel then shows that

∫ |h(t)|2 dt = 0 and thus that h(t) = 0 except maybe
on a countable set D of points (Chap. V, n◦ 7, Theorem 7). We thus see that

f(t) =
∑

f̂(n)en(t)

for every t /∈ D.
Exercise – Consider a sequence of polynomials Pn(t) on a compact interval

I, satisfying
∫

Pk(t)Ph(t)dt = 0 or 1 and such that d◦(Pn) = n for every n.
Show that every continuous function f on I is the uniform limit of (finite)
linear combinations of the Pn and deduce that

∫ |f(t)|2 dt =
∑ |cn(f)|2 [no-

tation (7.13)].
The preceding results show that if one associates to each f its Fourier

transform f̂ : n 
→ f̂(n), one obtains a linear map of H into L2(Z) which
preserves scalar products. The reader who would like to understand the differ-
ence in effectiveness between the integrals of Riemann and those of Lebesgue
may ask himself the question of whether this map is surjective. Negative re-
sponse chez Riemann, positive chez Lebesgue, whose theory there found one
of its first great successes.

To understand the problem, let us start from a function c(n) in L2(Z);
we are to find an f ∈ H such that f̂(n) = c(n) for every n. If f exists we
must have

fN (u) =
∑

|n|≤N

c(n)un and lim ‖f − fN‖2 = 0.(8.9)

Now the fN form a Cauchy sequence in H, since for p < q one has, by (7.8),

‖fp − fq‖2
2 =
∑

p<|n|≤q

|c(n)|2,(8.10)

a result arbitrarily small for p large since
∑ |c(n)|2 < +∞. The question

asked is thus to decide if the convergence in quadratic mean is, in H, guar-
anteed by Cauchy’s criterion, in other words: is H a complete space in the
sense of the Appendix to Chap. III? Negative response in Riemann theory,
positive (Riesz-Fischer theorem) in the Lebesgue theory where one considers
the much more general “square integrable” functions. This is one of the many
reasons which show that one can probably never surpass the present theory
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of integration – that of Lebesgue – or, to be more prudent, that it is not
worth seeking to do this if one is not interested in the ultra fine and ultra
specialised mathematics of Baire’s successors.

For lack of great “modern”results, i.e. not more than a century old, one
may always turn back to Euler and Fourier.

Example 1 (Fourier). Consider the periodic function equal to t for |t| < 1
2 ;

the values at the end-points are immaterial. Integrating by parts, we have,
for n �= 0,

f̂(n) =
∫ 1

2

− 1
2

ten(t)dt =
ten(t)
−2πin

∣∣∣∣
1
2

− 1
2

+
1

2πin

∫ 1
2

− 1
2

en(t)dt;

the last integral is zero since en is orthogonal to e0; since en(t) = (−1)n for
t = ± 1

2 , it follows that

f̂(0) = 0, f̂(n) = (−1)n+1/2πin.

The integral of t2 being equal to 1/12, one finds the relation∑
1/4π2n2 = 1/12

where the sum is taken over all nonzero n ∈ Z. Whence again the relation∑
1/n2 = π2/6.

Example 2. Consider the function of period 1 such that

f(t) = e2πizt for |t| <
1
2
,

where z is a complex number, not an integer, since otherwise the interest of
the problem evaporates. We have

f̂(n) =
∫ 1

2

− 1
2

e2πi(z−n)tdt =
e2πi(z−n)t

2πi(z − n)

∣∣∣∣
1
2

− 1
2

since, for every λ ∈ C, the derivative of eλt is λeλt (Chap. IV, n◦ 10, obvious
since eλt =

∑
λntn/n!). Whence

f̂(n) = (−1)n sin πz/π(z − n).(8.11)

Considering now the function g(t) = f(−t), on passing to the T interpretation
and bearing in mind the symmetry of the invariant measure we have

ĝ(n) =
∫

f (u−1)u−ndm(u) =
∫

f(u)undm(u) =(8.12)

=
∫

f(u)u−ndm(u) = f̂(n).
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The last corollary then shows – a general result of course – that

∑
f̂(n)2 =

∮
f(t)f(−t)dt.(8.13)

In the present case we have f(t)f(−t) = 1 for any t, whence, by (11), the
identity

1 =
∑ sin2 πz

π2(z − n)2
,

or, replacing z by z/π,

1
sin2 z

=
∑

Z

1
(z − nπ)2

.(8.14)

We have already obtained this formula in Chap. II, n◦ 21, by formally differen-
tiating the expansion of cot z in series of rational fractions, then in Chap. III,
n◦ 17, Example 4 by more orthodox arguments .

In his memoir on the propagation of heat, Fourier calculated similar ex-
pansions; he considered for example the function of period π (and not 2π)
equal to sin x (or to cos x) between 0 and π and expanded it as a function of
period 2π. He also considered the function of period 2π equal to cos x between
−π/2 and π/2 and zero between π/2 and 3π/2, etc. These examples were par-
ticularly bold at the time, since they yield a series of the form

∑
an cos nx

whose sum is equal to cos x in the first interval and to 0 in the second, i.e.
a series of analytic functions whose sum is not analytic15; Lagrange, who
had all the same met “Fourier” series in 1759 à propos the vibrating string
problem but rejected them because of their periodicity and who attempted to
found all of analysis on power series, criticised Fourier’s memoir briskly. The
reader will easily find the coefficients in these formulae and may be interested
to trace the graphs of these bizarre functions, as Fourier himself did.

9 – Fourier series of differentiable functions

In the sequel we shall write Cp(T) for the set of periodic functions of class
Cp; and D(T) = C∞(T) as in R. As we shall see, Theorem 2 always applies
to the functions of C1(T). Let us first make several remarks on the formula
for integration by parts.

This is particularly simple in the case of two periodic functions f and g
of class C1 in R. When one integrates fg′ + f ′g over an interval [a, a + 1] in

15 although the problem of vibrating strings had already suggested this kind of
phenomenon to d’Alembert, Euler and Daniel Bernoulli, who did not pursue it
(and argued about this subject). One may find Fourier’s text, explanations and
a biography of the prefect of the Isère, a position he occupied while writing his
memoir, in I. Grattan-Guinness, Joseph Fourier 1768–1830 (MIT Press, 1972).
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R, the term f(a + 1)g(a + 1)− f(a)g(a) cancels to zero because f and g are
periodic. Writing generally f ′(u) for the function which, on T, corresponds
through f ′(e(t)) = f ′(t) to the periodic function16 f ′(t) on R, we then have∫

f ′(u)g(u)dm(u) = −
∫

f(u)g′(u)dm(u)(9.1)

or, in the R version, ∮
f ′(t)g(t)dt = −

∮
f(t)g′(t)dt.(9.2)

This result extends to the periodic functions which are primitives of regu-
lated functions, but this requires some explanations. Periodic or not, a func-
tion f is, on R, a primitive of a regulated function f ′ if (i) f is continuous,
(ii) f admits right and left derivatives at each point t ∈ R, equal to the
limits f ′(t+) and f ′(t−) of f ′; the derivative f ′ is thus periodic if f is. The-
orem 12 bis of Chap. V, n◦ 13, i.e. the FT, being valid for the primitives of
regulated functions, one has

f(1) − f(0) =
∮

f ′(t)dt,

so that the mean value of f ′ is zero if f is periodic. Formula (2) remains
valid since, if f and g are periodic primitives of regulated functions f ′ and
g′, necessarily periodic, the function fg is manifestly a periodic primitive of
f ′g + fg′; since fg is periodic, the integral of f ′g + fg′ over a period is zero
as we have just seen, whence (2).

One must not believe that a regulated periodic function f always admits a
periodic primitive. If indeed – the only possibility up to an additive constant
– one puts

F (t) =
∫ t

0

f(x)dx

as in Chap. V, n◦ 13, it is clear that F is periodic if and only if the mean
value of f is zero: write that F (1) = F (0). One could adopt the preceding
formula for t ∈ [0, 1[ and define F on R by periodicity, but then one would
have

F (1−) − F (1+) = F (1−) − F (0+) = lim[F (1 − ε) − F (ε)] =
∫ 1

0

f(t)dt,

whence a discontinuity for t = 1 and more generally for t ∈ Z; not be-
ing continuous, F cannot be a primitive of f . In a case of this kind, one
has to add to the right hand side of (2.20’) a term equal to the difference

16 We have f ′(u) = 2πi. lim[f(uv) − f(u)]/(v − 1) as v ∈ T tends to 1.
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f(1−)g(1−) − f(0+)g(0+); a notorious source of errors17 in calculation . . .

This done, let us consider a function f ∈ C1(T) and write Df = f ′ for
its derivative, a periodic continuous function. An integration by parts then
shows, by (2), that∫ 1

0

Df(t)e−2πintdt = 2πin

∫ 1

0

f(t)e−2πintdt

i.e.

D̂f(n) = 2πinf̂(n).(9.3)

This calculation is again valid if f is a periodic primitive of a regulated
periodic function, as we have seen above. It does not apply to Example 1 of
the preceding n◦, for the periodic function equal to t on [−1

2 , 1
2 [, not being

everywhere continuous, is not a primitive on R.
Now we know that the series

∑∣∣D̂f(n)
∣∣2 converges since Df is regulated;

so likewise is the series
∑

1/n2. The series
∑∣∣D̂f(n)/n

∣∣ is therefore ab-
solutely convergent (Cauchy-Schwarz inequality for series). But D̂f(n)/n =
f̂(n) up to a constant factor. Consequently:

Theorem 4. Let f be a periodic continuous function, the primitive of a
regulated function on R (for example, a periodic function of class C1 on R);
then the Fourier series of f is absolutely convergent and

f(t) =
∑

f̂(n)en(t)

for any t ∈ R.

If f is of class C2 one may iterate (3) and obtain

D̂2f(n) = (2πin)2 f̂(n),

and so on.
The Parseval-Bessel inequality now shows that

∑∣∣∣npf̂(n)
∣∣∣2 < +∞(9.4)

if f ∈ Cp(T), and a fortiori
17 Pay attention to the fact that the f ∈ Cp(T) must be of class Cp on R and

not only on a period interval such as [0, 1], since this last property is compatible
with the existence of discontinuities at 0 and 1 of the derivatives of the periodic
function considered. For a function f of class Cp on [0, 1] to be extendable to a

periodic function of class Cp on R it is necessary and sufficient that f (k)(0) =

f (k)(1) for every k ≤ p.
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f̂(n) = o(1/np).(9.5)

One may wonder whether, conversely, these properties characterise the
Fourier coefficients of functions of class Cp; the answer is negative: for p = 1,
the relation (4) is satisfied by every primitive of a regulated function, which
allows many discontinuities in the derivative. But it is worth looking closer.

First, (3) shows that if f is a periodic primitive of a regulated function
Df , then the Fourier series∑

D̂f(n)en(t) ≈
∑

2πinf̂(n)en(t)(9.6)

of Df is obtained as if one may differentiate that of f term-by-term, even
though the general theorem on term-by-term differentiation (Chap. III, n◦ 17,
Theorem 19 and Example 2) does not necessarily apply here: the discontinu-
ities of Df can prevent its Fourier series from converging uniformly or even
simply (whence the ≈ sign).

If, however, the right hand side of (6) converges absolutely for a given
regulated periodic function f , i.e. if

∑ |nf̂(n)| < +∞, a more restrictive
condition than f̂(n) = o(1/n), then a fortiori

∑ |f̂(n)| < +∞; one may
then, as we have seen in n◦ 8, assume that

f(t) =
∑

f̂(n)en(t)

everywhere by modifying f on a countable set; since the derived series con-
verges uniformly, we conclude that f is differentiable and that Df(t) =∑

2πinf̂(n)en(t) is a continuous function: the function f is thus of class C1.
More generally, if the Fourier coefficients of a function f satisfy

∑ |npf̂(n)| <
+∞, the function is of class Cp: iterate the argument.

The case where p = ∞, i.e. of the functions f ∈ D(T), is simpler. If f is
C∞, in which case (5) applies for any p to the Fourier coefficients of all the
successive derivatives of f , one may differentiate the Fourier series of f term-
by-term ad libitum and obtain series which are all normally convergent and
represent the successive derivatives of f ; note that, except for that of f , they
have no constant term. If, conversely, one takes coefficients c(n) satisfying
(5) for any p and if one puts f(t) =

∑
c(n)en(t), an absolutely convergent

series and so the Fourier series of f , it is clear that the products nrc(n) again
satisfy (5) for any r and that the series obtained on differentiating the series∑

c(n)en(t) formally r times will converge normally; the standard theorem
on term-by-term differentiation (Chap. III, n◦ 17, Theorem 19) then applies
to the series

∑
c(n)en(t): f is a C∞ function of which c(n) are the Fourier

coefficients. In conclusion:

Theorem 5. Let c(n) be a scalar function on Z. For there to be a function
f ∈ C∞(T) such that f̂(n) = c(n) for every n it is necessary and sufficient
that c(n) = O(1/np) for every p ∈ N. One may then differentiate the Fourier
series of f term-by-term any number of times.

A function c on Z satisfying (5) for every p is said to be of rapid decrease.
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10 – Distributions on T

The identification of the functions on T with the functions of period 1 on R
has allowed us to define the spaces Cp(T) in an obvious way for every p ∈ N,
and also D(T) = C∞(T). As on the Schwartz space D(R) (Chap. V, n◦ 34)
one may define the norms

‖ϕ‖(k) = ‖ϕ‖ + ‖Dϕ‖ + . . . + ‖Dkϕ‖(10.1)

on D(T), and the distances

dk(ϕ,ψ) = ‖ϕ − ψ‖(k)
,(10.1’)

where ‖ϕ‖ = sup |ϕ(u)| denotes the norm of uniform convergence on T (or,
in terms of periodic functions, on R) and where the Drϕ = ϕ(r) are the
successive derivatives, again periodic, of the function ϕ. A concept of conver-
gence is associated with these norms: a sequence ϕn ∈ D(T) converges to a
ϕ ∈ D(T) if lim dk(ϕ,ϕn) = 0 for every k, in other words, if for every k > 0
one has lim Dkϕn = Dkϕ uniformly on T. This is the mode of convergence
which allows us to differentiate the given sequence term-by-term ad libitum,
to calculate the derivatives of the limit.

This said, a distribution on T is, as on R, a linear map T : D(T) → C
which is continuous in the following sense: there exist a k ∈ N and a constant
M ≥ 0 such that

|T (ϕ)| ≤ M. ‖ϕ‖(k) for every ϕ ∈ D(T),(10.2)

i.e. |T (ϕ) − T (ψ)| ≤ M. ‖ϕ − ψ‖(k). The smallest integer possible k is called
the order of T . Then limT (ϕn) = T (ϕ) if the ϕn ∈ D(T) converge uniformly
to a ϕ ∈ D(T) as do all their successive derivatives of order ≤ k: the others
are not involved.

The examples given in Chap. V, n◦ 34 in the case of R transpose easily to
here, so long as one does not try to integrate the periodic functions on all of R,
an integral of this kind clearly being divergent. In particular, every integrable
function f on T defines a distribution Tf : ϕ 
→ ∫ ϕ(u)f(u)dm(u), and every
measure µ on T a distribution Tµ : ϕ 
→ ∫ ϕ(u)dµ(u). These distributions are
of order 0. A distribution such as ϕ 
→ ∫ ϕ(r)(u)f(u)dm(u) is of order r; we
shall see later that up to an additive constant18, every distribution on T is
of this type.

It would be convenient to use the Leibniz notation T (ϕ) =
∫

ϕ(u)dT (u)
for distributions; the definition of the derivative

T ′(ϕ) = −T (ϕ′)(10.3)

18 A constant c is also the constant function u �→ c, so is also a distribution, namely
ϕ �→ c
∫

ϕ(u)dm(u) = c.m(ϕ).
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of a distribution would then be written∫
ϕ(u)dT ′(u) = −

∫
ϕ′(u)dT (u)(10.4)

as in the formula for integration by parts (9.2) from which it is directly
derived. Frowned on by Schwartz, this notation has not gained currency; but
we shall use it on occasion.

As in the case of functions and of measures on T, one may associate
Fourier coefficients

T̂ (n) =
∫

u−ndT (u) = T (e−n)(10.5)

to every distribution T on the torus. Now the fact that the Fourier series of
a function ϕ ∈ D(T) converges uniformly together with all its derived series
clearly means that the series ϕ =

∑
ϕ̂(n)en converges in the sense of the

space D(T): we have

lim
N→∞

‖ϕ − ϕN‖(k) = 0 for every k ∈ N(10.6)

where, as always, the ϕN are the partial sums of the Fourier series of ϕ.
One may thus “integrate” the Fourier series of ϕ term-by-term with re-

spect to any distribution T on the torus. Since the value of T on the function
en is just, by definition, the Fourier coefficient T̂ (−n) of T , one finds

T (ϕ) =
∑

T̂ (−n)ϕ̂(n) for every ϕ ∈ D(T).(10.7)

This relation resembles Parseval-Bessel more if one writes it in the form

T (ϕ̄) =
∫

ϕ(u)dT (u) =
∑

ϕ̂(n)T̂ (n).

One may again interpret it as an expansion of T in Fourier series. Let us
associate a distribution Tf to every reasonable function f on T by putting
Tf (ϕ) =

∫
ϕ(u)f(u)dm(u). In particular, write En for the distribution asso-

ciated to the function t 
→ en(t) or u 
→ un, whence

En(ϕ) = ϕ̂(−n) for every ϕ ∈ D(T).

Formula (7) can then be written

T (ϕ) =
∑

T̂ (n)En(ϕ) for every ϕ ∈ D(T)(10.8)

or, symbolically, in the form

T =
∑

T̂ (n)En;
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this manner of writing has a sense if one defines the sum of a series
∑

Tn of
distributions as the distribution T such that

T (ϕ) =
∑

Tn(ϕ)

for every ϕ ∈ D(T), which assumes, at the least, (and, in fact, precisely19)
that the right hand side converges for every ϕ ∈ D(T).

For example let us choose T = Tf where f is a regulated function on T,
whence T̂ (n) = f̂(n). For every ϕ ∈ D(T), by Parseval-Bessel,

Tf (ϕ̄) =
∫

f(u)ϕ(u)dm(u) =
∑

f̂(n)ϕ̂(n) =
∑∫

f̂(n)unϕ(u)dm(u) =

= lim
N→∞

∫ ∑
|n|<N

. . . = lim
∫

fN (u)ϕ(u)dm(u)

where the fN are the partial sums of the Fourier series of f . From the distri-
bution point of view this may be written

Tf (ϕ) = limTfN
(ϕ) i.e. Tf = limTfN

;(10.9)

in other words, qua distribution, the function f is the limit of the partial
sums of its Fourier series. This does not mean that the latter converges to
f in the usual sense! This is the one of the sleights of hand allowed by the
theory of distributions . . .

On the other hand we note that the derivative T ′ = DT of a distribution
T has for Fourier coefficients the numbers

D̂T (n) = DT (e−n) = −T (e′−n) = −T (−2πine−n) = 2πinT̂ (n);(10.10)

in other terms, another trick, the formula (9.3) is valid for every distribution
on T.

Can one characterise the functions n 
→ c(n) on Z which are the Fourier
coefficients of a distribution? If T is a distribution, by definition one has an
inequality of the form

|T (ϕ)| ≤ M. ‖ϕ‖(k)
,(10.11)

valid for every ϕ ∈ D(T). But if ϕ(t) = en(t), we have, up to the factor 2πi,
that Dϕ(t) = nen(t), D2ϕ(t) = n2en(t), etc. and so

‖en‖(k) = 1 + |2πn| + |2πn|2 + . . . + |2πn|k,

19 If a series
∑

Tn(ϕ) converges for any ϕ ∈ D(T), then T (ϕ) =
∑

Tn(ϕ) is again a

distribution, i.e. satisfies an estimate of the form |T (ϕ)| ≤ M. ‖ϕ‖(k). The proof
is obtained without any calculation from the general theorems of functional
analysis.
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an expression ∼ |2πn|k for |n| large (order of growth of a polynomial at
infinity). One concludes from (2) that there exists an integer k such that

T̂ (n) = O(|n|k) for |n| large.(10.12)

Conversely, every function c(n) satisfying c(n) = O(nk) for one integer k ∈ N
defines a distribution by the formula

T (ϕ) =
∑

c(−n)ϕ̂(n).(10.13)

First, the series converges since the product of a function “of slow increase”
by a function of rapid decrease is clearly of rapid decrease. One has T (en) =
c(n) since the Fourier coefficients of en are all zero apart from the n-th
(orthogonality relations). It remains to establish the continuity, in the sense
of D(T), of the linear form ϕ 
→ T (ϕ).

First,

D̂rϕ(n) = (2πin)rϕ̂(n)(10.14)

for any r for every ϕ ∈ D(T) and so

∑
|(2πin)rϕ̂(n)|2 =

∫
|Drϕ(u)|2 dm(u) ≤ ‖Drϕ‖2(10.15)

since the mean value of a function is bounded by its uniform norm. Now we
write (13) in the form

T (ϕ) = c(0)ϕ̂(0) +
∑ c(−n)

(2πin)r
(2πin)rϕ̂(n)(10.16)

with r = k + 1 and put

un = c(−n)/(2πin)r, vn = (2πin)rϕ̂(n).

By (12), we have un = O(1/n) and therefore
∑ |un|2 < +∞. The relation

(14) and Parseval-Bessel show that also
∑ |vn|2 = ‖Drϕ‖2

2 < +∞. The
Cauchy-Schwarz inequality then shows that∣∣∣∑unv̄n

∣∣∣ ≤ M.‖Drϕ‖2 ≤ M.‖Drϕ‖

where M2 =
∑ |un|2 depends only on T . Since r = k + 1, we finally have a

majoration

|T (ϕ)| ≤ |c(0)|.|ϕ̂(0)| + M‖Dk+1ϕ‖,(10.17)

which shows that T truly is a distribution. In conclusion:
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Theorem 6. Let n 
→ c(n) be a scalar function on Z. For there to be a
distribution T on T such that T̂ (n) = c(n) for every n, it is necessary and
sufficient that there exists a k ∈ N such that c(n) = O(nk).

One says then that the function c(n) is of slow increase or is tempered.

Example. Consider with Fourier the series

sin t − sin(2t)/2 + sin(3t)/3 − . . . ;

Fourier calculates its partial sums by differentiating, as was done in Chap. V,
n◦ 16 for square waves, which, for |t| < π, puts them in the form

t

2
− 1

2

∫ t

0

cos(N + 1
2 )x

cos x/2
dx;

an integration by parts shows that the integral tends to 0, whence

t/2 = sin t − sin(2t)/2 + sin(3t)/3 − . . . for |t| < π.

When Fourier presented his first manuscript to the Académie, Lagrange had
objections; for example, he wrote the preceding formula in the form

1
2
(π − t) = sin t + sin(2t)/2 + sin(3t)/3 + . . . ,

and differentiated to obtain

−1
2

= cos t + cos 2t + cos 3t + . . . ,(∗)

then integrated the result between 0 and t, whence

−t/2 = sin t + sin(2t)/2 + sin(3t)/3 + . . .

and a superb contradiction! Fourier replied that the formula from which
Lagrange started is valid only for 0 < t < 2π and that he consequently had
no right to integrate the derived series20 from t = 0.

He might have started by observing that it is not very catholic to dif-
ferentiate the initial series term-by-term since the series

∑
cos nt is clearly

divergent for any t; but since he himself did so constantly, Fourier did not
use this argument . . .

In fact, formula (∗) makes sense (but is wrong) in the sense of distribu-
tions. Using Euler’s relations it can be written as∑

n∈Z

en = 0,

20 See Grattan-Guinness, Joseph Fourier 1768–1830, p. 172.
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and if we interpret the left hand side as a series of distributions, (*) means
that ∑

Z

ϕ̂(n) = 0 for every ϕ ∈ D(T).

But the result should be ϕ(0) or ϕ(1) depending on whether you are in R
or T. Now ϕ(0) = δ(ϕ) where δ is the Dirac measure at the origin 1 on T.
The correct formula is therefore∑

n∈Z

En = δ

an identity between distributions equivalent to the obvious formula δ̂(n) = 1.
One should therefore replace (*) by

∞∑
1

∮
ϕ(t) cos ntdt =

1
2
ϕ(0) − 1

2

∮
ϕ(t)dt

a formula equivalent to
ϕ(0) =

∑
Z

ϕ̂(n).

The presence of the additional term 1
2ϕ(0) is easy to explain; the series (∗)

was indeed obtained by differentiating a series whose sum, equal to 1
2 (π − t)

for 0 < t < 2π, is discontinuous at t = 0 (or, in version T, at u = 1);
the distribution obtained by differentiating it must therefore contain a Dirac
measure at the origin as in the case of the function equal to 1 for t > 0
and to 0 for t < 0 (Chap. V, n◦ 35, Example 2). Note in passing that if one
considered distributions on R and not on T, the derivative of the function∑

sin(nt)/n would include a Dirac measure at each multiple of 2π.

A method of stripping all the mystery from the distributions consists
of considering their successive primitives. A primitive S of a distribution T
must, by definition, satisfy the relation S′ = T , i.e.

S(Dϕ) = −T (ϕ)

for every ϕ ∈ D(T). Then, if S exists, by (10) one has T̂ (0) = 0 and

Ŝ(n) = T̂ (n)/2πin(10.18)

for n �= 0. Since the sequence T̂ (n)/n is slowly increasing, S will exist if and
only if

T̂ (0) = T (e0) =
∫

dT (u) = 0,(10.19)
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the “integral” of the constant function 1 with respect to T . In this case S is
unique up to an additive constant, namely the term Ŝ(0) of its Fourier series;
if one chooses this to be zero one obtains a standard primitive of T , which it
is natural to denote D−1T or T (−1); then

D̂−1T (0) = 0, D̂−1T (n) = T̂ (n)/2πin for n �= 0.(10.20)

When T̂ (0) �= 0, one may apply the argument to the terms of nonzero index
of the Fourier series of T , whence a distribution S such that T = T̂ (0) + S′,
i.e. such that

T (ϕ) = T̂ (0)m(ϕ) − S(Dϕ)(10.21)

for every ϕ ∈ D(T); one can, here again, insist that Ŝ(0) = 0 to standardise S.
The interest of this operation is that on applying it repeatedly to a distri-

bution T such that T̂ (0) = 0, i.e. “orthogonal” to the constant functions, one
increases the chances of convergence in the usual sense of the Fourier series of
T since one divides its coefficients by the powers of n. Since these coefficients
are of slow increase, it is clear that on choosing an integer r sufficiently large,
the Fourier coefficients of the primitive of order r of T form an absolutely
convergent series, in other words are those of a continuous function f . This
means that T is the derivative of order r of the function f in the sense of
distributions, or again that every distribution on T is given by a formula

T (ϕ) = (−1)r

∫
ϕ(r)(u)f(u)dm(u) + c

∫
ϕ(u)dm(u)(10.22)

where c = T̂ (0) is a constant. Despite appearances, the notion of a distribu-
tion on the torus is thus hardly more general than that of a function in the
usual sense: one integrates its derivatives.

We said21 in n◦ 7 that in the modern theory of integration, every function
c ∈ L2(Z) is the Fourier transform of a “square integrable” function on T.
Though unable to prove this now, we remark that, by Theorem 6, there exists
a distribution T such that T̂ (n) = c(n); it is given by the formula (13). In
fact, the latter is meaningful for every regulated function f since then the
series
∑ |f̂(n)|2 converges, hence also

∑
c(−n)f̂(n); if one puts

T (f) =
∑

c(−n)f̂(n)(10.23)

again in this case, the Cauchy-Schwarz inequality for series shows that

|T (f)|2 =
∣∣∣∑ c(−n)f̂(n)

∣∣∣2 ≤ M2‖f‖2
2

where M2 =
∑ |c(n)|2. Hence a bound of the form

21 This paragraph is not important in the sequel.
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|T (f)| ≤ M‖f‖2 ≤ M‖f‖(10.24)

for every regulated function on T, and in particular for every continuous
function, which shows that the distribution T is a measure on T. In fact, T is
defined by a measure of the form g(u)dm(u) where g is the square integrable
function (à la Lebesgue) on T such that ĝ(n) = c(n) for every n, and (24)
is just the extension to these functions of the Cauchy-Schwarz inequality of
Chap. V, n◦ 2.
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§ 3. Dirichlet’s method

11 – Dirichlet’s theorem

When Dirichlet discovered Fourier’s work, at the beginning of the 1820s, he
tried to justify it by rigorous methods. Fourier having discovered the general
formula which we now write

f̂(n) =
∫

f(u)u−ndm(u)(11.1)

after dozens of pages of implausible calculations, and Dirichlet having heard
from Cauchy that the sum of a series is the limit of its partial sums, he started
by calculating those of a Fourier series (we shall simplify the calculation a
little by using convolution products):

fN =
∑

|n|≤N

f � en = f �
( ∑

|n|≤N

en

)
= f � DN(11.2)

where

DN (u) =
∑

|n|≤N

un = u−N + u−N+1 + . . . + uN =(11.3)

=
u−N − uN+1

1 − u
for u �= 1.

It follows that

fN (u) = f � DN (u) =
∫

T

f
(
uv−1
) vN+1 − v−N

v − 1
dm(v)(11.4)

On putting v = e(t) we have

DN (v) =
e((N + 1)t) − e(−Nt)

e(t) − 1
=(11.5)

=
e
((

N + 1
2

)
t
)− e
(− (N + 1

2

)
t
)

e(t/2) − e(−t/2)
=

sin(2N + 1)πt

sin πt

as one sees on multiplying the two terms of the fraction by e(−t/2) = e−πit

and using Euler’s formulae. The calculation obviously assumes that v �= 1,
i.e. t /∈ Z; the value DN (1) = 2N + 1 follows from definition (3). On passing
to the language of periodic functions, the partial sums fN are again given by

fN (s) =
∮

f(s − t)DN (t)dt =
∮

f(s − t)
sin(2N + 1)πt

sin πt
dt.(11.6)

Since we are dealing with the convolution products (on T) of f by the
sequence of functions DN , and since we would like the result to tend to f(s)
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when N increases indefinitely, it would seem, at first sight, that we should
use the method of Dirac sequences expounded in n◦ 5. The condition∫

DN (u)dm(u) =
∮

DN (s)ds = 1

is satisfied, because this mean value is the Fourier coefficient of index 0 of
the trigonometric polynomial DN . But the DN change sign more and more
often as N increases; it is neither obvious (nor even correct) that the integral
of |DN (u)| remains bounded as N increases. Finally, if one works on an arc
|u − 1| > δ of T, then |DN (u)| ≤ ∣∣1 − u2N+1

∣∣ /δ by (3), which is insufficient
to make DN (u) tend to 0. In short, a bad idea.

Moreover, if the DN did form a Dirac sequence, the Fourier series of every
continuous function would converge uniformly to the latter by the lemma of
n◦ 5: this would be Paradise. On Earth, although converging “almost every-
where” in the sense of Lebesgue measure22 (a famous and very difficult result
of Lars Carleson, 1966, valid for “square-integrable” functions in Lebesgue’s
sense), it can still very well diverge for values of u forming an uncountable
set23. In other words, the method does not work because if it did it would
lead to a false result.

Having lived and died (1805–1859) too early to have heard of Lebesgue,
Dirac, Carleson and even of Weierstrass’ approximation theorem, Dirichlet
did not ask himself these questions and, using (4) – so in reality (5) – calcu-
lated the difference

fN (u) − f(u) =
∫ [

f(uv−1) − f(u)
]
DN (v)dm(v)(11.7)

or, replacing v by v−1 since DN is symmetric,

fN (u) − f(u) =
∫

f(uv) − f(u)
v − 1

(
vN+1 − v−N

)
dm(v)(11.8)

22 In Chap. V, n◦ 11 we defined the (Lebesgue) measure of an open U contained in
a compact interval; n◦ 31, where we defined the integral of a positive lsc function
on R, likewise allowed us to define the measure of any open U ⊂ R. This being
so, a subset N of R is said to be of measure zero if for every r > 0 there exists an
open U such that N ⊂ U , m(U) < r. Granted this, a property – the convergence
of a series of functions for example – is said to be true almost everywhere if the
set of x where it is false is of measure zero. Every countable set is of measure
zero, but not conversely. See the Appendix to Chap. V.

23 The first example was that of the German P. du Bois-Reymond: “Before 1873, it
was the general belief, of Lejeune Dirichlet, of Riemann, of Weierstrass, among
others, that this series always converges to the limit f(x) when f(x) is contin-
uous. Now, in trying to find a proof of this theorem, I came upon an argument
to prove the contrary”. Letter of 1883 to the Frenchman G. Halphen (Dugac,
p. 62). In 1926 the Soviet mathematician A. N. Kolmogoroff produced an in-
tegrable (but not square integrable) function in the sense of Lebesgue whose
Fourier series diverges everywhere. Newton would probably have said that one
does not meet such functions in Nature.
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The right hand side of (8) resembles the difference between the Fourier coef-
ficients of indices −N − 1 and N of the function

gu(v) = [f(uv) − f(u)]/(v − 1);(11.9)

but this function, as regulated as f for v �= 1, has, a priori, no meaning
for v = 1; its integral may well diverge on a neighbourhood of this point,
which prevents one from speaking of its Fourier coefficients; the integral (8)
is defined only because it involves the quotient

(
vN+1 − v−N

)
/(v − 1), an

everywhere continuous trigonometric polynomial.
Since v − 1 = e(t) − 1 ∼ 2πit when t tends to 0, i.e. when v tends to 1,

one always has

lim[f(uv) − f(u)]/(v − 1) = f ′(s)/2πi(11.10)

if this derivative exists at the point u = e(s) considered. The function gu

then has left and right limit values at every point v ∈ T, so is regulated on
all of T. In this case it is legitimate to write that

fN (u) − f(u) = ĝu(−N − 1) − ĝu(N);(11.11)

and to show that the left hand side tends to 0, it is enough to know that the
Fourier coefficients of a regulated function tend to 0 at infinity, which the
Parseval-Bessel inequality (7.12) makes obvious without recourse to Weier-
strass’ theorem. Thus:

Theorem 7. Let f be a regulated periodic function. Then

f(u) =
∑

f̂(n)un = lim
N→+∞

∑
|n|≤N

f̂(n)un(11.12)

at every point u ∈ T where f is differentiable.

Corollary (Riemann). The behaviour on an open interval of the Fourier
series of a regulated periodic function f depends only on the behaviour of f
on this interval.

If in fact f = g on an open interval U then the function f − g has a
derivative at every point of U . Its Fourier series therefore converges to 0 at
every t ∈ U . This means that, for every t ∈ U , only two cases are possible:
(i) the Fourier series of f and g are simultaneously divergent at t, (ii) they
are simultaneously convergent and have the same sum. Another translation:
if two regulated periodic functions f and g are equal on an interval with
centre t, then their Fourier series at t are either simultaneously divergent, or
simultaneously convergent with the same sum on a neighbourhood of t.

Dirichlet in fact went somewhat further than Theorem 1, for the sum of
the square wave series, to mention just this one, is not differentiable in the
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strict sense at the points where it is discontinuous; there it has only left and
right derivatives; so one has to modify the preceding calculations. Now the
symmetry of the function DN shows that its integral over

[− 1
2 , 0
]

or over[
0, 1

2

]
is equal to 1

2 ; this allows us to replace (7), or the R version, by

fN (s) − 1
2
[f(s+) + f(s−)] =(11.13)

=
∫ 1

2

0

[f(s + t) − f(s+)]DN (t)dt +
∫ 1

2

0

[f(s − t) − f(s−)]DN (t)dt.

The quotient
[f(s + t) − f(s+)]/ sin πt

appears in the first integral. If f has a right derivative at the point s (obvious
definition), this quotient tends to a limit when t > 0 tends to 0; for 0 ≤ t ≤ 1

2 ,
this quotient then has, like f , left and right limit values; the first integral is
thus, as in (11), the value at N of the Fourier transform of a regulated
periodic function that vanishes on

]
1
2 , 1
[
, so tends to 0 as N increases. Same

argument for the second integral. Whence a simple result, which has been
refined in many ways (see for example A. Zygmund, Trigonometrical Series,
Cambridge UP, 1969):

Theorem 7 bis (Dirichlet, 1829). Let f be a regulated periodic function
and fN the partial sum of order N of its Fourier series. Then

lim fN (s) =
1
2
[f(s+) + f(s−)](11.14)

at every point where f has left and right derivatives.

Exercise Dirichlet’s Theorem is still valid if the function t → |f(s + t) −
f(s)|/|t| is integrable. Example: f(s+ t) = f(s)+O(tα) when t → 0, with an
α > 0, in which case the graph of f at s has a vertical tangent.

Example 1. Expansion of cot z as a series of rational fractions. Consider the
function of period 1 on R given by

f(t) = cos 2πzt for |t| <
1
2
,(11.15)

where z ∈ C is not a rational integer, for otherwise there would be no problem.
Since f

(−1
2

)
= f
(

1
2

)
, the periodic function which extends f to all of R

is continuous everywhere and it is clear that it satisfies the hypotheses of
Theorem 7 bis. We have

f̂(n) =
∫ 1

2

− 1
2

cos 2πzt.e−2πintdt =
1
2

∫ 1
2

− 1
2

[
e2πi(z−n)t + e−2πi(z+n)t

]
dt =

=
1
2

e2πi(z−n)t

2πi(z − n)
+

e−2πi(z+n)t

−2πi(z + n)

∣∣∣∣
1
2

− 1
2

= (−1)n z. sin πz

π(z2 − n2)
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as we see using Euler’s formulae. Thus

π. cos 2πzt =
∑

(−1)n z. sin πz

z2 − n2
e2πint for |t| ≤ 1

2
,(11.16)

an absolutely convergent Fourier series. In particular, for t = 1
2 ,

π. cot πz = z
∑ 1

z2 − n2
=

1
z

+ 2z
∞∑

n=1

1
z2 − n2

.(11.17)

This is the formula due to Euler which we have already met several times,
and established at Chap. IV, n◦ 18, using the infinite product for the sine
function. The method we have just presented – to be found essentially in
Fourier – is surely the simplest proof.

For t = 0, (16) yields the expansion

π

sin πz
=

1
z

+ 2z
∑
n≥1

(−1)n

z2 − n2
.(11.18)

Example 2. The Bernoulli polynomials. Recall (Chap. VI, n◦ 12) that the
Bernoulli polynomials are defined by the recurrence relations

B0(x) = 1, B′
k(x) = kBk−1(x)(11.19)

and by the condition

Bk(0) = Bk(1) for k ≥ 2.(11.20)

The inventor was not acquainted with Fourier series, but condition (20) is
exactly what one needs to transform the Bk, for k ≥ 2, into continuous
periodic functions B∗

k , by putting

B∗
k(t) = Bk(t) for 0 ≤ t ≤ 1(11.21)

as we did in Chap. VI à propos the Euler-Maclaurin formula. The hypotheses
of the Dirichlet theorems are clearly satisfied. Adopting for once the notation
an(f) = f̂(n), we have, integrating by parts and assuming k ≥ 2, n �= 0,

an (B∗
k) =
∫ 1

0

Bk(t)e−n(t)dt =
1

2πin

∫ 1

0

B′
k(t)e−n(t)dt;

(19) now shows that

an (B∗
k) = kan

(
B∗

k−1

)
/2πin (k ≥ 2, n �= 0).(11.22)

On writing this relation for k − 1, k − 2, . . . , 2 we obtain

an (B∗
k) = k!an (B∗

1) /(2πin)k−1.(11.23)
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Since B1(t) = t− 1
2 and since the Fourier coefficients of a constant vanish for

n �= 0, we have

an (B∗
1) =
∫ 1

0

te−n(t)dt = − te−n(t)
2πin

∣∣∣∣1
0

+
1

2πin

∫ 1

0

en(t)dt;

the last integral is zero and what remains is

an (B∗
1) = −1/2πin,(11.24)

whence finally

an (B∗
k) = −k!/(2πin)k for k ≥ 1, n �= 0.(11.25)

For n = 0, we have (k + 1)a0 (B∗
k) =
∮

B′
k+1(t)dt = 0 by (20) if k ≥ 1, and

a0 (B∗
0) = 1 trivially.

Formula (25) shows that the Fourier series is absolutely convergent for
k ≥ 2, whence∑

n�=0

en(t)/(2πin)k = −Bk(t)/k! for k ≥ 2, 0 ≤ t ≤ 1,(11.26)

the sum being taken over all nonzero n ∈ Z. For k = 2 for example, one finds

∞∑
1

cos(2πnt)/π2n2 = t2 − t + 1/6 (0 ≤ t ≤ 1).

For t = 0, the left hand side of (26) reduces to
∑

1/(2πin)k, so is zero for
odd k; for k = 2p, p ≥ 1, on the other hand,∑

1/n2p = (−1)p+1(2π)2pb2p/(2p)!(11.27)

where bk = Bk(0) (Chap. VI, (3.7)). We should not forget that the left hand
side is twice the sum of the Riemann series.

For k = 1, the function B∗
1 , equal to t − 1

2 for 0 < t < 1, is discontinuous
at the points t ∈ Z. On grouping the terms of index n and −n of its Fourier
series, we again have

1
2
− t =

∞∑
n=1

sin(2πnt)/πn for 0 < t < 1,(11.28)

the series being zero for t = 0 or 1 as one may check without invoking
Dirichlet. For t = 1

4 one obtains Leibniz’ series for π/4.
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12 – Fejér’s theorem

We observed in the preceding n◦ that the Dirichlet kernels do not form a
Dirac sequence in the sense of n◦ 5. At the end of the XIXth century, the
Italian Cesàro had the idea of making divergent sequences (un) converge by
considering their arithmetic means

vn = (u1 + . . . + un) /n.(12.1)

If you apply this to the sequence 1, 0, 1, 0, . . ., you will find that it then
“converges” to 1

2 . The method does not always work, even if one iterates –
every sequence which tends to +∞ is recalcitrant –, but it is reassuring at
least to know that if the sequence converges to u in the usual sense, then it
also converges to u in the Cesàro sense: if |u − un| < r for n > p and if one
writes that

vn = (u1 + . . . + up) /n + (up+1 + . . . + un) /n,

the first quotient is, for p given, < r for n large; on replacing each uk by u
in the second, one commits an error bounded by (n − p)r/n < r, whence a
total error < 2r for n large, qed.

One may also apply this procedure to a series
∑

un, replacing the stan-
dard partial sums sn = u1 + . . . + un by their means

σn = (s1 + . . . + sn) /n.(12.2)

This allows one to make convergent series which are not; one finds again, for
example, the formula

1 − 1 + 1 − 1 + 1 − . . . =
1
2
,

conforming to the somewhat premature anticipations of Jakob Bernoulli
(Chap. II, n◦ 7). The subject has been the object of much research, but
it is rarely used outside of “fine” analysis.

If one goes back to the Dirichlet formula

fN (t) =
∮

f(t − x)DN (x)dx = f � DN (t)

for the partial sums of the Fourier series of a function f it is clear that their
arithmetic means are the functions f � FN where the function

FN = (D0 + . . . + DN−1) /N(12.3)

was introduced by L. Fejér (1880–1959).
In contrast to the DN , the Fejér functions form a Dirac sequence on the

unit circle T. To see this, one has to calculate them. Putting q = eπit, one
has, by (10.5),
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Dk(t) =
(
q2k+1 − q−2k−1

)
/
(
q − q−1

)
,

whence, adding from 0 to N − 1,

N
(
q − q−1

)
FN (t) =

=
(
q + q3 + . . . + q2N−1

)− (q−1 + q−3 + . . . + q−2N+1
)

=

= q
(
q2N − 1

)
/
(
q2 − 1
)− q−1

(
q−2N − 1

)
/
(
q−2 − 1

)
=

=
(
q2N − 2 + q−2N

)
/
(
q − q−1

)
and finally

FN (t) =

(
qN − q−N

)2
N (q − q−1)2

=
sin2 πNt

N sin2 πt
,(12.4)

for t �= 0, with FN (0) = N by continuity or by (3).
To show that the FN form a Dirac sequence on T it then suffices to show

that the FN are positive (obvious), that their integrals on T are equal to 1
(obvious, since this is so for the Dk, hence for their arithmetic means) and
finally that, for any r > 0 and δ > 0, the contribution of the arc |u − 1| > δ
of T to the integral of FN is < r for N large or, equivalently, that∫

δ≤|t|≤1/2

FN (t)dt < r for N large.(12.5)

But on this domain of integration, by (4) one has

FN (t) ≤ 1/N sin2 πδ,(12.6)

so that the FN converge uniformly to 0 on δ ≤ |t| ≤ 1
2 for any δ > 0, qed.

Theorem 8 (Fejér). For every regulated periodic function f the arithmetic
means of the partial sums of the Fourier series of f converge to 1

2 [f(t+) +
f(t−)] for any t. If f is continuous in an open interval J , the convergence
to f(t) is uniform on every compact K ⊂ J .

The second assertion follows from the lemma of n◦ 5.
To establish the first one writes, as in (11.13),

f � FN (t) − 1
2
[f(t+) + f(t−)] =(12.7)

=
∫

[f(t + s) − f(t+)]FN (s)ds +
∫

[f(t − s) − f(t−)]FN (s)ds,

the integrals being taken over (0, 1
2 ), and then argues as in n◦ 5.

One may note in passing that assuming f continuous everywhere one
obtains a proof of Weierstrass’ approximation theorem (without having used
it beforehand . . .).
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Corollary. Let f be a regulated periodic function. Then

lim
N→∞

N∑
−N

f̂(n)en(t) =
1
2
[f(t+) + f(t−)](12.8)

at every point where the Fourier series of f converges.

For the partial sums fN (t), if they converge, converge to the same limit
as their arithmetic means, which always converge to the right hand side of
(8). The corollary does not claim that the relation (8) is true for arbitrary t
and f .

13 – Uniformly convergent Fourier series

Dirichlet’s theorem demonstrates the simple convergence of the Fourier series
of a regulated periodic function at all points where it has left and right deriv-
atives. In the case of the square waves we have shown by ad hoc calculations
(Chap. III, n◦ 11) that in fact the series converges uniformly on every com-
pact interval not containing discontinuities of f . One may refine the proof of
Theorem 7 so as to cover this case and many others, for example the series
(11.28).

The arguments which follow being somewhat subtle, the reader is invited
to consider them more as an exercise.

Theorem 9. Let f be a regulated function on T and J an open arc on which
f is a primitive of a regulated function (is, for example, of class C1). Then
the Fourier series of f converges to f uniformly on every compact arc K ⊂ J .

The proof we are going to set out calls on current techniques in functional
analysis and can be divided into several stages.

(i) Consider again the function

gu(v) = [f(uv) − f(u)]/(v − 1)(∗)

that we used in proving Dirichlet’s theorem. As we saw then, gu is regulated
on T if f has left and right derivatives at u, so, under the hypotheses of
Theorem 9, for every u ∈ J . Then

fN (u) − f(u) = ĝu(−N − 1) − ĝu(N)

and the theorem reduces to showing that, as N → +∞, the functions

u 
→ ĝu(N) = GN (u)

converge to 0 uniformly on every compact K of J , i.e. that for every r > 0
there exists an N such that
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(u ∈ K) & (|n| > N) =⇒ |ĝu(n)| < r.(13.1)

(ii) Consider the vector space24 L1(T) of regulated functions on T, en-
dowed with the norm ‖f‖1 =

∫ |f(v)|dm(v). Then gu ∈ L1(T) for every
u ∈ J , and the simplest estimate for the Fourier coefficients of an integrable
function shows that

|Gn(u′) − Gn(u′′)| = |ĝu′(n) − ĝu′′(n)| ≤ ‖gu′ − gu′′‖1(13.2)

for any u′ and u′′ ∈ J .
Suppose we have shown that the map u 
→ gu of J in L1(T) is continuous,

i.e. that for every u ∈ J and every r > 0 there exists an r′ > 0 such that

(u′ ∈ J) & (|u′ − u| < r′) =⇒ ‖gu′ − gu‖1 < r.(13.3)

The relation (2) then shows that

(u′ ∈ J) & (|u′ − u| < r′) =⇒ |Gn(u′) − Gn(u)| < r for every n.(13.4)

This means precisely that the functions Gn are equicontinuous on J (Chap. III,
n◦ 5). The fact that the Gn(u) converge to 0 uniformly on every compact
K ⊂ J will then follow from the following general lemma:

Lemma. If a sequence of functions fn defined and equicontinuous on a com-
pact set K converges simply on K, then it converges uniformly on K.

Suppose that f is the limit of the fn and let us choose an r > 0. For every
a ∈ K there exists an open ball B(a) with centre a in K such that

x ∈ B(a) =⇒ |fn(x) − fn(a)| ≤ r for every n;

this is the definition of equicontinuity. The inequality remains valid for f by
passage to the limit, which proves the continuity of f ; since |fn(a) − f(a)| ≤ r
for n large one deduces that, for n large,

|f(x) − fn(x)| ≤ 3r

for every x ∈ B(a). But, since K is compact, one may (Borel-Lebesgue) cover
it by a finite number of balls B(ai). The above inequality is then, for n large,
valid on all these balls, so on K, qed.

(iii) To prove the continuity of the map u 
→ gu of J into L1(T), let us
first consider, in this part of the proof, the numerator f(uv) − f(u) of (∗).
This is the difference between, on the one hand, the function fu : v 
→ f(uv)
obtained by “translating” the function f , and on the other hand the constant
24 The authentic L1 space in Lebesgue theory contains many other functions, but,

since it certainly contains the regulated functions, this is what we deal with here.
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function cu : v 
→ f(u). Since ‖cu′ − cu′′‖1 = |f(u′) − f(u′′)|, it is clear that
u 
→ cu is a continuous map of J into L1(T).

As for u 
→ fu, this is a continuous map of T (and not only of J)
into L1(T). This is obvious if f is continuous on T, for f being now uni-
formly continuous on T, we have |f(u′v) − f(u′′v)| ≤ r for every v ∈ T,
so also ‖fu′ − fu′′‖1 ≤ r so long as |u′ − u′′| < r′. In the general case, we
may choose, thanks to the lemma of n◦ 8, a function ϕ ∈ C0(T) such that∫ |f(v) − ϕ(v)|dm(v) = ‖f − ϕ‖1 < r. Since we are integrating with respect
to an invariant measure, we again have ‖fu − ϕu‖1 < r for every u ∈ T. If
we now choose functions ϕ ∈ C0(T) which converge to f in L1(T), the cor-
responding maps u 
→ ϕu of T into L1(T) converge to u 
→ fu uniformly on
T. A uniform limit of continuous functions with values in any metric space
being again continuous, the required result follows.

So we see that the numerator of the formula (∗), considered as a function
of u ∈ J with values in L1(T), is continuous.

(iv) Next we have to take account of the denominator v − 1 and, to do
this, use our hypotheses. We shall first give the proof in the case where f = 0
on J ; and show later that the general case reduces to this.

Since the compact sets K and T − J are disjoint their distance d is > 0.
Since |uv − u| = |v − 1|, we see that

(u ∈ K) & (|v − 1| < d) =⇒ uv ∈ J(13.5)
=⇒ f(uv) = f(u) = 0.

When we restrict to the u ∈ K, the functions of v appearing in the numerator
of the formula (∗) are thus all zero on the arc |v − 1| < d of T. Let us put

h(v) = (v − 1)−1 if |v − 1| > d, h(v) = 0 if not.(13.6)

The formula that defines gu shows that, for u ∈ K,

gu(v) = h(v) [fu(v) − cu(v)] for every v ∈ T.(13.7)

This is essentially the definition of gu on the arc |v − 1| > d and, by (5),
reduces to the identity 0 = 0 on the arc |v − 1| < d.

Now we have |h(v)| < 1/d for any v ∈ T by (6). The relation (7) showing
that gu = h (fu − cu) for u ∈ K (though not for every u ∈ T) and the map
u 
→ fu − cu of T into L1(T) being continuous, by point (iii), it remains to
show that multiplication by the function h, which is bounded and independent
of u, preserves continuity. This is no more difficult than in the framework of
complex valued functions: it is enough to write that

‖hf ′ − hf ′′‖1 =
∫

|h(v)|.|f ′(v) − f ′′(v)|dm(v) ≤ ‖h‖. ‖f ′ − f ′′‖1

for any f ′, f ′′ ∈ L1(T), where ‖h‖ = sup |h(v)| as always. Since, for u′, u′′ ∈ K
sufficiently close, the distance from f ′ = fu′ − cu′ to f ′′ = fu′′ − cu′′ is
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arbitrarily small, so likewise is the distance from gu′ to gu′′ , which proves the
theorem in the case where f = 0 in J .

(v) It remains to pass to the general case. The arc K being compact, and
the arc J open, the distance d of K to the compact T − J is > 0, so that
the open arc J ′ of T defined by d(u,K) < d/2 satisfies K ⊂ J ′ ⊂ J . By
modifying the graph of f outside J ′ one may construct a function g which,
on all of T, is a primitive of a regulated function and which, on J ′, coincides
with f . Since f − g vanishes on J ′ its Fourier series converges uniformly to 0
on K by section (iv) of the proof. Now the Fourier series of g converges to g
uniformly in T (n◦ 9, Theorem 4) and so to f uniformly on K. The relation
f = (f − g) + g then completes the proof.



§ 4. Analytic and holomorphic functions 307

§ 4. Analytic and holomorphic functions

In Chap. II, n◦ 19, which the reader is strongly urged to review, we said that
a function f defined on an open subset U of C is analytic in U if for every
a ∈ U there exists a power series in z − a which, on a sufficiently small disc
of centre a, converges to f(z). In fact it represents f(z) in the largest disc
D ⊂ U where it converges, for the sum of this power series is analytic in
its disc of convergence (Chap. II, n◦ 19, Theorem 14) and since it is equal
to f on a neighbourhood of the centre of D, it is equal to f everywhere in
D by virtue of the principle of analytic continuation (Chap. II, n◦ 20); the
same argument shows that the one and only power series representing f on a
neighbourhood of a is the Taylor series of f at a. We know that it converges,
but we still do not know up to where it converges . . .

We have also shown that, if the function f is analytic, it has a derivative

f ′(a) = lim[f(a + h) − f(a)]/h(∗)

in the complex sense at each point a ∈ U ; the latter can also be obtained
by differentiating the power series representing f term-by-term on a neigh-
bourhood of a. The existence of the limit (∗) shows that as a function of the
real variables x = Re(z) and y = Im(z) the function f has partial derivatives
satisfying the Cauchy formula

D2f = iD1f (= if ′).(∗∗)

On the other hand we have shown (Chap. III, n◦ 20, corollary of Theorem 21)
that, conversely, every holomorphic function, i.e. possessing continuous par-
tial derivatives satisfying (∗∗) in an open set U , has a complex derivative (∗)
and that its differential can be written in the form

df = f ′(z)dz = f ′(z)(dx + idy).(∗ ∗ ∗)

In the following n◦ we shall show that a holomorphic function is necessar-
ily analytic, by a method that exploits Fourier series, after which the terms
“analytic” and “holomorphic” will become synonymous, as we have already
announced several times in earlier chapters. Then we shall expound the sim-
plest consequences of this result, without seeking to enter into the detail of a
theory to which hundreds of mathematicians have, since Cauchy, added their
contribution from their grain of sand to the Empire State Building; Rem-
mert’s two volumes, 650 very condensed pages, can scarcely cover the elliptic
functions and not at all the modular and automorphic functions, Riemann
surfaces, analytic differential equations, special functions, etc., not to speak
of the generalisations to several variables.
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14 – Analyticity of the holomorphic functions

Having recalled these preliminaries let us consider a function f(z) defined
and holomorphic on an open disc D : |z| < R. We would like to show that it
is represented in all this disc by a power series

f(z) =
∑

anzn.(14.1)

As we have seen in n◦ 1 of this chapter, or in Chap. V, n◦ 5, this essentially
reduces to showing that the function

an(r) =
∫

f(ru)u−ndm(u)(14.2)

is, for every n ∈ Z, proportional to rn, using only the Cauchy condition or,
equivalently, the existence and the continuity of f ′(z).

In this direction we write

an(r) =
∫ 1

0

f [re(t)]e−n(t)dt(14.3)

and calculate the derivative of an(r). We have to perform a differentiation
under the

∫
sign, an operation examined in Chap. V, n◦ 9, Theorem 9: this

is permitted if the function of r and t that one is integrating has a partial
derivative with respect to r and if the latter is a continuous function of the
pair (r, t). The factor e−n(t) poses no problem. The factor f [re(t)] neither: f
is C1 and, for t given, the map r 
→ re(t) is C∞. The general relation (21.2)
of Chap. III, n◦ 21, namely that

d

dr
f [g(r)] = f ′[g(r)]g′(r),(14.4)

valid if f is holomorphic and if g is a C1 function of the real variable r, then
shows that in our case

d

dr
f [re(t)] = f ′[re(t)]

d

dr
re(t) = f ′[re(t)]e(t)(14.5)

is a continuous function of the pair (r, t). Thus

d

dr
an(r) =

∫ 1

0

f ′[re(t)]e(t)e−n(t)dt.(14.6)

Since on the other hand, by the same argument,

d

dt
f [re(t)] = f ′[re(t)]

d

dt
re(t) = 2πirf ′[re(t)]e(t),(14.7)

(6) can again be written
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2πir
d

dr
an(r) =

∫ 1

0

e−n(t)
d

dt
f [re(t)].dt.

An integration by parts then gives

2πir
d

dr
an(r) = e−n(t)f [re(t)]

∣∣∣∣1
0

+ 2πin

∫ 1

0

e−n(t)f [re(t)]dt

since −2πine−n(t) = e′−n(t). In the preceding relation the integrated part
is zero by periodicity and the integral on the right hand side is just an(r).
Whence the relation

ra′
n(r) = nan(r)(14.8)

valid for 0 ≤ r < R.
Here we have a particularly banal differential equation. Putting bn(r) =

an(r)r−n for r > 0 and applying the chain rule, one finds that b′n(r) = 0; the
function bn(r) is therefore constant, whence

an(r) = anrn(14.9)

with a coefficient an independent of r.
For r ≤ ρ < R, one has, by (2),

|anrn| ≤ sup
|z|≤ρ

|f(z)| = Mf (ρ) < +∞.(14.10)

For n < 0, rn increases indefinitely when r tends to 0; (10) then shows that

an = 0 for n < 0,(14.11)

so that the Fourier series
∑

an(r)un of f(ru) reduces to the power series∑
anzn for z = ru. Since, on the other hand, the function u 
→ f(ru) is

of class C1 on T, its Fourier series converges absolutely and represents the
function in question everywhere.

In particular, the power series
∑

anzn converges for |z| < R. One may
furthermore see this without invoking Theorem 8: choose a ρ such that |z| <
ρ < R, put |z| = qρ with q < 1, and write

|anzn| = |anρn| qn ≤ Mf (ρ)qn.(14.12)

In conclusion:

Theorem 10 (Cauchy, 1831). Let f be a holomorphic function in an open
set U in C. Then f is analytic in U and, for every a ∈ U , the Taylor series
of f at a converges and represents f in the largest open disc with centre a
contained in U .
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It is enough, in the preceding arguments, to replace the disc |z| < R by
the largest disc |z − a| < R in question or, if one prefers, to consider the
function f(a + z). Now the only power series that can possibly represent f
on a neighbourhood of a is the Taylor series of f at a as we know (Chap. II,
n◦ 20). Whence the theorem.

If you believe that Cauchy understood everything immediately, you are
in error. He perfectly understood Fourier series and integrals from 1815, and
in 1822 had obtained the integral formula for a circle for the holomorphic
functions (i.e. satisfying his PDE) by quite another method. Now one needs
only a few lines of simple calculations to pass from there to Theorem 10 (see
n◦ 21). Freudenthal, an excellent Dutch mathematician who has seriously ex-
amined Cauchy’s works, voices the hypothesis, in his notice in the DSB, that
he had forgotten his own results. His political, religious and social activities
probably occupied too great a place in his life25 . . .

15 – The maximum principle

Let f be a holomorphic function in an open U ⊂ C and again consider the
Cauchy formula (14.2), which, for n = 0, can be written as

f(a) =
∫

f(a + ru)dm(u)(15.1)

for every a ∈ U , where one integrates with respect to the invariant measure
of T and where r is small enough for U to contain the closed disc |z−a| ≤ r.
This implies

|f(a)| ≤ sup |f(a + ru)|.(15.2)

Assume now that f has a local maximum at a, i.e. that there exists an r > 0
such that

|f(z)| ≤ |f(a)| for every z such that |z − a| ≤ r.(15.3)
25 On Cauchy, see also Bruno Belhoste, Cauchy, un mathématicien légitimiste

au XIXe siècle (Paris, Belin, 1985) and Augustin-Louis Cauchy. A Biogra-
phy (Springer, 1991), the mathematical information in which does not replace
Freudenthal’s notice. The book by C. A. Valson, La vie et les oeuvres du Baron
Cauchy (1868) deserves to be read as a particularly comic example of would-be
edifying hagiography, but is difficult to find; it was demolished immediately by
Joseph Bertrand (Bull. de la Soc. Math. de France, 1, 1870) who, while insisting
on the importance of Cauchy’s discoveries, recalled his irresistible need to publish
(more than 750 articles), frequently several times, incorrect, incomplete results,
such as he had found the same day before breakfast, as we say nowadays. The
Cours d’analyse of 1821 has recently been republished in facsimile by Ellipses;
reading it could be a very useful exercise (to detect the errors in the argument).
On teaching at the Polytechnique, see Bruno Belhoste, Amy Dahan Dalmedico
and Antoine Picon, La formation polytechnicienne 1794–1994 (Dunod, 1994), a
collection of articles by twenty or so historians and in the main very interesting.
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Applying Parseval-Bessel to the Fourier series

f(a + ru) =
∑

cnrnun,

one obtains by (3)

∑
|cn|2 r2n =

∫
|f(a + ru)|2 dm(u) ≤ |f(a)|2 = |c0|2 ,

whence cn = 0 for every n ≥ 1. The power series for f at the point a then
reduces to its constant term, so that there is a disc of centre a on which f is
constant.

Now, in Chap. II, n◦ 20, we proved a principle of analytic continuation
stating that if, in a connected open set U , two analytic functions coincide on
a neighbourhood of a particular point of U , then they coincide in all of U . If
in particular a holomorphic function in U is constant on a neighbourhood of
a particular point of U , it is constant in U . Conclusion:

Theorem 11. Let f be a holomorphic function in a connected open set U .
Then f is constant if at a point of U it has either a local maximum or a non
zero local minimum.

The case of a local minimum reduces to the preceding case on considering
the function 1/f : this is defined and holomorphic on a neighbourhood of a
local minimum of f and has a local maximum there; 1/f (and so f) is thus
constant on a disc, so f is constant on U .

The connectedness hypothesis is essential: if U is, for example, the union
of two disjoint open discs D′ and D′′, then the behaviour of f on D′′ has no
bearing on its behaviour on D′; f might be equal to 1 in D′ and to ez in D′′.

An open connected set is generally called a domain; one most often uses
the letter G (in German, domain = Gebiet) to denote connected open sets.

Corollary 1. Let G be a bounded domain in C, K its closure, F = K − G
its frontier and f a function defined and continuous in K and holomorphic
in G. Then

‖f‖G = ‖f‖K = ‖f‖F .(15.4)

Since G is bounded, K is bounded and closed, hence compact. The con-
tinuous function |f(z)| therefore attains its maximum at a point a ∈ K. If
a ∈ G, Theorem 5 shows that f is constant in G, hence in K, and the corol-
lary is obvious. If f is not constant, the maximum of |f(z)| is thus attained on
F , whence ‖f‖K = ‖f‖F . But since f is continuous in K, its value at a point
of F is the limit of values taken at points of G, whence ‖f‖F ≤ ‖f‖G ≤ ‖f‖K

since G ⊂ K, qed.
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Corollary 2. Let G be a bounded domain and (fn) a sequence of functions
defined and continuous on the closure K of G and holomorphic in G. Assume
that the fn converge uniformly on the boundary F of G to a limit function.
Then the fn converge uniformly on K and the limit function is holomorphic
in G.

Consider the functions fpq = fp − fq. Cauchy’s criterion for uniform
convergence shows that, for every r > 0, one has ‖fpq‖F ≤ r for p and q large,
and thus (Corollary 1) ‖fpq‖K ≤ r. The fp therefore converge uniformly in
K, so in G, and it remains to apply Theorem 17, to be found below (n◦ 19).

Corollary 3 ((H. A.) Schwarz’ lemma). Let f be a function holomorphic
and bounded on a disc |z| < R and having a zero of order p at the origin.
Then

|f(z)| ≤ M |z/R|p where M = sup |f(z)|.
The assumption about f implies that f(z) = zpg(z) where g is, like f ,

the sum of a power series in |z| < R. The relation |zpg(z)| ≤ M shows that
|g(z)| ≤ M/rp for |z| = r < R, so also, by the maximum principle, for |z| < r.
On letting r tend to R, one deduces that

|g(z)| ≤ M/Rp, whence |f(z)| ≤ M |z|p/Rp

for every z, qed.
Theorem 11 can be extended in part to unbounded domains, but this is

more difficult and rather constitutes an exercise:

Theorem 12. Let G be a domain in C and f a function defined, continuous
and bounded on the closure of G and holomorphic in G. Then

‖f‖G = ‖f‖F(15.5)

where F = Ḡ − G is the boundary of G.

The case where G is bounded having been treated already, let us assume
G unbounded. First consider the simplest case, where f tends to 0 at infinity,
i.e. where, for every ε > 0, one has |f(z)| < ε for every z ∈ Ḡ of large enough
modulus. Since f is continuous in Ḡ, the inequality |f(z)| ≥ ε defines a closed
subset K of Ḡ; since |f(z)| < ε for |z| large, K is bounded, so compact. There
is therefore an a ∈ K where the function |f(z)| attains its maximum relative
to K. For every z ∈ Ḡ one then has |f(z)| ≤ |f(a)|, either trivially if z ∈ K,
or because |f(z)| < ε if z /∈ K. Theorem 11 then shows that a ∈ Ḡ−G (qed),
unless f is constant, in which case there is nothing to prove.

Now let us pass on to the general case of a function bounded in G but not
necessarily tending to 0 at infinity and assume for example that |f(z)| ≤ 1
on the boundary F of G; we are then to show that |f(z)| ≤ 1 in all G too.
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Assume |f(a)| > 1 for some a ∈ G and consider a closed disc D : |z − a| ≤ r
contained in G. Theorem 11 shows that the maximum M of |f | on the bound-
ary of D is > 1. Consider now in the domain H = G − D the functions

fn(z) = rf(z)n/Mn(z − a).(15.6)

Since f is bounded in G, the introduction of a denominator z− a shows that
the fn tend to 0 at infinity in H. One is therefore in the particular case
examined first. Now the boundary of H is clearly the union of the boundary
F of G and that of the disc D. On F , by hypothesis |f(z)| ≤ 1, and since
M and |(z − a)/r| are >1, one has |fn(z)| ≤ 1 on F . The same result holds
on the boundary of D since there |f(z)| ≤ M and |z − a| = r. Thus we see
that the function |fn(z)| is ≤ 1 on the boundary of H, and since it tends to 0
at infinity we conclude that |fn(z)| ≤ 1 in H. The exponent n in (6) being
arbitrary, this forces |f(z)/M | ≤ 1 in H. This relation also being satisfied in
D, it holds everywhere in G, qed.

The hypothesis that the function f is bounded in G and not only on its
boundary is essential in the above. All this has been prodigiously refined.

16 – Functions analytic in an annulus. Singular points. Meromor-
phic functions

The arguments of n◦ 14 in fact apply to a function defined in an annulus
C : R1 < |z| < R2 and in particular on a disc with its centre deleted if
R1 = 0. For every circle |z| = r contained in C the Fourier coefficients of the
function f(ru) are again of the form anrn, but the argument showing that
an = 0 for n < 0 no longer applies since, even in the case where R1 = 0, the
function, for example 1/z, has no reason to be bounded on a neighbourhood
of 0. What survives is the Fourier series of f(ru), namely

∑
anrnun =

∑
anzn with anrn =

∫
f(ru)u−ndm(u),(16.1)

where this time the sum is extended over Z, converges absolutely and repre-
sents f in C by Theorem 4 of n◦ 9. Here again, one may see the convergence
directly. Let us choose numbers r1 and r2 such that R1 < r1 < |z| < r2 < R2

(strict inequalities) and let M be the uniform norm of f on the compact
annulus C ′ delimited by the circles of radii r1 and r2. Now |anzn| ≤ M by
(1), since |f(ru)| ≤ M , whence

|anzn| =
{ |anrn

2 | . |z/r2|n < M |z/r2|n for n ≥ 0,
|anrn

1 | . |z/r1|n < M |z/r1|n for n ≤ 0;(16.2)

since |z/r2| < 1, the first inequality proves the absolute convergence of the
“positive” part of the series (1), and since |z/r1| > 1, the second proves that
of its “negative” part.
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The series (1) even converges normally in C ′ and so on every compact26

K ⊂ C. Thus, in C ′,

|anzn| ≤
{ |anrn

1 | if n ≥ 0
|anrn

2 | if n < 0;

now we know that the series
∑

anzn converges absolutely in C, thus for
z = r1 or r2; whence, in C ′, a bound by a convergent series independent of z.
In conclusion:

Theorem 13 (Laurent). Let f be a holomorphic function in an annulus
C : R1 < |z| < R2. Then we have a series expansion

f(z) =
∑
n∈Z

anzn with an = r−n

∫
T

f(ru)u−ndm(u),(16.3)

the series converging normally on every compact K ⊂ C.

An expansion of this type is called a Laurent series; it is the sum of a
power series in z and of a power series in 1/z. The first converges at least for
|z| < R2 and the second for |z| > R1 since a power series necessarily converges
on a disc. This allows us to write that, in C, we have a decomposition f(z) =
g(z) + h(z) of f into a function g holomorphic for |z| < R2 and a function h
holomorphic for |z| > R1.

We may write (16.3) à la Leibniz like the Cauchy formula of n◦ 1. Putting
ζ = ru we have an =

∫
f(ζ)ζ−ndm(u); but for u = e(t) we have dζ =

2πire(t)dt = 2πiζdm(u). Whence

2πian =
∫

f(ζ)ζ−n−1dζ,

the “line” integral being taken along any circle t 
→ re(t) contained in C.
Cauchy’s theory will illuminate this point and, in particular, will explain
why the result is independent of the circle |ζ| = r chosen.

Theorem 13 serves mainly to study the behaviour of a holomorphic func-
tion on a neighbourhood of an isolated singular point a, i.e. of a function de-
fined and holomorphic on a neighbourhood of a, except at the point a itself.
There one has a series expansion f(z) =

∑
cn(z−a)n, whence the distinction

between the poles, where the series includes only finite number of nonzero
terms of degree < 0 – the minimal degree, its sign changed, is called the order
of the pole in question –, and the essential singular points where it includes
26 Such a compact subset is contained in C′ if one chooses the radii r1 and r2

suitably: the continuous real function z �→ |z| attains its minimum and its maxi-
mum on K, which are strictly contained between the radii of C since the limiting
circles of C, which do not lie in C, do not meet K.
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infinitely many, the case for example of the function exp(1/z) =
∑

z−n/n! at
z = 0. It is also useful to define the order of a zero a of f , i.e. of a point where
f(a) = 0: this is the degree of the first nonzero term of the power series of f
at a.

This leads to the fundamental concept of a function meromorphic in an
open set U : this is a function f defined and analytic in U − D, where D
is a discrete subset of U (i.e. such that, for every a ∈ U , there exists a
disc of centre a containing a finite number of points of D), and having only
polar singularities at the points of D. This, for example, is the case of the
elliptic functions of Chap. II, n◦ 23 and, in fact, the “right” definition of the
elliptic functions, for there are many, other than the Eisenstein series, is to
impose on them just that they should be simultaneously doubly periodic and
meromorphic in C, as Liouville discovered (n◦ 18).

We note that, if D′ is the set of zeros of a meromorphic function f in U ,
then the union D ∪ D′ is again a discrete subset of U . This results from the
fact that, if a is any point in U , then f(z) = (z−a)pg(z), where g is a power
series whose constant term is not zero, so such that g(a) �= 0; on a small
enough disc of centre a we again have g(z) �= 0 since g is continuous, so that
on a neighbourhood of a the function f can have no other zero or pole than
the point a itself. On the other hand, the zeros or poles of a function having
an essential singular point at a may accumulate at a: the zeros of sin(1/z)
converge to 0.

One may perform the usual algebraic operations on the functions mero-
morphic in a given open set U : sum, product, quotient; as we shall see, one
again obtains meromorphic functions in U .

The case of a sum f + g is obvious: if f and g have poles at the points
of two discrete subsets D and D′ of U , the function f + g is holomorphic
outside D ∪ D′ and it is clear that at a point of D ∪ D′ it has at most a
pole; “at most” because the polar parts of the Laurent series of f and g at
a common pole may cancel each other. For fg, holomorphic outside D ∪D′,
one observes that at a point a ∈ D ∪ D′ one has the relations

f(z) = f1(z)/(z − a)p, g(z) = g1(z)/(z − a)q

where f1 and g1 are holomorphic on a neighbourhood of a and nonzero at a.
It is then clear that fg has a pole of order p+q at a. Of course it can happen
that a pole of f is neutralised by a zero of g.

The case of the quotient f/g reduces, as always, to that of the reciprocal
1/g(z) of a meromorphic function. On a neighbourhood of a pole a of g one
has g(z) = g1(z)/(z − a)q where g1(z) is a power series such that g1(a) �= 0.
The function g1 has a reciprocal 1/g1(z) holomorphic on a neighbourhood
of a; the formula 1/g(z) = (z − a)q/g1(z) then shows that the pole a of
order q is transformed into a zero of order q of 1/g(z). At a point a where g
is holomorphic one has g(z) = (z − a)qg1(z) where g1 is a power series not
vanishing at a, whose reciprocal is thus holomorphic on a neighbourhood
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of a, whence clearly a pole of order q for 1/g(z) if g has a zero of order q
at a. Finally we see that 1/g(z) is holomorphic outside the zeros of g, which
are the poles of 1/g, the poles of g contrariwise providing the zeros of 1/g.
Since the zeros of g form a discrete set in U , the function 1/g is therefore
meromorphic in U .

Laurent series can be manipulated like power series. The domain of con-
vergence of a series such as f(z) =

∑
anzn is necessarily an annulus C since

it is the sum of a power series in z and of a power series in 1/z which converge
for |z| < R2 and |1/z| < R1 respectively. The multiplication formula∑

anzn
∑

bnzn =
∑

cnzn with cn =
∑

apbn−p

valid for power series still applies, restricted to an annulus where the two
series converge: they then converge absolutely, therefore unconditionally, so
on multiplying term-by-term one obtains a double series

∑
apbqz

p+q which
converges unconditionally (Chap. II, n◦ 22) and in which one may reorder the
terms arbitrarily (Chap. II, n◦ 18, Theorem 13: associativity), for example
as a function of the value of p + q.

One may also differentiate a Laurent series term-by-term; the simplest
way to see this is to write f(z) = g(z) + h(1/z) where g and h are power
series, whence

f ′(z) = g′(z) − h′(1/z)/z2

by the chain rule for analytic functions (Chap. II, n◦ 22, Theorem 17);
as we know, g′(z) is obtained by differentiating the “positive” part of the
series

∑
anzn term-by-term; since h(z) =

∑
n≥0 a−nzn and so h′(z) =∑

n≥0 na−nzn−1, it follows that

h′(1/z)/z2 =
∑
n≥0

na−nz−n+1−2 =
∑
n≥0

na−nz−n−1 = −
∑
n≤0

nanzn−1

and finally

f ′(z) =
∑
n≥0

nanzn−1 +
∑
n≤0

nanzn−1 =
∑

nanzn−1

as one had hoped, the Laurent series of f ′ converging in the same annulus C
as f . Note that there is no term in 1/z in the result.

An essential difference from power series will appear when one looks for
a primitive of f , i.e. a holomorphic function F such that F ′(z) = f(z) in
C. The function F is, like f , represented by a Laurent series and as we
have just seen the derived series contains no term in 1/z. The problem can
therefore have no solution if the series f(z) contains one. The analogous
problem for a real variable had, in the XVIIth century, defied the efforts of
several mathematicians before Newton and Mercator, and Newton himself,
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with his systematic use of Laurent series having a finite number of terms of
negative degree, is very reticent on this subject. This “detail”, on which the
whole of Cauchy’s “residue calculus” is founded, apart, the existence of the
primitive when a−1 = 0 is as obvious as for the case of power series: one
puts F (z) =

∑
anzn+1/(n + 1). The arguments employed for power series in

Chap. II, n◦ 19 or, equivalently, the fact that in the domain C of convergence
of the series, the an of positive index and those of negative index are bounded
by geometric progressions, show that these operations – differentiation or
“integration” term-by-term – lead to series converging in the same annulus
as the initial series.

In the case where f contains a term in 1/z, one may again consider the
function F (z) =

∑
anzn+1/(n + 1), where one forgets the term of index

n = −1; instead of f = F ′ one obtains the relation

f(z) = F ′(z) + a−1/z.(16.4)

The coefficient a−1, the radical obstruction to the existence of a primitive of
f in the annulus C, is called the residue of f ; more generally, if one considers
a function f holomorphic on a neighbourhood of a point c of C except at
the point itself, which is then an isolated singular point of f , the residue of
f at c is by definition the coefficient a−1 of 1/(z − c) in the expansion of f
as a Laurent series

∑
an(z − c)n about the point c; one writes Resc(f) or

Res(f, c). The formula (3) applied for n = −1 shows that

Resc(f) =
∫

f(c + ru)rudm(u) =
∫ 1

0

f
(
c + re2πit

)
re2πit dt(16.5)

or, à la Leibniz,

Resc(f) =
1

2πi

∫
|z−c|=r

f(z)dz(16.6)

with an integral taken around the circle |z − c| = r as above; naturally one
has to choose r small enough that, except at the point c, the function f will
be holomorphic in an open set containing the closed disc |z − c| ≤ r.

The preceding arguments show more generally that if f is a meromorphic
function in an open set U , the existence of a primitive F of f in U presup-
poses that Resa(f) = 0 at every pole a of f . This necessary condition is
not sufficient, even if f is holomorphic, except in very particular open sets
(“simply connected”, i.e. homeomorphic27 to a disc). To study this question
requires the complete Cauchy theory, i.e. the use of the line integrals which
we shall develop later in this treatise (Chap. VIII).

To return to the function 1/z, one might claim that the function
27 Two metric or topological spaces X and Y are said to be homeomorphic if there

is a continuous bijection X −→ Y with continuous inverse.



318 VII – Harmonic Analysis and Holomorphic Functions

Log z = log |z| + i arg z =
1
2

log
(
x2 + y2

)
+ i arctan y/x(16.7)

of Chap. IV, n◦ 14 and 21 is its primitive; now, in C∗, the latter is all but
a function in the strict sense of the term, as we know because of the same
problem for arg z. There are open sets U in which the function 1/z has a
primitive, namely those in which the pseudo-function Log z decomposes into
uniform branches: for we know [Chap. IV, §4, section (v)] that, if L is such
a branch, one has

L(z) = L(a) +
∞∑
1

(1 − z/a)n/n

on a neighbourhood of every point a ∈ U , so that L is analytic and that
L′(z) = 1/z in U ; the function L is then a primitive of 1/z in U . If, conversely,
1/z has a primitive f(z) in a connected open U ⊂ C∗, then

(
ef
)′ = f ′ef ,

so that the function g = ef satisfies zg′ − g = 0 or (g/z)′ = 0; since U is
connected one has g(z) = cz for a constant c that we may assume equal to 1
by adding a suitable constant to f . Consequently, f is a uniform branch of Log
in U . To find a primitive of 1/z in U thus reduces exactly to constructing a
uniform branch of Log in U . A “punctured” disc (i.e. with its centre removed)
of centre 0 is the very type of open set for which the problem has no solution.

An analogous problem arises when one wants to define the non integer
powers of a complex number, i.e. the “function” z 
→ zs where s is an arbi-
trary complex number. In view of the formula as = es. log a of Chap. IV, valid
for a real > 0, it would seem natural to define

zs = es.Log z,(16.8)

but the ambiguity of Log then transfers to the left hand side. If, however,
one restricts to an open set U on which the multiform correspondence Log
decomposes into uniform branches, the choice of such a branch L yields a
holomorphic function es.L(z) which, in its turn, is a “uniform branch of the
multiform function zs”; the latter is unique up to a constant factor of the
form e2kπis. If for example U = C − R−, in which case one may choose

L(z) = log |z| + i. arg z with | arg z| < π(16.9)

as we have seen in Chap. IV, §4, one finds

zs = |z|seis. arg(z)(16.10)

where |z|s = exp(s. log |z|) is the expression defined unambiguously in
Chap. IV, n◦ 14 and where the argument is chosen as above. If for example
s = 1

2 , one thus obtains two uniform branches, opposites, of z1/2. This type
of problem arises frequently in the residue calculus à la Cauchy.
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17 – Periodic holomorphic functions

The method used in n◦ 14 to obtain the expansion of a holomorphic function
in power series applies equally to the Fourier series of periodic holomorphic
functions.

A function f defined and holomorphic in an open set U has a period a �= 0
in U if f(z+a) = f(z) for any z ∈ U . This clearly assumes that z ∈ U implies
z + a ∈ U . By considering the function f(az) one reduces to the case where
a = 1. Then f(x + 1, y) = f(x, y) for any x + iy = z ∈ U , which suggests
expanding in a Fourier series with respect to x. The only reasonable situation
is that where U is a horizontal strip

a < Im(z) < b(17.1)

of finite or infinite height, so that, for every y ∈]a, b[, the function x 
→
f(x, y) = f(x+iy) is defined on all R, is periodic, and C∞ since f is analytic.
We then have a much more than absolutely convergent expansion

f(x + iy) =
∑

an(y)en(x)(17.2)

with

an(y) =
∮

f(x + iy)e−2πinxdx,(17.3)

the mean value over a period. Whence

an(y)e2πny =
∮

f(z)e−2πinzdx.(17.4)

We shall see that this integral is independent of y.
Since the function

g(z) = f(z)e−2πinz

is as holomorphic and periodic as f is, it is enough to give the proof for n = 0,
i.e. to show that a0(y) =

∮
f(x + iy)dx is a constant.

The theorem on differentiation under the
∫

sign (Chap. V, n◦ 9, Theo-
rem 9) clearly applies to the function f(x, y). Thus, using the Cauchy differ-
ential equation,

a′
0(y) =

∮
D2f(x, y)dx = i

∮
D1f(x, y)dx;

by the FT, this integral is the variation of the function x 
→ f(x, y) over a
period interval. Consequently, a′

0(y) = 0, qed28.

28 Most authors employ the Cauchy integral around a rectangular contour to ob-
tain this quasi trivial result; the method adopted here extends to the periodic
solutions of many other partial differential equations than D1f = iD2f , and in
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Now we have an(y) = ane−2πny with a constant an, which puts (3) in the
much more pleasant form

f(z) =
∑

ane2πinz with an =
∮

f(x + iy)e−2πinzdx.(17.5)

We may differentiate the series term-by-term since to differentiate with re-
spect to z amounts to differentiating with respect to x, which is allowed by
the theory of Fourier series for C∞ functions (n◦ 9, Theorem 5).

The series converges normally on every closed strip c ≤ Im(z) ≤ d
contained in U , i.e. such that a < c ≤ d < b. In such a strip, we have∣∣e2πinz

∣∣ = e−2πny ≤ e−2πnc + e−2πnd since the monotone function e−2πny

lies between its values at c and d on [c, d]. The general term of (5) is thus
bounded by |an| e−2πnc+|an| e−2πnd on the closed strip in question, but since
(5) converges absolutely for a < Im(z) < b and so for Im(z) = c or d, the two
series
∑ |an| e−2πnc and

∑ |an| e−2πnd converge, so their sum does too. We
thus obtain a series independent of z which dominates the series (5) in the
closed strip c ≤ Im(z) ≤ d: whence normal convergence. In conclusion:

Theorem 14 (Liouville). Let f be a holomorphic function of period 1 in
an open strip B : a < Im(z) < b. We then have a series expansion

f(z) =
∑

ane2πinz

which converges normally on every closed strip B′ ⊂ B. The coefficients an

are given by the relation

an =
∮

f(z)e−2πinzdx =
∫ c+1

c

f(x + iy)e−2πin(x+iy)dx

for arbitrary y ∈ ]a, b[ and c ∈ R. We may differentiate the Fourier series
of f term-by-term any number of times.

Conversely, if a complex Fourier series, i.e. of the form (5), converges
absolutely in a strip a < Im(z) < b, the preceding argument shows that the
series converges normally on every closed strip (and so on every compact set)
contained in the given open strip. Theorem 17 below will show that the sum
of the series is analytic.

18 – The theorems of Liouville and of d’Alembert-Gauss

We can now establish the theorem of Liouville to which we alluded à pro-
pos the differential equation for the function ℘ of Weierstrass (Chap. II, end

fact Fourier himself, Poisson, Liouville, etc. applied it to the PDEs of physics
known at their time – propagation of heat, the wave equation, etc. – whose solu-
tions are not holomorphic functions of (x, y). Exercise: find the general form of
the periodic solutions in t of the equation f ′′

tt − f ′′
xx = cf , where c is a constant.
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of n◦ 23). In its enunciation an entire function is, by definition, a holomorphic
function on all C: a polynomial, an exponential function, exp(exp(exp(sin z))),
etc.

Theorem 15 (Liouville). Let f be an entire function such that

f(z) = O(zp) when |z| −→ +∞,(18.1)

where p is an integer ≥ 0. Then f is a polynomial of degree ≤ p. In particular,
a bounded entire function is constant.

By Theorem 10 one has an expansion f(z) =
∑

anzn valid for any z. The
relation (14.10) then shows that, for every n,

|an| rn ≤ Mf (r)(18.2)

where Mf (r) is the upper bound of |f(z)| on the circumference |z| = r, or,
equivalently, by the maximum principle, on the disc |z| ≤ r. So assume that
|f(z)| ≤ M |z|p for every z large enough. It follows that Mf (r) ≤ Mrp, hence

|an| ≤ Mrp−n for r large,

whence an = 0 for every n > p since then the right hand side tends to 0 at
infinity, qed.

One of the most famous and simplest applications of Theorem 13 is a
proof (Gauss found four) by the same Liouville of the miraculous29

Theorem 16 (d’Alembert-Gauss). Every algebraic equation of degree
≥ 1 has at least one complex root.

To see this, consider the function f(z) = 1/p(z) where p is a polynomial
not vanishing anywhere. Since p(z) is analytic in C, so also is f (Chap. II,
n◦ 22, Theorem 17 – one may also invoke holomorphy, easier to prove for
1/p). Now, at infinity, p(z) is equivalent to its term of highest degree, say
azr, so that

f(z) ∼ 1/azr = O(z−r).

Since r > 0, f is bounded at infinity, so is constant by Liouville, impossible
if p is of degree > 0.

Liouville’s theorem allow us to complete the proof (Chap. III, n◦ 23) of
the differential equation
29 The complex numbers were invented to calculate the roots of equations of the

third degree with the help of formulae involving square roots of negative numbers.
The “miraculous” nature of the d’Alembert-Gauss theorem is that it allows us
to ascribe roots to equations of any degree and even though, for n > 4, no
one has ever discovered, or ever will discover, algebraic “formulae”, simple or
complicated, to calculate the roots of a general equation of degree n.
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℘′(z)2 = 4℘(z)3 − 20a2℘(z) − 28a4

of the Weierstrass function ℘. As we said then, it is obvious, if one calculates
à la Newton, that the difference f(z) between the two sides is a doubly
periodic function analytic on a neighbourhood of z = 0; it is thus so in all
C because its only singularities must be those of the function ℘, namely the
periods ω; in other words, f is an entire function. But, just as the function
sin x takes all its values over R on [0, 2π], by its periodicity, likewise a doubly
periodic function takes no other values in C than those on the parallelogram
constructed on the fundamental periods ω′ and ω′′, i.e. on the compact set
of the points

z = u′ω′ + u′′ω′′ with u′, u′′ ∈ [0, 1].

Being continuous, an entire elliptic function is bounded on such a parallelo-
gram, so on all C, so is constant by Liouville. It remains to state that, in the
present case, the function f is zero for z = 0, as is obvious from the series
expansion of the Weierstrass function ℘.

In fact, it was à propos the elliptic functions that Liouville found his
theorem in 1843–44 and it is instructive to follow the evolution of his ideas
on this point30 since they developed following a logic opposite to that, now
classical, which we have just expounded.

Liouville first proves, using an idea of Hermite’s, that a nonconstant func-
tion cannot have two real periods α and β whose ratio is nonrational. To do
this one writes (in our notation) that f(t) =

∑
ane(nt/α) and one checks,

on replacing t by t + β, that an = ane(nβ/α); if β/α /∈ Q, the exponential is
�= 1 for any n �= 0, qed. The result had already been proved in another way
by Jacobi, and Liouville reckoned that his proof was equivalent to “looking
for difficulties where there were none”.

But he then had the idea of using the same method to show a priori
that if a doubly periodic function, with periods whose ratio is not real, “does
not become infinite”, i.e. is holomorphic everywhere in C, then it is constant.
Despite the 40,000 pages of Liouville’s notes – for the most part not published
during his life, nor later, and deposited in the Paris Académie des sciences –,
we do not know really how he proceeded. All the same, Lützen has recovered
a note where Liouville writes that if a “function of x +

√−1y” admits an
imaginary period ω = a +

√−1b, then it can be expanded in a Fourier series
of the form (in our notation)

f(z) =
∑

anen(z/ω)(18.3)

where en(z) = exp(2πinz): this is Theorem 14. Assume ω = 1 to simplify;
Liouville writes like us that f(x + iy) =

∑
an(y)en(x); from this he deduces

that, for h ∈ R,
30 See Jesper Lützen, Joseph Liouville 1809–1882, Master of Pure and Applied

Mathematics (Springer, 1990, 884 p.), chap. XIII.
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f(x + h + iy) =
∑

an(y)en(h)en(x),

and so
an(y)en(x) =

∮
f(x + h + iy)en(h)dh

and consequently that the left hand side “is a function of x + iy”, so must
be of the form anen(x + iy) with constant an, a rather weak argument . . .

Liouville made no reference to the holomorphy or analyticity of f(z); for
him, in 1844, what mattered was that f should be a “function of x+

√−1y”,
which perhaps means that there is an algebraic or analytic expression for
f(z) involving only z. In fact, one sees him use Cauchy’s equation f ′

y = if ′
x

in another note of the same period, and the standard formula

an(y) =
∮

f(x + iy)en(x)dx

to establish a differential equation satisfied by the an(y) and from them to
deduce that they are proportional to exp(−2πny), which yields (3) directly,
as we saw in the preceding n◦.

Lützen does not tell us how Liouville deduces from (3) that an everywhere
holomorphic doubly periodic function is constant, but this was surely as
obvious to him as to us: if f has the periods 1 and ω (nonreal), a case to
which one may always reduce, one must have∑

anen(z) =
∑

anen(ω)en(z)

and thus an = anen(ω), whence an = 0 for n �= 0 since the relation en(ω) = 1
requires that ω ∈ Z.

To pass to the theorem for arbitrary entire functions Liouville used the
theory of elliptic functions. If f is a bounded entire function and if ϕ is an
elliptic function (actually one of the Jacobi functions), then the composite
function f [ϕ(z)] is again elliptic and, being bounded, can have no poles. It
is therefore a constant, and consequently so is f (if one knows that ϕ takes
all possible complex values31). This argument appears in a four line note
which Lützen reproduces on p. 543 of his book, the proof being shortened to
a “Consequently, etc..”

Liouville announced his ideas on the elliptic functions to the Académie32

in December 1844 and immediately had to face an offensive from Cauchy at
31 On subtracting a constant, if necessary, it is enough to show that an elliptic

function ϕ always has zeros. But if this were not the case, the elliptic function
1/ϕ would be holomorphic everywhere, the poles of ϕ included, so constant.

32 where he entered in 1838 after a battle of which Lützen provides us a particu-
larly edifying summary. The first two hundred pages of his book, which report
thoroughly on the social situation of the mathematicians in France at this pe-
riod, are full of incidents of this kind, and might illustrate the African proverb
according to which two (and a fortiori fifteen) male crocodiles cannot coexist
in the same backwater. The most famous scientists at this period could accrue
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the following meeting: the latter recalled how a year previously he had shown
how his theory of residues allowed one to reconstruct Jacobi’s theory very
easily (?); that in 1843 he had announced that if a function f(z) “always has
a unique and determined value, if, further, it reduces to a certain constant
for all the infinite values of z [which, apparently, means that f(z) tends to
a limit when |z| → +∞], then it reduces to this same constant when the
variable z takes an arbitrary finite value ”; finally, applying this result to
[f(z) − f(a)]/(z − a) for a fixed a, a function which tends to 0 at infinity if
f is bounded and which, at z = a, remains “continuous” since f is differ-
entiable, he deduces the general form of Liouville’s theorem: “If a function
f(z) of the real or imaginary variable z always remains continuous [which, in
Cauchy’s language, probably means: is everywhere differentiable in the com-
plex sense], and consequently always finite, it reduces to a simple constant”.
We are thus brought back to the quarrels about priority (already discussed,
Chap. III, n◦ 10), an exercise much in vogue in the France of the period,
and of which Cauchy was probably the historic champion in all categories.
Lützen thinks that Liouville knew the result before Cauchy, but even if so it
is nevertheless the date of publication which counts and not the manuscripts
which an historian may discover a century and a half later. The situation is
not particularly clear . . .

This tendency of Liouville’s not to publish again led to problems here,
à propos the elliptic functions (i.e. meromorphic and having two periods with
non real ratio). Between 1844 and 1847 he proved theorems which became
the starting point for later expositions; essentially they consisted of charac-
terising the elliptic functions through their poles and zeros, so avoiding the
traditional calculations on elliptic integrals and Jacobi series; it all depends
on the nonexistence of everywhere holomorphic elliptic functions. Example:
let f and g be two elliptic functions and assume that both of them have sim-
ple zeros and simple poles at exactly the same points; then f/g is everywhere
holomorphic and elliptic, so constant.

Liouville did not publish these results though he explained them in private
to two young Germans, Carl Wilhelm Borchardt and Ferdinand Joachim-
stahl; on returning to Germany, the first put his notes in order and sent
copies to Liouville and to the latter’s two friends, Jacobi and Dirichlet. His
ideas were then known beyond the Rhine; Borchardt published them in 1880

three well remunerated posts (of the order of 6,000 F per annum, while a coach
at the X or in another école had to be content with 100 to 150 F per month): Sor-
bonne, Collège de France, Polytechnique, CNAM, Bureau des Longitudes, etc.
Just imagine the competition. The system considerably reduced the chances of
the scientists who had not yet acquired high standing obtaining a suitable post,
and, because of this, was strongly criticised. Moreover, when the polytechnicien
Liouville, after resigning from the Corps des Ponts et Chaussées, found himself
in this situation, and had, at the start, to teach nearly forty hours per week in
secondary public or private establishments and at the X he claimed he had no
more time to do research . . . For another very different example, see Maurice
Crosland, Gay-Lussac: Scientist and Bourgeois (Cambridge UP, 1978).
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in the principal German journal when he became its editor. In 1851, having
been elected to the Collège de France, Liouville, who clung to his priority
against Cauchy, devoted a year to the subject – years are not very long at
the Collège . . . – before a small audience among whom were Charles Briot
and Jean Bouquet, supporters of Cauchy who in 1859 published a Théorie
des fonctions doublement périodiques, the first overall exposition of the the-
ories of Cauchy and of Liouville; these had been completed elsewhere, since
1844, mainly by Hermite, the first to use Cauchy’s ideas. But Liouville had
not published, and, after Briot and Bouquet, refused to. In his later years
he expressed his resentment of them33, “vile thieves but highly dignified Je-
suits. Elected as thieves by the Académie!!!!”, underlined in the text. In 1876,
when Liouville was elected a foreign member of the Berlin academy, Weier-
strass energetically reestablished the truth, recalling that it was all already
in Borchardt’s notes and that Briot and Bouquet ought to have mentioned
that they owed all to Liouville. But nobody, Weierstrass included, ever un-
derstood why he had not published; he had had fifteen years to do so before
Briot and Bouquet.

Nor had Cauchy yet discovered the Laurent series, and although he dis-
covered equation (1.3) of n◦ 1 of this Chapter in about 1825 concerning
holomorphic functions – without using the Fourier series which he was well
placed to know –, he seems to have forgotten the result and it was only in
1831–32 and more probably in 1840–41 that he discovered the analyticity
of his functions as we said above, with his ideas beginning to clarify about
1850. As Hans Freudenthal has written in his excellent biography in the
DSB, “he would have missed much more if others had cared about matters
so general and so simple as those which occupied Cauchy”. His works are
confused, repetitive, with invalid or absurdly complicated proofs, yet never-
theless he produced, at the final count, a formidable branch of analysis and
a method of genius for obtaining integrals which nobody had known how
to calculate before him. It is curious that they did not attract the atten-
tion of his contemporaries, mainly of Germans like Gauss34 or Jacobi who,
at the same time, manipulated analytic functions every day for years (but
perhaps without ascribing any importance to analyticity, since they rarely
encountered anything else), beginning with elliptic functions; Cauchy, using
his own methods, provided in 1846 the first nonmiraculous explanation of
their double periodicity, which had been obtained by Abel and Jacobi using
33 Lützen, p. 201. It should be understood that Liouville was a republican and

secularist. He was deputy for Toul in the first National Assembly elected after
the revolution of 1848. His friend Dirichlet said for his part at the same period
that every mathematician had to be a democrat, probably because it is neither
necessary nor sufficient to have inherited a title or a fortune to be able to do
mathematics. One is not even always to be encouraged to inherit mathematical
ability from his father, or, let us be politically correct, from his (or her) mother.

34 In fact, it seems that Gauss had discovered some of Cauchy’s results before the
latter, but, as was his wont, had not published them.
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complicated addition formulae already established for real variables. It was
Riemann (1851) and above all Weierstrass and his pupils who then placed
the theory on a solid base. Riemann’s works on algebraic functions35, an ex-
traordinary mixture of topology, algebraic geometry and complex analysis,
were so far in advance of the time that it needed a full fifty years before peo-
ple began to understand and then generalise them, without ever trivialising
them. In the meantime, Cauchy’s theories, which Briot and Bouquet spread
in Germany, and Weierstrass’, prospered prodigiously; Remmert notes that
the German edition of a book by the Italian G. Vivanti cites 672 titles before
1904. So prodigiously that, in France before 1940 to mention only one case,
it monopolised the attention of a large number of mathematicians at the
expense of the new branches which were being developed elsewhere, includ-
ing the much more difficult theory of the holomorphic functions of several
variables from which there came the most spectacular progress after 1950,
mainly in France (H. Cartan and J.-P. Serre) and in Germany (H. Behnke, H.
Grauert, R. Remmert and K. Stein); but this required totally different meth-
ods – differentiable varieties, algebraic topology, functional analysis, etc. –
and entirely new ideas, the road from one to several complex variables being
far too long to reduce to a simple generalisation.

Since we have just spoken of Liouville in a chapter that mainly treats
Fourier series, we should mention his discovery, along with the Genevan
Charles Sturm, of a formidable generalisation of harmonic analysis; it con-
sists of replacing the exponentials by the “eigenfunctions” of a differential
operator satisfying given “boundary conditions”.

In Sturm-Liouville theory one considers a differential equation of the form

−x′′(t) + q(t)x(t) = 0(18.4)

on the compact interval I = [0, 1] where q is a given function, real and con-
tinuous in I. Putting Lx = −x′′ + qx (cf. the notation Dx for the derived
function x′), one terms eigenfunctions of L the nonzero solutions of the equa-
tion

Lx(t) = λx(t)(18.5)

where λ = µ2 is a given constant; cf. the eigenvectors of a matrix or of a
linear operator in Rn. In the trivial case Lx = −x′′ one finds the functions
a. exp(iµx)+b. exp(−iµx) where a and b are arbitrary constants. The problem
then consists of studying the solutions of (5) which satisfy the boundary
conditions
35 A function ζ = f(z) is said to be algebraic if one has a relation P (z, ζ) = 0,

where P is a given polynomial with complex coefficients. The first difficulty is
that, for z given, the equation provides several possible values for ζ. We are not
dealing with functions on C in the strict sense of the term, but with “multiform
functions” in the sense of Chap. IV, § 4 or correspondences in the sense of
Chap. IV whose graphs are, except in a few respects, the “Riemann surfaces” of
Chap. X.
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x′(0) − ux(0) = x′(1) + vx(1) = 0(18.6)

where u and v are given real constants. The numbers λ for which (5) and
(6) have a solution x �= 0 are now called the eigenvalues of the “boundary
problem”. All this came, chez Sturm and Liouville, from the PDE of heat
propagation from which Fourier had already derived his series.

A first remark (Sturm) is that if x �= 0, the eigenvalue λ is real. By
calculating the scalar product of Lx and x on I, one has, in telegraphic style,

(Lx |x) =
∫

qxx̄ −
∫

x′′x̄ =
∫

q|x|2 −
[
x′(1)x(1) − x′(0)x(0)

]
+
∫

x′x′ =

=
∫

q|x|2 +
∫

|x′|2 + u|x(0)|2 + v|x′(1)|2,

a real result, since u, v and q(t) are real. But since Lx = λx, the left hand
side reduces to λ

∫ |x|2, whence λ ∈ R and λ is even > 0 if the function q has
positive values as well as u and v (an hypothesis justified by the physics).
These are the same calculations as in algebra to show that the eigenvalues of
a hermitian matrix are real.

A second problem is to show that, ignoring the conditions (6), the equa-
tion (5) always has solutions, and even a solution for which the initial con-
ditions

x(0) = a, x′(0) = b(18.7)

are given. By replacing q(t) by q(t)−λ one reduces to the equation x′′ = qx.
Liouville then remarked, as Lützen (Chap. X, p. 447) tells us, that if one
considers the differential equations

x′′
0 = 0, x′′

1 = qx0, x′′
2 = qx1, . . . ,(18.8)

then the function

x(t) = x0(t) + x1(t) + x2(t) + . . .(18.9)

manifestly satisfies the equation x′′ = qx: differentiate the series term-by-
term; Liouville does not worry himself, at least at the beginning, with jus-
tifying this operation: Weierstrass (1815–1897) did not yet reign supreme in
the 1830s and one might still, despite Cauchy, or because of Cauchy and his
errors, calculate almost as Euler did. If one imposes the conditions

x0(t) = a + bt, xn(0) = x′
n(0) = 0 for n > 1,(18.10)

it is clear that the series (9) satisfies (7). But by the FT the conditions (10)
impose, for n ≥ 1, the relation

xn(t) =
∫ t

0

x′
n(t)dt =

∫ t

0

dt

∫ t

0

x′′
n(t)dt =

∫ t

0

dt

∫ t

0

q(t)xn−1(t)dt(18.11)
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where, like Liouville, we have violated the ban on denoting both a phantom
and a free variable by one and same letter. Whence an impressive formula,
written in an entirely explicit way by Liouville,

x = x0 +
∫ ∫

qx0 +
∫ ∫

q

∫ ∫
qx0 +
∫ ∫

q

∫ ∫
q

∫ ∫
qx0 + . . .(18.12)

where, for the value t of the variable, the integrals36 are taken between 0
and t. Of course one has to prove that this series converges, which Liou-
ville did perfectly correctly, by separating (12) into two series corresponding
respectively to x0(t) = a and to x0(t) = bt; modernising his language and
putting M = sup |q(t)| = ‖q‖, one has37, for x0(t) = a,

|x1(t)| ≤ M

∫
dt

∫
|x0(t)| dt = |a|Mt[2],

|x2(t)| ≤ M

∫
dt

∫
|x1(t)| dt ≤ |a|M2t[4],

and more generally |xn(t)| ≤ |a|Mnt[2n], whence convergence; the calculation
is similar for x0(t) = bt. We used similar calculations in Chap. VI, n◦ 10, to
demonstrate the existence of solutions of the Bessel equation by means of the
method of successive approximations; this fits into Liouville’s schema, apart
from the fact that it takes place on the interval ]0,+∞[ with a function q
singular at the origin. These calculations of Liouville’s show that it is to him,
and not to Emile Picard (1890), that one one should attribute the invention of
this method as Lützen justifiably notes; Cauchy had another method a little
later and would in his turn adopt the method of successive approximations
to majorise the solutions, if not to prove their existence.

Having done this, one has to return to the boundary conditions (6), which
impose drastic restrictions on the solutions. The first fundamental results are
those of Sturm and rely on extremely ingenious arguments; assuming u, v
and q > 0, and then λ > 0 and µ real, he shows that the problem (5),
(6) has a countable infinity of eigenvalues λ1 < λ2 < . . . [to do this he
compares the solutions of x′′ = (q − λ)x with those, trigonometric, of the
equation x′′ = −n(λ)2x where the constant n(λ) satisfies n(λ) < λ − q(x)
for every x], that to each eigenvalue λn there corresponds, up to a constant
factor, exactly one eigenfunction un(t), that one may assume it real, that
these are orthogonal on the interval I, i.e. that

∫
upuq = 0, and finally that

un has n zeros which interlace with the n−1 zeros of un−1. Liouville, himself,
36 If one denotes by P the operator which associates the primitive which vanishes

at 0 to every continuous function on [0, 1], the relation (12) means that

x = x0 + P 2qx0 + P 2qP 2qx0 + P 2qP 2qP 2qx0 + . . . ,

where P 2 = P ◦ P and where each operator P 2 applies to all that follows it.
37 The operator P transforms the function t[n] into t[n+1].
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obtained an asymptotic evaluation of the λn and, above all, showed that the
un allow one to expand arbitrary functions in “Fourier” series

f(t) =
∑

cn(f)un(t) with cn = (f |un)/(un |un)1/2,

the purpose of the denominator being to give the “vector” un the length 1
as with the functions en(t) in Fourier’s theory.

All this, invented by Sturm and Liouville (and even published . . .) in
the years 1830–1840, was a half-century ahead of its time. The question was
taken up again from 1880–1890; the proofs were corrected; the method was
extended to noncompact intervals (example: the Bessel equation of Chap. VI),
which is noticeably more difficult and requires expansions in “Fourier” in-
tegrals involving the eigenfunctions; we enter the framework of the theory
of integral equations – they had already appeared chez Liouville – then of
Hilbert spaces, etc. This theory has given rise to quite remarkable expansions
even very recently (scattering, the Korteweg-de Vries equation). The Soviet
school, particularly B. M. Levitan, has worked enormously at this subject for
a full half-century38.

Example. Suppose q = 0, a case that seems trivial . Then (5) can be written
as x′′ + µ2x = 0, whence x(t) = aeiµt + be−iµt. The relations (6) can be
written

iµ(a − b) − u(a + b) = iµ
(
aeiµ − be−iµ

)
+ v
(
aeiµ + be−iµ

)
= 0,

whence two linear homogeneous equations to determine a and b up to a
constant factor. One can have (a, b) �= (0, 0) only if the determinant∣∣∣∣ iµ − u, −iµ − u

(iµ + v)eiµ (−iµ + v)e−iµ

∣∣∣∣ = (iµ − u)(v − iµ)e−iµ + (u + iµ)(v + iµ)eiµ

is zero; on putting z = (iµ − u)(v − iµ) this can be written

e2iµ = z/z̄ = z2/|z|2 or eiµ = ±z/|z|.

This result is of modulus 1, so that µ is real. On separating the real and
imaginary parts we see that µ must satisfy the relation

cos µ = ± (µ2 − uv
)
/
(
µ2 + u2

)1/2 (
µ2 + v2

)1/2
,

38 For a remarkably clear resumé of the state of the question, see the articles
on “Sturm-Liouville” in the Soviet encyclopedia of mathematics (Encyclopae-
dia of Mathematics, Reidel, 10 Vol., 1988–1994, the Soviet edition dating from
1977–1985) where one can, more generally, inform oneself on almost every ques-
tion in mathematics and find a bibliography of the subject (completed by the
translators). Amusing detail: the article “cryptology” is entirely the work of the
translators; the Soviet editors had omitted it. They also forgot to credit some
out-of-favour colleagues . . .
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a “transcendental” equation, as one said at the time, whose roots are the
eigenvalues sought. For µ large, the right hand side tends increasingly to 1,
so that one can obtain an asymptotic expansion of the roots of the equation
by the method of Chap. VI, n◦ 7, an easy exercise; it is more difficult to
prove “by hand” that the eigenfunctions allow one to expand arbitrary, say
C1, functions in series. For u = v = 0, i.e. for the boundary conditions x′(0) =
x′(1) = 0, one finds a = b and cos µ = ±1, and so µ = πn; the eigenfunctions
are the functions cos πnt and one recovers Fourier series properly called.

19 – Limits of holomorphic functions

One of the most remarkable aspects of the theory of holomorphic functions
is that when a sequence of such functions converges in only quite a mild way
(convergence in the sense of the theory of distributions suffices) then (i) the
limit function is holomorphic, (ii) the derived sequences converge, (iii) the
successive derivatives of the limit are the limits of the successive derivatives
of the given sequence; Paradise. Since the holomorphic functions are analytic
and so C∞ as functions of x and y, Theorem 23 of Chap. III, n◦ 22 will serve
us so long as we prove point (ii) – convergence of the derivatives – which then
allows us to apply it, as we have seen, since the Cauchy condition f ′

y = if ′
x

extends trivially to the limit.
The proof rests on a lemma worth isolating:

Lemma. Let r and R be two numbers such that 0 ≤ r < R < +∞ and let
k be a positive integer. There exists a constant Mk(r,R) such that, for every
function f , continuous in |z| ≤ R and holomorphic in |z| < R, one has

sup
|z|≤r

∣∣∣f (k)(z)
∣∣∣ ≤ Mk(r,R). sup

|z|≤R

|f(z)|.(19.1)

We actually proved in n◦ 1 [pass to the limit in (1.11) as r → R] that the
derivatives of f are given by

f (k)(z) = k!
∫

T

f(Ru)
Ru

(Ru − z)k+1
dm(u) for |z| < R.(19.2)

For |z| ≤ r one has |Ru − z| ≥ R − r, whence∣∣∣Ru/ (Ru − z)k+1
∣∣∣ ≤ R/ (R − r)k+1

.

On substituting in (2), one obtains (1) immediately, with Mk(r,R) =
k!R/ (R − r)k+1, qed (One could, in the right hand side of (1), replace the
sup extended over |z| ≤ R by a sup extended over |z| = R, but these sup are
the same by the maximum principle).

If one writes D and D′ for the concentric closed discs of arbitrary centre a
and radii R and r < R, and if one considers a function f , continuous in D
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and holomorphic in the interior, the lemma above, applied to the function
f(a+z), shows that for every k there exists a constant Mk(D′, D) independent
of f such that ∥∥∥f (k)

∥∥∥
D′

≤ Mk(D′, D) ‖f‖D .(19.1’)

This crucial point established, suppose that in an open subset U of C we
have a sequence of analytic functions fn(z) which converge to a limit f(z)
uniformly on every compact K ⊂ U . For every a ∈ U , let us choose the
closed discs D ⊂ U and D′ ⊂ D with centre a as above, and apply (1’) to the
differences fp − fq whose usefulness Cauchy has shown us. His convergence
criterion tells us that the right hand side of (1’) is < ε for p and q large
enough since the fn converge uniformly on the compact set D. Likewise for
the left hand side. Consequently, the f

(k)
n converge uniformly in D′, i.e. on a

neighbourhood of a. This means that the f
(k)
n converge uniformly on every

compact K ⊂ U since this mode of convergence is a property of local nature
(Chap. V, n◦ 6, Corollary 2 of Borel-Lebesgue).

We may now return to the general arguments of Chap. III, n◦ 22: since the
successive partial derivatives of the fn are, up to powers of i, identical to the
derivatives f

(k)
n in the complex sense, the limit function is C∞ and its partial

derivatives, being the limits of those of the fn, satisfy the Cauchy condition
D2f = iD1f like them. The limit function f is therefore holomorphic in U

and we have f (k)(z) = lim f
(k)
n (z) for every k. Whence finally the famous

Theorem 17 (Weierstrass). Let (fn) be a sequence of holomorphic func-
tions in an open subset U of C. Assume that (i) lim fn(z) = f(z) exists
for every z ∈ U , (ii) the convergence is uniform on a neighbourhood of every
point of U . Then the limit function is holomorphic in U and, for every k ∈ N,
the sequence of derivatives f

(k)
n (z) converges to f (k)(z) uniformly on every

compact K ⊂ U .

Very clearly, one might state Theorem 15 in terms of series of analytic
functions39. If in particular such a series converges normally on a neighbour-
hood of every point of U , then its sum is holomorphic, can be differentiated
term-by-term, etc.

Example 1. This is the case of the Riemann function ζ(s) =
∑

1/ns in the
open set Re(s) > 1 where the series converges. For every σ > 1, the series
converges normally in the half plane Re(s) ≥ σ since there |1/ns| ≤ 1/nσ.
The function is thus holomorphic in Re(s) > σ for every σ > 1, so in fact
39 Weierstrass’ original proof (1841) in fact concerns series of power series and does

not use the Cauchy integral formula of n◦ 1; it rests on a direct and elementary
proof of the inequality (19.1), which allows him to apply his theorem on double
series to a convergent series of analytic functions. The present proof is due to
Paul Painlevé (1887); see Remmert, Funktionentheorie 1, Chap. 8, §§ 3 and 4,
who sets out Weierstrass’ proof of (19.1) on one page, as simple as it is ingenious.
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in Re(s) > 1, and its derivative is given by ζ ′(s) = −∑ log n/ns. Recall
(Chap. VI, n◦ 19) that in fact the ζ function can be extended analytically to
C − {1}, the point s = 1 being a simple pole.

Example 2. The series

π. cot πz = 1/z + 2z
∑

1/(z2 − n2)

converges normally on every compact set K ⊂ C − Z as we have known a
long while, so is holomorphic in C − Z; and the only reason that it does not
converge normally on a neighbourhood of a point n ∈ Z lies in the term
2z/(z2 − n2) = 1/(z − n) + 1/(z + n): the series obtained by suppressing
the term 1/(z −n) converges unproblematically on a neighbourhood of n. In
other words, on a neighbourhood of each n ∈ Z, the function is the sum of
the pole term 1/(z − n) and of a function holomorphic on a neighbourhood
of n. It therefore has just a simple pole at n; it is a meromorphic function on
all C, and the series can be differentiated term by term.

Example 3. Consider similarly the elliptic functions à la Weierstrass of
Chap. II, n◦ 23, the sums of the series

∑
(z−ω)−k extended over the periods

(k > 3), or, for k = 2, the modified series ℘(z). We have shown that these are
analytic by proving by a routine calculation that, in every disc |z| < R, they
are the sum of a finite number of terms, corresponding to the periods situ-
ated in this disc, and of an explicitly calculated power series. The preceding
theorem yields the result without any calculation since after subtraction of
the exceptional terms in question, the series

∑
(z −ω)−k converges normally

in the disc |z| < R as we have already seen. The functions obtained are thus
holomorphic in C with the periods removed. In the neighbourhood of a period
these functions are the sum of a holomorphic function on a neighbourhood of
ω and of the term 1/(z − ω)k of the series, whence a pole of order k at each
point of the lattice. The Weierstrass functions are therefore meromorphic in
C and one may differentiate them term-by-term, which confirms, but without
calculation, the fact that the series

∑
(z−ω)−k are, for k > 3, the successive

derivatives of ℘(z), up to obvious constant factors.

Example 4. The sum of a Fourier series
∑

anen(z) which converges in a
strip a < Im(z) < b, and thus normally in every smaller closed strip, is a
holomorphic function.

20 – Infinite products of holomorphic functions

Theorem 17 has an analogue, also due to Weierstrass, for infinite products:

Theorem 18. Let (un(z)) be a sequence of functions holomorphic in a do-
main G and suppose the series

∑
un(z) is normally convergent on every

compact K ⊂ G. Then the function
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p(z) =
∏

(1 + un(z)) = lim (1 + u1(z)) . . . (1 + un(z))

is holomorphic in G, its zeros are those of the functions 1 + un(z), and

p′(z)/p(z) =
∑ u′

n(z)
1 + un(z)

(20.1)

at every point where p(z) �= 0.

First we remark that, for every compact K ⊂ G, the series
∑ ‖un‖K

converges, by the definition of normal convergence (Chap. III, n◦ 8). Thus
‖un‖K < 1

2 for n large, so that the factors 1 + un(z) which might vanish
somewhere in K are finite in number; such a factor can moreover possess
only a finite number of zeros in K, for otherwise Bolzano-Weierstrass would
allow us to construct a sequence of pairwise distinct zeros converging to a
point of K, thus of G, and the principle of isolated zeros (Chap. II, end
of n◦ 19 and n◦ 20) would show, since G is connected, that 1 + un(z) is
identically zero, a case that one may reasonably exclude in the considerations
which follow. Apart from these factors whose product is holomorphic in G,
the function p is an infinite product all of whose terms are �= 0 for any
z ∈ K; since

∑ |un(z)| < +∞, this product is absolutely convergent and not
zero (Chap. IV, n◦ 17, Theorem 13 whose proof we in any case will have to
reproduce).

Let us put pn(z) = (1 + u1(z)) . . . (1 + un(z)) and remain in K, forgetting
to allow for the factors, finite in number, which vanish in K. We have

log |pn(z)| = log |1 + u1(z)| + . . . + log |1 + un(z)| ≤(20.2)
≤ |u1(z)| + . . . + |un(z)| ≤ ‖u1‖K + . . . + ‖un‖K .

The series
∑ ‖un‖K being convergent there exists a finite constant M(K)

such that |pn(z)| ≤ M(K) for every z ∈ K. Since we have pn+1 − pn =
pnun+1, it follows that |pn+1(z) − pn(z)| ≤ M(K) |un+1(z)| for every z ∈ K,
whence

‖pn+1 − pn‖K ≤ M(K) ‖un+1‖K .

The series
∑

pn+1(z) − pn(z) therefore converges normally in K like the
un(z). We deduce that the sequence of the pn(z) converges uniformly on
every compact K ⊂ G, and therefore p(z) = lim pn(z) is holomorphic in G
like the pn, by Theorem 17; the “forgotten” factors in the product do not
affect the conclusion since they are holomorphic and finite in number on a
neighbourhood of each point of G.

It remains to prove (1), a generalisation of the rule

(fg)′/fg = f ′/f + g′/g

for “logarithmic differentiation” of a product. At a point where p(z) �= 0, one
has from the latter p′n(z)/pn(z) =

∑
k≤n u′

k(z)/ (1 + uk(z)). But Theorem 17
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assures us that lim p′n(z) = p′(z), and since pn(z) tends to p(z) �= 0, one
deduces that p′(z)/p(z) is the limit of the partial sums of the series (1).

In fact, the latter converges normally on every compact K ⊂ G. It suffices,
as always, to show this on a neighbourhood of every a ∈ G. To do this,
consider a compact disc D : |z−a| ≤ R contained in G and a disc D′ : |z−a| ≤
r < R contained in the interior of the first. The lemma of n◦ 19 provides an
upper estimate ‖u′

n‖D′ ≤ M ‖un‖D with a constant M independent of n.
On the other hand ‖un‖D < 1

2 for n large, as we have seen above, and
thus ‖1 + un‖D > 1

2 . The uniform norm on D′ of the general term of the
series (1) is therefore majorised for n large by 2M ‖un‖D, whence the normal
convergence of (1) in D′, and so on every compact K ⊂ U , qed.

Example 1. Consider (Chap. IV, n◦ 20) Euler’s formula

P (z) =
∏
n≥1

(1 − zn)−1 =
∑
n≥0

p(n)zn

which appears in the theory of partitions. Theorem 18 shows that the product∏
(1 − zn) is holomorphic in the disc D : |z| < 1 and never vanishes; the left

hand side is therefore also holomorphic in D, whence the existence of an
expansion in power series in D. Since we have p(n) ≥ 1 (this is the least one
could say . . .), the radius of convergence is equal to 1.

The function P (z) is an example of a curious phenomenon: it is not possi-
ble to “extend the function P analytically” outside D: if an analytic function
defined in a domain G ⊃ D coincides with P in D, then G = D. One may
understand this by observing that P (z) seems not to tend to any limit when
z tends to any root of unity, since then infinitely many factors of the product
become infinite, but this is not a proof . . .

Example 2. Let q be a constant complex such that |q| < 1 and let us consider
the infinite product

f(z) =
∏

(1 + qnz) ,(20.3)

where the product is extended over all n ≥ 1. Since
∑ |qn| < +∞, Weier-

strass’ theorem applies, the result being an entire function of z. It is clear
that f(z) = (1 + qz)f(qz), so that the power series f(z) =

∑
anzn which

represents f in the whole plane satisfies∑
anzn = (1 + qz)

∑
anqnzn;

one deduces that an = qnan + qnan−1, i.e. that

(1 − qn) an = qnan−1.

Since a0 = f(0) = 1, it follows that
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an = q1+2+...+n/(1 − q) . . . (1 − qn) ,

whence the identity

∞∏
n=1

(1 + qnz) = 1 +
∞∑

n=1

qn(n+1)/2

(1 − q) . . . (1 − qn)
zn (|q| < 1, z ∈ C).(20.4)

Exercise: show that
∞∏

n=0

(1 + qnz)−1 =
∞∑

n=0

(−1)nzn

(1 − q) . . . (1 − qn)
(20.5)

for |q| < 1, |z| < 1. What happens for |z| > 1?

Example 3. Consider the infinite product

f(z) = z
∏(

1 − z2/n2
)

(20.6)

extended over n ≥ 1. It satisfies the hypotheses of the theorem, with G = C,
so represents an entire function having simple zeros at the n ∈ Z and is
nonzero elsewhere. Theorem 18 shows that

f ′(z)/f(z) = 1/z +
∑

2z/
(
z2 − n2

)
= π. cot πz = (sin πz)′/ sin πz.(20.7)

In the connected open set C−Z where it is defined, the holomorphic function
f(z)/ sin πz thus has derivative zero, so is constant; since f(z)/z and sinπz/z
tend respectively to 1 and π when z tends to 0, this constant is equal to 1/π.
Whence

sin πz = πz
∏(

1 − z2/n2
)
.(20.8)

This proof of Euler’s infinite product manifests the fantastical character
of his considerations on “algebraic equations of infinite degree” (Chap. II, end
of n◦ 21). As we have said, the infinite product (6) is an entire function whose
only zeros are the n ∈ Z; on a neighbourhood of such a point, f(z) is the
product of 1−z/n by an infinite product which no longer vanishes at n, so that
the n ∈ Z are simple zeros of f . Since it is clear that z = n is likewise a simple
zero of the function sinπz (obvious for n = 0, so for any n by periodicity),
one deduces that sin πz = g(z)f(z) where g is an everywhere holomorphic
function (so analytic) having no zero in C. For such a function, the quotient
g′(z)/g(z) is again an entire function, so an everywhere convergent power
series, so has in C a primitive h(z) such that h′(z) = g′(z)/g(z) as we know
(Chap. II, n◦ 19). It follows that

(
ge−h
)′

= g′e−h − gh′e−h = 0,
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so that g(z) = ceh(z) where c is a constant that one may assume equal to 1 by
incorporating a suitable constant into h. Euler’s argument, corrected, thus
proves the existence of a relation of the form

sin πz = eh(z)z
∏(

1 − z2/n2
)

(20.9)

with an entire function h about which the preceding argument provides no
information whatsoever . . .

In fact, Weierstrass invented, and his successors refined, a whole theory
that allows one to represent any entire function f by an infinite product that
exhibits its zeros, but this is much less simple than Euler’s ideas. The first
idea is to order the zeros an of f in a sequence40 such that |an| ≤ |an+1|,
then to consider the infinite product

∏
(1 − z/an). This then has exactly

the same zeros as f , with the same orders of multiplicity, whence f(z) =
g(z)
∏

(1 − z/an) where g is an entire function without zeros, so of the form
eh(z). This is Euler’s marvellous argument (except that he forgot the factor
g).

But first one should verify the convergence of the infinite product! Though
obvious in the case of the function sinus when one groups the symmetric
factors, it can be perfectly false in the case of an arbitrary entire function41.

Weierstrass’ idea is now to multiply each factor 1 − z/an by as simple a
function as possible, vanishing nowhere so as not to add parasitic zeros to the
product, and making the infinite product convergent. This technique is very
shrewd. First, it is clear that, for z given, z/an tends to 0, so is in modulus
< 1 for n large. Consider, generally, 1 − z for |z| < 1. Then

1 − z = exp
(−z − z2/2 − z3/3 − . . .

)
[Chap. IV, (13.12)], whence, for every p,

1 − z = exp (z + . . . + zp/p)−1 exp
[−zp+1/(p + 1) − . . .

]
.

Consider the functions

Ep(z) = (1 − z) exp (z + . . . + zp/p) = exp
[−zp+1/(p + 1) − . . .

]
.(20.10)

The factor exp (z + . . . + zp/p) never vanishes and tends to 1 when z tends
to 0, as does Ep(z). Let us prove that

40 The set of zeros is countable, for, by the principle of isolated zeros, there can be
only finitely many in the disc |z| < p for any p ∈ N. In what follows, we assume
that each zero appears as many times among the an as its order of multiplicity.

41 Consider the function sin(πz2). Its zeros are the z such that z2 ∈ Z, so the

points of the form n1/2 or in1/2, and the infinite product is divergent like the
series
∑

1/|n|1/2.
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|1 − Ep(z)| ≤ |z|p+1 for |z| ≤ 1.(20.11)

The function 1−Ep(z) vanishes at the origin and is holomorphic in all C; its
derivative

−E′
p(z) = zp exp (z + . . . + zp/p) = zp

∑
n

(z + . . . + zp/p)[n](20.12)

(exercise!) is an everywhere convergent power series with all its coefficients
positive (Theorem 17) and whose term of lowest degree is zp; that of 1 −
Ep(z) therefore starts with a term in zp+1. Schwarz’ lemma now shows that
|1 − Ep(z)| ≤ M |z|p+1, where M is the maximum of |1 − Ep(z)| on the circle
|z| = 1; but since the coefficients of the power series of 1 − Ep(z) are, like
those of its derivative, all positive, its maximum on |z| = 1 is attained for
z = 1 and so is equal to 1 by (10); whence (11), thanks to Remmert.

This point completed, let us return to the entire function f(z) and to its
zeros an. The function Ep (z/an) = (1 − z/an) exp(. . .) has a simple zero at
an and is �= 0 elsewhere. We may therefore try to compare f(z) with the
infinite product

h(z) =
∏

Epn
(1 − z/an)(20.13)

where the pn are chosen to make the product absolutely convergent. Since it
can be written as

∏
[1 + un(z)] with

|un(z)| ≤ |z/an|pn+1

by (11), and since, for every compact K ⊂ C, we have |z/an| ≤ 1
2 for every

z ∈ K if n is large enough (the |an| increase indefinitely since the zeros of
an entire function are isolated in C), we may always choose the pn to make
the series

∑
un(z) normally convergent on every compact; at the worst, we

choose pn = n − 1 for every n.
This done, we have, as in the case of the function sin πz, a relation

f(z) = eg(z)
∏

Epn
(1 − z/an)(20.14)

with an entire function g(z) about which, a priori, we know nothing.
It goes without saying that the choice pn = n − 1 is not always the best

possible, as shown by the case of the function sinus, and that, moreover,
il would be useful to determine the function g(z) more precisely. There are
theorems that apply to functions that do not increase too fast at infinity. To
enter into this difficult subject which has interested (too) many specialists
would no doubt exceed the capacity of most of our readers, and, even more
certainly, of the author.

Example 4 (infinite product for the Gamma function). Consider Euler’s func-
tion
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Γ (s) =
∫ +∞

0

e−xxs−1dx.(20.15)

We already know some of its important properties:

(i) the integral converges absolutely if and only if Re(s) > 0 (Chap. V,
n◦ 22, Example 1), satisfies Γ (s + 1) = sΓ (s), and also

sΓ (s) = limns/(1 + s)(1 + s/2) . . . (1 + s/n);(20.16)

(ii) the function Γ is holomorphic for Re(s) > 0 and can be continued
holomorphically to G = C − {0,−1,−2, . . .} (Chap. V, n◦ 25, Example 5);
in Chap. V, we did not yet know that “holomorphic” and “analytic” are
synonymous, but we know this now; this shows in passing that the various
methods we have used to continue the function Γ analytically to G yield the
same function;

(iii) one may (Chap. VI, n◦ 18) transform (16) into an expansion as an
infinite product

1/sΓ (s) = eγs
∏

(1 + s/n) e−s/n(20.17)

which converges absolutely for every s ∈ C.
If one only knows that (17) is valid for Re(s) > 0, it is easy to lift this

restriction; it amounts to proving that Theorem 18 applies in C: the principle
of analytic continuation will do the rest. Remmert, Funktionentheorie 2, p. 31,
gives what is surely the simplest proof. One starts from the identity

1 − (1 − w)ew = w2
[
(1 − 1/2!) + (1/2! − 1/3!)w + (1/3! − 1/4!)w2 + . . .

]
and remarks that the coefficients of the wn are all > 0; for |w| < 1 one thus
has

|1 − (1 − w)ew| < |w|2
∑

[(1/p! − 1/(p + 1)!] = |w|2.
But if one puts the general term of the product (17) in the form 1 − un(s),
one has un(s) = 1 − (1 − w)ew for w = −s/n; consequently

|un(s)| ≤ |s/n|2 for n ≥ |s|.

In a disc |s| ≤ R, one thus has |un(s)| ≤ R2/n2 for n > R, whence the normal
convergence of

∑
un(s) in |s| < R, qed.

Example 5. Let us go back to the theory of elliptic functions with a lattice L
of periods (Chap. II, n◦ 23) and let us consider, with Weierstrass, the infinite
product

∏
(1 − z/ω) extended over the periods ω ∈ L. It clearly does not

converge since the convergence of
∑

1/|ω|k presupposes that k ≥ 3 for k an
integer (or k > 2 for k real). But we have



§ 4. Analytic and holomorphic functions 339

1 − z/ω = exp
(−z/ω − z2/2ω2 − . . .

)
=

= exp
(−z/ω − z2/2ω2

)
exp
(−z3/3ω3 − . . .

)
with
∣∣1 − exp

(−z3/3ω3 − . . .
)∣∣ ≤ M

∣∣z3/3ω3
∣∣ for |z/ω| < 1 by (11); for |z| ≤

R, this condition holds for |ω| > R, whence a bound by MR3/3 |ω|3 which
ensures the normal convergence in the disc considered. We conclude that the
infinite product (no connection with the Riemann function ζ)

ζL(z) = z
∏
ω �=0

(1 − z/ω)ez/ω+z2/2ω2
(20.18)

converges normally on every compact subset of C − L and even on a neigh-
bourhood of every ω ∈ L so long as we isolate the term 1− z/ω. In this way
one finds an entire function having simple zeros at the ω ∈ L and nonzero
elsewhere.

Applying the differentiation formula, one obtains a new bizarre function

σL(z) = ζ ′L(z)/ζL(z) = 1/z +
∑[

1/(z − ω) + 1/ω + z/ω2
]

(20.19)

and, differentiating once again,

−σ′
L(z) = 1/z2 +

∑[
1/ (z − ω)2 − 1/ω2

]
= ℘L(z),(20.20)

the gothic cursive function ℘ of this same Weierstrass associated with the
lattice L. The beauty of these calculations is that they are apparently purely
formal; but, in reality, everything converges because Theorem 17, clearly
applicable to unconditional convergence, justifies everything once one knows
that the infinite product (18) converges.

The relation σ′
L(z) = −℘L(z) shows that the derivative of the function

σL does not change if we add a period to z; hence a relation of the form

σL(z + ω) = σL(z) + c(ω)

with a constant c(ω) clearly satisfying

c(ω′ + ω′′) = c(ω′) + c(ω′′),

whence c (n1ω1 + n2ω2) = n1c(ω1)+n2c(ω2), which allows one to calculate it
if one knows c(ω) for two periods forming a basis42 of L. We could continue
– the essentials of the theory of elliptic functions can be expounded with
hardly any other tools than those of the present § –, but it will be better to
delay these explorations for later (Chap. XII).

42 i.e. two periods ω1 and ω2 such that every other is a linear combination of them
with integer coefficients.
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§ 5. Harmonic functions and Fourier series

21 – Analytic functions defined by a Cauchy integral

The calculation which, in n◦ 1, allowed us to represent a power series con-
verging on a disc |z| < R by an integral over a circle with centre 0 and
radius r < R, can be inverted and generalised: every reasonable function f
defined on the circle |z| = r allows one, thanks to Cauchy’s integral formula,
to define a function Pf , its Poisson transform (Siméon Denis, 1781–1840, a
less brilliant competitor of Fourier and Cauchy, to whom, nevertheless, we
owe several important ideas), defined and analytic for |z| �= r. The study
of this function, beyond its being an excellent exercise, allows us to prove
Weierstrass’ approximation theorem again, and, more importantly, to estab-
lish the principal properties of the “harmonic” functions, which are, at least
locally, the real parts of holomorphic functions, and conversely.

To simplify the formulae, we shall assume that r = 1 in what follows. We
need only replace f(u) by f(ru) to obtain the general case.

For a regulated periodic function f the function Pf is given by

Pf (z) =
1

2πi

∫
|ζ|=1

f(ζ)
dζ

ζ − z
=
∫

T

u

u − z
f(u)dm(u);(21.1)

we have introduced a factor 2πi so as to recover as Pf the function f(z) if
one chooses for f(u) the restriction to T of a power series, as in the case
of Cauchy’s formula (1.4). Recall how, in (1), one passes from the complex
Leibniz notation to the integral in u: one puts ζ = u = e(t), whence dζ =
2πie(t)dt = 2πiudm(u).

One may generalise further and replace the expression f(u)dm(u) by a
measure µ on T, whence the Poisson transform

Pµ(z) =
∫

u

u − z
dµ(u)(21.2)

of µ. If for example µ is the Dirac measure at the point u = 1, one obtains
Pµ(z) = 1/(1 − z). One might use the same formula to define that of a
distribution on T since the function u 
→ u/(u−z) is indefinitely differentiable
on the circle. We shall see that all these functions are analytic for |z| �= 1.

For |z| < 1, we have, as in n◦ 1,

u/(u − z) = 1/
(
1 − u−1z

)
=
∑

zn/un

with a series of functions of u which converges normally, so uniformly, on
the interval of integration. We may therefore integrate term-by-term by the
definition of a measure, i.e. thanks to the estimate∣∣∣∣

∫
f(u)dµ(u)

∣∣∣∣ ≤ M(µ)‖f‖(21.3)
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valid for every function f defined and continuous on the circle. This done we
clearly find

Pµ(z) =
∑
n≥0

anzn where an =
∫

u−ndµ(u) = µ̂(n) (|z| < 1)(21.4)

by the definition (3.1”’) of the Fourier coefficients of a measure or distribution
on T. The series we obtain converges absolutely for |z| < 1: since |u| = 1 we
have |an| ≤ M(µ) by (3), and the result follows since |z| < 1. In other words,
f is analytic in the disc |z| < 1.

The reader would be wrong to be overwhelmed by these vast generalisa-
tions: we are dealing in trivialities, i.e. assertions following directly from the
definitions, not to be confused with theorems which require more or less long
and difficult proofs.

Exercise: show that, for z given with |z| < 1, the series
∑

zn/un converges
in the space D(T) or, equivalently, that the series

∑
znen(t) (sum over the

n ≥ 0), and all those obtained by differentiating term-by-term ad libitum
with respect to t, converge uniformly on R. Deduce that (4) applies to every
distribution on T.

For |z| > 1, we must, on the contrary, expand in powers of u/z, i.e. use
the formula

u/(u − z) = −u/z
(
1 − uz−1

)
= −
∑

un+1/zn+1,

whence

Pµ(z) =
∑
n>0

bn/zn where bn = −
∫

undµ(u) = −µ̂(−n) (|z| > 1).(21.5)

In this way we find an analytic function of 1/z, so also of z, on the open
set |z| > 1. It generally has no connection with the function Pµ obtained
for |z| < 1; if for example one starts, as in n◦ 1, from the measure dµ(u) =
f(u)dm(u), where f is a power series converging absolutely on T, then the
function (4) is identical with f but (5) is identically zero by the formulae
(1.4). No matter, finally we have

Pµ(z) =

⎧⎨
⎩
∑

n≥0 µ̂(n)zn for |z| < 1.

−∑n<0 µ̂(n)zn for |z| > 1.
(21.6)

In the most important case, that of formula (1), the formulae (6) can be
written

Pf (z) =
∫

T

u

u − z
f(u)du =

⎧⎨
⎩
∑

n≥0 f̂(n)zn for |z| < 1

−∑n<0 f̂(n)zn for |z| > 1
(21.7)

since the Fourier coefficients of the measure dµ(u) = f(u)dm(u) associated
with the function f are those of f .
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22 – Poisson’s function

Consider a continuous function f(u) on the unit circle T : |u| = 1, and as
always put f(t) = f

(
e2πit
)

= f(e(t)); let us examine the function

Pf (z) =
∮

e(t)
e(t) − z

f(t)dt =
∫

u

u − z
f(u)dm(u).(22.1)

As we have seen above, this formula represents two different analytic func-
tions in the open sets |z| < 1 and |z| > 1. It is by comparing their behaviour
on a neighbourhood of a point u = e(t) of the limit circle T that we shall
obtain results on the Fourier series of f .

To do this we put z = ru with r �= 1, and let r tend to 1 either through
values < 1, or through values > 1.

If r < 1, we have, by (21.7),

Pf (ru) =
∑
n≥0

f̂(n)rnun.(22.2)

As r tends to 1, we then “clearly” find

lim
r→1, r<1

Pf (ru) =
∑
n≥0

f̂(n)un.(22.3)

This passage to the limit is, alas, not always justified; since

sup
r<1

∣∣∣f̂(n)rnun
∣∣∣ = ∣∣∣f̂(n)

∣∣∣
because all the exponents n featuring are positive, the series (2), considered
for u fixed, like a series of continuous functions of r in the interval [0, 1], will
be normally convergent if and only if one assumes that∑

n≥0

∣∣∣f̂(n)
∣∣∣ < +∞.(22.4)

Passage to the limit term-by-term is then allowed by Theorem 9 of Chap. III,
n◦ 8: the sum of the series is a continuous function of r on the closed inter-
val [0, 1], so that its value

∑
f̂(n)un for r = 1 is the limit of its values when

r < 1 tends to 1.

For z = r′u, with r′ > 1, we have to start from the formula

Pf (r′u) = −
∑
n<0

f̂(n)r′nun.(22.5)

If
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∑
n<0

∣∣∣f̂(n)
∣∣∣ < +∞,(22.6)

the preceding argument applies again since the fact that r′ is > 1 is com-
pensated by the presence in (5) of all negative exponents: the series (5) is
dominated, on the closed interval r′ ≥ 1, by the convergent series (6). Hence
we find

lim
r′→1, r′>1

Pf (r′u) = −
∑
n<0

f̂(n)un.(22.7)

If the hypotheses (5) and (7) hold, i.e. if∑
Z

|f̂(n)| < +∞,(22.8)

we then see that the Fourier series of f is given by∑
n∈Z

f̂(n)un = lim
r→1, r<1

Pf (ru) − lim
r′→1, r′>1

Pf (r′u).(22.9)

Since we hope that the left hand side has value f(u) = f(t), we have to
examine the second more closely. We shall see that, if we choose to let r and
r′ vary so that r′ = 1/r, the difference Pf (ru)−Pf (r′u) is then expressed as
a very simple integral which tends to f(u) if f is continuous; if the hypothesis
(8) holds, we will thus have shown – without using the results of the § 2 –
that f is the sum of its Fourier series.

Since r′ = 1/r, we have r′n = r−n = r|n| for n < 0. By (2) and (5), then

Pf (ru) − Pf (u/r) =
∑

f̂(n)r|n|un =(22.10)

=
∑

r|n|un

∫
v−nf(v)dm(v) =

=
∑∫

r|n|unv−nf(v)dm(v)

by the definition of the Fourier coefficients of f ; we have written v for the
variable of integration to distinguish it from the free variable u. Since the
function f is regulated – it is unnecessary to assume it continuous for the
moment – and since the series

∑
r|n|unv−n =

∑
r|n|
(
uv−1
)n is, for r < 1

and u given, normally convergent on the circle |v| = 1, we may interchange
the signs

∫
and
∑

in (10); putting

Hf (z) =
∑

f̂(n)r|n|un,(22.11)

P (z) =
∑

r|n|un for z = ru, r < 1,(22.11’)

(the series are extended over Z), we thus have
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Hf (z) =
∫

P
(
zv−1
)
f(v)dm(v).(22.12)

On putting u = e(s) and v = e(t), whence uv−1 = e(t − s), we again obtain

Hf (ru) =
∮

P [re(s − t)]f(t)dt.(22.13)

These changes of notation are a translation exercise, passing from the point
of view of “periodic functions on R” to the point of view of “functions on
T ”.

The formula (12) is a convolution product on T, analogous to the one that
allowed us to obtain convergence theorems for Fourier series, by Dirichlet’s
method in n◦ 11, or in that of Fejér in n◦ 12. Likewise here: the functions
v 
→ P (zv) allow us to approximate f with the help of (12) or (13) when r
tends to 1.

First, let us calculate the function P . For z = ru, r < 1, we have

P (z) =
∑

Z

r|n|un = 1 +
∑
n>0

r|n|un +
∑
n>0

r|n|un =

= 1 + 2Re
(

ru

1 − ru

)
= 1 + 2Re

(
z

1 − z

)
= Re
(

1 + z

1 − z

)
,

or again

P (z) =
1 − |z|2
|1 − z|2 =

1 − r2

1 − 2r cos 2πs + r2
for z = re(s).(22.14)

This formula demonstrates the dubious behaviour of P (z) when z tends to 1,
and so that of P (zv−1) when z tends to v. It shows moreover that, for every
real function f on T, the function

Hf (z) =
∫

P
(
zv−1
)
f(v)dm(v) =

∫
Re
(

v + z

v − z

)
f(v)dm(v)(22.15)

is the real part of a holomorphic function for |z| < 1, a trivial result.

23 – Applications to Fourier series

Assuming f regulated let us return to the formula

Hf (z) =
∫

P
(
zv−1
)
f(v)dm(v).(23.1)

We shall show that if f is continuous at a point u ∈ T, then Hf (z) tends to
f(u) when z tends to u remaining in the disc D : |z| < 1.

It is more convenient to replace z by zu, to make z tend to 1, and to start
from the relation
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Hf (zu) =
∫

P
(
zuv−1
)
f(v)dm(v) =

∫
P
(
zw−1
)
f(uw)dm(w).(23.2)

To apply the method of Dirac sequences (n◦ 5) to the functions u 
→ P (zu)
it is enough to show that they are positive, have total integral 1, and that,
when z → 1, the function P

(
zw−1
)

converges to 0 uniformly on every arc
J : |w − 1| > δ of T.

The function P is clearly positive, by (22.14). To establish the relation∫
P
(
zw−1
)
dm(w) =

∫
P (zw)dm(w) = 1 for |z| < 1,(23.3)

one observes that, for |z| < 1, the function w 
→ P
(
zw−1
)

is an absolutely
convergent Fourier series as (22.11’) shows; the integral (3) is then (Chap. V,
n◦ 5) equal to the term n = 0 of the series, obviously equal to 1.

It remains to verify uniform convergence on the arc J . Now

P
(
zw−1
)

=
(
1 − |z|2) / ∣∣1 − zw−1

∣∣2 =
(
1 − |z|2) / |z − w|2 .(23.4)

Since the uniform norm of w 
→ P
(
zw−1
)

on J is the product of 1 − |z|2,
which tends to 0 and does not depend on w, and of the uniform norm of w 
→
1/ |z − w|2, it is enough to show that the latter is, for z near to 1, majorised by
a constant independent of z. But this is obvious since the relations |w−1| > δ
and |z − 1| < δ/2 imply |z − w| ≥ δ/2 and thus 1/|z − w|2 ≤ 4/δ2.

In sum, the conditions (D 1), (D 2) and (D 3) imposed on Dirac sequences
in n◦ 5 do indeed hold. The fact that our functions depend on a complex
parameter z which tends to 1, rather than on an integer n which increases
indefinitely, clearly does not change the proofs. Since we may also make z
tend to 1 on the real axis, we finally obtain the following statement:

Theorem 19. Let f be a regulated function on T. Then

f(u) = lim
z→1
|z|<1

Hf (zu) = lim
r→1
r<1

∑
Z

r|n|f̂(n)un(23.5)

at every point u ∈ T where f is continuous. If f is continuous on an open
arc J of T then the limit (5) is uniform on every compact K ⊂ J when z or
r tends to 1.

Translation into the language of periodic functions:

f(t) = lim
∑

r|n|f̂(n)en(t)

at every point t ∈ R where f is continuous, and uniform convergence on R
if f is continuous everywhere. We emphasis again that generally one cannot
pass to the limit term-by-term in the series; if this were possible, as Poisson
believed, every continuous function would be the sum of its Fourier series,
which is not the case.
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In this way we immediately recover Weierstrass’ theorem: every continu-
ous and periodic function f is the uniform limit of trigonometric polynomials
of the same period. The preceding theorem, with J = T, shows in fact that
Hf (ru) converges uniformly on T to f(u) as r < 1 tends to 1. But the series
Hf (ru) =

∑
r|n|f̂(n)un is, for r < 1 given, normally convergent on T, since

|f̂(n)| ≤ ‖f‖. Its sum is therefore the uniform limit on T of its partial sums,
which are trigonometric polynomials; in other words, one may approximate f
uniformly by functions that one may approximate uniformly by trigonometric
polynomials. Qed.

We also recover the fact that, for a continuous function f of period 1 such
that ∑∣∣∣f̂(n)

∣∣∣ < +∞,(23.6)

one has

f(t) =
∑

f̂(n)en(t) =
∑

f̂(n)e2πint(23.7)

for any t. The general term of the series
∑

r|n|f̂(n)un is actually majorised
on the closed interval 0 ≤ r ≤ 1 by |f̂(n)|. Being a series of continuous
functions of r for u given, this series is therefore normally convergent on this
interval. Its sum is thus a continuous function of r on [0, 1], so tends to its
value
∑

f̂(n)un for r = 1 when r < 1 tends to 1; but it also tends to f(t) by
Theorem 19, qed.

We leave it to the reader to extend Theorem 19 to the general case of a
regulated function, i.e. to show that

lim Hf (zu) =
1
2
[f(u+) + f(u−)](23.8)

for any u.
One may also deduce the Parseval-Bessel equality from the preceding the-

orem, at the very least for the simple case where f is continuous. Since Hf (ru)
converges uniformly to f(u) it is clear that |Hf (ru)|2 converges uniformly to
|f(u)|2, whence, integrating,∫

|f(u)|2 dm(u) = lim
∫

|Hf (ru)|2 dm(u).(23.9)

But as the Fourier series
∑

f̂(n)r|n|un of Hf (ru) is absolutely convergent for
r < 1, Chap. V, n◦ 5 shows, “without knowing anything”, that∫

|Hf (ru)|2 dm(u) =
∑

r|2n||f̂(n)|2.(23.10)

When r < 1 tends to 1, the partial sums of the right hand side tend to
those of the series

∑ |f̂(n)|2; now they are majorised by the left hand side of
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(10), which tends to the right hand side of (9). We conclude that the partial
sums, and so the total sum, of the series

∑ |f̂(n)|2 are majorised by the left
hand side of (9), whence the Parseval-Bessel inequality. But then the right
hand side of (10), considered as a series of continuous functions of r on [0, 1],
is dominated by the convergent series

∑ |f̂(n)|2, so converges normally. We
may therefore pass to the limit term-by-term (Chap. III, n◦ 8, Theorem 9 or
n◦ 13, Theorem 17), whence the Parseval-Bessel equality using (9).

Exercise – For f regulated we have

lim
∫

|Hf (ru) − f(u)|2 dm(u) = 0

(use Parseval-Bessel).

24 – Harmonic functions

The method of Fourier series applies to a class of functions closely linked to
the holomorphic functions and which, historically, arose from mathematical
physics (hydrodynamics, where d’Alembert had already written the Cauchy
relations between the partial derivatives of a holomorphic function without
having had the idea of going further, Newtonian potential, electrostatics,
etc.) and transformed themselves in consequence, as always in such a case,
into an occasion for the mathematicians to go very far beyond the needs of
the users, and to generalise the situation. These functions are also linked to
the Hf that we have just studied.

Let f(z) = P (x, y) + iQ(x, y) be a holomorphic function on an open
set U . The Cauchy differential equation f ′

x = −if ′
y can then be written, on

separating the real and imaginary parts, in the form

P ′
x = Q′

y, P ′
y = −Q′

x,(24.1)

which, since f ′ = f ′
x = P ′

x + iQ′
x, shows in passing that

f ′(z) = P ′
x − iP ′

y = Q′
y + iQ′

x;(24.2)

in other words, the knowledge of P = Re(f) or of Q = Im(f) determines
f ′ and so determines f up to an additive constant. The function f , being
analytic as a function of z and a fortiori C∞ as a function of the real variables
x and y, so likewise are P and Q, which allows us to differentiate the relations
(1). A trivial calculation then shows that

∆P = P ′′
xx + P ′′

yy = 0, ∆Q = 0,(24.3)

where
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∆ = D2
1 + D2

2 = ∂2/∂x2 + ∂2/∂y2(24.4)

is the Laplace operator which generalises in the obvious way to functions of
any number of variables. A function43 H(x, y) of class C2 in an set open U
of C is said to be harmonic in U if it satisfies the relation ∆H = 0. One
may ask whether such a function, assuming it real valued, as we shall do in
all the rest of this §, is the real part of a holomorphic function. Though not
strictly correct, this conjecture is to a large measure true (but is of no help in
studying harmonic functions of more than two variables, which require very
different methods).

If, inspired by (2), we associate with H the function

g = H ′
x − iH ′

y = D1H − iD2H,(24.5)

we see that the Laplace equation means that g is holomorphic. If we could
find a function f = P + iQ holomorphic in C and such that f ′ = g, we would
have H ′

x = P ′
x, H ′

y = P ′
y, and so H = P up to an additive constant. H would

then be the real part of a holomorphic function in U as hoped.

First assume, the simplest case, that H is harmonic on a disc D : |z| < R.
The function g is then a power series, so has a primitive f(z) =

∑
anzn in

D (Chap. II, n◦ 19), of which H is, up to an additive constant, the real part,
as we have just seen. Putting z = ru with |u| = 1, we then have

2H(ru) =
∑
n≥0

anrnun +
∑
n≥0

anrnun =

=
∑
n≥0

anrnun +
∑
n≥0

anrnu−n =

=
∑

Z

cnr|n|un

with cn = an if n ≥ 0, cn = a−n = c−n if n < 0 and c0 = 2Re(a0). Since
r|n|un is equal to zn for n > 0 and to z̄|n| for n < 0, we finally obtain the
following result:

Theorem 20. Every harmonic function H on a disc |z| < R has a series
expansion of the form

H(z) =
∑

cnr|n|un = c0 +
∑
n>0

[cn(x + iy)n + cn(x − iy)n](24.6)

with
43 The use of the letter U is traditional in physics. The mathematicians more often

use u, which, in our case, might provoke confusion with the variable of integration
on the unit disc T, while use of the letter U would provoke confusion with open
sets, which we generally denote U . The use of the letter H does not present these
risks, and, after all, is not absurd when treating harmonic functions . . .
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cnr|n| =
∫

H(ru)u−ndm(u)(24.7)

for every r < R and every n ∈ Z.

There is no greater problem of convergence for the series (6) than for the
power series of f : they converge normally in every disc of radius r < R. The
general term of the second series (6) is a homogeneous polynomial of degree
n in x, y, and clearly harmonic since it is the real part of cnzn.

Corollary (“Theorem of the Mean”). Let H be a harmonic function in
an open subset U of C. For every a ∈ U and every r > 0 such that U contains
the closed disc |z − a| ≤ r, one has44

H(a) =
∫

T

H(a + ru)dm(u).(24.8)

The argument is less easy – and the result less correct . . . – in the case
where H is given in an annulus C. Consider the Laurent series

∑
bnzn of the

function (5). After subtracting the term in 1/z it has, as we have seen at the
end of n◦ 16, a pseudo primitive

f(z) =
∑

anzn(24.9)

such that

g(z) = f ′(z) + b−1/z.(24.10)

First we shall show that the residue b−1 is real 45.
Now, by (5),

b−1 =
∮

g(re(t))re(t)dt =

=
∮

r
[
H ′

x(re(t)) − iH ′
y(re(t))

]
(cos 2πt + i sin 2πt)dt,

whence

Im (b−1) =
∮ [

H ′
x(re(t))r sin 2πt − H ′

y(re(t))r cos 2πt
]
dt.

44 One can show that the harmonic functions in an open subset U of C are char-
acterised by the fact that their value at the centre of any disc D ⊂ U is equal
to their mean value over the boundary of D. It is not even necessary to assume
differentiability.

45 The function g = U ′
x − iU ′

y is not an arbitrary holomorphic function; it must
be possible to put its real and imaginary parts P and Q in the form P = U ′

x,
Q = U ′

y, which is not always the case.
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Since re(t) has coordinates r cos(2πt) and r sin(2πt), the chain rule shows
that

d

dt
H(re(t)) = −2π

[
H ′

x(re(t))r sin 2πt − H ′
y(re(t))r cos 2πt

]
;

consequently, Im (b−1) is, up to a factor −2π, the variation between 0 and 1
of the function t 
→ H(re(t)), zero by periodicity. The residue b−1 is therefore
real.

Now let us put f = P + iQ with P and Q real. It follows that

H ′
x − iH ′

y = g(z) = P ′
x − iP ′

y + b−1/(x + iy)

by (10), whence

H ′
x = P ′

x + b−1x/(x2 + y2),
H ′

y = P ′
y + b−1y/(x2 + y2)

since b−1 is real. The function R = H − P thus satisfies the relations

R′
x = b−1x/(x2 + y2),

R′
y = b−1y/(x2 + y2).

Now the function

L(x, y) = log |z| = log r =
1
2

log
(
x2 + y2

)
,

not to be confused with the pretend Log of the complex number z, has partial
derivatives

L′
x = x/(x2 + y2), L′

y = y/(x2 + y2).

The function R−b−1L thus has partial derivatives zero, so is constant, whence
it follows that

H(x, y) = P (x, y) + b−1 log r + const.(24.11)

Since f(z) = P (x, y) + iQ(x, y) =
∑

anzn we find

H(z) = b log r + c +
1
2

∑
(anzn + anzn) =

= b log r + c +
1
2

∑
[an(x + iy)n + an(x − iy)n]

with real constants b and c, summing over all nonzero n ∈ Z. The expansion

H(ru) = b log r + c +
1
2

∑
n�=0

(
anrn + a−nr−n

)
un(24.12)



§ 5. Harmonic functions and Fourier series 351

is deduced from this, and yields the general form of the Fourier coefficients
of the function H(re(t)). One may put all this in the form

H(re(t)) = b. log r + c +
∑
n≥1

[bn(r) cos 2πnt + cn(r) sin 2πnt](24.13)

where the coefficients bn(r) and cn(r) are linear combinations with real co-
efficients of rn and r−n.

Exercise. By using the equation ∆H = 0, show directly that the Fourier
series of u 
→ H(ru) has the form (13). (Argue as in n◦ 14).

The fact that log r and the negative powers of r disappear when H is
harmonic on a disc is due to the continuity of H on a neighbourhood of
the origin: the Fourier coefficients of H(re(t)) must remain bounded when r
tends to 0.

One of the consequences of these calculations is that, in an annulus, a
harmonic function is not always the real part of a holomorphic function.
This is the case only if b = 0 in the expansion (13); direct calculation of the
Fourier coefficients of H(ru) shows that

b log r + c =
∫

H(ru)dm(u) =
∮

H
(
re2πit
)
dt,(24.14)

the mean value of H over the circle |z| = r. One may explain the appearance
of the function log r by noting that it is the real part of the “function” Log z =
log r + i arg z, which would be holomorphic for z �= 0 if one could forget the
ambiguity inherent in the definition of the argument; this ambiguity being
pure imaginary, the real part log r is, itself, a function in the strict sense –
and it is harmonic. You can check this by calculating its Laplacian directly.

25 – Limits of harmonic functions

We have seen, in (24.8), that if a function H is harmonic on an open disc of
radius R, its value at the centre of the latter is equal to its mean value over
every concentric circle of radius r < R. We deduce that the maximum theorem
(Theorem 11 of n◦ 15) and its corollary are valid for harmonic functions; the
proofs are precisely the same. In particular, if a function is continuous on the
closure K of a bounded domain G and is harmonic in G, and is zero on the
boundary F of G, then it is identically zero since ‖H‖G = ‖H‖F .

If a function H is harmonic on a disc |z| < R of radius R > 1 and if one
puts f(u) = H(u) on T, the series expansion

H(z) =
∑

cnr|n|un with cnr|n| =
∫

H(ru)u−ndm(u)

of Theorem 20, valid for r < R, holds in particular for r = 1 and shows that
cn = f̂(n). Hence
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H(z) = Hf (z) for |z| < 1.

In the case of an arbitrary radius R one can, for r < R, apply this result to
the function z 
→ H(rz), harmonic in the disc of radius R/r > 1. Whence

H(rz) =
∫

1 − |z|2
|z − u|2 H(ru)dm(u) (|z| < 1),

or, on replacing z by z/r,

H(z) =
∫

T

r2 − |z|2
|z − ru|2 H(ru)dm(u) for |z| < r.(25.1)

This is the analogue for harmonic functions of Cauchy’s integral formula of
n◦ 1; the existence of such a formula is scarcely surprising, since, on a disc,
a harmonic function is the real part of a holomorphic function.

Weierstrass’ theorem on uniformly convergent sequences of holomorphic
functions applies also to harmonic functions, but needs several preliminaries.

First, the formula (24.6), i.e.

H(x, y) = c0 +
∑
n>0

[cn(x + iy)n + cn(x − iy)n] ,(25.2)

shows that a harmonic function is of class C∞; again not very surprising,
since, locally, it is the real part of an analytic function. Further, if one differ-
entiates the general term of the series (2) with respect to x or y one multiplies
the coefficients of order n by n or ±in; up to a factor of modulus 1 this is
equivalent to replacing the two power series in x+ iy = z and x− iy = z̄ that
appear in (24.6) by their derived series; the resulting series, and more gener-
ally, those obtained by differentiating term-by-term ad libitum with respect
to x and y, converge under exactly the same conditions as (2). Theorem 20
of Chap. III, n◦ 17 would then show, if needed, that H is indefinitely dif-
ferentiable and that its partial derivatives of arbitrary order are obtained
by differentiating the series (2) term-by-term with respect to x and y. (The
fact that we are dealing with functions of two variables is not important: the
variable with respect to which one is not differentiating plays the rôle of a
constant).

We deduce, after a small calculation, that the partial derivative

Dp
1Dq

2H = H(p,q)

is given by

H(p,q)(x, y) =
=
∑

n(n − 1) . . . (n − p − q + 1) [iqcn(x + iy)n−p−q + (−i)qcn(x − iy)n−p−q]

where one sums over n ≥ p + q. In particular,
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H(p,q)(0, 0) = (p + q)! [iqcp+q + iqcp+q] = 2(p + q)!Re (iqcp+q) .

Since cnrn =
∫

H(ru)u−ndm(u) for n ≥ 0 we have

H(p,q)(0, 0) = (p + q)!r−p−q

∫
H(ru)

[
iqu−p−q + (−i)qup+q

]
dm(u)(25.3)

and consequently

∣∣∣H(p,q)(0, 0)
∣∣∣ ≤ 2

(p + q)!
rp+q

sup
|u|=1

|H(ru)|.(25.4)

From this we have the analogue of Weierstrass’ convergence theorem:

Theorem 21. Let G an open set in C and (Hn) a sequence of harmonic
functions in G which converges uniformly on every compact K ⊂ G to a
limit function H. Then H is harmonic, and, for any p and q, the partial
derivatives H

(p,q)
n converge uniformly on every compact subset of G to the

partial derivative H(p,q) of H.

We know thanks to Borel-Lebesgue (Chap. V, n◦ 6) that uniform conver-
gence on every compact subset is a property of local character: to verify it
for every compact K ⊂ G it is enough to show that, for every a ∈ G, it holds
on a closed disc of centre a.

So choose an R > 0 such that the disc D : |z − a| ≤ R is contained in G
and put r = R/2. For every z such that |z−a| ≤ r the closed disc of centre z
and of radius r is contained in D. By (4) we have, for every harmonic function
U in G,

U (p,q)(z) ≤ 2(p + q)!r−p−q sup
|u|=1

|U(z + ru)|;

but for |z − a| ≤ r, all the points z + ru are in the large disc D, whence
trivially

sup
|u|=1

|U(z + ru)| ≤ ‖U‖D ,

and consequently

U (p,q)(z) ≤ 2(p + q)!r−p−q. ‖U‖D for |z − a| ≤ r.

Now we apply the general result to the functions U = Hm − Hn. Since the
Hn converge uniformly on every compact subset of G, and in particular on
D, we have ‖Hm − Hn‖D ≤ ε for m and n large. The preceding inequality
then shows that, for m and n large, we have∣∣∣H(p,q)

m (z) − H(p,q)
n (z)

∣∣∣ ≤ 2(p + q)!r−p−qε

at all the points of the disc |z − a| ≤ r.
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By Cauchy’s criterion, the partial derivatives H
(p,q)
n converge uniformly

in this disc and more generally, since a ∈ G is arbitrary, on every compact
K ⊂ G. It follows that the function H is C∞ like the Hn and that the H

(p,q)
n

converge to H(p,q) for any p and q. This allows us to pass to the limit in the
Laplace equation ∆Hn = 0, so that H is again harmonic, qed.

If the domain G is bounded and if the Hn are continuous on the closure
K of G, the maximum theorem shows that, if the Hn converge uniformly on
the boundary F = K − G of G, then they converge uniformly in G:

‖Hm − Hn‖G = ‖Hm − Hn‖F .

The preceding theorem applies to this case (but do not believe that the partial
derivatives converge uniformly on all of G: they converge uniformly only on
every compact subset of G).

26 – The Dirichlet problem for a disc

As we saw in preceding n◦, if a function H is defined and harmonic on a disc of
radius R > 1 and if one puts f(u) = H(u) for u ∈ T, then H(z) = Hf (z) for
|z| < 1. In this case Theorem 21 loses its interest: the series (24.6) converges
normally in |z| ≤ r for every r < R, so for r > 1, so that the passage to the
limit when r < 1 tends to 1 results from the continuity of H in the closed
disc |z| ≤ 1, and even beyond.

The situation becomes more interesting if, given an arbitrary real regu-
lated function f on T, one associates with it the function

Hf (z) =
∑

f̂(n)r|n|en(t) =
∑

f̂(n)r|n|un =(26.1)

=
∫

P
(
zu−1
)
f(u)dm(u),

defined a priori for |z| < 1. Since f is real we have f̂(−n) = f̂(n) and
the function (1) is, up to the factor 1

2 , the real part of the power series∑
n≥0 f̂(n)zn and so is harmonic; see also (22.15).
If f is continuous, we know (Theorem 19) that Hf (z) tends to f(u) when

z converges (not necessarily along a radius) to a u ∈ T while remaining in
the disc |z| < 1. This means that the function equal to Hf (z) for |z| < 1,
and to f on T, is continuous in the closed disc |z| ≤ 1. This was proved
using the fact that the functions u 
→ P (zu) have the properties of a Dirac
sequence when |z| < 1 tends to 1. This result furnished us a second proof of
Weierstrass’ approximation theorem.

Granted this, one could give a simpler proof of Theorem 19. Since the
function u 
→ P

(
zu−1
)

is positive and has integral 1 on T, the formula (1)
shows that |Hf (z)| ≤ ‖f‖, whence the relation
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‖Hf‖D ≤ ‖f‖(26.2)

between the uniform norms of f in T and of Hf on the open disc D : |z| < 1;
this is just the maximum principle for the harmonic function Hf , modulo
the fact that we do not yet know (or we are pretending not to know yet)
that Hf is the restriction to the open disc of a continuous function on the
closed disc. Now f is the uniform limit on T of a sequence of trigonometric
polynomials fn, which one may assume real if f is. For every trigonometric
polynomial g the series Hg(z) =

∑
ĝ(n)r|n|un reduces to a finite sum, so is a

continuous function of z = ru on all C. Denote by Hn the harmonic function
corresponding to g = fn; by (2), we have ‖Hp − Hq‖D ≤ ‖fp − fq‖ for any p
and q; but since Hp −Hq is defined and continuous on the closed disc |z| ≤ 1
(and in fact on C), we have

‖Hp − Hq‖D = ‖fp − fq‖

where D is the closed disc |z| ≤ 1. Consequently (Cauchy’s criterion), the
Hn converge uniformly on D and their limit is continuous there. Now they
converge to Hf in the open disc |z| < 1 since ‖Hf − Hn‖D ≤ ‖f − fn‖ by
(2), and to f on T. Whence the result:

Theorem 22. Let f be a continuous function on T. Then the function equal
to

Hf (z) =
∫

T

1 − |z|2
|z − u|2 f(u)dm(u)(26.3)

for |z| < 1 and to f on T is continuous on the closed disc |z| ≤ 1 and
harmonic in the open disc |z| < 1. This is the only function possessing these
properties.

Uniqueness follows from the maximum theorem; see the beginning of the
preceding n◦.

We have resolved a very particular case of the Dirichlet problem which
can be stated roughly as follows: given a bounded domain G in C whose
boundary is a not too savage curve, and, on the latter, a continuous function
f , to construct a continuous function on the closure Ḡ of G, harmonic in G
and equal to f on the boundary of G. Generalised to Euclidean spaces of
arbitrary dimension, and to other differential operators than ∆, this is one
of the fundamental problems of the theory of partial differential equations.
Let us make clear that, even in the classical case of the Laplacian in an open
subset of C, the case of the disc does not reflect the level of difficulty of the
problem.

We remark moreover that a harmonic function in the open disc |z| < 1
in general has no reason to be continuable to a continuous function on the
closed disc |z| ≤ 1. The simplest counterexample is provided by the function
P (z) =

(
1 − |z|2) / |z − 1|2 itself; it is harmonic in C−{1} but does not tend



356 VII – Harmonic Analysis and Holomorphic Functions

to any limit when z tends to 1. A much more complicated case is obtained
by starting from an arbitrary measure or even a distribution µ on T and
considering the function

Hµ(z) =
∫

T

1 − |z|2
|z − u|2 dµ(u) =

∑
µ̂(n)r|n|un;(26.4)

its behaviour on a neighbourhood of the unit circle can be as strange as
that of a holomorphic function. Again we do not obtain the most general
harmonic functions

∑
cnr|n|un in this way, for one cannot have cn = µ̂(n)

for a distribution µ unless the coefficients cn are of slow increase (n◦ 10,
Theorem 6), which need not happen, even if the series converges for r < 1.
Counterexample and exercise: cn = exp

(|n|1/2
)

for every n.
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§ 6. From Fourier series to integrals

In this §, the
∫

sign denotes an integral extended over R, while the sign
∮

denotes an integral extended over an interval of length 1. Recall the notation

e(x) = e2πix, ey(x) = e(xy)

for y real.

27 – The Poisson summation formula

Recall also that given a regulated and absolutely integrable function f on R
one defines the Fourier transform of f by the formula

f̂(y) =
∫

f(x)e−2πixydx =
∫

e(xy)f(x)dx.(27.1)

The integral converges since the exponential has modulus 1.

Theorem 23. The Fourier transform of an absolutely integrable function is
continuous and tends to 0 at infinity.

Assume that y remains in a compact subset H of R; the function e(xy)
is continuous on R×H and there exists a function p(x) [namely 1] such that
|e(xy)| ≤ p(x) for every y ∈ H and

∫
p(x)|f(x)|dx < +∞. It then remains

to apply Theorem 22 of Chap. V, n◦ 23, substituting e(xy) for f(x, y) and f
for µ. One could clearly argue directly: integrating over [−N, N ] instead of
R, one commits whatever y might be, an error ≤ r if N is large enough; so
it suffices – uniform limits of continuous functions – to prove the continuity
of the integral over K = [−N, N ]. But since (x, y) 
→ e(xy) is uniformly
continuous on every compact subset of R2, the function x 
→ e(xy) converges
to e(xb) uniformly on K when y tends to a limit b; one may therefore pass
to the limit in the integral over K.

It is clear that f is bounded, with

‖f̂‖ = sup |f̂(y)| ≤
∫

|f(x)|dx = ‖f‖1 .(27.2)

To show that f̂ tends to 0 at infinity one proceeds from the simplest to the
most general case.

(i) If f is the characteristic function of a compact interval [a, b],

f̂(y) =
∫ b

a

e−2πixydx =
e−2πixy

−2πiy

∣∣∣∣b
a

for y �= 0, whence the result in this case, hence also if f is a step function
vanishing outside a compact interval.
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(ii) If f is zero outside a compact interval K and integrable on K, then
for every r > 0 there is a step function g zero outside K such that

∫ |f(x)−
g(x)|dx ≤ r as shown by the very definition of an integral (Chap. V, n◦ 2).
Then
∣∣∣f̂(y) − ĝ(y)

∣∣∣ ≤ r for every y by (2); since |ĝ(y)| ≤ r for |y| large, we

have |f̂(y)| ≤ 2r for |y| large, whence again the result.
(iii) In the general case, for every r > 0 there exists a compact interval

K such that the contribution of R − K to the total integral of |f(x)| is ≤ r;
integrating over K in (1), one commits an error ≤ r for every y, and since
the integral over K tends to 0, we again find |f̂(y)| ≤ 2r for |y| large, qed.

As we have already seen à propos the function cot or the elliptic func-
tions, the “Eisenstein method”, as Weil and Remmert call it, for constructing
periodic functions on R consists of starting from non periodic functions f(x)
and considering the series

F (x) =
∑

f(x + n),(27.3)

summing over Z. If the series converges unconditionally, i.e. absolutely, the
result is incontestably periodic since changing x to x + 1 is equivalent to the
permutation n 
→ n + 1 in Z. One may then try to expand the result as a
Fourier series.

If one calculates formally, taking account of the periodicity of the expo-
nentials,

F̂ (p) =
∮

ep(x)dx
∑

f(x + n) =
∮

dx
∑

f(x + n)ep(x + n)(27.4)

=
∑∫ 1

0

f(x + n)ep(x + n)dx =

=
∑∫ n+1

n

f(x)ep(x)dx = f̂(p).

where f̂ is the Fourier transform of f . And since “every” periodic function is
the sum of its Fourier series, we finally find the Poisson summation formula
(though he never wrote it in this form)∑

f(x + n) =
∑

f̂(n)en(x),(27.5)

in particular, for x = 0, ∑
f(n) =

∑
f̂(n).(27.6)

All this is formal calculation. The first problem is to justify the permuta-
tion of the signs

∫
and
∑

performed to obtain (4). It is simplest to assume
first that f is continuous and that the series

∑
f(x + n) converges normally

on [0, 1], in which case it is clear that it converges normally on every com-
pact set, by periodicity; the presence of the factors ep(x) does not change
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anything, since they are of modulus 1. If these conditions are satisfied then F
is continuous and the term-by-term integration in (4) is justified (Chap. V,
n◦ 4, Theorem 4). Subject to these hypotheses, the function f is moreover
absolutely integrable on R, for the integral of |f(x)| over (−n, n), the nth par-
tial sum of the series

∑∫ |f(x+p)|dx, where one integrates over (0, 1), is, for
every n, less than the total sum of this series; the convergence of

∫ |f(x)|dx
follows from this (Chap. V, n◦ 22, Theorem 18). The formal calculation is
therefore justified. It remains to justify the relation (5), which says that F
is everywhere equal to the sum of its Fourier series; to do this it is enough
to assume that the latter is absolutely convergent, i.e. that

∑ |f̂(p)| < +∞;
convergence for any x would suffice, by Fejér, but it is better, in this context,
just to use a simple result:

Theorem 24. Let f be a function defined and continuous on R such that

(i) the series
∑

f(x + n) converges normally on every compact set,
(ii)
∑ |f̂(n)| < +∞.

Then f is absolutely integrable on R and∑
f(x + n) =

∑
f̂(n)en(x) for every x ∈ R.(27.7)

In practice, the convergence of the series
∑

f(x + n) is almost always
obtained by estimating f(x) for |x| large. Assume for example

f(x) = O
(|x|−s
)

at infinity, with s > 1.(27.8)

The continuous function |x|sf(x) being bounded for |x| large, i.e. outside a
compact set, is in fact bounded on R, being bounded on every compact set;
so likewise is f , so also (1 + |x|s) f(x), from which we have the estimate

|f(x)| ≤ M/ (1 + |x|s) for every x,

with a constant M > 0. This shows that f is absolutely integrable on R
(Chap. V, n◦ 22). If x remains in [0, 1], then |x + n| varies between |n| and
|n+1|, so is > |n| or |n+1| according to the sign of n. The series 1/ (1 + |n|s)
being convergent since s > 1, normal convergence of

∑
f(x + n) follows. As

to the convergence of
∑ |f̂(n)|, this is assured, as we shall see later, if f is

sufficiently differentiable, as in the case of periodic functions.
The real problem, in the practical use of the Poisson formula, or more

generally of the Fourier transform, is that we have to calculate the Fourier
transforms explicitly. Sometimes this is easy, as we shall see, but the crude
method – calculating a primitive of the integrand – is not any use in general,
because the primitive does not reduce to “elementary” functions. We have
therefore to find methods for calculating the integral over R (and not over an
arbitrary interval) without knowing the primitive; it was the greatest success
of Cauchy’s residue calculus that it allowed this kind of calculation in cases
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unknown up till then. Nothing better has been found since then; we have
many formulae for Fourier transforms in terms of special functions, Euler’s
Γ function for example, but they are almost always obtained by Cauchy’s
method.

Example 1. Choose the function

f(t) = 1/(z + t)s

where z is a non real complex parameter and s an integer ≥ 2, with for exam-
ple Im(z) > 0. The preceding considerations show that the series

∑
f(t + n)

is normally convergent on every compact set, but it remains to calculate the
Fourier transform

f̂(n) =
∫

exp(−2πint) (z + t)−s
dt

for n real, not necessarily an integer. To seek a primitive, for example by
integrating by parts, would lead, more complication, to integrals of the type
exxndx of Chap. V, n◦ 15, Example 2; they can be calculated immediately
by hand for n an integer > 0 but, for n < 0, and especially for n = −2,
they resist every attempt at explicit calculation (and not only because we
are working here at too elementary a level); Euler’s gamma function would
not have survived if one had been able to calculate a primitive of e−xxs.
But, with his residue method, Cauchy succeeded in calculating in a general
way the Fourier transform of a rational function p/q having no real pole and
decreasing sufficiently fast at infinity, i.e. such that d(q) > d(p) + 1. We may
prove for example that, for s integer ≥ 2 (convergence!), we have

∫
exp(−2πiut) (z + t)−s

dt =

⎧⎨
⎩

(−2πi)sus−1 exp(2πiuz)/(s − 1)! if u > 0,

0 if u ≤ 0
(27.9)
on condition that Im(z) > 0. The summation formula

∑
f(n) =

∑
f̂(n) can

be written, in this case, as

∑
Z

1
(z + n)s

=
(−2πi)s

(s − 1)!

∑
n>0

ns−1e2πinz for Im(z) > 0.(27.10)

For s = 2, this is ∑
Z

1/(z − n)2 = −4π2
∑

N

ne2πinz;(27.11)

now we know (see (8.14) for example) that, for z not an integer, the left hand
side is equal to π2/ sin2 πz; for Im(z) > 0 we have

∣∣eiz
∣∣ < 1 and so
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1/ sin2 z = −4/
(
eiz − e−iz

)2
= −4e2iz/

(
1 − e2iz

)2
=

= −4e−2iz
(
1 + 2e2iz + 3e4iz + . . .

)
using the power series of 1/(1−x)2. In this way we see (11) as a consequence
of the expansion of 1/ sin2 z as a series of rational fractions, and vice-versa.
Starting from (11) one might obtain the general case (10) by differentiating
with respect to z: the right hand side of (11) is a series of holomorphic
functions, so that, to legitimate the differentiations, it suffices, thanks to
Weierstrass, to show that the right hand side of (11) converges normally on
every compact subset of the half plane Im(z) > 0; but on such a compact
we have

∣∣e2πinz
∣∣ = e−2πny where y = Im(z) remains larger than a strictly

positive number m, for the distance from a compact set to the boundary of
an open set containing it is always > 0; since e−2πm < 1 normal convergence
is then clear.

In fact, the residue calculus (Chap. VIII, n◦ 10, (ii)) allows one to extend
the formula (9) and so (10) – replacing (s − 1)! by Γ (s) – to the case of a
complex exponent s satisfying only the condition Re(s) > 1, so as to make
the series (10) converge.

Example 2. Now choose

f(x) = e−t|x|(27.12)

where t is a parameter > 0, so that f is integrable on R. Then

f̂(y) =
∫

exp(−t|x| − 2πixy)dx;

on each of the intervals x < 0 and x > 0 one has to integrate a function of
the form ecx, with c complex, and since such a function has primitive ecx/c
the calculation is immediate and yields the result:

f̂(y) = 2t/
(
t2 + 4π2y2

)
.(27.13)

Simple estimates show that Theorem 24 applies here, whence∑
e−|n|t = 2t

∑
1/
(
t2 + 4π2n2

)
,

a formula strongly resembling the expansion of coth t as a series of rational
fractions . . .

Exercise. Extend these calculations to the case where t is complex, with
Re(t) > 0 (use Theorem 24 bis of Chap. V, n◦ 25).

28 – Jacobi’s theta function

Another more spectacular application of Theorem 24 depends on the calcu-
lation of the Fourier transform of the function f(x) = exp(−πx2). We have
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already met this in Chap. V, n◦ 25, Example 2, and we showed there, by
differentiating under the

∫
sign, that

f̂(y) = cf(y) where c = f̂(0) =
∫

exp(−πx2)dx.

If one shows that Theorem 24 and in particular (27.6) applies to f , then one
has c
∑

f(n) =
∑

f(n) and so c = 1 since the f(n) are all > 0.
Now the function exp(−πx2) decreases at infinity faster than every neg-

ative power of x, so satisfies the condition (27.8). Since, for the same reason,
the series

∑
f̂(n) converges absolutely, Theorem 24 applies. Moreover, it

yields the identity∑
exp
[−π(x + n)2

]
=
∑

exp(−πn2)en(x),(28.1)

valid for every x ∈ R.
One may generalise, replacing the function f(t) = exp(−πt2) by

f(t, z) = eπizt2(28.2)

where z = x + iy is a complex parameter. Then

|f(t, z)| = exp
(−πyt2

)
= qt2 where q = e−πy;

this expression is > 1 if y < 0, whence
∑ |f(n, z)| has no chance of converg-

ing; if on the other hand, y > 0, then q < 1 so that, for z given, |f(t, z)|
tends to 0 at infinity more rapidly than t−N for any N > 0 (Chap. IV, n◦ 5),
whence normal convergence on every compact set of

∑
f(t+n, z). It remains

to calculate the Fourier transform

f̂(u, z) =
∫

exp
(
πizt2 − 2πiut

)
dt =
∫

g(t, z)dt.(28.3)

First assume z = iy pure imaginary, so that izt2 = −yt2. The change of
variable t 
→ y−1/2t gives

f̂(u, iy) =
∫

exp
(
−πt2 − 2πiuy−1/2t

)
y−1/2dt,

which leads us to the Fourier transform of exp(−πt2) for the value uy−1/2;
thus

f̂(u, iy) = y−1/2 exp
(−πu2/y

)
for y > 0.(28.4)

In the general case, since the function g(t, z) under the
∫

sign in (3) is,
for given t, holomorphic in the half plane U : Im(z) > 0; f̂(u, z) is probably
holomorphic too (f̂ = f with a hat over it, see (28.3)). To confirm this, we
very luckily find in Chap. V, n◦ 25, a Theorem 24 bis which presupposes
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the following hypotheses: (i) the integral (3) converges absolutely: obvious;
(ii) the complex derivative g′(t, z) = πit2g(t, z) with respect to z is a contin-
uous function of (t, z): obvious; (iii) for every compact H ⊂ U there exists
an integrable function pH(t) on R such that |g′(t, z)| ≤ pH(t) for any t ∈ R
and z ∈ H: this demands a proof. But since the compact set H is contained
in the open half plane Im(z) > 0 there exists (see above) a number m > 0
such that Im(z) ≥ m for every z ∈ H; then

|g′(t, z)| = πt2|g(t, z)| = πt2 exp
(−πyt2

) ≤ πt2 exp
(−πmt2

)
= pH(t),

an integrable function on R because at infinity the function exp(−πmt2) is
O(t−2N ) for any N > 0; we would be happy with much less.

The function (3) is therefore holomorphic in the half plane U : Im(z) > 0.
Since we know how to calculate it for z = iy pure imaginary we will obtain
the general case by constructing on Im(z) > 0 the one and only (principle
of analytic continuation) holomorphic function which, on the imaginary axis,
reduces to (4). Now

f̂(u, z) = (z/i)−1/2 exp
(−πiu2/z

)
(28.5)

for z pure imaginary, agreeing that (z/i)−1/2 is positive real for z = iy.
The factor exp

(−πiu2/z
)

being holomorphic in C∗, we have only to find
a holomorphic function in the half plane U , which, for z = iy, reduces to
y−1/2; but, up to a few details, this is what we did at the end of n◦ 16. For
z ∈ U , the ratio z/i = ζ indeed lies in the half plane Re(ζ) > 0 contained in
C − R−; in the latter one may define a uniform, i.e. holomorphic, branch of
the “multiform function” ζ−1/2 by putting

ζ−1/2 = |ζ|−1/2
e−

i
2 arg(ζ) with | arg(ζ)| < π.

Since the point z = i corresponds to ζ = 1 where arg(ζ) = 0, the holomorphic
function we seek is therefore given by the formula

(z/i)−1/2 = |z|−1/2
e−

i
2 arg(z/i) with | arg(z/i)| < π(28.6)

in the half plane Im(z) > 0 in question (and even in C with the negative
imaginary half-axis removed). This is equivalent to choosing

arg(z/i) = arg(z) − π/2 with 0 < arg(z) < π,

a very natural choice: for arg(i) = π/2+2kπ and the translation −π/2 moves
the interval ]0, π[ to the interval ] − π/2, π/2[.

This point clarified, the Poisson summation formula gives us∑
exp
[
πiz(t + n)2

]
= (z/i)−1/2

∑
exp
(−πin2/z + 2πint

)
.(28.7)

Introducing the Jacobi function



364 VII – Harmonic Analysis and Functions Holomorphic

θ(z) =
∑

exp(πin2z), Im(z) > 0(28.8)

(or, for z pure imaginary, the Poisson function), (7) reduces, for t = 0, to

θ(−1/z) = (z/i)1/2θ(z);(28.9)

note, a detail to remember, that

Im(z) > 0 =⇒ Im(−1/z) > 0.

These formulae are some of the “strange identities” of Chap. IV. On
replacing z by −1/z we may rewrite (7) in the form∑

exp
(
πin2z + 2πint

)
= (z/i)1/2

∑
exp
[−πi(t + n)2/z

]
.(28.10)

Now, putting q = exp(πiz), whence |q| = exp(−πy) < 1, and46 x = e(t), the
left hand side is just the series ∑

qn2
xn

for which we wrote, in Chap. IV, eqn. (20.14), the curious expansion as an
infinite product. With this notation, similarly

θ(z) =
∑

qn2
= 1 + 2q + 2q4 + 2q9 + . . .

(
q = eπiz

)
.(28.11)

The series (8) is already, more or less, to be found in Fourier’s Théorie
analytique de la chaleur, though he set little importance on it. The relation
(9) was published by Poisson in 1823. Jacobi and Abel studied series of the
type (7) systematically, from 1825 on, by purely algebraic methods; Abel died
too early to exploit them, but Jacobi drew such a mass of formulae and of
results, mainly in theory of the elliptic functions, that his name has remained
attached to them.

The connection to the theory of heat propagation is immediate. In an
annulus the evolution of the temperature is controlled by the partial differ-
ential equation f ′

t = f ′′
xx with a numerical coefficient > 0 which depends on

the physical constants; t is the time and x the polar angle. Fourier’s idea was
to seek solutions of the form f(x, t) = g(x)h(t), whence g(x)h′(t) = g′′(x)h(t)
and consequently h′(t) = λh(t), g′′(x) = λg(x) where λ is a constant. But g
must be of period 2π, whence g(x) = a cos nx+b sin nx and λ = −n2, so that
h(t) = c. exp

(−n2t
)
, where a, b and c are constants (Fourier eliminated the

functions exp(+n2t) for obvious physical reasons). Fourier then postulated
that the general solution of his equation is a sum

f(x, t) =
∑

exp
(−n2t
)
(an cos nx + bn sin nx)(28.12)

46 This x is not the real part of z; the notation here has been chosen to fit with
that of Chap. IV, n◦ 20.
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of “decomposable” functions of this type, a method applicable to all sorts
of other problems, mainly in classical or quantum physics. One may then
calculate f(x, t) if one can expand the initial state f(x, 0) of the system in a
series of the form

f(x, 0) =
∑

an cos nx + bn sin nx;

it was this problem which led Fourier to expand every periodic function as a
trigonometric series.

The function

θ(x, t) =
∑

exp
(−πn2t + 2πinx

)
=(28.13)

= 1 + 2
∑

exp
(−πn2t

)
cos 2πnx

satisfies the equation
θ′′xx = 4π2θ′t

and so enters into the framework studied by Fourier; in fact, we now know
that it dominates the problem, for if one writes (12) in the form

f(x, t) =
∑

cn exp
(−πn2t

)
en(x),

summing over Z, an immediate47 calculation shows that

f(x, t) =
∮

θ(x − y, t)f(y)dy for t > 0,(28.14)

where f(y) = f(y, 0) is the temperature distribution at the initial instant.
For the Jacobi function the initial data

θ(x, 0) =
∑

exp(2πinx) =
∑

en(x)

is not a true function; it is the Dirac measure at x = 0. Physically, the initial
temperature is +∞ at x = 0 and 0 elsewhere. This might not have made
Dirac recoil, but Fourier did not go so far as to envisage this version of the
Big Bang corresponding to what would happen if one set fire to an artillery
piece whose barrel, curved, was a perfect torus.

29 – Fundamental formulae for the Fourier transform

The Poisson summation formula allows us to pass very rapidly from the the-
ory of Fourier series to that of Fourier integrals. The proofs which follow
are taken from N. Vilenkin, Special functions and representations of groups
47 Use the general formula to calculate the Fourier coefficients of a convolution

product.
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(Moscow, 1965), and attributed to I. M. Gel’fand, 1960, the Soviet mathe-
matician who has invented many more original ideas since the 1930s than
one can give him credit for. Igor Sakharov relates in his Mémoires that, dur-
ing 1950s, Gel’fand headed a team of mathematicians at the university of
Moscow responsible for the calculations needed for the Soviet thermonuclear
programme. Long forbidden to travel outside the national territory, he is now
professor at Rutgers University, New Jersey, and travels often . . . . Many
other proofs of Fourier and Cauchy are now known, but there is little likeli-
hood that this will ever be improved because of the total absence of explicit
calculations48; this is the great difference from all the classical proofs.

One starts from a function f satisfying the following hypotheses:

(H 1) f is continuous,
(H 2) the series

∑
f(x + n) converges normally on every compact set;

it follows, as we have seen, that f is bounded and absolutely integrable on R.
Let us put

fy(x) = f(x)e(yx) = f(x)ey(x).(29.1)

The exponential factors being of modulus 1, the series
∑

fy(x+n) converges
normally on every compact set for every y; on the other hand, the Fourier
transform of the function fy is

f̂y(t) =
∫

f(x)e(yx)e(−tx)dx = f̂(t − y).(29.2)

If we now assume that ∑
|f̂(n − y)| < +∞(29.3)

the Poisson summation formula applies to fy and shows that∑
f(x + n)ey(x + n) =

∑
f̂(n − y)e(nx).(29.4)

Now
∑

f(x+n)ey(x+n) = ey(x)
∑

f(x+n)ey(n); since, generally, ey(x) =
ex(y), (4) then leads to∑

f(x + n)en(y) =
∑

f̂(n − y)ex(n − y).(29.5)

For x given, let us write Fx(y) for the common value of the two sides. By
(H 2), the left hand side of (5) is an absolutely convergent Fourier series in y.
48 In fact, this is part of the theory of topological groups: one has a locally compact

commutative group G = R, a discrete subgroup Γ = Z such that the quotient
group G/Γ = K = T is compact, and is concerned to pass from harmonic analysis
on K (Fourier series) to harmonic analysis on G (Fourier integrals). This is what
André Weil did in 1940, in the general case, in a book we have already cited and
which may have inspired Gel’fand, who, at the same time, invented the subject
in Moscow with D. A. Räıkov, using functional analytic methods not imposing
any hypothesis on the structure of G.
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The coefficients f(x+n) are therefore found by integration (Chap. V, n◦ 5).
Whence, for n = 0,

f(x) =
∫ 1

0

Fx(y)dy =
∫ 1

0

dy
∑

f̂(n − y)ex(n − y).

Let us now strengthen the hypothesis (3) and suppose

(H 3) the series
∑

f̂(y + n) converges normally on every compact set;

then so does the series to be integrated, whence

f(x) =
∑∮

f(n − y)ex(n − y)dy =

=
∑∮

f(n + y)ex(n + y)dy,

which is simply the Fourier inversion formula

f(x) =
∫

f̂(y)e(xy)dy =
∫

f̂(y)e2πixydy(29.6)

where one integrates over R. We may write

̂̂
f(x) = f(−x).(29.6’)

Let us now apply the Parseval-Bessel equality to (5), considered as a
Fourier series in y. We find the relation

∑
|f(x + n)|2 =

∮
dy
∣∣∣∑ f̂(n − y)e2πix(n−y)

∣∣∣2(29.7)

=
∮

dy
∣∣∣∑ f̂(n − y)e2πinx

∣∣∣2
since e2πixy, of modulus 1, is a factor of the series on the right hand side; the
series on the left hand side is convergent by Parseval-Bessel, but since f is
bounded,

|f(x + n)|2 ≤ ‖f‖.|f(x + n)|;(29.8)

so the series (7) converges normally on every compact set, by (H 2), and its
sum is continuous.

Now let us integrate with respect to x over (0, 1); we find
∫ |f(x)|2 dx,

a convergent integral by (8) and the fact that
∫ |f(x)|dx converges. On the

right hand side the function
∑

f̂(n − y)en(x) is continuous in (y, x), for if a
convergent series

∑
v(n) dominates the series

∑ |f̂(n−y)| on I = [0, 1], then
it dominates the series in question on I × R. We may therefore interchange
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the order of integration (Chap. V, n◦ 9, Theorem 10), to obtain the double
integral ∫ 1

0

dy

∫ 1

0

dx
∣∣∣∑ f̂(n − y)en(x)

∣∣∣2 .

But the function to be integrated is, for y given, the square of an absolutely
convergent Fourier series in x. Its integral may therefore be calculated using
Parseval-Bessel (Chap. V, n◦ 5 suffices), i.e. is equal to

∑ |f̂(n − y)|2. On
integrating with respect to y and comparing with the preceding result we
finally obtain the Plancherel formula∫

|f(x)|2dx =
∫

|f̂(y)|2dy;(29.9)

this is the analogue of Parseval-Bessel for Fourier integrals. In conclusion:

Theorem 25. Let f be a continuous and absolutely integrable function on R
such that the series

∑
f(x + n) and

∑
f̂(y + n) converge normally on every

compact set. Then

f(x) =
∫

f̂(y)e(xy)dy,

∫
|f(x)|2dx =

∫
|f̂(y)|2dy,

the three integrals over R being absolutely convergent.

More generally, if two functions f and g satisfy the hypotheses of the
theorem, then ∫

f(x)g(x)dx =
∫

f̂(y)ĝ(y)dy;(29.10)

one passes from the case f = g to the general case as we did for Fourier
series, i.e. by applying the Plancherel formula to the functions f + g, f − g,
f + ig and f − ig.

Example. In view of Example 2 of n◦ 27 we have∫
2te2πixy

t2 + 4π2y2
dy = e−t|x| for every t > 0.

This formula essentially says no more than∫
eixydy

x2 + 1
= πe−|x|.

Cauchy’s residue calculus would give this formula directly. To try to establish
it “without knowing anything” is hopeless, except of course for x = 0, the
only case where the primitive can be calculated.

Exercise (another proof of the inversion formula). Let f be a continuous
function on R satisfying
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f(x) = O (1/|x|a) , f̂(y) = O
(
1/|y|b)

at infinity, with constants a, b > 1, so that f and f̂ are absolutely integrable.
(i) Show that the Poisson summation formula applies to f [use Theorem 2
of n◦ 6]. (ii) Show that, for every T > 0,

∑
f(x + nT ) =

1
T

∑
f̂(n/T )e2πinx/T .

(iii) Show that, when T → +∞, the left hand side tends to f(x) and the
other to

∫
f̂(y)e(xy)dy.

30 – Extensions of the inversion formula

One may also write (29.10) in the often convenient form∫
f(x)ĝ(x)dx =

∫
f̂(y)g(y)dy;(30.1)

it suffices, in (29.10), to replace g(x) by ĝ(x) and to note that then ĝ(y) is
replaced by g(y). The relation (1) is in fact directly obvious if one calculates
formally:∫

f(x)ĝ(x)dx =(30.2)

=
∫

f(x)dx

∫
g(y)e(xy)dy =

∫ ∫
f(x)g(y)e(xy)dxdy =

=
∫

g(y)dy

∫
f(x)e(xy)dx =

∫
f̂(y)g(y)dy.

But one has to justify the interchange of the integrations. In the Lebesgue
theory it is enough to assume that h(x, y) = f(x)g(y)e(xy) is integrable on
R2, i.e. that f and g are integrable, since e(xy) is continuous and bounded;
one then applies Fubini’s theorem (the real one . . .) to the function obtained.

In the Riemann theory, there is a more restricted, but nevertheless useful
result:

Lemma. Let f and g be two absolutely integrable regulated functions; then∫
f(x)ĝ(x)dx =

∫
f̂(y)g(y)dy.

First assume f and g are zero outside compact intervals K and H,
and consider on K and H the measures dµ(x) = f(x)dx, dν(y) = g(y)dy
(Chap. V, n◦ 30, Example 1). Since the function e(xy) is continuous on
K × H we have∫

dµ(x)
∫

e(xy)dν(y) =
∫

dν(y)
∫

e(xy)dµ(x)
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(Chap. V, n◦ 30, Theorem 30). By definition of µ and ν, this relation justifies
the formal calculation (2). The lemma is therefore true under the hypotheses
just formulated.

In the general case, let us write fn and gn for the functions equal to f
and g on [−n, n] and zero elsewhere, whence∫

fn(x)ĝn(x)dx =
∫

f̂n(y)gn(y)dy.(30.3)

It all reduces to showing that one may pass to the limit under the integra-
tion sign. Let us do this for the left hand side. It is enough to show that
‖fnĝn − fĝ‖1 tends to 0, since, generally,

∣∣∫ f
∣∣ ≤ ∫ |f |. Now omitting the

variable x,

|fnĝn − fĝ| ≤ |fn − f | . |ĝn| + |f |. |ĝn − ĝ|
≤ |fn − f | . ‖ĝn‖ + |f |. ‖ĝn − ĝ‖
≤ |fn − f | . ‖gn‖1 + |f |. ‖gn − g‖1

since

‖ĝ‖ = sup |ĝ(x)| = sup
∣∣∣∣
∫

e(xy)g(y)dy

∣∣∣∣ ≤ ‖g‖1

for every absolutely integrable function on R. Whence, integrating over R,

‖fnĝn − fĝ‖1 ≤ ‖fn − f‖1 . ‖gn‖1 + ‖f‖1. ‖gn − g‖1(30.4)

But
‖fn − f‖1 =

∫
|x|>n

|f(x)|dx

tends to 0 since f is absolutely integrable, likewise ‖gn − g‖1; the factor ‖f‖1

is independent of n and the factor ‖gn‖1 tends to ‖g‖1. The right hand side
of (4) therefore tends to 0, qed.

For example let us choose for g the function e−t|x| and for f an absolutely
integrable regulated function. By Example 2 of n◦ 27 we find∫

2t

t2 + 4π2x2
f(x)dx =

∫
e−t|y|f̂(y)dy every t > 0.(30.5)

If we put

u(x) = 2/(1 + 4π2x2), un(x) = nu(nx),(30.6)

the relation (5) can be written, for t = 1/n, in the form∫
nu(nx)f(x)dx =

∫
e−|y|/nf̂(y)dy.(30.7)
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The function u is continuous (and even C∞), positive, and its total integral
is equal to 1, as an elementary calculation shows. Dirac’s lemma of Chap. V,
n◦ 27, the version of Example 1, then shows that, if f is continuous at the
origin and bounded on R, the left hand side of (7) tends to f(0). On the
right hand side the exponential converges to 1 uniformly on every compact set
while remaining < 1; if the function f̂ is absolutely integrable, the right hand
side of (7) then tends to the integral of the latter (dominated convergence),
whence, in the limit,

f(0) =
∫

f̂(y)dy,(30.8)

i.e. Fourier’s inversion formula for x = 0.
In fact, it is not necessary to assume f bounded. In Chap. V, n◦ 27,

this hypothesis was used only to show that, for every δ > 0, the integral∫
f(x)un(x)dx extended over the set |x| > δ, tends to 0. Now it is clear that

here
|x| > δ > 0 =⇒ |un(x)| < 1/2nδ2x2,

so that the function x 
→ un(x) converges uniformly to 0 on |x| > δ; since,
here, f is assumed absolutely integrable, we have

lim
∫
|x|>δ

f(x)un(x)dx = 0

even if f is not bounded.
To obtain the inversion formula at an arbitrary point a ∈ R one replaces

x 
→ f(x) by x 
→ f(x + a). The Fourier transform becomes∫
f(x + a)e(xy)dx =

∫
f(x)e(xy − ay)dx = f̂(y)e(ay)

and by applying (8) to the new function one obviously obtains Fourier’s
inversion formula at the point a if f is continuous at this point. Consequently:

Theorem 26. Let f be a continuous absolutely integrable function on R.
Suppose that f̂ is absolutely integrable. Then

f(x) =
∫

f̂(y)e(xy)dy for every x ∈ R.(30.9)

Note that the proof uses only the following facts: (i) formula (2), which we
established using a “poor man’s Fubini” without using Theorem 25, (ii) the
perfectly elementary calculation of the Fourier transform of e−t|x|, whence
(5) directly, (iii) the fact, also totally elementary, that the functions x 
→
2t/
(
t2 + 4π2x2

)
form a Dirac sequence when t tends to 0.

The reader will doubtless observe that the functions of Theorem 25 sat-
isfy the hypotheses of Theorem 26. So why state a useless Theorem 25 when
Theorem 26 provides us the inversion formula under more general hypotheses
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and without passing through Theorem 25? The reason is simple: besides that
Theorem 25 also gives us the Plancherel formula, its proof does not use, as
we have said, any explicit calculation.

When f is not continuous at 0 the relation un(x) = un(−x) allows one
to argue as we did à propos Dirichlet’s theorem on Fourier series: the limit is
1
2 [f(0+)+f(0−)]. The formula we obtained resembles Dirichlet’s, so we may
conjecture that it is valid under more general hypotheses than integrability
of f̂ . This is an interesting exercise, though its usefulness to us is very small.

If one is inspired by the case of Fourier series, one replaces, in the in-
version formula for x = 0, the “total” integral, not absolutely convergent,
substituting for f̂ its “partial” integrals

sN (0) =
∫ N

−N

f̂(y)dy =
∫ N

−N

dy

∫
f(t)e(yt)dt(30.10)

and one interchanges the integration signs; the lemma established above au-
thorises us to do this if f is regulated and absolutely integrable: take for g(y)
the characteristic function of the interval (−N, N). Then

sN (0) =
∫

f(t)
e(Nt) − e(−Nt)

2πit
dt =
∫

f(t)KN (t)dt.(30.11)

The function KN (t) = sin(2πNt)/πt is not absolutely integrable, but its
integral over R is convergent since 1/t is monotone and tends to 0 at infinity
(Chap. V, n◦ 24, Theorem 23; there is no problem at t = 0 since the function
is continuous there). Let us put∫

KN (t)dt = 2c;(30.12)

it will emerge that c = 1
2 , but we do not know this a priori. Since the function

KN is even, we find, as in the case of Fourier series, that

sN (0) − c[f(0+) + f(0−)] =
∫ +∞

0

f(t) − f(0+)
πt

sin(2πNt)dt +

+
∫ 0

−∞

f(t) − f(0−)
πt

sin(2πNt)dt.

Assume now that the function f has right and left derivatives at t = 0 and
put

g(t) =

⎧⎨
⎩

[f(t) − f(0+)]/πt for t > 0,
? for t = 0,
[f(t) − f(0−)] /πt for t < 0,

(30.13)

the sign ? indicating that the value attributed to g at 0 is unimportant. We
obtain a regulated function in R and
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sN (0) − c[f(0+) + f(0−)] =(30.14)

=
∫

g(t) sin(2πNt)dt = [ĝ(N) − ĝ(−N)] /2i.

It all amounts to showing that ĝ(y) tends to 0 as |y| increases indefinitely.
This would be obvious if g were absolutely integrable (n◦ 27, Theorem 23),

but we are not in this case. Theorem 23 of Chap. V, n◦ 24 relative to integrals
of the form

∫
f(x) sin(xy)dx, where f is monotone and tends to 0 at infinity,

will resolve the problem.
We may decompose the integral in (14) into three parts relative to the

intervals (−∞,−1), (−1, 1) and (1,+∞). The integral extended over (−1, 1)
is the Fourier transform of a regulated function of compact support, so tends
to 0 at infinity (Theorem 23). The integral extended over (1,+∞) can be
written ∫ +∞

1

f(t)
t

sin(2πNt)dt − f(0+)
∫ +∞

1

sin(2πNt)dt/t;

this calculation is legitimate because f(t) and a fortiori f(t)/t are ab-
solutely integrable, while the second integral converges; in fact, Theorem 23
of Chap. V, n◦ 24 even shows that it tends to 0. Likewise for the first, as the
Fourier transform of an absolutely integrable function. One argues similarly
for the interval (−∞, 1).

The integral in (14) thus tends to 0 and one obtains the following result:

Theorem 27. Let f be an absolutely integrable regulated function. Then

lim
N→∞

∫ N

−N

f̂(y)e(xy)dy =
1
2
[f(x+) + f(x−)](30.15)

at every point where f has right and left derivatives.

And why has the unknown constant c transformed itself surreptitiously
into 1

2 ? Because, if one applies the formula to a sufficiently accommodating
function, one already knows (Theorem 25) that the right hand side of (15) is
equal to f(x). So the constant c has no choice . . .

This small auxiliary result can be rewritten as∫
sin(2πNt)dt/t = π

or, by an obvious change of variable,∫ ∞

−∞
sin(t)dt/t = π,(30.16)

a famous formula of Dirichlet’s. You are advised not to try to establish this
by looking for a primitive of sin(t)/t.
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31 – The Fourier transform and differentiation

As we have seen in Chap. V, n◦ 25, Example 1, if a regulated function f on
R satisfies49 ∫

|f(x)|dx < +∞,

∫
|xf(x)|dx < +∞,(31.1)

its Fourier transform is differentiable and

f̂ ′(y) = −2πi

∫
xf(x)e(xy)dx,(31.2)

the Fourier transform of −2πixf(x).
To formulate this result in a concentrated way, it is helpful to introduce

“operators” transforming the (or certain) functions on R into other functions
on R:

(i) the operator M : f 
→ Mf of multiplication by −2πix;
(ii) the differentiation operator D : f 
→ Df ;
(iii) the Fourier transform operator F : f 
→ Ff = f̂ .

Then formula (2) can be written as

DFf = FMf or D ◦ F = F ◦ M,(31.2’)

the symbol ◦ as always denoting the composition of maps. One must remain
aware of the fact that (2’) assumes Mf absolutely integrable.

One may iterate the argument so long as the functions Mkf are integrable.
Since the Fourier transform F exchanges M and D, one clearly finds the
formula

DkFf = FMkf(31.2”)

if Mkf(x) = (−2πix)kf(x) is absolutely integrable. Whence a first result:

Lemma 1. Let f be a regulated function such that
∫ |xpf(x)| dx < +∞.

Then f̂ is of class Cp and

Dkf̂(y) =
∫

(−2πix)kf(x)e(xy)dx for every k ≤ p.(31.3)

Limit case:
f̂ is C∞ if

∫
|xpf(x)|dx < +∞ for every p.

49 The second condition implies the first since f is integrable on every compact set
and |f(x)| < |xf(x)| for |x| large.
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Now suppose that f is of class C1 (or, more generally, a primitive of a
regulated function) and that

∫ |f ′(x)|dx < ∞. Integrating by parts, one has,
for y �= 0,∫ T

−T

f(x)e−2πixydx = f(x)
e−2πixy

−2πiy

∣∣∣∣T
−T

+
1

2πiy

∫ T

−T

f ′(x)e−2πixydx.(31.4)

Since f ′ is integrable on R the function

f(x) = f(0) +
∫ x

0

f ′(t)dt

tends to a limit as x tends to +∞ or −∞. This limit is zero since otherwise
the integral

∫ |f(t)|dt would be clearly divergent. So we see that in (4), the
integrated part tends to 0 when T → +∞, and there remains

f̂ ′ (y) = 2πiyf̂(y),(31.5)

which we may write in the form

FDf = −MFf or F ◦ D = −M ◦ F.(31.5’)

If f is of class Cp, and if all its derivatives are absolutely integrable, we may
apply the calculation p times to obtain

f̂ (p)(y) = (2πiy)pf̂(y), i.e. FDpf = (−1)pMpFf.(31.6)

Now the left hand side tends to 0 at infinity (Theorem 23); consequently:

Lemma 2. If f is of class Cp and if all its derivatives are absolutely inte-
grable, then

f̂(y) = o
(
y−p
)

when |y| −→ +∞.(31.7)

In other words: the Fourier transform decreases at least as rapidly as the
function f has integrable derivatives.

The ideal case is that where f is indefinitely differentiable, with deriva-
tives satisfying

f (p)(x) = O
(
x−q
)

for any p and q;(31.8)

one then says (L. Schwartz) that f is indefinitely differentiable with rapid
decrease; the set of these functions is denoted S(R) or simply S. We must
not forget that the condition of decrease at infinity applies not only to f , but
to all its derivatives. If f is in S, so also is the function xpf (q)(x) for any
p and q, for on multiplying a derivative of arbitrary order of xpf (q)(x) by a
power of x we obtain a linear combination of a finite number of functions of
the form xkf (h)(x), which are O

(
x−N
)

for any N by (8) for p = h, q = k+N .
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Theorem 28. The Fourier transform maps S bijectively onto S.

It is clear that if f ∈ S one may apply Lemma 1 to it for any p, so
that f̂ is C∞. Since xpf(x) is also in S one may apply Lemma 2 for any p;
consequently, f̂(y) = O

(
y−N
)

for any N . But the derivatives of f̂ are, up to
constants factors, the Fourier transforms of the functions xpf(x), which are
again in S. They too are O

(
y−N
)

at infinity for any N .

Consequently, f ∈ S implies f̂ ∈ S. But since ̂̂f(x) = f(−x), the condition
f̂ ∈ S implies conversely that f ∈ S. The map is therefore bijective, qed.

An immediate corollary is that the Poisson summation formula, Fourier’s
inversion formula and Plancherel’s formula apply to every f ∈ S.

Another important, and easy to establish, result in S is the formula

f̂ � g = f̂ ĝ(31.9)

which gives the Fourier transform of a convolution product

f � g(x) = g � f(x) =
∫

f(x − y)g(y)dy,(31.10)

an analogue to the formula (4.10) for periodic functions. Calculating formally:

f̂(z)ĝ(z) =
∫

f(x)e(xz)dx

∫
g(y)e(yz)dy =

∫ ∫
ez(x + y)f(x)g(y)dxdy =

=
∫

g(y)dy

∫
ez(x + y)f(x)dx =

∫
g(y)dy

∫
ez(x)f(x − y)dx =

=
∫

ez(x)dx

∫
g(y)f(x − y)dy =

∫
f � g(x)ez(x)dx,

whence the result. The interchange of the repeated integrals is justified by
Theorem 25 of Chap. V, n◦ 26 since the exponential is of modulus 1 and the
functions f and g are absolutely integrable and bounded in R, so that the
function ez(x + y)f(x)g(y) is, up to constants, dominated either by |f(x)|,
or by |g(y)|.

The relation (9) is in fact valid under much wider hypotheses – it would
be enough for f and g to regulated and absolutely integrable, the case where
f and g are continuous of compact support being particularly obvious –,
but since Lebesgue’s integration theory yields it very easily in an even more
general case, it is better to wait to deal with this.

Since the ordinary product of two functions of S is again in S (obvious!),
(9) and Theorem 28 show that

(f ∈ S) & (g ∈ S) =⇒ f � g ∈ S.

Exercise: prove this directly, starting from (10).
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Since we have already given three different proofs of the inversion for-
mula (Theorem 25, Exercise of n◦ 29 and Theorem 26), we may as well
give a fourth, based on the idea, dear to the physicists, that a “continuous
spectrum” is the limit case of a “discrete spectrum” whose “lines” approach
each other more and more closely, as Cavalieri, with his “indivisibles”, would
have had no trouble understanding. The method rests on a simple formal
calculation, but one has to justify it, which is less easy.

One starts with a regulated function f defined on R and, for every T > 0,
considers the function fT of period T satisfying

fT (x) = f(x) for − T/2 < x ≤ T/2.(31.11)

“Clearly” we have a Fourier series expansion

fT (x) =
∑

an(T )en(x/T )(31.12)

with

an(T ) =
1
T

∫ T/2

−T/2

fT (x)en(−x/T )dx =
1
T

∫ T/2

−T/2

f(x)e(−nx/T )dx.(31.13)

For T large the last integral is “almost” equal to the integral extended over
all R, i.e. to f̂(n/T ), whence “manifestly”, for x = 0 let us say, the formula

f(0) ≈ 1
T

∑
f̂(n/T ).(31.14)

The right hand side is “obviously” the Riemann sum one would obtain in cal-
culating

∫
f̂(y)dy using the subdivision of R by the abscissae n/T . Whence,

in the limit, f(0) =
∫

f̂(y)dy and, by translation, the inversion formula at
an arbitrary point. The same calculation also yields the Plancherel formula.
The Parseval-Bessel theorem applied to the Fourier series of fT shows that

1
T

∫ T/2

−T/2

|fT (x)|2dx =
∑

|an(T )|2 ≈ 1
T 2

∑
|f̂(n/T )|2,(31.15)

the sign ≈ signifying that the right hand side is “almost” equal to the third.
In the first term one can replace fT by f , whence an integral which tends
to
∫ |f(x)|2dx; if one multiplies the third term by T to eliminate the factor

1/T from the first, one finds again a Riemann sum which “clearly” tends to∫ |f̂(y)|2dy, “cqfd”.
This is all very well, but there are several gaps to fill in, which explains

why some textbooks for “users” confine themselves to the formal calculation
and to the traditional mathematical variant of the argument from authority,
accompanied by recourse to physical intuition.

If one restricts oneself to examining what happens for x = 0, which is no
restriction in generality, the relation (12) assumes that fT , i.e. f , is continuous
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at this point since otherwise the inversion formula has little chance of being
correct. It also assumes, more seriously, that the Fourier series converges.
Simplest is to assume fT of class C1 on R, so imposing the same hypothesis on
f , but even in this case definition (11) shows that fT has every chance of being
discontinuous at the points ±T/2. A convenient procedure for eliminating the
difficulty is to assume f of compact support since, for T large enough, f is
then zero on a neighbourhood of the end-points of the interval (11). If this is
the case, the second integral is in fact extended over all R for T large, whence
an(T ) = f̂(n/T )/T directly and the formula (14) follows.

One then has to pass from the series
∑

f̂(n/T )/T to the integral of f̂ .
This assumes at least that the latter converges. Since f is of compact support,
Lemma 2 above shows that this is the case if f is C2, since then f̂(y) =
O(1/y2) at infinity. This done, one may consider the series

∑
f̂(n/T )/T as

the integral over R of the function ϕT equal to f̂(n/T ) between (n − 1)/T
and n/T ; as T increases ϕT converges simply (and even uniformly on every
compact set) to f̂ since f̂ is continuous. Since we have the global estimate
|f̂(y)| ≤ M/(1 + y2) = p(y), the same estimate applies to ϕT , and since the
positive function p is integrable on R, the dominated convergence theorem
shows that the integral of ϕT tends to that of f̂ ; one may therefore, in (14),
replace the series by

∫
f̂(y)dy, whence the inversion formula. The calculation

leading to the Plancherel formula is justified by analogous arguments.
The necessary arguments become noticeably more difficult if one aban-

dons the hypothesis that f(x) is zero for |x| large. Even under the much too
strong hypothesis that f ∈ S the difficulty due to the fact that fT may have
isolated discontinuities does not disappear: the Fourier series of fT does not
converge absolutely and if one wants to pass to (14) one has to evaluate pre-
cisely the difference between an(T ) and f̂(n/T )/T , which is easy since f̂ ∈ S,
and then pass to the limit term-by-term in the series (12).

32 – Tempered distributions

When Schwartz invented his theory of distributions (Chap. V, n◦ 34) he im-
mediately asked the following question: can one define the Fourier transform
of a distribution T on R as on T? Now a distribution is a linear form on
the space D = D(R) of the C∞ functions of compact support, satisfying
certain conditions of continuity; since the exponentials are not of compact
support, the standard formula makes no sense unless T is a bounded Radon
measure µ (Chap. V, n◦ 31, Example 1) on R; one may, in this case, integrate
every bounded continuous function with respect to µ (same method as for the
measure dx: Chap. V, n◦ 22) and then define

µ̂(y) =
∫

e(xy)dµ(x).

In the general case, the problem would have an immediate answer if we
knew that f 
→ f̂ maps D bijectively onto D: we would then define T̂ so as
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to obtain the distribution f̂(y)dy if dT (x) = f(x)dx, i.e. by the formula∫
ϕ(y)dT̂ (y) =

∫
ϕ̂(x)dT (x), i.e. T̂ (ϕ) = T (ϕ̂),(32.1)

directly inspired by (30.1).
Alas, the Fourier transform of a function of compact support is never of

compact support. In this case

f̂(y) =
∫

f(x) exp(−2πixy)dx =
∑

(−2πiy)[n]

∫
xnf(x)dx

since we are integrating over a compact set K a series that is normally conver-
gent on K. Here we may even assume y complex, so that f̂ is the restriction
to R of an analytic function on C, i.e. of an entire function. The principle of
analytic continuation then shows that, for f regulated and of compact sup-
port, f̂ cannot be of compact support (or zero on a nonempty open interval)
unless f̂ = 0, which, for f ∈ D (and even for f continuous: Theorem 26),
implies f = 0. The situation is not what we met à propos Fourier series.

To cut through this dilemma, Schwartz had to introduce a particular class
of distributions and, to do this, to substitute for D the space S endowed
with a suitable topology. If one wants to define the Fourier transform of a
distribution T by formula (1) for ϕ ∈ D, one has to be able to define the
value of T on the Fourier transforms of the ϕ ∈ D, i.e. on functions which
are in S but not in D; supposing this point achieved, one again has to verify
that the linear form ϕ 
→ T (ϕ̂) so obtained is continuous. The solution is
then (i) to endow S with a topology making the map f 
→ f̂ of S into S
continuous, (ii) to restrict oneself to the distributions T : D → C which can
be extended to continuous linear forms S → C.

Consider now the first problem. For every f ∈ S the numbers

Np,q(f) = sup
∣∣∣xpf (q)(x)

∣∣∣ ,(32.2)

are finite by definition. Clearly

Np,q(f + g) ≤ Np,q(f) + Np,q(g)

and Np,q(cf) = |c|Np,q(f) for every constant c; furthermore, it is clear that
Np,q(f) = 0 only if f = 0; each function Np,q is therefore a norm on the
vector space S. For every r ∈ N the function

Nr(f) =
∑

p,q≤r

Np,q(f)(32.3)

(no connection with the norms Np of integration theory) has again the same
properties and Nr ≤ Nr+1. One now defines a topology on S by calling every
set defined by an inequality
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Nr(f − g) < ρ,

where ρ > 0 and r ∈ N are chosen arbitrarily, a “ball of centre f”, and
declaring that a subset U of S is “open” if for every f ∈ U the set U contains
a ball of centre f (see50 the Appendix to Chap. III, n◦ 8). Convergence in S
can then be translated into the condition

lim Nr(f − fn) = 0 for every r;(32.4)

equivalently, one demands that, for any p and q,

lim xp
[
f (q)(x) − f (q)

n (x)
]

= 0 uniformly on R.(32.4’)

This allows one to speak of continuous functions on S, for example of
continuous maps from S into S. If U is such a map, denoted f 
→ U(f) or
Uf according to the case and to the author, one has, to express the continuity
of U at a “point” f0 of S, to write that for every ball B of centre g0 = Uf0

there exists a ball B′ of centre f0 such that U maps B′ into B; in other words
that, for any r ∈ N and ε > 0, there exists an r′ ∈ N and an ε′ > 0 such that

Nr′ (f − f0) < ε′ =⇒ Nr (Uf − Uf0) < ε.

If U is linear, the most frequent case, it clearly suffices to express conti-
nuity for f0 = 0. If U takes its values in C, one replaces the inequalities
Nr (Uf − Uf0) < ε by the single condition |Uf − Uf0| < ε.

Exercise – Show that f 
→ f2 is a continuous map of S into S.
With these definitions, one sees immediately that differentiation D : f 
→

f ′ is a continuous map of S into S; indeed

Np,q(f ′) = sup
∣∣∣xpf (q+1)(x)

∣∣∣ = Np,q+1(f),

whence the inequality

Nr(f ′) ≤ Nr+1(f)(32.5)

which yields the result.
Similarly, the operator M , multiplication by the function −2πix, maps

S linearly into S and is continuous. When one replaces f(x) by xf(x) the
function f (q)(x) is replaced by xf (q)(x) + qxf (q−1)(x), whence

Np,q(Mf) = 2π. sup
∣∣∣xp+1f (q)(x) + qxpf (q−1)(x)

∣∣∣ ≤
≤ 2πNp+1,q(f) + 2πqNp,q−1(f),

50 One might also consider the sets Np,q(f −g) < ρ without changing the topology;
using the Nr is technically a little easier. On the other hand, note that the family
of norms Nr or Np,q is countable, so one could define the topology of S using a
single distance (Appendix to Chap. III, n◦ 8), so in fact S is a metric space, and
moreover complete (exercise!); but it is not a Banach space: the topology of S
cannot be defined by a single norm.
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a finite result – whence Mf ∈ S – and implying the estimate

Nr(Mf) ≤ crNr+1(f)(32.6)

with a constant cr whose exact value is of little importance, because (6) is
enough to establish the continuity of M .

As a map of S into S, the Fourier transform F is also continuous in each
sense. To see this without much calculating, first remark that

Np,q(f) = N0 (MpDqf) = ‖MpDqf‖
R

and then Np,q(f̂) = N0 (MpDqFf) = N0 (MpFMqf) = N0 (FDpMqf) by
the “commutation formulae” (31.2”) and (31.6). Now, in general,

N0(Ff) = sup
∣∣∣∣
∫

f(x)e(xy)dx

∣∣∣∣ ≤
∫

|f(x)|dx = ‖f‖1;

since the function (x2 + 1)f(x) is bounded by N2(f), by (3), one finds

N0(Ff) ≤ N2(f)
∫ (

x2 + 1
)−1

dx,

with a convergent integral whose exact value, c = π, is not important. It
follows that

Np,q(f̂) = N0 (FDpMqf) ≤ cN2 (DpMqf) ;

on applying (5) p times to the function Mqf one finds a result ≤ Np+2 (Mqf)
up to a constant factor, and by applying (6) q times to f one obtains a relation
of the form Np,q(f̂) ≤ Np+q+2(f) up to a constant factor. Remembering the
definition (3) of Nr, we finally have

Nr(f̂) ≤ c′rNr+2(f)(32.7)

where c′r is a new constant. This proves the continuity of the Fourier trans-
form. Since it is bijective and quasi identical to its inverse map by virtue

of the relation ̂̂f(x) = f(−x), we conclude that the Fourier transform is a
bijective and bicontinuous map of S onto S, in other words what in topology
one calls a homeomorphism (linear too) of S onto S.

With their systematic recourse to the operators D, M and F , these cal-
culations can appear a little abstract. But to write explicitly the integrals
and derivatives which they mask would be even less enticing.

We can now return to distribution theory. Following Schwartz, we will
call any continuous linear form T : S → C a tempered distribution on R. The
inequality |T (f)| < ε has to hold for every f ∈ S “close enough” to 0; this
means that there exists an r ∈ N and a δ > 0 such that
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Nr(f) < δ =⇒ |T (f)| < ε.

Continuity is expressed as follows: there exist an r ∈ N and a constant
M(T ) ≥ 0 such that

|T (f)| ≤ M(T ).Nr(f) for every f ∈ S;(32.8)

the argument is the same as in the normed vector spaces of the Appendix to
Chap. III, n◦ 6.

To justify the terminology, we have to show how T defines a distribution
in the sense of Chap. V, n◦ 34. Since S contains D it is clear that T defines a
linear form on D, but again one has to prove continuity. If one works in the
subspace D(K) of the ϕ ∈ D vanishing outside a compact subset K of R one
has

Np,q(ϕ) = sup
∣∣xpϕ(q)(x)

∣∣ < c(K)p.
∥∥ϕ(q)
∥∥

where c(K) is the upper bound of |x| on K. One deduces that

Nr(ϕ) ≤ cr(K)
(
‖ϕ‖ + . . . + ‖ϕ(r)‖

)
= cr(K) ‖ϕ‖(r)

in the notation of Chap. V, (34.3), with again another constant cr(K)
depending only on K and on r. The inequality (8) then shows that the
restriction of T to the subspace D(K) satisfies the continuity condition
|T (ϕ)| ≤ MK(T ). ‖ϕ‖(r) demanded of a distribution in Chap. V, (34.6).

It is equally necessary to show that two tempered distributions cannot
define the same distribution on D unless they are identical51. By difference,
it is enough to show that if T (ϕ) = 0 for every ϕ ∈ D, then also T (f) = 0
for every f ∈ S. Since T is a continuous linear form on S it is enough to
exhibit a sequence fn ∈ D which converges to f in S, i.e. to show that D
is “everywhere dense” in S, like Q in R, like the trigonometric polynomials
in the space of continuous functions on T, like the usual polynomials in the
space of continuous functions on a compact interval, etc.

So let us start from a function ϕ ∈ D equal to 1 for |x| < 1, for example the
function employed in Chap. V, n◦ 29, to prove the existence of C∞ functions
having arbitrarily given derivatives at a point. Let us put ϕn(x) = ϕ(x/n),
a function equal to 1 for |x| < n. We shall see that, for every f ∈ S, the
fn(x) = ϕn(x)f(x), which are clearly in D, answer the need, in other words
that

lim Nr(f − fϕn) = 0 for every r ∈ N.(32.9)

This is equivalent to saying that all the functions MpDq(f−fϕn) converge
to 0 uniformly on R. Now, by Leibniz,
51 The reader may accept the result, which is not of serious importance in what

follows.



§ 6. From Fourier series to integrals 383

MpDq(f − fϕn) = Mp [Dqf − (Dqf.ϕn + . . . + f.Dqϕn)](32.10)
= Mp (1 − ϕn) Dqf − Mp(. . .)

where the terms inside the sign (. . .) contain derivatives of ϕn, i.e. functions
of the form n−kϕ(k)(x/n) with 1 ≤ k ≤ q. Such a function is everywhere
bounded in modulus by n−k

∥∥Dkϕ
∥∥, so that the sum of the terms considered

is, for every x, bounded in modulus by∑
1≤k≤q

?n−k
∥∥Dkϕ
∥∥ . ∣∣Dq−kf(x)

∣∣ ;
the signs ? denote binomial coefficients of no importance. If one applies the
operator Mp of multiplication by (−2πix)p to these terms one obtains a
function ∑

?n−k
∥∥Dkϕ
∥∥ . ∣∣xpDq−kf(x)

∣∣
with other coefficients ? independent of f and of n. In passing to the sup for
x ∈ R one finds a result less than∑

?n−k
∥∥Dkϕ
∥∥ .Nr(f)

where r = p+q. Since the sum is over the k ∈ [1, q] and since n−k ≤ 1/n, the
final result, up to a constant factor independent of ϕ and of r, is bounded by
Nr(f)/n. For f given, it is therefore O(1/n).

It remains to examine the term Mp (1 − ϕn) Dqf in (10). Since ϕn(x) = 1
for |x| < n, this term vanishes for |x| < n. Ignoring the factors −2πi, its
uniform norm on R is then in fact equal to

sup
|x|>n

|1 − ϕn(x)| . |xpDqf(x)| .

Now |1 − ϕn(x)| ≤ 1+‖ϕ‖ = c. Since f ∈ S the function
∣∣xp+1Dqf(x)

∣∣ tends
to 0 at infinity, so is bounded on R; we deduce estimates of the form

|xpDqf(x)| ≤ cpq/|x|
valid for every x ∈ R. The sup for |x| > n is thus, also, O(1/n).

Combining these two results, we see that

‖MpDq (f − fϕn)‖ = O(1/n)

for any p and q, which proves that f = lim fϕn in the topology of S, qed.

This done, it is immediate to define the Fourier transform T̂ = FT of a
tempered distribution T : one puts, in Leibniz’ notation,∫

f(y)dT̂ (y) =
∫

f̂(x)dT (x)(32.11)
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or, in that of the inventor,

T̂ (f) = T (f̂) for every f ∈ S.(32.11’)

Since the map f 
→ f̂ of S in S is continuous, so likewise is f 
→ T (f̂), and
so is f 
→ T̂ (f), whence one obtains a tempered distribution.

One may also, as in Chap. V, n◦ 35, define the derivative – again tempered
– of T by

T ′(f) = −T (f ′) for every f ∈ S,(32.12)

and iterate the operation. To calculate the derivative DT̂ of T̂ one has to
write

DT̂ (f) = −T̂ (Df) = −T (FDf)

where F is the Fourier transform in S; but (31.5’) shows that FDf = −MFf ;
thus

DT̂ (f) = T (MFf).(32.13)

Putting DT̂ = S, this can be written∫
f(x)dS(x) =

∫
(−2πiy)f̂(y)dT (y) = −

∫
f̂(y)2πiydT (y).

Thus we see the distribution “of density 2πiy with respect to dT (y)” appear;
if T were of the form p(y)dy with a reasonable function p we would thus
obtain the distribution −2πiyp(y)dy. So it is natural to write MT for the
distribution −2πiydT (y), the ordinary product of T by the function −2πiy;
it is again given by52

MT (f) = T (Mf) for every f ∈ S.(32.14)

This done, (13) can be written

DFT (f) = MT (Ff) = FMT (f)(32.15)

by definition of the Fourier transform FMT of MT . In other words, the for-
mula DF = FM remains valid for tempered distributions. One can show
similarly that MFT = −FDT : the Fourier transform exchanges the op-
erators of differentiation and of multiplication by −2πix in the context of
functions or of distributions.
52 The formula has a meaning only because multiplication by 2πiy maps S con-

tinuously into S. One may define p(y)dT (y) for every function p which is C∞

and such that f �→ pf maps S into S. This assumes that p and its successive
derivatives do not increase more rapidly at infinity than powers of x (“tempered
functions”): the product of a function “of slow increase” by a function “of rapid
decrease” is again of rapid decrease.
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If for example f is a regulated function which is O
( |x|N ) at infinity for an

integer N > 0, then the formula

Tf (ϕ) =
∫

ϕ(x)f(x)dx

has a meaning for every ϕ ∈ S and defines a tempered distribution; its Fourier
transform is, by definition, the Fourier transform of f ; it goes without saying
that it is not a function in general.

In particular let us take f(x) = xp with p ∈ N. Then

T̂f (ϕ) = Tf (ϕ̂) =
∫

ϕ̂(y)ypdy for ϕ ∈ S;

multiplying by (−2πi)p, one makes the function MpFϕ = (−1)pFDpϕ ap-
pear in the integral. Then

(2πi)p
T̂f (ϕ) =

∫
FDpϕ(y)dy.

But since Dpϕ is in S we may apply the Fourier inversion formula to it,
whence

(2πi)p
T̂f (ϕ) = Dpϕ(0) = δ (Dpϕ) ,

where δ is the Dirac measure at the origin, clearly a tempered distribution.
In view of definition (12) of the derivative of a distribution, the result can be
written

(2πi)p
T̂f = δ(p),

the derivative of order p of the distribution δ. For p = 0, we see that the
Fourier transform of the function 1 is the Dirac measure at the origin: this is
exactly what formula f(0) =

∫
f̂(y)dy, valid for f ∈ S, means.

In conclusion we remark that all this generalises to functions of several
variables. See for example the excellent Chap. 3 of Michael E. Taylor, Partial
Differential Equations. Basic Theory (Springer, 1996) or the ultracondensed
exposition of Lars Hörmander, The Analysis of Linear Partial Differential
Equations, Vol. 1 (Springer, 1983).
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Postface

Science, technology, arms

The text below is only a part of the postface that was announced in the
preface to volume I; the full text, with references to sources, is substantially
longer than the French version, already 90 pages long. It will be available to
interested readers on the Internet, at the following address:

www.springer.online.com/de/3-540-20921-2
Readers who wish to understand why a mathematics textbook includes the
text below will find explanations in the preface to volume I.

I have tried to be as pedagogical as possible, but since this postface deals
with many topics far removed from mathematics, it will, of course, require
some work and good will from the reader to understand it.

Many sources have been used, and all of them will be found in the internet
version. A few have been mentioned in the printed text.

Italics have been used for verbatim quotations in the main text.

§ 1. How to fool young innocents

The H-bomb was born in September 1941 at Columbia University in New
York during a conversation between Enrico Fermi and Edward Teller. The
explosion of an atomic bomb based on the fission of U-235 or Pu-239 nuclei
could generate the tens or hundreds of million degrees necessary for the fusion
of hydrogen nuclei, which in turn would generate amounts of energy hundreds
of times greater than that of the atomic bomb itself. This was nothing more
than a very rough idea, but Teller and others already knew (or believed) by
1942 that, if a 30 kg mass of U-235

is used to detonate a surrounding mass of 400 kg of liquid deu-
terium, the destructiveness should be equivalent to that of more than
10,000,000 tons of TNT [the standard military explosive]. This should
devastate an area of more than 100 square miles.

Yet the development of the A-bombs which destroyed Hiroshima (U-235) and
Nagasaki (Pu) was top priority during the war, so that nothing much hap-
pened for several years although a few people around Teller continued their
theoretical studies of the problem; after a team of physicists reviewed the
issues in the spring of 1946, even Teller went back to theoretical physics at
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Chicago. Calculations were very difficult to carry out, they neglected phys-
ical effects that opposed the fusion reaction, the choice of which isotopes
of hydrogen to fuse was not easy, and the geometrical configurations they
were drawing up could not work or, if they did, could not lead to the ul-
timate weapon, namely something with theoretically unlimited power. Last
but not least, experimental verification of the computations was impossible
short of exploding an actual weapon. In addition, many influential physicists
were against the development of a weapon which they viewed as being far
too powerful and which would most likely be imitated by the Soviet Union
sooner or later.

The situation changed dramatically after the announcement in September
1949 by President Harry Truman of a first secret (but detected) Soviet atomic
test. The General Advisory Committee (GAC) of the Atomic Energy Com-
mission (AEC, now part of the Department of Energy, DoE) was convened
to deal with the new situation at the end of October. Basically for ethi-
cal reasons, the GAC members (scientists J. Robert Oppenheimer, Arthur
Compton, James Conant, Enrico Fermi, Lee A. DuBridge, Isidor I. Rabi,
Cyril Stanley Smith, as well as the Bell Labs president, Oliver E. Buckley,
and Hartley Rowe, an engineer) were unanimous in their opposition to the
development and production of the H-bomb, though they were not against
further theoretical studies; they recommended the production of more fission
bombs – new types under development, up to 500 kilotons (KT), were deemed
powerful enough to deter the Soviets -, including “tactical” ones (for use in
Europe...), and they recommended providing by example some limitation on
the totality of war; when briefed by Oppenheimer, the tough Secretary of
State, Dean Acheson, a friend and admirer, replied: How can you persuade a
paranoid adversary to disarm “by example” ? Other scientists, like Teller and
Ernest Lawrence who were not GAC members, were also strongly in favor
and briefed the president of the Congressional Committee on Atomic Energy
and top men in the Air Force, who began to call for it. Three of the AEC
administrators (including the AEC President) were against it, and the other
two for it, including Lewis Strauss, a most influential and conservative Wall
Street tycoon who, like Teller, was as “paranoid” as Joe Stalin, and did not
hesitate to go straight to Truman. The H-bomb supporters rejected the idea
that America might come out second in the H-bomb race; and in an America
again made fiercely anti- Communist by the Soviet domination of Eastern
Europe, by the 1948 attempt to blockade Berlin, and by the “loss” of China
to the Communists in 1949, the overwhelming majority of people also wanted
supremacy over, not parity with, the Soviet Union. Furthermore, the near to-
tal American demobilization in 1945 and the rejection of Universal Military
Training meant that reliance on atomic weapons was America’s only means
of deterring, slowing down, or resisting the onrush of a Red Army which,
after demobilizing, still retained about three million men and compulsory
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military training, even though the said onrush was considered by people in
the know to be quite improbable within five years.

As President Truman said at the time, there was actually no decision to
make on the H-bomb: he shared these arguments and, at the end of January
1950, after three months of totally secret discussions involving about one
hundred people, he publicly announced that the development of the H-bomb
would continue; he also forbade people connected with the AEC, including
GAC members, to discuss the subject in public.

In early February, thanks to the partial decrypting of Soviet wartime
telegrams, the unfolding of the Fuchs affair in Britain a few days earlier
proved that the bright ex-German Communist physicist sent by the British
to Los Alamos in 1943 had transmitted to the Soviets not only essential data
on the A-bomb, but also most probably what was known on the future H-
bomb up to April 1946: he had even taken a patent out on it, in common
with von Neumann! The Soviets thus knew America was on the H-bomb trail,
and America knew that the Soviets might also be working on it, as Teller
had claimed – rightly, but without proof – long before. In March 1950, on
the advice of the military, who did not need this new piece of information to
make up their minds, Truman, this time secretly, made H-bomb production
a top priority.

The correct physical principles were not even known. Numerical calcula-
tions carried out by mathematicians John von Neumann at Princeton and
Stanislas Ulam at Los Alamos, and performed partly on the new but insuffi-
ciently powerful electronic machines, confirmed that Teller’s ideas could not
lead to the weapon he had been dreaming of since 1942; Teller’s optimistic
calculations still relied on incorrect hypotheses or missing data. One (the-
oretical) version of the weapon under consideration in 1950, which would
develop a power of the order of 1,000 megatons, was some 30 feet long, and
a stunning 162 feet wide; the fission trigger alone weighed 30,000 pounds.
Technical follies, as Freeman Dyson would later say.

Anyway, developing the weapon had to be done at the Los Alamos lab-
oratory where the A-bomb had been developed and where a reduced team
had remained or had been recruited since Hiroshima. Although the outbreak
of the Korean war led many top physicists to join the project, many mem-
bers were on Oppenheimer’s side as Teller knew full well, and he believed
they were not enthusiastic enough to succeed. Supported again by Ernest
Lawrence, the Air Force, and key Congressmen, Teller asked for the creation
of a rival laboratory in 1950, but his request was denied by the Atomic En-
ergy Commission. Teller was desperate at the end of 1950 and no longer sure
a true H-bomb, with arbitrary large power, could be made.

But in January 1951, Ulam devised a new geometric configuration: to
separate completely the atomic triggerfrom the material to be fused. It was
seized by Teller who found an entirely new way to make the fusion work
before the bomb blew up: the near-solid wave of neutrons flowing from the
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atomic explosion was too slow; instead, his idea was to use the X-ray burst
from it to generate the necessary temperature and pressure. During a meeting
at the Princeton Institute for Advanced Research (which Oppenheimer now
headed) in June 1951, everyone enthusiastically agreed that this was the
solution, and Teller got the laboratory he had asked for in September 1952.
In November 1952, a test of the principles, using liquid deuterium and a good
sized refrigeration installation, produced the 10 megatons (MT) predicted in
1942; it also vaporized a small island in the Pacific ocean. In April 1954,
several tests of near-operational weapons using lithium deuteride, an easily
stored white powder, produced between 10 and 15 MT – two or three times
more than predicted, because one of the reaction phases had been overlooked.
Operational weapons (10-15 MT) went aboard giant B-36 bombers from the
end of 1954 to 1957; later ones never exceeded 5 MT and most were in the
hundreds of KT range. All of these successes, and the great majority of later
achievements too, were the work of Los Alamos people “lacking enthusiasm”.
The first true Soviet H-bomb was tested in November 1955 and produced
about 1.6 megatons.

Set up at Livermore, not far from Berkeley, Teller’s laboratory is now
called the Lawrence Livermore Laboratory (LLL) and has been managed, at
least officially, by the University of California since 1952, as Los Alamos has
been since 1943. All American nuclear weapons were invented at these two
places; while this still remains Los Alamos’ basic activity, Livermore later con-
centrated a large part of its work on much more innovative scientific-military
projects, as will be seen below. Lawrence won a Nobel prize for his inven-
tion at Berkeley in the 1930s of the first particle accelerators (cyclotrons).
To a large extent, this was made possible by philanthropists attracted by
the potential medical uses of radiation or artificial radio-elements available
much more cheaply and abundantly than radium. During the war, Lawrence
initiated and headed a massive electromagnetic isotope-separation process
inspired by his cyclotrons; you can gauge Lawrence’s influence from the fact
that the Treasury Department lent him over thirteen thousand tons of silver
to wire his “calutrons”, despite an endless series of unexpected technical prob-
lems which brought operations to a complete halt as soon as the war ended.
They nevertheless performed the final enrichment, at 80% of U-235, of much
of the partly enriched uranium obtained from another massive factory, where
uranium hexafluoride – a very nasty gas – was blown through thousands of
porous metallic “barriers”; the very primitive Hiroshima bomb used some 60
kg of the final product. Together with Oppenheimer, Fermi, Arthur Comp-
ton and Conant, as well as the Secretaries of War and State, Lawrence had
participated in the June 1945 top- level discussions concerning the use of
the first available bombs. They had also recommended a well-financed re-
search program in nuclear physics, military and civilian applications, as well
as weapons production.
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It was to this most influential operator, whose Berkeley Rad Lab had
strong connections with Los Alamos, that the Atomic Energy Commission
entrusted in 1952 the task of setting up a new development center for the H-
bomb. Livermore needed a director, and Lawrence chose one of his assistants,
Herbert York, then 30 years old.

After Sputnik (1957), York took charge for a while of all American mili-
tary research and development. Health problems forced him to cut down on
his activities, and he “retired” to a California university, while still partici-
pating in negotiations and meetings on arms control. From 1970 on, he wrote
articles and books about the arms race, the absurdity and danger of which
he could now clearly see.

In 1976 he wrote a short book, The Advisors, recounting the development
of the thermonuclear project and, in particular, the discussions which had
taken place at the end of 1949 on the opportunity to launch a H-bomb devel-
opment program. His book reproduces in full the recently declassified report
in which the AEC’s General Advisory Committee explains the practical and
ethical reasons against it.

With a rare frankness, York discloses the reasons which led him to par-
ticipate in the project after the start of the Korean War (which led some op-
ponents of the H-bomb, like Fermi and Bethe, to change their minds). There
was first the growing seriousness of the cold war, much influenced by my very
close student-teacher relationship with Lawrence, a fierce anti-Communist like
Teller, Ulam, and von Neumann. There was also the scientific and technical
challenge of the experiment itself: it’s not every day you get the opportunity
to explode the equivalent of ten million tons of TNT for the first time in
history (it was actually done by Los Alamos). There was also, and perhaps
most importantly as every young scientist can understand,

my discovery that Teller, Bethe, Fermi, von Neumann, Wheeler,
Gamow, and others like them were at Los Alamos and involved in
this project. They were among the greatest men of contemporary
science, they were the legendary yet living heroes of young physi-
cists like myself, and I was greatly attracted by the opportunity of
working with them and coming to know them personally.

Moreover,

I was not cleared to see GAC documents or deliberations, and so I
knew nothing about the arguments opposing the superbomb, except
for what I learned second hand from Teller and Lawrence who, of
course, regarded these arguments as wrong and foolish. (I saw the
GAC report for the first time in 1974, a quarter of a century later!)

In less than one page, you have something similar to the corruption of a
minor taking place in the scientific milieu: you are told that the enemy is
threatening your country, the scientific problem is fascinating, great men
you admire set the example, other great men you don’t know personally are



392 Postface

opposed to the project but their arguments are top secret, those great men
who are luring you carefully refrain from honestly telling you what these
arguments are, and, anyway, you’ll be able to read the official documents in
25 or 30 years if you are American, in 50 or 60 if you are French or British,
and, at the earliest, after the fall of the regime if you are a Soviet citizen. If
you are still alive, your delayed comments will have no impact whatsoever
because the project in which you participated was completed decades before,
and its justifications have perhaps changed radically in the meantime.

This had already been seen in the A-bomb project: physicists were told (or
claimed) in 1941 that the A-bomb was needed before the Nazis got one, it was
discovered in May 1945, if not before, that they were years behind, but the
bombs were still dropped: over a thoroughly defeated Japan. Quite a number
of participants felt they had been fooled, even though they did not know,
as we now do, that three weeks after Hiroshima, the Air Force sent General
Groves, head of the Manhattan Project, a list of two dozen Soviet cities and
asked him to provide the weapons (which was not done until 1948), while
Stalin was giving absolute priority to his own atomic project. And nobody
then – except perhaps Groves – imagined that tens of thousands of bombs
would eventually be produced.

Main references: Herbert York, The Advisors. Oppenheimer, Teller,
and the Superbomb (Freeman, 1976), Stanislas Ulam, Adventures of
a Mathematician (Scribner’s, 1976), Richard Rhodes, The Making
of the Atomic Bomb (Simon & Schuster, 1988) and Dark Sun. The
Making of the Hydrogen Bomb (Simon & Schuster, 1995), Gregg
Herken, Brotherhood of the Bomb. The Tangled Lives and Loyal-
ties of Robert Oppenheimer, Ernest Lawrence, and Edward Teller
(Henry Holt, 2002), Peter Goodchild, Edward Teller. The Real Dr.
Strangelove (Harvard UP, 2004), David C. Cassidy, Oppenheimer and
the American Century (PI Press, 2005).

York may not have been alone in this kind of situation; as Gordon Dean,
AEC president 1950-1954, said at the Oppenheimer security hearing in 1954:

We were recruiting men for that laboratory [Livermore], I would say
practically all of whom came immediately out of school. They were
young Ph.D.’s and some not Ph.D.’s (...) Under Lawrence’s adminis-
tration, with Teller as the idea man, with York as the man who would
pick up the ideas and a whole raft of young imaginative fellows you
had a laboratory working entirely – entirely – on thermonuclear work.

Livermore’s then two divisions (thermonuclear and fission) were headed by
Harold Brown, then 24, and John Foster, then 29; they both were later to
head Livermore, then all military R&D, and even the Department of Defense
(DoD). I don’t know whether, once past the age of innocence, some of these
“young imaginative fellows” reflected on their past as York did.
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I do know of other similar cases though. Theodore B. Taylor (1925-2004),
on hearing about Hiroshima, vowed never to have anything to do with atomic
weapons, but he studied physics. In 1948, believing he was working for peace,
he joined Los Alamos where he developed a fascination and a gift for improv-
ing atomic weapons. He invented the best A-weapons of the time, including a
500 KT fission weapon which, in May 1951, succeeded in fusing a few grams
of deuterium; he also became an expert in predicting the effects of nuclear
weapons. He left in 1956 for General Atomic (founded by one of Teller’s col-
leagues) and the design of nuclear reactors, then headed the development of
a spaceship propelled by multiple small atomic explosions and able to send
people to Mars and beyond – the Nuclear Test Ban treaty prohibiting at-
mospheric tests killed that project in 1963; in 1964 he was put in charge of
the maintenance of nuclear weapons, in 1966 he resigned and worked for a
while with the international Vienna agency (AIEA) responsible for control-
ling the civilian nuclear energy business. His initial taste for weapons turned
into its very opposite, notably after a visit to Moscow when, looking at the
crowd in Red Square, he remembered he had helped the Air Force select the
weapons best adapted to targets around the city, the Kremlin being most
probably number one on the list. He spent the rest of his life advocating the
abolition of nuclear weapons and nuclear energy which, he believed, would
lead to an uncontrollable proliferation of weapons and even to their use by
terrorists, a prospect he predicted in 1970 by emphasizing that the World
Trade Center building could easily be felled by a small atomic explosion on
its ground floor.

Recruiting young imaginative fellows at Livermore and other places is still
going on, of course. William Broad, a New York Times science journalist who
spent a week there in 1984 with a very special “O group” of young physicists
twenty to thirty years old, explains in Star Warriors the role of the Hertz
Foundation, founded shortly after Sputnik by Hertz Rent-a-Car’s patriotic
owner in order to maintain US technological preponderance (and to show
his gratitude to a country which turned a poor immigrant into a very rich
man). Every year the Foundation allocates about twenty five fellowships,
valid for five years, to outstanding students; some of these are invited to
spend a summer (or several years) at Livermore while preparing for their
Ph.D. elsewhere. Those Broad met were asked to put their energies into
problems at the cutting edge of technology with a not so obvious military
interest: to build an optical computer using laser lines instead of electrical
connections, to design from scratch and to miniaturize a supercomputer,
to devise an X-ray laser, to elaborate a credible model of an atomic bomb
using only published literature, etc. The group leader, Lowell Wood (who
still sits on the Foundation Board together with several other Livermore or
Los Alamos people), explained that:

The best graduate students tend to do very marvelous work because
it’s a win-or-die situation for them. There is no graceful second place.
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If somebody else publishes the definitive results in the area, they go
back to zero and start over (...) They don’t realize how extremely
challenging these problems are. So they are not dismayed or demor-
alized at first. By the time they begin to sense how difficult the
problems are, they’ve got their teeth into them and made sufficient
progress so that they tend to keep going. Most of them win. They
occasionally lose, which is very sad to see (p. 31).

One of them, Peter Hagelstein, remembers his arrival in Teller’s kingdom in
1975 when he was 20 years old:

The lab itself made quite an impression, especially the guards and
barbed wire. When I got to the personnel department it dawned on
me [!] that they worked on weapons here, and that’s about the first
I knew about it. I came pretty close to leaving. I didn’t want to have
anything to do with it [and his girlfriend was militantly opposed
to it, which eventually destroyed their relationship]. Anyway, I met
nice people, so I stayed. The people were extremely interesting. And
I really didn’t have anywhere else to go.

Hagelstein was asked to study the X-ray laser. He first spent four years, at the
rate of 80-100 hours a week, learning the physics and doing computations with
a very powerful program of his own. A senior Livermore physicist, George
Chapline, had been trying for years to find a solution by using a nuclear
explosion to get the energy needed to “pump” the laser (it is proportional to
the cube of the frequency, which for X-rays is about 1000 times that of visible
light). A first underground test in September 1978 was a failure because of
a leak in a vacuum line. On Thanksgiving Day 1978, some senior physicists
– including Wood, Chapline and an unwilling Hagelstein – were summoned
to Teller’s home to discuss the problem; Hagelstein was ordered by Teller to
review the calculations done for Chapline – nothing more, but nothing less
– and he had no choice but to comply. By the next day, he had to tell Wood
there was a flaw in Chapline’s theory, which put him in direct competition
with Chapline. He found new ideas which he once dropped at a meeting in
1979, too tired after a 20-hour working day to realize what he was doing. They
were seized upon at once and, he told Broad, he had [his] arm twisted to do
a detailed calculation , under political pressures like you wouldn’t believe . To
his despair and with some prodding from Wood and Teller, his calculations
and new ideas proved more and more promising, and in 1980 an underground
test of his and Chapline’s new designs proved Hagelstein’s method was by
far the better. He then had access to Livermore’s gigantic laser lines, and his
laser, though still virtual, got a name: Excalibur.

Hagelstein tells us of political pressures; no wonder. On the political side,
for several years before Reagan’s election, some very influential people – the
Committee on the Present Danger – had been claiming that the Soviets were
spending far more on defense than even the CIA said, and were re-arming
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to full capacity. As a matter of fact, since 1975 they had been deploying
a few hundred new strategic missiles with multiple independent warheads
(MIRV) (deployment of 840 American Minuteman-III MIRV missiles, and of
640 Poseidon submarine-launched similar missiles, had started in 1970 and
1971, respectively). They were also deploying very accurate middle-range SS-
20s aimed at strategic targets in Western Europe and China. Their output of
basic industrial goods (steel, coal, cement, etc.) was 50 to 100% higher than
America’s (but the American economy was converting to an “information
society” far more efficient than Stalin’s successors’ taste for steel). They were
discovering huge fields of oil and natural gas from which they got plenty of
foreign currency, allowing them to buy (mostly American) grain and, much
worse, advanced foreign machinery in spite of the US embargo on high-tech
goods. “Marxists” were seizing power in several African states; unrest in
Poland was repressed by the Polish army to avoid a Soviet intervention; the
Red Army had intervened (unwillingly at first) in Afghanistan to defend
the new Communist regime against its enemies, which many interpreted as
a first Soviet step towards the proverbial Persian Gulf “warm waters” the
Tsars had never managed to seize. The American deployment in Europe of
equally dangerous American Pershing ballistic missiles and Tomahawk cruise
missiles in answer to the SS-20s was opposed by strong “peace movements”
that were suspected of being infiltrated by Soviet agents since, of course,
ordinary German citizens were deemed too stupid to worry for themselves
about these displays of atomic fire power. In short, the world had entered
what became known as the New Cold War .

Thirty two members of the Committee on the Present Danger, including
Reagan, occupied high administration offices after he came to the White
House in January 1981. He immediately started to re-arm – the DoD budget,
mostly financed by foreign capital attracted by high interest rates, went up
from 181 BD in 1978 to 270 in 1984 in constant dollars -, and he continued to
taunt the Soviets in speeches that culminated in his famous “Evil Empire”
statement in 1983. However, many people in Washington, including Reagan
himself, believed that in spite of its apparent strength, the USSR was under
tremendous economic pressure with a grossly inflated military sector and a
grossly underdeveloped civilian sector. They thought that a new round in the
arms race would bankrupt the Soviets, or force them to agree to significant
cuts in strategic armaments, or both.

There were already people in America trying to sell untested and wild
anti-missile schemes, e.g. chemical lasers, 24 of which could supposedly de-
stroy an entire fleet of Soviet missiles, or thousands of interceptors launched
from hundreds of space stations. This led another bunch of conservative busi-
nessmen who had nothing to do with nuclear weapons, but were close to Rea-
gan, to found a High Frontier committee, including Teller who wanted to sell
his X-ray laser right away; they wanted to reach the White House without go-
ing through the Pentagon bureaucracy, where hard technical questions would
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be asked, of course. In this way, Teller was able to recommend a Los Alamos
friend as Scientific Advisor, George Keyworth, who in turn appointed him
to the new White House Science Council. A High Frontier report was sent
to Reagan, and they got a fifteen-minute audience in January 1982; Teller
apparently did not attend. They claimed that the Russians were well ahead
in technology (as Teller had claimed to promote his H-bomb project), that
they were close to deploying directed-energy weapons in space, thus altering
the world balance of power. They recommended that America launch a major
program to counter the Soviet threat in order to substitute assured survival
for assured destruction , which suited Reagan quite well. Hagelstein’s X-ray
laser was the key to success and would be available within four years, followed
by even more powerful versions. All of this rested on the secret results of a
single test performed in a totally artificial underground environment.

Reagan, however, asked Keyworth to gather a team of experts from his
Science Council in order to review the project before the end of 1982, if
only to get an idea of the price tag. During this year, peace movements
in America and Europe drew hundreds of thousands of people (and many
scientists) demonstrating against the new arms race; many American Con-
gressmen agreed. In June, a group of Livermore scientists who had the re-
sponsibility of continuing work after the first test, reported that the project
would require ten more tests, six years, and 150-200 million a year to es-
tablish reliably that this laser was scientifically possible; it would then have
to be transformed into an operational space weapon, which would require
still more engineering, money, and years. This made Teller furious and all
the more convinced that, as had been the case with the H-bomb, the project
needed a lot of hype to take off. After complaining on TV that he had not
yet met with President Reagan, he got an audience in September; some of
those present interjected so many questions that Teller (and Keyworth) felt
the meeting had been a disaster. In December, the House rejected funds for
the production of a new and widely criticized generation of missiles, the MX,
which could be randomly moved underground among many silos, most of
them empty, in order to fool the Russian MIRV missiles. In January 1983,
Teller got an audience with the Chief of Naval Operations; he was convinced
by Teller’s views and converted the Joint Chiefs of Staff; to them, it was at
least a way of convincing Moscow of the sheer financial power and technical
superiority of the US , as well as a new way to inflate the Defense budget since
MX was becoming far too controversial. A meeting with Reagan in February
1984 ended in agreement; the military believed this would lead to an orderly
development project, but Reagan did not wait. In March, to everyone’s as-
tonishment, he publicly announced his Strategic Defense Initiative (SDI, or
Star Wars) project designed to protect the American people from Soviet mis-
siles – a popular statement if ever there was one, which nevertheless did not
placate the opposition.
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In the meantime, in February 1983, a most famous nuclear physicist, Hans
Bethe, had gone to Livermore, reviewed Hagelstein’s project and found it ex-
tremely clever physics, which did not mean clever weaponry. After Reagan
launched his Star Wars project, Hagelstein’s laser became the most publi-
cized – and controversial – part of it though it was still, at best, years away
from any kind of operational status; a second test in March was actually
inconclusive due to a recording failure. The media explained that, propelled
into space by a single missile, individually oriented towards enemy missiles,
and “pumped” by a nuclear explosion, fifty X-ray lasers were expected to
destroy as many targets. Many physicists, foremost among them Hans Bethe
and Richard Garwin, were opposed to this new exotic hardware display and
said so publicly, because the chances of success were poor for many reasons –
the need for fantastically fast computers and communications (laser weapons
would be launched from submarines after the Soviet attack was detected,
they would have to spot missiles moving at a speed of four miles per second
and then orient the laser rods before firing, etc.) -, because nobody knew
whether the project would cost 150 or 3,000 billion dollars (BD) if successful,
and because it would only lead to one more spiral in the arms race and/or
could be easily defeated (as the Soviets at once remarked). Another official
panel reviewing the project came to rather pessimistic conclusions, relegat-
ing Reagan’s dream to the year 2000 or so, and calling for a less ambitious
goal, while at the same time recommending one billion and top priority for
the laser, and 26 billion over seven years for the various other projects: SDI
had already acquired an immense political power by this time. During a pro-
paganda tour of Europe in 1985(?), SDI chief, General James Abrahamson
used plenty of sexy slides to explain it all at the Paris Ecole polytechnique (I
attended); this was a major contribution to the students’ scientific education:
they (and I) did not know a thing about X-ray lasers, but you can trust them
to have “understood” everything within a week.

A few days after a successful test in December 1983, Teller sent an
overly optimistic report to Keyworth, without notifying anyone, not even Roy
Woodruff, a senior Livermore physicist who was deputy director for weapons
design and thus oversaw the X-ray laser group; Woodruff was furious and
wrote a corrective letter, which was blocked by Livermore’s director. In the
Spring of 1984, other objections arose. According to Los Alamos scientists,
beryllium mirrors that were sending a fraction of the beam to recording in-
struments contained oxygen which, excited by the beam, possibly increased
the recorded brightness. The dispersion of the laser beam in space, the num-
ber of space stations and the power of the explosions needed were also publicly
criticized by independent scientists. But in Washington others noticed that
Soviet negotiators – who had been working for years on arms reduction –
were very concerned about this militarization of space and therefore might
be more accommodating, others again thought SDI would be a good oppor-
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tunity to wreck the 1972 ABM treaty which seriously limited the deployment
of anti-ballistic missiles.

By 1984, Hagelstein had lost his initial dislike for weapons:

My view of weapons has changed. Until 1980 or so I didn’t want
to have anything to do with nuclear anything. Back in those days I
thought there was something fundamentally evil with weapons. Now
I see it as an interesting physics problem.

He did not have any illusions:

I’m more or less convinced that one of these days we’ll have World
War III or whatever. It’ll be pretty ugly. A lot of cities will get busted
up.

In October 1984, Hagelstein and a team of forty people realized at long last
the first “laboratory” X-ray laser, using a 150-meter long laser line pumped
by capacitors discharging ten billion watts; this success was still very far from
the operational weapon Teller was promising Reagan.

During this time, the Livermore group had devised the theoretical means
to increase the laser power by several orders of magnitude, so that now
“Super-Excalibur” lasers could be placed on a stationary orbit and still be
able to kill missiles 20,000 miles away! At the end of 1984, Teller wrote
through Wood to Paul Nitze, since 1950 the top expert in arms-control ne-
gotiations:

a single X-ray laser module the size of an executive desk which ap-
plied this technology could potentially shoot down the entire Soviet
land-based missile force, if it were to be launched into the module’s
field of view.

Woodruff was again by-passed but learned of the letter; he again tried to
send a corrective one, which again was blocked. However, in February 1985,
he was allowed a two- hour meeting with Nitze, who said that it’s always
good to get a bright skeptical mind on a problem . The initial results of a
new and very elaborate test seemed so good in March that Teller’s constant
lobbying did pay off: hundreds of millions were released.

That same month, Mikhail Gorbachev came to power in the USSR, with
a quasi-revolutionary program to transform the Soviet Union into a near-
democracy and to terminate the arms race and the Cold War, which Reagan
wanted too (but by other means). Although his scientists told him that SDI
could be neutralized for 10% of the price to America, he decided to focus
the US-Soviet arms-control talks on removing SDI in exchange for heavy
cuts in missiles. Reagan met him in Geneva in November 1985 and, although
the meeting was rather friendly, Gorbachev told him he should not count
on bankrupting the Soviet Union or achieving military predominance, and
that SDI would render impossible the expected 50% reduction in missiles.
Reagan replied by extolling the virtues of defense, as usual. They continued
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to correspond for months in the hope of getting some kind of agreement;
many of Reagan’s aides and top military (not to mention Europeans, in-
cluding France’s president Mitterand) were appalled by Reagan’s apparent
willingness to dump American missiles provided he could keep SDI.

In October, at the annual conference of Los Alamos and Livermore people
on nuclear weapons, Los Alamos scientists reiterated in detail their skepticism
over the test results or even the existence of the X-ray laser; this allowed most
members of the X-ray laser group to understand for the first time that these
objections were serious. And Los Alamos people accused Livermore managers
of abdicating their prerogatives to Teller and Wood, who, of course, claimed
Los Alamos were trying to sabotage their project for political reasons or out of
rivalry. This was enough for Woodruff, who resigned from his position. Teller’s
predictions, however, became somewhat more careful, and he emphasized
that defense would be efficient even if it were only 20% effective because
enough US missiles would survive to deter the Soviets attacking in the first
place.

In November, a new and very expensive test (30 MD) resulted mostly in
failure. Some Livermore scientists, who were already exasperated by Wood’s
authoritarian and sarcastic manner and by Teller’s constant meddling in their
work, left the project; as one of them said in 1989,

To lie to the public, because we know that the public doesn’t under-
stand all this technical stuff, brings us down to the level of hawkers
of snake oil, miracle cleaners and Veg-O-Matics.

Although he dismissed Los Alamos objections, Hagelstein too was disgusted
by Teller’s and Wood’s extravagant public claims and by the bad faith the
main protagonists displayed; as he told Goodschild in 2000, I could not believe
people behaved in that way . However, it is easy to understand why they did.
These people with plenty of willpower had for decades been in charge of
designing the awesome weapons on which US security was supposed to rest.
They were under enormous political pressure, and billions of dollars had
already been spent on or budgeted for their pet project. Their reputations
and the laboratory’s were at stake.

Hagelstein quit Livermore for the MIT Research Laboratory in Electron-
ics, which had been conducting military research since 1945, and worked in
quantum electronics and, later, “cold fusion”. This is a very controversial and
to this day unproven method of generating energy at room temperature by
means of fusion reactions among metallic compounds of hydrogen and deu-
terium. His scientific reputation suffered greatly as a result. As to Woodruff,
he was exiled to a tiny office (“Gorky West”) and his salary cut for sev-
eral years, a good illustration of the contradicting ethics governing open and
classified research; he joined Los Alamos in 1990.

The conflict between the two laboratories surfaced in the newspapers, trig-
gering another public but inconclusive discussion, since the relevant technical
data were top secret. In 1986 several thousand scientists publicly pledged not
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to participate in SDI in spite of the promise of exciting problems to solve
and plenty of money for their laboratories. Politically, Teller won; he was
supported by the military, by influential Congressmen, and by Reagan who
understood nothing but trusted the “father of the H-bomb”; Teller hesitated
neither to rely on Reagan’s faith, nor to use his own scientific self-confidence,
reputation and authority to ruthlessly counter opponents.

As for the Star Wars project, it survived until Bill Clinton’s election in
1992. In January 1986, Gorbachev proposed to get rid of all Euromissiles on
both sides, and to eliminate all nuclear weapons by 2000, provided America
gave up developing, testing and deploying space weapons. Reagan proposed
instead to reduce strategic warheads to 6,000 on each side (this was achieved
four years later under George Bush) and to redress existing conventional im-
balances. In July, Reagan proposed scrapping all ballistic missiles within ten
years while continuing research on SDI which, when operational, would be
made available to all (!). They had a second meeting in Reykjavik in Oc-
tober 1986 during which extraordinary proposals were made on both sides
with a view to eliminating nuclear weapons entirely and reducing conven-
tional forces. Once more, SDI killed the agreement at the last moment. Gor-
bachev’s advisors (who were as bewildered as their American counterparts
by these proposals) told him that Congress would kill SDI for him anyway.
He did not follow their advice, but they were right: Congress cut the SDI
budget by one third and prohibited tests in space in December 1987. In the
meantime, a Livermore friend of Teller’s had found a new miracle weapon,
Brilliant Pebbles : space stations firing thousands of sophisticated projec-
tiles, full of electronics, which would collide with Soviet warheads. A third
Reagan-Gorbachev meeting in Washington a few weeks later led to the end
of Euromissiles.

The Cold War died in 1990 and with it the Soviet Union and SDI; a few
years later, the French Riviera was invaded by a new brand of Bolsheviks:
oligarchs. The life expectancy of ordinary Russians began to decline. The
European Union eastern boundaries (and with it those of NATO, a clever way
of assuaging nationalist feelings in Russia) are now the pre-1939 boundaries
of the former USSR. Last but not least, it has been “proved” that socialism
is a dead end (especially if confronted with savage aggression followed by a
ruinous fifty-year arms race led by a far more powerful opponent).

When asked why SDI did not work, Teller recently replied with a shrug:
because the technology was not ready. The X-ray laser had cost 2.2 BD, and
Star Wars a total of 30 BD. America is now spending a mere ten billion a
year to develop anti-missile weapons against lesser threats than the Soviet
arsenal, while Livermore (as well as the French Atomic Energy Commission)
is trying to achieve, among other projects, controlled nuclear fusion of hydro-
gen isotopes by means of convergent laser beams in the hope, going back to
1950, of transforming nuclear fusion into an inexhaustible source of energy,
as was done much earlier with nuclear fission. This also allows weapons de-
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signers to gain a deeper knowledge of fusion processes so as to improve their
computer programs.

Main references: William J. Broad, Star Warriors. The Weaponry
of Space: Reagan’s Young Scientists (Simon and Schuster, 1985 or
Faber and Faber, 1986), Goodchild, Edward Teller , Martin Walker,
The Cold War (Vintage, 1994), John Prados, The Soviet Estimate.
US Intelligence Analysis and Soviet Strategic Forces (Princeton UP,
1986), Stephen I. Schwartz, ed., Atomic Audit. The Costs and Con-
sequences of US Nuclear Weapons Since 1940 (Brookings, 1998).

Before having a look at Ken Alibek’s Soviet career in biological weapons
(BWs) from 1975 to the fall of the Soviet Union, let me sketch their previ-
ous development. After Pasteur, Koch, Metchnikoff and others had founded
microbiology, it became possible to produce large amounts of vaccines. It
also became obvious that, if required, similar techniques could be used to
cultivate pathogens. That it was not pure theory was shown when the 1925
Geneva Convention prohibited it. The USA did not sign it, but the USSR
and Japan did; it seems that USSR began to develop a typhus weapon in
1928, while Japan installed a very successful secret laboratory and produc-
tion unit in Manchuria in the 1930s. Britain started to study vaccines after
1936 and, after the Nazis had advertized their brand of ethics at Warsaw and
Rotterdam, thought it advisable to develop BWs as a hedge against similar
German ones (they were not studied seriously until 1943 and came to almost
nothing). British scientists worked mainly with anthrax, a bacterium which
is easy to cultivate and store by transforming into spores that stay virulent
for decades. Conclusive experiments on sheep were done at Gruinard Island,
off Scotland; it was still contaminated and off limits fifty years later. They
made anthrax cakes in sufficient quantities to be able to kill a lot of German
cattle (and some people as well).

In America, studies on BWs began in 1940, and a National Academy of
Sciences (NAS) committee was set up a month before Pearl Harbor. Although
its February 1942 report was inconclusive in the absence of practical tests, it
recommended studying all possibilities (for defense, of course) including an-
thrax, botulin toxin, and cholera. The program involved the Chemical War-
fare Service, the Department of Agriculture for anti-crops weapons, and 28
universities. Although behind Britain until Pearl Harbor, American industry
quickly developed a far bigger military potential than Britain, which, in this
domain as in others (atomic bomb, radar, jet engines, etc.), contributed ex-
perts and knowledge, including penicillin which was industrialized in America
during the war.

A research center was set up at Camp Detrick and, in Vigo, Indiana,
a factory equipped with twelve 5,000-gallon fermenters could in principle
produce 500,000 four-pound anthrax bombs a month, or 250,000 filled with
botulin toxin (lethal dose: one milligram). The Americans also investigated
brucellosis, a more humane weapon which kills few people, but is highly
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contagious and makes its victims ill for weeks or months, thus overwhelming
the enemy’s health system. Weapons for use against Japanese rice crops were
also developed. But Roosevelt was not very interested in these matters about
which he was very ill informed, and he never made his position clear one way
or the other.

In any case, peace came before this program became operational, and
Vigo was leased to a private manufacturer of penicillin. In 1945 BWs were
considered potentially at least as efficient as, and much cheaper than, the
atomic bomb; and since they don’t destroy real estate, you don’t have to
compensate the enemy and allies after the victory. But atomic weapons were
viewed as a sufficient deterrent, performing realistic tests of BWs was im-
possible, and the new German neurotoxic gases (tabun, sarin, soman) killed
much faster – in a few minutes – than BWs. So, at first, work on BWs was
limited to laboratory studies. During the Korean War, the Americans were
accused of having experimented with BWs; it is now generally believed they
had not, but the war accelerated the arms race in all domains, including
BWs. In both the US and the USSR, all kinds of bacteria – anthrax, plague,
tularemia, yellow fever -, and later viruses, were studied and mass produced.
From 1947, the Soviets worked on smallpox which, by now eradicated, was
still killing some 15 million people a year in the world in the 1960s. They built
huge research centers and production units, some in cities, such as Sverdlovsk.
The CIA had reason to suspect the worst as U-2 and satellite observations
showed installations looking very much like the American ones, for instance
a test range on an island in the Aral Sea.

During the 1950s, scientists in both countries discovered that instead of
storing or spreading bacteria as liquid cultures, it was far better to dry and
deep-freeze them (lyophilization); this kept them dormant for long periods,
even at room temperature. The result was then milled into an ultra-fine
powder which, after being carried by the wind over possibly tens of miles,
became virulent again in people’s lungs. This process worked particularly well
with anthrax, the pulmonary form of which is normally rare and difficult to
diagnose and kills 90% of its victims unless they are administered massive
doses of penicillin very early.

The “top secret” American programs were actually known to plenty of
people and, like the use of chemicals to destroy jungles in Vietnam, met with
opposition from journalists, students, and biologists like Harvard’s Matthew
Meselson and Joshua Lederberg; the latter, who won a 1958 Nobel prize for
his discovery of how bacteria can exchange genes in a natural setting, was in
a good position to know that fast progressing molecular biology can be bent
to genocide , as he wrote in the Washington Post in 1968. During the Viet-
nam war, opponents, particularly students, organized public demonstrations
against Fort Detrick, as well as protests against military- university contracts
and the National Academy of Sciences’ involvement in recruiting young sci-
entists for Fort Detrick. For their part, the military were not yet convinced of
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the usefulness of these weapons; proliferation was too easy and too cheap, and
terrorist attacks were already being mentioned. Eventually, President Nixon
unilaterally announced in November 1969 that America would limit herself
to purely defensive work, and he ordered the destruction of stocks and the
demilitarization of Fort Detrick, Pine Bluff and other centers; I remember a
Science headline: Is Fort Detrick really de-tricked ? In 1972, an international
treaty between the US, the USSR and Britain, later approved by many other
countries, prohibited the production and possession of biological weapons,
but not defensive laboratory work; it did not provide for inspections either.

Before 1972, and although “weaponizing” pathogens required solving diffi-
cult technical problems, only natural bacteria and viruses were used. In 1972-
1973, American biologists succeeded in systematically moving a gene from an
organism to a bacterium in such a way that the modified bacterium would
replicate itself as usual; their first experiment yielded a variant of the nor-
mally harmless Escherichia Coli that was resistant to penicillin. Thus genetic
engineering was born and, with it, the possibility of discovering, by chance or
on purpose, new pathogens from which no protection was known. But in the
USSR, molecular biology and Mendelian genetics had been almost destroyed
by Lysenko in the 1930s, and Soviet scientists were increasingly frustrated at
the thought of being left behind. According to Alibek, the situation changed
when a vice president of the Akademia Nauk, Yuri Ovchinnikov, explained
to the Ministry of Defense and to President Brezhnev that bioengineering
could lead to new weapons.

This led to the founding in 1973 of an officially civilian pharmaceutical
organization, Biopreparat, under the Ministry of Health. Biopreparat’s open
mission was to develop and produce standard vaccines and antibiotics, but it
enclosed a supersecret “Enzyme” project whose purpose was to develop and
produce for intercontinental war genetically altered pathogens, resistant to
antibiotics and vaccines , an outright violation of the 1972 treaty. It also led,
as Ovchinnikov hoped, to a reversal of the taboo against genetics and mole-
cular biology, and to new laboratories depending on the Moscow Academy
since “purely scientific” work was paramount for “defense” against biologi-
cal weapons. The timing was perfect: gene splicing had just been discovered,
and its practical importance would soon be proved in the USA by using engi-
neered bacteria to produce large amounts of insulin, hormones, etc. Enzyme,
which was led by military scientists and administrators with KGB men every-
where, came to employ 32,000 workers, including many of the best biologists,
epidemiologists, and biochemists, in addition to thousands of people working
in Army labs.

Let us now go back to Alibek. Hoping to become a military physician
who could save soldiers on the battlefields, he studied medicine at a military
school and became interested in research. In 1973, he was ordered by one
of his teachers to investigate a very unusual outbreak of tularemia which
occurred around Stalingrad in 1942 among German troops before spreading
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to the Soviet army. After reading old documents, Alibek reported that this
incident looked as though it had been caused intentionally . He was at once
cut short by his teacher who told him he was only supposed to describe how
we handled the outbreak , not what had caused it, and strongly advised never
to mention to anyone else what you just told me. Believe me, you’ll be doing
yourself a favor . The lessons he drew from this episode are worth quoting:

The moral argument for using any available weapon against an enemy
threatening us with certain annihilation seemed to me irrefutable. I
came away from this assignment fascinated by the notion that disease
could be used as an instrument of war. I began to read everything I
could find about epidemiology and the biological sciences.

In 1975, a mysterious and well tailored visitor came to interview him and
other students; he said he was working for a no less mysterious organization
attached to the Council of Ministers which has something to do with biological
defense , a prospect which excited Alibek. He was handed a questionnaire
and told: Don’t tell your friends or teachers about this conversation. Not even
your parents . A few weeks later, he learned he was assigned to the Council
of Ministers of the Soviet Union together with four other students. He was
overjoyed by the prospect of working in Moscow, but he was actually sent
to a “post office box” hundreds of miles from Moscow. Like Hagelstein, he
was impressed by the concrete wall and barbed wire surrounding the place
and by the armed guards at the entrance. The huge Omutninsk Base where
he arrived already employed some 10,000 people; it was part of the Enzyme
project.

On arrival at Omutninsk, Alibek and his friends were not given any infor-
mation about their research program. A KGB instructor however informed
them that although an international treaty banning biological weapons had
been signed in 1972, it was obviously one more American hoax , which they
were quite prepared to believe; the Soviet Union therefore had to be ready
to reply.

When Alibek began to discover Omutninsk’s true mission – mass pro-
duction of pathogens and not merely laboratory research -, he tried to get
another job but was told he could not be spared. He thus remained and,
after this classic early conscience crisis, adapted to the situation with enough
success and enthusiasm to become Biopreparat’s deputy director fifteen years
later. The science and technique were fascinating and the career very reward-
ing provided you were bright, which he was, and made no big mistakes (such
as inoculating yourself or being too talkative...).

The new recruits were trained in the culture of bacteria, the techniques be-
ing the same whether they are intended for industrial applications, weaponiza-
tion, or vaccination . This is a difficult art which is first learned on harmless
bacteria; one then has to learn how to infect lab animals with mildly patho-
genic agents and conduct autopsies, until one may perhaps be allowed to
work in “hot zones” with infected animals and where wearing the equivalent
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of a space suit is compulsory: half a dozen Ebola viruses will kill you in a
month by destroying your blood vessels. A very competent colleague of Al-
ibek once made a false move while inoculating an animal; after his death,
they noticed the viruses in his body were particularly virulent, and there-
fore they weaponized this “Ustinov strain”. One also has to learn industrial
production processes.

Smallpox was modified to render all known vaccines useless. Diphtheria
was grafted on plague. Sergei Popov, a bright colleague, improved Legionnella
with fragments of myelin DNA to trigger metabolic reactions that devastate
the brain and nervous system. The invention of a form of tularemia resis-
tant to three of the main antibiotics, as well as studies on Ebola-like viruses
took years of work. All in all, little produced by the genetic engineering pro-
grams was turned into weapons before the Soviet Union collapsed, according
to Popov who has been living in the USA since 1992; Alibek also remains
somewhat skeptical, though more pessimistic.

Incidents happened during this period. In April 1979, about sixty people
died within a few weeks in the city of Sverdlovsk, an extremely unusual
event. There was a Biopreparat branch located in the city, working round
the clock on anthrax. A Russian magazine in West Germany broke the news
of the outbreak in November, from which US intelligence agents again drew
conclusions, despite claims that the deaths were due to contaminated meat.
It is now known that a clogged air filter had been removed but not replaced
for several hours...

In October 1989, Vladimir Pasechnik, a very bright scientist at the head
of a civilian institute in Leningrad, went to France at the invitation of a
pharmaceutical equipment manufacturer, and never came back. Since his
institute had worked very efficiently for Biopreparat, he knew quite a lot. He
was brought to Britain and debriefed.

Pasechnik’s defection had serious consequences. In a memo to Gorbachev,
KGB chairman Vladimir Kryuchkov recommended the liquidation of our bi-
ological weapons production lines , a stunning move which Alibek approved
since, after all, so long as we had the strains in our vaults, we were only three
to four months away from full capacity . Although many powerful people
disapproved of Kryuchkov’s initiative, Gorbachev issued a few weeks later a
secret decree, prepared by Alibek and another fellow, ordering Biopreparat
to cease to function as an offensive warfare agency ; but in transmitting
Alibek’s text to the Kremlin, his chief added a paragraph instructing the
organization to keep all of its facilities prepared for further manufacture and
development , which resurrected Biopreparat as a war organization, as Alibek
says. He was furious but this, at any rate, allowed him to order an end to
military development at some of the most important installations.

A second consequence was an agreement between the USA, UK and the
USSR to organize inspections of suspected BW facilities. The first inspection
of a few Biopreparat installations took place in January 1991; Alibek and
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the Russian side were very successful in showing as little as possible, but the
visitors, who were aware of Pasechnik’s disclosures, were not fooled.

In December 1991, during the week the Soviet Union collapsed, a visit
to four American installations chosen by the Russians took place; they were
known to anybody who had read Science magazine around 1970 (as I did).
The Russian team included Alibek who could verify that these installations
were in a dilapidated condition that precluded military work, or had been
converted to medical research – work on the rejection of organ transplants
fascinated the Russians -, or, in one case, had never done any military re-
search. The Soviet delegation nevertheless reported to the contrary, and this
convinced Alibek that official justifications for his work had been a KGB
hoax rather than an American one.

He resigned from the Army, then from Biopreparat, got a job at once
in a bank – I had no aptitude for finance, but I was soon making deals like
everyone else -, and went on business trips abroad. His telephone was tapped,
police watched him around Moscow, and some associates warned him that he
had better not leave Russia for good and that in any case his family would
never get permission to leave. In the meantime, a Yeltsin decree banned all
offensive research and cut defense funding.

Alibek then went back to his native Kazakhstan, a newly independent
country where a huge Biopreparat production center had been built years
before. Local officials asked him to head a “medical-biological directorate”
obviously intended for weapons research. He flatly rejected the offer, thus
burning his bridges to both Russia and Kazakhstan, he tells us. Since he could
still travel abroad for business, he was able to get in touch with Americans
who were highly interested in his past and, with the help of a few Russians,
managed to get himself and his family out in circumstances he obviously does
not disclose.

While being debriefed in Washington, Alibek struck a friendship with his
American counterpart, Bill Patrick, who had been at Fort Detrick for forty
years and was then its chief scientist. Comparing the nature and timing of
American and Soviet programs since the war, they came to the conclusion
that at least one disciple of Klaus Fuchs must have been near the top of
the US organization. After being kept under wraps for several years, Alibek
went public and told his story in Biohazard (Delta Books, 1999). He is now
the president of a new company, Advanced Biosystems, working on defense
against biological weapons and employing, among other people, ex-Soviet
scientists, e.g. Popov. And a good deal of cooperation with the US is helping
former weaponeers in Russia to convert to peaceful research and to survive the
rise in Lenin’s country of the Robber Barons’ variant of American capitalism.

Pyromaniacs, let us hope, are thus being transformed into firemen; a clas-
sic process. Nevertheless, the work is going on everywhere now, not only for
“defensive” purposes in military laboratories, but also and mainly in perfectly
harmless civilian labs by scientists who publish their findings in standard
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journals. Although many biologists have tried for decades to devise “ethi-
cal rules”, knowledge is spreading, the techniques are becoming increasingly
easier to learn, and weapons of mass destruction are now threatening their
initiators in this domain, as atomic and chemical weapons did long ago.

References: Ken Alibek with Stephen Handelman, Biohazard (Delta
Books edition, 2000), Judith Miller, Stephen Engelberg, and William
Broad, Germs. The Ultimate Weapon (Simon & Schuster, 2001),
Robert Harris and Jeremy Paxman, A Higher Form of Killing. The
Secret Story of Gas and Germ Warfare (Granada Publishing edition,
1983). The potential of some of these weapons can be judged from
Richard Preston’s (real life) thriller, The Hot Zone (Random House,
1994, or Anchor, 1995).

The adventures of these weapons designers are, of course, extreme cases;
I relate them here because extreme cases are extremely clear. In normal
practice, a scientist and particularly a mathematician can only bring a small
contribution to a complex weapons system. This does not raise such enormous
and visible ethical problems as the development of H-bombs or biological
weapons. But it only makes it easier for confusionists, mystifiers or corruptors
to neutralize your objections.

More simply, one may be asked to solve a limited problem without be-
ing told of its military end. Although headed by the Department of Defense
(DoD)Advanced Research Projects Agency (ARPA or DARPA), the Internet
project – more accurately Arpanet, its predecessor – was to a large extent
developed in a few university centers by many graduate students who were
fascinated by it; many innovations are due to them. Contract holders (“Prin-
cipal Investigators”) had, of course, to provide ARPA with (sometimes vague
or long term) military justifications, and some of the top people went from
ARPA to universities or back. But, as Janet Abbate tells us in Inventing the
Internet ,

although Principal Investigators at universities acted as buffers be-
tween their graduate students and the Department of Defense, thus
allowing students to focus on the research without necessarily hav-
ing to confront its military implications, this only disguised and did
not negate the fact that military imperatives drove the research (...)
During the period during which the Arpanet was built, computer
scientists perceived ARPA as able to provide research funding with
few strings attached, and this perception made them more willing
to participate in ARPA projects. The ARPA managers’ skill at con-
structing an acceptable image of the ARPANET and similar projects
for Congress ensured a continuation of liberal funding for the project
and minimized outside scrutiny.

Military secrecy can only lead to similar situations.
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That said, not everyone was fooled or seduced, as the case of Pierre Cartier
shows. While a student at the Ecole normale supérieure in Paris around
1950, he was attracted by both mathematics and physics without at first
being able to choose. He once told Yves Rocard – a physicist with strong
industrial and military connections, who headed the physics lab at the school
– that he wanted to work for a doctorate. Rocard then handed him a thick
bundle of photographs; Cartier understood at once that these were a series
of very close steps in an atomic explosion. Rocard proposed that he find
a way of computing its power from these pictures, for instance from the
propagation of the shock wave, or something similar. Cartier did not like the
idea, still less Rocard’s conditions: Rocard would help Cartier to get a good
university position, but his thesis would remain secret, and he would have
to sever his relations with his Communist friends, as well as with Rocard’s
son Michel, who was embarking on a political career (he became a Socialist
Prime Minister thirty years later) and, at the time, had rather leftist opinions
which were out of phase with Rocard’s.

This decided Cartier to choose mathematics. He soon became a Bour-
baki member and one of the best French mathematicians of his generation,
still with a taste for mathematical physics, though not Rocard’s brand. Of
course, one can explain Cartier’s reaction by the fact that, beside having
strong religious beliefs, he was exposed to a much wider spectrum of political
and philosophical opinions at the Ecole normale – where there are as many
students in humanities as in science, all living together – than at Livermore
or at a Soviet military school of medicine. Still, not everyone reacted the way
he did. Thousands of scientists (and many more engineers) worked, and are
still working, on military projects with no qualms.

§ 2. The evolution of R&D funding in America

All scientists of my generation know, if only vaguely and without proclaim-
ing it too loudly, that WW II and the Cold War did wonderful things (I.I.
Rabi) for science and technology; Rabi spent his whole career at Columbia
University from 1928 to his death, was already a physics star by WW II,
later a Nobel Prize winner, and a top government advisor for decades. I have
sometimes been told by colleagues that a statement as “obvious” as Rabi’s
requires no proof, cafeteria gossip presumably being enough. If this is the
case, then professional historians of science and technology might as well
retire.

In this section, I’ll first summarize the evolution of R&D in the USA
since the war, since this country has clearly been the leader and even the
model for half a century; Britain and France, as well as the Soviet Union,
have always tried to follow America and to adopt its priorities, more or less,
with differing results. R&D, for “Research and Development”, means basic
research (without any practical purpose in sight), applied research (with a
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more or less well defined practical purpose), and development, during which
scientific results are used to design prototypes ready for production. These
distinctions are not always very definite, and development usually requires
solving many engineering problems, sometimes unexpected scientific ones, as
well as extensive (and expensive) tests. Roughly speaking, basic and applied
research cost 10 to 15% of R&D budgets each and development requires some
70% of it, but the proportions very much depend on the field.

The roughest measure of a country’s R&D activities consists in compar-
ing their total cost to the Gross National Product (GNP). In the USA, the
proportion increased from 0.2% in 1930 and 0.3% in 1940 to 0.7% in 1945,
1.0% in 1950, 1.6% in 1954, 2.4% in 1958, and to a peak of 3.0% in 1964; at
that time, US funds represented about 60% of all that was spent on R&D
in OECD countries (North America, Western Europe, Japan, etc). As many
articles, reports on “technological gaps”, and books attested at the time, all
other countries, and especially de Gaulle’s France, looked at this 3% figure
with an awe bordering on the mystical; someone joked that the optimal rate
might be 3.14159...%. Since, moreover, the US GNP had climbed, in constant
currency, from 100 BD in 1940 to about 300 MD in 1964, you can see that
in this decisive quarter of a century, R&D expenses multiplied by ten in pro-
portion with the GNP and by thirty in constant dollars! Such a miraculous
growth rate could not, of course, be sustained: the R&D/GNP ratio began
to fall as soon as it reached 3%, went down to 2.2% in 1978 and wavered be-
tween 2.6 and 2.8% between 1983 and 2000. The current and very optimistic
goal of the European Community is to reach 3% by 2010.

In America as everywhere else, the two main sources of R&D funds are
the Federal Government and private industry. Universities and not-for-profit
private organizations also contribute, but on a much smaller scale, though
their contributions to basic research may be important in some sectors. For
instance, after having made a huge fortune at Hollywood, on the TWA air-
line, in buying hotels and casinos in Las Vegas and in selling planes to the
Pentagon, Howard Hughes, like John D. Rockefeller long before him, set up
a foundation whose trustees manage his little hoard, by now worth some 11
billion; the dividends support selected projects in medical research, by far
the most popular field in America for a long time.

The relative importance of these two main sources of R&D funding has
changed considerably since 1940. This is basically due to the nearly linear or
weakly exponential growth of private industrial funds, while the fluctuations
in federal funding were much larger, as will be shown.

In 1940, the figures (in current MD) for national total and for federal and
industrial contributions were 345, 67 and 234, respectively. In 1945, they were
1520, 1070 and 430, respectively. In 1950, they were 2870, 1610 and 1180.
Although data for these years are not entirely reliable, the trend is clear.
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For each year between 1953 and 2000, data in constant (1996) MD are
available in Science and Engineering Indicators 2002 , an NSF publication
easily available at nsf.gov/srs. It provides some significant figures:

Total Federal Industry Universities Nonprofit
1953 26805 14455 11670 190 286
1958 50439 32228 17130 256 492
1966 90236 57910 29971 673 1028
1975 89112 46289 39531 1078 1335
1982 122034 56200 61422 1821 1653
1987 162798 75468 80660 2916 2383
1994 176246 63316 103326 4100 3816
2000 247519 65127 169339 5583 5415

From less than 20% in 1940, federal contributions to the total R&D reached
almost 62% in 1966, stayed over 50% until 1975, remained at 46% during
the Reagan years (1980-1988) in spite of a sharp increase in federal (actually,
military) funds, then decreased to 26% in 2000. It is only since 1980 that
industry has been spending more than Washington. To a large extent, the
proverbial “innovative capacity” of US private enterprise has been propelled
by federal dollars for almost 40 years, and mainly by defense as shown below.

All federal agencies contribute to the funding of R&D. The Department
of Defense (DoD) has been the most significant since 1941, followed by the
Department of Energy (DoE, founded at the beginning of the 1970s, deal-
ing with all kinds of energy, including the former Atomic Energy Commis-
sion, AEC, founded in 1946), NASA (or NACA, aeronautics, until 1958), the
National Institutes of Health (NIH), and the National Science Foundation
(NSF). Other federal departments together account for no more than 6% of
the federal total, although their role, here too, is substantial in some fields.
NSF annual statistics (Federal Funds for Research and Development ) provide
a good, if probably not 100% accurate, view of their evolution.

In 1940, the government allocated 26 MD (current money) to defense
R&D, 29 to agriculture and some to geology and mining; there was also a
National Bureau of Standards which had been created in 1901 on the model
of a German laboratory where much important research was conducted to de-
termine accurate values for physical constants, weights, measures, etc. During
WW I, the Washington Academy had created a National Research Council
which did a lot of military research and was officially recognized after the
war, but it got most of its small budget from private sources and spent
it mostly on fellowships for young scientists. Otherwise, practically nothing
went to research proper except for the creation in 1937 of a National Cancer
Institute.

The picture had changed by 1945. Out of the 1590 MD in federal funds for
R&D, agriculture still got 34, defense (atomic excluded) 513, the Manhattan
Project (atomic) 859, and 114 went to the Office of Scientific Research and
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Development (OSRD) created during the war to organize military research
in all sectors. Not surprisingly, defense justified 90% of the total. During the
war, industry spent less of its own funds on R&D than in 1940 in constant
dollars, but, of course, received a flood of military contracts. Many univer-
sities received undreamed of amounts of money for military research: MIT
117 MD, CalTech 83 MD, Harvard 31 MD, Columbia 28 MD, to name but
a few; new off-campus installations had to be set up for the most expensive
projects. In 1950, out of 1083 MD in federal funds, agriculture got 53, DoD
652, AEC (essentially military at the time) 221, and NACA (similarly) 54
instead of 2 in 1940. Although Truman had considerably “restricted” the to-
tal defense budget after 1945 (13-14 BD until 1950, as against one in 1940),
it remained large enough to finance a few large-scale technological projects,
such as the development of the big jet bombers (B-47 and B-52) and super-
sonic jet fighters, progress in rockets and missiles, and the beginning of the
development of nuclear submarines. The contributions of the main agencies
are as follows for selected subsequent years, in current money:

Total DoD AEC/DoE NASA NIH NSF
1953 1851 1275 278 84 59 0.151
1958 4774 3480 828 97 218 41
1966 16178 7099 1441 5327 1142 323
1975 19859 9179 2439 3207 2436 618
1982 37822 16786 5896 3708 3950 976
1987 57099 35708 5529 4096 6643 1531
1994 69450 34818 6959 8811 11141 2212
2000 77356 33215 6873 9754 18645 2942

These figures show the relative importance of the main federal sources of
R&D money. DoD’s contribution has always been, by far, the most important
one, but to gauge the real size of defense-related funds, one should also take
into account the AEC/DoE budget. In 1968, for example, out of a total of
about 1600 MD, AEC’s R&D budget included 400 for research proper (48
for weapons, 265 for physics, 86 for biology and medicine); 425 went to the
development of weapons, 491 to the development of nuclear reactors, much
of it for the Navy and Space, and 224 to construction work. It may also be
assumed that NASA’s R&D was not totally disconnected from defense even
though the DoD itself spent between 500 and 1100 MD yearly on R&D for
military astronautics between 1961 and 1965, and between 2 and 3 billion
for the development of missiles. It may also be assumed that the CIA and
the National Security Agency (NSA, cryptology, reconnaissance satellites,
etc.), whose contributions are not reported, had sizable amounts to spend
on R&D. And although much R&D for military industrial projects was to a
large extent financed by the government even prior to any production, still
some of it was private money.
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On the other hand, the prospect of a federal budget surplus under Clinton
prompted Congress to adopt a bill in 1998 to double the non-defense part of
the federal R&D budget over ten years. This target was reached for the NIH
by 2003, at least in current dollars, to the displeasure of specialists in other
domains left behind.

The above table shows a substantial decrease of DoD funds after the
Reagan years, but the trend was later reversed, courtesy of Mr Ben Laden.
According to a recent analysis by the American Association for the Advance-
ment of Science (www.aaas.org/spp/rd), out of the projected federal budget
for R&D in the year 2005, the defense-related part, including 4.5 BD from
the DoE, should amount to well over 74 billion, and the non-defense portion
to over 57, of which NIH will get almost 30, Space over 10 and NSF 3.8. A
new domain, antiterrorism R&D, will absorb 3 BD, of which 1.7 will go to
NIH to fight bioterrorism, e.g. anthrax pocket weapons which are seen as a
serious threat. Although the 2004 budget is the biggest ever since 1945, even
in constant dollars, and far bigger than any other country’s, America is able
to afford it by devoting less than 4% of her GNP to total defense, as against
at least 12% at the height of the Cold War. This is because GNP has grown
at least five times in constant dollars since 1945.

The tables above make it possible to estimate the percentage of Defense
money over total R&D, by converting current dollars into 1996 dollars. In
1958, defense-related federal funds for R&D accounted for 82% of all federal
funds and 53.1% of national R&D expenses, hence more than industry’s own
contribution. In 1987 defense still accounted for almost one third of total
R&D and 68% of federal R&D; it later decreased to a low of 13.6% in 2000
because of the growth of industry’s own funding; Microsoft for instance is
currently spending about 5 BD a year on R&D and presumably does not use
the Pentagon’s money to develop Windows, which may explain its quality...
R&D is mostly development, but the importance of development in Defense
is particularly striking: 2.9 BD out of 3.5 BD in 1958 and 28 BD out of 33
BD in 2000, with similar proportions in the interval. Industrial firms always
get at least 60% of the DoD funds for R&D, while about 30% of the money
is spent in DoD’s own technical centers. According to the AAAS, only 5.18
BD should go to basic and applied research in 2005.

Some federal funds go to so-called Federally Funded Research and Devel-
opment Centers (FFRDC). These were organized during or after WW II and
are administered by industrial firms, universities, or nonprofit institutions.
The first category includes huge centers such as Idaho, Oak Ridge, Sandia
and Savanna River producing nuclear material or weapons, though on a very
reduced scale now. The second includes the MIT Lincoln Lab (electronics,
radar, SAGE, anti- missiles, etc.), the Jet Propulsion Lab (Cal Tech), Ar-
gonne (Chicago U.), Brookhaven (several universities) and huge installations
for particle physics at Berkeley, Princeton, Stanford, etc.; last but not least, it
also includes Los Alamos and Livermore labs initially founded for the devel-
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opment of nuclear weapons and administered by UC Berkeley, which didn’t
always relish it although it earned money from it. In the third category, there
is the Rand Corporation which was organized in 1946 by Douglas aeronau-
tics and the Air Force and soon became a research center financed by the
Pentagon; it became famous in the 1950s for its development of operational
research, game theory and mathematical programming, and for its slightly
pathological strategic studies, particularly when Herman Kahn, in Thinking
the Unthinkable and other books, made them popular by explaining nuclear
war “escalation” theory (up to what he called a “nuclear spasm” or, as some
said, “orgasm”) as if it were a very funny poker game.

These cold figures should be supplemented with some more concrete infor-
mation. As mentioned above, academic research got very little from Wash-
ington before the war; it was financed by university funds, philanthropic
organizations and, in many engineering departments, by industry, enough to
increase significantly the number of scientists during the inter-war period.
The Rockefeller Foundation, which up to 1932 spent 19 million on academic
research, spent a lot more on medicine than Washington. It also financed
physics during the 1920s: thanks to its fellowships, many scientists, including
future American designers of atomic bombs, learned their trade in Europe;
European physicists were invited to America, some permanently; and the
Foundation financed new laboratories in Copenhagen and Göttingen as well
as the Poincaré, Institute in Paris. By 1930, and like many social scientists,
it was having doubts over the value of physical sciences and technology: gas
warfare in WWI had been rather bad publicity, as had the disruption of
the American way of life and traditional values by technological advances.
It therefore decided in 1932 to concentrate on applications of physics and
chemistry to biology, which made it a prime sponsor for many of the future
creators of molecular biology. Ernest Lawrence, and he alone, succeeded in
attracting big money for his Berkeley cyclotrons: as much as one million
in 1940 – a staggering sum at the time for physics – from the Foundation
which betted on the prospect of cheap artificial radio-elements to fight can-
cer; otherwise, almost all of his money came from other philanthropists and
the university. America had a good number of first class physicists by the
1930s; three dozen generally small particle accelerators were built in uni-
versities (Germany had none in 1940, France had one). In these depression
years, particularly 1932-1934, attempts to get federal money were unsuccess-
ful – almost all the New Deal relief money went to jobless people. Although
senior scientists were generally comfortable, many younger ones were badly
paid, and some unpaid ones spent part of their time making money to sur-
vive while continuing laboratory work. It is remarkable that the production
of PhD’s between 1930 and 1939, namely 980 in mathematics and 1924 in
physics, was almost triple that in the preceding decade; this was mainly due
to the strong growth of higher education in all domains. Without federal help
to speak of, America was thus already the new dominant country in physics.
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There were Jewish refugees in all intellectual domains after Hitler’s seizure
of power; though they were generally much younger, less well known than
Albert Einstein, and not always welcome as Jews at the time, many Ameri-
can scientists helped them. After having a hard time until the war, most of
the refugee scientists – almost 200 in mathematics and physics – were to find
permanent university positions after 1945, and several dozen became leading
scientists, or even stars. This also contributed to America’s standing in these
two domains, as in many others.

MIT, where many top American industrialists and engineers had been
educated since the 1880s, already had the biggest electrical engineering de-
partment in the world, thanks to industrial contracts, gifts from alumni, and
tuition fees. Private industry spent about 250 MD on R&D in 1940, partly
in laboratories created fifteen or thirty years earlier by big companies like
General Electric, AT&T, Westinghouse, or DuPont; they started doing some
basic research in the 1920s. In 1925, AT&T, the private telephone monopoly,
founded its Bell Labs, which soon became the largest industrial research lab-
oratory in the world, with a 20 MD budget and some 2,000 employees by
1940; a physicist there won a Nobel prize for experiments on electron diffrac-
tion which confirmed the dual nature of elementary particles. Another Nobel
Prize went to General Electric’s physical chemist Irving Langmuir (who had
its first success in 1913 in discovering that filling incandescent lamps with
nitrogen greatly increased their life). At DuPont, a basic research program
on polymers began in 1927, with initial funding of 250,000 dollars (to be
compared with Columbia University physics department’s budget of 15,000
dollars in 1939); from there came nylon in 1938, for the development of nylon
in 1938; it cost about 2 MD and generated a 600 MD business twenty years
later. There was also much R&D in the petroleum industry, with projects
costing from a few hundred thousand to 15 MD. This figure looked enormous
at the time.

References: David Noble, America by Design. Science, Technology
and the Rise of Corporate Capitalism (Knopf, 1977), Daniel J.
Kevles, The Physicists. The History of a Scientific Community in
Modern America (Vintage Books, 1979), L.S. Reich, The Making
of American Industrial Research: Science and Business at GE and
Bell, 1876-1926 (Cambridge UP, 1985), Pap Ndiaye, Du nylon et des
bombes. DuPont de Nemours, le marché et l’Etat américain, 1900-
1970, (Paris, Belin, 2001), Thomas P. Hughes, American Genesis.
A Century of Invention and Technological Enthusiasm, 1870-1970
(Chicago UP, 2004).

As previously mentioned, the war changed the picture. At MIT, a Radiation
Lab was founded in order to develop radar; scientists of all levels worked
there, including Hans Bethe (until 1943), Isidor I. Rabi and Lee A. DuBridge
who headed the lab; Louis Alvarez and other young collaborators of Lawrence
brought the expertise in electronics and high frequencies they had acquired
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in Berkeley; many of these people became very influential science advisors
to the government after the war. At MIT and elsewhere, the work on radar
required many advances in all domains of electronics, e.g. in high frequencies,
or in semi-conductors because glass valves could not detect centimetric radar
waves. Methods for purifying germanium were found at Purdue and were
crucial to the invention of transistors a few years later, while Bell Labs did
the same, with less success, for silicon. The size of the radar business can be
gauged from the fact that the Rad Lab employed up to 4,000 people, while
the industrial production proper cost almost 3 BD – more than the atomic
bomb project.

Headed by General Groves, the Manhattan Project – that most spectac-
ular success story, though less useful for winning the war – employed hun-
dreds of scientists in Los Alamos and elsewhere; these included Fermi, Bethe,
James Franck, Harold Urey, Arthur Compton, Lawrence, von Neumann, Al-
varez, and even Niels Bohr, all of them (except von Neumann) past or future
Nobel prizewin ners. Oppenheimer, a former Rockefeller fellow and the best
native theoreti cian, headed Los Alamos with fantastic brio; he understood
everything and made the whole enterprise succeed. He was under permanent
surveillance by the FBI who were well aware of his pre-war leftist leanings
and connections; this did not prevent the bombs’ blueprints from quietly
leaving Los Alamos for Moscow in a Plymouth driven by Klaus Fuchs in the
summer of 1945. The project cost two billion, 70% of which was spent on the
production elsewhere of U-235 in a gigantic isotopic separation factory or in
Lawrence’s calutrons, and of Pu in huge atomic piles. Most of the basic tech-
niques later used in civilian nuclear energy were invented between 1942 and
1945, and this allowed General Electric, Westinghouse, DuPont and other
companies to learn them and to become world leaders after the war in using
nuclear power for electricity production, and first of all for the propulsion of
submarines or aircraft carriers. More about this in the Internet file.

In 1945-1946, nuclear physicists were rewarded with millions left over from
the Manhattan Project, which allowed them, among other consequences, to
build new particle accelerators whose cost eventually came to billions (not
millions). Before 1940, this prospect would have been dismissed as utterly
insane. The AEC/DoE has funded this domain in America from 1947 to this
day, while the Rockefeller Foundation withdrew its support after 1945 since
the government could provide far more; in addition, since 1941 Lawrence
and others had been hinting at spreading radioactive waste over or in front
of enemy troops in case of war, which was not quite as glamorous as fighting
cancer.

In a famous 1945 report, Science, the Endless Frontier , the chief of mili-
tary R&D (OSRD) during the war, Vannevar Bush, advocated the establish-
ment of a National Science Foundation funded by the government and whose
president and programs would be chosen by scientists; the project was re-
jected by the President. It came into being in 1950 as a federal agency funded
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and governed by the government and controlled by Congress like other agen-
cies, with, of course, plenty of scientific advisory committees; but it got very
little money before Sputnik, as the table above shows. In the bio-medical
sector, where a first National Cancer Institute had been founded in 1937,
new National Institutes of Health were established; with strong backing from
Congress and voters, they continued to grow and multiply and are now by
far the most important non- defense source of federal money. Meanwhile, the
Office of Naval Research founded in 1946 spent some 20 MD per year to help
research in all domains, mainly to keep in touch -“in case” – with scientists
and research; mathematics got about 10%, but a threateningly increasing
part of it (up to 80% in 1950) was – already! – funding the development at
MIT of a futuristic Whirlwind computer working in real time; a riot ensued,
and Whirlwind would have died but for the birth of a far better sponsor in
1950, namely the air-defense system of the American continent, as we shall
see later.

Private universities, where government interference was anathema before
1940, reversed their principles: ONR was very liberal and people got used to
this new kind of “tainted money”; after all, nobody had ever asked trustees or
benefactors of the rich universities how they became so wealthy; but it some-
times took several years before federal money (and possibly classified military
contracts) were accepted. CalTech was still a small university in 1945; with
a board of trustees made up of very conservative bankers and industrialists
who approved the policy of basic research presided over by physicist and No-
bel Prize winner Robert Millikan, it was several years before it bowed to the
inevitable; meanwhile, the off-campus Jet Propulsion Laboratory founded by
von Kármán prospered on guided missiles and DoD money, as was the case
at Johns Hopkins with the Applied Physics Laboratory founded during the
war. Julius Stratton, a future president of MIT who during the war had close
ties with the higher echelons of the Pentagon – he was one of the stars of the
MIT Radiation Lab -, wrote in October 1944 to MIT president:

Twenty-five years ago everyone talked about the end of war; today
we talk about World War III, and the Navy and Air Force, at least,
are making serious plans to prepare for it. Inevitably this national
spirit will react upon the policies of our educational and research
institutions. It always has, and we might just as well face it (...)
We shall have to deal with the Army and Navy and make certain
concessions in order to meet their needs.

This means that by 1950, 85% of the MIT total research budget came from
the military and AEC, with a still higher proportion for physical sciences in
other elite universities. John Terman, another star in electronics, wrote in
1947 to his university’s president that
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Government-sponsored research presents Stanford, and our School
of Engineering, with a wonderful opportunity if we are prepared to
exploit it,

which of course they were. The importance to the military of these univer-
sity departments was due not only to their research work, but also to their
educating thousands of scientists and engineers for defense work in particular.

References: Everett Mendelsohn, Merritt Roe Smith and Peter Wein-
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Various more or less successful attempts were made after 1950 to bring sci-
entific advice to the highest levels of government, particularly the DoD; it
was Sputnik which brought scientists to the White House. Meanwhile, the
Korean War was an opportunity to organize “summer studies” during which
scientists, engineers and military men would gather for several weeks in or-
der to study such (classified, i.e. secret) defense problems as anti-submarine
warfare, tactical nuclear weapons, air defense, etc.

The size of American defense activities in the 1950s and 1960s can easily
be explained by political factors and by reactions to perceived Soviet threats
(or counter-threats to perceived American threats: bombs, bombers to deliver
them, and the “encirclement” of the USSR by US air bases). As we have seen,
the first Soviet atomic test launched America into the race for the H-bomb.
In the spring of 1950, the celebrated NSC-68 report of the White House
National Security Council, vastly exaggerating the Soviet military threat and
supposed plans for world domination, recommended (among other things, e.g.
much stronger West European forces) a huge increase of the Defense budget;
the figures which were known but remained unwritten, namely 40- 50 billion
instead of 13-14, were judged excessive even by the military, who did not
know how to spend so much money. Truman did not agree either, but the
“Socialist camp” forced it on by sparking the Korean War. In particular, the
production capacity for U-235 and Pu was increased in a staggering way: five
new piles for the production of Pu, one for the production of tritium, and two
more huge isotopic separation units, with sixteen times the capacity of the
1945 factory, which had already been enlarged; up to 85 tons of U-235 could
be produced per year, which needed 6,000 megawatts of electricity, or 12% of
total US production. Nuclear weapons of all types grew in America at a rate
of several thousand per year, to reach 32,000 in 1964, with powers ranging
from a few tens of tons up to several megatons in TNT equivalence. This
was about fifteen times the Soviet arsenal at the time and could be delivered
by 800 intercontinental ballistic missiles (ICBM), 200 submarine-launched
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missiles (SLBM), a thousand fighter- bombers based in Europe, the Middle
East, Japan or on aircraft carriers, and strategic bombers (about 2,000 B-47
and 700 B-52 were built before 1962).

A gigantic system to defend America against Soviet bombers was built,
as we are now going to see. The first Soviet atomic bomb led people at MIT
to take the first steps to protect the USA from future Soviet bombers in 1950
(this threat was dismissed by Curtis LeMay, the Strategic Air Command
(SAC) chief during the 1950s: his personal strategy was to wipe out Soviet
planes, copies of the US B-29 bombers of 1944 vintage, before they could take
off, but bypassing the President was slightly illegal...). This originally small
Project Lincoln based on the Whirlwind computer led to the founding of a
Lincoln Lab at MIT, and to the gigantic SAGE system of continental defense
– a precursor to SDI -, at a cost of 30 billion (or 200 billion in 1996 money,
and much more if personnel and other costs are included). Thousands of Bell
Labs Nike-Hercules missiles, each carrying a 2 to 30 KT atomic warhead,
could destroy entire fleets of incoming aircraft , assuming the Soviets were
clever enough and able to send such fleets over the North Pole in suicide
raids since, in any case, they could not make the round trip until big jets –
never more than 200 – began to appear in 1955. Bell Labs, which had de-
veloped anti-aircraft rockets since 1945, managed everything while hundreds
of subcontractors in practically all domains of technology helped develop the
hardware and software needed in SAGE. SAGE was obsolete as soon as it
became operational in 1960- 1962: bombers were replaced by unstoppable
missiles after 1962, which led to the first and useless anti-missile systems,
including the highly controversial Nike-Zeus missiles with 60 to 400 KT war-
heads, based around big cities and never deployed. The USSR’s program
evolved in similar fashion, but was even more expensive since missiles and
bombers could come from many directions.

The SAGE project however played a major role in all kinds of tech-
nical advances, particularly long-range “over- the-horizon” radars, guided
anti-aircraft weapons, and computers. In this last field, it led to magnetic
core memories, video displays, light pens, graphics, simulation, synchronous
parallel logic, analog-to-digital conversion and transmission of radar data
over telephone lines via the first transistorized modems made by Bell, multi-
processing, automatic data exchange between different computers, etc. With
its hundreds of thousand lines of code and hundreds of computer screens,
SAGE provided the first opportunity to train several thousand programmers
(most of whom later went to industry); this was done by the SDC branch
of the Rand Corporation, which was founded in 1957 to that effect. Among
many other machines, SAGE needed fifty six IBM AN/FSQ-7 and -8 (or
“Whirlwind II”) computers; there were twenty-four SAGE main command
centers connected to a pharaonic installation under the Colorado mountains,
itself connected to the White House and Pentagon; each of the centers used
two of these IBM computers working in tandem to increase reliability. Made
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to order at a cost, in current money, of 30 million a piece, each of these
machines weighed 275 tons, had some 60,000 valves, used 32-bit words, had
a magnetic core memory – one of the great innovations from Whirlwind –
of about 270 kilobits, twelve magnetic drums each storing 12,288 words of
program, and was connected to about one hundred screens displaying enemy
planes’ trajectories and enabling operators to vector fighter planes graphi-
cally. It needed 750 kw of electric power to run and a hurricane to evacuate
the heat it generated. These performances may look puny by 2005, but there
was nothing more powerful at the time and, of course, the new techniques
were put to good use in IBM’s future commercial computers. All of the lat-
ter were transistorized after 1960, the first large ones (series 7090) being
delivered to the three gigantic radars of the Ballistic Missiles Early Warning
System in Alaska, Greenland and Scotland.

References on SAGE: chap. 4 of Atomic Audit , Edwards’ chap. 3,
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The R&D Story of the SAGE Air Defense Computer (MIT Press,
2000), very weak on technology, and Thomas P. Hughes, Rescuing
Prometheus (Random House, 1998).

Then came Sputnik in October 1957, which scientists used very success-
fully to clamor for increased research funds. NACA was transformed into
NASA, with very soon a budget in billions of dollars, while the Defense bud-
get proper decreased. A scientific committee (PSAC) was instituted at the
White House. The Advanced Research Projects Agency, ARPA, was founded
by the DoD in order to fund and organize the most sophisticated research
projects with military implications. Americans reacted to the “missile gap”
with wild and shifting predictions on the size of the Soviet arsenal (100 in
1959, 500 by 1960 and 1,000 by 1961-1962) from the CIA, the Air Force, jour-
nalists, and democrat politicians, including Kennedy and especially Johnson,
wishing to destroy the 1952-1960 Eisenhower republican administration. But
radars from Turkey and Iran had detected Soviet missile tests in 1953-1954,
and, from 1955 on, absolute priority was given to similar American programs,
Atlas and Titan, soon followed by the silo protected Minuteman series of
ICBMs, the Polaris missiles for nuclear submarines, and the first satellites
for reconnaissance, infrared detection of missile firings, meteorology, commu-
nications, etc (1959-1961). Extended flights over Soviet territory first by U-2
spy planes, then satellites, proved in 1960 that there was indeed a big “missile
gap”: perhaps four Soviet operational missiles, to dozens of American ones.

Like the Korean War, Sputnik and Khrushchev’s boasts proved to be a
self-defeating move and another wonderful opportunity for the American and
Soviet “scientific-military- industrial complexes”. The Soviet arsenal, vastly
outnumbered by the American arsenal until the 1970s, was nevertheless big
enough to make an American attack unlikely, and in any case America’s
top political rulers found the Air Force’s apocalyptic war plans quite repel-
lent, although they knew they might have to “push the button” as a last
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resort (see my vol. I, p. 122; in 1960, over 150 weapons were reserved for
the Moscow area alone, and quite a number of them would have destroyed
each other). To paraphrase a journalist writing in Science , September 27,
1974, these huge defense systems were the cathedrals of a century that future
historians will characterize by its extraordinary technical capacities and its
permanent devotion to the mortuary arts. And so on, with ups and downs,
until the fall of the Soviet Union. The most exotic parts of Reagan’s Star
Wars project were terminated, but a less ambitious anti-missile program is
still going on, at the rate of several BD per year, with a first deployment in
Alaska of weapons guided on a collision course with enemy missiles (a fasci-
nating problem in Control Theory) although no one can guess who would be
foolish enough to launch them. America’s military doctrine is now undergo-
ing a “Revolution in Military Affairs” based on “Space Dominance”, which
aims at fully integrating every weapon and everyone – from the President and
the Pentagon warlords down to the GI on the battlefield – through all kinds
of satellites, drones, telecommunications, information networks, etc. You will
find an impressive survey of it in Introduction au siècle des menaces (Paris,
Odile Jacob, 2004), by Jacques Blamont, a French specialist in Space Sciences
with long and strong ties to the Jet Propulsion Lab (and, more recently, So-
viet astronautics), and a member of the US Academy of Sciences. Another
“revolution” has been under way since the Strategic Computing Initiative
of the 1980s: substituting all kinds of “intelligent” robots for weak mortals
on the battlefields of 2030, according to the New York Times (02/16/2005).
Contracts worth 127 BD have already been issued for this Future Combat
Systems project, which will contribute to boosting weapons acquisition costs
from 78 BD now to 118 by 2010. Those who believed the end of the Cold War
would slow down the technical progress of armaments were badly mistaken...

The development of nuclear weapons, fighter planes, bombers, missiles,
nuclear submarines, aircraft carriers, SAGE, satellites for C4 RI (command,
control of operations, communications, computers, reconnaissance and intel-
ligence), etc. relied on and greatly encouraged technical progress in dozens of
less spectacular domains: electronic components (from glass valves to tran-
sistors to printed circuits to integrated circuits to VLSI...), computer hard-
ware and software, navigation and guidance systems, infrared detection, fire
control devices, radar and sonar, microwave propagation, space telecommu-
nications, materials, etc. The list is endless.

The development of transistors and integrated circuits is a good example.
Semi-conductors had been known for a long time and were the first detectors
used in wireless in the 1900s. Systematic experimental studies in the 1930s
and during WW II, as well as the development of a solid-state theory using
quantum mechanics, had led to a good understanding of the phenomena by
1945, and, at Purdue university, to methods of obtaining highly purified ger-
manium (so named by its German discoverer), from which rectifying diodes
were mass produced for radar detection. The Bell Labs did the same with sili-
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con with less success at the time. After 1945, they tried to discover solid-state
amplifiers, and the first very primitive point-contact transistors were made
there in 1947 by two physicists, John Bardeen and Walter Brattain, headed
by William Shockley who a few years later found a way to make industrializa-
tion far easier; all three shared a Nobel Prize. Transistors, patented by Bell
in 1948, were expected to replace electronic valves and electro-mechanical
switches in a myriad of devices used by the AT&T telephone system. But
there was nothing urgent here – the capital invested in standard equipment
was far too high to be scrapped – and, anyway, replacement would require
years of further development and industrialization. AT&T, however, was un-
der an anti-trust suit at the time and the military watched the development
of transistors with great interest. Bell therefore organized a first informa-
tion meeting at the beginning of 1951 for military and government officials
only, then a symposium in September for some three hundred American and
European engineers to whom the characteristics of a dozen transistors were
disclosed. In 1952, Bell decided to sell its patents to 36 companies and, in
April, to divulge the know-how to licensed companies. A first production
unit for military transistors was built by Western Electric, the manufactur-
ing branch of AT&T. The anti-trust suit ended in 1956 and, among other
clauses, AT&T was ordered to limit its production to its own needs and to
the government market, for which many Bell innovations were made; this
favored other manufacturers. The Army Signal Corps had already issued
production contracts to twelve makers for use in the forthcoming strategic
missiles, and demanded 3,000 units of thirty different types per month. Since
at that time only 5 to 15% of the production was free of defects, this re-
quired much higher production capacities, with very high unit costs. But the
rate of rejects, and hence prices, soon dropped, and sales to less demanding
buyers went from 14 million in 1956 to 28 million in 1958. The military were
interested in transistors because they were small and light, consumed very
little power, and were much less sensitive to shocks, vibrations and wear than
valves. First models of transistorized computers were built at Bell Labs and
Lincoln Lab (MIT) in the 1950s, for the military, of course.

The first civilian commercial uses of transistors were for hearing aids
(Raytheon, 1954) costing 150-200 dollars; transistor portable radios came a
few years later. It took at least ten years before a large commercial market
developed because classical valves were far cheaper – one dollar instead of
eight around 1953 -, had much better characteristics than early transistors,
were much easier to make, and were much more familiar to most electronics
engineers; the main advantages of transistors were not needed in most ap-
plications, though they attracted the military. Between 1954 and 1956, the
markets for transistors and valves were $55 and over 1000 million respectively.
And though several established valve manufacturers (General Electric, RCA,
etc.) had 31% of the market in 1957, new and much smaller firms (Texas
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Instruments, formerly a geophysical services company, Transistron, Hughes,
etc.) had 64%.

Integrated circuits were invented in 1958 by Texas Instruments without
military funding (military projects for miniaturizing electronic circuits all
failed or came too late in the 1950s), but their mass production was made
possible by the invention of the so-called planar process for silicon transistors
by a group of eight physicists and engineers who left a company the insuf-
ferable Shockley had founded in 1954. The Fairchild Company which, since
the 1920s, made aerial cameras and later components of analog computers
(all mostly for the military), set up for them the Fairchild Semiconductor
Corporation in 1957. Since they had their eye on the commercial market –
some of them founded Intel a few years later -, they rejected military R&D
contracts to remain free of having to develop products which, although mil-
itarily important, would be of little commercial interest. They nevertheless
decided to concentrate first on the improvement and manufacture of high
performance silicon transistors for the military market. This was the time
the military was beginning to replace analog computers with digital ones in
avionics and missiles because only silicon – and neither very expensive ger-
manium, nor electronic valves – could stand the high temperatures, shocks
and vibrations prevalent in many military systems. Their first customer was
IBM which bought one hundred Fairchild “mesa” transistors at 150 dollars a
piece for use in the navigational computer for the prototype of the B-70 su-
personic bomber they had already made the analog computers for the B-52s,
a much bigger market). They had no competitor other than Bell Labs, their
mesa transistors immediately found many other avionics uses, and their sales
jumped from 65,000 dollars in September 1958 to 2.8 MD for the first eight
months of 1959. Their most important customer was Autonetics, in charge of
developing the digital computer guidance system for the Minuteman missile.
Other early uses included an air-to-air missile, a torpedo, and the Apollo
space station. Problems of reliability led to the “planar process” to make
much better transistors; the rate of defect-free components was 5% at first,
but they were under such pressure from Autonetics, which demanded one
year without failure, not to mention the now growing competition in mesa
transistors, that they persisted, then developed ultra-reliable planar diodes
for computers and eventually integrated circuits. The planar process made
it possible to fabricate many components on the same silicon wafer and to
connect them, again with a very low initial proportion of defect-free circuits.
All of this looks very simple, but required extraordinary standards of clean-
liness, manufacturing skills, and an unprecedented level of discipline on the
workforce , as one of my sources said.

Total sales of ICs amounted to 4 MD in 1962, 41 in 1964, 148 in 1966
and 312 in 1968, while the average unit price dropped from 50 dollars to
2.33; in those same years the military bought 100%, 85%, 53% and 37% of
the total sales. More generally, the military part of the electronics industry’s
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total sales, which was 24% in 1950, climbed to 53-60% during the years
1952-1968. The general pattern in electronics at the time was that the first
customers, namely the military and their industrial contractors, bought the
initial product at prices which included most of the R&D and at least part
of the tooling; prices then went down to a level which civilian industry and
business could afford for their own uses, which in time lowered the prices
again until the general public could buy solid-state gadgets like radios, TV
sets or PCs. With a huge civilian market after 1980, chip makers like Intel
could continue to improve their products with little help from the military;
Intel even refused to work on highly sophisticated very high speed circuits
(VHSIC) with no civilian uses.

The military actually benefited from this civilian market as they too
needed a lot of standard electronics that could be purchased off-the-shelf at
low prices. For this reason and to help American industry against Japanese
competition, they became interested in “dual” technologies with military and
civilian uses. The DoD still spends about 25% of its R&D budget on electron-
ics and communications, but for more sophisticated products than personal
computers...

The early development of computers was still more influenced by the mil-
itary. Explaining it here would take too much space; see the Internet file. I’ll
merely point out that the 35 computers made between 1945 and 1955 were
entirely financed by the DoD, with the exception of two in universities which
my source does not know, and of the von Neumann Princeton computer
which was financed by the Army, Navy, AEC and RCA (but its five copies
were financed by AEC or, at Rand, by the Air Force). Almost all of these
machines were one of a kind; only three companies made several production
units: UNIVAC, the company Eckert-Mauchly had founded in 1947 in order
to make huge data-processing machines with the commercial market (bank-
ing, insurance, etc.) in mind, although it also had military customers; ERA,
founded by a team of former cryptologists from the Navy who made very
advanced computers for the National Security Agency; and IBM which, at
the start of the Korean War, decided to make digital machines. They looked
for customers and found seventeen, either military or in the military indus-
try. Of course a huge civilian market developed later – mainly after 1960 -,
but the influence of military research contracts and procurement always was
extremely powerful, and still is.,

References: Herman H. Goldstine, The Computer: From Pascal to
von Neumann (Princeton UP, 1972), Kenneth Flamm, Targeting
the Computer (1987, Brookings Inst. Press) and Creating the Com-
puter: Government, Industry, and High Technology (1988, Brook-
ings), Arthur L. Norberg and Judy E. O’Neill, Transforming Com-
puter Technology. Information Processing for the Pentagon, 1962-
1986 (1996, Johns Hopkins UP), Donald MacKenzie, Knowing Ma-
chines (MIT Press, 1998), Janet Abbate, Inventing the Internet
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(1999, MIT Press). National Academy of Sciences, Funding a Rev-
olution. Government Support for Computing Research (NAS Press,
1999), very explicit and thankful to the DoD, Alex Rolland & Philip
Shiman,Strategic Computing: DARPA and the Quest for Machine
Intelligence (MIT Press, 2002).

Below industry level, all domains of science, from mathematics and computer
science to nuclear physics, electronics, optronics,..., oceanography, geology
(used e.g. for monitoring underground nuclear tests) and even to some extent
biology and medicine, expanded tremendously since much of their results and
many experts were needed in all domains of high technology and defense.

§ 3. Applied mathematics in America

In the entertaining chapter of his autobiography, Un mathématicien aux
prises avec le siècle (Paris, Odile Jacob, 1997, trad. Birkhaser), which he
devotes to his teaching at the Ecole polytechnique, Laurent Schwartz ac-
cuses (p. 355) the French pure mathematicians , and especially the Bourbaki
group, of having ostracized their applied colleagues. As a matter of fact, for
at least ten years there was nearly nobody to be “ostracized” before the rise
of Jacques-Louis Lions (1928-2001), a very bright student of Schwartz who
first worked on distributions and partial differential equations (PDEs) in the
modern way made possible by the development of functional analysis. He
discovered applied mathematics and computers in America in 1956 in cir-
cumstances that will be explained below, and later founded the very brilliant
French School of Applied Mathematics; he himself was appointed a professor
at Nancy in 1954, in Paris in 1963, at the Polytechnique (1965-1986), and at
the Collège de France in 1973.

From 1980 to 1984, he headed the French government National Insti-
tute for Research in Informatics and Automatics (INRIA) with which he had
been connected for ten years, the French NASA (CNES) from 1984 to 1992,
and he won some of the highest international prizes; quite a victim of our os-
tracism, and otherwise a great mathematician with some 50 doctoral students
and hundreds of “descendants” in the world. See a substantial biography by
Roger Temam, one of his principal students, at www.siam.org/siamnews/07-
01/lions.htm.

Schwartz decrees that every mathematician must concern himself with the
applications of what he is doing without, it seems, being aware of the fact
that “to concern oneself with” may have quite a number of different mean-
ings, whether in French or in English. He provides neither a justification for
his categorical imperative nor the slightest account of the very diverse appli-
cations of mathematics. The fact that applied mathematics were undergoing
a powerful expansion in the United States and USSR among others seems to
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justify everything, without it being necessary to explain this strange and very
new development in the two countries which led the arms race until 1990.

The development of applied mathematics in the USA which so inspired
Schwartz is not too difficult to explain, even though much remains to be
done since physics and technology, being far more spectacular, have almost
monopolized historians until now. The Soviet situation, although less well
known, was certainly no better.

Before the war, “pure” mathematics prevailed in universities everywhere
(except in the USSR, since this “bourgeois” concept was anathema to Marx-
ism); engineers and physicists almost always solved their mathematical prob-
lems by themselves, even when the new quantum mechanics obliged physicists
everywhere to rediscover strange mathematics. By the 1930s, the situation
began to change in a few places, partly due to the arrival of European Jew-
ish refugees. Richard Courant, Kurt Friedrichs, Fritz John and Hans Lewy
brought to New York university some of the Göttingen tradition founded by
Felix Klein forty years before. They dealt less with applied mathematics as
we know them – computers had yet to come – than with often “modern”
mathematics such as found in Courant and Hilbert’s celebrated Methoden
der Mathematischen Physik . In 1937, the Army Ballistic Research Labora-
tory at Aberdeen set up a scientific committee including von Neumann and
von Kŕmń besides other luminaries. Von Kármán, formerly a student and
later a competitor of Ludwig Prandtl, the foremost German aerodynamicist
in Göttingen, had been at CalTech since 1934 (and part-time since 1926),
where he founded the future Jet Propulsion Laboratory. In 1945 he became
the Air Force’s main scientific advisor and, in this capacity, one of the first
promoters of atomic missiles. Classical Calculus being often sufficient, the
WW II military R&D organization did not at first enlist mathematicians.
Mainly at the request of mathematicians themselves, an Applied Mathemat-
ics Panel was set up in 1942 with teams in several universities put at every-
one’s disposal; they were, so to speak, the coalers of the R&D Dreadnoughts
of which the officers were physicists. Stanislas Ulam, who later became chief
mathematician at Los Alamos, had to ask his friend von Neumann for his
help in getting war work in 1943. Applied (or, as Saunders McLane said,
applicable) mathematics, much of it boring, blossomed in all kinds of fields,
and some people converted to it for life. Shock waves propagation, surface
waves in water of variable depth, “hydrodynamics computations” for the
Nagasaki bomb, gas dynamics, statistical optimization of air bombings and
anti-aircraft defense, operational research, statistical quality control for the
mass production of weapons, etc. For anti-aircraft defense, Norbert Wiener
invented statistical prediction methods based on harmonic analysis and ana-
lytical functions, but they were too sophisticated: he had been lured into the
mathematics of the problem. Transmitting orders or conversations in a secure
way, that is to say unintelligible to non-authorized people, was very difficult,
particularly communications between such high level persons as Roosevelt,
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Churchill or Eisenhower. This was intensively studied at Bell Labs, where
digitalization of continuous speech was apparently invented, while separate
frequency bands were encoded by adding random numbers and reduction
modulo 6 (it took quite a while for Bell’s engineers to discover it, although
they were familiar with mod 2 arithmetic); each encoding system was used
only once, and recorded on two highly precise phonograph records, one of
which was used at the sending end and the other sent in advance to the
receiving end; this involved a lot of very complex electronics using kilowatts
of power to transmit milliwatts of speech, and the help of some people with
mathematical abilities which the electronics engineers lacked. One of them
was Claude Shannon, until 1941 at MIT and Princeton where he had studied
applications of “Boolean algebra”, i.e. set theory, to the analysis of electronic
circuits; he derived from his work at Bell Labs the Information Theory that
made him famous after the war. If you understand electrical engineering,
see A History of Engineering and Science in the Bell System. National Ser-
vice in War and Peace (1925-1975) (Bell Telephone Laboratories, 1978), pp.
291-316.

Most postwar standard mathematical publications, written by mathe-
maticians who are too busy or too discreet to consult sources, contain only
rather abstract and summary generalities about the relevant mathematics.
But luck may help those who read books that mathematicians generally do
not open, or know of, since they don’t deal with mathematics.

The 1945 bombings on Japanese cities (and earlier ones on Germany)
led to a fascinating problem: to determine the right proportion of explosive
and incendiary bombs for maximum damage. A Berkeley statistician, Jerzy
Neymann, was then called to help; he used methods which, after the war,
made him a celebrity. Mathematical details are not to be found in my source,
and it is likely that Neymann’s contribution was less useful than those of
scientists, led by Harvard chemist Louis Fieser, who in 1942 invented napalm,
among other incendiaries, though it was not widely used until the war in
Korea. During a bombing raid, planes were supposed to drop bomb clusters
at 50-foot intervals, which would open at 2,000 feet and disperse 38 smaller
bombs, starting a dozen fires; thus a B-29 was able to set fire to a 350x2,000-
foot area. Relying on statistical computations to get the best results would
thus have been a good idea (or a bad one, depending on your point of view).
But recent books suggest that the method was discovered experimentally.

On the other hand, the task of choosing targets, based at first on their
contributions to Japanese armaments, and of evaluating the weight of bombs
needed, was conferred on a Committee of Operations Analysts which relied
on methods developed in Britain, mostly by physicists like P.M.S. Black-
ett, initially for anti-submarine warfare, then for bombing operations. These
problems involved fairly simple mathematics but gave rise soon after the war
(first of all at the Rand Corporation) to an extravagant amount of hype
in favor of game theory, Operations Research, and linear or dynamic pro-
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gramming; it was claimed they were the truly “modern” mathematics that
could be applied to “solve the problems of society” – logistics, bombers bas-
ing, optimizing a massive nuclear strike in case of war, dispatching packs of
Coca-Cola to troops in the field or grocery stores, etc. No wonder these dis-
ciplines, which were still rather primitive mathematics assisted by the first
computers, did not attract everyone after the war even if they found harmless
applications later:

What are we to think of a civilization which has not been able to
talk about killing almost everybody, except in prudential and game-
theoretical terms,

a good question Oppenheimer asked on TV in February 1950 or perhaps in
1959 – my sources do not agree.

In the atomic sector, where the most difficult problems were to be found,
the development of the implosion bomb (Nagasaki, plutonium) forced theo-
reticians, headed by Hans Bethe, to solve numerically the PDEs governing
the propagation of the convergent shock wave produced by classical explo-
sives surrounding a sub-critical ball of plutonium. At hundreds of thousands
of bars of pressure, plutonium behaves like a viscous fluid which you have to
keep perfectly spherical, whence a “hydrodynamics” problem as they called
it. To get the needed spherical shock wave required an assembly of 32 pentag-
onal pyramids of fast explosives, with a half-sphere (“lens”) of slow explosives
in the middle of each one. Ready in the Spring of 1945 after thousands of
tests, this device required solving countless problems by American and British
experts in explosives, many of them academics. Von Neumann contributed
significantly to this effort in recommending that much larger amounts of
conventional explosives be used than was projected, as well as in the design
of the explosive lenses; after having learned chemical engineering at Zürich
Polytechnicum in his youth, he had participated at Aberdeen in the devel-
opment of “shaped charges” for anti-tank projectiles. Hans Bethe, a nuclear
physicist who knew a lot of mathematics, wrote a 500- page report on shock
waves at Los Alamos.

To solve the two-dimensional PDE (three-dimensional computations were
beyond them until the 1980s), they first used the same classical finite dif-
ference method as for one-dimensional problems. It turned out that small
variations in the dimensions of time and space steps led to large variations
in the results: instability. Richard Courant was then called to the rescue. He
explained to Bethe the successive approximations method that Friedrichs,
Lewy and himself had used (Math. Annalen, 1928) to prove the existence of
solutions: it prescribes non-obvious restrictions on the relative dimensions of
the time and space steps used. It is at Los Alamos, it seems, that the first
opportunities to use the method arose. Thanks to that,
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very soon problems involving fluid dynamics, neutron diffusion and
transport, radiation flow, thermonuclear reactions and the like were
being solved on various machines all over the United States

writes Bethe’s first successor as chief of theoretical physics at Los Alamos, D.
Richtmyer, in a 1957 book explaining, among other things, advances made
after the war by von Neumann and Peter Lax concerning the convergence and
stability of approximations; Banach spaces could now be used indirectly to
understand what went on inside a bomb, for obviously this is what everybody
was interested in at the time in Los Alamos. Lax, who spent his summers at
Los Alamos during the 1950s, was one of applied mathematics’ rising stars
and, later, a strong opponent of Bourbaki’s mathematics. He once wrote of
Vietnam war opponents who wanted to enlist the AMS that most of them
specialize in branches of mathematics that are abstract, often esoteric, and
completely unmotivated by problems of the real world , thus implying that, had
they instead busied themselves with, say, the mathematics of shock waves,
they would have had no qualms over B-52s flattening Laos...

J-L. Lions, mentioned above, said much later in an interview (Le Monde,
May 8, 1991) that he discovered applied mathematics and computers in
America in 1956 thanks to Lax, who told him of von Neumann’s ideas; after
mentioning a few current civilian applications, Lions treats us to an eulogy
of von Neumann,

the father of the discipline who, at the end of the 1940s, was so
able to guess all the benefits that would result from the use of the
first computers to describe such complex systems as meteorological
phenomena,

and that he himself only added one chapter which von Neumann had not
entered: the industrial chapter (with enough success to be a member of the
board of several big French industrial companies during his last years). Von
Neumann’s (and the Air Force’s) interest in meteorology is well known but,
as the reader already knows, he was interested in other uses of computers.
By 1956,

[his] combination of scientific ability and practicality gave him a cred-
ibility with military officers, engineers, industrialists, and scientists
that no one else could match. He was the clearly dominant figure in
nuclear missilery.

This other eulogy is from Herbert York Race to Oblivion (Simon & Schus-
ter, 1970, p. 85); the was a member of the Teapot Committee which, chaired
by von Neumann, chose in 1954-1955 the characteristics of ATLAS, the first
intercontinental missile. Lions may not have been told in 1956 of von Neu-
mann’s taste for military projects, but in 1960, the year he started a seminar
on numerical analysis in Paris, his first “really applied” paper was on nu-
clear reactors. That he did not even hint in a 1991 interview at the huge
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military influence on the development of his discipline may be explained by
the Russian principle: show the best, hide the rest . One of his best students,
Roland Glowinski, tells us on the web that the A (for Automatics, i.e. Con-
trol) of the IRIA Institute of Research in Informatics and Automatics that
Lions headed had been suggested by Pierre Faurre. A bright Polytechni cien
well known among applied mathematicians, Faurre published a book on the
mathematics of inertial guidance (1971) in a collection directed by Lions. In
America, this technique made Charles Stark Draper and his Instrumenta-
tion Laboratory famous (it was the focus of student riots at MIT in 1969)
and was developed first for strategic bombers, later missiles, and still later
commercial planes; Faurre soon became the general secretary of SAGEM, a
well-known company he eventually headed and which was making (among
other things, e.g. telecommunication hardware and fire-control systems) in-
ertial guidance systems for planes and missiles, whether civilian or military.
One should not forget the multi-volume and multi-author treatise of Analyse
mathématique et calcul numérique pour les sciences et les techniques (English
trad. Springer) which Lions edited together with Robert Dautray, a Polytech-
nicien who, from 1955 to 1998, followed a bright career at the French AEC
(CEA) up to the highest position. Dautray was appointed scientific director
of its Military Applications Division (DAM) in 1967 in order to help its engi-
neers extricate themselves from the complexities of H-bomb design; it seems
he did this by asking questions to a well-known British expert who told him
they had found, but not recognized, the solution. To be sure, none of these
connections proves that Lions did actual military work, and it may well be
that he was mainly interested in applications to astronautics, meteorology,
the environment, industrial processes, etc. Let me say simply that I have
read too many biographies by scientists to trust them automatically to tell
the whole truth.

Richtmyer mentions “machines”. At Los Alamos in 1943, numerical com-
putations were first carried out on mechanical desk computers – distant
descendants of Pascal’s and Leibniz’s machines -, as everywhere else. The
enormity of the task led physicists to order commercial IBM punch card ma-
chines, improved to perform multiplications (!) and not merely additions. For
months, Richard Feynmann headed dozens of (human) computers who had
to push millions of punch cards into the machines.

Von Neumann devoted two weeks to learning how to use them, which
explains the shock that was his chance discovery, in 1944, of the Eckert-
Mauchly team who, at the University of Pennsylvania, were designing the
first electronic computing machine, ENIAC, to help the Aberdeen Proving
Ground accelerate its firing-tables business; though not yet automatically
programmable, ENIAC was far faster than IBM’s primitive machines were;
it was not fully operational before the Fall of 1945 and was at once used
for the H-bomb program, as was von Neumann’s own machine when oper-
ational in 1952. Drawing in part on Eckert-Mauchly’s ideas, von Neumann
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formalized in 1945-1946 what is now called the “von Neumann architecture”,
thus creating true computers, and (slowly) built one at Princeton; Maurice
Wilkes built one in Britain in 1948, Eckert-Mauchly delivered their first com-
mercial UNIVAC in 1950, while another small company, ERA, delivered very
advanced machines for cryptological work to the National Security Agency
(NSA) also before 1950, as already said, all on von Neumann’s architecture.
The Los Alamos and Livermore laboratories were first served with almost
all the new “scientific” computers available, from copies of von Neumann’s
machine to the present teraflop supercomputers, of which they were always
the most demanding users and often the promoters.

And while we are celebrating WW II applied mathematics in the United
States, we might as well inquire about a country that is so often “forgot-
ten” by most apostles of applied mathematics: Germany, which in some sci-
entific and technical domains was well ahead of her enemies. At Göttin-
gen, Prandtl’s lab had been transformed during WW I into an Aerody-
namischen Versuchanstalt (AVA) which, in 1925, became associated with the
newly founded and more theory- oriented Kaiser-Wilhelm Institut (KWI) fr
Strömungsforschung. The arrival of the Nazis opened the way to the new
Luftwaffe, which was good for aerodynamics, and AVA expanded. Prandtl,
who was much more an innocent than a Nazi, congratulated them publicly for
it while trying, without success, to protect valuable scientists who were not
100% Jewish. Now running under the Luftwaffe ministry and almost entirely
devoted to the needs of the aeronautical industry, AVA was separated from
the KWI in 1937. Work at KWI, under Prandtl, while more “fundamental”
than at AVA, was nevertheless increasingly devoted to studies for the Luft-
waffe (high speed aerodynamics), or von Braun (supersonic aerodynamics),
or the Navy (cavitation studies for fast torpedoes), as well as for meteorology.
A young mathematician, Harry Görtler, took charge of numerical computa-
tions and devised simple ways of programming them for KWI’s biological
“computers”, young girls with a high school degree and desk machines.

Outside fluid mechanics and ballistics, military research did not really
start before 1942, when the Blitzkrieg myth was dispelled; as in 1914, most
scientists had been mobilized like everyone else in 1939. Furthermore, Nazi
Germany, a conglomerate of administrative feodalities fighting each other
for power, lacked the centralized coordination of R&D that America set up
even before Pearl Harbor. Most Nazi leaders, Hitler to begin with, could
hardly understand the importance of revolutionary weapons, except for their
psychological impact. The development of jet fighters was delayed by two
years (fortunately for Allied bombers) and von Braun’s V-2s production,
though not development, longer still. In 1943, they changed their mind and
tried to develop “miracle weapons” in earnest; engineers had plenty of these
on their drawing boards, but it was too late for most of them.

Student numbers enrolling in aerodynamics and the like grew from a mere
80 in 1933 to reach 700 by 1939, while the Nazi policy had the opposite effect
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on mathematics – student enrolment fell by 90% at Göttingen – and physics,
not only as a result of dismissing Jewish scientists, but also because the offi-
cial ideology favored more virile prospects. In physics, mentioning “Jewish”
Relativity theory was anathema, but most atomic physicists were not foolish
enough to fall into this trap. There was also a “Deutsche Mathematik” gang
trying to discredit some parts of mathematics and the mathematicians con-
nected with it. Jewish- made transfinite numbers were fortunately not really
needed to compute rocket trajectories.

Often at their own request mathematicians were eventually mobilized for
military research. In Germany as in Allied countries, it was thus possible to
protect scientists from the chances of a Turkish bullet , a fate which had so
incensed Ernest Rutherford when one of British physics’ rising stars, Philip
Moseley, was killed in the Dardanelles in 1915 – a fate that should obviously
be reserved for scientifically uneducated people. Some mathematical work
remained rather theoretical, like Wilhelm Magnus’ first version of the Magnus
and Oberhettinger book on special functions, Erich Kamke’s on differential
equations, or Lothar Collatz’s on eigenvalue calculations. Other studies were
more directly applied to supersonic aerodynamics of shells and missiles, wing
flutter, pursuit curves for self guided projectiles, cryptology, etc. Some well
known “pure” mathematicians, like Helmut Hasse, Helmut Wielandt, Hans
Rohrbach, even converted to it temporarily. Alwin Walther, Courant’s former
assistant, who before the war had founded a Practical Mathematics Institute
(IPM) at the Darmstadt Teknische Hochschule, already worked for von Braun
in 1939, and IPM became the main computing center for military research
during the war. Walther’s first task after the war was to direct the writing
for the Allies of five reports on mathematics; he pointed out the similarity
of German and American areas of work, miraculously bearing witness to the
autonomous life and power of mathematical ideas across all borders . Courant
agreed and invited Walther to emigrate to the US; to this moving reunion –
applied mathematicians of all countries, unite! – Walther, now a “pacifist”,
preferred working for the reconstruction of his country.

In Germany also, a remarkably clever engineer, Konrad Zuse, who had
attended Hilbert’s lectures in mathematical logic, started in 1936, without
any government help and ahead of the Americans, to build three comput-
ing machines using telephone relays. The last one, Z3, became operational
during the last months of the war and was used to control the shape of mass-
produced rocket wings. All these machines were damaged during the war.
Components of an electronic machine (which would have used 2,000 tubes
instead of ENIAC’s 18,000) were built by his friend Wilhelm Schreyer; this
aroused even less interest, and Schreyer later emigrated to Brazil to teach.
At the end of the war, Zuse went to the Zürich Poly where he built a Z4,
much more reliable than the first electronic machines, then enjoyed a suc-
cessful technical and business career in computers, later at Siemens. He also
invented a Plan Kalkül in 1945, i.e. a logical architecture for computers; but
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he was not in a position to compete with von Neumann, if not in software,
at any rate in prestige and support.

References: Amy Dahan-Delmedico, L’essor des mathématiques ap-
pliquées aux Etats-Unis: l’impact de la seconde guerre mondiale (Re-
vue d’histoire des mathématiques, 2 (1996), pp. 149-213) and two
papers by the same author and Peter Galison in Amy Dahan et Do-
minique Pestre, eds, Les sciences pour la guerre, 1940- 1960 (Paris,
EHESS, 2004), the first one dealing in detail with a Soviet team
at Gorky. On Germany, see H. Mehrtens, “Mathematics and War:
Germany, 1900-1945”, in Forman, National Military Establishments
, Sanford L. Segal, Mathematicians under the Nazis (Princeton UP,
2003), Konrad Zuse, The Computer. My Life (Springer, 1993).

Going back to America, a long report on applied mathematics stated in 1956:

Let it also be said at the outset that, with very few exceptions, their
organization does not antedate World War II and their continued ex-
istence is due to the intervention of the Federal Government. Without
the demands resulting from considerations of national security, ap-
plied mathematics in this country might be as dead as a door nail
.

According to the report, government administrations – i.e., in those times,
military de jure or, like AEC or NACA, de facto – and connected industries
were practically alone in employing professional applied mathematicians. A
1962 report claimed that in 1960, out of 9,249 “professional mathemati cians”
employed in government or industry, about 2,000 were in federal military
centers, 1,000 at the AEC, while aeronautics and electronics employed 1,961
and 1,226 respectively in the private sector. These two fields consistently got
about 60% and 25% of the federal R&D money going to industry.

In 1968, another report – this one about mathematics in general – recom-
mended that the so-called mission-oriented agencies, namely Defense, AEC,
NASA and NIH in that order, should continue to fund research in those do-
mains most useful to their missions, and to propose their problems to the
mathematical community. This report was edited during the Vietnam War
by Lipman Bers, one of the main opponents to the war among mathemati-
cians. He explained in the 1976 Notices of the AMS that he had agreed to do
it only after being assured that the war would end before the report’s pub-
lication; it ended five years later. A 1970 report finds 876 mathematicians
(166 with PhDs) at AT&T, 170 at Boeing, 239 at McDonnellDouglas, 147 at
Raytheon, 68 at Sperry Rand, 287 at TRW, 137 at Westinghouse, etc. All of
these high-tech companies had large military markets.

In 1971, the DoD employed 81% of all mathematicians and statisticians
employed by the government, 67% of all engineers, 41% of all physicists (but
there was also the AEC), and 10% of all biologists and physicians. Serious
work needing e.g. harmonic analysis, stochastic processes, information theory,
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differential equations and PDEs, etc., was performed most of the time via
university contracts. This is where historians should look to get a more precise
idea of the importance of “higher” mathematics in military or industrial
applications, a huge program.

Applied mathematics and numerical analysis have many civilian applica-
tions nowadays, but their degree of militarization always remained very high
in the USA if we are to judge from the amount of federal funds attributed to
them. The same is true a fortiori for what is now called computer science or
informatics (logical architecture of machines, programming, networks struc-
ture, etc., hardware excluded). Here is a simplified table, taken from NSF
statistics, on the main sources of federal funds (in current MD) for basic and
applied research (no development) in mathematics and computer science at-
tributed to all public or private organizations concerned with these fields:
Since one 1958 dollar is worth about six 2001 dollars, this means that our

1958 1964 1968 1974 1980 1987 1994 2001
Total 40.4 98 119 127 241 759 1,242 2,810
DoD 36.4 69 79 70 137 453 593 947
NSF 1.4 11.4 18.6 24 53 124 238 569
NASA 0 6.3 3.7 1.9 3.7 70 26 85
AEC/DoE 1.9 5.1 5.8 5.6 11.6 38 201.8 824

field got about twelve times as much money in 2001 as in 1958, while between
1945 and 1950, it got about two million per year from ONR, a large part of it
going to the Whirlwind computer. Here too the change of scale is stunning.
The more recent increase in DoE funding is largely due to the development
of 3D simulation methods for nuclear weapons, as well as to controlled fusion
experiments designed to check the computations: 751 MD were allocated to
it in 2004. The DoD was planning in 1998 to spend some 2.5 BD over several
years on simulation and modelization.

Separating mathematics and computer science yields interesting results.
The funding of informatics was still comparatively low in 1958; in 1980, out
of a total 241 MD, computer science got 128 MD and mathematics 90, the
remainder being a mixture of both. In 2001, mathematics got 396 MD and
computer science 2,022. The difference is, of course, still more striking in
applied research, for which maths (resp. computer science) got 23.8 (resp.
82) MD in 1980, then 95 (resp. 566) in 1994, then 105 (resp. 1,438) in 2001.
The same year, Defense ARPA’s funding was 8.7 MD for mathematics and
424 for informatics. All of these figures are from the NSF statistical series.
A striking feature of this growth since the 1970s is the fact that basic re-
search in computer science has been increasingly financed by the NSF and
decreasingly by DoD, in part a consequence of Mansfield’s amendment (1970)
prohibiting DoD from funding research without explicit military relevance, in
part the result of an increasing number of relatively small standard contracts
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with many new computer science departments which were then on the rise,
while ARPA limited its grants to a few “centers of excellence”. It was also
due to the financing of specialized and costly equipment in universities, e.g.
supercomputing centers connected to other places. The end result was that
in 2001, the NSF spent 119 MD for basic research in mathematics and 450
in computer science.

Obviously, not all funding goes to universi ties. The following table gives
some idea of recent trends in the federal funding of research in universities
(in current MD).

1976 1984 1992 1999
Total 57 182 478 662
Mathematics 30 76 150 131
Computer Sci. 26 74 320 506

These data concern basic and applied research and represent a large part of
the total, which also includes a small portion involving both sectors. For in-
stance, in 1994, according to another NSF report which does not quite agree
with the above data, the federal government attributed 196 MD to mathe-
matics and 453 to computer science, while total expenses – funds specifically
attributed to research by all sources – were 278 and 659 MD; this means that
federal funds accounted for about two thirds of university research support
in mathematics and computer science, the remainder being universities’ own
funds and, presumably, industrial contracts at least in computer science. In
2000, out of the total federal funding of university research in mathematics
(resp. computer science) of 211.5 (resp. 568) MD, these fields got 29.5 (resp.
209.8) from DoD, 8.9 (resp. 6.1) from DoE, 75.2 (resp. 0.5) from NIH (as
against at most 12 MD before 2000), 0.7 (resp. 18.3) from NASA, and 99.6
(resp. 336.6) from NSF. This is no longer the 1958 situation, when nearly all
federal funds were military, and over 80% of military funding now goes to
computer science.

These statistics, mainly for the early years, do not accurately reflect the
importance of activities specifically devoted to direct military work. Before
the 1960s, when NSF hardly existed, military contracts went to many people
who specialized in “useless” and “abstract” maths. These contracts allowed
the universities to recruit more people, to help graduate and post-graduate
students, to invite foreign colleagues, including perhaps the present author,
and, last but not least, to secure America’s preponderance of power in mathe-
matics as in everything else. However, it is not the bystander’s duty to prove
that a military contract commits its beneficiary; it is up to the beneficiary
who disputes it to prove that it does not.

And how are we to explain that the life sciences sector, on the other hand,
never benefited from proportionally equivalent DoD favors? In 1968, federal
funding of life sciences totalled 1,534 MD, of which 105 came from the DoD;
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in 1994, 9.3 BD, of which 265 MD; and in 2001, 23.057 billion in federal
money, of which 1.052 billion from the DoD. Life sciences have been financed
for fifty years essentially by the NIH (and, to a much lesser extent, by the
NSF), and very strongly encouraged by Congress and the voters. As for the
drug industry, it devotes billions to R&D without ever having received more
than a few percentage points from the federal government, less than 4% in
1993 for instance. In 2001, the industry spent a total of 12.2 BD, and since it
belongs to the chemical industry sector, and the NSF tells us elsewhere that
it got 150 MD in federal funds, an upper limit of 1.4% in federal funding for
the drug industry follows. To be sure, drug companies indirectly benefit from
their university contracts, but their main source of R&D money is obviously
the countless products which are sold around the world to all who can afford
them.

After students rioted against the Vietnam War and military work in uni-
versities, a Congressional Mansfield’s amendment forbade the DoD from fi-
nancing research without a clear military interest, as already said. It was
somewhat softened later, but its spirit remained, and military support of
“pure” mathematics nearly vanished, except in cryptology. The main threat
to “pure” mathematics now comes from the enormous development of applied
mathematics, even though their applications may be mostly civilian. As we
shall see in the next section, this is the most striking difference between
post-WW II applied mathematics and Jacobi’s mathematics pour l’honneur
de l’esprit humain (or for mathematicians’ entertainment...) which, to a very
large extent, were preponderant from the 1820s to the eve of WW II.
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Böttcher, A; Silbermann, B.: Introduction
to Large Truncated Toeplitz Matrices

Boltyanski, V.; Martini, H.; Soltan, P. S.:
Excursions into Combinatorial Geometry

Boltyanskii, V.G.; Efremovich, V.A.: Intu-
itive Combinatorial Topology

Bonnans, J. F.; Gilbert, J. C.; Lemaréchal,
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Franke, J.; Härdle, W.; Hafner, C.M.: Sta-
tistics of Financial Markets: An Introduc-
tion

Frauenthal, J. C.: Mathematical Modeling
in Epidemiology

Freitag, E.; Busam, R.: Complex Analysis

Friedman, R.: Algebraic Surfaces and Holo-
morphic Vector Bundles

Fuks, D.B.; Rokhlin, V.A.: Beginner’s
Course in Topology

Fuhrmann, P.A.: A Polynomial Approach
to Linear Algebra

Gallot, S.; Hulin, D.; Lafontaine, J.: Rie-
mannian Geometry

Gardiner, C. F.: A First Course in Group
Theory

G̊arding, L.; Tambour, T.: Algebra for
Computer Science

Godbillon, C.: Dynamical Systems on Sur-
faces

Godement, R.: Analysis I, and II

Goldblatt, R.: Orthogonality and Spacetime
Geometry
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P.; Traves, W.: An Invitation to Algebraic
Geometry

Smith, K.T.: Power Series from a Compu-
tational Point of View
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