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Preface

Over the course of almost two decades, I developed a number of Pascal and 
AutoLISP for AutoCAD programs and Working Model 2D simulations that I used in 

my publications and presentations. Occasionally, people aware of these computer applica-
tions asked for evaluation copies, which I gladly provided them. Such requests encouraged 
me to spend more time improving and documenting these applications, and ultimately 
determined me to make these applications and the algorithms behind them available to a 
wider audience. This is how the idea of writing this book was born.

The intended readership for this book are students, scholars, scientists, and engineers 
who have access to AutoCAD and Working  Model  2D software and are interested in 
information visualization, motion simulation of mechanical systems, numerical analysis, 
optimization, and evolutionary computation. Those who use AutoCAD LT, or have access 
to only a DXF viewer, can still make substantial use of this book and of the accompanying 
programs and simulations.

The first two chapters describe plotting programs D_2D and D_3D, which have fea-
tures not yet available in popular software like MATLAB®, Excel, or MathCAD. Some of 
these features are: showing extrema and zeros of 2D graphs, automatic numbering of data 
points, controlling the plot appearance from within input data file, plotting inequalities of 
two variables, trimming the portions of function surface that exceed the plot box, project-
ing the gradient on the bottom plane in 3D plots, logarithmically spacing level curves, and 
DXF export.

Chapter 3 introduces a collection of Pascal programs and procedures for generating 
dynamic 2D graphs with scan lines and scan points, for manipulating ASCII files and 
for viewing R12  DXF and PLT AutoCAD export files. It also describes two AutoLISP 
applications for plotting curves and surfaces and for generating 3D models consisting of 
various geometric primitives and predefined blocks using vertex coordinates and model 
description read from file. 

Chapter 4 discusses several algorithms for finding the zeros and minima of functions 
of one or more variables and for multicriteria optimization. Also presented is a new evo-
lutionary algorithm that explores the boundary between feasible and unfeasible spaces 
in optimization problems—it is known that in many practical problems the minimum is 
bounded. Numerical applications of each of these algorithms are accompanied by plots 
and animations generated using the D_2D and D_3D programs.
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Chapters 5 and 6 introduce a series of procedures, accompanied by examples and 
the underlying theory, for the kinematic simulation of a wide variety of planar linkage 
mechanisms.

Chapter 7 deals with the synthesis of the profile of rotating disc cams operating in conjunc-
tion with various type followers (pointed, with roller, flat, translating or oscillating). Iterative 
methods for analyzing the respective cam-follower mechanisms are also presented. In addi-
tion, a procedure for synthesizing the follower motion using AutoCAD splines is described.

Chapter 8 reviews the theory of planar involute gears and presents a number of 
Working Model 2D simulations and an AutoLISP application to illustrate this theory. The 
AutoLISP program is particularly useful because it allows the generation, directly inside 
AutoCAD, of involute gear profiles, internal or external, with any number of teeth.

Chapter 9 is a collection of problems and applications from areas like dynamical sys-
tems, vibrations, kinematics, robotics, multidimensional visualization, etc., solved using 
the software tools presented in the earlier chapters, or using Working Model 2D.

Source codes and executables of the programs and simulations discussed in the book are 
available upon request from the author. The referred animation files can be downloaded 
from the publisher’s website at www.crcpress.com/product/isbn/9781482252903/ or from  
http://faculty.tamucc.edu/psimionescu/cagstau.html.

While every effort has been made to provide error-free analytical derivations and soft-
ware implementations of these derivations, in no event shall the author or publisher be 
liable for any claim, damages, or other liability in connection with the use of the material 
in this book and of the accompanying computer programs and simulations.

As with any text, the clarity of the writing can be improved and the collection of exam-
ples expanded. The AutoLISP and Pascal programs provided with this book can also 
sustain improvements or can be translated into other programming languages. I would 
therefore appreciate any comments, suggestions, or reports of errors. In particular, I would 
welcome any serious offer for collaboration on future editions. So my respected reader, 
before posting critical reviews about this book, please read once again this last paragraph.

 Thank you,

Petru A. Simionescu
pa.simionescu@gmail.com

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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AutoCAD® is a registered trademark of Autodesk, Inc. For product information, please 
contact:

Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903 USA
Tel: 415-507-5000
Fax: 415-507-5100
Web: www.autodesk.com
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Legal Notices
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C h a p t e r  1

Graphical Representation 
of Univariate Functions 
and of (x, y) Data Sets
The D_2D Program

Plotting analytical functions y = F(x) or simply of (x, y) sets is something that 
everybody interested in computer graphics most likely has programmed, or at least 

attempted to do. This is commonly required part of many applications, from mathematics 
to experimental data analysis. In this chapter, the D_2D program available with the book 
as Pascal source code (D_2D.PAS and UnIT_D2D.PAS) and as executable file (D_2D.
EXE) will be introduced. D_2D has several features not yet available in popular software 
like Excel, MathCAD, Mathematica, or MATLAB as follows:

 1. The size of the plot box can be precisely controlled by the user, advantageous when 
creating stacked graphs of the same height and/or width.

 2. The x-axis can be placed either on the bottom or on the top of the plot box.

 3. The divisions on the x- and y-axes can be labeled in fractions or multiples of π, a 
feature useful when plotting trigonometric functions.

 4. When plotting a single curve, D_2D adds the lengths of the individual segments that 
form the graph and displays this number as the length of the curve.

 5. Multiple graphs can be plotted simultaneously over four separate y categories named 
by default F(x), F2(x), F3(x), and F4(x).
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 6. Markers or glyphs can be inserted one at each data point (the ✴✴✴ marker-placing 
option) or can be spaced at constant distance along the plot curve (the –✴– marker-
placing option). In the latter case, the distance between two successive markers can be 
specified in marker radii or as an integer number of data points between two glyphs. 
This integer is read by D_2D from a configuration file with the extension CF2.

 7. Marker types available to distinguish between multiple plot curves are Ø, ○, ⦁, ◻, ♢, 
▿, ▵, ✴, ×, +, ¤, ♀, ♂, ¦, and >. The arrow marker > can be used to indicate the order 
in which the data have been generated (e.g., in time-varying processes), an intuitive 
still-image substitute to animated comet plots. In nonaccumulated comet plots, the 
broken-bar ¦ marker will be automatically converted into a vertical scan line. The 
marker size can be specified either in screen units, or, if the plot is isotropic, in the 
same units as the graph. It will be called isotropic, a graph that has the width/height 
ratio of the plot box equal to the ratio of the x- and y-axis ranges, namely, (xmax − 
xmin)/(ymax − ymin). Therefore, the isotropic plot of a circle will not be distorted to look 
like an ellipse. You can make a plot isotropic by manually adjusting its box height 
and width or the limits over its x- and y-axes. There is also an option where D_2D 
will automatically adjusts the limits over the x- and y-axes so that the graph remains 
isotropic as the plot-box size is interactively adjusted.

 8. The /#\ marker-placing option allows the minimum and maximum points of the 
graph to be automatically identified and their coordinates included with the plot, 
together with the coordinates of the intersection(s) between the graph and the x-axis 
(the zeros of the graph). Both can be exported to ASCII files with extensions MIn, 
MAX, and ZER and can be used in further calculations and analyses.

 9. An alternative to using arrow markers to show the sequence in which data have been 
generated is to number the points of the graph using the *#* marker-placing option. 
The numbering is done automatically by D_2D following a pattern specified by the 
user—by default, every other point will be labeled beginning with 1 that is assigned 
to the first data point.

 10. The !!!!!! marker-placing option will generate stem plots. A stem plot with the data 
points connected with a continuous line will be called area plot. In case of the lat-
ter, when the graph consists of a single curve, the area bounded by the curve and 
the x-axis will be evaluated by D_2D using the trapezoidal rule of integration (see 
Appendix A) and will be automatically displayed on top of the graph together with 
the length of the curve.

 11. Plot-line thickness can be 1 or 3 units (pixels) and either solid ( options ——— 
or ====), dashed (options − − − or ===), or dotted (options · · · or : : :). Their color 
can be blue, green, cyan, red, magenta, brown, gray, light blue, light green, light cyan, 
light red, light magenta, light blue, or yellow.
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Important: In the current implementation of D_2D, when large numbers of data points are 
plotted as a single dotted or dashed line, defects may occur in the form of portions of the 
graph (or even the whole curve) not being displayed. If exported to DXF, however, dotted 
and dashed lines will be represented correctly. Since the color, thickness, and line type of 
the graphs can be easily edited from within AutoCAD, the DXF format is a more advanta-
geous graphic output format of D_2D, with the exception of scatter-point plots that may 
take less disk space if output as raster-images files.

 12. For convenient data file management, the (x, y) points belonging to two or more 
curves of the same y-category can be read from the same file using separators. 
Color and marker type can be also set or changed from within the data file using 
separators, as described in the About screen of the program (see the following 
insert) that you can bring up by pressing the <F10> key immediately after launch-
ing D_2D. Later in this chapter, it will be shown how separators can be used to 
create animated plots of more than 16 frames or accumulated graphs of more than 
16 curves. Note that 16 is the maximum number of data files that can be opened 
simultaneously by D_2D.

 13. The graphic screen with the plot can be copied to a PCX or to a DXF file version 
AutoCAD 12, that is, R12  DXF . PCX is a common raster graphics format, while 
DXF is a vector format native to AutoCAD that can be read by many other graphing 
and CAD packages. There are also several DXF view programs available for download 
from the Internet as listed in the reference at the end of the chapter. If the DXF 1:1 
export option is selected, D_2D will write to DXF the plot curves only, and the scale 
factor will be unity along both axes. If the graph is isotropic, however, then the entire 
graph (curves and plot box with divisions, values, and labels) will be exported to DXF 
as a one-to-one image.

Important: If you export as DXF 1:1 a graph trimmed by the plot box, unless it was set 
previously to be isotropic, the limits over either the x- or the y-axis will be displaced out-
wards from their current positions, and the DXF copy of your graph will appear truncated 
less or not truncated at all.

 14. D_2D can generate animated graphs and comet plots and the frames in these ani-
mations can be exported to PCX or DXF. You can then assemble these PCX files as 
animated GIFs and post them on the Internet or insert them in Power Point pre-
sentations. I personally prefer the GIF Animator program available from www.gif-
animator.com because it is affordable, easy to use, and accepts PCX files as input. In 
case you use a different GIF-animation software, you might have to convert the PCX 
frames generated by D_2D to other raster formats—see the list of graphics format 
converters at the end of the chapter.
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 15. When you exit D_2D, the plot-box dimensions, number of divisions, and limits over 
the x- and y-axes, input data file name(s), and, in case of input ASCII file, the column 
numbers from where the x and y values were read, will all be saved to configuration 
file !.CF2. If the current plot has been created from scratch, these settings will be 
written to a new configuration file named generically !0000001.CF2, !0000002.
CF2, and so on. The same will happen if you exit D_2D from the <F1...4> screen, 
irrespective if the current plot is the result of reading the settings from an existing 
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CF2 file (other than !.CF2) or has been generated new. If you exit D_2D at the end 
of the graphic session and you confirm overwriting the CF2 file selected as input, the 
older version of the CF2 file will be saved with the extension OLD, so that it can be 
restored manually if needed.

 16. The <F1>redo and <F2>redoo options from the D_2D start-up menu allow 
to automatically redo the plot associated to the last CF2 file found by alphabeti-
cally searching the current directory. These options are useful when the input 
data file(s) have been modified and the changes need to be assessed. The differ-
ence between them is that <F2>redoo will fit the graph to the plot box, while 
<F1>redo will apply the limits over the x and y axes as they were recorded to 
the last CF2 file. The <F3>CF2 option from the same start-up menu allows you 
to preview and run any CF2 file on your hard drive. If you want to run a CF2 file 
without preview, press the <F4> or <CR> keys to open it as if it were a regular 
input data file.

   In order for you to make the most out of the aforementioned listed features 
of the D_2D program, a number of examples will be presented next that you 
can study before solving your own similar problems. You may also want to 
experiment directly with D_2D as the majority of its interactive menus are 
documented.

Important: There is a small number of plot settings that can be changed only by manually 
editing the CF2 configuration file. Note that in a CF2 file, everything that occurs between 
curl brackets will be considered comment. These settings are as follows:

 (i) Plot-box width and height: Can be changed interactively from within D_2D. 
However, if you do not want these numbers rounded to multiples of 5, you will 
have to edit line number 4 of the CF2 file. Note that the plot-box dimensions 
should be at most 625 × 405 pixels.

 (ii) DXF polyline coincidence and collinearity parameters: When exporting a plot to 
R12 DXF, the D_2D program will eliminate any unnecessary collinear points, by 
concatenating into polylines as many line segments as possible. If three consecu-
tive data points are found to be almost collinear, then the middle point will be 
eliminated. Similarly, if two separate points of a graph are almost coincident, then 
the second one will be eliminated. These almost’s are controlled by two param-
eters read from line 28 of the CF2 file.

 (iii) Marker spacing: This parameter (line number 31 in the CF2 file) is used with the 
–✴– marker-placing option. If positive, then the curvilinear distance between two 
successive vertices will be measured in multiples of marker radii. If this marker 
spacing parameter is negative, then the distance between two successive markers 
will be measured as the number of data points without a glyph.
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Important: There is no need to set the marker spacing parameter on line 31 of the CF2 file 
to zero in order to display a marker at every data point, since this is equivalent to using 
the ✴✴✴ marker-placing option.

 (iv) Default file extension: Line number 3 of the !.CF2 file holds the extension of the 
files that will be listed for input when you press <F4> from the start-up menu. In 
the copies provided with this book, this line of !.CF2 reads *.D2D. If you want 
text files to be listed for input instead, then change this line so *.TXT (any two or 
three character file extension is acceptable, including CF2). In any other CF2 file 
on this third line, it is recorded the title of the plot.

 (v) Number of bins in a histogram plot (between 3 and 500): If you read the x values 
from an ASCII file and select column 0 (which is inexistent) from where to read the 
y values, then by default, D_2D will plot the data as a histogram. You can set the 
number of bins in a histogram plot interactively right after you selected the data file. 
If you want to modify the number of bins and keep all the other settings unchanged, 
you must edit line number 32 of the configuration file and redo the plot.

Important: When you run D_2D with settings from a given CF2 configuration file, the 
referred input data files should be either in the folder where they were located when the 
plot was originally made (i.e., specified by the path that precedes their name in the CF2 
file) or in the same folder where the calling CF2 file is located. If no configuration file can 
be found in the same directory with D_2D.EXE, the program will not run. Likewise, if a 
copy of the DXF.HED file is not available in the same directory with D_2D.EXE, no DXF 
export will be possible.

Important: In Windows XP, you can link CF2 configuration files and data files (exten-
sions D2D, R2D, etc.) to the D_2D.EXE program on your hard drive by editing the Open 
With properties of these files: From Windows Explorer select the file you want to link, 
then from File → Open With → Chose Program menu, select D_2D.EXE. Before 
you click OK, check the option “Always use the selected program to open this kind 
of file.”

1.1� AnAlyTicAl�FUncTion�PloTS
Let us begin by graphing the function

 
F x

x x
( )

( ) . ( ) .
=

− +
+

− +
−1

1 0 1

1

3 0 2
3

2 2

 
(1.1)

over the interval −1 < x < 5 like in Figure 1.1. The data file readable by D_2D used to do this 
plot has been generated with the P1_01.PAS program listed in Appendix B. P1_01.PAS 
outputs the same data in three different formats, all named F1_01, as follows: an ASCII 
file with the extension DTA, a file of doubles with the extension D2D, and a file of reals 
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with the extension R2D. Since plot-curve segmentation, color, and marker type cannot be 
controlled from within a R2D file, only the first two data file formats will be emphasized in 
the remainder of this book.

To recreate the plot in Figure 1.1, launch the D_2D program, then press <F3> and open 
F1_01.CF2 for preview. Use the <↑>, <↓>, <Page Up>, and <Pg Dn> keys to scroll up and 
down and inspect this CF2 file. Press <CR> to confirm your selection or <Esc> to open for 
preview a different CF2 file. <CR>, shortcut for Car Return, is the <Enter> key.

Important: To upload a file from the file-open menu, you can type its name in the address 
line directly or select it by pressing the <Tab> key first and then navigate the list using 
the arrow keys. Once highlighted, press <CR> to bring it into the address line, then press 
<CR> again to confirm your selection and to open it.

D_2D allows you to align the divisions over the x- and y-axes either with the origin or 
with the corners of the plot box: From the final-graphic screen, press the <Backspace> key 
(<Back> in short) to go to the plot-box edit screen, then press <Ctrl> and <F1> simultane-
ously to toggle between the two modes of labeling the y-axis. Since the divisions over the 
x-axis are aligned with both the origin and the ends of the axis; the <Ctrl> + <F5> key 
combination will have no visible effect upon this particular graph.

To change the limits over either x- or y-axis, press the <Back> key until the program 
switches to text mode. This page will be further referred to as the <F1...4> screen. Then 
press <F1> to change limits over x and y, then type ‘1’ for category F(x) and press <CR>. 
A series of text boxes will let you modify (i) the upper and lower limits over the y-axis, (ii) 
the total number of values that will be written along the y-axis (this is equal to the num-
ber of major division lines), (iii) the Δy range between two major division lines, and (iv) 
the number of intervals delimited by inserting minor division lines between two values 
(i.e., typing ‘1’ will introduce no minor division line). Notice that settings (ii) and (iii) can-
not be changed independently. One other option that can be set here is to force the plot to 
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FiGURE�1.1� Plot of the function in Equation 1.1. Configuration file to redo this plot F1_01.CF2.
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remain isotropic, by automatically adjusting the limits over x and y, as the size of the plot 
box is being interactively modified.

As you move to the final-graphic screen to see the effect of these changes, stop while in 
the plot-box edit screen and press the <G> key several times to toggle between showing 
and hiding the gridlines. If you press <Ctrl> + <G>, you will be allowed to edit the inner 
and outer lengths of the major division lines. The appearance of the minor division lines 
will also change because they are set by default to 60% of the major lines outside length. 
Towards the inside of the plot box, all division lines will have the same lengths.

Press the <Esc> key from the final-graphic screen to exit D_2D. This will update the 
current CF2 file. You can also exit from the <F1...4> screen, case in which D_2D will 
generate a new configuration file named !0000001.CF2 and a temporary file named 
D2D0001.$2D. The latter is a work copy of the plotted data in D_2D format. When read-
ing data from an ASCII file, $2D will hold copies of the x and y columns that were plotted 
on the graph. When you read data from multiple files or if you extract more than one (x, y) 
pairs from the same ASCII files, there will be more than one $2D file created.

Important: If you think you could use any of the temporary $2D files, change their exten-
sion to D2D before launching D_2D again, or otherwise, they will be erased.

1.2� ShowinG�ExTREmA�AnD�ZERoS�oF�GRAPhS
The function in Equation 1.1 exhibits one minimum point, two maximum points, and four 
zeros. Finding the zeros of this function requires solving the equation F(x) = 0, while finding 
its minimum and maximum points requires solving the equation dF(x)/dx = 0, very unap-
pealing tasks if you are doing them manually. One approach is to approximate the coordi-
nates of these points with the help of the divisions or gridlines of the plot and then use these 
approximations as initial guesses in some minimization or zero finding iterative schemes.

Instead of solving the equation F(x) = 0 of finding the minima and maxima of F(x), you 
can have D_2D inspect the input data and identify any zero or extrema that will be encoun-
tered. These can be displayed on the graph as shown in Figure 1.2 and, if desired, can 
be exported with added decimals to three ASCII files of extensions ZER, MIn, and MAX. 
Evidently, the precision with which these zeros and extrema are approximated depends on 
how fine your function has been sampled in the first place.

To redo Figure 1.2 other than by running D_2D with setting from the F1_02.CF2 
configuration file, launch D_2D and upload the same F1_01.CF2 file as before (press 
<F3> and type or select from the list F1_01.CF2). After you plot the graph, go back to the 
<F1...4> screen and press <F3>. Type ‘E’ and ‘1’, and then press <CR> twice (you should 
be under the word ‘Line’ on the top of the screen). Use the <↑>, and <↓> keys to change the 
line type from ==== to ——— and press <CR>. Next, select the /#\ marker-placing option 
using the same arrow keys and press <CR> several times until you get to the final-graphic 
screen. To suppress the gridlines, go back to the plot-box edit screen and press the <G> key. 
Your graph should now look like the one in Figure 1.2.

To write to ASCII the coordinates of these minima, maxima, and zeros, go to the <F1...4> 
screen and select option <F4>. Scroll up and down through these export options using the  
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<↑>, and <↓> keys, select Envelopes and then press <CR>. You can accept the default names 
of the three export files where data will be written or specify your own.

Important: Zeros and extremum points coordinates cannot be exported to ASCII file when 
the plot originates from multiple data files.

A short note on how the coordinates of these minimum, maximum, and zero points were 
evaluated: As data are read from file, D_2D looks for groups of three successive points with 
the middle one located above or below the other two (this is called three-point bracketing). 
If it occurs, then between the first and the third point, a local minimum or maximum exists. 
If you press <F2> from the <F1...4> screen, you can then choose to either display on your 
graph the middle point, or the singular point of the parabola that interpolates the three 
bracketing points. In a similar manner, D_2D brackets the zeros of the graph by looking for 
two successive y values of different signs. If this happens, then the intersection of the line that 
connects these two points with the x-axis is an approximation of the respective zero, like in 
the secant method of zero finding. There may be more than one zero between two points that 
change sign (similar argument can be made about bracketing an extremum). To avoid any 
ambiguity, the function must be sampled at a rate small enough to capture its ‘convoluted-
ness’ (see the Nyquist–Shannon sampling theorem).

Let us now plot the graph of the first derivative of the function in Equation 1.1, that is,
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The data files used to plot this second function were generated with the P1_02.PAS 
program listed in Appendix B (see lines #2 and #3 in this program). To illustrate additional 
features of D_2D, both function F(x) and its derivative F′(x) were plotted on the same 
graph, with F′(x) on a secondary y-axis (Figure 1.3).

8

F(
x)

6

4

2

0

–2

–1 0 1

0.4984
1.5374

2.5722
3.3918

(2.995,2.2444)

(1.001,7.2382)

(2.035,–1.262)

2 3 4 5
x

FiGURE�1.2� Plot of the function of Equation 1.1 with 501 data points showing the zeros, minimum, 
and maximum points automatically introduced by D_2D. Configuration file F1_02.CF2.
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To duplicate this figure, run D_2D with settings from F1_03.CF2. To make the plot 
look like Figure 1.4, and then export it to R12 DXF, perform the following steps: From the 
<F1...4> screen, press <F2>. Change the title to ‘F(x) & F′(x)’, then increase the marker 
size to 4.5 pixels. To make the text colors of the two y-category names identical to the color 
of the respective plot lines or to modify the marker type along the F(x) curve, go to the 
<F1...4> screen and press <F3>. Type ‘E’, then ‘1’, and press <CR> to select the first curve; 
insert a space in front of the first y-category name. Press <CR> three more times, then 
scroll up to change marker type from transparent round Ø to diamond ♢, then press <CR> 
twice. Repeat the procedure and add a space in front of the second y-category name to 
change its color from the default dark gray to blue, that is, the color of the second plot line.
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FiGURE�1.3� Plot of the function of Equation 1.1 as a line with markers, and of its derivative F′(x), 
showing the zeros of the derivative. Configuration file F1_03.CF2.
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FiGURE�1.4� R12 DXF copy of the plot in Figure 1.3, exported after some formatting as explained 
in the text. This is an AutoCAD screenshot after issuing the command shade. Configuration file 
F1_04.CF2.
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Important: If there are multiple curves per category, the y-axis label will take the color of 
the first curve assigned to that category.

Go to the plot-box edit screen and use <Pa Up>, <Pg Dn>, <↑>, and <↓> keys to resize 
the plot box, then press <Ctrl> + <Pa Up> to move the x-axis divisions and values to the 
top of the graph. When you are satisfied with the appearance of the graph, go back to the 
<F1...4> screen, press <F4> to do a R12 DXF export, enter the file name, and press 
the <CR> key. After the DXF export is completed, press <Esc> to exit D_2D.

To view the DXF file that you have just created, open a new drawing in AutoCAD, 
type ‘dxfin’ at the command line, then type ‘hide’. Because the ♢, ◻, ▿, and ▵ markers 
are AutoCAD regions placed slightly elevated by D_2D, they will obscure the plot lines. 
AutoCAD circles behave the same, so opaque round markers will also obscure the plot 
lines behind then following the hide or shade commands.

In this previous example, input data were read from two separate files, that is, F1_01.
D2D and F1_02.D2D. Note that it is possible to store the values of both the function and 
of its derivative in the same ASCII file and simplify data management.

1.3� �STEm�AnD�AREA�PloTS:�lEnGTh�oF A cURvE�
AnD�AREA�UnDER�A�cURvE

It was mentioned earlier that D_2D can generate stem and area plots. Both are produced 
by choosing !!!!!! from the Line  and  markers option of the <F3>  edit  add 
remove lines menu.

You can quickly redo the plot in Figure 1.5 by running D_2D with F1_05.CF2 as input. 
The data file required is the same F1_01.D2D from before.

If you want to create the plot from scratch, launch D_2D and press <F4>, then select 
F1_01.D2D (press <Esc> to abort the uploading of additional data files). From the 

F(x)

F(
x)

8
7

6

5

4

3

2

1
0

–1
–2

–3
–1 0 1 2 3 4 5

x

Integral = –2.52685 Length = 28.66184

FiGURE� 1.5� Area plot of the function in Equation 1.1 with 501 data points. Configuration file 
F1_05.CF2.
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<F1..4> screen, go to <F3> edit add remove lines and using the arrow keys, 
change the marker-placing option from ‑✴‑ to !!!!!!. Also, change the marker size to a 
smaller value, that is, 1 or even 0.

Finally, for the graph to look exactly like the one in Figure 1.5, you must suppress the 
x = 0 line (the vertical crosshair) by pressing <F5> while in the plot-box edit screen.

To create an actual stem plot, input data points should be in smaller number, that is, tens 
rather than hundreds of points. To generate the plot in Figure 1.6, the number of plot points 
nX inside P1_01.PAS was changed from 501 to 61. With this modification and with only a 
D2D file as output (i.e., F1_03.D2D), the program was renamed P1_03.PAS—see source 
code in Appendix B. The procedure to generate stem plots is the same as for area plots, with 
the difference that in the Line and markers section of the <F3> edit add remove 
lines menu, you must choose no line instead of the default ——— line.

Using this new data file, the area plot in Figure 1.7 has been generated. Notice the differ-
ences between the numerically calculated length of the curve and the value of the integral 
in Figures 1.5 and 1.7. The integral (the area between the curve and the x-axis) has been 
evaluated using the trapezoid rule of integration (see Appendix A), which has the benefit 
that it can handle easily data sampled both at constant and at variable x step and the cases 
where the curve is trimmed by the plot box like in Figure 1.8.

If you want to create your own trimmed-area plot, after generating Figure 1.7, go to the 
<F1..4> screen. Press <F1> and modify the lower limit over the F(x) axis from −3 to −2 
and the upper limit from 8 to 3.

You may also want to redo Figure 1.2 using the F1_03.D2D file with only 61 data 
points and observe the effect of interpolating for extrema. One very quick way of doing 
this is to open the F1_02.CF2 file and on line #38, change the input file name from 
F1_01.D2D to F1_03.D2D, then run D_2D with settings from this modified CF2 
file.

8

7

F(
x)

6
5

4

3
2
1

0

–1
–2
–3

–1 0 1 2 3 4
x

5

FiGURE�1.6� Stem plot of the function in Equation 1.1 with only 61 data points. Configuration file 
F1_06.CF2.
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1.4� winDowinG�AnD�PAnninG
Oftentimes, you want to view just a portion of a graph or scroll left and right through your plot. 
If you export your graph to R12 DXF and then open it in AutoCAD, you can zoom in or crop 
the graph any way you like. You can also turn it into a block and then reinsert it scaled at differ-
ent rates over x and y. Similar maneuvers can be done directly from within D_2D by modify-
ing the limits over the x- and y-axes from <F1> change limits over X and Y option 
as described earlier. To translate your graph to the left or to the right, there is the <P>an com-
mand available from the final-graphic screen. When pressing <P>, you are prompted to type 
in the amount you want the graph to be displaced horizontally. If you type a positive number, 
the graph will be translated to the left, while a negative number will translate the graph to the 
right. A zero input will bring the graph back to its initial location.
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FiGURE�1.7� Area plot of the function in Equation 1.1 with only 61 data points. Configuration file 
F1_07.CF2.
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FiGURE�1.8� Same plot in Figure 1.7 restricted to −2 ≤ F(x) ≤ 3. Configuration file: F1_08.CF2.
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Important: If your plot is in a displaced position fallowing a <P>an command, then the 
current x-axis limits will be saved to the CF2 configuration file.

1.5� nUmbERinG�DATA�PoinTS
With F1_03.D2D file, 61 data points used to plot Figures 1.6 through 1.8 will be used next 
to demonstrate the capability of D_2D to automatically number the points on a graph. 
Start by replotting Figure 1.7 using the F1_07.CF2 configuration file. When finished, go 
to the <F1..4> screen by pressing <Back> twice and then press <F3>. Type ‘E’ and then ‘1’ 
and <CR> to edit the appearance of the graph. Advance horizontally by pressing <CR> and 
use the arrow keys to change the line type from —— thin solid to = = = thick dashed. Then 
change the marker-placing option from !!!!!! to *#* and the marker type from transpar-
ent round Ø to solid round ○.

When you get under the Label pattern, a box with the text 1:4:61; will open up. 
This is the default marker labeling option, interpreted by D_2D as “number the first data 
point as 1, then label every 4th data point up to the last point of the graph, that is, point 61” 
(point number 61 will be labeled whether it is multiple of 4 or not).

Notice how labels are always placed on the outside of the curve. This requires D_2D to 
estimate the center of curvature around the point to be numbered (i.e., to calculate the 
center of the circle through this current data point and its two neighbors), and use it as a 
reference for placing the label.

Here are a few more numbering patters that you may want to experiment with:

P0:5:60; this will number every 5th point starting from 0 and will add a P in front 
of every label. You can replace P with any other character. Note however that some 
characters from the extended ASCII set do not have an equivalent in AutoCAD.

1:1:10;50:1:61; this will number the first 10 and the last 10 data points only.

1:1:10;2:27;5:40;57; this will begin with 1, label every point until the 10th, then 
continue labeling every other point until the 27th point (including), then will label 
every 5th point until the 40th, and will finally label point number 57.

The plot with this last numbering pattern is available in Figure 1.9. After you run the 
configuration file F1_09.CF2, in order to obtain the exact same appearance as in Figure 1.9, 
you must remove both the x = 0 and y = 0 lines by pressing <F1> and <F5> while in the 
plot-box edit screen.

Important: When written to CF2, axis division and value placement can be altered due to 
round offs and may not be recreated exactly. To obtain the exact appearance of the divi-
sions and values along the x-axis as in Figure 1.9, after you launch D_2D with settings its 
CF2 file, go to the <F1..4> screen, follow option <F1>, and modify the interval between 
two major division lines over the x-axis from 0.9 to 1.

After you export the graph to R12 DXF, and open it with AutoCAD, type ‘hide’ at the 
command line so that the glyphs will obscure the line. Also type ‘ltscale’ and change its 
value to 10, so that the dashed line will look tighter.
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1.6� PloTTinG�FUncTionS�wiTh�SinGUlARiTiES
Functions exhibiting singular points pose additional challenges when it comes to graphical 
representation. One such example is the function in the following equation:

 F x x x x( ) ( )/( )= − −2 23 4  (1.3)

If we are to generate the data to plot this function for −8 < x < 8, we must avoid evaluating 
it for x = ±2, or otherwise the computer will report division by zero. Even when the division 
by zero is bypassed by checking the value of the denominator, the following two situations 
are likely to occur: (i) if the function is sampled at a very fine rate, large spikes will occur at 
singularities (see Figure 1.10a); (ii) irrespective of the sampling rate, the left and right limits at 
a singular point should not be connected, since the function is not defined here (Figure 1.10b).

In this section, additional features of D_2D that were implemented to address such 
issues will be presented. One is the possibility to suppress the lines that connect two data 
points located outside the plot box. The other is the possibility of controlling the plot-line 
interruption directly from within the data file.
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FiGURE�1.9� Plot with automatically labeled data points. Above is a PCX copy, below a DXF copy 
showing the effect of the AutoCAD hide command. Configuration file F1_09.CF2.
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The D2D and DAT files used to plot the graph in Figures 1.10 and 1.11 were generated 
by program P1_10.PAS listed in Appendix B. Before the actual function is evaluated, the 
program checks whether x is almost equal to −2 or +2 (see line #14 of the source code), and 
if found true, then the function is assigned the constant InfD defined in unit LibMath, 
which is equal to 10100. Constant EpsD, defined in the same unit LibMath, is a very small 
positive number set equal to 10−100.
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FiGURE�1.11� Graphs of the function in Equation 1.3 with 401 data points and plot-line breakers done 
using configuration files F1_11A.CF2 (a) and F1_11B.CF2 (b). Figure (b) can also be produced 
using one of the 400 data file, but after editing the limits over the y-axis, you must press the <C> key 
when in the final-graphic screen to disconnect the graph at x = −2 and x = +2. (i.e., remove curtains). 
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FiGURE�1.10� Plots of Equation 1.3 with 400 data points, done using configuration files F1_10A.CF2 
(a) and F1_10B.CF2 (b). At x = −2 and x = 2, the graph should be discontinuous.
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Important: In all programs provided in this book, 1.0E100 is considered equal to infinity, and, 
together with several of its multiples (1.01E100, 1.02E100, etc.), is used to code additional 
information about the input data or of the state of the procedure from where the value origi-
nates. The About screen of D_2D (you can bring it up by pressing <F10> right after launching 
D_2D.EXE) explains how these multiples of 1.0E100 can be used to control the color, marker, 
and interruption of a plot line. According to this protocol implemented in the P1_10.PAS 
program, as the function is sampled at constant step, any time a singular point occurs, a plot-
line breaker is written to the data file (i.e., the value 1.0E100), which will instruct the D_2D 
program not to connect the two points that the respective breaker separates.

P1_10.PAS was run twice: once for nx equal to 400 plot points when the files gener-
ated were named F1_10.D2D and F1_10.DAT, and a second time for nx equal to 401 plot 
points, when the same files were named F1_11.D2D and F1_11.DAT. For nx=400 points, 
no division by zero actually occurred, and the corresponding plot looks as shown in Figure 
1.10a. After editing y-min and y-max (see Figure 1.10b), you can eliminate the two extraneous 
vertical lines that connect the left and right limits at the singular points by pressing the <C> 
key (C stands for curtain) when in the final-graphic screen. The lines connecting two points 
lying outside the plot box, one above and one below, are called curtains. With nx=401 data 
points, however, division by zero do occur at x = −2 and y = 2. In this case, the P1_10.PAS 
program wrote to the D2D file two 1.0E100 values, while to the DAT file, it wrote a control line, 
that is, ----------. Both the 1.0E100 value pair and the ---------- line are interpreted by D_2D as 
line breakers, and the resulting graphs will appear like in Figure 1.11.

Now, it is a good opportunity for you to experiment with the R12  DXF copies of 
Figure 1.10 or 1.11 (notice that Figure 1.10b and b are of isotropic type). The DXF  1:1 
exports of Figures 1.10a and 1.11a will include only the curve, while the same of Figures 
1.10a and 1.11a (which are isotropic) will include the graph together with the plot box scaled 
1 to 1. In both cases, the origin of the drawing will coincide with the origin of the graph. If 
you perform a regular DXF output of these figures and open them in AutoCAD, you will 
notice that the origin of the graph will be located somewhere outside the plot box and that 
the dimensions of the plot box will be equal to those from D_2D.

One unnatural thing about Figure 1.11a is that at the singular points the plot line does 
not extend all the way to the plot-box edge, that is, the graph should look like Figure 1.11b 
irrespective of the minimum and maximum limits set over the y-axis. To remedy this, we 
must differentiate between the −∞ and +∞ limits at a point. The solution implemented 
in the P1_12A.PAS program (see Appendix B) was to evaluate the sign of the function 
slightly left and slightly right of the x point at which 1.0E100 is returned (see the DX vari-
able calculated on line #23 of program P1_12A.PAS) and write to file either −1.0E100 or 
+1.0E100 as limits of the function to the left and to the right of the singular point. Files 
F1_12A.D2D and F1_12A.DAT were generated this way and have been used to produce 
the graphs in Figure 1.12a. Note that the plot-line breakers are not essential since the cur-
tains can be removed from within the D_2D program.

In the aforementioned examples, the singular points were assumed known. A fully 
capable function-plotting program should be able to identify these automatically and 
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increase the sampling rate around them. Remember that for 400 data points, the singular 
points were not detected.

As Figure 1.12b indicates, the singular points of F(x) coincide with the roots of equation 
1/F(x) = 0. The data files needed to generate this last figure were produced with P1_12B.
PAS available with the book, which was straightforwardly obtained by modifying earlier 
program P1_10.PAS, where function F was replaced with 1/F.

1.7� conTRollinG�PloT�FEATURES�FRom�wiThin�ThE�inPUT�DATA�FilE
In addition to type and color, D_2D allows marker occurrence to be controlled from within 
the data file, that is, they can be turned off and back on. However, their style cannot be set 
or changed, say from ‘***’ to ‘‐*‐’ or ‘*#*’, and a line without markers cannot be 
turned into a line with markers from within the data file.

Important: You will have to assign some type of markers to your graph from within D_2D 
in order for the input data file control lines to have an effect.

To exemplify, open the ASCII data file F1_11.DAT using Notepad or other ASCII 
editor and insert two empty lines right before the first plot-line breaker ‘====’ (this 
should be on line 153 from the top). Then type ‘<><><><>’ on one of these lines, 
and on the other one, type the word ‘Red’. These will change, from that point over, 
the marker type to diamond and the color to red. To limit these changes only to 
the middle portion of the plot, scroll down to line 253 and insert above the second 
plot-line breaker an empty line on which type ‘!!!!!!!!!!’—this will restore the original 
marker type and line color (see Figure 1.13a). Save the F1_11.DAT file twice: once 
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FiGURE�1.12� (a) Same graph as in Figure 1.11a, with ±1.0E100 assigned to the function value at 
the singular points. Note that irrespective of the limits over the y-axis, the plot lines will extend up 
to the plot-box edge. (b) Graph of 1/F(x) in Equation 1.3 with the curtains removed. Configuration 
files F1_12A.CF2 and F1_12B.CF2.
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under the name F1_13A.DTA and a second time under the name F1_13B.DTA . 
Open this second ASCII file and change the line of ‘<><><><>’ you inserted earlier, 
into ‘~~~~~~~’. This will suspend the marker display until reaching the reset line 
‘!!!!!!!!!!’ (see Figure 1.13b).

If you want to redo the plots in Figure 1.13, launch D_2D.EXE and press the <F3> key 
to load one of the configuration files F1_13A.CF2 and F1_13B.CF2.

There are several other instances where controlling graph-line interruptions from 
within data file can become useful. For example, Figure 1.14 consists of over 130 distinct 
polylines, the vertices of which are read from a single data file, that is, F1_14.XY. 
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FiGURE�1.13� Plots of data files (a) F1_13A.DAT and (b) F1_13B.DAT having additional control 
lines inserted as described in the text. Configuration files: F1_13A.CF2 and F1_13B.CF2.
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FiGURE�1.14� Example of a plot created with D_2D where line-break controls were used multiple 
times. Configuration files: F1_14.CF2.
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The plot-line breakers in this file play similar to the ‘pen up’ and ‘pen down’ commands a 
plotter receives when in operation. This figure was generated staring from a photograph 
that was opened inside AutoCAD, and its contours traced with polylines. The drawing was 
then exported to R12 DXF, and using the UTIL~DXF program described in Chapter 3, 
and the vertices of these polylines were then written to ASCII file F1_14.XY.

Another application of the line segmenting capability of D_2D is on plotting families of 
curves, with data read from a single file. Let us consider the amplitude ratio of a damped 
forced linear oscillator function:
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(1.4)

and plot 10 separate curves corresponding to the damping ratio ζ, between 0.1 and 1, and 
for the frequency ratio Ω/Ωn between 0 and 2.5 like in Figure 1.15.

One possibility is to write the data to 10 separate files (one file per each ζ value) and plot 
them on the same graph (D_2D can read data from up to 16 different files). Alternatively, 
an ASCII file with 11 columns can be generated: one column for the independent variable, 
that is, Ω/Ωn, and 10 columns for each damping ratio value.

The third possibility is to write a program with two nested for loops that will output data 
to the same file. The points belonging to one curve must be separated from those of other 
curves using line breakers. The P1_15.PAS program (see Appendix B) implements such 
an approach and serves to create data files F1_15.D2D and F1_15.DAT available with 
the book. The plot in Figure 1.15 has been generated using the first of these files, and then 
it was exported to R12 DXF.
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FiGURE�1.15� Family of curves plotted using either F1_15.D2D or F1_15.D3D. Configuration 
files F1_15D2D.CF2 or F1_15D3D.CF2. D3D are specific to program D_3D discussed in Chapter 
2. Curve and axis labeling has been done inside AutoCAD.
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The fourth solution to the same problem is to generate a D3D data file, that is, F1_15.
D3D using program P1_156.PAS (see Appendix B), and then plot this file using D_2D. 
The D3D files are specifically formatted to be read using the D_3D program described 
in Chapter 2—see Figures 2.1, 2.6, and 2.7, which are plots of the function H(ζ,Ω/Ωn) in 
Equation 1.4. When a D3D data file is opened using the D_2D program, a temporary file 
of double (extension $2D) is first created, which employs plot-line breakers to separate 
the individual x = constant or y = constant lines. Note that D_2D allows two separate 
plotting options for D3D files, that is, f(x,y) vs x and f(x,y) vs y, which cor-
respond to the side view and front view of the f(x,y) function surface, respectively (see 
Figure 1.16).

1.8� PloTTinG�ScATTERED�DATA
Plotting scattered data, illustrated by an example in this section, is common to experi-
mental data analysis and statistics. Inequalities of two variables can also be represented 
graphically as large collections of scattered points as will be shown later.

The plot in Figure 1.17 has been generated using the F1_17.DTA file and represents the 
life of six groups of bearings subjected to various operating conditions. Notice that group 
sizes are not identical, so in order to keep the file structured orderly, dots were used as 
place holders (see the F01_17.DTA insert) although any nonnumerical character can be 
employed. Alternatively, you can rearrange the columns from longest to shortest as visible 
in the F01_18.TXT insert.
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FiGURE� 1.16�  2D projections of function H(ζ,Ω/Ωn) in Equation 1.4, done by plotting the 
F1_16.D3D data file using D_2D with input options f(x,y)  vs x (a) and f(x,y)  vs y, (b).
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Rather than using D_2D to preview the input ASCII data file and select its column inter-
actively, you can create a configuration file that will allow you to plot the same data (i.e., 
F1_18.TXT) as scattered points, but with flipped axes as shown in Figure 1.18.

Begin by opening the master configuration file !.CF2 using Notepad and save it under 
a different name (this is file F1_18.CF2 available with the book). Change line 36 of this 
file to ‘6’ (i.e., the number of groups or pairs of data), then edit the remaining 13 lines 
according to Table 1.1.

Copy and paste these 13 lines five times at the end of the file and then change the column 
numbers from where the x and y values are read (i.e., those commented with {x column} 
and {y column}, respectively) to 4 3, 6 5, 8 7, 10 9, and 12 11, respectively.

Modify the {marker radius in screen units} from 2.5 to 10. Leave line 27 
unchanged since it will be ignored, and change line number 33, which currently reads 
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FiGURE�1.17� Plot of the F1_17.DTA experimental data file. Configuration file: F1_17.CF2.
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1E100 -1E100 F1(x) with 0.5 6.5 group number. These will be the minimum 
and maximum limits over the vertical axis and its new name ‘group number’. The name of 
the x-category on line 32 currently reads x. Before saving and closing your configuration 
file, change this to million cycles and include six spaces at the end, while leaving the 
limits as they are, that is, 1E100 -1E100. The D_2D will recalculate them such that the 
box will tightly fit the plot.

TAblE�1.1� Modifications to Obtain Configuration File F1_18.CF2

Line to Append Comments 

1 F1_17.TXT Name of the file from where data are read.
2 N N (No) because the curve is not a background curve of an animation 

(see next paragraph on producing animations).
3 0 In case of D3D data files, this should be 1 or 2, otherwise it must remain zero.
4 2 {x column} Column number for the x value of the (x, y) pair.
5 1 {y column} Column number for the y value of the (x, y) pair.
6 2 Read data from file beginning with the 2nd row.

Important: Inserting 1 here can result in erroneous plots because portions of the 
header may be interpreted as data.

7 1000 You can insert any number greater/equal than the total number of rows in the file, 
i.e., 35. To ensure that <F2>redo option will capture all data from future 
versions of the file, it is advisable to insert a safely large value here.

8 1 y-axis category, i.e., 1 for F1(x), 2 for F2(x), 3 for F3(x), and 4 for F4(x).
9 7 Line type 1 through 7 for  ——, ---, ···, ====, ====, :::, and no line.

10 1 Color (1 through 8): blue, green, cyan, red, magenta, brown, gray, black.
11 2 Marker pattern 1 through 6 for ‐*‐, ***, *#*, !!!!!!, /#\, and no marker.
12 2 Marker type from 1 to 14 for Ø, ○, ⦁, ◻, ♢, ▿,  ▵, ✴, ×, +, ¤, ♀, ♂, ¦, >.
13 1:1:1000; Since this information is not used, any numbering pattern is acceptable.
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FiGURE�1.18� Plot of the F1_18.TXT files with settings from configuration file F1_18.CF2 cre-
ated by hand according to the text.
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Important: You can selectively reset the limits over x- or any of the y-axes by editing 
the corresponding lines 32 through 36 and making the lower limit bigger than the 
upper limit, or by inserting a 1E100 -1.0E100 pair. If you want to reset the limits 
on all axes, it might be more convenient to just use the <F2>redo↕ option from the 
start-up menu.

Launch D_2D and select the configuration file that you have just created. You should 
obtain a plot similar to that in Figure 1.18. To make it look even nicer, consider editing the 
number of divisions and values over the horizontal axis (either from inside D_2D or by 
further editing its configuration file).

Important: In case of an incorrect CF2 file input, an error message will be issued by D_2D. The 
debugging information provided is not complete however. It is therefore advisable to always 
save under a different name the last functional copy of the CF2 file that you are editing on.

1.9� PloTTinG�oRDERED�DATA�AnD�hiSToGRAmS
One capability of D_2D is to autogenerate the x-coordinate values as 1, 2, 3, 4, etc., useful 
when plotting one column only from an ASCII file. You can instruct D_2D to do so by 
setting to zero the column number from where the x values are read.

To exemplify, let us edit the CF2 file of the plot in Figure 1.17 and set to zero the 
column # for x six times. In addition, assign different marker types to each data set 
(i.e., 10, 9, 8, 7, 6, 5) and change their width from 10 to 4 screen units. Next, on 
line 33, enter the text: 0 35 specimen # (the x label) followed by several spaces to 
offset it to the left. Edit line number 6 so that it reads 8 5  {no. of values & divisions 
over x axis}—this will make the horizontal axis of the graph look nicer. Save the 
file under a new name (F1_19.CF2 is the name of the one available with the book) and 
open it with D_2D to produce the graph in Figure 1.19. This is actually a DXF copy of the 
plot, where markers ♢, ◻, ▵, ▿ are transparent rather than opaque. If you issue the hide 
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FiGURE�1.19� DR12 DXF copy of the plot of the F1_17.TXT file, with the x values generated auto-
matically. Configuration file F1_19.CF2.
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or shade commands inside AutoCAD, the markers will obscure each other, similarly to 
the D_2D screen.

If you read the x values from ASCII and set to zero the column number for the y values, 
D_2D will generate a histogram and not a scatter plot with y the independent variable (if you 
need one of those instead, your only option is to rotate the graph 90° inside AutoCAD). A his-
togram is a graph of adjacent vertical bars showing what proportions of data fall into each of 
the given intervals or bins. In case of D_2D, these bins are equal width, and their number must 
be specified immediately after setting the column for the y-axis to zero. According to Bendat 
and Piersol (2010), for N data points the number of bins nb should be

 n Nb = −( ) +1 87 1 1
0 4

.
.

 (1.5)

For nb equal size bins, the left and right limits of a current bin I will be

 f i f f n f i f f nmin max min min max min( )+ − −( ) + −( )1 b band  (1.6)

where fmin and fmax are the lower and upper range of the data series read from file. Figure 
1.20 shows a seven-bin histogram of the most numerous bearing test group in F1_17.TXT.

Important: The limits fmin and fmax introduced earlier appear on the histogram centered 
with the leftmost and rightmost bins. Currently, D_2D does not allow the user to directly 
modify them and is independent of the horizontal-axis minimum and maximum limits.

The appearance of a histogram will depend on the number of bins nb and on the fmin and 
fmax values in Equation 1.5. The former can be set at the beginning when data are read from 
file or by editing line number 32 of the CF2 and running D_2D with these new settings. 
However, the latter can be modified only indirectly, for example, by adding two properly 
selected values to the input data file and trimming the graph to the left and to the right as 
it will be exemplified next.
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FiGURE�1.20� Seven-bin histograms of the most numerous (34 samples) bearing group in F1_17.
TXT file. Configuration file: F1_20.CF2.
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In order to center the bins of the histogram with 20 × 106 to 50 × 106 cycles as shown in 
Figure 1.21, values 10.0 and 60.0 have been added to the original data file, and the file was 
then saved under the new name F1_20.TXT. The total number of bins of the histogram 
was then changed to 11 = 7 (original number of bins) + 2 (empty bins, one to the left 
and one to the right) + 2 (bins for two new entries). With these modifications, four new 
bins have been added to the graph (see Figure 1.22) as follows: two bins each with only 
one data point (one centered at 10 × 106 cycles and the other centered at 60 × 106 cycles), 
separated by the rest of the histogram by two empty bins (one centered at 10 million and 
the other centered at 55 × 106). To obtain the correct appearance corresponding to the 
original data, the extraneous bins must be eliminated by setting the x-axis range from 
15 to 55 million cycles.
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FiGURE�1.21� Histogram of the data used for Figure 1.21 modified such that the bins are centered 
at rounded values. Configuration file: F1_21.CF2.
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FiGURE�1.22� Histogram in Figure 1.21 before trimming the extraneous bins to the left and to the 
right. Configuration file: F1_22.CF2.
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Note that both the Integral and Length of the curve displayed at the top of the graph 
are both related to the number of samples in the input data file according to the following 
equations:

 

n
n

f f

n
n f f

samples
b

samples
L

Integral

Length

= ⋅ −
−

= −
−

1

2

max min

max minn( )
−nb 1  

(1.7)

where nL is the number of horizontal lines of length equal to the width of one bin, which 
are visible on the graph. Also note that for a histogram with empty bins, if you make 
the lower limit of the y-axis less than zero, the number of horizontal segments increases 
(and so does the total length of the graph).

1.10� PloTTinG�inEqUAliTiES
Plotting scattered data and inequalities are actually related issues. To exemplify, let us look 
at the problem of graphing the inequality:

 sin( ) sin( ) ( . )x y x y+( ) − ⋅ + ≥2
0 5 0  (1.8)

with −π ≤ x ≤ π and −π ≤ y ≤ π. This is the top view of the intersection between the surface 
z = (sin x + sin y)2 and the hyperboloid of equation z = x · y + 0.5.

The P1_23.PAS program (see Appendix A) that generates the F1_23.D2D file used to 
plot Figure 1.23 has a very simple structure: It essentially evaluates inequality (1.8) over a 
406 × 406 grid, and if it is not satisfied, then the corresponding (x, y) pair is written to file. 
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FiGURE�1.23� Plot of the inequality 1.8. Configuration file: F1_23.CF2.
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If you save the plot in Figure 1.20 as R12 DXF and open it with AutoCAD, you will be able 
to see its doted structure. If you increase the point size, then the AutoCAD drawing will 
begin resembling the raster figure. To do this, type ‘_ddptype’ at the command line, change 
the point type from dot (which is not scalable) to circle, and increase its size. Because of the 
large number of graphic entities (i.e., dots), inequality plots are recommended to be saved 
and manipulated as raster graphics.

Important: Both the point size and the grid size will influence the appearance of an inequal-
ity plot. For raster graphics output, set D_2D point size to zero and sampling size over x 
and y slightly bigger than the dimensions in pixels of the plot box.

If you redo Figure 1.23 with settings from F1_23.CF2, you will notice that the values over 
the x- and y-axes are in decimal numbers, not in fractions of π, like in Figure 1.23. This is caused 
by the round offs that occur when recalculating the interval between two values with settings 
from the configuration file. To fix this, go to the plot-box edit screen and press <Ctrl> + <F1> 
then <Ctrl> + <F5>. If it has no effect, you will have to go to the <F1> change limits… 
menu and type ‘pi/4’ where it says Write a value every for both the x- and y-axes. To 
enter the actual character π, hold the <Alt> key and type 227 or type ‘pi’ without quote marks.

1.11� PARAmETRic�PloTS
2D parametric curves are defined by separate equations for the x and y coordinates of their 
points, that is,

 

x F t

y F t

x

y

=
=





( )

( )  
(1.9)

where t is an independent variable parameter. In many cases, t is associated to time and can 
assume only positive values, including zero. For polar curves written in Cartesian form 
(like the Archimedean spiral considered next), the independent parameter is sometimes 
noted θ and represents an angle measured in radians.

For certain parametric curves, if data are generated at a constant increment of the inde-
pendent variable, rapid jumps in the Fx and Fy function values can occur, and the graph 
will look nonsmooth in those areas (see Figure 1.24a). This is less likely to happen in case 
of single-valued functions y = F(x), because their graph does not turn over itself, and the 
total length of the curve remains short. A remedy proposed by Reverchon and Duchamp 
(1993) is to evaluate the distance ΔL between every two consecutive points x(t), y(t) and 
x(t + Δt), y(t + Δt) and if this distance is greater than a given maximum length ΔLmin, then 
increment Δt is reduced, and the second point is recalculated. Conversely, if the distance 
between these two points is smaller than a given minimum length ΔLmax, then step Δt will 
be increased. The procedure is repeated until there is no need to adjust Δt, and only then 
the new point x(t + Δt), y(t + Δt) is written to file.

If in an animated comet plot you make ΔLmin very close to ΔLmax, the graph will appear 
to grow at a constant speed, because all segments of the polygon that approximates 
the curve will be about equal. In other instances, however, like in projectile or robot 
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end-effector path problems, we would explicitly want the plot points to be displayed at a 
 constant time interval Δt, so that a comet plot animation will appear realistic.

Archimedean spiral of equations

 

x

y

= ⋅
= ⋅





θ θ
θ θ

cos( )

sin( )  
(1.10)

is a classical parametric curve (see Figures 1.24 and 1.26). The data used to produce 
Figure  1.24a have been generated with the program P1_24A.PAS (see Appendix B), 
where parameter θ increases at a constant step between 0 and 8π.

The companion plot in Figure 1.24b was produced with the program P1_24B.PAS 
(see Appendix B), which implements the variable step-size algorithm discussed ear-
lier. It ensures a 31 pixels long with 0.1% accuracy to each segment of the polygon that 
approximates the graph (the plot-box size was assumed to be 405 × 405 pixels). For the 
particular function in Equation 1.7, neither approach appears to be satisfactory: The plot 
in Figure 1.24a looks properly sampled close to the origin of the spiral, while the plot in 
Figure 1.24b looks better towards its outer end. In addition, the number of function calls 
inside P1_24B.PAS required to attain the specified polygon segment accuracy was con-
siderable (over 95,000). The same result can be obtained in fewer function evaluations, 
and with improved accuracy, if a rapidly converging zero finding procedure is employed 
(see Chapter 4). On the other hand, the overall appearance of the graph will not change, 
unless the number of plot points is increased.

A different, more efficient strategy of curve polygonalization was implemented in the 
P1_25.PAS program (see Appendix B). Here, the function is evaluated at a constant 
parameter θ step, but not all points are written to file, that is, the program verifies (i) if the 
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FiGURE�1.24� Plot of the curve in Equation 1.10 with 0 ≤ θ ≤ 8π generated (a) for constant incre-
ment Δt and (b) for an adjustable increment Δt such that ΔL = 31 ± 0.001. Both plots have 91 data 
points. Configuration files F1_24A.CF2 and F1_24B.CF2.
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current point coincides within a given tolerance with previous point (see line #61 of the 
program) and (ii) if the current point and the previous two points are collinear, the same 
with a given tolerance (see line #64).

The coincidence and collinearity conditions mentioned earlier are verified by the 
Coinc2Pts2D and Colin3Pts2D functions of the Boolean type that are called from 
unit LibGe2D. For conformity, these two functions are listed next:

function  Coinc2Pts2D(xA,yA, xB,yB, Eps2: double): Boolean;
{Check if points A and B coincide with precision Eps2}
BEGIn
  Coinc2Pts:=TRUE;
  if (xA = xB) AnD (yA = yB) then Exit;
  if (Sqr(xA-xB)+Sqr(yA-yB) > Eps2) then Coinc2Pts:=FALSE;
EnD;
function Colin3Pts2D(x1,y1, x2,y2, x3,y3, Eps3: double): Boolean;
{Check if points 1, 2 and 3 are collinear with precision Eps3}
var ReqEps3, D_13, Max_123: double;
BEGIn
  Colin3Pts:=FALSE;
   D_13:=Sqr(x1-x3)+Sqr(y1-y3);  {distance between 1st and 3rd point}
   Max_123:=Max3(Sqr(x1-x2)+Sqr(y1-y2), D_13, Sqr(x2-x3)+Sqr(y2-y3));
  if (D_13 = Max_123) then BEGIn   {triangle 3-2-1 is obtuse}
     ReqEps3:=4.0*Sqr((x2-x1)*(y3-y1)-(y2-y1)*(x3-x1))/(D_13+1e-100);
    if (ReqEps <= Eps3) then Colin3Pts:=TRUE;
  EnD;
EnD;

where function Max3 called by Colin3Pts2D from unit LibMath returns the maximum 
of three numbers.

Note that in both procedures, in order to eliminate the repeated calling of the math-
ematical function Sqrt, the squared rather than the actual distances between two points 
were used in calculations. Also, notice that in order to avoid a division by zero when evalu-
ating ReqEps3, a very small positive number was added to the denominator.

It is visible that the plot in Figure 1.25, produced with the data from P1_25.PAS pro-
gram in Appendix B, ensures a better distribution of the vertices of the approximating 
polygon. Parameters EPS2 in the Coinc2Pts2D and EPS3 in Colin3Pts2D functions 
were set to 8.3e-3 and 4.2e-3, respectively. You may want to experiment with P1_25.PAS 
and see how these two values and the number of initial data points (this was considered 
equal to 1000 for Figure 1.26—see line #10 of the program) affect the number and disposi-
tion of the vertices of the approximating polygon.
D_2D program employs the same two functions Coinc2Pts2D and Colin3Pts2D 

for optimizing polyline vertices before they are written to the DXF file. The corresponding 
EPS2 and EPS3 values are the DXF polyline coincidence and collinearity parameters that 
are read from line 25 of the CF2 configuration file. When you export a graph to DXF, the 
D_2D program will report at the end the maximum required coefficients EPS2 (first 
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FiGURE�1.25� Plot of the curve in Equation 1.10 with 0 ≤ θ ≤ 8π generated based on an initial pool 
of 1000 data points of constant Δθ increment, decimated to 99 points using the Coinc2Pts and 
Colin3Pts functions. Configuration file: F1_25.CF2.
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FiGURE�1.26� Polar array of Archimedean spirals (Equation 1.11) with n = 8 and 0 ≤ θ ≤ 2π divided 
between 31 data points of constant θ increment. Both figures are plots in progress, showing how data 
have been generated (i.e., last segment drawn is shown in dashed line) as (a) one spiral at a time 
and (b) all spirals are grown simultaneously. Configuration files: F1_26A.CF2 and F1_26B.CF2.
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number) and EPS3 (second number), for which at least one plot point will be eliminated 
because of its coincidence or collinearity with its neighbors. In order to control the amount 
of vertex removal the polylines written to DXF will be subject to, you can modify the default 
EPS2 and EPS3 values on line 25 of the CF2 file.

Important: When a DXF 1:1 export is performed, coefficients EPS2 and EPS3 are auto-
matically set to zero, so that all plot points are preserved.

Another useful capability of D_2D, other than eliminating points that are near coinci-
dent and near collinear, is that it concatenates into polylines line segments that are placed 
head to tail. This occurs even if these segments were generated out of sequence or with 
their ends f lipped. To exemplify, let us look at the problem of plotting a polar array of 
n Archimedean spirals (see Figures 1.26 and 1.27) of equations:

 
x i n

y i n

= ⋅ + −
= ⋅ + −





θ θ π
θ θ π

cos[ ( ) ]

sin[ ( ) ]

2 1

2 1
 (1.11)

with i = 1 to n and 0 ≤ θ ≤ 2π. We will generate the data points in two ways: (i) the spirals 
will be generated one at a time and (ii) all n spirals will grow simultaneously. The data 
files used to plot Figure 1.26a and b were produced with programs P1_26A.PAS and 
P1_26B.PAS (see Appendix B), respectively, which consist of the same two for loops but 
nested in different order. In both programs, line breakers are used to separate the indi-
vidual spirals. In addition, program P1_26B.PAS inserts line breakers to separate the 
individual segments that approximate the spirals. Evidently, in the latter case, data file 
organization is less effective because of the increased number of separators and because 
each plot point (except of end points) is written to file twice.
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FiGURE�1.27� Polar array of Archimedean spirals (Equation 1.11) with n = 8 and 0 ≤ θ ≤ 2π divided 
between 31 data points of constant θ increment and with the plot points (a) orderly oriented and 
(b) oriented at random. Configuration files: F1_27A.CF2 and F1_27B.CF2.
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In both cases, however, the final graphs will look the same. The differences are visible 
only when these plots are shown as comet plots (see Section 1.12 on animations). Additional 
differences between these two graphs will become apparent when you export the respec-
tive plots to DXF, that is, the line segments the endpoints of which are identical (or coincide 
within tolerance EPS2) will be concatenated into polylines, even if they were plotted out 
of sequence. To verify, run D_2D with settings from F1_26A.CF2 and F1_26B.CF2 and 
export each of the graphs to DXF once with the option to separate graphs into DXF 
layers on, and the second time with this option turned off—you can toggle between these 
two export variants from option <F2> of the <F1..4> screen.

When opening inside AutoCAD the DXF file generated with settings from F1_26A.CF2, 
you will notice that each spiral belongs to a separate layer titled ‘Line1section1’ to 
‘Line1section8’. In case of the DXF file created with settings from F1_26B.CF2, each 
segment of the eight spirals belongs to 240 separate layers titled ‘Line1section1’ to 
‘Line1section240’. If you chose not to separate the lines into DXF layers, go to the <F1..4> 
screen, option <F2> in case of either F1_26A.CF2 or F1_26B.CF2 configuration files. 
In this case, a single layer named ‘Line1section1’ will contain all plot lines. Moreover, 
some spirals will appear joined into a single polyline because their initial points coincide. 
Also notice that for a DXF file generated with settings from F1_26B.CF2, even if the 
vertices were originally plotted out of sequence, they were concatenated correctly when 
converted to DXF polylines.

A third program available with the book named P1_27.PAS, which is a modification of 
Pascal program P1_26B.PAS (source code not included in appendix), generates the same 
type of data point structure as for Figure 1.26b, with the difference that the line segments 
are written to file at random, that is, either the outer point first followed by the inner point 
or vice versa. If you do DXF export and you chose to separate the graph into 
DXF layers  from option <F2> of the <F1..4> screen, then the individual segments 
that form the spirals will still be connected into polylines, following a proper reordering of 
vertices. This helps reducing the size of output DXF files and also makes it easier to edit the 
plots generated by D_2D using AutoCAD, because the graphs consist of polylines rather 
than separate line segments.

Important: If a plot has been generated with data from two or more separate files, then a DXF 
layer will be created for each curve and their names will be ‘Line1section1’, ‘Line2section1’, 
etc. (see the DXF output of Figure 1.4). If line breakers are used, however, and if you chose 
to separate graphs into DXF layers, then additional layers will be created and 
their names will be ‘Line1section1’, ‘Line1section2’, etc. If the plot was generated with data 
from multiple input files, then layers ‘Line2section1’, ‘Line2section2’, etc., will also be created.

1.12� AnimATionS
D_2D allows you to create comet plots and animations, with or without having some of the 
curves plotted as background images and with or without accumulating frames. A comet plot 
is a regular plot where displaying the line segment that connects the current plot point with 
the rest of the graph or displaying the next marker of the plot is delayed a certain amount 
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of time. In nonaccumulating-frame comet plots that consist of broken-bar markers only 
(i.e., option ✴✴✴ with ¦ markers), each of these markers will be drawn as a vertical scan line.

In multiple-frame animations, a new frame is created and will be delayed any time a line 
breaker is encountered in the input data file or when the end of the input file is reached. In 
plots with data read from more than one input file, a new frame will be generated any time 
the data from a new $2D file is plotted on the screen. After the last $2D data file is plotted, 
everything is repeated.

If the plot consists of multiple $2D files, the curves generated using one or more of these 
files can be defined as background, and only the remaining curves will be animated.

You can choose to accumulate the frames in an animation or refresh the screen every 
time a new frame is displayed. In both cases, if one or more background curves have been 
specified, these will be displayed in each frame.

If you choose to number the vertices of a curve that originates from a single file using 
the *#* marker option, and if line breakers are used to separate the graph into frames, 
then the numbering will be restarted every new frame, unless you choose to accumulate 
them by setting to ‘Y’ the accumulate graphs from option <F2> of the <F1..4> screen.

The amount of delay between frames can be changed interactively, including holding 
the current frame indefinitely, that is, the next frame will be displayed only after pressing a 
key. When in the frame-hold mode, the current screen can be copied to PCX. A number of 
such PCX screenshots can be assembled into a stand-alone animated GIF or a movie file. 
Stream PCX export and export to multilayer DXF is possible from the <F4> option of the 
<F1..4> screen.

Important: If the animation rate is set to 0 or 1, stream PCX export will copy all frames 
to PCX. If the frame rate is 2, 3, or higher, only every 2nd, 3rd frame, and so on will be 
exported to PCX.

Multiple-layer DXF files can then be animated inside AutoCAD using the M_3D.LSP 
program discussed in Chapter 3. Currently, D_2D allows only line/section and nonaccu-
mulated comet plots (i.e., scan lines or scan point plots) to be exported to multiple-layer 
DXF files, provided that the total number of animation frames is less than 1000.

In the remainder of this chapter, these features of D_2D will be exemplified. Of the plots 
discussed earlier, some will be changed into animations, and a couple of new examples will 
be presented. Since animations cannot be printed on paper, you will have to run D_2D.
EXE with settings from the respective CF2 configuration files or play the animated GIFs 
available with the book.

• Comet plots: Once you have created a line graph, you can easily animate it as comet 
plot. To do so with the plot in Figure 1.1, run D_2D with settings from F1_01.CF2, 
then choose option <F2> from the <F1..4> screen and select the Animate graph 
and Comet  plot options. For this particular case, it is irrelevant if sepa-
rate graphs into animation frames is set to ‘Y’ or ‘n’. Alternatively, you 
can directly edit the F1_01.CF2 configuration file and set to ‘Y’ lines 24 and 25—
(see the F1_30.CF2 file available with the book). While the animation is running, 
you can adjust the frame rate using the up and down arrow keys (see Figure 1.28). 
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When the frame rate is zero (see Figure 1.29), you can copy the current screen to PCX 
by pressing the <F10> key. The name assigned by default to the PCX file will start with 
D2D00000.PCX (this is a copy of the background plot) and will be incremented by 
one with every new PCX export.

If Label animation frames from the <F2> option of the <F1..4> screen is set 
to ‘Y’, then the number of the last line segment or plot point (these are called sections) that 
was added to the graph will be printed to the bottom of the screen (see Figure 1.30).

Important: To ensure that PCX screenshot file export is consistent, remove from the cur-
rent directory all preexisting PCX files.
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FiGURE�1.28� Screenshot of a comet plot in progress when in the automatic screen refreshing mode. 
Configuration file: F1_28.CF2.
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FiGURE�1.29� Screenshot of a comet plot in progress when in the frame-hold mode. Configuration 
file F1_29.CF2 (remember to repeatedly press <CR> or the space bar for the animation to occur).
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Examples of scan point and scan line plots with a background the same curve in 
Figure 1.30 can be produced using configuration files F1_30-01.CF2 and F1_30-02.
CF2. See also animated GIFs  F1_30-01.GIF and F1_30-02.GIF available with 
the book.

• Line/section animations: If you animate the previous graph under the option line/
section  animation, the plot will only flicker because it consists of only one 
frame. To obtain a meaningful multiple-frame animation, the plot must either (i) 
originate from several files, each providing data for plotting one frame; (ii) originate 
from a single file that contains several line breakers; or (iii) originate from multiple 
files of which some of the files have line breakers inserted within.

The plot in Figure 1.3 originates from two files. In order to animate it, launch D_2D with 
settings from F1_03.CF2 and change to ‘Y’ the animate  graph and set animation 
option to line/section animation. Run D_2D twice: once with the Accumulate 
graphs in an animation set to ‘N’ and a second time set to ‘Y’. Because there are 
only two animation frames, their rate must be reduced to clearly observe the difference. 
The configuration files that will let you play these two animations are F1_30-03.CF2 
(frames accumulate, i.e., the second frame is added to the first frame) and F1_30-04.CF2 
(frames do not accumulate). See also the corresponding animation files F1_30-03.GIF 
and F1_30-04.GIF.

Configuration files F1_30-05.CF2, F1_30-06.CF2, F1_30-07.CF2, F1_30-08.
CF2, F1_30-09.CF2, and F1_30-10.CF2 provide several more examples based on Figures 
1.15, 1.26a and 1.26b. These are multiple-frame animations where data are read from a single 
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FiGURE�1.30� PCX screenshot of one frame of the comet plot in Figure 1.29 showing frame labeling 
(configuration file F1_30-00.CF2). See also animation file F1_30-00.GIF generated with every 
10th section of the plot.
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file and line breakers are used as frame separators. The corresponding animated GIF files 
F1_31-05.GIF to F1_30-10.GIF are also available with the book.

• Vertex numbering: This example shows how vertex numbering is affected by the sep-
aration of the graphs into animation frames (see Figure 1.31). Data files F1_31.D2D 
and F1_31.DTA used in this application were generated with program P1_31.PAS 
(see source code in Appendix B). This new program originates from the one used to 
produce Figure 1.26, with the difference that the points placed at equal distance from 
the origin are connected together to form a closed polygon. With proper line break-
ing inserted into the input data file, when plotted using D_2D, it results in an array 
of spiraling polygons that can be also animated (see configuration files F1_35A.CF2 
and F1_35B.CF2 and the corresponding animated GIF files F1_35A.GIF and 
F1_35B.GIF).

Important: In an accumulated-frame graph, data point numbering is continuous. When the 
frames are plotted separately, point numbering is restarted every frame. Currently, there is no 
interactive way, nor via CF2 editing, to continue vertex numbering from the previous frame.

• Background‑curve animations: When plotting data from multiple files, you can select 
the curve(s) originating from one or more of these files to be displayed as background 
curves and display the remaining file(s) animation frames. A couple of comet-plot ani-
mations have already been mentioned (see  F1_30-01.GIF and F1_30-02.GIF). 
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FiGURE� 1.31� Last frame of the animations generated with configuration files (a) F1_31A.CF2 
 (vertex numbering continues from previous frame) and (b) F1_31B.CF2 (vertex numbering is restarted 
with each frame). The same animations are available as GIF files F1_31a.GIF and F1_31b.GIF.
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To animate as accumulated graph with a background the plot in Figure 1.3, launch 
D_2D with settings from F1_03.CF2, change to ‘Y’ the animate graph and select 
comet plot. At this time, you have two plots that will be animated as comets, and 
depending whether accumulate graphs into animation is set to ‘N’ or ‘Y’, 
the graph of F′(x) will be either displayed on the top of F(x) or it will replace it.

In order to turn the graph of F′(x) into a background curve, go to the <F1..4> screen 
and press <F3>, then type ‘B’ for background and ‘2’, for the 2nd curve, then press <CR> 
four times (see also F1_32-1.CF2 and animation file F1_32-1.GIF).

To display F(x) as background curve and animate as comet the derivative F′(x), go to 
the same <F3> edit add remove lines menu, type ‘B’ for background curve then 
type ‘1’. At this point, both curves are background curves, so the plot will be motionless. 
To animate as comet the F′(x) graph, type ‘B’ again, then ‘2’. Then go to the final-graphic 
screen to watch the result. See also configuration files F1_32-1.CF2 and F1_32-2.CF2 
and animated GIF files F1_32-1.CF2 and F1_32-2.GIF.

Two additional background-curve animations of an increased visual appeal have been 
generated using the data files generated earlier as follows: file F1_26A.D2D provides the 
background curve, that is, the spirals in Figure 1.26a, while the polygons in Figure 1.31 
read from data file F1_31.D2D are animated as separate frames (see Figure 1.32a and 
animation file F1_32A.GIF) or as accumulated frames (see Figure 1.32b and animated 
GIF file F1_32B.GIF).

Important: If you are in the animation mode and you exit D_2D from the <F1..4> screen, 
the program will leave behind a file named D2D00000.PCX. This is a copy of the plot box 
and, if it is the case, of the background curve(s). In case you want to utilize it, save this 
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FiGURE�1.32� Last frames of the animations generated using configuration files F1_32A.CF2 (a)
and F1_32B.CF2 (b). See also animated GIFs F1_32a.GIF and F_32b.GIF.
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PCX file under a different name because the next time you launch D_2D, it will be erased 
together with all $2D temporary data files.

Before ending this chapter, one more program will be introduced, that is, P1_33.PAS 
(see Appendix B). This program generates the data files to animate polygons that spi-
ral both forward and backward, which in addition are randomly colored in groups of 
10 (see Figure 1.33). Spiraling direction change has been attained by assigning a negative 
 initial value to the parameter, that is, Tmin=-2*Pi. You may want to experiment with 
other initial values and number of vertices and observe the effect. Ideas for more such ani-
mations are available from the references listed at the end of the chapter.

***

In this first chapter, the capabilities of D_2D plotting program have been explained and 
illustrated with examples so that you can solve your own similar problems. Further 

FiGURE�1.33� Last animation frames of randomly colored spiraling polygons with 2, 3, 4, and 5 
sides. Configuration files F1_33-2.CF2 through F1_33-5.CF2. See also F1_33-2.GIF through 
F1_33-5.GIF.
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applications of the D_2D program are presented in the remainder of the book. The source 
codes of D_2D.PAS and of Unit _ D2D.PAS it uses are both available with the book. The 
comments provided with the code will help you understand how the features discussed 
throughout this chapter have been implemented.
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C h a p t e r  2

Graphical Representation of 
Functions of Two Variables
The D_3D Program

This chapter is about a program named D_3D that allows z = F(x, y) single-valued 
functions of two variables to be represented graphically as surfaces, level curves, color-

coded nodes, and stem plots. D_3D also allows the gradient of the function to be graphed, 
alone or combined with other type of plots. The program was briefly introduced in Chapter 1 
(see Figure 1.16) and is available with the book as source code (D_3D.PAS and UnIT_
D3D.PAS) and executable file (D_3D.EXE). Its main capabilities are as follows:

 1. 3D surface plots can be represented as lines of constant x, lines of constant y, lines of 
constant z (i.e., raised level curves), or node points mapped on the function surface. 
These lines or nodes can be plotted alone or combined, while the function surface on 
which they are mapped can be made transparent or opaque.

 2. When plotted alone, the nodes can be connected with a vertical line to the base of 
the plot box. These will be called stem plots and are useful in representing graphically 
functions of discrete or integer arguments.

 3. Both the nodes and the level curves can be monochrome or can be colored according 
to their height.

 4. When set to opaque, the patches that approximate the function surface can be 
colored in light gray (symbol G), background color (white - symbol W), yellow 
(symbol Y) or can be colored according to their elevation (symbol :). These symbols 
must be entered on chime menu 1 of D_3D. The x = constant and y = constant lines 
of the surface mesh can be set to 1 or 3 pixel thick from the same menu, while their 
color can be set only by editing the CF3 configuration file.
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 5. Any of the previously mentioned plots can be represented in parallel or perspective 
projections, as well as in top view and side views. Side-view plots can also be gener-
ated using the D_2D program (starting with the same input data file) as explained in 
Chapter 1 with reference to Figure 1.16.

 6. Level curves (i.e., z = constant lines) can be mapped on the function surface or can 
be projected on the bottom plane of the bounding box. For a given vertical axis range 
zmin…zmax and number of level curves, you can choose to distribute the level curves 
either evenly spaced or logarithmically (log) spaced. Log-spaced level curves can be 
accumulated towards zmin (the Log spaced down option), towards zmax (the Log 
spaced up option), or towards z = 0 (the Log spaced from zero option) 
whether or not zmin < 0 < zmax. Level-curve elevation can also be edited interactively 
and can be optionally saved to the CF3 configuration file, from where they will be 
read next time you run D_3D. If saved to CF3, level-curve heights can also be modi-
fied using a text editor.

 7. Similarly to level curves, for any view other than the side views, it is possible to rep-
resent the gradient of the function as a set of arrows projected on the bottom plane. 
The gradient is evaluated by D_3D through finite differences using the already 
available plot data. By contrast, the gradient plotting functions in MATLAB and 
Scilab (www.scilab.org) require the components of the gradient to be supplied 
separately.

 8. The orientation of the z-axis can be reversed from within D_3D, which is more intui-
tive than viewing the function surface from below.

 9. The upper and lower limits of the z-axis can be modified by the user, and if it is the 
case, the function surface will be truncated where it intersects the top and/or 
bottom planes of the plot box. These intersections between the function surface and 
the bounding box can be shown either opaque or transparent or can be plotted alone, 
without the main body of the function.

 10. The patches that approximate the function surface can be selectively displayed based 
on their location, that is, if they are situated inside the plot box or outside the plot 
box, or if they intersect the upper and/or lower planes of the plot box. This feature 
of D_3D is useful in representing constrainted functions and inequalities of two 
variables.

 11. The original input data file can be scattered (decimated), so that fewer points will be 
utilized in plotting the function (see chime menu 3 options).

 12. Plots can be exported to file in PCX format or DXF AutoCAD 12 vector format 
(i.e., R12 DXF). When in top view, the level curves can be exported as DXF 1:1, 
that is, the scale factor will be equal to one on both x- and y-axes.

 13. When exiting D_3D, the plot-box size, orientation, divisions and values over the 
three axes, limits over the z-axis, input data file name, and, in case of ASCII 
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input, the column numbers from where data were read will all be saved to a 
configuration file with the extension CF3. If you exit D_3D from the <F1..4> 
screen, or if a new plot has been created from scratch, these settings will be writ-
ten to a new configuration file named automatically !0000001.CF3, !0000002.CF3, 
and so on. If you exit D_3D in graphic mode, these settings will be saved to 
the active CF3 file, and the original configuration file will have its extension 
changed to OLD.

 14. Similarly to D_2D, the <F1>redo and <F2>redoo options from the startup menu 
allow the user to recreate the plot with its settings recorded in the CF3 file found last 
in the current directory. The <F1>redo option will apply the limits zmin…zmax as 
they were recorded to the configuration file, while <F2>redo↕ will reset these limits 
such that the function surface will exactly fit the bounding box. The <F3>CF3 option 
from the startup menu allows the user to inspect (but not edit) the CF3 file before 
passing it to D_3D. To run a CF3 file without preview, press <F4> or <CR> at startup 
and open it as if it were a data file.

Important: There are a few settings that can be modified only by manually editing the CF3 
file. The text between curl brackets serves as comments and should not be deleted because 
D_3D will report an error. These settings are as follows:

 (i) Plot window width w and height h: These refer to the rectangular viewport of the 
computer screen that fits the projected plot box. Can be changed interactively, but if 
for any reason you do not want these dimensions to be multiples of 5, you must edit 
the first two numbers on line 6 of the CF3 file. Remember that they cannot exceed 
625 and 430 units, respectively.

 (ii) Plot-box orientation and perspective parameters kH, kV, tan(Gamma) and 
tan(Delta): Are listed on line 6 of CF3 files, together with parameters w and h 
mentioned earlier. Coefficients kH and kV define the horizontal and vertical loca-
tions of the origin of the 3D plot inside the viewport. In turn, tan(Gamma) and 
tan(Delta) are the shear and taper angles that allow parallel and perspective pro-
jections to be emulated. These parameters can be changed in discrete increments 
from within D_3D, but editing the CF3 file can be assigned any value. Do not exceed 
−0.97 ≤ kH ≤ 0.97, 0 ≤ kV ≤ 1, 0 ≤ tan(Gamma) ≤ 0.95, and 0 ≤ tan(Delta) ≤ 0.3, 
or otherwise the plot will appear distorted.

 (iii) Mesh line and node color: Can be changed only by modifying the code on line 
number 5 of the CF3 file, that is, 1, blue; 2, green; 3, cyan; 4, red; 5, magenta; 6, brown; 
7, light gray; 8, dark gray; 9, light blue; 10, light green; 11, light cyan; 12, light red; 13, 
light magenta; 14, yellow; and 0 or 15, white (the recommended mesh colors that do 
not cause confusion with the elevation color scale were italicized). Note that a white 
color mesh will be visible only on a colored patch, but not as wireframe views or white 
patches (see chime menu 1).
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 (iv) Node type: Can be changed only by editing line number 7 of the CF3 file. Acceptable 
values are 0, 1, and 2 for opaque, solid, and transparent circles, and between 5 and 9 
for ✴, ♢, ▫, ▿, and ▵, respectively.

 (v) Division lines outside and inside lengths: Major division lines outside length on all 
three axes and inside lengths on the z-axis only can be modified by editing line 
number 8 of the CF3 file. Along the x- and y-axes, the inside division line lengths 
will always be zero. Outside lengths on all three axes can be set to any value, but for 
esthetical reasons, they should not exceed 10 units. The length of the minor division 
lines is by default to 60% the length of the major division lines.

 (vi) DXF polyline coincidence and colinearity parameters: They have the same meaning 
as in D_2D and are read from line number 27 of the CF3 file. These are required 
when optimizing, prior to R12 DXF export, wireframe plots, level curves projected 
on the bottom plane, or top-view plots. For polyline optimization to take place, these 
two parameters must be less than the values reported by D_3D after completing a 
R12 DXF export.

Important: When a plot with the hidden lines removed is saved to DXF and then opened 
inside AutoCAD, to change the wireframe appearance of the plot, the hide or shade com-
mand must be issued. In order for these commands to have effect, the segments that form 
the function-surface mesh are drawn along the borders of identically shaped AutoCAD 
regions, and as the plotting advances, both the regions and their border segments are pro-
gressively elevated a small amount. This is the reason why the line segments of plots cre-
ated in hide mode inside D_3D cannot be concatenated into polylines after they have been 
exported to AutoCAD.

 (vii) Level-curve heights: If you choose to manually write them to file, you must add them 
one per line at the end of the current CF3 file (after the line that reads *** Level 
curve heights ***) and change to 5 the value on line number 15. This latter 
change is not essential, however, because choosing to read level-curve heights from 
file can be set interactively from within D_3D.

 (viii) Default file extension: When starting a new plot, D_3D will extract from line 4 of 
the master configuration file !.CF3 the extension of the files that will be listed for 
input when pressing <F4> at startup. You can write a different extension on line 4 or 
you can edit it blank, in which case D_3D will assume the default extension to be 
.CF3. In a regular CF3 file, line number 4 holds the title of the plot.

Important: In Windows XP, you can link CF3 files and input data files of extensions D3D, 
R3D, T3D, and G3D to the D_3D.EXE program available on your hard drive by editing the 
Open With properties of these files. From Windows Explorer, select the file you want to 
link. Then from the File → Open With → Chose Program menu, select D_3D.EXE. 
Make sure you check the option “Always use the selected program to open this kind 
of file” before pressing OK to confirm the setting.
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Important: When you redo a plot by running its configuration file, the input data file should 
be either in the same folder with D_3D.EXE or in the directory that precedes its name on 
line 3 of the CF3 file. If it is in neither place, an error message will be issued.

Important: A copy of the master configuration file !.CF3 or of any other valid CF3 file 
should be available in the folder from where you launch D_3D.EXE. If none is available, 
D_3D will report error. Likewise, in order to be able to export your plot to R12 DXF, a 
copy of the DXF.HED file should be available in the current directory.

The remainder of this chapter explains in detail the capabilities of D_3D. Its user inter-
face is similar to that of D_2D discussed in Chapter 1, so you may find it easy to directly 
experiment with the program.

2.1� how�D_3D�woRkS?
The function surface to be plotted is approximated by an array Zm×n of height values 
zij = F(xi, yj) in a regular grid of samples xi, yj (where i = 1…m and j = 1…n). Every row 
of this array will correspond to a single x coordinate, and every column of the array will 
correspond to a single y coordinate. Knowing the grid values xi and yj used to generate 
the Zm×n array, (xi, yj, zij) triplets can be formed, each corresponding to a single point on 
the function surface.

Instead of using these (xi, yj, zij) triplets to generate the screen coordinates of the projected 
points of the function surface as other plotting programs do, D_3D performs all calcula-
tions in the 2D image space. Therefore, the input data can be limited to only a number of 
height values zij equally spaced over the [xmin, xmax] × [ymin, ymax] domain. In addition to these 
zij values, the grid size m × n and the limits over x and y must be specified to D_3D. These 
limits are required only to properly place division and values along the horizontal axes.

Important: The maximum m × n size that a data file can have is 501 × 501. Evidently, the 
larger the total number of points zij, the longer it will take D_3D to generate a plot or to 
save it to DXF.

The way D_3D generates oblique projections is by diagonally offsetting a family of curves 
(see Figure 2.1). Additional parallel and perspective projections can be obtained by shearing 
and/or tapering an initial oblique projection as illustrated in Figure 2.2. Using Painter’s 
algorithm (Foley et al. 2013) and the polygon scan conversion procedure FillPoly avail-
able in Pascal, the hidden-line removal can be done conveniently in the 2D image space. 
The components of the gradient, as well as the intersections between the function surface 
and the lower and/or upper plane of the plot box (occurring in level curve and truncated 
surface plots), can all be evaluated in the image space, without the need for complicated 
3D calculations.

To illustrate how various projections can be generated through separate or combined 
shear and taper transformations, launch D_3D, press <F3> at startup, and open configuration 
file F2_01Dn.CF3. Your plot should look similar to the front portion of Figure 2.1. Press 
the <Backspace> key twice to go to the screen showing the plot box with its axes oriented 
and labeled x, y, and z as in Figure 2.3. This will be called deformable-box screen. Notice the 
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numbers on the top of the view window and how their values change as you reshape/reori-
ent the plot box. These are the already mentioned parameters w, h, kH, kV, tan(Gamma), 
and tan(Delta) read from the CF3 file.

To resize the viewport that fits the plot, hold the <Ctrl> key and press either <Pg Up>, 
<Pg Dn>, <←>, or <→>. As you do this, the first two numbers (i.e., w and h) on the top of 
the screen will change in increments of 5.

To modify the location of the origin of the projected reference frame inside the view-
port, use the four arrow keys. The effect will be equivalent to a left–right, up–down dis-
placement of the viewpoint relative to the plot box. Observe how parameters kH and kV 
displayed 3rd and 4th on the top of the screen change their values between −1 and 1 and 0 
and 1, respectively.

To obtain more realistic parallel projections (Figures 2.2b and 2.4a), press the <Pg Dn> 
key several times. This will increase the value of shear angle γ. To undo, press the <Pg Up> 

z

y

x O

FiGURE�2.1� Oblique projection shown as a diagonal offset of a family of x = constant curves. 
The figure has been generated inside AutoCAD by combining the plots with settings from configu-
ration files F2_01Dn.CF3 and F2_01UP.CF3.

(a) (b) (c) (d)
δ

γ

FiGURE�2.2� (a) An initial oblique projection and various other projections obtained through 
(b) shearing by angle γ, (c) tapering by angle δ, or (d) combining shearing and tapering.
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z

3D view:

x

y

V2V1

H1

H2

445 × 310 0.28 × 0.41 × 0.000 × 0.000

Keys: ,, ,[<Ctrl>+] <PgUp>,, <PgDn>,<F4,5> <Home> ,<Back>, <CR>..

FiGURE�2.3� Deformable box that fits a viewport of width H1 + H2 = 445 and height V1 + V2 = 310. 
The origin of the plot is located by the kH = H1/H2 and kV = V1/V2 coefficients. For a view point 
from the 4th quadrant, kH < 0, while for a view point from the 1st quadrant, kH > 0. As shown 
kH = 0.28 and kV = 0.41.
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FiGURE�2.4� Plot of the orange-squeezer function in Equation 2.2 shown as (a) raised level curves 
and as (b) crosshatched surface with the z-axis reversed. Configuration files F2_04A.CF3 and 
F2_04B.CF3.
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key repeatedly. Note that tan(γ) is being displayed as the 5th number on the top of the 
screen (see Figure 2.3).

To taper the plot box as shown in Figure 2.2c (i.e., to increase angle δ) and provide a 
pseudo-perspective projection of your plot, press several times <F5>. To undo, hold the 
<Ctrl> key and press <F5> again. Notice how the last number on the top of the screen, that 
is, tan(δ), changes its value.

If a shear and a taper transformation are combined on the same graph, it will result in 
additional perspective views as illustrated in Figures 2.2d and 2.4a.

Important: You can restore the plot-box orientation to (approximately) an isometric view 
by pressing the <Home> key. If you press simultaneously the <Ctrl> and <Home> keys 
instead, the orientation will change to top view, like for a level-curve plot.

2.2� D_3D�inPUT�DATA�STRUcTURE
To demonstrate the capabilities of the D_3D program, several functions will be considered 
as follows: 

The function in Figure 2.1 known from Chapter 1, with a simplified description, that is,
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plotted in Figure 2.4 for −π ≤ x ≤ π and −π ≤ y ≤ π, which will be further called the orange 
squeezer function 
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graphed in Figure 2.5 for −1.5 ≤ x ≤ 2.5 and −2.5 ≤ y ≤ 2.5.
Because of its appearance, this third function will be further referred to as the four-

hump function. Additional functions will be introduced later.
The data files required to plot Figures 2.1, 2.4, and 2.5 have been generated using pro-

gram P2_123.PAS listed in Appendix B (you may also want to review program P1_156.
PAS discussed in Chapter 1, which generates a file similar to F2_1.D3D). Note how func-
tion names F1, F2, and F3 can be one by one assigned to variable F of the argF2 type 
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declared in unit LibMath, so that these functions can be activated or inactivated, depend-
ing on which file is to be generated (lines #10, #12, #34, #40, and #46).

The companion program P2_3.PAS (see Appendix B) generates four different data file 
types, all named F2_3, that can be used to plot function F3 in Equation 2.3. The formats 
of these files are as follows: (i) a file of doubles with the extension D3D and identical with 
the one output by program P2_123.PAS; (ii) a file of reals with the extension R3D; (iii) 
one ASCII file with the extension T3D; and (iv) one ASCII file with the extension G3D. 
Although of different types, the D3D, R3D, and T3D files have the same structure: the first 
six entries in these files are the grid size and the limits over the x- and y-axes, that is, m, 
n, xmin, xmax, ymin, ymax, followed by the zij components with i = 1…m and j = 1…n of the 
function surface mesh. In turn, the G3D file is structured as (xi, yj, zij) rows—including 
parentheses—which is a format intended primarily for the G_3D.LSP AutoLISP program 
that allows true 3D surfaces and 3D curves to be generated inside AutoCAD as explained 
in Chapter 3.

If you press the <F10> key right after you launch D_3D, an About screen will come 
up where these four file formats are explained (see the About insert on next page), and 
the possible input data errors that D_3D may report. As mentioned in the About screen, 
if the number of zij components read by D_3D from data file is less than the grid size 
m × n recorded at the beginning of the same file (for reasons like accidently or intentionally 
aborting a lengthy data generating run), you will still be able to graph the available data, 
but the plot will appear incomplete.

–1.5–1–0.500.5
xy 11.522.52.521.510.50–0.5–1–1.5–2–2.5

–15

–10

–5

0

5

10

15

FiGURE� 2.5� Mesh plot of the function in Equation 2.2 (the four-hump function) with 61 × 61 
data points, featuring raised and projected z = constant level curves, also known as contour lines. 
Configuration file F2_05.CF3.
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2.3� mESh�PloTS�AnD�ThE�viSibiliTy�PRoblEm
This section explains how the visibility problem is solved by D_3D. You will also learn 
how to reduce the number of plot points (i.e., how to scatter the original data) and how 
to switch between a mesh plot (also known as crosshatch plot) and an x = constant only 
or y = constant only plot. Also explained is how to edit the appearance of the division 
and values over the x-, y-, and z-axes and the gridlines along the sides of the plot box.

Begin by running the D_3D program with settings from configuration file F2_06A.
CF3, and redo Figure 2.6a. The companion plot in Figure 2.6b has been generated using the 
same data file as input, but the points along the y-axis were scattered from within D_3D. 
Additional modifications over Figure 2.6a are plotting the y = 0 and y = 2.5 boundaries of 
the function surface and a new layout of the side gridlines.

After launching D_3D with settings from F2_06A.CF3, to modify the gridlines and 
z-axis divisions, do the following: From the final graphic screen, press the <Backspace> key 
once to go to what will be further called the graphic edit screen. Here press <Insert> then 
<Z> and respond by typing ‘0.5’ to change the interval between two z values over the verti-
cal axis. Then type ‘4’ to change the number of small intervals between two values; typing 
‘1’ instead will display no minor division line. Changing the division and value placements 
along the x- and y-axes can be done in the same manner. Next, press <Insert> then <CR> 
to confirm the default option, and then type ‘6’. This will reduce the number of side grid-
lines from 11 to 6. You can turn the gridlines completely off by typing ‘0’ instead of ‘6’ or 
by pressing <G> when in the graphic edit screen. Pressing <G> a second time will turn the 
gridlines back on.
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Note that the z-axis division and value editing can be also done following option <F1> 
of the <F1..4> screen. From here, you will in addition be able to modify the zmin and zmax 
limits of the plot, including resetting them to their original values.

Important: If the level curves mapped on the 3D function surface are equally spaced, you 
can align them with the gridlines so that extracting data manually from the plot becomes 
more convenient. When doing so, remember that the top and bottom edges of the plot box 
count as gridlines.
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FiGURE�2.6� Plot of the function F1 in Equation 2.1 as lines of constant x. Figure (a) has 10 × 261 data 
points, while figure (b) has 10 × 21 data points. Configuration files F2_06A.CF3 and F2_06B.CF3.
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If you press the <Y> key while in the graphic edit screen, you will activate the dis-
playing of the y = constant lines, in addition to the already existing x = constant lines. 
However, because there are too many points (i.e., 261) along the y-axis, it will be hard to 
distinguish them. One solution is to run P2_123.PAS again and generate a new data 
file having fewer points. Alternatively, you can use the capability of D_3D to scatter 
the data and reduce the number of points along the y-axis. Note, for example, how the 
original input files with 481 × 481 points have been scattered to only 41 × 41 points in 
case of Figure 2.4 and to 61 × 61 points in case of Figure 2.5. This is done inside D_3D by 
eliminating every other point or every two, three, or more data points along the respec-
tive axis.

In case of the F2_1.D3D data file, the 261 points along the y-axis can be reduced to 
131, 66, 53, 27, 21, 14, 11, 6, 5, and 3 points. To scatter the number of y points of the plot at 
any of these levels, go to the <F1..4> screen and press <F3>. A new screen will open with 
what will be called a chime menu—this particular one will be referred to as chime menu 3. 
Change to Y the first of the six characters of the menu, and press <CR>. Press <CR> again 
to leave unchanged the number of plot points over the x-axis (i.e., 10 of 10), and then use 
the <↑> and <↓> keys to set the new data-point resolution along the y-axis to 21 of 261. 
Press <CR> several more times until you get to the final graphic screen. What you should 
obtain must be similar to Figure 1.4b, less the y = constant lines to the left and to the right, 
that is, the surface borders. To turn these borders on, go to the <F1..4> screen and press 
<F2>. Then press <CR> twice to leave unchanged the title and the chime menu 1 settings 
(the one on top). On chime menu 2, change the last n into # to activate the displaying of the 
borders of the graph. When you are finished, go back to the final graphic screen to see the 
change appearance of your plot.

Important: The editing mode of chime menus is write-over, so do not use the delete keys. If 
you want to restore the initial settings of a chime menu, just press the <Esc> key.

Important: The settings input on chime menu 1, 2, and 3 are saved to lines 30 to 32 of 
the CF3 file. Any time you edit chime menu 3, the new settings will be added to the cur-
rent CF3 file above the lines that reads ***  Level  curve  heights  ***. Also 
recorded in line with chime menu 3 are two numbers representing the depth at which 
data were scattered over the x- and y-axes, respectively. For example, in the configura-
tion file F2_06A.CF3, line 32 reads: Ynnnnn 1 6. These are interpreted as “scatter 
the input data at depth 1 along the x-axis (i.e., will remain unchanged) and at depth 6 
along the y-axis (i.e., will retain only 21 points out of 261 since 21 is the 6th number 
in the row 261, 131, 66, 53, 27, 21, 14, 11, 6, 5, and 3).” If you replace 6 with 12 or bigger 
number, nothing will occur because 11 is the deepest y-axis scatter level possible for the 
given input data file. Note that chime menu 3 settings are not recorded to the master 
configuration file !CF3.

Important: Every time chime menu 3 is activated, a different $3D temporary file (in D3D 
format) is generated. The most recent of these files holds the data used to generate your 
final plot, and depending on the chime menu 3 history, it could have fewer points, or the 
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data could be recorded in a different order than in the original file. If you exit D_3D from 
the <F1..4> screen rather than the final graphic screen, these $3D files will be preserved. 
If you want to use any of these temporary files, modify their extension to D3D, or otherwise 
they will be deleted next time you launch D_3D.

Important: A built-in scatter calculator is available inside D_3D and can be launched by 
pressing the <F9> key from the startup menu. This will list the possible scatter options for 
number up to 501. For example, if the grid size over x- or y-axis is 481, it can be scattered 
to 241, 161, 121, 97, 81, 61, 49, 41, 33, 31, 25, 21, 17, 16, 13, 11, 9, 7, 5, 4, 3. In case of an actual 
plot, the same numbers will be available from chime menu 1.

To remove the invisible lines and plot both the x = constant and y = constant lines as 
shown in Figure 2.7 starting from the plot in Figure 2.6b, run D_3D with settings from 
configuration file F2_6B.CF3. Then go back to the graphic edit screen and press <H> to 
change visibility from wireframe to hide. Also press <Y> to turn the y = constant lines on. 
To modify the mesh color, you must edit line number 5 of the F2_6B.CF3 file. Use 6 for 
brown, 8 for dark gray, 14 for yellow, and 15 for white.
D_3D employs the scan conversion procedure FillPoly in Pascal to fill with color the 

patches that form the function surface and thus remove the invisible lines. The order in 
which the polygons are drawn and filled with color is from back to front. For first-quadrant 
views, this succession is from left to right, while for fourth-quadrant views, the succession 
is from right to left (see Figure 2.8).

Only after the current patch is generated and filled with color are the x = constant, 
y  = constant, and/or the elevated z = constant lines drawn. This approach, called 
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FiGURE�2.7� PCX output of the crosshatch (mesh) plot of the function of Equation 1.4. Configuration 
file F2_07.CF3.
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Painter’s algorithm, is also applied when a DXF copy of your plot is generated by draw-
ing each patch slightly more elevated than the previous one, so that the AutoCAD hide 
command will have the intended effect.

To better understand how Painter’s algorithm is applied by D_3D to solve the visibility 
problem, a second executable file named D_3Dslow.EXE was prepared and is available 
with the book. This program is identical to D_3D, with the difference that you will have to 
press the <CR> key for every patch or line segment of the function surface to be drawn on 
the screen. Run D_3Dslow.EXE with settings from F2_08A.CF3 to observe the order 
in which the patches and lines that form the function surface are plotted on the screen (see 
Figure 2.8a). Switch to a fourth-quadrant view from within the program, or simply run the 
F2_08B.CF3 configuration file, and note the changed order of plotting the gridlines and 
surface patches (see Figure 2.8a).

2.4� noDE�AnD�STEm�PloTS
D_3D allows you to place a node at every data point, whether or not x = constant, 
y = constant, or z = constant lines are mapped on the function surface. In turn, the 
function surface can be set to either transparent or opaque. Figure 2.9a shows an exam-
ple of an opaque function surface with nodes filled with background color. The com-
panion Figure 2.9b displays colored stem plot for 10 × 11 points of the original data file. In 
the remainder of this paragraph, it will be explained how these two plots were generated, 
starting from the configuration file of the plot shown in Figure 2.7.

To recreate the plot in Figure 2.9a, launch D_3D with settings from F2_07.CF3, then 
choose <F2> from the <F1..4> screen, and on chime menu 2 change the node size from 0 
to 5. Before you move to the final graphic screen to view your plot, press <G> to suppress 
the gridlines.
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FiGURE�2.8� Plot in progress showing the order in which the hidden lines are removed, (a) for 
views from the first quadrant and (b) from the fourth quadrant. Configuration files F2_08A.CF3 
and F2_08B.CF3.
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Creating the stem plot in Figure 2.9b requires additional interaction with the program: 
First go to <F1..4> screen, press <F2>, and change the last entry of chime menu 2 from ‘#’ 
to ‘!’ - —this will activate the stems. Also press <F3> from the same <F1..4> screen and 
edit chime menu 3 to reduce to 11 the number of points along the y-axis. Stems will not 
be displayed unless you press the <W> key when in the graphic edit screen to change vis-
ibility from hide to wireframe. With this same occasion, suppress the displaying of the 
x = constant and y = constant lines by pressing the <X> and the <Y> keys. Next edit the 
divisions and values over x- and y-axes so that they will look as shown in Figure 2.9b. 
Finally, set the number of values over the z-axis to 10 and the number of minor inter-
vals between two values to 23 (the maximum allowable in this case). Note that if the total 
number of minor division lines over the z-axis is greater than 127, D_3D will thicken the 
division lines over the z-axis and color them according to elevation on a 10-color scale. 
Therefore, even with 23 minor intervals, the z-axis will be color coded since 10 × 23 > 127.

Important: Stem lines and level curves share the same thickness, controlled by the first 
entry on chime menu 2. This menu also controls the color of the level curves and of the 
nodes, that is, if you want these colored according to their height, then set the third entry 
of chime menu 2 to ‘Y’.

To change the node type from empty round to solid round and to widen the z-axis 
color band, you must exit D_3D and apply these changes to the last CF3 file created as 
explained next: Open the CF3 file with Notepad; on line number 7, change the node 
type from 0 to 1; and on line 8, change the outside length of the division lines to 9 and 
their inside length to 0 (the latter change will be applied only to the division lines placed 
along the z-axis). Save your configuration file under a different name (i.e., F2_08B.
CF3) and open it with D_3D. You should obtain a plot similar to the one in Figure 2.9b.
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FiGURE� 2.9� The function F1 in Equation 2.1 represented as (a) opaque crosshatched-surface 
mapped with empty round nodes and (b) colored node stem plot—notice the color scale band inte-
gral part with the z-axis labeling. Configuration files F2_09A.CF3 and F2_09B.CF3.
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Another example of a node plot is given in Figure 2.10. This is a zero-elevation diago-
nal view of the four-hump function represented as point cloud, that is, nodes are mapped 
on a transparent function surface. Using AutoCAD, the local minimum and maxi-
mum points were estimated as −9.746 and 9.027, and the height of the saddle point was 
estimated as 0.265. Evidently, the accuracy with which these values were determined 
depends on the grid size at which the function has been sampled. If you are interested 
only in the global minimum and global maximum values, there is no need to export your 
graph to AutoCAD since these can be displayed on the graph by fitting the function sur-
face to the plot box, that is, go to the <F1..4> screen, press <F1>, and type ‘.’ (a dot) for 
the upper and lower limits of the z-axis in the respective boxes (this will reset the limits 
over the z-axis in D_3D).

Important: The z-axis scale can be displayed in two ways: with the values and divisions 
starting from zero or aligned with the ends of the respective axis. To toggle between the 
two alignment modes, press <F5> from the graphic edit screen. For the plot in Figure 2.10, 
this will have no effect, however, since along the z-axis there are only two values, that is, 
the end values.

2.5� EqUAlly�SPAcED�lEvEl-cURvE�PloTS
In this paragraph, it will be explained how to match the elevation of the side gridline with 
the height of the level curves. You will also learn how you can modify the level-curve heights 
from within D_3D and how to append these values to the current CF3 file and use them in 
later plots. Once saved to file, you can further edit these height values, delete some of them, 
or append new ones. Bridge-like defects that may occur when producing level-curve plots, or 
when the function surface is trimmed by the plot box, are also discussed in this section.
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FiGURE�2.10� The four-hump function represented as 481 × 481 pixel-size nodes mapped on a trans-
parent surface. The local minimum, local maximum, and saddle-point elevations were extracted 
through inspection inside AutoCAD. Configuration file F2_09.CF3.
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First, we will add elevated level curves to the plot in Figure 2.6 and then make their 
heights coincide with the elevations of both the gridlines on the side of the pot box and 
the division lines along the z-axis—see Figure 2.11. To do so, launch D_3D with settings 
from F2_06A.CF3, then go to the graphic edit screen, press <Z> to turn the z = constant 
lines on, then press <W> for a wireframe plot. Then press <Insert> followed by <Z> to 
change the interval between two values along the z-axis to 0.5 units and the number of 
minor division lines per interval to 2. The total number of divisions, both short and long, 
that will be placed along the z-axis will now be 21. To make the number of gridlines equal 
to 21 as well, press <Insert> then <G>. D_3D will suggest several numbers to choose from, 
including 21, which will ensure (although not always) that each gridline is an extension of 
a z-axis division line.

Go to the <F1..4> screen and press <F2>, then change the last entry of chime menu 2 
to ‘#’ (this will turn the border of the function surface on). Finally, go back to the <F1..4> 
screen and press <F4>. Leave unchanged the z-axis settings, and type ‘Y’ when asked to 
Update level curves? Scroll through the available options using <↑> and <↓> and 
select Evenly spaced, then type ‘21’. Continue pressing the <CR> key until you get to 
the final graphic screen.

If you want the level-curve heights to be appended to the CF3 file that is created 
when you exit D_3D, go back to the graphic edit screen and press <E>. D_3D will 
prompt you to edit one by one the level-curve heights or just press the <CR> key to 
confirm an existing values. When asked if you want them saved to file, respond by 
typing ‘Y’, then go to the final graphic screen and exit the program. Use Notepad to 
open the latest CF3 file in the current directory and see that indeed these level-curve 
heights were appended after the line that reads *** Level curve heights ***. 
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FiGURE�2.11� R12 DXF copy of a raised level-curve plot with gridlines and level curves placed at 
the same heights. This is a wireframe plot, the visibility problem of which has been solved by hand 
from within AutoCAD. Configuration file F2_11.CF3.
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You can edit, delete, or add more values to this list any time you want. These height 
values do not have to be ordered, nor the corresponding level curves have to actually 
intersect the function surface.

Launch D_3D and open the same configuration file—if you have not changed its default 
name, just press <F1>; otherwise, press <F3> and select its name. After redoing the plot, go 
back to the <F1..4> screen, and press <F1> and <CR> until asked to update level curves. 
Answer ‘Y’ then scroll down using the arrow keys. Notice that there is now a fifth option 
available, that is, to read the level-curve heights from the configuration file. Select this 
option and see how D_3D identifies and uploads all level curves that can potentially inter-
sect the function surface.

Important: If they are automatically generated, the total number of level curves cannot 
exceed 999. If their height values are read from file, or to edit them interactively from the 
graphic edit screen, they cannot be more then 50.

2.6� DEFEcT-FREE�lEvEl-cURvE�PloTS
Level curves are the intersections between the function surface and a horizontal cutting 
plane placed at various elevations zk. D_3D uses the already available four-sided patches of 
the function surface to evaluate the intersection with this horizontal cutting plane, rather 
than triangulating the surface as other level-curve plotting programs do (Bourke 1987). In 
addition to the corners of the current patch, D_3D also uses the height value of four of its 
neighboring points to estimate the sign of the curvature of the surface over the area of the 
respective patch. This way, the level curves will have a correct appearance without exhibiting 
defects that look like bridges, even if the function surface is undersampled (see Figure 2.12).
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FiGURE� 2.12� Plot of the function in equation F2 with 13 × 13 data points. Configuration file 
F2_12.CF3.
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Let us consider the orange-squeezer function in Figure 2.4, with only 13 × 13. At such a 
low resolution, a 3D graph of the function surface will turn very ‘choppy’ (see Figure 2.12). 
When the intersection between this function surface and a horizontal cutting plane is 
evaluated in the process of extracting level curves, connectivity defects may occur around 
the areas close to the top of the graph.

The level-curve plot in Figure 2.13a produced with the following MATLAB commands

x=-pi:2*pi/12:pi;
y=x;
[X,Y]=meshgrid(x,y);
Z=2*exp(-(sqrt(X.^2+Y.^2)-1.5).^2)-1;
contour(X,Y,Z, 17);

exhibits bridge-like defects when the number of equally spaced level curves is 23 or more. 
For the same number of level curves and sampling size, a plot produced with D_3D is 
defect-free (Figure 2.13b) and remains that way even for 40 equally spaced curves.

A detailed explanation on how these intersections are evaluated and how they are cor-
rected based on the sign of local curvature of the function surface is available in Simionescu 
(2003). Some of these aspects will be also discussed in paragraph 2.11.

Important: The bridge-like defects of level curves in top view may occur in different loca-
tions or may not occur at all if you press the <F4> key while in the graphic edit screen 
or in the deformable-box screen. This will reverse the z-axis of the plot, and as a conse-
quence, the points used to evaluate the function curvature will be different, with possible 
favorable effect.
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FiGURE�2.13� 17-level-curve plot (also known as contour plot) of the orange-squeezer function with 
13 × 13 data points produced (a) with MATLAB and (b) with D_3D. Configuration file F2_13B.
CF3.
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2.7� loGARiThmicAlly-SPAcED�lEvEl�cURvES
This paragraph refers to plotting logarithmically or log-spaced level curves. This is a unique 
feature of D_3D, useful when you want to concentrate the level curves around certain 
points of interest. The less elegant approach to this problem is to manually alter the heights 
of a set of equally space level curves, until the details of interest are revealed.
D_3D can automatically create log-spaced level curves that are either

 1. Accumulated towards zmin as shown in Figure 2.14 or

 2. Accumulated towards zmax as shown in Figure 2.15 or

 3. Accumulated towards zero from both above and below the z = 0 plane as shown in 
Figure 2.16

 (i) For nLC the total number of level curves and zk the height of the kth curve with 
1 ≤ k ≤ nLC, the following formula ensures accumulating the level curves around 
zmin as log-spaced down curves:
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 (ii) To get the same number of level curves converging to zmax as log-spaced up level 
curves, Equation 2.5 should be used instead, that is,
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FiGURE� 2.14� Log-spaced down level-curve plot of the four-hump function. Configuration files 
F2_14A.CF3 and F2_14A.CF3.
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FiGURE� 2.15� Log-spaced up level-curve plot of the four-hump function. Configuration files 
F2_15A.CF3 and F2_15B.CF3.
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FiGURE�2.16� Log-spaced from zero level-curve plot of the four-hump function. Configuration files 
F2_16A.CF3 and F2_16B.CF3.
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 (iii) For the level curves to be log-spaced from zero in both directions, the total number of 
curves nLC has to be divided into curves located below the z = 0 plane:
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  and level curves located above the z = 0 plane:

 nLCup = nLC − nLCdn (2.7)

With these notations, the heights of log-spaced from zero level curves can be calculated 
by setting zmax = 0 and nLC = nLCdn in Equation 2.4 and setting zmin = 0 and nLC = nLCup in 
Equation 2.5. The D_3D program actually implements a more general approach, where this 
type of level curves can be plotted even if zero is not an inner point of the [zmin, zmax] interval.

When producing Figures 2.14 through 2.16, the lower and upper limits in Equations 2.4 
through 2.7 were considered zmin = −12.8778 and zmax = 14.8243, as extracted from among 
the 481 × 481 data points of file F2_3.D3D (see Figure 2.10). If you modify zmin and zmax 
from the values extracted by the program, then these new limits will be utilized in apply-
ing Equations 2.7 through 2.7. Note that by saving them to file, you can further modify the 
z-axis limits while maintaining the same level-curve appearance.

An extension of procedure (iii) where that level curves are log-spaced from any point z0 
within the interval [zmin, zmax]will be explained next. The number of level curves located 
below z0 will be calculated with
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while the number of level curves located above the z0 is given by the same Equation 2.7. 
We then apply Equation 2.4 with zmax = z0 and nLC = nLCdn to calculate the height values of 
the level curves located below z0 and apply Equation 2.5 with zmin = z0 and nLC = nLCup to 
calculate the height values of the level curves located above z0.

Program P2_ZLC.PAS in Appendix B implements this procedure to generate an ASCII file 
named Z.LCS having nrLC = 28 height values that are log-spaced from z0 inside the interval 
zmin= 12.8243 and zmax=14.8243 (see line #6 of this program). The 28 height values generated 
using program P2_ZLC.PAS for z0=0.265 (i.e., the saddle point) of the four-hump function in 
Figure 2.10 have been appended manually at the end of the configuration file F2_17.CF3. Using 
this modified configuration file, the plot in Figure 2.17 has been generated.

To generate the same level-curve elevations using D_3D, you must follow these steps: 
First, calculate nLCdn and nLCup using Equations 2.8 and 2.7. Then run D_3D with zmin set to 
z0 and nLCdn level curves log-spaced up. Save these height values to the current configura-
tion file by selecting <E> from the graphic edit screen (you must confirm each of height 
value before writing them to file). Then run D_3D again with zmax set to z0 and nLCup level 
curves log-spaced down. Again save the resulting height values to file. Combine these two 
sets of level-curve heights in the same CF3 file and use this file to generate your plot.
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2.8� FilE�ExPoRT�AnD�DXF�lAyER�oRGAniZATion
Any plot can be exported to PCX by pressing <F10> from the graphic screen. For other 
types of exports, you must go to the <F1..4> screen and select <F4>, then scroll down 
using the arrow keys, and choose either G3D, DXF, or (if available) DXF 1:1. The DXF 1:1 
export mode is available only for level curves in top view, when D_3D will export to R12 
DXF the curves only (without the plot box, divisions, labels etc.), scaled one-to-one. When 
exporting wireframe plots to DXF, D_3D will concatenate, inasmuch as possible, their 
x = constant, y = constant, and z = constant lines into single contiguous polylines.

The G3D export option causes the points of the function surface to be written to an 
ASCII file that can be read by the G_3D.LSP application, which allows true 3D surfaces 
to be generated inside AutoCAD. Note that to the G3D file the function surface is recorded 
at the current resolution and without trimming the function surface by the bounding box 
(assuming that the input data file has been scattered or the limits over the z-axis have been 
modified from their original values).

If you want to manually generate a top-view level-curve plot scaled one-to-one and have 
the axes, divisions, and values included, perform the following steps: Adjust the plot-box 
size until its height over width ratio h/w equals (xmax – xmin)/(ymax – ymin), and then export 
the graph to DXF. It is assumed that xmax, xmin, ymax, and ymin are the spans over the respec-
tive axes of the level-curve plot and that x is the vertical axis and y the horizontal axis of 
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FiGURE�2.17� Log spaced from z0 = 0.265 level-curve plot of the four-hump function with 481 × 481 
data points. Configuration file F2_17.CF3.
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the plot. Open this DXF file inside AutoCAD and then scale the plot with the factor 
(xmax – xmin)/h. Alternatively, you can export to DXF the plot as is, then open it inside 
AutoCAD, and copy it to a block. Reinsert that block scaled by a factor (ymax – ymin)/w over 
horizontal axis of the drawing and by a factor (xmax – xmin)/h over vertical axis of the 
drawing. The only problem with this second method is that the text will be distorted, and 
the division lines will have different lengths over the two axes.

The plot in Figure 2.5 is shown again in Figure 2.18a as an AutoCAD drawing obtained 
through DXF import. From within D_3D, you can turn on and off the raised level curves by 
pressing the<Z> key while in the graphic edit screen. Similarly, by pressing the <F1>, <F2>, 
or <F3> from the same graphic edit screen, you can turn on and off the lines representing 
the OXY, OXZ, and OYZ planes (these are called zero lines). To turn off the level curves 
projected on the bottom plane, or to draw both these and the raised curves in thick line, 
you must go to the <F1..4> screen, press <F2>, and edit the first and second entry of chime 
menu 2. The third entry of chime menu 2 controls the color of the level curves, that is, they 
can be either monochrome or colored according to their elevation.

In the current implementation of D_3D, you cannot edit the thickness and color of the 
projected and raised level curves separately. However, you can do it easily inside AutoCAD, 
because various entities of the plot are conveniently placed in separate layers as explained 
next (see also Figure 2.18b):

Layer ‘0’ contains the plot-box lines, less the zero lines and gridlines that are placed in 
their own layers. The long and short division lines are placed in layer ‘divisions.’ The values 
along the three axes are placed in layer ‘text’ together with the plot header. Layer ‘$_body’ 
contains the AutoCAD regions, one for each patch of the function surface, which serve to 
obscure the invisible lines when the AutoCAD hide command is issued. Level curves of 
the same height elevation (whether projected on the bottom plane or mapped on the func-
tion surface) are placed in separate layers, named ‘C’ followed by their elevation with the 
decimal point replaced with ‘_’ (the underscore sign). Additional layers are ‘const_x’ and 
‘const_y’ that host the x = constant and y = constant lines, less the lines that form the edges 
of the function surface that are assigned to layers ‘border_x’ and ‘border_y’.

Important: The plot header visible in Figure 2.18a lists the D_3D parameters w, h, kH, 
kV, tan(Gamma), and tan(Delta), followed by the name of the file from where the data 
originate. This information becomes useful if you want to recreate a plot for which you no 
longer have a copy of its CF3 configuration file.

Important: If a wireframe plot is desired, it is best to export it as such to DXF. This way, 
all x = constant, y = constant, and raised z = constant lines will be saved as contiguous 
polylines. Sometimes, it is possible to manually hide the invisible lines by trimming them 
inside AutoCAD.

Important: The outer ends of the two short oblique lines on the top left and bottom right of 
every DXF copy of a plot (see Figure 2.18a) form the corners of a 640 × 480 rectangle. These 
two lines are useful in scaling a plot back to its original size following a PLT export (see the 
Util~PLT program in Chapter 3 for details).
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2.9� AxES�REvERSAl�AnD�PloT�RoTATion
Sometimes, it is of interest to reverse the orientation of one or more of the plot axes. Because 
D_3D does not generate true 3D plots, x- and y-axes reversal provides additionally a means to 
rotate the entire plot about their axis. For top-view plots, x- and y-axes reversal can be done inside 
AutoCAD using the rotate and mirror commands (remember to first set the AutoCAD param-
eter mirrtext to 0, to prevent the text from being mirrored together with the rest of the graph).
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FiGURE�2.18� (a) R12 DXF copy of the plot in Figure 2.5 and (b) its AutoCAD layer settings. Note 
that the x = constant line and side grid lines have been suppressed by turning the respective layers off.
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From inside D_3D, the orientation of the z-axis can be reversed by pressing the <F4> 
key while in the deformable-box screen or in the graphic edit screen. z-axis reversal can 
sometimes remedy the bridge-like defects of level-curve plots. D_3D is also capable of 
reversing and swapping the x- and y-axes, without the need for the user to produce a new 
input data file. These transformations can be induced from the chime menu 3 accessible 
through option <F3> of the <F1..4> screen.

Rotating the entire plot in 90° increments (see Figure 2.19) is done by D_3D as combina-
tions of x- and y-axes swap, followed by reversing the orientation of one of them. If after 
swap the y-axis is reversed, the graph will rotate 90° counterclockwise. If the x-axis is 
reversed instead, the graph will rotate 90° clockwise. These two types of rotations are 
 controlled from the same chime menu 3 of D_3D.

2.10� GRADiEnT�PloTS
The gradient of a scalar function f(x, y, z) is a vector field that, at a given point (x, y, z), is 
oriented in the direction of the greatest rate of increase and has its magnitude equal to the 
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FiGURE� 2.19� Rotated views of the four-hump function. Configuration files F2_19A.CF3, 
F2_19B.CF3, F2_19C.CF3, and F2_19D.CF3.
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slope of the function along this direction. The components of the gradient are the partial 
derivatives of the function, that is,
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Being able to visualize the gradient can reveal some important characteristics of the func-
tion at hand, and it is therefore a feature available in a number of function plotting programs.
D_3D is capable to represent the gradient as a set of arrows mapped on the bottom of 

the plot box, either in top view (Figure 2.20) or in 3D view (Figure 2.21). In both situations, 
D_3D estimates the components of the gradient through finite differences, using the image 
space coordinates of the corners of the patch, rather than their original 3D coordinates 
(Simionescu 2011).

As visible in Figure 2.20, the arrows representing the gradient are placed at the projected 
center of each of the four-sided patches that approximate the function surface. The relative 
size of these arrows can be controlled by the user from chime menu 2, accessible through 
option <F2> of the <F1..4> screen.
D_3D does not allow you to plot the gradient if the mesh size of the function surface is too 

dense, specifically if n + m < 160. Therefore, in order to generate Figures 2.20 and 2.21, the 
original file F2_3.D3D with 481 × 481 data points had to be scattered to only 21 × 25 points.

Note that it is possible to manually combine on the same representation a gradient plot 
with a higher-resolution surfaces and/or level-curve plot. To do so, you have to generate 
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FiGURE�2.20� Gradient plot of the four-hump function projected on the bottom plane, overlapped 
with the mesh grid (resolution 21 × 25 points). Configuration file F2_20.CF3.
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them separately using different data file resolutions, export them to PCX or DXF, and then 
overlap them using Paint or AutoCAD, respectively. For example, Figure 2.21 shows the 
gradient mapped on the bottom plane at a 21 × 25 point resolution, while the node-on-
opaque surface representation of the function has a 97 × 121 points. As an exercise, you can 
overlap the level-curve plot in Figure 2.17 generated using 481 × 481 data points, with the 
gradient plot in Figure 2.20 generated using 21 × 25 data points only.

2.11� TRUncATED�3D�SURFAcE�REPRESEnTATionS
One of the main reasons I developed D_3D was to generate 3D plots where the limits over 
the z-axis have been reduced from their original values and the function surface is trun-
cated by the upper and/or lower planes of the plot box. Penalized objective functions encoun-
tered in optimization problems are the prime example where such a plotting feature is useful 
(Simionescu 2011), as well as functions with singularities and inequalities in two variables.

In recent years, several commercial software programs were enhanced with such capa-
bilities, for example, SigmaPlot, Mathematica, and MATLAB. The only major software 
lagging behind is Excel. Their truncated 3D plots appear to be rather alterations of the 
function values (see Figure 2.22), where data points with z greater than the imposed zmax 
are simply forced equal to zmax (see also the spreadsheet file Fig2_22.XLS available with 
the book). A 36 × 36 point data file named F2_2.TXT that was imported in Excel to gen-
erate Figure 2.23 has been produced with the P2_2T.PAS program listed in Appendix B.

Now contrast Figure 2.22 with Figure 2.23a and b, both generated using D_3D. Notice 
the accurate intersection between the function surface and the upper plane of the plot 
box in Figure 2.23 and the possibility of representing this intersection either opaque or 
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FiGURE�2.21� Projected gradient combined with a 3D plot of the four-hump function. Configuration 
files F2_21Dn.CF3 and F2_21UP.CF3.
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FiGURE�2.22� Truncated plot of the orange-squeezer function generated with Office Excel, starting 
from ASCII file F2_2.TXT produced with program P2_2T.PAS.
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FiGURE� 2.23� Truncated plots of orange-squeezer function with (a) opaque and (b) transparent 
intersections between the function surface and the bounding box. Configuration files F2_23A.CF3 
and F2_23B.CF3.
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transparent. In order to generate truncated function plots, you will have to narrow the ini-
tial [zmin, zmax] interval following option <F1> of the <F1..4> screen of D_3D. Additional 
settings refer to displaying or not the top land, controlled from the chime menu 2 accessible 
by pressing <F2> from the same <F1..4> screen.

Figure 2.24 shows another truncated function-surface plot, this time of the four-hump 
function. Notice the hidden-line removal imperfections due to AutoCAD. These will not 
occur if the surface is more coarsely approximated (i.e., the patches are bigger and in fewer 
number). In Chapter 3, it will be explained how you can manually correct these defects 
by saving the plot to a PLT file and then export it back to DXF for editing. The same four-
hump function is pictured in top view in Figure 2.25, this time with the x = constant and 
y = constant lines turned off.

Since the intersection of the function surface with a horizontal cutting plane is an actual 
level curve, the same approach is implemented inside D_3D to produce truncated func-
tion-surface plots.

Important: The borders of the intersections between the function surface and the upper 
and/or lower horizontal planes of the plot box are treated as level curves mapped on the 
function surface. If you want to display them on your graph, you must turn the elevated 
level curves on by pressing the <Z> key while in the graphic edit screen. You must also 
update the level-curve heights after modifying the zmin and zmax limits, possibly setting 
their number to only two if you do not want additional level curves in between mapped on 
the function surface.
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FiGURE�2.24� Truncated plot of the four-hump function. Note the hidden-line removal artifacts on 
the edges of the top and bottom lands due to AutoCAD. Configuration file F2_24.CF3.
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The intersection between a patch of the function surface and a horizontal plane (also 
required when generating z = constant level curves) is handled as follows (see Figure 2.26): 
An initial four-sided patch (0000) of the function surface is modeled as an eight-vertex 
polygon with two by two of its vertices coincident. If this patch is intersected by one or both 
horizontal planes of the plot box, its originally coincident vertices can split or merge with 
other vertices, depending on their position relative to the intersecting plane. All intersec-
tion variants between an initial four-sided patch (shown in gray) and a horizontal cutting 
plane can be handled using a single eight-vertex polygon and four auxiliary five-vertex 
polygons noted a, b, c, and d shown in white in Figure 2.26. These intersection variants are 
symbolized (0111), (1011), (1110) etc., where the first binary digit corresponds to node 1–2 
of the initial patch, the second digit to node 2–3, and so on. If one of these four nodes is 
located outside the plot box, then the corresponding digit will be set to 1; otherwise, it will 
be set to 0. The last two variants symbolized (1010) and (0101) correspond to a saddle point 
occurring over the current patch of the function surface. These last two variants are treated 
correctly by D_3D only in 50% of the cases, the other 50% causing bridge-like-defects as 
shown in Figure 2.27.

To further explain the accuracy of these ambiguities, let us consider the hyperbolic 
paraboloid of equation:

 F x y xy4 0 1( , ) .=  (2.10)

for −π ≤ x ≤ π and −π ≤ y ≤ π, which exhibits a saddle point for x = 0 and y = 0 (see 
Figure 2.28). This figure was produced with data file F2_4.D3D output by program 
P2_4.PAS in Appendix B.
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FiGURE�2.25� Top view of the plot in Figure 2.25. Configuration files F2_25.CF3.
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As visible in Figure 2.29a, the intersection variant (1010) with the saddle point located 
inside the plot box is analyzed correctly by D_3D (see the higher resolution in Figure 2.29b 
for comparison). The same (1010) variant but with the saddle point located outside the plot 
box would require the use of two disjointed ‘gray’ polygons (see Figure 2.29c). These two 
cases are not differentiated by D_3D and are the reason for the ‘bridge-like defects’ occur-
ring in half the cases as explained earlier.

When generating level-curve plots, the saddle-point variants (1010) and (0101) are dealt 
with correctly, because they require plotting lines only, and not of function-surface patches. 
In the process, use is made of the sign of the curvature of the function surface along the two 
diagonals of the current patch. These signs are estimated using the elevations of the four 
nodes of the original patch (0000), together with the elevations of the previous patch nodes 
5–6 and 7–8 and elevations of the immediately following patch nodes 1–2 and 3–4 (see 
Figure 2.27 and Simionescu [2003]).

Remember that by increasing the number of sampling data points, these defects can be 
reduced or eliminated entirely. Alternatively, you can export your plot to PCX or DXF and 
retouch it using Paint or AutoCAD.
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FiGURE�2.26� Intersection variants of an initial four-sided patch (gray) with a horizontal plane. 
The gray polygons correspond to the portion of the function surface located inside the bounding 
box, while the white polygons a, b, c, and d correspond to the outside areas.
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FiGURE�2.27� Defects occurring at the intersection of the orange-squeezer function with 13 × 13 
data points and the z = 0.88 plane. These defects are corrected in the equivalent level-curve plot, 
based on the local curvature of the function surface. Configuration file F2_27.CF3.
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FiGURE� 2.28� Elevated log-spaced from zero level-curve plot of the function in Equation 2.10, 
showing the saddle point at (0,0,0). Configuration file F2_28.CF3.



76    ◾    computer-Aided�Graphing�and�Simulation�Tools�for�AutocAD�Users

Important: When not of zero length, sides 3–4 of the white polygons in Figure 2.27 will always 
be part of a x = constant line to the left, sides 1–2 will be part of a x = constant line to the right, 
sides 4–5 will be part of a y = constant line to the rear of the plot, and sides 1–8 will be part of a 
y = constant line to the front. Similar ordering holds for the five-vertex polygons a, b, c, and d.

2.12� conSTRAinED�FUncTion�AnD�inEqUAliTy�PloTS
This paragraph discusses how you can display or hide the surface patches located com-
pletely inside the plot box (referred together as body) independent from the patches inter-
sected by the top or bottom planes of the plot box. The portions of the intersected patches 
located inside the plot box will be called curtain, while the outside portions will be called 
top and bottom land, depending on whether they are mapped on the top and bottom planes 
of the plot box (Figure 2.30). Such capabilities of D_3D allow you to plot surfaces with dis-
continuities and of inequalities of two variables. These visibilities are controlled by editing 
the chime menu 1 accessible by choosing <F2> from the <F1..4> screen.
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FiGURE�2.29� Truncated plot around the saddle point of the function in Equation 2.10 at (a and c) 
low and (b and d) high resolutions. Figures (a) and (b) correspond to the saddle point being located 
inside the plot box, and (c) and (d) correspond to the saddle point being located outside the plot box, 
of which figure (c) is incorrect. Configuration files kF2_29A.CF3, F2_29B.CF3, F2_29C.CF3, 
and F2_29D.CF3.
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Let us consider the problem of plotting the surface of the function in Equation 2.10, less 
a circular hole of radius 1.5 centered at x = 0 and y = 0. This new function can be described 
analytically as
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where K is a large constant value, assigned to the infeasible area, that is, the region where 
the function is not defined. In the Pascal program used to generate the data for this plot, 
this constant was set to −1030 when output to file F2_5n.D3D and to 1030 when output to 
files F2_5P.D3D and F2_5.D3D (see Figure 2.32a and b and the source code P2_5.PAS 
listed in Appendix B).

Important: When evaluating the limits over the z-axis, D_3D will ignore any zij value 
read from the input data file that is less than −1030 or greater than 1030. Consequently, 
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FiGURE�2.30� Various z-axis truncated plots of the function in Equation 2.10: (a) complete plot, 
(b)  curtain missing, (c) top land and curtain missing, (d) body missing. Configuration files 
F2_30A.CF3, F2_30B.CF3, F2_30C.CF3, and F2_30D.CF3.
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in Figures 2.32a and b, the points equal to −1030 or 1030 were automatically trimmed out by the 
upper and lower planes of the plot box. If in any of these two plots the visibility of the curtain 
and of the top and bottom lands are turned off, the function surface will look as shown in Figure 
2.31c. As the companion Figure 2.12d illustrates, D_3D has the ability to place glyphs or mark-
ers at the nodes where the function surface is interrupted. This feature is activated by changing 
the last entry of chime menu 2 to ‘E’. The edge glyphs size and type are controlled by the 5th 
entry of the same chime menu 2 and by line 7 of the CF3 file (same as in a regular node plot like 
the one in Figure 2.9). Evidently, the accuracy with which these glyphs approximate together 
the singularity of the function depends on how fine the function has been sampled.

Important: Note that the nodes labeled 1–2, 3–4, 5–6, and 7–8 of the gray polygons 
(0010), (0001), (1000), and (0100) in Figure 2.26 are not assumed to be edge nodes 
(see also Figure 2.31d).
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FiGURE�2.31� Plots of the function in Equation 2.11: (a) with K = −1030 and 61 × 61 data points, 
(b) with K = 1030 and 61 × 61 data points, (c) with 61 × 61 data points and the curtain and the 
top/bottom of the plot removed, and (d) with 16 × 16 data points and nodes placed at the perforation 
edges. Configuration files F2_31A.CF3, F2_31B.CF3, F2_31C.CF3, and F2_31D.CF3.
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Important: When regular nodes (with or without stems) are plotted on a graph, the nodes 
below or above the upper and lower planes of the plot box will not be represented nor their 
stems. If such a plot is exported to  DXF, the regular nodes and the edge nodes will be 
placed on layers ‘nodes’ and ‘edge_nodes,’ respectively. Because distinguishing between 
regular nodes and edge nodes was inconvenient to code inside D_3D, some edge nodes 
occur both in the ‘edge_nodes’ and the ‘nodes’ layers.

The fact that the edge nodes are placed in separate layers makes it easy to connect 
them with polyline(s) and manually retouch using AutoCAD a constrained function plot 
(see Figure 2.33).

The same approach described earlier can be applied to representing graphically inequal-
ities of two variables. To exemplify, the same inequality 1.5 in Chapter 1 will be considered 
equivalent in terms of surface plotting with the following piecewise continuous function:
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For −π ≤ x ≤ π and −π ≤ y ≤ π and 101 × 101 data points, a z-axis truncated plot of this func-
tion will look as shown in Figure 2.34. The input data file F2_6.D3D used to generate this 
figure has been produced with program P2_6.PAS (see Appendix B).
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FiGURE�2.32� Mesh plot of the pricewise continuous function in Equation 2.11 obtained by com-
bining and further editing inside AutoCAD the main body of the function surface (configu-
ration files F2_32-1.CF3), with a polyline that connects the edge nodes (configuration files 
F2_32-2.CF3).
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Note that the large values of 1030 were assigned to the cases where the original inequality 
holds. You can obtain alternative representations by changing the 1030 value into −1030 and 
by switching between plotting the top land, the bottom land, or the body of the surface only.

Figure 2.34a is a 3D view of the body of the surface only, shown as x = constant and 
y = constant lines. For the given resolution (501 × 501 data points), the exact same graph 
can be obtained as node plot. Another way of representing inequality 2.12 is as stem plot 
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FiGURE�2.33� Plot of inequality 2.12 with 101 × 101 data points. This is a screenshot of a DXF copy 
of the plot taken after issuing the AutoCAD shade command. Configuration files F2_33.CF3.
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FiGURE�2.34� 501 × 501 data point plot of inequality 2.11 as (a) body of the surface only and (b) as 
stem plot with colored nodes. Configuration files F2_34A.CF3 and F2_34B.CF3.
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with size-one nodes (Figure 2.34b). The nodes must be colored according to height to dis-
tinguish the top land of the graph. Either plot in Figure 2.34, when viewed from the top, 
will result in a 2D representation similar to Figure 1.20 in Chapter 1.

2.13� coloR-REnDERED�PloTS
The use of color increases the appeal of a graph and can add more information to a plot. 
Their only drawback, oftentimes overlooked, is that some information is lost when you 
print or photocopy them in black-and-white. D_3D has the ability of representing color-
rendered surface plots in any view, including top view. D_3D can produce colored plots by 
mapping the function surface with nodes and/or level curves or by filling the patches with 
color according to the elevation of the respective entities.

Figure 2.35 is a top view of a 481 × 481 node plot (the node size was set to one pixel) 
of F2_3.D3D data file. To eliminate the occurrence of voids in the pixel plot, the height 
and width of the box was made slightly smaller than the grid size, that is, 480 × 385 pixels. 
Overlapped with this is a gradient plot generated from only 21 × 25 data points of the same 
file F2_3.D3D. The color scale box to the right has been created separately as an empty 
plot viewed from the front, with the number of side gridlines set to 200. When the number 
of side gridlines exceeds 200 (option <Insert> then <G> from the graphic edit screen), 
they will be colored according to their elevation, similarly to the z-axis division lines. An 
empty plot can be generated by turning off its top land, curtain, body, and bottom land from 
chime menu 1.
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FiGURE�2.35� Gradient plot manually overlapped with a colored node plot in top view. The 
color scale to the right has been generated separately. Configuration files F2_35Dn.CF3, 
F2_35UP.CF3, and F2_35CS.CF3.
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Figure 2.36 shows two types of 3D color plots. When a surface in a general 3D view 
is rendered with raised level curves (Figure 2.36a) or with colored nodes (Figure 2.36b), 
voids are more likely to occur than in a top-view plot. Since the number of nodes cannot 
exceed 501 × 501 and the number of level curves cannot exceed 999, one possible remedy is 
to reduce the size of the plot before exporting it to PCX. Any remaining voids can be then 
corrected manually using Paint or other raster image editing software.

A raised level-curve plot takes longer to generate in D_3D, even for a moderately 
dense grid size. For this reason, in Figure 2.36b where the number of level curves is 999 
(the maximum possible), the function surface has only 26 × 26 data points.

Note that the surface in Figure 2.36a was set to hide and their color to white (i.e., type ‘w’ to 
last entry of chime menu 1). In Figure 2.36b, the nodes were mapped on a transparent func-
tion surface, that is, the plot was in wireframe mode set from the graphic edit screen. Different 
appearances can be achieved with thin or thick level curves, with node sizes bigger than 1 (see 
Figure 2.37) and of other shapes, empty or solid—available node shapes are ○, ◻, ♢, ▿, ▵, and ✴.

As visible in Figure 2.36, raised level curves provide better color rendering over the 
steep regions of the function surface, complementing a node plot that renders better the 
flat portions of the surface. The appearance of a rendered surface can be improved by over-
lapping a high-density node plot with a raised level-curve plot using Paint.

Remember that in a plot exported to AutoCAD via the R12 DXF format, round nodes 
will always be drawn as empty circles and not as solid doughnuts. Also remember that the 
z-axis color coding in a PCX screenshot has 10 colors, versus 20 colors in DXF.

The occurrence of voids as described previously is eliminated if the surface patches 
are filled with color according to their elevation (see Figures 2.38 through 2.40). Because 
the colors available for scaling are twice as many in a DXF copy of the plot, it is better to 
export your graphs to AutoCAD, rather than doing a raster copy straight from D_3D. 
Note that the AutoCAD shade, hide, and render commands have effect upon 3D plots 
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FiGURE� 2.36� Rendered surface plots of the four-hump function (a) with 999 color-coded level 
curves over a 26 × 26 data-point transparent surface and (b) with 481 × 481 color points mapped 
on an opaque, white surface. Configuration files F2_36A.CF3 and F2_36B.CF3.
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generated with D_3D, even if they are not truly 3D. Also note that the exact same plot 
in Figure 2.38b can be obtained if you turn off layers ‘border_x’, ‘border_y’, ‘color_x’, 
and ‘color_y’ of the plot in Figure 2.38a and apply the AutoCAD hide command again.

Important: Plots with color-filled patches will appear different when exported to PCX than 
when opened in AutoCAD following a DXF export. Differences may also occur on the 
D_3D screen at the end of a DXF export.
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surface. Configuration file F2_37.CF3.
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FiGURE�2.38� Plot of the four-hump function with 25 × 25 colored patches (a) with and (b) without 
a mesh grid, exported to AutoCAD, showing the effect of the (a) shade command and (b) hide com-
mand. Configuration files F2_38A.CF3 and F2_38B.CF3.
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Regarding the plots in Figure 2.39, notice that the AutoCAD render command has the effect 
of obscuring all line and text entities, with only the actual function surface remaining visible. 
To compensate, take two screenshots: one on the rendered surface and one on the plot box, 
then overlap them inside Paint. Before taking the second screenshot, turn layers ‘colormesh_
body’ and ‘colormesh_topbtm’ off, and then issue the hide command. This way, the portions of 
the plot box hidden by the surface will not show on the screen. You can copy to clipboard the 
active window on your computer screen by pressing simultaneously <Alt> and <Prnt Scrn>.

The plot in Figure 2.39b has the intersections with the plot box removed. You can 
make these changes inside D_3D and export it to DXF anew, or you can turn layers ‘color-
mesh_body’ and ‘phantom_body’ off and generate two new screenshots. Considering the 
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Configuration file F2_40A.CF3 and F2_40B.CF3.
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points, (a) with and (b) without the top land in place. Configuration file F2_39.CF3.
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significant extent of time it takes D_3D to output a DXF file with this many entities (over 
500,000), the latter approach is evidently preferable.

Figure 2.40 provides two more examples of truncated surface plots selected from those 
already discussed in this chapter (i.e., Figures 2.23b and 2.31c). You may want to compare 
the appearance of the same plots in Figure 2.40, when exported to DXF and then rendered 
or shaded inside AutoCAD.

2.14� PloTTinG�mUlTiPlE�SURFAcES�on�ThE�SAmE�GRAPh
Since it is not a true 3D graphing program, D_3D is not the best tool to represent paramet-
ric surfaces or multiple surfaces that intersect each other. In certain cases, however, it is 
possible to generate plots of surfaces that fold over themselves or combined plots of two or 
more single-valued functions as discussed next.

The first example is that of plotting a sphere of radius 1.7, centered at (0,0,0). The 
way this problem was solved was to plot the bottom and top hemispheres separately 
(see Figure 2.41a), then export them to PCX, and then overlap them using Paint. The 
P2_7.PAS program (see Appendix B) was used to generate an ASCII file named F2_7.
T3D having two columns: one for the bottom hemisphere (the lower sign in Equation 2.13) 
and the other column for the top hemisphere (the upper sign in Equation 2.13):

 
F x y

x y x y

x y
7

3010
( , ) = ± ≤

± ≥







2.89 for 2.89

for 2.89

2 2 2 2

2 2

− − −
−

 (2.13)

When plotting the individual hemispheres, the top and bottom lands must be turned 
off from chime menu 1 of D_3D. Note that the lower hemisphere in Figure 2.41a can be 
obtained from the upper hemisphere by flipping the z-axis of the plot, or vice versa. As 
shown in Figure 2.41b, additional shapes can be obtained starting from the same data file 
by simply editing the limits over the z-axis.

x

ππ

y

–π
–π–1.7

0

1.7

–π

x

ππ

y

(a) (b)

–π–2

1.5

FiGURE�2.41� (a) A sphere produced as the overlap of two hemispheres plotted separately and 
(b) plot of cylinder a extending with a trimmed hemisphere. Configuration files F2_41A-1.CF3, 
F2_41A-2.CF3, and F2_41B.CF3.
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As an example of graphing two intersecting surfaces, we will consider overlapping the 
surfaces Z = F2(x, y) and Z = F4(x, y) in Equations 2.2 and 2.10. If we are drawing vertical 
lines at each grid point, these will intersect the combined surfaces in two points, one higher 
and one lower. If the lower points of these pairs are separated from the upper points, and 
if you plot them as distinct graphs, you can then combine them using Paint or AutoCAD, 
same as we did with the sphere in Figure 2.41. Additional editing, prior or after overlapping 
these graphs, might be required in areas of incorrect or incomplete visibility.

Figure 2.42 shows two representations of the same combined 3D plot. The difference 
between them is that Figure 2.42a has been obtained as the overlap of two surfaces 
(see Figure 2.43), while the one in Figure 2.42b is the overlap of four separate plots 
(see Figure 2.44). One single file provides the data source of all constituent plots in Figures 2.43 
and 2.44. This file named F2_8.T3D is organized on six columns and has been generated 
using program P2_8.PAS (see Appendix B).
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FiGURE�2.42� Combined plot of the orange-squeezer function and the paraboloid in Equation 2.10, 
obtained as the overlap of separately drawn entities assembled as shown in Figures 2.43a and 2.44b.
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FiGURE� 2.43� Constituent plots of Figure 2.42a. Configuration files F2_43-1.CF3 and 
F2_43-2.CF3.
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The two functions F2 and F4 are evaluated at a current grid point (x,y), their values 
are then compared (lines #37 to #42 of program  P2_8.PAS) and then written to file. 
Depending on their elevation and whether they belong to F2 or F4, the two values are of 
the same program written to columns 1 and 2 or columns 3 to 6 of file F2_8.T3D (see 
lines #43 and #44). Data on columns 1 and 2 served to plot Figures 2.43, while the values 
on columns 3 to 6 were used to plot Figures 2.44. Note that in case of columns 3 to 6 of file 
F2_8.T3D, use has been made of value 1.0E30 to indicate ‘curtains’ and ‘top lands’ that 
can be selectively plotted or suppressed from within D_3D.

2.15� imPlEmEnTATion�DETAilS�oF�ThE�D_3D�PRoGRAm
This section is provided for those who wants to understand in more detail how the D_3D.PAS 
program and its accompanying unit UnIT_D3D.PAS work. Additional useful information 
(outside of the comments provided with D_3D.PAS) is available in Simionescu (2003, 2011).

As explained in paragraph 2.1, all graphic operations are performed by D_3D in the 2D 
image space. The coordinates of the corners of the plot box relative to the computer-screen 
reference frame OXY are noted as Xc[..], Xc[..] for corners C1 through C4 and Xcp[..], 
Ycp[..] for corners ′C1 through ′C4 (Figure 2.45). 
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FiGURE�2.44� Constituent plots of Figure 2.42b. Configuration files F2_44-1.CF3, F2_44-2.
CF3, F2_44-3.CF3, and F2_44-4.CF3.
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The viewport coordinates of a point P1 of a single patch as shown in Figure 2.46 equiva-
lent to point Pij of the surface is given by equation

 

X j dX n i dX
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z z

z z
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1 1
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 (2.14)

where zij the function value at P1, zmin and zmax are the limits over the z-axis of the graph, 
and m × n is the grid size.
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The dXi, dXj, and dYi increments in Equation 2.14 are as follows:
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The coefficients kH and kV that position reference corner ′C4 of the plot box (Figure 2.45) 
are given by equations:
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The outlines of the horizontal reference plane oxy, and the two vertical reference planes 
oxz and oyz, (Figure 2.46) are represented by D_3D using points 1, 2, 3, 4 the coordinates 
of which are stored in variables Xoxy[1], Yoxy[1] through Xoyz[4] and Yoyz[4] of 
D_3D.PAS.

***

The D_3D plotting program subject of this chapter combines an offsetting of the lines of 
constant x, with a shear transformation. Solving the visibility problem, the intersection of 
the function surface with the horizontal planes of the bounding box and level-curve gen-
eration is done entirely in the 2D image space. Consequently, the amount of input data and 
CPU resources per plot is reduced to a minimum. Executable D_3D.EXE and source codes 
D_3D.PAS and Util_D3D.PAS are available with the book, together with all configura-
tion and data files used in this chapter. Additional examples of D_3D use are available in 
Chapters 3, 4, and 9.
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C h a p t e r  3

Programs and Procedures 
for Data Visualization and 
Data Format Conversion

In this chapter, several programs that you may find useful will be presented. These 
include a collection of Pascal procedures for generating 2D line plots; three pro-

grams for manipulating ASCII, R12 DXF, and HP‑GL PLT files; and two AutoLISP 
applications for automatically generating 3D entities from within AutoCAD with 
description read from file.
LibPlots.PAS is a unit with procedures that allows you to write programs that 

generate graphs very similar to those done with D_2D.
The Util~TXT.PAS program can be used to add between every two data points read 

from a file, additional points interpolated linearly, and spline or B-spline. It can also evalu-
ate numerically the first and second derivatives and can transfer to an output file every 
certain row of the original data. The program can also make continuous a series of angle 
values restricted, for example, to [−π…π] and can apply a logarithm transform to the input 
data safe from crashing when encountering a number that is negative or zero. By directly 
editing its code, additional transformations are possible, like scaling, offsetting of data, 
and custom functional transforms.
Util~DXF.PAS is a DXF viewer that can display 2D and 3D lines and polylines, cir-

cles, and arcs of circle read from an R12 DXF file. In addition, the program can be used 
to extract to ASCII the x, y or x, y, z coordinates of selected polyline(s), a feature use-
ful for transferring level-curves plots from D_3D to D_2D or for digitizing curves avail-
able only as raster images. Figure 1.14 has been produced this way, that is, a picture was 
imported into AutoCAD and polylines were drawn over. When completed, the drawing 
was exported to R12 DXF, and the x, y coordinates of the vertices of these polylines were 
then extracted to file using Util~DXF. This file then served as input to the D_2D program 
when producing Figure 1.14.
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Util~PLT.PAS can open PLT files exported from AutoCAD using the Hewlett‑
Packard Graphics Language (HP‑GL) ADI 4.2 by Autodesk #7550 driver. The polylines in 
these PLT files can then be exported to R12 DXF while simultaneously the x, y coordinates 
of their vertices will be saved to an ASCII file. The Util~PLT program can be used to 
“flatten” in the hide mode 3D drawings and surface plots generated using D_3D or to digi-
tize alphanumeric characters, arches of circles, and spline curves created inside AutoCAD.
G_3D.LSP is an AutoLISP application that allows you to generate inside AutoCAD 

true 3D curves and meshed surfaces with vertices read from file.
M_3D.LSP is the second AutoLISP program that can automatically generate and ani-

mate lines, cylinders, spheres, tori, and cylindrical helixes with dimensions and orienta-
tions read from file. It can also insert blocks at locations and with orientations read from 
the same input file. (These blocks must preexist in the DWG file from where M_3D.LSP is 
being run.)

3.1� LibPlots�PRocEDURES�FoR�GEnERATinG�2D�PloTS
Available in this book, there are several Pascal units for user interfacing in text and BGI 
graphical mode, for mathematical calculation, and for 2D plotting. Of these, the LibPlots 
unit will be discussed in more details here. By calling its procedures, you can generate 2D 
graphs similar to those produced with D_2D and export them to R12  DXF and PCX. 
Additional features not available in D_2D that LibPlots allow are (i) assigning different 
size markers to different curves of the same plot and (ii) having the x-axis intersect the 
y-axis at y = 0 and vice versa. A number of programs that implement these new features 
will be discussed in the remainder of this section.

3.1.1� basic�2D�Plotting�Using�LibPlots

P3_01A.PAS listed in Appendix B is a simple example of LibPlots procedure use, 
namely, of PlotCurve, PlotXaxis, and PlotYaxis. The program calls several proce-
dures from units Unit_PCX, LibGraph, and LibDXF and uses the VDp vector type and 
the Pmax constant, both declared in the LibMath unit.

Lines #19 to #22 of P3_01A.PAS serve to generate the (t, Y) pairs that will be plot-
ted on the graph (Figure 3.1a). The actual plot has been produced by executing lines #25, 
#26, and #27 of the program. The default size and location of the plot on the computer 
screen can be changed by calling procedure newPlot and assigning different values 
to the corners of the box as it has been done in the companion program P3_01B.PAS. 
Note that the procedures responsible for drawing the x- and y-axes are called only after 
all curves have been plotted. This is because the limits stored by variables xmin, xmax, 
ymin, and ymax are assigned meaningful values only after vectors t and Y are inspected 
inside the PlotCurve procedure. The first parameter (i.e., 1) in procedures PlotCurve, 
PlotXaxis, and PlotYaxis specifies the plot number. The second parameter in pro-
cedures PlotXaxis and PlotYaxis controls axis location (possible values are 0, 1, 
or 2, where 1 will place the axis at y = 0 or x = 0, respectively), while the third and fourth 
parameters in these same two procedures represent the number of values and the number 
of minor intervals that will be placed along the respective axis (see Figure 3.1a).
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Important: Currently, LibPlots.PAS does not allow more than four separate plots to be 
opened simultaneously in the same program. These can be drawn on the computer screen in 
four separate plot boxes, in two boxes having each a primary and a secondary vertical axis, 
or all four overlapped in the same plot box.

In the companion program P3_01B.PAS (see Appendix B), procedure newPlot sets 
the corners of the ViewPort where the plot will be drawn, that is, (150, 50) the top-left 
corner and (500, 430) the bottom-right corner. If you call newPlot with its second param-
eter set to the constant IsoPlot or TRUE, instead of FitBox, the limits of the graph 
will be adjusted so that it becomes isotropic. The last parameter of newPlot is a character 
string that will be written at the top of the plot box as title.

The limits over the x- and y-axes can be extracted from vectors X and Y by calling pro-
cedures UpdateLimitsX and UpdateLimitsY. These limits can then be accessed by 
the main program through functions GetXmin, GetXmax, GetYmin, and GetYmax. 
On line #32 of P3_01B.PAS, the last two of these getter functions are used as parameters 
in the newLimitsY procedure to extend the range of the y-axis and also to reverse it.

The border around the plot box has been produced by calling procedure DrawBorder 
(line #30) from unit LibGIntf, while the plot curve was set to ThickWidth by calling 
Pascal’s SetLineStyle procedure. In order to turn the gridlines on (see Figure 3.1b), 
procedure SetDivLine on line #35 has been called with its second parameter set to a 
value greater than nine. Note that if you call this procedure after PlotYaxis, only the 
vertical gridlines will be plotted.

Note the use of the WaitToGo procedure from unit LibInOut, which will suspend 
the program execution until the user presses a key (line #39).

3.1.2� multiple�Plots�with�markers

When a plot consists of multiple curves, you can assign them different colors and differ-
ent line types (i.e., normal width or thick, solid, dashed, or dotted) or add markers to 
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FiGURE�3.1� Plots created with programs (a) P3_01A.PAS and with (b) P3_01B.PAS.
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them (see Figure 3.2). Program P3_02.PAS (see Appendix B) is an example of marker 
utilization. If you want to employ different line types, you must insert the adequate Graph 
command(s) prior to calling the PlotCurve procedure, as it has been done on line #33 of 
the P3_01B.PAS program.

Lines #20 to #26 in this new program P3_02.PAS (see Appendix B) serve to generate 
data vectors t, Y1, and Y2. In order to encompass both Y1 and Y2 components within the 
y-axis limits, procedure UpdateLimitsY is called first with t, then with Y1 and with 
Y2 as arguments (lines #30, #31, and #32). Procedure ResizeY called on line #33 has the 
effect of expanding the y-axis range by about 0.2 (i.e., reduces ymin by 10% and increases 
ymax by 10%); in addition, the new limits will be adjusted so that the associated numbers 
will be rounded (see also the P3_03B.PAS program in Appendix B).

Line #35 in P3_02.PAS sets the marker type placed along the first curve to diamond, 
and their size to 2. Signaled by the ‘:’ character, these markers will be equally spaced along 
the plot curve. The distance measured along the curve between every two successive mark-
ers will be about six times the marker size (value hardcoded in procedure PlotCurve). 
If on this line #35 you change ‘:<>’ into ‘|<>’, then the diamond markers will be placed 
at every data point (see also line #39). If the last parameter of the PlotCurve is set to 
a negative value, then markers only will be plotted without the curve. If this param-
eter is set to a positive value, then the markers will be drawn as the plot curve pro-
gresses. Similarly to D_2D, if markers are polygonal or round, only the first half of them 
will obscure the curve (same as in D_2D). To plot a curve without markers, insert the 
command SetMarker(0, ‘’) right before the PlotCurve procedure is called. The 
allowed second arguments in SetMarker are ‘%’ ‘o’ ‘.’ ‘[]’ ‘<>’ ‘v’ ‘̂ ’ ‘*’ 
‘x’ ‘+’ ‘@’ ‘&’ ‘q’, that is, the same as in D_2D less the arrow marker that is not 
available in LibPlots.

Note that both y category names are written in the same color as the curves for 
which they stand for (Figure 3.2). This feature is activated by adding a space to the 
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FiGURE� 3.2� Plot generated with P3_02.PAS showing equally spaced diamond markers and 
round markers placed one at each data point.
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left of the character-string parameter (i.e., the category name) of the PlotYaxis 
procedure—see lines #38 and #41.

3.1.3� Plotting�large�Data�Sets�and�Data�Read�from�File

Program P3_03A.PAS (see Appendix B) shows how to read data from a multiple column 
ASCII file with more than and 502 rows.  502 is the maximum size of a VDp type vector, 
which means that data has to be plotted as a series of concatenated curves as shown in 
Figure 3.3.

Procedure Extract_V called once on line #44 and a second time on line #45 of 
 program P3_03A.PAS accepts one row from the input file (or, in general, a character 
string consisting of groups of numbers separated by one or more nonnumerical characters, 
including spaces) and returns the value corresponding the specified column. Also, note 
the random colors assigned to the individual sections of the plot curve (line #50) and the 
x-axis placed at the top of the plot box.

The companion program P3_03B.PAS (source code not included in Appendix A) is 
very similar to P3_03B.PAS, with the difference that the limits over the x- and y-axes are 
established prior to plotting the curves, rather than being provided by the user. This is use-
ful when you want the curves to tightly fit the plot box (see Figure 3.3) or when you want to 
add flexibility to your program and make the x and y limits self-adjusting.
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FiGURE�3.3� Plots created with programs (a) P3_03A.PAS and (b) P3_03B.PAS.
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3.1.4� Dynamic�Plots�with�Scan�lines�and�Scan�Points

Program P3_04.PAS available with the book solves the direct dynamics problem of a 
two degree-of-freedom elastic pendulum. It also provides an example of PlotScanLine 
and PlotScanPoint procedure use (see Figure 3.4). In addition, it is also a first intro-
duction to the procedures in the LibMec2D and LibMecGr units also available with the 
book.
P3_04.PAS consists of three parts. Firstly, the differential equations of motion of a two 

degrees of freedom elastic pendulum with no damping are solved numerically, and vectors 
_t, _Theta, _Rho, _xA, and _yA are generated. These vectors are then used to plot the 
time response graphs θ(t), Rho(t) and the parametric curve y(t) versus x(t). In the 
third part of the program, a scan line and a scan point are animated synchronously with 
the motion of the spring. To represent the spring and its fix-end attachment, procedures 
Spring and PutGPoint are called form unit LibMec2D. The locus of the pendulum 
bob is then plotted by calling procedure CometLocus from the same unit.

The dynamic equilibrium equations about the center of mass of the pendulum bob are 
(see Figure 3.5a):
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FiGURE� 3.4� One of the animation frames generated by program P3_04.PAS. See also 
F3_04.GIF.
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Applying the tangential and radial accelerations equations of a particle moving in polar 
coordinates (Meriam and Kraige 2006), we get
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After a few transformations, the equations of motion are derived as
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where Fs is the force developed by the spring

 F l ks = −( )ρ 0  (3.4)

The free length of the spring was considered l0 = 1 m, its constant k = 10 N/m, the mass of the 
bob m = 1 kg, and the acceleration due to gravity g = 9.81 m/s2. With these values, Equations 3.3 
are integrated inside P3_04.PAS using Euler’s method (see Appendix A). For initial con-
ditions xA(0) = 1.25 m, yA(0) = 1 m, and the pendulum at rest, that is, dθ(0) = dρ(0) = 0, the 
response of the system for the first 8.3 s of the simulation is obtained (Figure 3.4).

Program P3_04.PAS generates, in addition to the PCX animation frames, three 
R12 DXF files and a text file named F3_04.TXT where the time response data is written. One 
of these DXF files records the polyline representing the spring, the pendulum bob, and 
the locus of its center (also a polyline), each layer representing a separate animation frame.
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FiGURE�3.5� Elastic pendulum geometry and free-body diagram of the bob (a), and plot of the 
time response curves θ and ρ vs. t written to DXF by program P3_04.PAS (b).
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The other two DXF files record overlapped the graphs θ(t) and ρ(t) (see Figure 3.5b), and 
the plot of the locus of the pendulum bob yA(xA)—see Figure 3.4.

3.2� Util~TXT�PRoGRAm�FoR�mAniPUlATion�oF�AScii�FilES
Many known graphing programs, like Excel, are capable of fitting an interpolated curve 
to data. Others, like MATLAB, have dedicated functions that can add interpolated 
points to an initial data set, which can then be represented graphically. D_2D does 
not have interpolating capabilities, so the Util~TXT.PAS program and the compan-
ion Unit_TxT are provided in compensation. The program can add up to 100 points 
between each two original data points read from file that are interpolated either (i) lin-
early, (ii) cubic spline, (iii) quadratic B-spline, or (iv) cubic B-spline. Other features 
of Util~TXT include (v) making continuous a series of angle values that were forced 
within [−π…π], [−π/2…3π/2], [0…2π], or similar interval by some inverse trigonometric 
function; (vi) decimating a given input file by extracting to the output file every kth row, 
where k is specified by the user; (vii) scaling and translating the points extracted from 
a R12 DXF file using the Util~DXF program; (viii) evaluating the logarithm; and (ix) 
calculating numerically the first and second derivatives of the input data. Regarding 
this last transformation, in order to apply the more accurate centered difference formula 
to the end points same as to the interior ones, cubic extrapolated pairs x, y are added, 
one at the beginning and one at the end of the data series.
Util~TXT can be used in two ways: as executable file with settings read from a con-

figuration file of extension COn, or modified and recompiled, case in which additional 
transformations can be coded into the program. Only the transformations that can be 
controlled via a configuration file will be discussed here.

Important: When you launch Util~TXT or if you press the <F10> key after loading the 
COn file, you can read about the restrictions and limitations that apply to the input data 
(see the following screenshot). Note that Util~TXT is capable of performing linear, spline, 
and B-spline interpolations to 2D data only.
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3.2.1� linear�interpolation

Let us consider a linear interpolation example first, where Util~TXT reads several x, y 
data pairs from an ASCII file named F3_06.TXT and then adds six points interpolated 
linearly between each of these pairs. To do this, edit the master configuration file !.COn 
such that the first two lines read F3_06.D2D and F3_06.TXT (these are the output and 
input file names). Set to ‘Y’ (i.e., Yes) the first character on the {Interpolate linear} 
line and change the number of points to 6. Save the configuration file under the name 
F3_06.COn, launch Util~TXT, and select as input the COn file that you have just created. 
Confirm the remaining default options by pressing the <Enter> key, although you could 
modify these defaults if you want to. Figure 3.6 is a combined plot of the original data (the 
transparent rounds Ø) and of the linearly interpolated points read from F3_06.D2D (the * 
markers).

Important: By default, Util~TXT assumes that the output is to an ASCII file. Alternative 
output file formats are D2D readable by the D_2D program and DXF.

A different type of linear interpolation Util~TXT can do is to add evenly spaced 
points along the curve, useful when some of these points are too far apart. To add equally 
spaced points, modify line number 9 of the previous COn file so that instead of ‘6’, it 
reads ‘–0.5’. Also change the output file name to F3_07.D2D and save the modified 
configuration file as F3_07.COn. The corresponding graph will now look as shown in 
Figure 3.7.

Adding points interpolated linearly to a graph is useful when plotting the path of a mill 
cutter using D_2D, with round markers representing the actual tool (marker diameter 
can be accurately set from within D_2D). Synthesizing the motion program of the fol-
lower of a cam mechanism or the path of the end effector of robot may also require adding 
interpolated points.
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FiGURE� 3.6� Plot of initial data (the round markers) and of linearly interpolated points placed 
in groups of 6 between 2 data points (the asterisk markers). Configuration files F3_06.COn and 
F3_06.CF2.
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3.2.2� cubic-Spline�interpolation

To add cubic-spline interpolated points between the same control points as before, 
open the last COn file and turn the linear interpolation option off and the cubic-spline 
interpolation on. Also, change the name of the output file to F3_08.D2D. Save your file as 
F3_08.COn and run Util~TXT with settings read from it. A plot of the resulting inter-
polated points read from the new data file F3_08.D2D, overlapped with the control points 
is shown in Figure 3.8.

Remember that for a cubic-spline interpolation to be possible, the x components of 
the original data must be strictly increasing (Press et al. 1989), that is, xj > xj+1 for any 
j between 1 and the rank of the second last point. Note that the curve passes smoothly 
through each of the given point. Contrast this to a B-spline interpolated curve that 
never passes through the given points as shown in the next section.
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FiGURE�3.7� Same plot as in Figure 3.6 with the interpolated points (asterisk markers) placed at 
a distance of about 0.5 units along the graph. Configuration files F3_07.COn and F3_07.CF2.
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FiGURE�3.8� Plot of the initial data points as round markers and of a cubic-spline interpolated 
curve through these points. Configuration files F3_08.COn and F3_08.CF2.
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3.2.3� b-Spline�interpolation

Util~TXT can add both quadratic and cubic B-spline interpolation points to a set of con-
trol points read from file. The cubic B-spline interpolation is more frequently used in prac-
tice, as the degree of smoothness of the resulting curve is higher (Zecher 1993). A quick 
comparison is available in Figure 3.9, where both a quadratic and a cubic B-spline inter-
polated curve (the solid line and the dashed lines, respectively) were plotted, together with 
their control points. The number of points between every two data points in Figure 3.9 has 
been set to 6 inside configuration files F3_09-1.COn and F3_09-2.COn.

One advantage of the B-spline curves over splines is that they can be fit through 
closed control polygons or through control points that are arranged in neither increasing 
nor decreasing order. It is called control polygon, the polyline that connects the control 
points of a B-spline curve. To exemplify, two different inputs were assume, both written 
to file F3_10.TXT, that is, an open control polygon (columns 1 and 2) and a close control 
polygon (columns 3 and 4). The cubic and quadratic B-spline curves through these nodes are 
shown in Figure 3.5. In order to obtain the intended results, the column numbers from 
where the x and y coordinates of the two sets of control points are read must be correctly 
specified inside configuration files F3_10-1.COn through F3_10-4.COn. Same about the 
row numbers where the transformation begins and where it ends (Figure 3.10).

3.2.4� numerical�Differentiation

The possibility of numerically calculating the first and second derivatives of a data set 
is another capability of the Util~TXT program (see Appendix A for the underlying 
theory). You can use this feature to check if the symbolically calculated derivative of a 
given function is correct (suspecting hand calculation or computer coding errors) by 
comparing its graph with the graph of the numerical derivative values generated using 
Util~TXT.
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FiGURE�3.9� Plots of quadratic B-spline (solid line) and cubic B-spline (the dashed lines) curves with 
increasing (monotonic) control points. Configuration files F3_09A.CF2 and F3_09B.CF2.
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Let us consider the function in Equation 1.1 and evaluate numerically its first two 
derivatives and then plot them on the same graph. Input has been considered the F1_01.
DAT file from Chapter 1, renamed F3_11.TXT. After you run Util~TXT with settings 
from configuration files F3_11-1.COn and F3_11-2.COn, you will obtain the data files 
F3_11-1.D2D and F3_11-1.D2D used to plot the graph in Figure 3.11. Note the very 
close similarity between the numerically calculated first derivative and the exactly calcu-
lated one in Figure 1.3.
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FiGURE�3.10� Plots of quadratic (solid lines) and cubic (dashed lines) B-spline curves with non-
monotonic control points. Configuration files F3_10-1.COn through F3_10-4.COn and 
F3_10.CF2.
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FiGURE�3.11� Plots of the first and second derivative of F(x) in Equation 1.1, evaluated numerically 
for 400 data points. Configuration files F3_11-1.COn, F3_11-2.COn, and F3_11.CF2.



Programs�and�Procedures�for�Data�visualization�and�Data�Format�conversion    ◾    103  

3.2.5� Angle-value�Rectification

Making a series of angles continuous after being forced within intervals of the form 
[−π…π] or [−π/2…3π/2] by some inverse trigonometric function like ArcTan can be occa-
sionally of concern. Util~TXT is capable to remedy such defects through the nghbrAng 
function that it calls from unit LibMath. nghbrAng uses the previous value of an angle 
series to correct a current value, by adding or subtracting certain number of π values. The 
program can handle angles expressed both in radians and in degrees. However, only the 
former case will be exemplified here.

We will first generate a set of angle values that needs to be corrected. A short program 
named P3_12.PAS has been written for this purpose (see Appendix B) that outputs a data 
file named F3_12.TXT with three columns. Column one is an initial angle that increases 
linearly from −2π to 2π, while the other two columns contain the same angle restricted to −π 
to π and −π/2 to 3π/2, respectively. The values on columns two and three were obtained by 
applying the tangent function to the initial angle, followed by the ArcTan function (line #18) 
and of the inverse tangent function of two arguments Atan2 in unit LibMath (line #19).

Four F3_12.TXT COn files have been prepared to generate the D2D data files required 
to plot Figure 3.12. In order to place markers along the jumping portions of the two saw-
tooth lines, configuration files F3_12-1.COn and F3_12-2.COn were formatted to read 
columns two and three of the F3_12.TXT file and generate the new files F3_12-1.D2D and 
F3_12-2.D2D. These files include additional nodes placed at a distance of about 0.1 units 
along the dropping portions of these sawtooth lines. The actual correction of the zigzag-
ging angles on columns two and three of the F3_12.TXT file has been done using COn files 
F3_12-3 and F3_12-4, resulting in data files F3_12-3.D2D and F3_12-4.D2D.
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FiGURE�3.12� Plots of the modified angles (the lines with markers) and their corrected version (the 
line without markers). Configuration files F3_12-1.COn through F3_12-4.COn and F3_12.
CF2.
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Important: The first numerical row in data file F3_12.TXT provides the starting angle for 
the conversion. These three values ensure that the rectified angles starts from −2π.

3.2.6� Data�Decimation

One last example of Util~TXT use refers to decimating an input data file, that is, retaining 
only every kth row, with k specified on the last line of the COn file. The case of decimating 
an experimentally acquired data file will be discussed, with reference to the phenomena 
of aliasing and to the importance of properly selecting the sample size in data acquisition 
(Alciatore and Histand 2007).

ASCII file F3_13A.DTA available with the book is organized in five columns, of which 
columns 3, 4, and 5 were plotted as function of their order (i.e., the column for x was 
assigned to zero in D_2D and in the corresponding CF2 files). Note that two of the three 
signals plotted have a higher frequency content, and as the data file is decimated (equivalent 
to reducing the number of samples per second), the appearance of these graphs is altered 
(see Figure 3.13). The structure of the two Util~TXT configuration files (i.e., F3_13B.COn 
and F3_13C.COn) used to generate the decimated data files F3_13B.DTA and F3_13C.
DTA with 250 and 125 samples, respectively, can be easily deciphered.

Note that instead of always using as input the original data file the previously generated 
file can be used as input for the next decimation.

Also note that Util~TXT is capable to generate multiple conversions in one run, with 
parameters read from the same COn file. For example, you can concatenate together all 
the configuration files utilized so far in a single file and then run Util~TXT with settings 
from it. An example of this type will be provided later in this chapter.

3.2.7� DXF�output�of�2D�and�3D�Polylines

Util~TXT is capable of generating DXF files without actually plotting the respective poly-
lines on the computer screen. You can do this by changing the extension of the output file 
from XY to DXF, a case in which the transformed points will be formatted as AutoCAD 
R12 DXF polylines. Likewise, Util~TXT can be used to convert sets of x, y, z triplets into 
DXF 3D polylines. See, for example, the F3_14.COn file that was used in the process of 
generating the variable-radius spiral in Figure 3.14 discussed next.

Later, there will be other uses of Util~TXT shown, like scaling and translating the 
vertices of a 2D polyline, obtained by digitizing a raster image using AutoCAD.

3.3� UTIL~DXF�PRoGRAm�FoR�viSUAliZATion�oF�R12 DXF�FilES
There are a number of DXF viewers available to the interested user, either free, freeware, 
or open-source programs (e.g., see eDrawings). Util~DXF supplied with this book, both 
as executable and as source code, can view 2D and 3D polylines, circles, and arches of 
circle recorded to a R12 DXF file—see the about Util~DXF screen. One useful feature 
of Util~DXF is to extract the coordinates of the vertices of a selected polyline or group of 
polylines and output them to an ASCII file.
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FiGURE�3.13� From top to bottom: plot of initial data with 1000-samples and decimated data with 
only 250 and 125 samples. Configuration files F3_13A.CF2, F3_13B.CF2, and F3_13C.CF2.
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Important: Util~DXF will not represent properly 2D polylines created in planes other 
than the XY plane of the world coordinate system of AutoCAD or a plane parallel to it. 
Also note that in case of splined polylines or polylines containing arches of a circle, the 
control polygons will be represented rather than the smooth curve.

3.3.1� Extracting�Polyline�vertex�coordinates

Launch Util~DXF and open the House.DXF file. Note that its polylines are colored in 
cyan, while the current polyline appears in red (Figure 3.14). From this view window, 

House.DXF (45.0, –35,–150) polyline: 1/5

Keys:   ← x y z [<Ctr1>+] <PgUp> <PgDn> <Home> <F1> <F10>, <ESC>..←← ← ←←

FiGURE� 3.14� Screenshot of the Util_DXF program when run with settings from the 
F3_14.COn file. The 3D spiral  was generated separately, and it has been exported directly to 
DXF using Util~TXT.
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the available options are pan using the arrow keys, zoom in and zoom out using the <Pg Up> 
and <Pg Dn> keys, and going back to the reference view by pressing <Home>. Holding the 
<Ctrl> key while pressing <Pg Up>, <Pg Dn>, and the <Home> keys will have slightly differ-
ent effects that you may want to investigate. If you hold the <Ctrl> key while pressing <←> or 
<→>, the figure will rotate in 3D about either x-, y-, or z-axis, depending on which of them 
is active (i.e., the one appearing capitalized at the bottom of the screen). You can change the 
axis of rotation by pressing the corresponding <X>, <Y>, or <Z> keys. Note that these axes 
remain aligned with the screen (i.e., x and y will be the horizontal and vertical axes with y 
positive up, while z will be perpendicular to the screen and oriented away from you).

By pressing the <F1> key, you can skim through the available polylines (note the change 
of the counter on the top of the screen, which initially read 1/5). <Ctrl> + <F1> will let 
you type in the polyline number that you want to become current. If you press <F10> 
or <Ctrl> + <F10>, you will be prompted to edit/confirm the polyline range you want 
their vertices written to file. With the House.DXF file opened, press <F10> and select 
polyline number 1 (i.e., the 3D helix representing the smoke, which will be discussed in 
Section 3.6) to have its vertices written to ASCII. This output file will be named by default 
Poly0001.XYZ. If you extract to file other polyline or groups of polylines, the name of 
the output file will be indexed by one with each new export.

Rename Poly0001.XYZ as F3_15.XYZ and use D_2D to plot z versus x and z versus 
y of this file. This will result in the side views of the helix as shown in Figure 3.15.

Important: If your DXF file contains only 2D polylines, then the extension of the output file 
will be XY. If at least one polyline is elevated above the XY plane or it is a true 3D polyline 
(like the spiral in the House.DXF file), then the extension of the vertex file will be XYZ.

Important: The coordinates of the polyline vertices will be expressed relative to the world 
coordinate system of the original drawing. It is therefore essential to set inside AutoCAD 
the UCS to “world” before exporting your drawing to R12 DXF.
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FiGURE�3.15� Side views of polyline number 1 produced with D_2D using XYZ file output from 
Util~DXF. Configuration files F3_15A.CF2 and F3_15B.CF2.
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3.3.2� Raster�curve�Digitization�Using�Util~DXF�and�Util~TXT

Another useful application of Util~DXF is the possibility of digitizing a curve available 
as raster image only. While there are computer programs available to do the same thing 
(like DigXY from www.thunderheadeng.com), the method presented here is more accu-
rate because it is done at higher resolution inside AutoCAD.

Let us consider the example of digitizing the stress versus elongation sigmoidal curve of 
an elastomeric material. Begin by importing the raster image F3_16.TIF to AutoCAD. 
Then draw an L-shaped polyline over any two adjacent sides of the plot box such that its 
three vertices coincide with marked points on the graph (see Figure 3.16). If the available 
raster image is slightly rotated, as it commonly happens with photocopied documents, use 
the align command in AutoCAD to rotate both the picture and the L-shaped polyline and 
make them parallel with the world coordinate system. Then draw a second polyline, this 
time overlapping the sigmoidal curve, inserting sufficient number of vertices to capture its 
shape. If your plot contains multiple curves of the same x and y categories, simply generate 
separate polylines for each of these curves.

Delete the picture and then type ‘purge’ at the AutoCAD command line to eliminate 
any unwanted entities from your drawing. When you are done, type ‘dxfout’ at the com-
mand line and export your drawing under the name Rubber.DXF. Make sure you select 
“AutoCAD 12” as DXF output format.

Important: The contour of the raster image will be exported to R12 DXF as a three-
vertex polyline. Similarly, any block available in the drawing’s database will be exported as 
visible entities to DXF, unless you purge your drawing prior to export. For the purge com-
mand to have the intended effect, you must first explode all blocks of the drawing.

Now open Rubber.DXF using Util~DXF and extract the vertices of the two poly-
lines to file. This is named automatically POLY0001.XY. Usually, the graphic entities of a 
drawing are written to the DXF file in the same order in which they were generated inside 
AutoCAD. This will also be the order in which they will be written to POLY0001.XY.
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FiGURE�3.16� Stress–strain curve of an elastomeric material (Hertz 1991) available with the book 
as raster image F3_16.TIF.
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Before you can use Util~TXT to automatically scale and translate the vertices of 
the main polyline such that their coordinates coincide with the original plot, you must 
perform the following steps (see Table 3.1): Open the POLY0001.XY file using Notepad. 
Make sure that the L-shaped polyline vertices occur before and not after the vertices 
of the sigmoidal curve. If it is not structured as shown to the left of Table 3.1, you must 
cut and paste the three lines containing the coordinates of the L-shaped polyline right 
under the header (it is where Util~TXT expects them), and then add a line separator 
‘----------’. Then insert two empty lines under the ‘X      Y’ header. On the first of 
these lines, type the values of xmin and ymin as they appear on the graph (i.e., 0 and 0). 
Similarly, on the second empty line that you have inserted, type xmax and ymax (i.e., 250 
and 6). Before saving the file as F3_20.XY, verify that its top portion looks similar to the 
right column of Table 3.1. The {MPa} comment on line 4 is optional.

Next, you will have to prepare a COn file from where Util~TXT will take the conver-
sion settings—see the one prepared for this example named F3_17.COn. Essentially, the 
option ‘{XY from raster to D_2D format}’ must be set to ‘Y’, and all the other 
transformations must be set to ‘n’. Since the XY input file is assumed to have a standard 
structure, the {row start}, {row finish}, {column for X}, and {column for Y} 
options will all be ignored.

Figure 3.17 is a plot generated using the transformed vertices of the sigmoidal polyline 
and recorded by Util~TXT to the F3_17.DTA file.

Important: If you want the units on any of the two axis of your graph changed, simply convert 
the values of xmin, ymin or xmax, ymax on lines three and four of F3_17.XY to the new units. In the 

TAblE�3.1� Modifications to a Default XY File from Util~DXF Required for Raster Curve Digitization

POLY0001.XY (Original File) F3_20.XY (Edited File) 
Polyline(s) 1 to 2 from RUBBER.DXF Polyline(s) 1 to 2 from RUBBER.DXF
X  Y X  Y
0.8434730  -0.265137 0  0
-0.090741  -0.265137 2.5  6 {MPa}
-0.090741  0.2855790 0.8434730  -0.265137
-------------------- -0.090741  -0.265137
-0.090741  -0.265137 -0.090741  0.2855790
-0.077363  -0.248015 --------------------
-0.055967  -0.224465 -0.090741  -0.265137
-0.034811  -0.202117 -0.077363  -0.248015
-0.005962  -0.174001 -0.055967  -0.224465
0.0200020  -0.151892 -0.034811  -0.202117
0.0457260  -0.132908 -0.005962  -0.174001
0.0657280  -0.119884 0.0200020  -0.151892
0.0907300  -0.105466 0.0457260  -0.132908
0.1224640  -0.089846 0.0657280  -0.119884
0.1486200  -0.079153 0.0907300  -0.105466
0.1789120  -0.068099 0.1224640  -0.089846
0.2123290  -0.056564 0.1486200  -0.079153
0.2390140  -0.047673 0.1789120  -0.068099
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example considered, if you want the stress expressed in psi rather than MPa, then on line 4 of 
the F3_17.XY file, you must change the value of ymax from 6 to 870.226.

3.3.3� Transferring�level�curves�from�D_3D�to�D_2D

Another useful application of Util~DXF is to transfer level-curve data from D_3D to D_2D 
and use it in combined plots, for example, as animation backgrounds. To exemplify, the data 
file used to plot of the level curves in Figure 2.17 has been copied and renamed F3_18.D3D. 
The x- and y-axes were swapped so that the graph looks as shown in Figure 3.18a.

Before using Util~DXF to convert these curves to a format readable by D_2D, per-
form the following steps: replot function F3 using D_3D with settings from F3_18A.CF3 
and export the level curves as DXF  1:1 to file F3_18A.DXF. Open this file inside 
AutoCAD and insert small closed polylines, about the size of a 0.02 radius circle at 
the locations and in the layers indicated in the Table 3.2 (see file F3_18.DWG). These 
are the local minima and local maxima of the function F3(x, y) in Equation 2.3, found 
numerically as explained in Chapter 4.

Save this drawing to file F3_18B.DXF as AutoCAD release 12 DXF and then use 
Util~DXF to extract all level curves to the vertex file F3_18B.XY. When plotting the 
F3_18B.XY data, in order for this new graph to exactly match the original one (see Figure 
3.18b), you must set the x- and y-axis limits inside D_2D to the same values as in the initial 
plot, that is, −1.5 and 2.5 over x-axis and −2.5 and 2.5 over y-axis.

Important: To preserve the scale coloring information of the level curves, use the <Ctrl> + 
<F10> option to export their vertices to file rather than option <F10>. Util~DXF will use 
the layer names where these level curves are placed to add color information to the output 
ASCII file.
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FiGURE�3.17� The vector format of the stress–strain curve in Figure 3.16 generated with the F3_17.
DTA file output by Util~TXT based on the F3_17.XY vertex file. Configuration files F3_17.COn 
and F3_17.D2D.
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3.4� Util~PLT�PRoGRAm�FoR�mAniPUlATinG�PLT�FilES
Instead of directly creating a hardcopy of your AutoCAD drawing, it is possible to print 
it to a file with the extension PLT. In this paragraph, it will be explained how to view and 
manipulate such files using the Util~PLT program. The type of PLT files Util~PLT can 
read in are those generated with the HP‑GL ADI 4.2 by Autodesk #7550 driver, available 
from the add printer menu of AutoCAD. Such PLT files have a simple structure, consist-
ing essentially of a succession of PU (pen up), PD (pen down), and PA (pen absolute) com-
mands. Of these, the PA command requires as integers the x and y coordinates of the point 
where the pen will go on the surface of the paper, either in the pen up or pen down mode. 
In other PLT dialects, there are available additional commands for changing color, for 
drawing arches of circle, etc. HP‑GL ADI 4.2 can generate monochrome plots only, with 
circles, arches of circle, splined curves, as well as text characters and symbols represented 
as successions of approximating segments.

The Util~PLT program allows drawings with arches of circle, splines, circles, ellipses, 
texts, etc., to be converted to line segments. Another useful application of Util~PLT 
is to flatten 3D models for the purpose of reducing their size on disk or for preventing 
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FiGURE�3.18� DXF 1:1 level-curve plot of function F3 in Equation 2.3, showing additional edit-
ing done using (a) AutoCAD and replotted using D_2D after conversion to (x, y) format using (b) 
Util~DXF. Configuration files F3_18A.CF3 and F3_18B.CF2.

TAblE�3.2� Local Extrema of Function F3 in Figure 3.18

x y zmin or zmax Layer Name 

1.0008 -1.0467 -9.7496 C-9_7496
-0.5354 -0.9954 +9.0277 C09_0277
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unauthorized access the original solid model. Likewise, surface plots created with D_3D 
can be “flattened” in the ‘hide’ mode for the purpose of further editing.

From earlier discussions, it is evident that when plotting a drawing to the HP‑GL ADI 
4.2 PLT file format, any color information will be lost. It is possible however to write each 
layer (or groups of layers) to separate PLT files and then convert them back to DXF the 
Util~PLT program. You can then combine these DXF files into the same drawings using 
AutoCAD and assign them different colors.

Figure 3.19 is a screenshot of the main view window of the Util~PLT program, show-
ing a 3D part originally created with AutoCAD (see file F3_19.DWG available with the 
book). To toggle between viewing the part at its normal proportions, or stretching it to fit 
the view window like in Figure 3.19, press the <F1> key. If you want to copy the screen to 
DXF, press <F10>. You will be prompted to specify the line type, line thickness (defaults are 
solid line and zero thickness), and the coincidence and colinearity parameters. Same as in 
the D_2D and D_3D programs, these parameters are used when eliminating the polyline 
vertices that almost coincide or of a vertex that is almost collinear with its two neighbors. 
Same as the D_2D and D_3D programs, following a DXF export, Util~PLT will indicate 
the limit values of these two parameters at which polyline optimization begins, by elimi-
nating the near coincident and near collinear vertices. When you set the values of these 
colinearity and coincidence parameters as well as the line thickness, have in mind that a 
DXF copy of the stretched image will fit a box of approximately 640 by 450 units.
2D polylines created inside AutoCAD can be digitized by exporting them to R12 DXF 

first, and then to ASCII as (x, y) pairs using Util~DXF. If only scaling and offsetting are 
required, then the ASCII file that is output by Util~PLT simultaneously with the DXF 
file export may be enough. The scaling and offsetting can in this case be done by editing 

FiGURE�3.19� Util~PLT view of the F3_19.PLT file in the stretch-to-fit mode. To view it at its 
original proportions, you must press the <F1> key. See also the F3_19.DWG file.
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the minimum and maximum limits over x and y from within Util~PLT. You can change 
these limits right after opening the PLT file or you can do this later by pressing the <Back> 
key while in the graphic screen of Util~PLT.

3.4.1� Flattening�and�Retouching�Plots�created�with�D_2D

It was pointed in the previous chapter that AutoCAD can exhibit defects when it comes 
to hidden-line elimination defects (e.g., see Figure 2.24). To correct such imperfections, 
you can print it from AutoCAD to PLT in the hide mode and then export this PLT file to 
R12 DXF using the Util~PLT program. This second DXF file will be a “flattened” version 
of the original plot with its hidden lines removed. When all entities have zero elevation, 
they can be edited much easier using AutoCAD (i.e., the trim and extend commands will 
work on any entity, because they are now of zero elevation). Figure 3.20 shows the same 
Figure 2.24, but with the hidden-line defects repaired as explained next.
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FiGURE�3.20� Flattened version of Figure 2.24 (a) obtained by exporting separately to PLT the level 
curves, meshgrid, and bounding box (b—box not shown) and then overlapping them back after 
being converted to R12  DXF using Util~PLT. Configuration files F3_20Z.CF3, F3_20XY.
CF3, and F3_20BOX.CF3.
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The following entities were extracted from F3_20.DXF and plotted to files in the hide 
mode: Layers 0, $_Body, $_Top_Bottom, together with Border_x, Border_y, 
Constant_x, and Constant_y were plotted to file F3_20XY.PLT. All level-curve lay-
ers (names beginning with C), together with layers 0, $_Body, and $_Top_Bottom were 
plotted to file F3_20Z.PLT. The same 0, $_Body, and $_Top_Bottom layers, together 
with layers _Box, _Divisions, and _ Zero_Lines were plotted to file F3_20Box.
PLT. These three PLT files were convert back to R12 DXF using Util~PLT and then were 
recombined inside AutoCAD. In order to have the values along the three axes available 
as text entities rather than polylines (note that following a PLT export, these are no longer 
editable but rather collections of polylines), the content of layers 0 and _Text in the original 
drawing was copied to the clipboard, then pasted inside the DWG file and overlapped with the 
other components.

The two short oblique lines on the upper-left and bottom-right corners automatically gen-
erated by D_3D (see Figure 3.20) were used as references when doing the ‘move’ and ‘scale’ 
transformations required to exactly overlap the new graph with the original one from D_3D.

Note that the level curves in Figure 3.20 have a smoother appearance than in the origi-
nal Figure 2.24. This is because the level curves were extracted to DXF at a higher resolu-
tion (i.e., 101 × 126 points) using configuration file F3_20Z.CF3, while the meshgrid was 
generated at a lower resolution as set in configuration file F3_20XY.CF3.

Important: When plotting a drawing to PLT, its dimensions and position relative to a paper 
reference frame will be different than in the original AutoCAD drawing. Since the PA 
command uses integer arguments, some loss of accuracy over the original DWG file should 
be expected.

3.4.2� Alphanumerical�character�Discretization

Another potentially useful application of Util~PLT is the discretizing of alphanumerical 
characters (i.e., extracting to file points placed along their contour),  as it will be explained 
next with reference to Figures 3.21 and 3.22.  Similarly one can be discretize circles, arches 
of circle, ellipses, splined polylines etc. 

Begin by generating an AutoCAD drawing containing the entities that you want discretized. 
For the time being, just open file F3_21A.DWG available with the book using AutoCAD (see 
Figure 3.21) and print it to F3_21.PLT. Then open this PLT file using Util~PLT and export 
it to R12 DXF (make sure it is upstretched). Rename this export file F3_21B.DXF. If you 
view it with either AutoCAD or Util~DXF, you will notice that the contours of the three 
characters will appear as polylines. Also note that the border, which originally was a closed 
polyline consisting of four arches of circle, now appears as a multivertex polyline. If addi-
tional editing is necessary, you can always open the F3_21B.DXF file with AutoCAD and 
export it back to R12 DXF after doing the necessary modifications. To see the limitations of 
Util~DXF, open a R12 DXF copy of F3_21.DWG generated from inside AutoCAD (see the 
F3_21A.DXF file available with the book). Note that the C, A, and D characters will not be 
visible at all, while the border consisting of a four-arch polyline is represented as a rectangle.
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(a)

(b)

FiGURE�3.21� (a) View of the F3_21.DWG drawing as it was generated with AutoCAD and 
(b) view of its PLT file (F3_21.PLT) converted using Util~PLT to DXF (the F3_21B.DXF file).
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FiGURE� 3.22� The drawing in Figure 3.21b exported to a Poly####.XY file and plotted using 
D_2D (a) as is and (b) after inserting additional points interpolated linearly using the Util~TXT 
program. Configuration files F3_22A.CF2, F3_22.COn, and F3_22B.CF2.
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The vertices of the polylines inside F3_21B.DXF will be exported to a Poly####.XY file. 
Then, using the Util~TXT program, linearly interpolated points will be added to this XY 
file in a batch conversion operation (i.e., the instructions for several successive transforma-
tions will be all read from the same COn file).

A plot of the initial vertex file generated with Util~DXF (renamed F3_22A.XY) is 
given in Figure 3.22a. Note the six closed polylines that make this new figure (‘C’ and 
the border are one single polyline, while ‘A’ and ‘D’ consist each of two polylines) 
and the several rectilinear portions on this plot without markers. We will employ the 
Util~TXT program to add linearly interpolated points to cover these sections such 
that the distance between every two vertices belonging to the same polyline will not 
exceed five units of length. This can be done either to one polyline at a time as explained 
in paragraph 3.2 or by using a COn file with multiple records—see the F3_22.COn 
file available with the book. This is essentially a concatenation of six regular COn files 
delimited by a record separator ‘--------’, all six instructing Util~TXT to write data 
to the same output file, that is, F3_22B.XY. A plot of file F3_22B.XY thus obtained is 
available in Figure 3.22b.

Important: Once the portion of the input data file between the specified {row start} and 
{row finish} is converted, the record separator is then copied to the output file to act 
as D_2D line separator. If this separator read from the COn file is an empty line, it will not 
be copied to the output data file, and as a consequence, the curves will appear connected 
together in a single polyline.

3.5� �G_3D.LSP�PRoGRAm�FoR�GEnERATinG 3D cURvES�
AnD�SURFAcES�inSiDE�AutoCAD

The G_3D.LSP program is an AutoLISP application that can be used to plot inside 
AutoCAD both meshed surfaces and 3D curves using data read from an ASCII file of exten-
sion G3D. Such a file should consist of (x y z) triplets delimited by spaces (parentheses 
must be included). When the same data are read using the D_3D, D_2D, or Util~TXT 
programs, parentheses are optional, but this format should be strictly followed in case of 
opening them with G_3D.LSP.

In this section, we will look at generating 3D curves and 3D meshed surfaces using the 
G_3D.LSP program. The Util~TXT program discussed earlier allows you to convert x, y 
and x, y, z data sets to 2D and 3D DXF polylines. G_3D.LSP has similar capabilities but in 
addition, it can automatically scale the data, so that the given curve will fit a given 3D plot 
box. Same applies to 3D surfaces, which are true 3D surfaces and can be generated only 
with the G_3D AutoLISP application.

3.5.1� 3D�Polyline�Plotting�Using�G_3D.LSP

Begin by launching AutoCAD and start a new drawing. Save this drawing under the name 
F3_23.DWG. Since G_3D.LSP is menu driven, a copy of the DCL_G3D.DCL dialog defi-
nition file must be available in the current directory. At the AutoCAD command line, 
type ‘upload’ and select G_3D.LSP, then type ‘g3d’ to launch the program and select the 
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desired G3D input file. If this input file consists of a regular grid of samples, it can be plot-
ted both as a curve and as a meshed surface; otherwise, it can be plotted as a curve only.

Load as input file F3_23.G3D available with the book (see also program P3_23.PAS 
in Appendix B used to generate the G3D data file). This will generate the 3D spiral visible 
in Figure 3.23 having a parabolically increasing radius:
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where
nc is the total number of coils
R is the major radius (the radius of the last coil)
p is the pitch of the helix (the distance between two successive coils)

G_3D.LSP can plot the helix as is or it can scale it to fit a rectangular box. In the latter 
case, the x, y, and z limits of the bounding box can be edited by the user, as well as the box 
width and height, but not its length (its x dimension), which has imposed unit value (see 
Figure 3.23b).

Important: If you set the box width to zero, you will obtain a projection of the curve (or 
surface) on the XOZ side plane. If you set the box height to zero, the curve will be projected 

(a) (b)

FiGURE�3.23� (a) Plot of F3_23.G3D data file using G_3D.LSP and (b) the corresponding G_3D.
LSP menu settings.
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on the bottom plane. If you set both the height and width to zero, the curve will be pro-
jected on the YOZ back plane, under the forced assumption that Width (y) = 1 and 
Height (z) = 0.5 (see Figure 3.24a).

The plot box is oriented such that the AutoCAD UCS icon visible in Figure 3.23a is 
placed at the ‘minimum corner’ (i.e., at the point of coordinates −0.5, −0.5, 0.0 in case of 
Figure 3.24) and is oriented in the positive direction of the x-, y-, and z-axes. This is a use-
ful piece of information in case you want to manually add divisions and values along the 
edges of the bounding box.

Examples of edited 3D curve plots are given in Figure 3.24. Figure 3.24a has been 
created by running the G_3D program four times: (i) with default box-size settings, 
(ii) with either Width (y) or Height (z) set to zero, and (iii) with both Width (y) and 
Height (z) set to zero. Figure 3.24b is a rendered view of 3D solid obtained by extruding a 
circle along the 3D spiral originally created with G_3D.LSP. In all these cases, before any 
plot has been generated, the limits along the x-, y-, and z-axes were rounded to the values 
visible on the menu in Figure 3.23b and on the actual plots in Figure 3.24.

A second example of a 3D curve that will be discussed is that of a toroidal spiral (see 
Figure 3.25 and the P3_25.PAS program in Appendix B used to generate the G3D data file 
to plot it). The parametric equations of this curve are
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where
rT is the middle radius of the torus
rS is the radius of the coil
n is the number of coils
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FiGURE�3.24� 3D curves generated with G_3D.LSP and further edited inside AutoCAD. (a) Side 
and bottom projections, and divisions and labels, and (b) a circle extruded along and divisions and 
labels added. See also the drawing files F3_24A.DWG and F3_24B.DWG available with the book.
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Figure 3.25 is a rendering of a solid obtained by extruding a circle along the path of 
Equation 3.6 generated using G_3D.LSP. Because AutoCAD does not accept closed extru-
sion paths, the curve had to be broken at one vertex prior to the actual extrusion.

3.5.2� 3D�Surface�Plotting�Using�G_3D.LSP

Similarly to 3D curves, G_3D.LSP allows surfaces to be generated directly inside 
AutoCAD. G_3D uses the AutoCAD 3dmesh command with vertices read from an ASCII 
file formatted as (xi yj zij). The file extension should be G3D, and the xi values should be 
evenly spaced not arbitrarily spaced. The use of G_3D.LSP application is facilitated by the 
ability of D_3D to export the current plot to a G3D file.

Figure 3.26a is a plot of the four-hump function in Equation 2.2, with 41 × 51 data points 
read from file F3_26.G3D produced using D_3D. The view point and limits over the z-axis 

M
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Y

FiGURE�3.25� Plot of the F3_25.G3D data file using G_3D.LSP. See also the F3_25.DWG draw-
ing file.

(a) (b)

FiGURE�3.26� (a) Plot of F3_26.G3D data file using G_3D.LSP and the (b) corresponding menu 
settings.
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have been rounded from the default values returned by G_3D.LSP. Note that shrinking 
the Zmin and Zmax limits in G_3D will not truncate the function surface. It will rather 
show the 3D surface extending outside the bounding box. Figure 3.27 is a plot of the same 
double-surface plot in Figure 2.42, this time generated using G_3D.LSP. Since AutoCAD 
does not include line and text entities when generating rendered images, the plot in Figure 
3.27b is the result of an overlap of three separate screenshots as shown in Figure 3.28 (see 
also the F3_27.DWG drawing file available with the book).

Important: When representing multiple surfaces on the same graph, you must keep the 
same x, y, and z limits and plot box dimensions for each data file, or otherwise the graph 
will not depict the true intersection of the two surfaces.
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FiGURE� 3.27� Hidden-line (a) and rendered (b) plots of two intersecting surfaces produced 
using G_3D.LSP with data from files F3_27-1.G3D and F3_27-2.G3D.
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FiGURE�3.28� The three AutoCAD screenshots overlapped manually in the order from left to right, 
required to generate the plot in Figure 3.27b.
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3.6� �M_3D.LSP�PRoGRAm�FoR�AUTomATic�3D�moDEl�
GEnERATion�AnD�AnimATion�inSiDE�AutoCAD

The M_3D.LSP is another useful AutoLISP application capable of (i) drawing in speci-
fied layers lines, cylinders, cones and cone frustums, spheres, tori, arrows, and cylindrical 
helixes with specifications read from ASCII file of extension M3D, (ii) writing texts, (iii) 
inserting blocks at positions and with orientations read from the same data file (the blocks 
must already exist in the database of the current drawing), and (iv) creating animation 
frames by turning on and then back off layers 1, 2, 3, etc., of the current drawing (assum-
ing that these layers already exist) and exporting screenshots of these frames to BMP and/
or to AutoCAD slide files of extension SLD. Layers of names other than 1, 2, 3, etc., will 
not be animated and can be used to display immovable background objects. In order to 
easily animate the SLD frame files, M_3D will additionally generate a script file (extension 
SCR). When launched with the AutoCAD script command, this script will load the SLD 
screenshots one by one and display them the amount of MS_delay milliseconds, until the 
user presses the <Esc> key.

3.6.1� Animation�of�DXF�Files�with�multiple�layers�Using�M_3D.LSP

For a first demonstration of M_3D.LSP use, open inside AutoCAD file F3_04003.DXF 
generated earlier by the P3_04.PAS program. Since the drawing appears flipped com-
pared to the original image, you must mirror everything about the OX axis (see Figure 3.29 
and the F3_29.DWG file). In order not to mirror the text together with the rest of the 

x

y

FiGURE�3.29� AutoCAD view of the F3_04003.DXF file generated with P3_04.PAS, after it 
has been mirrored about the OX axis and saved as F3_29.DWG. See also animation file F3_29.
GIF.
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drawing, you must first type ‘mirrtext’ at the command line and change the value of the 
corresponding system variable from 1 to 0.

Once you mirrored the drawing, load M_3D.LSP by typing ‘appload’ at the command 
line. After the program is loaded, type ‘motion’ and confirm the default SCR file name 
(or specify your own). M_3D.LSP will turn off the existing layers named 1, 2, 3, etc. (up 
to at most 999) and then will turn them back on one at a time. Depending on the pro-
gram settings, each frame will be copied to the hard drive as BMP and/or SLD file. The 
name of these BMP and SLD frame files will be the one you specified after issuing 
the M_3D command motion, followed by a three-digit frame number, for example, 001, 002, 
and 003. To animate the SLD files from within AutoCAD, type script at the command line 
and open the SCR file just created. To stop the animation, press the <Esc> key and then 
issue the regen command to refresh the screen. To create a stand-alone animation, you can 
assemble the BMP frames into a video clip using a moviemaker or create an animated GIF 
as explained in Chapter 1.

Important: The generation of SLD animation frames is currently turned off. To activate it, 
open M_3D.LSP using Notepad and remove the semicolon in front of the line that reads 
(setq SLD_output 1) located at the end of the file. The animation frame rate can be 
adjusted by editing the line that reads (setq MS_delay 10). Alternatively, you can edit 
the script file directly, using the replace all function in Notepad.

Important: The executable ~Purge.EXE available with the book (see Chapter 9) allows for 
rapid deleting all PCX, BMP, SLD, and SCR files in the current directory. The program will 
also delete without confirmation all files of extension BAK and OLD, as well as the acad.
err and acadstk.dmp files in the current directory, if they exist.

3.6.2� 3D�model�Generation�with�Data�Read�from�File

The examples that will be discussed next refer to using M_3D.LSP for assembling in sepa-
rate layers 3D objects with specifications read from file, for the purpose of generating ani-
mations with these layers as described earlier.

Available with the book, there are six M3D files: Data file F3_30.M3D intended to work 
with drawing F3_30.DWG and data files F3_31.M3D, F3_31SW.M3D, F3_31WCS1.
M3D, F3_31WCS2.M3D, and F3_31UCS.M3D, all five intended to work with drawing 
F3_31.DWG. These two DWG files (see Figures 3.30a and 3.31a) contain the 3D models that 
form the nonmoving parts of the front of a small wheeled tractor. In association with the 
aforementioned M3D files, they will be used to simulate the motion of the steering linkage 
of the tractor (see Figures 3.30b, 3.31b, and 3.32 and the companion animated GIF files).

Begin by opening file F3_30.DWG (Figure 3.30a), then issue the Auto CAD appload 
command and load M_3D.LSP. Note that in the database of file F3_30.DWG, there is 
already a block named ‘wheel’, which is a model of one of the wheels of the tractor. Type 
‘m3d’ at the command line and select F3_30.M3D. This ASCII file contains the descrip-
tions of the entities that will be assembled to form the front axle with wheels, and steer-
ing linkage components, for the tractor being steered lock-to-lock on a flat surface in 14 
positions. Once the M3D file is uploaded, AutoCAD will generate in separate layers these 
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14 positions (Figure 3.30b). Select a suitable viewpoint and amount of zoom (you can also 
resize the window in which AutoCAD runs) and then type ‘motion’ at the command line 
to generate the BMP frames of the simulation. Animation files F3_30-1.GIF, F3_30-2.
GIF, and F3_30-3.GIF have been produced using such BMP frames, generated for iso-
metric, top view, and front view points of the tractor model.

Note that the files readable by M_3D.LSP can be generated with any computer pro-
gram or by hand using Notepad. To understand how these data files are structured, you 
can study the M3D files available with the book and the M_3D.LSP source code where the 
format and syntax of the acceptable commands are explained. You will learn that spheres 
are fully defined, by their radii plus, the x, y, and z coordinates of their centers. Lines, cyl-
inders, tori, cones, cone frustums, and arrows are fully positioned and oriented by two 3D 
points (the amount of rotation about their axes is not relevant for these entities). Angular 

+
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FiGURE�3.30� Horizontal steer simulation with background drawing F3_30.DWG shown above 
and rendered view of the overlapped layers generated with data from F3_30.M3D (below). See also 
animated GIF files F3_30-1.GIF, F3_30-2.GIF, and F3_30-3.GIF.
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orientation is not specified in case of cylindrical helixes either, although this may cause 
occasional loss of realism in certain simulations. AutoCAD blocks are the only objects for 
which you must specify their insertion point, and the coordinates of two additional points, 
to fully orient them one along the x-axis and one along the y-axis of the reference frame 
attached to the respective block.

Important: All 3D points entered in an M3D file are assumed specified relative to the world 
coordinate system (WCS) of the drawing.

Data file F3_30.M3D includes the number of notations as follows (see also Figure 3.31): 
AB is the drag link of the control linkage, A is the ball joint of the drop arm, B the ball 
joint of the steering arm, and CD is the tie rod of the Ackermann linkage. The calcula-
tions involved in determining the coordinates of these ball joint centers A, B, C, and D 
can be found in the paper by Simionescu and Talpasanu (2007) listed at the end of the 
chapter.

+×

Y

FiGURE�3.31� Bump steer simulation with background drawing F3_31.DWG shown above and ren-
dered view of the overlapped layers generated with data from F3_31.M3D and F3_31SW.M3D 
(below). See also animation files F3_31-1.GIF and F3_31-2.GIF.



Programs�and�Procedures�for�Data�visualization�and�Data�Format�conversion    ◾    125  

3.6.3� Automatic�insertion�of�AutoCAD�blocks

One likely criticism of the aforementioned kinematic simulations is that the steering wheel 
remains immobile as the wheels and the steering linkage move. In the next example, this 
problem will be addressed, while explaining how to instruct M_3D to insert AutoCAD 
blocks at positions and with orientations read from file. This second example is a motion 
simulation of the cross-coupling between axle oscillation and the steering mechanism 
known as bump steer. In this simulation, the steering knuckles are assumed locked and the 
front axle is oscillated causing the arm of the steering box (the drop arm) to move off its 
reference position, which causes the steering wheel to rotate.

We will first edit F3_30.DWG and turn the steering wheel into an AutoCAD block, 
which will be inserted in different rotated positions at the end of the steering column. 
The modified file has been renamed F3_31.DWG and is available with the book. Open 
drawing F3_30.DWG and move the UCS at the end of the steering column, such that it is 
oriented with the y-axis in the longitudinal plane of the vehicle, the x-axis pointing to the 
right, and the z-axis aligned with the steering column. Note that the steering column is 
tilted 30° backward—see Figure 3.31a. Also, the steering wheel is placed in a layer called 
‘Steering_wheel’ that you may want to turn off as you reposition the UCS. Also notice the 
small circle at the end of the steering column that will facilitate positioning of the UCS. 
With the layer ‘Steering_wheel’ on, issue the command block and create a new AutoCAD 
block named ‘S_wheel’. Specify (0,0,0) as its insertion point and select the steering-wheel 
rim, spokes, and spherical hub as its constituents. Move the UCS back to the world position 
and save your drawing as F3_31.DWG.

Now upload the M_3D.LSP application inside F3_31.DWG and type ‘m3d’ at the 
command line and select F3_31.M3D as input. What you will obtain are seven over-
lapped images of the front axle oscillated from −15° to +15° with the steering knuckles 
locked in the straight ahead position, together with the steering mechanism compo-
nents. Note the missing steering wheel, which exists however as a block in the drawing’s 
database, same as the block ‘wheel’. In order to insert the ‘S_wheel’ block in its position 
and rotated due to the bump steer, type ‘m3d’ again and select as input the F3_31SW.
M3D file. If you issue the render command, you should obtain an overlapped image simi-
lar to Figure 3.31b.

The steering-wheel angles correlated with the position of the axle as it oscillates are 
listed in Table 3.3 and have been taken from Simionescu and Talpasanu (2007). When 
calculating these values, the steering-box reduction ratio was assumed to be 16:1, which 
means that the drop-arm displacement will be transmitted at the steering wheel amplified 
16 times. As the axle oscillates with its steering knuckles locked, the rotation of the steering 

TAblE�3.3� Steering-Wheel Angle vs. Axle-Beam Oscillation Angle

Position Number (i) 1 2 3 4 5 6 7 
Axle-beam angle (ψ) −15.00° −10.00° −5.00° 0.00 5.00° 10.00° 15.00°
Steering-wheel angle (φ) −45.120° −35.088° −19.968° 0.00 24.608° 53.648° 86.992°
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wheel can be used as a measure of the cross-coupling between the steering control motion 
and the axle oscillation, also known as the bump steer of the vehicle.

The problem of simulating the steering-wheel motion due to bump steer has been solved 
using a separately generated file F3_31SW.M3D that prescribes the insertion point and 
orientation of the ‘S_wheel’ block for the seven positions in Table 3.3. The Pascal program 
P3_31.PAS listed in Appendix B generates these lines and writes them to file F3_31SW.
M3D. In addition, P3_31.PAS outputs file F3_31UCS.M3D, which can be used to insert 
two arrow entities corresponding to the x- and y-axes of the local reference frame attached 
to the steering wheel.

In the process of calculating the insertion point and orientation of the block ‘S_wheel’, 
and of the end points of the x and y arrows attached to the steering wheel, program 
P3_31.PAS calls the roto-translation procedure RT from unit LibGe3D.PAS four 
times (lines #44 to #47). This is done for the WCS coordinates of the two points attached 
to the steering wheel of local coordinates (400, 0, 0) and (0, 400, 0)—which are also the 
ends of the two arrows—to be transformed as follows: (i) one rotation about the OZ axis 
by the steering-wheel angle φ (see Table 3.3), (ii) one rotation about the OX axis by −30° to 
account for the backward tilt of the steering column, and (iii) one translation to the point 
of WCS coordinates (0.000, 971.338, 658.399) where the steering wheel actually attaches 
to its column.

To exemplify additional capabilities of the M_3D.LSP AutoLISP program, two M3D com-
mand files have been manually generated and are listed on the next page. The F3_31WCS1.
M3D file includes the command lines to generate the three arrows of the global reference 
frame OXY with the origin at point (0,0,0) located in the middle of the axle beam and extend-
ing to points (900,0,0), (0,400,0), and (0,0,500), respectively (see Figure 3.32a).

(a) (b)

Z

Y

FiGURE�3.32� Bump steer simulations with background drawing F3_31.DWG and (a) data from 
F3_31.M3D, F3_31SW.M3D, and F3_31WCS1.M3D and (b) from F3_31.M3D, F3_31SW.M3D, 
F3_31WCS2.M3D, and F3_31UCS.M3D. See also animation files F3_32a.GIF and F3_32b.
GIF.
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(“;”)----------------------------------------------------------
(“;”) M3D command file name:  F3_31WCS1.M3D
(“;”)
(“;”) Draw WCS using cones and lines, and label axes as x, y, z
(“;”)----------------------------------------------------------
(“WCS”) change layer to “WCS”
(CL “BLUE”) change color
(  0.0 0.0 0.0  900.0 0.0 0.0) line
(CO 825.0 0.0 0.0  900.0 0.0 0.0  15.0) cone
(TX “X” 920.0 0.0 0.0  30  0.0) X-axis label
(  0.0  0.0  0.0  0.0 400.0 0.0) line
(CO 0.0 325.0  0.0  0.0 400.0 0.0  15.0) cone
(TX “Y”  0.0 420.0  0.0 30 90) Y-axis label
(  0.0 0.0  0.0  0.0 0.0 500.0) line
(CO 0.0 0.0 425.0  0.0 0.0 500.0  15.0) cone
(TX “Z” 0.0  0.0 520.0 30 0) Z-axis label
(CL “WHITE”) back to regular color

File F3_31WCS2.M3D serves a similar function, that is, to generate the global reference 
frame OXY with the origin in the middle of the axle beam, OX to the right, OY longitudi-
nally backward, and OZ vertically up, but using arrows made of cones and cylinders rather 
than cones and lines. In this other version, the reference frame will remain visible follow-
ing the AutoCAD render command (see Figure 3.32b).

(“;”)----------------------------------------------------------
(“;”) M3D command file name:  F3_31WCS2.M3D
(“;”)
(“;”) Draw the WCS using arrow entities (cones and cylinders)
(“;”)---------------------------------------------------------
(“WCS”) change layer to “WCS”
(CL “BLUE”) change color
(AR 0.0 0.0 0.0  900.0 0.0 0.0  75.0 5.0) WCS x-axis
(TX “X” 920.0 0.0 0.0  30  0.0) WCS x-axis label
(AR 0.0 0.0 0.0  0.0 400.0 0.0 75.0 5.0)  WCS y-axis
(TX “Y” 0.0 420.0  0.0 30 90) WCS y-axis label
(AR 0.0 0.0 0.0  0.0 0.0 500.0 75.0 5.0) WCS z-axis
(TX “Z” 0.0  0.0 520.0 30 0) WCS Z-axis label
(CL “WHITE”) back to regular color

That animation file F3_32B.GIF is a rendered view of the tractor model, rather than 
the result of the hide command. In this case, its frames have been generated manually by 
copying to the clipboard the active AutoCAD screen using the <Alt> + <Prnt Scrn> keys. 
The advantage of drawing arrows using cones and slender cylinders rather than cones and 
plain lines became apparent in this case.

***
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The plotting procedures in unit LibPlots have been introduced, along with the com-
puter programs Util~TXT for manipulating ASCII files and Util~DXF and Util~PLT 
for viewing R12  DXF files. AutoLISP applications G_3D.LSP and M_3D.LSP allow 
true 3D entities to be generated with data read from file. G_3D.LSP generates 2D and 3D 
curves and 3D surfaces , either sized 1:1, or scaled to fit a plot box. In turn, M_3D.LSP can 
automatically generate cylinders, cones, spheres, tori, and AutoCAD blocks and can also 
animate them if they are placed in successively numbered layers. Further examples of the 
use of these programs and procedures are available in the remainder of the book.
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C h a p t e r  4

Root Finding and 
Minimization or 
Maximization of Functions

There is a broad array of algorithms available for finding roots or extrema of 
functions, for multicriteria optimization, or for solving sets of equations (either linear 

or nonlinear). They differ greatly by their ease of implementation, robustness, and speed. 
Usually, these three characteristics do not go hand in hand, that is, a robust algorithm 
will be slow, while one that is fast but less robust will require additional preparation effort, 
like providing information about the derivative, or a good initial guess of the solution to 
be found. It is considered robust an algorithm that converges even for badly chosen initial 
conditions or parameter settings, while a fast algorithm will converge after fewer numbers 
of iterations or function calls—a characteristic desirable particularly if each function eval-
uation takes significant computational effort or when the algorithm is used in real-time 
applications. A number of such algorithms will be discussed in this chapter, including a 
new evolutionary algorithm for exploring the boundary of the feasible space in constrained 
optimization problems.

4.1� �bREnT’S�Zero�AlGoRiThm�FoR�RooT FinDinG�
oF�nonlinEAR�EqUATionS

A popular algorithm for root finding of functions of one variable that does not require 
information about their derivatives is the Zero algorithm due to Brent (1973). It com-
bines root bracketing, bisection method, and inverse quadratic interpolation to converge 
within an interval [a, b] that contains a root of the function. While the details of 
the algorithm will not be presented here, three different implementations available in 
unit LibMath as procedures Zero, ZeroStart, and ZeroGrid will be discussed, 
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based on the problem of finding the roots of two of the functions considered earlier in 
Chapter 1, and renamed here
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As Figures 4.1 and 4.2 show, function F1 has four roots, while F2 has three roots, approxi-
mated with some accuracy by the D_2D program and visible on the two graphs. Here, we will 
investigate the problem of finding better approximations of these roots using Brent’s Zero algo-
rithm, while in the next paragraph, the minima and maxima of the same two functions will be 
evaluated numerically with increased precision over the values visible in Figures 4.1 and 4.2.
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Program P4_01.PAS listed in Appendix B calls procedure Zero from unit LibMath 
with the following arguments: the function name F1, the lower and upper limits of an 
interval [a, b] known to contain a root of the function, and variable x where the root will 
be stored. Note that function F1 was compiled under the Force Far Calls directive 
by placing its name between switches {$F+} and {$F-}. The results returned by the pro-
gram are:

x = 4.98525413059701E-0001   F1(x)= 2.62810606610486E-0016
Function calls=11

Important: The Zero procedure counts the number of function evaluations and stores it 
in the Interface variable nrFev0. If nrFev0 exceeds LimFev0 (currently set to 10,000), 
then the program will terminate without warning. It is therefore advisable to inspect, after 
the search is over, the value of the function-call counter nrFev0 as a way of  verifying 
if the algorithm stopped before reaching a root. Evaluating the function at the returned 
solution x (which should be very close to zero) is another way of verifying that the algo-
rithm converged.

The second program named P4_02.PAS and listed in Appendix B illustrates the use 
of a variant of the Zero algorithm named ZeroStart, which can find the root clos-
est to a given point (or initial guess) that must be assigned to variable x prior to calling 
ZeroStart. In addition to the initial guess x, the user must specify the size of the con-
stant steps (stored in variable Step) that the algorithm will take to inspect the function 
to the left and to the right of the initial guess. If this step size is too small, there will be too 
many function evaluations performed in the process of bracketing a root. Conversely, if the 
step size is too big and the function is multimodal, the nearest root can be missed during 
the bracketing process.

In the example considered, the root of function F2 closest to point 1.0 is to be found. 
Note that the search to the right of the initial guess must go uphill first (i.e., increasing 
from zero) before it reaches the desired root, that is, 1.732051. The search to the left of 
the initial guess results in root 0.0 that will be discarded, however, because it is farther 
from 1.0 than 1.732051. You can verify that for an initial guess outside the interval [−2, 2] 
and for the same step size of magnitude 0.1, the ZeroStart procedure will not return a 
valid solution because it is unable to leap over the singular points at −2 and +2. The results 
output by program P4_02.PAS are:

x= 1.73205080756888E+0000   F2(x)= 6.01949046163952E-0016
Function calls=37

Program P4_03.PAS in Appendix B calls procedure ZeroGrid that can return up 
to 52 roots of a given function within the specified interval [a, b]. If there are fewer than 
52 roots found, the remaining components of vector X will be assigned the constant InfD 
equal to 1.0E100 and defined in unit LibMath. A grid size specified by the user (set to 25 
in the program—see lines #24 and #33) is used to partition the interval [a, b] and bracket 
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the zeros of the function over the respective grid. The results are indeed close to the values 
visible on the graphs in Figures 4.1 and 4.2:

x1= 4.98525413059701E-0001  F1(x1)=-1.94289029309402E-0016
x2= 1.53732723677864E+0000  F1(x2)=-7.26632295999785E-0016
x3= 2.57225426015191E+0000  F1(x3)=-5.87203896618149E-0016
x4= 3.39189309000975E+0000  F1(x4)= 9.21571846612679E-0016
x5= 1.00000000000000E+0100  F1(x5)=-3.00000000000000E+0000
Function calls=62

x1=-1.73205080756888E+0000  F2(x1)=-6.01949046163952E-0016
x2= 0.00000000000000E+0000  F2(x2)=-0.00000000000000E+0000
x3= 1.73205080756888E+0000  F2(x3)= 6.01949046163952E-0016
x4= 1.00000000000000E+0100  F2(x4)= 1.00000000000000E+0100
x5= 1.00000000000000E+0100  F2(x5)= 1.00000000000000E+0100
Function calls=363

4.2� �bREnT’S�mEThoD�FoR�minimiZinG�FUncTionS�oF�onE�vARiAblE
Equally useful to root finding is the problem of determining the minimum and maximum 
points of functions of one variable. Minimization and maximization in any dimension are 
related since the minima of f(x) are the maxima of –f(x). Here, we will consider the problem of 
finding the minimum points of a scalar function of one variable using Brent’s method, which 
is a relatively fast algorithm that does not require derivative information. In searching for a 
minimum over a given interval, depending on the local behavior of the function, Brent’s method 
switches between a more robust but slow golden section search and a faster parabolic interpo-
lation minimization (Brent 1973). Three implementations of Brent’s method gathered in unit 
LibMin1 will be considered, that is, procedures Brent, BrentStart, and BrentGrid, in 
conjunction with finding the minima and maxima of F1 and F2 in Equations 4.1 and 4.2.

Program P4_04.PAS in Appendix B calls procedure Brent to minimize function F1 
over the interval [1, 3]. It returns the minimum of the function vF and its abscissa x. 
Convergence is controlled by constants Tol = 10–16 and Eps = 10–16 and by the function-
call counter nrFev1 = 50,000 (i.e., the search will stop if nrFev1 exceeds LimFev1). 
These are default values set in the implementation section of unit LibMin1. With these 
settings, the results obtained are:

x= 2.03510727084125E+0000   F1(x)=-1.26219569494521E+0000
Obj. function calls=41

The companion program P4_05.PAS in Appendix B employs procedure BrentStart 
that searches around an initial guess x provided by the user until a minimum is bracketed, 
and then procedure Brent is called to accurately locate the minimum point. At the begin-
ning, the search inside procedure BrentStart moves at a constant step in the descending 
direction of the function, until either nrFev1 exceeds half of the maximum allowed num-
ber of function calls LimFev1, or a minimum is bracketed. Then, the search is performed 
in the opposite direction starting from the same initial x value, until another minimum is 
bracketed, or the search reaches a point farther away than the previously found minimum. 
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In both situations, if a minimum is bracketed, Brent procedure is called to refine the search.
The results returned by program P4_05.PAS are:
x= 2.03510727426347E+0000   F1(x)=-1.26219569494521E+0000
Obj. function calls=25163

Note that in case of function F1 and initial point at 0.75, the algorithm was able to reach 
the minimum at 2.035107 that required going uphill first, although the majority of func-
tion calls were spent uselessly moving downhill, to the left of the starting point x = 0.75.

The third program in the minimization series named P4_06.PAS (see Appendix B) uses 
the BrentGrid procedure to isolate all minima within the interval [a, b]. It is called with 
functions F1, F2 and their negatives so that all their minima and maxima are located. The 
minimum bracketing scheme implemented in the BrentGrid procedure is relatively sim-
ple, similar to the way extrema are identified by D_2D (see Figures 4.1 and 4.2), that is, the 
interval [a, b] is divided into npts equally spaced points and the function value at each of 
these points is compared with its neighbors. If the middle point is lower than its neighbors, 
then a minimum is bracketed. Once a minimum is bracketed, Brent procedure introduced 
earlier is called to finish the search. In Press et al. (1989), an adaptive step-size minimum 
bracketing procedure is described, which is more effective than the one discussed here. The 
results returned by the program P4_06.PAS are:

x1= 2.03510727427766E+0000  F1(x1)=-1.26219569494521E+0000
Obj. function calls=57

x1= 1.00113562665303E+0000  F1(x1)= 7.23822399222707E+0000
x2= 2.99520656838562E+0000  F1(x2)= 2.24447267408327E+0000
Obj. function calls=93

x1=-2.00000000000000E+0000  F2(x1)=-1.12589990684263E+0015
x2=-1.27582078565695E+0000  F2(x2)=-7.38017459656381E-0001
x3= 2.00000000000000E+0000  F2(x3)=-1.12589990684262E+0015
x4= 2.71519452607298E+0000  F2(x4)= 3.52034518609217E+0000
Obj. function calls=245

x1=-2.71519452734705E+0000  F2(x1)=-3.52034518609217E+0000
x2=-2.00000000000000E+0000  F2(x2)= 1.12589990684262E+0015
x3= 1.27582078559014E+0000  F2(x3)= 7.38017459656381E-0001
x4= 2.00000000000000E+0000  F2(x4)= 1.12589990684263E+0015
Obj. function calls=243

Note that the BrentGrid procedure was able to locate all minima and maxima of F1 
and F2 after a reasonably small number of function calls. These include the ±∞ asymptotes 
of F2 (approximated with values in the range of ±1015) occurring at points x = –2 and x = 2.

4.3� �nElDER–mEAD�AlGoRiThm�FoR�mUlTivARiATE�
FUncTion�minimiZATion

In this and the following sections, the problem of minimizing a scalar function of two or 
more variables is discussed. This is required in many instances, like curve fitting to data 
and solving sets of equations (linear or nonlinear). Both unconstrained functions, and 
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the more commonly encountered in practice case where the function to be minimized is 
subjected to constraints, are considered.

One popular direct search method of function minimization is the Simplex method due 
to Nelder and Mead. It is called direct because the algorithm does not use the derivative 
of the function. A version of this algorithm is implemented under the name fminsearch in 
MATLAB and is also available in Press et al. (1989) as procedure Amoeba.

The Nelder–Mead Method uses the concept of a Simplex, which is a geometrical figure 
having n + 1 vertices when the search occurs in an n-dimensional space, for example, 
when minimizing a function of two variables the simplex is a triangle and when the 
function has three variables the simplex is a tetrahedron. The search begins with an 
initial nondegenerate simplex that is transformed such that the vertex with the highest 
function value (the worst vertex) is eliminated. These transformations are (i) reflection 
of the simplex away from the worst vertex; (ii) in case a reflection turned the highest 
point into a new lowest point, an expansion in the same direction will immediately be 
performed; (iii) contraction of the simplex along one direction away from the highest 
vertex; and (iv) shrinkage of the simplex along n directions towards the lowest vertex. 
Transformations (i), (ii), and (iii) are done relative to the centroid of the n best vertices. 
For example, the first search step recorded in Figure 4.3a and d is a reflection, the first 
step in Figure 4.3c is a contraction, and the first step in Figure 4.3d is a shrinkage. See 
also the animated GIFs that accompany these figures for a better understanding of how 
the simplex morphs as it advances towards a minimum point. The searches recorded in 
Figure 4.3 have as objective finding the minima and maxima of the four-hump function 
introduced in Chapter 2 are restated here as:
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Possible stopping criteria of the algorithm are (i) exceeding a certain number of 
function calls or iterations, (ii) the volume of the simplex becomes too small, or (iii) 
there is not much difference in the function value between the best and the worst 
vertices of the simplex.

To illustrate how the Nelder–Mead Simplex algorithm works, program P4_07.PAS 
has been written and is available with the book. It minimizes function F3 in Equation 4.3 
using the nelderMead procedure called from unit LibMinn. As the search progresses, 
P4_07.PAS writes the coordinates of the simplex to an ASCII file as D_2D animation 
frames, with the initial coordinates being randomly generated within the given lower and 
upper bounds –1.5 ≤ x ≤ 2.5 and –2.5 ≤ y ≤ 2.5 (see vector variables Xmin and Xmax).

Note that there may be instances where the simplex will diverge away from an optimum 
or may stagnate around a saddle point or in a valley. In such cases, it is useful to restart the 
search, either with a totally new simplex or with one that has some of the highest vertices 
replaced with new values, possibly randomly generated.

To provide you with a more refined function-minimization tool, the following features 
have been included in procedure nelderMead: (i) The simplex is forced to remain within 
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the interval XXmin...XXmax. (ii) The possibility of specifying a starting point that is 
assigned to one vertex of the simplex, while the coordinates of the remaining vertices are 
randomly generated. If no initial guess is available, the entire initial simplex will be randomly 
generated. (iii) The possibility of reading all or part of the vertices of the initial simplex from 
an ASCII file. If the initial simplex read from file is incomplete, its remaining vertices will 
be randomly generated. (iv) The possibility of pausing the search by pressing the <Esc> key 
and allowing the user to inspect the current solution; the user can either accept the current 
solution or resume the search until one of the programmed stopping conditions is attained.
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FiGURE�4.3� Histories of Nelder–Mead simplex search with the simplex converging to the two minima 
(a and b) and the two maxima (c and d) of the function in Equation 4.3. Configuration files F4_03A.
CF2 through F4_03D.CF2. See also animations F4_03a.GIF through F4_03d.GIF.
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Program P4_08.PAS  in Appendix B calls procedure nelderMead with the initial 
simplexes read from ASCII files P4_08-1.SPX and P4_08-2.SPX. These were chosen 
such that the search will advance to the local minima (Figure 4.4a) and local maxima 
(Figure 4.4b) of the function. Note that the search in Figure 4.4a begins with a contrac-
tion of the simplex, while the search in Figure 4.4a begins with a shrinkage of the simplex. 
Regarding the level curves in Figures 4.3 and 4.4, these are read by D_2D from ASCII file 
F3.XY, which is a duplicate of the file F3_18B.XY in Chapter 3.

The results output by P4_08.PAS are (variable PlsMns is assigned on line #30 of the 
program):

For PlsMns= +1, the minimum of the function is obtained as
x1 = 1.00075122494239E+0000
x2 =-1.04666091613729E+0000
F_opt=-9.74956322430359E+0000
Obj. function calls=137

For PlsMns= -1, the maximum of the function is obtained as
x1 =-5.35496066732408E-0001
x2 =-9.95424083908040E-0001
F_opt= 9.02774166941257E+0000
Obj. function calls=120

In order to locate the global minimum and global maximum of function F3, a dif-
ferent strategy is proposed in program P4_09.PAS (see Appendix B). The search is 
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FiGURE�4.4� Histories of Nelder–Mead simplex searches done with program F4_08.PAS, converg-
ing to the local minima (a) and local maxima (b) of the function. Configuration files: F4_04A.CF2 
and F4_04B.CF2. See also animations F4_04a.GIF and F4_04b.GIF.
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repeated several times with new initial simplexes that were randomly generated, and 
the best solution found among these separate searches is retained and displayed at the 
end of the run.

The results returned by this new program are (constant PlsMns is defined on line 
#10 of the program—see Appendix B):

For PlsMns= +1, the results are
x1 =-5.28706765640623E-0001
x2 = 5.13746292321373E-0001
F_opt=-1.28850039129209E+0001
Obj. function calls=11913

For PlsMns= -1, the results are
x1 = 1.00024221604051E+0000
x2 = 1.02264234759275E+0000
F_opt= 1.48245012784894E+0001
Obj. function calls=11632

On rare occasions, program P4_09.PAS may crash if a large value is transmitted to the 
exponential functions inside Fn (i.e., a number too large for Pascal to handle may be gen-
erated, and floating point overflow will occur—see next section on constraint handling).

Important: By setting the variable WriteOutn in procedure nelderMead to the logical 
value TRUE, the user can stop the search and inspect the best solution found so far, with 
the possibility of retaining this solution and halting the program or resuming the search.

4.4� �hAnDlinG�conSTRAinTS�in�oPTimiZATion�PRoblEmS
Most real-world problems require finding minimum or maximum of functions while 
simultaneously satisfying a number of constraints. The most common of these, called 
side constraints, are boundaries imposed to the design variables, that is, xi min ≤ xi ≤ xi max. 
Additional relationships between some or all variables of the objective function may also 
be imposed, both as inequalities and as equalities. Because of their more frequent encoun-
ter and the more convenient handling, only the case of inequality constraints will be con-
sidered here.

Let us assume the problem of minimizing a function introduced earlier (i.e., the hyper-
bolic paraboloid in Figure 2.28):

 F x y xy4 0 1( ) ., =  (4.4a)

subjected to the following constraint:
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with rT = 1, rS = 0.2, and n = 6. This is equivalent to forcing the search for an optimum point 
within the closed contour delimited by parametric equations:
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where 0 ≤ θ ≤ 2π.
Due to the symmetry of both the function and its constraint, there will be two distinct 

but equal minima (Figure 4.5a). These are located on the boundary between the feasible 
and infeasible spaces, where the closed curve of Equation 4.5 intersects the second diago-
nal. Similar observations can be made about the two maxima of the constrained func-
tion, which are mirror of the minimum points and are located where the first diagonal 
intersects the boundary of the feasible space.

The level-curve plot in Figure 4.5a has been generated with D_3D using the file F4_05A.
D2D with 501 × 501 data points, produced by the program F4_05A.PAS  (see listing in 
Appendix B).

For solving of the optimization problem defined by Equations 4.4a and b, program 
P4_10.PAS has been written and is listed in Appendix B. To account for the imposed 
constraint, an easy to implement version of the penalty function method was adopted, 
where function Fn returns a very large value (i.e., InfD defined in unit LibMath) if the 
constraint is not satisfied. This simple approach was found to work well in many instances, 
being in addition very convenient to program. In case of functions of two variables, the 
added benefit of this constraint handling approach is that there is no difference between 
programming the function for minimum finding purposes, and generating the data for 
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FiGURE� 4.5� Plot of function 4.4a constrained by inequality 4.4b (a) and how file F4.XY has 
been generated as the overlap and trim inside AutoCAD of the function in Equation 4.4a and the 
parametric curve in Equation 4.5 (b). Configuration files to redo these plots: F4_05A.CF3 and 
F4_05B.CF3 and F4_05B.CF2.
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plotting it using D_3D (see program F4_05A.PAS in Appendix B). Remember however 
that this form of the penalty method is not suitable for handling equality constraints.

Note on line #9 of program P4_10.PAS the definition of constant PlsMns that can be 
assigned either value +1 in case minimization is performed or –1 in case of maximization. 
This constant multiplies the feasible values of objective function Fn (see line #27).

Also note on line #31 the use of variable WriteOutn defined in Interface section 
of unit LibMinn, which is assigned the logical value FALSE. This will turn off the search 
status, which means that it will not be possible to pause the search and inspect the best 
solution found so far by the procedure nelderMead. 

Because of the mentioned symmetry of both the function and its constraint, identifying 
any of the minimum or maximum points of the function allows the other extrema to be 
verified through exact calculations. Their values are as follows:

x = 0.84852813;  y =-0.84852813;  F_opt=-0.72;
x =-0.84852813;  y = 0.84852813;  F_opt=-0.72;
x = 0.84852813;  y =-0.84852813;  F_opt= 0.72;
x =-0.84852813;  y =-0.84852813;  F_opt= 0.72;

The search history in Figure 4.6 and the accompanying animated GIF file F4_06.GIF 
have been generated with program P4_11.PAS (listing not included, but available with the 
book), which has a structure similar to P4_07.PAS used to produce Figures 4.3 and 4.4.

To reduce the size of the data file used by D_2D to plot the background when ani-
mating Figure 4.6 and to increase the resolution at which the boundary of the feasible 
space is plotted, the following procedure has been implemented. Firstly, a low-reso-
lution level-curve plot of function F4 has been generated using D_3D and then was 
exported to DXF. The boundary of the feasible space was created separately by plotting 
the parametric curve in Equation 4.5 using the data file output by program F4_05B.
PAS (see Appendix B) and in turn was exported to DXF. The two DXF files were opened 
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FiGURE� 4.6� History of Nelder–Mead simplex searches according to program P4_11.PAS. 
Configuration file F4_06.CF2. See also animated GIF file F4_06.GIF.
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in separate DWG files and then were overlapped as visible in Figure 4.5b. Finally, the level 
curves were trimmed to look as shown in Figure 4.5a. The trimmed level curves of the con-
strained function F4 were exported from AutoCAD to R12 DXF. Using the Util~DXF 
program, the vertices of these polylines were finally exported to ASCII file F4.XY. This 
smaller ASCII file was ultimately used to plot the background curves in Figure 4.6 that 
show the Nelder–Mead simplex search histories.

A second constrained optimization problem considered is that of a speed reducer 
design, translated by Li and Papalambros (1985) into minimizing the following objective 
function:
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subjected to side constraints:
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Program P4_12.PAS listed in Appendix B implements a multistart solution method to 
this optimization problem, which uses procedure nelderMead called from unit LibMinn. 
Note that the initial guess is updated after each trial by adding a random perturbation to 
the previously calculated optimum (see lines #52 to #54) and by truncating out of the deci-
mals of the previous search result XX (line #59—note the use of procedures MyVal and 
MySt called from unit LibInOut). Truncating out of decimals also helps with reporting the 
search results, because fewer number of significant digits are retained by the user. Also note 
the use of the BackUpFile command on line #67 that changes the extension of ASCII file 
Results from TXT to OLD, so that the results obtained previously are not immediately lost.

After several runs of program P4_12.PAS, one of the best solutions found was

Obj. function calls=6008446
F_opt= 2.35245309676356E+0003
x1= 2.60000000000000E+0000
x2= 7.00000000000000E-0001
x3= 1.70000000000000E+0001
x4= 7.30020000000000E+0000
x5= 7.30020000000000E+0000
x6= 2.90000000000000E+0000
x7= 5.00000000000000E+0000

As the above results indicate, the global minimum of F5 occurs for the lowest possible 
values of x1 through x7 and it equals 2.35244784872076E+3. This suggests that the opti-
mum is bounded, that is, all constraints are active at the minimum point.
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4.5� �EvolUTionARy�AlGoRiThm�FoR�boUnDED-oPTimUm�SEARch
Optimization algorithms, like that of Nelder and Mead discussed earlier, do not always return 
the global minima, due to either the multimodal or noisy behavior of the objective func-
tions, or the form of its constraints. Such problems can be better handled using evolutionary 
algorithms, which employ mechanisms inspired by biological evolution, that is, reproduction, 
mutation, recombination, selection, and survival of the fittest applied to a population of solu-
tion. The individuals in this population are points in the design space that are evolved using 
the mechanisms listed earlier, such that the function value (also known as fitness) at these 
points is improved. There is a wealth of literature, including numerous online resources, 
which those less familiar to the subject of evolutionary computation may want to consult.

Here, a novel two-population evolutionary algorithm will be presented, which has the 
ability to explore the boundary between the feasible and the infeasible spaces of objective 
function. In many practical problems, like it was the case of the speed reducer of Li and 
Papalambros (1985) considered earlier, the optimum is located right on the boundary of 
the feasible space. A number of implementations of this new female–male evolutionary 
algorithm as it was called are discussed in Simionescu et al. (2006). These implementa-
tions will be abbreviated F–M(μF, μM), where μF is the size of the female population (the 
feasible individuals) and μM is the size of the male population (the infeasible individuals).

The main steps of a generic female–male evolutionary algorithm are as follows:

Step 1: Generate an initial female population of μF individuals and an initial male popula-
tion of μM individuals as uniform random points within the extended intervals:

 
x k x x x k x xi i i i i imin max min max max min,− − −ext ext⋅( ) + ⋅( )   (4.8)

with 1 ≤ i ≤ n and n as the number of variables of the objective function. In this equation, coef-
ficient kext with values greater-equal zero, assigned by the user, controls the amount with which 
the infeasible space is expanded, so that an initial male population can be created and evolved. 
This is particularly important when only side constraints are imposed in an optimization prob-
lem. If additional constraints are present, the infeasible region may be sufficiently large and 
coefficient kext can be set to a smaller value, including zero. Evidently, when the objective func-
tion is evaluated, the side constraints are verified as they were posed in the original problem.

Step 2: Rank females based on their fitness using complete or partial sorting, or just iden-
tify the best-fit female (the α-female).

Step 3: Mutate females by replacing a fraction RepF of the lowest ranked females with 
randomly generated new ones.

Step 4: Mutate males by replacing a fraction RepM of their population with randomly gen-
erated new males.

Step 5: (Crossover) Form female–male pairs by assigning one male to each female based 
on their closeness in the n-dimensional Euclidean space. Begin with the α-female and con-
tinue in a rank-decreasing order until all available males are assigned to a female. In other 
implementations called polygamous-males algorithms, males are permitted to recombine 
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with more than one female. Also possible is to do multifemale crossover, which can be 
unrestricted (i.e., a male can recombine with any number of females in one generation), 
restricted (when the number of crossovers a male can perform is limited to a fraction of 
the total female population), or monogamous (a male cannot recombine during the same 
generation more than once). After female–male pairs are formed, offspring are generated 
using midpoint or random crossover. Offspring can be females (if they result inside the 
feasible space) or can be males (if they result outside the feasible space).

Step 6: (Selection) The selection step is performed concomitant with offspring generation 
as follows: if the child results outside the feasible space, he replaces his father uncondition-
ally; if the child is a female, she replaces her mother either unconditionally or only if there 
is an improvement in fitness.

Stopping criteria: Steps 2 through 6 are repeated until an imposed condition is satisfied, 
that is, either exceeding a maximum number of function calls or generations, attaining 
an imposed threshold fitness, or recording the same α–female over a given number of 
generations.

Program P4_13.PAS (source code available with the book) is an implementation of a 
monogamous version of the algorithm, with μF females and μM males, or F–M(μF, μM) 
in short. The F–M(μF, μM) algorithm minimizes function F4 in Equation 4.4a subjected to 
constraints 4.4b. If you set the variable nrTrials equal to one, the program also writes to 
ASCII file F4-FmM.POP the female and male individuals, together with the marker type, 
color information, and animation-frame separators.

Using D_2D with ASCII files F4.XY and F4-FmM.POP as inputs (the former to plot 
as background the level curves in Figure 4.5a, and the latter to animate the female and 
male populations as they evolve), Figure 4.7 and animation file F4_7-1.GIF have been 
generated. F4_7-1.GIF uses the PCF frames exactly as they were generated by D_2D, 
while the frames in the companion file F4_7-2.GIF are the BMP screenshots output 
using M_3D.LSP based on the DXF file generated by D_2D, with each frame written to a 
separate layer—see also the F4_7.DWG drawing file available with the book.

The F4-FmM.REZ ASCII file produced by setting nrTrials to 1000 contains the 
results of 1000 search trials and was used to generate the plots in Figure 4.8. For the 
expansion coefficient kext = 0.04, population sizes μF = 4 and μM = 8, replacement rates 
RepF = 0.15 and RepM = 0.25, and threshold value −0.071, the success rate was around 94%. 
The success rate was measured as the number of solutions below the threshold value for a 
given maximum number of function calls.

The search report appended to the F4-FmM.REZ file included the following additional 
information:

Best = -0.0719999990
Worst= -0.0661771431
Avg. = -0.0717428861
Total function calls =  1002324
Average function calls =  1002
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As you experiment with P4_13.PAS, you will realize that the success rates differ 
depending on the sizes of the female and male populations, extension coefficient kext, cross-
over settings, and degree of sorting of the female population (complete, partial, or just 
α-female identification). You may want to try different female–male crossover schemes or 
multiparent recombinations, as well as to optimize functions of more than two variables, 
like F5 in Equations 4.6 and 4.7.
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FiGURE�4.8� Overlap of the 1000 search results read from F4-FmM.REZ, detailed around the two 
minima in Figure 4.5a. Configuration files F4_08A.CF3 and F4_08B.CF3.
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4.6� �mUlTicRiTERiA�oPTimiZATion�PRoblEmS
The examples considered so far dealt with minimizing only one function at a time. 
There are practical problems where two or more objective functions must be mini-
mized and/or maximized simultaneously in the presence of constraints. Such prob-
lems are called multicriteria or multiple objective optimization problems. Because the 
imposed objectives are in most cases conflicting, in a multicriteria problem, there is 
not one single solution, but rather a family of solutions called Pareto set or Pareto 
frontier. Simply put, a point in the design space is considered a Pareto solution to the 
problem (i.e., belongs to the Pareto frontier) if no single criterion (i.e., single objec-
tive function) can be improved without worsening at least one other criterion. In the 
remainder of this section, two bicriterion optimization problems in two variables will 
be considered, and some basic concepts related to multiobjective optimization will be 
discussed.

4.6.1� �cantilever�beam�Design�Example

Figure 4.9 shows a cantilever beam loaded with a down force F = 15,000 N applied at the 
free end. The beam is hallow and of imposed length L = 1000 mm. The outside diameters 
of the two sections have fixed values, that is, D1 = 100 mm and D2 = 80 mm. The material 
of the beam is assumed to have an elastic modulus E = 206 · 103 N/mm and yield strength 
σY = 220 N/mm.

The two variables allowed in this design are the length of the thinner section x1 and the 
internal diameter of the beam x2. The design problem is to simultaneously minimize the 
total volume of the beam f1(x1, x2) and the deflection at its free end f2(x1, x2):
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FiGURE�4.9� Staggered cantilevered beam in the bicriterion optimization problem.
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Additionally, (i) the maximum bending stress at cross sections A and B should remain 
below the yield strength σY of the material, which translates into the following inequality 
constraints (the stress raiser effect at cross section B due to the change in the diameter is 
ignored):
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Further constraints imposed to this problem are (ii) length x1 should be positive and less 
equal than L and (iii) the inner diameter x2 of the beam should range between 40 and 
75 mm:
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4.6.2� �Design�Space�and�Performance�Space�Plots

Insight into a given multicriteria optimization problem can be gained by inspecting its fea-
sible space and its performance space prior to optimization. The feasible space (also known 
as space of the design variables or design space) consists of the points that satisfy all the con-
straints. The performance space is a mapping of the feasible space points into the space of the 
objective functions. For problems of two variables, plotting the feasible space can be relatively 
easily done. Likewise, plotting the performance space in a bicriterion problem is also possible.

For more than two criteria or design variables, plotting the feasible space and perfor-
mance space requires employing some dimension reduction method as discussed in several 
references listed at the end of this chapter.

Program P4_14.PAS in Appendix B has been written to generate the data required to 
represent graphically using D_2D, the design space and performance space of the canti-
lever beam problem introduced earlier. The design space [x1min…x1max] × [x2min…x2max] is 
divided into a nx1 × nx2 grid, and then the constraints and the two objective functions 
are evaluated at these nodes. If at a given grid point all constraints are satisfied, then 
the corresponding (x1, x2) pair is written to F4_10A.D2D file, while the corresponding 
f1(x1, x2) and f2(x1, x2) values are written to F4_10B.D2D file. The plots generated using 
these data files are visible in Figure 4.10a and b. The left boundary of the performance 
space in Figure 4.10a is exactly the Pareto frontier of the optimization problem. Since no 
information was retained about how a point (f1, f2) on the Pareto frontier is associated 
with a point (x1, x2) in the feasible space, the optimization problem is not yet solved.

Note in Figure 4.10a that to its far right the Pareto front exhibits a short horizontal 
section. The points along this horizontal section are called week Pareto solutions because 
criterion f1 can be further improved while criterion f2 remains unchanged.

Alternative to evaluating the design space over a regular grid when producing the data 
points for plotting the feasible and performance spaces, random points can be generated 
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within the same [xmin…xmax] intervals. This second approach was implemented in program 
P4_15.PAS listed in Appendix B, which generates files F4_12A.D2D and F4_12B.D2D, 
used in plotting the feasible space and performance space of a second bicriterion optimiza-
tion problem, that is, that of minimizing
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while satisfying the inequality
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As expected, the design space is an ellipse centered at origin and of semiaxes 1.118 and 1.0 
(see Figure 4.11a). Since function f2(x1, x2) is multimodal and therefore nonconvex, the prob-
lem itself is nonconvex and so is its performance space as Figure 4.11a shows. The fact that the 
performance space is nonconvex will render deterministic multicriteria optimization meth-
ods unable to identify the full range of the Pareto frontier (Osyczka 2002; Deb 2009).

4.6.3� �Pareto�Front�Search

There are a number of algorithms available in literature for solving multicriteria optimiza-
tion problems. Most of these work by combining the individual objective functions into 
a single function called preference function, which is minimized using known methods. 
Examples of preference functions are weighted sum of the objectives, normed weighted sum 
of the objectives, and mini–max methods.

Metaheuristics (like evolutionary algorithms and simulated annealing) permit obtaining 
a multitude of Pareto solutions to the problem in one run. These algorithms can also cope 
better with nonconvex problems. By contrast, in weighted sum of the objectives methods, 
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FiGURE�4.10� Plot of the feasible space (a) and performance space (b) of the cantilevered beam 
problem. Configuration files F4_10A.CF2 and F4_10B.CF2.
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the search must be repeated for several combinations of weighting coefficients, each run 
generating a separate point on the Pareto frontier. Moreover, for nonconvex problems like 
the one in Equations 4.14 and 4.15, only the convex regions of the Pareto frontier can be 
located by such an algorithm (Osyczka 2002).

Program P4_16.PAS listed in Appendix B finds the convex portions of the Pareto 
frontier of the second optimization problem earlier. It implements a normed weighted sum 
of the objectives with a preference function of the form
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In this equation, f1min, f1max, f2min, and f2max are the global minima and maxima of functions 
f1(x1, x2) and f2(x1, x2), respectively, evaluated separately in the presence of constraint (4.15), 
while w1 and w2 are weighting coefficients where w1 + w2 = 1. These upper and lower limits 
of functions f1 and f2 are evaluated in program P4_16.PAS by executing the code between 
lines #35 and #52, while the Pareto frontier points are searched for and written to file by 
executing lines #54 to #76.

A plot of the Pareto frontier points overlapped with the feasible and performance spaces 
of this second bicriterion optimization problem is available in Figure 4.12. Note that indeed 
the nonconvex portion of the Pareto frontier has not been mapped in these diagrams. 
Similar plots of the Pareto frontier points overlapped with the feasible and performance 
spaces of the cantilever beam design problem are given in Figure 4.13. The Pareto front 
points were in this case determined using program P4_17.PAS listed in Appendix B.
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A number of procedures for finding the zeros and minimum or maximum of functions 
of one variable have been presented, all based on algorithms originally developed by Brent. 
For minimizing functions of more than one variable, Nelder–Mead algorithm and the 
corresponding procedure nelderMead were discussed. A two-population  evolutionary 
algorithm capable of exploring the boundary between the feasible and infeasible regions of 
the design space has been further presented, together with illustrative animation graphs. 
At the end of the chapter, the normed weighted sum of the objectives method of bicriterion 
optimization problem solving, and two techniques for plotting design space and perfor-
mance space in multicriteria optimization problems have been presented.
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C h a p t e r  5

Procedures for Motion 
Simulation of Planar 
Mechanical Systems

In this chapter, a number of procedures gathered in units LibMecIn and LibMec2D 
available with the book are presented as a preamble to Chapter 6 where the kinematic 

analysis of planar linkage mechanisms using Assur groups is discussed. Some of these 
procedures are also used in the synthesis and analysis of cam-follower mechanisms, the 
subject of Chapter 7. They allow for automatic graphical representation and animation of 
rotary and linear motors, of offset points and complex shapes attached to mobile links, 
and for visualizing the velocity and acceleration vectors and of loci of moving points. 
Procedure Spring used in the elastic pendulum example in Chapter 3 is also available 
from unit LibMec2D. At the end of the chapter, two approaches to generating mechanical 
system simulations accompanied by dynamic plots with scan lines and scan points will 
be discussed, one using the procedures in unit LibPlots and the other using the D_2D 
program.

5.1� �SAmPlE�PRoGRAm�USinG�ThE�LibMec2D�UniT�
AnD�PRocEDURES�Locus�AnD�CometLocus

P5_01.PAS, listed in Appendix B, although not of a mechanical system simulation type, 
has the main elements of an animation program that uses LibMec2D procedures. It was 
used to produce Figure 5.1 and the companion animated GIF files F5_01a.GIF and 
F5_01b.GIF available with the book. The program calculates the x and y coordinates of a 
number of discrete points belonging to an array of n Archimedean spirals (see Equation 
1.11), and outputs each animation frames to layers 1, 2, 3, etc., of file F5_01.DXF. Additionally, 
it writes the n spirals as polylines to the background layers p1 to p8 of the same F5_01.
DXF file. Remember that layers with names integer positive numbers are interpreted by 
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M_3D.LSP as animation frames. Any other layer including 0, Ground, and locus lay-
ers will remain on and thus the entities drawn to these layers will appear as background 
images.  

Procedure OpenMecGraph on line #17 of program P5_01.PAS launches the graphic 
system and establishes the limits of the workspace. Procedure InitDXFfile (line #18) 
opens for writing file F5_01.DXF and copies to it the content of the DXF header file DXF.
HED. Procedure SetTitle on line #19 sets the simulation title that is written to layer 
Ground of the output DXF file once, and to the computer screen every time procedure 
newFrame is called (line #24).   In addition, procedure newFrame holds the current 
frame on for 500 ms and then refreshes the screen.  It also indexes the current DXF layer 
number.  

To simulate the circles with progressively increasing diameter as they move along the 
n spirals, procedure SetJointSize (line #25) is called after each animation frame with 
its argument defined as function of the frame number. In any other simulation program, 
SetJointSize should be called only once, somewhere at the beginning of the program. 
If the default size (i.e., 4) and appearance (i.e., full view) of the joints and motors are satis-
factory, then there is no need to call SetJointSize at all. If SetJointSize is called with 
a negative argument, then the motors and joints in that simulation will be represented in 
a simplified manner and without hiding the overlapped joints (see Figure 5.2). Note that 
the points generated by calling procedure PutPoint and the ground points drawn by 
procedure PutGPoint are one unit smaller than the argument of the SetJointSize.

Archimedean spirals

FiGURE�5.1� Accumulated frames of a polar array of Archimedean spirals with variable size mark-
ers output by program P5_01.PAS. See also animation file F5_01a.GIF and F5_01b.GIF.
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Procedure Locus on line #31 of program P5_01.PAS is responsible for writing to 
separate temporary files of double (extension $2D) the x and y coordinates of each curve. 
The color of these curves is defined by the equation iC MOD 15 + 1, where iC is the 
curve number. Also note that the name of the layers where the polylines are written begins 
with letter “p”, so they remain on all the time in an animation done using the M_3D.LSP 
AutoLisp application. If procedure CometLocus is used instead, when animated with 
M_3D.LSP, the Archimedean spirals will appear growing as the eight points move out-
wards.  No temporary $2D file will be generated this time.  

Animation continues until the user presses the <Esc> key.  If line #35 is replaced with line 
#36, then the animation is repeated until the global variable MecOut becomes FALSE (which 
is caused by calling procedure CloseMecDXF on line #22) and the user presses <Esc>.  

5.2� �JoinTS�AnD�AcTUAToRS�AvAilAblE FoR mEchAnicAl�
SySTEm�SimUlATion

Figure 5.2 is a summary of actuators and joints useful in the simulation of planar mechanical 
systems as they are output by the procedures in units LibAssur and LibMecIn. The actua-
tors can be of rotational type (i.e., powered cranks) and of linear type (i.e., hydraulic or pneu-
matic cylinders, screw jacks, solenoids, membrane actuators) and can be either attached to the 
ground or to another moving link. The RTRTR and RTRR powered dyads discussed in detail 
in Chapter 6 also utilize linear motors that are represented graphically in the same manner.

The position, velocity, and acceleration equations of the rotary and linear motors in Figure 5.2 
have been programmed in a number of procedures available from unit LibMecIn. In the 
remainder of this chapter the kinematic equations of these motors and their computer imple-
mentations, that is, procedures Crank, gCrank, Slider, and gSlider, will be discussed. 
Also discussed in this chapter are Pascal procedures: Ang3PVA, Ang4PVA, Base, gShape, 
LabelJoint, Link, ntAccel, Offset, OffsetV, PutAng, PutDist, PutGPoint, 
PutGText, PutPoint, PutRefSystem, PutText, PutVector, Shape, VarDist; 
these are useful in the simulation and analysis of planar mechanical systems.

Important: In case there is interest only in the position results or only in the position and 
velocity results, procedures Crank, gCrank, Slider, gSlider, Offset, OffsetV, 
Ang3PVA, and Ang4PVA can be called with their velocity and/or acceleration input and 

FiGURE� 5.2� Rotary and linear motors and turning and sliding joints used by procedures 
LibMecIn, LibAssur, and LibMec2D. Their full view or simplified representation and relative 
size are controlled by calling procedure SetJointSize.
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output variables set to InfD (a constant defined in unit LibMath and equal to 10100). 
A generic variable named _ (i.e., the underscore symbol) declared in the interface section 
of unit LibMath and set equal to InfD should be used for this purpose.

5.2.1� kinematic�Analysis�of�input�Rotational�members

A turning link, named crank when it rotates continuously and in the same direction or 
rocker when it oscillates back and forth, is the most common input element in mechanism 
kinematics. Figure 5.3 shows two instances of such a link, where joint A can be attached 
either to a mobile element (Figure 5.3a) or to the ground (Figure 5.3b).

The general case where the crank is jointed to a mobile member (i.e., the velocity and 
acceleration of point A in Figure 5.3a are nonzero) will be considered first. The kinematic 
equations for the case where the crank is pin jointed to the ground (Figure 5.3b) can be 
easily derived by setting the velocity and acceleration of joint center A to zero.

At any instant of time in a simulation, the following parameters are assumed known:

• The coordinates xP and yP relative to the fixed reference frame OXY of a point P of 
the moving member to which the crank is attached.

• The projections �xP  and �yP  of the velocity of P onto the fixed reference frame.

• The projections ��xP  and ��yP  of the acceleration of P onto the fixed reference frame.

• The coordinates xA and yA of the joint center A relative to the fixed reference frame.

• The projections �xA and �yA of the velocity of point A onto the fixed reference frame.

• The projections ��xA and ��yA of the acceleration of point A onto the fixed reference 
frame.

• The crank length AB.

• The angle φ between an extension of the reference line PA and the link AB.

(a) (b) 

B

A

O

P

O

A

Y

B

X X

   (t)

θ(t)

Y

   (t)

FiGURE�5.3� Schematic for calculating the displacement, velocity, and acceleration of a point B of a 
rotational element AB when it is jointed (a) to a mobile member PA and (b) to the ground.
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• The angular velocity �ϕ of the crank relative to link PA.

• The angular acceleration ��ϕ of the crank relative to link PA.

For these given inputs, we will calculate the following parameters:

• The coordinates xB and yB of point B relative to the fixed reference frame.

• The projections �xB and �yB of the velocity of B onto the axes of the fixed reference 
frame.

• The projections ��xB and ��yB of the acceleration of B onto the axes of the fixed reference 
frame.

By projecting the vector equation OB = OA + AB onto the axes of the OXY reference 
frame, coordinates xB and yB result as follows:

 

xB xA AB j

yB yA AB j

= + +
= + +





cos

sin

( )

( )

θ
θ

 (5.1)

where θ is the angle measured between OX and vector PA (see Figure 5.3a); θ can be easily 
calculated using the known coordinates of points A and P.

Differentiating Equation 5.1 with respect to time yields the projections of the linear 
velocity of point B onto OX and OY:
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ϕ θ ϕ θ
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 (5.2)

which, by using the results in Equation 5.1, further writes
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The components of the linear acceleration of B are obtained by differentiating Equation 5.3:
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 (5.4)

Angle θ and its time derivatives �θ and ��θ occurring in these equations can be calcu-
lated using the position, velocity, and acceleration components of points P and A, as 
it will be explained later in this chapter when procedures AngPVA and VarDist are 
introduced.
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In case of a rotational member jointed to the ground as shown in Figure 5.3b, angle θ and 
its first and second derivatives �θ and ��θ become zero. Therefore, Equation 5.1 simplified to
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= +

= +
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ϕ
 (5.5)

while Equations 5.4 and 5.5 become
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and finally
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5.2.2� Procedures�Crank�and�gCrank

Equations 5.1, 5.3, and 5.4 have been programmed in procedure Crank part of the unit 
LibMecIn. The procedure calculates the position, velocity, and acceleration of point B of 
a crank AB that rotates relative to a mobile element PA. If the graphic system is on, the pro-
cedure also draws in color Color (less if Color equals zero or the BGI constant Black) a 
line connecting A and B, and by calling procedure Motor from unit LibMec2D, it draws 
at point A a moving rotary-motor symbol. If Color is a negative number, then only the 
motor symbol will be drawn in color -Color. Angle φ and its time derivatives �ϕ and ��ϕ are 
measured counterclockwise from an extension of line PA shown by procedure Crank as a 
short segment drawn on the side of the motor opposite to point P (see Figure 5.3a).

Procedure Crank has the following heading:

procedure Crank(Color: Integer; xP,yP, vxP,vyP, axP,ayP, xA,yA, 
vxA,vyA, axA,ayA, Phi, dPhi, ddPhi, AB: double; var xB,yB, 
vxB,vyB, axB,ayB: double);

The correspondence between the formal parameters of the procedures and the notations 
used in Equations 5.1 through 5.4 and in Figure 5.3a is as follows:

Input parameters of procedure Crank:

-16…16 xP yP �xP �yP ��xP ��yP xA yA �xA �yA ��xA ��yA

Color xP yP vxP vyP axP ayP xA yA vxA vyA axA ayA

φ �ϕ ��ϕ AB
Phi dPhi ddPhi AB
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Output parameters of procedure Crank:

xB yB �xB �yB ��xB ��yB

xB yB vxB vyB axB ayB

The companion procedure gCrank with the heading 

procedure gCrank(Color: Integer; xA,yA, Phi, dPhi, ddPhi, AB: 
double; var xB,yB, vxB,vyB, axB,ayB: double);

calculates the position, velocity, and acceleration of point B of a crank AB for the case 
where joint A is connected to the ground (Figure 5.3b). The correspondence between pro-
cedure’s formal parameters and the notations used in Equations 5.5 through 5.7 and Figure 
5.3b is summarized in the following, where angle φ and its derivatives �ϕ and ��ϕ are mea-
sured counterclockwise from the OX axis.

Input parameters of procedure gCrank:

-16…16 xA yA φ �ϕ ��ϕ AB

Color xA yA Phi dPhi ddPhi AB

Output parameters of procedure gCrank:

xB yB �xB �yB ��xB ��yB

xB yB vxB vyB axB ayB

If the graphic system is on, procedure gCrank draws in color Color (less if Color 
is zero) a line connecting points A and B, and by calling procedure gMotor from unit 
LibMecGr, it draws at point A a grounded rotary-motor symbol. If parameter Color is a 
negative number, then only the motor symbol will be drawn in color -Color.

To exemplify the use of procedures Crank and gCrank, program P5_04.PAS (see 
Appendix B) has been written. The program animates a ground crank of lengths AB in 
series with a second crank of length BC and also plots the locus of the end point C of the 
second crank, which is an epicycloid of equation
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 8π
 (5.8)

The relative size of the joints, motors, and actuators in an animation was set by calling 
procedure SetJointSize on line #15. Sample screenshot of the simulations generated 
by program P5_04.PAS are available in Figure 5.4, done for SetJointSize called with 
both a negative and a positive argument. Corresponding to these figures are animation files 
F5_04a.GIF and F5_04b.GIF produced using the M_3D.LSP application. When gener-
ating the frames of animated GIF file F5_04b.GIF, procedure Locus on line #31 has been 
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replaced with CometLocus, which has the effect of showing in AutoCAD the locus of 
point C as it progresses, same as on the computer screen during the first run. A third ani-
mated GIF named F5_04C.GIF has also been generated to illustrate the effect of calling 
procedures gCrank with its parameter Color set to a negative value.

Note that the open-loop mechanism in Figure 5.4 can be assumed to be a simple serial 
manipulator of the SCARA type (Craig 2004), and the program P5_04.PAS actually 
solves the direct kinematics problem of this manipulator.   See also Chapter 9 where the 
subject of SCARA robot kinematics is discussed in more detail.  

5.2.3� kinematic�Analysis�of�input�Translational�members

Translational input members (also called linear actuators or linear motors) come in a vari-
ety of configurations. Since the hydraulic or pneumatic cylinders are the most common 
embodiment of a linear motor, a generic representation as shown in Figure 5.5 will be assumed. 

(b) (a) 

FiGURE�5.4� Epicycloid generated with procedures gCrank and Crank arranged in series shown 
in (a) full view and (b) simplified joint. See also animated GIF files F5_04a.GIF and F5_04b.GIF.

(a) (b)
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A A
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θ(t)
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Y
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BS(t)

Q

θ

FiGURE�5.5� Schematic of a linear motor attached via its connecting points P and Q (a) to a mobile 
member and (b) to the ground.
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The cylinder that guides to the inside the piston can be attached to a mobile element or can 
be connected to the ground.

Referring to Figure 5.5a, the analysis will be performed for the situation where the 
velocity and acceleration of two points A and Q of the cylinder are nonzero (i.e., the linear 
motor is mounted on a mobile element), while the kinematic equations of the linear motor 
attached to the ground will be derived as a particular case.  

At any instant of time of the simulation, the following parameters are assumed known:

• The coordinates xP, yP and xQ, yQ relative to the fixed reference frame OXY of two 
points located on the cylinder’s axis.

• The projections �xP  and �yP  of the velocity of point P onto the fixed reference frame.

• The projections ��xP and ��yP  of the accelerations of point P onto the fixed reference frame.

• The projections �xQ  and �yQ  of the velocity of point Q onto the fixed reference frame.

• The projections ��xQ and ��yQ of the accelerations of point Q onto the fixed reference frame.

• The piston displacement s and its time derivatives �s and ��s  (all measured relative to 
the member to which it is attached and assumed positive when oriented as shown in 
Figure 5.5).

• The piston length AB.

Given these parameters, it is required to determine the following variables:

• The coordinates xB and yB of point B relative to the fixed reference frame OXY.

• The projections �xB  and �yB of the velocity of B onto the axes of the fixed reference frame.

• The projections ��xB and ��yB of the acceleration of B onto the axes of the fixed reference 
frame.

• The coordinates xA and yA of point A of the piston relative to the fixed reference frame.

• The projections �xA and �yA of the velocity of A onto the axes of the fixed reference frame.

• The projections ��xA and ��yA of the acceleration of A onto the axes of the fixed reference 
frame.

By projecting the vector equation OB = OP + PB on the OXY reference frame, the coordi-
nates of point B are obtained as follows:

 

xB xP s

yB yP s

= + ⋅
= + ⋅





cos

sin

θ
θ

 (5.9)

where the angle θ between vector PB and axis OX (Figure 5.5a) can be easily calculated.
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Differentiating Equation 5.9 once with respect to time, the components of the linear 
velocity of point B are obtained as
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and by combining in the position Equation 5.9, they further become
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The components of acceleration of point B are determined by differentiating Equations 5.11:
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Angle θ and its time derivatives �θ and ��θ can be calculated using the known coordinates 
xP, yP, xQ, and yQ and their time derivatives as explained in Section 5.3.

The coordinates xA and yA of point A of the piston are obtained by projecting vector 
equation OA = OP + PA onto the axes of the fixed reference frame OXY:
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The components of the linear velocity of point A are obtained through differentiation as
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Using the results in Equation 5.13, these two equations become
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The components of the linear acceleration of point A are obtained by differentiating 
Equation 5.15:
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 (5.16)

If the linear motor is mounted to the ground as shown in Figure 5.5b, then �θ and ��θ will 
be both zero. The coordinates of points B and A can be calculated using Equations 5.9 and 
5.13 given earlier , while the scalar components of their velocities and accelerations are the 
following:
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and
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5.2.4� Procedures�Slider�and�gSlider

Equations 5.9, 5.11 through 5.13, 5.15, and 5.16 have been programmed inside procedure 
Slider that calculates the position, velocity, and acceleration of points A and B of the a 
linear actuator, when its cylinder is attached to a mobile element at P and Q. The positions, 
velocities, and accelerations of points P and Q must be provided as inputs, together with 
the displacement s of the piston and its first and second time derivatives �s  and ��s . The head-
ing of procedure Slider is

procedure Slider(Color: Integer; xP,yP,vxP,vyP,axP,ayP, xQ,yQ, 
vxQ,vyQ, axQ,ayQ, AB, s, ds, dds: double; var xB,yB, vxB,vyB, 
axB,ayB, xA,yA, vxA,vyA, axA,ayA: double);

and the correspondence between its formal parameters and the notations used earlier are 
listed next:

Input parameters of procedure Slider:

-16…16 xP yP �xP �yP ��xP ��yP xQ yQ �xQ �yQ ��xQ ��yQ

Color xP yP vxP vyP axP ayP xQ yQ vxQ vyQ axQ ayQ

 
AB s �s ��s
AB s ds dds
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Output parameters of procedure Slider:

xB yB �xB �yB ��xB ��yB xA yA �xA �yA ��xA ��yA

xB yB vxB vyB axB ayB xA yA vxA vyA axA ayA

If the graphic system is on, procedure Slider draws in color Color (less if it is equal 
to zero or the BGI constant Black) the piston and the cylinder, similar to Figure 5.5a. 
If either distance AB or distance PQ is less than five times the joint size, then the  procedure 
will draw a slider block at B and its sliding axis PQ. If Color is a negative number, then 
only the slider block will be drawn without its axis.

The companion procedure gSlider calculates the position, velocity, and acceleration 
of points A and B of the piston for the case when the cylinder is fixed to the ground. The 
procedure implements Equations 5.9, 5.10, 5.17, and 5.18 and has the following heading:

procedure gSlider(Color:Word; xP,yP,xQ,yQ, PQ, s,ds,dds:double; 
var xB,yB, vxB,vyB, axB,ayB, xA,yA, vxA,vyA, axA,ayA:double);

while and the correspondence between its formal parameters and the notations used ear-
lier is as follows:

Input parameters of procedure gSlider:

0…16 xP yP xQ yQ PQ s �s ��s
Color xP yP xQ yQ PQ s ds Dds

Output parameters of procedure gSlider:

xB yB �xB �yB ��xB ��yB xA yA �xA �yA ��xA ��yA

xB yB vxB vyB axB ayB xA yA vxA vyA axA ayA

If the graphic system is on, procedure gSlider draws in color Color (less if it equals 
zero or the BGI constant Black) the cylinder connected to the ground and its piston simi-
lar to Figure 5.5b. Similarly to procedure Slider, if distance AB or distance PQ is less than 
five times the joint size, the procedure will draw a slider block at B and its sliding axis PQ. 
If points P and Q coincide, then the procedure assumes the sliding axis to be horizontal.

For both procedures, the piston and cylinder diameter or block size can be controlled 
by calling procedure SetJointSize as shown in the sample program P5_06A.PAS (see 
Appendix B) and in program P5_06B.PAS available with the book. Both programs use 
procedures gSlider and Slider to simulate the motion of two perpendicular linear 
motors connected in series (see Figure 5.6), where the piston of the second motor traces a 
Lissajous curve of equation
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Sample outputs generated by these two programs are given in Figure 5.6 and in the ani-
mated GIF files F5_06a.GIF, F5_06b.GIF, and F5_06c.GIF. Program P5_06B.PAS 
illustrates the case when the two linear motors are drawn as slider blocks. By calling the pro-
cedure Slider in this second program with its color parameter set to Cyan, the simulation 
changes as shown in animation file F5_06c.GIF, that is, the sliding axis will not be drawn.

Note the use in procedures LabelJoint and PutPoint of the underscore character 
to specify subscripts (lines #41 to #49).   The same subscript labeling is available in pro-
cedures PutAng, PutDist, and PutRefSystem, and it is done internally by calling 
procedure PD_text from unit LibDXF. 

You may want to experiment with circular frequencies other than 2π and 4π and phase 
angles other than ±π/4 in Equation 5.19 and observe their effect upon the appearance of 
the locus of point B2. Pen plotters and computer numerically controlled machines (CNC 
milling machines, torch, or plasma cutters) operate on the principle illustrated by program 
P5_06A.PAS. Planar Cartesian coordinate robots, also known as linear robots, have sim-
ilar configurations (Craig 2004).  

5.3� �PoSiTion,�vElociTy,�AnD�AccElERATion�oF�PoinTS�
AnD�movinG�linkS

In the kinematic simulation of mechanical systems, it is frequently required to determine the 
angular position, velocity, and acceleration of a moving link for which the scalar coordinates 
of two points are known, together with their first and second time derivatives, or to determine 
the position, velocity, and acceleration of a point connected to a moving body of known motion.

Let us assume a rigid link defined by points A and B in planar motion. The case where 
the coordinates of a point P attached to this link are specified relative to a local reference 
frame will be discussed in more detail. Figure 5.7a shows such an arrangement, where local 

P1P1

(a) (b)
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P2P2

P1

A1

A2

B2

B1

B1

B2

Q2

Q1

Q2

FiGURE�5.6� Two sliders in series tracing a Lissajous curve generated using programs P5_06A.PAS 
(a) and P5_06B.PAS (b). See also animation files F5_06a.GIF and F5_06b.GIF.



164    ◾    computer-Aided�Graphing�and�Simulation�Tools�for�AutocAD�Users

reference frame O1X1Y1 has its O1X1 axis oriented from A to B and its origin is coincident 
with point A, and where offset point P is specified using local coordinates (x1P, y1P). 

If lengths AP and BP are specified instead, the location of point P can be determined 
as the intersection of two circles centered at A and B and of radii AP and BP. In order to 
distinguish between the two intersection points of the two circles, the orientation of the 
triangular loop APB has to be additionally specified. This second approach is conveniently 
solved using procedure Int2CirPVA discussed in Chapter 6 and will not be detailed here 
beyond its computer implementation in procedure OffsetV.

At any instant of time, the followings parameters are assumed known:

• The coordinates xA and yA of point A relative to the fixed reference frame OXY.

• The projections �xA and �yA of the velocity of point A onto the fixed reference frame.

• The projections ��xA and ��yA of the acceleration of point A onto the fixed reference frame.

• The coordinates xB and yB of point B relative to the fixed reference frame OXY.

• The projections �xB  and �yB  of the velocity of point B onto the fixed reference frame.

• The projections ��xB and ��yB of the acceleration of point B onto the fixed reference frame.

• The local coordinates x1P and y1P of a point of interest P attached to the moving link 
relative to the moving reference frame O1X1Y1 (Figure 5.7a) or distances AP and BP 
together with the orientation of triangular loop ABP (Figure 5.7b).

The unknown kinematic parameters are

• The coordinates xP and yP of point P relative to the fixed reference frame OXY.

• The projections �xP and �yP  of the linear velocity of point P onto the fixed reference frame.

• The projections ��xP and ��yP  of the acceleration of point P onto the fixed reference frame.

(a) (b) 
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FiGURE�5.7� Schematic for calculating the position, velocity, and acceleration of a point P attached 
to a moving link AB knowing the local coordinates (a) x1P and y1P or distances AP and BP and the 
orientation of the (b) APB loop.
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For the case illustrated in Figure 5.7a, we project vector equation OP = OA + AP onto the 
axes of the fixed reference frame and obtain:
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where angle θ is measured between axis OX and vector AB (see Figure 5.7a) and is given 
by the formula
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Note that the same two Equations 5.20 can be obtained by applying a rotation by angle θ to 
point P of coordinates x1P and y1P, followed by a translation from (0, 0) to (xA, yA).

Differentiating Equation 5.20 once with respect to time, the projections of the velocity 
of point P onto the axes of the fixed reference frame are obtained:
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equivalent to
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The angular velocity �θ of the moving member AB can be determined by writing equa-
tions similar to (5.23) for point B instead of P, the velocity of which is known:
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yielding the following two equivalent equations:
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The x and y components of the acceleration of point P were obtained by differentiating 
Equations 5.23, that is, 
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equivalent to

 

�� �� �� �

�� �� �� �

xP xA yP yA xP xA

yP yA xP xA

= − ⋅ − − ⋅ −

= + ⋅ − −

θ θ

θ θ

( ) ( )

( )

2

2 ⋅⋅ −





 ( )yP yA
 (5.27)

Note that Equations 5.23 and 5.27 are the scalar form of Euler’s equation for the velocity 
and acceleration of a rigid body in 2D motion (Goldstein et al. 2001).

The angular acceleration of the AB member is determined by extracting ��θ from 
Equations 5.26 for the particular case of point P coinciding with point B:
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In order to avoid a possible division by zero, depending on the value of denominators 
(yB – yA) and (xB – xA), either the first or the second of Equations 5.25 and 5.28 should be 
used when calculating �θ and ��θ.

5.3.1� Procedures�Offset�and�OffsetV

Equations 5.20, 5.23, and 5.27 have been implemented in procedure Offset0 part of unit 
LibMec2D, which calculates the position, velocity, and acceleration of a point P attached 
to a mobile link, giving its relative coordinates x1P and y1P. Procedure Offset0 is not 
visible outside unit LibMec2D, but it is used by procedure Offset. The companion pro-
cedure OffsetV is based on the procedure Int2CirPVA in unit LimMec2D and uses 
distances AP and BP to point P and the orientation of the triangular loop APB as inputs 
(see Figure 5.7b). Both procedures have graphic output capabilities and are easily inter-
changeable. Their headings are as follows:

procedure Offset(Color:Integer; Style:char; xA,yA, vxA,vyA, 
axA,ayA, xB,yB, vxB,vyB, axB,ayB, x1P,y1P:double; var xP,yP, 
vxP,vyP, axP,ayP:double);

and

procedure OffsetV(Color:Integer; Style:char; xA,yA, vxA,vyA, 
axA,ayA, xB,yB, vxB,vyB, axB,ayB, AP,BP, APB:double; var xP,yP, 
vxP,vyP, axP,ayP:double);
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The correspondence between the formal parameters of these two procedures and the 
notations used in Equations 5.20 through 5.28 and in Figure 5.4 are as follows:

Input parameters of procedure Offset:

−16..16 T, I, /, \, V, A xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB x1P y1P

Color Style xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB x1P y1P

Input parameters of procedure OfsetV:

−16..16 T, I, /, \, V, A xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB AP BP ABP

Color Style xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB AP BP ABP

Output parameters of procedures Ofset and OfsetV:

xP yP �xP �yP ��xP ��yP

xP yP vxP vyP axP ayP

If the graphic system is on, apart from returning the coordinates of point P and of their 
first and second time derivatives, these procedures plot on the computer screen and to 
the current DXF file additional graphic entities that help locating point P (see Figure 5.8 
and programs P5_08A.PAS and P5_08B.PAS in Appendix B). If parameter Style 
equals “/” or “\”, the procedures will draw a line connecting points A and P or points B and 
P, respectively. If parameter Style equals “I” or “T”, a line from point P perpendicular 
to AB will be drawn, while for Style equals “T”, a line connecting points A and B will be 
additionally drawn. If Style equals “V”, then polyline APB will be drawn, while if Style 
equals “A”, then the complete triangle APB will be drawn. If parameter Color is positive 
and procedure SetJointSize is called with a positive argument (i.e., the joints are set 
to full view), then triangle ABP will be filled with color. Otherwise, a transparent triangle 

P P P

PP

B B B

BBB

AA

A A A

A

FiGURE�5.8� Various representations of an offset point P attached to a crank done by procedures 
Offset and OffsetV. See programs P5_08A.PAS and P5_08A.PAS and animation files 
F5_08a.GIF and F5_08b.GIF.
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ABP will be drawn. If the parameter Color is set equal to 0, or Style is assigned the 
blank character, then there will be no line or triangle drawn.

5.3.2� Procedures�AngPVA,�Ang3PVA,�and�Ang4PVA

Equations 5.21, 5.25, and 5.28 can be employed to calculate the angular position, angular 
velocity, and angular acceleration of a rigid link for which the position, velocity, and accel-
eration of two points A and B attached to it are known. These equations were implemented 
in procedure AngPVA with the heading

procedure AngPVA(xA,yA, vxA,vyA, axA,ayA, xB,yB, vxB,vyB, 
axB,ayB:double; var Theta, dTheta, ddTheta:double);

The correspondence between the formal parameters of the procedure and the notations 
used earlier are summarized in the following tables:

Input parameters of procedure AngPVA:

xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

Output parameters of procedure AngPVA:

θ �θ ��θ
Theta dTheta ddTheta

When calling procedure AngPVA, variable Theta must carry a meaningful value, that 
is, either zero when AngPVA is called for the first time or the previous value of Theta. 
This is required to ensure the continuity of the returned angle, done by calling proce-
dure nghbrAng described in Chapter 3. Procedure AngPVA is also used by procedures 
Crank, Slider, and Offset and by procedures Ang3PVA and Ang4PVA. Procedure 
Ang3PVA returns the angle defined by points A, B, and C (i.e., by vectors BA and BC) 
and its first and second time derivatives, while procedure Ang4PVA calculates the angle 
between vectors AB and CD and the first and second time derivatives of this angle. These 
procedures have the following heading:

Ang3PVA(xA,yA, vxA,vyA, axA,ayA, xB,yB, vxB,vyB, axB,ayB, xC,yC, 
vxC,vyC, axC,ayC:double; var Theta, dTheta, ddTheta:double);

Ang4PVA(xA,yA, vxA,vyA, axA,ayA, xB,yB, vxB,vyB, axB,ayB, xC,yC, 
vxC,vyC, axC,ayC, xD,yD, vxD,vyD, axD,ayD:double;  var Theta, 
dTheta, ddTheta:double);

The user must provide the x and y coordinates of points A, B, C or A, B, C, and D together 
with the scalar components of their velocities and accelerations. The same requirement 
about angle Theta carrying an initial meaningful value or the previous value of the angle 
applies to procedures Ang3PVA and Ang4PVA as well.
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Important: The procedures in unit LibMec2D assume that all angles are in radians (rad), 
that angular velocities are in rad/s, and that angular accelerations are in rad/s2.

Important: In procedures Offset, OffsetV, AngPVA, Ang3PVA, and Ang4PVA, it is 
essential that distances AB and BC or AB and CD remain constant. Otherwise, the time 
derivatives returned by these procedures will not be correct. The cases where these dis-
tance do not remain constant are addressed in the next section.

5.4� �PoSiTion,�vElociTy,�AnD�AccElERATion�in�
RElATivE�moTion:�PRocEDURE�VarDist

A more general case than the one discussed earlier is that where the distance between 
points A and B does not remain constant (see Figure 5.9). Given coordinates xA, yA, and 
xB, yB of these two points relative to the OXY frame, and the OX and OY projections of 
their velocities and accelerations (i.e., �xA, �yA, �xB , �yB , ��xA, ��yA, ��xB, and ��yB), we want to find 
the distance r between these points, the angle θ formed by line AB with the OX axis. Also 
of interest are the first and second time derivatives of the variable distance r and of angle θ, 
that is, �r , ��r , �θ, and ��θ, respectively.

Distance r can be calculated with the known formula:

 r xB xA yB yA= ( ) + ( )− −2 2  (5.29)

To determine the velocity and acceleration components, we project the vector equation 
AB = OB − OA onto the axes of the fixed reference frame OXY and obtain
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⋅ =
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X

r(t)

θ(t)

2θr

FiGURE�5.9� Schematic for calculating the variable distance r and angle θ determined by moving 
points A and B, and of the time derivatives �r , ��s , �θ, and ��θ. Also shown in dashed line is the Coriolis 
acceleration vector of the slider moving relative to its guide.
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where angle θ can be calculated with Equation 5.21. Differentiating Equation 5.30 once 
with respect to time yields a set of two linear equations in the unknowns �r  and �θ:
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which combined with Equation 5.30 become
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Accelerations are obtained by differentiating Equation 5.32

 

�� �� �� ��

��

� � � � �r r yB yA yB yA xB xA

r

⋅ ⋅ ⋅ ⋅( ) ⋅( ) =
⋅

cos sinθ−θ θ−θ − −θ − −

ssin cosθ θ θ θ − θ − −+ ⋅ ⋅ + ⋅( ) + ⋅( ) =





� � � � ��� �� ��r xB xA xB xA yB yA

 (5.33)

These are equivalent to the following set of two linear equations in the unknowns ��s  and ��θ:
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The systems of two linear equations (5.32) and (5.34) can be easily solved using Cramer’s 
rule or the inverse matrix method, and together with Equations 5.29 and 5.21 have been 
implemented in procedure VarDist with the heading:

VarDist(xA,yA, vxA,vyA, axA,ayA, xB,yB, vxB,vyB, axB,ayB:double;
var r, dr, ddr, Theta, dTheta, ddTheta:double);

The correspondence between the formal parameters of the procedure and the notations 
used earlier is as follows:

Input parameters of procedure VarDist:

xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

Output parameters of procedure VarDist:

r �r ��r θ �θ ��θ
r dr ddr Theta dTheta ddTheta
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In order to ensure the continuity of angle Theta returned by VarDist, same as for 
procedure AngPVA, variable Theta must be assigned a seed value, that is, zero, when the 
procedure is first called or the previously calculated value of angle Theta.

Important: If points A and B overlap and distance r becomes zero, then angle θ cannot be 
evaluated. Additionally, because of the way the distance between points A and B is calcu-
lated, no distinction can be made between negative and positive r values. Therefore, point B 
should always remain on the same side of point A (Figure 5.9).

5.5� coRioliS�AccElERATion�ExAmPlE:�PRocEDURE�PutVector
Program P5_10.PAS, listed in Appendix B, exemplifies the use of procedure VarDist and 
of procedure PutVector. It also provides an example of writing data to an output ASCII 
file. The program simulates the motion of a slider block B moving along a guide QQ′ that 
is perpendicular to the end of a rocker OP (see Figure 5.10). Both the rocker and the slider 
are driven back and forth sinusoidally (see lines #35 through #40 of the program). Note 
that the displacement of point B of the slider is measured from point P, and it can be both 
positive and negative. Procedure VarDist returns the distance from point Q′ to point B 
and the first and second time derivatives of this distance. It also returns the angular posi-
tion, velocity, and acceleration of the slider block, which coincide with those of the crank. 
Before writing them to ASCII files P5_10A.TXT and P5_10B.TXT, the slider displace-
ment and its angular position were offset by the amounts –Q′Q/2 and –π/2, respectively. 
This way, they can be easily compared with the inputs applied to the crank and to the slider. 
Additionally, the angle values were converted from radians to degrees.

By inspecting the content of output files P5_10A.TXT and P5_10B.TXT, it can be seen 
that identical values were recorded for both the angular and linear inputs of the crank and 
of the slider, which confirms the correctness of the equations programmed inside proce-
dure VarDist.

In addition to the ASCII output, program P5_10.PAS also represents graphically the 
mechanism in nPoz discrete positions, together with the locus of point B (Figure 5.10). 

Q

P

B

QC

O

Q΄

FiGURE�5.10� One of the frames generated by program P5_10.PAS showing the locus of point B 
on the slider and its Coriolis acceleration vector. See also animation file F5_10.GIF.
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By calling procedure PutVector (line #58), the Coriolis acceleration vector of the slider 
moving along guide QQ’ is also plotted with the simulation (see Figure 5.5 and Meriam 
and Kraige 2012). The x and y components of this acceleration vector are calculated prior 
to calling procedure PutVector on lines #56 and #57 of the program. 

Because the angular position, velocity, and acceleration of the slider are identical with 
those of the entire T-shaped guide, procedure AngPVA applied to points P and Q or to 
points Q′ and Q can be used instead of procedure VarDist.

5.6� moDEl�vAliDATion:�PRocEDURE�ntAccel
One way of checking the validity of the results obtained using the procedures in unit 
LibMec2D is to compare them with results known to be correct. Such verifications should 
be done to ensure that the input motors of a mechanism are assigned consistent motions, 
for example, that their velocities and accelerations are indeed the first and second time 
derivatives of their displacements. Similar verifications are also proper when modifying an 
existing kinematic procedure or when developing a new one.

If kinematic data calculated with a concomitant method are not available for compari-
son, alternative techniques can be applied. In order to verify that the position results are 
correct, you can open the DXF frames of the simulation inside AutoCAD and check that 
the lengths and angles of links known to be rigid remain constant throughout the motion 
cycle of the mechanism. Using the inquiry procedures PutDist and PutAng discussed 
in Section 5.7, the same can be verified directly from within the simulation program.

Once position results are known to be correct, velocities and accelerations can be 
evaluated by applying finite difference formulae to the displacement data and then 
compared with the results returned by the program or by the procedure under scru-
tiny. To illustrate this concept, the aforementioned program P5_10.PAS has been 
duplicated as P5_11.PAS and further modified so that the coordinates of point B 
and the scalar components of its velocity and acceleration ( �xB , �yB , ��xB , and ��yB) are 
evaluated and output to ASCII file F5_11.TXT (Figure 5.11). The time t values were 

Phi = 102.4°, s = 34.60

anB

P

Q΄

vB

Simulation with ntAccel

Q

O

atB

B

FiGURE�5.11� Simulation done with program P5_11.PAS showing the velocity and the normal 
and tangential acceleration of point B on the slider. See also animation file F5_11.GIF.
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also recorded to this ASCII file (see lines #58 and #59 of the source code P5_11.PAS 
given in Appendix B). 

ASCII file F5_11.TXT was then opened inside Excel (see file F5_11.XLS available 
with the book), and the first derivatives with respect to time of the x and y coordinates 
of point B were evaluated using finite differences (see Equation B.24). Using these newly 
calculated velocities noted vxB* and vyB* in Figure 5.12, approximations of the x and y 
acceleration components of point B were also generated using finite differences. By plotting 
the exact (axB and ayB) and approximate (axB* and ayB*) accelerations of point B on 
the same graph, almost overlapping lines were obtained (Figure 5.12), thus validating the 
results output by program P5_11.PAS.

Another way of verifying the correctness of a kinematic simulation (although more of a 
qualitative nature) is to observe the velocity and acceleration vectors of one or more points 
of interest of the mechanism. It is known that the velocity vector v should remain tangent 
to the path of the point, while its acceleration vector a should always be oriented towards 
the inside of the path (Figures 5.13). If this is not happening, then calculation or computer 
implementation errors are to be expected.

Before drawing the normal an and tangential at acceleration vectors using pro-
cedure PutVector, program P5_11.PAS calls procedure ntAccel with inputs 

TimeTime

axB
axB*

1.00.80.60.4

30003000

20002000

10001000

00

–1000–1000

–2000–2000

–3000–3000

0.21.00.80.60.2

axB
axB*

0.00.0 0.4 0.4

FiGURE�5.12� Comparison between the x and y components of the acceleration of point B output by 
program P5_10.PAS and the same components calculated using finite differences.

an
an

atat
v

a

(a) (b)

v
C

C

a

FiGURE�5.13� Velocity vector v and the normal and tangential acceleration vectors of point C on an 
(a) accelerating and (b) decelerating section of its path.
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the x and y components of the velocity and acceleration of point B (see line #54). 
Procedure ntAccel calculates the x and y components of the an and at vectors using 
the following equations:  
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As mentioned earlier, ensuring that the simulation is correct is always of concern. 
Animation of the mechanism provides a first good indication that its links assemble as 
intended. Labeling joints and placing stationary markers at different locations can be addi-
tionally helpful in this respect. In program P5_11.PAS, procedures PutGPoint (line 
#41) and PutPoint (line #51) draw on the screen and to the output DXF file a point of 
selected type, and also label this point. Characters available to control the type of point 
generated by procedures PutGPoint and PutPoint are: “.” for one pixel, “x”, “X”, “o”,  
“0” and “O” for × and š points of two or three sizes respectively.  Also available as control 
characters are “^” and “v” for a grounded pin joint normal or reversed orientation.   In 
turn, procedure LabelJoint (lines #42, #45 and #48) allows moving point labels to be 
aligned with a specified direction.  

Important: Procedures PutPoint and LabelJoint write the label (procedure 
PutPoint also draws the point of specified type) in the current layer of the DXF file 
output by the program. Procedure PutGPoint draws the point and writes its label to the 
Ground layer. These two procedures can be also used to display one-time information 
about the mechanism (procedure PutGPoint) or some variable parameter (procedure 
PutPoint) as it has been done on lines #32 and #57 of program P5_11.PAS. Procedures 
SetTitle, PutGText, and PutText available from unit LibMec2D are however bet-
ter suited for such purposes.  

If procedure CloseMechGraph is called with its argument set to TRUE (see line 
#37 of program P5_01.PAS and line #62 of program P5_11.PAS), then the tempo-
rary files of extension $2D used to record the loci are not deleted. Instead, their exten-
sion is changed to D2D so that they can be represented graphically using the D_2D 
program. Figure 5.14a is a plot of the loci of points P1 to P8 saved to file by program 
P5_01.PAS, while Figure 5.14b shows overlapped the loci of point B of the mecha-
nism in Figure 5.11 generated for several crank OP length values. Note that the default 
names of the D2D files have been changed to F15_14-1.D2D, F15_14-2.D2D, etc. as 
they were generated by program P5_11.PAS. Also note that the color information is 
recorded to these loci files and can be interpreted by the D_2D program as explained 
in Chapter 1.  
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5.7� �woRkSPAcE�limiTS�AnD�inqUiRy PRocEDURES�
PutDist�AnD�PutAng

Program P5_11.PAS in Appendix B shows how interface variables XminWS, XmaxWS, 
YminWS, and YmaxWS defined in unit LibMec2D can be used to best set up the limits 
of the view window. The first simulation cycle is performed without visualizing the mech-
anism, only to gather the workspace limits of its members. After this first cycle, procedure 
OpenMechGraph is called (see lines #26 to #29 of program P5_11.PAS). Alternatively, 
interface variables XminWS, XmaxWS, YminWS, and YmaxWS can be printed at the end 
of the run, so that the limits of the workspace can be manually adjusted for later runs 
(see lines #63 and #64 of the same program).

Either for verification purpose or to present the results of a simulation, it is possible to 
write data to file for inspection or to display it in tabular or graphical form. Plotting kinematic 
parameters as 2D line graphs together with the simulation is also possible, as explained in a 
separate section later in this chapter, but requires additional programming effort. It is easier 
to output the values of interest directly on the computer screen as it has been done in pro-
gram P5_11.PAS using PutGPoint and PutPoint (lines #32 and #57). More  specialized 
procedures are available, that is, PutGText for static text (like the title of the simulation, 
although the use of procedure SetTitle is recommended) and PutText for text that 
changes content or location during the simulation. Program P5_15A.PAS in Appendix B 
and the companion program P5_15B.PAS (listing not included) exemplify the use of these 
text output procedures and that of the inquiry procedures PutDist and PutAng, all four 
available from unit LibMec2D. The distance and angle inquiry procedures PutDist and 
PutAng have the following headings:

PutDist(Color:Word; xA,yA,xB,yB:double; ExtL:double; Dim:string);

PutAng(Color:Word; x1,y1,x0,y0,x2,y2:double; ExtL:double; 
Dim:string);
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FiGURE 5.14� Plot of the eight spiral loci in Figure 5.1 (a) and of the overlapped loci of point B of 
the mechanism in Figure 5.10 for link length OP equal to 35, 30, 25, 20, 15, 10, 4 and 1E-6, i.e., near 
zero (b).  Configuration files F5_14a.CF2 and F5_14b.CF2.
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They display in color Color the distance from point (xA,yA) to point (xB,yB), or the 
angle at (x0,y0) formed with additional points (x1,y1) and (x0,y0), respectively. If points 
(x1,y1) and (x0,y0) coincide, then the angle displayed by PutAng will be measured from 
a line parallel to the OX axis. The first two and the last two characters of parameter Dim 
can be set to either “|<”, “|”, “<” or to “>|”, “|”, “>” respectively, to control the insertion of 
the extension lines and arrow heads of the dimension line or dimension arc. If the remain-
der of the characters in the string Dim are empty spaces, then the angle (in degrees) 
or distance will be calculated using the available point coordinates, and will be displayed 
on the screen. By default, the number of digits used to display these angles or distances is 
four, but it can be increased by calling procedures PutDist and PutAng with the Dim 
parameter set equal to five or more consecutive spaces (flanked or not by combinations of 
“|”, “<”, “>”, or “|” characters). If parameter Dim transmitted to these procedures is other 
than an empty string or consecutive blank spaces, the actual Dim value will be displayed 
(less the control characters, if provided).  

Program P5_15.PAS in Appendix B (which is a modification of earlier program 
P5_04.PAS—see also Figure 5.4) illustrates the use of procedures PutDist and PutAng.  
The program simulates two cranks jointed in series as shown in Figure 5.15a.  Using proce-
dure PutText, the input values of the two crank angles are displayed on top of the screen, 
together with the distance measured between ground joint A and endpoint C (see lines #38 
and #39). Similarly, the title of the simulation is displayed by calling procedure PutGText 
on line #27. Note the use with these procedures of the generic variable “ _ ” to designate 
the x and y coordinates of the left corner and top of the screen, and of the separator “n\” 
to break the text in multiple lines. Also note on line #35 of the program how procedure 
PutDist was called with the extension line length ExtLLgt set equal to either +8 or −8, 
depending on the orientation of the vector loop ABC. By doing so, the dimension line does 
not intersect the two cranks as they rotate during the simulation. 

67.5°
A

–90.0°

AC = 50.00 Simulation with PutAng and PutDistSimulation with PutAng and PutDist

(a) (b)

Phil = 67.50°
Phi2 = –90.0°

AC = 50.00
Phil = 67.50°
Phi2 = –90.0°

B

C

270.0°

67.5°
A

C

B

AC = 50.050.0

FiGURE�5.15� Simulation of two cranks jointed in series that are independently driven, produced 
with programs (a) P5_15a.PAS and (b) P5_15b.PAS. See also animation files P5_15a.GIF and 
P5_15b.GIF.
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Because the second crank angle Phi2 is always negative, there is a mismatch between 
the value displayed by procedure PutAng and the value printed on the top of the screen 
by procedure PutText (see Figure 5.15a). This is because procedure PutAng always mea-
sures angles in the positive direction. One way of displaying negative angles in a simulation 
is to transmit the angle value to the procedure via parameter Dim, as it has been done in 
program P5_15B.PAS is used to produce Figure 5.15b.  Program P5_15OLD.PAS (see 
also animation file P5_15OLD.GIF—both available with the book) are additional exam-
ples of procedures PutAng and PutDist use.

5.8� �ADDinG�comPlEx�ShAPES�To�SimUlATionS:�
PRocEDURES�Base,�Link,�gShape,�AnD�Shape

In order to add realism to a simulation, or to check for possible interferences between 
moving bodies or between them and other surroundings objects, it is helpful to include 
shapes in a simulation. Distinction is made between shapes attached to the ground, 
which do not change location and are written only once to the DXF file, and shapes 
attached to moving links, which change their position and orientation and must be 
written to separate DXF layers. Procedures Base, Link, gShape, and Shape avail-
able from unit LibMech2D serve such purposes. The first two of these procedures 
have the following syntaxes:

Base(Color, xA,yA,xB,yB, w, rA,rB);

Link(Color, xA,yA,xB,yB, w, rA,rB);

They allow rectangular shapes of color Color (filleted or chamfered at the corners) to 
be aligned with points (xA,yA) and (xB,yB). The width of the rectangle is specified 
through the parameter w, while rA and rB are the fillet radii of the corners adjacent to 
end A and end B, respectively. If either rA or rB is a negative number, then chamfer-
ing rather than filleting at the respective corners of the rectangle is performed instead. 
Program P5_16A.PAS in Appendix B exemplifies the use of these two procedures to 
animate a rectangular crank that rotates about a base—see Figure 5.16a and animation 
files F5_16a.GIF, as well as F5_16a-1.GIF and F5_16a-2.GIF. The frames in these 
last two files have been obtained by setting the parameter Col on line #15 of the pro-
gram to -2 and 0, respectively.

Note in program P5_16A.PAS the use of procedures gShape and Shape to plot a 
stationary circle of radius 1.6 representing the driving shaft of the crank (line #31) and 
a circle of radius 0.8 centered at point (xA,yA) of the crank (line #32). However, the full 
merit of procedures gShape and Shape is that they allow complex shapes to be read from 
file and be placed to the ground or attached them to moving links. The headings of these 
two procedures are

gShape(Fxyname, Color, xA,yA);

Shape(Fxyname, Color, xA,yA, xB,yB);



178    ◾    computer-Aided�Graphing�and�Simulation�Tools�for�AutocAD�Users

where Fxyname is the name of the ASCII file from where the x and y coordinates of 
the polylines forming the shape are read. The polylines read from file will be plotted on the 
screen in color Color and will have their origin translated to the point of coordinates xA 
and yA. Procedure Shape requires one additional distinct point (xB, yB) that serves as a 
point along the x-axis of shape.

If parameter Fxyname transmits to the procedure a number rather than a file name, 
then a circle centered at (xA, yA) and of radius Fxyname will be plotted on the screen and 
to the current DXF file. In case of procedure Shape only, if Fxyname equals the empty 
string or the name of an inexistent file, then a circle centered at (xA, yA) and passing 
through point (xB, yB) will be drawn instead.

Program P5_16B.PAS, listed in Appendix B, is a second example of a kinematic simu-
lation that uses complex shapes in the form of two gears attached to two synchronously 
rotating cranks. The result of the simulation is visible in Figure 5.16b and in the animation 
file F5_16b.GIF available with the book. Note that the pinion is provided with a center 
hole and a keyway also read from the Pinion.XY file. The driven gear also includes a 
center hole, a rim circle, and nh peripheral holes. All these circles are drawn by separately 
calling procedure Shape with no file name as argument (see lines #40, #41 and #44 of 
the program).

The shapes supplied as ASCII files to procedures Shape and gShape were recorded as 
x and y coordinates of polyline vertices. Multiple polylines can be written to the same file 
using “-----” separators or a pair of InfD values, and their color can be changed from file 
as discussed in Chapter 1. A convenient way to generate complex shapes is to draw them 
in AutoCAD, export them to R12 DXF, and then use the UTIL~DXF program to write 
the x and y coordinates of selected polylines to ASCII files. If any of these shapes include 
arches of circles, full circles, or splined polylines, then such entities must be discretized by 
plotting them to a PLT file first (see Chapter 3), then using program UTIL~PLT, the shapes 
from PLT are then converted to DXF, so they can be opened into AutoCAD to be scaled 

(a) (b) 

FiGURE�5.16� Kinematic simulation of a crank rotating about a (a) base and of a (b) one-stage gear 
reducer created using procedures Base, Link, gShape, and Shape. See also animation files 
F5_16a.GIF and F5_16b.GIF.
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and translated back to their original size and location. Only now are they ready for DXF 
export and vertex extraction to ASCII file using the UTIL~DXF program. The same steps 
can be applied to decimate the number of vertices of involute gears generated with Gears.
LSP for the purpose of shortening the refreshing time in an animation.

5.9� �SimUlATionS�AccomPAniED by PloTS wiTh ScAn linES�
AnD�ScAn�PoinTS

Program P3_04.PAS introduced in Chapter 3 was a first example of a simulation 
accompanied by dynamic plots with scan lines and scan points and PCX output. Note 
that the scan lines and scan points generated by calling procedures PlotScanLine and 
PlotScanPoint are drawn on the screen only. In this section, the example of a rotating 
vector (a phasor) accompanied by a plot of the projection of the tip of the vector on the ver-
tical axis will be discussed (Figure 5.17). Here (see program P5_17A.PAS in Appendix B), 
both PCX and multilayer DXF output are possible. An alternative approach discussed with 
reference to program P5_17B.PAS is one where a multilayer DXF file of a simulation is 
combined inside AutoCAD with the DXF export of a comet plot generated using the D_2D 
program.  

Compared to the example considered in Chapter 3, program P5_17A.PAS performs 
the kinematic calculations inside the main simulation loop, rather than only once before 
the animation begins. Such a strategy is better suited to simulations that employ the pro-
cedures in units LibMecIn and LibAssur discussed in Chapter 6. To animate scan 
lines and scan points inside AutoCAD using the M_3D.LSP application, procedures 
DXFScanLine and DXFScanPoint are called from unit LibMech2D in the process 
of generating the DXF file output (see lines #70 and #71). Adding the scan lines and scan 
points to the DXF file actually occurs when calling procedure PlotCurve on line #73. 

2π
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y
Phasor diagram

11π/65π/33π/24π/35π/62π/3π/2π/3π/60
–1.0
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0.6

0.8

y

1.0

7π/6π

FiGURE�5.17� Kinematic simulation of a phasor accompanied by a dynamic plot of the projection of the 
end of the vector onto the y-axis. See also animation files F5_17-PCX.GIF, F5_17-DXF.GIF, and 
F5_17-D_2D.GIF.
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The screen version of the same scan lines are turned on when lines #49 and #50 are exe-
cuted and are turned back off when lines #55 and #56 are executed.

One full animation cycle occurs inside the repeat–until loop (lines #35 and #79), where the 
successive positions of the phasor are calculated and displayed (see also lines #36 to #58). 
Inside this same for loop, vectors_yA and _Theta required to plot the graph to the left 
in Figure 5.17 are also generated. After the first kinematic calculations are completed 
and only if FirstTime is TRUE, the graph of_yA vs._Theta is generated (see lines #60 
to #76).

The DXF files F5_17-1.DXF (the phasor) and F5_17-2.DXF (the graph with scan 
line and scan point) that were juxtaposed inside AutoCAD and served to generate the 
animated GIF file F5_17a-DXF.GIF occur during the first simulation cycle. During the 
second simulation cycle, the program generates PCX copies of the entire screen. These PCX 
frames were then assembled in the animated GIF file F5_17a-PCX.GIF.

Comparable results can be alternatively obtained by combining inside AutoCAD a mul-
tilayer DXF copy of the animated phasor and a DXF file export of the phasor projection vs. 
phasor angle done using D_2D. The program that produces both the phasor animation and 
the data file for D_2D plotting (i.e., F5_17B.D2D) is listed in Appendix B.

Because D_2D cannot generate an overlap of a scan line and scan point, DXF exports 
of the two type of comet plots with nonaccumulating frames had to be generated sepa-
rately—see also configuration files F5_17B-1.CF2 and F5_17-B  2.CF2. These were 
then assembled inside AutoCAD and the result visible in the animation file F5_17B.GIF 
obtained.

Note that the phasor length OA was set equal to half of the plot box height (line #11) 
so that no scaling is required when the DXF export of the vector simulation and of the 
animated plot are combined inside AutoCAD. However, before writing it to the data file 
F5_17B.D2D, the y-axis projection of the phasor is normalized (see line #31).

***

The procedures in unit LibMec2D discussed in this chapter allow the simulation 
of rotary and linear motors and actuators (procedures Crank, gCrank, Slider, 
and gSlider) and of the motion of points attached to moving links (Offset and 
OffsetV). Also available from unit LibMec2D are procedures AngPVA, Ang3PVA, 
and Ang4PVA, useful for calculating the position, velocity, and acceleration of moving 
links, and procedure VarDist, which allows the calculation of the variable distance 
between two moving points and its first and second time derivatives. Inquiry procedures 
PutAng and PutDist can be used to monitor the change of angles and distance of 
interest. For adding complex shapes to a simulation in the form of polylines read from 
files, procedures Base, Link, gShape, and Shape are provided in unit LibMec2D. 
Vectors can be represented as arrows using procedure PutVector. At the end, two 
approaches to producing simulations accompanied by animated graph with scan lines 
and scan points were given.
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C h a p t e r  6

Kinematic Analysis of 
Planar Linkage Mechanisms 
Using Assur Groups

This chapter is devoted to the kinematic analysis of planar mechanisms that 
employ turning and sliding joints only, also known as linkage mechanisms or linkages 

in short. Numerous such mechanisms can be analyzed by decomposing them into input 
link(s), plus subassemblies of links and joints that stand alone have zero degrees of freedom 
(DOFs). These subassemblies are known as Assur groups, named after the Russian engineer 
L. V. Assur who discovered them at the turn of the twentieth century. When such a zero 
DOF subassembly consists of two links and three joints, known as dyad, the correspond-
ing kinematic equations can be solved analytically rather than numerically, and therefore 
allow for very fast computer implementations. The kinematic equations of all known dyads 
are derived in this chapter. They were also programmed in a number of Pascal procedures 
gathered in unit LibAssur available with the book. By calling these procedures in the 
same order in which the actual linkage mechanism has been formed, starting with the 
input member(s), the position, velocity, and acceleration of any moving link or point of 
the mechanism can be calculated, while supplementary, the whole mechanism can be ani-
mated over a given motion range.

6.1� �ASSUR�GRoUP–bASED�kinEmATic�AnAlySiS�
oF�linkAGE�mEchAniSmS

It is assumed that the reader has some knowledge of mechanism kinematics, including link 
and joint identification and mobility calculation. If this knowledge is limited, then a review 
of the relevant sections from any of the textbooks on Mechanism Theory listed at the end 
of the chapter is recommended.
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Given a planar mechanism with n total number of links (including the fixed link), 
j1 total number of joints with one DOF, and j2 total number of joints with two DOFs, the 
mobility of the mechanism is given by the following formula:

 
m n j j= −( )− −3 1 2 1 2

 (6.1)

Equation 6.1, known as the Gruebler–Kutzbach criterion, essentially indicates that in order 
for all the links of the mechanism to have a determinate motion, the mechanism must have 
m independent inputs. These inputs can be in the form of powered joints or of links driven 
by external forces or moments.

For the needle drive mechanism of a sewing machine in Figure 6.1, the mobility equa-
tion writes

 
m = −( )− ⋅ =3 6 1 2 7 1  (6.2)

Note that at B there is a turning pair (a pin joint) overlapped with a prismatic pair (a slid-
ing joint), and both must be accounted for when evaluating the total number of single DOF 
joints j1. Topologically, the mechanisms in Figure 6.1 are formed by amplifying a crank OA 
with an RRT dyad (the two Rs stand for the two rotational joints and T stands for the trans-
lational or sliding joint) and with an RRR dyad with three rotational joints R. The way these 
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FiGURE� 6.1� Mechanisms of a sewing machine simulated with program P6_01.PAS, which 
employs a crank OA with an offset point C, an RRR dyad with a coupler point F, and an RRT dyad. 
Mechanism (a) uses an RR_T isomer, and mechanism (b) uses an RRT_ isomer of the RRT dyad. 
See also animation file F6_01.GIF.
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entities are assembled will become apparent after viewing the animation file F6_01.GIF 
and from studying the simulation programs P6_01.PAS listed in Appendix B.

Based on the name of the output DXF file being either F6_01A or F6_01B (see line 14), 
the program calls from unit LibAssur procedure RRT_ or procedure RR_T to model the 
RRT dyad. Figure 6.1 and animation file F6_01.GIF show the differences between the 
ways the needle slider is represented by these two procedures. These two embodiments of 
the RRT dyad will be called isomers. The animated GIF file F6_01.GIF available with the 
book has been produced inside AutoCAD using the M_3D.LSP application, by combining 
together the corresponding DXF files generated by the P6_01.PAS program.

Other than the rotary and linear motors discussed in Chapter 5, actuators like those 
shown in Figure 6.2 can be used as inputs in the construction of linkage mechanisms. Of 
these, the RTRR actuator (Figure 6.2b) is more widely used in practice, while the RTRTR 
actuator (Figure 6.2a) occurs in rope shovels and some parallel robots (see also Chapter 9).

A summary of all known dyads and of their possible isomers is given in Figure 6.3, of 
which the RRR dyad and the RR_T and RRT_ isomers of the RRT dyad have already been 
mentioned with reference to program P6_01.PAS. Figure 6.3 shows these dyads and their 
isomers in their most general as well as simplified configurations. Representative linkage 
mechanisms that can be modeled using the respective dyads are also given on the last row 
in Figure 6.3. Note that no distinction has been made between the TRR and RRT dyads, 
and the TTR and RTT dyads. This is because the kinematic equations are independent of 
the direction in which motion is transmitted between their links. Also notice that a TTT 
dyad has not been included in this classification since by itself it has a stand-alone mobility 
of one rather than zero.

In the remainder of this chapter, the kinematic equations of the actuators in Figure 6.2 
and of the Assur groups in Figure 6.3 will be derived. These equations have been pro-
grammed in a number of Pascal procedures gathered in unit LibMecIn (i.e., procedures 
RTRTR, RTRTRc, RTRR, and RTRRc) and in unit LibAssur (i.e., procedures RRR, 
RRRc, RR_T, RRT_, RT_R, T_R_T, _TRT_, T_RT_, R_T_T, RT_ _T, R_TT_, and 
RT_T_ ).

Important: If there is interest only in the position results or only in the position and veloc-
ity results, these procedures can be called with their velocity or velocity and acceleration 
parameters set equal to constant InfD defined in unit LibMath. Moreover, the names 

(a) (b) 

FiGURE� 6.2� Double oscillating-slide actuator RTRTR (a) and single oscillating-slide actuator 
RTRR (b), available as procedures in unit LibMecIn. They can be pin-jointed to the ground 
(as shown) and jointed to the same moving link or to two separate moving links.
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assigned to these output velocity and/or acceleration variables do not have to be distinct. 
The generic variable _ defined in the interface section of unit LimMath, which is preas-
signed the value InfD, should be used according to the aforementioned convention (see 
program P6_01.PAS in Appendix B).

6.2� �inTERSEcTion�bETwEEn�Two�ciRclES:�PRocEDURE�InT2CIR
The position analysis of the RTRTR and RTRR oscillating-slide actuators and that of the 
RRR dyad can be reduced to finding the coordinates of the intersection points between 
two circles centered at A and B and of radii r1 and r2 as shown in Figure 6.4. The (x, y) 
coordinates of these intersection points C1 and C2 must simultaneously satisfy the follow-
ing equations:

 

( ) ( )

( ) ( )

x xA y yA r
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− + − =
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which after expanding the squared binomials become
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RRR RRT RTR TRT RTT

RRR

RR_T

RRT_
RT_R

T_R_T

_TRT_

T_RT _

R_T_T

R_TT_ RT__T

RT_T_

FiGURE�6.3� Isomers of the five known dyads available as procedures in unit LibAssur, their 
simplified embodiments with overlap joints (third row), and a few representative applications 
(fourth row).
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Subtracting the first equation from the second one yields

 
2 2 2

2
1
2 2 2 2 2( ) ( )xA xB x yA yB y r r xA xB yA yB− ⋅ + − ⋅ = − + − + −  (6.5)

which allow unknown coordinates x and y to be explicited one with respect to the other, 
that is,
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For convenience, we introduce the following notations in Equation 6.6:

 

x a y b

y a x b

= ⋅ +
= ⋅ +

1 1

2 2

 (6.7)

where coefficients a1, b1, a2, and b2 can be easily identified by matching terms. We then 
substitute Equation 6.7 back into Equation 6.4 and obtain
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After squaring the binomials and rearranging terms, we further get
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FiGURE�6.4� Schematic for calculating the intersection points between two circles (a) and for cal-
culating the velocity and acceleration of point C, when A and B are moving and r1 and r2 change 
with time (b).
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These are two independent quadratic equations of solutions:
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These equations were implemented in procedure x2Circles available from unit 
LibGe2D, which is in turn called by procedure Int2Cir in unit LibMec2D. This latter 
procedure has the heading

procedure Int2Cir(xA,yA, xB,yB, r1,r2:double; LftRgt:shortint; 
var xC,yC, Delta:double);

The correspondence between the formal parameters of this procedure and the notations 
used in Equations 6.3 through 6.11 and in Figure 6.4 is summarized in the following tables:

Input parameters of procedure Int2Cir:

xA yA r1 r2 ±1
xA yA r1 r2 LftRgt

Output parameters of procedure Int2Cir:

x y Δ1 if ∣xA–xB∣>∣yA–yB∣ or Δ2 if  ∣xA–xB∣<∣yA–yB∣
xC yC Delta

Note that for certain relative positions of points A and B, Equations 6.6 can result in 
divisions by zero. To avoid this, inside procedure x2Circles, denominators (xA–xB) 
and (yA–yB) are evaluated first, and depending on the magnitude of their absolute values, 
either Equations 6.6a and 6.10a or Equations 6.6b and 6.10b are employed. Consequently, 
variable Delta returned by procedure Int2Cir may exhibit occasional first- and higher-
order discontinuities, as discussed in more detail in Section 6.6.

The double sign ± in Equation 6.10 denotes the two possible intersection configurations 
shown in Figure 6.4, resulting in point C1 or point C2. To resolve this ambiguity, Int2Cir 
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checks the orientation of the triangular loops AC1B and AC2B by evaluating the cross prod-
uct AC × AB using procedure S123 from unit LibGe2D. Of the two variants, the x and y 
pair for which the sign of the cross product AC × AB is equal to the input variable LftRgt 
will be returned as solution.

6.3� �vElociTy�AnD�AccElERATion�oF�ThE�inTERSEcTion�PoinTS�
bETwEEn�Two�ciRclES:�PRocEDURE�Int2CirPVA

For added generality, we now assume that points A and B move with known velocities and 
accelerations. We also assume that radii r1 and r2 of the two intersecting circles do not 
remain constant, but rather vary smoothly (i.e., time derivatives � � ��r r r1 2 1, ,  and ��r2 exist and 
are continuous functions) with time. The velocities �x  and �y and accelerations ��x and ��y of 
intersection points C1 and C2 can be determined through differentiation, yielding sets of 
two linear equations that are very easy to solve. For scalar velocities, we differentiate once 
with respect to time Equation 6.3 and obtain:

 

2 2 2

2

1 1( ) ( ) ( ) ( )

( ) ( )

x xA x xA y yA y yA r r

x xB x xB
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− ⋅ − +

� � � � �

� � 22 2 2 2( ) ( )y yB y yB r r− ⋅ − = ⋅


 � � �

 (6.12)

After rearranging terms, these two equations become:
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The acceleration equations are obtained by differentiating Equations 6.13:
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equivalent to
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Equations 6.13 through 6.15 have been implemented in procedure Int2CirPVA 
part of unit LibMec2D, which returns the position (by calling procedure Int2Cir), 
velocity, and acceleration of the desired intersection point C between the two circles 
of moving centers A and B and of variable radii r1 and r2. The heading of procedure 
Int2CirPVA is

procedure Int2CirPVA(xA,yA,vxA,vyA,axA,ayA, xB,yB,vxB,vyB,axB,ayB, 
r1,dr1,ddr1, r2,dr2,ddr2:double; LftRgt:shortint; var xC,yC,vxC, 
vyC,axC,ayC, Delta:double);

The correspondence between its formal parameters and the notations used in these equa-
tions and in Figure 6.4 is summarized in the following two tables:

Input parameters of procedure Int2CirPVA:

xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB AB

xA yA vxA vyA axA ayA xC yC vxC vyC axC ayC AB

r1 �r1 r̈1 r2 �r2 r̈ 2 ±1
r1 dr1 ddr1 r2 dr2 ddr2 LftRgt

Output parameters of procedure Int2CirPVA:

xP yP �xP �yP ��xP ��yP Δ
xP yP vxP vyP axP ayP Delta

Input parameter LftRgt must be assigned either +1 or −1 depending on the desired 
orientation of the ACB loop. For a counterclockwise or right-hand orientation (i.e., as 
you walk around the considered loop, your right hand should always point toward the 
outside of the loop), parameter LftRgt must be set to +1 or to constant Right. For 
a clockwise or left-hand orientation, parameter LftRgt must be set equal to −1 or 
Left, where constants Left and  Right are predefined in the interface section of 
unit LibMec2D.

6.4� �kinEmATicS�oF�ThE�RTRTR�DoUblE�linEAR inPUT�
AcTUAToR:�PRocEDURE�RTRTRc

The RTRTR double linear input actuator (Figure 6.5) has some practical applications in 
rope shovels, as well as in robotics and some automatic machinery. Its active elements are 
the two linear motors, represented in Figure 6.5a as cylinder–piston pairs. Potential joints 
A and B can be connected to separate moving links and to the same moving link or can be 
connected to the ground.

In this section, the kinematic equations of the RTRTR kinematic chain will be derived 
as intersections between two circles (this is known as the constraint equation approach) for 



kinematic�Analysis�of�Planar�linkage�mechanisms�Using�Assur�Groups    ◾    191  

the general case where potential joints A and B are attached to separate moving links. The 
situations where one or both of these joints are attached to the ground can be obtained as 
particular cases where the velocities and accelerations of point A or point B are zero.

At any instant of time, the following parameters are assumed given:

• Coordinates xA and yA of joint center A relative to the fixed reference frame OXY.

• Projections �xA and �yA of the velocity of A onto the axes of the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the axes of the fixed reference 
frame.

• Coordinates xB and yB of joint B relative to the fixed reference frame.

• Projections �xB and �yB of the velocity of B onto the axes of the fixed reference frame.

• Projections ��xB and ��yB of the accelerations of B onto the axes of the fixed reference 
frame.

• Displacements s1 and s2 of the two pistons and their time derivatives �s1, �s2 , s̈ ,1  and s̈ 2 
(considered positive when oriented such that the actuator expands—see Figure 6.5a).

• Lengths of the two cylinders A0Q1 and B0Q2.

• Lengths of the two pistons P1C and P2C.

• Eccentricities of the two cylinders A0A and B0B. These can be either positive or negative 
according to the orientation of the triangular loops AA0C and BB0C (see Figure 6.5b).

• Orientation of the ACB loop (see Figure 6.12b).

(a) (b) 
XO

Y
C

B0P2

Q2

Q1

P1

A0

A

s2(t)

s1(t)

B

–

–

– + +

+

FiGURE�6.5� Notations used in the RTRT double linear input actuator kinematics (a) and the sign 
conventions for eccentricities A0A and B0B (the smaller oriented circle) and orientation of the ACB 
loop (the larger oriented circle) (b). Note that in figure (a), both A0A and B0B are positive.
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With these given, it is now possible to determine the following unknown parameters:

• Coordinates xC and yC of joint center C relative to the fixed reference frame.

• Projections �xC  and �yC of the velocity of C onto the axes of the fixed reference frame.

• Projections ��xC  and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

• Coordinates xP1 and yP1 of joint center P1 relative to the fixed reference frame.

• Coordinates xQ1 and yQ1 of joint center Q1 relative to the fixed reference frame.

• Coordinates xP2 and yP2 of joint center P2 relative to the fixed reference frame.

• Coordinates xQ2 and yQ2 of joint center Q2 relative to the fixed reference frame.

The coordinates of point C and its velocity and acceleration components can be found 
by calling procedure Int2CirPVA with r1 and r2 and their time derivatives assigned as 
follows:
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The coordinates of points A0 and B0 can be found by solving the following two pairs of 
constraint equations, similar to 6.3:
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and

 

( ) ( )

( ) ( )

xB xB yB yB B B

xB xC yB yC s

0
2

0
2

0
2

0
2

0
2

2
2

− + − =
− + − =






 (6.18)

by simply calling procedure Int2Cir. In turn, the coordinates of points P1 and Q1 col-
linear with points A0 and C can be calculated with
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Likewise, the coordinates of points P2 and Q2 collinear with points B0 and C result from 
equations:
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Coordinates of points P1, Q1, P2, and Q2 are needed by procedure RTRTRc to represent 
graphically the two cylinders and their pistons.

Using the equations derived earlier, procedure RTRTRc in unit LibMecIn calculates 
the position, velocity, and acceleration of the center of pin joint C, for the case where poten-
tial joints A and B are attached to mobile elements. If the graphic system is on, the pro-
cedure also draws a schematic of the mechanism in a manner similar to Figure 6.5b. The 
heading of procedure RTRTRc is

procedure RTRTRc(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB, vxB, 
vyB, axB, ayB, A0A, A0Q1, P1C, BB0, B0Q2, P2C, s1,ds1,dds1, 
s2,ds2,dds2:double; LftRgt:shortint; var xC, yC, vxC, vyC, axC, 
ayC, Delta:double);

The correspondence between the formal parameters and the notations used in Figure 6.5 
and the related equations is summarized next:

Input parameters of procedure RTRTRc:

0…16 xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

Color xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

A0A A0Q1 P1C B0B B0Q2 P2C s1 �s1 ��s1 s2 �s2 ��s2 ±1
A0A A0Q1 P1C B0B B0Q2 P2C s1 ds1 dds1 s2 ds2 dds2 LftRgt

The possible values of the input parameter LftRgt are –1 and +1. If the mechanism must 
have right-hand assembly configuration, LftRgt should be set equal to +1 or to constant 
Right, while for a left-hand assembly, configuration LftRgt must be set equal to −1 or 
to constant Left (Figure 6.5b).

Output parameters of procedure RTRTRc are as follows:

xC yC �xC �yC ��xC ��yC Δ1 or Δ2

xC yC vxC vyC axC ayC Delta

Of these, variable Delta returns the value of either discriminant Δ1 or Δ2 in Equations 6.11, 
as selected by procedure Int2CirPVA. The value of variable Delta can be used to assess 
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efficiency with which the motion is transmitted throughout the mechanism or, if the 
mechanism does not assemble, it can be used to estimate how far from an assembly con-
figuration the mechanism actually is (see Section 6.6).

If the graphic system is on, procedure RTRTRc will additionally draw in color Color 
(less if Color equals zero or the BGI constant Black) the pistons and their assembled 
cylinder as shown in Figures 6.6 and 6.7. If either joint A, joint B, or both are connected to 
the ground (i.e., their velocities and accelerations are zero), the respective joint is no lon-
ger represented as a circle, but rather using the grounded pin joint symbol. The pin joint 
at C is represented as a circle of radius JtSz, that is, an interface variable defined in unit 
LibMec2D that can be set by calling the procedure SetJointSize.

Figures 6.6 and 6.7 were output using programs P6_06.PAS (see Appendix B) and 
P6_07.PAS (source code not included). They simulate the motion of an RTRTR kinematic 

(a) (b)

FiGURE�6.6� Simulations of an RTRTR actuator attached to two rotating cranks done with pro-
gram P6_06.PAS. See also animation files F6_06a.GIF and F6_06b.GIF. Figure (a) has 
been obtained by setting variable BumpPiston to FALSE and figure (b) by setting variable 
BumpPiston to TRUE.

(a) (b)

FiGURE�6.7� Simulations of an RTRTR actuator attached to two rotating cranks done with pro-
gram P6_07.PAS. See also animation files F6_07a.GIF and F6_07b.GIF. Figure (a) corre-
sponds to variable BumpPiston to FALSE and figure (b) to BumpPiston to TRUE.
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chain having joints A and B driven by two rockers. The input angles φ1 and φ2 of these 
rockers were defined as harmonic functions of time according to equations

 
ϕ π π ϕ π π π1 2

3
2

3
2( ) sin ( ) sint t t t= ⋅( ) = + ⋅( )and  (6.21)

The pistons of the two actuators are also harmonically driven, that is,

 
s t t s t t1 20 65 0 15 2 0 6 0 12 4( ) . . cos( ) ( ) . . cos( )= + ⋅ = + ⋅π πand  (6.22)

If variable BumpPiston in unit LibMec2D is set to TRUE (see line #17 of program 
P6_06.PAS), then procedure RTRTRc constrains its two pistons to remain inside their 
cylinders. Additionally, if the piston rod of any of the two actuator is shorter than its cyl-
inder (i.e., P1C < A0Q1 or P2C < B0Q2), then joint C will not be allowed to slide inside the 
respective cylinder. If any of these two limit situations occur, then procedure RTRTRc will 
perform the kinematic calculations with the velocity and acceleration of the respective pis-
ton set to zero. Additionally, during the animation of the mechanism, if the linear motor 
becomes locked, it will be represented graphically in dashed line.

Figure 6.6 shows the screenshots of program P6_06.PAS generated for the case where 
the two pistons are constrained to remain inside their cylinders (Figure 6.6a) and for the 
case when they are not (Figure 6.6b), that is, BumpPiston equals TRUE and BumpPiston 
equals FALSE, respectively. 

The companion program P6_07.PAS available with the book shows how procedure 
RTRTRc represents graphically the mechanism when length P1C or P2C is shorter than 
five times the current joint size as set by calling procedure SetJointSize. Figure 6.7 
is a two-screenshot output by P6_07.PAS for the case where the left piston has a zero 
length rod, that is, P1C = 0. Note that the cylinder is now represented as an L-shaped guide 
with a slide moving along it. By setting the BumpPiston parameter to TRUE, the slide 
block (now centered at C) will not be allowed to move outside its guide, that is, P1 will be 
constrained to remain between points A0 and Q1 (Figure 6.5). Same as before, in its limit 
position, the velocity and acceleration of the slide will be forced to �s1 0=  and ��s1 0= .

Important: If procedure RTRTRc is called with the displacement of any of the two pistons 
having negative values, then the respective displacement will be automatically set to zero 
(as well as their time derivatives �s1 and s1̈ or �s2 and ��s2), irrespective of the BumpPiston 
setting.

Program P6_07.PAS was modified to drive the RTRTR actuator using longer cranks 
(O1A = 0.45 and O2B = 0.35) that oscillate at twice the initial amplitude according to the 
equations

 
ϕ π π ϕ π π π1 22 2( ) sin( ) ( ) sin( )t t t t= ⋅ ⋅ = + ⋅ ⋅and  (6.23)

With these modifications, the program was renamed P6_08.PAS and is available with 
the book. Note the use in this program of the getter procedures GetA0, GetB0, GetP1, 
GetP2, etc., which return the coordinates of points A0, B0, P1, P2, Q1, and Q2 of the RTRTR 
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actuator, not supplied by RTRTRc. Two overlapped positions of the mechanism generated 
with P6_08.PAS are shown in Figure 6.8, of which the one in dashed line is outside the 
assembly range of the mechanism. When the mechanism does not assemble, it is repre-
sented in a stretched and dashed line. The stretching of the cylinder eccentricities is due 
to the calculations being performed inside procedure RTRTRc by forcing Delta to zero 
from its negative value.

6.5� �kinEmATicS�oF�ThE�RTRTR�DoUblE�linEAR�inPUT�AcTUAToR�
USinG�A�vEcToR�EqUATion�APPRoAch:�PRocEDURE�RTRTR

An alternative method of solving the position, velocity, and accelerations of the RTRTR 
double oscillating-slide actuator is the vector-loop method. This section discusses this sec-
ond approach with reference to Figure 6.9.

Q2

P1

A0

Q1

Q2
P2

P2

B0
B0

B
B

C

P1
A0

Q1

A
A C

O1 O2

FiGURE�6.8� Two overlapped frames of an RTRTR actuator driven by two rotating cranks gener-
ated using program P6_08.PAS. When the mechanism cannot be assembled, its linear motors are 
represented in stretched and dashed lines. See also animation file F6_08.GIF.

(a) 

A0

B0P1

Q2

Q1

P2 B0

A0

s1(t)
s1(t)

s2(t) s2(t)

θ1(t)

θ2(t)

θ1(t)
1(t) 2(t)
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(b) 
XO

Y

O

Y

C C

X

A
B

ϕ

FiGURE�6.9� Oscillating-slide actuator notations (a) and vector assignment to its links (b). The sign 
of eccentricities A0A and B0B and orientation of ACB loop follow the same convention in Figure 6.5.
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Begin by projecting on the axes of the OXY reference frame vector equation:

 AC BC AB− − = 0  (6.24)

which yields the following pair of scalar equations:
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 (6.25)

We square these equations
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2 2
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 AC y y y y BCB A B A

 (6.26)

and after adding them and rearranging terms, we obtain:

 
2 21 1

2 2 2AC x x AC y y AC BC x x⋅ − ⋅ + ⋅ − ⋅ = − + − +( ) cos( ) ( ) sin( ) ( ) (B A B A B Aϕ ϕ yy yB A− )2

 

(6.27)

Equation 6.27 is of the form a1·cos(φ1) + b1·sin(φ1) = c1 with solutions

 
ϕ1 1 1 1 1

2
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1
22 2= ± ( ) = + −A b a A c a b ctan tan where ( , ) ,∆ ∆  (6.28)

where Atan2(Dy, Dx) = tan−1(Dy/Dx) is the inverse tangent function of two arguments that 
uses the signs of Dx and Dy to determine the quadrant of the resultant angle (see function 
Atan2 in unit LibMath).

A similar procedure applied to Equations 6.25 formatted as:
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 (6.29)

yields an equation of the form a2·cos(φ2) + b2·sin(φ2) = c2 with
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The solutions of this trigonometric equation are:

 
ϕ2 2 2 2 2

2
2
2

2
22 2= ± ( ) = + −A b a A c a b ctan tan where ( , ) ,∆ ∆  (6.31)

Note that discriminants Δ in Equations 6.28 and 6.31 are the same and equal to

 
∆ = ⋅ − + − − − − 4 2 2 2 2 2 2 2

AC BC AC BC x x y y( ( )B A B A)  (6.32)

The coordinates of joint center C that are of main interest result from projecting on the 
x- and y-axes of the fixed reference frame of the following vector equation:

 OC OA A A A C= − +0 0
 (6.33)

which yields
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Unknown angles θ1 and θ2 occurring in Equation 6.34 can be obtained using the following 
two vector equations:
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The first of these vector equations projects on the x- and y-axes as
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 (6.36)

and can be further written as
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kinematic�Analysis�of�Planar�linkage�mechanisms�Using�Assur�Groups    ◾    199  

Similarly, the second of vector Equation 6.35 yields
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 (6.38)

Equations 6.37 and 6.38 are sets of two linear equations in the unknowns cos(θ1), sin(θ1), 
and cos(θ2), sin(θ2) that are very easy to solve.

When plotting the mechanism in a simulation, use is made, in addition to the coordinates 
of joint center C, of the coordinates of points A0, B0, P1, P2, Q1, and Q2. The coordinates of 
points A0 and B0 result from projecting on the axes of the OXY reference frame the following 
vector equations:

 
OA OA A A OB OB B B0 0 0 0= − = −and  (6.39)

while the coordinates of points P1, Q1, P2, and Q2 result from vector equations
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 (6.40)

Of further interest are the scalar components of the velocity of point C noted �xC and �yC, 
obtainable by differentiating Equation 6.34 with respect to time, that is,
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 (6.41)

The unknown angular velocities �θ1 and �θ2 in Equations 6.41 can be calculated using vector 
equation

 − + − + =A A A C B C B B AB0 0 0 0
 (6.42)

which projects on the x- and y-axes of the OXY reference frame as
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 (6.43)
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equivalent to
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By differentiating Equation 6.44 with respect to time, we get
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After collecting terms, we obtain the sought-after set of two linear equations in the 
unknowns �θ1 and �θ2 , that is,
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Finally, the scalar components of the acceleration of point C result from differentiating 
Equation 6.41 with respect to time:
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The unknown angular accelerations ��θ1 and ��θ2 are solutions to the following linear equations:
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obtained by differentiating Equations 6.46 with respect to time.
Procedure RTRTR in unit LibMechIn implements these newly derived equations to solve 

the position, velocity, and acceleration of the RTRTR kinematic chain. Procedure RTRTR is 
fully interchangeable with procedure RTRTRc. Parameter Delta calculated with Equation 
6.32 will be different however from the one returned by procedure RTRTRc. Also different 
is the way in which the mechanism is represented by RTRTR in the positions where it cannot 
be assembled and when calculations are continued by assuming Delta being equal to zero 
inside RTRTR. This results in the alignment of joints A, C, and B, but not together with the 
sliding joints of the two linear motors as procedure RTRTRc does (see Figure 6.10).

B
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Q2

A0
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Q1
C
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P2

P1

P1

Q2

C

B0

P2

O2O1

FiGURE�6.10� The same mechanism in Figure 6.8 generated using the program P6_08.PAS with 
procedure RTRTRc substituted with RTRTR. See also animation file F6_10.GIF.
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6.6� �moTion�TRAnSmiSSion�chARAcTERiSTicS�
oF�RTRTR-bASED�mEchAniSmS

One of the main concerns when designing a linkage mechanism is its capability to trans-
mit motion efficiently without overloading or jamming its joints due to the large reaction 
forces that may be generated. Without performing any force analysis, it is possible to esti-
mate the motion transmission characteristics of a linkage using kinematics only. In case 
of the four bar and slider–crank mechanisms, the concept of transmission angle has been 
introduced for this purpose, while for cams and gear mechanisms, the pressure angle is 
utilized instead (see Chapters 7 and 8).

It will be shown that parameters Delta returned by procedures RTRTRc and RTRTR 
can be used as a measure of how close an RTRTR kinematic chain gets to a position in 
which it cannot be assembled. This position can be a branching configuration (i.e., one 
where the orientation of the ACB loop can toggle from a left-hand orientation to a right-
hand orientation) or a jamming configuration.

Depending on the magnitude of denominators (xA–xB) and (yA–yB), procedure 
Int2Cir employs either Δ1 or Δ2 in Equations 6.11 to calculate the coordinates of point C, 
and the chosen discriminant is then assigned by procedure RTRTRc to variable Delta. 
Procedure RTRTR always assigns to variable Delta the value of the discriminant Δ in 
Equation 6.32.

To verify if there is any similarity between the discriminants that procedures RTRTRc 
and RTRTR operate with, program P6_11.PAS has been written and its listing is inserted 
in Appendix B. The program runs in parallel two RTRTR actuators driven by the same 
two cranks and having the same input functions applied to their linear motors. For every 
position of the simulation, the program writes to ASCII file F6_11.TXT the time t, 
the values of parameters Delta returned by both procedure RTRTRc and procedure 
RTRTR, and the value of the angle formed by lines AC and BC of the RTRTR loop. It also 
records the parameter

 

k
AB

AC BC
ACB =

+( )
 (6.49)

Named the triangular ratio,

where
AB is the distance between joints A and B
AC is the distance between joints A and C
BC is the distance between joints A and B

As the plots in Figure 6.11 show, there is a good degree of correlation between param-
eters Delta, the angle <ACB formed by the two linear motors, and the triangular ratio 
kACB. It means that any of them can be used as a measure of the motion transmission 
characteristics of the mechanism. Note that if the mechanism does not assemble, the dif-
ference between the two Delta values becomes more prominent, with the one returned by 
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procedure RTRTTc having a bigger value range. Additionally, Delta returned by proce-
dure RTRTRc is nonsmooth, a consequence of switching between Δ1 and Δ2.

Animation files F6_11a.GIF and F6_11b.GIF available with the book were gener-
ated for two different sets of actuator data (see lines #14 to #18 of program P6_11.PAS). 
When the two mechanisms do not assemble, the differences between how procedures 
RTRTRc and RTRTR represent graphically the respective actuators become immediately 
evident (see also animation file F6_11b.GIF).

Useful for setting up the mechanism simulation properly is the use of procedure 
SizeLinMotor (see lines #43, #44, #47, and #48 of the same program). Provided that 
max (s1)/min (s1) < 2 and max (s2)/min (s2) < 2, after running a complete set of linear motor 
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FiGURE�6.11� Plot of performance parameters returned by procedures RTRTRc and RTRTR when 
the mechanism assembles (a) (see also animation file F6_11a.GIF) and of parameters Delta 
only when the mechanism does not always assemble (b) (see also animation file F6_11b.GIF). 
Configuration files F6_11A.CF2 and F6_11B.CF2.
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displacements s1 and s2 through procedure SizeLinMotor, the values of variables P1C, 
P2C, A0Q1, and B0Q2 will be modified such that the pistons of the two linear motors will 
remain inside their cylinders. Note that procedure SizeLinMotor must be first called 
with the piston-displacement argument set to variable _, which equals InfD (see lines #43 
and #44). This will reset the piston and cylinder length values so they can be updated as the 
simulation progresses.

Alternatively, procedure SizeLinMotor can be called inside the main animation loop 
(see program P6_11BIS.PAS available with the book), a case in which the continuous 
updating of the piston and cylinder lengths is visible during the first animation cycle of the 
mechanism. After that, the optimum values of variables P1C, P2C, A0Q1, and B0Q2 can 
be printed on the screen and used for manually assigning the corresponding piston and 
cylinder lengths.

6.7� �kinEmATic�AnAlySiS�oF�ThE�RTRR�oScillATinG-SliDE�AcTUAToR�
USinG�EqUATionS�oF�conSTRAinT:�PRocEDURE�RTRRc

A common inversion of the slider–crank mechanism is the RTRR oscillating-slide 
actuator (Figure 6.12). It has numerous applications in earth moving and agricultural 
equipment, landing gears and flight control surfaces of aircrafts, dump trucks, indus-
trial automation, etc. The input element of an RTRR actuator is a linear motor, and its 
potential joints (noted A and B in Figure 6.12a) are in most cases connected to the same 
movable element or to the ground. Note that, with very few exceptions, in order to 
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FiGURE�6.12� Notations used in solving the kinematics of the oscillating-slide actuator (a), vector 
assignment to its links (b), and sign convention of piston eccentricity A0A (the smaller oriented 
circle) and orientation of the ACB loop (the larger oriented circle) (c).



kinematic�Analysis�of�Planar�linkage�mechanisms�Using�Assur�Groups    ◾    205  

minimize the transverse reaction forces between the piston and the cylinder, eccentric-
ity A0A is set equal to zero.

Following the same approach applied to the RTRTR kinematic chain, the analysis of the 
RTRR oscillating-slide actuator will be performed for the general case where the velocity 
and acceleration of joints A and B are nonzero, and the extension of its linear motor var-
ies continuously with time. The following parameters are assumed known at any given 
moment of a simulation:

• Coordinates xA and yA of point A relative to the fixed reference frame OXY.

• Projections �xA and �yA of the velocity of A onto the axes of the fixed reference 
frame.

• Projections ��xA and ��yA of the accelerations of point A onto the fixed reference 
frame.

• Coordinates xB and yB of point B relative to the fixed reference frame.

• Projections �xB and �yB of the velocity of point B onto the fixed reference frame.

• Projections ��xB and ��yB of the accelerations of point B onto the fixed reference frame.

• Piston displacement s and its time derivatives �s and ��s  relative to the cylinder, consid-
ered positive when oriented such that the actuator expands.

• Cylinder length A0Q.

• Piston length PC.

• Rocker length BC.

• Piston eccentricity A0A.

• Orientation of the ACB triangular loop.

We are interested in determining the following unknown parameters:

• The coordinates xC and yC of joint center C relative to the fixed reference frame OXY.

• The projections �xC  and �yC  of the velocity of point C onto the axes of the fixed refer-
ence frame.

• The projections ��xC  and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

• The coordinates xP and yP of point P relative to the fixed reference frame.

• The coordinates xQ and yQ of point Q relative to the fixed reference frame.

The RTRR actuator can be viewed as a particular embodiment of the RTRTR double 
linear input actuator discussed earlier, where one of the motors does not change length. 
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The position, velocity, and acceleration components of joint center C can be calculated by 
calling procedure Int2CirPVA with r1 and r2 and their time derivatives assigned as follows:
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(6.50)

The coordinates of joint center A0 result from solving Equations 6.17 using procedure 
Int2Cir, while the coordinates of points P and Q result from solving Equations 6.19. The 
coordinates of these points are required to represent graphically the linear motor as the 
mechanism moves.

Procedure RTRRc calculates, using a constraint equation approach, the position, veloc-
ity, and acceleration of pin joint center C and displacements, velocity, and accelerations to 
joints A and B for given inputs s, �s, and ��s  of the linear motor. If the graphic system is on, 
procedure RTRRc also draws in color Color (less if it is assigned the BGI constant Black 
or the value zero) the piston, its cylinder, and the rocker BC, in a manner similar to Figure 
6.12. The heading of procedure RTRRc is as follows:

procedure RTRRc(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB, 
vxB,vyB, axB,ayB, A0A, A0Q, PC, s,ds,dds:double;  LftRgt:shortint; 
var xC,yC, vxC,vyC, axC,ayC, Delta:double);

The correspondence between the formal parameters and the notations used earlier is 
summarized in the following tables:

Input parameters of procedure RTRRc:

0…16 xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

Color xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

A0A A0Q PC BC s �s ��s ±1
A0A A0Q PC BC s ds1 dds1 LftRgt

Output parameters of procedure RTRRc:

xC yC �xC �yC ��xC ��yC Δ
xC yC vxC vyC axC ayC Delta

LftRgt controls the orientation of the mechanism, that is, for a right-hand assem-
bly configuration, it must be set to +1 or to constant Right, while for a left-hand 
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assembly configuration, it must be set to −1 or to constant Left (see Figure 6.12c). 
If the scalar velocities and accelerations of either joint A or B are zero, then the respec-
tive pivot joint is assumed connected to the ground and will be represented graphically 
accordingly, by calling procedure gPivotJoint in unit LibMec2D. Output variable 
Delta is identical to the variable with the same name from procedure Int2CirPVA 
that is called inside RTRRc.

6.8� �kinEmATic�AnAlySiS�oF�ThE�RTRR�oScillATinG-SliDE�AcTUAToR�
USinG�A�vEcToR-looP�APPRoAch:�PRocEDURE�RTRR

The kinematics of the RTRR actuator can also be solved using a vector-loop method. We 
recognize first that angles φ1 and φ2 are given by the same Equations 6.28 and 6.31 derived 
earlier for the case of the RTRTR kinematic chain.

Likewise, the coordinates of joint center C are
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where unknown angle θ results from solving linear equations

 

s A A AC

A A s AC

⋅ + ⋅ = ⋅
− ⋅ + ⋅ = ⋅

cos( ) sin( ) cos( )

sin( ) cos( ) sin(

θ θ ϕ
θ θ

0 1

0 ϕϕ1)





	 (6.52)

in the unknowns cos(θ) and sin(θ).
In order to represent graphically the mechanism, the x and y coordinates of points A0, P, 

and Q must be calculated first. These result from projecting on the axes of the OXY frame 
the following vector equations:
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Regarding the scalar components of the velocity of point C, these result from differenti-
ating Equations 6.51 with respect to time:

 

� � � � �

� �

x x A A s s

y y A A

C A

C A

= + ⋅ ⋅ + ⋅ − ⋅ ⋅

= + ⋅

0

0

cos( ) cos( ) sin( )

sin

θ θ θ θ θ

(( ) sin( ) cos( )θ θ θ θ θ⋅ + ⋅ + ⋅ ⋅





 � � �s s

 (6.54)



208    ◾    computer-Aided�Graphing�and�Simulation�Tools�for�AutocAD�Users

To calculate the unknown angular velocity �θ, we begin with vector equation

 − + − =A A A C BC AB0 0
 (6.55)

which projects on the axes of the fixed reference frame as
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Equations 6.56 simplify to
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and by differentiating them with respect to time, we further get
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After collecting terms, the following set of linear equations in the unknowns �θ and �ϕ2 is 
obtained:

 

A A s BC x x s

A

0 2 2⋅ − ⋅[ ]⋅ + ⋅ ⋅ = − − ⋅cos( ) sin( ) sin( ) cos( )θ θ θ ϕ ϕ θ� � � � �B A

00 2 2A s BC y y s⋅ + ⋅[ ]⋅ − ⋅ ⋅ = − − ⋅



sin( ) cos( ) cos( ) sin( )θ θ θ ϕ ϕ θ� � � � �B A





 (6.59)

The scalar components of the acceleration of point C result from differentiating 
Equations 6.54:
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where unknown angular acceleration ��θ and ��ϕ2 are solutions of equations
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obtained by differentiating with respect to time Equation 6.59. Both Equations 6.59 and 
6.61 are very easy to solve using Cramer’s rule or the inverse matrix method.

Procedure RTRR that implements this vector-loop approach to perform the kinematic 
simulation of the RTRR actuator has the same heading and is totally interchangeable with 
procedure RTRRc. The differences between the two procedures are the way the mechanism 
is represented in the positions in which it cannot be assembled, and the value of the dis-
criminant returned by variable Delta. It is to be expected that variables Delta of these 
two procedures will exhibit characteristics comparable to Delta returned by RTRTRc 
and RTRTR discussed earlier with reference to Figure 6.11.

Programs P6_13A.PAS and P6_13B.PAS available with the book are applications 
of procedures RTRRc and RTRR (see Figure 6.13). Program P6_13A.PAS animates 

Poz = 46
A0 A

P

(a) (b)

B

109°

Q

C

t = 0.511,

0.492

FiGURE�6.13� Oscillating-slide actuator with harmonic linear motor input with potential joints A 
and B driven by two rockers (a) and connected directly to the ground (b) generated with programs 
P6_13A.PAS and P6_13B.PAS. See also animation files F6_13a.GIF and F6_13b.GIF.
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simultaneously (i.e., overlapped) these two kinematic chains driven by the same cranks. 
It also plots separately their velocity and acceleration vectors of point C. Notice that there is 
no visible difference between the RTRRc and RTRR output, unless the linear motor range 
is extended to reveal the different way in which the RTRR kinematic chain is represented 
when assembly is not permitted. Both programs use the SizeLinMotor procedure to 
adjust the piston rod and cylinder lengths such that piston P always remains between 
points A0 and Q (see Figure 6.12a). In addition, program P6_13B.PAS implements an 
option where the minimum clearances between the piston and the two cylinder ends can 
be specified—see the use of variables A0_Pmin and Q_Pmin. Also notice, in the same 
program P6_13B.PAS, the use of procedures GetA0, GetP, and GetQ that return the 
coordinates of points A0, P, and Q of the actuator.

6.9� �kinEmATic�AnAlySiS�oF�ThE RRR DyAD:�PRocEDURES�
RRRc�AnD�RRR

The RRR dyad is one of the most commonly encountered Assur groups. In this paragraph, 
its position, velocity, and acceleration equations will be derived using both equations of 
constrain and the vector-loop method.

For both approaches, the following parameters are assumed known at any given time 
(Figure 6.14):

• Coordinates xA, yA and xB, yB of potential joints A and B relative to the OXY fixed 
reference frame.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

• Projections �xB and �yB of the velocity of joint center B onto the fixed reference frame.

• Projections ��xQ and ��yQ of the accelerations of point B onto the fixed reference frame.

• Lengths AC and BC of the two links of the dyad.

(a) (b) 

O X

Y

B
A

O

C

X

Y

A

–

B1(t)

2(t)

C

FiGURE�6.14� Notations used in solving the kinematics of the RRR dyad (a) and vector and angle 
assignment to its links (b).
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The purpose of the analysis is to determine

• Coordinates xC and yC of joint center C relative to the OXY reference frame.

• Projections �xC  and �yC  of the velocity of C onto the axes of the fixed reference frame.

• Projections ��xC  and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

The coordinates of point C can be calculated using constraint Equations 6.6 and 6.10 
with r1 = AC and r2 = BC. The scalar components of the velocity and acceleration of point C 
can be calculated using Equations 6.13 and 6.15 with � � �� ��r r r r1 2 1 2 0= = = = . Procedure RRRc in 
unit LibAssur calls procedure Int2CirPVA rather than implementing these equations 
new. Its heading is as follows:

procedure RRRc(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB, 
vxB,vyB, axB,ayB, AC, BC:double;  LftRgt:shortint; var xC,yC, 
vxC,vyC, axC,ayC, Delta:double);

The correspondence between the formal parameters and the notations used earlier is:
Input parameters of procedure RRRc:

0…16 xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

Color xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

 
AC BC x y �x �y ��x ��y ±1
AC BC xC yC dxC dyC ddxC ddyC LftRgt

Output parameters of procedure RRRc:

xC yC �xC �yC ��xC ��yC Δ
xC yC vxC vyC axC ayC Delta

Variable LftRgt specifies the orientation of the triangular loop ACB as discussed ear-
lier. For a negative orientation of the dyad, shown in solid lines in Figure 6.14a, variable 
LftRgt should be assigned the value −1 or constant Left. The positive orientation of the 
RRR dyad, enforced by setting input variable LftRgt to +1 or constant Right, is shown 
by the dashed lines in Figure 6.14a.

In addition to returning the output parameters listed earlier, procedure RRRc also 
draws in color Color (less if Color equals zero or Black or if the graphic system is off) 
two lines connecting points A and C and points B and C. It also represents joint C as a circle 
of radius JtSz. If the velocities and accelerations of joints A and/or B are zero, procedure 
RRRc draws the respective joint using a grounded pin joint symbol.
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For a vector-loop kinematic analysis of the RRR dyad, Equation 6.24 as well as Equations 
6.28 and 6.31 can be used to calculate angles φ1 and φ2 (Figure 6.14). Once angles φ1 and 
φ2 are determined, the coordinates of joint C can be obtained starting from the following 
vector equation:

 AC OA AC= + = 0  (6.62)

which projects on the axes of the OXY reference frame as
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C A

C A

= + ⋅

= + ⋅







cos( )

sin( )

ϕ

ϕ

1

1

 (6.63)

The scalar components of the velocity of joint center C result from differentiation Equations 
6.63 with respect to time:
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 (6.64)

By differentiating Equations 6.64, the x and y components of the acceleration of point C 
are obtained:
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 (6.65)

To solve for the unknown angular velocity and acceleration �ϕ1 and ��ϕ1, we resort to 
Equations 6.25 rearranged as
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 (6.66)

Differentiating them once with respect to time yields a set of two linear equations in the 
unknowns �ϕ1 and �ϕ2:
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 (6.67)
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The second derivatives of the same angles φ1 and φ2 result from solving equations:
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2
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 (6.68)

Note that the vector method also yields the angular velocities and accelerations of the 
two links of the dyad directly, which can be of interest in some analyses.

Procedure RRR in unit LibAssur calculates the position, velocity, and acceleration of 
the RRR dyad using Equations 6.62 through 6.68, and it is interchangeable with procedure 
RRRc. Its variable Delta calculated using Equation 6.32 will evidently be different than 
the one returned by procedure RRRc. If the dyad cannot be assembled, both procedure 
RRRc and RRR will represent links AC and BC with joints A, C, and B collinear and in 
dashed lines.

To verify the correctness of the output by procedures RRRc and RRR, program 
P6_15.PAS has been written and is available with the book. It simulates the motion 
of an RTRTR kinematic chain having its linear motors locked (modeled using proce-
dure RTRTRc) driven by two cranks, overlapped with an RRR dyad (modeled using 
procedure RRRc or RRR) driven by the same two cranks as shown in Figure 6.15. The 
separate graphing of the velocity and acceleration vectors of joint C renders these vec-
tors indistinguishable over the entire motion cycle of the mechanism, a confirmation 
that procedures RRRc and RRR produce correct results. The needle drive mechanism 
simulation program P6_01.PAS introduced earlier is another example of procedure 
RRR and RRRc use.

FiGURE�6.15� Five-bar linkage simulation generated with program P6_15.PAS that calls proce-
dure RTRTR with its linear motors locked, overlapped with procedures RRRc and RRR. See also 
animation file F6_15.GIF.
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6.10� �kinEmATic�AnAlySiS�oF�ThE�RRT�DyAD USinG�
A�vEcToR-looP�APPRoAch

In this section, the position, velocity, and acceleration problem of the RR_T and RRT_ 
isomers of the RRT dyad is solved using a vector-loop approach. The kinematic equations 
were derived for two distinct slider configurations (see Figure 6.3) and were implemented 
in procedures RRT_ and RR_T. In case of isomer RR_T, the potential joint is a sleeve, 
while in case of isomer RRT_, the translating potential joint is a rod that can be fixed or 
can perform some kind of controlled motion.

6.10.1� RR_T�Dyadic�isomer:�Procedure�RR_T

The RRT_ isomer of the RRT dyad depicted in Figure 6.16 will be analyzed first, with the 
following parameters assumed specified at any instant of time:

• Length AC of the connecting rod.

• Slider eccentricity BC perpendicular to BQ (can be either positive or negative).

• Length of slider rod BQ (can be either positive or negative).

• Coordinates xA, yA of potential joint A relative to the fixed reference frame OXY.

• Angle θ of the slider axis measured counterclockwise from a parallel to the OX axis.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference 
frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

• Projections �xP  and �yP of the velocity of joint center P onto the fixed reference 
frame.

O
X

Y

P

θ(t)

(t)

Q

A

C

s(t)

A

C
B

P

A

P
C

A
C

A

C

Q

B

Q
Q

Q
(a) (b)

P P

B

B

B

FiGURE�6.16� Kinematic diagrams of the RR_T isomer of the RRT dyad with potential joints A 
and P (as shown, length BQ is negative) (a) and its assembly configurations based on the sign of 
eccentricity BC and the double sign in Equation 6.74, which may result in a longer or shorter dis-
placement s (b).
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• Projections ��xP  and ��yP  of the accelerations of point P onto the fixed reference frame.

• First time derivative �θ of angle θ (the angular velocity of the slider).

• Second time derivative ��θ of angle θ (the angular acceleration of the slider).

The purpose of this kinematic analysis is to determine

• The coordinates xC and yC of joint center C relative to the OXY reference frame.

• Projections �xC and �yC of the velocity of C onto the axes of the fixed reference frame.

• Projections ��xC  and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

• The coordinates xB and yB of point B relative to the OXY reference frame.

• Projections �xB and �yB of the velocity of B onto the axes of the fixed reference frame.

• Projections ��xB and ��yB of the acceleration of B onto the axes of the fixed reference 
frame.

• The coordinates xQ and yQ of point Q relative to the OXY reference frame.

• Projections �xQ and �yQ of the velocity of Q onto the axes of the fixed reference frame.

• Projections ��xQ and ��yQ of the acceleration of Q onto the axes of the fixed reference 
frame.

We begin with the following vector equation:

 OA AC OP PB BC+ = + +  (6.69)

and project it on the axes of the OXY reference frame:
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 (6.70)

which are equivalent to
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We then square Equations 6.71 and obtain
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After adding them and rearranging terms, we obtain the following quadratic equation in 
the unknown s:
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with solutions
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Note that there are four assembly configurations of the RR_T isomer, corresponding to 
the sign of the eccentricity BC and the choice of the double sign in Equation 6.74.

The coordinates of point B and Q, of interest when plotting the mechanism or when the 
dyad is amplified with additional Assur groups, are
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and
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The coordinates of point C are obtained by projecting vector equation

 OC OP PB BC= + +  (6.78)

on the axes of the OXY frame:
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 (6.79)

Once coordinates of joint center C become available, the trigonometric functions of angle 
φ can be straightforwardly evaluated, that is,
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By differentiating Equation 6.71 with respect to time, a set of two linear equations in the 
unknowns �ϕ and �s is obtained:
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which are very easy to solve.
The components of the velocity of point B and Q are obtained by differentiating 

Equations 6.76 and 6.77, that is,
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and
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while those of point C are obtained by differentiating Equations 6.79 in their second form:
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Accelerations ��ϕ and ��s  are obtained by differentiating Equations 6.81 which yield another 
set of two linear equations:

 

+ ⋅ ⋅ − ⋅ = − + ⋅ − ⋅[ ]⋅AC s x x BC ssin( ) cos( ) sin( ) cos( )ϕ ϕ θ θ θ�� �� �� �� �
P A θθ

θ θ θ θ θ ϕ ϕ

2

22− ⋅ − ⋅[ ]⋅ + ⋅ ⋅ + ⋅ ⋅BC s s AC

AC

cos( ) sin( ) sin( ) cos( )�� � � �

⋅⋅ ⋅ + ⋅ = − − ⋅ − ⋅[ ]⋅cos( ) sin( ) cos( ) sin( )ϕ ϕ θ θ θ θ�� �� �� �� �s y y BC sP A
2

−− ⋅ + ⋅[ ]⋅ − ⋅ ⋅ + ⋅ ⋅








BC s s ACsin( ) cos( ) cos( ) sin( )θ θ θ θ θ ϕ ϕ�� � � �2 2









 (6.85)

The x and y components of the acceleration of points B, Q, and C are obtained by dif-
ferentiating Equations 6.82, 6.83, and 6.84, that is,
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Procedure RR_T in unit LibAssur that implements the equations derived earlier has 
the following heading:

procedure RR_T(Color:Word; xA,yA, vxA,vyA, axA,ayA, xP,yP, 
vxP,vyP, axP,ayP, Theta,dTheta,ddTheta, AC,BC,BQ:double;  
PlsMns:shortint; var xB,yB, vxB,vyB, axB,ayB, xC,yC, vxC,vyC, 
axC,ayC, xQ,yQ, vxQ,vyQ, axQ,ayQ, Delta:double);

The correspondence between the formal parameters of procedure RRT_ and the nota-
tions used in the earlier equations is summarized in the following tables:

Input parameters of procedure RR_T:

0…16 xA yA �xA �yA ��xA ��yA xP yP �xP �yP ��xP ��yP

Color xA yA vxA vyA axA ayA xP yP vxP vyP axP ayP

θ �θ ��θ AC BC BQ ±1
Theta dTheta ddTheta AC BC BQ PlsMns
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Output parameters of procedure RR_T:

xB �xB �yB ��xB ��yB xC yC �xC �yC ��xC ��yC

xB vxB vyB axB ayB xC yC vxC vyC axC ayC

xQ yQ �xQ �yQ ��xQ ��yQ Δ
xQ yQ vxQ vyQ axQ ayQ Delta

Input parameter PlsMns specifies the nature of the double sign in Equation 6.74, and it 
should be assigned either the value −1 or +1.

If of interest, the displacement s of the slider block relative to its guide and the first and 
second time derivatives �s and ��s  can be easily determined by calling procedure VarDist 
from unit LibMec2D.

The simulation of the sample mechanism in Figure 6.17 has been done with program 
P6_17.PAS, listed in Appendix B. Since there was no interest in the velocity and accel-
eration output by procedures gCrank and RR_T, the generic variable _ defined in unit 
LibMec2D that is preassigned the value InfD has been used in a number of places 
(both as input and as output). Same was applied in place of a variable Delta returned by 
procedure RRT_.

6.10.2� �RRT_�Dyadic�isomer:�Procedure�RRT_

The kinematic analysis problem considered previously was restated for the case of the RRT 
dyad configured as shown in Figure 6.18, that is, the RR_T isomer. The following param-
eters are assumed known at any instant of time of a simulation:

• Length AC of the connecting rod.

• Slider eccentricity BC assumed perpendicular to PQ, which can be either positive or 
negative.

A

B

C

P

Q

O1 O2

FiGURE� 6.17� A two-DOF mechanism consisting of a crank-driven RR_T dyad with the slider 
block mounted at the end of rocker O2P that oscillates according to equation φ2 = π/2 + π/9⋅sin(2πt). 
See also the animation file F6_17.GIF available with the book.
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• Coordinates xA, yA of potential pin joint A relative to the fixed reference frame OXY.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

• Coordinates xP, yP and xQ, yQ relative to the fixed reference frame of points P and Q 
of the slider guide.

• Projections �xP  and �yP  of the velocity of joint center P onto the fixed reference 
frame.

• Projections ��xP and ��yP of the accelerations of point P onto the fixed reference frame.

• Projections �xQ and �yQ of the velocity of point Q onto the fixed reference frame.

• Projections ��xQ and ��yQ of the accelerations of point Q onto the fixed reference 
frame.

The objective of the analysis is to determine the following unknown parameters:

• Coordinates xB and yB of sliding joint center B relative to the OXY reference frame.

• Projections �xB and �yB of the velocity of point B onto the axes of the fixed reference 
frame.

• Projections ��xB and ��yB of the acceleration of point B onto the axes of the fixed refer-
ence frame.

• Coordinates xC and yC of joint center C relative to the OXY reference frame.

• Projections �xC  and �yC  of the velocity of C onto the axes of the fixed reference frame.

• Projections ��xC  and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

O

(a) (b)
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FiGURE�6.18� The RRT_ isomer of the RRT dyad with a potential sliding rod PQ (a) and its four 
possible assembly configurations (b).



kinematic�Analysis�of�Planar�linkage�mechanisms�Using�Assur�Groups    ◾    221  

Equations 6.69 through 6.88 are also applicable in the kinematic analysis of the RRT 
dyad in Figure 6.18, with the exception of Equations 6.77, 6.83, and 6.87, which should be 
replaced with the following six equations:
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y y PQ

Q P

Q P

= + ⋅

= + ⋅







cos( )
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 (6.89)
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and
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where

 
PQ x x y y= − + −( ( )Q P Q P)2 2  (6.92)

Procedure RRT_ in unit LibAssur that performs the kinematic analysis of the RR_T 
dyadic isomer has the following heading:

RRT_(Color, xA,yA,vxA,vyA,axA,ayA, xP,yP,vxP,vyP,axP,ayP, 
xQ,yQ,vxQ,vyQ,axQ,ayQ, AC,BC, PlsMns, xB,yB,vxB,vyB,axB,ayB, 
xC,yC,vxC,vyC,axC,ayC, Delta)

The correspondence between the formal parameters and the notations used in these 
equations and in Figure 6.18 is summarized in the following tables:

Input parameters of procedure RRT_:

−16…16 xA yA �xA �yA ��xA ��yA xP yP �xP �yP ��xP ��yP

Color xA yA vxA vyA axA ayA xP yP vxP vyP axP ayP

�xQ �yQ ��xQ ��yQ AC BC ±1
vxQ vyQ axQ ayQ AC BC PlsMns

Output parameters of procedure RRT_:

xB �xB �yB ��xB ��yB xC yC �xC �yC ��xC ÿC Δ

xB vxB vyB axB ayB xC yC vxC vyC axC ayC Delta
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The input parameter Color specifies the color in which the dyad will be plotted on the 
screen and to the DXF file. In comparison with the previous procedures, parameter Color 
can be assigned either a positive or a negative value. If Color is negative, then line PQ 
representing the slider guide will not be plotted.

Same as in case of procedure RR_T, parameter PlsMns controls the double sign in 
Equation 6.74 and should be set equal to either −1 or +1, depending on the desired closure 
of the dyad (left hand or right hand).

Angle θ formed by guide PQ with the horizontal axis and its first and second derivatives 
�θ and ��θ (which are not readily available as before) can be calculated by calling procedures 
AngPVA from unit LibMec2D. Inputs to procedure AngPVA will be the x and y coordi-
nates of points P and Q and their first and second time derivatives.

Computer program P6_19.PAS available with the book repeats the simulation done 
with P6_17.PAS this time using procedure RRT_ instead of RR_T. A screenshot gener-
ated with this new program is given in Figure 6.19, while F6_19.GIF provides a full cycle 
simulation of the mechanism.

6.11� �kinEmATic�AnAlySiS�oF�ThE�RTR�DyAD�USinG�A�
vEcToR-looP�APPRoAch:�PRocEDURE�RT_R

Here, the position, velocity, and acceleration problem of the RTR dyad will be solved using 
a vector-loop approach. Figure 6.20a shows a generalized RTR dyad with both potential 
joints A and B offset from the axis of the sliding rod. Note that RT_R and R_TR are not 
distinct isomers, and therefore the kinematic equations remain the same. With the nota-
tions in Figure 6.20, the following parameters are assumed known at any instant of time 
of the kinematic analysis:

• Eccentricity AC assumed perpendicular to PQ (can be either positive or negative).

• Eccentricity BP assumed perpendicular to PQ (can be either positive or negative).

• Slider guide rod length PQ (can be either positive or negative).

A

C
P

B

Q

O1 O2

FiGURE�6.19� The same mechanism in Figure 6.17 simulated using the RRT_ procedure. See also 
animation file F6_19.GIF available with the book.
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• Coordinates xA, yA of potential joint A relative to the fixed reference frame OXY.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

The purpose of the analysis is to determine

• Displacement s of the slider measured as shown and its first and second derivatives �s 
and ��s , respectively.

• Coordinates xC and yC of joint center C relative to the OXY reference frame.

• Projections �xC  and �yC  of the velocity of C onto the axes of the fixed reference frame.

• Projections ��xC and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

• Coordinates xP, yP and xQ, yQ of the respective points on the slider guide relative to 
the fixed reference frame.

• Projections �xP and �yP  of the velocity of joint center P onto the fixed reference frame.

• Projections ��xP  and ��yP of the accelerations of point P onto the fixed reference frame.

• Projections �xQ and �yQ of the velocity of point Q onto the fixed reference frame.

• Projections ��xQ and ��yQ of the accelerations of point Q onto the fixed reference 
frame.

Note that if eccentricities AC and BP are modified equal amounts, slider displacement s 
and its time derivatives will remain the same. Consequently, point Q attached offset to the 
sliding rod performs the same motion that can be obtained with either AC or BP being set 
equal to zero (see also Figure 6.20b).

(a) (b)
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(t)

(t)

s(t)

Y

A

C

B

P

Q

(t)+ 2
π

Q

B

A

Q

P

CAC

PB

FiGURE�6.20� Notations used in solving the kinematics of the RTR dyad (a) and equivalent 
configurations from the perspective of point Q motion (b).
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We begin the analysis by writing the following vector equation:

 OA AC OB BP PC+ = + +  (6.93)

and project it on the axes of the fixed reference frame as
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cos( ) cos( ) cos

sin( )

ϕ ϕ ϕ π

ϕ

2

PP s⋅ + ⋅ +

















 sin( ) sinϕ ϕ π

2

 (6.94)

equivalent to
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We then square these last two equations:
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 (6.96)

and after adding them and rearranging terms, we obtain

 
( ) ( ) ( )AC BP s x x y y− + = − + −2 2 2 2

B A B A
 (6.97)

The unknown slider displacement s will therefore result as

 
s x x y y AC BP= ± − + − − −( ) ( ) ( )B A B A

2 2 2  (6.98)

In order to calculate the angle φ, we resort to Equation 6.95 and multiply the first one by 
s and the second one by (AC–BP):
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 (6.99)
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and then add them together to obtain

 

sin
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( ) ( )
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s x x AC BP y y

x x y y
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 (6.100)

We repeat the procedure and multiply the first of Equations 6.95 by (AC − BP) and the 
second one by –s:
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After adding the two equations together, we get
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The actual angle φ can be calculated using equation
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Using the sin and cos function of angle φ in Equations 6.100 and 6.102, the coordinates 
of points C, P, and Q result as follows:
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Unknown angular velocities �s and �ϕ are determined by differentiating Equations 6.95:
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which after collecting terms yield a set of two equations in the unknowns �s and �ϕ:
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To determine the second time derivative of s and φ, we differentiate Equations 6.108 
and get:
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and finally we obtain a set of two linear equations in the unknowns ��s  and ��ϕ that can be 
easily solved by eliminating one of the variables, or using Cramer’s rule:

 

s AC BP s x x

s

⋅ − − ⋅[ ]⋅ + ⋅ = −

− ⋅

cos( ) ( ) sin( ) sin( )

cos

ϕ ϕ ϕ ϕ�� �� �� ��

�

B A

2 (( ) sin( ) ( ) cos( )

sin( ) ( ) co

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

⋅ + ⋅ ⋅ + − ⋅ ⋅

⋅ + − ⋅

� � �s AC BP

s AC BP

2 2

ss( ) cos( )

sin( ) cos( )

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

[ ]⋅ − ⋅ = −

− ⋅ ⋅ − ⋅ ⋅

�� �� �� ��

� � �

s y y

s s

B A

2 22 2+ − ⋅ ⋅













 ( ) sin( )AC BP ϕ ϕ�

 (6.110)

The scalar components of the velocities and accelerations of points P, C, and Q are 
obtained by differentiating Equations 6.104, 6.105, and 6.106 as follows:
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Differentiating one more time the same equations, we obtain the following acceleration 
equations:
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Procedure RT_R in unit LibAssur implements the equations discussed earlier and 
has the following heading:

procedure RT_R(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB, 
vxB,vyB, axB,ayB, AC,BP,PQ:double; PlsMns:shortint; var xP,yP, 
vxP,vyP, axP,ayP, xC,yC, vxC,vyC, axC,ayC, xQ,yQ, vxQ,vyQ, 
axQ,ayQ, Delta:double);

The correspondence between the formal parameters and the notations used in Equations 
6.93 through 6.110 and in Figure 6.20 is summarized in the following two tables:

Input parameters of procedure RT_R:

0…16 xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB AC BC BQ

Color xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB AC BC BQ

Output parameters of procedure RT_R:

xP yP �xP �yP ��xP ��yP xC yC �xC �yC ��xC ��yC

xP yP vxP vyP axP ayP xC yC vxC vyC axC ayC

xQ yQ �xQ �yQ ��xQ ��yQ Δ
xQ yQ vxQ vyQ axQ ayQ Delta

Note that the displacement s of the slider block relative to its guide and the first and 
second time derivatives �s  and ��s  are not returned by the procedure. If of interest, they can 
be easily determined by calling procedure VarDist from unit LibMec2D.

The simulation of the mechanism in Figure 6.21 has been done using program P6_21.PAS, 
the listing of which is available in Appendix B. The program calls procedure RT_R with 
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some of its output variables assigned the generic variable _. To ease identification, all joints 
are labeled in Figure 6.21. Also shown in the figure is the locus of point Q.

The companion Figure 6.22 and animation file F6_22.GIF illustrate the four possible 
arrangements that can be obtained by alternating the signs of the eccentricities AC and BP 
of the RTR dyad. Note that of these four mechanisms, two have full cycle mobility, while 
the other two experience locking positions.

6.12� �kinEmATic�AnAlySiS�oF�ThE�TRT�DyAD�
USinG�A�vEcToR-looP�APPRoAch

The TRT and RTT dyads have fewer applications than the ones analyzed so far. On the 
other hand, both have increased number of isomers (i.e., T_R_T, _TRT_, T_RT_ and 
R_T_T, RT_T_, R_TT_, RT__T, respectively), due to the presence of two prismatic joints 
that can be configured either with the sliding block first followed by its conjugate sliding 
rod, or vice versa.

In this section, a vector-based kinematic analysis of the three possible isomers of the 
TRT dyad will be discussed. The corresponding kinematic equations have been imple-
mented in procedures T_R_T, _TRT_, and T_RT_ part of unit LibAssur. Examples of 
mechanism simulations done with these procedures are also provided.

Q C

A O2

B

P

O1

FiGURE�6.21� Simulation of a two-DOF mechanism consisting of an RTR dyad, driven by a crank 
and a rocker. See also animation file F6_21.GIF.

AC>0 BP>0

BP>0

BP>0

BP>0

AC<0

AC<0

AC>0

FiGURE�6.22� The four possible configurations of the mechanism in Figure 6.21 based on the sign 
of the eccentricities of the potential A and B of the RTR dyad. See also animation F6_22.GIF.
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6.12.1� �T_R_T�Dyadic�isomer:�Procedure�T_R_T

In a kinematic simulation of the TRT dyad with two potential sliding blocks, noted T_R_T 
(Figure 6.23), the following parameters are assumed known at any instant of time:

• Coordinates xA, yA, of potential turning joint A relative to the fixed reference 
frame OXY.

• Coordinates xB, yB, of point B measured relative to the fixed reference frame.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

• Projections �xB and �yB of the velocity of joint center B onto the fixed reference frame.

• Projections ��xB and ��yB of the accelerations of point B onto the fixed reference frame.

• Orientation angle θ1 of slider block A and its first and second time derivatives �θ1 and 
��θ1, respectively.

• Orientation angle θ2 of slider block B and its first and second time derivatives �θ2 and 
��θ2 , respectively.

• Lengths P1Q1 and Q1C of the L-shaped link supporting slider block A (both can be 
either positive or negative).

• Lengths P2Q2 and Q2C of the L-shaped link supporting slider block B (either positive 
or negative).

These being given will allow us to calculate the following dependent parameters:

• Slider displacements s1 and s2 measured as shown and their time derivatives �s1, �s2 , ��s1, 
and ��s2.

• Coordinates xC and yC of pin joint center C relative to the OXY reference frame.

A

C
θ1(t)

s1(t)
s2(t)Q2Q1

θ2(t)
B

O

Y

X

P1 P2

FiGURE�6.23� Notations used in the kinematic analysis of the T_R_T isomer of the TRT dyad.
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• Projections �xC  and �yC  of the velocity of point C onto the axes of the fixed reference 
frame.

• Projections ��xC  and ��yC  of the acceleration of point C onto the axes of the fixed refer-
ence frame.

• Coordinates xP1 and yP1 of point P1 relative to the OXY reference frame.

• Projections �xP1 and �yP1 of the velocity of point P1 onto the axes of the fixed reference 
frame.

• Projections ��xP1 and ��yP1 of the acceleration of point P1 onto the axes of the fixed refer-
ence frame.

• Coordinates xQ1 and yQ1 of point Q1 relative to the OXY reference frame.

• Projections �xQ1 and �yQ1 of the velocity of point Q1 onto the axes of the fixed reference 
frame.

• Projections ��xQ1 and ��yQ1 of the acceleration of point Q1 onto the axes of the fixed refer-
ence frame.

• Coordinates xP2 and yP2 of point P2 relative to the OXY reference frame.

• Projections �xP2 and �yP2 of the velocity of point P2 onto the axes of the fixed reference 
frame.

• Projections ��xP2 and ��yP2 of the acceleration of point P2 onto the axes of the fixed refer-
ence frame.

• Coordinates xQ2 and yQ2 of point Q2 relative to the OXY reference frame.

• Projections �xQ2 and �yQ2 of the velocity of point Q2 onto the axes of the fixed reference 
frame.

• Projections ��xQ2 and ��yQ2 of the acceleration of point Q2 onto the axes of the fixed 
reference frame.

We begin by writing the following vector-loop equation:

 OA AQ Q C OB BQ Q C+ + = + +1 1 2 2
 (6.117)

which projects on the x- and y-axes of the fixed reference frame as
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 sin θ π
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We rearrange them as a set of two linear equations in the unknowns s1 and s2 that is easy 
to solve:

 

s s x x Q C Q C

s

1 1 2 2 1 1 2 2

1

⋅ − ⋅ = − + ⋅ + ⋅

⋅

cos( ) cos( ) sin( ) sin( )
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 s y y Q C Q CA B

 (6.119)

Note that Equations 6.119 have unique solutions only if

 
sin( ) cos( ) cos( ) sin( )θ θ θ θ θ θ1 2 1 2 1 20⋅ − ⋅ ≠ ≠or  (6.120)

Once slider displacements s1 and s2 become known, the coordinates of points C, P1, P2, 
Q1, and Q2 required to represent graphically the T_R_T dyadic isomer can be calculated 
using the following equations:
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The coordinates of joint C can be calculated using either of the following two equations:
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 (6.125a)
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To solve the velocity problem, we differentiate with respect to time Equation 6.119 and 
obtain a set of two linear equations in the unknowns �s1 and �s2, that is:
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 (6.126)

By applying Equations 6.121, 6.123, and 6.125, these last two equations simplify to
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 (6.127)

The x and y components of the velocities of points C, P1, P2, Q1, and Q2 result through 
differentiation with respect to time of Equations 6.121 through 6.125:
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and for joint C,
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To solve the acceleration problem, we first differentiate Equations 6.127, which yield the 
following set of two linear equations in the unknowns ��s1 and ��s2:
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In turn, the components of the accelerations of points C, P1, P2, Q1, and Q2 result by dif-
ferentiating with respect to time Equations 6.128 through 6.132, that is,
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and the same for joint C,
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or
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The equations derived earlier have been implemented in procedure T_R_T part of unit 
LibAssur. The heading of this procedure is

T_R_T(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB, vxB,vyB, 
axB,ayB, Theta1,dTheta1,ddTheta1, Theta2,dTheta2,ddTheta2, P1Q1, 
Q1C, P2Q2, Q2C:double; var xP1,yP1, vxP1,vyP1, axP1,ayP1, xQ1,yQ1, 
vxQ1,vyQ1, axQ1,ayQ1, xP2,yP2, vxP2,vyP2, axP2,ayP2, xQ2,yQ2, 
vxQ2,vyQ2, axQ2,ayQ2, xC,yC, vxC,vyC, axC,ayC: double; 
var OK:Boolean);

The correspondence between the formal parameters and the notations used in Equations 
6.118 through 6.138 and in Figure 6.23 is summarized in the following tables:

Input parameters of procedure T_R_T:

0…16 xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

Color xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

θ1
�θ1

��θ1 θ2
�θ2

��θ2
P1Q1 Q1C P2Q2 Q2C

Theta1 dTheta1 ddTheta1 Theta2 dTheta2 ddTheta2 P1Q1 Q1C P2Q2 Q2C

Output parameters of procedure T_R_T: 

xP1 yP1 �xP1 �yP1 ��xP1 ��yP1 xQ1 yQ1 �xQ1 �yQ1 ��xQ1 ��yQ1

xP1 yP1 vxP1 vyP1 axP1 ayP1 xQ1 yQ1 vxQ1 vyQ1 axQ1 ayQ1

xP2 yP2 �xP2 �yP2 ��xP2 ��yP2 xQ2 yQ2 �xQ2 �yQ2 ��xQ2 ��yQ2 θ1 ≠ θ2

xP2 yP2 vxP2 vyP2 axP2 ayP2 xQ2 yQ2 vxQ2 vyQ2 axQ2 ayQ2 OK

Note that the relative displacements s1 and s2 of slider blocks A and B and their first and 
second time derivatives are not returned by the procedure because they can be easily cal-
culated using procedure VarDist.
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Program P6_24.PAS listed in Appendix B is a sample mechanism simulation 
(Figure 6.24) that employs procedure T_R_T. For simplicity, no velocity and acceleration 
values are transmitted to procedure T_R_T, and therefore no velocity and acceleration results 
are returned by the program.

6.12.2� �_TRT_�Dyadic�isomer:�Procedure�_TRT_

In the kinematic simulation of the _TRT_ isomer of the TRT dyad with two potential slid-
ing rods (Figure 6.25), the following parameters are assumed known at any given time:

• Coordinates xP1, yP1 and xQ1, yQ1 relative to the fixed reference frame of the ends of 
slider rod P1Q1.

• Projections �xP1 and �yP1 of the velocity of point P1 onto the fixed reference frame.

Q1 Q2

C

A

B

P2

P1

O2
O1

FiGURE�6.24� A two-DOF mechanism consisting of a T_R_T dyadic isomer with two potential 
sliding blocks driven by two rockers. See also animated file F6_24.GIF, the frames of which have 
been generated using program P6_24.PAS.

O X

Y

B

C

θ1(t)

θ2(t)

s2(t)

Q1 Q2

A

P1 P2

s1(t)

FiGURE�6.25� Notations used in the kinematics of the _TRT_ dyadic isomer.
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• Projections ��xP1 and ��yP1 of the accelerations of point P1 onto the fixed reference frame.

• Projections �xQ1 and �yQ1 of the velocity of point Q1 onto the fixed reference frame.

• Projections ��xQ1 and ��yQ1 of the accelerations of point Q1 onto the fixed reference 
frame.

• Coordinates xP2, yP2 and xQ2, yQ2 relative to the fixed reference frame of the ends of 
slider rod P2Q2.

• Projections �xP2 and �yP2 of the velocity of point P2 onto the fixed reference frame.

• Projections ��xP2 and ��yP2 of the accelerations of point P2 onto the fixed reference frame.

• Projections �xQ2 and �yQ2 of the velocity of joint center Q2 onto the fixed reference 
frame.

• Projections ��xQ2 and ��yQ2 of the accelerations of point Q2 onto the fixed reference frame.

• Offset AC between sliding block A and pin joint C (can be either positive or negative).

• Offset BC between sliding block B and pin joint C (can be either positive or negative).

The purpose of the analysis is to determine

• Displacements s1 and s2 of slider blocks A and B measured as shown and their first 
and second time derivatives �s1, �s2 , ��s1, and ��s2.

• The coordinates xC and yC of pin joint center C relative to the OXY reference frame.

• The projections �xC and �yC  of the velocity of C onto the axes of the fixed reference 
frame.

• The projections ��xC and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

Same as before, we begin by writing the vector-loop equation of the dyad, that is,

 OP P A AC OP P B BC1 1 2 2+ + = + +  (6.139)

which projects on the x- and y-axes of the OXY reference frame as
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We rearrange them as a set of two linear equations in the unknowns s1 and s2 that is easy 
to solve:

 

s s x x AC BC

s

1 1 2 2 1 2

1
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 s y y AC BCP P

 (6.141)

For these two equations to have distinct solutions, the same condition (6.120) must hold 
true and should be verified before further kinematic calculations are performed.

Once slider displacements s1 and s2 become available, the coordinates of points A, B can 
be calculated with the following equations:
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The coordinates of pin joint center C can be calculated with either equation:
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or equation
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The velocity problem requires solving the following equations:

� �

� � � �

s s

x x AC BC

1 1 2 2

1 1 22 1

⋅ − ⋅ =

− − ⋅ ⋅ − ⋅ ⋅

cos( ) cos( )

cos( ) co

θ θ

θ θ θP P ss( ) sin( ) sin( )

sin( ) sin(

θ θ θ θ θ

θ θ

2 1 1 1 2 2 2

1 1 2 2

+ ⋅ ⋅ − ⋅ ⋅

⋅ − ⋅

� �

� �

s s

s s ))

sin( ) sin( ) cos( )

=

− − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ +� � � � �y y AC BC sP P2 1 1 1 2 2 1 1 1θ θ θ θ θ θ ��θ θ2 2 2⋅ ⋅













 s cos( )
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in the unknown relative displacements �s1 and �s2 of the slider. These equations were obtained 
by differentiating with respect to time Equations 6.141. By further applying Equations 
6.142, 6.143, and 6.144b, we further get
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In turn, the scalar velocities of points A, B, and C are obtained through differentiation 
with respect to time of Equations 6.142 through 6.144. These are as follows:
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and
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To solve the acceleration problem, we first differentiate Equation 6.146, which yields the 
following set of two linear equations in the unknowns ��s1 and ��s2 :
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The accelerations of points A, B, and C result from the differentiation with respect to 
time Equations 6.147 through 6.149b:
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and
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Note that angles θ1 and θ2 occurring in these equations and their time derivatives �θ1, 
�θ2 , ��θ1, and ��θ2 must be evaluated first. This can be done conveniently by calling procedure 
AngPVA with its arguments equal to the x and y coordinates of points P1, Q1, P2, and Q2 
and to the first and second time derivatives of these coordinates.
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These equations have been programmed in procedure _TRT_ part of unit LibAssur 
with the following heading:

_TRT_(Color:Word; xP1,yP1, vxP1,vyP1, axP1,ayP1, xQ1,yQ1, 
vxQ1,vyQ1, axQ1,ayQ1, xP2,yP2, vxP2,vyP2, axP2,ayP2, xQ2,yQ2, 
vxQ2,vyQ2, axQ2,ayQ2, AC,BC:double; var xA,yA, vxA,vyA, axA,ayA, 
xB,yB, vxB,vyB, axB,ayB, xC,yC, vxC,vyC, axC,ayC: double; 
var OK:Boolean);

The correspondence between the formal parameters and the notations used in Equations 
6.140 through 6.153 and in Figure 6.25 is summarized in the following tables:

Input parameters of procedure _TRT_:

0…16 xP1 yP1 �xP1 �yP1 ��xP1 ��yP1 xQ1 yQ1 �xQ1 �yQ1 ��xQ1 ��yQ1

Color xP1 yP1 vxP1 vyP1 axP1 ayP1 xQ1 yQ1 vxQ1 vyQ1 axQ1 ayQ1

xP2 yP2 �xP2 �yP2 ��xP2 ��yP2 xQ2 yQ2 �xQ2 �yQ2 ��xQ2 ��yQ2 AC BC

xP2 yP2 vxP2 vyP2 axP2 ayP2 xQ2 yQ2 vxQ2 vyQ2 axQ2 ayQ2 AC BC

Output parameters of procedure _TRT_:

xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

B

C

A

Q2Q1

P2P1

FiGURE�6.26� A two-DOF mechanism consisting of a _TRT_ dyadic isomer driven by two rock-
ers. See also animation file F6_26.GIF, the frames of which have been generated using program 
P6_26.PAS.
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xC yC �xC �yC ��xC ��yC θ1 ≠ θ2

xC yC vxC vyC axC ayC OK

Displacements s1 and s2 of rods P1Q1 and P2Q2 relative to their sliders and their time deriva-
tives �s1, �s2 , ��s1, and ��s2 are not returned by procedure _TRT_. However, they can be calculated 
using procedure VarDist with inputs of the position velocity and accelerations of points 
P1 and A and P2 and B, respectively.

Program P6_26.PAS (see Appendix B) uses the _TRT_ procedure to simulate the 
motion of a _TRT_ dyadic isomer driven by two rockers (see Figure 6.26). Again, for sim-
plicity, all the input and output velocity and acceleration values were assigned the generic 
variable _. The coordinates of point C returned by _TRT_ were then used to plot its path 
by calling procedure Locus from unit LibMec2D (see Figure 6.26).

6.12.3� �T_RT_�Dyadic�isomer:�Procedure�T_RT_

The third possible isomer of the TRT dyad is shown in Figure 6.27. T_RT_ has one of its 
potential joints shaped as a sliding block and the other potential joint shaped as a sliding 
rod. T_RT_ can be assumed to be a combination of the previously discussed isomers of the 
same dyad, also reflected in the similarity of their kinematic equations.

With the notations in Figure 6.27, the following parameters are assumed known at any 
given time of a simulation:

• Coordinates xA, yA of sliding block A relative to the fixed reference frame OXY.

• Coordinates xP2, yP2 and xQ2, yQ2 of the ends of the potential sliding rod P2Q2 
measured relative to the fixed reference frame.

• Orientation angle θ1 of the slider block A and its first and second time derivatives �θ1 
and ��θ1.

O X

P1

s2(t)

P2

s1(t)

Q1

Q2

Y
C

B
θ1(t)

θ2(t)
A

FiGURE�6.27� Notations used in solving the kinematics of the T_RT_ isomer of the TRT dyad with 
one potential sliding block and one potential sliding rod.
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• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

• Projections �xP2 and �yP2 of the velocity of point P2 onto the fixed reference frame.

• Projections ��xP2 and ��yP2 of the accelerations of point P2 onto the fixed reference frame.

• Projections �xQ2 and �yQ2 of the velocity of point Q2 onto the fixed reference frame.

• Projections ��xQ2 and ��yQ2 of the accelerations of point Q2 onto the fixed reference 
frame.

• Lengths P1Q1 and Q1C of the L-shaped rod supporting slider block A (can be either 
positive or negative).

• Length BC of pin joint C offset (can be either positive or negative).

The purpose of the analysis is to determine

• Displacements s1 and s2 of slider blocks A and B measured as shown and their first 
and second time derivatives �s1, �s2 , ��s1, and ��s2 .

• Projections xC and yC of joint center C onto the OXY reference frame and their first 
and second time derivatives �xC , �yC , ��xC , and ��yC.

• Coordinates xP1, yP1 and xQ1, yQ1 of points P1 and Q1 of the L-shaped link, measured 
relative to the fixed reference frame.

• Projections �xP1 and �yP1 of the velocity of point P1 onto the fixed reference frame.

• Projections ��xP1 and ��yP1 of the accelerations of point P1 onto the fixed reference frame.

• Projections �xQ1 and �yQ1 of the velocity of point Q1 onto the fixed reference frame.

• Projections ��xQ1 and ��yQ1 of the accelerations of point Q1 onto the fixed reference frame.

The vector-loop equation of the dyadic isomer

 OA AQ Q C OP P B BC+ + = + +1 1 2 2
 (6.154)

yields the following two scalar equations:
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After rearranging terms, a set of two linear equations in the unknowns s1 and s2 is obtained:
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 s y y Q C BCA P

 (6.156)

These two linear equations have distinct solutions only if the earlier condition (6.120) is 
satisfied.

Once slider displacements s1 and s2 become known, the coordinates of points Q1, P1, and 
B can be calculated using Equations 6.121, 6.122, and 6.143. In turn, the coordinates of pin 
joint center C can be calculated using either Equation 6.125a or 6.144b.

To solve the velocity problem, we differentiate Equation 6.156 with respect to time:
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By applying the position results, this set of two linear equations in the unknowns �s1 and �s2 
becomes:
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 (6.158)

The x and y components of the velocities of points Q1, P1, and B can be calculated using 
Equations 6.128, 6.129, and 6.148, while those of point C using either Equation 6.132a or 
6.153b.

To solve the acceleration problem, we differentiate Equation 6.158 with respect to time 
and obtain the following two linear equations in the unknowns ��s1 and ��s2:
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The accelerations of points Q1, P1, and B can be calculated using Equations 6.134, 6.135, 
and 6.152, while those of point C using either Equation 6.138a or 6.153b.

Note that angle θ2 together with its time derivatives �θ2 and ��θ2 must be determined before 
moving forward with the velocity and acceleration problem. This can be done by calling 
procedure AngPVA with arguments set equal to thex and y coordinates of points P2 and Q2 
and to their respective first and second derivatives with respect to time.  

These kinematic equations have been implemented in procedure T_RT_ part of unit 
LibAssur. The procedure has the following heading:

T_RT_(Color:Word; xA,yA, vxA,vyA, axA,ayA, 
Theta1,dTheta1,ddTheta1, xP2,yP2, vxP2,vyP2, axP2,ayP2, xQ2,yQ2, 
vxQ2,vyQ2, axQ2,ayQ2, P1Q1, Q1C, BC:double; var xP1,yP1, 
vxP1,vyP1, axP1,ayP1, xQ1,yQ1, vxQ1,vyQ1, axQ1,ayQ1, xB,yB, 
vxB,vyB, axB,ayB, xC,yC, vxC,vyC, axC,ayC:double; var OK:Boolean);

The correspondence between the formal parameters and the notations used in Figure 6.27 
and the corresponding kinematic equations is summarized in the following tables:

Input parameters of procedure T_RT_:

0…16 xA yA �xA �yA ��xA ��yA θ1
�θ1

��θ1 xP2 yP2

Color xA yA vxA vyA axA ayA Theta1 dTheta1 ddTheta1 xP2 yP2

�xP2 �yP2 ��xP2 ��yP2 xQ2 yQ2 �xQ2 �yQ2 ��xQ2 ��yQ2 P1Q1 Q1C BC
vxP2 vyP2 axP2 ayP2 xQ2 yQ2 vxQ2 vyQ2 axQ2 ayQ2 P1Q1 Q1C BC

Output parameters of procedure T_RT_:

xP1 yP1 �xP1 �yP1 ��xP1 ��yP1 xQ1 yQ1 �xQ1 �yQ1 ��xQ1 ��yQ1

xP1 yP1 vxP1 vyP1 axP1 ayP1 xQ1 yQ1 vxQ1 vyQ1 axQ1 ayQ1

xB yB �xB �yB ��xB ��yB xC yC �xC �yC ��xC ��yC θ1 ≠ θ2

xB yB vxB vyB axB ayB xC yC vxC vyC axC ayC OK

Same as before, displacements s1 and s2 of slider blocks A and B and their time deriva-
tives �s1, �s2 , ��s1, and ��s2 are not returned by procedure T_RT_. If of interest, they can be calcu-
lated with the help of procedure VarDist.

Program P6_28.PAS listed in Appendix B calls the T_RT_ procedure to simulate a 
TRT dyad of the T_RT_ type driven by two rockers (see Figure 6.28). The program labels all 
joints and plots the locus of the center of joint C. All velocity and acceleration parameters 
are ignored by assigning them the generic variable _ defined in the interface section of 
unit LibMath.



kinematic�Analysis�of�Planar�linkage�mechanisms�Using�Assur�Groups    ◾    245  

6.13� �kinEmATic�AnAlySiS�oF�ThE�RTT�DyAD�
USinG�A�vEcToR-looP�APPRoAch

The RTT dyad is the last Assur group with two links and three joints. Because of its two 
back-to-back sliding joints, it has four possible isomers (Figure 6.3). The kinematic equa-
tions of these four isomers are discussed in the remaining of this chapter and implemented 
in procedures R_T_T, R_TT_, RT_ _T, and RT_T_. While the kinematic equations 
required to calculate the displacements, velocities, and accelerations of the two slider 
blocks differ among these four isomers, some of the remaining kinematic equations are 
coincident, thus simplifying the analytical derivations.

6.13.1� �R_T_T�Dyadic�isomer:�Procedure�R_T_T

The R_T_T isomer of the RTT dyad has the translating potential joint consisting of a rod 
PQ that moves to the inside of a sleeve B (see Figure 6.29). When a kinematic analysis is 
performed, the following parameters are assumed given:

• Coordinates xA, yA, of potential turning joint A relative to the fixed reference frame OXY.

• Coordinates xB, yB, of point B measured relative to the fixed reference frame.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

• Projections �xB and �yB of the velocity of point B onto the fixed reference frame.

• Projections ��xB and ��yB of the accelerations of point B onto the fixed reference frame.

• Orientation angle φ of slider B and its first and second time derivatives �ϕ and ��ϕ, 
respectively.

B

A

Q2

P2

P1

Q1

C

O1

FiGURE�6.28� A two-DOF mechanism consisting of a T_RT_ dyadic isomer driven by two rockers 
simulated using program P6_28.PAS. See also animated file F6_28.GIF.
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• Lengths AD and DK of the two sides of the L-shaped link supporting slider C (can be 
either positive or negative).

• Lengths PC and BQ of the two sections of the link connecting slider blocks C and B 
(can be either positive or negative).

• The values of the constant angles α1 and α2 measured as shown in Figure 6.29.

The purpose of the analysis is to determine the following unknown kinematic parameters:

• Relative displacements s1 and s2 of sliders B and C measured as shown and their first 
and second time derivatives �s1, �s2 , ��s1, and ��s2 .

• The coordinates xC and yC of joint center C relative to the OXY reference frame.

• The projections �xC and �yC of the velocity of C onto the axes of the fixed reference 
frame.

• The projections ��xC and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

• The coordinates xP and yP of point P relative to the OXY reference frame.

• The projections �xP and �yP of the velocity of P onto the axes of the fixed reference frame.

• The projections ��xP and ��yP of the acceleration of P onto the axes of the fixed reference 
frame.

• The coordinates xQ and yQ of point Q relative to the OXY reference frame.

• The projections �xQ and �yQ of the velocity of Q onto the axes of the fixed reference frame.

• The projections ��xQ and ��yQ of the acceleration of Q onto the axes of the fixed refer-
ence frame.

O X

Y

Q

(t)

A

Cα1

α2

D
s1(t)

s2(t)
B

P

K

FiGURE�6.29� Notations used in solving the kinematics of the R_T_T dyadic isomer.
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We begin by writing the following vector equation:

 OA AD DC OB BQ QC+ + = + +  (6.160)

which projects on the x- and y-axes of the fixed reference frame as
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We rearrange them as a set of two linear equations in the unknowns s1 and s2 that are easy 
to solve:

 

s s x x AD QC

s

1 2 1 2 2 1 2

1

cos( ) cos( ) sin( ) cos( )ϕ α α ϕ ϕ α α ϕ α+ − − = − − + − + +B A

ssin( ) sin( ) cos( ) sin( )ϕ α α ϕ ϕ α α ϕ α+ − − = − + + − + +





2 1 2 2 1 2s y y AD QCB A
 (6.162)

Equations 6.162 have solutions for any xA, yA, xB, yB and angle φ values, provided that the 
following inequality holds:
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 (6.163)

Once slider displacements s1 and s2 are determined, the coordinates of points D, K, Q, P, and 
C required to represent graphically the dyad can be calculated with the following equations:
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 (6.164)
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To solve the velocity problem, we differentiate with respect to time Equations 6.162, 
resulting in a set of two linear equations in the unknowns �s1 and �s2:
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and by applying Equations 6.162, they can be further written as
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The x and y components of the velocities of points D, Q, P, and C, also of interest, are 
given by the following equations. Again, equalities (6.164) through (6.168) have been applied 
in each case:

 

� � � � �

� � �

x x AD x y y

y y AD

D A A A D

D A

= + ⋅ + − = + −

= + ⋅ +

ϕ ϕ α α ϕ

ϕ ϕ

cos( ) ( )

sin(

2 1

αα α ϕ2 1− = − −





 ) ( )� �y x xA A D

 (6.171)

 

� � � � �

� � �

x x DK x y y

y y DK

K D D D K

K D

= − ⋅ + − = + −

= + ⋅ +

ϕ ϕ α α ϕ

ϕ ϕ

sin( ) ( )

cos(

2 1

αα α ϕ2 1− = − −





 ) ( )� �y x xD D K

 (6.172)



kinematic�Analysis�of�Planar�linkage�mechanisms�Using�Assur�Groups    ◾    249  

 

� � � � � � �

�
x x s s x s y y

y

Q B B B Q

Q

= + − ⋅ ⋅ = + ⋅ + −2 2 2cos( ) sin( ) cos( ) ( )ϕ ϕ ϕ ϕ ϕ
== + + ⋅ ⋅ = + ⋅ − −



 � � � � � �y s s y s x xB B B Q2 2 2sin( ) cos( ) sin( ) ( )ϕ ϕ ϕ ϕ ϕ

 (6.173)

 

� � � � �

� � � �

x x PQ x y y

y y PQ y

P Q Q P Q

P Q

= + ⋅ ⋅ = − ⋅ −

= − ⋅ ⋅ =

ϕ ϕ ϕ

ϕ ϕ

sin( ) ( )

cos( ) QQ P Q+ ⋅ −





 �ϕ ( )x x
 (6.174)

 

� � � �

� �

x x s s

x s
x x

C D

D
D K

= + ⋅ + − − ⋅ ⋅ + −

= − ⋅ −
1 2 1 1 2 1

1

cos( ) sin( )

(

ϕ α α ϕ ϕ α α
))

( )

sin( ) cos( )
DK

y y

y y s s

− −

= + ⋅ + − + ⋅ ⋅ + −

�

� � � � �

ϕ

ϕ α α ϕ ϕ α α

C D

C D 1 2 1 1 2 1

== − ⋅
−

+ −













 � � �y s

y y

DK
x xD

D K
C D1

( )
( )ϕ

 (6.175a)

or
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To solve the acceleration problem, we begin by differentiating Equations 6.170, which 
yields a set of two linear equations in the unknowns ��s1 and ��s2:
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The x and y components of the accelerations of points D, Q, P, and C are obtained by 
differentiating Equations 6.171 through 6.175b:
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or
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These equations have been implemented in procedure R_T_T part of unit LibAssur 
with the following heading:

R_T_T(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB, vxB,vyB, 
axB,ayB, Phi,dPhi,ddPhi, AD,DK,PQ,QC, Alpha1,Alpha2:double; 
var xC,yC, vxC,vyC, axC,ayC, xD,yD, vxD,vyD, axD,ayD, xK,yK, 
vxK,vyK, axK,ayK, xP,yP, vxP,vyP, axP,ayP, xQ,yQ, vxQ,vyQ, 
axQ,ayQ:double; var OK:Boolean);

The correspondence between the formal parameters of procedure R_T_T and the nota-
tions used in Figure 6.29 and in Equations 6.161 through 6.181b is summarized next:

Input parameters of procedure R_T_T:

0…16 xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

Color xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

φ �ϕ ��ϕ AD DK PQ QC α1 α2

Phi dPhi ddPhi AD DK PQ QC Alph1 Alph2

Output parameters of procedure R_T_T:

xC yC �xC �yC ��xC ��yC xD yD �xD �yD ��xD ��yD xK yK �xK

xC yC vxC vyC axC ayC xD yD vxD vyD axD ayD xK yK vxK
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�yK ��xK ��yK xP yP �xP �yP ��xP ��yP xQ yQ �xQ �yQ ��xQ ��yQ

vyK axK ayK xP yP vxP vyP axP ayP xQ yQ vxQ vyQ axQ ayQ

Note that the displacements s1 and s2 of the two slider rods relative to the sleeve and their 
first and second time derivatives are not returned by the procedure. If of interest, they can 
be easily calculated by calling procedure VarDist in unit LibMec2D.

Figure 6.30 is one of the simulation frames of a mechanism form with an R_T_T dyadic 
isomer done using program P6_30.PAS listed in Appendix B. All these frames have 
been assembled in the animation file F6_30.GIF available with the book. In addition to 
recording the locus of point Q and of labeling all joint centers, the program also labels the 
two fixed angles α1 and α2.

6.13.2� �RT_T_�Dyadic�isomer:�Procedure�RT_T_

This section discusses the RTT dyad configured as shown in Figure 6.31, symbolized 
RT_T_ for short. In a kinematic analysis, the parameters listed next are assumed known at 
any moment of the simulation:

• Coordinates xA, yA, of potential joint A relative to the fixed reference frame OXY.

• Coordinates xP, yP and xQ, yQ of the ends of the rod that guides to the inside sliding 
block B.

• Offset AC of the pin joint relative to slider C.

• Length BD of the rod supporting slider block C.

A

C

O1

P
BD

α1
K

α2

Q

O2

FiGURE�6.30� A two-DOF mechanism consisting of an R_T_T isomer of the RTT dyad, driven by 
a crank and a rocker. See also animation file F6_30.GIF.
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• The value of the constant angle α2 measured as shown in the figure.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of A onto the fixed reference frame.

• Projections �xP and �yP of the velocity of joint center P onto the fixed reference frame.

• Projections ��xP and ��yP of the accelerations of P onto the fixed reference frame.

• Projections �xQ and �yQ of the velocity of joint center Q onto the fixed reference frame.

• Projections ��xQ and ��yQ of the accelerations of Q onto the fixed reference frame.

The purpose of the analysis is to determine

• Displacements s1 and s2 of sliders C and B measured as shown and their time deriva-
tives �s1, �s2, ��s1, and ��s2 .

• Coordinates xB and yB of point B relative to the OXY reference frame.

• Projections �xB and �yB of the velocity of B onto the axes of the fixed reference frame.

• Projections ��xB and ��yB of the acceleration of B onto the axes of the fixed reference frame.

• Coordinates xC and yC of sliding block C relative to the OXY reference frame.

• Projections �xC  and �yC  of point C onto the axes of the fixed reference frame.

• Projections ��xC and ��yC  of the acceleration of C onto the axes of the fixed reference frame.

• Coordinates xD and yD of point D relative to the OXY reference frame.

• Projections �xD and �yD of the velocity of D onto the axes of the fixed reference frame.

• Projections ��xD and ��yD of the acceleration of D onto the axes of the fixed reference frame.

O

P

(t)

s1(t)
s2(t)

X

Y Q

B

α2

D

A

C

FiGURE�6.31� Notations used in solving the kinematics of the RT_T_ dyadic isomer.
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The vector-loop equation of the dyad is

 OA AC OP PB BC+ = + +  (6.182)

which projects on the x- and y-axes of the fixed reference frame as
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 (6.183)

We separate unknowns s1 and s2 to the left and obtain the following set of two linear 
equations:
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Equations 6.184 have real solutions for any coordinates xA, yA, xP, and yP, as long as the 
following inequality holds:

 
cos( ) sin( ) sin( ) cos( )ϕ α ϕ ϕ α ϕ α+ ⋅ − + ⋅ ≠ ≠2 2 20 0equivalent to  (6.185)

Once slider displacements s1 and s2 become available, the coordinates of points B, D, and 
C needed when plotting the dyad can be calculated as follows:
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or

 

x x s

y y s

C B

C B

= + ⋅ +
= + ⋅ +





1 2

1 2

cos( )

sin( )

ϕ α
ϕ α

 (6.188b)



254    ◾    computer-Aided�Graphing�and�Simulation�Tools�for�AutocAD�Users

The velocity problem requires finding the unknown relative velocities �s1 and �s2 occurring 
when differentiating with respect to time Equations 6.184:
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By applying Equations 6.184 again, these equations simplify to
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The x and y components of the velocities of points B, D, and C are given by
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or
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To solve for the relative accelerations ��s1 and ��s2, we differentiate Equations 6.190 and 
obtain:
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The x and y components of the accelerations of points B, D, and C, also of interest, can 
be calculated with
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or
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obtained by differentiating with respect to time the velocity Equations 6.191, 6.192, and 
6.193a and b, respectively.

The variable angle φ and its derivatives �ϕ and ��ϕ occurring earlier can be calculated by 
calling procedure AngPVA with the arguments x and y coordinates of points P and Q and 
their first and second time derivatives. With this observation, the equations derived above 
have been implemented in procedure RT_T_ part of unit LibAssur:

RT_T_(Color:Word; xA,yA, vxA,vyA, axA,ayA, xP,yP, vxP,vyP, 
axP,ayP, xQ,yQ, vxQ,vyQ, axQ,ayQ, AC,BD, Alpha2:double; var xB,yB, 
vxB,vyB, axB,ayB, xC,yC, vxC,vyC, axC,ayC, xD,yD, vxD,vyD, 
axD,ayD:double; var OK:Boolean);

The correspondence between the formal parameters and the notations used in Equations 
6.183 through 6.197 and in Figure 6.31 is summarized in the following tables:

Input parameters of procedure RT_T_ :

0…16 xA yA �xA �yA ��xA ��yA xP yP �xP �yP ��xP ��yP

Color xA yA vxA vyA axA ayA xP yP vxP vyP axP ayP
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xQ yQ �xQ �yQ ��xQ ��yQ AC BD α2

xQ yQ vxQ vyQ axQ ayQ AC BD Alph2

Output parameters of procedure RT_T_:

xB yB �xB �yB ��xB ��yB xC yC �xC �yC ��xC ��yC

xB yB vxB vyB axB ayB xC yC vxC vyC axC ayC

xD yD �xD �yD ��xD ��yD θ1 ≠ θ2

xD yD vxD vyD axD ayD OK

Note that the displacements s1 and s1 of the two slider blocks and their first and second 
time derivatives are not returned by procedure RT_T_. If of interest, s1 and s1 can be deter-
mined by calling procedure VarDist with arguments set equal to the x and y coordinates 
of points B, C and P, B and to their first and second time derivatives.  

The simulation of the sample mechanism in Figure 6.32 has been done using program 
P6_32.PAS listed in Appendix B. The frames in the animation file F6_32.GIF were pro-
duced using the DXF file output by the same program. As visible in Figure 6.32, the mecha-
nism consists of two rockers, one being the actual link PQ of the dyad and the other one 
driving the potential pin joint A (see also Figure 6.31).

6.13.3� �R_TT_�Dyadic�isomer:�Procedure�R_TT_

The subject of this section is the RTT dyad configured as shown in Figure 6.33 and noted 
R_TT_. It can be seen as a crossbreed between the R_T_T and RT_T_ dyadic isomers. 
Consequently, some of the kinematic equations derived earlier will apply for this current 
embodiment of the RTT dyad.

A

α2

P

B

Q

CD

O

FiGURE�6.32� A two-DOF mechanism consisting of an RT_T_ dyadic isomer driven by two rockers. 
See also animation file F6_32.GIF.
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In a kinematic analysis, the following parameters are assumed known at any moment 
of time:

• Coordinates xA, yA, of potential joint A relative to the fixed reference frame OXY.

• Coordinates xP, yP and xQ, yQ of the ends of the rod that guides to the inside sliding 
block B.

• Length BC of the spacer rod joining slider blocks B and C.

• Lengths AD and DK of the two sides of the L-shaped link supporting slider C.

• The value of the constant angles α1 and α2 measured as shown in Figure 6.33.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.

• Projections ��xA and ��yA of the accelerations of point A onto the fixed reference frame.

• Projections �xP  and �yP  of the velocity of joint center P onto the fixed reference frame.

• Projections ��xP  and ��yP  of the accelerations of point P onto the fixed reference frame.

• Projections �xQ and �yQ of the velocity of joint center Q onto the fixed reference frame.

• Projections ��xQ and ��yQ of the accelerations of Q onto the fixed reference frame.

The purpose of a kinematic analysis is to determine:

• Displacements s1 and s2 of sliders C and B measured as shown and their time deriva-
tives �s1, �s2 , ��s1, and ��s2.

• Coordinates xB and yB of point B relative to the OXY reference frame.

• Projections �xB and �yB of the velocity of B onto the axes of the fixed reference frame.

D

A

α1

α2

s1(t) s2(t)

O X

Y Q

B

(t)
C

P

K

FiGURE�6.33� Notations used in solving the kinematics of the R_TT_ dyadic isomer.
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• Projections ��xB and ��yB of the acceleration of B onto the axes of the fixed reference 
frame.

• Coordinates xC and yC of sliding block C relative to the OXY reference frame.

• Projections �xC  and �yC  of point C onto the axes of the fixed reference frame.

• Projections ��xC  and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

• Coordinates xD and yD of point D relative to the OXY reference frame.

• Projections �xD and �yD of the velocity of point D onto the axes of the fixed reference 
frame.

• Projections ��xD and ��yD of the acceleration of point D onto the axes of the fixed refer-
ence frame.

• Coordinates xK and yK of point K relative to the OXY reference frame.

• Projections �xK  and �yK  of the velocity of point K onto the axes of the fixed reference 
frame.

• Projections ��xK  and ��yK  of the acceleration of point K onto the axes of the fixed refer-
ence frame.

The vector-loop equation of the R_TT_ isomer is

 OD DC OP PB BC+ = + +  (6.198)

which projects on the x- and y-axes of the fixed reference frame as
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 (6.199)

After separating the unknowns s1 and s2, the following set of linear equations is obtained:
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Equations 6.200 have solutions for any coordinates xA, yA, xP, and yP, provided that the 
following inequality holds:

sin( ) cos( ) cos( ) sin( )ϕ α α ϕ ϕ α α ϕ α α+ − ⋅ − + − ⋅ ≠ ≠2 1 2 1 2 10 equivalent to  (6.201)

Once slider displacements s1 and s2 are calculated, the coordinates of points B, D, C, 
and K, required to represent graphically the dyad, can be calculated using Equations 
6.186, 6.164, 6.168a, and 6.165, respectively. Alternatively, the coordinates of point C 
can be calculated with
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The velocity problem requires solving for the unknown relative velocities �s1 and �s2 among 
equations
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obtained by differentiating with respect to time Equations 6.200. By applying the same 
equation one more time, we obtain
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 (6.204)

The x and y components of the velocities of points B, D, C, and K can be calculated using 
Equations 6.191, 6.171, 6.175a, and 6.172, respectively. The scalar components of the veloc-
ity of point C can be also obtained by differentiating Equation 6.202, that is,
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The relative accelerations ��s1 and ��s2 are solutions of the equations
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obtained by differentiating Equations 6.204 with respect to time.
The x and y components of the accelerations of points B, D, C, and K can be determined 

using Equations 6.195, 6.177, 6.181a, and 6.178, respectively. Another form of the x and y 
components of the acceleration of point C can be obtained by differentiating Equations 6.205:

 

�� �� �� �

�� �� ��

x x BC BC

y y BC

C B

C B

= − +( )− +( )
= +

ϕ ϕ α ϕ ϕ α

ϕ ϕ

sin cos

cos

2
2

2

++( )− +( )





 α ϕ ϕ α2
2

2� BC sin
 (6.207)

The variable angle φ and its derivatives �ϕ and ��ϕ occurring the above equations can be 
determined by calling procedure AngPVA with its arguments set equal to x and y coordi-
nates of points P and Q and to their first and second time derivatives.  

These kinematic equations have been implemented in procedure R_TT_ part of unit 
LibAssur with the following heading:

R_TT_(Color:Word; xA,yA, vxA,vyA, axA,ayA, xP,yP, vxP,vyP, 
axP,ayP, xQ,yQ, vxQ,vyQ, axQ,ayQ, AD,DK,BC, Alpha2:double; 
var xB,yB, vxB,vyB, axB,ayB, xC,yC, vxC,vyC, axC,ayC, xD,yD, 
vxD,vyD, axD,ayD, xK,yK, vxK,vyK, axK,ayK:double; var OK:Boolean);

P
B

C

K

α2

α1

Q

D

A

O

FiGURE�6.34� A two-DOF mechanism consisting of an R_TT_ dyadic isomer driven by two rock-
ers. See also animation file F6_34.GIF.
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The correspondence between the formal parameters of the procedures and the notations 
used in Figure 6.31 and in these kinematic equations is summarized in the following tables:

Input parameters of procedure R_TT_ :

0…16 xA yA �xA �yA ��xA ��yA xP yP �xP �yP ��xP ��yP

Color xA yA vxA vyA axA ayA xP yP vxP vyP axP ayP

 
xQ yQ �xQ �yQ ��xQ ��yQ AC BD α2

xQ yQ vxQ vyQ axQ ayQ AC BD Alph2

Output parameters of procedure RT_T_ : 

xB yB �xB �yB ��xB ��yB xC yC �xC �yC ��xC ��yC

xB yB vxB vyB axB ayB xC yC vxC vyC axC ayC

xD yD �xD �yD ��xD ��yD xC yC �xC �yC ��xC ��yC θ1 ≠ θ2

xD yD vxD vyD axD ayD xC yC vxC vyC axC ayC OK

Note that the displacements s1 and s1 of the two slider blocks and their first and second 
time derivatives are not returned by procedure R_TT_ . They can be however evaluated by 
calling procedure VarDist with arguments set equal to x and y coordinates of points D, 
C and P, B and to their first and second time derivatives.  

The simulation of the sample mechanism shown in Figure 6.34 has been done using 
program P6_34.PAS listed in Appendix B. The frames used to generate the animation file 
F6_34.GIF were produced using the DXF file output by P6_34.PAS. As visible in the 
figure, the mechanism consists of two rockers, one being the actual link PQ of the dyad 
and the other one driving the potential pin joint A of the dyad (see Figure 6.33).

6.13.4� �RT__�Dyadic�isomer:�Procedure�RT__T

The last possible embodiment of the RTT dyad has its configuration as shown in Figure 6.35 
and it is symbolized RT__T. This fourth isomer can be interpreted as a crossbreed between 
the R_T_T and RT_T_ dyadic isomers, and therefore the three will share part of their 
kinematic equations.

In an analysis, the following parameters will be assumed known at any given time:

• Coordinates xA, yA, of potential joint A relative to the fixed reference frame OXY.

• Coordinates xB, yB of the center of slider block B measured relative to the fixed refer-
ence frame.

• Projections �xA and �yA of the velocity of joint center A onto the fixed reference frame.
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• Projections ��xA and ��yA of the accelerations of point A onto the fixed reference frame.

• Projections �xB and �yB of the velocity of joint center B onto the fixed reference frame.

• Projections ��xB and ��yB of the accelerations of point B onto the fixed reference frame.

• Orientation angle φ of slider B and its first and second time derivatives �ϕ and ��ϕ.

• The value of the constant angles α2 measured as shown in Figure 6.35.

• Lengths PQ and QD of the two sections of the V-shaped link supporting slider blocks 
B and C.

• Offset AC of the pin joint relative to slider block C.

The purpose of the kinematic analysis is to determine:

• Displacements s1 and s2 of sliders C and B measured as shown and their time deriva-
tives �s1, �s2, ��s1, and ��s2.

• Coordinates xP and yP of point P relative to the OXY reference frame.

• Projections �xP and �yP of the velocity of point P onto the axes of the fixed reference frame.

• Projections ��xP and ��yP of the acceleration of point P onto the axes of the fixed refer-
ence frame.

• Coordinates xC and yC of sliding block C relative to the OXY reference frame.

• Projections �xC  and �yC  of point C onto the axes of the fixed reference frame.

• Projections ��xC and ��yC  of the acceleration of C onto the axes of the fixed reference 
frame.

P

O
X

Y

Q

(t)

B

s2(t)
s1(t)

A

α2

D

C

FiGURE�6.35� Notations used in solving the kinematics of the RT__T dyad.
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• Coordinates xD and yD of point D relative to the OXY reference frame.

• Projections �xD and �yD of the velocity of point D onto the axes of the fixed reference 
frame.

• Projections ��xD and ��yD of the acceleration of point D onto the axes of the fixed refer-
ence frame.

• Coordinates xQ and yQ of point Q relative to the OXY reference frame.

• Projections �xQ and �yQ of the velocity of point Q onto the axes of the fixed reference frame.

• Projections ��xQ and ��yQ of the acceleration of point Q onto the axes of the fixed refer-
ence frame.

The vector-loop equation of the RT__T isomer is

 OA AC OB BQ QC+ = + +  (6.208)

This is equivalent to the following scalar equations:
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After separating the unknowns s1 and s2, the following set of linear equations is finally 
obtained:
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Equations 6.210 have solutions for any coordinates xA, yA, xB, yB and angle φ, as long as 
the following inequality holds:

 
sin( )cos( ) cos( )sin( )ϕ α ϕ ϕ α ϕ α+ − + ≠ ≠2 2 20 0equivalent to  (6.211)

Once slider displacements s1 and s2 become known, the coordinates of points P, Q, and 
C can be calculated using Equations 6.167, 6.166, and 6.188a, respectively. The x and y coor-
dinates of point C can be also calculated using equations
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while the coordinates of point D can be calculated with
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The velocity problem requires determining the unknown relative velocities �s1 and �s2 by 
solving simultaneously the following equations:

 

� � � � �s s x x AC s1 2 2 2 1 2cos( ) cos( ) [ cos( ) sinϕ α ϕ ϕ ϕ α ϕ α+ − = − + + + +( )−A B ss

s s y y AC s

2

1 2 2 2 1

sin( )]

sin( ) sin( ) [ sin( )

ϕ
ϕ α ϕ ϕ ϕ α� � � � �+ − = − + + −A B ccos( ) cos( )]ϕ α ϕ+ +



 2 2s

 (6.214)

obtained by differentiating with respect to time the position Equations 6.210. By reapply-
ing the position Equations 6.214, we further get
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The scalar components of the velocities of points P, Q, and C can be calculated using 
Equations 6.174, 6.173, and 6.175a, respectively. The components of the velocity of point C 
can be also obtained by differentiating with respect to time Equations 6.212:
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Likewise, the x and y components of the velocity of point D result from the differentiation 
of Equation 6.213:
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Regarding acceleration problem, we must first determine linear accelerations ��s1 and ��s2 . 
These are the solutions of the following set of equations:
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obtained by differentiating Equations 6.204 with respect to time.
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The x and y components of the accelerations of points P, Q, and C can be calculated 
using Equations 6.180, 6.179, and 6.181a, respectively. The x and y components of the accel-
eration of point C can be also obtained by differentiating Equations 6.216:
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Likewise, by differentiating Equations 6.217, we obtain the components of the acceleration 
of point D:
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These kinematic equations have been implemented in procedure RT__T in unit 
LibAssur with the heading

RT_ _T(Color:Word; xA,yA,vxA,vyA,axA,ayA, xB,yB,vxB,vyB,axB,ayB, 
Phi,dPhi,ddPhi, AC,PQ,QD, Alpha2:double; var xP,yP,vxP,vyP,axP,ayP, 
xQ,yQ,vxQ,vyQ,axQ,ayQ, xD,yD,vxD,vyD,axD,ayD:double; var OK:Boolean);

The correspondence between the formal parameters and the notations used in these 
equations and in Figure 6.35 is summarized in the following tables:

Input parameters of procedure RT__T:

0…16 xA yA �xA �yA ��xA ��yA xB yB �xB �yB ��xB ��yB

Color xA yA vxA vyA axA ayA xB yB vxB vyB axB ayB

ϕ �ϕ ��ϕ AC PQ QD α2

Phi dPhi ddPhi AC PQ QD Alph2

Output parameters of procedure RT__T:

xP yP �xP �yP ��xP ��yP xQ yQ �xQ �yQ ��xQ ��yQ

xP yP vxP vyP axP ayP xQ yQ vxQ vyQ axQ ayQ

xD yD �xD �yD ��xD ��yD α2 ≠ 0
xD yD vxD vyD axD ayD OK



266    ◾    computer-Aided�Graphing�and�Simulation�Tools�for�AutocAD�Users

Note that the displacements s1 and s2 of the two slider blocks and their first and second 
time derivatives are not returned by procedure RT__T. They can however be calculated by 
calling procedure VarDist with its arguments set equal to x and y coordinates of points 
D, C and P, B and to their first and second time derivatives. 

The simulation of the sample mechanism in Figure 6.36 has been done using program 
P6_36.PAS listed in Appendix B, which outputs a DXF file that was used to generate 
the animation file F6_36.GIF. As visible from the figure, the mechanism consists of two 
rockers, one being the actual link PQ of the dyad and the other one driving the potential 
pin joint A. The program includes, with the simulation, the locus of point Q and labels of 
each joint and of the constant angle at α2.

***

All five Assur groups with two links and three joints have been analyzed in their most 
general configurations, adding up to 11 dyadic isomers. The kinematic equations obtained 
have been implemented in a number of procedures gathered in unit LibAssur available 
with the book. Starting from one or more actuators, these procedures can be called in the 
same order in which the mechanism has been formed, and the position, velocity, and accel-
eration of its links or points of interest can be determined. In addition, the mechanism 
can be represented graphically on the computer screen and also exported to DXF. More 
applications of the procedures in unit LibAssur are discussed in Chapter 9. As Figure 6.3 
shows, many practical mechanisms employ oftentimes simplified dyads or dyadic isomers, 
which have some link lengths and eccentricities equal to zero.

P

B

Q

α2

A

C
D

O1 O2

FiGURE�6.36� A two-DOF mechanism consisting of an RT__T dyadic isomer driven by two rock-
ers. See also animation file F6_36.GIF.
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C h a p t e r  7

Design and Analysis of 
Disk Cam Mechanisms

Same as linkages, cam mechanisms are capable of converting continuous rotational 
motion into rectilinear or rotary motion that alternate between a lower and an upper 

limit. As opposed to linkages, however, the correlation between the input and output motions 
can be precisely programmed and can include one or more dwells, while the mechanism 
itself may result of smaller size than the equivalent linkage. On the downside, cam mecha-
nisms have lower reliability and are noisier and the follower can bounce. Figure 7.1 shows 
the schematic of the cam mechanisms considered in this chapter. Cam profile generation as 
follower envelope in an inverted motion (i.e., the follower rotates around the cam that is held 
stationary) and the problem of kinematic analysis of a given cam-follower pair will be stud-
ied in this chapter. The preliminary problem of synthesizing the follower motion is also tack-
led using AutoCAD interpolating functions and the Util~DXF and Util~TXT programs.

7.1� �SynThESiS�oF�FollowER�moTion
The choice of follower motion in a cam-follower mechanism influences the magnitude of 
the contact forces and therefore the wear rate of the mechanism. If not properly selected, it 
can cause follower bounce that is associated with increased noise and vibrations level dur-
ing operation. The reader may have experience with elevators, some being less comfortable 
to ride than others, depending on the type of motion programmed to their cars. Likewise, 
if the follower motion is jerked at start-up, then large contact forces will develop, while if 
the motion ends abruptly and the retaining force is small (i.e., provided by a soft spring or 
gravity only), then the contact between the follower and the cam will be lost. These effects 
are also influenced by the type of cam and follower materials, the presence of lubricant, 
contact geometry, joint clearances, etc.

Let us assume a follower displacement δF(δC) that consists of a lower dwell for the 
first 10% and last 10% of total cam cycle, a follower rise from 10% to 45%, upper dwell of 
magnitude 1 from 45% to 57.5%, and follower return from 57.5% to 90% of the cam cycle 
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(see Figure 7.2). Note that the diagram has been normalized with respect to cam and fol-
lower motion ranges, which allows both the rotational and translational motions of the 
cam and of the follower to be obtained through scaling.

Synthesizing the motion program δF(δC) of a cam mechanism requires connecting the 
prescribed dwells such that the follower does not exhibit theoretically infinite accelerations 
and decelerations (which translate in large contact forces and are associated with follower 
bounce, respectively). These may occur at the beginning and at the end of the follower 
motion and should be avoided, particularly for high-speed cam mechanisms. The third 
derivative of the follower displacement called jerk is also monitored during the design pro-
cess of high-speed cams and should also remain finite. For slow-speed applications, how-
ever, infinite theoretical accelerations are considered acceptable.

Of the numerous types of follower motions described in literature, spline rise and fall will 
be considered. Specifically, the upper and lower dwells in Figure 7.2 were connected with 
nonuniform rational B-splines (NURBS) with four control points each, and horizontal end 
tangents, produced using the AutoCAD spline command (see Figure 7.3). The complete fol-
lower displacement curve has been then exported to a R12 DXF file, which caused the splines 
to be approximated with successions of short line segments. The resulting DXF file was then 

FiGURE�7.1� Disk cam-follower mechanisms subject of this chapter.
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FiGURE� 7.2� Prescribed follower motion with 20% lower dwell, 12.5% upper dwell, 35% rise, and 
32.5% fall (percentages of total cam displacement). Configuration file to redo this plot F7_02.CF2.
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reimported into AutoCAD, where the original dwell lines and the newly occurring approxi-
mating segments were manually reassembled into a single polyline. After that, a second 
R12 DXF file has been generated (see file F7_03.DXF) and was opened using the Util~DXF 
application available with the book. The vertices of this polyline were then exported to ASCII 
file F7_03.XY. Additional points, linearly interpolated between the existing data points, were 
added to F7_03.XY using the Util~TXT application (see data file F7_04-0.XY and con-
figuration file F7_04-0.COn). Through numerical differentiation of the F7_04-0.XY data 
done using the same Util~TXT program, two more ASCII files have been generated, that 
is, F7_04-1.XY and F7_04-2.XY (see configuration files F7_04-12.COn and F7_04.
CF2). These three files were then used to plot the normalized displacement δF(θ) and its first 
and second derivatives ′ =δ θ δ θF d /d( )  and ′′ =δ θ δ θF ( ) d /d2 2 graphed in Figure 7.4.

The more irregular appearance of the δ″F(θ) curve is due to the approximations performed 
when the AutoCAD NURBS have been converted to R12 DXF line segments, amplified by 
the numerical calculation of the derivatives. The fact that there are no acceleration spikes 
at the beginning and at the end of the follower displacement is however a good indication 
that the δF(δC) motion program in Figure 7.4 is suitable for high-speed cam applications.

The aforementioned follower displacement data file F7_04-0.XY renamed dFvdC.
XY is read by a number of Pascal programs that call procedures from units LibAssur, 
LibCams, and LibMec2D, and served to synthesize the profiles of cam mechanisms of 
the type shown in Figure 7.1. A second follower motion file named dFvdC_L.XY, which 
contains every 10th data point extracted from file dFvdC.XY, was used to produce the 
frames of the animated GIFs that accompany this chapter.

Important: The last entry from both these normalized follower motion files has been 
edited, so that the initial and final cam profile points do not coincide. Without this, the 
cam-follower kinematic analysis procedures in unit LibCams may produce spikes at the 
beginning and at the end of the follower motion.

(0.2052, 0.1398)

(0.275, 0.5)

(0.3448, 0.8602)

(0.8045, 0.1315)
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(0.6705, 0.8685)
(0.575, 1)(0.45, 1)

(0.9, 0) (1, 0)(0.1, 0)(0, 0)

FiGURE�7.3� NURBS normalized motion program produced with AutoCAD. The end tangents of 
the splines, that is, segments (0, 0)–(0.1, 0), (0.45, 1)–(0.575, 1), and (0.9, 0)–(1, 0), are aligned with 
the respective dwells.
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7.2� ��SynThESiS�AnD�AnAlySiS�oF�DiSc�cAmS�wiTh�
TRAnSlATinG�FollowER,�PoinTED�oR�wiTh�RollER

The first mechanism considered is the disk cam with translating follower ending with a 
knife edge or with a roller. The two are directly related in that for the same input–output 
displacement function s(θ), the profile of the cam designed to operate with a roller follower 
is the offset of the cam designed for the knife-edge follower. Therefore, the synthesis of cam 
mechanisms with pointed translating follower will be primarily discussed in this chapter. 
Any offset cam profile can be obtained inside AutoCAD using the offset command. Later 
in the chapter, the procedure EnvelopeOfCircles will be introduced, which allows 
the profile of the cam working with a roller follower to be directly generated.

In the disk cam profile synthesis problem, in addition to a normalized motion δF(δC), 
the duration of the cam cycle Δθ and follower amplitude Δs must be also specified. This 
allows the follower displacement to be prescribed as function of the cam angle as

 
s s s( )θ ∆ δ θ

∆θ
θ ∆θ= + ⋅ 






 ≤ ≤0 0F with  (7.1)

Most common is for cam cycle to be Δθ = 2π, although cams that perform less than a 
full rotation exist. Cams that generate two or three follower cycles per turn can be designed 
by letting Δθ = π or Δθ = 2π/3, respectively, and then repeating the partial profile obtained 
as a polar array about the cam center. Additional parameters that have to be specified in 
a design problem are (see Figure 7.5) roller radius r, follower eccentricity eF (can be either 
positive or negative), and follower bias s0 (which is recommended to be 2–3 times bigger 
than the follower amplitude). Note that this last recommendation has not been strictly 
observed throughout this chapter.
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FiGURE�7.4� Follower displacement δ and its first derivative δ′ = dδ/dθ and second derivative 
δ″ = d2δ/dθ2 calculated using finite differences. Configuration file F7_04.CF2.
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The pitch cam profile will be generated as a collection of discrete points (xj, yj) relative 
to a reference frame with the origin coincident with the center of rotation of the cam. Of 
additional interest are the cam curvature ρ and the pressure angle γ between the pitch cam 
and the follower—both evaluated at the same points (xj, yj). Pressure angle γ is defined as 
the angle between the cam-follower contact force vector FC and the velocity vector vC of 
the tip of the follower. For this particular cam-follower the velocity vector vC will always 
be aligned with the direction of the follower axis. For most cam-follower mechanisms, it 
is recommended that the pressure angle does not to exceed 30° (Norton 2002). Because 
the direction of the contact force vector FC is always through the center of curvature of the 
cam at the point of contact C, the problems of cam curvature and pressure angle analysis 
are related. Once the direction of the normal to the pitch cam profile is determined (this is 
also the direction of the force vector FC—see Figure 7.5), the inner and outer offset points 
Ci and Co can be computed as intersections between the normal to the cam profile at point 
C and the circle centered at C and of radius r. In the programs that accompany this chapter, 
this has been done using procedure DoubleOffset:

procedure DoubleOffset(x,y,DnX,DnY,Rho,r:double; 
var xi,yi,xo,yo:double);

available from unit LibCams. The procedure returns the coordinates of inward point 
(xi, yi) and outward point (xo, yo) collinear with point (x, y) situated along the direc-
tion (DnX, DnY) at distance ±r from (x, y). It can be shown that the pressure angle γ 
calculated for the knife-edge follower is identical to the pressure angle of an offset cam 
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FiGURE�7.5� A disk cam with translating follower. Ci and Co are the contact points between the 
roller and the inner and outer offset cam profiles represented in thick, dashed lines.
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profile operating in conjunction with the same follower, equipped with a roller of radius r 
equal to the offset distance (see the closed curves shown in dashed line in Figure 7.5). The 
base circle radius rb and top circle radius rt are important design parameters. For the cam 
mechanisms like the one in Figure 7.5, these can be calculated with the following formulae:

 r e sb F= +2
0
2  (7.2)

 r e s st F= + +( )2
0

2∆  (7.3)

The pitch cam profile can be traced accurately as the locus of point C in a motion 
inversion (Waldron and Kinzel 2003). This method of motion inversion will be employed 
exclusively throughout this chapter to generate the cam profiles, where the cam is main-
tained immobile and the follower is rotated in the opposite direction to the normal 
operation of the cam. The motion-inversion setup (see Figure 7.6a) consists of crank 
OA connected with a linear actuator positioned perpendicularly to OA and offset by the 
amount eF = OP. The actuator has been programmed to extend according to the pre-
scribed follower motion s(θ). If the cam is intended to operate with a roller-follower and 
generate the same function s(θ), its profile will be either the inner or the outer envelope of 
the roller in a motion inversion. These envelopes can be produced as loci of points Ci and 
Co (Figure 7.5) or by offsetting the pitch cam profile an amount r using the AutoCAD 
offset command.

Program P7_06.PAS (see Appendix B) implements a motion-inversion cam profile 
synthesis strategy as explained earlier. If constant Color on line #12 equals 1, the program 
plots the crank and the linear actuator of the generating mechanism together with the locus 
of roller center C with displacement data read from the lower-resolution file dFvdC_L.XY 
(Figure 7.6a). If constant Color equals 0, the program plots the roller only and the locus 
of point C (see Figure 7.6b), with motion data read from the higher-resolution file dFvdC.XY. 
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FiGURE�7.6� Cam profile generation in a motion inversion of a knife-edge translating follower 
(a) and complete profile and roller envelope generated for δF(δC) in Figure 7.4 with Δθ = 2π, Δs = 1, 
eF = 0.2, s0 = 0.25, and r = 0.15 (b). See also animation file F7_06a.GIF.
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Before the actual simulation begins, the program reports the base circle and top circle radii 
calculated using Equations 7.2 and 7.3—see lines #31 and #32.

By running program P7_06.PAS with the follower bias s0 set to smaller values, the 
pitch profile may exhibit regions with concavities where the radius of curvature ρ turns 
negative. When offset to accommodate a roller, the radii of curvature (in absolute value) 
around these concavities could become smaller than the radius of the roller. Consequently, 
the prescribed motion will not be reproduced as intended when the follower travels over 
these areas. One remedy is to redesign the follower motion program δF(δC); the other is to 
increase the follower bias s0 that will cause an increase of the base circle radius rb. Enlarging 
the base circle radius has the additional favorable effect of reducing the maximum devia-
tion of the pressure angle γ from its ideal value of zero degrees.

Program P7_07.PAS (see Appendix B) performs a follower displacement analysis, 
pressure angle and curvature analysis, and offset cam profile extraction of disk cams with 
translating knife-edge follower. The cam profile is read from data file Cam06.D2D output 
by program P7_06.PAS. If constant Anim on line #15 is set equal to 1, the analysis is 
accompanied by an animation of the mechanism. If Anim equals 0, then only a progress 
report will be displayed on the computer screen every tenth cam position point (see also 
line #36 and the use of variable Skip). 

Given the cam profile as discrete points (xj, yj) and assuming the axis of rotation of the 
cam is at (0, 0), its base circle radius and top circle radius can be evaluated numerically 
using procedure GetProfileRadii called from unit LibCams (see line #25 of pro-
gram P7_07.PAS). This procedure with the heading

procedure GetProfileRadii(Fxyname:PathStr; var Rmin,Rmax:double);

reads the ASCII or D2D file Fxyname containing the cam profile points and calculates 
the distance from the center of the cam (0, 0) to each of these points. At the end, it returns 
the minimum and maximum of these distances assigned to variables Rmin and Rmax, 
reported by program P7_07.PAS as the base and top circle radii.

Procedure RotCamTransPointed called on line #47 from unit LibCams evaluates 
the intersection point between the pitch cam profile rotated by angle Theta and the verti-
cal line x = eF along which the follower translates. The procedure’s heading is

procedure RotCamTransPointed(Fxyname:PathStr; OP,Theta:double; 
var s, xC,yC, DnX,DnY, Rho:double);

where Fxyname is the file name from where the cam profile points centered at (0, 0) are 
read, OP is the eccentricity eF, and Theta is the current cam angle measured clockwise 
(Figure 7.5), that is, opposite to the direction shown in Figure 7.6a. The procedure returns 
the coordinates xC and yC of contact point C, the components DnX and DnY of the normal 
to the cam profile at point C, and the radius of curvature Rho (i.e., ρ) around that same 
point C. Procedure RotCamTransPointed first identifies the (xj, yj) point of the cam 
rotated clockwise by angle Theta having its coordinate yj positive and its coordinate xj 
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the closest to the follower eccentricity eF. A parabola is then fit through this point and its 
two neighbors (xj–1, yj–1) and (xj+1, yj+1)—see Equation B.15. The intersection between this 
parabola and the vertical line x = eF is an improved approximation of the contact point 
between the cam profile and the tip of the follower. The radius of the circle circumscribed 
to the same points (xj–1, yj–1), (xC, yC), and (xj+1, yj+1) is reported as the radius of curvature 
ρ of the pitch cam profile around contact point C (see Appendix A). The line connecting 
the center of this circle with contact point (xC, yC) is the normal to the cam profile at point C. 
Also returned by procedure RotCamTransPointed to the calling program are the pro-
jections DnX and DnY of the line connecting contact point C and the center of curvature 
of the pitch cam profile at (xC, yC).

Using projections DnX and DnY, procedure DoubleOffset called from unit LibCams 
on line #48 then calculates the coordinates of points Ci and Co belonging to the two offset 
cam profiles visible in Figure 7.5. Program P7_07.PAS also animates the pitch cam as it 
rotates, showing in addition the contact point C, velocity vector vC of the follower, and the 
normal vector FC to the cam profile at point C (see Figure 7.7). Note that the vectors vC and 
FC have arbitrarily assigned magnitudes. The angle between these two vectors is evaluated 
using procedure U2dirs2D90 called from unit LibGe2D (see line #49) and is written to 
ASCII file F7_07.TXT as the pressure angle γ of the mechanism. Also written to F7_07.
TXT are the cam angle θ, follower displacement s, contact point coordinates xC and yC, cam 
profile radius of curvature ρ at point C, and the x and y coordinates of the inner and outer 
offset points Ci and Co. The program also displays on the top-left corner of the screen a 
short report consisting of the values of the current cam angle θ, pressure angle γ, and radius of 
curvature ρ (see Figure 7.7). The data from ASCII file F7_07.TXT was then use to generate 
the graphs in Figure 7.8. The coordinates of points C, Ci, and Co in the same file served to 
generate the three cam profiles in Figure 7.5 using the D_2D program.

A companion program named P7_07BIS.PAS available with the book performs the 
same type of analysis (less the ASCII file output) and in addition plots on the screen the inner 
and outer cam profiles as comet loci of points Ci and Co. In the animation file F7_07bis.GIF 
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FiGURE�7.7� Analysis done using program P7_07.PAS of a disk cam equipped with pointed fol-
lower, shown in the positions where maximum pressure angle (a) and minimum radius of curva-
ture (b) occur. See also animation files F7_07.GIF.
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generated with this program, an undercut of the outer cam becomes visible, that is, the cam 
profile folds over itself around the point of minimum curvature. This undercut is less appar-
ent when the AutoCAD offset command is employed because the software will remove the 
mentioned fold, leaving only a cusp in that region.

Noticeably, the performance of the mechanism in Figure 7.7 can be improved. For 
example, increasing the base circle radius rb will cause a reduction in the maximum pres-
sure angle γ. This will also increase the minimum radius of curvature ρ of the cam, with 
the possibility of maintaining this curvature positive over the entire cam profile. Similar 
effects upon pressure angle γ and radius of curvature ρ will have an increase of the follower 
bias s0 or a reduction of the follower offset eF.

7.3� ��SynThESiS�AnD�AnAlySiS�oF�DiSc�cAmS�wiTh oScillATinG�
FollowER,�PoinTED�oR�wiTh�RollER

This is the second type of disk cams that can be equipped with either knife-edge follower 
or roller follower. Same as earlier, the internal or external cam profiles intended to operate 
with a roller can be obtained by offsetting the pitch cam profile an amount equal to the 
roller radius (see Figure 7.9). For this reason, the synthesis of disk cam mechanisms with 
knife-edge follower will be primarily discussed in this section.

In a design problem where a normalized motion program δF(δC) is prescribed, the 
amplitude of the cam displacement Δθ and amplitude of the follower displacement Δφ 
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F7_08Dn.CF2.
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must be specified, together with ground joint distance OO1, follower bias φ0 (correspond-
ing to point C being located on the base circle), and roller radius r. Giving these param-
eters, the follower displacement vs. cam angle φ(θ) is

 ϕ θ ϕ ϕ δ θ θ θ θ( ) ( )= + ⋅ ≤ ≤0 0∆ ∆ ∆F with  (7.4)

The pitch cam profile will be the locus of point C in an inverted motion, where the cam is 
maintained fixed, and pin joint O1 of the follower is rotated opposite to the normal direction 
of rotation of the cam. Pitch cam profile radius of curvature ρ and pressure angle γ, that is, 
the angle between the velocity and the contact force vectors vC and FC, are also of interest and 
should be evaluated in a number of discrete positions as the cam rotates. The direction of the 
contact force vector FC coincides with line CiCo, irrespective of the cam profile considered, 
that is, inner, outer, or pitch cam profile. The velocity vector of the contact point will be dif-
ferent however: it will be perpendicular to line O1Ci for external cams, perpendicular to line 
O1Co for internal cams, and perpendicular to line O1C for knife-edge follower cam mecha-
nisms (this third one is vector vC shown in Figure 7.9). Consequently, for a given cam angle θ, 
the pressure angles on the external, internal, and pitch cam profiles will be different.

The base circle radius rb and top circle radius rt of the cam with oscillating knife-edge 
follower can be calculated using the following equations:

 r OO O C OO O Cb = + ⋅ ⋅ ⋅ ( )1
2

1
2

1 1 02− ϕcos  (7.5)

 r OO O C OO O Ct = + ⋅ ⋅ ⋅ +( )1
2

1
2

1 1 02− ϕ ∆ϕcos  (7.6)
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FiGURE�7.9� Main parameters of a disk cam with oscillating follower. Ci and Co are the contact points 
between the roller and the inner and outer offset cam profiles, represented in thick, dashed lines.
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Program P7_10.PAS (see Appendix B) implements a motion-inversion approach to the 
generation of cam profiles operating with oscillating knife-edge followers. If on line #12 
constant Color is set equal to one, the program simulates the inverted mechanism and 
plots the locus of point C using follower motion data read from the lower-resolution file 
dFvdC_L.XY (see Figure 7.10a). If constant Color is zero, the program will plot only the 
roller and the locus of its center C (i.e., the tip of the knife-edge follower) using motion data 
read from the higher-resolution file dFvdC.XY (see Figure 7.10b) and also saves the pitch 
cam profile to data file Cam10.D2D (see line #58).

If the follower bias φ0 is too small, the cam may develop regions of negative curvature 
(concavities). When such a cam profile is offset, the radii of curvature along these con-
cavities can become smaller than the radius of the roller, and the motion of the follower 
equipped with a roller will be different than the prescribed function φ(θ). Other than rede-
signing the follower motion δF(δC), increasing the base circle radius rb can eliminate such 
occurrences. This will also reduce the maximum pressure angle γ, which is also desirable. 
Increasing ground joint distance O1O and follower length O1C may have comparable effects.

To analyze the cam mechanism obtained through synthesis (i.e., the pitch cam pro-
file recorded to file Cam10.D2D), program P7_11.PAS has been written and its list-
ing is included in Appendix B. For a given cam angle θ between 0 and 2π, the program 
determines the profile point (xj, yj), which is located relative to joint center O1 at a 
distance closest to the follower arm length O1C. A better approximation of the con-
tact point of coordinates (xC, yC) is then determined as the intersection between the 
circle centered at O1 and radius O1C and a parabola through points (xj–1, yj–1), (xj, yj), 
and (xj+1, yj+1)—see also Appendix A. This algorithm is implemented in procedure 
RotCamOscilPointed called from unit LibCams on line #52 of program P7_11.PAS. 
The procedure has the heading:

procedure RotCamOscilPointed(Fxyname:PathStr; OO1,O1C,Theta:double; 
var Phi, xC,yC, DnX,DnY, Rho:double);
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FiGURE�7.10� Cam profile generation in a motion inversion (a) and complete pitch profile and 
roller locus generated for δF(θ) in Figure 7.4 with OO1 = 2, O1C = 2, φ0 = 20°, Δφ = 25°, and r = 0.2 (b). 
See also animation file F7_10a.GIF.
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In addition to the coordinates xC and yC of the contact point, the procedure also 
returns the follower angle Phi and the radius of curvature Rho of the cam around 
the contact point approximated with the radius of the circle circumscribed to points 
(xj–1, yj–1), (xC, yC), and (xj+1, yj+1). It also returns the components of the normal to the 
pitch cam profile Dnx and Dny, calculated as ox and oy the projections of the line that 
connects contact point (xC, yC) with the center of the circle through the same three 
points (xj–1, yj–1), (xC, yC), and (xj+1, yj+1).

Program P7_11.PAS then calls procedure DoubleOffset (line #53) to determine 
the coordinates of offset points Ci and Co (Figure 7.9), which later serve to evaluate the 
pressure angles γi and γo between the roller and the inner and outer contact cam profiles. 
The pressure angle γ is calculated as the angle between the normal to the pitch cam profile 
which has the directions Dnx and Dny, and line O1C rotated by 90° (see line #54). Similar 
approaches are implemented to calculate γi and γo (lines #56 and #58). Lines #70 to #73 
write to ASCII file F7_11.TXT the current cam angle Theta; the corresponding follower 
angle Phi; the values of the three pressure angles γ, γi, and γo; the coordinates of points 
C, Ci, and Co rotated back to the reference position of the cam; and the base circle and top 
circle radii of the pitch cam profile. This ASCII file served to generate the plots in Figure 
7.11, as well as the pitch cam profile and offset cam profiles in Figure 7.9.
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FiGURE�7.11� Plot of the follower displacement φ, radius of curvature ρ, and pressure angles γ, γi, and 
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F7_11UP.CF2 and F7_11Dn.CF2.
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When operating in conjunction with its roller follower, the inner offset cam exhibits an 
overall reduced pressure angle γi compared to angle γ of the pitch cam with knife-edge fol-
lower, while the outer offset cam will exhibit an increased pressure angle γo.

Program F7_11.PAS also simulates the cam and follower motions (see Figure 7.12), 
showing the contact point C between the knife-edge and the cam.  It also shows the dis-
placement vector (which is parallel to the velocity vector vC), and the normal direction to 
the cam profile (which coincides with the contact force vector FC). If parameter Anim on 
line #17 of the program equals 0, then only a progress report will be displayed every 10th 
position of the cam.  

A related program named P7_07BIS.PAS available with the book allows the same 
type of cam-follower analysis, with the additional plotting of the inner and outer cam pro-
files as comet loci of points Ci and Co. Animation file F7_12bis.GIF has been generated 
using the F7_11BIS.DXF file output by this program.

In all the aforementioned figures and simulation, the follower was represented as a 
straight-line O1C. Evidently, in practice, the follower has to be shaped such that its body 
does not interfere with the cam.

7.4� �SynThESiS�AnD�AnAlySiS�oF�DiSc�cAmS�wiTh�
TRAnSlATinG�FlAT-FAcED�FollowER

Disk cams with translating flat-faced follower are commonly used in applications where 
a simple, compact arrangement is required, like in sidevalve engines and fuel-injection 
pumps. As opposed to translating knife-edge or roller-follower cam mechanisms, in this 
case, follower eccentricity does not influence the input–output kinematics. This eccentric-
ity however has an effect upon the magnitude of the reaction moment at the sliding joint 
and consequently upon the overall mechanical efficiency of the mechanism.

When performing the synthesis of a disk cam with translating flat-faced follower for 
which a normalized input–output motion δF(δC) is prescribed, several additional param-
eters must be specified, that is, cam rotational cycle Δθ, follower displacement amplitude 
Δs, follower bias s0, and the angle of the face of the follower γ measured from a parallel 
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FiGURE� 7.12� The cam in Figure 7.10 in the position where maximum pressure angle (a) and 
minimum radius of curvature (b) occur. See also animation file F7_12.GIF.
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to OX (it is assumed that the follower slides along a vertical line as shown in Figure 7.13). 
Because the contact force vector FC has the direction of the normal to the face of the fol-
lower, and because the velocity vector vC is aligned with its direction of sliding, the angle 
between these two vectors (i.e., the pressure angle) is constant and equal to the follower 
face angle.

To extract the follower envelope (i.e., the cam profile) in an inverted motion approach, 
a number of radial lines originating from a polar point situated inside the cam contour 
will be employed. The intersection between the follower face PQ and these radial lines will 
be done for every inverted motion position of the follower. As follower face PQ intersects 
each of these polar lines, they will be progressively shortened towards the polar point. In 
the end, these outer points will be connected together to form the sought-after cam profile. 
Such a strategy has been implemented in procedure EnvelOfLines available from unit 
LibCams:

procedure EnvelOfLines(Color,n:Integer; xO,yO, R00, xA,yA, 
xB,yB:double);

When the procedure is first called, it generates n equally spaced radial lines originating 
from polar point (xO,yO), each of length R00. The procedure then reduces the length of 
these lines as they are intersected by the face of the follower, that is, the segment that 
connects points (xA,yA) and (xB,yB). Depending on the value of parameter Color in 
procedure EnvelOfLines (either positive, negative, or zero) all n radial lines, every 10th 
radial line, or neither line will be plotted on the screen as their length is adjusted. After the 
desired number of intersections with segments AB representing the face of the follower has 
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FiGURE�7.13� Main parameters of a disk cam with translating flat-faced follower.
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been performed, the ends of these n radial lines will be connected to form a polyline. This 
is done by calling procedure EndEnvelopes from the same unit LibCams:

procedure EndEnvelopes(name8:nameStr; Color:Word);

In this procedure, name8 is the name of the D2D file where the coordinates of the envel-
oping polyline will be written. Color information Color will also be written to this 
D2D file, coded using multipliers of the InfD constant as explained in Chapter 1. The 
actual extension of the cam profile data file is $2D (same extension as for locus files as 
discussed in Chapter 6). To retain this envelope file at the end of the simulation, procedure 
CloseMecGraph must be called with its argument set to TRUE.

The cam profile thus obtained must be analyzed for curvature at each vertex (xj, yj). 
Being a flat-faced follower mechanism, it is essential for the cam profile not to have recti-
linear portions (i.e., ρ should not be infinity). If this happens, the follower will step over the 
respective areas, and the specified input–output motion δF(δC) will not be satisfied. Also 
detrimental to a reliable operation of the cam is the occurrence of cusps (i.e., ρ = 0), where 
large contact stresses will develop during operation. Note that the occurrences of both flat 
portions and the cusps are indicative of the cam profile being undercut.

The base and top circle radii of this cam are important parameters and can be calculated 
analytically using the following equations:

 r sb = ⋅0 cos( )γ  (7.7)

 r s st = +( )⋅0 ∆ γcos( )  (7.8)

Figure 7.14a shows a motion-inversion setup of a disk cam with translating flat-faced 
follower, consisting of crank OA aligned with a linear actuator that expands by s(θ) accord-
ing to Equation 7.1. Program P7_14.PAS in Appendix B implements this approach to 
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FiGURE�7.14� Cam profile generation in a motion inversion (a) and complete profile and follower 
envelope produced for δF(θ) in Figure 7.4 with s0 = 1.5, Δs = 1.0, and γ = 20° (b). See also animation 
files F7_14a.GIF and F7_14b.GIF.
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generate the envelope of follower face PQ. It employs procedure EnvelOfLines with 
a family of radial lines originating from point (xPC,yPC) to extract the cam profile to a 
polyline (see Figure 7.14b and lines #54 and #56 of the program). As a new follower face PQ 
is drawn during the inverted motion, its intersection with all radial lines originating from 
polar point (xPC,yPC) is recalculated and the free ends of these radial lines updated—see 
animation file F7_14b.GIF. Lastly, the outer ends of these radial lines are connected in a 
polyline by calling procedure EndEnvelopes (lines #69 and #71).

If constant Color on line #13 in program P7_14.PAS equals one, the follower dis-
placement data are read from the lower-resolution file dFvdC_L.XY. If Color=0, then 
the full resolution file dFvdC.XY is utilized instead. In all these cases, the cam profile 
is extracted to a polyline and its vertices are written to data file Cam14.D2D. If constant 
Anim on line #14 equals one, the follower and its driving mechanism are animated in their 
inverted motion (see Figure 7.14a). If Anim=0 and Color=1, the program animates the 
follower face only, together with the radial lines as they get shortened (see Figure 7.14b). 
If Color=0, then the cam profile is output directly, without any animation.

A second program named P7_15.PAS (see Appendix B) allows for a kinematic 
analysis of flat-faced follower cam mechanisms with the cam profile read from data file 
Cam14.D2D output by program P7_14.PAS. The same follower angle γ and cam rota-
tional amplitude Δθ as in the synthesis program P7_14.PAS are specified (see lines 
#18 and #19). The program calls procedure RotCamTransFlat on line #45 from unit 
LibCams with the heading

procedure RotCamTransFlat(Fxyname:PathStr; Theta,Gamma:double; 
var s,xC,yC,Rho:double);

The procedure reads the cam profile from file Fxyname, and for a given cam rotation angle 
Theta and follower assumed risen above the cam, it identifies the cam profile point (xj, 
yj) that is closest to the follower face. Parameter Gamma is the follower face angle in radi-
ans, measured as shown in Figure 7.13. It is assumed that the follower is infinitely long in 
both directions and that it translates along the OY axis (see Figure 7.13). The procedure 
then fits a parabola through this point (xj, yj) and neighboring points (xj–2, yj–2) and 
(xj+2, yj+2). By calling procedure TangOfSlopem2Parab from unit LibGe2D, procedure 
RotCamTransFlat then calculates the point where the tangent to this parabola has an 
angle equal to γ (see Appendix A). This tangent point will be returned to the calling program 
as the contact point (xC, yC) between the cam and the follower. Lastly, by calling procedure 
Circ4Pts from unit LibGe2D, the radius of curvature of the cam around contact point 
(xC, yC) is evaluated as the radius of the circle circumscribed to profile points (xj–2, yj–2) and 
(xj+2, yj+2) and a fictitious point of coordinates x = 0.5(xj–1 + xj+1) and y = 0.5(yj–1 + yj+1). This 
is equivalent to solving the following simultaneous equations in the unknowns xK, yK, and ρ:
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Using the data in ASCII file F7_15.TXT output by program P7_15.PAS, the plot in 
Figure 7.15 has been generated. The horizontal lines on this graph are the base circle and 
top circle radii rb and rt, evaluated by calling procedure GetProfileRadii on line #25 
of the program.

Simulation frames of the positions where the follower contacts the cam at its mini-
mum and maximum radius of curvature are available in Figure 7.16. In the previous 
two cam mechanisms examined, exactly calculated profile points were available to 
evaluate the radii of curvature of the cam. This time, however, the cam profile points 
were obtained as intersections of the follower face with a finite number of radial lines, 
in an inverted motion. This explains the more noisier appearance of the radius of 
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FiGURE�7.15� Plot of the follower displacement s and radius of curvature ρ of the cam in Figure 7.14b. 
Also shown in dashed lines are the base circle and top circle radii rb and rt. Configuration file 
F7_15.CF2.
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FiGURE� 7.16� The cam in Figure 7.14b in the positions where the minimum radii of curvature 
occur. See also animation file F7_16.GIF.
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curvature graph ρ(θ) in Figure 7.15, compared to similar graphs in Figures 7.7 and 7.11, 
as well as the slight departure of ρ from the exactly calculated radii rb and rt over the 
circular portions of the cam profile.

7.5� �SynThESiS�AnD�AnAlySiS�oF�DiSc�cAmS�wiTh�
oScillATinG�FlAT-FAcED�FollowER

Probably the most widely used cam mechanisms are the disk cams with oscillating flat-
faced follower. These are commonly employed in the design of valve trains of overhead 
internal combustion engines, including the variable timing models.

Same as before, the cam profile will be determined as the envelope of the follower face 
PQ in an inverted motion, using procedure EnvelOfLines. In a design problem, along-
side follower motion δF(δC), the cam and follower amplitudes Δθ and Δφ, follower bias φ0 
(i.e., follower angle when in contact with the base circle), and follower face eccentricity eF 
(either positive or negative) should be specified—see Figure 7.17. Part of the design process, 
the radius of curvature ρ of the cam and the pressure angle γ at the contact point with the 
follower must be evaluated for a number of discrete positions of the cam as it rotates. For 
proper operation, the synthesized cam profile should not exhibit rectilinear portions (ρ = ∞) 
or cusps (ρ = 0). In case they occur, other than modifying the follower motion δF(δC), 
increasing the base circle radius rb of the cam or reducing the ratio Δφ/φ0 will both work 
towards eliminating such defects.

The base circle radius rb and top circle radius rt of the cam profile can be exactly calcu-
lated using the following two equations:

 r OO eb F= ⋅ +1 0sin( )ϕ  (7.10)

 r OO et F= ⋅ + +1 0sin( )ϕ ∆ϕ  (7.11)
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FiGURE� 7.17� Parameters of a disk cam with oscillating flat-faced follower. As drawn, follower 
eccentricity eF is considered positive.
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In disk cams with oscillating flat-faced follower, the contact force vector FC remains 
perpendicular to the follower face PQ (i.e., has the direction of the normal to the cam 
profile), while the velocity vector vC will always remain perpendicular to line O1C (Figure 
7.17). Because during operation the contact point C changes location along the face of the 
follower, the angle between vectors FC and vC (i.e., the pressure angle γ) will also change, 
less for eccentricity eF = 0 when the pressure angle γ will remain zero, irrespective of the 
cam angle.

Figure 7.18a shows a motion-inversion setup of a disk cam with translating f lat-
faced follower, consisting of a crank OO1 driven as shown, in series with a sec-
ond crank that rotates relative to the first one according to Equation 7.4. Program 
P7_18.PAS listed in Appendix B generates the cam profile as follower envelope in 
an inverted motion. Procedure EnvelOfLines called on lines #54 and #56 updates 
the lengths of an array of radial lines originating from polar point (xPC,yPC) as they 
are intersected by follower face line PQ, until these ends approximate the cam profile. 
Procedure EndEnvelopes called on line #68 and #70 of the program then connects 
the ends of these radial lines into a closed polyline and writes its vertices to data file 
Cam18.D2D.

If on lines #14 and #15 constants Color=1 and Anim=1, then the program ani-
mates the cam-follower mechanism in a motion inversion similar to Figure 7.18a. 
If Color=1 and Anim=0, then the program animates the follower face only, together 
with the radial lines as they are progressively shortened to extract the follower enve-
lope (see Figure 7.18b). If Color=0, then the cam profile is output without anima-
tion. Note that either the reduced follower motion file dFvdC_L.XY or the full size 
file dFvdC_L.XY is used as input based on the values of the same constants Anim 
and Color.
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FiGURE�7.18� Cam profile generation in a motion inversion (a) and complete profile and follower 
envelope generated for δF(θ) in Figure 7.4 with φ0 = 35° and Δφ = 15° (b). See also animation files 
F7_19a.GIF and F7_19b.GIF.
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The companion program P7_19.PAS (see Appendix B) reads the cam profile file Cam18.
D2D, and for a given follower face eccentricity eF and joint distance OO1, it performs a kine-
matic analysis of the mechanism. Procedure RotCamOscilFlat with the heading

procedure RotCamOscilFlat(Fxyname:PathStr; OO1,O1P,Theta:double;  
var Phi,xC,yC,Rho:double);

is called from unit LibCams on line #49 of the program. The procedure identifies, for a 
given cam angle Theta, the profile point (xj, yj) from where a tangent to a circle centered at 
O1 and of radius eF has the highest slope (i.e., angle φ in Figure 7.18a has a maximum value). 
Once this point is identified, a parabola is fit through points (xj–1, yj–1), (xj, yj), and (xj+1, yj+1), 
and by calling procedure TangComParabCirc from unit LibGe2D, the common tan-
gent to this parabola and to the circle centered at O1 and of radius eF is determined as 
explained in Appendix A. The tangent point on this parabola will then be returned to the 
calling program as the contact point (xC, yC) between the cam and its follower. Procedure 
RotCamOscilFlat also calculates the radius of curvature of the cam profile around the 
same point (xC, yC) by employing procedure Circ4Pts available from unit LibGe2D.

Using the data in ASCII file F7_19.TXT output by program P7_19.PAS, the graphs 
in Figure 7.19 have been generated. Notice the noisy appearance of the pressure angle 
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and radius of curvature on these two graphs. This is because the cam profile points were 
extracted with some approximation using the follower envelope, compared to the exactly 
generated cam profiles operating with pointed follower discussed earlier in the chapter. 
Simulation frames of the positions where the follower contacts the cam at its minimum 
radius of curvature and maximum pressure angle are available in Figure 7.20.

After numerous trials, it was found that for cam mechanisms with flat-faced follower, 
both translating and oscillating, the radius of curvature along the base circle and top circle of 
the cam profile is more accurately evaluated using Equation 7.9 and procedure Circ4Pts. 
In the same respects, it was also found that it is better when the radial lines originate from 
the center of the cam (0, 0), explicable because the base circle and top circle of the cam are 
centered at this point. Since the radii of curvature along the rise and fall sections of the cam 
profile are not precisely known, the conclusion cannot be immediately extended to these 
other sections of the radius of curvature graphs ρ(θ) in Figures 7.16 and 7.20.

7.6� �SynThESiS�oF�DiSc�cAmS�wiTh�cURvilinEAR-FAcED�FollowER
In spite of their apparent practical advantage, there has been little work done on the design 
of disk cams with curvilinear-faced followers. Concave follower cams experience reduced 
wear rate due to better contact stresses, while if equipped with convex follower, they can 
be made smaller than the equivalent flat-faced follower cams, without the danger of their 
profile becoming undercut. In this last section, the synthesis of two types of cams will be 
discussed, that is, one where the face of the follower is a circular arc and the other where 
the follower is a smooth curve approximated by short line segments.

7.6.1� �Synthesis�of�Disk�cams�with�Arc-Shaped�Follower

As mentioned earlier, the profile of a cam intended to operate with a roller follower can 
be obtained from its pitch cam profile using the AutoCAD offset command. The same 
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FiGURE�7.20� The cam in Figure 7.18b in the positions where minimum radius of curvature (a) and 
maximum pressure angle (b) occur. See also animation file F7_20.GIF.
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offset profile can be generated as the envelope of the roller follower in a motion-inversion 
process. To illustrate this other method, programs F7_21.PAS and F7_22.PAS have 
been written and are available with the book. The first program generates the inner cam 
of a translating roller-follower mechanism in a motion inversion, and the second program 
generates the inner cam intended to operate with an oscillating roller follower. Both pro-
grams call procedure EnvelOfCircles for every position of the follower in its inverted 
motion. The heading of the procedure is

procedure EnvelOfCircles(Color,n:Integer; xO,yO, R00, x1,y1, 
x2,y2, x3,y3:double);

When called for the first time, the procedure draws a family of n radial lines (n cannot 
exceed 1000) in color Color and of length R00 that originate from point (xO,yO). To 
expedite the simulation, if Color is zero, no line will be drawn, while if Color is nega-
tive, then only part of these lines will be drawn. After these n radial lines are generated, 
the procedure intersects them with the circle circumscribed to points (x1, y1), (x2, y2), 
and (x3, y3). Of each pair of intersection points between this circle representing the roller, 
and the n radial lines, the point that is closest to (xO,yO) is retained and then used to adjust the 
length of the respective polar line—see animation files F7_21a.GIF and F7_22a.GIF. 
After all intersections between the roller circles and the polar lines have been evaluated, 
procedure EndEnvelopes is called to connect the outer ends of these lines into a closed 
polyline (see Figures 7.21 and 7.22).

Evidently, the accuracy with which the roller envelopes are extracted depends on the 
number n of polar lines in procedure EnvelOfCircles. Other factors are the number of 
cam positions in the motion inversion and the number of significant digits used to record 
the follower motion. Also influencing is the location of point (xO,yO) from where the n 
radial lines originate. It appears that if polar point (xO,yO) coincides with the center of 
rotation of the cam, then the dwell portions of the cam profiles are more accurately gener-
ated as envelope, while if (xO,yO) is selected close to the centroid of the cam, then the same 

(a) (b)

FiGURE�7.21� Inner cam profile generation as envelope of a translating roller follower in a motion 
inversion. Lower-resolution cam (see animation file F7_21a.GIF) (a) and higher-resolution cam (b).
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holds true for the rise and fall portions of the cam. With such limitations, offsetting the 
pitch cam profile obtained as described in Sections 7.2 and 7.3 is the preferred method of 
roller-follower cam profile synthesis.

The true benefit of procedure EnvelOfCircles is that it can be used to synthesize the 
profile of disk cams that operate with arc-shaped followers (either concave or convex) as it 
will be explained in the remainder of this section.
P7_23.PAS listed in Appendix B is a modification of program P7_14.PAS, where 

the face of the follower has a circular arc attached to it. This arc is specified by three points 
noted 1, 2, and 3, the coordinates of which are given relative to a reference frame that moves 
together with the follower. This mobile reference frame has its origin at D and its x-axis ori-
ented towards point P of the follower (see Figures 7.13 and 7.23 and lines #25, #26, and #27 
of program P7_23.PAS). Note that the program must be first run with constant Color 
and Anim (lines #14 and #15) set both equal to zero so that a higher-resolution file with 
the cam profile points Cam23.D2D is generated. When the program is run with the same 
two constants equal to one, an animation of the inverted follower motion is produced (see 
Figure 7.23a and b and the corresponding animated GIFs). When Color=0 and Anim=1, 
program P7_23.PAS (see Appendix B) animates the follower envelope extraction process 
with the radial lines visible. In all these cases, the screen will be copied to file F7_23.DXF 
(either in separate layers or not), but only for Anim=0, the cam profile will be written to 
the Cam23.D2D data file (see line #84).

Figure 7.23a shows a representative frame of the motion-inversion simulation recorded file 
F7_23.DXF, generated for points 1, 2, and 3 having their coordinates equal to (2, –0.4), (0, 0), 
and (–2, –4), respectively. Figure 7.23b shows a similar motion-inversion frame produced 
for points 1, 2, and 3 of coordinates (2, 0.4), (0, 0), and (−2, 4). This is the same arc-faced fol-
lower, but in a convex orientation. The companion Figure 7.23c and d illustrate the follower 
envelope extraction process, the result of calling procedure EnvelOfCircles. Note that 
the radial lines used to extract the cam profile are intersected with the entire circle through 
points 1, 2, and 3, not only by the portion of this circle representing the face of the follower.

To synthesize disk cam profiles intended to operate with oscillating arc-faced fol-
lower (Figure 7.24), program P7_18.PAS has been modified into program P7_24.PAS 

(a) (b)

FiGURE�7.22� Inner cam profile generation as envelope in a motion inversion of an oscillating roller 
follower. Lower-resolution cam (see animation file F7_22a.GIF) (a) and higher-resolution cam (b).
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available with the book. The flat-faced follower in program P7_18.PAS has now an arc 
of circle attached to it, again specified by three points 1, 2, and 3. The coordinates of these 
three distinct points are given relative to a local reference frame with the origin coinci-
dent with point P and its x-axis oriented toward point Q of the follower (see Figures 7.17 
and 7.24). The program calls procedure EnvelOfCircles to extract the envelope of this 
arc of circle as the follower is driven according to Equation 7.4 in an inverted motion. 
Sample output by program P7_24.PAS generated for both concave and convex followers 
are given in Figures 7.24. Same as in the case of P7_23.PAS, the program must be first run 
with constants Color and Anim  set equal to zero. This will generate a higher-resolution 
cam profile and will write its points to file Cam24.D2D.  The data from this file will then 
be used to represent the cam in any subsequent simulations done with P7_24.PAS.

7.6.2� �Synthesis�of�Disk�cams�with�Polygonal-Faced�Follower

Two more computer programs available in Appendix B will be brief ly discussed, that 
is, P7_25.PAS (derived from program P7_14.PAS) and P7_26.PAS (derived from 
program P7_18.PAS). These programs allow disk cam profiles with curvilinear 
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FiGURE�7.23� Motion inversion of disk cams with arc-shaped translating followers in concave (a) and 
(c) and convex (b) and (d) arrangements. See also animation files F7_23a.GIF to F7_23d.GIF.
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translating and oscillating followers to be synthesized. The face of the follower must be 
supplied as an ASCII file of x and y coordinates of the vertices of a polyline, similar to the 
shape files discussed in Chapter 5. File FFace.XY read by these two programs (see line 
#16 of P7_25.PAS) consists of 127 vertices that approximate an arc of an ellipse that 
was first drawn in AutoCAD. The center of the ellipse was located at (0, −0.625), its major 
and minor radii were 3.0 and 0.625, and the start and end angles were equal to 184° and 
356°, respectively. An arc of this ellipse was then saved to R12 DXF, and in the process, 
it was converted to a polyline. Finally, using Util~DXF, the vertices of the polyline were 
extracted to file FFace.XY (note that the header generated automatically by Util~DXF 
had to be deleted).

The polyline red from ASCII file FFace.XY is attached to the flat-faced follower of 
an inverted cam mechanism like the one in Figure 7.14 (see line #54 of program P7_25.
PAS) or the mechanism in Figure 7.18 in case of program P7_26.PAS. The actual fol-
lower envelope extraction was done by calling procedure EnvelOfPlynes from unit 
LibCams (see lines #56 and #60 of program P7_25.PAS). This procedure has the fol-
lowing heading:

procedure EnvelOfPlynes(Color, n:Integer; xO,yO, R00, xA,yA, 
xB,yB:double;  Fxyname:PathStr);

It reads vertex file Fxyname and aligns the respective polyline with a reference 
frame centered at (xA,yA), having its positive x-axis oriented in the direction of point 
(xB,yB). Internally, EnvelOfPlynes calls procedure EnvelOfLines for each line 
segment that forms this polyline and trims the outer ends of the same family of n polar 
lines originating from point (xO,yO), having their initial lengths equal to R00.

The polar line trimming by procedure EnvelOfLines is repeated for every position 
of the follower in a motion inversion. At the end, the cam profile is extracted to a tempo-
rary locus file of extension $2D by calling procedure EndEnvelopes. The cam profile is 

O1

O
θ θ

Q = 2Q = 2

1 1 P O1

O

33

(a) (b)

P
π/2– π/2–

FiGURE�7.24� Motion inversion of disk cams with arc-shaped oscillating followers in concave (a) 
and convex (b) arrangements. See also animation files F7_24a.GIF to F7_24d.GIF.
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drawn to a separate layer named “Cam25” (see line #70) or to the last numerical layer of 
file F7_25.DXF (see line #70). At the end of the program, procedure CloseMecGraph is 
called with either a TRUE or FALSE argument, depending on the value of variable Anim 
(see line #75 of program P7_25.PAS). In the former case, the temporary file with the cam 
profile points will be preserved, by changing its extension to D2D. This will be the output 
cam profile Cam25.D2D.

Results obtained using simulation programs P7_25.PAS and P7_26.PAS are available 
in Figures 7.25 and 7.26 and the animated GIF files that accompany these figures. Note that 
animations of the follower in an inverted motion showing the radial lines (similar to Figure 
7.23) are also available for Figures 7.24 through 7.26. In the absence of specific kinematic 
analysis programs, you can verify the curvature of the cam profiles intended to operate 
with curvilinear follower using program P7_15.PAS or P7_19.PAS described earlier. 
The pressure angle and follower motion information output by these programs should not 
be substituted to the case where the respective cams operate the intended arc-faced or 
curvilinear-faced followers. The follower motion could be however relatively easily verified 
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FiGURE�7.26� Motion inversion of disk cams with curvilinear oscillating followers in concave (a) 
and convex (b) arrangements. See also animation files F7_26a.GIF to F7_26d.GIF.
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FiGURE�7.25� Motion inversion of disk cams with curvilinear translating followers in concave (a) 
and convex (b) arrangements. See also animation files F7_25a.GIF to F7_25d.GIF.
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by simulating the respective mechanisms using Working Model 2D software, which is 
capable of evaluating the contact between planar bodies.

***

The problem of designing the profile of the most common disk cam-follower mecha-
nisms through motion inversion has been discussed in this chapter. Iterative kinematic 
analysis of the same mechanisms and of pressure angle determination was also discussed. 
The follower motion considered throughout the chapter was synthesized using AutoCAD 
software, a promising alternative to the generation of the desired follower motion analyti-
cally using standardized functions.
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C h a p t e r  8

Spur Gear Simulation 
Using Working Model 2D 
and AutoLISP

There is a good amount of similarity between disk cam mechanisms with oscil-
lating followers and gear pairs, where the tooth of the pinion acts as a cam, while the 

active tooth of the driven gear is the follower. The first obvious difference between cam 
mechanisms and gears is that during the meshing process, constantly new teeth (the equiv-
alent of cam–follower pairs) make contact, while others separate. The other difference is 
that the angular velocity of the gear over that of the pinion must remain constant, although 
noncircular gears can be designed, where this velocity ratio is some given function of the 
pinion angle. In this chapter, several Working Model 2D and AutoLISP applications will 
be described, which can be used to demonstrate how involute gears operate and how their 
profiles are generated. Working Model 2D, or WM 2D in short, available from Design 
Simulation Technologies (www.design-simulation.com), is a planar multibody software 
capable of performing kinematic and dynamic simulation of interconnected bodies sub-
ject to constraints. WM 2D allows for DXF import/export and has scripting capabilities 
through formula and WM Basic language systems.

8.1� involUTE-GEAR�ThEoRy
Involute gears are the most widely used in practice, being preferred to cycloidal and circu-
lar profile gears owing to the following desirable properties:

• The transmission ratio between two involute gears is not sensitive to center distance 
modification.
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• The same cutting tool (rack or hob cutter) can be used to manufacture gears of any 
number of teeth (the proportions of their teeth, described through the module or 
diametral pitch, will be the same however).

• The rack or hob cutting tools used to fabricate involute gears can be conveniently mass 
produced because their cutting edges are straight and therefore easy to sharpen.

As the name suggests, an involute gear has the active f lanks of its teeth shaped as invo-
lute curves of a common circle called base circle. Geometrically, the involute curve can 
be generated by attaching a taut, inextensible string to the base circle, and recording 
the locus of its free end as it is unwound off this circle. The concept is illustrated in 
Figure 8.1, where rb is the radius of the base circle, BC is the string, and the involute 
curve is represented in thick line. Note that the involute curve can only exist outside 
the base circle.

Because the string is inextensible, the length of the circular arch AB subtended by angle 
t is equal to the length BC of the sting according to equation

 BC r AB r t r= = ⋅ ( ) = ( ) = ⋅ = ⋅ +( )ρ ϕ β ϕb b barctan  (8.1)

which yields

 β ϕ ϕ ϕ= ( )− = ( )tan inv  (8.2)

Length BC is also the radius of curvature of the involute around point C, while the 
corresponding center of curvature is located at point B.
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FiGURE�8.1� The involute of a circle of radius rb generated using program F8_01.PAS. Additional 
editing has been done inside AutoCAD.
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In order to derive the scalar equation of the involute, we project vector equation 
OC = OB−CB on the axes of the OXY reference frame to obtain
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which after rearranging terms become
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Equations 8.4 have been implemented in the program F8_01.PAS listed in 
Appendix B. The program calls procedures InitDXFfile, ExpectDXFplines, 
AddVertexPline, DXFplineEnd, CloseDXFfile, and Fcircle from unit 
LibDXF and was used to generate Figure 8.1. Note that unlike earlier programs dis-
cussed in this book, F8_01.PAS writes directly to the R12 DXF file, without plotting 
the image on the computer screen.

The equations of the involute can be also expressed using the polar angle β (see Figure 8.1):
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and polar radius ry:

 r OB BC r ty = + = +2 2 21b  (8.6)

which yield the following alternative set of scalar equations
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Figure 8.2 shows the main parameters of external and internal involute gears. The size 
of their teeth is standardized through the diametral pitch P, which is the number of teeth 
of the gear per inch of its pitch diameter, that is,

 
P

N

r
= 0 5.  (8.8)
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For metric gears, the equivalent standardized parameter is the module m, defined as

 
m

r

N
= 2  (8.9)

The circular pitch p is defined as the distance between teeth measured along the pitch 
circle and can be calculated with any of the following equations:
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 =2π π π; or  (8.10)

Note that on a pitch circle the tooth thickness and width of space are both equal to p/2.
Additional important parameters used to specify teeth proportions are the addendum a and 

dedendum d. These are measured radially from the pitch circle to the addendum and to 
the dedendum circles, respectively. Both a and d as well as the full-depth a + d and clear-
ance c are defined in terms of diametral pitch P or module m as listed in Table 8.1. The 
clearance c is the amount by which the dedendum of the gear exceeds the addendum of the 
pinion and vice versa, when no backlash between their teeth is allowed.
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FiGURE�8.2� External (a) and internal (b) involute-gear terminology and notations.

TAblE�8.1 Standard Proportions of Involute-Gear Teeth

Teeth Proportions Addendum,	a Dedendum,	d Whole depth,	a	+ b Clearance,	c	= b	− a 
Full depth (ϕ = 14.5°) 1/P 1.157/P 2.157/P 0.157/P
Stub (ϕ = 20°) 0.8/P 1/P 1.8/P 0.2/P
Full depth (ϕ = 20° or α = 20°) 1/P or 1m 1.25/P or 1.25m 2.25/P or 2.25m 0.25/P or 0.25m
Full depth (ϕ = 25°) 1/P 1.25/P 2.25/P 0.25/P
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Although in theory P = 1/m, SI system (i.e., metric gears) and US customary system gears 
are not interchangeable. Also note that neither m nor P can be measured directly on the gear. 
There are indirect ways to estimate what module m or diametral pitch P a gear is however. 
One method is to try to mesh the unknown gear with gears of the known module or diam-
etral pitch. The other is to measure the whole depth of the unknown gear, and assuming, for 
example, that it is a full-depth tooth, divide this amount by 2.25 to obtain m or 1/P.

8.2� involUTE�PRoFilE�mESh
Figure 8.3 shows that a pair of external involute gears of teeth numbers N1 and N2 is equiv-
alent to a crossbelt transmission with pulleys of radii rb1 and rb2 (the base radii of the two 
gears). Similarly, Figure 8.4 shows that one external and one internal gear pair is equiva-
lent to a regular belt transmission. Both are also equivalent to two friction wheels of radii 
r1 and r2 (pitch radii) or rw1 and rw2 (rolling radii in case the center distance is modified) 

P P
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(a) (b)

(c) (d)
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r1

r2
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rw2

rb2

rb1

O1O1

O2
O2

r2

r1

φ or αφ

φ

FiGURE�8.3� Equivalence between a crossbelt transmission (a), a pair of friction wheels (b), and a 
pair of external gears without (c) and with (d) backlash.
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of the two gears. By simultaneously recording the locus of a point on the belt relative to a 
plane that rotates together with gear one, and also relative to a second plane that rotates 
together with gear two, the involute curves forming the flanks of the meshing teeth of the 
two gears are obtained.

The belt transmission equivalence explains why the transmission ratio remaining con-
stant as the two involutes profiles mesh, thus satisfying the fundamental law of tooth gearing, 
which states that “the common normal to the two involutes at the point of contact—which 
is the common tangent to the two base circles—will always intersects the line of centers 
O1O2 at the pitch point P” (Uicker et al. 2003).

The angle formed by the belt perpendicular to the line of centers O1O2 is the pressure 
angle ϕ between the teeth of the two gears when their point of contact coincides with 
the pitch point P. Note that in metric gear terminology, the pressure angle is noted α. 
If the center distances of the (cross)belt transmission and of the gear pair with zero back-
lash are modified from a standard center distance D to an operating center distance Dw, 
the pitch radii r1 and r2 will remain the same, but the pressure angle will change its value 
according to equation:
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FiGURE�8.4� Equivalence between a belt transmission (a), a pair of friction wheels (b), and a pair of 
external–internal gears, without (c) and with (d) backlash.
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Important: In Equation 8.11 and throughout this chapter, the upper sign will correspond to 
external gears and the lower sign to internal gears.

To maintain the same input–output speed ratio ω1/ω2, the equivalent friction wheel 
transmission with modified center distance Dw will have to be equipped with new wheels 
of radii rw1 and rw2 (these are the rolling radii of the gear pair) calculated using the follow-
ing equations:
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Overall, the following equalities should hold between the angular velocity of the input 
and output gears, their number of teeth N1 and N2, and the radii of their base circles, pitch 
circles, and rolling circles:
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The meshing of involute profiles and the insensitivity of the transmission ratio of invo-
lute gears to center distance modification is illustrated by WM 2D simulations named 
InvPairExt.WM2 and InvPairInt.WM2 provided with the book. Using the program 
P8_01.PAS mentioned earlier, two polygonal bodies representing the two involute curves 
connected to their base circles of radii rb1 = 3 m and rb2 = 4 m have been created inside 
AutoCAD (see Figure 8.5) and then exported to WM 2D via the DXF format. A slider 
control allows the user to adjust the distance between the centers of these two base circles 
(i.e., distance O1O2) within the limits 9–10.75 for the external involutes and 1.1 and 1.5 for 
the internal–external involutes. A pair of rotary motors drives separately the two involutes 
and are imposed correlated oscillatory motions of 0.4 and 0.3 radians amplitude according 
to equations
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The initial positions of the two involutes, that is, at time t = 0, are such that the contact 
point C is collinear with gear centers O1 and O2. Irrespective of the value of center distance 
Dw, the following equalities hold:
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As the two involute profiles mesh, their contact point C moves along the line of 
action AB, which is the common normal to the two profiles and the common tangent 
to the base circles of the two gears. In any position, the coordinates of point C can be 
determined by projecting vector equation BC + OB = OC on the axes of the reference 
frame (see Figure 8.5a). For the involute curve rotated by angle θ, we get
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 (8.16)

where the radii of curvature ρ1 and ρ1 of the two involutes around point C are given by 
equations

 ρ φ−θ ρ φ−θ1 1 2 2= ( ) = ( )r rb band  (8.17)
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FiGURE� 8.5� Screenshots of WM 2D simulations of two mutually enveloping external involute 
curves recorded relative to the ground (a) and relative to a reference frame attached to involute 
number two (b). See also movie files F8_5A.MP4 and F8_5B.MP4.
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If in any of these two WM 2D simulations the observer’s reference frame is moved 
to one of the involutes, the locus of the contact point C traces the respective involute 
(Figures 8.5b and 8.6b).

According to the Aronhold–Kennedy theorem of the three instant centers (Uiker et al. 
2003), a pure rolling between the two involute profiles occurs only when contact point 
C coincides with the pitch point P. Moreover, the farthest away from point P the contact 
between the two teeth takes place, the higher the amount of relative sliding between 
the two involutes is. In case of an actual gear transmission, the sliding between teeth 
causes power losses, which will be higher for gears with smaller diametral pitch P or 
bigger module m.

In simulations InvPairExt.WM2 and InvPairInt.WM2, in order to maintain contact 
between the two involutes as the operating center distance O1O2 is modified, the initial 
angles of the two oscillating polygons has been programmed using WM 2D formula lan-
guage such that each changes the amount
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This equation has been obtained by eliminating parameter t between Equations 8.5 and 8.6 
with ry set equal to either OP1 or OP2 and then applying Equations 8.15.
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FiGURE�8.6� Screenshots of WM 2D simulations of two mutually enveloping involute curves (one 
external and one internal) recorded relative to the ground (a) and a reference frame attached to 
involute number two (b). See also movie files F8_6A.MP4 and F8_6B.MP4.
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The pressure angle displayed with these simulations (see Figures 8.5 and 8.6) is the angle 
between the velocity vector of the contact point and the normal force to the two profiles, 
when the contact point coincides with pitch point P, that is,
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Also displayed with these simulations are the radii of curvatures ρ1 and ρ2 of the two invo-
lutes around contact point C, calculated with Equations 8.17.

8.3� involUTE-GEAR�mESh
In order to demonstrate additional properties that involute gears have, simulations 
GearPairExt.WM2 and GearPairInt.WM2 have been produced and are available with the 
book—see Figures 8.7 and 8.8 and movie file F8_7.MP4 and F8_8.MP4. These simulations 
consist of two standard gears with adjustable center distance. Standard gears are zero pro-
file shift gears, that is, their addendum modification coefficient x equals zero; see Section 
8.4 for details. The first of these simulations depicts two external gears with N1 = 15 and 
N2 = 17 teeth; the other simulation consists of one external and one internal gear with N1 = 17 
and N2 = 25 teeth.

Since each gear has a number of identical involute curves equally spaced around the 
base circle, the concepts introduced earlier with reference to Figures 8.5 remain valid 
for any two gears in mesh. Therefore, as the center distance is modified, the pressure 
angle changes as well, while the transmission ratio remains the same. To maintain con-
tact between the teeth of the two gears in these two simulations, as their center distance 
is modified, the initial angle of the two gears is adjusted an amount calculated using 
Equation 8.18.

The pressure angle between the two involute profiles varies as the contact point between 
the two gears moves along the line of action. The magnitude of the pressure angle also 
changes as the center distance of the two gears is increased or decreased and is also func-
tion of the direction in which the torque is transmitted—either from gear 1 to gear 2 or vice 
versa. The only position in which the pressure angle is not dependent of which gear is the 
driving gear is the one where the contact point and the pitch point P coincide. This is the 
same pressure angle of the gear pair discussed earlier with reference to Figures 8.3 and 8.4 
and is noted α in the SI system and ϕ in the US customary system.

The minimum center distance of an external gear pair is limited by their meshing 
teeth making double contact; this is known as the zero-backlash gear pair arrangement 
(Figure 8.7). Conversely, in case of internal–external gear pairs, there is a maximum center 
distance limited by their teeth making double contact (Figure 8.8). The center distance 
corresponding to a zero-backlash arrangement of standard gears is called standard center 
distance and is calculated with equation

 D N N m= ( )⋅0 5 2 1. −  (8.20a)
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or for US customary gears

 
D

N N

P
=

( )0 5 2 1. −
 (8.20b)

One property of standard gear pairs is that when the operating center distance Dw equals 
the standard center distance D, the pressure angle between the two gears equals half the 
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FiGURE�8.7� WM 2D simulations of two full-depth tooth standard external gear pairs shown 
in their reference center distance configuration (top) and in a configuration where the center 
distance is increased (bottom). See also simulation files GearPairExt.WM2 and movie file 
F8_7.MP4.
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angle between the flanks of the teeth of the basic rack. The basic rack of a gear is obtained 
by hypothetically making the number of teeth of the respective gear equal infinitely.

In addition to the pressure angle at the pitch point calculated with Equation 8.19, two 
more parameters are displayed with the WM 2D simulations in Figures 8.7 and 8.8. One is 
the contact ratio ε of the two gears, defined as the average number of teeth in contact and 
calculated with 
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FiGURE�8.8� WM 2D simulation of two full-depth tooth standard external–internal gear pairs, 
shown in reference center distance configuration (top) and in a configuration where center distance 
Dw < D, backlash is nonzero, and contact ratio is diminished (bottom). See also files GearPairInt.
WM2 and F8_8.MP4.
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or for metric gears
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The third parameter displayed with these simulations is the backlash BL, defined as 
the width of the gap between two meshing teeth measured along their rolling circles. The 
backlash will be equal to the circular pitch measured on the rolling circles pw of any of the 
two gears, minus the teeth thickness of gear one s1w and of gear two s2w measured along 
their respective rolling circles. The mentioned parameters pw, s1w, and s2w can be calculated 
using the following equations:
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or

 

p m

s m x r

w
w

w
w

w winv

= ⋅

= ⋅ +





 ⋅

π α
α

π α α
α

− α −

cos

cos

tan
cos

cos
1 1 1

2
2 2 iinv

inv invw
w

w w

α

π α α
α

α − α

( )

= ⋅ ±





 ⋅ ( )s m x r2 2 2

2
2 2tan

cos

cos
∓

 (8.23b)



310    ◾    computer-Aided�Graphing�and�Simulation�Tools�for�AutocAD�Users

With these parameters known, the backlash between the teeth in mesh of the two gears 
when their center distance is modified from D to Dw becomes

 
BL m x x r r= ⋅ ±( ) ±( )( )− φ

φ
− φ − φ2 21 2 1 2

sin

cos w
w w winv inv  (8.24a)

or for US customary gears

 
BL

P
x x r r= ⋅ ±( ) ±( )( )− α

α
− α − α2

1
21 2 1 2

sin

cos w
w w winv inv  (8.24b)

Simulation GearPairExt.WM2 and GearPairInt.WM2 reveal that as the center dis-
tance is modified from its standard value, the contact ratio is reduced because of the short-
ening of the length of action, while the backlash between the two gears will increase. In 
practice, a small amount of backlash between gears is essential in order to allow for ther-
mal expansion and for the slight deflection of the teeth as they mesh under load. Too much 
backlash is undesirable however because it reduces the contact ratio of the two gears, and 
as a consequence teeth are loaded more when they first make contact. Also, if the direction 
of rotation of the gears is reversed, impact loads or unacceptable position inaccuracies can 
occur. If the center distance is imposed a value other than the standard center distance D, 
the ensuing backlash or interference can be reduced or eliminated by employing profile 
shifted gears discussed in the next section.

8.4�  WorkIng MoDeL 2D�SimUlATionS oF involUTE�
PRoFilE�GEnERATion

There are several ways of manufacturing involute gears. Of these, the shaping process 
using a pinion cutter and a rack cutter will be illustrated in the remainder of this chapter. 
WM 2D simulations of these two type of gear generation processes have been produced 
and are available with the book, that is, GearGen0.WM2 to GearGen4.WM2.

In both processes, the cutter is first fed into the gear blank until the reference line of the 
rack or the pitch circle of the pinion cutter becomes tangent to the pitch circle of the future 
gear. After that, with each cutting stroke, the reference line of the rack cutter or the pitch 
circle of the pinion cutter will slowly roll without slip on the pitch circle of the gear blank. 
The process ends when the last tooth of the gear is fully formed. It is called reference line 
of the generating rack, the line along which the tooth thickness and width of space of the 
rack are equal. A similar line can be defined for the basic rack, which is the rack obtained 
by making the number of teeth of the gear equal to infinity.

If the aforementioned rolling without slip takes place between the reference line of the 
rack cutter (or the pitch circle of the pinion cutter) and the pitch circle of the blank, a zero 
profile shift gear is generated. The teeth of such a gear are said to have no correction (see 
Figure 8.9a). If this rolling without slip occurs between the pitch circle of the blank and a 
different line of the rack cutter, or between different circles of the blank and pinion cut-
ter, a modified or profile shifted gear is obtained instead. Specifically, when the cutter is 
displaced radially outwards from the zero shift position, a gear with positive profile shift 
(X > 0) as shown in Figure 8.9b is generated. Conversely, a radially inward displacement of 
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the rack or pinion cutter results in a gear that has a negative profile shift (X < 0) as seen in 
Figure 8.9c. The ratio between tool displacement X and its module m or the inverse of its 
diametral pitch P is called profile shift coefficient and is symbolized x. Note that the base 
circle of the future gear as well as its pitch circle remains the same, irrespective of the mag-
nitude of the profile shift coefficient x.

The involute-gear generation methods using a pinion cutter and a rack cutter were imple-
mented in WM 2D simulations GearGen0.WM2 to GearGen4.WM2 available with the 
book. GearGen0.WM2 can be used to simulate the generation of an entire involute gear, 
either with external or internal teeth (see Figures 8.10 and 8.11). Because the pinion cutter in 

(a) (b)

X > 0 X < 0

(c)

FiGURE�8.9� Standard gear with N = 18 teeth and zero profile shift (a), with positive addendum 
modification, that is, rack is retracted during the generation process (b), and with negative adden-
dum modification, that is, rack is approached during the generation process (c).

(a)

(b)

FiGURE�8.10� Full-depth ϕ = 20° internal gears generated using GearGen0.WM2 with N = 24 teeth 
(top) and N = 19 teeth (bottom) and with zero profile shift (a) and x = 0.5 profile shift (b). See also 
movie file F8_10.MP4.
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this simulation has 18 teeth, internal standard gears with at least 24 teeth can be generated 
without undercut. If a profile shift is applied, then gears with down to 19 teeth can be gener-
ated. Figure 8.10 shows four internal gears generated with GearGen0.WM2, two having 
N = 24 teeth and the other two having N = 19 teeth. Both the zero profile shift gears and 
addendum modified gears by x = 0.5 are shown in this figure. As anticipated, the zero profile 
shift gear with N = 19 teeth appear severally undercut. The companion internal gear with 
N = 19 and positive profile shift has its teeth better formed, but they result shortened because 
of the interference with the tip of the generating pinion. The figure also shows that a positive 
profile shift results in an internal gear that has an increase width of space.

Figure 8.11 are four full-depth ϕ = 20° external gears with N = 18 and N = 11 teeth. The 
zero profile shift gear with N = 18 exhibits no undercut, but once the number of teeth is 
reduced below 18, undercut starts to occur. This is clearly visible on the N = 11 teeth gear 
that appears severely undercut. The companion x = 0.5 profile shifted gears illustrate the 
effect of addendum modification upon tooth shape and undercut occurrence. Notice how 
for positive profile shifted gears, the tooth becomes pointed while its root thickens while 

(a) (b)

FiGURE�8.11� Full-depth ϕ = 20° internal gears generated using GearGen0.WM2 with N = 18 and 
N = 11 teeth having zero profile shift (a) and x = 0.5 profile shift (b). See also movie file F8_10.MP4.
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for x < 0, the effect is opposite and can result in undercut teeth. In practice, it is recom-
mended that the tooth thickness on the addendum circle be no less than 0.3 times m or 
1/P. Stub teeth can be employed when there is no other way of avoiding the teeth from 
becoming pointed.

WM 2D applications GearGen1.WM2–GearGen4.WM2 illustrate how one com-
plete tooth of an external involute gear of module m = 1 mm with number of teeth N 
and addendum modification coefficient x can be generated using a rack cutter. 
GearGen1.WM2 simulates α = 20° full-depth tooth involute profiles, GearGen2 sim-
ulates α  =  20° stub-tooth involute profiles, GearGen3.WM2 simulates α = 25° full-
depth tooth involute profiles, and GearGen4.WM2 simulates α = 14.5° full-depth 
tooth involute profiles.

Sample tooth profiles generated with these four WM 2D simulations are available for 
comparison in Figure 8.12. Unfortunately, once these simulations have been performed, 
there is no convenient way to export the cutter envelopes to AutoCAD (same applies for 
the simulations done using GearGen0.WM2). This is because WM 2D can export to DXF 
only one animation frame at a time. In addition, the entities whose visibility has been 
intentionally turned off will also be exported to DXF, making the task of extracting cutter 
envelopes even more tedious. To overcome these drawbacks and allow the user to generate 
accurate involute-gear profiles, the AutoLISP application Gears.LSP has been written 
and is available with the book.

8.5� involUTE�PRoFilE�GEnERATion�USinG�Gears.LSP
The AutoLISP application Gears.LSP allows one to generate as polylines, internal or 
external gears with any number of teeth and any addendum modification coefficient x. 
For the convenience of input data management, the module m (or diametral pitch P) of the 
gear will be equal to one. Any desired module or diametral pitch can be easily obtained 
at the end through scaling. Note that the gear will result centered at origin and must be 
produced one at a time always starting in a new drawing. To launch the program, issue the 
appload command, load Gears.LSP from its directory, and then type at the command 
line either “external” or “internal,” depending on the gear profile you want to generate. 
You will then be asked to input the number of teeth N and profile shift coefficient x and 
will be prompted by the program to confirm the advancement through the involute profile 
generation steps shown in Figure 8.13.

These steps are as follows (see Figure 8.13): (i) Draw the addendum, dedendum, base, 
and pitch circles of the future gear and half of the generating rack and its reference 
line. (ii) Copy the generating rack in a number of positions to form the envelopes of the 
left flank of the top gear, similar to WM 2D simulation GearGen1.WM2. (iii and iv) 
Extract the tooth flank using an array of parallel lines that are trimmed from the right. 
(v) Mirror the tooth flank to the right and draw the top land of the tooth. (vi) Generate 
the entire gear profile as a polar array of the single tooth produced earlier, and connect 
these teeth into a polyline.

If of interest, you can use the left side of the rack cutter and the reference line from 
Gears.LSP to manually produce an entire rack (see Figures 8.13 and 8.14). First, mirror 
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FiGURE�8.12� Profile shift effects upon an external gear with 18 teeth and α = 20° full-depth tooth 
(a), α = 20° stub tooth (b), α = 25° full-depth tooth (c), and α = 14.5° full-depth tooth (d). From left to 
right, the addendum modification coefficient equals to x = −0.5, x = 0 and x = +0.5. See also movie 
files F8_12A.MP4 to F8_12D.MP4.
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FiGURE�8.13� Steps in generating a standard gear with N = 5 teeth and x = 0.2 addendum modifica-
tion using the application Gears.LSP. 

(a)

0.2

(b)

0.2

FiGURE�8.14� How to obtain a complete section of the generating rack after running the program 
Gears.LSP for external (a) and internal (b) gears. Also shown is the profile shift coefficient x = 0.2 
that can be measured directly on the drawing.
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the left side of the rack about the OX axis. Then connect the two outer ends with the ends 
of the reference line of the rack, and complete the necessary filleting. You can then multiply 
any number of times the tooth and space thus obtained.

It is also possible to generate using Gears.LSP stub gears, or gears having the angle of 
the generating rack other than 20° (see Figure 8.15). To do this, edit the addendum coef-
ficient aa or angle Phi on the last lines of the file Gears.LSP prior to loading it into 
AutoCAD. Note in the following excerpt that it is also possible to modify the fillet radius 
FilletR of the generating rack or the number of enveloping positions ncuts required 
to extract the first tooth.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  (setq ncuts 100)  ;number of rack cuts around one tooth
  (setq nRscans 30)  ;number of scan lines to extract the involute

  (setq FilletR 0.25)  ;generating rack filled radius
  (setq Phi 20.0)  ;rack angle in degrees
  (setq aa  1.00)  ;addendum coefficient
  (setq dd  1.25)  ;dedendum coefficient
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

***

A review of the involute-gear theory has been presented, illustrated with WM 2D 
simulations. Additional simulations demonstrate how gear profiles can be generated 
using gear and rack cutters. AutoLISP application Gears.LSP available with the 
book allows one to generate as AutoCAD polylines accurate involute profiles—both 
external and internal. For convenience, a summary of involute-gear nomenclature and 
geometric equations used in this chapter is made available in Table 8.2. Most of the 
equations in this table have been entered in the spreadsheet InvGearCalc.XLS also 
available with the book.

FiGURE�8.15� External gears (left) and internal gears (right) with 18 teeth and x = 0, full-depth 
tooth with α = 20°, stub tooth with α = 20°, full-depth tooth with α = 25°, and full-depth tooth α = 14.5°, 
separately generated using Gears.LSP. Note the different undercut and tooth land width.
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TAblE�8.2 Summary of Involute-Gear Formulae

Nomenclature Notations 
Comments (The Lower Sign Is for Internal Gears 

[N2 Only] or External–Internal Pairs) 

1 Pinion tooth number N1 N1  ≥ 17 (less than 17 possible with nonstandard gears)
2 Gear tooth number N2 N2  ≥ N1

3 Generating rack angle ϕ 20° standard (other values in use are 14.5°, 22.5°, and 25°)
4 Module for metric gears m [mm] 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50 

(first choice) or 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 
7, 9, 11, 14, 18, 22, 28, 36, 45 (second choice)

5 Diametral pitch for US 
customary gears

P [in−1] 1, 1¼, 1½, 1¾, 2, 2¼, 2½, 3, 4, 6, 8, 10, 12, 16 (coarse) or 
20, 24, 32, 40, 48, 64, 80, 96, 120, 150, 200 (fine)

6 Transmission ratio i12 i12 = N2/N1

7 Pitch circle radii r1, r2 r1 = 0.5·N1 · m; r2 = 0.5·N2 · m or r1 = 0.5 · N1/P; r2 = 0.5 · N2/P
8 Base circle radii rb1, rb2 rb1 = r1 · cosϕ; rb2 = r2 · cosϕ
9 Standard center distance D D = r2  ± r1

10 Operating distance Dw Dw  ∈ [D…D ± m] OR Dw∈[D…D ± 1/P]
11 Pressure angle at pitch point ϕw ϕw = cos−1(Dcosϕ/Dw)
12 Pressure angle on a circle 

of radius ry

ϕy ϕy = cos−1(rb/ry)

13 Circular pitch p p = πm or p = π/P
14 Circular pitch on a circle 

of radius ry

py py = p(cosϕ/cosϕy)

15 Profile shift coefficients x1, x2 To avoid undercut: x1, 2 ≥ (17−N1)/17

16 Total profile shift coefficient x = x1 ± x2 x
N N

=
± ( )2 1

2 tan
cos

φ
φ − φinv invw

17 Profile shift distance X1, X2 X1 = x1 · m; X2 = x2 · m or X1 = x1/P; X2 = x2/P
18 Addendum a Full-depth tooth: a = m or 1/P; stub tooth, 0.8/P;
19 Dedendum d Full-depth tooth: d = 1.25m or 1.25/P; stub tooth, d = 1/P;
20 Clearance c c = d − a
21 Dedendum radius rd1, rd2 rd1 = r1 + X1  − d; rd2 = r2 + X27d
22 Addendum radius ra1, ra2 ra1 = r1 + X1 + a; ra2 = r2 + X2  ± a

Rack and pinion: ra1 = r1 + X1 + a;  ra2 = ∞

23 Pitch circle radii of meshing 
gears

rw1, rw2 r
r N

N N
Dw

b

w
w1 2

1 2 1 2

2 1
,

, ,

cos
= =

±φ

24 Tooth thickness on the pitch 
circle

s1, s2 s1, 2 = 0.5 · p72 · X1,2 · tanϕ

25 Tooth thickness on a circle 
of radius ry

sy1, sy2 s s ry y y1 2 1 2 1 2, , ,
cos

cos
= −( )φ

φ
φ φ

w

inv inv∓

26 Contact ratio ε > 1 ε − − φ φ= ±( ) ( )r r r r D pa b a b w w /1
2

1
2

2
2

2
2 ∓ sin cos

Rack and pinion:

ε − − φ φ − φ= ( ) ( ) + ( ) ( )r r r p x pa b / / .1
2

1
2 1 0 5 2sin cos sin

27 Backlash BL m x x r r= ⋅ ±( ) ±( )( )−
φ
φ

− φ − φ2 21 2 1 2
sin

cos w
w w winv inv
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C h a p t e r  9

More Practical Problems 
and Applications

In this final chapter, a number of applications of the programs and procedures 
introduced earlier in this book are presented. The first three of these applications are 

from Dynamics and Vibrations solved using the D_2D program. The next examples are of 
curve fitting through minimization, graphical representation of single-valued functions of 
three or more variables and random number generation (including plotting them as histo-
grams). Additional applications of the procedures in unit LibAssur are then presented 
(i.e., kinematic simulation of dwell and quick-return mechanisms and of mechanisms with 
repetitive topology and animation of the fixed and moving centrodes of a four-bar link-
age), followed by two Working Model 2D simulations of planetary gears. Also presented is 
a program to purge unwanted files from current directory. After submitting the first draft 
of manuscript to the publisher, several more applications have been added to this chapter 
as follows: plotting implicit functions, direct and inverse kinematics of SCARA robots, 
rope shovel and excavator motion simulation, multilink suspension analysis and flywheel 
design of a punch press.

9.1� DUFFinG�oScillAToR
To illustrate the usefulness of arrow markers and the ability of D_2D program to generate 
comet plots and to handle large input data files, the case of the Duffing nonlinear oscillator 
is considered next:

 �� �x x x x t+ + + =δ α β γ ω3 cos( )  (9.1)

Equation 9.1 describes a class of damped oscillators with a harmonic forcing term and vis-
cous friction coupling. This equation has been extensively studied in the past (Kovacic and 
Brennan 2011) because of the interesting dynamic behavior it exhibits for certain combina-
tions of parameters α, β, γ, δ, and ω. The plot in Figure 9.1, known as phase path, is a solu-
tion of Duffing equation with ω = 1.0, α = −1.0, β = 1.25, γ = 0.3, and δ = 0.15 and initial 
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conditions x(0) = 0 and �x( ) . .0 0 000001=  It has what is known as chaotic behavior, where the 
time response of the system is bounded but not periodic. Figure 9.1 illustrates how the arrow 
markers available in the D_2D program were used to indicate the time evolution of the system. 
If these arrow markers are equally spaced along the plot curve like in Figure 9.1a, the direction 
of the process is revealed, but not its velocity. If the data points used to plot the phase path are 
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FiGURE� 9.1� Phase path of Duffing oscillator plotted with equally spaced arrow markers (a) and 
arrow markers placed at every five data points, the static equivalent an animated comet-like F9_01C.
GIF (b). See also configuration files F9_01A.CF2, F9_01B.CF2, and F9_01C.CF2.
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generated at a constant time step, then by placing an arrow marker at every certain number of 
data points, a sense of the speed at which the process occurs is also conveyed with the graph 
(Figure 9.1b). This latter graph is comparable to representing the respective line as a comet plot 
(see animation file F9_01c.GIF available with the book). The use of comet plots is restricted 
however by the availability for their display of an interactive environment.

Figure 9.2, known as a Poincaré map or first recurrence map, reveals some regularity 
in the chaotic behavior of the Duffing oscillator. These maps are phase configurations of 
the oscillations recorded for discrete time values t = 2πn with n = 0, 2, 3, 4, and so on. The 
number of instances n recorded and plotted as dots in Figure 9.2 equals one million and is 
read by D_2D from file F9_02.D2D.

Data file F9_02.D2D together with ASCII file F9_01.TXT used to plot Figure 9.1 has 
been generated using program F9_01.PAS listed in Appendix B. Note that in order to 
output either the F9_01.TXT file or the F9_02.D2D file, constant Poincare must be 
set equal to FALSE or to TRUE, respectively (see line #6 of the program).

9.2� FREE�oScillATion�oF�A�SPRinG–mASS–DAShPoT�SySTEm
This section discusses the simulation of a spring–mass system with viscous damping. In 
case of this single degree-of-freedom (DOF) system, Newton’s second law

 ΣF may y=  (9.2)
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FiGURE�9.2� Poincaré map of the Duffing oscillator in Figure 9.1. Configuration file F9_02.CF2.
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writes (see Figure 9.3a)

 mg cy F mys− − =� ��  (9.3)

After substituting the spring force, the differential equation of motion is obtained as

 
�� �y g

c

m
y y l k= − − −( )0  (9.4)

Two Pascal programs have been written to integrate the equation of motion (9.4) of 
the system for 0 ≤ t ≤ tend, using Euler–Taylor algorithm (see Appendix A). Of these, 
program P9_03.PAS listed in Appendix B writes the displacement y(t) and the velocity 
dy(t)/dt of the mass to two separate data files named F9_03LOnG.DTA and F9_03SHRT.
DTA. The first of these files receives nPoz data points result of the numerical integration, 
while the second one receives every Skip data points (see lines #75 to #78 and lines #79 
to #81). Depending on the step size h defined on line #15, the integration can be done 
over more points, but only nPoz points are recorded to file F9_03LOnG.DTA. For the 
same reduced number of points that are recorded to file F9_03SHRT.DTA, the program 
also draws on the screen and to the multilayer DXF file F9_03.DXF a circle representing 
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FiGURE�9.3� Free-body diagram of the mass (a), and time response of an underdamped spring–
mass system (b). See also animation file F9_03b.GIF and configuration file F9_03.CF2. Note 
that plot has been mirrored and scaled inside AutoCAD to match the motion of the spring.
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the mass, the helical spring, and its two attachment—see the use of procedures Shape, 
Spring, PutGPoint, and PutPoint.

A spring of free length l0 = 1.0 m and constant k = 10 N/m and a suspended mass 
m = 1 kg were assumed. For the damping coefficient c = 0.5 Ns/m corresponding to an 
underdamped system and for initial conditions y(0) = 0.5 m and dy(0)/dt = 0, the sys-
tem’s time–response graph looks as shown in Figure 9.3b. The companion animation file 
F9_03b.GIF has been generated by combining inside AutoCAD the multilayer DXF 
file F9_03.DXF and a D_2D scan line graph generated using files F9_03LOnG.DTA 
(for the background curve) and F9_03SHRT.DTA (for scan line points).

The second program named P9_04.PAS (listing not included in appendix) is structured 
similarly to the two-DOF spring-pendulum simulation program P3_04.PAS discussed 
in Chapter 3. The program generates vector _t of the independent variable (i.e.,  time) 
and the displacement and velocity vectors _y and _dy. These vectors then serve to plot 
the displacement and velocity graphs of the mass (see Figure 9.4). The sample animation 
frame output by this program in Figure 9.4 corresponds to the same initial conditions and 
parameters l0, k, m, and c. Additional damping coefficient values have been considered 
(i.e., c = 0, c = 6.32456 Ns/m = 2(mk)1/2, and c = 10 Ns/m, corresponding to an undamped, 
critically damped, and overdamped system, respectively), and animation files F9_03a.GIF 
through F9_03d.GIF available with the book have been generated.
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FiGURE�9.4� Underdamped spring–mass system simulation generated with P9_04.PAS. See also 
animation files F9_04a.GIF to F9_04d.GIF.
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9.3� �FREqUEncy�AnD�DAmPinG�RATio�ESTimATion�
oF�oScillAToRy�SySTEmS

Often times, dynamics and vibrations problems require for a solution, determining 
the damped period of motion τd, the corresponding frequency (ωd = 2π/τd and fd = 1/τd), 
and the amount of damping present in a system. For an underdamped, single DOF 
system for which a time–response curve y(t) is available, the period of motion τd can 
be determined by measuring the time interval between two successive maximum or 
minimum displacement values or the time it takes for the system to pass twice through 
its equilibrium position. In turn, the amount of damping in the system, quantified by 
the damping ratio ζ, is traditionally determined by employing the logarithmic decre-
ment method, which however requires accurate knowledge of the equilibrium position 
of the system.

In this section, an exponential-curve fit approach to damping ratio determina-
tion will be described, facilitated by the ability of the D_2D program to export to file 
the coordinates of the extrema of plots. Figure 9.5 is the time–response curve y(t) of 
a spring–mass–dashpot system with mass m = 1 kg, spring rate k = 10 N/m, and vis-
cous damping coefficient c = 0.5 N · s/m. This curve has been produced with data from 
file F9_05.D2D generated by program P9_05.PAS (see Appendix B). This program 
implements Equations 9.5 through 9.10 (Rao 2013), with the initial conditions �y0 0=  and 
y0 = 1.5−y∞ = 0.5 m, where y∞ = y(∞) = 1.0 m is the displacement of the mass at equilibrium 
(i.e., the static displacement):

 y t y A e tnt( ) sin( )= + ⋅ +∞
−

0
ζω ω ψd  (9.5)

16
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151413
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FiGURE� 9.5� Time response of an underdamped spring–mass–dashpot system, showing the 
minimum and maximum displacement values. The plot consists of 200 data sets, and the peak values 
were interpolated parabolically over three points that bracket a local extrema. Configuration file 
F9_05.CF2.
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where the maximum amplitude is
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phase angle is
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damped circular frequency is

 ω ω ζd n= − =1 3 152380052 . rad/s  (9.8)

natural frequency is

 ωn k m= =/ . rad/s3 16227766  (9.9)

damping ratio is

 
ζ

ω
= =c

m n2
0 07905694.  (9.10)

and damped period of motion is

 
τ π

ω ζ
d . s=

−
=2

1
1 99315603

2
n

 (9.11)

Using the coordinates of the minimum and maximum points extracted to file from 
Figure 9.5, the damped period of motion τd can be calculated as the time interval between 
two successive maximum or minimum displacements. Better precision has been obtained 
when the time interval between the first and the last maximum recorded values was 
divided by the number of in-between complete oscillations (see spreadsheet file F9_05.
XLS available with the book). In this case, the damped period of motion was found to 
be 1.99314475  s, corresponding to a relative error of −0.0006%. When the first and the 
last minimum values were used instead, the damped period of motion was found to be 
1.99320023 s, translating into a relative error of 0.0022%. Averaging these two values yields 
τd = 1.99317249 s with a relative error of 0.0008%.

Regarding the amount of damping in the system, the common way to estimate it is to 
evaluate the logarithmic decrement using the time–response curve y(t). The logarithmic 
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decrement is defined as the natural logarithm of the ratio of two distinct peak displace-
ments (either minimum or maximum) noted p and q, measured from the equilibrium 
position:
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Alternatively, both the minimum and maximum values can be combined in calculating 
the logarithmic decrement, according to the following formula:
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where these minimum and maximum values are numbered successively using the same 
index.

The application of Equations 9.12 and 9.13 is limited by the knowledge of the static dis-
placement y∞ of the mass. If the equilibrium position of the mass is not exactly known, 
y∞ can be determined together with the product ζωn and amplitude A0 in a curve fitting 
process, as the minimum of an objective function of the type

 

Fobj

Max

1 0

0 0

( , , )

exp( ) , expmax max

ζω

ζω

n

k
n k k

A y
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+ ⋅ − ⋅ − − ⋅ (( )min min− ⋅ −( )ζωn k kt y  (9.14)

where tmink and tmaxk are the moments of time where the peak values ymaxk and ymink of 
the time–response curve occur. Program P9_06.PAS listed in Appendix B implements 
this approach to determine product ζωn, displacement at equilibrium y∞, and maximum 
amplitude A0.

For ymax and ymin extracted through parabolic interpolation from a time–response curve 
with 200 data points (Figure 9.5), the following numerical results were obtained: 
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0 0 50005500
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. m

ζ ω  (9.15)

These results have been output by program P9_06.PAS to data file F9_06.REZ, 
together with the value of the objective function at minimum, that is, 0.00002106.  This 
value is the maximum deviation in absolute value between the time–response curve and 
its exponentially decaying envelope shown overlapped in Figure 9.6—the envelope curve 
in this figure has been produced using data file F9_06.REZ.
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Knowing that the undamped natural circular frequency of the system is
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τ
ω ζd

d

= = −2
1 2

n  (9.16)

and for τd determined as explained earlier, the damping ratio of the system was found to be
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2 2 2
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d

d

0.0790654468.  (9.17)

This represents an error of only 0.0108% compared to the exactly calculated value 
0.07905694 in Equation 9.10.

9.4� nonlinEAR�cURvE�FiT�To�DATA
One problem frequently encountered in numerical data analysis that can be solved using 
optimization techniques is adjusting the coefficients of a function (in particular, a poly-
nomial), so that this chosen function best approximates a set of n data pairs (xi, yi). Such a 
problem was discussed in Section 9.3 where an exponential curve was fit to some experi-
mentally determined points. A similar example will be discussed next, where supplemen-
tary the effect of rounding off the computed coefficients is addressed right from within the 
optimization problem. The example that will be considered in this section refers to adjust-
ing the coefficients C1 through C5 of the function
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for which the sigmoidal stress–strain curve of the elastomeric material graphed in Figures 3.16 
and 3.17 is best approximated.

151413
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FiGURE�9.6� Combined plot of the spring–mass–dashpot system time response and peak envelopes 
obtained through minimization of the objective function (9.14). Configuration file F9_06.CF2.
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The corresponding minimax approximation problem requires solving the following 
objective function in five variables (Weisstein 2013):

 
Fobj Max2 1 5

1
( ) ( )C

i

n

i i� = −
=

σ ε σ  (9.19a)

where εi and σi are data pairs extracted from the plot in Figure 3.17. Other forms of the 
objective function (9.19) are possible, like the sum of squared deviations:
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or the sum of absolute values of the deviations:
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Of these three, an objective function like the one in Equation 9.19a can ensure that the 
departure between the given data points and the approximating curve will be evenly 
spread along σ(ε) (see Figure 9.7).

It is not unusual in curve fitting problems for the found coefficients (like C1…5 in 
Equation 9.18) to be rounded off their computed values without verifying the effect upon 
the accuracy of the approximation. This situation can be addressed from within the search 
algorithm, as it has been done in program P9_07.PAS listed in Appendix B. As shown, 
procedure nelderMead that implements the Nelder–Mead searching algorithm is called 
100 times, each time using a different initial guess (see the for loop between lines #59 
and  #79). After each iteration, the value of the objective function is evaluated, and if a 
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FiGURE� 9.7� Plot of the original data points (✳), analytical curve (solid line), and error bars. 
Configuration file: F9_07.CF2.
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smaller value has been found, then coefficients C1–C5 are rounded to their third decimal 
(see line #71 of the program). Objective function Fobj2 is evaluated one more time, and 
only if the improvement over the best optimum found that far is preserved after roundup, 
then the variables Xbest and vFbest are updated. Data pairs εi and σi of the elasto-
meric material are read from ASCII file F9_07.DTA, which is a copy of file F3_20.XY from 
Chapter 3, with the first two lines removed. Note that the number of input data points 
nPts in program P9_07.PAS is equivalent to parameter n in Equation 9.19. 

One of the best results returned by program P4_18.PAS is

Max Deviation = 0.049003131;
C1=0.8510;  C2=0.0200;  C3=-0.1620; C4=0.0470;  C5=0.0570;

These coefficients were used to plot the best-fit curve and the corresponding error bars in 
Figure 9.7. The almost equal in magnitude negative and positive deviations are a first 
indication that a good solution has been found.

9.5� PloTTinG�FUncTionS�oF�moRE�ThAn�Two�vARiAblES
So far we dealt with graphical representation of function of one and two variables using 
line, surface, or level-curve diagrams. Occasionally, there is an interest in visualizing single-
valued functions of more than two variables. Analytical functions of the form F(x1, x2, x3) 
can be explored graphically by maintaining constant one variable, for example, x3, while 
scanning the remaining two variables within some prescribed limits, for the purpose of 
generating the data file needed for plotting projected level-curve or 3D surface diagrams. 
If several such plots are generated for ordered values of x3, then these can be displayed suc-
cessively as computer animations, where time plays the role of variable x3.

Let us consider the following function called the generalized Rosenbrock’s function

 
R x x x x xn n
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n

i i i( ) ( ) ( )1

1

1

1
2 2 2100 1… = ⋅ − + − 

=

−

+∑  (9.20)

used in evaluating the performance of optimization algorithms. Its global minimum 
equals 0 and occurs for xi = 1. For n = 2, this function is known as Rosenbrock’s Banana 
function and its plot looks as shown in Figure 9.8.

To visualize the n = 3 version of Rosenbrock’s function as animation, program 
P9_09.PAS has been written and is listed in Appendix B. The program outputs ASCII 
file F9_09.T3D consisting of multiple columns of R3(x1, x2, x3) values produced for 
various x3’s, preceded by the grid sizes nx1 , nx2 and limits x1min, x1max, x2min, x2max. The 
animation frames generated for x3 equal to −2.0, −1.0, 0.0, 1.0, and 2.0, and x1min = 
x2min = −2.5 and x1max = x2max = 2.5 are available in Figure 9.9.

When the single-valued function of interest has more than three variables, the anima-
tion method described earlier can no longer be applied. Of the various dimension reduction 
techniques applicable to functions of the form F(x1, x2, …, xn), the partial minimax method 
(Simionescu and Beale 2004) will be illustrated and applied to visualizing Rn in Equation 
9.20. This is a method of projecting hyperfunctions from n dimensions down to 3D or 2D, 
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where two of the function variables, for example, x1 and x2, are scanned at constant step as in 
a regular 3D or level-curve plot (these are the scan variables), while the remaining ones are the 
search variables in the following global-minimization and global-maximization problems:
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and
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 (9.22)

F↓(x1, x2) and F↑(x1, x2) are called partial minima and partial maxima functions and are the 
lower and the upper envelopes of the hypersurface of the original function F(x1, x2,…, xn) 
when projecting it from n + 1 dimension space (x1, x2,…, xn, F) down to three dimensions, for 
example (x1, x2, F). Also of interest are the plots of the x3–xn values at these partial minima 
and partial maxima. These are called lower bound and upper bound paths and are noted 
x3↓, x4↓, …, xn↓ and x3↑, x4↑, …, xn↑, respectively.

Program P9_10.PAS listed in Appendix B implements the partial minimax method to plot 
the generalized Rosenbrock’s function with n = 5. The program outputs ASCII file F9_10.
T3D, with separate columns for F↓(x1, x2) and F↑(x1, x2) and for the corresponding x3↓, x4↓, x5↓ 
and x3↑, x4↑, x5↑ values. When represented graphically, these partial minima and partial maxima 
functions appear as shown in Figure 9.10. Note that the narrow valley exhibited by Rosenbrock’s 
function of two variables is also present in the 3D projection of its n = 5 generalization.
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FiGURE�9.8� Graph of Rosenbrock’s function with n = 2. See also program P9_08.PAS available 
with the book used to generate the D3D file for this plot. Configuration file F9_08.CF3.



more�Practical�Problems�and�Applications    ◾    331  

The first-order discontinuity in the graphs of the lower bound paths x3↓, x4↓, and x5↓ 
visible in Figure 9.10 is indicative that for n = 5, the generalized Rosenbrock’s function 
has more than one minima. This can be verified by visualizing the Euclidean norm of the 
gradient of R5
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FiGURE�9.9� Some of the frames in the animation file F9_09.GIF of the generalized Rosenbrock’s 
function with n = 3, where time is associated to variable x3 and it is listed on the top of each frame.
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FiGURE�9.10� Projection of Rosenbrock’s function with n = 5 variables to the 3D space and plot of the 
lower bound and upper bound paths. Configuration files F9_10_1.CF3 to F9_10_8.CF3.
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using the same partial minimax method, where
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Using a new program named P9_11.PAS available with the book, data files 
F9_11_12.D3D to F9_11_45.D3D have been generated and served to produce the 
graphs in Figure 9.11a and b. Based on these graphs, it can be inferred that for n = 5, the 
generalized Rosenbrock’s function has one global minimum at (1, 1, 1, 1, 1) and one local 
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FiGURE�9.11� (a) Magnitude of the gradient of the generalized Rosenbrock’s function with n = 5 
variables projected down to 3D for scan variables (x1, x2), (x1, x3), (x1, x4), and (x1, x5). Configuration 
files F9_11A12.CF3 to F9_11A15.CF3. (Continued)
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FiGURE�9.11�(Continued)� (b) Magnitude of the gradient of the generalized Rosenbrock’s function 
with n = 5 variables projected down to 3D for scan variables (x2, x3), (x2, x4), (x2, x5), (x3, x4), (x3, x5), 
and (x4, x5). Configuration files F9_11B23.CF3 to F9_11B35.CF3.
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minimum at (−1, 1, 1, 1, 1). Narrowing the range of the scan variables to [−1…1] indeed 
confirms that for n = 5, the function in Equation 9.20 has one global minimum and one 
local minimum (see Figure 9.12). The data files F9_12A.D3D and F9_12B.D3D used to 
produce these (Figure 9.12) were generated by program P9_12.PAS also available with 
the book.

Note that if different combinations of the scan variables and search variables are chosen, 
then the appearance of the partial minimax graphs and of the respective lower bound and 
upper bound paths will change. Also note that modifying the limits of both the scan vari-
ables and search variables will affect the appearance of these graphs.

Undoubtedly it is very time-consuming to perform the repeated minimizations and 
maximizations required to project hypersurfaces down to the 3D space as explained earlier. 
Fortuitously, the location of the partial minima and partial maxima values do not change 
significantly when moving to the next pair of scan variables, particularly when the scan-
variable grid is tight. With this in mind, the previously found solution can be used as initial 
guess for the next search, as it was actually done in programs P9_09.PAS, P9_10.PAS, 
P9_11.PAS, and P9_12.PAS.

Depending on the optimization algorithm employed, finding the actual partial global 
minima is not guaranteed. The partial minimax projection method is however inherently 
suited to parallel processing. This, together with the fact that increasingly powerful heuris-
tic searching algorithms are constantly being developed, will facilitate the practical imple-
mentation of the dimension reduction method described.

Finally, if the graphs produced exhibit a noisy appearance or have unexpected discon-
tinuities, then these are signs that the search algorithm employed converged prematurely 
and must be readjusted or a different algorithm should be employed. This suggests that 
the ranking of different optimization algorithms for speed and robustness can be done by 
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FiGURE�9.12� Details of the magnitude of the gradient of the generalized Rosenbrock’s function 
with n = 5 variables around minima, projected down to 3D. Configuration files F9_12A.CF3 and 
F9_12B.CF3.
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employing them in generating partial minimax projections of carefully selected hypersur-
faces, and then compare the appearance of the graphs obtained and the time required to 
generate these graphs for the given scan-variable grid sizes.

9.6� RAnDom�nUmbER�GEnERATion�AnD�hiSToGRAm�PloTS
Random number generators have numerous applications in computer games, cryptography, 
search algorithms, various numerical simulations, etc. Most programming languages include 
functions capable of providing a random number that is uniformly distributed between cer-
tain limits. In the case of Turbo Pascal, the system function Random(range) returns with 
each call a uniform random value between 0 and range. When called without the argu-
ment, range is assumed to be equal to 1. The sequence produced by calling the Random 
function will always be the same, however, unless the internal number generator is initialized 
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FiGURE�9.13� Frequency histograms with 75 bins of 10,000 (a) and 100,000 (b) uniformly distrib-
uted data points read by D_2D from files produced with program P9_13.PAS. Configuration files 
F9_13A.CF3 and F9_13B.CF3.
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by calling the Randomize function first. This uses a seed value obtained from the system 
clock to assist the function Random to produce numbers that is close to being true random.

Program P9_13.PAS (see Appendix B) uses the Random function to generate data 
files F9_13A.DAT with 10,000 values and F9_13B.DAT with 100,000 values that are uni-
formly distributed within the interval [−10…10]. These files in turn were used to produce 
the frequency histograms in Figure 9.13 using the D_2D program. For the same number 
of bins (i.e., 75), the top land of the graph generated using a larger number of samples has 
a visibly smoother appearance. 

A second computer program named P9_14.PAS (see listing in Appendix B) served to 
generate the data files used to produce the frequency histograms in Figure 9.14. This pro-
gram implements the method of Box and Muller to generate pairs of Gaussian (normally) 
distributed pseudorandom numbers, starting from a source of uniformly distributed val-
ues produced by calling the Turbo Pascal Random function.

The closeness of the randomly generated values by P9_14.PAS to a true normal dis-
tribution is illustrated by the plots in Figure 9.15. It shows overlapped a relative frequency 
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FiGURE�9.14� Frequency histograms with 75 bins of 10,000 (a) and 100,000 (b) Gaussian distrib-
uted data points, generated using program P9_14.PAS. Configuration files F9_14A.CF3 and 
F9_14B.CF3.
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histogram with 100 bins of the same two data files used to generate Figure 9.14 and a plot 
of the normal probability density function:

 
p x e x( ) . /= − −( )1

2

0 5
2 2

σ π
µ σ  (9.25)

with μ = 0 and σ = 1. A relative frequency histogram is one where the number of occur-
rences in each bin is divided by the total number of data points, which makes its appear-
ance less sensitive to the number of the input values. You can experiment with different 
number of bins by editing the configuration file F9_15B.CF3 and with different input 
data file sizes by rerunning program P9_14.PAS with constant n set to different values.

9.7� DwEll�mEchAniSm�AnAlySiS
Dwell mechanisms have the property that for a constant rotary input, their output link 
remains (quasi) stationary for a portion of the motion cycle. Such a property is required 
by some manufacturing, textile, and packaging equipment applications. Cam and follower 
mechanisms, Geneva wheels, gear linkages, and linkage mechanisms (like the Stephenson III 
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FiGURE�9.15� Relative frequency histograms with 100 bins of 10,000 (a) and 100,000 (b) data points 
(same data as in Figure 9.14), overlapped with a Gaussian probability density function p(x). Data file 
to plot p(x) has been generated by program P9_15.PAS. Configuration files F9_15A.CF3 and 
F9_15B.CF3.
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linkage that will be discussed in this paragraph) are typical dwell motion generators used in 
practice. Of these, linkage mechanisms have better dynamic properties, but are more difficult 
to synthesize and usually result larger in size. If they employ pin joints only (which can be 
sealed and greased for life), dwell linkage mechanisms may benefit from increased reliability.

Program P9_16.PAS listed in Appendix B simulates the motion of a Stephenson III 
linkage, which comprises a four-bar path generator of input link OA, amplified with an 
RRR dyad (see Figure 9.16). The link lengths of the four-bar OABC are selected such that a 
portion of the coupler curve of point D is close in shape to an arch of a circle. In turn, the 
DEF dyad is sized such that link length DE equals the radius of the almost circular portion 
of the coupler curve, while joint E is located at its center of curvature. In addition to the 
DXF frame file P9_16.DXF, program P9_16.PAS writes to ASCII file F9_16.DTA angle 
θ1 of input link OA, and angle θ6 of the output link EF (see Figure 9.16), together with the 
angular velocity dθ1/dθ6 of the same link EF.

During the first cycling of the repeat–until loop (lines #35 to #68), the program gener-
ates the output file F9_16.DTA and updates the workspace limits, but without animating 
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FiGURE�9.16� Simulation of Stephenson III dwell mechanism done with program P9_16.PAS (a) 
and the input–output displacement diagram of the mechanism (b). See also animation file F9_16.
GIF and configuration file P9_16.CF2.
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the mechanism. These limits are then used when calling procedure OpenMecGraph on 
lines #40. During the second cycling of the repeat–until loop, when the number of posi-
tions is reduced from nPozDTA to nPozDXF, the animation frames are written to file 
F9_16.DXF. After that, the simulation repeats itself with no file output. 

Using the same data file F9_16.DTA as input, the plot in Figure 9.17 has been gener-
ated. Next, the minimum and maximum θ6 values on this graph are exported by D_2D to 
file. Using these values, the range of the output link displacement was calculated as

 ∆θ6 263 30 211 19 52 115= . . = .°− ° °  (9.26)

Since link EF does not remain exactly immobile, the duration of the dwell is evaluated based 
on some accepted deviation from the limit position of the output link. One approach is to 
assume that link EF is still dwelling when departed from its limit positions only a small fraction 
r of its entire motion range Δθ6. Assuming this amount to be r = 0.02, the dwell range of the 
mechanism in Figure 9.16 has been determined to be Δθ1=120.6°. This has been done by editing 
the displacement curve in Figure 9.16 using AutoCAD software as shown in Figure 9.17.

The second method of measuring the duration of the dwell is to assume that it lasts as 
long as the velocity of the output link remains less than a chosen amount. When both the 
input and output links perform a rotary motion, this deviation can be defined as a percent-
age of the input link angular velocity. For dθ6/dθ1 = 0.05 corresponding to the output link 
velocity dθ6/dt being 5% of the input link velocity dθ1/dt, the duration of the dwell was 
found to be Δθ1=108.04°. Again, AutoCAD software has been used to graphically solve the 
intersection between the deviation boundaries shown in dashed lines and the output veloc-
ity curve as shown in Figure 9.17. Note that in order to simplify the analysis, in program 
F9_16.DTA, the input link velocity dθ1/dt has been set equal to unity (see line #45).
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FiGURE�9.17� Output displacement and velocity diagrams of the dwell mechanism in Figure 9.16, 
edited using AutoCAD to extract the dwell range. Configuration file F9_17.CF2.
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9.8� TimE�RATio�EvAlUATion�oF�A�qUick-RETURn�mEchAniSm
The quick-return mechanism in Figure 9.18 is a classical example of RTR dyad use. It is 
named quick return because slider D moves slower in one direction than it does in reverse, 
as shown on the input–output diagram in Figure 9.18b. Such a mechanism is used in shaper 
machine tools, where the faster inactive stroke allows for an increased productivity, as 
compared, for example, to the slider–crank mechanism.

For a constant rotational input, the time ration TR of a quick-return mechanism like 
the one in Figure 9.18a with input crank length OA and ground-joint center distance OB 
is (Cleghorn 2005)

 
TR

OA OB
= − = − =π π

arccos( ) arccos( . . )
.

/ /
1

0 1 0 25
1 1 7099  (9.27)

Therefore, the time ratio can be interpreted as the duration of the fast stroke divided by the 
duration of the slow stroke.

Alternatively, the time ratio can be calculated using the coordinates of the minimum 
and maximum points available on the kinematic diagram in Figure 9.18b:

 
TR = − − °

°− °
=360 336 4 203 5

336 4 203 5
1 7088

° °( . . )

. .
.  (9.28)

Note that this latter method can be applied to any mechanism with constant rotational 
input for which kinematic diagrams like the one in Figure 9.18b are available.
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FiGURE�9.18� Quick-return mechanism (a) and its output slider displacement diagram (b). See also 
animation file F9_18.GIF and the D_2D configuration file F9_18B.CF2.
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9.9� �ExAmPlES�oF�iTERATivE�USE�oF ThE PRocEDURES�
in�UniT�LibAssur

Programs P9_19.PAS to P9_22.PAS listed in Appendix B illustrate how the procedures 
in unit LibAssur can be called repetitively. Of these, programs P9_19.PAS and P9_20.
PAS simulate the motion of radial piston engines, and programs P9_21.PAS and P9_22.
PAS simulate the motion of a mechanical iris. All four programs were written such that 
any number of equally spaced cylinders or iris vanes can be specified, including one cylin-
der or one vane only.

Figure 9.19 illustrate the cases of one, three, seven, and nine cylinder engines with sta-
tionary cylinder blocks, while Figure 9.20 show the corresponding engines with rotational 
cylinder blocks of the Gnome type (also known as rotary engines—see also animation 
files F9_19.GIF and F9_20.GIF). In both programs, when the number of cylinders is 
set equal to three or less, the piston axis and the pin joints (other than the piston pin) are 
labeled as shown in the Figures 9.19 and 9.20.

Further examples of iterative use of procedure RRT_ are the iris mechanisms in Figures 
9.21 and 9.22. Of the different designs used in practice, the mechanism considered here 
consists of an array of half-ring-shaped vanes that are fitted with pin joints at one end, 
noted P, while their other end, noted Q, can slide along equally spaced radial directions 
OA. The ends Q of these vanes are designed as pin-in-slot joints, with OA being the slots. 
The iris can operate either with its pin joints P stationary and slots OA rotating together 
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FiGURE� 9.19� Single-piston and radial engines with three, seven, and nine cylinders simulated 
with program P9_19.PAS. See also animation file F9_19.GIF.
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(Figure 9.21) or as inversions, that is, the slots maintain their direction stationary and pins 
P rotate about the center of the iris O (Figure 9.22).

Same as before, if the number of vanes in these two simulation programs is set equal 
to three or less, the underlying mechanisms are displayed, and their sliding axes OA and 
joints P and Q are labeled (see Figures 9.21 and 9.22). Otherwise, procedures gCrank and 
RRT_ are called with their color parameter set equal to 0 or the BGI constant Black, so 
that vanes only are displayed.

Note in these four programs the extensive use of procedures gCrank, RRT_ and of 
the generic variable _ preassigned to 10100 and defined in the interface section of unit 
LibMath.

Regarding the actual vanes in these last two simulation programs, they are polylines, 
the vertices of which are read by procedure Shape from the same file named VAnE.XY. 
This ASCII file has been generated as follows: One vane only was drawn in AutoCAD 
with point P at origin and point Q of coordinates (9, 0) (see file Vane.DWG available with 
the book). This drawing was then plotted to file Vane.PLT and opened with program 
Util~PLT. The x and y limits inside Util~PLT were then edited such that the vane has 
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FiGURE�9.20� Rotary engines of the Gnome type with one, three, seven, and nine cylinders simu-
lated with programs P9_20.PAS. See also animation file F9_20.GIF.
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FiGURE� 9.21� Iris mechanisms simulated with program P9_21.PAS. See also animation file 
F9_21.GIF.
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FiGURE� 9.22� Iris mechanisms simulated with program P9_22.PAS. See also animation file 
F9_22.GIF.
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the same size and origin as in the original DWG file (i.e., xmin = −0.5, xmax = 9.5, ymin = −0.5, 
and ymax = 5). Only then the file was exported to files PLT-0001.XY and PLT-0001.
DXF. Because the PLT-0001.XY file has too many vertices, and because these vertices 
may result out of sequences, in the iris mechanism simulation programs a lower-resolution 
file has been utilized instead. To generate such a low resolution ASCII file named VAnE.
XY, file PLT-0001.DXF was opened using Util~DXF.EXE and its polylines extracted to 
file POLY0001.XY file. Prior to extracting the vertices of the polyline in PLT-0001.DXF 
to file, the DXF colinearity parameter was increased from its default value, and thus the 
number of vertices from PLT-0001.DXF was further reduced. In the end, the ASCII file 
POLY0001.XY thus obtained was renamed VAnE.XY.

9.10� �SimUlATion�oF�A�FoUR-bAR�linkAGE AnD oF iTS FixED�
AnD�movinG�cEnTRoDES

In this section, it is shown how procedure Shape from unit LibMec2D can be used to ani-
mate shapes that change their configuration during animation. The case of the fixed cen-
trode and moving centrode of a drag-link four-bar linkage will be considered as example. 
The fixed centrode will be animated using the CometLocus procedure, while the moving 
centrode (which moves together with the coupler) will be modeled as a shape that gains 
(x, y) points as the animation progresses. Therefore, the animations done inside AutoCAD 
using the M_3D.LSP application will be very similar to the one displayed on the computer 
screen and recorded as PCX frames (Figure 9.23).

Program P9_23.PAS listed in Appendix B animates a drag-link four-bar linkage, 
having crank OA as input, and with AB the coupler, and BC the second link jointed to 
the ground. The coordinates xIC and yIC of the instant center of rotation (IC in short) 
of the coupler relative to the ground are calculated as the intersection of lines OA 
and BC. This  is done on line #47 of the program by calling procedure Int2Lns from 

4-bar right—fixed and moving centrodes4-bar left—fixed and moving centrodes

FiGURE�9.23� Drag-link four-bar linkage in its left-hand and right-hand configurations with the 
fixed centrodes and moving centrodes of the coupler shown, produced using P9_23.PAS. See also 
animation files F9_23.GIF, F9_23L_PCX.GIF, and F9_23R_PCX.GIF.
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unit LibGe2D. Together, these points of coordinates (xIC,yIC) form the fixed centrode 
of the coupler, plotted by calling procedure CometLocus on line #56. The coordinates 
of the instant center recorded relative to coupler AB will form the moving centrode. These 
coordinates noted xICm and yICm are calculated on line #49 by calling procedure RT2D. 
Point (xIC,yIC) is first translated to A and then rotated by the angle formed by coupler 
AB with the ground. As they are calculated during the first simulation cycle, coordinates 
xICm and yICm are written to files ICF.XY. This file is then used as input to procedure 
Shape called on line #55.

Also note in program P9_23.PAS the use of procedure SetTitle (lines #32 and #39) 
to display the title of the simulation and of procedure InitGr with zero argument (line 
#28) to display the animation on white background. As you noticed from previous chap-
ters, by default, the animation is done on black background.

Two types of animations are possible using the files output by program P9_23.PAS. 
One is using the M_3D.LSP application with F9_23L.DXF or F9_23R.DXF as input, 
which resulted in animation file F9_23.GIF. The other possibility is to use the screen-
shots exported to PCX by the program (see line #58) that were used to produce animation 
files F9_23L_PCX.PCX and F9_23R_PCX.PCX. Note that not all simulation frames are 
exported to PCX or DXF layers, but rather every fifth screen. The vertices of the fixed and 
moving centrodes however are updated every frame so that they will have a smooth appear-
ance in the respective animations.

9.11� �PlAnETARy�GEAR�kinEmATic�SimUlATion USinG�
WorkIng MoDeL 2D

As compared with fixed-axis transmissions, planetary gear trains have gears (called plan-
ets), the axes of which move on a circular path while meshing with at least two central gears 
called sun gears or central gears. The simplest of these transmissions have two DOFs and 
are known as basic planetary gear trains. There are 12 known such two DOF basic plan-
etary gear trains (Lévai 1968), with those shown in Figures 9.24 and 9.25 being the most 
commonly used.

Figures 9.24 and 9.25 are screenshots of two Working Model 2D (WM 2D) simula-
tions created to illustrate the correlation that exists between the rotational velocities of the 
central gears, planet gears, and planet carrier of the respective basic planetary gear trains. 
Because these gear trains have two DOFs, the rotational speed of any of their two bodies 
must be specified—usually the motion of the central gears or of one central gear and of the 
planet carrier. If the speeds of the other two bodies are not correctly calculated, then the 
gears will interfere with each other during simulation.

According to the motion-inversion method due to Willis (Wilson and Sadler 2003), for 
the planetary unit in Figure 9.24, the following relations hold between the angular veloci-
ties ω of the carrier, sun, planet, and ring gears and the number of teeth N:
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Likewise, for the planetary unit in Figure 9.25, the following relations hold:
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Note that Equations 9.29 and 9.30 are only two-by-two independent.

Ring gear (N = 41)
Sun (N = 15)

Planet  (N = 13)

Ring gear RPM
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Carrier RPM

Planet RPM

88.29

20.00

70.00
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FiGURE�9.24� WM 2D simulation of a basic planetary gear train consisting of one sun gear with 
15 teeth, one ring gear with 41 teeth, planet carrier, and a simple planet gear with 13 teeth. See 
simulation file PlanetGear1.WM2 and movie file F9_24.MP4.
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For the number of teeth of the gear wheels in these simulations as labeled over the 
respective WM 2D bodies visible in Figures 9.24 and 9.25, there is an infinite number of 
rotational speeds of the respective gears and planet carrier that satisfies these equations. 
These combinations can include assigning zero rotations per minute (RPM) to one of the 
central gear or to the planet carrier. Note that if Equations 9.28 and 9.29 are not satisfied, 
then the respective gears will interfere and overlap as they rotate.

The involute-gear generation application GearGen0.WM2 introduced in Chapter 8 is 
actually an extension of the PlanetGear1.WM2 simulation considered here. To illustrate 
the concept, the visibility of the carrier, sun gear, and ring gear have been turned off, while 
the track outline of the planet has been turned on and the modified simulation file saved 
under the name PlanetGear1x.WM2.

To generate an external gear with 15 teeth (i.e., the sun gear—see Figure 9.26a), the rota-
tional velocities of the carrier and of the planet must be selected in PlanetGear1x.WM2 
such that the following equality holds:
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Ring gear (N = 39)
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FiGURE�9.25� WM 2D simulation of a basic planetary gear train consisting of one sun gear with 
13 teeth, one ring gear with 39 teeth, and planet carrier and a compound planet with 15 and 11 
teeth, respectively. Simulation file PlanetGear2.WM2 and movie file F9_25.MP4.
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To generate an internal gear with 41 teeth, that is, the ring gear (see Figure 9.26b), the 
rotational velocities of the carrier and of the planet must satisfy equalities (9.32) instead:
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What is missing from PlanetGear1x.WM2, but are implemented in the WM 2D simu-
lation GearGen0.WM2 discussed earlier, is the possibility of adjusting the length of the 
carrier such that the generation of involute gears (both internal and external) with any 
number of teeth can be simulated.

9.12� imPliciT�FUncTion�PloT
A function defined by an equation that cannot be solved for its variables analytically is 
called implicit. The following are two such examples:

 y x xy3 3 10 1 0− − + =  (9.33)

 xy x y⋅ + − =cos( )2 2 1 0  (9.34)
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FiGURE�9.26� Modification of PlanetGear1.WM2 simulation demonstrating how external gears 
(a) and internal gears (b) can be generated using a wheel tool. See also simulation PlanetGear1x.
WM2 and animation files F9_26A.MP4 and F9_26B.MP4 available with the book.
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further referred to generically as f(x, y) = 0. One way of representing implicit func-
tions  graphically is to first find all roots y of the equation f(x, y) = 0 using procedure 
ZeroGrid discussed in Chapter 4, for a number nx of discrete values xi within the inter-
val [xmin…xmax]. Comparable results are obtained if, the equation f(x, y) = 0 is solved for 
variable x,  assuming a number of ny discrete values yj within the interval [ymin…ymax]. 
The sets (xi, y) or (x, yj) thus obtained can then be plotted as point clouds using the D_2D 
program. For increased accuracy, both sets (xi, y) and (x, yj) can be generated and plotted 
together on the same graph.

Program P9_27.PAS listed in Appendix B implements this latter strategy and was used 
to produce data files F9_27A.D2D and F9_27B.D2D that served to plot the graphs in 
Figure 9.27. On lines #23 and #24 of the program, grid sizes nX and nY are defined, together 
with the plot intervals over the respective axes. Depending on the name assigned to the 
output program (line #8), either the function in Equation 9.33 or 9.34 is transmitted to the 
ZeroGrid procedure (see lines #11 to #17). The drawbacks of this implicit-function graph-
ing method is that the plot points are not assembled into polylines and that some points can 
occur twice, that is, both as a (xi, y) pair and as a (x, yj) pair. If only the x variable is scanned at 
a constant step, the graph may exhibit discontinuities in areas where the tangent to the curve 
is aligned with x = xi line. Same may occur if only the y variable is scanned at constant step, 
not both variables like in program P9_27.PAS. Also note that the number of multiple roots 
of equation f(xi, y) = 0 or f(x, yi) = 0 may exceed the value of the constant nmax defined in the 
interface section of unit LibMath, the case in which the plot will appear truncated. 

A different, more efficient method to implicit function plotting is to graph the func-
tion z = f(x, y) as top-view level curves with only one level-curve place at z = 0 (see 
Figure 9.28). Data files F9_28A.D3D and F9_28B.D3D used to generate these two 
graphs have been output by program P9_28.PAS listed in Appendix B. Same as before 
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FiGURE�9.27� Graphs of the implicit functions in Equation 9.33 (a) and Equation 9.34 (b) produced 
with D_2D (configuration files F9_27A.CF2 and F9_27B.CF2). Data files to produce these plots 
were generated using program P9_27.PAS.
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the name assigned to the output program (line #7) controls which function is used to 
generate the D3D data file (see lines #12 and #15).

In terms of the actual D_3D program use, there are two ways of producing single-level-
curve plots of zero elevation: One possibility is to edit the CF3 file of the respective plot 
such that only the value 0.00 is appended to it, and then choose to read the level-curve 
heights from file. The other possibility is to select evenly spaced level curves, then set their 
number to one. When only one level curve is specified, D_3D will calculate its elevation 
as the average of the limits over the z-axis. Therefore, with this second approach, the lim-
its over the z-axis must be edited such that they are equal in magnitude but of opposite 
sign. These two methods have been implemented in configuration files F9_28A.CF3 and 
F9_28B.CF3 used to generate the plots in Figure 9.28. Note that in case of the plot in 
Figure 9.28a, because of the relatively low resolution at which the function has been sam-
pled, the graph exhibits bridge-like defects and also lacks smoothness at several different 
places. Increasing the nX and nY values will reduce or eliminate such artifacts. The fact 
that the plot consists of continuous lines rather than individual points is a net advantage of 
this second implicit function plotting method.

9.13� �invERSE�AnD�DiREcT�kinEmATicS oF 5R�AnD�2R�
ASSEmbly�RoboTS

This section deals with the inverse and direct kinematics of 5R parallel and 2R serial 
SCARA robots, like the RP and RH families of micro-assembly robots from Mitsubishi 
Electric (Figure 9.29).

First, a method of designing the robot endeffector path will be presented. The actual 
inverse and direct kinematics problems will then be solved using the RRR, gCrank, and 
Crank procedures from units LibAssur and LibMec2D. Note that only the J1 and J2 
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FiGURE�9.28� Plot of the implicit functions in Equation 9.33 (a) and Equation 9.34 (b) produced 
with D_3D (configuration files F9_28A.CF3 and F9_28B.CF3). Data files were generated using 
program P9_28.PAS.
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axes motions shown in Figure 9.29 will be considered, which allow the kinematics prob-
lems to be solved in two dimensions. With additional programming effort, however, the 
remainder degrees of freedom can be accounted for, and accurate 3D models of these 
robots can be simulated using AutoCAD and the M_3D.LSP application.

The path to be traced by the endeffector was assumed identical to the shape of the vanes 
of the iris mechanisms in Section 9.9. Similarly, we begin with a plot file, that is, VAnE0.
PLT of the original drawing VAnE0.DWG, and open this file using UTIL~PLT.EXE. 
VAnE0.PLT, with its four semicircles converted to polylines, was exported to DXF (file 
name VAnE1.DXF). In order to bring the file VAnE1.DXF back to the origin and propor-
tions of VAnE0.DWG, prior to DXF export, the limits inside UTIL~PLT were edited such 
that xmin = −0.5, xmax = 9.5, ymin = −0.5, and ymax = 5.0. The file VAnE1.DXF was then opened 
inside AutoCAD (see file Vane2.DWG), and its constituent polylines were connected into 
a single polyline. After that, the drawing was exported back to R12 DXF under the name 
VAnE2.DXF. This new DXF file was then opened using UTIL~DXF.EXE, and the vertices 
of its only polyline exported to ASCII—the ASCII file name has been changed from its 
default value to VAnE2.XY. Using UTIL~TXT.EXE, file VAnE2.XY was further edited as 
follows (see configuration file VAnE.COn): First, linearly interpolated points were added 
such that the distance between vertices is decreased to about 0.03 units. This resulted in 
the intermediate file DELETE.ME. Every fourth data point of this intermediate file was 
extracted to file RoboPath.XY, a plot of which is available in Figure 9.30. In addition, 
every 14th data point from DELETE.ME was written to a second file named VERTEX.XY, 
which can be used interchangeably by the Shape procedure inside programs P9_21.PAS 
and P9_22.PAS, discussed earlier.
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FiGURE�9.29� SCARA robots of the 5R (a) and 2R (b) type. Courtesy of Mitsubishi Electric.
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The ASCII file RoboPath.XY thus obtained served as input to the inverse kinematic analy-
sis program P9_31.PAS and to the program P9_34.PAS discussed in Appendix B. The pro-
gram drives pin joint C shared by two RRR dyads (i.e., A1B1C and A2B2C in Figure 9.30) through 
the points read from file RoboPath.XY. Using the assumed velocity vC of the endeffector 
defined on line #28, the program calculates the time required for joint C to travel between every 
two successive path points (line #52), and then writes these accumulated time values, starting 
with t = 0, to file F9_31.DaTA (line #72). Also, the outputs to the file F9_31.DTA are the 
joint angles θA1 , θA2 , θB1 , and θB2 , defined as shown in Figure 9.31b, which were then used to 
plot the graphs in Figure 9.31b. In addition, the program writes to DXF every fourth frame of 
the simulation (see line #48). This output R12 DXF file, named F9_31.DXF, was then used 
to generate the animated GIF file F9_31.GIF, also shown Figure 9.31a.

The joint angle values recorded to file F9_31.DTA served as input to programs P9_32.
PAS and P9_33.PAS listed in Appendix B. The first of these programs performs a direct 
kinematic analysis of the 5R parallel robot (Figure 9.32), while the second program per-
forms the same type of simulation of the 2R serial robot (Figure 9.33).

Program P9_32.PAS reads from file F9_31.DTA link lengths A1B1 = A2B2 = AB and 
B1C = B2C = BC, and ground joint coordinates ( , )x yA A1 1  and ( , )x yA A2 2 —see lines #27 and 
#28 of the program and Figure 9.32. During the simulation cycle, it then reads angle values 
θA1 and θA2 (line #35) and uses them as input to cranks A1B1 and A2B2. The 5R robot mecha-
nism is completed using the RRR dyad B1CB2 on lines #44, #45, and the locus of its middle 
joint is recorded on the screed and to the DXF output file (line #56).

Program P9_33.PAS performs a direct kinematic analysis of a 2R robot. Depending on 
the value of parameter LftRgt set on line #15, during the simulation cycle the program uses 
either angles θA1 and θB1 with the ground-joint centered at ( , ),x yA A1 1  or angles θA2 and θB2 and 
ground joint at ( , ).x yA A2 2  These values, read from file F9_31.DTA (see  lines #39 to #46), 
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FiGURE�9.30� Plot of the prescribed endeffector path read from file RoboPath.XY. Configuration 
file F9_30.CF2.
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correspond to the left-hand and right-hand orientation of the robot, respectively (Figure 9.33). 
The two angles chosen are then used to drive cranks AB and BC, as shown in Figure 9.33. Same 
as in program P9_32.PAS, also read from file F9_31.DTA are the crank lengths AB and BC 
of the robot (see lines #30 and #31).

Note that in both these direct kinematic analysis programs, by setting the Sticks con-
stant to zero on line #15, the Link procedures are called with the width parameter set to 
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FiGURE�9.32� Direct kinematic analysis of a 5R robot modeled as two cranks, that is, A1B1 and 
A2B2, amplified with an RRR dyad, that is, B1-C-B2. Both a simplified representation of the robot (a) 
and a more realistic representation using the Link and Base procedures (b) are shown. See also 
animated GIF files F9_32a.GIF and F9_32b.GIF.
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FiGURE�9.31� (a) Inverse kinematic analysis of a 5R robot done using two RRR dyads running in 
parallel, and (b) plot of the joint angle values recorded by the P9_31.PAS program. See also 
animation file F9_31.GIF and D_2D configuration file F9_31.CF2.
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zero, which will cause the links to be represented as lines, rather than filleted rectangles. 
Also note that the two input angles are visualized only in the Sticks = 0 mode.

If only the 2R serial robot kinematics is of concern, program P9_31.PAS can be modi-
fied such that only one RRR dyad is driven through the endeffector path points. The direct 
kinematic analysis program P9_33.PAS must also be modified, such that at each iteration 
step, only a pair of angle is read from the input data file.

9.14� �invERSE�AnD�DiREcT�kinEmATicS�oF�ThE�RTRTR�
GEARED�PARAllEl�mAniPUlAToR

The discussion on the kinematics of SCARA robots is continued in this section, where the 
case of the RTRTR kinematic chain configured as shown in Figure 9.34a will be consid-
ered. This rack-and-pinion actuated planar parallel manipulator appears to be of a new 
configuration, not yet described in literature.

Two computer programs will be introduced in Appendix B, that is, P9_34.PAS and 
P9_35.PAS. The first program is an inverse kinematic analysis program similar to P9_31.
PAS. It reads the x and y coordinates of the path in Figure 9.30 (see lines #13 and #54), which 
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FiGURE�9.33� Direct kinematics of 2R robots modeled as two cranks (AB and BC) in series, in 
the left hand (a) and right hand (b) configurations. Both simplified and more realistic representa-
tions (i.e., using the Link procedure) are shown. See also animated GIF files F9_33a.GIF and 
F9_33b.GIF.
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are then used to calculate, using the Pythagoras theorem, linear motor displacements s1 and 
s2 (lines #55 and #56). Using the imposed vC endeffector velocity defined on line #16, the 
program calculates, beginning with the second position point, the time increase dt and the 
corresponding linear actuator velocities ds1/dt and ds2/dt (see lines #58 to #61). Lines #63 to 
#75 of the program serve to animate an RTRTR kinematic chain using the calculated linear 
motor displacements s1, s2, and provide some visual feedback to the user, including the display 
of the locus of point C and its constant velocity vector (see Figure 9.34b). These lines can be 
eliminated, however, the output to data file F9_34.DTA of parameters s1, s2, ds1/dt and ds2/dt 
being essential, together with the time value done (line #78). A plot of these linear motor input 
parameters is available in Figure 9.34c.

The companion program P9_35.PAS reads from the file F9_34.DTA (produced with 
P9_34.PAS) the RTRTR linear actuator displacements s1, s2 and velocities ds1/dt and ds2/
dt, as well as the corresponding time t (see lines #15 and #55). Also read from this data file 
are the ground joint coordinates (xA, yA), (xB, yB) and linear actuator eccentricities A0A and 
B0B (see line #40). Required in the analysis is the pitch radius rp of the two input pinions 
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FiGURE� 9.34� Geared RTRTR parallel manipulator (a), animation frame output by program 
P9_34.PAS (b), and plot of the linear motor displacements s1, s2 and velocities ds1/dt, ds2/dt 
required for constant endeffector speed vC = 1 (c). See also animation file F9_34b.GIF and D_2D 
configuration file F9_34C.CF2.
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(see Figure 9.34a and line #28 of the program). The program calls procedure RTRTR for 
every position read from the input DTA file, and using the linear motor displacements and 
position angles returned by the procedure (see variable Phi1 and Phi2), it calculates the 
required input pinion angles using the following equations:
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FiGURE�9.35� Geared RTRTR parallel manipulator animation frames generated by the program 
P9_34.PAS (a), and plot of the required pinion angular displacements θ1, θ2 and angular velocities 
θ1/dt and θ2/dt required for a constant endeffector speed vC = 1 (b). See also animation file F9_35a.
GIF and D_2D configuration file F9_35B.CF2.
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where the corresponding variables to angles θ1 and θ2 are Thta1 and Thta2. Although 
in program P9_35.PAS they are both equal to zero (see lines #56 and #61), depending on 
the orientation of the pinion when the shape file RTRTR0.XY has been generated, nonzero 
constant angles φ10 and φ20 might be required in Equation 9.34, in order to properly align 
the pinions with their rakes. Using finite differences, the time derivatives of the pinion 
angles (variable names dThta1 and dThta2) are also calculated and are written to the 
output file F9_35.DTA. This data file is then used to generate the plot of the input pinions 
angular displacement and angular velocity in Figure 9.35b.

In addition to numerical calculations, the program animates the mechanism using 
polygonal shapes read from the following ASCII files: RTRTR0.XY (pinion), RTRTR1.
XY (left rack), RTRTR2.XY (right rack), and RTRTR3.XY (pinion bracket). Similar to 
the way the endeffector path file RoboPath.XY was generated, these shapes were first 
drawn inside AutoCAD, then they were printed to PLT to convert arches of circles to 
polylines. Next, using the Util~PLT program, these PLT files were converted to DXF and 
were opened with AutoCAD. From there they were exported to R12  DXF, and, finally, 
using the Util~DXF program, the XY shape files were generated (see the files of the form 
RTRTR*.* available with the book).

9.15� �kinEmATic�AnAlySiS�oF�A�hyDRAUlic ExcAvAToR AnD�
oF�A�RoPE�ShovEl

The subject of this section is the kinematic simulation of the digging mechanisms of a 
hydraulic excavator and of a rope shovel. The yaw motion associated with dumping the 
load will not be considered, which allows these simulations to be performed in two dimen-
sions using the procedures available from units LibMecIn, LibAssur, and LibMec2D.

A compact hydraulic excavator similar to model 27D from John Deere, or model 
301 from Caterpillar (Figures 9.36 and 9.37) will be analyzed first. The excavator 
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FiGURE�9.36� Excavator arm modeled using three RTRR actuators, six offset points, and one RRR 
dyad (a) and motion simulation of the same arm done using shapes attached to the moving links 
(b). See also animated GIF files F9_36a.GIF and F9_36b.GIF.
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arm was modeled using three RTRR actuators (A1–C1–B1, A2–C2–B2, and A3–C3–B3) 
arranged in series, interconnected via offset points A2, B2 of link B1C1 and offset points 
A3, B3 of link B2C2. One RRR, dyad that is, the bucket-swing amplifier D–E–C3, was 
also included. Note that pin joint D is an offset point of link B2C2, while the tip of the 
bucket (the locus of which has been recorded during simulation) is an offset point of 
link DE (see Figure 9.36a).

Program P9_36A.PAS, available with the book, performs the kinematic analysis of 
the excavator arm, as shown in Figure 9.36a. The companion program P9_36A.PAS 
listed Appendix B is an extension of the former, where shapes read from files EXbody.
XY, EXboom.XY, EXstick.XY, and EXbucket.XY (lines #52, #55, #62, #89 and 
#94) are added to the model. Of these, the excavator body shape file EXbody.XY 
 consists of four polylines, three of them having their color set from within the actual 
file. These polylines associated with the excavator body and with the moving parts of 
the digging arm, together with the joint location, were extracted from the raster images 
of a compact excavator as follows: The raster image file was opened inside AutoCAD 
and was scaled to match the overall dimensions of the real excavator. Then the coor-
dinates of the joint center were marked with small circles. Polylines representing the 
excavator parts were then overlaid to the raster image, and then each was extracted to 
a separate DWG file. After orienting them as shown in Figure 9.35b, they were exported 
to PLT, so that arches of circles are converted to vertex polylines. Using the Util~PLT 
application, these shapes were converted back to DXF, and then were opened inside 
AutoCAD. The constituent polylines were joined together using the pedit com-
mand (if it was the case), were scaled back to their original size, and were positioned 
relative to the world coordinate system of the drawing, as shown in Figures  9.37b. 
From inside AutoCAD, one more export to R12 DXF has been performed, and then 
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FiGURE� 9.37� Schematic of a compact hydraulic excavator (a) and its main components repre-
sented as polylines defined relative to the local reference frames shown (b). See also files of the form 
EX*.* available with the book.
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using the Util~DXF program, the XY shape files used by program P9_36B.PAS 
(see Appendix B) have been finally produced.

The motions s1, s2, and s3 of the three actuators of the excavator are harmonic functions 
of time. Different paths can be obtained by changing the phase angle and amplitudes on 
lines #49, #50, and #51 of program P9_36B.PAS, and their effect upon the workspace of 
the excavator links and bucket and locus of point D observed.

The second part of this section explores a similar problem of the kinematic analysis of 
a rope shovel used in surface mines and quarries (Figure 9.38). Same as for the hydrau-
lic excavator discussed earlier, the shapes of the stationary body and of the moving 
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FiGURE� 9.38� Simulation of a rope shovel performed using the program P9_38.PAS. See also 
animation file P9_38.GIF and drawing file RopeShovel.DWG.
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FiGURE�9.39� Rope shovel mechanism (a) and the equivalent RTRTR kinematic chain (b). 
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links have been extracted to ASCII files of extension XY (see the corresponding files 
RopeShovel.DWG and RS*.*).

As can be seen in Figure 9.39, the digging mechanism of the rope shovel can be easily 
modeled as a RTRTR kinematic chain using either the RTRT or RTRTc procedures in unit 
LibMecIn (see also line #36 of program P9_38.PAS  listed in Appendix B). The linear 
motor inputs s1 and s2 are harmonic functions defined on lines #34 and #35 of this program. 
Then, using angle values φ1 and φ2 (see Figure 9.39) evaluated on lines #43 and #47, crank 
angles Theta1 and Theta2 are calculated. These serve to insert the pinion shape and 
also to show the position angle of the pinion and of the rope sheave. This way more realistic 
simulations can be generated, as shown in the animated GIF file P9_38.GIF available with 
the book.

9.16� �kinEmATic�AnAlySiS�oF�inDEPEnDEnT�whEEl�SUSPEnSion�
mEchAniSmS�oF�ThE�mUlTilink�AnD�DoUblE-wiShbonE�TyPE

Suspension systems of automobiles are complex 3D mechanisms. They are tuned to satisfy 
the multiple requirements associated with the motion of car wheels relative to the chassis, 
and of the chassis relative to the ground, during acceleration, braking, and turning maneu-
vers. In this section, the displacement of the wheel relative to the car body of five-link, 
four-link, and double-wishbone suspension mechanisms with rectilinear steering input will 
be analyzed. The wheel track, camber, and toe angle variations of such mechanisms will 
be determined in an iterative approach following a method described in Simionescu and 
Beale (2002). The problem will be formulated for the general five-link suspension mecha-
nism as schematized in Figure 9.40, of which the four-link and the more commonly used 
double-wishbone suspensions are particular embodiments, obtained by making ball joints 
B4 and B5 and/or B2 and B3 coincident, respectively.
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FiGURE�9.40� Five-link suspension mechanisms with translational steering input.
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Without the trivial rotations of the connecting links around their own axes, a five-link 
rear wheel suspension has only one degree of freedom. In front-wheel suspension mecha-
nisms, a second degree of freedom is available, corresponding to the steering input. It 
means that the position of the wheel can be uniquely specified by the coordinate zN 
relative to the fixed reference frame Oxyz attached to the car body and by the rack-end 
displacement x A1. The remaining position parameters (i.e., wheel-center coordinates xN, 
yN and angles α, β, and γ of the moving frame Nx′y′z′ attached to the wheel carrier rela-
tive to the fixed reference frame) can be determined by solving the following system of 
five simultaneous equations:

 x x y y z z l iA B A B A B ii i i i i i− − −( ) + ( ) + ( ) = = …2 2 2 2 1 5( , , ),  (9.36)

where li is the length of link AiBi. The coordinates x y zB B Bi i i, , and  in Equation 9.36 result 
from applying a rotation, followed by a translation to the coordinates ′ ′ ′x y zB B Bi i i, , and  of 
ball joint Bi originally specified in the Nx′y′z′ moving frame according to the equation 
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In this equation, matrix [Rβαγ] transforms the Nx′y′z′ reference frame into a frame parallel 
to Oxyz, by rotating it by angles β, α, and γ (in this order). With the notations cα = cos α, 
sα = sin α, and so forth, this transformation matrix can be written as 
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For a given value of the wheel vertical displacement zN and steering rack input x A1 , the sys-
tem of five equations (9.36) in the unknowns α, β, γ, xN, and yN can be conveniently solved 
by minimizing the following objective function: 
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Once parameters α, β, γ, xN, and yN are determined for successive zN and/or x A1 values, 
the change of the wheel track ΔyS, wheel base ΔxS, camber angle Δδ, and toe angle Δφ 
can then be calculated. The first two parameters require evaluating the coordinates of 
the contact patch center S using an equation similar to (9.37). The camber angle is cal-
culated as the angle between the Oz-axis and the projection on the vertical plane Oxy of 
line NN1 (i.e., the wheel axis). In turn, the toe angle is determined as the angle between 
the Ox-axis of the fixed frame and the projection on the horizontal plane Oxy of the 
same line NN1.

This strategy has been implemented in the kinematic analysis program 
An_5link.PAS available with the book. The program reads from input data files 
5link.An, 4link.An, and 3link.An the values of the following parameters (see 
Figure 9.40): 

• Wheel base length over wheel track length of the vehicle used to calculate the angle 
of steer of the left wheel versus that of the right wheel according to the Ackermann 
principle.

• The rebound and jounce limits ∆zN min and ∆zN max of the wheel, measured from the 
static position corresponding to the center of the wheel N being located at point 
z x yN N N0 0 0, , .( )

• The horizontal, lock-to-lock travel of the steering rack ∆x A1max.

• Link lengths l1 to l5.

• Outer radius and length of the wheel hub, assumed to be a cylinder starting at the 
middle point N of the wheel and extending inwards.

• Radius of ball joints A1 to A5 and B1 to B5, considered all identical.

• Wheel radius, equal to the distance NS.

• Coordinates z x yN N N0 0 0, , and  of the center of the wheel in the straight ahead, static 
position of the vehicle.

• Coordinates x y zA A Ai i i, , and  (i = 1,…,5) of the ball joints attached to the chassis rela-
tive to the Oxyz reference frame.

• Coordinates ′ ′ ′x y zB B Bi i i, , and  (i = 1,…,5) of the ball joints attached to the wheel carrier 
relative to the moving reference frame Nx′y′z′.

Note that it is not essential to provide the link lengths l1–5 since they can be calculated as 
the distance between the joint centers Ai and Bi for the wheel in its reference position. For 
such an option, you must replace the corresponding numbers in the input An file with 
nonnumeric characters. Conversely, you can use the An_5link.PAS program to ver-
ify the effect of altering the length of any of these five links upon the kinematics of the 
mechanism.
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Program An_5link.PAS outputs two ASCII files with the same name (specified by 
the user) and extensions DTA and M3D. The first file contains the kinematic analysis data, 
while the second file, readable by the M_3D.LSP application, allows the motion of the 
mechanism to be simulated inside AutoCAD. The drawing Wheel.DWG available with 
the book should be used with these M3D files because it contains a block named “wheel” 
required by these simulations. 

Using the aforementioned files of extension An as inputs, files 5link_H.DTA, 
5link_V.DTA; 4link_V.M3D, 4link_H.M3D; and 3link_V.M3D, 3link_H.M3D 
have been generated. Of these, the he * _V.DAT files (corresponding to the wheel 
 performing vertical motion for zN changing value between −100 and 100  mm around 
zN 0) served to plot the graphs of the wheel track change ΔxS, recessional wheel motion 
ΔxS,  camber angle change Δδ, and toe angle change Δφ available in Figures 9.41 and 
9.42. The * _H.DAT files (wheel performing steering motion caused by changing x A1 
between −70 and 70 mm around its reference position) were used to generate the wheel 
steer graphs in Figure 9.43. The corresponding M3D files served to produce Figures 9.43 
through 9.46 and the companion animated GIF files available with the book.
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FiGURE�9.41� Wheel track alteration ΔxS (a) and recessional wheel motion ΔyS (b) during jounce 
and rebound of the five-link (curve 5), four-link (curve 4), and double-wishbone (curve 3) sus-
pension mechanisms with geometry read from files 5link.An, 4link.An, and 3link.An, 
respectively. The configuration files to redo these plots are F9_41A.CF2 and F9_41B.CF2.
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FiGURE� 9.43� Wheel steer angle correlation of the five-link (curve 5), four-link (curve 4), and 
double-wishbone (curve 3) suspension mechanisms in Figures 9.41 and 9.42, overlapped with the 
Ackermann law (curve A). Configuration file F9_43.CF2.
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FiGURE�9.42� Camber alteration Δδ (a) and toe angle alteration Δφ (b) during jounce and rebound 
companion to the graphs in Figure 9.42. Configuration files F9_42A.CF2 and F9_42B.CF2.
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FiGURE�9.44� Limit positions of the five-link suspension mechanism with the geometry read from 
file 5link.An. See also animated GIF files F9_44a.GIF and F9_44b.GIF.

FiGURE�9.45� Limit positions of the four-link suspension mechanism with the geometry read from 
file 4link.An. See also animated GIF files F9_45a.GIF and F9_45b.GIF.
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9.17� FlywhEEl�SiZinG�oF�A�PUnch�PRESS
Flywheels are used to reduce the speed fluctuations during the working cycle of a machine. 
They increase their rotational speed when there is an excess of energy and decrease their 
rotational speed to release energy when there is not enough available. Flywheels serve a 
function similar to accumulators used in pneumatic or hydraulic circuits, which maintain 
nearly constant fluid pressure while the demand varies. In piston engines, the flywheel com-
pensates for the strokes when energy is consumed rather than created during the engine 
cycle, thus allowing the crankshaft torque to be delivered at close to constant speed. In case 
of punch presses, like the one in Figure 9.47, the actual punching occurs for only a small 
fraction of the machine cycle, causing a strongly fluctuating load torque. To limit the size 
of the motor, and also to alleviate its speed fluctuation (electric motors are known to work 
best at certain rpm), the energy delivered during the actual punch is supplemented by the 
energy released by the flywheel as it slows down from a maximum angular velocity ωmax 
right before the punch, to a minimum angular velocity ωmin right after the punch ends.

In this section, the problem of selecting the electric motor and that of sizing the flywheel 
required by a punch press will be discussed. The flywheel is assumed mounted on the 
crankshaft, which is driven by the motor via a speed reducer as shown in Figure 9.47. The 
mechanism of the press is a centric crank–slider with the crank length OA = 0.15 m, cou-
pler length AB = 0.5 m, and punch-head length BP = 0.15 m. The press punches d = 65 mm 
diameter holes into h = 20 mm thick aluminum stock of shear strength SSy = 140 MPa, at a 
rate of np = 80 holes per minute. The punch begins when the displacement s of the punch 

FiGURE�9.46� Limit positions of the double-wishbone suspension mechanism with the geometry 
read from file 3link.An. See also animated GIF files F9_46a.GIF and F9_46b.GIF.
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head equals ss and ends when s equals sf (see Figure 9.47). We assume that sf = 0.75 m and 
correspondingly ss = sf − h = 0.73 m. Using the principle of virtual work, we will find the 
resisting torque at the crankshaft as a function of the crank angle θ, and then we will evalu-
ate the required average motor torque and its corresponding power. Then we will calculate 
the moment of inertia I of a flywheel for which the motor speed fluctuation ranges between 
1740  and 1580 rpm. A Working Model 2D simulation that validates the calculations is 
also provided and is available with the book.

The problem will be solved under the following simplifying assumptions:

• The stock material exhibits an ideal plastic behavior.

• The friction in the joints of the crank–slider mechanism and between the punch and 
the aluminum stock is considered negligible.

• The output torque of the driving motor is assumed constant and independent of speed.

• The transmission between the motor and the crankshaft is 100% efficient, and its 
speed ratio i remains unchanged.

• The inertias of the moving links of the press and of the motor armature are neglected.

We define the average rotational speed n0 of the crankshaft of the press as
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FiGURE�9.47� Schematic of a crank–slider punch press.
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This is also equal to the imposed number of punches per minute nP, which yields the ratio 
of the transmission between the motor and the crankshaft i = 20.75. Correspondingly, the 
average speed of the electric motor is 1660 rpm, while the minimum and maximum speeds 
of the crankshaft will be nmax = 83.855 rpm and nmin = 76.145 rpm.

The coefficient of speed fluctuation CS of the press will be
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n n
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S . .= = =max min . .− −
0

83 855 76 145

80
0 0964  (9.41)

CS is recommended to be around 0.1 for punch presses, 0.005 for electric generators, and 
0.2 for rock crushers. It means that the coefficient of speed fluctuation in Equation 9.41 is 
satisfactory.

The maximum resisting force Fmax opposing the punch occurs when the plate material 
begins to yield. Assuming a shear stress τ versus punch penetration like the one in Figure 
9.48a with a zero elastic range, the punch force F will peak right after the punch head 
makes contact with the stock and decreases to zero as the penetration progresses. The 
maximum punch force depends on the shear strength of the material and on the side area 
of the hole AS (i.e., the shear area) according to the equation

 F S A S d hmax ( ) . . .= ⋅ = ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅Sy S Sy N.π π140 10 0 065 0 02 5 72 106 5  (9.42)

Since AS varies from a maximum value to zero, the punch force will decrease linearly with 
the punch-head penetration (see also Figure 9.48b), that is,
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FiGURE�9.48� Diagrams of the shear stress τ function of punch penetration (a) and punch force F 
function of punch displacement for a material with zero elastic range (b).
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In order to apply the principle of virtual work and evaluate how the punch force in 
Equation 9.43 translates into the resisting torque at the crankshaft, the kinematic analysis 
program P9_49.PAS has been written and is listed in Appendix B.

The program reads from lines #14 to #17 and #23 to #27 a number of parameters of 
the punch press and workpiece material. It uses these values to perform a position and 
 velocity analysis, accompanied by an animation of the mechanism. The program calcu-
lates, for nPoz discrete crank positions, the punch force according to Equation 9.43—see 
lines #51 to #55 of the program. Then, using the punch velocity vyP returned by pro-
cedure RRT_ (labeled ds/dt in the output data file F9_49.DAT), it calculates the load 
torque  transmitted to the crank as
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θ ω
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d /d  (9.44)

In addition to data file F9_49.DAT, program P9_49.PAS outputs the multilayer DXF 
file F9_49.DXF that was used to generate Figure 9.49a and the animated GIF file 
F9_49a.GIF. Data file F9_49.DAT served to produce the plots in Figure 9.49b, show-
ing the areas under the T(θ) and F(s) curves labeled “integrals.” Using these integral 
values, the work WP required to punch one hole and the average crankshaft torque TM 
were determined:

 WP . J= 5782 8 ,  (9.45)
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FiGURE�9.49� Simulation frame generated with program P9_49.PAS (a) and diagrams of the load 
torque T versus crank angle θ and punch force F versus punch displacement s (b), obtained by overlap-
ping inside AutoCAD the plots done using configuration files F9_49B1.CF2 and F9_49B2.CF2.
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The corresponding electric motor power to be used in conjunction with a flywheel will 
therefore be
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where ω0 = 80π/30 = 8.3776 rad/s is the average angular velocity of the crankshaft.
Figure 9.50 is a free-body diagram of the flywheel removed from the crankshaft. Its 

equation of motion is
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We integrate this second equation between crank angles θ1 and θ2 when the maximum and 
minimum angular velocities of the crankshaft occur,
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and obtain
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This second equation relates the change in kinetic energy of the system ΔE to the 
required mass moment of inertia I of the flywheel for which the angular velocity of 
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FiGURE�9.50� Free-body diagram of the flywheel of the punch press.
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the crankshaft fluctuation is limited between ωmin and ωmax. Using the average angular 
velocity of the crankshaft ω0 and the coefficient of speed fluctuation CS, Equation 9.51 
can be rewritten as
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The change in kinetic energy ΔE of the punch press during one cycle equals the area 
(in absolute value) situated above or below the horizontal axis of the curve T − TM versus ω. 
This was conveniently obtained by editing inside D_2D the lower limit of the vertical axis 
of the and T(ω) plot in Figure 9.49b and redoing the graph. According to Figure 9.51, this 
change in kinetic energy is 5781.8 J. Correspondingly, the required mass moment of inertia 
of the flywheel is
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A Working Model 2D simulation of the punch press has been prepared and is available 
with the book (see file Punch_Press.WM2 and Figure 9.52). Using the formula language 
of the software, a conditional force is applied to the punch head when it engages the stock 
according to Equation 9.43. The maximum punch force Fmax calculated with Equation 
9.42, stock location sf, and stock thickness h must be specified using the text boxes pro-
vided. Also input via text box controls are the constant crankshaft torque TM and the 
moment of inertia of the flywheel I. The “crank initial rpm” value must be selected by the 
user in order for the press to operate around the required nP = 80 punches per minute. 
The simulation confirms that the motor torque TM and flywheel moment of inertia I were 
properly calculated, in that the crank holds its rotational speed between 76 and 83 rpm as 
intended. A slight tendency of the punch rate to increase is visible on Figure 9.52, which 
can be eliminated by fine-tuning the crankshaft torque TM. The user may want to repeat 
the simulation for different flywheel moment of inertia and input torque and observe their 
effect upon the crank speed change.
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FiGURE�9.51� Plot done with D_2D that was used to calculate ΔE. Configuration file F9_51.CF2.
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9.18� �A�PRoGRAm�FoR�PURGinG�FilES�FRom�
ThE�cURREnT�DiREcToRy

This final section refers to the program Purge.PAS (see Appendix B), which can be used 
to automatically delete certain files in the current directory. When launching the executable 
~Purge.EXE, it will delete without confirmation all the files with extensions $XY, $2D, 
$3D, OLD, and BAK; all files of the type ~POLY*.TMP; and the AutoCAD error files acad.
err and acadstk.dmp. With confirmation it will delete all BMP, PCX, and SCR files from 
the directory where ~Purge.EXE is located. This program is useful to keep directories 
clean, following stream PCX or BMP export and can be easily modified to fit other needs.

***

A number of applications and practical problems that complement the material in ear-
lier chapters have been presented. Same as for the rest of the chapters, the source codes 
of these programs and the respective Working Model 2D simulations are available upon 
request from the author.
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Appendix A: Useful Formulae

A.1� EqUATionS�oF�A�linE
The equation of the line through points A (xA, yA) and B (xB, yB) (see Figure A.1) in deter-
minant form is:

 

x y

x y

x y

1

1

1

0A A

B B

=  (A.1)

equivalent to

 
y

y y

x x
x

x y x y

x x
B=

−
−

+
−
−

A B

A B

A B A

A B

 (A.2)

and also to

 

x x

x x

y y

y y

−
−

=
−
−

A

B A

A

B A
 (A.3)

The equation of a line through point A (xA, yA) and of slope m is:

 y m x x y y mx mx y= − + = + +( ) ( )A A A Aor  (A.4)

The equation of a line of slope m and OY-intercept n is:

 y mx n= +  (A.5)

The equation of a line of OX-intercept p and OY-intercept n is:

 

x

p

y

n
+ =1  (A.6)

The parametric equation of a line through points A (xA, yA) and B (xB, yB) is:

 

x x t x t

y y t y t

= − +

= − +

A B

A B

( )

( )

1

1
 (A.7)
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equivalent to
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y
t

x x

y y

x

y








 =
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1 0

0 1

B A

B A

A
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 (A.8)

Note that for t ∈ [0,1], (x, y) spans the portion of the line from A to B only.

A.2� conDiTion�FoR�Two�linES�To�bE�PERPEnDicUlAR
Two lines of equations y = m1 · x + n1 and y = m2 · x + n2 are perpendicular if

 
m

m
1

2

1= −  (A.9)

A.3� conDiTion�FoR�Two�linES�To�bE�PARAllEl
Two lines of equations y = m1 · x + n1 and y = m2 · x + n2 are parallel if

 m m1 2=  (A.10)

A.4� AnGlE�bETwEEn�Two�linES
The angle between two lines of equations y = m1 · x + n1 and y = m2 · x + n2 is

 
tanθ = −

+
m m

m m
1 2

1 21
 (A.11)

A.5� PoinT�colinEAR�wiTh�oThER�Two�AT�A�PREScRibED�locATion
Given two points A (xA, yA) and B (xB, yB), find the coordinates of a third point P (x, y) 
collinear with them, located at a specified distance AP (Figure A.2).

The following double equality should hold:

 

x x

x x

y y

y y

AP

AB

−
−

=
−
−

=A

B A

A

B A

 (A.12)

Y

O X

Slope m
n

p

(xB, yB)
B

(xA, yA)
A

FiGURE�A.1� One line in 2D.
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where AB is the distance between the two given points, that is,

 AB x x y y= − + −( ) ( )A B A B
2 2  (A.13)

From Equation A.12, we get

 

x x
AP

AB
x x

y y
AP

AB
y y

= + −

= + −

A B A

A B A

( )

( )

 (A.14)

Not that for AP negative or AP > AB, point P will located outside A − B.

A.6� �conDiTion�FoR�A�PoinT�collinEAR�wiTh�oThER�
Two�To�bE�locATED�bETwEEn�ThEm

Given three collinear points A (xA, yA), B (xB, yB), and P (x, y), the condition for point P to 
be located between A and B is (see Figure A.2)

 ( )( ) ( )( )x x x x y y y yA B A B− − + − − < 0  (A.15)

A.7� DiSTAncE�FRom�A�PoinT�To�A�linE
Given a line through points A (xA, yA) and B (xB, yB) and a third point C (xC, yC) not collinear 
with them, find distance d between point C and line A − B and the coordinates (x, y) of the 
projection P of point C onto line A − B (Figure A.3).

The following two relations should hold simultaneously:

 ( )( ) ( )( )x x x x y y y yB A C B A C− − + − − = 0  (A.16)

 

x x

x x

y y

y y

−
−

=
−
−

A

B A

A

B A
 (A.17)

The first equation is the dot product between vectors AB and CP, which must be equal 
to zero, and the second equation is the condition for points A, B, and P to be collinear. 

A
(xA,yA)

(xB,yB)
B

(x,y)
P

FiGURE�A.2� Three collinear points A, B, and P.
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Expanding the two equations and rearranging terms yields a set of two linear equations in 
the unknowns x and y that is easy to solve:

 

( ) ( ) ( ) ( )

( ) ( ) (

x x x y y y x x x y y y

y y x x x y y

B A B A B A C B A C

B A B A B

− + − = − + −

− − − = −− − −





 y x x x yA A B A A) ( )
 (A.18)

Once the coordinates of point P are found, the sought for distance d can be calculated with 
the equation:

 d x x y y= − + −( ) ( )C C
2 2  (A.19)

A.8� oRiEnTATion�oF�A�TRiAnGUlAR�looP
Given three noncolinear points A(xA, yA), B(xB, yB), and C(xC, yC), if the cross product 
AB × AC > 0 or

 ( )( ) ( )( )x x y y y y x x2 1 3 1 2 1 3 1 0− − − − − >  (A.20)

C(x3,y3)

B(x2,y2)

A(x1,y1)

Y

O X

FiGURE�A.4� A triangle in 2D.

(xB,yB)

(xA,yA)

C
(xC,yC)

B

A
d

(x,y)
P

FiGURE�A.3� Distance from a point to a line in 2D.
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then the triangular loop ABC is oriented counterclockwise as shown in Figure A.4. 
Otherwise, the triangular loop is oriented clockwise.

A.9� AREA�oF�A�TRiAnGlE
Given points A(x1, y1), B(x2, y2), and C(x3, y3) that are not collinear, the area of triangle ABC 
is given by the following equation:

 

A x x x

y y y

x y x y x y x y x y x y= = − − + + −1

2

1 1 1
1

2
1 2 3

1 2 3

2 3 3 2 1 3 3 1 1 2 2 1( )  (A.21)

A.10� conDiTion�oF�ThREE�PoinTS�To�bE�collinEAR
Given points A(x1, y1), B(x2, y2), and C(x3, y3), they are collinear if

 

1 1 1

01 2 3

1 2 3

2 3 3 2 1 3 3 1 1 2 2 1x x x

y y y

x y x y x y x y x y x y= − − + + − =  (A.22)

A.11� ciRclE�ciRcUmScRibED�To�ThREE�PoinTS
Given points A(x1, y1), B(x2, y2), and C(x3, y3), find the center (x, y) and radius r of the circle 
through these three points. The following relations should hold simultaneously:
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 (A.23)

which after expanding, the squares become
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 (A.24)

Subtracting the first equation from the other two, we obtain a set of two linear equations 
in the unknowns x and y that is easy to solve:
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Radius of the circle r can now be obtained by substituting x and y back into any of the 
original equations A.23, for example,

 r x x y y= − + −( ) ( )1
2

1
2  (A.26)

A.12� inTERSEcTion�bETwEEn�A�ciRclE�AnD�A�linE
Given a circle centered at O(xO, yO) and of radius r and a line through arbitrary points 
A(xA, yA) and B(xB, yB), find the coordinates of the intersection point(s) between the given 
line and circle (see Figure A.5). The problem can have two distinct solutions, a unique 
solution when line A − B is tangent to the circle, or no real solution when the line does not 
intersect the circle.

The following relations should be satisfied simultaneously:

 ( ) ( )x x y y rO O− + − =2 2 2  (A.27)

 

x x

x x

y y

y y
A

A B

A

A B

−
−

=
−
−  (A.28)

To simplify the analysis, we translate the figure such that xO = 0 and yO = 0, and the 
coordinates of points A and B become xA = xA − xO, yA = yA − yO, xB = xB − xO, and 
yB = yB − yO. After this transformation, Equation A.27 becomes

 x y r2 2 2+ =  (A.29)

To avoid a possible division by zero, we compare differences xA − xB and yA − yB, and if 
|xA − xB| > |yA − yB|, we write Equation A.28 as
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x y x y

x x
=
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B A A B
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 (A.30)

(x, y)

(x, y)
O

P1

P2

B
(xB, yB)

A
(xA, yA)

(xO, yO)

r

FiGURE�A.5� Intersection between a circle centered at O and of radius r and a line through points 
A and B.
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Substituting y in Equation A.29, a quadratic equation in the unknown x is obtained:

 

[( ) ( ) ] ( )( )

( ) (

x x y y x y y x y x y x

x y x y x

B A B A B A B A A B

B A A B

− + − + − −

+ − −
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2

2

BB A− =x r)2 2 0  (A.31)

with solutions
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y y x y x y

x x y y
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B A B A A B

B A B A

∆
2 2

 (A.32)

where the discriminant is

 ∆ = − − + − − −( ) [( ( ) ( ) ]x x x x r y y r x y x yB A B A B A A B B A)2 2 2 2 2 2  (A.33)

If instead we have |yA − yB| > |xA − xB|, then we rewrite Equation A.30 as
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 (A.34)

and the corresponding quadratic equation becomes
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B A B A B A A B B A

A B B A

− + − + − −
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BB A− =y r)2 2 0  (A.35)

with solutions
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x x x y x y

x x y y
=
− − − ±

− + −
( )( )

( ( )
B A A B B A

B A B A)

∆
2 2  (A.36)

and discriminant

 ∆ = − − − − − −( ) [( ) ( ) ( ) ]y y x x r y y r x y x yB A B A B A A B B A
2 2 2 2 2 2  (A.37)

The actual intersection points are x = x + xO and y = y + yO, obtained by translating of the 
figure back to its original location.

A.13� TAnGEnT�FRom�A�PoinT�To�A�ciRclE
Given a circle centered at O(xO, yO) and of radius r and external point A(xA, yA), find the 
coordinates of point P(x, y) on the line passing through (xA, yA) that is tangent to the cir-
cle. The problem has two solutions, represented in Figure A.6 in solid and dashed lines, 
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respectively. The proper point P1 or P2 has to be selected based on other considerations, 
like the orientation of the triangles AOP1 and AOP2 or magnitude of its x or y coordinates.

As stated, the problem is equivalent to the following two equations:

 ( ) ( )x x y y rO O− + − =2 2 2  (A.38)

 ( ) ( ) ( ) ( )x x y y x x y y rA A A O A O− + − = − + − −2 2 2 2 2  (A.39)

To simplify the analysis, we translate the entire figure such that xO = 0 and yO = 0. External 
point A will have its new coordinates xA = xA − xO and yA = yA − yO. With these transforma-
tions, the previous equations become

 x y r2 2 2+ =  (A.40)

 ( ) ( )x x y y x y rA A A A− + − = + −2 2 2 2 2  (A.41)

After squaring terms, Equation A.41 becomes

 x x x y y y r2 2 22 2− + − = −A A  (A.42)

If we subtract this new equation from Equation A.40, we get

 x x y y rA A+ = 2  (A.43)

(x, y)

O
(xO, yO)

A
(xA, yA)

P2(x, y)

P1

r

r

FiGURE�A.6� Dual solution of the tangent line from point A to a circle centered at O and of radius r.
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To avoid a possible division by zero, we must compare coordinates xA and yA. If |xA| > |yA|, 
then we extract x from Equation A.43 as

 
x

r y y

x
=

−( )2
A

A

 (A.44)

which when substituted in A.40 yields a quadratic equation in the unknown y:

 ( )x y y r y y r x rA A A A
2 2 2 2 4 2 22 0+ − + − =  (A.45)

with roots
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 (A.46)

If |yA| > |xA|, we conversely have

 
y

r x x

y
= −( )2

A

A

 (A.47)

which when substituted in Equation A.40 yields a new quadratic equation

 ( )x y x r x x r y rA A A A
2 2 2 2 4 2 22 0+ − + − =  (A.48)

with roots

 
y

r x ry x y r

x y
1 2

2 2
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+
A A A

2
A
2

A
2

A

 (A.49)

The actual solution to the problem is obtained by translating the figure back to its original 
location, that is, letting x = x + xO and y = y + yO.

A.14� TAnGEnT�oF�A�GivEn�SloPE�To�A�ciRclE
Find the equation of the tangent of slope m to the circle centered at (xO, yO) and of radius r (see 
Figure A.7). This is equivalent to the following relations holding simultaneously:

 

y y

x x m

−
−

= −O

O

1
 (A.50)

 ( ) ( )x x y y rO O− + − =2 2 2  (A.51)
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From Equation A.50, we get

 x x my my= − +O O  (A.52)

which substituted in the second equation yields

 ( ) ( ) ( )m y y m y m y r2 2 2 2 21 2 1 1 0+ − + + + − =O O  (A.53)

This last equation has solutions

 
y y
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m
= ±

+
O

2 1
 (A.54)

In turn, the x coordinate of the tangent point(s) P become

 
x x
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2 1
 (A.55)

Applying now Equation A.4, the equation of the tangent line will finally be

 
y mx r m
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mx y= ± + −
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1
O O  (A.56)

A.15� PARAbolA�ThRoUGh�ThREE�PoinTS
The equation of the parabola through points (x1, y1), (x2, y2), and (x3, y3) (see Figure A.8) is

 y ax bx c= + +2  (A.57)

(x, y)
P

(xO, yO)
O

r
m

Slope
m

Slope

FiGURE�A.7� Dual solution of the tangent of given slope m to a circle.
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where coefficients a, b, and c are solutions of the following set of three linear equations:
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 (A.58)

The extremum point (minimum or maximum) of this parabola has the coordinates
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2
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A.16� cUbic�PARAbolA�ThRoUGh�FoUR�PoinTS
Given points (x1, y1), (x2, y2), (x3, y3), and (x4, y4), the equation of the cubic parabola passing 
through these four points is (see Figure A.9)

 y ax bx cx d= + + +3 2

(xe, ye)

(x2, y2) (x3, y3)

(x4, y4)
(x1,y1)

FiGURE�A.9� A cubic parabola through points (x1, y1), (x2, y2), (x3, y3), and (x4, y4). Also shown is 
the extremum point (xe, ye).

(xe, ye)

(x2, y2)

(x1, y1) (x3, y3)

FiGURE�A.8� A parabola through points (x1, y1), (x2, y2), and (x3, y3). Also shown is the extremum 
point (xe, ye).



388    ◾    Appendix�A:�Useful�Formulae

where coefficients a, b, and c are solutions of the following set of four linear equations:
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 (A.60)

The extremum point(s) of this cubic parabola has the coordinates

 

x
b b ac

a
y ax bx cx d

e

e e e e

= − ± −

= + + +

2

3 3

3

3  (A.61)

Note that there can be two points of extrema, and the one outside the interval [x1, x4] 
should be excluded.

A.17� TAnGEnT�oF�A�GivEn�SloPE�To�A�PARAbolA
Given a parabola of equation y = ax2 + bx + c, find coordinates (x, y) of point P where the 
tangent to the parabola has a slope m (see Figure A.10).

The following relations should hold simultaneously:

 y ax bx c= + +2  (A.62)

 2a x b m⋅ + =  (A.63)

which yield the tangent point as

 

x
m b

a

y
m b

a
x

mb b

a
c

= −

= − + − +

2

4 2

2
2
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 (A.64)

 

P(x, y)

Slope m

FiGURE�A.10� Tangent of slope m to a parabola.
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A.18� TAnGEnT�FRom�A�PoinT�To�A�PARAbolA
Given a parabola of equation y = ax2 + bx + c and an external point (xA, yA), find the line 
through point A that is tangent to the parabola. Specifically, find the coordinates (x, y) of 
the tangency points P1 and P2 (see Figure A.11).

The problem is equivalent to the following three equations in the unknowns x, y, and m:

 y m x x y= − +( )A A  (A.65)

 y ax bx c= + +2  (A.66)

 2ax b m+ =  (A.67)

Equating y from the first two equations yields

 m x x y ax bx c( − + − − − =A A) 2 0  (A.68)

and after substituting m from Equation A.67, we obtain a quadratic equation in the 
unknown x:

 ax ax x bx y c2 2 0− − + − =A A A  (A.69)

with solutions

 
x x x

bx y c

a
= ± +

− +
A A

2 A A  (A.70)

Slope m and the y coordinate of the tangent point can then be calculated using Equations 
A.67 and A.66, respectively.

Slope m

Slo
pe

 m

P2
(x, y)

P1
(x, y)

A (xA, yA)

FiGURE�A.11� Dual solution to the tangent to a parabola from an external point A.
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A.19� inTERSEcTion�bETwEEn�A�ciRclE�AnD�A�PARAbolA
Given a parabola of equation y = ax2 + bx + c and a circle centered at (xO, yO) and of 
radius r, find the coordinates (x, y) of their intersection point(s) (see Figure A.12). This is 
equivalent to the following two equations being satisfied simultaneously:

 y ax bx c= + +2  (A.71)

 ( ) ( )x x y y rO O− + − =2 2 2  (A.72)

We substitute y from the first equation into the second equation:

 x x x x ax bx c y r2 2 2 2 22 0− + + + + − − =O O O( )  (A.73)

and after expanding terms, we obtain a fourth-degree equation

 

f x a x ab x a c y b x b c y x x

c y x

( ) [ ( ) ] [ ( ) ]

( )

= + + − + + + − −

+ − +

2 4 3 2 2

2

2 2 1 2O O O

O OO
2 − =r 2 0  (A.74)

which can be solved iteratively. If the Newton–Raphson method is used with the iteration

 
x x f x

f x

f x
j j

j

j

= −−
−

−
1

1

1

( )
( )

( )’
 (A.75)

then the first derivative of f(x) is:

 ′ = + + − + + + − −f x a x ab x a c y b x b c y x( ) [ ( ) ] ( )4 6 4 2 2 22 3 2 2
O O O  (A.76)

(x, y)

O

P2

P1
(xO, yO)

r(x, y)

FiGURE�A.12� Dual solution of the intersection between a parabola and a circle.
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A.20� common�TAnGEnT�To�A�PARAbolA�AnD�A�ciRclE
Given a circle centered at (xO, yO) and of radius r and a parabola of equation y = ax2 + 
bx + c, find the coordinates of point (x, y) on the parabola and the coordinates of 
point (xA, yA) on the circle belonging to the common tangent to the parabola and to the 
circle. The problem has two solution represented in solid and dashed lines in Figure A.13. 
It implies that the proper points A1 and P1 or A2 and P2 had to be selected based on other 
considerations, like the orientation of triangles A1OP1 and A2OP2 or the magnitude of the 
x or y coordinates of the solution point.

The aforementioned requirements are equivalent to the following analytical relations:

 x x y y rO A O A−( ) + −( ) =2 2 2  (A.77)

 y ax bx c= + +2  (A.78)

 
2a x b

x x

y y
+ = − −

−
A O

A O

 (A.79)

 x x y y x x y y rA A O O−( ) + −( ) = −( ) + −( ) −2 2 2 2 2  (A.80)

Equation A.79 is the condition of the tangent to the parabola at point (x, y) to be perpendicu-
lar to the radius OA1, and Equation A.80 is the condition of OAP to be a right-angle triangle.

To simplify the analysis, we translate the entire figure such that the center of the circle 
has the coordinates xO = 0 and yO = 0. This will change the coefficients of the parabola as 
follows:

 

a a

b ax b

c ax bx c y

=

= +

= + + +

2 O

O
2

O O

 (A.81)

A1
(xA, yA)

A2(xA, yA)

r

r

P2
(x, y) P1

(x, y) O
(xO, yO)

FiGURE�A.13� Dual solution to the common tangent to a parabola and a circle.
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After translating the entire figure such that the circle becomes centered at (0,0), Equations A.77 
through A.80 simplify to

 x y rA A
2 2 2+ =  (A.82)

 y ax bx c= + +2  (A.83)

 
2ax b

x

y
+ = − A

A

 (A.84)

 x x x y y y rA A A A
2 2 22 2 0− + − + =  (A.85)

We subtract the first equation from the last one and obtain

 x x y y rA A+ − =2 0  (A.86)

then we substitute y from Equation A.83. The following set of three nonlinear equations is 
obtained:
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 ax y xx bxy cy r2 2 0A A A A

 (A.87)

which can be solved iteratively. To apply Newton’s method, we must evaluate the Jacobian:
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 (A.88)

and invert it every iteration step according to the following equation:
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 (A.89)

At the end, the coordinates of the solution points will be x = x + xO, y = y + xO, xA = xA + xO, 
yA = yA + xO.
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A.21� common�TAnGEnT�To�Two�ciRclES
Given one circle centered at (x yO O1 1, ) and of radius r1 and a second circle centered at 
(x yO O2 2, ) and of radius r2, find the coordinates of tangency points (x1, y1) and (x2, y2) on 
their common tangent (Figure A.14). In the following analysis, we will assume that r1 ≥ r2. 
If it is not the case, a relabeling of the points in Figure A.14 is required.

Note that the problem has four solutions, of which only two are shown on Figure A.14, 
the other two being their mirror image about the line of centers O1O2. The solutions where 
the common tangent intersects the line of centers between points O1 and O2 will be called 
cross-tangent case, and the other two where the intersection occurs outside the line seg-
ment O1O2 will be called side-tangent case. We begin with the following notations:

 

O O x x y y

c
x x

O O

s
y

1 2
2 2

1 2

1= − + −

= = −

= =

( ) ( )

cos( )

sin( )

O O O O

O O

2 1 2

2 1θ θ

θ θ OO O2 − y

O O
1

1 2

 (A.90)

To simplify the analysis, we translate the whole figure such that O1 becomes the origin and 
then rotate it about point O1 clockwise by angle θ (see Figures A.15 and A.16).

For the cross-tangent case in Figure A.15, we can write the following trigonometric iden-
tities within the triangle O P O1 1 2′ :

 

cos( )

sin( )
( )

α

α

= +

= − +

r r

O O

r r

O O

1 2

1 2

1
2

1 2
2

1

 (A.91)

Q

θ
O1

(xO1
, yO1

)

P1 (x1, y1)

P1 (x1, y1)
P2 (x2, y2)

(xO2
, yO2

)

P2
(x2, y2)

(xQ, yQ)

(xQ, yQ)

O2

Q

r1
r2

FiGURE�A.14� Two of the four solutions to the common tangent to two circles problem.
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With these notations, we have

 

x r

y r

1 1

1 1

= ⋅
= ± ⋅

cos( )

sin( )

α
α

 (A.92)

and

 

x O O r

y r

2 1 2 2

2 2

= − ⋅

= ⋅

cos( )

sin( )

α

α∓
 (A.93)

where the upper sign corresponds to the solution shown in Figure A.15 and the lower sign 
to the mirror image (not shown).

P2
(x2, y2)

(x1, y1)

Q
(xQ, yQ)

P1

r1

O1

P1́

α(0, 0) X

α

Y

O2
(xO2

, yO2
)

r2

FiGURE�A.15� The cross-tangent case with O1 at origin and horizontal center line O1O2.

X

P2 (x2, y2)

P1 (x1, y1)

O2 
(xO2

, yO2
)

Y
r1

r2

P1́

α
α

Q
(xQ,yQ)

O1
(0, 0)

FiGURE�A.16� The side-tangent case with O1 at origin and horizontal center line O1O2.
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For the side-tangent case in Figure A.16, we write the following trigonometric identities 
within triangle O P O1 1 2′ :

 

cos( )

sin( )
( )

α

α

= −

= − −

r r

O O

r r

O O

1 2

1 2

1
2

1 2
2

1

 (A.94)

With these notations, we have

 

x r c

y r s

1 1

1 1

= ⋅
= ± ⋅

α
α

 (A.95)

and

 

x O O r c

y r s

2 1 2 2

2 2

= + ⋅

= ± ⋅

α

α
 (A.96)

Again, the upper sign corresponds to the solution shown in Figure A.16 and the lower sign 
to the mirror case, not shown.

The final solutions (x1, y1) and (x2, y2) to the actual problem are obtained by rotating 
points P1 and P2 counterclockwise by the angle θ and then translating them by the amount 
xO1 along the OX axis and by amount yO1

 along the OY axis.

A.22� TRAnSlATionS�AnD�RoTATionS�in�2D
The coordinate transformation from reference frame OXY to a translated reference frame 
O1X1Y1 (Figure A.17a) is

 

x x x

y y y

= +

= +

O

O

1

1

1

1

 (A.97)

The inverses transformation is

 

x x x

y y y

1

1

1

1

= −

= −

O

O

 (A.98)

The coordinate transformation from reference frame OXY to a rotated reference frame 
OX1Y1 (Figure A.17b) is

 

x x y

y x y

= −

= +

1 1

1 1

cos sin

sin cos

θ θ

θ θ
 (A.99)
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For θ = 90° and θ = −90°, the transformations are respectively:

 x y y x= − =1 1and  (A.100)

 x y y x= = −1 1and  (A.101)

The inverses general transformation is

 

x x y

y x y

1

1

= ⋅ + ⋅

= − ⋅ + ⋅

cos sin

sin cos

θ θ

θ θ
 (A.102)

For θ = 90° and θ = −90°, the inverse transformations are respectively:

 x y y x1 1= = −and  (A.103)

 x y y x1 1= − =and  (A.104)

A.23� TRAnSlATionS�AnD�RoTATionS�in�3D
When changing the coordinates from reference frame OXYZ (Figure A.18a) to a translated 
reference frame O1X1Y1Z1 (Figure A.18b), the following equations apply:

 

x x x

y y y

z z z
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= +
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 (A.105)
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θ
Y

X

A

x

FiGURE�A.17� Translation (a) and rotation by angle θ (b) in 2D.
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The inverses coordinate transformation from O1X1Y1Z1 in Figure 8.18b to OXYZ in Figure 
8.18a is

 

x x x

y y y

z z z

1

1

1

= −

= −

= −

O

O

O

 (A.106)

The basic 3D transformation matrices that rotate vectors (x1, y1, z1) about the OX, OY, and 
OZ are as follows. A rotation by angle γ (roll angle) about OX axis (see Figure A.18c) is
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A rotation by angle β (pitch angle) about OY axis (see Figure A.18d) is
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Y
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FiGURE�A.18� Initially aligned reference frames OXYZ and O1X1Y1Z1 (a) and transformed reference 
frame O1X1Y1Z1 through translation (b), rotation about OX (c), rotation about OY (d), and rotation 
about OZ (e).
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A rotation by angle α (yaw angle) about OZ axis (see Figure A.18e) is
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x y z x y
















= ( )
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=1 1 1 1

0

0

0 0 1

cos sin

sin cos

α α
α α 11 1z Rz( ) ( )α  (A.109)

More complex transformations can be obtained through matrix multiplication. For exam-
ple, the sequence of roll, pitch, and yaw (in this order) about a fixed reference frame OXYZ 
is described by

 R R R Rz x y( , , ) ( ) ( ) ( )γ β α α γ β=  (A.110)

Because matrix multiplication is not commutative, the end result will depend on the order 
in which these basic rotation transformations are applied.

A.24� nUmERicAl�DiFFEREnTiATion
Let f(x) be a continuous function of x that has derivatives up to order n. Below are formulae 
for the first- and second-order derivatives of f(x), where O(..) is a remainder, which depends 
on Δx. The smaller Δx, the less error is incurred when O(..) is left apart.

A.24.1� First-order�Differentiation

Forward differentiation
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∂
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+
f x

x

f x x f x
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∆
∆

∆  (A.111)

Backward differentiation
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∂
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∆  (A.112)

Centered differentiation
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2  (A.113)

Notice that centered differentiation has better accuracy.

A.24.2� Second-order�Differentiation

The most common second-order differentiation formula is

 

∂
∂
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∆ ∆
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These equations can be obtained from Taylor’s series approximation of f(x), that is,
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when the function f(x) and its derivatives up to order n are known at point x ± Δx. Notice 
that formulae A.111, A.112, and A.113 are obtained by setting n = 1 in Equation A.115, 
while formula A.114 is obtained for n = 2 in the same equation.

A.25� nEwTon–RAPhSon�mEThoD�FoR�RooT�FinDinG
Newton–Raphson is a fast converging method for finding approximations to the roots 
(or zeroes) of real-valued functions, which is based on successive Taylor’s approximations 
of the function.

Given a real, continuous function f(x) and its derivative f′(x), we begin with an initial 
guess x0 for a root r of the function. Assuming that f ′(x1) ≠ 0, a better approximation x1 of 
the root r will be

 
x x

f x

f x
1 0

0

0

= − ′

( )

( )
 (A.116)

The approximating process is repeated as

 
x x

f x

f x
k k

k

k
+ = −

′1
( )

( )
 (A.117)

until |f(xk+1)| < ε or |xk+1 − xk| < ε, where ε is the desired accuracy.
A geometric interpretation of Newton–Raphson method is provided in Figure A.19.

O

y

X

f (x)

x0x1x2x3

FiGURE�A.19� Newton–Raphson iteration.
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A.26� AREA�UnDER�A�cURvE�USinG�TRAPEZoiDAl�RUlE
The area A delimited by a curve of equation y = f(x) and the [a, b] interval of the x-axis is 
defined by

 

A f x dx A
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b

n
i

n

i= =∫ ∑→∞
=

( ) lim
1

 (A.118)

where Ai is the area of the ith strip (see Figure A.20). We can develop approximation 
schemes for the value of the integral by assuming a finite number n and adopting simple 
trapezoidal approximations of these strips.

We assume the top portion of the stripes in Figure A.21 to be straight lines. For area Ai, 
this approximating straight line is the chord joining points (xi, f(xi)) and (xi+1, f(xi+1) and 
has the equation
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 (A.119)

O x2 x3 x4 xi x

An

f (x)

y

AiA3A2A1

a = x1 xn+1 = b

FiGURE�A.20� Integration as the area under the curve f(x) over the interval [a, b].

O

y

x2 x3 x4 xi xa = x1

AnAiA3A2A1

f (x)

xn+1 = b

FiGURE�A.21� Approximation of the area under a curve using trapezoids.
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Using the notation h = xi+1 − xi for the step size in x, we can write the linear approximation 
to f(x) as

 
y f

h
f f x xi i i i= + − −+

1
1( )( )  (A.120)

The area Ai of the ith strip will therefore be the area of a trapezoid, that is,

 
A

h
f fi i i= + +

1
1( )  (A.121)

Figure A.21 shows the OX interval a to b divided into n equal intervals of length h. We 
can then write the approximate value of the total area A as
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Note that except for the end values, that is, i = 1 and i = n, each evaluation of f(x) at a node 
xi occurs twice. Thus, the approximation to the integral can be written in the simplified 
form:
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� ii h)  (A.123)

which is the trapezoid rule formula.
In developing the aforementioned approximation, we left some area under the f(x) out 

of the sum or included some area of trapezoids that lies below f(x)—Figure A.21. It can be 
shown that the error can be expressed in the following form:

 
ε ξ= − ″b a

h f
12

2 ( )  (A.124)

where f″(ξ) is the value of the second derivative of f(x), evaluated at some point ξ within the 
interval [a, b]. It is known that the second derivative relates to the curvature of f(x), con-
firmed by the largest apparent error in Figure A.21, which coincides with the maximum 
of f(x) where the curvature appears most extreme. Equation A.124 suggests that if the step 
size h is reduced to half, the error estimate ε decreases by a factor of four, while the number 
of calculations required to compute the sum A is only doubled.
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A.27� �EUlER�inTEGRATion�oF�FiRST-oRDER oRDinARy�
DiFFEREnTiAl�EqUATionS

Consider the first-order differential equation dy/dt = f(t), where the function f(t) may not 
be readily integrable. Euler method performs numerical integration, that is, find y(t) given 
initial condition y0 = y(t0), by means of a slope-projection technique (see Figure A.22).

Begin at t0, at which the value y0 is known. Project the slope over a horizontal subinter-
val t1 − t0 and evaluate y1 as y1 = y0 + f(t0)(t1 − t0). Repeat the process at t2, t3, t4 and so forth 
according to the following equation:

 y y f t t tk k k k k+ += + −1 1( )( )  (A.125)

until the desired final value of t is reached. For the case shown in Figure A.22, after four 
steps, the estimate y4 is less than the true value of the function y(t) at t4 by the amount ε4. 
This error ε is called algorithm error and increases as the integration advances. To reduce 
its effect, it is recommended to begin with a relatively large step (tk+1 − tk) and then steadily 
decreases its size until the corresponding changes in the integrated result are much smaller 
than the desired accuracy. However, a step size that is too small can result in an increased 
round-off error, so a trade-off between these two errors must be sought.

A.28� SolUTionS�oF�Two�AnD�ThREE�linEAR�EqUATionS
The set of two linear equations
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with a1b2–a2b1 ≠ 0 has the solutions
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 (A.127)

t4 tt3
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t2t1t0O

Slope = f (t0)

y

Slope = f (t1)

Slope = f (t2)

Slope = f (t3)
y (t)

ε4

FiGURE�A.22� Euler integration steps.
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The set of three linear equations
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with a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a1b3c2 − a2b1c3 ≠ 0 has the solutions
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y
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 (A.129)

 
z

a b d a b d a b d a b d a b d a b d

a b c a b c a
= + + − − −

+ +
1 2 3 2 3 1 3 1 2 3 2 1 1 3 2 2 1 3

1 2 3 2 3 1 33 1 2 3 2 1 1 3 2 2 1 3b c a b c a b c a b c− − −

A.29� TRiGonomETRic�iDEnTiTiES

 sin( ) sin− = −u u

 cos( ) cos− = +u u

 tan( ) tan− = −u u

 cot( ) cot− = −u u

 sin / cosu u±( ) = ±π 2

 cos / sinu u±( ) =π 2 ∓

 tan / cotu u±( ) = −π 2

 cot / tanu u+( ) = −π 2

 sin sinu u±( ) = −π

 cos cosu u±( ) = −π
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 tan cotu u±( ) = −π

 cot tanu u+( ) = −π

 sin cos2 2 1u u+ =

 
sin cos

cos tan

( tan ) ( cot )
u u

u u

u u
= ± − = ± − = ±

+
= ±

+
1

1 2

2 1

1

1

2

2 2

 
cos sin

cos cot

( cot ) ( tan )
u u

u u

u u
= ± − = ± + = ±

+
= ±

+
1

1 2

2 1

1

1

2

2 2

 sin( ) sin cos cos sinu v u v u v± = ±

 cos( ) cos cos sin sinu v u v u v± = ∓

 
tan( )

tan tan

tan tan
u v

u v

u v
± = ±

1∓

 
cot

cot

cot
u v

u v

u v
±( ) =

±
cot

cot

∓
1

 
sin sin sin cosu v

u v u v± = ±
2

2 2

∓

 
cosu v

u v u v+ = + −
cos cos cos2

2 2

 
cosu v

u v u v− = − + −
cos sin sin2

2 2

 
tan tan

( )
u v

u v

u v
± = ±sin

cos sin

 
cot

sin

sin sin
u v

u v

u v
± = ±

cot
( )

 
sin sinu v u v u v= − − +1

2

1

2
cos( ) cos( )
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cos cos cos cosu v u v u v= − + +1

2

1

2
( ) ( )

 
sin cos sin sinu v u v u v= − + +1

2

1

2
( ) ( )

 
tan tan

cot
u v

u v

u v
= +

+
tan sin

cot

 
cot cot

cot

tan
u v

u v

u v
= +

+
cot

tan

 
sin

cos2 1 2

2
u

u= −

 
cos

cos2 1 2

2
u

u= +

 sin sin cos cos sin( )sin( )2 2 2 2u v v u u v u v− = − = + −

 cos sin cos sin cos( )cos( )2 2 2 2u v v u u v u v− = − = + −

 cos cos sin sin sin( )sin( )2 2 2 2u v v u u v u v− = − = − + −

 
sin

cos sin sinu u u u

2

1

2

1

2

1

2
= − = + − −

 
cos

cos sin sinu u u u

2

1

2

1

2

1

2
= + = + + −

 
tan

cos

cos

cos

sin

sin

cos

u u

u

u

u

u

u2

1

1

1

1
= −

+
= − =

+

 
cot

cos

cos

cos

sin

sin

cos

u u

u

u

u

u

u2

1

1

1

1
= +

−
= + =

−

 sin sin cos2 2u u u=
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 cos cos sin sin cos2 1 2 2 12 2 2 2u u u u u= − = − = −

 
tan

tan

tan cot tan
2

2

1

2
2

u
u

u u u
=

−
=

−

 
cot

cot

cot tan
2

1

2 2

2

u
cot u

u

u u= − = −

 sin sin sin3 3 4 3u u u= −

 cos cos cos3 4 33u u u= −

 sin sin cos sin cos4 8 43u u u u u= −

 cos cos cos4 8 8 14 2u u u= − +

 
d

d

d

dt
u t u t

u t

t
sin ( ) cos ( )

( )=

 
d

d

d

dt
u t u t

u t

t
cos ( ) sin ( )

( )= −

 

d

d

d

d
for 

t
u t

u t

u t

t
u tsin ( )

( )

( )
sin ( )− −=

−
− ≤ ≤1

2

11

1 2 2

π π

 

d

d

d

d
for 

t
u t

u t

u t

t
u tcos ( )

( )
cos ( )− −= −

− ( )
≤ ≤1

2

11

1
0 π

 

d

d

d

d
for 

t
u t

u t

u t

t
u ttan ( )

( )

( )
tan ( )− −=

+
− ≤ ≤1

2
11

1 2 2

π π

ab

c
α

γ

β

FiGURE�A.23� Triangle with sides of lengths a, b, and c and angles of magnitudes α, β, and γ.
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With the notations in Figure A.23, the following relations hold:

Law of cosine: a b c bc2 2 2 2= + − cosα

Law of sines: 
a b c

sin sin sinα β γ
= =

The trigonometric equation a b ccos sinθ θ+ =  has the solutions

 
θ θ= ⋅ ± + −

+











= ( ) ± + −2 2 2
2 2 2

2 2arctan or Atan , Atan
b a b c

a c
b a a b c 22 ,c( )

where Atan2(y, x) = arctan(y/x) is the arctangent function of two arguments that uses 
the individual signs of x and y to determine the quadrant of the resultant angle. Atan2 
is implemented in many programming languages as well as in Excel, MATLAB®, Scilab, 
Mathematica, etc. Note that some programming languages and computer algebra systems 
implement the Atan2 function as Atan2(y, x) while others (like Excel) implement it as 
Atan2(x, y).
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1
 

P
r
o
g
r
a
m
 
P
1
_
0
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
0
1
.
D
T
A
,
 
F
1
_
0
1
.
D
2
D
 
&
 
F
1
_
0
1
.
R
2
D
 
w
i
t
h
 
n
x
 
=
 
5
0
1
 
d
a
t
a
 
p
o
i
n
t
s

4
 

  (
f
o
r
 
n
x
=
6
1
 
s
e
e
 
F
1
_
0
3
.
P
A
S
)
 
t
o
 
p
l
o
t
 
 
F
(
x
)
=
1
/
(
x
*
x
-
2
x
+
1
.
1
)
+
1
/
(
x
*
x
-
6
x
+
9
.
2
)
–
3

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
;

7
 

  c
o
n
s
t
 
 
n
x
=
5
0
1
;
 
x
m
i
n
=
-
1
.
0
;
 
x
m
a
x
=
5
.
0
;
 
 
{
n
r
.
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
x
}

8
 

v
a
r
 
 
F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
9
 

 
 

F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
  {
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
0
 
 
 

F
R
:
 
F
i
l
e
 
o
f
 
r
e
a
l
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
r
e
a
l
 
}

1
1
 
 
 

x
,
F
:
 
d
o
u
b
l
e
;
 

x
r
,
F
r
e
a
l
:
 
r
e
a
l
;
 

i
x
:
 
i
n
t
e
g
e
r
;

1
2
 
B
E
G
I
n

1
3
 
 
A
s
s
i
g
n
(
F
T
,
’
F
1
_
0
1
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

1
4
 
 
A
s
s
i
g
n
(
F
D
,
’
F
1
_
0
1
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

1
5
 
 
A
s
s
i
g
n
(
F
R
,
’
F
1
_
0
1
.
R
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
R
)
;

1
6
 
 
C
l
r
S
c
r
;
 
 
{
N
e
x
t
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
 
.
.
}

1
7
 
 
W
r
i
t
e
L
n
(
F
T
,
’
F
(
x
)
=
1
/
(
x
*
x
-
2
x
+
1
.
1
)
 
+
 
1
/
(
x
*
x
-
6
x
+
9
.
2
)
 
-
 
3
’
)
;

1
8
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 
x
 

F
(
x
)
’
)
;

1
9
 
 
f
o
r
 
i
x
:
=
1
 
t
o
 
n
x
 
d
o
 
B
E
G
I
n

2
0
 
 
 

x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;
 
{
g
e
n
e
r
a
t
e
 
x
}

2
1
 
 
 

  W
r
i
t
e
L
n
(
i
x
:
3
,
’
)
 
x
=
 
‘
,
x
:
1
2
:
8
,
’
 
F
x
=
 
‘
,
F
:
1
2
:
8
)
;
 
{
s
c
r
e
e
n
 
e
c
h
o
}

2
2
 
 
 

F
:
=
1
/
(
x
*
x
-
2
*
x
+
1
.
1
)
+
1
/
(
x
*
x
-
6
*
x
+
9
.
2
)
-
3
;
 
{
e
v
a
l
u
a
t
e
 
F
(
x
)
}

2
3
 
 
 

  W
r
i
t
e
L
n
(
F
T
,
x
:
1
0
:
6
,
’
 
‘
,
F
:
1
2
:
8
)
;
 
{
w
r
i
t
e
 
x
 
a
n
d
 
F
x
 
t
o
 
A
S
C
I
I
 
f
i
l
e
}

2
4
 
 
 

W
r
i
t
e
(
F
D
,
x
,
F
)
;
 
{
w
r
i
t
e
 
x
 
a
n
d
 
F
x
 
t
o
 
t
h
e
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

2
5
 
 
 

x
r
:
=
x
;

2
6
 
 
 

F
r
e
a
l
:
=
F
;

2
7
 
 
 

  W
r
i
t
e
(
F
R
,
x
r
,
F
r
e
a
l
)
;
 

{
w
r
i
t
e
 
x
 
a
n
d
 
F
(
x
)
 
t
o
 
t
h
e
 
f
i
l
e
 
o
f
 
r
e
a
l
s
}

2
8
 
 
E
n
D
;

2
9
 
 
C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;
 

C
l
o
s
e
(
F
R
)
;

3
0
 
 
  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

3
1
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
1
_
0
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
 
F
1
_
0
2
.
D
T
A
 
 
&
 
 
F
1
_
0
2
.
D
2
D
 
 
t
o
 
p
l
o
t
 
t
h
e
 
f
u
n
c
t
i
o
n
 

4
 

F
’
(
x
)
 
=
 
(
2
x
-
2
)
/
S
q
r
(
x
*
x
-
2
x
+
1
.
1
)
 
+
 
(
2
x
-
6
)
/
S
q
r
(
x
*
x
-
6
x
+
9
.
2
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
;

7
 

  c
o
n
s
t
 
n
x
=
5
0
1
;
 
x
m
i
n
=
-
1
.
0
;
 
x
m
a
x
=
5
.
0
;
 
{
n
r
.
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
x
}

8
 

v
a
r
 
F
T
:
 
T
e
x
t
;
 

 
{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
9
 

 
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
  
{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
0
 
 

 
x
,
F
p
:
 
d
o
u
b
l
e
;
 
i
x
:
 
i
n
t
e
g
e
r
;

1
1
 
B
E
G
I
n

1
2
 
 

A
s
s
i
g
n
(
F
T
,
’
F
1
_
0
2
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

1
3
 
 

A
s
s
i
g
n
(
F
D
,
’
F
1
_
0
2
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

1
4
 
 

C
l
r
S
c
r
;
 
 
{
N
e
x
t
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
}

1
5
 
 

  W
r
i
t
e
L
n
(
F
T
,
’
F
’
’
=
(
2
x
-
2
)
/
S
q
r
(
x
*
x
-
2
x
+
1
.
1
)
+
(
2
x
-
6
)
/
S
q
r
(
x
*
x
-
6
x
+
9
.
2
)
’
)
;

1
6
 
 

W
r
i
t
e
L
n
(
F
T
,
’
 

x
 

F
’
’
(
x
)
’
)
;

1
7
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
n
x
 
d
o
 
B
E
G
I
n

1
8
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;
 
{
g
e
n
e
r
a
t
e
 
x
}

1
9
 
 

 
  F
p
:
=
(
2
*
x
-
2
)
/
S
q
r
(
x
*
x
-
2
*
x
+
1
.
1
)
+
(
2
*
x
-
6
)
/
S
q
r
(
x
*
x
-
6
*
x
+
9
.
2
)
;

2
0
 
 

 
W
r
i
t
e
L
n
(
F
T
,
x
:
1
0
:
6
,
’
 
‘
,
F
p
:
1
2
:
8
)
;
 
 
{
w
r
i
t
e
 
x
 
a
n
d
 
F
p
 
t
o
 
A
S
C
I
I
}

2
1
 
 

 
W
r
i
t
e
(
F
D
,
x
,
F
p
)
;
 
{
w
r
i
t
e
 
x
 
a
n
d
 
F
p
 
t
o
 
t
h
e
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
s
}

2
2
 
 

E
n
D
;

2
3
 
 

C
l
o
s
e
(
F
T
)
;
 
C
l
o
s
e
(
F
D
)
;

2
4
 
 

  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
 
R
e
a
d
L
n
;

2
5
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
1
_
0
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
1
_
0
3
.
D
2
D
 
t
o
 
p
l
o
t
 
 
F
(
x
)
=
1
/
(
x
*
x
-
2
x
+
1
.
1
)
+
1
/
(
x
*
x
-
6
x
+
9
.
2
)
-
3

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
;

6
 

  c
o
n
s
t
 
n
x
=
6
1
;
 

x
m
i
n
=
-
1
.
0
;
 
x
m
a
x
=
5
.
0
;
 
{
n
r
.
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
x
}

7
 

v
a
r
 

F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

x
,
F
:
 
d
o
u
b
l
e
;
 

i
x
:
 
i
n
t
e
g
e
r
;

8
 

B
E
G
I
n

9
 

 
C
l
r
S
c
r
;
 

A
s
s
i
g
n
(
F
D
,
’
F
1
_
0
3
.
D
2
D
’
)
;
 

R
e
w
r
i
t
e
(
F
D
)
;

1
0
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
n
x
 
d
o
 
B
E
G
I
n

1
1
 
 
 

x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

1
2
 
 
 

F
:
=
1
/
(
x
*
x
-
2
*
x
+
1
.
1
)
+
1
/
(
x
*
x
-
6
*
x
+
9
.
2
)
-
3
;

1
3
 
 
 

W
r
i
t
e
(
F
D
,
x
,
F
)
;

1
4
 
 

E
n
D
;

1
5
 
 

C
l
o
s
e
(
F
D
)
;

1
6
 
 

W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 

<
C
R
>
.
.
’
)
;
 
 
R
e
a
d
L
n
;

1
7
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
1
_
1
0
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
1
0
.
D
T
A
 
&
 
F
1
_
1
0
.
D
2
D
 
i
f
 
n
x
=
4
0
0
,
 
O
R
 
F
1
_
1
1
.
D
T
A
 

4
 

  &
 
F
1
_
1
1
.
D
2
D
 
i
f
 
n
x
=
4
0
1
 
t
o
 
p
l
o
t
 
t
h
e
 
f
u
n
c
t
i
o
n
 
 
F
(
x
)
=
(
x
*
x
*
x
-
3
x
)
/
(
x
*
x
-
4
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

7
 

c
o
n
s
t
 
n
x
 

=
 
4
0
1
;
 

{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
(
e
i
t
h
e
r
 
4
0
0
 
o
r
 
4
0
1
)
 
}

8
 

 
 
 

x
m
i
n
 
=
-
8
.
0
;
 
x
m
a
x
 
=
 
8
.
0
;
 

{
l
i
m
i
t
s
 
o
v
e
r
 
x
}

9
 

v
a
r
 
F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
1
0
 
 

 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
1
 
 

 
x
,
F
x
:
 
d
o
u
b
l
e
;
 

i
x
:
 
i
n
t
e
g
e
r
;

1
2
 

f
u
n
c
t
i
o
n
 
F
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;
 

{
a
 
r
a
t
i
o
n
a
l
 
f
u
n
c
t
i
o
n
 
o
f
 
d
e
g
r
e
e
 
3
}

1
3
 
B
E
G
I
n

1
4
 

 
  i
f
 
A
b
s
(
x
*
x
-
4
.
0
)
 
>
 
E
p
s
D
 
t
h
e
n
 

{
c
h
e
c
k
 
f
o
r
 
d
i
v
i
s
i
o
n
 
b
y
 
z
e
r
o
 
.
.
}
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1
5
 
 

 
F
:
=
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)

1
6
 
 

e
l
s
e

1
7
 
 

 
F
:
=
I
n
f
D
;

1
8
 
E
n
D
;
 
 
{
.
.
 
F
(
x
)
}

1
9
 
B
E
G
I
n

2
0
 
 

i
f
 
n
x
 
=
 
4
0
0
 
t
h
e
n
 
B
E
G
I
n

2
1
 
 

 
A
s
s
i
g
n
(
F
T
,
’
F
1
_
1
0
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

2
2
 
 

 
A
s
s
i
g
n
(
F
D
,
’
F
1
_
1
0
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

2
3
 
 

E
n
D

2
4
 
 

e
l
s
e
 
B
E
G
I
n

2
5
 
 

 
A
s
s
i
g
n
(
F
T
,
’
F
1
_
1
1
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

2
6
 
 

 
A
s
s
i
g
n
(
F
D
,
’
F
1
_
1
1
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

2
7
 
 

E
n
D
;

2
8
 
 

C
l
r
S
c
r
;
 
 
{
N
e
x
t
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
 
.
.
}

2
9
 
 

W
r
i
t
e
L
n
(
F
T
,
’
F
=
(
x
*
x
*
x
-
3
x
)
/
(
x
*
x
-
4
)
’
)
;

3
0
 
 

W
r
i
t
e
L
n
(
F
T
,
’
 

x
 

F
(
x
)
’
)
;

3
1
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
n
x
 
d
o
 
B
E
G
I
n

3
2
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

3
3
 
 

 
F
x
:
=
F
(
x
)
;

3
4
 
 

 
i
f
 
(
F
x
 
=
 
I
n
f
D
)
 
t
h
e
n
 
B
E
G
I
n
 
{
i
n
s
e
r
t
 
l
i
n
e
 
b
r
e
a
k
e
r
s
.
.
}

3
5
 
 

 
 

W
r
i
t
e
(
F
D
,
I
n
f
D
,
I
n
f
D
)
;
 

{
D
2
D
 
l
i
n
e
 
b
r
e
a
k
e
r
}

3
6
 
 

 
 

W
r
i
t
e
L
n
(
F
T
,
’
=
=
=
=
=
=
’
)
;
 

{
A
S
C
I
I
 
l
i
n
e
 
b
r
e
a
k
e
r
}

3
7
 
 

 
E
n
D

3
8
 
 

 
e
l
s
e
 
B
E
G
I
n
 
 
{
w
r
i
t
e
 
a
c
t
u
a
l
 
d
a
t
a
 
t
o
 
f
i
l
e
.
.
}

3
9
 
 

 
 

W
r
i
t
e
(
F
D
,
x
,
F
x
)
;

4
0
 
 

 
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
0
:
6
,
’
 
‘
,
F
x
:
1
2
:
8
)
;

4
1
 
 

 
E
n
D
;

4
2
 
 

E
n
D
;

4
3
 
 

C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;

4
4
 
 

  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

4
5
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
1
_
1
2
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
1
2
A
.
D
T
A
 
&
 
F
1
_
1
2
A
.
D
2
D
 
t
o
 
p
l
o
t
 
F
(
x
)
=
x
*
(
x
*
x
-
3
)
/
(
x
*
x
-
4
)

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

6
 

  c
o
n
s
t
 
n
x
=
4
0
1
;
 
x
m
i
n
=
-
8
.
0
;
 
x
m
a
x
=
8
.
0
;
 
{
n
r
.
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
x
}

7
 

v
a
r
 

F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
8
 

 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
  {
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

9
 

 
D
x
,
x
,
F
x
,
L
i
m
L
e
f
t
,
L
i
m
R
i
g
h
t
:
 
d
o
u
b
l
e
 
 
 
 
 
i
x
:
 
i
n
t
e
g
e
r
;

1
0
 
  f
u
n
c
t
i
o
n
 
F
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;
 

{
a
 
r
a
t
i
o
n
a
l
 
f
u
n
c
t
i
o
n
 
o
f
 
d
e
g
r
e
e
 
3
}

1
1
 
B
E
G
I
n

1
2
 
 

i
f
 
A
b
s
(
x
*
x
-
4
.
0
)
 
<
=
 
E
p
s
D
 
t
h
e
n
 
{
c
h
e
c
k
 
f
o
r
 
d
i
v
i
s
i
o
n
 
b
y
 
z
e
r
o
}

1
3
 
 

 
F
:
=
I
n
f
D

1
4
 
 

e
l
s
e

1
5
 
 

 
F
:
=
x
*
(
x
*
x
-
3
)
/
(
x
*
x
-
4
)
;

1
6
 
E
n
D
;
 
 
{
.
.
 
F
(
x
)
}

1
7
 
B
E
G
I
n

1
8
 
 

A
s
s
i
g
n
(
F
T
,
’
F
1
_
1
2
A
.
D
T
A
’
)
;
 
 
R
e
w
r
i
t
e
(
F
T
)
;

1
9
 
 

A
s
s
i
g
n
(
F
D
,
’
F
1
_
1
2
A
.
D
2
D
’
)
;
 
 
R
e
w
r
i
t
e
(
F
D
)
;

2
0
 
 

C
l
r
S
c
r
;
 

{
N
e
x
t
 
w
i
l
l
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
}

2
1
 
 

W
r
i
t
e
L
n
(
F
T
,
’
F
=
x
*
(
x
*
x
-
3
)
/
(
x
*
x
-
4
)
’
)
;

2
2
 
 

W
r
i
t
e
L
n
(
F
T
,
’
 

x
 

F
(
x
)
’
)
;

2
3
 
 

  D
x
:
=
0
.
1
*
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
;
  {
l
e
f
t
/
r
i
g
h
t
 
o
f
f
s
e
t
 
t
o
 
a
 
s
i
n
g
u
l
a
r
 
p
t
.
}

2
4
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
n
x
 
d
o
 
B
E
G
I
n

2
5
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

2
6
 
 

 
F
x
:
=
F
(
x
)
;

2
7
 
 

 
i
f
 
(
F
x
 
=
 
I
n
f
D
)
 
t
h
e
n
 
B
E
G
I
n
 
{
s
i
n
g
u
l
a
r
 
p
o
i
n
t
.
.
}

2
8
 
 

 
 

L
i
m
L
e
f
t
:
=
F
(
x
-
D
x
)
;
 

{
l
i
m
i
t
 
t
o
 
t
h
e
 
l
e
f
t
}

2
9
 
 

 
 

F
x
:
=
R
o
u
n
d
(
L
i
m
L
e
f
t
/
A
b
s
(
L
i
m
L
e
f
t
)
)
*
I
n
f
D
;

3
0
 
 

 
 

W
r
i
t
e
(
F
D
,
x
,
F
x
)
;

3
1
 
 

 
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
0
:
6
,
’
 
‘
,
F
x
:
1
0
:
6
)
;
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3
2
 
 

 
 

W
r
i
t
e
(
F
D
,
I
n
f
D
,
I
n
f
D
)
;
 

{
D
2
D
 
l
i
n
e
 
b
r
e
a
k
e
r
}

3
3
 
 

 
 

W
r
i
t
e
L
n
(
F
T
,
’
=
=
=
=
=
=
’
)
;
 
{
A
S
C
I
I
 
l
i
n
e
 
b
r
e
a
k
e
r
}

3
4
 
 

 
 

L
i
m
R
i
g
h
t
:
=
F
(
x
+
D
x
)
;
 

{
l
i
m
i
t
 
t
o
 
t
h
e
 
r
i
g
h
t
}

3
5
 
 

 
 

F
x
:
=
R
o
u
n
d
(
L
i
m
R
i
g
h
t
/
A
b
s
(
L
i
m
R
i
g
h
t
)
)
*
I
n
f
D
;

3
6
 
 

 
 

W
r
i
t
e
(
F
D
,
x
,
F
x
)
;

3
7
 
 

 
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
0
:
6
,
’
 
‘
,
F
x
:
1
2
:
8
)
;

3
8
 
 

 
 
E
n
D
 
{
.
.
s
i
n
g
u
l
a
r
 
p
o
i
n
t
}

3
9
 
 

 
e
l
s
e
 
B
E
G
I
n
 
{
r
e
g
u
l
a
r
 
p
o
i
n
t
.
.
}

4
0
 
 

 
 

W
r
i
t
e
(
F
D
,
x
,
F
x
)
;

4
1
 
 

 
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
0
:
6
,
’
 
‘
,
F
x
:
1
2
:
8
)
;

4
2
 
 

 
E
n
D
;
 
{
.
.
r
e
g
u
l
a
r
 
p
o
i
n
t
}

4
3
 
 

E
n
D
;

4
4
 
 

C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;

4
5
 
 

  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

4
6
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
1
_
1
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
1
_
1
5
.
D
2
D
 
t
o
 
p
l
o
t
 
f
u
n
c
t
i
o
n
 

4
 

H
(
W
_
W
n
)
=
1
/
S
q
r
t
(
S
q
r
(
1
-
S
q
r
(
W
_
W
n
)
)
 
+
 
S
q
r
(
2
*
Z
e
t
a
*
W
_
W
n
)
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
 
L
i
b
M
a
t
h
;

7
 

  c
o
n
s
t
 
n
x
 
=
 
2
5
1
;
 
 
x
m
i
n
 
=
 
0
.
0
;
 
x
m
a
x
 
=
 
2
.
5
;
 
{
g
r
i
d
 
s
i
z
e
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
Z
e
t
a
}

8
 

 
 

  n
y
 
=
 
 
1
0
;
 
 
y
m
i
n
 
=
 
0
.
1
;
 
y
m
a
x
 
=
 
1
.
0
;
 
{
g
r
i
d
 
s
i
z
e
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
W
_
W
n
}

9
 

v
a
r
 
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
 
x
,
y
,
 
F
:
 
d
o
u
b
l
e
;
 
 
i
x
,
i
y
:
 
i
n
t
e
g
e
r
;

1
0
 
f
u
n
c
t
i
o
n
 
H
(
W
_
W
n
,
Z
e
t
a
:
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
1
 
B
E
G
I
n

1
2
 
 
H
:
=
1
.
0
/
S
q
r
t
(
S
q
r
(
1
-
S
q
r
(
W
_
W
n
)
)
+
 S
q
r
(
2
*
Z
e
t
a
*
W
_
W
n
)
)
;

1
3
 
E
n
D
;
 
 
{
.
.
 
H
(
W
_
W
n
,
Z
e
t
a
)
 
}

1
4
 
B
E
G
I
n

1
5
 
 
A
s
s
i
g
n
(
F
D
,
’
F
1
_
1
5
.
D
2
D
’
)
;
 
 
R
e
w
r
i
t
e
(
F
D
)
;

1
6
 
 
f
o
r
 
i
y
:
=
1
 
t
o
 
n
y
 
d
o
 
B
E
G
I
n
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1
7
 
 
 

y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;
 
{
y
=
W
_
W
n
}

1
8
 
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
n
x
 
d
o
 
B
E
G
I
n

1
9
 
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;
 
{
x
=
Z
e
t
a
}

2
0
 
 
 

 
F
:
=
H
(
x
,
y
)
;
 
 
 
W
r
i
t
e
(
F
D
,
x
,
F
)
;

2
1
 
 
 

E
n
D
;

2
2
 
 
 

W
r
i
t
e
(
F
D
,
I
n
f
D
,
I
n
f
D
)
;
 
 
{
D
2
D
 
l
i
n
e
 
b
r
e
a
k
e
r
}

2
3
 
 
E
n
D
;

2
4
 
 
C
l
o
s
e
(
F
D
)
;

2
5
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
1
_
1
5
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
1
5
.
D
3
D
 
&
 
F
1
_
1
6
.
D
3
D
 
t
o
 
p
l
o
t
 
u
s
i
n
g
 
D
_
3
D
 
f
u
n
c
t
i
o
n
:

4
 

H
(
Z
e
t
a
,
W
_
W
n
)
=
1
/
S
q
r
t
(
S
q
r
(
1
-
S
q
r
(
W
_
W
n
)
)
 
+
 
S
q
r
(
2
*
Z
e
t
a
*
W
_
W
n
)
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

c
o
n
s
t
 
W
m
i
n
:
 
d
o
u
b
l
e
 
=
 
0
.
0
;
 
 
W
m
a
x
:
 
d
o
u
b
l
e
 
=
 
2
.
5
;
 
 
{
W
/
W
n
 
l
i
m
i
t
s
}

7
 

 
 
 
Z
m
i
n
:
 
d
o
u
b
l
e
 
=
 
0
.
1
;
 
 
Z
m
a
x
:
 
d
o
u
b
l
e
 
=
 
1
.
0
;
 
 
{
Z
e
t
a
 
l
i
m
i
t
s
}

8
 

  {
 
D
e
c
o
m
m
e
n
t
 
o
n
e
 
o
f
 
t
h
e
 
l
i
n
e
s
 
b
e
l
o
w
 
 
 
(
F
D
n
m
e
 
i
s
 
t
h
e
 
o
u
t
p
u
t
 
f
i
l
e
 
n
a
m
e
)
 
}

9
 

  {
 
n
Z
:
 
d
o
u
b
l
e
 
=
 
1
0
;
 
 
 
n
W
:
 
d
o
u
b
l
e
 
=
 
2
6
1
;
 
 
F
D
n
m
e
 
=
 
‘
F
1
_
1
5
.
D
3
D
’
;
}

1
0
 

 
 
 
  n
Z
:
 
d
o
u
b
l
e
 
=
 
1
0
0
;
 
 
n
W
:
 
d
o
u
b
l
e
 
=
 
3
7
;
 
 
 
F
D
n
m
e
 
=
 
‘
F
1
_
1
6
.
D
3
D
’
;

1
1
 

v
a
r
 
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
 
 
 
W
,
Z
,
H
:
 
d
o
u
b
l
e
;
 
 
 
i
,
j
:
 
i
n
t
e
g
e
r
;

1
2
 

B
E
G
I
n

1
3
 

 
A
s
s
i
g
n
(
F
D
,
F
D
n
m
e
)
;
 
 
R
e
w
r
i
t
e
(
F
D
)
;

1
4
 

 
W
r
i
t
e
(
F
D
,
 
n
Z
,
n
W
,
 
Z
m
i
n
,
Z
m
a
x
,
 
W
m
i
n
,
W
m
a
x
)
;

1
5
 

 
f
o
r
 
i
:
=
1
 
t
o
 
R
o
u
n
d
(
n
Z
)
 
d
o
 
B
E
G
I
n

1
6
 

 
 
Z
:
=
Z
m
i
n
+
(
Z
m
a
x
-
Z
m
i
n
)
/
(
n
Z
-
1
)
*
(
i
-
1
)
;

1
7
 

 
 
f
o
r
 
j
:
=
1
 
t
o
 
R
o
u
n
d
(
n
W
)
 
d
o
 
B
E
G
I
n

1
8
 

 
 
 
W
:
=
W
m
i
n
+
(
W
m
a
x
-
W
m
i
n
)
/
(
n
W
-
1
)
*
(
j
-
1
)
;

1
9
 

 
 
 
H
:
=
1
/
S
q
r
t
(
S
q
r
(
1
-
S
q
r
(
W
)
)
+
S
q
r
(
2
*
Z
*
W
)
)
;

2
0
 

 
 
 
W
r
i
t
e
(
F
D
,
H
)
;

2
1
 

 
 
E
n
D
;
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2
2
 

 
E
n
D
;

2
3
 

 
C
l
o
s
e
(
F
D
)
;

2
4
 

E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
1
_
2
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
1
_
2
3
.
D
2
D
 
t
o
 
p
l
o
t
 
i
n
e
q
u
a
l
i
t
y
 
S
q
r
(
s
i
n
(
x
)
+
s
i
n
(
y
)
)
-
(
y
*
x
+
0
.
5
)
>
0

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
;

6
 

  c
o
n
s
t
 
n
x
=
4
0
6
;
 

x
m
i
n
=
-
P
i
;
 

x
m
a
x
=
P
i
;
 

{
g
r
i
d
 
s
i
z
e
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
x
}

7
 

 
 

 
  n
y
=
4
0
6
;
 

y
m
i
n
=
-
P
i
;
 

y
m
a
x
=
P
i
;
 

{
g
r
i
d
 
s
i
z
e
 
a
n
d
 
l
i
m
i
t
s
 
o
v
e
r
 
y
}

8
 

v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

x
,
y
:
 
d
o
u
b
l
e
;
 

i
x
,
i
y
:
 
i
n
t
e
g
e
r
;

9
 

f
u
n
c
t
i
o
n
 
I
n
e
q
(
x
,
y
:
d
o
u
b
l
e
)
:
 
B
o
o
l
e
a
n
;

1
0
 
B
E
G
I
n

1
1
 
 

i
f
 
S
q
r
(
s
i
n
(
x
)
+
s
i
n
(
y
)
)
-
(
y
*
x
+
0
.
5
)
 
>
=
 
0
 
t
h
e
n

1
2
 
 

I
n
e
q
:
=
T
R
U
E

1
3
 
 

e
l
s
e

1
4
 
 

I
n
e
q
:
=
F
A
L
S
E
;

1
5
 
E
n
D
;
 
{
.
.
I
n
e
q
(
x
,
y
)
}

1
6
 
B
E
G
I
n

1
7
 
 

C
l
r
S
c
r
;
 
A
s
s
i
g
n
(
F
D
,
’
F
1
_
2
3
.
D
2
D
’
)
;
  R
e
w
r
i
t
e
(
F
D
)
;

1
8
 
 

f
o
r
 
i
y
:
=
1
 
t
o
 
n
y
 
d
o
 
B
E
G
I
n

1
9
 
 

 
y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;

2
0
 
 

 
f
o
r
 
i
x
:
=
1
 
t
o
 
n
x
 
d
o
 
B
E
G
I
n

2
1
 
 

 
 

x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

2
2
 
 

 
 

i
f
 
n
O
T
 
I
n
e
q
(
x
,
y
)
 
t
h
e
n
 
W
r
i
t
e
(
F
D
,
x
,
y
)
;

2
3
 
 

 
E
n
D
;

2
4
 
 

E
n
D
;

2
5
 
 

C
l
o
s
e
(
F
D
)
;

2
6
 
 

  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

2
7
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
1
_
2
4
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
2
4
A
.
D
T
A
 
&
 
F
1
_
2
4
A
.
D
2
D
 
t
o
 
p
l
o
t
 
A
r
c
h
i
m
e
d
e
a
n
 
s
p
i
r
a
l
:

4
 

  x
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
 

&
 
y
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
 
 
w
i
t
h
 
T
m
i
n
<
T
h
e
t
a
<
T
m
a
x
 
i
n
 
r
a
d
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
;

7
 

  c
o
n
s
t
 
n
T
 
=
 
9
1
;
  {
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
(
e
i
t
h
e
r
 
9
1
 
o
r
 
8
*
1
8
0
+
1
=
1
4
4
1
)
}

8
 

 
 
 
  T
m
i
n
=
0
.
0
;
 
T
m
a
x
=
8
*
P
i
;
  {
l
i
m
i
t
s
 
o
v
e
r
 
T
h
e
t
a
 
}

9
 

v
a
r
 
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
  {
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
0
 
 
 
 
F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 
}

1
1
 
 
 
 
T
h
e
t
a
,
x
,
y
:
 
d
o
u
b
l
e
;
 

i
T
:
 
i
n
t
e
g
e
r
;

1
2
 
B
E
G
I
n

1
3
 
 
A
s
s
i
g
n
(
F
D
,
’
F
1
_
2
4
A
.
D
2
D
’
)
;
  R
e
w
r
i
t
e
(
F
D
)
;

1
4
 
 
A
s
s
i
g
n
(
F
T
,
’
F
1
_
2
4
A
.
D
T
A
’
)
;
  R
e
w
r
i
t
e
(
F
T
)
;

1
5
 
 
C
l
r
S
c
r
;
 
 
{
W
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
}

1
6
 
 
W
r
i
t
e
L
n
(
F
T
,
’
x
(
T
h
e
t
a
)
 
=
 
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
’
)
;

1
7
 
 
W
r
i
t
e
L
n
(
F
T
,
’
y
(
T
h
e
t
a
)
 
=
 
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
’
)
;

1
8
 
 
W
r
i
t
e
L
n
(
F
T
,
’
  T
h
e
t
a
 
x
(
T
h
e
t
a
)
 

y
(
T
h
e
t
a
)
’
)
;

1
9
 
 
f
o
r
 
i
T
:
=
1
 
t
o
 
n
T
 
d
o
 
B
E
G
I
n

2
0
 
 
 
T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;
 
{
g
e
n
e
r
a
t
e
 
T
}

2
1
 
 
 
x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
;
 

y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
;

2
2
 
 
 
W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
:
1
0
:
6
,
’
 
‘
,
x
:
1
4
:
1
0
,
’
 
‘
,
y
:
1
4
:
1
0
)
;

2
3
 
 
 
W
r
i
t
e
(
F
D
,
x
,
y
)
;

2
4
 
 
E
n
D
;

2
5
 
 
C
l
o
s
e
(
F
T
)
;
 

C
l
o
s
e
(
F
D
)
;

2
6
 
 
  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

2
7
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
1
_
2
4
B
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
2
4
B
.
D
T
A
 
&
 
F
1
_
2
4
B
.
D
2
D
 
t
o
 
p
l
o
t
 
A
r
c
h
i
m
e
d
e
a
n
 
s
p
i
r
a
l
:

4
 

  x
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
 
&
 

y
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
 
 
w
i
t
h
 
 
T
m
i
n
<
T
h
e
t
a
<
T
m
a
x
 
i
n
 
r
a
d
.

5
 

  T
h
e
t
a
 
s
t
e
p
 
i
s
 
a
d
j
u
s
t
e
d
 
s
o
 
t
h
a
t
 
p
l
o
t
 
s
e
g
m
e
n
t
 
l
e
n
g
t
h
s
 
a
r
e
 
D
L
a
v
g
 
±
 
D
L
t
o
l
.

6
 

  N
O
T
E
 
1
:
 
I
f
 
I
n
c
D
T
 
=
 
1
/
D
e
c
D
T
 
t
h
e
 
2
n
d
 
r
e
p
e
a
t
-
u
n
t
i
l
 
l
o
o
p
 
m
a
y
 
b
e
c
o
m
e
 
i
n
f
i
n
i
t
e
.

7
 

  N
O
T
E
 
2
:
 
D
i
f
f
e
r
e
n
t
 
I
n
c
D
T
 
o
r
 
D
e
c
D
T
 
w
i
l
l
 
r
e
d
u
c
e
 
/
 
i
n
c
r
e
a
s
e
 
F
u
n
c
E
v
a
l
s
.

8
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

9
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

1
0
 
c
o
n
s
t
 
T
m
i
n
 
=
 
0
.
0
;
 

T
m
a
x
 
=
 
8
*
P
i
;
 

{
l
i
m
i
t
s
 
o
f
 
T
h
e
t
a
}

1
1
 
 

 
 

  n
T
 
=
 
1
0
1
;
 

{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
t
o
 
e
x
t
r
a
c
t
 
x
 
&
 
y
 
b
o
u
n
d
s
}

1
2
 
 

 
 

P
l
o
t
D
e
f
x
 
=
 
4
0
5
;
 

P
l
o
t
D
e
f
y
 
=
 
4
0
5
;
 
{
p
l
o
t
 
b
o
x
 
r
e
s
o
l
u
t
i
o
n
 

}
1
3
 
 

 
 

D
L
a
v
g
 
=
 
3
1
;
 

{
a
p
p
r
o
x
i
m
a
t
e
 
l
e
n
g
t
h
 
o
f
 
p
l
o
t
 
s
e
g
m
e
n
t
}

1
4
 
 

 
 

D
L
t
o
l
 
=
 
0
.
0
0
1
;
 
{
t
o
l
e
r
a
n
c
e
 
o
f
 
s
e
g
m
e
n
t
 
l
e
n
g
t
h
 
}

1
5
 
 

 
 

  I
n
c
D
T
 
=
 
1
.
0
5
;
 
{
D
T
 
i
n
c
r
e
a
s
e
r
 
c
o
e
f
f
i
c
i
e
n
t
 
i
.
e
.
 
D
T
:
=
I
n
c
D
T
*
D
T
 

}
1
6
 
 

 
 

  D
e
c
D
T
 
=
 
0
.
9
5
;
 
{
D
T
 
d
e
c
r
e
a
s
e
r
 
c
o
e
f
f
i
c
i
e
n
t
 
i
.
e
.
 
D
T
:
=
D
e
c
D
T
*
D
T
 

}
1
7
 
v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
 
}

1
8
 
 

 
F
T
:
 
T
e
x
t
;
 
{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
1
9
 
 

 
  x
,
 
x
m
i
n
,
x
m
a
x
,
 

{
x
 
p
o
i
n
t
 
a
n
d
 
x
-
r
a
n
g
e
 
o
f
 
p
l
o
t
 
i
n
 
w
o
r
l
d
 
u
n
i
t
s
}

2
0
 
 

 
  y
,
 
y
m
i
n
,
y
m
a
x
,
 

{
y
 
p
o
i
n
t
 
a
n
d
 
y
-
r
a
n
g
e
 
o
f
 
p
l
o
t
 
i
n
 
w
o
r
l
d
 
u
n
i
t
s
}

2
1
 
 

 
k
x
,
k
y
,
 

{
x
,
y
 
s
c
a
l
e
 
f
a
c
t
o
r
s
}

2
2
 
 

 
T
,
D
T
,
D
L
,
 
x
_
1
,
y
_
1
:
 
d
o
u
b
l
e
;

2
3
 
 

 
i
T
,
 
D
a
t
a
P
t
s
,
 
F
u
n
c
E
v
a
l
s
:
 
L
o
n
g
I
n
t
;
 
 
 
O
K
:
 
B
o
o
l
e
a
n
;

2
4
 
p
r
o
c
e
d
u
r
e
 
F
x
F
y
(
T
h
e
t
a
:
 
d
o
u
b
l
e
;
 
v
a
r
 
F
x
,
F
y
:
 
d
o
u
b
l
e
)
;

2
5
 
B
E
G
I
n

2
6
 
 

F
x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
;

2
7
 
 

F
y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
;

2
8
 
 

I
n
c
(
F
u
n
c
E
v
a
l
s
)

2
9
 
E
n
D
;
 
{
.
.
F
x
F
y
(
 
)
}

3
0
 
B
E
G
I
n

3
1
 
 

A
s
s
i
g
n
(
F
D
,
’
F
1
_
2
4
B
.
D
2
D
’
)
;
 
 
R
e
w
r
i
t
e
(
F
D
)
;
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3
2
 
 

A
s
s
i
g
n
(
F
T
,
’
F
1
_
2
4
B
.
D
T
A
’
)
;
 
 
R
e
w
r
i
t
e
(
F
T
)
;

3
3
 
 

C
l
r
S
c
r
;
 
{
N
e
x
t
 
w
r
i
t
e
 
t
h
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
}

3
4
 
 

W
r
i
t
e
L
n
(
F
T
,
’
x
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
’
)
;

3
5
 
 

W
r
i
t
e
L
n
(
F
T
,
’
y
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
’
)
;

3
6
 
 

  W
r
i
t
e
L
n
(
F
T
,
’
 

D
e
l
t
a
L
 

T
h
e
t
a
 
x
(
T
h
e
t
a
)
 

y
(
T
h
e
t
a
)
’
)
;

3
7
 
 

F
u
n
c
E
v
a
l
s
:
=
0
;
 
{
r
e
s
e
t
 
f
u
n
c
t
i
o
n
 
e
v
a
l
u
a
t
i
o
n
 
c
o
u
n
t
e
r
}

3
8
 
 

x
m
i
n
:
=
I
n
f
D
;
 

x
m
a
x
:
=
-
I
n
f
D
;
 

y
m
i
n
:
=
I
n
f
D
;
 
y
m
a
x
:
=
-
I
n
f
D
;

3
9
 
 

  f
o
r
 
i
T
:
=
1
 
t
o
 
n
T
 
d
o
 
B
E
G
I
n
  {
E
s
t
i
m
a
t
e
 
x
m
i
n
,
x
m
a
x
,
y
m
i
n
,
y
m
a
x
 
a
n
d
 
k
x
,
k
y
:
}

4
0
 
 

 
T
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;
 
{
g
e
n
e
r
a
t
e
 
c
u
r
r
e
n
t
 
T
}

4
1
 
 

 
F
x
F
y
(
T
,
x
,
y
)
;

4
2
 
 

 
i
f
 
(
x
 
<
 
x
m
i
n
)
 
t
h
e
n
 
x
m
i
n
:
=
x
;
 
{
u
p
d
a
t
e
 
x
m
i
n
}

4
3
 
 

 
i
f
 
(
x
 
>
 
x
m
a
x
)
 
t
h
e
n
 
x
m
a
x
:
=
x
;
 
{
u
p
d
a
t
e
 
x
m
a
x
}

4
4
 
 

 
i
f
 
(
y
 
<
 
y
m
i
n
)
 
t
h
e
n
 
y
m
i
n
:
=
y
;
 
{
u
p
d
a
t
e
 
y
m
i
n
}

4
5
 
 

 
i
f
 
(
y
 
>
 
y
m
a
x
)
 
t
h
e
n
 
y
m
a
x
:
=
y
;
 
{
u
p
d
a
t
e
 
y
m
a
x
}

4
6
 
 

E
n
D
;

4
7
 
 

k
x
:
=
P
l
o
t
D
e
f
x
/
(
x
m
a
x
-
x
m
i
n
)
;
 

{
x
-
a
x
i
s
 
s
c
a
l
e
 
f
a
c
t
o
r
}

4
8
 
 

k
y
:
=
P
l
o
t
D
e
f
y
/
(
y
m
a
x
-
y
m
i
n
)
;
 

{
y
-
a
x
i
s
 
s
c
a
l
e
 
f
a
c
t
o
r
}

4
9
 
 

T
:
=
T
m
i
n
;
 
 
D
L
:
=
0
.
0
;
 
 
D
a
t
a
P
t
s
:
=
0
;

5
0
 
 

F
x
F
y
(
T
,
 
x
,
y
)
;
 
 
{
c
o
m
p
u
t
e
 
f
i
r
s
t
 
p
o
i
n
t
}

5
1
 
 

D
T
:
=
(
T
m
a
x
-
T
m
i
n
)
/
n
T
;
 

{
s
o
m
e
 
i
n
i
t
i
a
l
 
T
 
s
t
e
p
 
s
i
z
e
}

5
2
 
 

R
e
p
e
a
t

5
3
 
 

 
W
r
i
t
e
(
F
D
,
 
x
,
y
)
;
 
{
.
.
w
r
i
t
e
 
d
a
t
a
 
t
o
 
f
i
l
e
}

5
4
 
 

 
W
r
i
t
e
L
n
(
F
T
,
D
L
:
1
2
:
8
,
’
 

‘
,
T
:
1
2
:
8
,
’
 
‘
,
x
:
1
4
:
1
0
,
’
 
‘
,
y
:
1
4
:
1
0
)
;

5
5
 
 

 
I
n
c
(
D
a
t
a
P
t
s
)
;

5
6
 
 

 
x
_
1
:
=
x
;
 

y
_
1
:
=
y
;
 

{
.
.
p
r
e
v
i
o
u
s
 
x
 
&
 
y
}

5
7
 
 

 
R
e
p
e
a
t

5
8
 
 

 
 

F
x
F
y
(
T
+
D
T
,
 
x
,
y
)
;

5
9
 
 

 
 

D
L
:
=
S
q
r
t
(
S
q
r
(
k
x
*
(
x
-
x
_
1
)
)
+
 S
q
r
(
k
y
*
(
y
-
y
_
1
)
)
)
;

6
0
 
 

 
 

i
f
 
(
D
L
 
<
 
D
L
a
v
g
-
D
L
t
o
l
)
 
t
h
e
n
 
B
E
G
I
n

6
1
 
 

 
 

 
O
K
:
=
F
A
L
S
E
;
 
D
T
:
=
I
n
c
D
T
*
D
T
;
 

{
i
n
c
r
e
a
s
e
 
T
-
s
t
e
p
}

6
2
 
 

 
 

E
n
D
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6
3
 
 

 
 

e
l
s
e
 
B
E
G
I
n

6
4
 
 

 
 

 
i
f
 
(
D
L
 
>
 
D
L
a
v
g
+
D
L
t
o
l
)
 
t
h
e
n
 
B
E
G
I
n

6
5
 
 

 
 

 
 

O
K
:
=
F
A
L
S
E
;
 
D
T
:
=
D
e
c
D
T
*
D
T
;
 
{
d
e
c
r
e
a
s
e
 
T
-
s
t
e
p
}

6
6
 
 

 
 

 
E
n
D

6
7
 
 

 
 

 
e
l
s
e
 
O
K
:
=
T
R
U
E
;

6
8
 
 

 
 

E
n
D
;

6
9
 
 

 
u
n
t
i
l
 
O
K
;
 
{
.
.
2
n
d
 
r
e
p
e
a
t
}

7
0
 
 

 
T
:
=
T
+
D
T
;

7
1
 
 

u
n
t
i
l
 
(
T
 
>
=
 
T
m
a
x
)
;
 
{
.
.
1
s
t
 
r
e
p
e
a
t
}

7
2
 
 

F
x
F
y
(
T
m
a
x
,
 
x
,
y
)
;
 

{
c
a
l
c
u
l
a
t
e
 
l
a
s
t
 
p
o
i
n
t
}

7
3
 
 

D
L
:
=
S
q
r
t
(
S
q
r
(
k
x
*
(
x
-
x
_
1
)
)
+
S
q
r
(
k
y
*
(
y
-
y
_
1
)
)
)
;

7
4
 
 

  W
r
i
t
e
L
n
(
F
T
,
D
L
:
1
2
:
8
,
’
 

‘
,
T
m
a
x
:
1
2
:
8
,
’
 
‘
,
x
:
1
4
:
1
0
,
’
 
‘
,
y
:
1
4
:
1
0
)
;

7
5
 
 

W
r
i
t
e
(
F
D
,
x
,
y
)
;

7
6
 
 

C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;

7
7
 
 

I
n
c
(
D
a
t
a
P
t
s
)
;
 
 
{
N
e
x
t
 
w
r
i
t
e
 
a
 
s
h
o
r
t
 
r
e
p
o
r
t
 
o
n
 
t
h
e
 
s
c
r
e
e
n
:
}

7
8
 
 

  W
r
i
t
e
L
n
(
‘
 

D
L
a
v
g
 
=
 

‘
,
D
L
a
v
g
)
;
 

W
r
i
t
e
L
n
(
‘
 

D
L
t
o
l
 
=
 

‘
,
D
L
t
o
l
:
9
)
;

7
9
 
 

  W
r
i
t
e
L
n
(
‘
 

T
h
e
r
e
 
w
e
r
e
 
‘
,
D
a
t
a
P
t
s
,
’
 
d
a
t
a
 
p
o
i
n
t
s
 
w
r
i
t
t
e
n
 
t
o
 
f
i
l
e
.
’
)
;

8
0
 
 

  W
r
i
t
e
L
n
(
‘
 

T
h
e
r
e
 
w
e
r
e
 
‘
,
F
u
n
c
E
v
a
l
s
,
’
 
F
x
F
y
(
.
.
)
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
.
’
)
;

8
1
 
 

W
r
i
t
e
(
‘
 

P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

8
2
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
1
_
2
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
2
5
.
D
T
A
 
&
 
F
1
_
2
5
.
D
2
D
 
t
o
 
p
l
o
t
 
a
n
 
A
r
c
h
i
m
e
d
e
a
n
 
s
p
i
r
a
l
:

4
 

  x
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
 
&
 
y
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
 
w
i
t
h
 
T
m
i
n
<
T
h
e
t
a
<
T
m
a
x
 
i
n
 
r
a
d
.

5
 

U
s
e
s
  C
o
i
n
c
2
P
t
s
(
.
.
)
 

a
n
d
 

C
o
l
i
n
3
P
t
s
(
.
.
)
 
t
o
 
o
p
t
i
m
i
z
e
 
t
h
e
 
g
r
a
p
h
.

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
,
 
L
i
b
G
e
2
D
;

8
 

c
o
n
s
t
 
T
m
i
n
 
=
 
0
.
0
;
 

T
m
a
x
 
=
 
8
*
P
i
;
 

{
T
h
e
t
a
 
l
i
m
i
t
s
}

9
 

 
 

 
  n
T
0
 
=
 
1
0
0
;
 

{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
t
o
 
e
x
t
r
a
c
t
 
x
 
a
n
d
 
y
 
b
o
u
n
d
s
}

1
0
 
 

 
 

n
T
 
=
 
1
0
0
0
;
 

{
n
u
m
b
e
r
 
o
f
 
a
c
t
u
a
l
 
p
l
o
t
 
p
o
i
n
t
s
}
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1
1
 
v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
2
 
 

 
F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
1
3
 
 

 
  x
,
 
x
m
i
n
,
x
m
a
x
,
 

{
x
 
p
o
i
n
t
 
a
n
d
 
x
 
p
l
o
t
 
l
i
m
i
t
s
 
i
n
 
w
o
r
l
d
 
u
n
i
t
s
}

1
4
 
 

 
  y
,
 
y
m
i
n
,
y
m
a
x
,
 

{
y
 
p
o
i
n
t
 
a
n
d
 
y
 
p
l
o
t
 
l
i
m
i
t
s
 
i
n
 
w
o
r
l
d
 
u
n
i
t
s
}

1
5
 
 

 
  x
2
,
y
2
,
x
1
,
y
1
,
E
p
s
2
,
E
p
s
3
,
T
:
 
d
o
u
b
l
e
;
 
i
T
,
 
D
a
t
a
P
t
s
,
 
F
u
n
c
E
v
a
l
s
:
 
L
o
n
g
I
n
t
;

1
6
 
p
r
o
c
e
d
u
r
e
 
F
x
F
y
(
T
h
e
t
a
:
 
d
o
u
b
l
e
;
 
v
a
r
 
F
x
,
F
y
:
 
d
o
u
b
l
e
)
;

1
7
 
B
E
G
I
n

1
8
 
 

I
n
c
(
F
u
n
c
E
v
a
l
s
)
;

1
9
 
 

F
x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
;

2
0
 
 

F
y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
;

2
1
 
E
n
D
;
 
{
.
.
F
x
F
y
(
)
}

2
2
 
p
r
o
c
e
d
u
r
e
 
W
r
i
t
e
2
F
i
l
e
(
T
,
x
,
y
:
d
o
u
b
l
e
)
;

2
3
 
B
E
G
I
n

2
4
 
 

  W
r
i
t
e
L
n
(
F
T
,
T
:
1
0
:
6
,
’
 
‘
,
x
:
1
4
:
1
0
,
’
 
‘
,
y
:
1
4
:
1
0
)
;
 
 
{
w
r
i
t
e
 
T
,
x
,
y
 
t
o
 
A
S
C
I
I
}

2
5
 
 

W
r
i
t
e
(
F
D
,
x
,
y
)
;
 
 
{
w
r
i
t
e
 
x
,
y
 
t
o
 
t
h
e
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
s
}

2
6
 
 

I
n
c
(
D
a
t
a
P
t
s
)
;

2
7
 
E
n
D
;
 
{
.
.
W
r
i
t
e
2
F
i
l
e
}

2
8
 
l
a
b
e
l
 
L
a
b
e
l
0
,
L
a
b
e
l
1
,
L
a
b
e
l
2
;

2
9
 
B
E
G
I
n

3
0
 
 

A
s
s
i
g
n
(
F
D
,
’
F
1
_
2
5
.
D
2
D
’
)
;
 
 
R
e
w
r
i
t
e
(
F
D
)
;

3
1
 
 

A
s
s
i
g
n
(
F
T
,
’
F
1
_
2
5
.
D
T
A
’
)
;
 
 
R
e
w
r
i
t
e
(
F
T
)
;

3
2
 
 

C
l
r
S
c
r
;
 
 
{
N
e
x
t
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
 
}

3
3
 
 

W
r
i
t
e
L
n
(
F
T
,
’
x
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
’
)
;

3
4
 
 

W
r
i
t
e
L
n
(
F
T
,
’
y
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
’
)
;

3
5
 
 

W
r
i
t
e
L
n
(
F
T
,
’
 
T
h
e
t
a
 
x
(
T
h
e
t
a
)
 
y
(
T
h
e
t
a
)
’
)
;

3
6
 
 

F
u
n
c
E
v
a
l
s
:
=
0
;
 
 
{
r
e
s
e
t
 
f
u
n
c
t
i
o
n
 
e
v
a
l
u
a
t
i
o
n
 
c
o
u
n
t
e
r
}

3
7
 
 

D
a
t
a
P
t
s
:
=
0
;

3
8
 
 

x
m
i
n
:
=
I
n
f
D
;
 
x
m
a
x
:
=
-
I
n
f
D
;
 
y
m
i
n
:
=
I
n
f
D
;
 
y
m
a
x
:
=
-
I
n
f
D
;

3
9
 
 

  f
o
r
 
i
T
:
=
1
 
t
o
 
n
T
0
 
d
o
 
B
E
G
I
n
 

{
E
s
t
i
m
a
t
e
 
x
m
i
n
,
x
m
a
x
,
y
m
i
n
,
y
m
a
x
 
a
n
d
 
k
x
,
k
y
:
}

4
0
 
 

 
T
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
0
-
1
)
*
(
i
T
-
1
)
;
 

{
g
e
n
e
r
a
t
e
 
c
u
r
r
e
n
t
 
T
}
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4
1
 
 

 
F
x
F
y
(
T
,
x
,
y
)
;

4
2
 
 

 
i
f
 
(
x
 
<
 
x
m
i
n
)
 
t
h
e
n
 
x
m
i
n
:
=
x
;
 
{
u
p
d
a
t
e
 
x
m
i
n
}

4
3
 
 

 
i
f
 
(
x
 
>
 
x
m
a
x
)
 
t
h
e
n
 
x
m
a
x
:
=
x
;
 
{
u
p
d
a
t
e
 
x
m
a
x
}

4
4
 
 

 
i
f
 
(
y
 
<
 
y
m
i
n
)
 
t
h
e
n
 
y
m
i
n
:
=
y
;
 
{
u
p
d
a
t
e
 
y
m
i
n
}

4
5
 
 

 
i
f
 
(
y
 
>
 
y
m
a
x
)
 
t
h
e
n
 
y
m
a
x
:
=
y
;
 
{
u
p
d
a
t
e
 
y
m
a
x
}

4
6
 
 

E
n
D
;
 
{
.
.
f
o
r
}

4
7
 
 

E
p
s
2
:
=
0
.
0
0
0
0
0
2
*
(
S
q
r
(
x
m
a
x
-
x
m
i
n
)
+
S
q
r
(
y
m
a
x
-
y
m
i
n
)
)
;

4
8
 
 

E
p
s
3
:
=
0
.
0
0
0
0
0
1
*
(
S
q
r
(
x
m
a
x
-
x
m
i
n
)
+
S
q
r
(
y
m
a
x
-
y
m
i
n
)
)
;

4
9
 
 

i
T
:
=
1
;

5
0
 
 

F
x
F
y
(
T
m
i
n
,
x
,
y
)
;
 

{
c
o
m
p
u
t
e
 
f
i
r
s
t
 
p
o
i
n
t
}

5
1
 
 

W
r
i
t
e
2
F
i
l
e
(
T
m
i
n
,
x
,
y
)
;
 

{
w
r
i
t
e
 
f
i
r
s
t
 
p
o
i
n
t
 
t
o
 
f
i
l
e
}

5
2
 
 

x
2
:
=
I
n
f
D
;
 

y
2
:
=
I
n
f
D
;
 

x
1
:
=
I
n
f
D
;
 

y
1
:
=
I
n
f
D
;

5
3
 
 

r
e
p
e
a
t

5
4
 
 

 
L
a
b
e
l
2
:

5
5
 
 

 
x
2
:
=
x
1
;
 
y
2
:
=
y
1
;
 
x
1
:
=
x
;
 
y
1
:
=
y
;

5
6
 
 

 
L
a
b
e
l
1
:

5
7
 
 

 
I
n
c
(
i
T
)
;

5
8
 
 

 
T
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;
 

{
g
e
n
e
r
a
t
e
 
n
e
x
t
 
T
}

5
9
 
 

 
F
x
F
y
(
T
,
x
,
y
)
;
 

{
c
o
m
p
u
t
e
 
n
e
x
t
 
p
o
i
n
t
}

6
0
 
 

 
i
f
 
(
i
T
 
=
 
n
T
)
 
t
h
e
n
 
G
o
T
o
 
L
a
b
e
l
0
;

6
1
 
 

 
  i
f
 
C
o
i
n
c
2
P
t
s
2
D
(
x
1
,
y
1
,
 
x
,
y
,
 
E
p
s
2
)
 
t
h
e
n
 

{
x
1
,
y
1
,
 
x
,
y
 
c
o
i
n
c
i
d
e
 
.
.
}

6
2
 
 

 
 

G
o
T
o
 
L
a
b
e
l
1
;
 
 
{
.
.
 
e
l
i
m
i
n
a
t
e
 
x
,
y
}

6
3
 
 

 
i
f
 
(
x
2
 
=
 
I
n
f
D
)
 
A
n
D
 
(
y
2
 
=
 
I
n
f
D
)
 
t
h
e
n
 
G
o
T
o
 
L
a
b
e
l
2
;

6
4
 
 

 
i
f
 
C
o
l
i
n
3
P
t
s
2
D
(
x
2
,
y
2
,
 
x
1
,
y
1
,
 
x
,
y
,
 
E
p
s
3
)
 
t
h
e
n
 
B
E
G
I
n

6
5
 
 

 
 

  x
1
:
=
x
;
 
y
1
:
=
y
;
 

{
x
2
,
y
2
,
 
x
1
,
y
1
,
 
x
,
y
 
c
o
l
l
i
n
e
a
r
;
 
e
l
i
m
i
n
a
t
e
 
x
1
,
y
1
}

6
6
 
 

 
 

G
o
T
o
 
L
a
b
e
l
1
;
 

6
7
 
 

 
E
n
D
;

6
8
 
 

 
W
r
i
t
e
2
F
i
l
e
(
T
,
x
,
y
)
;

6
9
 
 

u
n
t
i
l
 
F
A
L
S
E
;
 
{
.
.
r
e
p
e
a
t
}
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7
0
 
 

L
a
b
e
l
0
:

7
1
 
 

W
r
i
t
e
2
F
i
l
e
(
T
,
x
,
y
)
;

7
2
 
 

  C
l
o
s
e
(
F
T
)
;
 

C
l
o
s
e
(
F
D
)
;
 
{
N
e
x
t
 
w
r
i
t
e
 
a
 
s
h
o
r
t
 
r
e
p
o
r
t
 
o
n
 
t
h
e
 
s
c
r
e
e
n
:
}

7
3
 
 

W
r
i
t
e
L
n
(
‘
 
E
p
s
2
 
=
 

’
,
E
p
s
2
:
8
)
;
 

W
r
i
t
e
L
n
(
‘
 

E
p
s
3
 
=
 
’
,
E
p
s
3
:
8
)
;

7
4
 
 

  W
r
i
t
e
L
n
(
‘
 
T
h
e
r
e
 
w
e
r
e
 
’
,
D
a
t
a
P
t
s
,
‘
 
d
a
t
a
 
p
o
i
n
t
s
 
w
r
i
t
t
e
n
 
t
o
 
f
i
l
e
.
’
)
;

7
5
 
 

  W
r
i
t
e
L
n
(
‘
 
T
h
e
r
e
 
w
e
r
e
 
’
,
F
u
n
c
E
v
a
l
s
,
‘
 
F
x
F
y
(
.
.
)
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
.
’
)
;

7
6
 
 

W
r
i
t
e
(
‘
 

P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

7
7
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
1
_
2
6
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
1
_
2
6
A
.
D
T
A
 
&
 
F
1
_
2
6
A
.
D
2
D
 
t
o
 
p
l
o
t
 
n
 
e
q
u
a
l
l
y
 
s
p
a
c
e
d

4
 

A
r
c
h
i
m
e
d
e
a
n
 
s
p
i
r
a
l
s
 
t
h
a
t
 
g
r
o
w
 
o
n
e
-
a
t
-
a
-
t
i
m
e
,
 
o
f
 
e
q
u
a
t
i
o
n
s
:

5
 

x
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
 
&
 
y
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
 
w
i
t
h
 
0
<
T
h
e
t
a
<
2
*
P
i

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

8
 

c
o
n
s
t
 
T
m
i
n
 
=
 
0
.
0
;
 

T
m
a
x
 
=
 
2
*
P
i
;
 

{
l
i
m
i
t
s
 
o
f
 
T
h
e
t
a
 
}

9
 

 
 
 
  n
T
 

=
 
3
1
;
 
{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
i
.
e
.
 
o
f
 
T
h
e
t
a
 
v
a
l
u
e
s
}

1
0
 
 

 
 
n
 

=
 
8
;
 
{
n
u
m
b
e
r
 
o
f
 
s
p
i
r
a
l
s
}

1
1
 
v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
2
 
 

 
F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
1
3
 
 

 
T
h
e
t
a
,
T
h
e
t
a
0
,
x
,
y
:
 
d
o
u
b
l
e
;
 

i
T
,
i
C
:
 
i
n
t
e
g
e
r
;

1
4
 
B
E
G
I
n

1
5
 
 

A
s
s
i
g
n
(
F
D
,
’
F
1
_
2
6
A
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

1
6
 
 

A
s
s
i
g
n
(
F
T
,
’
F
1
_
2
6
A
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

1
7
 
 

C
l
r
S
c
r
;
 
{
N
e
x
t
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
}

1
8
 
 

W
r
i
t
e
L
n
(
F
T
,
’
P
o
l
a
r
 
p
l
o
t
 
o
f
 
‘
,
n
,
’
 
A
r
c
h
i
m
e
d
e
a
n
 
s
p
i
r
a
l
s
:
’
)
;

1
9
 
 

W
r
i
t
e
L
n
(
F
T
,
’
 

x
 

y
’
)
;

2
0
 
 

f
o
r
 
i
C
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

2
1
 
 

 
T
h
e
t
a
0
:
=
(
i
C
-
1
)
*
(
2
*
P
i
/
n
)
;
 

{
g
e
n
e
r
a
t
e
 
a
n
g
u
l
a
r
 
o
f
f
s
e
t
}
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2
2
 
 

 
f
o
r
 
i
T
:
=
1
 
t
o
 
n
T
 
d
o
 
B
E
G
I
n

2
3
 
 

 
 
T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;

2
4
 
 

 
 
  x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;
 
y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;

2
5
 
 

 
 
  W
r
i
t
e
L
n
(
F
T
,
x
:
1
2
:
8
,
’
 
‘
,
y
:
1
2
:
8
)
;
 
W
r
i
t
e
(
F
D
,
x
,
y
)
;

2
6
 
 

 
E
n
D
;

2
7
 
 

 
W
r
i
t
e
L
n
(
F
T
,
‘
=
=
=
=
=
=
’
)
;
  {
A
S
C
I
I
 
l
i
n
e
 
b
r
e
a
k
e
r
}

2
8
 
 

 
W
r
i
t
e
(
F
D
,
I
n
f
D
,
I
n
f
D
)
;
 
{
D
2
D
 
f
i
l
e
 
l
i
n
e
 
b
r
e
a
k
e
r
}

2
9
 
 

E
n
D
;

3
0
 
 

C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;

3
1
 
 

  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

3
2
 
E
n
D
;

1
 

P
r
o
g
r
a
m
 
P
1
_
2
6
B
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
D
_
2
D
 
f
i
l
e
s
 
F
1
_
2
6
B
.
D
T
A
 
&
 
F
1
_
2
6
B
.
D
2
D
 
t
o
 
p
l
o
t
 
n
 
e
q
u
a
l
l
y
 
s
p
a
c
e
d
,
 

4
 

s
i
m
u
l
t
a
n
e
o
u
s
l
y
 
g
r
o
w
i
n
g
 
A
r
c
h
i
m
e
d
e
a
n
 
s
p
i
r
a
l
s
 
o
f
 
e
q
u
a
t
i
o
n
s
:
 
 

5
 

  x
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
 
&
 

y
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
 
 
w
i
t
h
 
 
T
m
i
n
<
T
h
e
t
a
<
T
m
a
x
 
i
n
 
r
a
d
.

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

8
 

c
o
n
s
t
 
T
m
i
n
 
=
 
0
.
0
;
 
T
m
a
x
 
=
 
2
*
P
i
;
  {
T
h
e
t
a
 
l
i
m
i
t
s
}

9
 

 
 
 
n
T
 

=
 
3
1
;
 
{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
i
.
e
.
 
T
h
e
t
a
 
v
a
l
u
e
s
}

1
0
 
 

 
 
n
 

=
 
8
;
 
{
n
u
m
b
e
r
 
o
f
 
s
p
i
r
a
l
s
}

1
1
 
v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
f
i
l
e
s
}

1
2
 
 

 
T
h
e
t
a
,
T
h
e
t
a
0
,
x
,
y
:
 
d
o
u
b
l
e
;
 

i
T
,
i
C
:
 
i
n
t
e
g
e
r
;

1
3
 
p
r
o
c
e
d
u
r
e
 
W
r
i
t
e
2
F
i
l
e
(
x
,
y
:
d
o
u
b
l
e
)
;

1
4
 
B
E
G
I
n

1
5
 
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
4
:
1
0
,
’
 
‘
,
y
:
1
4
:
1
0
)
;
  {
w
r
i
t
e
 
x
,
y
 
t
o
 
A
S
C
I
I
 
f
i
l
e
}

1
6
 
 

W
r
i
t
e
(
F
D
,
x
,
y
)
;
 

{
w
r
i
t
e
 
x
,
y
 
t
o
 
t
h
e
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
s
}

1
7
 
E
n
D
;
 
{
.
.
W
r
i
t
e
2
F
i
l
e
}

1
8
 
B
E
G
I
n

1
9
 
 

A
s
s
i
g
n
(
F
D
,
’
F
1
_
2
6
B
.
D
2
D
’
)
;
  R
e
w
r
i
t
e
(
F
D
)
;



426    ◾    Appendix�b:�Selected�Source�code

2
0
 
 

A
s
s
i
g
n
(
F
T
,
’
F
1
_
2
6
B
.
D
T
A
’
)
;
 R
e
w
r
i
t
e
(
F
T
)
;

2
1
 
 

C
l
r
S
c
r
;
 
{
N
e
x
t
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
}

2
2
 
 

W
r
i
t
e
L
n
(
F
T
,
’
P
o
l
a
r
 
p
l
o
t
 
o
f
 
‘
,
n
,
’
 
A
r
c
h
i
m
e
d
e
a
n
 
s
p
i
r
a
l
s
:
’
)
;

2
3
 
 

W
r
i
t
e
L
n
(
F
T
,
’
 

x
 

y
’
)
;

2
4
 
 

f
o
r
 
i
T
:
=
2
 
t
o
 
n
T
 
d
o
 
B
E
G
I
n

2
5
 
 

 
f
o
r
 
i
C
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

2
6
 
 

 
 
T
h
e
t
a
0
:
=
(
i
C
-
1
)
*
(
2
*
P
i
/
n
)
;
 

{
a
n
g
u
l
a
r
 
o
f
f
s
e
t
}

2
7
 
 

 
 
T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
2
)
;
 
{
p
a
r
a
m
e
t
e
r
 
v
a
l
u
e
}

2
8
 
 

 
 
  x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;
 
{
x
 
o
f
 
1
s
t
 
p
o
i
n
t
 
o
f
 
a
 
n
e
w
 
s
e
g
m
e
n
t
}

2
9
 
 

 
 
  y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;
 
{
y
 
o
f
 
1
s
t
 
p
o
i
n
t
 
o
f
 
a
 
n
e
w
 
s
e
g
m
e
n
t
}

3
0
 
 

 
 
W
r
i
t
e
2
F
i
l
e
(
x
,
y
)
;

3
1
 
 

 
 
T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;

3
2
 
 

 
 
  x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;
 
{
x
 
o
f
 
2
n
d
 
p
o
i
n
t
 
o
f
 
a
 
n
e
w
 
s
e
g
m
e
n
t
}

3
3
 
 

 
 
  y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;
 
{
y
 
o
f
 
2
n
d
 
p
o
i
n
t
 
o
f
 
a
 
n
e
w
 
s
e
g
m
e
n
t
}

3
4
 
 

 
 
W
r
i
t
e
2
F
i
l
e
(
x
,
y
)
;

3
5
 
 

 
 
W
r
i
t
e
(
F
D
,
I
n
f
D
,
I
n
f
D
)
;
 

{
D
2
D
 
l
i
n
e
 
b
r
e
a
k
e
r
}

3
6
 
 

 
 
W
r
i
t
e
L
n
(
F
T
,
’
=
=
=
=
=
=
’
)
;
 
{
A
S
C
I
I
 
l
i
n
e
 
b
r
e
a
k
e
r
}

3
7
 
 

 
E
n
D
;

3
8
 
 

E
n
D
;

3
9
 
 

C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;

4
0
 
 

  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

4
1
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
1
_
3
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
 
F
1
_
3
1
.
D
T
A
 
&
 
F
1
_
3
1
.
D
2
D
 
 
t
o
 
p
l
o
t
 
s
p
i
r
a
l
i
n
g
 
p
o
l
y
g
o
n
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

6
 

c
o
n
s
t
 
T
m
i
n
 
=
 
0
.
0
;
 
 
 
T
m
a
x
 
=
 
2
*
P
i
;
 

{
T
h
e
t
a
 
l
i
m
i
t
s
}
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7
 

 
 
 

 n
T
 
 
 
=
 
3
1
;
 

{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
i
.
e
.
 
o
f
 
T
h
e
t
a
 
v
a
l
u
e
s
}

8
 

 
 
 

n
 
 
 
 
=
 
8
;
 

{
n
u
m
b
e
r
 
o
f
 
s
p
i
r
a
l
s
}

9
 

v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
0
 
 
 
F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
1
1
 
 
 
T
h
e
t
a
,
T
h
e
t
a
0
,
x
,
y
:
 
d
o
u
b
l
e
;
 

i
T
,
i
:
 
i
n
t
e
g
e
r
;

1
2
 
B
E
G
I
n

1
3
 
 
A
s
s
i
g
n
(
F
D
,
’
F
1
_
3
1
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

1
4
 
 
A
s
s
i
g
n
(
F
T
,
’
F
1
_
3
1
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

1
5
 
 
C
l
r
S
c
r
;
 
 
{
W
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
}

1
6
 
 
W
r
i
t
e
L
n
(
F
T
,
’
S
p
i
r
a
l
i
n
g
 
P
o
l
y
g
o
n
s
:
’
)
;

1
7
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 

x
 

y
’
)
;

1
8
 
 
f
o
r
 
i
T
:
=
1
 
t
o
 
n
T
 
d
o
 
B
E
G
I
n

1
9
 
 
 
W
r
i
t
e
(
F
D
,
I
n
f
D
,
I
n
f
D
)
;
 
{
D
2
D
 
l
i
n
e
 
b
r
e
a
k
e
r
}

2
0
 
 
 
W
r
i
t
e
L
n
(
F
T
,
’
=
=
=
=
=
=
’
)
;
 
{
A
S
C
I
I
 
l
i
n
e
 
b
r
e
a
k
e
r
}

2
1
 
 
 
T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;

2
2
 
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

2
3
 
 
 
 

T
h
e
t
a
0
:
=
(
i
-
1
)
*
(
2
*
P
i
/
n
)
;
 

{
a
n
g
u
l
a
r
 
o
f
f
s
e
t
}

2
4
 
 
 
 

x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;

2
5
 
 
 
 

y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;

2
6
 
 
 
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
2
:
8
,
’
 
‘
,
y
:
1
2
:
8
)
;

2
7
 
 
 
 

W
r
i
t
e
(
F
D
,
x
,
y
)
;

2
8
 
 
 
E
n
D
;
 

2
9
 
 
 
x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
;
 
y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
;

3
0
 
 
 
W
r
i
t
e
L
n
(
F
T
,
x
:
1
2
:
8
,
’
 
‘
,
y
:
1
2
:
8
)
;
 

W
r
i
t
e
(
F
D
,
x
,
y
)
;

3
1
 
 
E
n
D
;
 

3
2
 
 
C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;

3
3
 
 
  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

3
4
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
1
_
3
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
  F
1
_
3
3
-
#
.
D
T
A
 

&
 
F
1
_
3
3
-
#
.
D
2
D
 
t
o
 
p
l
o
t
 
s
p
i
r
a
l
i
n
g
 
p
o
l
y
g
o
n
s

4
 

  c
o
l
o
r
e
d
 
r
a
n
d
o
m
l
y
 
i
n
 
g
r
o
u
p
s
 
o
f
 
1
0
  (
#
 
s
h
o
u
l
d
 
b
e
 
e
q
u
a
l
 
t
o
 
n
 
o
n
 
l
i
n
e
 
9
)
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

7
 

c
o
n
s
t
 
T
m
i
n
 
=
-
2
*
P
i
;
 
T
m
a
x
 
=
 
2
*
P
i
;
 
{
T
h
e
t
a
 
l
i
m
i
t
s
 

}
8
 

 
 

 
  n
T
 

=
 
1
4
4
1
;
 
{
n
u
m
b
e
r
 
o
f
 
r
o
t
a
t
e
d
 
p
o
l
y
g
o
n
s
 
i
.
e
.
 
o
f
 
T
h
e
t
a
 
v
a
l
u
e
s
 

}
9
 

 
 

 
  n
 

=
 
5
;
 

{
n
u
m
b
e
r
 
o
f
 
s
i
d
e
s
 
o
f
 
t
h
e
 
p
o
l
y
g
o
n
 
i
.
e
.
 
2
,
3
 
e
t
c
.
 

}
1
0
 
 
 

 
  F
n
m
e
 
=
 
‘
F
1
_
3
3
-
#
’
;
  {
o
u
t
p
u
t
 
f
i
l
e
 
n
a
m
e
 
i
.
e
.
 
‘
F
1
_
3
3
-
2
’
 
‘
F
1
_
3
3
-
3
’
 
e
t
c
.
}

1
1
 
v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
 
}

1
2
 
 
 

F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 

}
1
3
 
 
 

T
h
e
t
a
,
T
h
e
t
a
0
,
x
,
y
,
C
o
l
o
r
:
 
d
o
u
b
l
e
;
 

i
T
,
i
:
 
i
n
t
e
g
e
r
;

1
4
 
B
E
G
I
n

1
5
 
 
A
s
s
i
g
n
(
F
D
,
F
n
m
e
+
’
.
D
2
D
’
)
;
 
 
R
e
w
r
i
t
e
(
F
D
)
;

1
6
 
 
A
s
s
i
g
n
(
F
T
,
F
n
m
e
+
’
.
D
T
A
’
)
;
 
 
R
e
w
r
i
t
e
(
F
T
)
;

1
7
 
 
C
l
r
S
c
r
;
 
 
{
W
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
}

1
8
 
 
W
r
i
t
e
L
n
(
F
T
,
’
S
p
i
r
a
l
 
p
o
l
y
g
o
n
 
w
i
t
h
 
‘
,
n
:
1
,
’
 
s
i
d
e
s
’
)
;

1
9
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 

x
 

y
’
)
;

2
0
 
 
  R
a
n
d
o
m
i
z
e
;
 

{
I
n
i
t
i
a
l
i
z
e
 
t
h
e
 
b
u
i
l
t
-
i
n
 
r
a
n
d
o
m
 
n
u
m
b
e
r
 
g
e
n
e
r
a
t
o
r
}

2
1
 
 
C
o
l
o
r
:
=
(
2
+
0
.
0
1
*
(
R
a
n
d
o
m
(
7
)
+
1
)
)
*
I
n
f
D
;
 
{
a
s
s
i
g
n
 
r
a
n
d
o
m
 
c
o
l
o
r
s
}

2
2
 
 
f
o
r
 
i
T
:
=
1
 
t
o
 
n
T
 
d
o
 
B
E
G
I
n

2
3
 
 
 

i
f
 
(
i
T
 
M
O
D
 
1
0
 
=
 
0
)
 
t
h
e
n
 
{
g
r
o
u
p
s
 
o
f
 
1
0
 
h
a
v
e
 
t
h
e
 
s
a
m
e
 
c
o
l
o
r
}

2
4
 
 
 

 
C
o
l
o
r
:
=
(
2
+
0
.
0
1
*
(
R
a
n
d
o
m
(
7
)
+
1
)
)
*
I
n
f
D
;

2
5
 
 
 

  W
r
i
t
e
L
n
(
F
T
,
C
o
l
o
r
:
1
1
,
’
 
‘
,
C
o
l
o
r
:
1
1
)
;
 
{
n
e
w
 
c
o
l
o
r
 
i
n
 
A
S
C
I
I
 
f
i
l
e
}

2
6
 
 
 

  W
r
i
t
e
(
F
D
,
C
o
l
o
r
,
C
o
l
o
r
)
;
 

{
n
e
w
 
c
o
l
o
r
 
i
n
 
D
2
D
 
f
i
l
e
}

2
7
 
 
 

W
r
i
t
e
(
F
D
,
I
n
f
D
,
I
n
f
D
)
;
 

{
D
2
D
 
l
i
n
e
 
b
r
e
a
k
e
r
}

2
8
 
 
 

W
r
i
t
e
L
n
(
F
T
,
’
=
=
=
=
=
=
’
)
;
 
{
A
S
C
I
I
 
l
i
n
e
 
b
r
e
a
k
e
r
}

2
9
 
 
 

T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;

3
0
 
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n
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3
1
 
 
 

 
T
h
e
t
a
0
:
=
(
i
-
1
)
*
(
2
*
P
i
/
n
)
;
 

{
a
n
g
u
l
a
r
 
o
f
f
s
e
t
}

3
2
 
 
 

 
x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;

3
3
 
 
 

 
y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;

3
4
 
 
 

 
W
r
i
t
e
L
n
(
F
T
,
x
:
1
2
:
8
,
’
 
‘
,
y
:
1
2
:
8
)
;

3
5
 
 
 

 
W
r
i
t
e
(
F
D
,
x
,
y
)
;

3
6
 
 
 

E
n
D
;

3
7
 
 
 

x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
)
;
 

y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
)
;

3
8
 
 
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
2
:
8
,
’
 
‘
,
y
:
1
2
:
8
)
;
 

W
r
i
t
e
(
F
D
,
x
,
y
)
;

3
9
 
 
E
n
D
;

4
0
 
 
C
l
o
s
e
(
F
T
)
;
 
 
C
l
o
s
e
(
F
D
)
;

4
1
 
 
  W
r
i
t
e
(
‘
D
a
t
a
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
P
r
e
s
s
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

4
2
 
E
n
D
.

**
*

1
 

P
r
o
g
r
a
m
 
P
2
_
1
2
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
2
_
1
.
D
3
D
,
 
F
2
_
2
.
D
3
D
 
&
 
F
2
_
3
.
D
3
D
 
t
o
 
p
l
o
t
 
t
h
e
 
f
u
n
c
t
i
o
n
s
:

4
 

F
1
 
=
 
1
/
S
q
r
t
(
S
q
r
(
1
-
S
q
r
(
y
)
)
+
S
q
r
(
2
*
x
*
y
)
)

5
 

F
2
 
=
 
2
/
E
x
p
(
S
q
r
(
S
q
r
t
(
x
*
x
+
y
*
y
)
-
1
.
5
)
)
-
1
;

6
 

F
3
 
=
 
1
0
*
(
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
y
+
1
)
)
-
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
+
1
)
)
)

7
 

+
1
5
*
(
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
-
1
)
)
-
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
)
;

8
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

9
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

1
0
 
c
o
n
s
t
 
F
x
y
=
’
F
1
’
;
 
{
‘
F
1
’
,
 
‘
F
2
’
 
o
r
 
‘
F
3
’
 
-
-
 
c
h
o
o
s
e
 
o
n
e
}

1
1
 
v
a
r
 
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;

1
2
 
 

 
  F
:
 
a
r
g
F
2
;
 

{
a
r
g
F
2
 
i
s
 
d
e
f
i
n
e
d
 
i
n
 
L
i
b
M
a
t
h
}

1
3
 
 

 
  n
x
,
n
y
,
 
x
m
i
n
,
x
m
a
x
,
 
y
m
i
n
,
y
m
a
x
,
 
x
,
y
,
 
F
v
:
 
d
o
u
b
l
e
;

1
4
 
 

 
  i
,
j
:
 
i
n
t
e
g
e
r
;

1
5
 
{
$
F
+
}

1
6
 
f
u
n
c
t
i
o
n
 
F
1
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;
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1
7
 
B
E
G
I
n

1
8
 
 

F
1
:
=
1
/
S
q
r
t
(
S
q
r
(
1
-
S
q
r
(
y
)
)
+
S
q
r
(
2
*
x
*
y
)
)
;

1
9
 
E
n
D
;

2
0
 
f
u
n
c
t
i
o
n
 
F
2
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

2
1
 
B
E
G
I
n

2
2
 
 

F
2
:
=
2
/
E
x
p
(
S
q
r
(
S
q
r
t
(
x
*
x
+
y
*
y
)
-
1
.
5
)
)
-
1
;

2
3
 
E
n
D
;

2
4
 
f
u
n
c
t
i
o
n
 
F
3
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

2
5
 
v
a
r
 
T
1
,
T
2
:
 
d
o
u
b
l
e
;

2
6
 
B
E
G
I
n

2
7
 
 

T
1
:
=
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
y
+
1
)
)
 
-
 
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
+
1
)
)
;

2
8
 
 

T
2
:
=
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
-
1
)
)
 
-
 
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
;

2
9
 
 

F
3
:
=
1
0
*
T
1
+
1
5
*
T
2
;

3
0
 
E
n
D
;

3
1
 
{
$
F
-
}

3
2
 
B
E
G
I
n

3
3
 
 

i
f
 
(
F
x
y
 
=
 
‘
F
1
’
)
 
t
h
e
n
 
B
E
G
I
n

3
4
 
 

 
F
:
=
F
1
;

3
5
 
 

 
n
x
:
=
1
0
;
 

n
y
:
=
2
6
1
;

3
6
 
 

 
x
m
i
n
:
=
0
.
1
;
 

x
m
a
x
:
=
1
.
0
;
 
y
m
i
n
:
=
0
.
0
;
 
y
m
a
x
:
=
2
.
5
;

3
7
 
 

 
A
s
s
i
g
n
(
F
D
,
’
F
2
_
1
.
D
3
D
’
)
;

3
8
 
 

E
n
D
;

3
9
 
 

i
f
 
(
F
x
y
 
=
 
‘
F
2
’
)
 
t
h
e
n
 
B
E
G
I
n

4
0
 
 

 
F
:
=
F
2
;

4
1
 
 

 
n
x
:
=
4
8
1
;
 

n
y
:
=
4
8
1
;

4
2
 
 

 
x
m
i
n
:
=
-
P
i
;
 

x
m
a
x
:
=
P
i
;
 

y
m
i
n
:
=
-
P
i
;
 
y
m
a
x
:
=
 
P
i
;

4
3
 
 

 
A
s
s
i
g
n
(
F
D
,
’
F
2
_
2
.
D
3
D
’
)
;

4
4
 
 

E
n
D
;

4
5
 
 

i
f
 
(
F
x
y
 
=
 
‘
F
3
’
)
 
t
h
e
n
 
B
E
G
I
n

4
6
 
 

 
F
:
=
F
3
;

4
7
 
 

 
n
x
:
=
4
8
1
;
 

n
y
:
=
4
8
1
;

4
8
 
 

 
x
m
i
n
:
=
-
1
.
5
;
 
x
m
a
x
:
=
2
.
5
;
 
y
m
i
n
:
=
-
2
.
5
;
  y
m
a
x
:
=
 
2
.
5
;
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4
9
 
 

 
A
s
s
i
g
n
(
F
D
,
’
F
2
_
3
.
D
3
D
’
)
;

5
0
 
 

E
n
D
;

5
1
 
 

R
e
w
r
i
t
e
(
F
D
)
;
  C
l
r
S
c
r
;

5
2
 
 

W
r
i
t
e
(
F
D
,
 
n
x
,
n
y
,
 
x
m
i
n
,
x
m
a
x
,
 
y
m
i
n
,
y
m
a
x
)
;

5
3
 
 

f
o
r
 
i
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

5
4
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
-
1
)
;

5
5
 
 

 
f
o
r
 
j
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

5
6
 
 

 
  

y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
j
-
1
)
;

5
7
 
 

 
  

F
v
:
=
F
(
x
,
y
)
;

5
8
 
 

 
  

W
r
i
t
e
(
F
D
,
F
v
)
;

5
9
 
 

 
E
n
D
;

6
0
 
 

E
n
D
;

6
1
 
 

C
l
o
s
e
(
F
D
)
;

6
2
 
 

  W
r
i
t
e
(
‘
O
u
t
p
u
t
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 
 
R
e
a
d
L
n
;

6
3
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
2
_
3
.
D
3
D
,
 
F
2
_
3
.
R
3
D
,
 
F
2
_
3
.
T
3
D
,
 
F
2
_
3
.
G
3
D
 
t
o
 
p
l
o
t
:

4
 

F
3
(
x
,
y
)
=
1
0
*
(
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
y
+
1
)
)
-
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
+
1
)
)
)

5
 

+
1
5
*
(
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
-
1
)
)
-
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
)
;

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
C
R
T
,
L
i
b
M
a
t
h
;

8
 

c
o
n
s
t
 

n
x
 
:
 
d
o
u
b
l
e
 
=
 
4
8
1
;
 
n
y
 
:
 
d
o
u
b
l
e
 
=
 
4
8
1
;

9
 

 
 

x
m
i
n
:
 
d
o
u
b
l
e
 
=
-
1
.
5
;
 
x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
2
.
5
;

1
0
 
 

 
y
m
i
n
:
 
d
o
u
b
l
e
 
=
-
2
.
5
;
 
y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
2
.
5
;

1
1
 
v
a
r
 

F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

1
2
 
 

 
  F
R
:
 
F
i
l
e
 
o
f
 
r
e
a
l
;
 
{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
r
e
a
l
 
-
 
s
a
m
e
 
f
o
r
m
a
t
 
a
s
 
D
3
D
}

1
3
 
 

 
  F
T
3
D
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 
-
 
s
a
m
e
 
f
o
r
m
a
t
 
a
s
 
D
3
D
 
}

1
4
 
 

 
  F
G
3
D
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 
-
 
(
x
i
,
y
j
,
z
i
j
)
 
f
o
r
m
a
t
 
}
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1
5
 
 

 
i
x
,
i
y
:
 
i
n
t
e
g
e
r
;
 

x
,
 
y
,
 
Z
:
 
d
o
u
b
l
e
;
 
 
 
a
R
e
a
l
:
 
r
e
a
l
;

1
6
 
f
u
n
c
t
i
o
n
 
F
3
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
7
 
v
a
r
 
T
1
,
T
2
:
 
d
o
u
b
l
e
;

1
8
 
B
E
G
I
n

1
9
 
 

T
1
:
=
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
y
+
1
)
)
 
-
 
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
+
1
)
)
;

2
0
 
 

T
2
:
=
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
-
1
)
)
 
-
 
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
;

2
1
 
 

F
3
:
=
1
0
*
T
1
 
+
 
1
5
*
T
2
;

2
2
 
E
n
D
;
 

{
.
.
 
F
(
x
,
y
)
}

2
3
 
B
E
G
I
n

2
4
 
 

C
l
r
S
c
r
;

2
5
 
 

A
s
s
i
g
n
(
F
D
 

,
’
F
2
_
3
.
D
3
D
’
)
;
 

R
e
w
r
i
t
e
(
F
D
)
;

2
6
 
 

A
s
s
i
g
n
(
F
R
 

,
’
F
2
_
3
.
R
3
D
’
)
;
 

R
e
w
r
i
t
e
(
F
R
)
;

2
7
 
 

A
s
s
i
g
n
(
F
T
3
D
,
’
F
2
_
3
.
T
3
D
’
)
;
 

R
e
w
r
i
t
e
(
F
T
3
D
)
;

2
8
 
 

A
s
s
i
g
n
(
F
G
3
D
,
’
F
2
_
3
.
G
3
D
’
)
;
 

R
e
w
r
i
t
e
(
F
G
3
D
)
;

2
9
 
 

W
r
i
t
e
(
F
D
,
n
x
,
n
y
,
 
x
m
i
n
,
x
m
a
x
,
 
y
m
i
n
,
y
m
a
x
)
;

3
0
 
 

a
R
e
a
l
:
=
n
x
;
 

W
r
i
t
e
(
F
R
,
a
R
e
a
l
)
;

3
1
 
 

a
R
e
a
l
:
=
n
y
;
 

W
r
i
t
e
(
F
R
,
a
R
e
a
l
)
;

3
2
 
 

a
R
e
a
l
:
=
x
m
i
n
;
 
 
W
r
i
t
e
(
F
R
,
a
R
e
a
l
)
;

3
3
 
 

a
R
e
a
l
:
=
x
m
a
x
;
 
 
W
r
i
t
e
(
F
R
,
a
R
e
a
l
)
;

3
4
 
 

a
R
e
a
l
:
=
y
m
i
n
;
 
 
W
r
i
t
e
(
F
R
,
a
R
e
a
l
)
;

3
5
 
 

a
R
e
a
l
:
=
y
m
a
x
;
 
 
W
r
i
t
e
(
F
R
,
a
R
e
a
l
)
;

3
6
 
 

W
r
i
t
e
L
n
(
F
T
3
D
,
n
x
:
1
6
:
6
)
;

3
7
 
 

W
r
i
t
e
L
n
(
F
T
3
D
,
n
y
:
1
6
:
6
)
;

3
8
 
 

W
r
i
t
e
L
n
(
F
T
3
D
,
x
m
i
n
:
1
6
:
6
)
;

3
9
 
 

W
r
i
t
e
L
n
(
F
T
3
D
,
x
m
a
x
:
1
6
:
6
)
;

4
0
 
 

W
r
i
t
e
L
n
(
F
T
3
D
,
y
m
i
n
:
1
6
:
6
)
;

4
1
 
 

W
r
i
t
e
L
n
(
F
T
3
D
,
y
m
a
x
:
1
6
:
6
)
;

4
2
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

4
3
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

4
4
 
 

 
f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

4
5
 
 

 
 
y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;
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4
6
 
 

 
 
Z
:
=
F
3
(
x
,
y
)
;

4
7
 
 

 
 
W
r
i
t
e
(
F
D
,
Z
)
;

4
8
 
 

 
 
a
R
e
a
l
:
=
Z
;
 
 
W
r
i
t
e
(
F
R
,
a
R
e
a
l
)
;

4
9
 
 

 
 
W
r
i
t
e
L
n
(
F
T
3
D
,
Z
:
1
6
:
6
)
;

5
0
 
 

 
 
  W
r
i
t
e
L
n
(
F
G
3
D
,
’
(
‘
,
x
:
1
2
:
6
,
’
 
‘
,
y
:
1
2
:
6
,
’
 
‘
,
Z
:
1
2
:
6
,
’
)
’
)
;

5
1
 
 

 
E
n
D
;

5
2
 
 

E
n
D
;

5
3
 
 

C
l
o
s
e
(
F
D
)
;
 
 
C
l
o
s
e
(
F
R
)
;
 
 
C
l
o
s
e
(
F
T
3
D
)
;
 
 
C
l
o
s
e
(
F
G
3
D
)
;
 
 

5
4
 
 

  W
r
i
t
e
(
‘
O
u
t
p
u
t
 
f
i
l
e
s
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
!
 
<
C
R
>
.
.
’
)
;
 
 
R
e
a
d
L
n
;

5
5
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
Z
L
C
S
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
s
 
A
S
C
I
I
 
f
i
l
e
 
Z
.
L
C
S
 
w
i
t
h
 
l
e
v
e
l
 
c
u
r
v
e
 
h
e
i
g
h
t
s
 
L
o
g
 
s
p
a
c
e
d
 
f
r
o
m
 
z
0

4
 

t
o
w
a
r
d
s
 
z
m
i
n
 
a
n
d
 
z
m
a
x
,
 
t
o
 
b
e
 
a
p
p
e
n
d
e
d
 
t
o
 
a
 
C
F
3
 
f
i
l
e
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

c
o
n
s
t
 
z
0
=
0
.
2
6
5
;
 

z
m
i
n
=
-
1
2
.
8
7
7
8
;
 

z
m
a
x
=
1
4
.
8
2
4
3
;

7
 

 
 

 
n
r
L
C
 
=
 
 
2
8
;

8
 

v
a
r
 
 
F
T
:
 
T
e
x
t
;
 

{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
}

9
 

 
 

 
z
:
 
d
o
u
b
l
e
;
 

n
r
L
C
d
n
,
 
n
r
L
C
u
p
,
 
k
:
 
i
n
t
e
g
e
r
;

1
0
 
B
E
G
I
n

1
1
 
 

A
s
s
i
g
n
(
F
T
,
’
z
.
L
C
S
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

1
2
 
 
 
i
f
 
(
z
0
-
z
m
i
n
)
 
>
 
(
z
m
a
x
-
z
0
)
 
t
h
e
n
 
B
E
G
I
n

1
3
 
 

 
n
r
L
C
d
n
:
=
R
o
u
n
d
(
n
r
L
C
*
(
z
0
-
z
m
i
n
)
/
(
z
m
a
x
-
z
m
i
n
)
)
;

1
4
 
 

 
n
r
L
C
u
p
:
=
n
r
L
C
-
n
r
L
C
d
n
;

1
5
 
 

E
n
D

1
6
 
 

e
l
s
e
 
B
E
G
I
n

1
7
 
 

 
n
r
L
C
u
p
:
=
R
o
u
n
d
(
n
r
L
C
*
(
z
m
a
x
-
z
0
)
/
(
z
m
a
x
-
z
m
i
n
)
)
;

1
8
 
 

 
n
r
L
C
d
n
:
=
n
r
L
C
-
n
r
L
C
u
p
;

1
9
 
 

E
n
D
;



434    ◾    Appendix�b:�Selected�Source�code

2
0
 
 

f
o
r
 
k
:
=
n
r
L
C
d
n
 
d
o
w
n
t
o
 
1
 
d
o
 
B
E
G
I
n

2
1
 
 

 
z
:
=
z
0
 
-
 
E
x
p
(
(
k
-
1
)
*
L
n
(
z
0
-
z
m
i
n
+
1
)
/
(
n
r
L
C
d
n
-
1
)
)
+
1
;

2
2
 
 

 
W
r
i
t
e
L
n
(
F
T
,
z
:
1
8
:
8
)
;

2
3
 
 

E
n
D
;

2
4
 
 

f
o
r
 
k
:
=
1
 
t
o
 
n
r
L
C
u
p
 
d
o
 
B
E
G
I
n

2
5
 
 

 
z
:
=
z
0
 
+
 
E
x
p
(
(
k
-
1
)
*
L
n
(
z
m
a
x
-
z
0
+
1
)
/
(
n
r
L
C
u
p
-
1
)
)
-
1
;

2
6
 
 

 
W
r
i
t
e
L
n
(
F
T
,
z
:
1
8
:
8
)
;

2
7
 
 

E
n
D
;

2
8
 
 

C
l
o
s
e
(
F
T
)
;

2
9
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
2
T
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
2
_
2
.
T
X
T
 
w
i
t
h
 
3
6
 
x
 
3
6
 
p
t
s
.
 
t
o
 
p
l
o
t
 
t
h
e
 
f
u
n
c
t
i
o
n
:

4
 

F
2
=
2
/
E
x
p
(
S
q
r
(
S
q
r
t
(
x
*
x
+
y
*
y
)
-
1
.
5
)
)
-
1
 

u
s
i
n
g
 

O
f
f
i
c
e
 
E
x
c
e
l
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
;

7
 

c
o
n
s
t
 
n
x
:
 
d
o
u
b
l
e
 
=
 
3
6
;
 

x
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 

x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

8
 

 
 
 
n
y
:
 
d
o
u
b
l
e
 
=
 
3
6
;
 

y
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 

y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

9
 

v
a
r
 
 
F
T
:
 
T
e
x
t
;
 
{
o
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
}

1
0
 
 

 
 
x
,
 
y
,
 
F
2
:
 
d
o
u
b
l
e
;
 
 
 
i
x
,
i
y
:
 
i
n
t
e
g
e
r
;

1
1
 
B
E
G
I
n

1
2
 
 

C
l
r
S
c
r
;

1
3
 
 

A
s
s
i
g
n
(
F
T
,
’
F
2
_
2
.
T
X
T
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

1
4
 
 

W
r
i
t
e
(
F
T
,
’
 

x
\
y
 
‘
)
;

1
5
 
 

f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o

1
6
 
 

 
W
r
i
t
e
(
F
T
,
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
:
9
:
4
,
’
 
‘
)
;

1
7
 
 

W
r
i
t
e
L
n
(
F
T
)
;

1
8
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

1
9
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;
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2
0
 
 

 
W
r
i
t
e
(
F
T
,
x
:
9
:
4
,
’
 
‘
)
;

2
1
 
 

 
f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

2
2
 
 

 
 
y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;

2
3
 
 

 
 
F
2
:
=
2
.
0
/
E
x
p
(
S
q
r
(
S
q
r
t
(
x
*
x
+
y
*
y
)
-
1
.
5
)
)
-
1
.
0
;

2
4
 
 

 
 
W
r
i
t
e
(
F
T
,
F
2
:
9
:
5
,
’
 
‘
)
;

2
5
 
 

 
E
n
D
;

2
6
 
 

 
W
r
i
t
e
L
n
(
F
T
)
;

2
7
 
 

E
n
D
;

2
8
 
 

C
l
o
s
e
(
F
T
)
;

2
9
 
 

  W
r
i
t
e
(
‘
O
u
t
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

3
0
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
2
_
4
.
D
3
D
 
t
o
 
p
l
o
t
 
t
h
e
 
f
u
n
c
t
i
o
n
 
 
F
4
(
x
,
y
)
=
0
.
1
*
x
*
y

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
;

6
 

  c
o
n
s
t
 
n
x
:
 
d
o
u
b
l
e
 
=
 
4
9
6
;
 
 
x
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 
 
x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

7
 

 
 

 
n
y
:
 
d
o
u
b
l
e
 
=
 
4
9
6
;
 
 
y
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 
 
y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

8
 

v
a
r
 
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
{
o
u
t
p
u
t
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
}

9
 

 
 

i
x
,
i
y
:
 
i
n
t
e
g
e
r
;
  x
,
y
,
 
F
4
:
 
d
o
u
b
l
e
;

1
0
 
B
E
G
I
n

1
1
 
 
C
l
r
S
c
r
;

1
2
 
 
A
s
s
i
g
n
(
F
D
,
’
F
2
_
4
.
D
3
D
’
)
;
 
 
R
e
w
r
i
t
e
(
F
D
)
;

1
3
 
 
W
r
i
t
e
(
F
D
,
 
n
y
,
n
x
,
 
x
m
i
n
,
x
m
a
x
,
y
m
i
n
,
y
m
a
x
)
;

1
4
 
 
f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

1
5
 
 
 

x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

1
6
 
 
 

f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

1
7
 
 
 

 
  y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;

1
8
 
 
 

 
  F
4
:
=
0
.
1
*
x
*
y
;
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1
9
 
 
 

 
 W
r
i
t
e
(
F
D
,
F
4
)
;

2
0
 
 
 

E
n
D
;

2
1
 
 
E
n
D
;

2
2
 
 
C
l
o
s
e
(
F
D
)
;

2
3
 
 
  W
r
i
t
e
(
‘
O
u
t
p
u
t
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

2
4
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
2
_
5
P
.
D
3
D
 
a
n
d
 
F
2
_
5
N
.
D
3
D
 
t
o
 
p
l
o
t
 
t
h
e
 
p
i
e
c
e
w
i
s
e
 
f
u
n
c
t
i
o
n
:

4
 

F
5
(
x
,
y
)
=
0
.
1
*
x
*
y
 
 
 
f
o
r
 
 
 
x
*
x
 
+
 
y
*
y
 
>
 
1

5
 

F
5
(
x
,
y
)
=
+
/
-
1
E
3
0
 
 
 
f
o
r
 
 
 
x
*
x
 
+
 
y
*
y
 
<
 
1

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
C
R
T
;

8
 

c
o
n
s
t
 
n
x
:
 
d
o
u
b
l
e
 
=
 
4
8
1
;
 

x
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 

x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

9
 

 
 
 
  n
y
:
 
d
o
u
b
l
e
 
=
 
4
8
1
;
 

y
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 

y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

1
0
1
1
 
  v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

i
x
,
i
y
:
 
i
n
t
e
g
e
r
;
 

I
n
f
,
 
x
,
y
,
 
F
:
 
d
o
u
b
l
e
;

1
2
 
B
E
G
I
n

1
3
 
{
 
D
e
c
o
m
m
e
n
t
 
o
n
e
 
o
f
 
t
h
e
 
l
i
n
e
s
 
b
e
l
o
w
!
 

}
1
4
 
{
 
A
s
s
i
g
n
(
F
D
,
’
F
2
_
5
N
.
D
3
D
’
)
;
 

I
n
f
:
=
-
1
.
0
E
3
0
;
 

}
1
5
 
 
A
s
s
i
g
n
(
F
D
,
’
F
2
_
5
P
.
D
3
D
’
)
;
 
I
n
f
:
=
 
1
.
0
E
3
0
;

1
6
 
 
R
e
w
r
i
t
e
(
F
D
)
;
 
 
 
C
l
r
S
c
r
;

1
7
 
 
W
r
i
t
e
(
F
D
,
 
n
y
,
n
x
,
 
x
m
i
n
,
x
m
a
x
,
y
m
i
n
,
y
m
a
x
)
;

1
8
 
 
f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

1
9
 
 
 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

2
0
 
 
 
f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

2
1
 
 
 
 
y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;

2
2
 
 
 
 
i
f
 
(
x
*
x
+
y
*
y
 
<
 
2
.
2
5
)
 
t
h
e
n
 
F
:
=
I
n
f
 
e
l
s
e
 
F
:
=
0
.
1
*
x
*
y
;

2
3
 
 
 
 
W
r
i
t
e
(
F
D
,
F
)
;

2
4
 
 
 
E
n
D
;
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2
5
 
 
E
n
D
;

2
6
 
 
C
l
o
s
e
(
F
D
)
;

2
7
 
 
W
r
i
t
e
(
‘
O
u
t
p
u
t
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

2
8
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
2
_
6
.
D
3
D
 
(
5
0
1
 
x
 
5
0
1
 
p
o
i
n
t
s
)
 
t
o
 
p
l
o
t
 
t
h
e
 
i
n
e
q
u
a
l
i
t
y
:
 

4
 

S
q
r
(
s
i
n
(
x
)
+
s
i
n
(
y
)
)
-
(
y
*
x
+
0
.
5
)
 
ò
 
0

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
;

7
 

c
o
n
s
t
 
n
x
y
:
 
d
o
u
b
l
e
 
=
 
5
0
1
;

8
 

 
 
 
 
x
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 

x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

9
 

 
 
 
 
y
m
i
n
:
 
d
o
u
b
l
e
 
=
-
P
i
;
 

y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
i
;

1
0
 
v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

i
x
,
i
y
:
 
i
n
t
e
g
e
r
;
 
x
,
y
,
 
F
:
 
d
o
u
b
l
e
;

1
1
 
f
u
n
c
t
i
o
n
 
I
n
e
q
(
x
,
y
:
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
2
 
B
E
G
I
n

1
3
 
 
i
f
 
S
q
r
(
s
i
n
(
x
)
+
s
i
n
(
y
)
)
-
(
y
*
x
+
0
.
5
)
 
>
=
 
0
 
t
h
e
n

1
4
 
 
 
I
n
e
q
:
=
1
.
0
E
3
0

1
5
 
 
e
l
s
e

1
6
 
 
 
I
n
e
q
:
=
0
.
0
;

1
7
 
E
n
D
;
 
{
.
.
 
I
n
e
q
(
x
,
y
)
}

1
8
 
B
E
G
I
n

1
9
 
 
C
l
r
S
c
r
;

2
0
 
 
A
s
s
i
g
n
(
F
D
,
’
F
2
_
6
.
D
3
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

2
1
 
 
W
r
i
t
e
(
F
D
,
 
n
x
y
,
n
x
y
,
 
x
m
i
n
,
x
m
a
x
,
y
m
i
n
,
y
m
a
x
)
;

2
2
 
 
f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
y
)
 
d
o
 
B
E
G
I
n

2
3
 
 
 
 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
y
-
1
)
*
(
i
x
-
1
)
;

2
4
 
 
 
 
f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
y
)
 
d
o
 
B
E
G
I
n

2
5
 
 
 
 
 
y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
x
y
-
1
)
*
(
i
y
-
1
)
;

2
6
 
 
 
 
 
F
:
=
I
n
e
q
(
x
,
y
)
;
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2
7
 
 
 
 
 
W
r
i
t
e
(
F
D
,
F
)
;

2
8
 
 
 
 
E
n
D
;

2
9
 
 
E
n
D
;

3
0
 
 
C
l
o
s
e
(
F
D
)
;

3
1
 
 
 W
r
i
t
e
(
‘
O
u
t
p
u
t
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

3
2
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
7
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
A
S
C
I
I
 
f
i
l
e
 
 
F
2
_
7
.
T
3
D
 
 
w
i
t
h
 
1
8
1
x
1
8
1
 
p
t
s
.
 
t
o
 
p
l
o
t
 
u
s
i
n
g
 
D
_
3
D

4
 

t
w
o
 
h
e
m
i
s
p
h
e
r
e
s
 
c
e
n
t
e
r
e
d
 
a
t
 
(
0
,
0
,
0
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
,
L
i
b
I
n
O
u
t
;

7
 

  c
o
n
s
t
 
n
x
:
 
d
o
u
b
l
e
 
=
 
1
8
1
;
 
x
m
i
n
:
 
d
o
u
b
l
e
 
=
 
-
P
I
;
 
x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
I
;

8
 

 
 
 
  n
y
:
 
d
o
u
b
l
e
 
=
 
1
8
1
;
 
y
m
i
n
:
 
d
o
u
b
l
e
 
=
 
-
P
I
;
 
y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
I
;

9
 

v
a
r
 
F
T
:
 
T
e
x
t
;
 

i
x
,
i
y
:
 
i
n
t
e
g
e
r
;
 
x
,
 
y
,
 
z
1
,
z
2
:
 
d
o
u
b
l
e
;

1
0
 
f
u
n
c
t
i
o
n
 
F
7
_
u
p
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
1
 
B
E
G
I
n

1
2
 
 
i
f
 
(
2
.
8
9
-
x
*
x
-
y
*
y
)
 
>
=
 
0
 
t
h
e
n

1
3
 
 
 
F
7
_
u
p
:
=
S
q
r
t
(
2
.
8
9
-
x
*
x
-
y
*
y
)

1
4
 
 
e
l
s
e

1
5
 
 
 
F
7
_
u
p
:
=
-
1
.
0
E
3
0
;

1
6
 
E
n
D
;
 
{
.
.
 
F
7
_
u
p
(
x
,
y
)
}

1
7
 
f
u
n
c
t
i
o
n
 
F
7
_
d
n
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
8
 
B
E
G
I
n

1
9
 
 
i
f
 
(
2
.
8
9
-
x
*
x
-
y
*
y
)
 
>
=
 
0
 
t
h
e
n

2
0
 
 
 
F
7
_
d
n
:
=
-
S
q
r
t
(
2
.
8
9
-
x
*
x
-
y
*
y
)

2
1
 
 
e
l
s
e

2
2
 
 
 
F
7
_
d
n
:
=
+
1
.
0
E
3
0
;

2
3
 
E
n
D
;
 
{
.
.
 
D
n
(
x
,
y
)
}

2
4
 
B
E
G
I
n
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2
5
 
 
C
l
r
S
c
r
;

2
6
 
 
A
s
s
i
g
n
(
F
T
,
’
F
2
_
7
.
T
3
D
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

2
7
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 

F
7
_
u
p
(
x
,
y
)
 
F
7
_
d
n
(
x
,
y
)
’
)
;

2
8
 
 
W
r
i
t
e
L
n
(
F
T
,
 

n
X
:
1
6
:
9
,
’
 
‘
,
n
X
:
1
6
:
9
)
;

2
9
 
 
W
r
i
t
e
L
n
(
F
T
,
 
 
n
Y
:
1
6
:
9
,
’
 

‘
,
n
Y
:
1
6
:
9
)
;

3
0
 
 
W
r
i
t
e
L
n
(
F
T
,
X
m
i
n
:
1
6
:
9
,
’
 

‘
,
X
m
i
n
:
1
6
:
9
)
;

3
1
 
 
W
r
i
t
e
L
n
(
F
T
,
X
m
a
x
:
1
6
:
9
,
’
 

‘
,
X
m
a
x
:
1
6
:
9
)
;

3
2
 
 
W
r
i
t
e
L
n
(
F
T
,
Y
m
i
n
:
1
6
:
9
,
’
 

‘
,
Y
m
i
n
:
1
6
:
9
)
;

3
3
 
 
W
r
i
t
e
L
n
(
F
T
,
Y
m
a
x
:
1
6
:
9
,
’
 

‘
,
Y
m
a
x
:
1
6
:
9
)
;

3
4
 
 
f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

3
5
 
 
 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

3
6
 
 
 
f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

3
7
 
 
 
 
y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;

3
8
 
 
 
 
z
1
:
=
F
7
_
u
p
(
x
,
y
)
;
 
 
z
2
:
=
F
7
_
d
n
(
x
,
y
)
;

3
9
 
 
 
 
W
r
i
t
e
L
n
(
F
T
,
M
y
S
t
r
(
z
1
,
1
6
)
,
’
 
‘
,
M
y
S
t
r
(
z
2
,
1
6
)
)
;

4
0
 
 
 
E
n
D
;

4
1
 
 
E
n
D
;

4
2
 
 
C
l
o
s
e
(
F
T
)
;

4
3
 
 
  W
r
i
t
e
(
‘
O
u
t
p
u
t
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

4
4
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
2
_
8
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
 

F
2
_
8
.
T
3
D
 
(
2
5
1
 
x
 
2
5
1
 
p
t
s
.
)
 
t
o
 
p
l
o
t
 
o
n
 
t
h
e
 
s
a
m
e
 
g
r
a
p
h
:

4
 

F
2
(
x
,
y
)
=
2
/
E
x
p
(
S
q
r
(
S
q
r
t
(
x
*
x
+
y
*
y
)
-
1
.
5
)
)
-
1
 
&
 
F
4
(
x
,
y
)
 
=
 
0
.
1
*
x
*
y

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
,
L
i
b
I
n
O
u
t
;

7
 

  c
o
n
s
t
 
n
x
:
 
d
o
u
b
l
e
 
=
 
2
5
1
;
 
x
m
i
n
:
 
d
o
u
b
l
e
 
=
 
-
P
I
;
 
x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
I
;

8
 

 
 
 
 
  n
y
:
 
d
o
u
b
l
e
 
=
 
2
5
1
;
 
y
m
i
n
:
 
d
o
u
b
l
e
 
=
 
-
P
I
;
 
y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
P
I
;

9
 

v
a
r
 
 
F
T
:
 
T
e
x
t
;
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1
0
 
 

 
 
 x
,
y
,
 
F
4
,
F
2
,
 
F
u
,
F
d
,
 
F
2
u
,
F
2
d
,
 
F
4
u
,
F
4
d
:
 
d
o
u
b
l
e
;
 
i
,
 
i
x
,
i
y
:
 
L
o
n
g
I
n
t
;

1
1
 
f
u
n
c
t
i
o
n
 
F
_
2
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
2
 
B
E
G
I
n

1
3
 
 

F
_
2
:
=
2
.
0
/
E
x
p
(
S
q
r
(
S
q
r
t
(
x
*
x
+
y
*
y
)
-
1
.
5
)
)
-
1
.
0
;

1
4
 
E
n
D
;
 
{
.
.
 
F
_
2
(
x
,
y
)
}

1
5
 
f
u
n
c
t
i
o
n
 
F
_
4
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
6
 
B
E
G
I
n

1
7
 
 

F
_
4
:
=
0
.
1
*
x
*
y
;

1
8
 
E
n
D
;
 
{
.
.
 
F
_
4
(
x
,
y
)
}

1
9
 
B
E
G
I
n

2
0
 
 

C
l
r
S
c
r
;

2
1
 
 

A
s
s
i
g
n
(
F
T
,
’
F
2
_
8
.
T
3
D
’
)
;
  R
e
w
r
i
t
e
(
F
T
)
;

2
2
 
 

  W
r
i
t
e
L
n
(
F
T
,
’
F
_
U
p
 
F
_
D
n
 

F
4
_
U
p
 

F
4
_
D
n
 

F
2
_
U
p
 

F
2
_
D
n
’
)
;

2
3
 
 

f
o
r
 
i
:
=
1
 
t
o
 
6
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
r
(
n
x
,
1
0
)
,
’
 
‘
)
;
 

W
r
i
t
e
L
n
(
F
T
)
;

2
4
 
 

f
o
r
 
i
:
=
1
 
t
o
 
6
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
r
(
n
y
,
1
0
)
,
’
 
‘
)
;
 

W
r
i
t
e
L
n
(
F
T
)
;

2
5
 
 

f
o
r
 
i
:
=
1
 
t
o
 
6
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
r
(
x
m
i
n
,
1
0
)
,
’
 
‘
)
;
 

W
r
i
t
e
L
n
(
F
T
)
;

2
6
 
 

f
o
r
 
i
:
=
1
 
t
o
 
6
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
r
(
x
m
a
x
,
1
0
)
,
’
 
‘
)
;
 

W
r
i
t
e
L
n
(
F
T
)
;

2
7
 
 

f
o
r
 
i
:
=
1
 
t
o
 
6
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
r
(
y
m
i
n
,
1
0
)
,
’
 
‘
)
;
 

W
r
i
t
e
L
n
(
F
T
)
;

2
8
 
 

f
o
r
 
i
:
=
1
 
t
o
 
6
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
r
(
y
m
a
x
,
1
0
)
,
’
 
‘
)
;
 

W
r
i
t
e
L
n
(
F
T
)
;

2
9
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

3
0
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

3
1
 
 

 
f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

3
2
 
 

 
 
 
y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;

3
3
 
 

 
 
 
F
2
u
:
=
1
E
3
0
;
 

F
2
d
:
=
1
E
3
0
;

3
4
 
 

 
 
 
F
4
u
:
=
1
E
3
0
;
 

F
4
d
:
=
1
E
3
0
;

3
5
 
 

 
 
 
F
2
:
=
F
_
2
(
x
,
y
)
;

3
6
 
 

 
 
 
F
4
:
=
F
_
4
(
x
,
y
)
;

3
7
 
 

 
 
 
i
f
 
(
F
4
 
>
 
F
2
)
 
t
h
e
n
 
B
E
G
I
n

3
8
 
 

 
 
 
 
F
u
:
=
F
4
;
 

F
d
:
=
F
2
;
 

F
4
u
:
=
F
4
;
 

F
2
d
:
=
F
2
;

3
9
 
 

 
 
 
E
n
D

4
0
 
 

 
 
 
e
l
s
e
 
B
E
G
I
n

4
1
 
 

 
 
 
 

F
u
:
=
F
2
;
 

F
d
:
=
F
4
;
 

F
4
d
:
=
F
4
;
 

F
2
u
:
=
F
2
;
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4
2
 
 

 
 
 
E
n
D
;

4
3
 
 

 
 
 
W
r
i
t
e
L
n
(
F
T
,
M
y
S
t
r
(
F
d
,
1
0
)
,
’
 
‘
,
M
y
S
t
r
(
F
u
,
1
0
)
,
’
 
‘
,
M
y
S
t
r
(
F
4
d
,
1
0
)

4
4
 
 

 
 
 
,
’
 
‘
,
M
y
S
t
r
(
F
4
u
,
1
0
)
,
’
 
‘
,
M
y
S
t
r
(
F
2
d
,
1
0
)
,
’
 
‘
,
M
y
S
t
r
(
F
2
u
,
1
0
)
)
;

4
5
 
 

 
E
n
D
;

4
6
 
 

E
n
D
;

4
7
 
 

C
l
o
s
e
(
F
T
)
;

4
8
 
 

  W
r
i
t
e
(
‘
O
u
t
p
u
t
 
f
i
l
e
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

4
9
 
E
n
D
.

**
*

1
 

p
r
o
g
r
a
m
 
P
3
_
0
1
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
v
e
c
t
o
r
s
 
t
[
.
.
]
 
a
n
d
 
Y
[
.
.
]
,
 
p
l
o
t
 
t
h
e
m
 
o
n
 
t
h
e
 
s
c
r
e
e
n
 
a
n
d

4
 

c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
f
i
l
e
s
 
 
F
3
_
0
1
A
.
P
C
X
 
 
a
n
d
 
 
F
3
_
0
1
A
.
D
X
F

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
C
l
o
s
e
G
r
a
p
h
 
}

7
 

 
L
i
b
M
a
t
h
,
 

{
V
D
p
,
P
m
a
x
}

8
 

 
L
i
b
G
r
a
p
h
,
 

{
I
n
i
t
G
r
}

9
 

 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
C
l
o
s
e
D
X
F
f
i
l
e
}

1
0
 
 

U
n
i
t
_
P
C
X
,
 

{
W
r
i
t
e
P
C
X
}

1
1
 
 

L
i
b
P
l
o
t
s
;
 

{
P
l
o
t
C
u
r
v
e
,
P
l
o
t
X
a
x
i
s
,
P
l
o
t
Y
a
x
i
s
}

1
2
 
c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
3
_
0
1
A
’
;
 

{
F
i
l
e
N
a
m
e
.
D
X
F
 
o
r
 
F
i
l
e
N
a
m
e
.
P
C
X
 
 
}

1
3
 
 

n
P
t
s
 
=
 
2
5
0
;
 

{
s
h
o
u
l
d
 
n
o
t
 
e
x
c
e
e
d
 
5
0
2
 
p
o
i
n
t
s
 
i
.
e
.
 
P
m
a
x
 
}

1
4
 
 

O
n
 
=
 
P
i
/
2
.
5
;
 
{
n
a
t
u
r
a
l
 
c
i
r
c
u
l
a
r
 
f
r
e
q
u
e
n
c
y
 
[
r
a
d
/
s
]
 

}
1
5
 
 

Z
 

=
 
0
.
2
;
 

{
d
a
m
p
i
n
g
 
r
a
t
i
o
}

1
6
 
 

t
0
 
=
 
0
.
0
;
 
t
m
a
x
 
=
 
1
5
.
0
;
 

{
s
t
a
r
t
 
a
n
d
 
e
n
d
 
t
i
m
e
 
[
s
]
}

1
7
 
v
a
r
 
t
,
Y
:
 
V
D
p
;
 

i
:
 
I
n
t
e
g
e
r
;
 

O
K
:
 
B
o
o
l
e
a
n
;

1
8
 
B
E
G
I
n

1
9
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
P
t
s
 
d
o
 
B
E
G
I
n
 

{
g
e
n
e
r
a
t
e
 
t
[
.
.
]
 
a
n
d
 
Y
[
.
.
]
}

2
0
 
 

t
[
i
]
:
=
(
i
-
1
)
*
(
t
m
a
x
-
t
0
)
/
(
n
P
t
s
-
1
)
;

2
1
 
 

Y
[
i
]
:
=
2
*
e
x
p
(
-
Z
*
O
n
*
t
[
i
]
)
*
s
i
n
(
S
q
r
t
(
1
-
S
q
r
(
Z
)
)
*
O
n
*
t
[
i
]
+
P
i
/
9
)
;
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2
2
 
 

E
n
D
;

2
3
 
 

I
n
i
t
G
r
(
0
)
;
 
{
s
w
i
t
c
h
 
t
o
 
g
r
a
p
h
i
c
 
m
o
d
e
 
.
.
}

2
4
 
 

I
n
i
t
D
X
F
f
i
l
e
(
F
i
l
e
n
a
m
e
+
’
.
D
X
F
’
)
;
 
{
p
r
e
p
a
r
e
 
t
o
 
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
D
X
F
}

2
5
 
 

P
l
o
t
C
u
r
v
e
(
1
,
 
t
,
Y
,
n
P
t
s
,
 
R
e
d
)
;

2
6
 
 

P
l
o
t
Y
a
x
i
s
(
1
,
 
0
,
 
5
,
2
,
 
‘
Y
(
t
)
 

‘
)
;

2
7
 
 

P
l
o
t
X
a
x
i
s
(
1
,
 
1
,
 
6
,
3
,
 
‘
t
 
[
s
e
c
]
 

‘
)
;

2
8
 
 

W
r
i
t
e
P
C
X
(
F
i
l
e
n
a
m
e
+
’
.
P
C
X
’
,
 
O
K
)
;
 
{
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
P
C
X
}

2
9
 
 

C
l
o
s
e
D
X
F
f
i
l
e
;
 

R
e
a
d
L
n
;
 

{
p
r
e
s
s
 
<
C
R
>
 
t
o
 
f
i
n
i
s
h
}

3
0
 
 

C
l
o
s
e
G
r
a
p
h
;

3
1
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
3
_
0
1
B
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
v
e
c
t
o
r
s
 
t
[
.
.
]
 
a
n
d
 
Y
[
.
.
]
,
 
p
l
o
t
 
t
h
e
m
 
o
n
 
t
h
e
 
s
c
r
e
e
n
 
a
n
d

4
 

c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
f
i
l
e
s
 
 
F
3
_
0
1
B
.
P
C
X
 
 
a
n
d
 
 
F
3
_
0
1
B
.
D
X
F

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 

G
r
a
p
h
,
 

{
R
e
d
,
S
o
l
i
d
L
n
,
T
h
i
c
k
W
i
d
t
h
,
S
e
t
L
i
n
e
S
t
y
l
e
,
C
l
o
s
e
G
r
a
p
h
}

7
 

 
L
i
b
M
a
t
h
,
 

{
V
D
p
,
P
m
a
x
}

8
 

 
L
i
b
I
n
O
u
t
,
 
{
W
a
i
t
T
o
G
o
}

9
 

 
L
i
b
G
r
a
p
h
,
 
{
I
n
i
t
G
r
}

1
0
 
 

L
i
b
G
I
n
t
f
,
 
{
D
r
a
w
B
o
r
d
e
r
}

1
1
 
 

L
i
b
D
X
F
,
 
 
 
{
I
n
i
t
D
X
F
f
i
l
e
,
C
l
o
s
e
D
X
F
f
i
l
e
}

1
2
 
 

U
n
i
t
_
P
C
X
,
 
{
W
r
i
t
e
P
C
X
}

1
3
 
 

L
i
b
P
l
o
t
s
;
 
{
N
e
w
P
l
o
t
,
F
i
t
B
o
x
,
P
l
o
t
C
u
r
v
e
,
P
l
o
t
X
a
x
i
s
,
P
l
o
t
Y
a
x
i
s
,
 
.
.

1
4
 

S
e
t
D
i
v
L
i
n
e
,
U
p
d
a
t
e
L
i
m
i
t
s
Y
,
N
e
w
L
i
m
i
t
s
X
,
N
e
w
L
i
m
i
t
s
Y
,

1
5
 

G
e
t
X
m
a
x
,
G
e
t
Y
m
a
x
}

1
6
 
c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
3
_
0
1
B
’
;
 

{
F
i
l
e
N
a
m
e
.
D
X
F
 
o
r
 
F
i
l
e
N
a
m
e
.
P
C
X
}

1
7
 
 

n
P
t
s
 
=
 
2
5
0
;
 

{
s
h
o
u
l
d
 
n
o
t
 
e
x
c
e
e
d
 
P
m
a
x
 
=
 
5
0
2
}

1
8
 
 

O
n
 

=
 
P
i
/
2
.
5
;
 
{
n
a
t
u
r
a
l
 
c
i
r
c
u
l
a
r
 
f
r
e
q
u
e
n
c
y
 
[
r
a
d
/
s
]
}

1
9
 
 

Z
 

=
 
0
.
2
;
 

{
d
a
m
p
i
n
g
 
r
a
t
i
o
}

2
0
 
 

t
0
 

=
 
0
.
0
;
 

t
m
a
x
 
=
 
1
5
.
0
;
 

{
s
t
a
r
t
 
a
n
d
 
e
n
d
 
t
i
m
e
 
[
s
]
}
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2
1
 
v
a
r
 
t
,
Y
:
 
V
D
p
;
 
i
:
 
I
n
t
e
g
e
r
;
 
C
h
:
 
c
h
a
r
;
 

O
K
:
 
B
o
o
l
e
a
n
;

2
2
 
B
E
G
I
n

2
3
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
P
t
s
 
d
o
 
B
E
G
I
n

2
4
 
 

t
[
i
]
:
=
(
i
-
1
)
*
(
t
m
a
x
-
t
0
)
/
(
n
P
t
s
-
1
)
;

2
5
 
 

Y
[
i
]
:
=
2
*
e
x
p
(
-
Z
*
O
n
*
t
[
i
]
)
*
s
i
n
(
S
q
r
t
(
1
-
S
q
r
(
Z
)
)
*
O
n
*
t
[
i
]
+
P
i
/
9
)
;

2
6
 
 
E
n
D
;

2
7
 
 
I
n
i
t
G
r
(
0
)
;
 
{
s
w
i
t
c
h
 
t
o
 
g
r
a
p
h
i
c
 
m
o
d
e
}

2
8
 
 
I
n
i
t
D
X
F
f
i
l
e
(
F
i
l
e
n
a
m
e
+
’
.
D
X
F
’
)
;
 
{
p
r
e
p
a
r
e
 
t
o
 
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
D
X
F
}

2
9
 
 
n
e
w
P
l
o
t
(
1
,
 
F
i
t
B
o
x
,
 
1
5
0
,
8
0
,
5
0
0
,
4
3
0
,
 
‘
D
a
m
p
e
d
 
o
s
c
i
l
l
a
t
i
o
n
’
)
;

3
0
 
 
D
r
a
w
B
o
r
d
e
r
;

3
1
 
 
U
p
d
a
t
e
L
i
m
i
t
s
Y
(
1
,
 
Y
,
 
n
P
t
s
)
;

3
2
 
 
n
e
w
L
i
m
i
t
s
Y
(
1
,
 
1
.
1
*
G
e
t
Y
m
a
x
(
1
)
,
1
.
1
5
*
G
e
t
Y
m
i
n
(
1
)
)
;

3
3
 
 
S
e
t
L
i
n
e
S
t
y
l
e
(
S
o
l
i
d
L
n
,
 
0
,
 
T
h
i
c
k
W
i
d
t
h
)
;

3
4
 
 
P
l
o
t
C
u
r
v
e
(
1
,
 
t
,
Y
,
n
P
t
s
,
 
R
e
d
)
;

3
5
 
 
S
e
t
D
i
v
L
i
n
e
(
4
,
 
1
0
,
 
0
.
7
5
)
;
 

{
v
a
l
u
e
 
1
0
 
w
i
l
l
 
c
a
u
s
e
 
t
h
e
 
g
r
i
d
 
l
i
n
e
}

3
6
 
 
P
l
o
t
Y
a
x
i
s
(
1
,
 
0
,
 
6
,
2
,
 
‘
Y
(
t
)
 

‘
)
;

3
7
 
 
P
l
o
t
X
a
x
i
s
(
1
,
 
0
,
 
4
,
5
,
 
‘
t
 
[
s
e
c
]
 

‘
)
;

3
8
 
 
W
r
i
t
e
P
C
X
(
F
i
l
e
n
a
m
e
+
’
.
P
C
X
’
,
 
O
K
)
;
 

{
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
P
C
X
}

3
9
 
 
C
l
o
s
e
D
X
F
f
i
l
e
;
 

W
a
i
t
T
o
G
o
(
C
h
)
;
 

{
p
r
e
s
s
 
a
n
y
 
k
e
y
 
t
o
 
f
i
n
i
s
h
}

4
0
 
 
C
l
o
s
e
G
r
a
p
h
;

4
1
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
3
_
0
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
v
e
c
t
o
r
s
 
t
[
.
.
]
,
 
Y
1
[
.
.
]
 
a
n
d
 
Y
2
[
.
.
]
,
 
p
l
o
t
 
t
h
e
m
 
o
n
 
t
h
e
 
s
c
r
e
e
n
 
a
n
d

4
 

c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
f
i
l
e
s
 
 
F
3
_
0
2
.
P
C
X
 
 
a
n
d
 
 
F
3
_
0
2
.
D
X
F

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
R
e
d
,
C
l
o
s
e
G
r
a
p
h
}

7
 

 
L
i
b
I
n
O
u
t
,
 
{
E
r
a
s
e
A
l
l
,
I
m
p
l
i
c
i
t
F
i
l
e
N
a
m
e
}

8
 

 
L
i
b
G
r
a
p
h
,
 
{
I
n
i
t
G
r
}

9
 

 
L
i
b
M
a
t
h
,
 

{
V
D
p
}
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1
0
 
 

L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
C
l
o
s
e
D
X
F
f
i
l
e
}

1
1
 
 

U
n
i
t
_
P
C
X
,
 
{
W
r
i
t
e
P
C
X
}

1
2
 
 

L
i
b
P
l
o
t
s
;
 
{
N
e
w
P
l
o
t
,
F
i
t
B
o
x
,
U
p
d
a
t
e
L
i
m
i
t
s
X
,
U
p
d
a
t
e
L
i
m
i
t
s
Y
,
 
.
.

1
3
 
 

 
R
e
s
i
z
e
Y
,
S
e
t
M
a
r
k
e
r
,
P
l
o
t
C
u
r
v
e
,
P
l
o
t
X
a
x
i
s
,
P
l
o
t
Y
a
x
i
s
}

1
4
 
c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
3
_
0
2
’
;
 
{
.
D
X
F
 
o
r
 
.
P
C
X
}

1
5
 
 

n
P
t
s
 
=
 
2
5
0
;
 

{
s
h
o
u
l
d
 
n
o
t
 
e
x
c
e
e
d
 
P
m
a
x
 
=
 
5
0
2
}

1
6
 
 

O
n
 
=
 
P
i
/
2
.
5
;
 
{
O
m
e
g
a
_
n
 
}

1
7
 
 

t
0
 
=
 
0
.
0
;
 

t
m
a
x
 
=
 
1
5
.
0
;
 
{
s
t
a
r
t
 
a
n
d
 
e
n
d
 
t
i
m
e
 
[
s
]
}

1
8
 
v
a
r
 
t
,
Y
1
,
Y
2
:
 
V
D
p
;
 

Z
:
 
d
o
u
b
l
e
;
  i
:
 
I
n
t
e
g
e
r
;
 
C
h
:
 
c
h
a
r
;
 

O
K
:
 
B
o
o
l
e
a
n
;

1
9
 
B
E
G
I
n

2
0
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
P
t
s
 
d
o
 
B
E
G
I
n
 

{
G
e
n
e
r
a
t
e
 
v
e
c
t
o
r
s
 
t
,
Y
1
 
&
 
Y
2
 
.
.
}

2
1
 
 

t
[
i
]
:
=
(
i
-
1
)
*
(
t
m
a
x
-
t
0
)
/
(
n
P
t
s
-
1
)
;

2
2
 
 

Z
:
=
0
.
2
;

2
3
 
 

Y
1
[
i
]
:
=
2
*
e
x
p
(
-
Z
*
O
n
*
t
[
i
]
)
*
s
i
n
(
S
q
r
t
(
1
-
S
q
r
(
Z
)
)
*
O
n
*
t
[
i
]
+
P
i
/
9
)
;

2
4
 
 

Z
:
=
0
.
3
;

2
5
 
 

Y
2
[
i
]
:
=
2
*
e
x
p
(
-
Z
*
O
n
*
t
[
i
]
)
*
s
i
n
(
S
q
r
t
(
1
-
S
q
r
(
Z
)
)
*
O
n
*
t
[
i
]
+
P
i
/
9
)
;

2
6
 
 
E
n
D
;

2
7
 
 
I
n
i
t
G
r
(
0
)
;

2
8
 
 
I
n
i
t
D
X
F
f
i
l
e
(
F
i
l
e
n
a
m
e
+
’
.
D
X
F
’
)
;
 
{
p
r
e
p
a
r
e
 
t
o
 
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
D
X
F
}

2
9
 
 
n
e
w
P
l
o
t
(
1
,
 
F
i
t
B
o
x
,
 
6
0
,
6
0
,
6
2
0
,
4
2
0
,
 
‘
D
a
m
p
e
d
 
o
s
c
i
l
l
a
t
i
o
n
s
’
)
;

3
0
 
 
U
p
d
a
t
e
L
i
m
i
t
s
X
(
1
,
 
 
t
,
 
n
P
t
s
)
;
 

{
g
e
t
 
t
m
i
n
 
&
 
t
m
a
x
 
f
r
o
m
 
t
[
]
}

3
1
 
 
U
p
d
a
t
e
L
i
m
i
t
s
Y
(
1
,
 
Y
1
,
 
n
P
t
s
)
;
 

{
g
e
t
 
Y
m
i
n
 
&
 
Y
m
a
x
 
f
r
o
m
 
Y
1
[
]
}

3
2
 
 
U
p
d
a
t
e
L
i
m
i
t
s
Y
(
1
,
 
Y
2
,
 
n
P
t
s
)
;
 

{
u
p
d
a
t
e
 
Y
m
i
n
 
&
 
Y
m
a
x
 
u
s
i
n
g
 
Y
2
[
]
}

3
3
 
 
R
e
s
i
z
e
Y
(
1
,
 
0
.
2
)
;
 
{
e
x
p
a
n
d
 
Y
-
a
x
i
s
 
n
i
c
e
l
y
 
b
y
 
a
b
o
u
t
 
1
0
%
 
b
o
t
h
 
d
i
r
e
c
t
i
o
n
s
}

3
4
 
 
P
l
o
t
C
u
r
v
e
(
1
,
 
t
,
Y
1
,
n
P
t
s
,
 
B
l
u
e
)
;

3
5
 
 
S
e
t
M
a
r
k
e
r
(
4
,
 
‘
:
<
>
’
)
;

3
6
 
 
P
l
o
t
C
u
r
v
e
(
1
,
 
t
,
Y
1
,
n
P
t
s
,
 
-
B
l
u
e
)
;

3
7
 
 
P
l
o
t
Y
a
x
i
s
(
1
,
 
0
,
 
7
,
2
,
 
‘
 
Y
1
(
t
)
 

‘
)
;

3
8
 
 
P
l
o
t
X
a
x
i
s
(
1
,
 
1
,
 
4
,
5
,
 
‘
t
 
[
s
e
c
]
 

‘
)
;

3
9
 
 
S
e
t
M
a
r
k
e
r
(
2
,
 
‘
|
o
’
)
;

4
0
 
 
P
l
o
t
C
u
r
v
e
(
1
,
 
t
,
Y
2
,
n
P
t
s
,
 
-
R
e
d
)
;
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4
1
 
 
P
l
o
t
Y
a
x
i
s
(
1
,
 
0
,
 
7
,
2
,
 
‘
 
Y
2
(
t
)
’
)
;

4
2
 
 
W
r
i
t
e
P
C
X
(
F
i
l
e
n
a
m
e
+
’
.
P
C
X
’
,
 
O
K
)
;
 

{
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
P
C
X
}

4
3
 
 
C
l
o
s
e
D
X
F
f
i
l
e
;
 

W
a
i
t
T
o
G
o
(
C
h
)
;
 

{
P
r
e
s
s
 
a
n
y
 
k
e
y
 
t
o
 
f
i
n
i
s
h
}

4
4
 
 
C
l
o
s
e
G
r
a
p
h
;

4
5
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
3
_
0
3
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

R
e
a
d
 
v
e
c
t
o
r
s
 
X
[
1
.
.
n
P
t
s
]
 
a
n
d
 
Y
[
1
.
.
n
P
t
s
]
 
f
r
o
m
 
A
S
C
I
I
 
f
i
l
e
 
F
3
_
0
3
.
D
T
A
,
 
p
l
o
t

4
 

t
h
e
m
 
o
n
 
t
h
e
 
s
c
r
e
e
n
 
a
n
d
 
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
f
i
l
e
s
 
F
3
_
0
3
.
P
C
X
 
a
n
d
 
F
3
_
0
3
.
D
X
F

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,

7
 

 
L
i
b
M
a
t
h
,
 

{
V
D
p
,
P
m
a
x
}

8
 

 
L
i
b
I
n
O
u
t
,
 

{
E
x
t
r
a
c
t
_
V
,
W
a
i
t
T
o
G
o
}

9
 

 
L
i
b
G
r
a
p
h
,
 

{
I
n
i
t
G
r
,
C
l
o
s
e
G
r
a
p
h
}

1
0
 
 

L
i
b
G
I
n
t
f
,
 

{
D
r
a
w
B
o
r
d
e
r
}

1
1
 
 

L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
C
l
o
s
e
D
X
F
f
i
l
e
}

1
2
 
 

U
n
i
t
_
P
C
X
,
 

{
W
r
i
t
e
P
C
X
}

1
3
 
 

L
i
b
P
l
o
t
s
;
 

{
N
e
w
P
l
o
t
,
P
l
o
t
C
u
r
v
e
,
P
l
o
t
X
a
x
i
s
,
P
l
o
t
Y
a
x
i
s
 
.
.
}

1
4
 
 

N
e
w
L
i
m
i
t
s
X
,
N
e
w
L
i
m
i
t
s
Y
}

1
5
 
c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
3
_
0
3
A
’
;
 

{
n
a
m
e
 
o
f
 
D
X
F
 
a
n
d
 
P
C
X
 
f
i
l
e
s
}

1
6
 
 

R
o
w
S
t
a
r
t
 
=
 
3
;

1
7
 
 

X
c
o
l
 
=
 
1
;
 

Y
c
o
l
 
=
 
5
;
 

{
c
o
l
u
m
n
 
n
u
m
b
e
r
 
f
o
r
 
X
 
a
n
d
 
Y
}

1
8
 
 

n
P
t
s
 

=
 
5
0
2
;
 

{
s
h
o
u
l
d
 
n
o
t
 
e
x
c
e
e
d
 
5
0
2
 
i
.
e
.
 
P
m
a
x
 
}

1
9
 
v
a
r
 

F
T
:
 
T
e
x
t
;
 

{
i
n
p
u
t
 
A
S
C
I
I
 
f
i
l
e
 
}

2
0
 
 

X
,
Y
:
 
V
D
p
;

2
1
 
 

O
n
e
X
,
O
n
e
Y
,
 
X
m
i
n
,
X
m
a
x
,
 
Y
m
i
n
,
Y
m
a
x
:
 
d
o
u
b
l
e
;

2
2
 
 

R
o
w
F
i
n
i
s
h
,
 
j
R
o
w
,
i
:
 
W
o
r
d
;

2
3
 
 

R
o
w
:
 
s
t
r
i
n
g
;
 

C
h
:
 
c
h
a
r
;
 

O
K
:
 
B
o
o
l
e
a
n
;

2
4
 
B
E
G
I
n
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2
5
 
 
X
m
i
n
:
=
0
.
0
;
 
X
m
a
x
:
=
0
.
5
;
 

{
p
r
e
d
e
f
i
n
e
d
 
X
 
l
i
m
i
t
s
}

2
6
 
 
Y
m
i
n
:
=
1
.
5
;
 
Y
m
a
x
:
=
3
.
5
;
 

{
p
r
e
d
e
f
i
n
e
d
 
Y
 
l
i
m
i
t
s
}

2
7
 
 
A
s
s
i
g
n
(
F
T
,
’
F
3
_
0
3
.
D
T
A
’
)
;
 

R
e
s
e
t
(
F
T
)
;

2
8
 
 
j
R
o
w
:
=
0
;

2
9
 
 
w
h
i
l
e
 
n
O
T
 
E
o
f
(
F
T
)
 
d
o
 
B
E
G
I
n
 
 
{
c
o
u
n
t
 
l
i
n
e
s
 
i
n
 
F
T
 
f
i
l
e
}

3
0
 
 
 

R
e
a
d
L
n
(
F
T
,
R
o
w
)
;
  I
n
c
(
j
R
o
w
)
;

3
1
 
 
E
n
D
;

3
2
 
 
R
o
w
F
i
n
i
s
h
:
=
j
R
o
w
-
R
o
w
S
t
a
r
t
 
+
 
1
;

3
3
 
 
I
n
i
t
G
r
(
0
)
;
 
{
s
w
i
t
c
h
 
t
o
 
g
r
a
p
h
i
c
 
m
o
d
e
}

3
4
 
 
I
n
i
t
D
X
F
f
i
l
e
(
F
i
l
e
n
a
m
e
+
’
.
D
X
F
’
)
;
 
{
p
r
e
p
a
r
e
 
t
o
 
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
D
X
F
}

3
5
 
 
n
e
w
P
l
o
t
(
1
,
 
F
i
t
B
o
x
,
 
4
0
,
1
2
0
,
6
0
0
,
3
6
0
,
 
‘
E
x
p
e
r
i
m
e
n
t
a
l
 
D
a
t
a
’
)
;

3
6
 
 
D
r
a
w
B
o
r
d
e
r
;

3
7
 
 
n
e
w
L
i
m
i
t
s
X
(
1
,
 
X
m
i
n
,
X
m
a
x
)
;
 

{
s
e
t
 
X
m
i
n
 
&
 
X
m
a
x
}

3
8
 
 
n
e
w
L
i
m
i
t
s
Y
(
1
,
 
Y
m
i
n
,
Y
m
a
x
)
;
 

{
s
e
t
 
Y
m
i
n
 
&
 
Y
m
a
x
}

3
9
 
 
R
e
s
e
t
(
F
T
)
;

4
0
 
 
j
R
o
w
:
=
0
;
 

i
:
=
0
;

4
1
 
 
R
e
p
e
a
t
 

{
r
e
a
d
 
t
h
e
 
i
n
p
u
t
 
f
i
l
e
 
a
g
a
i
n
 
t
o
 
d
o
 
t
h
e
 
a
c
t
u
a
l
 
p
l
o
t
 
.
.
}

4
2
 
 

R
e
a
d
L
n
(
F
T
,
R
o
w
)
;

4
3
 
 

I
n
c
(
j
R
o
w
)
;

4
4
 
 

E
x
t
r
a
c
t
_
V
(
R
o
w
,
X
c
o
l
,
O
n
e
X
)
;
 
{
e
x
t
r
a
c
t
 
f
r
o
m
 
R
o
w
 
t
h
e
 
X
c
o
l
-
t
h
 
v
a
l
u
e
}

4
5
 
 

E
x
t
r
a
c
t
_
V
(
R
o
w
,
Y
c
o
l
,
O
n
e
Y
)
;
 
{
e
x
t
r
a
c
t
 
f
r
o
m
 
R
o
w
 
t
h
e
 
Y
c
o
l
-
t
h
 
v
a
l
u
e
}

4
6
 
 

i
f
 
(
j
R
o
w
 
>
=
 
R
o
w
S
t
a
r
t
)
 
t
h
e
n
 
B
E
G
I
n

4
7
 
 

I
n
c
(
i
)
;
 

X
[
i
]
:
=
O
n
e
X
;
 

Y
[
i
]
:
=
O
n
e
Y
;

4
8
 
 

E
n
D
;

4
9
 
 

i
f
 
(
i
 
=
 
n
P
t
s
)
 
O
R
 
E
o
f
(
F
T
)
 
t
h
e
n
 
B
E
G
I
n
 

{
X
,
Y
 
h
a
v
e
 
n
P
t
s
 
c
o
m
p
o
n
e
n
t
s
}

5
0
 
 

P
l
o
t
C
u
r
v
e
(
1
,
 
X
,
Y
,
 
i
,
 
1
+
R
a
n
d
o
m
(
1
3
)
)
;
 

{
c
o
l
o
r
 
s
e
c
t
i
o
n
s
 
a
t
 
r
a
n
d
o
m
}

5
1
 
 

i
:
=
1
;
 
X
[
i
]
:
=
O
n
e
X
;
 
Y
[
i
]
:
=
O
n
e
Y
;

5
2
 

 
E
n
D
;

5
3
 
 
u
n
t
i
l
 
E
o
f
(
F
T
)
;

5
4
 
 
P
l
o
t
Y
a
x
i
s
(
1
,
 
0
,
 
5
,
5
,
 
‘
 
V
o
l
t
s
 

‘
)
;

5
5
 
 
P
l
o
t
X
a
x
i
s
(
1
,
 
2
,
 
6
,
4
,
 
‘
t
 
[
s
e
c
]
 
‘
)
;
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5
6
 
 
W
r
i
t
e
P
C
X
(
F
i
l
e
n
a
m
e
+
’
.
P
C
X
’
,
 
O
K
)
;
 

{
c
o
p
y
 
t
h
e
 
s
c
r
e
e
n
 
t
o
 
P
C
X
}

5
7
 
 
C
l
o
s
e
D
X
F
f
i
l
e
;
 

W
a
i
t
T
o
G
o
(
C
h
)
;
 
 

{
p
r
e
s
s
 
a
n
y
 
k
e
y
 
t
o
 
f
i
n
i
s
h
}

5
8
 
 
C
l
o
s
e
G
r
a
p
h
;

5
9
 
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
3
_
1
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
3
_
1
2
.
T
X
T
 
w
i
t
h
 
‘
s
a
w
-
t
o
o
t
h
’
 
a
n
g
l
e
 
v
a
l
u
e
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;
 
{
I
n
f
D
,
 
A
t
a
n
2
}

6
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
3
_
1
2
.
T
X
T
’
;

7
 

 
T
h
e
t
a
_
m
i
n
 
=
 
-
2
*
P
i
;
 
T
h
e
t
a
_
m
a
x
 
=
 

2
*
P
i
;
 

{
l
o
w
e
r
 
a
n
d
 
u
p
p
e
r
 
b
o
w
n
d
s
}

8
 

 
n
=
4
0
1
;
 

{
n
u
m
b
e
r
 
o
f
 
d
a
t
a
 
p
o
i
n
t
s
}

9
 

v
a
r
 
F
T
:
 
T
e
x
t
;
 

T
h
e
t
a
0
,
 
T
h
e
t
a
1
,
 
T
h
e
t
a
2
:
 
d
o
u
b
l
e
;
 
i
:
 
i
n
t
e
g
e
r
;

1
0
 
B
E
G
I
n

1
1
 
 
A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

1
2
 
 
C
l
r
S
c
r
;
 

{
N
e
x
t
 
w
i
l
l
 
w
r
i
t
e
 
A
S
C
I
I
 
f
i
l
e
 
h
e
a
d
e
r
:
 
}

1
3
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 

T
h
e
t
a
0
 

T
h
e
t
a
1
 

T
h
e
t
a
2
’
)
;

1
4
 
 
W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
_
m
i
n
:
9
:
6
,
’
 

‘
,
T
h
e
t
a
_
m
i
n
:
9
:
6
,
’
 

‘
,
T
h
e
t
a
_
m
i
n
:
9
:
6
)
;

1
5
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

1
6
 
 

T
h
e
t
a
0
:
=
T
h
e
t
a
_
m
i
n
+
(
T
h
e
t
a
_
m
a
x
-
T
h
e
t
a
_
m
i
n
)
/
(
n
-
1
)
*
(
i
-
1
)
;
 
{
o
r
i
g
i
n
a
l
 
a
n
g
l
e
}

1
7
 
 

T
h
e
t
a
0
:
=
T
h
e
t
a
0
;

1
8
 
 

T
h
e
t
a
1
:
=
A
r
c
T
a
n
(
s
i
n
(
T
h
e
t
a
0
)
/
c
o
s
(
T
h
e
t
a
0
)
)
;
 
{
b
r
e
a
k
 
T
h
e
t
a
0
 
w
i
t
h
 
A
r
c
T
a
n
}

1
9
 
 

T
h
e
t
a
2
:
=
A
T
a
n
2
(
s
i
n
(
T
h
e
t
a
0
)
,
c
o
s
(
T
h
e
t
a
0
)
)
;
 
{
b
r
e
a
k
 
T
h
e
t
a
0
 
w
i
t
h
 
A
T
a
n
2
 
}

2
0
 
 

W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
0
:
9
:
6
,
’
 

‘
,
T
h
e
t
a
1
:
9
:
6
,
’
 
‘
,
T
h
e
t
a
2
:
9
:
6
)
;

2
1
 
 
E
n
D
;

2
2
 
 
C
l
o
s
e
(
F
T
)
;

2
3
 
 
W
r
i
t
e
(
‘
F
i
l
e
 
‘
+
F
i
l
e
n
a
m
e
+
’
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

2
4
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
3
_
2
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
s
 
d
a
t
a
 
f
i
l
e
 
F
3
_
1
4
.
G
3
D
 
t
o
 
p
l
o
t
 
a
 
3
D
 
h
e
l
i
x
 
o
f
 
v
a
r
i
a
b
l
e
 
r
a
d
i
u
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
;

6
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
3
_
2
3
.
G
3
D
’
;

7
 

 
R
f
 
=
 
0
.
5
;
 

{
f
i
n
a
l
 
r
a
d
i
u
s
 
}

8
 

 
n
C
 
=
 
8
.
0
;
 

{
t
o
t
a
l
 
n
u
m
b
e
r
 
o
f
 
c
o
i
l
s
}

9
 

 
n
1
 
=
 
3
6
;
 

{
n
u
m
b
e
r
 
o
f
 
v
e
r
t
i
c
e
s
 
p
e
r
 
c
o
i
l
}

1
0
 
 

p
 
 
=
 
1
/
8
;
 

{
a
x
i
a
l
 
p
i
t
c
h
 
}

1
1
 
v
a
r
 

F
T
:
 
T
e
x
t
;
 

r
,
 
t
,
 
X
,
Y
,
Z
:
 
d
o
u
b
l
e
;
 

i
,
n
:
 
i
n
t
e
g
e
r
;

1
2
 
p
r
o
c
e
d
u
r
e
 
X
Y
Z
(
T
h
e
t
a
:
 
d
o
u
b
l
e
;
 
v
a
r
 
X
,
Y
,
Z
:
 
d
o
u
b
l
e
)
;

1
3
 
B
E
G
I
n

1
4
 
 
r
:
=
R
f
*
S
q
r
(
T
h
e
t
a
/
(
2
.
0
*
P
i
*
n
C
)
)
;

1
5
 
 
X
:
=
r
*
c
o
s
(
T
h
e
t
a
)
;
 

Y
:
=
r
*
s
i
n
(
T
h
e
t
a
)
;
 

Z
:
=
p
*
T
h
e
t
a
/
(
2
*
P
i
)
;

1
6
 
E
n
D
;
 
{
.
.
 
X
Y
Z
(
)
}

1
7
 
B
E
G
I
n

1
8
 
 
C
l
r
S
c
r
;

1
9
 
 
A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

2
0
 
 
n
:
=
R
o
u
n
d
(
n
C
*
n
1
)
;

2
1
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

2
2
 
 

t
:
=
(
2
*
P
i
*
n
C
/
n
)
*
(
i
-
1
)
;

2
3
 
 

X
Y
Z
(
t
,
X
,
Y
,
Z
)
;

2
4
 
 

W
r
i
t
e
L
n
(
F
T
,
’
(
‘
,
X
:
1
6
:
6
,
’
 
‘
,
Y
:
1
6
:
6
,
’
 
‘
,
Z
:
1
6
:
6
,
’
)
’
)
;

2
5
 
 

E
n
D
;

2
6
 

  C
l
o
s
e
(
F
T
)
;

2
7
 

  W
r
i
t
e
(
‘
F
i
l
e
 
‘
+
F
i
l
e
n
a
m
e
+
’
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 
 
R
e
a
d
L
n
;

2
8
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
3
_
2
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
3
_
2
5
.
G
3
D
 
t
o
 
p
l
o
t
 
a
 
t
o
r
o
i
d
a
l
 
h
e
l
i
x
:

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
;

6
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
3
_
2
5
.
G
3
D
’
;

7
 

v
a
r
 
F
T
:
 
T
e
x
t
;
 

t
,
t
m
i
n
,
t
m
a
x
,
 
X
,
Y
,
Z
:
 
d
o
u
b
l
e
;
 

n
t
,
i
t
:
 
i
n
t
e
g
e
r
;

8
 

p
r
o
c
e
d
u
r
e
 
X
Y
Z
(
T
h
e
t
a
:
 
d
o
u
b
l
e
;
 
v
a
r
 
X
,
Y
,
Z
:
 
d
o
u
b
l
e
)
;

9
 

c
o
n
s
t
 
r
S
=
2
;
 

{
h
e
l
i
x
 
r
a
d
i
u
s
}

1
0
 
 

r
T
=
1
0
;
 
{
t
o
r
u
s
 
c
e
n
t
r
o
i
d
a
l
 
r
a
d
i
u
s
}

1
1
 
 

n
S
=
2
4
;
 
{
n
u
m
b
e
r
 
o
f
 
c
o
i
l
s
}

1
2
 
B
E
G
I
n

1
3
 
 
X
:
=
(
r
T
+
r
S
*
c
o
s
(
n
S
*
T
h
e
t
a
)
)
*
c
o
s
(
T
h
e
t
a
)
;

1
4
 
 
Y
:
=
(
r
T
+
r
S
*
c
o
s
(
n
S
*
T
h
e
t
a
)
)
*
s
i
n
(
T
h
e
t
a
)
;

1
5
 
 
Z
:
=
r
S
*
s
i
n
(
n
S
*
T
h
e
t
a
)
;

1
6
 
E
n
D
;
 

{
.
.
 
X
Y
Z
(
)
}

1
7
 
B
E
G
I
n

1
8
 
 
n
t
:
=
9
0
*
2
4
;
 
t
m
i
n
 
:
=
0
.
0
;
 

t
m
a
x
 
:
=
2
*
P
i
;

1
9
 
 
C
l
r
S
c
r
;
 

A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

2
0
 
 
f
o
r
 
i
t
:
=
1
 
t
o
 
n
t
 
d
o
 
B
E
G
I
n

2
1
 
 

t
:
=
t
m
i
n
+
(
t
m
a
x
-
t
m
i
n
)
/
(
n
t
-
1
)
*
(
i
t
-
1
)
;

2
2
 
 

X
Y
Z
(
t
,
X
,
Y
,
Z
)
;

2
3
 
 

W
r
i
t
e
L
n
(
F
T
,
’
(
‘
,
X
:
1
6
:
6
,
’
 
‘
,
Y
:
1
6
:
6
,
’
 
‘
,
Z
:
1
6
:
6
,
’
)
’
)
;

2
4
 
 
E
n
D
;

2
5
 
 
C
l
o
s
e
(
F
T
)
;

2
6
 
 

W
r
i
t
e
(
‘
F
i
l
e
 
‘
+
F
i
l
e
n
a
m
e
+
’
 
g
e
n
e
r
a
t
e
d
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 

<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

2
7
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
3
_
3
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

W
r
i
t
e
s
 
t
o
 
F
3
_
3
1
S
W
.
M
3
D
 
t
h
e
 
c
o
m
m
a
n
d
s
 
t
o
 
i
n
s
e
r
t
 
b
l
o
c
k
 
“
S
_
w
h
e
e
l
2
”
 
a
n
d
 
t
o
 
f
i
l
e

4
 

F
3
_
3
1
U
C
S
.
M
3
D
 
t
h
e
 
c
o
m
m
a
n
d
s
 
t
o
 
i
n
s
e
r
t
 
a
 
X
Y
Z
 
f
r
a
m
e
 
a
t
t
a
c
h
e
d
 
t
o
 
“
S
_
w
h
e
e
l
2
”
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
L
i
b
M
a
t
h
,
 
{
V
D
n
}

7
 

 
L
i
b
G
e
3
D
;
 
{
v
e
c
t
3
,
 
m
a
t
3
3
,
 
R
T
}

8
 

v
a
r
 
R
o
t
x
,
R
o
t
z
:
 
m
a
t
3
3
;

9
 

 
T
3
,
Z
e
r
o
3
:
 
v
e
c
t
3
;

1
0
 
 

P
h
i
:
 
V
D
n
;
 

{
s
t
e
e
r
i
n
g
 
w
h
e
e
l
 
r
o
t
a
t
i
o
n
 
a
n
g
l
e
s
}

1
1
 
 

x
0
1
,
y
0
1
,
z
0
1
,
 
{
l
o
c
a
l
 
p
o
i
n
t
 
a
l
o
n
g
 
t
h
e
 
X
 
a
x
i
s
 
o
f
 
t
h
e
 
“
S
_
w
h
e
e
l
”
 
b
l
o
c
k
}

1
2
 
 

x
0
2
,
y
0
2
,
z
0
2
,
 
{
l
o
c
a
l
 
p
o
i
n
t
 
a
l
o
n
g
 
t
h
e
 
Y
 
a
x
i
s
 
o
f
 
t
h
e
 
“
S
_
w
h
e
e
l
”
 
b
l
o
c
k
}

1
3
 
 

x
1
,
y
1
,
z
1
,
 

{
g
l
o
b
a
l
 
p
o
i
n
t
 
a
l
o
n
g
 
t
h
e
 
Y
 
a
x
i
s
 
o
f
 
t
h
e
 
“
S
_
w
h
e
e
l
”
 
b
l
o
c
k
}

1
4
 
 

x
2
,
y
2
,
z
2
,
 

{
g
l
o
b
a
l
 
p
o
i
n
t
 
a
l
o
n
g
 
t
h
e
 
Y
 
a
x
i
s
 
o
f
 
t
h
e
 
“
S
_
w
h
e
e
l
”
 
b
l
o
c
k
}

1
5
 
 

x
,
y
,
z
:
 
d
o
u
b
l
e
;
 

i
,
n
:
 
B
y
t
e
;
 
M
3
D
1
,
 
M
3
D
2
:
 
t
e
x
t
;

1
6
 
B
E
G
I
n

1
7
 
 
A
s
s
i
g
n
(
M
3
D
1
,
’
F
3
_
3
1
S
W
.
M
3
D
’
)
;
 

R
e
w
r
i
t
e
(
M
3
D
1
)
;

1
8
 
 
A
s
s
i
g
n
(
M
3
D
2
,
’
F
3
_
3
1
U
C
S
.
M
3
D
’
)
;
 

R
e
w
r
i
t
e
(
M
3
D
2
)
;

1
9
 
 
n
:
=
7
;

2
0
 
 
P
h
i
[
1
]
:
=
-
4
5
.
1
2
0
*
R
A
D
;

2
1
 
 
P
h
i
[
2
]
:
=
-
3
5
.
0
8
8
*
R
A
D
;

2
2
 
 
P
h
i
[
3
]
:
=
-
1
9
.
9
6
8
*
R
A
D
;

2
3
 
 
P
h
i
[
4
]
:
=
 
0
0
.
0
0
0
*
R
A
D
;

2
4
 
 
P
h
i
[
5
]
:
=
 
2
4
.
6
0
8
*
R
A
D
;

2
5
 
 
P
h
i
[
6
]
:
=
 
5
3
.
6
4
8
*
R
A
D
;

2
6
 
 
P
h
i
[
7
]
:
=
 
8
6
.
9
9
2
*
R
A
D
;

2
7
 
 
{
P
o
i
n
t
 
a
l
o
n
g
 
t
h
e
 
l
o
c
a
l
 
X
-
a
x
i
s
 
o
f
 
t
h
e
 
s
t
e
e
r
i
n
g
 
w
h
e
e
l
:
 
}

2
8
 
 

x
0
1
:
=
3
0
0
.
0
;
 

y
0
1
:
=
0
.
0
;
 

z
0
1
:
=
0
.
0
;

2
9
 
 
{
P
o
i
n
t
 
a
l
o
n
g
 
t
h
e
 
l
o
c
a
l
 
Y
-
a
x
i
s
 
o
f
 
t
h
e
 
s
t
e
e
r
i
n
g
 
w
h
e
e
l
:
 
}

3
0
 
 
x
0
2
:
=
0
.
0
;
 

y
0
2
:
=
3
0
0
.
0
;
 

z
0
2
:
=
0
.
0
;
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3
1
 
 
{
Z
e
r
o
 
t
r
a
n
s
l
a
t
i
o
n
 
v
e
c
t
o
r
:
 
}

3
2
 
 
Z
e
r
o
3
[
1
]
:
=
0
.
0
;
 

Z
e
r
o
3
[
2
]
:
=
0
.
0
;
 

Z
e
r
o
3
[
3
]
:
=
0
.
0
;

3
3
 
 
{
T
r
a
n
s
l
a
t
i
o
n
 
t
o
 
t
h
e
 
e
n
d
 
o
f
 
s
t
e
e
r
i
n
g
 
c
o
l
u
m
n
:
 

}
3
4
 
 
T
3
[
1
]
:
=
0
.
0
;
 
T
3
[
2
]
:
=
9
7
1
.
3
3
8
;
 

T
3
[
3
]
:
=
6
5
8
.
3
9
9
;

3
5
 
 
{
R
o
t
a
t
i
o
n
 
a
b
o
u
t
 
t
h
e
 
X
-
a
x
i
s
 
b
y
 
-
3
0
 
d
e
g
 
(
s
t
e
e
r
i
n
g
 
c
o
l
u
m
n
 
t
i
l
t
)
:
 
}

3
6
 
 
R
o
t
x
[
1
,
1
]
:
=
1
.
0
;
 
R
o
t
x
[
1
,
2
]
:
=
0
.
0
;
 

R
o
t
x
[
1
,
3
]
:
=
0
.
0
;

3
7
 
 
R
o
t
x
[
2
,
1
]
:
=
0
.
0
;
 
R
o
t
x
[
2
,
2
]
:
=
c
o
s
(
-
3
0
*
R
A
D
)
;
 

R
o
t
x
[
2
,
3
]
:
=
-
s
i
n
(
-
3
0
*
R
A
D
)
;

3
8
 
 
R
o
t
x
[
3
,
1
]
:
=
0
.
0
;
 
R
o
t
x
[
3
,
2
]
:
=
s
i
n
(
-
3
0
*
R
A
D
)
;
 

R
o
t
x
[
3
,
3
]
:
=
c
o
s
(
-
3
0
*
R
A
D
)
;

3
9
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

4
0
 
 

{
R
o
t
a
t
i
o
n
 
a
b
o
u
t
 
t
h
e
 
Z
-
a
x
i
s
 
(
s
t
e
e
r
i
n
g
 
w
h
e
e
l
 
t
u
r
n
)
:
 
}

4
1
 
 

R
o
t
z
[
1
,
1
]
:
=
c
o
s
(
P
h
i
[
i
]
)
;
 

R
o
t
z
[
1
,
2
]
:
=
-
s
i
n
(
P
h
i
[
i
]
)
;
 

R
o
t
z
[
1
,
3
]
:
=
0
.
0
;

4
2
 
 

R
o
t
z
[
2
,
1
]
:
=
s
i
n
(
P
h
i
[
i
]
)
;
 

R
o
t
z
[
2
,
2
]
:
=
c
o
s
(
P
h
i
[
i
]
)
;
 

R
o
t
z
[
2
,
3
]
:
=
0
.
0
;

4
3
 
 

R
o
t
z
[
3
,
1
]
:
=
0
.
0
;
 

R
o
t
z
[
3
,
2
]
:
=
0
.
0
;
 

R
o
t
z
[
3
,
3
]
:
=
1
.
0
;

4
4
 
 

R
T
(
R
o
t
z
,
Z
e
r
o
3
,
 
x
0
1
,
y
0
1
,
z
0
1
,
 
x
 
,
y
 
,
z
 
)
;

4
5
 
 

R
T
(
R
o
t
x
,
T
3
 

,
 
x
 

,
y
 
,
z
 
,
 
x
1
,
y
1
,
z
1
)
;

4
6
 
 

R
T
(
R
o
t
z
,
Z
e
r
o
3
,
 
x
0
2
,
y
0
2
,
z
0
2
,
 
x
 
,
y
 
,
z
 
)
;

4
7
 
 

R
T
(
R
o
t
x
,
T
3
 

,
 
x
 

,
y
 

,
z
 
,
 
x
2
,
y
2
,
z
2
)
;

4
8
 
 

W
r
i
t
e
L
n
(
M
3
D
1
,
’
(
‘
,
i
:
2
,
’
)
’
)
;

4
9
 
 

W
r
i
t
e
L
n
(
M
3
D
2
,
’
(
‘
,
i
:
2
,
’
)
’
)
;

5
0
 
 

W
r
i
t
e
L
n
(
M
3
D
1
,
’
(
B
K
 
“
S
_
w
h
e
e
l
”
’
,
T
3
[
1
]
:
6
:
3
,
T
3
[
2
]
:
9
:
3
,
T
3
[
3
]
:
9
:
3

5
1
 
 

,
x
1
:
9
:
3
,
y
1
:
9
:
3
,
z
1
:
9
:
3
,
 
x
2
:
9
:
3
,
y
2
:
9
:
3
,
z
2
:
9
:
3
,
’
)
’
)
;

5
2
 
 

W
r
i
t
e
L
n
(
M
3
D
2
,
’
(
C
L
 
“
G
R
E
E
n
”
)
 
c
h
a
n
g
e
 
c
o
l
o
r
’
)
;

5
3
 
 

W
r
i
t
e
L
n
(
M
3
D
2
,
’
(
A
R
’
,
T
3
[
1
]
:
6
:
3
,
 
T
3
[
2
]
:
9
:
3
,
 
T
3
[
3
]
:
9
:
3
,
 
x
1
:
9
:
3
,
 
y
1
:
9
:
3
,
 
z
1
:
9
:
3
,
’
)
’
)
;

5
4
 
 

W
r
i
t
e
L
n
(
M
3
D
2
,
’
(
A
R
 
‘
,
T
3
[
1
]
:
6
:
3
,
 
T
3
[
2
]
:
9
:
3
,
 
T
3
[
3
]
:
9
:
3
,
 
x
2
:
9
:
3
,
 
y
2
:
9
:
3
,
 
z
2
:
9
:
3
,
’
)
’
)
;

5
5
 
 

W
r
i
t
e
L
n
(
M
3
D
2
,
’
(
C
L
 
“
W
H
I
T
E
”
)
 
b
a
c
k
 
t
o
 
r
e
g
u
l
a
r
 
c
o
l
o
r
’
)
;

5
6
 
 
E
n
D
;

5
7
 
 
C
l
o
s
e
(
M
3
D
1
)
;
 
 
C
l
o
s
e
(
M
3
D
2
)
;

5
8
 
E
n
D
.

**
*
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1
 

p
r
o
g
r
a
m
 
P
4
_
0
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  F
i
n
d
s
 
t
h
e
 
r
o
o
t
 
o
f
 
f
u
n
c
t
i
o
n
 
 
F
1
(
x
)
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
.
0
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3

4
 

s
i
t
u
a
t
e
d
 
i
n
 
t
h
e
 
i
n
t
e
r
v
a
l
 
[
0
,
1
]
.
 
 

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
 
L
i
b
M
a
t
h
;

7
 

c
o
n
s
t
 
a
 
=
 
0
.
0
;
 
 
 
b
 
=
 
1
.
0
;

8
 

v
a
r
 
 
 
x
:
 
d
o
u
b
l
e
;

9
 

{
$
F
+
}

1
0
 
f
u
n
c
t
i
o
n
 
F
1
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
1
 
B
E
G
I
n

1
2
 
 
F
1
:
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
.
0
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
;

1
3
 
E
n
D
;
 

1
4
 
{
$
F
-
}

1
5
 
B
E
G
I
n

1
6
 
 
Z
e
r
o
(
F
1
,
 
a
,
b
,
 
x
)
;

1
7
 
 
W
r
i
t
e
L
n
(
‘
x
=
’
,
x
,
’
 
 
 
F
1
(
x
)
=
’
,
F
1
(
x
)
)
;

1
8
 
 
W
r
i
t
e
L
n
(
‘
F
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
0
)
;
 
 
R
e
a
d
L
n
;
 
 
{
p
r
e
s
s
 
<
C
R
>
}

1
9
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
0
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

F
i
n
d
s
 
t
h
e
 
r
o
o
t
 
o
f
 
f
u
n
c
t
i
o
n
 
F
2
(
x
)
=
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)
 
c
l
o
s
e
s
t
 
t
o
 
x
=
1

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
L
i
b
M
a
t
h
;

6
 

c
o
n
s
t
 
S
t
e
p
 
=
 
0
.
1
;

7
 

v
a
r
 
x
:
 
d
o
u
b
l
e
;
 

8
 

{
$
F
+
}

9
 

f
u
n
c
t
i
o
n
 
F
2
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
0
 
B
E
G
I
n

1
1
 
 
i
f
 
A
b
s
(
x
*
x
-
4
.
0
)
 
>
 
E
p
s
D
 
t
h
e
n
 
{
c
h
e
c
k
 
f
o
r
 
d
i
v
i
s
i
o
n
 
b
y
 
z
e
r
o
}
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1
2
 
 
 
F
2
:
=
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)

1
3
 
 
E
l
s
e

1
4
 
 
 
F
2
:
=
I
n
f
D
;

1
5
 
E
n
D
;
 

1
6
 
{
$
F
-
}

1
7
 
B
E
G
I
n

1
8
 
 
x
:
=
1
.
0
;

1
9
 
 
Z
e
r
o
S
t
a
r
t
(
F
2
,
 
S
t
e
p
,
 
x
)
;

2
0
 
 
W
r
i
t
e
L
n
(
‘
x
=
’
,
x
,
’
 

F
2
(
x
)
=
’
,
F
2
(
x
)
)
;

2
1
 
 
W
r
i
t
e
L
n
(
‘
F
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
0
)
;
 
R
e
a
d
L
n
;
 
{
p
r
e
s
s
 
<
C
R
>
}

2
2
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
0
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

F
i
n
d
s
 
t
h
e
 
r
o
o
t
s
 
o
f
 
f
u
n
c
t
i
o
n
s
 

4
 

  F
1
(
x
)
 
=
 
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
.
0
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
 
o
v
e
r
 
i
n
t
e
r
v
a
l
 
[
0
,
4
]

5
 

F
2
(
x
)
 
=
 
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)
 
o
v
e
r
 
i
n
t
e
r
v
a
l
 
[
-
4
,
4
]

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

8
 

v
a
r
 

X
:
 
V
D
n
;
 

a
,
b
:
 
d
o
u
b
l
e
;

9
 

{
$
F
+
}

1
0
 

f
u
n
c
t
i
o
n
 
F
1
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
1
 

B
E
G
I
n

1
2
 

 
F
1
:
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
.
0
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
;

1
3
 

E
n
D
;
 
 
{
.
.
 
F
1
(
x
)
}

1
4
 

f
u
n
c
t
i
o
n
 
F
2
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
5
 

B
E
G
I
n

1
6
 

 
 
i
f
 
A
b
s
(
x
*
x
-
4
.
0
)
 
>
 
E
p
s
D
 
t
h
e
n
 
{
c
h
e
c
k
 
f
o
r
 
d
i
v
i
s
i
o
n
 
b
y
 
z
e
r
o
}

1
7
 

 
 

F
2
:
=
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)

1
8
 

 
 
E
l
s
e

1
9
 

 
 

F
2
:
=
I
n
f
D
;
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2
0
 

E
n
D
;
 
 
{
.
.
 
F
2
(
x
)
}

2
1
 

{
$
F
-
}

2
2
 

B
E
G
I
n

2
3
 

 
a
:
=
0
.
0
;
 
 
b
:
=
4
.
0
;

2
4
 

 
Z
e
r
o
G
r
i
d
(
F
1
,
 
a
,
b
,
 
2
5
,
 
X
)
;

2
5
 

 
W
r
i
t
e
L
n
(
‘
x
1
=
’
,
X
[
1
]
,
’
 

F
1
(
x
1
)
=
’
,
F
1
(
X
[
1
]
)
)
;

2
6
 

 
W
r
i
t
e
L
n
(
‘
x
2
=
’
,
X
[
2
]
,
’
 

F
1
(
x
2
)
=
’
,
F
1
(
X
[
2
]
)
)
;

2
7
 

 
W
r
i
t
e
L
n
(
‘
x
3
=
’
,
X
[
3
]
,
’
 

F
1
(
x
3
)
=
’
,
F
1
(
X
[
3
]
)
)
;

2
8
 

 
W
r
i
t
e
L
n
(
‘
x
4
=
’
,
X
[
4
]
,
’
 

F
1
(
x
4
)
=
’
,
F
1
(
X
[
4
]
)
)
;

2
9
 

 
W
r
i
t
e
L
n
(
‘
F
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
0
)
;

3
0
 

 
W
r
i
t
e
L
n
;

3
1
 

 
n
r
F
e
v
0
:
=
0
;

3
2
 

 
a
:
=
-
4
.
0
;
 
 
b
:
=
 
4
.
0
;

3
3
 

 
Z
e
r
o
G
r
i
d
(
F
2
,
 
a
,
b
,
 
2
5
,
 
X
)
;

3
4
 

 
W
r
i
t
e
L
n
(
‘
x
1
=
’
,
X
[
1
]
,
’
 

F
2
(
x
1
)
=
’
,
F
2
(
X
[
1
]
)
)
;

3
5
 

 
W
r
i
t
e
L
n
(
‘
x
2
=
’
,
X
[
2
]
,
’
 

F
2
(
x
2
)
=
’
,
F
2
(
X
[
2
]
)
)
;

3
6
 

 
W
r
i
t
e
L
n
(
‘
x
3
=
’
,
X
[
3
]
,
’
 

F
2
(
x
3
)
=
’
,
F
2
(
X
[
3
]
)
)
;

3
7
 

 
W
r
i
t
e
L
n
(
‘
F
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
0
)
;
 
 
R
e
a
d
L
n
;
 
{
p
r
e
s
s
 
<
C
R
>
}

3
8
 

E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
0
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  F
i
n
d
s
 
t
h
e
 
m
i
n
i
m
u
m
 
o
f
 
f
u
n
c
t
i
o
n
 
F
1
(
x
)
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3

4
 

s
i
t
u
a
t
e
d
 
i
n
 
t
h
e
 
i
n
t
e
r
v
a
l
 
[
1
,
3
]
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
 
L
i
b
M
i
n
1
;

7
 

c
o
n
s
t
 
a
 
=
 
1
.
0
;
 
 
b
 
=
 
3
.
0
;

8
 

v
a
r
 
 
 
x
,
v
F
:
 
d
o
u
b
l
e
;

9
 

{
$
F
+
}

1
0
 
f
u
n
c
t
i
o
n
 
F
1
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
1
 
B
E
G
I
n
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1
2
 
 

F
1
:
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
.
0
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
;

1
3
 
E
n
D
;
 

1
4
 
{
$
F
-
}

1
5
 
B
E
G
I
n

1
6
 
 

B
r
e
n
t
(
F
1
,
 
a
,
b
,
 
v
F
,
x
)
;

1
7
 
 

W
r
i
t
e
L
n
(
‘
x
=
’
,
x
,
’
 

F
1
(
x
)
=
’
,
v
F
)
;

1
8
 
 

W
r
i
t
e
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
1
)
;
 
R
e
a
d
L
n
;
 
{
p
r
e
s
s
 
<
C
R
>
}

1
9
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
0
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3  
  Fi
nd
s  
th
e  
mi
ni
mu
m  
of
 f
un
ct
io
n 
 F
1(
x)
=1
/(
Sq
r(
x-
1)
+0
.1
)+
1/
(S
qr
(x
-3
)+
0.
2)
-3

4
 

s
i
t
u
a
t
e
d
 
c
l
o
s
e
s
t
 
t
o
 
x
=
0
.
7
5
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
L
i
b
M
i
n
1
;

7
 

v
a
r
 
x
,
v
F
:
 
d
o
u
b
l
e
;

8
 

{
$
F
+
}

9
 

f
u
n
c
t
i
o
n
 
F
1
(
X
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
0
 
B
E
G
I
n

1
1
 
 

F
1
:
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
;

1
2
 
E
n
D
;

1
3
 
{
$
F
-
}

1
4
 
B
E
G
I
n

1
5
 
 

x
:
=
0
.
7
5
;

1
6
 
 

B
r
e
n
t
S
t
a
r
t
(
F
1
,
 
0
.
0
1
,
 
v
F
,
x
)
;

1
7
 
 

W
r
i
t
e
L
n
(
‘
x
=
’
,
x
,
’
 

F
1
(
x
)
=
’
,
v
F
)
;

1
8
 
 

W
r
i
t
e
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
1
)
;
 
R
e
a
d
L
n
;
 
{
p
r
e
s
s
 
<
C
R
>
}

1
9
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
4
_
0
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

F
i
n
d
s
 
a
l
l
 
m
i
n
i
m
a
 
a
n
d
 
m
a
x
i
m
a
 
o
f
 
f
u
n
c
t
i
o
n
s
 
 

4
 

  F
1
(
x
)
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
 
 
s
i
t
u
a
t
e
d
 
i
n
 
t
h
e
 
i
n
t
e
r
v
a
l
 
[
0
,
4
]

5
 

F
2
(
x
)
=
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)
 
 
s
i
t
u
a
t
e
d
 
i
n
 
t
h
e
 
i
n
t
e
r
v
a
l
 
[
-
4
,
4
]
.
 

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
L
i
b
M
i
n
1
,
 
L
i
b
M
a
t
h
;

8
 

v
a
r
 

x
,
v
F
:
V
D
n
;
 

a
,
b
:
d
o
u
b
l
e
;

9
 

{
$
F
+
}

1
0
 
f
u
n
c
t
i
o
n
 
F
1
(
X
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
1
 
B
E
G
I
n

1
2
 
 

F
1
:
=
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
;

1
3
 
E
n
D
;
 
{
.
.
 
F
1
(
)
}

1
4
 
f
u
n
c
t
i
o
n
 
_
F
1
(
X
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
5
 
B
E
G
I
n

1
6
 
 

_
F
1
:
=
-
(
1
/
(
S
q
r
(
x
-
1
)
+
0
.
1
)
+
1
/
(
S
q
r
(
x
-
3
)
+
0
.
2
)
-
3
)
;

1
7
 
E
n
D
;
 
{
.
.
 
_
F
1
(
)
}

1
8
 
f
u
n
c
t
i
o
n
 
F
2
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
9
 
B
E
G
I
n

2
0
 
 

F
2
:
=
I
n
f
D
;

2
1
 
 

i
f
 
A
b
s
(
x
*
x
-
4
)
 
>
 
E
p
s
D
 
t
h
e
n
 
F
2
:
=
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)

2
2
 
E
n
D
;
 
{
.
.
 
F
2
(
)
}

2
3
 
f
u
n
c
t
i
o
n
 
_
F
2
(
x
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

2
4
 
B
E
G
I
n

2
5
 
 

_
F
2
:
=
I
n
f
D
;

2
6
 
 

i
f
 
A
b
s
(
x
*
x
-
4
)
 
>
 
E
p
s
D
 
t
h
e
n
 
_
F
2
:
=
-
(
x
*
x
*
x
-
3
*
x
)
/
(
x
*
x
-
4
)

2
7
 
E
n
D
;
 
{
.
.
 
_
F
2
(
)
}

2
8
 
{
$
F
-
}
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2
9
 
B
E
G
I
n

3
0
 
 

C
l
r
S
c
r
;

3
1
 
 

a
:
=
0
.
0
;
 
b
:
=
4
.
0
;

3
2
 
 

B
r
e
n
t
G
r
i
d
(
F
1
,
 
a
,
b
,
2
0
,
 
v
F
,
X
)
;

3
3
 
 

W
r
i
t
e
L
n
(
‘
x
1
=
’
,
X
[
1
]
,
‘
 

F
1
(
x
1
)
=
’
,
v
F
[
1
]
)
;

3
4
 
 

W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
1
)
;
 

W
r
i
t
e
L
n
;

3
5
 
 

n
r
F
e
v
1
:
=
0
;

3
6
 
 

B
r
e
n
t
G
r
i
d
(
_
F
1
,
 
a
,
b
,
2
0
,
 
v
F
,
X
)
;

3
7
 
 

W
r
i
t
e
L
n
(
‘
x
1
=
’
,
X
[
1
]
,
‘
 

F
1
(
x
1
)
=
’
,
-
v
F
[
1
]
)
;

3
8
 
 

W
r
i
t
e
L
n
(
‘
x
2
=
’
,
X
[
2
]
,
‘
 

F
1
(
x
2
)
=
’
,
-
v
F
[
2
]
)
;

3
9
 
 

W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
1
)
;
 

W
r
i
t
e
L
n
;

4
0
 
 

a
:
=
-
4
.
0
;
 

b
:
=
4
.
0
;

4
1
 
 

n
r
F
e
v
1
:
=
0
;

4
2
 
 

B
r
e
n
t
G
r
i
d
(
F
2
,
 
a
,
b
,
2
0
,
 
v
F
,
X
)
;

4
3
 
 

W
r
i
t
e
L
n
(
‘
x
1
=
’
,
X
[
1
]
,
‘
 

F
2
(
x
1
)
=
’
,
v
F
[
1
]
)
;

4
4
 
 

W
r
i
t
e
L
n
(
‘
x
2
=
’
,
X
[
2
]
,
‘
 

F
2
(
x
2
)
=
’
,
v
F
[
2
]
)
;

4
5
 
 

W
r
i
t
e
L
n
(
‘
x
3
=
’
,
X
[
3
]
,
‘
 

F
2
(
x
3
)
=
’
,
v
F
[
3
]
)
;

4
6
 
 

W
r
i
t
e
L
n
(
‘
x
4
=
’
,
X
[
4
]
,
‘
 

F
2
(
x
4
)
=
’
,
v
F
[
4
]
)
;

4
7
 
 

W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
1
)
;
 
 
W
r
i
t
e
L
n
;

4
8
 
 

n
r
F
e
v
1
:
=
0
;

4
9
 
 

B
r
e
n
t
G
r
i
d
(
_
F
2
,
 
a
,
b
,
2
0
,
 
v
F
,
X
)
;

5
0
 
 

W
r
i
t
e
L
n
(
‘
x
1
=
’
,
X
[
1
]
,
‘
 

F
2
(
x
1
)
=
’
,
-
v
F
[
1
]
)
;

5
1
 
 

W
r
i
t
e
L
n
(
‘
x
2
=
’
,
X
[
2
]
,
‘
 

F
2
(
x
2
)
=
’
,
-
v
F
[
2
]
)
;

5
2
 
 

W
r
i
t
e
L
n
(
‘
x
3
=
’
,
X
[
3
]
,
‘
 

F
2
(
x
3
)
=
’
,
-
v
F
[
3
]
)
;

5
3
 
 

W
r
i
t
e
L
n
(
‘
x
4
=
’
,
X
[
4
]
,
‘
 

F
2
(
x
4
)
=
’
,
-
v
F
[
4
]
)
;

5
4
 

 
W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
1
)
;
 
 
R
e
a
d
L
n
;
 
{
p
r
e
s
s
 
<
C
R
>
}

5
5
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
4
_
0
8
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

U
s
e
s
 
N
e
l
d
e
r
-
M
e
a
d
 
S
i
m
p
l
e
x
 
m
e
t
h
o
d
 
t
o
 
m
i
n
i
m
i
z
e
 
f
u
n
c
t
i
o
n
:

4
 

F
n
(
x
,
y
)
=
1
0
*
(
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
y
+
1
)
)
-
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
+
1
)
)
)

5
 

+
1
5
*
(
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
-
1
)
)
-
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
)
;

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 

D
O
S
,
C
R
T
,
 

8
 

 
 

L
i
b
M
a
t
h
,
 
 
{
V
D
n
}

9
 

 
 

L
i
b
M
i
n
n
;
 
 
{
N
e
l
d
e
r
M
e
a
d
}

1
0
 
c
o
n
s
t
 
n
v
a
r
 

=
 
2
;

1
1
 
 
 

L
i
m
A
F
 
=
 
5
0
0
0
;
 
{
m
a
x
i
m
u
m
 
o
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
}

1
2
 
  v
a
r
 

X
X
,
 
X
X
m
i
n
,
 
X
X
m
a
x
:
 
V
D
n
;
 

v
F
:
 
d
o
u
b
l
e
;
 
P
l
s
M
n
s
,
i
,
j
:
 
i
n
t
e
g
e
r
;

1
3
 
{
$
F
+
}

1
4
 
f
u
n
c
t
i
o
n
 
F
n
(
v
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

1
5
 
v
a
r
 
x
,
y
,
T
1
,
T
2
,
T
3
,
T
4
:
 
d
o
u
b
l
e
;

1
6
 
B
E
G
I
n

1
7
 
 
x
:
=
v
X
[
1
]
;

1
8
 
 
y
:
=
v
X
[
2
]
;

1
9
 
 
T
1
:
=
 
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
 

y
+
1
)
)
;

2
0
 
 
T
2
:
=
-
E
x
p
(
-
S
q
r
(
 
x
-
1
)
-
S
q
r
(
 

y
+
1
)
)
;

2
1
 
 
T
3
:
=
 
E
x
p
(
-
S
q
r
(
 
x
-
1
)
-
S
q
r
(
 

y
-
1
)
)
;

2
2
 
 
T
4
:
=
-
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
;

2
3
 
 
F
n
:
=
P
l
s
M
n
s
*
(
1
0
*
(
T
1
+
T
2
)
+
1
5
*
(
T
3
+
T
4
)
)
;

2
4
 
E
n
D
;
 

2
5
 
{
$
F
-
}

2
6
 
B
E
G
I
n

2
7
 
 
C
l
r
S
c
r
;

2
8
 
 
X
X
m
i
n
[
1
]
:
=
-
1
.
5
;
 

X
X
m
a
x
[
1
]
:
=
2
.
5
;

2
9
 
 
X
X
m
i
n
[
2
]
:
=
-
2
.
5
;
 

X
X
m
a
x
[
2
]
:
=
2
.
5
;

3
0
 
 
P
l
s
M
n
s
:
=
+
1
;
 
 
{
‘
+
’
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
,
 
‘
-
’
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
 
}

3
1
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
I
n
f
D
;
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3
2
 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
P
4
_
0
8
-
1
.
S
P
X
’
,
F
n
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
E
-
3
2
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
v
F
,
X
X
)
;

3
3
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
‘
x
’
,
i
:
1
,
’
 
=
’
,
X
X
[
i
]
)
;

3
4
 
 
W
r
i
t
e
L
n
(
‘
F
_
o
p
t
=
’
,
P
l
s
M
n
s
*
v
F
)
;

3
5
 
 
W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
n
)
;
 
 
W
r
i
t
e
L
n
;

3
6
 
 
P
l
s
M
n
s
:
=
-
1
;
 
 
{
‘
-
’
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

3
7
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
I
n
f
D
;

3
8
 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
P
4
_
0
8
-
2
.
S
P
X
’
,
F
n
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
E
-
3
2
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
v
F
,
X
X
)
;

3
9
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
‘
x
’
,
i
:
1
,
’
 
=
’
,
X
X
[
i
]
)
;

4
0
 
 
W
r
i
t
e
L
n
(
‘
F
_
o
p
t
=
’
,
P
l
s
M
n
s
*
v
F
)
;

4
1
 
 
  W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
n
r
F
e
v
n
)
;
 
 
R
e
a
d
L
n
;
 
 
{
p
r
e
s
s
 
<
C
R
>
}

4
2
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
0
9
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

U
s
e
s
 
N
e
l
d
e
r
-
M
e
a
d
 
S
i
m
p
l
e
x
 
m
e
t
h
o
d
 
t
o
 
m
i
n
i
m
i
z
e
 
f
u
n
c
t
i
o
n
:

4
 

F
3
(
x
,
y
)
=
1
0
*
(
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
y
+
1
)
)
-
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
+
1
)
)
)

5
 

+
1
5
*
(
E
x
p
(
-
S
q
r
(
x
-
1
)
-
S
q
r
(
y
-
1
)
)
-
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
)
;

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
 
D
O
S
,
C
R
T
,
 

8
 

 
 
 
L
i
b
M
a
t
h
,
 
{
V
D
n
}
 

9
 

 
 
 
L
i
b
M
i
n
n
;
 
{
N
e
l
d
e
r
M
e
a
d
}

1
0
 
  c
o
n
s
t
 
 
P
l
s
M
n
s
=
 
+
1
;
 
{
‘
+
’
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
‘
-
’
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

1
1
 
 
 
 
n
v
a
r
 
 
=
 
2
;

1
2
 
 
 
 
L
i
m
A
F
 
=
 
1
0
0
0
;
 
{
m
a
x
i
m
u
m
 
o
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
}

1
3
 
v
a
r
 
F
i
l
e
n
a
m
e
:
 
P
a
t
h
S
t
r
;
 
 
 

1
4
 
 
 
 
  X
X
,
X
X
m
i
n
,
X
X
m
a
x
,
X
X
b
e
s
t
:
 
V
D
n
;
 
 
v
F
,
v
F
b
e
s
t
:
 
d
o
u
b
l
e
;
 
 
i
,
j
,
T
o
t
a
l
F
e
v
:
 
i
n
t
e
g
e
r
;

1
5
 
{
$
F
+
}

1
6
 
f
u
n
c
t
i
o
n
 
F
n
(
v
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

1
7
 
v
a
r
 
x
,
y
,
 
T
1
,
T
2
,
T
3
,
T
4
:
 
d
o
u
b
l
e
;

1
8
 
B
E
G
I
n
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1
9
 
 
x
:
=
v
X
[
1
]
;

2
0
 
 
y
:
=
v
X
[
2
]
;

2
1
 
 
T
1
:
=
 
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
 
y
+
1
)
)
;

2
2
 
 
T
2
:
=
-
E
x
p
(
-
S
q
r
(
 
x
-
1
)
-
S
q
r
(
 
y
+
1
)
)
;

2
3
 
 
T
3
:
=
 
E
x
p
(
-
S
q
r
(
 
x
-
1
)
-
S
q
r
(
 
y
-
1
)
)
;

2
4
 
 
T
4
:
=
-
E
x
p
(
-
S
q
r
(
2
*
x
+
1
)
-
S
q
r
(
2
*
y
-
1
)
)
;

2
5
 
 
F
n
:
=
P
l
s
M
n
s
*
(
1
0
*
(
T
1
+
T
2
)
+
1
5
*
(
T
3
+
T
4
)
)
;

2
6
 
E
n
D
;
 
 
{
.
.
 
F
n
(
)
}

2
7
 
{
$
F
-
}

2
8
 
B
E
G
I
n

2
9
 
 
C
l
r
S
c
r
;

3
0
 
 
v
F
b
e
s
t
:
=
I
n
f
D
;
 

T
o
t
a
l
F
e
v
:
=
0
;

3
1
 
 
X
X
m
i
n
[
1
]
:
=
-
1
.
5
;
 

X
X
m
a
x
[
1
]
:
=
2
.
5
;

3
2
 
 
X
X
m
i
n
[
2
]
:
=
-
2
.
5
;
 

X
X
m
a
x
[
2
]
:
=
2
.
5
;

3
3
 
 
f
o
r
 
j
:
=
1
 
t
o
 
1
0
0
 
d
o
 
B
E
G
I
n

3
4
 
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 

3
5
 
 
 
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

3
6
 
 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
n
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
3
2
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
v
F
,
X
X
)
;

3
7
 
 
 
T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
+
n
r
F
e
v
n
;

3
8
 
 
 
i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

3
9
 
 
 
 
v
F
b
e
s
t
:
=
v
F
;

4
0
 
 
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
b
e
s
t
[
i
]
:
=
X
X
[
i
]
;

4
1
 
 
 
E
n
D
;

4
2
 
 
E
n
D
;

4
3
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
‘
x
’
,
i
:
1
,
’
 
=
’
,
X
X
b
e
s
t
[
i
]
)
;

4
4
 
 
W
r
i
t
e
L
n
(
‘
F
_
o
p
t
=
’
,
P
l
s
M
n
s
*
v
F
b
e
s
t
)
;

4
5
 
 
  W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
T
o
t
a
l
F
e
v
)
;
 
R
e
a
d
L
n
;
 
{
P
r
e
s
s
 
<
C
R
>
}

4
6
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
F
4
_
0
5
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
s
 
F
4
_
5
A
.
D
3
D
 
t
o
 
p
l
o
t
 
t
h
e
 
f
u
n
c
t
i
o
n
 
 
F
n
(
x
,
y
)
=
0
.
1
*
x
*
y

4
 

s
u
b
j
e
c
t
e
d
 
t
o
 
(
x
*
x
+
y
*
y
)
 
<
 
S
q
r
(
r
T
+
r
S
*
c
o
s
(
n
*
A
t
a
n
2
(
x
,
y
)
)
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
L
i
b
M
a
t
h
;
 
{
I
n
f
D
}

7
 

  c
o
n
s
t
 
n
x
:
 
d
o
u
b
l
e
 
=
 
5
0
1
;
 

x
m
i
n
:
 
d
o
u
b
l
e
 
=
-
1
.
2
5
;
 
x
m
a
x
:
 
d
o
u
b
l
e
 
=
 
1
.
2
5
;

8
 

 
 

 
  n
y
:
 
d
o
u
b
l
e
 
=
 
5
0
1
;
 

y
m
i
n
:
 
d
o
u
b
l
e
 
=
-
1
.
2
5
;
 
y
m
a
x
:
 
d
o
u
b
l
e
 
=
 
1
.
2
5
;

9
 

v
a
r
 
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;

1
0
 
 

 
i
x
,
i
y
:
 
i
n
t
e
g
e
r
;
 
x
,
 
y
,
 
z
:
 
d
o
u
b
l
e
;

1
1
 
f
u
n
c
t
i
o
n
 
F
n
(
x
,
y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;
 
{
F
u
n
c
t
i
o
n
 
t
o
 
b
e
 
o
p
t
i
m
i
z
e
d
}

1
2
 
c
o
n
s
t
 
r
T
=
1
.
0
;
 
r
S
=
0
.
2
;
 
n
=
8
;

1
3
 
v
a
r
 
T
h
e
t
a
:
 
d
o
u
b
l
e
;

1
4
 
B
E
G
I
n

1
5
 
 

F
n
:
=
I
n
f
D
;

1
6
 
 

T
h
e
t
a
:
=
A
t
a
n
2
(
y
,
x
)
;

1
7
 
 

i
f
 
(
T
h
e
t
a
 
<
 
I
n
f
D
)
 
t
h
e
n
 
B
E
G
I
n

1
8
 
 

 
i
f
 
(
x
*
x
+
y
*
y
)
 
>
 
S
q
r
(
r
T
+
r
S
*
c
o
s
(
n
*
T
h
e
t
a
)
)
 
t
h
e
n
 
E
x
i
t
;

1
9
 
 

E
n
D
;

2
0
 
 

F
n
:
=
0
.
1
*
x
*
y
;

2
1
 
E
n
D
;
 
{
.
.
 
F
n
(
)
}

2
2
 
B
E
G
I
n

2
3
 
 

A
s
s
i
g
n
(
F
D
,
’
F
4
_
5
A
.
D
3
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

2
4
 
 

W
r
i
t
e
(
F
D
,
n
x
,
n
y
,
 
x
m
i
n
,
x
m
a
x
,
 
y
m
i
n
,
y
m
a
x
)
;

2
5
 
 

f
o
r
 
i
x
:
=
1
 
t
o
 
R
o
u
n
d
(
n
x
)
 
d
o
 
B
E
G
I
n

2
6
 
 

 
x
:
=
x
m
i
n
+
(
x
m
a
x
-
x
m
i
n
)
/
(
n
x
-
1
)
*
(
i
x
-
1
)
;

2
7
 
 

 
f
o
r
 
i
y
:
=
1
 
t
o
 
R
o
u
n
d
(
n
y
)
 
d
o
 
B
E
G
I
n

2
8
 
 

 
 

y
:
=
y
m
i
n
+
(
y
m
a
x
-
y
m
i
n
)
/
(
n
y
-
1
)
*
(
i
y
-
1
)
;

2
9
 
 

 
 

z
:
=
F
n
(
x
,
y
)
;
 

W
r
i
t
e
(
F
D
,
z
)
;

3
0
 
 

 
E
n
D
;

3
1
 
 

E
n
D
;

3
2
 
 

C
l
o
s
e
(
F
D
)
;

3
3
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
4
_
1
0
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

U
s
e
s
 
N
e
l
d
e
r
-
M
e
a
d
 
S
i
m
p
l
e
x
 
m
e
t
h
o
d
 
t
o
 
m
i
n
i
m
i
z
e
 
f
u
n
c
t
i
o
n
:

4
 

  F
n
(
x
,
y
)
=
0
.
1
*
x
*
y
 
 
s
u
b
j
e
c
t
e
d
 
t
o
 
 
(
x
*
x
+
y
*
y
)
 
<
 
S
q
r
(
r
T
+
r
S
*
c
o
s
(
n
*
T
h
e
t
a
)
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 

D
O
S
,
C
R
T
,
 

7
 

 
 
 

L
i
b
M
a
t
h
,
 
{
V
D
n
}
 

8
 

 
 
 

L
i
b
M
i
n
n
;
 
{
N
e
l
d
e
r
M
e
a
d
}

9
 

c
o
n
s
t
 
P
l
s
M
n
s
=
+
1
.
0
;
 
{
‘
+
’
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
‘
-
’
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

1
0
 
 
 
 

n
v
a
r
 
=
 
2
;

1
1
 
 
 
 

L
i
m
A
F
 
=
 
5
0
0
0
;
 
{
m
a
x
i
m
u
m
 
o
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
}

1
2
 
v
a
r
 

X
X
,
 
X
X
m
i
n
,
 
X
X
m
a
x
,
 
X
X
b
e
s
t
:
 
V
D
n
;

1
3
 
 
 
 

v
F
,
 
v
F
b
e
s
t
:
 
d
o
u
b
l
e
;

1
4
 
 
 
 

i
,
j
:
 
B
y
t
e
;

1
5
 
 
 
 

T
o
t
a
l
F
e
v
:
 
L
o
n
g
I
n
t
;

1
6
 
{
$
F
+
}

1
7
 
f
u
n
c
t
i
o
n
 
F
n
(
v
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

1
8
 
c
o
n
s
t
 
 
r
T
=
1
.
0
;
 
r
S
=
0
.
2
;
 
n
=
8
;

1
9
 
v
a
r
 
x
,
y
,
T
h
e
t
a
:
d
o
u
b
l
e
;
 
 
j
:
B
y
t
e
;

2
0
 
B
E
G
I
n

2
1
 
 
F
n
:
=
I
n
f
D
;

2
2
 
 
x
:
=
v
X
[
1
]
;
 
 
y
:
=
v
X
[
2
]
;

2
3
 
 
T
h
e
t
a
:
=
A
t
a
n
2
(
y
,
x
)
;

2
4
 
 
i
f
 
(
T
h
e
t
a
 
<
 
I
n
f
D
)
 
t
h
e
n
 
B
E
G
I
n

2
5
 
 
 
i
f
 
(
x
*
x
+
y
*
y
)
 
>
 
S
q
r
(
r
T
+
r
S
*
c
o
s
(
n
*
T
h
e
t
a
)
)
 
t
h
e
n
 
E
x
i
t
;

2
6
 
 
E
n
D
;

2
7
 
 
F
n
:
=
P
l
s
M
n
s
*
0
.
1
*
x
*
y
;

2
8
 
E
n
D
;
 

{
.
.
 
F
n
(
)
}

2
9
 
{
$
F
-
}

3
0
 
B
E
G
I
n

3
1
 
 
  C
l
r
S
c
r
;
 
 
W
r
i
t
e
O
u
t
n
:
=
F
A
L
S
E
;
 
{
d
o
 
n
o
t
 
d
i
s
p
l
a
y
s
 
s
e
a
r
c
h
 
s
t
a
t
u
s
 
i
n
f
o
}
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3
2
 
 
v
F
b
e
s
t
:
=
I
n
f
D
;
 
 
T
o
t
a
l
F
e
v
:
=
0
;

3
3
 
 
X
X
m
i
n
[
1
]
:
=
-
1
.
5
;
 
 
X
X
m
a
x
[
1
]
:
=
2
.
5
;

3
4
 
 
X
X
m
i
n
[
2
]
:
=
-
2
.
5
;
 
 
X
X
m
a
x
[
2
]
:
=
2
.
5
;

3
5
 
 
f
o
r
 
j
:
=
1
 
t
o
 
1
0
0
 
d
o
 
B
E
G
I
n

3
6
 
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o

3
7
 
 
 
 

X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

3
8
 

 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
n
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
3
2
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
v
F
,
X
X
)
;

3
9
 
 
 
T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
+
n
r
F
e
v
n
;

4
0
 
 
 
i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

4
1
 
 
 
 

v
F
b
e
s
t
:
=
v
F
;

4
2
 
 
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
b
e
s
t
[
i
]
:
=
X
X
[
i
]
;

4
3
 
 
 
E
n
D
;

4
4
 
 
E
n
D
;

4
5
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
‘
x
’
,
i
:
1
,
’
 
=
’
,
X
X
b
e
s
t
[
i
]
)
;

4
6
 
 
W
r
i
t
e
L
n
(
‘
F
_
o
p
t
=
’
,
P
l
s
M
n
s
*
v
F
b
e
s
t
)
;

4
7
 
 
  W
r
i
t
e
L
n
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
T
o
t
a
l
F
e
v
)
;
 
 
R
e
a
d
L
n
;
 
{
P
r
e
s
s
 
<
C
R
>
}

4
8
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
F
4
_
5
B
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
f
i
l
e
:
 
F
4
_
5
B
.
D
2
D
 
t
o
 
p
l
o
t
 
t
h
e
 
p
a
r
a
m
e
t
r
i
c
 
c
u
r
v
e
:

4
 

x
 
=
 
(
r
T
 
+
 
r
S
*
c
o
s
(
n
*
T
h
e
t
a
)
)
*
c
o
s
(
T
h
e
t
a
)

5
 

y
 
=
 
(
r
T
 
+
 
r
S
*
c
o
s
(
n
*
T
h
e
t
a
)
)
*
s
i
n
(
T
h
e
t
a
)
 
w
i
t
h
 
0
 
<
 
T
h
e
t
a
 
<
 
2
P
i

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

c
o
n
s
t
 
T
m
i
n
 
=
 
0
.
0
;
 

T
m
a
x
 
=
 
2
*
P
i
;
 
{
l
i
m
i
t
s
 
o
f
 
T
h
e
t
a
 
}

8
 

 
 
 

n
T
 

=
 
3
6
1
;
 

{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
}

9
 

v
a
r
 
F
D
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;

1
0
 
 

 
T
h
e
t
a
,
r
T
,
r
S
,
x
,
y
:
 
d
o
u
b
l
e
;
 

n
,
i
T
:
 
i
n
t
e
g
e
r
;

1
1
 
B
E
G
I
n

1
2
 
 

A
s
s
i
g
n
(
F
D
,
’
F
4
_
5
B
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;
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1
3
 
 

r
T
:
=
1
.
0
;
 

{
m
e
d
i
a
n
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

1
4
 
 

r
S
:
=
0
.
2
;
 

{
r
a
d
i
a
l
 
o
s
c
i
l
l
a
t
i
o
n
 
a
m
p
l
i
t
u
d
e
}

1
5
 
 

n
:
=
8
;
 

{
n
u
m
b
e
r
 
o
f
 
r
a
d
i
a
l
 
o
s
c
i
l
l
a
t
i
o
n
s
}

1
6
 
 

f
o
r
 
i
T
:
=
1
 
t
o
 
n
T
 
d
o
 
B
E
G
I
n

1
7
 
 

 
T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
T
-
1
)
*
(
i
T
-
1
)
;

1
8
 
 

 
x
:
=
(
r
T
+
r
S
*
c
o
s
(
n
*
T
h
e
t
a
)
)
*
c
o
s
(
T
h
e
t
a
)
;

1
9
 
 

 
y
:
=
(
r
T
+
r
S
*
c
o
s
(
n
*
T
h
e
t
a
)
)
*
s
i
n
(
T
h
e
t
a
)
;

2
0
 
 

 
W
r
i
t
e
(
F
D
,
x
,
y
)
;

2
1
 
 

E
n
D
;

2
2
 
 

C
l
o
s
e
(
F
D
)
;

2
3
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
1
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

U
s
e
s
 
N
e
l
d
e
r
-
M
e
a
d
 
S
i
m
p
l
e
x
 
m
e
t
h
o
d
 
t
o
 
m
i
n
i
m
i
z
e
 
t
h
e
 
f
u
n
c
t
i
o
n
 

4
 

F
5
 
=
 
0
.
7
8
5
4
*
x
1
*
S
q
r
(
x
2
)
*
(
3
.
3
3
3
3
*
S
q
r
(
x
3
)
+
1
4
.
9
3
3
4
*
x
3
-
4
3
.
0
9
3
4
)

5
 

-
1
.
5
0
8
*
x
1
*
(
S
q
r
(
x
6
)
+
S
q
r
(
x
7
)
)
+
7
.
4
7
7
7
*
(
x
6
*
x
6
*
x
6
+
x
7
*
x
7
*
x
7
)
;

6
 

s
u
b
j
e
c
t
e
d
 
t
o
:
 

7
 

 
2
.
6
 
<
=
 
x
[
1
]
 
<
=
 
3
.
6
;
 

0
.
7
 
<
=
 
x
[
2
]
 
<
=
 
0
.
8
;

8
 

1
7
.
0
 
<
=
 
x
[
3
]
 
<
=
 
2
8
.
0
;
 

7
.
3
 
<
=
 
x
[
4
]
 
<
=
 
8
.
3
;

9
 

 
7
.
3
 
<
=
 
x
[
5
]
 
<
=
 
8
.
3
;
 

2
.
9
 
<
=
 
x
[
6
]
 
<
=
 
3
.
9
;

1
0
 
 
5
.
0
 
<
=
 
x
[
7
]
 
<
=
 
5
.
5
;

1
1
 
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

1
2
 
u
s
e
s
 

D
O
S
,
C
R
T
,

1
3
 
 

 
 
L
i
b
M
a
t
h
,
 
{
V
D
n
}

1
4
 
 

 
 
L
i
b
I
n
O
u
t
,
  {
M
y
V
a
l
,
 
M
y
S
t
,
 
B
a
c
k
U
p
F
i
l
e
}

1
5
 
 

 
 
L
i
b
M
i
n
n
;
 
{
N
e
l
d
e
r
M
e
a
d
}

1
6
 
c
o
n
s
t
 
n
v
a
r
 

=
 
7
;
 

{
n
u
m
b
e
r
 
o
f
 
v
a
r
i
a
b
l
e
s
}

1
7
 
 

 
 
L
i
m
A
F
 
=
 
2
0
0
0
0
;
  {
m
a
x
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
 
p
e
r
 
i
t
e
r
a
t
i
o
n
s
}

1
8
 
v
a
r
 
X
X
,
 
X
X
m
i
n
,
 
X
X
m
a
x
,
 
X
X
b
e
s
t
:
 
V
D
n
;

1
9
 
 

 
v
F
,
 
v
F
b
e
s
t
:
 
d
o
u
b
l
e
;
 

i
,
j
:
 
W
o
r
d
;
 

T
o
t
a
l
F
e
v
:
 
L
o
n
g
I
n
t
;
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2
0
 
 

 
 
F
T
:
T
e
x
t
;

2
1
 
{
$
F
+
}

2
2
 
f
u
n
c
t
i
o
n
 
F
5
(
v
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

2
3
 
v
a
r
 
x
1
,
x
2
,
x
3
,
x
4
,
x
5
,
x
6
,
x
7
,
T
T
:
d
o
u
b
l
e
;
 
i
:
W
o
r
d
;

2
4
 
B
E
G
I
n

2
5
 
 

F
5
:
=
I
n
f
D
;

2
6
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o

2
7
 
 

 
i
f
 
(
v
X
[
i
]
 
<
 
X
X
m
i
n
[
i
]
)
 
O
R
 
(
v
X
[
i
]
 
>
 
X
X
m
a
x
[
i
]
)
 
t
h
e
n
 
E
X
I
T
;

2
8
 
 

x
1
:
=
v
X
[
1
]
;
 
x
2
:
=
v
X
[
2
]
;
 
x
3
:
=
v
X
[
3
]
;
 
x
4
:
=
v
X
[
4
]
;

2
9
 
 

x
5
:
=
v
X
[
5
]
;
 
x
6
:
=
v
X
[
6
]
;
 
x
7
:
=
v
X
[
7
]
;

3
0
 
 

T
T
:
=
3
.
3
3
3
3
*
S
q
r
(
x
3
)
 
+
 
1
4
.
9
3
3
4
*
x
3
 
-
 
4
3
.
0
9
3
4
;

3
1
 
 

T
T
:
=
0
.
7
8
5
4
*
x
1
*
S
q
r
(
x
2
)
*
T
T
;

3
2
 
 

T
T
:
=
T
T
 
-
 
1
.
5
0
8
*
x
1
*
(
S
q
r
(
x
6
)
 
+
 
S
q
r
(
x
7
)
)
;

3
3
 
 

T
T
:
=
T
T
 
+
 
7
.
4
7
7
7
*
(
x
6
*
x
6
*
x
6
 
+
 
x
7
*
x
7
*
x
7
)
;

3
4
 
 

F
5
:
=
T
T
 
+
 
0
.
7
8
5
4
*
(
x
4
*
S
q
r
(
x
6
)
 
+
 
x
5
*
S
q
r
(
x
7
)
)
;

3
5
 
E
n
D
;
  {
.
.
 
F
5
(
)
}

3
6
 
{
$
F
-
}

3
7
 
B
E
G
I
n

3
8
 
 

C
l
r
S
c
r
;

3
9
 
 

X
X
m
i
n
[
1
]
:
=
 
2
.
6
;
 

X
X
m
a
x
[
1
]
:
=
 
3
.
6
;

4
0
 
 

X
X
m
i
n
[
2
]
:
=
 
0
.
7
;
 

X
X
m
a
x
[
2
]
:
=
 
0
.
8
;

4
1
 
 

X
X
m
i
n
[
3
]
:
=
1
7
.
0
;
 

X
X
m
a
x
[
3
]
:
=
2
8
.
0
;

4
2
 
 

X
X
m
i
n
[
4
]
:
=
 
7
.
3
;
 

X
X
m
a
x
[
4
]
:
=
 
8
.
3
;

4
3
 
 

X
X
m
i
n
[
5
]
:
=
 
7
.
3
;
 

X
X
m
a
x
[
5
]
:
=
 
8
.
3
;

4
4
 
 

X
X
m
i
n
[
6
]
:
=
 
2
.
9
;
 

X
X
m
a
x
[
6
]
:
=
 
3
.
9
;

4
5
 
 

X
X
m
i
n
[
7
]
:
=
 
5
.
0
;
 

X
X
m
a
x
[
7
]
:
=
 
5
.
5
;

4
6
 
 

v
F
b
e
s
t
:
=
I
n
f
D
;
 

T
o
t
a
l
F
e
v
:
=
0
;

4
7
 
 

W
r
i
t
e
O
u
t
n
:
=
F
A
L
S
E
;
 

{
d
o
 
n
o
t
 
d
i
s
p
l
a
y
s
 
s
e
a
r
c
h
 
s
t
a
t
u
s
 
i
n
f
o
}

4
8
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
{
f
i
r
s
t
 
i
n
i
t
i
a
l
 
g
u
e
s
s
 
.
.
}

4
9
 
 

 
X
X
b
e
s
t
[
i
]
:
=
X
X
m
i
n
[
i
]
+
0
.
5
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

5
0
 
 

f
o
r
 
j
:
=
1
 
t
o
 
5
0
0
 
d
o
 
B
E
G
I
n
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5
1
 
 

 
 f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
B
E
G
I
n
 
{
1
s
t
 
g
u
e
s
s
 
b
a
s
e
 
o
n
 
t
h
e
 
p
r
e
v
i
o
u
s
 
X
X
b
e
s
t
}

5
2
 
 

 
 
r
e
p
e
a
t

5
3
 
 

 
 
 
X
X
[
i
]
:
=
X
X
b
e
s
t
[
i
]
+
(
R
a
n
d
o
m
-
0
.
5
)
/
j
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

5
4
 
 

 
 
u
n
t
i
l
 
(
X
X
m
i
n
[
i
]
 
<
=
 
X
X
[
i
]
)
 
A
n
D
 
(
X
X
[
i
]
 
<
=
 
X
X
m
a
x
[
i
]
)
;

5
5
 
 

 
E
n
D
;

5
6
 
 

 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
5
,
 
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
6
4
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
v
F
,
X
X
)
;

5
7
 
 

 
T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
 
+
 
n
r
F
e
v
n
;

5
8
 
 

 
i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

5
9
 
 

 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
b
e
s
t
[
i
]
:
=
M
y
V
a
l
(
M
y
S
t
(
X
X
[
i
]
,
6
)
)
;

6
0
 
 

 
 
v
F
b
e
s
t
:
=
F
5
(
X
X
b
e
s
t
)
;

6
1
 
 

 
 
W
r
i
t
e
L
n
(
j
:
4
,
’
)
 
F
(
X
)
=
’
,
v
F
b
e
s
t
)
;

6
2
 
 

 
E
n
D
;

6
3
 
 

E
n
D
;

6
4
 
 

W
r
i
t
e
L
n
(
^
j
’
F
_
o
p
t
=
’
,
v
F
b
e
s
t
)
;

6
5
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
‘
x
’
,
i
:
1
,
’
=
’
,
X
X
b
e
s
t
[
i
]
)
;

6
6
 
 

W
r
i
t
e
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
 
=
 
‘
,
T
o
t
a
l
F
e
v
,
’
 
 
 
<
C
R
>
.
.
’
)
;

6
7
 
 

B
a
c
k
U
p
F
i
l
e
(
‘
R
e
s
u
l
t
s
.
T
X
T
’
)
;

6
8
 
 

A
s
s
i
g
n
(
F
T
,
’
R
e
s
u
l
t
s
.
T
X
T
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

6
9
 
 

W
r
i
t
e
L
n
(
F
T
,
’
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
=
’
,
T
o
t
a
l
F
e
v
)
;

7
0
 
 

W
r
i
t
e
L
n
(
F
T
,
’
F
_
o
p
t
=
’
,
v
F
b
e
s
t
)
;

7
1
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
F
T
,
’
x
’
,
i
:
1
,
’
=
’
,
X
X
b
e
s
t
[
i
]
)
;

7
2
 
 

C
l
o
s
e
(
F
T
)
;
 

R
e
a
d
L
n
;
 
{
P
r
e
s
s
 
<
C
R
>
}

7
3
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
4
_
1
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
s
 
d
a
t
a
 
f
i
l
e
s
 
t
o
 
p
l
o
t
 
u
s
i
n
g
 
D
_
2
D
 
t
h
e
 
d
e
s
i
g
n
 
s
p
a
c
e
 
a
n
d

4
 

p
e
r
f
o
r
m
a
n
c
e
 
s
p
a
c
e
 
o
f
 
t
h
e
 
b
i
c
r
i
t
e
r
i
o
n
 
m
i
n
i
m
i
z
a
t
i
o
n
 
p
r
o
b
l
e
m
:

5
 

F
1
=
p
i
/
4
*
(
(
L
-
x
1
)
*
(
D
1
^
2
-
x
2
^
2
)
+
x
1
*
(
D
2
^
2
-
x
2
^
2
)
)
 
a
n
d
 
 

6
 

F
2
=
6
4
*
F
/
(
3
*
p
i
*
E
)
*
(
(
L
^
3
+
x
1
^
3
)
/
(
D
1
^
4
-
x
2
^
4
)
+
x
1
^
3
/
(
D
2
^
4
-
x
2
^
4
)
)

7
 

s
u
b
j
e
c
t
e
d
 
t
o
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8
 

3
2
*
D
1
*
F
*
L
 
/
(
p
i
*
(
D
1
^
4
-
x
2
^
4
)
)
 
<
=
 
S
i
g
m
a
_
Y

9
 

3
2
*
D
2
*
F
*
x
1
/
(
p
i
*
(
D
2
^
4
-
x
2
^
4
)
)
 
<
=
 
S
i
g
m
a
_
Y

1
0
 
x
1
 
>
=
 
0
;
 

x
1
 
<
=
 
L
;
 
x
2
 
>
=
 
4
0
;
 

x
2
 
<
=
 
7
5
;

1
1
 
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

1
2
 
u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

1
3
 
v
a
r
 
 
F
D
1
,
F
D
2
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;

1
4
 
 
 
 
x
1
,
 
x
1
m
i
n
,
x
1
m
a
x
,
 
x
2
,
 
x
2
m
i
n
,
x
2
m
a
x
,
 
F
1
,
F
2
:
 
d
o
u
b
l
e
;

1
5
 
 
 
 
n
x
1
,
n
x
2
,
 
i
,
j
:
 
w
o
r
d
;

1
6
 
f
u
n
c
t
i
o
n
 
F
1
2
(
x
1
,
x
2
:
 
d
o
u
b
l
e
;
 
v
a
r
 
F
1
,
F
2
:
 
d
o
u
b
l
e
)
:
 
B
o
o
l
e
a
n
;

1
7
 
c
o
n
s
t
 
L
=
1
0
0
0
;
 
D
1
=
1
0
0
;
 
D
2
=
8
0
;
 
E
=
2
0
6
E
3
;
 
F
=
1
5
0
0
0
;
 
S
i
g
m
a
_
Y
=
2
2
0
;

1
8
 
B
E
G
I
n

1
9
 
 
F
1
2
:
=
F
A
L
S
E
;

2
0
 
 
i
f
 
(
x
1
 
<
 

0
)
 
t
h
e
n
 
E
x
i
t
;

2
1
 
 
i
f
 
(
x
1
 
>
 

L
)
 
t
h
e
n
 
E
x
i
t
;

2
2
 
 
i
f
 
(
x
2
 
<
 
4
0
)
 
t
h
e
n
 
E
x
i
t
;

2
3
 
 
i
f
 
(
x
2
 
>
 
7
5
)
 
t
h
e
n
 
E
x
i
t
;

2
4
 
 
  i
f
 
3
2
*
D
1
*
F
*
 
L
/
(
p
i
*
(
P
o
w
(
D
1
,
4
)
-
P
o
w
(
x
2
,
4
)
)
)
 
>
 
S
i
g
m
a
_
Y
 
t
h
e
n
 
E
x
i
t
;

2
5
 
 
  i
f
 
3
2
*
D
2
*
F
*
x
1
/
(
p
i
*
(
P
o
w
(
D
2
,
4
)
-
P
o
w
(
x
2
,
4
)
)
)
 
>
 
S
i
g
m
a
_
Y
 
t
h
e
n
 
E
x
i
t
;

2
6
 
 
F
1
:
=
p
i
/
4
*
(
(
L
-
x
1
)
*
(
D
1
*
D
1
-
x
2
*
x
2
)
 
+
 
x
1
*
(
D
2
*
D
2
-
x
2
*
x
2
)
)
;

2
7
 
 
F
2
:
=
(
P
o
w
(
L
,
3
)
-
P
o
w
(
x
1
,
3
)
)
/
(
P
o
w
(
D
1
,
4
)
-
P
o
w
(
x
2
,
4
)
)
;

2
8
 
 
F
2
:
=
P
o
w
(
x
1
,
3
)
/
(
P
o
w
(
D
2
,
4
)
-
P
o
w
(
x
2
,
4
)
)
 
+
 
F
2
;

2
9
 
 
F
2
:
=
6
4
*
F
/
(
3
*
p
i
*
E
)
*
F
2
;

3
0
 
 
F
1
2
:
=
T
R
U
E
;

3
1
 
E
n
D
;
 
{
.
.
 
F
1
2
(
)
}

3
2
 
B
E
G
I
n

3
3
 
 
n
x
1
:
=
2
5
0
;
 

x
1
m
i
n
:
=
0
.
0
;
 

x
1
m
a
x
:
=
1
0
0
0
;

3
4
 
 
n
x
2
:
=
2
5
0
;
 

x
2
m
i
n
:
=
4
0
;
 

x
2
m
a
x
:
=
1
0
0
;
 
C
l
r
S
c
r
;

3
5
 
 
A
s
s
i
g
n
(
F
D
1
,
’
F
4
_
1
0
A
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
1
)
;

3
6
 
 
A
s
s
i
g
n
(
F
D
2
,
’
F
4
_
1
0
B
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
2
)
;

3
7
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
x
1
 
d
o
 
B
E
G
I
n

3
8
 
 
 
x
1
:
=
x
1
m
i
n
+
(
x
1
m
a
x
-
x
1
m
i
n
)
/
(
n
x
1
-
1
)
*
(
i
-
1
)
;



468    ◾    Appendix�b:�Selected�Source�code

3
9
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
n
x
2
 
d
o
 
B
E
G
I
n

4
0
 
 
 
 
x
2
:
=
x
2
m
i
n
+
(
x
2
m
a
x
-
x
2
m
i
n
)
/
(
n
x
2
-
1
)
*
(
j
-
1
)
;

4
1
 
 
 
 
i
f
 
F
1
2
(
x
1
,
x
2
,
 
F
1
,
F
2
)
 
t
h
e
n
 
B
E
G
I
n

4
2
 
 
 
 
 

W
r
i
t
e
(
F
D
1
,
 
x
1
,
x
2
)
;

4
3
 
 
 
 
 

W
r
i
t
e
(
F
D
2
,
 
F
1
,
F
2
)
;

4
4
 
 
 
 
E
n
D
;

4
5
 
 
 
E
n
D
;

4
6
 
 
 
W
r
i
t
e
L
n
(
i
:
4
,
’
 
/
’
,
n
x
2
:
4
)
;

4
7
 
 
E
n
D
;

4
8
 
 
C
l
o
s
e
(
F
D
1
)
;
 
C
l
o
s
e
(
F
D
2
)
;

4
9
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
4
_
1
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
s
 
d
a
t
a
 
f
i
l
e
s
 
t
o
 
p
l
o
t
 
u
s
i
n
g
 
D
_
2
D
 
t
h
e
 
d
e
s
i
g
n
 
s
p
a
c
e
 
a
n
d

4
 

p
e
r
f
o
r
m
a
n
c
e
 
s
p
a
c
e
 
o
f
 
t
h
e
 
b
i
c
r
i
t
e
r
i
o
n
 
m
i
n
i
m
i
z
a
t
i
o
n
 
p
r
o
b
l
e
m
:

5
 

  F
1
=
0
.
4
*
x
1
+
x
2
 
 
&
 
 
F
2
=
1
.
0
+
x
1
*
x
1
-
x
2
+
0
.
2
*
c
o
s
(
4
.
7
5
*
x
2
)
 
 
s
u
b
j
e
c
t
e
d
 
t
o
:
 

6
 

0
.
8
*
x
1
*
x
1
+
x
2
*
x
2
 
<
=
 
1
.
0

7
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

8
 

u
s
e
s
 
C
R
T
,
L
i
b
M
a
t
h
;

9
 

v
a
r
 
 
F
D
1
,
 
F
D
2
:
 
F
i
l
e
 
o
f
 
d
o
u
b
l
e
;

1
0
 
 

 
 

  x
1
,
 
x
1
m
i
n
,
x
1
m
a
x
,
 
x
2
,
 
x
2
m
i
n
,
x
2
m
a
x
,
 
F
1
,
F
2
:
 
d
o
u
b
l
e
;

1
1
 
 

 
 

n
,
i
:
 
w
o
r
d
;

1
2
 
f
u
n
c
t
i
o
n
 
F
1
2
(
x
1
,
x
2
:
 
d
o
u
b
l
e
;
 
v
a
r
 
F
1
,
F
2
:
 
d
o
u
b
l
e
)
:
 
B
o
o
l
e
a
n
;

1
3
 
B
E
G
I
n

1
4
 
 

F
1
2
:
=
F
A
L
S
E
;

1
5
 
 

i
f
 
(
0
.
8
*
x
1
*
x
1
+
x
2
*
x
2
 
>
 
1
.
0
)
 
t
h
e
n
 
E
x
i
t
;

1
6
 
 

F
1
:
=
0
.
4
*
 
x
1
+
x
2
;

1
7
 
 

F
2
:
=
1
.
0
+
x
1
*
x
1
-
x
2
+
0
.
2
*
c
o
s
(
4
.
7
5
*
x
2
)
;

1
8
 
 

F
1
2
:
=
T
R
U
E
;



Appendix�b:�Selected�Source�code    ◾    469

1
9
 
E
n
D
;
 
{
.
.
 
F
1
2
(
)
}

2
0
 
B
E
G
I
n

2
1
 
 

A
s
s
i
g
n
(
F
D
1
,
’
F
4
_
1
2
a
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
1
)
;

2
2
 
 

A
s
s
i
g
n
(
F
D
2
,
’
F
4
_
1
2
b
.
D
2
D
’
)
;
 
R
e
w
r
i
t
e
(
F
D
2
)
;

2
3
 
 

n
:
=
6
2
5
0
0
;
 

{
t
o
t
a
l
 
n
u
m
b
e
r
 
o
f
 
r
a
n
d
o
m
 
p
o
i
n
t
s
}

2
4
 
 

x
1
m
i
n
:
=
-
1
.
2
;
 
x
1
m
a
x
:
=
1
.
2
;
 
x
2
m
i
n
:
=
-
1
.
2
;
 
x
2
m
a
x
:
=
1
.
2
;

2
5
 
 

R
a
n
d
o
m
i
z
e
;
 
C
l
r
S
c
r
;

2
6
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

2
7
 
 

 
x
1
:
=
x
1
m
i
n
+
R
a
n
d
o
m
*
(
x
1
m
a
x
-
x
1
m
i
n
)
;

2
8
 
 

 
x
2
:
=
x
2
m
i
n
+
R
a
n
d
o
m
*
(
x
2
m
a
x
-
x
2
m
i
n
)
;

2
9
 
 

 
i
f
 
F
1
2
(
x
1
,
x
2
,
 
F
1
,
F
2
)
 
t
h
e
n
 
B
E
G
I
n

3
0
 
 

 
 

W
r
i
t
e
(
F
D
1
,
x
1
,
x
2
)
;

3
1
 
 

 
 

W
r
i
t
e
(
F
D
2
,
F
1
,
F
2
)
;

3
2
 
 

 
E
n
D
;

3
3
 
 

 
i
f
 
(
i
 
M
O
D
 
5
0
0
 
=
 
0
)
 
t
h
e
n
 
W
r
i
t
e
L
n
(
i
:
6
,
’
 
/
’
,
n
:
6
)
;

3
4
 
 

E
n
D
;

3
5
 
 

C
l
o
s
e
(
F
D
1
)
;
 
 
C
l
o
s
e
(
F
D
2
)
;

3
6
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
1
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  U
s
e
s
 
N
e
l
d
e
r
-
M
e
a
d
 
S
i
m
p
l
e
x
 
m
e
t
h
o
d
 
t
o
 
s
i
m
u
l
t
a
n
e
o
u
s
l
y
 
m
i
n
i
m
i
z
e
 
f
u
n
c
t
i
o
n
s
:

4
 

F
1
=
0
.
4
*
x
1
+
x
2
 
a
n
d
 
F
2
=
1
.
0
+
x
1
*
x
1
-
x
2
+
0
.
2
*
c
o
s
(
4
.
7
5
*
x
2
)

5
 

s
u
b
j
e
c
t
e
d
 
t
o
 
0
.
8
*
x
1
*
x
1
+
x
2
*
x
2
 
<
=
 
1
.
0

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
D
O
S
,
C
R
T
,
 

8
 

 
 
 
L
i
b
M
a
t
h
,
 
{
V
D
n
}

9
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
B
a
c
k
U
p
F
i
l
e
}

1
0
 
 
 
 
L
i
b
M
i
n
n
;
 
{
N
e
l
d
e
r
M
e
a
d
}

1
1
 
c
o
n
s
t
 
n
v
a
r
 
=
 
2
;
 

{
n
u
m
b
e
r
 
o
f
 
d
e
s
i
g
n
 
v
a
r
i
a
b
l
e
s
}
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1
2
 
 
 
 
L
i
m
A
F
 
=
 
2
5
0
0
0
;
 {
m
a
x
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
 
p
e
r
 
i
t
e
r
a
t
i
o
n
s
}

1
3
 
v
a
r
 
X
X
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
X
X
b
e
s
t
:
 
V
D
n
;

1
4
 
 
 
M
i
M
a
x
,
 
F
m
i
n
,
F
m
a
x
,
 
F
1
m
i
n
,
F
1
m
a
x
,
 
F
2
m
i
n
,
F
2
m
a
x
,

1
5
 
 
 
W
1
,
W
2
,
 
F
1
,
F
2
,
 
v
F
,
 
v
F
b
e
s
t
:
 
d
o
u
b
l
e
;

1
6
 
 
 
F
T
:
 
T
e
x
t
;
 
i
,
j
:
 
W
o
r
d
;
 
T
o
t
a
l
F
e
v
:
 
L
o
n
g
I
n
t
;

1
7
 
{
$
F
+
}

1
8
 
f
u
n
c
t
i
o
n
 
F
1
2
(
v
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

1
9
 
v
a
r
 
x
1
,
x
2
:
d
o
u
b
l
e
;

2
0
 
B
E
G
I
n

2
1
 
 
F
1
2
:
=
I
n
f
D
;

2
2
 
 
x
1
:
=
v
X
[
1
]
;
  x
2
:
=
v
X
[
2
]
;

2
3
 
 
i
f
 
(
0
.
8
*
x
1
*
x
1
+
x
2
*
x
2
 
>
 
1
.
0
)
 
t
h
e
n
 
E
x
i
t
;

2
4
 
 
F
1
:
=
0
.
4
*
x
1
+
x
2
;

2
5
 
 
F
2
:
=
1
.
0
+
x
1
*
x
1
-
x
2
+
0
.
2
*
c
o
s
(
4
.
7
5
*
x
2
)
;

2
6
 
 
  F
1
2
:
=
M
i
M
a
x
*
(
W
1
*
(
F
1
-
F
1
m
i
n
)
/
(
F
1
m
a
x
-
F
1
m
i
n
)
+
W
2
*
(
F
2
-
F
2
m
i
n
)
/
(
F
2
m
a
x
-
F
2
m
i
n
)
)
;

2
7
 
E
n
D
;

2
8
 
{
$
F
-
}

2
9
 
B
E
G
I
n

3
0
 
 
X
X
m
i
n
[
1
]
:
=
-
1
.
2
;
 

X
X
m
a
x
[
1
]
:
=
1
.
2
;

3
1
 
 
X
X
m
i
n
[
2
]
:
=
-
1
.
2
;
 

X
X
m
a
x
[
2
]
:
=
1
.
2
;

3
2
 
 
A
s
s
i
g
n
(
F
T
,
’
P
4
_
1
6
.
T
X
T
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

3
3
 
 
  W
r
i
t
e
L
n
(
F
T
,
’
  W
1
 

F
1
 

F
2
 

x
1
 

x
2
’
)
;

3
4
 
 
  C
l
r
S
c
r
;
 
W
r
i
t
e
O
u
t
n
:
=
F
A
L
S
E
;
 

{
N
e
l
d
e
r
M
e
a
d
 
s
e
a
r
c
h
 
s
t
a
t
u
s
 
i
n
f
o
 
O
F
F
}

3
5
 
 
F
1
m
i
n
:
=
0
.
0
;
 
F
1
m
a
x
:
=
1
.
0
;
 
F
2
m
i
n
:
=
0
.
0
;
 
F
2
m
a
x
:
=
1
.
0
;

3
6
 
 
W
1
:
=
+
1
.
0
;
  W
2
:
=
0
.
0
;
 

3
7
 
 
M
i
M
a
x
:
=
-
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

3
8
 
 
  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

3
9
 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
a
x
,
X
X
)
;

4
0
 
 
M
i
M
a
x
:
=
+
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

4
1
 
 
  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

4
2
 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
i
n
,
X
X
)
;
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4
3
 
 
F
1
m
i
n
:
=
F
m
i
n
;
 F
1
m
a
x
:
=
-
F
m
a
x
;

4
4
 
 
W
1
:
=
0
.
0
;
  W
2
:
=
+
1
.
0
;

4
5
 
 
M
i
M
a
x
:
=
-
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

4
6
 
 
  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

4
7
 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
a
x
,
X
X
)
;

4
8
 
 
M
i
M
a
x
:
=
+
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

4
9
 
 
  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

5
0
 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
i
n
,
X
X
)
;

5
1
 
 
F
2
m
i
n
:
=
F
m
i
n
;
  F
2
m
a
x
:
=
-
F
m
a
x
;

5
2
 
 
M
i
M
a
x
:
=
+
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

5
3
 
 
W
2
:
=
-
0
.
0
1
;

5
4
 
 
R
e
p
e
a
t

5
5
 
 
 
W
2
:
=
W
2
+
0
.
0
1
;
 

W
1
:
=
1
.
0
-
W
2
;

5
6
 
 
 
W
r
i
t
e
L
n
(
‘
P
a
r
e
t
o
 
p
o
i
n
t
 
‘
,
W
1
:
1
:
5
,
’
/
’
,
W
2
:
1
:
5
)
;

5
7
 
 
 
v
F
b
e
s
t
:
=
I
n
f
D
;

5
8
 
 
 
T
o
t
a
l
F
e
v
:
=
0
;

5
9
 
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
{
f
i
r
s
t
 
i
n
i
t
i
a
l
 
g
u
e
s
s
}

6
0
 
 
 
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

6
1
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
1
0
 
d
o
 
B
E
G
I
n

6
2
 
 
 
 
  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
B
E
G
I
n
 
{
i
n
i
t
i
a
l
 
g
u
e
s
s
 
b
a
s
e
d
 
o
n
 
p
r
e
v
i
o
u
s
 
X
X
}

6
3
 
 
 
 
 

R
e
p
e
a
t

6
4
 
 
 
 
 

 
 
  X
X
[
i
]
:
=
X
X
[
i
]
+
(
R
a
n
d
o
m
-
0
.
5
)
/
j
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

6
5
 
 
 
 
 

 
U
n
t
i
l

6
6
 
 
 
 
 

 
 
(
X
X
m
i
n
[
i
]
 
<
=
 
X
X
[
i
]
)
 
A
n
D
 
(
X
X
[
i
]
 
<
=
 
X
X
m
a
x
[
i
]
)
;

6
7
 
 
 
 
 

E
n
D
;

6
8
 
 
 
 
 

 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
v
F
,
X
X
)
;

6
9
 
 
 
 
 

T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
+
n
r
F
e
v
n
;

7
0
 
 
 
 
 

i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

7
1
 
 
 
 
 

 
v
F
b
e
s
t
:
=
v
F
;
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
b
e
s
t
[
i
]
:
=
X
X
[
i
]
;

7
2
 
 
 
 
 

E
n
D
;

7
3
 
 
 
 
E
n
D
;
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7
4
 
 
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
b
e
s
t
[
i
]
;
 
v
F
:
=
F
1
2
(
X
X
)
;

7
5
 
 
 
 
  W
r
i
t
e
L
n
(
F
T
,
 
W
1
:
3
,
’
 
‘
,
F
1
:
1
6
,
’
 
‘
,
F
2
:
1
6
,
’
 
‘
,
X
X
[
1
]
:
1
6
,
’
 
‘
,
X
X
[
2
]
:
1
6
)
;

7
6
 
 
u
n
t
i
l
 
W
2
 
>
 
1
.
0
;

7
7
 
 
C
l
o
s
e
(
F
T
)
;

7
8
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
4
_
1
7
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
U
s
e
s
 
N
e
l
d
e
r
-
M
e
a
d
 
S
i
m
p
l
e
x
 
m
e
t
h
o
d
 
t
o
 
s
i
m
u
l
t
a
n
e
o
u
s
l
y
 
m
i
n
i
m
i
z
e
:

4
 

 
F
1
=
p
i
/
4
*
(
(
L
-
x
1
)
*
(
D
1
^
2
-
x
2
^
2
)
+
x
1
*
(
D
2
^
2
-
x
2
^
2
)
)

5
 

 
F
2
=
6
4
*
F
/
(
3
*
p
i
*
E
)
*
(
(
L
^
3
+
x
1
^
3
)
/
(
D
1
^
4
-
x
2
^
4
)
+
x
1
^
3
/
(
D
2
^
4
-
x
2
^
4
)
)

6
 

 
s
u
b
j
e
c
t
e
d
 
t
o

7
 

 
3
2
*
D
1
*
F
*
L
 
/
(
p
i
*
(
D
1
^
4
-
x
2
^
4
)
)
 
<
=
 
S
i
g
m
a
_
Y

8
 

 
3
2
*
D
2
*
F
*
x
1
/
(
p
i
*
(
D
2
^
4
-
x
2
^
4
)
)
 
<
=
 
S
i
g
m
a
_
Y

9
 

 
x
1
 
>
=
 
0
;
 
x
1
 
<
=
 
L
;
 
 
x
2
 
>
=
 
4
0
;
 
x
2
 
<
=
 
7
5
;

1
0
 
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

1
1
 
u
s
e
s
 

D
O
S
,
C
R
T
,

1
2
 
 

 
 
L
i
b
M
a
t
h
,
 

{
V
D
n
}

1
3
 
 

 
 
L
i
b
I
n
O
u
t
,
 
{
B
a
c
k
U
p
F
i
l
e
}

1
4
 
 

 
 
L
i
b
M
i
n
n
;
 

{
N
e
l
d
e
r
M
e
a
d
}

1
5
 
c
o
n
s
t
 
n
v
a
r
 
=
 
2
;
 

{
n
u
m
b
e
r
 
o
f
 
d
e
s
i
g
n
 
v
a
r
i
a
b
l
e
s
}

1
6
 
 

 
 
L
i
m
A
F
 
=
 
2
5
0
0
0
;
  {
m
a
x
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
 
p
e
r
 
i
t
e
r
a
t
i
o
n
s
}

1
7
 
v
a
r
 
X
X
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
X
X
b
e
s
t
:
 
V
D
n
;

1
8
 
 

 
  M
i
M
a
x
,
F
m
i
n
,
F
m
a
x
,
F
1
m
i
n
,
F
1
m
a
x
,
F
2
m
i
n
,
F
2
m
a
x
,
W
1
,
W
2
,
F
1
,
F
2
,
v
F
,
 v
F
b
e
s
t
:
d
o
u
b
l
e
;

1
9
 
 

 
F
T
:
 
T
e
x
t
;
 

i
,
j
:
 
W
o
r
d
;
 
T
o
t
a
l
F
e
v
:
 
L
o
n
g
I
n
t
;

2
0
 
{
$
F
+
}

2
1
 
f
u
n
c
t
i
o
n
 
F
1
2
(
v
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

2
2
 
c
o
n
s
t
 
L
=
1
0
0
0
;
 
D
1
=
1
0
0
;
 
D
2
=
8
0
;
 
E
=
2
0
6
E
3
;
 
F
=
1
5
0
0
0
;
 
S
i
g
m
a
_
Y
=
2
2
0
;

2
3
 
v
a
r
 
x
1
,
x
2
:
d
o
u
b
l
e
;

2
4
 
B
E
G
I
n



Appendix�b:�Selected�Source�code    ◾    473

2
5
 
 

F
1
2
:
=
I
n
f
D
;
 

x
1
:
=
v
X
[
1
]
;
 
x
2
:
=
v
X
[
2
]
;

2
6
 
 

i
f
 
(
x
1
 
<
 
0
)
 
t
h
e
n
 
E
x
i
t
;

2
7
 
 

i
f
 
(
x
1
 
>
 
L
)
 
t
h
e
n
 
E
x
i
t
;

2
8
 
 

i
f
 
(
x
2
 
<
 
4
0
)
 
t
h
e
n
 
E
x
i
t
;

2
9
 
 

i
f
 
(
x
2
 
>
 
7
5
)
 
t
h
e
n
 
E
x
i
t
;

3
0
 
 

i
f
 
3
2
*
D
1
*
F
*
 
L
/
(
p
i
*
(
P
o
w
(
D
1
,
4
)
-
P
o
w
(
x
2
,
4
)
)
)
 
>
 
S
i
g
m
a
_
Y
 
t
h
e
n
 
E
x
i
t
;

3
1
 
 

i
f
 
3
2
*
D
2
*
F
*
x
1
/
(
p
i
*
(
P
o
w
(
D
2
,
4
)
-
P
o
w
(
x
2
,
4
)
)
)
 
>
 
S
i
g
m
a
_
Y
 
t
h
e
n
 
E
x
i
t
;

3
2
 
 

F
1
:
=
p
i
/
4
*
(
(
L
-
x
1
)
*
(
D
1
*
D
1
-
x
2
*
x
2
)
 
+
 
x
1
*
(
D
2
*
D
2
-
x
2
*
x
2
)
)
;

3
3
 
 

F
2
:
=
(
P
o
w
(
L
,
3
)
-
P
o
w
(
x
1
,
3
)
)
/
(
P
o
w
(
D
1
,
4
)
-
P
o
w
(
x
2
,
4
)
)
;

3
4
 
 

F
2
:
=
P
o
w
(
x
1
,
3
)
/
(
P
o
w
(
D
2
,
4
)
-
P
o
w
(
x
2
,
4
)
)
 
+
 
F
2
;

3
5
 
 

F
2
:
=
6
4
*
F
/
(
3
*
p
i
*
E
)
*
F
2
;

3
6
 
 

  F
1
2
:
=
M
i
M
a
x
*
(
W
1
*
(
F
1
-
F
1
m
i
n
)
/
(
F
1
m
a
x
-
F
1
m
i
n
)
+
W
2
*
(
F
2
-
F
2
m
i
n
)
/
(
F
2
m
a
x
-
F
2
m
i
n
)
)
;

3
7
 
E
n
D
;
  {
.
.
 
F
1
2
(
)
}

3
8
 
{
$
F
-
}

3
9
 
B
E
G
I
n

4
0
 
 

  X
X
m
i
n
[
1
]
:
=
0
;
 
X
X
m
a
x
[
1
]
:
=
1
0
0
0
;
 
X
X
m
i
n
[
2
]
:
=
4
0
;
 
X
X
m
a
x
[
2
]
:
=
1
0
0
;

4
1
 
 

A
s
s
i
g
n
(
F
T
,
’
P
4
_
1
7
.
T
X
T
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

4
2
 
 

  W
r
i
t
e
L
n
(
F
T
,
’
 
W
1
 

F
1
 

F
2
 

x
1
 

x
2
’
)
;

4
3
 
 

C
l
r
S
c
r
;
 
W
r
i
t
e
O
u
t
n
:
=
F
A
L
S
E
;
 
{
N
e
l
d
e
r
M
e
a
d
 
s
e
a
r
c
h
 
s
t
a
t
u
s
 
O
F
F
 
}

4
4
 
 

  F
1
m
i
n
:
=
0
.
0
;
 
F
1
m
a
x
:
=
1
.
0
;
 
F
2
m
i
n
:
=
0
.
0
;
 
F
2
m
a
x
:
=
1
.
0
;
 
W
1
:
=
+
1
.
0
;
 

W
2
:
=
0
.
0
;

4
5
 
 

M
i
M
a
x
:
=
-
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

4
6
 
 

  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

4
7
 
 

 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
a
x
,
X
X
)
;

4
8
 
 

M
i
M
a
x
:
=
+
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

4
9
 
 

  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

5
0
 
 

 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
i
n
,
X
X
)
;

5
1
 
 

F
1
m
i
n
:
=
F
m
i
n
;
 
F
1
m
a
x
:
=
-
F
m
a
x
;

5
2
 
 

W
1
:
=
0
.
0
;
 
W
2
:
=
+
1
.
0
;

5
3
 
 

M
i
M
a
x
:
=
-
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

5
4
 
 

  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

5
5
 
 

 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
a
x
,
X
X
)
;
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5
6
 
 

M
i
M
a
x
:
=
+
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

5
7
 
 

  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

5
8
 
 

 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
F
m
i
n
,
X
X
)
;

5
9
 
 

F
2
m
i
n
:
=
F
m
i
n
;
 
F
2
m
a
x
:
=
-
F
m
a
x
;

6
0
 
 

M
i
M
a
x
:
=
+
1
;
 

{
+
1
 
f
o
r
 
m
i
n
i
m
i
z
a
t
i
o
n
 
a
n
d
 
-
1
 
f
o
r
 
m
a
x
i
m
i
z
a
t
i
o
n
}

6
1
 
 

W
2
:
=
-
0
.
0
1
;

6
2
 
 

r
e
p
e
a
t

6
3
 
 

 
W
2
:
=
W
2
+
0
.
0
1
;
 

W
1
:
=
1
.
0
-
W
2
;

6
4
 
 

 
W
r
i
t
e
L
n
(
‘
P
a
r
e
t
o
 
p
o
i
n
t
 
‘
,
W
1
:
1
:
5
,
’
/
’
,
W
2
:
1
:
5
)
;

6
5
 
 

 
v
F
b
e
s
t
:
=
I
n
f
D
;
 

T
o
t
a
l
F
e
v
:
=
0
;

6
6
 
 

 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
{
f
i
r
s
t
 
i
n
i
t
i
a
l
 
g
u
e
s
s
}

6
7
 
 

 
 
X
X
[
i
]
:
=
X
X
m
i
n
[
i
]
+
R
a
n
d
o
m
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

6
8
 
 

 
f
o
r
 
j
:
=
1
 
t
o
 
1
0
 
d
o
 
B
E
G
I
n

6
9
 
 

 
 
  f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
B
E
G
I
n
 
{
i
n
i
t
i
a
l
 
g
u
e
s
s
 
b
a
s
e
d
 
o
n
 
p
r
e
v
i
o
u
s
 
X
X
}

7
0
 
 

 
 
 

r
e
p
e
a
t

7
1
 
 

 
 
 

 
X
X
[
i
]
:
=
X
X
[
i
]
+
(
R
a
n
d
o
m
-
0
.
5
)
/
j
*
(
X
X
m
a
x
[
i
]
-
X
X
m
i
n
[
i
]
)
;

7
2
 
 

 
 
 

u
n
t
i
l

7
3
 
 

 
 
 

 
(
X
X
m
i
n
[
i
]
 
<
=
 
X
X
[
i
]
)
 
A
n
D
 
(
X
X
[
i
]
 
<
=
 
X
X
m
a
x
[
i
]
)
;

7
4
 
 

 
 
E
n
D
;

7
5
 
 

 
 
 n
e
l
d
e
r
M
e
a
d
(
‘
’
,
F
1
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
9
,
 
X
X
m
i
n
,
X
X
m
a
x
,
 
v
F
,
X
X
)
;

7
6
 
 

 
 
T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
+
n
r
F
e
v
n
;

7
7
 
 

 
 
i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

7
8
 
 

 
 
 

v
F
b
e
s
t
:
=
v
F
;
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
b
e
s
t
[
i
]
:
=
X
X
[
i
]
;

7
9
 
 

 
 
E
n
D
;

8
0
 
 

 
E
n
D
;

8
1
 
 

 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
X
[
i
]
:
=
X
X
b
e
s
t
[
i
]
;
 

v
F
:
=
F
1
2
(
X
X
)
;

8
2
 
 

 
  W
r
i
t
e
L
n
(
F
T
,
 
W
1
:
3
,
’
 
‘
,
F
1
:
1
6
,
’
 
‘
,
F
2
:
1
6
,
’
 
‘
,
X
X
[
1
]
:
1
6
,
’
 
‘
,
X
X
[
2
]
:
1
6
)
;

8
3
 
 

u
n
t
i
l
 
W
2
 
>
 
1
.
0
;

8
4
 
 

C
l
o
s
e
(
F
T
)
;

8
5
 
E
n
D
.

**
*
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1
 
p
r
o
g
r
a
m
 
P
5
_
0
1
;

2
 
{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
L
o
c
u
s
/
C
o
m
e
t
L
o
c
u
s
 
a
n
i
m
a
t
i
o
n
 
o
f
 
n
 
A
r
c
h
i
m
e
d
e
s
 
s
p
i
r
a
l
s
 
o
f
 
e
q
u
a
t
i
o
n
s
:

4
 
 
x
(
T
h
e
t
a
)
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
+
2
*
P
i
/
n
*
(
i
-
1
)
)

5
 
 
  y
(
T
h
e
t
a
)
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
+
2
*
P
i
/
n
*
(
i
-
1
)
)
 
w
h
i
t
h
*
*
*
 
T
m
i
n
 
<
=
 
T
h
e
t
a
 
<
=
 
T
m
a
x
.

6
 
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 
u
s
e
s
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 
 

L
i
b
I
n
O
u
t
,
 
{
M
y
S
t
,
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 
 

L
i
b
M
e
c
2
D
;
 
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
e
t
J
o
i
n
t
S
i
z
e
,
L
o
c
u
s
,
C
o
m
e
t
L
o
c
u
s
,
}

1
0
 
 

  {
S
e
t
T
i
t
l
e
,
P
u
t
P
o
i
n
t
,
 
M
e
c
O
u
t
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
1
 
c
o
n
s
t
 
T
m
i
n
 
=
 
0
.
0
;
 

{
T
h
e
t
a
 
l
o
w
e
r
 
b
o
u
n
d
}

1
2
 
 

T
m
a
x
 
=
 
2
*
P
i
;
 

{
T
h
e
t
a
 
u
p
p
e
r
 
b
o
u
n
d
}

1
3
 
 

n
F
r
 
=
 
3
1
;
 

{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
i
.
e
.
 
T
h
e
t
a
 
v
a
l
u
e
s
}

1
4
 
 

n
 

=
 
8
;
 

{
n
u
m
b
e
r
 
o
f
 
s
p
i
r
a
l
s
}

1
5
 
v
a
r
 
i
,
i
F
r
:
I
n
t
e
g
e
r
;
 

T
h
e
t
a
0
,
T
h
e
t
a
,
x
,
y
:
d
o
u
b
l
e
;

1
6
 
B
E
G
I
n

1
7
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
8
,
8
,
-
8
,
8
)
;

1
8
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
0
1
.
D
X
F
’
)
;

1
9
 
 

i
F
r
:
=
0
;
 
 
 
 
S
e
t
T
i
t
l
e
(
‘
A
r
c
h
i
m
e
d
e
a
n
 
S
p
i
r
a
l
s
’
)
;

2
0
 
 

R
e
p
e
a
t

2
1
 
 

i
f
 
(
i
F
r
 
>
 
n
F
r
)
 
t
h
e
n
 
B
E
G
I
n

2
2
 
 

i
F
r
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;

2
3
 
 

E
n
D
;

2
4
 
 

n
e
w
F
r
a
m
e
(
5
0
0
)
;

2
5
 
 

S
e
t
J
o
i
n
t
S
i
z
e
(
R
o
u
n
d
(
2
.
0
 
+
 
4
*
i
F
r
/
n
F
r
)
)
;

2
6
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

2
7
 
 

T
h
e
t
a
0
:
=
(
i
-
1
)
*
(
2
*
P
i
/
n
)
;
 

{
.
.
a
n
g
u
l
a
r
 
s
p
a
c
i
n
g
 
b
e
t
w
e
e
n
 
c
u
r
v
e
s
}

2
8
 
 

T
h
e
t
a
:
=
T
m
i
n
+
(
T
m
a
x
-
T
m
i
n
)
/
(
n
F
r
-
1
)
*
i
F
r
;
 
 
{
.
.
c
u
r
r
e
n
t
 
a
n
g
l
e
 
T
h
e
t
a
}

2
9
 
 

x
:
=
T
h
e
t
a
*
c
o
s
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;

3
0
 
 

y
:
=
T
h
e
t
a
*
s
i
n
(
T
h
e
t
a
+
T
h
e
t
a
0
)
;

31
 
 

Lo
cu
s(
i  
MO
D  
15
 +
1,
x,
y,
’p
’+
My
St
(i
,2
))
;  

{.
.L
oc
us
 o
r  
Co
me
tL
oc
us
}

3
2
 
 

P
u
t
P
o
i
n
t
(
i
 
M
O
D
 
1
5
 
+
1
,
’
O
’
,
x
,
y
,
’
’
)
;
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3
3
 
 

E
n
D
;

3
4
 
 

I
n
c
(
i
F
r
)
;

3
5
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;
 
{
.
.
<
E
s
c
>
 
s
t
o
p
s
 
a
n
i
m
a
t
i
o
n
}

3
6
 
 

{
 
u
n
t
i
l
 
(
N
o
t
 
M
e
c
O
u
t
)
 
A
N
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;
 
}
 

3
7
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
T
R
U
E
)
;
 

{
.
.
s
a
v
e
 
.
$
2
D
 
f
i
l
e
s
 
a
s
 
.
D
2
D
}

3
8
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
0
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
t
w
o
 
c
r
a
n
k
s
 
i
n
 
s
e
r
i
e
s
 
t
r
a
c
i
n
g
 
a
n
 
e
p
i
c
y
c
l
o
i
d
a
l
 
c
u
r
v
e

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
M
a
g
e
n
t
a
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
,
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
M
e
c
2
D
;
 {
S
e
t
J
o
i
n
t
S
i
z
e
,
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
 
}

1
1
 
c
o
n
s
t
 
n
P
o
z
 
=
 
1
4
4
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
2
 
v
a
r
 
i
:
I
n
t
e
g
e
r
;
 
 
t
,
A
B
,
B
C
,
x
A
,
y
A
,
x
B
,
y
B
,
x
C
,
y
C
,
P
h
i
1
,
P
h
i
2
:
d
o
u
b
l
e
;

1
3
 
B
E
G
I
n

1
4
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
0
4
A
.
D
X
F
’
)
;
 
{
.
.
’
F
5
_
0
4
A
.
D
X
F
’
 
o
r
 
‘
F
5
_
0
4
B
.
D
X
F
’
}

1
5
 
 

S
e
t
J
o
i
n
t
S
i
z
e
(
6
)
;
 

{
+
6
 
w
i
t
h
 
‘
F
5
_
0
4
A
.
D
X
F
 
a
n
d
 
-
6
 
w
i
t
h
 
‘
F
5
_
0
4
B
.
D
X
F
}

1
6
 
 

x
A
:
=
0
;
  y
A
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
}

1
7
 
 

A
B
:
=
4
0
;
 

{
f
i
r
s
t
 
c
r
a
n
k
 
l
e
n
g
t
h
}

1
8
 
 

B
C
:
=
3
0
;
 

{
s
e
c
o
n
d
 
c
r
a
n
k
 
l
e
n
g
t
h
}

1
9
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
7
5
,
7
5
,
-
7
5
,
7
5
)
;

2
0
 
 

i
:
=
0
;

2
1
 
 

r
e
p
e
a
t

2
2
 
 

 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
3
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

2
4
 
 

 
E
n
D
;
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2
5
 
 

 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

2
6
 
 

 
t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

2
7
 
 

 
P
h
i
1
:
=
P
i
/
4
+
2
*
P
i
*
t
;

2
8
 
 

 
P
h
i
2
:
=
-
8
*
P
i
*
t
;

2
9
 
 

 
g
C
r
a
n
k
(
M
a
g
e
n
t
a
,
x
A
,
y
A
,
P
h
i
1
,
_
,
_
,
A
B
,
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

3
0
 
 
 
  C
r
a
n
k
(
R
e
d
,
x
A
,
y
A
,
0
,
0
,
0
,
0
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
P
h
i
2
,
_
,
_
,
B
C
,
x
C
,
y
C
,
_
,
_
,
_
,
_
)
;

3
1
 
 
 
L
o
c
u
s
(
W
h
i
t
e
,
x
C
,
y
C
,
’
C
’
)
;
 

{
r
e
p
l
a
c
e
 
w
i
t
h
 
C
o
m
e
t
L
o
c
u
s
 
f
o
r
 
F
5
_
0
4
B
.
D
X
F
}

3
2
 
 

 
I
n
c
(
i
)
;

3
3
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

3
4
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
.
$
2
D
 
f
i
l
e
s
}

3
5
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
0
6
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
t
w
o
 
p
i
s
t
o
n
s
 
i
n
 
s
e
r
i
e
s
 
t
r
a
c
i
n
g
 
a
 
L
i
s
s
a
j
o
u
s
 
c
u
r
v
e

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
a
c
k
,
C
y
a
n
,
G
r
e
e
n
,
M
a
g
e
n
t
a
,
R
e
d
}

6
 

 
 

L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 

L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 

L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
S
e
t
D
X
F
l
a
y
e
r
}

9
 

 
 

L
i
b
M
e
c
I
n
,
  {
g
S
l
i
d
e
r
,
S
l
i
d
e
r
}

1
0
 
 

 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
e
t
J
o
i
n
t
S
i
z
e
,
O
f
f
s
e
t
,
P
u
t
P
o
i
n
t
,
}

1
1
 
 

 
 

 
{
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
2
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 

{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
3
 
v
a
r
 

x
P
1
,
y
P
1
,
 
x
Q
1
,
y
Q
1
,
 
x
A
1
,
y
A
1
,
 
x
B
1
,
y
B
1
,
 
x
A
_
2
,
y
A
_
2
,
 
x
Q
_
2
,
y
Q
_
2
,
 
x
P
2
,
y
P
2
,

1
4
 
 

 
x
Q
2
,
y
Q
2
,
 
x
A
2
,
y
A
2
,
 
x
B
2
,
y
B
2
,
 
A
1
B
1
,
A
2
B
2
,
 
s
1
,
s
2
,
 
t
:
d
o
u
b
l
e
;
 

i
:
i
n
t
e
g
e
r
;

1
5
 
B
E
G
I
n

1
6
 
 

A
1
B
1
:
=
6
0
;
 

A
2
B
2
:
=
5
0
;

1
7
 
 

x
P
1
:
=
-
2
7
.
0
;
 
y
P
1
 
:
=
0
.
0
;

1
8
 
 

x
Q
1
:
=
 
2
7
.
0
;
 
y
Q
1
 
:
=
0
.
0
;
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1
9
 
 

x
A
_
2
:
=
0
.
0
;
 

y
A
_
2
:
=
 
2
2
.
5
;

2
0
 
 

x
Q
_
2
:
=
0
.
0
;
 

y
Q
_
2
:
=
-
2
2
.
5
;

2
1
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
0
6
A
.
D
X
F
’
)
;

2
2
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
3
5
,
8
5
,
-
3
5
,
7
5
)
;

2
3
 
 

S
e
t
J
o
i
n
t
S
i
z
e
(
6
)
;

2
4
 
 

i
:
=
0
;

2
5
 
 

R
e
p
e
a
t

2
6
 
 
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
7
 

 
i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

2
8
 
 
 

E
n
D
;

2
9
 
 
 
n
e
w
F
r
a
m
e
(
3
0
0
0
)
;

3
0
 
 
 

t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
1
 
 
 

s
1
:
=
8
0
.
0
 
+
 
2
0
.
0
*
s
i
n
(
2
*
P
i
*
t
-
P
i
/
4
)
;

3
2
 
 
 

s
2
:
=
7
0
.
0
 
+
 
1
5
.
0
*
s
i
n
(
4
*
P
i
*
t
+
P
i
/
4
)
;

3
3
 
 
 

g
S
l
i
d
e
r
(
M
a
g
e
n
t
a
,
x
P
1
,
y
P
1
,
 
x
Q
1
,
y
Q
1

3
4
 
 
 

,
A
1
B
1
,
 
s
1
,
_
,
_
,
 
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
 
x
A
1
,
y
A
1
,
_
,
_
,
_
,
_
)
;

3
5
 
 
 

O
f
f
s
e
t
(
B
l
a
c
k
,
’
 
‘
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
 
x
A
1
,
y
A
1
,
_
,
_
,
_
,
_

3
6
 
 
 

,
x
A
_
2
,
y
A
_
2
,
 
x
P
2
,
y
P
2
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 

O
f
f
s
e
t
(
B
l
a
c
k
,
’
 
‘
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
 
x
A
1
,
y
A
1
,
_
,
_
,
_
,
_

3
8
 
 
 

,
x
Q
_
2
,
y
Q
_
2
,
 
x
Q
2
,
y
Q
2
,
_
,
_
,
_
,
_
)
;

3
9
 
 
 

S
l
i
d
e
r
(
C
y
a
n
,
x
P
2
,
y
P
2
,
_
,
_
,
_
,
_
,
 
x
Q
2
,
y
Q
2
,
_
,
_
,
_
,
_

4
0
 
 
 

,
A
2
B
2
,
 
s
2
,
_
,
_
,
 
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
,
 
x
A
2
,
y
A
2
,
_
,
_
,
_
,
_
)
;

4
1
 
 

 
P
u
t
P
o
i
n
t
(
M
a
g
e
n
t
a
,
’
x
’
,
 
x
B
1
,
y
B
1
,
’
’
)
;
 
 
{
.
.
m
a
k
e
 
j
o
i
n
t
 
B
1
 
a
p
p
e
a
r
 
l
o
c
k
e
d
}

4
2
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
1
,
y
B
1
,
’
 
 
B
_
1
’
)
;

4
3
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
1
,
y
A
1
,
’
A
_
1
 
‘
)
;

4
4
 
 
 

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
B
2
,
y
B
2
,
 
x
A
2
,
y
A
2
,
’
 
A
_
2
’
)
;

4
5
 
 
 

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
B
2
,
y
B
2
,
 
x
P
2
,
y
P
2
,
’
 
P
_
2
’
)
;

4
6
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
o
’
,
x
B
2
,
y
B
2
,
’
 
 
B
_
2
’
)
;

4
7
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
P
1
,
y
P
1
,
’
P
_
1
 
‘
)
;

4
8
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
Q
1
,
y
Q
1
,
’
Q
_
1
’
)
;

4
9
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
Q
2
,
y
Q
2
,
’
 
 
Q
_
2
’
)
;
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5
0
 
 

 
L
o
c
u
s
(
G
r
e
e
n
,
x
B
2
,
y
B
2
,
’
B
_
2
’
)
;

5
1
 
 
 

I
n
c
(
i
)
;

5
2
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
3
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
 
{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
 
.
$
2
D
 
f
i
l
e
s
 
}

5
4
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
0
8
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

A
 
c
r
a
n
k
 
r
o
t
a
t
i
n
g
 
a
b
o
u
t
 
a
 
b
a
s
e
 
w
i
t
h
 
a
n
 
o
f
f
s
e
t
 
p
o
i
n
t
.

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
M
e
c
2
D
;
 {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
e
t
J
o
i
n
t
S
i
z
e
,
O
f
f
s
e
t
,
C
l
o
s
e
M
e
c
D
X
F
}

1
1
 
c
o
n
s
t
 
n
P
o
z
 
=
 
3
6
;
 

{
.
.
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
2
 
v
a
r
 
i
:
I
n
t
e
g
e
r
;
  S
t
y
l
e
:
C
h
a
r
;
 
P
h
i
,
A
B
,
x
A
,
y
A
,
x
B
,
y
B
,
x
1
P
,
y
1
P
,
x
P
,
y
P
:
d
o
u
b
l
e
;

1
3
 
B
E
G
I
n

1
4
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
0
8
A
.
D
X
F
’
)
;
 

{
.
.
D
X
F
 
f
i
l
e
 
f
o
r
 
M
3
D
 
a
n
i
m
a
t
i
o
n
}

1
5
 
 

S
t
y
l
e
:
=
’
T
’
;
 
{
.
.
’
T
’
,
’
I
’
,
’
/
’
,
’
\
’
,
’
V
’
,
’
A
’
}

1
6
 
 

A
B
:
=
1
.
0
;
 

{
.
.
c
r
a
n
k
 
l
e
n
g
t
h
}

1
7
 
 

x
A
:
=
0
.
0
;
 

y
A
:
=
0
.
0
;
 

{
.
.
m
o
t
o
r
 
l
o
c
a
t
i
o
n
}

1
8
 
 

x
1
P
:
=
0
.
6
5
;
 

y
1
P
:
=
0
.
5
;
 

{
.
.
r
e
l
a
t
i
v
e
 
c
o
o
r
d
i
n
a
t
e
s
 
o
f
 
p
o
i
n
t
 
P
}

1
9
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
5
,
1
.
5
,
 
-
1
.
5
,
1
.
5
)
;
 

S
e
t
J
o
i
n
t
S
i
z
e
(
5
)
;

2
0
 
 

i
:
=
0
;

2
1
 
 

R
e
p
e
a
t

2
2
 
 
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
3
 
 
 
 
 
C
l
o
s
e
M
e
c
D
X
F
;
 
i
:
=
0
;

2
4
 
 

 
E
n
D
;
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2
5
 
 

 
n
e
w
F
r
a
m
e
(
5
0
)
;

2
6
 
 

 
P
h
i
:
=
2
*
P
i
*
i
/
n
P
o
z
;

2
7
 
 
 

g
C
r
a
n
k
(
B
l
u
e
,
 
x
A
,
y
A
,
 
P
h
i
,
_
,
_
,
 
A
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

2
8
 
 
 
O
f
f
s
e
t
(
R
e
d
,
S
t
y
l
e
,
x
A
,
y
A
,
0
,
0
,
0
,
0
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
x
1
P
,
y
1
P
,
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

2
9
 
 
 

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
A
  ‘
)
;

3
0
 
 

 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
A
,
y
A
,
 
x
B
,
y
B
,
’
 
B
’
)
;

3
1
 
 

 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
A
+
x
B
)
,
0
.
5
*
(
y
A
+
y
B
)
,
x
P
,
y
P
,
’
 
P
’
)
;

3
2
 
 

 
I
n
c
(
i
)
;

3
3
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

3
4
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
 
{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
 
.
$
2
D
 
f
i
l
e
s
}

3
5
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
1
0
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

A
 
c
r
a
n
k
 
d
r
i
v
i
n
g
 
a
 
s
l
i
d
e
r
 
t
r
a
c
i
n
g
 
a
 
p
o
l
a
r
 
c
u
r
v
e
.
 
 
A
l
s
o
 
s
h
o
w
n
 
i
s
 
t
h
e

4
 

C
o
r
i
o
l
i
s
 
a
c
c
e
l
e
r
a
t
i
o
n
 
v
e
c
t
o
r
 
o
f
 
t
h
e
 
s
l
i
d
e
r
 
r
e
l
a
t
i
v
e
 
t
o
 
i
t
s
 
g
u
i
d
e
 
Q
-
Q
’
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
B
l
a
c
k
,
B
l
u
e
,
C
y
a
n
,
W
h
i
t
e
,
L
i
g
h
t
R
e
d
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
,
S
l
i
d
e
r
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
f
f
s
e
t
,
L
o
c
u
s
,
V
a
r
D
i
s
t
,
N
e
w
F
r
a
m
e
,
M
e
c
O
u
t
,
O
p
e
n
M
e
c
G
r
a
p
h
}

1
2
 
 
 
 
 

 
 

{
P
u
t
P
o
i
n
t
,
P
u
t
V
e
c
t
o
r
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 

{
.
.
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
F
T
1
,
F
T
2
:
t
e
x
t
;
 

i
:
I
n
t
e
g
e
r
;
 
t
,
 
x
O
,
y
O
,
 
O
P
,
Q
_
Q
,
 
a
x
C
o
r
,
a
y
C
o
r
,

1
5
 
 
 
x
A
,
y
A
,
 
v
x
A
,
v
y
A
,
 
a
x
A
,
a
y
A
,
 
x
B
,
y
B
,
 
v
x
B
,
v
y
B
,
 
a
x
B
,
a
y
B
,
 
x
P
,
y
P
,
 
v
x
P
,
v
y
P
,

16
 
 
 
ax
P,
ay
P,
 x
Q,
yQ
,  
vx
Q,
vy
Q,
 a
xQ
,a
yQ
,  

x_
Q,
y_
Q,
 v
x_
Q,
vy
_Q
,  
a
x
_
Q
,
a
y
_
Q
,

1
7
 
 
 
P
h
i
,
d
P
h
i
,
d
d
P
h
i
,
 
s
,
d
s
,
d
d
s
,
 
T
h
e
t
a
,
d
T
h
e
t
a
,
d
d
T
h
e
t
a
,
 
r
,
d
r
,
d
d
r
:
d
o
u
b
l
e
;

1
8
 
B
E
G
I
n
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1
9
 
 
x
O
:
=
0
.
0
;
 

y
O
:
=
0
.
0
;

2
0
 
 
O
P
:
=
3
5
;
 

Q
_
Q
:
=
8
0
;
 

{
.
.
d
i
s
t
a
n
c
e
 
Q
Q
’
 
-
 
n
o
t
e
 
t
h
a
t
 
_
Q
 
i
s
 
Q
’
}

2
1
 
 
A
s
s
i
g
n
(
F
T
1
,
’
P
5
_
1
0
A
.
T
X
T
’
)
;
 

R
e
w
r
i
t
e
(
F
T
1
)
;

2
2
 
 
W
r
i
t
e
L
n
(
F
T
1
,
’
 
t
 

s
 

d
s
 

d
d
s
 

r
 

d
r
 

d
d
r
’
)
;

2
3
 
 
A
s
s
i
g
n
(
F
T
2
,
’
P
5
_
1
0
B
.
T
X
T
’
)
;
 

R
e
w
r
i
t
e
(
F
T
2
)
;

2
4
 
 
W
r
i
t
e
L
n
(
F
T
2
,
’
 
t
 

P
h
i
 

d
P
h
i
 
d
d
P
h
i
 

T
h
e
t
a
 

d
T
h
e
t
a
 

d
d
T
h
e
t
a
’
)
;

2
5
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
0
.
D
X
F
’
)
;

2
6
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
7
0
,
7
0
,
 
-
2
0
,
7
0
)
;

2
7
 
 
T
h
e
t
a
:
=
P
i
/
2
;

2
8
 
 
i
:
=
0
;

2
9
 
 
R
e
p
e
a
t

3
0
 
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
1
 
 
 
 
 

i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
2
 
 
 
 
E
n
D
;

3
3
 
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

3
4
 
 
 
 
t
:
=
i
/
n
P
o
z
;
 

{
t
 
=
 
t
i
m
e
}

3
5
 
 
 
 
P
h
i
:
=
P
i
/
2
 

+
 

P
i
/
4
*
s
i
n
(
2
*
P
i
*
t
)
;

3
6
 
 
 
 
d
P
h
i
 
:
=
 

2
*
P
i
 
*
P
i
/
4
*
c
o
s
(
2
*
P
i
*
t
)
;

3
7
 
 
 
 
d
d
P
h
i
:
=
-
S
q
r
(
2
*
P
i
)
*
P
i
/
4
*
s
i
n
(
2
*
P
i
*
t
)
;

3
8
 
 
 
 
s
 
:
=
 

0
.
4
5
*
Q
_
Q
*
c
o
s
(
2
*
P
i
*
t
)
;

3
9
 
 
 
 
d
s
 
:
=
 

-
2
*
P
i
 
*
0
.
4
5
*
Q
_
Q
*
s
i
n
(
2
*
P
i
*
t
)
;

4
0
 
 
 
 
d
d
s
:
=
-
S
q
r
(
2
*
P
i
)
*
0
.
4
5
*
Q
_
Q
*
c
o
s
(
2
*
P
i
*
t
)
;

4
1
 
 
 
 
g
C
r
a
n
k
(
M
a
g
e
n
t
a
,
x
O
,
y
O
,
 
P
h
i
,
d
P
h
i
,
d
d
P
h
i
,
 
O
P
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
)
;

4
2
 
 
 
 
O
f
f
s
e
t
(
B
l
u
e
,
’
I
’
,
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
,
 
x
O
,
y
O
,
0
,
0
,
0
,
0

4
3
 
 
 
 
,
0
,
-
0
.
5
*
Q
_
Q
,
 
x
Q
,
y
Q
,
v
x
Q
,
v
y
Q
,
a
x
Q
,
a
y
Q
)
;

4
4
 
 
 
 
O
f
f
s
e
t
(
B
l
u
e
,
’
I
’
,
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
,
 
x
O
,
y
O
,
0
,
0
,
0
,
0

4
5
 
 
 
 
,
0
,
 
0
.
5
*
Q
_
Q
,
 
x
_
Q
,
y
_
Q
,
v
x
_
Q
,
v
y
_
Q
,
a
x
_
Q
,
a
y
_
Q
)
;

4
6
 
 
 
 
S
l
i
d
e
r
(
-
R
e
d
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
,
 
x
Q
,
y
Q
,
v
x
Q
,
v
y
Q
,
a
x
Q
,
a
y
Q

4
7
 
 
 
 
,
0
,
 
s
,
d
s
,
d
d
s
,
 
x
B
,
y
B
,
v
x
B
,
v
y
B
,
a
x
B
,
a
y
B
,
 
x
A
,
y
A
,
v
x
A
,
v
y
A
,
a
x
A
,
a
y
A
)
;

4
8
 
 
 
 
L
o
c
u
s
(
C
y
a
n
,
 
x
B
,
y
B
,
 
‘
B
’
)
;

4
9
 
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
o
’
,
x
B
 
,
y
B
 
,
’
B
 

‘
)
;
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5
0
 
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
O
,
y
O
,
x
P
 
,
y
P
 
,
’
 
P
’
)
;

5
1
 
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
_
Q
,
y
_
Q
,
x
Q
,
y
Q
,
’
 
Q
’
)
;

5
2
 
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
Q
,
y
Q
,
x
_
Q
,
y
_
Q
,
’
 
Q
’
’
’
)
;

5
3
 
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
O
 
,
y
O
 
,
’
O
 

‘
)
;

5
4
 
 
 
 
V
a
r
D
i
s
t
(
x
_
Q
,
y
_
Q
,
v
x
_
Q
,
v
y
_
Q
,
a
x
_
Q
,
a
y
_
Q
,
 

x
B
,
y
B
,
v
x
B
,
v
y
B
,
a
x
B
,
a
y
B

5
5
 
 
 
 
,
r
,
d
r
,
d
d
r
,
 
T
h
e
t
a
,
d
T
h
e
t
a
,
d
d
T
h
e
t
a
)
;

5
6
 
 
 
 
a
x
C
o
r
:
=
2
*
d
T
h
e
t
a
*
d
r
*
c
o
s
(
T
h
e
t
a
+
P
i
/
2
)
;
 

{
x
 
c
o
m
p
.
 
o
f
 
C
o
r
i
o
l
i
s
 
a
c
c
e
l
.
}

5
7
 
 
 
 
a
y
C
o
r
:
=
2
*
d
T
h
e
t
a
*
d
r
*
s
i
n
(
T
h
e
t
a
+
P
i
/
2
)
;
 

{
y
 
c
o
m
p
.
 
o
f
 
C
o
r
i
o
l
i
s
 
a
c
c
e
l
.
}

5
8
 
 
 
 
P
u
t
V
e
c
t
o
r
(
L
i
g
h
t
R
e
d
,
 
‘
|
’
 
,
x
B
,
y
B
,
 
a
x
C
o
r
,
a
y
C
o
r
,
 
0
.
0
3
,
’
 
a
_
c
’
)
;

5
9
 
 
 
 
i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
B
E
G
I
n

6
0
 
 
 
 
 

W
r
i
t
e
L
n
(
F
T
1
,
t
:
7
:
4
,
’
 
‘
,
s
:
8
:
4
,
’
 
‘
,
d
s
:
9
:
4

6
1
 
 
 
 
 

,
’
 
‘
,
d
d
s
:
9
:
3
,
’
 
‘
,
r
-
0
.
5
*
Q
_
Q
:
8
:
4
,
’
 
‘
,
d
r
:
9
:
4
,
’
 
‘
,
d
d
r
:
9
:
3
)
;

6
2
 
 
 
 
 

W
r
i
t
e
L
n
(
F
T
2
,
t
:
7
:
4
,
’
 
‘
,
P
h
i
*
D
E
G
:
7
:
3
,
’
 
‘
,
d
P
h
i
:
7
:
4
,
’
 
‘
,
d
d
P
h
i
:
8
:
4

6
3
 
 
 
 
 

,
’
 
‘
,
(
T
h
e
t
a
-
P
i
/
2
)
*
D
E
G
:
7
:
3
,
’
 
‘
,
d
T
h
e
t
a
:
7
:
4
,
’
 
‘
,
d
d
T
h
e
t
a
:
8
:
4
)
;

6
4
 
 
 
 
E
n
D
;

6
5
 
 
 
 
I
n
c
(
i
)
;

6
6
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

6
7
 
 
C
l
o
s
e
(
F
T
1
)
;
 
 
 
C
l
o
s
e
(
F
T
2
)
;

6
8
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
 
.
$
2
D
 
f
i
l
e
s
}

6
9
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
1
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

A
 
c
r
a
n
k
 
d
r
i
v
i
n
g
 
a
 
s
l
i
d
e
r
 
t
r
a
c
i
n
g
 
a
 
p
o
l
a
r
 
c
u
r
v
e
.
 
 
A
l
s
o
 
s
h
o
w
n
 
a
s
 
v
e
c
t
o
r
s

4
 

a
r
e
 
t
h
e
 
v
e
l
o
c
i
t
y
 
a
n
d
 
t
h
e
 
n
o
r
m
a
l
 
&
 
t
a
n
g
e
n
t
i
a
l
 
a
c
c
e
l
e
r
a
t
i
o
n
 
o
f
 
t
h
e
 
s
l
i
d
e
r
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
B
l
a
c
k
,
B
l
u
e
,
C
y
a
n
,
W
h
i
t
e
,
L
i
g
h
t
B
l
u
e
,
L
i
g
h
t
R
e
d
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
,
S
l
i
d
e
r
}
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1
1
 
 

 
 
L
i
b
M
e
c
2
D
;
 {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
X
m
i
n
W
S
,
X
m
a
x
W
S
,
Y
m
i
n
W
S
,
Y
m
a
x
W
S
,
O
f
f
s
e
t
}

1
2
 
 

 
{
P
u
t
G
P
o
i
n
t
,
P
u
t
P
o
i
n
t
,
L
o
c
u
s
,
P
u
t
V
e
c
t
o
r
,
n
t
A
c
c
e
l
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 

{
.
.
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
F
T
:
t
e
x
t
;
 

i
:
I
n
t
e
g
e
r
;
 
t
,
x
O
,
y
O
,
 
O
P
,
Q
_
Q
,
 
x
_
Q
,
y
_
Q
,
 
x
A
,
y
A
,
v
x
A
,
v
y
A
,
a
x
A
,
a
y
A
,

1
5
 
 

 
x
B
,
y
B
,
 
v
x
B
,
v
y
B
,
 
a
x
B
,
a
y
B
,
 
x
P
,
y
P
,
 
v
x
P
,
v
y
P
,
 
a
x
P
,
a
y
P
,
 
x
Q
,
y
Q
,
 
v
x
Q
,
v
y
Q
,

1
6
 
 
 

a
x
Q
,
a
y
Q
,
 
P
h
i
,
d
P
h
i
,
d
d
P
h
i
,
 
s
,
d
s
,
d
d
s
,
 
a
x
B
t
,
a
y
B
t
,
 
a
x
B
n
,
a
y
B
n
:
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 

O
P
:
=
3
5
;
 

Q
_
Q
:
=
8
0
;
 

{
.
.
d
i
s
t
a
n
c
e
s
 
O
P
 
a
n
d
 
Q
Q
’
 
-
 
n
o
t
e
 
t
h
a
t
 
_
Q
 
i
s
 
Q
’
}

1
9
 
 

x
O
:
=
0
.
0
;
 

y
O
:
=
0
.
0
;

2
0
 
 

A
s
s
i
g
n
(
F
T
,
’
P
5
_
1
1
.
T
X
T
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

2
1
 
 

W
r
i
t
e
L
n
(
F
T
,
’
  t
 

x
B
 

y
B
 

v
x
B
 

v
y
B
 

a
x
B
 

a
y
B
’
)
;

2
2
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
1
.
D
X
F
’
)
;

2
3
 
 

i
:
=
0
;

2
4
 
 

R
e
p
e
a
t

2
5
 
 
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
6
 
 
 
 
 

i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;
 

{
.
.
n
o
 
e
f
f
e
c
t
 
u
n
t
i
l
 
O
p
e
n
M
e
c
G
r
a
p
h
 
i
s
 
c
a
l
l
e
d
}

2
7
 
 
 
 
 

x
B
:
=
0
.
1
*
(
X
m
a
x
W
S
-
X
m
i
n
W
S
)
;
 {
.
.
e
x
p
a
n
d
 
b
y
 
1
0
%
 
-
 
m
u
l
t
i
p
l
e
 
u
s
e
s
 
o
f
 
x
B
}

2
8
 
 
 
 
 

y
B
:
=
0
.
1
*
(
Y
m
a
x
W
S
-
Y
m
i
n
W
S
)
;
  {
.
.
e
x
p
a
n
d
 
b
y
 
1
0
%
 
-
 
m
u
l
t
i
p
l
e
 
u
s
e
s
 
o
f
 
y
B
}

2
9
 
 
 
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
X
m
i
n
W
S
-
x
B
,
X
m
a
x
W
S
+
x
B
,
 
Y
m
i
n
W
S
-
y
B
,
Y
m
a
x
W
S
+
y
B
)
;

3
0
 
 
 

E
n
D
;

3
1
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

3
2
 
 
 

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
0
,
6
0
,
’
S
i
m
u
l
a
t
i
o
n
 
w
i
t
h
 
n
t
A
c
c
e
l
’
)
;

3
3
 
 
 

t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
4
 
 
 

P
h
i
 
 
:
=
P
i
/
2
 

+
 
P
i
/
4
*
s
i
n
(
2
*
P
i
*
t
)
;

3
5
 
 
 

d
P
h
i
 
:
=
 
2
*
P
i
 
*
P
i
/
4
*
c
o
s
(
2
*
P
i
*
t
)
;

3
6
 
 
 

d
d
P
h
i
:
=
-
S
q
r
(
2
*
P
i
)
*
P
i
/
4
*
s
i
n
(
2
*
P
i
*
t
)
;

3
7
 
 
 

s
  :
=
 
0
.
4
5
*
Q
_
Q
*
c
o
s
(
2
*
P
i
*
t
)
;

3
8
 
 
 

d
s
 
:
=
 

-
2
*
P
i
 
*
0
.
4
5
*
Q
_
Q
*
s
i
n
(
2
*
P
i
*
t
)
;

3
9
 
 
 

d
d
s
:
=
-
S
q
r
(
2
*
P
i
)
*
0
.
4
5
*
Q
_
Q
*
c
o
s
(
2
*
P
i
*
t
)
;

4
0
 
 
 

g
C
r
a
n
k
(
R
e
d
,
x
O
,
y
O
,
 
P
h
i
,
d
P
h
i
,
d
d
P
h
i
,
 
O
P
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
)
;

4
1
 
 
 

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
O
 
,
y
O
 
,
’
O
 

‘
)
;

4
2
 
 
 

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
O
,
y
O
,
x
P
 
,
y
P
 
,
’
 
P
’
)
;
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4
3
 
 

 
O
f
f
s
e
t
(
B
l
u
e
,
’
I
’
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
,
 
x
O
,
y
O
,
0
,
0
,
0
,
0

4
4
 
 
 

,
0
,
-
0
.
5
*
Q
_
Q
,
 
x
Q
,
y
Q
,
v
x
Q
,
v
y
Q
,
a
x
Q
,
a
y
Q
)
;

4
5
 
 
 

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
_
Q
,
y
_
Q
,
x
Q
,
y
Q
,
’
 
Q
’
)
;

4
6
 
 
 

O
f
f
s
e
t
(
B
l
u
e
,
’
I
’
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
,
 
x
O
,
y
O
,
0
,
0
,
0
,
0

4
7
 
 
 

,
0
,
 
0
.
5
*
Q
_
Q
,
 
x
_
Q
,
y
_
Q
,
_
,
_
,
_
,
_
)
;

4
8
 
 
 

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
Q
,
y
Q
,
x
_
Q
,
y
_
Q
,
’
 
Q
’
’
’
)
;

4
9
 
 
 

S
l
i
d
e
r
(
B
l
u
e
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
a
x
P
,
a
y
P
,
 
x
Q
,
y
Q
,
v
x
Q
,
v
y
Q
,
a
x
Q
,
a
y
Q

5
0
 
 
 

,
0
,
 
s
,
d
s
,
d
d
s
,
 
x
B
,
y
B
,
v
x
B
,
v
y
B
,
a
x
B
,
a
y
B
,
 
_
,
_
,
_
,
_
,
_
,
_
)
;

5
1
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
o
’
,
x
B
 
,
y
B
 
,
’
B
 

‘
)
;

5
2
 
 
 

L
o
c
u
s
(
C
y
a
n
,
 
x
B
,
y
B
,
 
‘
B
’
)
;

5
3
 
 
 

P
u
t
V
e
c
t
o
r
(
L
i
g
h
t
B
l
u
e
,
 
‘
|
’
 
,
x
B
,
y
B
,
 
v
x
B
,
v
y
B
,
 
0
.
1
,
’
v
_
B
’
)
;

5
4
 
 
 

n
t
A
c
c
e
l
(
v
x
B
,
v
y
B
,
a
x
B
,
a
y
B
,
 
a
x
B
n
,
a
y
B
n
,
a
x
B
t
,
a
y
B
t
)
;

5
5
 
 
 

P
u
t
V
e
c
t
o
r
(
M
a
g
e
n
t
a
,
 
‘
 
‘
 
,
x
B
,
y
B
,
 
a
x
B
t
,
a
y
B
t
,
 
0
.
0
1
,
’
a
t
_
B
’
)
;

5
6
 
 
 

P
u
t
V
e
c
t
o
r
(
M
a
g
e
n
t
a
,
 
‘
 
‘
 
,
x
B
,
y
B
,
 
a
x
B
n
,
a
y
B
n
,
 
0
.
0
1
,
’
a
n
_
B
’
)
;

5
7
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
1
5
,
0
,
’
P
h
i
=
’
+
M
y
S
t
r
(
P
h
i
*
D
E
G
,
5
)
+
’
°
,
 
 
s
=
’
+
M
y
S
t
r
(
s
,
5
)
)
;

5
8
 
 
 

i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
 
W
r
i
t
e
L
n
(
F
T
,
t
:
8
:
6
,
’
 
‘
,
x
B
:
9
:
6
,
’
 
‘
,
y
B
:
9
:
6
,
’
 
‘

5
9
 
 
 
 
,
v
x
B
:
9
:
6
,
’
 
‘
,
v
y
B
:
9
:
6
,
’
 
‘
,
a
x
B
:
1
0
:
6
,
’
 
‘
,
a
y
B
:
1
0
:
6
)
;

6
0
 
 
 

I
n
c
(
i
)
;

6
1
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

6
2
 
 

C
l
o
s
e
(
F
T
)
;
 
 
 
 

6
3
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
T
R
U
E
)
;
 
 
{
.
.
r
e
t
a
i
n
 
t
h
e
 
B
.
$
2
D
 
l
o
c
u
s
 
f
i
l
e
}

6
4
 
 

W
r
i
t
e
L
n
(
X
m
i
n
W
S
:
6
:
3
,
’
 
<
 
x
 
<
 
‘
,
X
m
a
x
W
S
:
6
:
3
)
;
 
 
{
r
e
p
o
r
t
 
w
o
r
k
s
p
a
c
e
 
l
i
m
i
t
s
.
.
}

6
5
 
 

W
r
i
t
e
(
Y
m
i
n
W
S
:
6
:
3
,
’
 
<
 
y
 
<
 
‘
,
Y
m
a
x
W
S
:
6
:
3
,
’
 
<
C
R
>
.
.
’
)
;
 
 
R
e
a
d
L
n
;

6
6
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
1
5
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

T
w
o
 
c
r
a
n
k
s
 
i
n
 
s
e
r
i
e
s
 
w
i
t
h
 
P
u
t
A
n
g
,
 
P
u
t
D
i
s
t
,
 
P
u
t
T
e
x
t
 
&
 
P
u
t
G
t
e
x
t

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
M
a
g
e
n
t
a
,
R
e
d
,
W
h
i
t
e
}
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6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
}

7
 

 
 
 
L
i
b
G
e
2
D
,
 
{
D
i
s
t
2
P
t
s
2
D
,
S
1
2
3
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
,
C
r
a
n
k
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
S
e
t
J
o
i
n
t
S
i
z
e
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
,
}

1
2
 
 
 
 
 

 
{
P
u
t
A
n
g
,
P
u
t
D
i
s
t
,
P
u
t
T
e
x
t
,
P
u
t
G
T
e
x
t
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
1
4
4
;
 

{
.
.
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
i
:
I
n
t
e
g
e
r
;
 t
,
A
B
,
B
C
,
x
A
,
y
A
,
x
B
,
y
B
,
x
C
,
y
C
,
P
h
i
1
,
P
h
i
2
,
E
x
t
L
L
g
t
,
A
C
:
d
o
u
b
l
e
;

1
5
 
B
E
G
I
n

1
6
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
4
.
D
X
F
’
)
;

1
7
 
 

x
A
:
=
0
;
 
y
A
:
=
0
;
 

{
.
.
g
r
o
u
n
d
 
j
o
i
n
t
 
l
o
c
a
t
i
o
n
}

1
8
 
 

A
B
:
=
4
0
;
  B
C
:
=
3
0
;
 

{
.
.
c
r
a
n
k
 
l
e
n
g
t
h
s
}

1
9
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
6
0
,
6
0
,
-
6
0
,
6
5
)
;

2
0
 
 

S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
1
 
 

i
:
=
0
;

2
2
 
 

R
e
p
e
a
t

2
3
 
 

 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
4
 
 
 
 
 
C
l
o
s
e
M
e
c
D
X
F
;
 
i
:
=
0
;

2
5
 
 
 

E
n
D
;

2
6
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

2
7
 
 
 

P
u
t
G
T
e
x
t
(
W
h
i
t
e
,
0
,
_
,
’
S
i
m
u
l
a
t
i
o
n
 
w
i
t
h
 
P
u
t
A
n
g
 
a
n
d
 
P
u
t
D
i
s
t
’
)
;

2
8
 
 
 

t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

2
9
 
 
 

P
h
i
1
:
=
P
i
/
4
+
2
*
P
i
*
t
;

3
0
 
 
 

P
h
i
2
:
=
 

-
8
*
P
i
*
t
;

3
1
 
 
 

g
C
r
a
n
k
(
M
a
g
e
n
t
a
,
x
A
,
y
A
,
 
P
h
i
1
,
_
,
_
,
 
A
B
,
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

3
2
 
 

 
C
r
a
n
k
(
R
e
d
,
x
A
,
y
A
,
0
,
0
,
0
,
0
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
P
h
i
2
,
_
,
_
,
B
C
,
x
C
,
y
C
,
_
,
_
,
_
,
_
)
;

3
3
 
 
 

A
C
:
=
D
i
s
t
2
P
t
s
2
D
(
x
A
,
y
A
,
x
C
,
y
C
)
;

3
4
 
 
 

E
x
t
L
L
g
t
:
=
8
*
S
g
n
(
S
1
2
3
(
x
A
,
y
A
,
x
B
,
y
B
,
x
C
,
y
C
)
)
;

3
5
 
 
 

P
u
t
D
i
s
t
(
W
h
i
t
e
,
x
A
,
y
A
,
 
x
C
,
y
C
,
 
E
x
t
L
L
g
t
,
’
 
>
|
’
)
;
 
{
.
.
p
u
t
 
d
i
s
t
a
n
c
e
 
A
C
}

3
6
 
 
 

P
u
t
A
n
g
(
W
h
i
t
e
,
x
A
,
y
A
,
 
x
A
,
y
A
,
 
x
B
,
y
B
,
 
4
,
’
|
 
>
’
)
;
 
{
.
.
p
u
t
 
P
h
i
1
}
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3
7
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
2
*
x
B
-
x
A
,
2
*
y
B
-
y
A
,
 
x
B
,
y
B
,
 
x
C
,
y
C
,
 
4
,
’
|
 
>
’
)
;
 
{
.
.
p
u
t
 
P
h
i
2
}

3
8
 
 
 

P
u
t
T
e
x
t
(
W
h
i
t
e
,
_
,
_
,
’
A
C
 
=
’
+
M
y
S
t
r
(
A
C
,
4
)
+
’
n
\
P
h
i
1
=
’
+
M
y
S
t
r
(
P
h
i
1
*
D
E
G
,
5
)

3
9
 
 
 

+
’
n
\
P
h
i
2
=
’
+
M
y
S
t
r
(
P
h
i
2
*
D
E
G
,
5
)
)
;

4
0
 
 
 

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
 
,
y
A
 
,
’
A
 

‘
)
;

4
1
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
 
,
y
B
 
,
’
B
 

‘
)
;

4
2
 
 
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
C
 
,
y
C
 
,
’
  C
’
)
;

4
3
 
 
 

I
n
c
(
i
)
;

4
4
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
5
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
 
{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
.
$
2
D
 
f
i
l
e
s
}

4
6
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
1
6
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

A
 
c
r
a
n
k
 
r
o
t
a
t
i
n
g
 
a
b
o
u
t
 
a
 
b
a
s
e
.
 
 
U
s
e
s
 
L
i
n
k
 
a
n
d
 
B
a
s
e
 
s
u
b
r
o
u
t
i
n
e
s
.

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
C
y
a
n
,
G
r
e
e
n
,
R
e
d
,
M
a
g
e
n
t
a
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
e
t
J
o
i
n
t
S
i
z
e
,
}

1
1
 
 
 
 
  

 
{
g
S
h
a
p
e
,
S
h
a
p
e
,
L
i
n
k
,
B
a
s
e
,
C
l
o
s
e
M
e
c
D
X
F
}

1
2
 
c
o
n
s
t
 
n
P
o
z
 
=
 
3
6
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
 
}

1
3
 
 
 
 
  O
A
 

=
 
2
0
;
 
{
c
r
a
n
k
 
l
e
n
g
t
h
 
}

1
4
 
 
 
 
  w
 

=
 
6
;
 

{
c
r
a
n
k
 
w
i
d
t
h
 
 
}

1
5
 
 
 
 
  C
o
l
 
=
 
2
;
 

{
g
C
r
a
n
k
 
c
o
l
o
r
 
-
 
e
i
t
h
e
r
 
2
,
 
-
2
 
o
r
 
0
}

1
6
 
v
a
r
 
i
:
W
o
r
d
;
 

P
h
i
,
x
A
,
y
A
:
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
6
A
.
D
X
F
’
)
;
 

{
.
.
D
X
F
 
f
i
l
e
 
f
o
r
 
M
3
D
 
a
n
i
m
a
t
i
o
n
}

1
9
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
2
5
,
2
5
,
 
-
2
5
,
2
5
)
;
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2
0
 
 

S
e
t
J
o
i
n
t
S
i
z
e
(
6
)
;

2
1
 
 

i
:
=
0
;

2
2
 
 

R
e
p
e
a
t

2
3
 
 
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
4
 
 
 
 
i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

2
5
 
 
 

E
n
D
;

2
6
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

2
7
 
 
 

P
h
i
:
=
2
*
P
i
*
i
/
n
P
o
z
;

2
8
 
 
 

g
C
r
a
n
k
(
C
o
l
,
 
0
,
0
,
 
P
h
i
,
_
,
_
,
 
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

2
9
 
 
 

B
a
s
e
(
W
h
i
t
e
,
 
0
,
0
.
1
*
O
A
,
 
0
,
-
0
.
2
5
*
O
A
,
 
4
*
w
,
 
0
.
5
*
w
,
 
 
0
.
0
)
;

3
0
 
 
 

L
i
n
k
(
R
e
d
,
 
0
,
0
,
 
x
A
,
y
A
,
 
w
,
 
w
,
 
-
0
.
2
5
*
w
)
;

3
1
 
 
 

g
S
h
a
p
e
(
‘
1
.
6
’
,
R
e
d
,
 
0
,
0
)
;
 

{
.
.
d
r
a
w
 
a
 
c
i
r
c
l
e
 
o
f
 
r
a
d
i
u
s
 
1
.
6
 
a
t
 
(
0
,
0
)
}

3
2
 
 
 

S
h
a
p
e
(
‘
0
.
8
’
,
R
e
d
,
 
x
A
,
y
A
,
 
x
A
,
y
A
)
;
 

{
.
.
d
r
a
w
 
a
 
c
i
r
c
l
e
 
o
f
 
r
a
d
i
u
s
 
0
.
8
 
a
t
 
A
}

3
3
 
 
 

I
n
c
(
i
)
;

3
4
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

3
5
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

3
6
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
1
6
B
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
a
r
 
r
e
d
u
c
e
r
 
a
n
i
m
a
t
i
o
n
 
w
i
t
h
 
S
h
a
p
e
s
 
r
e
a
d
 
f
r
o
m
 
A
S
C
I
I
 
f
i
l
e
s

4
 

H
o
u
s
i
n
g
.
X
Y
,
 
P
i
n
i
o
n
.
X
Y
 
&
 
G
e
a
r
.
X
Y

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
L
i
g
h
t
B
l
u
e
,
R
e
d
,
W
h
i
t
e
}

7
 

 
 
 

L
i
b
M
a
t
h
,
  {
_
}

8
 

 
 
 

L
i
b
I
n
O
u
t
,
 

{
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 

L
i
b
D
X
F
,
 
{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 

L
i
b
M
e
c
I
n
,
 

{
g
C
r
a
n
k
}

1
1
 
 
 
 

L
i
b
M
e
c
2
D
;
 

{
S
h
a
p
e
,
O
p
e
n
M
e
c
G
r
a
p
h
,
C
l
o
s
e
M
e
c
G
r
a
p
h
,
C
l
o
s
e
M
e
c
D
X
F
}

1
2
 
c
o
n
s
t
 
n
P
o
z
 
=
 
1
0
8
;
 

{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}
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1
3
 
v
a
r
 
i
,
j
h
,
n
h
:
I
n
t
e
g
e
r
;
 t
,
 
i
1
2
,
 
P
h
i
1
,
P
h
i
2
,
P
h
i
2
0
,

1
4
 
 
 
 

x
O
1
,
y
O
1
,
 
x
O
2
,
y
O
2
,
 

x
A
,
y
A
,
 
x
B
,
y
B
,
 
r
1
,
r
2
,
 
r
h
:
d
o
u
b
l
e
;

1
5
 
B
E
G
I
n

1
6
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
6
B
.
D
X
F
’
)
;

1
7
 
 

x
O
1
:
=
0
.
0
;
 

y
O
1
:
=
0
.
0
;
 

{
p
i
n
i
o
n
 
a
x
i
s
 
l
o
c
a
t
i
o
n
}

1
8
 
 

x
O
2
:
=
1
9
.
5
;
 

y
O
2
:
=
0
;
 

{
g
e
a
r
 
a
x
i
s
 
l
o
c
a
t
i
o
n
}

1
9
 
 

r
1
:
=
5
;

2
0
 
 

P
h
i
2
0
:
=
P
i
;

2
1
 
 

r
2
:
=
5
;
  {
p
e
r
i
p
h
e
r
a
l
 
h
o
l
e
 
e
c
c
e
n
t
r
i
c
i
t
y
 
o
f
 
g
e
a
r
}

2
2
 
 

r
h
:
=
1
;
  {
p
e
r
i
p
h
e
r
a
l
 
h
o
l
e
 
r
a
d
i
u
s
}

2
3
 
 

n
h
:
=
5
;
  {
n
u
m
b
e
r
 
o
f
 
p
e
r
i
p
h
e
r
a
l
 
h
o
l
e
s
 
o
f
 
g
e
a
r
}

2
4
 
 

i
1
2
:
=
-
2
;
 
{
g
e
a
r
 
r
a
t
i
o
}

2
5
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
2
0
,
5
0
,
-
1
5
,
1
5
)
;

2
6
 
 
i
:
=
0
;

2
7
 
 
R
e
p
e
a
t

2
8
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
9
 
 
 
 
i
:
=
0
;
 
C
l
o
s
e
M
e
c
D
X
F
;

3
0
 
 
 
E
n
D
;

3
1
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

3
2
 
 
 
t
:
=
i
/
n
P
o
z
;
 
{
t
 
=
 
t
i
m
e
}

3
3
 
 
 
P
h
i
1
:
=
i
1
2
*
(
2
*
P
i
*
t
)
;

3
4
 
 
 
P
h
i
2
:
=
P
h
i
2
0
 
+
 
P
h
i
1
/
i
1
2
;

3
5
 
 
 
g
S
h
a
p
e
(
‘
H
o
u
s
i
n
g
.
x
y
’
,
W
h
i
t
e
,
 
x
O
1
,
y
O
1
)
;
 
{
.
.
t
r
a
n
s
m
i
s
s
i
o
n
 
h
o
u
s
i
n
g
}

3
6
 
 
 
g
C
r
a
n
k
(
B
l
a
c
k
,
x
O
1
,
y
O
1
,
P
h
i
1
,
_
,
_
,
 
r
1
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
S
h
a
p
e
(
‘
P
i
n
i
o
n
.
x
y
’
,
R
e
d
,
 
x
O
1
,
y
O
1
,
 
x
A
,
y
A
)
;
 
{
.
.
i
n
v
o
l
u
t
e
 
&
 
h
o
l
e
 
+
 
k
e
y
w
a
y
}

3
8
 
 
 
g
C
r
a
n
k
(
B
l
a
c
k
,
 
x
O
2
,
y
O
2
,
P
h
i
2
,
_
,
_
,
 
r
2
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

3
9
 
 
 
S
h
a
p
e
(
‘
G
e
a
r
.
x
y
’
,
L
i
g
h
t
B
l
u
e
,
 
x
O
2
,
y
O
2
,
 
x
B
,
y
B
)
;

4
0
 
 
 
S
h
a
p
e
(
‘
’
,
L
i
g
h
t
B
l
u
e
,
 
x
O
2
,
y
O
2
,
 
x
O
2
+
2
*
r
h
,
0
)
;
 
{
.
.
c
e
n
t
e
r
 
h
o
l
e
}

4
1
 
 
 
S
h
a
p
e
(
‘
’
,
L
i
g
h
t
B
l
u
e
,
 
x
O
2
,
y
O
2
,
 
x
O
2
+
9
*
r
h
,
0
)
;
 
{
.
.
r
i
m
 
c
i
r
c
l
e
}

4
2
 
 
 
f
o
r
 
j
h
:
=
0
 
t
o
 
n
h
-
1
 
d
o
 
B
E
G
I
n

4
3
 
 
 
 
g
C
r
a
n
k
(
B
l
a
c
k
,
x
O
2
,
y
O
2
,
P
h
i
2
+
2
*
P
i
/
n
h
*
j
h
,
_
,
_
,
 
r
2
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;
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4
4
 
 
 
 
S
h
a
p
e
(
‘
’
,
L
i
g
h
t
B
l
u
e
,
 
x
B
,
y
B
,
 
x
B
+
r
h
,
y
B
)
;
 
{
.
.
t
h
e
 
p
e
r
i
p
h
e
r
a
l
 
h
o
l
e
s
}

4
5
 
 
 
E
n
D
;

4
6
 
 
 
I
n
c
(
i
)
;

4
7
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
8
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
 
*
.
$
2
D
 
f
i
l
e
s
}

4
9
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
5
_
1
7
A
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

A
 
r
o
t
a
t
i
n
g
 
v
e
c
t
o
r
 
O
A
 
a
n
d
 
p
l
o
t
 
o
f
 
y
A
(
T
h
e
t
a
)
 
w
i
t
h
 
s
c
a
n
 
l
i
n
e
 
a
n
d
 
p
o
i
n
t

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
,
 

{
D
e
l
a
y
}

6
 

 
 
 
G
r
a
p
h
,
 

{
S
e
t
V
i
e
w
P
o
r
t
,
S
e
t
C
o
l
o
r
,
R
e
d
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
V
D
p
}

8
 

 
 
 
L
i
b
G
I
n
t
f
,
  {
D
r
a
w
B
o
r
d
e
r
}

9
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
E
r
a
s
e
A
l
l
,
I
m
p
l
i
c
i
t
F
i
l
e
N
a
m
e
,
I
s
K
e
y
P
r
e
s
s
e
d
}

1
0
 
 
 
 
L
i
b
G
r
a
p
h
,
  {
M
a
x
X
,
M
a
x
Y
,
 
O
b
j
2
S
c
r
,
 
X
_
p
,
Y
_
p
,
R
_
p
}

1
1
 
 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
P
D
c
i
r
c
l
e
,
C
l
o
s
e
D
X
F
f
i
l
e
}

1
2
 
 
 
 
U
n
i
t
_
P
C
X
,
  {
W
r
i
t
e
P
C
X
}

1
3
 
 
 
 
L
i
b
M
e
c
2
D
,
  {
P
u
t
R
e
f
S
y
s
t
e
m
,
C
l
o
s
e
M
e
c
h
G
r
a
p
h
}

1
4
 
 
 
 
L
i
b
P
l
o
t
s
;
 {
P
l
o
t
T
i
t
l
e
,
S
e
t
D
i
g
i
t
s
D
i
v
s
,
S
e
t
D
i
v
L
i
n
e
,
N
e
w
P
l
o
t
,
P
l
o
t
C
u
r
v
e
,
}

1
5
 
 
 
 
  

 
{
P
l
o
t
X
a
x
i
s
,
P
l
o
t
Y
a
x
i
s
,
R
e
s
i
z
e
Y
,
U
p
d
a
t
e
L
i
m
i
t
s
X
,
U
p
d
a
t
e
L
i
m
i
t
s
Y
,
}

1
6
 
 
 
 
  

 
{
P
l
o
t
S
c
a
n
L
i
n
e
,
P
l
o
t
S
c
a
n
P
o
i
n
t
,
D
X
F
S
c
a
n
L
i
n
e
,
D
X
F
S
c
a
n
P
o
i
n
t
}

1
7
 
c
o
n
s
t
 
n
 
=
 
3
7
;
 
{
.
.
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
p
o
i
n
t
s
}

1
8
 
 
 
 
  O
A
=
 
2
9
4
/
2
;
 

{
p
h
a
s
o
r
 
m
a
g
n
i
t
u
d
e
 
=
 
1
/
2
 
o
f
 
p
l
o
t
 
h
e
i
g
h
t
}

1
9
 
 
 
 
  T
h
e
t
a
0
=
0
;
 

{
.
.
i
n
i
t
i
a
l
 
T
h
e
t
a
 
}

2
0
 
 
 
 
  T
h
e
t
a
n
=
2
*
P
i
;
 

{
.
.
f
i
n
a
l
 
T
h
e
t
a
 

}
2
1
 
v
a
r
 
_
T
h
e
t
a
,
 
_
y
A
:
 
V
D
p
;
 
{
.
.
v
e
c
t
o
r
s
 
t
o
 
b
e
 
g
r
a
p
h
e
d
}

2
2
 
 

 
i
,
 
x
1
L
,
y
1
L
,
x
2
L
,
y
2
L
,
 
x
1
R
,
y
1
R
,
x
2
R
,
y
2
R
:
 
I
n
t
e
g
e
r
;

2
3
 
 

 
T
h
e
t
a
,
 

x
A
,
y
A
:
 
d
o
u
b
l
e
;
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2
4
 
 

 
F
i
r
s
t
T
i
m
e
,
S
e
c
o
n
d
T
i
m
e
,
O
K
:
 
B
o
o
l
e
a
n
;

2
5
 
B
E
G
I
n

2
6
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
7
-
1
.
D
X
F
’
)
;
 

{
.
.
D
X
F
 
o
u
t
p
u
t
 
o
f
 
p
h
a
s
o
r
}

2
7
 
 

E
r
a
s
e
A
l
l
(
‘
F
5
_
1
7
*
.
P
C
X
’
)
;
 
{
.
.
e
r
a
s
e
 
o
l
d
 
P
C
X
 
f
i
l
e
s
}

2
8
 
 

I
n
i
t
G
r
(
0
)
;

2
9
 
 

x
1
L
:
=
0
;
 

y
1
L
:
=
1
5
;
 
x
2
L
:
=
M
a
x
X
 
D
I
V
 
2
;
 
y
2
L
:
=
M
a
x
Y
;
 
{
.
.
l
e
f
t
 
w
i
n
d
o
w
 
}

3
0
 
 

x
1
R
:
=
M
a
x
X
 
D
I
V
 
2
;
 
y
1
R
:
=
1
5
;
 
x
2
R
:
=
M
a
x
X
;
  y
2
R
:
=
M
a
x
Y
;
 
{
.
.
r
i
g
h
t
 
w
i
n
d
o
w
}

3
1
 
 

F
i
r
s
t
T
i
m
e
 
:
=
T
R
U
E
;

3
2
 
 

S
e
c
o
n
d
T
i
m
e
:
=
F
A
L
S
E
;

3
3
 
 

P
l
o
t
T
i
t
l
e
(
‘
P
h
a
s
o
r
 
D
i
a
g
r
a
m
’
)
;

3
4
 
 
M
e
c
O
u
t
:
=
T
R
U
E
;
 
 
{
.
.
t
h
i
s
 
i
s
 
b
e
c
a
u
s
e
 
w
e
 
u
s
e
 
O
b
j
2
S
c
r
 
a
n
d
 
n
o
t
 
O
p
e
n
M
e
c
G
r
a
p
h
!
}

3
5
 
 

R
e
p
e
a
t

3
6
 
 
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

3
7
 
 
 
 
  S
e
t
V
i
e
w
P
o
r
t
(
x
1
R
,
y
1
R
,
x
2
R
,
y
2
R
,
 
C
l
i
p
O
n
)
;
 
 
{
.
.
r
i
g
h
t
 
w
i
n
d
o
w
}

3
8
 
 
 
 
  O
b
j
2
S
c
r
(
T
R
U
E
,
 
-
1
.
0
5
*
O
A
,
1
.
1
5
*
O
A
,
-
1
.
1
*
O
A
,
1
.
1
*
O
A
)
;
 
{
.
.
w
-
s
p
a
c
e
 
l
i
m
i
t
s
}

3
9
 
 
 
 
 n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

4
0
 
 
 
 
  T
h
e
t
a
:
=
T
h
e
t
a
0
+
(
T
h
e
t
a
n
-
T
h
e
t
a
0
)
/
(
n
-
1
)
*
(
i
-
1
)
;

4
1
 
 
 
 
  x
A
:
=
O
A
*
c
o
s
(
T
h
e
t
a
)
;

4
2
 
 
 
 
  y
A
:
=
O
A
*
s
i
n
(
T
h
e
t
a
)
;

4
3
 
 
 
 
  _
T
h
e
t
a
[
i
]
:
=
T
h
e
t
a
;

4
4
 
 
 
 
  _
y
A
[
i
]
:
=
y
A
/
O
A
;
 
 
 
{
.
.
p
l
o
t
 
t
h
e
 
n
o
r
m
a
l
i
z
e
d
 
y
A
}

4
5
 
 
 
 
  P
u
t
R
e
f
S
y
s
t
e
m
(
4
.
1
,
4
.
1
,
’
x
’
,
’
y
’
)
;
 

{
.
.
r
e
f
e
r
e
n
c
e
 
f
r
a
m
e
 
a
t
 
(
0
,
0
)
}

4
6
 
 

 
 
  P
D
c
i
r
c
l
e
(
‘
0
’
,
X
_
p
(
0
)
,
Y
_
p
(
0
)
,
R
_
p
(
O
A
)
)
;
 

{
.
.
u
n
i
t
 
c
i
r
c
l
e
 
a
t
 
(
0
,
0
)
}

4
7
 
 
 
 
  P
u
t
V
e
c
t
o
r
(
R
e
d
,
’
-
’
,
 
0
,
0
,
 
x
A
,
y
A
,
 
1
.
0
,
 
‘
’
)
;

4
8
 
 
 
 
  i
f
 
n
O
T
 
F
i
r
s
t
T
i
m
e
 
t
h
e
n
 
B
E
G
I
n

4
9
 
 
 
 
  

P
l
o
t
S
c
a
n
L
i
n
e
(
1
,
_
T
h
e
t
a
[
i
]
,
-
8
0
0
0
)
;

5
0
 
 
 
 
  

P
l
o
t
S
c
a
n
P
o
i
n
t
(
1
,
_
T
h
e
t
a
[
i
]
,
_
y
A
[
i
]
,
-
8
0
0
0
)
;

5
1
 
 
 
 
  

i
f
 
n
O
T
 
(
F
i
r
s
t
T
i
m
e
 
O
R
 
S
e
c
o
n
d
T
i
m
e
)
 
t
h
e
n
 
D
e
l
a
y
(
5
0
0
0
0
)
;

5
2
 
 
 
 
E
n
D
;
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5
3
 
 

 
 
i
f
 
S
e
c
o
n
d
T
i
m
e
 
t
h
e
n
 
W
r
i
t
e
P
C
X
(
I
m
p
l
i
c
i
t
F
i
l
e
n
a
m
e
(
‘
F
5
_
1
7
.
P
C
X
’
)
,
O
K
)
;

5
4
 
 
 
 
i
f
 
n
O
T
 
F
i
r
s
t
T
i
m
e
 
t
h
e
n
 
B
E
G
I
n

5
5
 
 
 
 
  

P
l
o
t
S
c
a
n
L
i
n
e
(
1
,
_
T
h
e
t
a
[
i
]
,
-
8
0
0
0
)
;

5
6
 
 
 
 
  

P
l
o
t
S
c
a
n
P
o
i
n
t
(
1
,
_
T
h
e
t
a
[
i
]
,
_
y
A
[
i
]
,
-
8
0
0
0
)
;

5
7
 
 
 
 
E
n
D
;

5
8
 
 

E
n
D
;

5
9
 
 

C
l
o
s
e
M
e
c
D
X
F
;
  {
.
.
M
e
c
O
u
t
 
b
e
c
o
m
e
s
 
F
A
L
S
E
}

6
0
 
 

i
f
 
F
i
r
s
t
T
i
m
e
 
t
h
e
n
 
B
E
G
I
n
 
{
p
l
o
t
 
t
h
e
 
g
r
a
p
h
 
y
A
(
T
h
e
t
a
)
.
.
}

6
1
 
 
 

S
e
t
D
i
g
i
t
s
D
i
v
s
(
5
)
;

6
2
 
 
 

S
e
t
D
i
v
L
i
n
e
(
2
,
1
,
1
.
0
)
;

6
3
 
 
 

S
e
t
V
i
e
w
P
o
r
t
(
x
1
L
,
y
1
L
,
x
2
L
,
y
2
L
,
  C
l
i
p
O
n
)
;

6
4
 
 
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
7
-
2
.
D
X
F
’
)
;
 

{
.
.
D
X
F
 
o
u
t
p
u
t
 
o
f
 
y
A
(
T
h
e
t
a
)
}

6
5
 
 
 
 

n
e
w
P
l
o
t
(
1
,
F
i
t
B
o
x
,
2
5
,
y
1
L
+
8
5
,
 
x
2
L
-
1
0
,
y
2
L
-
8
5
,
’
’
)
;

6
6
 
 
 
 

D
r
a
w
B
o
r
d
e
r
;
 

{
.
.
d
r
a
w
 
a
 
b
o
x
 
a
r
o
u
n
d
 
t
h
e
 
p
l
o
t
}

6
7
 
 
 
 

U
p
d
a
t
e
L
i
m
i
t
s
X
(
1
,
 
_
T
h
e
t
a
,
 
n
)
;

6
8
 
 
 
 

U
p
d
a
t
e
L
i
m
i
t
s
Y
(
1
,
 
_
y
A
,
 
n
)
;

6
9
 
 
 
 

R
e
s
i
z
e
Y
(
1
,
0
.
1
)
;
 
{
.
.
e
x
p
a
n
d
 
y
-
r
a
n
g
e
 
b
y
 
1
0
%
}

7
0
 
 
 
 

D
X
F
S
c
a
n
L
i
n
e
(
1
)
;

7
1
 
 
 
 

D
X
F
S
c
a
n
P
o
i
n
t
(
1
)
;

7
2
 
 
 
 

P
l
o
t
C
u
r
v
e
(
1
,
 
_
T
h
e
t
a
,
 
_
y
A
,
 
n
,
 
R
e
d
)
;
 

{
.
.
p
l
o
t
 
y
A
(
T
h
e
t
a
)
 
}

7
3
 
 
 
 

P
l
o
t
X
a
x
i
s
(
1
,
 
1
,
 
9
,
2
,
’
é
 

‘
)
;
 

{
.
.
h
o
r
i
z
o
n
t
a
l
 
a
x
i
s
}

7
4
 
 
 
 

P
l
o
t
Y
a
x
i
s
(
1
,
 
0
,
 
3
,
5
,
’
y
 

‘
)
;
 

{
.
.
v
e
r
t
i
c
a
l
 
a
x
i
s
 
 
}

7
5
 
 
 

C
l
o
s
e
M
e
c
D
X
F
;

7
6
 
 
 

E
n
D
;

7
7
 
 
 

i
f
 
F
i
r
s
t
T
i
m
e
 
t
h
e
n
 
S
e
c
o
n
d
T
i
m
e
:
=
T
R
U
E
 
e
l
s
e
 
S
e
c
o
n
d
T
i
m
e
:
=
F
A
L
S
E
;

7
8
 
 
 

F
i
r
s
t
T
i
m
e
:
=
F
A
L
S
E
;

7
9
 
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;
 

8
0
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
 
.
$
2
D
 
f
i
l
e
s
}

8
1
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
5
_
1
7
B
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

A
 
r
o
t
a
t
i
n
g
 
v
e
c
t
o
r
 
O
A
 
a
n
d
 
d
a
t
a
 
o
u
t
p
u
t
 
y
A
(
T
h
e
t
a
)

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 
{
R
e
d
}

6
 

 
L
i
b
I
n
O
u
t
,
 

{
I
s
K
e
y
P
r
e
s
s
e
d
}

7
 

 
L
i
b
G
r
a
p
h
,
 

{
O
b
j
2
S
c
r
}

8
 

 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
P
D
c
i
r
c
l
e
,
C
l
o
s
e
D
X
F
f
i
l
e
}

9
 

 
L
i
b
M
e
c
2
D
;
 

{
M
e
c
O
u
t
,
P
u
t
R
e
f
S
y
s
t
e
m
,
P
u
t
V
e
c
t
o
r
,
C
l
o
s
e
M
e
c
h
G
r
a
p
h
}

1
0
 

c
o
n
s
t
 
n
 
=
 
3
7
;
 

{
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
p
o
i
n
t
s
}

1
1
 

 
O
A
=
2
5
0
/
2
;
 

{
p
h
a
s
o
r
 
m
a
g
n
i
t
u
d
e
 
i
.
e
.
 
1
/
2
 
o
f
 
p
l
o
t
 
b
o
x
 
h
e
i
g
h
t
}

1
2
 

 
T
h
e
t
a
0
=
0
;
 

{
i
n
i
t
i
a
l
 
T
h
e
t
a
 

}
1
3
 

 
T
h
e
t
a
n
=
2
*
P
i
;
  {
f
i
n
a
l
 
T
h
e
t
a
 

}
1
4
 

v
a
r
 

F
D
:
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

i
:
I
n
t
e
g
e
r
;
 
T
h
e
t
a
,
x
A
,
y
A
:
d
o
u
b
l
e
;

1
5
 

B
E
G
I
n

1
6
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
5
_
1
7
B
.
D
X
F
’
)
;
 

{
.
.
D
X
F
 
f
i
l
e
 
f
o
r
 
M
3
D
 
a
n
i
m
a
t
i
o
n
}

1
7
 

A
s
s
i
g
n
(
F
D
,
’
F
5
_
1
7
B
.
D
2
D
’
)
;
 

R
e
w
r
i
t
e
(
F
D
)
;

1
8
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
2
*
O
A
,
2
*
O
A
,
 
-
2
*
O
A
,
2
*
O
A
)
;

1
9
 

i
:
=
0
;

2
0
 

r
e
p
e
a
t

2
1
 

i
f
 
(
i
 
>
 
n
)
 
t
h
e
n
 
B
E
G
I
n

2
2
 

i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

2
3
 

E
n
D
;

2
4
 

n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

2
5
 

T
h
e
t
a
:
=
T
h
e
t
a
0
+
(
T
h
e
t
a
n
-
T
h
e
t
a
0
)
/
n
*
i
;

2
6
 

x
A
:
=
O
A
*
c
o
s
(
T
h
e
t
a
)
;

2
7
 

y
A
:
=
O
A
*
s
i
n
(
T
h
e
t
a
)
;

2
8
 

g
S
h
a
p
e
(
M
y
S
t
(
O
A
,
7
)
,
W
h
i
t
e
,
 
0
,
0
)
;
 
{
.
.
d
r
a
w
 
c
i
r
c
l
e
 
o
f
 
r
a
d
i
u
s
 
O
A
 
a
t
 
(
0
,
0
)
}

2
9
 

P
u
t
V
e
c
t
o
r
(
R
e
d
,
’
-
’
,
 
0
,
0
,
 
x
A
,
y
A
,
 
1
,
 
‘
’
)
;

3
0
 

P
u
t
R
e
f
S
y
s
t
e
m
(
0
.
1
2
5
*
O
A
/
R
J
t
S
z
,
0
.
1
2
5
*
O
A
/
R
J
t
S
z
,
’
x
’
,
’
y
’
)
;

3
1
 

y
A
:
=
y
A
/
O
A
;
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3
2
 

i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
(
F
D
,
T
h
e
t
a
,
y
A
)
;

3
3
 

I
n
c
(
i
)
;

3
4
 

u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

3
5
 

C
l
o
s
e
(
F
D
)
;

3
6
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
{
.
.
d
o
 
n
o
t
 
r
e
t
a
i
n
.
$
2
D
 
f
i
l
e
s
 
}

3
7
 

E
n
D
.

**
*

1
 

p
r
o
g
r
a
m
 
P
6
_
0
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

K
i
n
e
m
a
t
i
c
 
s
i
m
u
l
a
t
i
o
n
 
o
f
 
t
h
e
 
n
e
e
d
l
e
 
d
r
i
v
e
 
o
f
 
a
 
s
e
w
i
n
g
 
m
a
c
h
i
n
e

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
B
r
o
w
n
,
G
r
e
e
n
,
R
e
d
,
M
a
g
e
n
t
a
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
R
R
R
,
R
R
_
T
,
R
R
T
_
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
S
e
t
J
o
i
n
t
S
i
z
e
,
O
f
f
s
e
t
,
L
o
c
u
s
,
L
e
f
t
,
R
i
g
h
t
,
}

1
2
 
 
 
 
 
 

{
N
e
w
F
r
a
m
e
,
P
u
t
G
P
o
i
n
t
,
P
u
t
P
o
i
n
t
,
L
a
b
e
l
J
o
i
n
t
,
C
l
o
s
e
M
e
c
G
r
a
p
h
,
}

1
3
 
 
 
 
 
 

{
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
,
X
m
i
n
W
S
,
X
m
a
x
W
S
,
Y
m
i
n
W
S
,
Y
m
a
x
W
S
}

1
4
 
c
o
n
s
t
 
D
X
F
n
a
m
e
 
=
 
‘
F
6
_
0
1
A
’
;
  {
e
i
t
h
e
r
 
‘
F
6
_
0
1
A
’
 
o
r
 
‘
F
6
_
0
1
B
’
}

1
5
 
 
 
 
 
n
P
o
z
 

=
 
7
2
;
 

{
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
}

1
6
 
v
a
r
 
i
:
I
n
t
e
g
e
r
;
  t
,
P
h
i
,
x
O
,
y
O
,
x
A
,
y
A
,
O
A
,
x
B
,
y
B
,
A
B
,
x
P
,
y
P
,
x
Q
,
y
Q
,
P
Q
,

1
7
 
 
 
 
x
_
C
,
y
_
C
,
x
C
,
y
C
,
x
D
,
y
D
,
C
D
,
x
E
,
y
E
,
D
E
,
x
_
F
,
y
_
F
,
x
F
,
y
F
:
d
o
u
b
l
e
;

1
8
 
B
E
G
I
n

1
9
 
 
I
n
i
t
D
X
F
f
i
l
e
(
D
X
F
n
a
m
e
+
’
.
D
X
F
’
)
;

2
0
 
 
O
A
:
=
1
5
;
 

A
B
:
=
4
3
;

2
1
 
 
C
D
:
=
2
3
;
 

D
E
:
=
2
5
;

2
2
 
 
x
O
:
=
0
;
 

y
O
:
=
0
;

2
3
 
 
x
P
:
=
3
;
 

y
P
:
=
-
6
3
.
0
;
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2
4
 
 
x
Q
:
=
3
;
 

y
Q
:
=
-
2
3
.
0
;

2
5
 
 
x
_
C
:
=
1
0
;
 
y
_
C
:
=
1
2
;

2
6
 
 
x
E
:
=
-
1
5
;
 
y
E
:
=
2
3
;

2
7
 
 
x
_
F
:
=
-
8
;
 
y
_
F
:
=
2
5
;

2
8
 
 
P
Q
:
=
A
b
s
(
y
P
-
y
Q
)
;

2
9
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
6
,
3
3
,
-
9
8
,
4
6
)
;

3
0
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
3
)
;

3
1
 
 
i
:
=
0
;

3
2
 
 
r
e
p
e
a
t

3
3
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
4
 
 
 
 
 
i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
5
 
 
 
E
n
D
;

3
6
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

3
7
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
8
 
 
 
P
h
i
:
=
2
*
P
i
*
t
;

3
9
 
 
 
g
C
r
a
n
k
(
G
r
e
e
n
,
x
O
,
y
O
,
P
h
i
,
_
,
_
,
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
0
 
 
 
i
f
 
(
P
o
s
(
‘
A
’
,
D
X
F
n
a
m
e
)
 
>
 
0
)
 
t
h
e
n
 
B
E
G
I
n
 

{
m
e
c
h
a
n
i
s
m
 
v
e
r
s
i
o
n
 
A
.
.
}

4
1
 
 
 
 
 
  R
R
_
T
(
R
e
d
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
P
,
y
P
,
0
,
0
,
0
,
0
,
 
0
.
5
*
P
i
,
0
,
0
,
 
A
B
,
0
,
P
Q

4
2
 
 
 
 
 
,
L
e
f
t
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
_
)
;

4
3
 
 
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
 
,
’
Q
 
 
‘
)
;

4
4
 
 
 
E
n
D
;

4
5
 
 
 
i
f
 
(
P
o
s
(
‘
B
’
,
D
X
F
n
a
m
e
)
 
>
 
0
)
 
t
h
e
n
 
B
E
G
I
n
 

{
m
e
c
h
a
n
i
s
m
 
v
e
r
s
i
o
n
 
B
.
.
}

4
6
 
 
 
 
 
R
R
T
_
(
R
e
d
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
P
,
y
P
,
0
,
0
,
0
,
0
,
 
x
Q
,
y
Q
,
0
,
0
,
0
,
0
,
 
A
B
,
0

4
7
 
 
 
 
 
,
L
e
f
t
 
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
_
)
;

4
8
 
 
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
 
,
’
Q
 

‘
)
;

4
9
 
 
 
E
n
D
;

5
0
 
 
 
  O
f
f
s
e
t
(
B
l
u
e
,
’
^
’
,
x
O
,
y
O
,
_
,
_
,
_
,
_
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
x
_
C
,
y
_
C
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
)
;

5
1
 
 
 
R
R
R
(
M
a
g
e
n
t
a
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
x
E
,
y
E
,
0
,
0
,
0
,
0

5
2
 
 
 
 
,
C
D
,
D
E
,
 
R
i
g
h
t
,
 
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
_
)
;

5
3
 
 
 
  O
f
f
s
e
t
(
B
r
o
w
n
,
’
/
’
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
x
_
F
,
y
_
F
,
 
x
F
,
y
F
,
_
,
_
,
_
,
_
)
;

5
4
 
 
 
L
o
c
u
s
(
C
y
a
n
,
 
x
F
,
y
F
,
’
F
’
)
;
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5
5
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
C
,
y
C
,
x
D
,
y
D
,
’
 D
’
)
;

5
6
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
O
,
y
O
,
’
O
  ‘
)
;

5
7
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
 
A
’
)
;

5
8
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
B
,
y
B
,
’
 
B
’
)
;

5
9
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
C
,
y
C
,
’
C
  ‘
)
;

6
0
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
E
,
y
E
,
’
E
  ‘
)
;

6
1
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
F
,
y
F
,
’
 
F
’
)
;

6
2
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
P
,
y
P
,
’
P
  ‘
)
;

6
3
 
 
 
I
n
c
(
i
)
;

6
4
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

6
5
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

6
6
 
 
W
r
i
t
e
L
n
(
X
m
i
n
W
S
:
6
:
3
,
’
 
<
 
x
 
<
 
‘
,
X
m
a
x
W
S
:
6
:
3
)
;
 
  {
r
e
p
o
r
t
 
w
o
r
k
s
p
a
c
e
 
l
i
m
i
t
s
 
.
.
}

6
7
 
 
W
r
i
t
e
(
Y
m
i
n
W
S
:
6
:
3
,
’
 
<
 
y
 
<
 
‘
,
Y
m
a
x
W
S
:
6
:
3
,
’
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

6
8
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
0
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  R
T
R
T
R
 
d
o
u
b
l
e
 
o
s
c
i
l
l
a
t
i
n
g
 
s
l
i
d
e
 
d
r
i
v
e
n
 
b
y
 
t
w
o
 
c
r
a
n
k
s
.
 
U
s
e
s
 
R
T
R
T
R
(
.
.
)

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
,
G
r
e
e
n
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
,
R
T
R
T
R
c
}

1
0
 
 
 
 
L
i
b
M
e
c
2
D
;
   {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
e
t
J
o
i
n
t
S
i
z
e
,
B
u
m
p
P
i
s
t
o
n
,
N
e
w
F
r
a
m
e
.
.
}

1
1
 
 
 
 
 
 
  

{
L
o
c
u
s
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
2
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
.
.
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
3
 
v
a
r
 
i
:
W
o
r
d
;
  L
f
t
R
g
t
:
s
h
o
r
t
i
n
t
;
 
t
,
x
O
1
,
y
O
1
,
O
1
A
,
x
A
,
y
A
,
A
0
A
,
A
0
Q
1
,
P
1
C
,

1
4
 
 
 
P
h
i
1
,
s
1
,
x
O
2
,
y
O
2
,
O
2
B
,
x
B
,
y
B
,
B
0
B
,
B
0
Q
2
,
P
2
C
,
P
h
i
2
,
s
2
,
x
C
,
y
C
:
d
o
u
b
l
e
;

1
5
 
B
E
G
I
n
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1
6
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
0
6
.
D
X
F
’
)
;

1
7
 
 
B
u
m
p
P
i
s
t
o
n
:
=
F
A
L
S
E
;
  {
T
R
U
E
 
c
o
n
s
t
r
a
i
n
s
 
p
i
s
t
o
n
s
 
i
n
s
i
d
e
 
c
y
l
i
n
d
e
r
s
}

1
8
 
 
L
f
t
R
g
t
:
=
-
1
;
 
{
o
r
i
e
n
t
a
t
i
o
n
 
o
f
 
t
h
e
 
A
0
-
C
-
B
0
 
l
o
o
p
 

}
1
9
 
 
x
O
1
 
:
=
-
0
.
4
;
 
y
O
1
:
=
0
;
 
{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
1
 

}
2
0
 
 
x
O
2
 
:
=
 
0
.
4
;
 
y
O
2
:
=
0
;
 
{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
2
 

}
2
1
 
 

O
1
A
 
:
=
 
0
.
1
2
;
 
{
l
e
n
g
t
h
 
o
f
 
c
r
a
n
k
 
1
 

}
2
2
 
 
O
2
B
 
:
=
 
0
.
1
0
;
 
{
l
e
n
g
t
h
 
o
f
 
c
r
a
n
k
 
2
 

}
2
3
 
 
A
0
A
 
:
=
 
0
.
0
5
;
 
{
e
c
c
e
n
t
r
i
c
i
t
y
 
o
f
 
c
y
l
i
n
d
e
r
 
1
 
}

2
4
 
 
B
0
B
 
:
=
-
0
.
0
5
;
 
{
e
c
c
e
n
t
r
i
c
i
t
y
 
o
f
 
c
y
l
i
n
d
e
r
 
2
 
}

2
5
 
 
A
0
Q
1
:
=
 
0
.
3
5
;
 
{
l
e
n
g
t
h
 
o
f
 
c
y
l
i
n
d
e
r
 
1
 

}
2
6
 
 
B
0
Q
2
:
=
 
0
.
3
5
;
 
{
l
e
n
g
t
h
 
o
f
 
c
y
l
i
n
d
e
r
 
2
 

}
2
7
 
 
P
1
C
 
:
=
 
0
.
4
0
;
 
{
l
e
n
g
t
h
 
o
f
 
p
i
s
t
o
n
 
1
 

}
2
8
 
 
P
2
C
 
:
=
 
0
.
4
5
;
 
{
l
e
n
g
t
h
 
o
f
 
p
i
s
t
o
n
 
2
 

}
2
9
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
5
,
0
.
5
,
 
-
0
.
2
5
,
1
.
0
)
;

3
0
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

3
1
 
 
i
:
=
0
;

3
2
 
 
r
e
p
e
a
t

3
3
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
4
 
 
 
 
 
i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;

3
5
 
 
 
E
n
D
;

3
6
 
 
 
n
e
w
F
r
a
m
e
(
3
0
0
0
)
;

3
7
 
 
 
t
:
=
i
/
n
P
o
z
;
 

{
t
 
=
 
t
i
m
e
}

3
8
 
 
 
P
h
i
1
:
=
 

P
i
/
3
*
s
i
n
(
2
*
P
i
*
t
)
;

3
9
 
 
 
P
h
i
2
:
=
P
i
 
+
 
P
i
/
3
*
s
i
n
(
2
*
P
i
*
t
)
;

4
0
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
1
,
y
O
1
,
 
P
h
i
1
,
_
,
_
,
 
O
1
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
1
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
2
,
y
O
2
,
 
P
h
i
2
,
_
,
_
,
 
O
2
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

4
2
 
 
 
s
1
:
=
0
.
6
5
 
+
 
0
.
1
5
*
c
o
s
(
2
*
P
i
*
t
)
;

4
3
 
 
 
s
2
:
=
0
.
6
0
 
+
 
0
.
1
2
*
c
o
s
(
4
*
P
i
*
t
)
;

4
4
 
 
 
R
T
R
T
R
c
(
W
h
i
t
e
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
A
0
A
,
A
0
Q
1
,
P
1
C

4
5
 
 
 
,
B
0
B
,
B
0
Q
2
,
P
2
C
,
 
s
1
,
_
,
_
,
 
s
2
,
_
,
_
,
 
L
f
t
R
g
t
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
_
)
;

4
6
 
 
 
L
o
c
u
s
(
G
r
e
e
n
,
 
x
C
,
y
C
,
 
‘
C
’
)
;
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4
7
 
 
 
I
n
c
(
i
)
;

4
8
 
 
u
n
t
i
l
 
(
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
9
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
 
{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
0
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
1
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

R
T
R
T
R
 
a
c
t
u
a
t
o
r
 
d
r
i
v
e
n
 
b
y
 
t
w
o
 
c
r
a
n
k
s
 
w
i
t
h
 
A
S
C
I
I
 
o
u
t
p
u
t
.

4
 

U
s
e
s
 
b
o
t
h
 
t
h
e
 
R
T
R
T
R
 
a
n
d
 
R
T
R
T
R
c
 
s
u
b
r
o
u
t
i
n
e
s
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
W
h
i
t
e
,
G
r
e
e
n
,
L
i
g
h
t
B
l
u
e
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
M
y
S
t
,
M
y
S
t
r
}

9
 

 
 
 
L
i
b
G
e
2
D
,
 
{
D
i
s
t
2
P
_
2
D
}

1
0
 
 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
S
e
t
D
X
F
l
a
y
e
r
}

1
1
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
,
R
T
R
T
R
,
R
T
R
T
R
c
}

1
2
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
N
e
w
A
n
i
m
F
r
a
m
e
,
S
e
t
J
o
i
n
t
S
i
z
e
,
B
u
m
p
P
i
s
t
o
n
,
A
n
g
3
P
V
A
,
}

1
3
 
 
 
 
 

{
O
p
e
n
M
e
c
G
r
a
p
h
,
M
e
c
O
u
t
p
,
P
u
t
P
o
i
n
t
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
4
 
c
o
n
s
t
 
F
n
a
m
e
 
=
’
P
6
_
1
1
A
’
;
 
{
‘
P
6
_
1
1
A
’
 
f
o
r
 
(
a
)
;
 
‘
P
6
_
1
1
B
’
f
o
r
 
(
b
)
 
-
 
f
i
l
e
 
n
a
m
e
 
 
 
}

1
5
 
 
 
 
  D
P
h
i
 
=
 
P
i
/
3
;
 

{
P
i
/
3
 
f
o
r
 
(
a
)
;
 
P
i
 
 
 
f
o
r
 
(
b
)
 
-
 
r
o
c
k
e
r
 
a
m
p
l
i
t
u
d
e
 

}
1
6
 
 
 
 
  O
1
A
 

=
 
0
.
1
2
;
 

{
0
.
1
2
 
f
o
r
 
(
a
)
;
 
0
.
4
5
 
f
o
r
 
(
b
)
 
-
 
l
e
n
g
t
h
 
o
f
 
c
r
a
n
k
 
1
 

}
1
7
 
 
 
 
  O
2
B
 

=
 
0
.
1
0
;
 

{
0
.
1
0
 
f
o
r
 
(
a
)
;
 
0
.
3
5
 
f
o
r
 
(
b
)
 
-
 
l
e
n
g
t
h
 
o
f
 
c
r
a
n
k
 
2
 

}
1
8
 
 
 
 
  n
P
o
z
 
=
 
1
2
0
;
 

{
 
1
2
0
 
f
o
r
 
(
a
)
;
 
6
0
0
 
 
f
o
r
 
(
b
)
 
-
 
p
o
s
i
t
i
o
n
s
 
f
o
r
 
0
<
t
<
1
}

1
9
 
v
a
r
 
F
T
:
t
e
x
t
;
 

i
:
W
o
r
d
;
 

L
f
t
R
g
t
:
s
h
o
r
t
i
n
t
;
 
t
,
x
O
1
,
y
O
1
,
x
A
,
y
A
,
x
O
2
,
y
O
2
,

2
0
 
x
B
,
y
B
,
x
C
,
y
C
,
A
0
A
,
A
0
Q
1
,
P
1
C
,
B
0
B
,
B
0
Q
2
,
P
2
C
,
D
e
l
t
a
,
D
e
l
t
a
v
,
A
C
B
,
k
A
C
B
:
d
o
u
b
l
e
;

2
1
 
f
u
n
c
t
i
o
n
 
P
h
i
1
(
t
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;
 
B
E
G
I
n

2
2
 
 
P
h
i
1
:
=
D
P
h
i
*
s
i
n
(
2
*
P
i
*
t
)
;

2
3
 
E
n
D
;

2
4
 
f
u
n
c
t
i
o
n
 
P
h
i
2
(
t
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;
 
B
E
G
I
n

2
5
 
 
P
h
i
2
:
=
P
i
 
+
 
D
P
h
i
*
s
i
n
(
2
*
P
i
*
t
)
;

2
6
 
E
n
D
;
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2
7
 
f
u
n
c
t
i
o
n
 
s
1
(
t
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;
 
B
E
G
I
n

2
8
 
 
s
1
:
=
0
.
6
5
 
+
 
0
.
1
5
*
c
o
s
(
2
*
P
i
*
t
)
;

2
9
 
E
n
D
;

3
0
 
f
u
n
c
t
i
o
n
 
s
2
(
t
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;
 
B
E
G
I
n

3
1
 
 
s
2
:
=
0
.
6
0
 
+
 
0
.
1
2
*
c
o
s
(
4
*
P
i
*
t
)
;

3
2
 
E
n
D
;

3
3
 
B
E
G
I
n

3
4
 
 
I
n
i
t
D
X
F
f
i
l
e
(
F
n
a
m
e
+
’
.
D
X
F
’
)
;
 

{
D
X
F
 
f
i
l
e
 
f
o
r
 
M
3
D
 
a
n
i
m
a
t
i
o
n
}

3
5
 
 
A
s
s
i
g
n
(
F
T
,
F
n
a
m
e
+
’
.
T
X
T
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

3
6
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 
t
 

D
e
l
t
a
 

D
e
l
t
a
v
 
(
A
C
+
B
C
)
/
A
B
 

<
A
C
B
’
)
;

3
7
 
 
B
u
m
p
P
i
s
t
o
n
:
=
F
A
L
S
E
;
 

{
T
R
U
E
 
-
>
 
c
o
n
s
t
r
a
i
n
s
 
p
i
s
t
o
n
s
 
i
n
s
i
d
e
 
c
y
l
i
n
d
e
r
s
}

3
8
 
 
L
f
t
R
g
t
:
=
-
1
;
 
 

{
o
r
i
e
n
t
a
t
i
o
n
 
o
f
 
A
0
-
C
-
B
0
 
l
o
o
p
 
}

3
9
 
 
x
O
1
 
:
=
-
0
.
4
;
 
y
O
1
:
=
0
;
 
{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
1
 

}
4
0
 
 
x
O
2
 
:
=
 
0
.
4
;
 
y
O
2
:
=
0
;
 
{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
2
 

}
4
1
 
 
A
0
A
 
:
=
 
0
.
0
5
;
  

{
e
c
c
e
n
t
r
i
c
i
t
y
 
o
f
 
c
y
l
i
n
d
e
r
 
1
 

}
4
2
 
 
B
0
B
 
:
=
-
0
.
0
5
;
  

{
e
c
c
e
n
t
r
i
c
i
t
y
 
o
f
 
c
y
l
i
n
d
e
r
 
2
 

}
4
3
 
 
S
i
z
e
L
i
n
M
o
t
o
r
(
_
,
A
0
Q
1
,
P
1
C
)
;
 
{
.
.
m
a
k
e
s
 
A
0
Q
1
=
-
I
n
f
D
 
&
 
P
1
C
=
I
n
f
D
}

4
4
 
 
S
i
z
e
L
i
n
M
o
t
o
r
(
_
,
B
0
Q
2
,
P
2
C
)
;
 
{
.
.
m
a
k
e
s
 
B
0
Q
2
=
-
I
n
f
D
 
&
 
P
2
C
=
I
n
f
D
}

4
5
 
 
f
o
r
 
i
:
=
0
 
t
o
 
n
P
o
z
 
d
o
 
B
E
G
I
n
 
{
g
e
n
e
r
a
t
e
 
a
 
f
u
l
l
 
s
e
t
 
o
f
 
s
1
 
a
n
d
 
s
2
.
.
}

4
6
 
 
 
t
:
=
i
/
n
P
o
z
;
 
{
t
 
=
 
t
i
m
e
}

4
7
 
 
 
S
i
z
e
L
i
n
M
o
t
o
r
(
s
1
(
t
)
,
A
0
Q
1
,
P
1
C
)
;
 
{
.
.
u
p
d
a
t
e
 
A
0
Q
1
,
P
1
C
}

4
8
 
 
 
S
i
z
e
L
i
n
M
o
t
o
r
(
s
2
(
t
)
,
B
0
Q
2
,
P
2
C
)
;
 
{
.
.
u
p
d
a
t
e
 
B
0
Q
2
,
P
2
C
}

4
9
 
 
E
n
D
;

5
0
 
 
D
e
l
t
a
:
=
0
;
 
D
e
l
t
a
v
:
=
0
;
 
{
D
e
l
t
a
’
s
 
m
a
y
 
a
c
c
i
d
e
n
t
a
l
l
y
 
b
e
c
o
m
e
 
I
n
f
D
}

5
1
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
8
5
,
0
.
8
,
 
-
0
.
8
3
,
0
.
7
5
)
;

5
2
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

5
3
 
 
i
:
=
0
;

5
4
 
 
R
e
p
e
a
t

5
5
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

5
6
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

5
7
 
 
 
E
n
D
;
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5
8
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

5
9
 
 
 
t
:
=
i
/
n
P
o
z
;
 

{
t
 
=
 
t
i
m
e
}

6
0
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
1
,
y
O
1
,
P
h
i
1
(
t
)
,
_
,
_
,
 
O
1
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

6
1
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
2
,
y
O
2
,
P
h
i
2
(
t
)
,
_
,
_
,
 
O
2
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

6
2
 
 
 
R
T
R
T
R
c
(
W
h
i
t
e
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
A
0
A
,
A
0
Q
1
,
P
1
C

6
3
 
 
 
,
B
0
B
,
B
0
Q
2
,
P
2
C
,
s
1
(
t
)
,
_
,
_
,
s
2
(
t
)
,
_
,
_
,
L
f
t
R
g
t
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
D
e
l
t
a
)
;

6
4
 
 
 
R
T
R
T
R
(
W
h
i
t
e
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
A
0
A
,
A
0
Q
1
,
P
1
C

6
5
 
 
 
,
B
0
B
,
B
0
Q
2
,
P
2
C
,
s
1
(
t
)
,
_
,
_
,
s
2
(
t
)
,
_
,
_
,
L
f
t
R
g
t
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
D
e
l
t
a
v
)
;

6
6
 
 
 
A
C
B
:
=
0
.
0
;

6
7
 
 
 
A
n
g
3
P
V
A
(
x
A
,
y
A
,
_
,
_
,
_
,
_
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
A
C
B
,
_
,
_
)
;

6
8
 
 
 
k
A
C
B
:
=
D
i
s
t
2
P
t
s
2
D
(
x
A
,
y
A
,
x
C
,
y
C
)
+
D
i
s
t
2
P
t
s
2
D
(
x
B
,
y
B
,
x
C
,
y
C
)
;

6
9
 
 
 
k
A
C
B
:
=
k
A
C
B
/
D
i
s
t
2
P
t
s
2
D
(
x
A
,
y
A
,
x
B
,
y
B
)
;

7
0
 
 
 
i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
L
n
(
F
T
,
t
:
8
:
6
,
’
 
‘
,
D
e
l
t
a
:
8
:
6

7
1
 
 
 
 
,
’
 
‘
,
D
e
l
t
a
v
:
8
:
6
,
’
 
‘
,
k
A
C
B
:
8
:
6
,
’
 
‘
,
A
C
B
*
D
E
G
:
7
:
4
)
;

7
2
 
 
 
I
n
c
(
i
)
;

7
3
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

7
4
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

7
5
 
 
C
l
o
s
e
(
F
T
)
;

7
6
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
1
7
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
n
 
R
R
T
_
 
d
y
a
d
i
c
 
i
s
o
m
e
r
 
d
r
i
v
e
n
 
b
y
 
t
w
o
 
c
r
a
n
k
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
m
a
t
h
,
 

{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 

{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 

{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 

{
R
R
T
_
}
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1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 

{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
e
t
J
o
i
n
t
S
i
z
e
}

1
2
 
 
 
 
  

{
M
e
c
O
u
t
,
P
u
t
G
P
o
i
n
t
,
P
u
t
P
o
i
n
t
,
C
l
o
s
e
M
e
c
D
X
F
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 

{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
 
i
:
W
o
r
d
;
 
 
 
P
l
s
M
n
s
:
s
h
o
r
t
i
n
t
;
 
 
t
,
x
O
1
,
y
O
1
,
x
O
2
,
y
O
2
,
P
h
i
1
,
P
h
i
2
,

1
5
 
 
 
 
O
1
A
,
O
2
P
,
x
A
,
y
A
,
x
B
,
y
B
,
x
P
,
y
P
,
x
Q
,
y
Q
,
A
C
,
B
C
,
B
Q
,
x
C
,
y
C
:
d
o
u
b
l
e
;

1
6
 
B
E
G
I
n

1
7
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
1
7
.
D
X
F
’
)
;

1
8
 
 
P
l
s
M
n
s
:
=
-
1
;
 
 

{
o
r
i
e
n
t
a
t
i
o
n
 
o
f
 
t
h
e
 
R
R
T
 
d
y
a
d
 
}

1
9
 
 
x
O
1
:
=
-
0
.
5
0
;
 
y
O
1
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
#
1
 

}
2
0
 
 
x
O
2
:
=
 
0
.
3
5
;
 
y
O
2
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
#
2
 

}
2
1
 
 
O
1
A
:
=
 
0
.
1
5
;
 
O
2
P
:
=
 
0
.
1
5
;
 
{
l
e
n
g
t
h
s
 
o
f
 
c
r
a
n
k
s
 
#
1
 
a
n
d
 
#
2
 
}

2
2
 
 
A
C
 
:
=
 
0
.
5
5
;
 
 

{
l
e
n
g
t
h
 
o
f
 
c
o
n
n
e
c
t
i
n
g
 
r
o
d
 

}
2
3
 
 
B
C
 
:
=
 
0
.
1
0
;
 
 

{
s
l
i
d
i
n
g
 
r
o
d
 
o
f
f
s
e
t
 

}
2
4
 
 
B
Q
 
:
=
 
0
.
6
5
;
 
 

{
s
l
i
d
i
n
g
 
r
o
d
 
l
e
n
g
t
h
 

}
2
5
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
8
,
1
.
1
,
 
-
0
.
2
,
0
.
4
)
;

2
6
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
7
 
 
i
:
=
0
;

2
8
 
 
r
e
p
e
a
t

2
9
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
0
 
 
 
 
  i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;

3
1
 
 
 
E
n
D
;

3
2
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
3
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
4
 
 
 
P
h
i
1
:
=
2
*
P
i
*
t
;

3
5
 
 
 
P
h
i
2
:
=
P
i
/
2
+
P
i
/
9
*
s
i
n
(
2
*
P
i
*
t
)
;

3
6
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
1
,
y
O
1
,
P
h
i
1
,
_
,
_
,
O
1
A
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
2
,
y
O
2
,
P
h
i
2
,
_
,
_
,
O
2
P
,
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

3
8
 
 
 
R
R
_
T
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
P
h
i
2
+
P
i
/
2
,
_
,
_
,
A
C
,
B
C
,
B
Q

3
9
 
 
 
,
P
l
s
M
n
s
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
_
)
;

4
0
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
1
,
y
O
1
 
,
’
O
_
1
 
 
 
‘
)
;

4
1
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
2
,
y
O
2
 
,
’
 
 
 
O
_
2
’
)
;
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4
2
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
A
 
 
‘
)
;

4
3
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
,
y
P
 
,
’
P
’
)
;

4
4
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
B
 
‘
)
;

4
5
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
C
,
y
C
 
,
’
 
 
C
’
)
;

4
6
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
 
,
’
 
Q
’
)
;

4
7
 
 
 
L
o
c
u
s
(
M
a
g
e
n
t
a
,
x
Q
,
y
Q
,
’
Q
’
)
;

4
8
 
 
 
I
n
c
(
i
)
;

4
9
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
0
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
1
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
2
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
n
 
R
T
R
 
d
y
a
d
 
d
r
i
v
e
n
 
b
y
 
a
 
c
r
a
n
k
 
a
n
d
 
a
 
r
o
c
k
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
M
a
g
e
n
t
a
,
R
e
d
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
R
T
_
R
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
}

1
2
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
3
 
v
a
r
 
 
i
:
W
o
r
d
;
 

t
,
x
O
1
,
y
O
1
,
P
h
i
1
,
O
1
A
,
x
A
,
y
A
,
x
O
2
,
y
O
2
,

1
4
 
 
 
 
P
h
i
2
,
O
2
B
,
x
B
,
y
B
,
x
P
,
y
P
,
x
C
,
y
C
,
x
Q
,
y
Q
,
A
C
,
B
P
,
P
Q
:
d
o
u
b
l
e
;

1
5
 
B
E
G
I
n

1
6
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
2
1
.
D
X
F
’
)
;

1
7
 
 
x
O
1
:
=
-
0
.
3
0
;
 
y
O
1
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
#
1
 
}

1
8
 
 
x
O
2
:
=
 
0
.
3
5
;
 
y
O
2
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
#
2
 
}

1
9
 
 
O
1
A
:
=
 
0
.
1
0
;
 
O
2
B
:
=
0
.
2
0
;
 
{
l
e
n
g
t
h
 
o
f
 
c
r
a
n
k
 
#
1
 
a
n
d
 
#
2
  }
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2
0
 
 
A
C
 
:
=
 
0
.
2
5
;
 
 

{
l
e
n
g
t
h
 
o
f
 
s
l
i
d
e
r
 
o
f
f
s
e
t
 

}
2
1
 
 
B
P
 
:
=
 
0
.
1
5
;
 
 

{
s
l
i
d
i
n
g
 
r
o
d
 
o
f
f
s
e
t
 

}
2
2
 
 
P
Q
 
:
=
 
1
.
0
0
;
 
 

{
s
l
i
d
i
n
g
 
r
o
d
 
l
e
n
g
t
h
 

}
2
3
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
9
,
0
.
6
,
 
-
0
.
2
,
 
0
.
4
)
;

2
4
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
5
 
 
i
:
=
0
;

2
6
 
 
r
e
p
e
a
t

2
7
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
8
 
 
 
 
  i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;

2
9
 
 
 
E
n
D
;

3
0
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
1
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
2
 
 
 
P
h
i
1
:
=
2
*
P
i
*
t
*
t
*
t
;

3
3
 
 
 
P
h
i
2
:
=
P
i
/
2
 
+
 
P
i
/
3
*
c
o
s
(
2
*
P
i
*
t
)
;

3
4
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
O
1
,
y
O
1
,
 
P
h
i
1
,
_
,
_
,
 
O
1
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
5
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
O
2
,
y
O
2
,
 
P
h
i
2
,
_
,
_
,
 
O
2
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

3
6
 
 
 
R
T
_
R
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
A
C
,
B
P
,
P
Q
,

3
7
 
 
 
x
P
,
y
P
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
_
)
;

3
8
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
1
,
y
O
1
 
,
’
O
1
 
‘
)
;

3
9
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
2
,
y
O
2
 
,
’
 

O
2
’
)
;

4
0
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
 

A
’
)
;

4
1
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
,
y
P
 
,
’
  P
’
)
;

4
2
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
 
B
’
)
;

4
3
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
C
,
y
C
 
,
’
C
’
)
;

4
4
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
 
,
’
Q
 
‘
)
;

4
5
 
 
 
L
o
c
u
s
(
M
a
g
e
n
t
a
,
x
Q
,
y
Q
,
’
Q
’
)
;

4
6
 
 
 
I
n
c
(
i
)
;

4
7
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
8
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

4
9
 
E
n
D
.



Appendix�b:�Selected�Source�code    ◾    503

1
 

p
r
o
g
r
a
m
 
P
6
_
2
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
 
T
_
R
_
T
 
d
y
a
d
i
c
 
i
s
o
m
e
r
 
d
r
i
v
e
n
 
b
y
 
t
w
o
 
r
o
c
k
e
r
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
T
_
R
_
T
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
}

1
2
 
 
 
 
  

{
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
i
:
W
o
r
d
;
 

O
K
:
B
o
o
l
e
a
n
;
 
t
,
T
h
e
t
a
1
,
T
h
e
t
a
2
,
x
O
1
,
y
O
1
,
O
1
A
,

1
5
 
 
 
 
x
O
2
,
y
O
2
,
O
2
B
,
x
A
,
y
A
,
x
B
,
y
B
,
x
C
,
y
C
,
P
1
Q
1
,
Q
1
C
,
P
2
Q
2
,
Q
2
C
,

1
6
 
 
 
 
x
P
1
,
y
P
1
,
x
Q
1
,
y
Q
1
,
x
P
2
,
y
P
2
,
x
Q
2
,
y
Q
2
:
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
2
4
.
D
X
F
’
)
;

1
9
 
 
x
O
1
 
:
=
-
0
.
2
0
;
 
y
O
1
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
1
 

}
2
0
 
 
x
O
2
 
:
=
 
0
.
1
5
;
 
y
O
2
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
2
 

}
2
1
 
 
O
1
A
 
:
=
 
0
.
2
0
;
 
O
2
B
:
=
 
0
.
2
0
;
 
{
l
e
n
g
t
h
s
 
o
f
 
r
o
c
k
e
r
 
#
1
 
a
n
d
 
#
2
}

2
2
 
 
P
1
Q
1
:
=
 
0
.
5
0
;

2
3
 
 
Q
1
C
 
:
=
 
0
.
1
0
;

2
4
 
 
P
2
Q
2
:
=
 
0
.
5
0
;

2
5
 
 
Q
2
C
 
:
=
 
0
.
1
5
;

2
6
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
6
,
0
.
6
,
 
-
0
.
2
,
0
.
5
)
;

2
7
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
8
 
 
i
:
=
0
;
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2
9
 
 
r
e
p
e
a
t

3
0
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
1
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
2
 
 
 
E
n
D
;

3
3
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
4
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
5
 
 
 
T
h
e
t
a
1
:
=
3
*
P
i
/
4
 
+
 
P
i
/
8
*
s
i
n
(
2
*
P
i
*
t
)
;

3
6
 
 
 
T
h
e
t
a
2
:
=
 
P
i
/
4
 
+
 
P
i
/
9
*
s
i
n
(
3
*
P
i
*
t
)
;

3
7
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
1
,
y
O
1
,
T
h
e
t
a
1
,
_
,
_
,
 
O
1
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
8
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
2
,
y
O
2
,
T
h
e
t
a
2
,
_
,
_
,
 
O
2
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

3
9
 
 
 
T
_
R
_
T
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
T
h
e
t
a
1
-
P
i
/
2
,
_
,
_

4
0
 
 
 
,
T
h
e
t
a
2
+
P
i
/
2
,
_
,
_
,
P
1
Q
1
,
Q
1
C
,
P
2
Q
2
,
Q
2
C
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
x
P
1
,
y
P
1
,
_
,
_
,
_
,
_

4
1
 
 
 
,
x
Q
1
,
y
Q
1
,
_
,
_
,
_
,
_
,
 
x
P
2
,
y
P
2
,
_
,
_
,
_
,
_
,
 
x
Q
2
,
y
Q
2
,
_
,
_
,
_
,
_
,
 
O
K
)
;

4
2
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
1
,
y
O
1
 
,
’
O
1
 
‘
)
;

4
3
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
2
,
y
O
2
 
,
’
 

O
2
’
)
;

4
4
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
A
’
)
;

4
5
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
B
’
)
;

4
6
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
Q
1
+
x
Q
2
)
,
0
.
5
*
(
y
Q
1
+
y
Q
2
)
,
x
C
,
y
C
,
’
  C
’
)
;

4
7
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
P
1
,
y
P
1
,
x
Q
1
,
y
Q
1
,
’
 
Q
1
’
)
;

4
8
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
Q
1
,
y
Q
1
,
x
P
1
,
y
P
1
,
’
 
P
1
’
)
;

4
9
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
P
2
,
y
P
2
,
x
Q
2
,
y
Q
2
,
’
 
Q
2
’
)
;

5
0
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
Q
2
,
y
Q
2
,
x
P
2
,
y
P
2
,
’
 
P
2
’
)
;

5
1
 
 
 
L
o
c
u
s
(
M
a
g
e
n
t
a
,
x
C
,
y
C
,
’
C
’
)
;

5
2
 
 
 
I
n
c
(
i
)
;

5
3
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
4
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
5
 
E
n
D
.



Appendix�b:�Selected�Source�code    ◾    505

1
 

p
r
o
g
r
a
m
 
P
6
_
2
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
n
 
_
T
R
T
_
 
d
y
a
d
i
c
 
i
s
o
m
e
r
 
d
r
i
v
e
n
 
b
y
 
t
w
o
 
r
o
c
k
e
r
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
M
a
g
e
n
t
a
,
R
e
d
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
_
T
R
T
_
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
}

1
2
 
 
 
 
  

{
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
 
i
:
 
W
o
r
d
;
 
O
K
:
 
B
o
o
l
e
a
n
;

1
5
 
 
 
 
t
,
 
T
h
e
t
a
1
,
 
T
h
e
t
a
2
,
 
P
1
Q
1
,
 
P
2
Q
2
,
 
x
P
1
,
y
P
1
,
 
x
Q
1
,
y
Q
1
,
 
x
P
2
,
y
P
2
,

1
6
 
 
 
 
x
Q
2
,
y
Q
2
,
 
x
A
,
y
A
,
 
x
B
,
y
B
,
 
x
C
,
y
C
,
 
A
C
,
B
C
:
 
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
2
6
.
D
X
F
’
)
;

1
9
 
 
x
P
1
 
:
=
-
0
.
2
0
;
 
y
P
1
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
1
 

}
2
0
 
 
x
P
2
 
:
=
 
0
.
2
0
;
 
y
P
2
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
2
 

}
2
1
 
 
P
1
Q
1
:
=
 
1
.
1
5
;
 
P
2
Q
2
:
=
1
.
1
5
;
  {
l
e
n
g
t
h
s
 
o
f
 
r
o
c
k
e
r
 
#
1
 
a
n
d
 
#
2
 
}

2
2
 
 
A
C
 
:
=
 
0
.
6
5
;

2
3
 
 
B
C
 
:
=
 
0
.
7
0
;

2
4
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
5
0
,
1
.
5
0
,
 
-
0
.
0
5
,
 
1
.
4
)
;

2
5
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
6
 
 
i
:
=
0
;

2
7
 
 
r
e
p
e
a
t

2
8
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
9
 
 
 
 
  i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;

3
0
 
 
 
E
n
D
;



506    ◾    Appendix�b:�Selected�Source�code

3
1
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
2
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
3
 
 
 
T
h
e
t
a
1
:
=
3
*
P
i
/
4
 
+
 
P
i
/
8
*
s
i
n
(
2
*
P
i
*
t
)
;

3
4
 
 
 
T
h
e
t
a
2
:
=
 
 
P
i
/
4
 
+
 
P
i
/
9
*
s
i
n
(
3
*
P
i
*
t
)
;

3
5
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
P
1
,
y
P
1
,
 
T
h
e
t
a
1
,
_
,
_
,
 
P
1
Q
1
,
 
x
Q
1
,
y
Q
1
,
_
,
_
,
_
,
_
)
;

3
6
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
P
2
,
y
P
2
,
 
T
h
e
t
a
2
,
_
,
_
,
 
P
2
Q
2
,
 
x
Q
2
,
y
Q
2
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
_
T
R
T
_
(
C
y
a
n
,
 
x
P
1
,
y
P
1
,
0
,
0
,
0
,
0
,
 
x
Q
1
,
y
Q
1
,
_
,
_
,
_
,
_
,
x
P
2
,
y
P
2
,
0
,
0
,
0
,
0
,
x
Q
2
,
y
Q
2

3
8
 
 
 
,
_
,
_
,
_
,
_
,
 
A
C
,
B
C
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
O
K
)
;

3
9
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
1
,
y
P
1
 
,
’
P
1
 
 
‘
)
;

4
0
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
2
,
y
P
2
 
,
’
 
 
 
P
2
’
)
;

4
1
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
A
’
)
;

4
2
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
B
’
)
;

4
3
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
P
1
,
y
P
1
,
x
Q
1
,
y
Q
1
,
’
 
Q
1
’
)
;

4
4
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
P
2
,
y
P
2
,
x
Q
2
,
y
Q
2
,
’
 
Q
2
’
)
;

4
5
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
A
+
x
B
)
,
0
.
5
*
(
y
A
+
y
B
)
,
x
C
,
y
C
,
’
 
 
 
 
C
’
)
;

4
6
 
 
 
L
o
c
u
s
(
W
h
i
t
e
,
x
C
,
y
C
,
’
C
’
)
;

4
7
 
 
 
I
n
c
(
i
)
;

4
8
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
9
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
0
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
2
8
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
 
T
_
R
T
_
 
d
y
a
d
i
c
 
i
s
o
m
e
r
 
d
r
i
v
e
n
 
b
y
 
t
w
o
 
r
o
c
k
e
r
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
M
a
g
e
n
t
a
,
R
e
d
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}
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1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
T
_
R
T
_
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
}

1
2
 
 
 
 
  

{
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
i
:
 
W
o
r
d
;
 

O
K
:
 
B
o
o
l
e
a
n
;

1
5
 
 
 
x
O
1
,
y
O
1
,
O
1
A
,
T
h
e
t
a
1
,
x
A
,
y
A
,
 
T
h
e
t
a
2
,
 
P
1
Q
1
,
Q
1
C
,
P
2
Q
2
,
 
x
P
1
,
y
P
1
,

1
6
 
 
 
x
Q
1
,
y
Q
1
,
 
x
P
2
,
y
P
2
,
 
x
Q
2
,
y
Q
2
,
 
B
C
,
 
x
B
,
y
B
,
 
x
C
,
y
C
,
 
t
:
 
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
2
8
.
D
X
F
’
)
;

1
9
 
 
x
O
1
 
:
=
-
0
.
0
5
;
 
y
O
1
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
1
 

}
2
0
 
 
x
P
2
 
:
=
 
0
.
0
5
;
 
y
P
2
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
2
 

}
2
1
 
 
O
1
A
 
:
=
 
0
.
1
0
;
 
P
2
Q
2
:
=
 
0
.
7
3
;
 
{
l
e
n
g
t
h
s
 
o
f
 
r
o
c
k
e
r
 
#
1
 
a
n
d
 
#
2
  }

2
2
 
 
P
1
Q
1
:
=
 
0
.
7
8
;

2
3
 
 
Q
1
C
 
:
=
 
0
.
3
5
;

2
4
 
 
B
C
 
 
:
=
 
0
.
3
0
;

2
5
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
2
6
,
0
.
8
0
,
 
-
0
.
5
7
,
0
.
7
2
)
;

2
6
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
7
 
 
i
:
=
0
;

2
8
 
 
r
e
p
e
a
t

2
9
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
0
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
1
 
 
 
E
n
D
;

3
2
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
3
 
 
 
t
:
=
i
/
n
P
o
z
;
 

{
t
 
=
 
t
i
m
e
}

3
4
 
 
 
T
h
e
t
a
1
:
=
P
i
 

+
P
i
/
8
*
s
i
n
(
2
*
P
i
*
t
)
;

3
5
 
 
 
T
h
e
t
a
2
:
=
P
i
/
1
6
+
P
i
/
9
*
s
i
n
(
3
*
P
i
*
t
)
;

3
6
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
O
1
,
y
O
1
,
 
T
h
e
t
a
1
,
_
,
_
,
 
O
1
A
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
P
2
,
y
P
2
,
 
T
h
e
t
a
2
,
_
,
_
,
 
P
2
Q
2
,
 
x
Q
2
,
y
Q
2
,
_
,
_
,
_
,
_
)
;

3
8
 
 
 
T
_
R
T
_
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
T
h
e
t
a
1
-
P
i
/
2
,
_
,
_
,
 
x
P
2
,
y
P
2
,
0
,
0
,
0
,
0
,

3
9
 
 
 
x
Q
2
,
y
Q
2
,
_
,
_
,
_
,
_
,
 
P
1
Q
1
,
Q
1
C
,
B
C
,
 
x
P
1
,
y
P
1
,
_
,
_
,
_
,
_
,

4
0
 
 
 
x
Q
1
,
y
Q
1
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
O
K
)
;
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4
1
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
1
,
y
O
1
 
,
’
O
1
 
‘
)
;

4
2
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
2
,
y
P
2
 
,
’
 

P
2
’
)
;

4
3
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
A
’
)
;

4
4
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
B
’
)
;

4
5
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
P
1
,
y
P
1
,
x
Q
1
,
y
Q
1
,
’
 
Q
1
’
)
;

4
6
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
Q
1
,
y
Q
1
,
x
P
1
,
y
P
1
,
’
 
P
1
’
)
;

4
7
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
P
2
,
y
P
2
,
x
Q
2
,
y
Q
2
,
’
 
Q
2
’
)
;

4
8
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
A
+
x
B
)
,
0
.
5
*
(
y
A
+
y
B
)
,
x
C
,
y
C
,
’
 

C
’
)
;

4
9
 
 
 
L
o
c
u
s
(
W
h
i
t
e
,
x
C
,
y
C
,
’
C
’
)
;

5
0
 
 
 
I
n
c
(
i
)
;

5
1
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
2
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
3
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
3
0
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
n
 
R
_
T
_
T
 
d
y
a
d
i
c
 
i
s
o
m
e
r
 
d
r
i
v
e
n
 
b
y
 
a
 
c
r
a
n
k
 
a
n
d
 
a
 
r
o
c
k
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
L
i
g
h
t
B
l
u
e
,
L
i
g
h
t
R
e
d
,
M
a
g
e
n
t
a
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
R
A
D
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
  {
R
_
T
_
T
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
}

1
2
 
 
 
 
  

{
S
e
t
J
o
i
n
t
S
i
z
e
,
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
i
:
 
W
o
r
d
;
 
O
K
:
 
B
o
o
l
e
a
n
;
 
t
,
 
O
1
A
,
 
O
2
B
,
 
A
D
,
D
K
,
P
Q
,
Q
C
,
 
P
h
i
1
,
P
h
i
2
,

1
5
 
 
 
A
l
p
h
1
,
A
l
p
h
2
,
 
x
O
1
,
y
O
1
,
 
x
O
2
,
y
O
2
,
 
x
A
,
y
A
,
 
x
B
,
y
B
,
 
x
C
,
y
C
,
 
x
D
,
y
D
,

1
6
 
 
 
x
K
,
y
K
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
:
 
d
o
u
b
l
e
;
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1
7
 
B
E
G
I
n

1
8
 
 
x
O
1
:
=
-
0
.
0
5
;
 
y
O
1
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
#
1
 
}

1
9
 
 
x
O
2
:
=
 
0
.
0
5
;
 
y
O
2
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
#
2
 
}

2
0
 
 
O
1
A
:
=
 
0
.
0
5
;
 
O
2
B
:
=
 
0
.
1
0
;
 
{
l
e
n
g
t
h
s
 
o
f
 
c
r
a
n
k
 
#
1
 
a
n
d
 
#
2
}

2
1
 
 
A
D
 
:
=
 
0
.
0
5
;
 
D
K
:
=
0
.
3
0
;
 

{
L
-
r
o
d
 
o
f
 
s
l
i
d
i
n
g
 
b
l
o
c
k
 
C
 
}

2
2
 
 
Q
C
 
:
=
 
0
.
2
5
;
 
 

{
l
e
n
g
t
h
 
o
f
 
s
p
a
c
e
r
 
Q
C
 

}
2
3
 
 
P
Q
 
:
=
 
0
.
4
5
;
 
 

{
r
o
d
 
o
f
 
s
l
i
d
i
n
g
 
b
l
o
c
k
 
B
 

}
2
4
 
 
A
l
p
h
1
:
=
 
6
0
*
R
A
D
;

2
5
 
 
A
l
p
h
2
:
=
1
1
0
*
R
A
D
;

2
6
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
3
0
.
D
X
F
’
)
;

2
7
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
4
,
0
.
3
,
 
-
0
.
1
4
,
0
.
2
3
)
;

2
8
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
9
 
 
i
:
=
0
;

3
0
 
 
r
e
p
e
a
t

3
1
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
2
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
3
 
 
 
E
n
D
;

3
4
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
0
)
;

3
5
 
 
 
t
:
=
i
/
n
P
o
z
;
 
{
t
 
=
 
t
i
m
e
}

3
6
 
 
 
P
h
i
1
:
=
2
*
P
i
*
t
*
t
*
t
;

3
7
 
 
 
P
h
i
2
:
=
P
i
/
3
+
P
i
/
9
*
s
i
n
(
P
i
*
t
)
;

3
8
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
O
1
,
y
O
1
,
 
P
h
i
1
,
_
,
_
,
 
O
1
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
9
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
O
2
,
y
O
2
,
 
P
h
i
2
,
_
,
_
,
 
O
2
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

4
0
 
 
 
R
_
T
_
T
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
 
,
P
h
i
2
+
0
.
5
*
P
i
,
_
,
_

4
1
 
 
 
,
A
D
,
D
K
,
P
Q
,
Q
C
,
 
A
l
p
h
1
,
A
l
p
h
2
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
x
D
,
y
D
,
_
,
_
,
_
,
_

4
2
 
 
 
,
x
K
,
y
K
,
_
,
_
,
_
,
_
,
 
x
P
,
y
P
,
_
,
_
,
_
,
_
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
O
K
)
;

4
3
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
1
,
y
O
1
 
,
’
O
_
1
  ‘
)
;

4
4
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
2
,
y
O
2
 
,
’
 

O
_
2
’
)
;

4
5
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
 
A
’
)
;

4
6
 
 
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
B
’
)
;

4
7
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
C
,
y
C
 
,
’
 
C
’
)
;
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4
8
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
D
,
y
D
,
x
K
,
y
K
,
’
 
K
’
)
;

4
9
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
Q
,
y
Q
,
x
P
,
y
P
,
’
 
P
’
)
;

5
0
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
C
,
y
C
,
x
Q
,
y
Q
,
’
 

Q
’
)
;

5
1
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
A
+
x
K
)
,
0
.
5
*
(
y
A
+
y
K
)
,
x
D
,
y
D
,
’
 
D
’
)
;

5
2
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
 
x
K
,
y
K
,
 
x
C
,
y
C
,
 
2
*
x
C
-
x
Q
,
2
*
y
C
-
y
Q
,
 

-
8
,
 
‘
|
<
α
_
1
’
)
;

5
3
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
 
2
*
x
Q
-
x
P
,
2
*
y
Q
-
y
P
,
 
x
Q
,
y
Q
,
 
x
C
,
y
C
,
 

8
,
 
‘
<
α
_
2
|
’
)
;

5
4
 
 
 
L
o
c
u
s
(
M
a
g
e
n
t
a
,
x
Q
,
y
Q
,
’
Q
’
)
;

5
5
 
 
 
I
n
c
(
i
)
;

5
6
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
7
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
8
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
3
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
n
 
R
T
_
T
_
 
d
y
a
d
i
c
 
i
s
o
m
e
r
 
d
r
i
v
e
n
 
b
y
 
a
 
c
r
a
n
k
 
a
n
d
 
a
 
r
o
c
k
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
,
R
A
D
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
R
T
_
T
_
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
}

1
2
 
 
 
 
  

{
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
i
:
 
W
o
r
d
;
 

O
K
:
 
B
o
o
l
e
a
n
;
 

t
,
 
P
h
i
1
,
P
h
i
2
,
A
l
p
h
a
2
,
 
O
A
,
P
Q
,
A
C
,
B
D
,
 

1
5
 
 
 
x
O
,
y
O
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
,
 
x
A
,
y
A
,
 
x
B
,
y
B
,
 
x
C
,
y
C
,
 
x
D
,
y
D
:
 
d
o
u
b
l
e
;

1
6
 
B
E
G
I
n

1
7
 
 
x
O
:
=
-
0
.
2
0
;
 
 
y
O
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
1
 
}

1
8
 
 
x
P
:
=
 
0
.
2
0
;
 
 
y
P
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 
#
2
 
}
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1
9
 
 
O
A
:
=
 
0
.
2
0
;
 
 
P
Q
:
=
0
.
7
;
 {
l
e
n
g
t
h
 
o
f
 
r
o
c
k
e
r
 
#
1
 
a
n
d
 
#
2
 
}

2
0
 
 
A
C
:
=
 
0
.
3
5
;

2
1
 
 
B
D
:
=
 
0
.
8
5
;

2
2
 
 
A
l
p
h
a
2
:
=
1
1
0
*
R
A
D
;

2
3
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
3
2
.
D
X
F
’
)
;

2
4
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
8
,
1
.
0
,
 
-
0
.
2
5
,
1
.
0
)
;

2
5
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
6
 
 
i
:
=
0
;

2
7
 
 
r
e
p
e
a
t

2
8
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
9
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
0
 
 
 
E
n
D
;

3
1
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
2
 
 
 
t
:
=
i
/
n
P
o
z
;
 
{
t
 
=
 
t
i
m
e
}

3
3
 
 
 
P
h
i
1
:
=
2
*
P
i
*
t
*
t
*
t
;

3
4
 
 
 
P
h
i
2
:
=
P
i
/
4
+
P
i
/
6
*
s
i
n
(
P
i
*
t
)
;

3
5
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
,
y
O
,
 
P
h
i
1
,
_
,
_
,
 
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
6
 
 
 
g
C
r
a
n
k
(
-
R
e
d
,
x
P
,
y
P
,
 
P
h
i
2
,
_
,
_
,
 
P
Q
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
R
T
_
T
_
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
P
,
y
P
,
0
,
0
,
0
,
0
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_

3
8
 
 
 
,
A
C
,
B
D
,
A
l
p
h
a
2
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
O
K
)
;

3
9
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
,
y
O
 
,
’
O
 

‘
)
;

4
0
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
,
y
P
 
,
’
 

P
’
)
;

4
1
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
  A
’
)
;

4
2
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
 
,
’
  Q
’
)
;

4
3
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
D
,
y
D
 
,
’
D
 
‘
)
;

4
4
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
C
,
y
C
,
x
B
,
y
B
,
’
 

B
’
)
;

4
5
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
A
,
y
A
,
x
C
,
y
C
,
’
 

C
’
)
;

4
6
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
 
x
Q
,
y
Q
,
 
x
B
,
y
B
,
 
x
C
,
y
C
,
 

8
,
 
‘
<
α
_
2
’
)
;

4
7
 
 
 
L
o
c
u
s
(
W
h
i
t
e
,
x
C
,
y
C
,
’
C
’
)
;

4
8
 
 
 
I
n
c
(
i
)
;
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4
9
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
0
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
1
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
6
_
3
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
n
 
R
_
T
T
_
 
d
y
a
d
 
d
r
i
v
e
n
 
b
y
 
a
 
c
r
a
n
k
 
a
n
d
 
a
 
r
o
c
k
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
M
a
g
e
n
t
a
,
R
e
d
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
,
R
A
D
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
R
_
T
T
_
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
}

1
2
 
 
 
 
  

{
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
i
:
W
o
r
d
;
 

O
K
:
B
o
o
l
e
a
n
;
 
t
,
P
h
i
1
,
P
h
i
2
,
A
l
p
h
a
1
,
A
l
p
h
a
2
,
 
O
A
,
P
Q
,
A
D
,
D
K
,
B
C
,

1
5
 
 
 
x
O
,
y
O
,
x
K
,
y
K
,
x
B
,
y
B
,
x
A
,
y
A
,
x
P
,
y
P
,
 
x
D
,
y
D
,
x
Q
,
y
Q
,
x
C
,
y
C
:
d
o
u
b
l
e
;

1
6
 
B
E
G
I
n

1
7
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
3
4
.
D
X
F
’
)
;

1
8
 
 
x
O
:
=
-
0
.
1
0
;
 
y
O
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 

}
1
9
 
 
x
P
:
=
 
0
.
1
0
;
 
y
P
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 

}
2
0
 
 
O
A
:
=
 
0
.
0
7
;
 
P
Q
:
=
 
0
.
3
5
;
  {
l
e
n
g
t
h
s
 
o
f
 
c
r
a
n
k
 
a
n
d
 
r
o
c
k
e
r
}

2
1
 
 
A
D
:
=
 
0
.
0
5
;
 
D
K
:
=
0
.
5
5
;
 
{
L
-
r
o
d
 
o
f
 
s
l
i
d
i
n
g
 
b
l
o
c
k
 
C
 

}
2
2
 
 
B
C
:
=
0
.
2
8
;
 

 
{
l
e
n
g
t
h
 
o
f
 
s
p
a
c
e
r
 
B
C
 

}
2
3
 
 
A
l
p
h
a
1
:
=
 
6
0
*
R
A
D
;

2
4
 
 
A
l
p
h
a
2
:
=
1
1
0
*
R
A
D
;

2
5
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
2
0
,
0
.
5
,
-
0
.
2
,
0
.
7
)
;

2
6
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;
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2
7
 
 
i
:
=
0
;

2
8
 
 
r
e
p
e
a
t

2
9
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
0
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
1
 
 
 
E
n
D
;

3
2
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
3
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
t
 
=
 
t
i
m
e
}

3
4
 
 
 
P
h
i
1
:
=
2
*
P
i
*
t
*
t
*
t
;

3
5
 
 
 
P
h
i
2
:
=
P
i
/
9
 
+
 
P
i
/
6
*
s
i
n
(
2
*
P
i
*
t
)
;

3
6
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
,
y
O
,
 
P
h
i
1
,
_
,
_
,
 
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
g
C
r
a
n
k
(
-
R
e
d
,
x
P
,
y
P
,
 
P
h
i
2
,
_
,
_
,
 
P
Q
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

3
8
 
 
 
R
_
T
T
_
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
P
,
y
P
,
0
,
0
,
0
,
0
,

3
9
 
 
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
A
D
,
D
K
,
B
C
,
 
A
l
p
h
a
1
,
A
l
p
h
a
2
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
,

4
0
 
 
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
x
K
,
y
K
,
_
,
_
,
_
,
_
,
 
O
K
)
;

4
1
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
,
y
O
 
,
’
O
 

‘
)
;

4
2
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
,
y
P
 
,
’
 

P
’
)
;

4
3
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
  A
’
)
;

4
4
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
 
,
’
  Q
’
)
;

4
5
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
D
,
y
D
 
,
’
  D
’
)
;

4
6
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
K
,
y
K
 
,
’
 
K
’
)
;

4
7
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
C
,
y
C
,
x
B
,
y
B
,
’
 

B
’
)
;

4
8
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
A
,
y
A
,
x
C
,
y
C
,
’
 

C
’
)
;

4
9
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
 
2
*
x
C
-
x
D
,
2
*
y
C
-
y
D
,
x
C
,
y
C
,
2
*
x
C
-
x
B
,
2
*
y
C
-
y
B
,
-
9
,
’
|
<
α
_
1
’
)
;

5
0
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
 
x
Q
,
y
Q
,
 
x
B
,
y
B
,
 
x
C
,
y
C
,
 
9
,
 
‘
<
α
_
2
’
)
;

5
1
 
 
 
L
o
c
u
s
(
W
h
i
t
e
,
x
C
,
y
C
,
’
C
’
)
;

5
2
 
 
 
I
n
c
(
i
)
;

5
3
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
4
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
5
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
6
_
3
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
 
R
T
_
_
T
 
d
y
a
d
i
c
 
i
s
o
m
e
r
 
d
r
i
v
e
n
 
b
y
 
a
 
c
r
a
n
k
 
a
n
d
 
a
 
r
o
c
k
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
M
a
g
e
n
t
a
,
R
e
d
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 

{
_
,
R
A
D
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
R
T
:
T
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
C
l
o
s
e
M
e
c
D
X
F
,
}

1
2
 
 
 
 
  

{
M
e
c
O
u
t
p
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
4
 
v
a
r
 
i
:
W
o
r
d
;
 

O
K
:
B
o
o
l
e
a
n
;
 

t
,
P
h
i
1
,
O
1
A
,
P
h
i
2
,
O
2
B
,
P
Q
,
Q
D
,
A
C
,
A
l
p
h
a
2
,

1
5
 
 
 
x
O
1
,
y
O
1
,
x
O
2
,
y
O
2
,
x
A
,
y
A
,
x
B
,
y
B
,
x
C
,
y
C
,
x
D
,
y
D
,
x
P
,
y
P
,
x
Q
,
y
Q
:
d
o
u
b
l
e
;

1
6
 
B
E
G
I
n

1
7
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
6
_
3
6
.
D
X
F
’
)
;

1
8
 
 
x
O
1
:
=
-
0
.
2
0
;
 
y
O
1
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 

}
1
9
 
 
x
O
2
:
=
 
0
.
2
0
;
 
y
O
2
:
=
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
r
o
c
k
e
r
 

}
2
0
 
 
O
1
A
:
=
 
0
.
2
0
;
 
O
2
B
:
=
0
.
4
0
;
 

{
l
e
n
g
t
h
s
 
o
f
 
c
r
a
n
k
 
a
n
d
 
r
o
c
k
e
r
}

2
1
 
 
P
Q
 
:
=
 
0
.
9
0
;
 
Q
D
:
=
1
.
3
0
;
 

{
L
-
r
o
d
 
d
i
m
e
n
s
i
o
n
s
 

}
2
2
 
 
A
C
 
:
=
 
0
.
3
5
;
 
 

{
l
e
n
g
t
h
 
o
f
 
o
f
f
s
e
t
 
A
C
 

}
2
3
 
 
A
l
p
h
a
2
:
=
1
1
0
*
R
A
D
;

2
4
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
6
7
,
0
.
8
6
,
-
0
.
6
3
,
0
.
8
8
)
;

2
5
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
6
 
 
 
i
:
=
0
;

2
7
 
 
R
e
p
e
a
t

2
8
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
9
 
 
 
 
  i
:
=
0
;
 
C
l
o
s
e
M
e
c
D
X
F
;

3
0
 
 
 
E
n
D
;
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3
1
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
2
 
 
 
t
:
=
i
/
n
P
o
z
+
E
p
s
D
;
 
{
t
 
=
 
t
i
m
e
}

3
3
 
 
 
P
h
i
1
:
=
2
*
P
i
*
t
*
t
*
t
;

3
4
 
 
 
P
h
i
2
:
=
P
i
/
8
*
s
i
n
(
2
*
P
i
*
t
)
;

3
5
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
1
,
y
O
1
,
P
h
i
1
,
_
,
_
,
 
O
1
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
6
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
2
,
y
O
2
,
P
h
i
2
,
_
,
_
,
 
O
2
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
R
T
_
_
T
(
C
y
a
n
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
P
h
i
2
+
P
i
/
2
,
_
,
_
,
A
C
,
P
Q
,
Q
D
,
 

3
8
 
 
 
A
l
p
h
a
2
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
O
K
)
;

3
9
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
1
,
y
O
1
 
,
’
O
1
 
‘
)
;

4
0
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
2
,
y
O
2
 
,
’
 

O
2
’
)
;

4
1
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
 
A
’
)
;

4
2
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
B
’
)
;

4
3
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
C
,
y
C
 
,
’
C
’
)
;

4
4
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
D
,
y
D
 
,
’
 
D
’
)
;

4
5
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
P
,
y
P
 
,
’
P
 
‘
)
;

4
6
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
 
,
’
 
Q
’
)
;

4
7
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
 
2
*
x
Q
-
x
P
,
2
*
y
Q
-
y
P
,
 
x
Q
,
y
Q
,
 
x
D
,
y
D
,
 

8
,
 
‘
<
α
_
2
|
’
)
;

4
8
 
 
 
L
o
c
u
s
(
W
h
i
t
e
,
x
Q
,
y
Q
,
’
Q
’
)
;

4
9
 
 
 
I
n
c
(
i
)
;

5
0
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
1
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
d
o
 
n
o
t
 
s
a
v
e
 
l
o
c
u
s
 
f
i
l
e
s
}

5
2
 
E
n
D
.

**
*

1
 

p
r
o
g
r
a
m
 
P
7
_
0
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  S
y
n
t
h
e
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
/
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r
 
k
n
i
f
e
 
e
d
g
e
 
a
n
d
 
w
/
 
r
o
l
l
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
G
r
e
e
n
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 

  L
i
b
M
a
t
h
,
 
{
_
}
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7
 

 
 

 L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 

  L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

9
 

 
 

  L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

1
0
 
 
 

  L
i
b
M
e
c
2
D
;
   {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
P
u
t
G
P
o
i
n
t
,
P
u
t
P
o
i
n
t
,
L
a
b
e
l
J
o
i
n
t
}

1
1
 
 
 

  
 

 
  {
P
u
t
A
n
g
,
P
u
t
D
i
s
t
,
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
2
 
c
o
n
s
t
 
C
o
l
o
r
 
=
 
0
;
 

  {
0
 
f
o
l
l
o
w
e
r
 
&
 
p
i
t
c
h
 
c
a
m
,
 
1
 
e
n
t
i
r
e
 
m
e
c
h
a
n
i
s
m
 

}
1
3
 
 
 

  
C
a
m
X
Y
 
=
’
C
a
m
0
6
’
;
 
  {
p
i
t
c
h
 
c
a
m
 
o
u
t
p
u
t
 
t
o
 
C
a
m
0
6
.
D
2
D
 
a
n
d
 
t
o
 
l
a
y
e
r
 
C
a
m
0
6
}

1
4
 
 
 

  
D
T
h
e
t
a
=
 
2
*
P
i
;
 

  {
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

1
5
 
 
 

  
D
s
 

=
 
1
.
0
;
 

{
f
o
l
l
o
w
e
r
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

1
6
 
 
 

  
s
0
 

=
 
0
.
2
5
;
 

{
f
o
l
l
o
w
e
r
 
b
i
a
s
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

1
7
 
 
 

  
O
P
 

=
 
0
.
2
0
;
 

  {
f
o
l
l
o
w
e
r
 
o
f
f
s
e
t
 
e
F
 
-
 
p
o
s
i
t
i
v
e
 
o
r
 
n
e
g
a
t
i
v
e
}

1
8
 
 
 

  
r
 

=
 
0
.
1
5
;
 

{
r
o
l
l
e
r
 
r
a
d
i
u
s
;
 
r
=
0
 
f
o
r
 
k
n
i
f
e
 
e
d
g
e
}

1
9
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;

2
0
 
 
 

  r
b
,
r
t
,
 
d
F
,
d
C
,
T
h
e
t
a
,
 
s
,
x
A
,
y
A
,
 
x
P
,
y
P
,
x
Q
,
y
Q
,
 
x
B
,
y
B
,
x
C
,
y
C
:
d
o
u
b
l
e
;

2
1
 
B
E
G
I
n

2
2
 
 
i
f
 
(
C
o
l
o
r
 
<
>
 
0
)
 
t
h
e
n
 
B
E
G
I
n

2
3
 
 
 

  A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
_
L
.
X
Y
’
)
;
 

{
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
f
i
l
e
 
-
 
f
u
l
l
 
s
i
z
e
}

2
4
 
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
0
6
A
.
D
X
F
’
)
;
 

{
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

2
5
 
 
E
n
D

2
6
 
 
e
l
s
e
 
B
E
G
I
n

2
7
 
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
0
6
B
.
D
X
F
’
)
;
 

{
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

28
 
 
 

  As
si
gn
(F
T,
’d
Fv
dC
.X
Y’
);
 

{.
.f
ol
lo
we
r  
mo
ti
on
 f
il
e  
- 
re
du
ce
d  
si
ze
}

2
9
 
 
E
n
D
;

3
0
 
 
R
e
s
e
t
(
F
T
)
;

3
1
 
 
r
b
:
=
S
q
r
t
(
O
P
*
O
P
+
s
0
*
s
0
)
;
 

{
.
.
b
a
s
e
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

3
2
 
 
r
t
:
=
S
q
r
t
(
O
P
*
O
P
+
S
q
r
(
s
0
+
D
s
)
)
;
 

{
.
.
t
o
p
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

3
3
 
 
W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 
 
r
t
=
’
,
r
t
:
9
:
5
,
’
 
 
<
C
R
>
.
.
’
)
;
 
 
 
R
e
a
d
L
n
;

3
4
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
r
t
-
r
,
r
t
+
r
,
 
-
r
t
-
r
,
r
t
+
r
)
;

3
5
 
 
r
e
p
e
a
t

3
6
 
 
 

i
f
 
(
C
o
l
o
r
 
>
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
5
0
)
;

3
7
 
 
 

R
e
a
d
L
n
(
F
T
,
d
C
,
d
F
)
;

3
8
 
 
 

T
h
e
t
a
:
=
d
C
*
D
T
h
e
t
a
;
 

{
.
.
c
a
m
 
a
n
g
l
e
}
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3
9
 
 
 

s
:
=
s
0
+
d
F
*
D
s
;
 

{
.
.
f
o
l
l
o
w
e
r
 
d
i
s
p
l
a
c
e
m
e
n
t
 
s
(
T
h
e
t
a
)
}

4
0
 
 
 

g
C
r
a
n
k
(
C
o
l
o
r
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
O
P
+
2
0
.
5
*
R
J
t
S
z
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;
 

4
1
 
 
 

  O
f
f
s
e
t
(
B
l
a
c
k
,
’
T
’
,
0
,
0
,
_
,
_
,
_
,
_
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
O
P
,
 
0
,
 
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

4
2
 
 
 

  O
f
f
s
e
t
(
B
l
a
c
k
,
’
/
’
,
0
,
0
,
_
,
_
,
_
,
_
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
O
P
,
s
0
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

4
3
 
 
 

S
l
i
d
e
r
(
C
o
l
o
r
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
s
0
,
s
,
_
,
_

4
4
 
 
 

,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

4
5
 
 
 

L
o
c
u
s
(
G
r
e
e
n
,
x
C
,
y
C
,
C
a
m
X
Y
)
;
 

{
.
.
l
o
c
u
s
 
o
f
 
r
o
l
l
e
r
 
c
e
n
t
e
r
}

4
6
 
 
 

S
h
a
p
e
(
‘
’
,
R
e
d
,
x
C
,
y
C
,
x
C
+
r
,
y
C
)
;
  {
.
.
d
r
a
w
 
r
o
l
l
e
r
}

4
7
 
 
 

i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
t
h
e
n
 
P
u
t
G
P
o
i
n
t
(
G
r
e
e
n
,
’
+
’
,
 
0
,
0
,
’
’
)

4
8
 
 
 

e
l
s
e
 
B
E
G
I
n

4
9
 
 
 

  
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
0
,
0
 
,
’
O
 

‘
)
;

5
0
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
C
,
y
C
,
 
x
A
,
y
A
,
’
 
A
’
)
;

5
1
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
C
,
y
C
,
 
x
B
,
y
B
,
’
 
B
’
)
;

5
2
 
 
 

  
P
u
t
P
o
i
n
t
(
R
e
d
,
’
o
’
,
x
C
,
y
C
 
,
’
’
)
;

5
3
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
P
,
y
P
,
 
x
C
,
y
C
,
’
  C
’
)
;

5
4
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
 
x
C
,
y
C
,
 
x
P
,
y
P
,
’
P
 
‘
)
;

5
5
 
 
 

  
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
Q
,
y
Q
,
’
Q
’
)
;

5
6
 
 
 

  
  P
u
t
A
n
g
(
W
h
i
t
e
,
 
0
,
0
,
0
,
0
,
x
A
,
y
A
,
 
5
,
 
‘
<
’
+
#
2
3
3
+
’
|
’
)
;
 
  {
.
.
#
2
3
3
 
=
 
T
h
e
t
a
 
}

5
7
 
 
 

  
  P
u
t
D
i
s
t
(
W
h
i
t
e
,
 
x
C
,
y
C
,
x
P
,
y
P
,
 
2
0
,
 
‘
|
<
s
’
)
;
 

  {
.
.
n
o
t
e
 
t
h
e
 
2
0
 
i
n
 
g
C
r
a
n
k
}

5
8
 
 
 

E
n
D
;

5
9
 
 
u
n
t
i
l
 
E
o
f
(
F
T
)
;

6
0
 
 
C
l
o
s
e
M
e
c
D
X
F
;

6
1
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

6
2
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
C
o
l
o
r
 
=
 
0
)
;

6
3
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
7
_
0
7
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

K
i
n
e
m
a
t
i
c
 
a
n
a
l
y
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
i
t
h
 
k
n
i
f
e
-
e
d
g
e
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
C
y
a
n
,
G
r
e
e
n
,
M
a
g
e
n
t
a
,
W
h
i
t
e
}
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6
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
G
e
2
D
,
 
  {
U
2
d
i
r
s
2
D
9
0
,
R
T
2
D
}

1
1
 
 
 
 
L
i
b
C
a
m
s
,
 
  {
T
r
a
n
s
F
o
l
R
o
t
C
a
m
,
D
o
u
b
l
e
O
f
f
s
e
t
}

1
2
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
P
u
t
P
o
i
n
t
,
}

1
3
 
 
 
 
 
 

 
  {
P
u
t
V
e
c
t
o
r
,
P
u
t
T
e
x
t
,
S
h
a
p
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
4
 
c
o
n
s
t
 
n
P
o
z
 

=
 
3
6
0
;
 

  {
n
u
m
b
e
r
 
o
f
 
c
a
m
 
p
o
s
i
t
i
o
n
s
 
(
9
0
 
w
i
t
h
 
A
n
i
m
 
=
 
1
)
}

1
5
 
 
 
 
 
A
n
i
m
 

=
 
0
;
 

  {
0
 
=
 
a
n
i
m
a
t
i
o
n
 
O
F
F
,
 
1
 
=
 
a
n
i
m
a
t
i
o
n
 
O
N
}

16
 
 
 
 
 
Ca
mX
Y  

= 
‘C
am
06
’;
 

  {.
D2
D  
in
pu
t  
fi
le
 w
it
h  
ca
m  
pr
of
il
e  
po
in
ts
}

1
7
 
 
 
 
 
D
T
h
e
t
a
 
=
 
2
*
P
i
;
 

  {
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
c
y
c
l
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

1
8
 
 
 
 
 
O
P
 

=
 
0
.
2
0
;
 

  {
f
o
l
l
o
w
e
r
 
o
f
f
s
e
t
 
e
F
 
-
 
p
o
s
i
t
i
v
e
 
o
r
 
n
e
g
a
t
i
v
e
 
}

1
9
 
 
 
 
 
r
 

=
 
0
.
1
5
;
 

  {
r
o
l
l
e
r
 
r
a
d
i
u
s
;
 
r
=
0
 
f
o
r
 
k
n
i
f
e
 
e
d
g
e
}

2
0
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;
 

i
,
S
k
i
p
:
I
n
t
e
g
e
r
;
 

s
,
r
b
,
r
t
,
x
A
,
y
A
,
T
h
e
t
a

2
1
 
 
 
,
D
n
X
,
D
n
Y
,
R
h
o
,
G
a
m
m
a
,
x
C
,
y
C
,
x
C
i
,
y
C
i
,
x
C
o
,
y
C
o
:
d
o
u
b
l
e
;

2
2
 
B
E
G
I
n

2
3
 
 
i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
t
h
e
n
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
0
7
.
D
X
F
’
)
;
 
  {
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

2
4
 
 
A
s
s
i
g
n
(
F
T
,
’
F
7
_
0
7
.
T
X
T
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;
 

 {
.
.
o
u
t
p
u
t
 
A
S
C
I
I
 
d
a
t
a
 
f
i
l
e
}

2
5
 
 
G
e
t
P
r
o
f
i
l
e
R
a
d
i
i
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
r
b
,
r
t
)
;
 

  {
.
.
e
x
t
r
a
c
t
 
b
a
s
e
 
&
 
t
o
p
 
c
i
r
c
.
 
r
a
d
i
i
}

2
6
 
 

  W
r
i
t
e
L
n
(
F
T
,
C
a
m
X
Y
+
’
.
D
2
D
 
c
a
m
 
w
i
t
h
 
k
n
i
f
e
-
e
d
g
e
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r
’
)
;

2
7
 
 

  W
r
i
t
e
L
n
(
F
T
,
’
D
T
h
e
t
a
=
’
,
D
T
h
e
t
a
*
D
E
G
:
6
:
2
,
’
;
 
 
O
P
=
’
,
O
P
:
6
:
2
,
’
;
 
 
r
=
’
,
r
:
6
:
2
)
;

2
8
 
 
W
r
i
t
e
L
n
(
F
T
,
’
  T
h
e
t
a
 
s
 

G
a
m
m
a
 
R
h
o
 

x
C
 

y
C
’

2
9
 
 
,
’
 
x
C
i
  y
C
i
 

x
C
o
 

y
C
o
 

r
b
 

r
t
’
)
;

3
0
 
 
W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 
 
r
t
=
’
,
r
t
:
9
:
5
,
’
  <
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

3
1
 
 
I
f
 
(
A
b
s
(
O
P
)
 
>
 
r
t
)
 
t
h
e
n
 
B
E
G
I
n

3
2
 
 
 
W
r
i
t
e
(
‘
E
c
c
e
n
t
r
i
c
i
t
y
 
O
P
 
t
o
o
 
b
i
g
!
 

<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

3
3
 
 
 
H
a
l
t
;

3
4
 
 
E
n
D
;

3
5
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
r
t
,
r
t
,
 
-
r
t
,
1
.
5
*
r
t
)
;
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3
6
 
 
i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
S
k
i
p
:
=
1
 
e
l
s
e
 
S
k
i
p
:
=
n
P
o
z
 
D
I
V
 
1
0
;

3
7
 
 
i
:
=
0
;

3
8
 
 
r
e
p
e
a
t

3
9
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

4
0
 
 
 
 
 
i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

4
1
 
 
 
E
n
D
;

4
2
 
 
 
i
f
 
(
A
n
i
m
 
=
 
1
)
 
O
R
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
0
)
;

4
3
 
 
 
T
h
e
t
a
:
=
-
D
T
h
e
t
a
*
i
/
n
P
o
z
;

4
4
 
 
 
g
C
r
a
n
k
(
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
r
b
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
5
 
 
 
S
h
a
p
e
(
‘
’
,
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
x
A
,
y
A
)
;
 
{
.
.
d
r
a
w
 
c
a
m
 
b
a
s
e
 
c
i
r
c
l
e
}

4
6
 
 
 
  S
h
a
p
e
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
A
n
i
m
*
G
r
e
e
n
,
0
,
0
,
x
A
,
y
A
)
;
 

  {
.
.
d
r
a
w
 
c
a
m
 
f
r
o
m
 
f
i
l
e
}

4
7
 
 
 
  R
o
t
C
a
m
T
r
a
n
s
P
o
i
n
t
e
d
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
O
P
,
T
h
e
t
a
,
s
,
x
C
,
y
C
,
D
n
X
,
D
n
Y
,
R
h
o
)
;

4
8
 
 
 
D
o
u
b
l
e
O
f
f
s
e
t
(
x
C
,
y
C
,
 
D
n
X
,
D
n
Y
,
 
R
h
o
,
 
r
,
 
x
C
i
,
y
C
i
,
x
C
o
,
y
C
o
)
;

4
9
 
 
 
G
a
m
m
a
:
=
U
2
d
i
r
s
2
D
9
0
(
D
n
X
,
D
n
Y
,
0
,
1
.
0
)
*
D
E
G
;

5
0
 
 
 
  P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
C
y
a
n
,
’
-
’
,
x
C
,
y
C
,
 
0
,
1
.
0
,
 
0
.
5
,
’
V
c
’
)
;
 
{
.
.
v
e
l
o
c
i
t
y
}

5
1
 
 
 
  P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
B
l
u
e
,
’
-
’
,
x
C
,
y
C
,
 
D
n
X
,
D
n
Y
,
 
0
.
4
,
’
F
c
’
)
;
 
{
.
.
n
o
r
m
a
l
 
f
o
r
c
e
}

5
2
 
 
 
P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
o
’
,
 
x
C
,
y
C
,
’
 
 
C
’
)
;
 
{
.
.
c
o
n
t
a
c
t
 
p
o
i
n
t
}

5
3
 
 
 
  i
f
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
P
u
t
T
e
x
t
(
W
h
i
t
e
,
_
,
_
,
’

θ 
=
’
+
 
M
y
S
t
2
(
T
h
e
t
a
*
DE
G,
7,
2)

5
4
 
 
 
+
’
°
’
+
’
n
\

γ 
 
=
’
+
M
y
S
t
2
(
G
a
m
m
a
,
7
,
2
)
+
’
°
n
\
R
h
o
=
’
+
 
M
y
S
t
r
(
R
h
o
,
6
)
)
;

5
5
 
 
 
R
T
2
D
(
x
C
 
,
 
y
C
,
-
T
h
e
t
a
,
0
,
0
,
x
C
 
,
y
C
 
)
;
 
  {
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
 
}

5
6
 
 
 
R
T
2
D
(
x
C
i
,
y
C
i
,
-
T
h
e
t
a
,
0
,
0
,
x
C
i
,
y
C
i
)
;
 
  {
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
i
}

5
7
 
 
 
R
T
2
D
(
x
C
o
,
y
C
o
,
-
T
h
e
t
a
,
0
,
0
,
x
C
o
,
y
C
o
)
;
 
  {
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
 
}

5
8
 
 
 
i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
:
8
:
4
,
’
 
‘
,
s
:
1
0
:
6
,
’
 
‘
,
G
a
m
m
a
:
8
:
4

59
 
 
 
,’
 ‘
,R
ho
:1
0:
6,
’  
‘,
xC
:1
0:
6,
’  
‘,
yC
:1
0:
6,
’  
‘,
xC
i:
10
:6
,’
 ‘
,y
Ci
:1
0:
6

60
 
 
 
,’
 ‘
,x
Co
:1
0:
6,
’  
‘,
yC
o:
10
:6
,’
 ‘
,r
b:
9:
6,
’  
‘,
rt
:9
:6
);

61
 
 
 
In
c(
i)
;

6
2
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
(
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
O
R
 
(
A
n
i
m
 
=
 
0
)
)
;

6
3
 
 
C
l
o
s
e
(
F
T
)
;

6
4
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

6
5
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
7
_
1
0
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  S
y
n
t
h
e
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
i
t
h
 
o
s
c
i
l
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r
,
 
p
o
i
n
t
e
d
 
o
r
 
w
i
t
h
 
r
o
l
l
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
}

6
 

 
 

  L
i
b
M
a
t
h
,
 
{
_
,
R
A
D
}

7
 

 
 

  L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 

  L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

9
 

 
 

  L
i
b
I
n
O
u
t
,
  {
W
a
i
t
T
o
G
o
}

1
0
 
 

 
  L
i
b
M
e
c
2
D
;
 {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
P
u
t
G
P
o
i
n
t
,
L
a
b
e
l
J
o
i
n
t
,
}

1
1
 
 

 
  
 

 
{
S
h
a
p
e
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
2
 
c
o
n
s
t
 
C
o
l
o
r
 
=
 
1
;
 

  {
0
 
f
o
l
l
o
w
e
r
 
&
 
p
i
t
c
h
 
c
a
m
,
 
1
 
e
n
t
i
r
e
 
m
e
c
h
a
n
i
s
m
}

1
3
 
 

 
  
C
a
m
X
Y
 
=
’
C
a
m
1
0
’
;
 
{
.
D
2
D
 
o
u
t
p
u
t
 
c
a
m
 
p
r
o
f
i
l
e
 
n
a
m
e
}

1
4
 
 

 
  
D
T
h
e
t
a
=
 
2
*
P
i
;
 

{
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

1
5
 
 

 
  
D
P
h
i
 
 
=
 
2
5
*
R
A
D
;
 
{
f
o
l
l
o
w
e
r
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

1
6
 
 

 
  
P
h
i
0
 
 
=
 
2
0
*
R
A
D
;
 
{
f
o
l
l
o
w
e
r
 
b
i
a
s
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

1
7
 
 

 
  
O
O
1
 
 
 
=
 
2
.
0
;
 

{
c
a
m
-
f
o
l
l
o
w
e
r
 
p
i
n
-
j
o
i
n
t
 
d
i
s
t
a
n
c
e
}

1
8
 
 

 
  
O
1
C
 
 
 
=
 
2
.
0
;
 

{
f
o
l
l
o
w
e
r
 
a
r
m
 
l
e
n
g
t
h
}

1
9
 
 

 
  
r
 
 
 
 
 
=
 
0
.
2
;
 

{
r
o
l
l
e
r
 
r
a
d
i
u
s
}

20
 
va
r  

FT
:t
ex
t;
 
Ch
:c
ha
r;
 
rb
,r
t,
 d
F,
dC
,T
he
ta
,P
hi
,x
O1
,y
O1
,x
C,
yC
:d
ou
bl
e;

2
1
 
B
E
G
I
n

2
2
 
 

i
f
 
(
C
o
l
o
r
 
<
>
 
0
)
 
t
h
e
n
 
B
E
G
I
n

2
3
 
 

 
A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
_
L
.
X
Y
’
)
;
 

{
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
f
i
l
e
 
-
 
f
u
l
l
 
s
i
z
e
}

2
4
 
 

 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
0
A
.
D
X
F
’
)
;
 

{
.
.
o
u
t
p
u
t
 
D
X
F
 
f
i
l
e
}

2
5
 
 

E
n
D

2
6
 
 

e
l
s
e
 
B
E
G
I
n

27
 
 

 
  As
si
gn
(F
T,
’d
Fv
dC
.X
Y’
);
 
{.
.f
ol
lo
we
r  
mo
ti
on
 f
il
e  
- 
re
du
ce
d  
si
ze
}

2
8
 
 

 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
0
B
.
D
X
F
’
)
;
 

{
.
.
o
u
t
p
u
t
 
D
X
F
 
f
i
l
e
}

2
9
 
 

E
n
D
;
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3
0
 
 

R
e
s
e
t
(
F
T
)
;

3
1
 
 

  r
b
:
=
S
q
r
t
(
O
O
1
*
O
O
1
+
O
1
C
*
O
1
C
-
2
*
O
O
1
*
O
1
C
*
c
o
s
(
P
h
i
0
)
)
;
 

 {
.
.
b
a
s
e
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

32
 
 

  rt
:=
Sq
rt
(O
O1
*O
O1
+O
1C
*O
1C
-2
*O
O1
*O
1C
*c
os
(P
hi
0+
DP
hi
))
;  

  {.
.t
op
 c
ir
cl
e  
ra
di
us
}

3
3
 
 

W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 

r
t
=
’
,
r
t
:
9
:
5
,
’
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

3
4
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
2
5
*
O
O
1
,
1
.
2
5
*
O
O
1
,
-
1
.
2
5
*
O
O
1
,
1
.
2
5
*
O
O
1
)
;

3
5
 
 

r
e
p
e
a
t

3
6
 
 

 
i
f
 
(
C
o
l
o
r
 
>
 
0
)
 
t
h
e
n
 

n
e
w
F
r
a
m
e
(
5
0
)
;

3
7
 
 

 
R
e
a
d
L
n
(
F
T
,
d
C
,
d
F
)
;

3
8
 
 

 
T
h
e
t
a
:
=
d
C
*
2
*
P
i
;
 

{
.
.
c
a
m
 
r
o
t
a
t
i
o
n
 
}

3
9
 
 

 
P
h
i
:
=
P
h
i
0
+
d
F
*
D
P
h
i
;
 

{
.
.
f
o
l
l
o
w
e
r
 
d
i
s
p
l
a
c
e
m
e
n
t
}

4
0
 
 

 
g
C
r
a
n
k
(
C
o
l
o
r
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
O
O
1
,
x
O
1
,
y
O
1
,
_
,
_
,
_
,
_
)
;

4
1
 
 

 
C
r
a
n
k
(
C
o
l
o
r
,
0
,
0
,
_
,
_
,
_
,
_
,
x
O
1
,
y
O
1
,
_
,
_
,
_
,
_
,
P
i
-
P
h
i
,
_
,
_
,
O
1
C
,
x
C
,
y
C
,
_
,
_
,
_
,
_
)
;

4
2
 
 

 
  L
o
c
u
s
(
G
r
e
e
n
,
x
C
,
y
C
,
C
a
m
X
Y
)
;
 

{
.
.
d
r
a
w
 
k
n
i
f
e
 
e
d
g
e
 
c
a
m
 
p
r
o
f
i
l
e
}

4
3
 
 

 
S
h
a
p
e
(
‘
’
,
R
e
d
,
x
C
,
y
C
,
x
C
+
r
,
y
C
)
;
 
{
.
.
d
r
a
w
 
r
o
l
l
e
r
}

4
4
 
 

 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
t
h
e
n
 

P
u
t
G
P
o
i
n
t
(
G
r
e
e
n
,
’
+
’
,
 
0
,
0
,
’
’
)

4
5
 
 

 
e
l
s
e
 
B
E
G
I
n

4
6
 
 

 
  
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
0
 
,
 
0
,
’
O
 

‘
)
;

4
7
 
 

 
  
P
u
t
P
o
i
n
t
(
R
e
d
,
’
o
’
,
x
C
,
y
C
,
’
’
)
;

4
8
 
 

 
  
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
C
,
y
C
,
 
x
O
1
,
y
O
1
,
’
 

O
1
’
)
;

4
9
 
 

 
  
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
,
0
,
x
C
,
y
C
,
’
 

C
’
)
;

5
0
 
 

 
  
  P
u
t
A
n
g
(
W
h
i
t
e
,
 
0
,
0
,
0
,
0
,
x
O
1
,
y
O
1
,
 
5
,
 
‘
|
‘
+
#
2
3
3
+
’
>
’
)
;
 

{
.
.
#
2
3
3
 
=
 
T
h
e
t
a
}

5
1
 
 

 
  
  P
u
t
A
n
g
(
-
W
h
i
t
e
,
 
x
C
,
y
C
,
x
O
1
,
y
O
1
,
0
,
0
,
 
1
6
,
 
#
2
3
7
+
’
>
’
)
;
 

{
.
.
#
2
3
7
 
=
 
P
h
i
}

5
2
 
 

 
E
n
D
;

5
3
 
 

u
n
t
i
l
 
E
o
f
(
F
T
)
;

5
4
 
 

C
l
o
s
e
M
e
c
D
X
F
;

5
5
 
 

W
a
i
t
T
o
G
o
(
C
h
)
;

5
6
 
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
C
o
l
o
r
 
=
 
0
)
;

5
7
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
7
_
1
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  K
i
n
e
m
a
t
i
c
 
a
n
a
l
y
s
i
s
 
o
f
 
c
a
m
s
 
w
i
t
h
 
k
n
i
f
e
 
e
d
g
e
d
 
o
s
c
i
l
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r
 
a
n
d

4
 

i
n
n
e
r
 
a
n
d
 
o
u
t
e
r
 
o
f
f
s
e
t
 
c
a
m
 
p
r
o
f
i
l
e
s
 
c
a
l
c
u
l
a
t
i
o
n

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
C
y
a
n
,
M
a
g
e
n
t
a
,
R
e
d
,
W
h
i
t
e
}

7
 

 
 

 
L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
,
R
A
D
}

8
 

 
 

 
L
i
b
G
r
a
p
h
,
  {
X
_
p
,
Y
_
p
,
p
_
X
,
p
_
Y
}

9
 

 
 

 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 

 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

1
1
 
 
 

 
L
i
b
G
e
2
D
,
 
{
U
2
d
i
r
s
2
D
9
0
}

1
2
 
 
 

 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
3
 
 
 

 
L
i
b
C
a
m
s
,
 
{
R
o
t
C
a
m
O
s
c
i
l
P
o
i
n
t
e
d
,
D
o
u
b
l
e
O
f
f
s
e
t
}

1
4
 
 
 

 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
}

1
5
 
 
 

 
 
 

 
{
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
6
 
c
o
n
s
t
 
n
P
o
z
 

=
 
3
6
0
;
 

  {
n
u
m
b
e
r
 
o
f
 
c
a
m
 
p
o
s
i
t
i
o
n
s
 
(
9
0
 
w
i
t
h
 
A
n
i
m
 
=
 
1
)
}

1
7
 
 
 

 
 
A
n
i
m
 
=
 
1
;
 

{
0
 
=
 
a
n
i
m
a
t
i
o
n
 
O
F
F
,
 
1
 
=
 
a
n
i
m
a
t
i
o
n
 
O
N
}

1
8
 
 
 

 
 
C
a
m
X
Y
 
=
 
‘
C
a
m
1
0
’
;
 
  {
.
D
2
D
 
i
n
p
u
t
 
f
i
l
e
 
w
i
t
h
 
c
a
m
 
p
r
o
f
i
l
e
 
p
o
i
n
t
s
 
 
 
}

1
9
 
 
 

 
 
D
T
h
e
t
a
=
 
2
*
P
i
;
 

{
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
}

2
0
 
 
 

 
 
O
O
1
 
 
 
=
 
2
.
0
;
 

{
c
a
m
-
j
o
i
n
t
 
 
t
o
 
 
f
o
l
l
o
w
e
r
-
j
o
i
n
t
 
d
i
s
t
a
n
c
e
}

2
1
 
 
 

 
 
O
1
C
 
 
 
=
 
2
.
0
;
 

{
f
o
l
l
o
w
e
r
 
a
r
m
 
l
e
n
g
t
h
}

2
2
 
 
 

 
 
r
 
 
 
 
 
=
 
0
.
2
;
 

{
r
o
l
l
e
r
 
r
a
d
i
u
s
}

2
3
 
  v
a
r
 
F
T
:
t
e
x
t
;
 
C
h
:
c
h
a
r
;
 
i
,
S
k
i
p
:
I
n
t
e
g
e
r
;
 
T
h
e
t
a
,
r
b
,
r
t
,
 
x
A
,
y
A
,
 
P
h
i
,
D
n
X
,
D
n
Y

2
4
 
 
 

  ,
R
h
o
,
O
1
C
i
,
O
1
C
o
,
 
x
C
,
y
C
,
 
x
C
i
,
y
C
i
,
 
x
C
o
,
y
C
o
,
 
G
a
m
m
a
,
G
a
m
_
i
,
G
a
m
_
o
:
d
o
u
b
l
e
;

2
5
 
B
E
G
I
n

2
6
 
 
  i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
t
h
e
n
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
1
.
D
X
F
’
)
;
 
  {
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

2
7
 
 
A
s
s
i
g
n
(
F
T
,
’
F
7
_
1
1
.
T
X
T
’
)
;
 
{
.
.
o
u
t
p
u
t
 
A
S
C
I
I
 
d
a
t
a
 
f
i
l
e
 

}
2
8
 
 
R
e
w
r
i
t
e
(
F
T
)
;

2
9
 
 
  W
r
i
t
e
L
n
(
F
T
,
C
a
m
X
Y
+
’
.
D
2
D
 
c
a
m
 
w
i
t
h
 
k
n
i
f
e
-
e
d
g
e
 
o
s
c
i
l
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r
.
’
)
;

3
0
 
 
  G
e
t
P
r
o
f
i
l
e
R
a
d
i
i
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
r
b
,
r
t
)
;
   {
.
.
g
e
t
 
b
a
s
e
 
&
 
t
o
p
 
c
i
r
c
l
e
 
r
a
d
i
i
}

3
1
 
 
W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 
 
r
t
=
’
,
r
t
:
9
:
5
,
’
  <
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;
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3
2
 
 
I
f
 
(
r
t
 
>
 
O
O
1
)
 
O
R
 
(
O
O
1
-
O
1
C
 
<
 
-
r
t
)
 
t
h
e
n
 
B
E
G
I
n

3
3
 
 
 

  W
r
i
t
e
(
‘
I
n
p
r
o
p
e
r
 
O
O
1
 
a
n
d
 
O
1
C
 
v
a
l
u
e
s
!
 

<
C
R
>
.
.
’
)
;
  R
e
a
d
L
n
;

3
4
 
 
 

H
a
l
t
;

3
5
 
 
E
n
D
;

3
6
 
 
W
r
i
t
e
L
n
(
F
T
,
’
D
T
h
e
t
a
=
’
,
D
T
h
e
t
a
*
D
E
G
:
6
:
2
,
’
;
 
O
O
1
=
’
,
O
O
1
:
6
:
2

3
7
 
 
,
’
;
  O
1
C
=
’
,
O
1
C
:
6
:
2
,
’
;
 

r
=
’
,
r
:
6
:
2
)
;

3
8
 
 
W
r
i
t
e
L
n
(
F
T
,
’
  T
h
e
t
a
 
P
h
i
 

G
a
m
m
a
 
G
a
m
_
i
 
G
a
m
_
o
 
R
h
o
 

‘
,

3
9
 
 
‘
x
C
 

y
C
 

x
C
i
 

y
C
i
 

x
C
o
 

y
C
o
 

r
b
 

r
t
’
)
;

4
0
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
r
t
,
O
O
1
,
 
-
r
t
-
r
,
r
t
+
3
*
r
)
;

4
1
 
 
i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
S
k
i
p
:
=
1
 
e
l
s
e
 
S
k
i
p
:
=
n
P
o
z
 
D
I
V
 
1
0
;

4
2
 
 
i
:
=
0
;

4
3
 
 
r
e
p
e
a
t

4
4
 
 
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

4
5
 
 
 

 
 
i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;

4
6
 
 
 

E
n
D
;

4
7
 
 
 

i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
O
R
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
0
)
;

4
8
 
 
 

T
h
e
t
a
:
=
-
D
T
h
e
t
a
*
i
/
n
P
o
z
;

4
9
 
 
 

g
C
r
a
n
k
(
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
r
b
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

5
0
 
 
 

S
h
a
p
e
(
‘
’
,
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
x
A
,
y
A
)
;
 
 
{
.
.
d
r
a
w
 
c
a
m
 
b
a
s
e
 
c
i
r
c
l
e
}

5
1
 
 
 

S
h
a
p
e
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
A
n
i
m
*
G
r
e
e
n
,
0
,
0
,
x
A
,
y
A
)
;
 
 
{
.
.
d
r
a
w
 
f
r
o
m
 
f
i
l
e
}

52
 
 
 

  Ro
tC
am
Os
ci
lP
oi
nt
ed
(C
am
XY
+’
.D
2D
’,
OO
1,
O1
C,
Th
et
a,
 P
hi
,x
C,
yC
,D
nX
,D
nY
,R
ho
);

5
3
 
 
 

D
o
u
b
l
e
O
f
f
s
e
t
(
x
C
,
y
C
,
 
D
n
X
,
D
n
Y
,
 
R
h
o
,
 
r
,
 
x
C
i
,
y
C
i
,
x
C
o
,
y
C
o
)
;

5
4
 
 
 

G
a
m
m
a
:
=
U
2
d
i
r
s
2
D
9
0
(
D
n
X
,
D
n
Y
,
y
C
/
O
1
C
,
(
O
O
1
-
x
C
)
/
O
1
C
)
*
D
E
G
;

5
5
 
 
 

O
1
C
i
:
=
D
i
s
t
2
P
t
s
2
D
(
x
C
i
,
y
C
i
,
O
O
1
,
0
)
;

5
6
 
 
 

G
a
m
_
i
:
=
U
2
d
i
r
s
2
D
9
0
(
D
n
X
,
D
n
Y
,
y
C
i
/
O
1
C
i
,
(
O
O
1
-
x
C
i
)
/
O
1
C
i
)
*
D
E
G
;

5
7
 
 
 

O
1
C
o
:
=
D
i
s
t
2
P
t
s
2
D
(
x
C
o
,
y
C
o
,
O
O
1
,
0
)
;

5
8
 
 
 

G
a
m
_
o
:
=
U
2
d
i
r
s
2
D
9
0
(
D
n
X
,
D
n
Y
,
y
C
o
/
O
1
C
o
,
(
O
O
1
-
x
C
o
)
/
O
1
C
o
)
*
D
E
G
;

5
9
 
 
 

P
u
t
G
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
/
’
,
 
O
O
1
,
0
,
’
’
)
;
 
 
{
.
.
g
r
o
u
n
d
 
p
i
n
 
j
o
i
n
t
}

6
0
 
 
 

i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
t
h
e
n

6
1
 
 
 

 
 
S
k
L
i
n
e
(
X
_
p
(
O
O
1
)
,
Y
_
p
(
0
)
,
X
_
p
(
x
C
)
,
Y
_
p
(
y
C
)
,
J
t
S
z
,
J
t
S
z
-
1
)
;
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6
2
 
 
 

 P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
B
l
u
e
,
’
-
’
,
x
C
,
y
C
,
 
D
n
X
,
D
n
Y
,
 
0
.
6
,
’
 
F
c
’
)
;
 
{
.
.
n
o
r
m
a
l
 
f
o
r
c
e
}

6
3
 
 
 

  P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
C
y
a
n
,
’
-
’
,
x
C
,
y
C
,
 
y
C
/
O
1
C
,
(
O
O
1
-
x
C
)
/
O
1
C
,
 
0
.
5
,
’
V
c
’
)
;
 

6
4
 
 
 

P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
o
’
,
 
x
C
,
y
C
,
’
C
 
 
‘
)
;
 

6
5
 
 
 

  i
f
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
P
u
t
T
e
x
t
(
W
h
i
t
e
,
_
,
_
,
’

θ 
=
’
+
M
y
S
t
2
(
T
h
e
t
a
*
D
E
G
,
7
,
2
)

6
6
 
 
 

+
’
°
’
+
’
n
\

γ 
 
=
’
+
M
y
S
t
2
(
G
a
m
m
a
,
7
,
2
)
+
’
°
n
\
R
h
o
=
’
+
M
y
S
t
r
(
R
h
o
,
6
)
)
;

6
7
 
 
 

R
T
2
D
(
x
C
 
,
y
C
 
,
-
T
h
e
t
a
,
0
,
0
,
x
C
 
,
y
C
 
)
;
 
  {
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
 
}

6
8
 
 
 

R
T
2
D
(
x
C
i
,
y
C
i
,
-
T
h
e
t
a
,
0
,
0
,
x
C
i
,
y
C
i
)
;
 
  {
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
i
}

6
9
 
 
 

R
T
2
D
(
x
C
o
,
y
C
o
,
-
T
h
e
t
a
,
0
,
0
,
x
C
o
,
y
C
o
)
;
 
  {
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
o
}

7
0
 
 
 

i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
:
8
:
4
,
’
 
‘
,
P
h
i
*
D
E
G
:
1
0
:
6
,
’
 
‘

71
 
 
 

,G
am
ma
:8
:4
,’
 ‘
,G
am
_i
:8
:4
,’
 ‘
,G
am
_o
:8
:4
,’
 ‘
,R
ho
:1
0:
6,
’  
‘,
xC
:1
0:
6

72
 
 
 

,’
 ‘
,y
C:
10
:6
,’
 ‘
,x
Ci
:1
0:
6,
’  
‘,
yC
i:
10
:6
,’
 ‘
,x
Co
:1
0:
6,
’  
‘,
yC
o:
10
:6

7
3
 
 
 

,
’
 
 
‘
,
r
b
:
9
:
6
,
’
 
‘
,
r
t
:
9
:
6
)
;

7
4
 
 
 

I
n
c
(
i
)
;

7
5
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
(
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
O
R
 
(
A
n
i
m
 
=
 
0
)
)
;

7
6
 
 
C
l
o
s
e
(
F
T
)
;

7
7
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

7
8
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
7
_
1
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
y
n
t
h
e
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
i
t
h
 
f
l
a
t
-
f
a
c
e
d
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
}

6
 

 
 

  L
i
b
M
a
t
h
,
 
{
_
,
R
A
D
}

7
 

 
 

  L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 

  L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 

  L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
0
 
 
 

  L
i
b
C
a
m
s
,
 
{
E
n
v
e
l
O
f
L
i
n
e
s
,
E
n
d
E
n
v
e
l
o
p
e
s
}

1
1
 
 
 

  L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
}

1
2
 
 
 

  
 
  

{
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
C
o
l
o
r
 
=
 
1
;
 

{
0
 
f
o
l
l
o
w
e
r
 
f
a
c
e
 
o
n
l
y
,
 
1
 
m
o
r
e
 
d
e
t
a
i
l
s
 

}
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1
4
 
 
 

  
A
n
i
m
 

=
 
1
;
 

{
0
 
=
 
a
c
c
u
m
u
l
a
t
e
 
f
r
a
m
e
s
,
 
1
 
=
 
a
n
i
m
a
t
e
 

}
1
5
 
 
 

  
  n
P
L
 

=
 
1
0
0
0
;
 

{
p
o
l
a
r
 
l
i
n
e
s
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
-
 
m
a
x
i
m
u
m
 
1
0
0
0
 }

1
6
 
 
 

  
C
a
m
X
Y
 
=
’
C
a
m
1
4
’
;
  {
D
2
D
 
f
i
l
e
 
n
a
m
e
 
f
o
r
 
c
a
m
 
p
r
o
f
i
l
e
 

}
1
7
 
 
 

  
D
T
h
e
t
a
  =
 
2
*
P
i
;
 
{
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 
}

18
 
 
 

  
  Ga
mm
a  

= 
20
*R
AD
;  
{f
ol
lo
we
r  
fa
ce
 a
ng
le
 -
 p
os
it
iv
e  
or
 n
eg
at
iv
e  
}

1
9
 
 
 

  
D
s
 

=
 
1
.
0
;
 

{
f
o
l
l
o
w
e
r
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 

}
2
0
 
 
 

  
s
0
 

=
 
1
.
5
;
 

{
f
o
l
l
o
w
e
r
 
b
i
a
s
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 

}
2
1
 
 
 

  
x
P
C
 

=
 
0
.
0
;
 

{
x
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
}

2
2
 
 
 

  
y
P
C
 

=
 
0
.
0
;
 

{
y
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
}

2 3
 
 
 

  
PL
L  

= 
1.
2*
s0
+D
s;
 

{i
ni
ti
al
 p
ol
ar
 l
in
e  
le
ng
th
 i
n  
En
ve
lO
fL
in
es
 }

2
4
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;
 

r
b
,
r
t
,
 
d
F
,
d
C
,
T
h
e
t
a
,
 
s
,
x
A
,
y
A
,
x
B
,
y
B

2
5
 
 
 

,
x
D
,
y
D
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
,
 
P
Q
,
 
s
G
,
c
G
:
d
o
u
b
l
e
;

2
6
 
B
E
G
I
n

2
7
 
 
i
f
 
(
A
n
i
m
 
=
 
1
)
 
O
R
 
(
C
o
l
o
r
 
=
 
1
)
 
t
h
e
n
 
B
E
G
I
n

28
 
 
 

As
si
gn
(F
T,
’d
Fv
dC
_L
.X
Y’
);
 {
..
fo
ll
ow
er
 m
ot
io
n  
fi
le
 -
 r
ed
uc
ed
 s
iz
e}

2
9
 
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
4
A
.
D
X
F
’
)
;
 

{
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

3
0
 
 
E
n
D

3
1
 
 
e
l
s
e
 
B
E
G
I
n

3
2
 
 
 

A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
.
X
Y
’
)
;
  {
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
f
i
l
e
 
-
 
f
u
l
l
 
s
i
z
e
}

3
3
 
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
4
B
.
D
X
F
’
)
;
 

{
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

3
4
 
 
E
n
D
;

3
5
 
 
R
e
s
e
t
(
F
T
)
;

3
6
 
 
s
G
:
=
s
i
n
(
G
a
m
m
a
)
;
 

c
G
:
=
c
o
s
(
G
a
m
m
a
)
;

3
7
 
 
r
b
:
=
s
0
+
c
G
;
 

{
.
.
b
a
s
e
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

3
8
 
 
r
t
:
=
(
s
0
+
D
s
)
*
c
G
;
 
{
.
.
t
o
p
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

3
9
 
 
W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 

r
t
=
’
,
r
t
:
9
:
5
,
’
 

<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

4
0
 
 
P
Q
:
=
r
t
;
 

{
.
.
h
a
l
f
 
o
f
 
f
o
l
l
o
w
e
r
 
f
a
c
e
 
l
e
n
g
t
h
}

4
1
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
r
t
,
r
t
,
 
-
1
.
7
5
*
r
t
,
1
.
5
*
r
t
)
;

4
2
 
 
r
e
p
e
a
t

4
3
 
 
 

i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
5
0
)
;

4
4
 
 
 

R
e
a
d
L
n
(
F
T
,
d
C
,
d
F
)
;
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4
5
 
 
 

T
h
e
t
a
:
=
d
C
*
D
T
h
e
t
a
+
P
i
/
2
;
 
{
.
.
c
a
m
 
r
o
t
a
t
i
o
n
 
a
n
g
l
e
}

4
6
 
 
 

s
:
=
s
0
+
d
F
*
D
s
;
 

{
.
.
f
o
l
l
o
w
e
r
 
d
i
s
p
l
a
c
e
m
e
n
t
}

4
7
 
 
 

g
C
r
a
n
k
(
-
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
s
0
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
8
 
 
 

S
l
i
d
e
r
(
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
0
,
0
,
0
,
0
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
s
0
,
 
s
,
_
,
_

4
9
 
 
 

,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

5
0
 
 
 

  O
f
f
s
e
t
(
0
,
’
T
’
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
0
,
0
,
_
,
_
,
_
,
_
,
-
P
Q
*
s
G
,
 
P
Q
*
c
G
,
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

5
1
 
 
 

  O
f
f
s
e
t
(
0
,
’
T
’
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
0
,
0
,
_
,
_
,
_
,
_
,
 
P
Q
*
s
G
,
 
-
P
Q
*
c
G
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

5
2
 
 
 

  O
f
f
s
e
t
(
R
e
d
,
’
/
’
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
2
*
P
Q
,
0
,
_
,
_
,
_
,
_
,
_
,
_
)
;

5
3
 
 
 

i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
t
h
e
n

5
4
 
 
 

  
E
n
v
e
l
O
f
L
i
n
e
s
(
-
A
n
i
m
*
W
h
i
t
e
,
n
P
L
,
x
P
C
,
y
P
C
,
 
P
L
L
,
 
x
P
,
y
P
,
x
Q
,
y
Q
)

5
5
 
 
 

e
l
s
e
 
B
E
G
I
n

5
6
 
 
 

  
E
n
v
e
l
O
f
L
i
n
e
s
(
0
,
n
P
L
,
x
P
C
,
y
P
C
,
 
P
L
L
,
 
x
P
,
y
P
,
x
Q
,
y
Q
)
;

5
7
 
 
 

  
P
u
t
G
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
 
‘
,
0
,
0
,
’
O
 
 
 
‘
)
;

5
8
 
 
 

  
P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
 
A
’
)
;

5
9
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
D
,
y
D
,
x
B
,
y
B
,
’
 
B
’
)
;

6
0
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
B
,
y
B
,
x
D
,
y
D
,
’
 
 
D
’
)
;

6
1
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
Q
,
y
Q
,
x
P
,
y
P
,
’
P
’
)
;

6
2
 
 
 

  
L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
P
,
y
P
,
x
Q
,
y
Q
,
’
 
Q
’
)
;

6
3
 
 
 

  
  P
u
t
A
n
g
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
0
,
0
,
x
A
,
y
A
,
6
,
 
‘
<
’
+
#
2
3
3
+
’
|
’
)
;
 
{
.
.
#
2
3
3
=
T
h
e
t
a
}

6
4
 
 
 

  
P
u
t
D
i
s
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
D
,
y
D
,
-
1
0
,
 
‘
|
s
>
|
’
)
;

6
5
 
 
 

E
n
D
;

6
6
 
 
u
n
t
i
l
 
E
o
f
(
F
T
)
;

6
7
 
 
P
u
t
G
P
o
i
n
t
(
G
r
e
e
n
,
’
+
’
,
 
0
,
0
,
’
’
)
;
 
{
.
.
p
u
t
 
c
a
m
 
c
e
n
t
e
r
}

6
8
 
 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
A
n
D
 
(
A
n
i
m
 
=
 
0
)
 
t
h
e
n
 

6
9
 
 
 

E
n
d
E
n
v
e
l
o
p
e
s
(
C
a
m
X
Y
,
G
r
e
e
n
)
 
{
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
f
i
l
e
 
C
a
m
X
Y
.
D
2
D
}

7
0
 
 
e
l
s
e

7
1
 
 
 

  E
n
d
E
n
v
e
l
o
p
e
s
(
M
y
S
t
(
L
a
s
t
n
r
L
a
y
e
r
,
3
)
,
G
r
e
e
n
)
;
  {
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
l
a
s
t
 
l
a
y
e
r
}

7
2
 
 
C
l
o
s
e
M
e
c
D
X
F
;

7
3
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

7
4
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
A
n
i
m
 
=
 
0
)
;
 

7
5
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
7
_
1
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  K
i
n
e
m
a
t
i
c
 
a
n
a
l
y
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
i
t
h
 
f
l
a
t
-
f
a
c
e
d
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
M
a
g
e
n
t
a
,
B
l
u
e
,
C
y
a
n
,
W
h
i
t
e
}

6
 

 
 

  L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
}

7
 

 
 

  L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 

  L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 

  L
i
b
G
r
a
p
h
,
  {
p
_
X
,
p
_
Y
}

1
0
 
 
 

  L
i
b
G
e
2
D
,
 
{
R
T
2
D
}

1
1
 
 
 

  L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
2
 
 
 

  L
i
b
C
a
m
s
,
 
{
G
e
t
P
r
o
f
i
l
e
R
a
d
i
i
,
R
o
t
C
a
m
T
r
a
n
s
F
l
a
t
}

1
3
 
 
 

  L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
}

1
4
 
 
 

  
 

 
{
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
5
 
c
o
n
s
t
 
n
P
o
z
 
 
=
 
9
0
;
 

{
n
u
m
b
e
r
 
o
f
 
c
a
m
 
p
o
s
i
t
i
o
n
s
 
(
9
0
 
w
i
t
h
 
A
n
i
m
 
=
 
1
)
}

1
6
 
 
 

  
A
n
i
m
 
 
=
 
1
;
 

{
0
 
=
 
a
n
i
m
a
t
i
o
n
 
O
F
F
,
 
1
 
=
 
a
n
i
m
a
t
i
o
n
 
O
N
 

}
1
7
 
 
 

  
C
a
m
X
Y
 
=
’
C
a
m
1
4
’
;
 
{
.
D
2
D
 
i
n
p
u
t
 
f
i
l
e
 
w
i
t
h
 
c
a
m
 
p
r
o
f
i
l
e
 
p
o
i
n
t
s
 
}

1
8
 
 
 

  
D
T
h
e
t
a
=
 
2
*
P
i
;
 

{
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
  }

1
9
 
 
 

  
G
a
m
m
a
 
=
 
2
0
*
R
A
D
;
 {
f
o
l
l
o
w
e
r
 
a
n
g
l
e
 
i
n
 
d
e
g
r
e
e
s
 

}
2
0
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;
 

i
,
S
k
i
p
:
I
n
t
e
g
e
r
;
 

r
b
,
r
t
,
 
s
,
 
s
G
,
c
G

2
1
 
 
 

,
x
A
,
y
A
,
 
T
h
e
t
a
,
R
h
o
,
 
x
C
,
y
C
,
x
P
,
y
P
,
x
Q
,
y
Q
,
P
Q
:
 
d
o
u
b
l
e
;

2
2
 
B
E
G
I
n

2
3
 
 
i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
t
h
e
n
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
5
.
D
X
F
’
)
;
 
  {
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

2
4
 
 

A
s
s
i
g
n
(
F
T
,
’
F
7
_
1
5
.
T
X
T
’
)
;
 
 
R
e
w
r
i
t
e
(
F
T
)
;
   {
.
.
o
u
t
p
u
t
 
A
S
C
I
I
 
d
a
t
a
 
f
i
l
e
}

2
5
 
 
G
e
t
P
r
o
f
i
l
e
R
a
d
i
i
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
r
b
,
r
t
)
;
 
  {
.
.
g
e
t
 
b
a
s
e
 
&
 
t
o
p
 
c
i
r
c
l
e
 
r
a
d
i
i
}

2
6
 
 
W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 
 
r
t
=
’
,
r
t
:
9
:
5
,
’
 
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

2
7
 
 
  W
r
i
t
e
L
n
(
F
T
,
C
a
m
X
Y
+
’
.
D
2
D
 
c
a
m
 
w
i
t
h
 
f
l
a
t
-
f
a
c
e
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r
’
)
;

2
8
 
 
  W
r
i
t
e
L
n
(
F
T
,
’
D
T
h
e
t
a
=
’
,
D
T
h
e
t
a
*
D
E
G
:
6
:
2
,
’
 G
a
m
m
a
=
’
,
G
a
m
m
a
*
D
E
G
:
8
:
3
)
;

2
9
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 

T
h
e
t
a
 

s
 

R
h
o
 

x
C
 

y
C
’

3
0
 
 
,
’
 
r
b
 

r
t
’
)
;

3
1
 
 
s
G
:
=
s
i
n
(
G
a
m
m
a
)
;
 

c
G
:
=
c
o
s
(
G
a
m
m
a
)
;
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3
2
 
 
P
Q
:
=
0
.
8
5
*
r
t
;

3
3
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
2
*
r
t
,
1
.
2
*
r
t
,
 
-
1
.
2
*
r
t
,
1
.
5
*
r
t
)
;

3
4
 
 
i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
S
k
i
p
:
=
1
 
e
l
s
e
 
S
k
i
p
:
=
n
P
o
z
 
D
I
V
 
1
0
;

3
5
 
 
i
:
=
0
;

3
6
 
 
r
e
p
e
a
t

3
7
 
 
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
8
 
 
 

  
i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;

3
9
 
 
 

E
n
D
;

4
0
 
 
 

i
f
 
(
A
n
i
m
 
=
 
1
)
 
O
R
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
0
)
;

4
1
 
 
 

T
h
e
t
a
:
=
-
D
T
h
e
t
a
*
i
/
n
P
o
z
;

4
2
 
 
 

g
C
r
a
n
k
(
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
r
b
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
3
 
 
 

  S
h
a
p
e
(
‘
’
,
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
x
A
,
y
A
)
;
 
{
.
.
d
r
a
w
 
c
a
m
 
b
a
s
e
 
c
i
r
c
l
e
}

4
4
 
 
 

  S
h
a
p
e
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
A
n
i
m
*
R
e
d
,
0
,
0
,
x
A
,
y
A
)
;
 
{
.
.
d
r
a
w
 
c
a
m
 
f
r
o
m
 
f
i
l
e
}

4
5
 
 
 

R
o
t
C
a
m
T
r
a
n
s
F
l
a
t
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
T
h
e
t
a
,
G
a
m
m
a
,
s
,
x
C
,
y
C
,
R
h
o
)
;

4
6
 
 
 

x
P
:
=
 
P
Q
*
c
G
;
 
 
y
P
:
=
s
+
P
Q
*
s
G
;

4
7
 
 
 

x
Q
:
=
-
P
Q
*
c
G
;
 
 
y
Q
:
=
s
-
P
Q
*
s
G
;

4
8
 
 
 

i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
t
h
e
n

4
9
 
 
 

  
  P
D
l
i
n
e
(
‘
’
,
X
_
p
(
x
P
)
,
Y
_
p
(
y
P
)
,
X
_
p
(
x
Q
)
,
Y
_
p
(
y
Q
)
)
;
 
{
.
.
d
r
a
w
 
f
o
l
l
o
w
e
r
 
f
a
c
e
}

5
0
 
 
 

P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
C
y
a
n
,
’
-
’
,
x
C
,
y
C
,
 
0
,
1
.
0
,
 
1
.
0
,
’
V
c
’
)
;

5
1
 
 
 

  P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
B
l
u
e
,
’
-
’
,
x
C
,
y
C
,
-
(
y
P
-
y
Q
)
/
P
Q
,
(
x
P
-
x
Q
)
/
P
Q
,
 
0
.
5
5
,
’
F
c
’
)
;

5
2
 
 
 

P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
o
’
,
 
x
C
,
y
C
,
’
  C
’
)
;
 

{
.
.
c
o
n
t
a
c
t
 
p
o
i
n
t
 
C
}

5
3
 
 
 

  i
f
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
P
u
t
T
e
x
t
(
W
h
i
t
e
,
_
,
_
,
’

θ 
=
’
+
M
y
S
t
2
(
T
h
e
t
a
*
D
E
G
,
7
,
2
)

5
4
 
 
 

+
’
°
’
+
’
n
\

γ 
 
=
’
+
M
y
S
t
2
(
G
a
m
m
a
*
D
E
G
,
7
,
2
)
+
’
°
n
\
R
h
o
=
’
+
M
y
S
t
r
(
R
h
o
,
6
)
)
;

5
5
 
 
 

R
T
2
D
(
x
C
,
y
C
,
-
T
h
e
t
a
,
0
,
0
,
x
C
,
y
C
)
;
 
{
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
}

5
6
 
 
 

i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
 
W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
:
8
:
4
,
’
 
‘
,
s
:
1
0
:
6
,
’
 
‘
,
R
h
o
:
1
0
:
6

5
7
 
 
 

,
’
 
‘
,
x
C
:
1
0
:
6
,
’
 
‘
,
y
C
:
1
0
:
6
,
’
 
‘
,
r
b
:
9
:
5
,
’
 
‘
,
r
t
:
9
:
5
)
;

5
8
 
 
 

I
n
c
(
i
)
;

5
9
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
(
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
O
R
 
(
A
n
i
m
 
=
 
0
)
)
;

6
0
 
 
C
l
o
s
e
(
F
T
)
;

6
1
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
 
{
.
.
e
r
a
s
e
 
a
l
l
 
.
$
2
D
 
f
i
l
e
s
}

6
2
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
7
_
1
8
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
y
n
t
h
e
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
i
t
h
 
f
l
a
t
-
f
a
c
e
 
o
s
c
i
l
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 
 
L
i
b
G
r
a
p
h
,
  {
p
2
R
1
2
1
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
1
 
 
 
 
L
i
b
C
a
m
s
,
 
{
E
n
v
e
l
O
f
L
i
n
e
s
,
E
n
d
E
n
v
e
l
o
p
e
s
}

1
2
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
}

1
3
 
 
 
 
  

 
{
S
h
a
p
e
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
4
 
c
o
n
s
t
 
C
o
l
o
r
 
=
 
0
;
 

{
0
 
f
o
l
l
o
w
e
r
 
f
a
c
e
 
o
n
l
y
,
 
1
 
e
n
t
i
r
e
 
m
e
c
h
a
n
i
s
m
 
}

1
5
 
 
 
 
  A
n
i
m
 

=
 
0
;
 

{
0
 
=
 
a
c
c
u
m
u
l
a
t
e
 
f
r
a
m
e
s
,
 
1
 
=
 
a
n
i
m
a
t
e
}

1
6
 
 
 
 
   n
P
L
 

=
 
1
0
0
0
;
 

{
p
o
l
a
r
 
l
i
n
e
s
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
-
 
m
a
x
i
m
u
m
 
1
0
0
0
 }

1
7
 
 
 
 
  C
a
m
X
Y
 
=
’
C
a
m
1
8
’
;
 {
c
a
m
 
p
r
o
f
i
l
e
 
n
a
m
e
 
-
 
i
m
p
l
i
c
i
t
 
f
i
l
e
 
e
x
t
.
 
D
2
D
 
}

1
8
 
 
 
 
  D
T
h
e
t
a
=
 
2
*
P
i
;
 

{
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 

}
1
9
 
 
 
 
  P
h
i
0
 

=
 
3
5
*
R
A
D
;
 {
f
o
l
l
o
w
e
r
 
b
y
a
s
 
i
n
 
d
e
g
r
e
e
s
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 

}
2
0
 
 
 
 
  D
P
h
i
 

=
 
1
5
*
R
A
D
;
 {
f
o
l
l
o
w
e
r
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 

}
2
1
 
 
 
 
  O
O
1
 

=
 
3
.
5
;
 

  {
c
a
m
-
f
o
l
l
o
w
e
r
 
c
e
n
t
e
r
 
d
i
s
t
a
n
c
e
 
-
 
p
o
s
i
t
i
v
e
 
o
n
l
y
 

}
2
2
 
 
 
 
  O
1
P
 

=
 
0
.
4
;
 

{
f
o
l
l
o
w
e
r
 
o
f
f
s
e
t
 
-
 
p
o
s
i
t
i
v
e
 
o
r
 
n
e
g
a
t
i
v
e
 

}
2
3
 
 
 
 
  x
P
C
 

=
 
0
.
0
;
 

{
x
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
}

2
4
 
 
 
 
  y
P
C
 

=
 
0
.
0
;
 

{
y
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
}

2
5
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;
 

r
b
,
r
t
,
 
P
Q
,
 
d
C
,
d
F
,
 
T
h
e
t
a
,
P
h
i
,
x
O
1
,
y
O
1

2
6
 
 
 
,
x
A
,
y
A
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
,
 
x
P
P
,
y
P
P
:
 
d
o
u
b
l
e
;

2
7
 
B
E
G
I
n

2
8
 
 
i
f
 
(
A
n
i
m
 
=
 
1
)
 
O
R
 
(
C
o
l
o
r
 
=
 
1
)
 
t
h
e
n
 
B
E
G
I
n

2
9
 
 
 
  A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
_
L
.
X
Y
’
)
;
 
  {
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
f
i
l
e
 
-
 
r
e
d
u
c
e
d
 
s
i
z
e
}

3
0
 
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
8
A
.
D
X
F
’
)
;

3
1
 
 
E
n
D
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3
2
 
 
e
l
s
e
 
B
E
G
I
n

3
3
 
 
 
  A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
.
X
Y
’
)
;
  {
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
f
i
l
e
 
-
 
f
u
l
l
 
s
i
z
e
}

3
4
 
 
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
8
B
.
D
X
F
’
)
;

3
5
 
 
E
n
D
;

3
6
 
 
R
e
s
e
t
(
F
T
)
;

3
7
 
 
r
b
:
=
O
1
P
+
O
O
1
*
s
i
n
(
P
h
i
0
)
;
 

{
.
.
b
a
s
e
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

3
8
 
 
r
t
:
=
O
1
P
+
O
O
1
*
s
i
n
(
P
h
i
0
+
D
P
h
i
)
;
 

{
.
.
t
o
p
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

3
9
 
 
W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 

r
t
=
’
,
r
t
:
9
:
5
,
’
 
<
C
R
>
.
.
’
)
;
 R
e
a
d
L
n
;

4
0
 
 
P
Q
:
=
1
.
5
*
O
O
1
;
  {
.
.
f
o
l
l
o
w
e
r
 
f
a
c
e
 
l
e
n
g
t
h
}

4
1
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
1
*
O
O
1
,
1
.
1
*
O
O
1
,
-
1
.
5
*
O
O
1
,
1
.
5
*
O
O
1
)
;

4
2
 
 
r
e
p
e
a
t

4
3
 
 
 
i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
5
0
)
;

4
4
 
 
 
R
e
a
d
L
n
(
F
T
,
d
C
,
d
F
)
;

4
5
 
 
 
T
h
e
t
a
:
=
d
C
*
D
T
h
e
t
a
;
 

{
.
.
c
a
m
 
r
o
t
a
t
i
o
n
 
a
n
g
l
e
}

4
6
 
 
 
P
h
i
:
=
P
h
i
0
+
d
F
*
D
P
h
i
;
 

{
.
.
f
o
l
l
o
w
e
r
 
d
i
s
p
l
a
c
e
m
e
n
t
}

4
7
 
 
 
g
C
r
a
n
k
(
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
O
O
1
,
x
O
1
,
y
O
1
,
_
,
_
,
_
,
_
)
;

4
8
 
 
 
C
r
a
n
k
(
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
_
,
_
,
_
,
_
,
x
O
1
,
y
O
1
,
_
,
_
,
_
,
_

4
9
 
 
 
,
0
.
5
*
P
i
-
P
h
i
,
_
,
_
,
p
2
R
1
2
1
(
1
0
.
5
*
J
t
S
z
)
,
x
P
P
,
y
P
P
,
_
,
_
,
_
,
_
)
;

5
0
 
 
 
  O
f
f
s
e
t
(
C
o
l
o
r
,
’
 
‘
,
x
O
1
,
y
O
1
,
_
,
_
,
_
,
_
,
x
P
P
,
y
P
P
,
_
,
_
,
_
,
_
,
O
1
P
,
0
,
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

5
1
 
 
 
O
f
f
s
e
t
(
R
e
d
,
’
I
’
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
O
1
,
y
O
1
,
_
,
_
,
_
,
_

5
2
 
 
 
,
0
,
-
S
g
n
(
O
1
P
)
*
P
Q
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

5
3
 
 
 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
t
h
e
n

5
4
 
 
 
 
  E
n
v
e
l
O
f
L
i
n
e
s
(
-
A
n
i
m
*
W
h
i
t
e
,
n
P
L
,
x
P
C
,
y
P
C
,
 
O
O
1
,
 
x
P
,
y
P
,
x
Q
,
y
Q
)

5
5
 
 
 
e
l
s
e
 
B
E
G
I
n

5
6
 
 
 
 
  E
n
v
e
l
O
f
L
i
n
e
s
(
0
,
n
P
L
,
x
P
C
,
y
P
C
,
 
O
O
1
,
 
x
P
,
y
P
,
x
Q
,
y
Q
)
;

5
7
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
 
‘
,
0
,
0
,
’
O
 
‘
)
;

5
8
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
P
,
y
P
,
x
O
1
,
y
O
1
,
’
 
O
1
’
)
;

5
9
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
Q
,
y
Q
,
x
P
,
y
P
,
’
 
P
’
)
;

6
0
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
P
,
y
P
,
x
Q
,
y
Q
,
’
 
Q
’
)
;

6
1
 
 
 
 
   P
u
t
A
n
g
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
0
,
0
,
x
O
1
,
y
O
1
,
 
5
,
 
‘
<
’
+
#
2
3
3
+
’
|
’
)
;
 

{
.
.
#
2
3
3
=
T
h
e
t
a
}

6
2
 
 
 
 
  P
u
t
A
n
g
(
A
n
i
m
*
W
h
i
t
e
,
2
*
x
O
1
,
2
*
y
O
1
,
x
O
1
,
y
O
1
,
x
P
P
,
y
P
P
,
 
1
0
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6
3
 
 
 
 
 ,
’
<
’
+
#
2
2
7
+
’
/
2
-
’
+
#
2
3
7
+
’
|
’
)
;
 {
.
.
#
2
2
7
=
P
i
 
a
n
d
 
#
2
3
7
=
P
h
i
 
}

6
4
 
 
 
E
n
D
;

6
5
 
 
u
n
t
i
l
 
E
o
f
(
F
T
)
;

6
6
 
 
P
u
t
G
P
o
i
n
t
(
G
r
e
e
n
,
’
+
’
,
 
0
,
0
,
’
’
)
;
 
{
.
.
m
a
r
k
 
c
a
m
 
c
e
n
t
e
r
}

6
7
 
 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
A
n
D
 
(
A
n
i
m
 
=
 
0
)
 
t
h
e
n

6
8
 
 
 
E
n
d
E
n
v
e
l
o
p
e
s
(
C
a
m
X
Y
,
G
r
e
e
n
)
 

{
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
f
i
l
e
 
C
a
m
X
Y
.
D
2
D
}

6
9
 
 
e
l
s
e

7
0
 
 
 
E
n
d
E
n
v
e
l
o
p
e
s
(
M
y
S
t
(
L
a
s
t
n
r
L
a
y
e
r
,
3
)
,
G
r
e
e
n
)
;
   {
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
l
a
s
t
 
l
a
y
e
r
}

7
1
 
 
C
l
o
s
e
M
e
c
D
X
F
;

7
2
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

7
3
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
A
n
i
m
 
=
 
0
)
;
 
 

7
4
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
7
_
1
9
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
  K
i
n
e
m
a
t
i
c
 
a
n
a
l
y
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
i
t
h
 
f
l
a
t
-
f
a
c
e
 
o
s
c
i
l
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
M
a
g
e
n
t
a
,
B
l
u
e
,
C
y
a
n
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
}

7
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
G
r
a
p
h
,
  {
p
_
X
,
p
_
Y
}

1
0
 
 
 
 
L
i
b
G
e
2
D
,
 
{
U
2
d
i
r
s
2
D
9
0
}

1
1
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
2
 
 
 
 
L
i
b
C
a
m
s
,
 
{
G
e
t
P
r
o
f
i
l
e
R
a
d
i
i
,
R
o
t
C
a
m
O
s
c
i
l
F
l
a
t
}

1
3
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
L
_
l
i
n
e
}

1
4
 
 
 
 
  

 
{
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
5
 
c
o
n
s
t
 
n
P
o
z
 
=
 
3
6
0
;
 

{
n
u
m
b
e
r
 
o
f
 
c
a
m
 
p
o
s
i
t
i
o
n
s
 

}
1
6
 
 
 
 
  A
n
i
m
 

=
 
0
;
 

{
0
 
=
 
a
n
i
m
a
t
i
o
n
 
O
F
F
,
 
1
 
=
 
a
n
i
m
a
t
i
o
n
 
O
N
 

}
1
7
 
 
 
 
  C
a
m
X
Y
 
=
’
C
a
m
1
8
’
;
 
{
D
2
D
 
i
n
p
u
t
 
f
i
l
e
 
w
i
t
h
 
c
a
m
 
p
r
o
f
i
l
e
 
p
o
i
n
t
s
 
}

1
8
 
 
 
 
  D
T
h
e
t
a
=
 
2
*
P
i
;
 

{
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 
}
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19
 
 
 
 
 O
O1
 

= 
3.
5;
 

{c
am
-f
ol
lo
we
r 
ce
nt
er
 d
is
ta
nc
e 
- 
po
si
ti
ve
 o
nl
y 
}

2
0
 
 
 
 
  O
1
P
 

=
 
0
.
4
;
 

{
f
o
l
l
o
w
e
r
 
o
f
f
s
e
t
 
-
 
p
o
s
i
t
i
v
e
 
o
r
 
n
e
g
a
t
i
v
e
 
}

2
1
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;
 

i
,
S
k
i
p
:
I
n
t
e
g
e
r
;
 

r
b
,
r
t
,
 
P
Q
,
O
1
C
,
x
A
,
y
A

2
2
 
 
 

,
T
h
e
t
a
,
P
h
i
,
R
h
o
,
G
a
m
m
a
,
 
x
C
,
y
C
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
:
d
o
u
b
l
e
;

2
3
 
B
E
G
I
n

2
4
 
 
i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
t
h
e
n
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
1
9
.
D
X
F
’
)
;
 
 {
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

2
5
 
 
A
s
s
i
g
n
(
F
T
,
’
F
7
_
1
9
.
T
X
T
’
)
;
 
 
R
e
w
r
i
t
e
(
F
T
)
;
 

  {
.
.
o
u
t
p
u
t
 
A
S
C
I
I
 
d
a
t
a
 
f
i
l
e
}

2
6
 
 
G
e
t
P
r
o
f
i
l
e
R
a
d
i
i
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
r
b
,
r
t
)
;
 

 {
.
.
e
x
t
r
a
c
t
 
b
a
s
e
 
&
 
t
o
p
 
c
i
r
c
l
e
 
r
a
d
i
i
}

2
7
 
 

W
r
i
t
e
(
‘
r
b
=
’
,
r
b
:
9
:
5
,
’
,
 
 
r
t
=
’
,
r
t
:
9
:
5
,
’
  <
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

2
8
 
 

I
f
 
(
r
t
 
>
 
O
O
1
)
 
O
R
 
(
A
b
s
(
O
1
P
)
 
>
 
r
t
)
 
t
h
e
n
 
B
E
G
I
n

2
9
 
 
 

W
r
i
t
e
(
‘
I
n
p
r
o
p
e
r
 
O
O
1
,
 
O
1
P
 
o
r
 
P
Q
 
v
a
l
u
e
s
!
 
<
C
R
>
.
.
’
)
;
 

R
e
a
d
L
n
;

3
0
 
 
 

H
a
l
t
;

3
1
 
 

E
n
D
;

3
2
 
 
  W
r
i
t
e
L
n
(
F
T
,
C
a
m
X
Y
+
’
.
D
2
D
 
c
a
m
 
w
i
t
h
 
k
n
i
f
e
-
e
d
g
e
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r
’
)
;

3
3
 
 
  W
r
i
t
e
L
n
(
F
T
,
’
D
T
h
e
t
a
=
’
,
D
T
h
e
t
a
*
D
E
G
:
6
:
2
,
’
;
 
O
O
1
=
’
,
O
O
1
:
6
:
2
,
’
;
 
O
1
P
=
’
,
O
1
P
:
6
:
2
)
;

3
4
 
 

W
r
i
t
e
L
n
(
F
T
,
’
  T
h
e
t
a
 
P
h
i
 

G
a
m
m
a
 
R
h
o
 

‘
3
5
 
 

,
‘
x
C
 

y
C
 

r
b
 

r
t
’
)
;

3
6
 
 

P
Q
:
=
1
.
5
*
O
O
1
;
  {
.
.
f
o
l
l
o
w
e
r
 
f
a
c
e
 
l
e
n
g
t
h
}

3
7
 
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
1
*
r
t
,
1
.
1
*
O
O
1
,
-
1
.
1
*
r
t
,
1
.
5
*
r
t
)
;

3
8
 
 

i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
S
k
i
p
:
=
1
 
e
l
s
e
 
S
k
i
p
:
=
n
P
o
z
 
D
I
V
 
1
0
;

3
9
 
 

i
:
=
0
;

4
0
 
 

r
e
p
e
a
t

4
1
 
 
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

4
2
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

4
3
 
 
 

E
n
D
;

4
4
 
 
 

i
f
 
(
A
n
i
m
 
=
 
1
)
 
O
R
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
0
)
;

4
5
 
 
 

T
h
e
t
a
:
=
-
D
T
h
e
t
a
*
i
/
n
P
o
z
;

4
6
 
 
 

g
C
r
a
n
k
(
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
r
b
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
7
 
 
 

S
h
a
p
e
(
‘
’
,
A
n
i
m
*
M
a
g
e
n
t
a
,
0
,
0
,
x
A
,
y
A
)
;
 
{
.
.
d
r
a
w
 
c
a
m
 
b
a
s
e
 
c
i
r
c
l
e
}

48
 
 
 
Sh
ap
e(
Ca
mX
Y+
’.
D2
D’
,A
ni
m*
Re
d,
0,
0,
xA
,y
A)
;  

{.
.d
ra
w  
ca
m  
fr
om
 f
il
e}

4
9
 
 
 
R
o
t
C
a
m
O
s
c
i
l
F
l
a
t
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
O
O
1
,
O
1
P
,
T
h
e
t
a
,
 
P
h
i
,
x
C
,
y
C
,
R
h
o
)
;
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5
0
 
 
 
O
1
C
:
=
D
i
s
t
2
P
t
s
2
D
(
x
C
,
y
C
,
O
O
1
,
0
)
;

5
1
 
 
 
x
P
:
=
O
O
1
 
+
 
O
1
P
*
c
o
s
(
0
.
5
*
P
i
-
P
h
i
)
;

5
2
 
 
 
y
P
:
=
  O
1
P
*
s
i
n
(
0
.
5
*
P
i
-
P
h
i
)
;

5
3
 
 
 
x
Q
:
=
x
P
 
+
 
P
Q
*
c
o
s
(
P
i
-
P
h
i
)
;

5
4
 
 
 
y
Q
:
=
y
P
 
+
 
P
Q
*
s
i
n
(
P
i
-
P
h
i
)
;

5
5
 
 
 
i
f
 
(
A
n
i
m
 
<
>
 
0
)
 
t
h
e
n
 
 
L
L
i
n
e
(
X
_
p
(
O
O
1
)
,
Y
_
p
(
0
)
,
x
_
p
(
x
P
)
,
Y
_
p
(
y
P
)

5
6
 
 
 
 
  ,
x
_
p
(
x
Q
)
,
Y
_
p
(
y
Q
)
,
J
t
S
z
,
J
t
S
z
)
;
 
 
{
.
.
d
r
a
w
 
f
o
l
l
o
w
e
r
}

5
7
 
 
 
  P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
B
l
u
e
,
’
-
’
,
x
C
,
y
C
,
-
(
y
P
-
y
Q
)
/
P
Q
,
(
x
P
-
x
Q
)
/
P
Q
,
 
1
.
4
,
’
F
c
’
)
;

5
8
 
 
 
  P
u
t
V
e
c
t
o
r
(
A
n
i
m
*
C
y
a
n
,
’
-
’
,
x
C
,
y
C
,
 
y
C
/
O
1
C
,
(
O
O
1
-
x
C
)
/
O
1
C
,
 
1
.
2
,
’
V
c
’
)
;

5
9
 
 
 
P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
o
’
,
 
x
C
,
y
C
,
’
C
 
 
‘
)
;
 
 
{
.
.
c
o
n
t
a
c
t
 
p
o
i
n
t
 
C
}

6
0
 
 
 
P
u
t
G
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
/
’
,
 
O
O
1
,
0
,
’
’
)
;
 
{
.
.
g
r
o
u
n
d
 
p
i
n
 
j
o
i
n
 
O
1
}

6
1
 
 
 
  G
a
m
m
a
:
=
U
2
d
i
r
s
2
D
9
0
(
-
(
y
P
-
y
Q
)
/
P
Q
,
(
x
P
-
x
Q
)
/
P
Q
,
y
C
/
O
1
C
,
(
O
O
1
-
x
C
)
/
O
1
C
)
*
D
E
G
;

6
2
 
 
 
  i
f
 
(
i
 
M
O
D
 
S
k
i
p
 
=
 
0
)
 
t
h
e
n
 
P
u
t
T
e
x
t
(
W
h
i
t
e
,
_
,
_
,
’

θ 
 
=
’
+
M
y
S
t
2
(
T
h
e
t
a
*
D
E
G
,
7
,
2
)

6
3
 
 
 
+
’
°
’
+
’
n
\

γ 
 
=
’
+
M
y
S
t
2
(
G
a
m
m
a
,
7
,
2
)
+
’
°
n
\
R
h
o
=
’
+
M
y
S
t
r
(
R
h
o
,
6
)
)
;

6
4
 
 
 
R
T
2
D
(
x
C
,
y
C
,
-
T
h
e
t
a
,
0
,
0
,
x
C
,
y
C
)
;
 
 
{
.
.
r
o
t
a
t
e
 
b
a
c
k
w
a
r
d
s
 
p
o
i
n
t
 
C
}

6
5
 
 
 
  i
f
 
M
e
c
O
u
t
 
t
h
e
n
 

W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
:
8
:
4
,
’
 
‘
,
P
h
i
*
D
E
G
:
1
0
:
6
,
’
 
‘
,
G
a
m
m
a
:
8
:
4

6
6
 
 
 
,
’
 
‘
,
R
h
o
:
1
0
:
6
,
’
 
‘
,
x
C
:
1
0
:
6
,
’
 
‘
,
y
C
:
1
0
:
6
,
’
 
‘
,
r
b
:
9
:
6
,
’
 
‘
,
r
t
:
9
:
6
)
;

6
7
 
 
 
I
n
c
(
i
)
;

6
8
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
(
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
O
R
 
(
A
n
i
m
 
=
 
0
)
)
;

6
9
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

{
.
.
e
r
a
s
e
 
a
l
l
 
.
$
2
D
 
f
i
l
e
s
}

7
0
 
 
C
l
o
s
e
(
F
T
)
;

7
1
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
7
_
2
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
y
n
t
h
e
s
i
s
 
o
f
 
d
i
s
c
 
c
a
m
s
 
w
i
t
h
 
a
r
c
-
f
a
c
e
d
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
 
{
_
,
R
A
D
}

7
 

 
 
 
L
i
b
G
r
a
p
h
,
  {
p
_
X
,
p
_
Y
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}
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9
 

 
 
 
L
i
b
I
n
O
u
t
,
 {
I
s
K
e
y
P
r
e
s
s
e
d
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
1
 
 
 
 
L
i
b
C
a
m
s
,
 
{
E
n
v
e
l
O
f
C
i
r
c
l
e
s
,
E
n
d
E
n
v
e
l
o
p
e
s
}

1
2
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
}

1
3
 
 
 
 
  

 
  {
P
u
t
A
n
g
,
P
u
t
D
i
s
t
,
L
o
c
u
s
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
4
 
c
o
n
s
t
 
C
o
l
o
r
 
=
 
1
;
 

{
0
 
f
o
l
l
o
w
e
r
 
f
a
c
e
 
o
n
l
y
,
 
1
 
m
o
r
e
 
d
e
t
a
i
l
s
 
 
 
 
 
 
}

1
5
 
 
 
 
  A
n
i
m
 
 
=
 
1
;
 

{
0
 
=
 
a
c
c
u
m
u
l
a
t
e
 
f
r
a
m
e
s
,
 
1
 
=
 
a
n
i
m
a
t
e
 
 
 
 
 
 
 
 
}

1
6
 
 
 
 
  C
a
m
X
Y
 
=
’
C
a
m
2
3
’
;
 
{
D
2
D
 
f
i
l
e
 
n
a
m
e
 
f
o
r
 
c
a
m
 
p
r
o
f
i
l
e
 
 
 
 
 
 
 
 
 
 
 
 
 
}

1
7
 
 
 
 
  D
T
h
e
t
a
=
 
2
*
P
i
;
 

{
c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 
 
 
 
}

1
8
 
 
 
 
  G
a
m
m
a
 
=
-
1
0
*
R
A
D
;
 
{
f
o
l
l
o
w
e
r
 
f
a
c
e
 
a
n
g
l
e
 
-
 
p
o
s
i
t
i
v
e
 
o
r
 
n
e
g
a
t
i
v
e
}

1
9
 
 
 
 
  D
s
 
 
 
 
=
 
1
.
0
;
 

{
f
o
l
l
o
w
e
r
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 
 
 
 
 
 
 
 
 
 
}

2
0
 
 
 
 
  s
0
 
 
 
 
=
 
1
.
5
;
 

{
f
o
l
l
o
w
e
r
 
b
i
a
s
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}

2
1
 
 
 
 
  n
P
L
 
=
 
1
0
0
0
;
 

{
p
o
l
a
r
 
l
i
n
e
s
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
-
 
m
a
x
i
m
u
m
 
1
0
0
0
}

2
2
 
 
 
 
  x
P
C
 
=
 
0
.
0
;
 

{
x
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
 
}

2
3
 
 
 
 
  y
P
C
 
=
 
0
.
0
;
 

{
y
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
 
}

2
4
 
 
 
 
  P
L
L
 
=
 
1
.
5
*
s
0
+
D
s
;
 {
i
n
i
t
i
a
l
 
p
o
l
a
r
 
l
i
n
e
 
l
e
n
g
t
h
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 
}

25
 
 
 
 
  x
_1
=-
2.
00
;  
y_
1=
 0
.4
0;
 
{1
st
 p
oi
nt
 o
n  
fo
ll
ow
er
 a
rc
 r
el
.  
to
 O
1P
 }

2 6
 
 
 
 
  x
_2
=  
0.
00
;  
y_
2=
 0
.0
0;
 
{2
st
 p
oi
nt
 o
n  
fo
ll
ow
er
 a
rc
 r
el
.  
to
 O
1P
 }

2 7
 
 
 
 
  x
_3
=  
2.
00
;  
y_
3=
 0
.4
0;
 
{3
st
 p
oi
nt
 o
n  
fo
ll
ow
er
 a
rc
 r
el
.  
to
 O
1P
 }

2
8
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;
 

d
F
,
d
C
,
T
h
e
t
a
,
 
s
,
x
A
,
y
A
,
x
B
,
y
B
,
 
D
P
,

2
9
 
 
 
x
1
,
y
1
,
x
2
,
y
2
,
x
3
,
y
3
,
 
x
D
,
y
D
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
,
 
s
G
,
c
G
:
d
o
u
b
l
e
;

3
0
 
B
E
G
I
n

3
1
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
2
3
.
D
X
F
’
)
;
  {
.
.
o
u
t
p
u
t
 
M
3
D
-
D
X
F
 
f
i
l
e
}

3
2
 
 
i
f
 
(
A
n
i
m
 
=
 
1
)
 
O
R
 
(
C
o
l
o
r
 
=
 
1
)
 
t
h
e
n

3
3
 
 
 
  A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
_
L
.
X
Y
’
)
 
  {
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
f
i
l
e
 
-
 
r
e
d
u
c
e
d
 
s
i
z
e
}

3
4
 
 
e
l
s
e

3
5
 
 
 
  A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
.
X
Y
’
)
;
  {
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
f
i
l
e
 
-
 
f
u
l
l
 
s
i
z
e
}

3
6
 
 

R
e
s
e
t
(
F
T
)
;

3
7
 
 
s
G
:
=
s
i
n
(
G
a
m
m
a
)
;
 
 
c
G
:
=
c
o
s
(
G
a
m
m
a
)
;

3
8
 
 
D
P
:
=
s
0
;

3
9
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
2
*
P
L
L
,
1
.
2
*
P
L
L
,
 
-
1
.
5
*
P
L
L
,
1
.
2
*
P
L
L
)
;



Appendix�b:�Selected�Source�code    ◾    535

4
0
 
 
r
e
p
e
a
t

4
1
 
 
 
i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
5
0
)
;

4
2
 
 
 
  g
S
h
a
p
e
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
C
o
l
o
r
*
C
y
a
n
,
0
,
0
)
;
 
  {
.
.
d
r
a
w
 
c
a
m
 
p
r
o
f
i
l
e
 
f
r
o
m
 
f
i
l
e
}

4
3
 
 
 
R
e
a
d
L
n
(
F
T
,
d
C
,
d
F
)
;

4
4
 
 
 
T
h
e
t
a
:
=
d
C
*
D
T
h
e
t
a
+
P
i
/
2
;
  {
.
.
c
a
m
 
r
o
t
a
t
i
o
n
 
a
n
g
l
e
}

4
5
 
 
 
s
:
=
s
0
+
d
F
*
D
s
;
 

{
.
.
f
o
l
l
o
w
e
r
 
d
i
s
p
l
a
c
e
m
e
n
t
}

4
6
 
 
 
g
C
r
a
n
k
(
-
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
s
0
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
7
 
 
 
S
l
i
d
e
r
(
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
0
,
0
,
0
,
0
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
s
0
,
 
s
,
_
,
_

4
8
 
 
 
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

4
9
 
 
 
  O
f
f
s
e
t
(
0
,
’
 
‘
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
0
,
0
,
_
,
_
,
_
,
_
,
-
D
P
*
s
G
,
 
D
P
*
c
G
,
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

5
0
 
 
 
  O
f
f
s
e
t
(
0
,
’
 
‘
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
0
,
 
0
,
_
,
_
,
_
,
_
,
D
P
*
s
G
,
-
D
P
*
c
G
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

5
1
 
 
 
  O
f
f
s
e
t
(
0
,
’
 
‘
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
_
1
,
y
_
1
,
 
x
1
,
y
1
,
_
,
_
,
_
,
_
)
;

5
2
 
 
 
  O
f
f
s
e
t
(
0
,
’
 
‘
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
_
2
,
y
_
2
,
 
x
2
,
y
2
,
_
,
_
,
_
,
_
)
;

5
3
 
 
 
  O
f
f
s
e
t
(
0
,
’
 
‘
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
_
3
,
y
_
3
,
x
3
,
  y
3
,
_
,
_
,
_
,
_
)
;

5
4
 
 
 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n

5
5
 
 
 
 
   E
n
v
e
l
O
f
C
i
r
c
l
e
s
(
-
A
n
i
m
*
W
h
i
t
e
,
n
P
L
,
x
P
C
,
y
P
C
,
 
P
L
L
,
 
x
1
,
y
1
,
x
2
,
y
2
,
x
3
,
y
3
)
;

5
6
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
G
r
e
e
n
,
’
+
’
,
 
0
,
0
,
’
’
)
;
 
 
{
.
.
p
u
t
 
c
a
m
 
c
e
n
t
e
r
}

5
7
 
 
 
E
n
D

5
8
 
 
 
e
l
s
e
 
B
E
G
I
n

5
9
 
 
 
 
  E
n
v
e
l
O
f
C
i
r
c
l
e
s
(
0
,
n
P
L
,
x
P
C
,
y
P
C
,
 
P
L
L
,
 
x
1
,
y
1
,
x
2
,
y
2
,
x
3
,
y
3
)
;

6
0
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
 
‘
,
0
,
0
,
’
O
 
 
 
‘
)
;

6
1
 
 
 
 
  P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
 
A
’
)
;

6
2
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
x
D
,
y
D
,
x
B
,
y
B
,
’
 
B
’
)
;

6
3
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
0
*
W
h
i
t
e
,
x
Q
,
y
Q
,
x
P
,
y
P
,
’
P
’
)
;

6
4
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
0
*
W
h
i
t
e
,
x
P
,
y
P
,
x
Q
,
y
Q
,
’
 
Q
’
)
;

6
5
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
1
,
y
1
,
’
 
1
’
)
;

6
6
 
 
 
 
  P
u
t
P
o
i
n
t
(
A
n
i
m
*
Y
e
l
l
o
w
,
’
.
’
,
x
2
,
y
2
,
’
’
)
;

6
7
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
2
,
y
2
,
’
 
 
2
’
)
;

6
8
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
3
,
y
3
,
’
 
3
’
)
;

6
9
 
 
 
 
   P
u
t
A
n
g
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
0
,
0
,
x
A
,
y
A
,
6
,
 
‘
<
’
+
#
2
3
3
+
’
|
’
)
;
 
{
.
.
#
2
3
3
=
T
h
e
t
a
}

7
0
 
 
 
 
  P
u
t
D
i
s
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
D
,
y
D
,
-
1
0
,
 
|
s
>
|
’
)
;
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7
1
 
 
 
E
n
D
;

7
2
 
 
 
S
e
t
C
o
l
o
r
(
R
e
d
)
;
 
 
S
y
n
c
D
X
F
C
o
l
o
r
;

7
3
 
 
 
x
1
:
=
X
_
p
(
x
1
)
;
 
 
y
1
:
=
Y
_
p
(
y
1
)
;

7
4
 
 
 
x
2
:
=
X
_
p
(
x
2
)
;
 
 
y
2
:
=
Y
_
p
(
y
2
)
;

7
5
 
 
 
x
3
:
=
X
_
p
(
x
3
)
;
 
 
y
3
:
=
Y
_
p
(
y
3
)
;

7
6
 
 
 
P
D
a
r
c
3
P
t
s
(
‘
’
,
x
1
,
y
1
,
x
2
,
y
2
,
x
3
,
y
3
)
;
 
 
{
.
.
d
r
a
w
 
a
r
c
}

7
7
 
 
u
n
t
i
l
 
E
o
f
(
F
T
)
;

7
8
 
 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
A
n
D
 
(
A
n
i
m
 
=
 
0
)
 
t
h
e
n

7
9
 
 
 
E
n
d
E
n
v
e
l
o
p
e
s
(
C
a
m
X
Y
,
C
y
a
n
)
 
 
{
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
f
i
l
e
 
C
a
m
X
Y
.
D
2
D
}

8
0
 
 
e
l
s
e

8
1
 
 
 
  E
n
d
E
n
v
e
l
o
p
e
s
(
M
y
S
t
(
L
a
s
t
n
r
L
a
y
e
r
,
3
)
,
C
y
a
n
)
;
 
 
{
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
l
a
s
t
 
l
a
y
e
r
}

8
2
 
 
C
l
o
s
e
M
e
c
D
X
F
;

8
3
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

8
4
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
A
n
i
m
 
=
 
0
)
;
 
 
{
.
.
r
e
t
a
i
n
 
c
a
m
 
p
r
o
f
i
l
e
 
f
o
r
 
A
n
i
m
 
=
 
0
}

8
5
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
7
_
2
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  S
y
s
t
h
e
s
i
s
 
o
f
 
d
i
s
k
 
c
a
m
s
 
w
i
t
h
 
c
u
r
v
i
l
i
n
e
a
r
-
f
a
c
e
d
 
t
r
a
n
s
l
a
t
i
n
g
 
f
o
l
l
o
w
e
r

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
a
c
k
,
D
a
r
k
G
r
a
y
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
R
A
D
}

7
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
 {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 {
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
C
a
m
s
,
 
{
E
n
v
e
l
O
f
P
l
y
n
e
s
,
E
n
d
E
n
v
e
l
o
p
e
s
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
l
i
d
e
r
,
O
f
f
s
e
t
,
}

1
2
 
 
 
 
  

 
{
P
u
t
D
i
s
t
,
S
h
a
p
e
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
C
o
l
o
r
 
=
 
1
;
 

 {
0
 
c
a
m
 
e
n
v
e
l
o
p
e
 
o
n
l
y
,
 
1
 
f
o
l
l
o
w
e
r
 
a
n
i
m
a
t
i
o
n
 

}
1
4
 
 
 
 
  A
n
i
m
 
 
=
 
1
;
 

 {
0
 
=
 
a
c
c
u
m
u
l
a
t
e
 
f
r
a
m
e
s
,
 
1
 
=
 
a
n
i
m
a
t
e
 

}
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1
5
 
 
 
 
 P
l
s
M
n
s
=
-
1
;
 

 {
f
o
l
l
o
w
e
r
 
o
r
i
e
n
t
a
t
i
o
n
 
-
1
:
c
o
n
c
a
v
e
,
 
+
1
:
c
o
n
v
e
x
 
}

1
6
 
 
 
 
  F
F
a
c
e
 
=
 
‘
F
F
a
c
e
.
X
Y
’
;
 {
f
o
l
l
o
w
e
r
 
f
a
c
e
 
(
x
,
y
)
 
i
n
p
u
t
 
d
a
t
a
 
f
i
l
e
 
}

1
7
 
 
 
 
  C
a
m
X
Y
 
=
 
‘
C
a
m
2
5
’
;
 

{
c
a
m
 
p
r
o
f
i
l
e
 
o
u
t
p
u
t
 
f
i
l
e
 
w
/
 
e
x
t
.
 
D
2
D
 
}

18
 
 
 
 
  D
Th
et
a=
 2
*P
i;
 

{c
a
m
 
r
o
t
a
t
i
o
n
a
l
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 }

1
9
 
 
 
 
  G
a
m
m
a
 
=
-
2
0
*
R
A
D
;
 

{
f
o
l
l
o
w
e
r
 
f
a
c
e
 
a
n
g
l
e
 

}
2
0
 
 
 
 
  s
0
 

=
 
2
.
0
;
 

{
f
o
l
l
o
w
e
r
 
b
i
a
s
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 

}
2
1
 
 
 
 
  D
s
 

=
 
1
.
0
;
 

{
f
o
l
l
o
w
e
r
 
a
m
p
l
i
t
u
d
e
 
-
 
c
a
n
n
o
t
 
b
e
 
0
 

}
2
2
 
 
 
 
   O
P
 

=
 
0
.
5
;
 

  {
f
o
l
l
o
w
e
r
 
o
f
f
s
e
t
 
-
 
p
o
s
i
t
i
v
e
,
 
0
 
o
r
 
n
e
g
a
t
i
v
e
 

}
2
3
 
 
 
 
  n
P
L
 
=
 
1
0
0
0
;
 

  {
n
u
m
b
e
r
 
o
f
 
p
o
l
a
r
 
l
i
n
e
s
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
  

}
2
4
 
 
 
 
  x
P
C
 
=
 
 
0
.
0
0
;
 

  {
x
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
C
i
r
c
l
e
s
 
}

2
5
 
 
 
 
  y
P
C
 
=
 
 
0
.
0
0
;
 

  {
y
 
c
o
o
r
d
.
 
o
f
 
p
o
l
a
r
 
c
e
n
t
e
r
 
i
n
 
E
n
v
e
l
O
f
C
i
r
c
l
e
s
 
}

2
6
 
 
 
 
   P
L
L
 
=
 
1
.
5
*
(
s
0
+
D
s
)
;
 
  {
i
n
i
t
i
a
l
 
p
o
l
a
r
 
l
i
n
e
 
l
e
n
g
t
h
 
i
n
 
E
n
v
e
l
O
f
L
i
n
e
s
 

}
2
7
 
v
a
r
 
F
T
:
t
e
x
t
;
 

C
h
:
c
h
a
r
;
 

d
F
,
d
C
,
T
h
e
t
a
,
 
s
,
x
A
,
y
A
,
x
B
,
y
B

2
8
 
 
 
,
x
D
,
y
D
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
,
 
D
P
,
 
s
G
,
c
G
:
d
o
u
b
l
e
;

2
9
 
B
E
G
I
n

3
0
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
7
_
2
5
.
D
X
F
’
)
;

3
1
 
 
i
f
 
(
A
n
i
m
 
=
 
1
)
 
O
R
 
(
C
o
l
o
r
 
=
 
1
)
 
t
h
e
n

3
2
 
 
 
  A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
_
L
.
X
Y
’
)
   {
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
i
n
p
u
t
 
f
i
l
e
 
-
 
r
e
d
u
c
e
d
}

3
3
 
 
E
l
s
e

3
4
 
 
 
  A
s
s
i
g
n
(
F
T
,
’
d
F
v
d
C
.
X
Y
’
)
;
 
  {
.
.
f
o
l
l
o
w
e
r
 
m
o
t
i
o
n
 
i
n
p
u
t
 
f
i
l
e
 
-
 
f
u
l
l
 
s
i
z
e
}

3
5
 
 
R
e
s
e
t
(
F
T
)
;

3
6
 
 
D
P
:
=
s
0
;
 

{
.
.
h
a
l
f
 
o
f
 
f
o
l
l
o
w
e
r
 
f
a
c
e
 
l
e
n
g
t
h
}

3
7
 
 
s
G
:
=
s
i
n
(
G
a
m
m
a
)
;
 
 
c
G
:
=
c
o
s
(
G
a
m
m
a
)
;

3
8
 
 
s
:
=
s
0
+
D
s
;
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
1
.
8
*
s
,
1
.
8
*
s
,
-
1
.
8
*
s
,
1
.
8
*
s
)
;

3
9
 
 
R
e
p
e
a
t

4
0
 
 
 
i
f
 
(
A
n
i
m
 
>
 
0
)
 
t
h
e
n
 
n
e
w
F
r
a
m
e
(
0
)
;

4
1
 
 
 
  S
h
a
p
e
(
C
a
m
X
Y
+
’
.
D
2
D
’
,
C
o
l
o
r
*
C
y
a
n
,
0
,
0
,
1
,
0
)
;
 
  {
.
.
d
r
a
w
 
c
a
m
 
f
r
o
m
 
f
i
l
e
}

4
2
 
 
 
R
e
a
d
L
n
(
F
T
,
d
C
,
d
F
)
;

4
3
 
 
 
T
h
e
t
a
:
=
d
C
*
D
T
h
e
t
a
+
P
i
/
2
;
  {
.
.
c
a
m
 
r
o
t
a
t
i
o
n
 
a
n
g
l
e
}
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4
4
 
 
 
s
:
=
s
0
+
d
F
*
D
s
;
 

{
.
.
f
o
l
l
o
w
e
r
 
d
i
s
p
l
a
c
e
m
e
n
t
}

4
5
 
 
 
g
C
r
a
n
k
(
-
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
T
h
e
t
a
,
_
,
_
,
s
0
,
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
6
 
 
 
S
l
i
d
e
r
(
A
n
i
m
*
C
o
l
o
r
,
0
,
0
,
0
,
0
,
0
,
0
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
s
0
,
 
s
,
_
,
_

4
7
 
 
 
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;

4
8
 
 
 
  O
f
f
s
e
t
(
0
,
’
T
’
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
0
,
0
,
_
,
_
,
_
,
_
,
-
D
P
*
s
G
,
 
D
P
*
c
G
,
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

4
9
 
 
 
  O
f
f
s
e
t
(
0
,
’
T
’
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
0
,
0
,
_
,
_
,
_
,
_
,
 
D
P
*
s
G
,
-
D
P
*
c
G
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

5
0
 
 
 
  O
f
f
s
e
t
(
0
,
’
/
’
,
x
P
,
y
P
,
_
,
_
,
_
,
_
,
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
2
*
D
P
,
0
,
_
,
_
,
_
,
_
,
_
,
_
)
;

5
1
 
 
 
i
f
 
(
P
l
s
M
n
s
 
>
 
0
)
 
t
h
e
n
 
B
E
G
I
n

5
2
 
 
 
 
  x
P
:
=
x
Q
;
 
y
P
:
=
y
Q
;

5
3
 
 
 
E
n
D
;

5
4
 
 
 
S
h
a
p
e
(
F
F
a
c
e
,
R
e
d
,
x
D
,
y
D
,
x
P
,
y
P
)
;

5
5
 
 
 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n

5
6
 
 
 
 
   E
n
v
e
l
O
f
P
l
y
n
e
s
(
-
A
n
i
m
*
W
h
i
t
e
,
 
n
P
L
,
x
P
C
,
y
P
C
,
 
P
L
L
,
 
x
D
,
y
D
,
x
P
,
y
P
,
 
F
F
a
c
e
)
;

5
7
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
G
r
e
e
n
,
’
+
’
,
 
0
,
0
,
’
’
)
;
 

{
.
.
m
a
r
k
 
c
a
m
 
c
e
n
t
e
r
}

5
8
 
 
 
E
n
D

5
9
 
 
 
e
l
s
e
 
B
E
G
I
n

6
0
 
 
 
 
  E
n
v
e
l
O
f
P
l
y
n
e
s
(
0
,
 
n
P
L
,
x
P
C
,
y
P
C
,
 
P
L
L
,
 
x
D
,
y
D
,
x
P
,
y
P
,
 
F
F
a
c
e
)
;

6
1
 
 
 
 
  P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
 
‘
,
 
0
,
0
,
’
O
 
‘
)
;

6
2
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
A
,
y
A
,
’
 

A
’
)
;

6
3
 
 
 
 
  P
u
t
P
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
,
’
B
’
)
;

6
4
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
D
,
y
D
,
’
 

D
’
)
;

6
5
 
 
 
 
   P
u
t
A
n
g
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
0
,
0
,
x
A
,
y
A
,
6
,
 
‘
<
’
+
#
2
3
3
+
’
|
’
)
;
 
 
{
.
.
#
2
3
3
=
T
h
e
t
a
}

6
6
 
 
 
 
  P
u
t
D
i
s
t
(
A
n
i
m
*
W
h
i
t
e
,
0
,
0
,
x
D
,
y
D
,
-
1
0
,
 
‘
|
s
>
|
’
)
;

6
7
 
 
 
E
n
D
;

6
8
 
 
u
n
t
i
l
 
E
o
f
(
F
T
)
;

6
9
 
 
i
f
 
(
C
o
l
o
r
 
=
 
0
)
 
A
n
D
 
(
A
n
i
m
 
=
0
)
 
t
h
e
n

7
0
 
 
 
E
n
d
E
n
v
e
l
o
p
e
s
(
C
a
m
X
Y
,
C
y
a
n
)
  {
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
f
i
l
e
 
C
a
m
X
Y
.
D
2
D
}

7
1
 
 
E
l
s
e

7
2
 
 
 
  E
n
d
E
n
v
e
l
o
p
e
s
(
M
y
S
t
(
L
a
s
t
n
r
L
a
y
e
r
,
3
)
,
C
y
a
n
)
;
 
  {
.
.
w
r
i
t
e
 
c
a
m
 
t
o
 
l
a
s
t
 
l
a
y
e
r
}
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7
3
 
 
C
l
o
s
e
M
e
c
D
X
F
;

7
4
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

7
5
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
A
n
i
m
 
=
 
0
)
;
 
 
{
.
.
r
e
t
a
i
n
 
c
a
m
 
p
r
o
f
i
l
e
 
f
i
l
e
}

7
6
 
E
n
D
.

**
*

1
 

P
r
o
g
r
a
m
 
F
8
_
0
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
 
f
i
l
e
 
F
8
_
0
1
.
D
X
F
 
t
o
 
p
l
o
t
 
a
 
c
i
r
c
l
e
 
o
f
 
r
a
d
i
u
s
 
r
b
 
a
n
d
 
i
t
s
 
i
n
v
o
l
u
t
e

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
,
 
L
i
b
D
X
F
;

6
 

c
o
n
s
t
 
r
b
 
 
 
=
 
3
0
;
 
{
b
a
s
e
 
c
i
r
c
l
e
 
r
a
d
i
u
s
}

7
 

t
m
a
x
 
=
 
P
i
;
 
{
t
 
u
p
p
e
r
 
b
o
u
n
d
}

8
 

n
t
 
 
 
=
 
9
1
;
 
{
n
u
m
b
e
r
 
o
f
 
p
l
o
t
 
p
o
i
n
t
s
 
o
n
 
t
h
e
 
i
n
v
o
l
u
t
e
}

9
 

v
a
r
 
t
,
x
,
y
:
 
d
o
u
b
l
e
;
 
i
t
:
 
i
n
t
e
g
e
r
;

1
0
 
B
E
G
I
n
 

1
1
 

I
n
i
t
D
X
F
f
i
l
e
(
‘
F
8
_
0
1
.
D
X
F
’
)
;

1
2
 

D
X
F
c
i
r
c
l
e
(
‘
B
a
s
e
_
C
i
r
c
l
e
’
,
0
,
0
,
0
,
r
b
)
;

1
3
 

E
x
p
e
c
t
D
X
F
p
l
i
n
e
s
;

1
4
 

f
o
r
 
i
t
:
=
1
 
t
o
 
n
t
 
d
o
 
B
E
G
I
n
 
{
g
e
n
e
r
a
t
e
 
t
h
e
 
i
n
v
o
l
u
t
e
 
c
u
r
v
e
 
.
.
}

1
5
 

t
:
=
t
m
a
x
/
(
n
t
-
1
)
*
(
i
t
-
1
)
;

1
6
 

x
:
=
r
b
*
(
c
o
s
(
t
)
 
+
 
t
*
s
i
n
(
t
)
)
;

1
7
 

y
:
=
r
b
*
(
s
i
n
(
t
)
 
-
 
t
*
c
o
s
(
t
)
)
;

1
8
 

A
d
d
V
e
r
t
e
x
P
l
i
n
e
(
‘
I
n
v
o
l
u
t
e
’
,
x
,
y
)
;

1
9
 

E
n
D
;

2
0
 

D
X
F
p
l
i
n
e
E
n
d
(
‘
I
n
v
o
l
u
t
e
’
)
;

2
1
 

C
l
o
s
e
D
X
F
f
i
l
e
;

2
2
 

W
r
i
t
e
(
‘
D
X
F
 
f
i
l
e
 
o
u
t
p
u
t
 
s
u
c
c
e
s
s
f
u
l
l
y
.
 
<
C
R
>
.
.
’
)
;
 
R
e
a
d
L
n
;

2
3
 
E
n
D
.

**
*
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1
 

p
r
o
g
r
a
m
 
P
9
_
0
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  I
n
t
e
g
r
a
t
e
s
 
t
h
e
 
D
u
f
f
i
n
g
 
e
q
u
a
t
i
o
n
 
a
n
d
 
g
e
n
e
r
a
t
e
s
 
f
i
l
e
s
 
F
9
_
0
1
.
T
X
T
 
&
 
F
9
_
0
2
.
D
2
D

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

5
 

u
s
e
s
 
C
R
T
,
 
L
i
b
M
a
t
h
;

6
 

c
o
n
s
t
 
P
o
i
n
c
a
r
e
 
=
 
F
A
L
S
E
;
 
{
T
R
U
E
/
F
A
L
S
E
 
g
e
n
e
r
a
t
e
s
 
o
r
 
n
o
t
 
P
o
i
n
c
a
r
e
 
m
a
p
}

7
 

n
P
o
i
n
c
a
r
e
 
=
 
1
0
0
0
0
0
0
;

8
 

n
P
h
a
s
e
P
a
t
h
 
=
 
2
0
;

9
 

n
p
i
n
t
M
a
x
 
=
 
1
0
0
;

1
0
 

O
m
e
g
a
=
1
.
0
0
;
 
A
l
p
h
a
=
-
1
.
0
0
;
 

B
e
t
a
=
1
.
2
5
;
 
G
a
m
a
=
0
.
3
0
;
 

D
e
l
t
a
=
0
.
1
5
;

1
1
 
t
y
p
e
 
V
e
c
n
v
a
r
 
=
 
a
r
r
a
y
[
1
.
.
2
]
 
o
f
 
d
o
u
b
l
e
;

1
2
 
v
a
r
 

F
D
:
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
F
T
:
 
t
e
x
t
;
 

x
,
 
d
x
d
t
:
 
V
e
c
n
v
a
r
;

1
3
 

h
,
t
l
e
a
p
,
t
:
 
d
o
u
b
l
e
;
 

n
p
,
n
p
M
a
x
,
n
p
i
n
t
:
 
L
o
n
g
i
n
t
;
 

i
:
 
B
y
t
e
;

1
4
 
  p
r
o
c
e
d
u
r
e
 
W
r
i
t
e
2
F
i
l
e
(
M
a
n
y
P
t
s
:
 
B
o
o
l
e
a
n
)
;
 
{
W
r
i
t
e
 
t
,
x
 
&
 
d
x
/
d
t
 
t
o
 
f
i
l
e
}

1
5
 
B
E
G
I
n

1
6
 

i
f
 
M
a
n
y
P
t
s
 
t
h
e
n
 
W
r
i
t
e
(
F
D
,
x
[
1
]
,
x
[
2
]
)

1
7
 

e
l
s
e
 
B
E
G
I
n

1
8
 

W
r
i
t
e
(
F
T
,
t
:
1
2
:
8
,
’
 
‘
,
x
[
1
]
:
1
2
:
8
,
’
 
‘
,
x
[
2
]
:
1
2
:
8
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

1
9
 

E
n
D
;

2
0
 
E
n
D
;

2
1
 
p
r
o
c
e
d
u
r
e
 
D
e
r
i
v
s
(
t
:
 
d
o
u
b
l
e
;
 
x
:
 
V
e
c
n
v
a
r
;
 
v
a
r
 
d
x
d
t
:
 
V
e
c
n
v
a
r
)
;

2
2
 
{
E
v
a
l
u
a
t
e
s
 
d
e
r
i
v
a
t
i
v
e
s
 
d
x
/
d
t
 
a
n
d
 
d
2
x
/
d
t
2
 
 
}

2
3
 
B
E
G
I
n

2
4
 

d
x
d
t
[
1
]
:
=
x
[
2
]
;

2
5
 

  d
x
d
t
[
2
]
:
=
-
D
e
l
t
a
*
x
[
2
]
-
A
l
p
h
a
*
x
[
1
]
-
B
e
t
a
*
P
o
w
(
x
[
1
]
,
3
)
+
G
a
m
a
*
c
o
s
(
O
m
e
g
a
*
t
)
;

2
6
 
E
n
D
;

2
7
 
p
r
o
c
e
d
u
r
e
 
R
K
4
(
v
a
r
 
x
,
d
x
d
t
:
V
e
c
n
v
a
r
;
 
n
:
i
n
t
e
g
e
r
;
 
t
,
h
:
d
o
u
b
l
e
)
;

2
8
 
{
4
t
h
 
o
r
d
e
r
 
R
u
n
g
e
-
K
u
t
t
a
 
w
i
t
h
 
c
o
n
s
t
a
n
t
 
s
t
e
p
}

2
9
 
v
a
r
 

d
x
m
,
d
x
t
,
x
t
:
 
V
e
c
n
v
a
r
;
 
t
h
,
h
h
,
h
6
:
 
d
o
u
b
l
e
;
 
i
:
 
i
n
t
e
g
e
r
;
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3
0
 
B
E
G
I
n

3
1
 

h
h
:
=
h
*
0
.
5
;
 
h
6
:
=
h
/
6
.
0
;
 
t
h
:
=
t
+
h
h
;

3
2
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
x
t
[
i
]
:
=
x
[
i
]
+
h
h
*
d
x
d
t
[
i
]
;

3
3
 

D
e
r
i
v
s
(
t
h
,
x
t
,
d
x
t
)
;

3
4
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
x
t
[
i
]
:
=
x
[
i
]
+
h
h
*
d
x
t
[
i
]
;

3
5
 

D
e
r
i
v
s
(
t
h
,
x
t
,
d
x
m
)
;

3
6
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

3
7
 

 
x
t
[
i
]
:
=
x
[
i
]
+
h
*
d
x
m
[
i
]
;
 
d
x
m
[
i
]
:
=
d
x
t
[
i
]
+
d
x
m
[
i
]

3
8
 

E
n
D
;

3
9
 

D
e
r
i
v
s
(
t
+
h
,
x
t
,
d
x
t
)
;

4
0
 

f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
x
[
i
]
:
=
x
[
i
]
+
h
6
*
(
d
x
d
t
[
i
]
+
d
x
t
[
i
]
+
2
*
d
x
m
[
i
]
)
;

4
1
 
E
n
D
;

4
2
 
B
E
G
I
n

4
3
 

C
l
r
S
c
r
;

4
4
 

x
[
1
]
:
=
0
.
0
;
 

{
i
n
i
t
i
a
l
 
c
o
n
d
i
t
i
o
n
 
x
(
0
)
 

}
4
5
 

x
[
2
]
:
=
0
.
0
0
0
0
0
1
;
 

{
i
n
i
t
i
a
l
 
c
o
n
d
i
t
i
o
n
 
d
x
(
0
)
/
d
t
 
}

4
6
 

i
f
 
n
O
T
 
P
o
i
n
c
a
r
e
 
t
h
e
n
 
B
E
G
I
n
 
{
p
h
a
s
e
 
p
a
t
h
 
p
o
i
n
t
s
 
.
.
}

4
7
 

n
p
M
a
x
:
=
n
P
h
a
s
e
P
a
t
h
;

4
8
 

A
s
s
i
g
n
(
F
T
,
’
F
9
_
0
1
.
T
X
T
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

4
9
 

W
r
i
t
e
L
n
(
F
T
,
’
 

t
 

x
1
 

x
2
’
)
;

5
0
 

E
n
D

5
1
 

e
l
s
e
 
B
E
G
I
n
 
{
P
o
i
n
c
a
r
e
 
m
a
p
 
p
o
i
n
t
s
 
.
.
}

5
2
 

n
p
M
a
x
:
=
n
P
o
i
n
c
a
r
e
;

5
3
 

A
s
s
i
g
n
(
F
D
,
’
F
9
_
0
2
.
D
2
D
’
)
;
 

R
e
w
r
i
t
e
(
F
D
)
;

5
4
 

E
n
D
;

5
5
 

d
x
d
t
[
1
]
:
=
0
.
0
;
 
 
d
x
d
t
[
2
]
:
=
0
.
0
;

5
6
 

t
:
=
0
;

5
7
 

f
o
r
 
n
p
:
=
0
 
t
o
 
n
p
M
a
x
 
d
o
 
B
E
G
I
n

5
8
 

t
l
e
a
p
:
=
n
p
*
(
2
*
P
i
/
O
m
e
g
a
)
;

5
9
 

i
f
 
P
o
i
n
c
a
r
e
 
t
h
e
n
 
W
r
i
t
e
2
F
i
l
e
(
T
R
U
E
)
;

6
0
 

f
o
r
 
n
p
i
n
t
:
=
0
 
t
o
 
n
p
i
n
t
M
a
x
 
d
o
 
B
E
G
I
n
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6
1
 

t
:
=
t
l
e
a
p
 
+
 
n
p
i
n
t
*
(
2
*
P
i
/
O
m
e
g
a
)
/
n
p
i
n
t
M
a
x
;

6
2
 

i
f
 
(
n
O
T
 
P
o
i
n
c
a
r
e
)
 
t
h
e
n
 
W
r
i
t
e
2
F
i
l
e
(
F
A
L
S
E
)
;

6
3
 

h
:
=
(
2
*
P
i
/
O
m
e
g
a
)
/
n
p
i
n
t
M
a
x
;

6
4
 

R
K
4
(
x
,
d
x
d
t
,
2
,
t
,
h
)
;

6
5
 

E
n
D
;

6
6
 

i
f
 
(
n
p
 
M
O
D
 
1
0
0
0
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n
 
{
d
i
s
p
l
a
y
 
p
r
o
g
r
e
s
s
 
s
t
a
t
u
s
 
.
.
}

6
7
 

G
o
T
o
X
Y
(
1
,
W
h
e
r
e
Y
)
;
 

C
l
r
E
o
l
;

6
8
 

W
r
i
t
e
(
‘
W
a
i
t
!
 
‘
,
n
p
,
’
/
’
,
n
p
M
a
x
)
;

6
9
 

E
n
D
;

7
0
 

E
n
D
;

7
1
 

i
f
 
P
o
i
n
c
a
r
e
 
t
h
e
n
 
C
l
o
s
e
(
F
D
)
 
e
l
s
e
 
C
l
o
s
e
(
F
T
)
;

7
2
 

G
o
T
o
X
Y
(
1
,
W
h
e
r
e
Y
)
;

7
3
 

W
r
i
t
e
(
‘
 

I
n
t
e
g
r
a
t
i
o
n
 
d
o
n
e
!
 
‘
)
;
 
R
e
a
d
L
n
;

7
4
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
0
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

I
n
t
e
g
r
a
t
e
s
 
O
D
E
 
o
f
 
m
o
t
i
o
n
 
o
f
 
a
 
s
p
r
i
n
g
-
m
a
s
s
 
s
y
s
t
e
m
 
a
n
d
 
g
e
n
e
r
a
t
e
s
 
d
a
t
a
 
f
i
l
e
s

4
 

F
9
_
0
3
L
O
N
G
.
D
T
A
 
&
 
F
9
_
0
3
S
H
R
T
.
D
T
A
 
a
n
d
 
a
n
i
m
a
t
i
o
n
 
f
i
l
e
 
F
9
_
0
3
.
D
X
F
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
R
e
d
,
W
h
i
t
e
}

7
 

L
i
b
M
a
t
h
,
 

{
M
a
x
2
}

8
 

L
i
b
I
n
O
u
t
,
 
{
M
y
S
t
,
I
s
K
e
y
P
r
e
s
s
e
d
,
C
e
n
t
e
r
M
s
g
T
}

9
 

L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 

L
i
b
M
e
c
2
D
;
 
{
P
u
t
R
e
f
S
y
s
t
e
m
,
P
u
t
G
P
o
i
n
t
,
P
u
t
P
o
i
n
t
,
S
h
a
p
e
,
S
p
r
i
n
g
,
}

1
1
 

 
{
M
e
c
O
u
t
,
N
e
w
F
r
a
m
e
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
2
 
c
o
n
s
t
 
F
l
e
n
m
e
 
=
 
‘
F
9
_
0
3
’
;
 
{
g
e
n
e
r
i
c
 
f
i
l
e
 
n
a
m
e
 

}
1
3
 

n
P
o
z
 

=
 
5
0
0
;
 

{
n
u
m
b
e
r
 
o
f
 
s
i
m
u
l
a
t
i
o
n
 
p
o
s
i
t
i
o
n
s
 

}
1
4
 

S
k
i
p
 

=
 
4
;
 

{
a
n
i
m
a
t
e
 
e
v
e
r
y
 
S
k
i
p
 
p
o
s
i
t
i
o
n
s
 

}
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15
 

h 
= 
0.
00
01
; 

{[
se
c]
 s
im
ul
at
io
n 
st
ep
 i
n 
Eu
le
r 
su
br
ou
ti
ne
 
}

16
 

c 
= 
0.
5;
 

{d
am
pi
ng
 c
oe
fs
.  
0,
 0
.5
,  
6.
32
45
6  
an
d  
10
 N
s/
m  
}

1
7
 

L
0
 

=
 
1
.
0
;
 

{
s
p
r
i
n
g
 
f
r
e
e
 
l
e
n
g
t
h
 
i
n
 
m
 

}
1
8
 

k
 

=
 
1
0
.
0
;
 

{
s
p
r
i
n
g
 
c
o
n
s
t
a
n
t
 
i
n
 
N
/
m
 

}
1
9
 

m
 

=
 
1
.
0
;
 

{
b
o
b
 
m
a
s
s
 
i
n
 
k
g
 

}
2
0
 

g
 

=
 
9
.
8
1
;
 

{
a
c
c
e
l
e
r
a
t
i
o
n
 
d
u
e
 
t
o
 
g
r
a
v
i
t
y
 
i
n
 
m
/
(
s
*
s
)
  }

2
1
 

R
m
 

=
 
0
.
1
5
;
 

{
b
o
b
 
r
a
d
i
u
s
 
i
n
 
m
 

}
2
2
 

D
s
 

=
 
0
.
1
8
;
 

{
s
p
r
i
n
g
 
d
i
a
m
e
t
e
r
 
i
n
 
m
 

}
2
3
 

y
0
 

=
 
0
.
5
;
 

{
y
(
t
)
 
f
o
r
 
t
 
=
 
0
 

}
2
4
 

d
y
d
t
0
 
=
 
0
.
0
;
 

{
d
y
/
d
t
(
t
)
 
f
o
r
 
t
 
=
 
0
 

}
2
5
 

t
e
n
d
 

=
 
1
5
.
0
;
 

{
f
i
n
a
l
 
t
i
m
e
 
i
n
 
s
e
c
.
 

}
2
6
 
t
y
p
e
 
V
e
c
n
v
a
r
 
=
 
a
r
r
a
y
[
1
.
.
2
]
 
o
f
 
d
o
u
b
l
e
;

2
7
 
v
a
r
 
F
T
1
,
F
T
2
:
t
e
x
t
;
 
T
i
t
l
e
,
T
a
b
l
e
H
e
a
d
:
s
t
r
i
n
g
;
 
i
1
,
i
2
:
W
o
r
d
;

2
8
 

v
y
,
v
d
y
d
t
,
v
d
2
y
d
t
2
:
V
e
c
n
v
a
r
;
 

t
,
y
,
d
y
:
d
o
u
b
l
e
;

2
9
3
0
 
  p
r
o
c
e
d
u
r
e
 
S
e
c
o
n
d
D
e
r
i
v
s
(
t
:
d
o
u
b
l
e
;
 
x
,
d
x
d
t
:
V
e
c
n
v
a
r
;
 
v
a
r
 
d
2
x
d
t
2
:
V
e
c
n
v
a
r
)
;

3
1
 
B
E
G
I
n

3
2
 

y
 
:
=
x
[
1
]
;

3
3
 

d
Y
:
=
d
x
d
t
[
1
]
;

3
4
 

d
2
x
d
t
2
[
1
]
:
=
(
m
*
g
-
(
y
-
L
0
)
*
k
-
c
*
d
Y
)
/
m
;
 

{
.
.
d
2
Y
/
d
t
2
}

3
5
 
E
n
D
;
 
{
.
.
S
e
c
o
n
d
D
e
r
i
v
s
}

3
6
3
7
 
p
r
o
c
e
d
u
r
e
 
E
u
l
e
r
(
v
a
r
 
x
,
d
x
d
t
,
d
2
x
d
t
2
:
V
e
c
n
v
a
r
;
 
n
:
B
y
t
e
;
 
t
,
h
:
d
o
u
b
l
e
)
;

3
8
 
{
E
u
l
e
r
-
T
a
y
l
o
r
 
i
n
t
e
g
r
a
t
i
o
n
 
o
f
 
t
h
e
 
O
D
E
 
o
f
 
m
o
t
i
o
n
 
o
f
 
n
 
v
a
r
i
a
b
l
e
s
.
.
}

3
9
 
v
a
r
 
j
:
 
W
o
r
d
;

4
0
 
B
E
G
I
n

4
1
 

S
e
c
o
n
d
D
e
r
i
v
s
(
t
,
 
x
,
 
d
x
d
t
,
 
d
2
x
d
t
2
)
;

4
2
 

f
o
r
 
j
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

4
3
 

x
[
j
]
:
=
x
[
j
]
+
h
*
(
d
x
d
t
[
j
]
+
0
.
5
*
h
*
d
2
x
d
t
2
[
j
]
)
;
 
{
.
.
2
n
d
 
o
r
d
e
r
 
T
a
y
l
o
r
}

4
4
 

d
x
d
t
[
j
]
:
=
d
x
d
t
[
j
]
+
h
*
d
2
x
d
t
2
[
j
]
;
 

{
.
.
1
s
t
 
o
r
d
e
r
 
T
a
y
l
o
r
}
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4
5
 

E
n
D
;

4
6
 
E
n
D
;
 
{
.
.
E
u
l
e
r
}

4
7
4
8
 
p
r
o
c
e
d
u
r
e
 
W
r
i
t
e
2
F
i
l
e
(
v
a
r
 
F
T
:
t
e
x
t
)
;

4
9
 
B
E
G
I
n

5
0
 

W
r
i
t
e
 
(
F
T
,
t
:
1
1
:
8
,
’
 
‘
,
v
y
[
1
]
:
1
2
:
8
)
;

5
1
 

W
r
i
t
e
L
n
(
F
T
,
’
 
‘
,
v
d
y
d
t
[
1
]
:
1
2
:
8
,
’
 
‘
,
v
d
2
y
d
t
2
[
1
]
:
1
2
:
8
)
;

5
2
 
E
n
D
;
 
{
.
.
W
r
i
t
e
2
F
i
l
e
}

5
3
5
4
 
B
E
G
I
n

5
5
 

T
i
t
l
e
:
=
’
k
=
’
+
M
y
S
t
(
k
,
6
)
+
’
n
/
m
,
 
m
=
’
+
M
y
S
t
(
m
,
6
)
+
’
k
g
,
 
c
=
’
+
M
y
S
t
(
c
,
6
)
+
’
n
s
/
m
’
;

5
6
 

T
a
b
l
e
H
e
a
d
:
=
’
 

t
 

y
 

d
Y
/
d
t
 

d
2
Y
/
d
t
2
’
;

5
7
 

A
s
s
i
g
n
(
F
T
1
,
F
l
e
n
m
e
+
’
L
n
G
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
1
)
;

5
8
 

A
s
s
i
g
n
(
F
T
2
,
F
l
e
n
m
e
+
’
S
R
T
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
2
)
;

5
9
 

W
r
i
t
e
L
n
(
F
T
1
,
T
i
t
l
e
)
;
 

W
r
i
t
e
L
n
(
F
T
1
,
T
a
b
l
e
H
e
a
d
)
;

6
0
 

W
r
i
t
e
L
n
(
F
T
2
,
T
i
t
l
e
)
;
 

W
r
i
t
e
L
n
(
F
T
2
,
T
a
b
l
e
H
e
a
d
)
;

6
1
 

I
n
i
t
D
X
F
f
i
l
e
(
F
l
e
n
m
e
+
’
.
D
X
F
’
)
;
 

{
.
.
D
X
F
 
f
i
l
e
 
f
o
r
 
M
3
D
 
a
n
i
m
a
t
i
o
n
}

6
2
 

C
e
n
t
e
r
M
s
g
T
(
‘
’
,
’
W
a
i
t
!
’
)
;

6
3
 

t
:
=
0
;
 

i
1
:
=
0
;
 
i
2
:
=
0
;

6
4
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
M
a
x
2
(
R
m
,
D
s
)
,
M
a
x
2
(
R
m
,
D
s
)
,
-
4
,
M
a
x
2
(
R
m
,
D
s
)
)
;

6
5
 

r
e
p
e
a
t

6
6
 

i
f
 
(
t
 
>
 
t
e
n
d
)
 
t
h
e
n
 
B
E
G
I
n

6
7
 

t
:
=
0
;
 
C
l
o
s
e
M
e
c
D
X
F
;
 

{
.
.
n
o
 
e
f
f
e
c
t
 
u
n
t
i
l
 
O
p
e
n
M
e
c
G
r
a
p
h
 
i
s
 
c
a
l
l
e
d
}

6
8
 

E
n
D
;

6
9
 

i
f
 
(
t
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n

7
0
 

v
y
[
1
]
 

:
=
y
0
;
 

{
.
.
i
n
i
t
i
a
l
 
y
 

}
7
1
 

v
d
y
d
t
[
1
]
:
=
d
y
d
t
0
;
 
{
.
.
i
n
i
t
i
a
l
 
d
y
/
d
t
}

7
2
 

S
e
c
o
n
d
D
e
r
i
v
s
(
t
,
v
y
,
v
d
y
d
t
,
v
d
2
y
d
t
2
)
;

7
3
 

E
n
D

7
4
 

e
l
s
e
 
E
u
l
e
r
(
v
y
,
v
d
y
d
t
,
v
d
2
y
d
t
2
,
1
,
t
,
h
)
;
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7
5
 

i
f
 
(
R
o
u
n
d
(
t
/
t
e
n
d
*
n
P
o
z
)
 
>
=
 
i
1
)
 
t
h
e
n
 
B
E
G
I
n

7
6
 

I
n
c
(
i
1
)
;

7
7
 

i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
2
F
i
l
e
(
F
T
1
)
;

7
8
 

E
n
D
;

7
9
 

i
f
 
(
R
o
u
n
d
(
t
/
t
e
n
d
*
n
P
o
z
/
S
k
i
p
)
 
>
=
 
i
2
)
 
t
h
e
n
 
B
E
G
I
n

8
0
 

I
n
c
(
i
2
)
;

8
1
 

i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
2
F
i
l
e
(
F
T
2
)
;

8
2
 

n
e
w
F
r
a
m
e
(
0
)
;

8
3
 

  P
u
t
R
e
f
S
y
s
t
e
m
(
2
,
-
4
,
’
x
’
,
’
y
’
)
;
 

{
.
.
r
e
f
e
r
e
n
c
e
 
f
r
a
m
e
 
w
/
 
y
-
a
x
i
s
 
r
e
v
e
r
s
e
d
}

8
4
 

  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
v
’
,
 
0
,
0
,
 
‘
’
)
;
 

{
.
.
r
e
v
e
r
s
e
d
 
g
r
o
u
n
d
e
d
 
p
i
n
 
j
o
i
n
t
}

8
5
 

S
p
r
i
n
g
(
C
y
a
n
,
0
.
0
,
0
.
0
,
 
0
.
0
,
-
y
,
 
D
s
,
 
6
)
;
 

{
.
.
d
r
a
w
 
s
p
r
i
n
g
}

8
6
 

S
h
a
p
e
(
‘
’
,
R
e
d
,
0
,
-
y
,
R
m
,
-
y
)
;
 
{
.
.
d
r
a
w
 
p
e
n
d
u
l
u
m
 
b
o
b
}

8
7
 

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
O
’
,
0
,
-
y
,
’
’
)
;
 
{
.
.
m
a
r
k
 
t
h
e
 
c
e
n
t
e
r
 
o
f
 
t
h
e
 
b
o
b
}

8
8
 

E
n
D
;

8
9
 

t
:
=
t
+
h
;

9
0
 

u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

9
1
 

C
l
o
s
e
(
F
T
1
)
;
 
 
C
l
o
s
e
(
F
T
2
)
;

9
2
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

9
3
 
E
n
D

1
 

p
r
o
g
r
a
m
 
P
9
_
0
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  G
e
n
e
r
a
t
e
s
 
t
h
e
 
t
i
m
e
 
r
e
s
p
o
n
s
e
 
c
u
r
v
e
 
y
(
t
)
 
o
f
 
a
 
d
a
m
p
e
d
 
s
p
r
i
n
g
-
m
a
s
s
 
s
y
s
t
e
m

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 

C
R
T
,
 
L
i
b
M
a
t
h
;

6
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
9
_
0
5
.
D
2
D
’
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
n
a
m
e
}

7
 

n
P
t
s
 
=
 
2
0
0
;
 

{
n
u
m
b
e
r
 
o
f
 
d
a
t
a
 
p
o
i
n
t
s
 

}
8
 

t
m
a
x
 
=
 
1
5
.
0
;
 
{
f
i
n
a
l
 
t
i
m
e
 

}
9
 

k
 

=
 
1
0
.
0
;
 
{
s
p
r
i
n
g
 
c
o
n
s
t
a
n
t
 
i
n
 
N
/
m
 

}
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1
0
 

m
 

=
 
1
.
0
;
 

{
m
a
s
s
 
i
n
 
k
g
 

}
1
1
 

c
 

=
 
0
.
5
;
 

{
d
a
m
p
i
n
g
 
c
o
e
f
f
i
c
i
e
n
t
 
i
n
 
N
s
/
m
}

1
2
 

y
I
n
f
 
=
 
1
.
0
;
 

{
d
i
s
p
l
a
c
e
m
e
n
t
 
a
t
 
e
q
u
i
l
i
b
r
i
u
m
}

1
3
 

y
0
 

=
 
-
0
.
5
;
 
{
i
n
i
t
i
a
l
 
d
i
s
p
l
a
c
e
m
e
n
t
 
y
(
0
)
 
}

1
4
 

d
y
d
t
0
 
=
 
0
.
0
;
 

{
i
n
i
t
i
a
l
 
v
e
l
o
c
i
t
y
 
d
y
(
0
)
/
d
t
 
}

1
5
 
v
a
r
 

F
D
:
 
f
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

F
T
:
 
t
e
x
t
;

1
6
 

t
,
y
,
 
Z
e
t
a
,
A
0
,
O
m
e
g
a
n
,
O
m
e
g
a
D
,
P
h
i
:
 
d
o
u
b
l
e
;
 
i
,
j
:
 
I
n
t
e
g
e
r
;

1
7
 
B
E
G
I
n

1
8
 

A
s
s
i
g
n
(
F
D
,
F
i
l
e
n
a
m
e
)
;
 

R
e
w
r
i
t
e
(
F
D
)
;

1
9
 

A
s
s
i
g
n
(
F
T
,
’
P
9
_
0
5
.
R
E
Z
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

2
0
 

O
m
e
g
a
n
:
=
S
q
r
t
(
k
/
m
)
;

2
1
 

Z
e
t
a
:
=
c
/
(
2
*
m
*
O
m
e
g
a
n
)
;

2
2
 

O
m
e
g
a
D
:
=
O
m
e
g
a
n
*
S
q
r
t
(
1
.
0
-
S
q
r
(
Z
e
t
a
)
)
;

2
3
 

A
:
=
S
q
r
t
(
S
q
r
(
y
0
)
+
S
q
r
(
(
d
y
d
t
0
+
Z
e
t
a
*
O
m
e
g
a
n
*
y
0
)
/
O
m
e
g
a
D
)
)
;

2
4
 

P
h
i
:
=
A
t
a
n
2
(
y
0
*
O
m
e
g
a
D
,
d
y
d
t
0
+
Z
e
t
a
*
O
m
e
g
a
n
*
y
0
)
;

2
5
 

W
r
i
t
e
L
n
(
F
T
,
’
O
m
e
g
a
n
 
=
’
,
O
m
e
g
a
n
,
’
 
r
a
d
/
s
’
)
;

2
6
 

W
r
i
t
e
L
n
(
F
T
,
’
O
m
e
g
a
D
 
=
’
,
O
m
e
g
a
D
,
’
 
r
a
d
/
s
’
)
;

2
7
 

W
r
i
t
e
L
n
(
F
T
,
’
T
a
u
D
 

=
’
,
2
*
P
i
/
O
m
e
g
a
D
,
’
 
s
’
)
;

2
8
 

W
r
i
t
e
L
n
(
F
T
,
’
A
0
 

=
’
,
A
0
,
’
 
m
’
)
;

2
9
 

W
r
i
t
e
L
n
(
F
T
,
’
Z
e
t
a
 

=
’
,
Z
e
t
a
)
;

3
0
 

W
r
i
t
e
L
n
(
F
T
,
’
P
h
i
 

=
’
,
P
h
i
,
’
 
r
a
d
’
)
;

3
1
 

f
o
r
 
i
:
=
1
 
t
o
 
n
P
t
s
 
d
o
 
B
E
G
I
n

3
2
 

t
:
=
(
i
-
1
)
*
t
m
a
x
/
(
n
P
t
s
-
1
)
;

3
3
 

y
:
=
y
I
n
f
 
+
 
A
0
*
E
x
p
(
-
Z
e
t
a
*
O
m
e
g
a
n
*
t
)
*
s
i
n
(
O
m
e
g
a
D
*
t
 
+
 
P
h
i
)
;

3
4
 

W
r
i
t
e
(
F
D
,
t
,
y
)
;

3
5
 

E
n
D
;

3
6
 

C
l
o
s
e
(
F
D
)
;
 

C
l
o
s
e
(
F
T
)
;

3
7
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
F
9
_
0
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

  F
i
n
d
s
 
e
q
u
i
l
i
b
r
i
u
m
 
p
o
s
i
t
i
o
n
 
a
n
d
 
f
i
t
s
 
a
n
 
e
x
p
o
n
e
n
t
i
a
l
 
t
h
r
o
u
g
h
 
a
 
d
a
m
p
e
d

4
 

o
s
c
i
l
l
a
t
o
r
y
 
r
e
s
p
o
n
s
e
 
c
u
r
v
e
 
y
(
t
)

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 

D
O
S
,
C
R
T
,

7
 

L
i
b
M
a
t
h
,

8
 

L
i
b
I
n
O
u
t
,

9
 

L
i
b
M
i
n
E
A
,

1
0
 

L
i
b
M
i
n
n
;

1
1
 
c
o
n
s
t
 
F
i
l
e
n
a
m
e
0
 
=
 
‘
F
9
_
0
5
’
;
 
{
n
a
m
e
 
o
f
 
.
M
I
N
 
a
n
d
 
.
M
A
X
 
i
n
p
u
t
 
f
i
l
e
s
}

1
2
 

F
i
l
e
n
a
m
e
1
 
=
 
‘
F
9
_
0
6
’
;
 
{
n
a
m
e
 
o
f
 
o
u
t
p
u
t
 
.
R
E
Z
 
f
i
l
e
 

}
1
3
 

L
i
m
A
f
 
=
 
6
5
0
0
0
;
 
{
m
a
x
i
m
u
m
 
c
a
l
l
s
 
o
f
 
t
h
e
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
 
}

1
4
 

L
i
m
I
t
 
=
 
5
0
0
0
;
 
{
m
a
x
i
m
u
m
 
n
u
m
b
e
r
 
o
f
 
i
t
e
r
a
t
i
o
n
s
 

}
1
5
 
v
a
r
 
v
t
m
i
n
,
 
v
Y
m
i
n
,
 
v
t
m
a
x
,
 
v
Y
m
a
x
:
 
V
D
m
;
 

Y
Y
,
 
Y
Y
b
e
s
t
,
 
Y
Y
m
i
n
,
 
Y
Y
m
a
x
:
 
V
D
n
;

1
6
 

F
T
:
 
t
e
x
t
;
 

A
0
,
Z
e
t
a
O
m
e
g
a
n
,
y
I
n
f
,
 
t
,
 
v
F
,
v
F
b
e
s
t
:
 
d
o
u
b
l
e
;

1
7
 

i
,
j
,
 
n
v
a
r
,
 
n
M
i
n
,
n
M
a
x
:
 
B
y
t
e
;
 
T
o
t
a
l
F
e
v
:
 
L
o
n
g
I
n
t
;
 
s
,
A
u
x
S
t
r
:
 
s
t
r
i
n
g
;

1
8
 
f
u
n
c
t
i
o
n
 
E
x
p
F
u
n
c
(
t
:
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
9
 
B
E
G
I
n

2
0
 

E
x
p
F
u
n
c
:
=
A
0
*
e
x
p
(
-
Z
e
t
a
O
m
e
g
a
n
*
t
)
;

2
1
 
E
n
D
;

2
2
 
{
$
F
+
}

2
3
 
f
u
n
c
t
i
o
n
 
F
o
b
j
1
(
Y
Y
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

2
4
 
v
a
r
 
j
:
B
y
t
e
;
 

M
a
x
E
r
r
o
r
,
E
r
r
o
r
:
 
d
o
u
b
l
e
;

2
5
 
B
E
G
I
n

2
6
 

F
o
b
j
1
:
=
I
n
f
D
;

2
7
 

f
o
r
 
j
:
=
1
 
t
o
 
n
v
a
r
 
d
o

2
8
 

i
f
 
(
Y
Y
[
j
]
 
<
 
Y
Y
m
i
n
[
j
]
)
 
O
R
 
(
Y
Y
[
j
]
 
>
 
Y
Y
m
a
x
[
j
]
)
 
t
h
e
n
 
E
X
I
T
;

2
9
 

Z
e
t
a
O
m
e
g
a
n
:
=
Y
Y
[
1
]
;
 
 
A
0
:
=
Y
Y
[
2
]
;
 
y
I
n
f
:
=
Y
Y
[
3
]
;
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3
0
 

M
a
x
E
r
r
o
r
:
=
-
I
n
f
D
;

3
1
 

f
o
r
 
j
:
=
1
 
t
o
 
n
M
i
n
 
d
o
 
B
E
G
I
n

3
2
 

E
r
r
o
r
:
=
A
b
s
(
y
I
n
f
 
-
 
E
x
p
F
u
n
c
(
v
t
m
i
n
[
j
]
)
 
-
 
v
Y
m
i
n
[
j
]
)
;

3
3
 

i
f
 
(
M
a
x
E
r
r
o
r
 
<
 
E
r
r
o
r
)
 
t
h
e
n
 
M
a
x
E
r
r
o
r
:
=
E
r
r
o
r
;

3
4
 

E
n
D
;

3
5
 

f
o
r
 
j
:
=
1
 
t
o
 
n
M
a
x
 
d
o
 
B
E
G
I
n

3
6
 

E
r
r
o
r
:
=
A
b
s
(
y
I
n
f
 
+
 
E
x
p
F
u
n
c
(
v
t
m
a
x
[
j
]
)
 
-
 
v
Y
m
a
x
[
j
]
)
;

3
7
 

i
f
 
(
M
a
x
E
r
r
o
r
 
<
 
E
r
r
o
r
)
 
t
h
e
n
 
M
a
x
E
r
r
o
r
:
=
E
r
r
o
r
;

3
8
 

E
n
D
;

3
9
 

F
o
b
j
1
:
=
M
a
x
E
r
r
o
r
;

4
0
 
E
n
D
;
 
{
.
.
F
o
b
j
1
}

4
1
 
{
$
F
-
}

4
2
 
B
E
G
I
n

4
3
 

C
l
r
S
c
r
;

4
4
 

A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
0
+
’
.
M
I
n
’
)
;
 
 
R
e
s
e
t
(
F
T
)
;

4
5
 

R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;

4
6
 

R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;

4
7
 

n
M
i
n
:
=
0
;

4
8
 

w
h
i
l
e
 
n
O
T
 
E
O
F
(
F
T
)
 
d
o
 
B
E
G
I
n

4
9
 

I
n
c
(
n
M
i
n
)
;

5
0
 

R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;

5
1
 

v
t
m
i
n
[
n
M
i
n
]
:
=
E
x
t
r
a
c
t
1
s
t
n
o
(
A
u
x
S
t
r
)
;

5
2
 

v
Y
m
i
n
[
n
M
i
n
]
:
=
E
x
t
r
a
c
t
1
s
t
n
o
(
A
u
x
S
t
r
)
;

5
3
 

i
f
 
(
v
t
m
i
n
[
n
M
i
n
]
 
>
=
 
I
n
f
D
)
 
t
h
e
n
 
D
e
c
(
n
M
i
n
)
;

5
4
 

E
n
D
;

5
5
 

C
l
o
s
e
(
F
T
)
;

5
6
 

A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
0
+
’
.
M
A
X
’
)
;
 
 
R
e
s
e
t
(
F
T
)
;

5
7
 

R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;

5
8
 

R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;

5
9
 

n
M
a
x
:
=
0
;
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6
0
 

w
h
i
l
e
 
n
O
T
 
E
O
F
(
F
T
)
 
d
o
 
B
E
G
I
n

6
1
 

I
n
c
(
n
M
a
x
)
;

6
2
 

R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;

6
3
 

v
t
m
a
x
[
n
M
a
x
]
:
=
E
x
t
r
a
c
t
1
s
t
n
o
(
A
u
x
S
t
r
)
;

6
4
 

v
Y
m
a
x
[
n
M
a
x
]
:
=
E
x
t
r
a
c
t
1
s
t
n
o
(
A
u
x
S
t
r
)
;

6
5
 

i
f
 
(
v
t
m
a
x
[
n
M
a
x
]
 
>
=
 
I
n
f
D
)
 
t
h
e
n
 
D
e
c
(
n
M
a
x
)
;

6
6
 

E
n
D
;

6
7
 

C
l
o
s
e
(
F
T
)
;

6
8
 

n
v
a
r
:
=
3
;

6
9
 

Y
Y
m
i
n
[
1
]
:
=
0
.
0
;
 
Y
Y
m
a
x
[
1
]
:
=
2
.
0
;
 

{
Z
e
t
a
*
O
m
e
g
a
N
}

7
0
 

Y
Y
m
i
n
[
2
]
:
=
0
.
0
;
 
Y
Y
m
a
x
[
2
]
:
=
v
Y
m
a
x
[
1
]
-
v
Y
m
i
n
[
1
]
;
 
{
A
0
}

7
1
 

Y
Y
m
i
n
[
3
]
:
=
v
Y
m
i
n
[
1
]
;
 
Y
Y
m
a
x
[
3
]
:
=
v
Y
m
a
x
[
1
]
;
 

{
y
I
n
f
}

7
2
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 

{
f
i
r
s
t
 
i
n
i
t
i
a
l
 
g
u
e
s
s
 
.
.
}

7
3
 

Y
Y
b
e
s
t
[
i
]
:
=
Y
Y
m
i
n
[
i
]
+
0
.
5
*
(
Y
Y
m
a
x
[
i
]
-
Y
Y
m
i
n
[
i
]
)
;

7
4
 

T
o
t
a
l
F
e
v
:
=
0
;
 

v
F
b
e
s
t
:
=
I
n
f
D
;

7
5
 

W
r
i
t
e
O
u
t
n
:
=
F
A
L
S
E
;
 
{
d
o
 
n
o
t
 
d
i
s
p
l
a
y
 
s
e
a
r
c
h
 
s
t
a
t
u
s
 
i
n
f
o
}

7
6
 

f
o
r
 
j
:
=
1
 
t
o
 
1
0
0
 
d
o
 
B
E
G
I
n
 
{
m
u
l
t
i
s
t
a
r
t
 
m
i
n
i
m
i
z
a
t
i
o
n
 
.
.
}

7
7
 

G
o
T
o
X
Y
(
1
,
W
h
e
r
e
Y
)
;
 
 
 
C
l
r
E
o
l
;

7
8
 

W
r
i
t
e
(
‘
I
t
e
r
a
t
i
o
n
 
‘
,
j
:
3
,
’
 
 
 
F
(
X
)
=
’
,
v
F
b
e
s
t
)
;

7
9
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
B
E
G
I
n
 
 
{
i
n
i
t
i
a
l
 
g
u
e
s
s
 
b
a
s
e
 
o
n
 
p
r
e
v
.
 
Y
Y
}

8
0
 

r
e
p
e
a
t

8
1
 

Y
Y
[
i
]
:
=
Y
Y
b
e
s
t
[
i
]
+
(
R
a
n
d
o
m
-
0
.
5
)
*
(
Y
Y
m
a
x
[
i
]
-
Y
Y
m
i
n
[
i
]
)
;

8
2
 

u
n
t
i
l
 
(
Y
Y
m
i
n
[
i
]
 
<
=
 
Y
Y
[
i
]
)
 
A
n
D
 
(
Y
Y
[
i
]
 
<
=
 
Y
Y
m
a
x
[
i
]
)
;

8
3
 

E
n
D
;

8
4
 

n
e
l
d
e
r
M
e
a
d
(
‘
’
,
 
F
o
b
j
1
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
1
6
,
 
Y
Y
m
i
n
,
Y
Y
m
a
x
,
 
v
F
,
Y
Y
)
;

8
5
 

T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
 
+
 
n
r
F
e
v
n
;

8
6
 

i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n
 
{
r
e
t
a
i
n
 
t
h
e
 
b
e
s
t
 
s
o
l
u
t
i
o
n
 
s
o
 
f
a
r
 
.
.
}

8
7
 

v
F
:
=
F
o
b
j
1
(
Y
Y
)
;
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
Y
Y
b
e
s
t
[
i
]
:
=
Y
Y
[
i
]
;

8
8
 

v
F
b
e
s
t
:
=
v
F
;
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8
9
 

E
n
D
;

9
0
 

E
n
D
;
 

{
.
.
 
m
u
l
t
i
s
t
a
r
t
 
m
i
n
i
m
i
z
a
t
i
o
n
}

9
1
 

W
r
i
t
e
L
n
;

9
2
 

W
r
i
t
e
L
n
(
‘
v
F
 

=
’
,
v
F
b
e
s
t
:
2
0
:
1
6
)
;

9
3
 

W
r
i
t
e
L
n
(
‘
Z
e
t
a
*
O
m
e
g
a
n
=
’
,
Y
Y
[
1
]
:
2
0
:
1
6
)
;

9
4
 

W
r
i
t
e
L
n
(
‘
A
0
 

=
’
,
Y
Y
[
2
]
:
2
0
:
1
6
)
;

9
5
 

W
r
i
t
e
L
n
(
‘
Y
(
I
n
f
)
 

=
’
,
Y
Y
[
3
]
:
2
0
:
1
6
)
;

9
6
 

A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
1
+
’
.
R
E
Z
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

9
7
 

W
r
i
t
e
L
n
(
F
T
,
’
E
r
r
o
r
 

=
’
,
v
F
b
e
s
t
:
2
0
:
1
6
)
;

9
8
 

W
r
i
t
e
L
n
(
F
T
,
’
Z
e
t
a
*
O
m
e
g
a
n
=
’
,
Y
Y
[
1
]
:
2
0
:
1
6
)
;

9
9
 

W
r
i
t
e
L
n
(
F
T
,
’
A
0
 

=
’
,
Y
Y
[
2
]
:
2
0
:
1
6
)
;

1
0
0
 

W
r
i
t
e
L
n
(
F
T
,
’
Y
(
I
n
f
)
 

=
’
,
Y
Y
[
3
]
:
2
0
:
1
6
)
;

1
0
1
 

W
r
i
t
e
L
n
(
F
T
,
’
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
’
)
;

1
0
2
 

f
o
r
 
i
:
=
1
 
t
o
 
n
M
i
n
 
d
o
 
W
r
i
t
e
L
n
(
F
T
,
v
t
m
i
n
[
i
]
,
’
 
‘
,
v
Y
m
i
n
[
i
]
)
;

1
0
3
 

W
r
i
t
e
L
n
(
F
T
,
’
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
’
)
;

1
0
4
 

f
o
r
 
i
:
=
1
 
t
o
 
n
M
a
x
 
d
o
 
W
r
i
t
e
L
n
(
F
T
,
v
t
m
a
x
[
i
]
,
’
 
‘
,
v
Y
m
a
x
[
i
]
)
;

1
0
5
 

W
r
i
t
e
L
n
(
F
T
,
’
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
’
)
;

1
0
6
 

f
o
r
 
i
:
=
0
 
t
o
 
2
0
0
 
d
o
 
B
E
G
I
n

1
0
7
 

t
:
=
i
*
M
a
x
2
(
v
t
m
i
n
[
n
M
i
n
]
,
v
t
m
a
x
[
n
M
a
x
]
)
/
2
0
0
;
 

1
0
8
 

W
r
i
t
e
L
n
(
F
T
,
t
:
2
0
:
1
6
,
’
 
 
‘
,
y
I
n
f
+
E
x
p
F
u
n
c
(
t
)
:
2
0
:
1
6
)
;

1
0
9
 

E
n
D
;

1
1
0
 

W
r
i
t
e
L
n
(
F
T
,
’
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
’
)
;

1
1
1
 

f
o
r
 
i
:
=
0
 
t
o
 
2
0
0
 
d
o
 
B
E
G
I
n

1
1
2
 

t
:
=
i
*
M
a
x
2
(
v
t
m
i
n
[
n
M
i
n
]
,
v
t
m
a
x
[
n
M
a
x
]
)
/
2
0
0
;

1
1
3
 

W
r
i
t
e
L
n
(
F
T
,
t
:
2
0
:
1
6
,
’
 
 
‘
,
y
I
n
f
-
E
x
p
F
u
n
c
(
t
)
:
2
0
:
1
6
)
;

1
1
4
 

E
n
D
;

1
1
5
 

C
l
o
s
e
(
F
T
)
;
 
 
R
e
a
d
L
n
;

1
1
6
  E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
9
_
0
7
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

F
i
n
d
s
 
t
h
e
 
c
o
e
f
f
i
c
i
e
n
t
s
 
o
f
 
S
t
r
e
s
s
-
S
t
r
a
i
n
 
f
u
n
c
t
i
o
n
 
o
f
 
a
n
 
e
l
a
s
t
o
m
e
r
i
c
 
m
a
t
e
r
i
a
l

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
D
O
S
,
C
R
T
,

6
 

L
i
b
I
n
O
u
t
,
 
{
M
y
V
a
l
,
M
y
S
t
r
}

7
 

L
i
b
M
a
t
h
,
 

{
P
m
a
x
,
M
m
a
x
,
V
D
n
,
V
D
p
}

8
 

L
i
b
M
i
n
n
;
 

{
N
e
l
d
e
r
M
e
a
d
}

9
 

c
o
n
s
t
 
n
v
a
r
=
5
;
 

L
i
m
A
F
=
1
0
0
0
0
;
 

1
0
 
v
a
r
 

F
T
:
 
T
e
x
t
;
 

S
i
,
E
i
:
 
V
D
p
;
 

X
,
 
X
m
i
n
,
 
X
m
a
x
,
 
X
b
e
s
t
:
 
V
D
n
;

1
1
 

T
o
t
a
l
F
e
v
:
 
L
o
n
g
I
n
t
;
 

n
P
t
s
,
i
,
j
:
 
W
o
r
d
;

1
2
 

C
1
,
C
2
,
C
3
,
C
4
,
C
5
,
 
v
F
,
 
v
F
b
e
s
t
:
 
d
o
u
b
l
e
;
 

s
:
 
s
t
r
i
n
g
;

1
3
 
f
u
n
c
t
i
o
n
 
S
i
g
m
(
E
:
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;
 
{
S
i
g
m
(
E
p
s
)
 
f
u
n
c
t
i
o
n
 
.
.
,
}

1
4
 
v
a
r
 
A
u
x
:
 
d
o
u
b
l
e
;

1
5
 
B
E
G
I
n

1
6
 

A
u
x
:
=
2
*
C
5
*
P
o
w
(
E
,
5
)
+
(
1
0
*
C
5
+
3
*
C
3
)
*
P
o
w
(
E
,
4
)
;

1
7
 

A
u
x
:
=
A
u
x
+
(
1
4
*
C
5
+
4
*
C
4
+
9
*
C
3
+
C
2
)
*
E
*
E
*
E
;

1
8
 

A
u
x
:
=
A
u
x
+
(
6
*
C
5
+
6
*
C
4
+
6
*
C
3
+
3
*
C
2
+
C
1
)
*
E
*
E
;

1
9
 

A
u
x
:
=
A
u
x
+
(
3
*
C
2
+
2
*
C
1
)
*
E
+
C
2
+
C
1
;

2
0
 

S
i
g
m
:
=
2
*
E
*
(
3
+
3
*
E
+
E
*
E
)
*
A
u
x
/
P
o
w
(
(
1
+
E
)
,
4
)
;

2
1
 
E
n
D
;

2
2
 
{
$
F
+
}

2
3
 
f
u
n
c
t
i
o
n
 
F
o
b
j
2
(
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;

2
4
 
v
a
r
 

M
a
x
E
r
r
o
r
,
E
r
r
o
r
:
 
d
o
u
b
l
e
;
 

i
:
W
o
r
d
;

2
5
 
B
E
G
I
n

2
6
 

F
o
b
j
2
:
=
I
n
f
D
;

2
7
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
i
f
 
(
X
[
i
]
<
X
m
i
n
[
i
]
)
 
O
R
 
(
X
[
i
]
>
X
m
a
x
[
i
]
)
 
t
h
e
n
 
E
X
I
T
;

2
8
 

C
1
:
=
X
[
1
]
;
 
C
2
:
=
X
[
2
]
;
 
C
3
:
=
X
[
3
]
;
 
C
4
:
=
X
[
4
]
;
 
C
5
:
=
X
[
5
]
;

2
9
 

M
a
x
E
r
r
o
r
:
=
-
I
n
f
D
;

3
0
 

f
o
r
 
i
:
=
1
 
t
o
 
n
P
t
s
 
d
o
 
B
E
G
I
n

3
1
 

E
r
r
o
r
:
=
A
b
s
(
S
i
[
i
]
 
-
 
S
i
g
m
(
E
i
[
i
]
)
)
;
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3
2
 

i
f
 
(
M
a
x
E
r
r
o
r
 
<
 
E
r
r
o
r
)
 
t
h
e
n
 
M
a
x
E
r
r
o
r
:
=
E
r
r
o
r
;

3
3
 

E
n
D
;

3
4
 

F
o
b
j
2
:
=
M
a
x
E
r
r
o
r
;

3
5
 
E
n
D
;
 
{
.
.
 
F
o
b
j
2
}

3
6
 
{
$
F
-
}

3
7
 
B
E
G
I
n

3
8
 

C
l
r
S
c
r
;

3
9
 

A
s
s
i
g
n
(
F
T
,
’
F
9
_
0
7
.
D
T
A
’
)
;
 

R
e
s
e
t
(
F
T
)
;

4
0
 

n
P
t
s
:
=
0
;

4
1
 

r
e
p
e
a
t

4
2
 

I
n
c
(
n
P
t
s
)
;

4
3
 

R
e
a
d
L
n
(
F
T
,
E
i
[
n
P
t
s
]
,
S
i
[
n
P
t
s
]
)
;

4
4
 

i
f
 
(
n
P
t
s
 
M
O
D
 
3
 
<
>
 
0
)
 
t
h
e
n

4
5
 

W
r
i
t
e
(
E
i
[
n
P
t
s
]
:
1
0
:
5
,
’
 
‘
,
S
i
[
n
P
t
s
]
:
1
0
:
5
,
’
 
|
 
‘
)

4
6
 

e
l
s
e

4
7
 

W
r
i
t
e
L
n
(
E
i
[
n
P
t
s
]
:
1
0
:
5
,
’
 
‘
,
S
i
[
n
P
t
s
]
:
1
0
:
5
)
;

4
8
 

u
n
t
i
l
 
E
o
f
(
F
T
)
 
o
r
 
(
n
P
t
s
 
=
 
P
m
a
x
)
;

4
9
 

C
l
o
s
e
(
F
T
)
;

5
0
 

W
r
i
t
e
L
n
(
^
j
)
;

5
1
 

X
m
i
n
[
1
]
:
=
-
2
;
 
X
m
a
x
[
1
]
:
=
2
;
 

X
m
i
n
[
2
]
:
=
-
2
;
 

X
m
a
x
[
2
]
:
=
2
;

5
2
 

X
m
i
n
[
3
]
:
=
-
2
;
 
X
m
a
x
[
3
]
:
=
2
;
 

X
m
i
n
[
4
]
:
=
-
2
;
 

X
m
a
x
[
4
]
:
=
2
;

5
3
 

X
m
i
n
[
5
]
:
=
-
2
;
 
X
m
a
x
[
5
]
:
=
2
;

5
4
 

W
r
i
t
e
O
u
t
n
:
=
F
A
L
S
E
;
 
{
d
o
 
n
o
t
 
d
i
s
p
l
a
y
 
s
e
a
r
c
h
 
s
t
a
t
u
s
 
i
n
f
o
}

5
5
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
{
f
i
r
s
t
 
i
n
i
t
i
a
l
 
g
u
e
s
s
 
.
.
}

5
6
 

X
b
e
s
t
[
i
]
:
=
X
m
i
n
[
i
]
+
0
.
5
*
(
X
m
a
x
[
i
]
-
X
m
i
n
[
i
]
)
;

5
7
 

T
o
t
a
l
F
e
v
:
=
0
;

5
8
 

v
F
b
e
s
t
:
=
I
n
f
D
;

5
9
 

f
o
r
 
j
:
=
1
 
t
o
 
1
0
0
 
d
o
 
B
E
G
I
n
 

{
m
u
l
t
i
s
t
a
r
t
 
m
i
n
i
m
i
z
a
t
i
o
n
 
.
.
}

6
0
 

G
o
T
o
X
Y
(
1
,
W
h
e
r
e
Y
)
;
 
 
 
C
l
r
E
o
l
;
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6
1
 

W
r
i
t
e
(
‘
I
t
e
r
a
t
i
o
n
 
‘
,
j
:
3
,
’
 
 
 
F
(
X
)
=
’
,
v
F
b
e
s
t
)
;

6
2
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
B
E
G
I
n
 
{
i
n
i
t
i
a
l
 
g
u
e
s
s
 
b
a
s
e
 
o
n
 
p
r
e
v
i
o
u
s
 
X
[
.
.
]
}

6
3
 

r
e
p
e
a
t

6
4
 

X
[
i
]
:
=
X
b
e
s
t
[
i
]
+
(
R
a
n
d
o
m
-
0
.
5
)
*
(
X
m
a
x
[
i
]
-
X
m
i
n
[
i
]
)
;

6
5
 

u
n
t
i
l
 
(
X
m
i
n
[
i
]
 
<
=
 
X
[
i
]
)
 
A
n
D
 
(
X
[
i
]
 
<
=
 
X
m
a
x
[
i
]
)
;

6
6
 

E
n
D
;

6
7
 

n
e
l
d
e
r
M
e
a
d
(
‘
’
,
 
F
o
b
j
2
,
n
v
a
r
,
 
L
i
m
A
F
,
 
1
.
0
E
-
3
2
,
 
X
m
i
n
,
X
m
a
x
,
 
v
F
,
X
)
;

6
8
 

T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
 
+
 
n
r
F
e
v
n
;

6
9
 

i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

7
0
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
B
E
G
I
n

7
1
 

S
t
r
(
X
[
i
]
:
1
0
:
3
,
s
)
;
 

X
[
i
]
:
=
M
y
V
a
l
(
s
)
;

7
2
 

E
n
D
;

7
3
 

v
F
:
=
F
o
b
j
2
(
X
)
;

7
4
 

i
f
 
(
v
F
 
<
 
v
F
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

7
5
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
X
b
e
s
t
[
i
]
:
=
X
[
i
]
;

7
6
 

v
F
b
e
s
t
:
=
v
F
;

7
7
 

E
n
D
;

7
8
 

E
n
D
;

7
9
 

E
n
D
;
 
{
.
.
 
m
u
l
t
i
s
t
a
r
t
 
m
i
n
i
m
i
z
a
t
i
o
n
}

8
0
 

v
F
:
=
F
o
b
j
2
(
X
b
e
s
t
)
;
 
{
c
a
l
l
 
F
o
b
j
(
.
.
)
 
t
o
 
r
e
-
e
v
a
l
u
a
t
e
 
C
1
,
C
2
,
C
3
,
C
4
,
C
5
}

8
1
 

W
r
i
t
e
L
n
(
^
j
)
;

8
2
 

W
r
i
t
e
L
n
(
‘
 
M
a
x
i
m
u
m
 
d
e
v
i
a
t
i
o
n
 
=
’
,
v
F
b
e
s
t
:
1
2
:
1
0
)
;

8
3
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
‘
 
C
’
,
i
:
1
,
’
 
=
’
,
X
b
e
s
t
[
i
]
)
;

8
4
 

W
r
i
t
e
(
‘
O
b
j
.
 
f
u
n
c
t
i
o
n
 
c
a
l
l
s
 
=
 
‘
,
T
o
t
a
l
F
e
v
,
’
 

<
C
R
>
.
.
’
)
;

8
5
 

A
s
s
i
g
n
(
F
T
,
’
F
9
_
0
7
.
T
X
T
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

8
6
 

W
r
i
t
e
L
n
(
F
T
,
’
M
a
x
 
D
e
v
i
a
t
i
o
n
 
=
’
,
v
F
b
e
s
t
:
1
2
:
9
)
;

8
7
 

f
o
r
 
i
:
=
1
 
t
o
 
n
v
a
r
 
d
o
 
W
r
i
t
e
L
n
(
F
T
,
’
C
’
,
i
:
1
,
’
 
=
’
,
X
b
e
s
t
[
i
]
:
7
:
4
)
;

8
8
 

W
r
i
t
e
L
n
(
F
T
,
’
 

e
p
s
 

S
i
g
m
a
 

S
i
g
m
(
e
p
s
)
 

E
r
r
o
r
’
)
;

8
9
 

f
o
r
 
i
:
=
1
 
t
o
 
n
P
t
s
 
d
o
 
B
E
G
I
n

9
0
 

v
F
:
=
S
i
g
m
(
E
i
[
i
]
)
;
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9
1
 

W
r
i
t
e
L
n
(
F
T
,
E
i
[
i
]
:
9
:
6
,
’
 
‘
,
S
i
[
i
]
:
9
:
6
,
’
 
‘
,
v
F
:
9
:
6
,
’
 
‘
,
v
F
-
S
i
[
i
]
:
9
:
5
)
;

9
2
 

E
n
D
;

9
3
 

C
l
o
s
e
(
F
T
)
;
 
 
R
e
a
d
L
n
;

9
4
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
9
_
0
9
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
a
 
T
3
D
 
f
i
l
e
 
t
o
 
p
l
o
t
 
a
s
 
a
n
i
m
a
t
i
o
n
 
t
h
e
 
g
e
n
e
r
a
l
i
z
e
d
 
R
o
s
e
n
b
r
o
c
k
’
s

4
 

f
u
n
c
t
i
o
n
 
o
f
 
t
h
r
e
e
 
v
a
r
i
a
b
l
e
s
 

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
,
D
O
S
,

7
 

 
 
 
L
i
b
I
n
O
u
t
,

8
 

 
 
 
L
i
b
M
a
t
h
,

9
 

 
 
 
L
i
b
G
E
2
D
;

1
0
 
c
o
n
s
t
 
F
i
l
e
n
a
m
e
=
’
F
9
_
0
9
.
T
3
D
’
;

1
1
 
v
a
r
 
F
T
:
 
T
e
x
t
;
 
 
n
X
,
n
Y
,
n
Z
,
 
X
m
i
n
,
X
m
a
x
,
 
Y
m
i
n
,
Y
m
a
x
,
 
Z
m
i
n
,
Z
m
a
x
,
 
X
,
Y
,
Z
,

1
2
 
 
 
 
  v
F
,
 
v
F
m
i
n
,
v
F
m
a
x
:
 
d
o
u
b
l
e
;
 
 
i
X
,
i
Y
,
i
Z
:
 
i
n
t
e
g
e
r
;

1
3
 
f
u
n
c
t
i
o
n
 
R
3
(
x
1
,
x
2
,
x
3
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;
 
{
R
o
s
e
n
b
r
o
k
’
s
 
f
u
n
c
t
i
o
n
 
w
i
t
h
 
n
=
3
}

1
4
 
v
a
r
 
T
1
,
T
2
:
 
d
o
u
b
l
e
;

1
5
 
B
E
G
I
n

1
6
 
 
T
1
:
=
1
0
0
*
S
q
r
(
x
2
-
S
q
r
(
x
1
)
)
+
S
q
r
(
1
.
0
-
x
1
)
;

1
7
 
 
T
2
:
=
1
0
0
*
S
q
r
(
x
3
-
S
q
r
(
x
2
)
)
+
S
q
r
(
1
.
0
-
x
2
)
;

1
8
 
 
R
3
:
=
T
1
+
T
2
;

1
9
 
E
n
D
;
 
 
{
.
.
 
R
3
(
)
}

2
0
 
B
E
G
I
n

2
1
 
 
n
X
:
=
1
6
1
;
 
 
X
m
i
n
:
=
-
2
.
5
;
 
 
X
m
a
x
:
=
2
.
5
;

2
2
 
 
n
Y
:
=
1
6
1
;
 
 
Y
m
i
n
:
=
-
2
.
5
;
 
 
Y
m
a
x
:
=
2
.
5
;

2
3
 
 
n
Z
:
=
1
1
;
 
 
 
Z
m
i
n
:
=
-
2
.
5
;
 
 
Z
m
a
x
:
=
2
.
5
;

2
4
 
 
C
l
r
S
c
r
;

2
5
 
 
A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
)
;
 
 
R
e
w
r
i
t
e
(
F
T
)
;
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2
6
 
 
f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
B
E
G
I
n

2
7
 
 
 
Z
:
=
Z
m
i
n
 
+
 
(
i
Z
-
1
)
*
(
Z
m
a
x
-
Z
m
i
n
)
/
(
n
Z
-
1
)
;

2
8
 
 
 
W
r
i
t
e
(
F
T
,
’
 
 
 
x
3
=
’
,
M
y
S
t
r
(
Z
,
4
)
:
4
)
;

2
9
 
 
E
n
D
;

3
0
 
 
W
r
i
t
e
L
n
(
F
T
)
;

3
1
 
 
f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
(
 
 
n
X
,
9
)
:
9
,
’
 
‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

3
2
 
 
f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
(
 
 
n
Y
,
9
)
:
9
,
’
 
‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

3
3
 
 
f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
(
X
m
i
n
,
9
)
:
9
,
’
 
‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

3
4
 
 
f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
(
X
m
a
x
,
9
)
:
9
,
’
 
‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

3
5
 
 
f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
(
Y
m
i
n
,
9
)
:
9
,
’
 
‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

3
6
 
 
f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
W
r
i
t
e
(
F
T
,
M
y
S
t
(
Y
m
a
x
,
9
)
:
9
,
’
 
‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

3
7
 
 

v
F
m
i
n
:
=
I
n
f
D
;
 
 
v
F
m
a
x
:
=
-
I
n
f
D
;

3
8
 
 
f
o
r
 
i
X
:
=
1
 
t
o
 
r
o
u
n
d
(
n
X
)
 
d
o
 
B
E
G
I
n

3
9
 
 
 
X
:
=
X
m
i
n
+
(
i
X
-
1
)
*
(
X
m
a
x
-
X
m
i
n
)
/
(
n
X
-
1
)
;

4
0
 
 
 
f
o
r
 
i
Y
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Y
)
 
d
o
 
B
E
G
I
n

4
1
 
 
 
 
  Y
:
=
Y
m
i
n
+
(
i
Y
-
1
)
*
(
Y
m
a
x
-
Y
m
i
n
)
/
(
n
Y
-
1
)
;

4
2
 
 
 
 
  f
o
r
 
i
Z
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Z
)
 
d
o
 
B
E
G
I
n

4
3
 
 
 
 
  

  Z
:
=
Z
m
i
n
+
(
i
Z
-
1
)
*
(
Z
m
a
x
-
Z
m
i
n
)
/
(
n
Z
-
1
)
;

4
4
 
 
 
 
  

  v
F
:
=
R
3
(
X
,
Y
,
Z
)
;

4
5
 
 
 
 
  

  i
f
 
(
v
F
m
i
n
 
>
 
v
F
)
 
t
h
e
n
 
v
F
m
i
n
:
=
v
F
;

4
6
 
 
 
 
  

  i
f
 
(
v
F
m
a
x
 
<
 
v
F
)
 
t
h
e
n
 
v
F
m
a
x
:
=
v
F
;

4
7
 
 
 
 
  

  W
r
i
t
e
(
F
T
,
’
 
‘
,
M
y
S
t
r
(
v
F
,
9
)
)
;

4
8
 
 
 
 
  E
n
D
;

4
9
 
 
 
 
  W
r
i
t
e
L
n
(
F
T
)
;

5
0
 
 
 
E
n
D
;

5
1
 
 
 
W
r
i
t
e
L
n
(
i
X
:
3
,
’
 
o
f
 
‘
,
n
X
:
3
:
0
)
;
 
{
p
r
o
g
r
e
s
s
 
r
e
p
o
r
t
 
.
.
}

5
2
 
 
E
n
D
;

5
3
 
 
W
r
i
t
e
L
n
(
‘
v
F
m
i
n
=
’
,
v
F
m
i
n
:
1
0
:
6
,
’
 
 
v
F
m
a
x
=
’
,
v
F
m
a
x
:
1
0
:
6
)
;
 
 

5
4
 
 
C
l
o
s
e
(
F
T
)
;
 
 
R
e
a
d
L
n
;

5
5
 
E
n
D
.
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1
 

P
r
o
g
r
a
m
 
P
9
_
1
0
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
s
 
t
h
e
 
p
a
r
t
i
a
l
 
m
i
n
i
m
a
 
&
 
m
a
x
i
m
a
 
o
f
 
t
h
e
 
g
e
n
e
r
a
l
i
z
e
d
 
R
o
s
e
n
b
r
o
k
’
s

4
 

f
u
n
c
t
i
o
n
 
o
f
 
n
 
v
a
r
i
a
b
l
e
s
 
f
o
r
 
v
i
s
u
a
l
i
z
a
t
i
o
n
s
 
w
i
t
h
 
D
_
3
D
 

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
,
D
O
S
,

7
 

 
 
 
L
i
b
I
n
O
u
t
,

8
 

 
 
 
L
i
b
M
i
n
n
,

9
 

 
 
 
L
i
b
M
a
t
h
;

1
0
 
c
o
n
s
t
 
F
i
l
e
n
a
m
e
=
’
F
9
_
1
0
.
T
3
D
’
;

1
1
 
 
 
 
  n
 
 
=
 
5
;
 
 
{
n
u
m
b
e
r
 
o
f
 
v
a
r
i
a
b
l
e
s
 
o
f
 
t
h
e
 
f
u
n
c
t
i
o
n
 
t
o
 
b
e
 
p
l
o
t
t
e
d
 
}

1
2
 
 
 
 
  i
x
 
=
 
1
;
 
m
x
 
=
 
1
6
1
;
 
 
{
1
s
t
 
s
c
a
n
 
v
a
r
i
a
b
l
e
 
&
 
n
u
m
b
e
r
 
a
n
d
 
g
r
i
d
 
s
i
z
e
}

1
3
 
 
 
 
  i
y
 
=
 
2
;
 
m
y
 
=
 
1
6
1
;
 
 
{
2
n
d
 
s
c
a
n
 
v
a
r
i
a
b
l
e
 
&
 
n
u
m
b
e
r
 
a
n
d
 
g
r
i
d
 
s
i
z
e
}

1
4
 
v
a
r
 
 
X
X
m
i
n
,
X
X
m
a
x
,
 
X
m
i
n
,
X
m
a
x
,
 
X
b
e
s
t
:
 
V
D
n
;

1
5
 
 
 
 
X
X
1
,
 
X
X
2
,
 
F
V
b
e
s
t
,
 
P
l
s
M
n
s
:
 
d
o
u
b
l
e
;

1
6
 
f
u
n
c
t
i
o
n
 
_
k
(
k
:
I
n
t
e
g
e
r
)
:
 
I
n
t
e
g
e
r
;
 
{
f
r
o
m
 
k
=
1
.
.
n
-
2
 
t
o
 
k
=
1
.
.
n
}

1
7
 
B
E
G
I
n

1
8
 
 
i
f
 
(
k
 
>
=
 
i
x
)
 
t
h
e
n
 
k
:
=
k
+
1
;

1
9
 
 
i
f
 
(
k
 
>
=
 
i
y
)
 
t
h
e
n
 
k
:
=
k
+
1
;

2
0
 
 
_
k
:
=
k
;

2
1
 
E
n
D
;

2
2
 
f
u
n
c
t
i
o
n
 
k
_
(
k
:
I
n
t
e
g
e
r
)
:
 
I
n
t
e
g
e
r
;
 
{
f
r
o
m
 
k
=
1
.
.
n
 
t
o
 
k
=
1
.
.
n
-
2
}

2
3
 
B
E
G
I
n

2
4
 
 
i
f
 
(
k
 
=
 
i
x
)
 
t
h
e
n
 
B
E
G
I
n
 
k
_
:
=
n
+
1
;
 
E
x
i
t
;
 
E
n
D
;

2
5
 
 
i
f
 
(
k
 
=
 
i
y
)
 
t
h
e
n
 
B
E
G
I
n
 
k
_
:
=
n
+
2
;
 
E
x
i
t
;
 
E
n
D
;

2
6
 
 
i
f
 
(
k
 
>
 
i
x
)
 
t
h
e
n
 
k
:
=
k
-
1
;

2
7
 
 
i
f
 
(
k
+
1
 
>
 
i
y
)
 
t
h
e
n
 
k
:
=
k
-
1
;

2
8
 
 
k
_
:
=
k
;

2
9
 
E
n
D
;

3
0
 
{
$
F
+
}
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3
1
 
f
u
n
c
t
i
o
n
 
F
o
b
j
(
v
X
:
 
V
D
n
)
:
 
d
o
u
b
l
e
;
 
 
{
g
e
n
e
r
a
l
i
z
e
d
 
R
o
s
e
n
b
r
o
k
 
f
u
n
c
t
i
o
n
 
.
.
}

3
2
 
v
a
r
 
 
 
x
:
 
V
D
n
;
 
 
S
u
m
:
 
d
o
u
b
l
e
;
 
 
k
:
 
I
n
t
e
g
e
r
;

3
3
 
B
E
G
I
n

3
4
 
 
F
o
b
j
:
=
I
n
f
D
;

3
5
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
-
2
 
d
o
 
B
E
G
I
n

3
6
 
 
 
i
f
 
(
v
X
[
k
]
 
<
 
X
m
i
n
[
k
]
)
 
O
R
 
(
X
m
a
x
[
k
]
 
<
 
v
X
[
k
]
)
 
t
h
e
n
 
E
x
i
t
;

3
7
 
 
E
n
D
;

3
8
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
 
d
o
 
i
f
 
(
_
k
(
k
)
 
<
=
 
n
)
 
t
h
e
n
 
x
[
_
k
(
k
)
]
:
=
v
X
[
k
]
;

3
9
 
 
x
[
i
x
]
:
=
X
X
1
;
 
 
x
[
i
y
]
:
=
X
X
2
;

4
0
 
 
S
u
m
:
=
0
.
0
;

4
1
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
-
1
 
d
o

4
2
 
 
 
S
u
m
:
=
S
u
m
+
1
0
0
*
S
q
r
(
x
[
k
+
1
]
-
S
q
r
(
x
[
k
]
)
)
+
S
q
r
(
1
.
0
-
x
[
k
]
)
;

4
3
 
 
F
o
b
j
:
=
P
l
s
M
n
s
*
S
u
m
;
 
{
.
.
s
c
a
l
e
 
a
n
d
 
r
e
v
e
r
s
e
 
f
u
n
c
t
i
o
n
 
v
a
l
u
e
}

4
4
 
E
n
D
;
 
{
.
.
 
F
o
b
j
}

4
5
 
{
$
F
-
}

4
6
 
f
u
n
c
t
i
o
n
 
M
i
n
M
a
x
(
X
X
,
Y
Y
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;
 
{
p
a
r
t
i
a
l
 
m
i
n
/
m
a
x
 
o
f
 
F
o
b
j
.
.
}

4
7
 
v
a
r
 
F
V
:
 
d
o
u
b
l
e
;

4
8
 
 
 
v
X
:
 
V
D
n
;
 
 
 
T
o
t
a
l
F
e
v
,
 
L
i
m
F
C
:
 
L
o
n
g
I
n
t
;
 
 
 
j
,
k
,
 
j
I
t
e
r
:
 
I
n
t
e
g
e
r
;

4
9
 
B
E
G
I
n
 
{
M
i
n
M
a
x
 
.
.
}

5
0
 
 
T
o
t
a
l
F
e
v
:
=
0
;

5
1
 
 
F
V
b
e
s
t
:
=
I
n
f
D
;

5
2
 
 
i
f
 
(
P
l
s
M
n
s
 
>
 
0
)
 
t
h
e
n
 
B
E
G
I
n
 
L
i
m
F
C
:
=
 
5
0
0
0
0
;
 
j
I
t
e
r
:
=
 
2
5
;
 
E
n
D
;
 
{
m
i
n
i
m
.
}

5
3
 
 
i
f
 
(
P
l
s
M
n
s
 
<
 
0
)
 
t
h
e
n
 
B
E
G
I
n
 
L
i
m
F
C
:
=
1
0
0
0
0
0
;
 
j
I
t
e
r
:
=
1
0
0
;
 
E
n
D
;
 
{
m
a
x
i
m
.
}

5
4
 
 
f
o
r
 
j
:
=
1
 
t
o
 
j
I
t
e
r
 
d
o
 
B
E
G
I
n
 
 
{
m
u
l
t
i
s
t
a
r
t
 
m
i
n
i
m
i
z
a
t
i
o
n
 
.
.
}

5
5
 
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
-
2
 
d
o
 
B
E
G
I
n
 
 
{
i
n
i
t
i
a
l
 
g
u
e
s
s
 
b
a
s
e
d
 
o
n
 
p
r
e
v
i
o
u
s
 
X
b
e
s
t
.
.
}

5
6
 
 
 
 
  r
e
p
e
a
t

5
7
 
 
 
 
  

v
X
[
k
]
:
=
X
b
e
s
t
[
k
]
+
(
R
a
n
d
o
m
-
0
.
5
)
*
(
X
X
m
a
x
[
_
k
(
k
)
]
-
X
X
m
i
n
[
_
k
(
k
)
]
)
;

5
8
 
 
 
 
  u
n
t
i
l
 
(
X
X
m
i
n
[
_
k
(
k
)
]
 
<
=
 
v
X
[
k
]
)
 
A
n
D
 
(
v
X
[
k
]
 
<
=
 
X
X
m
a
x
[
_
k
(
k
)
]
)
;

5
9
 
 
 
E
n
D
;
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6
0
 
 
 
n
e
l
d
e
r
M
e
a
d
(
‘
’
,
 
F
o
b
j
,
 
n
-
2
,
 
L
i
m
F
C
,
 
1
.
0
E
-
9
,
 
X
m
i
n
,
X
m
a
x
,
 
F
V
,
v
X
)
;

6
1
 
 
 
T
o
t
a
l
F
e
v
:
=
T
o
t
a
l
F
e
v
 
+
 
n
r
F
e
v
n
;

6
2
 
 
 
i
f
 
(
F
V
 
<
 
F
V
b
e
s
t
)
 
t
h
e
n
 
B
E
G
I
n

6
3
 
 
 
 
  F
V
b
e
s
t
:
=
F
V
;

6
4
 
 
 
 
  f
o
r
 
k
:
=
1
 
t
o
 
n
-
2
 
d
o
 
X
b
e
s
t
[
k
]
:
=
v
X
[
k
]
;

6
5
 
 
 
E
n
D
;

6
6
 
 
E
n
D
;

6
7
 
 
M
i
n
M
a
x
:
=
F
V
b
e
s
t
/
P
l
s
M
n
s
;
 
{
.
.
 
r
e
v
e
r
s
e
 
t
o
 
a
c
t
u
a
l
 
f
u
n
c
t
i
o
n
 
v
a
l
u
e
}

6
8
 
E
n
D
;
 
{
.
.
 
M
i
n
M
a
x
}

6
9
 
v
a
r
 
F
T
:
 
T
e
x
t
;
 
 
 
 
i
,
j
,
k
:
 
i
n
t
e
g
e
r
;
 
 
 
 
F
V
:
 
d
o
u
b
l
e
;

7
0
 
B
E
G
I
n
 
{
m
a
i
n
 
.
.
}

7
1
 
 
i
f
 
(
i
x
 
>
=
 
i
y
)
 
t
h
e
n
 
H
a
l
t
;

7
2
 
 
W
r
i
t
e
O
u
t
n
:
=
T
R
U
E
;
 
 
{
w
i
l
l
 
N
O
T
 
d
i
s
p
l
a
y
 
s
e
a
r
c
h
 
s
t
a
t
u
s
 
i
n
f
o
 
.
.
}

7
3
 
 
A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
)
;
 
 
R
e
W
r
i
t
e
(
F
T
)
;

7
4
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n
 
 
{
s
e
t
 
b
o
u
n
d
a
r
i
e
s
 
x
1
.
.
x
5
 
.
.
}

7
5
 
 
 
X
X
m
i
n
[
k
]
:
=
-
1
.
5
;
 
 
X
X
m
a
x
[
k
]
:
=
1
.
5
;

7
6
 
 
E
n
D
;

7
7
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
-
2
 
d
o
 
B
E
G
I
n
 
 
{
e
q
u
a
l
i
z
e
 
b
o
u
n
d
a
r
i
e
s
 
.
.
}

7
8
 
 
 
X
m
i
n
[
k
]
:
=
X
X
m
i
n
[
_
k
(
k
)
]
;
 
 
 
X
m
a
x
[
k
]
:
=
X
X
m
a
x
[
_
k
(
k
)
]
;

7
9
 
 
E
n
D
;

8
0
 
 
W
r
i
t
e
(
F
T
,
’
 

F
m
i
n
 
 
‘
)
;

8
1
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
 
d
o
 
W
r
i
t
e
(
F
T
,
’
 

x
m
a
x
’
,
k
)
;

8
2
 
 
W
r
i
t
e
(
F
T
,
’
 

F
m
i
n
’
)
;

8
3
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
 
d
o
 
W
r
i
t
e
(
F
T
,
’
 

x
m
a
x
’
,
k
)
;

8
4
 
 
W
r
i
t
e
L
n
(
F
T
)
;

8
5
 
 
f
o
r
 
k
:
=
1
 
t
o
 
2
*
n
+
2
 
d
o
 
W
r
i
t
e
(
F
T
,
’
 

‘
,
m
x
:
4
,
’
 

‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

8
6
 
 
f
o
r
 
k
:
=
1
 
t
o
 
2
*
n
+
2
 
d
o
 
W
r
i
t
e
(
F
T
,
’
 

‘
,
m
y
:
4
,
’
 

‘
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

8
7
 
 
f
o
r
 
k
:
=
1
 
t
o
 
2
*
n
+
2
 
d
o
 
W
r
i
t
e
(
F
T
,
X
X
m
i
n
[
i
x
]
:
1
3
:
5
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

8
8
 
 
f
o
r
 
k
:
=
1
 
t
o
 
2
*
n
+
2
 
d
o
 
W
r
i
t
e
(
F
T
,
X
X
m
a
x
[
i
x
]
:
1
3
:
5
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

8
9
 
 
f
o
r
 
k
:
=
1
 
t
o
 
2
*
n
+
2
 
d
o
 
W
r
i
t
e
(
F
T
,
X
X
m
i
n
[
i
y
]
:
1
3
:
5
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;

9
0
 
 
f
o
r
 
k
:
=
1
 
t
o
 
2
*
n
+
2
 
d
o
 
W
r
i
t
e
(
F
T
,
X
X
m
a
x
[
i
y
]
:
1
3
:
5
)
;
 
W
r
i
t
e
L
n
(
F
T
)
;
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9
1
 
 
C
l
r
S
c
r
;
 
S
t
a
r
t
W
a
t
c
h
;

9
2
 
 
f
o
r
 
i
:
=
1
 
t
o
 
m
x
 
d
o
 
B
E
G
I
n

9
3
 
 
 
X
X
1
:
=
X
X
m
i
n
[
i
x
]
+
(
X
X
m
a
x
[
i
x
]
-
X
X
m
i
n
[
i
x
]
)
/
(
m
x
-
1
)
*
(
i
-
1
)
;

9
4
 
 
 
f
o
r
 
k
:
=
1
 
t
o
 
n
-
2
 
d
o
 
 
{
1
s
t
 
g
u
e
s
s
 
.
.
}

9
5
 
 
 
 
  X
b
e
s
t
[
k
]
:
=
X
X
m
i
n
[
_
k
(
k
)
]
+
0
.
5
*
(
X
X
m
a
x
[
_
k
(
k
)
]
-
X
X
m
i
n
[
_
k
(
k
)
]
)
;

9
6
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
m
y
 
d
o
 
B
E
G
I
n

9
7
 
 
 
 
  X
X
2
:
=
X
X
m
i
n
[
i
y
]
+
(
X
X
m
a
x
[
i
y
]
-
X
X
m
i
n
[
i
y
]
)
/
(
m
y
-
1
)
*
(
j
-
1
)
;

9
8
 
 
 
 
  P
l
s
M
n
s
:
=
+
1
.
0
;

9
9
 
 
 
 
  F
V
:
=
M
i
n
M
a
x
(
X
X
1
,
X
X
2
)
;

1
0
0
  

 
 
  W
r
i
t
e
(
F
T
,
’
 
‘
,
F
V
:
1
4
:
8
)
;

1
0
1
  

 
 
  f
o
r
 
k
:
=
1
 
t
o
 
n
 
d
o
 
i
f
 
(
k
 
=
 
i
x
)
 
O
R
 
(
k
 
=
 
i
y
)
 
t
h
e
n

1
0
2
  

 
 
  

W
r
i
t
e
(
F
T
,
’
 

1
.
0
0
E
1
0
0
’
)
 
e
l
s
e
 
W
r
i
t
e
(
F
T
,
’
 
‘
,
X
b
e
s
t
[
k
_
(
k
)
]
:
1
2
:
6
)
;

1
0
3
  

 
 
  P
l
s
M
n
s
:
=
-
1
.
0
E
-
2
;

1
0
4
  

 
 
  F
V
:
=
M
i
n
M
a
x
(
X
X
1
,
X
X
2
)
;

1
0
5
  

 
 
  W
r
i
t
e
(
F
T
,
’
 
‘
,
F
V
:
1
2
:
6
)
;

1
0
6
  

 
 
  f
o
r
 
k
:
=
1
 
t
o
 
n
 
d
o
 
i
f
 
(
k
 
=
 
i
x
)
 
O
R
 
(
k
 
=
 
i
y
)
 
t
h
e
n

1
0
7
  

 
 
  

W
r
i
t
e
(
F
T
,
’
 

1
.
0
0
E
1
0
0
’
)
 
e
l
s
e
 
W
r
i
t
e
(
F
T
,
’
 
‘
,
X
b
e
s
t
[
k
_
(
k
)
]
:
1
2
:
6
)
;

1
0
8
  

 
 
  W
r
i
t
e
L
n
(
F
T
)
;

1
0
9
  

 
E
n
D
;

1
1
0
  

 
W
r
i
t
e
L
n
(
1
.
0
*
i
*
j
:
9
:
0
,
’
 
o
f
 
‘
,
1
.
0
*
m
X
*
m
Y
:
9
:
0
)
;
 
{
p
r
o
g
r
e
s
s
 
r
e
p
o
r
t
 
.
.
}

1
1
1
  

E
n
D
;

1
1
2
  

C
l
o
s
e
(
F
T
)
;
 

W
r
i
t
e
L
n
(
S
t
o
p
W
a
t
c
h
)
;
 
 
R
e
a
d
L
n
;

1
1
3
  E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
9
_
1
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

W
r
i
t
e
s
 
t
o
 
f
i
l
e
 
N
 
u
n
i
f
o
r
m
 
r
a
n
d
o
m
 
v
a
l
u
e
s
 
w
i
t
h
i
n
 
t
h
e
 
i
n
t
e
r
v
a
l
 
[
M
i
n
.
.
M
a
x
]

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
9
_
1
3
A
.
D
A
T
’
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
n
a
m
e
}

6
 

 
 
 
  M
i
n
 
=
 
-
1
0
.
0
;
 

{
l
o
w
e
r
 
l
i
m
i
t
 
 
}

7
 

 
 
 
  M
a
x
 
=
 
 
1
0
.
0
;
 

{
h
i
g
h
e
r
 
l
i
m
i
t
 
}
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8
 

 
 
 
 n
 
=
 
1
0
0
0
0
;
 

{
n
u
m
b
e
r
 
o
f
 
r
a
n
d
o
m
 
v
a
l
u
e
s
 
}

9
 

v
a
r
 
 
 
F
T
:
 
T
e
x
t
;
 

x
:
 
d
o
u
b
l
e
;
 

i
:
 
L
o
n
g
I
n
t
;

1
0
 
B
E
G
I
n

1
1
 
 
A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

1
2
 
 
W
r
i
t
e
L
n
(
F
T
,
’
U
n
i
f
o
r
m
 
r
a
n
d
o
m
 
n
u
m
b
e
r
s
 
b
e
t
w
e
e
n
 
‘
,
M
i
n
:
9
:
4
,
’
.
.
’
,
M
a
x
:
9
:
4
)
;

1
3
 
 
R
a
n
d
o
m
i
z
e
;

1
4
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

1
5
 
 
 
x
:
=
M
i
n
+
R
a
n
d
o
m
*
(
M
a
x
-
M
i
n
)
;
 

W
r
i
t
e
L
n
(
F
T
,
x
:
1
6
:
1
0
)
;

1
6
 
 
E
n
D
;

1
7
 
 
C
l
o
s
e
(
F
T
)
;

1
8
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
9
_
1
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

W
r
i
t
e
s
 
t
o
 
f
i
l
e
 
N
 
G
a
u
s
s
i
a
n
 
r
a
n
d
o
m
 
v
a
l
u
e
s
 

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
9
_
1
4
A
.
D
A
T
’
;
 

{
o
u
t
p
u
t
 
f
i
l
e
 
n
a
m
e
}

6
 

 
 
 
  M
e
a
n
 
=
 
0
.
0
;
 

{
m
e
a
n
}

7
 

 
 
 
  S
t
D
e
v
 
=
 
1
.
0
;
 

{
s
t
a
n
d
a
r
d
 
d
e
v
i
a
t
i
o
n
}

8
 

 
 
 
 n
 

=
 
1
0
0
0
0
;
  {
n
u
m
b
e
r
 
o
f
 
r
a
n
d
o
m
 
v
a
l
u
e
s
}

9
 

v
a
r
 
F
T
:
 
T
e
x
t
;
 
x
1
,
x
2
,
w
:
 
d
o
u
b
l
e
;
 

x
:
 
d
o
u
b
l
e
;
 
i
:
 
L
o
n
g
I
n
t
;

1
0
 
p
r
o
c
e
d
u
r
e
 
M
y
R
a
n
d
o
m
i
z
e
;

1
1
 
B
E
G
I
n

1
2
 
 
R
a
n
d
o
m
i
z
e
;
 

x
1
:
=
1
0
.
0
;
 
x
2
:
=
1
0
.
0
;
 
{
i
n
i
t
i
a
l
i
z
e
 
x
1
 
a
n
d
 
x
2
 
i
n
 
G
a
u
s
s
R
a
n
d
o
m
}

1
3
 
E
n
D
;
 
{
.
.
 
M
y
R
a
n
d
o
m
i
z
e
(
)
}

1
4
 
f
u
n
c
t
i
o
n
 
G
a
u
s
s
R
a
n
d
o
m
(
M
e
a
n
,
S
t
D
e
v
:
 
d
o
u
b
l
e
)
:
 
d
o
u
b
l
e
;

1
5
 
{
G
e
n
e
r
a
t
e
s
 
G
a
u
s
s
i
a
n
 
r
a
n
d
o
m
 
n
u
m
b
e
r
s
 
w
i
t
h
 
M
e
a
n
 
a
n
d
 
S
t
D
e
v
}

1
6
 
B
E
G
I
n

1
7
 
 
i
f
 
(
x
1
+
x
2
 
=
 
2
0
.
0
)
 
t
h
e
n
 
B
E
G
I
n

1
8
 
 
 
r
e
p
e
a
t

1
9
 
 
 
 
  x
1
:
=
2
.
0
*
R
a
n
d
o
m
-
1
.
0
;
 
x
2
:
=
2
.
0
*
R
a
n
d
o
m
-
1
.
0
;
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2
0
 
 
 
 
 w
:
=
x
1
*
x
1
+
x
2
*
x
2
;

2
1
 
 
 
u
n
t
i
l
 
(
w
 
<
 
1
.
0
)
;

2
2
 
 
 
w
:
=
S
q
r
t
(
-
2
.
0
*
L
n
(
w
)
/
w
)
;

2
3
 
 
E
n
D
;

2
4
 
 
i
f
 
(
x
1
 
<
 
1
0
.
0
)
 
t
h
e
n
 
B
E
G
I
n

2
5
 
 
 
G
a
u
s
s
R
a
n
d
o
m
:
=
M
e
a
n
+
w
*
x
1
*
S
t
D
e
v
;
 
x
1
:
=
1
0
.
0
;

2
6
 
 
E
n
D
;

2
7
 
 
i
f
 
(
x
2
 
<
 
1
0
.
0
)
 
t
h
e
n
 
B
E
G
I
n

2
8
 
 
 
G
a
u
s
s
R
a
n
d
o
m
:
=
M
e
a
n
+
w
*
x
2
*
S
t
D
e
v
;
 
x
2
:
=
1
0
.
0
;

2
9
 
 
E
n
D
;

3
0
 
E
n
D
;
 
{
.
.
 
G
a
u
s
s
R
a
n
d
o
m
(
)
}

3
1
 
B
E
G
I
n
 

3
2
 
 
A
s
s
i
g
n
(
F
T
,
F
i
l
e
n
a
m
e
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

3
3
 
 
W
r
i
t
e
L
n
(
F
T
,
’
M
e
a
n
 
=
 
‘
,
M
e
a
n
:
9
:
4
,
’
,
 
S
t
a
n
d
a
r
d
 
D
e
v
i
a
t
i
o
n
 
=
 
‘
,
S
t
D
e
v
:
9
:
4
)
;

3
4
 
 
M
y
R
a
n
d
o
m
i
z
e
;

3
5
 
 
f
o
r
 
i
:
=
1
 
t
o
 
n
 
d
o
 
B
E
G
I
n

3
6
 
 
 
x
:
=
G
a
u
s
s
R
a
n
d
o
m
(
M
e
a
n
,
S
t
D
e
v
)
;

3
7
 
 
 
W
r
i
t
e
L
n
(
F
T
,
x
:
1
6
:
1
0
)
;

3
8
 
 
E
n
D
;

3
9
 
 
C
l
o
s
e
(
F
T
)
;

4
0
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
1
6
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
 
S
t
e
p
h
e
n
s
o
n
 
I
I
I
 
d
w
e
l
l
 
m
e
c
h
a
n
i
s
m

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
C
y
a
n
,
G
r
e
e
n
,
R
e
d
,
M
a
g
e
n
t
a
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
D
E
G
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}
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1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 {
R
R
R
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
L
o
c
u
s
,
S
e
t
J
o
i
n
t
S
i
z
e
,
}

1
2
 
 
 
 
  

 
{
A
n
g
P
V
A
,
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
}

1
3
 
c
o
n
s
t
 
n
P
o
z
D
T
A
 
=
 
7
2
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
 
i
n
 
t
h
e
 
o
u
t
p
u
t
 
f
i
l
e
}

1
4
 
 
 
 
  n
P
o
z
D
X
F
 
=
 
1
2
0
;
 
{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
 
i
n
 
t
h
e
 
a
n
i
m
a
t
i
o
n
 

}
1
5
 
v
a
r
 
 
F
T
:
 
t
e
x
t
;
 

i
,
n
P
o
z
:
 
W
o
r
d
;
 

L
R
1
,
L
R
2
:
 
s
h
o
r
t
i
n
t
;

1
6
 
 
 
 
x
O
,
y
O
,
 
x
A
,
y
A
,
 
v
x
A
,
v
y
A
,
 
x
B
,
y
B
,
 
v
x
B
,
v
y
B
,
 
x
C
,
y
C
,
 
x
D
,
y
D
,
 
v
x
D
,
v
y
D
,

1
7
 
 
 
 
x
E
,
y
E
,
 
v
x
E
,
v
y
E
,
 
x
F
,
y
F
,
 
x
_
D
,
y
_
D
,
 
O
A
,
A
B
,
B
C
,
 
D
E
,
E
F
,

1
8
 
 
 
 
T
h
1
,
d
T
h
1
,
 
T
h
6
,
d
T
h
6
:
 
d
o
u
b
l
e
;

1
9
 
B
E
G
I
n

2
0
 
 
L
R
1
:
=
L
e
f
t
;
 

{
.
.
o
r
i
e
n
t
a
t
i
o
n
 
o
f
 
t
h
e
 
A
B
C
 
d
y
a
d
}

2
1
 
 
L
R
2
:
=
R
i
g
h
t
;
 
{
.
.
o
r
i
e
n
t
a
t
i
o
n
 
o
f
 
t
h
e
 
D
E
F
 
d
y
a
d
}

2
2
 
 
O
A
:
=
6
0
;
 

A
B
:
=
1
8
0
;
 

B
C
:
=
1
4
0
;

2
3
 
 
x
O
:
=
0
.
0
;
 

y
O
:
=
0
.
0
;

2
4
 
 
x
C
:
=
2
0
0
.
0
0
;
 
y
C
:
=
0
.
0
;

2
5
 
 
x
_
D
:
=
7
9
.
0
4
;
 
y
_
D
:
=
4
0
.
1
3
;
 
{
.
.
c
o
o
r
d
i
n
a
t
e
s
 
o
f
 
D
 
r
e
l
a
t
i
v
e
 
t
o
 
c
o
u
p
l
e
r
 
A
B
}

2
6
 
 
x
F
:
=
1
3
4
.
6
;
 

y
F
:
=
8
8
.
1
;

2
7
 
 
D
E
:
=
8
4
.
2
;
 

E
F
:
=
7
9
.
2
7
;

2
8
 
 
T
h
6
:
=
P
i
;
 

{
.
.
i
n
i
t
i
a
l
 
v
a
l
u
e
 
i
n
 
A
n
g
P
V
A
}

2
9
 
 
A
s
s
i
g
n
(
F
T
,
’
F
9
_
1
6
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

3
0
 
 
W
r
i
t
e
L
n
(
F
T
,
’
T
h
e
t
a
1
 
 
T
h
e
t
a
6
 

d
T
h
e
t
a
6
’
)
;

3
1
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
9
_
1
6
.
D
X
F
’
)
;
 

{
.
.
D
X
F
 
f
i
l
e
 
f
o
r
 
M
3
D
 
a
n
i
m
a
t
i
o
n
}

3
2
 
 
C
e
n
t
e
r
M
s
g
T
(
‘
’
,
’
W
a
i
t
!
’
)
;

3
3
 
 
n
P
o
z
:
=
n
P
o
z
D
T
A
;

3
4
 
 
i
:
=
0
;

3
5
 
 
R
e
p
e
a
t

3
6
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
7
 
 
 
 
  i
:
=
0
;
 
 
C
l
o
s
e
M
e
c
D
X
F
;
 
{
.
.
n
o
 
e
f
f
e
c
t
 
u
n
t
i
l
 
O
p
e
n
M
e
c
G
r
a
p
h
 
i
s
 
c
a
l
l
e
d
}

3
8
 
 
 
 
  x
D
:
=
0
.
1
*
(
X
m
a
x
W
S
-
X
m
i
n
W
S
)
;
 

{
.
.
m
u
l
t
i
p
l
e
 
u
s
e
s
 
o
f
 
v
a
r
i
a
b
l
e
 
x
D
}

3
9
 
 
 
 
  y
D
:
=
0
.
1
*
(
Y
m
a
x
W
S
-
Y
m
i
n
W
S
)
;
 

{
.
.
m
u
l
t
i
p
l
e
 
u
s
e
s
 
o
f
 
v
a
r
i
a
b
l
e
 
y
D
}

4
0
 
 
 
 
  O
p
e
n
M
e
c
G
r
a
p
h
(
X
m
i
n
W
S
-
x
D
,
X
m
a
x
W
S
+
x
D
,
 
Y
m
i
n
W
S
-
y
D
,
Y
m
a
x
W
S
+
y
D
)
;
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4
1
 
 
 
 
 n
P
o
z
:
=
n
P
o
z
D
X
F
;

4
2
 
 
 
E
n
D
;

4
3
 
 
 
n
e
w
F
r
a
m
e
(
0
)
;

4
4
 
 
 
T
h
1
:
=
2
*
P
i
*
i
/
n
P
o
z
;

4
5
 
 
 
d
T
h
1
:
=
1
;

4
6
 
 
 
g
C
r
a
n
k
(
M
a
g
e
n
t
a
,
x
O
,
y
O
,
T
h
1
,
d
T
h
1
,
_
,
O
A
,
x
A
,
y
A
,
v
x
A
,
v
y
A
,
_
,
_
)
;

4
7
 
 
 
R
R
R
(
B
l
u
e
,
x
A
,
y
A
,
v
x
A
,
v
y
A
,
_
,
_
,
x
C
,
y
C
,
0
,
0
,
0
,
0
,
A
B
,
B
C
,
L
R
1

4
8
 
 
 
,
x
B
,
y
B
,
v
x
B
,
v
y
B
,
_
,
_
,
_
)
;

4
9
 
 
 
O
f
f
s
e
t
(
R
e
d
,
’
V
’
,
x
A
,
y
A
,
v
x
A
,
v
y
A
,
_
,
_
,
x
B
,
y
B
,
v
x
B
,
v
y
B
,
_
,
_

5
0
 
 
 
,
x
_
D
,
y
_
D
,
x
D
,
y
D
,
v
x
D
,
v
y
D
,
_
,
_
)
;

5
1
 
 
 
R
R
R
(
G
r
e
e
n
,
x
D
,
y
D
,
v
x
D
,
v
y
D
,
_
,
_
,
x
F
,
y
F
,
0
,
0
,
0
,
0
,
D
E
,
E
F
,
L
R
2

5
2
 
 
 
,
x
E
,
y
E
,
v
x
E
,
v
y
E
,
_
,
_
,
_
)
;

5
3
 
 
 
L
o
c
u
s
(
C
y
a
n
,
 
x
D
,
y
D
,
’
C
’
)
;

5
4
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
O
,
y
O
,
’
O
  ‘
)
;

5
5
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
,
y
B
,
’
 

B
’
)
;

5
6
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
C
,
y
C
,
’
 
C
’
)
;

5
7
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
F
,
y
F
,
’
F
  ‘
)
;

5
8
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
O
,
y
O
,
x
A
,
y
A
,
’
  A
’
)
;

5
9
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
E
,
y
E
,
x
D
,
y
D
,
’
  D
’
)
;

6
0
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
F
,
y
F
,
x
E
,
y
E
,
’
  E
’
)
;

6
1
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
x
O
,
y
O
,
x
O
,
y
O
,
x
A
,
y
A
,
8
,
#
2
3
3
+
’
1
’
)
;

6
2
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
x
F
,
y
F
,
x
F
,
y
F
,
x
E
,
y
E
,
8
,
#
2
3
3
+
’
6
’
)
;

6
3
 
 
 
i
f
 
(
n
P
o
z
 
=
 
n
P
o
z
D
T
A
)
 
t
h
e
n
 
B
E
G
I
n

6
4
 
 
 
 
  A
n
g
P
V
A
(
x
F
,
y
F
,
0
,
0
,
0
,
0
,
 
x
E
,
y
E
,
v
x
E
,
v
y
E
,
_
,
_
,
 
T
h
6
,
d
T
h
6
,
_
)
;

6
5
 
 
 
 
  W
r
i
t
e
L
n
(
F
T
,
T
h
1
*
D
E
G
:
6
:
3
,
’
 
‘
,
T
h
6
*
D
E
G
:
9
:
5
,
’
 
‘
,
d
T
h
6
:
9
:
5
)
;

6
6
 
 
 
E
n
D
;

6
7
 
 
 
I
n
c
(
i
)
;

6
8
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

6
9
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

7
0
 
 
C
l
o
s
e
(
F
T
)
;

7
1
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
9
_
1
8
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

Q
u
i
c
k
-
r
e
t
u
r
n
 
m
e
c
h
a
n
i
s
m
 
s
i
m
u
l
a
t
i
o
n
 
w
i
t
h
 
A
S
C
I
I
 
o
u
t
p
u
t
 
u
s
i
n
g
 
t
h
e
 
R
T
_
R

4
 

a
n
d
 
R
R
_
T
 
s
u
b
r
o
u
t
i
n
e
s

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
G
r
a
p
h
,
 

{
C
y
a
n
,
R
e
d
,
W
h
i
t
e
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
1
 
 
 
 
L
i
b
A
s
s
u
r
,
  {
R
T
R
,
R
R
T
}

1
2
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
A
n
i
m
F
r
a
m
e
,
L
o
c
u
s
,
}

1
3
 
 
 
 
  

 
{
S
e
t
J
o
i
n
t
S
i
z
e
,
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
p
}

1
4
 
c
o
n
s
t
 
n
P
o
z
 
=
 
1
2
0
;
 

{
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
}

1
5
 
v
a
r
 
i
:
W
o
r
d
;
 

F
T
:
t
e
x
t
;

1
6
 
 
 
 
x
O
,
y
O
,
x
A
,
y
A
,
x
B
,
y
B
,
x
C
,
y
C
,
x
D
,
y
D
,
 
O
A
,
B
C
,
C
D
,
 
T
h
e
t
a
:
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 
A
s
s
i
g
n
(
F
T
,
’
F
9
_
1
8
.
D
T
A
’
)
;
 
R
e
w
r
i
t
e
(
F
T
)
;

1
9
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
9
_
1
8
.
D
X
F
’
)
;

2
0
 
 
x
O
:
=
0
.
0
;
 
y
O
:
=
 
0
.
0
;
 

{
l
o
c
a
t
i
o
n
 
o
f
 
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 

}
2
1
 
 
x
B
:
=
0
.
0
;
 
y
B
:
=
-
0
.
2
5
;
 
{
l
o
c
a
t
i
o
n
 
o
f
 
g
r
o
u
n
d
 
j
o
i
n
t
 
B
 
o
f
 
t
h
e
 
R
T
R
 
d
y
a
d
}

2
2
 
 
 
O
A
:
=
0
.
1
;
 
 

{
l
e
n
g
t
h
 
o
f
 
i
n
p
u
t
 
c
r
a
n
k
 
O
A
 

}
2
3
 
 
B
C
:
=
0
.
5
0
;
 
 

{
s
l
i
d
i
n
g
 
r
o
d
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
R
T
R
 
d
y
a
d
 

}
2
4
 
 
C
D
:
=
0
.
3
0
;
 
 

{
c
o
u
p
l
e
r
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
R
R
T
 
d
y
a
d
 

}
2
5
 
 
y
D
:
=
0
.
2
0
;
 
 

{
e
l
e
v
a
t
i
o
n
 
o
f
 
t
h
e
 
R
R
T
 
d
y
a
d
 
s
l
i
d
e
r
 

}
2
6
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
3
,
0
.
6
,
 
-
0
.
3
,
0
.
3
5
)
;

2
7
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
4
)
;

2
8
 
 
i
:
=
0
;

2
9
 
 
W
r
i
t
e
L
n
(
F
T
,
’
 
T
h
e
t
a
 

x
D
’
)
;
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3
0
 
 
r
e
p
e
a
t

3
1
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
2
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
3
 
 
 
E
n
D
;

3
4
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
5
 
 
 
T
h
e
t
a
:
=
P
i
+
2
*
P
i
*
i
/
n
P
o
z
;

3
6
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
O
,
y
O
,
 
T
h
e
t
a
,
_
,
_
,
 
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
7
 
 
 
R
T
_
R
(
C
y
a
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
B
,
y
B
,
0
,
0
,
0
,
0
,
 
0
,
0
,
B
C
,

3
8
 
 
 
_
,
_
,
_
,
_
,
_
,
_
,
 
_
,
_
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
_
)
;

3
9
 
 
 
R
R
T
_
(
M
a
g
e
n
t
a
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
x
O
,
y
D
,
0
,
0
,
0
,
0
,
 
x
O
,
y
D
,
0
,
0
,
0
,
0

4
0
 
 
 
,
C
D
,
0
,
 
+
1
,
 
x
D
,
y
D
,
_
,
_
,
_
,
_
,
 
_
,
_
,
_
,
_
,
_
,
_
,
 
_
)
;

4
1
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
O
,
y
O
 
,
’
O
 
‘
)
;

4
2
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
A
,
y
A
 
,
’
A
 

‘
)
;

4
3
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
B
,
y
B
 
,
’
 

B
’
)
;

4
4
 
 
 
P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
 
x
D
,
y
D
-
0
.
0
2
,
’
D
’
)
;

4
5
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
D
,
y
D
,
x
C
,
y
C
,
’
 
C
’
)
;

4
6
 
 
 
P
u
t
A
n
g
(
W
h
i
t
e
,
 
x
O
,
y
O
,
 
x
O
,
y
O
,
 
x
A
,
y
A
,
 
6
,
 
#
2
3
3
)
;

4
7
 
 
 
P
u
t
D
i
s
t
(
W
h
i
t
e
,
 
0
,
y
D
,
 
x
D
,
y
D
,
 
1
2
,
 
‘
x
D
’
)
;

4
8
 
 
 
i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
L
n
(
F
T
,
T
h
e
t
a
*
D
E
G
:
5
:
2
,
’
 
‘
,
x
D
:
9
:
6
)
;

4
9
 
 
 
I
n
c
(
i
)
;

5
0
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

5
1
 
 
C
l
o
s
e
(
F
T
)
;

5
2
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

5
3
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
1
9
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
 
r
a
d
i
a
l
 
e
n
g
i
n
e

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
r
o
w
n
,
R
e
d
,
W
h
i
t
e
}
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6
 

 
 
 
L
i
b
I
n
O
u
t
,
 {
I
s
K
e
y
P
r
e
s
s
e
d
}

7
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 
 
L
i
b
A
s
s
u
r
,
  {
R
R
_
T
}

9
 

 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
g
C
r
a
n
k
,
S
e
t
J
o
i
n
t
S
i
z
e
,
C
l
o
s
e
M
e
c
D
X
F
}

1
0
 
c
o
n
s
t
 
n
C
y
l
 
=
 
3
;
 

{
n
u
m
b
e
r
 
o
f
 
c
y
l
i
n
d
e
r
s
}

1
1
 
 
 
 
  n
P
o
z
 
=
 
9
0
;
 

{
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
}

1
2
 
 
 
 
  D
X
F
i
l
e
 
=
 
‘
F
9
_
1
9
.
D
X
F
’
;
 
 
{
D
X
F
 
f
i
l
e
 
n
a
m
e
}

1
3
 
v
a
r
 
 
P
h
i
,
 
x
O
,
y
O
,
 
O
A
,
A
B
,
 
x
A
,
y
A
,
x
P
,
y
P
,
x
Q
,
y
Q
:
 
d
o
u
b
l
e
;
 
 
i
,
j
:
 
W
o
r
d
;

1
4
 
B
E
G
I
n

1
5
 
 
x
O
:
=
0
.
0
;
 
 
 
y
O
:
=
0
.
0
;
 

{
g
r
o
u
n
d
 
j
o
i
n
t
 
o
f
 
c
r
a
n
k
 
 
}

1
6
 
 
O
A
:
=
0
.
2
0
;
 
 
A
B
:
=
0
.
5
0
;
 

{
c
r
a
n
k
 
l
e
n
g
t
h
 
a
n
d
 
c
o
n
r
o
d
 
l
e
n
g
t
h
 
}

1
7
 
 
I
n
i
t
D
X
F
f
i
l
e
(
D
X
F
i
l
e
)
;

1
8
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
x
O
-
O
A
-
A
B
,
x
O
+
O
A
+
A
B
,
y
O
-
O
A
-
A
B
*
1
.
2
,
y
O
+
O
A
+
A
B
*
1
.
2
)
;

1
9
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
-
4
)
;

2
0
 
 
i
:
=
0
;

2
1
 
 
r
e
p
e
a
t

2
2
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n
 

i
:
=
0
;
 
C
l
o
s
e
M
e
c
D
X
F
;
 
 
E
n
D
;

2
3
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

2
4
 
 
 
P
h
i
:
=
2
*
P
i
*
i
/
n
P
o
z
;

2
5
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
O
,
y
O
,
 
P
h
i
,
_
,
_
,
 
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

2
6
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
n
C
y
l
 
d
o
 
B
E
G
I
n

2
7
 
 
 
 
  x
P
:
=
x
O
+
O
A
*
c
o
s
(
P
i
/
2
+
2
*
P
i
/
n
C
y
l
*
j
)
;

2
8
 
 
 
 
  y
P
:
=
y
O
+
O
A
*
s
i
n
(
P
i
/
2
+
2
*
P
i
/
n
C
y
l
*
j
)
;

2
9
 
 
 
 
  x
Q
:
=
x
P
+
1
.
1
*
A
B
*
c
o
s
(
P
i
/
2
+
2
*
P
i
/
n
C
y
l
*
j
)
;

3
0
 
 
 
 
  y
Q
:
=
y
P
+
1
.
1
*
A
B
*
s
i
n
(
P
i
/
2
+
2
*
P
i
/
n
C
y
l
*
j
)
;

3
1
 
 
 
 
  R
R
T
_
(
B
r
o
w
n
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
P
,
y
P
,
0
,
0
,
0
,
0
,
 
x
Q
,
y
Q
,
0
,
0
,
0
,
0

3
2
 
 
 
 
  ,
A
B
,
0
,
 
+
1
,
 
_
,
_
,
_
,
_
,
_
,
_
,
 
_
,
_
,
_
,
_
,
_
,
_
,
 
_
)
;

3
3
 
 
 
 
  i
f
 
(
n
C
y
l
 
<
=
 
3
)
 
t
h
e
n
 
B
E
G
I
n

3
4
 
 
 
 
  

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
O
,
y
O
,
’
 
 
0
’
)
;
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3
5
 
 
 
 
  

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
P
,
y
P
,
’
 
P
’
)
;

3
6
 
 
 
 
  

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
Q
,
y
Q
,
’
 
Q
’
)
;

3
7
 
 
 
 
  

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
A
,
y
A
,
’
 
A
’
)
;

3
8
 
 
 
 
  E
n
D
;

3
9
 
 
 
E
n
D
;

4
0
 
 
 
I
n
c
(
i
)
;

4
1
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
2
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
{
e
r
a
s
e
 
a
l
l
 
.
$
x
y
 
f
i
l
e
s
 
a
n
d
 
C
l
o
s
e
G
r
a
p
h
}

4
3
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
2
0
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
G
n
o
m
e
 
r
o
t
a
r
y
 
e
n
g
i
n
e
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
r
o
w
n
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

7
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

8
 

 
 
 
L
i
b
A
s
s
u
r
,
  {
R
R
_
T
}

9
 

 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
g
C
r
a
n
k
,
S
e
t
J
o
i
n
t
S
i
z
e
,
C
l
o
s
e
M
e
c
D
X
F
}

1
0
 
c
o
n
s
t
 
n
C
y
l
 
=
 
3
;
 

{
n
u
m
b
e
r
 
o
f
 
c
y
l
i
n
d
e
r
s
}

1
1
 
 
 
 
  n
P
o
z
 
=
 
9
0
;
 

{
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
}

1
2
 
 
 
 
  D
X
F
i
l
e
 
=
 
‘
F
9
_
2
0
.
D
X
F
’
;
 

{
D
X
F
 
f
i
l
e
 
n
a
m
e
}

1
3
 
v
a
r
 
P
h
i
,
 
E
c
,
c
r
,
 
x
O
,
y
O
,
 
P
Q
,
 
x
P
,
y
P
,
x
Q
,
y
Q
:
 
d
o
u
b
l
e
;
 

i
,
j
:
 
W
o
r
d
;

1
4
 
B
E
G
I
n

1
5
 
 
P
Q
:
=
0
.
8
0
;
 
 

{
e
n
g
i
n
e
 
r
a
d
i
u
s
 

}
1
6
 
 
 
E
c
:
=
0
.
2
;
 
c
r
:
=
0
.
5
0
;
 
{
c
r
a
n
k
 
o
f
f
s
e
t
 
a
n
d
 
l
e
n
g
t
h
 
o
f
 
c
o
n
r
o
d
  }

1
7
 
 
x
P
:
=
0
.
0
;
 
y
P
:
=
0
.
0
;
 

{
e
n
g
i
n
e
 
a
x
i
s
 
o
f
 
r
o
t
a
t
i
o
n
 

}
1
8
 
 
x
O
:
=
0
.
0
;
 
y
O
:
=
E
c
;
 

{
c
r
a
n
k
s
h
a
f
t
 
g
r
o
u
n
d
-
j
o
i
n
t
 
l
o
c
a
t
i
o
n
 
}

1
9
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
x
P
-
P
Q
,
x
P
+
P
Q
,
 
y
P
-
P
Q
*
1
.
1
,
y
P
+
P
Q
*
1
.
1
)
;
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2
0
 
 
I
n
i
t
D
X
F
f
i
l
e
(
D
X
F
i
l
e
)
;

2
1
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
-
4
)
;

2
2
 
 
i
:
=
0
;

2
3
 
 
r
e
p
e
a
t

2
4
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n
 

i
:
=
0
;
 
C
l
o
s
e
M
e
c
D
X
F
;
 

E
n
D
;

2
5
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

2
6
 
 
 
P
h
i
:
=
P
i
/
2
 
+
 
2
*
P
i
*
i
/
n
P
o
z
;

2
7
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
n
C
y
l
 
d
o
 
B
E
G
I
n

2
8
 
 
 
 
  g
C
r
a
n
k
(
R
e
d
,
 
x
P
,
y
P
,
 
P
h
i
+
2
*
P
i
/
n
C
y
l
*
j
,
_
,
_
,
 
P
Q
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
)
;

2
9
 
 
 
 
  R
R
_
T
(
-
B
r
o
w
n
,
 
x
O
,
y
O
,
0
,
0
,
0
,
0
,
 
x
P
,
y
P
,
_
,
_
,
_
,
_
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_

3
0
 
 
 
 
  ,
C
R
,
0
,
 
+
1
,
 
_
,
_
,
_
,
_
,
_
,
_
,
 
_
,
_
,
_
,
_
,
_
,
_
,
 
_
)
;

3
1
 
 
 
 
  i
f
 
(
n
C
y
l
 
<
=
 
3
)
 
t
h
e
n
 
B
E
G
I
n

3
2
 
 
 
 
  

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
O
,
y
O
,
’
 
0
’
)
;

3
3
 
 
 
 
  

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
P
,
y
P
,
’
 
P
’
)
;

3
4
 
 
 
 
  

P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
Q
,
y
Q
,
’
 
Q
’
)
;

3
5
 
 
 
 
  E
n
D
;

3
6
 
 
 
E
n
D
;

3
7
 
 
 
I
n
c
(
i
)
;

3
8
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

3
9
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 
{
e
r
a
s
e
 
a
l
l
 
.
$
x
y
 
f
i
l
e
s
 
a
n
d
 
C
l
o
s
e
G
r
a
p
h
}

4
0
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
2
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
e
s
 
a
n
 
i
r
i
s
 
m
e
c
h
a
n
i
s
m
 
w
i
t
h
 
a
n
y
 
n
u
m
b
e
r
 
o
f
 
v
a
n
e
s
 
(
1
s
t
 
v
a
r
i
a
n
t
)

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
a
c
k
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}
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9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
R
R
_
T
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
h
a
p
e
,
P
u
t
P
o
i
n
t
,
C
l
o
s
e
M
e
c
D
X
F
}

1
2
 
c
o
n
s
t
 
D
X
F
i
l
e
 
=
 
‘
F
9
_
2
1
.
D
X
F
’
;
 
{
D
X
F
 
f
i
l
e
 
n
a
m
e
 
 
 
 
 
 
 
 
 
 

}
1
3
 
 
 
 
  n
V
a
n
e
 

=
 
3
;
 
 
 
 
 
 
 
 
{
n
u
m
b
e
r
 
o
f
 
v
a
n
e
s
 
 
 
 
 
 
 
 
}

1
4
 
 
 
 
  n
P
o
z
 

=
 
3
0
;
 
 
 
 
 
 
 
{
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
}

1
5
 
v
a
r
 
i
,
j
,
 
C
l
r
:
 
W
o
r
d
;

1
6
 
 
 
 
P
h
i
,
 
x
O
,
y
O
,
 

x
A
,
y
A
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
,
 

O
A
,
O
P
,
P
Q
:
 
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 
x
O
:
=
 
0
.
0
;
 

y
O
:
=
 
0
.
0
;

1
9
 
 
O
A
:
=
 
6
.
0
0
;
 

O
P
:
=
 
5
.
2
5
;
 
P
Q
:
=
 
9
.
0
;

2
0
 
 
I
n
i
t
D
X
F
f
i
l
e
(
D
X
F
i
l
e
)
;

2
1
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
x
O
-
O
A
,
x
O
+
O
A
,
 
y
O
-
1
.
3
*
O
A
,
y
O
+
1
.
3
*
O
A
)
;

2
2
 
 
i
:
=
0
;

2
3
 
 
i
f
 
(
n
V
a
n
e
 
<
=
 
3
)
 
t
h
e
n
 
C
l
r
:
=
G
r
e
e
n
 
e
l
s
e
 
C
l
r
:
=
B
l
a
c
k
;

2
4
 
 
r
e
p
e
a
t

2
5
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
6
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

2
7
 
 
 
E
n
D
;

2
8
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

2
9
 
 
 
P
h
i
:
=
-
P
i
/
4
 
+
 
P
i
/
6
*
S
i
n
(
2
*
P
i
*
i
/
n
P
o
z
)
;

3
0
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
n
V
a
n
e
 
d
o
 
B
E
G
I
n

3
1
 
 
 
 
  g
C
r
a
n
k
(
C
l
r
,
 
x
O
,
y
O
,
 
P
h
i
+
2
*
P
i
/
n
V
a
n
e
*
j
,
_
,
_
,
 
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

3
2
 
 
 
 
  x
P
:
=
O
A
*
C
o
s
(
P
i
+
2
*
P
i
/
n
V
a
n
e
*
j
)
;

3
3
 
 
 
 
  y
P
:
=
O
A
*
S
i
n
(
P
i
+
2
*
P
i
/
n
V
a
n
e
*
j
)
;

3
4
 
 
 
 
  R
R
_
T
(
-
C
l
r
,
 
x
P
,
y
P
,
0
,
0
,
0
,
0
,
 
x
O
,
y
O
,
0
,
0
,
0
,
0
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_

3
5
 
 
 
 
  ,
P
Q
,
0
,
 
+
1
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
_
)
;

3
6
 
 
 
 
  S
h
a
p
e
(
‘
V
A
n
E
.
X
Y
’
,
R
e
d
,
x
P
,
y
P
,
 
x
Q
,
y
Q
)
;
 

{
.
.
d
r
a
w
 
v
a
n
e
}

3
7
 
 
 
 
  i
f
 
(
n
V
a
n
e
 
<
=
 
3
)
 
t
h
e
n
 
B
E
G
I
n

3
8
 
 
 
 
  

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
O
,
y
O
,
’
O
 

‘
)
;

3
9
 
 
 
 
  

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
O
,
y
O
,
x
A
,
y
A
,
’
 
A
’
)
;
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4
0
 
 
 
 
  

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
Q
,
y
Q
,
x
P
,
y
P
,
’
 

P
’
)
;

4
1
 
 
 
 
  

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
P
,
y
P
,
x
Q
,
y
Q
,
’
 

Q
’
)
;

4
2
 
 
 
 
  E
n
D
;

4
3
 
 
 
E
n
D
;

4
4
 
 
 
I
n
c
(
i
)
;

4
5
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
6
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

4
7
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
2
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
e
s
 
a
n
 
i
r
i
s
 
m
e
c
h
a
n
i
s
m
 
w
i
t
h
 
a
n
y
 
n
u
m
b
e
r
 
o
f
 
v
a
n
e
s
 
(
2
n
d
 
v
a
r
i
a
n
t
)

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
 
{
R
R
_
T
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
h
a
p
e
,
P
u
t
P
o
i
n
t
,
C
l
o
s
e
M
e
c
D
X
F
}

1
2
 
c
o
n
s
t
 
D
X
F
i
l
e
 
=
 
‘
F
9
_
2
2
.
D
X
F
’
;
 
{
D
X
F
 
f
i
l
e
 
n
a
m
e
 

}
1
3
 
 
 
 
  n
V
a
n
e
 
=
 
3
;
 

{
n
u
m
b
e
r
 
o
f
 
v
a
n
e
s
 

}
1
4
 
 
 
 
  n
P
o
z
 

=
 
3
0
;
 

{
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
}

1
5
 
v
a
r
 
i
,
j
,
 
C
l
r
:
 
W
o
r
d
;

1
6
 
 
 
 
P
h
i
,
 
x
O
,
y
O
,
 

x
A
,
y
A
,
 
x
P
,
y
P
,
 
x
Q
,
y
Q
,
 

O
A
,
O
P
,
P
Q
:
 
d
o
u
b
l
e
;

1
7
 
B
E
G
I
n

1
8
 
 
O
A
:
=
 
6
.
0
0
;

1
9
 
 
O
P
:
=
 
5
.
2
5
;

2
0
 
 
P
Q
:
=
 
9
.
0
;
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2
1
 
 
x
O
:
=
 
0
.
0
;
 

y
O
:
=
 
0
.
0
;

2
2
 
 
I
n
i
t
D
X
F
f
i
l
e
(
D
X
F
i
l
e
)
;

2
3
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
x
O
-
O
A
,
x
O
+
O
A
,
 
y
O
-
1
.
3
*
O
A
,
y
O
+
1
.
3
*
O
A
)
;

2
4
 
 
i
:
=
0
;

2
5
 
 
i
f
 
(
n
V
a
n
e
 
<
=
 
3
)
 
t
h
e
n
 
C
l
r
:
=
G
r
e
e
n
 
e
l
s
e
 
C
l
r
:
=
B
l
a
c
k
;

2
6
 
 
r
e
p
e
a
t

2
7
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
8
 
 
 
 
  i
:
=
0
;
 
C
l
o
s
e
M
e
c
D
X
F
;

2
9
 
 
 
E
n
D
;

3
0
 
 
 
n
e
w
F
r
a
m
e
(
5
0
0
)
;

3
1
 
 
 
P
h
i
:
=
P
i
 
+
 
P
i
/
6
*
S
i
n
(
2
*
P
i
*
i
/
n
P
o
z
)
;

3
2
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
n
V
a
n
e
 
d
o
 
B
E
G
I
n

3
3
 
 
 
 
  g
C
r
a
n
k
(
C
l
r
,
 
x
O
,
y
O
,
 
P
h
i
+
2
*
P
i
/
n
V
a
n
e
*
j
,
_
,
_
,
 
O
P
,
 
x
P
,
y
P
,
_
,
_
,
_
,
_
)
;

3
4
 
 
 
 
  x
A
:
=
O
A
*
C
o
s
(
-
P
i
/
4
 
+
 
2
*
P
i
/
n
V
a
n
e
*
j
)
;

3
5
 
 
 
 
  y
A
:
=
O
A
*
S
i
n
(
-
P
i
/
4
 
+
 
2
*
P
i
/
n
V
a
n
e
*
j
)
;

3
6
 
 
 
 
  R
R
_
T
(
C
l
r
,
 
x
P
,
y
P
,
_
,
_
,
_
,
_
,
 
x
O
,
y
O
,
0
,
0
,
0
,
0
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_

3
7
 
 
 
 
  ,
P
Q
,
0
,
 
+
1
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
x
Q
,
y
Q
,
_
,
_
,
_
,
_
,
 
_
)
;

3
8
 
 
 
 
  S
h
a
p
e
(
‘
V
A
n
E
.
X
Y
’
,
R
e
d
,
x
P
,
y
P
,
 
x
Q
,
y
Q
)
;

3
9
 
 
 
 
  i
f
 
(
n
V
a
n
e
 
<
=
 
3
)
 
t
h
e
n
 
B
E
G
I
n

4
0
 
 
 
 
  

P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
 
‘
 
‘
,
 
x
O
,
y
O
,
’
O
 

‘
)
;

4
1
 
 
 
 
  

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
O
,
y
O
,
x
A
,
y
A
,
’
 
A
’
)
;

4
2
 
 
 
 
  

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
Q
,
y
Q
,
x
P
,
y
P
,
’
 

P
’
)
;

4
3
 
 
 
 
  

L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
P
,
y
P
,
x
Q
,
y
Q
,
’
 

Q
’
)
;

4
4
 
 
 
 
  E
n
D
;

4
5
 
 
 
E
n
D
;

4
6
 
 
 
I
n
c
(
i
)
;

4
7
 
 
u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
A
n
D
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

4
8
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

4
9
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
9
_
2
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

D
r
a
g
-
l
i
n
k
 
4
-
b
a
r
 
l
i
n
k
a
g
e
 
a
n
i
m
a
t
i
o
n
 
s
h
o
w
i
n
g
 
t
h
e
 
f
i
x
e
d
 
a
n
d
 
m
o
v
i
n
g
 
c
e
n
t
r
o
d
e
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
C
R
T
,
D
O
S
,
G
r
a
p
h
,

6
 

 
 
 
  L
i
b
M
a
t
h
,
 

{
_
}

7
 

 
 
 
  L
i
b
G
r
a
p
h
,
 

{
I
n
i
t
G
r
}

8
 

 
 
 
  U
n
i
t
_
P
C
X
,
 

{
W
r
i
t
e
P
C
X
}

9
 

 
 
 
  L
i
b
D
X
F
,
 

{
D
_
X
_
F
,
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 
  L
i
b
I
n
O
u
t
,
 

{
E
r
a
s
e
A
l
l
,
I
s
K
e
y
P
r
e
s
s
e
d
}

1
1
 
 
 
 
  L
i
b
M
e
c
I
n
,
 

{
g
C
r
a
n
k
}

1
2
 
 
 
 
  L
i
b
A
s
s
u
r
,
 

{
R
R
R
}

1
3
 
 
 
 
  L
i
b
M
e
c
2
D
,
 

{
O
p
e
n
M
e
c
G
r
a
p
h
,
C
o
m
e
t
L
o
c
u
s
,
L
e
f
t
,
R
i
g
h
t
,
S
h
a
p
e
,
P
u
t
P
o
i
n
t
}

1
4
 
 
 
 
  L
i
b
G
e
2
D
;
 

{
I
n
t
2
L
n
s
,
R
T
2
D
}

1
5
 
c
o
n
s
t
 
D
X
F
i
l
e
 
=
 
‘
F
9
_
2
3
R
.
D
X
F
’
;
 
{
o
u
t
p
u
t
 
f
i
l
e
 
n
a
m
e
 
F
9
_
2
3
R
.
D
X
F
 
o
r
 
F
9
_
2
3
R
.
D
X
F
}

1
6
 
 
 
 
  L
R
 

=
 
R
i
g
h
t
;
 

{
L
e
f
t
/
R
i
g
h
t
 
m
e
c
h
a
n
i
s
m
 
c
l
o
s
u
r
e
}

1
7
 
 
 
 
  n
P
o
z
 

=
 
1
8
0
;
 

{
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
  }

1
8
 
v
a
r
 
I
C
m
:
 
T
e
x
t
;
  {
.
.
(
x
,
y
)
 
A
S
C
I
I
 
f
i
l
e
s
 
w
i
t
h
 
m
o
v
i
n
g
-
c
e
n
t
r
o
d
e
 
p
o
i
n
t
s
}

1
9
 
 
 
P
h
i
,
x
O
,
y
O
,
x
A
,
y
A
,
x
B
,
y
B
,
x
C
,
y
C
,
 
O
A
,
A
B
,
B
C
,
 
x
I
C
,
y
I
C
,
x
I
C
m
,
y
I
C
m
:
 
d
o
u
b
l
e
;

2
0
 
 
 
i
,
L
o
o
p
:
 
I
n
t
e
g
e
r
;
  O
K
:
 
B
o
o
l
e
a
n
;
 

S
:
 
s
t
r
i
n
g
;

2
1
 
B
E
G
I
n

2
2
 
 
x
O
:
=
0
.
0
;
 

y
O
:
=
0
.
0
;
 

x
C
:
=
6
0
;
 

y
C
:
=
0
;
 
{
.
.
l
o
c
a
t
i
o
n
 
o
f
 
g
r
o
u
n
d
 
j
o
i
n
t
s
}

2
3
 
 
O
A
:
=
1
0
0
;
 

A
B
:
=
1
4
0
;
 

B
C
:
=
1
2
0
;
 
 

{
.
.
l
i
n
k
 
l
e
n
g
t
h
s
}

2
4
 
 
E
r
a
s
e
A
l
l
(
‘
*
.
P
C
X
’
)
;

2
5
 
 
E
r
a
s
e
A
l
l
(
‘
I
C
*
.
x
y
’
)
;

2
6
 
 
A
s
s
i
g
n
(
I
C
m
,
’
I
C
m
.
x
y
’
)
;
 

R
e
w
r
i
t
e
(
I
C
m
)
;
 

C
l
o
s
e
(
I
C
m
)
;

2
7
 
 
I
n
i
t
D
X
F
f
i
l
e
(
D
X
F
i
l
e
)
;

2
8
 
 
I
n
i
t
G
r
(
0
)
;
 

{
.
.
m
a
k
e
 
t
h
e
 
b
a
c
k
g
r
o
u
n
d
 
w
h
i
t
e
}

2
9
 
 
M
e
c
O
u
t
:
=
T
R
U
E
;
 
{
.
.
r
e
q
u
i
r
e
d
 
b
e
c
a
u
s
e
 
o
f
 
c
a
l
l
i
n
g
 
I
n
i
t
G
r
 
a
b
o
v
e
}

3
0
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
x
O
-
O
A
,
x
C
+
B
C
,
y
O
-
1
.
2
*
M
a
x
2
(
O
A
,
B
C
)
,
y
O
+
1
.
2
*
M
a
x
2
(
O
A
,
B
C
)
)
;

3
1
 
 
i
f
 
(
L
R
 
=
 
L
e
f
t
)
 
t
h
e
n
 
S
:
=
’
 
l
e
f
t
 
‘
 
e
l
s
e
 
S
:
=
’
 
r
i
g
h
t
 
‘
;
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3
2
 
 
S
e
t
T
i
t
l
e
(
‘
4
-
b
a
r
’
+
S
+
’
-
 
f
i
x
e
d
 
&
 
m
o
v
i
n
g
 
c
e
n
t
r
o
d
e
s
’
)
;

3
3
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
3
)
;

3
4
 
 
i
:
=
0
;
 
L
o
o
p
:
=
0
;

3
5
 
 
R
e
p
e
a
t

3
6
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
+
1
)
 
t
h
e
n
 
B
E
G
I
n

3
7
 
 
 
 
  i
:
=
1
;
 

I
n
c
(
L
o
o
p
)
;

3
8
 
 
 
 
  i
f
 
(
L
o
o
p
 
=
 
2
)
 
t
h
e
n
 
B
E
G
I
n

3
9
 
 
 
 
  

C
l
o
s
e
M
e
c
D
X
F
;
 

S
e
t
T
i
t
l
e
(
‘
P
r
e
s
s
 
<
E
S
C
>
 
t
o
 
q
u
i
t
.
.
’
)
;

4
0
 
 
 
 
  E
n
D
;

4
1
 
 
 
E
n
D
;

4
2
 
 
 
n
e
w
F
r
a
m
e
(
0
)
;

4
3
 
 
 
P
h
i
:
=
2
*
P
i
/
n
P
o
z
*
i
;

4
4
 
 
 
i
f
 
(
i
 
M
O
D
 
5
 
<
>
 
0
)
 
t
h
e
n
 
S
u
s
p
e
n
d
D
X
F
 
e
l
s
e
 
R
e
s
u
m
e
D
X
F
;

4
5
 
 
 
g
C
r
a
n
k
(
R
e
d
,
x
O
,
y
O
,
P
h
i
,
_
,
_
,
 
O
A
,
 
x
A
,
y
A
,
_
,
_
,
_
,
_
)
;

4
6
 
 
 
R
R
R
(
R
e
d
,
x
A
,
y
A
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
0
,
0
,
0
,
0
,
 
A
B
,
B
C
,
L
R
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
_
)
;

4
7
 
 
 
I
n
t
2
L
n
s
(
x
O
,
y
O
,
 
x
A
,
y
A
,
 
x
C
,
y
C
,
 
x
B
,
y
B
,
 
x
I
C
,
y
I
C
,
 
O
K
)
;

4
8
 
 
 
i
f
 
O
K
 
t
h
e
n
 
B
E
G
I
n

4
9
 
 
 
 
  R
T
2
D
(
x
I
C
-
x
A
,
y
I
C
-
y
A
,
 
-
A
t
a
n
2
(
y
B
-
y
A
,
x
B
-
x
A
)
,
 
0
,
0
,
 
x
I
C
m
,
y
I
C
m
)
;

5
0
 
 
 
 
  i
f
 
(
L
o
o
p
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n
 

{
u
p
d
a
t
e
 
m
o
v
i
n
g
 
c
e
n
t
r
o
d
e
 
s
h
a
p
e
 
f
i
l
e
.
.
}

5
1
 
 
 
 
  

A
p
p
e
n
d
(
I
C
m
)
;
 

W
r
i
t
e
L
n
(
I
C
m
,
 
x
I
C
m
,
’
 
‘
,
y
I
C
m
)
;

5
2
 
 
 
 
  

C
l
o
s
e
(
I
C
m
)
;

5
3
 
 
 
 
  E
n
D
;

5
4
 
 
 
E
n
D
;

5
5
 
 
 
S
h
a
p
e
(
‘
I
C
m
.
x
y
’
,
G
r
e
e
n
,
x
A
,
y
A
,
 
x
B
,
y
B
)
;
 

{
.
.
m
o
v
i
n
g
 
c
e
n
t
r
o
d
e
}

5
6
 
 
 
C
o
m
e
t
L
o
c
u
s
(
L
i
g
h
t
B
l
u
e
,
x
I
C
,
y
I
C
,
’
I
C
’
)
;

5
7
 
 
 
P
u
t
P
o
i
n
t
(
B
l
u
e
,
 
‘
o
’
,
 
x
I
C
,
y
I
C
,
’
’
)
;

5
8
 
 
 
i
f
 
(
L
o
o
p
 
<
 
3
)
 
A
n
D
 
D
_
X
_
F
 
t
h
e
n
 
W
r
i
t
e
P
C
X
(
I
m
p
l
i
c
i
t
F
i
l
e
n
a
m
e
(
‘
I
C
.
P
C
X
’
)
,
O
K
)
;

5
9
 
 
 
I
n
c
(
i
)
;

6
0
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

6
1
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
T
R
U
E
)
;

6
2
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
9
_
2
7
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
s
 
D
2
D
 
f
i
l
e
s
 
t
o
 
p
l
o
t
 
i
m
p
l
i
c
i
t
 
f
u
n
c
t
i
o
n
s
 
w
i
t
h
i
n
 
t
h
e
 
i
n
t
e
r
v
a
l

4
 

[
X
m
i
n
.
.
X
m
a
x
]
 
x
 
[
Y
m
i
n
.
.
Y
m
a
x
]
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
,
 

{
C
l
r
S
c
r
}

7
 

 
 
 
  L
i
b
M
a
t
h
;
 
{
N
m
a
x
,
V
D
n
,
I
n
f
D
}

8
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
9
_
2
7
A
.
D
2
D
’
;
 
{
.
.
’
F
9
_
2
7
A
.
D
2
D
’
 
o
r
 
‘
F
9
_
2
7
B
.
D
2
D
’
}

9
 

v
a
r
 
F
D
:
f
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 
v
X
,
v
Y
:
V
D
n
;

1
0
 
 
 
 
  n
X
,
n
Y
,
 
i
X
,
i
Y
:
i
n
t
e
g
e
r
;
 
X
,
y
,
 
X
m
i
n
,
X
m
a
x
,
 
Y
m
i
n
,
Y
m
a
x
:
d
o
u
b
l
e
;

1
1
 
f
u
n
c
t
i
o
n
 
F
x
y
(
X
,
Y
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;

1
2
 
B
E
G
I
n

1
3
 
 
i
f
 
P
o
s
(
‘
A
’
,
F
i
l
e
n
a
m
e
)
 
>
 
0
 
t
h
e
n

1
4
 
 
 
F
x
y
:
=
Y
*
Y
*
Y
-
X
*
X
*
X
-
1
0
*
X
*
Y
+
1
;
 

{
.
.
w
i
t
h
 
F
9
_
2
7
A
.
D
2
D
}

1
5
 
 
i
f
 
P
o
s
(
‘
B
’
,
F
i
l
e
n
a
m
e
)
 
>
 
0
 
t
h
e
n

1
6
 
 
 
F
x
y
:
=
X
*
Y
*
C
o
s
(
X
*
X
+
Y
*
Y
)
-
1
;
 

{
.
.
w
i
t
h
 
F
9
_
2
7
B
.
D
2
D
}

1
7
 
E
n
D
;

1
8
 
{
$
F
+
}

1
9
 
f
u
n
c
t
i
o
n
 
F
x
(
X
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;
 
B
E
G
I
n
 
F
x
:
=
F
x
y
(
X
,
Y
)
;
 
E
n
D
;

2
0
 
f
u
n
c
t
i
o
n
 
F
y
(
Y
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;
 
B
E
G
I
n
 
F
y
:
=
F
x
y
(
X
,
Y
)
;
 
E
n
D
;

2
1
 
{
$
F
-
}

2
2
 
B
E
G
I
n

2
3
 
 
n
X
:
=
2
0
1
;
 
X
m
i
n
:
=
-
7
.
5
;
 
X
m
a
x
:
=
7
.
5
;

2
4
 
 
n
Y
:
=
2
0
1
;
 
Y
m
i
n
:
=
-
7
.
5
;
 
Y
m
a
x
:
=
7
.
5
;

2
5
 
 
C
l
r
S
c
r
;

2
6
 
 
A
s
s
i
g
n
(
F
D
,
F
i
l
e
n
a
m
e
)
;
 
R
e
w
r
i
t
e
(
F
D
)
;

2
7
 
 
f
o
r
 
i
X
:
=
1
 
t
o
 
n
X
 
d
o
 
B
E
G
I
n

2
8
 
 
 
X
:
=
X
m
i
n
+
(
X
m
a
x
-
X
m
i
n
)
/
(
n
X
-
1
)
*
(
i
X
-
1
)
;

2
9
 
 
 
n
r
F
e
v
0
:
=
0
;

3
0
 
 
 
Z
e
r
o
G
r
i
d
(
F
y
,
 
Y
m
i
n
,
Y
m
a
x
,
 
n
Y
,
 
v
Y
)
;

3
1
 
 
 
f
o
r
 
i
Y
:
=
1
 
t
o
 
n
m
a
x
 
d
o
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3
2
 
 
 
 
 i
f
 
(
v
Y
[
i
Y
]
 
<
>
 
I
n
f
D
)
 
t
h
e
n
 
W
r
i
t
e
(
F
D
,
X
,
v
Y
[
i
Y
]
)
;

3
3
 
 
E
n
D
;

3
4
 
 
f
o
r
 
i
Y
:
=
1
 
t
o
 
n
Y
 
d
o
 
B
E
G
I
n

3
5
 
 
 
Y
:
=
Y
m
i
n
+
(
Y
m
a
x
-
Y
m
i
n
)
/
(
n
Y
-
1
)
*
(
i
Y
-
1
)
;

3
6
 
 
 
n
r
F
e
v
0
:
=
0
;

3
7
 
 
 
Z
e
r
o
G
r
i
d
(
F
x
,
 
X
m
i
n
,
X
m
a
x
,
 
n
X
,
 
v
X
)
;

3
8
 
 
 
f
o
r
 
i
X
:
=
1
 
t
o
 
n
m
a
x
 
d
o

3
9
 
 
 
 
  i
f
 
(
v
X
[
i
X
]
 
<
>
 
I
n
f
D
)
 
t
h
e
n
 
W
r
i
t
e
(
F
D
,
v
X
[
i
X
]
,
Y
)
;

4
0
 
 
E
n
D
;

4
1
 
 
C
l
o
s
e
(
F
D
)
;

4
2
 
 
W
r
i
t
e
(
F
i
l
e
n
a
m
e
,
’
 
f
i
l
e
 
o
u
t
p
u
t
 
s
u
c
c
e
s
s
f
u
l
l
y
.
.
’
)
;
 

R
e
a
d
L
n
;

4
3
 
E
n
D
.

1
 

P
r
o
g
r
a
m
 
P
9
_
2
8
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

G
e
n
e
r
a
t
e
 
D
3
D
 
f
i
l
e
s
 
t
o
 
p
l
o
t
 
i
m
p
l
i
c
i
t
 
f
u
n
c
t
i
o
n
s
 
w
i
t
h
i
n
 
t
h
e
 
i
n
t
e
r
v
a
l

4
 

[
X
m
i
n
.
.
X
m
a
x
]
 
x
 
[
Y
m
i
n
.
.
Y
m
a
x
]
.

5
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

6
 

u
s
e
s
 
C
R
T
;
 
 
 

{
C
l
r
S
c
r
}

7
 

c
o
n
s
t
 
F
i
l
e
n
a
m
e
 
=
 
‘
F
9
_
2
8
A
.
D
3
D
’
;
 

{
.
.
’
F
9
_
2
8
A
.
D
3
D
’
 
o
r
 
‘
F
9
_
2
8
B
.
D
3
D
’
}

8
 

v
a
r
 
F
D
:
f
i
l
e
 
o
f
 
d
o
u
b
l
e
;
 

i
,
j
:
i
n
t
e
g
e
r
;

9
 

 
 
 
  n
X
,
n
Y
,
 
X
,
Y
,
 
X
m
i
n
,
X
m
a
x
,
 
Y
m
i
n
,
Y
m
a
x
,
 
Z
:
d
o
u
b
l
e
;

1
0
 
f
u
n
c
t
i
o
n
 
F
x
y
(
X
,
Y
:
d
o
u
b
l
e
)
:
d
o
u
b
l
e
;

1
1
 
B
E
G
I
n

1
2
 
 
i
f
 
P
o
s
(
‘
A
’
,
F
i
l
e
n
a
m
e
)
 
>
 
0
 
t
h
e
n

1
3
 
 
 
F
x
y
:
=
Y
*
Y
*
Y
-
X
*
X
*
X
-
1
0
*
X
*
Y
+
1
;
 

{
.
.
w
i
t
h
 
F
9
_
2
8
A
.
D
2
D
}

1
4
 
 
i
f
 
P
o
s
(
‘
B
’
,
F
i
l
e
n
a
m
e
)
 
>
 
0
 
t
h
e
n

1
5
 
 
 
F
x
y
:
=
X
*
Y
*
C
o
s
(
X
*
X
+
Y
*
Y
)
-
1
;
 
 

{
.
.
w
i
t
h
 
F
9
_
2
8
B
.
D
2
D
}

1
6
 
E
n
D
;

1
7
 
B
E
G
I
n
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1
8
 
 
n
X
:
=
2
0
1
;
 

X
m
i
n
:
=
-
7
.
5
;
 
X
m
a
x
:
=
7
.
5
;

1
9
 
 
n
Y
:
=
2
0
1
;
 

Y
m
i
n
:
=
-
7
.
5
;
 
Y
m
a
x
:
=
7
.
5
;

2
0
 
 
C
l
r
S
c
r
;

2
1
 
 
A
s
s
i
g
n
(
F
D
,
F
i
l
e
n
a
m
e
)
;
 

R
e
w
r
i
t
e
(
F
D
)
;

2
2
 
 
W
r
i
t
e
(
F
D
,
n
X
,
n
Y
,
X
m
i
n
,
X
m
a
x
,
Y
m
i
n
,
Y
m
a
x
)
;

2
3
 
 
f
o
r
 
i
:
=
1
 
t
o
 
r
o
u
n
d
(
n
X
)
 
d
o
 
B
E
G
I
n

2
4
 
 
 
X
:
=
X
m
i
n
+
(
X
m
a
x
-
X
m
i
n
)
/
(
n
X
-
1
)
*
(
i
-
1
)
;

2
5
 
 
 
f
o
r
 
j
:
=
1
 
t
o
 
r
o
u
n
d
(
n
Y
)
 
d
o
 
B
E
G
I
n

2
6
 
 
 
 
  Y
:
=
Y
m
i
n
+
(
Y
m
a
x
-
Y
m
i
n
)
/
(
n
Y
-
1
)
*
(
j
-
1
)
;

2
7
 
 
 
 
  Z
:
=
F
x
y
(
X
,
Y
)
;

2
8
 
 
 
 
  W
r
i
t
e
(
F
D
,
Z
)
;

2
9
 
 
 
E
n
D
;

3
0
 
 
E
n
D
;

3
1
 
 
C
l
o
s
e
(
F
D
)
;

3
2
 
 
W
r
i
t
e
(
F
i
l
e
n
a
m
e
,
’
 
f
i
l
e
 
o
u
t
p
u
t
 
s
u
c
c
e
s
s
f
u
l
l
y
.
.
’
)
;
 

R
e
a
d
L
n
;

3
3
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
3
1
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
I
n
v
e
r
s
e
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
 
5
R
 
p
a
r
a
l
l
e
l
 
S
C
A
R
A
 
r
o
b
o
t

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
C
y
a
n
,
G
r
e
e
n
,
R
e
d
,
M
a
g
e
n
t
a
}

6
 

 
 
 
L
i
b
G
e
2
D
,
 
{
D
i
s
t
2
P
t
s
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
  {
R
R
R
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
A
n
g
P
V
A
,
A
n
g
4
P
V
A
,
C
l
o
s
e
M
e
c
D
X
F
}

1
2
 
 
 
 
  

 
{
,
P
u
t
R
e
f
S
y
s
t
e
m
,
L
a
b
e
l
J
o
i
n
t
,
C
o
m
e
t
L
o
c
u
s
,
S
e
t
T
i
t
l
e
}

1
3
 
c
o
n
s
t
 
I
n
p
P
a
t
h
X
Y
 

=
 
‘
R
o
b
o
P
a
t
h
.
X
Y
’
;
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1
4
 
 
 
 
 O
u
t
J
n
t
A
n
g
l
e
 
=
 
‘
F
9
_
3
1
.
D
T
A
’
;

1
5
 
 
 
 
  O
u
t
D
X
F
 

=
 
‘
F
9
_
3
1
.
D
X
F
’
;

1
6
 
v
a
r
 
F
T
i
,
F
T
o
:
t
e
x
t
;
 

A
u
x
S
t
r
:
s
t
r
i
n
g
;
 

i
:
 
W
o
r
d
;

1
7
 
 
 
A
u
x
D
,
 
A
B
,
B
C
,
 
x
A
1
,
y
A
1
,
x
A
2
,
y
A
2
,
 
x
B
1
,
y
B
1
,
x
B
2
,
y
B
2

1
8
 
 
 
,
x
C
,
y
C
,
 
x
C
p
,
y
C
p
,
 
T
h
A
1
,
T
h
B
1
,
 
T
h
A
2
,
T
h
B
2
,
 
t
,
 
v
C
:
 
d
o
u
b
l
e
;

1
9
 
l
a
b
e
l
 
A
b
o
r
t
;

2
0
 
f
u
n
c
t
i
o
n
 
W
(
D
:
d
o
u
b
l
e
)
:
s
t
r
i
n
g
;
 

{
s
h
o
r
t
h
a
n
d
 
f
o
r
 
M
y
S
t
r
(
)
.
.
}

2
1
 
B
E
G
I
n

2
2
 
 
W
:
=
M
y
S
t
r
(
D
,
1
0
)
;

2
3
 
E
n
D
;

2
4
 
B
E
G
I
n

2
5
 
 
A
s
s
i
g
n
(
F
T
i
,
I
n
p
P
a
t
h
X
Y
)
;
 

  {
.
.
i
n
p
u
t
 
p
a
t
h
 
f
i
l
e
}

2
6
 
 
A
s
s
i
g
n
(
F
T
o
,
O
u
t
J
n
t
A
n
g
l
e
)
;
   {
.
.
o
u
t
p
u
t
 
j
o
i
n
t
-
a
n
g
l
e
 
f
i
l
e
}

2
7
 
 
I
n
i
t
D
X
F
f
i
l
e
(
O
u
t
D
X
F
)
;
 

  {
.
.
o
u
t
p
u
t
 
D
X
F
 
f
i
l
e
}

2
8
 
 
v
C
 
:
=
 
1
.
0
0
;
 
 

{
[
i
n
/
s
]
 
s
p
e
e
d
 
o
f
 
p
o
i
n
t
 
C
 

}
2
9
 
 
x
A
1
:
=
 
2
.
2
5
;
 
y
A
1
:
=
-
8
.
0
;
 
{
[
i
n
]
 
g
r
o
u
n
d
-
j
o
i
n
t
 
A
1
 
c
o
o
r
d
i
n
a
t
e
s
  }

3
0
 
 
x
A
2
:
=
 
6
.
7
5
;
 
y
A
2
:
=
-
8
.
0
;
 
{
[
i
n
]
 
g
r
o
u
n
d
-
j
o
i
n
t
 
A
2
 
c
o
o
r
d
i
n
a
t
e
s
  }

3
1
 
 
A
B
 
:
=
 

7
.
0
;
 

{
[
i
n
]
 
l
e
n
g
t
h
 
o
f
 
l
i
n
k
 
A
B
 

}
3
2
 
 
B
C
 
:
=
 
1
0
.
0
;
 
 

{
[
i
n
]
 
l
e
n
g
t
h
 
o
f
 
l
i
n
k
 
B
C
 

}
3
3
 
 
R
e
w
r
i
t
e
(
F
T
o
)
;

3
4
 
 
W
r
i
t
e
L
n
(
F
T
o
,
W
(
A
B
)
 
,
’
 

‘
,
W
(
B
C
)
)
;

3
5
 
 
W
r
i
t
e
L
n
(
F
T
o
,
W
(
x
A
1
)
,
’
 

‘
,
W
(
y
A
1
)
)
;

3
6
 
 
W
r
i
t
e
L
n
(
F
T
o
,
W
(
x
A
2
)
,
’
 

‘
,
W
(
y
A
2
)
)
;

3
7
 
 
W
r
i
t
e
L
n
(
F
T
o
,
W
(
v
C
)
)
;

3
8
 
 
W
r
i
t
e
L
n
(
F
T
o
,
’
 

t
 

T
h
e
t
a
A
1
 

T
h
e
t
a
B
1
 

T
h
e
t
a
A
2
 

T
h
e
t
a
B
2
’
)
;

3
9
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
6
,
1
5
,
 
-
1
2
,
7
)
;

4
0
 
 
S
e
t
T
i
t
l
e
(
‘
I
n
v
e
r
s
e
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
n
 
5
R
 
r
o
b
o
t
’
)
;

4
1
 
 
R
e
p
e
a
t

4
2
 
 
 
R
e
s
e
t
(
F
T
i
)
;

4
3
 
 
 
T
h
A
1
:
=
0
.
0
;
  T
h
B
1
:
=
0
.
0
;
 
T
h
A
2
:
=
0
.
0
;
 
T
h
B
2
:
=
0
.
0
;

4
4
 
 
 
x
C
:
=
I
n
f
D
;
 
y
C
:
=
I
n
f
D
;
 

t
:
=
0
.
0
;
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4
5
 
 
 
i
:
=
0
;

4
6
 
 
 
r
e
p
e
a
t

4
7
 
 
 
 
 n
e
w
F
r
a
m
e
(
0
)
;

4
8
 
 
 
 
  i
f
 
(
i
 
M
O
D
 
4
 
<
>
 
0
)
 
t
h
e
n
 
S
u
s
p
e
n
d
D
X
F
 
e
l
s
e
 
R
e
s
u
m
e
D
X
F
;

4
9
 
 
 
 
  P
u
t
R
e
f
S
y
s
t
e
m
(
3
,
3
,
’
x
’
,
’
y
’
)
;

5
0
 
 
 
 
  x
C
p
:
=
x
C
;
  y
C
p
:
=
y
C
;

5
1
 
 
 
 
  R
e
a
d
L
n
(
F
T
i
,
x
C
,
y
C
)
;

5
2
 
 
 
 
  i
f
 
(
x
C
p
 
<
 
I
n
f
D
)
 
t
h
e
n
 
t
:
=
t
+
D
i
s
t
2
P
t
s
2
D
(
x
C
p
,
y
C
p
,
x
C
,
y
C
)
/
v
C
;

5
3
 
 
 
 
  R
R
R
(
R
e
d
,
x
A
1
,
y
A
1
,
0
,
0
,
0
,
0
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
A
B
,
B
C
,
-
1
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
_
)
;

5
4
 
 
 
 
  R
R
R
(
B
l
u
e
,
x
A
2
,
y
A
2
,
0
,
0
,
0
,
0
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
A
B
,
B
C
,
+
1
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
,
_
)
;

5
5
 
 
 
 
  A
n
g
P
V
A
(
x
A
1
,
y
A
1
,
0
,
0
,
0
,
0
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
T
h
A
1
,
_
,
_
)
;

5
6
 
 
 
 
  A
n
g
4
P
V
A
(
x
A
1
,
y
A
1
,
0
,
0
,
0
,
0
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_

5
7
 
 
 
 
  ,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
T
h
B
1
,
_
,
_
)
;

5
8
 
 
 
 
  A
n
g
P
V
A
(
x
A
2
,
y
A
2
,
0
,
0
,
0
,
0
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
,
T
h
A
2
,
_
,
_
)
;

5
9
 
 
 
 
  A
n
g
4
P
V
A
(
x
A
2
,
y
A
2
,
0
,
0
,
0
,
0
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_

6
0
 
 
 
 
  ,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
T
h
B
2
,
_
,
_
)
;

6
1
 
 
 
 
  P
u
t
A
n
g
(
W
h
i
t
e
,
x
A
1
,
y
A
1
,
x
A
1
,
y
A
1
,
x
B
1
,
y
B
1
,
6
,
’
<
’
+
#
2
3
3
+
’
_
A
1
|
’
)
;

6
2
 
 
 
 
  P
u
t
A
n
g
(
W
h
i
t
e
,
2
*
x
B
1
-
x
A
1
,
2
*
y
B
1
-
y
A
1
,
x
B
1
,
y
B
1
,
x
C
,
y
C
,
6
,
’
<
’
+
#
2
3
3
+
’
_
B
1
|
’
)
;

6
3
 
 
 
 
  P
u
t
A
n
g
(
W
h
i
t
e
,
x
A
2
,
y
A
2
,
x
A
2
,
y
A
2
,
x
B
2
,
y
B
2
,
6
,
’
<
’
+
#
2
3
3
+
’
_
A
2
|
’
)
;

6
4
 
 
 
 
  P
u
t
A
n
g
(
W
h
i
t
e
,
2
*
x
B
2
-
x
A
2
,
2
*
y
B
2
-
y
A
2
,
x
B
2
,
y
B
2
,
x
C
,
y
C
,
6
,
’
<
’
+
#
2
3
3
+
’
_
B
2
|
’
)
;

6
5
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
1
,
y
A
1
,
’
A
_
1
  ‘
)
;

6
6
 
 
 
 
  P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
1
,
y
B
1
,
’
B
_
1
 
‘
)
;

6
7
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
2
,
y
A
2
,
’
A
_
2
  ‘
)
;

6
8
 
 
 
 
  P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
2
,
y
B
2
,
’
B
_
2
 
‘
)
;

6
9
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
A
1
+
x
A
2
)
,
0
.
5
*
(
y
A
2
+
y
A
2
)
,
x
C
,
y
C
,
’
 

C
’
)
;

7
0
 
 
 
 
  R
e
s
u
m
e
D
X
F
;

7
1
 
 
 
 
  L
o
c
u
s
(
C
y
a
n
,
 
x
C
,
y
C
,
 
‘
C
’
)
;

7
2
 
 
 
 
  i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
L
n
(
F
T
o
,
W
(
t
)
,
’
 
‘
,
W
(
T
h
A
1
*
D
E
G
)
,
’
 
‘

7
3
 
 
 
 
  ,
W
(
T
h
B
1
*
D
E
G
)
,
’
 
‘
,
W
(
T
h
A
2
*
D
E
G
)
,
’
 
‘
,
W
(
T
h
B
2
*
D
E
G
)
)
;

7
4
 
 
 
 
  i
f
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
t
h
e
n
 
G
o
T
o
 
A
b
o
r
t
;

7
5
 
 
 
 
  I
n
c
(
i
)
;
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7
6
 
 
 
u
n
t
i
l
 
E
O
F
(
F
T
i
)
;

7
7
 
 
 
C
l
o
s
e
M
e
c
D
X
F
;

7
8
 
 
u
n
t
i
l
 
F
A
L
S
E
;

7
9
 
 
A
b
o
r
t
:

8
0
 
 
C
l
o
s
e
(
F
T
i
)
;
 
C
l
o
s
e
(
F
T
o
)
;

8
1
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

8
2
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
3
2
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
D
i
r
e
c
t
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
 
5
R
 
p
a
r
a
l
l
e
l
 
S
C
A
R
A
 
r
o
b
o
t

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
R
A
D
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
  {
R
R
R
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
e
t
J
o
i
n
t
S
i
z
e
,
N
e
w
F
r
a
m
e
,
}

1
2
 
 
 
 
  

 
{
B
a
s
e
,
L
i
n
k
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
3
 
c
o
n
s
t
 
I
n
A
n
g
l
e
s
 
=
 
‘
F
9
_
3
1
.
D
T
A
’
;

1
4
 
 
 
 
  O
u
t
D
X
F
 

=
 
‘
F
9
_
3
2
B
.
D
X
F
’
;

1
5
 
 
 
 
  S
t
i
c
k
s
 

=
 
0
;
 
{
0
/
1
;
 
0
 
w
i
l
l
 
d
r
a
w
 
t
h
e
 
m
e
c
h
a
n
i
s
m
 
a
s
 
s
t
i
c
k
s
}

1
6
 
v
a
r
 
F
T
:
t
e
x
t
;
 

A
u
x
S
t
r
:
s
t
r
i
n
g
;
 

i
:
W
o
r
d
;
 

D
D
,
A
u
x
D
,
t
,
v
C
,
A
B
,
B
C

1
7
 
 
 
,
x
A
1
,
y
A
1
,
x
A
2
,
y
A
2
,
x
B
1
,
y
B
1
,
x
B
2
,
y
B
2
,
x
C
,
y
C
,
T
h
A
1
,
T
h
A
2
:
d
o
u
b
l
e
;

1
8
 
l
a
b
e
l
 
A
b
o
r
t
;

1
9
 
B
E
G
I
n

2
0
 
 
A
s
s
i
g
n
(
F
T
,
I
n
A
n
g
l
e
s
)
;
 

{
i
n
p
u
t
 
f
i
l
e
 
w
i
t
h
 
j
o
i
n
t
-
a
n
g
l
e
 
v
a
l
u
e
s
}

2
1
 
 
I
n
i
t
D
X
F
f
i
l
e
(
O
u
t
D
X
F
)
;
 

{
o
u
t
p
u
t
 
D
X
F
 
f
i
l
e
 
f
o
r
 
a
n
i
m
a
t
i
o
n
 
w
i
t
h
 
M
_
3
D
.
L
S
P
}

2
2
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
6
,
1
5
,
 
-
1
2
,
7
)
;
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2
3
 
 
S
e
t
T
i
t
l
e
(
‘
D
i
r
e
c
t
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
n
 
5
R
 
r
o
b
o
t
’
)
;

2
4
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
5
)
;

2
5
 
 
r
e
p
e
a
t

2
6
 
 
 
R
e
s
e
t
(
F
T
)
;

2
7
 
 
 
R
e
a
d
L
n
(
F
T
,
A
B
,
B
C
)
;
 
R
e
a
d
L
n
(
F
T
,
x
A
1
,
y
A
1
)
;

2
8
 
 
 
R
e
a
d
L
n
(
F
T
,
x
A
2
,
y
A
2
)
;
 

R
e
a
d
L
n
(
F
T
,
v
C
)
;

2
9
 
 
 
R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;
  {
.
.
r
e
a
d
 
‘
 
t
 

T
h
e
t
a
A
1
 

T
h
e
t
a
B
1
 
‘
 
e
t
c
.
}

3
0
 
 
 
D
D
:
=
0
.
2
*
A
B
;
 

{
.
.
p
a
r
a
m
e
t
e
r
 
u
s
e
d
 
w
i
t
h
 
B
a
s
e
 
&
 
L
i
n
k
}

3
1
 
 
 
i
:
=
0
;

3
2
 
 
 
r
e
p
e
a
t

3
3
 
 
 
 
 n
e
w
F
r
a
m
e
(
0
)
;

3
4
 
 
 
 
  i
f
 
(
i
 
M
O
D
 
4
 
<
>
 
0
)
 
t
h
e
n
 
S
u
s
p
e
n
d
D
X
F
 
e
l
s
e
 
R
e
s
u
m
e
D
X
F
;

3
5
 
 
 
 
  R
e
a
d
L
n
(
F
T
,
t
,
T
h
A
1
,
A
u
x
D
,
T
h
A
2
,
A
u
x
D
)
;
 
{
.
.
i
g
n
o
r
e
s
 
T
h
B
1
 
&
 
T
h
B
2
}

3
6
 
 
 
 
  T
h
A
1
:
=
T
h
A
1
*
R
A
D
;

3
7
 
 
 
 
  T
h
A
2
:
=
T
h
A
2
*
R
A
D
;

3
8
 
 
 
 
  B
a
s
e
(
W
h
i
t
e
*
S
t
i
c
k
s
,
0
.
5
*
(
x
A
1
+
x
A
2
)
,
0
.
5
*
(
y
A
1
+
y
A
2
)

3
9
 
 
 
 
  ,
0
.
5
*
(
x
A
1
+
x
A
2
)
,
0
.
5
*
(
y
A
1
+
y
A
2
)
-
1
.
5
*
D
D
,
(
x
A
2
-
x
A
1
)
+
D
D
,
D
D
,
0
)
;

4
0
 
 
 
 
  g
C
r
a
n
k
(
-
R
e
d
,
x
A
1
,
y
A
1
,
 
T
h
A
1
,
_
,
_
,
 
A
B
,
 
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
)
;

4
1
 
 
 
 
  L
i
n
k
(
R
e
d
,
x
A
1
,
y
A
1
,
x
B
1
,
y
B
1
,
1
.
5
*
D
D
*
S
t
i
c
k
s
,
D
D
,
D
D
)
;

4
2
 
 
 
 
  g
C
r
a
n
k
(
-
R
e
d
,
x
A
2
,
y
A
2
,
 
T
h
A
2
,
_
,
_
,
 
A
B
,
 
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
)
;

4
3
 
 
 
 
  L
i
n
k
(
R
e
d
,
x
A
2
,
y
A
2
,
x
B
2
,
y
B
2
,
1
.
5
*
D
D
*
S
t
i
c
k
s
,
D
D
,
D
D
)
;

4
4
 
 
 
 
  R
R
R
(
-
B
l
u
e
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_

4
5
 
 
 
 
  ,
B
C
,
B
C
,
-
1
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
_
)
;

4
6
 
 
 
 
  L
i
n
k
(
B
l
u
e
,
x
B
1
,
y
B
1
,
x
C
,
y
C
,
1
.
5
*
D
D
*
S
t
i
c
k
s
,
D
D
,
D
D
)
;

4
7
 
 
 
 
  L
i
n
k
(
B
l
u
e
,
x
B
2
,
y
B
2
,
x
C
,
y
C
,
1
.
5
*
D
D
*
S
t
i
c
k
s
,
D
D
,
D
D
)
;

4
8
 
 
 
 
  i
f
 
(
S
t
i
c
k
s
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n

4
9
 
 
 
 
  

P
u
t
A
n
g
(
W
h
i
t
e
,
x
A
1
,
y
A
1
,
x
A
1
,
y
A
1
,
x
B
1
,
y
B
1
,
6
,
’
<
’
+
#
2
3
3
+
’
_
A
1
|
’
)
;

5
0
 
 
 
 
  

P
u
t
A
n
g
(
W
h
i
t
e
,
x
A
2
,
y
A
2
,
x
A
2
,
y
A
2
,
x
B
2
,
y
B
2
,
6
,
’
<
’
+
#
2
3
3
+
’
_
A
2
|
’
)
;

5
1
 
 
 
 
  E
n
D
;

5
2
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
1
,
y
A
1
,
’
A
_
1
  ‘
)
;

5
3
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
2
,
y
A
2
,
’
A
_
2
  ‘
)
;
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5
4
 
 
 
 
 P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
1
,
y
B
1
,
’
B
_
1
 
‘
)
;

5
5
 
 
 
 
  P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
2
,
y
B
2
,
’
 

B
2
’
)
;

5
6
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
A
1
+
x
A
2
)
,
0
.
5
*
(
y
A
1
+
y
A
2
)
,
x
C
,
y
C
,
’
 

C
’
)
;

5
7
 
 
 
 
  C
o
m
e
t
L
o
c
u
s
(
C
y
a
n
,
 
x
C
,
y
C
,
 
‘
C
’
)
;

5
8
 
 
 
 
  i
f
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
t
h
e
n
 
G
o
T
o
 
A
b
o
r
t
;

5
9
 
 
 
 
  I
n
c
(
i
)
;

6
0
 
 
 
u
n
t
i
l
 
E
O
F
(
F
T
)
;

6
1
 
 
 
C
l
o
s
e
M
e
c
D
X
F
;

6
2
 
 
u
n
t
i
l
 
F
A
L
S
E
;

6
3
 
 
A
b
o
r
t
:

6
4
 
 
C
l
o
s
e
(
F
T
)
;

6
5
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

6
6
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
3
3
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
D
i
r
e
c
t
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
 
2
R
 
s
e
r
i
a
l
 
S
C
A
R
A
 
r
o
b
o
t

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
R
e
d
,
W
h
i
t
e
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
R
A
D
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
g
C
r
a
n
k
,
C
r
a
n
k
}

1
0
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
S
e
t
J
o
i
n
t
S
i
z
e
,
N
e
w
F
r
a
m
e
,
}

1
1
 
 
 
 
  

 
{
B
a
s
e
,
L
i
n
k
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
G
r
a
p
h
}

1
2
 
c
o
n
s
t
 
I
n
A
n
g
l
e
s
 
=
 
‘
F
9
_
3
1
.
D
T
A
’
;

1
3
 
 
 
 
  O
u
t
D
X
F
 

=
 
‘
F
9
_
3
3
B
.
D
X
F
’
;

1
4
 
 
 
 
  L
f
t
R
g
t
 

=
 
-
1
;
 

{
-
1
 
l
e
f
t
 
h
a
n
d
 
c
o
n
f
i
g
.
,
 
+
1
 
r
i
g
h
t
 
h
a
n
d
 
c
o
n
f
i
g
.
}

1
5
 
 
 
 
  S
t
i
c
k
s
 

=
 
0
;
 

{
0
/
1
;
 
0
 
w
i
l
l
 
d
r
a
w
 
t
h
e
 
m
e
c
h
a
n
i
s
m
 
a
s
 
s
t
i
c
k
s
}

1
6
 
v
a
r
 
F
T
:
t
e
x
t
;
 

A
u
x
S
t
r
:
s
t
r
i
n
g
;
 

i
:
W
o
r
d
;
 

D
D
,
v
C
,
t
,
A
B
,
B
C
,
x
A
,
y
A
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1
7
 
 
 
 
,
x
A
1
,
y
A
1
,
x
A
2
,
y
A
2
,
x
B
,
y
B
,
x
C
,
y
C
,
T
h
A
,
T
h
B
,
T
h
A
1
,
T
h
B
1
,
T
h
A
2
,
T
h
B
2
:
d
o
u
b
l
e
;

1
8
 
l
a
b
e
l
 
A
b
o
r
t
;

1
9
 
B
E
G
I
n

2
0
 
 
A
s
s
i
g
n
(
F
T
,
I
n
A
n
g
l
e
s
)
;
 

{
.
.
i
n
p
u
t
 
j
o
i
n
t
-
a
n
g
l
e
 
f
i
l
e
}

2
1
 
 
I
n
i
t
D
X
F
f
i
l
e
(
O
u
t
D
X
F
)
;
 

{
.
.
o
u
t
p
u
t
 
f
i
l
e
 
f
o
r
 
M
_
3
D
.
L
S
P
 
a
n
i
m
a
t
i
o
n
}

2
2
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
6
,
1
5
,
 
-
1
2
,
7
)
;

2
3
 
 
i
f
 
(
L
f
t
R
g
t
 
=
 
-
1
)
 
t
h
e
n

2
4
 
 
 
S
e
t
T
i
t
l
e
(
‘
D
i
r
e
c
t
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
n
 
2
R
 
r
o
b
o
t
 
-
 
l
e
f
t
-
h
a
n
d
 
c
o
n
f
i
g
.
’
)

2
5
 
 
e
l
s
e

2
6
 
 
 
S
e
t
T
i
t
l
e
(
‘
D
i
r
e
c
t
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
n
 
2
R
 
r
o
b
o
t
 
-
 
r
i
g
h
t
-
h
a
n
d
 
c
o
n
f
i
g
.
’
)
;

2
7
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
5
)
;

2
8
 
 
r
e
p
e
a
t

2
9
 
 
 
R
e
s
e
t
(
F
T
)
;

3
0
 
 
 
R
e
a
d
L
n
(
F
T
,
A
B
,
B
C
)
;
 

R
e
a
d
L
n
(
F
T
,
x
A
1
,
y
A
1
)
;

3
1
 
 
 
R
e
a
d
L
n
(
F
T
,
x
A
2
,
y
A
2
)
;
 

R
e
a
d
L
n
(
F
T
,
v
C
)
;

3
2
 
 
 
R
e
a
d
L
n
(
F
T
,
A
u
x
S
t
r
)
;
 

{
.
.
r
e
a
d
 
‘
 
t
 
T
h
e
t
a
A
1
 

T
h
e
t
a
B
1
 
‘
 
e
t
c
.
}

3
3
 
 
 
D
D
:
=
0
.
2
*
A
B
;

3
4
 
 
 
i
:
=
0
;

3
5
 
 
 
r
e
p
e
a
t

3
6
 
 
 
 
 n
e
w
F
r
a
m
e
(
0
)
;

3
7
 
 
 
 
  i
f
 
(
i
 
M
O
D
 
4
 
<
>
 
0
)
 
t
h
e
n
 
S
u
s
p
e
n
d
D
X
F
 
e
l
s
e
 
R
e
s
u
m
e
D
X
F
;

3
8
 
 
 
 
  R
e
a
d
L
n
(
F
T
,
t
,
 
T
h
A
1
,
T
h
B
1
,
 
T
h
A
2
,
T
h
B
2
)
;

3
9
 
 
 
 
  i
f
 
(
L
f
t
R
g
t
 
=
 
-
1
)
 
t
h
e
n
 
B
E
G
I
n

4
0
 
 
 
 
  

A
u
x
S
t
r
:
=
’
1
’
;
 

x
A
:
=
x
A
1
;
 

y
A
:
=
y
A
1
;

4
1
 
 
 
 
  

T
h
A
:
=
T
h
A
1
*
R
A
D
;
 

T
h
B
:
=
T
h
B
1
*
R
A
D
;

4
2
 
 
 
 
  E
n
D

4
3
 
 
 
 
  e
l
s
e
 
B
E
G
I
n

4
4
 
 
 
 
  

A
u
x
S
t
r
:
=
’
2
’
;
 

x
A
:
=
x
A
2
;
 

y
A
:
=
y
A
2
;

4
5
 
 
 
 
  

T
h
A
:
=
T
h
A
2
*
R
A
D
;
 

T
h
B
:
=
T
h
B
2
*
R
A
D
;

4
6
 
 
 
 
  E
n
D
;

4
7
 
 
 
 
  g
C
r
a
n
k
(
-
R
e
d
,
x
A
,
y
A
,
 
T
h
A
,
_
,
_
,
 
A
B
,
 
x
B
,
y
B
,
_
,
_
,
_
,
_
)
;
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4
8
 
 
 
 
 C
r
a
n
k
(
-
B
l
u
e
,
x
A
,
y
A
,
0
,
0
,
0
,
0
,
x
B
,
y
B
,
_
,
_
,
_
,
_
,
T
h
B
,
_
,
_
,
B
C
,
x
C
,
y
C
,
_
,
_
,
_
,
_
)
;

4
9
 
 
 
 
  L
i
n
k
(
R
e
d
,
x
A
,
y
A
,
x
B
,
y
B
,
1
.
5
*
D
D
*
S
t
i
c
k
s
,
D
D
,
D
D
)
;

5
0
 
 
 
 
  L
i
n
k
(
B
l
u
e
,
x
B
,
y
B
,
x
C
,
y
C
,
1
.
5
*
D
D
*
S
t
i
c
k
s
,
D
D
,
D
D
)
;

5
1
 
 
 
 
  i
f
 
(
S
t
i
c
k
s
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n
  {
1
5
 
i
s
 
c
o
l
o
r
 
W
h
i
t
e
.
.
}

5
2
 
 
 
 
  

P
u
t
A
n
g
(
1
5
,
x
A
,
y
A
,
x
A
,
y
A
,
x
B
,
y
B
,
6
,
’
<
’
+
#
2
3
3
+
’
_
A
’
+
A
u
x
S
t
r
+
’
|
’
)
;

5
3
 
 
 
 
  

P
u
t
A
n
g
(
1
5
,
2
*
x
B
-
x
A
,
2
*
y
B
-
y
A
,
x
B
,
y
B
,
x
C
,
y
C
,
6
,
’
<
’
+
#
2
3
3
+
’
_
B
’
+
A
u
x
S
t
r
+
’
|
’
)
;

5
4
 
 
 
 
  E
n
D
;

5
5
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
A
 

‘
)
;

5
6
 
 
 
 
  P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
,
y
B
,
’
B
 

‘
)
;

5
7
 
 
 
 
  P
u
t
P
o
i
n
t
(
B
l
u
e
,
’
o
’
,
x
C
,
y
C
,
’
’
)
;

5
8
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
B
,
y
B
,
x
C
,
y
C
,
’
 

C
’
)
;

5
9
 
 
 
 
  C
o
m
e
t
L
o
c
u
s
(
C
y
a
n
,
 
x
C
,
y
C
,
 
‘
C
’
)
;

6
0
 
 
 
 
  i
f
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
t
h
e
n
 
G
o
T
o
 
A
b
o
r
t
;

6
1
 
 
 
 
  I
n
c
(
i
)
;

6
2
 
 
 
u
n
t
i
l
 
E
O
F
(
F
T
)
;

6
3
 
 
 
C
l
o
s
e
M
e
c
D
X
F
;

6
4
 
 
u
n
t
i
l
 
F
A
L
S
E
;

6
5
 
 
A
b
o
r
t
:

6
6
 
 
C
l
o
s
e
(
F
T
)
;

6
7
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

6
8
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
3
4
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
I
n
v
e
r
s
e
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
n
 
R
T
R
T
R
 
p
a
r
a
l
l
e
l
 
S
C
A
R
A
 
r
o
b
o
t

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
C
y
a
n
,
G
r
e
e
n
,
R
e
d
,
M
a
g
e
n
t
a
}

6
 

 
 
 
L
i
b
G
e
2
D
,
 
{
D
i
s
t
2
P
t
s
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}
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9
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,
  {
R
T
R
T
R
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
A
n
g
P
V
A
,
A
n
g
4
P
V
A
,
C
l
o
s
e
M
e
c
D
X
F
}

1
2
 
 
 
 
  

 
{
,
P
u
t
R
e
f
S
y
s
t
e
m
,
L
a
b
e
l
J
o
i
n
t
,
C
o
m
e
t
L
o
c
u
s
,
S
e
t
T
i
t
l
e
}

1
3
 
c
o
n
s
t
 
I
n
p
P
a
t
h
X
Y
 
=
 
‘
R
o
b
o
P
a
t
h
.
X
Y
’
;
  {
.
.
i
n
p
u
t
 
e
n
d
e
f
f
e
c
t
o
r
 
p
a
t
h
 

}
1
4
 
 
 
 
  O
u
t
D
T
A
 

=
 
‘
F
9
_
3
4
.
D
T
A
’
;
 

{
.
.
o
u
t
p
u
t
 
t
,
s
1
,
s
2
,
d
s
1
/
d
t
,
d
s
2
/
d
t
}

1
5
 
 
 
 
  O
u
t
D
X
F
 

=
 
‘
F
9
_
3
4
.
D
X
F
’
;
 

{
.
.
o
u
t
p
u
t
 
D
X
F
 
f
o
r
 
a
n
i
m
a
t
i
o
n
 
w
i
t
h
 
M
_
3
D
.
L
S
P
}

1
6
 
 
 
 
  v
C
 
=
 
1
.
0
;
 

{
i
m
p
o
s
e
d
 
c
o
n
s
t
a
n
t
 
s
p
e
e
d
 
o
f
 
p
o
i
n
t
 
C
 
}

1
7
 
 
 
 
  x
A
 
=
 
1
.
0
0
;
 

y
A
=
-
8
.
0
;
 
{
g
r
o
u
n
d
-
j
o
i
n
t
 
A
 
c
o
o
r
d
i
n
a
t
e
s
 
}

1
8
 
 
 
 
  x
B
 
=
 
8
.
0
0
;
 

y
B
=
-
8
.
0
;
 
{
g
r
o
u
n
d
-
j
o
i
n
t
 
B
 
c
o
o
r
d
i
n
a
t
e
s
 
}

1
9
 
 
 
 
 
 
A
0
A
=
 
1
.
8
5
;
 

B
0
B
=
1
.
8
5
;
 
{
l
i
n
e
a
r
 
a
c
t
u
a
t
o
r
 
e
c
c
e
n
t
r
i
c
i
t
i
e
s
}

2
0
 
 
 
 
  A
Q
 
=
1
5
.
0
0
;

2
1
 
 
 
 
  P
C
 
=
 
0
.
0
0
;

2
2
 
v
a
r
 
F
T
i
,
F
T
o
:
t
e
x
t
;
 

i
:
 
W
o
r
d
;

2
3
 
 
 
t
,
d
t
,
 
x
C
,
y
C
,
x
C
p
,
y
C
p
,
 
v
x
C
,
v
y
C
,
 
s
1
,
s
2
,
 
s
1
p
,
s
2
p
,
d
s
1
,
d
s
2

2
4
 
 
 
,
x
P
1
,
y
P
1
,
x
P
2
,
y
P
2
,
 
x
Q
1
,
y
Q
1
,
x
Q
2
,
y
Q
2
,
 
x
A
0
,
y
A
0
,
 
x
B
0
,
y
B
0
:
 
d
o
u
b
l
e
;

2
5
 
l
a
b
e
l
 
A
b
o
r
t
;

2
6
 
f
u
n
c
t
i
o
n
 
W
(
D
:
d
o
u
b
l
e
)
:
s
t
r
i
n
g
;
 
{
s
h
o
r
t
h
a
n
d
 
f
o
r
 
M
y
S
t
r
(
)
.
.
}

2
7
 
B
E
G
I
n

2
8
 
 
W
:
=
M
y
S
t
r
(
D
,
8
)
;

2
9
 
E
n
D
;

3
0
 
B
E
G
I
n

3
1
 
 
A
s
s
i
g
n
(
F
T
i
,
I
n
p
P
a
t
h
X
Y
)
;

3
2
 
 
A
s
s
i
g
n
(
F
T
o
,
O
u
t
D
T
A
)
;

3
3
 
 
I
n
i
t
D
X
F
f
i
l
e
(
O
u
t
D
X
F
)
;

3
4
 
 
R
e
w
r
i
t
e
(
F
T
o
)
;

3
5
 
 
W
r
i
t
e
L
n
(
F
T
o
,
’
x
A
=
’
,
W
(
x
A
)
,
’
;
 

y
A
=
’
,
W
(
y
A
)
,
’
;
’
)
;

3
6
 
 
W
r
i
t
e
L
n
(
F
T
o
,
’
x
B
=
’
,
W
(
x
B
)
,
’
;
 

y
B
=
’
,
W
(
y
B
)
,
’
;
’
)
;

3
7
 
 
W
r
i
t
e
L
n
(
F
T
o
,
’
A
0
A
=
’
,
W
(
A
0
A
)
,
’
;
 

B
0
B
=
’
,
W
(
B
0
B
)
,
’
;
’
)
;

3
8
 
 
W
r
i
t
e
L
n
(
F
T
o
,
W
(
x
A
)
,
’
 
‘
,
W
(
y
A
)
,
’
 
‘
,
W
(
x
B
)
,
’
 
‘
,
W
(
y
B
)
,
’
 
‘
,
W
(
A
0
A
)
,
’
 
‘
,
W
(
B
0
B
)
)
;

3
9
 
 
W
r
i
t
e
L
n
(
F
T
o
,
’
 
t
 

s
1
 

s
2
 

d
s
1
 

d
s
2
’
)
;
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4
0
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
4
,
1
3
,
 
-
1
0
,
1
0
)
;

4
1
 
 
S
e
t
T
i
t
l
e
(
‘
R
T
R
T
R
 
r
o
b
o
t
 
i
n
v
e
r
s
e
 
k
i
n
e
m
a
t
i
c
s
’
)
;

4
2
 
 
r
e
p
e
a
t

4
3
 
 
 
R
e
s
e
t
(
F
T
i
)
;

4
4
 
 
 
x
C
 
:
=
I
n
f
D
;
  y
C
 
:
=
I
n
f
D
;

4
5
 
 
 
s
1
 
:
=
I
n
f
D
;
  s
2
 
:
=
I
n
f
D
;

4
6
 
 
 
d
s
1
:
=
I
n
f
D
;
  d
s
2
:
=
I
n
f
D
;

4
7
 
 
 
t
:
=
0
.
0
;

4
8
 
 
 
i
:
=
0
;

4
9
 
 
 
r
e
p
e
a
t

5
0
 
 
 
 
 n
e
w
F
r
a
m
e
(
0
)
;

5
1
 
 
 
 
  i
f
 
(
i
 
M
O
D
 
4
 
<
>
 
0
)
 
t
h
e
n
 
S
u
s
p
e
n
d
D
X
F
 
e
l
s
e
 
R
e
s
u
m
e
D
X
F
;

5
2
 
 
 
 
  s
1
p
:
=
s
1
;
  s
2
p
:
=
s
2
;
 

{
.
.
s
a
v
e
 
p
r
e
v
i
o
u
s
 
s
1
 
a
n
d
 
s
2
}

5
3
 
 
 
 
  x
C
p
:
=
x
C
;
  y
C
p
:
=
y
C
;
 

{
.
.
s
a
v
e
 
p
r
e
v
i
o
u
s
 
x
C
 
a
n
d
 
y
C
}

5
4
 
 
 
 
  R
e
a
d
L
n
(
F
T
i
,
x
C
,
y
C
)
;

5
5
 
 
 
 
  s
1
:
=
S
q
r
t
(
S
q
r
(
x
A
-
x
C
)
+
S
q
r
(
y
A
-
y
C
)
 
-
 
S
q
r
(
A
0
A
)
)
;

5
6
 
 
 
 
  s
2
:
=
S
q
r
t
(
S
q
r
(
x
B
-
x
C
)
+
S
q
r
(
y
B
-
y
C
)
 
-
 
S
q
r
(
B
0
B
)
)
;

5
7
 
 
 
 
  i
f
 
(
x
C
p
 
<
 
I
n
f
D
)
 
t
h
e
n
 
B
E
G
I
n

5
8
 
 
 
 
  

d
t
:
=
D
i
s
t
2
P
t
s
2
D
(
x
C
p
,
y
C
p
,
x
C
,
y
C
)
/
v
C
;

5
9
 
 
 
 
  

t
:
=
t
+
d
t
;

6
0
 
 
 
 
  

d
s
1
:
=
(
s
1
-
s
1
p
)
/
d
t
;

6
1
 
 
 
 
  

d
s
2
:
=
(
s
2
-
s
2
p
)
/
d
t
;

6
2
 
 
 
 
  E
n
D
;

6
3
 
 
 
 
  R
T
R
T
R
(
R
e
d
,
x
A
,
y
A
,
0
,
0
,
0
,
0
,
 
x
B
,
y
B
,
0
,
0
,
0
,
0
,
 
-
A
0
A
,
A
Q
,
P
C
,
 
B
0
B
,
A
Q
,
P
C

6
4
 
 
 
 
  ,
s
1
,
d
s
1
,
_
,
 
s
2
,
d
s
2
,
_
,
-
1
,
 
x
C
,
y
C
,
v
x
C
,
v
y
C
,
_
,
_
,
 
_
)
;

6
5
 
 
 
 
  G
e
t
A
0
(
x
A
0
,
y
A
0
)
;
 

G
e
t
B
0
(
x
B
0
,
y
B
0
)
;

6
6
 
 
 
 
  G
e
t
P
1
(
x
P
1
,
y
P
1
)
;
 

G
e
t
Q
1
(
x
Q
1
,
y
Q
1
)
;

6
7
 
 
 
 
  G
e
t
P
2
(
x
P
2
,
y
P
2
)
;
 

G
e
t
Q
2
(
x
Q
2
,
y
Q
2
)
;

6
8
 
 
 
 
  P
u
t
D
i
s
t
(
W
h
i
t
e
,
x
A
0
,
y
A
0
,
x
C
,
y
C
,
 
1
0
,
’
|
 
>
|
’
)
;

6
9
 
 
 
 
  P
u
t
D
i
s
t
(
W
h
i
t
e
,
x
B
0
,
y
B
0
,
x
C
,
y
C
,
-
1
0
,
’
|
 
>
|
’
)
;

7
0
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
 

A
’
)
;



586    ◾    Appendix�b:�Selected�Source�code

7
1
 
 
 
 
 P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
,
y
B
,
’
B
 

‘
)
;

7
2
 
 
 
 
  L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
0
.
5
*
(
x
A
+
x
B
)
,
0
.
5
*
(
y
A
+
y
B
)
,
x
C
,
y
C
,
’
 

C
’
)
;

7
3
 
 
 
 
  i
f
 
(
A
0
A
 
>
 
0
)
 
t
h
e
n
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
C
,
y
C
,
x
A
0
,
y
A
0
,
’
 
A
_
0
’
)
;

7
4
 
 
 
 
  i
f
 
(
B
0
B
 
>
 
0
)
 
t
h
e
n
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
C
,
y
C
,
x
B
0
,
y
B
0
,
’
 
B
_
0
’
)
;

7
5
 
 
 
 
  P
u
t
V
e
c
t
o
r
(
L
i
g
h
t
B
l
u
e
,
 
‘
|
’
 
,
x
C
,
y
C
,
 
v
x
C
,
v
y
C
,
 
3
,
’
 
v
_
C
’
)
;

7
6
 
 
 
 
  R
e
s
u
m
e
D
X
F
;
 

L
o
c
u
s
(
C
y
a
n
,
 
x
C
,
y
C
,
 
‘
C
’
)
;

7
7
 
 
 
 
  i
f
 
M
e
c
O
u
t
 
t
h
e
n

7
8
 
 
 
 
  

W
r
i
t
e
L
n
(
F
T
o
,
W
(
t
)
,
’
 
‘
,
W
(
s
1
)
,
’
 
‘
,
W
(
s
2
)
,
’
 
‘
,
W
(
d
s
1
)
,
’
 
‘
,
W
(
d
s
2
)
)
;

7
9
 
 
 
 
  i
f
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
t
h
e
n
 
G
o
T
o
 
A
b
o
r
t
;

8
0
 
 
 
 
  I
n
c
(
i
)
;

8
1
 
 
 
u
n
t
i
l
 
E
O
F
(
F
T
i
)
;

8
2
 
 
 
C
l
o
s
e
M
e
c
D
X
F
;

8
3
 
 
u
n
t
i
l
 
F
A
L
S
E
;

8
4
 
 
A
b
o
r
t
:

8
5
 
 
C
l
o
s
e
(
F
T
i
)
;
 
C
l
o
s
e
(
F
T
o
)
;

8
6
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

8
7
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
3
5
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

D
i
r
e
c
t
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
t
h
e
 
R
T
R
T
R
 
r
o
b
o
t
 
w
i
t
h
 
p
i
n
i
o
n
 
a
n
d
 
r
a
k
e
 
s
h
a
p
e
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
l
u
e
,
C
y
a
n
,
G
r
e
e
n
,
R
e
d
,
M
a
g
e
n
t
a
}

6
 

 
 
 
L
i
b
G
e
2
D
,
 
{
S
1
2
3
}

7
 

 
 
 
L
i
b
M
a
t
h
,
 
{
D
E
G
}

8
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

9
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

1
0
 
 
 
 
L
i
b
M
e
c
I
n
,

1
1
 
 
 
 
L
i
b
A
s
s
u
r
,
  {
R
T
R
R
}

1
2
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
e
t
J
o
i
n
t
S
i
z
e
,
}

1
3
 
 
 
 
  

 
{
A
n
g
P
V
A
,
A
n
g
3
P
V
A
,
C
l
o
s
e
M
e
c
D
X
F
,
M
e
c
O
u
t
}
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1
4
 
c
o
n
s
t
 
L
a
b
e
l
C
o
l
 
=
 
W
h
i
t
e
;

1
5
 
 
 
 
  I
n
D
T
A
 

=
 
‘
F
9
_
3
4
.
D
T
A
’
;
 
{
.
.
i
n
p
u
t
 
t
,
s
1
,
d
s
1
,
s
2
,
d
s
2
 
f
i
l
e
 

}
1
6
 
 
 
 
  O
u
t
D
T
A
 
=
 
‘
F
9
_
3
5
.
D
T
A
’
;
 
{
.
.
o
u
t
p
u
t
 
t
,
T
h
t
a
1
,
T
h
t
a
2
,
T
h
t
a
1
/
d
t
,
T
h
t
a
2
/
d
t
}

1
7
 
 
 
 
  O
u
t
D
X
F
 
=
 
‘
F
9
_
3
5
.
D
X
F
’
;
 
{
.
.
o
u
t
p
u
t
 
D
X
F
 
f
o
r
 
a
n
i
m
a
t
i
o
n
 
w
i
t
h
 
M
_
3
D
.
L
S
P
 
}

1
8
 
 
 
 
  r
p
 
=
 
1
.
5
7
8
4
7
;
 
{
p
i
t
c
h
 
r
a
d
i
u
s
 
o
f
 
p
i
n
i
o
n
s
}

1
9
 
v
a
r
 
F
T
i
,
F
T
o
:
t
e
x
t
;
 

A
u
x
S
t
r
:
s
t
r
i
n
g
;
 

i
:
i
n
t
e
g
e
r
;

2
0
 
 
 
 
t
,
t
p
,
 
A
0
A
,
B
0
B
,
 
x
A
,
y
A
,
 
x
B
,
y
B
,
 
x
A
0
,
y
A
0
,
 
x
B
0
,
y
B
0
,
 
x
A
_
0
,
y
A
_
0
,
 
x
B
_
0
,
y
B
_
0

2
1
 
 
 
 
,
x
C
,
y
C
,
v
x
C
,
v
y
C
,
 
s
1
,
s
2
,
 
d
s
1
,
d
s
2
,
 
P
h
i
1
,
P
h
i
2

2
2
 
 
 
 
,
T
h
t
a
1
,
T
h
t
a
2
,
 
T
h
t
a
1
p
,
T
h
t
a
2
p
,
 
d
T
h
t
a
1
,
d
T
h
t
a
2
:
 
d
o
u
b
l
e
;

2
3
 
f
u
n
c
t
i
o
n
 
W
(
D
:
d
o
u
b
l
e
)
:
s
t
r
i
n
g
;
 

{
s
h
o
r
t
h
a
n
d
 
f
o
r
 
M
y
S
t
r
(
)
.
.
}

2
4
 
B
E
G
I
n

2
5
 
 
W
:
=
M
y
S
t
r
(
D
,
1
0
)
;

2
6
 
E
n
D
;

2
7
 
l
a
b
e
l
 
A
b
o
r
t
;

2
8
 
B
E
G
I
n

2
9
 
 
A
s
s
i
g
n
(
F
T
i
,
I
n
D
T
A
)
;

3
0
 
 
A
s
s
i
g
n
(
F
T
o
,
O
u
t
D
T
A
)
;

3
1
 
 
I
n
i
t
D
X
F
f
i
l
e
(
O
u
t
D
X
F
)
;

3
2
 
 
R
e
w
r
i
t
e
(
F
T
o
)
;

3
3
 
 
W
r
i
t
e
L
n
(
F
T
o
,
’
 
t
 
T
h
e
t
a
1
 
T
h
e
t
a
2
 
d
T
h
e
t
a
1
/
d
t
 
d
T
h
e
t
a
2
/
d
t
’
)
;

3
4
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
4
,
1
3
,
 
-
1
8
,
7
)
;

3
5
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
-
2
)
;

3
6
 
 
S
e
t
T
i
t
l
e
(
‘
D
i
r
e
c
t
 
k
i
n
e
m
a
t
i
c
s
 
o
f
 
a
n
 
R
T
R
T
R
 
g
e
a
r
e
d
 
r
o
b
o
t
’
)
;

3
7
 
 
r
e
p
e
a
t

3
8
 
 
 
R
e
s
e
t
(
F
T
i
)
;

3
9
 
 
 
R
e
a
d
L
n
(
F
T
i
,
A
u
x
S
t
r
)
;
 

R
e
a
d
L
n
(
F
T
i
,
A
u
x
S
t
r
)
;
 
R
e
a
d
L
n
(
F
T
i
,
A
u
x
S
t
r
)
;

4
0
 
 
 
R
e
a
d
L
n
(
F
T
i
,
x
A
,
y
A
,
x
B
,
y
B
,
A
0
A
,
B
0
B
)
;

4
1
 
 
 
R
e
a
d
L
n
(
F
T
i
,
A
u
x
S
t
r
)
;

4
2
 
 
 
t
p
:
=
0
.
0
;
 
 
 
 
 

P
h
i
1
:
=
0
.
0
;
 
 
P
h
i
2
:
=
0
.
0
;

4
3
 
 
 
T
h
t
a
1
:
=
I
n
f
D
;
 

T
h
t
a
2
:
=
I
n
f
D
;

4
4
 
 
 
d
T
h
t
a
1
:
=
I
n
f
D
;
 

d
T
h
t
a
2
:
=
I
n
f
D
;
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4
5
 
 
 
i
:
=
0
;

4
6
 
 
 
r
e
p
e
a
t

4
7
 
 
 
 
 n
e
w
F
r
a
m
e
(
0
)
;

4
8
 
 
 
 
  i
f
 
(
i
 
M
O
D
 
2
 
<
>
 
0
)
 
t
h
e
n
 
S
u
s
p
e
n
d
D
X
F
 
e
l
s
e
 
R
e
s
u
m
e
D
X
F
;
 

4
9
 
 
 
 
  T
h
t
a
1
p
:
=
T
h
t
a
1
;
  T
h
t
a
2
p
:
=
T
h
t
a
2
;
 

{
.
.
s
a
v
e
 
p
r
e
v
i
o
u
s
 
T
h
t
a
1
 
&
 
T
h
t
a
2
}

5
0
 
 
 
 
  t
p
:
=
t
;
 

{
.
.
s
a
v
e
 
p
r
e
v
i
o
u
s
 
t
}

5
1
 
 
 
 
  R
e
a
d
L
n
(
F
T
i
,
t
,
s
1
,
s
2
,
d
s
1
,
d
s
2
)
;

5
2
 
 
 
 
  R
T
R
T
R
(
0
,
x
A
,
y
A
,
0
,
0
,
0
,
0
,
 
x
B
,
y
B
,
0
,
0
,
0
,
0
,
 
-
A
0
A
,
0
.
3
5
,
0
,
 
B
0
B
,
0
.
3
5
,
0

5
3
 
 
 
 
  ,
s
1
,
d
s
1
,
_
,
 
s
2
,
d
s
2
,
_
,
-
1
,
 
x
C
,
y
C
,
v
x
C
,
v
y
C
,
_
,
_
,
 
_
)
;

5
4
 
 
 
 
  G
e
t
A
0
(
x
A
0
,
y
A
0
)
;
 

G
e
t
B
0
(
x
B
0
,
y
B
0
)
;

5
5
 
 
 
 
 
A
n
g
P
V
A
(
x
A
,
y
A
,
0
,
0
,
0
,
0
,
 
x
A
0
,
y
A
0
,
_
,
_
,
_
,
_
,
 
P
h
i
1
,
_
,
_
)
;

5
6
 
 
 
 
  T
h
t
a
1
:
=
P
h
i
1
 
-
 
s
1
/
r
p
 
+
 
0
*
R
A
D
;

5
7
 
 
 
 
  g
C
r
a
n
k
(
W
h
i
t
e
,
x
A
,
y
A
,
 
T
h
t
a
1
,
_
,
_
,
 
r
p
,
 
x
A
_
0
,
y
A
_
0
,
_
,
_
,
_
,
_
)
;

5
8
 
 
 
 
  S
h
a
p
e
(
‘
R
T
R
T
R
0
.
X
Y
’
,
 
L
i
g
h
t
B
l
u
e
,
 
x
A
,
y
A
,
 
x
A
_
0
,
y
A
_
0
)
;

5
9
 
 
 
 
  P
u
t
A
n
g
(
W
h
i
t
e
,
x
A
,
y
A
,
x
A
,
y
A
,
x
A
_
0
,
y
A
_
0
,
6
,
’
<
’
+
#
2
3
3
+
’
_
1
|
’
)
;

6
0
 
 
 
 
  A
n
g
P
V
A
(
x
B
,
y
B
,
0
,
0
,
0
,
0
,
 
x
B
0
,
y
B
0
,
_
,
_
,
_
,
_
,
 
P
h
i
2
,
_
,
_
)
;

6
1
 
 
 
 
  T
h
t
a
2
:
=
P
h
i
2
 
+
 
s
2
/
r
p
 
+
 
0
*
R
A
D
;

6
2
 
 
 
 
  g
C
r
a
n
k
(
W
h
i
t
e
,
x
B
,
y
B
,
T
h
t
a
2
,
_
,
_
,
 
r
p
,
 
x
B
_
0
,
y
B
_
0
,
_
,
_
,
_
,
_
)
;

6
3
 
 
 
 
  S
h
a
p
e
(
‘
R
T
R
T
R
0
.
X
Y
’
,
 
L
i
g
h
t
B
l
u
e
,
 
x
B
,
y
B
,
 
x
B
_
0
,
y
B
_
0
)
;

6
4
 
 
 
 
  P
u
t
A
n
g
(
W
h
i
t
e
,
x
B
,
y
B
,
x
B
,
y
B
,
x
B
_
0
,
y
B
_
0
,
6
,
’
<
’
+
#
2
3
3
+
’
_
2
|
’
)
;

6
5
 
 
 
 
  S
h
a
p
e
(
‘
R
T
R
T
R
1
.
X
Y
’
,
 
R
e
d
,
 
x
C
,
y
C
,
 
x
A
0
,
y
A
0
)
;

6
6
 
 
 
 
  S
h
a
p
e
(
‘
R
T
R
T
R
2
.
X
Y
’
,
 
R
e
d
,
 
x
C
,
y
C
,
 
x
B
0
,
y
B
0
)
;

6
7
 
 
 
 
  S
h
a
p
e
(
‘
R
T
R
T
R
3
.
X
Y
’
,
 
C
y
a
n
,
 
x
A
,
y
A
,
 
x
A
0
,
y
A
0
)
;

6
8
 
 
 
 
  S
h
a
p
e
(
‘
R
T
R
T
R
3
.
X
Y
’
,
 
C
y
a
n
,
 
x
B
,
y
B
,
 
x
B
0
,
y
B
0
)
;

6
9
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
A
 

‘
)
;

7
0
 
 
 
 
  P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
,
y
B
,
’
B
 

‘
)
;

7
1
 
 
 
 
  P
u
t
P
o
i
n
t
(
W
h
i
t
e
,
’
O
’
,
x
C
,
y
C
,
’
  C
’
)
;

7
2
 
 
 
 
  R
e
s
u
m
e
D
X
F
;
 

L
o
c
u
s
(
C
y
a
n
,
 
x
C
,
y
C
,
 
‘
C
’
)
;

7
3
 
 
 
 
  i
f
 
(
T
h
t
a
1
p
 
<
 
I
n
f
D
)
 
t
h
e
n
 
B
E
G
I
n

7
4
 
 
 
 
  

d
T
h
t
a
1
:
=
(
T
h
t
a
1
-
T
h
t
a
1
p
)
/
(
t
-
t
p
)
;

7
5
 
 
 
 
  

d
T
h
t
a
2
:
=
(
T
h
t
a
2
-
T
h
t
a
2
p
)
/
(
t
-
t
p
)
;
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7
6
 
 
 
 
 E
n
D
;

7
7
 
 
 
 
  i
f
 
M
e
c
O
u
t
 
t
h
e
n
  W
r
i
t
e
L
n
(
F
T
o
,
W
(
t
)
,
’
 
‘
,
W
(
T
h
t
a
1
*
D
E
G
)

7
8
 
 
 
 
  ,
’
 
‘
,
W
(
T
h
t
a
2
*
D
E
G
)
,
’
 
‘
,
W
(
d
T
h
t
a
1
)
,
’
 
‘
,
W
(
d
T
h
t
a
2
)
)
;

7
9
 
 
 
 
  i
f
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
 
t
h
e
n
 
G
o
T
o
 
A
b
o
r
t
;

8
0
 
 
 
 
  I
n
c
(
i
)
;

8
1
 
 
 
u
n
t
i
l
 
E
O
F
(
F
T
i
)
;

8
2
 
 
 
C
l
o
s
e
M
e
c
D
X
F
;

8
3
 
 
u
n
t
i
l
 
F
A
L
S
E
;

8
4
 
 
A
b
o
r
t
:

8
5
 
 
C
l
o
s
e
(
F
T
i
)
;
 
C
l
o
s
e
(
F
T
o
)
;

8
6
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;
 

8
7
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
3
6
B
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

S
i
m
u
l
a
t
i
o
n
 
o
f
 
a
n
 
e
x
c
a
v
a
t
o
r
 
a
r
m
 
m
o
t
i
o
n
 
-
 
i
n
c
l
u
d
e
s
 
s
h
a
p
e
s
 
a
t
t
a
c
h
e
d
 
t
o
 
l
i
n
k
s

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
B
r
o
w
n
,
R
e
d
,
W
h
i
t
e
,
M
a
g
e
n
t
a
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
,
R
e
s
e
t
D
X
F
e
l
e
v
,
D
e
c
D
X
F
e
l
e
v
,
S
e
t
D
X
F
l
a
y
e
r
}

9
 

 
 
 
L
i
b
M
e
c
I
n
,
  {
R
T
R
R
}

1
0
 
 
 
 
L
i
b
A
s
s
u
r
,
  {
R
R
R
}

1
1
 
 
 
 
L
i
b
M
e
c
2
D
;
  {
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
P
u
t
G
P
o
i
n
t
,
g
S
h
a
p
e
,
S
h
a
p
e
,
O
f
f
s
e
t
}

1
2
 
 
 
 
  

 
{
S
e
t
J
o
i
n
t
S
i
z
e
,
L
o
c
u
s
,
P
u
t
G
P
o
i
n
t
,
C
l
o
s
e
M
e
c
D
X
F
,
C
l
o
s
e
M
e
c
D
X
F
}

1
3
 
c
o
n
s
t
 
n
P
o
z
 
=
 
4
5
;
 

{
.
.
n
u
m
b
e
r
 
o
f
 
p
o
s
i
t
i
o
n
s
 
o
f
 
t
h
e
 
s
i
m
u
l
a
t
i
o
n
}

1
4
 
v
a
r
 
i
,
j
:
W
o
r
d
;
 
L
_
R
1
,
L
_
R
2
,
L
_
R
3
,
L
_
R
4
:
s
h
o
r
t
i
n
t
;
 

1
5
 
 
 
t
,
 
s
1
,
s
1
m
i
n
,
s
1
m
a
x
,
 
s
2
,
s
2
m
i
n
,
s
2
m
a
x
,
 
s
3
,
s
3
m
i
n
,
s
3
m
a
x
,

1
6
 
 
 
x
A
1
,
y
A
1
,
 
x
B
1
,
y
B
1
,
 

A
1
Q
1
,
P
1
C
1
,
B
1
C
1
,
 

x
C
1
,
y
C
1
,

1
7
 
 
 
x
A
2
,
y
A
2
,
 
x
B
2
,
y
B
2
,
 

A
2
Q
2
,
P
2
C
2
,
B
2
C
2
,
 

x
C
2
,
y
C
2
,
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1
8
 
 
 
x
A
3
,
y
A
3
,
 
x
B
3
,
y
B
3
,
 

A
3
Q
3
,
P
3
C
3
,
B
3
C
3
,
 

x
C
3
,
y
C
3
,

1
9
 
 
 
x
D
,
y
D
,
 
C
3
E
,
D
E
,
 
x
E
,
y
E
,
 
x
_
A
2
,
y
_
A
2
,
 
x
_
B
2
,
y
_
B
2
,
 
x
_
A
3
,
y
_
A
3
,

2
0
 
 
 
x
_
B
3
,
y
_
B
3
,
 
x
_
D
,
y
_
D
,
 
x
_
F
,
y
_
F
,
 
x
F
,
y
F
:
 
d
o
u
b
l
e
;

2
1
 
B
E
G
I
n

2
2
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
9
_
3
6
.
D
X
F
’
)
;

2
3
 
 
s
1
m
i
n
:
=
0
.
6
5
;
  s
1
m
a
x
:
=
0
.
9
0
;
 

{
.
.
p
i
s
t
o
n
 
#
1
 
m
o
t
i
o
n
 
r
a
n
g
e
}

2
4
 
 
s
2
m
i
n
:
=
0
.
6
0
;
  s
2
m
a
x
:
=
0
.
9
0
;
 

{
.
.
p
i
s
t
o
n
 
#
2
 
m
o
t
i
o
n
 
r
a
n
g
e
}

2
5
 
 
s
3
m
i
n
:
=
0
.
4
5
;
  s
3
m
a
x
:
=
0
.
6
5
;
 

{
.
.
p
i
s
t
o
n
 
#
3
 
m
o
t
i
o
n
 
r
a
n
g
e
}

2
6
 
 
L
_
R
1
:
=
+
1
;
 

L
_
R
2
:
=
-
1
;
 

{
.
.
o
r
i
e
n
t
a
t
i
o
n
 
o
f
 
l
o
o
p
s
 
A
1
-
B
1
-
C
1
 
&
 
A
2
-
B
2
-
C
2
}

2
7
 
 
L
_
R
3
:
=
-
1
;
 

L
_
R
4
:
=
+
1
;
 

{
.
.
o
r
i
e
n
t
a
t
i
o
n
 
o
f
 
l
o
o
p
s
 
A
3
-
B
3
-
C
3
 
&
 
C
3
-
E
-
D
 
}

2
8
 
 
x
A
1
 
:
=
 
0
.
5
0
0
0
;
 

y
A
1
 
:
=
 
0
.
4
2
3
9
;
 

{
.
.
c
o
o
r
d
.
 
o
f
 
g
r
o
u
n
d
 
j
o
i
n
t
 
A
1
 
}

2
9
 
 
x
B
1
 
:
=
 
0
.
3
9
4
0
;
 

y
B
1
 
:
=
 
0
.
5
8
6
9
;
 

{
.
.
c
o
o
r
d
.
 
o
f
 
g
r
o
u
n
d
 
j
o
i
n
t
 
B
1
 
}

3
0
 
 
x
_
A
2
:
=
 
0
.
9
2
6
5
;
 

y
_
A
2
:
=
 
0
.
1
7
5
3
;
 

{
.
.
r
e
l
a
t
i
v
e
 
c
o
o
r
d
.
 
o
f
 
j
o
i
n
t
 
A
2
 
}

3
1
 
 
x
_
B
2
:
=
 
1
.
3
4
7
7
;
 

y
_
B
2
:
=
-
0
.
4
5
5
4
;
 

{
.
.
r
e
l
a
t
i
v
e
 
c
o
o
r
d
.
 
o
f
 
j
o
i
n
t
 
B
2
 
}

3
2
 
 
x
_
A
3
:
=
-
0
.
0
3
9
2
;
 

y
_
A
3
:
=
-
0
.
2
0
1
0
;
 

{
.
.
r
e
l
a
t
i
v
e
 
c
o
o
r
d
.
 
o
f
 
j
o
i
n
t
 
A
3
 
}

3
3
 
 
x
_
B
3
:
=
-
0
.
5
9
5
1
;
 

y
_
B
3
:
=
-
0
.
3
2
5
3
;
 

{
.
.
r
e
l
a
t
i
v
e
 
c
o
o
r
d
.
 
o
f
 
j
o
i
n
t
 
B
3
 
}

3
4
 
 
x
_
D
 
:
=
-
0
.
7
0
1
3
;
 

y
_
D
 
:
=
-
0
.
3
7
5
1
;
 

{
.
.
r
e
l
a
t
i
v
e
 
c
o
o
r
d
.
 
o
f
 
j
o
i
n
t
 
D
 
}

3
5
 
 
x
_
F
 
:
=
-
0
.
0
9
7
4
;
 

y
_
F
 
:
=
-
0
.
3
8
5
9
;
 

{
.
.
r
e
l
a
t
i
v
e
 
c
o
o
r
d
.
 
o
f
 
p
o
i
n
t
 
F
 
}

3
6
 
 
B
1
C
1
:
=
0
.
7
3
0
6
;
 

B
2
C
2
:
=
 
0
.
2
0
6
2
;
 

B
3
C
3
:
=
0
.
1
6
3
5
;

3
7
 
 
C
3
E
 
:
=
 
0
.
1
5
8
4
;
 

D
E
 

:
=
 
0
.
1
1
7
7
;

3
8
 
 
P
1
C
1
:
=
0
.
8
*
s
1
m
i
n
;
 

A
1
Q
1
:
=
1
.
2
*
(
s
1
m
a
x
-
P
1
C
1
)
;

3
9
 
 
P
2
C
2
:
=
0
.
8
*
s
2
m
i
n
;
 

A
2
Q
2
:
=
1
.
2
*
(
s
2
m
a
x
-
P
2
C
2
)
;

4
0
 
 
P
3
C
3
:
=
0
.
8
*
s
3
m
i
n
;
 

A
3
Q
3
:
=
1
.
2
*
(
s
3
m
a
x
-
P
3
C
3
)
;

4
1
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
0
.
5
3
,
2
.
7
7
,
-
1
.
1
,
2
.
2
)
;
 

S
e
t
J
o
i
n
t
S
i
z
e
(
-
2
)
;

4
2
 
 
i
:
=
0
;

4
3
 
 
R
e
p
e
a
t

4
4
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

4
5
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

4
6
 
 
 
E
n
D
;

4
7
 
 
 
n
e
w
F
r
a
m
e
(
0
)
;

4
8
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
.
.
t
 
=
 
t
i
m
e
}
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4
9
 
 
 
s
1
:
=
0
.
5
*
(
s
1
m
i
n
+
s
1
m
a
x
)
+
0
.
5
*
(
s
1
m
a
x
-
s
1
m
i
n
)
*
c
o
s
(
2
*
P
i
*
t
-
P
i
/
8
)
;

5
0
 
 
 
s
2
:
=
0
.
5
*
(
s
2
m
i
n
+
s
2
m
a
x
)
+
0
.
5
*
(
s
2
m
a
x
-
s
2
m
i
n
)
*
c
o
s
(
2
*
P
i
*
t
+
P
i
/
4
)
;

5
1
 
 
 
s
3
:
=
0
.
5
*
(
s
3
m
i
n
+
s
3
m
a
x
)
+
0
.
5
*
(
s
3
m
a
x
-
s
3
m
i
n
)
*
c
o
s
(
2
*
P
i
*
t
-
P
i
/
8
)
;

5
2
 
 
 
g
S
h
a
p
e
(
‘
E
X
b
o
d
y
.
X
Y
’
,
B
r
o
w
n
,
0
,
0
)
;

5
3
 
 
 
R
T
R
R
(
-
M
a
g
e
n
t
a
,
x
A
1
,
y
A
1
,
0
,
0
,
0
,
0
,
x
B
1
,
y
B
1
,
0
,
0
,
0
,
0
,
0

5
4
 
 
 
,
A
1
Q
1
,
P
1
C
1
,
B
1
C
1
,
s
1
,
_
,
_
,
L
_
R
1
,
x
C
1
,
y
C
1
,
_
,
_
,
_
,
_
,
_
)
;

5
5
 
 
 
S
h
a
p
e
(
‘
E
X
b
o
o
m
.
X
Y
’
,
B
r
o
w
n
,
x
B
1
,
y
B
1
,
x
C
1
,
y
C
1
)
;

5
6
 
 
 
O
f
f
s
e
t
(
0
,
’
 
‘
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
x
C
1
,
y
C
1
,
_
,
_
,
_
,
_

5
7
 
 
 
,
x
_
A
2
,
y
_
A
2
,
x
A
2
,
y
A
2
,
_
,
_
,
_
,
_
)
;

5
8
 
 
 
O
f
f
s
e
t
(
0
,
’
 
‘
,
x
B
1
,
y
B
1
,
_
,
_
,
_
,
_
,
x
C
1
,
y
C
1
,
_
,
_
,
_
,
_

5
9
 
 
 
,
x
_
B
2
,
y
_
B
2
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
)
;

6
0
 
 
 
R
T
R
R
(
-
M
a
g
e
n
t
a
,
x
A
2
,
y
A
2
,
_
,
_
,
_
,
_
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_

6
1
 
 
 
,
0
,
A
2
Q
2
,
P
2
C
2
,
B
2
C
2
,
s
2
,
_
,
_
,
L
_
R
2
,
x
C
2
,
y
C
2
,
_
,
_
,
_
,
_
,
_
)
;

6
2
 
 
 
S
h
a
p
e
(
‘
E
X
s
t
i
c
k
.
X
Y
’
,
B
r
o
w
n
,
x
B
2
,
y
B
2
,
x
C
2
,
y
C
2
)
;

6
3
 
 
 
O
f
f
s
e
t
(
0
,
’
 
‘
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
,
x
C
2
,
y
C
2
,
_
,
_
,
_
,
_

6
4
 
 
 
,
x
_
A
3
,
y
_
A
3
,
x
A
3
,
y
A
3
,
_
,
_
,
_
,
_
)
;

6
5
 
 
 
O
f
f
s
e
t
(
0
,
’
 
‘
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
,
x
C
2
,
y
C
2
,
_
,
_
,
_
,
_

6
6
 
 
 
,
x
_
B
3
,
y
_
B
3
,
x
B
3
,
y
B
3
,
_
,
_
,
_
,
_
)
;

6
7
 
 
 
O
f
f
s
e
t
(
0
,
’
 
‘
,
x
B
2
,
y
B
2
,
_
,
_
,
_
,
_
,
x
C
2
,
y
C
2
,
_
,
_
,
_
,
_

6
8
 
 
 
,
x
_
D
 
,
y
_
D
,
 
x
D
,
y
D
,
_
,
_
,
_
,
_
)
;

6
9
 
 
 
R
T
R
R
(
M
a
g
e
n
t
a
,
x
A
3
,
y
A
3
,
_
,
_
,
_
,
_
,
x
B
3
,
y
B
3
,
_
,
_
,
_
,
_

7
0
 
 
 
,
0
,
A
3
Q
3
,
P
3
C
3
,
B
3
C
3
,
s
3
,
_
,
_
,
L
_
R
3
,
x
C
3
,
y
C
3
,
_
,
_
,
_
,
_
,
_
)
;

7
1
 
 
 
R
R
R
(
R
e
d
,
x
C
3
,
y
C
3
,
_
,
_
,
_
,
_
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
C
3
E
,
D
E
,
L
_
R
3
,
x
E
,
y
E
,
_
,
_
,
_
,
_
,
_
)
;

7
2
 
 
 
O
f
f
s
e
t
(
0
,
’
 
‘
,
x
D
,
y
D
,
_
,
_
,
_
,
_
,
x
E
,
y
E
,
_
,
_
,
_
,
_
,
x
_
F
,
y
_
F
,
x
F
,
y
F
,
_
,
_
,
_
,
_
)
;

7
3
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
1
,
y
A
1
,
’
A
1
 

‘
)
;

7
4
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
1
,
y
B
1
,
’
B
1
 

‘
)
;

7
5
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
C
1
,
y
C
1
,
’
 

C
1
’
)
;

7
6
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
A
2
,
y
A
2
,
’
A
2
 

‘
)
;

7
7
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
B
2
,
y
B
2
,
’
 

B
2
’
)
;

7
8
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
C
2
,
y
C
2
,
’
 

C
2
’
)
;

7
9
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
A
3
,
y
A
3
,
’
 

A
3
’
)
;
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8
0
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
B
3
,
y
B
3
,
’
B
3
 

‘
)
;

8
1
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
C
3
,
y
C
3
,
’
 

C
3
’
)
;

8
2
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
D
 
,
y
D
,
’
D
 

‘
)
;

8
3
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
E
 
,
y
E
,
’
  E
’
)
;

8
4
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
E
,
y
E
,
x
F
,
y
F
,
’
 
F
’
)
;

8
5
 
 
 
i
f
 
(
i
 
<
 
n
P
o
z
)
 
A
n
D
 
M
e
c
O
u
t
 
t
h
e
n
 
B
E
G
I
n

8
6
 
 
 
 
  D
e
c
D
X
F
e
l
e
v
;
 

D
e
c
D
X
F
e
l
e
v
;
 
D
e
c
D
X
F
e
l
e
v
;

8
7
 
 
 
 
  f
o
r
 
j
:
=
i
+
1
 
t
o
 
n
P
o
z
 
d
o
 
B
E
G
I
n

8
8
 
 
 
 
  

S
e
t
D
X
F
l
a
y
e
r
(
M
y
S
t
(
j
,
3
)
)
;

8
9
 
 
 
 
  

S
h
a
p
e
(
‘
E
X
b
u
c
k
e
t
.
X
Y
’
,
L
i
g
h
t
G
r
a
y
,
x
D
,
y
D
,
x
E
,
y
E
)
;

9
0
 
 
 
 
  

S
e
t
D
X
F
l
a
y
e
r
(
M
y
S
t
(
L
a
s
t
n
r
L
a
y
e
r
,
3
)
)
;

9
1
 
 
 
 
  E
n
D
;

9
2
 
 
 
 
  R
e
s
e
t
D
X
F
e
l
e
v
;

9
3
 
 
 
E
n
D
;

9
4
 
 
 
S
h
a
p
e
(
‘
E
X
b
u
c
k
e
t
.
X
Y
’
,
D
a
r
k
G
r
a
y
,
x
D
,
y
D
,
x
E
,
y
E
)
;

9
5
 
 
 
L
o
c
u
s
(
L
i
g
h
t
B
l
u
e
,
x
F
,
y
F
,
’
F
’
)
;

9
6
 
 
 
I
n
c
(
i
)
;

9
7
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

9
8
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

9
9
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
9
_
3
8
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
K
i
n
e
m
a
t
i
c
 
s
i
m
u
l
a
t
i
o
n
 
o
f
 
a
 
r
o
p
e
-
s
h
o
v
e
l
 
w
i
t
h
 
s
h
a
p
e
s
 
r
e
a
d
 
f
r
o
m
 
f
i
l
e

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
,
G
r
e
e
n
}

6
 

 
 
 
L
i
b
M
a
t
h
,
 
{
_
,
R
A
D
}

7
 

 
 
 
L
i
b
I
n
O
u
t
,
  {
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

 
 
 
L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}
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9
 

 
 
 
L
i
b
M
e
c
I
n
,
 {
R
T
R
T
R
}

1
0
 
 
 
 
L
i
b
M
e
c
2
D
;

1
1
 
c
o
n
s
t
 
n
P
o
z
 
=
 
9
0
;
 

{
.
.
n
u
m
b
e
r
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
 
}

1
2
 
 
 
 
  x
A
 
=
 
1
.
8
9
2
0
;
 

y
A
=
1
.
5
1
0
1
;
 

{
.
.
g
r
o
u
n
d
 
j
o
i
n
t
 
A
 
}

1
3
 
 
 
 
  x
B
 
=
 
7
.
3
1
0
7
;
 

y
B
=
6
.
8
2
3
0
;
 

{
.
.
g
r
o
u
n
d
 
j
o
i
n
t
 
B
 
}

1
4
 
 
 
 
  x
_
D
=
 
-
1
.
5
9
6
;
 

y
_
D
=
0
.
0
;
 

{
.
.
l
o
c
a
l
 
c
o
o
r
d
i
n
a
t
e
s
 
o
f
 
p
o
i
n
t
 
D
}

1
5
 
 
 
 
  A
0
A
=
-
1
.
4
1
4
5
;
 

{
.
.
e
c
c
e
n
t
r
i
c
i
t
y
 
A
0
A
 

}
1
6
 
 
 
 
  B
0
B
=
-
0
.
6
0
0
;
 

{
.
.
e
c
c
e
n
t
r
i
c
i
t
y
 
B
0
B
 
=
 
r
a
d
i
u
s
 
o
f
 
s
h
e
a
v
e
}

1
7
 
 
 
 
  P
1
C
=
 
7
.
3
;
 

{
.
.
r
a
c
k
 
l
e
n
g
t
h
 
m
e
a
s
u
r
e
d
 
f
r
o
m
 
C
 

}
1
8
 
 
 
 
  r
p
 
=
 
0
.
3
5
;
 

{
.
.
p
i
t
c
h
 
r
a
d
i
u
s
 
o
f
 
p
i
n
i
o
n
 

}
1
9
 
v
a
r
 
i
:
W
o
r
d
;
 

t
,
s
1
,
s
2
,
x
A
0
,
y
A
0
,
x
B
0
,
y
B
0
,
x
C
,
y
C
,
x
D
,
y
D
,
x
P
1
,
y
P
1

2
0
 
 
 
,
x
A
0
p
,
y
A
0
p
,
x
B
0
p
,
y
B
0
p
,
P
h
i
1
,
T
h
e
t
a
1
,
P
h
i
2
,
T
h
e
t
a
2
:
 
d
o
u
b
l
e
;

2
1
 
B
E
G
I
n

2
2
 
 
I
n
i
t
D
X
F
f
i
l
e
(
‘
F
9
_
3
8
.
D
X
F
’
)
;

2
3
 
 
O
p
e
n
M
e
c
G
r
a
p
h
(
-
6
.
4
,
1
0
.
3
,
 
-
3
.
4
,
7
.
4
)
;

2
4
 
 
S
e
t
J
o
i
n
t
S
i
z
e
(
-
2
)
;

2
5
 
 
i
:
=
0
;

2
6
 
 
P
h
i
1
:
=
0
.
0
;
 

P
h
i
2
:
=
0
.
0
;
 
{
.
.
f
o
r
 
A
n
g
P
V
A
 
c
o
n
t
i
n
u
i
t
y
}

2
7
 
 
r
e
p
e
a
t

2
8
 
 
 
i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

2
9
 
 
 
 
  i
:
=
0
;
 

C
l
o
s
e
M
e
c
D
X
F
;

3
0
 
 
 
E
n
D
;

3
1
 
 
 
n
e
w
F
r
a
m
e
(
0
)
;

3
2
 
 
 
g
S
h
a
p
e
(
‘
R
S
b
o
d
y
.
X
Y
’
,
B
r
o
w
n
,
 
0
,
0
)
;

3
3
 
 
 
t
:
=
i
/
n
P
o
z
;
  {
.
.
t
 
=
 
t
i
m
e
}

3
4
 
 
 
s
1
:
=
4
.
5
 
+
 
2
.
0
*
s
i
n
(
2
*
P
i
*
t
 
-
 
P
i
/
6
)
;
 
{
.
.
i
n
p
u
t
 
1
}

3
5
 
 
 
s
2
:
=
5
.
5
 
+
 
3
.
0
*
c
o
s
(
2
*
P
i
*
t
 
+
 
P
i
/
9
)
;
 
{
.
.
i
n
p
u
t
 
2
}

3
6
 
 
 
R
T
R
T
R
(
0
,
 
x
A
,
y
A
,
0
,
0
,
0
,
0
,
 
x
B
,
y
B
,
0
,
0
,
0
,
0
,
 
A
0
A
,
0
,
P
1
C

3
7
 
 
 
,
B
0
B
,
0
,
0
,
 
s
1
,
_
,
_
,
 
s
2
,
_
,
_
,
 
+
1
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
 
_
)
;

3
8
 
 
 
G
e
t
A
0
(
x
A
0
,
y
A
0
)
;
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3
9
 
 
 
G
e
t
B
0
(
x
B
0
,
y
B
0
)
;

4
0
 
 
 
G
e
t
P
1
(
x
P
1
,
y
P
1
)
;

4
1
 
 
 
S
h
a
p
e
(
‘
R
S
b
o
o
m
.
X
Y
’
,
 
L
i
g
h
t
B
l
u
e
,
 
x
C
,
y
C
,
x
A
0
,
y
A
0
)
;

4
2
 
 
 
S
h
a
p
e
(
‘
R
S
b
r
a
c
k
.
X
Y
’
,
 
C
y
a
n
,
 
x
A
,
y
A
,
x
A
0
,
y
A
0
)
;

4
3
 
 
 
A
n
g
P
V
A
(
x
A
0
,
y
A
0
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
P
h
i
1
,
_
,
_
)
;

4
4
 
 
 
T
h
e
t
a
1
:
=
P
h
i
1
 
-
 
s
1
/
r
p
 
+
 
7
.
6
3
2
*
R
A
D
;

4
5
 
 
 
g
C
r
a
n
k
(
R
e
d
,
 
x
A
,
y
A
,
 
T
h
e
t
a
1
,
_
,
_
,
 
r
p
,
 
x
A
0
p
,
y
A
0
p
,
_
,
_
,
_
,
_
)
;

4
6
 
 
 
S
h
a
p
e
(
‘
R
S
p
i
n
i
o
n
.
X
Y
’
,
B
l
u
e
,
 
x
A
,
y
A
,
x
A
0
p
,
y
A
0
p
)
;

4
7
 
 
 
A
n
g
P
V
A
(
x
B
0
,
y
B
0
,
_
,
_
,
_
,
_
,
 
x
C
,
y
C
,
_
,
_
,
_
,
_
,
P
h
i
2
,
_
,
_
)
;

4
8
 
 
 
T
h
e
t
a
2
:
=
P
h
i
2
 
+
 
s
2
/
B
0
B
;

4
9
 
 
 
g
C
r
a
n
k
(
M
a
g
e
n
t
a
,
 
x
B
,
y
B
,
 
T
h
e
t
a
2
,
_
,
_
,
 
B
0
B
,
 
x
B
0
p
,
y
B
0
p
,
_
,
_
,
_
,
_
)
;

5
0
 
 
 
S
h
a
p
e
(
‘
’
,
 
M
a
g
e
n
t
a
,
 
x
B
,
y
B
,
x
B
+
B
0
B
,
y
B
)
;
 

{
.
.
p
l
o
t
 
s
h
e
a
v
e
}

5
1
 
 
 
O
f
f
s
e
t
(
0
,
’
 
‘
,
x
C
,
y
C
,
_
,
_
,
_
,
_
,
x
P
1
,
y
P
1
,
_
,
_
,
_
,
_
,
x
_
D
,
y
_
D
,
 
x
D
,
y
D
,
_
,
_
,
_
,
_
)
;

5
2
 
 
 
L
o
c
u
s
(
M
a
g
e
n
t
a
,
 
x
D
,
y
D
,
’
D
’
)
;

5
3
 
 
 
P
u
t
D
i
s
t
(
W
h
i
t
e
,
x
B
0
,
y
B
0
,
 
x
C
,
y
C
,
 
0
.
0
,
 
‘
’
)
;
 
{
.
.
t
h
i
s
 
i
s
 
t
h
e
 
r
o
p
e
}

5
4
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
A
,
y
A
,
’
A
 
‘
)
;

5
5
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
 
‘
,
x
B
,
y
B
,
’
B
  ‘
)
;

5
6
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
D
,
y
D
,
’
 
D
’
)
;

5
7
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
.
’
,
x
A
0
,
y
A
0
,
’
 
A
_
0
’
)
;

5
8
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
 
‘
,
x
B
0
,
y
B
0
,
’
 
B
_
0
’
)
;

5
9
 
 
 
P
u
t
P
o
i
n
t
 
(
W
h
i
t
e
,
’
.
’
,
x
P
1
,
y
P
1
,
’
 
P
_
1
’
)
;

6
0
 
 
 
P
u
t
G
P
o
i
n
t
(
W
h
i
t
e
,
’
O
’
,
x
C
,
y
C
,
’
’
)
;

6
1
 
 
 
L
a
b
e
l
J
o
i
n
t
(
W
h
i
t
e
,
x
B
,
y
B
,
x
C
,
y
C
,
’
C
 

‘
)
;

6
2
 
 
 
I
n
c
(
i
)
;

6
3
 
 
u
n
t
i
l
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

6
4
 
 
C
l
o
s
e
M
e
c
D
X
F
;

6
5
 
 
C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

6
6
 
E
n
D
.
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1
 

p
r
o
g
r
a
m
 
P
9
_
4
9
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

 
C
r
a
n
k
-
s
l
i
d
e
 
p
u
n
c
h
 
p
r
e
s
s
 
s
i
m
u
l
a
t
i
o
n

4
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

5
 

u
s
e
s
 
G
r
a
p
h
,
 

{
R
e
d
,
W
h
i
t
e
}

6
 

L
i
b
M
a
t
h
,
 

{
_
}

7
 

L
i
b
I
n
O
u
t
,
 
{
I
s
K
e
y
P
r
e
s
s
e
d
}

8
 

L
i
b
D
X
F
,
 

{
I
n
i
t
D
X
F
f
i
l
e
}

9
 

L
i
b
M
e
c
I
n
,
 
{
g
C
r
a
n
k
}

1
0
 

L
i
b
A
s
s
u
r
,
 
{
R
R
_
T
}

1
1
 

L
i
b
M
e
c
2
D
;
 
{
O
p
e
n
M
e
c
G
r
a
p
h
,
N
e
w
F
r
a
m
e
,
S
e
t
J
o
i
n
t
S
i
z
e
,
C
l
o
s
e
M
e
c
D
X
F
}

1
2
 
c
o
n
s
t
 
F
n
a
m
e
 
=
’
F
9
_
4
9
’
;
 
{
D
X
F
 
a
n
d
 
D
A
T
 
f
i
l
e
 
n
a
m
e
s
}

1
3
 

n
P
o
z
 
=
 
1
8
0
0
;
 

{
#
 
o
f
 
s
i
m
u
l
a
t
i
o
n
 
p
o
i
n
t
s
;
 
n
P
o
z
/
1
0
 
a
r
e
 
#
 
o
f
 
a
n
i
m
a
t
i
o
n
 
f
r
a
m
e
s
}

1
4
 

R
P
M
 

=
 
8
0
;
 

{
c
r
a
n
k
 
R
P
M
 

}
1
5
 

s
_
f
 

=
 
0
.
7
5
;
 

{
[
m
]
 
e
n
d
 
o
f
 
p
u
n
c
h
 

}
1
6
 

h
 

=
 
0
.
0
2
;
 

{
[
m
]
 
s
t
o
c
k
 
t
h
i
c
k
n
e
s
s
 

}
1
7
 

F
m
a
x
 
=
 
5
.
7
2
E
5
;
 
{
m
a
x
i
m
u
m
 
p
u
n
c
h
 
f
o
r
c
e
 

}
1
8
 
v
a
r
 
F
T
:
t
e
x
t
;
 

i
,
V
i
e
w
O
n
:
 
W
o
r
d
;

1
9
 

t
i
m
e
,
T
h
e
t
a
,
d
T
h
e
t
a
,
 
F
,
T
,
 
x
O
,
y
O
,
 
O
A
,
A
B
,
 
B
P
,
 
s
,
s
_
s
,

2
0
 

x
A
,
y
A
,
v
x
A
,
v
y
A
,
 
x
B
,
y
B
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
 
x
Q
,
y
Q
:
 
d
o
u
b
l
e
;

2
1
 
B
E
G
I
n

2
2
 

d
T
h
e
t
a
:
=
P
i
*
R
P
M
/
3
0
;
 
{
a
n
g
u
l
a
r
 
v
e
l
o
c
i
t
y
 
i
n
 
r
a
d
/
s
}

2
3
 

O
A
:
=
0
.
1
5
;
 

{
[
m
]
 
c
r
a
n
k
 
l
e
n
g
t
h
 
}

2
4
 

A
B
:
=
0
.
5
0
;
 

{
[
m
]
 
c
o
n
r
o
d
 
l
e
n
g
t
h
 
}

2
5
 

B
P
:
=
0
.
1
5
;
 

{
p
u
n
c
h
 
l
e
n
g
t
h
 

}
2
6
 

x
O
:
=
0
.
0
;
 
y
O
:
=
0
.
6
5
;
 

{
c
r
a
n
k
 
g
r
o
u
n
d
 
j
o
i
n
t
}

2
7
 

s
_
s
:
=
s
_
f
-
h
;

2
8
 

x
Q
:
=
x
O
;
 

y
Q
:
=
y
O
-
0
.
5
*
(
s
_
s
+
s
_
f
)
;
 

{
c
o
o
r
d
i
n
a
t
e
s
 
o
f
 
p
u
n
c
h
 
g
u
i
d
e
 
c
e
n
t
e
r
}

2
9
 

A
s
s
i
g
n
(
F
T
,
F
n
a
m
e
+
’
.
D
A
T
’
)
;
 

R
e
w
r
i
t
e
(
F
T
)
;

3
0
 

W
r
i
t
e
L
n
(
F
T
,
’
 

t
i
m
e
 

T
h
e
t
a
 

T
h
e
t
a
 

s
 

d
s
/
d
t
 

F
 

T
’
)
;

3
1
 

W
r
i
t
e
L
n
(
F
T
,
’
 

[
s
]
 

[
R
A
D
]
 

[
D
E
G
]
 

[
m
]
 

[
m
/
s
]
 

[
n
]
 

[
n
-
m
]
’
)
;
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3
2
 

I
n
i
t
D
X
F
f
i
l
e
(
F
n
a
m
e
+
’
.
D
X
F
’
)
;

3
3
 

O
p
e
n
M
e
c
G
r
a
p
h
(
-
O
A
,
O
A
,
y
O
-
O
A
-
1
.
5
*
A
B
-
B
P
,
y
O
+
1
.
5
*
O
A
)
;

3
4
 

O
p
a
q
u
e
J
o
i
n
t
s
:
=
F
A
L
S
E
;

3
5
 

i
:
=
0
;

3
6
 

T
:
=
I
n
f
D
;

3
7
 

r
e
p
e
a
t

3
8
 

i
f
 
(
i
 
>
 
n
P
o
z
)
 
t
h
e
n
 
B
E
G
I
n

3
9
 

i
:
=
1
;
 
C
l
o
s
e
M
e
c
D
X
F
;

4
0
 

E
n
D
;

4
1
 

i
f
 
(
i
 
M
O
D
 
1
0
 
=
 
0
)
 
t
h
e
n
 
B
E
G
I
n

4
2
 

n
e
w
F
r
a
m
e
(
0
)
;
 
V
i
e
w
O
n
:
=
1
;

4
3
 

E
n
D

4
4
 

e
l
s
e
 
V
i
e
w
O
n
:
=
0
;

4
5
 

t
i
m
e
:
=
i
/
n
P
o
z
*
(
2
*
P
i
/
d
T
h
e
t
a
)
;

4
6
 

T
h
e
t
a
:
=
d
T
h
e
t
a
*
t
i
m
e
;

4
7
 

g
C
r
a
n
k
(
V
i
e
w
O
n
*
B
r
o
w
n
,
 
x
O
,
y
O
,
 
T
h
e
t
a
,
d
T
h
e
t
a
,
_
,
 
O
A
,
 
x
A
,
y
A
,
v
x
A
,
v
y
A
,
_
,
_
)
;

4
8
 

R
R
_
T
(
V
i
e
w
O
n
*
R
e
d
,
x
A
,
y
A
,
v
x
A
,
v
y
A
,
_
,
_
,
 
x
Q
,
y
Q
,
0
,
0
,
0
,
0
,
 
0
.
5
*
P
i
,
0
,
0
,

4
9
 

A
B
,
0
,
B
P
,
 
-
1
,
 
x
B
,
y
B
,
v
x
P
,
v
y
P
,
_
,
_
,
 
x
B
,
y
B
,
v
x
P
,
v
y
P
,
_
,
_
,
 
x
P
,
y
P
,
v
x
P
,
v
y
P
,
_
,
_
,
 
_
)
;

5
0
 

s
:
=
A
b
s
(
y
P
-
y
O
)
;

5
1
 

i
f
 
(
s
 
>
=
 
s
_
s
)
 
A
n
D
 
(
s
 
<
=
 
s
_
f
)
 
A
n
D
 
(
v
y
P
 
<
 
0
)
 
t
h
e
n
 
B
E
G
I
n

5
2
 

F
:
=
F
m
a
x
*
(
s
_
f
 
-
 
s
)
/
(
s
_
f
 
-
 
s
_
s
)
;

5
3
 

P
u
t
V
e
c
t
o
r
(
V
i
e
w
O
n
*
B
l
u
e
,
’
=
’
,
x
P
,
y
P
,
0
,
F
/
F
m
a
x
,
-
0
.
2
,
’
F
’
)
;

5
4
 

E
n
D

5
5
 

e
l
s
e
 
F
:
=
0
;

5
6
 

T
:
=
-
F
*
v
y
P
/
d
T
h
e
t
a
;

5
7
 

P
u
t
G
P
o
i
n
t
(
V
i
e
w
O
n
*
W
h
i
t
e
,
 
‘
 
‘
,
 
x
O
,
y
O
,
’
O
 

‘
)
;

5
8
 

P
u
t
P
o
i
n
t
(
V
i
e
w
O
n
*
W
h
i
t
e
,
 
‘
 
‘
,
 
x
B
,
y
B
,
’
B
 

‘
)
;

5
9
 

P
u
t
P
o
i
n
t
(
V
i
e
w
O
n
*
W
h
i
t
e
,
 
‘
 
‘
,
 
x
P
,
y
P
,
’
P
 

‘
)
;

6
0
 

L
a
b
e
l
J
o
i
n
t
(
V
i
e
w
O
n
*
W
h
i
t
e
,
x
O
,
y
O
,
 
x
A
,
y
A
,
’
 
 
 
A
’
)
;

6
1
 

P
u
t
G
P
o
i
n
t
(
V
i
e
w
O
n
*
W
h
i
t
e
,
 
‘
.
’
,
 
x
O
,
y
Q
+
h
/
2
,
’
’
)
;

6
2
 

P
u
t
G
P
o
i
n
t
(
V
i
e
w
O
n
*
W
h
i
t
e
,
 
‘
.
’
,
 
x
O
,
y
Q
-
h
/
2
,
’
’
)
;
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6
3
 

i
f
 
M
e
c
O
u
t
 
t
h
e
n
 
W
r
i
t
e
L
n
(
F
T
,
M
y
S
t
r
(
t
i
m
e
,
9
)
,
’
 
‘
,
M
y
S
t
r
(
T
h
e
t
a
,
9
)
,
’
 
‘
,
M
y
S
t
r
(
T
h
e
t
a
*
D
E
G
,
9
)

6
4
 

,
’
 
‘
,
M
y
S
t
r
(
s
,
9
)
,
’
 
‘
,
M
y
S
t
r
(
v
y
P
,
9
)
,
’
 
‘
,
M
y
S
t
r
(
F
,
9
)
,
’
 
‘
,
M
y
S
t
r
(
T
,
9
)
)
;

6
5
 

I
n
c
(
i
)
;

6
6
 

u
n
t
i
l
 
(
n
O
T
 
M
e
c
O
u
t
)
 
O
R
 
I
s
K
e
y
P
r
e
s
s
e
d
(
2
7
)
;

6
7
 

C
l
o
s
e
(
F
T
)
;

6
8
 

C
l
o
s
e
M
e
c
G
r
a
p
h
(
F
A
L
S
E
)
;

6
9
 
E
n
D
.

1
 

p
r
o
g
r
a
m
 
P
u
r
g
e
;

2
 

{
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
 

D
e
l
e
t
e
s
 
w
i
t
h
o
u
t
 
c
o
n
f
i
r
m
a
t
i
o
n
 
a
l
l
 
f
i
l
e
s
 
o
f
 
e
x
t
e
n
s
i
o
n
s
 
$
X
Y
,
 
$
2
D
,
 
$
3
D
,
 
O
L
D
,
 
B
A
K
,

4
 

a
l
l
 
f
i
l
e
s
 
~
P
O
L
Y
*
.
T
M
P
 
a
n
d
 
f
i
l
e
s
 
a
c
a
d
.
e
r
r
 
a
n
d
 
a
c
a
d
s
t
k
.
d
m
p
 
i
f
 
p
r
e
s
e
n
t
.

5
 

E
r
a
s
e
s
 
w
i
t
h
 
c
o
n
f
i
r
m
a
t
i
o
n
 
a
l
l
 
f
i
l
e
s
 
o
f
 
e
x
t
e
n
s
i
o
n
 
B
M
P
,
P
C
X
 
a
n
d
 
S
C
R
.

6
 

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
}

7
 

u
s
e
s
 
C
R
T
,
 
L
i
b
I
n
O
u
t
;

8
 

v
a
r
 
C
h
:
 
c
h
a
r
;

9
 

B
E
G
I
n

1
0
 
 
C
l
r
S
c
r
;

1
1
 
 
E
r
a
s
e
A
l
l
(
‘
a
c
a
d
.
e
r
r
’
)
;
 

1
2
 
 
E
r
a
s
e
A
l
l
(
‘
a
c
a
d
s
t
k
.
d
m
p
’
)
;
 

1
3
 
 
E
r
a
s
e
A
l
l
(
‘
~
P
O
L
Y
*
.
T
M
P
’
)
;
 

1
4
 
 
E
r
a
s
e
A
l
l
(
‘
*
.
$
X
Y
’
)
;

1
5
 
 
E
r
a
s
e
A
l
l
(
‘
*
.
$
2
D
’
)
;

1
6
 
 
E
r
a
s
e
A
l
l
(
‘
*
.
$
3
D
’
)
;

1
7
 
 
E
r
a
s
e
A
l
l
(
‘
*
.
O
L
D
’
)
;

1
8
 
 
E
r
a
s
e
A
l
l
(
‘
*
.
B
A
K
’
)
;

1
9
 
 
W
r
i
t
e
(
^
j
^
j
^
m
’
 

E
r
a
s
e
 
a
l
l
 
B
M
P
 
f
i
l
e
s
 
i
n
 
c
u
r
r
e
n
t
 
d
i
r
e
c
t
o
r
y
 
<
Y
/
n
>
?
 
‘
)
;

2
0
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

2
1
 
 
i
f
 
(
C
h
 
=
 
#
2
7
)
 
t
h
e
n
 
E
x
i
t
;

2
2
 
 
i
f
 
U
p
C
a
s
e
(
C
h
)
 
=
 
‘
Y
’
 
t
h
e
n
 
E
r
a
s
e
A
l
l
(
‘
*
.
B
M
P
’
)
;

2
3
 
 
W
r
i
t
e
(
^
j
^
j
^
m
’
 

E
r
a
s
e
 
a
l
l
 
P
C
X
 
f
i
l
e
s
 
i
n
 
c
u
r
r
e
n
t
 
d
i
r
e
c
t
o
r
y
 
<
Y
/
n
>
?
 
‘
)
;
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2
4
 
 
G
o
T
o
X
Y
(
W
h
e
r
e
X
-
1
,
W
h
e
r
e
Y
)
;

2
5
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

2
6
 
 
i
f
 
(
C
h
 
=
 
#
2
7
)
 
t
h
e
n
 
E
x
i
t
;

2
7
 
 
i
f
 
U
p
C
a
s
e
(
C
h
)
 
=
 
‘
Y
’
 
t
h
e
n
 
E
r
a
s
e
A
l
l
(
‘
*
.
P
C
X
’
)
;

2
8
 
 
W
r
i
t
e
(
^
j
^
j
^
m
’
 

E
r
a
s
e
 
a
l
l
 
S
L
D
 
f
i
l
e
s
 
i
n
 
c
u
r
r
e
n
t
 
d
i
r
e
c
t
o
r
y
 
<
Y
/
n
>
?
 
‘
)
;

2
9
 
 
G
o
T
o
X
Y
(
W
h
e
r
e
X
-
1
,
W
h
e
r
e
Y
)
;

3
0
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

3
1
 
 
i
f
 
(
C
h
 
=
 
#
2
7
)
 
t
h
e
n
 
E
x
i
t
;

3
2
 
 
i
f
 
U
p
C
a
s
e
(
C
h
)
 
=
 
‘
Y
’
 
t
h
e
n
 
B
E
G
I
n

3
3
 
 
 
E
r
a
s
e
A
l
l
(
‘
*
.
S
L
D
’
)
;

3
4
 
 
 
W
r
i
t
e
(
^
j
^
j
^
m
’
 

E
r
a
s
e
 
a
l
l
 
S
C
R
 
f
i
l
e
s
 
i
n
 
c
u
r
r
e
n
t
 
d
i
r
e
c
t
o
r
y
 
<
Y
/
n
>
?
 
‘
)
;

3
5
 
 
 
G
o
T
o
X
Y
(
W
h
e
r
e
X
-
1
,
W
h
e
r
e
Y
)
;

3
6
 
 
 
W
a
i
t
T
o
G
o
(
C
h
)
;

3
7
 
 
 
i
f
 
(
C
h
 
=
 
#
2
7
)
 
t
h
e
n
 
E
x
i
t
;

3
8
 
 
 
i
f
 
U
p
C
a
s
e
(
C
h
)
 
=
 
‘
Y
’
 
t
h
e
n
 
E
r
a
s
e
A
l
l
(
‘
*
.
S
C
R
’
)
;

3
9
 
 
E
n
D
;

4
0
 
E
n
D
.

**
*
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