Chapman \& Hall/CRC

Computer \& Information Science Series

Computer-Aided Graphing and Simulation Tools for AutoCAD Users

 P. A. Simionescu

A CHAPMAN \& HALL BOOK

Computer-Aided Graphing and Simulation Tools for AutoCAD Users

CHAPMAN \& HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

PUBLISHED TITLES

adversarial reasoning: COMPUTATIONAL APPROACHES TO READING THE OPPONENT'S MIND
Alexander Kott and William M. McEneaney
COMPUTER-AIDED GRAPHING AND SIMULATION TOOLS FOR AUTOCAD USERS
P. A. Simionescu

DELAUNAY MESH GENERATION
Siu-Wing Cheng, Tamal Krishna Dey, and Jonathan Richard Shewchuk
DISTRIBUTED SENSOR NETWORKS, SECOND EDITION
S. Sitharama lyengar and Richard R. Brooks

DISTRIBUTED SYSTEMS: AN ALGORITHMIC APPROACH, SECOND EDITION
Sukumar Ghosh
ENERGY-AWARE MEMORY MANAGEMENT FOR EMBEDDED MULTIMEDIA SYSTEMS: A COMPUTER-AIDED DESIGN APPROACH
Florin Balasa and Dhiraj K. Pradhan
ENERGY EFFICIENT HARDWARE-SOFTWARE CO-SYNTHESIS USING RECONFIGURABLE HARDWARE
Jingzhao Ou and Viktor K. Prasanna
FUNDAMENTALS OF NATURAL COMPUTING: BASIC CONCEPTS, ALGORITHMS, AND APPLICATIONS
Leandro Nunes de Castro
HANDBOOK OF ALGORITHMS FOR WIRELESS NETWORKING AND MOBILE COMPUTING
Azzedine Boukerche
HANDBOOK OF APPROXIMATION ALGORITHMS AND METAHEURISTICS
Teofilo F. Gonzalez
HANDBOOK OF BIOINSPIRED ALGORITHMS AND APPLICATIONS
Stephan Olariu and Albert Y. Zomaya
HANDBOOK OF COMPUTATIONAL MOLECULAR BIOLOGY
Srinivas Aluru
HANDBOOK OF DATA STRUCTURES AND APPLICATIONS
Dinesh P. Mehta and Sartaj Sahni
HANDBOOK OF DYNAMIC SYSTEM MODELING
Paul A. Fishwick
HANDBOOK OF ENERGY-AWARE AND GREEN COMPUTING
Ishfaq Ahmad and Sanjay Ranka
HANDBOOK OF PARALLEL COMPUTING: MODELS, ALGORITHMS AND APPLICATIONS
Sanguthevar Rajasekaran and John Reif
HANDBOOK OF REAL-TIME AND EMBEDDED SYSTEMS
Insup Lee, Joseph Y-T. Leung, and Sang H. Son

PUBLISHED TITLES CONTINUED

handbook OF Scheduling: algorithms, Models, and performance analysis
Joseph Y.-T. Leung
HIGH PERFORMANCE COMPUTING IN REMOTE SENSING
Antonio J. Plaza and Chein-l Chang
HUMAN ACTIVITY RECOGNITION: USING WEARABLE SENSORS AND SMARTPHONES
Miguel A. Labrador and Oscar D. Lara Yejas
IMPROVING THE PERFORMANCE OF WIRELESS LANs:A PRACTICAL GUIDE
Nurul Sarkar
INTRODUCTION TO NETWORK SECURITY
Douglas Jacobson
LOCATION-BASED INFORMATION SYSTEMS: DEVELOPING REAL-TIME TRACKING APPLICATIONS
Miguel A. Labrador, Alfredo J. Pérez, and Pedro M. Wightman
METHODS IN ALGORITHMIC ANALYSIS
Vladimir A. Dobrushkin
MULIICORE COMPUTING: ALGORITHMS, ARCHITECTURES, AND APPLICATIONS
Sanguthevar Rajasekaran, Lance Fiondella, Mohamed Ahmed, and Reda A. Ammar
PERFORMANCE ANALYSIS OF QUEUING AND COMPUTER NETWORKS
G. R. Dattatreya

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING
Munindar P. Singh
SCALABLE AND SECURE INTERNET SERVICES AND ARCHITECTURE
Cheng-Zhong Xu
SOFTWARE APPLICATION DEVELOPMENT: A VISUAL C++®, MFC, AND STL TUTORIAL
Bud Fox, Zhang Wenzu, and Tan May Ling
speculative execution in high performance computer architectures
David Kaeli and Pen-Chung Yew
VEHICULAR NETWORKS: FROM THEORY TO PRACTICE
Stephan Olariu and Michele C. Weigle

This page intentionally left blank

Computer-Aided Graphing and Simulation Tools for AutoCAD Users

P. A. Simionescu

Texas A\&M University
Corpus Christi, USA

MATLAB ${ }^{\circ}$ is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB ${ }^{\circ}$ software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB ${ }^{\circ}$ software.

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2015 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20141020
International Standard Book Number-13: 978-1-4822-5292-7 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

After some thinking, I decided to dedicate this book to the people of Google: Your work makes my work more productive every day and will probably help to sell a few extra copies of this book as well.

This page intentionally left blank

Contents

Preface, xv
Legal Notices, xix
Acknowledgments, xxi
Author, xxiii
Chapter 1 - Graphical Representation of Univariate Functions and of (x, y) Data Sets: The D_2D Program 1
1.1 ANALYTICAL FUNCTION PLOTS 6
1.2 SHOWING EXTREMA AND ZEROS OF GRAPHS 8
1.3 STEM AND AREA PLOTS: LENGTH OF A CURVE AND AREA UNDER A CURVE 11
1.4 WINDOWING AND PANNING 13
1.5 NUMBERING DATA POINTS 14
1.6 PLOTTING FUNCTIONS WITH SINGULARITIES 15
1.7 CONTROLLING PLOT FEATURES FROM WITHIN THE INPUT DATA FILE 18
1.8 PLOTTING SCATTERED DATA 21
1.9 PLOTTING ORDERED DATA AND HISTOGRAMS 24
1.10 PLOTTING INEQUALITIES 27
1.11 PARAMETRIC PLOTS 28
1.12 ANIMATIONS 33
REFERENCES AND FURTHER READINGS 40
Chapter 2 . Graphical Representation of Functions of Two Variables: The D_3D Program 43
2.1 HOW D_3D WORKS? 47
2.2 D_3D INPUT DATA STRUCTURE 50
2.3 MESH PLOTS AND THE VISIBILITY PROBLEM 52
2.4 NODE AND STEM PLOTS 56
2.5 EQUALLY SPACED LEVEL-CURVE PLOTS 58
2.6 DEFECT-FREE LEVEL-CURVE PLOTS 60
2.7 LOGARITHMICALLY-SPACED LEVEL CURVES 62
2.8 FILE EXPORT AND DXF LAYER ORGANIZATION 65
2.9 AXES REVERSAL AND PLOT ROTATION 67
2.10 GRADIENT PLOTS 68
2.11 TRUNCATED 3D SURFACE REPRESENTATIONS 70
2.12 CONSTRAINED FUNCTION AND INEQUALITY PLOTS 76
2.13 COLOR-RENDERED PLOTS 81
2.14 PLOTTING MULTIPLE SURFACES ON THE SAME GRAPH 85
2.15 IMPLEMENTATION DETAILS OF THE D_3D PROGRAM 87
REFERENCES AND FURTHER READINGS 89
Chapter 3 . Programs and Procedures for Data Visualization and Data Format Conversion 91
3.1 LibPlots SUBROUTINES FOR GENERATING 2D PLOTS 92
3.1.1 Basic 2D Plotting Using LibPlots 92
3.1.2 Multiple Plots with Markers 93
3.1.3 Plotting Large Data Sets and Data Read from File 95
3.1.4 Dynamic Plots with Scan Lines and Scan Points 96
3.2 Util~TXT PROGRAM FOR MANIPULATION OF ASCII FILES 98
3.2.1 Linear Interpolation 99
3.2.2 Cubic-Spline Interpolation 100
3.2.3 B-Spline Interpolation 101
3.2.4 Numerical Differentiation 101
3.2.5 Angle-Value Rectification 103
3.2.6 Data Decimation 104
3.2.7 DXF Output of 2D and 3D Polylines 104
3.3 Util~DXF PROGRAM FOR VISUALIZATION OF R12 DXF FILES 104
3.3.1 Extracting Polyline Vertex Coordinates 106
3.3.2 Raster Curve Digitization Using Util~DXF and Util~TXT 108
3.3.3 Transferring Level Curves from D_3D to D_2D 110
3.4 Util~PLT PROGRAM FOR MANIPULATING PLT FILES 111
3.4.1 Flattening and Retouching Plots Created with D_2D 113
3.4.2 Alphanumerical Character Discretization 114
3.5 G_3D.LsP PROGRAM FOR GENERATING 3D CURVES AND SURFACES INSIDE AutoCAD 116
3.5.1 3D Polyline Plotting Using G_3D.LSP 116
3.5.2 3D Surface Plotting Using G_3D.LSP 119
3.6 m_3D.Lsp PROGRAM FOR AUTOMATIC 3D MODEL GENERATION AND ANIMATION INSIDE AutoCAD 121
3.6.1 Animation of DXF Files with Multiple Layers Using M_3D.LSP 121
3.6.2 3D Model Generation with Data Read from File 122
3.6.3 Automatic Insertion of AutoCAD Blocks 125
REFERENCES AND FURTHER READINGS 128
Chapter 4 - Root Finding and Minimization or Maximization of Functions 129
4.1 BRENT'S ZERO ALGORITHM FOR ROOT FINDING OF NONLINEAR EQUATIONS 129
4.2 BRENT'S METHOD FOR MINIMIZING FUNCTIONS OF ONE VARIABLE 132
4.3 NELDER-MEAD ALGORITHM FOR MULTIVARIATE FUNCTION MINIMIZATION 133
4.4 HANDLING CONSTRAINTS IN OPTIMIZATION PROBLEMS 137
4.5 EVOLUTIONARY ALGORITHM FOR BOUNDED-OPTIMUM SEARCH 141
4.6 MULTICRITERIA OPTIMIZATION PROBLEMS 144
4.6.1 Cantilever Beam Design Example 144
4.6.2 Design Space and Performance Space Plots 145
4.6.3 Pareto Front Search 146
REFERENCES AND FURTHER READINGS 149
Chapter 5 . Procedures for Motion Simulation of Planar Mechanical Systems 151
5.1 SAMPLE PROGRAM USING THE LibMec2D UNIT AND SUBROUTINES Locus AND CometLocus 151
5.2 JOINTS AND ACTUATORS AVAILABLE FOR MECHANICAL SYSTEM SIMULATION 153
5.2.1 Kinematic Analysis of Input Rotational Members 154
5.2.2 Procedures Crank and gCrank 156
5.2.3 Kinematic Analysis of Input Translational Members 158
5.2.4 Procedures Slider and gSlider 161
5.3 POSITION, VELOCITY, AND ACCELERATION OF POINTS AND MOVING LINKS 163
5.3.1 Procedures Offset and OffsetV 166
5.3.2 Procedures AngPVA, Ang3PVA, and Ang4PVA 168
5.4 POSITION, VELOCITY, AND ACCELERATION IN RELATIVE MOTION: SUBROUTINE VarDist 169
5.5 CORIOLIS ACCELERATION EXAMPLE: SUBROUTINE PutVector 171
5.6 MODEL VALIDATION: SUBROUTINE ntAccel 172
5.7 WORKSPACE LIMITS AND INQUIRY SUBROUTINES PutDist AND PutAng 175
5.8 ADDING COMPLEX SHAPES TO SIMULATIONS: SUBROUTINES Base, Link, gShape, AND Shape 177
5.9 SIMULATIONS ACCOMPANIED BY PLOTS WITH SCAN LINES AND SCAN POINTS 179
REFERENCES AND FURTHER READINGS 181
Chapter 6 . Kinematic Analysis of Planar Linkage Mechanisms Using Assur Groups 183
6.1 ASSUR GROUP-BASED KINEMATIC ANALYSIS OF LINKAGE MECHANISMS 183
6.2 INTERSECTION BETWEEN TWO CIRCLES: PROCEDURE INT2CIR 186
6.3 VELOCITY AND ACCELERATION OF THE INTERSECTION POINTS BETWEEN TWO CIRCLES: PROCEDURE Int2CirPVA 189
6.4 KINEMATICS OF THE RTRTR DOUBLE LINEAR INPUT ACTUATOR: PROCEDURE RTRTRc 190
6.5 KINEMATICS OF THE RTRTR DOUBLE LINEAR INPUT ACTUATOR USING A VECTOR EQUATION APPROACH: PROCEDURE RTRTR 196
6.6 MOTION TRANSMISSION CHARACTERISTICS OF RTRTR-BASED MECHANISMS 202
6.7 KINEMATIC ANALYSIS OF THE RTRR OSCILLATING-SLIDE ACTUATOR USING EQUATIONS OF CONSTRAINT: PROCEDURE RTRRc 204
6.8 KINEMATIC ANALYSIS OF THE RTRR OSCILLATING-SLIDE ACTUATOR USING A VECTOR-LOOP APPROACH: PROCEDURE RTRR 207
6.9 KINEMATIC ANALYSIS OF THE RRR DYAD: PROCEDURES RRRc AND RRR 210
6.10 KINEMATIC ANALYSIS OF THE RRT DYAD USING A VECTOR-LOOP APPROACH 214
6.10.1 RR_T Dyadic Isomer: Procedure RR_T 214
6.10.2 RRT_Dyadic Isomer: Procedure RRT 219
6.11 KINEMATIC ANALYSIS OF THE RTR DYAD USING A VECTOR-LOOP APPROACH: PROCEDURE RT_R 222
6.12 KINEMATIC ANALYSIS OF THE TRT DYAD USING A VECTOR-LOOP APPROACH 228
6.12.1 T_R_T Dyadic Isomer: Procedure T_R_T 229
6.12.2 _TRT_ Dyadic Isomer: Procedure _TRT_ 235
6.12.3 T_RT_ Dyadic Isomer: Procedure T_RT_ 240
6.13 KINEMATIC ANALYSIS OF THE RTT DYAD USING A VECTOR-LOOP APPROACH 245
6.13.1 R_T_T Dyadic Isomer: Procedure R_T_T 245
6.13.2 RT_T_Dyadic Isomer: Procedure RT_T_ 251
6.13.3 R_TT_Dyadic Isomer: Procedure R_TT_ 256
6.13.4 RT__ Dyadic Isomer: Procedure RT__T 261
REFERENCES AND FURTHER READINGS 267
Chapter 7 : Design and Analysis of Disk Cam Mechanisms 269
7.1 SYNTHESIS OF FOLLOWER MOTION 269
7.2 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH TRANSLATING FOLLOWER, POINTED OR WITH ROLLER 272
7.3 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH OSCILLATING FOLLOWER, POINTED OR WITH ROLLER 277
7.4 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH TRANSLATING FLAT-FACED FOLLOWER 281
7.5 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH OSCILLATING FLAT-FACED FOLLOWER 286
7.6 SYNTHESIS OF DISC CAMS WITH CURVILINEAR-FACED FOLLOWER 289
7.6.1 Synthesis of Disk Cams with Arc-Shaped Follower 289
7.6.2 Synthesis of Disk Cams with Polygonal-Faced Follower 292
REFERENCES AND FURTHER READINGS 295
Chapter 8 . Spur Gear Simulation Using Working Model 2D and AutolISP 297
8.1 INVOLUTE-GEAR THEORY 297
8.2 INVOLUTE PROFILE MESH 301
8.3 INVOLUTE-GEAR MESH 306
8.4 WORKING MODEL 2D SIMULATIONS OF INVOLUTE PROFILE GENERATION 310
8.5 INVOLUTE PROFILE GENERATION USING Gears.Lsp 313
REFERENCES AND FURTHER READINGS 318
Chapter 9 . More Practical Problems and Applications 319
9.1 DUFFING OSCILLATOR 319
9.2 FREE OSCILLATION OF A SPRING-MASS-DASHPOT SYSTEM 321
9.3 FREQUENCY AND DAMPING RATIO ESTIMATION OF OSCILLATORY SYSTEMS 324
9.4 NONLINEAR CURVE FIT TO DATA 327
9.5 PLOTTING FUNCTIONS OF MORE THAN TWO VARIABLES 329
9.6 RANDOM NUMBER GENERATION AND HISTOGRAM PLOTS 336
9.7 DWELL MECHANISM ANALYSIS 338
9.8 TIME RATIO EVALUATION OF A QUICK-RETURN MECHANISM 341
9.9 EXAMPLES OF ITERATIVE USE OF THE PROCEDURES IN UNIT LibAssur 342
9.10 SIMULATION OF A FOUR-BAR LINKAGE AND OF ITS FIXED AND MOVING CENTRODES 345
9.11 PLANETARY GEAR KINEMATIC SIMULATION USING WORKING MODEL 2D 346
9.12 IMPLICIT FUNCTION PLOT 349
9.13 INVERSE AND DIRECT KINEMATICS OF 5R AND 2R ASSEMBLY ROBOTS 351
9.14 INVERSE AND DIRECT KINEMATICS OF THE RTRTR GEARED PARALLEL MANIPULATOR 355
9.15 KINEMATIC ANALYSIS OF A HYDRAULIC EXCAVATOR AND OF A ROPE SHOVEL 358
9.16 KINEMATIC ANALYSIS OF INDEPENDENT WHEEL SUSPENSION MECHANISMS OF THE MULTILINK AND DOUBLE-WISHBONE TYPE 361
9.17 FLYWHEEL SIZING OF A PUNCH PRESS 367
9.18 A PROGRAM FOR PURGING FILES FROM THE CURRENT DIRECTORY 373
REFERENCES AND FURTHER READINGS 373
APPENDIX A: USEFUL FORMULAE, 377
APPENDIX B: SELECTED SOURCE CODE, 409

Preface

Over the course of almost two decades, I developed a number of Pascal and AutoLISP for AutoCAD programs and Working Model 2D simulations that I used in my publications and presentations. Occasionally, people aware of these computer applications asked for evaluation copies, which I gladly provided them. Such requests encouraged me to spend more time improving and documenting these applications, and ultimately determined me to make these applications and the algorithms behind them available to a wider audience. This is how the idea of writing this book was born.

The intended readership for this book are students, scholars, scientists, and engineers who have access to AutoCAD and Working Model 2D software and are interested in information visualization, motion simulation of mechanical systems, numerical analysis, optimization, and evolutionary computation. Those who use AutoCAD LT, or have access to only a DXF viewer, can still make substantial use of this book and of the accompanying programs and simulations.

The first two chapters describe plotting programs $D_{-} 2 \mathrm{D}$ and $\mathrm{D}_{-} 3 \mathrm{D}$, which have features not yet available in popular software like MATLAB ${ }^{\circledR}$, Excel, or MathCAD. Some of these features are: showing extrema and zeros of 2D graphs, automatic numbering of data points, controlling the plot appearance from within input data file, plotting inequalities of two variables, trimming the portions of function surface that exceed the plot box, projecting the gradient on the bottom plane in 3D plots, logarithmically spacing level curves, and DXF export.

Chapter 3 introduces a collection of Pascal programs and procedures for generating dynamic 2D graphs with scan lines and scan points, for manipulating ASCII files and for viewing R12 DXF and PLT AutoCAD export files. It also describes two AutoLISP applications for plotting curves and surfaces and for generating 3D models consisting of various geometric primitives and predefined blocks using vertex coordinates and model description read from file.

Chapter 4 discusses several algorithms for finding the zeros and minima of functions of one or more variables and for multicriteria optimization. Also presented is a new evolutionary algorithm that explores the boundary between feasible and unfeasible spaces in optimization problems-it is known that in many practical problems the minimum is bounded. Numerical applications of each of these algorithms are accompanied by plots and animations generated using the $D_{2} 2 \mathrm{D}$ and $\mathrm{D} _3 \mathrm{D}$ programs.

Chapters 5 and 6 introduce a series of procedures, accompanied by examples and the underlying theory, for the kinematic simulation of a wide variety of planar linkage mechanisms.

Chapter 7 deals with the synthesis of the profile of rotating disc cams operating in conjunction with various type followers (pointed, with roller, flat, translating or oscillating). Iterative methods for analyzing the respective cam-follower mechanisms are also presented. In addition, a procedure for synthesizing the follower motion using AutoCAD splines is described.

Chapter 8 reviews the theory of planar involute gears and presents a number of Working Model 2D simulations and an AutoLISP application to illustrate this theory. The AutoLISP program is particularly useful because it allows the generation, directly inside AutoCAD, of involute gear profiles, internal or external, with any number of teeth.

Chapter 9 is a collection of problems and applications from areas like dynamical systems, vibrations, kinematics, robotics, multidimensional visualization, etc., solved using the software tools presented in the earlier chapters, or using Working Model 2D.

Source codes and executables of the programs and simulations discussed in the book are available upon request from the author. The referred animation files can be downloaded from the publisher's website at www.crcpress.com/product/isbn/9781482252903/ or from http://faculty.tamucc.edu/psimionescu/cagstau.html.

While every effort has been made to provide error-free analytical derivations and software implementations of these derivations, in no event shall the author or publisher be liable for any claim, damages, or other liability in connection with the use of the material in this book and of the accompanying computer programs and simulations.

As with any text, the clarity of the writing can be improved and the collection of examples expanded. The AutoLISP and Pascal programs provided with this book can also sustain improvements or can be translated into other programming languages. I would therefore appreciate any comments, suggestions, or reports of errors. In particular, I would welcome any serious offer for collaboration on future editions. So my respected reader, before posting critical reviews about this book, please read once again this last paragraph.

Thank you,

Petru A. Simionescu
pa.simionescu@gmail.com

MATLAB ${ }^{\circledR}$ is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

AutoCAD ${ }^{\circledR}$ is a registered trademark of Autodesk, Inc. For product information, please contact:

Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903 USA
Tel: 415-507-5000
Fax: 415-507-5100
Web: www.autodesk.com

This page intentionally left blank

Legal Notices

AutoCAD, AutoCAD LT, and AutoLISP are registered trademarks of Autodesk, Inc. Working Model 2D, WM 2D, and WM Basic are registered trademarks of Design Simulation Technologies, Inc. Turbo Pascal and BGI are registered trademarks of Borland Software Corporation. All other brand names, product names, or trademarks belong to their respective holders, acknowledged in this book by writing them in boldfaced letters.

This page intentionally left blank

Acknowledgments

The PCX RASTER OUTPUT METHOD implemented in some of the programs provided with this book follows an online posting of Bren Sessions of Corvallis, Oregon. Horia Brădău of Vaughan, Ontario, contributed an earlier AutoLISP program for the generation of involute gears. Thanks are extended to Dr. Constantin Stăncescu of University Polytechnica of Bucharest, who adapted the AutoLISP programs provided with this book to run in any version of AutoCAD up to its 2014 release. My appreciation goes to all those that encouraged me to complete this project and to CRC Press for their careful involvement in the preparation of this book for publication.

This page intentionally left blank

Author

Petru Aurelian Simionescu is on the engineering faculty at Texas A\&M University in Corpus Christi. He earned a BSc from the Polytechnic University of Bucharest, a doctorate in technical sciences from the same university, and a PhD in mechanical engineering from Auburn University. Simionescu taught and conducted research at seven Romanian, British, and American universities, and worked for four years in industry as an automotive engineer. His research interests include kinematics, dynamics and design of multibody systems, evolutionary computation, CAD, computer graphics, and information visualization. So far, he has authored over 40 technical papers and has been granted seven patents.

This page intentionally left blank

Graphical Representation of Univariate Functions and of (x, y) Data Sets The D_2D Program

PLOTTING ANALYTICAL FUNCTIONS $y=F(x)$ or simply of (x, y) sets is something that everybody interested in computer graphics most likely has programmed, or at least attempted to do. This is commonly required part of many applications, from mathematics to experimental data analysis. In this chapter, the $\mathrm{D} _2 \mathrm{D}$ program available with the book as Pascal source code (D_2D.PAS and UNIT_D2D.PAS) and as executable file (D_2D. EXE) will be introduced. D_2D has several features not yet available in popular software like Excel, MathCAD, Mathematica, or MATLAB as follows:

1. The size of the plot box can be precisely controlled by the user, advantageous when creating stacked graphs of the same height and/or width.
2. The x-axis can be placed either on the bottom or on the top of the plot box.
3. The divisions on the x - and y-axes can be labeled in fractions or multiples of π, a feature useful when plotting trigonometric functions.
4. When plotting a single curve, D_2D adds the lengths of the individual segments that form the graph and displays this number as the length of the curve.
5. Multiple graphs can be plotted simultaneously over four separate y categories named by default $\mathbf{F}(\mathbf{x}), F 2(\mathbf{x}), F 3(\mathbf{x})$, and $\mathbf{F} 4(\mathbf{x})$.
6. Markers or glyphs can be inserted one at each data point (the $*^{*} *$ marker-placing option) or can be spaced at constant distance along the plot curve (the -*- markerplacing option). In the latter case, the distance between two successive markers can be specified in marker radii or as an integer number of data points between two glyphs. This integer is read by D_2D from a configuration file with the extension CF2.
7. Marker types available to distinguish between multiple plot curves are $\varnothing, \bigcirc, \bullet, \square, \diamond$, $\nabla, \Delta, *, \times,+, a, q, \delta^{\top}, 1$, and $>$. The arrow marker $>$ can be used to indicate the order in which the data have been generated (e.g., in time-varying processes), an intuitive still-image substitute to animated comet plots. In nonaccumulated comet plots, the broken-bar ! marker will be automatically converted into a vertical scan line. The marker size can be specified either in screen units, or, if the plot is isotropic, in the same units as the graph. It will be called isotropic, a graph that has the width/height ratio of the plot box equal to the ratio of the x - and y-axis ranges, namely, $\left(x_{\max }-\right.$ $\left.x_{\min }\right) /\left(y_{\max }-y_{\text {min }}\right)$. Therefore, the isotropic plot of a circle will not be distorted to look like an ellipse. You can make a plot isotropic by manually adjusting its box height and width or the limits over its x - and y-axes. There is also an option where $\mathrm{D}_{\mathbf{\prime}} 2 \mathrm{D}$ will automatically adjusts the limits over the x - and y-axes so that the graph remains isotropic as the plot-box size is interactively adjusted.
8. The /\#\ marker-placing option allows the minimum and maximum points of the graph to be automatically identified and their coordinates included with the plot, together with the coordinates of the intersection(s) between the graph and the x-axis (the zeros of the graph). Both can be exported to ASCII files with extensions MIN, MAX, and ZER and can be used in further calculations and analyses.
9. An alternative to using arrow markers to show the sequence in which data have been generated is to number the points of the graph using the *\#* marker-placing option. The numbering is done automatically by $D _2 D$ following a pattern specified by the user-by default, every other point will be labeled beginning with 1 that is assigned to the first data point.
10. The !!!!!! marker-placing option will generate stem plots. A stem plot with the data points connected with a continuous line will be called area plot. In case of the latter, when the graph consists of a single curve, the area bounded by the curve and the x-axis will be evaluated by D_2D using the trapezoidal rule of integration (see Appendix A) and will be automatically displayed on top of the graph together with the length of the curve.
11. Plot-line thickness can be 1 or 3 units (pixels) and either solid (options -_ or $====$), dashed (options --- or $===$), or dotted (options \cdots or $:::$). Their color can be blue, green, cyan, red, magenta, brown, gray, light blue, light green, light cyan, light red, light magenta, light blue, or yellow.

Important: In the current implementation of $\mathrm{D} _2 \mathrm{D}$, when large numbers of data points are plotted as a single dotted or dashed line, defects may occur in the form of portions of the graph (or even the whole curve) not being displayed. If exported to DXF, however, dotted and dashed lines will be represented correctly. Since the color, thickness, and line type of the graphs can be easily edited from within AutoCAD, the DXF format is a more advantageous graphic output format of $D_{2} 2 \mathrm{D}$, with the exception of scatter-point plots that may take less disk space if output as raster-images files.
12. For convenient data file management, the (x, y) points belonging to two or more curves of the same y-category can be read from the same file using separators. Color and marker type can be also set or changed from within the data file using separators, as described in the About screen of the program (see the following insert) that you can bring up by pressing the <F10> key immediately after launching D_2D. Later in this chapter, it will be shown how separators can be used to create animated plots of more than 16 frames or accumulated graphs of more than 16 curves. Note that 16 is the maximum number of data files that can be opened simultaneously by D_2D.
13. The graphic screen with the plot can be copied to a PCX or to a DXF file version AutoCAD 12, that is, R12 DXF. PCX is a common raster graphics format, while DXF is a vector format native to AutoCAD that can be read by many other graphing and CAD packages. There are also several DXF view programs available for download from the Internet as listed in the reference at the end of the chapter. If the DXF 1:1 export option is selected, D_2D will write to DXF the plot curves only, and the scale factor will be unity along both axes. If the graph is isotropic, however, then the entire graph (curves and plot box with divisions, values, and labels) will be exported to DXF as a one-to-one image.

Important: If you export as DXF 1:1 a graph trimmed by the plot box, unless it was set previously to be isotropic, the limits over either the x - or the y-axis will be displaced outwards from their current positions, and the DXF copy of your graph will appear truncated less or not truncated at all.
14. D_2D can generate animated graphs and comet plots and the frames in these animations can be exported to PCX or DXF. You can then assemble these PCX files as animated GIFs and post them on the Internet or insert them in Power Point presentations. I personally prefer the GIF Animator program available from www.gifanimator.com because it is affordable, easy to use, and accepts PCX files as input. In case you use a different GIF-animation software, you might have to convert the PCX frames generated by D_2D to other raster formats-see the list of graphics format converters at the end of the chapter.

About D_2D ver. 2014

15. When you exit D_2D, the plot-box dimensions, number of divisions, and limits over the x - and y-axes, input data file name(s), and, in case of input ASCII file, the column numbers from where the x and y values were read, will all be saved to configuration file !.CF2. If the current plot has been created from scratch, these settings will be written to a new configuration file named generically !0000001.CF2, !0000002. CF2, and so on. The same will happen if you exit D_2D from the $<$ F1...4> screen, irrespective if the current plot is the result of reading the settings from an existing

CF2 file (other than !.CF2) or has been generated new. If you exit $D _2 D$ at the end of the graphic session and you confirm overwriting the CF2 file selected as input, the older version of the CF2 file will be saved with the extension OLD, so that it can be restored manually if needed.
16. The <F1>redo and <F2>redoo options from the D_2D start-up menu allow to automatically redo the plot associated to the last CF2 file found by alphabetically searching the current directory. These options are useful when the input data file(s) have been modified and the changes need to be assessed. The difference between them is that <F2>redoo will fit the graph to the plot box, while $<$ F1>redo will apply the limits over the x and y axes as they were recorded to the last CF2 file. The <F3>CF2 option from the same start-up menu allows you to preview and run any CF2 file on your hard drive. If you want to run a CF2 file without preview, press the $\langle\mathrm{F} 4>$ or $\langle\mathrm{CR}>$ keys to open it as if it were a regular input data file.

In order for you to make the most out of the aforementioned listed features of the $D _2 \mathrm{D}$ program, a number of examples will be presented next that you can study before solving your own similar problems. You may also want to experiment directly with $D_{2} 2 \mathrm{D}$ as the majority of its interactive menus are documented.

Important: There is a small number of plot settings that can be changed only by manually editing the CF2 configuration file. Note that in a CF2 file, everything that occurs between curl brackets will be considered comment. These settings are as follows:
(i) Plot-box width and height: Can be changed interactively from within D_2D. However, if you do not want these numbers rounded to multiples of 5 , you will have to edit line number 4 of the CF2 file. Note that the plot-box dimensions should be at most 625×405 pixels.
(ii) DXF polyline coincidence and collinearity parameters: When exporting a plot to R12 DXF, the D_2D program will eliminate any unnecessary collinear points, by concatenating into polylines as many line segments as possible. If three consecutive data points are found to be almost collinear, then the middle point will be eliminated. Similarly, if two separate points of a graph are almost coincident, then the second one will be eliminated. These almost's are controlled by two parameters read from line $\mathbf{2 8}$ of the CF2 file.
(iii) Marker spacing: This parameter (line number 31 in the CF2 file) is used with the -*- marker-placing option. If positive, then the curvilinear distance between two successive vertices will be measured in multiples of marker radii. If this marker spacing parameter is negative, then the distance between two successive markers will be measured as the number of data points without a glyph.

Important: There is no need to set the marker spacing parameter on line 31 of the CF2 file to zero in order to display a marker at every data point, since this is equivalent to using the *** * marker-placing option.
(iv) Default file extension: Line number 3 of the !. CF2 file holds the extension of the files that will be listed for input when you press $<\mathrm{F} 4>$ from the start-up menu. In the copies provided with this book, this line of !.CF2 reads *.D2D. If you want text files to be listed for input instead, then change this line so *.TXT (any two or three character file extension is acceptable, including CF2). In any other CF2 file on this third line, it is recorded the title of the plot.
(v) Number of bins in a histogram plot (between 3 and 500): If you read the x values from an ASCII file and select column 0 (which is inexistent) from where to read the y values, then by default, D_2D will plot the data as a histogram. You can set the number of bins in a histogram plot interactively right after you selected the data file. If you want to modify the number of bins and keep all the other settings unchanged, you must edit line number 32 of the configuration file and redo the plot.

Important: When you run D_2D with settings from a given CF2 configuration file, the referred input data files should be either in the folder where they were located when the plot was originally made (i.e., specified by the path that precedes their name in the CF2 file) or in the same folder where the calling CF2 file is located. If no configuration file can be found in the same directory with D_2D.EXE, the program will not run. Likewise, if a copy of the DXF.HED file is not available in the same directory with D_2D.EXE, no DXF export will be possible.

Important: In Windows XP, you can link CF2 configuration files and data files (extensions D2D, R2D, etc.) to the D_2D.EXE program on your hard drive by editing the Open With properties of these files: From Windows Explorer select the file you want to link, then from File \rightarrow Open With \rightarrow Chose Program menu, select D_2D.EXE. Before you click OK, check the option "Always use the selected program to open this kind of file."

1.1 ANALYTICAL FUNCTION PLOTS

Let us begin by graphing the function

$$
\begin{equation*}
F(x)=\frac{1}{(x-1)^{2}+0.1}+\frac{1}{(x-3)^{2}+0.2}-3 \tag{1.1}
\end{equation*}
$$

over the interval $-1<x<5$ like in Figure 1.1. The data file readable by D_2D used to do this plot has been generated with the P1_01.PAS program listed in Appendix B. P1_01.PAS outputs the same data in three different formats, all named F1_01, as follows: an ASCII file with the extension DTA, a file of doubles with the extension D2D, and a file of reals

FIGURE 1.1 Plot of the function in Equation 1.1. Configuration file to redo this plot F1_01.CF2.
with the extension R2D. Since plot-curve segmentation, color, and marker type cannot be controlled from within a R2D file, only the first two data file formats will be emphasized in the remainder of this book.

To recreate the plot in Figure 1.1, launch the D_2D program, then press $\langle\mathrm{F} 3>$ and open F1_01.CF2 for preview. Use the $\langle\uparrow\rangle,\langle\downarrow\rangle,\langle$ Page Up \rangle, and $\langle\mathrm{Pg}$ Dn \rangle keys to scroll up and down and inspect this CF2 file. Press $\langle\mathrm{CR}\rangle$ to confirm your selection or \langle Esc> to open for preview a different CF2 file. $<\mathrm{CR}>$, shortcut for Car Return, is the $<$ Enter $>$ key.

Important: To upload a file from the file-open menu, you can type its name in the address line directly or select it by pressing the <Tab> key first and then navigate the list using the arrow keys. Once highlighted, press $<\mathrm{CR}>$ to bring it into the address line, then press $<C R>$ again to confirm your selection and to open it.

D_2D allows you to align the divisions over the x - and y-axes either with the origin or with the corners of the plot box: From the final-graphic screen, press the $<$ Backspace $>$ key (<Back> in short) to go to the plot-box edit screen, then press $<$ Ctrl $>$ and $<$ F1> simultaneously to toggle between the two modes of labeling the y-axis. Since the divisions over the x-axis are aligned with both the origin and the ends of the axis; the $<$ Ctrl $>+<$ F5> key combination will have no visible effect upon this particular graph.

To change the limits over either x - or y-axis, press the <Back> key until the program switches to text mode. This page will be further referred to as the $<\mathrm{F} 1 \ldots 4>$ screen. Then press $\langle\mathrm{F} 1\rangle$ to change limits over x and y, then type ' 1 ' for category $F(x)$ and press $<\mathrm{CR}\rangle$. A series of text boxes will let you modify (i) the upper and lower limits over the y-axis, (ii) the total number of values that will be written along the y-axis (this is equal to the number of major division lines), (iii) the Δy range between two major division lines, and (iv) the number of intervals delimited by inserting minor division lines between two values (i.e., typing ' 1 ' will introduce no minor division line). Notice that settings (ii) and (iii) cannot be changed independently. One other option that can be set here is to force the plot to
remain isotropic, by automatically adjusting the limits over x and y, as the size of the plot box is being interactively modified.

As you move to the final-graphic screen to see the effect of these changes, stop while in the plot-box edit screen and press the $\langle G\rangle$ key several times to toggle between showing and hiding the gridlines. If you press $\langle\mathrm{Ctrl}>+\langle\mathrm{G}\rangle$, you will be allowed to edit the inner and outer lengths of the major division lines. The appearance of the minor division lines will also change because they are set by default to 60% of the major lines outside length. Towards the inside of the plot box, all division lines will have the same lengths.

Press the <Esc> key from the final-graphic screen to exit D_2D. This will update the current CF2 file. You can also exit from the <F1...4> screen, case in which D_2D will generate a new configuration file named !0000001.CF2 and a temporary file named D2D0001. ${ }^{2 \mathrm{D}}$. The latter is a work copy of the plotted data in D_2D format. When reading data from an ASCII file, $\$ 2 \mathrm{D}$ will hold copies of the x and y columns that were plotted on the graph. When you read data from multiple files or if you extract more than one (x, y) pairs from the same ASCII files, there will be more than one \$2D file created.

Important: If you think you could use any of the temporary \$2D files, change their extension to D 2 D before launching $\mathrm{D} _2 \mathrm{D}$ again, or otherwise, they will be erased.

1.2 SHOWING EXTREMA AND ZEROS OF GRAPHS

The function in Equation 1.1 exhibits one minimum point, two maximum points, and four zeros. Finding the zeros of this function requires solving the equation $F(x)=0$, while finding its minimum and maximum points requires solving the equation $\mathrm{d} F(x) / \mathrm{d} x=0$, very unappealing tasks if you are doing them manually. One approach is to approximate the coordinates of these points with the help of the divisions or gridlines of the plot and then use these approximations as initial guesses in some minimization or zero finding iterative schemes.

Instead of solving the equation $F(x)=0$ of finding the minima and maxima of $F(x)$, you can have D _2D inspect the input data and identify any zero or extrema that will be encountered. These can be displayed on the graph as shown in Figure 1.2 and, if desired, can be exported with added decimals to three ASCII files of extensions ZER, MIN, and MAX. Evidently, the precision with which these zeros and extrema are approximated depends on how fine your function has been sampled in the first place.

To redo Figure 1.2 other than by running D_2D with setting from the F1_02.CF2 configuration file, launch D_2D and upload the same F1_01.CF2 file as before (press $<$ F3 $>$ and type or select from the list F1_01.CF2). After you plot the graph, go back to the $<$ F1...4> screen and press \langle F3>. Type 'E' and '1', and then press $<\mathrm{CR}>$ twice (you should be under the word 'Line' on the top of the screen). Use the $\langle\uparrow\rangle$, and $\langle\downarrow\rangle$ keys to change the line type from $====$ to ——_ and press $\langle C R\rangle$. Next, select the /\# \backslash marker-placing option using the same arrow keys and press $<\mathrm{CR}>$ several times until you get to the final-graphic screen. To suppress the gridlines, go back to the plot-box edit screen and press the <G> key. Your graph should now look like the one in Figure 1.2.

To write to ASCII the coordinates of these minima, maxima, and zeros, go to the <F1...4> screen and select option $<$ F4>. Scroll up and down through these export options using the

FIGURE 1.2 Plot of the function of Equation 1.1 with 501 data points showing the zeros, minimum, and maximum points automatically introduced by D_2D. Configuration file F1_02.CF2.
$\langle\uparrow\rangle$, and $\langle\downarrow\rangle$ keys, select Envelopes and then press $\langle C R\rangle$. You can accept the default names of the three export files where data will be written or specify your own.

Important: Zeros and extremum points coordinates cannot be exported to ASCII file when the plot originates from multiple data files.

A short note on how the coordinates of these minimum, maximum, and zero points were evaluated: As data are read from file, D_2D looks for groups of three successive points with the middle one located above or below the other two (this is called three-point bracketing). If it occurs, then between the first and the third point, a local minimum or maximum exists. If you press $<$ F2 $>$ from the $<$ F1...4> screen, you can then choose to either display on your graph the middle point, or the singular point of the parabola that interpolates the three bracketing points. In a similar manner, D_2D brackets the zeros of the graph by looking for two successive y values of different signs. If this happens, then the intersection of the line that connects these two points with the x-axis is an approximation of the respective zero, like in the secant method of zero finding. There may be more than one zero between two points that change sign (similar argument can be made about bracketing an extremum). To avoid any ambiguity, the function must be sampled at a rate small enough to capture its 'convolutedness' (see the Nyquist-Shannon sampling theorem).

Let us now plot the graph of the first derivative of the function in Equation 1.1, that is,

$$
\begin{equation*}
F^{\prime}(x)=\frac{2 x-2}{\left(x^{2}-2 x+1.1\right)^{2}}+\frac{2 x-6}{\left(x^{2}-6 x+9.2\right)^{2}} \tag{1.2}
\end{equation*}
$$

The data files used to plot this second function were generated with the P1_02.PAS program listed in Appendix B (see lines \#2 and \#3 in this program). To illustrate additional features of $\mathrm{D} _2 \mathrm{D}$, both function $F(x)$ and its derivative $F^{\prime}(x)$ were plotted on the same graph, with $F^{\prime}(x)$ on a secondary y-axis (Figure 1.3).

FIGURE 1.3 Plot of the function of Equation 1.1 as a line with markers, and of its derivative $F^{\prime}(x)$, showing the zeros of the derivative. Configuration file F1_03.CF2.

To duplicate this figure, run D_2D with settings from F1_03.CF2. To make the plot look like Figure 1.4, and then export it to R12 DXF, perform the following steps: From the $<\mathrm{F} 1 . . .4>$ screen, press $<\mathrm{F} 2>$. Change the title to ' $F(x) \& F^{\prime}(x)^{\prime}$, then increase the marker size to 4.5 pixels. To make the text colors of the two y-category names identical to the color of the respective plot lines or to modify the marker type along the $F(x)$ curve, go to the $<F 1 . . .4>$ screen and press $<F 3>$. Type ' E ', then ' 1 ', and press $<C R>$ to select the first curve; insert a space in front of the first y-category name. Press $<\mathrm{CR}>$ three more times, then scroll up to change marker type from transparent round \varnothing to diamond \diamond, then press $<\mathrm{CR}>$ twice. Repeat the procedure and add a space in front of the second y-category name to change its color from the default dark gray to blue, that is, the color of the second plot line.

FIGURE 1.4 R12 DXF copy of the plot in Figure 1.3, exported after some formatting as explained in the text. This is an AutoCAD screenshot after issuing the command shade. Configuration file F1_04.CF2.

Important: If there are multiple curves per category, the y-axis label will take the color of the first curve assigned to that category.

Go to the plot-box edit screen and use $<\mathrm{Pa} \mathrm{Up}\rangle,\langle\mathrm{Pg} \mathrm{Dn}\rangle,\langle\uparrow\rangle$, and $\langle\downarrow\rangle$ keys to resize the plot box, then press $<\mathrm{Ctrl}>+<\mathrm{Pa}$ Up $>$ to move the x-axis divisions and values to the top of the graph. When you are satisfied with the appearance of the graph, go back to the $<$ F1...4> screen, press $<\mathrm{F} 4>$ to do a R12 DXF export, enter the file name, and press the $\langle\mathrm{CR}\rangle$ key. After the DXF export is completed, press $\langle E s c\rangle$ to exit $D _2 \mathrm{D}$.

To view the DXF file that you have just created, open a new drawing in AutoCAD, type 'dxfin' at the command line, then type 'hide'. Because the $\diamond, \square, \nabla$, and Δ markers are AutoCAD regions placed slightly elevated by D_2D, they will obscure the plot lines. AutoCAD circles behave the same, so opaque round markers will also obscure the plot lines behind then following the hide or shade commands.

In this previous example, input data were read from two separate files, that is, F1_01. D2D and F1_02.D2D. Note that it is possible to store the values of both the function and of its derivative in the same ASCII file and simplify data management.

1.3 STEM AND AREA PLOTS: LENGTH OF A CURVE AND AREA UNDER A CURVE

It was mentioned earlier that D_2D can generate stem and area plots. Both are produced by choosing !!!!!! from the Line and markers option of the <F3> edit add remove lines menu.

You can quickly redo the plot in Figure 1.5 by running D_2D with F1_05.CF2 as input. The data file required is the same F1_01.D2D from before.

If you want to create the plot from scratch, launch D _ 2 D and press $\langle\mathrm{F} 4\rangle$, then select F1_01.D2D (press <Esc> to abort the uploading of additional data files). From the

FIGURE 1.5 Area plot of the function in Equation 1.1 with 501 data points. Configuration file F1_05.CF2.
<F1..4> screen, go to <F3> edit add remove lines and using the arrow keys, change the marker-placing option from $-*$ to !!!!!!. Also, change the marker size to a smaller value, that is, 1 or even 0 .

Finally, for the graph to look exactly like the one in Figure 1.5, you must suppress the $x=0$ line (the vertical crosshair) by pressing $\langle\mathrm{F} 5>$ while in the plot-box edit screen.

To create an actual stem plot, input data points should be in smaller number, that is, tens rather than hundreds of points. To generate the plot in Figure 1.6, the number of plot points nX inside P1_01. PAS was changed from 501 to 61 . With this modification and with only a D2D file as output (i.e., F1_03.D2D), the program was renamed P1_03.PAS—see source code in Appendix B. The procedure to generate stem plots is the same as for area plots, with the difference that in the Line and markers section of the <F3> edit add remove lines menu, you must choose no line instead of the default _— line.

Using this new data file, the area plot in Figure 1.7 has been generated. Notice the differences between the numerically calculated length of the curve and the value of the integral in Figures 1.5 and 1.7. The integral (the area between the curve and the x-axis) has been evaluated using the trapezoid rule of integration (see Appendix A), which has the benefit that it can handle easily data sampled both at constant and at variable x step and the cases where the curve is trimmed by the plot box like in Figure 1.8.

If you want to create your own trimmed-area plot, after generating Figure 1.7, go to the $<$ F1. .4> screen. Press <F1> and modify the lower limit over the $F(x)$ axis from -3 to -2 and the upper limit from 8 to 3 .

You may also want to redo Figure 1.2 using the F1_03.D2D file with only 61 data points and observe the effect of interpolating for extrema. One very quick way of doing this is to open the F1_02.CF2 file and on line \#38, change the input file name from F1_01.D2D to F1_03.D2D, then run D_2D with settings from this modified CF2 file.

FIGURE 1.6 Stem plot of the function in Equation 1.1 with only 61 data points. Configuration file F1_06.CF2.

FIGURE 1.7 Area plot of the function in Equation 1.1 with only 61 data points. Configuration file F1_07.CF2.

FIGURE 1.8 Same plot in Figure 1.7 restricted to $-2 \leq F(x) \leq 3$. Configuration file: F1_08.CF2.

1.4 WINDOWING AND PANNING

Oftentimes, you want to view just a portion of a graph or scroll left and right through your plot. If you export your graph to R12 DXF and then open it in AutoCAD, you can zoom in or crop the graph any way you like. You can also turn it into a block and then reinsert it scaled at different rates over x and y. Similar maneuvers can be done directly from within D _2D by modifying the limits over the x - and y-axes from <F1> change limits over X and Y option as described earlier. To translate your graph to the left or to the right, there is the $<\mathrm{P}>$ an command available from the final-graphic screen. When pressing $\langle\mathrm{P}\rangle$, you are prompted to type in the amount you want the graph to be displaced horizontally. If you type a positive number, the graph will be translated to the left, while a negative number will translate the graph to the right. A zero input will bring the graph back to its initial location.

Important: If your plot is in a displaced position fallowing a <P>an command, then the current x-axis limits will be saved to the CF2 configuration file.

1.5 NUMBERING DATA POINTS

With F1_03.D2D file, 61 data points used to plot Figures 1.6 through 1.8 will be used next to demonstrate the capability of $\mathrm{D} _2 \mathrm{D}$ to automatically number the points on a graph. Start by replotting Figure 1.7 using the F1_07.CF2 configuration file. When finished, go to the $<\mathrm{F} 1 . .4>$ screen by pressing $<$ Back $>$ twice and then press $<\mathrm{F} 3>$. Type ' E ' and then ' 1 ' and $<\mathrm{CR}>$ to edit the appearance of the graph. Advance horizontally by pressing $<\mathrm{CR}>$ and use the arrow keys to change the line type from - thin solid to $===$ thick dashed. Then change the marker-placing option from !!!!!! to *\#* and the marker type from transparent round \varnothing to solid round \bigcirc.

When you get under the Label pattern, a box with the text 1:4:61; will open up. This is the default marker labeling option, interpreted by D_2D as "number the first data point as 1 , then label every 4th data point up to the last point of the graph, that is, point 61 " (point number 61 will be labeled whether it is multiple of 4 or not).

Notice how labels are always placed on the outside of the curve. This requires D_2D to estimate the center of curvature around the point to be numbered (i.e., to calculate the center of the circle through this current data point and its two neighbors), and use it as a reference for placing the label.

Here are a few more numbering patters that you may want to experiment with:
P0:5:60; this will number every 5th point starting from 0 and will add a P in front of every label. You can replace P with any other character. Note however that some characters from the extended ASCII set do not have an equivalent in AutoCAD.

1:1:10;50:1:61; this will number the first 10 and the last 10 data points only.
$1: 1: 10 ; 2: 27 ; 5: 40 ; 57$; this will begin with 1 , label every point until the 10th, then continue labeling every other point until the 27th point (including), then will label every 5th point until the 40th, and will finally label point number 57.

The plot with this last numbering pattern is available in Figure 1.9. After you run the configuration file F1_09.CF2, in order to obtain the exact same appearance as in Figure 1.9, you must remove both the $x=0$ and $y=0$ lines by pressing $<\mathrm{F} 1>$ and $<\mathrm{F} 5>$ while in the plot-box edit screen.
Important: When written to CF2, axis division and value placement can be altered due to round offs and may not be recreated exactly. To obtain the exact appearance of the divisions and values along the x-axis as in Figure 1.9, after you launch D_2D with settings its CF2 file, go to the <F1..4> screen, follow option <F1>, and modify the interval between two major division lines over the x-axis from 0.9 to 1 .

After you export the graph to R12 DXF, and open it with AutoCAD, type 'hide' at the command line so that the glyphs will obscure the line. Also type 'ltscale' and change its value to 10 , so that the dashed line will look tighter.

FIGURE 1.9 Plot with automatically labeled data points. Above is a PCX copy, below a DXF copy showing the effect of the AutoCAD hide command. Configuration file F1_09.CF2.

1.6 PLOTTING FUNCTIONS WITH SINGULARITIES

Functions exhibiting singular points pose additional challenges when it comes to graphical representation. One such example is the function in the following equation:

$$
\begin{equation*}
F(x)=x\left(x^{2}-3\right) /\left(x^{2}-4\right) \tag{1.3}
\end{equation*}
$$

If we are to generate the data to plot this function for $-8<x<8$, we must avoid evaluating it for $x= \pm 2$, or otherwise the computer will report division by zero. Even when the division by zero is bypassed by checking the value of the denominator, the following two situations are likely to occur: (i) if the function is sampled at a very fine rate, large spikes will occur at singularities (see Figure 1.10a); (ii) irrespective of the sampling rate, the left and right limits at a singular point should not be connected, since the function is not defined here (Figure 1.10b).

In this section, additional features of D_2D that were implemented to address such issues will be presented. One is the possibility to suppress the lines that connect two data points located outside the plot box. The other is the possibility of controlling the plot-line interruption directly from within the data file.

FIGURE 1.10 Plots of Equation 1.3 with 400 data points, done using configuration files F1_10A.CF2 (a) and F1_10B.CF2 (b). At $x=-2$ and $x=2$, the graph should be discontinuous.

FIGURE 1.11 Graphs of the function in Equation 1.3 with 401 data points and plot-line breakers done using configuration files F1_11A.CF2 (a) and F1_11B.CF2 (b). Figure (b) can also be produced using one of the 400 data file, but after editing the limits over the y-axis, you must press the $<\mathrm{C}>$ key when in the final-graphic screen to disconnect the graph at $x=-2$ and $x=+2$. (i.e., remove curtains).

The D2D and DAT files used to plot the graph in Figures 1.10 and 1.11 were generated by program P1_10.PAS listed in Appendix B. Before the actual function is evaluated, the program checks whether x is almost equal to -2 or +2 (see line \#14 of the source code), and if found true, then the function is assigned the constant InfD defined in unit LibMath, which is equal to 10^{100}. Constant EpsD, defined in the same unit LibMath, is a very small positive number set equal to 10^{-100}.

Important: In all programs provided in this book, 1.0E100 is considered equal to infinity, and, together with several of its multiples (1.01E100, 1.02E100, etc.), is used to code additional information about the input data or of the state of the procedure from where the value originates. The About screen of D_2D (you can bring it up by pressing $<$ F10 $>$ right after launching D_2D.EXE) explains how these multiples of 1.0E100 can be used to control the color, marker, and interruption of a plot line. According to this protocol implemented in the P1_10.PAS program, as the function is sampled at constant step, any time a singular point occurs, a plotline breaker is written to the data file (i.e., the value 1.0 E 100), which will instruct the D_2D program not to connect the two points that the respective breaker separates.

P1_10.PAS was run twice: once for $n \mathbf{x}$ equal to 400 plot points when the files generated were named F1_10.D2D and F1_10.DAT, and a second time for $n \mathbf{x}$ equal to 401 plot points, when the same files were named F1_11.D2D and F1_11.DAT. For $\mathbf{n x}=400$ points, no division by zero actually occurred, and the corresponding plot looks as shown in Figure 1.10a. After editing y-min and y-max (see Figure 1.10b), you can eliminate the two extraneous vertical lines that connect the left and right limits at the singular points by pressing the <C> key (C stands for curtain) when in the final-graphic screen. The lines connecting two points lying outside the plot box, one above and one below, are called curtains. With $\mathbf{n x}=401$ data points, however, division by zero do occur at $x=-2$ and $y=2$. In this case, the P1_10.PAS program wrote to the D2D file two 1.0E100 values, while to the DAT file, it wrote a control line, that is, ----------. Both the 1.0 E 100 value pair and the ---------- line are interpreted by D_2D as line breakers, and the resulting graphs will appear like in Figure 1.11.

Now, it is a good opportunity for you to experiment with the R12 DXF copies of Figure 1.10 or 1.11 (notice that Figure 1.10b and b are of isotropic type). The DXF 1:1 exports of Figures 1.10a and 1.11a will include only the curve, while the same of Figures 1.10a and 1.11a (which are isotropic) will include the graph together with the plot box scaled 1 to 1 . In both cases, the origin of the drawing will coincide with the origin of the graph. If you perform a regular DXF output of these figures and open them in AutoCAD, you will notice that the origin of the graph will be located somewhere outside the plot box and that the dimensions of the plot box will be equal to those from D_2D.

One unnatural thing about Figure 1.11a is that at the singular points the plot line does not extend all the way to the plot-box edge, that is, the graph should look like Figure 1.11b irrespective of the minimum and maximum limits set over the y-axis. To remedy this, we must differentiate between the $-\infty$ and $+\infty$ limits at a point. The solution implemented in the P1_12A.PAS program (see Appendix B) was to evaluate the sign of the function slightly left and slightly right of the x point at which 1.0 E 100 is returned (see the DX variable calculated on line \#23 of program P1_12A.PAS) and write to file either -1.0E100 or +1.0 E 100 as limits of the function to the left and to the right of the singular point. Files F1_12A.D2D and F1_12A.DAT were generated this way and have been used to produce the graphs in Figure 1.12a. Note that the plot-line breakers are not essential since the curtains can be removed from within the D_2D program.

In the aforementioned examples, the singular points were assumed known. A fully capable function-plotting program should be able to identify these automatically and

FIGURE 1.12 (a) Same graph as in Figure 1.11a, with $\pm 1.0 \mathrm{E} 100$ assigned to the function value at the singular points. Note that irrespective of the limits over the y-axis, the plot lines will extend up to the plot-box edge. (b) Graph of $1 / F(x)$ in Equation 1.3 with the curtains removed. Configuration files F1_12A.CF2 and F1_12B.CF2.
increase the sampling rate around them. Remember that for 400 data points, the singular points were not detected.

As Figure 1.12b indicates, the singular points of $F(x)$ coincide with the roots of equation $1 / F(x)=0$. The data files needed to generate this last figure were produced with P1_12B. PAS available with the book, which was straightforwardly obtained by modifying earlier program P1_10.PAS, where function F was replaced with $1 / F$.

1.7 CONTROLLING PLOT FEATURES FROM WITHIN THE INPUT DATA FILE

In addition to type and color, $\mathrm{D} _2 \mathrm{D}$ allows marker occurrence to be controlled from within the data file, that is, they can be turned off and back on. However, their style cannot be set or changed, say from '***' to '-*-' or '*\#*', and a line without markers cannot be turned into a line with markers from within the data file.

Important: You will have to assign some type of markers to your graph from within D_2D in order for the input data file control lines to have an effect.

To exemplify, open the ASCII data file F1_11.DAT using Notepad or other ASCII editor and insert two empty lines right before the first plot-line breaker ' $====$ ' (this should be on line $\mathbf{1 5 3}$ from the top). Then type '<><><><>' on one of these lines, and on the other one, type the word 'Red'. These will change, from that point over, the marker type to diamond and the color to red. To limit these changes only to the middle portion of the plot, scroll down to line 253 and insert above the second plot-line breaker an empty line on which type '!!!!!!!!!!'-this will restore the original marker type and line color (see Figure 1.13a). Save the F1_11.DAT file twice: once

FIGURE 1.13 Plots of data files (a) F1_13A.DAT and (b) F1_13B.DAT having additional control lines inserted as described in the text. Configuration files: F1_13A.CF2 and F1_13B.CF2.
under the name F1_13A.DTA and a second time under the name F1_13B.DTA. Open this second ASCII file and change the line of '<><><><>' you inserted earlier, into ' \qquad '. This will suspend the marker display until reaching the reset line '!!!!!!!!!’ (see Figure 1.13b).

If you want to redo the plots in Figure 1.13, launch D_2D.EXE and press the $<$ F3 $>$ key to load one of the configuration files F1_13A.CF2 and F1_13B.CF2.

There are several other instances where controlling graph-line interruptions from within data file can become useful. For example, Figure 1.14 consists of over 130 distinct polylines, the vertices of which are read from a single data file, that is, F1_14.XY.

FIGURE 1.14 Example of a plot created with D_2D where line-break controls were used multiple times. Configuration files: F1_14.CF2.

The plot-line breakers in this file play similar to the 'pen up' and 'pen down' commands a plotter receives when in operation. This figure was generated staring from a photograph that was opened inside AutoCAD, and its contours traced with polylines. The drawing was then exported to R12 DXF, and using the UTIL~DXF program described in Chapter 3, and the vertices of these polylines were then written to ASCII file F1_14.XY.

Another application of the line segmenting capability of D _2D is on plotting families of curves, with data read from a single file. Let us consider the amplitude ratio of a damped forced linear oscillator function:

$$
\begin{equation*}
H\left(\zeta \Omega / \Omega_{n}\right)=\left[\left(1-\left(\Omega / \Omega_{n}\right)^{2}\right)^{2}+\left(2 \zeta \cdot \Omega / \Omega_{n}\right)^{2}\right]^{-0.5} \tag{1.4}
\end{equation*}
$$

and plot 10 separate curves corresponding to the damping ratio ζ, between 0.1 and 1 , and for the frequency ratio Ω / Ω_{n} between 0 and 2.5 like in Figure 1.15.

One possibility is to write the data to 10 separate files (one file per each ζ value) and plot them on the same graph ($\mathrm{D} _2 \mathrm{D}$ can read data from up to 16 different files). Alternatively, an ASCII file with 11 columns can be generated: one column for the independent variable, that is, Ω / Ω_{n}, and 10 columns for each damping ratio value.

The third possibility is to write a program with two nested for loops that will output data to the same file. The points belonging to one curve must be separated from those of other curves using line breakers. The P1_15.PAS program (see Appendix B) implements such an approach and serves to create data files F1_15.D2D and F1_15.DAT available with the book. The plot in Figure 1.15 has been generated using the first of these files, and then it was exported to R12 DXF.

FIGURE 1.15 Family of curves plotted using either F1_15.D2D or F1_15.D3D. Configuration files F1_15D2D.CF2 or F1_15D3D.CF2. D3D are specific to program D_3D discussed in Chapter 2. Curve and axis labeling has been done inside AutoCAD.

FIGURE 1.16 2D projections of function $H\left(\zeta, \Omega / \Omega_{n}\right)$ in Equation 1.4, done by plotting the F1_16.D3D data file using D_2D with input options $f(x, y)$ vs $x(a)$ and $f(x, y)$ vs y, (b).

The fourth solution to the same problem is to generate a D3D data file, that is, F1_15. D3D using program P1_156.PAS (see Appendix B), and then plot this file using D_2D. The D3D files are specifically formatted to be read using the D_3D program described in Chapter 2-see Figures 2.1, 2.6, and 2.7, which are plots of the function $H\left(\zeta, \Omega / \Omega_{n}\right)$ in Equation 1.4. When a D 3 D data file is opened using the D 2 D program, a temporary file of double (extension $\$ 2 \mathrm{D}$) is first created, which employs plot-line breakers to separate the individual $x=$ constant or $y=$ constant lines. Note that $\mathrm{D} _2 \mathrm{D}$ allows two separate plotting options for D3D files, that is, $\mathbf{f}(\mathbf{x}, \mathrm{y})$ vs \mathbf{x} and $\mathbf{f}(\mathbf{x}, \mathrm{y})$ vs y , which correspond to the side view and front view of the $f(x, y)$ function surface, respectively (see Figure 1.16).

1.8 PLOTTING SCATTERED DATA

Plotting scattered data, illustrated by an example in this section, is common to experimental data analysis and statistics. Inequalities of two variables can also be represented graphically as large collections of scattered points as will be shown later.

The plot in Figure 1.17 has been generated using the F1_17.DTA file and represents the life of six groups of bearings subjected to various operating conditions. Notice that group sizes are not identical, so in order to keep the file structured orderly, dots were used as place holders (see the F01_17.DTA insert) although any nonnumerical character can be employed. Alternatively, you can rearrange the columns from longest to shortest as visible in the F01_18.TXT insert.

Rather than using D_2D to preview the input ASCII data file and select its column interactively, you can create a configuration file that will allow you to plot the same data (i.e., F1_18.TXT) as scattered points, but with flipped axes as shown in Figure 1.18.

Begin by opening the master configuration file !.CF2 using Notepad and save it under a different name (this is file F1_18.CF2 available with the book). Change line 36 of this file to ' 6 ' (i.e., the number of groups or pairs of data), then edit the remaining 13 lines according to Table 1.1.

Copy and paste these 13 lines five times at the end of the file and then change the column numbers from where the x and y values are read (i.e., those commented with \{x column $\}$ and \{y column\}, respectively) to $43,65,87,109$, and 1211 , respectively.

Modify the \{marker radius in screen units\} from 2.5 to 10 . Leave line 27 unchanged since it will be ignored, and change line number 33, which currently reads

FIGURE 1.17 Plot of the F1_17.DTA experimental data file. Configuration file: F1_17.CF2.

FIGURE 1.18 Plot of the F1_18.TXT files with settings from configuration file F1_18.CF2 created by hand according to the text.

TABLE 1.1 Modifications to Obtain Configuration File F1_18.CF2

	Line to Append	Comments
1	F1_17.TXT	Name of the file from where data are read.
2	N	$\mathrm{N}(\mathrm{No})$ because the curve is not a background curve of an animation (see next paragraph on producing animations).
3	0	In case of D3D data files, this should be 1 or 2, otherwise it must remain zero.
4	2 \{ x column $\}$	Column number for the x value of the (x, y) pair.
5	1 \{y column\}	Column number for the y value of the (x, y) pair.
6	2	Read data from file beginning with the 2nd row. Important: Inserting 1 here can result in erroneous plots because portions of the header may be interpreted as data.
7	1000	You can insert any number greater/equal than the total number of rows in the file, i.e., 35 . To ensure that $<$ F $2>$ redo option will capture all data from future versions of the file, it is advisable to insert a safely large value here.
8	1	y-axis category, i.e., 1 for $\mathrm{F} 1(x), 2$ for $\mathrm{F} 2(x), 3$ for $\mathrm{F} 3(x)$, and 4 for $\mathrm{F} 4(x)$.
9	7	Line type 1 through 7 for - $,---\cdots,====,====,:: \%$, and no line.
10	1	Color (1 through 8): blue, green, cyan, red, magenta, brown, gray, black.
11	2	Marker pattern 1 through 6 for -*-, ***, *\#*, !!!!!!, /\#
, and no marker.		
12	2	
13	1:1:1000;	Since this information is not used, any numbering pattern is acceptable.

1E100 -1E100 F1 (x) with 0.56 .5 group number. These will be the minimum and maximum limits over the vertical axis and its new name 'group number'. The name of the x-category on line $\mathbf{3 2}$ currently reads \mathbf{x}. Before saving and closing your configuration file, change this to million cycles and include six spaces at the end, while leaving the limits as they are, that is, 1E100 -1E100. The D_2D will recalculate them such that the box will tightly fit the plot.

Important: You can selectively reset the limits over x - or any of the y-axes by editing the corresponding lines 32 through 36 and making the lower limit bigger than the upper limit, or by inserting a 1E100 -1.0E100 pair. If you want to reset the limits on all axes, it might be more convenient to just use the $<$ F2>redof option from the start-ир тепи.

Launch D_2D and select the configuration file that you have just created. You should obtain a plot similar to that in Figure 1.18. To make it look even nicer, consider editing the number of divisions and values over the horizontal axis (either from inside D_2D or by further editing its configuration file).

Important: In case of an incorrect CF2 file input, an error message will be issued by D_2D. The debugging information provided is not complete however. It is therefore advisable to always save under a different name the last functional copy of the CF2 file that you are editing on.

1.9 PLOTTING ORDERED DATA AND HISTOGRAMS

One capability of $\mathrm{D} _2 \mathrm{D}$ is to autogenerate the x-coordinate values as $1,2,3,4$, etc., useful when plotting one column only from an ASCII file. You can instruct D_2D to do so by setting to zero the column number from where the x values are read.

To exemplify, let us edit the CF2 file of the plot in Figure 1.17 and set to zero the column \# for \mathbf{x} six times. In addition, assign different marker types to each data set (i.e., 10, 9, 8, 7, 6, 5) and change their width from 10 to 4 screen units. Next, on line 33, enter the text: 035 specimen \# (the x label) followed by several spaces to offset it to the left. Edit line number 6 so that it reads 85 \{no. of values \& divisions over \mathbf{x} axis\}-this will make the horizontal axis of the graph look nicer. Save the file under a new name (F1_19.CF2 is the name of the one available with the book) and open it with D_2D to produce the graph in Figure 1.19. This is actually a DXF copy of the plot, where markers $\diamond, \square, \Delta, \nabla$ are transparent rather than opaque. If you issue the hide

FIGURE 1.19 DR12 DXF copy of the plot of the F1_17.TXT file, with the x values generated automatically. Configuration file F1_19.CF2.
or shade commands inside AutoCAD, the markers will obscure each other, similarly to the D_2D screen.

If you read the x values from ASCII and set to zero the column number for the y values, D_2D will generate a histogram and not a scatter plot with y the independent variable (if you need one of those instead, your only option is to rotate the graph 90° inside AutoCAD). A histogram is a graph of adjacent vertical bars showing what proportions of data fall into each of the given intervals or bins. In case of D_2D, these bins are equal width, and their number must be specified immediately after setting the column for the y-axis to zero. According to Bendat and Piersol (2010), for N data points the number of bins n_{b} should be

$$
\begin{equation*}
n_{\mathrm{b}}=1.87(N-1)^{0.4}+1 \tag{1.5}
\end{equation*}
$$

For n_{b} equal size bins, the left and right limits of a current bin I will be

$$
\begin{equation*}
f_{\min }+(i-1)\left(f_{\max }-f_{\min }\right) / n_{\mathrm{b}} \quad \text { and } \quad f_{\min }+i\left(f_{\max }-f_{\min }\right) / n_{\mathrm{b}} \tag{1.6}
\end{equation*}
$$

where $f_{\min }$ and $f_{\max }$ are the lower and upper range of the data series read from file. Figure 1.20 shows a seven-bin histogram of the most numerous bearing test group in F1_17.TXT.

Important: The limits $f_{\min }$ and $f_{\max }$ introduced earlier appear on the histogram centered with the leftmost and rightmost bins. Currently, D_2D does not allow the user to directly modify them and is independent of the horizontal-axis minimum and maximum limits.

The appearance of a histogram will depend on the number of bins n_{b} and on the $f_{\min }$ and $f_{\max }$ values in Equation 1.5. The former can be set at the beginning when data are read from file or by editing line number 32 of the CF2 and running D_2D with these new settings. However, the latter can be modified only indirectly, for example, by adding two properly selected values to the input data file and trimming the graph to the left and to the right as it will be exemplified next.

FIGURE 1.20 Seven-bin histograms of the most numerous (34 samples) bearing group in F1_17. TXT file. Configuration file: F1_20.CF2.

FIGURE 1.21 Histogram of the data used for Figure 1.21 modified such that the bins are centered at rounded values. Configuration file: F1_21.CF2.

In order to center the bins of the histogram with 20×10^{6} to 50×10^{6} cycles as shown in Figure 1.21, values 10.0 and 60.0 have been added to the original data file, and the file was then saved under the new name F1_20.TXT. The total number of bins of the histogram was then changed to $\mathbf{1 1}=\mathbf{7}$ (original number of bins) $+\mathbf{2}$ (empty bins, one to the left and one to the right) +2 (bins for two new entries). With these modifications, four new bins have been added to the graph (see Figure 1.22) as follows: two bins each with only one data point (one centered at 10×10^{6} cycles and the other centered at 60×10^{6} cycles), separated by the rest of the histogram by two empty bins (one centered at 10 million and the other centered at 55×10^{6}). To obtain the correct appearance corresponding to the original data, the extraneous bins must be eliminated by setting the x-axis range from 15 to 55 million cycles.

FIGURE 1.22 Histogram in Figure 1.21 before trimming the extraneous bins to the left and to the right. Configuration file: F1_22.CF2.

Note that both the Integral and Length of the curve displayed at the top of the graph are both related to the number of samples in the input data file according to the following equations:

$$
\begin{align*}
& n_{\text {samples }}=\text { Integral } \cdot \frac{n_{\mathrm{b}}-1}{f_{\max }-f_{\min }} \tag{1.7}\\
& 2 n_{\text {samples }}=\text { Length }-\frac{n_{\mathrm{L}}\left(f_{\max }-f_{\min }\right)}{n_{\mathrm{b}}-1}
\end{align*}
$$

where n_{L} is the number of horizontal lines of length equal to the width of one bin, which are visible on the graph. Also note that for a histogram with empty bins, if you make the lower limit of the y-axis less than zero, the number of horizontal segments increases (and so does the total length of the graph).

1.10 PLOTTING INEQUALITIES

Plotting scattered data and inequalities are actually related issues. To exemplify, let us look at the problem of graphing the inequality:

$$
\begin{equation*}
(\sin (x)+\sin (y))^{2}-(x \cdot y+0.5) \geq 0 \tag{1.8}
\end{equation*}
$$

with $-\pi \leq x \leq \pi$ and $-\pi \leq y \leq \pi$. This is the top view of the intersection between the surface $z=(\sin x+\sin y)^{2}$ and the hyperboloid of equation $z=x \cdot y+0.5$.

The P1_23.PAS program (see Appendix A) that generates the F1_23.D2D file used to plot Figure 1.23 has a very simple structure: It essentially evaluates inequality (1.8) over a 406×406 grid, and if it is not satisfied, then the corresponding (x, y) pair is written to file.

FIGURE 1.23 Plot of the inequality 1.8. Configuration file: F1_23.CF2.

If you save the plot in Figure 1.20 as R12 DXF and open it with AutoCAD, you will be able to see its doted structure. If you increase the point size, then the AutoCAD drawing will begin resembling the raster figure. To do this, type '_ddptype' at the command line, change the point type from dot (which is not scalable) to circle, and increase its size. Because of the large number of graphic entities (i.e., dots), inequality plots are recommended to be saved and manipulated as raster graphics.
Important: Both the point size and the grid size will influence the appearance of an inequality plot. For raster graphics output, set $\mathrm{D} _2 \mathrm{D}$ point size to zero and sampling size over x and y slightly bigger than the dimensions in pixels of the plot box.

If you redo Figure 1.23 with settings from F1_23.CF2, you will notice that the values over the x - and y-axes are in decimal numbers, not in fractions of π, like in Figure 1.23. This is caused by the round offs that occur when recalculating the interval between two values with settings from the configuration file. To fix this, go to the plot-box edit screen and press $\langle\mathrm{Ctrl}\rangle+\langle\mathrm{Fl}>$ then $<$ Ctrl $>+<$ F5 $>$. If it has no effect, you will have to go to the $<$ F1> change limits... menu and type 'pi/4' where it says Write a value every for both the x - and y-axes. To enter the actual character π, hold the <Alt> key and type 227 or type 'pi' without quote marks.

1.11 PARAMETRIC PLOTS

2D parametric curves are defined by separate equations for the x and y coordinates of their points, that is,

$$
\left\{\begin{array}{l}
x=F_{x}(t) \tag{1.9}\\
y=F_{y}(t)
\end{array}\right.
$$

where t is an independent variable parameter. In many cases, t is associated to time and can assume only positive values, including zero. For polar curves written in Cartesian form (like the Archimedean spiral considered next), the independent parameter is sometimes noted θ and represents an angle measured in radians.

For certain parametric curves, if data are generated at a constant increment of the independent variable, rapid jumps in the F_{x} and F_{y} function values can occur, and the graph will look nonsmooth in those areas (see Figure 1.24a). This is less likely to happen in case of single-valued functions $y=F(x)$, because their graph does not turn over itself, and the total length of the curve remains short. A remedy proposed by Reverchon and Duchamp (1993) is to evaluate the distance ΔL between every two consecutive points $x(t), y(t)$ and $x(t+\Delta t), y(t+\Delta t)$ and if this distance is greater than a given maximum length $\Delta L_{\min }$, then increment Δt is reduced, and the second point is recalculated. Conversely, if the distance between these two points is smaller than a given minimum length $\Delta L_{\text {max }}$, then step Δt will be increased. The procedure is repeated until there is no need to adjust Δt, and only then the new point $x(t+\Delta t), y(t+\Delta t)$ is written to file.

If in an animated comet plot you make $\Delta L_{\text {min }}$ very close to $\Delta L_{\text {max }}$, the graph will appear to grow at a constant speed, because all segments of the polygon that approximates the curve will be about equal. In other instances, however, like in projectile or robot

FIGURE 1.24 Plot of the curve in Equation 1.10 with $0 \leq \theta \leq 8 \pi$ generated (a) for constant increment Δt and (b) for an adjustable increment Δt such that $\Delta L=31 \pm 0.001$. Both plots have 91 data points. Configuration files F1_24A.CF2 and F1_24B.CF2.
end-effector path problems, we would explicitly want the plot points to be displayed at a constant time interval Δt, so that a comet plot animation will appear realistic.

Archimedean spiral of equations

$$
\left\{\begin{array}{l}
x=\theta \cdot \cos (\theta) \tag{1.10}\\
y=\theta \cdot \sin (\theta)
\end{array}\right.
$$

is a classical parametric curve (see Figures 1.24 and 1.26). The data used to produce Figure 1.24a have been generated with the program P1_24A.PAS (see Appendix B), where parameter θ increases at a constant step between 0 and 8π.

The companion plot in Figure 1.24b was produced with the program P1_24B.PAS (see Appendix B), which implements the variable step-size algorithm discussed earlier. It ensures a 31 pixels long with 0.1% accuracy to each segment of the polygon that approximates the graph (the plot-box size was assumed to be 405×405 pixels). For the particular function in Equation 1.7, neither approach appears to be satisfactory: The plot in Figure 1.24a looks properly sampled close to the origin of the spiral, while the plot in Figure 1.24b looks better towards its outer end. In addition, the number of function calls inside P1_24B. PAS required to attain the specified polygon segment accuracy was considerable (over 95,000). The same result can be obtained in fewer function evaluations, and with improved accuracy, if a rapidly converging zero finding procedure is employed (see Chapter 4). On the other hand, the overall appearance of the graph will not change, unless the number of plot points is increased.

A different, more efficient strategy of curve polygonalization was implemented in the P1_25. PAS program (see Appendix B). Here, the function is evaluated at a constant parameter θ step, but not all points are written to file, that is, the program verifies (i) if the
current point coincides within a given tolerance with previous point (see line \#61 of the program) and (ii) if the current point and the previous two points are collinear, the same with a given tolerance (see line \#64).

The coincidence and collinearity conditions mentioned earlier are verified by the Coinc2Pts2D and Colin3Pts2D functions of the Boolean type that are called from unit LibGe2D. For conformity, these two functions are listed next:

```
function Coinc2Pts2D(xA,yA, xB,yB, Eps2: double): Boolean;
{Check if points A and B coincide with precision Eps2}
BEGIN
    Coinc2Pts:=TRUE;
    if (xA = xB) AND (YA = yB) then Exit;
    if (Sqr (xA-xB) +Sqr (yA-yB) > Eps2) then Coinc2Pts:=FALSE;
END;
function Colin3Pts2D(x1,y1, x2,y2, x3,y3, Eps3: double): Boolean;
{Check if points 1, 2 and 3 are collinear with precision Eps3}
var ReqEps3, D_13, Max_123: double;
BEGIN
    Colin3Pts:=FALSE;
    D_13:=Sqr (x1-x3)+Sqr (y1-y3); {distance between 1st and 3rd point}
    Max_123:=Max3 (Sqr (x1-x2) +Sqr (y1-y2), D_13, Sqr (x2-x3) +Sqr (y2-y3));
    if (D_13 = Max_123) then BEGIN {triangle 3-2-1 is obtuse}
            ReqEps3:=4.0*Sqr ((x2-x1) * (y3-y1) - (y2-y1) * (x3-x1))/(D_13+1e-100);
            if (ReqEps <= Eps3) then Colin3Pts:=TRUE;
        END;
END;
```

where function Max3 called by Colin3Pts2D from unit LibMath returns the maximum of three numbers.

Note that in both procedures, in order to eliminate the repeated calling of the mathematical function Sqrt, the squared rather than the actual distances between two points were used in calculations. Also, notice that in order to avoid a division by zero when evaluating ReqEps3, a very small positive number was added to the denominator.

It is visible that the plot in Figure 1.25, produced with the data from P1_25.PAS program in Appendix B, ensures a better distribution of the vertices of the approximating polygon. Parameters EPS2 in the Coinc2Pts2D and EPS3 in Colin3Pts2D functions were set to $8.3 \mathrm{e}-3$ and $4.2 \mathrm{e}-3$, respectively. You may want to experiment with P1_25.PAS and see how these two values and the number of initial data points (this was considered equal to 1000 for Figure 1.26 -see line \#10 of the program) affect the number and disposition of the vertices of the approximating polygon.

D_2D program employs the same two functions Coinc2Pts2D and Colin3Pts2D for optimizing polyline vertices before they are written to the DXF file. The corresponding EPS2 and EPS3 values are the DXF polyline coincidence and collinearity parameters that are read from line $\mathbf{2 5}$ of the CF2 configuration file. When you export a graph to DXF, the D_2D program will report at the end the maximum required coefficients EPS2 (first

FIGURE 1.25 Plot of the curve in Equation 1.10 with $0 \leq \theta \leq 8 \pi$ generated based on an initial pool of 1000 data points of constant $\Delta \theta$ increment, decimated to 99 points using the Coinc2Pts and Colin3Pts functions. Configuration file: F1_25.CF2.

FIGURE 1.26 Polar array of Archimedean spirals (Equation 1.11) with $n=8$ and $0 \leq \theta \leq 2 \pi$ divided between 31 data points of constant θ increment. Both figures are plots in progress, showing how data have been generated (i.e., last segment drawn is shown in dashed line) as (a) one spiral at a time and (b) all spirals are grown simultaneously. Configuration files: F1_26A.CF2 and F1_26B.CF2.
number) and EPS3 (second number), for which at least one plot point will be eliminated because of its coincidence or collinearity with its neighbors. In order to control the amount of vertex removal the polylines written to DXF will be subject to, you can modify the default EPS2 and EPS3 values on line 25 of the CF2 file.

Important: When a DXF 1:1 export is performed, coefficients EPS2 and EPS3 are automatically set to zero, so that all plot points are preserved.

Another useful capability of $D _2 \mathrm{D}$, other than eliminating points that are near coincident and near collinear, is that it concatenates into polylines line segments that are placed head to tail. This occurs even if these segments were generated out of sequence or with their ends flipped. To exemplify, let us look at the problem of plotting a polar array of n Archimedean spirals (see Figures 1.26 and 1.27) of equations:

$$
\left\{\begin{array}{l}
x=\theta \cdot \cos [\theta+2 \pi(i-1) / n] \tag{1.11}\\
y=\theta \cdot \sin [\theta+2 \pi(i-1) / n]
\end{array}\right.
$$

with $i=1$ to n and $0 \leq \theta \leq 2 \pi$. We will generate the data points in two ways: (i) the spirals will be generated one at a time and (ii) all n spirals will grow simultaneously. The data files used to plot Figure 1.26a and b were produced with programs P1_26A.PAS and P1_26B.PAS (see Appendix B), respectively, which consist of the same two for loops but nested in different order. In both programs, line breakers are used to separate the individual spirals. In addition, program P1_26B.PAS inserts line breakers to separate the individual segments that approximate the spirals. Evidently, in the latter case, data file organization is less effective because of the increased number of separators and because each plot point (except of end points) is written to file twice.

FIGURE 1.27 Polar array of Archimedean spirals (Equation 1.11) with $n=8$ and $0 \leq \theta \leq 2 \pi$ divided between 31 data points of constant θ increment and with the plot points (a) orderly oriented and (b) oriented at random. Configuration files: F1_27A.CF2 and F1_27B.CF2.

In both cases, however, the final graphs will look the same. The differences are visible only when these plots are shown as comet plots (see Section 1.12 on animations). Additional differences between these two graphs will become apparent when you export the respective plots to DXF, that is, the line segments the endpoints of which are identical (or coincide within tolerance EPS2) will be concatenated into polylines, even if they were plotted out of sequence. To verify, run D_2D with settings from F1_26A.CF2 and F1_26B.CF2 and export each of the graphs to DXF once with the option to separate graphs into DXF layers on, and the second time with this option turned off-you can toggle between these two export variants from option <F2> of the <F1..4> screen.

When opening inside AutoCAD the DXF file generated with settings from F1_26A.CF2, you will notice that each spiral belongs to a separate layer titled 'Linelsectionl' to 'Line1section8'. In case of the DXF file created with settings from F1_26B.CF2, each segment of the eight spirals belongs to 240 separate layers titled 'Linelsectionl' to 'Line1section240'. If you chose not to separate the lines into DXF layers, go to the <F1..4> screen, option <F2> in case of either F1_26A.CF2 or F1_26B.CF2 configuration files. In this case, a single layer named 'Linelsectionl' will contain all plot lines. Moreover, some spirals will appear joined into a single polyline because their initial points coincide. Also notice that for a DXF file generated with settings from F1_26B.CF2, even if the vertices were originally plotted out of sequence, they were concatenated correctly when converted to DXF polylines.

A third program available with the book named P1_27.PAS, which is a modification of Pascal program P1_26B.PAS (source code not included in appendix), generates the same type of data point structure as for Figure 1.26b, with the difference that the line segments are written to file at random, that is, either the outer point first followed by the inner point or vice versa. If you do DXF export and you chose to separate the graph into DXF layers from option $<\mathrm{F} 2>$ of the $<\mathrm{F} 1 . .4>$ screen, then the individual segments that form the spirals will still be connected into polylines, following a proper reordering of vertices. This helps reducing the size of output DXF files and also makes it easier to edit the plots generated by D_2D using AutoCAD, because the graphs consist of polylines rather than separate line segments.

Important: If a plot has been generated with data from two or more separate files, then a DXF layer will be created for each curve and their names will be 'Line1sectionl', 'Line2sectionl', etc. (see the DXF output of Figure 1.4). If line breakers are used, however, and if you chose to separate graphs into DXF layers, then additional layers will be created and their names will be 'Line1section1', 'Line1section2', etc. If the plot was generated with data from multiple input files, then layers 'Line2sectionl', 'Line2section2', etc., will also be created.

1.12 ANIMATIONS

D_2D allows you to create comet plots and animations, with or without having some of the curves plotted as background images and with or without accumulating frames. A comet plot is a regular plot where displaying the line segment that connects the current plot point with the rest of the graph or displaying the next marker of the plot is delayed a certain amount
of time. In nonaccumulating-frame comet plots that consist of broken-bar markers only (i.e., option $*^{* *}$ with \mid markers), each of these markers will be drawn as a vertical scan line.

In multiple-frame animations, a new frame is created and will be delayed any time a line breaker is encountered in the input data file or when the end of the input file is reached. In plots with data read from more than one input file, a new frame will be generated any time the data from a new $\$ 2 \mathrm{D}$ file is plotted on the screen. After the last $\$ 2 \mathrm{D}$ data file is plotted, everything is repeated.

If the plot consists of multiple $\$ 2 \mathrm{D}$ files, the curves generated using one or more of these files can be defined as background, and only the remaining curves will be animated.

You can choose to accumulate the frames in an animation or refresh the screen every time a new frame is displayed. In both cases, if one or more background curves have been specified, these will be displayed in each frame.

If you choose to number the vertices of a curve that originates from a single file using the *\#* marker option, and if line breakers are used to separate the graph into frames, then the numbering will be restarted every new frame, unless you choose to accumulate them by setting to ' Y ' the accumulate graphs from option $<\mathrm{F} 2>$ of the $<\mathrm{F} 1 . .4>$ screen.

The amount of delay between frames can be changed interactively, including holding the current frame indefinitely, that is, the next frame will be displayed only after pressing a key. When in the frame-hold mode, the current screen can be copied to PCX. A number of such PCX screenshots can be assembled into a stand-alone animated GIF or a movie file. Stream PCX export and export to multilayer DXF is possible from the $<$ F4> option of the <F1..4> screen.

Important: If the animation rate is set to 0 or 1 , stream PCX export will copy all frames to PCX. If the frame rate is 2,3 , or higher, only every 2 nd, 3 rd frame, and so on will be exported to PCX.

Multiple-layer DXF files can then be animated inside AutoCAD using the M_3D.LSP program discussed in Chapter 3. Currently, D_2D allows only line/section and nonaccumulated comet plots (i.e., scan lines or scan point plots) to be exported to multiple-layer DXF files, provided that the total number of animation frames is less than 1000.

In the remainder of this chapter, these features of $D _2 D$ will be exemplified. Of the plots discussed earlier, some will be changed into animations, and a couple of new examples will be presented. Since animations cannot be printed on paper, you will have to run D_2D. EXE with settings from the respective CF2 configuration files or play the animated GIFs available with the book.

- Comet plots: Once you have created a line graph, you can easily animate it as comet plot. To do so with the plot in Figure 1.1, run D_2D with settings from F1_01.CF2, then choose option $\langle F 2\rangle$ from the $\langle F 1 . .4\rangle$ screen and select the Animate graph and Comet plot options. For this particular case, it is irrelevant if separate graphs into animation frames is set to ' Y ' or ' N '. Alternatively, you can directly edit the F1_01.CF2 configuration file and set to ' Y ' lines 24 and 25(see the F1_30.CF2 file available with the book). While the animation is running, you can adjust the frame rate using the up and down arrow keys (see Figure 1.28).

When the frame rate is zero (see Figure 1.29), you can copy the current screen to PCX by pressing the $<$ F10 $>$ key. The name assigned by default to the PCX file will start with D2D00000.PCX (this is a copy of the background plot) and will be incremented by one with every new PCX export.

If Label animation frames from the $<\mathrm{F} 2>$ option of the $<\mathrm{F} 1 . .4>$ screen is set to ' Y ', then the number of the last line segment or plot point (these are called sections) that was added to the graph will be printed to the bottom of the screen (see Figure 1.30).

Important: To ensure that PCX screenshot file export is consistent, remove from the current directory all preexisting PCX files.

FIGURE 1.28 Screenshot of a comet plot in progress when in the automatic screen refreshing mode. Configuration file: F1_28.CF2.

FIGURE 1.29 Screenshot of a comet plot in progress when in the frame-hold mode. Configuration file F1_29.CF2 (remember to repeatedly press <CR> or the space bar for the animation to occur).

Line: 1, Section: 36

FIGURE 1.30 PCX screenshot of one frame of the comet plot in Figure 1.29 showing frame labeling (configuration file F1_30-00.CF2). See also animation file F1_30-00.GIF generated with every 10th section of the plot.

Examples of scan point and scan line plots with a background the same curve in Figure 1.30 can be produced using configuration files F1_30-01.CF2 and F1_30-02. CF2. See also animated GIFs F1_30-01.GIF and F1_30-02.GIF available with the book.

- Line/section animations: If you animate the previous graph under the option line/ section animation, the plot will only flicker because it consists of only one frame. To obtain a meaningful multiple-frame animation, the plot must either (i) originate from several files, each providing data for plotting one frame; (ii) originate from a single file that contains several line breakers; or (iii) originate from multiple files of which some of the files have line breakers inserted within.

The plot in Figure 1.3 originates from two files. In order to animate it, launch D_2D with settings from F1_03.CF2 and change to ' Y ' the animate graph and set animation option to line/section animation. Run D_2D twice: once with the Accumulate graphs in an animation set to ' N ' and a second time set to ' Y '. Because there are only two animation frames, their rate must be reduced to clearly observe the difference. The configuration files that will let you play these two animations are F1_30-03.CF2 (frames accumulate, i.e., the second frame is added to the first frame) and F1_30-04.CF2 (frames do not accumulate). See also the corresponding animation files F1_30-03.GIF and F1_30-04.GIF.

Configuration files F1_30-05.CF2, F1_30-06.CF2, F1_30-07.CF2, F1_30-08. CF2, F1_30-09.CF2, and F1_30-10.CF2 provide several more examples based on Figures $1.15,1.26 \mathrm{a}$ and 1.26 b . These are multiple-frame animations where data are read from a single

FIGURE 1.31 Last frame of the animations generated with configuration files (a) F1_31A.CF2 (vertex numbering continues from previous frame) and (b) F1_31B.CF2 (vertex numbering is restarted with each frame). The same animations are available as GIF files F1_31a.GIF and F1_31b.GIF.
file and line breakers are used as frame separators. The corresponding animated GIF files F1_31-05.GIF to F1_30-10.GIF are also available with the book.

- Vertex numbering: This example shows how vertex numbering is affected by the separation of the graphs into animation frames (see Figure 1.31). Data files F1_31.D2D and F1_31.DTA used in this application were generated with program P1_31.PAS (see source code in Appendix B). This new program originates from the one used to produce Figure 1.26, with the difference that the points placed at equal distance from the origin are connected together to form a closed polygon. With proper line breaking inserted into the input data file, when plotted using D_2D, it results in an array of spiraling polygons that can be also animated (see configuration files F1_35A.CF2 and F1_35B.CF2 and the corresponding animated GIF files F1_35A.GIF and F1_35B.GIF).

Important: In an accumulated-frame graph, data point numbering is continuous. When the frames are plotted separately, point numbering is restarted every frame. Currently, there is no interactive way, nor via CF2 editing, to continue vertex numbering from the previous frame.

- Background-curve animations: When plotting data from multiple files, you can select the curve(s) originating from one or more of these files to be displayed as background curves and display the remaining file(s) animation frames. A couple of comet-plot animations have already been mentioned (see F1_30-01.GIF and F1_30-02.GIF).

To animate as accumulated graph with a background the plot in Figure 1.3, launch D_2D with settings from F1_03.CF2, change to ' Y ' the animate graph and select comet plot. At this time, you have two plots that will be animated as comets, and depending whether accumulate graphs into animation is set to ' N ' or ' Y ', the graph of $F^{\prime}(x)$ will be either displayed on the top of $F(x)$ or it will replace it.

In order to turn the graph of $F^{\prime}(x)$ into a background curve, go to the $<\mathrm{F} 1 . .4>$ screen and press $\langle\mathrm{F} 3>$, then type ' B ' for background and ' 2 ', for the 2 nd curve, then press $<\mathrm{CR}>$ four times (see also F1_32-1.CF2 and animation file F1_32-1.GIF).

To display $F(x)$ as background curve and animate as comet the derivative $F^{\prime}(x)$, go to the same <F3> edit add remove lines menu, type ' B ' for background curve then type ' 1 '. At this point, both curves are background curves, so the plot will be motionless. To animate as comet the $F^{\prime}(x)$ graph, type ' B ' again, then ' 2 '. Then go to the final-graphic screen to watch the result. See also configuration files F1_32-1.CF2 and F1_32-2.CF2 and animated GIF files F1_32-1.CF2 and F1_32-2.GIF.

Two additional background-curve animations of an increased visual appeal have been generated using the data files generated earlier as follows: file F1_26A.D2D provides the background curve, that is, the spirals in Figure 1.26a, while the polygons in Figure 1.31 read from data file F1_31.D2D are animated as separate frames (see Figure 1.32a and animation file F1_32A.GIF) or as accumulated frames (see Figure 1.32 b and animated GIF file F1_32B.GIF).

Important: If you are in the animation mode and you exit $\mathrm{D} _2 \mathrm{D}$ from the $<\mathrm{F} 1 . .4>$ screen, the program will leave behind a file named D2D00000.PCX. This is a copy of the plot box and, if it is the case, of the background curve(s). In case you want to utilize it, save this

FIGURE 1.32 Last frames of the animations generated using configuration files F1_32A.CF2 (a) and F1_32B.CF2 (b). See also animated GIFs F1_32a.GIF and F_32b.GIF.

FIGURE 1.33 Last animation frames of randomly colored spiraling polygons with 2, 3, 4, and 5 sides. Configuration files F1_33-2.CF2 through F1_33-5.CF2. See also F1_33-2.GIF through F1_33-5.GIF.

PCX file under a different name because the next time you launch D_2D, it will be erased together with all \$2D temporary data files.

Before ending this chapter, one more program will be introduced, that is, P1_33.PAS (see Appendix B). This program generates the data files to animate polygons that spiral both forward and backward, which in addition are randomly colored in groups of 10 (see Figure 1.33). Spiraling direction change has been attained by assigning a negative initial value to the parameter, that is, Tmin=-2*Pi. You may want to experiment with other initial values and number of vertices and observe the effect. Ideas for more such animations are available from the references listed at the end of the chapter.

In this first chapter, the capabilities of $D _2 D$ plotting program have been explained and illustrated with examples so that you can solve your own similar problems. Further
applications of the $D _2 D$ program are presented in the remainder of the book. The source codes of D_2D.PAS and of Unit _ D2D.PAS it uses are both available with the book. The comments provided with the code will help you understand how the features discussed throughout this chapter have been implemented.

REFERENCES AND FURTHER READINGS

For raster graphic format convertors, see
www.online-utility.org/image_converter.jsp.
www.nchsoftware.com/imageconverter/index.html.
To download DXF viewers, go to
www.edrawingsviewer.com.
www.bravaviewer.com/viewers.
To download GIF-animation software, go to
www.gif-animator.com.
www.blumentals.net/egifan.
www.snapfiles.com/get/msgifanimator.html.
For more information on Nyquist-Shannon sampling theorem and on histogram plots, see
Alciatore, D. G. and Histand, M. B. (2007). Introduction to Mechatronics and Measurement Systems. Boston, MA: McGraw Hill.
Bendat, J. S. and Piersol, A. G. (2010). Random Data: Analysis and Measurement Procedures. Hoboken, NJ: John Wiley \& Sons.

For trapezoidal rule of integration, see Appendix A and
Kreyszig, E. (2011). Advanced Engineering Mathematics. Hoboken, NJ: John Wiley \& Sons.
For more details on the center and radius of a circle through three points, see
http://mysite.verizon.net/res148h4j/zenosamples/zs_circle3pts.html.
For polygonal representation of curves and other related topics, see
Douglas, D. H. and Peucker, T. K. (1973). Algorithm for the reduction of the number of points required to represent a digitized line or its caricature. Journal Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2), 112-122, University of Toronto Press.
Feschet, F. (2005). Fast guaranteed polygonal approximations of closed digital curves. Proceedings of the Scandinavian Conference on Image Analysis, in Lecture Notes in Computer Science, 3540, Berlin, Germany: Springer, pp. 910-919.
Hosur, P. I. and Ma, K.-K. (1999). Optimal algorithm for progressive polygon approximation of discrete planar curves. Proceedings of the International Conference on Image Processing, ICIP 99, 1, October 24-28, 1999, Kobe, Japan, pp. 16-20.
Kolesnikov, A. and Fränti, P. (2007). Polygonal approximation of closed discrete curves. Pattern Recognition, 40(4), 1282-1293.
Kolesnikov, A. and Fränti, P. (2007). Data reduction of large vector graphics. Pattern Recognition, 38(3), 381-394.
Lee, K. H., Woo, H. and Suk, T. (2001). Data reduction methods for reverse engineering. International Journal of Advanced Manufacturing Technology, 17(10), 735-743.

Marji, M. and Siy, P. (2003). A new algorithm for dominant points detection and polygonization of digital curves. Pattern Recognition, 36(10), 2239-2251.
Masood, A. and Haq, S. A. (2007). A novel approach to polygonal approximation of digital curves. Journal of Visual Communication and Image Representation, 18(3), 264-274.
Pikaz, A. and Dinstein, I. (1995). An algorithm for polygonal approximation based on iterative point elimination. Pattern Recognition Letters, 16(6), 557-563.
Reverchon, A. and Duchamp, M. (1993). Mathematical Software Tools in C++. Hoboken, NJ: John Wiley \& Sons.
Sato, Y. (1992). Piecewise linear approximation of plane curves by perimeter optimization. Pattern Recognition, 25(12), 1535-1543.

For minimum bracketing and for the secant method of finding zeros of functions, see
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989). Numerical Recipes in Pascal: The Art of Scientific Computing. Cambridge, MA: Cambridge University Press.

For more on spiraling polygons and other recursive graphics ideas, see www.physics. emory.edu/~weeks/ideas/.

This page intentionally left blank

Graphical Representation of Functions of Two Variables

The D_3D Program

THIS CHAPTER IS ABOUT A PROGRAM named D_3D that allows $z=F(x, y)$ single-valued functions of two variables to be represented graphically as surfaces, level curves, colorcoded nodes, and stem plots. D_3D also allows the gradient of the function to be graphed, alone or combined with other type of plots. The program was briefly introduced in Chapter 1 (see Figure 1.16) and is available with the book as source code (D_3D.PAS and UNIT_ D3D.PAS) and executable file (D_3D.EXE). Its main capabilities are as follows:

1. 3D surface plots can be represented as lines of constant x, lines of constant y, lines of constant z (i.e., raised level curves), or node points mapped on the function surface. These lines or nodes can be plotted alone or combined, while the function surface on which they are mapped can be made transparent or opaque.
2. When plotted alone, the nodes can be connected with a vertical line to the base of the plot box. These will be called stem plots and are useful in representing graphically functions of discrete or integer arguments.
3. Both the nodes and the level curves can be monochrome or can be colored according to their height.
4. When set to opaque, the patches that approximate the function surface can be colored in light gray (symbol G), background color (white - symbol W), yellow (symbol \mathbf{Y}) or can be colored according to their elevation (symbol :). These symbols must be entered on chime тепи 1 of D_3D. The $x=$ constant and $y=$ constant lines of the surface mesh can be set to 1 or 3 pixel thick from the same menu, while their color can be set only by editing the CF3 configuration file.
5. Any of the previously mentioned plots can be represented in parallel or perspective projections, as well as in top view and side views. Side-view plots can also be generated using the D_2D program (starting with the same input data file) as explained in Chapter 1 with reference to Figure 1.16.
6. Level curves (i.e., $z=$ constant lines) can be mapped on the function surface or can be projected on the bottom plane of the bounding box. For a given vertical axis range $z_{\text {min }} \ldots z_{\text {max }}$ and number of level curves, you can choose to distribute the level curves either evenly spaced or logarithmically (log) spaced. Log-spaced level curves can be accumulated towards $z_{\text {min }}$ (the Log spaced down option), towards $z_{\text {max }}$ (the Log spaced up option), or towards $z=0$ (the Log spaced from zero option) whether or not $z_{\min }<0<z_{\max }$. Level-curve elevation can also be edited interactively and can be optionally saved to the CF3 configuration file, from where they will be read next time you run D_3D. If saved to CF3, level-curve heights can also be modified using a text editor.
7. Similarly to level curves, for any view other than the side views, it is possible to represent the gradient of the function as a set of arrows projected on the bottom plane. The gradient is evaluated by D_3D through finite differences using the already available plot data. By contrast, the gradient plotting functions in MATLAB and Scilab (www.scilab.org) require the components of the gradient to be supplied separately.
8. The orientation of the z-axis can be reversed from within $D _3 D$, which is more intuitive than viewing the function surface from below.
9. The upper and lower limits of the z-axis can be modified by the user, and if it is the case, the function surface will be truncated where it intersects the top and/or bottom planes of the plot box. These intersections between the function surface and the bounding box can be shown either opaque or transparent or can be plotted alone, without the main body of the function.
10. The patches that approximate the function surface can be selectively displayed based on their location, that is, if they are situated inside the plot box or outside the plot box, or if they intersect the upper and/or lower planes of the plot box. This feature of $D _3 D$ is useful in representing constrainted functions and inequalities of two variables.
11. The original input data file can be scattered (decimated), so that fewer points will be utilized in plotting the function (see chime тепи 3 options).
12. Plots can be exported to file in PCX format or DXF AutoCAD 12 vector format (i.e., R12 DXF). When in top view, the level curves can be exported as DXF 1:1, that is, the scale factor will be equal to one on both x - and y-axes.
13. When exiting D_3D, the plot-box size, orientation, divisions and values over the three axes, limits over the z-axis, input data file name, and, in case of ASCII
input, the column numbers from where data were read will all be saved to a configuration file with the extension CF3. If you exit D_3D from the <F1..4> screen, or if a new plot has been created from scratch, these settings will be written to a new configuration file named automatically !0000001.CF3, !0000002.CF3, and so on. If you exit D_3D in graphic mode, these settings will be saved to the active CF3 file, and the original configuration file will have its extension changed to OLD.
14. Similarly to D_2D, the <F1>redo and <F2>redoo options from the startup menu allow the user to recreate the plot with its settings recorded in the CF3 file found last in the current directory. The $<$ F1>redo option will apply the limits $z_{\text {min }} \ldots z_{\max }$ as they were recorded to the configuration file, while $<$ F2 $>$ redof will reset these limits such that the function surface will exactly fit the bounding box. The $<$ F3>CF3 option from the startup menu allows the user to inspect (but not edit) the CF3 file before passing it to D_3D. To run a CF3 file without preview, press $<$ F4 $>$ or $<C R>$ at startup and open it as if it were a data file.

Important: There are a few settings that can be modified only by manually editing the CF3 file. The text between curl brackets serves as comments and should not be deleted because D_3D will report an error. These settings are as follows:
(i) Plot window width w and height h : These refer to the rectangular viewport of the computer screen that fits the projected plot box. Can be changed interactively, but if for any reason you do not want these dimensions to be multiples of 5, you must edit the first two numbers on line $\mathbf{6}$ of the CF3 file. Remember that they cannot exceed 625 and 430 units, respectively.
(ii) Plot-box orientation and perspective parameters kH, kV, tan(Gamma) and $\tan ($ Delta): Are listed on line 6 of CF3 files, together with parameters w and h mentioned earlier. Coefficients kH and kV define the horizontal and vertical locations of the origin of the 3D plot inside the viewport. In turn, tan (Gamma) and tan(Delta) are the shear and taper angles that allow parallel and perspective projections to be emulated. These parameters can be changed in discrete increments from within D_3D, but editing the CF3 file can be assigned any value. Do not exceed $-0.97 \leq \mathrm{kH} \leq 0.97,0 \leq \mathrm{kV} \leq 1,0 \leq \tan$ (Gamma) ≤ 0.95, and $0 \leq \tan$ (Delta) ≤ 0.3, or otherwise the plot will appear distorted.
(iii) Mesh line and node color: Can be changed only by modifying the code on line number 5 of the CF3 file, that is, 1, blue; 2, green; 3, cyan; 4, red; 5, magenta; 6, brown; 7, light gray; 8, dark gray; 9, light blue; 10, light green; 11, light cyan; 12, light red; 13, light magenta; 14, yellow; and 0 or 15 , white (the recommended mesh colors that do not cause confusion with the elevation color scale were italicized). Note that a white color mesh will be visible only on a colored patch, but not as wireframe views or white patches (see chime тепи 1).
(iv) Node type: Can be changed only by editing line number 7 of the CF3 file. Acceptable values are 0,1 , and 2 for opaque, solid, and transparent circles, and between 5 and 9 for $*, \diamond, \square, \nabla$, and Δ, respectively.
(v) Division lines outside and inside lengths: Major division lines outside length on all three axes and inside lengths on the z-axis only can be modified by editing line number 8 of the CF3 file. Along the x - and y-axes, the inside division line lengths will always be zero. Outside lengths on all three axes can be set to any value, but for esthetical reasons, they should not exceed 10 units. The length of the minor division lines is by default to 60% the length of the major division lines.
(vi) DXF polyline coincidence and colinearity parameters: They have the same meaning as in D_2D and are read from line number 27 of the CF3 file. These are required when optimizing, prior to R12 DXF export, wireframe plots, level curves projected on the bottom plane, or top-view plots. For polyline optimization to take place, these two parameters must be less than the values reported by D_3D after completing a R12 DXF export.

Important: When a plot with the hidden lines removed is saved to DXF and then opened inside AutoCAD, to change the wireframe appearance of the plot, the hide or shade command must be issued. In order for these commands to have effect, the segments that form the function-surface mesh are drawn along the borders of identically shaped AutoCAD regions, and as the plotting advances, both the regions and their border segments are progressively elevated a small amount. This is the reason why the line segments of plots created in hide mode inside D_3D cannot be concatenated into polylines after they have been exported to AutoCAD.
(vii) Level-curve heights: If you choose to manually write them to file, you must add them one per line at the end of the current CF3 file (after the line that reads *** Level curve heights $* * *$) and change to 5 the value on line number 15 . This latter change is not essential, however, because choosing to read level-curve heights from file can be set interactively from within D_3D.
(viii) Default file extension: When starting a new plot, D_3D will extract from line 4 of the master configuration file !.CF3 the extension of the files that will be listed for input when pressing $\langle\mathrm{F} 4\rangle$ at startup. You can write a different extension on line 4 or you can edit it blank, in which case D_3D will assume the default extension to be .CF3. In a regular CF3 file, line number 4 holds the title of the plot.

Important: In Windows XP, you can link CF3 files and input data files of extensions D3D, R3D, T3D, and G3D to the D_3D.EXE program available on your hard drive by editing the Open With properties of these files. From Windows Explorer, select the file you want to link. Then from the File \rightarrow Open With \rightarrow Chose Program menu, select D_3D.ExE. Make sure you check the option "Always use the selected program to open this kind of file" before pressing OK to confirm the setting.

Important: When you redo a plot by running its configuration file, the input data file should be either in the same folder with D_3D.EXE or in the directory that precedes its name on line 3 of the CF3 file. If it is in neither place, an error message will be issued.

Important: A copy of the master configuration file !.CF3 or of any other valid CF3 file should be available in the folder from where you launch D_3D.EXE. If none is available, D_3D will report error. Likewise, in order to be able to export your plot to R12 DXF, a copy of the DXF.HED file should be available in the current directory.

The remainder of this chapter explains in detail the capabilities of $D _3 D$. Its user interface is similar to that of D_2D discussed in Chapter 1, so you may find it easy to directly experiment with the program.

2.1 HOW D_3D WORKS?

The function surface to be plotted is approximated by an array $\mathrm{Z}_{m \times n}$ of height values $z_{i j}=F\left(x_{i}, y_{j}\right)$ in a regular grid of samples x_{i}, y_{j} (where $i=1 \ldots m$ and $j=1 \ldots n$). Every row of this array will correspond to a single x coordinate, and every column of the array will correspond to a single y coordinate. Knowing the grid values x_{i} and y_{j} used to generate the $\mathrm{Z}_{m \times n}$ array, $\left(x_{i}, y_{j}, z_{i j}\right)$ triplets can be formed, each corresponding to a single point on the function surface.

Instead of using these $\left(x_{i}, y_{j}, z_{i j}\right)$ triplets to generate the screen coordinates of the projected points of the function surface as other plotting programs do, D_3D performs all calculations in the 2D image space. Therefore, the input data can be limited to only a number of height values $z_{i j}$ equally spaced over the $\left[x_{\min }, x_{\max }\right] \times\left[y_{\min }, y_{\max }\right]$ domain. In addition to these $z_{i j}$ values, the grid size $m \times n$ and the limits over x and y must be specified to D_3D. These limits are required only to properly place division and values along the horizontal axes.

Important: The maximum $m \times n$ size that a data file can have is 501×501. Evidently, the larger the total number of points $z_{i j}$, the longer it will take $D _3 D$ to generate a plot or to save it to DXF.

The way D_3D generates oblique projections is by diagonally offsetting a family of curves (see Figure 2.1). Additional parallel and perspective projections can be obtained by shearing and/or tapering an initial oblique projection as illustrated in Figure 2.2. Using Painter's algorithm (Foley et al. 2013) and the polygon scan conversion procedure FillPoly available in Pascal, the hidden-line removal can be done conveniently in the 2D image space. The components of the gradient, as well as the intersections between the function surface and the lower and/or upper plane of the plot box (occurring in level curve and truncated surface plots), can all be evaluated in the image space, without the need for complicated 3D calculations.

To illustrate how various projections can be generated through separate or combined shear and taper transformations, launch D_3D, press \langle F3 $>$ at startup, and open configuration file F2_01DN.CF3. Your plot should look similar to the front portion of Figure 2.1. Press the <Backspace> key twice to go to the screen showing the plot box with its axes oriented and labeled \mathbf{x}, \mathbf{y}, and \mathbf{z} as in Figure 2.3. This will be called deformable-box screen. Notice the

FIGURE 2.1 Oblique projection shown as a diagonal offset of a family of $x=$ constant curves. The figure has been generated inside AutoCAD by combining the plots with settings from configuration files F2_01DN.CF3 and F2_01UP.CF3.

FIGURE 2.2 (a) An initial oblique projection and various other projections obtained through (b) shearing by angle γ, (c) tapering by angle δ, or (d) combining shearing and tapering.
numbers on the top of the view window and how their values change as you reshape/reorient the plot box. These are the already mentioned parameters $\mathrm{w}, \mathrm{h}, \mathrm{kH}, \mathrm{kV}, \tan$ (Gamma), and \tan (Delta) read from the CF3 file.

To resize the viewport that fits the plot, hold the $<\mathrm{Ctrl}>$ key and press either $<\operatorname{Pg} \mathrm{Up}>$, $<$ Pg Dn $\rangle,\langle\leftarrow>$, or $\langle\rightarrow\rangle$. As you do this, the first two numbers (i.e., w and h) on the top of the screen will change in increments of 5 .

To modify the location of the origin of the projected reference frame inside the viewport, use the four arrow keys. The effect will be equivalent to a left-right, up-down displacement of the viewpoint relative to the plot box. Observe how parameters kH and kV displayed 3 rd and 4 th on the top of the screen change their values between -1 and 1 and 0 and 1 , respectively.

To obtain more realistic parallel projections (Figures 2.2b and 2.4a), press the $<\operatorname{Pg} \operatorname{Dn}>$ key several times. This will increase the value of shear angle γ. To undo, press the $<\operatorname{Pg} \mathrm{Up}>$

FIGURE 2.3 Deformable box that fits a viewport of width $H_{1}+H_{2}=445$ and height $V_{1}+V_{2}=310$. The origin of the plot is located by the $\mathbf{k H}=H_{1} / H_{2}$ and $\mathbf{k V}=V_{1} / V_{2}$ coefficients. For a view point from the 4 th quadrant, $\mathbf{k H}<0$, while for a view point from the 1 st quadrant, $\mathbf{k H}>0$. As shown $\mathbf{k H}=0.28$ and $\mathrm{kV}=0.41$.

FIGURE 2.4 Plot of the orange-squeezer function in Equation 2.2 shown as (a) raised level curves and as (b) crosshatched surface with the z-axis reversed. Configuration files F2_04A.CF3 and F2_04B.CF3.
key repeatedly. Note that $\tan (\gamma)$ is being displayed as the 5th number on the top of the screen (see Figure 2.3).

To taper the plot box as shown in Figure 2.2c (i.e., to increase angle δ) and provide a pseudo-perspective projection of your plot, press several times $\langle\mathrm{F} 5\rangle$. To undo, hold the $<$ Ctrl> key and press <F5> again. Notice how the last number on the top of the screen, that is, $\tan (\delta)$, changes its value.

If a shear and a taper transformation are combined on the same graph, it will result in additional perspective views as illustrated in Figures 2.2d and 2.4a.

Important: You can restore the plot-box orientation to (approximately) an isometric view by pressing the <Home> key. If you press simultaneously the <Ctrl> and <Home> keys instead, the orientation will change to top view, like for a level-curve plot.

2.2 D_3D INPUT DATA STRUCTURE

To demonstrate the capabilities of the D_3D program, several functions will be considered as follows:

The function in Figure 2.1 known from Chapter 1, with a simplified description, that is,

$$
\begin{equation*}
F_{1}(x, y)=\frac{1}{\sqrt{\left(1-y^{2}\right)^{2}+(2 x \cdot y)^{2}}} \tag{2.1}
\end{equation*}
$$

and $0.1 \leq x \leq 1$ and $0 \leq y \leq 2.5$
Function

$$
\begin{equation*}
F_{2}(x, y)=2 e^{-\left(\sqrt{x^{2}+y^{2}}-1.5\right)^{2}}-1 \tag{2.2}
\end{equation*}
$$

plotted in Figure 2.4 for $-\pi \leq x \leq \pi$ and $-\pi \leq y \leq \pi$, which will be further called the orange squeezer function

Function with two minima and two maxima of equation

$$
\begin{equation*}
F_{3}(x, y)=10\left[e^{-(2 x+1)^{2}-(y+1)^{2}}-e^{-(x-1)^{2}-(y+1)^{2}}\right]^{2}+15\left[e^{-(x-1)^{2}-(y-1)^{2}}-e^{-(2 x+1)^{2}-(2 y-1)^{2}}\right]^{2} \tag{2.3}
\end{equation*}
$$

graphed in Figure 2.5 for $-1.5 \leq x \leq 2.5$ and $-2.5 \leq y \leq 2.5$.
Because of its appearance, this third function will be further referred to as the fourhump function. Additional functions will be introduced later.

The data files required to plot Figures 2.1, 2.4, and 2.5 have been generated using program P2_123. PAS listed in Appendix B (you may also want to review program P1_156. PAS discussed in Chapter 1, which generates a file similar to F2_1.D3D). Note how function names F1, F2, and F3 can be one by one assigned to variable F of the argF2 type

FIGURE 2.5 Mesh plot of the function in Equation 2.2 (the four-hump function) with 61×61 data points, featuring raised and projected $z=$ constant level curves, also known as contour lines. Configuration file F2_05.CF3.
declared in unit LibMath, so that these functions can be activated or inactivated, depending on which file is to be generated (lines \#10, \#12, \#34, \#40, and \#46).

The companion program P2_3.PAS (see Appendix B) generates four different data file types, all named F2_3, that can be used to plot function F_{3} in Equation 2.3. The formats of these files are as follows: (i) a file of doubles with the extension D3D and identical with the one output by program P2_123.PAS; (ii) a file of reals with the extension R3D; (iii) one ASCII file with the extension T3D; and (iv) one ASCII file with the extension G3D. Although of different types, the D3D, R3D, and T3D files have the same structure: the first six entries in these files are the grid size and the limits over the x - and y-axes, that is, m, $n, x_{\min }, x_{\max }, y_{\text {min }}, y_{\text {max }}$, followed by the $z_{i j}$ components with $i=1 \ldots m$ and $j=1 \ldots n$ of the function surface mesh. In turn, the G3D file is structured as ($x_{i}, y_{j}, z_{i j}$) rows-including parentheses-which is a format intended primarily for the G_3D.LSP AutoLISP program that allows true 3D surfaces and 3D curves to be generated inside AutoCAD as explained in Chapter 3.

If you press the <F10> key right after you launch D_3D, an About screen will come up where these four file formats are explained (see the About insert on next page), and the possible input data errors that D _3D may report. As mentioned in the About screen, if the number of $z_{i j}$ components read by D_3D from data file is less than the grid size $m \times n$ recorded at the beginning of the same file (for reasons like accidently or intentionally aborting a lengthy data generating run), you will still be able to graph the available data, but the plot will appear incomplete.

About D_3D ver. 2014

```
<<<<< D_3D plotting program. <c> P.A. Simionescu 2014. >>>>>>
Expected input file extensios are D3D and R3D. Any other extenssion will be
assumed of an ASCII file.
D3D <doubles> R3D <reals) or ASCII files on columns should be structured as:
m n Xmin Xmax Ymin Ymax Z11 Z12 Z13..Z1m Z21 Z22 Z23..Z2m...Zn1 Zn2 Zn3..Znm
with m grid size over X axis and n grid size over Y axis.
ASCII files can also be structured as <Xi Yj Zij) ordered rows with
i=1..n and j=1..m. This is the format readable by G3D.LSP.
Values Abs(Zij) > 1.0E+30 will be truncated automatically by the plot box.
Possible input data error messages:
    1: empty file;
    2: malformed file or premature end of data;
    3: m< 2;
    4: m > 501;
    5: n< 2;
    6: n > 501;
    7: invalid Zij components, or Zij fewer than n'm
Note that data files with Zij fewer than n·m can still be graphed truncated
to the nearest n.
In WINDOWS XP you can automatically open CF3, D3D, R3D or G3D files with
D_2D.EXE by selecting 'Open-With' from the File function of Vindows Explorer
```


2.3 MESH PLOTS AND THE VISIBILITY PROBLEM

This section explains how the visibility problem is solved by D_3D. You will also learn how to reduce the number of plot points (i.e., how to scatter the original data) and how to switch between a mesh plot (also known as crosshatch plot) and an $x=$ constant only or $y=$ constant only plot. Also explained is how to edit the appearance of the division and values over the x-, y-, and z-axes and the gridlines along the sides of the plot box.

Begin by running the $D _3 D$ program with settings from configuration file F2_06A. CF3, and redo Figure 2.6a. The companion plot in Figure 2.6b has been generated using the same data file as input, but the points along the y-axis were scattered from within $\mathrm{D} _3 \mathrm{D}$. Additional modifications over Figure 2.6a are plotting the $y=0$ and $y=2.5$ boundaries of the function surface and a new layout of the side gridlines.

After launching D_3D with settings from F2_06A.CF3, to modify the gridlines and z-axis divisions, do the following: From the final graphic screen, press the <Backspace> key once to go to what will be further called the graphic edit screen. Here press <Insert> then $<Z>$ and respond by typing ' 0.5 ' to change the interval between two z values over the vertical axis. Then type '4' to change the number of small intervals between two values; typing ' 1 ' instead will display no minor division line. Changing the division and value placements along the x - and y-axes can be done in the same manner. Next, press <Insert> then <CR> to confirm the default option, and then type ' 6 '. This will reduce the number of side gridlines from 11 to 6 . You can turn the gridlines completely off by typing ' 0 ' instead of ' 6 ' or by pressing <G> when in the graphic edit screen. Pressing $<\mathrm{G}>$ a second time will turn the gridlines back on.

FIGURE 2.6 Plot of the function F_{1} in Equation 2.1 as lines of constant x. Figure (a) has 10×261 data points, while figure (b) has 10×21 data points. Configuration files F2_06A.CF3 and F2_06B.CF3.

Note that the z-axis division and value editing can be also done following option <F1> of the $<\mathbf{F 1} . .4>$ screen. From here, you will in addition be able to modify the $z_{\min }$ and $z_{\max }$ limits of the plot, including resetting them to their original values.

Important: If the level curves mapped on the 3D function surface are equally spaced, you can align them with the gridlines so that extracting data manually from the plot becomes more convenient. When doing so, remember that the top and bottom edges of the plot box count as gridlines.

If you press the $<\mathrm{Y}\rangle$ key while in the graphic edit screen, you will activate the displaying of the $y=$ constant lines, in addition to the already existing $x=$ constant lines. However, because there are too many points (i.e., 261) along the y-axis, it will be hard to distinguish them. One solution is to run P2_123. PAS again and generate a new data file having fewer points. Alternatively, you can use the capability of D_3D to scatter the data and reduce the number of points along the y-axis. Note, for example, how the original input files with 481×481 points have been scattered to only 41×41 points in case of Figure 2.4 and to 61×61 points in case of Figure 2.5. This is done inside D_3D by eliminating every other point or every two, three, or more data points along the respective axis.

In case of the F2_1.D3D data file, the 261 points along the y-axis can be reduced to $131,66,53,27,21,14,11,6,5$, and 3 points. To scatter the number of y points of the plot at any of these levels, go to the \langle F1.. $4>$ screen and press \langle F3 $>$. A new screen will open with what will be called a chime menu-this particular one will be referred to as chime menu 3. Change to Y the first of the six characters of the menu, and press $<\mathrm{CR}>$. Press $<\mathrm{CR}>$ again to leave unchanged the number of plot points over the x-axis (i.e., 10 of 10), and then use the $\langle\uparrow\rangle$ and $\langle\downarrow\rangle$ keys to set the new data-point resolution along the y-axis to 21 of 261 . Press $<\mathrm{CR}>$ several more times until you get to the final graphic screen. What you should obtain must be similar to Figure 1.4b, less the $y=$ constant lines to the left and to the right, that is, the surface borders. To turn these borders on, go to the $\langle\mathrm{F} 1 . .4\rangle$ screen and press $<\mathrm{F} 2>$. Then press $<\mathrm{CR}>$ twice to leave unchanged the title and the chime menu 1 settings (the one on top). On chime тепи 2, change the last \mathbf{N} into \# to activate the displaying of the borders of the graph. When you are finished, go back to the final graphic screen to see the change appearance of your plot.

Important: The editing mode of chime menus is write-over, so do not use the delete keys. If you want to restore the initial settings of a chime menu, just press the $<$ Esc> key.

Important: The settings input on chime menи 1,2, and 3 are saved to lines 30 to 32 of the CF3 file. Any time you edit chime menu 3, the new settings will be added to the current CF3 file above the lines that reads *** Level curve heights ***. Also recorded in line with chime тепи 3 are two numbers representing the depth at which data were scattered over the x - and y-axes, respectively. For example, in the configuration file F2_06A.CF3, line 32 reads: YNNNNN 1 6. These are interpreted as "scatter the input data at depth 1 along the x-axis (i.e., will remain unchanged) and at depth 6 along the y-axis (i.e., will retain only 21 points out of 261 since 21 is the 6 th number in the row $261,131,66,53,27,21,14,11,6,5$, and 3)." If you replace 6 with 12 or bigger number, nothing will occur because 11 is the deepest y-axis scatter level possible for the given input data file. Note that chime menu 3 settings are not recorded to the master configuration file !CF3.

Important: Every time chime menu 3 is activated, a different \$3D temporary file (in D3D format) is generated. The most recent of these files holds the data used to generate your final plot, and depending on the chime тепи 3 history, it could have fewer points, or the
data could be recorded in a different order than in the original file. If you exit D_3D from the $<$ F1..4> screen rather than the final graphic screen, these $\$ 3 \mathrm{D}$ files will be preserved. If you want to use any of these temporary files, modify their extension to D3D, or otherwise they will be deleted next time you launch D_3D.
Important: A built-in scatter calculator is available inside D_3D and can be launched by pressing the $<$ F9 $>$ key from the startup menu. This will list the possible scatter options for number up to 501 . For example, if the grid size over x - or y-axis is 481 , it can be scattered to $241,161,121,97,81,61,49,41,33,31,25,21,17,16,13,11,9,7,5,4,3$. In case of an actual plot, the same numbers will be available from chime тепи 1 .

To remove the invisible lines and plot both the $x=$ constant and $y=$ constant lines as shown in Figure 2.7 starting from the plot in Figure 2.6b, run D_3D with settings from configuration file F2_6B.CF3. Then go back to the graphic edit screen and press $<\mathrm{H}>$ to change visibility from wireframe to hide. Also press $\langle\mathrm{Y}\rangle$ to turn the $y=$ constant lines on. To modify the mesh color, you must edit line number 5 of the F2_6B.CF3 file. Use 6 for brown, 8 for dark gray, 14 for yellow, and 15 for white.

D_3D employs the scan conversion procedure FillPoly in Pascal to fill with color the patches that form the function surface and thus remove the invisible lines. The order in which the polygons are drawn and filled with color is from back to front. For first-quadrant views, this succession is from left to right, while for fourth-quadrant views, the succession is from right to left (see Figure 2.8).

Only after the current patch is generated and filled with color are the $x=$ constant, $y=$ constant, and/or the elevated $z=$ constant lines drawn. This approach, called

FIGURE 2.7 PCX output of the crosshatch (mesh) plot of the function of Equation 1.4. Configuration file F2_07.CF3.

FIGURE 2.8 Plot in progress showing the order in which the hidden lines are removed, (a) for views from the first quadrant and (b) from the fourth quadrant. Configuration files F2_08A.CF3 and F2_08B.CF3.

Painter's algorithm, is also applied when a DXF copy of your plot is generated by drawing each patch slightly more elevated than the previous one, so that the AutoCAD hide command will have the intended effect.

To better understand how Painter's algorithm is applied by D_3D to solve the visibility problem, a second executable file named D_3Dslow.EXE was prepared and is available with the book. This program is identical to D_3D, with the difference that you will have to press the $<C R>$ key for every patch or line segment of the function surface to be drawn on the screen. Run D_3Dslow.EXE with settings from F2_08A.CF3 to observe the order in which the patches and lines that form the function surface are plotted on the screen (see Figure 2.8a). Switch to a fourth-quadrant view from within the program, or simply run the F2_08B.CF3 configuration file, and note the changed order of plotting the gridlines and surface patches (see Figure 2.8a).

2.4 NODE AND STEM PLOTS

D_3D allows you to place a node at every data point, whether or not $x=$ constant, $y=$ constant, or $z=$ constant lines are mapped on the function surface. In turn, the function surface can be set to either transparent or opaque. Figure 2.9a shows an example of an opaque function surface with nodes filled with background color. The companion Figure 2.9b displays colored stem plot for 10×11 points of the original data file. In the remainder of this paragraph, it will be explained how these two plots were generated, starting from the configuration file of the plot shown in Figure 2.7.

To recreate the plot in Figure 2.9a, launch D_3D with settings from F2_07.CF3, then choose $<\mathrm{F} 2>$ from the $<\mathrm{F} 1 . .4>$ screen, and on chime тепи 2 change the node size from 0 to 5 . Before you move to the final graphic screen to view your plot, press $\langle G\rangle$ to suppress the gridlines.

FIGURE 2.9 The function F_{1} in Equation 2.1 represented as (a) opaque crosshatched-surface mapped with empty round nodes and (b) colored node stem plot-notice the color scale band integral part with the z-axis labeling. Configuration files F2_09A.CF3 and F2_09B.CF3.

Creating the stem plot in Figure 2.9b requires additional interaction with the program: First go to $<\mathrm{F} 1 . .4>$ screen, press $<\mathrm{F} 2>$, and change the last entry of chime menu 2 from '\#' to '!' - -this will activate the stems. Also press $\langle\mathrm{F} 3>$ from the same $<\mathrm{F} 1 . .4\rangle$ screen and edit chime тепи 3 to reduce to 11 the number of points along the y-axis. Stems will not be displayed unless you press the $<\mathrm{W}>$ key when in the graphic edit screen to change visibility from hide to wireframe. With this same occasion, suppress the displaying of the $x=$ constant and $y=$ constant lines by pressing the $<\mathrm{X}\rangle$ and the $\langle\mathrm{Y}\rangle$ keys. Next edit the divisions and values over x - and y-axes so that they will look as shown in Figure 2.9b. Finally, set the number of values over the z-axis to 10 and the number of minor intervals between two values to 23 (the maximum allowable in this case). Note that if the total number of minor division lines over the z-axis is greater than 127, D_3D will thicken the division lines over the z-axis and color them according to elevation on a 10 -color scale. Therefore, even with 23 minor intervals, the z-axis will be color coded since $10 \times 23>127$.

Important: Stem lines and level curves share the same thickness, controlled by the first entry on chime menu 2. This menu also controls the color of the level curves and of the nodes, that is, if you want these colored according to their height, then set the third entry of chime тепи 2 to ' Y '.

To change the node type from empty round to solid round and to widen the z-axis color band, you must exit D_3D and apply these changes to the last CF3 file created as explained next: Open the CF3 file with Notepad; on line number 7, change the node type from 0 to 1 ; and on line 8 , change the outside length of the division lines to 9 and their inside length to 0 (the latter change will be applied only to the division lines placed along the z-axis). Save your configuration file under a different name (i.e., F2_08B. CF3) and open it with D_3D. You should obtain a plot similar to the one in Figure 2.9b.

FIGURE 2.10 The four-hump function represented as 481×481 pixel-size nodes mapped on a transparent surface. The local minimum, local maximum, and saddle-point elevations were extracted through inspection inside AutoCAD. Configuration file F2_09.CF3.

Another example of a node plot is given in Figure 2.10. This is a zero-elevation diagonal view of the four-hump function represented as point cloud, that is, nodes are mapped on a transparent function surface. Using AutoCAD, the local minimum and maximum points were estimated as -9.746 and 9.027 , and the height of the saddle point was estimated as 0.265 . Evidently, the accuracy with which these values were determined depends on the grid size at which the function has been sampled. If you are interested only in the global minimum and global maximum values, there is no need to export your graph to AutoCAD since these can be displayed on the graph by fitting the function surface to the plot box, that is, go to the $<$ F1.. $4>$ screen, press $<$ F1>, and type ' ${ }^{\prime}$ ((a dot) for the upper and lower limits of the z-axis in the respective boxes (this will reset the limits over the z-axis in D_3D).

Important: The z-axis scale can be displayed in two ways: with the values and divisions starting from zero or aligned with the ends of the respective axis. To toggle between the two alignment modes, press <F5> from the graphic edit screen. For the plot in Figure 2.10, this will have no effect, however, since along the z-axis there are only two values, that is, the end values.

2.5 EQUALLY SPACED LEVEL-CURVE PLOTS

In this paragraph, it will be explained how to match the elevation of the side gridline with the height of the level curves. You will also learn how you can modify the level-curve heights from within D_3D and how to append these values to the current CF3 file and use them in later plots. Once saved to file, you can further edit these height values, delete some of them, or append new ones. Bridge-like defects that may occur when producing level-curve plots, or when the function surface is trimmed by the plot box, are also discussed in this section.

FIGURE 2.11 R12 DXF copy of a raised level-curve plot with gridlines and level curves placed at the same heights. This is a wireframe plot, the visibility problem of which has been solved by hand from within AutoCAD. Configuration file F2_11.CF3.

First, we will add elevated level curves to the plot in Figure 2.6 and then make their heights coincide with the elevations of both the gridlines on the side of the pot box and the division lines along the z-axis-see Figure 2.11. To do so, launch D_3D with settings from F2_06A.CF3, then go to the graphic edit screen, press $\langle\mathrm{Z}\rangle$ to turn the $z=\mathrm{constant}$ lines on, then press $<\mathrm{W}>$ for a wireframe plot. Then press <Insert> followed by $<\mathrm{Z}>$ to change the interval between two values along the z-axis to 0.5 units and the number of minor division lines per interval to 2 . The total number of divisions, both short and long, that will be placed along the z-axis will now be 21 . To make the number of gridlines equal to 21 as well, press <Insert> then <G>. D_3D will suggest several numbers to choose from, including 21, which will ensure (although not always) that each gridline is an extension of a z-axis division line.

Go to the <F1..4> screen and press $<\mathrm{F} 2>$, then change the last entry of chime menu 2 to '\#' (this will turn the border of the function surface on). Finally, go back to the <F1. .4> screen and press $\langle\mathrm{F} 4\rangle$. Leave unchanged the z-axis settings, and type ' Y ' when asked to Update level curves? Scroll through the available options using $\langle\uparrow\rangle$ and $\langle\downarrow\rangle$ and select Evenly spaced, then type ' 21 '. Continue pressing the $<\mathrm{CR}>$ key until you get to the final graphic screen.

If you want the level-curve heights to be appended to the CF3 file that is created when you exit D_3D, go back to the graphic edit screen and press $\langle E\rangle$. D_3D will prompt you to edit one by one the level-curve heights or just press the $<C R>$ key to confirm an existing values. When asked if you want them saved to file, respond by typing ' Y ', then go to the final graphic screen and exit the program. Use Notepad to open the latest CF3 file in the current directory and see that indeed these level-curve heights were appended after the line that reads *** Level curve heights ***.

You can edit, delete, or add more values to this list any time you want. These height values do not have to be ordered, nor the corresponding level curves have to actually intersect the function surface.

Launch D_3D and open the same configuration file-if you have not changed its default name, just press $<\mathrm{F} 1>$; otherwise, press $<\mathrm{F} 3>$ and select its name. After redoing the plot, go back to the $<\mathrm{F} 1 . .4>$ screen, and press $<\mathrm{F} 1>$ and $<\mathrm{CR}>$ until asked to update level curves. Answer ' Y ' then scroll down using the arrow keys. Notice that there is now a fifth option available, that is, to read the level-curve heights from the configuration file. Select this option and see how D_3D identifies and uploads all level curves that can potentially intersect the function surface.

Important: If they are automatically generated, the total number of level curves cannot exceed 999. If their height values are read from file, or to edit them interactively from the graphic edit screen, they cannot be more then 50 .

2.6 DEFECT-FREE LEVEL-CURVE PLOTS

Level curves are the intersections between the function surface and a horizontal cutting plane placed at various elevations z_{k}. D_3D uses the already available four-sided patches of the function surface to evaluate the intersection with this horizontal cutting plane, rather than triangulating the surface as other level-curve plotting programs do (Bourke 1987). In addition to the corners of the current patch, $D _3 D$ also uses the height value of four of its neighboring points to estimate the sign of the curvature of the surface over the area of the respective patch. This way, the level curves will have a correct appearance without exhibiting defects that look like bridges, even if the function surface is undersampled (see Figure 2.12).

FIGURE 2.12 Plot of the function in equation F_{2} with 13×13 data points. Configuration file F2_12.CF3.

Let us consider the orange-squeezer function in Figure 2.4, with only 13×13. At such a low resolution, a 3D graph of the function surface will turn very 'choppy' (see Figure 2.12). When the intersection between this function surface and a horizontal cutting plane is evaluated in the process of extracting level curves, connectivity defects may occur around the areas close to the top of the graph.

The level-curve plot in Figure 2.13a produced with the following MATLAB commands

```
x=-pi:2*pi/12:pi;
y=x;
[X,Y] =meshgrid (x,Y) ;
Z=2*exp(-(sqrt (X.^2+Y.^2) - 1. 5) .^2) -1;
contour(X,Y,Z, 17);
```

exhibits bridge-like defects when the number of equally spaced level curves is 23 or more. For the same number of level curves and sampling size, a plot produced with D_3D is defect-free (Figure 2.13b) and remains that way even for 40 equally spaced curves.

A detailed explanation on how these intersections are evaluated and how they are corrected based on the sign of local curvature of the function surface is available in Simionescu (2003). Some of these aspects will be also discussed in paragraph 2.11.

Important: The bridge-like defects of level curves in top view may occur in different locations or may not occur at all if you press the $<\mathrm{F} 4>$ key while in the graphic edit screen or in the deformable-box screen. This will reverse the z-axis of the plot, and as a consequence, the points used to evaluate the function curvature will be different, with possible favorable effect.

FIGURE 2.13 17-level-curve plot (also known as contour plot) of the orange-squeezer function with 13×13 data points produced (a) with MATLAB and (b) with D_3D. Configuration file F2_13B. CF3.

2.7 LOGARITHMICALLY-SPACED LEVEL CURVES

This paragraph refers to plotting logarithmically or log-spaced level curves. This is a unique feature of $D _3 D$, useful when you want to concentrate the level curves around certain points of interest. The less elegant approach to this problem is to manually alter the heights of a set of equally space level curves, until the details of interest are revealed.

D_3D can automatically create log-spaced level curves that are either

1. Accumulated towards $z_{\text {min }}$ as shown in Figure 2.14 or
2. Accumulated towards $z_{\text {max }}$ as shown in Figure 2.15 or
3. Accumulated towards zero from both above and below the $z=0$ plane as shown in Figure 2.16
(i) For n_{LC} the total number of level curves and z_{k} the height of the k th curve with $1 \leq k \leq n_{\mathrm{LC}}$, the following formula ensures accumulating the level curves around $z_{\text {min }}$ as \log-spaced down curves:

$$
\begin{equation*}
z_{k}=z_{\min }+\exp \left[(k-1) \cdot \ln \left(\frac{z_{\max }-z_{\min }+1}{n_{L C}-1}\right)\right]-1 \tag{2.4}
\end{equation*}
$$

(ii) To get the same number of level curves converging to $z_{\max }$ as \log-spaced $u p$ level curves, Equation 2.5 should be used instead, that is,

$$
\begin{equation*}
z_{k}=z_{\max }-\exp \left[(k-1) \cdot \ln \left(\frac{z_{\max }-z_{\min }+1}{n_{L C}-1}\right)\right]+1 \tag{2.5}
\end{equation*}
$$

FIGURE 2.14 Log-spaced down level-curve plot of the four-hump function. Configuration files F2_14A.CF3 and F2_14A.CF3.

FIGURE 2.15 Log-spaced up level-curve plot of the four-hump function. Configuration files F2_15A.CF3 and F2_15B.CF3.

FIGURE 2.16 Log-spaced from zero level-curve plot of the four-hump function. Configuration files F2_16A.CF3 and F2_16B.CF3.
(iii) For the level curves to be log-spaced from zero in both directions, the total number of curves n_{LC} has to be divided into curves located below the $z=0$ plane:

$$
\begin{equation*}
n_{L C d n}=\text { Round }\left|\frac{n_{L C} \cdot z_{\min }}{\left(z_{\max }-z_{\min }\right)}\right| \tag{2.6}
\end{equation*}
$$

and level curves located above the $z=0$ plane:

$$
\begin{equation*}
n_{\mathrm{LCup}}=n_{\mathrm{LC}}-n_{\mathrm{LCdn}} \tag{2.7}
\end{equation*}
$$

With these notations, the heights of log-spaced from zero level curves can be calculated by setting $z_{\text {max }}=0$ and $n_{\mathrm{LC}}=n_{\mathrm{LCdn}}$ in Equation 2.4 and setting $z_{\min }=0$ and $n_{\mathrm{LC}}=n_{\mathrm{LCup}}$ in Equation 2.5. The $\mathrm{D} _3 \mathrm{D}$ program actually implements a more general approach, where this type of level curves can be plotted even if zero is not an inner point of the $\left[z_{\min }, z_{\max }\right]$ interval.

When producing Figures 2.14 through 2.16, the lower and upper limits in Equations 2.4 through 2.7 were considered $z_{\min }=-12.8778$ and $z_{\max }=14.8243$, as extracted from among the 481×481 data points of file F2_3.D3D (see Figure 2.10). If you modify $z_{\min }$ and $z_{\max }$ from the values extracted by the program, then these new limits will be utilized in applying Equations 2.7 through 2.7. Note that by saving them to file, you can further modify the z-axis limits while maintaining the same level-curve appearance.

An extension of procedure (iii) where that level curves are log-spaced from any point z_{0} within the interval $\left[z_{\min }, z_{\max }\right]$ will be explained next. The number of level curves located below z_{0} will be calculated with

$$
\begin{equation*}
n_{L C d n}=\text { Round }\left|\frac{n_{L C} \cdot\left(z_{0}-z_{\min }\right)}{\left(z_{\max }-z_{\min }\right)}\right| \tag{2.8}
\end{equation*}
$$

while the number of level curves located above the z_{0} is given by the same Equation 2.7. We then apply Equation 2.4 with $z_{\max }=z_{0}$ and $n_{\mathrm{LC}}=n_{\mathrm{LCdn}}$ to calculate the height values of the level curves located below z_{0} and apply Equation 2.5 with $z_{\min }=z_{0}$ and $n_{\mathrm{LC}}=n_{\mathrm{LCup}}$ to calculate the height values of the level curves located above z_{0}.

Program P2_ZLC.PAS in Appendix B implements this procedure to generate an ASCII file named Z.LCS having NrLC $=28$ height values that are \log-spaced from $\mathbf{z} 0$ inside the interval $\mathbf{z m i n}=12.8243$ and $\mathbf{z m a x}=14.8243$ (see line $\# \mathbf{6}$ of this program). The 28 height values generated using program P2_ZLC.PAS for $\mathbf{z 0}=0.265$ (i.e., the saddle point) of the four-hump function in Figure 2.10 have been appended manually at the end of the configuration file F2_17.CF3. Using this modified configuration file, the plot in Figure 2.17 has been generated.

To generate the same level-curve elevations using D_3D, you must follow these steps: First, calculate $n_{\text {LCdn }}$ and $n_{\text {LCup }}$ using Equations 2.8 and 2.7. Then run D_3D with $z_{\text {min }}$ set to z_{0} and $n_{\text {LCdn }}$ level curves \log-spaced $u p$. Save these height values to the current configuration file by selecting <E> from the graphic edit screen (you must confirm each of height value before writing them to file). Then run D_3D again with $z_{\max }$ set to z_{0} and $n_{\text {LCup }}$ level curves \log-spaced down. Again save the resulting height values to file. Combine these two sets of level-curve heights in the same CF3 file and use this file to generate your plot.

FIGURE 2.17 Log spaced from $z_{0}=0.265$ level-curve plot of the four-hump function with 481×481 data points. Configuration file F2_17.CF3.

2.8 FILE EXPORT AND DXF LAYER ORGANIZATION

Any plot can be exported to PCX by pressing <F10> from the graphic screen. For other types of exports, you must go to the <F1..4> screen and select <F4>, then scroll down using the arrow keys, and choose either G3D, DXF, or (if available) DXF 1:1. The DXF 1:1 export mode is available only for level curves in top view, when D_3D will export to R12 DXF the curves only (without the plot box, divisions, labels etc.), scaled one-to-one. When exporting wireframe plots to DXF, D_3D will concatenate, inasmuch as possible, their $x=$ constant, $y=$ constant, and $z=$ constant lines into single contiguous polylines.

The G3D export option causes the points of the function surface to be written to an ASCII file that can be read by the G_3D.LSP application, which allows true 3D surfaces to be generated inside AutoCAD. Note that to the G3D file the function surface is recorded at the current resolution and without trimming the function surface by the bounding box (assuming that the input data file has been scattered or the limits over the z-axis have been modified from their original values).

If you want to manually generate a top-view level-curve plot scaled one-to-one and have the axes, divisions, and values included, perform the following steps: Adjust the plot-box size until its height over width ratio h / w equals $\left(x_{\max }-x_{\min }\right) /\left(y_{\max }-y_{\text {min }}\right)$, and then export the graph to DXF. It is assumed that $x_{\max }, x_{\text {min }}, y_{\text {max }}$, and $y_{\text {min }}$ are the spans over the respective axes of the level-curve plot and that x is the vertical axis and y the horizontal axis of
the plot. Open this DXF file inside AutoCAD and then scale the plot with the factor $\left(x_{\max }-x_{\min }\right) /$ h. Alternatively, you can export to DXF the plot as is, then open it inside AutoCAD, and copy it to a block. Reinsert that block scaled by a factor $\left(y_{\max }-y_{\min }\right) / \mathbf{w}$ over horizontal axis of the drawing and by a factor $\left(x_{\max }-x_{\min }\right) / \mathrm{h}$ over vertical axis of the drawing. The only problem with this second method is that the text will be distorted, and the division lines will have different lengths over the two axes.

The plot in Figure 2.5 is shown again in Figure 2.18a as an AutoCAD drawing obtained through DXF import. From within D_3D, you can turn on and off the raised level curves by pressing the $<\mathrm{Z}>$ key while in the graphic edit screen. Similarly, by pressing the $<\mathrm{F} 1>,<\mathrm{F} 2>$, or $<\mathrm{F} 3>$ from the same graphic edit screen, you can turn on and off the lines representing the OXY, OXZ, and OYZ planes (these are called zero lines). To turn off the level curves projected on the bottom plane, or to draw both these and the raised curves in thick line, you must go to the $<$ F1. . $4>$ screen, press $<$ F2 $>$, and edit the first and second entry of chime тепи 2. The third entry of chime тепи 2 controls the color of the level curves, that is, they can be either monochrome or colored according to their elevation.

In the current implementation of D_3D, you cannot edit the thickness and color of the projected and raised level curves separately. However, you can do it easily inside AutoCAD, because various entities of the plot are conveniently placed in separate layers as explained next (see also Figure 2.18b):

Layer ' 0 ' contains the plot-box lines, less the zero lines and gridlines that are placed in their own layers. The long and short division lines are placed in layer 'divisions.' The values along the three axes are placed in layer 'text' together with the plot header. Layer '\$_body' contains the AutoCAD regions, one for each patch of the function surface, which serve to obscure the invisible lines when the AutoCAD hide command is issued. Level curves of the same height elevation (whether projected on the bottom plane or mapped on the function surface) are placed in separate layers, named ' C ' followed by their elevation with the decimal point replaced with '_' (the underscore sign). Additional layers are 'const_x' and 'const_y' that host the $x=$ constant and $y=$ constant lines, less the lines that form the edges of the function surface that are assigned to layers 'border_x' and 'border_y'.

Important: The plot header visible in Figure 2.18a lists the D_3D parameters w, h, kH, kV , \tan (Gamma), and \tan (Delta), followed by the name of the file from where the data originate. This information becomes useful if you want to recreate a plot for which you no longer have a copy of its CF3 configuration file.

Important: If a wireframe plot is desired, it is best to export it as such to DXF. This way, all $x=$ constant, $y=$ constant, and raised $z=$ constant lines will be saved as contiguous polylines. Sometimes, it is possible to manually hide the invisible lines by trimming them inside AutoCAD.

Important: The outer ends of the two short oblique lines on the top left and bottom right of every DXF copy of a plot (see Figure 2.18a) form the corners of a 640×480 rectangle. These two lines are useful in scaling a plot back to its original size following a PLT export (see the Util~PLT program in Chapter 3 for details).

FIGURE 2.18 (a) R12 DXF copy of the plot in Figure 2.5 and (b) its AutoCAD layer settings. Note that the $x=$ constant line and side grid lines have been suppressed by turning the respective layers off.

2.9 AXES REVERSAL AND PLOT ROTATION

Sometimes, it is of interest to reverse the orientation of one or more of the plot axes. Because D_3D does not generate true 3D plots, x - and y-axes reversal provides additionally a means to rotate the entire plot about their axis. For top-view plots, x - and y-axes reversal can be done inside AutoCAD using the rotate and mirror commands (remember to first set the AutoCAD parameter mirrtext to 0 , to prevent the text from being mirrored together with the rest of the graph).

FIGURE 2.19 Rotated views of the four-hump function. Configuration files F2_19A.CF3, F2_19B.CF3, F2_19C.CF3, and F2_19D.CF3.

From inside D_3D, the orientation of the z-axis can be reversed by pressing the $<\mathrm{F} 4>$ key while in the deformable-box screen or in the graphic edit screen. z-axis reversal can sometimes remedy the bridge-like defects of level-curve plots. D_3D is also capable of reversing and swapping the x - and y-axes, without the need for the user to produce a new input data file. These transformations can be induced from the chime тепи 3 accessible through option <F3> of the <F1..4> screen.

Rotating the entire plot in 90° increments (see Figure 2.19) is done by D_3D as combinations of x - and y-axes swap, followed by reversing the orientation of one of them. If after swap the y-axis is reversed, the graph will rotate 90° counterclockwise. If the x-axis is reversed instead, the graph will rotate 90° clockwise. These two types of rotations are controlled from the same chime тепи 3 of D_3D.

2.10 GRADIENT PLOTS

The gradient of a scalar function $f(x, y, z)$ is a vector field that, at a given point (x, y, z), is oriented in the direction of the greatest rate of increase and has its magnitude equal to the
slope of the function along this direction. The components of the gradient are the partial derivatives of the function, that is,

$$
\begin{equation*}
\operatorname{grad}(f)=\nabla f=\left(\frac{\delta f}{\delta x}, \frac{\delta f}{\delta y}, \frac{\delta f}{\delta z}\right) \tag{2.9}
\end{equation*}
$$

Being able to visualize the gradient can reveal some important characteristics of the function at hand, and it is therefore a feature available in a number of function plotting programs.

D_3D is capable to represent the gradient as a set of arrows mapped on the bottom of the plot box, either in top view (Figure 2.20) or in 3D view (Figure 2.21). In both situations, D_3D estimates the components of the gradient through finite differences, using the image space coordinates of the corners of the patch, rather than their original 3D coordinates (Simionescu 2011).

As visible in Figure 2.20, the arrows representing the gradient are placed at the projected center of each of the four-sided patches that approximate the function surface. The relative size of these arrows can be controlled by the user from chime тепи 2 , accessible through option $<$ F2 $>$ of the $<$ F1..4> screen.

D_3D does not allow you to plot the gradient if the mesh size of the function surface is too dense, specifically if $n+m<160$. Therefore, in order to generate Figures 2.20 and 2.21, the original file F2_3.D3D with 481×481 data points had to be scattered to only 21×25 points.

Note that it is possible to manually combine on the same representation a gradient plot with a higher-resolution surfaces and/or level-curve plot. To do so, you have to generate

FIGURE 2.20 Gradient plot of the four-hump function projected on the bottom plane, overlapped with the mesh grid (resolution 21×25 points). Configuration file F2_20.CF3.

FIGURE 2.21 Projected gradient combined with a 3D plot of the four-hump function. Configuration files F2_21DN.CF3 and F2_21UP.CF3.
them separately using different data file resolutions, export them to PCX or DXF, and then overlap them using Paint or AutoCAD, respectively. For example, Figure 2.21 shows the gradient mapped on the bottom plane at a 21×25 point resolution, while the node-onopaque surface representation of the function has a 97×121 points. As an exercise, you can overlap the level-curve plot in Figure 2.17 generated using 481×481 data points, with the gradient plot in Figure 2.20 generated using 21×25 data points only.

2.11 TRUNCATED 3D SURFACE REPRESENTATIONS

One of the main reasons I developed D _3D was to generate 3D plots where the limits over the z-axis have been reduced from their original values and the function surface is truncated by the upper and/or lower planes of the plot box. Penalized objective functions encountered in optimization problems are the prime example where such a plotting feature is useful (Simionescu 2011), as well as functions with singularities and inequalities in two variables.

In recent years, several commercial software programs were enhanced with such capabilities, for example, SigmaPlot, Mathematica, and MATLAB. The only major software lagging behind is Excel. Their truncated 3D plots appear to be rather alterations of the function values (see Figure 2.22), where data points with z greater than the imposed $z_{\max }$ are simply forced equal to $z_{\max }$ (see also the spreadsheet file Fig2_22.XLS available with the book). A 36×36 point data file named F2_2.TXT that was imported in Excel to generate Figure 2.23 has been produced with the P2_2T.PAS program listed in Appendix B.

Now contrast Figure 2.22 with Figure 2.23a and b, both generated using D_3D. Notice the accurate intersection between the function surface and the upper plane of the plot box in Figure 2.23 and the possibility of representing this intersection either opaque or

FIGURE 2.22 Truncated plot of the orange-squeezer function generated with Office Excel, starting from ASCII file F2_2.TXT produced with program P2_2T.PAS.

FIGURE 2.23 Truncated plots of orange-squeezer function with (a) opaque and (b) transparent intersections between the function surface and the bounding box. Configuration files F2_23A.CF3 and F2_23B.CF3.
transparent. In order to generate truncated function plots, you will have to narrow the initial $\left[z_{\min }, z_{\max }\right]$ interval following option $<$ F1> of the $<$ F1..4> screen of D_3D. Additional settings refer to displaying or not the top land, controlled from the chime menu 2 accessible by pressing $<\mathrm{F} 2>$ from the same $<\mathrm{F} 1 . .4>$ screen.

Figure 2.24 shows another truncated function-surface plot, this time of the four-hump function. Notice the hidden-line removal imperfections due to AutoCAD. These will not occur if the surface is more coarsely approximated (i.e., the patches are bigger and in fewer number). In Chapter 3, it will be explained how you can manually correct these defects by saving the plot to a PLT file and then export it back to DXF for editing. The same fourhump function is pictured in top view in Figure 2.25, this time with the $x=$ constant and $y=$ constant lines turned off.

Since the intersection of the function surface with a horizontal cutting plane is an actual level curve, the same approach is implemented inside D_3D to produce truncated func-tion-surface plots.

Important: The borders of the intersections between the function surface and the upper and/or lower horizontal planes of the plot box are treated as level curves mapped on the function surface. If you want to display them on your graph, you must turn the elevated level curves on by pressing the $\langle\mathrm{Z}>$ key while in the graphic edit screen. You must also update the level-curve heights after modifying the $z_{\text {min }}$ and $z_{\max }$ limits, possibly setting their number to only two if you do not want additional level curves in between mapped on the function surface.

FIGURE 2.24 Truncated plot of the four-hump function. Note the hidden-line removal artifacts on the edges of the top and bottom lands due to AutoCAD. Configuration file F2_24.CF3.

FIGURE 2.25 Top view of the plot in Figure 2.25. Configuration files F2_25.CF3.
The intersection between a patch of the function surface and a horizontal plane (also required when generating $z=$ constant level curves) is handled as follows (see Figure 2.26): An initial four-sided patch (0000) of the function surface is modeled as an eight-vertex polygon with two by two of its vertices coincident. If this patch is intersected by one or both horizontal planes of the plot box, its originally coincident vertices can split or merge with other vertices, depending on their position relative to the intersecting plane. All intersection variants between an initial four-sided patch (shown in gray) and a horizontal cutting plane can be handled using a single eight-vertex polygon and four auxiliary five-vertex polygons noted a, b, c, and d shown in white in Figure 2.26. These intersection variants are symbolized (0111), (1011), (1110) etc., where the first binary digit corresponds to node 1-2 of the initial patch, the second digit to node $2-3$, and so on. If one of these four nodes is located outside the plot box, then the corresponding digit will be set to 1 ; otherwise, it will be set to 0 . The last two variants symbolized (1010) and (0101) correspond to a saddle point occurring over the current patch of the function surface. These last two variants are treated correctly by D_3D only in 50% of the cases, the other 50% causing bridge-like-defects as shown in Figure 2.27.

To further explain the accuracy of these ambiguities, let us consider the hyperbolic paraboloid of equation:

$$
\begin{equation*}
F_{4}(x, y)=0.1 x y \tag{2.10}
\end{equation*}
$$

for $-\pi \leq x \leq \pi$ and $-\pi \leq y \leq \pi$, which exhibits a saddle point for $x=0$ and $y=0$ (see Figure 2.28). This figure was produced with data file F2_4.D3D output by program P2_4.PAS in Appendix B.

FIGURE 2.26 Intersection variants of an initial four-sided patch (gray) with a horizontal plane. The gray polygons correspond to the portion of the function surface located inside the bounding box, while the white polygons $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d correspond to the outside areas.

As visible in Figure 2.29a, the intersection variant (1010) with the saddle point located inside the plot box is analyzed correctly by D_3D (see the higher resolution in Figure 2.29b for comparison). The same (1010) variant but with the saddle point located outside the plot box would require the use of two disjointed 'gray' polygons (see Figure 2.29c). These two cases are not differentiated by D_3D and are the reason for the 'bridge-like defects' occurring in half the cases as explained earlier.

When generating level-curve plots, the saddle-point variants (1010) and (0101) are dealt with correctly, because they require plotting lines only, and not of function-surface patches. In the process, use is made of the sign of the curvature of the function surface along the two diagonals of the current patch. These signs are estimated using the elevations of the four nodes of the original patch (0000), together with the elevations of the previous patch nodes 5-6 and 7-8 and elevations of the immediately following patch nodes 1-2 and 3-4 (see Figure 2.27 and Simionescu [2003]).

Remember that by increasing the number of sampling data points, these defects can be reduced or eliminated entirely. Alternatively, you can export your plot to PCX or DXF and retouch it using Paint or AutoCAD.

FIGURE 2.27 Defects occurring at the intersection of the orange-squeezer function with 13×13 data points and the $z=0.88$ plane. These defects are corrected in the equivalent level-curve plot, based on the local curvature of the function surface. Configuration file F2_27.CF3.

FIGURE 2.28 Elevated log-spaced from zero level-curve plot of the function in Equation 2.10, showing the saddle point at $(0,0,0)$. Configuration file F2_28.CF3.

FIGURE 2.29 Truncated plot around the saddle point of the function in Equation 2.10 at (a and c) low and (b and d) high resolutions. Figures (a) and (b) correspond to the saddle point being located inside the plot box, and (c) and (d) correspond to the saddle point being located outside the plot box, of which figure (c) is incorrect. Configuration files kF2_29A.CF3, F2_29B.CF3, F2_29C.CF3, and F2_29D.CF3.

Important: When not of zero length, sides 3-4 of the white polygons in Figure 2.27 will always be part of a $x=$ constant line to the left, sides $1-2$ will be part of a $x=$ constant line to the right, sides $4-5$ will be part of a $y=$ constant line to the rear of the plot, and sides $1-8$ will be part of a $y=$ constant line to the front. Similar ordering holds for the five-vertex polygons a, b, c, and d.

2.12 CONSTRAINED FUNCTION AND INEQUALITY PLOTS

This paragraph discusses how you can display or hide the surface patches located completely inside the plot box (referred together as body) independent from the patches intersected by the top or bottom planes of the plot box. The portions of the intersected patches located inside the plot box will be called curtain, while the outside portions will be called top and bottom land, depending on whether they are mapped on the top and bottom planes of the plot box (Figure 2.30). Such capabilities of D_3D allow you to plot surfaces with discontinuities and of inequalities of two variables. These visibilities are controlled by editing the chime тепи 1 accessible by choosing <F2> from the <F1..4> screen.

FIGURE 2.30 Various z-axis truncated plots of the function in Equation 2.10: (a) complete plot, (b) curtain missing, (c) top land and curtain missing, (d) body missing. Configuration files F2_30A.CF3, F2_30B.CF3, F2_30C.CF3, and F2_30D.CF3.

Let us consider the problem of plotting the surface of the function in Equation 2.10, less a circular hole of radius 1.5 centered at $x=0$ and $y=0$. This new function can be described analytically as

$$
F_{5}(x, y)= \begin{cases}0.1 x y & \text { for } x^{2}+y^{2} \geq 1 \tag{2.11}\\ K & \text { for } x^{2}+y^{2}<2.25\end{cases}
$$

where K is a large constant value, assigned to the infeasible area, that is, the region where the function is not defined. In the Pascal program used to generate the data for this plot, this constant was set to -10^{30} when output to file F2_5N.D3D and to 10^{30} when output to files F2_5P.D3D and F2_5.D3D (see Figure 2.32a and b and the source code P2_5.PAS listed in Appendix B).
Important: When evaluating the limits over the z-axis, D_3D will ignore any $z_{i j}$ value read from the input data file that is less than -10^{30} or greater than 10^{30}. Consequently,

FIGURE 2.31 Plots of the function in Equation 2.11: (a) with $K=-10^{30}$ and 61×61 data points, (b) with $K=10^{30}$ and 61×61 data points, (c) with 61×61 data points and the curtain and the top/bottom of the plot removed, and (d) with 16×16 data points and nodes placed at the perforation edges. Configuration files F2_31A.CF3, F2_31B.CF3, F2_31C.CF3, and F2_31D.CF3.
in Figures 2.32 a and b , the points equal to -10^{30} or 10^{30} were automatically trimmed out by the upper and lower planes of the plot box. If in any of these two plots the visibility of the curtain and of the top and bottom lands are turned off, the function surface will look as shown in Figure 2.31c. As the companion Figure 2.12d illustrates, D_3D has the ability to place glyphs or markers at the nodes where the function surface is interrupted. This feature is activated by changing the last entry of chime тепи 2 to ' E '. The edge glyphs size and type are controlled by the 5th entry of the same chime тепи 2 and by line 7 of the CF3 file (same as in a regular node plot like the one in Figure 2.9). Evidently, the accuracy with which these glyphs approximate together the singularity of the function depends on how fine the function has been sampled.

Important: Note that the nodes labeled 1-2, 3-4,5-6, and 7-8 of the gray polygons (0010), (0001), (1000), and (0100) in Figure 2.26 are not assumed to be edge nodes (see also Figure 2.31d).

FIGURE 2.32 Mesh plot of the pricewise continuous function in Equation 2.11 obtained by combining and further editing inside AutoCAD the main body of the function surface (configuration files F2_32-1.CF3), with a polyline that connects the edge nodes (configuration files F2_32-2.CF3).

Important: When regular nodes (with or without stems) are plotted on a graph, the nodes below or above the upper and lower planes of the plot box will not be represented nor their stems. If such a plot is exported to DXF, the regular nodes and the edge nodes will be placed on layers 'nodes' and 'edge_nodes,' respectively. Because distinguishing between regular nodes and edge nodes was inconvenient to code inside D_3D, some edge nodes occur both in the 'edge_nodes' and the 'nodes' layers.

The fact that the edge nodes are placed in separate layers makes it easy to connect them with polyline(s) and manually retouch using AutoCAD a constrained function plot (see Figure 2.33).

The same approach described earlier can be applied to representing graphically inequalities of two variables. To exemplify, the same inequality 1.5 in Chapter 1 will be considered equivalent in terms of surface plotting with the following piecewise continuous function:

$$
F_{6}(x, y)=\left\{\begin{array}{cc}
0 & \text { for }(\sin (x)+\sin (y))^{2}-(x \cdot y+0.5)<0 \tag{2.12}\\
10^{30} & \text { for }(\sin (x)+\sin (y))^{2}-(x \cdot y+0.5) \geq 0
\end{array}\right.
$$

For $-\pi \leq x \leq \pi$ and $-\pi \leq y \leq \pi$ and 101×101 data points, a z-axis truncated plot of this function will look as shown in Figure 2.34. The input data file F2_6.D3D used to generate this figure has been produced with program P2_6.PAS (see Appendix B).

FIGURE 2.33 Plot of inequality 2.12 with 101×101 data points. This is a screenshot of a DXF copy of the plot taken after issuing the AutoCAD shade command. Configuration files F2_33.CF3.

FIGURE 2.34501×501 data point plot of inequality 2.11 as (a) body of the surface only and (b) as stem plot with colored nodes. Configuration files F2_34A.CF3 and F2_34B.CF3.

Note that the large values of 10^{30} were assigned to the cases where the original inequality holds. You can obtain alternative representations by changing the 10^{30} value into -10^{30} and by switching between plotting the top land, the bottom land, or the body of the surface only.

Figure 2.34a is a 3D view of the body of the surface only, shown as $x=$ constant and $y=$ constant lines. For the given resolution (501×501 data points), the exact same graph can be obtained as node plot. A nother way of representing inequality 2.12 is as stem plot
with size-one nodes (Figure 2.34b). The nodes must be colored according to height to distinguish the top land of the graph. Either plot in Figure 2.34, when viewed from the top, will result in a 2D representation similar to Figure 1.20 in Chapter 1.

2.13 COLOR-RENDERED PLOTS

The use of color increases the appeal of a graph and can add more information to a plot. Their only drawback, oftentimes overlooked, is that some information is lost when you print or photocopy them in black-and-white. D_3D has the ability of representing colorrendered surface plots in any view, including top view. D_3D can produce colored plots by mapping the function surface with nodes and/or level curves or by filling the patches with color according to the elevation of the respective entities.

Figure 2.35 is a top view of a 481×481 node plot (the node size was set to one pixel) of F2_3.D3D data file. To eliminate the occurrence of voids in the pixel plot, the height and width of the box was made slightly smaller than the grid size, that is, 480×385 pixels. Overlapped with this is a gradient plot generated from only 21×25 data points of the same file F2_3.D3D. The color scale box to the right has been created separately as an empty plot viewed from the front, with the number of side gridlines set to 200 . When the number of side gridlines exceeds 200 (option <Insert> then <G> from the graphic edit screen), they will be colored according to their elevation, similarly to the z-axis division lines. An empty plot can be generated by turning off its top land, curtain, body, and bottom land from chime тепи 1.

FIGURE 2.35 Gradient plot manually overlapped with a colored node plot in top view. The color scale to the right has been generated separately. Configuration files F2_35DN.CF3, F2_35UP.CF3, and F2_35CS.CF3.

FIGURE 2.36 Rendered surface plots of the four-hump function (a) with 999 color-coded level curves over a 26×26 data-point transparent surface and (b) with 481×481 color points mapped on an opaque, white surface. Configuration files F2_36A.CF3 and F2_36B.CF3.

Figure 2.36 shows two types of 3D color plots. When a surface in a general 3D view is rendered with raised level curves (Figure 2.36a) or with colored nodes (Figure 2.36b), voids are more likely to occur than in a top-view plot. Since the number of nodes cannot exceed 501×501 and the number of level curves cannot exceed 999 , one possible remedy is to reduce the size of the plot before exporting it to PCX. Any remaining voids can be then corrected manually using Paint or other raster image editing software.

A raised level-curve plot takes longer to generate in D_3D, even for a moderately dense grid size. For this reason, in Figure 2.36b where the number of level curves is 999 (the maximum possible), the function surface has only 26×26 data points.

Note that the surface in Figure 2.36a was set to hide and their color to white (i.e., type 'w' to last entry of chime тепи 1). In Figure 2.36b, the nodes were mapped on a transparent function surface, that is, the plot was in wireframe mode set from the graphic edit screen. Different appearances can be achieved with thin or thick level curves, with node sizes bigger than 1 (see Figure 2.37) and of other shapes, empty or solid—available node shapes are $\bigcirc, \square, \diamond, \nabla, \Delta$, and .

As visible in Figure 2.36, raised level curves provide better color rendering over the steep regions of the function surface, complementing a node plot that renders better the flat portions of the surface. The appearance of a rendered surface can be improved by overlapping a high-density node plot with a raised level-curve plot using Paint.

Remember that in a plot exported to AutoCAD via the R12 DXF format, round nodes will always be drawn as empty circles and not as solid doughnuts. Also remember that the z-axis color coding in a PCX screenshot has 10 colors, versus 20 colors in DXF.

The occurrence of voids as described previously is eliminated if the surface patches are filled with color according to their elevation (see Figures 2.38 through 2.40). Because the colors available for scaling are twice as many in a DXF copy of the plot, it is better to export your graphs to AutoCAD, rather than doing a raster copy straight from D_3D. Note that the AutoCAD shade, hide, and render commands have effect upon 3D plots

FIGURE 2.37 DXF copy of the four-hump function plot with 61×61 nodes mapped on an opaque surface. Configuration file F2_37.CF3.

FIGURE 2.38 Plot of the four-hump function with 25×25 colored patches (a) with and (b) without a mesh grid, exported to AutoCAD, showing the effect of the (a) shade command and (b) hide command. Configuration files F2_38A.CF3 and F2_38B.CF3.
generated with D_3D, even if they are not truly 3D. Also note that the exact same plot in Figure 2.38b can be obtained if you turn off layers 'border_x', 'border_y', 'color_x', and 'color_y' of the plot in Figure 2.38a and apply the AutoCAD hide command again.

Important: Plots with color-filled patches will appear different when exported to PCX than when opened in AutoCAD following a DXF export. Differences may also occur on the D_3D screen at the end of a DXF export.

FIGURE 2.39 AutoCAD rendered plots of the truncated four-hump function with 481×481 color points, (a) with and (b) without the top land in place. Configuration file F2_39.CF3.

Regarding the plots in Figure 2.39, notice that the AutoCAD render command has the effect of obscuring all line and text entities, with only the actual function surface remaining visible. To compensate, take two screenshots: one on the rendered surface and one on the plot box, then overlap them inside Paint. Before taking the second screenshot, turn layers 'colormesh_ body' and 'colormesh_topbtm' off, and then issue the hide command. This way, the portions of the plot box hidden by the surface will not show on the screen. You can copy to clipboard the active window on your computer screen by pressing simultaneously <Alt> and <Prnt Scrn>.

The plot in Figure 2.39b has the intersections with the plot box removed. You can make these changes inside D_3D and export it to DXF anew, or you can turn layers 'colormesh_body' and 'phantom_body' off and generate two new screenshots. Considering the

FIGURE 2.40 PCX copy of the color-rendered plot version of Figures 2.23b and 2.31c. Configuration file F2_40A.CF3 and F2_40B.CF3.
significant extent of time it takes D_3D to output a DXF file with this many entities (over 500,000), the latter approach is evidently preferable.

Figure 2.40 provides two more examples of truncated surface plots selected from those already discussed in this chapter (i.e., Figures 2.23 b and 2.31c). You may want to compare the appearance of the same plots in Figure 2.40, when exported to DXF and then rendered or shaded inside AutoCAD.

2.14 PLOTTING MULTIPLE SURFACES ON THE SAME GRAPH

Since it is not a true 3D graphing program, $D _3 D$ is not the best tool to represent parametric surfaces or multiple surfaces that intersect each other. In certain cases, however, it is possible to generate plots of surfaces that fold over themselves or combined plots of two or more single-valued functions as discussed next.

The first example is that of plotting a sphere of radius 1.7 , centered at $(0,0,0)$. The way this problem was solved was to plot the bottom and top hemispheres separately (see Figure 2.41a), then export them to PCX, and then overlap them using Paint. The P2_7.PAS program (see Appendix B) was used to generate an ASCII file named F2_7. T3D having two columns: one for the bottom hemisphere (the lower sign in Equation 2.13) and the other column for the top hemisphere (the upper sign in Equation 2.13):

$$
F_{7}(x, y)=\left\{\begin{array}{cc}
\pm \sqrt{2.89-x^{2}-y^{2}} & \text { for } 2.89 \leq x^{2}-y^{2} \tag{2.13}\\
\pm 10^{30} & \text { for } 2.89 \geq x^{2}-y^{2}
\end{array}\right.
$$

When plotting the individual hemispheres, the top and bottom lands must be turned off from chime menu 1 of D_{-}3D. Note that the lower hemisphere in Figure 2.41a can be obtained from the upper hemisphere by flipping the z-axis of the plot, or vice versa. As shown in Figure 2.41b, additional shapes can be obtained starting from the same data file by simply editing the limits over the z-axis.

FIGURE 2.41 (a) A sphere produced as the overlap of two hemispheres plotted separately and (b) plot of cylinder a extending with a trimmed hemisphere. Configuration files F2_41A-1.CF3, F2_41A-2.CF3, and F2_41B.CF3.

As an example of graphing two intersecting surfaces, we will consider overlapping the surfaces $Z=F_{2}(x, y)$ and $Z=F_{4}(x, y)$ in Equations 2.2 and 2.10. If we are drawing vertical lines at each grid point, these will intersect the combined surfaces in two points, one higher and one lower. If the lower points of these pairs are separated from the upper points, and if you plot them as distinct graphs, you can then combine them using Paint or AutoCAD, same as we did with the sphere in Figure 2.41. Additional editing, prior or after overlapping these graphs, might be required in areas of incorrect or incomplete visibility.

Figure 2.42 shows two representations of the same combined 3D plot. The difference between them is that Figure 2.42a has been obtained as the overlap of two surfaces (see Figure 2.43), while the one in Figure 2.42b is the overlap of four separate plots (see Figure 2.44). One single file provides the data source of all constituent plots in Figures 2.43 and 2.44. This file named F2_8.T3D is organized on six columns and has been generated using program P2_8.PAS (see Appendix B).

FIGURE 2.42 Combined plot of the orange-squeezer function and the paraboloid in Equation 2.10, obtained as the overlap of separately drawn entities assembled as shown in Figures 2.43a and 2.44b.

FIGURE 2.43 Constituent plots of Figure 2.42a. Configuration files F2_43-1.CF3 and F2_43-2.CF3.

FIGURE 2.44 Constituent plots of Figure 2.42b. Configuration files F2_44-1.CF3, F2_44-2. CF3, F2_44-3.CF3, and F2_44-4.CF3.

The two functions F_{2} and F_{4} are evaluated at a current grid point (x, y), their values are then compared (lines \#37 to \#42 of program P2_8.PAS) and then written to file. Depending on their elevation and whether they belong to F_{2} or F_{4}, the two values are of the same program written to columns 1 and 2 or columns 3 to 6 of file F2_8.T3D (see lines \#43 and \#44). Data on columns 1 and 2 served to plot Figures 2.43, while the values on columns 3 to 6 were used to plot Figures 2.44. Note that in case of columns 3 to 6 of file F2_8.T3D, use has been made of value 1.0E30 to indicate 'curtains' and 'top lands' that can be selectively plotted or suppressed from within D_3D.

2.15 IMPLEMENTATION DETAILS OF THE D_3D PROGRAM

This section is provided for those who wants to understand in more detail how the D_3D.PAS program and its accompanying unit UNIT_D3D.PAS work. Additional useful information (outside of the comments provided with D_3D.PAS) is available in Simionescu (2003, 2011).

As explained in paragraph 2.1, all graphic operations are performed by D_3D in the 2D image space. The coordinates of the corners of the plot box relative to the computer-screen reference frame $O X Y$ are noted as $\mathrm{Xc}[.],. \mathrm{Xc}[\ldots]$ for corners C_{1} through C_{4} and $\mathrm{Xcp}[.$.$] ,$ Ycp [..] for corners C_{1}^{\prime} through C_{4}^{\prime} (Figure 2.45).

FIGURE 2.45 A surface patch in an (1010) instance (see also Figure 2.26).
The viewport coordinates of a point P_{1} of a single patch as shown in Figure 2.46 equivalent to point $P_{i j}$ of the surface is given by equation

$$
\begin{align*}
& X_{P_{1}}=j \cdot d X_{j}+(n-i) \cdot d X_{i} \\
& Y_{P_{1}}=i \cdot d Y_{i}+\frac{z_{\max }-z_{i j}}{z_{\max }-z_{\min }}\left(Y_{C_{4}}-Y_{C_{1}}\right) \tag{2.14}
\end{align*}
$$

where $z_{i j}$ the function value at $P_{1}, z_{\min }$ and $z_{\max }$ are the limits over the z-axis of the graph, and $m \times n$ is the grid size.

FIGURE 2.46 Outlines of the $o x y, o x z$ and $o y z$ reference planes.

The $\mathrm{d} X_{i}, \mathrm{~d} X_{j}$, and $\mathrm{d} Y_{i}$ increments in Equation 2.14 are as follows:

$$
\begin{equation*}
d X_{i}=\frac{\left(X_{C_{1}^{\prime}}-X_{C_{1}}\right)}{(m-1)} \quad d X_{j}=\frac{\left(X_{C_{3}}-X_{C_{4}}\right)}{(n-1)} \quad d Y_{i}=\frac{\left(Y_{C_{4}}-Y_{C_{1}}\right)}{(n-1)} \tag{2.15}
\end{equation*}
$$

The coefficients $\mathbf{k H}$ and $\mathbf{k V}$ that position reference corner C_{4}^{\prime} of the plot box (Figure 2.45) are given by equations:

$$
\begin{equation*}
\mathbf{k H}=\frac{\left(X_{\mathrm{C}_{4}^{\prime}}-X_{C_{4}}\right)}{\left(X_{\mathrm{C}_{3}^{\prime}}-X_{C_{4}}\right)} \quad \mathbf{k v}=\frac{\left(Y_{\mathrm{C}_{4}}-Y_{C_{4}}\right)}{\left(Y_{\mathrm{C}_{1}^{\prime}}-Y_{C_{4}}\right)} \tag{2.16}
\end{equation*}
$$

The outlines of the horizontal reference plane oxy, and the two vertical reference planes $o x z$ and $o y z$, (Figure 2.46) are represented by D_3D using points $1,2,3,4$ the coordinates of which are stored in variables Xoxy [1], Yoxy [1] through Xoyz [4] and Yoyz [4] of D_3D.PAS.

The D_3D plotting program subject of this chapter combines an offsetting of the lines of constant x, with a shear transformation. Solving the visibility problem, the intersection of the function surface with the horizontal planes of the bounding box and level-curve generation is done entirely in the 2D image space. Consequently, the amount of input data and CPU resources per plot is reduced to a minimum. Executable D_3D.EXE and source codes D_3D.PAS and Util_D3D.PAS are available with the book, together with all configuration and data files used in this chapter. Additional examples of D _3D use are available in Chapters 3, 4, and 9.

REFERENCES AND FURTHER READINGS

$\overline{\text { Bourke, P. D. (July, 1987). A contouring subroutine. Byte Magazine, 12(6), 143-150 (also available at }}$ http://paulbourke.net/papers/conrec/).
Simionescu, P. A. (2003). Improved display methods of single-valued functions of two variables. ASME Journal of Computing and Information Science in Engineering, 3(2), 136-143.
Simionescu, P. A. (2011). Some advancements to visualizing constrained objective functions and inequalities of two variables. ASME Journal of Computing and Information Science in Engineering, 11(1), 014502 (7p.).

Additional useful titles are:
Fuller, G. and Tarwater, D. (2013). Analytic Geometry, Upper Saddle River, NJ: Pearson.
Hughes, J. F., van Dam, A., McGuire, M., Sklar, D. F., Foley, J. D., Feiner, S. K., and Akley, K. (2013). Computer Graphics: Principles and Practice, Boston, MA: Addison-Wesley.
Shirley, P., Ashikhmin, M., and Marschner, S. (2009). Fundamentals of Computer Graphics, Natick, MA: A K Peters/CRC Press.
Vince, J. (2013). Mathematics for Computer Graphics, London, UK: Springer.

This page intentionally left blank

Programs and Procedures for Data Visualization and Data Format Conversion

In THIS CHAPTER, several programs that you may find useful will be presented. These include a collection of Pascal procedures for generating 2D line plots; three programs for manipulating ASCII, R12 DXF, and HP-GL PLT files; and two AutoLISP applications for automatically generating 3D entities from within AutoCAD with description read from file.

LibPlots.PAS is a unit with procedures that allows you to write programs that generate graphs very similar to those done with D_2D.

The Util~TXT.PAS program can be used to add between every two data points read from a file, additional points interpolated linearly, and spline or B-spline. It can also evaluate numerically the first and second derivatives and can transfer to an output file every certain row of the original data. The program can also make continuous a series of angle values restricted, for example, to $[-\pi \ldots \pi]$ and can apply a logarithm transform to the input data safe from crashing when encountering a number that is negative or zero. By directly editing its code, additional transformations are possible, like scaling, offsetting of data, and custom functional transforms.

Util~DXF.PAS is a DXF viewer that can display 2D and 3D lines and polylines, circles, and arcs of circle read from an R12 DXF file. In addition, the program can be used to extract to ASCII the x, y or x, y, z coordinates of selected polyline(s), a feature useful for transferring level-curves plots from $D _3 D$ to $D _2 D$ or for digitizing curves available only as raster images. Figure 1.14 has been produced this way, that is, a picture was imported into AutoCAD and polylines were drawn over. When completed, the drawing was exported to R12 DXF, and the x, y coordinates of the vertices of these polylines were then extracted to file using Util~DXF. This file then served as input to the D_2D program when producing Figure 1.14.

Util~PLT.PAS can open PLT files exported from AutoCAD using the HewlettPackard Graphics Language (HP-GL) ADI 4.2 by Autodesk \#7550 driver. The polylines in these PLT files can then be exported to R12 DXF while simultaneously the x, y coordinates of their vertices will be saved to an ASCII file. The Util~PLT program can be used to "flatten" in the hide mode 3D drawings and surface plots generated using D_3D or to digitize alphanumeric characters, arches of circles, and spline curves created inside AutoCAD.

G_3D.LSP is an AutoLISP application that allows you to generate inside AutoCAD true 3D curves and meshed surfaces with vertices read from file.

M_3D.LSP is the second AutoLISP program that can automatically generate and animate lines, cylinders, spheres, tori, and cylindrical helixes with dimensions and orientations read from file. It can also insert blocks at locations and with orientations read from the same input file. (These blocks must preexist in the DWG file from where M_3D.LSP is being run.)

3.1 LibPlots PROCEDURES FOR GENERATING 2D PLOTS

Available in this book, there are several Pascal units for user interfacing in text and BGI graphical mode, for mathematical calculation, and for 2D plotting. Of these, the LibPlots unit will be discussed in more details here. By calling its procedures, you can generate 2D graphs similar to those produced with D_2D and export them to R12 DXF and PCX. Additional features not available in D_2D that LibPlots allow are (i) assigning different size markers to different curves of the same plot and (ii) having the x-axis intersect the y-axis at $y=0$ and vice versa. A number of programs that implement these new features will be discussed in the remainder of this section.

3.1.1 Basic 2D Plotting Using LibPlots

P3_01A.PAS listed in Appendix B is a simple example of LibPlots procedure use, namely, of PlotCurve, PlotXaxis, and PlotYaxis. The program calls several procedures from units Unit_PCX, LibGraph, and LibDXF and uses the VDp vector type and the Pmax constant, both declared in the LibMath unit.

Lines \#19 to \#22 of P3_01A.PAS serve to generate the (\mathbf{t}, Y) pairs that will be plotted on the graph (Figure 3.1a). The actual plot has been produced by executing lines \#25, \#26, and \#27 of the program. The default size and location of the plot on the computer screen can be changed by calling procedure NewPlot and assigning different values to the corners of the box as it has been done in the companion program P3_01B.PAS. Note that the procedures responsible for drawing the x - and y-axes are called only after all curves have been plotted. This is because the limits stored by variables xmin, xmax, $y m i n$, and y max are assigned meaningful values only after vectors t and \mathbf{Y} are inspected inside the PlotCurve procedure. The first parameter (i.e., 1) in procedures PlotCurve, PlotXaxis, and PlotYaxis specifies the plot number. The second parameter in procedures PlotXaxis and PlotYaxis controls axis location (possible values are 0,1 , or 2 , where 1 will place the axis at $y=0$ or $x=0$, respectively), while the third and fourth parameters in these same two procedures represent the number of values and the number of minor intervals that will be placed along the respective axis (see Figure 3.1a).

FIGURE 3.1 Plots created with programs (a) P3_01A.PAS and with (b) P3_01B.PAS.
Important: Currently, LibPlots.PAS does not allow more than four separate plots to be opened simultaneously in the same program. These can be drawn on the computer screen in four separate plot boxes, in two boxes having each a primary and a secondary vertical axis, or all four overlapped in the same plot box.

In the companion program P3_01B. PAS (see Appendix B), procedure NewPlot sets the corners of the ViewPort where the plot will be drawn, that is, $(150,50)$ the top-left corner and $(500,430)$ the bottom-right corner. If you call NewPlot with its second parameter set to the constant IsoPlot or TRUE, instead of FitBox, the limits of the graph will be adjusted so that it becomes isotropic. The last parameter of NewPlot is a character string that will be written at the top of the plot box as title.

The limits over the x - and y-axes can be extracted from vectors \mathbf{X} and Y by calling procedures UpdateLimitsX and UpdateLimitsY. These limits can then be accessed by the main program through functions GetXmin, GetXmax, GetYmin, and GetYmax. On line \#32 of P3_01B. PAS, the last two of these getter functions are used as parameters in the NewLimitsY procedure to extend the range of the y-axis and also to reverse it.

The border around the plot box has been produced by calling procedure DrawBorder (line \#30) from unit LibGIntf, while the plot curve was set to ThickWidth by calling Pascal's SetLineStyle procedure. In order to turn the gridlines on (see Figure 3.1b), procedure SetDivLine on line \#35 has been called with its second parameter set to a value greater than nine. Note that if you call this procedure after PlotYaxis, only the vertical gridlines will be plotted.

Note the use of the WaitToGo procedure from unit LibInOut, which will suspend the program execution until the user presses a key (line \#39).

3.1.2 Multiple Plots with Markers

When a plot consists of multiple curves, you can assign them different colors and different line types (i.e., normal width or thick, solid, dashed, or dotted) or add markers to

FIGURE 3.2 Plot generated with P3_02.PAS showing equally spaced diamond markers and round markers placed one at each data point.
them (see Figure 3.2). Program P3_02.PAS (see Appendix B) is an example of marker utilization. If you want to employ different line types, you must insert the adequate Graph command(s) prior to calling the PlotCurve procedure, as it has been done on line \#33 of the P3_01B. PAS program.

Lines \#20 to \#26 in this new program P3_02.PAS (see Appendix B) serve to generate data vectors t , Y 1 , and $\mathbf{Y} 2$. In order to encompass both Y 1 and Y 2 components within the y-axis limits, procedure UpdateLimitsY is called first with t, then with $Y 1$ and with Y2 as arguments (lines \#30, \#31, and \#32). Procedure ResizeY called on line \#33 has the effect of expanding the y-axis range by about 0.2 (i.e., reduces ymin by 10% and increases ymax by 10%); in addition, the new limits will be adjusted so that the associated numbers will be rounded (see also the P3_03B. PAS program in Appendix B).

Line \#35 in P3_02.PAS sets the marker type placed along the first curve to diamond, and their size to 2 . Signaled by the ':' character, these markers will be equally spaced along the plot curve. The distance measured along the curve between every two successive markers will be about six times the marker size (value hardcoded in procedure PlotCurve). If on this line \#35 you change ':<>' into ' $\mid<>$ ', then the diamond markers will be placed at every data point (see also line \#39). If the last parameter of the PlotCurve is set to a negative value, then markers only will be plotted without the curve. If this parameter is set to a positive value, then the markers will be drawn as the plot curve progresses. Similarly to D_2D, if markers are polygonal or round, only the first half of them will obscure the curve (same as in D_2D). To plot a curve without markers, insert the command SetMarker ($0, \quad$ ' $)$ right before the PlotCurve procedure is called. The allowed second arguments in SetMarker are '\%' 'o' $\because '$ '[]' '<>' 'v' ,^' '*' ' \mathbf{x} ' '+' '@' '\&' ' q ', that is, the same as in $\mathrm{D}_{\mathbf{\prime}} 2 \mathrm{D}$ less the arrow marker that is not available in LibPlots.

Note that both y category names are written in the same color as the curves for which they stand for (Figure 3.2). This feature is activated by adding a space to the

FIGURE 3.3 Plots created with programs (a) P3_03A.PAS and (b) P3_03B. PAS.
left of the character-string parameter (i.e., the category name) of the PlotYaxis procedure-see lines \#38 and \#41.

3.1.3 Plotting Large Data Sets and Data Read from File

Program P3_03A.PAS (see Appendix B) shows how to read data from a multiple column ASCII file with more than and 502 rows. 502 is the maximum size of a VDp type vector, which means that data has to be plotted as a series of concatenated curves as shown in Figure 3.3.

Procedure Extract_V called once on line \#44 and a second time on line \#45 of program P3_03A.PAS accepts one row from the input file (or, in general, a character string consisting of groups of numbers separated by one or more nonnumerical characters, including spaces) and returns the value corresponding the specified column. Also, note the random colors assigned to the individual sections of the plot curve (line \#50) and the x-axis placed at the top of the plot box.

The companion program P3_03B.PAS (source code not included in Appendix A) is very similar to P3_03B.PAS, with the difference that the limits over the x - and y-axes are established prior to plotting the curves, rather than being provided by the user. This is useful when you want the curves to tightly fit the plot box (see Figure 3.3) or when you want to add flexibility to your program and make the x and y limits self-adjusting.

3.1.4 Dynamic Plots with Scan Lines and Scan Points

Program P3_04.PAS available with the book solves the direct dynamics problem of a two degree-of-freedom elastic pendulum. It also provides an example of PlotScanLine and PlotScanPoint procedure use (see Figure 3.4). In addition, it is also a first introduction to the procedures in the LibMec2D and LibMecGr units also available with the book.

P3_04. PAS consists of three parts. Firstly, the differential equations of motion of a two degrees of freedom elastic pendulum with no damping are solved numerically, and vectors _t, _Theta, _Rho, _xA, and _YA are generated. These vectors are then used to plot the time response graphs $\boldsymbol{\theta}(\mathrm{t})$, Rho(t) and the parametric curve $\mathbf{y}(\mathrm{t})$ versus $\mathbf{x}(\mathrm{t})$. In the third part of the program, a scan line and a scan point are animated synchronously with the motion of the spring. To represent the spring and its fix-end attachment, procedures Spring and PutGPoint are called form unit LibMec2D. The locus of the pendulum bob is then plotted by calling procedure CometLocus from the same unit.

The dynamic equilibrium equations about the center of mass of the pendulum bob are (see Figure 3.5a):

$$
\left\{\begin{array}{l}
\Sigma F_{\theta}=m a_{\theta} \tag{3.1}\\
\Sigma F_{\rho}=m a_{\rho}
\end{array}\right.
$$

Elastic-pendulum dynamics

FIGURE 3.4 One of the animation frames generated by program P3_04.PAS. See also F3_04.GIF.

FIGURE 3.5 Elastic pendulum geometry and free-body diagram of the bob (a), and plot of the time response curves θ and ρ vs. t written to DXF by program P3_04.PAS (b).

Applying the tangential and radial accelerations equations of a particle moving in polar coordinates (Meriam and Kraige 2006), we get

$$
\left\{\begin{array}{c}
-m g \sin (\theta)=m(2 \dot{\rho} \dot{\theta}+\rho \ddot{\theta}) \tag{3.2}\\
m g \cos (\theta)-F_{s}=m\left(\ddot{\rho}-\rho \dot{\theta}^{2}\right)
\end{array}\right.
$$

After a few transformations, the equations of motion are derived as

$$
\left\{\begin{array}{c}
\ddot{\theta}=-\frac{g \sin (\theta)+2 \dot{\rho} \dot{\theta}}{\rho} \tag{3.3}\\
\ddot{\rho}=g \cos (\theta)-\frac{F_{s}}{m}+\rho \dot{\theta}^{2}
\end{array}\right.
$$

where F_{s} is the force developed by the spring

$$
\begin{equation*}
F_{s}=\left(\rho-l_{0}\right) k \tag{3.4}
\end{equation*}
$$

The free length of the spring was considered $l_{0}=1 \mathrm{~m}$, its constant $k=10 \mathrm{~N} / \mathrm{m}$, the mass of the bob $m=1 \mathrm{~kg}$, and the acceleration due to gravity $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. With these values, Equations 3.3 are integrated inside P3_04.PAS using Euler's method (see Appendix A). For initial conditions $x_{\mathrm{A}}(0)=1.25 \mathrm{~m}, y_{\mathrm{A}}(0)=1 \mathrm{~m}$, and the pendulum at rest, that is, $d \theta(0)=d \rho(0)=0$, the response of the system for the first 8.3 s of the simulation is obtained (Figure 3.4).

Program P3_04.PAS generates, in addition to the PCX animation frames, three R12 DXF files and a text file named F3_04.TXT where the time response data is written. One of these DXF files records the polyline representing the spring, the pendulum bob, and the locus of its center (also a polyline), each layer representing a separate animation frame.

The other two DXF files record overlapped the graphs $\theta(t)$ and $\rho(t)$ (see Figure 3.5b), and the plot of the locus of the pendulum bob $y_{\mathrm{A}}\left(x_{\mathrm{A}}\right)$-see Figure 3.4.

3.2 Util~Txt PROGRAM FOR MANIPULATION OF ASCII FILES

Many known graphing programs, like Excel, are capable of fitting an interpolated curve to data. Others, like MATLAB, have dedicated functions that can add interpolated points to an initial data set, which can then be represented graphically. D_2D does not have interpolating capabilities, so the Util~TXT.PAS program and the companion Unit_TxT are provided in compensation. The program can add up to 100 points between each two original data points read from file that are interpolated either (i) linearly, (ii) cubic spline, (iii) quadratic B-spline, or (iv) cubic B-spline. Other features of Util~TXT include (v) making continuous a series of angle values that were forced within $[-\pi \ldots \pi],[-\pi / 2 \ldots 3 \pi / 2],[0 \ldots 2 \pi]$, or similar interval by some inverse trigonometric function; (vi) decimating a given input file by extracting to the output file every k th row, where k is specified by the user; (vii) scaling and translating the points extracted from a R12 DXF file using the Util~DXF program; (viii) evaluating the logarithm; and (ix) calculating numerically the first and second derivatives of the input data. Regarding this last transformation, in order to apply the more accurate centered difference formula to the end points same as to the interior ones, cubic extrapolated pairs x, y are added, one at the beginning and one at the end of the data series.

Util~TXT can be used in two ways: as executable file with settings read from a configuration file of extension CON, or modified and recompiled, case in which additional transformations can be coded into the program. Only the transformations that can be controlled via a configuration file will be discussed here.

Important: When you launch Util~TXT or if you press the $<$ F10> key after loading the CON file, you can read about the restrictions and limitations that apply to the input data (see the following screenshot). Note that Util~TXT is capable of performing linear, spline, and B -spline interpolations to 2D data only.

About Util~TXT version 2014

```
> Input file must be less than 1000 rows. Any additional row will be ignored.
> To apply log10<..) or ln<..) the input data must be positive.
> Derivi(..) and Deriv2(..) cannot be used together with ContnAng(..).
> Spline and B-spline interpolation cannot be done simultaneously.
> The number of knots to be added between two points by InterpSpline3<..).
    InterpBSpline2〈..) and InterpBSpline3<..) cannot exceed 100.
> To calculate the 1st or the 2nd derivative, or to do spline interpolation,
the X data must be monotonic and the number of input points greater than 3.
For XY to D_2D format conversion you must add manually on the 3rd line
Xmin Ymin and on the 4th line Xmax Ymax of your plot in engineering units.
The next 3 lines must be the x,y coordinates of 3 corners of the plot box,
<the box should not be tilted). followed by a line breaker i.e., ========='
```


3.2.1 Linear Interpolation

Let us consider a linear interpolation example first, where Util~TXT reads several x, y data pairs from an ASCII file named F3_06.TXT and then adds six points interpolated linearly between each of these pairs. To do this, edit the master configuration file !.CON such that the first two lines read F3_06.D2D and F3_06.TXT (these are the output and input file names). Set to ' Y ' (i.e., Yes) the first character on the \{Interpolate linear\} line and change the number of points to 6 . Save the configuration file under the name F3_06.CON, launch Util~TXT, and select as input the CON file that you have just created. Confirm the remaining default options by pressing the $<$ Enter $>$ key, although you could modify these defaults if you want to. Figure 3.6 is a combined plot of the original data (the transparent rounds \varnothing) and of the linearly interpolated points read from F3_06.D2D (the * markers).

Important: By default, Util~TXT assumes that the output is to an ASCII file. Alternative output file formats are D2D readable by the D_2D program and DXF.

A different type of linear interpolation Util~TXT can do is to add evenly spaced points along the curve, useful when some of these points are too far apart. To add equally spaced points, modify line number 9 of the previous CON file so that instead of ' 6 ', it reads ' -0.5 '. Also change the output file name to F3_07.D2D and save the modified configuration file as F3_07.CON. The corresponding graph will now look as shown in Figure 3.7.

Adding points interpolated linearly to a graph is useful when plotting the path of a mill cutter using D_2D, with round markers representing the actual tool (marker diameter can be accurately set from within D_2D). Synthesizing the motion program of the follower of a cam mechanism or the path of the end effector of robot may also require adding interpolated points.

FIGURE 3.6 Plot of initial data (the round markers) and of linearly interpolated points placed in groups of 6 between 2 data points (the asterisk markers). Configuration files F3_06.CON and F3_06.CF2.

FIGURE 3.7 Same plot as in Figure 3.6 with the interpolated points (asterisk markers) placed at a distance of about 0.5 units along the graph. Configuration files F3_07.CON and F3_07.CF2.

3.2.2 Cubic-Spline Interpolation

To add cubic-spline interpolated points between the same control points as before, open the last CON file and turn the linear interpolation option off and the cubic-spline interpolation on. Also, change the name of the output file to F3_08.D2D. Save your file as F3_08.CON and run Util~TXT with settings read from it. A plot of the resulting interpolated points read from the new data file F3_08.D2D, overlapped with the control points is shown in Figure 3.8.

Remember that for a cubic-spline interpolation to be possible, the x components of the original data must be strictly increasing (Press et al. 1989), that is, $x_{j}>x_{j+1}$ for any j between 1 and the rank of the second last point. Note that the curve passes smoothly through each of the given point. Contrast this to a B-spline interpolated curve that never passes through the given points as shown in the next section.

FIGURE 3.8 Plot of the initial data points as round markers and of a cubic-spline interpolated curve through these points. Configuration files F3_08.CON and F3_08.CF2.

3.2.3 B-Spline Interpolation

Util~TXT can add both quadratic and cubic B-spline interpolation points to a set of control points read from file. The cubic B-spline interpolation is more frequently used in practice, as the degree of smoothness of the resulting curve is higher (Zecher 1993). A quick comparison is available in Figure 3.9, where both a quadratic and a cubic B-spline interpolated curve (the solid line and the dashed lines, respectively) were plotted, together with their control points. The number of points between every two data points in Figure 3.9 has been set to 6 inside configuration files F3_09-1.CON and F3_09-2.CON.

One advantage of the B-spline curves over splines is that they can be fit through closed control polygons or through control points that are arranged in neither increasing nor decreasing order. It is called control polygon, the polyline that connects the control points of a B-spline curve. To exemplify, two different inputs were assume, both written to file F3_10.TXT, that is, an open control polygon (columns 1 and 2) and a close control polygon (columns 3 and 4). The cubic and quadratic B-spline curves through these nodes are shown in Figure 3.5. In order to obtain the intended results, the column numbers from where the x and y coordinates of the two sets of control points are read must be correctly specified inside configuration files F3_10-1.CON through F3_10-4.CON. Same about the row numbers where the transformation begins and where it ends (Figure 3.10).

3.2.4 Numerical Differentiation

The possibility of numerically calculating the first and second derivatives of a data set is another capability of the Util~TXT program (see Appendix A for the underlying theory). You can use this feature to check if the symbolically calculated derivative of a given function is correct (suspecting hand calculation or computer coding errors) by comparing its graph with the graph of the numerical derivative values generated using Util~TXT.

FIGURE 3.9 Plots of quadratic B-spline (solid line) and cubic B-spline (the dashed lines) curves with increasing (monotonic) control points. Configuration files F3_09A.CF2 and F3_09B.CF2.

FIGURE 3.10 Plots of quadratic (solid lines) and cubic (dashed lines) B-spline curves with nonmonotonic control points. Configuration files F3_10-1.CON through F3_10-4.CON and F3_10.CF2.

Let us consider the function in Equation 1.1 and evaluate numerically its first two derivatives and then plot them on the same graph. Input has been considered the F1_01. DAT file from Chapter 1, renamed F3_11.TXT. After you run Util~TXT with settings from configuration files F3_11-1.CON and F3_11-2.CON, you will obtain the data files F3_11-1.D2D and F3_11-1.D2D used to plot the graph in Figure 3.11. Note the very close similarity between the numerically calculated first derivative and the exactly calculated one in Figure 1.3.

FIGURE 3.11 Plots of the first and second derivative of $F(x)$ in Equation 1.1, evaluated numerically for 400 data points. Configuration files F3_11-1.CON, F3_11-2.CON, and F3_11.CF2.

3.2.5 Angle-Value Rectification

Making a series of angles continuous after being forced within intervals of the form $[-\pi \ldots \pi]$ or $[-\pi / 2 \ldots 3 \pi / 2]$ by some inverse trigonometric function like ArcTan can be occasionally of concern. Util~TXT is capable to remedy such defects through the NghbrAng function that it calls from unit LibMath. NghbrAng uses the previous value of an angle series to correct a current value, by adding or subtracting certain number of π values. The program can handle angles expressed both in radians and in degrees. However, only the former case will be exemplified here.

We will first generate a set of angle values that needs to be corrected. A short program named P3_12.PAS has been written for this purpose (see Appendix B) that outputs a data file named F3_12.TXT with three columns. Column one is an initial angle that increases linearly from -2π to 2π, while the other two columns contain the same angle restricted to $-\pi$ to π and $-\pi / 2$ to $3 \pi / 2$, respectively. The values on columns two and three were obtained by applying the tangent function to the initial angle, followed by the ArcTan function (line \#18) and of the inverse tangent function of two arguments Atan2 in unit LibMath (line \#19).

Four F3_12.TXT CON files have been prepared to generate the D2D data files required to plot Figure 3.12. In order to place markers along the jumping portions of the two sawtooth lines, configuration files F3_12-1.CON and F3_12-2.CON were formatted to read columns two and three of the F3_12.TXT file and generate the new files F3_12-1.D2D and F3_12-2.D2D. These files include additional nodes placed at a distance of about 0.1 units along the dropping portions of these sawtooth lines. The actual correction of the zigzagging angles on columns two and three of the F3_12.TXT file has been done using CON files F3_12-3 and F3_12-4, resulting in data files F3_12-3.D2D and F3_12-4.D2D.

FIGURE 3.12 Plots of the modified angles (the lines with markers) and their corrected version (the line without markers). Configuration files F3_12-1.CON through F3_12-4.CON and F3_12. CF2.

Important: The first numerical row in data file F3_12.TXT provides the starting angle for the conversion. These three values ensure that the rectified angles starts from -2π.

3.2.6 Data Decimation

One last example of Util~TXT use refers to decimating an input data file, that is, retaining only every \mathbf{k} th row, with \mathbf{k} specified on the last line of the CON file. The case of decimating an experimentally acquired data file will be discussed, with reference to the phenomena of aliasing and to the importance of properly selecting the sample size in data acquisition (Alciatore and Histand 2007).

ASCII file F3_13A.DTA available with the book is organized in five columns, of which columns 3,4 , and 5 were plotted as function of their order (i.e., the column for x was assigned to zero in D_2D and in the corresponding CF2 files). Note that two of the three signals plotted have a higher frequency content, and as the data file is decimated (equivalent to reducing the number of samples per second), the appearance of these graphs is altered (see Figure 3.13). The structure of the two Util~TXT configuration files (i.e., F3_13B.CON and F3_13C.CON) used to generate the decimated data files F3_13B.DTA and F3_13C. DTA with 250 and 125 samples, respectively, can be easily deciphered.

Note that instead of always using as input the original data file the previously generated file can be used as input for the next decimation.

Also note that Util~TXT is capable to generate multiple conversions in one run, with parameters read from the same CON file. For example, you can concatenate together all the configuration files utilized so far in a single file and then run Util~TXT with settings from it. An example of this type will be provided later in this chapter.

3.2.7 DXF Output of 2D and 3D Polylines

Util~TXT is capable of generating DXF files without actually plotting the respective polylines on the computer screen. You can do this by changing the extension of the output file from XY to DXF, a case in which the transformed points will be formatted as AutoCAD R12 DXF polylines. Likewise, Util~TXT can be used to convert sets of x, y, z triplets into DXF 3D polylines. See, for example, the F3_14.CON file that was used in the process of generating the variable-radius spiral in Figure 3.14 discussed next.

Later, there will be other uses of Util~TXT shown, like scaling and translating the vertices of a 2D polyline, obtained by digitizing a raster image using AutoCAD.

3.3 UTIL~DXF PROGRAM FOR VISUALIZATION OF R12 DXF FILES

There are a number of DXF viewers available to the interested user, either free, freeware, or open-source programs (e.g., see eDrawings). Util~DXF supplied with this book, both as executable and as source code, can view 2D and 3D polylines, circles, and arches of circle recorded to a R12 DXF file-see the about Util~DXF screen. One useful feature of Util $\sim D X F$ is to extract the coordinates of the vertices of a selected polyline or group of polylines and output them to an ASCII file.

FIGURE 3.13 From top to bottom: plot of initial data with 1000 -samples and decimated data with only 250 and 125 samples. Configuration files F3_13A.CF2, F3_13B.CF2, and F3_13C.CF2.

FIGURE 3.14 Screenshot of the Util_DXF program when run with settings from the F3_14.CON file. The 3D spiral was generated separately, and it has been exported directly to DXF using Util~TXT.

About UtilNDF version 2014

The program displays 2D and 3D lines and polylines, circles and arches of circle of an Autochd release 12 DXF file (R12 DXF). Any other entities, including texts and dimensions, will be ignored.

Polylines can be selected one at a time or in groups, and their vertices will be written to an ASCII files named by default Poly\#\#\#\#.XY for 2D polylines, or Poly\#\#\#. XYZ for 3D polylines.

In WINDOWS XP you can automatically open R12 DXF files with UTIL~DXF.EXE by selecting 'Open-With' from the File function of Windows Explorer.

Important: Util~DXF will not represent properly 2 D polylines created in planes other than the XY plane of the world coordinate system of AutoCAD or a plane parallel to it. Also note that in case of splined polylines or polylines containing arches of a circle, the control polygons will be represented rather than the smooth curve.

3.3.1 Extracting Polyline Vertex Coordinates

Launch Util~DXF and open the House.DXF file. Note that its polylines are colored in cyan, while the current polyline appears in red (Figure 3.14). From this view window,
the available options are pan using the arrow keys, zoom in and zoom out using the $<\operatorname{Pg} \mathrm{Up}>$ and $<\operatorname{Pg} \mathrm{Dn}>$ keys, and going back to the reference view by pressing $<$ Home $>$. Holding the $<$ Ctrl $>$ key while pressing $<\operatorname{Pg} \mathrm{Up}>,<\operatorname{Pg} \mathrm{Dn}>$, and the $<$ Home $>$ keys will have slightly different effects that you may want to investigate. If you hold the $\langle\mathrm{Ctrl}>$ key while pressing $\langle\leftarrow>$ or $<\rightarrow$, the figure will rotate in 3D about either x-, y-, or z-axis, depending on which of them is active (i.e., the one appearing capitalized at the bottom of the screen). You can change the axis of rotation by pressing the corresponding $\langle\mathrm{X}\rangle,\langle\mathrm{Y}\rangle$, or $\langle\mathrm{Z}\rangle$ keys. Note that these axes remain aligned with the screen (i.e., x and y will be the horizontal and vertical axes with y positive up, while z will be perpendicular to the screen and oriented away from you).

By pressing the $<\mathrm{F} 1>$ key, you can skim through the available polylines (note the change of the counter on the top of the screen, which initially read $1 / 5$). \langle Ctrl $>+<$ F1 $>$ will let you type in the polyline number that you want to become current. If you press $<$ F10 $>$ or $\langle\mathrm{Ctrl}\rangle+\langle\mathrm{F} 10\rangle$, you will be prompted to edit/confirm the polyline range you want their vertices written to file. With the House.DXF file opened, press $\langle\mathrm{F} 10>$ and select polyline number 1 (i.e., the 3D helix representing the smoke, which will be discussed in Section 3.6) to have its vertices written to ASCII. This output file will be named by default Poly0001. XYZ. If you extract to file other polyline or groups of polylines, the name of the output file will be indexed by one with each new export.

Rename Poly0001.XYZ as F3_15.XYZ and use D_2D to plot z versus x and z versus y of this file. This will result in the side views of the helix as shown in Figure 3.15.

Important: If your DXF file contains only 2D polylines, then the extension of the output file will be XY . If at least one polyline is elevated above the $X Y$ plane or it is a true 3 D polyline (like the spiral in the House.DXF file), then the extension of the vertex file will be XYZ.

Important: The coordinates of the polyline vertices will be expressed relative to the world coordinate system of the original drawing. It is therefore essential to set inside AutoCAD the UCS to "world" before exporting your drawing to R12 DXF.

FIGURE 3.15 Side views of polyline number 1 produced with D_2D using XYZ file output from Util~DXF. Configuration files F3_15A.CF2 and F3_15B.CF2.

3.3.2 Raster Curve Digitization Using Util~DXF and Util~TXT

Another useful application of Util~DXF is the possibility of digitizing a curve available as raster image only. While there are computer programs available to do the same thing (like DigXY from www.thunderheadeng.com), the method presented here is more accurate because it is done at higher resolution inside AutoCAD.

Let us consider the example of digitizing the stress versus elongation sigmoidal curve of an elastomeric material. Begin by importing the raster image F3_16.TIF to AutoCAD. Then draw an L-shaped polyline over any two adjacent sides of the plot box such that its three vertices coincide with marked points on the graph (see Figure 3.16). If the available raster image is slightly rotated, as it commonly happens with photocopied documents, use the align command in AutoCAD to rotate both the picture and the L-shaped polyline and make them parallel with the world coordinate system. Then draw a second polyline, this time overlapping the sigmoidal curve, inserting sufficient number of vertices to capture its shape. If your plot contains multiple curves of the same x and y categories, simply generate separate polylines for each of these curves.

Delete the picture and then type 'purge' at the AutoCAD command line to eliminate any unwanted entities from your drawing. When you are done, type 'dxfout' at the command line and export your drawing under the name Rubber.DXF. Make sure you select "AutoCAD 12" as DXF output format.
Important: The contour of the raster image will be exported to R12 DXF as a threevertex polyline. Similarly, any block available in the drawing's database will be exported as visible entities to DXF, unless you purge your drawing prior to export. For the purge command to have the intended effect, you must first explode all blocks of the drawing.

Now open Rubber.DXF using Util~DXF and extract the vertices of the two polylines to file. This is named automatically POLY0001.XY. Usually, the graphic entities of a drawing are written to the DXF file in the same order in which they were generated inside AutoCAD. This will also be the order in which they will be written to POLY0001.XY.

FIGURE 3.16 Stress-strain curve of an elastomeric material (Hertz 1991) available with the book as raster image F3_16.TIF.

Before you can use Util~TXT to automatically scale and translate the vertices of the main polyline such that their coordinates coincide with the original plot, you must perform the following steps (see Table 3.1): Open the POLY0001. XY file using Notepad. Make sure that the L-shaped polyline vertices occur before and not after the vertices of the sigmoidal curve. If it is not structured as shown to the left of Table 3.1, you must cut and paste the three lines containing the coordinates of the L-shaped polyline right under the header (it is where Util~TXT expects them), and then add a line separator '----------'. Then insert two empty lines under the ' $\mathbf{x} \quad Y$ ' header. On the first of these lines, type the values of $x_{\min }$ and $y_{\min }$ as they appear on the graph (i.e., 0 and 0). Similarly, on the second empty line that you have inserted, type $x_{\max }$ and $y_{\max }$ (i.e., 250 and 6). Before saving the file as F3_20.XY, verify that its top portion looks similar to the right column of Table 3.1. The \{MPa\} comment on line 4 is optional.

Next, you will have to prepare a CON file from where Util~TXT will take the conversion settings-see the one prepared for this example named F3_17.CON. Essentially, the option ' $\left\{\mathrm{XY}\right.$ from raster to $\mathrm{D} _2 \mathrm{D}$ format $\}$ ' must be set to ' Y ', and all the other transformations must be set to ' \mathbf{N} '. Since the $\mathbf{X Y}$ input file is assumed to have a standard structure, the \{row start\}, \{row finish\}, \{column for X$\}$, and \{column for Y \} options will all be ignored.

Figure 3.17 is a plot generated using the transformed vertices of the sigmoidal polyline and recorded by Util~TXT to the F3_17.DTA file.

Important: If you want the units on any of the two axis of your graph changed, simply convert the values of $x_{\text {min }}, y_{\text {min }}$ or $x_{\max }, y_{\text {max }}$ on lines three and four of F3_17.XY to the new units. In the

TABLE 3.1 Modifications to a Default XY File from Util~DXF Required for Raster Curve Digitization

POLY0001. XY (Original File)		F3_20.XY (Edited File)	
Polyline(s)	1 to 2 from RUBBER.DXF	Polyline(1 to 2 from RUBBER.DXF
X	Y	X	Y
0.8434730	-0.265137	0	0
-0.090741	-0.265137	2.5	6 \{MPa \}
-0.090741	0.2855790	0.8434730	-0.265137
		-0.090741	-0.265137
-0.090741	-0.265137	-0.090741	0.2855790
-0.077363	-0.248015		
-0.055967	-0.224465	-0.090741	-0.265137
-0.034811	-0.202117	-0.077363	-0.248015
-0.005962	-0.174001	-0.055967	-0.224465
0.0200020	-0.151892	-0.034811	-0.202117
0.0457260	-0.132908	-0.005962	-0.174001
0.0657280	-0.119884	0.0200020	-0.151892
0.0907300	-0.105466	0.0457260	-0.132908
0.1224640	-0.089846	0.0657280	-0.119884
0.1486200	-0.079153	0.0907300	-0.105466
0.1789120	-0.068099	0.1224640	-0.089846
0.2123290	-0.056564	0.1486200	-0.079153
0.2390140	-0.047673	0.1789120	-0.068099

FIGURE 3.17 The vector format of the stress-strain curve in Figure 3.16 generated with the F3_17. DTA file output by Util~TXT based on the F3_17.XY vertex file. Configuration files F3_17.CON and F3_17.D2D.
example considered, if you want the stress expressed in psi rather than MPa , then on line 4 of the F3_17. XY file, you must change the value of $y_{\max }$ from 6 to 870.226 .

3.3.3 Transferring Level Curves from D_3D to D_2D

Another useful application of Util~DXF is to transfer level-curve data from D_3D to D_2D and use it in combined plots, for example, as animation backgrounds. To exemplify, the data file used to plot of the level curves in Figure 2.17 has been copied and renamed F3_18.D3D. The x - and y-axes were swapped so that the graph looks as shown in Figure 3.18a.

Before using Util~DXF to convert these curves to a format readable by D _2D, perform the following steps: replot function F_{3} using D _3D with settings from F3_18A.CF3 and export the level curves as DXF 1:1 to file F3_18A.DXF. Open this file inside AutoCAD and insert small closed polylines, about the size of a 0.02 radius circle at the locations and in the layers indicated in the Table 3.2 (see file F3_18.DWG). These are the local minima and local maxima of the function $F_{3}(x, y)$ in Equation 2.3, found numerically as explained in Chapter 4.

Save this drawing to file F3_18B.DXF as AutoCAD release 12 DXF and then use Util~DXF to extract all level curves to the vertex file F3_18B.XY. When plotting the F3_18B. XY data, in order for this new graph to exactly match the original one (see Figure 3.18b), you must set the x - and y-axis limits inside $D _2 D$ to the same values as in the initial plot, that is, -1.5 and 2.5 over x-axis and -2.5 and 2.5 over y-axis.

Important: To preserve the scale coloring information of the level curves, use the $<\mathrm{Ctrl}>+$ $<$ F10 $>$ option to export their vertices to file rather than option $<$ F10 $>$. Util~DXF will use the layer names where these level curves are placed to add color information to the output ASCII file.

FIGURE 3.18 DXF 1:1 level-curve plot of function F_{3} in Equation 2.3, showing additional editing done using (a) AutoCAD and replotted using D_2D after conversion to (x, y) format using (b) Util~DXF. Configuration files F3_18A.CF3 and F3_18B.CF2.

TABLE 3.2 Local Extrema of Function F_{3} in Figure 3.18

\boldsymbol{x}	y	$z_{\min }$ or $z_{\max }$	Layer Name
1.0008	-1.0467	-9.7496	C-9_7496
-0.5354	-0.9954	+9.0277	C09_0277

3.4 Util~PLT PROGRAM FOR MANIPULATING PLT FILES

Instead of directly creating a hardcopy of your AutoCAD drawing, it is possible to print it to a file with the extension PLT. In this paragraph, it will be explained how to view and manipulate such files using the Util~PLT program. The type of PLT files Util~PLT can read in are those generated with the HP-GL ADI 4.2 by Autodesk \#7550 driver, available from the add printer menu of AutoCAD. Such PLT files have a simple structure, consisting essentially of a succession of PU (pen up), PD (pen down), and PA (pen absolute) commands. Of these, the PA command requires as integers the x and y coordinates of the point where the pen will go on the surface of the paper, either in the pen up or pen down mode. In other PLT dialects, there are available additional commands for changing color, for drawing arches of circle, etc. HP-GL ADI 4.2 can generate monochrome plots only, with circles, arches of circle, splined curves, as well as text characters and symbols represented as successions of approximating segments.

The Util~PLT program allows drawings with arches of circle, splines, circles, ellipses, texts, etc., to be converted to line segments. Another useful application of Util~PLT is to flatten 3D models for the purpose of reducing their size on disk or for preventing
unauthorized access the original solid model. Likewise, surface plots created with D_3D can be "flattened" in the 'hide' mode for the purpose of further editing.

From earlier discussions, it is evident that when plotting a drawing to the HP-GL ADI 4.2 PLT file format, any color information will be lost. It is possible however to write each layer (or groups of layers) to separate PLT files and then convert them back to DXF the Util~PLT program. You can then combine these DXF files into the same drawings using AutoCAD and assign them different colors.

Figure 3.19 is a screenshot of the main view window of the Util~PLT program, showing a 3D part originally created with AutoCAD (see file F3_19.DWG available with the book). To toggle between viewing the part at its normal proportions, or stretching it to fit the view window like in Figure 3.19, press the $<\mathrm{F} 1>$ key. If you want to copy the screen to DXF, press \langle F10 \rangle. You will be prompted to specify the line type, line thickness (defaults are solid line and zero thickness), and the coincidence and colinearity parameters. Same as in the $D _2 D$ and $D _3 D$ programs, these parameters are used when eliminating the polyline vertices that almost coincide or of a vertex that is almost collinear with its two neighbors. Same as the D_2D and D_3D programs, following a DXF export, Util~PLT will indicate the limit values of these two parameters at which polyline optimization begins, by eliminating the near coincident and near collinear vertices. When you set the values of these colinearity and coincidence parameters as well as the line thickness, have in mind that a DXF copy of the stretched image will fit a box of approximately 640 by 450 units.

2D polylines created inside AutoCAD can be digitized by exporting them to R12 DXF first, and then to ASCII as (x, y) pairs using Util~DXF. If only scaling and offsetting are required, then the ASCII file that is output by Util~PLT simultaneously with the DXF file export may be enough. The scaling and offsetting can in this case be done by editing

FIGURE 3.19 Util~PLT view of the F3_19.PLT file in the stretch-to-fit mode. To view it at its original proportions, you must press the <F1> key. See also the F3_19.DWG file.
the minimum and maximum limits over x and y from within Util~PLT. You can change these limits right after opening the PLT file or you can do this later by pressing the <Back> key while in the graphic screen of Util~PLT.

3.4.1 Flattening and Retouching Plots Created with D_2D

It was pointed in the previous chapter that AutoCAD can exhibit defects when it comes to hidden-line elimination defects (e.g., see Figure 2.24). To correct such imperfections, you can print it from AutoCAD to PLT in the hide mode and then export this PLT file to R12 DXF using the Util~PLT program. This second DXF file will be a "flattened" version of the original plot with its hidden lines removed. When all entities have zero elevation, they can be edited much easier using AutoCAD (i.e., the trim and extend commands will work on any entity, because they are now of zero elevation). Figure 3.20 shows the same Figure 2.24, but with the hidden-line defects repaired as explained next.

FIGURE 3.20 Flattened version of Figure 2.24 (a) obtained by exporting separately to PLT the level curves, meshgrid, and bounding box (b-box not shown) and then overlapping them back after being converted to R12 DXF using Util~PLT. Configuration files F3_20Z.CF3, F3_20XY. CF3, and F3_20BOX.CF3.

The following entities were extracted from F3_20.DXF and plotted to files in the hide mode: Layers 0, \$_Body, \$_Top_Bottom, together with Border_x, Border_y, Constant_x, and Constant_y were plotted to file F3_20XY. PLTT. All level-curve layers (names beginning with C), together with layers 0, \$_Body, and \$_Top_Bottom were plotted to file F3_20Z.PLT. The same 0, \$_Body, and \$_Top_Bottom layers, together with layers _Box, _Divisions, and _ Zero_Lines were plotted to file F3_20Box. PLT. These three PLT files were convert back to R12 DXF using Util~PLT and then were recombined inside AutoCAD. In order to have the values along the three axes available as text entities rather than polylines (note that following a PLT export, these are no longer editable but rather collections of polylines), the content of layers 0 and _Text in the original drawing was copied to the clipboard, then pasted inside the DWG file and overlapped with the other components.

The two short oblique lines on the upper-left and bottom-right corners automatically generated by D_3D (see Figure 3.20) were used as references when doing the 'move' and 'scale' transformations required to exactly overlap the new graph with the original one from D_3D.

Note that the level curves in Figure 3.20 have a smoother appearance than in the original Figure 2.24. This is because the level curves were extracted to DXF at a higher resolution (i.e., 101×126 points) using configuration file F3_20Z.CF3, while the meshgrid was generated at a lower resolution as set in configuration file F3_20XY.CF3.

Important: When plotting a drawing to PLT, its dimensions and position relative to a paper reference frame will be different than in the original AutoCAD drawing. Since the PA command uses integer arguments, some loss of accuracy over the original DWG file should be expected.

3.4.2 Alphanumerical Character Discretization

Another potentially useful application of Util~PLT is the discretizing of alphanumerical characters (i.e., extracting to file points placed along their contour), as it will be explained next with reference to Figures 3.21 and 3.22. Similarly one can be discretize circles, arches of circle, ellipses, splined polylines etc.

Begin by generating an AutoCAD drawing containing the entities that you want discretized. For the time being, just open file F3_21A.DWG available with the book using AutoCAD (see Figure 3.21) and print it to F3_21.PLT. Then open this PLT file using Util~PLT and export it to R12 DXF (make sure it is upstretched). Rename this export file F3_21B.DXF. If you view it with either AutoCAD or Util~DXF, you will notice that the contours of the three characters will appear as polylines. Also note that the border, which originally was a closed polyline consisting of four arches of circle, now appears as a multivertex polyline. If additional editing is necessary, you can always open the F3_21B.DXF file with AutoCAD and export it back to R12 DXF after doing the necessary modifications. To see the limitations of Util~DXF, open a R12 DXF copy of F3_21. DWG generated from inside AutoCAD (see the F3_21A.DXF file available with the book). Note that the C, A, and D characters will not be visible at all, while the border consisting of a four-arch polyline is represented as a rectangle.

FIGURE 3.21 (a) View of the F3_21.DWG drawing as it was generated with AutoCAD and (b) view of its PLT file (F3_21.PLT) converted using Util~PLT to DXF (the F3_21B.DXF file).

FIGURE 3.22 The drawing in Figure 3.21b exported to a Poly\#\#\#\#.XY file and plotted using D_2D (a) as is and (b) after inserting additional points interpolated linearly using the Util~TXT program. Configuration files F3_22A.CF2, F3_22.CON, and F3_22B.CF2.

The vertices of the polylines inside F3_21B.DXF will be exported to a Poly\#\#\#\#.XY file. Then, using the Util~TXT program, linearly interpolated points will be added to this XY file in a batch conversion operation (i.e., the instructions for several successive transformations will be all read from the same CON file).

A plot of the initial vertex file generated with Util~DXF (renamed F3_22A.XY) is given in Figure 3.22a. Note the six closed polylines that make this new figure ('C' and the border are one single polyline, while ' A ' and ' D ' consist each of two polylines) and the several rectilinear portions on this plot without markers. We will employ the Util~TXT program to add linearly interpolated points to cover these sections such that the distance between every two vertices belonging to the same polyline will not exceed five units of length. This can be done either to one polyline at a time as explained in paragraph 3.2 or by using a CON file with multiple records-see the F3_22.CON file available with the book. This is essentially a concatenation of six regular CON files delimited by a record separator '--------', all six instructing Util~TXT to write data to the same output file, that is, F3_22B.XY. A plot of file F3_22B.XY thus obtained is available in Figure 3.22b.

Important: Once the portion of the input data file between the specified \{rowstart\} and \{row finish\} is converted, the record separator is then copied to the output file to act as D_2D line separator. If this separator read from the CON file is an empty line, it will not be copied to the output data file, and as a consequence, the curves will appear connected together in a single polyline.

3.5 G 3D.Lsp PROGRAM FOR GENERATING 3D CURVES AN̄D SURFACES INSIDE AutoCAD

The G_3D.LSP program is an AutoLISP application that can be used to plot inside AutoCAD both meshed surfaces and 3D curves using data read from an ASCII file of extension G3D. Such a file should consist of ($\left.\begin{array}{l}\mathbf{y} \\ \mathbf{z}\end{array}\right)$ triplets delimited by spaces (parentheses must be included). When the same data are read using the D_3D, D_2D, or Util~TXT programs, parentheses are optional, but this format should be strictly followed in case of opening them with G_3D.LSP.

In this section, we will look at generating 3D curves and 3D meshed surfaces using the G_3D.LSP program. The Util~TXT program discussed earlier allows you to convert x, y and x, y, z data sets to 2D and 3D DXF polylines. G_3D.LSP has similar capabilities but in addition, it can automatically scale the data, so that the given curve will fit a given 3D plot box. Same applies to 3D surfaces, which are true 3D surfaces and can be generated only with the G_3D AutoLISP application.

3.5.1 3D Polyline Plotting Using G_3D.LSP

Begin by launching AutoCAD and start a new drawing. Save this drawing under the name F3_23.DWG. Since G_3D.LSP is menu driven, a copy of the DCL_G3D.DCL dialog definition file must be available in the current directory. At the AutoCAD command line, type 'upload' and select G_3D.LSP, then type 'g3d' to launch the program and select the
desired G3D input file. If this input file consists of a regular grid of samples, it can be plotted both as a curve and as a meshed surface; otherwise, it can be plotted as a curve only.

Load as input file F3_23.G3D available with the book (see also program P3_23.PAS in Appendix B used to generate the G3D data file). This will generate the 3D spiral visible in Figure 3.23 having a parabolically increasing radius:

$$
\left\{\begin{array}{l}
x(\theta)=R\left[\frac{\theta}{\left(2 \pi \cdot n_{c}\right)}\right]^{2} \cos (\theta) \tag{3.5}\\
y(\theta)=R\left[\frac{\theta}{\left(2 \pi \cdot n_{c}\right)}\right]^{2} \sin (\theta) \\
z(\theta)=\frac{p \cdot \theta}{(2 \pi)}
\end{array}\right.
$$

where
n_{c} is the total number of coils
R is the major radius (the radius of the last coil)
p is the pitch of the helix (the distance between two successive coils)

G_3D.LSP can plot the helix as is or it can scale it to fit a rectangular box. In the latter case, the x, y, and z limits of the bounding box can be edited by the user, as well as the box width and height, but not its length (its x dimension), which has imposed unit value (see Figure 3.23b).

Important: If you set the box width to zero, you will obtain a projection of the curve (or surface) on the $X O Z$ side plane. If you set the box height to zero, the curve will be projected

FIGURE 3.23 (a) Plot of F3_23.G3D data file using G_3D.LSP and (b) the corresponding G_3D. LSP menu settings.

FIGURE 3.24 3D curves generated with G_3D.LSP and further edited inside AutoCAD. (a) Side and bottom projections, and divisions and labels, and (b) a circle extruded along and divisions and labels added. See also the drawing files F3_24A. DWG and F3_24B. DWG available with the book.
on the bottom plane. If you set both the height and width to zero, the curve will be projected on the YOZ back plane, under the forced assumption that Width $(y)=1$ and Height (z) $=0.5$ (see Figure 3.24a).

The plot box is oriented such that the AutoCAD UCS icon visible in Figure 3.23a is placed at the 'minimum corner' (i.e., at the point of coordinates $-0.5,-0.5,0.0$ in case of Figure 3.24) and is oriented in the positive direction of the x-, y-, and z-axes. This is a useful piece of information in case you want to manually add divisions and values along the edges of the bounding box.

Examples of edited 3D curve plots are given in Figure 3.24. Figure 3.24a has been created by running the G_3D program four times: (i) with default box-size settings, (ii) with either Width (y) or Height (z) set to zero, and (iii) with both Width (y) and Height (\mathbf{z}) set to zero. Figure 3.24 b is a rendered view of 3D solid obtained by extruding a circle along the 3D spiral originally created with G_3D.LSP. In all these cases, before any plot has been generated, the limits along the x-, y-, and z-axes were rounded to the values visible on the menu in Figure 3.23b and on the actual plots in Figure 3.24.

A second example of a 3D curve that will be discussed is that of a toroidal spiral (see Figure 3.25 and the P3_25. PAS program in Appendix B used to generate the G3D data file to plot it). The parametric equations of this curve are

$$
\left\{\begin{align*}
x(\theta) & =\left[r_{\mathrm{T}}+r_{\mathrm{S}} \cos (n \theta)\right] \cdot \cos (\theta) \tag{3.6}\\
y(\theta) & =\left[r_{\mathrm{T}}+r_{\mathrm{S}} \cos (n \theta)\right] \cdot \sin (\theta) \\
z(t) & =r_{\mathrm{S}} \sin (n \theta)
\end{align*}\right.
$$

where
r_{T} is the middle radius of the torus
r_{S} is the radius of the coil
n is the number of coils

selvis

FIGURE 3.25 Plot of the F3_25.G3D data file using G_3D.LSP. See also the F3_25.DWG drawing file.

Figure 3.25 is a rendering of a solid obtained by extruding a circle along the path of Equation 3.6 generated using G_3D.LSP. Because AutoCAD does not accept closed extrusion paths, the curve had to be broken at one vertex prior to the actual extrusion.

3.5.2 3D Surface Plotting Using G_3D.LSP

Similarly to 3D curves, G_3D.LSP allows surfaces to be generated directly inside AutoCAD. G_3D uses the AutoCAD 3dmesh command with vertices read from an ASCII file formatted as $\left(x_{i} y_{j} z_{i j}\right)$. The file extension should be G3D, and the x_{i} values should be evenly spaced not arbitrarily spaced. The use of G_3D.LSP application is facilitated by the ability of D_3D to export the current plot to a G3D file.

Figure 3.26a is a plot of the four-hump function in Equation 2.2, with 41×51 data points read from file F3_26.G3D produced using D_3D. The view point and limits over the z-axis

FIGURE 3.26 (a) Plot of F3_26.G3D data file using G_3D.LSP and the (b) corresponding menu settings.
have been rounded from the default values returned by G_3D.LSP. Note that shrinking the Zmin and $Z \max$ limits in G_3D will not truncate the function surface. It will rather show the 3D surface extending outside the bounding box. Figure 3.27 is a plot of the same double-surface plot in Figure 2.42, this time generated using G_3D.LSP. Since AutoCAD does not include line and text entities when generating rendered images, the plot in Figure 3.27 b is the result of an overlap of three separate screenshots as shown in Figure 3.28 (see also the F3_27.DWG drawing file available with the book).

Important: When representing multiple surfaces on the same graph, you must keep the same x, y, and z limits and plot box dimensions for each data file, or otherwise the graph will not depict the true intersection of the two surfaces.

FIGURE 3.27 Hidden-line (a) and rendered (b) plots of two intersecting surfaces produced using G_3D.LSP with data from files F3_27-1.G3D and F3_27-2.G3D.

FIGURE 3.28 The three AutoCAD screenshots overlapped manually in the order from left to right, required to generate the plot in Figure 3.27b.

3.6 M_3D.LsP PROGRAM FOR AUTOMATIC 3D MODEL GENERATION AND ANIMATION INSIDE AutoCAD

The M_3D.LSP is another useful AutoLISP application capable of (i) drawing in specified layers lines, cylinders, cones and cone frustums, spheres, tori, arrows, and cylindrical helixes with specifications read from ASCII file of extension M3D, (ii) writing texts, (iii) inserting blocks at positions and with orientations read from the same data file (the blocks must already exist in the database of the current drawing), and (iv) creating animation frames by turning on and then back off layers 1, 2, 3, etc., of the current drawing (assuming that these layers already exist) and exporting screenshots of these frames to BMP and/ or to AutoCAD slide files of extension SLD. Layers of names other than 1, 2, 3, etc., will not be animated and can be used to display immovable background objects. In order to easily animate the SLD frame files, M_3D will additionally generate a script file (extension SCR). When launched with the AutoCAD script command, this script will load the SLD screenshots one by one and display them the amount of MS_delay milliseconds, until the user presses the <Esc> key.

3.6.1 Animation of DXF Files with Multiple Layers Using M_3D.LSP

For a first demonstration of M_3D.LSP use, open inside AutoCAD file F3_04003.DXF generated earlier by the P3_04.PAS program. Since the drawing appears flipped compared to the original image, you must mirror everything about the $O X$ axis (see Figure 3.29 and the F3_29.DWG file). In order not to mirror the text together with the rest of the

FIGURE 3.29 AutoCAD view of the F3_04003.DXF file generated with P3_04.PAS, after it has been mirrored about the $O X$ axis and saved as F3_29.DWG. See also animation file F3_29. GIF.
drawing, you must first type 'mirrtext' at the command line and change the value of the corresponding system variable from 1 to 0 .

Once you mirrored the drawing, load M_3D.LSP by typing 'appload' at the command line. After the program is loaded, type 'motion' and confirm the default SCR file name (or specify your own). M_3D.LSP will turn off the existing layers named 1, 2, 3, etc. (up to at most 999) and then will turn them back on one at a time. Depending on the program settings, each frame will be copied to the hard drive as BMP and/or SLD file. The name of these BMP and SLD frame files will be the one you specified after issuing the M_3D command motion, followed by a three-digit frame number, for example, 001, 002, and 003. To animate the SLD files from within AutoCAD, type script at the command line and open the SCR file just created. To stop the animation, press the <Esc> key and then issue the regen command to refresh the screen. To create a stand-alone animation, you can assemble the BMP frames into a video clip using a moviemaker or create an animated GIF as explained in Chapter 1.

Important: The generation of SLD animation frames is currently turned off. To activate it, open M_3D.LSP using Notepad and remove the semicolon in front of the line that reads (setq SLD_output 1) located at the end of the file. The animation frame rate can be adjusted by editing the line that reads (setq MS_delay 10). Alternatively, you can edit the script file directly, using the replace all function in Notepad.

Important: The executable \sim Purge.EXE available with the book (see Chapter 9) allows for rapid deleting all PCX, BMP, SLD, and SCR files in the current directory. The program will also delete without confirmation all files of extension BAK and OLD, as well as the acad. err and acadstk.dmp files in the current directory, if they exist.

3.6.2 3D Model Generation with Data Read from File

The examples that will be discussed next refer to using M_3D.LSP for assembling in separate layers 3D objects with specifications read from file, for the purpose of generating animations with these layers as described earlier.

Available with the book, there are six M3D files: Data file F3_30.M3D intended to work with drawing F3_30.DWG and data files F3_31.M3D, F3_31SW.M3D, F3_31WCS1. M3D, F3_31WCS2.M3D, and F3_31UCS.M3D, all five intended to work with drawing F3_31.DWG. These two DWG files (see Figures 3.30a and 3.31a) contain the 3D models that form the nonmoving parts of the front of a small wheeled tractor. In association with the aforementioned M3D files, they will be used to simulate the motion of the steering linkage of the tractor (see Figures 3.30b, 3.31b, and 3.32 and the companion animated GIF files).

Begin by opening file F3_30.DWG (Figure 3.30a), then issue the Auto CAD appload command and load M_3D.LSP. Note that in the database of file F3_30.DWG, there is already a block named 'wheel', which is a model of one of the wheels of the tractor. Type 'm3d' at the command line and select F3_30.M3D. This ASCII file contains the descriptions of the entities that will be assembled to form the front axle with wheels, and steering linkage components, for the tractor being steered lock-to-lock on a flat surface in 14 positions. Once the M3D file is uploaded, AutoCAD will generate in separate layers these

FIGURE 3.30 Horizontal steer simulation with background drawing F3 30. DWG shown above and rendered view of the overlapped layers generated with data from F3_30.M3D (below). See also animated GIF files F3_30-1.GIF, F3_30-2.GIF, and F3_30-3.GIF.

14 positions (Figure 3.30b). Select a suitable viewpoint and amount of zoom (you can also resize the window in which AutoCAD runs) and then type 'motion' at the command line to generate the BMP frames of the simulation. Animation files F3_30-1.GIF, F3_30-2. GIF, and F3_30-3. GIF have been produced using such BMP frames, generated for isometric, top view, and front view points of the tractor model.

Note that the files readable by M_3D.LSP can be generated with any computer program or by hand using Notepad. To understand how these data files are structured, you can study the M3D files available with the book and the M_3D.LSP source code where the format and syntax of the acceptable commands are explained. You will learn that spheres are fully defined, by their radii plus, the x, y, and z coordinates of their centers. Lines, cylinders, tori, cones, cone frustums, and arrows are fully positioned and oriented by two 3D points (the amount of rotation about their axes is not relevant for these entities). Angular
orientation is not specified in case of cylindrical helixes either, although this may cause occasional loss of realism in certain simulations. AutoCAD blocks are the only objects for which you must specify their insertion point, and the coordinates of two additional points, to fully orient them one along the x-axis and one along the y-axis of the reference frame attached to the respective block.

Important: All 3D points entered in an M3D file are assumed specified relative to the world coordinate system (WCS) of the drawing.

Data file F3_30.M3D includes the number of notations as follows (see also Figure 3.31): $\mathbf{A B}$ is the drag link of the control linkage, \mathbf{A} is the ball joint of the drop arm, \mathbf{B} the ball joint of the steering arm, and $\mathbf{C D}$ is the tie rod of the Ackermann linkage. The calculations involved in determining the coordinates of these ball joint centers $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} can be found in the paper by Simionescu and Talpasanu (2007) listed at the end of the chapter.

FIGURE 3.31 Bump steer simulation with background drawing F3_31.DWG shown above and rendered view of the overlapped layers generated with data from F3_31.M3D and F3_31SW. M3D (below). See also animation files F3_31-1.GIF and F3_31-2.GIF.

3.6.3 Automatic Insertion of AutoCAD Blocks

One likely criticism of the aforementioned kinematic simulations is that the steering wheel remains immobile as the wheels and the steering linkage move. In the next example, this problem will be addressed, while explaining how to instruct M_3D to insert AutoCAD blocks at positions and with orientations read from file. This second example is a motion simulation of the cross-coupling between axle oscillation and the steering mechanism known as bump steer. In this simulation, the steering knuckles are assumed locked and the front axle is oscillated causing the arm of the steering box (the drop arm) to move off its reference position, which causes the steering wheel to rotate.

We will first edit F3_30.DWG and turn the steering wheel into an AutoCAD block, which will be inserted in different rotated positions at the end of the steering column. The modified file has been renamed F3_31.DWG and is available with the book. Open drawing F3_30.DWG and move the UCS at the end of the steering column, such that it is oriented with the y-axis in the longitudinal plane of the vehicle, the x-axis pointing to the right, and the z-axis aligned with the steering column. Note that the steering column is tilted 30° backward—see Figure 3.31a. Also, the steering wheel is placed in a layer called 'Steering_wheel' that you may want to turn off as you reposition the UCS. Also notice the small circle at the end of the steering column that will facilitate positioning of the UCS. With the layer 'Steering_wheel' on, issue the command block and create a new AutoCAD block named 'S_wheel'. Specify $(0,0,0)$ as its insertion point and select the steering-wheel rim, spokes, and spherical hub as its constituents. Move the UCS back to the world position and save your drawing as F3_31.DWG.

Now upload the M_3D.LSP application inside F3_31.DWG and type 'm3d' at the command line and select F3_31.M3D as input. What you will obtain are seven overlapped images of the front axle oscillated from -15° to $+15^{\circ}$ with the steering knuckles locked in the straight ahead position, together with the steering mechanism components. Note the missing steering wheel, which exists however as a block in the drawing's database, same as the block 'wheel'. In order to insert the 'S_wheel' block in its position and rotated due to the bump steer, type 'm3d' again and select as input the F3_31SW. M3D file. If you issue the render command, you should obtain an overlapped image similar to Figure 3.31b.

The steering-wheel angles correlated with the position of the axle as it oscillates are listed in Table 3.3 and have been taken from Simionescu and Talpasanu (2007). When calculating these values, the steering-box reduction ratio was assumed to be $16: 1$, which means that the drop-arm displacement will be transmitted at the steering wheel amplified 16 times. As the axle oscillates with its steering knuckles locked, the rotation of the steering

TABLE 3.3 Steering-Wheel Angle vs. Axle-Beam Oscillation Angle

Position Number (\boldsymbol{i})	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Axle-beam angle (ψ)	-15.00°	-10.00°	-5.00°	0.00	5.00°	10.00°	15.00°
Steering-wheel angle (φ)	-45.120°	-35.088°	-19.968°	0.00	24.608°	53.648°	86.992°

wheel can be used as a measure of the cross-coupling between the steering control motion and the axle oscillation, also known as the bump steer of the vehicle.

The problem of simulating the steering-wheel motion due to bump steer has been solved using a separately generated file F3_31SW.M3D that prescribes the insertion point and orientation of the 'S_wheel' block for the seven positions in Table 3.3. The Pascal program P3_31.PAS listed in Appendix B generates these lines and writes them to file F3_31SW. M3D. In addition, P3_31.PAS outputs file F3_31UCS.M3D, which can be used to insert two arrow entities corresponding to the x - and y-axes of the local reference frame attached to the steering wheel.

In the process of calculating the insertion point and orientation of the block 'S_wheel', and of the end points of the x and y arrows attached to the steering wheel, program P3_31.PAS calls the roto-translation procedure RT from unit LibGe3D.PAS four times (lines \#44 to \#47). This is done for the WCS coordinates of the two points attached to the steering wheel of local coordinates $(400,0,0)$ and $(0,400,0)$-which are also the ends of the two arrows-to be transformed as follows: (i) one rotation about the $O Z$ axis by the steering-wheel angle φ (see Table 3.3), (ii) one rotation about the $O X$ axis by -30° to account for the backward tilt of the steering column, and (iii) one translation to the point of WCS coordinates $(0.000,971.338,658.399)$ where the steering wheel actually attaches to its column.

To exemplify additional capabilities of the M_3D.LSP AutoLISP program, two M3D command files have been manually generated and are listed on the next page. The F3_31WCS1. M3D file includes the command lines to generate the three arrows of the global reference frame $O X Y$ with the origin at point $(0,0,0)$ located in the middle of the axle beam and extending to points $(900,0,0),(0,400,0)$, and $(0,0,500)$, respectively (see Figure 3.32a).

FIGURE 3.32 Bump steer simulations with background drawing F3_31.DWG and (a) data from F3_31.M3D, F3_31SW.M3D, and F3_31WCS1.M3D and (b) from F3_31.M3D, F3_31SW.M3D, F3_31WCS2.M3D, and F3_31UCS.M3D. See also animation files F3_32a.GIF and F3_32b. GIF.

```
(";")--------------------------------------------------------------------
(";") M3D command file name: F3_31WCS1.M3D
(";")
(";") Draw WCS using cones and lines, and label axes as x, y, z
("';")-----------------------------------------------------------------------
("WCS") change layer to "WCS"
(CL "BLUE") change color
( 0.0 0.0 0.0 900.0 0.0 0.0) line
(CO 825.0 0.0 0.0 900.0 0.0 0.0 15.0) cone
(TX "X" 920.0 0.0 0.0 30 0.0) X-axis label
( 0.0 0.0 0.0 0.0 400.0 0.0) line
(CO 0.0 325.0 0.0 0.0 400.0 0.0 15.0) cone
(TX "Y" 0.0 420.0 0.0 30 90) Y-axis label
( 0.0 0.0 0.0 0.0 0.0 500.0) line
(CO 0.0 0.0 425.0 0.0 0.0 500.0 15.0) cone
(TX "Z" 0.0 0.0 520.0 30 0) Z-axis label
(CL "WHITE") back to regular color
```

File F3_31WCS2.M3D serves a similar function, that is, to generate the global reference frame $O X Y$ with the origin in the middle of the axle beam, $O X$ to the right, $O Y$ longitudinally backward, and $O Z$ vertically up, but using arrows made of cones and cylinders rather than cones and lines. In this other version, the reference frame will remain visible following the AutoCAD render command (see Figure 3.32b).

```
(";")
(";") M3D command file name: F3_31WCS2.M3D
(";")
(";") Draw the WCS using arrow entities (cones and cylinders)
(";")
("WCS") change layer to "WCS"
(CL "BLUE") change color
(AR 0.0 0.0 0.0 900.0 0.0 0.0 75.0 5.0) WCS x-axis
(TX "X" 920.0 0.0 0.0 30 0.0) WCS x-axis label
(AR 0.0 0.0 0.0 0.0 400.0 0.0 75.0 5.0) WCS y-axis
(TX "Y" 0.0 420.0 0.0 30 90) WCS y-axis label
(AR 0.0 0.0 0.0 0.0 0.0 500.0 75.0 5.0) WCS z-axis
(TX "Z" 0.0 0.0 520.0 30 0) WCS Z-axis label
(CL "WHITE") back to regular color
```

That animation file F3_32B.GIF is a rendered view of the tractor model, rather than the result of the hide command. In this case, its frames have been generated manually by copying to the clipboard the active AutoCAD screen using the $<$ Alt $>+<$ Prnt Scrn $>$ keys. The advantage of drawing arrows using cones and slender cylinders rather than cones and plain lines became apparent in this case.

The plotting procedures in unit LibPlots have been introduced, along with the computer programs Util~TXT for manipulating ASCII files and Util~DXF and Util~PLT for viewing R12 DXF files. AutoLISP applications G_3D.LSP and M_3D.LSP allow true 3D entities to be generated with data read from file. G_3D.LSP generates 2D and 3D curves and 3D surfaces, either sized 1:1, or scaled to fit a plot box. In turn, M_3D.LSP can automatically generate cylinders, cones, spheres, tori, and AutoCAD blocks and can also animate them if they are placed in successively numbered layers. Further examples of the use of these programs and procedures are available in the remainder of the book.

REFERENCES AND FURTHER READINGS

Alciatore, D. G. and Histand, M. B. (2007). Introduction to Mechatronics and Measurement Systems. New York: McGraw Hill.
Hertz, D. L. Jr. (December 1991). An analysis of rubber under strain from an engineering perspective. Elastomerics, 1991. (also available from www.sealseastern.com/pdf/rubberunderstrain.pdf).
Simionescu, P. A. and Talpasanu, I. (2007). Synthesis and analysis of the steering system of an adjustable tread-width four-wheel tractor. Mechanism and Machine Theory, 42(5), 526-540.
Zecher, J. E. (1993). Computer Graphics for CAD/CAM Systems. New York: Marcel Dekker/Taylor \& Francis.

For vibration of single degree of freedom systems, see
Meriam, J. L. and Kraige, L. G. (2006). Engineering Mechanics: Dynamics. Hoboken, NJ: Wiley. Rao, S. S. (2010). Mechanical Vibrations. Upper Saddle River, NJ: Prentice Hall.

For numerical differentiation and integration, see
Kreyszig, E. (2006). Advanced Engineering Mathematics. New York: Wiley.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W.T. (1989). Numerical Recipes in Pascal: The Art of Scientific Computing. Cambridge, U.K.: Cambridge University Press.

For more information on AutoCAD release 12 DXF format (i.e., R12 DXF), see http://paulbourke.net/dataformats/dxf/.
www.mediatel.lu/workshop/graphic/3D_fileformat/h_dxf12.html.
For more information on the HP-GL (Hewlett-Packard Graphics Language) format, see www.sxlist.com/techref/language/hpgl.htm.

To download a free DXF viewer, go to
www.bravaviewer.com/viewers. www.edrawingsviewer.com.

Root Finding and Minimization or Maximization of Functions

THERE IS A broad array of algorithms available for finding roots or extrema of functions, for multicriteria optimization, or for solving sets of equations (either linear or nonlinear). They differ greatly by their ease of implementation, robustness, and speed. Usually, these three characteristics do not go hand in hand, that is, a robust algorithm will be slow, while one that is fast but less robust will require additional preparation effort, like providing information about the derivative, or a good initial guess of the solution to be found. It is considered robust an algorithm that converges even for badly chosen initial conditions or parameter settings, while a fast algorithm will converge after fewer numbers of iterations or function calls-a characteristic desirable particularly if each function evaluation takes significant computational effort or when the algorithm is used in real-time applications. A number of such algorithms will be discussed in this chapter, including a new evolutionary algorithm for exploring the boundary of the feasible space in constrained optimization problems.

4.1 BRENT'S ZERO ALGORITHM FOR ROOT FINDING OF NONLINEAR EQUATIONS

A popular algorithm for root finding of functions of one variable that does not require information about their derivatives is the Zero algorithm due to Brent (1973). It combines root bracketing, bisection method, and inverse quadratic interpolation to converge within an interval [a, b] that contains a root of the function. While the details of the algorithm will not be presented here, three different implementations available in unit LibMath as procedures Zero, ZeroStart, and ZeroGrid will be discussed,
based on the problem of finding the roots of two of the functions considered earlier in Chapter 1, and renamed here

$$
\begin{equation*}
F_{1}(x)=\frac{1}{(x-1)^{2}+0.1}+\frac{1}{(x-3)^{2}+0.2}-3 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}(x)=\frac{x\left(x^{2}-3\right)}{x^{2}-4} \tag{4.2}
\end{equation*}
$$

As Figures 4.1 and 4.2 show, function F_{1} has four roots, while F_{2} has three roots, approximated with some accuracy by the D_2D program and visible on the two graphs. Here, we will investigate the problem of finding better approximations of these roots using Brent's Zero algorithm, while in the next paragraph, the minima and maxima of the same two functions will be evaluated numerically with increased precision over the values visible in Figures 4.1 and 4.2.

FIGURE 4.1 Plot of the function in Equation 4.1. Configuration file: F4_01.CF2.

FIGURE 4.2 Plot of the function in Equation 4.2. Configuration file F4_02.CF2.

Program P4_01.PAS listed in Appendix B calls procedure Zero from unit LibMath with the following arguments: the function name F1, the lower and upper limits of an interval $[a, b]$ known to contain a root of the function, and variable \mathbf{x} where the root will be stored. Note that function F1 was compiled under the Force Far Calls directive by placing its name between switches $\{\$ \mathrm{~F}+\}$ and $\{\$ \mathrm{~F}-\}$. The results returned by the program are:

```
x = 4.98525413059701E-0001 F1 (x)=2.62810606610486E-0016
Function calls=11
```

Important: The Zero procedure counts the number of function evaluations and stores it in the Interface variable NrFev0. If NrFev0 exceeds LimFev0 (currently set to 10,000), then the program will terminate without warning. It is therefore advisable to inspect, after the search is over, the value of the function-call counter NrFev0 as a way of verifying if the algorithm stopped before reaching a root. Evaluating the function at the returned solution \mathbf{x} (which should be very close to zero) is another way of verifying that the algorithm converged.

The second program named P4_02.PAS and listed in Appendix B illustrates the use of a variant of the Zero algorithm named ZeroStart, which can find the root closest to a given point (or initial guess) that must be assigned to variable \mathbf{x} prior to calling ZeroStart. In addition to the initial guess \mathbf{x}, the user must specify the size of the constant steps (stored in variable Step) that the algorithm will take to inspect the function to the left and to the right of the initial guess. If this step size is too small, there will be too many function evaluations performed in the process of bracketing a root. Conversely, if the step size is too big and the function is multimodal, the nearest root can be missed during the bracketing process.

In the example considered, the root of function F_{2} closest to point 1.0 is to be found. Note that the search to the right of the initial guess must go uphill first (i.e., increasing from zero) before it reaches the desired root, that is, $\mathbf{1 . 7 3 2 0 5 1}$. The search to the left of the initial guess results in root 0.0 that will be discarded, however, because it is farther from 1.0 than 1.732051 . You can verify that for an initial guess outside the interval $[-2,2]$ and for the same step size of magnitude 0.1, the ZeroStart procedure will not return a valid solution because it is unable to leap over the singular points at -2 and +2 . The results output by program P4_02.PAS are:
$x=1.73205080756888 \mathrm{E}+0000 \quad \mathrm{~F} 2(\mathrm{x})=6.01949046163952 \mathrm{E}-0016$
Function calls=37

Program P4_03.PAS in Appendix B calls procedure ZeroGrid that can return up to 52 roots of a given function within the specified interval [a,b]. If there are fewer than 52 roots found, the remaining components of vector X will be assigned the constant InfD equal to 1.0E100 and defined in unit LibMath. A grid size specified by the user (set to 25 in the program-see lines \#24 and \#33) is used to partition the interval [a, b] and bracket
the zeros of the function over the respective grid. The results are indeed close to the values visible on the graphs in Figures 4.1 and 4.2:

```
x1=4.98525413059701E-0001 F1(x1)=-1.94289029309402E-0016
x2= 1.53732723677864E+0000 F1(x2)=-7.26632295999785E-0016
x3= 2.57225426015191E+0000 F1(x3)=-5.87203896618149E-0016
x4=3.39189309000975E+0000 F1(x4)= 9.21571846612679E-0016
x5= 1.00000000000000E+0100 F1(x5)=-3.00000000000000E+0000
Function calls=62
x1=-1.73205080756888E+0000
x2= 0.00000000000000E+0000
x3= 1.73205080756888E+0000
x4= 1.00000000000000E+0100
x5= 1.00000000000000E+0100
```

```
F2(x1)=-6.01949046163952E-0016
```

F2(x1)=-6.01949046163952E-0016
F2(x1)=-6.01949046163952E-0016
F2(x1)=-6.01949046163952E-0016
F2(x1)=-6.01949046163952E-0016
F2(x1)=-6.01949046163952E-0016
F2(x1)=-6.01949046163952E-0016
F2(x1)=-6.01949046163952E-0016
F2(x1)=-6.01949046163952E-0016

```
F2(x1)=-6.01949046163952E-0016
```

Function calls=363
4.2 BRENT'S METHOD FOR MINIMIZING FUNCTIONS OF ONE VARIABLE

Equally useful to root finding is the problem of determining the minimum and maximum points of functions of one variable. Minimization and maximization in any dimension are related since the minima of $f(x)$ are the maxima of $-f(x)$. Here, we will consider the problem of finding the minimum points of a scalar function of one variable using Brent's method, which is a relatively fast algorithm that does not require derivative information. In searching for a minimum over a given interval, depending on the local behavior of the function, Brent's method switches between a more robust but slow golden section search and a faster parabolic interpolation minimization (Brent 1973). Three implementations of Brent's method gathered in unit LibMin1 will be considered, that is, procedures Brent, BrentStart, and BrentGrid, in conjunction with finding the minima and maxima of F_{1} and F_{2} in Equations 4.1 and 4.2.

Program P4_04.PAS in Appendix B calls procedure Brent to minimize function F_{1} over the interval $[1,3]$. It returns the minimum of the function vF and its abscissa \mathbf{x}. Convergence is controlled by constants Tol $=10^{-16}$ and Eps $=10^{-16}$ and by the functioncall counter $\mathrm{NrFev} 1=50,000$ (i.e., the search will stop if NrFev 1 exceeds LimFev1). These are default values set in the implementation section of unit LibMin1. With these settings, the results obtained are:
$x=2.03510727084125 \mathrm{E}+0000 \quad \mathrm{~F} 1(\mathrm{x})=-1.26219569494521 \mathrm{E}+0000$
Obj. function calls=41
The companion program P4_05.PAS in Appendix B employs procedure BrentStart that searches around an initial guess \mathbf{x} provided by the user until a minimum is bracketed, and then procedure Brent is called to accurately locate the minimum point. At the beginning, the search inside procedure BrentStart moves at a constant step in the descending direction of the function, until either NrFev1 exceeds half of the maximum allowed number of function calls LimFev1, or a minimum is bracketed. Then, the search is performed in the opposite direction starting from the same initial \mathbf{x} value, until another minimum is bracketed, or the search reaches a point farther away than the previously found minimum.

In both situations, if a minimum is bracketed, Brent procedure is called to refine the search. The results returned by program P4_05.PAS are:

```
x=2.03510727426347E+0000 F1 (x)=-1.26219569494521E+0000
```

Obj. function calls=25163

Note that in case of function F_{1} and initial point at 0.75 , the algorithm was able to reach the minimum at 2.035107 that required going uphill first, although the majority of function calls were spent uselessly moving downhill, to the left of the starting point $x=0.75$.

The third program in the minimization series named P4_06.PAS (see Appendix B) uses the BrentGrid procedure to isolate all minima within the interval [a, b]. It is called with functions F_{1}, F_{2} and their negatives so that all their minima and maxima are located. The minimum bracketing scheme implemented in the BrentGrid procedure is relatively simple, similar to the way extrema are identified by D_2D (see Figures 4.1 and 4.2), that is, the interval [a,b] is divided into Npts equally spaced points and the function value at each of these points is compared with its neighbors. If the middle point is lower than its neighbors, then a minimum is bracketed. Once a minimum is bracketed, Brent procedure introduced earlier is called to finish the search. In Press et al. (1989), an adaptive step-size minimum bracketing procedure is described, which is more effective than the one discussed here. The results returned by the program P4_06.PAS are:

```
x1= 2.03510727427766E+0000
F1(x1) =-1.26219569494521E+0000
Obj. function calls=57
x1= 1.00113562665303E+0000
x2= 2.99520656838562E+0000
F1(x1) = 7.23822399222707E+0000
F1(x2) = 2.24447267408327E+0000
Obj. function calls=93
x1=-2.00000000000000E+0000
F2(x1) =-1.12589990684263E+0015
x2=-1.27582078565695E+0000
F2(x2) =-7.38017459656381E-0001
x3=2.00000000000000E+0000
F2(x3) =-1.12589990684262E+0015
x4= 2.71519452607298E+0000
F2(x4) = 3.52034518609217E+0000
Obj. function calls=245
```

Obj. function calls=243

```
```

x1=-2.71519452734705E+0000

```
x1=-2.71519452734705E+0000
x2=-2.00000000000000E+0000
x2=-2.00000000000000E+0000
x3= 1.27582078559014E+0000
x3= 1.27582078559014E+0000
x4=2.00000000000000E+0000
x4=2.00000000000000E+0000
F2(x1) = - 3.52034518609217E+0000
F2(x2) = 1.12589990684262E+0015
F2(x3) = 7.38017459656381E-0001
F2(x4) = 1.12589990684263E+0015
```

Note that the BrentGrid procedure was able to locate all minima and maxima of F_{1} and F_{2} after a reasonably small number of function calls. These include the $\pm \infty$ asymptotes of F_{2} (approximated with values in the range of $\pm 10^{15}$) occurring at points $x=-2$ and $x=2$.

4.3 NELDER-MEAD ALGORITHM FOR MULTIVARIATE FUNCTION MINIMIZATION

In this and the following sections, the problem of minimizing a scalar function of two or more variables is discussed. This is required in many instances, like curve fitting to data and solving sets of equations (linear or nonlinear). Both unconstrained functions, and
the more commonly encountered in practice case where the function to be minimized is subjected to constraints, are considered.

One popular direct search method of function minimization is the Simplex method due to Nelder and Mead. It is called direct because the algorithm does not use the derivative of the function. A version of this algorithm is implemented under the name fminsearch in MATLAB and is also available in Press et al. (1989) as procedure Amoeba.

The Nelder-Mead Method uses the concept of a Simplex, which is a geometrical figure having $n+1$ vertices when the search occurs in an n-dimensional space, for example, when minimizing a function of two variables the simplex is a triangle and when the function has three variables the simplex is a tetrahedron. The search begins with an initial nondegenerate simplex that is transformed such that the vertex with the highest function value (the worst vertex) is eliminated. These transformations are (i) reflection of the simplex away from the worst vertex; (ii) in case a reflection turned the highest point into a new lowest point, an expansion in the same direction will immediately be performed; (iii) contraction of the simplex along one direction away from the highest vertex; and (iv) shrinkage of the simplex along n directions towards the lowest vertex. Transformations (i), (ii), and (iii) are done relative to the centroid of the n best vertices. For example, the first search step recorded in Figure 4.3a and d is a reflection, the first step in Figure 4.3c is a contraction, and the first step in Figure 4.3d is a shrinkage. See also the animated GIFs that accompany these figures for a better understanding of how the simplex morphs as it advances towards a minimum point. The searches recorded in Figure 4.3 have as objective finding the minima and maxima of the four-hump function introduced in Chapter 2 are restated here as:

$$
\begin{equation*}
F_{3}(x, y)=10\left[e^{-(2 x+1)^{2}-(y+1)^{2}}-e^{-(x-1)^{2}-(y+1)^{2}}\right]^{2}+15\left[e^{-(x-1)^{2}-(y-1)^{2}}-e^{-(2 x+1)^{2}-(2 y-1)^{2}}\right]^{2} \tag{4.3}
\end{equation*}
$$

Possible stopping criteria of the algorithm are (i) exceeding a certain number of function calls or iterations, (ii) the volume of the simplex becomes too small, or (iii) there is not much difference in the function value between the best and the worst vertices of the simplex.

To illustrate how the Nelder-Mead Simplex algorithm works, program P4_07.PAS has been written and is available with the book. It minimizes function F_{3} in Equation 4.3 using the NelderMead procedure called from unit LibMinN. As the search progresses, P4_07.PAS writes the coordinates of the simplex to an ASCII file as D_2D animation frames, with the initial coordinates being randomly generated within the given lower and upper bounds $-1.5 \leq x \leq 2.5$ and $-2.5 \leq y \leq 2.5$ (see vector variables Xmin and Xmax).

Note that there may be instances where the simplex will diverge away from an optimum or may stagnate around a saddle point or in a valley. In such cases, it is useful to restart the search, either with a totally new simplex or with one that has some of the highest vertices replaced with new values, possibly randomly generated.

To provide you with a more refined function-minimization tool, the following features have been included in procedure NelderMead: (i) The simplex is forced to remain within

FIGURE 4.3 Histories of Nelder-Mead simplex search with the simplex converging to the two minima (a and b) and the two maxima (c and d) of the function in Equation 4.3. Configuration files F4_03A. CF2 through F4_03D.CF2. See also animations F4_03a.GIF through F4_03d.GIF.
the interval XXmin...xxmax. (ii) The possibility of specifying a starting point that is assigned to one vertex of the simplex, while the coordinates of the remaining vertices are randomly generated. If no initial guess is available, the entire initial simplex will be randomly generated. (iii) The possibility of reading all or part of the vertices of the initial simplex from an ASCII file. If the initial simplex read from file is incomplete, its remaining vertices will be randomly generated. (iv) The possibility of pausing the search by pressing the <Esc> key and allowing the user to inspect the current solution; the user can either accept the current solution or resume the search until one of the programmed stopping conditions is attained.

Program P4_08.PAS in Appendix B calls procedure NelderMead with the initial simplexes read from ASCII files P4_08-1.SPX and P4_08-2.SPX. These were chosen such that the search will advance to the local minima (Figure 4.4a) and local maxima (Figure 4.4b) of the function. Note that the search in Figure 4.4a begins with a contraction of the simplex, while the search in Figure 4.4a begins with a shrinkage of the simplex. Regarding the level curves in Figures 4.3 and 4.4, these are read by D_2D from ASCII file F3. XY, which is a duplicate of the file F3_18B. XY in Chapter 3.

The results output by P4_08. PAS are (variable PlsMns is assigned on line \#30 of the program):

For PlsMns= +1, the minimum of the function is obtained as
$\mathrm{x} 1=1.00075122494239 \mathrm{E}+0000$
$x 2=-1.04666091613729 \mathrm{E}+0000$
F_opt $=-9.74956322430359 \mathrm{E}+0000$
Obj. function calls=137
For PlsMns=-1, the maximum of the function is obtained as
$\mathrm{x} 1=-5.35496066732408 \mathrm{E}-0001$
$\mathrm{x} 2=-9.95424083908040 \mathrm{E}-0001$
F_opt $=9.02774166941257 \mathrm{E}+0000$
Obj. function calls=120

In order to locate the global minimum and global maximum of function F_{3}, a different strategy is proposed in program P4_09.PAS (see Appendix B). The search is

FIGURE 4.4 Histories of Nelder-Mead simplex searches done with program F4_08.PAS, converging to the local minima (a) and local maxima (b) of the function. Configuration files: F4_04A.CF2 and F4_04B.CF2. See also animations F4_04a.GIF and F4_04b.GIF.
repeated several times with new initial simplexes that were randomly generated, and the best solution found among these separate searches is retained and displayed at the end of the run.

The results returned by this new program are (constant PlsMns is defined on line \#10 of the program—see Appendix B):

```
For PlsMns= +1, the results are
x1 =-5.28706765640623E-0001
x2 = 5.13746292321373E-0001
F_opt=-1.28850039129209E+0001
Obj. function calls=11913
For PlsMns= -1, the results are
x1 = 1.00024221604051E+0000
x2 = 1.02264234759275E+0000
F_opt= 1.48245012784894E+0001
Obj. function calls=11632
```

On rare occasions, program P4_09.PAS may crash if a large value is transmitted to the exponential functions inside Fn (i.e., a number too large for Pascal to handle may be generated, and floating point overflow will occur-see next section on constraint handling).

Important: By setting the variable WriteOutN in procedure NelderMead to the logical value TRUE, the user can stop the search and inspect the best solution found so far, with the possibility of retaining this solution and halting the program or resuming the search.

4.4 HANDLING CONSTRAINTS IN OPTIMIZATION PROBLEMS

Most real-world problems require finding minimum or maximum of functions while simultaneously satisfying a number of constraints. The most common of these, called side constraints, are boundaries imposed to the design variables, that is, $x_{i \text { min }} \leq x_{i} \leq x_{i \text { max }}$. Additional relationships between some or all variables of the objective function may also be imposed, both as inequalities and as equalities. Because of their more frequent encounter and the more convenient handling, only the case of inequality constraints will be considered here.

Let us assume the problem of minimizing a function introduced earlier (i.e., the hyperbolic paraboloid in Figure 2.28):

$$
\begin{equation*}
F_{4}(x, y)=0.1 x y \tag{4.4a}
\end{equation*}
$$

subjected to the following constraint:

$$
\begin{equation*}
x^{2}+y^{2} \leq\left[r_{T}+r_{S} \cos \left(n \cdot \arctan \left(\frac{x}{y}\right)\right)\right]^{2} \tag{4.4b}
\end{equation*}
$$

with $r_{\mathrm{T}}=1, r_{\mathrm{S}}=0.2$, and $n=6$. This is equivalent to forcing the search for an optimum point within the closed contour delimited by parametric equations:

$$
\left\{\begin{array}{l}
x(\theta)=\left[r_{T}+r_{S} \cos (n \theta)\right] \cdot \cos (\theta) \tag{4.5}\\
y(\theta)=\left[r_{T}+r_{S} \cos (n \theta)\right] \cdot \sin (\theta)
\end{array}\right.
$$

where $0 \leq \theta \leq 2 \pi$.
Due to the symmetry of both the function and its constraint, there will be two distinct but equal minima (Figure 4.5 a). These are located on the boundary between the feasible and infeasible spaces, where the closed curve of Equation 4.5 intersects the second diagonal. Similar observations can be made about the two maxima of the constrained function, which are mirror of the minimum points and are located where the first diagonal intersects the boundary of the feasible space.

The level-curve plot in Figure 4.5a has been generated with D_3D using the file F4_05A. D2D with 501×501 data points, produced by the program F4_05A.PAS (see listing in Appendix B).

For solving of the optimization problem defined by Equations 4.4a and b, program P4_10.PAS has been written and is listed in Appendix B. To account for the imposed constraint, an easy to implement version of the penalty function method was adopted, where function Fn returns a very large value (i.e., InfD defined in unit LibMath) if the constraint is not satisfied. This simple approach was found to work well in many instances, being in addition very convenient to program. In case of functions of two variables, the added benefit of this constraint handling approach is that there is no difference between programming the function for minimum finding purposes, and generating the data for

FIGURE 4.5 Plot of function 4.4a constrained by inequality 4.4 b (a) and how file F4.XY has been generated as the overlap and trim inside AutoCAD of the function in Equation 4.4a and the parametric curve in Equation 4.5 (b). Configuration files to redo these plots: F4_05A.CF3 and F4_05B.CF3 and F4_05B.CF2.
plotting it using D_3D (see program F4_05A.PAS in Appendix B). Remember however that this form of the penalty method is not suitable for handling equality constraints.

Note on line \#9 of program P4_10.PAS the definition of constant PlsMns that can be assigned either value +1 in case minimization is performed or -1 in case of maximization. This constant multiplies the feasible values of objective function Fn (see line \#27).

Also note on line \#31 the use of variable WriteOutN defined in Interface section of unit LibMinN, which is assigned the logical value FALSE. This will turn off the search status, which means that it will not be possible to pause the search and inspect the best solution found so far by the procedure NelderMead.

Because of the mentioned symmetry of both the function and its constraint, identifying any of the minimum or maximum points of the function allows the other extrema to be verified through exact calculations. Their values are as follows:

```
x = 0.84852813; y =-0.84852813; F_opt=-0.72;
x =-0.84852813; y = 0.84852813; F_opt=-0.72;
x = 0.84852813; y =-0.84852813; F_opt= 0.72;
x =-0.84852813; y =-0.84852813; F_opt= 0.72;
```

The search history in Figure 4.6 and the accompanying animated GIF file F4_06.GIF have been generated with program P4_11.PAS (listing not included, but available with the book), which has a structure similar to P4_07. PAS used to produce Figures 4.3 and 4.4.

To reduce the size of the data file used by $\mathrm{D}_{-} 2 \mathrm{D}$ to plot the background when animating Figure 4.6 and to increase the resolution at which the boundary of the feasible space is plotted, the following procedure has been implemented. Firstly, a low-resolution level-curve plot of function F_{4} has been generated using D_3D and then was exported to DXF. The boundary of the feasible space was created separately by plotting the parametric curve in Equation 4.5 using the data file output by program F4_05B. PAS (see Appendix B) and in turn was exported to DXF. The two DXF files were opened

FIGURE 4.6 History of Nelder-Mead simplex searches according to program P4_11.PAS. Configuration file F4_06.CF2. See also animated GIF file F4_06.GIF.
in separate DWG files and then were overlapped as visible in Figure 4.5b. Finally, the level curves were trimmed to look as shown in Figure 4.5a. The trimmed level curves of the constrained function F_{4} were exported from AutoCAD to R12 DXF. Using the Util~DXF program, the vertices of these polylines were finally exported to ASCII file F4.XY. This smaller ASCII file was ultimately used to plot the background curves in Figure 4.6 that show the Nelder-Mead simplex search histories.

A second constrained optimization problem considered is that of a speed reducer design, translated by Li and Papalambros (1985) into minimizing the following objective function:

$$
\begin{align*}
F_{5}\left(x_{1} \ldots x_{7}\right)= & 0.7845 x_{1} r_{2}^{2}\left(3.3333 r_{2}^{2}+14.9334 x_{3}-43.0934\right) \\
& -1.508 x_{1}\left(x_{2}^{2}+x_{7}^{2}\right)+7.477 x_{1}\left(x_{6}^{3}+x_{7}^{3}\right)+0.7854\left(x_{4} x_{6}^{2}+x_{5} x_{7}^{2}\right) \tag{4.6}
\end{align*}
$$

subjected to side constraints:

$$
\begin{align*}
2.6 & \leq x_{1} \leq 3.6 & & 0.7 \leq x_{2} \leq 0.8 \\
17 & \leq x_{3} \leq 28 & & 7.3 \leq x_{4} \leq 8.3 \tag{4.7}\\
7.3 & \leq x_{5} \leq 8.3 & & 2.9 \leq x_{6} \leq 3.9 \\
5.0 & \leq x_{7} \leq 5.5 & &
\end{align*}
$$

Program P4_12.PAS listed in Appendix B implements a multistart solution method to this optimization problem, which uses procedure NelderMead called from unit LibMinN. Note that the initial guess is updated after each trial by adding a random perturbation to the previously calculated optimum (see lines \#52 to \#54) and by truncating out of the decimals of the previous search result XX (line \#59—note the use of procedures MyVal and MySt called from unit LibInOut). Truncating out of decimals also helps with reporting the search results, because fewer number of significant digits are retained by the user. Also note the use of the BackUpFile command on line \#67 that changes the extension of ASCII file Results from TXT to OLD, so that the results obtained previously are not immediately lost.

After several runs of program P4_12.PAS, one of the best solutions found was

```
Obj. function calls=6008446
F_opt= 2.35245309676356E+0003
x1= 2.60000000000000E+0000
x2= 7.00000000000000E-0001
x3= 1.70000000000000E+0001
x4=7.30020000000000E+0000
x5= 7.30020000000000E+0000
x6= 2.90000000000000E+0000
x7= 5.00000000000000E+0000
```

As the above results indicate, the global minimum of F_{5} occurs for the lowest possible values of x_{1} through x_{7} and it equals $2.35244784872076 \mathrm{E}+3$. This suggests that the optimum is bounded, that is, all constraints are active at the minimum point.

4.5 EVOLUTIONARY ALGORITHM FOR BOUNDED-OPTIMUM SEARCH

Optimization algorithms, like that of Nelder and Mead discussed earlier, do not always return the global minima, due to either the multimodal or noisy behavior of the objective functions, or the form of its constraints. Such problems can be better handled using evolutionary algorithms, which employ mechanisms inspired by biological evolution, that is, reproduction, mutation, recombination, selection, and survival of the fittest applied to a population of solution. The individuals in this population are points in the design space that are evolved using the mechanisms listed earlier, such that the function value (also known as fitness) at these points is improved. There is a wealth of literature, including numerous online resources, which those less familiar to the subject of evolutionary computation may want to consult.

Here, a novel two-population evolutionary algorithm will be presented, which has the ability to explore the boundary between the feasible and the infeasible spaces of objective function. In many practical problems, like it was the case of the speed reducer of Li and Papalambros (1985) considered earlier, the optimum is located right on the boundary of the feasible space. A number of implementations of this new female-male evolutionary algorithm as it was called are discussed in Simionescu et al. (2006). These implementations will be abbreviated $\mathrm{F}-\mathrm{M}(\mu \mathrm{F}, \mu \mathrm{M})$, where $\mu \mathrm{F}$ is the size of the female population (the feasible individuals) and $\mu \mathrm{M}$ is the size of the male population (the infeasible individuals).

The main steps of a generic female-male evolutionary algorithm are as follows:
Step 1: Generate an initial female population of $\mu \mathrm{F}$ individuals and an initial male population of $\mu \mathrm{M}$ individuals as uniform random points within the extended intervals:

$$
\begin{equation*}
\left[x_{i \min }-k_{\mathrm{ext}} \cdot\left(x_{i \max }-x_{i \min }\right), x_{i \max }+k_{\mathrm{ext}} \cdot\left(x_{i \max }-x_{i \min }\right)\right] \tag{4.8}
\end{equation*}
$$

with $1 \leq i \leq n$ and n as the number of variables of the objective function. In this equation, coefficient $k_{\text {ext }}$ with values greater-equal zero, assigned by the user, controls the amount with which the infeasible space is expanded, so that an initial male population can be created and evolved. This is particularly important when only side constraints are imposed in an optimization problem. If additional constraints are present, the infeasible region may be sufficiently large and coefficient $k_{\text {ext }}$ can be set to a smaller value, including zero. Evidently, when the objective function is evaluated, the side constraints are verified as they were posed in the original problem.

Step 2: Rank females based on their fitness using complete or partial sorting, or just identify the best-fit female (the α-female).

Step 3: Mutate females by replacing a fraction RepF of the lowest ranked females with randomly generated new ones.

Step 4: Mutate males by replacing a fraction RepM of their population with randomly generated new males.

Step 5: (Crossover) Form female-male pairs by assigning one male to each female based on their closeness in the n-dimensional Euclidean space. Begin with the α-female and continue in a rank-decreasing order until all available males are assigned to a female. In other implementations called polygamous-males algorithms, males are permitted to recombine
with more than one female. Also possible is to do multifemale crossover, which can be unrestricted (i.e., a male can recombine with any number of females in one generation), restricted (when the number of crossovers a male can perform is limited to a fraction of the total female population), or monogamous (a male cannot recombine during the same generation more than once). After female-male pairs are formed, offspring are generated using midpoint or random crossover. Offspring can be females (if they result inside the feasible space) or can be males (if they result outside the feasible space).

Step 6: (Selection) The selection step is performed concomitant with offspring generation as follows: if the child results outside the feasible space, he replaces his father unconditionally; if the child is a female, she replaces her mother either unconditionally or only if there is an improvement in fitness.

Stopping criteria: Steps 2 through 6 are repeated until an imposed condition is satisfied, that is, either exceeding a maximum number of function calls or generations, attaining an imposed threshold fitness, or recording the same α-female over a given number of generations.

Program P4_13.PAS (source code available with the book) is an implementation of a monogamous version of the algorithm, with $\mu \mathrm{F}$ females and $\mu \mathrm{M}$ males, or $\mathrm{F}-\mathrm{M}(\mu \mathrm{F}, \mu \mathrm{M})$ in short. The $\mathrm{F}-\mathrm{M}(\mu \mathrm{F}, \mu \mathrm{M})$ algorithm minimizes function F_{4} in Equation 4.4a subjected to constraints 4.4 b . If you set the variable Nr Trials equal to one, the program also writes to ASCII file F4-FmM.POP the female and male individuals, together with the marker type, color information, and animation-frame separators.

Using D_2D with ASCII files F4.XY and F4-FmM.POP as inputs (the former to plot as background the level curves in Figure 4.5a, and the latter to animate the female and male populations as they evolve), Figure 4.7 and animation file F4_7-1.GIF have been generated. F4_7-1.GIF uses the PCF frames exactly as they were generated by $\mathrm{D}_{-} 2 \mathrm{D}$, while the frames in the companion file F4_7-2.GIF are the BMP screenshots output using M_3D.LSP based on the DXF file generated by D_2D, with each frame written to a separate layer-see also the F4_7.DWG drawing file available with the book.

The F4-FmM.REZ ASCII file produced by setting NrTrials to 1000 contains the results of 1000 search trials and was used to generate the plots in Figure 4.8. For the expansion coefficient $k_{\text {ext }}=0.04$, population sizes $\mu \mathrm{F}=4$ and $\mu \mathrm{M}=8$, replacement rates $\operatorname{RepF}=0.15$ and $\operatorname{RepM}=0.25$, and threshold value -0.071 , the success rate was around 94%. The success rate was measured as the number of solutions below the threshold value for a given maximum number of function calls.

The search report appended to the F4-FmM.REZ file included the following additional information:

```
Best \(=-0.0719999990\)
Worst \(=-0.0661771431\)
Avg. \(=-0.0717428861\)
Total function calls \(=1002324\)
Average function calls \(=1002\)
```


FIGURE 4.7 Overlap of the female and male populations in a sample run of P4_13.PAS. Configuration files F4_07-1.CF3 and F4_07-2.CF3. See also animation files F4_07-1.GIF and F4_07-2.GIF.

FIGURE 4.8 Overlap of the 1000 search results read from F4-FmM.REZ, detailed around the two minima in Figure 4.5a. Configuration files F4_08A.CF3 and F4_08B.CF3.

As you experiment with P4_13.PAS, you will realize that the success rates differ depending on the sizes of the female and male populations, extension coefficient $k_{\text {ext }}$, crossover settings, and degree of sorting of the female population (complete, partial, or just α-female identification). You may want to try different female-male crossover schemes or multiparent recombinations, as well as to optimize functions of more than two variables, like F_{5} in Equations 4.6 and 4.7.

4.6 MULTICRITERIA OPTIMIZATION PROBLEMS

The examples considered so far dealt with minimizing only one function at a time. There are practical problems where two or more objective functions must be minimized and/or maximized simultaneously in the presence of constraints. Such problems are called multicriteria or multiple objective optimization problems. Because the imposed objectives are in most cases conflicting, in a multicriteria problem, there is not one single solution, but rather a family of solutions called Pareto set or Pareto frontier. Simply put, a point in the design space is considered a Pareto solution to the problem (i.e., belongs to the Pareto frontier) if no single criterion (i.e., single objective function) can be improved without worsening at least one other criterion. In the remainder of this section, two bicriterion optimization problems in two variables will be considered, and some basic concepts related to multiobjective optimization will be discussed.

4.6.1 Cantilever Beam Design Example

Figure 4.9 shows a cantilever beam loaded with a down force $F=15,000 \mathrm{~N}$ applied at the free end. The beam is hallow and of imposed length $L=1000 \mathrm{~mm}$. The outside diameters of the two sections have fixed values, that is, $D_{1}=100 \mathrm{~mm}$ and $D_{2}=80 \mathrm{~mm}$. The material of the beam is assumed to have an elastic modulus $E=206 \cdot 10^{3} \mathrm{~N} / \mathrm{mm}$ and yield strength $\sigma_{Y}=220 \mathrm{~N} / \mathrm{mm}$.

The two variables allowed in this design are the length of the thinner section x_{1} and the internal diameter of the beam x_{2}. The design problem is to simultaneously minimize the total volume of the beam $f_{1}\left(x_{1}, x_{2}\right)$ and the deflection at its free end $f_{2}\left(x_{1}, x_{2}\right)$:

$$
\begin{gather*}
f_{1}\left(x_{1}, x_{2}\right)=\frac{\pi}{4}\left[\left(L-x_{1}\right) \cdot\left(D_{1}^{2}-x_{2}^{2}\right)+x_{1} \cdot\left(D_{2}^{2}-x_{2}^{2}\right)\right] \tag{4.9}\\
f_{2}\left(x_{1}, x_{2}\right)=\frac{64 F}{3 \pi E}\left[\frac{L^{3}-x_{1}^{3}}{D_{1}^{4}-x_{2}^{4}}+\frac{x_{1}^{3}}{D_{2}^{4}-x_{2}^{4}}\right] \tag{4.10}
\end{gather*}
$$

FIGURE 4.9 Staggered cantilevered beam in the bicriterion optimization problem.

Additionally, (i) the maximum bending stress at cross sections A and B should remain below the yield strength σ_{Y} of the material, which translates into the following inequality constraints (the stress raiser effect at cross section B due to the change in the diameter is ignored):

$$
\begin{align*}
& \sigma_{\mathrm{A} \max }=\frac{F \cdot L}{\pi\left(D_{1}^{4}-x_{2}^{4}\right) /\left(32 D_{1}\right)} \leq \sigma_{Y} \tag{4.11}\\
& \sigma_{\mathrm{B} \max }=\frac{F \cdot x_{1}}{\pi\left(D_{2}^{4}-x_{2}^{4}\right) /\left(32 D_{2}\right)} \leq \sigma_{Y} \tag{4.12}
\end{align*}
$$

Further constraints imposed to this problem are (ii) length x_{1} should be positive and less equal than L and (iii) the inner diameter x_{2} of the beam should range between 40 and 75 mm :

$$
\begin{array}{ll}
x_{1} \geq 0.0 & \text { and } \\
x_{2} \geq 40 & \text { and } \tag{4.13}
\end{array} x_{2} \leq 75
$$

4.6.2 Design Space and Performance Space Plots

Insight into a given multicriteria optimization problem can be gained by inspecting its feasible space and its performance space prior to optimization. The feasible space (also known as space of the design variables or design space) consists of the points that satisfy all the constraints. The performance space is a mapping of the feasible space points into the space of the objective functions. For problems of two variables, plotting the feasible space can be relatively easily done. Likewise, plotting the performance space in a bicriterion problem is also possible.

For more than two criteria or design variables, plotting the feasible space and performance space requires employing some dimension reduction method as discussed in several references listed at the end of this chapter.

Program P4_14.PAS in Appendix B has been written to generate the data required to represent graphically using D _2D, the design space and performance space of the cantilever beam problem introduced earlier. The design space $\left[x_{1 \text { min }} \ldots x_{1 \max }\right] \times\left[x_{2 \min } \ldots x_{2 \max }\right]$ is divided into a $\mathrm{nx} 1 \times \mathrm{nx} 2$ grid, and then the constraints and the two objective functions are evaluated at these nodes. If at a given grid point all constraints are satisfied, then the corresponding $\left(x_{1}, x_{2}\right)$ pair is written to F4_10A.D2D file, while the corresponding $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$ values are written to F4_10B.D2D file. The plots generated using these data files are visible in Figure 4.10a and b. The left boundary of the performance space in Figure 4.10a is exactly the Pareto frontier of the optimization problem. Since no information was retained about how a point $\left(f_{1}, f_{2}\right)$ on the Pareto frontier is associated with a point $\left(x_{1}, x_{2}\right)$ in the feasible space, the optimization problem is not yet solved.

Note in Figure 4.10a that to its far right the Pareto front exhibits a short horizontal section. The points along this horizontal section are called week Pareto solutions because criterion f_{1} can be further improved while criterion f_{2} remains unchanged.

Alternative to evaluating the design space over a regular grid when producing the data points for plotting the feasible and performance spaces, random points can be generated

FIGURE 4.10 Plot of the feasible space (a) and performance space (b) of the cantilevered beam problem. Configuration files F4_10A.CF2 and F4_10B.CF2.
within the same $\left[x_{\min } \ldots x_{\max }\right]$ intervals. This second approach was implemented in program P4_15.PAS listed in Appendix B, which generates files F4_12A.D2D and F4_12B.D2D, used in plotting the feasible space and performance space of a second bicriterion optimization problem, that is, that of minimizing

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}\right)=0.4 x_{1}+x_{2} \tag{4.14}\\
& f_{2}\left(x_{1}, x_{2}\right)=1+x_{1}^{2}-x_{2}+0.2 \cos \left(4.75 x_{2}\right)
\end{align*}
$$

while satisfying the inequality

$$
\begin{equation*}
0.8 x_{1}^{2}+x_{2}^{2} \leq 1.0 \tag{4.15}
\end{equation*}
$$

As expected, the design space is an ellipse centered at origin and of semiaxes 1.118 and 1.0 (see Figure 4.11a). Since function $f_{2}\left(x_{1}, x_{2}\right)$ is multimodal and therefore nonconvex, the problem itself is nonconvex and so is its performance space as Figure 4.11a shows. The fact that the performance space is nonconvex will render deterministic multicriteria optimization methods unable to identify the full range of the Pareto frontier (Osyczka 2002; Deb 2009).

4.6.3 Pareto Front Search

There are a number of algorithms available in literature for solving multicriteria optimization problems. Most of these work by combining the individual objective functions into a single function called preference function, which is minimized using known methods. Examples of preference functions are weighted sum of the objectives, normed weighted sum of the objectives, and mini-max methods.

Metaheuristics (like evolutionary algorithms and simulated annealing) permit obtaining a multitude of Pareto solutions to the problem in one run. These algorithms can also cope better with nonconvex problems. By contrast, in weighted sum of the objectives methods,

FIGURE 4.11 Plot of the design space (a) and performance space (b) of problem in Equations 4.14 and 4.15. Configuration files F4_11A.CF2 and F4_11B.CF2.
the search must be repeated for several combinations of weighting coefficients, each run generating a separate point on the Pareto frontier. Moreover, for nonconvex problems like the one in Equations 4.14 and 4.15, only the convex regions of the Pareto frontier can be located by such an algorithm (Osyczka 2002).

Program P4_16.PAS listed in Appendix B finds the convex portions of the Pareto frontier of the second optimization problem earlier. It implements a normed weighted sum of the objectives with a preference function of the form

$$
\begin{equation*}
f_{12}\left(x_{1}, x_{2}\right)=w_{1} \frac{f_{1}\left(x_{1}, x_{2}\right)-f_{1 \min }}{f_{1 \max }-f_{1 \min }}+w_{2} \frac{f_{2}\left(x_{1}, x_{2}\right)-f_{2 \min }}{f_{2 \max }-f_{2 \min }} \tag{4.16}
\end{equation*}
$$

In this equation, $f_{1 \text { min }}, f_{1 \text { max }}, f_{2 \text { min }}$, and $f_{2 \text { max }}$ are the global minima and maxima of functions $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$, respectively, evaluated separately in the presence of constraint (4.15), while w_{1} and w_{2} are weighting coefficients where $w_{1}+w_{2}=1$. These upper and lower limits of functions f_{1} and f_{2} are evaluated in program P4_16. PAS by executing the code between lines \#35 and \#52, while the Pareto frontier points are searched for and written to file by executing lines \#54 to \#76.

A plot of the Pareto frontier points overlapped with the feasible and performance spaces of this second bicriterion optimization problem is available in Figure 4.12. Note that indeed the nonconvex portion of the Pareto frontier has not been mapped in these diagrams. Similar plots of the Pareto frontier points overlapped with the feasible and performance spaces of the cantilever beam design problem are given in Figure 4.13. The Pareto front points were in this case determined using program P4_17.PAS listed in Appendix B.

x_{1}
FIGURE 4.12 Plot of the Pareto front overlapped with the feasible space (a) and performance space (b) of problem in Equations 4.14 and 4.15 . Configuration files F4_11A.CF2, F4_12A.CF2, F4_11B.CF2, and F4_12B.CF2.

FIGURE 4.13 Plot of the Pareto front overlapped with the feasible space (a) and performance space (b) of the cantilevered beam optimization problem. Configuration files F4_10A.CF2, F4_13A. CF2, F4_10B.CF2, and F4_13B.CF2.

A number of procedures for finding the zeros and minimum or maximum of functions of one variable have been presented, all based on algorithms originally developed by Brent. For minimizing functions of more than one variable, Nelder-Mead algorithm and the corresponding procedure NelderMead were discussed. A two-population evolutionary algorithm capable of exploring the boundary between the feasible and infeasible regions of the design space has been further presented, together with illustrative animation graphs. At the end of the chapter, the normed weighted sum of the objectives method of bicriterion optimization problem solving, and two techniques for plotting design space and performance space in multicriteria optimization problems have been presented.

REFERENCES AND FURTHER READINGS

Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Upper Saddle River, NJ: Prentice Hall.
Deb, K. (2009). Multi-Objective Optimization Using Evolutionary Algorithms. Hoboken, NJ: John Wiley \& Sons.
Li, H. L. and Papalambros, P. (1985). A production system for use of global optimization knowledge. ASME Journal of Mechanisms Transmission and Automation in Design, 107(2), 277-284.
Osyczka, A. (2002). Evolutionary Algorithms for Single and Multicriteria Optimization. Heidelberg, Germany: Physica-Verlag/Springer.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989). Numerical Recipes in Pascal: The Art of Scientific Computing. Cambridge, U.K.: Cambridge University Press.
Simionescu, P. A., Dozier, G. V., and Wainwright, R. L. A two-population evolutionary algorithm for constrained optimization problems. IEEE World Congress on Computational Intelligence, Vancouver, British Columbia, Canada, July 16-21, 2006, pp. 1647-1653.
Singer, S. and Nelder, J. (2009). Nelder-Mead algorithm. Scholarpedia, 4(7): 2928.

For multicriteria optimization including visualization of Pareto frontiers see:
Agrawal, G., Lewis, K. E., Chugh, K., Huang, C.-H., Parashar, S., and Bloebaum, C. L. (2004). Intuitive visualization of Pareto frontier for multi-objective optimization in n-dimensional performance space. Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA-2004, Albany, New York, pp. 4434-4445.
Spears, W. M., De Jong, K. A., Bäck, T., Fogel, D. B., and de Garis, H. (1993). An overview of evolutionary computation. In Machine Learning: ECML-93, Lecture Notes in Computer Science (Brazdil, P.B. ed.), Berlin, Germany: Springer, Vol. 667, pp. 442-459.

For more information on evolutionary computation, in addition to the books by Osyczka and Deb listed earlier, see also
Eiben, A. E. and Smith, J. E. (2010). Introduction to Evolutionary Computing. Berlin, Germany: Springer.
Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms. Hoboken, NJ: John Wiley \& Sons.

Procedures for Motion Simulation of Planar Mechanical Systems

IN THIS CHAPTER, A number of procedures gathered in units LibMecIn and LibMec2D available with the book are presented as a preamble to Chapter 6 where the kinematic analysis of planar linkage mechanisms using Assur groups is discussed. Some of these procedures are also used in the synthesis and analysis of cam-follower mechanisms, the subject of Chapter 7. They allow for automatic graphical representation and animation of rotary and linear motors, of offset points and complex shapes attached to mobile links, and for visualizing the velocity and acceleration vectors and of loci of moving points. Procedure Spring used in the elastic pendulum example in Chapter 3 is also available from unit LibMec2D. At the end of the chapter, two approaches to generating mechanical system simulations accompanied by dynamic plots with scan lines and scan points will be discussed, one using the procedures in unit LibPlots and the other using the D_2D program.

5.1 SAMPLE PROGRAM USING THE LibMec2D UNIT AND PROCEDURES Locus AND CometLocus

P5_01.PAS, listed in Appendix B, although not of a mechanical system simulation type, has the main elements of an animation program that uses LibMec2D procedures. It was used to produce Figure 5.1 and the companion animated GIF files F5_01a.GIF and F5_01b.GIF available with the book. The program calculates the x and y coordinates of a number of discrete points belonging to an array of \mathbf{n} Archimedean spirals (see Equation 1.11), and outputs each animation frames to layers 1, 2, 3, etc., of file F5_01.DXF. Additionally, it writes the n spirals as polylines to the background layers p 1 to p 8 of the same $\mathrm{F} 5 _01$. DXF file. Remember that layers with names integer positive numbers are interpreted by

FIGURE 5.1 Accumulated frames of a polar array of Archimedean spirals with variable size markers output by program P5_01.PAS. See also animation file F5_01a.GIF and F5_01b.GIF.

M_3D.LSP as animation frames. Any other layer including 0, Ground, and locus layers will remain on and thus the entities drawn to these layers will appear as background images.

Procedure OpenMecGraph on line \#17 of program P5_01.PAS launches the graphic system and establishes the limits of the workspace. Procedure InitDXFfile (line \#18) opens for writing file F5_01.DXF and copies to it the content of the DXF header file DXF. HED. Procedure SetTitle on line \#19 sets the simulation title that is written to layer Ground of the output DXF file once, and to the computer screen every time procedure NewFrame is called (line \#24). In addition, procedure NewFrame holds the current frame on for 500 ms and then refreshes the screen. It also indexes the current DXF layer number.

To simulate the circles with progressively increasing diameter as they move along the \mathbf{n} spirals, procedure SetJointSize (line \#25) is called after each animation frame with its argument defined as function of the frame number. In any other simulation program, SetJointSize should be called only once, somewhere at the beginning of the program. If the default size (i.e., 4) and appearance (i.e., full view) of the joints and motors are satisfactory, then there is no need to call SetJointSize at all. If SetJointSize is called with a negative argument, then the motors and joints in that simulation will be represented in a simplified manner and without hiding the overlapped joints (see Figure 5.2). Note that the points generated by calling procedure PutPoint and the ground points drawn by procedure PutGPoint are one unit smaller than the argument of the SetJointSize.

FIGURE 5.2 Rotary and linear motors and turning and sliding joints used by procedures LibMecIn, LibAssur, and LibMec2D. Their full view or simplified representation and relative size are controlled by calling procedure SetJointSize.

Procedure Locus on line \#31 of program P5_01.PAS is responsible for writing to separate temporary files of double (extension $\$ 2 \mathrm{D}$) the x and y coordinates of each curve. The color of these curves is defined by the equation iC MOD $15+1$, where iC is the curve number. Also note that the name of the layers where the polylines are written begins with letter " p ", so they remain on all the time in an animation done using the M_3D.LSP AutoLisp application. If procedure CometLocus is used instead, when animated with M_3D.LSP, the Archimedean spirals will appear growing as the eight points move outwards. No temporary $\mathbf{\$ 2 D}^{\mathrm{D}}$ file will be generated this time.

Animation continues until the user presses the <Esc> key. If line \#35 is replaced with line \#36, then the animation is repeated until the global variable MecOut becomes FALSE (which is caused by calling procedure CloseMecDXF on line \#22) and the user presses <Esc>.

5.2 JOINTS AND ACTUATORS AVAILABLE FOR MECHANICAL SYSTEM SIMULATION

Figure 5.2 is a summary of actuators and joints useful in the simulation of planar mechanical systems as they are output by the procedures in units LibAssur and LibMecIn. The actuators can be of rotational type (i.e., powered cranks) and of linear type (i.e., hydraulic or pneumatic cylinders, screw jacks, solenoids, membrane actuators) and can be either attached to the ground or to another moving link. The RTRTR and RTRR powered dyads discussed in detail in Chapter 6 also utilize linear motors that are represented graphically in the same manner.

The position, velocity, and acceleration equations of the rotary and linear motors in Figure 5.2 have been programmed in a number of procedures available from unit LibMecIn. In the remainder of this chapter the kinematic equations of these motors and their computer implementations, that is, procedures Crank, gCrank, Slider, and gSlider, will be discussed. Also discussed in this chapter are Pascal procedures: Ang3PVA, Ang4PVA, Base, gShape, LabelJoint, Link, ntAccel, Offset, OffsetV, PutAng, PutDist, PutGPoint, PutGText, PutPoint, PutRefSystem, PutText, PutVector, Shape, VarDist; these are useful in the simulation and analysis of planar mechanical systems.

Important: In case there is interest only in the position results or only in the position and velocity results, procedures Crank, gCrank, Slider, gSlider, Offset, OffsetV, Ang3PVA, and Ang4PVA can be called with their velocity and/or acceleration input and
output variables set to InfD (a constant defined in unit LibMath and equal to 10^{100}). A generic variable named _ (i.e., the underscore symbol) declared in the interface section of unit LibMath and set equal to InfD should be used for this purpose.

5.2.1 Kinematic Analysis of Input Rotational Members

A turning link, named crank when it rotates continuously and in the same direction or rocker when it oscillates back and forth, is the most common input element in mechanism kinematics. Figure 5.3 shows two instances of such a link, where joint A can be attached either to a mobile element (Figure 5.3a) or to the ground (Figure 5.3b).

The general case where the crank is jointed to a mobile member (i.e., the velocity and acceleration of point A in Figure 5.3a are nonzero) will be considered first. The kinematic equations for the case where the crank is pin jointed to the ground (Figure 5.3b) can be easily derived by setting the velocity and acceleration of joint center A to zero.

At any instant of time in a simulation, the following parameters are assumed known:

- The coordinates $x P$ and $y P$ relative to the fixed reference frame $O X Y$ of a point P of the moving member to which the crank is attached.
- The projections $\dot{x} P$ and $\dot{y} P$ of the velocity of P onto the fixed reference frame.
- The projections $\ddot{x} P$ and $\ddot{y} P$ of the acceleration of P onto the fixed reference frame.
- The coordinates $x A$ and $y A$ of the joint center A relative to the fixed reference frame.
- The projections $\dot{x} A$ and $\dot{y} A$ of the velocity of point A onto the fixed reference frame.
- The projections $\ddot{x} A$ and $\ddot{y} A$ of the acceleration of point A onto the fixed reference frame.
- The crank length $A B$.
- The angle φ between an extension of the reference line $P A$ and the link $A B$.

(a)

(b)

FIGURE 5.3 Schematic for calculating the displacement, velocity, and acceleration of a point B of a rotational element $A B$ when it is jointed (a) to a mobile member $P A$ and (b) to the ground.

- The angular velocity $\dot{\varphi}$ of the crank relative to link $P A$.
- The angular acceleration $\ddot{\varphi}$ of the crank relative to link $P A$.

For these given inputs, we will calculate the following parameters:

- The coordinates $x B$ and $y B$ of point B relative to the fixed reference frame.
- The projections $\dot{x} B$ and $\dot{y} B$ of the velocity of B onto the axes of the fixed reference frame.
- The projections $\ddot{x} B$ and $\ddot{y} B$ of the acceleration of B onto the axes of the fixed reference frame.

By projecting the vector equation $\mathbf{O B}=\mathbf{O A}+\mathbf{A B}$ onto the axes of the $O X Y$ reference frame, coordinates $x B$ and $y B$ result as follows:

$$
\left\{\begin{array}{l}
x B=x A+A B \cos (j+\theta) \tag{5.1}\\
y B=y A+A B \sin (j+\theta)
\end{array}\right.
$$

where θ is the angle measured between $O X$ and vector PA (see Figure 5.3a); θ can be easily calculated using the known coordinates of points A and P.

Differentiating Equation 5.1 with respect to time yields the projections of the linear velocity of point B onto $O X$ and $O Y$:

$$
\left\{\begin{array}{l}
\dot{x} B=\dot{x} A-(\varphi+\dot{\theta}) \cdot A B \cdot \sin (\varphi+\theta) \tag{5.2}\\
\dot{y} B=\dot{y} A+(\dot{\varphi}+\dot{\theta}) \cdot A B \cdot \cos (\varphi+\theta)
\end{array}\right.
$$

which, by using the results in Equation 5.1, further writes

$$
\left\{\begin{array}{l}
\dot{x} B=\dot{x} A-(\dot{\varphi}+\dot{\theta})(y B-y A) \tag{5.3}\\
\dot{y} B=\dot{y} A+(\dot{\varphi}+\dot{\theta})(x B-x A)
\end{array}\right.
$$

The components of the linear acceleration of B are obtained by differentiating Equation 5.3:

$$
\left\{\begin{array}{l}
\ddot{x} B=\ddot{x} A-(\ddot{\varphi}+\ddot{\theta})(y B-y A)-(\dot{\varphi}+\dot{\theta})(\dot{y} B-\dot{y} A) \tag{5.4}\\
\ddot{y} B=\ddot{y} A+(\ddot{\varphi}+\ddot{\theta})(x B-x A)+(\dot{\varphi}+\dot{\theta})(\dot{x} B-\dot{x} A)
\end{array}\right.
$$

Angle θ and its time derivatives $\dot{\theta}$ and $\ddot{\theta}$ occurring in these equations can be calculated using the position, velocity, and acceleration components of points P and A, as it will be explained later in this chapter when procedures AngPVA and VarDist are introduced.

In case of a rotational member jointed to the ground as shown in Figure 5.3b, angle θ and its first and second derivatives $\dot{\theta}$ and $\ddot{\theta}$ become zero. Therefore, Equation 5.1 simplified to

$$
\left\{\begin{array}{l}
x B=x A+A B \cos \varphi \tag{5.5}\\
y B=y A+A B \sin \varphi
\end{array}\right.
$$

while Equations 5.4 and 5.5 become

$$
\left\{\begin{array}{l}
\dot{x} B=\dot{x} A-\dot{\varphi} \cdot(y B-y A) \tag{5.6}\\
\dot{y} B=\dot{y} A+\dot{\varphi} \cdot(x B-x A)
\end{array}\right.
$$

and finally

$$
\left\{\begin{array}{l}
\ddot{x} B=\ddot{x} A-\ddot{\varphi} \cdot(y B-y A)-\dot{\varphi} \cdot(\dot{y} B-\dot{y} A) \tag{5.7}\\
\ddot{y} B=\ddot{y} A+\ddot{\varphi} \cdot(x B-x A)+\dot{\varphi} \cdot(\dot{x} B-\dot{x} A)
\end{array}\right.
$$

5.2.2 Procedures Crank and gCrank

Equations 5.1, 5.3, and 5.4 have been programmed in procedure Crank part of the unit LibMecIn. The procedure calculates the position, velocity, and acceleration of point B of a crank $A B$ that rotates relative to a mobile element $P A$. If the graphic system is on, the procedure also draws in color Color (less if Color equals zero or the BGI constant Black) a line connecting A and B, and by calling procedure Motor from unit LibMec2D, it draws at point A a moving rotary-motor symbol. If Color is a negative number, then only the motor symbol will be drawn in color -Color. Angle φ and its time derivatives $\dot{\varphi}$ and $\ddot{\varphi}$ are measured counterclockwise from an extension of line PA shown by procedure Crank as a short segment drawn on the side of the motor opposite to point P (see Figure 5.3a).

Procedure Crank has the following heading:
procedure Crank(Color: Integer; $x P, y P, ~ v x P, v y P, ~ a x P, ~ a y P, ~ x A, y A$, vxA, vyA, axA, ayA, Phi, dPhi, ddPhi, $A B: d o u b l e ; ~ v a r ~ x B, y B$, vxB, vyB, axB, ayB: double);

The correspondence between the formal parameters of the procedures and the notations used in Equations 5.1 through 5.4 and in Figure 5.3a is as follows:

Input parameters of procedure Crank:

$-16 \ldots 16$	$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$
Color	$\mathbf{x P}$	yP	vxP	vyP	axP	ayP	xA	yA	vxA	vyA	axA	ayA

φ	$\dot{\varphi}$	$\ddot{\varphi}$	$A B$
Phi	dPhi	ddPhi	AB

Output parameters of procedure Crank:

$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
$\mathbf{x B}$	$\mathbf{y B}$	vxB	vyB	axB	ayB

The companion procedure gCrank with the heading
procedure gCrank(Color: Integer; xA,yA, Phi, dPhi, ddPhi, AB: double; var $x B, y B, \quad v x B, v y B, ~ a x B, a y B: ~ d o u b l e) ; ~$
calculates the position, velocity, and acceleration of point B of a crank $A B$ for the case where joint A is connected to the ground (Figure 5.3b). The correspondence between procedure's formal parameters and the notations used in Equations 5.5 through 5.7 and Figure 5.3b is summarized in the following, where angle φ and its derivatives $\dot{\varphi}$ and $\ddot{\varphi}$ are measured counterclockwise from the $O X$ axis.

Input parameters of procedure gCrank:

$-16 \ldots 16$	$x A$	$y A$	φ	$\dot{\varphi}$	$\ddot{\varphi}$	$A B$
Color	xA	$y A$	Phi	dPhi	ddPhi	AB

Output parameters of procedure gCrank:

$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
$\mathbf{x B}$	yB	vxB	vyB	axB	ayB

If the graphic system is on, procedure gCrank draws in color Color (less if Color is zero) a line connecting points A and B, and by calling procedure gMotor from unit LibMecGr, it draws at point A a grounded rotary-motor symbol. If parameter Color is a negative number, then only the motor symbol will be drawn in color -Color.

To exemplify the use of procedures Crank and gCrank, program P5_04.PAS (see Appendix B) has been written. The program animates a ground crank of lengths $A B$ in series with a second crank of length $B C$ and also plots the locus of the end point C of the second crank, which is an epicycloid of equation

$$
\left\{\begin{array}{l}
x(t)=A B \cos (0.25 \pi+2 \pi \cdot t)+B C \cos (-8 \pi \cdot t) \tag{5.8}\\
y(t)=A B \sin (0.25 \pi+2 \pi \cdot t)+B C \sin (-8 \pi \cdot t)
\end{array}\right.
$$

The relative size of the joints, motors, and actuators in an animation was set by calling procedure SetJointSize on line \#15. Sample screenshot of the simulations generated by program P5_04.PAS are available in Figure 5.4, done for SetJointSize called with both a negative and a positive argument. Corresponding to these figures are animation files F5_04a.GIF and F5_04b.GIF produced using the M_3D.LSP application. When generating the frames of animated GIF file F5_04b.GIF, procedure Locus on line \#31 has been

FIGURE 5.4 Epicycloid generated with procedures gCrank and Crank arranged in series shown in (a) full view and (b) simplified joint. See also animated GIF files F5_04a.GIF and F5_04b.GIF.
replaced with CometLocus, which has the effect of showing in AutoCAD the locus of point C as it progresses, same as on the computer screen during the first run. A third animated GIF named F5_04C.GIF has also been generated to illustrate the effect of calling procedures gCrank with its parameter Color set to a negative value.

Note that the open-loop mechanism in Figure 5.4 can be assumed to be a simple serial manipulator of the SCARA type (Craig 2004), and the program P5_04.PAS actually solves the direct kinematics problem of this manipulator. See also Chapter 9 where the subject of SCARA robot kinematics is discussed in more detail.

5.2.3 Kinematic Analysis of Input Translational Members

Translational input members (also called linear actuators or linear motors) come in a variety of configurations. Since the hydraulic or pneumatic cylinders are the most common embodiment of a linear motor, a generic representation as shown in Figure 5.5 will be assumed.

(a)

(b)

FIGURE 5.5 Schematic of a linear motor attached via its connecting points P and Q (a) to a mobile member and (b) to the ground.

The cylinder that guides to the inside the piston can be attached to a mobile element or can be connected to the ground.

Referring to Figure 5.5 a, the analysis will be performed for the situation where the velocity and acceleration of two points A and Q of the cylinder are nonzero (i.e., the linear motor is mounted on a mobile element), while the kinematic equations of the linear motor attached to the ground will be derived as a particular case.

At any instant of time of the simulation, the following parameters are assumed known:

- The coordinates $x P, y P$ and $x Q, y Q$ relative to the fixed reference frame $O X Y$ of two points located on the cylinder's axis.
- The projections $\dot{x} P$ and $\dot{y} P$ of the velocity of point P onto the fixed reference frame.
- The projections $\ddot{x} P$ and $\ddot{y} P$ of the accelerations of point P onto the fixed reference frame.
- The projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of point Q onto the fixed reference frame.
- The projections $\ddot{x} Q$ and $\ddot{y} Q$ of the accelerations of point Q onto the fixed reference frame.
- The piston displacement s and its time derivatives \dot{s} and \ddot{s} (all measured relative to the member to which it is attached and assumed positive when oriented as shown in Figure 5.5).
- The piston length $A B$.

Given these parameters, it is required to determine the following variables:

- The coordinates $x B$ and $y B$ of point B relative to the fixed reference frame $O X Y$.
- The projections $\dot{x} B$ and $\dot{y} B$ of the velocity of B onto the axes of the fixed reference frame.
- The projections $\ddot{x} B$ and $\ddot{y} B$ of the acceleration of B onto the axes of the fixed reference frame.
- The coordinates $x A$ and $y A$ of point A of the piston relative to the fixed reference frame.
- The projections $\dot{x} A$ and $\dot{y} A$ of the velocity of A onto the axes of the fixed reference frame.
- The projections $\ddot{x} A$ and $\ddot{y} A$ of the acceleration of A onto the axes of the fixed reference frame.

By projecting the vector equation $\mathbf{O B}=\mathbf{O P}+\mathbf{P B}$ on the $O X Y$ reference frame, the coordinates of point B are obtained as follows:

$$
\left\{\begin{array}{l}
x B=x P+s \cdot \cos \theta \tag{5.9}\\
y B=y P+s \cdot \sin \theta
\end{array}\right.
$$

where the angle θ between vector $\mathbf{P B}$ and axis $O X$ (Figure 5.5a) can be easily calculated.

Differentiating Equation 5.9 once with respect to time, the components of the linear velocity of point B are obtained as

$$
\left\{\begin{array}{l}
\dot{x} B=\dot{x} P+\dot{s} \cdot \cos \theta-\dot{\theta} \cdot s \cdot \sin \theta \tag{5.10}\\
\dot{y} B=\dot{y} P+\dot{s} \cdot \sin \theta+\dot{\theta} \cdot s \cdot \cos \theta
\end{array}\right.
$$

and by combining in the position Equation 5.9, they further become

$$
\left\{\begin{array}{l}
\dot{x} B=\dot{x} P+\dot{s} \cdot \cos \theta-\dot{\theta} \cdot(y B-y P) \tag{5.11}\\
\dot{y} B=\dot{y} P+\dot{s} \cdot \sin \theta+\dot{\theta} \cdot(x B-x P)
\end{array}\right.
$$

The components of acceleration of point B are determined by differentiating Equations 5.11:

$$
\left\{\begin{array}{l}
\ddot{x} B=\ddot{x} P+\ddot{s} \cdot \cos \theta-\dot{\theta} \cdot \dot{s} \cdot \sin \theta-\ddot{\theta} \cdot(y B-y A)-\dot{\theta} \cdot(\dot{y} B-\dot{y} A) \tag{5.12}\\
\ddot{y} B=\ddot{y} P+\ddot{s} \cdot \sin \theta+\dot{\theta} \cdot \dot{s} \cdot \cos \theta+\ddot{\theta} \cdot(x B-x A)+\dot{\theta} \cdot(\dot{x} B-\dot{x} A)
\end{array}\right.
$$

Angle θ and its time derivatives $\dot{\theta}$ and $\ddot{\theta}$ can be calculated using the known coordinates $x P, y P, x Q$, and $y Q$ and their time derivatives as explained in Section 5.3.

The coordinates $x A$ and $y A$ of point A of the piston are obtained by projecting vector equation $\mathbf{O A}=\mathbf{O P}+\mathbf{P A}$ onto the axes of the fixed reference frame $O X Y$:

$$
\left\{\begin{array}{l}
x A=x P+(s-A B) \cdot \cos \theta \tag{5.13}\\
y A=y P+(s-A B) \cdot \sin \theta
\end{array}\right.
$$

The components of the linear velocity of point A are obtained through differentiation as

$$
\left\{\begin{array}{l}
\dot{x} A=\dot{x} P+\dot{s} \cdot \cos \theta-\dot{\theta} \cdot(s-A B) \cdot \sin \theta \tag{5.14}\\
\dot{y} A=\dot{y} P+\dot{s} \cdot \sin \theta+\dot{\theta} \cdot(s-A B) \cdot \cos \theta
\end{array}\right.
$$

Using the results in Equation 5.13, these two equations become

$$
\left\{\begin{array}{l}
\dot{x} A=\dot{x} P+\dot{s} \cdot \cos \theta-\dot{\theta} \cdot(y A-y P) \tag{5.15}\\
\dot{y} A=\dot{y} P+\dot{s} \cdot \sin \theta+\dot{\theta} \cdot(x A-x P)
\end{array}\right.
$$

The components of the linear acceleration of point A are obtained by differentiating Equation 5.15:

$$
\left\{\begin{array}{l}
\ddot{x} A=\ddot{x} P+\ddot{s} \cdot \cos \theta-\dot{\theta} \cdot \dot{s} \cdot \sin \theta-\ddot{\theta} \cdot(y A-y P)-\dot{\theta} \cdot(\dot{y} A-\dot{y} P) \tag{5.16}\\
\ddot{y} A=\ddot{y} P+\ddot{s} \cdot \sin \theta+\dot{\theta} \cdot \dot{s} \cdot \cos \theta+\ddot{\theta} \cdot(x A-x P)+\dot{\theta} \cdot(\dot{x} A-\dot{x} P)
\end{array}\right.
$$

If the linear motor is mounted to the ground as shown in Figure 5.5b, then $\dot{\theta}$ and $\ddot{\theta}$ will be both zero. The coordinates of points B and A can be calculated using Equations 5.9 and 5.13 given earlier, while the scalar components of their velocities and accelerations are the following:

$$
\left\{\begin{array}{l}
\dot{x} A=\dot{x} B=\dot{s} \cdot \cos \theta \tag{5.17}\\
\dot{y} A=\dot{y} B=\dot{s} \cdot \sin \theta
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\ddot{x} A=\ddot{x} B=\ddot{s} \cdot \cos \theta \tag{5.18}\\
\ddot{y} A=\ddot{y} B=\ddot{s} \cdot \sin \theta
\end{array}\right.
$$

5.2.4 Procedures Slider and gslider

Equations 5.9, 5.11 through 5.13, 5.15, and 5.16 have been programmed inside procedure Slider that calculates the position, velocity, and acceleration of points A and B of the a linear actuator, when its cylinder is attached to a mobile element at P and Q. The positions, velocities, and accelerations of points P and Q must be provided as inputs, together with the displacement s of the piston and its first and second time derivatives \dot{s} and \ddot{s}. The heading of procedure Slider is
procedure Slider (Color: Integer; $x P, y P, v x P, v y P, a x P, a y P, ~ x Q, y Q$, vxQ,vyQ, axQ,ayQ, AB, s, ds, dds: double; var $x B, y B, ~ v x B, v y B$, axB, ayB, xA,yA, vxA,vyA, axA,ayA: double);
and the correspondence between its formal parameters and the notations used earlier are listed next:

Input parameters of procedure Slider:

$-16 \ldots 16$	$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$	$x Q$	$y Q$	$\dot{x} Q$	$\dot{y} Q$	$\ddot{x} Q$	$\ddot{y} Q$
Color	$\mathbf{x P}$	yP	vxP	vyP	axP	ayP	xQ	yQ	vxQ	vyQ	axQ	$\mathrm{ayQ} Q$

AB	s	\dot{s}	\ddot{s}
AB	\mathbf{s}	ds	dds

Output parameters of procedure Slider:

$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$
$\mathbf{x B}$	yB	vxB	vyB	axB	ayB	$\mathbf{x A}$	yA	vxA	vyA	axA	ayA

If the graphic system is on, procedure Slider draws in color Color (less if it is equal to zero or the BGI constant Black) the piston and the cylinder, similar to Figure 5.5a. If either distance $A B$ or distance $P Q$ is less than five times the joint size, then the procedure will draw a slider block at B and its sliding axis $P Q$. If Color is a negative number, then only the slider block will be drawn without its axis.

The companion procedure gSlider calculates the position, velocity, and acceleration of points A and B of the piston for the case when the cylinder is fixed to the ground. The procedure implements Equations 5.9, 5.10, 5.17, and 5.18 and has the following heading:

```
procedure gSlider(Color:Word; xP,YP,xQ,YQ, PQ, s,ds,dds:double;
var xB,yB, vxB,vyB, axB,ayB, xA,YA, vxA,vyA, axA,ayA:double);
```

while and the correspondence between its formal parameters and the notations used earlier is as follows:

Input parameters of procedure gslider:

$0 \ldots 16$	$x P$	$y P$	$x Q$	$y Q$	$P Q$	s	\dot{s}	\ddot{s}
Color	$\mathbf{x P}$	yP	$\mathbf{x Q}$	yQ	PQ	\mathbf{s}	ds	Dds

Output parameters of procedure gSlider:

$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$
$\mathbf{x B}$	$\mathbf{y B}$	vxB	vyB	axB	ayB	xA	yA	vxA	vyA	axA	ayA

If the graphic system is on, procedure gSlider draws in color Color (less if it equals zero or the BGI constant Black) the cylinder connected to the ground and its piston similar to Figure 5.5 b . Similarly to procedure slider, if distance $A B$ or distance $P Q$ is less than five times the joint size, the procedure will draw a slider block at B and its sliding axis $P Q$. If points P and Q coincide, then the procedure assumes the sliding axis to be horizontal.

For both procedures, the piston and cylinder diameter or block size can be controlled by calling procedure SetJointSize as shown in the sample program P5_06A.PAS (see Appendix B) and in program P5_06B.PAS available with the book. Both programs use procedures gSlider and Slider to simulate the motion of two perpendicular linear motors connected in series (see Figure 5.6), where the piston of the second motor traces a Lissajous curve of equation

$$
\left\{\begin{array}{l}
x(t)=30 \sin \left(2 \pi \times t-\frac{\pi}{4}\right) \tag{5.19}\\
y(t)=25 \sin \left(4 \pi \times t+\frac{\pi}{4}\right)
\end{array}\right.
$$

FIGURE 5.6 Two sliders in series tracing a Lissajous curve generated using programs P5_06A.PAS (a) and P5_06B.PAS (b). See also animation files F5_06a.GIF and F5_06b.GIF.

Sample outputs generated by these two programs are given in Figure 5.6 and in the animated GIF files F5_06a.GIF, F5_06b.GIF, and F5_06c.GIF. Program P5_06B.PAS illustrates the case when the two linear motors are drawn as slider blocks. By calling the procedure Slider in this second program with its color parameter set to Cyan, the simulation changes as shown in animation file F5_06c.GIF, that is, the sliding axis will not be drawn.

Note the use in procedures LabelJoint and PutPoint of the underscore character to specify subscripts (lines \#41 to \#49). The same subscript labeling is available in procedures PutAng, PutDist, and PutRefSystem, and it is done internally by calling procedure PD_text from unit LibDXF.

You may want to experiment with circular frequencies other than 2π and 4π and phase angles other than $\pm \pi / 4$ in Equation 5.19 and observe their effect upon the appearance of the locus of point B_{2}. Pen plotters and computer numerically controlled machines (CNC milling machines, torch, or plasma cutters) operate on the principle illustrated by program P5_06A.PAS. Planar Cartesian coordinate robots, also known as linear robots, have similar configurations (Craig 2004).

5.3 POSITION, VELOCITY, AND ACCELERATION OF POINTS AND MOVING LINKS

In the kinematic simulation of mechanical systems, it is frequently required to determine the angular position, velocity, and acceleration of a moving link for which the scalar coordinates of two points are known, together with their first and second time derivatives, or to determine the position, velocity, and acceleration of a point connected to a moving body of known motion.

Let us assume a rigid link defined by points A and B in planar motion. The case where the coordinates of a point P attached to this link are specified relative to a local reference frame will be discussed in more detail. Figure 5.7a shows such an arrangement, where local

FIGURE 5.7 Schematic for calculating the position, velocity, and acceleration of a point P attached to a moving link $A B$ knowing the local coordinates (a) $x_{1} P$ and $y_{1} P$ or distances $A P$ and $B P$ and the orientation of the (b) APB loop.
reference frame $O_{1} X_{1} Y_{1}$ has its $O_{1} X_{1}$ axis oriented from A to B and its origin is coincident with point A, and where offset point P is specified using local coordinates ($x_{1} P, y_{1} P$).

If lengths $A P$ and $B P$ are specified instead, the location of point P can be determined as the intersection of two circles centered at A and B and of radii $A P$ and $B P$. In order to distinguish between the two intersection points of the two circles, the orientation of the triangular loop $A P B$ has to be additionally specified. This second approach is conveniently solved using procedure Int2CirPVA discussed in Chapter 6 and will not be detailed here beyond its computer implementation in procedure OffsetV.

At any instant of time, the followings parameters are assumed known:

- The coordinates $x A$ and $y A$ of point A relative to the fixed reference frame $O X Y$.
- The projections $\dot{x} A$ and $\dot{y} A$ of the velocity of point A onto the fixed reference frame.
- The projections $\ddot{x} A$ and $\ddot{y} A$ of the acceleration of point A onto the fixed reference frame.
- The coordinates $x B$ and $y B$ of point B relative to the fixed reference frame OXY.
- The projections $\dot{x} B$ and $\dot{y} B$ of the velocity of point B onto the fixed reference frame.
- The projections $\ddot{x} B$ and $\ddot{y} B$ of the acceleration of point B onto the fixed reference frame.
- The local coordinates $x_{1} P$ and $y_{1} P$ of a point of interest P attached to the moving link relative to the moving reference frame $O_{1} X_{1} Y_{1}$ (Figure 5.7a) or distances $A P$ and $B P$ together with the orientation of triangular loop $A B P$ (Figure 5.7b).

The unknown kinematic parameters are

- The coordinates $x P$ and $y P$ of point P relative to the fixed reference frame $O X Y$.
- The projections $\dot{x} P$ and $\dot{y} P$ of the linear velocity of point P onto the fixed reference frame.
- The projections $\ddot{x} P$ and $\ddot{y} P$ of the acceleration of point P onto the fixed reference frame.

For the case illustrated in Figure 5.7a, we project vector equation $\mathbf{O P}=\mathbf{O A}+\mathbf{A P}$ onto the axes of the fixed reference frame and obtain:

$$
\left\{\begin{array}{l}
x P=x A+x_{1} P \cdot \cos \theta+y_{1} P \cdot \cos \left(\theta+\frac{\pi}{2}\right)=x A+x_{1} P \cdot \cos \theta-y_{1} P \cdot \sin \theta \tag{5.20}\\
y P=y A+x_{1} P \cdot \sin \theta+y_{1} P \cdot \sin \left(\theta+\frac{\pi}{2}\right)=y A+x_{1} P \cdot \sin \theta+y_{1} P \cdot \cos \theta
\end{array}\right.
$$

where angle θ is measured between axis $O X$ and vector $\mathbf{A B}$ (see Figure 5.7a) and is given by the formula

$$
\begin{equation*}
\theta=\tan ^{-1}\left[\frac{y B-y A}{x B-x A}\right] . \tag{5.21}
\end{equation*}
$$

Note that the same two Equations 5.20 can be obtained by applying a rotation by angle θ to point P of coordinates $x_{1} P$ and $y_{1} P$, followed by a translation from $(0,0)$ to $(x A, y A)$.

Differentiating Equation 5.20 once with respect to time, the projections of the velocity of point P onto the axes of the fixed reference frame are obtained:

$$
\left\{\begin{array}{l}
\dot{x} P=\dot{x} A-\dot{\theta} \cdot\left(x_{1} P \cdot \sin \theta+y_{1} P \cdot \cos \theta\right) \tag{5.22}\\
\dot{y} P=\dot{y} A+\dot{\theta} \cdot\left(x_{1} P \cdot \cos \theta-y_{1} P \cdot \sin \theta\right)
\end{array}\right.
$$

equivalent to

$$
\left\{\begin{array}{l}
\dot{x} P=\dot{x} A-\dot{\theta} \cdot(y P-y A) \tag{5.23}\\
\dot{y} P=\dot{y} A+\dot{\theta} \cdot(x P-x A)
\end{array}\right.
$$

The angular velocity $\dot{\theta}$ of the moving member $A B$ can be determined by writing equations similar to (5.23) for point B instead of P, the velocity of which is known:

$$
\left\{\begin{array}{l}
\dot{x} B=\dot{x} A-\dot{\theta} \cdot(y B-y A) \tag{5.24}\\
\dot{y} B=\dot{y} A+\dot{\theta} \cdot(x B-x A)
\end{array}\right.
$$

yielding the following two equivalent equations:

$$
\begin{equation*}
\dot{\theta}=-\frac{\dot{x} B-\dot{x} A}{y B-y A} \quad \text { or } \quad \dot{\theta}=\frac{\dot{y} B-\dot{y} A}{x B-x A} \tag{5.25}
\end{equation*}
$$

The x and y components of the acceleration of point P were obtained by differentiating Equations 5.23, that is,

$$
\left\{\begin{array}{l}
\ddot{x} P=\ddot{x} A-\ddot{\theta} \cdot\left(x_{1} P \cdot \sin \theta+y_{1} P \cdot \cos \theta\right)-\dot{\theta}^{2} \cdot\left(x_{1} P \cdot \cos \theta-y_{1} P \cdot \sin \theta\right) \tag{5.26}\\
\ddot{y} P=\ddot{y} A+\ddot{\theta} \cdot\left(x_{1} P \cdot \cos \theta-y_{1} P \cdot \sin \theta\right)-\dot{\theta}^{2} \cdot\left(x_{1} P \cdot \sin \theta+y_{1} P \cdot \cos \theta\right)
\end{array}\right.
$$

equivalent to

$$
\left\{\begin{array}{l}
\ddot{x} P=\ddot{x} A-\ddot{\theta} \cdot(y P-y A)-\dot{\theta}^{2} \cdot(x P-x A) \tag{5.27}\\
\ddot{y} P=\ddot{y} A+\ddot{\theta} \cdot(x P-x A)-\dot{\theta}^{2} \cdot(y P-y A)
\end{array}\right.
$$

Note that Equations 5.23 and 5.27 are the scalar form of Euler's equation for the velocity and acceleration of a rigid body in 2D motion (Goldstein et al. 2001).

The angular acceleration of the $A B$ member is determined by extracting $\ddot{\theta}$ from Equations 5.26 for the particular case of point P coinciding with point B :

$$
\begin{equation*}
\ddot{\theta}=-\frac{\ddot{x} B-\ddot{x} A+\dot{\theta}^{2}(x B-x A)}{y B-y A} \quad \text { or } \quad \ddot{\theta}=\frac{\ddot{y} B-\ddot{y} A+\dot{\theta}^{2}(y B-y A)}{x B-x A} . \tag{5.28}
\end{equation*}
$$

In order to avoid a possible division by zero, depending on the value of denominators $(y B-y A)$ and $(x B-x A)$, either the first or the second of Equations 5.25 and 5.28 should be used when calculating $\dot{\theta}$ and $\ddot{\theta}$.

5.3.1 Procedures Offset and OffsetV

Equations 5.20, 5.23, and 5.27 have been implemented in procedure Offset0 part of unit LibMec2D, which calculates the position, velocity, and acceleration of a point P attached to a mobile link, giving its relative coordinates $x_{1} P$ and $y_{1} P$. Procedure Offset0 is not visible outside unit LibMec2D, but it is used by procedure Offset. The companion procedure OffsetV is based on the procedure Int2CirPVA in unit LimMec2D and uses distances $A P$ and $B P$ to point P and the orientation of the triangular loop $A P B$ as inputs (see Figure 5.7 b). Both procedures have graphic output capabilities and are easily interchangeable. Their headings are as follows:

```
procedure Offset(Color:Integer; Style:char; XA,YA, vxA,vyA,
axA,ayA, xB,yB, vxB,vyB, axB,ayB, x1P,y1P:double; var xP,yP,
vxP,vyP, axP,ayP:double);
```

and
procedure OffsetV(Color:Integer; Style:char; XA,YA, vxA, vYA, axA, ayA, $x B, y B, ~ v x B, v y B, ~ a x B, a y B, ~ A P, B P, A P B: d o u b l e ; ~ v a r ~ x P, y P$, vxP,vyP, axP,ayP:double);

The correspondence between the formal parameters of these two procedures and the notations used in Equations 5.20 through 5.28 and in Figure 5.4 are as follows:

Input parameters of procedure Offset:

$-16 . .16$	$\mathrm{~T}, \mathrm{I}, /, \backslash, \mathrm{V}, \mathrm{A}$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$x_{1} P$	$y_{1} P$
Color	Style	xA	yA	vxA	vyA	axA	ayA	$\mathbf{x B}$	$\mathbf{y B}$	vxB	vyB	axB	ayB	x1P	y1P

Input parameters of procedure OfsetV:

$-16 . .16$	$\mathrm{~T}, \mathrm{I}, /, \backslash, \mathrm{V}, \mathrm{A}$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$A P$	$B P$	$A B P$
Color	Style	$\mathbf{x A}$	$\mathbf{Y A}$	vxA	vyA	axA	ayA	$\mathbf{x B}$	yB	$\mathbf{v x B}$	vyB	axB	ayB	AP	BP	ABP

Output parameters of procedures Ofset and OfsetV:

$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$
$\mathbf{x P}$	yP	vxP	vyP	axP	ayP

If the graphic system is on, apart from returning the coordinates of point P and of their first and second time derivatives, these procedures plot on the computer screen and to the current DXF file additional graphic entities that help locating point P (see Figure 5.8 and programs P5_08A.PAS and P5_08B.PAS in Appendix B). If parameter Style equals " $/$ " or " \backslash ", the procedures will draw a line connecting points A and P or points B and P, respectively. If parameter Style equals " I " or " T ", a line from point P perpendicular to $A B$ will be drawn, while for Style equals " T ", a line connecting points A and B will be additionally drawn. If Style equals " V ", then polyline $A P B$ will be drawn, while if Style equals " A ", then the complete triangle $A P B$ will be drawn. If parameter Color is positive and procedure SetJointSize is called with a positive argument (i.e., the joints are set to full view), then triangle $A B P$ will be filled with color. Otherwise, a transparent triangle

FIGURE 5.8 Various representations of an offset point P attached to a crank done by procedures Offset and OffsetV. See programs P5_08A.PAS and P5_08A.PAS and animation files F5_08a.GIF and F5_08b.GIF.
$A B P$ will be drawn. If the parameter Color is set equal to 0 , or Style is assigned the blank character, then there will be no line or triangle drawn.

5.3.2 Procedures AngPVA, Ang3PVA, and Ang4PVA

Equations $5.21,5.25$, and 5.28 can be employed to calculate the angular position, angular velocity, and angular acceleration of a rigid link for which the position, velocity, and acceleration of two points A and B attached to it are known. These equations were implemented in procedure AngPVA with the heading
procedure AngPVA (xA,yA, vxA, vyA, axA, ayA, $x B, y B, \quad v x B, v y B$, axB,ayB:double; var Theta, dTheta, ddTheta:double);

The correspondence between the formal parameters of the procedure and the notations used earlier are summarized in the following tables:

Input parameters of procedure AngPVA:

$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
xA	yA	vxA	vyA	axA	ayA	$\mathbf{x B}$	$\mathbf{y B}$	vxB	vyB	axB	ayB

Output parameters of procedure AngPVA:

When calling procedure AngPVA, variable Theta must carry a meaningful value, that is, either zero when AngPVA is called for the first time or the previous value of Theta. This is required to ensure the continuity of the returned angle, done by calling procedure NghbrAng described in Chapter 3. Procedure AngPVA is also used by procedures Crank, Slider, and Offset and by procedures Ang3PVA and Ang4PVA. Procedure Ang3PVA returns the angle defined by points A, B, and C (i.e., by vectors BA and BC) and its first and second time derivatives, while procedure Ang4PVA calculates the angle between vectors $\mathbf{A B}$ and $\mathbf{C D}$ and the first and second time derivatives of this angle. These procedures have the following heading:

Ang3PVA (xA, yA, vxA, vyA, axA, ayA, $x B, y B, \quad v x B, v y B, ~ a x B, a y B, x C, y C$, vxC,vyC, axC,ayC:double; var Theta, dTheta, ddTheta:double);

Ang4PVA (xA, yA, vxA, vyA, axA, ayA, $x B, y B, \quad v x B, v y B, ~ a x B, a y B, x C, y C$, vxC,vyC, $a x C, a y C, x D, y D, v x D, v y D, a x D, a y D: d o u b l e ; ~ v a r ~ T h e t a$, dTheta, ddTheta:double);

The user must provide the x and y coordinates of points A, B, C or A, B, C, and D together with the scalar components of their velocities and accelerations. The same requirement about angle Theta carrying an initial meaningful value or the previous value of the angle applies to procedures Ang3PVA and Ang4PVA as well.

Important: The procedures in unit LibMec2D assume that all angles are in radians (rad), that angular velocities are in $\mathrm{rad} / \mathrm{s}$, and that angular accelerations are in $\mathrm{rad} / \mathrm{s}^{2}$.

Important: In procedures Offset, OffsetV, AngPVA, Ang3PVA, and Ang4PVA, it is essential that distances $A B$ and $B C$ or $A B$ and $C D$ remain constant. Otherwise, the time derivatives returned by these procedures will not be correct. The cases where these distance do not remain constant are addressed in the next section.

5.4 POSITION, VELOCITY, AND ACCELERATION IN RELATIVE MOTION: PROCEDURE VarDist

A more general case than the one discussed earlier is that where the distance between points A and B does not remain constant (see Figure 5.9). Given coordinates $x A, y A$, and $x B, y B$ of these two points relative to the $O X Y$ frame, and the $O X$ and $O Y$ projections of their velocities and accelerations (i.e., $\dot{x} A, \dot{y} A, \dot{x} B, \dot{y} B, \ddot{x} A, \ddot{y} A, \ddot{x} B$, and $\ddot{y} B$), we want to find the distance r between these points, the angle θ formed by line $A B$ with the $O X$ axis. Also of interest are the first and second time derivatives of the variable distance r and of angle θ, that is, $\dot{r}, \ddot{r}, \dot{\theta}$, and $\ddot{\theta}$, respectively.

Distance r can be calculated with the known formula:

$$
\begin{equation*}
r=\sqrt{(x B-x A)^{2}+(y B-y A)^{2}} \tag{5.29}
\end{equation*}
$$

To determine the velocity and acceleration components, we project the vector equation $\mathbf{A B}=\mathbf{O B}-\mathbf{O A}$ onto the axes of the fixed reference frame $O X Y$ and obtain

$$
\left\{\begin{array}{l}
r \cdot \cos \theta=x B-x A \tag{5.30}\\
r \cdot \sin \theta=y B-y A
\end{array}\right.
$$

FIGURE 5.9 Schematic for calculating the variable distance r and angle θ determined by moving points A and B, and of the time derivatives $\dot{r}, \ddot{s}, \dot{\theta}$, and $\ddot{\theta}$. Also shown in dashed line is the Coriolis acceleration vector of the slider moving relative to its guide.
where angle θ can be calculated with Equation 5.21. Differentiating Equation 5.30 once with respect to time yields a set of two linear equations in the unknowns \dot{r} and $\dot{\theta}$:

$$
\left\{\begin{array}{l}
\dot{r} \cdot \cos \theta-\dot{\theta} \cdot r \cdot \sin \theta=\dot{x} B-\dot{x} A \tag{5.31}\\
\dot{r} \cdot \sin \theta+\dot{\theta} \cdot r \cdot \cos \theta=\dot{y} B-\dot{y} A
\end{array}\right.
$$

which combined with Equation 5.30 become

$$
\left\{\begin{array}{l}
\dot{r} \cdot \cos \theta-\dot{\theta} \cdot(y B-y A)=\dot{x} B-\dot{x} A \tag{5.32}\\
\dot{r} \cdot \sin \theta+\dot{\theta} \cdot(x B-x A)=\dot{y} B-\dot{y} A
\end{array}\right.
$$

Accelerations are obtained by differentiating Equation 5.32

$$
\left\{\begin{array}{l}
\ddot{r} \cdot \cos \theta-\dot{\theta} \cdot \dot{r} \cdot \sin \theta-\ddot{\theta} \cdot(y B-y A)-\dot{\theta} \cdot(\dot{y} B-\dot{y} A)=\ddot{x} B-\ddot{x} A \tag{5.33}\\
\ddot{r} \cdot \sin \theta+\dot{\theta} \cdot \dot{r} \cdot \cos \theta+\ddot{\theta} \cdot(x B-x A)+\dot{\theta} \cdot(\dot{x} B-\dot{x} A)=\ddot{y} B-\ddot{y} A
\end{array}\right.
$$

These are equivalent to the following set of two linear equations in the unknowns \ddot{s} and $\ddot{\theta}$:

$$
\left\{\begin{array}{l}
\ddot{r} \cdot \cos \theta-\ddot{\theta} \cdot(y B-y A)=\ddot{x} B-\ddot{x} A+\dot{\theta} \cdot \dot{r} \cdot \sin \theta+\dot{\theta} \cdot(\dot{y} B-\dot{y} A) \tag{5.34}\\
\ddot{r} \cdot \sin \theta+\ddot{\theta} \cdot(x B-x A)=\ddot{y} B-\ddot{y} A-\dot{\theta} \cdot \dot{r} \cdot \cos \theta-\dot{\theta} \cdot(\dot{x} B-\dot{x} A)
\end{array}\right.
$$

The systems of two linear equations (5.32) and (5.34) can be easily solved using Cramer's rule or the inverse matrix method, and together with Equations 5.29 and 5.21 have been implemented in procedure VarDist with the heading:

VarDist(xA,yA, vxA,vyA, axA,ayA, $x B, y B, ~ v x B, v y B, ~ a x B, a y B: d o u b l e ;$

The correspondence between the formal parameters of the procedure and the notations used earlier is as follows:

Input parameters of procedure VarDist:

$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
$\mathbf{x A}$	$\mathbf{y A}$	vxA	vyA	axA	ayA	$\mathbf{x B}$	$\mathbf{y B}$	vxB	vyB	axB	ayB

Output parameters of procedure VarDist:

r	\dot{r}	\ddot{r}	θ	$\dot{\theta}$	$\ddot{\theta}$
r	$d r$	ddr	Theta	dTheta	ddTheta

In order to ensure the continuity of angle Theta returned by VarDist, same as for procedure AngPVA, variable Theta must be assigned a seed value, that is, zero, when the procedure is first called or the previously calculated value of angle Theta.

Important: If points A and B overlap and distance r becomes zero, then angle θ cannot be evaluated. Additionally, because of the way the distance between points A and B is calculated, no distinction can be made between negative and positive r values. Therefore, point B should always remain on the same side of point A (Figure 5.9).

5.5 CORIOLIS ACCELERATION EXAMPLE: PROCEDURE PutVector

Program P5_10.PAS, listed in Appendix B, exemplifies the use of procedure VarDist and of procedure PutVector. It also provides an example of writing data to an output ASCII file. The program simulates the motion of a slider block B moving along a guide $Q Q^{\prime}$ that is perpendicular to the end of a rocker $O P$ (see Figure 5.10). Both the rocker and the slider are driven back and forth sinusoidally (see lines \#35 through \#40 of the program). Note that the displacement of point B of the slider is measured from point P, and it can be both positive and negative. Procedure VarDist returns the distance from point Q^{\prime} to point B and the first and second time derivatives of this distance. It also returns the angular position, velocity, and acceleration of the slider block, which coincide with those of the crank. Before writing them to ASCII files P5_10A.TXT and P5_10B.TXT, the slider displacement and its angular position were offset by the amounts $-Q^{\prime} Q / 2$ and $-\pi / 2$, respectively. This way, they can be easily compared with the inputs applied to the crank and to the slider. Additionally, the angle values were converted from radians to degrees.

By inspecting the content of output files P5_10A.TXT and P5_10B.TXT, it can be seen that identical values were recorded for both the angular and linear inputs of the crank and of the slider, which confirms the correctness of the equations programmed inside procedure VarDist.

In addition to the ASCII output, program P5_10.PAS also represents graphically the mechanism in nPoz discrete positions, together with the locus of point B (Figure 5.10).

FIGURE 5.10 One of the frames generated by program P5_10.PAS showing the locus of point B on the slider and its Coriolis acceleration vector. See also animation file F5_10.GIF.

By calling procedure PutVector (line \#58), the Coriolis acceleration vector of the slider moving along guide $Q Q^{\prime}$ is also plotted with the simulation (see Figure 5.5 and Meriam and Kraige 2012). The x and y components of this acceleration vector are calculated prior to calling procedure PutVector on lines \#56 and \#57 of the program.

Because the angular position, velocity, and acceleration of the slider are identical with those of the entire T-shaped guide, procedure AngPVA applied to points P and Q or to points Q^{\prime} and Q can be used instead of procedure VarDist.

5.6 MODEL VALIDATION: PROCEDURE ntAccel

One way of checking the validity of the results obtained using the procedures in unit LibMec2D is to compare them with results known to be correct. Such verifications should be done to ensure that the input motors of a mechanism are assigned consistent motions, for example, that their velocities and accelerations are indeed the first and second time derivatives of their displacements. Similar verifications are also proper when modifying an existing kinematic procedure or when developing a new one.

If kinematic data calculated with a concomitant method are not available for comparison, alternative techniques can be applied. In order to verify that the position results are correct, you can open the DXF frames of the simulation inside AutoCAD and check that the lengths and angles of links known to be rigid remain constant throughout the motion cycle of the mechanism. Using the inquiry procedures PutDist and PutAng discussed in Section 5.7, the same can be verified directly from within the simulation program.

Once position results are known to be correct, velocities and accelerations can be evaluated by applying finite difference formulae to the displacement data and then compared with the results returned by the program or by the procedure under scrutiny. To illustrate this concept, the aforementioned program P5_10.PAS has been duplicated as P5_11.PAS and further modified so that the coordinates of point B and the scalar components of its velocity and acceleration ($\dot{x} B, \dot{y} B, \ddot{x} B$, and $\ddot{y} B$) are evaluated and output to ASCII file F5_11.TXT (Figure 5.11). The time t values were

FIGURE 5.11 Simulation done with program P5_11.PAS showing the velocity and the normal and tangential acceleration of point B on the slider. See also animation file F5_11.GIF.
also recorded to this ASCII file (see lines \#58 and \#59 of the source code P5_11.PAS given in Appendix B).

ASCII file F5_11.TXT was then opened inside Excel (see file F5_11.XLS available with the book), and the first derivatives with respect to time of the x and y coordinates of point B were evaluated using finite differences (see Equation B.24). Using these newly calculated velocities noted vxB* and vyB* in Figure 5.12, approximations of the x and y acceleration components of point B were also generated using finite differences. By plotting the exact ($a x B$ and $a y B$) and approximate ($a x B^{*}$ and $a y B^{*}$) accelerations of point B on the same graph, almost overlapping lines were obtained (Figure 5.12), thus validating the results output by program P5_11.PAS.

Another way of verifying the correctness of a kinematic simulation (although more of a qualitative nature) is to observe the velocity and acceleration vectors of one or more points of interest of the mechanism. It is known that the velocity vector \boldsymbol{v} should remain tangent to the path of the point, while its acceleration vector \boldsymbol{a} should always be oriented towards the inside of the path (Figures 5.13). If this is not happening, then calculation or computer implementation errors are to be expected.

Before drawing the normal $\boldsymbol{a}_{\boldsymbol{n}}$ and tangential $\boldsymbol{a}_{\boldsymbol{t}}$ acceleration vectors using procedure PutVector, program P5_11.PAS calls procedure ntAccel with inputs

FIGURE 5.12 Comparison between the x and y components of the acceleration of point B output by program P5_10.PAS and the same components calculated using finite differences.

FIGURE 5.13 Velocity vector \boldsymbol{v} and the normal and tangential acceleration vectors of point C on an (a) accelerating and (b) decelerating section of its path.
the x and y components of the velocity and acceleration of point B (see line \#54). Procedure ntAccel calculates the x and y components of the $\boldsymbol{a}_{\boldsymbol{n}}$ and $\boldsymbol{a}_{\boldsymbol{t}}$ vectors using the following equations:

$$
\begin{gather*}
\boldsymbol{a}_{t}=(\boldsymbol{a} \cdot \boldsymbol{v}) \frac{\boldsymbol{v}}{|\boldsymbol{v}|^{2}}=\left(\frac{a_{x} v_{x}^{2}+a_{y} v_{x} v_{y}}{v_{x}^{2}+v_{y}^{2}}, \frac{a_{x} v_{x} v_{y}+a_{y} v_{y}^{2}}{v_{x}^{2}+v_{y}^{2}}\right) \tag{5.35}\\
\boldsymbol{a}_{n}=\boldsymbol{a}-\boldsymbol{a}_{t}=\left(\frac{a_{x} v_{y}^{2}-a_{y} v_{x} v_{y}}{v_{x}^{2}+v_{y}^{2}}, \frac{a_{y} v_{x}^{2}-a_{x} v_{x} v_{y}}{v_{x}^{2}+v_{y}^{2}}\right) \tag{5.36}
\end{gather*}
$$

As mentioned earlier, ensuring that the simulation is correct is always of concern. Animation of the mechanism provides a first good indication that its links assemble as intended. Labeling joints and placing stationary markers at different locations can be additionally helpful in this respect. In program P5_11.PAS, procedures PutGPoint (line \#41) and PutPoint (line \#51) draw on the screen and to the output DXF file a point of selected type, and also label this point. Characters available to control the type of point generated by procedures PutGPoint and PutPoint are: "." for one pixel, " x ", " x ", " "", " 0 " and " 0 " for \times and š points of two or three sizes respectively. Also available as control characters are "^" and "v" for a grounded pin joint normal or reversed orientation. In turn, procedure LabelJoint (lines \#42, \#45 and \#48) allows moving point labels to be aligned with a specified direction.

Important: Procedures PutPoint and LabelJoint write the label (procedure PutPoint also draws the point of specified type) in the current layer of the DXF file output by the program. Procedure PutGPoint draws the point and writes its label to the Ground layer. These two procedures can be also used to display one-time information about the mechanism (procedure PutGPoint) or some variable parameter (procedure PutPoint) as it has been done on lines \#32 and \#57 of program P5_11. PAS. Procedures SetTitle, PutGText, and PutText available from unit LibMec2D are however better suited for such purposes.

If procedure CloseMechGraph is called with its argument set to TRUE (see line \#37 of program P5_01.PAS and line \#62 of program P5_11.PAS), then the temporary files of extension $\$ 2 \mathrm{D}$ used to record the loci are not deleted. Instead, their extension is changed to D 2 D so that they can be represented graphically using the D_2D program. Figure 5.14a is a plot of the loci of points $P 1$ to $P 8$ saved to file by program P5_01.PAS, while Figure 5.14b shows overlapped the loci of point B of the mechanism in Figure 5.11 generated for several crank OP length values. Note that the default names of the D2D files have been changed to F15_14-1.D2D, F15_14-2.D2D, etc. as they were generated by program P5_11.PAS. Also note that the color information is recorded to these loci files and can be interpreted by the D_2D program as explained in Chapter 1.

FIGURE 5.14 Plot of the eight spiral loci in Figure 5.1 (a) and of the overlapped loci of point B of the mechanism in Figure 5.10 for link length $O P$ equal to $35,30,25,20,15,10,4$ and 1E-6, i.e., near zero (b). Configuration files F5_14a.CF2 and F5_14b.CF2.

5.7 WORKSPACE LIMITS AND INQUIRY PROCEDURES PutDist AND PutAng

Program P5_11.PAS in Appendix B shows how interface variables XminWS, XmaxWS, YminWS, and YmaxWS defined in unit LibMec2D can be used to best set up the limits of the view window. The first simulation cycle is performed without visualizing the mechanism, only to gather the workspace limits of its members. After this first cycle, procedure OpenMechGraph is called (see lines \#26 to \#29 of program P5_11.PAS). Alternatively, interface variables XminWS, XmaxWS, YminWS, and YmaxWS can be printed at the end of the run, so that the limits of the workspace can be manually adjusted for later runs (see lines \#63 and \#64 of the same program).

Either for verification purpose or to present the results of a simulation, it is possible to write data to file for inspection or to display it in tabular or graphical form. Plotting kinematic parameters as 2D line graphs together with the simulation is also possible, as explained in a separate section later in this chapter, but requires additional programming effort. It is easier to output the values of interest directly on the computer screen as it has been done in program P5_11.PAS using PutGPoint and PutPoint (lines \#32 and \#57). More specialized procedures are available, that is, PutGText for static text (like the title of the simulation, although the use of procedure SetTitle is recommended) and PutText for text that changes content or location during the simulation. Program P5_15A. PAS in Appendix B and the companion program P5_15B.PAS (listing not included) exemplify the use of these text output procedures and that of the inquiry procedures PutDist and PutAng, all four available from unit LibMec2D. The distance and angle inquiry procedures PutDist and PutAng have the following headings:

[^0]They display in color Color the distance from point ($\mathbf{x A}, \mathbf{Y} \mathbf{A}$) to point ($\mathbf{x B}, \mathbf{y B}$), or the angle at ($\mathbf{x} 0, \mathbf{y} 0$) formed with additional points $(\mathbf{x} 1, \mathbf{y} \mathbf{1})$ and $(\mathbf{x} 0, \mathbf{y} 0)$, respectively. If points $(\mathbf{x} 1, \mathrm{y} \mathbf{1})$ and $\left(\mathbf{x} 0, \mathrm{y}_{0}\right)$ coincide, then the angle displayed by PutAng will be measured from a line parallel to the $O X$ axis. The first two and the last two characters of parameter Dim can be set to either "|<", "|", "<" or to ">|", "|", ">" respectively, to control the insertion of the extension lines and arrow heads of the dimension line or dimension arc. If the remainder of the characters in the string Dim are empty spaces, then the angle (in degrees) or distance will be calculated using the available point coordinates, and will be displayed on the screen. By default, the number of digits used to display these angles or distances is four, but it can be increased by calling procedures PutDist and PutAng with the Dim parameter set equal to five or more consecutive spaces (flanked or not by combinations of "|", "<", ">", or "|" characters). If parameter Dim transmitted to these procedures is other than an empty string or consecutive blank spaces, the actual Dim value will be displayed (less the control characters, if provided).

Program P5_15.PAS in Appendix B (which is a modification of earlier program P5_04.PAS—see also Figure 5.4) illustrates the use of procedures PutDist and PutAng. The program simulates two cranks jointed in series as shown in Figure 5.15a. Using procedure PutText, the input values of the two crank angles are displayed on top of the screen, together with the distance measured between ground joint A and endpoint C (see lines \#38 and \#39). Similarly, the title of the simulation is displayed by calling procedure PutGText on line \#27. Note the use with these procedures of the generic variable " _" to designate the x and y coordinates of the left corner and top of the screen, and of the separator " $n \backslash$ " to break the text in multiple lines. Also note on line \#35 of the program how procedure PutDist was called with the extension line length ExtLLgt set equal to either +8 or -8 , depending on the orientation of the vector loop $A B C$. By doing so, the dimension line does not intersect the two cranks as they rotate during the simulation.

FIGURE 5.15 Simulation of two cranks jointed in series that are independently driven, produced with programs (a) P5_15a.PAS and (b) P5_15b.PAS. See also animation files P5_15a.GIF and P5_15b.GIF.

Because the second crank angle Phi2 is always negative, there is a mismatch between the value displayed by procedure PutAng and the value printed on the top of the screen by procedure PutText (see Figure 5.15a). This is because procedure PutAng always measures angles in the positive direction. One way of displaying negative angles in a simulation is to transmit the angle value to the procedure via parameter Dim, as it has been done in program P5_15B.PAS is used to produce Figure 5.15b. Program P5_150LD.PAS (see also animation file P5_150LD.GIF-both available with the book) are additional examples of procedures PutAng and PutDist use.

5.8 ADDING COMPLEX SHAPES TO SIMULATIONS:
 PROCEDURES Base, Link, gShape, AND Shape

In order to add realism to a simulation, or to check for possible interferences between moving bodies or between them and other surroundings objects, it is helpful to include shapes in a simulation. Distinction is made between shapes attached to the ground, which do not change location and are written only once to the DXF file, and shapes attached to moving links, which change their position and orientation and must be written to separate DXF layers. Procedures Base, Link, gShape, and Shape available from unit LibMech2D serve such purposes. The first two of these procedures have the following syntaxes:

```
Base(Color, xA,yA,xB,yB, w, rA,rB);
Link(Color, xA,YA, xB,yB, w, rA,rB);
```

They allow rectangular shapes of color Color (filleted or chamfered at the corners) to be aligned with points $(\mathbf{x A}, \mathbf{Y A})$ and $(\mathbf{x B}, \mathbf{Y B})$. The width of the rectangle is specified through the parameter \mathbf{w}, while $\mathbf{r A}$ and $r \mathrm{~B}$ are the fillet radii of the corners adjacent to end A and end B, respectively. If either $r A$ or $r B$ is a negative number, then chamfering rather than filleting at the respective corners of the rectangle is performed instead. Program P5_16A.PAS in Appendix B exemplifies the use of these two procedures to animate a rectangular crank that rotates about a base-see Figure 5.16a and animation files F5_16a.GIF, as well as F5_16a-1.GIF and F5_16a-2.GIF. The frames in these last two files have been obtained by setting the parameter Col on line \#15 of the program to -2 and 0 , respectively.

Note in program P5_16A.PAS the use of procedures gShape and Shape to plot a stationary circle of radius 1.6 representing the driving shaft of the crank (line \#31) and a circle of radius 0.8 centered at point (xA, YA) of the crank (line \#32). However, the full merit of procedures gShape and Shape is that they allow complex shapes to be read from file and be placed to the ground or attached them to moving links. The headings of these two procedures are

```
gShape(FxyName, Color, xA,yA);
Shape (FxyName, Color, xA,yA, xB,yB);
```


FIGURE 5.16 Kinematic simulation of a crank rotating about a (a) base and of a (b) one-stage gear reducer created using procedures Base, Link, gShape, and Shape. See also animation files F5_16a.GIF and F5_16b.GIF.
where FxyName is the name of the ASCII file from where the x and y coordinates of the polylines forming the shape are read. The polylines read from file will be plotted on the screen in color Color and will have their origin translated to the point of coordinates $\mathbf{x A}$ and YA. Procedure Shape requires one additional distinct point ($\mathbf{x B}, \mathrm{yB}$) that serves as a point along the x-axis of shape.

If parameter FxyName transmits to the procedure a number rather than a file name, then a circle centered at ($\mathbf{x A}, \mathbf{Y A}$) and of radius FxyName will be plotted on the screen and to the current DXF file. In case of procedure Shape only, if FxyName equals the empty string or the name of an inexistent file, then a circle centered at ($\mathbf{x A}, \mathrm{yA}$) and passing through point $(\mathbf{x B}, \mathrm{yB})$ will be drawn instead.

Program P5_16B.PAS, listed in Appendix B, is a second example of a kinematic simulation that uses complex shapes in the form of two gears attached to two synchronously rotating cranks. The result of the simulation is visible in Figure 5.16b and in the animation file F5_16b.GIF available with the book. Note that the pinion is provided with a center hole and a keyway also read from the Pinion. XY file. The driven gear also includes a center hole, a rim circle, and nh peripheral holes. All these circles are drawn by separately calling procedure Shape with no file name as argument (see lines \#40, \#41 and \#44 of the program).

The shapes supplied as ASCII files to procedures Shape and gShape were recorded as x and y coordinates of polyline vertices. Multiple polylines can be written to the same file using "-----" separators or a pair of InfD values, and their color can be changed from file as discussed in Chapter 1. A convenient way to generate complex shapes is to draw them in AutoCAD, export them to R12 DXF, and then use the UTIL~DXF program to write the x and y coordinates of selected polylines to ASCII files. If any of these shapes include arches of circles, full circles, or splined polylines, then such entities must be discretized by plotting them to a PLT file first (see Chapter 3), then using program UTIL~PLT, the shapes from PLT are then converted to DXF, so they can be opened into AutoCAD to be scaled
and translated back to their original size and location. Only now are they ready for DXF export and vertex extraction to ASCII file using the UTIL~DXF program. The same steps can be applied to decimate the number of vertices of involute gears generated with Gears. LSP for the purpose of shortening the refreshing time in an animation.

5.9 SIMULATIONS ACCOMPANIED BY PLOTS WITH SCAN LINES AND SCAN POINTS

Program P3_04.PAS introduced in Chapter 3 was a first example of a simulation accompanied by dynamic plots with scan lines and scan points and PCX output. Note that the scan lines and scan points generated by calling procedures PlotScanLine and PlotScanPoint are drawn on the screen only. In this section, the example of a rotating vector (a phasor) accompanied by a plot of the projection of the tip of the vector on the vertical axis will be discussed (Figure 5.17). Here (see program P5_17A.PAS in Appendix B), both PCX and multilayer DXF output are possible. An alternative approach discussed with reference to program P5_17B.PAS is one where a multilayer DXF file of a simulation is combined inside AutoCAD with the DXF export of a comet plot generated using the D_2D program.

Compared to the example considered in Chapter 3, program P5_17A.PAS performs the kinematic calculations inside the main simulation loop, rather than only once before the animation begins. Such a strategy is better suited to simulations that employ the procedures in units LibMecIn and LibAssur discussed in Chapter 6. To animate scan lines and scan points inside AutoCAD using the M_3D.LSP application, procedures DXFScanLine and DXFScanPoint are called from unit LibMech2D in the process of generating the DXF file output (see lines \#70 and \#71). Adding the scan lines and scan points to the DXF file actually occurs when calling procedure PlotCurve on line \#73.

FIGURE 5.17 Kinematic simulation of a phasor accompanied by a dynamic plot of the projection of the end of the vector onto the y-axis. See also animation files F5_17-PCX.GIF, F5_17-DXF.GIF, and F5_17-D_2D.GIF.

The screen version of the same scan lines are turned on when lines \#49 and \#50 are executed and are turned back off when lines \#55 and \#56 are executed.

One full animation cycle occurs inside the repeat-until loop (lines \#35 and \#79), where the successive positions of the phasor are calculated and displayed (see also lines \#36 to \#58). Inside this same for loop, vectors_YA and _Theta required to plot the graph to the left in Figure 5.17 are also generated. After the first kinematic calculations are completed and only if FirstTime is TRUE, the graph of_YA vs._Theta is generated (see lines \#60 to \#76).

The DXF files F5_17-1.DXF (the phasor) and F5_17-2.DXF (the graph with scan line and scan point) that were juxtaposed inside AutoCAD and served to generate the animated GIF file F5_17a-DXF.GIF occur during the first simulation cycle. During the second simulation cycle, the program generates PCX copies of the entire screen. These PCX frames were then assembled in the animated GIF file F5_17a-PCX.GIF.

Comparable results can be alternatively obtained by combining inside AutoCAD a multilayer DXF copy of the animated phasor and a DXF file export of the phasor projection vs. phasor angle done using D _2D. The program that produces both the phasor animation and the data file for D_2D plotting (i.e., F5_17B.D2D) is listed in Appendix B.

Because D_2D cannot generate an overlap of a scan line and scan point, DXF exports of the two type of comet plots with nonaccumulating frames had to be generated sepa-rately-see also configuration files F5_17B-1.CF2 and F5_17-B 2.CF2. These were then assembled inside AutoCAD and the result visible in the animation file F5_17B.GIF obtained.

Note that the phasor length $O A$ was set equal to half of the plot box height (line \#11) so that no scaling is required when the DXF export of the vector simulation and of the animated plot are combined inside AutoCAD. However, before writing it to the data file F5_17B.D2D, the y-axis projection of the phasor is normalized (see line \#31).

The procedures in unit LibMec2D discussed in this chapter allow the simulation of rotary and linear motors and actuators (procedures Crank, gCrank, Slider, and gSlider) and of the motion of points attached to moving links (Offset and OffsetV). Also available from unit LibMec2D are procedures AngPVA, Ang3PVA, and Ang4PVA, useful for calculating the position, velocity, and acceleration of moving links, and procedure VarDist, which allows the calculation of the variable distance between two moving points and its first and second time derivatives. Inquiry procedures PutAng and PutDist can be used to monitor the change of angles and distance of interest. For adding complex shapes to a simulation in the form of polylines read from files, procedures Base, Link, gShape, and Shape are provided in unit LibMec2D. Vectors can be represented as arrows using procedure PutVector. At the end, two approaches to producing simulations accompanied by animated graph with scan lines and scan points were given.

REFERENCES AND FURTHER READINGS

Craig, J. J. (2004). Introduction to Robotics: Mechanics and Control. Upper Saddle River, NJ: Prentice Hall.
Giancoli, D. C. (2008). Physics for Scientists \& Engineers with Modern Physics. Upper Saddle River, NJ: Prentice Hall.
Goldstein, H., Poole Jr., C. P., and Safko, J. L. (2001). Classical Mechanics. Boston, MA: Addison-Wesley. Meriam, J. L. and Kraige, L. G. (2012). Engineering Mechanics: Dynamics. Hoboken, NJ: John Wiley \& Sons.

This page intentionally left blank

Kinematic Analysis of Planar Linkage Mechanisms Using Assur Groups

This Chapter is devoted to the kinematic analysis of planar mechanisms that employ turning and sliding joints only, also known as linkage mechanisms or linkages in short. Numerous such mechanisms can be analyzed by decomposing them into input link(s), plus subassemblies of links and joints that stand alone have zero degrees of freedom (DOFs). These subassemblies are known as Assur groups, named after the Russian engineer L. V. Assur who discovered them at the turn of the twentieth century. When such a zero DOF subassembly consists of two links and three joints, known as dyad, the corresponding kinematic equations can be solved analytically rather than numerically, and therefore allow for very fast computer implementations. The kinematic equations of all known dyads are derived in this chapter. They were also programmed in a number of Pascal procedures gathered in unit LibAssur available with the book. By calling these procedures in the same order in which the actual linkage mechanism has been formed, starting with the input member(s), the position, velocity, and acceleration of any moving link or point of the mechanism can be calculated, while supplementary, the whole mechanism can be animated over a given motion range.

6.1 ASSUR GROUP-BASED KINEMATIC ANALYSIS OF LINKAGE MECHANISMS

It is assumed that the reader has some knowledge of mechanism kinematics, including link and joint identification and mobility calculation. If this knowledge is limited, then a review of the relevant sections from any of the textbooks on Mechanism Theory listed at the end of the chapter is recommended.

Given a planar mechanism with n total number of links (including the fixed link), j_{1} total number of joints with one DOF, and j_{2} total number of joints with two DOFs, the mobility of the mechanism is given by the following formula:

$$
\begin{equation*}
m=3(n-1)-2 j_{1}-j_{2} \tag{6.1}
\end{equation*}
$$

Equation 6.1, known as the Gruebler-Kutzbach criterion, essentially indicates that in order for all the links of the mechanism to have a determinate motion, the mechanism must have m independent inputs. These inputs can be in the form of powered joints or of links driven by external forces or moments.

For the needle drive mechanism of a sewing machine in Figure 6.1, the mobility equation writes

$$
\begin{equation*}
m=3(6-1)-2 \cdot 7=1 \tag{6.2}
\end{equation*}
$$

Note that at B there is a turning pair (a pin joint) overlapped with a prismatic pair (a sliding joint), and both must be accounted for when evaluating the total number of single $D O F$ joints j_{1}. Topologically, the mechanisms in Figure 6.1 are formed by amplifying a crank $O A$ with an RRT dyad (the two Rs stand for the two rotational joints and T stands for the translational or sliding joint) and with an $R R R$ dyad with three rotational joints R. The way these

FIGURE 6.1 Mechanisms of a sewing machine simulated with program P6_01.PAS, which employs a crank $O A$ with an offset point C, an RRR dyad with a coupler point F, and an RRT dyad. Mechanism (a) uses an RR_T isomer, and mechanism (b) uses an RRT_ isomer of the RRT dyad. See also animation file F6_01.GIF.
entities are assembled will become apparent after viewing the animation file F6_01.GIF and from studying the simulation programs P6_01.PAS listed in Appendix B.

Based on the name of the output DXF file being either F6_01A or F6_01B (see line \#14), the program calls from unit LibAssur procedure RRT _ or procedure $R R_{_} T$ to model the RRT dyad. Figure 6.1 and animation file F6_01.GIF show the differences between the ways the needle slider is represented by these two procedures. These two embodiments of the RRT dyad will be called isomers. The animated GIF file F6_01.GIF available with the book has been produced inside AutoCAD using the M_3D.LSP application, by combining together the corresponding DXF files generated by the P6_01. PAS program.

Other than the rotary and linear motors discussed in Chapter 5, actuators like those shown in Figure 6.2 can be used as inputs in the construction of linkage mechanisms. Of these, the RTRR actuator (Figure 6.2b) is more widely used in practice, while the RTRTR actuator (Figure 6.2a) occurs in rope shovels and some parallel robots (see also Chapter 9).

A summary of all known dyads and of their possible isomers is given in Figure 6.3, of which the RRR dyad and the RR_T and RRT_ isomers of the RRT dyad have already been mentioned with reference to program P6_01.PAS. Figure 6.3 shows these dyads and their isomers in their most general as well as simplified configurations. Representative linkage mechanisms that can be modeled using the respective dyads are also given on the last row in Figure 6.3. Note that no distinction has been made between the TRR and RRT dyads, and the TTR and RTT dyads. This is because the kinematic equations are independent of the direction in which motion is transmitted between their links. Also notice that a TTT dyad has not been included in this classification since by itself it has a stand-alone mobility of one rather than zero.

In the remainder of this chapter, the kinematic equations of the actuators in Figure 6.2 and of the Assur groups in Figure 6.3 will be derived. These equations have been programmed in a number of Pascal procedures gathered in unit LibMecIn (i.e., procedures RTRTR, RTRTRc, RTRR, and RTRRc) and in unit LibAssur (i.e., procedures RRR,
 RT_T_).

Important: If there is interest only in the position results or only in the position and velocity results, these procedures can be called with their velocity or velocity and acceleration parameters set equal to constant InfD defined in unit LibMath. Moreover, the names

FIGURE 6.2 Double oscillating-slide actuator RTRTR (a) and single oscillating-slide actuator RTRR (b), available as procedures in unit LibMecIn. They can be pin-jointed to the ground (as shown) and jointed to the same moving link or to two separate moving links.

FIGURE 6.3 Isomers of the five known dyads available as procedures in unit LibAssur, their simplified embodiments with overlap joints (third row), and a few representative applications (fourth row).
assigned to these output velocity and/or acceleration variables do not have to be distinct. The generic variable _ defined in the interface section of unit LimMath, which is preassigned the value InfD, should be used according to the aforementioned convention (see program P6_01.PAS in Appendix B).

6.2 INTERSECTION BETWEEN TWO CIRCLES: PROCEDURE INT2CIR

The position analysis of the RTRTR and RTRR oscillating-slide actuators and that of the RRR dyad can be reduced to finding the coordinates of the intersection points between two circles centered at A and B and of radii r_{1} and r_{2} as shown in Figure 6.4. The (x, y) coordinates of these intersection points C_{1} and C_{2} must simultaneously satisfy the following equations:

$$
\left\{\begin{array}{l}
(x-x A)^{2}+(y-y A)^{2}=r_{1}^{2} \tag{6.3}\\
(x-x B)^{2}+(y-y B)^{2}=r_{2}^{2}
\end{array}\right.
$$

which after expanding the squared binomials become

$$
\left\{\begin{array}{l}
x^{2}-2 x A \cdot x+x A^{2}+y^{2}-2 y A \cdot y+y A^{2}=r_{1}^{2} \tag{6.4}\\
x^{2}-2 x B \cdot x+x B^{2}+y^{2}-2 y B \cdot y+y B^{2}=r_{2}^{2}
\end{array}\right.
$$

FIGURE 6.4 Schematic for calculating the intersection points between two circles (a) and for calculating the velocity and acceleration of point C, when A and B are moving and r_{1} and r_{2} change with time (b).

Subtracting the first equation from the second one yields

$$
\begin{equation*}
2(x A-x B) \cdot x+2(y A-y B) \cdot y=r_{2}^{2}-r_{1}^{2}+x A^{2}-x B^{2}+y A^{2}-y B^{2} \tag{6.5}
\end{equation*}
$$

which allow unknown coordinates x and y to be explicited one with respect to the other, that is,

$$
\begin{align*}
& x=-\frac{y A-y B}{x A-x B} \cdot y+\frac{r_{2}^{2}-r_{1}^{2}+x A^{2}-x B^{2}+y A^{2}-y B^{2}}{2(x A-x B)} \tag{6.6a}\\
& y=-\frac{x A-x B}{y A-y B} \cdot x+\frac{r_{2}^{2}-r_{1}^{2}+x A^{2}-x B^{2}+y A^{2}-y B^{2}}{2(y B-y A)} \tag{6.6b}
\end{align*}
$$

For convenience, we introduce the following notations in Equation 6.6:

$$
\begin{align*}
& x=a_{1} \cdot y+b_{1} \tag{6.7}\\
& y=a_{2} \cdot x+b_{2}
\end{align*}
$$

where coefficients a_{1}, b_{1}, a_{2}, and b_{2} can be easily identified by matching terms. We then substitute Equation 6.7 back into Equation 6.4 and obtain

$$
\left\{\begin{array}{l}
\left(a_{1} \cdot y+b_{1}\right)^{2}-2 x A \cdot\left(a_{1} \cdot y+b_{1}\right)+x A^{2}+y^{2}-2 y A \cdot y+y A^{2}=r_{1}^{2} \tag{6.8}\\
x^{2}-2 x B \cdot x+x B^{2}+\left(a_{2} \cdot x+b_{2}\right)^{2}-2 y B \cdot\left(a_{2} \cdot x+b_{2}\right)+y B^{2}=r_{2}^{2}
\end{array}\right.
$$

After squaring the binomials and rearranging terms, we further get

$$
\left\{\begin{array}{l}
\left(a_{1}^{2}+1\right) \cdot y^{2}+2\left(a_{1} \cdot b_{1}-x A \cdot a_{1}-y A\right) \cdot y+x A^{2}-2 x A \cdot b_{1}+b_{1}^{2}+y A^{2}-r_{1}^{2}=0 \tag{6.9}\\
\left(a_{2}^{2}+1\right) \cdot x^{2}+2\left(a_{2} \cdot b_{2}-y B \cdot a_{2}-x B\right) \cdot x+y B^{2}-2 y B \cdot b_{2}+b_{2}^{2}+x B^{2}-r_{2}^{2}=0
\end{array}\right.
$$

These are two independent quadratic equations of solutions:

$$
\begin{align*}
& y=\frac{\left(-a_{1} \cdot b_{1}+x A \cdot a_{1}+y A \pm \sqrt{\Delta_{1}}\right)}{\left(a_{1}^{2}+1\right)} \tag{6.10a}\\
& x=\frac{\left(-a_{2} \cdot b_{2}+y B \cdot a_{2}+x B \pm \sqrt{\Delta_{2}}\right)}{\left(a_{2}^{2}+1\right)} \tag{6.10b}
\end{align*}
$$

where

$$
\begin{align*}
& \Delta_{1}=\left(a_{1} \cdot b_{1}-x A \cdot a_{1}-y A\right)^{2}-\left(a_{1}^{2}+1\right)\left(x A^{2}-2 x A \cdot b_{1}+b_{1}^{2}+y A^{2}-r_{1}^{2}\right) \tag{6.11}\\
& \Delta_{2}=\left(a_{2} \cdot b_{2}-y B \cdot a_{2}-x B\right)^{2}-\left(a_{2}^{2}+1\right)\left(y B^{2}-2 y B \cdot b_{2}+b_{2}^{2}+x B^{2}-r_{2}^{2}\right)
\end{align*}
$$

These equations were implemented in procedure x2Circles available from unit LibGe2D, which is in turn called by procedure Int2Cir in unit LibMec2D. This latter procedure has the heading

```
procedure Int2Cir(xA,yA, xB,yB, r1,r2:double; LftRgt:shortint;
var xC,yC, Delta:double);
```

The correspondence between the formal parameters of this procedure and the notations used in Equations 6.3 through 6.11 and in Figure 6.4 is summarized in the following tables:

Input parameters of procedure Int2Cir:

$x A$	$y A$	r_{1}	r_{2}	± 1
$\mathbf{x A}$	$y A$	r1	r2	LftRgt

Output parameters of procedure Int2Cir:

x	y	Δ_{1} if $\|x A-x B\|>\|y A-y B\|$ or Δ_{2} if $\|x A-x B\|<\|y A-y B\|$
$\mathbf{x C}$	$\mathbf{y C}$	Delta

Note that for certain relative positions of points A and B, Equations 6.6 can result in divisions by zero. To avoid this, inside procedure x2Circles, denominators ($x A-x B$) and $(y A-y B)$ are evaluated first, and depending on the magnitude of their absolute values, either Equations 6.6a and 6.10a or Equations 6.6b and 6.10b are employed. Consequently, variable Delta returned by procedure Int2Cir may exhibit occasional first- and higherorder discontinuities, as discussed in more detail in Section 6.6.

The double sign \pm in Equation 6.10 denotes the two possible intersection configurations shown in Figure 6.4, resulting in point C_{1} or point C_{2}. To resolve this ambiguity, Int2Cir
checks the orientation of the triangular loops $A C_{1} B$ and $A C_{2} B$ by evaluating the cross product $\mathbf{A C} \times \mathbf{A B}$ using procedure $\mathbf{S 1 2 3}$ from unit LibGe2D. Of the two variants, the x and y pair for which the sign of the cross product $\mathbf{A C} \times \mathbf{A B}$ is equal to the input variable LftRgt will be returned as solution.

6.3 VELOCITY AND ACCELERATION OF THE INTERSECTION POINTS BETWEEN TWO CIRCLES: PROCEDURE Int2CirPVA

For added generality, we now assume that points A and B move with known velocities and accelerations. We also assume that radii r_{1} and r_{2} of the two intersecting circles do not remain constant, but rather vary smoothly (i.e., time derivatives $\dot{r}_{1}, \dot{r}_{2}, \ddot{r}_{1}$ and \ddot{r}_{2} exist and are continuous functions) with time. The velocities \dot{x} and \dot{y} and accelerations \ddot{x} and \ddot{y} of intersection points C_{1} and C_{2} can be determined through differentiation, yielding sets of two linear equations that are very easy to solve. For scalar velocities, we differentiate once with respect to time Equation 6.3 and obtain:

$$
\left\{\begin{array}{l}
2(x-x A) \cdot(\dot{x}-\dot{x} A)+2(y-y A) \cdot(\dot{y}-\dot{y} A)=2 r_{1} \cdot \dot{r}_{1} \tag{6.12}\\
2(x-x B) \cdot(\dot{x}-\dot{x} B)+2(y-y B) \cdot(\dot{y}-\dot{y} B)=2 r_{2} \cdot \dot{r}_{2}
\end{array}\right.
$$

After rearranging terms, these two equations become:

$$
\left\{\begin{array}{l}
(x-x A) \cdot \dot{x}+(y-y A) \cdot \dot{y}=(x-x A) \cdot \dot{x} A+(y-y A) \cdot \dot{y} A+r_{1} \cdot \dot{r}_{1} \tag{6.13}\\
(x-x B) \cdot \dot{x}+(y-y B) \cdot \dot{y}=(x-x B) \cdot \dot{x} B+(y-y B) \cdot \dot{y} B+r_{2} \cdot \dot{r}_{2}
\end{array}\right.
$$

The acceleration equations are obtained by differentiating Equations 6.13:

$$
\left\{\begin{array}{l}
(\dot{x}-\dot{x} A) \cdot \dot{x}+(x-x A) \cdot \ddot{x}+(\dot{y}-\dot{y} A) \cdot \dot{y}+(y-y A) \cdot \ddot{y}= \tag{6.14}\\
\quad(\dot{x}-\dot{x} A) \cdot \dot{x} A+(x-x A) \cdot \ddot{x} A+(\dot{y}-\dot{y} A) \cdot \dot{y} A+(y-y A) \cdot \ddot{y} A+\dot{r}_{1}^{2}+r_{1} \cdot \ddot{r}_{1} \\
(\dot{x}-\dot{x} B) \cdot \dot{x}+(x-x B) \cdot \ddot{x}+(\dot{y}-\dot{y} B) \cdot \dot{y}+(y-y B) \cdot \ddot{y}= \\
\quad(\dot{x}-\dot{x} B) \cdot \dot{x} B+(x-x B) \cdot \ddot{x} B+(\dot{y}-\dot{y} B) \cdot \dot{y} B+(y-y B) \cdot \ddot{y} B+\dot{r}_{2}^{2}+r_{2} \cdot \ddot{r}_{2}
\end{array}\right.
$$

equivalent to

$$
\left\{\begin{array}{l}
(x-x A) \cdot \ddot{x}+(y-y A) \cdot \ddot{y}=(x-x A) \cdot \ddot{x} A+(y-y A) \cdot \ddot{y} A- \tag{6.15}\\
\quad(\dot{x}-\dot{x} A)^{2}-(\dot{y}-\dot{y} A)^{2}+\dot{r}_{1}^{2}+r_{1} \cdot \ddot{r}_{1} \\
(x-x B) \cdot \ddot{x}+(y-y B) \cdot \ddot{y}=(x-x B) \cdot \ddot{x} B+(y-y B) \cdot \ddot{y} B- \\
\quad(\dot{x}-\dot{x} B)^{2}-(\dot{y}-\dot{y} B)^{2}+\dot{r}_{2}^{2}+r_{2} \cdot \ddot{r}_{2}
\end{array}\right.
$$

Equations 6.13 through 6.15 have been implemented in procedure Int2CirPVA part of unit LibMec2D, which returns the position (by calling procedure Int2Cir), velocity, and acceleration of the desired intersection point C between the two circles of moving centers A and B and of variable radii r_{1} and r_{2}. The heading of procedure Int2CirPVA is
procedure Int $2 C i r P V A(x A, y A, v x A, v y A, a x A, a y A, x B, y B, v x B, v y B, a x B, a y B$, $r 1, d r 1, d d r 1, r 2, d r 2, d d r 2: d o u b l e ; ~ L f t R g t: s h o r t i n t ; ~ v a r ~ x C, y C, v x C$, vyC, axC, ayC, Delta:double);

The correspondence between its formal parameters and the notations used in these equations and in Figure 6.4 is summarized in the following two tables:

Input parameters of procedure Int2CirPVA:

$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$A B$
xA	YA	vxA	vyA	axA	ayA	xC	yc	vxC	vyc	axC	ayc	$A B$
		r_{1}	r_{1}	\ddot{r}_{1}		r_{2}	r_{2}	\ddot{r}_{2}		± 1		
		r1	dr1	ddr1		r2	dr2	ddr2		LftRgt		

Output parameters of procedure Int2CirPVA:

$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$	Δ
$\mathbf{x P}$	yP	vxP	vyP	axP	ayP	Delta

Input parameter LftRgt must be assigned either +1 or -1 depending on the desired orientation of the $A C B$ loop. For a counterclockwise or right-hand orientation (i.e., as you walk around the considered loop, your right hand should always point toward the outside of the loop), parameter LftRgt must be set to +1 or to constant Right. For a clockwise or left-hand orientation, parameter LftRgt must be set equal to -1 or Left, where constants Left and Right are predefined in the interface section of unit LibMec2D.

6.4 KINEMATICS OF THE RTRTR DOUBLE LINEAR INPUT ACTUATOR: PROCEDURE RTRTRc

The RTRTR double linear input actuator (Figure 6.5) has some practical applications in rope shovels, as well as in robotics and some automatic machinery. Its active elements are the two linear motors, represented in Figure 6.5a as cylinder-piston pairs. Potential joints A and B can be connected to separate moving links and to the same moving link or can be connected to the ground.

In this section, the kinematic equations of the RTRTR kinematic chain will be derived as intersections between two circles (this is known as the constraint equation approach) for

FIGURE 6.5 Notations used in the RTRT double linear input actuator kinematics (a) and the sign conventions for eccentricities $A_{0} A$ and $B_{0} B$ (the smaller oriented circle) and orientation of the $A C B$ loop (the larger oriented circle) (b). Note that in figure (a), both $A_{0} A$ and $B_{0} B$ are positive.
the general case where potential joints A and B are attached to separate moving links. The situations where one or both of these joints are attached to the ground can be obtained as particular cases where the velocities and accelerations of point A or point B are zero.

At any instant of time, the following parameters are assumed given:

- Coordinates $x A$ and $y A$ of joint center A relative to the fixed reference frame $O X Y$.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of A onto the axes of the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the axes of the fixed reference frame.
- Coordinates $x B$ and $y B$ of joint B relative to the fixed reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of B onto the axes of the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the accelerations of B onto the axes of the fixed reference frame.
- Displacements s_{1} and s_{2} of the two pistons and their time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2} (considered positive when oriented such that the actuator expands-see Figure 6.5a).
- Lengths of the two cylinders $A_{0} Q_{1}$ and $B_{0} Q_{2}$.
- Lengths of the two pistons $P_{1} C$ and $P_{2} C$.
- Eccentricities of the two cylinders $A_{0} A$ and $B_{0} B$. These can be either positive or negative according to the orientation of the triangular loops $A A_{0} C$ and $B B_{0} C$ (see Figure 6.5b).
- Orientation of the $A C B$ loop (see Figure 6.12b).

With these given, it is now possible to determine the following unknown parameters:

- Coordinates $x C$ and $y C$ of joint center C relative to the fixed reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of the velocity of C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- Coordinates $x P_{1}$ and $y P_{1}$ of joint center P_{1} relative to the fixed reference frame.
- Coordinates $x Q_{1}$ and $y Q_{1}$ of joint center Q_{1} relative to the fixed reference frame.
- Coordinates $x P_{2}$ and $y P_{2}$ of joint center P_{2} relative to the fixed reference frame.
- Coordinates $x Q_{2}$ and $y Q_{2}$ of joint center Q_{2} relative to the fixed reference frame.

The coordinates of point C and its velocity and acceleration components can be found by calling procedure Int2CirPVA with r_{1} and r_{2} and their time derivatives assigned as follows:

$$
\begin{array}{ll}
r_{1}^{2}=A C^{2}=A_{0} A^{2}+s_{1}^{2} & r_{2}^{2}=B C^{2}=B_{0} B^{2}+s_{2}^{2} \\
\dot{r}_{1}=s_{1} \cdot \dot{s}_{1} / r_{1} & \dot{r}_{2}=s_{2} \cdot \dot{s}_{2} / r_{2} \tag{6.16}\\
\ddot{r}_{1}=\frac{\left(\dot{s}_{1}^{2}+s_{1} \cdot \ddot{s}_{1}-\dot{r}_{1}^{2}\right)}{r_{1}} & \ddot{r}_{2}=\frac{\left(\dot{s}_{2}^{2}+s_{2} \cdot \ddot{s}_{2}-\dot{r}_{2}^{2}\right)}{r_{2}}
\end{array}
$$

The coordinates of points A_{0} and B_{0} can be found by solving the following two pairs of constraint equations, similar to 6.3:

$$
\left\{\begin{array}{l}
\left(x A_{0}-x A\right)^{2}+\left(y A_{0}-y A\right)^{2}=A_{0} A^{2} \tag{6.17}\\
\left(x A_{0}-x C\right)^{2}+\left(y A_{0}-y C\right)^{2}=s_{1}^{2}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\left(x B_{0}-x B\right)^{2}+\left(y B_{0}-y B\right)^{2}=B_{0} B^{2} \tag{6.18}\\
\left(x B_{0}-x C\right)^{2}+\left(y B_{0}-y C\right)^{2}=s_{2}^{2}
\end{array}\right.
$$

by simply calling procedure Int2Cir. In turn, the coordinates of points P_{1} and Q_{1} collinear with points A_{0} and C can be calculated with

$$
\begin{array}{ll}
\frac{x C-x P_{1}}{P_{1} C}=\frac{x C-x A_{0}}{s_{1}} & \frac{y C-y P_{1}}{P_{1} C}=\frac{y C-y A_{0}}{s_{1}} \tag{6.19}\\
\frac{x Q_{1}-x A_{0}}{A_{0} Q_{1}}=\frac{x C-x A_{0}}{s_{1}} & \frac{y Q_{1}-y A_{0}}{A_{0} Q_{1}}=\frac{y C-y A_{0}}{s_{1}}
\end{array}
$$

Likewise, the coordinates of points P_{2} and Q_{2} collinear with points B_{0} and C result from equations:

$$
\begin{array}{ll}
\frac{x C-x P_{2}}{P_{2} C}=\frac{x C-x B_{0}}{s_{2}} & \frac{y C-y P_{2}}{P_{2} C}=\frac{y C-y B_{0}}{s_{2}} \\
\frac{x Q_{2}-x B_{0}}{B_{0} Q_{2}}=\frac{x C-x B_{0}}{s_{2}} & \frac{y Q_{2}-y B_{0}}{B_{0} Q_{2}}=\frac{y C-y B_{0}}{s_{2}} \tag{6.20}
\end{array}
$$

Coordinates of points P_{1}, Q_{1}, P_{2}, and Q_{2} are needed by procedure RTRTRc to represent graphically the two cylinders and their pistons.

Using the equations derived earlier, procedure RTRTRC in unit LibMecIn calculates the position, velocity, and acceleration of the center of pin joint C, for the case where potential joints A and B are attached to mobile elements. If the graphic system is on, the procedure also draws a schematic of the mechanism in a manner similar to Figure 6.5b. The heading of procedure RTRTRc is
procedure RTRTRc(Color:Word; xA,yA, vxA,vyA, axA,ayA, $x B, y B, \quad v x B$, vyB, axB, ayB, A0A, A0Q1, P1C, BB0, B0Q2, P2C, s1,ds1,dds1, s2,ds2,dds2:double; LftRgt:shortint; var $x C, y C, ~ v x C, ~ v y C, ~ a x C$, ayC, Delta:double);

The correspondence between the formal parameters and the notations used in Figure 6.5 and the related equations is summarized next:

Input parameters of procedure RTRTRC:

$0 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
Color	xA	YA	vxA	vyA	axA	ayA	xB	yB	vxB	vyB	axB	ayB
$A_{0} A$	$A_{0} Q_{1}$	$P_{1} C$	$B_{0} B$	$B_{0} Q_{2}$	$P_{2} C$	s_{1}	\dot{s}_{1}	\ddot{s}_{1}	s_{2}	\dot{s}_{2}	\ddot{s}_{2}	
A0A	A0Q1	P1C	B0B	B0Q2	P2C	s1	ds1	dds1	s2	ds2	dds2	LftRgt

The possible values of the input parameter LftRgt are -1 and +1 . If the mechanism must have right-hand assembly configuration, LftRgt should be set equal to +1 or to constant Right, while for a left-hand assembly, configuration LftRgt must be set equal to -1 or to constant Left (Figure 6.5b).

Output parameters of procedure RTRTRC are as follows:

$x C$	$y C$	$\dot{x} C$	$\dot{y C}$	$\ddot{x} C$	$\ddot{y C}$	Δ_{1} or Δ_{2}
$\mathbf{x C}$	$y C$	$\mathbf{v x C}$	$\mathbf{v y C}$	axC	ayC	Delta

Of these, variable Delta returns the value of either discriminant Δ_{1} or Δ_{2} in Equations 6.11, as selected by procedure Int2CirPVA. The value of variable Delta can be used to assess
efficiency with which the motion is transmitted throughout the mechanism or, if the mechanism does not assemble, it can be used to estimate how far from an assembly configuration the mechanism actually is (see Section 6.6).

If the graphic system is on, procedure RTRTRc will additionally draw in color Color (less if Color equals zero or the BGI constant Black) the pistons and their assembled cylinder as shown in Figures 6.6 and 6.7. If either joint A, joint B, or both are connected to the ground (i.e., their velocities and accelerations are zero), the respective joint is no longer represented as a circle, but rather using the grounded pin joint symbol. The pin joint at C is represented as a circle of radius JtSz, that is, an interface variable defined in unit LibMec2D that can be set by calling the procedure SetJointSize.

Figures 6.6 and 6.7 were output using programs P6_06.PAS (see Appendix B) and P6_07.PAS (source code not included). They simulate the motion of an RTRTR kinematic

FIGURE 6.6 Simulations of an RTRTR actuator attached to two rotating cranks done with program P6_06.PAS. See also animation files F6_06a.GIF and F6_06b.GIF. Figure (a) has been obtained by setting variable BumpPiston to FALSE and figure (b) by setting variable BumpPiston to TRUE.

FIGURE 6.7 Simulations of an RTRTR actuator attached to two rotating cranks done with program P6_07.PAS. See also animation files F6_07a.GIF and F6_07b.GIF. Figure (a) corresponds to variable BumpPiston to FALSE and figure (b) to BumpPiston to TRUE.
chain having joints A and B driven by two rockers. The input angles φ_{1} and φ_{2} of these rockers were defined as harmonic functions of time according to equations

$$
\begin{equation*}
\varphi_{1}(t)=\frac{\pi}{3} \sin (2 \pi \cdot t) \quad \text { and } \quad \varphi_{2}(t)=\pi+\frac{\pi}{3} \sin (2 \pi \cdot t) \tag{6.21}
\end{equation*}
$$

The pistons of the two actuators are also harmonically driven, that is,

$$
\begin{equation*}
s_{1}(t)=0.65+0.15 \cos (2 \pi \cdot t) \quad \text { and } \quad s_{2}(t)=0.6+0.12 \cos (4 \pi \cdot t) \tag{6.22}
\end{equation*}
$$

If variable BumpPiston in unit LibMec2D is set to TRUE (see line \#17 of program P6_06.PAS), then procedure RTRTRc constrains its two pistons to remain inside their cylinders. Additionally, if the piston rod of any of the two actuator is shorter than its cylinder (i.e., $P_{1} C<A_{0} Q_{1}$ or $P_{2} C<B_{0} Q_{2}$), then joint C will not be allowed to slide inside the respective cylinder. If any of these two limit situations occur, then procedure RTRTRC will perform the kinematic calculations with the velocity and acceleration of the respective piston set to zero. Additionally, during the animation of the mechanism, if the linear motor becomes locked, it will be represented graphically in dashed line.

Figure 6.6 shows the screenshots of program P6_06.PAS generated for the case where the two pistons are constrained to remain inside their cylinders (Figure 6.6a) and for the case when they are not (Figure 6.6b), that is, BumpPiston equals TRUE and BumpPiston equals FALSE, respectively.

The companion program P6_07.PAS available with the book shows how procedure RTRTRC represents graphically the mechanism when length $P_{1} C$ or $P_{2} C$ is shorter than five times the current joint size as set by calling procedure SetJointSize. Figure 6.7 is a two-screenshot output by P6_07.PAS for the case where the left piston has a zero length rod, that is, $P_{1} C=0$. Note that the cylinder is now represented as an L-shaped guide with a slide moving along it. By setting the BumpPiston parameter to TRUE, the slide block (now centered at C) will not be allowed to move outside its guide, that is, P_{1} will be constrained to remain between points A_{0} and Q_{1} (Figure 6.5). Same as before, in its limit position, the velocity and acceleration of the slide will be forced to $\dot{s}_{1}=0$ and $\ddot{s}_{1}=0$.

Important: If procedure RTRTRC is called with the displacement of any of the two pistons having negative values, then the respective displacement will be automatically set to zero (as well as their time derivatives \dot{s}_{1} and $\ddot{s_{1}}$ or \dot{s}_{2} and \ddot{s}_{2}), irrespective of the BumpPiston setting.

Program P6_07.PAS was modified to drive the RTRTR actuator using longer cranks ($O_{1} A=0.45$ and $O_{2} B=0.35$) that oscillate at twice the initial amplitude according to the equations

$$
\begin{equation*}
\varphi_{1}(t)=\pi \cdot \sin (2 \pi \cdot t) \quad \text { and } \quad \varphi_{2}(t)=\pi+\pi \cdot \sin (2 \pi \cdot t) \tag{6.23}
\end{equation*}
$$

With these modifications, the program was renamed P6_08.PAS and is available with the book. Note the use in this program of the getter procedures GetA0, GetB0, GetP1, GetP2, etc., which return the coordinates of points $A_{0}, B_{0}, P_{1}, P_{2}, Q_{1}$, and Q_{2} of the RTRTR

FIGURE 6.8 Two overlapped frames of an RTRTR actuator driven by two rotating cranks generated using program P6_08. PAS. When the mechanism cannot be assembled, its linear motors are represented in stretched and dashed lines. See also animation file F6_08.GIF.
actuator, not supplied by RTRTRc. Two overlapped positions of the mechanism generated with P6_08.PAS are shown in Figure 6.8, of which the one in dashed line is outside the assembly range of the mechanism. When the mechanism does not assemble, it is represented in a stretched and dashed line. The stretching of the cylinder eccentricities is due to the calculations being performed inside procedure RTRTRC by forcing Delta to zero from its negative value.

6.5 KINEMATICS OF THE RTRTR DOUBLE LINEAR INPUT ACTUATOR USING A VECTOR EQUATION APPROACH: PROCEDURE RTRTR

An alternative method of solving the position, velocity, and accelerations of the RTRTR double oscillating-slide actuator is the vector-loop method. This section discusses this second approach with reference to Figure 6.9.

(a)

(b)

FIGURE 6.9 Oscillating-slide actuator notations (a) and vector assignment to its links (b). The sign of eccentricities $A_{0} A$ and $B_{0} B$ and orientation of $A C B$ loop follow the same convention in Figure 6.5.

Begin by projecting on the axes of the OXY reference frame vector equation:

$$
\begin{equation*}
\mathbf{A C}-\mathbf{B C}-\mathbf{A B}=0 \tag{6.24}
\end{equation*}
$$

which yields the following pair of scalar equations:

$$
\left\{\begin{array}{l}
A C \cdot \cos \left(\varphi_{1}\right)-\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)=B C \cdot \cos \left(\varphi_{2}\right) \tag{6.25}\\
A C \cdot \sin \left(\varphi_{1}\right)-\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)=B C \cdot \sin \left(\varphi_{2}\right)
\end{array}\right.
$$

We square these equations

$$
\left\{\begin{array}{l}
A C^{2} \cdot \cos ^{2}\left(\varphi_{1}\right)-2 A C \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) \cdot \cos \left(\varphi_{1}\right)+\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}=B C^{2} \cdot \cos ^{2}\left(\varphi_{2}\right) \tag{6.26}\\
A C^{2} \cdot \sin ^{2}\left(\varphi_{1}\right)-2 A C \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) \cdot \sin \left(\varphi_{1}\right)+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}=B C^{2} \cdot \sin ^{2}\left(\varphi_{2}\right)
\end{array}\right.
$$

and after adding them and rearranging terms, we obtain:

$$
\begin{equation*}
2 A C \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) \cdot \cos \left(\varphi_{1}\right)+2 A C \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) \cdot \sin \left(\varphi_{1}\right)=A C^{2}-B C^{2}+\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2} \tag{6.27}
\end{equation*}
$$

Equation 6.27 is of the form $a_{1} \cdot \cos \left(\varphi_{1}\right)+b_{1} \cdot \sin \left(\varphi_{1}\right)=c_{1}$ with solutions

$$
\begin{equation*}
\varphi_{1}=A \tan 2\left(b_{1}, a_{1}\right) \pm A \tan 2\left(\sqrt{\Delta}, c_{1}\right) \quad \text { where } \Delta=a_{1}^{2}+b_{1}^{2}-c_{1}^{2} \tag{6.28}
\end{equation*}
$$

where $A \tan 2(D y, D x)=\tan ^{-1}(D y / D x)$ is the inverse tangent function of two arguments that uses the signs of $D x$ and $D y$ to determine the quadrant of the resultant angle (see function Atan2 in unit LibMath).

A similar procedure applied to Equations 6.25 formatted as:

$$
\left\{\begin{array}{l}
B C \cdot \cos \left(\varphi_{2}\right)+\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)=A C \cdot \cos \left(\varphi_{1}\right) \tag{6.29}\\
B C \cdot \sin \left(\varphi_{2}\right)+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)=A C \cdot \sin \left(\varphi_{1}\right)
\end{array}\right.
$$

yields an equation of the form $a_{2} \cdot \cos \left(\varphi_{2}\right)+b_{2} \cdot \sin \left(\varphi_{2}\right)=c_{2}$ with

$$
\begin{align*}
& a_{2}=2 B C \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) \\
& b_{2}=2 B C \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) \tag{6.30}\\
& c_{2}=A C^{2}-B C^{2}-\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}-\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}
\end{align*}
$$

The solutions of this trigonometric equation are:

$$
\begin{equation*}
\varphi_{2}=A \tan 2\left(b_{2}, a_{2}\right) \pm A \tan 2\left(\sqrt{\Delta}, c_{2}\right) \quad \text { where } \Delta=a_{2}^{2}+b_{2}^{2}-c_{2}^{2} \tag{6.31}
\end{equation*}
$$

Note that discriminants Δ in Equations 6.28 and 6.31 are the same and equal to

$$
\begin{equation*}
\Delta=4 A C^{2} \cdot B C^{2}-\left[A C^{2}+B C^{2}-\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}-\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}\right]^{2} \tag{6.32}
\end{equation*}
$$

The coordinates of joint center C that are of main interest result from projecting on the x - and y-axes of the fixed reference frame of the following vector equation:

$$
\begin{equation*}
\mathbf{O C}=\mathbf{O A}-\mathbf{A}_{0} \mathbf{A}+\mathbf{A}_{0} \mathbf{C} \tag{6.33}
\end{equation*}
$$

which yields

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{A}}+A_{0} A \cdot \sin \left(\theta_{1}\right)+s_{1} \cdot \cos \left(\theta_{1}\right) \tag{6.34}\\
y_{\mathrm{C}}=y_{\mathrm{A}}-A_{0} A \cdot \cos \left(\theta_{1}\right)+s_{1} \cdot \sin \left(\theta_{1}\right)
\end{array}\right.
$$

Unknown angles θ_{1} and θ_{2} occurring in Equation 6.34 can be obtained using the following two vector equations:

$$
\begin{align*}
& \mathbf{A}_{0} \mathbf{A}+\mathbf{A C}-\mathbf{A}_{0} \mathbf{C}=0 \tag{6.35}\\
& \mathbf{B}_{0} \mathbf{B}+\mathbf{B C}-\mathbf{B}_{0} \mathbf{C}=0
\end{align*}
$$

The first of these vector equations projects on the x - and y-axes as

$$
\left\{\begin{array}{l}
A_{0} A \cdot \cos \left(\frac{\pi}{2+\theta_{1}}\right)+A C \cdot \cos \left(\varphi_{1}\right)-s_{1} \cdot \cos \left(\theta_{1}\right)=0 \tag{6.36}\\
A_{0} A \cdot \sin \left(\frac{\pi}{2+\theta_{1}}\right)+A C \cdot \sin \left(\varphi_{1}\right)-s_{1} \cdot \sin \left(\theta_{1}\right)=0
\end{array}\right.
$$

and can be further written as

$$
\left\{\begin{array}{l}
s_{1} \cdot \cos \left(\theta_{1}\right)+A_{0} A \cdot \sin \left(\theta_{1}\right)=A C \cdot \cos \left(\varphi_{1}\right) \tag{6.37}\\
-A_{0} A \cdot \sin \left(\theta_{1}\right)+s_{1} \cdot \cos \left(\theta_{1}\right)=A C \cdot \sin \left(\varphi_{1}\right)
\end{array}\right.
$$

Similarly, the second of vector Equation 6.35 yields

$$
\left\{\begin{array}{l}
s_{2} \cdot \cos \left(\theta_{2}\right)+B_{0} B \cdot \sin \left(\theta_{2}\right)=B C \cdot \cos \left(\varphi_{2}\right) \tag{6.38}\\
-B_{0} B \cdot \cos \left(\theta_{2}\right)+s_{1} \cdot \sin \left(\theta_{2}\right)=B C \cdot \sin \left(\varphi_{2}\right)
\end{array}\right.
$$

Equations 6.37 and 6.38 are sets of two linear equations in the unknowns $\cos \left(\theta_{1}\right), \sin \left(\theta_{1}\right)$, and $\cos \left(\theta_{2}\right), \sin \left(\theta_{2}\right)$ that are very easy to solve.

When plotting the mechanism in a simulation, use is made, in addition to the coordinates of joint center C, of the coordinates of points $A_{0}, B_{0}, P_{1}, P_{2}, Q_{1}$, and Q_{2}. The coordinates of points A_{0} and B_{0} result from projecting on the axes of the $O X Y$ reference frame the following vector equations:

$$
\begin{equation*}
\mathbf{O A}=\mathbf{O A}-\mathbf{A}_{0} \mathbf{A} \text { and } \mathbf{O B}_{0}=\mathbf{O B}-\mathbf{B}_{0} \mathbf{B} \tag{6.39}
\end{equation*}
$$

while the coordinates of points P_{1}, Q_{1}, P_{2}, and Q_{2} result from vector equations

$$
\begin{array}{ll}
\mathbf{O P}_{1}=\mathbf{O A}_{0}+\mathbf{A}_{0} \mathbf{C}-\mathbf{P}_{1} \mathbf{C} & \text { and } \tag{6.40}\\
\mathbf{O Q}_{1}=\mathbf{O A}_{0}+\mathbf{A}_{0} \mathbf{Q}_{1} \\
\mathbf{O P}_{2}=\mathbf{O B}_{0}+\mathbf{B}_{0} \mathbf{C}-\mathbf{P}_{2} \mathbf{C} & \text { and } \\
\mathbf{O Q}_{2}=\mathbf{O B}_{0}+\mathbf{B}_{0} \mathbf{Q}_{2}
\end{array}
$$

Of further interest are the scalar components of the velocity of point C noted \dot{x}_{C} and \dot{y}_{C}, obtainable by differentiating Equation 6.34 with respect to time, that is,

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{A}}+A_{0} A \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}+\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-s_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1} \tag{6.41}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{A}}+A_{0} A \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}+\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+s_{1} \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}
\end{array}\right.
$$

The unknown angular velocities $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$ in Equations 6.41 can be calculated using vector equation

$$
\begin{equation*}
-\mathbf{A}_{0} \mathbf{A}+\mathbf{A}_{0} \mathbf{C}-\mathbf{B}_{0} \mathbf{C}+\mathbf{B}_{0} \mathbf{B}=\mathbf{A B} \tag{6.42}
\end{equation*}
$$

which projects on the x - and y-axes of the $O X Y$ reference frame as

$$
\left\{\begin{array}{l}
-A_{0} A \cdot \cos \left(\theta_{1}+\frac{\pi}{2}\right)+s_{1} \cdot \cos \left(\theta_{1}\right)-s_{2} \cdot \cos \left(\theta_{1}\right)+B_{0} B \cdot \cos \left(\theta_{2}+\frac{\pi}{2}\right)=x_{\mathrm{B}}-x_{\mathrm{A}} \tag{6.43}\\
-A_{0} A \cdot \sin \left(\theta_{1}+\frac{\pi}{2}\right)+s_{1} \cdot \sin \left(\theta_{1}\right)-s_{2} \cdot \sin \left(\theta_{1}\right)+B_{0} B \cdot \sin \left(\theta_{2}+\frac{\pi}{2}\right)=y_{\mathrm{B}}-y_{\mathrm{A}}
\end{array}\right.
$$

equivalent to

$$
\left\{\begin{array}{l}
A_{0} A \cdot \sin \left(\theta_{1}\right)+s_{1} \cdot \cos \left(\theta_{1}\right)-s_{2} \cdot \cos \left(\theta_{2}\right)-B_{0} B \cdot \sin \left(\theta_{2}\right)=x_{\mathrm{B}}-x_{\mathrm{A}} \tag{6.44}\\
-A_{0} A \cdot \cos \left(\theta_{1}\right)+s_{1} \cdot \sin \left(\theta_{1}\right)-s_{2} \cdot \sin \left(\theta_{2}\right)+B_{0} B \cdot \cos \left(\theta_{2}\right)=y_{\mathrm{B}}-y_{\mathrm{A}}
\end{array}\right.
$$

By differentiating Equation 6.44 with respect to time, we get

$$
\left\{\begin{array}{l}
A_{0} A \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}+\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-s_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}-\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)+s_{2} \cdot \sin \left(\theta_{2}\right) \cdot \dot{\theta}_{2} \tag{6.45}\\
\quad-B_{0} B \cdot \cos \left(\theta_{2}\right) \cdot \dot{\theta}_{2}=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}} \\
A_{0} A \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}+\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+s_{1} \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}-\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)-s_{2} \cdot \cos \left(\theta_{2}\right) \cdot \dot{\theta}_{2} \\
\quad-B_{0} B \cdot \sin \left(\theta_{2}\right) \cdot \dot{\theta}_{2}=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}
\end{array}\right.
$$

After collecting terms, we obtain the sought-after set of two linear equations in the unknowns $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$, that is,

$$
\left\{\begin{array}{l}
{\left[A_{0} A \cdot \cos \left(\theta_{1}\right)-s_{1} \cdot \sin \left(\theta_{1}\right)\right] \cdot \dot{\theta}_{1}+\left[s_{2} \cdot \sin \left(\theta_{2}\right)-B_{0} B \cdot \cos \left(\theta_{2}\right)\right] \cdot \dot{\theta}_{2}=} \tag{6.46}\\
\quad \dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}}-\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\dot{s}_{2} \cdot \cos \left(\theta_{2}\right) \\
{\left[A_{0} A \cdot \sin \left(\theta_{1}\right)+s_{1} \cdot \cos \left(\theta_{1}\right)\right] \cdot \dot{\theta}_{1}-\left[s_{2} \cdot \cos \left(\theta_{2}\right)+B_{0} B \cdot \sin \left(\theta_{2}\right)\right] \cdot \dot{\theta}_{2}=} \\
\quad \dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}-\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right.
$$

Finally, the scalar components of the acceleration of point C result from differentiating Equation 6.41 with respect to time:

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{A}}-A_{0} A \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}^{2}+A_{0} A \cdot \cos \left(\theta_{1}\right) \cdot \ddot{\theta}_{1}+\ddot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\dot{s}_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1} \tag{6.47}\\
\quad-\dot{s}_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}-s_{1} \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}^{2}-s_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}^{2} \\
\ddot{y}_{\mathrm{C}}= \\
\quad \ddot{y}_{\mathrm{A}}+A_{0} A \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}^{2}+A_{0} A \cdot \sin \left(\theta_{1}\right) \cdot \ddot{\theta}_{1}+\ddot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\dot{s}_{1} \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1} \\
\quad+\dot{s}_{1} \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}-s_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}^{2}+s_{1} \cdot \cos \left(\theta_{1}\right) \cdot \ddot{\theta}_{1}
\end{array}\right.
$$

The unknown angular accelerations $\ddot{\theta}_{1}$ and $\ddot{\theta}_{2}$ are solutions to the following linear equations:

$$
\left\{\begin{array}{l}
{\left[A_{0} A \cdot \cos \left(\theta_{1}\right)-s_{1} \cdot \sin \left(\theta_{1}\right)\right] \cdot \ddot{\theta}_{1}+\left[s_{2} \cdot \sin \left(\theta_{2}\right)-B_{0} B \cdot \cos \left(\theta_{2}\right)\right] \cdot \ddot{\theta}_{2}=} \tag{6.48}\\
\quad-\left[-A_{0} A \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}-\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-s_{1} \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}\right] \cdot \dot{\theta}_{1} \\
\quad-\left[\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)+s_{2} \cdot \cos \left(\theta_{2}\right) \cdot \dot{\theta}_{2}+B_{0} B \cdot \sin \left(\theta_{2}\right) \cdot \dot{\theta}_{2}\right] \cdot \dot{\theta}_{2} \\
\quad+\ddot{x}_{\mathrm{B}}-\ddot{x}_{\mathrm{A}}-\ddot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\dot{s}_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}+\ddot{s}_{2} \cdot \cos \left(\theta_{2}\right)-\dot{s}_{2} \cdot \sin \left(\theta_{2}\right) \cdot \dot{\theta}_{2} \\
{\left[A_{0} A \cdot \sin \left(\theta_{1}\right)+s_{1} \cdot \cos \left(\theta_{1}\right)\right] \cdot \ddot{\theta}_{1}-\left[s_{2} \cdot \cos \left(\theta_{2}\right)+B_{0} B \cdot \sin \left(\theta_{2}\right)\right] \cdot \ddot{\theta}_{2}=} \\
\quad-\left[A_{0} A \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}+\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-s_{1} \cdot \sin \left(\theta_{1}\right) \cdot \dot{\theta}_{1}\right] \cdot \dot{\theta}_{1} \\
\quad+\left[\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)-s_{2} \cdot \sin \left(\theta_{2}\right) \cdot \dot{\theta}_{2}+B_{0} B \cdot \cos \left(\theta_{2}\right) \cdot \dot{\theta}_{2}\right] \cdot \dot{\theta}_{2} \\
\quad+\ddot{y}_{\mathrm{B}}-\ddot{y}_{\mathrm{A}}-\ddot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{s}_{1} \cdot \cos \left(\theta_{1}\right) \cdot \dot{\theta}_{1}+\ddot{s}_{2} \cdot \sin \left(\theta_{2}\right)+\dot{s}_{2} \cdot \cos \left(\theta_{2}\right) \cdot \dot{\theta}_{2}
\end{array}\right.
$$

obtained by differentiating Equations 6.46 with respect to time.
Procedure RTRTR in unit LibMechIn implements these newly derived equations to solve the position, velocity, and acceleration of the RTRTR kinematic chain. Procedure RTRTR is fully interchangeable with procedure RTRTRc. Parameter Delta calculated with Equation 6.32 will be different however from the one returned by procedure RTRTRc. Also different is the way in which the mechanism is represented by RTRTR in the positions where it cannot be assembled and when calculations are continued by assuming Delta being equal to zero inside RTRTR. This results in the alignment of joints A, C, and B, but not together with the sliding joints of the two linear motors as procedure RTRTRC does (see Figure 6.10).

FIGURE 6.10 The same mechanism in Figure 6.8 generated using the program P6_08.PAS with procedure RTRTRC substituted with RTRTR. See also animation file F6_10.GIF.

6.6 MOTION TRANSMISSION CHARACTERISTICS OF RTRTR-BASED MECHANISMS

One of the main concerns when designing a linkage mechanism is its capability to transmit motion efficiently without overloading or jamming its joints due to the large reaction forces that may be generated. Without performing any force analysis, it is possible to estimate the motion transmission characteristics of a linkage using kinematics only. In case of the four bar and slider-crank mechanisms, the concept of transmission angle has been introduced for this purpose, while for cams and gear mechanisms, the pressure angle is utilized instead (see Chapters 7 and 8).

It will be shown that parameters Delta returned by procedures RTRTRC and RTRTR can be used as a measure of how close an RTRTR kinematic chain gets to a position in which it cannot be assembled. This position can be a branching configuration (i.e., one where the orientation of the $A C B$ loop can toggle from a left-hand orientation to a righthand orientation) or a jamming configuration.

Depending on the magnitude of denominators $(x A-x B)$ and $(y A-y B)$, procedure Int2Cir employs either Δ_{1} or Δ_{2} in Equations 6.11 to calculate the coordinates of point C, and the chosen discriminant is then assigned by procedure RTRTRC to variable Delta. Procedure RTRTR always assigns to variable Delta the value of the discriminant Δ in Equation 6.32.

To verify if there is any similarity between the discriminants that procedures RTRTRC and RTRTR operate with, program P6_11.PAS has been written and its listing is inserted in Appendix B. The program runs in parallel two RTRTR actuators driven by the same two cranks and having the same input functions applied to their linear motors. For every position of the simulation, the program writes to ASCII file F6_11.TXT the time t, the values of parameters Delta returned by both procedure RTRTRC and procedure RTRTR, and the value of the angle formed by lines $A C$ and $B C$ of the RTRTR loop. It also records the parameter

$$
\begin{equation*}
k_{A C B}=\frac{A B}{(A C+B C)} \tag{6.49}
\end{equation*}
$$

Named the triangular ratio,
where
$A B$ is the distance between joints A and B
$A C$ is the distance between joints A and C
$B C$ is the distance between joints A and B

As the plots in Figure 6.11 show, there is a good degree of correlation between parameters Delta, the angle $<A C B$ formed by the two linear motors, and the triangular ratio $k_{A C B}$. It means that any of them can be used as a measure of the motion transmission characteristics of the mechanism. Note that if the mechanism does not assemble, the difference between the two Delta values becomes more prominent, with the one returned by

(a)

FIGURE 6.11 Plot of performance parameters returned by procedures RTRTRC and RTRTR when the mechanism assembles (a) (see also animation file F6_11a.GIF) and of parameters Delta only when the mechanism does not always assemble (b) (see also animation file F6_11b.GIF). Configuration files F6_11A.CF2 and F6_11B.CF2.
procedure RTRTTC having a bigger value range. Additionally, Delta returned by procedure RTRTRC is nonsmooth, a consequence of switching between Δ_{1} and Δ_{2}.

Animation files F6_11a.GIF and F6_11b.GIF available with the book were generated for two different sets of actuator data (see lines \#14 to \#18 of program P6_11.PAS). When the two mechanisms do not assemble, the differences between how procedures RTRTRC and RTRTR represent graphically the respective actuators become immediately evident (see also animation file F6_11b.GIF).

Useful for setting up the mechanism simulation properly is the use of procedure SizeLinMotor (see lines \#43, \#44, \#47, and \#48 of the same program). Provided that $\max \left(s_{1}\right) / \min \left(s_{1}\right)<2$ and $\max \left(s_{2}\right) / \min \left(s_{2}\right)<2$, after running a complete set of linear motor
displacements s_{1} and s_{2} through procedure SizeLinMotor, the values of variables P1C, P2C, A0Q1, and B0Q2 will be modified such that the pistons of the two linear motors will remain inside their cylinders. Note that procedure SizeLinMotor must be first called with the piston-displacement argument set to variable _, which equals InfD (see lines \#43 and \#44). This will reset the piston and cylinder length values so they can be updated as the simulation progresses.

Alternatively, procedure SizeLinMotor can be called inside the main animation loop (see program P6_11BIS.PAS available with the book), a case in which the continuous updating of the piston and cylinder lengths is visible during the first animation cycle of the mechanism. After that, the optimum values of variables P1C, P2C, A0Q1, and B0Q2 can be printed on the screen and used for manually assigning the corresponding piston and cylinder lengths.

6.7 KINEMATIC ANALYSIS OF THE RTRR OSCILLATING-SLIDE ACTUATOR USING EQUATIONS OF CONSTRAINT: PROCEDURE RTRRc

A common inversion of the slider-crank mechanism is the RTRR oscillating-slide actuator (Figure 6.12). It has numerous applications in earth moving and agricultural equipment, landing gears and flight control surfaces of aircrafts, dump trucks, industrial automation, etc. The input element of an RTRR actuator is a linear motor, and its potential joints (noted A and B in Figure 6.12a) are in most cases connected to the same movable element or to the ground. Note that, with very few exceptions, in order to

FIGURE 6.12 Notations used in solving the kinematics of the oscillating-slide actuator (a), vector assignment to its links (b), and sign convention of piston eccentricity $A_{0} A$ (the smaller oriented circle) and orientation of the $A C B$ loop (the larger oriented circle) (c).
minimize the transverse reaction forces between the piston and the cylinder, eccentricity $A_{0} A$ is set equal to zero.

Following the same approach applied to the RTRTR kinematic chain, the analysis of the RTRR oscillating-slide actuator will be performed for the general case where the velocity and acceleration of joints A and B are nonzero, and the extension of its linear motor varies continuously with time. The following parameters are assumed known at any given moment of a simulation:

- Coordinates $x A$ and $y A$ of point A relative to the fixed reference frame $O X Y$.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of A onto the axes of the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of point A onto the fixed reference frame.
- Coordinates $x B$ and $y B$ of point B relative to the fixed reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of point B onto the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the accelerations of point B onto the fixed reference frame.
- Piston displacement s and its time derivatives \dot{s} and \ddot{s} relative to the cylinder, considered positive when oriented such that the actuator expands.
- Cylinder length $A_{0} Q$.
- Piston length $P C$.
- Rocker length $B C$.
- Piston eccentricity $A_{0} A$.
- Orientation of the $A C B$ triangular loop.

We are interested in determining the following unknown parameters:

- The coordinates $x C$ and $y C$ of joint center C relative to the fixed reference frame $O X Y$.
- The projections $\dot{x} C$ and $\dot{y} C$ of the velocity of point C onto the axes of the fixed reference frame.
- The projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- The coordinates $x P$ and $y P$ of point P relative to the fixed reference frame.
- The coordinates $x Q$ and $y Q$ of point Q relative to the fixed reference frame.

The RTRR actuator can be viewed as a particular embodiment of the RTRTR double linear input actuator discussed earlier, where one of the motors does not change length.

The position, velocity, and acceleration components of joint center C can be calculated by calling procedure Int2CirPVA with r_{1} and r_{2} and their time derivatives assigned as follows:

$$
\begin{array}{ll}
r_{1}^{2}=A C^{2}=A_{0} A^{2}+s_{1}^{2} & r_{2}=B C \\
\dot{r}_{1}=\frac{s_{1} \cdot \dot{s}_{1}}{r_{1}} & \dot{r}_{2}=0 \tag{6.50}\\
\ddot{r}_{1}=\frac{\left(\dot{s}_{1}^{2}+s_{1} \cdot \ddot{s}_{1}-\dot{r}_{1}^{2}\right)}{r_{1}} & \ddot{r}_{2}=0
\end{array}
$$

The coordinates of joint center A_{0} result from solving Equations 6.17 using procedure Int2Cir, while the coordinates of points P and Q result from solving Equations 6.19. The coordinates of these points are required to represent graphically the linear motor as the mechanism moves.

Procedure RTRRc calculates, using a constraint equation approach, the position, velocity, and acceleration of pin joint center C and displacements, velocity, and accelerations to joints A and B for given inputs s, \dot{s}, and \ddot{s} of the linear motor. If the graphic system is on, procedure RTRRC also draws in color Color (less if it is assigned the BGI constant Black or the value zero) the piston, its cylinder, and the rocker $B C$, in a manner similar to Figure 6.12. The heading of procedure RTRRC is as follows:

```
procedure RTRRc(Color:Word; xA,yA, vxA,vyA, axA, ayA, xB,yB,
vxB,vyB, axB,ayB, A0A, A0Q, PC, s,ds,dds:double; LftRgt:shortint;
var xC,yC, vxC,vyC, axC,ayC, Delta:double);
```

The correspondence between the formal parameters and the notations used earlier is summarized in the following tables:

Input parameters of procedure RTRRC:

$0 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
Color	$\mathbf{x A}$	$\mathbf{y A}$	vxA	vyA	axA	ayA	$\mathbf{x B}$	$\mathbf{y B}$	vxB	vyB	axB	ayB
$A_{0} A$	$A_{0} Q$	$P C$	$B C$	s		\dot{s}	\ddot{s}					
A0A	A0Q	PC	BC	\mathbf{s}		ds1	dds1	LftRgt				

Output parameters of procedure RTRRc:

$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$	Δ
$\mathbf{x C}$	$y C$	$v x C$	$v y C$	axC	ayC	Delta

LftRgt controls the orientation of the mechanism, that is, for a right-hand assembly configuration, it must be set to +1 or to constant Right, while for a left-hand
assembly configuration, it must be set to -1 or to constant Left (see Figure 6.12c). If the scalar velocities and accelerations of either joint A or B are zero, then the respective pivot joint is assumed connected to the ground and will be represented graphically accordingly, by calling procedure gPivotJoint in unit LibMec2D. Output variable Delta is identical to the variable with the same name from procedure Int2CirPVA that is called inside RTRRC.

6.8 KINEMATIC ANALYSIS OF THE RTRR OSCILLATING-SLIDE ACTUATOR USING A VECTOR-LOOP APPROACH: PROCEDURE RTRR

The kinematics of the RTRR actuator can also be solved using a vector-loop method. We recognize first that angles φ_{1} and φ_{2} are given by the same Equations 6.28 and 6.31 derived earlier for the case of the RTRTR kinematic chain.

Likewise, the coordinates of joint center C are

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{A}}+A_{0} A \cdot \sin (\theta)+s \cdot \cos (\theta) \tag{6.51}\\
y_{\mathrm{C}}=y_{\mathrm{A}}-A_{0} A \cdot \cos (\theta)+s \cdot \sin (\theta)
\end{array}\right.
$$

where unknown angle θ results from solving linear equations

$$
\left\{\begin{array}{l}
s \cdot \cos (\theta)+A_{0} A \cdot \sin (\theta)=A C \cdot \cos \left(\varphi_{1}\right) \tag{6.52}\\
-A_{0} A \cdot \sin (\theta)+s \cdot \cos (\theta)=A C \cdot \sin \left(\varphi_{1}\right)
\end{array}\right.
$$

in the unknowns $\cos (\theta)$ and $\sin (\theta)$.
In order to represent graphically the mechanism, the x and y coordinates of points A_{0}, P, and Q must be calculated first. These result from projecting on the axes of the OXY frame the following vector equations:

$$
\begin{gather*}
\mathbf{O A}_{0}=\mathbf{O A}-\mathbf{A}_{0} \mathbf{A} \\
\mathbf{O P}=\mathbf{O A}_{0}+\mathbf{A}_{0} \mathbf{C}-\mathbf{P C} \tag{6.53}\\
\mathbf{O Q}=\mathbf{O A}_{0}+\mathbf{A}_{0} \mathbf{Q}
\end{gather*}
$$

Regarding the scalar components of the velocity of point C, these result from differentiating Equations 6.51 with respect to time:

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{A}}+A_{0} A \cdot \cos (\theta) \cdot \dot{\theta}+\dot{s} \cdot \cos (\theta)-s \cdot \sin (\theta) \cdot \dot{\theta} \tag{6.54}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{A}}+A_{0} A \cdot \sin (\theta) \cdot \dot{\theta}+\dot{s} \cdot \sin (\theta)+s \cdot \cos (\theta) \cdot \dot{\theta}
\end{array}\right.
$$

To calculate the unknown angular velocity $\dot{\theta}$, we begin with vector equation

$$
\begin{equation*}
-\mathbf{A}_{0} \mathbf{A}+\mathbf{A}_{0} \mathbf{C}-\mathbf{B C}=\mathbf{A B} \tag{6.55}
\end{equation*}
$$

which projects on the axes of the fixed reference frame as

$$
\left\{\begin{array}{l}
-A_{0} A \cdot \cos \left(\frac{\pi}{2}+\theta\right)+A_{0} C \cdot \cos (\theta)-B C \cdot \cos \left(\varphi_{2}\right)=x_{\mathrm{B}}-x_{\mathrm{A}} \tag{6.56}\\
-A_{0} A \cdot \sin \left(\frac{\pi}{2}+\theta\right)+A_{0} C \cdot \sin (\theta)-B C \cdot \sin \left(\varphi_{2}\right)=y_{\mathrm{B}}-y_{\mathrm{A}}
\end{array}\right.
$$

Equations 6.56 simplify to

$$
\left\{\begin{array}{l}
A_{0} A \cdot \sin (\theta)+s \cdot \cos (\theta)-B C \cdot \cos \left(\varphi_{2}\right)=x_{\mathrm{B}}-x_{\mathrm{A}} \tag{6.57}\\
-A_{0} A \cdot \cos (\theta)+s \cdot \sin (\theta)-B C \cdot \sin \left(\varphi_{2}\right)=y_{\mathrm{B}}-y_{\mathrm{A}}
\end{array}\right.
$$

and by differentiating them with respect to time, we further get

$$
\left\{\begin{array}{l}
A_{0} A \cdot \cos (\theta) \cdot \dot{\theta}+\dot{s} \cdot \cos (\theta)-s \cdot \sin (\theta) \cdot \dot{\theta}+B C \cdot \sin \left(\varphi_{2}\right) \cdot \varphi_{2}=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}} \tag{6.58}\\
A_{0} A \cdot \sin (\theta) \cdot \dot{\theta}+\dot{s} \cdot \sin (\theta)+s \cdot \cos (\theta) \cdot \dot{\theta}-B C \cdot \cos \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}
\end{array}\right.
$$

After collecting terms, the following set of linear equations in the unknowns $\dot{\theta}$ and $\dot{\varphi}_{2}$ is obtained:

$$
\left\{\begin{array}{l}
{\left[A_{0} A \cdot \cos (\theta)-s \cdot \sin (\theta)\right] \cdot \dot{\theta}+B C \cdot \sin \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}}-\dot{s} \cdot \cos (\theta)} \tag{6.59}\\
{\left[A_{0} A \cdot \sin (\theta)+s \cdot \cos (\theta)\right] \cdot \dot{\theta}-B C \cdot \cos \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}-\dot{s} \cdot \sin (\theta)}
\end{array}\right.
$$

The scalar components of the acceleration of point C result from differentiating Equations 6.54:

$$
\left\{\begin{align*}
\ddot{x}_{\mathrm{C}} & =\ddot{x}_{\mathrm{A}}-A_{0} A \cdot \sin (\theta) \cdot \dot{\theta}^{2}+A_{0} A \cdot \cos (\theta) \cdot \ddot{\theta}+\ddot{s} \cdot \cos (\theta)-\dot{s} \cdot \sin (\theta) \cdot \dot{\theta} \tag{6.60}\\
\quad & -\dot{s} \cdot \sin (\theta) \cdot \dot{\theta}-s \cdot \cos (\theta) \cdot \dot{\theta}^{2}-s \cdot \sin (\theta) \cdot \ddot{\theta} \\
\ddot{y}_{\mathrm{C}} & =\ddot{y}_{\mathrm{A}}+A_{0} A \cdot \cos (\theta) \cdot \dot{\theta}^{2}+A_{0} A \cdot \sin (\theta) \cdot \ddot{\theta}+\ddot{s} \cdot \sin (\theta)+\dot{s} \cdot \cos (\theta) \cdot \dot{\theta} \\
& +\dot{s} \cdot \cos (\theta) \cdot \dot{\theta}-s \cdot \sin (\theta) \cdot \dot{\theta}^{2}+s \cdot \cos (\theta) \cdot \ddot{\theta}
\end{align*}\right.
$$

where unknown angular acceleration $\ddot{\theta}$ and $\ddot{\varphi}_{2}$ are solutions of equations

$$
\begin{align*}
& \int\left[A_{0} A \cdot \cos (\theta)-s \cdot \sin (\theta)\right] \cdot \ddot{\theta}+B C \cdot \sin \left(\varphi_{2}\right) \cdot \ddot{\varphi}_{2}= \\
& -\left[-A_{0} A \cdot \sin (\theta) \cdot \dot{\theta}-\dot{s} \cdot \sin (\theta)-s \cdot \cos (\theta) \cdot \dot{\theta}\right] \cdot \dot{\theta}-B C \cdot \cos \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}^{2} \\
& +\ddot{x}_{\mathrm{B}}-\ddot{x}_{\mathrm{A}}-\ddot{s} \cdot \cos (\theta)+\dot{s} \cdot \sin (\theta) \cdot \dot{\theta} \tag{6.61}\\
& {\left[A_{0} A \cdot \sin (\theta)+s \cdot \cos (\theta)\right] \cdot \ddot{\theta}-B C \cdot \cos \left(\varphi_{2}\right) \cdot \ddot{\varphi}_{2}=} \\
& -\left[A_{0} A \cdot \cos (\theta) \cdot \dot{\theta}+\dot{s} \cdot \cos (\theta)-s \cdot \sin (\theta) \cdot \dot{\theta}\right] \cdot \dot{\theta}-B C \cdot \sin \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}^{2} \\
& +\ddot{y}_{\mathrm{B}}-\ddot{y}_{\mathrm{A}}-\ddot{s} \cdot \sin (\theta)-\dot{s} \cdot \cos (\theta) \cdot \dot{\theta}
\end{align*}
$$

obtained by differentiating with respect to time Equation 6.59. Both Equations 6.59 and 6.61 are very easy to solve using Cramer's rule or the inverse matrix method.

Procedure RTRR that implements this vector-loop approach to perform the kinematic simulation of the RTRR actuator has the same heading and is totally interchangeable with procedure RTRRc. The differences between the two procedures are the way the mechanism is represented in the positions in which it cannot be assembled, and the value of the discriminant returned by variable Delta. It is to be expected that variables Delta of these two procedures will exhibit characteristics comparable to Delta returned by RTRTRC and RTRTR discussed earlier with reference to Figure 6.11.

Programs P6_13A.PAS and P6_13B.PAS available with the book are applications of procedures RTRRc and RTRR (see Figure 6.13). Program P6_13A.PAS animates

FIGURE 6.13 Oscillating-slide actuator with harmonic linear motor input with potential joints A and B driven by two rockers (a) and connected directly to the ground (b) generated with programs P6_13A.PAS and P6_13B.PAS. See also animation files F6_13a.GIF and F6_13b.GIF.
simultaneously (i.e., overlapped) these two kinematic chains driven by the same cranks. It also plots separately their velocity and acceleration vectors of point C. Notice that there is no visible difference between the RTRRC and RTRR output, unless the linear motor range is extended to reveal the different way in which the RTRR kinematic chain is represented when assembly is not permitted. Both programs use the SizeLinMotor procedure to adjust the piston rod and cylinder lengths such that piston P always remains between points A_{0} and Q (see Figure 6.12a). In addition, program P6_13B. PAS implements an option where the minimum clearances between the piston and the two cylinder ends can be specified-see the use of variables AO_Pmin and Q_Pmin. Also notice, in the same program P6_13B.PAS, the use of procedures GetA0, GetP, and GetQ that return the coordinates of points A_{0}, P, and Q of the actuator.

6.9 KINEMATIC ANALYSIS OF THE RRR DYAD: PROCEDURES RRRc AND RRR

The RRR dyad is one of the most commonly encountered Assur groups. In this paragraph, its position, velocity, and acceleration equations will be derived using both equations of constrain and the vector-loop method.

For both approaches, the following parameters are assumed known at any given time (Figure 6.14):

- Coordinates $x A, y A$ and $x B, y B$ of potential joints A and B relative to the $O X Y$ fixed reference frame.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of joint center B onto the fixed reference frame.
- Projections $\ddot{x} Q$ and $\ddot{y} Q$ of the accelerations of point B onto the fixed reference frame.
- Lengths $A C$ and $B C$ of the two links of the dyad.

FIGURE 6.14 Notations used in solving the kinematics of the RRR dyad (a) and vector and angle assignment to its links (b).

The purpose of the analysis is to determine

- Coordinates $x C$ and $y C$ of joint center C relative to the $O X Y$ reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of the velocity of C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.

The coordinates of point C can be calculated using constraint Equations 6.6 and 6.10 with $r_{1}=A C$ and $r_{2}=B C$. The scalar components of the velocity and acceleration of point C can be calculated using Equations 6.13 and 6.15 with $\dot{r}_{1}=\dot{r}_{2}=\ddot{r}_{1}=\ddot{r}_{2}=0$. Procedure RRRC in unit LibAssur calls procedure Int2CirPVA rather than implementing these equations new. Its heading is as follows:

```
procedure RRRc(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB,
vxB,vyB, axB,ayB, AC, BC:double; LftRgt:shortint; var xC,yC,
vxC,vyC, axC,ayC, Delta:double);
```

The correspondence between the formal parameters and the notations used earlier is: Input parameters of procedure RRRC:

$\begin{aligned} & 0 \ldots 16 \\ & \text { Color } \end{aligned}$	$x A$ $\times A$	$\begin{aligned} & y A \\ & \text { yA } \end{aligned}$	$\begin{gathered} \dot{x} A \\ \mathrm{vxA} \end{gathered}$	$\begin{gathered} \dot{y} A \\ \text { vyA } \end{gathered}$	$\begin{gathered} \ddot{x} A \\ a x A \end{gathered}$	$\ddot{y} A$ ayA	$\begin{aligned} & x B \\ & \mathbf{x B} \end{aligned}$	$\begin{aligned} & y B \\ & y B \end{aligned}$	$\begin{gathered} \dot{x} B \\ \mathrm{vxB} \end{gathered}$	$\begin{gathered} \dot{y} B \\ \mathrm{vyB} \end{gathered}$	$\begin{gathered} \ddot{x} B \\ \text { axB } \end{gathered}$	$\begin{aligned} & \ddot{y} B \\ & \text { ayB } \end{aligned}$
$A C$	BC		x	y	x		y	\ddot{x}		\ddot{y}		± 1
AC	BC		xC	yc	dxC		dyc	ddxC		ddyc		LftRgt

Output parameters of procedure RRRC:

$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$	Δ
$\mathbf{x C}$	$y C$	$v x C$	vyC	axC	ayC	Delta

Variable LftRgt specifies the orientation of the triangular loop $A C B$ as discussed earlier. For a negative orientation of the dyad, shown in solid lines in Figure 6.14a, variable LftRgt should be assigned the value -1 or constant Left. The positive orientation of the RRR dyad, enforced by setting input variable LftRgt to +1 or constant Right, is shown by the dashed lines in Figure 6.14a.

In addition to returning the output parameters listed earlier, procedure RRRC also draws in color Color (less if Color equals zero or Black or if the graphic system is off) two lines connecting points A and C and points B and C. It also represents joint C as a circle of radius $J t S z$. If the velocities and accelerations of joints A and/or B are zero, procedure RRRc draws the respective joint using a grounded pin joint symbol.

For a vector-loop kinematic analysis of the RRR dyad, Equation 6.24 as well as Equations 6.28 and 6.31 can be used to calculate angles φ_{1} and φ_{2} (Figure 6.14). Once angles φ_{1} and φ_{2} are determined, the coordinates of joint C can be obtained starting from the following vector equation:

$$
\begin{equation*}
\mathbf{A C}=\mathbf{O A}+\mathbf{A C}=0 \tag{6.62}
\end{equation*}
$$

which projects on the axes of the OXY reference frame as

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{A}}+A C \cdot \cos \left(\varphi_{1}\right) \tag{6.63}\\
y_{\mathrm{C}}=y_{\mathrm{A}}+A C \cdot \sin \left(\varphi_{1}\right)
\end{array}\right.
$$

The scalar components of the velocity of joint center C result from differentiation Equations 6.63 with respect to time:

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{A}}-A C \cdot \sin \left(\varphi_{1}\right) \cdot \dot{\varphi}_{1} \tag{6.64}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{A}}+A C \cdot \cos \left(\varphi_{1}\right) \cdot \dot{\varphi}_{1}
\end{array}\right.
$$

By differentiating Equations 6.64, the x and y components of the acceleration of point C are obtained:

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{A}}-A C \cdot \cos \left(\varphi_{1}\right) \cdot \dot{\varphi}_{1}^{2}-A C \cdot \sin \left(\varphi_{1}\right) \cdot \ddot{\varphi}_{1} \tag{6.65}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{A}}-A C \cdot \sin \left(\varphi_{1}\right) \cdot \dot{\varphi}_{1}^{2}+A C \cdot \cos \left(\varphi_{1}\right) \cdot \ddot{\varphi}_{1}
\end{array}\right.
$$

To solve for the unknown angular velocity and acceleration $\dot{\varphi}_{1}$ and $\ddot{\varphi}_{1}$, we resort to Equations 6.25 rearranged as

$$
\left\{\begin{array}{l}
A C \cdot \cos \left(\varphi_{1}\right)-B C \cdot \cos \left(\varphi_{2}\right)=x_{\mathrm{B}}-x_{\mathrm{A}} \tag{6.66}\\
A C \cdot \sin \left(\varphi_{1}\right)-B C \cdot \sin \left(\varphi_{2}\right)=y_{\mathrm{B}}-y_{\mathrm{A}}
\end{array}\right.
$$

Differentiating them once with respect to time yields a set of two linear equations in the unknowns $\dot{\varphi}_{1}$ and $\dot{\varphi}_{2}$:

$$
\left\{\begin{array}{l}
-A C \cdot \sin \left(\varphi_{1}\right) \cdot \dot{\varphi}_{1}+B C \cdot \sin \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}} \tag{6.67}\\
A C \cdot \cos \left(\varphi_{1}\right) \cdot \dot{\varphi}_{1}-B C \cdot \cos \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}
\end{array}\right.
$$

The second derivatives of the same angles φ_{1} and φ_{2} result from solving equations:

$$
\left\{\begin{array}{l}
-A C \cdot \sin \left(\varphi_{1}\right) \cdot \ddot{\varphi}_{1}+B C \cdot \sin \left(\varphi_{2}\right) \cdot \ddot{\varphi}_{2}=\ddot{x}_{\mathrm{B}}-\ddot{x}_{\mathrm{A}}+A C \cdot \cos \left(\varphi_{1}\right) \cdot \dot{\varphi}_{1}^{2}-B C \cdot \cos \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}^{2} \tag{6.68}\\
A C \cdot \cos \left(\varphi_{1}\right) \cdot \ddot{\varphi}_{1}-B C \cdot \cos \left(\varphi_{2}\right) \cdot \ddot{\varphi}_{2}=\ddot{y}_{\mathrm{B}}-\ddot{y}_{\mathrm{A}}+A C \cdot \sin \left(\varphi_{1}\right) \cdot \dot{\varphi}_{2}^{2}-B C \cdot \sin \left(\varphi_{2}\right) \cdot \dot{\varphi}_{2}^{2}
\end{array}\right.
$$

Note that the vector method also yields the angular velocities and accelerations of the two links of the dyad directly, which can be of interest in some analyses.

Procedure RRR in unit LibAssur calculates the position, velocity, and acceleration of the RRR dyad using Equations 6.62 through 6.68, and it is interchangeable with procedure RRRC. Its variable Delta calculated using Equation 6.32 will evidently be different than the one returned by procedure RRR. If the dyad cannot be assembled, both procedure RRRC and RRR will represent links $A C$ and $B C$ with joints A, C, and B collinear and in dashed lines.

To verify the correctness of the output by procedures RRRc and RRR, program P6_15.PAS has been written and is available with the book. It simulates the motion of an RTRTR kinematic chain having its linear motors locked (modeled using procedure RTRTRc) driven by two cranks, overlapped with an RRR dyad (modeled using procedure RRRc or RRR) driven by the same two cranks as shown in Figure 6.15. The separate graphing of the velocity and acceleration vectors of joint C renders these vectors indistinguishable over the entire motion cycle of the mechanism, a confirmation that procedures RRRc and RRR produce correct results. The needle drive mechanism simulation program P6_01.PAS introduced earlier is another example of procedure RRR and RRRC use.

FIGURE 6.15 Five-bar linkage simulation generated with program P6_15.PAS that calls procedure RTRTR with its linear motors locked, overlapped with procedures RRRC and RRR. See also animation file F6_15.GIF.

6.10 KINEMATIC ANALYSIS OF THE RRT DYAD USING A VECTOR-LOOP APPROACH

In this section, the position, velocity, and acceleration problem of the RR_T and RRT_ isomers of the RRT dyad is solved using a vector-loop approach. The kinematic equations were derived for two distinct slider configurations (see Figure 6.3) and were implemented in procedures $R R T$ _ and $R R_{-} T$. In case of isomer $R R _T$, the potential joint is a sleeve, while in case of isomer RRT_, the translating potential joint is a rod that can be fixed or can perform some kind of controlled motion.

6.10.1 RR_T Dyadic Isomer: Procedure RR_T

The RRT_isomer of the RRT dyad depicted in Figure 6.16 will be analyzed first, with the following parameters assumed specified at any instant of time:

- Length $A C$ of the connecting rod.
- Slider eccentricity $B C$ perpendicular to $B Q$ (can be either positive or negative).
- Length of slider rod $B Q$ (can be either positive or negative).
- Coordinates $x A, y A$ of potential joint A relative to the fixed reference frame $O X Y$.
- Angle θ of the slider axis measured counterclockwise from a parallel to the $O X$ axis.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.
- Projections $\dot{x} P$ and $\dot{y} P$ of the velocity of joint center P onto the fixed reference frame.

(a)

(b)

FIGURE 6.16 Kinematic diagrams of the RR_T isomer of the RRT dyad with potential joints A and P (as shown, length $B Q$ is negative) (a) and its assembly configurations based on the sign of eccentricity $B C$ and the double sign in Equation 6.74, which may result in a longer or shorter displacement $s(b)$.

- Projections $\ddot{x} P$ and $\ddot{y} P$ of the accelerations of point P onto the fixed reference frame.
- First time derivative $\dot{\theta}$ of angle θ (the angular velocity of the slider).
- Second time derivative $\ddot{\theta}$ of angle θ (the angular acceleration of the slider).

The purpose of this kinematic analysis is to determine

- The coordinates $x C$ and $y C$ of joint center C relative to the $O X Y$ reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of the velocity of C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- The coordinates $x B$ and $y B$ of point B relative to the $O X Y$ reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of B onto the axes of the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the acceleration of B onto the axes of the fixed reference frame.
- The coordinates $x Q$ and $y Q$ of point Q relative to the $O X Y$ reference frame.
- Projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of Q onto the axes of the fixed reference frame.
- Projections $\ddot{x} Q$ and $\ddot{y} Q$ of the acceleration of Q onto the axes of the fixed reference frame.

We begin with the following vector equation:

$$
\begin{equation*}
\mathrm{OA}+\mathrm{AC}=\mathrm{OP}+\mathrm{PB}+\mathrm{BC} \tag{6.69}
\end{equation*}
$$

and project it on the axes of the OXY reference frame:

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}+A C \cdot \cos (\varphi)=x_{\mathrm{P}}-s \cdot \cos (\theta)+B C \cdot \cos \left(\theta+\frac{\pi}{2}\right) \tag{6.70}\\
y_{\mathrm{A}}+A C \cdot \sin (\varphi)=y_{\mathrm{P}}-s \cdot \sin (\theta)+B C \cdot \sin \left(\theta+\frac{\pi}{2}\right)
\end{array}\right.
$$

which are equivalent to

$$
\left\{\begin{array}{l}
A C \cdot \cos (\varphi)=-s \cdot \cos (\theta)-B C \cdot \sin (\theta)+x_{\mathrm{P}}-x_{\mathrm{A}} \tag{6.71}\\
A C \cdot \sin (\varphi)=-s \cdot \sin (\theta)+B C \cdot \cos (\theta)+y_{\mathrm{P}}-y_{\mathrm{A}}
\end{array}\right.
$$

We then square Equations 6.71 and obtain

$$
\left\{\begin{array}{l}
A C^{2} \cdot \cos ^{2}(\varphi)=s^{2} \cdot \cos ^{2}(\theta)+B C^{2} \cdot \sin ^{2}(\theta)+\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right)^{2}+2 s \cdot B C \cdot \sin (\theta) \cdot \cos (\theta) \tag{6.72}\\
\quad-2 s\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right) \cos (\theta)-2 B C \cdot\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right) \cdot \sin (\theta) \\
A C^{2} \cdot \sin ^{2}(\varphi)=s^{2} \cdot \sin ^{2}(\theta)+B C^{2} \cdot \cos ^{2}(\theta)+\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right)^{2}-2 s \cdot B C \cdot \sin (\theta) \cdot \cos (\theta) \\
\quad-2 s\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right) \cos (\theta)+2 B C \cdot\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right) \cdot \cos (\theta)
\end{array}\right.
$$

After adding them and rearranging terms, we obtain the following quadratic equation in the unknown s :

$$
\begin{align*}
& s^{2}-2\left[\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right) \cos (\theta)+\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right) \sin (\theta)\right] \cdot s+2 B C \cdot\left[\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right) \cos (\theta)-\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right) \sin (\theta)\right] \\
& \quad+\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right)^{2}-A C^{2}+B C^{2}=0 \tag{6.73}
\end{align*}
$$

with solutions

$$
\begin{equation*}
s=\left[\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right) \cos (\theta)+\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right) \sin (\theta)\right] \pm \sqrt{\Delta} \tag{6.74}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta= & {\left[\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right) \cos (\theta)+\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right) \sin (\theta)\right]^{2} } \\
& -2 B C \cdot\left[\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right) \cos (\theta)-\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right) \sin (\theta)\right] \\
& -\left(x_{\mathrm{P}}-x_{\mathrm{A}}\right)^{2}-\left(y_{\mathrm{P}}-y_{\mathrm{A}}\right)^{2}+A C^{2}-B C^{2} \tag{6.75}
\end{align*}
$$

Note that there are four assembly configurations of the RR_T isomer, corresponding to the sign of the eccentricity $B C$ and the choice of the double sign in Equation 6.74.

The coordinates of point B and Q, of interest when plotting the mechanism or when the dyad is amplified with additional Assur groups, are

$$
\left\{\begin{array}{l}
x_{\mathrm{B}}=x_{\mathrm{P}}-s \cdot \cos (\theta) \tag{6.76}\\
y_{\mathrm{B}}=y_{\mathrm{P}}-s \cdot \sin (\theta)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x_{\mathrm{Q}}=x_{\mathrm{B}}-B Q \cdot \cos (\theta) \tag{6.77}\\
y_{\mathrm{Q}}=y_{\mathrm{B}}-B Q \cdot \sin (\theta)
\end{array}\right.
$$

The coordinates of point C are obtained by projecting vector equation

$$
\begin{equation*}
\mathrm{OC}=\mathbf{O P}+\mathrm{PB}+\mathrm{BC} \tag{6.78}
\end{equation*}
$$

on the axes of the $O X Y$ frame:

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{P}}-s \cdot \cos (\theta)-B C \cdot \sin (\theta)=x_{\mathrm{B}}-B C \cdot \sin (\theta) \tag{6.79}\\
y_{\mathrm{C}}=y_{\mathrm{P}}-s \cdot \sin (\theta)+B C \cdot \cos (\theta)=y_{\mathrm{B}}+B C \cdot \cos (\theta)
\end{array}\right.
$$

Once coordinates of joint center C become available, the trigonometric functions of angle φ can be straightforwardly evaluated, that is,

$$
\begin{equation*}
\cos (\varphi)=\frac{\left(x_{\mathrm{C}}-x_{\mathrm{A}}\right)}{A C} \text { and } \sin (\varphi)=\frac{\left(y_{\mathrm{C}}-y_{\mathrm{A}}\right)}{A C} \tag{6.80}
\end{equation*}
$$

By differentiating Equation 6.71 with respect to time, a set of two linear equations in the unknowns $\dot{\varphi}$ and \dot{s} is obtained:

$$
\left\{\begin{array}{l}
A C \cdot \sin (\varphi) \cdot \dot{\varphi}-\cos (\theta) \cdot \dot{s}=\dot{x}_{\mathrm{P}}-\dot{x}_{\mathrm{A}}-[B C \cdot \cos (\theta)-s \cdot \sin (\theta)] \cdot \dot{\theta} \tag{6.81}\\
-A C \cdot \cos (\varphi) \cdot \dot{\varphi}-\sin (\theta) \cdot \dot{s}=\dot{y}_{\mathrm{P}}-\dot{y}_{\mathrm{A}}-[B C \cdot \sin (\theta)+s \cdot \cos (\theta)] \cdot \dot{\theta}
\end{array}\right.
$$

which are very easy to solve.
The components of the velocity of point B and Q are obtained by differentiating Equations 6.76 and 6.77, that is,

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{B}}=\dot{x}_{\mathrm{P}}-\dot{s} \cdot \cos (\theta)+s \cdot \sin (\theta) \cdot \dot{\theta} \tag{6.82}\\
\dot{y}_{\mathrm{B}}=\dot{y}_{\mathrm{P}}-\dot{s} \cdot \sin (\theta)-s \cdot \cos (\theta) \cdot \dot{\theta}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{Q}}=\dot{x}_{\mathrm{B}}+B Q \cdot \sin (\theta) \cdot \dot{\theta} \tag{6.83}\\
\dot{y}_{\mathrm{Q}}=\dot{y}_{\mathrm{B}}-B Q \cdot \cos (\theta) \cdot \dot{\theta}
\end{array}\right.
$$

while those of point C are obtained by differentiating Equations 6.79 in their second form:

$$
\left\{\begin{array}{l}
\dot{x}_{C}=\dot{x}_{B}-B C \cdot \cos (\theta) \cdot \dot{\theta} \tag{6.84}\\
\dot{y}_{C}=\dot{y}_{B}-B C \cdot \sin (\theta) \cdot \dot{\theta}
\end{array}\right.
$$

Accelerations $\ddot{\varphi}$ and \ddot{s} are obtained by differentiating Equations 6.81 which yield another set of two linear equations:

$$
\left\{\begin{array}{c}
+A C \cdot \sin (\varphi) \cdot \ddot{\varphi}-\cos (\theta) \cdot \ddot{s}=\ddot{x}_{\mathrm{P}}-\ddot{x}_{\mathrm{A}}+[B C \cdot \sin (\theta)-s \cdot \cos (\theta)] \cdot \dot{\theta}^{2} \tag{6.85}\\
\quad-[B C \cdot \cos (\theta)-s \cdot \sin (\theta)] \cdot \ddot{\theta}+2 \dot{s} \cdot \sin (\theta) \cdot \dot{\theta}+A C \cdot \cos (\varphi) \cdot \dot{\varphi}^{2} \\
A C \cdot \cos (\varphi) \cdot \ddot{\varphi}+\sin (\theta) \cdot \ddot{s}=\ddot{y}_{\mathrm{P}}-\ddot{y}_{\mathrm{A}}-[B C \cdot \cos (\theta)-s \cdot \sin (\theta)] \cdot \dot{\theta}^{2} \\
-[B C \cdot \sin (\theta)+s \cdot \cos (\theta)] \cdot \ddot{\theta}-2 \dot{s} \cdot \cos (\theta) \cdot \dot{\theta}+A C \cdot \sin (\varphi) \cdot \dot{\varphi}^{2}
\end{array}\right.
$$

The x and y components of the acceleration of points B, Q, and C are obtained by differentiating Equations 6.82, 6.83, and 6.84, that is,

$$
\begin{gather*}
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{B}}=\ddot{x}_{\mathrm{P}}-\ddot{s} \cdot \cos (\theta)+2 \dot{s} \cdot \sin (\theta) \cdot \dot{\theta}+s \cdot \cos (\theta) \cdot \dot{\theta}^{2}+s \cdot \sin (\theta) \cdot \ddot{\theta} \\
\ddot{y}_{\mathrm{B}}=\ddot{y}_{\mathrm{P}}-\ddot{s} \cdot \sin (\theta)-2 \dot{s} \cdot \cos (\theta) \cdot \dot{\theta}+s \cdot \sin (\theta) \cdot \dot{\theta}^{2}-s \cdot \cos (\theta) \cdot \ddot{\theta} \\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{Q}}=\ddot{x}_{\mathrm{B}}+B Q \cdot \cos (\theta) \cdot \dot{\theta}^{2}+B Q \cdot \sin (\theta) \cdot \ddot{\theta} \\
\ddot{y}_{\mathrm{Q}}=\ddot{y}_{\mathrm{B}}+B Q \cdot \sin (\theta) \cdot \dot{\theta}^{2}-B Q \cdot \cos (\theta) \cdot \ddot{\theta}
\end{array}\right. \\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{B}}+B C \cdot \sin (\theta) \cdot \dot{\theta}^{2}-B C \cdot \cos (\theta) \cdot \ddot{\theta} \\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{B}}-B C \cdot \cos (\theta) \cdot \dot{\theta}^{2}-B C \cdot \sin (\theta) \cdot \ddot{\theta}
\end{array}\right.
\end{array} . \begin{array}{l}
\text { 部 }
\end{array}\right. \tag{6.86}\\ \tag{6.87}
\end{gather*}
$$

Procedure RR_T in unit LibAssur that implements the equations derived earlier has the following heading:
procedure RR_T(Color:Word; $x A, Y A, \quad v x A, v y A, ~ a x A, a y A, ~ x P, y P$, vxP, vyP, axP,ayP, Theta,dTheta,ddTheta, AC,BC,BQ:double; PlsMns:shortint; var $x B, y B, \quad v x B, v y B, ~ a x B, a y B, x C, y C, v x C, v y C$, axC,ayC, $x Q, y Q, ~ v x Q, v y Q, ~ a x Q, a y Q, ~ D e l t a: d o u b l e) ;$

The correspondence between the formal parameters of procedure RRT_ and the notations used in the earlier equations is summarized in the following tables:

Input parameters of procedure $R R_{-} T$:

FIGURE 6.17 A two-DOF mechanism consisting of a crank-driven RR_T dyad with the slider block mounted at the end of rocker $O_{2} P$ that oscillates according to equation $\varphi_{2}=\pi / 2+\pi / 9 \cdot \sin (2 \pi t)$. See also the animation file F6_17.GIF available with the book.

Output parameters of procedure $\mathrm{RR}_{\mathrm{R}} \mathrm{T}$:

$x B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$
$\mathbf{x B}$	$\mathbf{v x B}$	vyB	axB	ayB	$\mathbf{x C}$	$\mathbf{y C}$	$\mathbf{v x C}$	vyC	$\mathbf{a x C}$	$\mathbf{a y C}$

$x Q$	$y Q$	$\dot{x} Q$	$\dot{y} Q$	$\ddot{x} Q$	$\ddot{y} Q$	Δ
$\mathbf{x Q}$	$y Q$	$v x Q$	$v y Q$	$a x Q$	$a y Q$	Delta

Input parameter PlsMns specifies the nature of the double sign in Equation 6.74, and it should be assigned either the value -1 or +1 .

If of interest, the displacement s of the slider block relative to its guide and the first and second time derivatives \dot{s} and \ddot{s} can be easily determined by calling procedure VarDist from unit LibMec2D.

The simulation of the sample mechanism in Figure 6.17 has been done with program P6_17.PAS, listed in Appendix B. Since there was no interest in the velocity and acceleration output by procedures gCrank and $\operatorname{RR} _T$, the generic variable _ defined in unit LibMec2D that is preassigned the value InfD has been used in a number of places (both as input and as output). Same was applied in place of a variable Delta returned by procedure RRT_.

6.10.2 RRT_Dyadic Isomer: Procedure RRT_

The kinematic analysis problem considered previously was restated for the case of the RRT dyad configured as shown in Figure 6.18, that is, the RR_T isomer. The following parameters are assumed known at any instant of time of a simulation:

- Length $A C$ of the connecting rod.
- Slider eccentricity $B C$ assumed perpendicular to $P Q$, which can be either positive or negative.

FIGURE 6.18 The RRT_ isomer of the RRT dyad with a potential sliding rod $P Q$ (a) and its four possible assembly configurations (b).

- Coordinates $x A, y A$ of potential pin joint A relative to the fixed reference frame $O X Y$.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.
- Coordinates $x P, y P$ and $x Q, y Q$ relative to the fixed reference frame of points P and Q of the slider guide.
- Projections $\dot{x} P$ and $\dot{y} P$ of the velocity of joint center P onto the fixed reference frame.
- Projections $\ddot{x} P$ and $\ddot{y} P$ of the accelerations of point P onto the fixed reference frame.
- Projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of point Q onto the fixed reference frame.
- Projections $\ddot{x} Q$ and $\ddot{y} Q$ of the accelerations of point Q onto the fixed reference frame.

The objective of the analysis is to determine the following unknown parameters:

- Coordinates $x B$ and $y B$ of sliding joint center B relative to the $O X Y$ reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of point B onto the axes of the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the acceleration of point B onto the axes of the fixed reference frame.
- Coordinates $x C$ and $y C$ of joint center C relative to the $O X Y$ reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of the velocity of C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.

Equations 6.69 through 6.88 are also applicable in the kinematic analysis of the RRT dyad in Figure 6.18, with the exception of Equations $6.77,6.83$, and 6.87 , which should be replaced with the following six equations:

$$
\begin{gather*}
\left\{\begin{array}{l}
x_{\mathrm{Q}}=x_{\mathrm{P}}+P Q \cdot \cos (\theta) \\
y_{\mathrm{Q}}=y_{\mathrm{P}}+P Q \cdot \sin (\theta)
\end{array}\right. \tag{6.89}\\
\left\{\begin{array}{l}
\dot{x}_{\mathrm{Q}}=\dot{x}_{\mathrm{P}}-P Q \cdot \sin (\theta) \cdot \dot{\theta} \\
\dot{y}_{\mathrm{Q}}=\dot{y}_{\mathrm{P}}+P Q \cdot \cos (\theta) \cdot \dot{\theta}
\end{array}\right. \tag{6.90}
\end{gather*}
$$

and

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{Q}}=\ddot{x}_{\mathrm{P}}-P Q \cdot \cos (\theta) \cdot \dot{\theta}^{2}-P Q \cdot \sin (\theta) \cdot \ddot{\theta} \tag{6.91}\\
\ddot{y}_{\mathrm{Q}}=\ddot{y}_{\mathrm{P}}-P Q \cdot \sin (\theta) \cdot \dot{\theta}^{2}+P Q \cdot \cos (\theta) \cdot \ddot{\theta}
\end{array}\right.
$$

where

$$
\begin{equation*}
P Q=\sqrt{\left(x_{\mathrm{Q}}-x_{\mathrm{P}}\right)^{2}+\left(y_{\mathrm{Q}}-y_{\mathrm{P}}\right)^{2}} \tag{6.92}
\end{equation*}
$$

Procedure RRT_in unit LibAssur that performs the kinematic analysis of the RR_T dyadic isomer has the following heading:

```
RRT_(Color, xA,YA,vxA,vyA,axA,ayA, xP,yP,vxP,vyP,axP,ayP,
xQ,yQ,vxQ,vyQ,axQ,ayQ, AC,BC, PlsMns, xB,yB,vxB,vyB,axB,ayB,
xC,yC,vxC,vyC,axC,ayC, Delta)
```

The correspondence between the formal parameters and the notations used in these equations and in Figure 6.18 is summarized in the following tables:

Input parameters of procedure RRT_:

$-16 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$
Color	xA	YA	vxA	vyA	axA	ayA	$\mathbf{x P}$	yP	vxP	vyP	axP	ayP
$\dot{x Q}$	$\dot{y} Q$		$\ddot{x} Q$		$\ddot{y} Q$		$A C$		$B C$		± 1	
vxQ	vyQ		axQ	ayQ		AC		BC	PlsMns			

Output parameters of procedure RRT_:

$x B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$	Δ
$\mathbf{x B}$	$\mathbf{v x B}$	vyB	axB	ayB	$\mathbf{x C}$	yC	$\mathbf{v x C}$	vyC	axC	ayC	Delta

FIGURE 6.19 The same mechanism in Figure 6.17 simulated using the RRT_ procedure. See also animation file F6_19.GIF available with the book.

The input parameter Color specifies the color in which the dyad will be plotted on the screen and to the DXF file. In comparison with the previous procedures, parameter Color can be assigned either a positive or a negative value. If Color is negative, then line $P Q$ representing the slider guide will not be plotted.

Same as in case of procedure $\operatorname{RR} _T$, parameter PlsMns controls the double sign in Equation 6.74 and should be set equal to either -1 or +1 , depending on the desired closure of the dyad (left hand or right hand).

Angle θ formed by guide $P Q$ with the horizontal axis and its first and second derivatives $\dot{\theta}$ and θ (which are not readily available as before) can be calculated by calling procedures AngPVA from unit LibMec2D. Inputs to procedure AngPVA will be the x and y coordinates of points P and Q and their first and second time derivatives.

Computer program P6_19.PAS available with the book repeats the simulation done with P6_17.PAS this time using procedure RRT_instead of RR_T. A screenshot generated with this new program is given in Figure 6.19, while F6_19.GIF provides a full cycle simulation of the mechanism.

6.11 KINEMATIC ANALYSIS OF THE RTR DYAD USING A VECTOR-LOOP APPROACH: PROCEDURE RT_R

Here, the position, velocity, and acceleration problem of the RTR dyad will be solved using a vector-loop approach. Figure 6.20a shows a generalized RTR dyad with both potential joints A and B offset from the axis of the sliding rod. Note that RT_R and R_TR are not distinct isomers, and therefore the kinematic equations remain the same. With the notations in Figure 6.20, the following parameters are assumed known at any instant of time of the kinematic analysis:

- Eccentricity $A C$ assumed perpendicular to $P Q$ (can be either positive or negative).
- Eccentricity $B P$ assumed perpendicular to $P Q$ (can be either positive or negative).
- Slider guide rod length $P Q$ (can be either positive or negative).

(a)

(b)

FIGURE 6.20 Notations used in solving the kinematics of the RTR dyad (a) and equivalent configurations from the perspective of point Q motion (b).

- Coordinates $x A, y A$ of potential joint A relative to the fixed reference frame $O X Y$.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.

The purpose of the analysis is to determine

- Displacement s of the slider measured as shown and its first and second derivatives \dot{s} and \ddot{s}, respectively.
- Coordinates $x C$ and $y C$ of joint center C relative to the $O X Y$ reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of the velocity of C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- Coordinates $x P, y P$ and $x Q, y Q$ of the respective points on the slider guide relative to the fixed reference frame.
- Projections $\dot{x} P$ and $\dot{y} P$ of the velocity of joint center P onto the fixed reference frame.
- Projections $\ddot{x} P$ and $\ddot{y} P$ of the accelerations of point P onto the fixed reference frame.
- Projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of point Q onto the fixed reference frame.
- Projections $\ddot{x} Q$ and $\ddot{y} Q$ of the accelerations of point Q onto the fixed reference frame.

Note that if eccentricities $A C$ and $B P$ are modified equal amounts, slider displacement s and its time derivatives will remain the same. Consequently, point Q attached offset to the sliding rod performs the same motion that can be obtained with either $A C$ or $B P$ being set equal to zero (see also Figure 6.20b).

We begin the analysis by writing the following vector equation:

$$
\begin{equation*}
\mathbf{O A}+\mathrm{AC}=\mathbf{O B}+\mathbf{B P}+\mathbf{P C} \tag{6.93}
\end{equation*}
$$

and project it on the axes of the fixed reference frame as

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}+A C \cdot \cos (\varphi)=x_{\mathrm{B}}+B P \cdot \cos (\varphi)+s \cdot \cos \left(\varphi+\frac{\pi}{2}\right) \tag{6.94}\\
y_{\mathrm{A}}+A C \cdot \sin (\varphi)=y_{\mathrm{B}}+B P \cdot \sin (\varphi)+s \cdot \sin \left(\varphi+\frac{\pi}{2}\right)
\end{array}\right.
$$

equivalent to

$$
\left\{\begin{array}{l}
(A C-B P) \cdot \cos (\varphi)+s \cdot \sin (\varphi)=x_{\mathrm{B}}-x_{\mathrm{A}} \tag{6.95}\\
(A C-B P) \cdot \sin (\varphi)-s \cdot \cos (\varphi)=y_{\mathrm{B}}-y_{\mathrm{A}}
\end{array}\right.
$$

We then square these last two equations:

$$
\left\{\begin{array}{l}
(A C-B P)^{2} \cdot \cos ^{2}(\varphi)+s^{2} \cdot \sin ^{2}(\varphi)+2 s \cdot(A C-B P) \cdot \cos (\varphi) \cdot \sin (\varphi)=\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2} \tag{6.96}\\
(A C-B P)^{2} \cdot \sin ^{2}(\varphi)+s^{2} \cdot \cos ^{2}(\varphi)-2 s \cdot(A C-B P) \cdot \cos (\varphi) \sin (\varphi)=\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}
\end{array}\right.
$$

and after adding them and rearranging terms, we obtain

$$
\begin{equation*}
(A C-B P)^{2}+s^{2}=\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2} \tag{6.97}
\end{equation*}
$$

The unknown slider displacement s will therefore result as

$$
\begin{equation*}
s= \pm \sqrt{\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}-(A C-B P)^{2}} \tag{6.98}
\end{equation*}
$$

In order to calculate the angle φ, we resort to Equation 6.95 and multiply the first one by s and the second one by $(A C-B P)$:

$$
\left\{\begin{array}{l}
s \cdot(A C-B P) \cdot \cos (\varphi)+s^{2} \cdot \sin (\varphi)=s \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) \tag{6.99}\\
(A C-B P)^{2} \cdot \sin (\varphi)-s \cdot(A C-B P) \cos (\varphi)=(A C-B P) \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)
\end{array}\right.
$$

and then add them together to obtain

$$
\begin{equation*}
\sin (\varphi)=\frac{s \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)+(A C-B P) \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)}{\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}} \tag{6.100}
\end{equation*}
$$

We repeat the procedure and multiply the first of Equations 6.95 by $(A C-B P)$ and the second one by $-s$:

$$
\left\{\begin{array}{l}
(A C-B P)^{2} \cdot \cos (\varphi)+s \cdot(A C-B P) \sin (\varphi)=(A C-B P) \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) \tag{6.101}\\
-s \cdot(A C-B P) \cdot \sin (\varphi)+s^{2} \cdot \cos (\varphi)=-s \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)
\end{array}\right.
$$

After adding the two equations together, we get

$$
\begin{equation*}
\cos (\varphi)=\frac{(A C-B P) \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)-s \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)}{\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}} \tag{6.102}
\end{equation*}
$$

The actual angle φ can be calculated using equation

$$
\begin{equation*}
\varphi=\arctan \left[\frac{s \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)+(A C-B P) \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)}{(A C-B P) \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)-s \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)}\right] \tag{6.103}
\end{equation*}
$$

Using the sin and cos function of angle φ in Equations 6.100 and 6.102, the coordinates of points C, P, and Q result as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{A}}+A C \cdot \cos (\varphi) \\
y_{\mathrm{C}}=y_{\mathrm{A}}+A C \cdot \sin (\varphi)
\end{array}\right. \tag{6.104}\\
& \left\{\begin{array}{l}
x_{\mathrm{P}}=x_{\mathrm{B}}+B P \cdot \cos (\varphi) \\
y_{\mathrm{P}}=y_{\mathrm{B}}+B P \cdot \sin (\varphi)
\end{array}\right. \tag{6.105}\\
& \left\{\begin{array}{l}
x_{\mathrm{Q}}=x_{\mathrm{P}}-P Q \cdot \sin (\varphi) \\
y_{\mathrm{Q}}=y_{\mathrm{P}}+P Q \cdot \cos (\varphi)
\end{array}\right. \tag{6.106}
\end{align*}
$$

Unknown angular velocities \dot{s} and $\dot{\varphi}$ are determined by differentiating Equations 6.95:

$$
\left\{\begin{array}{c}
-(A C-B P) \cdot \sin (\varphi) \cdot \dot{\varphi}+\dot{s} \cdot \sin (\varphi)+s \cdot \cos (\varphi) \cdot \dot{\varphi}=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}} \tag{6.107}\\
(A C-B P) \cdot \cos (\varphi) \cdot \dot{\varphi}-\dot{s} \cdot \cos (\varphi)+s \cdot \sin (\varphi) \cdot \dot{\varphi}=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}
\end{array}\right.
$$

which after collecting terms yield a set of two equations in the unknowns \dot{s} and $\dot{\varphi}$:

$$
\left\{\begin{array}{l}
{[s \cdot \cos (\varphi)-(A C-B P) \cdot \sin (\varphi)] \cdot \dot{\varphi}+\dot{s} \cdot \sin (\varphi)=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}}} \tag{6.108}\\
{[s \cdot \sin (\varphi)+(A C-B P) \cdot \cos (\varphi)] \cdot \dot{\varphi}-\dot{s} \cdot \cos (\varphi)=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}}
\end{array}\right.
$$

To determine the second time derivative of s and φ, we differentiate Equations 6.108 and get:

$$
\left\{\begin{array}{l}
{[s \cdot \cos (\varphi)-(A C-B P) \cdot \sin (\varphi)] \cdot \ddot{\varphi}+\ddot{s} \cdot \sin (\varphi)=\ddot{x}_{\mathrm{B}}-\ddot{x}_{\mathrm{A}}} \tag{6.109}\\
\quad-[\dot{s} \cdot \cos (\varphi)-s \cdot \sin (\varphi) \cdot \dot{\varphi}-(A C-B P) \cdot \cos (\varphi) \cdot \dot{\varphi}] \cdot \dot{\varphi}-\dot{s} \cdot \cos (\varphi) \cdot \dot{\varphi} \\
{[s \cdot \sin (\varphi)+(A C-B P) \cdot \cos (\varphi)] \cdot \ddot{\varphi}-\ddot{s} \cdot \cos (\varphi)=\ddot{y}_{\mathrm{B}}-\ddot{y}_{\mathrm{A}}} \\
\quad-[\dot{s} \cdot \sin (\varphi)+s \cdot \cos (\varphi) \cdot \dot{\varphi}-(A C-B P) \cdot \sin (\varphi) \cdot \dot{\varphi}] \cdot \dot{\varphi}-\dot{s} \cdot \sin (\varphi) \cdot \dot{\varphi}
\end{array}\right.
$$

and finally we obtain a set of two linear equations in the unknowns \ddot{s} and $\ddot{\varphi}$ that can be easily solved by eliminating one of the variables, or using Cramer's rule:

$$
\left\{\begin{array}{l}
{[s \cdot \cos (\varphi)-(A C-B P) \cdot \sin (\varphi)] \cdot \ddot{\varphi}+\ddot{s} \cdot \sin (\varphi)=\ddot{x}_{\mathrm{B}}-\ddot{x}_{\mathrm{A}}} \tag{6.110}\\
\quad-2 \dot{s} \cdot \cos (\varphi) \cdot \dot{\varphi}+s \cdot \sin (\varphi) \cdot \dot{\varphi}^{2}+(A C-B P) \cdot \cos (\varphi) \cdot \dot{\varphi}^{2} \\
{[s \cdot \sin (\varphi)+(A C-B P) \cdot \cos (\varphi)] \cdot \ddot{\varphi}-\ddot{s} \cdot \cos (\varphi)=\ddot{y}_{\mathrm{B}}-\ddot{y}_{\mathrm{A}}} \\
\quad-2 \dot{s} \cdot \sin (\varphi) \cdot \dot{\varphi}-s \cdot \cos (\varphi) \cdot \dot{\varphi}^{2}+(A C-B P) \cdot \sin (\varphi) \cdot \dot{\varphi}^{2}
\end{array}\right.
$$

The scalar components of the velocities and accelerations of points P, C, and Q are obtained by differentiating Equations 6.104, 6.105, and 6.106 as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{A}}-A C \cdot \sin (\varphi) \cdot \dot{\varphi} \\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{A}}+A C \cdot \cos (\varphi) \cdot \dot{\varphi}
\end{array}\right. \tag{6.111}\\
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{P}}=\dot{x}_{\mathrm{B}}-B P \cdot \sin (\varphi) \cdot \dot{\varphi} \\
\dot{y}_{\mathrm{P}}=\dot{y}_{\mathrm{B}}+B P \cdot \cos (\varphi) \cdot \dot{\varphi}
\end{array}\right. \tag{6.112}\\
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{Q}}=\dot{x}_{\mathrm{P}}-P Q \cdot \cos (\varphi) \cdot \dot{\varphi} \\
\dot{y}_{\mathrm{Q}}=\dot{y}_{\mathrm{P}}-P Q \cdot \sin (\varphi) \cdot \dot{\varphi}
\end{array}\right. \tag{6.113}
\end{align*}
$$

Differentiating one more time the same equations, we obtain the following acceleration equations:

$$
\begin{align*}
& \left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{A}}-A C \cdot\left[\cos (\varphi) \cdot \dot{\varphi}^{2}+\sin (\varphi) \cdot \ddot{\varphi}\right] \\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{A}}-A C \cdot\left[\sin (\varphi) \cdot \dot{\varphi}^{2}-\cos (\varphi) \cdot \ddot{\varphi}\right]
\end{array}\right. \tag{6.114}\\
& \left\{\begin{array}{l}
\ddot{x}_{\mathrm{P}}=x_{\mathrm{B}}-B P \cdot\left[\cos (\varphi) \cdot \dot{\varphi}^{2}+\sin (\varphi) \cdot \ddot{\varphi}\right] \\
\ddot{y}_{\mathrm{P}}=y_{\mathrm{B}}-B P \cdot\left[\sin (\varphi) \cdot \dot{\varphi}^{2}-\cos (\varphi) \cdot \ddot{\varphi}\right]
\end{array}\right. \tag{6.115}\\
& \left\{\begin{array}{l}
\ddot{x}_{\mathrm{Q}}=x_{\mathrm{P}}+P Q \cdot\left[\sin (\varphi) \cdot \dot{\varphi}^{2}-\cos (\varphi) \cdot \ddot{\varphi}\right] \\
\ddot{y}_{\mathrm{Q}}=y_{\mathrm{P}}-P Q \cdot\left[\cos (\varphi) \cdot \dot{\varphi}^{2}+\sin (\varphi) \cdot \ddot{\varphi}\right]
\end{array}\right. \tag{6.116}
\end{align*}
$$

Procedure $R T _R$ in unit LibAssur implements the equations discussed earlier and has the following heading:

```
procedure RT_R(Color:Word; xA,yA, vxA,vyA, axA,ayA, xB,yB,
vxB,vyB, axB,ayB, AC,BP,PQ:double; PlsMns:shortint; var xP,yP,
vxP,vyP, axP,ayP, xC,yC, vxC,vyC, axC,ayC, xQ,yQ, vxQ,vyQ,
axQ,ayQ, Delta:double);
```

The correspondence between the formal parameters and the notations used in Equations 6.93 through 6.110 and in Figure 6.20 is summarized in the following two tables:

Input parameters of procedure RT_R:

$0 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$A C$	$B C$	$B Q$
Color	$\mathbf{x A}$	$\mathbf{Y A}$	vxA	vYA	axA	ayA	$\mathbf{x B}$	$\mathbf{y B}$	$\mathbf{v x B}$	vyB	axB	ayB	AC	BC	BQ

Output parameters of procedure RT_R:

$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$	$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$
$\mathbf{x P}$	yP	vxP	vyP	axP	ayP	$\mathbf{x C}$	$\mathbf{y C}$	vxC	vyC	axC	ayC
$x Q$		$y Q$									
$\mathbf{x Q}$	$\mathrm{yQ} Q$		$\dot{y} Q$		$\ddot{x} Q$	$\ddot{y} Q$	Δ				

Note that the displacement s of the slider block relative to its guide and the first and second time derivatives \dot{s} and \ddot{s} are not returned by the procedure. If of interest, they can be easily determined by calling procedure VarDist from unit LibMec2D.

The simulation of the mechanism in Figure 6.21 has been done using program P6_21.PAS, the listing of which is available in Appendix B. The program calls procedure RT_R with

FIGURE 6.21 Simulation of a two-DOF mechanism consisting of an RTR dyad, driven by a crank and a rocker. See also animation file F6_21.GIF.

FIGURE 6.22 The four possible configurations of the mechanism in Figure 6.21 based on the sign of the eccentricities of the potential A and B of the RTR dyad. See also animation F6_22.GIF.
some of its output variables assigned the generic variable _. To ease identification, all joints are labeled in Figure 6.21. Also shown in the figure is the locus of point Q.

The companion Figure 6.22 and animation file F6_22.GIF illustrate the four possible arrangements that can be obtained by alternating the signs of the eccentricities $A C$ and $B P$ of the RTR dyad. Note that of these four mechanisms, two have full cycle mobility, while the other two experience locking positions.

6.12 KINEMATIC ANALYSIS OF THE TRT DYAD USING A VECTOR-LOOP APPROACH

The TRT and RTT dyads have fewer applications than the ones analyzed so far. On the other hand, both have increased number of isomers (i.e., $\mathrm{T}_{-} \mathrm{R} _\mathrm{T}$, _TRT $_{-}, \mathrm{T}_{-} \mathrm{RT} \mathrm{T}_{-}$and R_T_T, RT_T_, R_TT_, RT_T, respectively), due to the presence of two prismatic joints that can be configured either with the sliding block first followed by its conjugate sliding rod, or vice versa.

In this section, a vector-based kinematic analysis of the three possible isomers of the TRT dyad will be discussed. The corresponding kinematic equations have been implemented in procedures $T_{-} R_{-} T, T_{R} T_{-}$, and $T_{-} R T_{-}$part of unit LibAssur. Examples of mechanism simulations done with these procedures are also provided.

6.12.1 T_R_T Dyadic Isomer: Procedure T_R_T

In a kinematic simulation of the TRT dyad with two potential sliding blocks, noted T_R_T (Figure 6.23), the following parameters are assumed known at any instant of time:

- Coordinates $x A, y A$, of potential turning joint A relative to the fixed reference frame OXY.
- Coordinates $x B, y B$, of point B measured relative to the fixed reference frame.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of joint center B onto the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the accelerations of point B onto the fixed reference frame.
- Orientation angle θ_{1} of slider block A and its first and second time derivatives $\dot{\theta}_{1}$ and $\ddot{\theta}_{1}$, respectively.
- Orientation angle θ_{2} of slider block B and its first and second time derivatives $\dot{\theta}_{2}$ and $\ddot{\theta}_{2}$, respectively.
- Lengths $P_{1} Q_{1}$ and $Q_{1} C$ of the L-shaped link supporting slider block A (both can be either positive or negative).
- Lengths $P_{2} Q_{2}$ and $Q_{2} C$ of the L-shaped link supporting slider block B (either positive or negative).

These being given will allow us to calculate the following dependent parameters:

- Slider displacements s_{1} and s_{2} measured as shown and their time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and $\ddot{\Sigma}_{2}$.
- Coordinates $x C$ and $y C$ of pin joint center C relative to the $O X Y$ reference frame.

FIGURE 6.23 Notations used in the kinematic analysis of the T_R_T isomer of the TRT dyad.

- Projections $\dot{x} C$ and $\dot{y} C$ of the velocity of point C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of point C onto the axes of the fixed reference frame.
- Coordinates $x P_{1}$ and $y P_{1}$ of point P_{1} relative to the $O X Y$ reference frame.
- Projections $\dot{x} P_{1}$ and $\dot{y} P_{1}$ of the velocity of point P_{1} onto the axes of the fixed reference frame.
- Projections $\ddot{x} P_{1}$ and $\ddot{y} P_{1}$ of the acceleration of point P_{1} onto the axes of the fixed reference frame.
- Coordinates $x Q_{1}$ and $y Q_{1}$ of point Q_{1} relative to the $O X Y$ reference frame.
- Projections $\dot{x} Q_{1}$ and $\dot{y} Q_{1}$ of the velocity of point Q_{1} onto the axes of the fixed reference frame.
- Projections $\ddot{x} Q_{1}$ and $\ddot{y} Q_{1}$ of the acceleration of point Q_{1} onto the axes of the fixed reference frame.
- Coordinates $x P_{2}$ and $y P_{2}$ of point P_{2} relative to the $O X Y$ reference frame.
- Projections $\dot{x} P_{2}$ and $\dot{y} P_{2}$ of the velocity of point P_{2} onto the axes of the fixed reference frame.
- Projections $\ddot{x} P_{2}$ and $\ddot{y} P_{2}$ of the acceleration of point P_{2} onto the axes of the fixed reference frame.
- Coordinates $x Q_{2}$ and $y Q_{2}$ of point Q_{2} relative to the $O X Y$ reference frame.
- Projections $\dot{x} Q_{2}$ and $\dot{y} Q_{2}$ of the velocity of point Q_{2} onto the axes of the fixed reference frame.
- Projections $\ddot{x} Q_{2}$ and $\ddot{y} Q_{2}$ of the acceleration of point Q_{2} onto the axes of the fixed reference frame.

We begin by writing the following vector-loop equation:

$$
\begin{equation*}
\mathbf{O A}+\mathbf{A Q}_{1}+\mathbf{Q}_{1} \mathbf{C}=\mathbf{O B}+\mathbf{B Q}_{2}+\mathbf{Q}_{2} \mathbf{C} \tag{6.117}
\end{equation*}
$$

which projects on the x - and y-axes of the fixed reference frame as

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}-s_{1} \cdot \cos \left(\theta_{1}\right)+\mathrm{Q}_{1} C \cdot \cos \left(\theta_{1}-\frac{\pi}{2}\right)=x_{\mathrm{B}}-s_{2} \cdot \cos \left(\theta_{2}\right)+\mathrm{Q}_{2} C \cdot \cos \left(\theta_{2}-\frac{\pi}{2}\right) \tag{6.118}\\
y_{\mathrm{A}}-s_{1} \cdot \sin \left(\theta_{1}\right)+\mathrm{Q}_{1} C \cdot \sin \left(\theta_{1}-\frac{\pi}{2}\right)=y_{\mathrm{B}}-s_{2} \cdot \sin \left(\theta_{2}\right)+Q_{2} C \cdot \sin \left(\theta_{2}-\frac{\pi}{2}\right)
\end{array}\right.
$$

We rearrange them as a set of two linear equations in the unknowns s_{1} and s_{2} that is easy to solve:

$$
\left\{\begin{array}{l}
s_{1} \cdot \cos \left(\theta_{1}\right)-s_{2} \cdot \cos \left(\theta_{2}\right)=x_{\mathrm{A}}-x_{\mathrm{B}}+Q_{1} C \cdot \sin \left(\theta_{1}\right)+Q_{2} C \cdot \sin \left(\theta_{2}\right) \tag{6.119}\\
s_{1} \cdot \sin \left(\theta_{1}\right)-s_{2} \cdot \sin \left(\theta_{2}\right)=y_{\mathrm{A}}-y_{\mathrm{B}}-Q_{1} C \cdot \cos \left(\theta_{1}\right)-Q_{2} C \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

Note that Equations 6.119 have unique solutions only if

$$
\begin{equation*}
\sin \left(\theta_{1}\right) \cdot \cos \left(\theta_{2}\right)-\cos \left(\theta_{1}\right) \cdot \sin \left(\theta_{2}\right) \neq 0 \quad \text { or } \quad \theta_{1} \neq \theta_{2} \tag{6.120}
\end{equation*}
$$

Once slider displacements s_{1} and s_{2} become known, the coordinates of points C, P_{1}, P_{2}, Q_{1}, and Q_{2} required to represent graphically the T_R_T dyadic isomer can be calculated using the following equations:

$$
\begin{gather*}
\left\{\begin{array}{l}
x_{\mathrm{Q}_{1}}=x_{\mathrm{A}}-s_{1} \cdot \cos \left(\theta_{1}\right) \\
y_{\mathrm{Q}_{1}}=y_{\mathrm{A}}-s_{1} \cdot \sin \left(\theta_{1}\right)
\end{array}\right. \tag{6.121}\\
\left\{\begin{array}{l}
x_{\mathrm{P}_{1}}=x_{\mathrm{Q}_{1}}-P_{1} \mathrm{Q}_{1} \cdot \cos \left(\theta_{1}\right) \\
y_{\mathrm{P}_{1}}=y_{\mathrm{Q}_{1}}-P_{1} \mathrm{Q}_{1} \cdot \sin \left(\theta_{1}\right)
\end{array}\right. \tag{6.122}\\
\left\{\begin{array}{l}
x_{\mathrm{Q}_{2}}=x_{\mathrm{B}}-s_{2} \cdot \cos \left(\theta_{2}\right) \\
y_{\mathrm{Q}_{2}}=y_{\mathrm{B}}-s_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right. \tag{6.123}\\
\left\{\begin{array}{l}
x_{\mathrm{P}_{2}}=x_{\mathrm{Q}_{2}}-P_{2} \mathrm{Q}_{2} \cdot \cos \left(\theta_{2}\right) \\
y_{\mathrm{P}_{2}}=y_{\mathrm{Q}_{2}}-P_{2} \mathrm{Q}_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right. \tag{6.124}
\end{gather*}
$$

The coordinates of joint C can be calculated using either of the following two equations:

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{A}}-s_{1} \cdot \cos \left(\theta_{1}\right)+\mathrm{Q}_{1} C \cdot \sin \left(\theta_{1}\right)=x_{\mathrm{Q}_{1}}+Q_{1} C \cdot \sin \left(\theta_{1}\right) \tag{6.125a}\\
y_{\mathrm{C}}=y_{\mathrm{A}}-s_{1} \cdot \sin \left(\theta_{1}\right)-Q_{1} C \cdot \cos \left(\theta_{1}\right)=y_{\mathrm{Q}_{1}}-Q_{1} C \cdot \cos \left(\theta_{1}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{B}}-s_{2} \cdot \cos \left(\theta_{2}\right)-\mathrm{Q}_{2} C \cdot \sin \left(\theta_{2}\right)=x_{\mathrm{Q}_{2}}-Q_{2} C \cdot \sin \left(\theta_{2}\right) \tag{6.125b}\\
y_{\mathrm{C}}=y_{\mathrm{B}}-s_{2} \cdot \sin \left(\theta_{2}\right)+Q_{2} C \cdot \cos \left(\theta_{2}\right)=y_{\mathrm{Q}_{2}}+Q_{2} C \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

To solve the velocity problem, we differentiate with respect to time Equation 6.119 and obtain a set of two linear equations in the unknowns \dot{s}_{1} and \dot{s}_{2}, that is:

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{B}}+\dot{\theta}_{1} \cdot s_{1} \cdot \sin \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right) \tag{6.126}\\
\quad+\dot{\theta}_{1} \cdot Q_{1} C \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot Q_{2} C \cdot \cos \left(\theta_{2}\right) \\
\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{B}}-\dot{\theta}_{1} \cdot s_{1} \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right) \\
\quad+\dot{\theta}_{1} \cdot Q_{1} C \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot Q_{2} C \cdot \sin \left(\theta_{2}\right)
\end{array}\right.
$$

By applying Equations 6.121, 6.123, and 6.125, these last two equations simplify to

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{B}}+\dot{\theta}_{1} \cdot\left(y_{\mathrm{A}}-y_{\mathrm{C}}\right)-\dot{\theta}_{2} \cdot\left(y_{\mathrm{B}}-y_{\mathrm{C}}\right) \tag{6.127}\\
\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{B}}-\dot{\theta}_{1} \cdot\left(x_{\mathrm{A}}-x_{\mathrm{C}}\right)+\dot{\theta}_{2} \cdot\left(x_{\mathrm{B}}-x_{\mathrm{C}}\right)
\end{array}\right.
$$

The x and y components of the velocities of points C, P_{1}, P_{2}, Q_{1}, and Q_{2} result through differentiation with respect to time of Equations 6.121 through 6.125:

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{\mathrm{Q}_{1}}=\dot{x}_{\mathrm{A}}-\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{1} \cdot s_{1} \cdot \sin \left(\theta_{1}\right) \\
\dot{y}_{\mathrm{Q}_{1}}=\dot{y}_{\mathrm{A}}-\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{\theta}_{1} \cdot s_{1} \cdot \cos \left(\theta_{1}\right)
\end{array}\right. \tag{6.128}\\
\left\{\begin{array}{l}
\dot{x}_{\mathrm{P}_{1}}=\dot{x}_{\mathrm{Q}_{1}}+\dot{\theta}_{1} \cdot P_{1} Q_{1} \cdot \sin \left(\theta_{1}\right) \\
\dot{y}_{\mathrm{P}_{1}}=\dot{y}_{\mathrm{Q}_{1}}-\dot{\theta}_{1} \cdot P_{1} \mathrm{Q}_{1} \cdot \cos \left(\theta_{1}\right)
\end{array}\right. \tag{6.129}\\
\left\{\begin{array}{l}
\dot{x}_{\mathrm{Q}_{2}}=\dot{x}_{\mathrm{B}}-\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)+\dot{\theta}_{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right) \\
\dot{y}_{\mathrm{Q}_{2}}=\dot{y}_{\mathrm{B}}-\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)-\dot{\theta}_{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right)
\end{array}\right. \tag{6.130}\\
\left\{\begin{array}{l}
\dot{x}_{\mathrm{P}_{2}}=\dot{x}_{\mathrm{Q}_{2}}+\dot{\theta}_{2} \cdot P_{2} Q_{2} \cdot \sin \left(\theta_{2}\right) \\
\dot{y}_{\mathrm{P}_{2}}=\dot{y}_{\mathrm{Q}_{2}}-\dot{\theta}_{2} \cdot P_{2} \mathrm{Q}_{2} \cdot \cos \left(\theta_{2}\right)
\end{array}\right. \tag{6.131}
\end{gather*}
$$

and for joint C,

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{Q}_{1}}+\dot{\theta}_{1} \cdot Q_{1} C \cdot \cos \left(\theta_{1}\right) \tag{6.132a}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{Q}_{1}}+\dot{\theta}_{1} \cdot Q_{1} C \cdot \sin \left(\theta_{1}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{Q}_{2}}-\dot{\theta}_{1} \cdot Q_{2} C \cdot \cos \left(\theta_{2}\right) \tag{6.132b}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{Q}_{2}}-\dot{\theta}_{1} \cdot Q_{2} C \cdot \sin \left(\theta_{2}\right)
\end{array}\right.
$$

To solve the acceleration problem, we first differentiate Equations 6.127, which yield the following set of two linear equations in the unknowns \ddot{s}_{1} and \ddot{s}_{2} :

$$
\left\{\begin{array}{c}
\ddot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\ddot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\ddot{x}_{\mathrm{A}}-\ddot{x}_{\mathrm{B}}+\ddot{\theta}_{1} \cdot\left(y_{\mathrm{A}}-y_{\mathrm{C}}\right)+\dot{\theta}_{1} \cdot\left(\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{C}}\right) \tag{6.133}\\
\quad-\ddot{\theta}_{2} \cdot\left(y_{\mathrm{B}}-y_{\mathrm{C}}\right)-\dot{\theta}_{2} \cdot\left(\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{C}}\right)+\dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \sin \left(\theta_{2}\right) \\
\ddot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\ddot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\ddot{y}_{\mathrm{A}}-\ddot{y}_{\mathrm{B}}-\ddot{\theta}_{1} \cdot\left(x_{\mathrm{A}}-x_{\mathrm{C}}\right)+\dot{\theta}_{1} \cdot\left(\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{C}}\right) \\
\quad+\ddot{\theta}_{2} \cdot\left(x_{\mathrm{B}}-x_{\mathrm{C}}\right)+\dot{\theta}_{2} \cdot\left(\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{C}}\right)-\dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

In turn, the components of the accelerations of points C, P_{1}, P_{2}, Q_{1}, and Q_{2} result by differentiating with respect to time Equations 6.128 through 6.132, that is,

$$
\begin{gather*}
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{Q}_{1}}=\ddot{x}_{\mathrm{A}}-\ddot{s}_{1} \cdot \cos \left(\theta_{1}\right)+2 \dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\ddot{\theta}_{1} \cdot s_{1} \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{1}^{2} \cdot s_{1} \cdot \cos \left(\theta_{1}\right) \\
\ddot{y}_{\mathrm{Q}_{1}}=\ddot{y}_{\mathrm{A}}-\ddot{s}_{1} \cdot \sin \left(\theta_{1}\right)-2 \dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\ddot{\theta}_{1} \cdot s_{1} \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{1}^{2} \cdot s_{1} \cdot \sin \left(\theta_{1}\right)
\end{array}\right. \tag{6.134}\\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{P}_{1}}=\ddot{x}_{\mathrm{Q}_{1}}+\ddot{\theta}_{1} \cdot P_{1} Q_{1} \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{1}^{2} \cdot P_{1} Q_{1} \cdot \cos \left(\theta_{1}\right) \\
\dot{y}_{\mathrm{P}_{1}}=\dot{y}_{\mathrm{Q}_{1}}-\ddot{\theta}_{1} \cdot P_{1} Q_{1} \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{1}^{2} \cdot P_{1} Q_{1} \cdot \sin \left(\theta_{1}\right)
\end{array}\right. \tag{6.135}\\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{Q}_{2}}=\ddot{x}_{\mathrm{B}}-\ddot{s}_{2} \cdot \cos \left(\theta_{2}\right)+2 \dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \sin \left(\theta_{2}\right)+\ddot{\theta}_{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right)+\dot{\theta}_{2}^{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right) \\
\ddot{y}_{\mathrm{Q}_{2}}=\ddot{y}_{\mathrm{B}}-\ddot{s}_{2} \cdot \sin \left(\theta_{2}\right)-2 \dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \cos \left(\theta_{2}\right)-\ddot{\theta}_{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right)+\dot{\theta}_{2}^{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right. \tag{6.136}\\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{P}_{2}}=\ddot{x}_{\mathrm{Q}_{2}}+\ddot{\theta}_{2} \cdot P_{2} Q_{2} \cdot \sin \left(\theta_{2}\right)+\dot{\theta}_{2}^{2} \cdot P_{2} Q_{2} \cdot \cos \left(\theta_{2}\right) \\
\ddot{y}_{\mathrm{P}_{2}}=\ddot{y}_{\mathrm{Q}_{2}}-\ddot{\theta}_{2} \cdot P_{2} Q_{2} \cdot \cos \left(\theta_{2}\right)+\dot{\theta}_{2}^{2} \cdot P_{2} Q_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right. \tag{6.137}
\end{gather*}
$$

and the same for joint C,

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{Q}_{1}}+\ddot{\theta}_{1} \cdot Q_{1} C \cdot \cos \left(\theta_{1}\right)-\dot{\theta}_{1}^{2} \cdot Q_{1} C \cdot \sin \left(\theta_{1}\right) \tag{6.138a}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{Q}_{1}}+\ddot{\theta}_{1} \cdot Q_{1} C \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{1}^{2} \cdot Q_{1} C \cdot \cos \left(\theta_{1}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{Q}_{2}}-\ddot{\theta}_{2} \cdot Q_{2} C \cdot \cos \left(\theta_{2}\right)+\dot{\theta}_{2}^{2} \cdot Q_{2} C \cdot \sin \left(\theta_{2}\right) \tag{6.138b}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{Q}_{2}}-\ddot{\theta}_{2} \cdot Q_{2} C \cdot \sin \left(\theta_{2}\right)-\dot{\theta}_{2}^{2} \cdot Q_{2} C \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

The equations derived earlier have been implemented in procedure $T _R _T$ part of unit LibAssur. The heading of this procedure is

```
T_R_T(Color:Word; xA,YA, vxA,vyA, axA,ayA, xB,yB, vxB, vyB,
axB,ayB, Theta1,dTheta1,ddTheta1, Theta2,dTheta2,ddTheta2, P1Q1,
Q1C, P2Q2, Q2C:double; var xP1,YP1, vxP1,vyP1, axP1,ayP1, xQ1,YQ1,
vxQ1,vyQ1, axQ1,ayQ1, xP2,YP2, vxP2,vyP2, axP2,ayP2, xQ2,yQ2,
vxQ2,vyQ2, axQ2,ayQ2, xC,yC, vxC,vyC, axC,ayC: double;
var OK:Boolean);
```

The correspondence between the formal parameters and the notations used in Equations 6.118 through 6.138 and in Figure 6.23 is summarized in the following tables:

Input parameters of procedure $T_{-} R_{-} T$:

| $0 \ldots 16$ | $x A$ | $y A$ | $\dot{x} A$ | $\dot{y} A$ | $\ddot{x} A$ | $\ddot{y} A$ | $x B$ | $y B$ | $\dot{x} B$ | $\dot{y} B$ | $\ddot{x} B$ | $\ddot{y} B$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Color | xA | yA | vxA | vyA | axA | ayA | xB | $\mathbf{y B}$ | vxB | vyB | axB | ayB |
| | | | | | | | | | | | | |
| θ_{1} | $\dot{\theta}_{1}$ | $\ddot{\theta}_{1}$ | θ_{2} | $\dot{\theta}_{2}$ | $\ddot{\theta}_{2}$ | $P_{1} Q_{1}$ | $Q_{1} C$ | $P_{2} Q_{2}$ | $Q_{2} C$ | | | |
| Theta1 | dTheta1 | ddTheta1 | Theta2 | dTheta2 | ddTheta2 | P1Q1 | Q1C | P2Q2 | Q2C | | | |

Output parameters of procedure $T _$R_T:

$\begin{aligned} & x P_{1} \\ & \mathbf{x P 1} \end{aligned}$	$\begin{gathered} y P_{1} \\ \mathrm{yP} 1 \end{gathered}$	$\begin{gathered} \dot{x} P_{1} \\ \text { vxP1 } \end{gathered}$	$\begin{gathered} \dot{y} P_{1} \\ \text { vyP1 } \end{gathered}$	$\ddot{x} P_{1}$ axP1		$\begin{gathered} \ddot{y} P_{1} \\ \text { ayP1 } \end{gathered}$	$\begin{aligned} & x Q_{1} \\ & \mathbf{x Q 1} \end{aligned}$	$\begin{aligned} & y Q_{1} \\ & y Q 1 \end{aligned}$	$\begin{gathered} \dot{x} Q_{1} \\ \mathrm{vxQ1} \end{gathered}$	$\begin{gathered} \dot{y} Q_{1} \\ \mathrm{vyQ1} \end{gathered}$	$\begin{gathered} \ddot{x} Q_{1} \\ a x Q 1 \end{gathered}$	$\begin{gathered} \ddot{y} Q_{1} \\ \text { ayQ1 } \end{gathered}$
$x P_{2}$	$y P_{2}$	$\dot{x} P_{2}$	$\dot{y} P_{2}$	$\ddot{x} P_{2}$	$\ddot{y} P_{2}$	$x Q_{2}$	$y Q_{2}$	$\dot{x} Q_{2}$	$\dot{j} Q_{2}$	$\ddot{x} Q_{2}$	$\ddot{y} Q_{2}$	$\theta_{1} \neq \theta_{2}$
xP2	yP 2	vxP2	vyP2	axp2	ayP2	xQ2	YQ2	vxQ2	vyQ2	axQ2	ayQ2	OK

Note that the relative displacements s_{1} and s_{2} of slider blocks A and B and their first and second time derivatives are not returned by the procedure because they can be easily calculated using procedure VarDist.

FIGURE 6.24 A two-DOF mechanism consisting of a T_R_T dyadic isomer with two potential sliding blocks driven by two rockers. See also animated file F6_24.GIF, the frames of which have been generated using program P6_24.PAS.

Program P6_24.PAS listed in Appendix B is a sample mechanism simulation (Figure 6.24) that employs procedure $T _R$ _T. For simplicity, no velocity and acceleration values are transmitted to procedure $T _R _T$, and therefore no velocity and acceleration results are returned by the program.

6.12.2 _TRT_ Dyadic Isomer: Procedure _TRT

In the kinematic simulation of the _TRT_ isomer of the TRT dyad with two potential sliding rods (Figure 6.25), the following parameters are assumed known at any given time:

- Coordinates $x P_{1}, y P_{1}$ and $x Q_{1}, y Q_{1}$ relative to the fixed reference frame of the ends of slider $\operatorname{rod} P_{1} Q_{1}$.
- Projections $\dot{x} P_{1}$ and $\dot{y} P_{1}$ of the velocity of point P_{1} onto the fixed reference frame.

FIGURE 6.25 Notations used in the kinematics of the _TRT_ dyadic isomer.

- Projections $\ddot{x} P_{1}$ and $\ddot{y} P_{1}$ of the accelerations of point P_{1} onto the fixed reference frame.
- Projections $\dot{x} Q_{1}$ and $\dot{y} Q_{1}$ of the velocity of point Q_{1} onto the fixed reference frame.
- Projections $\ddot{x} Q_{1}$ and $\ddot{y} Q_{1}$ of the accelerations of point Q_{1} onto the fixed reference frame.
- Coordinates $x P_{2}, y P_{2}$ and $x Q_{2}, y Q_{2}$ relative to the fixed reference frame of the ends of slider $\operatorname{rod} P_{2} Q_{2}$.
- Projections $\dot{x} P_{2}$ and $\dot{y} P_{2}$ of the velocity of point P_{2} onto the fixed reference frame.
- Projections $\ddot{x} P_{2}$ and $\ddot{y} P_{2}$ of the accelerations of point P_{2} onto the fixed reference frame.
- Projections $\dot{x} Q_{2}$ and $\dot{y} Q_{2}$ of the velocity of joint center Q_{2} onto the fixed reference frame.
- Projections $\ddot{x} Q_{2}$ and $\ddot{y} Q_{2}$ of the accelerations of point Q_{2} onto the fixed reference frame.
- Offset $A C$ between sliding block A and pin joint C (can be either positive or negative).
- Offset $B C$ between sliding block B and pin joint C (can be either positive or negative).

The purpose of the analysis is to determine

- Displacements s_{1} and s_{2} of slider blocks A and B measured as shown and their first and second time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2}.
- The coordinates $x C$ and $y C$ of pin joint center C relative to the $O X Y$ reference frame.
- The projections $\dot{x} C$ and $\dot{y} C$ of the velocity of C onto the axes of the fixed reference frame.
- The projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.

Same as before, we begin by writing the vector-loop equation of the dyad, that is,

$$
\begin{equation*}
\mathbf{O P}_{1}+\mathbf{P}_{1} \mathbf{A}+\mathbf{A C}=\mathbf{O P}_{2}+\mathbf{P}_{2} \mathbf{B}+\mathbf{B C} \tag{6.139}
\end{equation*}
$$

which projects on the x - and y-axes of the $O X Y$ reference frame as

$$
\left\{\begin{array}{l}
x_{\mathrm{P}_{1}}+s_{1} \cdot \cos \left(\theta_{1}\right)+A C \cdot \cos \left(\theta_{1}-\frac{\pi}{2}\right)=x_{\mathrm{P}_{2}}+s_{2} \cdot \cos \left(\theta_{2}\right)+B C \cdot \cos \left(\theta_{2}-\frac{\pi}{2}\right) \tag{6.140}\\
y_{\mathrm{P}_{1}}+s_{1} \cdot \sin \left(\theta_{1}\right)+A C \cdot \sin \left(\theta_{1}-\frac{\pi}{2}\right)=y_{\mathrm{P}_{2}}+s_{2} \cdot \sin \left(\theta_{2}\right)+B C \cdot \sin \left(\theta_{2}-\frac{\pi}{2}\right)
\end{array}\right.
$$

We rearrange them as a set of two linear equations in the unknowns s_{1} and s_{2} that is easy to solve:

$$
\left\{\begin{array}{l}
s_{1} \cdot \cos \left(\theta_{1}\right)-s_{2} \cdot \cos \left(\theta_{2}\right)=x_{\mathrm{P}_{2}}-x_{\mathrm{P}_{1}}-A C \cdot \sin \left(\theta_{1}\right)-B C \cdot \sin \left(\theta_{2}\right) \tag{6.141}\\
s_{1} \cdot \sin \left(\theta_{1}\right)-s_{2} \cdot \sin \left(\theta_{2}\right)=y_{\mathrm{P}_{2}}-y_{\mathrm{P}_{1}}+A C \cdot \cos \left(\theta_{1}\right)+B C \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

For these two equations to have distinct solutions, the same condition (6.120) must hold true and should be verified before further kinematic calculations are performed.

Once slider displacements s_{1} and s_{2} become available, the coordinates of points A, B can be calculated with the following equations:

$$
\begin{align*}
& \left\{\begin{array}{l}
x_{\mathrm{A}}=x_{\mathrm{P}_{1}}+s_{1} \cdot \cos \left(\theta_{1}\right) \\
y_{\mathrm{A}}=y_{\mathrm{P}_{1}}+s_{1} \cdot \sin \left(\theta_{1}\right)
\end{array}\right. \tag{6.142}\\
& \left\{\begin{array}{l}
x_{\mathrm{B}}=x_{\mathrm{P}_{2}}+s_{2} \cdot \cos \left(\theta_{2}\right) \\
y_{\mathrm{B}}=y_{\mathrm{P}_{2}}+s_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right. \tag{6.143}
\end{align*}
$$

The coordinates of pin joint center C can be calculated with either equation:

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{A}}+A C \cdot \cos \left(\theta_{1}-\frac{\pi}{2}\right)=x_{\mathrm{A}}+A C \cdot \sin \left(\theta_{1}\right) \tag{6.144a}\\
y_{\mathrm{C}}=y_{\mathrm{A}}+A C \cdot \sin \left(\theta_{1}-\frac{\pi}{2}\right)=y_{\mathrm{A}}-A C \cdot \cos \left(\theta_{1}\right)
\end{array}\right.
$$

or equation

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{B}}+B C \cdot \cos \left(\theta_{2}-\frac{\pi}{2}\right)=x_{\mathrm{B}}-B C \cdot \sin \left(\theta_{2}\right) \tag{6.144b}\\
y_{\mathrm{C}}=y_{\mathrm{B}}+B C \cdot \sin \left(\theta_{2}-\frac{\pi}{2}\right)=y_{\mathrm{B}}+B C \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

The velocity problem requires solving the following equations:

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)= \tag{6.145}\\
\quad \dot{x}_{\mathrm{P}_{2}}-\dot{x}_{\mathrm{P}_{1}}-\dot{\theta}_{1} \cdot A C \cdot \cos \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot B C \cdot \cos \left(\theta_{2}\right)+\dot{\theta}_{1} \cdot s_{1} \cdot \sin \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right) \\
\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)= \\
\quad \dot{y}_{\mathrm{P}_{2}}-\dot{y}_{\mathrm{P}_{1}}-\dot{\theta}_{1} \cdot A C \cdot \sin \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot B C \cdot \sin \left(\theta_{2}\right)-\dot{\theta}_{1} \cdot s_{1} \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

in the unknown relative displacements \dot{s}_{1} and \dot{s}_{2} of the slider. These equations were obtained by differentiating with respect to time Equations 6.141. By further applying Equations $6.142,6.143$, and 6.144 b , we further get

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\dot{x}_{\mathrm{P}_{2}}-\dot{x}_{\mathrm{P}_{1}}+\dot{\theta}_{1} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{P}_{1}}\right)-\dot{\theta}_{2} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{P}_{2}}\right) \tag{6.146}\\
\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\dot{y}_{\mathrm{P}_{2}}-\dot{y}_{\mathrm{P}_{1}}-\dot{\theta}_{1} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{P}_{1}}\right)+\dot{\theta}_{2} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{P}_{2}}\right)
\end{array}\right.
$$

In turn, the scalar velocities of points A, B, and C are obtained through differentiation with respect to time of Equations 6.142 through 6.144. These are as follows:

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{\mathrm{A}}=\dot{x}_{\mathrm{P}_{1}}+\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\dot{\theta}_{1} \cdot s_{1} \cdot \sin \left(\theta_{1}\right) \\
\dot{y}_{\mathrm{A}}=\dot{y}_{\mathrm{P}_{1}}+\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{1} \cdot s_{1} \cdot \cos \left(\theta_{1}\right)
\end{array}\right. \tag{6.147}\\
\left\{\begin{array}{l}
\dot{x}_{\mathrm{B}}=\dot{x}_{\mathrm{P}_{2}}+\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)-\dot{\theta}_{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right) \\
y_{\mathrm{B}}=y_{\mathrm{P}_{2}}+s_{2} \cdot \sin \left(\theta_{2}\right)+\dot{\theta}_{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right)
\end{array}\right. \tag{6.148}
\end{gather*}
$$

and

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{A}}+\dot{\theta}_{1} \cdot A C \cdot \cos \left(\theta_{1}\right) \tag{6.149a}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{A}}+\dot{\theta}_{1} \cdot A C \cdot \sin \left(\theta_{1}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{B}}-\dot{\theta}_{2} \cdot B C \cdot \cos \left(\theta_{2}\right) \tag{6.149b}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{B}}-\dot{\theta}_{2} \cdot B C \cdot \sin \left(\theta_{2}\right)
\end{array}\right.
$$

To solve the acceleration problem, we first differentiate Equation 6.146, which yields the following set of two linear equations in the unknowns \ddot{s}_{1} and \ddot{s}_{2} :

$$
\left\{\begin{array}{l}
\ddot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\ddot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\ddot{x}_{\mathrm{P}_{2}}-\ddot{x}_{\mathrm{P}_{1}}+\ddot{\theta}_{1} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{P}_{1}}\right)-\ddot{\theta}_{2} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{P}_{2}}\right) \tag{6.150}\\
\quad+\dot{\theta}_{1} \cdot\left(\dot{y}_{\mathrm{C}}-\dot{y}_{\mathrm{P}_{1}}\right)-\dot{\theta}_{2} \cdot\left(\dot{y}_{\mathrm{C}}-\dot{y}_{\mathrm{P}_{2}}\right)+\dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \sin \left(\theta_{2}\right) \\
\ddot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\ddot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\ddot{y}_{\mathrm{P}_{2}}-\ddot{y}_{\mathrm{P}_{1}}-\ddot{\theta}_{1} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{P}_{1}}\right)+\ddot{\theta}_{2} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{P}_{2}}\right) \\
\quad-\dot{\theta}_{1} \cdot\left(\dot{x}_{\mathrm{C}}-\dot{x}_{\mathrm{P}_{1}}\right)+\dot{\theta}_{2} \cdot\left(\dot{x}_{\mathrm{C}}-\dot{x}_{\mathrm{P}_{2}}\right)-\dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right.
$$

The accelerations of points A, B, and C result from the differentiation with respect to time Equations 6.147 through 6.149b:

$$
\begin{gather*}
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{A}}=\ddot{x}_{\mathrm{P} 1}+\ddot{s}_{1} \cdot \cos \left(\theta_{1}\right)-2 \dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \sin \left(\theta_{1}\right)-\ddot{\theta}_{1} \cdot s_{1} \cdot \sin \left(\theta_{1}\right)-\dot{\theta}_{1}^{2} \cdot s_{1} \cdot \cos \left(\theta_{1}\right) \\
\ddot{y}_{\mathrm{A}}=\ddot{y}_{\mathrm{P} 1}+\ddot{s}_{1} \cdot \sin \left(\theta_{1}\right)+2 \dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\ddot{\theta}_{1} \cdot s_{1} \cdot \cos \left(\theta_{1}\right)-\dot{\theta}_{1}^{2} \cdot s_{1} \cdot \sin \left(\theta_{1}\right)
\end{array}\right. \tag{6.151}\\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{B}}=\ddot{x}_{\mathrm{P}_{2}}+\ddot{s}_{2} \cdot \cos \left(\theta_{2}\right)-2 \dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \sin \left(\theta_{2}\right)-\ddot{\theta}_{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right)-\dot{\theta}_{2}^{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right) \\
\ddot{y}_{\mathrm{B}}=\ddot{y}_{\mathrm{P}_{2}}+\ddot{s}_{2} \cdot \sin \left(\theta_{2}\right)+2 \dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \cos \left(\theta_{2}\right)+\ddot{\theta}_{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right)-\dot{\theta}_{2}^{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right. \tag{6.152}
\end{gather*}
$$

and

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{A}}+\ddot{\theta}_{1} \cdot A C \cdot \cos \left(\theta_{1}\right)-\dot{\theta}_{1}^{2} \cdot A C \cdot \sin \left(\theta_{1}\right) \tag{6.153a}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{A}}+\ddot{\theta}_{1} \cdot A C \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{1}^{2} \cdot A C \cdot \cos \left(\theta_{1}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{B}}-\ddot{\theta}_{2} \cdot B C \cdot \cos \left(\theta_{2}\right)+\dot{\theta}_{2}^{2} \cdot B C \cdot \sin \left(\theta_{2}\right) \tag{6.153b}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{B}}-\ddot{\theta}_{2} \cdot B C \cdot \sin \left(\theta_{2}\right)-\dot{\theta}_{2}^{2} \cdot B C \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

Note that angles θ_{1} and θ_{2} occurring in these equations and their time derivatives $\dot{\theta}_{1}$, $\dot{\theta}_{2}, \ddot{\theta}_{1}$, and $\ddot{\theta}_{2}$ must be evaluated first. This can be done conveniently by calling procedure AngPVA with its arguments equal to the x and y coordinates of points P_{1}, Q_{1}, P_{2}, and Q_{2} and to the first and second time derivatives of these coordinates.

FIGURE 6.26 A two-DOF mechanism consisting of a _TRT_ dyadic isomer driven by two rockers. See also animation file F6_26.GIF, the frames of which have been generated using program P6_26.PAS.

These equations have been programmed in procedure _TRT_part of unit LibAssur with the following heading:

```
_TRT_(Color:Word; xP1,yP1, vxP1,vyP1, axP1,ayP1, xQ1,yQ1,
vxQ1,vyQ1, axQ1,ayQ1, xP2,yP2, vxP2,vyP2, axP2,ayP2, xQ2,yQ2,
vxQ2,vyQ2, axQ2,ayQ2, AC,BC:double; var xA,YA, vxA,vyA, axA,ayA,
xB,yB, vxB,vyB, axB,ayB, xC,yC, vxC,vyC, axC,ayC: double;
var OK:Boolean);
```

The correspondence between the formal parameters and the notations used in Equations 6.140 through 6.153 and in Figure 6.25 is summarized in the following tables:

Input parameters of procedure _TRT_:

$\begin{aligned} & 0 \ldots 16 \\ & \text { Color } \end{aligned}$	$\begin{aligned} & x P_{1} \\ & \text { xP1 } \end{aligned}$	$\begin{aligned} & y P_{1} \\ & \mathrm{yP} 1 \end{aligned}$	$\begin{gathered} \dot{x} P_{1} \\ \text { vxP1 } \end{gathered}$	$\begin{gathered} \dot{y} P_{1} \\ \mathrm{vy} \mathrm{P} 1 \end{gathered}$	$\ddot{x} P_{1}$ axP1	$\begin{gathered} \ddot{y} P_{1} \\ \text { ayP1 } \end{gathered}$	$\begin{array}{ll} & x Q \\ 1 & \mathbf{x Q} \end{array}$	$\begin{array}{ll} 1 & y Q_{1} \\ 1 & y Q] \end{array}$	$\begin{gathered} \dot{x} Q_{1} \\ v \times Q 1 \end{gathered}$	$\begin{gathered} \dot{j} Q_{1} \\ \text { vyQ1 } \end{gathered}$	$\begin{gathered} \ddot{x} Q_{1} \\ \text { ax } Q 1 \end{gathered}$		$\begin{gathered} \ddot{y} Q_{1} \\ a y Q_{1} \end{gathered}$
${ }_{x}{ }_{2}$	$y P_{2}$	$\dot{x} P_{2}$	$\dot{y} P_{2}$	$\ddot{x} P_{2}$	$\ddot{y} P_{2}$	$x Q_{2}$	$y Q_{2}$	$\dot{\chi} Q_{2}$	$\dot{y} Q_{2}$	$\ddot{x} Q_{2}$	$\ddot{y} Q_{2}$	AC	BC
xP2	yP2	vxP2	vyP2	axp2	ayP2	$\mathrm{xQ2}$ Y	$\mathrm{y} \mathbf{Q}^{2}$	vxQ2	vyQ2	axQ2	ayQ2	AC	BC

Output parameters of procedure _TRT_:

$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
$\mathbf{x A}$	$\mathbf{y A}$	$\mathbf{v x A}$	$\mathbf{v y A}$	axA	ayA	$\mathbf{x B}$	$\mathbf{y B}$	$\mathbf{v x B}$	$\mathbf{v y B}$	axB	ayB

$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$	$\theta_{1} \neq \theta_{2}$
$\mathbf{x C}$	$\mathbf{y C}$	$\mathbf{v x C}$	vyC	axC	ayc	ok

Displacements s_{1} and s_{2} of rods $P_{1} Q_{1}$ and $P_{2} Q_{2}$ relative to their sliders and their time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2} are not returned by procedure _TRT_. However, they can be calculated using procedure VarDist with inputs of the position velocity and accelerations of points P_{1} and A and P_{2} and B, respectively.

Program P6_26.PAS (see Appendix B) uses the _TRT_ procedure to simulate the motion of a _TRT_ dyadic isomer driven by two rockers (see Figure 6.26). Again, for simplicity, all the input and output velocity and acceleration values were assigned the generic variable _. The coordinates of point C returned by _TRT_ were then used to plot its path by calling procedure Locus from unit LibMec2D (see Figure 6.26).

6.12.3 T_RT_Dyadic Isomer: Procedure T_RT_

The third possible isomer of the TRT dyad is shown in Figure 6.27. T_RT_ has one of its potential joints shaped as a sliding block and the other potential joint shaped as a sliding rod. T_RT_can be assumed to be a combination of the previously discussed isomers of the same dyad, also reflected in the similarity of their kinematic equations.

With the notations in Figure 6.27, the following parameters are assumed known at any given time of a simulation:

- Coordinates $x A, y A$ of sliding block A relative to the fixed reference frame $O X Y$.
- Coordinates $x P_{2}, y P_{2}$ and $x Q_{2}, y Q_{2}$ of the ends of the potential sliding rod $P_{2} Q_{2}$ measured relative to the fixed reference frame.
- Orientation angle θ_{1} of the slider block A and its first and second time derivatives $\dot{\theta}_{1}$ and $\ddot{\theta}_{1}$.

FIGURE 6.27 Notations used in solving the kinematics of the T_RT_ isomer of the TRT dyad with one potential sliding block and one potential sliding rod.

- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.
- Projections $\dot{x} P_{2}$ and $\dot{y} P_{2}$ of the velocity of point P_{2} onto the fixed reference frame.
- Projections $\ddot{x} P_{2}$ and $\ddot{y} P_{2}$ of the accelerations of point P_{2} onto the fixed reference frame.
- Projections $\dot{x} Q_{2}$ and $\dot{y} Q_{2}$ of the velocity of point Q_{2} onto the fixed reference frame.
- Projections $\ddot{x} Q_{2}$ and $\ddot{y} Q_{2}$ of the accelerations of point Q_{2} onto the fixed reference frame.
- Lengths $P_{1} Q_{1}$ and $Q_{1} C$ of the L-shaped rod supporting slider block A (can be either positive or negative).
- Length $B C$ of pin joint C offset (can be either positive or negative).

The purpose of the analysis is to determine

- Displacements s_{1} and s_{2} of slider blocks A and B measured as shown and their first and second time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2}.
- Projections $x C$ and $y C$ of joint center C onto the $O X Y$ reference frame and their first and second time derivatives $\dot{x} C, \dot{y} C, \ddot{x} C$, and $\ddot{y} C$.
- Coordinates $x P_{1}, y P_{1}$ and $x Q_{1}, y Q_{1}$ of points P_{1} and Q_{1} of the L-shaped link, measured relative to the fixed reference frame.
- Projections $\dot{x} P_{1}$ and $\dot{y} P_{1}$ of the velocity of point P_{1} onto the fixed reference frame.
- Projections $\ddot{x} P_{1}$ and $\ddot{y} P_{1}$ of the accelerations of point P_{1} onto the fixed reference frame.
- Projections $\dot{x} Q_{1}$ and $\dot{y} Q_{1}$ of the velocity of point Q_{1} onto the fixed reference frame.
- Projections $\ddot{x} Q_{1}$ and $\ddot{y} Q_{1}$ of the accelerations of point Q_{1} onto the fixed reference frame.

The vector-loop equation of the dyadic isomer

$$
\begin{equation*}
\mathbf{O A}+\mathbf{A} \mathbf{Q}_{1}+\mathbf{Q}_{1} \mathbf{C}=\mathbf{O} \mathbf{P}_{2}+\mathbf{P}_{2} \mathbf{B}+\mathbf{B C} \tag{6.154}
\end{equation*}
$$

yields the following two scalar equations:

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}-s_{1} \cdot \cos \left(\theta_{1}\right)+\mathrm{Q}_{1} C \cdot \cos \left(\theta_{1}-\frac{\pi}{2}\right)=x_{\mathrm{P}_{2}}+s_{2} \cdot \cos \left(\theta_{2}\right)+B C \cdot \cos \left(\theta_{2}-\frac{\pi}{2}\right) \tag{6.155}\\
y_{\mathrm{A}}-s_{1} \cdot \sin \left(\theta_{1}\right)+Q_{1} C \cdot \sin \left(\theta_{1}-\frac{\pi}{2}\right)=y_{\mathrm{P}_{2}}+s_{2} \cdot \sin \left(\theta_{2}\right)+B C \cdot \sin \left(\theta_{2}-\frac{\pi}{2}\right)
\end{array}\right.
$$

After rearranging terms, a set of two linear equations in the unknowns s_{1} and s_{2} is obtained:

$$
\left\{\begin{array}{l}
s_{1} \cdot \cos \left(\theta_{1}\right)+s_{2} \cdot \cos \left(\theta_{2}\right)=x_{\mathrm{A}}-x_{\mathrm{P}_{2}}+Q_{1} C \cdot \sin \left(\theta_{1}\right)+B C \cdot \sin \left(\theta_{2}\right) \tag{6.156}\\
s_{1} \cdot \sin \left(\theta_{1}\right)+s_{2} \cdot \sin \left(\theta_{2}\right)=y_{\mathrm{A}}-y_{\mathrm{P}_{2}}-Q_{1} C \cdot \cos \left(\theta_{1}\right)-B C \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

These two linear equations have distinct solutions only if the earlier condition (6.120) is satisfied.

Once slider displacements s_{1} and s_{2} become known, the coordinates of points Q_{1}, P_{1}, and B can be calculated using Equations 6.121, 6.122, and 6.143. In turn, the coordinates of pin joint center C can be calculated using either Equation 6.125a or 6.144 b .

To solve the velocity problem, we differentiate Equation 6.156 with respect to time:

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{P}_{2}} \tag{6.157}\\
\quad+\dot{\theta}_{1} \cdot Q_{1} C \cdot \cos \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot B C \cdot \cos \left(\theta_{2}\right)+\dot{\theta}_{1} \cdot s_{1} \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot s_{2} \cdot \sin \left(\theta_{2}\right) \\
\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{P}_{2}} \\
\quad+\dot{\theta}_{1} \cdot Q_{1} C \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot B C \cdot \sin \left(\theta_{2}\right)-\dot{\theta}_{1} \cdot s_{1} \cdot \cos \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot s_{2} \cdot \cos \left(\theta_{2}\right)
\end{array}\right.
$$

By applying the position results, this set of two linear equations in the unknowns \dot{s}_{1} and \dot{s}_{2} becomes:

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\dot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{P}_{2}}-\dot{\theta}_{1} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{A}}\right)+\dot{\theta}_{2} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{P}_{2}}\right) \tag{6.158}\\
\dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\dot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{P}_{2}}+\dot{\theta}_{1} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{A}}\right)-\dot{\theta}_{2} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{P}_{2}}\right)
\end{array}\right.
$$

The x and y components of the velocities of points Q_{1}, P_{1}, and B can be calculated using Equations 6.128, 6.129, and 6.148, while those of point C using either Equation 6.132a or 6.153b.

To solve the acceleration problem, we differentiate Equation 6.158 with respect to time and obtain the following two linear equations in the unknowns \ddot{s}_{1} and \ddot{s}_{2} :

$$
\left\{\begin{array}{l}
\ddot{s}_{1} \cdot \cos \left(\theta_{1}\right)+\ddot{s}_{2} \cdot \cos \left(\theta_{2}\right)=\ddot{x}_{\mathrm{A}}-\ddot{x}_{\mathrm{P}_{2}}-\ddot{\theta}_{1} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{A}}\right)+\ddot{\theta}_{2} \cdot\left(y_{\mathrm{C}}-y_{\mathrm{P}_{2}}\right) \tag{6.159}\\
\quad-\dot{\theta}_{1} \cdot\left(\dot{y}_{\mathrm{C}}-\dot{y}_{\mathrm{A}}\right)+\dot{\theta}_{2} \cdot\left(\dot{y}_{\mathrm{C}}-\dot{y}_{\mathrm{P}_{2}}\right)+\dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \sin \left(\theta_{2}\right) \\
\ddot{s}_{1} \cdot \sin \left(\theta_{1}\right)+\ddot{s}_{2} \cdot \sin \left(\theta_{2}\right)=\ddot{y}_{\mathrm{A}}-\ddot{y}_{\mathrm{P}_{2}}+\ddot{\theta}_{1} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{A}}\right)-\ddot{\theta}_{2} \cdot\left(x_{\mathrm{C}}-x_{\mathrm{P}_{2}}\right) \\
\quad+\dot{\theta}_{1} \cdot\left(\dot{x}_{\mathrm{C}}-\dot{x}_{\mathrm{A}}\right)-\dot{\theta}_{2} \cdot\left(\dot{x}_{\mathrm{C}}-\dot{x}_{\mathrm{P}_{2}}\right)-\dot{\theta}_{1} \cdot \dot{s}_{1} \cdot \cos \left(\theta_{1}\right)-\dot{\theta}_{2} \cdot \dot{s}_{2} \cdot \sin \left(\theta_{2}\right)
\end{array}\right.
$$

The accelerations of points Q_{1}, P_{1}, and B can be calculated using Equations 6.134, 6.135, and 6.152, while those of point C using either Equation 6.138a or 6.153b.

Note that angle θ_{2} together with its time derivatives $\dot{\theta}_{2}$ and $\ddot{\theta}_{2}$ must be determined before moving forward with the velocity and acceleration problem. This can be done by calling procedure AngPVA with arguments set equal to thex and y coordinates of points P_{2} and Q_{2} and to their respective first and second derivatives with respect to time.

These kinematic equations have been implemented in procedure $\boldsymbol{T}_{_}$RT_ part of unit LibAssur. The procedure has the following heading:

```
T_RT_(Color:Word; xA,yA, vxA,vyA, axA,ayA,
Theta1,dTheta1,ddTheta1, xP2,yP2, vxP2,vyP2, axP2,ayP2, xQ2,yQ2,
vxQ2,vyQ2, axQ2,ayQ2, P1Q1, Q1C, BC:double; var xP1,YP1,
vxP1,vyP1, axP1,ayP1, xQ1,YQ1, vxQ1,vyQ1, axQ1,ayQ1, xB,yB,
vxB,vyB, axB,ayB, xC,yC, vxC,vyC, axC,ayC:double; var OK:Boolean);
```

The correspondence between the formal parameters and the notations used in Figure 6.27 and the corresponding kinematic equations is summarized in the following tables:

Input parameters of procedure $\mathrm{T}_{-} \mathrm{RT}$:

$0 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	θ_{1}	$\dot{\theta}_{1}$	$\ddot{\theta}_{1}$	$x P_{2}$	$y P_{2}$
Color	xA	yA	vxA	vyA	axA	ayA	Thetal	dTheta1	ddTheta1	xP2	yP2

$\dot{x} P_{2}$	$\dot{y} P_{2}$	$\ddot{x} P_{2}$	$\ddot{y} P_{2}$	$x Q_{2}$	$y Q_{2}$	$\dot{x} Q_{2}$	$\dot{y} Q_{2}$	$\ddot{x} Q_{2}$	$\ddot{y} Q_{2}$	$P_{1} Q_{1}$	$Q_{1} C$	$B C$
vxP2	vyP2	axP2	ayP2	xQ2	yQ2	vxQ2	vyQ2	axQ2	ayQ2	P1Q1	Q1C	BC

Output parameters of procedure $\mathrm{T}_{-} \mathrm{RT}$:

$\begin{aligned} & x P_{1} \\ & \mathbf{x P 1} \end{aligned}$	$\begin{gathered} y P_{1} \\ \mathrm{yP} 1 \end{gathered}$	$\begin{gathered} \dot{x} P_{1} \\ \text { vxP1 } \end{gathered}$	$\begin{gathered} \dot{y} P_{1} \\ \text { vyP1 } \end{gathered}$		$\begin{gathered} \ddot{x} P_{1} \\ \operatorname{axP} 1 \end{gathered}$		$\begin{gathered} \ddot{y} P_{1} \\ \text { ayP1 } \end{gathered}$	$\begin{gathered} x Q_{1} \\ \mathbf{x Q 1} \end{gathered}$	$\begin{gathered} y Q_{1} \\ y Q 1 \end{gathered}$	$\begin{gathered} \dot{x} Q_{1} \\ v \times Q 1 \end{gathered}$	$\begin{gathered} \dot{y} Q_{1} \\ \text { vyQ1 } \end{gathered}$	$\begin{gathered} \ddot{x} Q_{1} \\ \operatorname{axQ1} \end{gathered}$	$\begin{gathered} \ddot{y} Q_{1} \\ \text { ayQ1 } \end{gathered}$
$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$		$\ddot{y} B$	$x C$	$y C$	$\dot{x} C$	$\dot{j} C$	$\ddot{x} C$	$\ddot{y} C$	$\theta_{1} \neq \theta_{2}$
xB	yB	vxB	vyB	axB		ayB	xC	yc	vxC	vyc	axC	ayc	OK

Same as before, displacements s_{1} and s_{2} of slider blocks A and B and their time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2} are not returned by procedure \boldsymbol{T}_{-}RT_. If of interest, they can be calculated with the help of procedure VarDist.

Program P6_28.PAS listed in Appendix B calls the T_RT_ procedure to simulate a TRT dyad of the T_RT_type driven by two rockers (see Figure 6.28). The program labels all joints and plots the locus of the center of joint C. All velocity and acceleration parameters are ignored by assigning them the generic variable _ defined in the interface section of unit LibMath.

FIGURE 6.28 A two-DOF mechanism consisting of a T_RT_ dyadic isomer driven by two rockers simulated using program P6_28.PAS. See also animated file F6_28.GIF.

6.13 KINEMATIC ANALYSIS OF THE RTT DYAD USING A VECTOR-LOOP APPROACH

The RTT dyad is the last Assur group with two links and three joints. Because of its two back-to-back sliding joints, it has four possible isomers (Figure 6.3). The kinematic equations of these four isomers are discussed in the remaining of this chapter and implemented in procedures $\mathrm{R}_{-} \mathrm{T} \mathbf{T}, \mathrm{R}_{-} \mathrm{TT}, \mathbf{R T} \mathbf{Z}_{-} \mathbf{T}$, and $\mathrm{RT}_{-} \mathbf{T}_{-}$. While the kinematic equations required to calculate the displacements, velocities, and accelerations of the two slider blocks differ among these four isomers, some of the remaining kinematic equations are coincident, thus simplifying the analytical derivations.

6.13.1 R_T_T Dyadic Isomer: Procedure R_T_T

The R_T_T isomer of the RTT dyad has the translating potential joint consisting of a rod $P Q$ that moves to the inside of a sleeve B (see Figure 6.29). When a kinematic analysis is performed, the following parameters are assumed given:

- Coordinates $x A, y A$, of potential turning joint A relative to the fixed reference frame $O X Y$.
- Coordinates $x B, y B$, of point B measured relative to the fixed reference frame.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of point B onto the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the accelerations of point B onto the fixed reference frame.
- Orientation angle φ of slider B and its first and second time derivatives $\dot{\varphi}$ and $\ddot{\varphi}$, respectively.

FIGURE 6.29 Notations used in solving the kinematics of the R_T_T dyadic isomer.

- Lengths $A D$ and $D K$ of the two sides of the L-shaped link supporting slider C (can be either positive or negative).
- Lengths $P C$ and $B Q$ of the two sections of the link connecting slider blocks C and B (can be either positive or negative).
- The values of the constant angles α_{1} and α_{2} measured as shown in Figure 6.29.

The purpose of the analysis is to determine the following unknown kinematic parameters:

- Relative displacements s_{1} and s_{2} of sliders B and C measured as shown and their first and second time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2}.
- The coordinates $x C$ and $y C$ of joint center C relative to the $O X Y$ reference frame.
- The projections $\dot{x} C$ and $\dot{y} C$ of the velocity of C onto the axes of the fixed reference frame.
- The projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- The coordinates $x P$ and $y P$ of point P relative to the $O X Y$ reference frame.
- The projections $\dot{x} P$ and $\dot{y} P$ of the velocity of P onto the axes of the fixed reference frame.
- The projections $\ddot{x} P$ and $\ddot{y} P$ of the acceleration of P onto the axes of the fixed reference frame.
- The coordinates $x Q$ and $y Q$ of point Q relative to the $O X Y$ reference frame.
- The projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of Q onto the axes of the fixed reference frame.
- The projections $\ddot{x} Q$ and $\ddot{y} Q$ of the acceleration of Q onto the axes of the fixed reference frame.

We begin by writing the following vector equation:

$$
\begin{equation*}
\mathrm{OA}+\mathrm{AD}+\mathrm{DC}=\mathrm{OB}+\mathrm{BQ}+\mathrm{QC} \tag{6.160}
\end{equation*}
$$

which projects on the x - and y-axes of the fixed reference frame as

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}+A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}-\frac{\pi}{2}\right)+s_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)= \tag{6.161}\\
x_{\mathrm{B}}+s_{2} \cos (\varphi)+Q C \cdot \cos \left(\varphi+\alpha_{2}\right) \\
y_{\mathrm{A}}+A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}-\frac{\pi}{2}\right)+s_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)= \\
y_{\mathrm{B}}+s_{2} \sin (\varphi)+Q C \cdot \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

We rearrange them as a set of two linear equations in the unknowns s_{1} and s_{2} that are easy to solve:

$$
\left\{\begin{array}{l}
s_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-s_{2} \cos (\varphi)=x_{\mathrm{B}}-x_{\mathrm{A}}-A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)+Q C \cos \left(\varphi+\alpha_{2}\right) \tag{6.162}\\
s_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-s_{2} \sin (\varphi)=y_{\mathrm{B}}-y_{\mathrm{A}}+A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)+Q C \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

Equations 6.162 have solutions for any $x_{A}, y_{A}, x_{B}, y_{B}$ and angle φ values, provided that the following inequality holds:

$$
\begin{equation*}
\sin \left(\varphi+\alpha_{2}-\alpha_{1}\right) \cdot \cos (\varphi)-\cos \left(\varphi+\alpha_{2}-\alpha_{1}\right) \cdot \sin (\varphi) \neq 0 \quad \text { equivalent to } \alpha_{1} \neq \alpha_{2} \tag{6.163}
\end{equation*}
$$

Once slider displacements s_{1} and s_{2} are determined, the coordinates of points D, K, Q, P, and C required to represent graphically the dyad can be calculated with the following equations:

$$
\begin{gather*}
x_{\mathrm{D}}=x_{\mathrm{A}}+A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}-\frac{\pi}{2}\right)=x_{\mathrm{A}}+A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right) \tag{6.164}\\
y_{\mathrm{D}}=y_{\mathrm{A}}+A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}-\frac{\pi}{2}\right)=y_{\mathrm{A}}-A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)
\end{gather*}\left\{\begin{array}{l}
x_{\mathrm{K}}=x_{\mathrm{D}}+D K \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right) \tag{6.165}\\
y_{\mathrm{K}}=y_{\mathrm{D}}+D K \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)
\end{array}\right\} \begin{aligned}
& x_{\mathrm{Q}}=x_{\mathrm{B}}+s_{2} \cos (\varphi) \tag{6.166}\\
& y_{\mathrm{Q}}=y_{\mathrm{B}}+s_{2} \sin (\varphi)
\end{aligned}, ~ \$
$$

$$
\begin{gather*}
\left\{\begin{array}{l}
x_{\mathrm{P}}=x_{\mathrm{Q}}-P Q \cos (\varphi) \\
y_{\mathrm{P}}=y_{\mathrm{Q}}-P Q \sin (\varphi)
\end{array}\right. \tag{6.167}\\
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{D}}+s_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right) \\
y_{\mathrm{C}}=y_{\mathrm{D}}+s_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)
\end{array}\right. \tag{6.168a}
\end{gather*}
$$

or

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{Q}}+Q C \cos \left(\varphi+\alpha_{2}\right) \tag{6.168b}\\
y_{\mathrm{C}}=y_{\mathrm{Q}}+Q C \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

To solve the velocity problem, we differentiate with respect to time Equations 6.162, resulting in a set of two linear equations in the unknowns $\dot{\dot{s}}_{1}$ and \dot{s}_{2} :

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{s}_{2} \cos (\varphi)=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}} \tag{6.169}\\
\quad+\dot{\varphi}\left[s_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-s_{2} \sin (\varphi)-A D \cdot \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-Q C \sin \left(\varphi+\alpha_{2}\right)\right] \\
\dot{s}_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{s}_{2} \sin (\varphi)=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}} \\
\quad-\dot{\varphi}\left[s_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-s_{2} \cos (\varphi)+A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-Q C \cos \left(\varphi+\alpha_{2}\right)\right]
\end{array}\right.
$$

and by applying Equations 6.162, they can be further written as

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{s}_{2} \cos (\varphi)=\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}}+\dot{\varphi}\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) \tag{6.170}\\
\dot{s}_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{s}_{2} \sin (\varphi)=\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}-\dot{\varphi}\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)
\end{array}\right.
$$

The x and y components of the velocities of points D, Q, P, and C, also of interest, are given by the following equations. Again, equalities (6.164) through (6.168) have been applied in each case:

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{D}}=\dot{x}_{\mathrm{A}}+\dot{\varphi} \cdot A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)=\dot{x}_{\mathrm{A}}+\dot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{D}}\right) \\
\dot{y}_{\mathrm{D}}=\dot{y}_{\mathrm{A}}+\dot{\varphi} \cdot A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)=\dot{y}_{\mathrm{A}}-\dot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{D}}\right)
\end{array}\right. \tag{6.171}\\
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{K}}=\dot{x}_{\mathrm{D}}-\dot{\varphi} \cdot D K \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)=\dot{x}_{\mathrm{D}}+\dot{\varphi}\left(y_{\mathrm{D}}-y_{\mathrm{K}}\right) \\
\dot{y}_{\mathrm{K}}=\dot{y}_{\mathrm{D}}+\dot{\varphi} \cdot D K \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)=\dot{y}_{\mathrm{D}}-\dot{\varphi}\left(x_{\mathrm{D}}-x_{\mathrm{K}}\right)
\end{array}\right. \tag{6.172}
\end{align*}
$$

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\dot{x}_{\mathrm{Q}}=\dot{x}_{\mathrm{B}}+\dot{s}_{2} \cos (\varphi)-\dot{\varphi} \cdot s_{2} \cdot \sin (\varphi)=\dot{x}_{\mathrm{B}}+\dot{s}_{2} \cdot \cos (\varphi)+\dot{\varphi}\left(y_{\mathrm{B}}-y_{\mathrm{Q}}\right) \\
\dot{y}_{\mathrm{Q}}=
\end{array} \dot{y}_{\mathrm{B}}+\dot{s}_{2} \sin (\varphi)+\dot{\varphi} \cdot s_{2} \cdot \cos (\varphi)=\dot{y}_{\mathrm{B}}+\dot{s}_{2} \cdot \sin (\varphi)-\dot{\varphi}\left(x_{\mathrm{B}}-x_{\mathrm{Q}}\right)\right.
\end{array}\right\} \begin{aligned}
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{P}}=\dot{x}_{\mathrm{Q}}+\dot{\varphi} \cdot P \mathrm{Q} \cdot \sin (\varphi)=\dot{x}_{\mathrm{Q}}-\dot{\varphi} \cdot\left(y_{\mathrm{P}}-y_{\mathrm{Q}}\right) \\
\dot{y}_{\mathrm{P}}=\dot{y}_{\mathrm{Q}}-\dot{\varphi} \cdot P Q \cdot \cos (\varphi)=\dot{y}_{\mathrm{Q}}+\dot{\varphi} \cdot\left(x_{\mathrm{P}}-x_{\mathrm{Q}}\right)
\end{array}\right. \\
& \left\{\begin{array}{r}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{D}}+\dot{s}_{1} \cdot \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{\varphi} \cdot s_{1} \cdot \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right) \\
\quad=\dot{x}_{\mathrm{D}}-\dot{s}_{1} \cdot \frac{\left(x_{\mathrm{D}}-x_{\mathrm{K}}\right)}{D K}-\dot{\varphi}\left(y_{\mathrm{C}}-y_{\mathrm{D}}\right) \\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{D}}+\dot{s}_{1} \cdot \sin \left(\dot{\varphi}+\alpha_{2}-\alpha_{1}\right)+\dot{\varphi} \cdot s_{1} \cdot \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right) \\
=\dot{y}_{\mathrm{D}}-\dot{s}_{1} \cdot \frac{\left(y_{\mathrm{D}}-y_{\mathrm{K}}\right)}{D K}+\dot{\varphi}\left(x_{\mathrm{C}}-x_{\mathrm{D}}\right)
\end{array}\right.
\end{aligned}
$$

or

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{Q}}-\dot{\varphi} \cdot Q C \cdot \sin \left(\varphi+\alpha_{2}\right)=\dot{x}_{\mathrm{Q}}-\dot{\varphi}\left(y_{\mathrm{C}}-y_{\mathrm{Q}}\right) \tag{6.175b}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{Q}}+\dot{\varphi} \cdot Q C \cdot \cos \left(\varphi+\alpha_{2}\right)=\dot{y}_{\mathrm{Q}}+\dot{\varphi}\left(x_{\mathrm{C}}-x_{\mathrm{Q}}\right)
\end{array}\right.
$$

To solve the acceleration problem, we begin by differentiating Equations 6.170, which yields a set of two linear equations in the unknowns \ddot{s}_{1} and \ddot{s}_{2} :

$$
\left\{\begin{array}{l}
\ddot{s}_{1} \cdot \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\ddot{s}_{2} \cdot \cos (\varphi)=\ddot{x}_{\mathrm{B}}-\ddot{x}_{\mathrm{A}} \tag{6.176}\\
\quad+\ddot{\varphi} \cdot\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)+\dot{\varphi} \cdot\left(\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{A}}\right)+\dot{s}_{1} \cdot \dot{\varphi} \cdot \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{s}_{2} \cdot \dot{\varphi} \cdot \sin (\varphi) \\
\ddot{s}_{1} \cdot \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\ddot{s}_{2} \cdot \sin (\varphi)=\ddot{y}_{\mathrm{B}}-\ddot{y}_{\mathrm{A}} \\
\quad-\ddot{\varphi} \cdot\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)-\dot{\varphi} \cdot\left(\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{A}}\right)-\dot{s}_{1} \cdot \dot{\varphi} \cdot \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)+\dot{s}_{2} \cdot \dot{\varphi} \cdot \cos (\varphi)
\end{array}\right.
$$

The x and y components of the accelerations of points D, Q, P, and C are obtained by differentiating Equations 6.171 through 6.175b:

$$
\begin{align*}
& \left\{\begin{array}{l}
\ddot{x}_{\mathrm{D}}=\ddot{x}_{\mathrm{A}}+\ddot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{D}}\right)+\dot{\varphi}\left(\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{D}}\right) \\
\ddot{y}_{\mathrm{D}}=\ddot{y}_{\mathrm{A}}-\ddot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{D}}\right)-\dot{\varphi}\left(\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{D}}\right)
\end{array}\right. \tag{6.177}\\
& \left\{\begin{array}{l}
\ddot{x}_{\mathrm{K}}=\ddot{x}_{\mathrm{D}}+\ddot{\varphi}\left(y_{\mathrm{D}}-y_{\mathrm{K}}\right)+\dot{\varphi}\left(\dot{y}_{\mathrm{D}}-\dot{y}_{\mathrm{K}}\right) \\
\ddot{y}_{\mathrm{K}}=\ddot{y}_{\mathrm{D}}-\ddot{\varphi}\left(x_{\mathrm{D}}-x_{\mathrm{K}}\right)-\dot{\varphi}\left(\dot{x}_{\mathrm{D}}-\dot{x}_{\mathrm{K}}\right)
\end{array}\right. \tag{6.178}
\end{align*}
$$

$$
\begin{gather*}
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{Q}}=\ddot{x}_{\mathrm{B}}+\ddot{s}_{2} \cdot \cos (\varphi)-\dot{s}_{2} \cdot \dot{\varphi} \cdot \sin (\varphi)+\ddot{\varphi}\left(y_{\mathrm{B}}-y_{\mathrm{Q}}\right)+\dot{\varphi}\left(\dot{y}_{\mathrm{B}}-\dot{y}_{\mathrm{Q}}\right) \\
\ddot{y}_{\mathrm{Q}}=\ddot{y}_{\mathrm{B}}+\ddot{s}_{2} \cdot \sin (\varphi)+\dot{s}_{2} \cdot \dot{\varphi} \cdot \cos (\varphi)-\ddot{\varphi}\left(x_{\mathrm{B}}-x_{\mathrm{Q}}\right)-\dot{\varphi}\left(\dot{x}_{\mathrm{B}}-\dot{x}_{\mathrm{Q}}\right)
\end{array}\right. \tag{6.179}\\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{P}}=\ddot{x}_{\mathrm{Q}}-\ddot{\varphi} \cdot\left(y_{\mathrm{P}}-y_{\mathrm{Q}}\right)-\dot{\varphi} \cdot\left(\dot{y}_{\mathrm{P}}-\dot{y}_{\mathrm{Q}}\right) \\
\ddot{y}_{\mathrm{P}}=\ddot{y}_{\mathrm{Q}}+\ddot{\varphi} \cdot\left(x_{\mathrm{P}}-x_{\mathrm{Q}}\right)+\dot{\varphi} \cdot\left(\dot{x}_{\mathrm{P}}-\dot{x}_{\mathrm{Q}}\right)
\end{array}\right. \tag{6.180}\\
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{D}}-\ddot{s}_{1} \cdot \frac{\left(x_{\mathrm{D}}-x_{\mathrm{K}}\right)}{D K}-\ddot{\varphi}\left(y_{\mathrm{C}}-y_{\mathrm{D}}\right)-\dot{s}_{1} \cdot \frac{\left(\dot{x}_{\mathrm{D}}-\dot{x}_{\mathrm{K}}\right)}{D K}-\dot{\varphi}\left(\dot{y}_{\mathrm{C}}-\dot{y}_{\mathrm{D}}\right) \\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{D}}-\ddot{s}_{1} \cdot \frac{\left(y_{\mathrm{D}}-y_{\mathrm{K}}\right)}{D K}+\ddot{\varphi}\left(x_{\mathrm{C}}-x_{\mathrm{D}}\right)-\dot{s}_{1} \cdot \frac{\left(\dot{y}_{\mathrm{D}}-\dot{y}_{\mathrm{K}}\right)}{D K}+\dot{\varphi}\left(\dot{x}_{\mathrm{C}}-\dot{x}_{\mathrm{D}}\right)
\end{array}\right. \tag{6.181a}
\end{gather*}
$$

or

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{Q}}-\ddot{\varphi}\left(y_{\mathrm{C}}-y_{\mathrm{Q}}\right)-\dot{\varphi}\left(\dot{y}_{\mathrm{C}}-\dot{y}_{\mathrm{Q}}\right) \tag{6.181b}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{Q}}+\ddot{\varphi}\left(x_{\mathrm{C}}-x_{\mathrm{Q}}\right)+\dot{\varphi}\left(\dot{x}_{\mathrm{C}}-\dot{x}_{\mathrm{Q}}\right)
\end{array}\right.
$$

These equations have been implemented in procedure R_T_T part of unit LibAssur with the following heading:

```
R_T_T(Color:Word; xA,YA, vxA,vyA, axA,ayA, xB,yB, vxB,vyB,
axB,ayB, Phi,dPhi,ddPhi, AD,DK,PQ,QC, Alpha1,Alpha2:double;
var xC,yC, vxC,vyC, axC,ayC, xD,yD, vxD,vyD, axD,ayD, xK,yK,
vxK,vyK, axk,ayK, xP,yP, vxP,vyP, axP,ayP, xQ,yQ, vxQ,vyQ,
axQ,ayQ:double; var OK:Boolean);
```

The correspondence between the formal parameters of procedure $\boldsymbol{R}_{-} T _T$ and the notations used in Figure 6.29 and in Equations 6.161 through 6.181b is summarized next:

Input parameters of procedure $\mathrm{R}_{-} \mathrm{T}$ _T:

$0 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
Color	xA	yA	vxA	vyA	axA	ayA	xB	yB	vxB	vyB	axB	ayB
φ	$\dot{\varphi}$	$\ddot{\varphi}$	$A D$	$D K$	$P Q$	$Q C$	α_{1}		α_{2}			
Phi	dPhi	ddPhi	AD	DK	PQ	QC	Alph1		Alph2			

Output parameters of procedure $\boldsymbol{R}_{-} \mathbf{T} \mathbf{T}$:

$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$	$x D$	$y D$	$\dot{x} D$	$\dot{y} D$	$\ddot{x} D$	$\ddot{y} D$	$x K$	$y K$	$\dot{x} K$
$\mathbf{x C}$	$\mathbf{y C}$	$\mathbf{v x C}$	$\mathbf{v y C}$	$\mathbf{a x C}$	$\mathbf{a y C}$	$\mathbf{x D}$	yD	vxD	vyD	axD	ayD	$\mathbf{x K}$	yK	$\mathbf{v x K}$

FIGURE 6.30 A two-DOF mechanism consisting of an R_T_T isomer of the RTT dyad, driven by a crank and a rocker. See also animation file F6_30.GIF.

$\dot{y} K$	$\ddot{x} K$	$\ddot{y} K$	$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$	$x Q$	$y Q$	$\dot{x} Q$	$\dot{y} Q$	$\ddot{x} Q$	$\ddot{y} Q$
	vyK	axK	ayK	$\mathbf{x P}$	yP	vxP	vyP	axP	ayP	$\mathbf{x Q}$	yQ	vxQ	vyQ	axQ
$\mathrm{ax} Q$														

Note that the displacements s_{1} and s_{2} of the two slider rods relative to the sleeve and their first and second time derivatives are not returned by the procedure. If of interest, they can be easily calculated by calling procedure VarDist in unit LibMec2D.

Figure 6.30 is one of the simulation frames of a mechanism form with an R_T_T dyadic isomer done using program P6_30.PAS listed in Appendix B. All these frames have been assembled in the animation file F6_30.GIF available with the book. In addition to recording the locus of point Q and of labeling all joint centers, the program also labels the two fixed angles α_{1} and α_{2}.

6.13.2 RT_T_ Dyadic Isomer: Procedure RT_T_

This section discusses the RTT dyad configured as shown in Figure 6.31, symbolized RT_T_for short. In a kinematic analysis, the parameters listed next are assumed known at any moment of the simulation:

- Coordinates $x A, y A$, of potential joint A relative to the fixed reference frame $O X Y$.
- Coordinates $x P, y P$ and $x Q, y Q$ of the ends of the rod that guides to the inside sliding block B.
- Offset $A C$ of the pin joint relative to slider C.
- Length $B D$ of the rod supporting slider block C.

FIGURE 6.31 Notations used in solving the kinematics of the RT_T_ dyadic isomer.

- The value of the constant angle α_{2} measured as shown in the figure.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of A onto the fixed reference frame.
- Projections $\dot{x} P$ and $\dot{y} P$ of the velocity of joint center P onto the fixed reference frame.
- Projections $\ddot{x} P$ and $\ddot{y} P$ of the accelerations of P onto the fixed reference frame.
- Projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of joint center Q onto the fixed reference frame.
- Projections $\ddot{x} Q$ and $\ddot{y} Q$ of the accelerations of Q onto the fixed reference frame.

The purpose of the analysis is to determine

- Displacements s_{1} and s_{2} of sliders C and B measured as shown and their time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2}.
- Coordinates $x B$ and $y B$ of point B relative to the $O X Y$ reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of B onto the axes of the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the acceleration of B onto the axes of the fixed reference frame.
- Coordinates $x C$ and $y C$ of sliding block C relative to the $O X Y$ reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of point C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- Coordinates $x D$ and $y D$ of point D relative to the $O X Y$ reference frame.
- Projections $\dot{x} D$ and $\dot{y} D$ of the velocity of D onto the axes of the fixed reference frame.
- Projections $\ddot{x} D$ and $\ddot{y} D$ of the acceleration of D onto the axes of the fixed reference frame.

The vector-loop equation of the dyad is

$$
\begin{equation*}
\mathrm{OA}+\mathrm{AC}=\mathrm{OP}+\mathrm{PB}+\mathrm{BC} \tag{6.182}
\end{equation*}
$$

which projects on the x - and y-axes of the fixed reference frame as

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}+A C \cdot \cos \left(\varphi+\alpha_{2}-\frac{\pi}{2}\right)=x_{\mathrm{P}}+s_{2} \cdot \cos (\varphi)+s_{1} \cdot \cos \left(\varphi+\alpha_{2}\right) \tag{6.183}\\
y_{\mathrm{A}}+A C \cdot \sin \left(\varphi+\alpha_{2}-\frac{\pi}{2}\right)=y_{\mathrm{P}}+s_{2} \cdot \sin (\varphi)+s_{1} \cdot \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

We separate unknowns s_{1} and s_{2} to the left and obtain the following set of two linear equations:

$$
\left\{\begin{array}{l}
s_{1} \cdot \cos \left(\varphi+\alpha_{2}\right)+s_{2} \cdot \cos (\varphi)=x_{\mathrm{A}}-x_{\mathrm{P}}+A C \cdot \sin \left(\varphi+\alpha_{2}\right) \tag{6.184}\\
s_{1} \cdot \sin \left(\varphi+\alpha_{2}\right)+s_{2} \cdot \sin (\varphi)=y_{\mathrm{A}}-y_{\mathrm{P}}-A C \cdot \cos \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

Equations 6.184 have real solutions for any coordinates x_{A}, y_{A}, x_{P}, and y_{P}, as long as the following inequality holds:

$$
\begin{equation*}
\cos \left(\varphi+\alpha_{2}\right) \cdot \sin (\varphi)-\sin \left(\varphi+\alpha_{2}\right) \cdot \cos (\varphi) \neq 0 \quad \text { equivalent to } \quad \alpha_{2} \neq 0 \tag{6.185}
\end{equation*}
$$

Once slider displacements s_{1} and s_{2} become available, the coordinates of points B, D, and C needed when plotting the dyad can be calculated as follows:

$$
\begin{gather*}
\left\{\begin{array}{l}
x_{\mathrm{B}}=x_{\mathrm{P}}+s_{2} \cdot \cos (\varphi) \\
y_{\mathrm{B}}=y_{\mathrm{P}}+s_{2} \cdot \sin (\varphi)
\end{array}\right. \tag{6.186}\\
\left\{\begin{array}{l}
x_{\mathrm{D}}=x_{\mathrm{B}}+B D \cdot \cos \left(\varphi+\alpha_{2}\right) \\
y_{\mathrm{D}}=y_{\mathrm{B}}+B D \cdot \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right. \tag{6.187}\\
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{A}}+A C \cdot \cos \left(\varphi+\alpha_{2}-\frac{\pi}{2}\right)=x_{\mathrm{A}}+A C \cdot \sin \left(\varphi+\alpha_{2}\right) \\
y_{\mathrm{C}}=y_{\mathrm{A}}+A C \cdot \sin \left(\varphi+\alpha_{2}-\frac{\pi}{2}\right)=y_{\mathrm{A}}-A C \cdot \cos \left(\varphi+\alpha_{2}\right)
\end{array}\right. \tag{6.188a}
\end{gather*}
$$

or

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{B}}+s_{1} \cdot \cos \left(\varphi+\alpha_{2}\right) \tag{6.188b}\\
y_{\mathrm{C}}=y_{\mathrm{B}}+s_{1} \cdot \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

The velocity problem requires finding the unknown relative velocities \dot{s}_{1} and \dot{s}_{2} occurring when differentiating with respect to time Equations 6.184:

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)+\dot{s}_{2} \cos (\varphi)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{P}}+\dot{\varphi}\left[A C \cos \left(\varphi+\alpha_{2}\right)+s_{1} \sin \left(\varphi+\alpha_{2}\right)+s_{2} \sin (\varphi)\right] \tag{6.189}\\
\dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+\dot{s}_{2} \sin (\varphi)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{P}}+\dot{\varphi}\left[A C \sin \left(\varphi+\alpha_{2}\right)-s_{1} \cos \left(\varphi+\alpha_{2}\right)-s_{2} \cos (\varphi)\right]
\end{array}\right.
$$

By applying Equations 6.184 again, these equations simplify to

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)+\dot{s}_{2} \cos (\varphi)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{P}}+\dot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{P}}\right) \tag{6.190}\\
\dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+\dot{s}_{2} \sin (\varphi)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{P}}-\dot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{P}}\right)
\end{array}\right.
$$

The x and y components of the velocities of points B, D, and C are given by

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{B}}=\dot{x}_{\mathrm{P}}+\dot{s}_{2} \cos (\varphi)-\dot{\varphi} s_{2} \sin (\varphi)=\dot{x}_{\mathrm{P}}+\dot{s}_{2} \cos (\varphi)-\dot{\varphi}\left(y_{\mathrm{B}}-y_{\mathrm{P}}\right) \\
\dot{y}_{\mathrm{B}}=\dot{y}_{\mathrm{P}}+\dot{s}_{2} \sin (\varphi)+\dot{\varphi} s_{2} \cos (\varphi)=\dot{y}_{\mathrm{P}}+\dot{s}_{2} \sin (\varphi)+\dot{\varphi}\left(x_{\mathrm{B}}-x_{\mathrm{P}}\right)
\end{array}\right. \tag{6.191}\\
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{D}}=\dot{x}_{\mathrm{B}}-\dot{\varphi} B D \sin \left(\varphi+\alpha_{2}\right)=\dot{x}_{\mathrm{B}}+\dot{\varphi}\left(y_{\mathrm{B}}-y_{\mathrm{D}}\right) \\
\dot{y}_{\mathrm{D}}=\dot{y}_{\mathrm{B}}+\dot{\varphi} B D \cos \left(\varphi+\alpha_{2}\right)=\dot{y}_{\mathrm{B}}-\dot{\varphi}\left(x_{\mathrm{B}}-x_{\mathrm{D}}\right)
\end{array}\right. \tag{6.192}\\
& \left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{A}}+\dot{\varphi} A C \cos \left(\varphi+\alpha_{2}\right)=\dot{x}_{\mathrm{A}}+\dot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{C}}\right) \\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{A}}+\dot{\varphi} A C \sin \left(\varphi+\alpha_{2}\right)=\dot{y}_{\mathrm{A}}-\dot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{C}}\right)
\end{array}\right. \tag{6.193a}
\end{align*}
$$

or

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{B}}+\dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi} s_{1} \sin \left(\varphi+\alpha_{2}\right)=\dot{x}_{\mathrm{B}}+\dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)+\dot{\varphi}\left(y_{\mathrm{B}}-y_{\mathrm{C}}\right) \tag{6.193b}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{B}}+\dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+\dot{\varphi} s_{1} \cos \left(\varphi+\alpha_{2}\right)=\dot{y}_{\mathrm{B}}+\dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)-\dot{\varphi}\left(x_{\mathrm{B}}-x_{\mathrm{C}}\right)
\end{array}\right.
$$

To solve for the relative accelerations \ddot{s}_{1} and \ddot{s}_{2}, we differentiate Equations 6.190 and obtain:

$$
\left\{\begin{array}{l}
\ddot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)+\ddot{s}_{2} \cos (\varphi)=\ddot{x}_{\mathrm{A}}-\ddot{x}_{\mathrm{P}}+\ddot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{P}}\right)+\dot{\varphi}\left(\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{P}}\right) \tag{6.194}\\
\quad+\dot{\varphi} \dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+\dot{\varphi} \dot{s}_{2} \sin (\varphi) \\
\ddot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+\ddot{s}_{2} \sin (\varphi)=\ddot{y}_{\mathrm{A}}-\ddot{y}_{\mathrm{P}}-\ddot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{P}}\right)-\dot{\varphi}\left(\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{P}}\right) \\
\\
s-\dot{\varphi} \dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi} \dot{s}_{2} \cos (\varphi)
\end{array}\right.
$$

The x and y components of the accelerations of points B, D, and C, also of interest, can be calculated with

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{B}}=\ddot{x}_{\mathrm{P}}+\ddot{s}_{2} \cos (\varphi)-2 \dot{\varphi} \dot{s}_{2} \sin (\varphi)-\ddot{\varphi} s_{2} \sin (\varphi)-\dot{\varphi}^{2} s_{2} \cos (\varphi) \tag{6.195}\\
\ddot{y}_{\mathrm{B}}=\ddot{y}_{\mathrm{P}}+\ddot{s}_{2} \sin (\varphi)+2 \dot{\varphi} \dot{s}_{2} \cos (\varphi)+\ddot{\varphi} s_{2} \cos (\varphi)-\dot{\varphi}^{2} s_{2} \sin (\varphi)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{D}}=\ddot{x}_{\mathrm{B}}-\ddot{\varphi} B D \sin \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} B D \cos \left(\varphi+\alpha_{2}\right) \tag{6.196}\\
\ddot{y}_{\mathrm{D}}=\ddot{y}_{\mathrm{B}}+\ddot{\varphi} B D \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} B D \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{A}}+\ddot{\varphi} A C \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} A C \cdot \sin \left(\varphi+\alpha_{2}\right) \tag{6.197a}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{A}}+\ddot{\varphi} A C \sin \left(\varphi+\alpha_{2}\right)+\dot{\varphi}^{2} A C \cdot \cos \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

or
$\left\{\begin{array}{l}\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{B}}+\ddot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)-2 \dot{\varphi} \dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)-\ddot{\varphi} s_{1} \sin \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} s_{1} \cos \left(\varphi+\alpha_{2}\right) \\ \ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{B}}+\ddot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+2 \dot{\varphi} \dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)+\ddot{\varphi} s_{1} \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} s_{1} \sin \left(\varphi+\alpha_{2}\right)\end{array}\right.$
obtained by differentiating with respect to time the velocity Equations 6.191, 6.192, and 6.193a and b, respectively.

The variable angle φ and its derivatives $\dot{\varphi}$ and $\ddot{\varphi}$ occurring earlier can be calculated by calling procedure AngPVA with the arguments x and y coordinates of points P and Q and their first and second time derivatives. With this observation, the equations derived above have been implemented in procedure $\mathrm{RT}_{\mathbf{\prime}} \mathrm{T}_{\text {_ }}$ part of unit LibAssur:

```
RT_T_(Color:Word; xA,yA, vxA,vyA, axA,ayA, xP,yP, vxP,vyP,
axP,ayP, xQ,yQ, vxQ,vyQ, axQ,ayQ, AC,BD, Alpha2:double; var xB,yB,
vxB,vyB, axB,ayB, xC,yC, vxC,vyC, axC,ayC, xD,yD, vxD,vyD,
axD,ayD:double; var OK:Boolean);
```

The correspondence between the formal parameters and the notations used in Equations 6.183 through 6.197 and in Figure 6.31 is summarized in the following tables:

Input parameters of procedure $\mathrm{RT}_{\mathbf{\prime}} \mathrm{T}_{\mathbf{\prime}}$:

$0 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$
Color	xA	yA	vxA	vyA	axA	ayA	$\mathbf{x P}$	$\mathbf{y P}$	vxP	vyP	axP	ayP

FIGURE 6.32 A two-DOF mechanism consisting of an RT_T_ dyadic isomer driven by two rockers. See also animation file F6_32.GIF.

$x Q$	$y Q$	$\dot{x} Q$	$\dot{y} Q$	$\ddot{x} Q$	$\ddot{y} Q$	$A C$	$B D$	α_{2}
$\mathbf{x Q}$	$y Q$	vxQ	vyQ	axQ	ayQ	AC	BD	Alph2

Output parameters of procedure $R T$ _T_:

$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$	$x C$	$y C$	$\dot{x} C$	$\dot{y} C$	$\ddot{x} C$	$\ddot{y} C$
$\mathbf{x B}$	$\mathbf{y B}^{B}$	$\mathbf{v x B}$	$\mathbf{v y B}$	$\mathbf{a x B}$	ayB	$\mathbf{x C}$	$\mathbf{y C}$	$\mathbf{v x C}$	$\mathbf{v y C}$	axC	ayC

$x D$	$y D$	$\dot{x} D$	$\dot{y} D$	$\ddot{x} D$	$\ddot{y} D$	$\theta_{1} \neq \theta_{2}$
$\mathbf{x D}$	$y D$	vxD	vyD	axD	ayD	ok

Note that the displacements s_{1} and s_{1} of the two slider blocks and their first and second time derivatives are not returned by procedure RT_T_. If of interest, s_{1} and s_{1} can be determined by calling procedure VarDist with arguments set equal to the x and y coordinates of points B, C and P, B and to their first and second time derivatives.

The simulation of the sample mechanism in Figure 6.32 has been done using program P6_32.PAS listed in Appendix B. The frames in the animation file F6_32.GIF were produced using the DXF file output by the same program. As visible in Figure 6.32, the mechanism consists of two rockers, one being the actual link $P Q$ of the dyad and the other one driving the potential pin joint A (see also Figure 6.31).

6.13.3 R_TT_ Dyadic Isomer: Procedure R_TT_

The subject of this section is the RTT dyad configured as shown in Figure 6.33 and noted R_TT_. It can be seen as a crossbreed between the R_T_T and RT_T_ dyadic isomers. Consequently, some of the kinematic equations derived earlier will apply for this current embodiment of the RTT dyad.

FIGURE 6.33 Notations used in solving the kinematics of the R_TT_ dyadic isomer.

In a kinematic analysis, the following parameters are assumed known at any moment of time:

- Coordinates $x A, y A$, of potential joint A relative to the fixed reference frame $O X Y$.
- Coordinates $x P, y P$ and $x Q, y Q$ of the ends of the rod that guides to the inside sliding block B.
- Length $B C$ of the spacer rod joining slider blocks B and C.
- Lengths $A D$ and $D K$ of the two sides of the L-shaped link supporting slider C.
- The value of the constant angles α_{1} and α_{2} measured as shown in Figure 6.33.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.
- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of point A onto the fixed reference frame.
- Projections $\dot{x} P$ and $\dot{y} P$ of the velocity of joint center P onto the fixed reference frame.
- Projections $\ddot{x} P$ and $\ddot{y} P$ of the accelerations of point P onto the fixed reference frame.
- Projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of joint center Q onto the fixed reference frame.
- Projections $\ddot{x} Q$ and $\ddot{y} Q$ of the accelerations of Q onto the fixed reference frame.

The purpose of a kinematic analysis is to determine:

- Displacements s_{1} and s_{2} of sliders C and B measured as shown and their time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2}.
- Coordinates $x B$ and $y B$ of point B relative to the $O X Y$ reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of B onto the axes of the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the acceleration of B onto the axes of the fixed reference frame.
- Coordinates $x C$ and $y C$ of sliding block C relative to the $O X Y$ reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of point C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- Coordinates $x D$ and $y D$ of point D relative to the $O X Y$ reference frame.
- Projections $\dot{x} D$ and $\dot{y} D$ of the velocity of point D onto the axes of the fixed reference frame.
- Projections $\ddot{x} D$ and $\ddot{y} D$ of the acceleration of point D onto the axes of the fixed reference frame.
- Coordinates $x K$ and $y K$ of point K relative to the OXY reference frame.
- Projections $\dot{x} K$ and $\dot{y} K$ of the velocity of point K onto the axes of the fixed reference frame.
- Projections $\ddot{x} K$ and $\ddot{y} K$ of the acceleration of point K onto the axes of the fixed reference frame.

The vector-loop equation of the $\mathrm{R}_{-} \mathrm{TT}_{-}$isomer is

$$
\begin{equation*}
\mathrm{OD}+\mathrm{DC}=\mathrm{OP}+\mathrm{PB}+\mathrm{BC} \tag{6.198}
\end{equation*}
$$

which projects on the x - and y-axes of the fixed reference frame as

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}+A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}-\frac{\pi}{2}\right)+s_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)= \tag{6.199}\\
\quad x_{\mathrm{P}}+s_{2} \cos (\varphi)+B C \cos \left(\varphi+\alpha_{2}\right) \\
y_{\mathrm{A}}+A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}-\frac{\pi}{2}\right)+s_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)= \\
y_{\mathrm{P}}+s_{2} \cdot \sin (\varphi)+B C \cdot \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

After separating the unknowns s_{1} and s_{2}, the following set of linear equations is obtained:

$$
\left\{\begin{array}{l}
s_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-s_{2} \cos (\varphi)=x_{\mathrm{P}}-x_{\mathrm{A}}-A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)+B C \cos \left(\varphi+\alpha_{2}\right) \tag{6.200}\\
s_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-s_{2} \sin (\varphi)=y_{\mathrm{P}}-y_{\mathrm{A}}+A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)+B C \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

Equations 6.200 have solutions for any coordinates x_{A}, y_{A}, x_{P}, and y_{P}, provided that the following inequality holds:

$$
\begin{equation*}
\sin \left(\varphi+\alpha_{2}-\alpha_{1}\right) \cdot \cos (\varphi)-\cos \left(\varphi+\alpha_{2}-\alpha_{1}\right) \cdot \sin (\varphi) \neq 0 \quad \text { equivalent to } \quad \alpha_{2} \neq \alpha_{1} \tag{6.201}
\end{equation*}
$$

Once slider displacements s_{1} and s_{2} are calculated, the coordinates of points B, D, C, and K, required to represent graphically the dyad, can be calculated using Equations $6.186,6.164,6.168$ a, and 6.165 , respectively. Alternatively, the coordinates of point C can be calculated with

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{B}}+B C \cos \left(\varphi+\alpha_{2}\right) \tag{6.202}\\
y_{\mathrm{C}}=y_{\mathrm{B}}+B C \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

The velocity problem requires solving for the unknown relative velocities \dot{s}_{1} and \dot{s}_{2} among equations

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{s}_{2} \cos (\varphi)=\dot{x}_{\mathrm{P}}-\dot{x}_{\mathrm{A}} \tag{6.203}\\
\quad-\dot{\varphi}\left[A D \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)+B C \sin \left(\varphi+\alpha_{2}\right)-s_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)+s_{2} \sin (\varphi)\right] \\
\dot{s}_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{s}_{2} \sin (\varphi)=\dot{y}_{\mathrm{P}}-\dot{y}_{\mathrm{A}} \\
\quad-\dot{\varphi}\left[A D \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)-B C \cos \left(\varphi+\alpha_{2}\right)+s_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-s_{2} \cos (\varphi)\right.
\end{array}\right.
$$

obtained by differentiating with respect to time Equations 6.200. By applying the same equation one more time, we obtain

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)+\dot{s}_{2} \cos (\varphi)=\dot{x}_{\mathrm{P}}-\dot{x}_{\mathrm{A}}-\dot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{P}}\right) \tag{6.204}\\
\dot{s}_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)+\dot{s}_{2} \sin (\varphi)=\dot{y}_{\mathrm{P}}-\dot{y}_{\mathrm{A}}+\dot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{P}}\right)
\end{array}\right.
$$

The x and y components of the velocities of points B, D, C, and K can be calculated using Equations $6.191,6.171,6.175 \mathrm{a}$, and 6.172 , respectively. The scalar components of the velocity of point C can be also obtained by differentiating Equation 6.202, that is,

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{B}}-\dot{\varphi} B C \sin \left(\varphi+\alpha_{2}\right) \tag{6.205}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{B}}+\dot{\varphi} B C \cos \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

FIGURE 6.34 A two-DOF mechanism consisting of an R_TT_ dyadic isomer driven by two rockers. See also animation file F6_34.GIF.

The relative accelerations \ddot{s}_{1} and \ddot{s}_{2} are solutions of the equations

$$
\left\{\begin{array}{l}
\ddot{s}_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)+\ddot{s}_{2} \cos (\varphi)=\ddot{x}_{\mathrm{P}}-\ddot{x}_{\mathrm{A}}+\ddot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{P}}\right)+\dot{\varphi}\left(\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{P}}\right) \tag{6.206}\\
\quad+\dot{\varphi} \dot{s}_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)+\dot{\varphi} \dot{s}_{2} \sin (\varphi) \\
\ddot{s}_{1} \sin \left(\varphi+\alpha_{2}-\alpha_{1}\right)+\ddot{s}_{2} \sin (\varphi)=\ddot{y}_{\mathrm{P}}-\ddot{y}_{\mathrm{A}}-\ddot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{P}}\right)-\dot{\varphi}\left(\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{P}}\right) \\
\quad-\dot{\varphi} \dot{s}_{1} \cos \left(\varphi+\alpha_{2}-\alpha_{1}\right)-\dot{\varphi} \dot{s}_{2} \cos (\varphi)
\end{array}\right.
$$

obtained by differentiating Equations 6.204 with respect to time.
The x and y components of the accelerations of points B, D, C, and K can be determined using Equations 6.195, 6.177, 6.181a, and 6.178, respectively. Another form of the x and y components of the acceleration of point C can be obtained by differentiating Equations 6.205:

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{B}}-\ddot{\varphi} B C \sin \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} B C \cos \left(\varphi+\alpha_{2}\right) \tag{6.207}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{B}}+\ddot{\varphi} B C \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} B C \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

The variable angle φ and its derivatives $\dot{\varphi}$ and $\ddot{\varphi}$ occurring the above equations can be determined by calling procedure AngPVA with its arguments set equal to x and y coordinates of points P and Q and to their first and second time derivatives.

These kinematic equations have been implemented in procedure $\mathrm{R}_{\mathbf{\prime}} T \mathrm{~T}$ _ part of unit LibAssur with the following heading:

R_TT_(Color:Word; XA,YA, vxA, vyA, axA, ayA, $x P, y P, ~ v x P, v y P$, axP, ayP, $x Q, y Q, ~ v x Q, v y Q, ~ a x Q, a y Q, ~ A D, D K, B C, A l p h a 2: d o u b l e ;$ var $x B, y B, \quad v x B, v y B, a x B, a y B, x C, y C, v x C, v y C, ~ a x C, a y C, x D, y D$, vxD, vyD, axD,ayD, $x K, y K, ~ v x K, v y K, ~ a x K, a y K: d o u b l e ; ~ v a r ~ O K: B o o l e a n) ; ~$

The correspondence between the formal parameters of the procedures and the notations used in Figure 6.31 and in these kinematic equations is summarized in the following tables:

Input parameters of procedure $\mathrm{R}_{-} \mathrm{TT} \mathrm{T}_{\text {: }}$:

Output parameters of procedure $\mathrm{RT}_{\mathbf{\prime}} \mathrm{T}_{-}$:

Note that the displacements s_{1} and s_{1} of the two slider blocks and their first and second time derivatives are not returned by procedure $\mathrm{R}_{-} T T_{-}$. They can be however evaluated by calling procedure VarDist with arguments set equal to x and y coordinates of points D, C and P, B and to their first and second time derivatives.

The simulation of the sample mechanism shown in Figure 6.34 has been done using program P6_34.PAS listed in Appendix B. The frames used to generate the animation file F6_34.GIF were produced using the DXF file output by P6_34.PAS. As visible in the figure, the mechanism consists of two rockers, one being the actual link $P Q$ of the dyad and the other one driving the potential pin joint A of the dyad (see Figure 6.33).

6.13.4 RT__ Dyadic Isomer: Procedure RT__T

The last possible embodiment of the RTT dyad has its configuration as shown in Figure 6.35 and it is symbolized RT__T. This fourth isomer can be interpreted as a crossbreed between the R_T_T and RT_T_ dyadic isomers, and therefore the three will share part of their kinematic equations.

In an analysis, the following parameters will be assumed known at any given time:

- Coordinates $x A, y A$, of potential joint A relative to the fixed reference frame $O X Y$.
- Coordinates $x B, y B$ of the center of slider block B measured relative to the fixed reference frame.
- Projections $\dot{x} A$ and $\dot{y} A$ of the velocity of joint center A onto the fixed reference frame.

FIGURE 6.35 Notations used in solving the kinematics of the RT__T dyad.

- Projections $\ddot{x} A$ and $\ddot{y} A$ of the accelerations of point A onto the fixed reference frame.
- Projections $\dot{x} B$ and $\dot{y} B$ of the velocity of joint center B onto the fixed reference frame.
- Projections $\ddot{x} B$ and $\ddot{y} B$ of the accelerations of point B onto the fixed reference frame.
- Orientation angle φ of slider B and its first and second time derivatives $\dot{\varphi}$ and $\ddot{\varphi}$.
- The value of the constant angles α_{2} measured as shown in Figure 6.35.
- Lengths $P Q$ and $Q D$ of the two sections of the V-shaped link supporting slider blocks B and C.
- Offset $A C$ of the pin joint relative to slider block C.

The purpose of the kinematic analysis is to determine:

- Displacements s_{1} and s_{2} of sliders C and B measured as shown and their time derivatives $\dot{s}_{1}, \dot{s}_{2}, \ddot{s}_{1}$, and \ddot{s}_{2}.
- Coordinates $x P$ and $y P$ of point P relative to the $O X Y$ reference frame.
- Projections $\dot{x} P$ and $\dot{y} P$ of the velocity of point P onto the axes of the fixed reference frame.
- Projections $\ddot{x} P$ and $\ddot{y} P$ of the acceleration of point P onto the axes of the fixed reference frame.
- Coordinates $x C$ and $y C$ of sliding block C relative to the OXY reference frame.
- Projections $\dot{x} C$ and $\dot{y} C$ of point C onto the axes of the fixed reference frame.
- Projections $\ddot{x} C$ and $\ddot{y} C$ of the acceleration of C onto the axes of the fixed reference frame.
- Coordinates $x D$ and $y D$ of point D relative to the $O X Y$ reference frame.
- Projections $\dot{x} D$ and $\dot{y} D$ of the velocity of point D onto the axes of the fixed reference frame.
- Projections $\ddot{x} D$ and $\ddot{y} D$ of the acceleration of point D onto the axes of the fixed reference frame.
- Coordinates $x Q$ and $y Q$ of point Q relative to the $O X Y$ reference frame.
- Projections $\dot{x} Q$ and $\dot{y} Q$ of the velocity of point Q onto the axes of the fixed reference frame.
- Projections $\ddot{x} Q$ and $\ddot{y} Q$ of the acceleration of point Q onto the axes of the fixed reference frame.

The vector-loop equation of the $\mathrm{RT} __\mathrm{T}$ isomer is

$$
\begin{equation*}
\mathrm{OA}+\mathrm{AC}=\mathbf{O B}+\mathbf{B Q}+\mathbf{Q C} \tag{6.208}
\end{equation*}
$$

This is equivalent to the following scalar equations:

$$
\left\{\begin{array}{l}
x_{\mathrm{A}}+A C \cos \left(\varphi+\alpha_{2}-\frac{\pi}{2}\right)=x_{\mathrm{B}}-s_{2} \cos (\varphi)+s_{1} \cos \left(\varphi+\alpha_{2}\right) \tag{6.209}\\
y_{\mathrm{A}}+A C \sin \left(\varphi+\alpha_{2}-\frac{\pi}{2}\right)=y_{\mathrm{B}}-s_{2} \sin (\varphi)+s_{1} \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

After separating the unknowns s_{1} and s_{2}, the following set of linear equations is finally obtained:

$$
\left\{\begin{array}{l}
s_{1} \cos \left(\varphi+\alpha_{2}\right)-s_{2} \cos (\varphi)=x_{\mathrm{A}}-x_{\mathrm{B}}+A C \sin \left(\varphi+\alpha_{2}\right) \tag{6.210}\\
s_{1} \sin \left(\varphi+\alpha_{2}\right)-s_{2} \sin (\varphi)=y_{\mathrm{A}}-y_{\mathrm{B}}-A C \cos \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

Equations 6.210 have solutions for any coordinates $x_{A}, y_{A}, x_{B}, y_{B}$ and angle φ, as long as the following inequality holds:

$$
\begin{equation*}
\sin \left(\varphi+\alpha_{2}\right) \cos (\varphi)-\cos \left(\varphi+\alpha_{2}\right) \sin (\varphi) \neq 0 \quad \text { equivalent to } \quad \alpha_{2} \neq 0 \tag{6.211}
\end{equation*}
$$

Once slider displacements s_{1} and s_{2} become known, the coordinates of points P, Q, and C can be calculated using Equations 6.167, 6.166, and 6.188a, respectively. The x and y coordinates of point C can be also calculated using equations

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=x_{\mathrm{Q}}+s_{1} \cos \left(\varphi+\alpha_{2}\right) \tag{6.212}\\
y_{\mathrm{C}}=y_{\mathrm{Q}}+s_{1} \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

while the coordinates of point D can be calculated with

$$
\left\{\begin{array}{l}
x_{\mathrm{D}}=x_{\mathrm{Q}}+D Q \cos \left(\varphi+\alpha_{2}\right) \tag{6.213}\\
y_{\mathrm{D}}=y_{\mathrm{Q}}+D Q \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

The velocity problem requires determining the unknown relative velocities \dot{s}_{1} and \dot{s}_{2} by solving simultaneously the following equations:

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)-\dot{s}_{2} \cos (\varphi)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{B}}+\dot{\varphi}\left[A C \cos \left(\varphi+\alpha_{2}\right)+s_{1} \sin \left(\varphi+\alpha_{2}\right)-s_{2} \sin (\varphi)\right] \tag{6.214}\\
\dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)-\dot{s}_{2} \sin (\varphi)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{B}}+\dot{\varphi}\left[A C \sin \left(\varphi+\alpha_{2}\right)-s_{1} \cos \left(\varphi+\alpha_{2}\right)+s_{2} \cos (\varphi)\right]
\end{array}\right.
$$

obtained by differentiating with respect to time the position Equations 6.210. By reapplying the position Equations 6.214, we further get

$$
\left\{\begin{array}{l}
\dot{s}_{1} \cdot \cos \left(\varphi+\alpha_{2}\right)-\dot{s}_{2} \cdot \cos (\varphi)=\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{B}}+\dot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{B}}\right) \tag{6.215}\\
\dot{s}_{1} \cdot \sin \left(\varphi+\alpha_{2}\right)-\dot{s}_{2} \cdot \sin (\varphi)=\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{B}}-\dot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{B}}\right)
\end{array}\right.
$$

The scalar components of the velocities of points P, Q, and C can be calculated using Equations $6.174,6.173$, and 6.175 a, respectively. The components of the velocity of point C can be also obtained by differentiating with respect to time Equations 6.212:

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{C}}=\dot{x}_{\mathrm{Q}}+\dot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi} s_{1} \sin \left(\varphi+\alpha_{2}\right)=\dot{x}_{\mathrm{Q}}+\left(\frac{\dot{s}_{1}\left(x_{\mathrm{D}}-x_{\mathrm{Q}}\right)}{D Q}\right)-\dot{\varphi}\left(y_{\mathrm{C}}-y_{\mathrm{Q}}\right) \tag{6.216}\\
\dot{y}_{\mathrm{C}}=\dot{y}_{\mathrm{Q}}+\dot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+\dot{\varphi} s_{1} \cos \left(\varphi+\alpha_{2}\right)=\dot{y}_{\mathrm{Q}}+\left(\frac{\dot{s}_{1}\left(y_{\mathrm{D}}-y_{\mathrm{Q}}\right)}{D Q}\right)+\dot{\varphi}\left(x_{\mathrm{C}}-x_{\mathrm{Q}}\right)
\end{array}\right.
$$

Likewise, the x and y components of the velocity of point D result from the differentiation of Equation 6.213:

$$
\left\{\begin{array}{l}
\dot{x}_{\mathrm{D}}=\dot{x}_{\mathrm{Q}}-\dot{\varphi} D Q \sin \left(\varphi+\alpha_{2}\right) \tag{6.217}\\
\dot{y}_{\mathrm{D}}=\dot{y}_{\mathrm{Q}}+\dot{\varphi} D Q \cos \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

Regarding acceleration problem, we must first determine linear accelerations \ddot{s}_{1} and \ddot{s}_{2}. These are the solutions of the following set of equations:

$$
\left\{\begin{array}{l}
\quad \begin{array}{l}
\ddot{s}_{1} \cos \left(\varphi+\alpha_{2}\right)+\ddot{s}_{2} \cos (\varphi)=\ddot{x}_{\mathrm{A}}-\ddot{x}_{\mathrm{P}}+\ddot{\varphi}\left(y_{\mathrm{A}}-y_{\mathrm{P}}\right)+\dot{\varphi}\left(\dot{y}_{\mathrm{A}}-\dot{y}_{\mathrm{P}}\right) \\
\quad \sin \left(\varphi+\alpha_{2}\right)+\dot{\varphi} \dot{s}_{2} \sin (\varphi) \\
\ddot{s}_{1} \sin \left(\varphi+\alpha_{2}\right)+\ddot{s}_{2} \sin (\varphi)=\ddot{y}_{\mathrm{A}}-\ddot{y}_{\mathrm{P}}-\ddot{\varphi}\left(x_{\mathrm{A}}-x_{\mathrm{P}}\right)-\dot{\varphi}\left(\dot{x}_{\mathrm{A}}-\dot{x}_{\mathrm{P}}\right) \\
\quad-\dot{\varphi} \cdot \dot{s}_{1} \cdot \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi} \dot{s}_{2} \cos (\varphi)
\end{array} \tag{6.218}
\end{array}\right.
$$

obtained by differentiating Equations 6.204 with respect to time.

The x and y components of the accelerations of points P, Q, and C can be calculated using Equations 6.180, 6.179, and 6.181a, respectively. The x and y components of the acceleration of point C can be also obtained by differentiating Equations 6.216:

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{C}}=\ddot{x}_{\mathrm{Q}}+\left(\frac{\ddot{s}\left(x_{\mathrm{D}}-x_{\mathrm{Q}}\right)}{\mathrm{DQ}}\right)+\left(\frac{\dot{s}\left(x_{\mathrm{D}}-x_{\mathrm{Q}}\right)}{\mathrm{DQ}}\right)-\ddot{\varphi}\left(y_{\mathrm{C}}-y_{\mathrm{Q}}\right)-\dot{\varphi}\left(\dot{y}_{\mathrm{C}}-\dot{y}_{\mathrm{Q}}\right) \tag{6.219}\\
\ddot{y}_{\mathrm{C}}=\ddot{y}_{\mathrm{Q}}+\left(\frac{\ddot{s}\left(y_{\mathrm{D}}-y_{\mathrm{Q}}\right)}{\mathrm{DQ}}\right)+\left(\frac{\dot{s}\left(y_{\mathrm{D}}-y_{\mathrm{Q}}\right)}{\mathrm{DQ}}\right)-\ddot{\varphi}\left(x_{\mathrm{C}}-x_{\mathrm{Q}}\right)-\dot{\varphi}\left(\dot{x}_{\mathrm{C}}-\dot{x}_{\mathrm{Q}}\right)
\end{array}\right.
$$

Likewise, by differentiating Equations 6.217, we obtain the components of the acceleration of point D :

$$
\left\{\begin{array}{l}
\ddot{x}_{\mathrm{D}}=\ddot{x}_{\mathrm{Q}}-\ddot{\varphi} D Q \sin \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} D Q \cos \left(\varphi+\alpha_{2}\right) \tag{6.220}\\
\ddot{y}_{\mathrm{D}}=\ddot{y}_{\mathrm{Q}}+\ddot{\varphi} D Q \cos \left(\varphi+\alpha_{2}\right)-\dot{\varphi}^{2} D Q \sin \left(\varphi+\alpha_{2}\right)
\end{array}\right.
$$

These kinematic equations have been implemented in procedure $\mathbf{R T}$ __T in unit LibAssur with the heading

RT_ T (Color:Word; xA, yA, vxA, vyA, axA, ayA, $x B, y B, v x B, v y B, a x B, a y B$, Phi,dPhi,ddPhi, $A C, P Q, Q D, A l p h a 2: d o u b l e ; ~ v a r ~ x P, Y P, v x P, v y P, a x P, a y P$, $x Q, y Q, v x Q, v y Q, a x Q, a y Q, x D, y D, v x D, v y D, a x D, a y D: d o u b l e ; ~ v a r ~ O K: B o o l e a n) ;$

The correspondence between the formal parameters and the notations used in these equations and in Figure 6.35 is summarized in the following tables:

Input parameters of procedure $\mathrm{RT}_{\ldots} \quad \mathrm{T}$:

$0 \ldots 16$	$x A$	$y A$	$\dot{x} A$	$\dot{y} A$	$\ddot{x} A$	$\ddot{y} A$	$x B$	$y B$	$\dot{x} B$	$\dot{y} B$	$\ddot{x} B$	$\ddot{y} B$
Color	xA	yA	vxA	vyA	axA	ayA	$\mathbf{x B}$	$\mathbf{y B}$	vxB	vyB	axB	ayB

ϕ	$\dot{\varphi}$	$\ddot{\varphi}$	$A C$	$P Q$	$Q D$	α_{2}
Phi	dPhi	ddPhi	AC	$P Q$	$Q D$	Alph2

Output parameters of procedure $R T _T$:

$x P$	$y P$	$\dot{x} P$	$\dot{y} P$	$\ddot{x} P$	$\ddot{y} P$	$x Q$	$y Q$	$\dot{x} Q$	$\dot{j} Q$	$\ddot{x} Q$	$\ddot{y} Q$
xP	yP	vxp	vyP	axP	ayP	xQ	YQ	vxQ	vyQ	axQ	ayQ
$x D$		$y D$		$\dot{x} D$			$\ddot{x} D$		$\ddot{y} D$		$\alpha_{2} \neq 0$
xD		yD		vxD			axd		ayd		OK

FIGURE 6.36 A two-DOF mechanism consisting of an RT__T dyadic isomer driven by two rockers. See also animation file F6_36.GIF.

Note that the displacements s_{1} and s_{2} of the two slider blocks and their first and second time derivatives are not returned by procedure RT__T. They can however be calculated by calling procedure VarDist with its arguments set equal to x and y coordinates of points D, C and P, B and to their first and second time derivatives.

The simulation of the sample mechanism in Figure 6.36 has been done using program P6_36.PAS listed in Appendix B, which outputs a DXF file that was used to generate the animation file F6_36.GIF. As visible from the figure, the mechanism consists of two rockers, one being the actual link $P Q$ of the dyad and the other one driving the potential pin joint A. The program includes, with the simulation, the locus of point Q and labels of each joint and of the constant angle at α_{2}.

All five Assur groups with two links and three joints have been analyzed in their most general configurations, adding up to 11 dyadic isomers. The kinematic equations obtained have been implemented in a number of procedures gathered in unit LibAssur available with the book. Starting from one or more actuators, these procedures can be called in the same order in which the mechanism has been formed, and the position, velocity, and acceleration of its links or points of interest can be determined. In addition, the mechanism can be represented graphically on the computer screen and also exported to DXF. More applications of the procedures in unit LibAssur are discussed in Chapter 9. As Figure 6.3 shows, many practical mechanisms employ oftentimes simplified dyads or dyadic isomers, which have some link lengths and eccentricities equal to zero.

REFERENCES AND FURTHER READINGS

For general mechanism theory including mobility analysis, vector-loop equations, and kinematic analysis, see
Cleghorn, W. L. (2005). Mechanics of Machines. New York: Oxford University Press.
Norton, R. L. (2011). Design of Machinery. New York: McGraw Hill.
Uicker, J. J. Jr., Pennock, G. R., and Shigley, J. E. (2003). Theory of Machines and Mechanisms. New York: Oxford University Press.
Waldron, K. J. and Kinzel, G. L. (2003). Kinematics, Dynamics, and Design of Machinery. Hoboken, NJ: John Wiley \& Sons.
Wilson, C. E. and Sadler, J. P. (2003). Kinematics and Dynamics of Machinery. Upper Saddle River, NJ: Prentice Hall.

For additional works on Assur group kinematics, see
Galetti, C. U. (1986). A note on modular approaches to planar linkage kinematic analysis. Mechanism and Machine Theory, 21(5), 385-391.
Hansen, M. R. (1996). A general method for analysis of planar mechanisms using a modular approach. Mechanism and Machine Theory, 31(8), 1155-1166.
Verho, A. (1971). An extension of the concept of group. Mechanism and Machine Theory, 8(2), 249-256.

This page intentionally left blank

Design and Analysis of Disk Cam Mechanisms

Same as linkages, cam mechanisms are capable of converting continuous rotational motion into rectilinear or rotary motion that alternate between a lower and an upper limit. As opposed to linkages, however, the correlation between the input and output motions can be precisely programmed and can include one or more dwells, while the mechanism itself may result of smaller size than the equivalent linkage. On the downside, cam mechanisms have lower reliability and are noisier and the follower can bounce. Figure 7.1 shows the schematic of the cam mechanisms considered in this chapter. Cam profile generation as follower envelope in an inverted motion (i.e., the follower rotates around the cam that is held stationary) and the problem of kinematic analysis of a given cam-follower pair will be studied in this chapter. The preliminary problem of synthesizing the follower motion is also tackled using AutoCAD interpolating functions and the Util~DXF and Util~TXT programs.

7.1 SYNTHESIS OF FOLLOWER MOTION

The choice of follower motion in a cam-follower mechanism influences the magnitude of the contact forces and therefore the wear rate of the mechanism. If not properly selected, it can cause follower bounce that is associated with increased noise and vibrations level during operation. The reader may have experience with elevators, some being less comfortable to ride than others, depending on the type of motion programmed to their cars. Likewise, if the follower motion is jerked at start-up, then large contact forces will develop, while if the motion ends abruptly and the retaining force is small (i.e., provided by a soft spring or gravity only), then the contact between the follower and the cam will be lost. These effects are also influenced by the type of cam and follower materials, the presence of lubricant, contact geometry, joint clearances, etc.

Let us assume a follower displacement $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$ that consists of a lower dwell for the first 10% and last 10% of total cam cycle, a follower rise from 10% to 45%, upper dwell of magnitude 1 from 45% to 57.5%, and follower return from 57.5% to 90% of the cam cycle

FIGURE 7.1 Disk cam-follower mechanisms subject of this chapter.

FIGURE 7.2 Prescribed follower motion with 20% lower dwell, 12.5% upper dwell, 35% rise, and 32.5% fall (percentages of total cam displacement). Configuration file to redo this plot F7_02.CF2.
(see Figure 7.2). Note that the diagram has been normalized with respect to cam and follower motion ranges, which allows both the rotational and translational motions of the cam and of the follower to be obtained through scaling.

Synthesizing the motion program $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$ of a cam mechanism requires connecting the prescribed dwells such that the follower does not exhibit theoretically infinite accelerations and decelerations (which translate in large contact forces and are associated with follower bounce, respectively). These may occur at the beginning and at the end of the follower motion and should be avoided, particularly for high-speed cam mechanisms. The third derivative of the follower displacement called jerk is also monitored during the design process of high-speed cams and should also remain finite. For slow-speed applications, however, infinite theoretical accelerations are considered acceptable.

Of the numerous types of follower motions described in literature, spline rise and fall will be considered. Specifically, the upper and lower dwells in Figure 7.2 were connected with nonuniform rational B-splines (NURBS) with four control points each, and horizontal end tangents, produced using the AutoCAD spline command (see Figure 7.3). The complete follower displacement curve has been then exported to a R12 DXF file, which caused the splines to be approximated with successions of short line segments. The resulting DXF file was then

FIGURE 7.3 NURBS normalized motion program produced with AutoCAD. The end tangents of the splines, that is, segments $(0,0)-(0.1,0),(0.45,1)-(0.575,1)$, and $(0.9,0)-(1,0)$, are aligned with the respective dwells.
reimported into AutoCAD, where the original dwell lines and the newly occurring approximating segments were manually reassembled into a single polyline. After that, a second R12 DXF file has been generated (see file F7_03.DXF) and was opened using the Util~DXF application available with the book. The vertices of this polyline were then exported to ASCII file F7_03.XY. Additional points, linearly interpolated between the existing data points, were added to F7_03.XY using the Util~TXT application (see data file F7_04-0.XY and configuration file F7_04-0.CON). Through numerical differentiation of the F7_04-0.XY data done using the same Util~TXT program, two more ASCII files have been generated, that is, F7_04-1.XY and F7_04-2.XY (see configuration files F7_04-12.CON and F7_04. CF2). These three files were then used to plot the normalized displacement $\delta_{F}(\theta)$ and its first and second derivatives $\delta_{\mathrm{F}}^{\prime}(\theta)=\mathrm{d} \delta / \mathrm{d} \theta$ and $\delta_{F}^{\prime \prime}(\theta)=\mathrm{d}^{2} \delta / \mathrm{d} \theta^{2}$ graphed in Figure 7.4.

The more irregular appearance of the $\delta^{\prime \prime}{ }_{F}(\theta)$ curve is due to the approximations performed when the AutoCAD NURBS have been converted to R12 DXF line segments, amplified by the numerical calculation of the derivatives. The fact that there are no acceleration spikes at the beginning and at the end of the follower displacement is however a good indication that the $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$ motion program in Figure 7.4 is suitable for high-speed cam applications.

The aforementioned follower displacement data file F7_04-0.XY renamed dFvdC. XY is read by a number of Pascal programs that call procedures from units LibAssur, LibCams, and LibMec2D, and served to synthesize the profiles of cam mechanisms of the type shown in Figure 7.1. A second follower motion file named dFvdC_L.XY, which contains every 10th data point extracted from file dFvdC. XY, was used to produce the frames of the animated GIFs that accompany this chapter.

Important: The last entry from both these normalized follower motion files has been edited, so that the initial and final cam profile points do not coincide. Without this, the cam-follower kinematic analysis procedures in unit LibCams may produce spikes at the beginning and at the end of the follower motion.

FIGURE 7.4 Follower displacement δ and its first derivative $\delta^{\prime}=\mathrm{d} \delta / \mathrm{d} \theta$ and second derivative $\delta^{\prime \prime}=\mathrm{d}^{2} \delta / \mathrm{d} \theta^{2}$ calculated using finite differences. Configuration file F7_04.CF2.

7.2 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH TRANSLATING FOLLOWER, POINTED OR WITH ROLLER

The first mechanism considered is the disk cam with translating follower ending with a knife edge or with a roller. The two are directly related in that for the same input-output displacement function $s(\theta)$, the profile of the cam designed to operate with a roller follower is the offset of the cam designed for the knife-edge follower. Therefore, the synthesis of cam mechanisms with pointed translating follower will be primarily discussed in this chapter. Any offset cam profile can be obtained inside AutoCAD using the offset command. Later in the chapter, the procedure EnvelopeOfCircles will be introduced, which allows the profile of the cam working with a roller follower to be directly generated.

In the disk cam profile synthesis problem, in addition to a normalized motion $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$, the duration of the cam cycle $\Delta \theta$ and follower amplitude Δs must be also specified. This allows the follower displacement to be prescribed as function of the cam angle as

$$
\begin{equation*}
s(\theta)=s_{0}+\Delta s \cdot \delta_{\mathrm{F}}\left(\frac{\theta}{\Delta \theta}\right) \text { with } 0 \leq \theta \leq \Delta \theta \tag{7.1}
\end{equation*}
$$

Most common is for cam cycle to be $\Delta \theta=2 \pi$, although cams that perform less than a full rotation exist. Cams that generate two or three follower cycles per turn can be designed by letting $\Delta \theta=\pi$ or $\Delta \theta=2 \pi / 3$, respectively, and then repeating the partial profile obtained as a polar array about the cam center. Additional parameters that have to be specified in a design problem are (see Figure 7.5) roller radius r, follower eccentricity e_{F} (can be either positive or negative), and follower bias s_{0} (which is recommended to be 2-3 times bigger than the follower amplitude). Note that this last recommendation has not been strictly observed throughout this chapter.

FIGURE 7.5 A disk cam with translating follower. C_{i} and C_{o} are the contact points between the roller and the inner and outer offset cam profiles represented in thick, dashed lines.

The pitch cam profile will be generated as a collection of discrete points $\left(x_{j}, y_{j}\right)$ relative to a reference frame with the origin coincident with the center of rotation of the cam. Of additional interest are the cam curvature ρ and the pressure angle γ between the pitch cam and the follower-both evaluated at the same points $\left(x_{j}, y_{j}\right)$. Pressure angle γ is defined as the angle between the cam-follower contact force vector $\boldsymbol{F}_{\mathrm{C}}$ and the velocity vector $\boldsymbol{v}_{\mathrm{C}}$ of the tip of the follower. For this particular cam-follower the velocity vector $\boldsymbol{v}_{\mathrm{C}}$ will always be aligned with the direction of the follower axis. For most cam-follower mechanisms, it is recommended that the pressure angle does not to exceed 30° (Norton 2002). Because the direction of the contact force vector $\boldsymbol{F}_{\mathrm{C}}$ is always through the center of curvature of the cam at the point of contact C, the problems of cam curvature and pressure angle analysis are related. Once the direction of the normal to the pitch cam profile is determined (this is also the direction of the force vector $\boldsymbol{F}_{\mathrm{C}}$-see Figure 7.5), the inner and outer offset points C_{i} and C_{o} can be computed as intersections between the normal to the cam profile at point C and the circle centered at C and of radius r. In the programs that accompany this chapter, this has been done using procedure DoubleOffset:

```
procedure DoubleOffset(x,y,DnX,DnY,Rho,r:double;
var xi,yi,xo,yo:double);
```

available from unit LibCams. The procedure returns the coordinates of inward point ($\mathbf{x i}, \mathbf{y i}$) and outward point ($\mathbf{x o}, \mathbf{y o}$) collinear with point (\mathbf{x}, \mathbf{y}) situated along the direction ($\mathrm{D} \boldsymbol{n} \mathrm{X}, \mathrm{DnY}$) at distance $\pm \mathbf{r}$ from (\mathbf{x}, \mathbf{y}). It can be shown that the pressure angle γ calculated for the knife-edge follower is identical to the pressure angle of an offset cam
profile operating in conjunction with the same follower, equipped with a roller of radius r equal to the offset distance (see the closed curves shown in dashed line in Figure 7.5). The base circle radius r_{b} and top circle radius r_{t} are important design parameters. For the cam mechanisms like the one in Figure 7.5, these can be calculated with the following formulae:

$$
\begin{gather*}
r_{\mathrm{b}}=\sqrt{e_{\mathrm{F}}^{2}+s_{0}^{2}} \tag{7.2}\\
r_{\mathrm{t}}=\sqrt{e_{\mathrm{F}}^{2}+\left(s_{0}+\Delta s\right)^{2}} \tag{7.3}
\end{gather*}
$$

The pitch cam profile can be traced accurately as the locus of point C in a motion inversion (Waldron and Kinzel 2003). This method of motion inversion will be employed exclusively throughout this chapter to generate the cam profiles, where the cam is maintained immobile and the follower is rotated in the opposite direction to the normal operation of the cam. The motion-inversion setup (see Figure 7.6a) consists of crank $O A$ connected with a linear actuator positioned perpendicularly to $O A$ and offset by the amount $e_{\mathrm{F}}=O P$. The actuator has been programmed to extend according to the prescribed follower motion $s(\theta)$. If the cam is intended to operate with a roller-follower and generate the same function $s(\theta)$, its profile will be either the inner or the outer envelope of the roller in a motion inversion. These envelopes can be produced as loci of points C_{i} and C_{o} (Figure 7.5) or by offsetting the pitch cam profile an amount r using the AutoCAD offset command.

Program P7_06.PAS (see Appendix B) implements a motion-inversion cam profile synthesis strategy as explained earlier. If constant Color on line \#12 equals 1, the program plots the crank and the linear actuator of the generating mechanism together with the locus of roller center C with displacement data read from the lower-resolution file dFvdC_L.XY (Figure 7.6a). If constant Color equals 0 , the program plots the roller only and the locus of point C (see Figure 7.6b), with motion data read from the higher-resolution file dFvdC.XY.

FIGURE 7.6 Cam profile generation in a motion inversion of a knife-edge translating follower (a) and complete profile and roller envelope generated for $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$ in Figure 7.4 with $\Delta \theta=2 \pi, \Delta s=1$, $e_{\mathrm{F}}=0.2, s_{0}=0.25$, and $r=0.15$ (b). See also animation file F7_06a.GIF.

Before the actual simulation begins, the program reports the base circle and top circle radii calculated using Equations 7.2 and 7.3-see lines \#31 and \#32.

By running program P7_06.PAS with the follower bias s_{0} set to smaller values, the pitch profile may exhibit regions with concavities where the radius of curvature ρ turns negative. When offset to accommodate a roller, the radii of curvature (in absolute value) around these concavities could become smaller than the radius of the roller. Consequently, the prescribed motion will not be reproduced as intended when the follower travels over these areas. One remedy is to redesign the follower motion program $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$; the other is to increase the follower bias s_{0} that will cause an increase of the base circle radius r_{b}. Enlarging the base circle radius has the additional favorable effect of reducing the maximum deviation of the pressure angle γ from its ideal value of zero degrees.

Program P7_07.PAS (see Appendix B) performs a follower displacement analysis, pressure angle and curvature analysis, and offset cam profile extraction of disk cams with translating knife-edge follower. The cam profile is read from data file Cam06.D2D output by program P7_06.PAS. If constant Anim on line \#15 is set equal to 1 , the analysis is accompanied by an animation of the mechanism. If Anim equals 0 , then only a progress report will be displayed on the computer screen every tenth cam position point (see also line \#36 and the use of variable Skip).

Given the cam profile as discrete points $\left(x_{j}, y_{j}\right)$ and assuming the axis of rotation of the cam is at (0,0), its base circle radius and top circle radius can be evaluated numerically using procedure GetProfileRadii called from unit LibCams (see line \#25 of program P7_07.PAS). This procedure with the heading
procedure GetProfileRadii(FxyName:PathStr; var Rmin,Rmax:double);
reads the ASCII or D2D file FxyName containing the cam profile points and calculates the distance from the center of the cam $(0,0)$ to each of these points. At the end, it returns the minimum and maximum of these distances assigned to variables Rmin and Rmax, reported by program P7_07.PAS as the base and top circle radii.

Procedure RotCamTransPointed called on line \#47 from unit LibCams evaluates the intersection point between the pitch cam profile rotated by angle Theta and the vertical line $x=e_{\mathrm{F}}$ along which the follower translates. The procedure's heading is
procedure RotCamTransPointed (FxyName:PathStr; OP, Theta:double; var $s, x C, y C, D n X, D n Y, ~ R h o: d o u b l e) ;$
where FxyName is the file name from where the cam profile points centered at $(0,0)$ are read, $O P$ is the eccentricity e_{F}, and Theta is the current cam angle measured clockwise (Figure 7.5), that is, opposite to the direction shown in Figure 7.6a. The procedure returns the coordinates $\mathbf{x C}$ and $\mathbf{Y C}$ of contact point C, the components DnX and DnY of the normal to the cam profile at point C, and the radius of curvature Rho (i.e., ρ) around that same point C. Procedure RotCamTransPointed first identifies the (x_{j}, y_{j}) point of the cam rotated clockwise by angle Theta having its coordinate y_{j} positive and its coordinate x_{j}
the closest to the follower eccentricity e_{F}. A parabola is then fit through this point and its two neighbors $\left(x_{j-1}, y_{j-1}\right)$ and $\left(x_{j+1}, y_{j+1}\right)$-see Equation B.15. The intersection between this parabola and the vertical line $x=e_{\mathrm{F}}$ is an improved approximation of the contact point between the cam profile and the tip of the follower. The radius of the circle circumscribed to the same points $\left(x_{j-1}, y_{j-1}\right),\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$, and $\left(x_{j+1}, y_{j+1}\right)$ is reported as the radius of curvature ρ of the pitch cam profile around contact point C (see Appendix A). The line connecting the center of this circle with contact point $\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$ is the normal to the cam profile at point C. Also returned by procedure RotCamTransPointed to the calling program are the projections DnX and DnY of the line connecting contact point C and the center of curvature of the pitch cam profile at $\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$.

Using projections DnX and DnY , procedure DoubleOffset called from unit LibCams on line \#48 then calculates the coordinates of points C_{i} and C_{o} belonging to the two offset cam profiles visible in Figure 7.5. Program P7_07. PAS also animates the pitch cam as it rotates, showing in addition the contact point C, velocity vector $\boldsymbol{v}_{\mathrm{C}}$ of the follower, and the normal vector $\boldsymbol{F}_{\mathrm{C}}$ to the cam profile at point C (see Figure 7.7). Note that the vectors $\boldsymbol{v}_{\mathrm{C}}$ and $\boldsymbol{F}_{\mathrm{C}}$ have arbitrarily assigned magnitudes. The angle between these two vectors is evaluated using procedure U2dirs2D90 called from unit LibGe2D (see line \#49) and is written to ASCII file F7_07.TXT as the pressure angle γ of the mechanism. Also written to F7_07. TXT are the cam angle θ, follower displacement s, contact point coordinates x_{C} and y_{C}, cam profile radius of curvature ρ at point C, and the x and y coordinates of the inner and outer offset points C_{i} and C_{o}. The program also displays on the top-left corner of the screen a short report consisting of the values of the current cam angle θ, pressure angle γ, and radius of curvature ρ (see Figure 7.7). The data from ASCII file F7_07.TXT was then use to generate the graphs in Figure 7.8. The coordinates of points C, C_{i}, and C_{o} in the same file served to generate the three cam profiles in Figure 7.5 using the D_2D program.

A companion program named P7_07BIS.PAS available with the book performs the same type of analysis (less the ASCII file output) and in addition plots on the screen the inner and outer cam profiles as comet loci of points C_{i} and C_{0}. In the animation file F7_07bis.GIF

FIGURE 7.7 Analysis done using program P7_07.PAS of a disk cam equipped with pointed follower, shown in the positions where maximum pressure angle (a) and minimum radius of curvature (b) occur. See also animation files F7_07.GIF.

FIGURE 7.8 Plots of the follower displacement s, pressure angle γ, radius of curvature ρ, and base circle r_{b} and top circle radii r_{t} of the cam in Figure 7.6. Configuration files F7_08UP.CF2 and F7_08DN.CF2.
generated with this program, an undercut of the outer cam becomes visible, that is, the cam profile folds over itself around the point of minimum curvature. This undercut is less apparent when the AutoCAD offset command is employed because the software will remove the mentioned fold, leaving only a cusp in that region.

Noticeably, the performance of the mechanism in Figure 7.7 can be improved. For example, increasing the base circle radius r_{b} will cause a reduction in the maximum pressure angle γ. This will also increase the minimum radius of curvature ρ of the cam, with the possibility of maintaining this curvature positive over the entire cam profile. Similar effects upon pressure angle γ and radius of curvature ρ will have an increase of the follower bias s_{0} or a reduction of the follower offset e_{F}.

7.3 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH OSCILLATING FOLLOWER, POINTED OR WITH ROLLER

This is the second type of disk cams that can be equipped with either knife-edge follower or roller follower. Same as earlier, the internal or external cam profiles intended to operate with a roller can be obtained by offsetting the pitch cam profile an amount equal to the roller radius (see Figure 7.9). For this reason, the synthesis of disk cam mechanisms with knife-edge follower will be primarily discussed in this section.

In a design problem where a normalized motion program $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$ is prescribed, the amplitude of the cam displacement $\Delta \theta$ and amplitude of the follower displacement $\Delta \varphi$

FIGURE 7.9 Main parameters of a disk cam with oscillating follower. C_{i} and C_{o} are the contact points between the roller and the inner and outer offset cam profiles, represented in thick, dashed lines.
must be specified, together with ground joint distance OO_{1}, follower bias φ_{0} (corresponding to point C being located on the base circle), and roller radius r. Giving these parameters, the follower displacement vs. cam angle $\varphi(\theta)$ is

$$
\begin{equation*}
\varphi(\theta)=\varphi_{0}+\Delta \varphi \cdot \delta_{F}(\theta / \Delta \theta) \quad \text { with } 0 \leq \theta \leq \Delta \theta \tag{7.4}
\end{equation*}
$$

The pitch cam profile will be the locus of point C in an inverted motion, where the cam is maintained fixed, and pin joint O_{1} of the follower is rotated opposite to the normal direction of rotation of the cam. Pitch cam profile radius of curvature ρ and pressure angle γ, that is, the angle between the velocity and the contact force vectors $\boldsymbol{v}_{\mathrm{C}}$ and $\boldsymbol{F}_{\mathrm{C}}$, are also of interest and should be evaluated in a number of discrete positions as the cam rotates. The direction of the contact force vector $\boldsymbol{F}_{\mathrm{C}}$ coincides with line $C_{\mathrm{i}} C_{\mathrm{o}}$, irrespective of the cam profile considered, that is, inner, outer, or pitch cam profile. The velocity vector of the contact point will be different however: it will be perpendicular to line $O_{1} C_{\mathrm{i}}$ for external cams, perpendicular to line $O_{1} C_{\mathrm{o}}$ for internal cams, and perpendicular to line $O_{1} C$ for knife-edge follower cam mechanisms (this third one is vector $\boldsymbol{v}_{\mathrm{C}}$ shown in Figure 7.9). Consequently, for a given cam angle θ, the pressure angles on the external, internal, and pitch cam profiles will be different.

The base circle radius r_{b} and top circle radius r_{t} of the cam with oscillating knife-edge follower can be calculated using the following equations:

$$
\begin{gather*}
r_{\mathrm{b}}=\sqrt{O O_{1}^{2}+O_{1} C^{2}-2 \cdot O O_{1} \cdot O_{1} C \cdot \cos \left(\varphi_{0}\right)} \tag{7.5}\\
r_{\mathrm{t}}=\sqrt{O O_{1}^{2}+O_{1} C^{2}-2 \cdot O O_{1} \cdot O_{1} C \cdot \cos \left(\varphi_{0}+\Delta \varphi\right)} \tag{7.6}
\end{gather*}
$$

FIGURE 7.10 Cam profile generation in a motion inversion (a) and complete pitch profile and roller locus generated for $\delta_{\mathrm{F}}(\theta)$ in Figure 7.4 with $O O_{1}=2, O_{1} C=2, \varphi_{0}=20^{\circ}, \Delta \varphi=25^{\circ}$, and $r=0.2$ (b). See also animation file F7_10a.GIF.

Program P7_10.PAS (see Appendix B) implements a motion-inversion approach to the generation of cam profiles operating with oscillating knife-edge followers. If on line \#12 constant Color is set equal to one, the program simulates the inverted mechanism and plots the locus of point C using follower motion data read from the lower-resolution file dFvdC_L.XY (see Figure 7.10a). If constant Color is zero, the program will plot only the roller and the locus of its center C (i.e., the tip of the knife-edge follower) using motion data read from the higher-resolution file dFvdC.XY (see Figure 7.10b) and also saves the pitch cam profile to data file Cam10.D2D (see line \#58).

If the follower bias φ_{0} is too small, the cam may develop regions of negative curvature (concavities). When such a cam profile is offset, the radii of curvature along these concavities can become smaller than the radius of the roller, and the motion of the follower equipped with a roller will be different than the prescribed function $\varphi(\theta)$. Other than redesigning the follower motion $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$, increasing the base circle radius r_{b} can eliminate such occurrences. This will also reduce the maximum pressure angle γ, which is also desirable. Increasing ground joint distance $O_{1} O$ and follower length $O_{1} C$ may have comparable effects.

To analyze the cam mechanism obtained through synthesis (i.e., the pitch cam profile recorded to file Cam10.D2D), program P7_11.PAS has been written and its listing is included in Appendix B. For a given cam angle θ between 0 and 2π, the program determines the profile point $\left(x_{j}, y_{j}\right)$, which is located relative to joint center O_{1} at a distance closest to the follower arm length $O_{1} C$. A better approximation of the contact point of coordinates $\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$ is then determined as the intersection between the circle centered at O_{1} and radius $O_{1} C$ and a parabola through points $\left(x_{j-1}, y_{j-1}\right),\left(x_{j}, y_{j}\right)$, and $\left(x_{j+1}, y_{j+1}\right)$-see also Appendix A. This algorithm is implemented in procedure RotCamOscilPointed called from unit LibCams on line \#52 of program P7_11.PAS. The procedure has the heading:
procedure RotCamOscilPointed (FxyName:PathStr; 001,01C,Theta:double; var Phi, xC,yC, DnX,DnY, Rho:double);

In addition to the coordinates $\mathbf{x C}$ and YC of the contact point, the procedure also returns the follower angle Phi and the radius of curvature Rho of the cam around the contact point approximated with the radius of the circle circumscribed to points $\left(x_{j-1}, y_{j-1}\right),\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$, and $\left(x_{j+1}, y_{j+1}\right)$. It also returns the components of the normal to the pitch cam profile Dnx and Dny, calculated as ox and oy the projections of the line that connects contact point $\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$ with the center of the circle through the same three points $\left(x_{j-1}, y_{j-1}\right),\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$, and $\left(x_{j+1}, y_{j+1}\right)$.

Program P7_11.PAS then calls procedure DoubleOffset (line \#53) to determine the coordinates of offset points C_{i} and C_{o} (Figure 7.9), which later serve to evaluate the pressure angles γ_{i} and γ_{o} between the roller and the inner and outer contact cam profiles. The pressure angle γ is calculated as the angle between the normal to the pitch cam profile which has the directions Dnx and Dny, and line $O_{1} C$ rotated by 90° (see line \#54). Similar approaches are implemented to calculate γ_{i} and γ_{o} (lines \#56 and \#58). Lines \#70 to \#73 write to ASCII file F7_11.TXT the current cam angle Theta; the corresponding follower angle Phi; the values of the three pressure angles γ, γ_{i}, and γ_{0}; the coordinates of points C, C_{i}, and C_{o} rotated back to the reference position of the cam; and the base circle and top circle radii of the pitch cam profile. This ASCII file served to generate the plots in Figure 7.11, as well as the pitch cam profile and offset cam profiles in Figure 7.9.

FIGURE 7.11 Plot of the follower displacement φ, radius of curvature ρ, and pressure angles $\gamma, \gamma_{\mathrm{i}}$, and γ_{o} on the pitch cam, inner cam, and outer cam, respectively, generated with program F7_11.PAS. Also plotted in dashed lines are the base circle and top circle radii r_{b} and r_{t}. Configuration files F7_11UP.CF2 and F7_11DN.CF2.

FIGURE 7.12 The cam in Figure 7.10 in the position where maximum pressure angle (a) and minimum radius of curvature (b) occur. See also animation file F7_12.GIF.

When operating in conjunction with its roller follower, the inner offset cam exhibits an overall reduced pressure angle γ_{i} compared to angle γ of the pitch cam with knife-edge follower, while the outer offset cam will exhibit an increased pressure angle γ_{0}.

Program F7_11.PAS also simulates the cam and follower motions (see Figure 7.12), showing the contact point C between the knife-edge and the cam. It also shows the displacement vector (which is parallel to the velocity vector $\boldsymbol{v}_{\mathrm{C}}$), and the normal direction to the cam profile (which coincides with the contact force vector $\boldsymbol{F}_{\mathrm{C}}$). If parameter Anim on line \#17 of the program equals 0 , then only a progress report will be displayed every 10 th position of the cam.

A related program named P7_07BIS.PAS available with the book allows the same type of cam-follower analysis, with the additional plotting of the inner and outer cam profiles as comet loci of points C_{i} and C_{0}. Animation file F7_12bis.GIF has been generated using the F7_11BIS.DXF file output by this program.

In all the aforementioned figures and simulation, the follower was represented as a straight-line $O_{1} C$. Evidently, in practice, the follower has to be shaped such that its body does not interfere with the cam.

7.4 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH TRANSLATING FLAT-FACED FOLLOWER

Disk cams with translating flat-faced follower are commonly used in applications where a simple, compact arrangement is required, like in sidevalve engines and fuel-injection pumps. As opposed to translating knife-edge or roller-follower cam mechanisms, in this case, follower eccentricity does not influence the input-output kinematics. This eccentricity however has an effect upon the magnitude of the reaction moment at the sliding joint and consequently upon the overall mechanical efficiency of the mechanism.

When performing the synthesis of a disk cam with translating flat-faced follower for which a normalized input-output motion $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$ is prescribed, several additional parameters must be specified, that is, cam rotational cycle $\Delta \theta$, follower displacement amplitude Δs, follower bias s_{0}, and the angle of the face of the follower γ measured from a parallel

FIGURE 7.13 Main parameters of a disk cam with translating flat-faced follower.
to $O X$ (it is assumed that the follower slides along a vertical line as shown in Figure 7.13). Because the contact force vector $\boldsymbol{F}_{\mathrm{C}}$ has the direction of the normal to the face of the follower, and because the velocity vector $\boldsymbol{v}_{\mathrm{C}}$ is aligned with its direction of sliding, the angle between these two vectors (i.e., the pressure angle) is constant and equal to the follower face angle.

To extract the follower envelope (i.e., the cam profile) in an inverted motion approach, a number of radial lines originating from a polar point situated inside the cam contour will be employed. The intersection between the follower face $P Q$ and these radial lines will be done for every inverted motion position of the follower. As follower face $P Q$ intersects each of these polar lines, they will be progressively shortened towards the polar point. In the end, these outer points will be connected together to form the sought-after cam profile. Such a strategy has been implemented in procedure EnvelofLines available from unit LibCams:

```
procedure EnvelOfLines(Color,n:Integer; xO,yO, R00, xA,yA,
xB,yB:double);
```

When the procedure is first called, it generates n equally spaced radial lines originating from polar point ($\mathbf{x O}, \mathrm{yO}$), each of length ROO. The procedure then reduces the length of these lines as they are intersected by the face of the follower, that is, the segment that connects points ($\mathbf{x A}, \mathbf{Y A}$) and ($\mathbf{x B}, \mathbf{Y B}$). Depending on the value of parameter Color in procedure EnvelOfLines (either positive, negative, or zero) all n radial lines, every 10th radial line, or neither line will be plotted on the screen as their length is adjusted. After the desired number of intersections with segments $A B$ representing the face of the follower has
been performed, the ends of these n radial lines will be connected to form a polyline. This is done by calling procedure EndEnvelopes from the same unit LibCams:
procedure EndEnvelopes (Name8:NameStr; Color:Word);
In this procedure, Name8 is the name of the D2D file where the coordinates of the enveloping polyline will be written. Color information Color will also be written to this D2D file, coded using multipliers of the InfD constant as explained in Chapter 1. The actual extension of the cam profile data file is $\$ 2 \mathrm{D}$ (same extension as for locus files as discussed in Chapter 6). To retain this envelope file at the end of the simulation, procedure CloseMecGraph must be called with its argument set to TRUE.

The cam profile thus obtained must be analyzed for curvature at each vertex $\left(x_{j}, y_{j}\right)$. Being a flat-faced follower mechanism, it is essential for the cam profile not to have rectilinear portions (i.e., ρ should not be infinity). If this happens, the follower will step over the respective areas, and the specified input-output motion $\delta_{F}\left(\delta_{C}\right)$ will not be satisfied. Also detrimental to a reliable operation of the cam is the occurrence of cusps (i.e., $\rho=0$), where large contact stresses will develop during operation. Note that the occurrences of both flat portions and the cusps are indicative of the cam profile being undercut.

The base and top circle radii of this cam are important parameters and can be calculated analytically using the following equations:

$$
\begin{gather*}
r_{\mathrm{b}}=s_{0} \cdot \cos (\gamma) \tag{7.7}\\
r_{\mathrm{t}}=\left(s_{0}+\Delta s\right) \cdot \cos (\gamma) \tag{7.8}
\end{gather*}
$$

Figure 7.14a shows a motion-inversion setup of a disk cam with translating flat-faced follower, consisting of crank $O A$ aligned with a linear actuator that expands by $s(\theta)$ according to Equation 7.1. Program P7_14.PAS in Appendix B implements this approach to

FIGURE 7.14 Cam profile generation in a motion inversion (a) and complete profile and follower envelope produced for $\delta_{\mathrm{F}}(\theta)$ in Figure 7.4 with $s_{0}=1.5, \Delta s=1.0$, and $\gamma=20^{\circ}(\mathrm{b})$. See also animation files F7_14a.GIF and F7_14b.GIF.
generate the envelope of follower face $P Q$. It employs procedure EnvelOfLines with a family of radial lines originating from point ($\mathbf{x P C}, \mathbf{y P C}$) to extract the cam profile to a polyline (see Figure 7.14b and lines \#54 and \#56 of the program). As a new follower face PQ is drawn during the inverted motion, its intersection with all radial lines originating from polar point $(\mathbf{x P C}, \mathbf{Y P C})$ is recalculated and the free ends of these radial lines updated-see animation file F7_14b.GIF. Lastly, the outer ends of these radial lines are connected in a polyline by calling procedure EndEnvelopes (lines \#69 and \#71).

If constant Color on line \#13 in program P7_14.PAS equals one, the follower displacement data are read from the lower-resolution file dFvdC_L.XY. If Color=0, then the full resolution file dFvdC. XY is utilized instead. In all these cases, the cam profile is extracted to a polyline and its vertices are written to data file Cam14.D2D. If constant Anim on line \#14 equals one, the follower and its driving mechanism are animated in their inverted motion (see Figure 7.14a). If Anim=0 and Color=1, the program animates the follower face only, together with the radial lines as they get shortened (see Figure 7.14b). If Color $=0$, then the cam profile is output directly, without any animation.

A second program named P7_15.PAS (see Appendix B) allows for a kinematic analysis of flat-faced follower cam mechanisms with the cam profile read from data file Cam14.D2D output by program P7_14.PAS. The same follower angle γ and cam rotational amplitude $\Delta \theta$ as in the synthesis program P7_14.PAS are specified (see lines \#18 and \#19). The program calls procedure RotCamTransFlat on line \#45 from unit LibCams with the heading

```
procedure RotCamTransFlat(FxyName:PathStr; Theta,Gamma:double;
var s,xC,yC,Rho:double);
```

The procedure reads the cam profile from file FxyName, and for a given cam rotation angle Theta and follower assumed risen above the cam, it identifies the cam profile point (x_{j}, y_{j}) that is closest to the follower face. Parameter Gamma is the follower face angle in radians, measured as shown in Figure 7.13. It is assumed that the follower is infinitely long in both directions and that it translates along the OY axis (see Figure 7.13). The procedure then fits a parabola through this point $\left(x_{j}, y_{j}\right)$ and neighboring points $\left(x_{j-2}, y_{j-2}\right)$ and $\left(x_{j+2}, y_{j+2}\right)$. By calling procedure TangOfSlopem2Parab from unit LibGe2D, procedure RotCamTransFlat then calculates the point where the tangent to this parabola has an angle equal to γ (see Appendix A). This tangent point will be returned to the calling program as the contact point $\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$ between the cam and the follower. Lastly, by calling procedure Circ4Pts from unit LibGe2D, the radius of curvature of the cam around contact point $\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$ is evaluated as the radius of the circle circumscribed to profile points $\left(x_{j-2}, y_{j-2}\right)$ and $\left(x_{j+2}, y_{j+2}\right)$ and a fictitious point of coordinates $x=0.5\left(x_{j-1}+x_{j+1}\right)$ and $y=0.5\left(y_{j-1}+y_{j+1}\right)$. This is equivalent to solving the following simultaneous equations in the unknowns $x_{\mathrm{K}}, y_{\mathrm{K}}$, and ρ :

$$
\begin{gather*}
\left(x_{j-2}-x_{\mathrm{K}}\right)^{2}+\left(y_{j-2}-y_{\mathrm{K}}\right)^{2}=\rho^{2} \\
\left(x_{j+2}-x_{\mathrm{K}}\right)^{2}+\left(y_{j+2}-y_{\mathrm{K}}\right)^{2}=\rho^{2} \tag{7.9}\\
{\left[0.5\left(x_{j-1}+x_{j+1}\right)-x_{\mathrm{K}}\right]^{2}+\left[0.5\left(y_{j-1}+y_{j+1}\right)-y_{\mathrm{K}}\right]^{2}=\rho^{2}}
\end{gather*}
$$

FIGURE 7.15 Plot of the follower displacement s and radius of curvature ρ of the cam in Figure 7.14b. Also shown in dashed lines are the base circle and top circle radii r_{b} and r_{t}. Configuration file F7_15.CF2.

Using the data in ASCII file F7_15.TXT output by program P7_15.PAS, the plot in Figure 7.15 has been generated. The horizontal lines on this graph are the base circle and top circle radii r_{b} and r_{t}, evaluated by calling procedure GetProfileRadii on line \#25 of the program.

Simulation frames of the positions where the follower contacts the cam at its minimum and maximum radius of curvature are available in Figure 7.16. In the previous two cam mechanisms examined, exactly calculated profile points were available to evaluate the radii of curvature of the cam. This time, however, the cam profile points were obtained as intersections of the follower face with a finite number of radial lines, in an inverted motion. This explains the more noisier appearance of the radius of

FIGURE 7.16 The cam in Figure $7.14 b$ in the positions where the minimum radii of curvature occur. See also animation file F7_16.GIF.
curvature graph $\rho(\theta)$ in Figure 7.15, compared to similar graphs in Figures 7.7 and 7.11, as well as the slight departure of ρ from the exactly calculated radii r_{b} and r_{t} over the circular portions of the cam profile.

7.5 SYNTHESIS AND ANALYSIS OF DISC CAMS WITH OSCILLATING FLAT-FACED FOLLOWER

Probably the most widely used cam mechanisms are the disk cams with oscillating flatfaced follower. These are commonly employed in the design of valve trains of overhead internal combustion engines, including the variable timing models.

Same as before, the cam profile will be determined as the envelope of the follower face PQ in an inverted motion, using procedure EnvelOfLines. In a design problem, alongside follower motion $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$, the cam and follower amplitudes $\Delta \theta$ and $\Delta \varphi$, follower bias φ_{0} (i.e., follower angle when in contact with the base circle), and follower face eccentricity e_{F} (either positive or negative) should be specified-see Figure 7.17. Part of the design process, the radius of curvature ρ of the cam and the pressure angle γ at the contact point with the follower must be evaluated for a number of discrete positions of the cam as it rotates. For proper operation, the synthesized cam profile should not exhibit rectilinear portions ($\rho=\infty$) or cusps $(\rho=0)$. In case they occur, other than modifying the follower motion $\delta_{\mathrm{F}}\left(\delta_{\mathrm{C}}\right)$, increasing the base circle radius r_{b} of the cam or reducing the ratio $\Delta \varphi / \varphi_{0}$ will both work towards eliminating such defects.

The base circle radius r_{b} and top circle radius r_{t} of the cam profile can be exactly calculated using the following two equations:

$$
\begin{gather*}
r_{\mathrm{b}}=O O_{1} \cdot \sin \left(\varphi_{0}\right)+e_{\mathrm{F}} \tag{7.10}\\
r_{\mathrm{t}}=O O_{1} \cdot \sin \left(\varphi_{0}+\Delta \varphi\right)+e_{\mathrm{F}} \tag{7.11}
\end{gather*}
$$

FIGURE 7.17 Parameters of a disk cam with oscillating flat-faced follower. As drawn, follower eccentricity e_{F} is considered positive.

In disk cams with oscillating flat-faced follower, the contact force vector $\boldsymbol{F}_{\mathrm{C}}$ remains perpendicular to the follower face $P Q$ (i.e., has the direction of the normal to the cam profile), while the velocity vector $\boldsymbol{v}_{\mathrm{C}}$ will always remain perpendicular to line $O_{1} C$ (Figure 7.17). Because during operation the contact point C changes location along the face of the follower, the angle between vectors $\boldsymbol{F}_{\mathrm{C}}$ and $\boldsymbol{v}_{\mathrm{C}}$ (i.e., the pressure angle γ) will also change, less for eccentricity $e_{\mathrm{F}}=0$ when the pressure angle γ will remain zero, irrespective of the cam angle.

Figure 7.18a shows a motion-inversion setup of a disk cam with translating flatfaced follower, consisting of a crank $O O_{1}$ driven as shown, in series with a second crank that rotates relative to the first one according to Equation 7.4. Program P7_18.PAS listed in Appendix B generates the cam profile as follower envelope in an inverted motion. Procedure EnvelOfLines called on lines \#54 and \#56 updates the lengths of an array of radial lines originating from polar point ($\mathbf{x P C}, \mathbf{y P C}$) as they are intersected by follower face line $P Q$, until these ends approximate the cam profile. Procedure EndEnvelopes called on line \#68 and \#70 of the program then connects the ends of these radial lines into a closed polyline and writes its vertices to data file Cam18.D2D.

If on lines \#14 and \#15 constants Color=1 and Anim=1, then the program animates the cam-follower mechanism in a motion inversion similar to Figure 7.18a. If Color=1 and Anim=0, then the program animates the follower face only, together with the radial lines as they are progressively shortened to extract the follower envelope (see Figure 7.18b). If Color=0, then the cam profile is output without animation. Note that either the reduced follower motion file dFvdC_L.XY or the full size file dFvdC_L.XY is used as input based on the values of the same constants Anim and Color.

FIGURE 7.18 Cam profile generation in a motion inversion (a) and complete profile and follower envelope generated for $\delta_{\mathrm{F}}(\theta)$ in Figure 7.4 with $\varphi_{0}=35^{\circ}$ and $\Delta \varphi=15^{\circ}$ (b). See also animation files F7_19a.GIF and F7_19b.GIF.

The companion program P7_19.PAS (see Appendix B) reads the cam profile file Cam18. D 2 D , and for a given follower face eccentricity e_{F} and joint distance $O O_{1}$, it performs a kinematic analysis of the mechanism. Procedure RotCamOscilflat with the heading

```
procedure RotCamOscilFlat(FxyName:PathStr; 001,01P,Theta:double;
var Phi,xC,yC,Rho:double);
```

is called from unit LibCams on line \#49 of the program. The procedure identifies, for a given cam angle Theta, the profile point $\left(x_{j}, y_{j}\right)$ from where a tangent to a circle centered at O_{1} and of radius e_{F} has the highest slope (i.e., angle φ in Figure 7.18a has a maximum value). Once this point is identified, a parabola is fit through points $\left(x_{j-1}, y_{j-1}\right),\left(x_{j}, y_{j}\right)$, and $\left(x_{j+1}, y_{j+1}\right)$, and by calling procedure TangComParabCirc from unit LibGe2D, the common tangent to this parabola and to the circle centered at O_{1} and of radius e_{F} is determined as explained in Appendix A. The tangent point on this parabola will then be returned to the calling program as the contact point $\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$ between the cam and its follower. Procedure RotCamOscilFlat also calculates the radius of curvature of the cam profile around the same point ($x_{\mathrm{C}}, y_{\mathrm{C}}$) by employing procedure Circ4Pts available from unit LibGe2D.

Using the data in ASCII file F7_19.TXT output by program P7_19.PAS, the graphs in Figure 7.19 have been generated. Notice the noisy appearance of the pressure angle

FIGURE 7.19 Plot of the follower displacement φ, pressure angle γ, and radius of curvature ρ of the cam in Figure 7.18b. Also shown by the dashed lines are the base circle and top circle radii r_{b} and r_{t}. Configuration files F7_19A.CF2 and F7_19B.CF2.

FIGURE 7.20 The cam in Figure 7.18b in the positions where minimum radius of curvature (a) and maximum pressure angle (b) occur. See also animation file F7_20.GIF.
and radius of curvature on these two graphs. This is because the cam profile points were extracted with some approximation using the follower envelope, compared to the exactly generated cam profiles operating with pointed follower discussed earlier in the chapter. Simulation frames of the positions where the follower contacts the cam at its minimum radius of curvature and maximum pressure angle are available in Figure 7.20.

After numerous trials, it was found that for cam mechanisms with flat-faced follower, both translating and oscillating, the radius of curvature along the base circle and top circle of the cam profile is more accurately evaluated using Equation 7.9 and procedure Circ4Pts. In the same respects, it was also found that it is better when the radial lines originate from the center of the cam $(0,0)$, explicable because the base circle and top circle of the cam are centered at this point. Since the radii of curvature along the rise and fall sections of the cam profile are not precisely known, the conclusion cannot be immediately extended to these other sections of the radius of curvature graphs $\rho(\theta)$ in Figures 7.16 and 7.20.

7.6 SYNTHESIS OF DISC CAMS WITH CURVILINEAR-FACED FOLLOWER

In spite of their apparent practical advantage, there has been little work done on the design of disk cams with curvilinear-faced followers. Concave follower cams experience reduced wear rate due to better contact stresses, while if equipped with convex follower, they can be made smaller than the equivalent flat-faced follower cams, without the danger of their profile becoming undercut. In this last section, the synthesis of two types of cams will be discussed, that is, one where the face of the follower is a circular arc and the other where the follower is a smooth curve approximated by short line segments.

7.6.1 Synthesis of Disk Cams with Arc-Shaped Follower

As mentioned earlier, the profile of a cam intended to operate with a roller follower can be obtained from its pitch cam profile using the AutoCAD offset command. The same
offset profile can be generated as the envelope of the roller follower in a motion-inversion process. To illustrate this other method, programs F7_21.PAS and F7_22.PAS have been written and are available with the book. The first program generates the inner cam of a translating roller-follower mechanism in a motion inversion, and the second program generates the inner cam intended to operate with an oscillating roller follower. Both programs call procedure EnvelOfCircles for every position of the follower in its inverted motion. The heading of the procedure is

```
procedure EnvelOfCircles(Color,n:Integer; x0,y0, R00, x1,y1,
x2,y2, x3,y3:double);
```

When called for the first time, the procedure draws a family of n radial lines (n cannot exceed 1000) in color Color and of length R00 that originate from point ($\mathbf{x O}, \mathrm{yO}$). To expedite the simulation, if Color is zero, no line will be drawn, while if Color is negative, then only part of these lines will be drawn. After these n radial lines are generated, the procedure intersects them with the circle circumscribed to points $(\mathbf{x} 1, \mathrm{y} \mathbf{1}),(\mathrm{x} 2, \mathrm{y} \mathbf{2})$, and ($\mathrm{x} 3, \mathrm{y} 3$). Of each pair of intersection points between this circle representing the roller, and the n radial lines, the point that is closest to $(\mathbf{x O}, \mathrm{yO})$ is retained and then used to adjust the length of the respective polar line-see animation files F7_21a.GIF and F7_22a.GIF. After all intersections between the roller circles and the polar lines have been evaluated, procedure EndEnvelopes is called to connect the outer ends of these lines into a closed polyline (see Figures 7.21 and 7.22).

Evidently, the accuracy with which the roller envelopes are extracted depends on the number n of polar lines in procedure EnvelOfCircles. Other factors are the number of cam positions in the motion inversion and the number of significant digits used to record the follower motion. Also influencing is the location of point (xO, yO) from where the n radial lines originate. It appears that if polar point ($\mathbf{x O}, \mathbf{y O}$) coincides with the center of rotation of the cam, then the dwell portions of the cam profiles are more accurately generated as envelope, while if $(\mathbf{x O}, \mathbf{y O})$ is selected close to the centroid of the cam, then the same

FIGURE 7.21 Inner cam profile generation as envelope of a translating roller follower in a motion inversion. Lower-resolution cam (see animation file F7_21a.GIF) (a) and higher-resolution cam (b).

FIGURE 7.22 Inner cam profile generation as envelope in motion inversion of an oscillating roller follower. Lower-resolution cam (see animation file F7_22a.GIF) (a) and higher-resolution cam (b).
holds true for the rise and fall portions of the cam. With such limitations, offsetting the pitch cam profile obtained as described in Sections 7.2 and 7.3 is the preferred method of roller-follower cam profile synthesis.

The true benefit of procedure EnvelofCircles is that it can be used to synthesize the profile of disk cams that operate with arc-shaped followers (either concave or convex) as it will be explained in the remainder of this section.

P7_23.PAS listed in Appendix B is a modification of program P7_14.PAS, where the face of the follower has a circular arc attached to it. This arc is specified by three points noted 1,2 , and 3, the coordinates of which are given relative to a reference frame that moves together with the follower. This mobile reference frame has its origin at D and its x-axis oriented towards point P of the follower (see Figures 7.13 and 7.23 and lines \#25, \#26, and \#27 of program P7_23.PAS). Note that the program must be first run with constant Color and Anim (lines \#14 and \#15) set both equal to zero so that a higher-resolution file with the cam profile points Cam23.D2D is generated. When the program is run with the same two constants equal to one, an animation of the inverted follower motion is produced (see Figure 7.23a and b and the corresponding animated GIFs). When Color=0 and Anim=1, program P7_23.PAS (see Appendix B) animates the follower envelope extraction process with the radial lines visible. In all these cases, the screen will be copied to file F7_23.DXF (either in separate layers or not), but only for Anim=0, the cam profile will be written to the Cam23.D2D data file (see line \#84).

Figure 7.23a shows a representative frame of the motion-inversion simulation recorded file F7_23.DXF, generated for points 1,2 , and 3 having their coordinates equal to $(2,-0.4),(0,0)$, and $(-2,-4)$, respectively. Figure 7.23 b shows a similar motion-inversion frame produced for points 1,2 , and 3 of coordinates $(2,0.4),(0,0)$, and $(-2,4)$. This is the same arc-faced follower, but in a convex orientation. The companion Figure 7.23 c and d illustrate the follower envelope extraction process, the result of calling procedure EnvelOfCircles. Note that the radial lines used to extract the cam profile are intersected with the entire circle through points 1,2 , and 3 , not only by the portion of this circle representing the face of the follower.

To synthesize disk cam profiles intended to operate with oscillating arc-faced follower (Figure 7.24), program P7_18.PAS has been modified into program P7_24.PAS

FIGURE 7.23 Motion inversion of disk cams with arc-shaped translating followers in concave (a) and (c) and convex (b) and (d) arrangements. See also animation files F7_23a.GIF to F7_23d.GIF.
available with the book. The flat-faced follower in program P7_18.PAS has now an arc of circle attached to it, again specified by three points 1,2 , and 3 . The coordinates of these three distinct points are given relative to a local reference frame with the origin coincident with point P and its x-axis oriented toward point Q of the follower (see Figures 7.17 and 7.24). The program calls procedure EnvelOfCircles to extract the envelope of this arc of circle as the follower is driven according to Equation 7.4 in an inverted motion. Sample output by program P7_24.PAS generated for both concave and convex followers are given in Figures 7.24. Same as in the case of P7_23.PAS, the program must be first run with constants Color and Anim set equal to zero. This will generate a higher-resolution cam profile and will write its points to file Cam24.D2D. The data from this file will then be used to represent the cam in any subsequent simulations done with P7_24.PAS.

7.6.2 Synthesis of Disk Cams with Polygonal-Faced Follower

Two more computer programs available in Appendix B will be briefly discussed, that is, P7_25.PAS (derived from program P7_14.PAS) and P7_26.PAS (derived from program P7_18.PAS). These programs allow disk cam profiles with curvilinear

FIGURE 7.24 Motion inversion of disk cams with arc-shaped oscillating followers in concave (a) and convex (b) arrangements. See also animation files F7_24a.GIF to F7_24d.GIF.
translating and oscillating followers to be synthesized. The face of the follower must be supplied as an ASCII file of x and y coordinates of the vertices of a polyline, similar to the shape files discussed in Chapter 5. File FFace. XY read by these two programs (see line \#16 of P7_25.PAS) consists of 127 vertices that approximate an arc of an ellipse that was first drawn in AutoCAD. The center of the ellipse was located at ($0,-0.625$), its major and minor radii were 3.0 and 0.625 , and the start and end angles were equal to 184° and 356°, respectively. An arc of this ellipse was then saved to R12 DXF, and in the process, it was converted to a polyline. Finally, using Util~DXF, the vertices of the polyline were extracted to file FFace.XY (note that the header generated automatically by Util~DXF had to be deleted).

The polyline red from ASCII file FFace.XY is attached to the flat-faced follower of an inverted cam mechanism like the one in Figure 7.14 (see line \#54 of program P7_25. PAS) or the mechanism in Figure 7.18 in case of program P7_26.PAS. The actual follower envelope extraction was done by calling procedure EnvelOfPlynes from unit LibCams (see lines \#56 and \#60 of program P7_25.PAS). This procedure has the following heading:

```
procedure EnvelOfPlynes(Color, n:Integer; xO,yO, RO0, xA,yA,
xB,yB:double; FxyName:PathStr);
```

It reads vertex file FxyName and aligns the respective polyline with a reference frame centered at ($\mathbf{x A}, \mathbf{Y A}$), having its positive x-axis oriented in the direction of point ($\mathbf{x B}, \mathbf{y B}$). Internally, EnvelOfPlynes calls procedure EnvelOfLines for each line segment that forms this polyline and trims the outer ends of the same family of n polar lines originating from point ($\mathbf{x O}, \mathbf{y} \mathbf{O}$), having their initial lengths equal to R00.

The polar line trimming by procedure EnvelOfLines is repeated for every position of the follower in a motion inversion. At the end, the cam profile is extracted to a temporary locus file of extension $\$ 2 \mathrm{D}$ by calling procedure EndEnvelopes. The cam profile is
drawn to a separate layer named "Cam25" (see line \#70) or to the last numerical layer of file F7_25.DXF (see line \#70). At the end of the program, procedure CloseMecGraph is called with either a TRUE or FALSE argument, depending on the value of variable Anim (see line \#75 of program P7_25. PAS). In the former case, the temporary file with the cam profile points will be preserved, by changing its extension to D2D. This will be the output cam profile Cam25.D2D.

Results obtained using simulation programs P7_25.PAS and P7_26.PAS are available in Figures 7.25 and 7.26 and the animated GIF files that accompany these figures. Note that animations of the follower in an inverted motion showing the radial lines (similar to Figure 7.23) are also available for Figures 7.24 through 7.26. In the absence of specific kinematic analysis programs, you can verify the curvature of the cam profiles intended to operate with curvilinear follower using program P7_15.PAS or P7_19.PAS described earlier. The pressure angle and follower motion information output by these programs should not be substituted to the case where the respective cams operate the intended arc-faced or curvilinear-faced followers. The follower motion could be however relatively easily verified

FIGURE 7.25 Motion inversion of disk cams with curvilinear translating followers in concave (a) and convex (b) arrangements. See also animation files F7_25a.GIF to F7_25d.GIF.

FIGURE 7.26 Motion inversion of disk cams with curvilinear oscillating followers in concave (a) and convex (b) arrangements. See also animation files F7_26a.GIF to F7_26d.GIF.
by simulating the respective mechanisms using Working Model 2D software, which is capable of evaluating the contact between planar bodies.

The problem of designing the profile of the most common disk cam-follower mechanisms through motion inversion has been discussed in this chapter. Iterative kinematic analysis of the same mechanisms and of pressure angle determination was also discussed. The follower motion considered throughout the chapter was synthesized using AutoCAD software, a promising alternative to the generation of the desired follower motion analytically using standardized functions.

REFERENCES AND FURTHER READINGS

For cam design theory, see
Angeles, J. and López-Cajún, C. S. (1991). Optimization of Cam Mechanisms. Berlin, Germany: Springer.
Chen, F. Y. (1982). Mechanics and Design of Cam Mechanisms. Amsterdam, the Netherlands: Pergamon Press/Elsevier.
Norton, R. L. (2002). Cam Design and Manufacturing Handbook. New York: Industrial Press.
Rothbart, H. (2003). Cam Design Handbook: Dynamics and Accuracy. New York: McGraw-Hill.
Waldron, K. J. and Kinzel, G. L. (2003). Kinematics, Dynamics, and Design of Machinery. Hoboken, NJ: John Wiley \& Sons.

For curvature of planar curves, see
Weisstein, E. W. (2013). Curvature. From MathWorld—A Wolfram Web Resource. http://mathworld. wolfram.com/Curvature.html.

This page intentionally left blank

Spur Gear Simulation Using Working Model 2D and AutoLISP

There is a good amount of similarity between disk cam mechanisms with oscillating followers and gear pairs, where the tooth of the pinion acts as a cam, while the active tooth of the driven gear is the follower. The first obvious difference between cam mechanisms and gears is that during the meshing process, constantly new teeth (the equivalent of cam-follower pairs) make contact, while others separate. The other difference is that the angular velocity of the gear over that of the pinion must remain constant, although noncircular gears can be designed, where this velocity ratio is some given function of the pinion angle. In this chapter, several Working Model 2D and AutoLISP applications will be described, which can be used to demonstrate how involute gears operate and how their profiles are generated. Working Model 2D, or WM 2D in short, available from Design Simulation Technologies (www.design-simulation.com), is a planar multibody software capable of performing kinematic and dynamic simulation of interconnected bodies subject to constraints. WM 2D allows for DXF import/export and has scripting capabilities through formula and WM Basic language systems.

8.1 INVOLUTE-GEAR THEORY

Involute gears are the most widely used in practice, being preferred to cycloidal and circular profile gears owing to the following desirable properties:

- The transmission ratio between two involute gears is not sensitive to center distance modification.
- The same cutting tool (rack or hob cutter) can be used to manufacture gears of any number of teeth (the proportions of their teeth, described through the module or diametral pitch, will be the same however).
- The rack or hob cutting tools used to fabricate involute gears can be conveniently mass produced because their cutting edges are straight and therefore easy to sharpen.

As the name suggests, an involute gear has the active flanks of its teeth shaped as involute curves of a common circle called base circle. Geometrically, the involute curve can be generated by attaching a taut, inextensible string to the base circle, and recording the locus of its free end as it is unwound off this circle. The concept is illustrated in Figure 8.1, where r_{b} is the radius of the base circle, $B C$ is the string, and the involute curve is represented in thick line. Note that the involute curve can only exist outside the base circle.

Because the string is inextensible, the length of the circular arch $A B$ subtended by angle t is equal to the length $B C$ of the sting according to equation

$$
\begin{equation*}
B C=\rho=r_{\mathrm{b}} \cdot \tan (\varphi)=\operatorname{arc}(A B)=r_{\mathrm{b}} \cdot t=r_{\mathrm{b}} \cdot(\beta+\varphi) \tag{8.1}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\beta=\tan (\varphi)-\varphi=\operatorname{inv}(\varphi) \tag{8.2}
\end{equation*}
$$

Length $B C$ is also the radius of curvature of the involute around point C, while the corresponding center of curvature is located at point B.

FIGURE 8.1 The involute of a circle of radius r_{b} generated using program F8_01.PAS. Additional editing has been done inside AutoCAD.

In order to derive the scalar equation of the involute, we project vector equation $\mathbf{O C}=\mathbf{O B}-\mathbf{C B}$ on the axes of the OXY reference frame to obtain

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=r_{\mathrm{b}} \cdot \cos (t)-r_{\mathrm{b}} \cdot t \cdot \cos \left(t+\frac{\pi}{2}\right) \tag{8.3}\\
y_{\mathrm{C}}=r_{\mathrm{b}} \cdot \sin (t)-r_{\mathrm{b}} \cdot t \cdot \sin \left(t+\frac{\pi}{2}\right)
\end{array}\right.
$$

which after rearranging terms become

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=r_{\mathrm{b}}[\cos (t)+t \cdot \sin (t)] \tag{8.4}\\
y_{\mathrm{C}}=r_{\mathrm{b}}[\sin (t)-t \cdot \cos (t)]
\end{array}\right.
$$

Equations 8.4 have been implemented in the program F8_01.PAS listed in Appendix B. The program calls procedures InitDXFfile, ExpectDXFplines, AddVertexPline, DXFplineEnd, CloseDXFfile, and Fcircle from unit LibDXF and was used to generate Figure 8.1. Note that unlike earlier programs discussed in this book, F8_01.PAS writes directly to the R12 DXF file, without plotting the image on the computer screen.

The equations of the involute can be also expressed using the polar angle β (see Figure 8.1):

$$
\begin{equation*}
\beta=t-\varphi=t-\arctan \left(\frac{B C}{O B}\right)=t-\arctan \left(\frac{r_{\mathrm{b}} \cdot t}{r_{\mathrm{b}}}\right)=t-\arctan (t) \tag{8.5}
\end{equation*}
$$

and polar radius r_{y} :

$$
\begin{equation*}
r_{y}=\sqrt{O B^{2}+B C^{2}}=r_{\mathrm{b}} \sqrt{1+t^{2}} \tag{8.6}
\end{equation*}
$$

which yield the following alternative set of scalar equations

$$
\left\{\begin{array}{l}
x_{\mathrm{C}}=r_{\mathrm{b}} \sqrt{1+t^{2}} \cdot \cos (t-\arctan (t)) \tag{8.7}\\
y_{\mathrm{C}}=r_{\mathrm{b}} \sqrt{1+t^{2}} \cdot \sin (t-\arctan (t))
\end{array}\right.
$$

Figure 8.2 shows the main parameters of external and internal involute gears. The size of their teeth is standardized through the diametral pitch P, which is the number of teeth of the gear per inch of its pitch diameter, that is,

$$
\begin{equation*}
P=\frac{0.5 N}{r} \tag{8.8}
\end{equation*}
$$

FIGURE 8.2 External (a) and internal (b) involute-gear terminology and notations.

For metric gears, the equivalent standardized parameter is the module m, defined as

$$
\begin{equation*}
m=\frac{2 r}{N} \tag{8.9}
\end{equation*}
$$

The circular pitch p is defined as the distance between teeth measured along the pitch circle and can be calculated with any of the following equations:

$$
\begin{equation*}
p=\left(\frac{2 \pi r}{N}\right) ; \quad p=\left(\frac{\pi}{P}\right) \quad \text { or } \quad p=\pi m \tag{8.10}
\end{equation*}
$$

Note that on a pitch circle the tooth thickness and width of space are both equal to $p / 2$.
Additional important parameters used to specify teeth proportions are the addendum a and dedendum d. These are measured radially from the pitch circle to the addendum and to the dedendum circles, respectively. Both a and d as well as the full-depth $a+d$ and clearance c are defined in terms of diametral pitch P or module m as listed in Table 8.1. The clearance c is the amount by which the dedendum of the gear exceeds the addendum of the pinion and vice versa, when no backlash between their teeth is allowed.

TABLE 8.1 Standard Proportions of Involute-Gear Teeth

Teeth Proportions

Full depth $\left(\phi=14.5^{\circ}\right)$
Stub ($\phi=20^{\circ}$)
Full depth ($\phi=20^{\circ}$ or $\alpha=20^{\circ}$)
Full depth $\left(\phi=25^{\circ}\right)$

Addendum, $a \quad$ Dedendum, \boldsymbol{d}

$1 / P$	$1.157 / P$
$0.8 / P$	$1 / P$
$1 / P$ or $1 m$	$1.25 / P$ or $1.25 m$
$1 / P$	$1.25 / P$

Whole depth, $a+b \quad$ Clearance, $\boldsymbol{c}=\boldsymbol{b}-\boldsymbol{a}$
2.157/P
1.8/P
$2.25 / P$ or $2.25 m$
$2.25 / P$
$0.157 / P$
$0.2 / P$
$0.25 / P$ or $0.25 m$
$0.25 / P$

Although in theory $P=1 / m$, SI system (i.e., metric gears) and US customary system gears are not interchangeable. Also note that neither m nor P can be measured directly on the gear. There are indirect ways to estimate what module m or diametral pitch P a gear is however. One method is to try to mesh the unknown gear with gears of the known module or diametral pitch. The other is to measure the whole depth of the unknown gear, and assuming, for example, that it is a full-depth tooth, divide this amount by 2.25 to obtain m or $1 / P$.

8.2 INVOLUTE PROFILE MESH

Figure 8.3 shows that a pair of external involute gears of teeth numbers N_{1} and N_{2} is equivalent to a crossbelt transmission with pulleys of radii $r_{\mathrm{b} 1}$ and $r_{\mathrm{b} 2}$ (the base radii of the two gears). Similarly, Figure 8.4 shows that one external and one internal gear pair is equivalent to a regular belt transmission. Both are also equivalent to two friction wheels of radii r_{1} and r_{2} (pitch radii) or $r_{\mathrm{w} 1}$ and $r_{\mathrm{w} 2}$ (rolling radii in case the center distance is modified)

FIGURE 8.3 Equivalence between a crossbelt transmission (a), a pair of friction wheels (b), and a pair of external gears without (c) and with (d) backlash.

FIGURE 8.4 Equivalence between a belt transmission (a), a pair of friction wheels (b), and a pair of external-internal gears, without (c) and with (d) backlash.
of the two gears. By simultaneously recording the locus of a point on the belt relative to a plane that rotates together with gear one, and also relative to a second plane that rotates together with gear two, the involute curves forming the flanks of the meshing teeth of the two gears are obtained.

The belt transmission equivalence explains why the transmission ratio remaining constant as the two involutes profiles mesh, thus satisfying the fundamental law of tooth gearing, which states that "the common normal to the two involutes at the point of contact-which is the common tangent to the two base circles-will always intersects the line of centers $O_{1} O_{2}$ at the pitch point P " (Uicker et al. 2003).

The angle formed by the belt perpendicular to the line of centers $O_{1} O_{2}$ is the pressure angle ϕ between the teeth of the two gears when their point of contact coincides with the pitch point P. Note that in metric gear terminology, the pressure angle is noted α. If the center distances of the (cross)belt transmission and of the gear pair with zero backlash are modified from a standard center distance D to an operating center distance D_{w}, the pitch radii r_{1} and r_{2} will remain the same, but the pressure angle will change its value according to equation:

$$
\begin{equation*}
\phi_{\mathrm{w}}=\cos ^{-1}\left(\frac{r_{\mathrm{b} 2} \pm r_{\mathrm{b} 1}}{D_{\mathrm{w}}}\right)=\cos ^{-1}\left(\frac{D}{D_{\mathrm{w}}} \cos \phi\right) \tag{8.11}
\end{equation*}
$$

Important: In Equation 8.11 and throughout this chapter, the upper sign will correspond to external gears and the lower sign to internal gears.

To maintain the same input-output speed ratio ω_{1} / ω_{2}, the equivalent friction wheel transmission with modified center distance D_{w} will have to be equipped with new wheels of radii $r_{\mathrm{w} 1}$ and $r_{\mathrm{w} 2}$ (these are the rolling radii of the gear pair) calculated using the following equations:

$$
\begin{align*}
& r_{\mathrm{w} 1}=\frac{r_{\mathrm{b} 1}}{\cos \phi_{\mathrm{w}}}=D_{\mathrm{w}} \frac{N_{1}}{N_{2} \pm N_{1}} \tag{8.12a}\\
& r_{\mathrm{w} 2}=\frac{r_{\mathrm{b} 2}}{\cos \phi_{\mathrm{w}}}=D_{\mathrm{w}} \frac{N_{2}}{N_{2} \pm N_{1}} \tag{8.12b}
\end{align*}
$$

Overall, the following equalities should hold between the angular velocity of the input and output gears, their number of teeth N_{1} and N_{2}, and the radii of their base circles, pitch circles, and rolling circles:

$$
\begin{equation*}
\frac{\omega_{1}}{\omega_{2}}=\frac{N_{2}}{N_{1}}=\frac{r_{\mathrm{b} 2}}{r_{\mathrm{b} 1}}=\frac{r_{2}}{r_{1}}=\frac{r_{2 \mathrm{w}}}{r_{1 \mathrm{w}}} \tag{8.13}
\end{equation*}
$$

The meshing of involute profiles and the insensitivity of the transmission ratio of involute gears to center distance modification is illustrated by WM 2D simulations named InvPairExt.WM2 and InvPairInt.WM2 provided with the book. Using the program P8_01.PAS mentioned earlier, two polygonal bodies representing the two involute curves connected to their base circles of radii $r_{\mathrm{b} 1}=3 \mathrm{~m}$ and $r_{\mathrm{b} 2}=4 \mathrm{~m}$ have been created inside AutoCAD (see Figure 8.5) and then exported to WM 2D via the DXF format. A slider control allows the user to adjust the distance between the centers of these two base circles (i.e., distance $O_{1} O_{2}$) within the limits $9-10.75$ for the external involutes and 1.1 and 1.5 for the internal-external involutes. A pair of rotary motors drives separately the two involutes and are imposed correlated oscillatory motions of 0.4 and 0.3 radians amplitude according to equations

$$
\begin{align*}
& \theta_{1}=-0.4 \sin (t) \\
& \theta_{2}=\mp \theta_{1} \frac{r_{\mathrm{b} 1}}{r_{\mathrm{b} 2}} \tag{8.14}
\end{align*}
$$

The initial positions of the two involutes, that is, at time $t=0$, are such that the contact point C is collinear with gear centers O_{1} and O_{2}. Irrespective of the value of center distance $D_{\text {w }}$, the following equalities hold:

$$
\begin{align*}
& P O_{1}=\frac{\left(D_{\mathrm{w}} \cdot r_{\mathrm{b} 1}\right)}{\left(r_{\mathrm{b} 1} \mp r_{\mathrm{b} 1}\right)} \tag{8.15}\\
& P O_{2}=\frac{\left(D_{\mathrm{w}} \cdot r_{\mathrm{b} 2}\right)}{\left(r_{\mathrm{b} 2} \mp r_{\mathrm{b} 2}\right)}
\end{align*}
$$

FIGURE 8.5 Screenshots of WM 2D simulations of two mutually enveloping external involute curves recorded relative to the ground (a) and relative to a reference frame attached to involute number two (b). See also movie files F8_5A.MP4 and F8_5B.MP4.

As the two involute profiles mesh, their contact point C moves along the line of action $A B$, which is the common normal to the two profiles and the common tangent to the base circles of the two gears. In any position, the coordinates of point C can be determined by projecting vector equation $\mathbf{B C}+\mathbf{O B}=\mathbf{O C}$ on the axes of the reference frame (see Figure 8.5 a). For the involute curve rotated by angle θ, we get

$$
\begin{align*}
& x_{\mathrm{C}}=\rho_{1} \cos (\phi)-r_{\mathrm{b} 1} \sin (\phi)=-\rho_{2} \cos (\phi)+r_{\mathrm{b} 2} \sin (\phi) \tag{8.16}\\
& y_{\mathrm{C}}=\rho_{\mathrm{l}} \sin (\phi)+r_{\mathrm{b} 1} \cos (\phi)=D_{\mathrm{w}}-\rho_{2} \sin (\phi)-r_{\mathrm{b} 2} \cos (\phi)
\end{align*}
$$

where the radii of curvature ρ_{1} and ρ_{1} of the two involutes around point C are given by equations

$$
\begin{equation*}
\rho_{1}=r_{\mathrm{b}}\left(\phi-\theta_{1}\right) \text { and } \rho_{2}=r_{\mathrm{b}}\left(\phi-\theta_{2}\right) \tag{8.17}
\end{equation*}
$$

If in any of these two WM 2D simulations the observer's reference frame is moved to one of the involutes, the locus of the contact point C traces the respective involute (Figures 8.5b and 8.6b).

According to the Aronhold-Kennedy theorem of the three instant centers (Uiker et al. 2003), a pure rolling between the two involute profiles occurs only when contact point C coincides with the pitch point P. Moreover, the farthest away from point P the contact between the two teeth takes place, the higher the amount of relative sliding between the two involutes is. In case of an actual gear transmission, the sliding between teeth causes power losses, which will be higher for gears with smaller diametral pitch P or bigger module m.

In simulations InvPairExt.WM2 and InvPairInt.WM2, in order to maintain contact between the two involutes as the operating center distance $O_{1} O_{2}$ is modified, the initial angles of the two oscillating polygons has been programmed using WM 2D formula language such that each changes the amount

$$
\begin{equation*}
\Delta \theta=\sqrt{\frac{D_{\mathrm{w}}^{2}}{\left(r_{\mathrm{b} 2} \mp r_{\mathrm{b} 1}\right)^{2}}-1}-\arctan \left(\sqrt{\frac{D_{\mathrm{w}}^{2}}{\left(r_{\mathrm{b} 2} \mp r_{\mathrm{b} 1}\right)^{2}}-1}\right) \tag{8.18}
\end{equation*}
$$

This equation has been obtained by eliminating parameter t between Equations 8.5 and 8.6 with r_{y} set equal to either $O P_{1}$ or $O P_{2}$ and then applying Equations 8.15.

FIGURE 8.6 Screenshots of WM 2D simulations of two mutually enveloping involute curves (one external and one internal) recorded relative to the ground (a) and a reference frame attached to involute number two (b). See also movie files F8_6A.MP4 and F8_6B.MP4.

The pressure angle displayed with these simulations (see Figures 8.5 and 8.6) is the angle between the velocity vector of the contact point and the normal force to the two profiles, when the contact point coincides with pitch point P, that is,

$$
\begin{equation*}
\phi=\operatorname{arcos}\left(\frac{\left(r_{\mathrm{b} 2} \mp r_{\mathrm{b} 1}\right)}{D_{\mathrm{w}}}\right) \tag{8.19}
\end{equation*}
$$

Also displayed with these simulations are the radii of curvatures ρ_{1} and ρ_{2} of the two involutes around contact point C, calculated with Equations 8.17.

8.3 INVOLUTE-GEAR MESH

In order to demonstrate additional properties that involute gears have, simulations GearPairExt.WM2 and GearPairInt.WM2 have been produced and are available with the book-see Figures 8.7 and 8.8 and movie file F8_7.MP4 and F8_8.MP4. These simulations consist of two standard gears with adjustable center distance. Standard gears are zero profile shift gears, that is, their addendum modification coefficient x equals zero; see Section 8.4 for details. The first of these simulations depicts two external gears with $N_{1}=15$ and $N_{2}=17$ teeth; the other simulation consists of one external and one internal gear with $N_{1}=17$ and $N_{2}=25$ teeth.

Since each gear has a number of identical involute curves equally spaced around the base circle, the concepts introduced earlier with reference to Figures 8.5 remain valid for any two gears in mesh. Therefore, as the center distance is modified, the pressure angle changes as well, while the transmission ratio remains the same. To maintain contact between the teeth of the two gears in these two simulations, as their center distance is modified, the initial angle of the two gears is adjusted an amount calculated using Equation 8.18.

The pressure angle between the two involute profiles varies as the contact point between the two gears moves along the line of action. The magnitude of the pressure angle also changes as the center distance of the two gears is increased or decreased and is also function of the direction in which the torque is transmitted-either from gear 1 to gear 2 or vice versa. The only position in which the pressure angle is not dependent of which gear is the driving gear is the one where the contact point and the pitch point P coincide. This is the same pressure angle of the gear pair discussed earlier with reference to Figures 8.3 and 8.4 and is noted α in the SI system and ϕ in the US customary system.

The minimum center distance of an external gear pair is limited by their meshing teeth making double contact; this is known as the zero-backlash gear pair arrangement (Figure 8.7). Conversely, in case of internal-external gear pairs, there is a maximum center distance limited by their teeth making double contact (Figure 8.8). The center distance corresponding to a zero-backlash arrangement of standard gears is called standard center distance and is calculated with equation

$$
\begin{equation*}
D=0.5\left(N_{2}-N_{1}\right) \cdot m \tag{8.20a}
\end{equation*}
$$

FIGURE 8.7 WM 2D simulations of two full-depth tooth standard external gear pairs shown in their reference center distance configuration (top) and in a configuration where the center distance is increased (bottom). See also simulation files GearPairExt.WM2 and movie file F8_7.MP4.
or for US customary gears

$$
\begin{equation*}
D=\frac{0.5\left(N_{2}-N_{1}\right)}{P} \tag{8.20b}
\end{equation*}
$$

One property of standard gear pairs is that when the operating center distance D_{w} equals the standard center distance D, the pressure angle between the two gears equals half the

FIGURE 8.8 WM 2D simulation of two full-depth tooth standard external-internal gear pairs, shown in reference center distance configuration (top) and in a configuration where center distance $D_{\mathrm{w}}<D$, backlash is nonzero, and contact ratio is diminished (bottom). See also files GearPairInt. WM2 and F8_8.MP4.
angle between the flanks of the teeth of the basic rack. The basic rack of a gear is obtained by hypothetically making the number of teeth of the respective gear equal infinitely.

In addition to the pressure angle at the pitch point calculated with Equation 8.19, two more parameters are displayed with the WM 2D simulations in Figures 8.7 and 8.8. One is the contact ratio ε of the two gears, defined as the average number of teeth in contact and calculated with

$$
\begin{equation*}
\varepsilon=\frac{\sqrt{r_{\mathrm{a} 1}^{2}-r_{\mathrm{b} 1}^{2}} \pm \sqrt{r_{\mathrm{a} 2}^{2}-r_{\mathrm{b} 2}^{2}} \mp D_{\mathrm{w}} \sin \phi_{\mathrm{w}}}{p \cos \phi} \tag{8.21}
\end{equation*}
$$

where

$$
\begin{align*}
& r_{\mathrm{a} 1}=\frac{\left(0.5 N_{1}+x_{1}+a\right)}{P} \\
& r_{\mathrm{a} 2}=\frac{\left(0.5 N_{2}+x_{2}+a\right)}{P} \\
& r_{\mathrm{b} 1}=\frac{\left(0.5 N_{1} \cos \alpha\right)}{P} \tag{8.22a}\\
& r_{\mathrm{b} 2}=\frac{\left(0.5 N_{2} \cos \alpha\right)}{P}
\end{align*}
$$

or for metric gears

$$
\begin{align*}
& r_{\mathrm{a} 1}=m\left(0.5 N_{1}+x_{1}+a\right) \\
& r_{\mathrm{a} 2}=m\left(0.5 N_{2}+x_{2}+a\right) \tag{8.22b}\\
& r_{\mathrm{b} 1}=0.5 m N_{1} \cos \alpha \\
& r_{\mathrm{b} 2}=0.5 m N_{2} \cos \alpha
\end{align*}
$$

The third parameter displayed with these simulations is the backlash $B L$, defined as the width of the gap between two meshing teeth measured along their rolling circles. The backlash will be equal to the circular pitch measured on the rolling circles p_{w} of any of the two gears, minus the teeth thickness of gear one $s_{1 \mathrm{w}}$ and of gear two $s_{2 w}$ measured along their respective rolling circles. The mentioned parameters $p_{w}, s_{1 w}$, and $s_{2 w}$ can be calculated using the following equations:

$$
\begin{align*}
& p_{\mathrm{w}}=\frac{\pi}{P} \cdot \frac{\cos \phi}{\cos \phi_{\mathrm{w}}} \\
& s_{1 \mathrm{w}}=\frac{1}{P} \cdot\left(\frac{\pi}{2}+2 x_{1} \tan \phi\right) \cdot \frac{\cos \phi}{\cos \phi_{\mathrm{w}}}-2 r_{1 \mathrm{w}}\left(\operatorname{inv} \phi_{\mathrm{w}}-\operatorname{inv} \phi\right) \tag{8.23a}\\
& s_{2 \mathrm{w}}=\frac{1}{P} \cdot\left(\frac{\pi}{2} \pm 2 x_{2} \tan \phi\right) \cdot \frac{\cos \phi}{\cos \phi_{\mathrm{w}}} \mp 2 r_{2 \mathrm{w}}\left(\operatorname{inv} \phi_{\mathrm{w}}-\operatorname{inv} \phi\right)
\end{align*}
$$

or

$$
\begin{align*}
& p_{\mathrm{w}}=\pi \cdot m \frac{\cos \alpha}{\cos \alpha_{\mathrm{w}}} \\
& s_{1 \mathrm{w}}=m \cdot\left(\frac{\pi}{2}+2 x_{1} \tan \alpha\right) \cdot \frac{\cos \alpha}{\cos \alpha_{\mathrm{w}}}-2 r_{1 \mathrm{w}}\left(\mathrm{inv} \alpha_{\mathrm{w}}-\mathrm{inv} \alpha\right) \tag{8.23b}\\
& s_{2 \mathrm{w}}=m \cdot\left(\frac{\pi}{2} \pm 2 x_{2} \tan \alpha\right) \cdot \frac{\cos \alpha}{\cos \alpha_{\mathrm{w}}} \mp 2 r_{2 \mathrm{w}}\left(\text { inv } \alpha_{\mathrm{w}}-\mathrm{inv} \alpha\right)
\end{align*}
$$

With these parameters known, the backlash between the teeth in mesh of the two gears when their center distance is modified from D to $D_{\text {w }}$ becomes

$$
\begin{equation*}
B L=-2 m \cdot\left(x_{1} \pm x_{2}\right) \frac{\sin \phi}{\cos \phi_{\mathrm{w}}}-2\left(r_{1 \mathrm{w}} \pm r_{2 \mathrm{w}}\right)\left(\operatorname{inv} \phi_{\mathrm{w}}-\operatorname{inv} \phi\right) \tag{8.24a}
\end{equation*}
$$

or for US customary gears

$$
\begin{equation*}
B L=-2 \frac{1}{P} \cdot\left(x_{1} \pm x_{2}\right) \frac{\sin \alpha}{\cos \alpha_{\mathrm{w}}}-2\left(r_{1 \mathrm{w}} \pm r_{2 \mathrm{w}}\right)\left(\mathrm{inv} \alpha_{\mathrm{w}}-\mathrm{inv} \alpha\right) \tag{8.24b}
\end{equation*}
$$

Simulation GearPairExt.WM2 and GearPairInt.WM2 reveal that as the center distance is modified from its standard value, the contact ratio is reduced because of the shortening of the length of action, while the backlash between the two gears will increase. In practice, a small amount of backlash between gears is essential in order to allow for thermal expansion and for the slight deflection of the teeth as they mesh under load. Too much backlash is undesirable however because it reduces the contact ratio of the two gears, and as a consequence teeth are loaded more when they first make contact. Also, if the direction of rotation of the gears is reversed, impact loads or unacceptable position inaccuracies can occur. If the center distance is imposed a value other than the standard center distance D, the ensuing backlash or interference can be reduced or eliminated by employing profile shifted gears discussed in the next section.

8.4 WORKING MODEL 2D SIMULATIONS OF INVOLUTE PROFILE GENERATION

There are several ways of manufacturing involute gears. Of these, the shaping process using a pinion cutter and a rack cutter will be illustrated in the remainder of this chapter. WM 2D simulations of these two type of gear generation processes have been produced and are available with the book, that is, GearGen0.WM2 to GearGen4.WM2.

In both processes, the cutter is first fed into the gear blank until the reference line of the rack or the pitch circle of the pinion cutter becomes tangent to the pitch circle of the future gear. After that, with each cutting stroke, the reference line of the rack cutter or the pitch circle of the pinion cutter will slowly roll without slip on the pitch circle of the gear blank. The process ends when the last tooth of the gear is fully formed. It is called reference line of the generating rack, the line along which the tooth thickness and width of space of the rack are equal. A similar line can be defined for the basic rack, which is the rack obtained by making the number of teeth of the gear equal to infinity.

If the aforementioned rolling without slip takes place between the reference line of the rack cutter (or the pitch circle of the pinion cutter) and the pitch circle of the blank, a zero profile shift gear is generated. The teeth of such a gear are said to have no correction (see Figure 8.9a). If this rolling without slip occurs between the pitch circle of the blank and a different line of the rack cutter, or between different circles of the blank and pinion cutter, a modified or profile shifted gear is obtained instead. Specifically, when the cutter is displaced radially outwards from the zero shift position, a gear with positive profile shift $(X>0)$ as shown in Figure 8.9 b is generated. Conversely, a radially inward displacement of

FIGURE 8.9 Standard gear with $N=18$ teeth and zero profile shift (a), with positive addendum modification, that is, rack is retracted during the generation process (b), and with negative addendum modification, that is, rack is approached during the generation process (c).
the rack or pinion cutter results in a gear that has a negative profile shift $(X<0)$ as seen in Figure 8.9c. The ratio between tool displacement X and its module m or the inverse of its diametral pitch P is called profile shift coefficient and is symbolized x. Note that the base circle of the future gear as well as its pitch circle remains the same, irrespective of the magnitude of the profile shift coefficient x.

The involute-gear generation methods using a pinion cutter and a rack cutter were implemented in WM 2D simulations GearGen0.WM2 to GearGen4.WM2 available with the book. GearGen0.WM2 can be used to simulate the generation of an entire involute gear, either with external or internal teeth (see Figures 8.10 and 8.11). Because the pinion cutter in

FIGURE 8.10 Full-depth $\phi=20^{\circ}$ internal gears generated using GearGen0.WM2 with $N=24$ teeth (top) and $N=19$ teeth (bottom) and with zero profile shift (a) and $x=0.5$ profile shift (b). See also movie file F8_10.MP4.

FIGURE 8.11 Full-depth $\phi=20^{\circ}$ internal gears generated using GearGen0.WM2 with $N=18$ and $N=11$ teeth having zero profile shift (a) and $x=0.5$ profile shift (b). See also movie file F8_10.MP4.
this simulation has 18 teeth, internal standard gears with at least 24 teeth can be generated without undercut. If a profile shift is applied, then gears with down to 19 teeth can be generated. Figure 8.10 shows four internal gears generated with GearGen0.WM2, two having $N=24$ teeth and the other two having $N=19$ teeth. Both the zero profile shift gears and addendum modified gears by $x=0.5$ are shown in this figure. As anticipated, the zero profile shift gear with $N=19$ teeth appear severally undercut. The companion internal gear with $N=19$ and positive profile shift has its teeth better formed, but they result shortened because of the interference with the tip of the generating pinion. The figure also shows that a positive profile shift results in an internal gear that has an increase width of space.

Figure 8.11 are four full-depth $\phi=20^{\circ}$ external gears with $N=18$ and $N=11$ teeth. The zero profile shift gear with $N=18$ exhibits no undercut, but once the number of teeth is reduced below 18, undercut starts to occur. This is clearly visible on the $N=11$ teeth gear that appears severely undercut. The companion $x=0.5$ profile shifted gears illustrate the effect of addendum modification upon tooth shape and undercut occurrence. Notice how for positive profile shifted gears, the tooth becomes pointed while its root thickens while
for $x<0$, the effect is opposite and can result in undercut teeth. In practice, it is recommended that the tooth thickness on the addendum circle be no less than 0.3 times m or $1 / P$. Stub teeth can be employed when there is no other way of avoiding the teeth from becoming pointed.

WM 2D applications GearGen1.WM2-GearGen4.WM2 illustrate how one complete tooth of an external involute gear of module $m=1 \mathrm{~mm}$ with number of teeth N and addendum modification coefficient x can be generated using a rack cutter. GearGen1.WM2 simulates $\alpha=20^{\circ}$ full-depth tooth involute profiles, GearGen 2 simulates $\alpha=20^{\circ}$ stub-tooth involute profiles, GearGen3.WM2 simulates $\alpha=25^{\circ}$ fulldepth tooth involute profiles, and GearGen4.WM2 simulates $\alpha=14.5^{\circ}$ full-depth tooth involute profiles.

Sample tooth profiles generated with these four WM 2D simulations are available for comparison in Figure 8.12. Unfortunately, once these simulations have been performed, there is no convenient way to export the cutter envelopes to AutoCAD (same applies for the simulations done using GearGen0.WM2). This is because WM 2D can export to DXF only one animation frame at a time. In addition, the entities whose visibility has been intentionally turned off will also be exported to DXF, making the task of extracting cutter envelopes even more tedious. To overcome these drawbacks and allow the user to generate accurate involute-gear profiles, the AutoLISP application Gears.LSP has been written and is available with the book.

8.5 INVOLUTE PROFILE GENERATION USING Gears.LSP

The AutoLISP application Gears.LSP allows one to generate as polylines, internal or external gears with any number of teeth and any addendum modification coefficient x. For the convenience of input data management, the module m (or diametral pitch P) of the gear will be equal to one. Any desired module or diametral pitch can be easily obtained at the end through scaling. Note that the gear will result centered at origin and must be produced one at a time always starting in a new drawing. To launch the program, issue the appload command, load Gears.LSP from its directory, and then type at the command line either "external" or "internal," depending on the gear profile you want to generate. You will then be asked to input the number of teeth N and profile shift coefficient x and will be prompted by the program to confirm the advancement through the involute profile generation steps shown in Figure 8.13.

These steps are as follows (see Figure 8.13): (i) Draw the addendum, dedendum, base, and pitch circles of the future gear and half of the generating rack and its reference line. (ii) Copy the generating rack in a number of positions to form the envelopes of the left flank of the top gear, similar to WM 2D simulation GearGen1.WM2. (iii and iv) Extract the tooth flank using an array of parallel lines that are trimmed from the right. (v) Mirror the tooth flank to the right and draw the top land of the tooth. (vi) Generate the entire gear profile as a polar array of the single tooth produced earlier, and connect these teeth into a polyline.

If of interest, you can use the left side of the rack cutter and the reference line from Gears.LSP to manually produce an entire rack (see Figures 8.13 and 8.14). First, mirror

FIGURE 8.12 Profile shift effects upon an external gear with 18 teeth and $\alpha=20^{\circ}$ full-depth tooth (a), $\alpha=20^{\circ}$ stub tooth (b), $\alpha=25^{\circ}$ full-depth tooth (c), and $\alpha=14.5^{\circ}$ full-depth tooth (d). From left to right, the addendum modification coefficient equals to $x=-0.5, x=0$ and $x=+0.5$. See also movie files F8_12A.MP4 to F8_12D.MP4.

FIGURE 8.13 Steps in generating a standard gear with $N=5$ teeth and $x=0.2$ addendum modification using the application Gears.LSP.

FIGURE 8.14 How to obtain a complete section of the generating rack after running the program Gears.LSP for external (a) and internal (b) gears. Also shown is the profile shift coefficient $x=0.2$ that can be measured directly on the drawing.

FIGURE 8.15 External gears (left) and internal gears (right) with 18 teeth and $x=0$, full-depth tooth with $\alpha=20^{\circ}$, stub tooth with $\alpha=20^{\circ}$, full-depth tooth with $\alpha=25^{\circ}$, and full-depth tooth $\alpha=14.5^{\circ}$, separately generated using Gears.LSP. Note the different undercut and tooth land width.
the left side of the rack about the $O X$ axis. Then connect the two outer ends with the ends of the reference line of the rack, and complete the necessary filleting. You can then multiply any number of times the tooth and space thus obtained.

It is also possible to generate using Gears.LSP stub gears, or gears having the angle of the generating rack other than 20° (see Figure 8.15). To do this, edit the addendum coefficient aa or angle Phi on the last lines of the file Gears.LSP prior to loading it into AutoCAD. Note in the following excerpt that it is also possible to modify the fillet radius FilletR of the generating rack or the number of enveloping positions Ncuts required to extract the first tooth.

```
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
    (setq Ncuts 100) ;Number of rack cuts around one tooth
    (setq NRscans 30) ;Number of scan lines to extract the involute
    (setq FilletR 0.25) ;generating rack filled radius
    (setq Phi 20.0) ;rack angle in degrees
    (setq aa 1.00) ;addendum coefficient
    (setq dd 1.25) ;dedendum coefficient
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
```

A review of the involute-gear theory has been presented, illustrated with WM 2D simulations. Additional simulations demonstrate how gear profiles can be generated using gear and rack cutters. AutoLISP application Gears.LSP available with the book allows one to generate as AutoCAD polylines accurate involute profiles-both external and internal. For convenience, a summary of involute-gear nomenclature and geometric equations used in this chapter is made available in Table 8.2. Most of the equations in this table have been entered in the spreadsheet InvGearCalc.XLS also available with the book.

TABLE 8.2 Summary of Involute-Gear Formulae

Nomenclature

Pinion tooth number
Gear tooth number
Generating rack angle
4 Module for metric gears

5 Diametral pitch for US

customary gears
6 Transmission ratio
7 Pitch circle radii
8 Base circle radii
9 Standard center distance
10 Operating distance
11 Pressure angle at pitch point
12 Pressure angle on a circle of radius r_{y}
13 Circular pitch
14 Circular pitch on a circle of radius r_{y}
15 Profile shift coefficients
16 Total profile shift coefficient
17 Profile shift distance
18 Addendum
19 Dedendum
20 Clearance
21 Dedendum radius
22 Addendum radius

23 Pitch circle radii of meshing $r_{\text {w1 }}, r_{\mathrm{w} 2}$ gears
24 Tooth thickness on the pitch s_{1}, s_{2} circle

25 Tooth thickness on a circle $s_{y 1}, s_{y 2}$ of radius r_{y}

26 Contact ratio
$\varepsilon>1$
ϕ
m [mm]
X_{1}, X_{2}
a
d
c
$r_{\mathrm{d} 1}, r_{\mathrm{d} 2}$
$r_{\mathrm{a} 1}, r_{\mathrm{a} 2}$

Comments (The Lower Sign Is for Internal Gears [N_{2} Only] or External-Internal Pairs)

$N_{1} \quad N_{1} \geq 17$ (less than 17 possible with nonstandard gears)
$N_{2} \quad N_{2} \geq N_{1}$
20° standard (other values in use are $14.5^{\circ}, 22.5^{\circ}$, and 25°)
$1,1.25,1.5,2,2.5,3,4,5,6,8,10,12,16,20,25,32,40,50$
(first choice) or $1.125,1.375,1.75,2.25,2.75,3.5,4.5,5.5$, $7,9,11,14,18,22,28,36,45$ (second choice)
$1,1^{1 / 4}, 1^{1 / 2}, 1^{3 / 4}, 2,2^{1 / 4}, 2^{1 / 2}, 3,4,6,8,10,12,16$ (coarse) or $20,24,32,40,48,64,80,96,120,150,200$ (fine)
$i_{12}=N_{2} / N_{1}$
$r_{1}=0.5 \cdot N_{1} \cdot m ; r_{2}=0.5 \cdot N_{2} \cdot m$ or $r_{1}=0.5 \cdot N_{1} / P ; r_{2}=0.5 \cdot N_{2} / P$
$r_{\mathrm{b} 1}=r_{1} \cdot \cos \phi ; r_{\mathrm{b} 2}=r_{2} \cdot \cos \phi$
$D=r_{2} \pm r_{1}$
$D_{\mathrm{w}} \in[D \ldots D \pm m]$ OR $D_{\mathrm{w}} \in[D \ldots D \pm 1 / P]$
$\phi_{\mathrm{w}}=\cos ^{-1}\left(D \cos \phi / D_{\mathrm{w}}\right)$
$\phi_{y}=\cos ^{-1}\left(r_{\mathrm{b}} / r_{y}\right)$
$p=\pi m$ or $p=\pi / P$
$p_{y}=p\left(\cos \phi / \cos \phi_{y}\right)$
To avoid undercut: $x_{1,2} \geq\left(17-N_{1}\right) / 17$
$x=\frac{N_{2} \pm N_{1}}{2 \tan \phi} \cos \left(\operatorname{inv} \phi_{\mathrm{w}}-\operatorname{inv} \phi\right)$
$X_{1}=x_{1} \cdot m ; X_{2}=x_{2} \cdot m$ or $X_{1}=x_{1} / P ; X_{2}=x_{2} / P$
Full-depth tooth: $a=m$ or $1 / P$; stub tooth, $0.8 / P$;
Full-depth tooth: $d=1.25 \mathrm{~m}$ or $1.25 / P$; stub tooth, $d=1 / P$;
$c=d-a$
$r_{\mathrm{d} 1}=r_{1}+X_{1}-d ; r_{\mathrm{d} 2}=r_{2}+X_{2} 7 d$
$r_{\mathrm{a} 1}=r_{1}+X_{1}+a ; r_{\mathrm{a} 2}=r_{2}+X_{2} \pm a$
Rack and pinion: $r_{\mathrm{a} 1}=r_{1}+X_{1}+a ; r_{\mathrm{a} 2}=\infty$
$r_{\mathrm{w} 1,2}=\frac{r_{\mathrm{bl}, 2}}{\cos \phi_{\mathrm{w}}}=\frac{N_{\mathrm{l}, 2}}{N_{2} \pm N_{\mathrm{l}}} D_{\mathrm{w}}$
$s_{1,2}=0.5 \cdot p 72 \cdot X_{1,2} \cdot \tan \phi$
$s_{y 1,2}=s_{1,2} \frac{\cos \phi}{\cos \phi_{\mathrm{w}}} \mp r_{y 1,2}\left(\operatorname{inv} \phi_{y}-\operatorname{inv} \phi\right)$
$\varepsilon=\left(\sqrt{r_{\mathrm{a} 1}^{2}-r_{\mathrm{b} 1}^{2}} \pm \sqrt{r_{\mathrm{a} 2}^{2}-r_{\mathrm{b} 2}^{2}} \mp D_{\mathrm{w}} \sin \phi_{\mathrm{w}}\right) /(p \cos \phi)$
Rack and pinion:
$\varepsilon=\left(\sqrt{r_{\mathrm{al}}^{2}-r_{\mathrm{bl}}^{2}}-r \sin \phi\right) /(p \cos \phi)+(1-x) /(0.5 p \sin 2 \phi)$
27 Backlash

REFERENCES AND FURTHER READINGS

AGMA 913-A98. (1992). Method for Specifying the Geometry of Spur and Helical Gears. Alexandria, VA: The American Gear Manufacturers Association.
Dudley, D. (1994). Handbook of Practical Gear Design. Boca Raton, FL: CRC Press.
Litvin, F. L. and Fuentes, A. (2004). Gear Geometry and Applied Theory. New York: Cambridge University Press.
Uicker, J. J. Jr., Pennock, G. R., and Shigley, J. E. (2003). Theory of Machines and Mechanisms. New York: Oxford University Press.
Weisstein, E.W. (2013). Involute. From MathWorld-A Wolfram Web Resource. http://mathworld. wolfram.com/Involute.html (last accesses June 2014).

More Practical Problems and Applications

In this final chapter, a number of applications of the programs and procedures introduced earlier in this book are presented. The first three of these applications are from Dynamics and Vibrations solved using the D_2D program. The next examples are of curve fitting through minimization, graphical representation of single-valued functions of three or more variables and random number generation (including plotting them as histograms). Additional applications of the procedures in unit LibAssur are then presented (i.e., kinematic simulation of dwell and quick-return mechanisms and of mechanisms with repetitive topology and animation of the fixed and moving centrodes of a four-bar linkage), followed by two Working Model 2D simulations of planetary gears. Also presented is a program to purge unwanted files from current directory. After submitting the first draft of manuscript to the publisher, several more applications have been added to this chapter as follows: plotting implicit functions, direct and inverse kinematics of SCARA robots, rope shovel and excavator motion simulation, multilink suspension analysis and flywheel design of a punch press.

9.1 DUFFING OSCILLATOR

To illustrate the usefulness of arrow markers and the ability of D _2D program to generate comet plots and to handle large input data files, the case of the Duffing nonlinear oscillator is considered next:

$$
\begin{equation*}
\ddot{x}+\delta \dot{x}+\alpha x+\beta x^{3}=\gamma \cos (\omega t) \tag{9.1}
\end{equation*}
$$

Equation 9.1 describes a class of damped oscillators with a harmonic forcing term and viscous friction coupling. This equation has been extensively studied in the past (Kovacic and Brennan 2011) because of the interesting dynamic behavior it exhibits for certain combinations of parameters $\alpha, \beta, \gamma, \delta$, and ω. The plot in Figure 9.1, known as phase path, is a solution of Duffing equation with $\omega=1.0, \alpha=-1.0, \beta=1.25, \gamma=0.3$, and $\delta=0.15$ and initial

FIGURE 9.1 Phase path of Duffing oscillator plotted with equally spaced arrow markers (a) and arrow markers placed at every five data points, the static equivalent an animated comet-like F9_01C. GIF (b). See also configuration files F9_01A.CF2, F9_01B.CF2, and F9_01C.CF2.
conditions $x(0)=0$ and $\dot{x}(0)=0.000001$. It has what is known as chaotic behavior, where the time response of the system is bounded but not periodic. Figure 9.1 illustrates how the arrow markers available in the $\mathrm{D} _2 \mathrm{D}$ program were used to indicate the time evolution of the system. If these arrow markers are equally spaced along the plot curve like in Figure 9.1a, the direction of the process is revealed, but not its velocity. If the data points used to plot the phase path are

FIGURE 9.2 Poincaré map of the Duffing oscillator in Figure 9.1. Configuration file F9_02.CF2.
generated at a constant time step, then by placing an arrow marker at every certain number of data points, a sense of the speed at which the process occurs is also conveyed with the graph (Figure 9.1b). This latter graph is comparable to representing the respective line as a comet plot (see animation file F9_01c.GIF available with the book). The use of comet plots is restricted however by the availability for their display of an interactive environment.

Figure 9.2, known as a Poincaré map or first recurrence map, reveals some regularity in the chaotic behavior of the Duffing oscillator. These maps are phase configurations of the oscillations recorded for discrete time values $t=2 \pi n$ with $n=0,2,3,4$, and so on. The number of instances n recorded and plotted as dots in Figure 9.2 equals one million and is read by D_2D from file F9_02.D2D.

Data file F9_02.D2D together with ASCII file F9_01.TXT used to plot Figure 9.1 has been generated using program F9_01. PAS listed in Appendix B. Note that in order to output either the F9_01.TXT file or the F9_02.D2D file, constant Poincare must be set equal to FALSE or to TRUE, respectively (see line \#6 of the program).

9.2 FREE OSCILLATION OF A SPRING-MASS-DASHPOT SYSTEM

This section discusses the simulation of a spring-mass system with viscous damping. In case of this single degree-of-freedom (DOF) system, Newton's second law

$$
\begin{equation*}
\Sigma F_{y}=m a_{y} \tag{9.2}
\end{equation*}
$$

writes (see Figure 9.3a)

$$
\begin{equation*}
m g-c \dot{y}-F_{s}=m \ddot{y} \tag{9.3}
\end{equation*}
$$

After substituting the spring force, the differential equation of motion is obtained as

$$
\begin{equation*}
\ddot{y}=g-\frac{c}{m} \dot{y}-\left(y-l_{0}\right) k \tag{9.4}
\end{equation*}
$$

Two Pascal programs have been written to integrate the equation of motion (9.4) of the system for $0 \leq t \leq$ tend, using Euler-Taylor algorithm (see Appendix A). Of these, program P9_03.PAS listed in Appendix B writes the displacement $y(t)$ and the velocity $\mathrm{d} y(t) / \mathrm{d} t$ of the mass to two separate data files named F9_03LONG.DTA and F9_03SHRT. DTA. The first of these files receives nPoz data points result of the numerical integration, while the second one receives every Skip data points (see lines \#75 to \#78 and lines \#79 to \#81). Depending on the step size h defined on line \#15, the integration can be done over more points, but only nPoz points are recorded to file F9_03LONG.DTA. For the same reduced number of points that are recorded to file F9_03SHRT.DTA, the program also draws on the screen and to the multilayer DXF file F9_03.DXF a circle representing

FIGURE 9.3 Free-body diagram of the mass (a), and time response of an underdamped springmass system (b). See also animation file F9_03b.GIF and configuration file F9_03.CF2. Note that plot has been mirrored and scaled inside AutoCAD to match the motion of the spring.
the mass, the helical spring, and its two attachment-see the use of procedures Shape, Spring, PutGPoint, and PutPoint.

A spring of free length $l_{0}=1.0 \mathrm{~m}$ and constant $k=10 \mathrm{~N} / \mathrm{m}$ and a suspended mass $m=1 \mathrm{~kg}$ were assumed. For the damping coefficient $c=0.5 \mathrm{Ns} / \mathrm{m}$ corresponding to an underdamped system and for initial conditions $y(0)=0.5 \mathrm{~m}$ and $\mathrm{d} y(0) / \mathrm{d} t=0$, the system's time-response graph looks as shown in Figure 9.3b. The companion animation file F9_03b.GIF has been generated by combining inside AutoCAD the multilayer DXF file F9_03.DXF and a D_2D scan line graph generated using files F9_03LONG.DTA (for the background curve) and F9_03SHRT.DTA (for scan line points).

The second program named P9_04.PAS (listing not included in appendix) is structured similarly to the two-DOF spring-pendulum simulation program P3_04.PAS discussed in Chapter 3. The program generates vector _t of the independent variable (i.e., time) and the displacement and velocity vectors _y and _dy. These vectors then serve to plot the displacement and velocity graphs of the mass (see Figure 9.4). The sample animation frame output by this program in Figure 9.4 corresponds to the same initial conditions and parameters l_{0}, k, m, and c. Additional damping coefficient values have been considered (i.e., $c=0, c=6.32456 \mathrm{Ns} / \mathrm{m}=2(m k)^{1 / 2}$, and $c=10 \mathrm{Ns} / \mathrm{m}$, corresponding to an undamped, critically damped, and overdamped system, respectively), and animation files F9_03a.GIF through F9_03d.GIF available with the book have been generated.

Spring-Mass-Dashpot: $k=10 \mathrm{~N} / \mathrm{m}, m=1 \mathrm{~kg}, c=0.5 \mathrm{Ns} / \mathrm{m}$

FIGURE 9.4 Underdamped spring-mass system simulation generated with P9_04.PAS. See also animation files F9_04a.GIF to F9_04d.GIF.

9.3 FREQUENCY AND DAMPING RATIO ESTIMATION OF OSCILLATORY SYSTEMS

Often times, dynamics and vibrations problems require for a solution, determining the damped period of motion τ_{d}, the corresponding frequency $\left(\omega_{\mathrm{d}}=2 \pi / \tau_{\mathrm{d}}\right.$ and $\left.f_{\mathrm{d}}=1 / \tau_{\mathrm{d}}\right)$, and the amount of damping present in a system. For an underdamped, single DOF system for which a time-response curve $y(t)$ is available, the period of motion τ_{d} can be determined by measuring the time interval between two successive maximum or minimum displacement values or the time it takes for the system to pass twice through its equilibrium position. In turn, the amount of damping in the system, quantified by the damping ratio ζ, is traditionally determined by employing the logarithmic decrement method, which however requires accurate knowledge of the equilibrium position of the system.

In this section, an exponential-curve fit approach to damping ratio determination will be described, facilitated by the ability of the $\mathrm{D} _2 \mathrm{D}$ program to export to file the coordinates of the extrema of plots. Figure 9.5 is the time-response curve $y(t)$ of a spring-mass-dashpot system with mass $m=1 \mathrm{~kg}$, spring rate $k=10 \mathrm{~N} / \mathrm{m}$, and viscous damping coefficient $c=0.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$. This curve has been produced with data from file F9_05.D2D generated by program P9_05.PAS (see Appendix B). This program implements Equations 9.5 through 9.10 (Rao 2013), with the initial conditions $\dot{y}_{0}=0$ and $y_{0}=1.5-y_{\infty}=0.5 \mathrm{~m}$, where $y_{\infty}=y(\infty)=1.0 \mathrm{~m}$ is the displacement of the mass at equilibrium (i.e., the static displacement):

$$
\begin{equation*}
y(t)=y_{\infty}+A_{0} e^{-\zeta \omega_{n} t} \cdot \sin \left(\omega_{\mathrm{d}} t+\psi\right) \tag{9.5}
\end{equation*}
$$

FIGURE 9.5 Time response of an underdamped spring-mass-dashpot system, showing the minimum and maximum displacement values. The plot consists of 200 data sets, and the peak values were interpolated parabolically over three points that bracket a local extrema. Configuration file F9_05.CF2.
where the maximum amplitude is

$$
\begin{equation*}
A_{0}=\sqrt{y_{0}^{2}+\left(\frac{\dot{y}_{0}+\zeta \omega_{n} y_{0}}{\omega_{\mathrm{d}}}\right)^{2}}=0.50156986 \mathrm{~m} \tag{9.6}
\end{equation*}
$$

phase angle is

$$
\begin{equation*}
\psi=\tan ^{-1}\left(\frac{y_{0} \omega_{\mathrm{d}}}{\dot{y}_{0}+\zeta \omega_{n} x_{0}}\right)=4.63324946 \mathrm{rad} \tag{9.7}
\end{equation*}
$$

damped circular frequency is

$$
\begin{equation*}
\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}=3.15238005 \mathrm{rad} / \mathrm{s} \tag{9.8}
\end{equation*}
$$

natural frequency is

$$
\begin{equation*}
\omega_{n}=\sqrt{k / m}=3.16227766 \mathrm{rad} / \mathrm{s} \tag{9.9}
\end{equation*}
$$

damping ratio is

$$
\begin{equation*}
\zeta=\frac{c}{2 m \omega_{n}}=0.07905694 \tag{9.10}
\end{equation*}
$$

and damped period of motion is

$$
\begin{equation*}
\tau_{\mathrm{d}}=\frac{2 \pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=1.99315603 \mathrm{~s} \tag{9.11}
\end{equation*}
$$

Using the coordinates of the minimum and maximum points extracted to file from Figure 9.5, the damped period of motion τ_{d} can be calculated as the time interval between two successive maximum or minimum displacements. Better precision has been obtained when the time interval between the first and the last maximum recorded values was divided by the number of in-between complete oscillations (see spreadsheet file F9_05. XLS available with the book). In this case, the damped period of motion was found to be 1.99314475 s , corresponding to a relative error of -0.0006%. When the first and the last minimum values were used instead, the damped period of motion was found to be 1.99320023 s , translating into a relative error of 0.0022%. Averaging these two values yields $\tau_{d}=1.99317249 \mathrm{~s}$ with a relative error of 0.0008%.

Regarding the amount of damping in the system, the common way to estimate it is to evaluate the logarithmic decrement using the time-response curve $y(t)$. The logarithmic
decrement is defined as the natural logarithm of the ratio of two distinct peak displacements (either minimum or maximum) noted p and q, measured from the equilibrium position:

$$
\begin{equation*}
\delta=\frac{1}{q-p} \ln \left[\frac{\left(y_{\max }\right)_{p}-y_{\infty}}{\left(y_{\max }\right)_{q}-y_{\infty}}\right]=\frac{1}{q-p} \ln \left[\frac{\left(y_{\min }\right)_{q-1}-y_{\infty}}{\left(y_{\min }\right)_{q}-y_{\infty}}\right] \tag{9.12}
\end{equation*}
$$

Alternatively, both the minimum and maximum values can be combined in calculating the logarithmic decrement, according to the following formula:

$$
\begin{equation*}
\delta=\frac{2}{q-p} \ln \left|\frac{\left(y_{\text {peak }}\right)_{p}-y_{\infty}}{\left(y_{\text {peak }}\right)_{q}-y_{\infty}}\right|=\frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}} \tag{9.13}
\end{equation*}
$$

where these minimum and maximum values are numbered successively using the same index.

The application of Equations 9.12 and 9.13 is limited by the knowledge of the static displacement y_{∞} of the mass. If the equilibrium position of the mass is not exactly known, y_{∞} can be determined together with the product $\zeta \omega_{n}$ and amplitude A_{0} in a curve fitting process, as the minimum of an objective function of the type

$$
\begin{align*}
& \operatorname{Fobj}_{1}\left(\zeta \omega_{n}, A_{0}, y_{\infty}\right)= \\
& \quad \operatorname{Max}_{k}\left(\left|y_{\infty}+A_{0} \cdot \exp \left(-\zeta \omega_{n} \cdot t_{\max k}\right)-y_{\max k}\right|,\left|y_{\infty}-A_{0} \cdot \exp \left(-\zeta \omega_{n} \cdot t_{\min k}\right)-y_{\min k}\right|\right) \tag{9.14}
\end{align*}
$$

where t_{mink} and t_{maxk} are the moments of time where the peak values y_{maxk} and y_{mink} of the time-response curve occur. Program P9_06.PAS listed in Appendix B implements this approach to determine product $\zeta \omega_{n}$, displacement at equilibrium y_{∞}, and maximum amplitude A_{0}.

For $y_{\text {max }}$ and $y_{\text {min }}$ extracted through parabolic interpolation from a time-response curve with 200 data points (Figure 9.5), the following numerical results were obtained:

$$
\begin{align*}
A_{0} & =0.50005500 \mathrm{~m} \\
\zeta \cdot \omega_{n} & =0.25002500 \mathrm{rad} / \mathrm{s} \tag{9.15}\\
y_{\infty} & =1.00000099 \mathrm{~m}
\end{align*}
$$

These results have been output by program P9_06.PAS to data file F9_06.REZ, together with the value of the objective function at minimum, that is, 0.00002106 . This value is the maximum deviation in absolute value between the time-response curve and its exponentially decaying envelope shown overlapped in Figure 9.6-the envelope curve in this figure has been produced using data file F9_06. REZ.

FIGURE 9.6 Combined plot of the spring-mass-dashpot system time response and peak envelopes obtained through minimization of the objective function (9.14). Configuration file F9_06.CF2.

Knowing that the undamped natural circular frequency of the system is

$$
\begin{equation*}
\omega_{\mathrm{d}}=\frac{2 \pi}{\tau_{\mathrm{d}}}=\omega_{n} \sqrt{1-\zeta^{2}} \tag{9.16}
\end{equation*}
$$

and for τ_{d} determined as explained earlier, the damping ratio of the system was found to be

$$
\begin{equation*}
\zeta=\sqrt{\frac{\left(\zeta \cdot \omega_{n}\right)^{2} \cdot\left(\tau_{\mathrm{d}}\right)^{2}}{4 \pi^{2}+\left(\zeta \cdot \omega_{n}\right)^{2} \cdot\left(\tau_{\mathrm{d}}\right)^{2}}}=0.0790654468 \tag{9.17}
\end{equation*}
$$

This represents an error of only 0.0108% compared to the exactly calculated value 0.07905694 in Equation 9.10.

9.4 NONLINEAR CURVE FIT TO DATA

One problem frequently encountered in numerical data analysis that can be solved using optimization techniques is adjusting the coefficients of a function (in particular, a polynomial), so that this chosen function best approximates a set of n data pairs (x_{i}, y_{i}). Such a problem was discussed in Section 9.3 where an exponential curve was fit to some experimentally determined points. A similar example will be discussed next, where supplementary the effect of rounding off the computed coefficients is addressed right from within the optimization problem. The example that will be considered in this section refers to adjusting the coefficients C_{1} through C_{5} of the function

$$
\begin{align*}
\sigma(\varepsilon)= & \frac{2 \varepsilon\left(3+3 \varepsilon+\varepsilon^{2}\right)}{(1+\varepsilon)^{4}}\left[2 C_{5} \varepsilon^{5}+\left(10 C_{5}+3 C_{3}\right) \varepsilon^{4}+\left(14 C_{5}+4 C_{4}+9 C_{3}+C_{2}\right) \varepsilon^{3}\right. \\
& \left.+\left(6 C_{5}+6 C_{4}+6 C_{3}+3 C_{2}+C_{1}\right) \varepsilon^{2}+\left(3 C_{2}+2 C_{1}\right) \varepsilon+C_{2}+C_{1}\right] \tag{9.18}
\end{align*}
$$

for which the sigmoidal stress-strain curve of the elastomeric material graphed in Figures 3.16 and 3.17 is best approximated.

The corresponding minimax approximation problem requires solving the following objective function in five variables (Weisstein 2013):

$$
\begin{equation*}
\operatorname{Fobj}_{2}\left(C_{1 \ldots 5}\right)=\operatorname{MaX}_{i=1}^{n}\left|\sigma\left(\varepsilon_{i}\right)-\sigma_{i}\right| \tag{9.19a}
\end{equation*}
$$

where ε_{i} and σ_{i} are data pairs extracted from the plot in Figure 3.17. Other forms of the objective function (9.19) are possible, like the sum of squared deviations:

$$
\begin{equation*}
\operatorname{Fobj}_{2}\left(C_{1 \cdots 5}\right)=\sum_{i=1}^{n}\left(\sigma\left(\varepsilon_{i}\right)-\sigma_{i}\right)^{2} \tag{9.19b}
\end{equation*}
$$

or the sum of absolute values of the deviations:

$$
\begin{equation*}
\operatorname{Fobj}_{2}\left(C_{1 \ldots 5}\right)=\sum_{i=1}^{n}\left|\sigma\left(\varepsilon_{i}\right)-\sigma_{i}\right| \tag{9.19c}
\end{equation*}
$$

Of these three, an objective function like the one in Equation 9.19a can ensure that the departure between the given data points and the approximating curve will be evenly spread along $\sigma(\varepsilon)$ (see Figure 9.7).

It is not unusual in curve fitting problems for the found coefficients (like $C_{1 \ldots 5}$ in Equation 9.18) to be rounded off their computed values without verifying the effect upon the accuracy of the approximation. This situation can be addressed from within the search algorithm, as it has been done in program P9_07.PAS listed in Appendix B. As shown, procedure NelderMead that implements the Nelder-Mead searching algorithm is called 100 times, each time using a different initial guess (see the for loop between lines \#59 and \#79). After each iteration, the value of the objective function is evaluated, and if a

FIGURE 9.7 Plot of the original data points (*), analytical curve (solid line), and error bars. Configuration file: F9_07.CF2.
smaller value has been found, then coefficients C1-C5 are rounded to their third decimal (see line \#71 of the program). Objective function Fobj2 is evaluated one more time, and only if the improvement over the best optimum found that far is preserved after roundup, then the variables Xbest and vFbest are updated. Data pairs ε_{i} and σ_{i} of the elastomeric material are read from ASCII file F9_07.DTA, which is a copy of file F3_20.XY from Chapter 3, with the first two lines removed. Note that the number of input data points nPts in program P9_07. PAS is equivalent to parameter n in Equation 9.19.

One of the best results returned by program P4_18.PAS is

```
Max Deviation = 0.049003131;
C1=0.8510; C2=0.0200; C3=-0.1620; C4=0.0470; C5=0.0570;
```

These coefficients were used to plot the best-fit curve and the corresponding error bars in Figure 9.7. The almost equal in magnitude negative and positive deviations are a first indication that a good solution has been found.

9.5 PLOTTING FUNCTIONS OF MORE THAN TWO VARIABLES

So far we dealt with graphical representation of function of one and two variables using line, surface, or level-curve diagrams. Occasionally, there is an interest in visualizing singlevalued functions of more than two variables. Analytical functions of the form $F\left(x_{1}, x_{2}, x_{3}\right)$ can be explored graphically by maintaining constant one variable, for example, x_{3}, while scanning the remaining two variables within some prescribed limits, for the purpose of generating the data file needed for plotting projected level-curve or 3D surface diagrams. If several such plots are generated for ordered values of x_{3}, then these can be displayed successively as computer animations, where time plays the role of variable x_{3}.

Let us consider the following function called the generalized Rosenbrock's function

$$
\begin{equation*}
R_{n}\left(x_{1} \ldots x_{n}\right)=\sum_{i=1}^{n-1}\left[100 \cdot\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right] \tag{9.20}
\end{equation*}
$$

used in evaluating the performance of optimization algorithms. Its global minimum equals 0 and occurs for $x_{i}=1$. For $n=2$, this function is known as Rosenbrock's Banana function and its plot looks as shown in Figure 9.8.

To visualize the $n=3$ version of Rosenbrock's function as animation, program P9_09.PAS has been written and is listed in Appendix B. The program outputs ASCII file F9_09.T3D consisting of multiple columns of $R_{3}\left(x_{1}, x_{2}, x_{3}\right)$ values produced for various x_{3} 's, preceded by the grid sizes $n_{x_{1}}, n_{x_{2}}$ and limits $x_{1 \text { min }}, x_{1 \max }, x_{2 \text { min }}, x_{2 \max }$. The animation frames generated for x_{3} equal to $-2.0,-1.0,0.0,1.0$, and 2.0 , and $x_{1 \min }=$ $x_{2 \text { min }}=-2.5$ and $x_{1 \text { max }}=x_{2 \text { max }}=2.5$ are available in Figure 9.9.

When the single-valued function of interest has more than three variables, the animation method described earlier can no longer be applied. Of the various dimension reduction techniques applicable to functions of the form $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the partial minimax method (Simionescu and Beale 2004) will be illustrated and applied to visualizing R_{n} in Equation 9.20. This is a method of projecting hyperfunctions from n dimensions down to 3D or 2D,

FIGURE 9.8 Graph of Rosenbrock's function with $n=2$. See also program P9_08.PAS available with the book used to generate the D3D file for this plot. Configuration file F9_08.CF3.
where two of the function variables, for example, x_{1} and x_{2}, are scanned at constant step as in a regular 3D or level-curve plot (these are the scan variables), while the remaining ones are the search variables in the following global-minimization and global-maximization problems:

$$
\begin{align*}
& F_{\downarrow_{3} \ldots n}\left(x_{1}, x_{2}\right)=\text { Global } \min _{x_{3} \ldots x_{n}} F\left(x_{1} \ldots x_{n}\right) \tag{9.21}\\
& \quad \text { subjected to } x_{j \min } \leq x_{j} \leq x_{j \max } \quad \text { with } j=3 \ldots n
\end{align*}
$$

and

$$
\begin{align*}
& F_{\uparrow 3 \ldots n}\left(x_{1}, x_{2}\right)=\text { Global } \max _{x_{3} \ldots x_{n}} F\left(x_{1} \ldots x_{n}\right) \tag{9.22}\\
& \quad \text { subjected to } x_{j \min } \leq x_{j} \leq x_{j \max } \quad \text { with } j=3 \ldots n
\end{align*}
$$

$F \downarrow\left(x_{1}, x_{2}\right)$ and $F \uparrow\left(x_{1}, x_{2}\right)$ are called partial minima and partial maxima functions and are the lower and the upper envelopes of the hypersurface of the original function $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ when projecting it from $n+1$ dimension space ($\left.x_{1}, x_{2}, \ldots, x_{n}, F\right)$ down to three dimensions, for example $\left(x_{1}, x_{2}, F\right)$. Also of interest are the plots of the $x_{3}-x_{n}$ values at these partial minima and partial maxima. These are called lower bound and upper bound paths and are noted $x_{3 \downarrow}, x_{4 \downarrow}, \ldots, x_{n \downarrow}$ and $x_{3 \uparrow}, x_{4 \uparrow}, \ldots, x_{n \uparrow}$, respectively.

Program P9_10.PAS listed in Appendix B implements the partial minimax method to plot the generalized Rosenbrock's function with $n=5$. The program outputs ASCII file F9_10. T3D, with separate columns for $F \downarrow\left(x_{1}, x_{2}\right)$ and $F \uparrow\left(x_{1}, x_{2}\right)$ and for the corresponding $x_{3 \downarrow}, x_{4 \downarrow}, x_{5 \downarrow}$ and $x_{3 \uparrow}, x_{4 \uparrow}, x_{5 \uparrow}$ values. When represented graphically, these partial minima and partial maxima functions appear as shown in Figure 9.10. Note that the narrow valley exhibited by Rosenbrock's function of two variables is also present in the 3D projection of its $n=5$ generalization.

FIGURE 9.9 Some of the frames in the animation file F9_09.GIF of the generalized Rosenbrock's function with $n=3$, where time is associated to variable x_{3} and it is listed on the top of each frame.

The first-order discontinuity in the graphs of the lower bound paths $x_{3 \downarrow}, x_{4 \downarrow}$, and $x_{5 \downarrow}$ visible in Figure 9.10 is indicative that for $n=5$, the generalized Rosenbrock's function has more than one minima. This can be verified by visualizing the Euclidean norm of the gradient of R_{5}

$$
\begin{equation*}
\left|\nabla R_{n}\right|=\sqrt{\left(\frac{\partial R_{n}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial R_{n}}{\partial x_{2}}\right)^{2}+\cdots+\left(\frac{\partial R_{n}}{\partial x_{n}}\right)^{2}} \tag{9.23}
\end{equation*}
$$

FIGURE 9.10 Projection of Rosenbrock's function with $n=5$ variables to the 3D space and plot of the lower bound and upper bound paths. Configuration files F9_10_1.CF3 to F9_10_8.CF3.
using the same partial minimax method, where

$$
\begin{align*}
& \frac{\partial R_{n}}{\partial x_{i}}=200 x_{1}\left(x_{i}-x_{i-1}^{2}\right)-400 x_{i}\left(x_{i+1}-x_{i}^{2}\right)-2\left(1-x_{i}\right) \quad \text { for } 2<i<n-1 \\
& \frac{\partial R_{n}}{\partial x_{1}}=-400 x_{1}\left(x_{2}-x_{1}^{2}\right)-2\left(1-x_{1}\right) \text { and } \frac{\partial R_{n}}{\partial x_{n}}=200\left(x_{n}-x_{n-1}^{2}\right) \tag{9.24}
\end{align*}
$$

Using a new program named P9_11.PAS available with the book, data files F9_11_12.D3D to F9_11_45.D3D have been generated and served to produce the graphs in Figure 9.11a and b. Based on these graphs, it can be inferred that for $n=5$, the generalized Rosenbrock's function has one global minimum at ($1,1,1,1,1$) and one local

FIGURE 9.11 (a) Magnitude of the gradient of the generalized Rosenbrock's function with $n=5$ variables projected down to 3D for scan variables $\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{1}, x_{4}\right)$, and $\left(x_{1}, x_{5}\right)$. Configuration files F9_11A12.CF3 to F9_11A15.CF3.
(Continued)

FIGURE 9.11 (Continued) (b) Magnitude of the gradient of the generalized Rosenbrock's function with $n=5$ variables projected down to 3D for scan variables $\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(x_{2}, x_{5}\right),\left(x_{3}, x_{4}\right),\left(x_{3}, x_{5}\right)$, and (x_{4}, x_{5}). Configuration files F9_11B23.CF3 to F9_11B35.CF3.

FIGURE 9.12 Details of the magnitude of the gradient of the generalized Rosenbrock's function with $n=5$ variables around minima, projected down to 3D. Configuration files F9_12A.CF3 and F9 12B.CF3.
minimum at $(-1,1,1,1,1)$. Narrowing the range of the scan variables to $[-1 \ldots 1]$ indeed confirms that for $n=5$, the function in Equation 9.20 has one global minimum and one local minimum (see Figure 9.12). The data files F9_12A.D3D and F9_12B.D3D used to produce these (Figure 9.12) were generated by program P9_12.PAS also available with the book.

Note that if different combinations of the scan variables and search variables are chosen, then the appearance of the partial minimax graphs and of the respective lower bound and upper bound paths will change. Also note that modifying the limits of both the scan variables and search variables will affect the appearance of these graphs.

Undoubtedly it is very time-consuming to perform the repeated minimizations and maximizations required to project hypersurfaces down to the 3 D space as explained earlier. Fortuitously, the location of the partial minima and partial maxima values do not change significantly when moving to the next pair of scan variables, particularly when the scanvariable grid is tight. With this in mind, the previously found solution can be used as initial guess for the next search, as it was actually done in programs P9_09.PAS, P9_10.PAS, P9_11.PAS, and P9_12.PAS.

Depending on the optimization algorithm employed, finding the actual partial global minima is not guaranteed. The partial minimax projection method is however inherently suited to parallel processing. This, together with the fact that increasingly powerful heuristic searching algorithms are constantly being developed, will facilitate the practical implementation of the dimension reduction method described.

Finally, if the graphs produced exhibit a noisy appearance or have unexpected discontinuities, then these are signs that the search algorithm employed converged prematurely and must be readjusted or a different algorithm should be employed. This suggests that the ranking of different optimization algorithms for speed and robustness can be done by
employing them in generating partial minimax projections of carefully selected hypersurfaces, and then compare the appearance of the graphs obtained and the time required to generate these graphs for the given scan-variable grid sizes.

9.6 RANDOM NUMBER GENERATION AND HISTOGRAM PLOTS

Random number generators have numerous applications in computer games, cryptography, search algorithms, various numerical simulations, etc. Most programming languages include functions capable of providing a random number that is uniformly distributed between certain limits. In the case of Turbo Pascal, the system function Random(range) returns with each call a uniform random value between 0 and range. When called without the argument, range is assumed to be equal to 1 . The sequence produced by calling the Random function will always be the same, however, unless the internal number generator is initialized

FIGURE 9.13 Frequency histograms with 75 bins of 10,000 (a) and 100,000 (b) uniformly distributed data points read by D_2D from files produced with program P9_13.PAS. Configuration files F9_13A.CF3 and F9_13B.CF3.
by calling the Randomize function first. This uses a seed value obtained from the system clock to assist the function Random to produce numbers that is close to being true random.

Program P9_13. PAS (see Appendix B) uses the Random function to generate data files F9_13A.DAT with 10,000 values and F9_13B.DAT with 100,000 values that are uniformly distributed within the interval [$-10 \ldots 10$]. These files in turn were used to produce the frequency histograms in Figure 9.13 using the D_2D program. For the same number of bins (i.e., 75), the top land of the graph generated using a larger number of samples has a visibly smoother appearance.

A second computer program named P9_14.PAS (see listing in Appendix B) served to generate the data files used to produce the frequency histograms in Figure 9.14. This program implements the method of Box and Muller to generate pairs of Gaussian (normally) distributed pseudorandom numbers, starting from a source of uniformly distributed values produced by calling the Turbo Pascal Random function.

The closeness of the randomly generated values by P9_14.PAS to a true normal distribution is illustrated by the plots in Figure 9.15. It shows overlapped a relative frequency

FIGURE 9.14 Frequency histograms with 75 bins of 10,000 (a) and 100,000 (b) Gaussian distributed data points, generated using program P9_14.PAS. Configuration files F9_14A.CF3 and F9_14B.CF3.

FIGURE 9.15 Relative frequency histograms with 100 bins of 10,000 (a) and 100,000 (b) data points (same data as in Figure 9.14), overlapped with a Gaussian probability density function $p(x)$. Data file to plot $p(x)$ has been generated by program P9_15. PAS. Configuration files F9_15A.CF3 and F9_15B.CF3.
histogram with 100 bins of the same two data files used to generate Figure 9.14 and a plot of the normal probability density function:

$$
\begin{equation*}
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-0.5(x-\mu)^{2} / \sigma^{2}} \tag{9.25}
\end{equation*}
$$

with $\mu=0$ and $\sigma=1$. A relative frequency histogram is one where the number of occurrences in each bin is divided by the total number of data points, which makes its appearance less sensitive to the number of the input values. You can experiment with different number of bins by editing the configuration file F9_15B.CF3 and with different input data file sizes by rerunning program P9_14.PAS with constant \mathbf{N} set to different values.

9.7 DWELL MECHANISM ANALYSIS

Dwell mechanisms have the property that for a constant rotary input, their output link remains (quasi) stationary for a portion of the motion cycle. Such a property is required by some manufacturing, textile, and packaging equipment applications. Cam and follower mechanisms, Geneva wheels, gear linkages, and linkage mechanisms (like the Stephenson III
linkage that will be discussed in this paragraph) are typical dwell motion generators used in practice. Of these, linkage mechanisms have better dynamic properties, but are more difficult to synthesize and usually result larger in size. If they employ pin joints only (which can be sealed and greased for life), dwell linkage mechanisms may benefit from increased reliability.

Program P9_16.PAS listed in Appendix B simulates the motion of a Stephenson III linkage, which comprises a four-bar path generator of input link $O A$, amplified with an RRR dyad (see Figure 9.16). The link lengths of the four-bar $O A B C$ are selected such that a portion of the coupler curve of point D is close in shape to an arch of a circle. In turn, the $D E F$ dyad is sized such that link length $D E$ equals the radius of the almost circular portion of the coupler curve, while joint E is located at its center of curvature. In addition to the DXF frame file P9_16.DXF, program P9_16.PAS writes to ASCII file F9_16.DTA angle θ_{1} of input link $O A$, and angle θ_{6} of the output link $E F$ (see Figure 9.16), together with the angular velocity $\mathrm{d} \theta_{1} / \mathrm{d} \theta_{6}$ of the same link $E F$.

During the first cycling of the repeat-until loop (lines \#35 to \#68), the program generates the output file F9_16.DTA and updates the workspace limits, but without animating

FIGURE 9.16 Simulation of Stephenson III dwell mechanism done with program P9_16.PAS (a) and the input-output displacement diagram of the mechanism (b). See also animation file F9_16. GIF and configuration file P9_16.CF2.
the mechanism. These limits are then used when calling procedure OpenMecGraph on lines \#40. During the second cycling of the repeat-until loop, when the number of positions is reduced from nPozDTA to $n P O Z D X F$, the animation frames are written to file F9_16.DXF. After that, the simulation repeats itself with no file output.

Using the same data file F9_16.DTA as input, the plot in Figure 9.17 has been generated. Next, the minimum and maximum θ_{6} values on this graph are exported by D_2D to file. Using these values, the range of the output link displacement was calculated as

$$
\begin{equation*}
\Delta \theta_{6}=263.30^{\circ}-211.19^{\circ}=52.115^{\circ} \tag{9.26}
\end{equation*}
$$

Since link $E F$ does not remain exactly immobile, the duration of the dwell is evaluated based on some accepted deviation from the limit position of the output link. One approach is to assume that link $E F$ is still dwelling when departed from its limit positions only a small fraction r of its entire motion range $\Delta \theta_{6}$. Assuming this amount to be $r=0.02$, the dwell range of the mechanism in Figure 9.16 has been determined to be $\Delta \theta_{1}=120.6^{\circ}$. This has been done by editing the displacement curve in Figure 9.16 using AutoCAD software as shown in Figure 9.17.

The second method of measuring the duration of the dwell is to assume that it lasts as long as the velocity of the output link remains less than a chosen amount. When both the input and output links perform a rotary motion, this deviation can be defined as a percentage of the input link angular velocity. For $\mathrm{d} \theta_{6} / \mathrm{d} \theta_{1}=0.05$ corresponding to the output link velocity $\mathrm{d} \theta_{6} / \mathrm{d} t$ being 5% of the input link velocity $\mathrm{d} \theta_{1} / \mathrm{d} t$, the duration of the dwell was found to be $\Delta \theta_{1}=108.04^{\circ}$. Again, AutoCAD software has been used to graphically solve the intersection between the deviation boundaries shown in dashed lines and the output velocity curve as shown in Figure 9.17. Note that in order to simplify the analysis, in program F9_16.DTA, the input link velocity $\mathrm{d}_{1} / \mathrm{d} t$ has been set equal to unity (see line \#45).

FIGURE 9.17 Output displacement and velocity diagrams of the dwell mechanism in Figure 9.16, edited using AutoCAD to extract the dwell range. Configuration file F9_17.CF2.

9.8 TIME RATIO EVALUATION OF A QUICK-RETURN MECHANISM

The quick-return mechanism in Figure 9.18 is a classical example of RTR dyad use. It is named quick return because slider D moves slower in one direction than it does in reverse, as shown on the input-output diagram in Figure 9.18 b. Such a mechanism is used in shaper machine tools, where the faster inactive stroke allows for an increased productivity, as compared, for example, to the slider-crank mechanism.

For a constant rotational input, the time ration $T R$ of a quick-return mechanism like the one in Figure 9.18a with input crank length $O A$ and ground-joint center distance $O B$ is (Cleghorn 2005)

$$
\begin{equation*}
T R=\frac{\pi}{\arccos (O A / O B)}-1=\frac{\pi}{\arccos (0.1 / 0.25)}-1=1.7099 \tag{9.27}
\end{equation*}
$$

Therefore, the time ratio can be interpreted as the duration of the fast stroke divided by the duration of the slow stroke.

Alternatively, the time ratio can be calculated using the coordinates of the minimum and maximum points available on the kinematic diagram in Figure 9.18b:

$$
\begin{equation*}
T R=\frac{360^{\circ}-\left(336.4^{\circ}-203.5^{\circ}\right)}{336.4^{\circ}-203.5^{\circ}}=1.7088 \tag{9.28}
\end{equation*}
$$

Note that this latter method can be applied to any mechanism with constant rotational input for which kinematic diagrams like the one in Figure 9.18b are available.

(a)

(b)

FIGURE 9.18 Quick-return mechanism (a) and its output slider displacement diagram (b). See also animation file F9_18.GIF and the D_2D configuration file F9_18B.CF2.

9.9 EXAMPLES OF ITERATIVE USE OF THE PROCEDURES IN UNIT LibAssur

Programs P9_19.PAS to P9_22.PAS listed in Appendix B illustrate how the procedures in unit LibAssur can be called repetitively. Of these, programs P9_19. PAS and P9_20. PAS simulate the motion of radial piston engines, and programs P9_21.PAS and P9_22. PAS simulate the motion of a mechanical iris. All four programs were written such that any number of equally spaced cylinders or iris vanes can be specified, including one cylinder or one vane only.

Figure 9.19 illustrate the cases of one, three, seven, and nine cylinder engines with stationary cylinder blocks, while Figure 9.20 show the corresponding engines with rotational cylinder blocks of the Gnome type (also known as rotary engines-see also animation files F9_19.GIF and F9_20.GIF). In both programs, when the number of cylinders is set equal to three or less, the piston axis and the pin joints (other than the piston pin) are labeled as shown in the Figures 9.19 and 9.20.

Further examples of iterative use of procedure RRT_ are the iris mechanisms in Figures 9.21 and 9.22. Of the different designs used in practice, the mechanism considered here consists of an array of half-ring-shaped vanes that are fitted with pin joints at one end, noted P, while their other end, noted Q, can slide along equally spaced radial directions $O A$. The ends Q of these vanes are designed as pin-in-slot joints, with $O A$ being the slots. The iris can operate either with its pin joints P stationary and slots $O A$ rotating together

FIGURE 9.19 Single-piston and radial engines with three, seven, and nine cylinders simulated with program P9_19.PAS. See also animation file F9_19.GIF.

FIGURE 9.20 Rotary engines of the Gnome type with one, three, seven, and nine cylinders simulated with programs P9_20.PAS. See also animation file F9_20.GIF.
(Figure 9.21) or as inversions, that is, the slots maintain their direction stationary and pins P rotate about the center of the iris O (Figure 9.22).

Same as before, if the number of vanes in these two simulation programs is set equal to three or less, the underlying mechanisms are displayed, and their sliding axes $O A$ and joints P and Q are labeled (see Figures 9.21 and 9.22). Otherwise, procedures GCrank and RRT_ are called with their color parameter set equal to 0 or the BGI constant Black, so that vanes only are displayed.

Note in these four programs the extensive use of procedures gCrank, RRT_ and of the generic variable _ preassigned to 10^{100} and defined in the interface section of unit LibMath.

Regarding the actual vanes in these last two simulation programs, they are polylines, the vertices of which are read by procedure Shape from the same file named VANE.XY. This ASCII file has been generated as follows: One vane only was drawn in AutoCAD with point P at origin and point Q of coordinates $(9,0)$ (see file Vane.DWG available with the book). This drawing was then plotted to file Vane.PLT and opened with program Util~PLT. The x and y limits inside Util~PLT were then edited such that the vane has

FIGURE 9.21 Iris mechanisms simulated with program P9_21.PAS. See also animation file F9_21.GIF.

FIGURE 9.22 Iris mechanisms simulated with program P9_22.PAS. See also animation file F9_22.GIF.
the same size and origin as in the original DWG file (i.e., $x_{\min }=-0.5, x_{\max }=9.5, y_{\min }=-0.5$, and $y_{\max }=5$). Only then the file was exported to files PLT-0001.XY and PLT-0001. DXF. Because the PLT-0001. XY file has too many vertices, and because these vertices may result out of sequences, in the iris mechanism simulation programs a lower-resolution file has been utilized instead. To generate such a low resolution ASCII file named VANE. XY, file PLT-0001.DXF was opened using Util~DXF.EXE and its polylines extracted to file POLY0001.XY file. Prior to extracting the vertices of the polyline in PLT-0001.DXF to file, the DXF colinearity parameter was increased from its default value, and thus the number of vertices from PLT-0001.DXF was further reduced. In the end, the ASCII file POLY0001. XY thus obtained was renamed VANE.XY.

9.10 SIMULATION OF A FOUR-BAR LINKAGE AND OF ITS FIXED AND MOVING CENTRODES

In this section, it is shown how procedure Shape from unit LibMec 2 D can be used to animate shapes that change their configuration during animation. The case of the fixed centrode and moving centrode of a drag-link four-bar linkage will be considered as example. The fixed centrode will be animated using the CometLocus procedure, while the moving centrode (which moves together with the coupler) will be modeled as a shape that gains (x, y) points as the animation progresses. Therefore, the animations done inside AutoCAD using the M_3D.LSP application will be very similar to the one displayed on the computer screen and recorded as PCX frames (Figure 9.23).

Program P9_23. PAS listed in Appendix B animates a drag-link four-bar linkage, having crank $O A$ as input, and with $A B$ the coupler, and $B C$ the second link jointed to the ground. The coordinates XIC and YIC of the instant center of rotation (IC in short) of the coupler relative to the ground are calculated as the intersection of lines $O A$ and $B C$. This is done on line \#47 of the program by calling procedure Int2Lns from

FIGURE 9.23 Drag-link four-bar linkage in its left-hand and right-hand configurations with the fixed centrodes and moving centrodes of the coupler shown, produced using P9_23.PAS. See also animation files F9_23.GIF, F9_23L_PCX.GIF, and F9_23R_PCX.GIF.
unit LibGe2D. Together, these points of coordinates ($\mathbf{x I C}, \mathbf{Y} \mathbf{I C}$) form the fixed centrode of the coupler, plotted by calling procedure CometLocus on line \#56. The coordinates of the instant center recorded relative to coupler $A B$ will form the moving centrode. These coordinates noted $\mathbf{x I C m}$ and YICm are calculated on line \#49 by calling procedure RT2D. Point ($\mathbf{x I C}, \mathbf{y I C}$) is first translated to A and then rotated by the angle formed by coupler $A B$ with the ground. As they are calculated during the first simulation cycle, coordinates $\mathbf{x I C m}$ and $\mathbf{Y I C m}$ are written to files ICF. XY. This file is then used as input to procedure Shape called on line \#55.

Also note in program P9_23.PAS the use of procedure SetTitle (lines \#32 and \#39) to display the title of the simulation and of procedure InitGr with zero argument (line \#28) to display the animation on white background. As you noticed from previous chapters, by default, the animation is done on black background.

Two types of animations are possible using the files output by program P9_23.PAS. One is using the M_3D.LSP application with F9_23L.DXF or F9_23R.DXF as input, which resulted in animation file F9_23.GIF. The other possibility is to use the screenshots exported to PCX by the program (see line \#58) that were used to produce animation files F9_23L_PCX.PCX and F9_23R_PCX.PCX. Note that not all simulation frames are exported to PCX or DXF layers, but rather every fifth screen. The vertices of the fixed and moving centrodes however are updated every frame so that they will have a smooth appearance in the respective animations.

9.11 PLANETARY GEAR KINEMATIC SIMULATION USING WORKING MODEL 2D

As compared with fixed-axis transmissions, planetary gear trains have gears (called plan$e t s)$, the axes of which move on a circular path while meshing with at least two central gears called sun gears or central gears. The simplest of these transmissions have two DOFs and are known as basic planetary gear trains. There are 12 known such two DOF basic planetary gear trains (Lévai 1968), with those shown in Figures 9.24 and 9.25 being the most commonly used.

Figures 9.24 and 9.25 are screenshots of two Working Model 2D (WM 2D) simulations created to illustrate the correlation that exists between the rotational velocities of the central gears, planet gears, and planet carrier of the respective basic planetary gear trains. Because these gear trains have two DOFs, the rotational speed of any of their two bodies must be specified-usually the motion of the central gears or of one central gear and of the planet carrier. If the speeds of the other two bodies are not correctly calculated, then the gears will interfere with each other during simulation.

According to the motion-inversion method due to Willis (Wilson and Sadler 2003), for the planetary unit in Figure 9.24, the following relations hold between the angular velocities ω of the carrier, sun, planet, and ring gears and the number of teeth N :

$$
\begin{equation*}
\frac{\omega_{\text {Sun }}-\omega_{\text {Carrier }}}{\omega_{\text {Planet }}-\omega_{\text {Carrier }}}=-\frac{N_{\text {Planet }}}{N_{\text {Sun }}}=-\frac{13}{15} \tag{9.29a}
\end{equation*}
$$

FIGURE 9.24 WM 2D simulation of a basic planetary gear train consisting of one sun gear with 15 teeth, one ring gear with 41 teeth, planet carrier, and a simple planet gear with 13 teeth. See simulation file PlanetGear1.WM2 and movie file F9_24.MP4.

$$
\begin{align*}
& \frac{\omega_{\text {Ring }}-\omega_{\text {Carrier }}}{\omega_{\text {Planet }}-\omega_{\text {Carrier }}}=\frac{N_{\text {Planet }}}{N_{\text {Ring }}}=\frac{13}{41} \tag{9.29b}\\
& \frac{\omega_{\text {Sun }}-\omega_{\text {Carrier }}}{\omega_{\text {Ring }}-\omega_{\text {Carrier }}}=-\frac{N_{\text {Ring }}}{N_{\text {Sun }}}=-\frac{41}{15} \tag{9.29c}
\end{align*}
$$

Likewise, for the planetary unit in Figure 9.25, the following relations hold:

$$
\begin{gather*}
\frac{\omega_{\text {Sun }}-\omega_{\text {Carrier }}}{\omega_{\text {Planet }}-\omega_{\text {Carrier }}}=-\frac{N_{\text {Planet1 }}}{N_{\text {Sun }}}=-\frac{15}{13} \tag{9.30a}\\
\frac{\omega_{\text {Ring }}-\omega_{\text {Carrier }}}{\omega_{\text {Planet }}-\omega_{\text {Carrier }}}=\frac{N_{\text {Planet } 2}}{N_{\text {Ring }}}=\frac{11}{39} \tag{9.30b}\\
\frac{\omega_{\text {Sun }}-\omega_{\text {Carrier }}}{\omega_{\text {Ring }}-\omega_{\text {Carrier }}}=-\frac{N_{1 \text { Planet }}}{N_{\text {Sun }}} \cdot \frac{N_{\text {Ring }}}{N_{\text {2Planet }}}=-\frac{15}{13} \cdot \frac{39}{11} \tag{9.30c}
\end{gather*}
$$

Note that Equations 9.29 and 9.30 are only two-by-two independent.

FIGURE 9.25 WM 2D simulation of a basic planetary gear train consisting of one sun gear with 13 teeth, one ring gear with 39 teeth, and planet carrier and a compound planet with 15 and 11 teeth, respectively. Simulation file PlanetGear2.WM2 and movie file F9_25.MP4.

For the number of teeth of the gear wheels in these simulations as labeled over the respective WM 2D bodies visible in Figures 9.24 and 9.25, there is an infinite number of rotational speeds of the respective gears and planet carrier that satisfies these equations. These combinations can include assigning zero rotations per minute (RPM) to one of the central gear or to the planet carrier. Note that if Equations 9.28 and 9.29 are not satisfied, then the respective gears will interfere and overlap as they rotate.

The involute-gear generation application GearGen0.WM2 introduced in Chapter 8 is actually an extension of the PlanetGear1.WM2 simulation considered here. To illustrate the concept, the visibility of the carrier, sun gear, and ring gear have been turned off, while the track outline of the planet has been turned on and the modified simulation file saved under the name PlanetGearlx.WM2.

To generate an external gear with 15 teeth (i.e., the sun gear-see Figure 9.26a), the rotational velocities of the carrier and of the planet must be selected in PlanetGear1x.WM2 such that the following equality holds:

$$
\begin{equation*}
\frac{-\omega_{\text {Carrier }}}{\omega_{\text {Planet }}-\omega_{\text {Carrier }}}=-\frac{N_{\text {Planet }}}{N_{\text {Sun }}}=-\frac{13}{15} \quad \text { or } \quad \frac{\omega_{\text {Planet }}}{\omega_{\text {Carrier }}}=\frac{28}{13} \tag{9.31}
\end{equation*}
$$

FIGURE 9.26 Modification of PlanetGear1.WM2 simulation demonstrating how external gears (a) and internal gears (b) can be generated using a wheel tool. See also simulation PlanetGear1x. WM2 and animation files F9_26A.MP4 and F9_26B.MP4 available with the book.

To generate an internal gear with 41 teeth, that is, the ring gear (see Figure 9.26b), the rotational velocities of the carrier and of the planet must satisfy equalities (9.32) instead:

$$
\begin{equation*}
\frac{-\omega_{\text {Carrier }}}{\omega_{\text {Planet }}-\omega_{\text {Carrier }}}=\frac{N_{\text {Planet }}}{N_{\text {Ring }}}=\frac{13}{41} \quad \text { or } \quad \frac{\omega_{\text {Planet }}}{\omega_{\text {Carrier }}}=-\frac{28}{13} \tag{9.32}
\end{equation*}
$$

What is missing from PlanetGear1x.WM2, but are implemented in the WM 2D simulation GearGen0.WM2 discussed earlier, is the possibility of adjusting the length of the carrier such that the generation of involute gears (both internal and external) with any number of teeth can be simulated.

9.12 IMPLICIT FUNCTION PLOT

A function defined by an equation that cannot be solved for its variables analytically is called implicit. The following are two such examples:

$$
\begin{gather*}
y^{3}-x^{3}-10 x y+1=0 \tag{9.33}\\
x y \cdot \cos \left(x^{2}+y^{2}\right)-1=0 \tag{9.34}
\end{gather*}
$$

further referred to generically as $f(x, y)=0$. One way of representing implicit functions graphically is to first find all roots y of the equation $f(x, y)=0$ using procedure ZeroGrid discussed in Chapter 4, for a number n_{x} of discrete values x_{i} within the interval $\left[x_{\min } \ldots x_{\max }\right]$. Comparable results are obtained if, the equation $f(x, y)=0$ is solved for variable x, assuming a number of n_{y} discrete values y_{j} within the interval [$y_{\min } \ldots y_{\max }$]. The sets $\left(x_{i}, y\right)$ or $\left(x, y_{j}\right)$ thus obtained can then be plotted as point clouds using the $\mathrm{D}_{2} 2 \mathrm{D}$ program. For increased accuracy, both sets $\left(x_{i}, y\right)$ and $\left(x, y_{j}\right)$ can be generated and plotted together on the same graph.

Program P9_27. PAS listed in Appendix B implements this latter strategy and was used to produce data files F9_27A.D2D and F9_27B.D2D that served to plot the graphs in Figure 9.27. On lines \#23 and \#24 of the program, grid sizes $\mathbf{n X}$ and nY are defined, together with the plot intervals over the respective axes. Depending on the name assigned to the output program (line \#8), either the function in Equation 9.33 or 9.34 is transmitted to the ZeroGrid procedure (see lines \#11 to \#17). The drawbacks of this implicit-function graphing method is that the plot points are not assembled into polylines and that some points can occur twice, that is, both as a $\left(x_{i}, y\right)$ pair and as a $\left(x, y_{j}\right)$ pair. If only the x variable is scanned at a constant step, the graph may exhibit discontinuities in areas where the tangent to the curve is aligned with $x=x_{i}$ line. Same may occur if only the y variable is scanned at constant step, not both variables like in program P9_27. PAS. Also note that the number of multiple roots of equation $f\left(x_{i}, y\right)=0$ or $f\left(x, y_{i}\right)=0$ may exceed the value of the constant Nmax defined in the interface section of unit LibMath, the case in which the plot will appear truncated.

A different, more efficient method to implicit function plotting is to graph the function $z=f(x, y)$ as top-view level curves with only one level-curve place at $z=0$ (see Figure 9.28). Data files F9_28A.D3D and F9_28B.D3D used to generate these two graphs have been output by program P9_28. PAS listed in Appendix B. Same as before

FIGURE 9.27 Graphs of the implicit functions in Equation 9.33 (a) and Equation 9.34 (b) produced with D_2D (configuration files F9_27A.CF2 and F9_27B.CF2). Data files to produce these plots were generated using program P9_27.PAS.

FIGURE 9.28 Plot of the implicit functions in Equation 9.33 (a) and Equation 9.34 (b) produced with D_3D (configuration files F9_28A.CF3 and F9_28B.CF3). Data files were generated using program P9_28.PAS.
the name assigned to the output program (line \#7) controls which function is used to generate the D3D data file (see lines \#12 and \#15).

In terms of the actual D_3D program use, there are two ways of producing single-levelcurve plots of zero elevation: One possibility is to edit the CF3 file of the respective plot such that only the value 0.00 is appended to it, and then choose to read the level-curve heights from file. The other possibility is to select evenly spaced level curves, then set their number to one. When only one level curve is specified, D_3D will calculate its elevation as the average of the limits over the z-axis. Therefore, with this second approach, the limits over the z-axis must be edited such that they are equal in magnitude but of opposite sign. These two methods have been implemented in configuration files F9_28A.CF3 and F9_28B.CF3 used to generate the plots in Figure 9.28. Note that in case of the plot in Figure 9.28a, because of the relatively low resolution at which the function has been sampled, the graph exhibits bridge-like defects and also lacks smoothness at several different places. Increasing the $\mathbf{n X}$ and nY values will reduce or eliminate such artifacts. The fact that the plot consists of continuous lines rather than individual points is a net advantage of this second implicit function plotting method.

9.13 INVERSE AND DIRECT KINEMATICS OF 5R AND 2R ASSEMBLY ROBOTS

This section deals with the inverse and direct kinematics of 5R parallel and 2R serial SCARA robots, like the RP and RH families of micro-assembly robots from Mitsubishi Electric (Figure 9.29).

First, a method of designing the robot endeffector path will be presented. The actual inverse and direct kinematics problems will then be solved using the RRR, gCrank, and Crank procedures from units LibAssur and LibMec2D. Note that only the J1 and J2

FIGURE 9.29 SCARA robots of the 5R (a) and 2R (b) type. Courtesy of Mitsubishi Electric.
axes motions shown in Figure 9.29 will be considered, which allow the kinematics problems to be solved in two dimensions. With additional programming effort, however, the remainder degrees of freedom can be accounted for, and accurate 3D models of these robots can be simulated using AutoCAD and the M_3D.LSP application.

The path to be traced by the endeffector was assumed identical to the shape of the vanes of the iris mechanisms in Section 9.9. Similarly, we begin with a plot file, that is, VANEO. PLT of the original drawing VANEO.DWG, and open this file using UTIL~PLT.EXE. VANEO.PLT, with its four semicircles converted to polylines, was exported to DXF (file name VANE1.DXF). In order to bring the file VANE1.DXF back to the origin and proportions of VANEO. DWG, prior to DXF export, the limits inside UTIL~PLT were edited such that $x_{\min }=-0.5, x_{\max }=9.5, y_{\min }=-0.5$, and $y_{\max }=5.0$. The file VANE1.DXF was then opened inside AutoCAD (see file Vane2.DWG), and its constituent polylines were connected into a single polyline. After that, the drawing was exported back to R12 DXF under the name VANE2.DXF. This new DXF file was then opened using UTIL~DXF.EXE, and the vertices of its only polyline exported to ASCII—the ASCII file name has been changed from its default value to VANE2.XY. Using UTIL~TXT.EXE, file VANE2.XY was further edited as follows (see configuration file VANE.CON): First, linearly interpolated points were added such that the distance between vertices is decreased to about 0.03 units. This resulted in the intermediate file DELETE.ME. Every fourth data point of this intermediate file was extracted to file RoboPath.XY, a plot of which is available in Figure 9.30. In addition, every 14th data point from DELETE.ME was written to a second file named VERTEX.XY, which can be used interchangeably by the Shape procedure inside programs P9_21.PAS and P9_22.PAS, discussed earlier.

FIGURE 9.30 Plot of the prescribed endeffector path read from file RoboPath.XY. Configuration file F9_30.CF2.

The ASCII file RoboPath. XY thus obtained served as input to the inverse kinematic analysis program P9_31.PAS and to the program P9_34. PAS discussed in Appendix B. The program drives pin joint C shared by two RRR dyads (i.e., $A_{1} B_{1} C$ and $A_{2} B_{2} C$ in Figure 9.30) through the points read from file RoboPath. XY. Using the assumed velocity vC of the endeffector defined on line \#28, the program calculates the time required for joint C to travel between every two successive path points (line \#52), and then writes these accumulated time values, starting with $\mathrm{t}=0$, to file F9_31.DaTA (line \#72). Also, the outputs to the file F9_31.DTA are the joint angles $\theta_{A_{1}}, \theta_{A_{2}}, \theta_{B_{1}}$, and $\theta_{B_{2}}$, defined as shown in Figure 9.31 b , which were then used to plot the graphs in Figure 9.31b. In addition, the program writes to DXF every fourth frame of the simulation (see line \#48). This output R12 DXF file, named F9_31.DXF, was then used to generate the animated GIF file F9_31.GIF, also shown Figure 9.31a.

The joint angle values recorded to file F9_31.DTA served as input to programs P9_32. PAS and P9_33.PAS listed in Appendix B. The first of these programs performs a direct kinematic analysis of the 5R parallel robot (Figure 9.32), while the second program performs the same type of simulation of the 2R serial robot (Figure 9.33).

Program P9_32.PAS reads from file F9_31.DTA link lengths $A_{1} B_{1}=A_{2} B_{2}=A B$ and $B_{1} C=B_{2} C=B C$, and ground joint coordinates ($x_{A_{1}}, y_{A_{1}}$) and ($x_{A_{2}}, y_{A_{2}}$)-see lines \#27 and \#28 of the program and Figure 9.32. During the simulation cycle, it then reads angle values $\theta_{A_{1}}$ and $\theta_{A_{2}}$ (line \#35) and uses them as input to cranks $A_{1} B_{1}$ and $A_{2} B_{2}$. The 5R robot mechanism is completed using the RRR dyad $B_{1} C B_{2}$ on lines \#44, \#45, and the locus of its middle joint is recorded on the screed and to the DXF output file (line \#56).

Program P9_33.PAS performs a direct kinematic analysis of a 2R robot. Depending on the value of parameter LftRgt set on line \#15, during the simulation cycle the program uses either angles $\theta_{A_{1}}$ and $\theta_{B_{1}}$ with the ground-joint centered at ($x_{A_{1}}, y_{A_{1}}$), or angles $\theta_{A_{2}}$ and $\theta_{B_{2}}$ and ground joint at ($x_{A_{2}}, y_{A_{2}}$). These values, read from file F9_31.DTA (see lines \#39 to \#46),

FIGURE 9.31 (a) Inverse kinematic analysis of a 5R robot done using two RRR dyads running in parallel, and (b) plot of the joint angle values recorded by the P9_31.PAS program. See also animation file F9_31.GIF and D_2D configuration file F9_31.CF2.

(a)

(b)

FIGURE 9.32 Direct kinematic analysis of a 5R robot modeled as two cranks, that is, $A_{1} B_{1}$ and $A_{2} B_{2}$, amplified with an RRR dyad, that is, $B_{1}-C-B_{2}$. Both a simplified representation of the robot (a) and a more realistic representation using the Link and Base procedures (b) are shown. See also animated GIF files F9_32a.GIF and F9_32b.GIF.
correspond to the left-hand and right-hand orientation of the robot, respectively (Figure 9.33). The two angles chosen are then used to drive cranks $A B$ and $B C$, as shown in Figure 9.33. Same as in program P9_32.PAS, also read from file F9_31.DTA are the crank lengths $A B$ and $B C$ of the robot (see lines \#30 and \#31).

Note that in both these direct kinematic analysis programs, by setting the Sticks constant to zero on line \#15, the Link procedures are called with the width parameter set to

FIGURE 9.33 Direct kinematics of 2R robots modeled as two cranks ($A B$ and $B C$) in series, in the left hand (a) and right hand (b) configurations. Both simplified and more realistic representations (i.e., using the Link procedure) are shown. See also animated GIF files F9_33a.GIF and F9_33b.GIF.
zero, which will cause the links to be represented as lines, rather than filleted rectangles. Also note that the two input angles are visualized only in the Sticks $=0$ mode.

If only the 2 R serial robot kinematics is of concern, program P9_31.PAS can be modified such that only one RRR dyad is driven through the endeffector path points. The direct kinematic analysis program P9_33.PAS must also be modified, such that at each iteration step, only a pair of angle is read from the input data file.

9.14 INVERSE AND DIRECT KINEMATICS OF THE RTRTR GEARED PARALLEL MANIPULATOR

The discussion on the kinematics of SCARA robots is continued in this section, where the case of the RTRTR kinematic chain configured as shown in Figure 9.34a will be considered. This rack-and-pinion actuated planar parallel manipulator appears to be of a new configuration, not yet described in literature.

Two computer programs will be introduced in Appendix B, that is, P9_34.PAS and P9_35.PAS. The first program is an inverse kinematic analysis program similar to P9_31. PAS. It reads the x and y coordinates of the path in Figure 9.30 (see lines \#13 and \#54), which

FIGURE 9.34 Geared RTRTR parallel manipulator (a), animation frame output by program P9_34.PAS (b), and plot of the linear motor displacements s_{1}, s_{2} and velocities $\mathrm{d} s_{1} / \mathrm{d} t, \mathrm{~d} s_{2} / \mathrm{d} t$ required for constant endeffector speed $v_{C}=1$ (c). See also animation file F9_34b.GIF and D_2D configuration file F9_34C.CF2.
are then used to calculate, using the Pythagoras theorem, linear motor displacements s_{1} and s_{2} (lines \#55 and \#56). Using the imposed vC endeffector velocity defined on line \#16, the program calculates, beginning with the second position point, the time increase dt and the corresponding linear actuator velocities $\mathrm{d} s_{1} / \mathrm{d} t$ and $\mathrm{d} s_{2} / \mathrm{d} t$ (see lines \#58 to \#61). Lines \#63 to \#75 of the program serve to animate an RTRTR kinematic chain using the calculated linear motor displacements s_{1}, s_{2}, and provide some visual feedback to the user, including the display of the locus of point C and its constant velocity vector (see Figure 9.34b). These lines can be eliminated, however, the output to data file F9_34.DTA of parameters $s_{1}, s_{2}, \mathrm{~d} s_{1} / \mathrm{d} t$ and $\mathrm{d} s_{2} / \mathrm{d} t$ being essential, together with the time value done (line \#78). A plot of these linear motor input parameters is available in Figure 9.34c.

The companion program P9_35.PAS reads from the file F9_34.DTA (produced with P9_34.PAS) the RTRTR linear actuator displacements s_{1}, s_{2} and velocities $\mathrm{d} s_{1} / \mathrm{d} t$ and $\mathrm{d} s_{2} /$ $\mathrm{d} t$, as well as the corresponding time t (see lines \#15 and \#55). Also read from this data file are the ground joint coordinates $\left(x_{A}, y_{A}\right),\left(x_{B}, y_{B}\right)$ and linear actuator eccentricities $A_{0} A$ and $B_{0} B$ (see line \#40). Required in the analysis is the pitch radius r_{p} of the two input pinions
(see Figure 9.34a and line \#28 of the program). The program calls procedure RTRTR for every position read from the input DTA file, and using the linear motor displacements and position angles returned by the procedure (see variable Phi1 and Phi2), it calculates the required input pinion angles using the following equations:

$$
\begin{align*}
& \theta_{1}=\frac{\varphi_{1}-s_{1}}{r_{\mathrm{p}}+\varphi_{10}} \tag{9.35}\\
& \theta_{2}=\frac{\varphi_{2}+s_{2}}{r_{\mathrm{p}}+\varphi_{20}}
\end{align*}
$$

FIGURE 9.35 Geared RTRTR parallel manipulator animation frames generated by the program P9_34.PAS (a), and plot of the required pinion angular displacements θ_{1}, θ_{2} and angular velocities $\theta_{1} / \mathrm{d} t$ and $\theta_{2} / \mathrm{d} t$ required for a constant endeffector speed $v_{\mathrm{C}}=1$ (b). See also animation file F9_35a. GIF and D_2D configuration file F9_35B.CF2.
where the corresponding variables to angles θ_{1} and θ_{2} are Thtal and Thta2. Although in program P9_35.PAS they are both equal to zero (see lines \#56 and \#61), depending on the orientation of the pinion when the shape file RTRTRO.XY has been generated, nonzero constant angles φ_{10} and φ_{20} might be required in Equation 9.34, in order to properly align the pinions with their rakes. Using finite differences, the time derivatives of the pinion angles (variable names dThta1 and dThta2) are also calculated and are written to the output file F9_35.DTA. This data file is then used to generate the plot of the input pinions angular displacement and angular velocity in Figure 9.35b.

In addition to numerical calculations, the program animates the mechanism using polygonal shapes read from the following ASCII files: RTRTRO.XY (pinion), RTRTR1. XY (left rack), RTRTR2.XY (right rack), and RTRTR3.XY (pinion bracket). Similar to the way the endeffector path file RoboPath. XY was generated, these shapes were first drawn inside AutoCAD, then they were printed to PLT to convert arches of circles to polylines. Next, using the Util~PLT program, these PLT files were converted to DXF and were opened with AutoCAD. From there they were exported to R12 DXF, and, finally, using the Util~DXF program, the XY shape files were generated (see the files of the form RTRTR*.* available with the book).

9.15 KINEMATIC ANALYSIS OF A HYDRAULIC EXCAVATOR AND OF A ROPE SHOVEL

The subject of this section is the kinematic simulation of the digging mechanisms of a hydraulic excavator and of a rope shovel. The yaw motion associated with dumping the load will not be considered, which allows these simulations to be performed in two dimensions using the procedures available from units LibMecIn, LibAssur, and LibMec2D.

A compact hydraulic excavator similar to model 27D from John Deere, or model 301 from Caterpillar (Figures 9.36 and 9.37) will be analyzed first. The excavator

FIGURE 9.36 Excavator arm modeled using three RTRR actuators, six offset points, and one RRR dyad (a) and motion simulation of the same arm done using shapes attached to the moving links (b). See also animated GIF files F9_36a.GIF and F9_36b.GIF.

FIGURE 9.37 Schematic of a compact hydraulic excavator (a) and its main components represented as polylines defined relative to the local reference frames shown (b). See also files of the form EX*.* available with the book.
arm was modeled using three RTRR actuators $\left(A_{1}-C_{1}-B_{1}, A_{2}-C_{2}-B_{2}\right.$, and $\left.A_{3}-C_{3}-B_{3}\right)$ arranged in series, interconnected via offset points A_{2}, B_{2} of link $B_{1} C_{1}$ and offset points A_{3}, B_{3} of link $B_{2} C_{2}$. One RRR, dyad that is, the bucket-swing amplifier $D-E-C_{3}$, was also included. Note that pin joint D is an offset point of link $B_{2} C_{2}$, while the tip of the bucket (the locus of which has been recorded during simulation) is an offset point of link $D E$ (see Figure 9.36a).

Program P9_36A.PAS, available with the book, performs the kinematic analysis of the excavator arm, as shown in Figure 9.36a. The companion program P9_36A.PAS listed Appendix B is an extension of the former, where shapes read from files EXbody. XY, EXboom.XY, EXstick.XY, and EXbucket.XY (lines \#52, \#55, \#62, \#89 and \#94) are added to the model. Of these, the excavator body shape file EXbody. XY consists of four polylines, three of them having their color set from within the actual file. These polylines associated with the excavator body and with the moving parts of the digging arm, together with the joint location, were extracted from the raster images of a compact excavator as follows: The raster image file was opened inside AutoCAD and was scaled to match the overall dimensions of the real excavator. Then the coordinates of the joint center were marked with small circles. Polylines representing the excavator parts were then overlaid to the raster image, and then each was extracted to a separate DWG file. After orienting them as shown in Figure 9.35b, they were exported to PLT, so that arches of circles are converted to vertex polylines. Using the Util~PLT application, these shapes were converted back to DXF, and then were opened inside AutoCAD. The constituent polylines were joined together using the pedit command (if it was the case), were scaled back to their original size, and were positioned relative to the world coordinate system of the drawing, as shown in Figures 9.37b. From inside AutoCAD, one more export to R12 DXF has been performed, and then

FIGURE 9.38 Simulation of a rope shovel performed using the program P9_38.PAS. See also animation file P9_38.GIF and drawing file RopeShovel.DWG.
using the Util~DXF program, the XY shape files used by program P9_36B.PAS (see Appendix B) have been finally produced.

The motions s_{1}, s_{2}, and s_{3} of the three actuators of the excavator are harmonic functions of time. Different paths can be obtained by changing the phase angle and amplitudes on lines \#49, \#50, and \#51 of program P9_36B. PAS, and their effect upon the workspace of the excavator links and bucket and locus of point D observed.

The second part of this section explores a similar problem of the kinematic analysis of a rope shovel used in surface mines and quarries (Figure 9.38). Same as for the hydraulic excavator discussed earlier, the shapes of the stationary body and of the moving

FIGURE 9.39 Rope shovel mechanism (a) and the equivalent RTRTR kinematic chain (b).
links have been extracted to ASCII files of extension XY (see the corresponding files RopeShovel.DWG and RS*.*).

As can be seen in Figure 9.39, the digging mechanism of the rope shovel can be easily modeled as a RTRTR kinematic chain using either the RTRT or RTRTc procedures in unit LibMecIn (see also line \#36 of program P9_38.PAS listed in Appendix B). The linear motor inputs s_{1} and s_{2} are harmonic functions defined on lines \#34 and \#35 of this program. Then, using angle values φ_{1} and φ_{2} (see Figure 9.39) evaluated on lines \#43 and \#47, crank angles Theta1 and Theta2 are calculated. These serve to insert the pinion shape and also to show the position angle of the pinion and of the rope sheave. This way more realistic simulations can be generated, as shown in the animated GIF file P9_38.GIF available with the book.

9.16 KINEMATIC ANALYSIS OF INDEPENDENT WHEEL SUSPENSION MECHANISMS OF THE MULTILINK AND DOUBLE-WISHBONE TYPE

Suspension systems of automobiles are complex 3D mechanisms. They are tuned to satisfy the multiple requirements associated with the motion of car wheels relative to the chassis, and of the chassis relative to the ground, during acceleration, braking, and turning maneuvers. In this section, the displacement of the wheel relative to the car body of five-link, four-link, and double-wishbone suspension mechanisms with rectilinear steering input will be analyzed. The wheel track, camber, and toe angle variations of such mechanisms will be determined in an iterative approach following a method described in Simionescu and Beale (2002). The problem will be formulated for the general five-link suspension mechanism as schematized in Figure 9.40, of which the four-link and the more commonly used double-wishbone suspensions are particular embodiments, obtained by making ball joints B_{4} and B_{5} and/or B_{2} and B_{3} coincident, respectively.

FIGURE 9.40 Five-link suspension mechanisms with translational steering input.

Without the trivial rotations of the connecting links around their own axes, a five-link rear wheel suspension has only one degree of freedom. In front-wheel suspension mechanisms, a second degree of freedom is available, corresponding to the steering input. It means that the position of the wheel can be uniquely specified by the coordinate z_{N} relative to the fixed reference frame $O x y z$ attached to the car body and by the rack-end displacement $x_{A_{1}}$. The remaining position parameters (i.e., wheel-center coordinates x_{N}, y_{N} and angles α, β, and γ of the moving frame $N x^{\prime} y^{\prime} z^{\prime}$ attached to the wheel carrier relative to the fixed reference frame) can be determined by solving the following system of five simultaneous equations:

$$
\begin{equation*}
\left(x_{A_{i}}-x_{B_{i}}\right)^{2}+\left(y_{A_{i}}-y_{B_{i}}\right)^{2}+\left(z_{A_{i}}-z_{B_{i}}\right)^{2}=l_{i}^{2} \quad(i=1, \ldots, 5) \tag{9.36}
\end{equation*}
$$

where l_{i} is the length of link $A_{i} B_{i}$. The coordinates $x_{B_{i}}, y_{B_{i}}$, and $z_{B_{i}}$ in Equation 9.36 result from applying a rotation, followed by a translation to the coordinates $x_{B_{i}}^{\prime}, y_{B_{i}}^{\prime}$, and $z_{B_{i}}^{\prime}$ of ball joint B_{i} originally specified in the $N x^{\prime} y^{\prime} z^{\prime}$ moving frame according to the equation

$$
\left[\begin{array}{c}
x_{B_{i}} \tag{9.37}\\
y_{B_{i}} \\
z_{B_{i}}
\end{array}\right]_{O x y z}=\left[R_{\beta \alpha y}\right] \cdot\left[\begin{array}{c}
x_{B_{i}}^{\prime} \\
y_{B_{i}}^{\prime} \\
z_{B_{i}}^{\prime}
\end{array}\right]_{N x^{\prime} y^{\prime} z^{\prime}}+\left[\begin{array}{c}
x_{N} \\
y_{N} \\
z_{N}
\end{array}\right]_{O x y z}
$$

In this equation, matrix $\left[R_{\beta \alpha \gamma}\right]$ transforms the $N x^{\prime} y^{\prime} z^{\prime}$ reference frame into a frame parallel to $O x y z$, by rotating it by angles β, α, and γ (in this order). With the notations $c \alpha=\cos \alpha$, $s \alpha=\sin \alpha$, and so forth, this transformation matrix can be written as

$$
\left[R_{\beta \alpha \gamma}\right]=\left[\begin{array}{ccc}
c \alpha \cdot c \beta & -s \alpha & c \alpha \cdot s \beta \tag{9.38}\\
s \alpha \cdot c \beta \cdot c \gamma+s \beta \cdot s \gamma & c \alpha \cdot c \gamma & s \alpha \cdot s \beta \cdot c \gamma+c \beta \cdot s \gamma \\
s \alpha \cdot c \beta \cdot s \gamma+s \beta \cdot c \gamma & c \alpha \cdot s \gamma & s \alpha \cdot s \beta \cdot s \gamma+c \beta \cdot c \gamma
\end{array}\right] \text {. }
$$

For a given value of the wheel vertical displacement z_{N} and steering rack input $x_{A_{1}}$, the system of five equations (9.36) in the unknowns $\alpha, \beta, \gamma, x_{N}$, and y_{N} can be conveniently solved by minimizing the following objective function:

$$
\begin{equation*}
F\left(\alpha, \beta, \gamma, x_{N}, y_{N}\right)=\sum_{i=1}^{5}\left[\left(x_{A_{i}}-x_{B_{i}}\right)^{2}+\left(y_{A_{i}}-y_{B_{i}}\right)^{2}+\left(z_{A_{i}}-z_{B_{i}}\right)^{2}-l_{i}^{2}\right]^{2} . \tag{9.39}
\end{equation*}
$$

Once parameters $\alpha, \beta, \gamma, x_{N}$, and y_{N} are determined for successive z_{N} and/or $x_{A_{1}}$ values, the change of the wheel track Δy_{S}, wheel base Δx_{S}, camber angle $\Delta \delta$, and toe angle $\Delta \varphi$ can then be calculated. The first two parameters require evaluating the coordinates of the contact patch center S using an equation similar to (9.37). The camber angle is calculated as the angle between the $O z$-axis and the projection on the vertical plane $O x y$ of line $N N_{1}$ (i.e., the wheel axis). In turn, the toe angle is determined as the angle between the $O x$-axis of the fixed frame and the projection on the horizontal plane $O x y$ of the same line $N N_{1}$.

This strategy has been implemented in the kinematic analysis program An_5link.PAS available with the book. The program reads from input data files 5link.AN, 4 link.AN, and 3link. AN the values of the following parameters (see Figure 9.40):

- Wheel base length over wheel track length of the vehicle used to calculate the angle of steer of the left wheel versus that of the right wheel according to the Ackermann principle.
- The rebound and jounce limits $\Delta z_{N_{\min }}$ and $\Delta z_{N_{\max }}$ of the wheel, measured from the static position corresponding to the center of the wheel N being located at point $\left(z_{N_{0}}, x_{N_{0}}, y_{N_{0}}\right)$.
- The horizontal, lock-to-lock travel of the steering rack $\Delta x_{A_{I_{\max }}}$.
- Link lengths l_{1} to l_{5}.
- Outer radius and length of the wheel hub, assumed to be a cylinder starting at the middle point N of the wheel and extending inwards.
- Radius of ball joints A_{1} to A_{5} and B_{1} to B_{5}, considered all identical.
- Wheel radius, equal to the distance NS.
- Coordinates $z_{N_{0}}, x_{N_{0}}$, and $y_{N_{0}}$ of the center of the wheel in the straight ahead, static position of the vehicle.
- Coordinates $x_{A_{i}}, y_{A_{i}}$, and $z_{A_{i}}(i=1, \ldots, 5)$ of the ball joints attached to the chassis relative to the $O x y z$ reference frame.
- Coordinates $x_{B_{i}}^{\prime}, y_{B_{i}}^{\prime}$, and $z_{B_{i}}^{\prime}(i=1, \ldots, 5)$ of the ball joints attached to the wheel carrier relative to the moving reference frame $N x^{\prime} y^{\prime} z^{\prime}$.

Note that it is not essential to provide the link lengths l_{1-5} since they can be calculated as the distance between the joint centers A_{i} and B_{i} for the wheel in its reference position. For such an option, you must replace the corresponding numbers in the input AN file with nonnumeric characters. Conversely, you can use the An_5link.PAS program to verify the effect of altering the length of any of these five links upon the kinematics of the mechanism.

FIGURE 9.41 Wheel track alteration Δx_{S} (a) and recessional wheel motion Δy_{S} (b) during jounce and rebound of the five-link (curve 5), four-link (curve 4), and double-wishbone (curve 3) suspension mechanisms with geometry read from files 5link.AN, 4link.AN, and 3link.AN, respectively. The configuration files to redo these plots are F9_41A.CF2 and F9_41B.CF2.

Program An_5link.PAS outputs two ASCII files with the same name (specified by the user) and extensions DTA and M3D. The first file contains the kinematic analysis data, while the second file, readable by the M_3D.LSP application, allows the motion of the mechanism to be simulated inside AutoCAD. The drawing Wheel.DWG available with the book should be used with these M3D files because it contains a block named "wheel" required by these simulations.

Using the aforementioned files of extension AN as inputs, files 5link_H.DTA, 5link_V.DTA; 4link_V.M3D, 4link_H.M3D; and 3link_V.M3D, 3link_H.M3D have been generated. Of these, the he * _V.DAT files (corresponding to the wheel performing vertical motion for z_{N} changing value between -100 and 100 mm around $\left.z_{N_{0}}\right)$ served to plot the graphs of the wheel track change Δx_{S}, recessional wheel motion Δx_{S}, camber angle change $\Delta \delta$, and toe angle change $\Delta \varphi$ available in Figures 9.41 and 9.42. The * _H.DAT files (wheel performing steering motion caused by changing $x_{A_{1}}$ between -70 and 70 mm around its reference position) were used to generate the wheel steer graphs in Figure 9.43. The corresponding M3D files served to produce Figures 9.43 through 9.46 and the companion animated GIF files available with the book.

FIGURE 9.42 Camber alteration $\Delta \delta$ (a) and toe angle alteration $\Delta \varphi$ (b) during jounce and rebound companion to the graphs in Figure 9.42. Configuration files F9_42A.CF2 and F9_42B.CF2.

FIGURE 9.43 Wheel steer angle correlation of the five-link (curve 5), four-link (curve 4), and double-wishbone (curve 3) suspension mechanisms in Figures 9.41 and 9.42, overlapped with the Ackermann law (curve A). Configuration file F9_43.CF2.

FIGURE 9.44 Limit positions of the five-link suspension mechanism with the geometry read from file 5link.AN. See also animated GIF files F9_44a.GIF and F9_44b.GIF.

FIGURE 9.45 Limit positions of the four-link suspension mechanism with the geometry read from file 41 ink.AN. See also animated GIF files F9_45a.GIF and F9_45b.GIF.

FIGURE 9.46 Limit positions of the double-wishbone suspension mechanism with the geometry read from file 3link.AN. See also animated GIF files F9_46a.GIF and F9_46b.GIF.

9.17 FLYWHEEL SIZING OF A PUNCH PRESS

Flywheels are used to reduce the speed fluctuations during the working cycle of a machine. They increase their rotational speed when there is an excess of energy and decrease their rotational speed to release energy when there is not enough available. Flywheels serve a function similar to accumulators used in pneumatic or hydraulic circuits, which maintain nearly constant fluid pressure while the demand varies. In piston engines, the flywheel compensates for the strokes when energy is consumed rather than created during the engine cycle, thus allowing the crankshaft torque to be delivered at close to constant speed. In case of punch presses, like the one in Figure 9.47, the actual punching occurs for only a small fraction of the machine cycle, causing a strongly fluctuating load torque. To limit the size of the motor, and also to alleviate its speed fluctuation (electric motors are known to work best at certain rpm), the energy delivered during the actual punch is supplemented by the energy released by the flywheel as it slows down from a maximum angular velocity $\omega_{\max }$ right before the punch, to a minimum angular velocity $\omega_{\min }$ right after the punch ends.

In this section, the problem of selecting the electric motor and that of sizing the flywheel required by a punch press will be discussed. The flywheel is assumed mounted on the crankshaft, which is driven by the motor via a speed reducer as shown in Figure 9.47. The mechanism of the press is a centric crank-slider with the crank length $O A=0.15 \mathrm{~m}$, coupler length $A B=0.5 \mathrm{~m}$, and punch-head length $B P=0.15 \mathrm{~m}$. The press punches $d=65 \mathrm{~mm}$ diameter holes into $h=20 \mathrm{~mm}$ thick aluminum stock of shear strength $S_{S y}=140 \mathrm{MPa}$, at a rate of $n p=80$ holes per minute. The punch begins when the displacement s of the punch

FIGURE 9.47 Schematic of a crank-slider punch press.
head equals s_{s} and ends when s equals s_{f} (see Figure 9.47). We assume that $s_{f}=0.75 \mathrm{~m}$ and correspondingly $s_{s}=s_{f}-h=0.73 \mathrm{~m}$. Using the principle of virtual work, we will find the resisting torque at the crankshaft as a function of the crank angle θ, and then we will evaluate the required average motor torque and its corresponding power. Then we will calculate the moment of inertia I of a flywheel for which the motor speed fluctuation ranges between 1740 and 1580 rpm . A Working Model 2D simulation that validates the calculations is also provided and is available with the book.

The problem will be solved under the following simplifying assumptions:

- The stock material exhibits an ideal plastic behavior.
- The friction in the joints of the crank-slider mechanism and between the punch and the aluminum stock is considered negligible.
- The output torque of the driving motor is assumed constant and independent of speed.
- The transmission between the motor and the crankshaft is 100% efficient, and its speed ratio i remains unchanged.
- The inertias of the moving links of the press and of the motor armature are neglected.

We define the average rotational speed n_{0} of the crankshaft of the press as

$$
\begin{equation*}
n_{0}=\frac{1}{2}\left(n_{\max }+n_{\min }\right)=\frac{1}{2}\left(\frac{1740}{i}+\frac{1580}{i}\right) \mathrm{rpm} . \tag{9.40}
\end{equation*}
$$

This is also equal to the imposed number of punches per minute n_{P}, which yields the ratio of the transmission between the motor and the crankshaft $i=20.75$. Correspondingly, the average speed of the electric motor is 1660 rpm , while the minimum and maximum speeds of the crankshaft will be $n_{\max }=83.855 \mathrm{rpm}$ and $n_{\text {min }}=76.145 \mathrm{rpm}$.

The coefficient of speed fluctuation C_{S} of the press will be

$$
\begin{equation*}
C_{S}=\frac{n_{\max }-n_{\min }}{n_{0}}=\frac{83.855-76.145}{80}=0.0964 . \tag{9.41}
\end{equation*}
$$

C_{S} is recommended to be around 0.1 for punch presses, 0.005 for electric generators, and 0.2 for rock crushers. It means that the coefficient of speed fluctuation in Equation 9.41 is satisfactory.

The maximum resisting force $F_{\max }$ opposing the punch occurs when the plate material begins to yield. Assuming a shear stress τ versus punch penetration like the one in Figure 9.48 a with a zero elastic range, the punch force F will peak right after the punch head makes contact with the stock and decreases to zero as the penetration progresses. The maximum punch force depends on the shear strength of the material and on the side area of the hole $A_{\text {S }}$ (i.e., the shear area) according to the equation

$$
\begin{equation*}
F_{\max }=S_{\mathrm{Sy}} \cdot A_{\mathrm{S}}=S_{\mathrm{Sy}}(\pi d \cdot h)=140 \cdot 10^{6} \cdot \pi \cdot 0.065 \cdot 0.02=5.72 \cdot 10^{5} \mathrm{~N} . \tag{9.42}
\end{equation*}
$$

Since A_{S} varies from a maximum value to zero, the punch force will decrease linearly with the punch-head penetration (see also Figure 9.48b), that is,

$$
F(s)= \begin{cases}\frac{s_{f}-s}{s_{f}-s_{s}} F_{\max }, & \text { for } s_{s} \leq s \leq s_{f} \tag{9.43}\\ 0, & \text { otherwise }\end{cases}
$$

FIGURE 9.48 Diagrams of the shear stress τ function of punch penetration (a) and punch force F function of punch displacement for a material with zero elastic range (b).

In order to apply the principle of virtual work and evaluate how the punch force in Equation 9.43 translates into the resisting torque at the crankshaft, the kinematic analysis program P9_49.PAS has been written and is listed in Appendix B.

The program reads from lines \#14 to \#17 and \#23 to \#27 a number of parameters of the punch press and workpiece material. It uses these values to perform a position and velocity analysis, accompanied by an animation of the mechanism. The program calculates, for nPoz discrete crank positions, the punch force according to Equation 9.43-see lines \#51 to \#55 of the program. Then, using the punch velocity vyP returned by procedure RRT_ (labeled ds/dt in the output data file F9_49.DAT), it calculates the load torque transmitted to the crank as

$$
\begin{equation*}
T(\theta)=\frac{\mathrm{d} s}{\mathrm{~d} \theta} F=\frac{\mathrm{d} s / \mathrm{d} t}{\omega} F \tag{9.44}
\end{equation*}
$$

In addition to data file F9_49.DAT, program P9_49.PAS outputs the multilayer DXF file F9_49.DXF that was used to generate Figure 9.49a and the animated GIF file F9_49a.GIF. Data file F9_49.DAT served to produce the plots in Figure 9.49b, showing the areas under the $T(\theta)$ and $F(s)$ curves labeled "integrals." Using these integral values, the work W_{P} required to punch one hole and the average crankshaft torque T_{M} were determined:

$$
\begin{gather*}
W_{\mathrm{P}}=5782.8 \mathrm{~J} \tag{9.45}\\
T_{\mathrm{M}}=\frac{5782.8}{2 \pi}=920.36 \mathrm{~N} \mathrm{~m} \tag{9.46}
\end{gather*}
$$

FIGURE 9.49 Simulation frame generated with program P9_49.PAS (a) and diagrams of the load torque T versus crank angle θ and punch force F versus punch displacement s (b), obtained by overlapping inside AutoCAD the plots done using configuration files F9_49B1.CF2 and F9_49B2.CF2.

FIGURE 9.50 Free-body diagram of the flywheel of the punch press.

The corresponding electric motor power to be used in conjunction with a flywheel will therefore be

$$
\begin{align*}
P_{\mathrm{M}} & =\frac{n_{\mathrm{P}}}{60} \cdot W_{\mathrm{P}}=\frac{80}{60} \cdot 5782.8=7.71 \mathrm{~kW} \\
& =T_{\mathrm{M}} \cdot \frac{n_{0} \cdot \pi}{30}=920.36 \cdot \frac{80 \cdot \pi}{30} \tag{9.47}
\end{align*}
$$

where $\omega_{0}=80 \pi / 30=8.3776 \mathrm{rad} / \mathrm{s}$ is the average angular velocity of the crankshaft.
Figure 9.50 is a free-body diagram of the flywheel removed from the crankshaft. Its equation of motion is

$$
\begin{equation*}
T_{\mathrm{M}}-T(\theta)=I \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}} \tag{9.48}
\end{equation*}
$$

equivalent to

$$
\begin{equation*}
T_{\mathrm{M}}-T(\theta)=I \frac{\mathrm{~d} \omega}{\mathrm{~d} t}=I \frac{\mathrm{~d} \theta}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} \omega}{\mathrm{~d} \theta}=I \omega \frac{\mathrm{~d} \omega}{\mathrm{~d} \theta} \tag{9.49}
\end{equation*}
$$

We integrate this second equation between crank angles θ_{1} and θ_{2} when the maximum and minimum angular velocities of the crankshaft occur,

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}}\left(T_{\mathrm{M}}-T\right) d \theta=\int_{\omega_{\max }}^{\omega_{\min }} I \omega \mathrm{~d} \omega \tag{9.50}
\end{equation*}
$$

and obtain

$$
\begin{equation*}
\Delta E=0.5 I\left(\omega_{\min }^{2}-\omega_{\max }^{2}\right) \tag{9.51}
\end{equation*}
$$

This second equation relates the change in kinetic energy of the system ΔE to the required mass moment of inertia I of the flywheel for which the angular velocity of
the crankshaft fluctuation is limited between $\omega_{\min }$ and $\omega_{\max }$. Using the average angular velocity of the crankshaft ω_{0} and the coefficient of speed fluctuation C_{S}, Equation 9.51 can be rewritten as

$$
\begin{equation*}
I=\frac{\Delta E}{C_{S} \cdot \omega_{0}^{2}} \tag{9.52}
\end{equation*}
$$

The change in kinetic energy ΔE of the punch press during one cycle equals the area (in absolute value) situated above or below the horizontal axis of the curve $T-T_{\mathrm{M}}$ versus ω. This was conveniently obtained by editing inside D_2D the lower limit of the vertical axis of the and $T(\omega)$ plot in Figure 9.49b and redoing the graph. According to Figure 9.51, this change in kinetic energy is 5781.8 J . Correspondingly, the required mass moment of inertia of the flywheel is

$$
\begin{equation*}
I=\frac{\Delta E}{C_{S} \cdot \omega_{0}^{2}}=\frac{5781.8}{0.0964 \cdot 8.3776^{2}}=854.6 \mathrm{~kg} \mathrm{~m}^{2} \tag{9.53}
\end{equation*}
$$

A Working Model 2D simulation of the punch press has been prepared and is available with the book (see file Punch_Press.WM2 and Figure 9.52). Using the formula language of the software, a conditional force is applied to the punch head when it engages the stock according to Equation 9.43. The maximum punch force $F_{\max }$ calculated with Equation 9.42, stock location s_{f}, and stock thickness h must be specified using the text boxes provided. Also input via text box controls are the constant crankshaft torque T_{M} and the moment of inertia of the flywheel I. The "crank initial rpm" value must be selected by the user in order for the press to operate around the required $n_{\mathrm{P}}=80$ punches per minute. The simulation confirms that the motor torque T_{M} and flywheel moment of inertia I were properly calculated, in that the crank holds its rotational speed between 76 and 83 rpm as intended. A slight tendency of the punch rate to increase is visible on Figure 9.52, which can be eliminated by fine-tuning the crankshaft torque T_{M}. The user may want to repeat the simulation for different flywheel moment of inertia and input torque and observe their effect upon the crank speed change.

FIGURE 9.51 Plot done with D_2D that was used to calculate ΔE. Configuration file F9_51.CF2.

FIGURE 9.52 Working Model 2D simulation of the punch press.

9.18 A PROGRAM FOR PURGING FILES FROM THE CURRENT DIRECTORY

This final section refers to the program Purge.PAS (see Appendix B), which can be used to automatically delete certain files in the current directory. When launching the executable \sim Purge.EXE, it will delete without confirmation all the files with extensions $\$ \mathrm{XY}$, $\mathbf{\$ 2 D}$, \$3D, OLD, and BAK; all files of the type \sim POLY*.TMP; and the AutoCAD error files acad. err and acadstk.dmp. With confirmation it will delete all BMP, PCX, and SCR files from the directory where \sim Purge. EXE is located. This program is useful to keep directories clean, following stream PCX or BMP export and can be easily modified to fit other needs.

A number of applications and practical problems that complement the material in earlier chapters have been presented. Same as for the rest of the chapters, the source codes of these programs and the respective Working Model 2D simulations are available upon request from the author.

REFERENCES AND FURTHER READINGS

Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal deviates. The Annals of Mathematical Statistics, 29(2), 610-611.
Weisstein, E. W. (2013). Minimax approximation. MathWorld—A Wolfram Web Resource. http:// mathworld.wolfram.com/MinimaxApproximation.html (last accessed June 2014).

For vibration of single and multiple degree of freedom systems see:
Rao, S. S. (2010). Mechanical Vibrations. Upper Saddle River, NJ: Prentice Hall.
For the Duffing equation see:
Kovacic, I. and Brennan, M. J. (2011). The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Hoboken, NJ: John Wiley \& Sons.

For plotting singe-valued functions of more than two variables using partial mini-max method see:
Simionescu, P. A. and Beale, D. G. (2004). Visualization of hypersurfaces and multivariable (objective) functions by partial global optimization. The Visual Computer, 20(10), 665-681.

For random number generation algorithms see:
Knuth, D. E. (1997). Art of Computer Programming, Volume 2: Seminumerical Algorithms. Boston, MA: Addison-Wesley.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989). Numerical Recipes in Pascal: The Art of Scientific Computing. New York: Cambridge University Press.

For time ratio in mechanisms see:
Cleghorn, W. L. (2005). Mechanics of Machines. New York: Oxford University Press.
For dwell mechanisms and fixed and moving centrodes in planar motion see:
Artobolevsky, I. I. (1975). Mechanisms in Modern Engineering Design. Moscow, Russia: Mir Publishers.
Cleghorn, W. L. (2005). Mechanics of Machines. New York: Oxford University Press.
Uicker, J. J. Jr., Pennock, G. R., and Shigley, J. E. (2003). Theory of Machines and Mechanisms. New York: Oxford University Press.

For more information on planetary gears see:
Lévai, Z. (1968). Structure and analysis of planetary gear trains. Journal of Mechanisms, 3(3), 131-148.
Wilson, C. E. and Sadler, J. P. (2003). Kinematics and Dynamics of Machinery. Upper Saddle River, NJ: Prentice Hall.

For more information on serial and parallel robots and manipulators see:
Merlet, J. P. (2005). Parallel Robots. 2nd edn. Dordrecht, the Netherlands, Springer.
Taghirad, H. D. (2013). Parallel Robots: Mechanics and Control. Boca Raton, FL: CRC Press.
Tsai, L. W. (1999). Robot Analysis: The Mechanics of Serial and Parallel Manipulators. New York: Wiley.

For more information on steering and suspension of automobiles see:
Bastow, D., Howard, G., and Whitehead, J. P. (2014). Car Suspension and Handling. Warrendale, PA: SAE International.
Dixon, J. C. (1996). Tires, Suspension, and Handling. Warrendale, PA: SAE International.
Harrer, H. and Pfeffer, P. (2014). Steering Handbook. Berlin, Germany: Springer.
Reimpell, J. and Stoll, H. (1996). The Automotive Chassis: Engineering Principles. Warrendale, PA: SAE International.
Simionescu, P. A. and Beale, D. G. (2002). Synthesis and analysis of the five-link rear suspension system used in automobiles. Mechanism and Machine Theory, 37(9), 815-832.
Wolfe, W. A. (1959). Analytical design of an Ackermann steering linkage. Transactions of the ASME Journal of Engineering for Industry, 11(1), 11-14.

For more information on flywheel design see:
Boswirth, L. and Bof, E. (1976). Calculation and design of the flywheel for small and medium compressors. In International Compressor Engineering Conference, Paper 193. http://docs.lib.purdue.edu/icec/193.
Genta, G. (1985). Kinetic Energy Storage: Theory and Practice of Advanced Flywheel Systems. Oxford, U.K.: Butterworth-Heinemann.

Norton, R. L. (2001). Design of Machinery. New York: McGraw-Hill.

This page intentionally left blank

Appendix A: Useful Formulae

A. 1 EQUATIONS OF A LINE

The equation of the line through points $A\left(x_{A}, y_{A}\right)$ and $B\left(x_{\mathrm{B}}, y_{\mathrm{B}}\right)$ (see Figure A.1) in determinant form is:

$$
\left|\begin{array}{ccc}
x & y & 1 \tag{A.1}\\
x_{\mathrm{A}} & y_{\mathrm{A}} & 1 \\
x_{\mathrm{B}} & y_{\mathrm{B}} & 1
\end{array}\right|=0
$$

equivalent to

$$
\begin{equation*}
y=\frac{y_{\mathrm{A}}-y_{\mathrm{B}}}{x_{\mathrm{A}}-x_{\mathrm{B}}} x+\frac{x_{\mathrm{A}} y_{\mathrm{B}}-x_{\mathrm{B}} y_{\mathrm{A}}}{x_{\mathrm{A}}-x_{\mathrm{B}}} \tag{A.2}
\end{equation*}
$$

and also to

$$
\begin{equation*}
\frac{x-x_{\mathrm{A}}}{x_{\mathrm{B}}-x_{\mathrm{A}}}=\frac{y-y_{\mathrm{A}}}{y_{\mathrm{B}}-y_{\mathrm{A}}} \tag{A.3}
\end{equation*}
$$

The equation of a line through point $A\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$ and of slope m is:

$$
\begin{equation*}
y=m\left(x-x_{\mathrm{A}}\right)+y_{\mathrm{A}} \quad \text { or } \quad y=m x+\left(m x_{\mathrm{A}}+y_{\mathrm{A}}\right) \tag{A.4}
\end{equation*}
$$

The equation of a line of slope m and $O Y$-intercept n is:

$$
\begin{equation*}
y=m x+n \tag{A.5}
\end{equation*}
$$

The equation of a line of $O X$-intercept p and $O Y$-intercept n is:

$$
\begin{equation*}
\frac{x}{p}+\frac{y}{n}=1 \tag{A.6}
\end{equation*}
$$

The parametric equation of a line through points $A\left(x_{A}, y_{A}\right)$ and $B\left(x_{B}, y_{B}\right)$ is:

$$
\begin{align*}
& x=x_{\mathrm{A}}(t-1)+x_{\mathrm{B}} t \tag{A.7}\\
& y=y_{\mathrm{A}}(t-1)+y_{\mathrm{B}} t
\end{align*}
$$

FIGURE A. 1 One line in 2D.
equivalent to

$$
\binom{x}{y}=t\left[\begin{array}{ll}
1 & 0 \tag{A.8}\\
0 & 1
\end{array}\right]\binom{x_{\mathrm{B}}-x_{\mathrm{A}}}{y_{\mathrm{B}}-y_{\mathrm{A}}}+\binom{x_{\mathrm{A}}}{y_{\mathrm{A}}}
$$

Note that for $t \in[0,1],(x, y)$ spans the portion of the line from A to B only.

A. 2 CONDITION FOR TWO LINES TO BE PERPENDICULAR

Two lines of equations $y=m_{1} \cdot x+n_{1}$ and $y=m_{2} \cdot x+n_{2}$ are perpendicular if

$$
\begin{equation*}
m_{1}=\frac{-1}{m_{2}} \tag{A.9}
\end{equation*}
$$

A. 3 CONDITION FOR TWO LINES TO BE PARALLEL

Two lines of equations $y=m_{1} \cdot x+n_{1}$ and $y=m_{2} \cdot x+n_{2}$ are parallel if

$$
\begin{equation*}
m_{1}=m_{2} \tag{A.10}
\end{equation*}
$$

A. 4 ANGLE BETWEEN TWO LINES

The angle between two lines of equations $y=m_{1} \cdot x+n_{1}$ and $y=m_{2} \cdot x+n_{2}$ is

$$
\begin{equation*}
\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \tag{A.11}
\end{equation*}
$$

A. 5 POINT COLINEAR WITH OTHER TWO AT A PRESCRIBED LOCATION

Given two points $A\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$ and $B\left(x_{\mathrm{B}}, y_{\mathrm{B}}\right)$, find the coordinates of a third point $P(x, y)$ collinear with them, located at a specified distance $A P$ (Figure A.2).

The following double equality should hold:

$$
\begin{equation*}
\frac{x-x_{\mathrm{A}}}{x_{\mathrm{B}}-x_{\mathrm{A}}}=\frac{y-y_{\mathrm{A}}}{y_{\mathrm{B}}-y_{\mathrm{A}}}=\frac{A P}{A B} \tag{A.12}
\end{equation*}
$$

FIGURE A. 2 Three collinear points A, B, and P.
where $A B$ is the distance between the two given points, that is,

$$
\begin{equation*}
A B=\sqrt{\left(x_{\mathrm{A}}-x_{\mathrm{B}}\right)^{2}+\left(y_{\mathrm{A}}-y_{\mathrm{B}}\right)^{2}} \tag{A.13}
\end{equation*}
$$

From Equation A.12, we get

$$
\begin{align*}
& x=x_{\mathrm{A}}+\frac{A P}{A B}\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) \tag{A.14}\\
& y=y_{\mathrm{A}}+\frac{A P}{A B}\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)
\end{align*}
$$

Not that for $A P$ negative or $A P>A B$, point P will located outside $A-B$.

A. 6 CONDITION FOR A POINT COLLINEAR WITH OTHER TWO TO BE LOCATED BETWEEN THEM

Given three collinear points $A\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right), B\left(x_{\mathrm{B}}, y_{\mathrm{B}}\right)$, and $P(x, y)$, the condition for point P to be located between A and B is (see Figure A.2)

$$
\begin{equation*}
\left(x_{\mathrm{A}}-x\right)\left(x_{\mathrm{B}}-x\right)+\left(y_{\mathrm{A}}-y\right)\left(y_{\mathrm{B}}-y\right)<0 \tag{A.15}
\end{equation*}
$$

A. 7 DISTANCE FROM A POINT TO A LINE

Given a line through points $A\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$ and $B\left(x_{\mathrm{B}}, y_{\mathrm{B}}\right)$ and a third point $C\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$ not collinear with them, find distance d between point C and line $A-B$ and the coordinates (x, y) of the projection P of point C onto line $A-B$ (Figure A.3).

The following two relations should hold simultaneously:

$$
\begin{gather*}
\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)\left(x_{\mathrm{C}}-x\right)+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)\left(y_{\mathrm{C}}-y\right)=0 \tag{A.16}\\
\frac{x-x_{\mathrm{A}}}{x_{\mathrm{B}}-x_{\mathrm{A}}}=\frac{y-y_{\mathrm{A}}}{y_{\mathrm{B}}-y_{\mathrm{A}}} \tag{A.17}
\end{gather*}
$$

The first equation is the dot product between vectors $\boldsymbol{A B}$ and $\boldsymbol{C P}$, which must be equal to zero, and the second equation is the condition for points A, B, and P to be collinear.

FIGURE A. 3 Distance from a point to a line in 2D.

Expanding the two equations and rearranging terms yields a set of two linear equations in the unknowns x and y that is easy to solve:

$$
\left\{\begin{array}{l}
\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) x+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) y=\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) x_{\mathrm{C}}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) y_{\mathrm{C}} \tag{A.18}\\
\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) x-\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) y=\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) x_{\mathrm{A}}-\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right) y_{\mathrm{A}}
\end{array}\right.
$$

Once the coordinates of point P are found, the sought for distance d can be calculated with the equation:

$$
\begin{equation*}
d=\sqrt{\left(x_{\mathrm{C}}-x\right)^{2}+\left(y_{\mathrm{C}}-y\right)^{2}} \tag{A.19}
\end{equation*}
$$

A. 8 ORIENTATION OF A TRIANGULAR LOOP

Given three noncolinear points $A\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right), B\left(x_{\mathrm{B}}, y_{\mathrm{B}}\right)$, and $C\left(x_{\mathrm{C}}, y_{\mathrm{C}}\right)$, if the cross product $A B \times A C>0$ or

$$
\begin{equation*}
\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{1}\right)>0 \tag{A.20}
\end{equation*}
$$

FIGURE A. 4 A triangle in 2D.
then the triangular loop $A B C$ is oriented counterclockwise as shown in Figure A.4. Otherwise, the triangular loop is oriented clockwise.

A. 9 AREA OF A TRIANGLE

Given points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$, and $C\left(x_{3}, y_{3}\right)$ that are not collinear, the area of triangle $A B C$ is given by the following equation:

$$
A=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \tag{A.21}\\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=\frac{1}{2}\left(x_{2} y_{3}-x_{3} y_{2}-x_{1} y_{3}+x_{3} y_{1}+x_{1} y_{2}-x_{2} y_{1}\right)
$$

A. 10 CONDITION OF THREE POINTS TO BE COLLINEAR

Given points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$, and $C\left(x_{3}, y_{3}\right)$, they are collinear if

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \tag{A.22}\\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=x_{2} y_{3}-x_{3} y_{2}-x_{1} y_{3}+x_{3} y_{1}+x_{1} y_{2}-x_{2} y_{1}=0
$$

A. 11 CIRCLE CIRCUMSCRIBED TO THREE POINTS

Given points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$, and $C\left(x_{3}, y_{3}\right)$, find the center (x, y) and radius r of the circle through these three points. The following relations should hold simultaneously:

$$
\left\{\begin{array}{l}
\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2} \tag{A.23}\\
\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}=r^{2} \\
\left(x-x_{3}\right)^{2}+\left(y-y_{3}\right)^{2}=r^{2}
\end{array}\right.
$$

which after expanding, the squares become

$$
\left\{\begin{array}{l}
x^{2}-2 x_{1} x+x_{1}^{2}+y^{2}-2 y_{1} y+y_{1}^{2}=r^{2} \tag{A.24}\\
x^{2}-2 x_{2} x+x_{2}^{2}+y^{2}-2 y_{2} y+y_{2}^{2}=r^{2} \\
x^{2}-2 x_{3} x+x_{3}^{2}+y^{2}-2 y_{3} y+y_{2}^{2}=r^{2}
\end{array}\right.
$$

Subtracting the first equation from the other two, we obtain a set of two linear equations in the unknowns x and y that is easy to solve:

$$
\left\{\begin{array}{l}
2\left(x_{1}-x_{2}\right) x+2\left(y_{1}-y_{2}\right) y=x_{1}^{2}+y_{1}^{2}-x_{2}^{2}-y_{2}^{2} \tag{A.25}\\
2\left(x_{1}-x_{3}\right) x+2\left(y_{1}-y_{3}\right) y=x_{1}^{2}+y_{1}^{2}-x_{3}^{2}-y_{3}^{2}
\end{array}\right.
$$

Radius of the circle r can now be obtained by substituting x and y back into any of the original equations A.23, for example,

$$
\begin{equation*}
r=\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}} \tag{A.26}
\end{equation*}
$$

A. 12 INTERSECTION BETWEEN A CIRCLE AND A LINE

Given a circle centered at $O\left(x_{\mathrm{O}}, y_{\mathrm{O}}\right)$ and of radius r and a line through arbitrary points $A\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$ and $B\left(x_{\mathrm{B}}, y_{\mathrm{B}}\right)$, find the coordinates of the intersection point(s) between the given line and circle (see Figure A.5). The problem can have two distinct solutions, a unique solution when line $A-B$ is tangent to the circle, or no real solution when the line does not intersect the circle.

The following relations should be satisfied simultaneously:

$$
\begin{gather*}
\left(x_{\mathrm{O}}-x\right)^{2}+\left(y_{\mathrm{O}}-y\right)^{2}=r^{2} \tag{A.27}\\
\frac{x_{\mathrm{A}}-x}{x_{\mathrm{A}}-x_{\mathrm{B}}}=\frac{y_{\mathrm{A}}-y}{y_{\mathrm{A}}-y_{\mathrm{B}}} \tag{A.28}
\end{gather*}
$$

To simplify the analysis, we translate the figure such that $x_{\mathrm{O}}=0$ and $y_{\mathrm{O}}=0$, and the coordinates of points A and B become $x_{\mathrm{A}}=x_{\mathrm{A}}-x_{\mathrm{O}}, y_{\mathrm{A}}=y_{\mathrm{A}}-y_{\mathrm{O}}, x_{\mathrm{B}}=x_{\mathrm{B}}-x_{\mathrm{O}}$, and $y_{\mathrm{B}}=y_{\mathrm{B}}-y_{\mathrm{O}}$. After this transformation, Equation A. 27 becomes

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} \tag{A.29}
\end{equation*}
$$

To avoid a possible division by zero, we compare differences $x_{\mathrm{A}}-x_{\mathrm{B}}$ and $y_{\mathrm{A}}-y_{\mathrm{B}}$, and if $\left|x_{\mathrm{A}}-x_{\mathrm{B}}\right|>\left|y_{\mathrm{A}}-y_{\mathrm{B}}\right|$, we write Equation A. 28 as

$$
\begin{equation*}
y=\frac{y_{\mathrm{B}}-y_{\mathrm{A}}}{x_{\mathrm{B}}-x_{\mathrm{A}}} x+\frac{x_{\mathrm{B}} y_{\mathrm{A}}-x_{\mathrm{A}} y_{\mathrm{B}}}{x_{\mathrm{B}}-x_{\mathrm{A}}} \tag{A.30}
\end{equation*}
$$

FIGURE A. 5 Intersection between a circle centered at O and of radius r and a line through points A and B.

Substituting y in Equation A.29, a quadratic equation in the unknown x is obtained:

$$
\begin{align*}
& {\left[\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}\right] x^{2}+2\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)\left(x_{\mathrm{B}} y_{\mathrm{A}}-x_{\mathrm{A}} y_{\mathrm{B}}\right) x} \\
& \quad+\left(x_{\mathrm{B}} y_{\mathrm{A}}-x_{\mathrm{A}} y_{\mathrm{B}}\right)^{2}-\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2} r^{2}=0 \tag{A.31}
\end{align*}
$$

with solutions

$$
\begin{equation*}
x=\frac{-\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)\left(x_{\mathrm{B}} y_{\mathrm{A}}-x_{\mathrm{A}} y_{\mathrm{B}}\right) \pm \sqrt{\Delta}}{\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}} \tag{A.32}
\end{equation*}
$$

where the discriminant is

$$
\begin{equation*}
\Delta=\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}\left[\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2} r^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2} r^{2}-\left(x_{\mathrm{A}} y_{\mathrm{B}}-x_{\mathrm{B}} y_{\mathrm{A}}\right)^{2}\right] \tag{A.33}
\end{equation*}
$$

If instead we have $\left|y_{\mathrm{A}}-y_{\mathrm{B}}\right|>\left|x_{\mathrm{A}}-x_{\mathrm{B}}\right|$, then we rewrite Equation A. 30 as

$$
\begin{equation*}
x=\frac{x_{\mathrm{B}}-x_{\mathrm{A}}}{y_{\mathrm{B}}-y_{\mathrm{A}}} y+\frac{x_{\mathrm{A}} y_{\mathrm{B}}-x_{\mathrm{B}} y_{\mathrm{A}}}{y_{\mathrm{B}}-y_{\mathrm{A}}} \tag{A.34}
\end{equation*}
$$

and the corresponding quadratic equation becomes

$$
\begin{align*}
& {\left[\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}\right] y^{2}+2\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)\left(x_{\mathrm{A}} y_{\mathrm{B}}-x_{\mathrm{B}} y_{\mathrm{A}}\right) y} \\
& \quad \quad+\left(x_{\mathrm{A}} y_{\mathrm{B}}-x_{\mathrm{B}} y_{\mathrm{A}}\right)^{2}-\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2} r^{2}=0 \tag{A.35}
\end{align*}
$$

with solutions

$$
\begin{equation*}
y=\frac{-\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)\left(x_{\mathrm{A}} y_{\mathrm{B}}-x_{\mathrm{B}} y_{\mathrm{A}}\right) \pm \sqrt{\Delta}}{\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}} \tag{A.36}
\end{equation*}
$$

and discriminant

$$
\begin{equation*}
\Delta=\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2}\left[\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)^{2} r^{2}-\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right)^{2} r^{2}-\left(x_{\mathrm{A}} y_{\mathrm{B}}-x_{\mathrm{B}} y_{\mathrm{A}}\right)^{2}\right] \tag{A.37}
\end{equation*}
$$

The actual intersection points are $x=x+x_{\mathrm{O}}$ and $y=y+y_{\mathrm{O}}$, obtained by translating of the figure back to its original location.

A. 13 TANGENT FROM A POINT TO A CIRCLE

Given a circle centered at $O\left(x_{\mathrm{O}}, y_{\mathrm{O}}\right)$ and of radius r and external point $A\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$, find the coordinates of point $P(x, y)$ on the line passing through $\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$ that is tangent to the circle. The problem has two solutions, represented in Figure A. 6 in solid and dashed lines,

FIGURE A. 6 Dual solution of the tangent line from point A to a circle centered at O and of radius r.
respectively. The proper point P_{1} or P_{2} has to be selected based on other considerations, like the orientation of the triangles $A O P_{1}$ and $A O P_{2}$ or magnitude of its x or y coordinates.

As stated, the problem is equivalent to the following two equations:

$$
\begin{gather*}
\left(x_{\mathrm{O}}-x\right)^{2}+\left(y_{\mathrm{O}}-y\right)^{2}=r^{2} \tag{A.38}\\
\left(x_{\mathrm{A}}-x\right)^{2}+\left(y_{\mathrm{A}}-y\right)^{2}=\left(x_{\mathrm{A}}-x_{\mathrm{O}}\right)^{2}+\left(y_{\mathrm{A}}-y_{\mathrm{O}}\right)^{2}-r^{2} \tag{A.39}
\end{gather*}
$$

To simplify the analysis, we translate the entire figure such that $x_{\mathrm{O}}=0$ and $y_{\mathrm{O}}=0$. External point A will have its new coordinates $x_{\mathrm{A}}=x_{\mathrm{A}}-x_{\mathrm{O}}$ and $y_{\mathrm{A}}=y_{\mathrm{A}}-y_{\mathrm{O}}$. With these transformations, the previous equations become

$$
\begin{gather*}
x^{2}+y^{2}=r^{2} \tag{A.40}\\
\left(x_{\mathrm{A}}-x\right)^{2}+\left(y_{\mathrm{A}}-y\right)^{2}=x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}-r^{2} \tag{A.41}
\end{gather*}
$$

After squaring terms, Equation A. 41 becomes

$$
\begin{equation*}
x^{2}-2 x_{\mathrm{A}} x+y^{2}-2 y_{\mathrm{A}} y=-r^{2} \tag{A.42}
\end{equation*}
$$

If we subtract this new equation from Equation A.40, we get

$$
\begin{equation*}
x_{\mathrm{A}} x+y_{\mathrm{A}} y=r^{2} \tag{A.43}
\end{equation*}
$$

To avoid a possible division by zero, we must compare coordinates x_{A} and y_{A}. If $\left|x_{\mathrm{A}}\right|>\left|y_{\mathrm{A}}\right|$, then we extract x from Equation A. 43 as

$$
\begin{equation*}
x=\frac{\left(r^{2}-y_{\mathrm{A}} y\right)}{x_{\mathrm{A}}} \tag{A.44}
\end{equation*}
$$

which when substituted in A. 40 yields a quadratic equation in the unknown y :

$$
\begin{equation*}
\left(x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}\right) y^{2}-2 r^{2} y_{\mathrm{A}} y+r^{4}-x_{\mathrm{A}}^{2} r^{2}=0 \tag{A.45}
\end{equation*}
$$

with roots

$$
\begin{equation*}
y_{1,2}=\frac{r^{2} y_{\mathrm{A}} \pm r x_{\mathrm{A}} \sqrt{x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}-r^{2}}}{x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}} \tag{A.46}
\end{equation*}
$$

If $\left|y_{\mathrm{A}}\right|>\left|x_{\mathrm{A}}\right|$, we conversely have

$$
\begin{equation*}
y=\frac{\left(r^{2}-x_{\mathrm{A}} x\right)}{y_{\mathrm{A}}} \tag{A.47}
\end{equation*}
$$

which when substituted in Equation A. 40 yields a new quadratic equation

$$
\begin{equation*}
\left(x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}\right) x^{2}-2 r^{2} x_{\mathrm{A}} x+r^{4}-y_{\mathrm{A}}^{2} r^{2}=0 \tag{A.48}
\end{equation*}
$$

with roots

$$
\begin{equation*}
y_{1,2}=\frac{r^{2} x_{\mathrm{A}} \pm r y_{\mathrm{A}} \sqrt{x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}-r^{2}}}{x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}} \tag{А.49}
\end{equation*}
$$

The actual solution to the problem is obtained by translating the figure back to its original location, that is, letting $x=x+x_{\mathrm{O}}$ and $y=y+y_{\mathrm{O}}$.

A. 14 TANGENT OF A GIVEN SLOPE TO A CIRCLE

Find the equation of the tangent of slope m to the circle centered at $\left(x_{0}, y_{0}\right)$ and of radius r (see Figure A.7). This is equivalent to the following relations holding simultaneously:

$$
\begin{gather*}
\frac{y-y_{\mathrm{O}}}{x-x_{\mathrm{O}}}=-\frac{1}{m} \tag{A.50}\\
\left(x_{\mathrm{O}}-x\right)^{2}+\left(y_{\mathrm{O}}-y\right)^{2}=r^{2} \tag{A.51}
\end{gather*}
$$

FIGURE A. 7 Dual solution of the tangent of given slope m to a circle.

From Equation A.50, we get

$$
\begin{equation*}
x=x_{\mathrm{O}}-m y+m y_{\mathrm{O}} \tag{A.52}
\end{equation*}
$$

which substituted in the second equation yields

$$
\begin{equation*}
\left(m^{2}+1\right) y-2 y_{\mathrm{O}}\left(m^{2}+1\right) y+\left(m^{2}+1\right) y_{\mathrm{O}}^{2}-r^{2}=0 \tag{A.53}
\end{equation*}
$$

This last equation has solutions

$$
\begin{equation*}
y=y_{\mathrm{O}} \pm \frac{r}{\sqrt{m^{2}+1}} \tag{A.54}
\end{equation*}
$$

In turn, the x coordinate of the tangent point(s) P become

$$
\begin{equation*}
x=x_{\mathrm{O}} \mp \frac{m r}{\sqrt{m^{2}+1}} \tag{A.55}
\end{equation*}
$$

Applying now Equation A.4, the equation of the tangent line will finally be

$$
\begin{equation*}
y=m x \pm r \sqrt{m^{2}+1}\left(\frac{m^{2}-1}{m^{2}+1}\right)+m x_{\mathrm{O}}+y_{\mathrm{O}} \tag{A.56}
\end{equation*}
$$

A. 15 PARABOLA THROUGH THREE POINTS

The equation of the parabola through points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ (see Figure A.8) is

$$
\begin{equation*}
y=a x^{2}+b x+c \tag{A.57}
\end{equation*}
$$

FIGURE A. 8 A parabola through points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. Also shown is the extremum point (x_{e}, y_{e}).
where coefficients a, b, and c are solutions of the following set of three linear equations:

$$
\left\{\begin{array}{l}
x_{1}^{2} a+x_{1} b+c=y_{1} \tag{A.58}\\
x_{2}^{2} a+x_{2} b+c=y_{2} \\
x_{3}^{2} a+x_{3} b+c=y_{3}
\end{array}\right.
$$

The extremum point (minimum or maximum) of this parabola has the coordinates

$$
\begin{align*}
& x_{e}=-\frac{b}{2 a} \\
& y_{e}=\frac{b^{2}}{4 a}-\frac{b^{2}}{2 a}+c \tag{А.59}
\end{align*}
$$

A. 16 CUBIC PARABOLA THROUGH FOUR POINTS

Given points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, and $\left(x_{4}, y_{4}\right)$, the equation of the cubic parabola passing through these four points is (see Figure A.9)

$$
y=a x^{3}+b x^{2}+c x+d
$$

FIGURE A. 9 A cubic parabola through points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, and $\left(x_{4}, y_{4}\right)$. Also shown is the extremum point ($x_{\mathrm{e}}, y_{\mathrm{e}}$).
where coefficients a, b, and c are solutions of the following set of four linear equations:

$$
\left\{\begin{array}{l}
x_{1}^{3} a+x_{1}^{2} b+x_{1} c+d=y_{1} \tag{A.60}\\
x_{2}^{3} a+x_{2}^{2} b+x_{2} c+d=y_{2} \\
x_{3}^{3} a+x_{3}^{2} b+x_{3} c+d=y_{3} \\
x_{4}^{3} a+x_{4}^{2} b+x_{4} c+d=y_{4}
\end{array}\right.
$$

The extremum point(s) of this cubic parabola has the coordinates

$$
\begin{align*}
& x_{e}=\frac{-b \pm \sqrt{b^{2}-3 a c}}{3 a} \tag{A.61}\\
& y_{e}=a x_{e}^{3}+b x_{e}^{3}+c x_{e}+d
\end{align*}
$$

Note that there can be two points of extrema, and the one outside the interval $\left[x_{1}, x_{4}\right]$ should be excluded.

A. 17 TANGENT OF A GIVEN SLOPE TO A PARABOLA

Given a parabola of equation $y=a x^{2}+b x+c$, find coordinates (x, y) of point P where the tangent to the parabola has a slope m (see Figure A.10).

The following relations should hold simultaneously:

$$
\begin{gather*}
y=a x^{2}+b x+c \tag{А.62}\\
2 a \cdot x+b=m \tag{А.63}
\end{gather*}
$$

which yield the tangent point as

$$
\begin{gather*}
x=\frac{m-b}{2 a} \\
y=\frac{(m-b)^{2}}{4 a} x^{2}+\frac{m b-b^{2}}{2 a}+c \tag{А.64}
\end{gather*}
$$

FIGURE A. 10 Tangent of slope m to a parabola.

A. 18 TANGENT FROM A POINT TO A PARABOLA

Given a parabola of equation $y=a x^{2}+b x+c$ and an external point $\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$, find the line through point A that is tangent to the parabola. Specifically, find the coordinates (x, y) of the tangency points P_{1} and P_{2} (see Figure A.11).

The problem is equivalent to the following three equations in the unknowns x, y, and m :

$$
\begin{gather*}
y=m\left(x-x_{\mathrm{A}}\right)+y_{\mathrm{A}} \tag{A.65}\\
y=a x^{2}+b x+c \tag{A.66}\\
2 a x+b=m \tag{A.67}
\end{gather*}
$$

Equating y from the first two equations yields

$$
\begin{equation*}
m\left(x-x_{\mathrm{A}}\right)+y_{\mathrm{A}}-a x^{2}-b x-c=0 \tag{A.68}
\end{equation*}
$$

and after substituting m from Equation A.67, we obtain a quadratic equation in the unknown x :

$$
\begin{equation*}
a x^{2}-2 a x_{\mathrm{A}} x-b x_{\mathrm{A}}+y_{\mathrm{A}}-c=0 \tag{A.69}
\end{equation*}
$$

with solutions

$$
\begin{equation*}
x=x_{\mathrm{A}} \pm \sqrt{x_{\mathrm{A}}^{2}+\frac{b x_{\mathrm{A}}-y_{\mathrm{A}}+c}{a}} \tag{A.70}
\end{equation*}
$$

Slope m and the y coordinate of the tangent point can then be calculated using Equations A. 67 and A.66, respectively.

FIGURE A. 11 Dual solution to the tangent to a parabola from an external point A.

A. 19 INTERSECTION BETWEEN A CIRCLE AND A PARABOLA

Given a parabola of equation $y=a x^{2}+b x+c$ and a circle centered at $\left(x_{\mathrm{O}}, y_{\mathrm{O}}\right)$ and of radius r, find the coordinates (x, y) of their intersection point(s) (see Figure A.12). This is equivalent to the following two equations being satisfied simultaneously:

$$
\begin{gather*}
y=a x^{2}+b x+c \tag{A.71}\\
\left(x_{\mathrm{O}}-x\right)^{2}+\left(y_{\mathrm{O}}-y\right)^{2}=r^{2} \tag{A.72}
\end{gather*}
$$

We substitute y from the first equation into the second equation:

$$
\begin{equation*}
x^{2}-2 x_{\mathrm{O}} x+x_{\mathrm{O}}^{2}+\left(a x^{2}+b x+c-y_{\mathrm{O}}\right)^{2}-r^{2}=0 \tag{A.73}
\end{equation*}
$$

and after expanding terms, we obtain a fourth-degree equation

$$
\begin{align*}
f(x)= & a^{2} x^{4}+2 a b x^{3}+\left[2 a\left(c-y_{\mathrm{O}}\right)+b^{2}+1\right] x^{2}+\left[2 b\left(c-y_{\mathrm{O}}\right)-x_{\mathrm{O}}\right] x \\
& +\left(c-y_{\mathrm{O}}\right)^{2}+x_{\mathrm{O}}^{2}-r^{2}=0 \tag{A.74}
\end{align*}
$$

which can be solved iteratively. If the Newton-Raphson method is used with the iteration

$$
\begin{equation*}
x_{j}=x_{j-1}-f(x) \frac{f\left(x_{j-1}\right)}{f^{\prime}\left(x_{j-1}\right)} \tag{A.75}
\end{equation*}
$$

then the first derivative of $f(x)$ is:

$$
\begin{equation*}
f^{\prime}(x)=4 a^{2} x^{3}+6 a b x^{2}+\left[4 a\left(c-y_{\mathrm{O}}\right)+2 b^{2}+2\right] x+2 b\left(c-y_{\mathrm{O}}\right)-x_{\mathrm{O}} \tag{A.76}
\end{equation*}
$$

FIGURE A. 12 Dual solution of the intersection between a parabola and a circle.

A. 20 COMMON TANGENT TO A PARABOLA AND A CIRCLE

Given a circle centered at $\left(x_{\mathrm{O}}, y_{\mathrm{O}}\right)$ and of radius r and a parabola of equation $y=a x^{2}+$ $b x+c$, find the coordinates of point (x, y) on the parabola and the coordinates of point $\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$ on the circle belonging to the common tangent to the parabola and to the circle. The problem has two solution represented in solid and dashed lines in Figure A.13. It implies that the proper points A_{1} and P_{1} or A_{2} and P_{2} had to be selected based on other considerations, like the orientation of triangles $A_{1} O P_{1}$ and $A_{2} O P_{2}$ or the magnitude of the x or y coordinates of the solution point.

The aforementioned requirements are equivalent to the following analytical relations:

$$
\begin{gather*}
\left(x_{\mathrm{O}}-x_{\mathrm{A}}\right)^{2}+\left(y_{\mathrm{O}}-y_{\mathrm{A}}\right)^{2}=r^{2} \tag{A.77}\\
y=a x^{2}+b x+c \tag{A.78}\\
2 a x+b=-\frac{x_{\mathrm{A}}-x_{\mathrm{O}}}{y_{\mathrm{A}}-y_{\mathrm{O}}} \tag{A.79}\\
\left(x_{\mathrm{A}}-x\right)^{2}+\left(y_{\mathrm{A}}-y\right)^{2}=\left(x_{\mathrm{O}}-x\right)^{2}+\left(y_{\mathrm{O}}-y\right)^{2}-r^{2} \tag{A.80}
\end{gather*}
$$

Equation A. 79 is the condition of the tangent to the parabola at point (x, y) to be perpendicular to the radius $O A_{1}$, and Equation A .80 is the condition of $O A P$ to be a right-angle triangle.

To simplify the analysis, we translate the entire figure such that the center of the circle has the coordinates $x_{\mathrm{O}}=0$ and $y_{\mathrm{O}}=0$. This will change the coefficients of the parabola as follows:

$$
\begin{align*}
& a=a \\
& b=2 a x_{\mathrm{O}}+b \tag{A.81}\\
& c=a x_{\mathrm{O}}^{2}+b x_{\mathrm{O}}+c+y_{\mathrm{O}}
\end{align*}
$$

FIGURE A. 13 Dual solution to the common tangent to a parabola and a circle.

After translating the entire figure such that the circle becomes centered at (0,0), Equations A. 77 through A. 80 simplify to

$$
\begin{gather*}
x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}=r^{2} \tag{A.82}\\
y=a x^{2}+b x+c \tag{A.83}\\
2 a x+b=-\frac{x_{\mathrm{A}}}{y_{\mathrm{A}}} \tag{A.84}\\
x_{\mathrm{A}}^{2}-2 x_{\mathrm{A}} x+y_{\mathrm{A}}^{2}-2 y_{\mathrm{A}} y+r^{2}=0 \tag{A.85}
\end{gather*}
$$

We subtract the first equation from the last one and obtain

$$
\begin{equation*}
x_{\mathrm{A}} x+y_{\mathrm{A}} y-r^{2}=0 \tag{A.86}
\end{equation*}
$$

then we substitute y from Equation A.83. The following set of three nonlinear equations is obtained:

$$
\left\{\begin{array}{l}
f_{1}\left(x, x_{\mathrm{A}}, y_{\mathrm{A}}\right)=x_{\mathrm{A}}^{2}+y_{\mathrm{A}}^{2}-r^{2}=0 \tag{A.87}\\
f_{2}\left(x, x_{\mathrm{A}}, y_{\mathrm{A}}\right)=2 a x+\frac{x_{\mathrm{A}}}{y_{\mathrm{A}}}+b=0 \\
f_{3}\left(x, x_{\mathrm{A}}, y_{\mathrm{A}}\right)=a x^{2} y_{\mathrm{A}}+x x_{\mathrm{A}}+b x y_{\mathrm{A}}+c y_{\mathrm{A}}-r^{2}=0
\end{array}\right.
$$

which can be solved iteratively. To apply Newton's method, we must evaluate the Jacobian:

$$
J=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial x_{\mathrm{A}}} & \frac{\partial f_{1}}{\partial y_{\mathrm{A}}} \tag{A.88}\\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial x_{\mathrm{A}}} & \frac{\partial f_{2}}{\partial y_{\mathrm{A}}} \\
\frac{\partial f_{3}}{\partial x} & \frac{\partial f_{3}}{\partial x_{\mathrm{A}}} & \frac{\partial f_{3}}{\partial y_{\mathrm{A}}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 x_{\mathrm{A}} & 2 y_{\mathrm{A}} \\
2 a & \frac{1}{y_{\mathrm{A}}} & -\frac{x_{\mathrm{A}}}{y_{\mathrm{A}}^{2}} \\
2 a x y_{\mathrm{A}}+x_{\mathrm{A}}+b y_{\mathrm{A}} & x & a x^{2}+b x+c
\end{array}\right]
$$

and invert it every iteration step according to the following equation:

$$
\left[\begin{array}{c}
x_{j} \tag{A.89}\\
x_{\mathrm{A} j} \\
y_{\mathrm{A} j}
\end{array}\right]=\left[\begin{array}{c}
x_{j-1} \\
x_{\mathrm{Aj}-1} \\
x_{\mathrm{A} j-1}
\end{array}\right]-J^{-1} \cdot\left[\begin{array}{l}
f_{1}\left(x_{j-1}, x_{\mathrm{Aj}-1}, y_{\mathrm{Aj}}\right) \\
f_{2}\left(x_{j-1}, x_{\mathrm{A} j-1}, y_{\mathrm{Aj}}\right) \\
f_{3}\left(x_{j-1}, x_{\mathrm{A} j-1}, y_{\mathrm{Aj}}\right)
\end{array}\right]
$$

At the end, the coordinates of the solution points will be $x=x+x_{\mathrm{O}}, y=y+x_{\mathrm{O}}, x_{\mathrm{A}}=x_{\mathrm{A}}+x_{\mathrm{O}}$, $y_{\mathrm{A}}=y_{\mathrm{A}}+x_{\mathrm{O}}$.

A. 21 COMMON TANGENT TO TWO CIRCLES

Given one circle centered at ($x_{\mathrm{O}_{1}}, y_{\mathrm{O}_{1}}$) and of radius r_{1} and a second circle centered at $\left(x_{\mathrm{O}_{2}}, y_{\mathrm{O}_{2}}\right)$ and of radius r_{2}, find the coordinates of tangency points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on their common tangent (Figure A.14). In the following analysis, we will assume that $r_{1} \geq r_{2}$. If it is not the case, a relabeling of the points in Figure A. 14 is required.

Note that the problem has four solutions, of which only two are shown on Figure A.14, the other two being their mirror image about the line of centers $O_{1} O_{2}$. The solutions where the common tangent intersects the line of centers between points O_{1} and O_{2} will be called cross-tangent case, and the other two where the intersection occurs outside the line segment $O_{1} O_{2}$ will be called side-tangent case. We begin with the following notations:

$$
\begin{align*}
O_{1} O_{2} & =\sqrt{\left(x_{\mathrm{O}_{1}}-x_{\mathrm{O}_{2}}\right)^{2}+\left(y_{\mathrm{O}_{1}}-y_{\mathrm{O}_{2}}\right)^{2}} \\
c \theta & =\cos (\theta)=\frac{x_{\mathrm{O}_{2}}-x_{\mathrm{O}_{1}}}{O_{1} O_{2}} \tag{A.90}\\
s \theta & =\sin (\theta)=\frac{y_{\mathrm{O}_{2}}-y_{\mathrm{O}_{1}}}{O_{1} O_{2}}
\end{align*}
$$

To simplify the analysis, we translate the whole figure such that O_{1} becomes the origin and then rotate it about point O_{1} clockwise by angle θ (see Figures A. 15 and A.16).

For the cross-tangent case in Figure A.15, we can write the following trigonometric identities within the triangle $O_{1} P_{1}^{\prime} O_{2}$:

$$
\begin{align*}
& \cos (\alpha)=\frac{r_{1}+r_{2}}{O_{1} O_{2}} \\
& \sin (\alpha)=\sqrt{1-\frac{\left(r_{1}+r\right)^{2}}{O_{1} O_{2}^{2}}} \tag{A.91}
\end{align*}
$$

FIGURE A. 14 Two of the four solutions to the common tangent to two circles problem.

FIGURE A. 15 The cross-tangent case with O_{1} at origin and horizontal center line $O_{1} O_{2}$.

FIGURE A. 16 The side-tangent case with O_{1} at origin and horizontal center line $O_{1} O_{2}$.

With these notations, we have

$$
\begin{align*}
& x_{1}=r_{1} \cdot \cos (\alpha) \\
& y_{1}= \pm r_{1} \cdot \sin (\alpha) \tag{A.92}
\end{align*}
$$

and

$$
\begin{align*}
& x_{2}=O_{1} O_{2}-r_{2} \cdot \cos (\alpha) \\
& y_{2}=\mp r_{2} \cdot \sin (\alpha) \tag{А.93}
\end{align*}
$$

where the upper sign corresponds to the solution shown in Figure A. 15 and the lower sign to the mirror image (not shown).

For the side-tangent case in Figure A.16, we write the following trigonometric identities within triangle $O_{1} P_{1}^{\prime} O_{2}$:

$$
\begin{align*}
& \cos (\alpha)=\frac{r_{1}-r_{2}}{O_{1} O_{2}} \\
& \sin (\alpha)=\sqrt{1-\frac{\left(r_{1}-r\right)^{2}}{O_{1} O_{2}^{2}}} \tag{А.94}
\end{align*}
$$

With these notations, we have

$$
\begin{align*}
& x_{1}=r_{1} \cdot c \alpha \tag{A.95}\\
& y_{1}= \pm r_{1} \cdot s \alpha
\end{align*}
$$

and

$$
\begin{align*}
& x_{2}=O_{1} O_{2}+r_{2} \cdot c \alpha \tag{A.96}\\
& y_{2}= \pm r_{2} \cdot s \alpha
\end{align*}
$$

Again, the upper sign corresponds to the solution shown in Figure A. 16 and the lower sign to the mirror case, not shown.

The final solutions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the actual problem are obtained by rotating points P_{1} and P_{2} counterclockwise by the angle θ and then translating them by the amount $x_{\mathrm{O}_{1}}$ along the $O X$ axis and by amount $y_{\mathrm{O}_{1}}$ along the $O Y$ axis.

A. 22 TRANSLATIONS AND ROTATIONS IN 2D

The coordinate transformation from reference frame $O X Y$ to a translated reference frame $O_{1} X_{1} Y_{1}$ (Figure A.17a) is

$$
\begin{align*}
& x=x_{\mathrm{O}_{1}}+x_{1} \tag{A.97}\\
& y=y_{\mathrm{O}_{1}}+y_{1}
\end{align*}
$$

The inverses transformation is

$$
\begin{align*}
x_{1} & =x-x_{\mathrm{O}_{1}} \tag{A.98}\\
y_{1} & =y-y_{\mathrm{O}_{1}}
\end{align*}
$$

The coordinate transformation from reference frame $O X Y$ to a rotated reference frame $O X_{1} Y_{1}$ (Figure A.17b) is

$$
\begin{align*}
& x=x_{1} \cos \theta-y_{1} \sin \theta \\
& y=x_{1} \sin \theta+y_{1} \cos \theta \tag{A.99}
\end{align*}
$$

FIGURE A. 17 Translation (a) and rotation by angle θ (b) in 2D.

For $\theta=90^{\circ}$ and $\theta=-90^{\circ}$, the transformations are respectively:

$$
\begin{align*}
& x=-y_{1} \quad \text { and } \quad y=x_{1} \tag{A.100}\\
& x=y_{1} \quad \text { and } \quad y=-x_{1} \tag{A.101}
\end{align*}
$$

The inverses general transformation is

$$
\begin{align*}
& x_{1}=x \cdot \cos \theta+y \cdot \sin \theta \tag{A.102}\\
& y_{1}=-x \cdot \sin \theta+y \cdot \cos \theta
\end{align*}
$$

For $\theta=90^{\circ}$ and $\theta=-90^{\circ}$, the inverse transformations are respectively:

$$
\begin{align*}
& x_{1}=y \text { and } y_{1}=-x \tag{A.103}\\
& x_{1}=-y \text { and } y_{1}=x \tag{A.104}
\end{align*}
$$

A. 23 TRANSLATIONS AND ROTATIONS IN 3D

When changing the coordinates from reference frame OXYZ (Figure A.18a) to a translated reference frame $O_{1} X_{1} Y_{1} Z_{1}$ (Figure A.18b), the following equations apply:

$$
\begin{align*}
& x=x_{\mathrm{O}_{1}}+x_{1} \\
& y=y_{\mathrm{O}_{1}}+y_{1} \tag{A.105}\\
& z=z_{\mathrm{O}_{1}}+z_{1}
\end{align*}
$$

FIGURE A. 18 Initially aligned reference frames $O X Y Z$ and $O_{1} X_{1} Y_{1} Z_{1}$ (a) and transformed reference frame $O_{1} X_{1} Y_{1} Z_{1}$ through translation (b), rotation about $O X$ (c), rotation about $O Y$ (d), and rotation about $O Z(e)$.

The inverses coordinate transformation from $O_{1} X_{1} Y_{1} Z_{1}$ in Figure 8.18b to $O X Y Z$ in Figure 8.18a is

$$
\begin{align*}
& x_{1}=x-x_{0} \\
& y_{1}=y-y_{0} \tag{A.106}\\
& z_{1}=z-z_{0}
\end{align*}
$$

The basic 3D transformation matrices that rotate vectors (x_{1}, y_{1}, z_{1}) about the $O X, O Y$, and $O Z$ are as follows. A rotation by angle γ (roll angle) about $O X$ axis (see Figure A.18c) is

$$
\left(\begin{array}{l}
x \tag{A.107}\\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right]=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right) R_{x}(\gamma)
$$

A rotation by angle β (pitch angle) about $O Y$ axis (see Figure A.18d) is

$$
\left(\begin{array}{l}
x \tag{A.108}\\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right)\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right]=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right) R_{y}(\beta)
$$

A rotation by angle α (yaw angle) about $O Z$ axis (see Figure A.18e) is

$$
\left(\begin{array}{l}
x \tag{A.109}\\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right)\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right) R_{z}(\alpha)
$$

More complex transformations can be obtained through matrix multiplication. For example, the sequence of roll, pitch, and yaw (in this order) about a fixed reference frame OXYZ is described by

$$
\begin{equation*}
R(\gamma, \beta, \alpha)=R_{z}(\alpha) R_{x}(\gamma) R_{y}(\beta) \tag{A.110}
\end{equation*}
$$

Because matrix multiplication is not commutative, the end result will depend on the order in which these basic rotation transformations are applied.

A. 24 NUMERICAL DIFFERENTIATION

Let $f(x)$ be a continuous function of x that has derivatives up to order n. Below are formulae for the first- and second-order derivatives of $f(x)$, where $O(.$.$) is a remainder, which depends$ on Δx. The smaller Δx, the less error is incurred when $O(.$.$) is left apart.$

A.24.1 First-Order Differentiation

Forward differentiation

$$
\begin{equation*}
\frac{\partial f(x)}{\partial x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}+O(\Delta x) \tag{A.111}
\end{equation*}
$$

Backward differentiation

$$
\begin{equation*}
\frac{\partial f(x)}{\partial x}=\frac{f(x)-f(x-\Delta x)}{\Delta x}+O(\Delta x) \tag{A.112}
\end{equation*}
$$

Centered differentiation

$$
\begin{equation*}
\frac{\partial f(x)}{\partial x}=\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}+O(\Delta x)^{2} \tag{A.113}
\end{equation*}
$$

Notice that centered differentiation has better accuracy.

A.24.2 Second-Order Differentiation

The most common second-order differentiation formula is

$$
\begin{equation*}
\frac{\partial^{2} f(x)}{\partial x^{2}}=\frac{f(x+\Delta x)-2 f(x)+f(x-\Delta x)}{(2 \Delta x)^{2}}+O(\Delta x)^{2} \tag{A.114}
\end{equation*}
$$

These equations can be obtained from Taylor's series approximation of $f(x)$, that is,

$$
\begin{align*}
f(x) \cong & f(x \pm \Delta x)+\frac{\partial f(x \pm \Delta x)}{\partial x}(\pm \Delta x)+\frac{\partial^{2} f(x \pm \Delta x)}{\partial x^{2}} \cdot \frac{(\pm \Delta x)^{2}}{2!} \\
& +\cdots \frac{\partial^{n} f(x \pm \Delta x)}{\partial x^{n}} \cdot \frac{(\pm \Delta x)^{n}}{n!} \tag{A.115}
\end{align*}
$$

when the function $f(x)$ and its derivatives up to order n are known at point $x \pm \Delta x$. Notice that formulae A.111, A.112, and A. 113 are obtained by setting $n=1$ in Equation A.115, while formula A. 114 is obtained for $n=2$ in the same equation.

A. 25 NEWTON-RAPHSON METHOD FOR ROOT FINDING

Newton-Raphson is a fast converging method for finding approximations to the roots (or zeroes) of real-valued functions, which is based on successive Taylor's approximations of the function.

Given a real, continuous function $f(x)$ and its derivative $f^{\prime}(x)$, we begin with an initial guess x_{0} for a root r of the function. Assuming that $f^{\prime}\left(x_{1}\right) \neq 0$, a better approximation x_{1} of the root r will be

$$
\begin{equation*}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{A.116}
\end{equation*}
$$

The approximating process is repeated as

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \tag{A.117}
\end{equation*}
$$

until $\left|f\left(x_{k+1}\right)\right|<\varepsilon$ or $\left|x_{k+1}-x_{k}\right|<\varepsilon$, where ε is the desired accuracy.
A geometric interpretation of Newton-Raphson method is provided in Figure A.19.

FIGURE A. 19 Newton-Raphson iteration.

A. 26 AREA UNDER A CURVE USING TRAPEZOIDAL RULE

The area A delimited by a curve of equation $y=f(x)$ and the $[a, b]$ interval of the x-axis is defined by

$$
\begin{equation*}
A=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A_{i} \tag{A.118}
\end{equation*}
$$

where A_{i} is the area of the i th strip (see Figure A.20). We can develop approximation schemes for the value of the integral by assuming a finite number n and adopting simple trapezoidal approximations of these strips.

We assume the top portion of the stripes in Figure A. 21 to be straight lines. For area A_{i}, this approximating straight line is the chord joining points $\left(x_{i}, f\left(x_{i}\right)\right)$ and $\left(x_{i+1}, f\left(x_{i+1}\right)\right.$ and has the equation

$$
\begin{equation*}
\frac{y-f_{i}}{x-x_{i}}=\frac{f_{i+1}-f_{i}}{x_{i+1}-x_{i}} \tag{A.119}
\end{equation*}
$$

FIGURE A. 20 Integration as the area under the curve $f(x)$ over the interval $[a, b]$.

FIGURE A. 21 Approximation of the area under a curve using trapezoids.

Using the notation $h=x_{i+1}-x_{i}$ for the step size in x, we can write the linear approximation to $f(x)$ as

$$
\begin{equation*}
y=f_{i}+\frac{1}{h}\left(f_{i+1}-f_{i}\right)\left(x-x_{i}\right) \tag{A.120}
\end{equation*}
$$

The area A_{i} of the i th strip will therefore be the area of a trapezoid, that is,

$$
\begin{equation*}
A_{i}=\frac{1}{h}\left(f_{i}+f_{i+1}\right) \tag{A.121}
\end{equation*}
$$

Figure A. 21 shows the $O X$ interval a to b divided into n equal intervals of length h. We can then write the approximate value of the total area A as

$$
\begin{equation*}
A=\sum_{i=1}^{n} a_{i}=\frac{h}{2} \sum_{i=1}^{n}\left(f_{i}+f_{i+1}\right) \tag{A.122}
\end{equation*}
$$

Note that except for the end values, that is, $i=1$ and $i=n$, each evaluation of $f(x)$ at a node x_{i} occurs twice. Thus, the approximation to the integral can be written in the simplified form:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left(f_{1}+2 f_{2}+\cdots+2 f_{n}+f_{n+1}\right)=\frac{h}{2}(f(a)+f(b))+h \sum_{i=1}^{n-1} f(a+i h) \tag{A.123}
\end{equation*}
$$

which is the trapezoid rule formula.
In developing the aforementioned approximation, we left some area under the $f(x)$ out of the sum or included some area of trapezoids that lies below $f(x)$-Figure A.21. It can be shown that the error can be expressed in the following form:

$$
\begin{equation*}
\varepsilon=\frac{b-a}{12} h^{2} f^{\prime \prime}(\xi) \tag{A.124}
\end{equation*}
$$

where $f^{\prime \prime}(\xi)$ is the value of the second derivative of $f(x)$, evaluated at some point ξ within the interval $[a, b]$. It is known that the second derivative relates to the curvature of $f(x)$, confirmed by the largest apparent error in Figure A.21, which coincides with the maximum of $f(x)$ where the curvature appears most extreme. Equation A. 124 suggests that if the step size h is reduced to half, the error estimate ε decreases by a factor of four, while the number of calculations required to compute the sum A is only doubled.

FIGURE A. 22 Euler integration steps.

A. 27 EULER INTEGRATION OF FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Consider the first-order differential equation $\mathrm{d} y / \mathrm{d} t=f(t)$, where the function $f(t)$ may not be readily integrable. Euler method performs numerical integration, that is, find $y(t)$ given initial condition $y_{0}=y\left(t_{0}\right)$, by means of a slope-projection technique (see Figure A.22).

Begin at t_{0}, at which the value y_{0} is known. Project the slope over a horizontal subinterval $t_{1}-t_{0}$ and evaluate y_{1} as $y_{1}=y_{0}+f\left(t_{0}\right)\left(t_{1}-t_{0}\right)$. Repeat the process at t_{2}, t_{3}, t_{4} and so forth according to the following equation:

$$
\begin{equation*}
y_{k+1}=y_{k}+f\left(t_{k}\right)\left(t_{k+1}-t_{k}\right) \tag{A.125}
\end{equation*}
$$

until the desired final value of t is reached. For the case shown in Figure A.22, after four steps, the estimate y_{4} is less than the true value of the function $y(t)$ at t_{4} by the amount ε_{4}. This error ε is called algorithm error and increases as the integration advances. To reduce its effect, it is recommended to begin with a relatively large step $\left(t_{k+1}-t_{k}\right)$ and then steadily decreases its size until the corresponding changes in the integrated result are much smaller than the desired accuracy. However, a step size that is too small can result in an increased round-off error, so a trade-off between these two errors must be sought.

A. 28 SOLUTIONS OF TWO AND THREE LINEAR EQUATIONS

The set of two linear equations

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \tag{A.126}\\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

with $a_{1} b_{2}-a_{2} b_{1} \neq 0$ has the solutions

$$
\begin{align*}
& x=\frac{b_{2} c_{1}-b_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}} \tag{A.127}\\
& y=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\end{align*}
$$

The set of three linear equations

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \tag{A.128}\\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right.
$$

with $a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c 1-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3} \neq 0$ has the solutions

$$
\begin{align*}
& x=\frac{b_{2} c_{3} d_{1}+b_{3} c_{1} d_{2}+b_{1} c_{2} d_{3}-b_{2} c_{1} d_{3}-b_{3} c_{2} d_{1}-b_{1} c_{3} d_{2}}{a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}} \\
& y=\frac{a_{1} c_{3} d_{2}+a_{2} c_{1} d_{3}+a_{3} c_{2} d_{1}-a_{3} c_{1} d_{2}-a_{1} c_{2} d_{3}-a_{2} c_{3} d_{1}}{a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}} \tag{A.129}\\
& z=\frac{a_{1} b_{2} d_{3}+a_{2} b_{3} d_{1}+a_{3} b_{1} d_{2}-a_{3} b_{2} d_{1}-a_{1} b_{3} d_{2}-a_{2} b_{1} d_{3}}{a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}}
\end{align*}
$$

A. 29 TRIGONOMETRIC IDENTITIES

$$
\begin{gathered}
\sin (-u)=-\sin u \\
\cos (-u)=+\cos u \\
\tan (-u)=-\tan u \\
\cot (-u)=-\cot u \\
\sin (u \pm \pi / 2)= \pm \cos u \\
\cos (u \pm \pi / 2)=\mp \sin u \\
\tan (u \pm \pi / 2)=-\cot u \\
\cot (u+\pi / 2)=-\tan u \\
\sin (u \pm \pi)=-\sin u \\
\cos (u \pm \pi)=-\cos u
\end{gathered}
$$

$$
\begin{gathered}
\tan (u \pm \pi)=-\cot u \\
\cot (u+\pi)=-\tan u \\
\sin ^{2} u+\cos ^{2} u=1 \\
\sin u= \pm \sqrt{1-\cos ^{2} u}= \pm \sqrt{\frac{1-\cos 2 u}{2}}= \pm \frac{\tan u}{\sqrt{\left(1+\tan ^{2} u\right)}}= \pm \frac{1}{\sqrt{\left(1+\cot ^{2} u\right)}} \\
\cos u= \pm \sqrt{1-\sin ^{2} u}= \pm \sqrt{\frac{1+\cos 2 u}{2}}= \pm \frac{\cot u}{\sqrt{\left(1+\cot ^{2} u\right)}}= \pm \frac{1}{\sqrt{\left(1+\tan ^{2} u\right)}} \\
\sin (u \pm v)=\sin u \cos v \pm \cos u \sin v \\
\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v \\
\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v} \\
\cot (u \pm v)=\frac{\cot u \mp \cot v}{1 \pm \cot u \cot v} \\
\sin v=\frac{1}{2} \cos (u-v)-\frac{1}{2} \cos (u+v) \\
\cos u-\cos v=-2 \sin \frac{u+v}{2} \sin \frac{u-v}{2} \\
\cos u+\cos v=2 \cos \frac{u+v}{2} \cos \frac{u-v}{2} \\
\sin u \pm \sin v=2 \sin \frac{u \pm v}{2} \cos \frac{u \mp v}{2} \\
\sin u \sin v=\frac{\sin (u \pm v)}{\cos u \sin v} \\
\cos (u \pm v) \\
\cos \\
\cos
\end{gathered}
$$

$$
\begin{aligned}
& \cos u \cos v=\frac{1}{2} \cos (u-v)+\frac{1}{2} \cos (u+v) \\
& \sin u \cos v=\frac{1}{2} \sin (u-v)+\frac{1}{2} \sin (u+v) \\
& \tan u \tan v=\frac{\tan u+\sin v}{\cot u+\cot v} \\
& \cot u \cot v=\frac{\cot u+\cot v}{\tan u+\tan v} \\
& \sin ^{2} u=\frac{1-\cos 2 u}{2} \\
& \cos ^{2} u=\frac{1+\cos 2 u}{2} \\
& \sin ^{2} u-\sin ^{2} v=\cos ^{2} v-\cos ^{2} u=\sin (u+v) \sin (u-v) \\
& \cos ^{2} u-\sin ^{2} v=\cos ^{2} v-\sin ^{2} u=\cos (u+v) \cos (u-v) \\
& \cos ^{2} u-\cos ^{2} v=\sin ^{2} v-\sin ^{2} u=-\sin (u+v) \sin (u-v) \\
& \sin \frac{u}{2}=\sqrt{\frac{1-\cos u}{2}}=\frac{\sqrt{1+\sin u}}{2}-\frac{\sqrt{1-\sin u}}{2} \\
& \cos \frac{u}{2}=\sqrt{\frac{1+\cos u}{2}}=\frac{\sqrt{1+\sin u}}{2}+\frac{\sqrt{1-\sin u}}{2} \\
& \tan \frac{u}{2}=\sqrt{\frac{1-\cos u}{1+\cos u}}=\frac{1-\cos u}{\sin u}=\frac{\sin u}{1+\cos u} \\
& \cot \frac{u}{2}=\sqrt{\frac{1+\cos u}{1-\cos u}}=\frac{1+\cos u}{\sin u}=\frac{\sin u}{1-\cos u} \\
& \sin 2 u=2 \sin u \cos u
\end{aligned}
$$

$$
\begin{gathered}
\cos 2 u=\cos ^{2} u-\sin ^{2} u=1-2 \sin ^{2} u=2 \cos ^{2} u-1 \\
\tan 2 u=\frac{2 \tan u}{1-\tan ^{2} u}=\frac{2}{\cot u-\tan u} \\
\cot 2 u=\frac{\cot ^{2} u-1}{2 \cot u}=\frac{\cot u-\tan u}{2} \\
\sin 3 u=3 \sin u-4 \sin ^{3} u \\
\cos 3 u=4 \cos ^{3} u-3 \cos u \\
\cos 4 u=8 \cos ^{4} u-8 \cos 4+1 \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \sin u(t)=\cos u(t) \frac{\mathrm{d} u(t)}{\mathrm{d} t} \cos ^{3} u-4 \sin u \cos u \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \cos u(t)=-\sin u(t) \frac{\mathrm{d} u(t)}{\mathrm{d} t} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \sin ^{-1} u(t)=\frac{1}{\sqrt{1-u(t)^{2}} \frac{\mathrm{~d} u(t)}{\mathrm{d} t}} \text { for }-\frac{\pi}{2} \leq \sin ^{-1} u(t) \leq \frac{\pi}{2} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \cos ^{-1} u(t)=-\frac{1}{\sqrt{1-u}} \tan ^{-1} u(t)=\frac{1}{1+u(t)^{2}} \frac{\mathrm{~d} u(t)}{\mathrm{d} t} \quad \text { for }-\frac{\pi}{2} \leq \tan ^{-1} u(t) \leq \frac{\pi}{2} \\
\mathrm{~d} t
\end{gathered}
$$

FIGURE A. 23 Triangle with sides of lengths a, b, and c and angles of magnitudes α, β, and γ.

With the notations in Figure A.23, the following relations hold:
Law of cosine: $a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$
Law of sines: $\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$
The trigonometric equation $a \cos \theta+b \sin \theta=c$ has the solutions

$$
\theta=2 \cdot \arctan \left(\frac{b \pm \sqrt{a^{2}+b^{2}-c^{2}}}{a+c}\right) \text { or } \theta=\operatorname{Atan} 2(b, a) \pm \operatorname{Atan} 2\left(\sqrt{a^{2}+b^{2}-c^{2}}, c\right)
$$

where $\operatorname{Atan} 2(y, x)=\arctan (y / x)$ is the arctangent function of two arguments that uses the individual signs of x and y to determine the quadrant of the resultant angle. Atan2 is implemented in many programming languages as well as in Excel, MATLAB ${ }^{\circledR}$, Scilab, Mathematica, etc. Note that some programming languages and computer algebra systems implement the $A \tan 2$ function as $\operatorname{Atan} 2(y, x)$ while others (like Excel) implement it as $\operatorname{Atan} 2(x, y)$.

This page intentionally left blank

Appendix B: Selected
 Source Code

Program P1_01;

	Generate files F1_01.DTA, F1_01.D2D \& F1_01.R2D with $\mathrm{nx}=501$ data points (for $n x=61$ see $F 1 _03$. PAS) to plot $F(x)=1 /(x * x-2 x+1.1)+1 /(x * x-6 x+9.2)-3$
5	
6	uses CRT;
	const $\mathrm{nx}=501$; xmin=-1.0; $\mathrm{xmax}=5.0$; $\{\mathrm{nr}$. of plot points and limits over x$\}$
	var FT: Text; \{output ASCII file \}
	FD: File of double; \{output file of double\}
10	FR: File of real; \{output file of real \}
11	x,F: double; xr,Freal: real; ix: integer;
12	BEGIN
13	
14	Assign(FD, 'F1_01.D2D'); Rewrite(FD);
15	Assign(FR,'F1_01.R2D') ; Rewrite(FR);
16	ClrScr; \{Next write ASCII file header ..\}
17	
18	WriteLn(FT, ${ }^{\text {a }}$ ($\left.\mathrm{F}(\mathrm{x})^{\prime}\right)$;
19	for ix:=1 to nx do BEGIN
20	$\mathrm{x}:=\mathrm{xmin}+(\mathrm{xmax}-\mathrm{xmin}) /(\mathrm{nx}-1) *(\mathrm{ix}-1)$; \{generate x$\}$
21	WriteLn(ix:3,') $\mathbf{x =}$ ', x:12:8,' Fx= ',F:12:8); \{screen echo\}
22	$\mathrm{F}:=1 /(\mathrm{x} * \mathrm{x}-2 * \mathrm{x}+1.1)+1 /(\mathrm{x} * \mathrm{x}-6 * \mathrm{x}+9.2$) -3 ; \{evaluate $\mathrm{F}(\mathrm{x})$ \}
23	WriteLn(FT, ${ }^{\text {a }}$ (10:6,' $\left., \mathrm{F}: 12: 8\right)$; \{write x and Fx to ASCII file\}
24	Write(FD, $\mathrm{x}, \mathrm{F})$; (write x and Fx to the file of double $\}$
25	xr: =x;
26	Freal:=F;
27	Write(FR, xr, Freal); \{write x and $\mathrm{F}(\mathrm{x})$ to the file of reals\}
28	END;
29	Close(FT); Close(FD); Close(FR);
30	Write('Data files generated successfully. Press <CR>..'); ReadLn;
	END.

Program P1_02;

Program P1_03;

	(${ }^{\text {c }}$
4	
5	uses CRT;
	const $\mathrm{nx}=61$; $\mathrm{xmin}=-1.0$; $\mathrm{xmax}=5.0$; $\{\mathrm{nr}$. of plot points and limits over x$\}$
	var FD: File of double; x,F: double; ix: integer;
8	BEGIN
9	ClrScr; Assign(FD,'F1_03.D2D'); Rewrite(FD);
10	for ix:=1 to nx do BEGIN
11	$\mathrm{x}:=\mathrm{xmin}+(\mathrm{xmax}-\mathrm{xmin}) /(\mathrm{nx}-1) *(\mathrm{ix}-1)$;
12	$\mathrm{F}:=1 /(\mathrm{x} * \mathrm{x}-2 * \mathrm{x}+1.1)+1 /(\mathrm{x} * \mathrm{x}-6 * \mathrm{x}+9.2)-3$;
13	Write (FD, x, F) ;
14	END;
15	Close (FD) ;
16	Write('Data file generated successfully. <CR>..'); ReadLn;
17	END.
1	Program P1_10;
2	\{========
3	Generate files F1_10.DTA \& F1_10.D2D if nx=400, OR F1_11.DTA
4	\& F1_11.D2D if $n \mathrm{x}=401$ to plot the function $\mathrm{F}(\mathrm{x})=(\mathrm{x} * \mathrm{x} * \mathrm{x}-3 \mathrm{x}) /(\mathrm{x} * \mathrm{x}-4)$
5	
6	uses CRT, LibMath;
7	const $\mathrm{nx}=401$; \{number of plot points (either 400 or 401) \}
8	$x \mathrm{~min}=-8.0$; x max $=8.0$; \{limits over x$\}$
	var FT: Text; \{output ASCII file \}
10	FD: File of double; \{output file of double\}
11	x,Fx: double; ix: integer;
12	function $\mathrm{F}(\mathrm{x}$: double) : double; $\{$ a rational function of degree 3\}
13	BEGIN
	if Abs (x*x-4.0) > EpsD then \{check for division by zero..\}

$F:=(x * x * x-3 * x) /(x * x-4)$
else
BEGIN
END; $\{\ldots \mathrm{F}(\mathrm{x})\}$
if $\mathrm{nx}=400$ then BEGIN
Assign(FT,'F1_10.DTA'); Rewrite(FT);
Assign(FD,'F1_10.D2D'); Rewrite(FD); END
else BEGIN
Assign(FT,'F1_11.DTA'); Rewrite(FT);
Assign(FD,'F1_11.D2D'); Rewrite(FD);
ClrScr; \{Next write ASCII file header
WriteLn (FT,'F=(x*x*x-3x)/(x*x-4)');
WriteLn(FT, $\left.\quad x \quad F(x)^{\prime}\right)$;

$$
\text { for ix:=1 to } n x \text { do BEGIN }
$$

$\mathrm{x}:=\mathrm{xmin}+(\mathrm{xmax}-\mathrm{xmin}) /(\mathrm{nx}-1) *(\mathrm{ix}-1)$;
Fx: $=\mathrm{F}(\mathrm{x})$;
if (Fx = InfD) then BEGIN $\begin{aligned} & \text { \{insert line breakers..\} } \\ & \text { Write (FD, InfD, InfD); }\end{aligned}$
Write (FD,InfD,InfD); \quad \{D2D (FT,'======'); \quad ASCII line breaker $\}$
END
else BEGIN \{write actual data to file..\} Write (FD, X, Fx) ;
WriteLn(FT, x:10:6,' ',Fx:12:8);
END;
Close(FT); Close (FD);
Write('Data files generated successfully. Press <CR>..'); ReadLn;亩
Program P1_12A;

11
12

END.

Program P1_15;

$==2\}$
uses LibMath;
const $n x=251 ; ~ x m i n=0.0 ; ~ x m a x ~=2.5 ; ~\{g r i d ~ s i z e ~ a n d ~ l i m i t s ~ o v e r ~ Z e t a\} ~$ ny = 10; ymin = 0.1; ymax = 1.0; \{grid size and limits over W_Wn\} var FD: File of double; $x, y, F:$ double; ix,iy: integer; function H (W_Wn, Zeta: double): double;

BEGIN

H: $=1.0 / \operatorname{Sqrt}\left(\operatorname{Sqr}\left(1-\operatorname{Sqr}\left(W _W n\right)\right)+\right.$ Sqr $(2 *$ Zeta*W_Wn $\left.)\right)$;
END; $\left\{\ldots \mathrm{H}\left(\mathrm{W} _\right.\right.$Wn,Zeta) $\}$
BEGIN
Assign(FD,'F1_15.D2D'); Rewrite(FD);
for iy:=1 to ny do BEGIN

 END; Close (FD) ;
END.
品
Program P1_156;

for $i:=1$ to Round (nz) do BEGIN
$\mathrm{Z}:=\mathrm{Zmin}+(\mathrm{Zmax}-\mathrm{Zmin}) /(\mathrm{nZ}-1)$ *(i-1);
for $j:=1$ to Round (nW) do BEGIN
$\mathrm{W}:=\mathrm{Wmin}+(\operatorname{Wmax}-\mathrm{Wmin}) /(\mathrm{nW}-1) *(\mathrm{j}-1)$;
$\mathrm{H}:=1 / \operatorname{Sqrt}(\operatorname{Sqr}(1-\operatorname{Sqr}(\mathrm{W}))+\operatorname{Sqr}(2 * \mathrm{Z} * \mathrm{~W}))$; Write(FD, H) ;
END;
END;
Close (FD) ;
END.
Program P1_23;

Generate file F1_23.D2D to plot inequality $\operatorname{Sqr}(\sin (x)+\sin (y))-(y * x+0.5)>0$

$\begin{array}{ll}x m a x=P i ; & \text { grid size and limits over } x\} \\ y m a x=P i ; & \text { \{grid size and limits over } y\}\end{array}$
$y m a x=P i ; ~ g r i d ~ s i z e ~ a n d ~ l i m i t s ~$
$x, y: ~ d o u b l e ; ~ i x, i y: ~ i n t e g e r ; ~$
$x m i n=-P i ;$
$y m i n=-P i ; ~$
uses CRT;
ny=406;
var File
function Ineq(x, y :double) : Boolean;
BEGIN
if $\operatorname{Sqr}(\sin (x)+\sin (y))-(y * x+0.5)>=0$ then
Ineq: =TRUE
Ineq: = FALSE;
END; $\{. . \operatorname{Ineq}(\mathrm{x}, \mathrm{y})\}$
BEGIN
rScr; Assign(FD,'F1_23.D2D'); Rewrite(FD);
iy:=1 to ny do BEGIN
$y:=y m i n+(y m a x-y m i n) /(n y-1) *(i y-1) ;$
for ix:=1 to nx do BEGIN
$\quad x:=x m i n+(x m a x-x m i n) /(n x-1) *(i x-1) ;$
\quad if NOT Ineq(x,y) then Write $(F D, x, y) ;$
END;
END;
Close (FD) ;
Write('Data file generated successfully. Press <CR>..'); ReadIn;

Program P1_24A;
Program P1_24A;

Program P1_24B;

Generate files F1_24B.DTA \& F1_24B.D2D to plot Archimedean spiral: $\mathrm{x}=$ Theta*cos(Theta) \& $\mathrm{y}=$ Theta*sin(Theta) with Tmin<Theta<Tmax in rad. Theta step is adjusted so that plot segment lengths are DLavg \pm DLtol. NOTE 1: If IncDT = 1/DecDT the 2nd repeat-until loop may become infinite. NOTE 2: Different IncDT or DecDT will reduce / increase FuncEvals.

[^1]$\mathrm{N}_{\mathrm{m}}^{\mathrm{m}}$
M $\mathrm{m} \mathrm{m}_{\mathrm{m}}^{\mathrm{n}} \mathrm{m}_{\mathrm{m}}^{\mathrm{m}} \mathrm{m}_{\mathrm{m}}^{\mathrm{m}}$ 옥 41
 ホ $\underset{\sim}{n}$ $\stackrel{+}{6}$ f $\stackrel{\infty}{\infty}$ 운 ก゙ \mathfrak{n} ำ เก 슨 Repeat

\[

$$
\begin{aligned}
& \text { if }(x<x \min) \text { then } x \min :=x ; \text { \{update } x m i n\} \\
& \text { if }(x>x \max) \text { then } x \max :=x ; \text { \{update } x \max \} \\
& \text { if }(y<y \min) \text { then } y \min :=y ; \text { \{update } y \min \} \\
& \text { if }(y>y m a x) \text { then } y \max :=y ; \text { \{update ymax\} }
\end{aligned}
$$
\]

WriteLn(FT,DL:12:8,' ', T:12:8,' ', x:14:10,' ',y:14:10); Inc (DataPts) ;
 Inc (DataPts); END
Rewrite (FT);
ClrScr; \{Next write the ASCII file header: \} WriteLn(FT,'x=Theta*cos(Theta)'); WriteLn(FT,'y=Theta*sin(Theta)'); WriteLn(FT,' DeltaL Theta x(Theta) y(Theta)');
FuncEvals:=0; \{reset function evaluation counter\}
xmin:=InfD; xmax:=-InfD; ymin:=InfD; ymax:=-InfD; WriteLn(FT,' DeltaL Theta x(Theta) y(Theta)');
FuncEvals:=0; \{reset function evaluation counter\}
xmin:=InfD; xmax:=-InfD; ymin:=InfD; ymax:=-InfD; WriteLn(FT,' DeltaL Theta x(Theta) y(Theta)');
FuncEvals:=0; \{reset function evaluation counter\}
xmin:=InfD; xmax:=-InfD; ymin:=InfD; ymax:=-InfD;

else BEGIN
if (DL > DLavg+DLtol) then BEGIN
OK:=FALSE; DT:=DecDT*DT; \{decrease T-step\} END
else OK:=TRUE;

until OK; \{..2nd repeat $\}$

 $\mathrm{T}:=\mathrm{T}+\mathrm{DT}$;until (T >= Tmax); \{..1st repeat $\}$
FxFy(Tmax, $\mathbf{x , y})$; \{calculate last point $\}$
DL: $=\operatorname{Sqrt}\left(\operatorname{Sqr}\left(k x *\left(x-x _1\right)\right)+\operatorname{Sqr}\left(k y *\left(y-y _1\right)\right)\right)$;
WriteLn(FT,DL:12:8,' ',Tmax:12:8,' ', x:14:10,' ',y:14:10); Write (FD, x, y) ;
Close(FT); Close(FD);
Inc(DataPts); \{Next write a short report on the screen:\}
WriteLn(` DLavg = \(\quad\), DLavg); WriteLn(` DLtol = \quad, DLtol:9); WriteLn(' There were ',DataPts,' data points written to file.'); WriteLn(' There were ',FuncEvals,' FxFy(..) function calls.'); Press <CR>..'); ReadLn;
END.

Program P1 25;

Generate files F1_25.DTA \& F1_25.D2D to plot an Archimedean spiral:
$\mathrm{x}=$ Theta*cos(Theta) \& y=Theta*sin(Theta) with Tmin<Theta<Tmax in rad.
Uses Coinc2Pts(..) and Colin3Pts(..) to optimize the graph.

> uses CRT, LibMath, LibGe2D;
> const Tmin $=0.0 ; \quad \operatorname{Tmax}=8 * P i ; \quad\{T h e t a$ limits $\}$
> \{number of plot points to extract x and y bounds \}
> \{number of actual plot points\}
$\stackrel{\oplus}{\infty}$

var FD: File of double; \{output file of double\} FT: Text; \{output ASCII file \} x, xmin, xmax, \{x point and x plot limits in world units $\}$ y, ymin,ymax, \{y point and y plot limits in world units x2,y2, x1,y1,Eps2,Eps3,T: double; iT, DataPts, FuncEvals: LongIn

BEGIN
Inc (FuncEvals);
Fx: $=$ Theta*cos (Theta) ;
Fy:=Theta*sin(Theta);
END; \{..FxFy() \}
procedure Write2File(T,x,y:double);
BEGIN
WriteLn(FT,T:10:6,' ',x:14:10,' ',y:14:10); \{write T, x, y to ASCII\} Write (FD, x, y); \{write x, y to the file of doubles\} Inc (DataPts);
END; \{..Write2File\}
label Label0, Label1, Label2;
Rewrite (FD);
ClrScr; \{Next write ASCII file header: \}
WriteLn(FT,'x=Theta*cos(Theta)');
WriteLn(FT,'y=Theta*sin(Theta)');
WriteLn(FT,' Theta $x(T h e t a) y(T h e t a) ') ;$
FuncEvals:=0; \{reset function evaluation counter\}
xmin:=InfD; xmax:=-InfD; ymin:=InfD; ymax:=-InfD;
for $i T:=1$ to nT0 do BEGIN \{Estimate xmin, xmax,ymin,ymax and kx,ky:\} $\mathrm{T}:=\operatorname{Tmin}+(\operatorname{Tmax}-\operatorname{Tmin}) /(\mathrm{nTO}-1) *(\mathrm{iT}-1) ; \quad$ \{generate current T \}

FxFy (T, $x, y)$; if $(\mathbf{x}<x \operatorname{xin})$ then $x m i n:=x ;$ \{update $x m i n\}$ if ($x>x \operatorname{xmax}$) if $(y<y m i n)$ if ($y>y$ ymax) then ymax: $=y ;$ \{update ymax
END; $\{$..for $\}$ if ($y>y$ ymax) then ymax: $=y ;$ \{update ymax\}
END; $\{$..for $\}$ if $(\mathbf{x}>\mathbf{x m a x})$ then $\mathbf{x m a x}:=\mathbf{x} ;$ \{update $x m a x\}$ if $(y<y$ min $)$ then $y m i n:=y ;$ \{update $y m i n\}$ Eps2: $=0.000002$ * (Sqr (xmax-xmin) $+\operatorname{Sqr}(y \max -y m i n))$; Eps3:=0.000001* (Sqr (xmax-xmin) +Sqr (ymax-ymin)) ; iT:=1;
FxFy(Tmin, $\mathbf{x}, \mathbf{y}) ; \quad\{$ compute first point $\}$ Write2File(Tmin, $x, y)$; \{write first point to file\} $x 2:=\operatorname{InfD} ; \quad y 2:=\operatorname{InfD} ; \quad x 1:=\operatorname{InfD} ; \quad y 1:=\operatorname{InfD} ;$ repeat
Label2:
x2:=x1; $y 2:=y 1 ; ~ x 1:=x ; ~ y 1:=y ;$ Label1:
Inc (iT);
 END;
until FALSE; \{..repeat $\}$
Label0:

Program P1_26A;

 Generate files F1_26A.DTA \& F1_26A.D2D to plot n equally spaced Archimedean spirals that grow one-at-a-time, of equations: $\mathrm{x}=$ Theta* $\cos ($ Theta) \& $\mathrm{y}=$ Theta*sin(Theta) with $0<$ Theta<2*Pi

[^2]
for iT:=1 to $n T$ do BEGIN
Theta: =Tmin+(Tmax-Tmin)/(nT-1)*(iT-1); $\mathrm{x}:=$ Theta*cos(Theta+Theta0); $\mathrm{y}:=$ Theta*sin(Theta+Theta0); WriteLn(FT,x:12:8,' $, \mathrm{y}: 12: 8$); Write(FD,x,y); END;
WriteLn(FT,'======'); \{ASCII line breaker\}
Write(FD, InfD,InfD); \{D2D file line breaker $\}$
END;
Close(FT); Close(FD);
Write('Data files generated successfully. Press <CR>..'); ReadLn; END;

Program P1_26B;

 Generate D_2D files F1_26B.DTA \& F1_26B.D2D to plot n equally spaced, simultaneously growing Archimedean spirals of equations: $x=$ Theta* $\cos ($ Theta) \& $y=$ Theta*sin(Theta) with Tmin<Theta<Tmax in rad.
 END; BEGIN BEGIN
Assign(FD, ${ }^{\text {F1_26B.D2D') ; Rewrite (FD) ; }}$
Assign(FT,'F1_26B.DTA'); Rewrite(FT);
ClrScr; \{Next write ASCII file header: \}
WriteLn(FT,'Polar plot of $\quad, \mathrm{n}, \mathrm{\prime}$
WriteLn(FT,' Archimedean spirals:');
x
WriteLn(FT,'Polar plot of $\quad, \mathrm{n}, \mathrm{\prime}$
WriteLn(FT,' Archimedean spirals:');
x
 END;
Elose (FT); Close(FD);
Write('Data files generated successfully. Press <CR>..'); ReadLn;畣

Program P1_31;

 for $i T:=2$ to $n T$ do BEGIN for iC: $=1$ to n do BEGINGenerate files F1_31.DTA \& F1_31.D2D to plot spiraling polygons

[^3]

\{number of plot points i.e. of Theta values \} 31; \{number of spirals\} $\begin{array}{ll}\text { var FD: File of double; } & \text { \{output file of double\} } \\ \text { FT: Text; } & \text { \{output ASCII file }\} \\ \text { Theta, Theta0, } x, y: \text { double; iT,i: integer; }\end{array}$ BEGIN
Assign (FD,'F1_31.D2D') ; Rewrite (FD); Assign (FT,'F1_31.DTA'); Rewrite(FT); ClrScr; \{Write ASCII file header\}
WriteLn(FT,'Spiraling Polygons:');
WriteLn (FT, \quad x y^{\prime});
for iT:=1 to $n T$ do BEGIN
var
for $i:=1$ to n do BEGIN

Program P1_33;

BEGIN
Assign(FD,Fnme+'.D2D'); Rewrite(FD);
Assign(FT,Fnme+'.DTA'); Rewrite(FT);
ClrScr; \{Write ASCII file header\}
WriteLn(FT,'Spiral polygon with ', $\mathrm{n}: 1$, , sides');
WriteLn(FT,' x
Randomize; \quad Initialize the built-in random number generator\}
Color: $=(2+0.01 *($ Random $(7)+1)) *$ InfD; \{assign random colors\} for iT:=1 to nT do BEGIN
f (iT MOD $10=0)$ then \{groups of 10 have the same color\}
Color: $=\left(2+0.0\right.$ 1* $^{*}($ Random(7) +1$\left.)\right)$ *InfD;
WriteLn(FT,Color:11,' , Color:11); \{new color in ASCII file\} Write (FD,Color, Color); \{new color in D2D file\} Write (FD,InfD,InfD); \{D2D line breaker\} WriteLn(FT,'======'); \{ASCII line breaker\} Theta: $=T \min +(\operatorname{Tmax}-T m i n) /(n T-1) *(i T-1)$; for $i:=1$ to n do BEGIN

Program P2_123;

Generate files F2 1.D3D, F2 2.D3D \& F2 3.D3D to plot the functions: Generate files F2_1.D3D, F2_2.D3D \& F2_3.D3D to plot the functions. F1 = 1/Sqrt(Sqr(1-Sqr (y))+Sqr (2*x*y)
F2 $=2 / \operatorname{Exp}(\operatorname{Sqr}(\operatorname{Sqrt}(x * x+y * y)-1.5))-1$;
F3 $=10 *(\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(y+1))-\operatorname{Exp}(-\operatorname{Sqr}(x-1)-\operatorname{Sqr}(y+1)))$
$+15 *(\operatorname{Exp}(-\operatorname{Sqr}(x-1)-\operatorname{Sqr}(y-1))-\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(2 * y-1))) ;$
$===\}$ uses CRT, LibMath;
const Fxy='F1'; \{'F1', 'F2' or 'F3' -- choose one $\}$
var FD: File of double;
\quad F: argF2; \{argF2 is defined in LibMath $\}$
\quad nx, ny, xmin, xmax, ymin,ymax, x,y, Fv: double;
\quad i,j: integer;
$\{\$ F+\}$
function $\mathrm{F} 1(\mathrm{x}, \mathrm{y}:$ double) : double;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
BEGIN
$18 \quad \mathrm{~F} 1:=1 / \operatorname{Sqrt}(\operatorname{Sqr}(1-\operatorname{Sqr}(\mathrm{y}))+\operatorname{Sqr}(2 * \mathrm{x} * \mathrm{y}))$;
F1:=1/Sqrt (Sqr (1-Sqr $(\mathrm{y}))+\operatorname{Sqr}(2 * \mathrm{x} * \mathrm{y}))$;
END;
function $\mathrm{F} 2(\mathrm{x}, \mathrm{y}:$ double) $:$ double; BEGIN
END;
function $F 3$ (x,y: double) : double;
var T1,T2: double;
BEGIN
$1:=\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(\mathrm{y}+1))-\operatorname{Exp}(-\operatorname{Sqr}(\mathrm{x}-1)-\operatorname{Sqr}(\mathrm{y}+1)) ;$ T2: $=\operatorname{Exp}(-\operatorname{Sqr}(x-1)-\operatorname{Sqr}(y-1))-\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(2 * y-1)) ;$ F3: $=10 * T 1+15 * T 2$;

$x m i n:=-1.5 ; ~ x m a x:=2.5 ; y m i n:=-2.5 ; y \max :=2.5 ;$
Assign(FD,'F2_3.D3D'); END;
Rewrite (FD) ; ClrScr; Write (FD, nx, ny, xmin, xmax, ymin,ymax); for $i:=1$ to Round (nx) do BEGIN $x:=x \min +(x \max -x \min) /(n x-1) *(i-1) ;$ $y:=y m i n+(y m a x-y m i n) /(n y-1) *(j-1) ;$ for $j:=1$ to Round (ny) do BEGIN
$y:=y \min +(y \max -y \min) /(n y-1) *(j-1)$
$\mathrm{Fv}:=F(x, y) ;$ Write (FD, Fv); END; Close (FD) ; END.

Program P2_3;

 $\{===$Generate files F2_3.D3D, F2_3.R3D, F2_3.T3D, F2_3.G3D to plot:
F3 $(\mathrm{x}, \mathrm{Y})=10 *(\operatorname{Exp}(-\operatorname{Sqr}(2 * \mathrm{X}+1)-\operatorname{Sqr}(\mathrm{y}+1))-\operatorname{Exp}(-\operatorname{Sqr}(\mathrm{x}-1)-\operatorname{Sqr}(\mathrm{y}+1)))$ $+15 *(\operatorname{Exp}(-\operatorname{Sqr}(x-1)-\operatorname{Sqr}(y-1))-\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(2 * y-1)))$;
 uses CRT,LibMath;
const nx : double = 481; ny : double $=481$;
var FD: File of double; \{output file of double\}
$\begin{array}{ll}\text { FR: File of real; } & \text { \{output file of real - same format as D3D\} } \\ \text { FT3D: Text; } & \text { \{output ASCII file - same format as D3D }\} \\ \text { FG3D: Text; } & \text { \{output ASCII file - (xi,yj, zij) format }\}\end{array}$
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Z：＝F3（x，y）；
Write（FD，Z）；
aReal：＝Z；Write（FR，aReal）；
WriteLn（FT3D，Z：16：6）；
WriteLn（FG3D，＇（＇，x：12：6，＇＇，y：12：6，＇$\left.\left., \mathrm{Z}: 12: 6,{ }^{\prime}\right)^{\prime}\right) ;$
END；
END；
Close（FD）；Close（FR）；Close（FT3D）；Close（FG3D）；
Write（＇Output files generated successfully！＜CR＞．．＇）； END．

Program P2＿ZLCS； towards zmin and zmax，to be appended to a CF3 file． zmin＝－12．8778；\quad zmax＝14．8243；
\｛output ASCII file\}
NrLCdn，NrLCup，k：integer；
const $\mathrm{z} 0=0.265$ ；
NrLC $=28$ ；
var FT：Text； z：double；

ーNのチーローかの BEGIN
Rewrite (FT) ;
if $(z 0-z m i n)>(z m a x-z 0)$ then BEGIN
NrLCdn：＝Round（NrLC＊（z0－zmin）／（zmax－zmin））； END
else BEGIN
NrLCup：＝Round（NrLC＊（zmax－z0）／（zmax－zmin））；
END；
for $k:=N r L C d n$ downto 1 do BEGIN
$\mathrm{z}:=\mathrm{z} 0-\operatorname{Exp}((\mathrm{k}-1) * \operatorname{Ln}(\mathrm{z} 0-\mathrm{zmin}+1) /(\operatorname{NrLCdn}-1))+1 ;$ WriteLn(FT, z:18:8);
END;
for $k:=1$ to NrLCup do BEGIN
$\quad z:=z 0+\operatorname{Exp}((k-1) * \operatorname{Ln}(z \max -z$
\quad WriteLn $(F T, z: 18: 8) ;$
$\mathrm{z}:=\mathrm{z0}+\operatorname{Exp}((\mathrm{k}-1) * \operatorname{Ln}(\mathrm{zmax}-\mathrm{z} 0+1) /(\operatorname{NrLCup}-1))-1 ;$
\quad WriteLn $(\mathrm{FT}, \mathrm{z}: 18: 8) ;$
END;
Clos
Close (FT) ;
Program P2_2T;
Generate file F2_2.TXT with 36 x 36 pts. to plot the function: F2=2/Exp (Sqr (Sqrt (x*x+y*)-1.5))-1 using Office Excel.
const $n x$: double $=36$; xmin: double $=-\mathrm{Pi} ; \quad$ xmax: double $=P i$; ymax: double = Pi; Assign(FT,'F2_2.TXT'); Rewrite(FT);
Write(FT,' $x \backslash y ~ ') ; ~$
for iy:=1 to Round(ny) do
\quad Write(FT,ymin+(ymax-ymin)/(ny-1)*(iy-1):9:4,' $)$;
WriteLn(FT);
for ix:=1 to Round(nx) do BEGIN $=========$
uses CRT;
const nx :
ny:
var FT: T BEGIN
x : =xmin+(xmax-xmin)/(nx-1)*(ix-1);
Write(FT, x:9:4,' ');
for iy:=1 to Round (ny) do BEGIN
$y:=y \min +(y \max -y \min) /(n y-1) *(i y-1)$;
F2: =2.0/Exp (Sqr (Sqrt (x*x+y*y)-1.5))-1.0;
Write(FT,F2:9:5,' '); END;
WriteLn(FT);
Clos
Write('Output ASCII file generated successfully. <CR>..'); ReadLn;
END.
Program P2_4;
D3D plot the function $F 4(x, y)=0.1 * x * y$
 uses CRT;
const $n x$: double $=496$; xmin: double $=-\mathrm{Pi} ; \quad$ xmax: double $=\mathrm{Pi}$; ny: double = 496; ymin: double =-Pi; ymax: double = Pi; var FD: File of double; \{output file of double\} ix,iy: integer; $x, y, F 4:$ double; BEGIN
ClrScr;
Assign (FD Write (FD, ny, nx, xmin, xmax, ymin,ymax); for ix:=1 to Round (nx) do BEGIN
$\mathrm{x}:=\mathrm{xmin}+(\mathrm{xmax}-\mathrm{xmin}) /(\mathrm{nx}-1)$ *(ix-1);
for iy:=1 to Round (ny) do BEGIN
$\mathrm{y}:=\mathrm{ymin}+(\mathrm{ymax}-\mathrm{ymin}) /(\mathrm{ny}-1) *(\mathrm{iy}-1) ;$
F4:=0.1*x*y;
어N N N N NN NㅜN N
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Write (FD, F4) ; END;

Close (FD) ;

 END.
Program P2_5;

 BEGIN
\{ Decomment one of the lines below!
Write('Output file generated successfully. <CR>..'); ReadLn;
END.

$\begin{cases}\text { Assign(FD,'F2_5N.D3D'); } & \text { Inf:=-1.0E30; } \\ \text { Assign(FD,'F2_5P.D3D'); } & \text { Inf:= 1.0E30; }\end{cases}$ Rewrite (FD) ; ClrScr;
Write (FD, ny, nx, xmin, xmax,ymin,ymax) ; for ix:=1 to Round (nx) do BEGIN
$x:=x m i n+(x m a x-x m i n) /(n x-1) *(i x-1)$;
for iy:=1 to Round(ny) do BEGIN
if ($x * x+y * y<2.25$) then $F:=\operatorname{Inf}$ else $F:=0.1 * x * y$; Write (FD, F) ;
END;
END;
Close (FD) ;
Write(`Outpu
会
ReadLn;
<CR>..');
$\stackrel{\sim}{\sim}{ }_{\sim}^{\circ} \stackrel{\sim}{N}$

$$
\begin{aligned}
& \text { Program P2_6; } \\
& \begin{array}{l}
\{== \\
\text { Generate file F2_6.D3D (501 x } 501 \text { points) to plot the inequality: }
\end{array} \\
& \operatorname{Sqr}(\sin (x)+\sin (\bar{y}))-\left(y^{*} x+0.5\right) \text { ò } 0
\end{aligned}
$$

double;
i;
xmax: double = Pi;
ymax: double =
ix,iy: integer;
function Ineq($x, y:$ double) : double;
if $\operatorname{sqr}(\sin (x)+\sin (y))-(y * x+0.5)>=0$ then
Ineq:=1.0E30
else
$\begin{aligned} & \text { Ineq: }=0.0 ; \\ & \text { END; } \quad\{\ldots \operatorname{Ineq}(x, y)\}\end{aligned}$
BEGIN
ClrScr;
Assign(FD,'F2_6.D3D'); Rewrite(FD);
Write (FD, nxy, nxy, xmin, xmax,ymin,ymax);
for ix:=1 to Round (nxy) do BEGIN
$\mathrm{x}:=\mathrm{xmin}+(\mathrm{xmax}-\mathrm{xmin}) /(\mathrm{nxy}-1) *(i x-1)$;
for iy:=1 to Round (nxy) do BEGIN
$y:=y m i n+(y m a x-y m i n) /(n x y-1) *(i y-1) ;$
$\mathrm{F}:=$ Ineq (x, y);
Write (FD, F) ; END;

ReadLn;
<CR>..');令

Program P2_7;

 else
F7_up: $=-1.0 \mathrm{E} 30$;
END; $\{$. . F7_up $(\mathrm{x}, \mathrm{y})\}$
function $\mathrm{F7}$ _dn(x,y: double) : double; BEGIN
f (2.89-x*x-y*y) >= 0 then
F7_dn: $=-\operatorname{Sqrt}\left(2.89-x * x-y^{*} y\right)$ else
F7_dn: $=+1.0$ E 30 ;
END; $\{\ldots \operatorname{Dn}(\mathrm{x}, \mathrm{y})\}$
BEGIN
ClrScr; Assign(FT,'F2_7.T3D'); Rewrite(FT); WriteLn(FT,' F7_up (x,y) F7_dn(x,y)'); WriteLn(FT, nX:16:9,' ',nX:16:9); WriteLn(FT, nY:16:9,' , nY:16:9);
WriteLn(FT,Xmin:16:9,' $\quad, X m i n: 16: 9) ;$ WriteLn(FT,Xmax:16:9,' $\quad, X m a x: 16: 9) ;$ WriteLn(FT,Ymin:16:9,' ',Ymin:16:9); WriteLn(FT,Ymax:16:9,' ',Ymax:16:9); for ix:=1 to Round(nx) do BEGIN
$\mathrm{x}:=\mathrm{xmin}+(\mathrm{xmax}-\mathrm{xmin}) /(\mathrm{nx}-1)$ *(ix-1); for iy:=1 to Round(ny) do BEGIN $y:=y \min +(y \max -y \min) /(n y-1) *(i y-1) ;$
z1:=F7_up $(x, y) ; \quad z 2:=F 7 _d n(x, y) ;$
 END;

Close (FT);

Write('Output file generated successfully. <CR>..'); ReadLn; END.

Program P2_8;

 Generate file F2 8.T3D (251 x 251 pts.) to plot on the same graph:

[^4]
$10 \mathrm{x}, \mathrm{y}, \mathrm{F} 4, \mathrm{~F} 2, \mathrm{Fu}, \mathrm{Fd}, \mathrm{F} 2 \mathrm{u}, \mathrm{F} 2 \mathrm{~d}, \mathrm{~F} 4 \mathrm{u}, \mathrm{F} 4 \mathrm{~d}$: double; i, ix,iy: LongInt;

END;
 END;

Close (FT);

ReadIn;

Write('Output file generated successfully. <CR>..'); END.
$\underset{\sim}{\sim}$

program P3_01A;

 Generate vectors t[..] and Y[..], plot them on the screen and copy the screen to files F3_01A.PCX and F3_01A.DXF Graph, \{Red,CloseGraph \} $\begin{aligned} \text { uses } & \text { Graph, } \\ & \text { LibMath, }\end{aligned}$

$21 \mathrm{Y}[\mathrm{i}]:=2 * \exp \left(-\mathrm{Z} * \mathrm{On}^{2} \mathrm{t}[\mathrm{i}]\right)$ *sin(Sqrt(1-Sqr(Z)) *On*t[i]+Pi/9);
END;
InitGr(0); \{switch to graphic mode ..\}
InitDXFfile(FileName+'. DXF'); \{prepare to copy the screen to DXF\}
PlotCurve(1, t,Y,nPts, Red);
PlotYaxis(1, 0, 5,2, 'Y(t) ');
PlotXaxis(1, 1, 6,3, 't [sec] ');
WritePCX(FileName+'.PCX', OK); \{copy the screen to PCX \}
CloseDXFfile; ReadLn; \{press <CR> to finish \}
CloseGraph;
END.
program P3_01B;

var t,Y: VDp; i: Integer; Ch: char; OK: Boolean;

$$
\text { for } i:=1 \text { to nPts do BEGIN }
$$

$$
\mathrm{t}[\mathrm{i}]:=(\mathrm{i}-1) *(\mathrm{tmax}-\mathrm{t} 0) /(\mathrm{nPts}-1) ;
$$

$\mathrm{Y}[\mathrm{i}]:=2 * \exp (-\mathrm{Z} * \mathrm{On} * \mathrm{t}[\mathrm{i}]) * \sin (\operatorname{Sqrt}(1-\operatorname{Sqr}(\mathrm{Z})) * O n * \mathrm{t}[\mathrm{i}]+\mathrm{Pi} / 9)$; END;

$$
\text { InitGr(0); \{switch to graphic mode\} }
$$

$$
\text { InitDXFfile(FileName+'.DXF'); \{prepare to copy the screen to DXF\} }
$$ NewPlot(1, FitBox, 150,80,500,430, 'Damped oscillation'); DrawBorder;

UpdateLimitsY(1, Y, nPts);
NewLimitsY(1, 1.1*GetYmax(1),1.15*GetYmin(1)); SetLineStyle(SolidLn, 0, ThickWidth);
SetDivLine (4, 10, 0.75); \{value 10 will cause the grid line\} PlotYaxis(1, 0, 6,2, 'Y(t) $\left.{ }^{\prime}\right)$;
PlotXaxis(1, 0, 4,5, 't [sec] `);
WritePCX (FileName+'. PCX', OK); \{copy the screen to PCX \}
CloseDXFfile; WaitToGo(Ch); \{press any key to finish\} CloseGraph; END.

program P3_02;

 Generate vectors t[..], Y1[..] and Y2[..], plot them on the screen and copy the screen to files F3_02.PCX and F3_02.DXF
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

LibDXF,
Unit_PCX,
LibPlots;
\{WritePCX \}
\{InitDXFfile, CloseDXFfile\}
\{NewPlot, FitBox, UpdateLimitsX, UpdateLimitsY, . .
ResizeY, SetMarker, PlotCurve, PlotXaxis, PlotYaxis \}
'F3_02'; \{.DXF or .PCX \}

- \{should not exceed Pmax $=502\}$
tmax $=15.0 ;$ \{start and end time [s]\}
double; i: Integer; Ch: char; OK: Boolean;
for $i:=1$ to nPts do BEGIN
$t[i]:=(i-1) *(t m a x-t 0) /(n$
const FileName = nPts = 250; s.z/ted = uo
$\mathrm{tO}=0.0 ;$
$\mathrm{t}, \mathrm{Y} 1, \mathrm{Y} 2: \mathrm{VDp} ;$ var Z:=0.2;
$\mathrm{Y} 1[i]:=2 * \exp (-Z * O n * t[i]) * \sin (S q r t(1-\operatorname{Sqr}(Z)) * O n * t[i]+P i / 9) ;$
$Z:=0.3 ;$
Y2[i]:=2* $\exp (-Z * O n * t[i]) * \sin (S q r t(1-S q r(Z)) * O n * t[i]+P i / 9) ;$ END;
InitGr(0);
InitDXFfile(FileName+'.DXF'); \{prepare to copy the screen to DXF\} NewPlot(1, FitBox, 60,60,620,420, 'Damped oscillations'); UpdateLimitsX(1, $t, n P t s) ; \quad\{g e t$ tmin \& tmax from $t[]\}$
UpdateLimitsY(1, Y1, nPts); \{get Ymin \& Ymax from Y1[]\}
UpdateLimitsY(1, Y2, nPts); \{update Ymin \& Ymax using Y2[]\}
Resizey(1, 0.2); \{expand Y-axis nicely by about 10\% both directions\} PlotCurve(1, t,Y1,nPts, Blue);
SetMarker(4, :<>') ;
PlotCurve(1, $t, Y 1, n P t s, ~-B l u e) ;$
PlotYaxis(1, 0, 7,2, ' Y1 (t)
PlotXaxis (1, 1, 4,5, 't [sec] SetMarker(2, '|O');
PlotCurve(1, t,Y2,nPts, -Red);

PlotYaxis(1, 0, 7,2, ' Y2(t)'); WritePCX (FileName+'. PCX', OK) ; CloseDXFfile; WaitToGo(Ch); CloseGraph;

program P3_03A;

\{copy the screen to PCX\} \{Press any key to finish\}

1
2
3
4
5
6
7
8
9
10

[^5]
\{copy the screen to PCX $\}$
\{press any key to finish\}

WritePCX(FileName+'.PCX', OK);
CloseDXFfile; WaitToGo(Ch);
CloseGraph;
END.
Program P3_12; Assign(FT, FileName); Rewrite(FT);
ClrScr; \quad Next will write ASCII file

ClrScr; Next will write ASCII file header: \}
WriteLn(FT,' Theta0 Thetal Theta2'); WriteLn(FT,Theta_min:9:6,' for $i:=1$ to n do BEGIN

Theta0:=Theta_min+(Theta_max-Theta_min)/(n-1)*(i-1); \{original angle\} Theta0:=Theta0;

Theta1:=ArcTan (sin(Theta0)/cos(Theta0)); \{break Theta0 with ArcTan\} Theta2:=ATan2 (sin(Theta0), cos(Theta0)); \{break Theta0 with ATan2 \} WriteLn(FT,Theta0:9:6,' ',Theta1:9:6,' ',Theta2:9:6); END;

Close (FT);
Write('File END.
 1
2
3
4
5
6
7
8
9 10 12
13
$\stackrel{H}{-}$ 15

16
$\stackrel{\text { N }}{\stackrel{\infty}{n}}$
$\stackrel{\infty}{\square}$
옹
$\stackrel{-}{N}$
N $\stackrel{H}{N}$
Program P3_23;

$\begin{array}{rll}\mathrm{nC}=8.0 ; & \text { \{total number of coils }\} \\ \mathrm{n} 1=36 ; & \text { \{number of vertices per } \\ \mathrm{p}=1 / 8 ; & \text { \{axial pitch \}}\end{array}$

BEGIN	
r:=Rf*Sqr (Theta) (2.0*Pi*nC)) ;	
$\mathrm{X}:=\mathrm{r} * \cos$ (Theta); $\mathrm{Y}:=\mathrm{r*} \sin$ (Theta) ;	$\mathrm{Z}:=\mathrm{p} *$ Theta/(2*Pi) ;
END; \{.. XYZ()\}	
BEGIN	
Clrscr;	
Assign(FT, FileName) ; Rewrite(FT) ;	
n : =Round ($\mathrm{nC*} \mathrm{n}^{\text {1) }}$;	
for $i:=1$ to n do BEGIN	
$\mathrm{t}:=(2 * \mathrm{Pi} * \mathrm{nC} / \mathrm{n}) *(\mathrm{i}-1)$;	
XYZ(t, X, Y, z$)$;	
WriteLn(FT,'(`,X:16:6,' ',Y:16:6,' ', Z:16:6,')');	
END;	
Close (FT) ;	
Write('File '+FileName+' generated su	ccessfully. <CR>..');
END.	

Program P3 25;
Program P3_25

uses CRT;
const FileName = 'F3_25.G3D';
var FT: Text; $\quad t, t m i n, t m a x$,
nt,it: integer;
nt,it: integer;
program P3_31;
 BEGIN

> Rewrite (M3D1);
> Assign(M3D1,'F3_31SW.M3D');

$$
\text { uses LibMath, \{VDn }\}
$$

$$
\{\text { vect } 3, \operatorname{mat} 33, \mathrm{RT}\}
$$

 $\{===========$ Writes to F3_31SW.M3D the commands to insert block "S_wheel2" and to file F3_31UCS.M3D the commands to insert a XYZ frame attached to "S_wheel2".

program P4_01;

program P4_02;

$$
\begin{aligned}
& \text { Finds the root of function } \mathrm{F} 2(\mathrm{x})=(\mathrm{x} * \mathrm{x} * \mathrm{x}-3 * \mathrm{x}) /(\mathrm{x} * \mathrm{x}-4) \text { closest to } \mathrm{x}=1
\end{aligned}
$$

F2: $=(x * x * x-3 * x) /(x * x-4)$ Else
F2: =InfD;
\{\$F-\}
$\mathrm{x}:=1.0$;
ZeroStart(F2, Step, x);
WriteLn(' $x=$ ', $x, \quad F 2(x)=', F 2(x))$;
WriteLn('Function calls=',NrFev0); END.

program P4_03;

WriteLn(`Function calls=',NrFev0); ReadLn; \{press <CR>\}
END.
Finds the roots of functions
$\mathrm{F} 1(\mathrm{x})=1 /(\operatorname{Sqr}(\mathrm{x}-1)+0.1)+1.0 /(\operatorname{Sqr}(\mathrm{x}-3)+0.2)-3$ over interval $[0,4]$ $\mathrm{F} 2(\mathrm{x})=(\mathrm{x} * \mathrm{x} * \mathrm{x}-3 * \mathrm{x}) /(\mathrm{x} * \mathrm{x}-4)$ over interval $[-4,4]$

program P4_04;
\{\$F-\}
BEGIN
$\mathrm{a}:=0.0 ; \mathrm{b}:=4.0$;
ZeroGrid (F1, $\mathrm{a}, \mathrm{b}, 25, \mathrm{X})$;
 END.

END; \{.. F2(x) \}
\{\$E\}
3
\{press <CR>\}
 situated in the interval $[1,3]$.
 uses LibMin1;
const $\mathrm{a}=1.0 ; \mathrm{b}=3.0$;
var $x, v F:$ double; \{\$F+ BEGIN 1
2
3
4
5
6
7
8
9
function $F 1(x:$ double) : double;
F1: $=1 /(\operatorname{Sqr}(x-1)+0.1)+1.0 /(\operatorname{Sqr}(x-3)+0.2)-3 ;$
END;
$\{\$ F-\}$
BEGIN
16 Brent (F1, a,b, vF,x);
WriteLn('x=', $x, ' \quad F 1(x)=', v F)$;
Write('Obj. function calls=',NrFev1); ReadLn; \{press <CR>\} END.

program P4_05;

Finds the minimum of function $F 1(x)=1 /(\operatorname{Sqr}(x-1)+0.1)+1 /(\operatorname{Sqr}(x-3)+0.2)-3$ situated closest to $\mathrm{x}=0.75$
 uses LibMin1;
var $x, v F:$ double;
$\{\$ \mathrm{~F}+$ \}
function $F 1(X:$ double) : double; BEGIN
F1: $=1 /(\operatorname{Sqr}(x-1)+0.1)+1 /(\operatorname{Sqr}(x-3)+0.2)-3 ;$

$\{\$ \mathrm{~F}-\}$
BEGIN
x:=0.75;
BrentStart(F1, 0.01, VF, x);
WriteLn(' $x=$ ', x, \quad F1 (x) =', VF);
Write('Obj. function calls=',NrFev1); ReadLn; \{press <CR>\} END.
program P4_06;
 $\mathrm{F} 2(\mathrm{x})=(\mathrm{x} * \mathrm{x} * \mathrm{x}-3 * \mathrm{x}) /(\mathrm{x*} \mathrm{x}-4)$ situated in the interval $[-4,4]$
$===-$

[^6]
BrentGrid(F2, a,b,20, vF,X); WriteLn('x1=', X[1], $\quad F 2(x 1)=', \mathrm{VF}[1])$; WriteLn('x2=', $\mathrm{x}[2], \mathrm{F} 2(\mathrm{x} 2)=$ ', $\mathrm{VF}[2]$); WriteLn ('x3=', X[3],' F2(x3) =', VF[3]); WriteLn('x4=', X[4], $F 2(x 4)=$ ', $\mathrm{VF}[4]$); WriteLn('Obj. function calls=',NrFev1); NrFev1:=0;
BrentGrid(_F2, a,b,20, vF,X); WriteLn('x1=', x[1], $\quad F 2(x 1)=',-v F[1])$; WriteLn('x2=', X[2], $\quad \mathrm{F} 2(\mathrm{x} 2)=$ ', -vF[2]); WriteLn('x3=', X[3],' $F 2(x 3)=$ ', $-\mathrm{vF}[3])$; WriteLn('x4=', X[4],' F2(x4)=',-VF[4]); WriteLn(`Obj. function calls=',NrFev1); ReadLn; \{press <CR>\}苗

program P4_08;

3 Uses Nelder-Mead Simplex method to minimize function:	
4	$\operatorname{Fn}(\mathrm{x}, \mathrm{y})=10 *(\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(\mathrm{y}+1))-\operatorname{Exp}(-\operatorname{Sqr}(\mathrm{x}-1)-\operatorname{Sqr}(\mathrm{Y}+1))$)
5	$+15 *(\operatorname{Exp}(-\operatorname{Sqr}(\mathrm{x}-1)-\operatorname{Sqr}(\mathrm{y}-1))-\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(2 * y-1))$;
6	
7	uses DOS, CRT,
8	LibMath, \{VDn\}
9	LibMinN; \{NelderMead\}
10	const Nvar $=2$;
11	LimAF $=$ 5000; \{maximum obj. function calls \}
12	var XX, XXmin, XXmax: VDn; vF: double; PlsMns,i,j: integer;
13	\{ $\$ \mathrm{~F}+$ \}
14	function Fn(vx: VDn) : double;
15	var $\mathrm{x}, \mathrm{y}, \mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4$: double;
16	BEGIN
17	x:=vX[1] ;
18	Y: =vX[2];
19	T1: $=\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(\mathrm{Y}+1)$)
20	T2: =-Exp (-Sqr ($\quad \mathbf{x - 1})-\operatorname{Sqr}(\mathrm{Y}+1)$) ;
21	T3: = Exp (-Sqr ($\quad \mathbf{x - 1})-\operatorname{Sqr}(\mathrm{y}-1)$) ;
22	T4: = - Exp (-Sqr (2 * $\mathrm{x}+1)-\operatorname{Sqr}(2 * y-1)$)
23	Fn:=PlsMns* (10* (T1+T2) +15* (T3+T4)) ;
24	END;
25	\{ \$F- $\}$
26	BEGIN
27	ClrScr
28	XXmin [1]:=-1.5; XXmax[1]:=2.5;
29	XXmin [2]:=-2.5; XXmax[2]:=2.5;
30	PlsMns:=+1; \{'+' for minimization, '-' for maximization \}
31	for i:=1 to Nvar do XX[i]:=InfD;

$\begin{array}{lllllllllll}N & m & \dot{H} & n & 6 & N & \infty & \sigma & 0 & \dot{H} & N\end{array}$

program P4_09;

x:=vX[1];
$\mathrm{y}:=\mathrm{vx}[2]$;
T1:= $\operatorname{Exp}(-\operatorname{Sqr}(2 * x+1)-\operatorname{Sqr}(\mathrm{y}+1))$;
T2:=-Exp(-Sqr($x-1)-\operatorname{Sqr}(\mathrm{y}+1))$; T3:= $\operatorname{Exp}(-\operatorname{Sqr}(x-1)-\operatorname{Sqr}(y-1))$;
Fn:=-Exp (-Sqr $(2 * x+1)-\operatorname{Sqr}(2 * y-1)) ;$
Fn:=PlsMns*(10*(T1+T2)+15*(T3+T4));
END; \{.. Fn() \}
\{ SEGIN
ClrScr;
TotalFev: $=0 ;$
XXmax[1] $:=2.5$
XXmax[2]:=2.5;
for $j:=1$ to 100 do BEGIN
xx[i]:=xXmin[i]+Random*(XXmax[i]-XXmin[i]);
NelderMead(', Fn, Nvar, LimAF, 1.0E-32, XXmin, XXmax, vF, XX); TotalFev:=TotalFev+NrFevN;
if (vF < vFbest) then BEGIN
vFbest:=vF;
for i:=1 to Nvar do xxbest[i]:=XX[i];
END;
for $i:=1$ to Nvar do WriteLn('x',i:1,' =', XXbest[i]);
WriteLn(`obj. function calls=',TotalFev); ReadLn; \{Press <CR>\} END.

Program F4_05A;

[^7]Theta: =Atan2 (y, x);
if (Theta < InfD) t
if $\left(x * x+y^{*} y\right)>S q$ if (Theta < InfD) then BEGIN
if $(x * x+y * y)>\operatorname{Sqr}(r T+r S * \cos (n * T h e t a))$ then Exit;
END;
Fn: $=0.1 * x * y ;$
END; $\{$. Fn ()$\}$
BEGIN if (Theta < InfD) then BEGIN
if $(x * x+y * y)>\operatorname{Sqr}(r T+r S * \cos (n * T h e t a))$
END;
Fn: $=0.1 * x * y ;$
END; $\{$. Fn ()$\}$
BEGIN if (Theta < InfD) then BEGIN
if $(x * x+y * y)>\operatorname{Sqr}(r T+r S * \cos (n * T h e t a))$
END;
Fn: $=0.1 * x * y ;$
END; $\{$. Fn ()$\}$
BEGIN
Assign(FD,'F4_5A.D3D'); Rewrite(FD);
Write (FD, nx, ny, xmin, xmax, ymin, ymax);
for ix:=1 to Round(nx) do BEGIN
x:=xmin+(xmax-xmin)/(nx-1)*(ix-1);
for iy:=1 to Round(ny) do BEGIN
$\quad y:=y m i n+(y m a x-y m i n) /(n y-1) *(i y-1) ;$
$\quad z:=F n(x, y) ; \quad$ Write (FD,z);
END; if (Theta < InfD) then BEGIN
if $(x * x+y * y)>$ Sqr $(r T+r S * \cos (n * T h e t a))$
END;
Fn: $=0.1 * x * y ;$
END; $\{$. Fn ()$\}$
BEGIN

program P4_10;

var x, y, Theta:double; j:Byte;
Fn:=InfD;
$\mathrm{x}:=\mathrm{vx}[1]$; $\mathrm{y}:=\mathrm{vx}[2]$;
Theta:=Atan2 (y, x);
if (Theta < InfD) then BEGIN
then Exit;

Fn:=PlsMns*0.1*x*y;
END; $\{. . \operatorname{Fn}()\}$
$\{\$ \mathrm{~F}-\}$

TotalFev:=0;
xXmin[2]:=-2.5; \quad XXmax[2]:=2.5; for $j:=1$ to 100 do BEGIN
for $i:=1$ to Nvar do
xx[i]:=xXmin[i]+Random*(XXmax[i]-XXmin[i]); NelderMead('', Fn, Nvar, LimAF, 1.OE-32, XXmin, XXmax, vF, XX); TotalFev:=TotalFev+NrFevN; if (vF < vFbest) then BEGIN vFbest:=vF;
for i:=1 to Nvar do XXbest[i]:=xX[i];
END;
for i:=1 to Nvar do WriteLn('x',i:1,' =', Xxbest[i]); WriteLn('F_opt=', PlsMns*vFbest);
WriteLn('Obj. function calls=',TotalFev); ReadLn; \{Press <CR>\}会

Program F4_5B;

Generate file: F4_5B.D2D to plot the parametric curve: $y=(r T+r S * \cos (n * T h e t a)) * \sin ($ Theta $)$ with $0<$ Theta $<2 P i$
 const $\operatorname{Tmin}=0.0 ; \quad \operatorname{Tmax}=2 * P i ; \quad\{$ limits of Theta \} $n T=361$; \{number of plot points\} var FD: File of double;
n,iT: integer;
Assign(FD,'F4_5B.D2D'); Rewrite(FD);

$$
\begin{aligned}
& \mathrm{rT}:=1.0 ; \\
& \mathrm{rS}:=0.2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n}:=8 ; ~
\end{aligned}
$$

\{median circle radius $\}$
\{radial oscillation amplitude $\}$
\{number of radial oscillations\} for iT:=1 to $n T$ do BEGIN

Theta: $=\operatorname{Tmin}+(\operatorname{Tmax}-\operatorname{Tmin}) /(n T-1) *(i T-1) ;$
$x:=(r T+r S * \cos (n * T h e t a)) * \cos ($ Theta $) ;$
$\mathrm{y}:=\left(\mathrm{rT}+\mathrm{rS} \mathrm{S}^{*} \cos (\mathrm{n} *\right.$ Theta) $) * \sin ($ Theta $) ;$
Write (FD, x, y) ;
END;
Close (FD);
END.

program P4_12;

Uses Nelder-Mead Simplex method to minimize the function
$\mathrm{F} 5=0.7854 * \mathrm{x} 1 *$ Sqr $(\mathrm{x} 2) *(3.3333 * \operatorname{Sqr}(\mathrm{x} 3)+14.9334 * \mathrm{x} 3-43.0934)$
$-1.508 * x 1 *(\operatorname{Sqr}(x 6)+\operatorname{Sqr}(x 7))+7.4777 *(x 6 * x 6 * x 6+x 7 * x 7 * x 7)$;
subjected to:

$$
\begin{aligned}
2.6 & <=\mathrm{x}[1]
\end{aligned}<=3.6 ;
$$

$$
7.3<=x[5]<=8.3 ;
$$

$$
5.0<=x[7]<=5.5
$$

$$
\begin{aligned}
& 0.7<=\mathrm{x}[2]<=0.8 ; \\
& 7.3<=\mathrm{x}[4]<=8.3 ; \\
& 2.9<=\mathrm{x}[6]<=3.9 ;
\end{aligned}
$$

$$
\begin{aligned}
& ==\} \\
& \text { uses } \begin{array}{l}
\text { DOS, CRT, } \\
\\
\text { LibMath, \{VDn\} } \\
\text { LibInOut, \{MyVal, MySt, BackUpFile\} } \\
\text { LibMinN; \{NelderMead\} } \\
\text { const Nvar }=7 ; \text { \{number of variables \} } \\
\text { LimAF }=20000 ;\{\text { max function calls per iterations \} } \\
\text { var xx, XXmin, XXmax, XXbest: VDn; } \\
\text { vF, vFbest: double; i,j: Word; TotalFev: LongInt; }
\end{array} .
\end{aligned}
$$

FT:Text;
$\{\$ \mathrm{~F}+\}$
우N

26	for i:=1 to Nvar do
27	if (vX[i] < XXmin [i]) OR (vX[i] > XXmax[i]) then EXIT;
28	x1:=vx[1]; $\mathrm{x} 2:=\mathrm{vx}[2] ; \mathrm{x} 3:=\mathrm{vx}[3] ; \mathrm{x} 4:=\mathrm{vx}[4]$;
29	x5:=vX[5]; $\mathrm{x} 6:=\mathrm{vX}[6] ; \mathrm{x} 7:=\mathrm{vX}[7]$;
30	TT: =3.3333*Sqr ${ }^{\text {(x3) }}+14.9334 * x 3-43.0934$;
31	TT: $=0.7854 * x 1 * S q r(x 2) * T T ;$
32	TT: =TT - 1.508*x1*(Sqr (x6) + Sqr (x7)) ;
33	TT: =TT + 7.4777*(x6*x6*x6 + x7*x7*x7) ;
34	F5:=TT + 0.7854*(x4*Sqr (x6) + x5*Sqr (x7)) ;
35	END; $\{.$. F5 () $\}$
36	\{ \$F-\}
37	BEGIN
38	ClrScr;
39	XXmin [1]:= 2.6; \quad XXmax [1]:= 3.6;
40	XXmin [2]:= 0.7; \quad XXmax [2]:= 0.8;
41	XXmin [3]:=17.0; \quad XXmax [3]:=28.0;
42	XXmin [4]:= 7.3; XXmax[4]:= 8.3;
43	XXmin[5]:= 7.3; XXmax[5]:= 8.3;
44	XXmin [6]:= 2.9; \quad XXmax[6]:= 3.9;
45	Xxmin [7]:= 5.0; \quad xxmax[7]:= 5.5;
46	vFbest:=InfD; TotalFev: $=0$;
47	WriteOutN:=FALSE; \{do not displays search status info\}
48	for i:=1 to Nvar do \{first initial guess ..\}
49	xxbest[i]:=xXmin[i]+0.5*(XXmax[i]-XXmin[i]);
50	for $\mathrm{j}:=1$ to 500 do

Program P4_14;

 Generates data files to plot using D 2D the design space and performance space of the bicriterion minimization problem: F1=pi/4* ($L-x 1$) * (D1^2-x2^2) +x1*(D2^2-x2^2)) and $\mathrm{F} 2=64 * \mathrm{~F} /(3 * \mathrm{pi} * \mathrm{E}) *\left(\left(\mathrm{~L}^{\wedge} 3+\mathrm{x} 1^{\wedge} 3\right) /\left(\mathrm{D} 1^{\wedge} 4-\mathrm{x} 2^{\wedge} 4\right)+\mathrm{x} 1^{\wedge} 3 /\left(\mathrm{D} 2^{\wedge} 4-\mathrm{x} 2^{\wedge} 4\right)\right)$ subjected to$32 * D 1 * F * L /\left(\right.$ pi* $\left.^{*}\left(\mathrm{D} 1^{\wedge} 4-\mathrm{x} 2^{\wedge} 4\right)\right)$
$32 * \mathrm{D} 2 * \mathrm{~F}$ x1/(pi*(D2^4-x2^4))$<=$ Sigma_Y
x2 <= 75;

> uses CRT, LibMath; var FD1,FD2: File of double;
$\mathrm{x} 1, \mathrm{x} 1$ min, x max, $\mathrm{x} 2, \mathrm{x} 2 \mathrm{~min}, \mathrm{x} 2 \mathrm{max}, \mathrm{F} 1, \mathrm{~F} 2:$ double;
$\mathrm{nx} 1, \mathrm{nx} 2, \mathrm{i}, \mathrm{j}:$ word; const L=1000; D1=100; D2=80; E=206E3; F=15000; Sigma_Y=220; BEGIN
F12: =FALSE;
if ($\mathrm{x} 1<0$) then Exit;
if (x1 > L) then Exit;
if (x2 < 40) then Exit;
؛ 7 Ṭx ؛ 7 Ṭx F1:=pi/4*((L-x1)*(D1*D1-x2*x2) + x1*(D2*D2-x2*x2)); F2: = (Pow (L, 3) - Pow (x1, 3)) /(Pow (D1,4)-Pow (x2,4)); F2:=Pow (x1, 3)/(Pow (D2,4)-Pow (x2,4)) + F2; F2: $=64 * \mathrm{~F} /(3 * \mathrm{pi} * \mathrm{E}) * \mathrm{~F} 2$;
F12:=TRUE;

$$
\begin{aligned}
& \text { END; }\{\text {. . F12 () \} } \\
& \text { BEGIN }
\end{aligned}
$$

nx1:=250; x1min:=0.0; x1max:=1000;
x2max:=100; ClrScr;
; Rewrite(FD1);
Assign(FD2,'F4_10B.D2D'); Rewrite(FD2);
for $i:=1$ to $n \times 1$ do BEGIN
x1:=x1min+(x1max-x1min)/(nx1-1)*(i-1);
> for $\mathrm{j}:=1$ to nx 2 do BEGIN
> $\mathrm{x} 2:=\mathrm{x} 2 \mathrm{~min}+(\mathrm{x} 2 \max -\mathrm{x} 2 \min) /(\mathrm{nx} 2-1) *(\mathrm{j}-1)$; if F12 (x1, x2, F1,F2) then BEGIN Write (FD1, $\mathrm{x} 1, \mathrm{x} 2)$;
Write (FD2, F1, F2); END;

> WriteLn(i:4,' /', nx2:4);
> END;
Close(FD1); Close(FD2);
END.
Program P4_15;

Generates data files to plot using D_2D the design space and
performance space of the bicriterion minimization problem:
$\mathrm{F} 1=0.4 * \mathrm{x} 1+\mathrm{x} 2 \quad \& \quad \mathrm{~F} 2=1.0+\mathrm{x} 1 * \mathrm{x} 1-\mathrm{x} 2+0.2 * \cos (4.75 * \mathrm{x} 2)$ subjected to:
$0.8 * x 1 * x 1+x 2 * x 2<=1.0$

19 END; \{.. F12() \}
BEGIN

Rewrite (FD1);

Rewrite(FD2);
of random points\}

program P4_16;

LimAF = 25000; \{max function calls per iterations \} var $\mathrm{Xx}, \mathrm{xxmin}, \mathrm{XXmax}, \mathrm{xxbest}$: VDn;
MiMax, Fmin,Fmax, F1min,F1max, F2min,F2max, W1,W2, F1,F2, VF, vFbest: double;
FT: Text; $i, j:$ Word; Totalfev: LongInt;
$\{\$ F+\}$
function F12(vX: VDn): double;
var $\mathrm{x} 1, \mathrm{x} 2$: double;
BEGIN
F12:=InfD;
x1:=vX[1]; $x 2:=v X[2] ;$ if $(0.8 * x 1 * x 1+x 2 * x 2>1.0)$ then Exit;
F1: $=0.4 * x 1+x 2 ;$
F2: $=1.0+x 1 * x 1-x 2+0.2 * \cos (4.75 * x 2) ;$
F12: $:=\operatorname{MiMax*}(\mathrm{W} 1 *(F 1-\mathrm{F} 1 \min) /(\mathrm{F} 1 \max -\mathrm{F} 1 \min)+\mathrm{W} 2 *(\mathrm{~F} 2-\mathrm{F} 2 \min) /(\mathrm{F} 2 \max -\mathrm{F} 2 \min)) ;$
END;

$$
\begin{aligned}
& \{\$ F-\} \\
& \text { BEGIN }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{XXmin}[1]:=-1.2 ; \quad \text { XXmax }[1]:=1.2 ; \\
& \text { XXmin}[2]:=-1.2 ; \quad \text { XXmax[2]:=1.2; } \\
& \text { Assign(FT,'P4_16.TXT'); Rewrite }(F T) ;
\end{aligned}
$$

x2');

$$
\begin{aligned}
& \text { ClrScr; WriteOutN:=FALSE; } \quad \text { \{NelderMead search status info OFF\} } \\
& \text { F1min:=0.0; F1max:=1.0; F2min:=0.0; F2max:=1.0; } \\
& \text { W1:=+1.0; W2:=0.0; }
\end{aligned}
$$

$$
\text { MiMax:=-1; } \quad\{+1 \text { for minimization and }-1 \text { for maximization }\}
$$

$$
\text { for } i:=1 \text { to Nvar do XX[i]:=XXmin[i]+Random* (XXmax[i]-XXmin[i]); }
$$ NelderMead('', F12,Nvar, LimAF, 1.0E-19, XXmin, XXmax, Fmax, XX); MiMax:=+1; $\{+1$ for minimization and -1 for maximization $\}$ for i:=1 to Nvar do Xx[i]:=xXmin[i]+Random* (XXmax[i]-XXmin[i]); NelderMead(', F12,Nvar, LimAF, 1.0E-19, XXmin, XXmax, Fmin, XX);

F1min:=Fmin; F1max:=-Fmax; W1:=0.0; W2: =+1.0; for $i:=1$ to Nvar do Xx[i]:=xxmin[i]+Random* (xXmax[i]-xXmin[i]); NelderMead(' ${ }^{\prime}, F 12$, Nvar, LimAF, 1.0E-19, XXmin, XXmax, Fmax, XX); MiMax:=+1; $\quad\{+1$ for minimization and -1 for maximization $\}$ for $i:=1$ to Nvar do XX[i]:=XXmin[i]+Random*(XXmax[i]-XXmin[i]); NelderMead('',F12,Nvar, LimAF, 1.0E-19, XXmin, XXmax, Fmin, XX); F2min:=Fmin; F2max:=-Fmax;
MiMax:=+1; \{+1 for minimization and -1 for maximization\} W2: =-0.01;
Repeat
$\mathrm{W} 2:=\mathrm{W} 2+0.01 ; \quad \mathrm{W} 1:=1.0-\mathrm{W} 2$;
WriteLn('Pareto point ',W1:1:5,'/',W2:1:5); vFbest:=InfD;
TotalFev:=0;
for i:=1 to Nvar do \{first initial guess\}
XX[i]:=xXmin[i] +Random* (XXmax[i]-XXmin[i]);
for $j:=1$ to 10 do BEGIN
for i:=1 to Nvar do BEGIN \{initial guess based on previous XX \}
Repeat
xx[
$\quad \mathrm{xx}[\mathrm{i}]:=\mathrm{xx}[\mathrm{i}]+($ Random-0.5)/j*(XXmax[i]-XXmin$[i]) ;$
Until
(XXmin[i] <= XX[i]) AND (XX[i] <= XXmax[i]);
NelderMead(', F12,Nvar, LimAF, 1.0E-19, XXmin, XXmax, vF,XX);
TotalFev:=TotalFev+NrFevN; if (vF < vFbest) then BEGIN
vFbest:=vF; for i:=1 to Nvar do XXbest[i]:=XX[i];
END;
for i：＝1 to Nvar do XX［i］：＝XXbest［i］； $\mathrm{VF}:=\mathrm{F} 12(\mathrm{XX})$ ；
＇，xx［1］：16，＇
＇，$x \mathrm{x}[2]: 16)$ ；

が゚ํㅅํ
 ન゙ッツ 15 17 19 function F12（vX： $\mathrm{L}=1000$ ； $\mathrm{D} 1=100$ ；D2＝80； E
const $L=1000 ; \mathrm{D} 1=100 ; \mathrm{D} 2=80 ; \mathrm{E}=206 \mathrm{E} 3 ; \mathrm{F}=15000$ ；Sigma＿Y＝220；
var $\mathrm{x} 1, \mathrm{x} 2:$ double； BEGIN
x2:=vX[2];
x1:=vX[1];
F12:=InfD;
if ($x 1<0$) then Exit;
if ($x 2<40$) then Exit;
if (x2 > 75) then Exit;

F12: =MiMax* (W1*(F1-F1min)/(F1max-F1min) $+\mathrm{W} 2 *(F 2-F 2 \min) /(F 2 \max -F 2 \min)) ;$
END; $\{$. F12() $\}$
(\$F,

program P5_01; $\{==$
Locus/CometLocus animation of n Archimedes spirals of equations:
$x($ Theta) $=$ Theta* $\cos ($ Theta $+2 * \mathrm{Pi} / \mathrm{n} *(i-1))$
$y($ Theta) $=$ Theta* $\sin ($ Theta $+2 * \mathrm{Pi} / \mathrm{n} *(i-1))$ whith*** Tmin $<=$ Theta $<=$ Tmax.
 BEGIN

[^8]

END;

$$
\{. .<\text { Esc }>\text { stops animation }\}
$$

$$
\text { CloseMecGraph(TRUE); \{..save . } \$ 2 \mathrm{D} \text { files as .D2D }
$$

END.
33
34
35
36
37
38

Inc (iFr);

program P5_04;

Simulation of two cranks in series tracing an epicycloidal curve

$$
\text { uses Graph, }\{\text { Magenta,Red, White\} }
$$

\{InitDXFfile\}

LibInOut, \{IsKeyPressed\} LibMecIn, \{gCrank, Crank \} LibMath, LibDXF,

LibMec2D; \{SetJointSize,Locus,NewFrame, CloseMecDXF,CloseMecGraph \}
const nPoz = 144; \{number of positions\} const $n P o z=144 ;$ \{number of positions\}
var i:Integer; $t, A B, B C, X A, Y A, x B, y B, x C, y C, P h i 1$, Phi2:double;
BEGIN
InitDXFfile('F5_04A.DXF'); \{..'F5_04A.DXF' or 'F5_04B.DXF'\} SetJointSize(6); $\{+6$ with 'F5_04A.DXF and -6 $x A:=0 ; y A:=0 ; \quad$ \{ground joint \}
$\mathrm{AB}:=40$; \quad first crank length $\}$
$B C:=30 ; \quad\{$ second crank length $\}$
OpenMecGraph (-75, 75,-75,75);
i:=0;
repeat END;

$$
\left\{_\right\}
$$

($i>n$ nPoz) then BEGIN
$i:=0 ; \quad$ CloseMecDXF;

NewFrame (5000);
$\mathrm{t}:=\mathrm{i} / \mathrm{nPoz} ;\{\mathrm{t}=\mathrm{time}\}$ Phil:=Pi/4+2*Pi*t;

program P5_06A;
$\stackrel{\sim}{N}$
N N N
,

Locus（Green，xB2，yB2，＇B＿2＇）； Inc（i）；
files \}
END．
program P5＿08A；
A crank rotating about a base with an offset point．

InitDXFfile（＇F5＿08A．DXF＇）；$\quad\{\ldots \mathrm{DXF}$ file for M3D animation $\}$
Style：＝＇T＇；\｛．．＇T＇，$I^{\prime}, \prime^{\prime}$, ＇$\left.^{\prime}, \mathrm{V}^{\prime}, \mathrm{A}^{\prime}\right\}$
$\mathrm{AB}:=1.0 ; \quad$ \｛．．crank length\}
$\mathrm{xA}:=0.0 ; \quad \mathrm{yA}:=0.0 ; \quad$ \｛．．motor location\}
x1P：＝0．65；y1P：＝0．5；\｛．．relative coordinates of point P \}
OpenMecGraph（－1．5，1．5，－1．5，1．5）；SetJointSize（5）； i：＝0；
Repeat
（i＞nPoz）then BEGIN
CloseMecDXF；i：＝0； END； 50
51
52
53
54
そ～のチレートのの 10 12 13 $\stackrel{n}{-}$ $\stackrel{\square}{1}$ $\stackrel{\infty}{+}$ न 옹
NewFrame (50);
Phi:=2*Pi*i/nPoz;

END.

program P5_10;

A crank driving a slider tracing a polar curve. Also shown is the Coriolis acceleration vector of the slider relative to its guide $Q-Q^{\prime}$

uses Graph, \{Red,Black,Blue, Cyan, White,LightRed\}
LibMath, \{_,DEG\}
LibInOut, \{IsKeyPressed\}
LibDXF, \{InitDXFfile\}
LibMecIn, \{gCrank, Slider\}

\{PutPoint, PutVector, CloseMecDXF, CloseMecGraph\}
const $\mathrm{nPoz}=90$; \quad \{..number of positions $\}$
$x A, Y A, \quad v x A, v y A, \quad a x A, a y A, x B, y B, v x B, v y B, a x B, a y B, \quad x P, y P, \quad v x P, v y P$,
axp,ayP, $x Q, y Q, ~ v x Q, v y Q, ~ a x Q, a y Q$, Phi,dPhi,ddPhi, s,ds,dds, Theta,dTheta,ddTheta, r,dr,ddr:double; BEGIN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

CloseMecGraph（FALSE）；\｛．．do not retain ．\＄2D files Inc（i）；
until IsKeyPressed（27）；
Close（FT1）；Close（FT2）；
CloseMecGraph（FALSE）；\｛．．do not retain ．$\$ 2 \mathrm{D}$ files
END．

[^9]LabelJoint（White，$x 0, y O, x P$ ， yP ，＇ P^{\prime} ）；

LabelJoint（White，$x Q, y Q, x _Q, y _Q,^{\prime} Q^{\prime \prime \prime}$ ）；

PutVector（LightRed，＇ if MecOut then BEGIN

$$
\begin{aligned}
& \text { '); } \\
& \text { (Y_Q, }
\end{aligned}
$$

;
axCor:=2*dTheta*dr*cos(Theta+Pi/2) ;
ayCor:=2*dTheta*dr*sin(Theta+Pi/2);

WriteLn（FT1，t：7：4，＇＇，s：8：4，＇＇，ds：9：4
WriteLn（FT2，t：7：4，＇＇，Phi＊DEG：7：3，＇＇，dPhi：7：4，＇＇，ddPhi：8：4 \｛x comp．Of Comp．of Coriolis accel． ayCor，0．03，＇a＿c＇）；

$$
x B, y B, v x B, v y B, a x B, a y B
$$

，＇＇，dds：9：3，＇, r－0．5＊Q＿Q：8：4，＇, ，dr：9：4，＇, ，ddr：9：3）； END； Inc（i）；
until IsKeyPressed（27）；
Close（FT1）；Close（FT2）；
CloseMecGraph（FALSE）；\｛．．do not retain ．$\$ 2 \mathrm{D}$ files
END． Inc（i）；
until IsKeyPressed（27）；
Close（FT1）；Close（FT2）；
CloseMecGraph（FALSE）；\｛．．do not retain ．$\$ 2 \mathrm{D}$ files
END． Inc（i）；
until IsKeyPressed（27）；
Close（FT1）；Close（FT2）；
CloseMecGraph（FALSE）；\｛．．do not retain ．$\$ 2 \mathrm{D}$ files
END．

[^10]| 11 | LibMec2D; \{OpenMecGraph, NewFrame, XminWS, XmaxWS, YminWS, YmaxWS, Offset \} |
| :---: | :---: |
| 12 | \{PutGPoint, PutPoint, Locus, PutVector, ntAccel, CloseMecDXF, CloseMecGraph \} |
| | const nPoz = 90; \{..number of positions |
| | |
| 15 | |
| 16 | axQ,ayQ, Phi,dPhi,ddPhi, s,ds,dds, axBt,ayBt, axBn,ayBn:double; |
| 17 | BEGIN |
| 18 | OP:=35; Q_Q:=80; \{..distances OP and $Q^{\prime} Q^{\prime}$ - note that _Q is Q^{\prime} \} |
| 19 | xO:=0.0; yO:=0.0; |
| 20 | Assign(FT,'P5_11.TXT'); Rewrite(FT); |
| 21 | |
| 22 | InitDXFfile('F5_11.DXF'); |
| 23 | i: =0; |
| 24 | Repeat |
| 25 | if (i > nPoz) then BEGIN |
| 26 | i:=0; CloseMecDXF; \{..no effect until OpenMecGraph is called\} |
| 27 | xB: =0.1*(XmaxWS-XminWS) ; ...expand by 10\% - multiple uses of xB\} |
| 28 | YB:=0.1* (YmaxWS-YminWS); ${ }^{\text {a }}$ (.expand by 10\% - multiple uses of yB\} |
| 29 | OpenMecGraph (XminWS-xB, XmaxWS +xB, YminWS-yB, YmaxWS +yB); |
| 30 | END; |
| 31 | NewFrame (5000) ; |
| 32 | PutGPoint (White,' ', 0,60,'Simulation with ntAccel'); |
| 33 | $\mathrm{t}:=\mathrm{i} / \mathrm{nPOz} ;\{\mathrm{t}=\mathrm{time}\}$ |
| 34 | Phi : $=$ Pi/2 + Pi/4*sin(2*Pi*t) ; |
| 35 | dPhi := 2*Pi *Pi/4*cos(2*Pi*t) ; |
| 36 | ddPhi:=-Sqr (2*Pi)*Pi/4*sin(2*Pi*t) ; |
| 37 | $\mathrm{s}:=0.45 * Q _$* $\cos (2 * \mathrm{Pi}$ *t) ; |
| 38 | ds := -2*Pi *0.45*Q_Q*sin(2*Pi*t) ; |
| 39 | dds:=-Sqr (2*Pi) *0.45*Q_Q*cos(2*Pi*t) ; |
| 40 | gCrank (Red, $\mathrm{xO}, \mathrm{yO}, \mathrm{Phi}, \mathrm{dPhi}, \mathrm{ddPhi}$, OP, $\mathrm{xP}, \mathrm{yP}, \mathrm{vxP}, \mathrm{vyP}, \mathrm{axP}, \mathrm{ayP}$) ; |
| 41 | PutGPoint (White,' ',x0 , yO ,'O '); |
| 42 | LabelJoint(White, x0,yO,xP ,yP ,' P') |

program P5_15A;
念
until IsKeyPressed(27);
Close (FT);
CloseMecGraph(TRUE); \{..retain the B. \$2D locus file\}
WriteLn(XminWS:6:3,' < $\mathbf{x}<$ ', XmaxWS:6:3); \{report workspace limits..\}
Write(YminWS:6:3,' < $\mathrm{y}<\mathrm{Y}, \mathrm{YmaxWS:6:3,'} \mathrm{<CR>..');} \mathrm{ReadLn;}$
Two cranks in series with PutAng, PutDist, PutText \& PutGtext

$$
\text { uses Graph, \{Magenta,Red, White\} }
$$

PutAng (White, 2 * $\left.x B-x A, 2 * y B-y A, x B, y B, x C, y C, 4,^{\prime} \mid \gg^{\prime}\right) ; ~\{.$. put Phi2 \} PutText (White,_,_'AC ='+MyStr (AC,4) +'n\Phi1='+MyStr(Phi1*DEG,5) $\because:$

> CloseMecGraph (FALSE); \{..do not retain. \$2D files\}
$\stackrel{\circ}{7}$
program P5_16A;
 A crank rotating about a base. Uses Link and Base subroutines.
 uses Graph, \{Blue, Cyan, Green, Red, Magenta\} LibMath, \{_\} LibInOut, \{IsKeyPressed\} LibDXF, \{InitDXFfile\} LibMecIn, $\{$ gCrank
LibMec2D;
10 LibMec2D; \{OpenMecGraph,NewFrame,SetJointSize, \} \{gShape, Shape, Link, Base, CloseMecDXF \}
const nPoz = 36; \{number of positions \} OA $=20$; \{crank length \}

SetJointSize(6);
i:=0;
if ($i>n P o z$) then BEGIN
i:=0; CloseMecDXF; END;
NewFrame (5000) ;
Phi:=2*Pi*i/nPoz;

program P5_16B;
 Gear reducer animation with Shapes read from ASCII files Housing.XY, Pinion.XY \& Gear.XY

$$
\begin{aligned}
& \text { uses Graph, } \quad\{\text { LightBlue, Red, White\} }
\end{aligned}
$$

\{IsKeyPressed \}
XXfile\}
$\{$ gCrank $\}$
$\begin{array}{cl}\text { LibMec2D; } & \text { \{Shape, OpenMecGraph, CloseMecGraph, CloseMecDXF }\} \\ \text { const } \mathrm{nPoz}=108 ; & \text { \{number of positions }\end{array}$

\quad Shape('',LightBlue, $\mathbf{x B}, \mathrm{yB}, \mathrm{xB}+\mathrm{rh}, \mathrm{yB}) ;$ \{..the peripheral holes $\}$
END;
Inc(i);
until IsKeyPressed(27);
CloseMecGraph(FALSE); \{..do not retain *. \$2D files \} END.

1
2
3
4
5
6
7
8
9
10
11
12
13

program P5_17A;
A rotating vector OA and plot of yA (Theta) with scan line and point \quad, $==\}$
 $x A, y A: ~ d o u b l e ;$
FirstTime,SecondTime, OK: Boolean;
BEGIN

26	InitDXFfile('F5_17-1.DXF'); \{..DXF output of phasor\}
27	EraseAll ('F5_17*.PCX'); \{..erase old PCX files\}
28	InitGr(0);
29	x1L:=0; y1L:=15; x2L:=MaxX DIV 2; y2L:=MaxY; \{..left window \}
30	x1R:=MaxX DIV 2; y1R:=15; x2R:=MaxX; y2R:=MaxY; \{..right window
31	FirstTime :=TRUE;
32	SecondTime:=FALSE;
33	PlotTitle('Phasor Diagram');
34	MecOut:=TRUE; \{..this is because we use Obj2Scr and not OpenMecGraph!\}
35	Repeat
36	for i:=1 to N do BEGIN
37	SetViewPort(x1R,y1R, x2R, $\mathrm{Y}^{2 R}$, Clipon); \{..right window\}
38	Obj2Scr (TRUE, -1.05*OA,1.15*OA,-1.1*OA,1.1*OA); \{..w-space limits \}
39	NewFrame (5000);
40	Theta: =Theta0+(ThetaN-Theta0)/(N-1)*(i-1) ;
41	xA: =OA* \cos (Theta) ;
42	YA:=OA*sin(Theta);
43	Theta[i]:=Theta;
44	_yA [i]: =yA/OA; \{..plot the normalized YA \}
45	PutRefSystem(4.1,4.1,'x','y'); \{..reference frame at (0,0)\}
46	
47	PutVector (Red,'-', 0,0, xA,YA, 1.0, '');
48	if NOT FirstTime then BEGIN
49	PlotScanLine(1,_Theta[i], -8000);
50	PlotScanPoint (1,_Theta [i],_YA [i], -8000);
51	if NOT (FirstTime OR SecondTime) then Delay (50000);
52	END;

program P5_17B;
\{==============
\{==
A rotating vector OA and data output yA(Theta)
 uses Graph, \{Red\}

$$
\begin{array}{ll}
\text { LibInOut, } & \text { \{IsKeyPressed }\} \\
\text { LibGraph, } & \text { \{Obj2Scr }\}
\end{array}
$$

\{MecOut, PutRefSystem, PutVector, CloseMechGraph\}
\{number of animation points\} \{phasor magnitude i.e. $1 / 2$ of plot box height\} \{initial Theta \} ThetaN=2*Pi; \{final Theta i:Integer; Theta, xA, yA:double;
InitDXFfile('F5_17B.DXF'); \{..DXF file for M3D animation\}
 OpenMecGraph (-2*OA, 2*OA, -2*OA,2*OA); i:=0;
repeat
if ($i>N$) then BEGIN LibDXF, LibMec2D; $\mathrm{OA}=250 / 2$; Theta $0=0$;
const

BEGIN

FD: file of double;

var

uses Graph, \{Red\}

if END; PutVector (Red,'-', 0,0, xA,YA, 1, ' '); YA: =YA/OA;

$$
\text { \{InitDXFfile, PDcircle, CloseDXFfile\} }
$$

gShape (MySt (OA, 7), White, 0,0) ; \{..draw circle of radius $O A$ at $(0,0)\}$
PutRefSystem (0.125*OA/RJtSz, 0.125*OA/RJtSz,'x','y');
if MecOut then Write (FD, Theta, YA); Inc (i);

program P6_01;

CloseMecGraph (FALSE); \{..do not retain. \$2D files \} END.
N N M

$\mathrm{xQ}:=3 ; \quad \mathrm{yQ}:=-23.0$;
$\mathrm{xQ}:=3 ;$
$\mathrm{x}_{2} \mathrm{C}:=10$
$\mathrm{X}_{-} \mathrm{C}:=10 ; \quad Y_{-} \mathrm{C}:=12$;
x_F:=-8; Y_F:=25;
$\mathrm{PQ}:=\mathrm{Abs}(\mathrm{yP}-\mathrm{YQ})$;
OpenMecGraph (-16,33,-98,46);
SetJointSize(3);
i:=0;
repeat
if (i > nPoz) then BEGIN
CloseMecDXF;
NewFrame (5000);
END;
t:=i/nPoz; $\{t=t i m e\}$

RR_T(Red, $x A, Y A, \prime^{\prime}, \prime^{\prime}, \quad x P, y P, 0,0,0,0,0.5 * P i, 0,0, A B, 0, P Q$

PutPoint (White,' ', $x Q, y Q, ' Q$ ');
if (Pos('B',DXFname) >0) then BEGIN \{mechanism version B..\}
 , Left , xB, yB,_,_'_'_, xB, yB,_'_'_'_' _);
PutGPoint(White,' ', xQ,yQ ,'Q `); END; RRR (Magenta, \(x C, y C, \prime^{\prime} \prime^{\prime} \prime^{\prime}, \quad \mathrm{xE}, \mathrm{yE}, 0,0,0,0\) , CD,DE, Right, \(\left.x D, Y D, \prime^{\prime} \prime^{\prime}\right]^{\prime} \quad\)); Locus (Cyan, \(\left.x F, y F, F^{\prime}\right)\); LabelJoint(White, \(\left.x C, y C, x D, y D, D^{\prime}\right) ;\) PutGPoint(White,' ',x0,yo,'O `); PutPoint (White,' ',xA,yA,' A'); PutPoint (White,' ',xB,yB,' ${ }^{\prime}$) PutPoint (White,' ', xC,yC,'C '); PutGPoint (White,' ', xE,YE,'E `); PutPoint (White,' ', xF, YF,' F'); PutGPoint(White,' ',xP,yP,'P '); Inc (i); until IsKeyPressed(27); CloseMecGraph (FALSE); \{..do not save locus files
WriteLn(XminWS: 6:3,' < $\mathbf{x}<$, XmaxWS:6:3); \{report workspace limits..\} Write (YminWS: 6:3,' < y < ', YmaxWS:6:3,' <CR>..'); ReadLn; END.

program P6_06;

$$
\begin{aligned}
& =\}
\end{aligned}
$$

InitDXFfile('F6 06.DXF');
BumpPiston:=FALSE; \{TRUE constrains pistons inside cylinders\} LftRgt:=-1; \{orientation of the A0-C-BO loop \} LftRgt:=-1; \{orientation of the AO-C-B0 loop
x01 :=-0.4; y01:=0; \{ground joint of crank 1 x02 := 0.4; yO2:=0; \{ground joint of crank 2 $\left.\begin{array}{ll}\text { O1A }:=0.12 ; & \text { \{length of crank } 1 \\ \text { O2B }:=0.10 ; & \text { \{length of crank } 2\end{array}\right\}$ $\left.\begin{array}{ll}\text { O1A }:=0.12 ; & \text { \{length of crank } 1\end{array}\right\}$ AOA $:=0.05 ;$ \{eccentricity of cylinder 1 AOQ1:= 0.35; \{length of cylinder 1 BOQ2:= 0.35; \{length of cylinder 2 P1C := 0.40; \{length of piston 1 P2C := 0.45; \{length of piston 2 OpenMecGraph (-0.5,0.5, -0.25,1.0); SetJointSize(4); i:=0;
repeat
NIDGg uəu7 (zodu < T) fT i:=0; CloseMecDXF; END; NewFrame (3000) ; $\mathrm{t}:=\mathrm{i} / \mathrm{nPOz} ; \quad\{\mathrm{t}$ Phil:= Pi/3*sin(2*Pi*t); Phi2:=Pi + Pi/3*sin(2*Pi*t); gCrank (Red, x01,y01, Phil,_'_, O1A, XA,YA,_,_'_'_); gCrank (Red, xO2,yO2, Phi2,_,_' O2B, xB,yB,_'_'_, ; s1:=0.65 + 0.15* $\cos (2 * P i * t)$; s2:=0.60 + 0.12*cos(4*Pi*t);
 , BOB,B0Q2,P2C, s1,_,_, s2,_,_, LftRgt, xC,yC,_'_'_'_, _); Locus (Green, $\left.\mathrm{xC}, \mathrm{yC},{ }^{\prime} \mathrm{C}^{\prime}\right)$;
CloseMecGraph(FALSE); \{..do not save locus files\}
program P6_11;
RTRTR actuator driven by two cranks with ASCII output. 4 Uses both the RTRTR and RTRTRc subroutines. 5 ===3\} $\begin{array}{ll}\text { Graph, } \begin{array}{l}\text { \{White, Green, LightBlue }\} \\ \text { LibMath, } \\ \text { LibInOut, }\end{array} \text { \{DEG\} } & \text { MySt, MyStr\} }\end{array}$ LftRgt:shortint; $t, x 01, y 01, x A, Y A, x 02, y 02$,

Inc(i); END.
 until (IsKeyPressed (27);

1
2
3
4
5
6
7
8
9
10
11
12
13 function Phil(t:double):double; BEGIN
Phil:=DPhi*sin(2*Pi*t);
END;
function Phi2(t:double) : double; BEGIN
Phi2:=Pi + DPhi*sin (2*Pi*t);
END;
function s1(t:double): double; BEGIN
s1:=0.65 + 0.15*cos (2*Pi*t);会
function s2(t:double): double; BEGIN s2: $=0.60+0.12 * \cos (4 * P i * t)$;
END; N ${ }_{N}^{\infty}$ N

BumpPiston:=FALSE; \{TRUE -> constrains pistons inside cylinders\} $\left.\begin{array}{ll}\text { LftRgt:=-1; } & \text { \{orientation of A0-C-B0 loop \} } \\ \text { xO1 :=-0.4; yO1:=0; } & \text { \{ground joint of crank } 1\end{array}\right\}$

$$
\begin{aligned}
& \text { SizeLinMotor (s1 (t), A0 } \\
& \text { SizeLinMotor (s1 (t),A0Q1,P1C); \{..update A0Q1, P1C \} } \\
& \text { SizeLinMotor(s2(t),B0Q2,P2C); \{..update B0Q2,P2C\} } \\
& \text { END; } \\
& \text { Delta:=0; Deltav:=0; \{Delta's may accidentally become InfD\} } \\
& \text { OpenMecGraph (-0.85,0.8, -0.83,0.75); } \\
& \text { SetJointSize(4); } \\
& \text { if (i > nPoz) then BEGIN } \\
& \begin{array}{l}
\text { i: }=0 \text {; } \\
\text { Repeat }
\end{array} \\
& \text { i:=0; } \\
& \text { END; }
\end{aligned}
$$

NewFrame (500);
$\mathrm{t}:=\mathrm{i} / \mathrm{nPoz} ; \quad\{\mathrm{t}=\mathrm{time}\}$

program P6_17;

Simulation of an RRT dyadic isomer driven by two cranks

[^11]

LibMec2D; \{OpenMecGraph,NewFrame, SetJointSize\}

PutPoint(White,' ', xA,yA ,'A '); PutPoint (White, PutPoint(White, PutPoint (White, PutPoint (White,' Locus (Magenta, xQ Inc(i);
until IsKeyPressed(27);
CloseMecGraph(FALSE); END.
program P6_21;
CloseMecGraph(FALSE); \{..do not save locus files $\}$
END.
Simulation of an RTR dyad driven by a crank and a rocker

1
2
3
4
5
6
7
8
8
9
10
11
12
13
14
15
16
17
18
19

program P6_24;
Simulation of a T_R_T dyadic isomer driven by two rockers
 uses Graph, \{Cyan,Red, White\} \{IsKeyPressed\}
\{InitDXFfile\} gCrank
\{T_R_T $\}$
\{OpenMecGraph,NewFrame,Locus,\}
\{CloseMecDXF, MecOutp, CloseMecGraph \}
var i:Word; OK:Boolean; t,Theta1,Theta2,x01,y01,01A,
$\mathrm{xO} 2, \mathrm{yO} 2, \mathrm{O} 2 \mathrm{~B}, \mathrm{xA}, \mathrm{YA}, \mathrm{xB}, \mathrm{YB}, \mathrm{xC}, \mathrm{YC}, \mathrm{P} 1 \mathrm{Q} 1, \mathrm{Q} 1 \mathrm{C}, \mathrm{P} 2 \mathrm{Q} 2, \mathrm{Q} 2 \mathrm{C}$,
$x P 1, y P 1, x Q 1, y Q 1, x P 2, y P 2, x Q 2, y Q 2: d o u b l e ;$
BEGIN
InitDXFfile('F6_24.DXF');
xO1 $:=-0.20 ;$ y01:=0;

$\begin{array}{llll}\text { x01 }:=-0.20 ; ~ y 01:=0 ; & & \text { \{ground joint of rocker \#1 }\} \\ \text { xO2 }:=0.15 ; ~ y 02:=0 ; & & \text { \{ground joint of rocker \#2 \} }\end{array}$
01A := 0.20; 02B:= 0.20; \{lengths of rocker \#1 and \#2\} P1Q1:= 0.50;
Q1C := 0.10;
P2Q2:= 0.50;
Q2C := 0.15;
OpenMecGraph(-0.6,0.6, -0.2,0.5);
SetJointSize(4);
i:=0;

念
program P6_26;
\{============ Simulation of an _TRT_ dyadic isomer driven by two rockers
 \{Cyan, Magenta, Red\} uses Graph,

$$
\{\text { IsKeyPressed\} }
$$

\{InitDXFfile\}
$\{$ gCrank $\}$
$\{$ TRT_ $\}$
LibMath, LibDXF, LibMecIn, LibAssur, LibMec2D;
\{OpenMecGraph, NewFrame,Locus,\} \{CloseMecDXF,MecOutp, CloseMecGraph \} const $\mathrm{nPOz}=90$; \{number of positions $\}$ var i: Word; OK: Boolean; t, Theta1, Theta2, P1Q1, P2Q2, xP1, YP1, $x Q 1, y Q 1, x P 2, Y P 2$, xQ2,YQ2, $x A, Y A, x B, Y B, X C, Y C, A C, B C: ~ d o u b l e ; ~$ BEGIN

[^12]
NewFrame (500);

until IsKeyPressed(27);
CloseMecGraph(FALSE); \{..do not save locus files
END.
program P6_28;

Simulation of a T_RT_ dyadic isomer driven by two rockers
\[

$$
\begin{array}{ll}
===\} \\
\text { uses Graph, } & \{\text { Cyan, Magenta, Red }\} \\
& \text { LibMath, }\left\{\begin{array}{l}
\text { \{ }\}
\end{array}\right. \\
& \text { LibInOut, }
\end{array}
$$
\]

r
LibAssur, $\left\{T _R T _\right\}$
LibMec2D; \{OpenMec
\{OpenMecGraph,NewFrame,Locus, \}
\{CloseMecDXF, MecOutp, CloseMecGraph\} 0 ; \{number of positions\}
var i: Word; OK: Boolean;
const $\mathrm{nPoz}=$
var i: Word;
15 var 1: Word; OK: Boolean; \quad xO1,YO1,O1A,Theta1, XA,YA, Theta2, P1Q1,Q1C,P2Q2, XP1,YP1, $16 \quad x Q 1, y Q 1, x P 2, y P 2, x Q 2, y Q 2, B C, x B, y B, x C, y C, t: d o u b l e ;$ BEGIN
InitDXFfile('F6_28.DXF'); x01 :=-0.05; y01:=0; $\begin{array}{ll}\mathrm{xP2}:=0.05 ; ~ y P 2:=0 ; & \text { \{ground joint of rocker \#2 } \\ \text { O1A }:=0.10 ; ~ P 2 Q 2:=0.73 ; & \text { \{lengths of rocker \#1 and \#2 }\end{array}$ P1Q1:= 0.78;
Q1C := 0.35;
BC $:=0.30$;
OpenMecGraph $(-0.26,0.80,-0.57,0.72) ;$
SetJointSize(4);
i:=0;
repeat
if (i > nPoz) then BEGIN
END;
NewFrame (500) ;
t:=i/nPoz; \{t
Thetal:=Pi $\quad+\mathrm{Pi} / 8 * \sin (2 * \mathrm{Pi} * \mathrm{t})$;
Theta2:=Pi/16+Pi/9*sin(3*Pi*t); gCrank (Red, x01,y01, Thetal,_,_ O1A, xA,yA,_'_,_, ;

xQ1,yQ1,_,_'_'_, xB,yB,_'_,_'_, xC,yC,_'_'_', OK);
program P6_30;

PutGPoint (White,' ', x01, y01 ,'01 ');
PutGPoint (White,' ',
PutPoint (White,' ', xA, $\mathrm{YA}^{\text {A , 'A') }}$;
PutPoint (White,' ', xB, yB , ' B^{\prime}) ;
LabelJoint (White, xP1,yP1, xQ1, $\mathrm{YQ1}, \mathrm{Q} \mathrm{Q1}^{\prime}$);
LabelJoint (White, $\mathrm{xQ1,YQ1,xP1,yP1,'} \mathrm{P1');}$
LabelJoint (White, $\mathrm{xP2}$, $\mathrm{YP} 2, \mathrm{xQ2}, \mathrm{YQ2,'} \mathrm{Q2')} \mathrm{;}$
Locus (White, xC,yC, 'C') ;
Inc (i) ;
until IsKeyPressed(27) ;
CloseMecGraph (FALSE);

BEGIN \{ground joint of crank \#1 \} \{lengths of crank \#1 and \#2\} \{L-rod of sliding block C \{length of spacer QC \{rod of sliding block Alph2:=110*RAD;
InitDXFfile('F6_30.DXF');
InitDXFfile('F6_30.DXF');
OpenMecGraph(-0.4,0.3, -0
OpenMecGraph(-0.4,0.3, -0.14,0.23);
SetJointSize(4);
i:=0;
$\mathrm{xO1}:=-0.05 ;$
$\mathrm{xO2}:=0.05 ;$
$\mathrm{O} A \mathrm{~A}:=0.05 ;$
$\mathrm{AD}:=0.05 ;$
$\mathrm{QC}:=0.25 ;$
$\mathrm{PQ}:=0.45 ;$
01A: $=0.05 ;$ 02B:=0.10;
DK:=0.30;
y01:=0;
 $\stackrel{H}{N}$ $\stackrel{\circ}{\sim}$ 송 $\stackrel{\infty}{\sim}$
if (i > nPoz) then BEGIN
i:=0; CloseMecDXF; END;
NewFrame (5000);
Phil:=2*Pi*t*t*t; gCrank (Red, x01,yO1, Phil,_,_, 01A, xA,yA,_,_,_, ;
 , AD, DK, PQ, QC, Alph1,Alph2, xC,yC,_'_'_', xD, YD,_'_'_'-
 PutGPoint (White,' ', x01,yO1 ,'O_1 '); PutGPoint (White,' ', xO2,yO2 ,' O_2'); PutPoint (White,' ', $x A, y A, A^{\prime}$); PutPoint(White,' ', xB,yB ,'B'); PutPoint (White,
 END.

program P6_32;

 Simulation of an RT_T_ dyadic isomer driven by a crank and a rocker uses Graph, \{Cyan,Red, White\} LibInOut, \{IsKeyPressed\} LibMath, \{_,RAD\}
LibDXF, $\{$ InitDXFfile\} LibMecIn, \{gCrank\}
LibAssur, \{RT_T_\}
LibMec2D; \{OpenMecGraph,NewFrame,Locus,\}
\{CloseMecDXF, MecOutp, CloseMecGraph\}
const nPoz = 90; \{number of positions\}
var i: Word; OK: Boolean; t, Phi1, Phi2,Alpha2, OA, PQ,AC,BD, $x 0, y O, x P, y P, x Q, y Q, x A, y A, x B, y B, x C, y C, x D, y D: ~ d o u b l e ;$ BEGIN

xO:=-0.20; yO:=0; \{ground joint of rocker \#1
$\mathrm{xP}:=0.20 ; \mathrm{yP}:=0$; \quad \{ground joint of rocker \#2

until IsKeyPressed (27);
CloseMecGraph(FALSE);
畕

program P6_34;

 Simulation of an R_TT_ dyad driven by a crank and a rocker \{Cyan, Magenta, Red\} \{_, RAD $\}$
\{IsKeyPressed\}
\{InitDXFfile\}
\{gCrank\}
\{R_TT_\}
\{OpenMecGraph, NewFrame, Locus,\}
CloseMecDXF, MecOutp, CloseMecGraph\}
const nPoz = 90; \{number of positions \}
var i:Word; OK:Boolean; t,Phi1,Phi2,Alpha1,Alpha2, OA, PQ,AD,DK,BC, $x 0, y O, x K, y K, x B, y B, x A, y A, x P, y P, x D, y D, x Q, y Q, x C, y C: d o u b l e ;$ BEGIN
InitDXFfile('F6_34.DXF'); x0:=-0.10; yO:=0; \{ground joint of crank $\mathrm{xP}:=0.10 ; \mathrm{yP}:=0$; \quad ground joint of rocker
$\mathrm{OA}:=0.07$; $\mathrm{PQ}:=0.35$; \{lengths of crank and rocker\} AD:= 0.05; DK:=0.55; \{L-rod of sliding block C BC:=0.28; Alpha1: = 60*RAD; Alpha2:=110*RAD;
OpenMecGraph (-0.20, 0.5,-0.2, 0.7);
SetJointSize(4);
$\begin{array}{lll}0 & 0 & \text { H } \\ \text { み } & n & \text { n }\end{array}$
1
2
3
4
5
6
7
8
9
10
11
12
13
둥ㅇㅇㅇ
$\stackrel{-}{N}$
\{length of spacer BC
i:=0;
repeat
\quad if $(i>$
if (i>nPoz) then BEGIN END;
NewFrame (500);
t:=i/nPoz; $\{\mathrm{t}=\mathrm{time}\}$
Phil:=2*Pi*t*t*t;

PutPoint (White, , xa y ' A^{\prime}); PutPoint (White,' $\left., ~ x Q, y Q, Q^{\prime}\right)$; PutPoint (White,' ', xD,yD ,' D'); PutPoint (White,' ', $x K, y K$, ' K^{\prime}); LabelJoint (White, $\left.x C, y C, x B, y B, B^{\prime} \quad B^{\prime}\right)$ PutAng (White, $2 * x C-x D, 2 * y C-y D, x C, y C, 2 * x C-x B, 2 * y C-y B,-9, \prime \mid<\alpha 1^{\prime \prime}$); PutAng(White, $\left.x Q, y Q, x B, y B, x C, y C, 9,{ }^{\prime}<\alpha_{2}{ }^{\prime}\right)$; Locus(White, xC,yC, 'C'); Inc(i);
until IsKeyPressed(27);
CloseMecGraph(FALSE);畣
program P6_36;

NewFrame (500) ;
$\mathrm{t}:=\mathrm{i} / \mathrm{nPoz}+E \mathrm{psD} ; \quad\{\mathrm{t}=\mathrm{time}\}$ Phil:=2*Pi*t*t*t;
Phi2:=Pi/8*sin(2*Pi*t); GCrank (Red, x01, y01, Phil, gCrank (Red, xO , yO2, Phi2, RT__T(Cyan, XA, YA, Alpha2, xC, yC, , , PutGPoint (White,' PutGPoint (White, PutPoint (White,' PutPoint(White,' PutPoint(White,' PutPoint(White, PutPoint(White,' ', $x P, y P, ' P ~ ') ; ~$
PutPoint(White,' ', $x Q, y Q, ' ~ Q ') ; ~$
 Locus (White, $\left.x Q, y Q, Q^{\prime}\right)$;
Inc (i); until IsKeyPressed(27);亩

program P7_06;

\{..do not save locus files\} Synthesis of disc cams w/ translating follower knife edge and w/ roller

[^13]

program P7_07;
 END;
until Eof(FT);
CloseMecDXF;
WaitToGo(Ch);
CloseMecGraph (Color = 0);
㭡

$\rightarrow N M \quad$ カ
\{InitDXFfile\} \{_, DEG\}
IskeyPr
\{gCrank $\}$
LibInOut, \{IsKeyPressed\} LibMecIn,
LibGe2D, \{U2dirs2D90,RT2D\}
LibCams, \{TransFolRotCam, DoubleOffset\}
LibMec2D; \{OpenMecGraph, NewFrame, Slider, Offset, PutPoint, \}
\{PutVector, PutText, Shape, CloseMecDXF, CloseMecGraph\}
$\{$ number of cam positions (90 with Anim $=1$) \}
$\{0=$ animation OFF, $1=$ animation $O N\}$
\{.D2D input file with cam profile points\}
\{cam rotational cycle - cannot be 0$\}$
\{follower offset eF - positive or
roller radius; $r=0$ for knife edge
i,Skip:Integer; s,rb,rt, XA, YA, Theta
, DnX, DnY, Rho, Gamma, xC,yC, xCi, yCi, xCo, yCo: double;

$\begin{aligned} & \text { const } \text { nPoz } \\ & \text { Anim } \\ & \text { CamXY } \\ & \text { DTheta } \\ & \text { OP } \\ & r \\ & \text { var FT: text; }\end{aligned}$

$$
=360 ;
$$

LibDXF, LibMath, LibCams, BEGIN

OpenMecGraph(-rt,rt, -rt,1.5*rt);

program P7_10;

Reset(FT);
rb:=Sqrt (001*001+01C*01C-2*001*01C*cos(Phi0)); \{..base circle radius \} rt:=Sqrt (001*001+01C*01C-2*001*01C*cos(Phi0+DPhi)); \{..top circle radius\} Write('rb=',rb:9:5,', rt=',rt:9:5,' <CR>..'); ReadLn; OpenMecGraph(-1.25*001,1.25*001,-1.25*001,1.25*001); repeat
NewFrame (50) ;
Theta: =dC*2*Pi; \{..cam rotation \}

gCrank (Color, 0, 0,Theta,_,_,001,x01,y01,_'_,_,_);
Phi:=Phi0+dF*DPhi; \{..follower displacement \}
if (Color > 0) th Shape (${ }^{\prime}$, Red, $\left.x C, y C, x C+r, y C\right)$; if (Color $=0$) then PutGPoint (Green,'+', $0,0,{ }^{\prime}$,) else BEGIN
PutGPoint(White,' , $0,0,10$ ソ);
PutPoint (Red,'o', xC,yC,'');
PutAng(-White, $\mathbf{x C}, \mathrm{yC}, \mathbf{x 0 1 , y 0 1 , 0 , 0 , 1 6 , ~ \# 2 3 7 + ' > ') ; ~ \{ . . \# 2 3 7 =}$ Phi\} END;
until Eof(FT);
CloseMecDXF;
WaittoGo(Ch);
CloseMecGraph (Color $=0$);

program P7_11;

If (rt > OO1) OR ($001-01 \mathrm{C}<-r t$) then BEGIN
Write('Inproper 001 and O1C values! <CR>..'); ReadLn;

 눈 ก กั $\stackrel{-1}{6}$

program P7_14;

 Synthesis of disc cams with flat-faced translating follower[^14]$\left.\begin{array}{rlrl}\text { Anim } & =1 ; \quad\{0 \text { = accumulate frames, } 1 \text { = animate } \\ \text { nPL } & =1000 ; \quad\{\text { polar lines in EnvelOfLines - maximum } 1000\end{array}\right\}$
Assign (FT,'dFvdC_L. XY') ; \{..follower motion file - reduced size\} InitDXFfile('F7_14A.DXF'); \{..output M3D-DXF file\} END

Theta:=dC*DTheta+Pi/2; \{..cam rotation angle\} s:=s0+dF*Ds;
gCrank (-Anim*Color, 0, 0, Theta,_,_,s0, xA, YA,_,_,_,_); Slider (Anim*Color, 0, 0, 0, 0, 0,0, xA,yA,_,_', so, s,
 END;
until Eof (FT);
EnvelOfLines ($0, \mathrm{nPL}, \mathrm{xPC}, \mathrm{yPC}, \mathrm{PLL}, \mathrm{xP}, \mathrm{yP}, \mathrm{xQ}, \mathrm{yQ}$);
PutGPoint (Anim*White,' , $0,0, \mathrm{O}$
');
EnvelOfLines ($0, n P L, x P C, y P C, ~ P L L, ~ x P, y P, x Q, y Q) ;$
PutGPoint(Anim*White,' ', $0,0,10$ ソ); PutPoint (Anim*White,' ',xA,YA,' A'); LabelJoint (Anim*White, $x D, y D, x B, y B, ' B \prime$); LabelJoint (Anim*White, $\left.x B, y B, x D, y D, D^{\prime}\right)$;

 if (Color $=0$) then

EnvelOfLines(-Anim*White,nPL,xPC,yPC, PLL, $x P, y P, x Q, y Q)$ else BEGIN PutPoint(Anim*White,' $, x A, y A$, , PutGPoint (Green,' $+\prime, 0,0, \prime \prime) ;$ \{..put cam center \}
if (Color $=0$) AND (Anim $=0$) then
\quad EndEnvelopes (CamXY, Green) \{...write cam to file CamXY.D2D\}
else
\quad EndEnvelopes (MySt(LastNrLayer, 3), Green); \{..write cam to last layer \}
CloseMecDXF;
WaitToGo(Ch);
CloseMecGraph(Anim = 0);
END.
program P7_15; Kinematic analysis of disc cams with flat-faced translating follower

PQ:=0.85*rt;
OpenMecGraph(-1.2*rt,1.2*rt, -1.2*rt,1.5*rt);
if (Anim > 0) then Skip:=1 else Skip:=nPoz DIV 10; i:=0;
repeat
if (i > nPoz) then BEGIN
i:=0; CloseMecDXF;
END;
if (Anim = 1) OR (i MOD Skip = 0) then NewFrame (0);
Theta:=-DTheta*i/nPoz; gCrank(Anim*Magenta, 0,0
 RotCamTransFlat (CamXY+'. D2D', Theta, Gamma, s, xC, yC,Rho); xP:= PQ*CG; YP:=s+PQ*sG; $x Q:=-P Q * C G ; \quad Y Q:=s-P Q * s G ;$ if (Anim <> 0) then
PDline($\left.{ }^{\prime}, \mathrm{X} _\mathrm{p}(\mathrm{xP}), \mathrm{Y} _\mathrm{p}(\mathrm{yP}), \mathrm{X} _\mathrm{p}(\mathrm{xQ}), \mathrm{Y} _\mathrm{p}(\mathrm{y} Q)\right)$; \{..draw follower face\} PutVector (Anim*Cyan,'-', xC,yC, 0,1.0, 1.0,'Vc');

until (NOT MecOut) AND (IsKeyPressed(27) OR (Anim = 0)); Close (FT);
CloseMecGraph (FALSE);亩
program P7_18;
Synthesis of disc cams with flat-face oscillating follower

END

else BEGIN
Assign(FT,'dFvdC.XY'); \{..follower motion file - full size\}
InitDXFfile('F7_18B.DXF');
Assign(FT,'dFvdC.XY'); \{..follower motion file - full size\}
InitDXFfile('F7_18B.DXF'); END;
Reset (FT);
rb:=01P+001*sin(Phi0); \{..base circle radius\}
rt:=01P+001*sin(Phi0+DPhi); \{..top circle radius\} Write('rb=',rb:9:5,', rt=',rt:9:5,' <CR>..'); ReadLn; $\mathrm{PQ}:=1.5 * 001$; \{..follower face length\}
OpenMecGraph (-1.1*001,1.1*001,-1.5*001,1.5*001);
if (Anim >0) then NewFrame (50); ReadLn($\mathrm{FT}, \mathrm{dC}, \mathrm{dF}$); Theta:=dC*DTheta; Phi:=Phi0+dF*DPhi; \{..follower displacement \}
END;

ก
$\stackrel{+}{4}$ f
$\stackrel{\infty}{\square}$
か 은 N

END;
until Eof(FT);
until EOf (FT);
PutGPoint (Green,',', 0,0,',); \{..mark cam center\}
if (Color $=0$) AND (Anim $=0$) then
if (Color $=0$) AND (Anim = 0) then

EndEnvelopes (MySt(LastNrLayer, 3), Green); \{..write cam to last layer \} CloseMecDXF;

WaitToGo(Ch);
CloseMecGraph (Anim = 0);
END.
program P7_19;
Kinematic analysis of disc cams with flat-face oscillating follower
 uses Graph, \{Magenta, Blue, Cyan, White\}

LibMath, \{_,DEG\}
LibDXF, \{InitDXFfile\}
LibInOut, \{IsKeyPressed\}
LibGraph, \{p_X,p_Y\}
LibGe2D, \{U2dirs2D90\}
LibMecIn, \{gCrank\}
LibCams, \{GetProfileRadii,RotCamOscilFlat
LibMec2D; \{OpenMecGraph,Slider,Offset, L_line\}
\{Locus, NewFrame, CloseMecDXF, CloseMecGraph\}
$\{0=$ animation OFF, $1=$ animation $O N$
\{D2D input file with cam profile points \{cam rotational amplitude - cannot be 0

Anim $=0 ;$
CamXY $={ }^{\prime}$ Cam18'; DTheta $=2 *$ Pi;

0

1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
BEGIN

$$
\begin{aligned}
& \text { FT:text; Ch:char; i,Skip:Integer; rb,rt, PQ,O1C,xA,yA } \\
& \text {,Theta, Phi,Rho, Gamma, xC,yC, xP,yP, xQ,yQ:double; }
\end{aligned}
$$

END;

$$
\begin{array}{ll}
001 & =3.5 ; \\
\mathrm{O} 1 \mathrm{P} & =0.4 ;
\end{array}
$$ i:=0;

$$
\begin{aligned}
& \text { (rt > OO1) OR (Abs (O1P) > rt) then BEGIN } \\
& \text { Write('Inproper OO1, O1P or PQ values! <CR>..'); ReadLn; } \\
& \text { Halt; } \\
& \text { D; } \\
& \text { iteLn(FT,CamXY+'.D2D cam with knife-edge translating follower'); } \\
& \text { iteLn(FT,'DTheta=',DTheta*DEG:6:2,'; OO1=',001:6:2,'; O1P=',O1P:6:2); } \\
& \text { iteLn(FT,' Theta Phi Gamma Rho } \\
& \text { xC yC rb rt'); } \\
& :=1.5 * 001 ;\{. . f o l l o w e r ~ f a c e ~ l e n g t h\} ~ \\
& \text { enMecGraph(-1.1*rt,1.1*001,-1.1*rt,1.5*rt); } \\
& \text { (Anim > 0) then Skip:=1 else Skip:=nPoz DIV 10; } \\
& =0 ; \\
& \text { peat } \\
& \text { if (i > nPoz) then BEGIN } \\
& \text { i:=0; CloseMecDXF; }
\end{aligned}
$$ END;

$$
\begin{aligned}
& \text { \{cam-follower center distance - positive only }\} \\
& \{\text { follower offset - positive or negative }\}
\end{aligned}
$$

if (Anim = 1) OR (i MOD Skip = 0) then NewFrame (0); gCrank (Anim*Magenta, 0, 0, Theta,_,_,rb, xA, yA,_,_'_'_); Shape ('',Anim*Magenta, 0,0,xA,YA); \{..draw cam base circle\} Shape (CamXY+'. D2D',Anim*Red, 0,0, XA, YA) ; \{..draw cam from file\} RotCamOscilFlat(CamXY+'.D2D',001,01P,Theta, Phi, xC,yC,Rho);

$$
\text { radii\} }
$$

01C:=Dist2Pts2D (xC,yC,001,0);
$\mathrm{xP}:=001+01 \mathrm{P}$ * $\cos (0.5 * \mathrm{Pi}-\mathrm{Phi})$;
yP:=01P*sin(0.5*Pi-Phi);
$\mathbf{x Q}:=x P+P Q * \cos (P i-P h i) ;$
$Y Q:=y P+P Q * \sin (P i-P h i) ;$
 END.

program P7_23;

Synthesis of disc cams with arc-faced translating follower

$$
\begin{array}{ll}
\text { uses } & \text { Graph, } \\
\text { LibMath, } & \{\text { Red, White }\} \\
\left\{_, \text {RAD }\right\}
\end{array}
$$

LibInOut, \{IsKeyPressed\} LibMecIn, \{gCrank\} LibCams, \{EnvelOfCircles, EndEnvelopes\} LibMec2D; \{OpenMecGraph,Slider,Offset, \}
const Color =1; \quad \{PutAng, PutDist, Locus, NewFrame, CloseMecDXF, CloseMecGraph \} $\{0=$ accumulate frames, $1=$ animate

$$
\begin{aligned}
& \text { \{D2D file name for cam profile } \\
& \text { \{cam rotational amplitude - cannot be } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { cam rotational amplitude - cannot be } 0 \\
& \text { follower face angle - positive or negative\} }
\end{aligned}
$$

\{polar lines in EnvelofLines
\{polar lines in EnvelOfLines - maximum 1000$\}$
$\{x$ coord. of polar center in EnvelOfLines x coord. of polar center in EnvelOfLines
y coord. of polar center in EnvelofLines var FT:text; Ch:char; dF, dC, Theta, $\mathrm{s}, \mathrm{xA}, \mathrm{yA}, \mathrm{xB}, \mathrm{yB}, \mathrm{DP}$, BEGIN
\{follower amplitude - cannot be

$$
\text { \{follower bias - cannot be } 0
$$

PLL $=1.5 * s 0+D s ;\{$ initial polar line lengen in EnvelofLines $\mathbf{x}_{-} 1=-2.00 ; y_{-1}=0.40 ;$ \{1st point on follower arc rel. to O1P
$\mathbf{x}_{-} 2=0.00 ; y_{-} 2=0.00 ;$
 $\mathrm{X}, \mathrm{Y}, \mathrm{Y} 2, \mathrm{X}, \mathrm{Y}^{3} \mathrm{XD}, \mathrm{XD}, \mathrm{YP} \mathrm{XQ}, \mathrm{YQ}, \mathrm{SG}, \mathrm{CG}:$ double;

InitDXFfile('F7_23.DXF'); \{..output M3D-DXF file\} if (Anim = 1) OR (Color = 1) then Assign (FT,'dFvdC_L.XY') \{..foll Assign(FT,'dFvdC_L.XY') \{..follower motion file - reduced size\}
else
Assign(FT,'dFvdC. $\left.X Y^{\prime}\right)$; \{ ..follower motion file - full size\} Reset(FT);

SG:=sin(Gamma); CG:=cos (Gamma); DP:=s0;

OpenMecGraph(-1.2*PLL,1.2*PLL, -1.5*PLL, 1.2*PLL);

$$
\text { if (Anim }>0) \text { then NewFrame (50); }
$$

$$
\text { gShape (CamXY+'.D2D', Color*Cyan, 0,0); \{..draw cam profile from file\} }
$$ ReadLn ($\mathrm{FT}, \mathrm{dC}, \mathrm{dF}$);

END;
SyncDXFColor;
1:=Y_p(y1);
y2:=Y_p(y2);
y3:=Y_p(y3);
\{..draw arc\}
PDarc3Pts (י', $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3)$;
until Eof (FT);
if (Color $=0$) AND (Anim $=0$) then
EndEnvelopes (CamXY, Cyan) \{ ..write
EndEnvelopes (CamXY, Cyan) \{..write cam to file CamXY.D2D\}
else
EndEnvelopes(MySt(LastNrLayer, 3), Cyan);
CloseMecDXF;
WaitToGo(Ch);
CloseMecGraph (Anim = 0); \{..retain cam profile for Anim = 0\}
END.
program P7_25;
Systhesis of disk cams with curvilinear-faced translating follower

BEGIN

CloseMecDXF；
Waittoco（Ch）；
亩
Program F8＿01；
ベャレำ

program P9_01;

BEGIN $h h:=h * 0.5 ; ~ h 6:=h / 6.0 ; \quad t h:=t+h h ;$
for $i:=1$ to n do $x t[i]:=x[i]+h h * d x d t[i] ;$ Derivs(th, xt,dxt);
for i:=1 to n do $x t[i]:=x[i]+h h * d x t[i] ;$
Derivs(th, $x t, d x m) ;$
for i:=1 to n do BEGIN
$\quad x t[i]:=x[i]+h * d x m[i] ;$ dxm[i]:=dxt[i]+dxm[i] Derivs(th, xt,dxt);
for i:=1 to n do $x t[i]:=x[i]+h h * d x t[i] ;$
Derivs(th, $x t, d x m) ;$
for i:=1 to n do BEGIN
$\quad x t[i]:=x[i]+h * d x m[i] ;$ dxm[i]:=dxt[i]+dxm[i] Derivs(th, xt,dxt);
for i:=1 to n do $x t[i]:=x[i]+h h * d x t[i] ;$
Derivs(th, $x t, d x m) ;$
for i:=1 to n do BEGIN
$\quad x t[i]:=x[i]+h * d x m[i] ;$ dxm[i]:=dxt[i]+dxm[i] Derivs(th, xt,dxt);
for i:=1 to n do $x t[i]:=x[i]+h h * d x t[i] ;$
Derivs(th, $x t, d x m) ;$
for i:=1 to n do BEGIN
$\quad x t[i]:=x[i]+h * d x m[i] ;$ dxm[i]:=dxt[i]+dxm[i] END;
for $i:=1$ to n do $x[i]:=x[i]+h 6 *(d x d t[i]+d x t[i]+2 * d x m[i])$; END;
BEGIN
ClrScr;
$\left.\begin{array}{ll}\mathbf{x}[1]:=0.0 ; & \text { \{initial condition } \mathrm{x}(0) \\ \mathbf{x}[2]:=0.000001 ; & \text { \{initial condition } \mathrm{dx}(0) / \mathrm{dt}\end{array}\right\}$
if NOT Poincare then BEGIN \{phase path points npMax:=nPhasePath;
$\begin{array}{cc}\text { Assign(FT,'F9_01.TXT'); } & \text { Rewrite(FT); } \\ \text { WriteLn(FT, } & t\end{array}$ END
else BEGIN \{Poincare map points .. \} npMax:=nPoincare;
Assign(FD,'F9_02.D2D'); Rewrite(FD);
END;
dxdt $[1]:=0.0 ;$ dxdt[2]:=0.0;
$t:=0 ;$
for $n p:=0$ to npMax do BEGIN
tleap: $=n p *(2 * P i /$ Omega) ;
if Poincare then Write2File(TRUE);
for npint:=0 to npintMax do BEGIN

program P9_03;
$\{==============$ Integrates ODE of motion of a spring-mass system and generates data files F9_03LONG.DTA \& F9_03SHRT.DTA and animation file F9_03.DXF.
$===3\}$ uses Graph, \{Cyan,Red, White\}
\{MySt, IsKeyPressed, CenterMsgT \}
\{InitDXFfile\}
$\begin{aligned} \text { LibMec2D; } & \begin{array}{l}\text { \{PutRefSystem, PutGPoint, PutPoint, Shape, Spring, } \\ \text { \{MecOut, NewFrame, CloseMecDXF, CloseMecGraph }\end{array}\end{aligned}$
\{animate every Skip positions
nPoz $=500 ;$
Skip $=4 ;$

END;
END; $\{$. Euler $\}$

[^15]if (Round(t/tend*nPoz) >= i1) then BEGIN

program P9_05;

Generates the time response curve $y(t)$ of a damped spring-mass system

program F9_06;

Finds equilibrium position and fits an exponential through a damped oscillatory response curve $y(t)$
uses DOS, CRT,
LibMath,
LibInOut,
LibMinEA,
LibMinN;
const FileName0 = 'F9_05'; \{name of .MIN and .MAX input files
FileName1 = 'F9_06'; \{name of output .REZ file \}
LimAf $=65000$; \{maximum calls of the objective function \}
LimIt $=5000$; \{maximum number of iterations
var vtmin, vYmin, vtmax, vYmax: VDm; YY, YYbest, YYmin, YYmax: VDn;
FT: text; A0,ZetaOmegaN,YInf, t, vF, vFbest: double;
i,j, Nvar, nMin, nMax: Byte; TotalFev: LongInt; s,AuxStr: string;
function ExpFunc(t:double) : double;
BEGIN
ExpFunc:=A0*exp (-ZetaOmegaN*t);
END;
\{\$F+\}
function Fobjl(YY: VDn): double;
var j:Byte; MaxError, Error: double;
BEGIN
Fobj1:=InfD;
for j:=1 to Nvar do
if (YY[j] < YYmin [j]) OR (YY[j] > YYmax[j]) then EXIT;
ZetaOmegan:=YY[1]; A0:=YY[2]; YInf:=YY[3];

while NOT EOF (FT) do BEGIN Inc (nMax) ; ReadLn (FT, AuxStr); vtmax [nMax]:=Extract1stNo(AuxStr); vYmax [nMax]:=Extract1stNo(AuxStr);
if (vtmax[nMax] >= InfD) then Dec(nMax); END;
Close (FT);
Nvar:=3;
$\begin{array}{lll}\text { YYmin [1] }:=0.0 ; & \text { YYmax[1]:=2.0; } & \text { \{Zeta*OmegaN }\} \\ \text { YYmin[2]:=0.0; } & \text { YYmax[2]:=vYmax[1]-vYmin[1]; } & \text { \{A0\} }\end{array}$
$\begin{array}{lll}\text { YYmin[2]:=0.0; YYmax[2]:=vYmax[1]-vYmin[1]; } & \text { \{A0\} } \\ \text { YYmin[3]:=vYmin[1]; YYmax[3]:=vYmax[1]; } & \{Y \operatorname{Inf}\}\end{array}$
for $i:=1$ to Nvar do \{first initial guess ..\}
YYbest[i]:=YYmin[i]+0.5*(YYmax[i]-YYmin[i]);
TotalFev:=0; vFbest:=InfD;
WriteOutN:=FALSE; \{do not display search status info\}
for $\mathrm{j}:=1$ to 100 do BEGIN \{multistart minimization ..\}
GoToXy (1,WhereY); ClrEol;
Write ('Iteration ',j:3,' $F(X)=$ ', vFbest);
for $i:=1$ to Nvar do BEGIN \{initial guess
epy [i]:=YYbest [i] +(Random-0.5)*(YYmax[i]-YYmin[i]); until (YYmin[i] <= YY[i]) AND (YY[i] <= YYmax[i]);

END;

NelderMead("', Fobj1, Nvar, LimAF, 1.0E-16, YYmin, YYmax, vF,YY);
TotalFev:=TotalFev + NrFevN;
if (vF < vFbest) then BEGIN \{retain the best solution so far..\} vFbest:=vF;
END;
WriteLn;
multistart minimization\}

=', vFbest:20:16);

WriteLn('Zeta*OmegaN=', YY[1]:20:16);
WriteLn('A0 =',YY[2]:20:16);
WriteLn('Y(Inf) =',YY[3]:20:16);
Assign(FT,FileName1+'.REZ'); Rewrite(FT);
WriteLn(FT,'Error =', vFbest:20:16);
WriteLn (FT,'Zeta*OmegaN=', YY[1]:20:16);
WriteLn(FT,'AO =', YY[2]:20:16);
WriteLn(FT,'Y(Inf) =', YY[3]:20:16);
WriteLn(FT,'------
for i:=1 to nMin do WriteLn(FT, vtmin[i],', , vYmin[i]);
WriteLn(FT,'------------------------------'); WriteLn(FT,'-------------------------------');
for $i:=1$ to nMax do WriteLn(FT,vtmax[i],' ',vYmax[i]); WriteLn(FT,'--------------------------------');
for i:=0 to 200 do BEGIN
$\mathrm{t}:=\mathrm{i} * \operatorname{Max} 2(\mathrm{vtmin}[\mathrm{nMin}], \mathrm{vtmax}[\mathrm{nMax}]) / 200$;

for $i:=0$ to 200 do BEGIN
$\mathrm{t}:=\mathrm{i} * \operatorname{Max} 2(\mathrm{vtmin}[\mathrm{nMin}], \mathrm{vtmax}[n M a x]) / 200 ;$
END;
Close(FT); ReadLn;品 89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
program P9_07;

Write('Iteration ',j:3,' $F(X)=$ ', vFbest);
for i:=1 to Nvar do BEGIN \{initial guess base on previous X[..]\} repeat
$\mathrm{x}[\mathrm{i}]$: =Xbest [i] $+($ Random -0.5$) *(\mathrm{Xmax}[\mathrm{i}]-\mathrm{xmin}[\mathrm{i}])$;
until (Xmin[i] <= X[i]) AND (X[i] <= Xmax[i]);
END;
NelderMead('', Fobj2,Nvar, LimAF, 1.0E-32, Xmin,Xmax, vF,X); TotalFev: =TotalFev + NrFevN; if (vF < vFbest) then BEGIN Str(X[i]:10:3,s); X[i]:=MyVal(s); END;
VF: =Fobj2 (X);
if (vF < vFbest) then BEGIN
for i:=1 to Nvar do Xbest[i]:=X[i]; vFbest:=vF;
vF:=Fobj2 (Xbest); \{call Fobj(..) to re-evaluate C1, C2, C3, C4, C5 \} WriteLn(^j);
WriteLn(' Maximum deviation =', vFbest:12:10);
for i:=1 to Nvar do WriteLn(' C',i:1,' =', Xbest[i]); Write('Obj. function calls = ', TotalFev,' <CR>..'); Assign(FT,'F9_07.TXT'); Rewrite(FT); WriteLn (FT,'Max Deviation =', vFbest:12:9);
for i:=1 to Nvar do WriteLn(FT,'C',i:1,' =', Xbest[i]:7:4); Sigma Sigm(eps) Error');
$\begin{aligned} & \text { for } i:=1 \text { to nPts do BEGIN } \\ & \text { vF: }=\text { Sigm(Ei[i]); }\end{aligned}$
WriteLn（FT，Ei［i］：9：6，＇, Si［i］：9：6，＇＇，vF：9：6，＇, ，vF－Si［i］：9：5）； END；
Close（FT）；ReadLn；
含
プのダ
Program P9＿09；

Generate a T3D file to plot as animation the generalized Rosenbrock＇s
function of three variables

11 var FT：Text；$n X, \overline{n Y}, n Z, X \min , X \max , Y \min , Y m a x, Z \min , Z m a x, X, Y, Z$, vF，vFmin，vFmax：double；ix，iY，iZ：integer；
13 function R3（x1，x2，x3：double）：double；\｛Rosenbrok＇s function with $\mathrm{n}=3$ \} var T1，T2：double；
BEGIN
$16 \mathrm{~T} 1:=100 * \operatorname{Sqr}(\mathrm{x} 2-\operatorname{Sqr}(\mathrm{x} 1))+\operatorname{Sqr}(1.0-\mathrm{x} 1)$ ； $17 \mathrm{~T} 2:=100 * \mathrm{Sqr}(\mathrm{x} 3-\mathrm{Sqr}(\mathrm{x} 2))+\mathrm{Sqr}(1.0-\mathrm{x} 2)$ ； R3：$=T 1+T 2$ ；
Xmax：＝2．5；
\ddot{n}
$\underset{\sim}{n}$
\ddot{x}
$\stackrel{\ddot{x}}{\text { a }}$
$\stackrel{y}{u}$
$\stackrel{y}{y}$
Zmax：＝2．5；
Rewrite（FT）；
$\begin{array}{ll}\mathrm{nX}:=161 ; & \text { Xmin：＝－2．5；} \\ \mathrm{nY}:=161 ; & \text { Ymin：＝－2．5；} \\ \mathrm{nZ}:=11 ; & \text { Zmin：＝－2．5；} \\ \text { ClrScr；} & \\ \text { Assign（FT，FileName）；}\end{array}$
END；$\{\ldots \mathrm{R} 3()\}$
BEGIN
$\mathrm{nX}:=161 ; \quad$ Xmin
$\underset{N}{N} \underset{N}{N} \underset{N}{N}$
for iZ:=1 to round (nZ) do BEGIN
$\mathrm{Z}:=\mathrm{Zmin}+(\mathrm{iZ}-1) *(\mathrm{Zmax}-\mathrm{Zmin}) /(\mathrm{nZ}-1)$;
Write (FT,' $\quad x 3=$ ', MyStr (Z,4):4);

END;

WriteLn(FT);

Program P9_10;
 function of n variables for visualizations with D_3D $==3\}$ uses CRT,DOS, LibInOut,
LibMinN,
const FileName='F9_10.T3D';
$\mathrm{n}=5 ; \quad$ number of va
$\mathrm{n}=5 ; \quad\{$ number of variables of the function to be plotted \}
$\mathbf{i x}=1 ; \mathbf{m x}=161 ;$ \{1st scan variable \& number and grid size\} var xxmin, xxmax, Xmin, Xmax, Xbest: VDn;

18 if ($k>=i x)$ then $k:=k+1 ;$
19 if ($k>=i y)$ then $k:=k+1$; $\mathrm{k}:=\mathrm{k}$;
function $\mathbf{k}_{-}(\mathrm{k}:$ Integer) : Integer; $\{$ from $\mathrm{k}=1 . . \mathrm{n}$ to $\mathrm{k}=1 . . \mathrm{n}-2$ \} BEGIN
if ($k=i x$) then BEGIN $k_{-}:=n+1$; Exit; END; if ($k=i y$) then BEGIN $k_{-}:=n+2$; Exit; END; if ($k>i x$) then $k:=k-1$;
if ($k+1>$ iy) then $k:=k-1$; $k_{-}:=k ;$

function Fobj(vX: VDn): double; \{generalized Rosenbrok function ..\}
Integer;
x : VDn; Sum: double; k :
BEGIN
Fobj:=InfD;
for $k:=1$ to $n-2$ do BEGIN
if (vX[k] < Xmin[k]) OR
$\begin{aligned} & \text { if (} \mathrm{VX}[k] \\ & \text { END } ; ~\end{aligned}$
for $k:=1$ to n do if (_k(k) <= n) then $x[k(k)]:=v X[k]$; x[ix]:=xx1; x[iy]:=xx2; Sum: =0.0;
for $k:=1$ to $n-1$ do
Sum: $=$ Sum $+100 *$ Sqr $(x[k+1]-\operatorname{Sqr}(x[k]))+$ Sqr (1.0-x[k]);
Fobj: $=$ PlsMns*Sum; \{..scale and reverse function valu function MinMax(Xx,YY: double): double; \{partial min/max of Fobj..\} var FV: double;
vX: VDn; TotalFev, LimFC: LongInt; j,k, jIter: Integer; BEGIN \{MinMax ..\}

52	if (PlsMns > 0) then BEGIN LimFC:= 50000; jIter:= 25; END; \{minim.\}
53	if (PlsMns < 0) then BEGIN LimFC:=100000; jIter:=100; END; \{maxim.\}
54	for $\mathrm{j}:=1$ to jIter do BEGIN \{multistart minimization ..\}
55	for $\mathrm{k}:=1$ to $\mathrm{n}-2$ do BEGIN $\{$ initial guess based on previous Xbest..\}
56	repeat
57	
58	until (XXmin [_k(k)] <= vX[k]) AND (vX[k] <= XXmax[_k(k)]);
59	END;

FV, vX);
1.0E-9,
Fobj, n-2, LimFC,
TotalFev: =TotalFev + NrFevN; if (FV < FVbest) then BEGIN FVbest:=FV;
for $k:=1$ to $n-2$ do Xbest $[k]:=v X[k]$;
END;
MinMax:=FVbest/PlsMns; \{.. reverse to actual function value\} END; \{.. MinMax\}
FV: double;
Assign(FT,FileName); ReWrite(FT);
for $\mathrm{k}:=1$ to n do BEGIN \{set boundaries $\mathrm{x} 1 . \mathrm{x} 5 \ldots$..
XXmin [k]:=-1.5; XXmax[k]:=1.5;
END;
for $k:=1$ to $n-2$ do BEGIN \{equalize boundaries ..\}
Xmin $[k]:=X X \min \left[_k(k)\right] ; \quad X \max [k]:=X X \max \left[_k(k)\right] ;$
Write (FT, Fmin ');
xmax', k);
xmax',k);
) ; WriteLn(FT); WriteLn(FT);

 WriteLn(FT) ; , mx:4,' for $k:=1$ to $2 * n+2$ do Write(FT,XXmin [ix]:13:5); WriteLn(FT);

Fmin ${ }^{\prime}$;
Fmin');
n do Write (FT,' for $k:=1$ to $2 * n+2$ do Write (FT,' for $k:=1$ to $2 * \mathrm{n}+2$ do Write (FT, do Write(FT,XXmin[iy]:13:5) for $k:=1$ to $2 * n+2$ do Write(FT,XXmax[iy]:13:5);

ClrScr; StartWatch;
for $i:=1$ to $m x$ do BEGIN
亩
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

[^16]

Program P9_14;

Writes to file N Gaussian random values

$$
\text { \{output file name\} }
$$

Randomize; $\mathbf{x 1 : = 1 0 . 0 ; ~} \mathbf{x} 2:=10.0$; \{initialize x 1 and x 2 in GaussRandom 13 END; \{.. MyRandomize() \} function GaussRandom(Mean,StDev: double): double;
StDev $=1.0 ; \quad$ \{standard deviation\}
$\mathbf{N} \quad=10000 ;$ number of random vall
$\begin{aligned} & \mathrm{N}=10000 ; \text { number of random values }\} \\ & \text { var FT: Text; } \mathbf{x 1 , x 2 , w} \text { : double; } \mathbf{x} \text { double } \mathrm{i} \text { : }\end{aligned}$ procedure MyRandomize;
BEGIN
for $i:=1$ to N do BEGIN
WriteLn(FT, x:16:10);
END;
Close (FT) ;
END.
1
2
3
4
5
6
7
8
9
10
12
15 \{Generates Gaussian random numbers with Mean and StDev\}
16 BEGIN
17 if $(x 1+x 2=20.0)$ then BEGIN repeat
$\mathrm{x} 1:=2.0 *$ Random-1.0; x2:=2.0*Random-1.0;

$$
\begin{aligned}
& \mathrm{w}:=\mathrm{x} 1 * x 1+\mathrm{x} 2 * \mathrm{x} 2 ; \\
& \text { until }(\mathrm{w}<1.0) ; \\
& \mathrm{w}:=\operatorname{Sqrt}(-2.0 * \operatorname{Ln}(\mathrm{w}) / \mathrm{w}) ;
\end{aligned}
$$

END;
if ($\mathrm{x} 1<10.0$) then BEGIN
GaussRandom:=Mean+w*x1*StDev; x1:=10.0; if ($x 2$ < 10.0) then BEGIN GaussRandom:=Mean+w*x2*StDev; x2:=10.0;
END;
END; $\{$
BEGIN
Assign(FT,FileName); Rewrite(FT);
', StDev:9:4);

LibAssur, $\{$ RRR $\}$
LibMec2D; \{OpenMecGraph, NewFrame, Locus, SetJointSize, \} \{AngPVA, CloseMecDXF, MecOut \}
LibMec2D; \{OpenMecGraph, NewFrame, Locus, SetJointSize, \} BEGIN LR1:=Left; \{..orientation of the ABC dyad\} LR1: =Left;
LR2: $=$ Right; OA: $=60$; xO:=0.0; $\begin{array}{ll}\mathrm{xO}:=0.0 ; & \mathrm{yO}:=0.0 ; \\ \mathrm{xC}:=200.00 ; & \mathrm{yC}:=0.0 ;\end{array}$

nPoz: =nPozDXF;
END;
END;
NewFr
NewFrame (0);
Th1: $=2 *$ Pi*i/n
Th1:=2*Pi*i/nPoz;
dTh1:=1;
 , $\mathrm{xB}, \mathrm{yB}, \mathrm{vxB}, \mathrm{vyB}^{\mathrm{B}}$, Offset(Red,'V',
 , xE,YE, VXE, VYE,_,_'_); Locus (Cyan, xD, yD, ' ${ }^{\prime}$) ; PutGPoint(White,' ',xO,yO PutPoint(White,' ', xB,yB,' PutGPoint (White,' ', xC,yC PutGPoint(White, , , xF,yF, LabelJoint (White, xO, yO, XA, YA, ' A^{\prime}) ; LabelJoint (White, $\mathrm{xE}, \mathrm{YE}, \mathrm{xD}, \mathrm{YD}, \mathrm{C}^{\prime} \mathrm{D}^{\prime}$); LabelJoint (White, XF, YF, XE, YE,' E'); PutAng (White, $\mathrm{xO}, \mathrm{yO}, \mathrm{xO}, \mathrm{YO}, \mathrm{xA}, \mathrm{YA}, 8, \# 233+^{\prime} 1^{\prime}$); PutAng (White, $\mathrm{xF}, \mathrm{yF}, \mathrm{xF}, \mathrm{YF}, \mathrm{xE}, \mathrm{YE}, 8, \# 233+$ ' $^{\prime}$) ; if (nPoz = nPozDTA) then BEGIN
AngPVA (xF, YF, 0, 0, 0, 0, XE, YE, VXE, VYE,_,_, Th6, dTh6,_); WriteLn(FT,Th1*DEG:6:3,', ,Th6*DEG:9:5,', ,dTh6:9:5);
END; Inc (i);
until (NOT MecOut) AND IsKeyPressed(27); CloseMecGraph (FALSE) ; Close(FT);

program P9_18;

repeat if ($i>n P o z$) then BEGIN END;

NewFrame (500);

Theta:=Pi+2*Pi*i/nPoz;

会
program P9_19;
Simulation of a radial engine

[^17]LibInOut, \{IsKeyPressed\} LibDXF, \{InitDXFfile\}
LibAssur, $\{$ RR_T $\}$
LibMec2D; \{OpenMecGraph,NewFrame,gCrank,SetJointSize,CloseMecDXF\} const nCyl = 3; \quad \{number of cylinders $\}$
DXFile $=$ 'F9_19.DXF'; $\{D X F$ file name $\}$
var Phi, $\mathrm{xO}, \mathrm{yO}, \mathrm{OA}, \mathrm{AB}, \mathrm{xA}, \mathrm{YA}, \mathrm{xP}, \mathrm{yP}, \mathrm{xQ}, \mathrm{yQ}:$ double; $\mathrm{i}, \mathrm{j}:$ Word; BEGIN

| $\mathrm{xO}:=0.0 ;$ | $\mathrm{yO}:=0.0 ;$ | |
| :--- | :--- | :--- | InitDXFfile(DXFile);

OpenMecGraph (xO-OA-AB, xO+OA+AB,yO-OA-AB*1.2,yO+OA+AB*1.2); SetJointSize(-4);

i:=0;
repeat
 북 ㄷ $\stackrel{\infty}{-}$ 9 $\stackrel{H}{N}$
N
N $\stackrel{\llcorner }{\mathrm{N}} \stackrel{\bullet}{\mathrm{N}}$ 소N ${ }^{\infty}$

program P9_20;

Simulation of Gnome rotary engines $==\}$
uses Graph, \{Brown, Red, White\} LibInOut, \{IsKeyPressed\}

LibDXF, \{InitDXFfile\}
LibAssur, $\{$ RR_T $\}$

var Phi, Ec,cr, $x 0, y O, P Q, x P, y P, x Q, y Q:$ double; $i, j:$ Word;

 END;
END;
Inc (i)
until (NO END.
CloseMecGraph(FALSE); \{erase all .\$xy files and CloseGraph\}
until (NOT MecOut) AND IsKeyPressed(27);

10
13
14
$\stackrel{\square}{-}$ 17

今 $\stackrel{\infty}{\wedge}$
InitDXFfile(DXFile);
SetJointSize(-4);
i:=0;

program P9_21;

Simulates an iris mechanism with any number of vanes (1st variant)
LibMecIn, \{gCrank\}
LibAssur, \{RR_T\}

OA,OP,PQ: double; XA, $\mathrm{YA}^{2}, \mathrm{XP}, \mathrm{yP}, \mathrm{XQ}, \mathrm{yQ}$,
$\mathrm{xO}:=0.0 ; \quad$ YO:= $0.0 ;$
$\mathrm{OA}:=6.00 ; \quad$ OP:= $=2.25 ;$
InitDXFfile (DXFile);
OpenMecGraph(xO-OA, XO+OA, GIN
OO: i:=0;
OpenMecGraph (xO-OA, $\mathrm{xO}+\mathrm{OA}, \mathrm{YO}-1.3 * O A, \mathrm{YO}+1.3 * O A$);
if (nVane <= 3) then Clr:=Green else Clr:=Black;
repeat
if (i > nPoz) then BEGIN END;
NewFrame (500);
Phi:=-Pi/4 + Pi/6*Sin(2*Pi*i/nPoz); for $\mathrm{j}:=1$ to nVane do BEGIN
gCrank(Clr, xO,yO, Phi+2*Pi/nVane*j,_'_, OA, xA,yA,_'_'_'_); xP:=OA*Cos (Pi+2*Pi/nVane*j);
RR_T(-Clr, $\mathrm{XP}, \mathrm{yP}, 0,0,0,0, \mathrm{XO}, \mathrm{yO}, 0,0,0,0, \mathrm{XA}, \mathrm{YA}$, _'_'_ $^{\prime}$
, $\mathrm{PQ}, 0,+1, \mathrm{xQ}, \mathrm{YQ}$,
Shape ('VANE. XY ', Red, $\mathrm{xP}, \overline{\mathrm{Y} P}, \mathrm{xQ}, \mathrm{yQ}$); \quad \{. . draw vane\}
if (nVane <= 3) then BEGIN
PutGPoint(White, ' ', $x 0, y 0, \prime 0 \quad$);
LabelJoint (White, $x 0, y O, x A, y A, A^{\prime}$);

$\left.P^{\prime}\right) ;$
$\left.Q^{\prime}\right) ;$
LabelJoint (White, $x Q, y Q, x P, y P, \prime$
LabelJoint (White, $x P, y P, x Q, y Q, '$
END;
END;
Inc (i);
until (NOT MecOut) AND IsKeyPressed (27);
CloseMecGraph(FALSE);
END.
END.

program P9_22;

 BEGIN
$\mathrm{OA}:=6.00 ;$
$\mathrm{OP}:=5.25 ;$
$\mathrm{PQ}:=9.0 ;$

$\mathrm{xO}:=0.0 ; \quad \mathrm{yO}:=0.0$;
InitDXFfile(DXFile);
OpenMecGraph (xO-OA, xO+OA, yO-1.3*OA, YO+1.3*OA);
i:=0;
i:=0; CloseMecDXF;
END;
f (i > nPoz) then BEGIN
$i:=0 ;$ CloseMecDXF;
NewFrame (500) ;
Phi:=Pi + Pi/6*Sin(2*Pi*i/nPoz); for $\mathrm{j}:=1$ to nVane do BEGIN gCrank(Clr, xO,yO, Phi+2*Pi/nVane*j,_,_, OP, xP,yP,_'_'_,_); xA: =OA*Cos(-Pi/4 + 2*Pi/nVane*j); YA:=OA*Sin(-Pi/4 + 2*Pi/nVane*j);

 END;
Inc (i);
until (NOT MecOut) AND IsKeyPressed(27);
CloseMecGraph(FALSE);苗

program P9_23;

fixed \& moving centrodes');
SetJointSize(3);
$i:=0$; Loop: $=0 ;$
Repeat
if ($i>n P O z+1$) then BEGIN
if (Loop $=2$) then BEGIN

if (Loop < 3) AND D_X_F then WritePCX(ImplicitFileName('IC.PCX'), OK); Inc (i);
until IsKeyPressed(27);
CloseMecGraph (TRUE);甼
program P9_27;

if (vY[iY] <> InfD) then Write(FD, X,vy[iY]); END; for iY:=1 to nY do BEGIN
Y:=Ymin+(Ymax-Ymin)/(nY-1)*(iY-1);
\quad NrFev0:=0;
ZeroGrid(Fx, Xmin, Xmax, $n X, ~ v X) ;$
\quad for iX:=1 to Nmax do
\quad if (vX[iX] <> InfD) then Write(FD, vX[iX], Y);
END;
Close(FD);
Write(FileName,' file output successfully..');
END.

END.

Write(FileName,' file output successfully..');

Program P9_28;
 م

ReadLn;

HNMHIn

program P9_31;
Inverse kinematics of a 5R parallel SCARA robot

[^18]ThetaB2');
nininsus

U2	
U1	
1	1
1	

i: =0;
NewFrame (0);
if (i MOD 4 <> 0) then SuspendDXF else ResumeDXF; PutRefSystem (3,3,'x','y'); xCp:=xC; yCp:=yC; ReadLn (FTi, xC, yC);
 AngPVA (xA1,yA1, 0, 0, 0, 0, xB1, yB1,_'_'_'_, ThA1,_,_);
Ang 4PVA ($\mathrm{xA} 1, \mathrm{yA} 1,0,0,0,0, \mathrm{xB1}, \mathrm{yB1}$, _ _ _ _ $^{\prime}, \mathrm{xB1}, \mathrm{yB1}$, _ _ _ _' $^{\prime}$, $\mathrm{xC}, \mathrm{yC},{ }^{\prime}, \quad, \quad, \quad$ ThB1,_,_);

 PutAng (White, 2*xB2-xA2, 2*yB2-yA2, xB2, yB2, xC,yC,6,'<'+\#233+'_B2|'); PutGPoint (White,' `,xA1,yA1,'A_1 `); PutPoint(White,' ',xB1,yB1,'B_1 `); PutGPoint (White,' ', xA2,yA2,'A_2 PutPoint(White,' ',xB2,yB2,'B_2 ');
LabelJoint (White, 0.5* (xA1+xA2), 0.5* (yA2+yA2), xC, yC,' ResumeDXF;
Locus (Cyan, $\left.x C, y C,{ }^{\prime} C^{\prime}\right)$;
C'); if MecOut then WriteLn (FTo,W(t),' ', W(ThA1*DEG),' ,W(ThB1*DEG),' ',W(ThA2*DEG),' ',W(ThB2*DEG)); if IsKeyPressed (27) then GoTo Abort;
Inc(i);
until EOF (FTi); CloseMecDXF;

ம へ

program P9_32;

 Direct kinematics of a 5R parallel SCARA robot uses Graph, $\{$ Blue, Red, White $\}$
LibMath, \{RAD\} LibInOut, \{IsKeyPressed\} LibDXF, \{InitDXFfile\} LibMecIn, \{gCrank\}
LibAssur, $\{R R R\}$ LibMec2D; \{OpenMecGraph,SetJointSize,NewFrame, \} \{Base, Link, CloseMecDXF, CloseMecGraph \} const InAngles = 'F9_31.DTA';
OutDXF = 'F9_32B.DXF';
 var FT:text; AuxStr:string; i:Word; DD,AuxD,t, vC, AB, BC , xA1, YA1 , xA2 , YA2 , xB1, YB1, xB2, YB2 , xC,yC, ThA1, ThA2 : double; label Abort; BEGIN

[^19]$\stackrel{m}{N}$

program P9_33;
$\{==============$
LabelJoint (White, 0.5*(xA1+xA2), 0.5*(yA1+YA2), xC, yC,' CometLocus (Cyan, $\left.x C, y C,{ }^{\prime} C^{\prime}\right)$;
if IsKeyPressed(27) then GoTo Abort; Inc(i);
until EOF(FT);
until FALSE;
Abort:
Close (FT);
CloseMecGraph (FALSE);
END.
Direct kinematics of a 2 R serial SCARA robot

+

1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17 , XA1, YA1, xA2, YA2 , xB, yB, xC,yC,ThA,ThB,ThA1,ThB1,ThA2,ThB2:double; label Abort;
BEGIN

Reset (FT);
ReadLn (FT, xA1, yA1); ReadLn (FT, vC);
\{..read ' t ThetaA1 ThetaB1 'etc.\}
if (i MOD 4 <> 0) then SuspendDXF else ResumeDXF; ReadLn (FT,t, ThA1,ThB1, ThA2,ThB2); if (LftRgt $=-1$) then BEGIN
i:=0;
repeat
ReadLn (FT, XA2, YA2) ; ReadLn (FT,AuxStr); DD: $=0.2 * \mathrm{AB}$;
18
우
N N N
$\stackrel{\sim}{N}$ N
$\stackrel{+}{N}$
N
$\stackrel{\infty}{\sim}$ 인
30
N
$\mathrm{N}_{\mathrm{m}}^{\mathrm{m}}$
34
$\stackrel{0}{m}$
ㅅm ${ }_{m}^{\infty}$
ThA: =ThA1*RAD END

else BEGIN

AuxStr:='2'; $\quad x A:=x A 2 ; \quad y A:=y A 2 ;$ ThB: =ThB2*RAD;
gCrank (-Red, xA,yA, ThA,_'_, AB, xB,yB,_,_'_,_);

[^20]Inverse kinematics of an RTRTR parallel SCARA robot
uses Graph, \{Blue, Cyan, Green, Red, Magenta\}
LibGe2D, \{Dist2Pts\}
LibMath, \{DEG\}
LibInOut, \{IsKeyPressed $\}$

24
25
26 BEGIN

Assign(FTi,InpPathXY); Assign(FTo,OutDTA);

InitDXFfile (OutDXF);
Rewrite (FTo) ;

$\left.\mathrm{y} A=\mathrm{\prime}, \mathrm{~W}(\mathrm{yA}),{ }^{\prime}{ }^{\prime}{ }^{\prime}\right)$;
BOB=', W (BOB) ,';');
品 WriteLn(FTo,'t s1 s2 ds1 ds2');

LibDXF, \{InitDXFfile\} LibMecIn, \{RTRTR\} LibMec2D; const InpPathXY =

> W: =MyStr (D, 8) ;
> W: $=$ M
END;
BEGIN
> END; 28 29
30 31 31
33 33
34 nㅛ ํ․

PutGPoint (White,' ', xB,yB,'B ');

ND.								```LabelJoint(White,0.5 if (AOA > O) then La if (BOB > O) then La PutVector(LightBlue, ResumeDXF; if MecOut then until FALSE; Abort: Locus WriteLn(FTO,W(t), if IsKeyPressed(27) Inc(i); until EOF(FTi); CloseMecDXF; Close(FTi); Close(FTo); CloseMecGraph (FALSE) ;```

program P9_35; Direct kinematics of the RTRTR robot with pinion and rake shapes

[^21]
 BEGIN
W: $=\operatorname{MyStr}(\mathrm{D}, 10) ;$
END;
label Abort;
BEGIN
InitDXFfile(OutDXF);
Rewrite (FTo);
WriteLn (FTo,' t Thetal Theta2 dTheta1/dt dTheta2/dt');
OpenMecGraph (-4,13, -18,7);
SetTitle('Direct kinematics of an RTRTR geared robot');
ReadLn(FTi,AuxStr); ReadLn(FTi,AuxStr); ReadLn(FTi,AuxStr); ReadLn (FTi, $\mathrm{XA}, \mathrm{YA}, \mathrm{xB}, \mathrm{yB}, \mathrm{A} 0 \mathrm{~A}, \mathrm{BOB}$);
ReadLn (FTi,AuxStr);
Phi1:=0.0; Phi2:=0.0;
Thta2:=InfD;
dThta2:=InfD;
 N 25
27
ํ
ल
$\mathrm{N}_{\mathrm{m}}^{\mathrm{m}}$
(
$\stackrel{\circ}{m}$

> repeat
Reset(FTi);
tp:=0.0;
Thtal:=InfD;
dThtal:=InfD;
i: =0;
NewFrame (0);

dThta2: =(Thta2-Thta2p) /(t-tp) ;

END;
if MecOut then WriteLn (FTo, W(t), ' , W(Thtal*DEG) ,' ', W(Thta2*DEG),' ',W(dThta1),' ',W(dThta2)); if IsKeyPressed(27) then GoTo Abort; Inc (i); until EOF(FTi); CloseMecDXF;
program P9_36B;
END.

Close(FTi); Close(FTo);
CloseMecGraph (FALSE);
until F
until FALSE;
Abort:
-
\{============== Simulation of an excavator arm motion - includes shapes attached to links
 uses Graph, \{Brown, Red, White, Magenta\}

$$
\text { N M M M } \underset{\sim}{\infty} \text { ロ }
$$

xA3,YA3, xB3,yB3,
A3Q3, P3C3, B3C3, $\quad x C 3, y C 3$,
 BEGIN

$$
\text { s1min: }=0.65 \text {; s1max }:=0.90 ; \quad \text { \{..piston } \# 1 \text { motion range }\}
$$

$$
\text { s2min: }=0.60 ; \text { s2max: }=0.90 ; \quad \text { \{..piston } \# 2 \text { motion range }\}
$$

$$
\text { s3min:=0.45; s3max:=0.65; } \quad \text { \{..piston \#3 motion range\} }
$$

\{..orientation of loops A1-B1-C1
point
s1：＝0．5＊（s1min＋s1max）＋0．5＊（s1max－s1min）＊cos（2＊Pi＊t－Pi／8）； $\mathrm{s} 2:=0.5 *(\mathrm{~s} 2 \min +\mathrm{s} 2 \max)+0.5 *(\mathrm{~s} 2 \max -\mathrm{s} 2 \min) * \cos (2 * \mathrm{Pi} * \mathrm{t}+\mathrm{Pi} / 4)$ ； s3：＝0．5＊（s3min＋s3max）＋0．5＊（s3max－s3min）＊cos（2＊Pi＊t－Pi／8）； gShape（＇EXbody．XY＇，Brown，0，0）；
$\operatorname{RTRR}(-$ Magenta， $\mathrm{xA} 1, \mathrm{yA} 1,0,0,0,0, \mathrm{xB} 1, \mathrm{yB} 1,0,0,0,0,0$
 Shape（＇EXboom． XY^{\prime} ，Brown， $\mathrm{xB} 1, \mathrm{yB1}, \mathrm{xC1}, \mathrm{yCl}$ ）；
 ，x＿A2，Y＿A2，xA2，YA2，＿＇＿＇＿，）；
 ，XTRR（－Magenta，xA2，yA2＇，
 ，0，A2Q2，P2C2，B2C2，s2，＿，＿，L R2，xC2，yC2， Shape（＇EXstick．XY＇，Brown， $\mathrm{xB} 2, \mathrm{YB} 2, \mathrm{xC} 2, \mathrm{YC} 2$ ）； Offset（ $0, '$＇，xB2，yB2，＿，＿＇＿＇＿，xC2，yC2，＿，＿＇＿ ，x＿A3，y＿A3，XA3，YA3，＿＇＿＇＿＇＿）；

 ，x＿D ，y＿D，xD，YD，＿＇＿＇＿＇＿）；

 PutGPoint（White，＇＇，xA1，YA1，＇A1 PutGPoint（White，＇＇，xB1，yB1，＇B1 （xite，，xC1，yC1， PutPoint（White，＇＇，xA2，yA2，＇A2 PutPoint（White，＇＇，xB2，yB2，＇ PutPoint（White，＇＇，xC2，yC2，＇ PutPoint（White，＇＇，xA3，yA3，

program P9_38;

Kinematic simulation of a rope-shovel with shapes read from file

$$
\begin{aligned}
& ===\} \\
& \text { uses Graph, \{Red, White, Green\} }
\end{aligned}
$$

\{ RAD
$\begin{array}{ll}\text { LibInOut, } & \text { IskeyPressed\} } \\ \text { LibDXF, } & \{\text { InitDXFfile }\end{array}$
GetBO (xBO,yBO); GetP1 (xP1,yP1) ; Shape ('RSboom. XY' Shape ('RSbrack. XY' AngPVA (xA0,yAO, , Theta1:=Phi1 - s1/rp + 7.632*RAD;
gCrank (Red, XA, YA, Thetal,_'_' rp,
Shape('RSpinion. XY', Blue, XA,YA, XA
 AngPVA (xB0, yB0,_'_'_'_, xC,yC,_'_'_'_, Phi2,_,_); Theta2:=Phi2 + s2/B0B;
 Inc(i);
until IsKeyPressed(27); CloseMecDXF;

[^22]program P9＿49； Crank－slide punch press simulation
 \｛Red，White\}
\[

$$
\begin{aligned}
& \left\{_\right\} \\
& \{\text {IsKeyPressed }\}
\end{aligned}
$$
\]

LibMath，
LibInOut，
LibDXF， LibMecIn，

$$
\begin{aligned}
& \{\text { IsKeyPressed }\} \\
& \{\text { InitDXFfile }
\end{aligned}
$$ LibMecIn，$\{$ gCrank $\}$

LibAssur，$\{$ RR＿T $\}$
LibMec2D；\｛OpenMe
const FName＝＇F9＿49＇；\｛DXF and DAT file names
nPoz＝1800；
＝80；
sf $=0.75$ ；
$\{[\mathrm{m}]$ end of punch
$\{[\mathrm{m}]$ stock thickness \｛maximum punch force
var FT：text；i，ViewOn：Word；
time，Theta，dTheta，$F, T, x O, y O, O A, A B, B P, s, s, s$, XA，$Y A, v x A, v y A, ~ x B, y B, ~ x P, y P, v x P, v y P, ~$
BEGIN
dTheta：＝Pi＊RPM／30；\｛angular velocity in rad／s \} $\mathrm{OA}:=0.15$ ；$\{[\mathrm{m}]$ crank length $\}$ $A B:=0.50 ; \quad\{[m]$ conrod length BP：＝0．15；\｛punch length
$\mathbf{x O}:=0.0 ; y O:=0.65$ ；\｛crank ground joint \} s＿s：＝s＿f－h；
$\mathbf{x Q}:=\mathbf{x O} \overline{\text { ；}} \quad y \mathbf{Q}:=y 0-0.5 *\left(\mathbf{s}_{-} \mathbf{s + s} \mathbf{f}\right) ; \quad$ \｛coordinates of punch guide center\}
雨 写
$\left.\mathrm{T}^{\prime}\right) ;$
$[\mathrm{N}-\mathrm{m}]$＇）；
部
写
Theta
ThT）
［DEG］

InitDXFfile(FName+'.DXF');
OpenMecGraph (-OA, OA, YO-OA-1.5*AB-BP, yO+1.5*OA); OpaqueJoints:=FALSE; i:=0;
T:=InfD;
repeat
if (i > nPoz) then BEGIN
i:=1; CloseMecDXF;
END;
if (i MOD $10=0$) then BEGIN
NewFrame(0); ViewOn:=1;
END
time:=i/nPoz*(2*Pi/dTheta); Theta:=dTheta*time;

if (s > $=s_{-}$) AND ($s<=s _f$) AND ($\mathrm{vYP}<0$) then BEGIN
PutVector (ViewOn*Blue, ' =', $\bar{x} P$, yP, 0, F/Fmax, $-0.2, F^{\prime}$); END else $\mathrm{F}:=0$;
T: = - F*VyP/dTheta;
PutGPoint(ViewOn*White, ' ', $x 0, y O, O^{\prime}$); PutPoint (ViewOn*White, , , xB, yB,'B \quad); PutPoint (ViewOn*White, , ', xP,yP,'P `); LabelJoint (ViewOn*White, xO,yO, xA, $\mathrm{YA}^{\prime}, \mathrm{A}^{\prime}$); PutGPoint(ViewOn*White, '.', xO,yQ+h/2,''); PutGPoint(ViewOn*White, '.', xO,yQ-h/2,''); N
if MecOut then WriteLn (FT, MyStr(time,9),' ',MyStr(Theta,9),' ',MyStr(Theta*DEG,9) , MyStr (F, 9),' ', MyStr (T, 9));
Inc(i);
Close (FT);
CloseMecGraph (FALSE);
END.
program Purge;
$\{==$ Deletes without confirmation all files of extensions \$XY, \$2D, \$3D, OLD, BAK, all files ~POLY*. TMP and files acad.err and acadstk.dmp if present.
Erases with confirmation all files of extension BMP, PCX and SCR.
 uses CRT, LibInOut;
var Ch: char;
BEGIN
ClrScr;
EraseAll('acad.err');
EraseAll ('acadstk.dmp'); EraseAll('~POLY*.TMP');
EraseAll('*.\$XY');
EraseAll ('*. ${ }^{2} 2 D^{\prime}$);
EraseAll(八*.\$3D');
EraseAll('*.OLD');
EraseAll('*.BAK');

$\begin{array}{lllllll} & 4 & 1 & 6 & \sim & \infty & 0 \\ 0 & 6 & 0 & 0 & 6 & 6 & 6\end{array}$

GoToXY(WhereX-1,WhereY);
-);
$\mathrm{y}<\mathrm{Y} / \mathrm{N}>$?

Chapman \& Hall/CRC

Computer \& Information Science Series

This book allows readers to expand the versatility of AutoCAD® ${ }^{\circledR}$ design and documentation software. It provides ready-to-use procedures and computer programs for solving problems in a variety of application areas, including computer-aided design, data visualization, evolutionary computation, numerical methods, single and multicriteria optimization, linkage and robot kinematics, cam mechanisms, and involute gears.

Students, engineers, and scientists alike will benefit from the text's illustrative examples, first-rate figures, and many original problem-solving approaches, as well as the included software tools for producing high-quality graphs and simulations. Those who use AutoCAD LT, or have access to only a DXF viewer, can also make substantial use of this book and the accompanying programs and simulations.

Features

- Provides access to unique software tools for data visualization, CAD format conversion, and computer-generated animations and simulations
- Describes new multidimensional visualization techniques and evolutionary algorithms
- Discusses new approaches to cam mechanism design and analysis
- Introduces a series of procedures for the kinematic simulation of a wide variety of planar linkage mechanisms
- Contains illustrative examples, first-rate figures, and many original problem-solving approaches

Read the Reviews:

"This is a unique book in that it covers a variety of engineering problems, ranging from graph plotting and optimization to mechanical component analysis. The figures are great and the procedures are described with clearly explained computer codes."

- Professor Kalyanmoy Deb, Michigan State University
"Simionescu's book collects the long experience of the author in teaching kinematics of mechanisms and machines by using software environments commonly available to students and professionals. It shows how graphic tools can be employed in solving real problems in mechanical engineering."
- Professor Raffaele Di Gregorio, University of Ferrara, Italy

[^0]: PutDist (Color:Word; xA,yA,xB,yB:double; ExtL:double; Dim:string);
 PutAng (Color:Word; $x 1, y 1, x 0, y 0, x 2, y 2: d o u b l e ; ~ E x t L: d o u b l e ; ~$
 Dim:string);

[^1]: uses CRT, LibMath;

 $$
 \text { \{limits of Theta\} }
 $$

 \{number of plot points to extract $x \& y$ bounds
 $\left.\begin{array}{l}\text { nT = 101; } \quad \text { \{number of plot points to extract } \mathrm{x} \text { \& Y bounds \} } \\ \text { PlotDefx }=405 ; \quad \text { PlotDefy }=405 ; \text { \{plot box resolution } \\ \text { DLavg }=31 ; \quad \text { \{approximate length of plot segment \} }\end{array}\right\}$
 $\left.\begin{array}{l}\text { nT = 101; } \quad \text { \{number of plot points to extract } \mathrm{x} \text { \& Y bounds \} } \\ \text { PlotDefx }=405 ; \quad \text { PlotDefy }=405 ; \text { \{plot box resolution } \\ \text { DLavg }=31 ; \quad \text { \{approximate length of plot segment \} }\end{array}\right\}$
 Assign(FD,'F1_24B.D2D'); Rewrite(FD);

[^2]: Assign(FD,'F1_26A.D2D'); Rewrite(FD);
 Assign(FT,'F1_26A.DTA'); Rewrite(FT);
 ClrScr; \{Next write ASCII file header:\}
 WriteLn (FT,'Polar plot of ', n, ' Archimedean spirals:');
 $\left.y^{\prime}\right)$; WriteLn (FT,'
 for iC:=1 to n do BEGIN
 Theta0: $=(\mathrm{iC}-1) *(2 * \mathrm{Pi} / \mathrm{n})$;

[^3]: \{Theta limits\}

 Tmax $=2 * P i ;$ uses CRT, LibMath;
 const $\operatorname{Tmin}=0.0$;

[^4]:
 const nx: double = 251;
 ny: double = 251; ymin: double = -PI; ymax: double = PI; var FT: Text;

[^5]: NewPlot, PlotCurve, PlotXaxis, PlotYaxis .. \} NewLimitsX, NewLimitsY\}
 \{name of DXF and PCX files\}
 \{column number for X and Y \} nPts $=502$; \{should not exceed 502 i.e. Pmax \} \{input ASCII file \} X,Y: VDp;
 OneX,OneY, Xmin, Xmax, Ymin, Ymax: double;
 RowFinish, jRow, i: Word;
 Row: string; Ch: char; OK: Boolean;

[^6]: uses LibMin1, LibMath;
 var $x, v F: V D n ; \quad a, b: d o u b l e ;$
 function F1(X: double): double;
 functi
 F1: $=1 /(\operatorname{Sqr}(x-1)+0.1)+1 /(\operatorname{Sqr}(x-3)+0.2)-3 ;$ END; \{.. F1 () \}
 function _F1(X: double): double;
 BEGIN
 _F1: $=-(1 /(\operatorname{Sqr}(x-1)+0.1)+1 /(\operatorname{Sqr}(x-3)+0.2)-3) ;$ END; \{.. _F1() \}
 function F2 (x: double): double;
 BEGIN
 if $\mathrm{Abs}(\mathrm{x} * \mathrm{x}-4)>\operatorname{EpsD}$ then $\mathrm{F} 2:=(\mathrm{x} * \mathrm{x} * \mathrm{x}-3 * \mathrm{x}) /(\mathrm{x} * \mathrm{x}-4)$
 END; $\{\ldots \mathrm{F} 2()\}$
 function _F2(x: double): double;
 BEGIN
 if $\mathrm{Abs}(\mathrm{x} * \mathrm{x}-4)>\operatorname{EpsD}$ then $\mathrm{F} 2:=-(\mathrm{x} * \mathrm{x} * \mathrm{x}-3 * \mathrm{x}) /(\mathrm{x} * \mathrm{x}-4)$
 END; $\{\cdots \quad F 2()\}$

[^7]: const nx: double =501; xmin: double =-1.25; xmax: double = 1.25 ;
 ny: double $=501 ;$ ymin: double $=-1.25 ;$ ymax: double $=1.25$;
 var FD: File of double;
 \quad ix,iy: integer; $x, y, z:$ double;
 function Fn(x,y: double): double; \{Function to be optimized\}
 const $r T=1.0 ; r S=0.2 ; n=8 ;$
 var Theta: double;
 BEGIN

[^8]: OpenMecGraph $(-8,8,-8,8)$;
 InitDXFfile('F5_01.DXF');
 iFr:=0; SetTitle('Archimedean Spirals'); Repeat
 if (iFr > nFr) then BEGIN
 END;
 NewFrame (500);
 Theta0: $=(\mathrm{i}-1) *(2 * \mathrm{Pi} / \mathrm{n}) ; \quad$ \{..angular spacing between curves $\}$ Theta: $=\operatorname{Tmin}+(\operatorname{Tmax}-\operatorname{Tmin}) /(n \mathrm{Fr}-1) * i F r ; \quad\{.$. current angle Theta\}
 x:=Theta*cos(Theta+Theta0);
 Locus (i MOD $15+1, x, y, \prime^{\prime}+$ MySt (i,2));
 PutPoint(i MOD $\left.15+1, \prime^{\prime}, x, y, \prime \prime\right) ;$

[^9]: ## program P5＿11；
 program P5＿11；

 HN M サー 6 ค ∞ の

[^10]:

[^11]:
 \{Cyan, Red, White\}
 uses $\begin{aligned} & \text { Graph, } \\ & \text { Libmath, } \\ & \text { LibInOut, } \\ & \text { LibDXF, } \\ & \text { LibMecIn, } \\ & \text { LibAssur, }\end{aligned}$

[^12]: \}
 \{ground joint of rocker \#1 xP2 := 0.20; yP2:=0; \{ground joint of rocker \#2

 P1Q1:= 1.15; P2Q2:=1.15; \{lengths of rocker \#1 and \#2 AC $:=0.65 ;$
 BC $:=0.70 ;$

 OpenMecGraph(-1.50,1.50, -0.05, 1.4);
 SetJointSize(4);
 i:=0;
 repeat
 OpenMecGraph(-1.50,1.50, -0.05, 1.4);
 SetJointSize(4);
 $i:=0$;
 repeat
 InitDXFfile('F6_26.DXF');
 xP1 :=-0.20; yP1:=0; AC $:=0.65 ;$
 $B C \quad:=0.70 ;$
 $f(i>n P o z)$ then BEGIN
 $i:=0$; CloseMecDXF; END;

[^13]: $\begin{array}{ll}============================== \\ \text { uses Graph, } & \text { \{Green, Red, White\} } \\ & \text { LibMath, }\left\{\begin{array}{l}\text { _ }\}\end{array}\right.\end{array}$

[^14]:

[^15]: d2Y/dt2';
 t:=0; CloseMecDXF; \{..no effect until OpenMecGraph is called \} END; if $(t=0)$ then BEGIN
 vy $[1] \quad:=y 0 ; \quad\{$..initial y $\}$
 vdydt[1]:=dydt0; \{..initial dy/dt\}
 SecondDerivs(t,vy,vdydt, vd2ydt2);
 else Euler(vy,vdydt,vd2ydt2,1,t,h);

 t:=0; i1:=0; i2:=0;
 OpenMecGraph (-Max2 (Rm, Ds) , Max2 (Rm, Ds) , -4, Max2 (Rm, Ds)) ;
 if (t > tend) then BEGIN
 Assign(FT2,FleNme+'SRT.DTA'); Rewrite(FT2);
 WriteLn(FT1,Title); WriteLn(FT1,TableHead);
 WriteLn(FT2,Title); WriteLn(FT2,TableHead);
 InitDXFfile(FleNme+'.DXF'); \{..DXF file for M3D animation\} repeat TableHead:='
 dy/dt

 Assign (FT1 FleNme+'
 if in
 io
 in
 in
 \circ
 $\underset{6}{-1}$
 $\stackrel{\sim}{6}$
 ๗
 !
 $\stackrel{\circ}{\circ}$ ลิ

 ๑ 옫 N N

[^16]: ## Program P9_13;

 Writes to file N uniform random values within the interval [Min..Max]
 const FileName = 'F9_13A.DAT'; \{output file name\}

 $$
 \begin{array}{ll}
 \operatorname{Min}=-10.0 ; & \text { \{lower limit }\} \\
 \operatorname{Max}=10.0 ; & \text { \{higher limit }\}
 \end{array}
 $$

 1
 2
 3
 4
 5
 6
 7

[^17]: uses Graph, \{Brown,Red, White\}

[^18]: uses Graph, \{Blue, Cyan, Green, Red, Magenta\}
 \{Dist2Pts\}
 \{DEG\}
 \{IsKeyPressed $\}$
 \{InitDXFfile
 LibAssur, $\{$ RRR $\}$
 LibMec2D; \{OpenMecGraph, NewFrame, AngPVA, Ang4 PVA, CloseMecDXF\}
 const InpPathXY = 'RoboPath. XY';

[^19]: OpenMecGraph $(-6,15,-12,7)$;

[^20]: program P9_34;

[^21]:

[^22]: CloseMecGraph (FALSE);

