

PART I

THE PING GUIDE

A COMPACT REFERENCE FOR THE DESIGN AND DRAFTING OF INDUSTRIAL PIPING SYSTEMS

David R. Sherwood

Member, American Society of Mechanical Engineers Member, Institution of Production Engineers (UK) Dennis J. Whistance

B.Sc., M.A.Sc.

Copyright © David R. Sherwood and Dennis J. Whistance 1973

All rights reserved. Printed in the United States of America. First Edition.

Softcover set: ISBN 0-914082-00-0 Hardcover book: ISBN 0-914082-03-5 The text refers to standards and codes, using designations such as ANSI B31.1, ASTM A-53, ISA S5.1—1968, etc. Full titles of these standards and codes will be found in tables 7.3 thru 7.15.

References: Numbers in straight brackets (thus: [12]) refer to sources of published information listed under 'References', at the end of the index.

Sections, figures, charts and tables in Part I are referred to numerically, and are located by the margin index. Charts and tables in Part II are identified by letter.

The authors are grateful to the companies, designers, and engineers who assisted in the development of the Piping Guide. Apart from source material, individual acknowledgements are not made because neither these contributors nor the authors assume liability or responsibility for designs using information presented herein. The user is responsible for complying with the various codes and standards, Federal, State, and Municipal regulations, and other legal obligations which may pertain to the construction of plants, industrial installations, etc. Discussion or mention of products does not necessarily imply endorsement.

FOR TERMS NOT EXPLAINED IN THE TEXT, REFER TO THE INDEX.
ABBREVIATIONS ARE GIVEN IN CHAPTER 8.

The 'PIPI
'PART I'
PART I
22

- NG GUIDE'.....

 Brings together information of especial value to designers, draftsmen, and systems engineers concerned with piping technology
 - Discusses in detail the design and drafting of piping systems
 - Describes pipe, piping components most commonly used, valves, and equipment
 - Presents charts, tables, and examples for daily reference
 - Lists piping terms and abbreviations concerned with piping technology
 - Provides a design reference for companies and consultants
 - Supplements existing company standards, information, and methods
 - Serves as an instructional aid
- 'PART I' explains Current techniques of piping design
 - Piping terms, assembling of piping from components, and methods for connecting to equipment
 - Office organization, and methods to translate concepts into finished designs from which plants are built
- PART II' provides...... Frequently-needed design data and information, arranged for quick reference
 - Principal dimensions and weights for pipe, fittings, flanges valves, structural steel, etc.
 - Direct-reading metric conversion tables for dimensions

CONTENTS:

	Chapter
PIPING: USES, EXPENDITURES, & PLANT CONSTRUCTION	1.17 ste
PIPE, FITTINGS, FLANGES, & LINE EQUIPMENT	2
VALVES, PUMPS, COMPRESSORS, & PROCESS EQUIPMENT	3
ORGANIZATION: JOB RESPONSIBILITIES, DRAWING-OFFICE EQUIPMENT, & PROCEDURES	À
DRAFTING: PROCESS & PIPING DRAWINGS	5
DESIGN: ARRANGEMENT, SUPPORT, INSULATION, HEATING, VENTING & DRAINING OF PIPING SYSTEMS, VESSELS & EQUIPMENT	6
STANDARDS & CODES: PIPING SYSTEMS, DRAFTING SYMBOLS, PIPE, PIPESUPPORTS, FLANGES, GASKETS, FITTINGS, PUMPS, VALVES, STEAM TRAPS, VESSELS, EXCHANGERS, & SCREWTHREADS	7
ABBREVIATIONS FOR PIPING DRAWINGS & INDUSTRIAL CHEMICALS	8

PIPING:

USES, EXPENDITURES, & PLANT CONSTRUCTION

USES OF PIPING

1.1

Piping is used for industrial (process), marine, transportation, civil engineering, and for 'commercial' (plumbing) purposes.

This book is primarily concerned with industrial piping for processing and service systems. *Process piping* is used to transport fluids between storage tanks and processing units. *Service piping* is used to convey steam, air, water, etc., for processing. Piping here defined as 'service' piping is sometimes referred to as 'utility' piping, but, in the Guide, the term 'utility piping' is reserved for major lines supplying water, fuel gases, and fuel oil (that is, for commodities usually purchased from utilities companies and bulk suppliers).

Marine piping for ships is often extensive. Much of it is fabricated from welded and screwed carbon-steel piping, using pipe and fittings described in this book.

Transportation piping is normally large-diameter piping used to convey liquids, slurries and gases, sometimes over hundreds of miles. Crude oils, petroleum products, water, and solid materials such as coal (carried by water) are transported thru pipelines. Different liquids can be transported consecutively in the same pipeline, and branching arrangements are used to divert flows to different destinations.

Civil piping is used to distribute public utilities (water, fuel gases), and to collect reinwater, sewage, and industrial waste waters. Most piping of this type is placed underground.

Plumbing (commercial piping) is piping installed in commercial buildings, schools, hespitals, residences, etc., for distributing water and fuel gases, for collecting waste water, and for other purposes.

COMMISSIONING, DESIGNING, & BUILDING A PLANT

1.2

When a manufacturer decides to build a new plant or to expand an existing one, he will either employ an engineering company to undertake design and construction, or, if his engineering department is large enough, he will do the design work, manage the project, and employ one or more contractors to do the construction work.

In either procedure, the manufacturer supplies information concerning the purposes of buildings, production rates, processes, design criteria to meet his practices, details of existing plant, and site surveys, if any.

Chart 1.1 shows the principals involved, and the flow of information and material.

SCHEMATIC FOR PLANT CONSTRUCTION

CHART 1.1

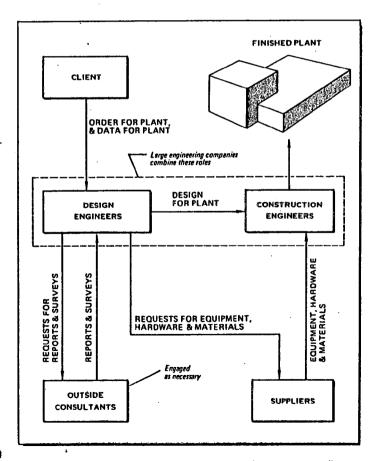


CHART 1.1 The designing and building of an industrial plant is a complex undertaking. Except for the larger industrial concerns, who may maintain their own design staffs, the design and construction of plants and related facilities is usually undertaken by specialist companies.

The Guide describes in 4.1 the organization and responsibilities of design engineering, with special reference to the duties of individuals engaged in the development of piping designs for plants.

US expenditures over the years 1967 thru 1971 averaged 14.1 billion dollars per year for new plants and equipment in the petroleum, chemical, food and beverage, paper, rubber, and textile industries, according to the 'Survey of current business' compiled by the US Department of Commerce.

For these quoted industries, the average cost of piping is about one fifth of the cost of the finished plant and equipment: large variations from this ratio are possible, however.

PIPE, FITTINGS,

FLANGES, & LINE EQUIPMENT

PROCESS PIPE

2.1

PIPE & TUBE

2.1.1

Tubular products are termed 'tube' or pipe'. Tube is customarily specified by its outside diameter and wall thickness, expressed either in BWG (Birmingham wire gage) or in thousandths of an inch. Pipe is customarily identified by 'nominal pipe size', with wall thickness defined by 'schedule number', 'API designation', or 'weight', as explained in 2.1.3. Non-standard pipe is specified by nominal size with wall thickness stated.

The principal uses for tube are in heat exchangers, instrument lines, and small interconnections on equipment such as compressors, boilers, and refrigerators.

SIZES & LENGTHS COMMONLY USED FOR STEEL PIPE

2.1.2

Manufacturers offer pipe in established sizes (see 2.1.3) ranging from 1/8 thru 44 inch nominal diameter ('nominal pipe size'). Pipe sizes normally stocked include: 1/2, 3/4, 1, 1½, 2, 2½, 3, 3½, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20 and 24. Sizes 1½, 2½, 3½, and 5 inch are seldom used (unusual sizes are sometimes required for connecting to equipment, but piping is normally run in the next larger stock size after connection has been made). 1/8, 1/4, 3/8 and 1/2-inch pipe is usually restricted to instrument lines or to service and other lines which have to mate with equipment. 1/2-inch pipe is extensively used for steam tracing and for auxiliary piping at pumps, etc.

Straight pipe is supplied in 'random' lengths (17 to 25 ft), and sometimes 'double random' lengths (38 to 48 ft), if preferred. The ends of these lengths are normally either plain (PE), beveled for welding (BE), or threaded and supplied with one coupling per length ('threaded and coupled', or 'T&C'). If pipe is ordered 'T&C', the rating of the coupling is specified—see chart 2.3. Other types of ends, such as grooved for special couplings, can be obtained to order.

DIAMETERS & WALL THICKNESSES OF PIPE

2.1.3

The size of all pipe is identified by the nominal pipe size, abbreviated 'NPS', which is seldom equal to the true bore (internal diameter) of the pipe—the difference in some instances is large. 14-inch NPS and larger pipe has outside diameter equal to the nominal pipe size.

Pipe in the various sizes is made in several wall thicknesses for each size, which have been established by three different sources:—

- (1) The American National Standards Institute, thru 'schedule numbers'
- (2) The American Society of Mechanical Engineers and the American Society for Testing and Materials, thru the designations 'STD' (standard), 'XS' (extra-strong), and 'XXS' (double-extra-strong), drawn from dimensions established by manufacturers. In the Guide, these designations are termed 'manufacturers' weights'
- (3) The American Petroleum Institute, thru its standards 5L and 5LX. These dimensions have no references for individual sizes and wall thicknesses

'Manufacturers' weights' (second source) were intended, as long ago as 1939, to be superseded by schedule numbers. However, demand for these wall thicknesses has caused their manufacture to continue. Certain fittings are available only in manufacturers' weights.

Pipe dimensions from the second and third sources are incorporated in American National Standard B36.10-1970. Table P-1 lists dimensions for welded and seamless steel pipe in this standard, and gives derived data.

IRON PIPE SIZES were initially established for wrought-iron pipe, with wall thicknesses designated by the terms 'standard', 'extra-strong', and 'double-extra-strong'. ANSI B36.10-1970 lists these wrought-iron pipe dimensions (in table 3). Wrought-iron pipe has been almost completely supplanted by steel pipe. Before the schedule number scheme for steel pipe was first published by the American Standards Association in 1935, the iron pipe sizes were modified for steel pipe by slightly decreasing the wall thicknesses (leaving the outside diameters constant) so that the weights per foot (lb/ft) equalled the iron pipe weights. Table P-1, which is reproduced by permission of the Crane Company (Midwest Fitting Division), lists steel pipe data under the heading 'iron pipe sizes'. As ANSI B36.10-1970 states that "the size of all pipe is identified by nominal pipe size", the Guide uses the term 'manufacturers' weights' to denote the STD, XS, and XXS designations applied by manufacturers to steel pipe and fittings.

LIGHT-WALL (also termed 'light-gage') is a commercially-accepted designation corresponding to SCH 10S (ANSI B36.19) and SCH 10 (ANSI B36.10) in certain sizes. Table P-1 lists these sizes under 'L'.

STAINLESS-STEEL SIZES American National Standard B36.19-1965 (revised 1971) establishes a range of thin-walled sizes for stainless-steel pipe, identified by schedules 5S and 10S. These sizes are included in table P-1.

MATERIALS FOR PIPE

2.1.4

REFERENCES

'Metallic piping'. Masek J.A. 1968. Chemical Engineering, Jun 17. 215-29
'Materials of construction: 19th Biennial CE Report'. Aldrich C.K. 1960.
Chemical Engineering, Nov 14

'Lined pipe systems'. Ward J.R. 1968, Chemical Engineering, Jun 17. 238-42 'Non-metallic pipe: promise and problems'. Wright C.E. 1968. Chemical Engineering, Jun 17. 230-7

Engineering companies have materials engineers to determine materials to be used in piping systems. Most pipe is of carbon steel and (depending on service) is manufactured to ASTM A-53.

STEEL PIPE Straight-seam-welded and spiral-welded pipe is made from plate, and seamless pipe is made by piercing solid billets.

Carbon-steel pipe is strong, ductile, weldable, machineable, reasonably durable and is nearly always cheaper than pipe made from other materials. If carbon-steel pipe can meet the requirements of pressure, temperature, corrosion resistance and hygiene, it is the natural choice.

The most readily-available carbon-steel pipe is made to ASTM A-53 in schedules 40, 80, STD, and XS sizes, in electric-resistance-welded (Grade A and Grade B—the latter grade has the higher tensile strength) and in seamless (Grades A and B) constructions. Common finishes are 'black' ('plain' or 'mill' finish) and galvanized.

Most sizes and weights are also available in seamless carbon steel to ASTM A-106, which is a comparable specification to A-53, but prescribing more stringent testing. Three grades of A-106 are available—Grades A, B, and C, in order of increasing tensile strength. Charts 2.1, 2.2 and 2.3 indicate pipe specifications most used industrially.

Steel specifications in other countries may correspond with USA specifications. Some corresponding european standards for carbon steels and stainless steels are listed in table 2.1.

IRON pipe is made from cast-iron and ductile-iron. The principal uses are for water, gas, and sewage lines. Wrought-iron pipe is seldom employed.

OTHER METALS & ALLOYS Pipe or tube made from copper, lead, nickel, brass, aluminum and various stainless steels can be readily obtained. These materials are relatively expensive and are selected usually either because of their particular corrosion resistance to the process chemical, their good heat transfer, or for their tensile strength at high temperatures. Copper and copper alloys are traditional for instrument lines, food processing, and heat transfer equipment, but stainless steels are increasingly being used for these purposes.

PLASTICS Pipe made from plastics may be used to convey actively corrosive fluids, and is especially useful for handling corrosive or hazardous unsest and dilute mineral acids. Plastics are employed in three ways: as all-plastic pipe, as 'filled' plastic materials (glass-fiber-reinforced, carbon-filled, etc.) and astining or coating materials. Plastic pipe is made from polypropylene, polyethylene (PE), polybutylene (PB), polyvinyl chloride (PVC), acrylonitrile-butadiene-styrene (ABS), cellulose acetate-butyrate (CAB), polyolefins, and polyesters. Pipe made from polyester and epoxy resins is frequently glass-fiber-reinforced (FRP') and commercial products of this type have good resistance to wear and chemical attack.

***	USA	UK	W. GERMANY	SWEDEN
	ASTM ASS	8 \$ 3601	DIN 1629	
	Grade A SMLS Grado B SMLS	HFS 22 & CDS 22 HFS 27 & CDS 27	St 36 St 45	515 123346 515 14 1446
	ASTM A53	BS 3601	DIN 1626	
	Grade A ERW Grade B ERW	ERW 22 ERW 27	Blatt 3 St 34-2 EftW Blatt 3 St 37-2 ERW	
1	ASTM AS3 FBW	8\$ 3501 BW 22	DIN 1626 Blat 3 St 34 2 FBW	:
	ASTM A108	85 3602	DIN 17176*	
	Grade A Grade B	HFS 23 HFS 27	Si 35-8 Si 45-8	515 1234 Q5 515 1475 (Ib
	Grado C	HFS 35 BS 3601	010 4444	
	ASTM A134	EFW	DIN 1626 Biali 2 EFW	
ı	ASTM A135 Grade A	8\$ 3601 ERW 22	DIN 1626 Blatt 3 St 34-2 & RW	615 134446
표	Grade B	EHW 27	Blatt 3 St 37-2 ERW	SIS 14.44-06
ä	ASTM A139 Grade A	BS 3601 EFW 22	DIN 1626 Blatt 2 St 37	
單	Grade 8	EF.W 27	Blatt 2 St 42	
CARBON-STEEL PIPE	ASTM A155 Class 2	BS 3602	DIN 1628, Blatt 3, with certification C	
9	-C 45 C 50		St 34·2 St 37·2	
3	C 55 KC 55	EFW 28	St 42-2 St 42-2 *	
Ĭ	KC 60 KC 65	EFW ZBS	St 42-2 * St 52-3	
	KC 70		Si 52-3	
- 1	API 5L Grade A SMLS	8\$ 3601 HFS 22 & CDS 22	DIN 1829 Si 35	SIS 1233-05
	Grade B SMLS	HFS 27 & COS 27	St 45	SIS 1434-05
	API 5L Grade A ERW	8\$ 3601 ERW 22	DIN 1625 Buil 3 St 34-2 ERW	SIS IZJJUG
	Grade B ERW	ERW 27 1	Blatt 4 St 37-2 ERW	SIS 1434-46 I
	API SL	BS 3601 Double-welded	DIN 1626	•
	Grade A EFW Grade B EFW	EFW 22 EFW 27 1	Blatt 3 St 34-2 FW Blatt 4 St 37-2 FW	
- 1	API 5L	85 3501	DIN 1628	
ĺ	FBW *Specify *Si-	BW 22 killed"	Blass 3 St 34-2 FBW L Grade B testing procedures f	or those steels
Ή. Ε	ASTM A312 TP 304	BS 3605 Grade 801	WSN Designation: 4301 X 6 CrNi 18 9	SIS 2333-02
5	TP 304H TP 304L	Grade 811 Grade 801L	4306 X 2 CrNi 18 9	SIS 2352-02
日	TP 310	Grade 805	4841 X 15 CrNiSi 25 2	O SIS 2361-02
2	TP 316	Grade 845	4401/ X 5 CrNiMo 18 1 4436	0 SIS 2343-02
STAINLESS-STEEL PIPE	TP 316H TP 316L	Grade 855 Grade 845L	4404 X 2 CrNiMo 18 I	0 SIS 2.53-02
Ž	TP 317 TP 321	Grade 846 Grade 822 Ti	4541 X 10 CINITI 18 9	SIS 2337-02
Ĕ	TP 321H TP 347	Grade 832 TI Grade 822 Nb	4550 X 10 C(N)Nb 18	9 SIS 2338-02
" I	TP 347H	Grado 832 Nb	A 10 CHARD 10	. 313 EAST-12

GLASS All-glass piping is used for its chemical resistance, cleanliness and transparency. Glass pipe is not subject to 'crazing' often found in glass-lined pipe and vessels subject to repeated thermal stresses. Pipe, fittings, and hardware are available both for process piping and for drainage. Corning Glass Works offers a Pyrex 'Conical' system for process lines in 1, 1½, 2, 3, 4 and 6-inch sizes (ID) with 450 F as the maximum operating temperature, and pressure ranges 0–65 PSIA (1 in. thru 3 in.), 0–50 PSIA (4 in.) and 0–35 PSIA (6 in.). Glass cocks, strainers and thermowells are available. Pipe fittings and equipment are joined by flange assemblies which bear on the thickened conical ends of pipe lengths and fittings. Corning also offers a Pyrex Acid-Weste Drainline system in 1½, 2, 3, 4 and 6-inch sizes (ID) with beaded ends joined by Teflon-gasketed nylon compression couplings. Both Corning systems are made from the same borosilicate glass.

LININGS & COATINGS Lining or coating carbon-steel pipe with a material able to withstand chemical attack permits its use to carry corrosive fluids. Lengths of lined pipe and fittings are joined by flanges, and elbows, tees, etc., are available already flanged. Linings (rubber, for example) can be applied after fabricating the piping, but pipe is often pre-lined, and manufacturers give instructions for making joints. Linings of various rubbers, plastics, metals and vitreous (glassy) materials are available. Polyvinyl chloride, polypropylene and copolymers are the most common coating materials. Carbon-steel pipe zinc-coated by immersion into molten zinc (hot-dip galvanized) is used for conveying drinking water, instrument air and various other fluids. Rubber lining is often used to handle abrasive fluids.

TEMPERATURE & PRESSURE LIMITS 2.1.5

Carbon steels lose strength at high temperatures. Electric-resistance-welded pipe is not considered satisfactory for service above 750 F, and furnace-butt-welded pipe above about 650 F. For higher temperatures, pipe made from stainless steels or other alloys should be considered.

The Midwest catalog 61 [54], the Taylor Forge catalog 571 and the Ladish catalog 55 [33] give pressure limits for carbon-steel pipe at various temperatures. These tables are derived from the ANSI B31 Code for Pressure Piping (detailed in table 7.2).

METHODS FOR JOINING PIPE

The joints used for most carbon-steel and stainless-steel pipe are:

WELDED & SCREWED JOINTS

2.2.1

2 .1.3

Lines 2-inch and larger are usually butt-welded, this being the most economic leakproof way of joining larger-diameter piping. Usually such lines are subcontracted to a piping fabricator for prefabrication in sections termed 'spools', then transported to the site. Lines 1½-inch and smaller are usually either screwed or socket-welded, and are normally field-run by the piping contractor from drawings. Field-run and shop-fabricated piping are discussed in 5.2.9.

SOCKET-WELDED JOINTS

2.2.2

Like screwed piping, socket welding is used for lines of smaller sizes, but has the advantage that absence of leaking is assured: this is a valuable factor when flammable, toxic, or radioactive fluids are being conveyed—the use of socket-welded joints is not restricted to such fluids, however.

BOLTED-FLANGE JOINTS

2.2.3

Flanges are expensive and for the most part are used to mate with flanged vessels, equipment, valves, and for process lines which may require periodic cleaning.

Flanged joints are made by bolting together two flanges with a gasket between them to provide a seal. Refer to 2.6 for standard forged-steel flanges and maskets.

FITTINGS 2.2.4

Fittings permit a change in direction of piping, a change in diameter of pipe, or a branch to be made from the main run of pipe. They are formed from plate or pipe, machined from forged blanks, cast, or molded from plastics.

Chart 2.1 shows the ratings of butt-welding fittings used with pipe of various schedule numbers and manufacturers' weights. For dimensions of butt-welding fittings and flanges, see tables D-1 thru D-7, and tables F-1 thru F-9. Drafting symbols are given in charts 5.3 thru 5.5.

Screwed or socket-welding forged-steel fittings are rated to the nominal cold non-shock working pressure in pounds per square inch (PSI) of the fitting. Fittings rated at 2000, 3000, and 6000 PSI are available and are used with pipe as shown in table 2.2:

SCREWED & SOCKET-WELDING FORGED-STEEL FITTINGS TO BE USED WITH CARBON-STEEL PIPE OF VARIOUS WEIGHTS

TABLE 2.2

FORGED-STEEL FITTING (ANSI B18.11)		\rangle	SCREWE	SOCKET-WELDING		
PRESSURE RATING OF FITTING (PSI)		2000	3000	6000	3000	6000
PIPE 'WEIGHT' USUALLY USED	SCHEDULE NUMBER	40	80		80	160
WITH FITTING (ANSI B38.10)	MANUFACTURERS' WEIGHT	STD	xs	xxs	xs	

2.2

Sections 2.1.3 thru 2.2.4 have shown that there is a wide variety of differently-rated pipe, fittings and materials from which to make a choice. Charts 2.1 thru 2.3 show how various weights of pipe, fittings and valves can be combined in a piping system.

COMPONENTS FOR BUTT-WELDED PIPING SYSTEMS

2.3

WHERE USED:

For most process, utility and service piping

ADVANTAGE OF JOINT:

Most practicable way of joining larger pipes and fittings which offers reliable, leakproof joints

DISADVANTAGE OF JOINT:

Intruding weld metal may affect flow

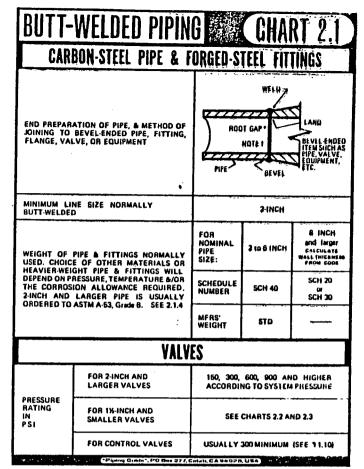
HOW JOINT IS MADE:

The end of the pipe is beveled as shown in chart 2.1. Fittings are similarly beveled by the manufacturer. The two parts are aligned, properly gapped, tack welded, and then a continuous weld is made to complete the joint

Chart 2.1 shows the ratings of pipe, fittings and valves that are commonly combined or may be used together. It is a guide only, and not a substitute for a project specification.

FITTINGS, BENDS, MITERS & FLANGES FOR BUTT-WELDED SYSTEMS

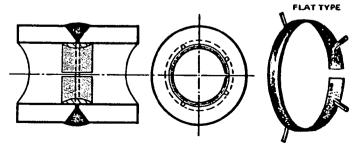
2.3.1


Refer to tables D, F and W-1 for dimensions and weights of fittings and flances.

ELBOWS or 'ELLS' make 90- or 45-degree changes in direction of the run of pipe. The elbows normally used are 'long radius' (LR) with centerline radius of curvature equal to 1½ times the nominal pipe size for 3/4-inch and larger sizes. 'Short radius' (SR) elbows with centerline radius of curvature equal to the nominal pipe size are also available. 90-degree LR elbows with a straight extension at one end ('long tangent') are still available in STD weight, if required.

REDUCING ELBOW makes a 90-degree change in direction with change in line size. Reducing elbows have centerline radius of curvature 1½ times the nominal size of the pipe to be attached to the larger end.

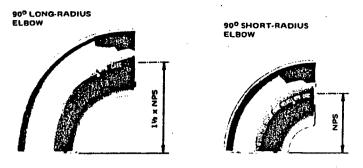
RETURN changes direction of flow thru 180 degrees, and is used to construct heating coils, vents on tanks, etc.

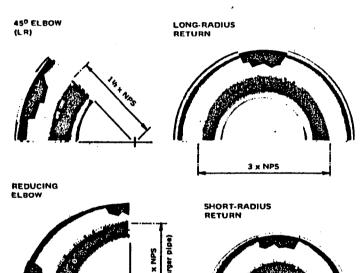

BENDS are made from straight pipe. Common bending radii are 3 and 5 times the pipe size (3R and 5R bends, where R = nominal pipe size—nominal diameter, not radius). 3R bends are available from stock. Larger radius bends can be custom made, preferably by hot bending. Only seamless or electric-resistance-welded pipe is suitable for bending.

*See 5.3.5 under 'Dimensioning spoots'

BACKING RING

FIGURE 2.1




(COURTESY TUBE TURNS DIV. OF CHEMETRON INC)

¹A 'backing ring'—sometimes termed a 'chill ring'—may be inserted between any butt working junt prior to welding. Preventing weld spatter and spikes ('icicles') of weld metal from furning inside the pipe during welding, the ring also serves as an alignment aid. Normally used for severe service, but should be considered for process fluids such as fibrous suspensions, where weld icides could result in material collecting at joints and choking lines. See 2.11

CHART

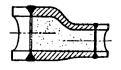
2.1

REDUCER (or INCREASER) joins a larger pipe to a smaller one. The two evailable types, concentric and eccentric, are shown. The eccentric reducer is used when it is necessary to keep either the top or the bottom of the line level--offset equals 1/2 x (larger ID minus smaller ID).

REDUCERS PRINTIPSY TURE FURNS DIV. OF CHEMETRON INC.

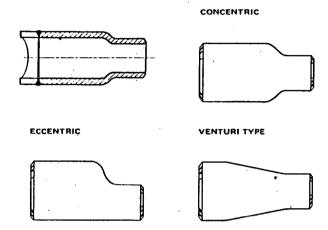
14 x NPS

(Of larger pipe)


FIGURE 2.3

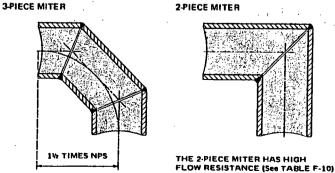
2 x NPS

CONCENTRIC


ECCENTRIC

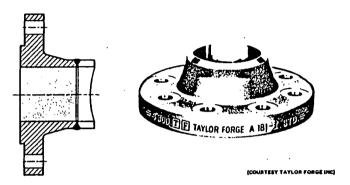
SWAGE is employed to connect butt-welded piping to smaller screwed or socket-welded piping. In butt-welded lines, used as an alternative to the reducer when greater reductions in line size are required. Regular swages in concentric or eccentric form give abrupt change of line size, as do reducers. The 'venturi' swage allows smoother flow. Refer to table 2.3 for specifying swages for joining to socket-welding items, and to table 2.4 for specifying swages for joining to screwed piping. For offset, see 'Reducer'.

SWAGES, or SWAGED NIPPLES

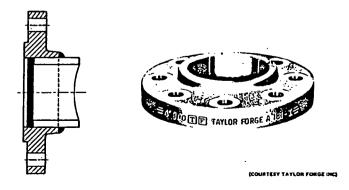

FIGURE 2.4

MITERED ELBOWS are fabricated as required from pipe-they are not fittings. The use of miters to make changes in direction is practically restricted to low-pressure lines 10-inch and larger if the pressure drop is unimportant; for these uses regular elbows would be costlier. A 2-piece, 90-degree miter has four to six times the hydraulic resistance of the corresponding regular long-radius elbow, and should be used with caution, A 3-piece 90-degree miter has about double the resistance to flow of the regular longradius elbow-refer to table F-10. Constructions for 3-, 4-, and 5-piece miters are shown in tables M-2.

3-PIECE & 2-PIECE MITERS


FIGURES FIGURE 2.5 2.1-2.5

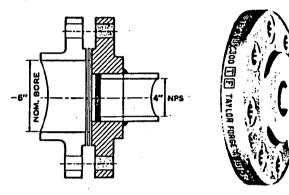
The following five flange types are used for butt-welded lines. The different flange facings available are discussed in 2.6.


WELDING-NECK FLANGE, REGULAR & LONG Regular welding-neck flanges are used with butt-welding fittings. Long welding-neck flanges are primarily used for vessel and equipment nozzles, rarely for pipe. Suitable where extreme temperature, shear, impact and vibratory stresses apply. Regularity of the bore is maintained. Refer to tables F for bore diameters of these flanges.

WELDING-NECK FLANGE FIGURE 2.8

SLIP-ON FLANGE is properly used to flange pipe. Slip-on flanges can be used with long-tangent elbows, reducers, and swages (not usual practice). The internal weld is slightly more subject to corrosion than the butt weld. The flange has poor resistance to shock and vibration. It introduces irregularity in the bore. It is cheaper to buy than the welding-neck flange, but is costlier to assemble. It is easier to align than the welding-neck flange. Calculated strengths under internal pressure are about one third that of the corresponding welding-neck flanges. The pipe or fitting is set back from the face of the flange a distance equal to the wall thickness -0" + 1/16".

SLIP-ON FLANGE FIGURE 2.7

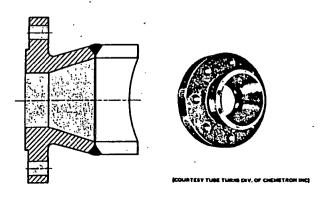

REDUCING FLANGE Suitable for changing line size, but should not be used if abrupt transition would create undesirable turbulunce, as at pump connections. Available to order in welding-neck and eccentric types, and from stock in slip-on types. Specify by line size of the smaller pipe and the OD of the flange to be mated. Example: a slip-on reducing flange to connect 4-inch pipe to a 6-inch line-size flange for 150 PSI service is ordered:

RED FLG 4"x11"0D 150 # S0

For a welding-neck reducing flange, correct bore is obtained by giving the pipe schedule-number or manufacturers' weight of the pipe to be welded on.

REDUCING SLIP-ON FLANGE

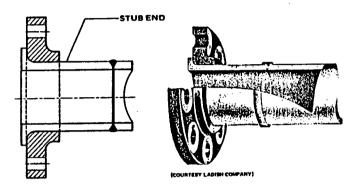
FIGURE 2.8



(COURTENT TAYLOR FORGE INC)

EXPANDER FLANGE Application as for welding-neck flango see above. Increases pipe size to first or second larger size. Alternative to using reducer and welding-neck flange. Useful for connecting to valves, compressors and pumps. Pressure ratings and dimensions are in accord with ANSI 816.5. Available from the Tube Turns Division of the Chemetron Corporation, and from the Tube-Line Manufacturing Company.

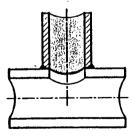
EXPANDER (or INCREASER) FLANGE


FIGURE 2.9

LAP-JOINT, or 'VAN STONE', FLANGE Economical if costly pipe such as stainless steel is used, as the flange can be of carbon steel and only the lap-joint stub end need be of the line material. A stub end must be used in a lap joint, and the cost of the two items must be considered. If both stub and flange are of the same material they will be more expensive than a welding-neck flange. Useful where alignment of bolt holes is difficult, as with spools to be attached to flanged nozzles of vessels.

LAP-JOINT FLANGE (with Stub-end)

FIGURE 2.10

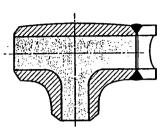

BUTT-WELDING FITTINGS FOR BRANCHING FROM BUTT-WELDED SYSTEMS

STUB-IN Term for a branch pipe welded directly into the side of the main pipe run—it is not a fitting. This is the commonest and least expensive method of welding a full-size or reducing branch for pipe 2-inch and larger. A stub-in can be reinforced by means set out in 2.11.

STUB-IN

FIGURE 2.11

2.3.2


BUTT-WELDING TEES, STRAIGHT or REDUCING, are employed to make 80 degree branches from the main run of pipe. Straight tees, with branch the same size as the run, are readily available. Reducing tees have branch smaller than the run. Bullhead tees have branch larger than the run, and are very seldom used but can be made to special order. None of these tees requires teinforcement. Reducing tees are ordered as follows:—

SPECIFYING SIZE OF BUTT-WELDING REDUCING TEES

HOW TO SPECIFY TEES:	RUN INLET	AUN OUTLET	BRANCH	EXAMPLE
REDUCING ON BRANCH	6"	6"	4"	RED TEE 6" x 6" x 4"

BUTT-WELDING TEES

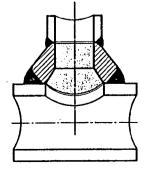
: FIGURE 2.12

STRAIGHT BUTT-WELDING TEE

REDUCING BUTT-WELDING TEE

Continuit

(COURTESY TUBE TURNS DIV. OF CHEMETRON INC)

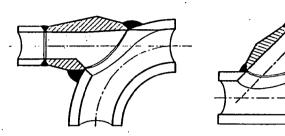

The next four branching fittings are made by Bonney Forge and Foundry Inc.
These fittings offer an alternate means of connecting into the main run, and do not require reinforcement. They are preshaped to the curvature of the run pipe.

WELDOLET makes a 90-degree branch, full-size or reducing, on straight pipe. Closer manifolding is possible than with tees. Flat-based weldolets are available for connecting to pipe caps and vessel heads.

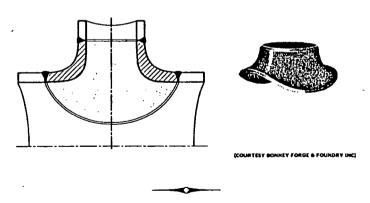
WELDOLET

FIGURE 2.13

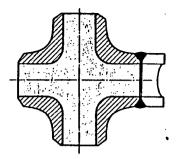
FIGURES 2.6-2.13



COURTESY BONNEY FORCE & FOUNDRY INC)

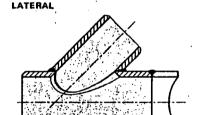

BUTT-WELDING LATROLET FIGURE 2.16

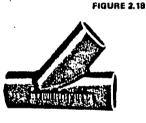
BUTT-WELDING LATROLET makes a 45-degree reducing branch on straight pipe.


SWEEPOLET makes a 90-degree reducing branch from the main run of pipe. Primarily developed for high-yield pipe used in oil and gas transmission lines. Provides good flow pattern, and optimum stress distribution.

SWEEPOLET FIGURE 2.16

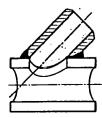
The next three fittings are usually used for special designs:


CROSS, STRAIGHT or REDUCING Straight crosses are usually stock items. Reducing crosses may not be readily available. For economy, availability and to minimize the number of items in inventory, it is preferred to use tees, etc., and not crosses, except where space is restricted, as in marine piping or 'revamp' work. Reinforcement is not needed.



(COURTESY TUBE TURNS DIV. OF CHEMETRON INC.)

LATERAL, STRAIGHT or REDUCING, permits odd-angled entry into the pipe run where low resistance to flow is important. Straight laterals with branch bore equal to run bore are available in STD and XS weights. Reducing laterals and laterals at angles other than 45 degrees are usually available only to special order. Reinforcement is required where it is necessary to resture the strength of the joint to the full strength of the pipe. Reducing laterals are ordered similarly to butt-welding tees, except that the angle between branch and run is also stated.

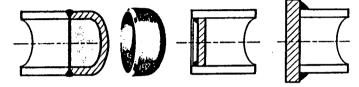


SCOURTESY TURE TURNS DIV. OF CHEMI (ROD IN)

SHAPED NIPPLE Now rerely used, but can be obtained from stock in 90and 45-degree angles, and in any size and angle, including offset, to special order. The run is field-cut, using the nipple as template. Needs reinforcement if it is necessary to bring the strength of the joint up to the full strength of the pipe.

SHAPED NIPPLE

CAP is used to seal the end of pipe. (See figure 2.20(a).)


FLAT CLOSURES Flat plates are normally cut especially from platestock by the fabricator or erector. (See figure 2.20 (b) and (c).)

THREE WELDED CLOSURES

FIGURE 2.20

(a) BUTT-WELDING CAP

(b) FLAT CLOSURE (c) FLAT CLOSURE

[COURTESY MIDWEST FITTING DIVISION, CRANE CO.]

ELLIPSOIDAL, or DISHED, HEADS are used to close pipes of large diameter, and are similar to those used for constructing vessels.

COMPONENTS FOR SOCKET-WELDED PIPING SYSTEMS

2.4

WHERE USED:

For lines conveying flammable, toxic, or expensive material, where no leakage can be permitted. For steam: 300 to 600 PSI, and sometimes 150 PSI steam. For corrosive conditions, see Index under 'Corrosion'

ADVANTAGES OF JOINT:

- Easier alignment on small lines than butt welding. Tack welding is unnecessary
- No weld metal can enter bore
- Joint will not leak, when properly made

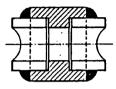
- DISADVANTAGES OF JOINT: (1) The 1/16-inch recess in joint (see chart 2.2) pockets liquid
 - Use not permitted by ANSI B31.1.0 -1967 if severe erosion or crevice corrosion is anticipated

HOW JOINT IS MADE:

The end of the pipe is finished flat, as shown in chart 2.2. It is located in the fitting, valve, flange, etc., and a continuous fillet weld is made ground the circumference

Chart 2.2 shows the ratings of pipe, fittings and valves that are commonly combined, or may be used together. The chart is a guide only, and not a substitute for a project specification.

SOCKET-V	VEL	DED PI	PING	CHAR	T 2.2		
CARBON-	STEE	L PIPE &	FORGED-S	TEEL FITT	INGS		
END PREPARATI METHOD OF JOI FLANGE, VALVE	O FITTING,	PLAIN END PLAIN END PLAIN END PROPERTY OF THE SUCH AS COUPLING, EQUIPMENT, VALVE, END					
MAXIMUM LINE SOCKET WELDED		NORMALLY	(2%-1	1%-INCH NCH IN MARINE PI	PING)		
AVAILABILITY O				1/8- TO 4-INCH			
	SCHEDULE NUMBER		SCH 40	SCH BO	SCH 160		
WEIGHTS OF PIPE AND PRESSURE RATINGS OF	PE SE	MFRS' WEIGHT	STD	xs	_		
FITTINGS WHICH ARE COMPATIBLET		FITTING RATING	3000 PSI	3000 PSI	6000 PSI		
	FITTINGS	FITTING BORED TO:	SCH 40	SCH 40	SCH 160		
					_		
HEAV PRES ANCE LY (IER-WI SURE, REQU	ON COMBINATION C	FITTING WILL AND/OR CORRO ICH AND SMALL	DEPEND ON DISION ALLOW- LER IS USUAL-			
		VAI	LVES		. ,		
PRESSURE (U		. VALVES Y FLANGED)	I	LLY 300 (SEE :	1.1.10)		
		OTHER THAN VALVES	600 (ANSI) 800 (API)				

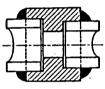

* ANSI B16.11-1966 recommends a 1/16th-inch gap to prevent weld from cracking under thermal stress 1Socket-ended fittings are now only made in 3000 and 6000 PSI ratings (ANSI B16.11-1968)

Dimensions of fittings and flanges are given in tables D-8 and F-8.

FULL-COUPLING (termed 'COUPLING) joins pipe to pipe, or to a nipple, swage, etc.

FULL-COUPLING

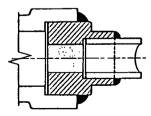
FIGURE 2.21



REDUCER joins two different diameters of pipe.

REDUCER

FIGURE 2.22

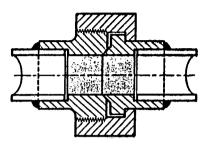


REDUCER INSERT A reducing fitting used for connecting a small pipe to a larger fitting. Socket-ended reducer inserts can be made in any reduction by boring standard forged blanks.

SOCKET-WELDING REDUCING INSERTS

FIGURE 2.23

THREE FORMS OF REDUCER INSERT:

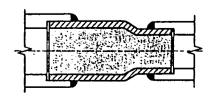


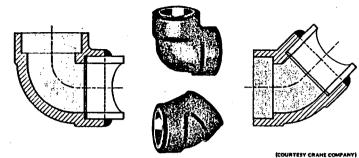
UNION is used primarily for maintenance and installation purposes. This is a screwed joint designed for use with socket-welded piping systems. See explanation in 2.5.1 of uses given under 'screwed union'. Union should be screwed tight before the ends are welded, to minimize warping of the seat.

SOCKET-WELDING UNION

PIGURE 3.24

SWAGED NIPPLES According to type, these allow joining: (1) Socket-ended items of different sizes—this type of swaged nipple has both ends plain (PBE) for insertion into socket ends. (2) A socket-ended item to a larger butt-welding pipe or fitting—this type of swaged nipple has the larger end beveled (BLE) and the smaller end plain (PSE) for insertion into a socket-ended item. A swaged nipple is also referred to as a 'swage' (pronounced 'swedge') abbreviated on drawings as 'SWG' or 'SWG NIPP'. When ordering a swage, state the weight designations of the pipes to be joined: for example, 2"(SCH 40) x 1"(SCH 80). Examples of the different end terminations that may be specified are as follows:—

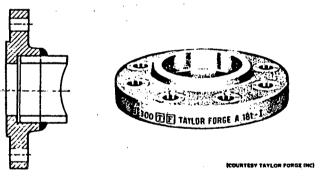

SPECIFYING SIZE & END FINISH OF SOCKET-WELDING SWAGES


TABLE 2.3

SWAGE FOR JOINING	o SMALLER	EXAMPLE NOTE ON DRAWING
SW ITEM BW FITTING or PIPE	SW ITEM SW ITEM	SWG 114" x 1" PBE SWG 2" x 1" BLE -PSE
ABBREVIATIONS:	PBE - Plain t	t welding BW = Butt welding both ends PLE = Plain large end mail end BLE = Bevel large end

SWAGE (PBE)

FIGURE 2.25



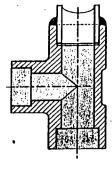
SOCKET-WELDING FLANGE Regular type is available from stock. Reducing type is available to order. For example, a reducing flange to connect a 1-inch pipe to a 11/2-inch line-size flange for 150 PSI service is specified:

RED FLG 1" x 5" OD 150# SW

SOCKET-WELDING FLANGE

FIGURE 2.27

FITTINGS FOR BRANCHING FROM SOCKET-WELDED SYSTEMS

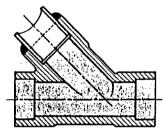

2.4.2

BRANCH FROM SOCKET-WELDED RUN

TEE, STRAIGHT or REDUCING, makes 90-degree branch from the main run of pipe. Reducing tees are custom-fabricated by boring standard forged blanks.

SPECIFYING SIZE OF SOCKET-WELDING TEES

HOW TO SPECIFY TEES:	RUN INLET RUN OUTLE		BRANCH	EXAMPLE
REDUCING ON BRANCH	11"	11/2"	7"	RED TEE 1%" x 1%" x 1"
REDUCING ON RUN ISPECIAL APPLICATIONS ONLY)	11"	1"	11"	RED TEE 13" x 1" x 13"

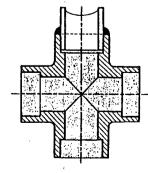

(COURTESY CRANE COMPANY)

LATERAL makes full-size 45-degree branch from the main run of pipe.

SOCKET-WELDING LATERAL

SOCKET-WELDING TEE

FIGURE 2.29



(COURTESY CRANE COMPANY)

CROSS Remarks for butt-welding cross apply-see 2.3.2. Reducing crosses are custom-fabricated by boring standard forged blanks.

SOCKET-WELDING CROSS

FIGURE 2.30

(COURTESY CRAHE COMPANY)

TABLE 2.3

FIGURES

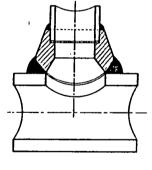
2.21-2.30

2.4.3

HALF-COUPLING The full-coupling is not used for branching or for yeasel connections, as the half-coupling is the same length and is stronger. The half-coupling permits 90-degree entry into a larger pipe or vessel wall. The sockolet is more practicable as shaping is necessary with the coupling.

SOCKET-WELDING HALF-COUPLING

FIGURE 2.31

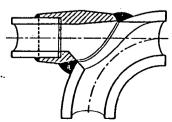


The next four fittings are made by Bonney Forge and Foundry Inc, and offer an alternate method of entering the main pipe run. They have the advantage that the beveled welding ends are shaped to the curvature of the run pipe. Reinforcement for the butt-welded piping or vessel is not required.

SOCKOLET makes a 90-degree branch, full-size or reducing, on straight pipe. Flat-based sockolets are available for branch connections on pipe caps and and vessel heads.

SOCKOLET

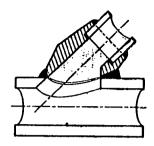
FIGURE 2.32



(COURTESY BOICKEY FORGE & FOUNDRY INC.)

SOCKET-WELDING ELBOLET makes a reducing tangent branch on longradius and short-radius elbows.

SOCKET-WELDING ELBOLET


FIGURE 2.33

SOCKET-WELDING LATROLET makes a 45-degree reducing branch on straight pipe.

SOCKET-WELDING LATROLET

FIGHRE 3-34

NIPOLET A variant of the sockolet, having integral plain nipple. Primarily developed for small valved connections—see figure 6.47.

NIPOLET

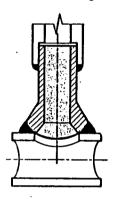


FIGURE 2.35

STUB-IN See comments in 2.3.2. Not preferred for lines under 2-inch due to risk of weld metal entering line and restricting flow.

CLOSURE

2.4.4

SOCKET-WELDING CAP seals plain-ended pipe.

SOCKET-WELDING CAP

FIGURE 2.36

(.OD BRINGAN TOOF VENTS VESTRUCE)

WHERE USED:

For lines conveying services, and for smaller process

ADVANTAGES:

- Easily made from pipe and fittings on site (1)
- Minimizes fire hazard when installing piping in areas where flammable gases or liquids are present

- DISADVANTAGES: (1)* Use not permitted by ANSI B31.1.0-1967. if severe erosion, crevice corrosion, shock, or vibration is anticipated, nor at temperatures over 925 F. For corrosive conditions, see Index under 'Corrosion'
 - Possible leakage of joint
 - (3)* Seal welding may be required—see footnote to chart 2.3
 - Strength of the pipe is reduced, as forming the screwthread reduces the wall thickness

*These remarks apply to systems using forged-steel fittings.

FITTINGS & FLANGES FOR SCREWED SYSTEMS

2.5.1

A wide range of screwed fittings has been developed by many manufacturers for special purposes, and for plumbing in buildings. Most of these fittings are not utilized in process piping, although their pressure and temperature ratings mey be suitable.

Galvanized 150 and 300 PSI malleable-iron fittings and similarly-rated valves are used with SCH 40 pipe for drinking water and air lines. The overall economics are in favor of utilizing as few different types of screwed fittings as possible. Material specifications, drafting, checking, purchasing and warehousing are simplified. Dimensions of malleable-iron fittings are given in table D-9.

Screwed forged-steel fittings are used more extensively than cast-iron and malleable-from fittings because of their greater mechanical strength. Dimensions of forged-steel screwed fittings are given in table D-10.

FULL-COUPLING (termed 'COUPLING') joins pipe or items with threaded ends.

FULL-COUPLING

FIGURE 2.37

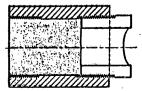


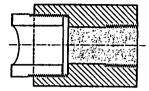
Chart 2.3 shows the ratings of pipe, fittings and valves that are commonly combined, or may be used together. The chart is a guide only, and not a substitute for a project specification.

SCREW	ED P	PING		CHA	RT 2.3				
CARB)N-STE	EL PIPE &	FORGED-S	STEEL FIT	INGS				
END PREPAR METHOD OF FLANGE, VA	JOINING 1	O FITTING,	THREAD ENGAGEMENT PIPE SCREWED ITEM SUCH AS VALVE. COUPLING, EQUIPMENT, ETC.						
MAXIMUM LI SCREWED	INE SIZE	NORMALLY	•	1%-INCH					
AVAILABILIT SCREWED FIT	Y OF FOI	RGED-STEEL		1/8- TO 4-INCH					
WEIGHTS OF PI	PE &	SCHEDULE NUMBER	SCH 40	SCH 80	<u> </u>				
AND PRESSURE RATINGS OF FITTINGS WHICH	, ⁻	MFRS' WEIGHT	STO	xs	xxs				
ARE COMPATIBLE	LE	FITTING RATING	2000 PSI						
				4					
MOST COMMON COMBINATION: THE MINIMUM RATING FOR FITTINGS PREFERRED IN MOST INSTANCES FOR MECHANICAL STRENGTH IS 3000 P S 1. CHOICE OF MATERIAL OR HEAVIER WEIGHT PIPE & FITTING WILL DEPEND ON PRESSURE, TEMPERATURE AND/OR CORROSION ALLOWANCE REQUIRED, PIPE 1%-INCH & SMALLER IS USUALLY ORDERED TO ASTM SPECIFICATION A 106 Grade B. REFER TO 2.1.4									
:		YA	LVES						
MINIMUM PRESSURE RATING		OL VALVES LY FLANGED)	USUA	LLY 300 (SEE	3.1.10)				
IN PSI	CONTR	S OTHER THAN DL VALVES	600 (ANSI) 800 (API)						

ANSI B31.1.0—1967 states that seal welding shall not be considered to contribute to the strength of the joint

SEAL WELDING APPLICATIONS

On-plot: On all screwed connections within battery limits, with the exception of piping carrying air or other inert gas, and water Off-plot: On screwed lines for hydrocarbon service and for lines conveying dangerous, toxic, corrosive or valuable fluids

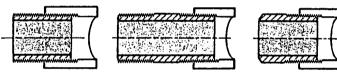

CHART

FIGURES 2.31-2.37

REDUCING COUPLING, or REDUCER, joins threaded pipes of different sizes. Can be made in any reduction by boring and tapping standard forged blanks.

REDUCING COUPLING

FIGURE 2.38



NIPPLES join unions, valves, strainers, fittings, etc. Basically a short length of pipe either fully threaded (close nipple) or threaded both ends (TBE), or plain one end and threaded one end (POE-TOE). Available in various lengths—see tables D-9 and D-10. Nipples can be obtained with a Victaulic groove at one end.

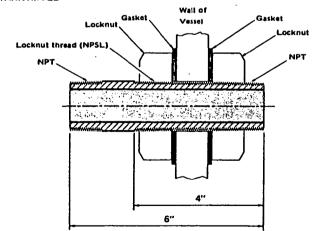
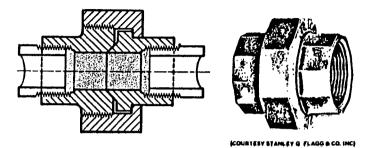

NIPPLES FOR SCREWED ITEMS

FIGURE 2.39

(a) CLOSE NIPPLE (b) LONG (or SHORT) (c) NIPPLE (POE-TOE) NIPPLE (TBE)

(d) TANK NIPPLE



TANK NIPPLE is used for making a screwed connection to a non-pressure vessel or tank in low-pressure service. Overall length is usually 6 inches with a standard taper pipe thread at each end. On one end only, the taper pipe thread runs into a ANSI lock-nut thread.

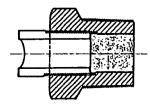
UNION makes a joint which permits easy installation, removal or replacement of lengths of pipe, valves or vessels in screwed piping systems. Examples: to remove a valve it must have at least one adjacent union, and to remove piping from a vessel with screwed connections, each outlet from the vessel should have one union between valve and vessel. Ground-faced joints are preferred, although other facings are available.

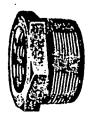
SCREWED UNION


FIGURE 2.40

PIPE-TO-TUBE CONNECTOR For joining threaded pipe to tube. Figure 2.41 shows a connector fitted to specially-flared tube. Other types are available.

PIPE-TO-TUBE CONNECTOR


FIGURE 241



HEXAGON BUSHING A reducing fitting used for connecting a smaller pipe into a larger screwed fitting or nozzle. Has many applications to instrument connections. Reducing fittings can be made in any reduction by boring and tapping standard forged blanks. Normally not used for high-pressure service,

HEXAGON BUSHING

FIGURE 242

SWAGED NIPPLE This is a reducing fitting, used for joining larger diameter to smaller diameter pipe. Also referred to as a 'swage (pronounced 'swedge') and abbreviated as 'SWG' or 'SWG NIPP' on drawings. When ordering a swage, state the weight designations of the pipes to be joined: for example, 2"(SCH 40) x 1"(SCH 80). A swage may be used for joining: (1) Screwed piping to screwed piping. (2) Screwed piping to butt-welded piping. (3) Butt-welded piping to a screwed vessel nozzle. It is necessary to specify on the piping drawing the terminations required.

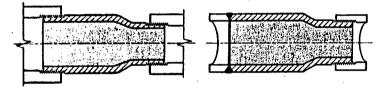
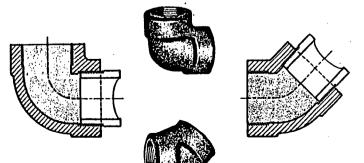

SPECIFYING SIZE & END FINISH OF SCREWED SWAGES

TABLE 2.4

SWAGE FOR JOINI LARGE	NG	EXAMPLE NOTE ON DRAWING
SCRD ITE BW ITEM or PII SCRD ITE	E SCAD ITÉM	SWG 1%" x 1" TBE SWG 2" x 1" BLE-TSE SWG 3" x 2" TLE-BSE
	not too common, but may o ewed nozzle (coupling) on	ccur when a butt-welded line is to a vessel
ABBREVIATIONS:	BW = Butt welding TBE = Threaded both end TSE = Threaded small end BLE = Beveled large and	·

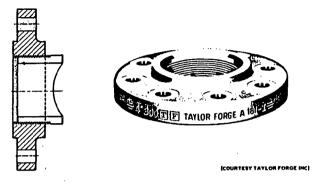
SWAGED NIPPLES, THE and BLE-TSE


FIGURE 2.43

ELBOWS make 90- or 45-degree changes in direction of the run of pipe. Street elbows having an integral nipple at one end (see table 0-9) are available.

SCREWED ELBOWS, 45 and 90 DEGREE

FIGURE 2.44



SCREWED FLANGES are used to connect screwed pipe to flanged items. Regular and reducing types are available from stock. For example, a reducing flange to connect 1-inch pipe to a 1½-inch line-size flange for 150 PSI service is specified:

RED FLG 1" x 5" OD 150# SCRD

SCREWED FLANGE

FIGURE 2.45

FITTINGS FOR BRANCHING FROM SCREWED SYSTEMS

. 2.5.2

BRANCH FROM SCREWED MAIN RUN

TEE, STRAIGHT or REDUCING, makes a 90-degree branch from the run of pipe. Reducing tees are made by boring and tapping standard forged blanks.

SPECIFYING SIZE OF SCREWED REDUCING TEES

HOW TO SPECIFY TEES:	RUN INLET	RUN OUTLET	BRANCH	EXAMPLE
REDUCING ON BRANCH	11"] <u>1</u> "]"	RED TEE 1%" x 1%" x 1"
REDUCING ON RUN (SPECIAL APPLICATIONS ONLY)	1 <u>1</u> "	1"	11"	RED TEE 1%" x 1" x 1%"

FIGURES 2.38-2.46

SCREWED TEES, STRAIGHT and REDUCING

FIGURE 2.46

STRAIGHT TEE

REDUCING TEE

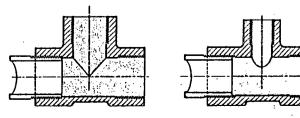
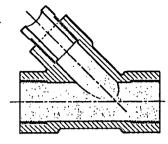
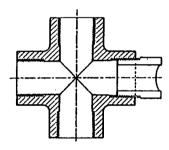



TABLE 2.4 LATERAL makes full-size 45-degree branch from the main run of pipe.

SCREWED LATERAL

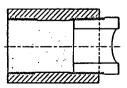
FIGURE 2.47



CROSS Remarks for butt-walding cross apply — see 2.3.2. Reducing crosses are made by boring and tapping standard forged blanks.

SCREWED CROSS

FIGURE 2.48

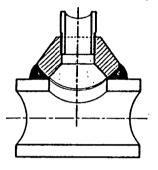

FITTINGS FOR SCREWED BRANCH FROM VESSEL OR BUTT-WELDED MAIN RUN 2.5.3

HALF-COUPLING can be used to make 90-degree screwed connections to pipes for instruments, or for vessel nozzles. Welding heat may cause embrittlement of the threads of this short fitting. Requires shaping.

SCREWED HALF-COUPLING & FULL-COUPLING

FIGURE 2.49

FULL-COUPLING Superior to half-coupling. Also requires shaping for connecting to pipe.

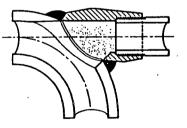

TANK NIPPLE See 2.5.1, figure 2.39(d).

The next four fittings for branching are made by Bonney Forge and Foundry Inc. These fittings offer a means of joining screwed piping to a welded run, and for making instrument connections. The advantages are that the welding end does not require reinforcement and that the ends are shaped to the curvature of the run pipe.

THREDOLET makes a 90-degree branch, full or reducing, on straight pipe. Flat-based thredolets are available for branch connections on pipe caps and vessel heads.

THREDOLET

FIGURE 2.50

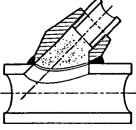


ACQUIRTESY BONNEY FORGE & FOUNDRY INC.

SCREWED ELBOLET makes reducing tangent branch on long-radius and short-radius elbows.

SCREWED ELBOLET

FIGURE 2.61



SCREWED LATROLET makes a 45-degree reducing branch on straight pipe.

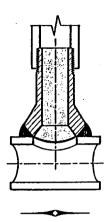

SCREWED LATROLET

FIGURE 2.52

COUPTEST SOMET FORGE & FOUNDRY

STUB-IN See comments in 2.3.2. Not preferred for branching from pipe smaller than 2-inch as weld metal may restrict flow.

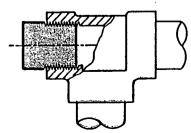
CLOSURES

2.5.4

CAP seals the threaded end of pipe.

SCREWED CAP

FIGURE 2.54



(COURTERY HENRY YOST MACHINE CO.)

BARSTOCK PLUG seals the screwed end of a fitting. Also termed 'round-head plug'.

BARSTOCK PLUG (IN TEE)

FIGURE 2.55

COURTEST LADISH COMPANY

2.5.5

2 .5.2

It is sometimes necessary to determine the overall length of a run to be made from screwed fittings and pipe. Tables D-9 and D-10 give dimensions of screwed fittings. In calculating run lengths from these tables, allowance should be made for thread engagement (given in the tables).

The standard ANSI B2.1—1968 defines tapered and straight threads for pipe (and fittings, etc.). The ANSI tapered thread is normally used for screwed piping. The tapered threads change diameter at 1/16 inch per inch (of run).

The number of threads per inch is the same for ANSI B2.1—1968 straight or tapered threads for the same nominal pipe size. Tapered and straight threads will mate. Taper/taper and taper/straight (both types) joints are self-sealing with the use of pipe dope, plastic tape, etc. A straight/straight screwed joint requires a gasket and locknut(s) to ensure sealing.

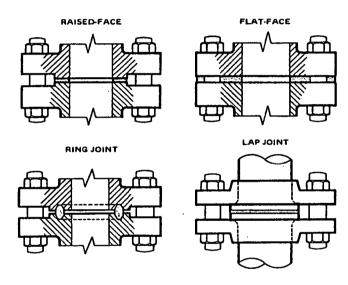
The standard ANSI B2.2—1968 defines 'dryseal' pipe threads which do not require pipe dope or tape for sealing. ANSI B2.4—1966 defines hose coupling screw threads.

ANSI B2,1-1968 : PIPE THREADS (EXCEPT DRYSEAL)

Taper pipe thread									. NPT
Straight pipe thread in pipe couplings									NPSC
Straight pipe threads for mechanical joints				۰					NPSM
Straight pipe thread for locknuts and locknut pip	e 1	hrea	í.						NPSL
Straight pipe thread for hose couplings and nipple	25 ,		·	۰	•	•	•	•	NPSH
ANSI B2.2-1968 : DRYSEAL PIPE THREADS									
Dryseal taper pipe thread (lubricant optional).									NPTF
Dryseal straight pipe thread (lubricant optional) .									NPSF

FIGURES 2.47-2.55

FLANGE FACINGS & FINISHES


2.6.1

Many facings for flanges are offered by flange manufacturers, including various 'tongue and groove' types which must be used in pairs. However, only four types of facing are widely used, and these are shown in figure 2.56.

The raised face is used for about 80% of all flanges. The ring-joint facing, employed with either an oval-section or octagon-section gasket, is used mainly in the petrochemical industry.

THE MOST-USED FLANGE FACINGS

FIGURE 2.56

The RAISED FACE is 1/16-inch high for 150 and 300 PSI flanges, and ½-inch high for all other pressure classes. 250 PSI cast-iron flanges and flanged fittings also have the 1/16-inch raised face.

Manufacturers' catalogs give a 'length thru hub' dimension which includes the 1/16th-inch raised face for 150 and 300 PSI ratings, but which excludes the ¼-inch raised face for flanges rated 400 PSI and higher.

FLAT FACE Most common uses are for mating with non-steel flanges on bodies of pumps, etc. and for mating with 125 PSI cast-iron valves and fittings. Flat-faced flanges are used with a gasket whose outer diameter equals that of the flange—this reduces the danger of cracking a cast-iron, bronze or plastic flange when the assembly is tightened.

RING-JOINT FACING is a more expensive facing, and considered the must efficient for high-temperature and high-pressure service. Both flanges of a pair are alike. The ring-joint facing is not prone to damage in handling as the surfaces in contact with the gasket are recessed. Use of facings of this type may increase as hollow metal O-rings gain acceptance for process chemical seals.

LAP-JOINT FLANGE is shaped to accommodate the stub end. 'The combination of flange and stub end presents similar geometry to the raised-face flange and can be used where severe bending stresses will not occur. Advantages of this flange are stated in 2.3.1.

The term 'finish' refers to the type of surface texture produced by machining the flange face which contacts the gasket. Two principal types of finish are now used, which may be referred to as 'serrated' and 'smooth'.

Flange faces are usually finished by machining to produce a spiral roundbottomed groove (which is more common and may be termed 'stock finish') or a vee-shaped spiral or concentric groove, termed 'serrated finish'. The pitch of the groove is 1/32 inch for steel flanges for lines 12-inch NPS and smaller.

'Smooth' finish is usually specially-ordered, and is available in two qualities. The smoother surface is termed 'cold-water finish'. The regular smooth finish (disused term: 'smooth plane') shows no tool marks to the naked eye.

Serrated finish is used with asbestos and other gaskets. The regular smooth finish is used with gaskets made from hard materials and with spiral-wound gaskets. Cold-water finish is normally used without gaskets.

BOLT HOLES IN FLANGES

2.6.2

Bolt holes in flanges are equally spaced. Specifying the number of holes, diameter of the bolt circle and hole size sets the bolting configuration. Number of bolt holes per flange is given in tables F.

Flanges are positioned so that bolts straddle vertical and horizontal centerlines. This is the normal position of bolt holes on all flanged items.

BOLTS FOR FLANGES

2.6.3

Two types of bolting are available: the studbolt using two nuts, and the machine bolt using one nut. Both boltings are illustrated in figure 2.57. Studbolt thread lengths and diameters are given in tables F.

Studbolts have largely displaced regular bolts for bolting flanged piping joints. Three advantages of using studbolts are:

- (1) The studbolt is more easily removed if corroded
- (2) Confusion with other bolts at the site is avoided
- (3) Studbolts in the less frequently used sizes and materials can be readily made from round stock

HEX NUT

SQUARE-HEAD

STUDBOLT

HEX NUT HEX NUT

UNIFIED SCREW THREADS The Unified Standard for bolts and nuts is used in the USA, Canada and the UK. The standard is ANSI B1.1, and a metric translation is available—ANSI B1.1a. There are three Unified Screw Threads:

Unified Coarse (UNC), Unified Fine (UNF), and Unified Selected (UNS).

Only UNC (class 2, medium-fit bolt and nut) is used for bolts and studbolts in piping. The thread is specified as follows:—

OUTSIDE DIAMETER		•	•			•				•	•	•	•	•	•	•	IN	СН	ES
THREAD		٠,									•	•			•			U	NC
THREAD DENSITY .			•	•				•			•	. 1	THA	EA	DS	PE	R	IN	CH
CLASS OF FIT						•			•		•	•		•	•	•	•	•	2
BOLT			۰			•				•	•	•	•	•	•		•		A
NUT							•		•			•		•		•	•	•	В
EXAN	1PL	ES:			Bo	t:			%	UNC	13	;	2A						
					Ma	ting	Nu	t:	፠	UNC	13	-:	28						

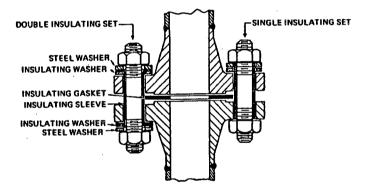
GASKETS

Gaskets are used to make a fluid-resistant seal between two surfaces. The common gasket patterns for pipe flanges are the full-face and ring types, for use with flat-faced and raised-face flanges respectively. Refer to figure 2.56. Widely-used materials for gaskets are compressed asbestos (1/16-inch thick) and asbestos-filled metal ('spiral-wound', 0.175-inch thick). The filled-metal gasket is especially useful if maintenance requires repeated uncoupling of flanges, as the gasket separates cleanly and is often reusable.

Choice of gasket is decided by:

- (1) Temperature, pressure and corrosive nature of the conveyed fluid
- Whether maintenance or operation requires repeated uncoupling
- (3) Code requirements that may apply
- (4) Cost

Garlock Incorporated's 'Industrial products catalog' includes tables giving the expected resistance of gasket materials to many process fluids and conditions. Table 2.5 gives some characteristics of gaskets, to aid selection.


It may be required that adjacent parts of a line are electrically insulated from one another, and this may be effected by inserting a flanged joint fitted with an insulating gasket set between the parts. A gasket electrically insulates the flange faces, and sleeves and washers insulate the bolts from one or both flanges, as illustrated in figure 2.58.

GASKET MATERIAL	EXAMPLE USE	MAXIMUM TEMPERATURE (Deg F)	MAXIMUM 'TP' FACTOR Temperature a Pressure (Deg F a PSI)	AVAILABLE THICKNESS (INCHES)	
Synthetic rubbers	Water, Air	250	15,000	1/32,1/16,3/32,1/8,1/4	
Vegetable fiber	Oil	250	40,000	1/64,1/32,1/16,3/32,1/8	
Synthetic rubbers with cloth insert ('CI')	Water, Air	250	125,000	1/32,1/16,3/32,1/8,1/4	
Solid Tefton	Chemicals	500	150,000	1/32,1/16,3/32,1/9	
Compressed asbestos	Most	750	250,000	1/64,1/32,1/16,1/8	
Carbon steel	High-pressure fluids	750	1,600,000	For ring-joint gaskets, refer to table R-1, part II	
Stainless steel q	High-pressure &/or corrosive fluids	1200	3,000,000		
Spiral-wound: SS/Teflon CS/Asbestos SS/Asbestos SS/Ceramic	Chemicals Most Corrosive Hot gases	500 750 1200 1900	} _{250,000+}	Most-used thickness for spiral-wound gaskets is 0.175. Alternative gasket thickness: 0.125.	

INSULATING GASKET SET

GASKET CHARACTERISTICS

FIGURE 2.58

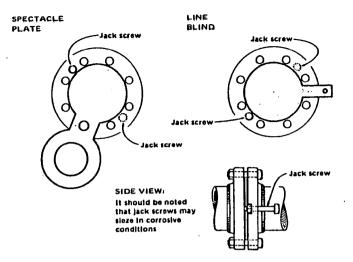
TEMPORARY CLOSURES FOR LINES

2.7

IN-LINE CLOSURES

2.7.1

A completely leak-proof means of stopping flow in lines is necessary in piping systems when: (1) A change in process material to flow in the line is to be made and cross-contamination is to be avoided. (2) Periodic maintenance is to be carried out, and a hazard would be presented by flammable and/or toxic material passing a valve.


The valves described in 3.1 may not offer complete security against leakage, and one of the following methods of temporary closure can be used: Lineblind valve, line blind (including special types-for use with ring-joint flanges), spectacle plate (so-called from its shape), 'double block and bleed', and blind flanges replacing a removable spool. The last three closures are illustrated in figures 2.59 thru 2.61.

FIGURES 2.56-2.58

TABLE 2.5

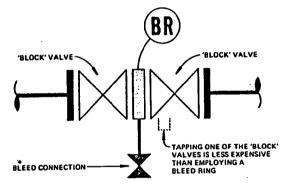

2.6.4

FIGURE 2.69

DOUBLE-BLOCK-AND-BLEED

FIGURE 2.60

REMOVABLE SPOOL

REMOVABLE SPOOL

(it must be possible to move one or both of the adjacent flanges away from the spool to effect removal—this is especially Important with ring-joint flanges)

If a line is to be temporarily closed down with double-block-and-bleed, both valves are closed, and the fluid between drawn off with the bleed valve. The bleed valve is then left open to show whether the other valves are tightly shut.

Figure 2.60 shows the bleed ring connected to a bleed valve-see 3.1.11. The use of a tepped valve rather than a bleed ring should be considered, as it is a more economic arrangement, and usually can be specified merely by adding a suffix to the valve ordering number.

A line-blind valve is not illustrated as construction varies. This type of valve incorporates a spectacle plate sandwiched between two flanges which may be expanded or tightened (by some easy means), allowing the spectacle plate to be reversed. Constant-length line-blind valves are also available, made to ANSI dimensions for run length.

Table 2.6 compares the advantages of the four in-line temporary closures:

IN-LINE CLOSURES

TABLE 2.6

CLOSURE CRITERION	LINE BLIND VALVE	SPECTACLE PLATE, or LINE BLIND	DOUBLE BLOCK, & BLEED	REMOVABLE SPOOL
RELATIVE OVERALL COST	LEAST EXPENSIVE	MEDIUM EXPER DEPENDING ON OF CHANGEOV	FREQUENCY	MOST EXPENSIVE
MANHOURS FOR DOUBLE CHANGEOVER	NEGLIGIBLE	1 to 3	NEGLIGIBLE	7 to 6
INITIAL COST	FAIRLY HIGH	LOW	VERY HIGH	нан
CERTAINTY OF SHUT-OFF	COMPLETE	COMPLETE	DOUBTFUL	COMPLETE
VISUAL INDICATION?	YES	YES	YES, BUT SUSPECT	Yes
WHO OPERATES?	PLANT OPERATOR	PIPEFITTER	PLANT OPERATOR	PIPEFITER

CLOSURES FOR PIPE ENDS & VESSEL OPENINGS

2.7.2

Temporary bolted closures include blind flanges using flat gaskets or ring joints, T-bolt closures, welded-on closures with hinged duors — including the boltless manhole cover (Robert Jenkins, England) and closures primarily intended for vessels, such as the Lanape range (Bonney Forge) which may also be used with pipe of large diameter. The blind flange is mostly used with a view to future expansion of the piping system, or for cleaning, inspection, etc. Hinged closures are often installed on vessels; infrequently on pipe.

QUICK CONNECTORS & COUPLINGS

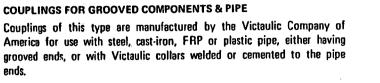
2.8

QUICK CONNECTORS

2.8.1

Two forms of connector specifically designed for temporary use are:
(1) Lever type with double lever clamping, such as Evertite 'Standard' and Victaulic 'Snap Joint'. (2) Screw type with captive nut — 'hose connector'.

Typical use is for connecting temporarily to tank cars, trucks or process vessels. Inter-trades agreements permit plant operators to attach and uncouple these boltless connectors. Certain temporary connectors have built-in valves Evertite manufactures a double shut-off connector for liquids, and Schrader a valved connector for air lines.


and for process modification.

uses, with correct gaskets.

expansion joints of the type shown in figure 2.63 are also used to absorb vibration.

SIMPLE BELLOWS

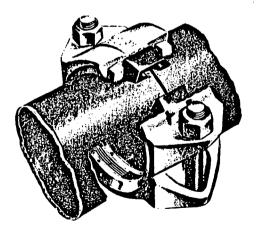
FIGURE 2.63

ends. The following special fittings with grooved ends are available: elbow, tee (all types), lateral, cross, reducer, nipple, and cap. Groove-ended valves and valve adaptors are also available. Advantages: (1) Quick fitting and removal. (2) Joint can take up some deflection and expansion. (3) Suitable for many

Connections of this type may be suitable for either permanent or temporary

use, depending on the joint and gasket, and service conditions. Piping can

be built rapidly with them, and they are especially useful for making repairs to lines, for constructing short-run process installations such as pilot plants,


COUPLINGS FOR GROOVED COMPONENTS & PIPE

The manufacturer states that the biggest uses are for permanent plant air, water (drinking, service, process, waste) and lubricant lines.

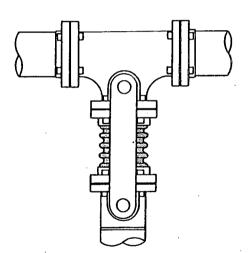
COMPRESSION SLEEVE COUPLINGS are extensively used for air, water, oil and gas. Well-known manufacturers include Victaulic, Dresser and Smith-Blair. Advantages: (1) Quick fitting and removal. (2) Joint may take up some deflection and expansion. (3) End preparation of pipe is not needed.

VICTAULIC COMPRESSION SLEEVE COUPLING

FIGURE 2.62

EXPANSION JOINTS & FLEXIBLE PIPING

2.9


EXPANSION JOINTS

2.9.1

Figures 2.63 thru 2.66 show methods of accommodating movement in piping due to temperature changes, if such movement cannot be taken up by:

ARTICULATED BELLOWS

FIGURE 2.64

ARTICULATED TWIN-BELLOWS ASSEMBLY

FIGURE 2.65

FIGURES 2.59-2.65

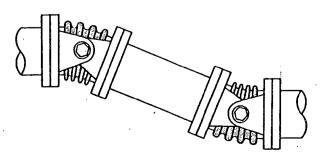
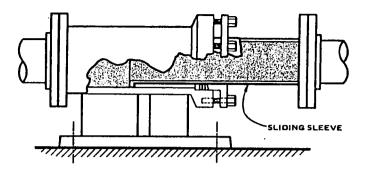



TABLE 2.6

[23]

FLEXIBLE PIPING 2.9.2

For filling and emptying railcars, tankers, etc., thru rigid pipe, it is necessary to design articulated piping, using 'swiveling' joints, or 'ball' joints (the latter is a 'universal' joint). Flexible hose has many uses especially where there is a need for temporary connections, or where vibration or movement occurs. Chemical-resistant and/or armored hoses are available in regular or jacketed forms (see figure 6.39).

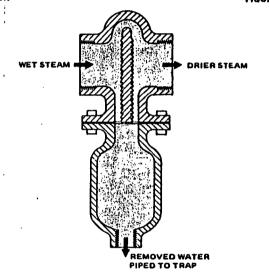
SEPARATORS, STRAINERS, SCREENS & DRIPLEGS 2.10

COLLECTING UNWANTED MATERIAL FROM THE FLOW 2.10.1

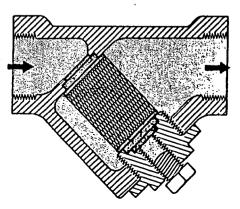
Devices are included in process and service lines to separate and collect undesirable solid or liquid material. Pipe scale, loose weld metal, unreacted or decomposed process material, precipitates, lubricants, oils, or water may harm either equipment or the process.

Common forms of line-installed separator are illustrated in figures 2.67 and 2.68. Other more elaborate separators mentioned in 3.3.3 are available, but these fall more into the category of process equipment, normally selected by the process engineer.

Air and some other gases in liquid-bearing lines are normally self-collecting at piping high points and at the remote ends of headers, and are vented by discharge valves — see 3.1.9.


SEPARATORS 2.10.2

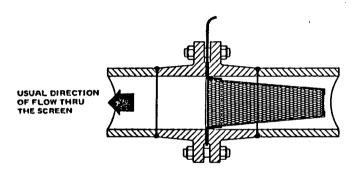
These permanent devices are used to collect droplets from a gaseous stream, for example, to collect oil droplets from compressed air, or condensate droplets from wet steam. Figure 2.67 shows a separator in which droplets in the stream collect in chevroned grooves in the barrier and drain to the small well. Collected liquid is discharged via a trap—see 3.1.9 and 6.10.7.


Inserted in lines immediately upstream of sensitive equipment, strainers collect solid particles in the approximate size range 0.02–0.5 inch, which can be separated by passing the fluid bearing them thru the strainer's screen. Typical locations for strainers are before a control valve, pump, turbine, or traps on steam systems. 20-mesh strainers are used for steam, water, and heavy or medium oils. 40-mesh is suitable for steam, air, other gases, and light oils.

The commonest strainer is the illustrated wye type where the screen is cylindric and retains the particles within. This type of strainer is easily dismantled. Some strainers can be fitted with a valve to facilitate blowing out collected material without shutting the line down—see figure-6.9, for example. Jacketed strainers are available.

SEPARATOR FIGURE 2.67

STRAINER FIGURE 269



Simple temporary strainers made from perforated sheet metal and/or wire mesh are used for startup operations on the suction side of pumps and comppressors, especially where there is a long run of piping before the unit that may contain weld spatter or material inadvertently left in the pipe. After startup, the screen usually is removed.

It may be necessary to arrange for a small removable spool to accommodate the screen. It is important that the flow in suction lines should not be restricted. Cone shaped screens are therefor preferred, with cylindric types as second choice. Flat screens are better reserved for low-suction heads.

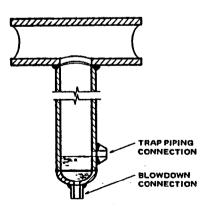

SCREEN BETWEEN FLANGES

FIGURE 2.69

DRIPLEG CONSTRUCTION

FIGURE 2.70

DRIPLEGS

2.10.5

Often made from pipe and fittings, the dripleg is an inexpensive means of collecting condensate. Figure 2.70 shows a dripleg fitted to a horizontal pipe. Removal of candensate from steam lines is discussed in 6.10. Recommended sizes for driplegs are given in table 6.10.

BRANCH CONNECTIONS

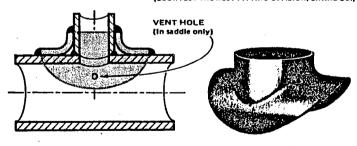
'Reinforcement' is the addition of extra metal at a branch connection made from a pipe or vessel wall. The added metal compensates for the structural weakening due to the hole.

Stub-ins may be reinforced with regular or wraparound saddles, as shown in figure 2.71. Rings made from platestock are used to reinforce branches made with welded laterals and butt-welded connections to vessels. Small welded connections may be reinforced by adding extra weld metal to the joint.

Reinforcing pieces are usually provided with a small hole to vent gases produced by welding; these gases would otherwise be trapped. A vent hole also serves to indicate any leakage from the joint.

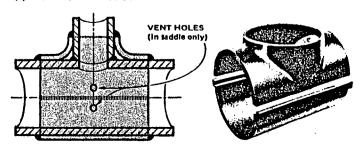
STRAIGHT PIPE

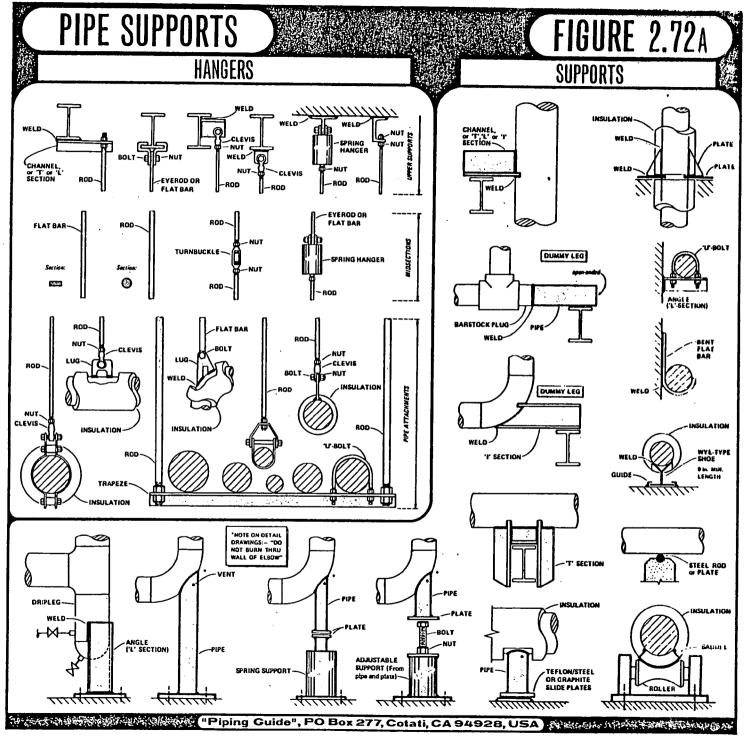
If a butt weld joining two sections of straight pipe is subject to unusual external stress, it may be reinforced by the addition of a 'sleeve' (formed from two units, each resembling the lower member in figure 2.71 (b)).

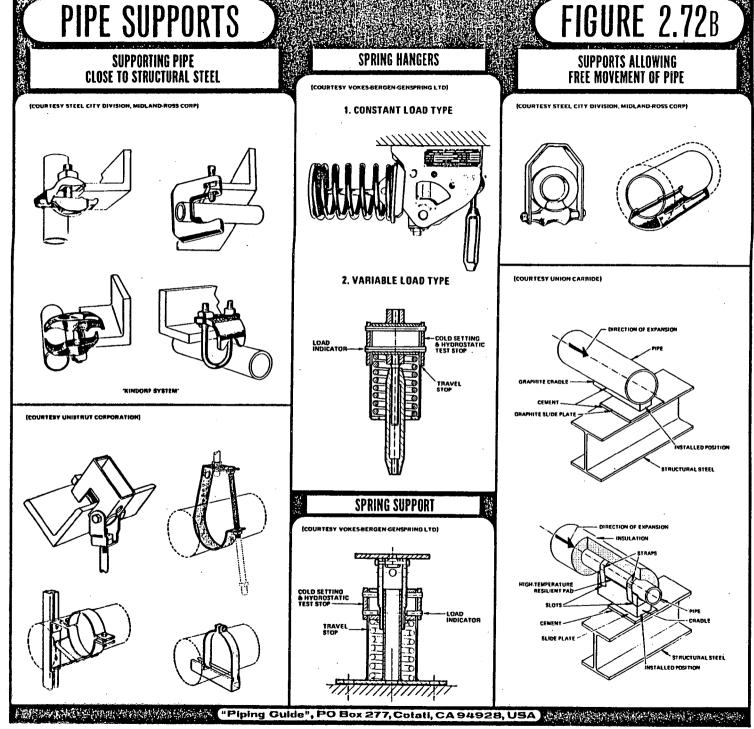

The code applicable to the piping should be consulted for reinforcement requirements. Backing rings are not considered to be reinforcements—see the footnote to chart 2.1.

REINFORCING SADDLES

FIGURE 2.71


(a) REGULAR SADDLE


(COURTESY MIDWEST FITTING DIVISION, CRANE CO.)


FIGURES 2.66-2.71

(b) WRAPAROUND SADDLE

FIGURES 2.72A&B

2.12

2.12.2

Symbols for drafting various types of support are shown in chart 5.7. For designing support systems, see 6.2.

PIPE SUPPORTS 2.12.1

Pipe supports should be as simple as conditions allow. Stock items are used where practicable, especially for piping held from above. To support piping from below, supports are usually made to suit from platestock, pipe, and pieces of structural steel.

A selection of available hardware for supporting is illustrated in figures 2.72A $\,$ and B.

TERMS FOR SUPPORTS

SUPPORT The weight of piping is usually carried on supports made from structural steel, or steel and concrete. (The term 'support' is also used in reference to hangers.)

HANGER Device which suspends piping (usually a single line) from structural steel, concrete or wood. Hangers are usually adjustable for height.

ANCHOR A rigid support which prevents transmission of movement (thermal, vibratory, etc.) along piping. Construction may be from steel plate, brackets, flanges, rods, etc. Attachment of an anchor to pipe should preferably encircle the pipe and be welded all around as this gives a better distribution of stress in the pipe wall.

TIE An arrangement of one or more rods, bars, etc., to restrain movement of piping.

DUMMY LEG An extension piece (of pipe or rolled steel section) welded to an elbow in order to support the line—see figure 2.72A and table 6.3.

The following hardware is used where mechanical and/or thermal movement is a problem:

GUIDE A means of allowing a pipe to move along its length, but not sideways.

SHOE A metal piece attached to the underside of a pipe which rests on supporting steel. Primarily used to reduce wear from sliding for lines subject to movement. Permits insulation to be applied to pipe.

SADDLE A welded attachment for pipe requiring insulation, and subject to longitudinal or rolling movement (resulting from temperature changes other than climatic). Saddles may be used with guides as shown in 6.2.8.

SLIDE PLATE A slide plate support is illustrated in figure 2.72A. Figure 2.72B shows applications of 'Ucar' graphite slide plates which are offered by Union Carbida Inc. The two plates used in a support are made from or faced with a material of low friction able to withstand mechanical stress and temperature changes. Plates are often made from graphite blocks. Steel plates with a teflon facing are available and may be welded to steel.

Spring hangers or supports allow variations in the langth of pipe due to changes in temperature, and are often used for vertical lines. Refer to 6.2.5 figure 6.16. There are two types of spring hanger or support:

'CONSTANT LOAD' HANGER This device consists of a coll spring and lever mechanism in a housing. Movement of the piping, within limits, will not change the spring force holding up the piping; thus, no additional forces will be introduced to the piping system.

'VARIABLE SPRING' HANGER, and SUPPORT These devices consist of a coil spring in a housing. The weight of the piping rests on the spring in compression. The spring permits a limited amount of thermal movement. A variable spring hanger holding up a vertical line will reduce its lifting force as the line expands toward it. A variable spring support would increase its lifting force as the line expands toward it. Both place a load on the piping system. Where this is undesirable, a constant-load hanger can be used instead.

HYDRAULIC DAMPENER, SHOCK, SNUBBER, or SWAY SUPPRESSOR One end of the unit is attached to piping and the other to structural steel or concrete. The unit expands or contracts to absorb slow movement of piping, but is rigid to rapid movement.

SWAY BRACE, or SWAY ARRESTOR, is essentially a helical spring in a housing which is fitted between piping and a rigid structure. Its function is to buffer vibration and sway.

WELDING TO PIPE

2.12.3

If the applicable code permits, lugs may be welded to pipe. Figure 2.72A illustrates some common arrangements using welded lugs, rolled steel sections and pipe, for:—

- (1) Fixing hangers to structural steel, etc.
- (2) Attaching to pipe
- (3) Supporting pipe

Welding supports to prelined pipe will usually spoil the lining, and therefor lugs, etc., must be welded to pipe and fittings before the lining is applied. Welding of supports and lugs to pipes and vessels to be stress-relieved should be done before heat treatment.

3 .1.2

VALVES,

PUMPS, COMPRESSORS, & PROCESS EQUIPMENT

VALVES

3.1

FUNCTIONS OF VALVES

3.1.1

Table 3.1 gives a basis for classifying valves according to function:

USES OF VALVES

TABLE 3.1

VALVE ACTION	EXPLANATION	SEE SECTION:
ON/OFF	STOPPING OR STARTING FLOW	3.1.4 and 3.1.6
REGULATING	VARYING THE RATE OF FLOW	3.1.5, 3.1.6 and 3.1.10
CHECKING	PERMITTING FLOW IN ONE DIRECTION ONLY	3.1.7
SWITCHING	SWITCHING FLOW ALONG DIFFERENT ROUTES	3.1.8
DISCHARGING	DISCHARGING FLUID FROM A SYSTEM	3.1.9

Types of valve suitable for on/off and regulating functions are listed in chart 3.2. The suitability of a valve for a required purpose depends on its construction, discussed in 3.1.3.

PARTS OF VALVES

3.1.2

Valve manufacturers' catalogs offer a seemingly endless variety of constructions. Classification is possible, however, by considering the basic parts that make up a valve:

- (1) The 'disc' and 'seat' that directly affect the flow
- (2) The 'stem' that moves the disc in some valves, fluid under pressure does the work of a stem
- (3) The 'body' and 'bonnet' that house the stem
- (4) The 'operator' that moves the stem (or pressurizes fluid for squeeze valves, etc.)

Figures 3.1 thru 3.3 show three common types of valve with their parts labeled.

DISC, SEAT, & PORT

Chart 3.1 illustrates various types of disc and port arrangements, and mechanisms used for stopping or regulating flow. The moving part directly affecting the flow is termed the 'disc' regardless of its shape, and the non-moving part it bears on is termed the 'seat'. The 'port' is the maximum internal opening for flow (that is, when the valve is fully open). Discs may be actuated by the conveyed fluid or be moved by a stem having a linear, rotary or helical movement. The stem can be moved manually or be driven hydraulically, pneumatically or electrically, under remote or automatic control, or mechanically by weighted lever, spring, etc.

The size of a valve is determined by the size of its ends which connect to the pipe, etc. The port size may be smaller.

STEM

There are two categories of screwed stem: The rising stem shown in figures 3.1 and 3.2, and the non-rising stem shown in figure 3.3.

Rising stem (gate and globe) valves are made either with 'inside screw' (IS) or 'outside screw' (OS). The OS type has a yoke on the bonnet and the assembly is referred to as 'outside screw and yoke', abbreviated to 'OS&Y'. The handwheel can either rise with the stem, or the stem can rise thru the handwheel.

BASIC VALVE MECHANISMS FLUID CONTROL ELEMENTS (DISCS)

CHART 3.1

IN THESE SCHEMATIC DIAGRAMS, THE DISC IS SHOWN WHITE, THE SEAT IN SOLID COLOR, & THE CONVEYED FLUID SHADED,

GATE GLOBE ROTARY DIAPHRAGM CHECK REGULATING BILLAMBRAGU FRESHAB REQULATOR PRESHAB REQULATOR FRESHAB REQULATOR FRESHA									
GATE GLOBE ROTARY DIAPHRAGM CHECK REGULATING BOLID WEDGE GATE GLOBE ROTARY-GALL BOLIAPHRAGM GALINGERS TYPE) BOHING CHECK PRESOUR REGULATOR PRESOUR REGULATOR PRESOUR REGULATOR PRESOUR REGULATOR PRESOUR REGULATOR PRESOURCE FLUID SOUTH RESULTANCE FLUID FULCH SQUEEZE TILLING DISC CHECK STOR GHECK STOR GH			SELF-OPERATED VALVES						
SOLID WEDGE DATE GLOBE ROTARY SALL GAUNDERS TYPE) SHING CHECK PRESSURS REQULATOR PRICE CHECK PRESSURS REQULATOR PRICE CHECK PRICE CHECK PRICE CHECK PRICE CHECK PRICE CHECK STOCKEE SOURCE SOURCE SOURCE STOCKEE STO	GATE	GLOBE	ROTARY	DIAPHRAGM		The same of the sa			
SPLIT-WEDGE GATE ANGLE GLOBE BUTTERFLY PINCH BALL CHECK PISTON CHLCK PRESSURIZING FLUID *Central wast is optional SINGLE-DISC SINGLE-DISC SINGLE-SEAT GATE NEEDLE PLUG of COCK SQUEEZE TILTING DISC CHECK STOP CHECK		W.C.							
SPLIT-WEDGE GATE ANGLE GLOBE BUTTERFLY PINCH BALL CHECK PISTON CHECK SINGLE-DISC SINGLE-DISC SINGLE-SEAT GATE NEEDLE PLUG GI COCK SQUEEZE TILTING DISC CHECK STOP CHECK	SOLID-WEDGE GATE	GLOBE	ROTARY-BALL	DIAPHRAGM (SAUNDERS TYPE)	eming Check	PRESSURE REGULATOR			
SINGLE SEAT GATE NEEDLE PINCH BALL CHECK PISTON CHLCK PRESSURIZING FLUID *Central seat to optional SINGLE SEAT GATE NEEDLE PLUG or COCK SQUEEZE TILTING DISC CHECK STOP CHECK		w							
SINGLE DISC SINGLE SEAT GATE NEEDLE PLUG or COCK SQUEEZE TILTING DISC CHECK STOP CHECK	SPLIT-WEDGE GATE	ANGLE GLOBE	BUTTERFLY	PINCH	BALL CHECK	PISTON CHECK			
	SINGLE-DISC SINGLE-SEAT GATE	MEEDLE	PLUG or COCK	*Central seat is optional	TILTING DISC CHECK	w			
	的意思是認識的	THE PERSON OF							

Non-rising stem valves are of the gate type. The handwheel and stem are in the same position whether the valve is open or closed. The screw is inside the bonnet and in contact with the conveyed fluid.

A 'floor stand' is a stern extension for use with both types of stem, where it is necessary to operate a valve thru a floor or platform. Alternately, rods fitted with universal joints may be used to bring a valve handwheel within an operator's reach.

Depending on the size of the required valve and availabilities, selection of stem type can be based on:

- (1) Whether it is undesirable for the conveyed fluid to be in contact with the threaded bearing surfaces
- (2) Whether an exposed screw is liable to be damaged by abrasive atmospheric dust
- (3) Whether it is necessary to see if the valve is open or closed

In addition to the preceding types of stem used with gate and globe valves, most other valves have a simple rotary stem. Rotary-ball, plug and butterfly valves have a rotary stem which is moved by a permanent lever, or tool applied to a square boss at the end of the stem.

FIGURE 3.1

(COURTESY JENKINS BROS-VALVE MANUFACTURERS)

GATE VALVE (OS&Y, boiled bonnet, rising stem)

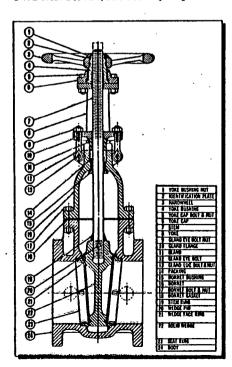
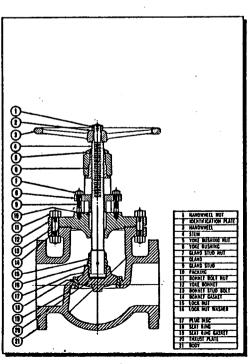



FIGURE 3.2

GLOBE VALVE (OS&Y, boited bonnet, rising stem)

BONNET

There are three basic types of attachment for valve bonnets: screwed (including union), bolted, and breechlock.

A screwed bonnet may occasionally stick and turn when a valve is opened. Although sticking is less of a problem with the union type bonnet, valves with screwed bonnets are best reserved for services presenting no hazard to personnel. Union bonnets are more suitable for small valves requiring frequent dismantling than the simple screwed type.

The bolted bonnet has largely displaced screwed and union bonnet valves in hydrocarbon applications. A U-bolt or clamp-type bonnet is offered on some small gate valves for moderate pressures, to facilitate frequent cleaning and inspection.

The 'pressure seal' is a variation of the bolted bonnet used for high-pressure valves, usually combined with OS&Y construction. It makes use of line pressure to tighten and seal an internal metal ring or gasket against the body.

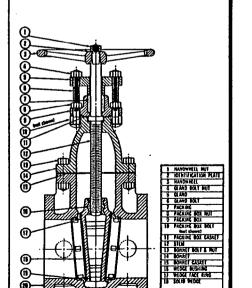
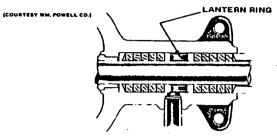

The breechlock is a heavier infrequently-used and more expensive construction, also for high-pressure use, and involves seal-welding of the bonnet with the body.

FIGURE 3.3

GATE VALVE (IS, bolted bonnet, non-rising stem)


3.1

FIGURES 3.1-3.3

A critical factor for valves used for process chemicals is the lubrication of the stem. Care has to be taken in the selection of packing, gland design, and choice and application of lubricant. As an option the bonnet may include a lantern ring' which serves two purposes — either to act as a collection point to drain off any hazardous seepages, or as a point where lubricant can be injected.

LANTERN RING

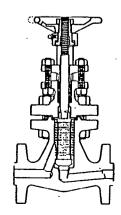
BODY

Selection of material to fabricate the interior of the valve body is important with a valve used for process chemicals. There is often a choice with regard to the body and trim, and some valves may be obtained with the entire interior of the body lined with corrosion-resistant material.

Valves are connected to pipe, fittings or vessels by their body ends, which may be flanged, screwed, butt- or socket-welding, or finished for hose, Victaulic coupling, etc. Jacketed valves are also available—see 6.8.2.

SEAL

In most stem-operated valves, whether the stem has rotary or lineal movement, packing or seals are used between stem and bonnet (or body). If high vacuum or corrosive, flammable or toxic fluid is to be handled, the disc or stem may be sealed by a metal bellows, or by a flexible diaphragm (the latter is termed 'packless' construction). A gasket is used as a seal between a bolted bonnet and valve body.


BELLOWS-SEAL VALVE

(COURTESY HENRY VOGT MACHINE CO.)

'PACKLESS' VALVE

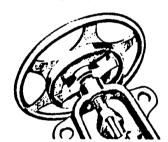
(COURTESY CRANE COMPANY)

Flanged valves use gaskets to seal against the line flanges. Butterfly valves may extend the resilient seat to also serve as line gaskets. The pressure seal funding joint utilizes the pressure of the conveyed fluids to tighten the seal seal pressure seal under Bonnet, this section.

MANUAL OPERATORS

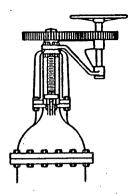
HANDLEVER is used to actuate the stems of small butterfly and rotary-ball valves, and small cocks. Wrench operation is used for cocks and small plug valves.

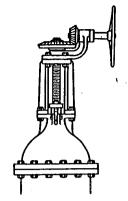
HANDLEVERS ON SMALL VALVES



HANDWHEEL is the most common means for rotating the stem on the majority of popular smaller valves such as the gate, globe and diaphragm types. Additional operating torque for gate and globe valves is offered by 'hammerblow' or 'impact' handwheels which may be substituted for normal handwheels if easier operation is needed but where gearing is unnecessary.

HAMMER-BLOW HANDWHEEL


[COURTESY WM. POWELL CO.]

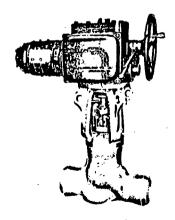

HAMMER ACTION IS PROVIDED BY TWO LUGS CAST ON UNDER-SIDE OF HANDWHEEL, WHICH HIT ANVIL PROJECTING BETWEEN

CHAIN operator is used where a handwheel would be out of reach. The stem is fitted with a chainwheel or wrench (for lever-operated valves) and the loop of the chain is brought within 3 ft of working floor level. Universal-type chainwheels which attach to the regular handwheel have been blumed for accidents: in corrosive atmospheres where an infrequently-operated valve has stuck, the attaching bolts have been known to fail. This problem does not arise with the chainwheel that replaces the regular valve handwheel.

GEAR operator is used to reduce the operating torque. For manual operation, consists of a handwheel-operated gear train actuating the valve stem. As a guide, gear operators should be considered for valves of the following sizes and ratings: 125, 150, and 300 PSI, 14-inch and larger; 400 and 600 PSI, 8-inch and larger; 900 and 1500 PSI, 6-inch and larger; 2500 PSI, 4-inch and larger.

POWERED OPERATORS

Electric, pneumatic or hydraulic operation is used: (1) Where a valve is remote from the main working area. (2) If the required frequency of operation would need unreasonable human effort. (3) If rapid opening and/or closing of a valve is required.


ELECTRIC MOTOR The valve stem is moved by the electric motor, thru reducing gears.

SOLENOID may be used with fast-acting check valves, and with on/off valves in light-duty instrumentation applications.

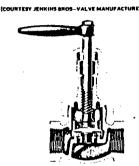
ELECTRIC MOTOR OPERATOR

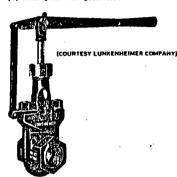
PNEUMATIC OPERATOR

COUNTRST POWELL VALVE COMPANY)

PNEUMATIC & HYDRAULIC OPERATORS may be used where flammable vapor is likely to be present. They take the following forms: (1) Cylinder with double-acting piston driven by air, water, oil, or other liquid which usually actuates the stem directly. (2) Air motor which actuates the stem thru

QUICK-ACTING OPERATORS FOR NON-ROTARY VALVES (Manually-operated valves)


Quick-acting operators are used with gate and globe valves. Two stem movements are employed:—


- (1) Rotating stem, rotated by a lever
- (2) Sliding stem, in which the stem is raised and lowered by lever

QUICK-ACTING LEVERS ON VALVES

(1) Rotating stem on globe valve

(2) Silding stem on gate valve

Steam and air whistles are examples of the use of sliding-stem quick-acting operators with globe valves.

SELECTING ON/OFF & REGULATING VALVES

3.1.3

The suitability of a valve for a particular service is decided by its materials of construction in relation to the conveyed fluid as well as its mechanical design. Referring to the descriptions in 3.1.2, the steps in selection are to choose: (1) Material(s) of construction. (2) The disc type. (3) Stem type. (4) Means of operating the stem — the 'operator'. (5) Bonnet type. (6) Body ends — welding, flanged, etc. (7) Delivery time. (8) Price. (9) Warranty of performance for severe conditions.

Chart 3.2 is a guide to valve selection, and indicates valves which may be chosen for a given service. The chart should be read from left to right. First, ascertain whether a liquid, gas or powder is to be handled by the valve. Next, consider the nature of the fluid—whether it is foodstuffs or drugs to be handled hygienically, chemicals that are corrosive, or whether the fluid is substantially neutral or non-corrosive.

Next consider the function of the valve – simple open-or-closed operation ('on/off'), or regulating for control or for dosing. These factors decided, the chart will then indicate types of valves which should perform satisfactorily in the required service.

If the publication is available, reference should also be made to the Crane Company's 1966 printing of 'Choosing the right valve'.

VALVE SELECTION GUIDE CHART 3.2

			A	CHILL CLE
LF RID CONVEAED	NATURE OF FLUID See Mets (2) in Key	VALVE FUNCTION	TYPE OF DISC	SPECIAL FEATURES [] denotes Limitation, () denotes Option.
	NEUTRAL	ON/OFF	GATE ROTARY BALL PLUG DIAPHRAGM BUTTERFLY PLUG GATE	NONE NONE NONE For all: No natural nubber} NONE NONE
	(WATER, OIL, Etc.)	REGULATING	GLOBE BUTTERFLY PLUG GATE DIAPHRAGM NEEDLE	NONE NONE NONE (For oil: No netural rubber) NONE, (Small flows only)
	CORROSIVE	ON/OFF	GATE PLUG GATE ROTARY BALL PLUG DIAPHRAGM BUITERFLY	ANTI-CORROSIVE* (IOSAY), (Ballows seal) ANTI-CORROSIVE*, (IOSAY) ANTI-CORROSIVE*, (Lined) ANTI-CORROSIVE*, (Lined) ANTI-CORROSIVE*, (Lined) ANTI-CORROSIVE*, (Lined)
וואווח	(ALKALINE, ACID, Etc.)	REGULATING .	GLOBE DIAPHRAGM BUTTERFLY PLUG GATE	ANTI-CORR.* (IOS&Y) (Disphragm or Bellows Seal) ANTI-CORROSIVE* (Lined) ANTI-CORROSIVE* (Lined) ANTI-CORROSIVE* (IOS&Y)
LIQUID	HYGIENIC	ON/OFF	BUTTERFLY DIAPHRAGM	SPECIAL DISCI, WHITE SEAT T SANITARY LINING, WHITE DIAPHRAGM T
	(BEVERAGES, FOOD and DRUGS)	REGULATING	BUTTERFLY DIAPHRAGM SQUEEZE PINCH	SPECIAL DISCI, WHITE SEAT I SANITARY LINING, WHITE DIAPHRAGM I WHITE FLEXIBLE TUBE! WHITE FLEXIBLE TUBE!
,	5.440004	ON/OFF	ROTARY BALL BUTTERFLY DIAPHRAGM PLUG PINCH SQUEEZE	ABRASION-RESISTANT LINING ABRASION-RESIST. DISC, RESILIENT SEAT ABRASION-RESISTANT LINING LUBRICATED, (Lined) NONE CENTRAL SEAT
	SLURRY	REGULATING	BUTTERFLY DIAPHRAGM SQUEEZE PINCH GATE	ABRASION RESIST. DISC, RESILIENT SEAT LINED' NONE NONE SINGLE SEAT, NOTCHED DISC
	FIBROUS SUSPENSIONS	ON/OFF & REGULATING	GATE DIAPHRAGM SQUEEZE PINCH	SINGLE SEAT, KNIFE-EDGED DISC, NOTCHED NONE DISC NONE NONE
	NEUTRAL .	ON/OFF	GATE GLOBE ROTARY BALL PLUG DIAPHRAGM	NONE (Composition Disc),(Plug-Type Disc) NONE NONE, (Unsuitable for steam service) NONE, (Unsuitable for steam service)
	(AIR, STEAM, Etc.)	REGULATING	GLOBE NEEDLE BUTTERFLY DIAPHRAGM GATE	NONE NONE, (Small flows only) NONE NONE, (Unsuitable for steam service) SINGLE SEAY
GAS	CORROSIVE	QN/OFF	BUTTERFLY ROTARY BALL DIAPHRAGM PLUG	ANTI-CORROSIVE* ANTI-CORROSIVE* ANTI-CORROSIVE*
	CHLORINE, Ecc.)	REGULATING	BUTTERFLY GLOBE NEEDLE DIAPHRAGM	ANTI-CORROSIVE* ANTI-CORROSIVE*, (OS&Y) ANTI-CORROSIVE*, [Small flows only] ANTI-CORROSIVE*
	VACUUM	ON/OFF	GATE GLOBE ROTARY BALL BUTTERFLY	BELLOWS SEAL DIAPHRAGM OF BELLOWS SEAL NONE RESILIENT SEAT
CULID	ABRASIVE POWDER (SILICA, Etc.)	ON/OFF & REGULATING	PINCH SQUEEZE SPIRAL SOCK	NONE (CENTRAL SEAT) NONE
SOLID	LUBRICATING POWDER (GRAPHITE, TALC, Etc.)	ON/OFF & REGULATING	PINCH GATE SQUEEZE SPIRAL SOCK	NONE SINGLE SEAT (CENTRAL SEAT) NONE

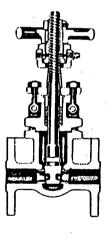
Suitability of materials of construction with respect to the great variety of fluids encountered is a complex topic. A good general reference is the current edition of the Chemical Engineer's Handbook [6].
The disc should be smooth, without boils and recesses, in a sanitary material such as stainless steel, or fully costed with 'white' related one notice material withis 'means that the material does not contain a filter which is toxic or can discotor the product.

KEY TO VALVE SELECTION QUIDE

CHART 48

- (1) Determine type of conveyed fluid-liquid, gas slurry, or
- (2) Determine nature of fluid:
 - Substantially neutral-not noticeably acid or atkatine, such as various oils, drinking water, nitrugen, gas, air,etc.
 - Corrosive-markedly acid, alkaline, or otherwise chemically reactive
 - 'Hygienic'-materials for the food, drug, cosmetic or other industries
 - Slurry-suspension of solid particles in a liquid can have an abrasive effect on valves, etc. Non abrasive sluries such as wood-pulp slurries can choke valve mechanisms
- (3) Determine operation:
 - 'On/off'-fully open or fully closed
 - Regulating-including close regulation (throttling)
- (4) Look into other factors affecting choice:
 - Pressure and temperature of conveyed fluid
 - Method of operating stem-consider closing time
 - Cost
 - Availability
 - Special installation problems—such as welding valves into lines. Welding heat will sometimes distort the body and affect the sealing of small valves.


This problem is discussed in the William Powell Company's valve catalog, number 69, section 20, pages ED83 and ED84.

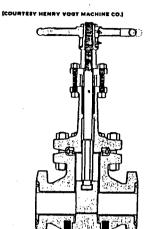

In industrial piping, on/off control of flow is most commonly effected with gate valves. Most types of gate valve are unsuitable for regulating: erosion of the seat and disc occurs in the throttling position due to vibration of the disc ("chattering"). With some fluids, it may be desirable to use globe valves for on/off service, as they offer tighter closure. However, as the principal function of globe valves is regulation, they are described in 3.1.5.

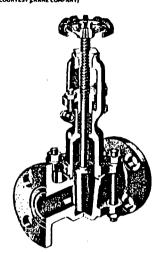
SOLID WEDGE GATE VALVE has either a solid or flexible wedge disc. In addition to on/off service, these valves can be used for regulating, usually in sizes 6-inch and larger, but will chatter unless disc is fully guided throughout travel. Suitable for most fluids including steam, water, oil, air and gas. The flexible wedge was developed to overcome sticking on cooling in high-temperature service, and to minimize operating torque. The flexible wedge is not illustrated—it can be likened to two wheels set on a very short exle.

SOLID WEDGE GATE VALVE

(COURTESY WM. POWELL CO.)

DOUBLE-DISC PARALLEL-SEATS GATE VALVE has two parallel discs which are forced, on closure, against parallel seats by a 'spreader'. Used for liquids and gases at normal temperatures. Unsuitable for regulation. To prevent jamming, installation is usually vertical with handwheel up.


DOUBLE-DISC (SPLIT-WEDGE)WEDGE GATE VALVE Discs wedge against inclined seats without use of a spreader. Remarks for double-disc parallel seats gate valve apply, but smaller valves are made for steam service. Often, construction allows the discs to rotate, distributing wear.


SINGLE DISC SINGLE-SEAT GATE VALVE, or SLIDE VALVE, is used for handling paper pulp slurry and other fibrous suspensions, and for low-pressure gases. Will not function properly with inflow on the seat side. Suitable for regulating flow it tight closure is not required.

SINGLE-DISC PARALLEL-SEATS GATE VALVE Unlike the single-seat slide valve, this valve affords closure with flow in either direction. Stresses on stem and bonnet are lower than with wedge-gate valves. Primarily used for liquid hydrocarbons and gases.

SINGLE-DISC PARALLEL-SEATS GATE VALVE

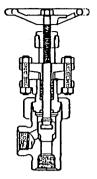
PLUG GATE VALVE

PLUG GATE VALVE This valve has a round tapered disc which moves up and down. Suitable for throttling and full-flow use, but only available in the smaller sizes.

PLUG VALVE Mechanism is shown in chart 3.1, but the disc may be cylindric as well as tapered. Advantages are compactness, and rotary 90-degree stem movement. The tapered plug tends to jam and requires a high operating torque: this is overcome to some extent by the use of a low-friction (teflon, etc.) seat, or by lubrication (with the drawback that the conveyed fluid is contaminated). The friction problem is also met by mechanisms raising the disc from the seat before rotating it, or by using the 'eccentric' design (see rotary-ball valve). Principal uses are for water, oils, slurries, and gases.

LINE-BLIND VALVE This is a positive shutoff device which basically consists of a flanged assembly sandwiching a spectacle-plate or blind. This valve is described and compared with other closures in 2.7.1.

VALVES MAINLY FOR REGULATING SERVICE


3.1.5

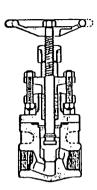

GLOBE VALVE, STRAIGHT & ANGLE TYPE These are the valves most used for regulating. For line sizes over 6-inch, choice of a valve for flow control tends to go to suitable gate or butterfly valves. For more satisfactory service, the direction of flow thru valve recommended by manufacturers is from stem to seat, to assist closure and to prevent the disc chattering against the seat in the throttling position. Flow should be from seat to stemside (1) if there is a hazard presented by the disc detaching from the stem thus closing the valve, or (2) if a composition disc is used, as this direction of flow then gives less wear.

CHART 3.2 ANGLE VALVE This is a globe valve with body ends at right angles, saving the use of a 90-degree elbow. However, the angles of piping are often subject to higher stresses than straight runs, which must be considered with this type of valve.

GLOBE VALVES

(COURTESY HENRY YOUT MACHINE CO.)

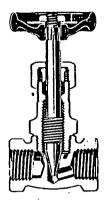
REGULAR-DISC GLOBE VALVE Unsuitable for close regulation as disc and seat have narrow (almost line) contact.

PLUG-TYPE DISC GLOBE VALVE Used for severe regulating service with gritty liquids, such as boiler feedwater, and for blow-off service. Less subject to wear under close regulation than the regular-seated valve.

WYE-BODY GLOBE VALVE has in-line ports and stem emerging at about 45 degrees; hence the 'Y'. Preferred for erosive fluids due to smoother flow pattern.

WYE-BODY GLOBE VALVE (Incorporating composition disc)

(COURTESY JENKINS BROS- VALVE MANUFACTURERS)


COMPOSITION-DISC GLOBE VALVE Suitable for coarse regulation and tight shutoff. Replaceable composition-disc construction is similar to that of a faucet. Grit will imbed in the soft disc preventing seat damage and ensuring good closure. Close regulating will rapidly damage the seat.

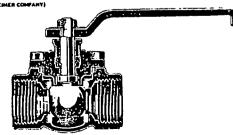
DOUBLE-DISC GLOBE VALVE features two discs bearing on separate seats spaced apart on a single shaft, which frees the operator from stresses set up by the conveyed fluid pressing into the valve. Principle is used on control valves and pressure regulators for steam and other gases. Tight shutoff is not ensured.

NEEDLE VALVE is a small valve used for flow control and for dusing liquids and gases. Resistance to flow is precisely controlled by a relatively large seat area and the adjustment afforded by fine threading of the stem.

NEEDLE VALVE

(COURTESY LUNKERHERICAMPANY)

SQUEEZE VALVE is well suited to regulating the flow of difficult liquids, slurries and powders. Maximum closure is about 80%, which limits the range of regulation, unless the variation of this type of valve with a contral core (seat) is used, offering full closure.

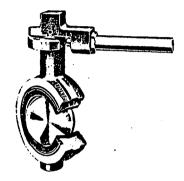

PINCH VALVE Also suited to regulating flow of difficult liquids, shower and powders. Complete closure is possible but tends to rapidly wear the flexible tube, unless of special design.

VALVES FOR BOTH REGULATING & ON/OFF SERVICE 3.1.6

ROTARY-BALL VALVE Advantages are low operating torque, availability in large sizes, compactness, rotary 90-degree stem movement, and 'in-line' replaceability of all wearing parts in some designs. Possible disadvantages are that fluid is trapped within the body (and within the disc on closure), and that compensation for wear is effected only by resilient material behind the seats: the latter problem is avoided in the single-seat 'eccentric' version, which has the ball slightly offset so that it presses into the seat, on closure. Principal uses are for water, oils, slurries, gases and vacuum. Valve is available with a ball having a shaped port for regulation.

ROTARY-BALL VALVE

(COURTESY LUNKENHEIMER COMPANY)



3 .1.5

BUTTERFLY VALVE offers the advantages of rotary stem movement (90 degrees or less), compactness, and absence of pocketing. It is available in all sizes, and can be produced in chemical-resistant and hygienic forms. The valves are used for gases, liquids, slurries, powders and vacuum. The usual resilient plastic seat has a temperature limitation, but tight closure at high temperatures is available with a version having a metal ring seal around the disc. If the valve is flanged, it may be held between flanges of any type. Slip-on and screwed flanges do not form a proper seal with some wafer forms of the valve, in which the resilient seat is extended to serve also as line gaskets.

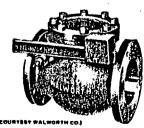
BUTTERFLY VALVE (Wafer type)

(COURTERY LUNKENHEIMER COMPANY)

VALVES FOR CHECKING BACKFLOW

3.1.7

All valves in this category are designed to permit flow of liquid or gas in one direction and close if flow reverses.


SWING CHECK VALVE The regular swing check valve is not suitable if there is frequent flow reversal as pounding and wearing of disc occurs. For gritty liquids a composition disc is advisable to reduce damage to the seat. May be mounted vertically with flow upward, or horizontally. Vertically-mounted valve has a tendency to remain open if the stream velocity changes slowly. An optional lever and outside weight may be offered either to assist closing or to counterbalance the disc in part, and allow opening by low-pressure fluid.

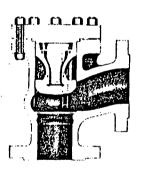
SWING CHECK VALVES

(COURTEST JEHRINS BROS-VALVE MANUFACTURERS)

Outside Lever & Weight for swing check valve

TILTING-DISC VALVE Suitable where frequent flow reversal occurs. Valve closes rapidly with better closure and less slamming than the swing check valve, which it sumewhat resembles. It has higher pressure drop with large

flow velocities and lower-pressure drop with small velocities than a comparable swing-check valve. May be installed vertically with flow upward, or horizontally. Disc movement can be controlled by an integral dashpot or snubber.


LIFT-CHECK VALVE resembles the piston-check valve. The disc is guided, but the dashpot feature is absent. Spring-loaded types can operate at any orientation, but unsprung valves have to be arranged so that the disc will close by gravity. Composition-disc valves are available for gritty liquids.

PISTON-CHECK VALVE Suitable where frequent change of direction of flow occurs as these valves are much less subject to pounding with pulsating flow due to the integral dash-pot. Spring-loaded types can operate at any orientation. Unsprung valves have to be orientated for gravity closure. Not suitable for gritty liquids.

STOP CHECK VALVE

PISTON-CHECK VALVE

COURTESY ROCKWELL MFG CO.

STOP-CHECK VALVE Principal example of use is in steam generation by multiple boilers, where a valve is inserted between each boiler and the main steam header. Basically, a check valve that optionally can be kept closed automatically or manually.

BALL-CHECK VALVE is suitable for most services. The valve can hendle gases, vapors and liquids, including those forming gummy deposits. The ball seats by gravity and/or back pressure, and is free to rotate, which distributes wear and aids in keeping contacting surfaces clean.

WAFER CHECK VALVE effects closure by two semicircular 'doors', both hinged to a central post in a ring-shaped body which is installed between flanges. Frequently used for non-fouling liquids, as it is compact and of relatively low cost. A single disc type is also available.

FOOT VALVE Typical use is to maintain a head of water on the suction side of a sump pump. The valve is basically a lift-check valve with a strainer integrated.

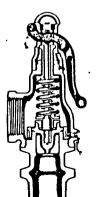
MULTIPORT VALVE Used largely on hydraulic and pneumatic control circuits and sometimes used directly in process piping, these valves have rotary-ball or plug-type discs with one or more ports arranged to switch flow.

DIVERTING VALVE Two types of 'diverting' valve are made. Both switch flow from a line into one of two outlets. One type is of wye pattern with a hinged disc at the junction which closes one of the two outlets, and is used to handle powders and other solids. The second type handles liquid only, and has no moving parts—flow is switched by two pneumatic control lines. It is available in sizes to 6-inch [9].

VALVES FOR DISCHARGING

3.1.9

These valves allow removal of fluid from within a piping system either to atmosphere, to a drain, or to another piping system or vessel at a lower pressure. Operation is often automatic. Relief and safety valves, steam traps, and rupture discs are included in this section. Pressure-relieving valves are usually spring loaded, as those worked by lever and weight can be easily rendered inoperative by personnel. The first three valves are operated by system pressure, and are usually mounted directly onto the piping or vessel to be protected, in a vertical, upright position. Refer to the governing code for the application of these valves, including the need for an external lifting device (handlever, etc.).

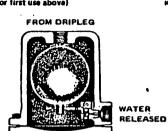

SAFETY VALVE A rapid-opening (popping action) full-flow valve for air and other gases.

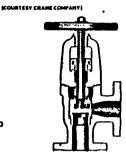
RELIEF VALVE Intended to relieve excess pressure in liquids, in situations where full-flow discharge is not required, when release of a small volume of liquid would rapidly lower pressure. Mounting is shown in figure 6.4.

SAFETY VALVE

(COURTESY CRAHE COMPANY)

RELIEF VALVE

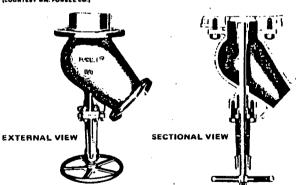



SAFETY-RELIEF VALVE Relieves excess pressure of either gas or liquid which may suddenly develop a vapor phase due to rapid and uncontrolled heating from chemical reaction in liquid-laden vessels. Refer to figure 6.4.

BALL FLOAT VALVE These automatic valves are used: (1) As air traps to remove water from air systems. (2) To remove air from flound systems and act as vacuum breakers or breather valves. (3) To control flound level in tanks. They are not intended to remove condensate.

BALL FLOAT VALVE

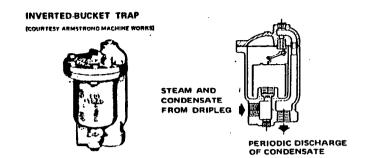
BLOWOFF VALVE



BLOWOFF VALVE A variety of globe valva conforming with boiler code requirements and especially designed for boiler blowoff service. Sometimes suitable also for blowdown service. Wye-pattern and angle types often used. Used to remove air and other gases from boilers, etc. Manually operated.

FLUSH-BOTTOM TANK VALVE Usually a globe type, designed to minimize pocketing, primarily for conveniently discharging liquid from the low point of a tank.

FLUSH-BOTTOM TANK VALVE (GLOBE TYPE)


(COURTESY WM. POWELL CO.)

RUPTURE DISC A safety device designed to burst at a certain excess pressure and rapidly discharge gas or liquid from a system. Usually made in the furm of a replaceable metal disc held between flanges. Disc may also be of graphite or, for lowest bursting pressures, plastic film.

SAMPLING VALVE A valve, usually of needle or globe pattern, placed in a branch line for the purpose of drawing off samples of process material thru the branch. Sampling from very high pressure lines is best done thru a double valved collecting vessel. A cooling arrangement may be needed for sampling from high-temperature lines.

TRAP An automatic valve for: (1) Discharging condensate, air and gases from steam lines without releasing steam. (2) Discharging water from air lines without releasing air—see 'Ball float valve', this section.

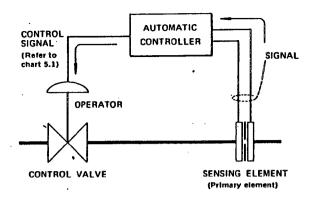
CONTROL VALVES & PRESSURE REGULATORS

3.1.10

CONTROL VALVES

Control valves automatically regulate pressure and/or flow rate, and are available for any pressure. If there are different system pressures in a plant up to and including 300 PSIG, sometimes all control valves chosen will be rated at 300 PSI for interchangeability. However, if none of the system pressures exceeds 150 PSIG, this is not necessary. The control valve is usually chosen to be smaller than line size to avoid throttling and consequent rapid wear of the seat.

Globe pattern valves are normally used for control, and their ends are usually flanged for ease of maintenance. The disc is moved by a hydraulic, pneumatic, electrical, or mechanical operator.


Figure 3.4 shows schematically how a control valve can be used to control rate of flow in a line. Flow rate is related to the pressure drop across the 'sensing element' (an orifice plate in this instance—see 6.7.5). The 'controller' receives the pressure signals, compares them with the pressure drop for the desired flow and, if the actual flow is different, adjusts the control valve to increase or decrease the flow.

Comparable arrangements to figure 3.4 can be devised to control any of numerous process variables—temperature, pressure, level and flow rate are the most common controlled variables.

Control valves may be self-operating, and not require the addition of a controllar, sensing element, etc. Pressure regulators are a common example of this type of valve, and chart 3.1 shows the principles of operation of a pressure regulator.

PRESSURE REGULATOR Control valve of globe type which adjusts downstream pressure of liquid or gas (including steam or vapors) to a lower desired value ('set pressure').

BACK-PRESSURE REGULATOR Control valve used to maintain upstream Bressure in a system.

UNCLASSIFIED VALVES & TERMS

3.1.11

With few exceptions, the following are not special valve types different from those previously discussed, but are terms used to describe valves by service or function.

BARSTOCK VALVE Any valve having a body machined from solid metal (barstock). Usually needle or globe type.

BIBB A small valve with turned-down end, like a faucet.

BLEED VALVE Small valve provided for drawing off fluid.

BLOCK VALVE An on/off valve, nearly always a gate valve, placed in lines at battery limits.

BLOWDOWN VALVE Usually refers to a plug-type disc globe valve used for removing sludge and sedimentary matter from the bottom of boiler drums, vessels, driplegs, etc.

BREATHER VALVE A special self-acting valve installed on storage tanks, etc., to release vapor or gas on slight increase of internal pressure (in the region of ½ to 3 ounces per square inch).

BYPASS VALVE Any valve placed in a bypass arranged around another valve or equipment—see 6.1.3 under 'If there is no P&ID....' and figures 6.6 thru 6.11.

DIAPHRAGM VALVE Examples of true diaphragm valves, where the diaphragm closes off the flow, are shown in chart 3.1. These forms of diaphragm valve are popular for regulating the flow of slurries and corrosive fluids and for vacuum. The term 'diaphragm valve' is also applied to valves which have a diaphragm seal between stem and body, but these are better referred to as 'diaphragm seal' or 'packless' valves—see 3.1.2, under 'Seal'.

DRAIN VALVE A valve used for the purpose of draining liquids from a line or vessel. Selection of a drain valve, and the method of attachment, is influenced by the undesirability of pocketing the material being drained—this is important with slurries and liquids which are subject to: (1) Solidification on cooling or polymerization. (2) Decomposition.

DRIP VALVE A drain valve fitted to the bottom of a dripleg to permit blowdown.

FIGURE 3.4 HEADER VALVE An isolating valve installed in a branch where it joins a header.

HOSE VALVE A gate or globe valve having one of its ends externally threaded to one of the hose thread standards in use in the USA [12, p.62]. These valves are used for vehicular and firewater connections.

ISOLATING VALVE An on/off valve isolating a piece of equipment or a process from piping.

KNIFE-EDGE VALVE A single-disc single-seat gate valve (slide gate) with a knife-edged disc.

MIXING VALVE regulates the proportions of two inflows to produce a controlled outflow.

NON-RETURN VALVE Any type of stop-check valve—see 3.1.7.

PAPER-STOCK VALVE A single-disc single-seat gate valve (slide gate) with knife-edged or notched disc used to regulate flow of paper slurry or other fibrous slurry.

PRIMARY VALVE See 'Root valve', this section.

REGULATING VALVE Any valve used to adjust flow.

ROOT VALVE (1) A valve used to isolate a pressure element or instrument from a line or vessel. (2) A valve placed at the beginning of a branch from a header.

SAMPLING VALVE Small valve provided for drawing off fluid. See 3.1.9.

SHUTOFF VALVE An on/off valve placed in lines to or from equipment, for the purpose of stopping and starting flow.

SLURRY VALVE A knife-edge valve used to control flow of non-abrasive slurries.

SPIRAL-SOCK VALVE A valve used to control flow of powders by means of a twistable fabric tube or sock

STOP VALVE An on/off valve, usually a globe valve.

THROTTLING VALVE Any valve used to closely regulate flow in the just-open position.

VACUUM BREAKER A special self-acting valve, or any valve suitable for vacuum service, operated manually or automatically, installed to admit gas (usually atmospheric air) into a vacuum or low-pressure space. Such valves are installed on high points of piping or vessels to permit draining, and sometimes to prevent siphoning.

UNLOADING VALVE See 3.2.2, under 'Unloading', and figure 6.23.

QUICK-ACTING VALVE Any on/off valve rapidly operable, either by manual lever, spring, or by piston, solenoid or lever with heat-fusible link releasing a weight which in falling operates the valve. Quick-acting valves are desirable in lines conveying flammable liquids. Unsuitable for water or for liquid service in general without a cushioning device (hydraulic accumulator, 'pulsation pot' or 'standpipe') to protect piping from shock. See 3.1.2, under 'Quick-acting operators for non-rotary valves'.

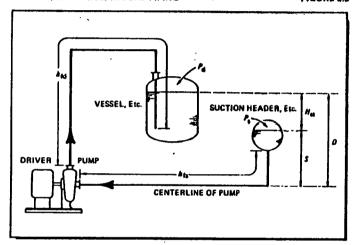
PUMPS & COMPRESSORS

3.2

PUMP8

3.2.1

REFERENCE


'Pumps & the chemical plant'. Thurlow C. 1965. Chemical Engineering reprint

DRIVERS

Electric motors are the most frequently used drivers. Larger pumps may be driven by steam-, gas-, or diesel-engines, or by turbines,

'HEADS' (PRESSURES) IN PUMP PIPING

FIGURE 3.6

NOTES

The total head, H, which must be provided by the pump in the arrangement shown, is:-

$$H = h_d - h_s = H_{st} + (h_{td} + h_{ts}) + (P_d - P_s)$$

Heads may be expressed either all in absolute units or all in gage units, but not in mixed units. The various head terms in this equation are, with reference to the illustration: —

Ad = total discharge head

= total suction head

 H_{st} = static head (differential) = D - S

h_{id} = friction head loss in discharge piping, including exit loss (as liquid discharges into versel, etc.) and loss at increaser located at pump outlet*

A_{Is} = friction head loss in auction piping, including entrance loss (as liquid enters time from header, etc.) and loss at reducer located at pump inlet*

Pd = pressure head above liquid level in discharge vessel or header

Ps = pressure head above liquid level in suction header or vessel

NET POSITIVE SUCTION HEAD (NPSH)

'NPSH' is defined by: -

 $S = k_{fs} + P_s = P_{vp}$, where

 $P_{\rm vp}$ = vapor pressure of liquid at temperature of liquid at suction header, etc. Vapor pressures are given in absolute units

^{*}Table F-10 gives entrance loss, exit loss, flow resistance of reducers and swages, etc., expressed in equivalent lengths of pipe.

ANAL-FOW TURBINE DIFFURE AND CRESCRY BASIC FORM OF MECHANIST PROWN CHEATER ALL PROWN TO HER ALL CONDITIONS FLOW RATE AT CONSTANT DRIVE SPEED LOW TO WEDIUM LOW TO HIGH LO										13. 5 11. 20. 12. 5	4- 4- 12-14-1	reserved and consider.	27.00	
RASIC FORM OF MECHANISHS SHOWN STYLE OF FRESURE LOW TO RESERVE SHOWN STYLE OF FRESURE LOW TO MEDIUM LOW TO M	CLASS OF MECH	CHANISM		L IMPELLOR		II. CHAMBEI	R-CRANK TRAIN	m,	CHAMBER WHEEL T	RAIN	IV. RECIF	PROCATING	V. MISCI	ELLANEOUS
TYPE OF PUMP OPPLIER AMIAL FLOW TURBINE AMIAL FLOW TURBINE AMIAL FLOW TURBINE CAM B FEETING STRAIND DISC FORM OF MICHANISH, DROWN SCHIMATICALLY (FLOW IS FROM 1971 TO RIGHT) FLOW RATE AT CONSTANT DRIVE SPEED UNIFORM IF TOTAL HEAD UNCHANGED SOME VARIATION UNIFORM AT CONSTANT DRIVE SPEED ORGANICAL FLOW TO MEDIUM LOW TO MIGH LOW TO MEDIUM LOW TO MIGH LOW TO MEDIUM TRAILED UNIFORM AT CONSTANT DRIVE SPEED ORGANICAL FLOW TO MEDIUM LOW TO MIGH LOW TO MEDIUM TRAILED UNIFORM AT CONSTANT DRIVE SPEED ORGANICAL FLOW TO MEDIUM LOW TO MIGH LOW TO MEDIUM TRAILED UNIFORM AT CONSTANT DRIVE SPEED ORGANICAL FLOW TO MEDIUM LOW TO MIGH LOW TO MEDIUM	BASIC PUMP TY	YPE	CENTRIFUGAL	PROPELLOR	TURBINE	VANE	NUTATOR	SPURGEAR	BEHRENS	SCREW	PISTON	DIAPHDAGN	 	· · · · · ·
SOME VARIATION TOTAL HEAD UNCHANGED SOME VARIATION UNIFORM AT CONSTAIT DRIVE SPEED UNIFORM AT CONSTAIN DRIVE SPEED UNIFORM AT CONSTAIT DRIVE SPEED UNIFORM AT C			VOLUTE DIFFUSER		AXIAL-FLOW TURBINE	CAM & PISTON, SHUTTLE-BLOCK, SWINGING VANE	MUTATING DISC	STAR AND		 	SWASH-PLATE, RADIAL,	DIAFRAGO		PERISTALTIC
CONSTANT DRIVE SPEED UNIFORM IF TOTAL HEAD UNCHANGED SOME VARIATION UNIFORM AT CONSTANT DRIVE SPEED PULSATING UNDER ALL CONDITIONS NE CLEAN LIQUIDS CLEAN LIQUIDS OUS SUBJECT	MECHANISM; DI SCHEMATICALL (FLOW IS FROM	SHOWN LLY	3			ED.			8			No		<u></u>
TEAM LIQUIDS TELEMI LIQUIDS		A Deto	UNIFOR	IF TOTAL HEAD UNC	HANGED	SOME VARIATION		UNIFORM AT CONS	TANT DRIVE SPEED	• · · · · · · · · · · · · · · · · · · ·	PULSATING UNDE	ALL CONDITIONS	UNIFORM	NEARLY UNIFORM
OILS OILS VISCOUS LIQUIDS X X X X X X X X X X X X X X X X X X X	ISCHARGE PREES	ESUME		LOW TO MEDIUM		LOW TO HIGH	LOW TO MEDIUM	MEDIUM	LOW TO HIGH	MEDIUM	LOW 10 HIGH	LOW TO HIGH	LOW TO MEDIUM	LOW
THE STANFORM WAS AND A STANFORM	E CHEAN LE	LIOUTOS	•	• '	•	•	•	•	•	•	•	•	•	•
THE STURRIES OF THE STURRIES O	,					•	•	•	•	•	•	•	•	•
THULSIONS OF THE PROPERTY OF T					×	• .	•]	•	•	•	•	•	•	•
	= 1	4		• •	×	×	×	×	×	×	×	•	•	
	3 1	JACS .		•	•	•	•]	•	•	•	•	•		
	2 1	ı	×	×	×	×	×	×	•		ų.			
	• 1		×	×	×	•	×	×	•	_ x	Ç	. C		
NOMERS X X X X X X X X X X X X X X X X X X X	POWDERS	15	×	×	×	×	×	×	×	×	Ç i	' 🗘		×
CPIping Guido*, PO Box 277, Colott, CA 9	the of the	48.4.5	. SUITABLE MECH	ANISM; X - RECHANI	SM EITHER UNSUITAB	LE OR NOT PREFERRE		11 11 11 11 11						X

TYPES OF PUMP

A pump is a device for moving a fluid from one place to another thru pipes or channels. Chart 3.3, a selection guide for pumps, puts various types of pump used industrially into five categories, based on operating principle. In common reference, the terms centrifugal, rotary, screw, and reciprocating are used. Chart 3.3 is not comprehensive; pumps utilizing other principles are in use.

About nine out of ten pumps used in industry are of centrifugal type.

The following information is given to enable an estimate to be made of required total head, pump size, capacity and horsepower for planning purposes. Data in the Guide permit estimating pressure drops and total head for pumped water systems: further information for calculating systems pumping other liquids may be found in the Chemical Engineer's Handbook [8], the Engineering Manual (McGrew-Hill), and the Mechanical Engineer's Handbook (McGraw-Hill).

PRESSURES, or 'HEADS'

For pump calculations, pressure is often stated as a 'head' (height) of water —or of the liquid being pumped. Unless otherwise stated, pressures thus expressed may be assumed given in feet of water. Atmospheric pressure at sea level is equal to 14.7 PSIA, or 34 feet of water.

Figure 3.5 relates the total head supplied by a pump to various head losses in the piping.

VELOCITY HEAD

Usually the liquid being pumped is stationary before entering the suction piping, and some power is absorbed in accelerating it to the suction line velocity. This causes a small 'velocity head' loss (usually about 1 ft) and may be found from table 3.2, which is applicable to liquid of any density, if the velocity head is read as feet of the liquid concerned.

CHART 3.3

VELOCITY & VELOCITY HEAD

TARLE 3	•

VELOCITY (Ft/sec)	4	5	6	7	8	9	10	12	15
VELOCITY HEAD (FL)	0.25	0.39	0.56	0.76	0.99	1.26	1.55	2.24	3.50

Flow rate, liquid velocity and cross-sectional area (at right angles to flow) are related by the formulas:

Flow rate in Cubic feet per second = $(\nu)(a)/(144)$ Flow rate in US gallons per minute = $(3.1169)(\nu)(a)$

where:

v = liquid velocity in feet per second

a = cross-sectional area in square inches (table P-1)

POWER CALCULATIONS

If S.G.= specific gravity of the pumped liquid, H = total head in feet of pumped liquid, and p = total head in PSI, then:

Hydraulic horsepower =
$$\frac{(GPM)(H)(S.G.)}{3960} = \frac{(GPM)(p)}{1714}$$

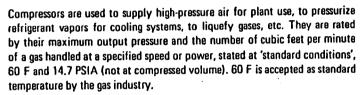
FIGURE 3.5

TABLE **3.2** The mechanical efficiency, e, of a pump is defined as the hydraulic horsepower (power transferred to the pumped liquid) divided by the brake horsepower (power applied to the driving shaft of the pump).

If the pump is driven by an electric motor which has a mechanical efficiency θ_{m} , the electricity demand is:

Kilowatt (KW) =
$$\frac{(GPM)(H)(S.G.)}{(5310)(e)(e_m)} = \frac{(GPM)(p)}{(2299)(e)(e_m)}$$

Often, estimates of brake horsepower, electricity demand, etc., must be made without proper knowledge of the efficiencies. To obtain estimates, the mechanical efficiency of a centrifugal pump may be assumed to be 60%, and that of an electric motor 80%.


COMPRESSORS, BLOWERS & FANS

3.2.2

REFERENCES

'Compressed air and gas handbook'. Compressed Air and Gas Institute (New York) Revised 1966

'Compressor installation manual', Atlas-Copco AB, 1966

The term 'compressor' is usually reserved for machines developing high pressures in closed systems, and the terms 'blower' and 'fan' for machines working at low pressures in open-ended systems.

COMPRESSOR PRESSURE RANGES

TABLE 3.3

MACHINE	DISCHARGE PRESSURE RANGE
COMPRESSOR	15 thru 20,000 PSIG, and higher
BLOWER	1 thru 15 PSIG
FAN	Up to 1 PSIG (about 30 in. water)

COMPRESSING IN STAGES

Gases (including air) can be compressed in one or more operations termed 'stages'. Each stage can handle a practicable increase in pressure—before temperature increase due to the compression necessitates cooling the gas. Cooling between stages is effected by passing the gas thru an intercooler. Staging permits high pressures, and lower discharge temperatures, with reduced stresses on the compressor.

TYPES OF COMPRESSOR

RECIPROCATING COMPRESSOR Air or other gas is pressurized in cylinders by reciprocating pistons. If the compressor is lubricated, the outflow may be contaminated by oil. If an oil-free outflow is required, the pistons may be fitted with graphite or teflon piston rings. Flow is pulsating.

ROTARY SCREW COMPRESSOR Air or other gas enters pockets formed between mating rotors and a casing wall. The pockets rotate away from the inlet, taking the gas toward the discharge end. The rotors do not touch each other or the casing wall. Outflow is uncontaminated in the 'dry type' of machine, in which power is applied to both rotors thru external timing gears. In the 'wet type', power is applied to one rotor, and buth more separated by an oil film, which contaminates the discharge. Flow is uniform.

ROTARY VANE COMPRESSOR resembles the rotary vane pump shown in chart 3.3. Variation in the volume enclosed by adjacent varies as they rotate produces compression. Ample lubrication is required, which may introduce contamination. Flow is uniform.

ROTARY LOBE COMPRESSOR consists of two synchronized lobed rotors turning within a casing, in the same way as the pump shown in chart 3.3 (under 'spurgear' type). The rotors do not touch each other or the casing. No lubrication is used within the casing, and the outflow is not contaminated. Flow is uniform. This machine is often referred to as a 'blower'.

DYNAMIC COMPRESSORS resemble gas turbines acting in reverse. Both axial-flow machines and centrifugal machines (with radial flow) are available. Centrifugal compressors commonly have either one or two stages. Axial compressors have at least two stages, but seldom more than 16 stages. The outflow is not contaminated. Flow is uniform.

LIQUID RING COMPRESSOR This type of compressor consists of a single multi-bladed rotor which turns within a casing of approximately elliptic cross section. A controlled volume of liquid in the casing is thrown to the casing wall with rotation of the vanes. This liquid serves both to compress and to seal. Inlet and outlet ports located in the hub communicate with the puckets formed between the vanes and the liquid ring. These compressors have special advantages: wet gases and liquid carryover including hydrocarbous which are troublesome with other compressors are easily handled. Additional cooling is seldom required. Condensible vapor can be recovered by using liquid similar to that in the ring. Flow is uniform.

EQUIPMENT FOR COMPRESSORS

INTERCOOLER A heat exchanger used for cooling compressed gas between stages. Air must not be cooled below the dew point (at the higher pressure) as moisture will interfere with lubrication and cause wear in the next stage.

AFTERCOOLER A heat exchanger used for cooling gas after compression is completed. If air is being compressed, chilling permits removal of much of the moisture.

DAMPENER or SNUBBER; VOLUME BOTTLE or SURGE DRUM Reciprocating compressors create pulsations in the air or gas which may cause the

The location of the following four items of equipment is shown in figure 6.23:

SEPARATOR (normally used only with air compressors) A water separator is often provided following the aftercooler, and, sometimes, also at the intake to a compressor having a long suction line, if water is likely to collect in the line. Each separator is provided with a drain to allow continuous removal of water.

RECEIVER Refer to 'Discharge (supply) lines' and 'Storing compressed air', this section.

SILENCER is used to suppress objectionable sound which may radiate from an air intake.

FILTER is provided in the suction line to an air compressor to collect particulate matter.

The following information is given as a guide for engineering purposes

LINE SIZES FOR AIR SUCTION & DISTRIBUTION

SUCTION LINE Suction lines and manifolds should be large enough to prevent excessive noise and starvation of the air supply. If the first compression stage is reciprocating, the suction line should allow a 10 to 23 ft/sec flow: if a single-stage reciprocating compressor is used, the intake flow should not be faster than 20 ft/sec. Dynamic compressors can operate with faster intake velocities, but 40 ft/sec is suggested as a maximum. The inlet reducer for a dynamic compressor should be placed close to the inlet nozzle.

DISCHARGE (SUPPLY) LINES are sized for 150 to 175% of average flow, depending on the number of outlets in use at any time. The pressure loss in a branch should be limited to 3 PSI. The pressure drop in a hose should not exceed 5 PSI. The pressure drop in distribution piping, from the compressor to the most remote part of the system, should not be greater than 5 PSI (not including hoses).

These suggested pressure drops may be used to select line sizes with the aid of table 3.5. From the required SCFM flow in the line to be sized, find the next higher flow in the table. Multiply the allowed pressure drop (PSI) in the line by 100 and divide by the length of the line in feet to obtain the PSI drop per 100 ft—find the next lower figure to this in the table, and read required line size.

Equipment drawing air at a high rate for a short period is best served by a receiver close to the point of maximum use—lines can then be sized on average demand. A minimum receiver size of double the SCF used in intermittent demand should limit the pressure drop at the end of the period of use to about 20% in the worst instances and keep it under 10% in most others.

COMPRESSOR CHARACTERISTICS

COMPRESSOR TYPE	MAXIMUM OUTPUT PRESSURE	CONTAM- INANT IN	INFLOW (CFM/HP)	ECONOMIC RANGE (Inflow CFM)
	(PSIG)	OUTPUT	DATA F	OR 100 PSIG OUTFLOW
RECIPROCATING Lubicated Non-lubricated	35,000 700	OIL	4, to 7	10,000
DYNAMIC Centrifugal Axial	4,000 90	NONE NONE	4 4½	500 to 110,000 5,000 to 13,000,000
ROTARY VANE	125	OIL	4	150 to 6,000
ROTARY LOBE	30	NONE		50,000
ROTARY SCREW	125	NONE/ OIL	4	30 to 150

WATER

or other

1.6 to 2.2

LIQUID RING

FLOW OF COMPRESSED AIR: PRESSURE DROPS OVER 100 Ft PIPE, WITH AIR ENTERING AT 100 PSIG* (Adapted from data published by Ingersoll-Rand)

75°

1	ΑE	Ħ	F	3	4

20 to 5.000

TABLE 3.4

FREE AIR	N	OMINA	L PIPE SI	ZE (INCI	HES) -:	SCHEDU	LE 40 PI	PE
(SCFM)	*	1	1%	. 2	21/2	3	4	6
40	1.24	0.37						
70	3.77	1.05	0.12		Pressure	drop sm	aller than	,
.90	6.00	1.69	0.19			PSI per		
100	7.53	2.09	0.24					
400		32.2	3.59	0.98	0.41	0.13	1	_
700	i		10.8	2.92	1.19	0.38	0.10	1
900	١.		17.9	4.78	1.97	0.62	0.15	l
1,000	1		22.0	5.90	2.43	0.76	0.19	
4,000	1					11.9	2.90	0.35
7,000	1					-	8.77	1.06
9,000	1		essure dre				14.6	1.75
10,000	1	in	an 35 PSI	per 100	rr		18.0	2.13
40,000	1							33.8

^{*}Pressure drop varies inversely as absolute pressure of entering air.

POWER CONSUMPTION

The power consumption of the different compressor types is characteristic. Table 3.4 gives the horsepower needed at an output pressure of 100 PSIG. Power consumption per CFM rises with rising output pressure. Air cooling adds 3-5% to power consumption (including fan drive). 'FAD' power consumption figures for compressors of 'average' power consumption are given. 'FAD' denotes 'free air delivered corresponding to standard cubic ft per minute (SCFM) or liters per minute measured as set out in ASME PTC9, BS 1571 or DIN 1945.'

TABLES

^{*}Figure applies to a two-stage machine

PSIG		50	75	100	125
HP per 100 CFM INFLOW	SINGLE-STAGE	14	18	22	24
	TWO-STAGE	13	16	18	21

COOLING-WATER REQUIREMENTS

Cooling-water demand is normally shown on the vendor's P&ID or data sheet. Most of the water demand is for the aftercooler (and intercooler, with a two-stage compressor). Jackets and lube oil may also require cooling. As a guide, 8 US gallons per hour are needed for each horsepower supplied to the compressor. If the final compression is 100 PSIG, the water demand will usually be about 2 US GPH per each SCFM inflow. These approximate demands are based on an 40 F temperature increase of the cooling water. Demand for cooling water increases slightly with relative humidity of the incoming air.

QUANTITIES OF MOISTURE CONDENSED FROM COMPRESSED AIR

The following calculation (taken from the referenced Atlas Copco manual) is for a two-stage compressor, and is based on moisture content given in the table below:

DATA:

Capacity of the compressor = 2225 SCFM

Temperature of the incoming air = 86 F

Relative humidity of the incoming air = 75%

Outlet temperature = 86 F

Air pressure = 25.3 PSIG, or 40 PSIA
Water separation efficiency = 80%

Outlet air temperature = 86 F

Aftercooler

Aftercooler

Aftercooler

Water separation efficiency = 90%

Water separation efficiency = 90%

CALCULATIONS:

- (1) From the table, weight of water vapor in 2225 SCFM air at 86 F and 75% RH = (0.00189)(2225)(0.75) = 3.15 lb/min.
- (2) Rate of removal of condensed water from intercooler, thru trep = (0.8)[3.15 (0.00189)(2225)(14.7)/(40)] = 1.28 lb/min., or (1.28)(60)/(8.33) = 9.2 US GPH
- (3) Rate of removal of condensed water from aftercooler, thru trap = (0.9) [3.15 - 1.28 - (0.00189)(2225)(14.7)/(115)] = 1.20 lb/min., or (1.20)(60)/(8.33) = 8.6 US GPH
- (4) Total rate at which water is removed from both coolers = 9.2 + 8.6 = 17.8 US GPH

MOISTURE CONTENT OF AIR AT 100% RH

TEMPERATURE (Degrees F)	14	32	50	68	86	104	122
MDISTURE (10 ⁻⁴ lb/ft ³)	1.35	3.02	5.87	10.9	18.9	31.6	51.3

UNLOADING (POSITIVE-DISPLACEMENT COMPRESSORS)

'Unloading' is the removal of the compression load from the running compressor. Compressors are unloaded at startup and for short periods when demand for gas falls off. Damage to the compressor's drive motor can result if full compression duties are applied suddenly.

If the vendor does not provide means of unloading the compressor, a manual or automatic bypass line should be provided between suction and discharge (on the compressor's side of any isolating valves)—see figure 6.23,

Provision should be made so that the discharge pressure cannot rise above a value which would damage the compressor or its driver. Automatic unloading will ensure this, and the control actions are listed in table 3.6.

AUTOMATIC UNLOADING ACTIONS FOR COMPRESSORS

TABLE 3 6

COMPRESSOR	DISCHARGE PRESSURE	AUTOMATIC CONTROL ACTION
Not running	Low-reaches lower set value	Starts compressor unloaded, accelerates to normal speed, and brings on load
Running	High-reaches higher set value	Unloads compressor for a preset period
letion.	Low-reaches reload pressure before idling period is over	Reloads compressor
Idling	Medium—idling period ends before reload pressure is reached	Switches off compressor

STORING COMPRESSED AIR

A limited amount of compressed air or other gas can be stored in receivers. One or more receivers provided in the compressor's discharge piping also serve to suppress surges (which can be due to demand, as well as supply) to assist cooling, and to collect moisture. Receivers storing air or other gas are classed as pressure vessels—refer to 6.5.1.

RECEIVER CONSTRUCTION Usual construction is a long vertical cylinder with dished heads, supported on a pad. Water will collect in the base, and therefor a valved drain must be provided for manual blowdown. Collected water may freeze in cold climates. Feeding the warm air or gas at the base of the receiver may prevent freezing, but the inlet must be designed so that it cannot be closed by water if it does freeze.

CAPACITY NEEDED A simple rule to decide the total receiver volume is to divide the compressor rating in SCFM by ten to get the volume in cubin fact for the receiver. For example, if the compressor is designed to take 5500 cubic feet per minute, a receiver volume of about 550 cubic feet is adequate. This rule is considered suitable for outflow pressures up to about 125 PSIG and where the continuously running compressor is unloaded by automatic valves—see 'Unloading' above. An extensive piping system for distributing compressed air or other gas may have a capacity sufficiently large in itself to serve as a receiver.

Process equipment is a term used to cover the many types of equipment used to perform one or more of these basic operations on the process material:

- (1) CHEMICAL REACTION
- (2) MIXING
- (3) SEPARATION
- (4) CHANGE OF PARTICLE SIZE
- (5) HEAT TRANSFER

Equipment manufacturers give all information necessary for installation and piping.

This section is a quick reference to the function of some items of equipment used in process work. In table 3.7, the function of the equipment is expressed in terms of the phase (solid, liquid or gas) of the process materials mixed. Examples: (1) A blender can mix two powders, and its function is tabulated as "S+S". (2) An agitator can be used to stir a liquid into another liquid—this function is tabulated "L+L". Another large and varied group of equipment achieves separations, and a similar method of tabulating function is used in table 3.8.

CHEMICAL REACTION

3.3.1

Chemical reactions are carried out in a wide variety of specialized equipment, termed reactors, outcolaves, furnaces, etc. Reactions involving liquids, suspensions, and sometimes gases, are often performed in 'reaction vessels'. The vessel and its contents frequently have to be heated or cooled, and piping to a jacket or internal system of coils has to be arranged. If reaction takes place under pressure, the vessel may need to comply with the ASME Boiler and Pressure Vessel Code. Refer also to 6.5.1, under 'Pressure vessels', and to the standards listed in table 7.13.

MIXING 3.3.2

A variety of equipment is made for mixing operations. The principal types of equipment are listed in table 3.7:

MIXING EQUIPMENT

TABLE 3.7

EQUIPMENT	PHASES MIXED
AGITATOR	S+L, L+L
BLENDER (TUMBLER TYPE)	S+5,5+L
EDUCTOR	L+L,L+G,G+G
MIXER (RIBBON, SCROLL, OR OTHER TYPE)	5+5,5+L
PROPURTIONING PUMP	L+L
PHOPORTIONING VALVE	L+L

Equipment for separation is even more varied. Equipment separating solids on the basis of particle size or specific gravity alone are in general termed classifiers. The broader range of separation equipment separates phases (solid, liquid, gas) and some of the types used are listed in the table below:

SEPARATION EQUIPMENT

TABLE 3.8

+ L 1) + L(2) + G + G 1) + L(2) + L 1) + S(2) + S 1) + L(2)	S None None L L (1) S S(1) L+S L(1)	L L(1), L(2), † G. S † : G G L(2) ° ° L ° S(2) L °				
+ G + G + G 1) + L(2) + L 1) + S(2) + S	None L L L(1) S S(1) L+S	G.S + : G G L(2) • • S(2) L •				
+ G + G 1) + L(2) + L) + S(2)	L L L(1) S S(1) L+S	G G L(2) ° ° L ° S(2) L °				
+ G 1) + L(2) + L 1) + S(2) + S	L L(1) S S(1) L+S	G L(2) ° ° L ° S(2) L °				
1) + L(2) + L 1) + S(2) + S	L(1) S S(1) L+S	L(2) ° ° ° L ° S(2) L °				
⊦ L I) + S(2) ⊦ S	5 S(1) L+S	L * S(2) L *				
I) + S(2) + S	S(1) L+S	S(2) L °				
s	L+S	L °				
- 1		_				
· [S	L				
·L [s	L				
1) + L(2) .(3) + etc.	None	L(1), L(2), L(3), etc.†				
G	s	G				
·L	S	L				
1) + L(2)	L(1)	L(2)				
†Separate flows Premoved as vapor						
•	+ G + L 1) + L(2)	+ L S 1) + L(2) L(1)				

CHANGE OF PARTICLE SIZE

3.3.4

Reduction of particle size is a common operation, and can be termed 'attrition'. Equipment used includes crushers, rod-, ball- and hammer-mills, and—to achieve the finest reductions—energy mills, which run on compressed air. Emulsions ('creams' or 'milks'), which are liquid-in-liquid dispersions, are stabilized by homogenizers, typically used on milk to reduce the size of the fat globules and thus prevent cream from separating.

Occasionally, particle or lump size of the product is increased. Equipment for agglomerating, pelletizing, etc., is used. Examples: tablets, sugar cubes, powdered beverage and food products.

PROCESS HEAT TRANSFER

3.3.5

Adding and removing heat is a significant part of chemical processing. Heating or cooling of process material is accomplished with heat exchangers, jacketed vessels, or other heat transfer equipment. The project and piping groups specify the duty and mechanical arrangement, but the detail design is normally left to the manufacturer.

The term 'heat exchanger' in chemical processing refers to an unfired vessel exchanging heat between two fluids which are kept separated. The commonest form of heat exchanger is the 'shell-and-tube' exchanger, consisting of a bundle of tubes held inside a 'shell' (the vessel part). One fluid passes inside the tubes, the other thru the space between the tubes and shell. Exchanged heat has to flow thru the tube walls. Refer to 6.8 ('Keeping process material at the right temperature') and to 6.6 for piping shell-and-tube heat exchangers.

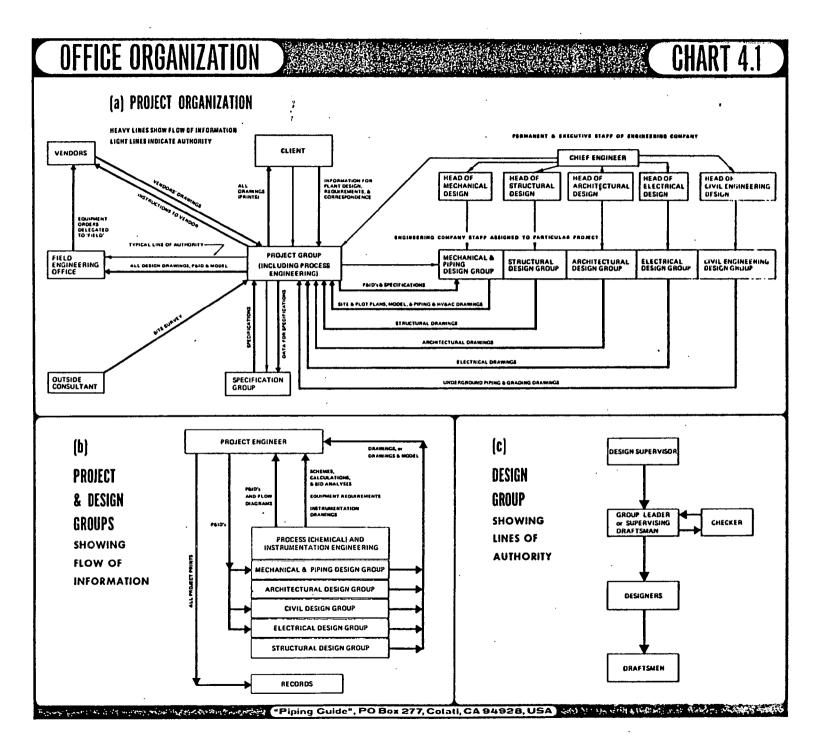
Heat exchange with process material can take place in a variety of other equipment, such as condensers, evaporators, heaters, chillers, etc.

MULTIFUNCTION EQUIPMENT

3.3.6

Sometimes, items of equipment are designed to perform more than one of the functions listed at the beginning of 3.3.

Mixing and heating (or cooling) may be simultaneously carried out in mixers having blades provided with internal channels to carry hot (or cold) fluid.


Separation and attrition may be achieved in a single mill, designed to output particles of the required degree of fineness and recycle and regrind particles which are still too coarse.

ORGANIZATION:

4 .1.2

JOB RESPONSIBILITIES, DRAWING-OFFICE EQUIPMENT & PROCEDURES

THE PIPING GROUP 4.	1 JOB		FUNCTIONS
Plant design is divided into several areas, each the responsibility of a 'design		(1)	RESPONSIBLE FOR ALL PERSONNEL IN GROUPS INCLUDING HIRING
group'. Chart 4.1(a) shows the main groups of people cooperating on the		(2)	COORDINATING WITH OTHER GROUPS (AND THE CLIENT)
plant design, and the types of drawings for which they are responsible. Other groups, involved with instrumentation, stress analysis, pipesupport, etc., col	Chief Draftsman some-	(3)	OVERALL PLANNING AND SUPERVISING THE GROUP'S WORK
tribute to the design at appropriate stages.		(4)	LIAISON WITH PROJECT ENGINEER(S)
The personnel responsible for the piping design may be part of an engineering	GROUP LEADER	(1)	SUPERVISING DESIGN & DRAFTING IN AREA(S) ALLOCATED BY DESIGN SUPERVISOR
department's mechanical design group, or they may function as a separat	NOTE: On small projects, te may also assume Design	(2)	ASSIGNING WORK TO DESIGNERS & DRAFTS. MEN
section or department. For simplicity, this design group is referred to as the 'piping group', and its relationship with the organization and basic activities.		(3)	RESPONSIBLE FOR PLOT PLANS, PLANT DESIGNS & PRESENTATION & COMPLETENESS OF FINISHED DRAWINGS
are indicated in chart 4.1(a).		(4)	COORDINATES MECHANICAL, STRUCTURAL, ELECTRICAL, AND CIVIL DETAILS FROM OTHER GROUPS
Chart 4.1(c) shows the structure of a design group.		(5)	CHECKING & MARKING VENDORS' DRAWINGS
		(6)	OBTAINING INFORMATION FOR MEMBERS OF THE GROUP
RESPONSIBILITIES OF THE PIPING GROUP 4.1.	.1	(7)	ESTABLISHING THE NUMBER OF DRAWINGS REQUIRED FOR EACH JOB (DRAWING CONTROL OR REGISTER)—SEE INDEX
The piping group produces designs in the form of drawings and model(s) showing equipment and piping.),	(8)	ASSIGNING TITLES FOR EACH DRAWING AND MAINTAINING UP-TO-DATE DRAWING CONTROL AND SETTER OF DRAWINGS, CHARTS, GRAPHS, AND SKETCHES FOR EACH CURRENT PROJECT
The following are provided by the piping group as its contribution to the	18	(9)	ESTABLISHING A DESIGN GROUP FILING SYSTEM FOR ALL INCOMING & OUTGOING PAPERWORK
plant design:-		(10)	KEEPING A CURRENT MANHOUR SCHEDULE AND RECORD OF MANHOURS WORKED
(1) AN EQUIPMENT ARRANGEMENT DRAWING, USUALLY		(11)	REQUISITIONING VIA PURCHASING DEPART- MENT ALL PIPING MATERIALS
TERMED THE 'PLOT PLAN'	CHECKER	(1)	CHECKING DESIGNERS' AND DRAFTSMENS' DESIGNS AND DETAILS FOR DIMENSIONAL ACCURACY AND CONFORMITY WITH SPECIFI- CATIONS, P&ID's, VENDORS' DRAWINGS, ETC.
(2) PIPING DESIGN (DRAWINGS OR MODEL)		(2)	IF AGREED WITH THE DESIGNER &/OR GROUP LEADER, MAY MAKE IMPROVEMENTS AND
(3) PIPING DETAILS FOR FABRICATION AND CONSTRUCTION			ALTERATIONS TO THE DESIGN
(4) REQUISITIONS FOR PURCHASE OF PIPING MATERIEL	DESIGNER	(1)	PRODUCING STUDIES AND LAYOUTS OF EQUIP- MENT AND PIPING WHICH MUST BE ECONOMIC, SAFE, OPERABLE AND EASILY MAINTAINED
		(2)	MAKING ANY NECESSARY ADDITIONAL CALCULATIONS FOR THE DESIGN
JOB FUNCTIONS 4.1.2	2	(3)	SUPERVISING DRAFTSMEN
On joining a design office it is important that the new member knows wha	t DRAFTSMAN	MINI	MUM RESPONSIBILITIES ARE:
line of authority exists and to whom he is responsible. This is especially	Y	(1)	FRODUCING DETAILED DRAWINGS FROM DE- SIGNERS' OR GROUP LEADERS' SCHEMES OR SKETCHES
Necessary when information is required and it saves the wrong people from		(2)	SECONDARY DESIGN WORK . :
being interrupted. Different companies will have different set-ups and differ ent job titles. Chart 4.2 shows two typical lines of authority.		(3)	ACQUAINTING HIMSELF WITH THE RECORDS, FILES, INFORMATION SHEETS AND COMPANY PRACTICES RELATING TO THE PROJECT

4 .2.4

The following information is required by the piping group:-

'JOB SCOPE' DOCUMENT, WHICH DEFINES
 PROCEDURES TO BE USED IN PREPARING
 DESIGN SKETCHES AND DIAGRAMS

(2) PIPING & INSTRUMENTATION DIAGRAM (P&ID-SEE 5.2.4)

LIST OF MAJOR EQUIPMENT (EQUIPMENT INDEX), SPECIAL EQUIPMENT AND MATERIALS OF FABRICATION

FROM THE PROJECT GROUP

(4) LINE DESIGNATION SHEETS OR TABLES, INCLUDING ASSIGNATION OF LINE NUMBERS—SEE 4.2.3 AND 5.2.5

5) SPECIFICATIONS FOR MATERIALS USED IN PIPING SYSTEMS-SEE 4.2.1

(6) SCHEDULE OF COMPLETION DATES (UP-DATED ON FED-BACK INFORMATION)

(7) CONTROLS (METHODS OF WORKING, ETC.)
TO BE ADOPTED FOR EXPEDITING THE
JOB

FROM OTHER GROUPS

(B) DRAWINGS-SEE 5.2.7

FROM SUPPLIERS

(9) VENDORS' PRINTS-SEE 8.2.7

8PECIFICATIONS

4.2.1

These consist of separate specifications for plant layout, piping materials, supporting, fabrication, insulation, welding, erection, painting and testing. The piping designer is mostly concerned with plant layout and material specifications, which detail the design requirements and materials for pipe, flanges, fittings, valves, etc., to be used for the particular project.

The piping materials specification usually has an index to the various services or processes. The part of the specification dealing with a particular service can be identified from the piping drawing line number or P&ID line number—see 5.2.4 under 'Flow lines'. All piping specifications must be strictly adhered to as they are compiled from information supplied by the project group. Although the fittings, etc., described in the Guide are those most frequently used, they will not necessarily be seen in every piping specification.

On some projects (such as 'revamp' work) where there is no specification, the designer may be responsible for selecting materials and hardware, and it is important to give sufficient information to specify the hardware in all essential details. Non-standard items are often listed by the item number and/or model specification for ordering taken from the catalog of the particular manufacturer.

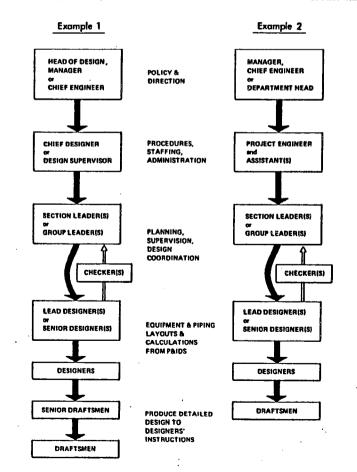
LIST OF EQUIPMENT, or EQUIPMENT INDEX

4.2.2

This shows, for each item of equipment, the equipment number, equipment title, and status—that is whether the item has been approved, ordered, and whither certified vendor's prints have been received.

These sheets contain tabulated data showing nominal pipe size, material specification, design and operating conditions. Line numbers are assigned in sequence of flow, and a separate sheet is prepared for each conveyed fluid—see 5.2.5.

DRAWING CONTROL (REGISTER)


4.2.4

A drawing number relates the drawing to the project, and may be coded to show such information as project (or 'job') number, area of plant, and originating group (which may be indicated 'M' for mechanical, etc.). Figure 5.15 shows a number identifying part of a piping system.

The drawing control shows the drawing number, title, and progress toward completion. The status of revision and issues is shown—see 5.4.3. The drawing control is kept up-to-date by the group leader.

DESIGN GROUP-TWO TYPICAL LINES OF AUTHORITY

CHART 4.2

CHARTS 4.1 & 4.2 FILING SYSTEM

There are two types of drawings to file-those produced by the group and those received by the group. The former are filed in numerical order under plant or unit number in the drawing office on a 'stick file' or in a drawersee 4.4.10. The filing of the latter, 'foreign', prints is often poorly done, causing time to be wasted and information to be lost. These prints are commonly filed by equipment index number, placing all information connected with that item of equipment in the one file.

A suggested method for filing these incoming prints is illustrated in chart 4.3, which cross-references process, function, or area with the group originating the drawing, and with associated vessels, equipment, etc. All correspondence between the project and design groups, client, vendors, and field would be filed under 'zero', as shown.

MATERIALS & TOOLS FOR THE DRAFTING ROOM 4.4

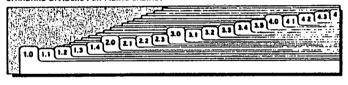
4.4.1 PAPER

TRACING PAPER is used for all drawings. It has to be translucent to the light used in copying machines (see below). The cheapest paper used is rag vellum. Linen is expensive but still used for important work, 'though largely supplanted by plastic film such as mylar, which is very durable. Papers can be supplied printed with border and title block and with a 'fade out' ruled orid on the reverse side. 'Isometric' sheets with fade out 30-degree grid are available for drawing isos.


Tracings must be carefully handled, avoiding crumpling, folding, punching, tearing and heavy erasing. If torn, the tear must be repaired with 'Magic tape' or equivalent-not with regular 'Scotch tape', which will show on prints.

ANSI Y14.1 defines the following drawing-sheet sizes (in inches): (A) 81/2x11, or 9x12. (B) 11x17, or 12x18. (C) 17x22, or 18x24. (D) 22x34, or 24x36. (E) 34x44, or 36x48.

PAPERS FOR COPYING MACHINES Photosensitive paper is used for making prints for checking, issuing and filing purposes. 'Sepia' photocopying paper (Ozalid Company, etc.) gives brown positive prints which may be amended with pencil or ink, and the revision used as an original for photocopying in a diazo machine. Sepias may also be used to give a faint background print for drawing other work over, such as ducting or pipe supports. The quality of sepia prints is not good. Positive photocopies of superior quality are made on clear plastic film, which may have either continuous emulsion to give heavy copies, or screened emulsion to yield faint background prints (emulsion should preferably be water-removable).


4.4.2 **LEADS & PENCILS**

Pencil leads used in the drawing office are available in the following grades, beginning with the softest: B (used for shading), HB (usually used for writing only), F (usually softest grade used for drafting), H (grade most often used for drafting), 2H (used for drawing thinner lines such as dimension lines), 3H and 4H (used for faint lines for layout or background). Softer penciling is prone

Paperwork classified according to a system of this type may be located in a tiling cabinet fitted with numbered dividers as shown :-

STANDARD DIVIDERS FOR FILING CABINET

to smearing on handling. Grades harder than 3H tend to cut paper so that lines are difficult to erase. For plastic drafting films, special pencils are available and are better than HB and H leads for these films. Conventional leads are 2mm in diameter and require frequent repointing. 0.5mm and 0.3mm leads speed work, as they need no repointing. Flat leads, about 0.5mm x 2mm, are also available.

Clutch pencils (lead holders) which are commonly used, use metal chucks to grip the lead. Holders for the thinner 0.5mm and 0.3mm leads have a pushbutton advance.

4.4.3 SCALES '

The architect's scale is used for piping drawings, and is divided into fractions of an inch to one foot-for example, 3/8 inch per foot. The engineer's scale is used to draw site plans, etc., and is divided into one inch per stated number of feet, such as 1 inch per 30 feet.

4.4.4

Several types of eraser and erasing methods are available—use of each is given in table 4.1: Rubber in various hardnesses from pure gum rubber (artgum) for soft penciling and cleaning lead smears, to hard rubber for hard penciling and ink; 'plastic' is cleaner to use, as it has less tendency to absorb graphite; 'magic rub' for erasing pencil from plastic films. Most types of eraser are available for use with electric erasing machines.

An erasing shield is a thin metal plate with holes of various shapes and sizes so that parts of the drawing not to be erased may be protected.

ERASING GUIDE

TABLE 4.1

MEDIUM MATERIAL	SOFT PENCIL	HARD PENCIL	INDIAN INK	PHOTOGRAPHIC BACKGROUND
TRACING PAPER, or LINEN	SRE, or artgum	HRE, or SRE	IHRE	
SEPIA (OZALID), or PHOTOCOPY PAPER (PHOTOSTAT)	SRE	HRE, or SRE	Blade, or IHRE	Bleach *
PLASTIC FILM	Wet PE	Wet PE	Wet PE, or Blade	Wet PE, or Bleach*

CLEANING POWDER

4.4.5

Fine rubber granules are supplied in 'salt-shaker' drums. Sprinkled on a drawing, these granules reduce smearing of pencil lines during working. The use of cleaning powder is especially helpful when using a teesquare. The powder is brushed off after use.

LETTERING AIDS

4.4.6

Title blocks, notes, and subtitles on drawings or sections should be in capitals. Capitals, either upright or sloped, are preferred. Pencilled lettering is normally used. Where ink work is required on drawings for photography, charts, reports, etc., ink stylus pens (Technos, Rapidograph, etc.) are available for stencil lettering (and for line drawing in place of ruling pens). The Leroy equipment is also used for inked lettering. Skeleton lettering templates are used for lettering section keys. The parallel line spacer is a small, inexpensive tool useful for ruling guide lines for lettering.

As alternatives to hand-inked lettering, special typewriters such as the Varityper can either print directly on the drawing or onto adhesive-backed transparent film which is later positioned on the drawing. Adhesive or transferable letters and numbers are available in sheets, and special patterns and panels has supplied to order for title blocks or detailing, symbolism, abbreviality, special notes, etc. Self-adhesive topes are somewhat limited in appli-

cation, but are useful for making drawings for photographic reproduction, such as panel boards, charts, and special reports—see 4.4.13, under 'Photographic layouts'.

TEMPLATES

4.4.7

Templates having circular and rectangular openings are common. Orthogonal and isometric drafting templates are available for making process piping drawings and flow diagrams. These piping templates give the outlines for ANSI valves, flanges, fittings and pipe diameters to 3/8 inch per foot, or 1/4-inch per foot.

MACHINES

4.4.8

The first two machines are usually used in drawing offices in place of the slower teesquare:

DRAFTING MACHINE Articulated rods allow parallel movement of a pair of rules set at right angles. The rules are set on a protractor, and their angle on the board may be altered. The protractor has 15-degree clickstops and vernier scale.

PARALLEL RULE, or SLIDER, permits drawing of long horizontal lines only, and is used with a fixed or adjustable triangle.

PLANIMETER A portable machine for measuring areas. When set to the scale of the drawing, the planimeter will measure areas of any shape.

PANTOGRAPH System of articulated rods permitting reduction or enlargement of a drawing by hand. Application is limited.

LIGHT BOX

4.4.9

A light box has a translucent glass or plastic working surface fitted underneath with electric lights. The drawing to be traced is placed on the illuminated surface.

FILING METHODS

4.4.10

Original drawings are best filed flat in shallow drawers. Prints filed in the drawing office are usually retained on a 'stick', which is a clamp for holding several sheets. Sticks are housed in a special rack or cabinet.

Original drawings will eventually create a storage problem, as it is inadvisable to scrap them. If these drawings are not sent to an archive, after a period of about three years they are photographed to a reduced scale for filing, and only the film is retained. Equipment is available for reading such films, or large photographic prints can be made.

CHART 4.3

TABLE

4.4.11

'Diazo' or 'dyeline' processes reproduce to the same scale as the original drawing as a positive copy or print. Bruning and Ozalid machines are often employed. The drawing that is to be copied must be on tracing paper, linen or film, and the copy is made on light-sensitive papers or films. The older reversed-tone 'blue-print' is no longer in use.

SCALED PLANT MODELS

4.4.12

Plant models are often used in designing large installations involving much piping. When design of the plant is completed, the model is sent to the site as the basis of construction in the place of orthographic drawings. Some engineering companies strongly advocate their use, which necessitates maintaining a model shop and retaining trained personnel. Scaled model piping components are available in a wide range of sizes. The following color coding may be used on models:—

PIPING						•	YE	LLC	W,	RE	D or	BLUE
EQUIPMENT										٠.		GREY
INSTRUMENT	S			•							OR	ANGE
ELECTRICAL											G	REEN

ADVANTAGES

- Available routes for piping are easily seen
- Interferences are easily avoided
- Piping plan and elevation drawings can be eliminated; only the model, plot plan, P&ID's, and piping fabrication drawings (isos) are required
- The model can be photographed see 4.4.13. 'Wire-and-disc' construction, where the disc shows pipe diameter, makes photographing easier.
- Provides a superior visual aid for conferences, for construction crews and for training plant personnel

DISADVANTAGES

- Duplication of the model is expensive
- The model is not easily portable and is liable to damage during transportation
- Changes are not recorded in the model itself

PHOTOGRAPHIC AIDS

4.4.13

'DRAWINGS' FROM THE MODEL

The lack of portability of a scaled plant model can be partially overcome by photographing it. To do this it must be designed so that it can be taken apart easily. Photographs can be made to correspond closely to the regular plan, elevation and isometric projections by photographing the model from 40 ft or more away with long focal length lenses—'vanishing points' (converging lines) in the picture are effectively eliminated.

The negative is projected through a contact screen and a print made on 'reproducible' film. Dimensions, notes, etc., are added to the reproducible film which can be printed by a diazo process—see 4.4.11. These prints are used as working drawings, and distributed to those needing information.

REVAMP WORK FOR EXISTING PLANTS

A polaroid camera can be used to supply views of the plant to the design office. Filed drawings of the plant do not always include alterations, and the photographs may show unrecorded changes.

Photographs of sections of a plant can be combined with drawings to facilitate installation of new equipment, or to make further changes to the existing plant. To do this, photographs are taken of the required views, using a camera fitted with a wide-angle lens (to obtain a wider view).

The negatives obtained are printed onto screened positive films which are attached to the back of a clear plastic drawing sheet. Alterations to the piping system are then drawn on the front face of this sheet, finking the photographs as desired. Reproductions of the composite drawing are made in the usual way by diazo process.

Alternately, positives may be marked directly for minor changes or instructions to the field.

PHOTOGRAPHIC LAYOUTS

The following technique produces equipment layout 'drawings', and is especially useful for areas where method study or investigational reports are required.

First, equipment outlines are produced to scale on photographic film, either in the regular way or by xerography. Next, a drawing-sized sheet of clear film is laid on a white backing sheet having a correctly-scaled grid marked on it.

The building outline and other features can be put onto the film using the variety of printed transparent tapes and decals available. The pieces of film with equipment outlines may then be positioned with clear tape, and any other parts of the 'drawing' completed. Alterations to the layout may be rapidly made with this technique, which photographs well for reports, and allows prints to be made in the usual ways for marking and comment. The film layout should be covered with an acetate or other protective sheet before insertion in a copying machine.

REDUCTION BY PHOTOGRAPHY

It is frequently required to include reproductions of diagrams and drawings in reports, etc. Photographic reduction to less than half-size (on lengths) is not recommended because normal-sized printing and details may not be legible. A graphic scale should be included on drawings to be reduced—see chart 5.8.

DRAFTING:

5 .1.1

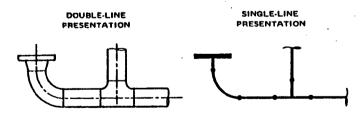
PROCESS & PIPING DRAWINGS (CONTENT, SYMBOLS, & DIMENSIONING)

PIPING SYMBOLS

5.1

REFERENCE

'Dictionary of mechanical engineering abbreviations, signs & symbols'.


Polon D. D. (Ed.) 1967 (Odessey)

SHOWING PIPE & JOINTS ON PIPING DRAWINGS

5.1.1

Most companies now represent piping (arrangements) by single lines. Pipe and flanges are sometimes drawn partially 'double line' to display clearances.

In double-line drawing, valves are shown by the symbols in chart 5.6 (refer to the panel 'Drafting valves'). Double-line representation is not used for entire piping arrangements, as it is very time-consuming, difficult to read, and not justified technically.

In presenting piping 'single line' on piping drawings, only the centerline of the pipe is drawn, using a solid line (see chart 5.1), and the line size is written. Flanges are shown as thick lines drawn to the scaled outside diameter of the flange. Valves are shown by special symbols drawn to scale. Pumps are shown by drawing the pads on which they rest, and their nozzles: figure 8.21 illustrates this simplified presentation. Equipment and vessels are shown by drawing their nozzles, buttines, and supporting pads.

If there is a piping specification, it is not necessary to indicate welded or screwed joints, except to remove ambiguities—for example, to differentiate between a tee and a stub-in. In most current practice, the symbols for screwed joints and socket welds are normally omitted, although butt welds are often shown.

The ways of showing joints set out in the standard ANSI Z32.2.3 (1949, reaffirmed 1953) are not current industrial practice. The standard's butt-weld symbol as shown in table 5.1 is now used to indicate a butt-weld to be made 'in the field' ('field weld'). The standard will be renumbered in the 'Y' series.

SHOWING NON-FLANGED JOINTS

TABLE 5.1

AT ELBOWS	*		
	BUTT WELD	SOCKET WELD	SCREWED JOINT
SIMPLIFIED PRACTICE *			
CONVENTIONAL PRACTICE		T-E	+
ANSI Z32.2.3 (Not current practice)	*		+

*The joint symbol may be omitted if the type of joint is determined by a piping specification, it is usually preferred to use the dot weld symbol to make the type of construction clear: for example, to distinguish harves A see and a stubin. TABLE

LINE SYMBOLS WHICH MAY BE USED ON ALL DRAWINGS

Chart 5.1 shows commonly accepted ways of drawing various lines. Many other line symbols have been devised but most of these are not readily recognized, and it is better to state in words the function of special lines, particularly on process flow diagrams and P&ID's. The designer or draftsman should use his current employer's symbols.

SYMBOLS FOR LINES	CHART 5.1
LINE SYMBOLS WHICH MAY BE USED ON P&ID's, PROCESS F	LOW DIAGRAMS & PIPING DRAWINGS
LINE	SYMBOL
PIPING DRAWINGS (PLANS, ELEVATIONS, 1503 AND SPOOL DRAWINGS) MATCHLINE OUTLINES OF BUILDINGS, UNITS, ETC. CENTERLINE SINGLE-LINE PIPING PIPING QUADERGROUND, OR OBSCURED BY EQUIPMENT, WALL, ETC. FUTURE PIPING EXISTING FIPING EXISTING FIPING EQUIPMENT OUTLINES, DIMENSION LINES, DOUBLE-LINE FIPING FUTURE EQUIPMENT	FUTURE———————————————————————————————————
PAID's AND PROCESS FLOW DIAGRAMS PRIMARY PROCESS, SERVICE OR UTILITY PRIMARY PROCESS, SERVICE OR UTILITY, UNDERGROUND SECONDARY PROCESS, SERVICE OR UTILITY SECONDARY PROCESS, SERVICE OR UTILITY, UNDERGROUND	
BIGHAL (INSTRUMENT) LINES INSTRUMENT AIR (PHEUMATIC SIGNAL) INSTRUMENT LIQUID (HYDRAULIC SIGNAL) ELECTRIC ELECTRIC ELECTROMAGNETIC* OR SONIC INSTRUMENT CAPILLARY TUBING • RADIATION: LIGHT, HEAT, RADIO WAVE, ETC. [*Piping Guide*, PO Box 277, Cotal), C	

VALVE & EQUIPMENT SYMBOLS FOR P&ID's & PROCESS FLOW DIAGRAMS

5.1.3

5.1.2

Practice in showing equipment is not uniform. Chart 5.2 is based on ANSI Y32.11–1961, and applies to P&ID's and process flow diagrams.

REPRESENTING PIPING ON PIPING DRAWINGS 5.1.4

Charts 5.3-6 show symbols used in butt-welded, screwed and socket-welded systems. The various aspects of the fitting, valve, etc., are given. These symbols are based on conventional practice rather than the ANSI standard 232.2.3, titled 'Graphic symbols for pipe fittings, valves and piping'.

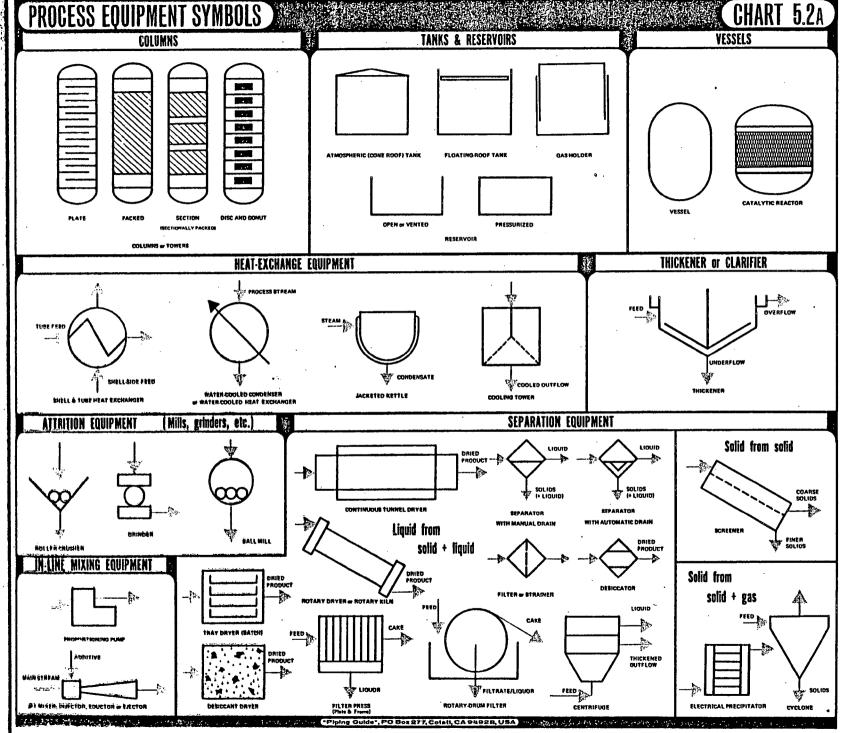
REPRESENTING VALVES ON PIPING DRAWINGS 5.1.5

Chart 5.6 shows ways of denoting valves, including stems, handwheels and other operators. The symbols are based on ANSI Z32.2.3, but more valve types are covered and the presentation is up-dated. Valve handwheels should to be drawn to scale with valve stem shown fully extended.

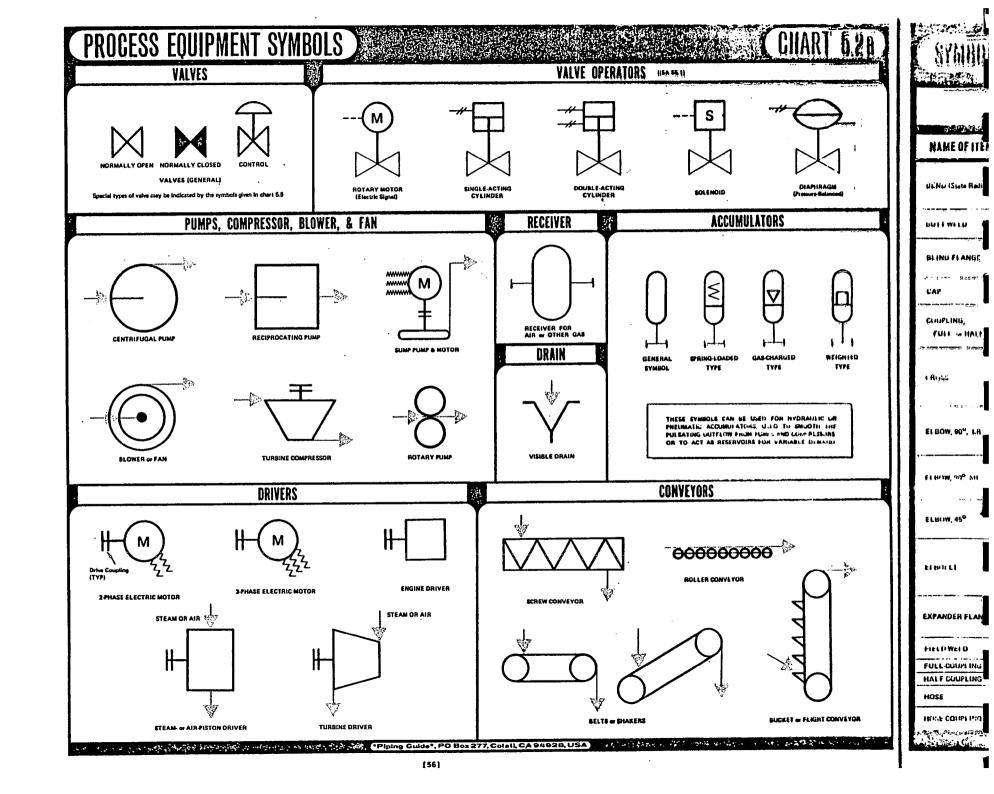
MISCELLANEOUS SYMBOLS FOR PIPING DRAWINGS

5.1.6

Symbols that are shown in a similar way in all systems are collected in chart 5.7.


GENERAL ENGINEERING SYMBOLS

6.1.7


Chart 5.8 gives some symbols, signs, etc., which are used generally and are likely to be found or needed on piping drawings.

SHELL & TUBE HE ATTRITION RULLER CRUSHLE IN-LINE MIXING

CHARTS 5.1 & 5.2A

1 YPE

illestrem

CHARTS 5.28 & 5.3

SYMBOLS FOR SCREWED SYSTEMS NAME OF ITEM END VIEW SIDE VIEW **END VIEW** CAP COUPLING, SHOW FOR BRANCH CONNECTIONS ONLY-SEE 'COUPLING' IN CHART 5.3 FULL & HALF-薴 CROSS ELBOW. 900 8 ELBOW, 450 0 0 FLANGE \sim HOSE 0 HOSE CONNECTION 0 0 PIPE PLUG 0 REDUCER RETURN Only melleable-iron and cest-iron returns are evailable. For forged-steel systems, combine forged-steel albows. SEAL WELD SHOW BY NOTING 'SEAL WELD' SWAGE, **TOP VIEW** 0 CONCENTRIC ECCENTRIC 0 STATE WHETHER TOP OR BOTTOM IS 'FLAT' STRAIGHT or REDUCING THREDOLET SHOW AS WELDOLET'-CHART 6.3 UNION

SYMBOLS FOR SOCKET-WELDI	HART 5.5					
NAME OF ITEM	END VIEW	SIDE VIEW	END VIEW			
CAP	0	<u>C</u> —				
COUPLING, FULL- & HALF-	SHOW FOR I	BRANCH CONNEC NG' IN CHART 5.3	TIONS ONLY-			
CROSS	H H H	}	∃@£			
ELBOLET	SEE	'ELBOLET'-CHAR	T 5.3			
ELBOW, 90 ⁰	ф ф	å ₃ [⊥]				
ELBOW, 45 ^Q	Ø	₹	[]			
FLANGE	Ø		@			
HOSE		<u>ک</u>				
PIPE	0		Ø			
REDUCER,		枓	0			
RETURN	IS AVAILABI REGUIRED, I WELDING RE	NO SOCKET-WELDING FORGED-STEEL FITTING IS AVAILABLE. IF A 1800EGREE RETURN IS REQUIRED, IT MAY BE MADE USING A BUTT- WELDING RETURN, OR TWO SOCKET-WELDING ELBOWS WITH NIPPLE BETWEEN.				
SOCKOLET	SHOW A	S WELDOLET'-CH	ART 6.3			
SWAGE, CONCENTRIC	TOP VIEW	\rightarrow	0			
ECCENTRIC STATE WHETHER TOP OR BOTTOM IS TLAT	\Diamond	4	0			
TEE, STRAIGHT or REDUCING	3 ⊗€	井	10[
иміом		-JE				

DRAFTING VALVES

CHAME SAMEOFS WIS DEST OF STANSES AND SENSE SAMEOFS WIS DESTRUCT OF STANSES SENSES SEN

PAID's

USE THE RELEVANT VALVE SYMBOL TO SHOW THE TYPE OF VALVE DRAW MOST SYMBOLS 1/4 III. LONG MANUAL OPERATURS ARE NOT SHAWN

PIPING DRAWINGS

OPERATOR IS SHOWN IF IMPORTANT

(1) SCREWED VALVES

USE THE BASIC VALVE SYMBOL. DRAW THE LENGTH OF THE VALVE TO SCALE.

(2) SOCKET-ENDED VALVES

IF THE PROJECT HAS A PIPING SPECIFICATION, LIER THE BASIC VALVE SYMBOL. IF NOT, SHOW SOCKET ENDS TO THE VALVES:

I	VALVE WITH:	Sockets both eads	Socker one end, other and place
	EXVMPTE EAMBOT	HXH	HXH

DRAW THE LENGTH OF THE BASIC VALVE SYMBOL TO SCALE OVER SOCKET ENDS.

(3) FLANGED VALVES

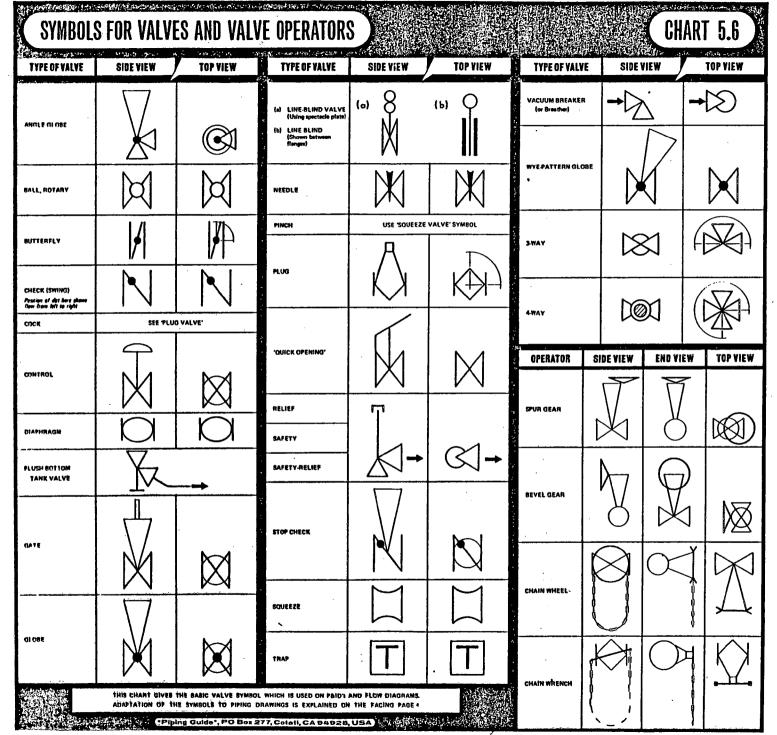
USE THE BASIC VALVE SYMBOL, WITH OPERATOR, AND SHOW MATING FLANGES AS DETAILED BELOW!

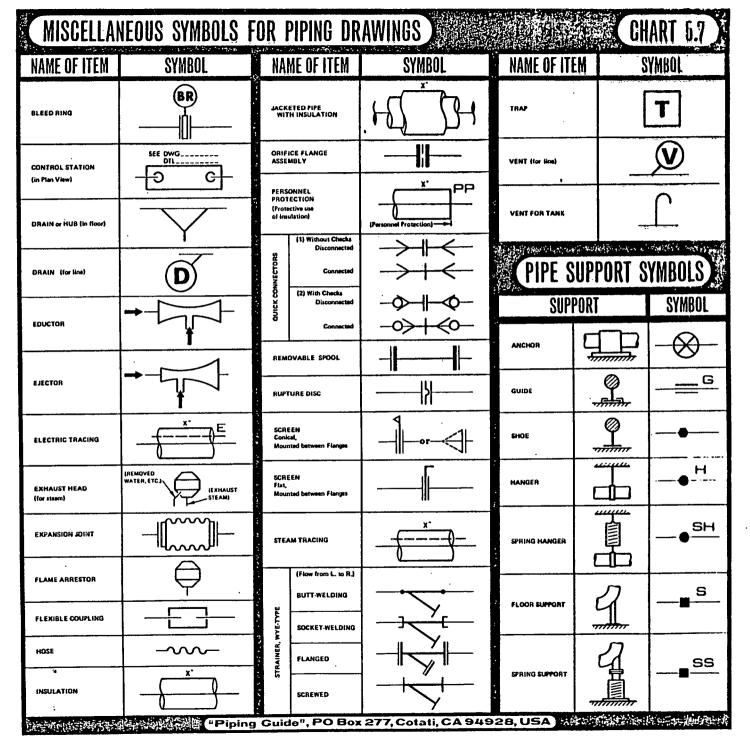
SINGLE-LINE	DOUBLE-LINE
1. Drawing	the symbol
(8) Draw flange OU to s	syndail teteem flanges att

C) Draw these brights exernify to the flarge late toflarge face or center to flarge-face dimensions for the valve.

2. Dimensioning nonstandard valves

Refer to 5.3.3, under "Dimensoning to valves



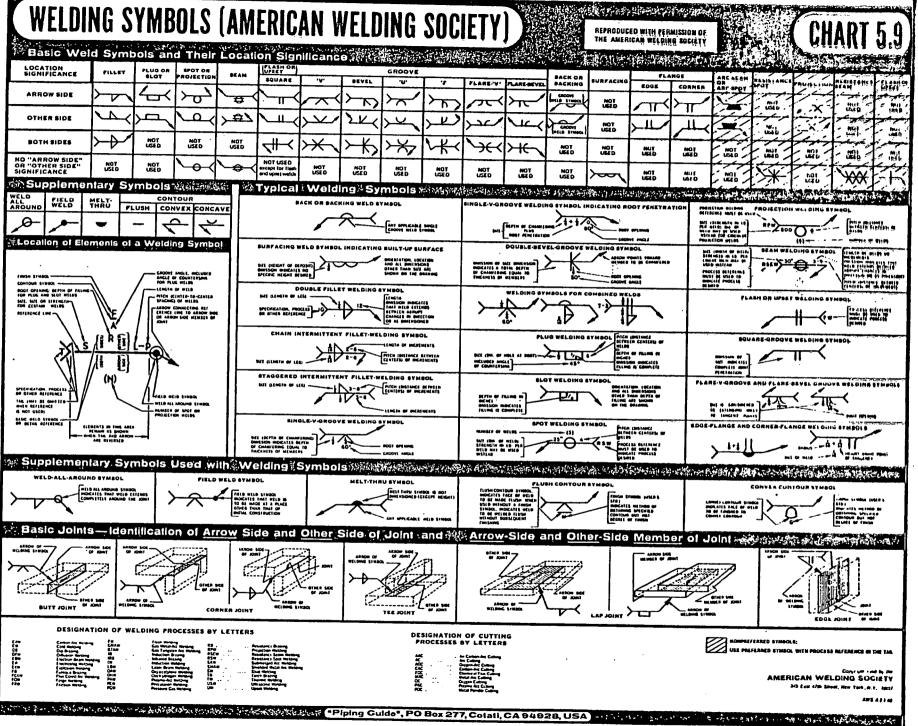

- (D) Draw this length to scale (overall length of valve without gaskets) but place arrowheads on the drawing as shown. This convention ensures that:
- The line will be made to the correct length,
 The fabricator will be reminded to allow for gaskets.

"Pintry Chate", PO Des 311, Cotett Ca Be 934, USB TO

CHARTS

5.4-5.6

GENERAL SYMBOLS FOR ENGINEERING DRAWINGS


CHART 5.8

SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION
(1) A (2) N	NORTH ARROWS. (1) FOR PLANS AND ELEVATIONS (2) FOR ISOMETRIC DRAWINGS	ADJACENT TO AREA ON FRONT OF SHEET HOLD STATE REASON FOR HOLD' FOR HOLD' SHEET	'CONSTRUCTION HOLD' MARKING, IF SUF- FICIENT INFORMATION IS NOT AVAILABLE TO FINALIZE PART OF THE DESIGN, THE 'HOLD' MARKING IS USED TO INSTRUCT THE CONTRACTOR TO AWAIT A LATER REVISION OF THE DRAWING BEFORE STARTING THE WORK IN QUESTION
10 0 10 20 30	GRAPHIC SCALE REQUIRED ON DRAWINGS LIKELY TO BE CHANGED IN SIZE PHOTO GRAPHICALLY FOR REPORTS, etc.	PLACE TRIANGLE ADJACENT TO REVISED AREA ON FRONT OF SHEET ADJACENT TO REVISION TRIANGLE ON FRONT OF SHEET	REVISION TRIANGLE. THE LATEST REVISION NUMBER OF THE DRAWING IS SHOWN WITH- IN THE TRIANGLE WHICH IS ENCIRCLED ON THE REAR OF THE SHEET. ALL REVISION TRIANGLES REMAIN ON THE DRAWING, BUT ENCIRCLING OF THE PREVIOUS TRIANGLE
	SYMBOL LOCATING AXES OF REFERENCE: INTERSECTION OF ORDINATES (COORDIN- ATE POINT)	(1) or or	OPENINGS. (1) OPENING WHICH MAY BE COVERED. (ARCH. AND HEV DRAWINGS)
OF A	TYPICAL SECTION INDICATORS. LETTERS 'I' AND 'O' SHOULD NOT BE USED TO AVOID CONFUSION WITH NUMERALS 'I' AND 'O'. IF MORE THAN 24 SECTIONS ARE NEEDED, USE COMBINATIONS OF LETTERS AND NUM. ERALS. SHOW NUMBER OF THE DRAWING ON WHICH SECTION WILL APPEAR	(i) J (2) J (3) I	(2) HOLE. (ARCH.) STRUCTURAL STEEL SECTIONS: (1) ANGLE. (2) CHANNEL. (3) I-BEAM
	CENTERLINE SYMBOL		ELEVATION SYMBOLS FOR RAILING
Dimension ~	DIMENSION LINE SYMBOL USED TO SHOW A DIMENSION NOT TO SCALE	(1) (2) (3)	DISCONTINUED VIEWS: (1) PIPE, ROUND SHAFT, etc. (2) SLAB, SQUARE BAR, etc. (3) VESSEL, EQUIPMENT, etc. (Also used to terminate drawing)
*	'FITTING MAKEUP' SYMBOL (NOT PREFERRED – SEE 5.3.3, UNDER 'FITT ING MAKEUP')	or	SCREWTHREAD SYMBOLS
HIST PLANE TO THE TITLE OF THE	INSTRUMENT BALLOON, USUALLY DRAWN 7/18-INCH DIAMETER ON PB(0's AND PIPING DHAWINGS (TO 3/8 IN. PER FT SCALE)		CHAIN SYMBOL

5.7	&	5.	8		
			• • •	·	

CHARTS

SHADINGS		THESE SHADING	\$ ARE USED FOR SHOWIN	G MATERIALS AND SECTIO	ons of solids		
GRADE or EARTH	SOLID MATERIAL (and pipe cross section)	STEEL	CONCRETE	BRICK & STONE MASONRY	WOOD	CHECKER PLATE (Use 30 ⁰ lines)	GRATING
全国的新加州 统	(ME ALSHA KADA	"Piping C	uide", PO Box 27	7, Colali, CA 949	28, USA	resilient distillings	NSW YERESPORES

and uneconomic practice.

American Welding Society.

BASIC WELDING ARROW

BASIC WELDING SYMBOLS
(a) The weld symbol

Standard welding symbols are published by the American Welding Society.

These symbols should be used as necessary on details of attachments, vessels.

piping supports, etc. The practice of writing on drawings instructions such

as 'TO BE WELDED THROUGHOUT', or 'TO BE COMPLETELY WELDED'

transfers the design responsibility for all attachments and connections from the designer to the welder, which the Society considers to be a dangerous

The 'welding symbol' devised by the American Welding Society has eight

elements. Not all of these elements are necessarily needed by piping designers.

The assembled welding symbol which gives the welder all the necessary instruction, and locations of its elements, is shown in chart 5.9. The elements

SPECIFICATIONS, PROCESS or OTHER REFERENCE

The following is a quick guide to the scheme. Full current details will be

found in the 1968 revision of 'Standard Welding Symbols' available from the

Reference line and arrow: The symbol begins with a reference line and arrow pointing to the joint where the weld is to be made. The reference line has two

'sides': 'other side' (above the line) and 'arrow side' (below the line)-refer

REFERENCE LINE

FINISH SYMBOLS

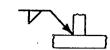
BASIC WELD SYMBOLS

DIMENSIONS & OTHER DATA

SUPPLEMENTARY SYMBOLS

ARROW

ASSEMBLING THE WELDING SYMBOL


to the following examples and to chart 5.9.

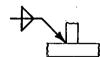
5.1.8

If a continuous fillet weld is needed, like this:

the fillet weld symbol is placed on the 'arrow side' of the reference line, thus:

If the weld is required on the far side from the arrow, thus:

EXAMPLE USE OF THE FILLET WELD SYMBOL


the weld symbol is shown on the 'other side' of the reference line:

If a continuous fillet weld is needed on both sides of the joint,

the fillet weld symbol is placed on both sides of the reference line:



EXAMPLE USE OF THE BEVEL GROOVE SYMBOL

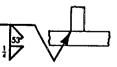
If a bevel groove is required, like this:

The 'groove' symbol for a bevel is shown, with the fillet weld symbol, and a break is made in the arrow toward the member to be beveled, thus:

Only the bevel and 'J' groove symbols require a break in the arrow -see chart 5.9.

DIMENSIONING THE WELD CROSS SECTION

Suppose the weld is required to be 1/4 inch in size, and the bevel is to be 3/16 inch deep:


These dimensions are shown to the left of the weld symbol:

Alternatively, the bevel can be expressed in degrees of arc:

and be indicated thus on the symbol:

If a root gap is required, thus:

the symbol is:

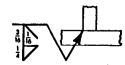


FIGURE 5.1

CHART

5.9

(b) The groove symbol

SUVANE	i y ii nem, a yina i va	Maşı	*	7	FLARE-V	FLARE-BEVEL
	Λ		Δ	$\overline{\lambda}$	ス	一一

POT. M PROMÉTION SEAM

\$

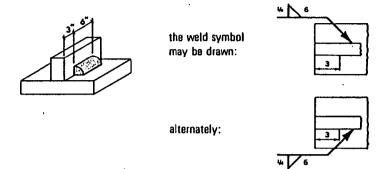
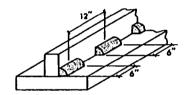
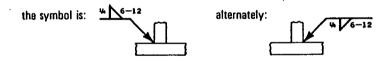

PL 98 -- PL 87

FIGURE 5.1

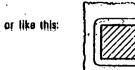

Other side


DIMENSIONING THE LENGTH OF THE WELD

Going back to the fillet weld joint without a bevel, if the weld needs to be 1/4-inch in size and 6 inches long, like this:

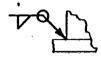
If a series of 6-inch long welds is required with 6-inch gaps between them (that is, the pitch of the welds is 12 inches), thus:

If these welds are required staggered on both sides-

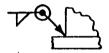


SUPPLEMENTARY SYMBOLS

These symbols give instructions for making the weld and define the required contour:


WELD ALL	FIELD WELD	MEFA-LMU	CONTOUR		
AROUND			FLUSH	CCHVEX	SAVETOS
$-\omega$					

Going back to the example of a simple fillet weld, if the weld is required all around a member,



it is shown in this way:

like this:

If this same 'all around' weld has to be made in the field, it is shown thus.

The contour of the weld is shown by a contour symbol on the weld symbol:

FLUSH CONTOUR CONVEX CONTOUR CONCAVE CONTOUR ike this:

The method of finishing the weld contour is indicated by adding a finish notation letter, thus,

where M = machining, G = grinding, and C = chipping.

FULL WELDING SYMBOL

Occasionally it is necessary to give other instructions in the welding symbol. The symbol can be elaborated for this as shown in 'Location of elements of a welding symbol' in chart 5.9.

Chart 5.9, reproduced by permission of the American Welding Sucrety, summarizes and amplifies the explanations of this section.

 All information for constructing piping systems is contained in drawings, apart from the specifications, and the possible use of a model and photographs.

THE MAIN PURPOSE OF A DRAWING IS TO COMMUNICATE INFORMATION IN A SIMPLE AND EXPLICIT WAY.

PROCESS & PIPING DRAWINGS GROW FROM THE SCHEMATIC DIAGRAM

5.2.1

To design process piping, three types of drawing are developed in sequence from the schematic diagram (or 'schematic') prepared by the process engineer.

These three types of drawing are, in order of development:-

- (1) FLOW DIAGRAM (PROCESS, or SERVICE)
- (2) PIPING AND INSTRUMENTATION DIAGRAM, or 'P&ID'
- (3) PIPING DRAWING

EXAMPLE DIAGRAMS

Figure 5.2 shows a simple example of a 'schematic'. A solvent recovery system is used as an example. Based on the schematic diagram of figure 5.2, a developed process flow diagram is shown in figure 5.3. From this flow diagram, the P&ID (figure 5.4) is evolved.

As far as practicable, the flow of material(s) should be from left to right. Incoming flows should be arrowed and described down the left-hand edge of the drawing, and exitting flows arrowed and described at the right of the drawing, without intruding into the space over the title block.

Information normally included on the process drawings is detailed in sections 5.2.2 thru 5.2.4. Flow diagrams and P&ID's each have their own functions and should show only that information relevant to their functions, as set out in 5.2.3 and 5.2.4. Extraneous information such as piping, structural and mechanical notes should not be included, unless essential to the process.

SECURITY

A real or supposed need for Industrial or national security may restrict information appearing on drawings. Instead of naming chemicals, indeterminate or traditional terms such as 'sweet water', 'brine', 'leach acid', 'chemical B', may be used. Data important to the reactions such as temperatures, pressures and linit rates may be withheld. Sometimes certain key drawings are locked away when not in use.

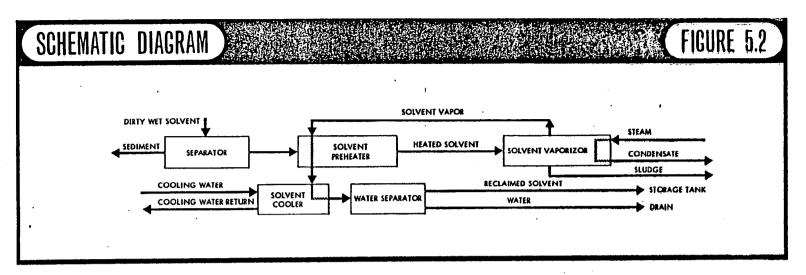
Commonly referred to as a 'schematic', this diagram shows paths of flow by single lines, and operations or process equipment are represented by simple figures such as rectangles and circles. Notes on the process will often be included.

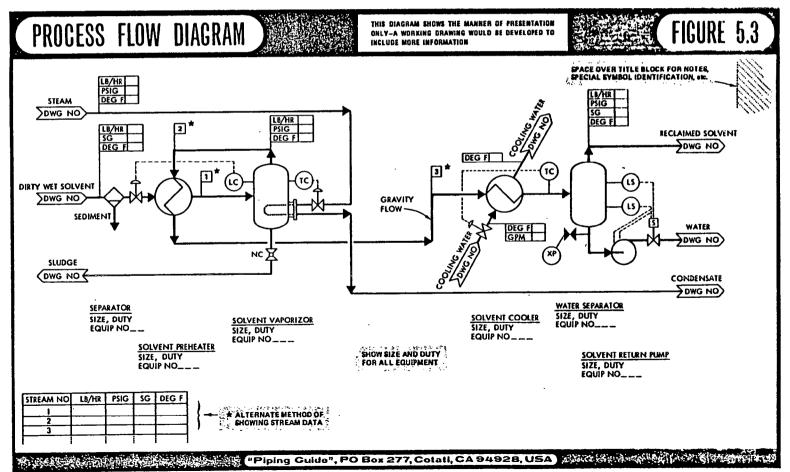
The diagram is not to scale, but relationships between equipment and piping with regard to the process are shown. The desired spatial arrangement of equipment and piping may be broadly indicated. Usually, the schematic is not used after the initial planning stage, but serves to develop the process flow diagram which then becomes the primary reference.

FLOW DIAGRAM

5.2.3

This is an unscaled drawing describing the process. It is also referred to as a 'flow sheet'.

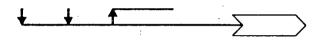

It should state the materials to be conveyed by the piping, conveyors, etc., and specify their rates of flow and other information such as temperature and pressure, where of interest. This information may be 'flagged' (on lines) within the diagram or be tabulated on a separate panel—such a panel is shown at the bottom left of figure 5.3.


LAYOUT OF THE FLOW DIAGRAM

Whether a flow diagram is to be in elevation or plan view should depend on how the P&ID is to be presented. To easily relate the two drawings, both should be presented in the same view. Elevations are suitable for simple systems arranged vertically. Installations covering large horizontal areas are best shown in plan view.

Normally, a separate flow diagram is prepared for each plant process. If a single sheet would be too crowded, two or more sheets may be used. For simple processes, more than one may be shown on a sheet. Process lines should have the rate and direction of flow, and other required data, noted. Main process flows should preferably be shown going from the left of the sheet to the right. Line sizes are normally not shown on a flow diagram. Critical internal parts of vessels and other items essential to the process should be indicated.

All factors considered, it is advisable to write equipment titles either near the top or near the bottom of the sheet, either directly above or below the equipment symbol. Sometimes it may be directed that all pumps be drawn at a common level near the bottom of the sheet, although this practice may lead to a complex-looking drawing. Particularly with flow diagrams, simplicity in presentation is of prime importance.



Directions of flow within the diagram are shown by solid arrowheads. The use of arrowheads at all junctions and corners aids the rapid reading of the diagram. The number of crossings can be minimized by good arrangement. Suitable line thicknesses are shown at full size in chart 5.1. For photographic reduction, lines should be spaced not closer than 3/8 inch.

Process and service streams entering or leaving the flow diagram are shown by large hollow arrowheads, with the conveyed fluid written over and the continuation sheet number within the arrowhead, as in figure 5.3.

ARROWS ON FLOW DIAGRAMS

SHOWING VALVES ON THE FLOW DIAGRAM

Instrument-controlled and manual valves which are necessary to the process are shown. The following valves are shown if required by a governing code or regulation, or if they are essential to the process: isolating, bypassing, venting, draining, sampling, and valves used for purging, steamout, etc., for relieving excess pressure of gases or liquids (including rupture discs), breather valves and vacuum breakers.

SHOW ONLY SPECIAL FITTINGS

Piping fittings, strainers, and flame arrestors should not be shown unless of special importance to the process.

ESSENTIAL INSTRUMENTATION

Only instrumentation essential to process control should be shown. Simplified representation is suitable. For example, only instruments such as controllers and indicators need be shown: items not essential to the drawing (transmitters, for example) may be omitted.

EQUIPMENT DATA

Capacities of equipment should be shown. Equipment should be drawn schematically, using equipment symbols, and where feasible should be drawn in proportion to the actual sizes of the items. Equipment symbols should neither dominate the drawing, nor be too small for clear understanding.

STANDBY & PARALLELED EQUIPMENT

Standby equipment is not normally drawn. If identical units of equipment are provided for paralleled operation (that is, all units on stream), only one unit need normally be drawn. Paralleled or standby units should be indicated by noting the equipment number and the service function ('STANDBY' or 'PANALLEL OP').

It is advisable to draw equipment that is operated cyclically. For example, with filter presses operated in parallel, one may be shown on-stream, and the second press for alternate operation.

PROCESS DATA FOR EQUIPMENT

The basic process information required for designing and operating major items of equipment should be shown. This information is best placed immediately below the title of the equipment.

IDENTIFYING EQUIPMENT

Different types of equipment may be referred to by a classification letter (or letters). There is no generally accepted coding — each company has its own scheme if any standardization is made at all. Equipment classed under a certain letter is numbered in sequence from '1' upward. If a new installation is made in an existing plant, the method of numbering may follow previous practice for the plant.

Also, it is useful to divide the plant and open part of the site as necessary into areas, giving each a code number. An area number can be made the first part of an equipment number. For example, if a heat exchanger is the 53rd item of equipment listed under the classification letter 'E', located in area '1', (see 'Key plan' in 5.2.7) the exchanger's equipment number can be 1-E-53.

Each item of equipment should bear the same number on all drawings, diagrams and listings. Standby or identical equipment, if in the same service, may be identified by adding the letters, A, B, C, and so on, to the same equipment identification letter and number. For example, a heat exchanger and its standby may be designated 1-E-53A, and 1-E-53B.

SERVICES ON PROCESS FLOW DIAGRAMS

Systems for providing services should not be shown. However, the type of service, flow rates, temperatures and pressures should be noted at consumption rates corresponding to the material balance—usually shown by a 'flag' to the line—see figure 5.3.

DISPOSAL OF WASTES

The routes of disposal for all waste streams should be indicated. For example, arrows or drain symbols may be labelled with destination, such as 'chemical sewer' or 'drips recovery system'. In some instances the disposal or waste-treatment system may be detailed on one or more separate sheets. See 6.13 where 'effluent' is discussed.

MATERIAL BALANCE

The process material balance can be tabulated on separate $8\% \times 11$ -inch sheets, or along the bottom of the process flow diagram.

5 .2.3

FIGURES 5.2 & 5.3

This drawing is commonly referred to as the 'P&ID'. Its object is to indicate all process and service lines, instruments and controls, equipment, and data necessary for the design groups. The process flow diagram is the primary source of information for developing the P&ID. Symbols suitable for P&ID's are given in charts 5.1 thru 5.7.

The P&ID should define piping, equipment and instrumentation well enough for cost estimation and for subsequent design, construction, operation and modification of the process. Material balance data, flow rates, temperatures, pressures, etc., and piping fitting details are not shown, and purely mechanical piping details such as elbows, joints and unions are inappropriate to P&ID's.

INTERCONNECTING P&ID

This drawing shows process and service lines between buildings and units, etc., and serves to link the P&ID's for the individual processes, units or buildings. Like any P&ID, the drawing is not to scale. It resembles the layout of the site plan, which enables line sizes and branching points from headers to be established, and assists in planning pipeways.

P&ID LAYOUT

The layout of the P&ID should resemble as far as practicable that of the process flow diagram. The process relationship of equipment should correspond exactly. Often it is useful to draw equipment in proportion vertically, but to reduce horizontal dimensions to save space and allow room for flow lines between equipment. Crowding information is a common drafting fault — it is desirable to space generously, as, more often than not, revisions add information. On an elevational P&ID, a base line indicating grade or first-floor level can be shown. Critical elevations are noted.

For revision purposes, a P&ID is best made on a drawing sheet having a grid system—this is a sheet having letters along one border and numbers along the adjacent border. Thus, references such as 'A6', 'B5', etc., can be given to an area where a change has been made. (A grid system is applicable to P&ID's more complicated than the simple example of figure 5.4.)

DRAFTING GUIDELINES FOR P&ID's

- Suitable line thicknesses are shown at full size in chart 5.1
- Crossing lines must not touch—break lines going in one direction only.
 Break instrument lines crossing process and service lines
- Keep parallel lines at least 3/8 inch apart
- Preferably draw all valves the same size—1/4-inch long is suitable—as this retains legibility for photographic reduction. Instrument isolating valves and drain valves can be drawn smaller, if desired
- Draw instrument identification balloons 7/16th-inch diameter—see 5.5
- Draw trap symbols 3/8th-inch square

All flow lines and interconnections should be shown on P&ID's. Every line should show direction of flow, and be labeled to show the area of project, conveyed fluid, line size, piping material or specification code number (company code), and number of the line. This information is shown in the 'line number'.

EXAMPLE LINE NUMBER: (74|82|6|412|23) may denute the 23rd line in area 74, a 6-inch pipe to company specification 412. 'BZ' identifies the conveyed fluid.

This type of full designation for a flow line need not be used, provided identification is adequate.

Piping drawings use the line numbering of the P&ID, and the following points apply to piping drawings as well as P&ID's.


- For a continuous line, retain the same number of line (such as 23 in the example) as the line goes thru valves, strainers, small filters, venturis, traps, orifice flanges and small equipment generally
- Change the number of a line terminating at a major item of equipment such as a tank, pressure vessel, mixer, or any equipment carrying an individual equipment number
- Allocate new numbers to branches
- For a system of lines carrying the same material, allocate sequential numbers to lines, beginning with '1' for each system

As with the process flow diagram, directions of flow within the drawing are shown by solid arrows placed at every junction, and all corners except where changes of direction occur closely together. Corners should be square. The number of crossings should be kept minimal by good arrangement.

Process and service streams entering or leaving the process are noted by hollow arrows with the name of the conveyed fluid written over the arrowhead and the continuation sheet number within it. No process flow data will normally be shown on a P&ID.

FLOW LINES ON P&ID's

NOTES FOR LINES

Special points for design and operating procedures are noted—such as incowhich need to be sloped for gravity flow, lines which need careful cleaning before startup, etc. Standby and paralleled equipment is shown, including all connected lines. Equipment numbers and service functions ('STANDBY' or 'PARALLEL OP') are noted.

'Future' equipment, together with the equipment that will service it, is shown in broken outline, and labeled. Blind-flange terminations to accommodate future piping should be indicated on headers and branches. 'Future' additions are usually not anticipated beyond a 5-year period.

Pressure ratings for equipment are noted if the rating is different from the piping system. A 'typical' note may be used to describe multiple pieces of identical equipment in the same service, but all equipment numbers are written.

CLOSURES

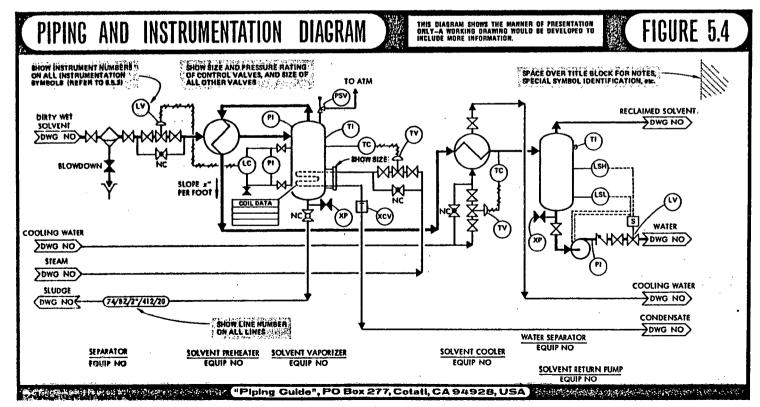
Temporary closures for process operation or personnel protection are shown.

SEPARATORS, SCREENS & STRAINERS

These items should be shown upstream of equipment and processes needing protection, and are discussed in 2.10.

STEAM TRAPS ON THE P&ID

If the locations of traps are known they are indicated. For example, the trap required upstream of a pressure-reducing station feeding a steam turbine should be shown.


Steam traps on steam piping are not otherwise indicated, as these trap positions are determined when making the piping drawings. They can be added later to the P&ID if desired, after the piping drawings have been completed.

DRIPLEGS

Driplegs are not shown.

VENTS & DRAINS

Vents and drains on high and low points of lines respectively, to be used for hydrostatic testing, are not shown, as they are established on the piping arrangement drawings. Process vents and drains are shown.

FIGURE

 Show and tag process and service valves with size and identifying number if applicable. Give pressure rating if different from line specification

- Indicate any valves that have to be locked open or locked closed
- Indicate powered operators*

SHOWING INSTRUMENTATION ON THE P&ID

Signal-lead drafting symbols shown in chart 5.1 may be used, and the ISA scheme for designating instrumentation is described in 5.5. Details of instrument piping and conduit are usually shown on separate instrument installation drawings.

- Show all instrumentation on the P&ID, for and including these items: element or sensor, signal lead, orifice flange assembly, transmitter, controller, vacuum breaker, flame arrestor, level gage, sight glass, flow indicator, relief valve, rupture disc, safety valve. The last three items may be tagged with set pressure(s) also
- Indicate local- or board-mounting of instruments by the symbol-refer to the labeling scheme in 5.5.4

INSULATION & TRACING

Insulation on piping and equipment is shown, together with the thickness required. Tracing requirements are indicated. Refer to 6.8.

CONTROL STATIONS

Control stations are discussed in 6.1.4. Control valves are indicated by pressure rating, instrument identifying number and size—see figure 5.15, for example.

P&ID SHOWS HOW WASTES ARE HANDLED

Drains, funnels, relief valves and other equipment handling wastes are shown on the P&ID. If an extensive system or waste-treatment facility is involved, it should be shown on a separate P&ID. Wastes and effluents are discussed in 6.13.

SERVICE SYSTEMS MAY HAVE THEIR OWN P&ID

Process equipment may be provided with various services, such as steam for heating, water or refrigerant for cooling, or air for oxidizing. Plant or equipment providing these services is usually described on separate 'service P&ID's'. A service line such as a steam line entering a process P&ID is given a 'hollow arrow' line designation taken from the service P&ID. Returning service lines are designated in the same way. Refer to figure 5.4.

UTILITY STATIONS

Stations providing steam, compressed air, and water, are shown. Refer to 6.1.5.

These sheets are tabulated lists of lines and information about them. The numbers of the lines are usually listed at the right of the sleet. Other columns list line size, material of construction (using cumpany's specification code, if there is one), conveyed fluid, pressure, temperature, flow rate, test pressure, insulation or jacketing (if required), and connected lines (which will usually be branches).

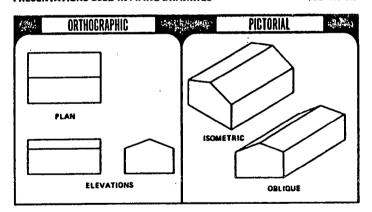
The sheets are compiled and kept up-to-date by the project group, taking all the information from the P&ID. Copies are supplied to the piping group for reference.

On small projects involving only a few lines line designation sheets may not be used. It is useful to add a note on the P&ID stating the numbers of the last line and last valve used.

VIEWS USED FOR PIPING DRAWINGS

5.2.6

5.2.5

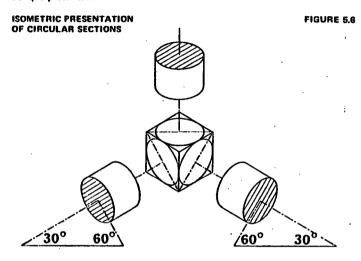

Two types of view are used:

- (1) ORTHOGRAPHIC PLANS AND ELEVATIONS
- 2) PICTORIAL ISOMETRIC VIEW AND OBLIQUE PRESENTATION

Figure 5.5 shows how a building would appear in these different views.

PRESENTATIONS USED IN PIPING DRAWINGS

FIGURE 8.6


PLANS & ELEVATIONS

Plan views are more common than elevational views. Piping layout is developed in plan view, and elevational views and section details are added for clarity where necessary.

PICTORIAL VIEWS

In complex piping systems, where orthographic views may not easily illustrate the design, pictorial presentation can be used for clarity. In either isometric or oblique presentations, lines not horizontal or vertical on the drawing are usually drawn at 30 degrees to the horizontal.

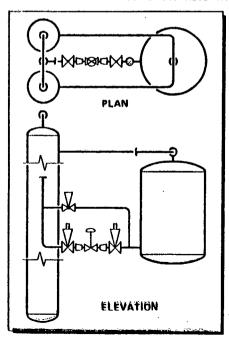
Figure 5.6 illustrates how circular shapes viewed at different angles are approximated by means of a 35-degree ellipse template. Isometric templates for valves, etc., are available and neat drawings can be rapidly produced with them. Orthographic and isometric templates can be used to produce an oblique presentation.

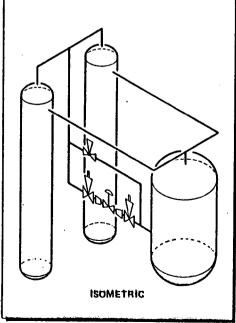
PLAN, ELEVATION, ISOMETRIC & OBLIQUE PRESENTATIONS OF A PIPING SYSTEM

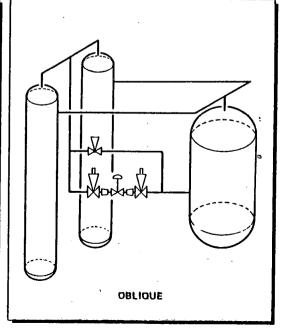
Figure 5.7 is used to show the presentations used in drafting. Isometric and oblique drawings both clearly show the piping arrangement, but the plan view fails to show the bypass loop and valve, and the supplementary elevation is needed.

PIPING DRAWINGS ARE BASED ON OTHER DRAWINGS

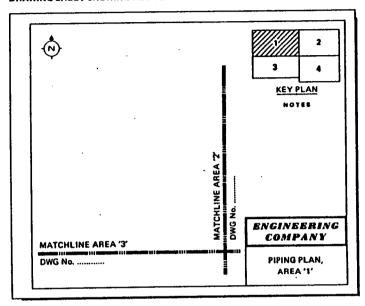
5.2.7


The purpose of piping drawings is to supply detailed information to enable a plant to be built. Prior to making piping drawings, the site plan and equipment arrangement drawings are prepared, and from these two drawings the plot plan is derived. These three drawings are used as the basis for developing the piping drawings.


SITE PLAN


The piping group produces a 'site plan' to a small scale (1 inch to 30 or 100 ft for example). It shows the whole site including the boundaries, roads, railroad spurs, pavement, buildings, process plant areas, large structures, storage areas, effluent ponds, waste disposal, shipping and loading areas. 'True' (geographic) and 'assumed' or 'plant' north are marked and their angular separation shown—see figure 5.11.

PIPING ARRANGEMENT IN DIFFERENT PRESENTATIONS


FIGURES 5.5-5.7

KEY PLAN

A 'key plan' is produced by adapting the site plan, dividing the area of the site into smaller areas identified by key letters or numbers. A small simplified inset of the key plan is added to plot plans, and may be added to piping and other drawings for reference purposes. The subject area of the particular drawing is hatched or shaded, as shown in figure 5.8.

DRAWING SHEET SHOWING KEY PLAN & MATCHLINE

FIGURE 5.8

EQUIPMENT ARRANGEMENT DRAWING

Under project group supervision, the piping group usually makes several viable arrangements of equipment, seeking an optimal design that satisfies process requirements. Often, preliminary piping studies are necessary in order to establish equipment coordinates.

A design aid for positioning equipment is to cut out scaled outlines of equipment from stiff paper, which can be moved about on a plan view of the area involved. (If multiple units of the same type are to be used, xeroxing the equipment outlines is faster.) Another method which is useful for areas where method study or investigational reports are needed is described in 4.4.13 under 'Photographic layouts'.

PLOT PLAN

When the equipment arrangement drawings are approved, they are developed into 'plot plans' by the addition of dimensions and coordinates to locate all major items of equipment and structures.

North and east coordinates of the extremities of buildings, and centerlines of steelwork or other architectural constructions should be shown on the plot plan, preferably at the west and south ends of the installation. Both 'plant north' and true north should be shown—see figure 5.11.

Equipment coordinates are usually given to the centerlines. Couldinates for pumps are given to the centerline of the pump shelt and either to the face of the pump foundation, or to the centerline of the discharge port.

Up-dated copies of the above drawings are sent to the civil, structural will electrical or other groups involved in the design, to inform them of requirements as the design develops.

VESSEL DRAWINGS

When the equipment arrangement has been approved and the piping arrangement determined, small dimensioned drawings of process vessels are made (on sheets 8½ x 11 or 11 x 17 inches) in order to fix nozzles and their orientations, manholes, ladders, etc. These drawings are then sent to the vendor who makes the shop detail drawings, which are examined by the project engineer and sent to the piping group for checking and approval. Vessel drawings need not be to scale. (Figure 5.14 is an example vessel drawing.)

DRAWINGS FROM OTHER SOURCES

Piping drawings should be correlated with the following drawings from other design groups and from vendors. Points to be checked are listed:

Architectural drawings:

- Outlines of walls or sidings, indicating thickness
- Floor penetrations for stairways, lifts, elevators, ducts, drains, etc.
- Positions of doors and windows

Civil engineering drawings:

Foundations, underground piping, drains, etc.

Structural-steel drawings:

- Positions of steel columns supporting next higher fluor level
- Supporting structures such as overhead cranes, monorails, platforms or beams
- Wall bracing, where pipes may be taken thru walls

Heating, ventilating & air-conditioning (HVAC) drawings:

Paths of ducting and rising ducts, fan room, planums, space heaters, etc.

Electrical drawings:

- Positions of motor control centers, switchgear, junction busing and control panels
- Major conduit or wiring runs (including buried runs)
- Positions of lights

Instrumentation drawings:

Instrument panel and console locations

Vendors' drawings:

- Dimensions of equipment
- Positions of nozzles, flange type and pressure rating, instruments, etc.

Mechanical drawings:

- Positions and dimensions of mechanical equipment such as conveyors, chutes, etc.
- Pined services needed for mechanical equipment.

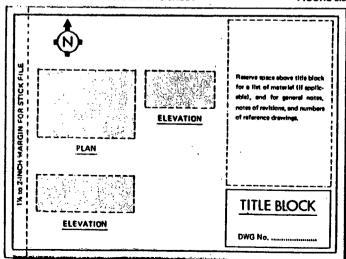
Process equipment and piping systems have priority. Drawings listed on the preceding page must be reviewed for compatibility with the developing piping design.

Pertinent background details (drawn faintly) from these drawings help to avoid interferences. Omission of such detail from the piping drawing often leads to the subsequent discovery that pipe has been routed thru a brace, stairway, doorway, foundation, duct, mechanical equipment, motor control center, fire fighting equipment, etc.

Completed piping drawings will also show spool numbers, if this part of the job is not subcontracted — see 5.2.9. Electrical and instrument cables are not shown on piping drawings, but trays to hold the cables are indicated—for example, see figure 6.3, point (8).

It is not always possible for the piping drawing to follow exactly the logical arrangement of the P&ID. Sometimes lines must be routed with different junction sequence, and line numbers may be changed. During the preliminary piping studies, economies and practicable improvements may be found, and the P&ID may be modified to take these into account. However, it is not the piping designer's job to seek ways to change the P&ID.

SCALE


Piping is arranged in plan view, usually to 3/8 in./ft scale.

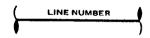
ALLOCATING SPACE ON THE SHEET

 Obtain the drawing number and fill in the title block at the bottom right corner of the sheet

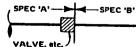
ALLOCATING SPACE ON A DRAWING SHEET

FIGURE 5.9

 On non-standard sheets, leave a 1½- to 2-inch margin at the left edge of the sheet, to allow filing on a 'stick'. Standard drawing sheets usually have this margin


- On drawings showing a plan view, place a north arrow at the top left corner of the sheet to indicate plant north—see figure 5.11
- Do not draw in the area above the title block, as this space is allocated to the bill of materiel, or to general notes, brief descriptions of changes, and the titles and numbers of reference drawings
- If plans and elevations are small enough to go on the same sheet, draw the plan at the upper left side of the sheet and elevations to the right and bottom of it, as shown in figure 5.9

BACKGROUND DETAIL


- Show background detail as discussed in 5.2.8 under 'Piping drawings'.
 It is sometimes convenient to draw outlines on the reverse side of the drawing sheet
- After background details have been determined, it is best to make a
 print on which nozzles on vessels, pumps, etc., to be piped can be
 marked in red pencil. Utility stations can also be established. This will
 indicate areas of major usage and the most convenient locations for the
 headers. Obviously, at times there will be a number of alternate routes
 offering comparable advantages

PROCESS & SERVICE LINES ON PIPING DRAWINGS

- Take line numbers from the P&ID. Refer to 5.2.4 under 'Flow lines on P&ID's' for information on numbering lines. Include line numbers on all views, and arrowheads showing direction of flow
- Draw all pipe 'single line' unless special instructions have been given for drawing 'double line'. Chart 5.1 gives line thicknesses (full size)
- Line numbers are shown against lines, thus:

- Take lines continued on another sheet to a matchline, and there code with line numbers only. Show the continuation sheet numbers on matchlines—see figure 5.8
- Show where changes in line material specification occur. The change is usually indicated immediately downstream of a flange of a valve or equipment

Show a definite break in a line crossing behind another line—see 'Rolled ell', under 'Plan view piping drawings', this section

FIGURES 5.8 & 5.9

- If pipe sleeves are required thru floors, indicate where they are needed and inform the group leader for transmitting this information to the group(s) concerned
- Indicate insulation, and show whether lines are electrically or steam traced—see chart 5.7

FITTINGS, FLANGES, VALVES & PUMPS ON PIPING DRAWINGS

- The following items should be labeled in one view only: tees and ells rolled at 45 degrees (see example, this page), short-radius ell, reducing ell, eccentric reducer and eccentric swage (note on plan views whether 'top flat' or 'bottom flat'), concentric reducer, concentric swage, non-standard or companion flange, reducing tee, special items of unusual material, of pressure rating different from that of the system, etc. Refer to charts 5.3, 5.4 and 5.5 for symbol usage
- Draw the outside diameters of flanges to scale
- Show valve identification number from P&ID
- Label control valves to show: size, pressure rating, dimension over flanges, and valve instrument number, from the P&ID—see figure 5.15
- Draw valve handwheels to scale with valve stem fully extended
- If a valve is chain-operated, note distance of chain from operating floor, which for safety should be approximately 3 ft
- For pumps, show outline of foundation and nozzles

DRIPLEGS & STEAM TRAPS

Driplegs are indicated on relevant piping drawing plan views. Unless identical, a separate detail is drawn for each dripleg. The trap is indicated on the dripleg piping by a symbol, and referred to a separate trap detail or data sheet. The trap detail drawing should show all necessary valves, strainers, unions, etc., required at the trap—see figures 6.43 and 6.44.

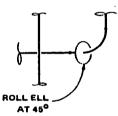
The piping shown on the dripleg details should indicate whether condensate is to be taken to a header for re-use, or run to waste. The design notes in 6.10.5 discuss dripleg details for steam lines in which condensate forms continuously. Refer to 6.10.9 also.

INSTRUMENTS & CONNECTIONS ON PIPING DRAWINGS

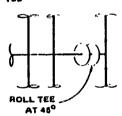
- Show location for each instrument connection with encircled instrument number taken from the P&ID. Refer to 5.5.3 and chart 6.2
- Show similar isolating valve arrangements on instrument connections as 'typical' detail, unless covered by standard company detail sheet

VENTS & DRAINS

Refer to 6.11 and figure 6.47.


PIPE SUPPORTS

Refer to 6.2.2, and chart 5.7. for symbols.

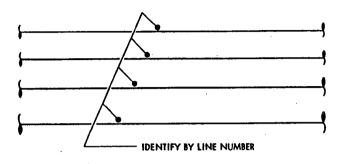

PLAN VIEW PIPING DRAWINGS

- Draw plan views for each floor of the plant. These views should show what the layout will look like between adjacent floors, viewed from above, or at the elevation thro which the plan view is cut
- If the plan view will not fit on one sheet, present it on two or more sheets, using matchlines to link the drawings. See figure 5.8
- Note the elevation below which a plan view is shown—for example, 'PLAN BELOW ELEVATION 15'-0" '. For clarity, both elevations can be stated: 'PLAN BETWEEN ELEVATIONS 30'-0" & 15'-0" '
- If a tee or elbow is 'rolled' at 45 degrees, note as shown in the view where the fitting is rolled out of the plane of the drawing sheet

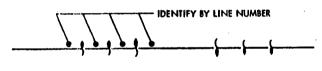
'ROLLED' ELL

'ROLLED' TEE

- Figure 5.10 shows how lines can be broken to give sufficient information without drawing other views
- Indicate required field welds


ELEVATIONS (SECTIONS) & DETAILS

- Draw elevations and details to clarify complex piping or piping hidden in the plan view
- Do not draw detail that can be described by a note
- Show only as many sections as necessary. A section does not have to be a complete cross section of the plan
- Draw to a large scale any part needing fuller detail. Enlarged details are preferably drawn in available space on elevational drawings, and should be cross-referenced by the applicable detail and drawing number(s)
- Identify sections indicated on plan views by letters (see chart 5.8) and details by numbers. Letters I and O are not used as this can lead to confusion with numerals. If more than twentyfour sections are needed the letter identification can be broken down thus: A1-A1, A2-A2, B4-B4, and so on
- Do not section plan views looking toward the bottom of the drawing sheet

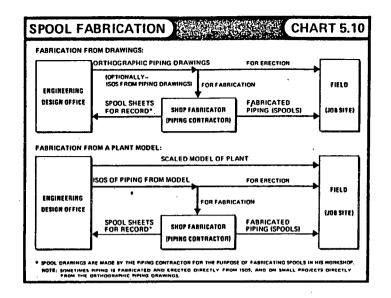

 Figure 5.10 shows how to break lines to give sufficient information whilst evoiding drawing another view or section

SHOWING 'HIDDEN' LINES ON PIPING DRAWINGS

FIGURE 5.10

P L A N (or ELEVATION)

Corresponding ELEVATION (or PLAN)


PIPING FABRICATION DRAWINGS-'ISOS' & 'SPOOLS'

5.2.9

The two most common methods for producing piping designs for a plant are by making either plan and elevation drawings, or by constructing a scaled model. For febricating welded piping, plans and elevations are sent directly to a subcontractor, usually referred to as a 'shop fabricator'—if a model is used, isometric drawings (referred to as 'isos') are sent instead.

Isometric views are commonly used in prefabricating parts of butt-welded piping systems. Isos showing the piping to be prefabricated are sent to the shop fabricator. Figure 5.15 is an example of such an iso.

The prelabricated parts of the piping system are termed 'spools', described under 'Spools', this section. The piping group either produces isos showing the required spools, or marks the piping to be spooled on plans and elevations, depending on whether or not a model is used (as shown in chart 5.10). From these drawings, the subcontractor makes detail drawings termed 'spool sheets'. Figure 5.17 is an example spool sheet.

5 .2.8

ISOMETRIC DRAWINGS, or 'ISOS'

An iso usually shows a complete line from one piece of equipment to another—see figure 5.15. It gives all information necessary for fabrication and erection of piping.

Isos are usually drawn freehand, but the various runs of pipe, fittings and valves should be roughly in proportion for easy understanding. Any one line (that is, all the piping with the same line number) should be drawn on the minimum number of iso sheets. If continuation sheets are needed, break the line at natural breakpoints such as flanges (except orifice flanges), welds at fittings, or field welds required for installation.

Items and information to be shown on an iso include:

- North arrow (plant north)
- Dimensions and angles
- Reference number of plan drawing from which iso is made (unless model is used), line number, direction of flow, insulation and tracing
- Equipment numbers and locations of equipment (by centerlines)
- Identify all items by use of an understood symbol, and amplify by a description, as necessary
- Give details of any flanged nozzles on equipment to which piping has to be connected, if the flange is different from the specification for the connected piping
- Size and type of every valve
- Size, pressure rating and instrument number of control valves
- Number, location and orientation for each instrument connection

CHART 5.10

FIGURE 5.10

- Shop and field welds, Indicate limits of shop and field fabrication
- Iso sheet continuation numbers
- Unions required for installation and maintenance purposes
- On screwed and socket-welded assemblies, valve handwheel positions need not be shown
- Materials of construction
- Locations of vents, drains, and traps
- Locations of supports, identified by pipesupport number

The following information may also be given:

 Requirements for stress relieving, seal welding, pickling, lining, coating, or other special treatment of the line

Drawing style to be followed is shown in the example iso, figure 5.15, which displays some of the above points, and gives others as shaded notes. An iso may show more than one spool.

SPOOLS

A spool is an assembly of fittings, flanges and pipe that may be prefabricated. It does not include bolts, gaskets, valves or instruments. Straight mill-run lengths of pipe over 20 ft are usually not included in a spool, as such lengths may be welded in the system on erection (on the iso, this is indicated by noting the length, and stating 'BY FIELD').

The size of a spool is limited by the fabricator's available means of transportation, and a spool is usually contained within a space of dimensions 40 ft \times 10 ft \times 8 ft. The maximum permissible dimensions may be obtained from the fabricator.

FIELD-FABRICATED SPOOLS

Some States in the USA have a trades agreement that 2-inch and smaller carbon-steel piping must be fabricated at the site. This rule is sometimes extended to piping larger than 2-inch.

SHOP-FABRICATED SPOOLS

All alloy spools, and spools with 3 or more welds made from 3-inch (occasionally 4-inch) and larger carbon-steel pipe are normally 'shop-fabricated'. This is, fabricated in the shop fabricator's workshop, either at his plant or at the site. Spools with fewer welds are usually made in the field.

Large-diameter piping, being more difficult to handle, often necessitates the use of jips and templates, and is more economically produced in a workshop.

SPOOL SHEETS

A spool sheet is an orthographic drawing of a spool made by the piping contractor either from plans and elevations, or from an iso-see chart 5.10.

Each spool sheet shows only one type of spool, and:-

- (1) Instructs the welder for fabricating the spool
- (2) Lists the cut lengths of pipe, fittings and flanges, etc. needed to make the spool
- (3) Gives meterials of construction, and any special treatment of the finished piping
- (4) Indicates how many spools of the same type are required

NUMBERING ISOS, SPOOL SHEETS, & SPOOLS

Spool numbers are allocated by the piping group, and appear on all piping drawings. Various methods of numbering can be used as long as identification is easily made. A suggested method follows:—

Iso sheets can be identified by the line number of the section of line that is shown, followed by a sequential number. For example, the fourth iso sheet showing a spool to be part of a line numbered 74/BZ/6/412/23 could be identified: 74/BZ/6/412/23—4.

Both the spool and the spool sheet can be identified by number or letter using the iso sheet number as a prefix. For example, the numbering of spool sheets relating to iso sheet 74/8Z/6/412/23-4 could be

The full line number need not be used if a shorter form would suffice for identification.

Spool numbers are also referred to as 'mark numbers'. They are shown on isos and on the following:—

- (1) Spool sheets—as the sheet number
- 2) The fabricated spool—so it can be related to drawings or isos
- (3) Piping drawings—plans and elevations

DIMENSIONING 5.3

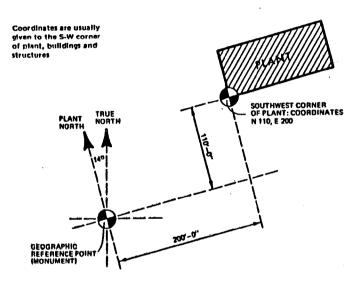
DIMENSIONING FROM REFERENCE POINTS

5.3.1

HORIZONTAL REFERENCE

When a proposed plant site is surveyed, a geographic reference point is utilized from which measurements to boundaries, roads, buildings, tanks, etc., can be made. The geographic reference point chosen is usually an officially-established one.

The lines of latitude and longitude which define the geographic reference point are not used, as a 'plant north' (see figure 5.11) is established, parallel to structural steelwork. The direction closest to true north is chosen for the 'plant north'.


The coordinates of the southwest corner of the plant in figure 5.11, as referred to 'plant north', are N 110.00 and E 200.00.

Sometimes coordinates such as those above may be written N 1+10 and E 2+00. The first coordinate is read as "one hundred plus 10 ft north" and the second as "two hundred plus zero ft east". This is a system used for traverse survey, and is more correctly applied to highways, railroads, etc.

Coordinates are used to locate tanks, vessels, major equipment and structural steel. In the open, these items are located directly with respect to a geographic reference point, but in buildings and structures, can be dimensioned from the building steel.

HORIZONTAL REFERENCE

FIGURE 5.11

The US Department of Commerce's Coast and Geodetic Survey has established a large number of references for latitude and longitude, and for elevations shove sea level. These are termed 'geodetic control stations'.

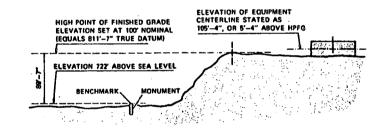
Control stations for horizontal reference (letitude and longitude) are referred to as 'triangulation stations' or 'traverse stations', etc. Control stations for vertical reference are referred to as 'benchmarks'. Latitude and longitude have not been established for all benchmarks.

A geodetic control station is marked with a metal disc showing identity and date of establishment. To provide stable locations for the discs, they are set into tops of 'monuments', mounted in holes drilled in bedrock or large firmly-imbedded boulders, or affixed to a solid structure, such as a building, bridge, etc.

The geographic positions of these stations can be obtained from the Director, US Coast and Geodetic Survey, Rockville, Maryland 20852.

VERTICAL REFERENCE

Before any building or erecting begins, the site is leveled ('graded') with earth-moving equipment. The ground is made as flat as practicable, and after leveling is termed 'finished grade'.


The highest graded point is termed the 'high point of finished grade', (HPFG), and the horizontal plane passing thru it is made the vertical reference plane or 'datum' from which plant elevations are given. Figure 5.12 shows that this horizontal plane is given a 'false' or nominal elevation, usually 100 ft, and is not referred to mean sea level.

The 100 ft nominal elevation ensures that foundations, basements, buried pipes and tanks, etc., will have positive elevations. 'Minus' elevations, which would be a nuisance, are thus avoided.

Large plants may have several areas, each having its own high point of finished grade. Nominal grade elevation is measured from a benchmark, as illustrated in figure 5.12.

VERTICAL REFERENCE

FIGURE 5.12

DIMENSIONING PIPING DRAWINGS

5.3.2

DRAWING DIMENSIONS—& TOLERANCES MAINTAINED IN ERECTED PIPING

On plot: Dimensions on piping drawings are normally maintained within the limits of plus or minus 1/16th inch. How this tolerance is met does not concern the designer. Any necessary allowances to ensure that dimensions are maintained are made by the fabricator and erector (contractor).

Off plot: Dimensions are maintained as closely as practicable by the erector.

WHICH DIMENSIONS SHOULD BE SHOWN?

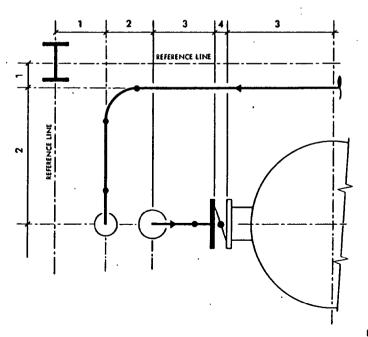
Sufficient dimensions should be given for positioning equipment, for fabricating spools and for erecting piping. Duplication of dimensions in different views should be avoided, as this may easily lead to error if alterations are made.

FIGURES 5.12

.2.9

Basically the dimensions to show are:

4	TYPE OF DIMENSION	EXAM	PLES
1	REFERENCE LINE® TO CENTERLINE	VESSELS PUMPS EQUIPMENT LINES	
2	CENTERLINE TO CENTERLINE	LINES STANDARD VALV	/ES
3	CENTERLINE TO FLANGE FACE †	NOZZLES ON	VESSELS PUMPS EQUIPMENT
4	FLANGE FACE TO FLANGE FACET	NON-STANDARD	VALVES EQUIPMENT METERS INSTRUMENTS
	• REFERENCE LINE CAN BE EITHER AN ORE OR LONGITUDE) OR A CENTERLINE OF BU		ATITUDE
	† IT IS NECESSARY TO SHOW THESE DIMEN STANDARD DIMENSIONS (DEFINED BY AN		


Figure 5.13 illustrates the use of these types of dimensions.

PLAN VIEW DIMENSIONS

Plan views convey most of the dimensional information, and may also show dimensions for elevations in the absence of an elevational view or section.

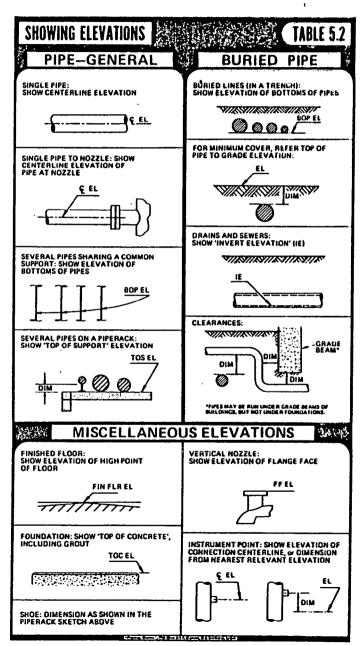
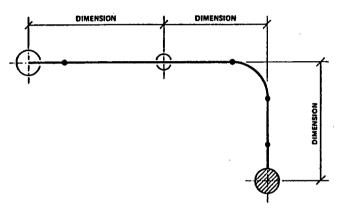

EXAMPLE DIMENSIONS FOR PLAN VIEW

FIGURE 5.13



VERTICAL VIEW ELEVATIONS & DIMENSIONS

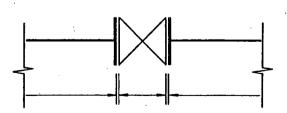
On piping drawings, elevations may be given as in table 5.2.

- Show all key dimensions, including elevations and coordinates
- Show dimensions autside of the drawn view unless unavoidable do not clutter the oicture
- Draw dimension lines unbroken with a fine line. Write the dimension just above a horizontal line. Write the dimension of a vertical line sideways, preferably at the left. It is usual to terminate the line with arrowheads, and these are preferable for isos. The oblique dashes shown are quicker and are suitable for plans and elevations, especially if the dimensions are cramped

If a series of dimensions is to be shown, string them together as shown in the sketch. (Do not dimension from a common reference line as in machine drawing.) Show the overall dimension of the string of dimensions if this dimension will be of repeated interest

DIMENSIONS ON MACHINE DRAWINGS

Do not nink a *skindreant* dimension other than 'fitting makeup', even though it may be leasily calculated = see 'fitting makeup', this section


- Most piping under 2-inch is screwed or socket-welded and assembled at the site (field run). Therefore, give only those dimensions necessary to route such piping clear of equipment, other obstructions, and thru walls, and to locate only those items whose safe positioning or accessability is important to the process
- Most lengths will be stated to the nearest sixteenth of an inch. Dimensions which cannot or need not be stated to this precision are shown with a plus-or-minus sign: $8'-7''\pm$. $15'-3''\pm$. etc.
- Dimensions under two feet are usually marked in inches, and those over two feet in feet and inches. Some companies prefer to mark all dimensions over one foot in feet and inches
- Attempt to round off non-critical dimensions to whole feet and inches. Reserve fractions of inches for dimensions requiring this precision

PLANS & ELEVATIONS-GENERAL DIMENSIONING POINTS

- Reserve horizontal dimensions for the plan view
- Underline all out-of-scale dimensions, or show as in chart 5.8
- If a certain piping arrangement is repeated on the same drawing, it is sufficient to dimension the piping in one instance and note the other appearances as 'TYP' (typical). This situation occurs where similar pumps are connected to a common header. For another example, see the pump base in figure 6.17
- Do not duplicate dimensions. Do not repeat them in different views

DIMENSIONING TO JOINTS

- Do not terminate dimensions at a welded or screwed joint
- Unless necessary, do not dimension to unions, in-line couplings or any other items that are not critical to construction or operation of the piping
- Where flanges meet it is usual to show a small gap between dimension lines to indicate the gasket. Gaskets should be covered in the piping specification, with gasket type and thickness stated. Refer to the panel 'Drafting valves', preceding chart 5.6.

As nearly all flanged joints have gaskets, a time-saving procedure is to note flanged joints without gaskets (for example, see 3.1.6 under 'Butterfly valve'). The fabricator and erector can be alerted to the need for gaskets elsewhere by a general note on all piping drawings:

"GASKETS AS SPECIFICATION EXCEPT AS NOTED"

FIGURE 5.13

ITABLE 5.2

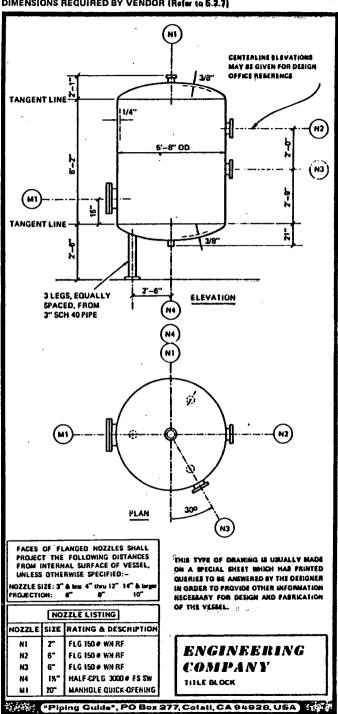
If a number of items of standard dimensions are grouped together it is unnecessary to dimension each item, as the fabricator knows the sizes of standard fittings and equipment. It is necessary, however, to indicate that the overall dimension is 'fitting makeup' by the special cross symbol, or preferably by writing the overall dimension. Any non-standard item inserted between standard items should be dimensioned.

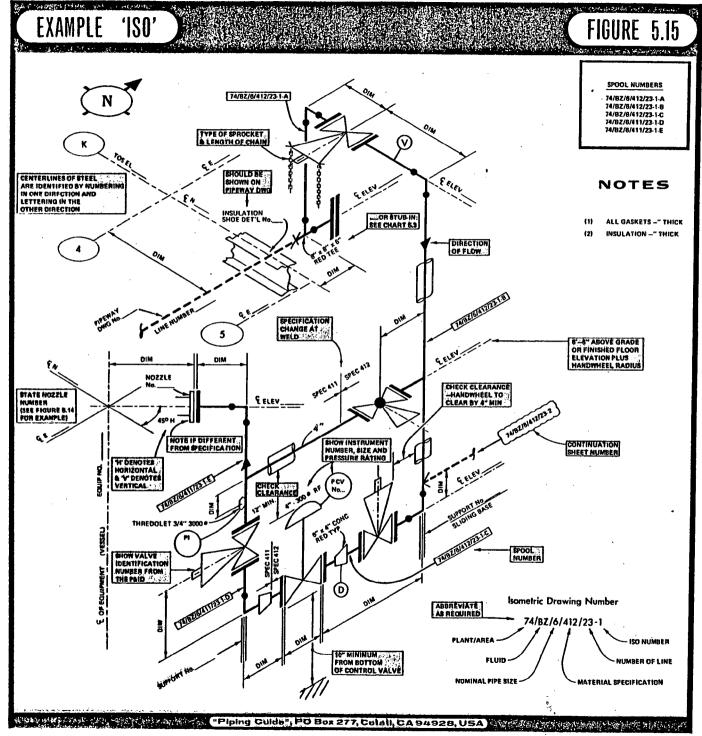
FITTING MAKEUP SYMBOL *

DIMENSIONING TO VALVES

- Locate flanged and welding-end valves with ANSI standard dimensions by dimensioning to their centers. Most gate and globe valves are standard—see table V-1
- Dimension non-standard flanged valves as shown in the panel opposite chart 5.6. Although a standard exists for control valves, face-to-face dimensions are usually given, as it is possible to obtain them in nonstandard sizes
- Standard flanged check valves need not be dimensioned, but if location is important, dimension to the flange face(s)
- Non-flanged valves are dimensioned to their centers or stems

DIMENSIONING TO NOZZLES ON VESSELS & EQUIPMENT

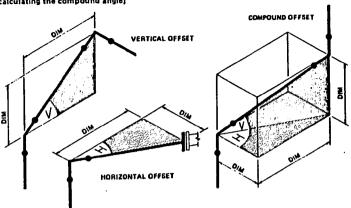

- In plan view, a nozzle is dimensioned to its face from the centerline of the equipment it is on
- In elevation, a nozzle's centerline is either given its own elevation or is dimensioned from another reference. In the absence of an elevational view, nozzle elevations can be shown on the plan view


DIMENSIONING ISOS 5.3.4

In order to clearly show all dimensions, the best aspect of the piping must be determined. Freedom to extend lines and spread the piping without regard to scale is a great help in showing isometric dimensions. The basic dimensions set out in 5.3.2, 5.3.3, and the guidelines in 5.2.9 apply.

Figure 5.15 illustrates the main requirements of an isometric drawing, and inincludes a dimensioned offset. Figure 5.16 shows how other offsets are dimensioned.

- Dimension in the same way as plans and elevations
- Give sufficient dimensions for the fabricator to make the spool drawings
 -see figure 5.17



FIGURES 5.14 & 5.15

FIGURE 5.17

(Chart M-1 gives a formula for calculating the compound angle)

Allowance for weld spacing (root gap) is a shop set-up problem and should not be considered in making assembly drawings or detailed sketches. The Pipe Febrication Institute recommends that an overall dimension is shown which is the sum of the nominal dimensions of the component parts.

A spool sheet deals with only one design of spool, and shows complete dimensional detail, lists material for making the spool, and specifies how many spools of that type are required. Figure 5.17 shows how a spool fruin figure 5.15 would be dimensioned.

EXAMPLE SPOOL SHEET

FIGURE 5.16

BOLTHOLES TO STRADDLE LIST OF MALEHIEL - BEVEL END FOR WELDING B - BEND CENTERLINE UNLESS NOTED -W - THREADED END M - MITER MATERIAL ITEM QY DESCRIPTION OR REQ. NO PIPE 1 6" 1 3'-10 5/8" SCH 10 A-53B A 538 1 6" + 11 5/6" SCH 40 1 4" x 3" 0 3/16" SCH 40 A 138 3 FITTINGS LHELL 6" STD BW A-234 3'-3" FLANGES 4" 300 # S0 A-181 GR I A-181 GR 1 6" 150# \$0 OTHER THREDOLET 3/4" 3000 # A-105 GR II ENGINEERING CO. SPECIFICATION:__ NUMBER REQUIRED: 1 REV REFERENCE DRAWINGS JOB NO. ISOMETRIC REFERENCE NO. SPOOL NO. NO (PLAN DRAWING NO. SHOWING SPOOL) DRAWN: CHECKED: APPROVED: 23 1-E 74/BZ/6/412/23--1

EXAMPLE SPOOL No. 23-1-E

FROM FIGURE 5.15

THIS ISOMETRIC VIEW IS SHOWN HERE FOR EXPLANATION ONLY, AND IS NOT A PART OF THE SPOOL DRAWING AT RIGHT

[82]

ISSUED FOR CONSTRN.

RESPONSIBILITIES

5.4.1

P&ID's, process flow diagrams and line designation sheets are checked by engineers in the project group.

Except for spool drawings, all piping drawings are checked by the piping group.

Orthographic spool drawings produced by the piping fabricator are not usually checked by the piping group, except for 'critical' spools, such as spools for overseas shipment and intricate spools.

Usually an experienced designer within the piping group is given the task of checking. Some companies employ persons specifically as design checkers.

The checker's responsibilities are set out in 4.1.2.

CHECKING PIPING DRAWINGS

5.4.2

Prints of drawings are checked and corrected by marking with colored pencils. Areas to be corrected on the drawing are usually marked in red on the print. Correct areas and dimensions are usually marked in yellow.

Checked drawings to be changed should be returned to their originator whenever possible, for amendment. A new print is supplied to the checker with the original 'marked up' print for 'backchecking'.

ISSUING DRAWINGS

5.4.3

Areas of a drawing awaiting further information or decision are ringed clearly on the reverse side and laheled 'HOLD'—refer to chart 5.8. (A black, red, or yellow china marker is suitable for film with a slick finish on the reverse side.)

Changes or revisions are indicated on the fronts of the sheets by a small triangle in the area of the revision. The revision number is marked inside the triangle, noted above the title block (or in an allocated panel) with a description of the revision, required initials, and date. The revision number may be part of the drawing number, or it may follow the drawing number (preferred method—see figure 5.17). The drawing as first issued is numbered the 'zero' revision.

A drawing is issued in three stages. The first issue is 'FOR APPROVAL', by management or client. The second issue is 'FOR CONSTRUCTION BID', when vendors are invited to bid for equipment and work contracts. The third issue is 'FOR CONSTRUCTION' following awarding of all purchase orders and contracts. Drawings may be reissued at each stage if significant changes are made. Minor changes may be made after the third stage (by agreement on cost and extent of work) but major changes may involve all three stages of issue.

Points to be checked on all piping drawings include the following:

- Title of drawing
- Number of issue, and revision number
- Orientation: North arrow against plot plan
- Inclusion of graphic scale (if drawing is to be photographically reduced)
- Equipment numbers and their appearance on piping drawings
- That correct identification appears on all lines in all views
- Line material specification changes
- Agreement with specifications and agreement with other drawings
- That the drawing includes reference number(s) and title(s) to any other relevant drawings
- That all dimensions are correct
- Agreement with certified vendors' drawings for dimensions, nozzle orientation, manholes and ladders
- That face-to-face dimensions and pressure ratings are shown for all non-standard flanged items
- Location and identification of instrument connections
- Provision of line vents, drains, traps, and tracing. Check that vents are at all high points and drains at all low points of lines for hydrostatic test. Driplegs should be indicated and detailed. Traps should be identified, and piping detailed
- The following items should be labeled in one view only: tees and ells rolled at 45 degrees (see example in 5.2.8), short-radius ell, reducing ell, eccentric reducer and eccentric swage (note on plan views whether 'top flat' or 'bottom flat'), concentric reducer, concentric swage, non-standard or companion flange, reducing tee, special items of unusual material, of pressure rating different from that of the system, etc. Refer to charts 5.3, 5.4 and 5.5 for symbol usage
- That insulation has been shown as required by the P&ID
- Pipe support locations with support numbers
- That all anchors, dummy legs and welded supports are shown
- That the stress group's requirements have been met
- That all field welds are shown
- Correctness of scale
- Coordinates of equipment against plot plan
- Piping arrangement against P&ID requirements
- Possible interferences
- Adequacy of clearances of piping from steelwork, doors, windows and braces, ductwork, equipment and major electric apparatus, including control consoles, cables from motor control centers (MCC's), and firefighting equipment. Check accessibility for operation and maintenance

FIGURES 5.16 & 5.17

- That floor and wall penetrations are shown correctly
- Accessibility for operation and maintenance, and that adequate manholes, hatches, covers, dropout and handling areas, etc. have been provided
- Foundation drawings with vendors' equipment requirements
- List of materiel, if any. Listed items should be identified once, either on the plan or the elevation drawings
- That section letters agree with the section markings on the plan view
- That drawings include necessary matchline information
- Appearance of necessary continuation sheet number(s)
- That spool numbers appear correctly
- Presence of all required signatures

This further point should be checked on isos:

Agreement with model

These further points should be checked on spool sheets:

- That materiel is completely listed and described
- That the required number of spools of identical type is noted

INSTRUMENTATION (As shown on P&ID's)

This section briefly describes the purposes of instruments and explains how instrumentation may be read from P&ID's. Piping drawings will also show the connection (coupling, etc.) to line or vessel. However, piping drawings should show only instruments connected to (or located in) piping and vessels. The only purpose in adding instrumentation to a piping drawing is to identify the connection, orifice plate or equipment to be installed on or in the piping, and to correlate the piping drawing to the P&ID.

INSTRUMENT FUNCTION ONLY IS SHOWN 5.5.1

Instrumentation is shown on process diagrams and piping drawings by symbols. The *functions* of instruments are shown, not the instruments. Only the primary connection to a vessel or line, or devices installed in a line (such as orifice plates and control valves) are indicated on piping drawings.

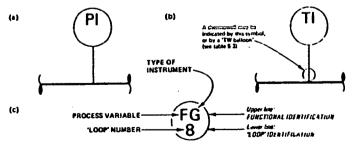
There is some uniformity, among the larger companies at least, in the way in which instrumentation is shown. There is a willingness to adopt the recommendations of the Instrument Society of America, but adherence is not always complete. The ISA revised its standard S5.1, titled 'Instrumentation symbols and identification', in 1968.

Compliance with the ISA scheme is to some extent international. This is beneficial when drawings go from one country to another, as there is then no difficulty in understanding the instrumentation.

Although instruments are used for many purposes, their basic functions are few in number:

- (1) To sense a 'condition' of the process material, most commonly its pressure, temperature, flow rate or level. These 'conditions' are termed process variables. The piece of equipment that does the sensing is termed a 'primary element', 'sensor', or 'detector'.
- (2) To transmit a measure of the process variable from a primary element.
- (3) To indicate a measure of a process variable to the plant operator, by showing the measured value by a dial and pointer, pen and paper roll or digital display. Another form of indicator is an alarm which gives audible or visual warning when a process variable such as temperature approaches an unsafe or undesired value.
- (4) To record the measure of a process variable. Most recorders are electrically-operated pen-and-paper-roll types which record either the instantaneous value or the average over a time period.
- (5) To control the process variable. An instrument initiating this function is termed a 'controller'. A controller sustains or changes the value of the process variable by actuating a 'final control element' (this element is usually a valve, in process piping).

Many instruments combine two or more of these five functions, and may also have mechanical parts integrated — the commonest example of this is the self-contained control valve (see 3.1.10, under 'Pressure regulator', and chart 3.1).


HOW INSTRUMENTATION IS IDENTIFIED

5.5.3

The most-used instruments are pressure and temperature gages ('indicators') and are shown as in figure 5.18 (a) and (b). An example 'instrument identification number' (or 'tag number') is shown in figure 5.18 (c). The balloon around the number is usually drawn 7/16-inch diameter.

INSTRUMENT IDENTIFICATION NUMBERS

FIGURE 5.18

In figure 5.18, 'P', 'T', and 'F' denote process variables pressure, temperature, and flow respectively. 'I' and 'G' show the type of instrument; indicator and gage respectively. Table 5.3 gives other letters denoting process variable, type of instrument, etc. The number '8', labeled 'loop number', is an example sequential number (allocated by an instrumentation engineer).

5.5

5 .4.4 .5.6

A horizontal line in the ISA balloon shows that the instrument performing the function is to be 'board mounted' in a console, etc. Absence of this line shows 'local mounting', in or near the piping, vessel, etc.

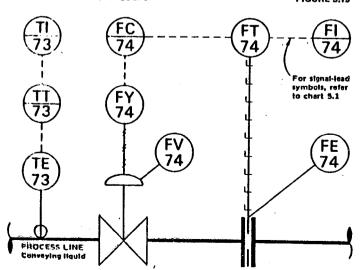
BOARD MOUNTING

LOCAL MOUNTING

The ISA scheme shows instrument functions, not instruments. However, a multiple-function instrument can be indicated by drawing the balloons showing the separate functions so that the circles touch.

Sometimes, a multiple-function instrument will be indicated by a single balloon symbol, with a function identification, such as 'TRC' for a temperature recorder-controller. This practice is not preferred—it is better to draw (in this example) separate 'TR' and 'TC' balloons, touching.

INTERCONNECTED INSTRUMENTS ('LOOPS')


5.5.5

The ISA standard uses the term 'loop' to describe an interconnected group of instruments, which is not necessarily a closed-loop arrangement: that is, instrumentation used in a feedback (or feedforward) arrangement.

If several instruments are interconnected, they may be all allocated the same number for 'loop' identification. Figure 5.19 shows a process line served by one group of instruments (loop number 73) to sense, transmit and indicate temperature, and a second group (loop number 74) to sense, transmit, indicate, record and control flow rate.

EXAMPLE INSTRUMENT 'LOOPS'

FIGURE 5.19

Elements, transmitters, recorders, indicators and controllers communicate with each other by means of signal leads — which are represented by lines on the drawing. The signal can be a voltage, the pressure of a fluid, etc.—these are the most common signals.

Symbols for instrument signal leads are given in chart 5.1.

INSTRUMENTATION CODING: ISA CODING

TABLE 5.3

PROCESS VARIABL	TYPE OF INSTRUMENT							
ANALYSIS CHEMICAL COMPOSITION BURNER FLAME ELECTRICAL CONDUCTIVI DENSITY SPECIFIC GRAVITY FLOW RATE LENGTH (Thickness, etc.) CURRENT (Electric) LEVEL HUMIDITY MOISTURE USER'S CHOICE USER'S CHOICE PRESSURE VACUUM RADIOACTIVITY SPEED (or Frequency) TEMPERATURE MULTIVARIABLE VISCOSITY FORCE WEIGHT UNCLASSIFIED USER'S CHOICE	ALARM A USER'S CHOICE B CONTROLLER C CONTROL VALVE CV TRAP. CV PRIMARY ELEMENT E GLASS (Sight glass) G INDICATOR I CONTROL STATION K PILOT LIGHT L USER'S CHOICE N ORIFICE O TEST POINT P RECORDER R SWITCH S TRANSMITTER T MULTIFUNCTION U VALVE V DAMPER V WELL W UNCLASSIFIED X RELAY Y POINTER Z ACTUATOR Z							
Q UALIFYING LETTER AFTER THE 'PROCESS VARIABLE' LETTER								
THE QUALIFYING LETTER IS USED:— DIFFERENTIAL D When the difference between two values of the process variable is involved								
TOTAL Q When the process variable is to be summed over a period of time. For example, flow rate can be summed to give total volume								
RATIO F	ł	ratio of two values of the process						
SAFETY ITEM S	SAFETY ITEM S To denote an item such as a relief valve or rupture disc							
'HAND' H To denote a hand-operated or hand-started item								
QUALIFYING LETTER AFTER THE 'TYPE OF INSTRUMENT' LETTER								
HIGH н								
INTERMEDIATE M	To denote i ate' set valu	instrument action on 'intermedi- e of the process variable						
LOW L	To denote value of th	Instrument action on 'low' set e process variable						

FIGURES 5.19

TABLE

LISTING PIPING MATERIEL ON DRAWINGS

In the engineering construction industry, it is usual for piping components to be given a code number which appears in the piping specification. In companies not primarily engaged in plant construction, material is frequently listed on drawings.

DIFFERENT FORMS OF LIST

5.6.1

5.6

This list is usually titled 'list of material', or preferably, 'list of materiel', as items of hardware are referred to. 'Parts list' and 'Bill of materiel' are alternate headings.

Either a separate list can be made for materiel on several drawings, or each drawing sheet can include a list for items on the particular drawing. Lists on drawings are written in the space above the title block. Column headings normally used for the list are:

ITEM NUMBER QUANTITY DESCRIPTION REMARK, REQUISITION NUMBER, OR COMPANY CODE	LIST OF MATERIEL								
	ITEM NUMBER	QUANTITY	DESCRIPTION						

SUGGESTED LISTING SCHEME

5.6.2

Vessels, pumps, machinery and instruments are normally listed separately from piping hardware. However, it is not uncommon, on small projects or revamp work, to list all material on a drawing.

CLASSIFICATION FOR PIPING COMPONENTS

CHART 5.11

CLASS	INTENDED DUTY OF WITH RESPECT	HARDWARE TO FLUID	EXAMPLE HARDWARE		
	CONVEYANCE: To provide a path for fluid flow		Pipe, fittings, ordinary flanges, bolt and gasket sets		
	FLOW CONTROL: To produce a large	(A) Non-powered	In-line valve, orifice plate, venturi		
11	change in flow rate (B) or pressure of fluid Powered		Pump, ejector		
111	SEPARATION: To remove material by mechanical means from the fluid		Steam trap, discharge valve, safety or relief valve, screen, strainer		
IV	HEATING OR COO change the temperatur by adding or removing	e of the fluid	Jacketed pipe, tracer		
٧	MEASUREMENT: To measure a variable of the fluid, such as flow rate, temperature, pressure, density, viscosity, turbidity, color		Gages (all types), thermometers (all types), flow meter, densitometer, sensor housing (such as a thermo- well) and other special fittings for instruments		
VI	NONE: Ancillary	hardware	Insulation, reinforcement, hanger, support		

Haphazard listing of items makes reference troublesome. The scheme suggested in chart 5.11 is based on the duty of the hardware and can be extended to listing equipment if desired. Items of higher pressure rating and larger size can be listed first within each class.

LISTING SPECIFIC ITEMS

5.6.3

Under the heading DESCRIPTION, usually the size of the itemis stated first. A typical order is: SIZE (in inches), RATING (pressure, schedule number, etc.) NAME (of item), MATERIAL (ASTM or other material specification), and FEATURE (design feature).

Descriptions are best headed by the NAME of the item, followed by the SIZE, RATING, FEATURE(S), and MATERIAL. Materiel listings are now often handled by data-processing machines, and heading a description by the name of the item is of assistance in handling the data. The description for 'pipe' is detailed.

EXAMPLE LISTING FOR PIPE

NAME:

State 'PIPE'

SIZE:

Specify nominal pipe size. See 2.1.3 and table P-1

RATING:

Specify wall thickness as either a schedule number, a manufacturers' weight, etc. See table P-1. SCH=schedule, STD= standard, XS= extra-strong, XXS= double-extrastrong, L= light, API= American Petroleum Institute.

FEATURE:

Specify design feature(s) unless covered by a pipe

specification for the project.

Pipe is available seamless or with a welded seam-examples of designations are: SMLS = seamless, FBW = furnace-butt-welded, ERW = electric-resistance-welded GALV = galvanized. Specify ends: T&C = threaded and coupled, BE = beveled end, PE = plain end.

•

MATERIAL: Carbon-steel pipe is often ordered to ASTM A53 or

A106, Grade A or B. Other specifications are given in

tables 7.4 and 2.1.

POINTS TO CHECK WHEN MAKING THE LIST

5.6.4

- See that all items in the list have been given a sequential item number
- Label the items appearing on the piping drawings with the item number from the list. Write the item number in a circle with a fine line or arrow pointing to the item on the drawing. Each item in the list of material is indicated in this way once on the plan or elevational piping drawings
- Verify that all data on the list agree with:
 - (1) Requirements set out in piping drawings
 - (2) Available hardware in the manufacturers' catalogs

DESIGN:

6 .1

ARRANGEMENT, SUPPORT, INSULATION, HEATING, VENTING & DRAINING OF PIPING SYSTEMS, VESSELS, & EQUIPMENT

ARRANGING PIPING

6.1

GUIDELINES & NOTES

6.1.1

Simple arrangements and short lines minimize pressure drops and lower pumping costs.

Designing piping so that the arrangement is 'flexible' reduces stresses due to mechanical or thermal movement—refer to figure 6.1 and 'Stresses on piping', this section.

Inside buildings, piping is usually arranged parallel to building steelwork to simplify supporting and improve appearance.

Outside buildings, piping can be arranged: (1) On piperacks. (2) Near grade on sleepers. (3) In trenches. (4) Vertically against steelwork or large items of equipment.

PIPING ARRANGEMENT

- Use standard available items wherever possible
- Do not use miters unless directed to do so
- Do not run piping under foundations. (Pipes may be run under grade heams)
- Piping may have to go thru concrete floors or walls. Establish these
 points of penetration as early as possible and inform the group concerned (architectural or civil) to avoid cutting existing reinforcing bars
- Preferably lay piping such as lines to outside storage, loading and receiving facilities, at grade on pipe sleepers (see figure 6.3) if there is no possibility of future roads or site development

- Avoid burying steam lines that pocket, due to the difficulty of collecting condensate. Steam lines may be run below grade in trenches provided with covers or (for short runs) in sleeves
- Lines that are usually buried include drains and lines bringing in water or gas. Where long cold winters freeze the soil, burying lines below the frost line may avoid the freezing of water and solutions, saving the expense of tracing long horizontal parts of the lines
- Include removable flanged spools to aid maintenance, especially at pumps, turbines, and other equipment that will have to be removed for overhaul
- Take gas and vapor branch lines from tops of headers where it is necessary to reduce the chance of drawing off condensate (if present) or sediment which may damage rotating equipment
- Avoid pocketing lines—arrange piping so that lines drain back into equipment or into lines that can be drained
- Vent all high points and drain all low points on lines see figure 6.47.
 Indicate vents and drains using symbols in chart 5.7. Carefully-placed drains and valved vents permit lines to be easily drained or purged during shutdown periods: this is especially important in freezing climates and can reduce winterizing costs

ARRANGE FOR SUPPORTING

- Group lines in pipeways, where practicable
- Support piping from overhead, in preference to underneath
- Run piping beneath platforms, rather than over them

REMOVING EQUIPMENT & CLEANING LINES

 Provide union- and flanged joints as necessary, and in addition use crosses instead of elbows, to permit removing material that may solidify CHART 5.11

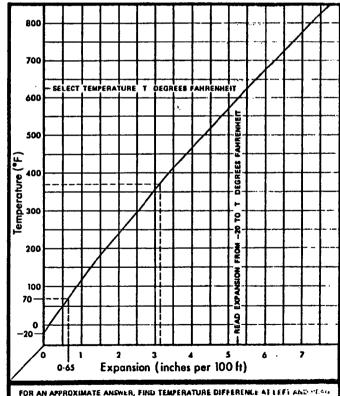
CLEARANCES & ACCESS

- Route piping to obtain adequate clearance for maintaining and removing equipment
- Locate within reach, or make accessible, all equipment subject to periodic operation or inspection with special reference to check valves, pressure relief valves, traps, strainers and instruments
- Take care to not obstruct access ways doorways, escape panels, truckways, walkways, lifting wells, etc.
- Position equipment with adequate clearance for operation and maintenance. Clearances often adopted are given in table 6.1. In some circumstances, these clearances may be inadequate—for example, with shell-and-tube heat exchangers, space must be provided to permit withdrawal of the tubes from the shell

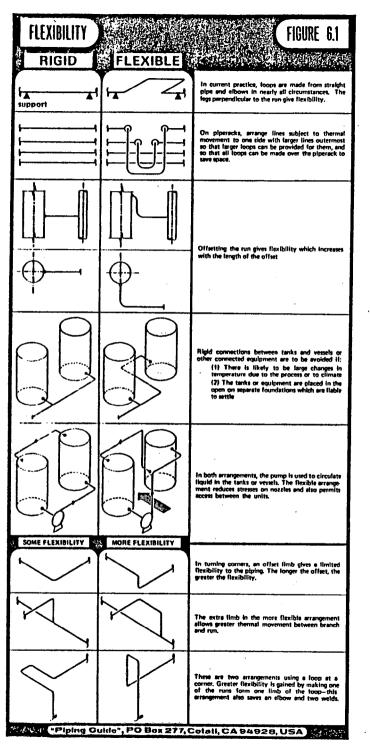
CLEARAN	CES & DIMENSIONS*	TABL	E 6.1
MINIMUM CLEA	MANCES		
HORIZONTAL	Operating space around equipment †	2ft	6in.
CLEARANCES:	Children at the can to terrore		ßin.
	obstruction: (1) Straight track (2) Curved track	8ft 9ft	
	Manhole to railing or obstruction	3ft	
VERTICAL	Over walkway, platform, or operating area	6ft	6in.
CLEARANCES:	Over stairway	7ft	Oin.
	Over high point of plant roadway:		
1	(1) Minor roadway (2) Major roadway	17ft 20ft	Oin. Oin.
	Over railroad from top of rail	22ft	6in.
MINIMUM KORI	ZONTAL DIMENSIONS	1	
Width of walkwa		3ft	· Oin.
	y at 11001 teres I walkway or stairway	2ft	Gin.
	fixed ladder See chart P-2.		16in.
Width of way for		8ft	Oin.
VERTICAL DIM	ENSIONS		
Railing. Top of f	loor, platform, or stair, to: (1) Lower rail	1ft	gin.
	(2) Upper rail	3ft	8in.
Manhole centerli		3ft	Qin.
Valves:	See table 6.2 and chart P-2.	1	

"In taying out a plant, reference should be made to the Federal "Occupational safety and health standard", 1971, US Department of Labor (which may give smaller dimensions than above), to the Uniform Building Code, and to regulations by Individual States. For tank specing, refer to table 6.11, to the NFFA National fire codes' (volume 1, etc.), to the API Standard 2510 for LPG installations, and to the Oil insurance Association's standards for minimum spacings, No. 63 (1964). 1Equipment such as heat exchangers, compressors and turbines will require additional clearance. Check manufacturers' drawings to determine particular space requirements. Refer to figure 6.33 and table 6.5 for spacing heat schangers.

- Establish sufficient headroom for ductwork, essential electrical runs, and at least two elevations for pipe run north—south and east—west (based on clearance of largest lines, steelwork, ductwork, etc.—see figure 6.49)
- Elevations of lines are usually changed when changing horizontal direction where lines are grouped together or are in a congested area, so as not to block space where future lines may have to be routed


- Stagger flanges, with 12-inch minimum clearance from supporting steel
- Keep field welds and other joints at least 3 inches from supporting steel, building siding or other obstruction. Allow room for the joint to be made
- Allow room for loops and other pipe arrangements to cope with expansion by early consultation with staff concerned with pipe stressing.
 Notify the structural group of any additional steel required to support such loops

THERMAL MOVEMENT


Maximum and minimum lengths of a pipe run will correspond to the temperature extremes to which it is subjected. The amount of expansion or shrinkage in steel per degree change in temperature ('coefficient of expansion') is approximately the same — that is, the expansion from 40F to 41F is about the same as from 132 F to 133 F, or from 179 F to 180 F, etc. Chart 6.1 gives changes in line length for changes in temperature.

EXPANSION OF CARBON-STEEL PIPE

CHART 6.1

FOR AN APPROXIMATE ANSWER, FIND TEMPERATURE DIFFERENCE AT LEFT AND 11.40 INCHES EXPANSION PER TOO FT OF PIPE AT BOTTOM. FOR EXAMPLE, A 31.6 F RISE IN TEMPERATURE WOULD GIVE EXPANSION PER 100 FT A 8.5 INCHES, (AN ACCURATE READING FROM 70 F TO 370 F IS 3.15 - 0.05 * 2.40 INCHES.)

STRESSES ON PIPING

THERMAL STRESSES Changes in temperature of piping, due either to change in temperature of the environment or of the conveyed fluid, cause changes in length of the piping. This expansion or contraction in turn causes strains in piping, supports and attached equipment.

SETTLEMENT STRAINS Foundations of large tanks and heavy equipment may settle or tilt slightly in the course of time. Connected piping and equipment not on a common foundation will be stressed by the displacement.

References [12, p.388] and [33, p.247] give methods for calculating working pressures, stresses and strength of pipe.

FLEXIBILITY IN PIPING

To reduce strains in piping caused by substantial thermal movement, flexible and expansion joints may be used. However, the use of these joints may be minimized by arranging piping in a flexible manner, as illustrated in figure 6.1. Pipe can flex in a direction perpendicular to its length: thus, the longer an offset, or the deeper a loop, the more flexibility is gained.

COLD SPRING

Cold springing of lines should be avoided if an alternate method can be used. A line may be cold sprung to reduce the amplitude of movement from thermal expansion or contraction in order: (a) To reduce stress on connections. (b) To avoid an interference.

Figure 6.2 schematically illustrates the use of cold springing for both purposes. Cold springing in example (a) consists of making the branch in the indicated cold position, which divides thermal movement between the cold and hot positions. In example (b) the cold spring is made equal to the thermal movement.

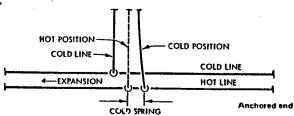

COLD SPRINGING

FIGURE 6.2

HOT POSITION——COLD POSITION

COLD SPRING

(b) TO AVOID AN INTERFERENCE

6 .1.1

CHART 6.1

FIGURES 6.1-6.2

TABLE

In the following example, cold springing is employed solely to reduce a stress:

A long pipe connected by a 90-degree elbow and flange to a nozzle may on heating expand so that it imposes a load on the nozzle in excess of that recommended. Assume that piping to the nozzle has been installed at ambient temperature, and that the pipe expands 0.75 inch when hot material flows thru it, putting a lateral (sideways) load of 600 lb on the nozzle.

If the pipe had 0.375 inch of its length removed before connection, the room-temperature lateral load on the nozzle would be about 300 lb (instead of zero), and the hot load would be reduced to about 300 lb.

The fraction of the expansion taken up can be varied. A cold spring of 50% of the expansion between the temperature extremes gives the most benefit in reducing stress. Cold springing is not recommended if an alternate solution can be used. Refer to chapter 3 of the Code for Pressure Piping, ANSI B 31.1—1955, or p.28 of the later version, ANSI B31.1.0—1967.

RESISTANCE OF PIPING TO FLOW

All piping has resistance to flow. The smaller the flow cross section and the more abrupt the change in direction of flow, the greater is the resistance and loss of pressure. For a particular line size the resistance is proportional to the length of pipe, and the resistance of fittings, valves, etc. may be expressed as a length of pipe having the same resistance to flow. Table F-10 gives such equivalent lengths of pipe for fittings, valves, etc.

Table F-11 gives pressure drops for water flowing thru SCH 40 pipe at various rates. Charts to determine the economic size (NPS) of piping are given in the Chemical Engineer's Handbook [8], and on page 134 of reference [20].

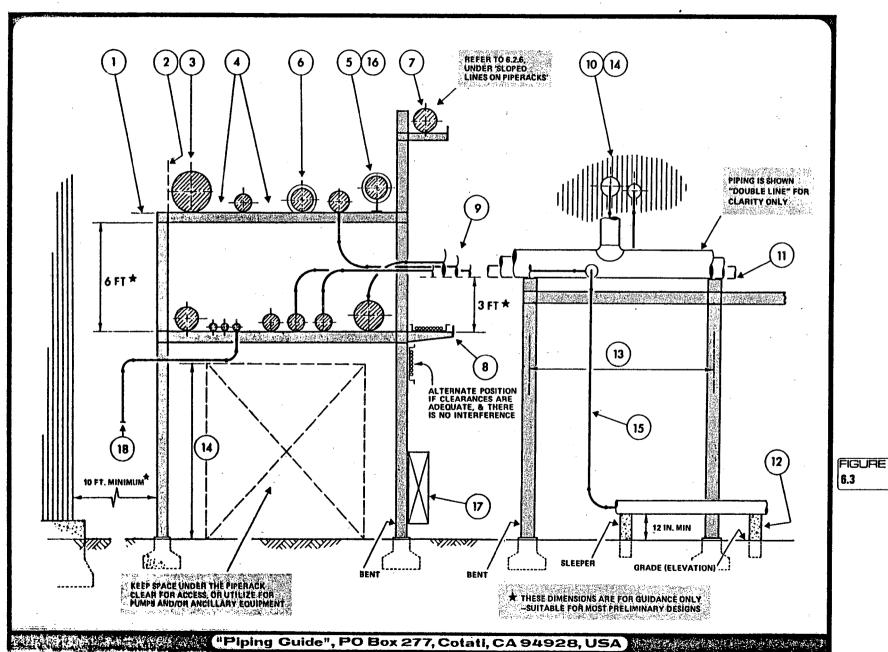
SLIDERULE FOR FLOW PROBLEMS

Problems of resistance to flow can be quickly solved with the aid of the slide-rule calculator obtainable from Tube Turns Division of Chemetron Corporation, PO Box 987, Louisville, KY 40201.

PIPERACKS 6.1.2

A 'pipeway' is the space allocated for routing several parallel adjacent lines. A 'piperack' is a structure in the pipeway for carrying pipes and is usually fabricated from steel, or concrete and steel, consisting of connected \(\tau\)-shaped frames termed 'bents' on top of which the pipes rest. The vertical members of the bents are termed 'stanchions'. Figure 6.3 shows two piperacks using this form of construction, one of which is 'double-decked'. Piperacks for only two or three pipes are made from 'T'-shaped members, termed 'tee-head supports'.

Piperacks are expensive, but are necessary for arranging the main process and service lines around the plant site. They are made use of in secondary ways, principally to provide a protected location for ancillary equipment.


Pumps, utility stations, manifolds, fire-fighting and first-aid stations can be located under the piperack. Lighting and other fixtures can be fitted to stanchions. Air-cooled heat exchangers can be supported above the piperack.

The smallest size of pipe run on a piperack without additional support is usually 2 inch. It may be more economic to change proposed small lines to 2-inch pipe, or to suspend them from 4-inch or larger lines, instead of providing additional support.

Table S-1 and charts S-2 give stress and support data for spans of horizontal pipe.

KEY FOR FIGURE 6.3

- (1) WHEN USING A DOUBLE DECK, IT IS CONVENTIONAL TO PLACE UTILITY AND SERVICE PIPING ON THE UPPER LEVEL OF THE PIPERACK
- DO NOT RUN PIPING OVER STANCHIONS AS THIS WILL PREVENT ADDING ANOTHER DECK
- (3) PLACE LARGE LIQUID-FILLED PIPES NEAR STANCHIONS TO REDUCE STRESS ON HORIZONTAL MEMBERS OF BENTS. HEAVY LIQUID-FILLED PIPES (12-in AND LARGER) ARE MORE ECONOMICALLY RUN AT GRADE-SEE NOTE (12)
- (4) PROVIDE DISTRIBUTED SPACE FOR FUTURE PIPES-APPROXIMATELY AN ADDITIONAL 25 PERCENT (THAT IS, 20 PERCENT OF FINAL WIDTH SEE TABLES A-1)
- (6) HOT PIPES ARE USUALLY INSULATED AND MOUNTED ON SHOES
- (6) WARM PIPES MAY HAVE INSULATION LOCALLY REMOVED AT SUPPORTS
- (7) THE HEIGHT OF A RELIEF HEADER IS FIXED BY ITS POINT OF ORIGIN AND THE SLOPE REQUIRED TO DRAIN THE LINE TO A TANK, Etc.
- (8) ELECTRICAL AND INSTRUMENT TRAYS (FOR CONDUIT AND CABLES) ARE BEST PLACED ON OUTRIGGERS OR BRACKETS AS SHOWN, TO PRESENT THE LEAST PROBLEM WITH PIPES LEAVING THE PIPEWAY. ALTERNATELY, TRAYS MAY BE ATTACHED TO THE STANCHIONS
- 9) WHEN CHANGE IN DIRECTION OF A HORIZONTAL LINE IS MADE, IT IS BEST ALSO TO MAKE A CHANGE OF ELEVATION (EITHER UP OR UDWIN, THIS AVOIDS BLOCKING SPACE FOR FUTURE LINES, BODGERE CHANGES IN DIRECTION OF THE WHOLE PIPEWAY OFFER THE OPPORTUNITY TO CHANGE THE ORDER OF LINES. A SINGLE DECK IS SHOWN AT AN INTERMEDIATE ELEVATION
- (10) SOMETIMES INTERFACES ARE ESTABLISHED TO DEFINE BREAKPOINTS FOR CONTRACTED WORK (WHERE ONE CONTRACTOR'S PIPING HAS TO JOIN WITH ANOTHERS). AN INTERFACE IS AN IMAGINARY PLANE WHICH MAY BE ESTABLISHED FAR ENOUGH FROM A WALL, SIDING, PROCESS UNIT, OR STORAGE UNIT TO ENABLE CONNECTIONS TO BE MADE
- (11) PIPES SHOULD BE RACKED ON A SINGLE DECK IF SPACE PERMITS
- (12) PIPING SHOULD BE SUPPORTED ON SLEEPERS AT GRADE IF ROADS, WALK-WAYS, ELE, WILL NOT BE REQUIRED OVER THE PIPEWAY AT LATER DATE. PIPING 'AT GRADE' SHOULD BE 12 INCHES OR MORE ABOVE GRADE
- (13) CURRENT PRACTICE IS TO SPACE BENTS 20—25 FEET APART. THIS SPACING IS A COMPROMISE BETWEEN THE ACCEPTABLE DEFLECTIONS OF THE SMALLER PIPES AND THE MOST ECONOMIC BEAM SECTION DESIRED FOR THE PIPERACK. PIPERACKS ARE USUALLY NOT OVER 25 FEET IN WIDTH. IF MORE ROOM IS NEEDED, THE PIPERACK IS DOUBLE OR TRIPLE-DECKED
- (14) MINIMUM CLEARANCE UNDERNEATH THE PIPERACK IS DETERMINED BY AVAILABLE MOBILE LIFTING EQUIPMENT REQUIRING ACCESS UNDER THE PIPERACK. VERTICAL CLEARANCES SHOULD BE AS SET OUT IN TABLE 6.1, BUT CANNOT NECESSARILY BE ADHERED TO AS ELEVATIONS OF PIPES AT INTERFACES ARE SOMETIMES FIXED BY PLANT SUBCONTRACTORS. IF THIS SITUATION ANISES, THE PIPING GROUP SHOULD ESTABLISH MAXIMUM AND MINIMUM ELEVATIONS WHICH THE PIPING SUBCONTRACTORS MUST WORK TO—THIS HELPS TO AVOID PROBLEMS AT A LATER DATE. CHECK THE MINIMUM HEIGHT REQUIRED FOR ACCESS WHERE THE PIPERACK RUNS PAST A UNIT OR PLANT ENTRANCE
- (15) WHEN SETTING ELEVATIONS FOR THE PIPERACK, TRY TO AVOID POCKETS IN THE PIPING. LINES SHOULD BE ABLE TO DRAIN INTO EQUIPMENT OR LINES THAT CAN BE DRAINED
- (16) GROUP HOT LINES REQUIRING EXPANSION LOOPS AT ONE SIDE OF THE PIPERACK FOR EASE OF SUPPORT-SEE FIGURE 8.1
- (17) LOCATE UTILITY STATIONS, CONTROL (VALVE) STATIONS, AND FIREHOSE POINTS ADJACENT TO STANCHIONS FOR SUPPORTING
- (18) LEAVE SPACE FOR DOWNCOMERS TO PUMPS, Etc., BETWEEN PIPERACK AND ADJACENT BUILDING OR STRUCTURE

Valves are used for these purposes:

- (1) Process control during operation
- (2) Controlling services and utilities-steam, water, air, gas and oil
- (3) Isolating equipment or instruments, for maintenance
- (4) Discharging gas, vapor or liquid
- (5) Draining piping and equipment on shutdown
- (6) Emergency shutdown in the event of plant mishap or fire

WHICH SIZE VALVE TO USE ?

Nearly all valves will be line size — one exception is control valves, which are usually one or two sizes smaller than line size; never larger.

At control stations and pumps it has been almost traditional to use line-size isolating valves. However, some companies are now using isolating valves at control stations the same size as the control valve, and at pumps are using 'pump size' isolating valves at suction and discharge. The choice is usually an economic one made by a project engineer.

The sizes of bypass valves for control stations are given in 6.1.4, under 'Control (valve) stations'.

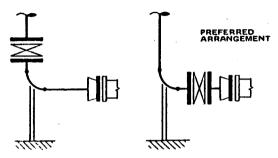
WHERE TO PLACE VALVES

See 6.3.1 for valving pumps, under 'Pump emplacement & connections'.

- Preferably, place valves in lines from headers (on piperacks) in horizontal rather than vertical runs, so that lines can drain when the valves are closed. (In cold climates, water held in lines may freeze and rupture the piping: such lines should be traced see 6.8.2)
- To avoid spooling unnecessary lengths of pipe, mount valves directly onto flanged equipment, if the flange is correctly pressure-rated. See 6.5.1 under 'Nozzle loading'
- A relief valve that discharges into a header should be placed higher than the header in order to drain into it
- Locate heavy valves near suitable support points. Flanges should be not closer than 12 inches to the nearest support, so that installation is not hampered
- For appearance, if practicable, keep centerlines of valves at the same height above floor, and in-line on plan view

OPERATING ACCESS TO VALVES

- Consider frequency of operation when locating manually-operated valves
- Locate frequently-operated valves so they are accessible to an operator from grade or platform. Above this height and up to 20 ft, use chain operators or extension stem. Over 20 ft, consider a platform or remote operation

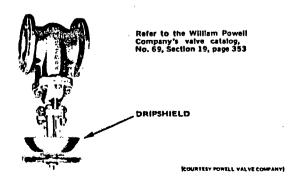

ORDER OF PREFERENCE FOR VALVE	STEM CENTERLINE ELEVATION FOR HORIZONTAL VALVES OPERATING MAINTENANCE		ABULICAL NATION ELENATION LOU HANDMHEET	MINIMUM ELEVATION OF HANDWHEEL RIM FOR TILTED VALVES (handwheel overhead)		
LOCATION			(upright, closed)	ANGLE OF STEM FROM VERTICAL	EFEAUTION WINIMUM	
1::	3'-6" to 4'-6"	3'-6" to 4'-6"	3'-9" to 4'-3"			
2nd I	7-0" to 3'-6"	1'-0" to 3'-6"	3-0" to 3-8"			
3rd t (HEAD HAZARD)	4'-6" to 6'-6"+ 15 handwheel diameter	4'-6" to 7'-9"		30° 45° 60°	eo., ee.,	
ACCEPTABLE FOR 1-INCH AND SMALLER VALVES	0'-6" to 2'-0" and 6'-9" to 7'-6"					

- 1 TO MINIMIZE HAZARD TO PERSONNEL IF VALVES ARE TO BE LOCATED AT HEIGHTS WITHIN BOA AND 36 CHOICES, AVOID POINTING STRUS INTO WALKWAYS AND MINIMIMIA AREAS. TRY TO PLACE VALVES CLOSE TO WALLS OR LARGE ITEMS WHICH ARE CLEARLY SEEM.
- Infrequently-used valves can be reached by a ladder—but consider alternatives
- Do not locate valves on piperacks, unless unavoidable
- Group valves which would be out of reach so that all can be operated by providing a platform, if automatic operators are not used
- If a chain is used on a horizontally-mounted valve, take the buttom of the loop to within 3 ft of floor level for safety, and provide a hook nearby to hold the chain out of the way —see 3.1.2, under 'Chain'
- Do not use chain operators on screwed valves, or on any valve 1½-inches and smaller
- With lines handling dangerous materials it is better to place valves at a suitably low level above grade, floor, platform, etc., so that the operator does not have to reach above head height

ACCESS TO VALVES IN HAZARDOUS AREAS

- Locate main isolating valves where they can be reached in an emergency such as an outbreak of fire or a plant mishap. Make sure that personnel will be able to reach valves easily by walkway or automobile
- Locate manually operated valves at the plant parimeter, or outside the hazardous area
- Ensure that automatic operators and their control lines will be protected from the effects of fire
- Make use of brick or concrete walls as possible fire shields for valve stations
- Inside a plant, place isolating valves in accessible positions to shut feed lines for equipment and processes having a fire risk
- Consider the use of automatic valves in fire-fighting systems to release
 water, foam and other fire-fighting agents, responding to heat-fusible
 links, smoke detectors, etc., triggered by fire or undue rise in temperature
 —advice may be obtained from the insurer and the local fire department

- Consider providing lifting davits for heavy valves difficult to move by other means, if access is restricted
- If possible, arrange valves so that supports will not be on removable spools:


 A plug valve requiring lubrication must be easily accessible, even though it may not be frequently operated

MAKE MAINTENANCE SAFE

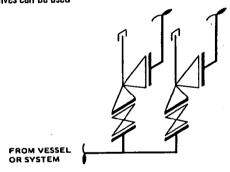
 Use line-blind valves, spectacle plates or the 'double block and bleed' where positive shutoff is required either for maintenance or process needs — see 2.7

ORIENTATION OF VALVE STEMS

- Do not point valve stems into walkways, truckways, ledder space, etc.
- Unless necessary, do not arrange gate and globe valves with their stems puinting downward (at any engle below the horizontal), as:—
 - (1) Sediment may collect in the gland packing and score the stem.
 - (2) A projecting stem may be a hazard to personnel.
- If an inverted position is necessary, consider employing a dripshield:

Consider valve-closing time in shutting down or throttling large lines. Rapid closure of the valve requires rapid dissipation of the liquid's kinetic energy, with a risk of rupturing the line. Long-distance pipelines present an example of this problem.

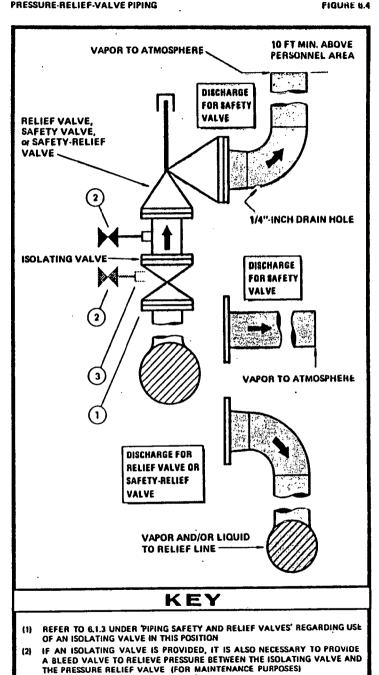
A liquid line fitted with a fast-closing valve should be provided with a standpipe upstream and close to the valve to absorb the kinetic energy of the liquid. A standpipe is a closed vertical branch on a line: air or other gas is trapped in this branch to form a pneumatic cushion.


IF THERE IS NO P&ID

- Provide valves at headers, pumps, equipment, etc., to ensure that the system will be pressure-tight for hydrostatic testing, and to allow equipment to be removed for maintenance without shutting down the system
- Provide isolating valves in all small lines branching from headers—for example, see figure 6.12
- Provide isolating valves at all instrument pressure points for removal of instruments under operating conditions
- Provide valved drains on all tanks, vessels, etc., and other equipment which may contain or collect liquids
- Protect sensitive equipment by using a fast-closing check valve to stop backflow before it can gather momentum
- Consider butt-welding or ring-joint flanged valves for lines containing hazardous or 'searching' fluids. Hydrogen is especially liable to leak
- Consider seal welding screwed valves if used in hydrocarbon service —see chart 2.3 (inset sketch)
- Provide sufficient valves to control flows
- Consider providing a concrete pit (usually about 4 ft x 4 ft) for a valve which is to be located below grade
- Consider use of temporary closures for positive shutoff—see 2.7
- Provide a bypass if necessary for equipment which may be taken out of service
- Provide a bypass valve around control stations if continuous flow is required. See 6.1.4 and figure 6.6. The bypass should be at least as large as the control valve, and is usually globe type, unless 6-inch or larger, when a gate valve is normally used (see 3.1.4, under 'Gate valve')
- Provide an upstream isolating valve with a small valved bypass to equipment which may be subject to fracture if heat is too rapidly applied on opening the isolating valve. Typical use is in steam systems to lessen the risk of fracture of such things as castings, vitreous-lined vessels, etc.
- Consider providing large gate valves with a valved bypass to equalize pressure on either side of the disc to reduce effort needed to open the valve

1.3

TABLE 6.2


- Refer to 3.1.9 for valve orientation
- Extend safety-valve discharge risers that discharge to atmosphere at least 10 ft above the roof line or platform for safety. Support the vent pipe so as not to strain the valve or the piping to the valve. Pointing the discharge line upward (see figure 6.4) imposes less stress when the valve discharges than does the horizontal arrangement
- The downstream side of a safety valve should be unobstructed and involve the minimum of piping. The downstream side of a relief or safety-relief valve is piped to a relief header or knockout drum-see 6.11.3, under 'Venting gases', and 6.12, under 'Relieving pressureliquids'
- Pipe exhausting to atmosphere is cut square, not at a slant as formerly done, as no real advantage is gained for the cost involved
- Normally, do not instal a valve upstream of a pressure-relief valve protecting a vessel or system from excessive pressure. However, if an isolating valve is used to facilitate maintenance of a pressure-relief valve, the isolating valve is 'locked open'-sometimes termed 'car sealed open' (CSO)
- In critical applications, two pressure-relief valves provided with isolating valves can be used

The installation of pressure-relieving devices and the use of isolating valves in lines to and from such devices is governed by the Code for Pressure Piping. ANSI B31 and the ASME Boiler and Pressure Vessel Code.

INSTALLING BUTTERFLY VALVES

- Ensure that the disc has room to rotate when the valve is installed, as the disc enters the piping in the open position
- Place butterfly valves with integral paskets between welding-neck or socket-welding flanges-see 3.1.6, under 'Butterfly valve'. The usual method of welding a slip-on flange (see figure 2.7) will not give an adequate seal, unless the pipe is finished smooth with the face of the flange

IF A SPOOL BETWEEN THE TWO VALVES IS NOT USED, THE BLEED VALVE MAY

BE PLACED AS SHOWN IF THE VALVE'S BODY CAN BE TAPPED

"Piping Guide", PO Box 277, Colali, CA 94928, USA

A control station is an arrangement of piping in which a control valve is used to reduce and regulate the pressure or rate of flow of steam, gas, or liquid.

Control stations should be designed so that the control valve can be isolated and removed for servicing. To facilitate this, the piping of the stations should be as flexible as circumstances permit. Figure 6.5 shows ways of permitting control valve removal in welded or screwed systems. Figure 6.6 shows the basic arrangement for control station piping.

The two isolating valves permit servicing of the control valve. The emergency bypess valve is used for menual regulation if the control valve is out of action.

The bypass valve is usually a globe valve of the same size and pressure rating as the control valve. For manual regulation in lines 6-inch and larger, a gate valve is often the more economic choice for the bypass line—refer to 3.1.4, under 'Gate valve'.

Figures 6.7—11 show other ways of arranging control stations—many more designs than these are possible. These illustrations are all schematic and can be adapted to both welded and screwed systems.

DESIGN POINTS

- For best control, place the control station close to the equipment it serves, and locate it at grade or operating platform level
- Frovide a pressure gage connection downstream of the station's valves.
 Depending on the operation of the plant, this connection may either be fitted with a permanent pressure indicating gage, or be used to attach a gage temporarily (for checking purposes)
- Preferably, do not 'sendwich' valves. Place at least one of the isolating valves in a vertical line so that a spool can be taken out allowing the control valve to be removed
- If the equipment and piping downstream of the station is of lower pressure rating than piping upstream, it may be necessary to protect the downstream system with a pressure-relief valve
- Provide a valved drain near to and upstream of the control valve. To save space, the drain is placed on the reducer. The drain valve allows pressure between the isolating valve(s) and control valve to be released. One drain is used if the control valve fails open, and two drains (one each side of the control valve) if the control valve fails closed
- Locate stations in rack piping at grade, next to a bent or column for easy supporting

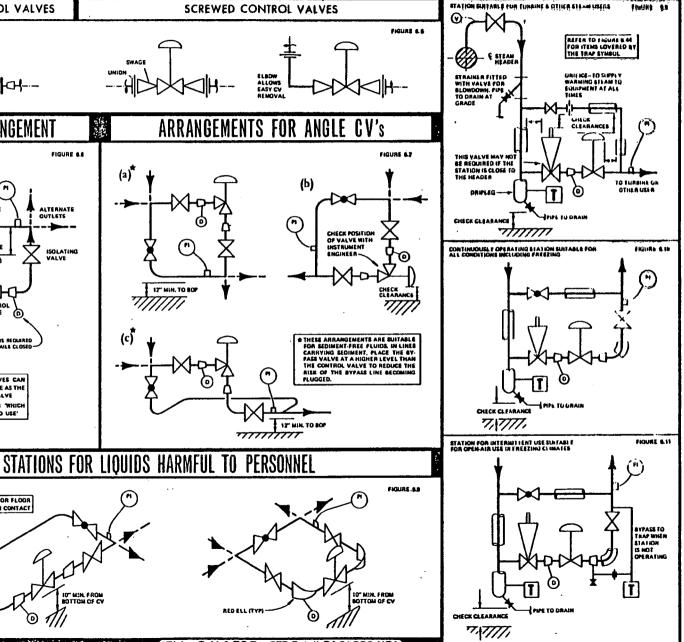
DRAFTING THE STATION

In plan view, instead of drawing the valves, etc., the station is shown as a rectangle labeled 'SEE DETAIL "X" ' or 'DWG "Y"—DETAIL "X" ', if the olevational detail appears on another sheet. See chart 5.7.

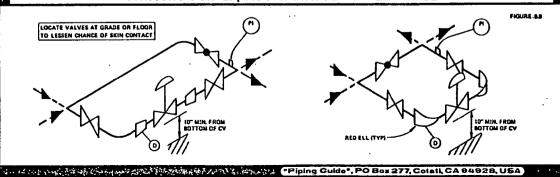
A utility station usually comprises three service lines carrying steam, compressed air and water. The steam line is normally %-inch minimum, and the other two services are usually carried in 1-inch lines. These services are for cleaning local equipment and hosing floors. (Firewater is taken from points fed from an independent water supply.)

The steam line is fitted with a globe valve and the air and water lines with gate valves. All are terminated with hose connections about 3½ ft above floor or grade. A utility station should be located at some convenient steel column for supporting, and all areas it is to serve should be reachable with a 50-ft hose.

Most companies have a standard design for a utility station. Figure 6.12 shows a design for a standard station which can be copied onto one of the design drawings for reference, or otherwise supplied with the drawings to the erecting contractor who usually runs the necessary lines. A notation used on plan views to indicate the station and services required is:


SERVICES WATER, AIR, STEAM	WATER, AIR	WATER, STEAM	AIR, STEAM
STATION WAS	WA	WIS	AS
Eri 14.6 (day) (1961-197)			

WALVESTAVES REQUIRED VALVESTAVES REQUIRED OF LOWITH VALVES MISTERINES OF LOWITH VALVES OF LOWITH V


If subject to freezing conditions, utility station steam lines are usually trapped (otherwise, the trap can be omitted). Water is sometimes run underground in cold climates using an additional underground cock or plug valve with an extended key for operating, and a self-draining valve at the base of the riser. Another method to prevent freezing, is to run the water and steam lines in a common insulation.

FIGURES 6.4 & 6.12

SCHEMATIC CONTROL STATION ARRANGEMENTS PIPING FITTINGS ALLOWING CONTROL VALVE REMOVAL FLANGED CONTROL VALVES SCREWED CONTROL VALVES FIGURE & & ELBOW ALLOWS FIGURE 6.6 FIGURE 6.7 (b) ALTERNATE FEEDS SYPASS VALVE ALTERNATE QUILETS CHECK POSITION CHECK OF VALVE WITH INSTRUMENT CLEARANCE ISOLATING ISOLATING 12" MIN. TO BOP CONTROL **(b)** & THESE ARRANGEMENTS ARE SUITABLE DOWNSTREAM GRAIN IS REQUIRED IF CONTROL VALVE FAILS CLOSED-

FIGURES 6.5 -8,1

ISOLATING VALVES CAN BE THE SAME SIZE AS THE CONTROL VALVE SEE & 1.3 UNDER WHICH

SIZE VALVE TO USE

In the open, single pipes are usually routed so that they may be supported by fixtures to buildings or structures. A group of parallel pipes in the open is normally supported on a piperack—see 6.1.2.

Within a building, piping is routed primarily with regard to its process duty and secondarily with regard to existing structural steelwork, or to structural steel which may be conveniently added. Separate pipe-holding structures inside buildings are rare.

FUNCTIONS OF THE SYSTEM OF SUPPORT

6.2.1

The mechanical requirements of the piping support system are:

- (1) To carry the weight of the piping filled with water (or other liquid involved) and insulation if used, with an ample safety margin use a factor of 3 (= ratio of load just causing failure of support or hanger to actual load) or the safety factor specified for the project. External loading factors to be considered are the wind loads, the probable weight of ice buildup in cold climates, and seismic shock in some areas
- (2) To ensure that the material from which the pipe is made is not stressed beyond a safe limit. Maximum tensile stress occurs in the pipe cross sections at the supports. Table S-1 gives spans for steel and aluminum pipe at the respective stress limits 4000 and 2000 PSI. Charts S-2 give the maximum overhangs if a 3-ft riser is included in the span. The system of supports should minimize the introduction of twisting forces in the piping due to offset loads on the supports—the method of cantilevered sections set out in 6.2.4 substantially eliminates torsional forces
- (3) To allow for draining. Holdup of liquid can occur due to pipes sagging between supports. Complete draining is ensured by making adjacent supports adequately tilt the pipe—see 6.2.6
- (4) To permit thermal expansion and contraction of the piping—see 6.1.1, under 'Stresses on piping'
- (5) To withstand and dampen vibrational forces applied to the piping by compressors, pumps, etc.

PIPING SUPPORT GROUP RESPONSIBILITIES

6.2.2

A large company will usually have a specialist piping support group responsible for designing and arranging supports. This group will note all required supports on the piping drawings (terminal job) and will add drawings of any special details.

The piping support group works in cooperation with a stress analysis group or the two may be combined as one group—which investigates areas of stress due to thermal movement, vibration, etc., and makes recommendations to the piping group. The stress group should be supplied with preliminary layouts for this purpose by the piping group, as early as possible. Supports for lines smaller than 2-inch and non-critical lines are often left to the 'field' to arrange, by noting 'FIELD SUPPORT' on the piping drawings.

LOADS ON SUPPORTS

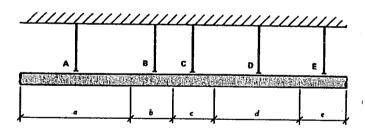
Refer to table P-1, which lists the weights per foot of pipe and contained water (see 6.11.2). Weights of fittings, flanges, bolts, valves and insulation are given in table W-1, reproduced by permission of the Bergen-Paterson Pipesupport Corporation.

ARRANGING POINTS OF SUPPORT

6.2.3

Pipe supports should be arranged bearing in mind all five points in 6.2.1. Inside buildings, it is usually necessary to arrange supports relative to existing structural steelwork, and this restricts choice of support points.

The method of support set out in 6.2.4 is ideal: In practice, some compromize may be necessary. The use of dummy legs and the addition of pieces of structural steel may be needed to obtain optimal support arrangements.

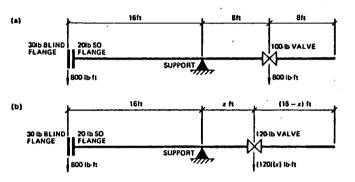

CALCULATING PREFERRED POINTS OF SUPPORT

6.2.4

Ideally, each point of support would be at the center of gravity of an associated length of piping. Carrying this scheme thru the entire piping system would substantially relieve the system from twisting forces, and supports would be only stressed vertically. A method of balancing sections of pipe at single support points is illustrated for a straight run of pipe in figure 6.13.

BALANCING SECTIONS OF PIPE

FIGURE 6.13



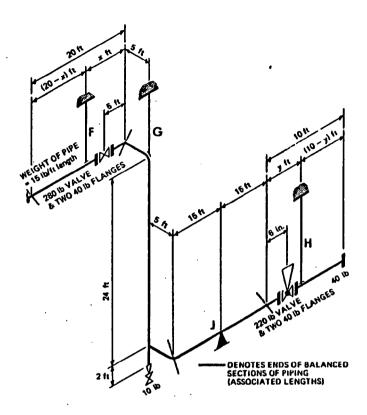
Consider hanger B associated with a length of pipe b. This length of pipe is supported by B, located at its center of gravity, which is at the midway point for a straight length of uniform pipe. Hangers A, C, D and E are likewise placed at the respective centers of gravity of lengths of pipe a, c, d and e. If any length of pipe is removed, the balance of the rest of the line would be unaffected. Each of the hangers must be designed to adequately support the load of the associated piping—see 6.2.1, point (1).

The presence of heavy flanges, valves, etc., in the piping will set the center of gravity away from the midpoint of the associated length. Calculation of support points and loadings is more quickly done using simple algebra. Answers may be found by making trial-and-error calculations, but this is much more tedious.

FIGURES 6.5-6.11&6.13 In figure 6.14(a), the moment about the support of the two flanges is (30 + 20)(16) = 800 lb-ft, counter-clockwise. The moment of the 100-lb valve about the support is (100)(8) = 800 lb-ft, clockwise. As the lengths of pipe each side of the support are about the same, they may be omitted from the moment equation. The problem is simplified to balancing the valve and flances.

USE OF MOMENTS FIGURE 6.14

Suppose it was required to balance this length of piping with a 120 lb valve on the right—where should the 120 lb valve be placed?


Referring to figure 6.14(b), if x represents the unknown distance of the 120 lb valve from the support, the piping section would be in balance if:

(50)(16) = (120)(x).
That is, if
$$x = (50)(16)/(120) = (800)/(120) = 6$$
 ft 8 in.

A more involved example follows:-

Figure 6.15 shows a length of 4-inch piping held by the hangers **F**, **G**, and **H**, and support **J**. The lengths of associated piping are shown by dashed separation lines. The weights of pipe and fittings are shown on the drawing. The 4-inch pipe is assumed to weigh 15 lb per foot of length. Welded elbows and tees are assumed to weigh the same as line pipe.

First consider the section associated with hanger F. The weight of pipe to the left of F is (15)(20-x) lb, and as its center of gravity is at (20-x)/(2) ft, its moment on the hanger is $(15)(20-x)^2/(2)$ lb-ft. The heavy valve and flanges are assumed to have their mass center 5 ft from the end, and their moment is (x-5)(360) lb-ft. Ignoring the pipe 'replaced' by the valve, the weight of pipe to the right of F is (15)(x) lb and its moment about F is (15)(x)(x)/(2) lb-ft. As the associated length is in balance:

$$(15)(20-x)^2/(2) = (360)(x-5) + (15)(x^2)/(2)$$

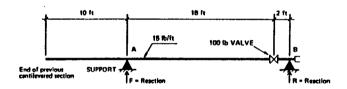
$$x = (80)/(11), \text{ or about 7 ft 3 in.}$$

The x^2 terms canceled—this must be so, as there can physically be only one value for x. The load on hancer F is (20)(15) + (360) or 660 lb.

The support J should be at the center of the associated length of pipe, as already shown in figure 6.15, and the load on the support is (30)(15), or 450 lb.

The hanger G is easily seen to be suitably placed, as there is 5 ft of 4-inch pipe overhanging each side. Only the load on the hanger need be calculated, which is (5+5+24+2)(15)+(10), or 550 lb.

The location of hanger H has to be found by a calculation like that fur hanger F, except that the heavy terminal flange has also to be taken into account. The moment equation in lb-ft is:


$$(300)(y-0.5) + (15)(y^2)/(2) = (15)(10-y)^2/(2) + (40)(10-y)$$

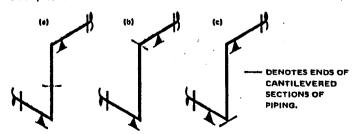
which gives y as nearly 2 ft 8 in.

The load on hanger H is about (220)+(3)(40)+(15)(10), or 490 lb.

The supported length at one end of a run of piping may be cantilevered in the same way as the other lengths, and this has the advantage that if the piping terminates at a nozzle the load on the nozzle is minimal. However, it may be necessary to use or arrange a support at or near the end of a piping run. If the end of the run is vertical, the end support should be designed to carry the vertical run. The problem is usually more complex when the end of the run is horizontal.

The locations of fittings and support points will usually be already defined, and the problem is to calculate the reaction on the terminal support, and to see that the support is designed to withstand the load on it. In calculating the load on the terminal support, it should be made certain that the load is downward—with some arrangements, the piping would tend to raise itself off the terminal support (negative load) and if this type of arrangement is not changed, the terminal support will have to anchor the piping.

The sketch shows a horizontal end arrangement. Taking moments in Ib-ft about the support A:

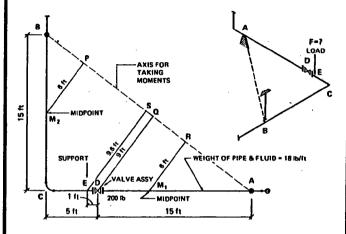

$$(15)(10)(\frac{1}{2})(10) = (15)(18 + 2)(\frac{1}{2})(18 + 2) + (100)(18) - (R)(18 + 2)$$

which gives $R = 202\frac{1}{2}$ lb.

The reaction, F, on the support A can be calculated by taking moments about the support B or another axis, or more simply by equating vertical forces:

$$F + 202\% = (15)(10+18+2) + 100 = 550$$
, which gives $F = 347\%$ lb.

PROBLEM OF THE RISER


Supports for lines changing in direction can be calculated by the cantilever method. Sketch (a) below shows that the weight of the vertical part of the piping can be divided between two cantilevered sections in any proportion suited to the available support points. Sketches (b) and (c) show the vertical piping associated wholly with the left- or right-hand cantilevered sections. The piping may be supported by means of a dummy leg, if direct support is not practicable.

GRAPHIC METHOD FOR FINDING LOADS ON SUPPORTS

The following graphical method permits quick calculation of bearing loads for 'corner' piping arrangements.

PROBLEM To find the load to be taken by a support to be placed at point 'E' in the piping arrangement shown:

SOLUTION

- [1] Draw the plan view to any convenient scale (as above)
- [2] Add the axis line AB (this must pass thru points of support)
- [3] Divide the run of piping into parts. Piping between the support points A and B is considered in three parts: (1) The valve. (2) The length of pipe BC. (3) The length of pipe AC—the short piece of line omitted for the valve is ignored, and the effect of the elbow neelected.
- [4] Drop perpendiculars from midpoints M₁ and M₂, the valve and support point E to the axis line.
- [5] Take moments about the axis line, measuring the lengths of perpendiculars M₂P, ES, DQ and M₁R directly from the plan view (these lengths are noted on the sketch):

which gives the load on the support at E as:

F = 581 lb

EXTENSION OF THE METHOD

The same method can be used if the angle at the corner is different from 90 degrees, or if vertical lines are included in the piping.

MOTE

- [1] The axis line must pass thru points of support. If the axis line is not horizontal, the lengths of the perpendiculars are still measured directly from the plan view.
- [2] This method does not take into account additional moments due to bending and torsion of pipe. However, it is legitimate to calculate loads on supports as if the pipe is risid.

16 15 M. Piping Guide", PO Box 277, Cotati, CA 94928, USA

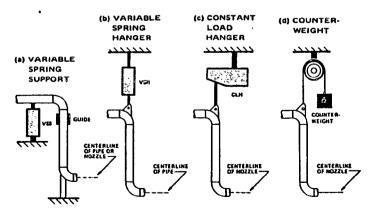
FIGURES 6.14 & 6.15

This problem often occurs when running pipes from one piperack to another, with a change in elevation, as in figure 6.15. Too much overhang will stress the material of the pipe beyond a safe limit near one of the supports adjacent to the bend, and the designer needs to know the allowable overhang.

The stresses set up in the material of the pipe set practical limits on the overhangs allowed at corners. The problem is like that for spans of straight pipe allowable between supports. Overhangs permitted by stated limits for stress are given in charts S-2.

PIPE SUPPORTS ALLOWING THERMAL MOVEMENT 6.2.5

Piping subject to large temperature changes should be routed so as to flex under the changes in length—see figure 6.1. However, hangers and supports must permit these changes in length. Figures 2.72 A & B show a selection of hangers and supports able to accommodate movement. For single pipes hung from rod or bar hangers, the hanger should be sufficiently long to limit total movement to 10 degrees of arc.


SPRING SUPPORTS

There are two basic types of spring support: (1) Variable load. (2) Constant load—refer to 2.12.2. Apart from cost, the choice between the two types depends on how critical the circumstances are. For example, if a vertical line supported on a rigid support at floor level is subject to thermal movement, a variable-spring hanger or support at the top of the line is suitable—see figure 6.16 (a) and (b).

If a hot line comes down to a nozzle connected to a vessel or machine, and it is necessary to keep the nozzle substantially free from vertical loading, a constant-load hanger can be used—see figure 6.16(c). Cheaper alternate methods of supporting the load are by a cable-held weight working over a pulley, as illustrated in figure 6.16(d), or by a cantilevered weight.

VARIABLE- & CONSTANT-LOAD HANGERS & SUPPORTS

FIGURE 6.16

SLOPED LINES AVOID POCKETING AND AID DRAINING

As pipe is not completely rigid, sagging between points of support must occur. In many instances, sagging is acceptable, but in others it must be restricted.

The nature of the conveyed material, the process, and flow requirements determine how much sagging can be accepted. Sagging is reduced by bringing adjacent points of support closer. Pocketing of liquid due to sagging can be eliminated by sloping the line so that the difference in height between adjacent supports is at least equal to triple the deflection (sag) at the midpoint. Lines which require sloping include blowdown headers, pressure-relief lines, and some process, condensate and air lines. (Air lines are discussed in 6.3.2, and draining of compressed-air lines in 6.11.4.)

Complete draining may be required for lines used in batch processing to avoid contamination, or where a product held in a line may degenerate ur polymerize, or where solids may settle and become a problem,

In freezing conditions, lines conveying condensate from traps to drains are sloped; condensate headers may be sloped (as an alternative to steam tracing), depending on the rate of flow.

In the past, steam lines were sloped to assist in clearing condensate, but the improved draining is now not considered to be worth the difficulty and expense involved.

SLOPED LINES ON PIPERACKS

Sloped lines can be carried on brackets attached to the piperack stanchions (see figure 6.3). To obtain the required change in elevation at each bent, the brackets may be attached at the required elevations; alternately, a series of brackets can be arranged at the same elevation and the slope obtained by using shoes of different sizes—this method leads to fewer construction problems.

Shoes of graded sizes are also the best method for sloping smaller lines on the piperack. It is not usual or desirable to hang lines from the piperack unless necessary vertical clearances can be maintained.

SLOPED LINES IN BUILDINGS

Inside a building, both large and small sloped lines can rest on steel brackets, or be held with hangers. Rods with turnbuckles are used for hangers on lines required to be sloped. Otherwise, drilled flat bar can be used. (Adjustable brackets are available from the Unistrut and Kindorf ranges of support hardware.)

SUPPORTING PIPE MADE FROM PLASTICS OR GLASS 6.2.7

Pipe made either from flexible or rigid plastics cannot sustain the same span loads as metal pipe, and requires a greater number of support points. One way of providing support is to lay the pipe upon lengths of steel channel sections or half sections of pipe, or by suspending it from other steel pipes. The choice of steel section would depend on the span loads and the size and type of plastic pipe.

For glass process and drain lines, hangers for steel pipe are used, provided that they hold the pipe without causing local strains and are padded so as not to crack the pipe. Rubber and asbestos paddings are suitable. Uninsulated horizontal lines from 1 to 6 inch in size containing gas or liquid of specific gravity less than 1.3 should be supported at 8 to 10 it intervals. Couplings and fittings should be about 1 ft from a point of support.

6.2.6

GENERAL

- Design hangers for 2½-inch and larger pipe to permit adjustment after installation
- If piping is to be connected to equipment, a valve, etc., or piping assembly that will require removal for maintenance, support the piping so that temporary supports are not needed
- Base load calculations for variable-spring and constant-load supports on the operating conditions of the piping (do not include the weight of hydrostatic test fluid)
- If necessary, suspend pipes smaller than 2-inch nominal size from 4-inch and larger pipes

DUMMY LEGS

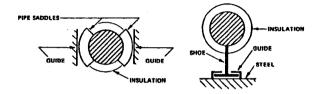
Table 6.3 suggests sizes for dummy legs. The allowable stress on the wall of the elbow or line pipe to which the dummy leg is attached sets a maximum length for the leg. The advice of the stress group should be sought.

APPROXIMATE SIZES FOR DUMMY LEGS

TABLE 6.3

NPS of Piping (Inches)	2	3	4	6	8	10	12	14
NPS of Pipe forming Leg (in.)	1%	2	3	4	6	8	8	10
Size of W-Flange (In.)					6	8	8	10

ANCHORS


Anchors are required as stated in the following two points. However, advice from the stress and/or piping support groups should be obtained:

- Provide anchors as necessary to prevent thermal or mechanical movement overlanding nazzles on vessels or machinery, branch connections, cast-iron valves, etc.
- Provide anchors to control direction of expansion; for example, at bettery limits and on piping leaving units, so that movement is not transmitted to piping on a piperack

SHOES, GUIDES, & SADDLES

- Do not use shoes on uninsulated pipes, unless required for sloping purposes. For reduced friction where lines are long and subject to movement, slide plates are an alternative—see 2,12,2.
- Use of wye-type shoes enables pipes to be placed on the shoe before welding and makes construction easier — see figure 2.72A
- Welding the pipe directly to shoes is not always acceptable; for example with rubber-lined pipe. Bolted or strepped shoes are more suitable

- Check the code pertinent to the project, as it may prohibit 'partial' welds for supports—that is, welds that do not encircle the pipe
- Provide slots in shoes to accept the straps or wires used to hold insulation to pipe
- Provide guides for long straight pipes subject to thermal movement, either by guiding the shoe or by guiding pipe support saddles attached to the pipe, as shown:

 For better stress distribution in the pipe wall, pipe support saddles are usually used on large lines. They can also be used for lines that may twist over when moving

SUPPORTING VALVES

- Provide support as close as possible to heavy valves, or try to get valves moved close to a suitable point where support can be provided
- Large valves and equipment such as meters located at grade will usually require a concrete foundation for support

WELDING PIPE-SUPPORT & PLATFORM BRACKETS TO VESSELS, Etc.

- Instruct the vendor to add brackets required on pressure vessels prior to stress-relieving and testing—otherwise, retesting and recertification may be obligatory
- It is permissible to specify brackets to be welded to non-pressure vessels provided that the strength of the vessel is not degraded

SUPPORTING PIPE AT NOZZLES

Ensure that nozzles on machinery, compressors, pumps, turbines, etc., are substantially free from loads transmitted by the piping, which may be due to the weight of the piping, or to movement in the piping resulting from contraction, expansion, twisting, vibration or surging. Equipment suppliers will sometimes state maximum loadings permissible at nozzles. Excessive loads applied to nozzles on machinery can force it from alignment and may cause damage.

Piping to pumps, turbines, etc., should be supported adequately, but should allow the equipment to be removed. Supports for this piping are best made integral with the concrete foundations, especially if thermal movement occurs and should be on the same level as the base of the equipment, so that on heating or cooling, vertical differential expansion and contraction between supports and equipment will be minimized.

6 .2.4

FIGURE 6.16

TABLE 6.3

PUMP EMPLACEMENT & CONNECTIONS

6.3.1

TYPICAL PIPING FOR CENTRIFUGAL PUMPS

Most pumps used in industry are of the centrifugal type. Figures 6.17 and 6.18 show typical piping and fittings required at a centrifugal pump together with the valves necessary to isolate the pump from the system.

The check valve is required to prevent possible flow reversal in the discharge line. A permanent in-line strainer is normally used for screwed suction piping and a temporary strainer for butt-welded/flanged piping. The temporary strainer is installed between flanges—see figure 2.69. A spool is usually required to facilitate removal.

Although centrifugal pumps are provided with suction and discharge ports of cross-sectional area large enough to cope with the full rated capacity of the pump, it is often necessary with thick fluids or with long suction lines to use an inlet pipe of larger size than the inlet port, to avoid cavitation. Cavitation is the pulling by the pump of vapor spaces in the pumped liquid, causing reduction of pumping efficiency, noisy running, and possible impellor and bearing damage. Refer to 6.1.3, under 'Which size valve to use?'.

Most pumps have end suction and top discharge. Limitations on space may require enother configuration, such as top suction with top discharge, side suction with side discharge, etc. Determination of nozzle orientation takes place when equipment layout and piping studies are made.

AUXILIARY, TRIM, or HARNESS PIPING

Pumps, compressors and turbines may require water for cooling bearings, for mechanical seals, or for quenching vapors to prevent their escape to atmosphere. Piping for cooling water or seal fluid is usually referred to as auxiliary, trim, or harness piping, and the requirement for this piping is normally shown on the P&ID. This piping is usually shown in isometric view on one of the piping drawings.

In order to cool the gland or seal of a centrifugal pump and ensure proper sealing, it is usually supplied with liquid from the discharge of the pump, by a built-in arrangement, or piped from a connection on the pump's casing. The gland may be provided with a cooling chamber, requiring piped water. If a pump handles hot or volatile liquid, seal liquid may be piped from an external source.

DRAINING

Each pump is usually provided with a drain hub 4 to 6 inches in diameter, positioned about 9 inches in front of the pump foundation on the centerline of the pump. The drain hub is piped to the correct sewer or effluent line—see 6.13. If two small pumps have a common foundation, they can share the same drain hub.

Most centrifugal pumps have baseplates that collect any leakage from the pump. The baseplate will have a threaded connection which is piped to the drain hub. Waste seal water is also piped to the drain hub-see figure 6.19.

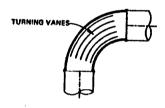
- In outside installations in freezing climates, provide a valved drain from the pump's casing
- Provide a short spool for a 3/4-inch drain between the on/off valve and the check valve, to drain the discharge line. If the valve is large enough, the drain can be made by drilling and tapping a boss on the check valve, as shown in figure 6.17, note (3), in which instance no spool is required.

INSTALLATION

- Do not route piping over the pump, as this interferes with maintenance.
 It is better to bring the piping forward of the pump as shown in figure 6.17
- Leave vertical clearance over pumps to permit removal for servicing
 —sufficient headroom must be left for a mobile crane for all but the smaller pumps, unless other handling is planned
- If pumps positioned close to supply tanks are on separate foundations, avoid rigid piping arrangements, as the tanks will 'settle' in the course of time.
- Locate the pump as closely as practicable to the source of liquid to be pumped from storage tanks, sumps, etc., with due consideration for flexibility of the piping
- Position valves for ease of operation placing them so they are unlikely to be damaged by traffic and will not be a hazard to personnel—see table 6.2 and chart P-2
- The foundation may be of any material that has rigidity sufficient to support the pump baseplate and withstand vibration. A concrete foundation built on solid ground or a concrete slab floor is usual. The pump is positioned, the height fixed (using packing), and the grout is then poured. Grout thickness is not usually less than one inch—see figure 6.17
- A pit in which a pump is installed should have a drain, or have a sump that can be drained or pumped out
- Make the concrete foundation at least as large as the baseplate, and ensure that concrete extends at least 3 inches from each bolt

VALVES 1

- Valves are 'line size' unless shown otherwise on the P&ID. See 6.1.3 under 'Which size valve to use?'
- Use tilting disc or swing check valves for preference
- Do not use globe valves for isolating pumps. Suction and discharge line isolating valves are usually gate valves, but may be other valves offering low resistance to flow


SUCTION LINE

To avoid cavitation, the pump must be at the correct elevation, related to the level or head of the liquid heing pumped. If the location of the pump has not previously been established on an equipment arrangement drawing, refer to the engineer involved.

Concentric reducers are used in lines 2-inch and smaller. Eccentric reducers are used in lines 2½-inch and larger, and are arranged to avoid: (1) Creating a vapor space. (2) Creating a pocket which would need to be drained. These conditions set the configuration of the reducer—that is, whether it is to be installed 'top flat' or 'bottom flat'.

If a centrifugal pump has the suction nozzle at the end (in line with the drive shaft), an elbow may be connected directly to the nozzle at any orientation.

If a pump has the suction nozzle at the side with split flow to the impellor provide a straight run of pipe equal to 3 to 5 pipe diameters of the suction line to connect to the nozzle. Alternately, an elbow may be connected to the suction nozzle, but it must be arranged in a plane at 90 degrees to the driving shaft, to promote equal flow to both sides of the impellor. If an elbow must be in the same plane as the driving shaft of the pump, consider the use of turning (or splitter) vanes to induce more even flow. Uneven flow causes damage to the impellor and bearings.

- Route suction lines as directly as possible so as not to starve the pump and incur the risk of cavitation
- If the pump draws liquid from a sump at a lower elevation, provide a combined foot valve and strainer. A centrifugal pump working in this situation requires priming initially—provide for this by a valved branch near the inlet port, or by other means
- Provide a strainer in the suction line—see figures 6.17 thru 6.21. Do
 not place a temporary startup screen immediately downstream of a
 valve, as debris may back up and prevent the valve from being closed

DISCHARGE LINE

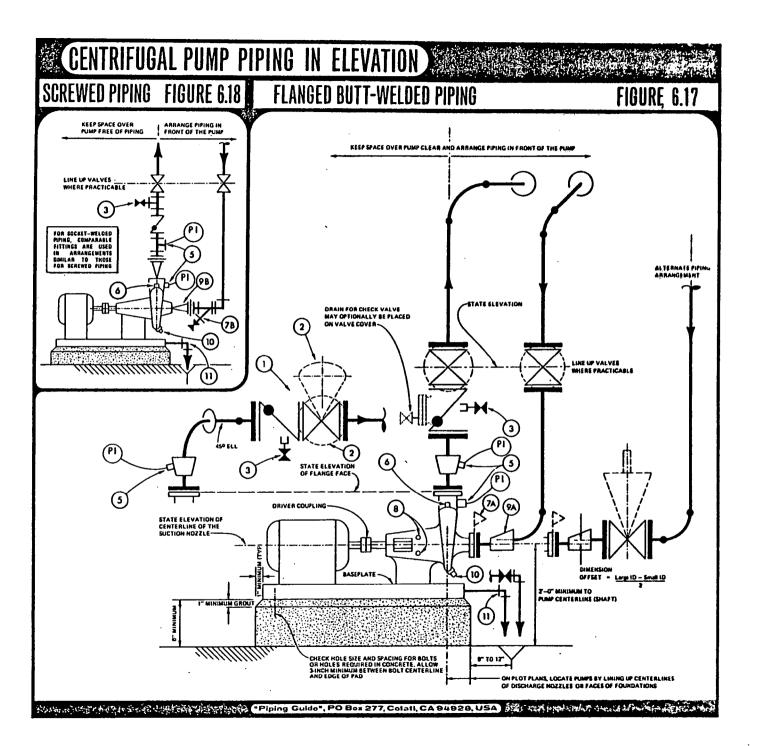
The outlet pipe for centrifugal and other non-positive displacement pumps is in most cases chosen to be of larger bore than the discharge port, in order to reduce velocity and consequent pressure drop in the line. A concentric reducer or reducing elbow is used in the discharge line to increase the diameter. There is no restriction on the placement of elbows in discharge lines at there is in suction lines.

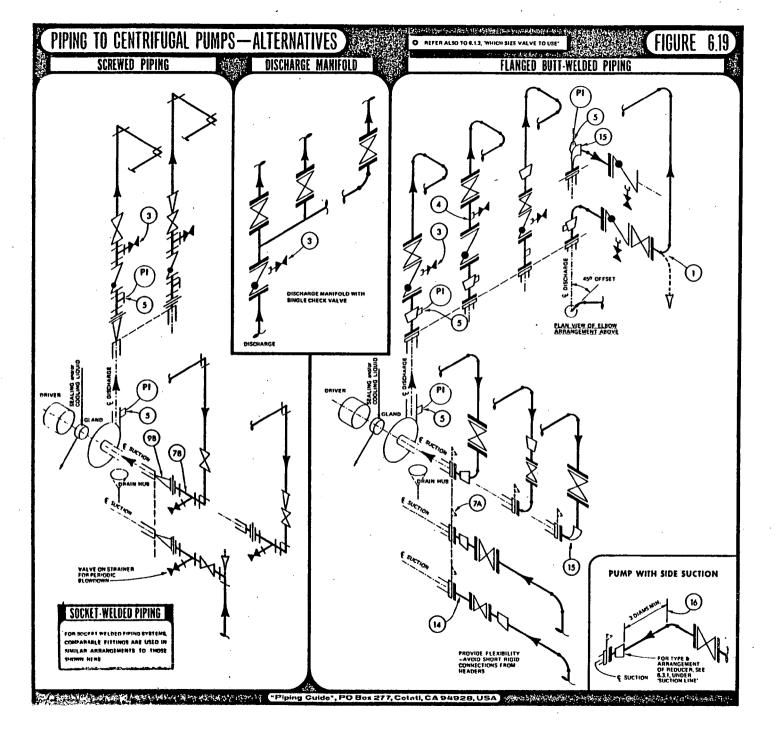
- Provide a pressure connection in the discharge line, close to the pump outlet see figures 6.17 thru 6.21. It may be necessary to provide a short spool for this purpose if there is no pressure point tapping on the pump discharge nozzle
- For locations of drain connections in the discharge line, see figures 6.17 thru 6.21

PUMPS WITH SCREWED CONNECTIONS

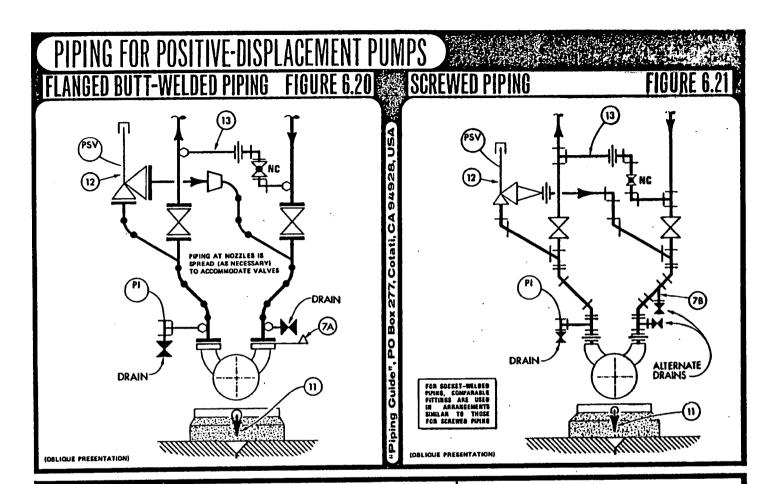
A pump with screwed connections requires unions in the suction and discharge lines to permit removal of the pump.

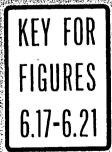
PIPING FOR POSITIVE-DISPLACEMENT PUMPS


Reciprocating and rotary pumps of this type must be protected against overloading due to restriction in the discharge line. If a positive-displacement pump is not equipped with a relief valve by the manufacturer, provide a relief valve between the pump discharge nozzle and the first valve in the discharge line. The discharge from the relief valve is usually connected to the suction line between the isolating valve and the pump.


As positive displacement pumping does not greatly change the flow velocity, reducers and increasers are not usually required in suction and discharge lines. See figures 6.20 and 6.21. A positive-displacement pump having a pulsating discharge may set the piping into vibration, and to reduce this an air chamber (pneumatic reservoir) such as a standpipe can be provided downstream of the discharge valve.

KEEPING MATERIAL FROM SOLIDIFYING IN THE PUMP


It may be necessary to trace a pump (see 6.8.2) in order to keep the conveyed material in a fluid state, especially after shutdown. This problem arises either with process material having a high melting point, or in freezing conditions. Alternately, jacketed pumps can be employed (such as Foster jacketed pumps available from Parks-Cramer).


FIGURES 6.17 THRU 6.21 ARE ON THE FOLLOWING THREE PAGES, & THE KEY FOR THESE FIGURES IS ON THE THIRD OF THESE PAGES

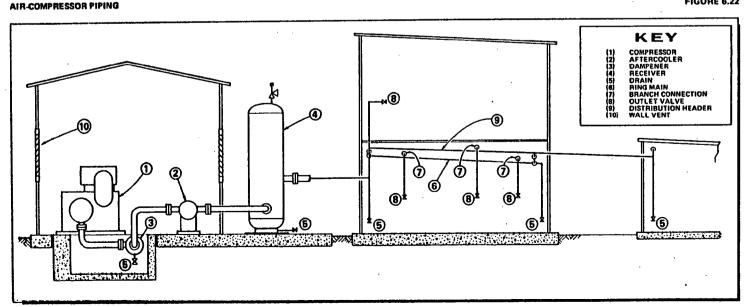
FIGURES 6.17-6.19

- (1) ALTERNATE HORIZONTAL DISCHARGES, WITH LINE OFFSET AND WITH VALVES
 LAID OVER AND OFFSET AS NECESSARY—THIS MAY BE NECESSARY IF THE
 VERTICAL POSITION PLACES HANDWHEEL OUT OF REACH OR IF DISCHARGE
 NEEDS TO TURN DOWN
- (2) ALTERNATE POSITIONS FOR HANDWHEEL
- (3) PROVIDE 1/2 TO 3/4-INCH DRAIN ON CHECK VALVE ABOVE DISC (A DRAINPOINT-OR BOSS IS USUALLY PROVIDED ON 2-INCH AND LARGER VALVES) AND RUN LINE TO DRAIN. OTHERWISE, PLACE DRAIN ON SPOOL BETWEEN CHECK AND ISOLATING VALVES. ON SCREWED AND SOCKET-WELDED PIPING, PROVIDE A TEE FOR THE DRAIN CONNECTION
- (4) SPOOL FOR DRAIN POINT, IF DRAIN CANNOT GO ON CHECK VALVE
- (5) ALTERNATE PRESSURE GAGE POINTS ON DISCHARGE PIPING IF POINT IS NOT PROVIDED ON PUMP BY VENDOR
- (A) CASING VENT. CAN BE USED FOR SEAL LIQUID TAKEOFF
- (7 A) TEMPORARY STARTUP STRAINER
- (7 B) PERMANENT LINE STRAINER FOR SCREWED OR SOCKET-WELDED FIFING
- CONNECTIONS FOR COOLING OR SEAL LIQUID. USUALLY WATER OR OIL

- (9 A) REDUCER
- (BE) SNAGE (SNAGED NIPPLE)
- CONCENTRIC TYPES MAY BE USED ON PUMPS WITH INLET PORTS JINCH AND SMALLER
- (10) CASING DRAIN FLUG. RUN VALVED LINE IF LIQUID IS LIKELY TO FREEZE
- (11) PIPE BASEPLATE OF PUMP TO DRAIN HUB. PROVIDE HUB AT EACH PUMP PIPE HUB TO APPROPRIATE DRAIN OR SEWER. IF TWO PUMPS ARE UN A COMMON BASE, THEY CAN SHARE THE SAME HUB
- (12) BYPASS PROTECTS POSITIVE DISPLACEMENT PUMP AND DRIVER IF AN ATTEMPT IS MADE TO OPERATE PUMP WITH A DISCHARGE VALVE CLOSED
- (13) BYPASSES FOR PUMPS OPERATING IN PARALLEL ALLOW FLOW IN SUCTION AND DISCHARGE LINES TO A HEADER IF A PUMP IS SHUT DOWN
- (14) SPOOL FOR TEMPORARY STRAINER
- (18) REDUCING ELBOW MAY REPLACE REGULAR ELBOW AND REDUCER
- (18) IF A PUMP HAS SIDE SUCTION WITH SPLIT FLOW TO IMPELLOR, PROVIDE 3 OR MORE DIAMETERS OF STRAIGHT PIPE AS SHOWN, OR CONNECT AN ELBOW IN A PLANE AT 90 DEGREES TO THE IMPELLOR SHAFT

Refer to 3.2.2 for a description of compressors and associated equipment. A compressor supplies compressed air or a gas to process or other equipment. A compressor is usually purchased as a 'package unit', which includes coolers, and the designer is left with the problem of installing it and piping auxiliaries to it. These various auxiliaries are shown in figure 6.23.

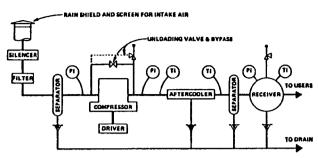
Compressors may be installed in the open, or within a plant or separate compressor house. An arrangement of compressor, ancillary equipment and distribution lines is shown in figure 6.22 (derived from an illustration by Atlas Copco).

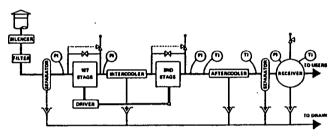

COMPRESSOR HOUSE

- If the compressor is handling a gas heavier than air, eliminate pits or trenches in the compressor house to avoid a suffocation or explosion risk
- Provide air entry louvers if a compressor takes air from within a compressor house or other building
- Provide maintenance facilities, including a lifting rail or access for mobile lifting equipment. Allow adequate floor space for use during maintenance. Additional access may be required for installation
- Prevent transmission of vibration by providing a foundation for the compressor, separate from the compressor-house foundation
- Consider the use of noise-absorbing materials and construction for a compressor house

The vendor's drawings should be examined to determine what auxiliary piping, valves and equipment covered in the following design points are to be supplied with the compressor by the vendor:

- Install the compressor on a concrete pad or elevated structure. Piling is often a necessary part of the foundation
- Large reciprocating compressors are often installed on an elevated structure to allow access to valves and provide space for piping. Provide a platform for operation and maintenance of such an installation
- Keep piping clear of cylinders of reciprocating compressors and provide withdrawal space at cylinder heads
- Use long-radius elbows or bends, not short-radius elbows or miters
- If the compressor and the pressurized gas are cooled with water, route cooling water first to the aftercooler, then to the intercooler (for a two-stage machine), and lastly to the cylinder jackets (or casing jacket, if present, in other types of compressor)
- Arrange an air compressor, associated equipment and piping so that water is able to drain continuously from the system
- Pipe a separate trapped drain for each pressure stage. Ensure that the
 pressure into which any trap discharges will be lower than that of the
 system being drained—less the pressure drop over the trap and its
 associated piping. Do not pipe different pressure stages thru separate
 check valves to a common trap
- If a toxic or otherwise hazardous gas is to be compressed, vent possible shaft seal leakage to the suction line to avoid a dangerous atmosphere forming around the compressor
- Do not overlook substantial space required for lube oil and seal oil control consoles for compressors
- Discuss piping arrangement with the stress group

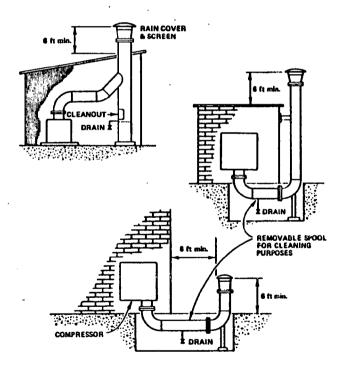

FIGURE 6.22



FIGURES 6.20-6.22

(a) SINGLE-STAGE COMPRESSOR

(b) TWO-STAGE COMPRESSOR


SUCTION PIPING FOR AIR COMPRESSORS

- To reduce damage to a compressor by abrasion or corrosion, the air supply needs to be free from solids and water (water in the air intake does not affect operation of liquid-ring air compressors). Air intakes are best located where the atmosphere is uncontaminated by exhaust gases, industrial operations, or by traffic
- For efficiency the air supply should be taken from the coolest source such as the shaded side of a building, keeping to building clearances shown in figure 6.24
- If the air supply is from outside the building, locate the suction point above the roofline, and away from walls to avoid excessive noise
- Keep suction piping as short as possible. If a line is unavoidably long and condensate likely to form, provide a separator at the compressor intake
- Provide a rain cover and screen as shown in figure 6.24
- Small (and sometimes medium-sized) air compressors usually take air from inside a building. Large air compressors take air from outside a compressor house (figure 6.24): this minimizes effects on the building of pulsations radiated from the air inlet. In both instances, a filter is needed to remove dust, which is always present to some extent
- Filters must have capacity to retain large quantities of impurities with low pressure drop, and must be rugged enough to withstand pulsations from reciprocating compressors

- Provide a pressure gage connection between filter and compressor to allow the pressure drop across the filter to be measured in order to check when cleaning or replacement is needed
- Use a temporary screen at the compressor injet at startup—see 2.10.4
- Avoid low points in suction lines where moisture and dirt can collect.
 If low points cannot be avoided, provide a clean-out -see figure 6.24
- If the suction line is taken from a header, take it from the top of the header to reduce the chance of drawing off moisture or sediment
- A line-size isolating valve is required for the suction line if the suction line draws from a header shared with other compressors
- Consider pickling or painting the inside of the suction piping to inhibit rust formation and lessen the risk of drawing rust into the compressor

SUCTION LINES TO AIR COMPRESSORS

FIGURE 6.24

DISCHARGE PIPING (GENERAL)

Discharge piping should be arranged to allow for thermal movement and draining. Anchors and braces should be provided to suppress vibration. The outflow from the aftercooler will usually be wet (from the excess moisture in suction air) and this water must be continually removed.

- An isolating valve in the discharge line is line-size
- Provide discharge piping with connections for temperature and pressure gages
- Provide an unloading valve and bypass circuit connected upstream of the discharge isolating valve, and downstream of the suction isolating valve, so as to ensure circulation thru the compressor during unloading, and to permit equalizing pressure in the compressor—see 3.2.2, under 'Unloading'
- Normally locate a receiver close to the compressor. (Auxiliary receivers may be located near points of heavy use.)
- For draining compressed-air discharge lines, refer to 6.11.4

The use of dampeners and volume bottles in the discharge is discussed in 3.2.2, under 'Equipment for compressors'.

LOADS & VIBRATION

The design of supports for piping to large compressors (especially for reciprocating machines) requires special knowledge. Usually, collaboration is necessary with the piping support group, the stress group, and the compressor manufacturer's representative. A major problem is that the compressor may be forced from alignment with its driver if the piping and supports are not properly arranged.

If a diesel or gasoline engine is used as driver, a flexible joint on the engine's exhaust pipe will reduce transmission of vibration, and protect the exhaust nozzle. Flexible connections are sometimes needed on discharge and suction piping. Pulsation in discharge and—to a lesser extent—suction lines, tends to vibrate piping. This effect is reduced by using bellows, large bends and laterals, instead of elbows and tees.

INSTRUMENTATION & INSTRUMENT CONNECTIONS

Figure 6.23 shows the more useful locations for pressure and temperature gaues, but does not show instrumentation for starting, stopping and unloading the compressors. Simple compressor control arrangements using pressure switches have long been used, but result in frequent starting and stopping of the compressor, causing unnecessary wear to equipment.

Automatic control using an unloading valve is superior: table 3.6 gives the working principles—see 3.2.2, under 'Unloading'. Further information can be found in the 'Compressor installation manual' (Atlas-Copco). Unloading valves are allocated instrument numbers.

The air-pressure signals for unloading, starting, loading and stopping a compressor should be free from pulsations. It is best to take these signals from a connection on the receiver or a little downstream of it.

Details of construction of instrument connections are given in 6.7. Instrument brenches should be breced to withstand transmission of line vibration.

ISOLATING VALVES FOR COMPRESSOR

Compressors operating in parallel should be provided with isolating valves arranged so that any compressor in the group may be shut down or removed. An isolating valve at the discharge should be placed downstream of the pressure-relief valve and any bypass valve connection. The isolating valve at the suction should be upstream of the bypass valve connection. Isolating valves are not required for a single compressor installation.

PRESSURE-RELIEF VALVES

Pressure-relief valves should be installed on interstage piping and on a discharge line from a compressor to the first downstream isolating valve. A pressure-relief valve may be vented to the suction line—see figure 6.23. Each pressure-relief valve should be able to discharge the full capacity of the compressor.

CHECK VALVE

Unless supplied with (or integral with) a compressor, a check valve must be provided to prevent backflow of stored compressed air or other gas.

DISTRIBUTION OF COMPRESSED AIR

Headers larger than 2-inch are often butt welded. Distribution lines are screwed and usually incorporate malleable-iron fittings, as explained in 2.5.1. Equipment used in distribution piping is described in 3.2.2.

A more efficient layout for compressed air lines is the ring main with auxiliary receivers placed as near as possible to points of heavy intermittent demand. The loop provides two-way air flow to any user.

COMPRESSED AIR USAGE

The compressed air provided for use in plants is designated 'instrument air', 'plant air' or 'process air'. Instrument air is cleaned and dried compressed air, used to prevent corrosion in some instruments. Plant air is compressed air but is usually neither cleaned nor dried, although most of the moisture and oil, etc., can be collected by a separator close to the compressor, especially if adequate cooling can take place. Plant air is used for cleaning, power tools, blowing out vessels, etc: if used for air-powered tools exclusively, some suspended oil is advantageous for lubrication, although filter/lube units are usually installed in the air line to the tool.

Process air is compressed air, cleaned and dried, which may be used in the process stream for oxidizing or agitation. The trend is to supply cleaned and dried air for both general process and instrument purposes. This avoids running separate lines for process and instrument air.

Process and instrument air for some applications requires to have an oil content less than 10 parts per million. As almost all oily contaminants are present as extremely small droplets (less than 1 micron in diameter) mechanical filtration may be ineffective; adsorption equipment can efficiently remove the oil.

6 .3.2

FIGURES 6.24

A turbine is a machine for deriving mechanical power (rotating shaft) from the expansion of a gas or vapor (usually air or steam, in industrial plants).

Steam turbines are used where there is a readily-available source of steam, and are also used to drive standby process pumps in critical service in the event of an electrical power failure, and emergency standby equipment such as firewater pumps and electric generators.

Figure 6.9 shows a schematic arrangement of piping for automatic operation. There are similarities between steam-turbine and pump and compressor piping. Their common requirements are:—

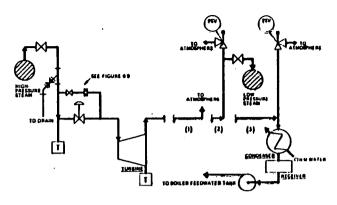
- (1) To limit loads on nozzles from weight of piping or from thermal movement
- (2) To provide access and overhead clearance
- (3) To prevent harmful material from entering the machine

INLET (STEAM FEED)

6.4.1

In order to guard against damage to a steam turbine, protective piping arrangements such as those mentioned in table 6.4 are needed in the steam feed.

PROTECTIVE PIPING FOR FEEDING STEAM TO TURBINE


TABLE 6.4

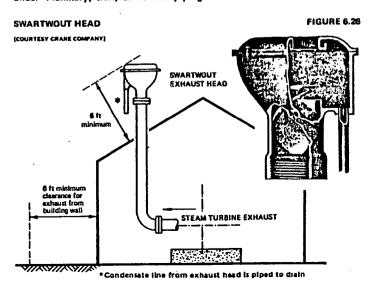
HAZARD TO TURBINE	PROTECTIVE PIPING
FOREIGN MATTER & WATER IN THE STEAM FEED	DRIPLEG & STRAINER, or SEPARATOR, IN THE FEED LINE (See figure 6.9)
EXCESSIVE PRESSURE IN STEAM FEED CAUSING OVER-FAST RUNNING OR CASING RUPTURE	PRESSURE RELIEF VALVE &/OR CONTROL VALVE IN THE FEED LINE
THERMAL SHOCK, DUE TO TOO RAPID HEATING ON STARTUP	ORIFICE BYPASS TO FEED SMALL AMOUNT OF STEAM TO TURBINE AT ALL TIMES

EXHAUST (STEAM DISCHARGE)

6.4.2

Figure 6.25 shows three methods for dealing with the turbine's exhaust. Steam from an intermittently operated turbine may be run to waste and all that is required is a simple run of pipe to the nearest outside wall or up thru the roof. Exhausts should be well clear of the building and arranged so as not to be hazardous to personnel. The turbine discharge will include drops of water and oil from the turbine, which are best collected and run to drain. A device suitable for this purpose is a Swartwout 'exhaust head' shown in figure 6.26. Alternately, steam discharged from a continuously running turbine may be utilized elsewhere, in a lower-pressure system.

KEY:


- 1) Exhaust is discharged directly to atmosphere. Suitable for small turbine in intermittent use.
- (2) Exhaust is taken to a low-pressure header for use elsewhere. Suitable for continuously-operating turbine, to avoid wasting steam.
- (3) Exhaust is condensed to increase pressure drop across the turbine

BYPASS STEAM & OTHER PIPING FOR TURBINES

6.4.3

An orifice plate is used as a 'bleed' bypass to ensure that steam constantly passes thru the turbine. An orifice plate is used rather than a straight pipe, as a changeable constriction is needed. Alternately, the small amount of steam needed to keep the turbine warm can be admitted by a cracked-open valve in a bypass—a wasteful and uncertain practice.

A trap is fitted to the casing of the turbine to remove condensate. Piping is provided to supply seal liquid to the turbine's bearings—refer to 6.3.1, under 'Auxiliary, trim, or harness piping'.

VESSEL CONNECTIONS

6.5.1

Vessel connections are often made with couplings (for smaller lines), flanged or welding nozzles, and pads fitted with studs, designed to mate with flanged piping. Nozzle outlets are also made by extrusion, to give a shape like that of the branch of a welding tee—this gives a good flow pattern, but is an expensive method usually reserved for such items as manifolds and dished heads. Weldolets, sockolets and thredolets are suitable for vessel connections and are available flat-based for dished heads, tanks, and large vessels.

Almost any type of connection may be made to open vessels or vessels vented to atmosphere, but for pressure vessels, the applicable design code will dictate requirements for connections (and possible reinforcement—see 2.11).

PRESSURE VESSELS

With exceptions and limitations stated in section 8 of the ASME Boiler and Pressure Vessel Code, vessels subject to internal or external operating pressures not exceeding 15 PSI need not be considered to be pressure vessels. A vessel operating under full or partial vacuum and not subject to an external pressure greater than 15 PSI would not require Code certification.

VESSEL DRAWING & REQUIRED NOZZLES

Preliminary piping layouts are made to determine a suitable nozzles arrangement. A sketch of the vessel showing all pertinent information is sent to the vessel febricator, who then makes a detail drawing. The preliminary studies for pressure vessel piping layouts should indicate where pipe supports and platforms (if required) are to be located. In the event that the vessel has to be stress-relieved, the fabricator can provide clips or brackets—see 6.2.8, under 'Welding pipe-support and platform brackets to vessels, etc.'

Figure 5.14 shows the type of drawing or sketch sent to a vessel fabricator.

NOZZLES NEEDED ON VESSELS

- Nozzles needed on non-pressure vessels include: inlet, outlet, vent (gas or air), manhole, drain, overflow, agitetor, temperature element, level instrument, and a 'steamout' connection, sometimes arranged tangentially, for cleaning the vessel
- Nozzles needed on pressure vessels include: inlet, outlet, manhole, drain, pressure relief, agitator, level gage, pressure gage, temperature element, vent, end for 'steamout', as above
- Check whether nozzles are required for an electric heater, colls for heating or cooling; or vessel jecket. A jecket requires a drain and vent
- Check special nozzle Heeds, such as for flush-bottom tank valves (see 3.1.9)

Provide additional flexibility in lines to a vessel from pumps and other equipment mounted on a separate foundation (if liable to settle)

Be cautious in making rigid straight connections between nozzles. Such
connections may be acceptable if both items of equipment are on the
same foundation, and are not subject to more than normal atmospheric
temperature changes (see figure 6.1)

NOZZLE LOADING

- Ensure that a nozzle can take the load imposed on it by connected piping—see 6.2.8, under 'Supporting pipe at nozzles'. Manufacturers often can provide nozzle-loading data for their standard equipment
- Check all connections to ensure that stresses due to thermal movement, and shock pressures ('kicks') from opening pressure relief valves, etc., are safely handled

FRACTIONATION COLUMN PIPING (OR TOWER PIPING)

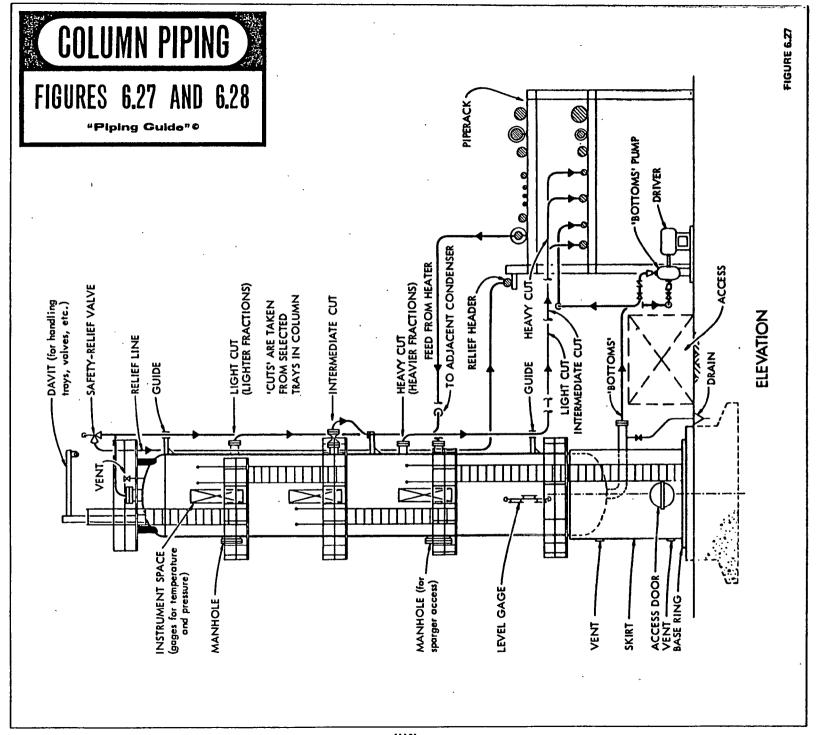
6.5.2

As columns and their associated equipment take different forms, according to process needs, the following text gives a simplified explanation of column operation, and outlines basic design considerations.

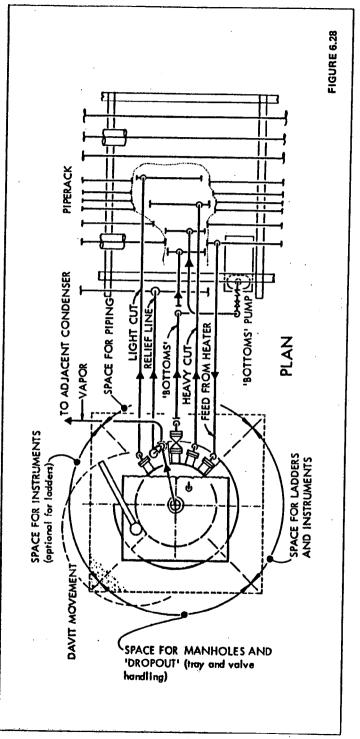
THE COLUMN'S JOB

A fractionation column is a type of still. A simple still starts with mixed liquids, such as alcohol and water produced by fermenting a grain, etc., and by boiling produces a distillate in which the concentration of alcohol is many times higher than in the feed. In the petroleum industry in particular, mixtures not of two but a great many components are dealt with. Crude oil is a typical feed for a fractionation column, and from it the column can form simultaneously several distillates such as wax distillate, gas oil, heating oil, naphtha and fuel gases. These fractions are termed 'cuts'.

COLUMN OPERATION

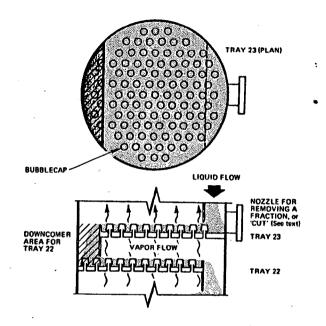

The feed is heated (in a 'furnace' or exchanger) before it enters the column. As the feed enters the column, quantities of vapor are given off by 'flashing', due to the release of pressure on the feed.

As the vapors rise up the column, they come into intimate contact with downflowing liquid—see figure 6.29. During this contact, some of the heavier components of the vapor are condensed, and some of the lighter components of the downflowing liquid are vaporized. This process is termed 'refluxing'.


If the composition of the feed remains the same and the column is kept in steady operation, a temperature distribution establishes in the column. The temperature at any tray is the boiling point of the liquid on the tray. 'Cuts' are not taken from every tray. The P&ID shows cuts that are to be made, including alternatives—nozzles on selected trays are piped, and nozzles for alternate operation are provided with line blinds or valves.

FIGURES 6.25 & 6.26

TABLE 6.4



Trays are of various designs. Their purpose is to collect a certain amount of liquid but allow vapors to pass up thru them so that vapor and liquid come into contact. (Refer to figure 6.29, which shows simple bubblecap trays—many tray designs are available.)

TRAYS & BUBBLECAPS

FIGURE 6.29

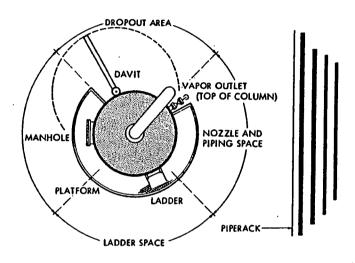
To produce the required 'cuts', a column operates under steady temperature, feed, and product removal conditions. Starting from cold, products are collected after steady conditions are reached, and the column is then operated continuously.

All materials enter and leave the column thru pipes; therefor columns are located close to piperacks. Figures 6.27 and 6.28 show an arrangement. Products from the column are piped to collecting tanks (termed 'drums', 'accumulators', etc.) and held for further processing, or storage.

If the vapor from the top of the column is condensible, it is piped to a condenser to form a volatile liquid. The condenser may be mounted at grade, or sometimes on the side of the column.

Product from the top of the column may be gaseous at atmospheric pressure after cooling; if the product liquefies under moderate pressure, it may be stored pressurized in containers.

In addition to the condenser for the top product, a steam-heated heat exchanger, termed a 'reboiler', may be used to heat material drawn from a selected level in a column; the heated material is returned to the column. Reboilers are required for tall columns, and for columns operated at high temperatures, which are subject to appreciable loss of heat. Mounting the reboiler on the side of the column minimizes piping.


FIGURES 1 6.27 & 6.29 plus any highly viscous material and solids in the feed.

COLUMN ORIENTATION & REQUIREMENTS

Simultaneously with orientating nozzles and arranging piping to the column. the piping designer decides the positions of manholes, platforms, ladders, davit, and instruments.

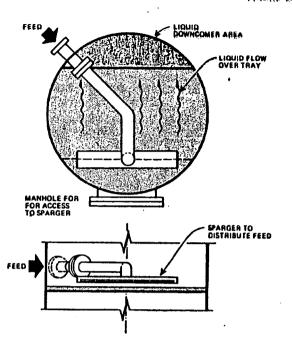
COLUMN ORIENTATION

FIGURE 6.30

Manholes are necessary to allow installation and removal of tray parts.

Platforms and ladders are required for personnel access to valves on nozzles, to manholes, and to column instruments.

A davit is needed to raise and lower column parts, and a dropout area has to be reserved.


MANHOLES & NOZZLES

For a particular project or column, manholes are preferably of the same type. They should be located away from piping, and within range of the davit.

If required, manholes can be placed off the column centerlines (plan view).

The manhole serving the sparger unit (figure 6.31) should permit easy removal of the unit, which may be angled to place the feed connection in a desired position.

The portions of the column wall available for nozzles are determined by the orientation and type of tray-see figure 6.29. Elevations of nozzles are taken from the column data sheet (normally in the form of a vessel drawing).

If the cuts are to be taken either from even-numbered trays, or from oddnumbered trays, all nozzles can be located on one side of the column, facing the piperack. If cuts are to come from both even- and odd-numbered trays, it will almost certainly be impossible to arrange all nozzles toward the piperack. (See 'Arranging column piping', this section.)

PLATFORMS & LADDERS

Platforms are required under manholes, valves at nozzles, level gages, controllers if any, and pressure relief valves. Columns may be grouped and sometimes interconnecting platforms between columns are used. Individual platforms for a column are usually shaped as circular segments, as shown in figure 6.30. A platform is required at the top of the column, for operating a davit, a vent on shutdown, and for access to the safety-relief valve. This top platform is often rectangular.

Usual practice is to provide a separate ladder to go from grade past the lowest platform. Ladders are arranged so that the operator steps sideways onto the platforms.

Ladder length is usually restricted to 30 ft between landings. Some States allow 40 ft (check local codes). If operating platforms are further apart than the maximum permissible ladder height, a small intermediate platform is provided.

Ladders and cages should conform to the company standard and satisfy the requirements of the US Department of Labor (OSHA), part 1910 (D).

DAVIT

Referring to figure 6.30, the davit should be located at the top of the column so that it can lower and raise tray parts, piping, valves, etc., between the platforms and the dropout area at grade.

ARRANGING COLUMN PIPING

To achieve simplicity and good arrangement, some trial-and-error working is necessary. Columns are major pieces of equipment, and their piping needs take precedence over other piping.

As lines from nozzles on the column are run down the length of the column, it is logical to start arranging downcomers from the top and proceed down the column. A lower nozzle may need priority, but usually piping can be arranged more efficiently if the space requirements of piping coming from above are already established.

Sometimes tray spacing is increased slightly to permit installation of manholes. It may be possible to rotate trays within limits, to overcome a difficulty in arranging column piping. Such changes in tray spacing and arrangement must be sanctioned by the process engineer and vessel designer.

- Allocate space for vertical lines from lower nozzles, avoiding running these lines thru platforms if possible
- Lines from the tops of columns tend to be larger than others. Allocate space for them first, keeping the lines about 12 inches from the platforms and the wall of the column—this makes supporting easier, and permits access to valves, instruments, etc.
- Allocate space for access (manholes, ladders) clear of piping—especially clear of vertical lines
- Provide a clear space for lowering equipment from the top of a column (for maintenance, etc.)
- Provide access for mobile lifting equipment to condenser and reboiler
- Provide clearance to grade (approximately 8ft) under the suction line, from the column to the bottoms pump
- Arrange vent(s) in the skirt of the column
- Ensure that no low point occurs in the line conveying 'bottoms' to the suction port of the bottoms pump, in order to avoid blocking of this line due to cooling, etc.

INFORMATION NEEDED TO ARRANGE THE COLUMN PIPING

- Plot plan showing space available for column location, and details of equipment which is to connect to the column
- P&ID for nozzie connections, NPSH of bottoms pump, instrumentation, line blinds, relief valves, etc.
- Column data sheets and sketch of column showing elevations of nozzles

- Line designation sheets, to obtain operating temperatures of lines for calculating thermal movement
- Details of trays and other internal parts of the column
- Restrictions on the heights of ladders
- Operational requirements for the plant

BOTTOMS PUMP & ELEVATION OF COLUMN

The elevation of a column is set primarily by the NPSH required by the bottoms pump, the access required under the suction line to the bottoms pump, and by requirements for a thermosyphon reboiler, if used.

VALVES

Valves and blinds which serve the tower should be positioned directly on nozzles, for economy. It is desirable to arrange other valves so that lines are self-draining.

Platforms should be located to give access to large valves. Small valves may be located at the ends of platforms. Control valves should be accessible from operating platforms or from grade.

The pressure-relief valve for the relief line should be placed at the highest point in the line, and should be accessible from the top platform.

Valves should not be located within the skirt of the column.

INSTRUMENTS & CONNECTIONS

Temperature connections should be located to communicate with liquids in the trays, and pressure connections with the vapor spaces below the trays. Access to isolated gages can be provided by ladder.

Gages, and gage and level glasses, must be visible when operating valves, and be accessible for maintenance.

Gages and other instruments should be located clear of manholes and accessways to ladders and platforms. If necessary, temperature and pressure gages may be located for reading from ladders. Locating instruments at one end of a circular platform may allow a narrower platform.

THERMAL INSULATION

Thermal insulation of the exterior of a column may be required in order to reduce heat loss to the atmosphere. Insulation may be inadequate to maintain the required temperature distribution; in these circumstances, a reboiler is used. Thermal insulation is discussed in 6.8.1.

FOUNDATION FOR COLUMN

The base ring of a column's skirt is attached to a reinforced-concrete construction. The lower part of this construction, termed the 'foundation', is below grade, and is square in plan view: the upper part, termed the 'base', to which the base ring is attached, is usually octagonal and projects above grade approximately 6 inches.

6 .5.2

FIGURES : 6.30 & 6.31 -- Heat exchangers are discussed in 3.3.5.

DATA NEEDED TO PLAN EXCHANGER PIPING

6.6.1

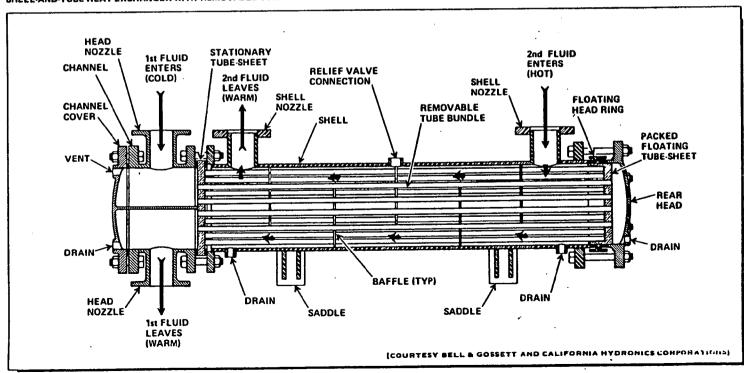
6.6

Preliminary exchanger information should be given early to the piping group, so that piping studies can be made with special reference to orientation of nozzles. Before arranging heat-exchanger piping, the following information is needed:

PROCESS FLOW DIAGRAM This will show the fluids that are to be handled by the exchangers, and will state their flow rates, temperatures and pressures.

EXCHANGER DATA SHEETS One of these sheets is compiled for each exchanger design by the project group. The piping group provides nozzle orientation sketches (resulting from the piping studies). The data sheet informs the manufacturer or vendor of the exchanger concerning performance and code stamp requirements, materials, and possible dimensional limitations.

TEMA CODING FOR EXCHANGER TYPE

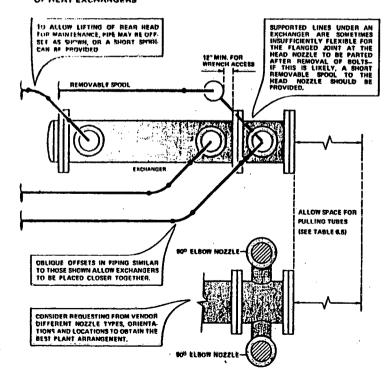

The Tubular Exchangers Manufacturers Association (TEMA) has devised a method for designating exchanger types, using a letter coding. The exchanger shown in figure 6.32 would have the basic designation AEW. See chart H-1.

Engineering Notes:

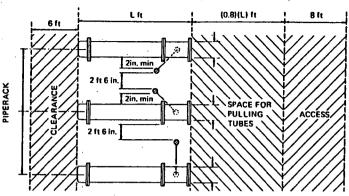
- Provide the shell with a pressure-relieving device to protect against excessive shell-side pressure in the event of internal failure
- Put fouling and/or corrosive fluids inside the tubes as these are (except U-type) easily cleaned, and cheaper to replace than the shall
- Put the hotter fluid in the tubes to reduce heat loss to the surroundings.
- However, if steam is used to heat a fluid in an exchanger, passing the steam thru the shell has advantages: for example, condensate is far easier to handle shellside. Insulation of the shell is normally required to protect personnel, and to reduce the rates of condensate formation and heat loss
- Pass refrigerant or cooling liquid thru the tubes, if the exchanger is not insulated, for economic operation
- If heat transfer is between two liquids, a countercurrent flow pattern will usually give greater overall heat transfer than a paralleled flow pattern, other factors being the same
- Orientate single-tube spiral, helical and U-tube exchangers (with steam fed thru the tube) to permit outflow of condensate

SHELL-AND-TUBE HEAT EXCHANGER WITH REMOVABLE TUBE BUNDLE

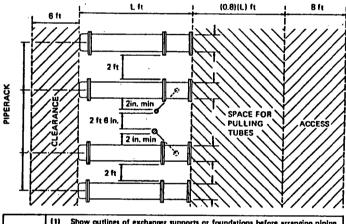
FIGURE 6.32


- Arrange nozzles to suit the best piping and plant layout. Nozzles may
 be positioned tangentially or on elbows, as well as on vertical or
 horizontal centerlines (as usually offered at first by vendors). Although
 a tangential or elbowed nozzle is more expensive, it may permit economies in piping multiple heat exchangers
- Make condensing vapor the descending stream
- Make vaporizing fluid the ascending stream

Locating Exchangers:

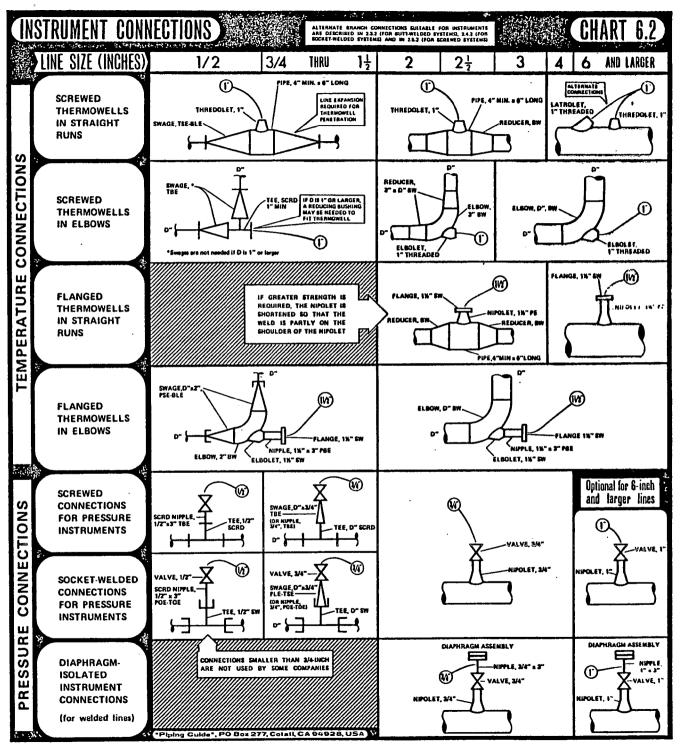

- Position exchangers so that piping is as direct and simple as possible.
 To achieve this, consider alternatives, such as reversing flows, arranging exchangers side-by-side or stacking them, to minimize piping
- Elevate an exchanger to allow piping to the exchanger's nozzles to be arranged above grade or floor level, unless piping is to be brought up thru a floor or from a trench
- Exchangers are sometimes of necessity mounted on structures, process columns and other equipment. Special arrangements for maintenance and tube handling will be required

PIPING TO NOZZLES OF HEAT EXCHANGERS


FIGURE 6.33

(a) Exchangers arranged with 2 ft 6 in. operating space between piping

(b) Exchangers arranged with 2 ft 0 in. maintenance space between paired units and 2 ft 6 in. operating space between piping


(1) Show outlines of exchanger supports or foundations before arranging piping
(2) Add to clearances shown, thicknesses of insulation for exchanger shells and connected piping
(3) Provide additional clearance to the 2'--6" operating space if valve handwheels and valve stems, etc., protrude, depending on piping arrangement

Operating and Maintenance Requirements:

- Access to operating valves and instruments (on one side only suffices)
- Operating space for any davit, monorail or crane, etc., both for movement and to set loads down
- Access to exchanger space is needed for tube-bundle removal, for cleaning, and around the exchanger's bolted ends (channelcover and rear head) and the bolted channel-to-shell closure
- Access for tube bundle removal is often given on manufacturers' drawings, and is usually about 1½ times the bundle length. 15 to 20 ft clearance should be allocated from the outer side of the last exchanger in a row for mobile lifting equipment access and tube handling

FIGURES 6.32 & 6.33

TABLE 6.5

PRIMARY CONNECTIONS TO LINES & EQUIPMENT

6.7.1

6.7

Connections will usually be specified by company standards or by the specifications for the project. If no specification exists, full- and half-couplings, swaged nipples, thredolets, nipolets and elbolets, etc., may be used. Chart 6.2 illustrates instrument connections used for lines of various sizes. The fittings shown in chart 6.2 are described in chapter 2. Orifice flange connections are discussed in 6.7.5.

CHOOSING THE CONNECTION

6.7.2

The choice of instrument connection will depend on the conveyed fluid and sometimes on the required penetration of the element into the vessel or pipe. Instrument connections should be designed so that servicing or replacement of instruments can be carried out without interrupting the process. Valves are needed to isolate gages for maintenance during plant operation and during hydrostatic testing of the piping system. These valves are shown in chart 6.2 and are referred to as 'root' or 'primary' valves.

TEMPERATURE & PRESSURE CONNECTIONS

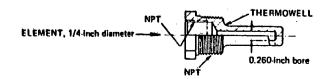
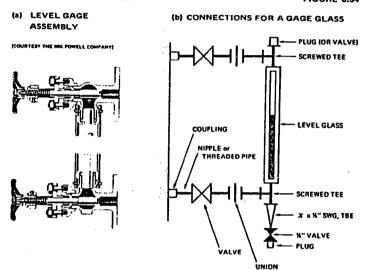

6.7.3

Chart 6.2 illustrates various methods for making temperature and pressure connections. At the bottom of chart 6.2 a method of connecting a diaphragm flange assembly (diaphragm isolator) is shown. Corrosive, abrasive or viscous fluid in the process line presses on one side of the flexible diaphragm, and the neutral fluid (glycol, etc.) on the other side transmits the pressure.

If the conveyed fluid is hazardous or under high pressure a branch fitted with a bleed valve is inserted between the gage and its isolating valve, to relieve pressure and/or drain the liquid before servicing the gage. The bleed valve can also be used to sample, or for adding a comparison gage.

- Position connections for instruments so that the instruments can be seen when operating associated valves, etc.
- Pressure connections for vessels containing liquids are usually best located above liquid level
- A temperature-measuring element is inserted into a metal housing termed a 'thermowell'. Place thermowells so that they are in contact with the fluid—an elbow is a good location, due to the increased turbulence

THERMOWELL CONSTRUCTION (EXAMPLE)



 Locate a liquid level controller (float type, for example) clear of any turbulence from nozzles

 More than one level gage, level switch, etc., may be required on a vessel: consider installing a 'strongback' to a horizontal vessel on which instrument connections have to be made—see figure 6.34(c)

LEVEL-GAGE CONNECTIONS

FIGURE 6.34

6.2

(c) CONNECTIONS ON STRONGBACK

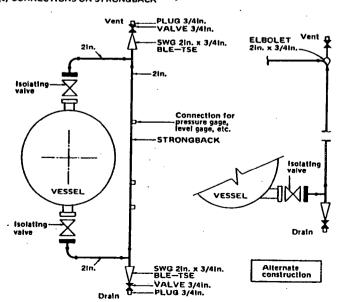
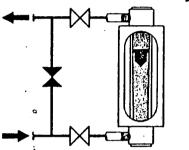


FIGURE 6.34

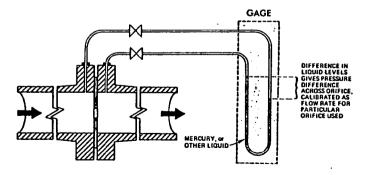
ROTAMETER CONNECTIONS


A rotameter consists of a transparent tube with tapered and calibrated bore, arranged vertically, wide end up, supported in a casing or framework with end connections. The instrument should be connected so that flow enters at the lower end and leaves at the top. A ball or spinner rides on the rising gas or liquid inside the tapered tube — the greater the flow rate, the higher the ball or spinner rides. Isolating valves and a bypass should be provided, as in figure 6.35

ROTAMETER

FIGURE 6.36

(a) PIPING TO ROTAMETER



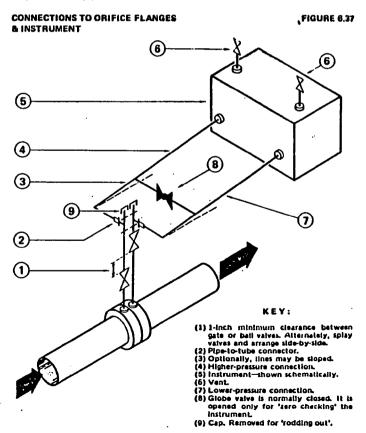
ORIFICE PLATE ASSEMBLY

An 'orifice plate' is a flat disc with a precisely-made hole at its center. It offers a well-defined obstruction to flow when inserted in a line—see figure 6.36. The resistance of the orifice sets up a pressure difference in the fluid either side of the plate, which can be used to measure the rate of flow.

ORIFICE PLATE ASSEMBLY & GAGE (MANOMETER)

FIGURE 6.38

The orifice plate is held between special flanges having 'orifice taps'—these are tapped holes made in the flange rims, to which tubing and a pressure gage can be connected, as in figure 6.36. A pressure gage may be termed a 'manometer'.


Manometers for use with orifice plate assemblies are calibrated in terms of differential pressure by the manufacturer. The meter run (that is, the piping in which the orifice plate is to be installed) must correspond with the piping used to calibrate the orifice plate—the readings will be in error if there is very much variation in these two piping arrangements.

Sometimes the orifice assembly includes adjacent piping, ready for welding in place. Otherwise, lengths of straight pipe, free from welds, branches or obstruction, should be provided upstream and downstream of the orifice assembly.

Table 6.6 shows lengths of straight pipe required upstream and downstream of orifice flanges (for different piping arrangements) to sufficiently reduce turbulence in liquids for reliable measurement.

PIPING TO FLANGE TAPS

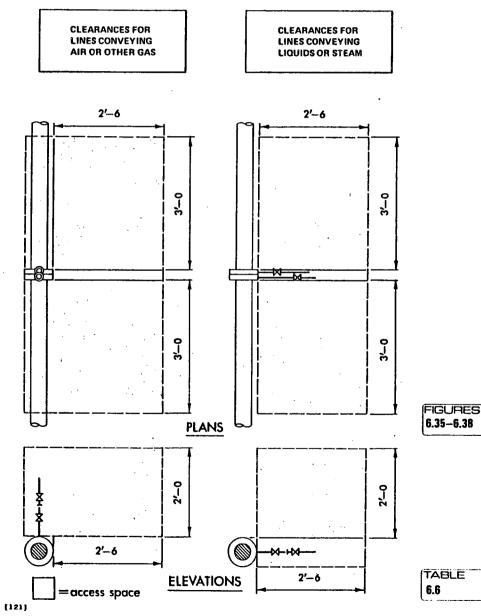
Figure 6.37 shows a suitable tapping and valving arrangement at orifice flange taps. In horizontal runs, the taps are located at the tops of the flanges in gas, steam and vapor lines. An approximately horizontal position avoids vapor locks in liquid lines. Taps should not be pointed downward, as sediment may collect in pipes and tubes.

Flow conditions consistent with those used to calibrate the instrument are ensured by providing adequately long straight sections of pipe upstream and downstream of the orifice. Table 6.6 gives lengths that have been found satisfactory for liquids.

RATIO OF INTERNAL DIAMETERS OF ORIFICE PLATE AND PIPE

STRAIGHT PIPE UPSTREAM & DOWNSTREAM OF ORIFICE ASSEMBLY

TABLE 6.6


£ £	₹₩	MAIIO	T INTERNA	LUIMITETE	MS OF UNIF	ILE PLATE	ANUFIFE
KEY NUMBER OF PIPING ARRANGEMEN	U-UPSTREAM D-OOWNSTREA	1:8	1:4	3:8	1:2	5:8	3:4*
KEY OF P	50			F STRAIGH M OF ORIFI			
	υ	6	6	6	6%	10	17
ı	D	2%	3	3%	3%	4	4%
2	υ	13	13	13	15	20	31
4	D	2%	3	3%	3%	4	4%
	υ	8	6	6	7%	10%	13%
3	D	2%	3	3%	3%	4	4%
	U	5	5	5%	6%	814	11
4	D	2%	3	3%	3%	4	4%
	U	18%	18%	21%	25	32	44
5	D	2%	3	3%	3%	4	4%
	A PARK	• US	E THIS COL	UMN FOR P	RELIMINAR	Y PLANNIN	G_A
	KEY: PIPI	NG ARRA	NGEMENT	S FOR ABO	OVE RUN	LENGTHS	1
1	Ell or Te		U	Flow	•	- D	
2	Two 90°	Ells		U		0	
3	Reducer of Increaser	or }		U		D-	
4	Gate Val	··· }{	X-	U		D-	
5	Globe Va		X -	U		D-	
T. JM 147	Intake 1	dinia Counte	PO He R	7, Colali, C	194920, U	5A)	

CLEARANCES

Clear space should be left around an orifice assembly. Figure 6.38 shows minimum clearances required for mounting instruments, seal pots, etc., and for maintenance.

CLEARANCES TO ORIFICE ASSEMBLIES

FIGURE 6.38

.7.5

To ensure continuity of plant operations it is necessary to maintain some process, service and utility lines within a desired temperature range in order to keep materials in a fluid state, to prevent degradation, and to prevent damage caused by liquids freezing in cold conditions. Piping can be kept warm by insulation, or by applying heat to the insulated piping—this is 'jacketing' or 'tracing', as discussed in 6.8.2 and 6.8.3.

THERMAL INSULATION

6.8.1

REFERENCE

'Keeping piping hot-Part I'. Chapman F.S. & Holland F.A. 1965. Chemical Engineering reprint. Chemical Engineering, Dec 20

INSULATION

'Insulation' is covering material having poor thermal conductivity applied externally to pipe and vessels, and is used: (1) To retain heat in a pipe or vessel so as to maintain process temperature or prevent freezing. (2) To minimize transfer of heat from the surroundings into the line or vessel. (3) To safeguard personnel from hot lines. The choice of insulation is normally included with the piping specification. The method of showing insulation on piping drawings is included in chart 5.7.

Installed insulation normally consists of three parts: (1) The thermal insulating material. (2) The protective covering for it. (3) The metal banding to fasten the covering. Most insulating materials are supplied in formed pieces to fit elbows, etc. Formed coverings are also available. Additionally, it is customary to paint the installed insulation, and to weatherproof it before painting, if for external use. See [43, pages 6.14 to 6.16] and [27, chapter 9].

The principal thermal insulating materials and their accepted approximate maximum line temperatures, where temperature cycling (repetitive heating and cooling periods) occurs are: asbestos (1200 F), calcium silicate (1200 F), cellular glass (foamglas) (800 F), cellular silica (1600 F), diatomaceous silica plus asbestos (1600 F), mineral fiber (250–1200 F, depending on type), mineral wool (1200 F), magnesia (600 F), and polyurethane foam (250 F). Certain foamed plastics have a very low conductivity, and are suitable for insulating lines as cold as -400 F. Rock cork [bonded mineral fiber] is satisfactory down to -250 F, and mineral wool down to -150 F.

HOW THICK SHOULD INSULATION BE ?

Most insulation in a plant will not exceed 2 inches in thickness. A rough guide to insulation thicknesses of the more common materials required on pipe to 8-inch size is:

GUIDE TO INSULATION THICKNESS

TABLE 6.7

APPLICATION	TYPICAL INSULATING MATERIAL	USUAL THICKNESS OF INSULATION
Hat Lines (to 500 F)	Asbestos, Silicate, Magnesia	1 to 2 inches
Cold Lines (to -150 F)	Mineral Wool	1 to 3 inches
Personnel Protection	Asbestos, Silicate, Magnesia	1 Inch

For personnel protection insulation should be provided up to a height at about 8 ft above operating floor level. Alternately, wire mesh guards can be provided. The following more detailed table gives insulation thickness for heat conservation, based on 85% magnesia to 600 F, and calcium silicate above 600 F.

INSULATION REQUIRED FOR PIPE AT VARIOUS TEMPERATURES

TABLE 6.8

HOMINAL PIPE SIZE (INCHES)	To 1	1%	3	•	•	•	•	10	12	14	16	18	20	34
TEMPERATURE (Degree F)			ŢNI	CKREA	07 (XX	LATIO	igat) t	OR STAT	ED TEA	PIMI	IÁE BAI	ist		
below 400	,	1.	1	1	1	1	i %	135	136	116	3	3	3	,
400-548	١,	1%	1%	136	116	1%	116	116	*	3	2	3	2	2
550-690	1%	1%	1%	1%	116	136	2	2	1	2	2		2	2
700-899	,	3	3	2%	2%	2%	2%	2%	2%	3	•	3	3	3
800-1048	1	2	2%	216	2%	3	3		3	3	3%	3%	3%	334
1050-1200	276	2%	3	1	3%	2%	3%	4	4	4	4	4	4	4

JACKETING & TRACING

6.8.2

REFERENCES

'Keeping piping hot-part II'. Chapman F.S. & Holland F.A. 1966. Chemical Engineering, Jan 17

Winterizing chemical plants', House F.F. 1987, Chemical Engineering, Sep. 11 'Pipe tracing & insulation', House F.F. 1968, Chemical Engineering, Jun 17

The common methods by which temperatures are maintained, other than by simple insulation, are jacketing and tracing (with insulation).

JACKETING

Usually, 'jacketing' refers to double-walled construction of pipe, valves, vessels, hose, etc., designed so that a hot or cold fluid can circulate in the cavity between the walls. Heating media include water, oils, steam, or proprietary high-boiling-point fluids which can be circulated at low pressure, such as Dowtherm or Therminol. Cooling media include water, water mixtures and various alcohols.

Jacketed pipe can be made by the piping fabricator, but an engineered system bought from a specialist manufacturer would be a more reliable choice. The jumpover lines connecting adjacent jackets, thru which the heating or cooling medium flows are factory-made by the specialist manufacturer with less joints than those made on-site, where as many as nine screwed joints may be necessary to make one jumpover. Details of the range of fittings, valves and equipment available and methods of construction for steel jacketed piping systems can be found in the Parks-Cramer Company's catalog J77.

Another type of jacketing is 'Platecoil' (Tranter Manufacturing Inc.) which is a name given to heat transfer units fabricated from embossed metal sheets, joined together to form internal channeling thru which the heating (or cooling) fluid is passed. The term 'jacketing' is also applied to electric heating pads or mantles which are formed to fit equipment. It also sometimes refers to the spiral winding of electric tracing and fluid tracing lines around pipes, vessels, etc.

Electric tracing allows close control of temperature, and can provide a wider range of temperatures than steam heating.

GETTING HEAT TO THE PROCESS LINE (USING STEAM)

If the process line temperature has to approach that of the available steam, jacketing gives the best results. Barton and Williams have stated [4] that the cheaper method of welding steam tracers directly to the process lines has proven adequate. In this unusual method, the welding is 'tack' or continuous depending on how much heat is required to be transferred thru the weld.

A greater rate of heat transfer may be achieved by using two (seldom more) parallel tracers. Sometimes a single tracer is spirally wound about the pipe, but spiral winding should be restricted to vertical lines where condensate can drain by gravity. If the temperature of the conveyed fluid has to be closely maintained, winding the tracer is too inaccurate—but it is a suitable method for getting increased heating in non-critical applications.

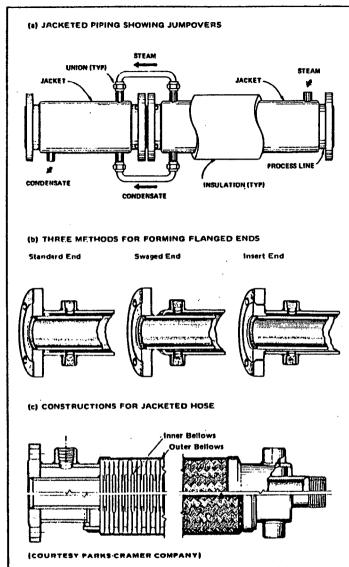
To improve heat transfer between the tracer and pipe, they may either be pressed into contact by banding or wiring them together at frequent (1 to 4 ft) intervals, or a heat-conducting cement such as 'Thermon' can be applied. Unless used to anchor the tracer, banding is normally applied sufficiently loosely to permit the tracer to expand.

Hot spots occur at the bands. If this is undesirable for a product line, a thin piece of asbestos may be inserted between tracer and line.

CHOOSING THE SYSTEM

There are advantages and disadvantages with the various systems. Piping which is to be externally traced can be planned with little concern for the tracing.

Fluid-jacketed systems are flanged, and last-minute changes could result in delays. Jacketing offers superior heat transfer and should be seriously considered for product lines, especially for those conveying viscous liquids and material which may solidify, whereas service lines usually just need to be kept from freezing and tracing is quite adequate for them. If process material has to be kept cold in the line, refrigerant-jacketed systems are the only practicable choice.


For process lines, all systems should be evaluated on the criteria of heat distribution, initial cost and long-term operating and maintenance costs before a decision can be made.

WHERE TRACING & JACKETING ARE SHOWN

Using the symbols given in chart 5.7, tracing is shown on the plan and elevation drawings of the plant piping and it will similarly be indicated on the isometric drawings. It will also be indicated on any model used. Tracing is one of the last aspects of plant design, and steam subheaders can either be shown directly on the piping drawings or on sepias or film prints. 6 .8.2

FIGURE 6.39

TABLES 6.7 & 6.8

TRACING

External 'tracing' consists in running tubing filled with a hot fluid (usually steam), or electric heating cables, in contact with the outer surface of the pipe to be kept warm. The tubing or cables may be run parallel to the pipe or wound spirally around it. The pipe and tracer(s) are encased in thermal insulation.

An alternative, now little used due to sealing and cleaning problems, is internal tracing by moons of hibing litted inside the line to be heated. An internal tracer is termed a 'quitine'.

This is a widely-used way of keeping lines warm—surplus steam is usually available for this purpose. Figure 6.40 shows typical tracing arrangements. A steam-tracing system consists of tracer lines separately fed from a steam supply header (or subheader), each tracer terminating with a separate trap. Horizontal pipes are commonly traced along the bottom by a single tracer. Multiply-traced pipe, with more than two tracers, is unusual.

STEAM PRESSURE FOR TRACING

Steam pressures in the range 10 to 200 PSIG are used. Sometimes steam will be available at a suitable pressure for the tracing system, but if the available steam is at too high a pressure, it may be reduced by means of a control (valve) station—see 6.1.4. Low steam pressures may be adequate if tracers are fitted with traps discharging to atmospheric pressure. If a pressurized condensate system is used, steam at 100 to 125 PSIG is preferred.

SIZING HEADERS

The best way to size a steam subheader or condensate header serving several tracers is to calculate the total internal cross-sectional area of all the tracers, and to select the header size offering about the same flow area. Table 6.9 allows quick selection if the tracers are all of the same size:

NUMBER OF TRACERS PER HEADER

TABLE 6.9

SIZE OF TRACER (IN.)									
1/4	1/4 3/8 1/2 3/4								
N	NUMBER OF TRACERS								
9	4	2	1	-					
16	7	4	2	1					
36	16	9	4	2					
64	28	16	7	4					
	1/4 N 9 16 36	1/4 3/8 NUMBER 9 4 16 7 36 16	1/4 3/8 1/2 NUMBER OF TR 9 4 2 16 7 4 36 16 9	1/4 3/8 1/2 3/4 NUMBER OF TRACERS 9 4 2 1 16 7 4 2 36 16 9 4					

MAXIMUM LENGTHS & RISES

The rate at which condensate forms and fills the line determines the length of the tracer in contact with the pipe. Too many variables are involved to give useful maximum tracer lengths. Most companies have their own design figure (or figures based on experience) for this: usually, length of tracer in contact with pipe does not exceed 250 ft.

1 PSI steam will lift condensate about 2.3 ft, and therefor vertical rises will present no problem unless low-pressure steam is being used. Companies prefer to limit the vertical rise in a tracer at any one place to 6 ft (for 25-49 PSIG steam) or 10 ft (for 50-100 PSIG steam). As a rough guide, the total height, in feet, of all the rises in one tracer may be limited to one quarter of the initial steam pressure, in PSIG. For example, if the initial steam pressure is 100 PSIG, the total height of all risers in the tracer should be limited to 25 ft. The rise for a sloped tracer is the difference in elevations between the ends of the sloping part of the tracer.

Expansion can be accommodated by looping the tracer at ellipses and/or providing horizontal expansion loops in the tracer. Vertical downward expansion loops obstruct draining and will cause trouble in treating plimates, unless the design includes a drain at the bottom of the loop, or a union to break the loop. It is necessary to anchor tracers to control the amount of expansion that can be tolerated in any one direction. Straight tracers 100 ft or lunger are usually anchored at their midpoints.

Expansion at elbows must be limited where no loop is used and excessive movement of the tracer could lift the insulation. In such cases the tracer is anchored not more than 10 to 25 ft away from an elbow which limits start-up expansion to 1/2 to 3/4 inch in most cases. The distance of the anchor from the elbow is best calculated from the ambient and steam temperatures.

EXAMPLE: System traced with copper tubing: coefficient of linear expansion of copper = 0.000009 per deg F. Steam pressure to be used = 50 PSIG (equivalent steam temperature 298F). Lowest ambient temperature = 50 F. If the anchor is located 20 ft from the elbow, the maximum expansion in inches is (298–50)(0.000009)(20)(12) = 0.53 in. This expansion will usually be tolerable even for a small line with the tracer construction for elbows shown in figure 6.40.

PIPE, TUBE & FITTINGS FOR TRACING

SCH 80 carbon steel pipe, or copper or stainless steel tubing is used for tracers. Selection is based on steam pressure and required tracer size. In practice, tracers are either 1/2 or 3/8-inch size, as smaller sizes involve too much pressure drop, and larger material does not bend well enough for customary field installation.

1/2-inch OD copper tube is the most economic material for tracing straight piping. 3/8-inch OD copper tubing is more useful where small bends are required around valve bodies, etc. Copper tubing can be used for pressures up to 150 PSIG (or to 370 F). Table T-1 gives data for copper tube.

Supply lines from the header are usually socket welded or screwed and seal-welded depending on the pressures involved and the company's practice. A pipe-to-tube connector is used to make the connection between the steel pipe and tracer tube — see figure 2.41.

TRACING VALVES & EQUIPMENT

Different methods are used. Some companies require valves to be wrapped with tracer tubing. Others merely run the tubing in a vertical loop alongside and against the valve body. In either method, room should be left for removing flange bolts, and unions should be placed in the tracer so that the valve or equipment can be removed.

.8.3

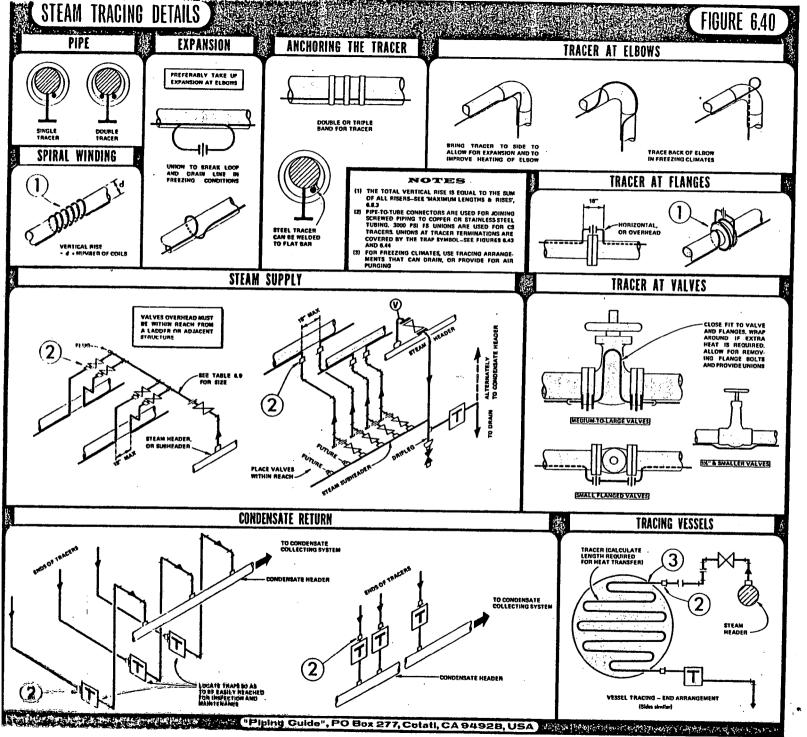


TABLE 6.9

FIGURE

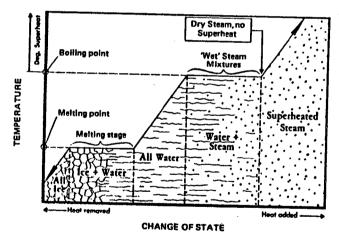
6.40

DESIGN POINTS FOR STEAM TRACING & INSULATION

- Run tracers parallel to and against the underside of the pipe to be heated
- Ensure that the temperature limit for process material is not exceeded by the temperature of the steam supplying the tracer. Hot spots occur at bands-see 6.8.2, under 'Getting heat to the process line'
- Run a steam subheader from the most convenient source if there is no suitable existing steam supply that can be used either directly or by reducing the pressure of the available steam
- Take tracer lines separately from the top of the subheader, and provide an isolating valve in the horizontal run
- Feed steam first to the highest point of the system of lines to be traced, so that gravity will assist the flow of condensate to trap(s) and condensate header
- Do not split (branch) a tracer and then rejoin-the shorter limb would take most of the steam
- Preferably, absorb expansion of the tracer at elbows. If loops are used in the line, arrange them to drain on shutdown
- Keep loops around flanges horizontal or overhead, and provide unions so that tracers can be disconnected at flanges
- If possible, group supply points and traps, locating traps at grade or platform level
- Do not place a trap at every low point of a tracer (as is the practice with steam lines) but provide a trap at the end of the tracer
- Do not run more than one tracer to a trap
- Increased heating may be obtained:
 - (1) By using more than one tracer
 - (2) By winding the tracer in a spiral around the line

 - (3) By applying heat-transfer cement to the tracer and line
 (4) By welding the tracer to the line—refer to 6.8.2, under 'Getting heat to the process line'
- Reserve spiral winding of tracers for vertical lines where condensate can drain by gravity flow
- In freezing conditions, provide drains at low points-and at other points where condensate could collect during shutdown
- Provide slots in insulation to accommodate expansion of the tracer where it joins and leaves the line to be traced
- Indicate thickness of insulation to envelop line and tracer, and show whether insulation is also required at flanges
- Indicate limits for insulation for personnel protection-see 6.8.1, under 'How thick should insulation be?', and chart 5.7
- Provide crosses instead of elbows and flanged joints at intervals in heated lines conveying materials which may solidify, to permit cleaning if the heating fails

Steam is a convenient and easily handled medium for heating, for driving machinery, for cleaning, and for creating vacuum.


After water has reached the boiling point, further addition of heat will convert water into the vapor state: that is, steam. During boiling there is no further rise in temperature of the water, but the vaporization of the water uses up heat. This added heat energy, which is not shown by a rise in temperature, is termed 'latent heat of vaporization', and varies with pressure.

In boiling one pound of water at atmospheric pressure (14.7 PSIA) 970.3 BTU is absorbed. If the steam condenses back into water (still at the boiling temperature and 14.7 PSIA) it will release exactly the amount of heat it absorbed on vaporizing.

The term 'saturated steam' refers to both dry steam and wet steam, described below. Steam tables give pressure and temperature data applicable to dry and to wet steam. Small amounts of air, carbon dioxide, etc., are present in steam from industrial boilers.

STEAM/WATER/ICE DIAGRAM

CHART 6.3

DRY STEAM

Dry steam is a gas, consisting of water vapor only. Placed in contact with water at the same temperature, dry steam will not condense, nor will more steam form-liquid and vapor are in equilibrium.

WET STEAM

Wet steam consists of water vapor and suspended water particles at the same temperature as the vapor. Heating ability ('quality') varies with the percentage of dry steam in the mixture (the water particles contain no latent heat of vaporization). Like dry steam, wet steam is in equilibrium with water at the same temperature.

SUPERHEATED STEAM

If heat is added to a quantity of dry steam, the temperature of the steam will rise, and the number of degrees rise in temperature is the 'degrees of superheat'. Thus, superheat is 'sensible' heat — that is, it can be measured by a thermometer.

EFFECT OF PRESSURE CHANGE

Under normal atmospheric pressure (14.7 PSIA) pure water boils at 212 F. Reduction of the pressure over the water will lower the boiling point. Increase in pressure raises the boiling point. Steam tables give boiling points corresponding to particular pressures.

FLASH STEAM

Suppose a quantity of water is being boiled at 300 PSIA (corresponding to 417 F). If the source of heat is removed, boiling ceases. If the pressure over the water is then reduced, say from 300 to 250 PSIA, the water starts boiling on its own, without any outside heat applied, until the temperature drops to 401 F (this temperature corresponds to 250 PSIA). Such spontaneous boiling due to reduction in pressure is termed 'flashing', and the steam produced, 'flash steam'.

The data provided in steam tables enable calculation of the quantity and temperature of steam produced in 'flashing'.

CONDENSATE - WHAT IT IS & HOW IT FORMS

Steam in a line will give up heat to the piping and surroundings, and will gradually become 'wetter', its temperature remaining the same. The change of state of part of the vapor to liquid gives heat to the piping without lowering the temperature in the line. The water that forms is termed 'condensate'. If the line initially contains superheated steam, heat lost to the piping and surroundings will first cause the steam to lose sensible heat until the steam temperature drops to that of dry steam at the line pressure.

AIR IN STEAM

With both dry and wet steam, a certain pressure will correspond to a certain temperature. The temperature of the steam at various pressures can be found in steam tables. If air is mixed with steam, this relationship between pressure and temperature no longer holds. The more air that is admixed, the more the temperature is reduced below that of steam at the same pressure. There is no practicable way to separate air from steam (without condensation) once it is mixed.

LOW-PRESSURE HEATING MEDIA

6.9.2

Special liquid media such as Dowtherms (Dow Chemical Co.) and Therminols (Monsanto Co.) can be boiled like water, but the same vapor temperatures as steam are obtained at lower pressures. Heating systems using these liquids are more complicated than steam systems, and experience with them is necessary in order to design an efficient installation. However, the basic principles of steam-heating systems apply.

6 .8.3 9.2

CHART 6.3

REMOVING AIR FROM STEAM LINES

6.10.1

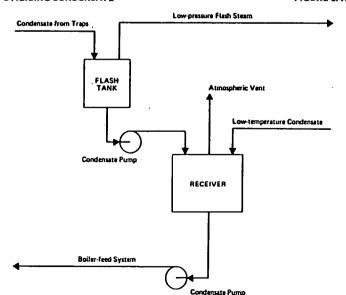
Air in steam lines lowers the temperature for a given pressure, and calculated rates of heating may not be met. See 6.9.1 under 'Air in steam'.

The most economic means for removing air from steam lines is automatically thru temperature-sensitive traps or traps fitted with temperature-sensitive airventing devices placed at points remote from the steam supply. When full line temperature is attained the vent valves will close completely. See 6.10.7 under 'Temperature-sensitive (or thermostatic) traps'.

WHY PLACE VENTS AT REMOTE POINTS ?

On start-up, cold lines will be filled with air. Steam issuing from the source will mix with some of this air, but will also act as a piston pushing air to the remote end of each line.

WHY REMOVE CONDENSATE?


6.10.2

In heating systems using steam with little or no superheat, steam condenses to form water, termed 'condensate', which is essentially distilled water. Too valuable to waste, condensate is returned for use as boiler feedwater unless it is contaminated with oil (usually from a steam engine) or unless it is uneconomic to do so, when it can either be used locally as a source of hot water, or run to a drain. If condensate is not removed:—

- Steam with entrained water droplets will form a dense water film on heat transfer surfaces and interfere with heating
- Condensate can be swept along by the rapidly-moving steam (at 120 ft/sec or more) and the high-velocity impact of slugs of water with fittings, etc. (waterhammer) may cause erosion or damage

UTILIZING CONDENSATE

FIGURE 6.41

In early steam systems, there was considerable waste of steam and condensate after passing thru heating coils, etc., as steam was nearly vented to the open air. Later, the wastefulness of this resulted in closed steam lines from which only the condensed steam was removed and then reflud to the boiler. The removal of condensate to atmospheric pressure was effected with traps—special automatic discharge valves—see 6.10.7.

This was a much more efficient system, but it still wasted flash studin. On passing thru the traps, the depressurized condensate boiled, generating lower pressure steam. In modern systems, this flash steam is used and the recoloud condensate returned to the boiler.

STEAM SEPARATOR OR DRYER

6.10.3

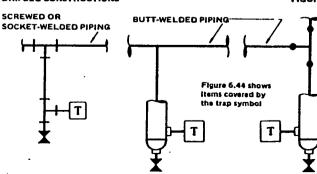
This is an in-line device which provides better drying of steam being immediately fed to equipment. A separator is shown in figure 2.67. It separates droplets entrained in the steam which have been picked up from condensate in the pipe and from the pipe walls, by means of one or more baffles (which cause a large pressure drop). The collected liquid is piped to a trap.

SLOPING & DRAINING STEAM & CONDENSATE LINES 6.10.4

Sloping of steam and condensate lines is discussed in 6.2.6, under 'Sloped lines avoid pocketing and aid draining'.

Condensate is collected from a steam line either by a steam separator (sometimes termed a 'dryer')—see 6.10.3 above—or more cheaply by a dripley (drip pocket or well — see below) from where it passes to a trap for periodic discharge to a condensate return line or header which will be at a lower pressure than the steam line. The header is either taken to a boiler feedwater tank feeding make-up water to the boiler or to a hotwell for pumping to the boiler feedwater tank.

DRIPLEGS COLLECT CONDENSATE


6.10.5

It is futile to provide a small dripleg or drain pocket on large linus, as the condensate will not be collected efficiently.

Driplegs are made from pipe and fittings. Figure 6.42 shows three methods of construction, and table 6.10 suggests dripleg and valve sizes.

DRIPLEG CONSTRUCTIONS

FIGURE 6.42

STEAM LINE PRESSURE FORCES CONDENSATE INTO RECOVERY SYSTEM

6.10.6

In almost every steam-heating system where condensate is recovered the trapped condensate has to be lifted to a condensate header and run to a boiler feedwater tank, either directly or via a receiver. Each PSI of steam pressure behind a trap can lift the condensate about two feet vertically. The pressure available for lifting the condensate is the pressure difference between the steam and condensate lines less any pressure drop over pipe, valves, fittings, trap, etc.

STEAM TRAPS 6.10.7

The purpose of fitting traps to steam lines is to obtain fast heating of systems and equipment by freeing the steam lines of condensate and air. A steam trap is a valve device able to discharge condensate from a steam line without also discharging steam. A secondary duty is to discharge air—at start-up, lines are full of air which has to be flushed out by the steam, and in continuous operation a small amount of air and non-condensible gases introduced in the boiler feedwater have also to be vented.

Some traps have built-in strainers to give protection from dirt and scale which may cause the trap to jam in an open position. Traps are also available with checking features to safeguard against backflow of condensate. Refer to the manufacturers' catalogs for details.

Choosing a trap from the many designs should be based on the trap's ability to operate with minimal maintenance, and on its cost. To reduce inventory and aid maintenance, the minimum number of types of trap should be used in a plant. The assistance of manufacturers' representatives should be sought before trap types and sizes are selected.

Steam traps are designed to react to changes in temperature, pressure or density:

TEMPERATURE-SENSITIVE (or 'THERMOSTATIC') TRAPS are of two types: The first type operates by the movement of a liquid-filled bellows, and the second uses a bimetal element. Both types are open when cold and readily discharge air and condensate at start-up. Steam is in direct contact with the closing valve and there is a time delay with both types in operating. A large dripleg allowing time for condensate to cool improves operation. As these traps are actuated by temperature differential, they are economic at steam pressures greater than 6 PSIG. The temperature rating of the bellows and the possibility of damage by waterhammer should be considered—refer to 6.10.8.

IMPULSE TRAPS are also referred to as 'thermodynamic' and 'controlled disc'. These traps are most suited to applications where the pressure downstream of the trap is less than about half the upstream pressure. Waterhammer does not affect operation. They are suitable for steam pressures over 8 PSIG.

DENSITY-SENSITIVE TRAPS are made in 'float' and 'bucket' designs. The *float trap* is able to discharge condensate continuously, but this trap will not discharge air unless fitted with a temperature-sensitive vent (the temperature limitation of the vent should be checked). Float traps sometimes may fail from severe waterhammer. The *inverted bucket trap* (see 3.1.9) is probably the most-used type. The trap is open when cold, but will not discharge large quantities of air at startup unless the bucket is fitted with a temperature-sensitive vent. The action in discharging condensate is rapid. Steam will be discharged if the trap loses its priming water due to an upstream valve being opened; refer to note (9) in the key to figure 6.43. Inverted bucket traps will operate at pressures down to 1/4 PSIG.

FLASHING 6.10.8

Refer to 6.9.1. When hot condensate under pressure is released to a lower pressure return line, the condensate immediately boils. This is referred to as 'flashing' and the steam produced as 'flash steam'.

The hotter the steam line and the colder the condensate discharge line, the more flashing will take place; it can be severe if the condensate comes from high pressure steam. Only part of the condensate forms steam. However, if the header is inadequately sized to cope with the quantity of flash steam produced and backpressure builds up, waterhammer can result.

Often, where a trap is run to a drain, a lot of steam seems to be passing thru the trap, but this is usually only from condensate flashing.

DRAINING SUPERHEATED STEAM LINES

6.10.9

Steam lines with more than a few degrees of superheat will not usually form condensate in operation. During the warming-up period after starting a cold circuit, the large bulk of metal in the piping will nearly always use up the degrees of superheat to produce a quantity of condensate.

6 .10

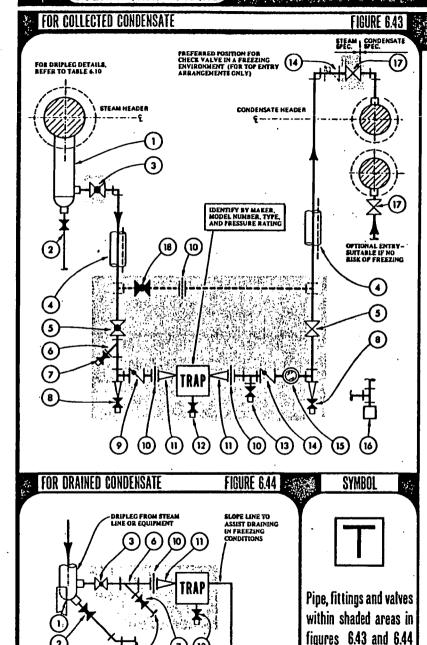

FIGURES 6.41 & 6.42

TABLE .

STEAM-TRAP PIPING

PIPE TO DRAIN

(IN BUILDINGS)

KEY

FIGURES 4.43 & 6.44 SHOW EQUIPMENT WHICH CAN BE USED IN TRAP PIPING ARRANGEMENTS. ONLY ITEMS OF EQUIPMENT NECESSARY FOR ELEMONIC & SAFE DESIGN NEED BE USED. THE FOLLOWING MUTES WILL AID SELECTION

- DRIPLEG FROM STEAM HEADER, OR LINE TO EQUIPMENT, OR LINE FROM STEAM-FEB
- DRIPLEG VALVE FOR PERIODICALLY BLOWING DOWN GEDIMENT. FOR SAFETY, VALVE ENOULD BE PIPED TO A DRAW OR TO GRADE
- INCLATING VALVE TO BE LOCATED CLOSE TO DRIPLED
- MISULATION. NEEDED IN A COLD ENVIRONMENT IF THERE IS A RICK OF CURDENSATE FREEZING AS A REBULT OF SHUTDOWN OR INTERMITTENT OFFRATION. IN EXTREMA COLD, TRACING MAY ALSO BE REQUIRED-IF STEAM IS NOT CONSTANILY AVAILABLE FOR THIS PURPOSE, ELECTRIC TRACING WOULD BE NECESSARY
- ISOLATING VALVE. REQUIRED ONLY IF VALVES (3) AND (17) ARE DUT OF REACH, OR IF A BYPASS IS USED-SEE NOTE (18)
- STRAINER HORMALLY FITTED IN LINES TO TRAPS OF LESS THAN SINCH SIZE A STRAINER MAY BE AN INTEGRAL FEATURE OF THE YRAP
- VALVE FOR BLOWING STRAINER SEDIMENT TO ATMOSPHERE PLUG FOR SAFETY
- MANUALLY-OPERATED DRAIN VALVE FOR USE IN FREEZING CONDITIONS WHEN THE TRAP IS POSITIONED HORIZONTALLY --- SEE NOTE (16)
- CHECK VALVE. PRIMARILY REQUIRED IN LINES USING BUCKET TRAFS TO PREVENT LOSS OF SEAL WATER IF DIFFERENTIAL PRESSURE ACROSS TRAP REVERSES DUE TO BLOWING DOWN THE LINE OR STRAINER UPSTREAM OF THE TRAP
- UNIONS FOR REMOVING TRAP, ETC
- SWAGES FOR ADAPTING TRAP TO SIZE OF LINE
- SLOWDOWN VALVE FOR A TRAP WITH A SUILT-IN STRAINER (ALTERNATIVE TO HE)
- TEST VALVE SHOWS IF A FAULTY TRAP IS PASSING STEAM SOMETIMES, BODY OF TRAP HAS A TAPPED PORT FOR FITTING THIS VALVE
- CHECK VALVE PREVENTS BACKFLOW THRU TRAP IF CONDENSATE IS BEING RETURNED TO A HEADER FROM MORE THAN ONE TRAP, IN THE LOWER POSITION, THE VALVE HAS THE ASSISTANCE OF A COLUMN OF WATER TO HELP IT CLOSE AND TO GIVE IT A WATER SEAL. REQUIRED IF SEVERAL TRAPS DISCHARGE INTO A SINGLE READER WHICH IS OR MAY BE UNDER PRESSURE
- SIGHT GLASS ALLOWS VISUAL CHECK THAT TRAP IS DISCHARGING CURRECTLY INTO A PRESSURIZED CONDENSATE RETURN LINE, BUT IS SELDON USED BECAUSE THE GLASS MAY ERODE, PRESENTING A RISK OF EXPLOSION
- TEMPERATURE-SENSITIVE (AUTOMATIC) DRAIN ALLOWS LINE TO EMPTY, PREVENTING DAMAGE TO PIPING IN A COLD ENVIRONMENT (SEE NOTE (4)), IF VALVE (14) IS OVER-HEAD, THE AUTOMATIC DRAIN MAY BE FITTED TO THE TRAP -- SOME TRAP GODIES PROVIDE FOR THIS
- ISOLATING VALVE AT HEADER
- SYPASS, NOT RECOMMENDED AS IT CAN BE LEFT OPEN IT IS BETTER TO PROVIDE A STANDBY TRAP

00000000

ASTERISK INDICATES THAT THE EQUIPMENT IS OPTIONAL AND IS NOT ESSENTIAL TO THE BASIC TRAP PIPING DESIGN

"Piping Guide", PO Box 277, Cotati, CA 94928, USA

are shown on drawings

by the above symbol

Start-ups are infrequent and with more than a few degrees of superheat it is unnecessary to trap a system which is continuously operated. These superheated steam lines can operate with driplegs only, and are usually fitted with a blowdown line having two valves so that condensate can be manually released from the dripleg after startup.

A superheated steam supply to an intermittently operated piece of equipment will require trapping directly before the controlling valve for the equipment, as the temperature will drop at times allowing condensate to form.

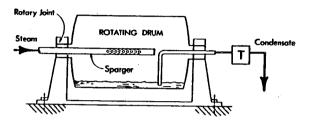
PREVENT TRAPS FROM FREEZING

6.10.10

Insulation and steam or electric tracing of the trap and its piping may also be required in freezing environments. Temperature-sensitive and impulse traps are not subject to freezing trouble if mounted correctly, so that the trap can drain. Bucket traps are always mounted with the bucket vertical and a type with top inlet and bottom outlet should be chosen, unless the trap can be drained by fitting an automatic drain.

GUIDELINES TO STEAM TRAP PIPING

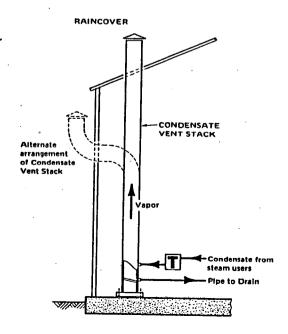
6.10.11


- Figures 6.43 thru 6.45 are a guide to piping traps from driplegs, lines, vessels, etc.
- Try to group traps to achieve an orderly arrangement
- Unless instructed otherwise, pipe, valves and fittings will be the same size as the trap connections, but not smaller than 3/4 in.
- Traps are normally fitted at a level lower than the equipment or dripleg that they serve
- Trap each item of equipment using steam separately, even if the steam pressure is common
- Provide driplegs (and traps on all steam lines with little or no superheat)
 at low points before or at the bottom of risers, at pockets and other
 places where condensate collects on starting up a cold system. Table
 6.10 gives dripleg sizes
- Locate driplegs at the midpoints of exchanger shells, short headers, etc.
 If dual driplegs are provided it is better to locate them near each end
- For installations in freezing conditions, where condensate is wasted, preferably choose traps that will not pocket water and which can be installed vertically, to allow draining by gravity. Otherwise, select a trap that can be fitted with an automatic draining device by the manufacturer
- Avoid long horizontal discharge lines in freezing conditions, as ice can form in the line from the trap. Keep discharge lines short and pitch them downward, unless they are returning condensate to a header
- For efficient operation of equipment such as heat exchangers using large amounts of steam, consider installing a separator in the steam feed

'Syphon' removal of condensate: In certain instances it is not possible to provide a gravity drain path — for example, where condensate is formed inside a rotating drum. The pressure of the steam is used to force ('syphon') the condensate up a tube and into a trap. Figure 6.45 shows such an arrangement

6 .10.9 .10.11

TRAPPING ARRANGEMENT FOR ROTATING DRUM


FIGURE 6.45

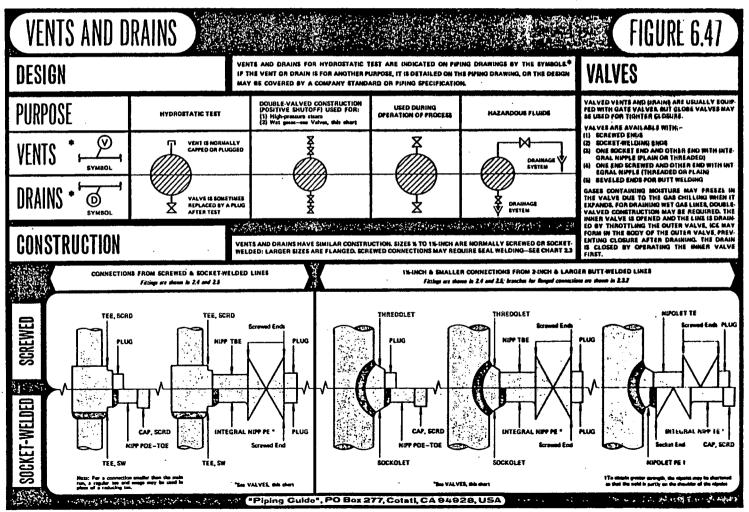
If condensate is continuously discharging to an open drain in an inside installation a personnel hazard or objectionable atmosphere may be created. To correct this, discharge piping can be connected to an exhaust stack venting to atmosphere and a connection to the main drain provided, as in figure 6.46

CONDENSATE VENT STACK

FIGURE 6.46

FIGURES 6.43-6.46

WHY VENTS ARE NEEDED


6.11.1

Vents are needed to let gas (usually air) in and out of systems. When a line or vessel cools, the pressure drops and creates a partial vacuum which can cause syphoning or prevent draining. When pressure rises in storage tanks due to an increase in temperature, it is necessary to release excess pressure. Air must also be released from tanks to allow filling, and admitted to permit draining or pumping out liquids.

Unless air is removed from fuel lines to burners, flame fading can result. In steam lines, air reduces heating efficiency.

After piping has been erected, it is often necessary to subject the system to a hydrostatic test to see if there is any leakage. In compliance with the applicable code, this consists of filling the lines with water or other liquid, closing the line, applying test pressure, and observing how well pressure is maintained for a specified time, while searching for leaks.

As the test pressure is greater than the operating pressure of the system, it is necessary to protect equipment and instruments by closing all relevant valves. Vessels and equipment usually are supplied with a certificate of code compliance. After testing, the valved drains are opened and the vent plugs temporarily removed to allow air into the piping for complete draining.

VENTING GASES

Quick-opening vents of ample size are needed for gases. Safety and safety-relief valves are the usual venting means. See 3.1.9 for pressure-relieving devices, and 6.1.3, under 'Piping safety and relief valves'.

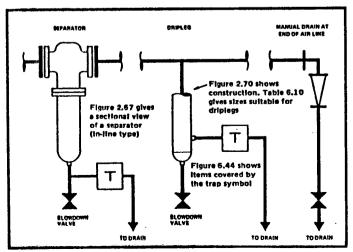
Gases which offer no serious hazard after some dilution with air may be vented to atmosphere by means ensuring that no direct inhalation can occur. If a (combustible) gas is toxic or has a bad odor, it may be piped to an incinerator or flarestack, and destroyed by burning.

DRAINING COMPRESSED-AIR LINES

6.11.4

6.11.3

Air has a moisture content which is partially carried thru the compressing and cooling stages. It is this moisture that tends to separate, together with any oil, which may have been picked up by the air in passing thru the compressor.


If air for distribution has not been dried, distribution lines should be sloped toward points of use and drains: lines carrying dried air need not be sloped. Sloping is discussed in 6.2.6.

If the compressed-eir supply is not dried, provide:-

- (1) Traps at all drains from equipment forming or collecting liquid—such as intercooler, aftercooler, separator, receiver.
- (2) Driplegs with traps on distribution headers (at low points before rises) and traps or manual drains at the ends of distribution headers.

LIQUID REMOVAL FROM AIR LINES

FIGURE 6.48

RELIEVING PRESSURE—LIQUIDS

6.12

6 .11 .13

The buildup of pressure in a liquid is halted by discharging a small amount of liquid. Relieving devices having large ports are not required. Relief valves—see 3.1.9—are used, and need to be piped at the discharge side, but the piping should be kept short. See 6.1.3 under 'Piping safety & relief valves'.

Rarely will the relieved liquid be sufficiently non-hazardous to be piped directly to a sewer. Often the liquid is simply to be reclaimed. Relieved liquid is frequently piped to a 'knockout drum', or to a sump or other receiver for recovery. The P&ID should show what is to be done with the relieved liquid.

RELIEF HEADERS

6.12.1

Headers should be sized to handle adequately the large amounts of vapor and liquid that may be discharged during major mishap. Relief headers taken to knockout drums, receivers or incinerators, are normally sloped, Refer to 6.2.6 and figure 6.3, showing the preferred location of a relief header on a piperack.

WASTES & EFFLUENTS

6.13

Manufacturing processes may generate materials that cannot be recycled, and for which there is no commercial use. These materials are termed 'waste products', or 'wastes'. An 'effluent' is any material flowing from a plant site to the environment. Effluents need not be polluting: for example, properly-treated waste water may be discharged without harming the environment or sewage-treatment plants.

Restrictions on the quantities and nature of effluents discharged into rivers, sewers or the atmosphere, necessitate treatment of wastes prior to discharge. Waste treatment is increasingly a factor in plant design, whether wastes are processed at the plant, or are transported for treatment elsewhere. For inplant treatment, waste-treatment facilities are described on separate P&ID's (see 5.2.4) and should be designed in consultation with the responsible local authority.

Liquid wastes have to be collected within a plant, usually by a special drainage system. Corrosive and hazardous properties of liquid wastes will affect the choice and design of pipe, fittings, open channels, sumps, holding tanks, settling tanks, etc. Because many watery wastes are acidic and corrosive to carbon steel, collection and drainage piping is often lined or made of alloy or plastic. Sulfates frequently appear in wastes, and special concretes may be necessary for sewers, channels, sumps, etc., because sulfates deteriorate regular concretes.

Flammable wastes may be recovered and/or burned in smokeless incinerators or flarestacks. Vapors from flammable liquids present serious explosion hazards in collection and drainage systems, especially if the liquid is insoluble and floats.

Wastes may be held permanently at the manufacturing site. Solid wastes may be piled in dumps, or buried. Watery wastes containing solids may be pumped into artificial 'ponds' or 'lagoons', where the solids settle.

FIGURES 6.47 & 6.48

REFERENCES

'National Fire Codes'. National Fire Protection Association, Vol I, Flammable liquids. Vol. 2, Gases. Vol. 3, Combustible solids, dusts & explosives

'Flashpoint index of tradename liquids', NFPA, 1964, No. 325A

'Fire protection for chemicals', Bahme C.W. 1961, NFPA

'Fire protection in refineries'. American Petroleum Institute. 1959. RP 2001. 4th edn

'Protection against ignitions arising out of static, lightning & stray currents'.

API. 1967. RP 2003. 2nd edn

'Welding or hot-tapping on equipment containing flammables'. API. 1963. PSD 2201 (Free)

'Guide for the safe [hot] storage & loading of heavy oil & asphalt'. API, 1966. PSD 2205 (Free)

TANK SPACINGS (NFPA)

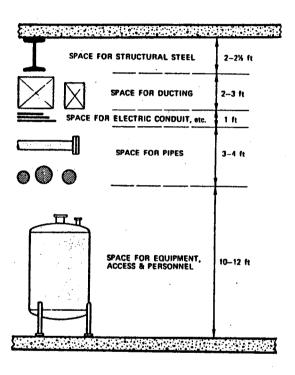
TABLE 6.11

CONDITIONS	MINIMUM INTER-TANK CLEARANCE
FLAMMABLE or COMBUSTIBLE LIQUID STORAGE TANKS	Whichever is greatest:— 3ft (Sum of diameters of adjacent tanks)/6 (Diameter of smaller tank)/2
CRUDE PETROLEUM 126,000 gal max tank size Non-congested locale	3 ft
CRUDE PETROLEUM 126,000 gal min larger tank Producing area	Diameter of smaller tank
UNSTABLE FLAMMABLE and UNSTABLE COMBUSTIBLE LIQUID STORAGE TANKS	(Sum of diameters of adjacent tanks)/2
LIQUEFIED PETROLEUM GAS CONTAINER from Flammable or Combustible Liquid Storage Tank	20 ft
LIQUEFIED PETROLEUM GAS CONTAINER outside diked area containing Flammable or Combustible Liquid Storage Tank(s)	10 ft from centerline of dike wall NOTE: If LPG container is smaller than 125 gal (US) and each liquid storage tank is smaller than 650 gal, exemption applies
TANKS surrounded by other Tanks	Authority Limit*

For minimum clearances from property lines and public ways, consult Chapter II, Vol 1 of the National Fire Codes*

*For LPG tanks, the US Department of Labor gives clearances in tables H-23, H-33, etc. part 1910-110 of 'Occupational safety and health standards', 1971. These standards also give clearances for ammonia tanks, in part 1910-111.

- Apply the recommendations relating to the project of the NFPA, API or other advisory body
- Check insurer's requirements
- Isolate flammable liquid facilities so that they do not endanger important buildings or equipment. In main buildings, isolate from other areas by firewalls or fire-resistive partitions, with fire doors or openings and with means of drainage
- Confine flammable liquid in closed containers, equipment, and piping systems. Safe design of these should have three primary objectives:
 (1) To prevent uncontrolled escape of vapor from the liquid. (2) To provide rapid shut-off if liquid accidentally escapes. (3) To contine the spread of escaping liquid to the smallest practicable area
- If tanks containing flammable material are sited in the open, it is good practice to space them according to the minimum separations set out in the NFPA Code (No. 395. 'Farm storage of flammable liquids') and to provide dikes (liquid-retaining walls) around groups of tanks. Additional methods for dealing with tank fires are: (1) To transfer the tank's contents to another tank. (2) To stir the contents to prevent a layer of heated fuel forming
- Locate valves for emergency use in plant mishap or fire-see 6.1.3
- Valves for emergency use should be of fast-acting type
- Provide pressure-relief valves to tanks containing flammable liquid (or liquefied gas) if exposed to strong sunlight and/or high ambient temperature, so that vapor under pressure can escape
- Consider providing water sprays for cooling tanks containing flammable liquid which are exposed to sunlight
- Provide ample ventilation in buildings for all processing operations so that vapor concentration is always below the lower flammability limit.
 Process ventilation should be interlocked so that the process cannot operate without it
- Install explosion panels in buildings to relieve explosion pressure and reduce structural damage
- Install crash panels for personnel in hazardous areas
- Ensure that the basic protection, automatic sprinklers, is to be installed
- Some hazards require special fixed extinguishing systems—foam, carbon dioxide, dry chemical or water spray—in addition to sprinklers. Seek advice from the fire department responsible for the area, and from the insurers


6 .14

SPACE BETWEEN FLOORS

6.15.1

To avoid interferences and to simplify design, adequate height is necessary between floors in buildings and plants for piping, electrical trays, and air ducts if required. Figure 6.49 suggests vertical spacings:

VERTICAL SPACING BETWEEN FLOOR & CEILING FIGURE 6.49

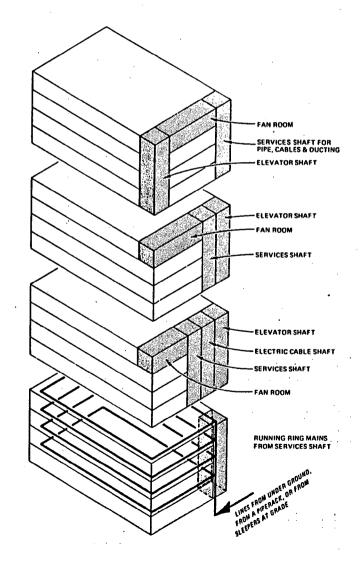
INSTALLATION OF LARGE SPOOLS & EQUIPMENT

6.15.2

Large openings in walls, floors or the roof of a building may be needed for installing equipment. Wall and roof openings are covered when not in use, but sometimes floor openings are permanent and guarded with railings, etc.

BUILDING LAYOUT

6.15.3


RELATION TO PROCESS

Different processes require different types of buildings. Some processes are best housed in single-story buildings with the process beginning at one end and finishing at the other end. Other processes are better assisted by gravity, starting at the top of a building or structure and finishing at or near grade.

Provision of a services shaft or 'chase' in multi-storied buildings greatly simplifies arrangement of vertical piping, ducting and electric cables communicating between floors. Conceptual arrangements of services and elevator shafts, with fan room for air-conditioning and/or process needs, are shown in figure 6.50. Services shafts can be located in any position suitable to the process, and need not extend the whole height of the building.

SUGGESTED BUILDING LAYOUTS

FIGURE 6.50

FIGURES 6.49 & 6.50

TABLE 6.11

STANDARDS & CODES:

PIPING SYSTEMS, SYMBOLS, PIPE, PIPESUPPORTS, FLANGES, GASKETS, FITTINGS, PUMPS, VALVES, STEAM TRAPS, VESSELS, EXCHANGERS, & SCREWTHREADS

REFERENCES

'Codes & Standards for today's Industry'. ASME Staff Report. 1966. Mechanical Engineering, Jun. Vol 88. (6)

'Piping Codes & Standards'. Wright L. E. 1968. Chemical Engineering, Jun 17, 247-50

'Piping codes & the chemical plant'. Canham W. G. 1966. Chemical Engineering, Oct 10. 119-204

WHAT ARE STANDARDS & CODES ? 7.1

Both standards and codes are documents which establish methods for manufacture and testing. The documents are prepared and kept current by committees whose members represent industry, government, universities, institutes, professional societies, trade associations, labor unions, etc.

Proven engineering practices form the basis of standards and codes, so that they embody minimum requirements for selection of material, dimensions, design, erection, testing, and inspection, to ensure the safety of piping systems. Periodic revisions are made to reflect developments in the industry.

The terms 'standard' and 'code' have become almost interchangeable, but documents are termed codes when they cover a broad area, have governmental acceptance, and can form a basis for legal obligations. 'Recommendations' document advisable practice. 'Shall' in the wording of standards and codes denotes a requirement or obligation, and 'should' implies recommendation.

FOUR REASONS FOR THEIR USE

7.2

- Items of hardware made according to a standard are interchangeable, and of known dimensions and characteristics
- (2) Compliance with a relevant code or standard guarantees performance, reliability, quality, and provides a basis for contract negotiations, for obtaining insurance, etc.
- (3) A lawsuit which may follow a plant mishap, possibly due to failure of some part of a system, is less likely to lead to a punitive judgement if the system has been engineered and built to a code or standard
- (4) Codes often supply the substance for Federal, State, and Municipal safety regulations. However, the US Federal Government may, as needed, devise its own regulations, which are sometimes in the form of a code

WHO ISSUES STANDARDS?

7.3

The American Standards Association was founded in 1918 to authorize national standards originating from five major engineering societies. Previously a chaotic situation had arisen as many societies and trade associations had been issuing individual standards which sometimes overlapped. In 1967, the name of the ASA was changed to the USA Standards Institute, and in 1969 a second change was made, to American National Standards Institute. Standards previously issued under the prefixes 'ASA' and 'USASI' are now prefixed 'ANSI'.

Not all USA standards and codes are issued directly by the Institute. The American Society of Mechanical Engineers, the Instrument Society of America, and several other organizations issue standards and codes that apply to piping. Table 7.1 lists the principal sources.

Other countries also issue standards. The British Standards Institution (BSI) in the UK, the Deutscher Normenausschuss (DIN) in West Germany, and the Swedish national organization (SIS) issue many standards. Addresses of the UK, West-German, and Swedish national bodies are given at the foot of table 2.1. Copies of foreign standards can be obtained directly, or from the American National Standards Institute, Inc, 1430 Broadway, New York, NY 1001B.

IDENTIFYING THE SOURCES OF STANDARDS

7.4

The tables in 7.5.6 give the initial letters of the standards issuing organizations preceeding the number of the standard, thus: 'ASTM N28'. Table 7.1 includes the initials used in tables 7.3 thru 7.15, and gives the full titles of the organizations. (Table 7.1 is not a comprehensive listing.)

PRINCIPAL ORGANIZATIONS ISSUING STANDARDS

TABLE 7.1

INITIALS	FULL TITLE OF ORGANIZATION
AIA	American Insurance Association *
ANSI	American National Standards Institute 1
API	American Petroleum Institute
ASME	American Society of Mechanical Engineers
ASTM	American Society for Testing and Materials
AWS	American Welding Society
AWWA	American Waterworks Association
FCI	Fluid Controls Institute
GSA	General Service Administration
ISA	Instrument Society of America
MSS	Manufacturers' Standardization Society of the Valve and Fittings Industry
NFPA	National Fire Protection Association
PFI	Pipe Fabrication Institute
USDC	United States Department of Commerce

*Standards formerly issued by Underwriters' Laboratories Inc.

†Formerly, United States of America Standards Institute, and

PRINCIPAL DESIGN-ORIENTATED CODES

American Standards Association.

7.5

ANSI CODE B31

7.5.1

The most important code for land-based pressure-piping systems is ANSI B31. Parts of this code which apply to various types of plant piping are listed in table 7.2.

ANSI CODE B31 FOR PRESSURE PIPING

TABLE 7.2

PETROLEUM REFINERY PIPING	B31.3-1966	Piping for refineries and petrochemical plants conveying petrochemicals, chemicals, water and steam.
POWER PIPING	831.1.0-1967*	Piping for industrial applications, State law may require adherence.
CHEMICAL PLANT PIPING	B31.6-7	Still in preparation, Usually chemical plant piping complies with the "Power piping' code.
FUEL GAS PIPING	B31.2-1968	Piping for conveying and handling combustible hydrocarbon gases.
REFRIGERATION PIPING	B31.5-1966	Principal application is the piping of package units.
NUCLEAR POWER PIPING	B31.7~1969	More stringent design and inspection requirements than other 831 codes. To be applied to pressure piping where escape of fluid from the system would incur a radiation hazard.

AMERICAN PETROLEUM INSTITUTE'S CODE 2510-1965

7.5.2

This second edition covers design and construction of liquefied petroleum gas installations at marine and pipeline terminals, natural gas processing plants, refineries and tank farms.

The two following codes are not directly related to piping, but frequently are involved in the piping designer's work:

API-ASME UNFIRED PRESSURE VESSEL CODE

7.5.3

This code applies to piping that is attached to a pressure vessel in petrochemical service. If the vessel is fabricated largely from fittings, construction will come entirely under the code.

ASME BOILER & PRESSURE VESSEL CODE

7.5.4

section

The background of this code is described in the 'History of the boiler code' (ASME: 1955). The ASME Boiler and Pressure Vessel Code is mandatory in many States, with regard to design, material specification, fabrication, and erection. Compliance is required in the USA and Canada in order to qualify for insurance. The 1971 version of the Code consists of the following eleven sections:—

ASME BOILER & PRESSURE VESSEL CODE

_																				
Power boilers									_			_	_	_						
Material specification	ons					- 1	- 1	Ī	-	-	-	•	•	•	٠	•	•	•	•	•
Nuclear power plan	1 00	·mr	-	-		•	•	•	•	•	٠	•	•	•	•	•	•	•	•	۰
Heating boilers		,,,,t		611G	• •	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•
Mandagenethia		·	•	•	٠	•	•	٠	•	•	٠	•	•	•	٠	٠	•	•	•	•
Nondestructive exa	min	atit	m	•	•	٠	. •	•	٠	٠	•	٠	٠	•	•	٠		•	٠	
Recommended rule	s fo	r ce	re	end	op	era	tion	of	hea	itinį	g bo	oller	3.			۰				
Recommended rule	s fo	T CE	re	of p	OW	rer 1	bolle	278							_			_		
Pressure vessels .													Ī		•	•	•	•	-	Ī.,
Welding qualification	ns.	-		·	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•
Fiberglass-reinforce	d ni	neti	r n	rote			cente	•	•	•	•	•	•	•	•	•	•	•	•	
Rules for Inservice i	- P		-	-4			33013	•	•	· - i -	·:	٠.	•		•	•	٠	٠	٠	1
MAINTENANCE I	ıısh	ec t	On	011	nuc	1081	rea	ctt	I C	DOIS	int:	5 Y 5 1	em	٠.	•	•	•	٠	٠	1

7 .1 .5.4

7.1 & 7.2

Requirements for merchant and naval vessels are contained in the following

- (1) American Bureau of Shipping: 'Rules for building and classing vessels'
- (2) Lloyds' Register of Shipping: 'Rules'
- (3) US Coast Guard: 'Marine engineering regulations and material specifications'
- US Navy, Bureau of Ships: 'General specifications for building naval vessels', 'General machinery specifications'

SELECTED STANDARDS

7.5.6

The following tables are not comprehensive: a selection has been made from standards relating to piping design and technology. Sources of these standards may be found from table 7.1. Addresses of the issuing organizations may be found from the current edition of 'Encyclopedia of associations: Vol 1, National organizations of the United States' (Gale Research Company).

STANDARDS FOR SYMBOLS & DRAFTING

TABLE 7.3

Piping	Graphic symbols for pipe fittings, valves and piping	ANSI Z32.2.3
	Graphic symbols for plumbing	ANSI Y32.4
	Graphic symbols for fluid power diagrams	ANSI Y32.10
·	Fluid power diagrams	ANSI Y14.17
Process Engineering	Graphic symbols for process flow diagrams in petroleum and chemical industries	ANSI Y32.11 ASME K40
	Operation and process flow charts	ASME No. 101
	Letter symbols for chemical engineering	ANSI Y10,12
	Letter symbols for hydraulics	ANSI Y10.2
	Letter symbols for petroleum reservoir engineering and electric logging	ANSI Y10.15
Instrumentation	Instrumentation symbols and identification	ISA S5.1
Walding	Graphic symbols for welding	ANSI Y32.3
	Standard welding symbols and rules for their use	AWS A2.0
Heating and Ventilating	Graphic symbols for heating, ventilating, and air conditioning	ANSI Z 32.2.4
Electrical	Electrical and electronics diagrams	ANSI Y14.15
Drafting	Size and format	ANSI Y14.1
	Line conventions, sectioning and lettering	ANSI Y14.2
	Projections	ANSI Y14.3
	Pictorial drawing	ANSI Y14.4
	Dimensioning and tolerancing for engineering drawings	ANSI Y14.5
	Screw threads	ANSI Y14.6
	Nomenclature, definitions and letter symbols for screw threads	ANSI B1.7

11111011 AF 017		14016 14
Steel or Iron	Specification for welded and seamless steel pipe	ANSI B125.1 ASTM AS3 ASME SAS3
	Specification for seamless carbon-steel pipe for high-temperature service	ANSI 836.3 ASTM A106
	Specification for electric-fusion(arc)-welded steel-plate pipe (sizes 16 inch and over)	ANSI 838.4 ASTM A134
	Specification for electric-resistance-welded steel pipe	ANSI 8126.3 ASTM A135 ASME SA135
	Wrought-steel and wrought-iron pipe	ANSI 838.10 ASME M31 ISO R64
	Stainless-steel pipe .	ANSI 838.19
	Specification for szamless and welded austenitic stainless-steel pipe	ANSI B125 18 ASTM A312
	Specification for seamless ferritic alloy steel pipe for high-temperature service	ANSI B125.24 ASTM A335
	Threaded cest-iron pipe for drainage, vent, and waste services	ANSI A40.5 ASME M23
	Specification for line pipe	API BL
	Specification for line pipe, high test	API 6LX
Non-ferrous metals	Specification for eluminum alloy seemless pipe and seamless extruded tube	ANSI H38.7 ASTM B241
	Specification for general requirements for wrought seamless copper and copper-alloy tube	ANSI H23.4 ASTM B251
	Lead pipe	GSA WW-P-325
,	Specification for nickel seamless pipe and tube *	ANSI H34.1 ASTM B161
Plastics	Specification for polyethylene (PE) plastic pipe, SCH 40	ANSI 872.8 ASTM D2104
	Polyethylene pipe	USDC CS-197
	Specification for poly(viny) chloride) (PVC) plastic pipe, SCH's 40, 80, & 120	ANSI 8/2./ ASTM D1785
	Potyvinyl chloride pipe, dimensions and tolerances for	USDC CS-207
	Specification for scrylonitrile-butadiene-styrene (ABS) plastic pipe (SDR-PR & Class T)	ANSI B72.3 ASTM D2282
	Specification for acrylonitrile-butadiene-styrene (ABS) plastic pipe, SCH's 40 & 80	ANSI 872.5 ASTM D1527
	Specification for cellulose acetate butyrate (CAB) plastic pipe, SCH 40	ANSI 872.4 ASTM D1603
*Made to stain	less-steel schedules, ANSI B36.19	

STANDARDS FOR HANGERS & SUPPORTS

TABLE 7.5

Application	Pipe hangers and supports—selection and application	MSS SP-69
Production	Pipe hangers and supports—material and design	MSS SP-68

а	в		

		IADLE /.t
Drafting	Method for dimensioning piping assemblies	PFI ES2
	Minimum length and spacing for welded nozzles	PFI ES7
Fabrication	Butt-weiding ends for pipe, valves, flanges, and fittings	ANSI B16.25
	End preparation, and machined backing rings for butt welds	PFI ES1
	End preparation for manual inert-gas tungsten-arc root-pass welding	PFI ES21 、
	Fabricating tolerances	PFI ES3
	Stress relieving welded attachments	PFI ES10
	Heat treatment of ferrous pipe welds	PFI ES19
Testing	Shop hydrostatic testing of fabricated piping	PFI ES4
	Classification of shop testing, inspection, and cleaning	PFI ES13
	Ultrasonic Inspection of seamless piping	PFI ES18

STANDARDS FOR FLANGES

_ TABLE 7.7

Steel	Steel pipe flanges and flanged fittings	ANSI 816.5 ASME M15
	Large diameter carbon steel flanges	API 605
ĺ	MSS steel pipe line flanges	MSS SP-44
	High-pressure chemical industry flanges and threaded stubs for use with lens gaskets	MSS SP-65
	Unfired pressure vessel flange dimensions	ANSI 816.30 ASME J27
Cest iron	Cast-Iron pipe flanges and flanged fittings, 25, 125, 250, and 800 PSI	ANSI 816.1 ASME J17
	MSS 150 PSI corrosion-resistant cast flanges and flanged fittings	MSS SP-51
Finishing	Finishes for contact faces for connecting end flanges of ferrous valves and fittings	MSS SP-6

STANDARDS FOR GASKETS

TABLE 7.8

		170227,0
Metallic	Ring-joint gaskets and grooves for steel pipe flanges	ANSI 816,20 ASME L30
	Metallic gaskets for refinery piping (double-jacketed, corrugated, and spirel-wound)	API 601
Non-metellic	Reised-face flange gaskets, limiting dimensions of which meet requirements of ANSI B16.5	MSS SP-47
	Non-metallic gaskett for pipe flanges	ANSI 816.21 ASME L15

STANDARDS FOR FITTINGS

TABLE 7.9

		TABLE 7
Steel	Factory-made wrought steel butt-welding fittings	ANSI B16.9 ISO R285
	Wrought steel butt-welding short-radius elbows and returns	ANSI B16.28 ASME M53
	Butt-welding ends for pipe, valves, flanges, and fittings	ANSI B16.25 ASME J13
	Steel butt-welding fittings (26-inch and larger)	MSS SP-48
	High-strength wrought welding fittings	MSS SP-63
	Forged-steel fittings, socket-welding and threaded	ANSI 816.11 ASME M16
Stainless steel	Wrought stainless-steel butt-welding fittings	MSS SP-43
Iron	Cast-iron screwed fittings, 125 and 250 PSI	ANSI B16.4
	Cast-iron threaded drainage fittings	ANSI B16.12 ASME J21
	Malleable-iron screwed fittings, 150 and 300 PSI	ANSI 816.3 ASME L5
Ferrous	Ferrous pipe plugs, bushings and locknuts with pipe threads	ANSI B16.14 ASME J32
Copper alloy	Wrought copper and wrought copper alloy solder-joint drainage fittings	ANSI B16.29 ASME N57
	Cast bronze fittings for flared copper tubes	ANSI B16.26 ASME J8
Plastics •	Plastic insert fittings for flexible polyethylene pipe	ANSI B16.27 ASME L37

STANDARDS FOR PUMPING MACHINERY

TABLE 7.10

Centrifugal	Centrifugal pumps	ASME PTC8.2
	Centrifugal pumps for general refinery services	API 610
Positive- displacement pumps	Displacement pumps	ASME PTC7.1
	Reciprocating steam-driven positive-displacement pumps	ASME PTC7
	Displacement compressors, vacuum pumps and blowers	ASME PTC9
Compressors and exhausters	Installation of blower and exhaust systems for dust, stock and vapor removal or conveying	ANSI Z33.1 NFPA 91 AIA 91
	Compressors and exhausters	ASME PTC10
	Ejectors and boosters	ASME PTC24
Nuclear power	Nuclear power plant components (Section 3, ASME Boiler Code)	ASME F3

ABLES

		IMBLE 7.11
Steel	Steel gate valves (flanged or butt-welding ends) for refinery use. 5th edn.	API 600
	Specification for pipeline valves (steel gate, plug, ball, and check valves)	API 6D
	Compact design carbon-steel gate valves for refinery use	API 602
	Pressure—temperature ratings for steel butt-welding- end valves	MSS SP-66
Iron	Cast-iron pipeline valves	MSS SP-62
	Flanged nodular iron gate and plug valves for refinery use. 2nd edn.	API 604
	MSS 150 PSI corrosion-resistent cast flanged valves	MSS SP-42
	150 PSI light-wall, corrosion-resistant gate valves for refinery use (%-inch to 12-inch inclusive). 1st edn.	API 603
Ferrous	Face-to-face and end-to-end dimensions of ferrous valves	ANSI B16.10
	Finishes for contact faces of connecting end flanges of ferrous valves and fittings	MSS SP-6
Bronze	MSS 125 PSI bronze gate valves	MSS SP-37
Butterfly	Butterfly valves	MSS SP-67
Relief -	Safety and relief valves with atmospheric or superimposed back-pressure before discharging	ASME PTC25.2
Control	Uniform face-to-face dimensions for flanged control valve bodies	ISA RP4.1
	Recommended procedure in rating flow and pressure characteristics of solenoid valves for liquid service	FCI 68-2
	Recommended procedure in rating flow and pressure characteristics of solenoid valves for gas service	FCI 68-1
	Recommended voluntary standards for face-to-face dimensions of control valves in sizes 10-inch thru 16-inch in ratings of 125 PSI thru 250 PSI for cast iron, and 150, 300, and 600 PSI for cast steel	FCI 65-2
	Recommended voluntary standard formulas for sizing control valves	FCI 62-1
	Definitions for regulator capacities	FCI 58-1
	Standard classification and terminology for power-actuated valves	FCI 55.1

STANDARDS FOR STEAM TRAPS

TABLE 7.12

Rating	Pressure rating standard for steam traps	FCI 69-1
,	Voluntary standards for determining industrial steam trap capacity rating	FCI 65.3
Testing	Life-cycling tests applicable to balanced pressure thermostatic trap elements	FCI 68-3

Pressure vessels	Pressure vessels (Section 8, ASME Roller Gude)	ASME FRAGE
Low-pressure tanks	Recommended rules for design and construction of large walded low-pressure storges tanks	API 630
	Welded steel tanks for all storage	API 660
	Venting atmospheric and low-pressure storage tanks	API 2000
Nuclear vessels	Safety standard for design, fabrication and maintenance of steel containment structures for stationary nuclear power reactors	ANSI NS.2 ASME N42
	Nuclear power plant components (Section 3, ASME Boller Code)	ABME F3

STANDARDS FOR HEAT EXCHANGERS

TABLE 7.14

Exchang	Heat exchangers for general refinery services Tube dimensions for heat exchangers	API 660 API 640
Heaters	Feedwater heaters	ASME PTC12.1

SCREW THREADS FOR PIPING, NUTS & BOLTS

TABLE 7.16

schew inne	ADS FOR PIPING, NUTS & BOLTS	TABLE 7.10
General	Unified screw threads	ANSI 81.1 ASME M28
	Unlified screw threads—metric translation	ANSI 81.1a
	Metric screw threads	ASME N48
-	Nomenclature, definitions, and letter symbols for screw threads	ANSI B1.7 ASME L11
Pipe	Pipe threads (except dryseal)	ANSI B2.1 ASME L18
	Dryseal pipe threads	ANSI B2.2 ASME M36
Hose	Firehose coupling screw threed	ANSI 828 ASME J34
	Hose coupling screw threads	ANSI B2.4 ASME K14
Valves, fittings, and flanges	Specification for wellhead equipment	API 6-A
Nuts and bolts	Square and hex nuts	ANSI B1B.2.2 ASME M43 ISO R272
	Square and hax bolts and acrews	ANSI 818.2.1 ASME M44 ISO R272

7.11-7.15

ABBREVIATIONS

FOR PIPING DRAWINGS & INDUSTRIAL CHEMICALS

ABBREVIATIONS USED ON PIPING DRAWINGS, DOCUMENTS, Etc.

8.1

		E			
A	(1) Air	E	East	ID	(1) Inside diameter
	(2) Absolute	ECN	Engineering change number		(2) Internal diameter
ABS	Absolute	EFW	Electric-fusion-welded	IMP	Imperial. (British unit)
AGΛ	American Gas Association	ELL	Elbow	IPS	Iron pipe size
AISI	American Iron and Steel Institute	ĒRW	Electric-resistance-welded	is	Inside screw. [Of valve stem]
ANSI	American National Standards Institute		and and residence welled	iso	Isometric drawing
API	American Petroleum Institute	F		IS&Y	Inside screw and yoke
ASTM	American Society for Testing and Materials	F	Fahrenheit	130(1	mside screw and yoke
AWS	American Welding Society	F&D	Faced and drilled	Ŕ	
	American Waterworks Association	FAHR	Fahrenheit	K	Kilo times one thousand 1,1000
A11111A	Principles Polici Polici Pasociation	FBW			Kilo, times one thousand, x1000
В			Furnace-butt-welded	KG	Kilogram
BBL	Descri	FCN	Field change number		
	Barref	FD85F	Faced, drilled and spot-faced		
BC	Bolt circle	FE	Flanged end	L	Liquid
BLE	Beveled large end	FF	(1) Flat face(d)	LB,Lb	Pound weight
BLK	Black		(2) Full face [of gasket]	LT	Light-wall (of Pipe)
BLVD	Beveled		(3) Flange face [dimensioning]	LR	Long radius. [Of Elbow]
BOP	Bottom (of outside) of pipe. Used for	FLG	Flange		
	pipe support location	FLGD	Flanged	M	•
BS	British Standard	FOB	(1) Flat on bottom. [Indicates orient-	M	(1) Meter
BTU	British thermal unit	, 05	ation of eccentric reducer]		(2) Mega, times one million, 1 000 000
BW	(1) Butt weld .		(2) Freight on board. (Indicates loca-		[On old drawings, x1000]
	(2) Butt welded		tion of supply of vendor's freight at the	MACH	
_			stated price]	MATL	Material
C	•			MAWP	Maximum allowable working pressure
С	(1) Centigrade, or Celsius		(3) Free on board. (Indicates location	MAX	Maximum Maximum
•	(2) Condensate		of supply of vendor's freight]	MCC	
CENT	Centigrade	FOT	Flat on top. [Indicates orientation of	M/C	Motor control center Machine
CFM	Cubic feet per minute		eccentric reducer)	MFR	
CHU	Centigrade heat unit	FRP	[Glass-] fiber reinforced pipe		Manufacturer
CI	Cast iron	FS	Forged steel	MI	Malleable iron
CM		FW	Field weld	MIN	(1) Minimum
	Centimeter	G			(2) Minute. [Of time]
Cr	Chromium			MM	Millimeter
CS	(1) Carbon steel	G	(1) Gas .	Мо	Molybdenum
	(2) Cold spring		(2) Grade	MSS	Manufacturers' Standardization Society
CSC	Car-sealed closed. Denotes a valve to be		(3) Gram		of the Valve and Fittings Industry
	locked in the closed position under all	GAL	Gallon		
	circumstances other than repair to adjac-	GALV	Galvanized	N	
	ent piping	GPH	Gallons per hour	N	North
CSO	Car-sealed open, See CSC	GPM	Gallon per minute	NC	Normally closed
CTR	Center			NEMA	National Electrical Manufacturers' Assn.
CU	Cubic	H		Ni	Nickel
		н	(1) Horizontal	NIC	Not in contract
D		• •	(2) Hour	NO	
	Degree	HEX	Hexagon(al)	NPSC	Normally open
	Dismeter		Mercury		2.5.5
DEG	Deutsche Industrie Norm (German stand-	Hg		NPSF	2.5.5
DIA	Deutsche moustrie Norm (German Stand-	HPT	Hose-pipe thread	, NPSH	(1) Net positive suction head.[3.2.1]
DIA					
DIA DIA	art)	HR	Hour		(2) 2.5.5
DIA DIN DO	ant) Drawing office	HR I	Hour .	NPSI	2.5.5
DIA	art)	HR E	Invert elevation	NPSI NPSL NPSM	

NPT	National pipe thread	SAE	Society of Automotive Engineers	U	
NPTF	2.5.5	SCH	Schedule. (Of pipe)	• .	
NRS	Non-rising stem. [Of valve]	SCRD	Screwed	UNC	2.6.3
_		SF	Spot-faced	UNF	2.6.3
Ο ·		SKT	Socket :	UNS	2.6.3
0	Oil	SMLS	Seamless		
OD	Outside diameter	Si	Silicon	V	•
OS	Outside screw. [Valve stem]	SO	Slip-on	V	(1) Vertical
OS&Y	Outside screw and yoke. [Valve stem]	SP	(1) Sample point	•	(2) Vanadium
_	• • • • • • • • • • • • • • • • • • • •		(2) Standard practice. [MSS term]		121 Amiografii
P		SR	Short radius. (Of elbow)	W	
P&ID	Piping and instrumentation diagram	SST	Stainless steel	w .	(1) West
PBE	Plain both ends. [Swage, etc.]	ST	Steam trap	**	(2) Water
PE	Plain end. [Pipe, etc.]	STM	Steam	WGT	Weight
PFI	Pipe Fabrication Institute	STD	Standard	WLD	Weld (ed)
POE	Plain one end. [Nipple, etc.]	STR	Straight	WN	Welding neck
PS	(1) Pipe support, [Anchor, guide or	SW	Socket welding	WOG	Water, oil and gas
	shoe, or items combined to form the	SWG	Swage	WP	The state of the s
	support]	SWG (_		(1) Workpoint or reference point (2) Markings with this prefix designate
	(2) Pre-spring	NIPP	Swaged nipple		
PSI	Pound [weight] per square inch. [Pressure]	SWP	Steam working pressure		certain steels and are used on pipe,
PSIA	Pound per square inch absolute	•	The state of the s		fittings and plate, Example: 'WPb'
PSIG	Pound per square inch gage	T			marked on forged fittings denotes
	Touris per square men gage	т	(1) Temperature		A181 grade 2. Refer to ASME SA-
R		•	(2) Trap	WT	234, tables 1 and 2,
RED	Reducing	T&C	Threaded and coupled, [Pipe]	441	Weight
RF	Raised face	TEMA	Tubular Exchanger Manufacturers' Assn.	. X	
RJ	Ring joint	TGT	Tangent	хн	Extra-heavy, (See Index)
RPM	Revolutions per minute	TOE		XS	Extra-strong
		TOS	Threaded one end. [Nipple or Swage]		
RS	Rising stem. [Of valve]	TPI	Top of support	XXS	Double-extra-strong
S			Threads per inch	- OTHER	
	(1) Caush	TSE	Threaded small end	Ę	Centerline
S	(1) South	TYP	Typical. [Used to avoid redrawing similar		· · · · ·
	(2) Steam		arrangements]	Φ	Diameter
			_		

ABBREVIATIONS FOR COMMERCIAL CHEMICALS

8.2

ABBREVIATION	CHEMICAL NAME	AREA OF USE	D		
			DAP	Diammonium phosphate	Agriculture
A			DCO	Dehydrated castor oil	Paint
ADA	Acetone dicarboxylic acid	Drugs	DMC	Dimethylammonium dimethyl carbamate	Refining
AEA	Air-entraining agent	Concrete	DMF	Dimethyl formamide	
ANW	83% ammonium nitrate in water		DMU	Dimethylurea	
0			DNA	Dinonyladipate	Plastics
В			DNM	Dinonyl maleate	Plastics
BAP ·	Benzyl para-amino phenol	Fuel	DNP	Dinonyl phthalate	Plastics
BHA	Butylated hydroxyanisole	Food	DNT	Dinitrotoluene	Explosives
BHC	Benzene hexachloride	General	DOP	Dioctyl phthalate	Plastics
BHT	Butylated hydroxytoluene	Food	DOV	96% sulfuric acid	General
BOV	77-78% sulfuric acid	General		('distilled oil of vitreol')	
	('blown oil of vitreol')		DSP	Disodium phosphate	General
BzH	Benzaldehyde	General	DTBP	Ditertiary-butyl peroxide	Plastics
BzOH	Benzoic acid	General	DVB	Divinyl benzene	Plastics
			DPG	Diphenyl guanidine	Rubber
C .		·	DOPA	3,4-dihydroxyphenylaniline	Rubber
CO	Carbon monoxide		•	•	
COV	95-96% sulfuric acid	General	E	•	
	('concentrated oil of vitreol')	-	EA	Ethylidene aniline	Rubber
CO2	Carbon dioxide	General	EDTA	Ethylene diamine tetra-acetic acid	Food
		40.00	[142]	Earling around tong pootic and	

ABBREVIATION	MEANING	AREA OF USE	0		
			OMPA	Octamethyl pyrophosphoramide	Agriculture
			ONB	o-nitrobiphenyl	Plastics
			OPE	Octylphenoxyethanol	Refining
			02	Oxygen	General
			03	Ozone	
F					
FA	Furfuryl alcohol	General			
FGAN	Ammonium nitrate	Agriculture	P		
FPA	Fluorophosphoric acid		PAS ·	p-aminosalicylic acid	Drugs
FREON	One of a large number of chloro- or	Refrigeration,	PB	Polybutene	Plastics
	fluoro- substituted hydrocarbons	General	PBNA	Phenyl beta-naphthylamine	Rubber
			PDB	p-dichlorobenzene	Agriculture
Н			PE	Penta-erythritol	riginountaro
HCN	Hydrocyanic acid, hydrogen cyanide	Plating	PETN	Penta-erythritol tetranitrate	Explosives
HET	Hexa-ethyl tetraphosphate	Agriculture	PTFE	Polytetrafluorethylene	Plastics
HMDT	Hexamethylene triperoxide	, igi ioditoro	PVA or PVAL	Polyvinyl alcohol	. 1001100
HMT	Hexamethylene tetramine		PVAc	Polyvinyl acetate	
HNM	Mannitol hexanitrate	Explosives	PVB	Polyvinyl butyrol	
HTP	100% hydrogen peroxide	Rocketry,	PVC	Polyvinyl chloride	
••••	('high test peroxide'),	General	PVM	Polyvinyl methyl-ether	
	Branched aliphatic alcohols of high b.pt.		R		
H2O .	Water		RNV	Sulfuric acid ('refined oil of vitreol')	
5	•			Sundric acid (Termied on of Vitreol)	General
IMS	Commercial ethyl alcohol (Brit.)	General	S		
IPA	Isophthalic acid	Concrai	S	Sulfur	General
IPC	Isopropyl n-phenyl carbonate		SAP	Sodium acid pyrophosphate	General
IPS	Isopropyl alcohol (Shell Oil Co.)	General	SDA	Specially denatured alcohol	General
_	· · · · · · · · · · · · · · · · · · ·		SO2	Sulfur dioxide	General
L					
LOX	Liquid oxygen	Rocketry			
LPC	Lauryt pyridinium chloride	Soaps	T		
LPG	Liquefied petroleum gases, mainly	Fuel	TCA	Sodium tetrachloracetate	Agriculture
	butane and propane		TCE	1,1,1-trichlorethane	Dry cleaning
			TCP	Tricresyl phosphate	Fuel.
••	•	•			Plastics
M			TEG	Triethylene glycol	Refining
MBMC	Monotertiary butyl-methyl-cresol	General	TEL	Tetraethyl lead	Fuel
MEK	Methyl-ethyl-ketone	Paint,	TEP	Tetraethyl pyrophosphate	Agriculture
		General	TFA	Tetrahydrofurfuryl alcohol	•
MEP	2-methyl, 5-ethyl pyridine	•	TNA TNB	Trinitroaniline Trinitrobenzene	Explosives
MIBC	Methyl isobutyl carbinol		TNG	Trinitroglycerine	Explosives
MIBK	Methyl-isobutyl-ketone		TNM	Trinitromethane	Explosives
MNA	Methyl-nonyl acetaldehyde		TNT	Trinitrotoluene	
MNPT	m-nitro p-toluidine		TNX	Trinitroxylene	Explosives
MNT	Mononitro toluene	Explosives	TOF	Trioctyl phosphate	Explosives
MSG	Monosodium glutamate	Food	TPG	Triphenyl guanidine	Plastics
			TSP	Trisodium o-phosphate Tetrasodium phosphate	Rubber
N					
NBA	n-bromacetamide		V		•
NBS	n-bromosuccinamide		V		
NCA	n-chloracetamide		VA	Vinyl acetate	
NCS	n-chlorosuccinamide			:	
NH powder	Explosive powder		Z		
N2	Nitrogen		ZMA	Zinc methylarsenate	Timber
		1	[143]	• • • • • • • • • • • • • • • • • • • •	

INDEX

& GLOSSARY

	A	BLOWDOWN SYSTEM. A (discharge) piping	CLOSURES. Temporary. 2.7. table 2.6	CRYOGENIC. Describes very low temperature
	ABBREVIATIONS, 8	arrangement for removing material from a pro- cess, vessel, boiler, etc.	COAST & GEODETIC SURVEY, 5.3.1	and edicibulant rised at these printeriations
	ACCESS TO VALVE. 6.1.3	BLOWER 322	COATINGS, For pipe, 2.1.4	Term usually applies to - 200 F and colder
	AFTERCOOLER, 3.2.2	BLOWOFF SYSTEM, Piping hookup used for	COCK, Simple plug valve in the smaller sizes CODES	CYCLONE, 3.3.3, table 3.8
	AGITATOR, table 3,7 AIR IN STEAM, 6,9,1, 6,10,1	UNITED SCARE AND INTERIOR INSTITUTE From tout.	ANSI code for pressure piping, table 7.2	•
	AIR LINE, Liquid removal, 6.11,4	BLOWOFF VALVE. 3.1.9	API code 2510, 7.5.2	D .
	ALLOYS, For pipe, 2,1,4	BUILER FEEDWATER 6 10 2	API-ASME code for unfired pressure vessels.	U
	AMBIENT. Pertaining to the surroundings. Usual-	BOLT HOLES in flances, 2.6.2 tables F	7.5.3 ASME code for boilers, 7.5.4	DAMPENER.
	ly refers to temperature	DUNNE 1, 3, 1, 2	COLD SPRING. 6.1.1. figure 6.2	For compressor, 3.2.2
	AMERICAN STANDARDS ASSOCIATION, 7,3 ANCHOR. 2,12,2, 6,2,8, A pipe fixture used to	BOTTOMS. See 'COLUMN OPERATION' 6.5.2 BREECHLOCK. See 'Bonnet' 3.1.2	COLOR CODING	Hydraulic, 2,12,2
	hold piping rigidly at a chosen point. Position	DREAKING LINES. (igure 5.10	Model. 4.4.12	DASHPOT. Piaton-type device used for dempin
	where piping is restrained is termed the 'anchor	BREAIMER VALVE 3111	Piping. ANSI A13.1	mechanical movement
	point'	BRITISH STANDARDS INSTITUTE, 7.3 BRUNING, 4.4.11	COLUMN Fractionation, Distillation, 6.5.2, table 3.8	DATUM, See "Vertical reference" 5.3.1 DAVIT. 6.5.2. figure 6.27
	ANGLE VALVE, 3.1.6 ANSI, 7.3	BUILDING LAYOUT, 6,15,3	COLUMN PIPING, 6,5,2	DAY TANK. Term used for storage tank, hulding
	ARCHIVE. Place where drawings, specifications,	BUILDINGS. In relation to piping. 6.15. figures	COMMERCIAL PIPING, 1.1	limited supply of fuel, etc.
	etc., may be permanently stored		COMPANION FLANGE, A fignor-or a flancing	DEAD WEIGHTING, Method of measuring cires
	ASA, 7.3	BULLHEAD TEE. 2.3.2	arrangement—custom-tabricated to mate with	sure of fluid in a line. Device having a platfurn
	ATTRITION, See 'Change of particle size' 3.3,4	BUND, See 'DIKE' BURIED PIPE, Dimensioning, table 5,2	non-standard flanges on some special items of equipment	on which weights can be placed, temporarily
	AUTOCLAVE, Vessel in which material or react- ants are held under controlled conditions (time,	BURSTING DISC=Rupture disc, 3.1.9	COMPOSITION DISC. 3.1.5. Non-metallic disc	fitted to vertical valved branch- weights halame line pressure. Used for calibration
	temperature, pressure, atmosphere, etc.)	BUSHING, Hexagon, Screwed, 2.5.1 figure 2.42	used in certain oloba valvas	DEADMAN, Anchor permanently set into granul
	AUXILIARY PIPING, 6.3.1	BUTT-WELDED PIPE JOINTS, 2,3	COMPRESSOR, 3.2.2	TOF GRECLION DUEDOSES—used for securing cables
		BUTTERFLY VALVE. 3.1.6	Piping, 6.3.2	DEAERATOR, 3.3.3, table 3.8
		BYPASS. Valved length of piping that allows full	COMPRESSED AIR LINES. Draining. 6.11.4 CONDENSATE, 6.9.1, 6.10.2	DEFLECTION OF PIPE. 6.2.6, table S-1
	B :	or partial flow, arranged around a valve, valve assembly, equipment, etc. See figures 6.6 thru	CONNECTION. To equipment. See NOZZLE.	DEFOAMER. 3.3.3. table 3.8 DEMINERALIZED WATER. Water with all forms
		O. 11 for examples	CONNECTOR	of hardness (dissolved minerals) removed
	BACK WELD. In piping, a continuous weld made	BYPASS VALVE. 3.1.11	Pipe-to-tube. 2.5.1. figure 2.41	DESICCANT, A drying agent, such as concentrated
	at the back of a butt weld—possible only if there is access to the interior		Quick connector, 2.8,1	source and of Bilds Off
	BACKCHECK, 5.4.2	•	CONSOLE. An arrangement of gages and controls	DESICCATOR, Machine for removing water or
	BACKING RING=Chill ring, chart 2.1, figure 2.1	C	mounted in a desk or cabinet, from which a process may be monitored and controlled	other liquid from a process material by apply- ing vacuum, heat, or by chemical means
	BALL FLOAT VALVE. 3.1.9	CAP	CONSTANT LOAD HANGER, 2.12.2	DESUPERHEATER. Device for reducing super-
٠	BALL VALVE, Check valve, 3.1.7 BALL VALVE, Rotary, 3.1.6	Butt-welding, 2,3,3, figure 2,20	CONTINUATION SHEET. See 'Process & service	heat in steam, usually by adding water to the
	BAROMETRIC LEG. II a process which takes	Screwed, 2.5.4. figure 2.54	tines on piping drawings' 5.2.8. Any sheet on	r (sam
	place below atmospheric pressure requires water	Socket-welding, 2,4,4, figure 2,36	which information is continued	DETAIL, See 'Elevations (sections) & dotaits' 6.2.8
	or other liquid to be continuously drained from	CARBON STEELS are iron-based alloys having	CONTROL STATION, 6.1.4, figures 6.6 thru 6.11 Symbol, chart 5.7	DEWPOINT. The temperature at which a vapor
	it, this may be achieved by connecting the drain	properties chiefly determined by their carbon content	CONTROL VALVE, 3.1.10. figure 3.4	forms liquid ('dew') on cooling DIAPHRAGM VALVE. 3.1.11
	to a vertical pipe termed a barometric leg, the lower end of which is inserted in a seal pot.	CATCHBASIN. Receptacle designed to separate	CONVEYED FLUID. This term is used in the	DIAZO, 4.4.11
	When the leg and seal are primed with liquid	matter from a waste stream	Guide for liquid or gas carried by piping	DIKE. Shaped wall or embankment surrounding
	draining from a low-pressure process can occur	CATCHMENT, Reservoir or basin	COOLER. Heat exchanger used to cool process	one or more storage tanks to form a basin abla
	continuously. If the pressure of the process	CATHODIC PROTECTION. Buried pipe can be	COOLING WATER. Water used to cool process	to hold entire contents of tank(s) in event of leakage or rupture
	approaches zero (absolute) the leg must be at least 34 ft in height.	protected from corrosion by wiring buried sacrificial anodes (usually cylinders of zinc) to	Tiuld or equipment	DIMENSIONING, 5.3. figure 5.13. table 5.2
	BARSTOCK PLUG. 2.5.4 figure 2.55	the pipe. Galvanic corrosion then tends to	COORDINATE, 5.3.1	Buried pipe, table 5.2
	DANSTOCK VALVE. 31.11, Valve machined	occur in the zinc instead of the steel. Protection	COPYING PROCESSES, 4.4.11 CORROSION, Conveyed Italia may attack mater-	Elevations, See 'Plan view piping drawings' 5.2.8.
	from solid metal	und also be broathed by wealts of efective holf-	las from which pipe and fittings are made. The	9.3.3. ligure 5.12, table 5.2
	BATTERY LIMIT. Arbitary line shown on draw-	ages and ground currents	degree of corrosion will depend on the pipe	Fitting makeup, 5.3.3 Gasket, See 'Dimensioning to joints' 5.3.3
	ings to define on-plot and off-plot areas. Also used to define limits of contractural responsi-	CAVITATION. 6.31	material, the conveyed fluid, its temperature	Iso. 5.3.4. figure 6.15
	bility within an on-plot area	CENTRIFUGE 3.3.3, table 3.8 CERTIFIED DRAWING/PRINT, Final vendor's	and concentration, time of exposure, possible	Offsets for iso, figure 5.16
	BENCHMARK, 5.3.1, figure 5.12	print of equipment showing dimensions which	presence of water or air, and whether galvanic action is also present	Piping drawing, 5 3,2
	BENDS, BUTT WELDING, 2.3.1	will be maintained during manufacture	CORROSION ALLOWANCE, Additional thickness	Reference tine, figure 5,13
	BENT. 6.1.2 BEVEL. The ends of pipe and butt-welding fittings	CHATTERING, 3.1.4	of metal in excess of that calculated for strength	Spool. 5,3,5, figure 6,17 To joint, 6,3,3
	are beveled (see chart 2.1) to aid making welded	CHECK VALVE, 3.1.7	COUPLING	To nozzle, 5.3.3, table 5.2
	joints	CHECKER, 4.1.2, 5,4.1 CHIEF DRAFTSMAN, 4,1.2	Screwed, FULL-, 2.5.1, 2.5.3, ligures 2.37 & 2.49	To pump, See 'Plot plan' 5.2.7, figure 6.17
	8188. 3.1.11	CHILL RING=Backing ring, chart 2.1.figure 2.1		10 valve, 5,3,3
	BILL OF MATERIEL 5.6.1	CIVIL PIPING, 1,1	Screwed, HALF-, 2,5,3, figure 2,49 Screwed, REDUCER, 2,5,1, figure 2,38	Vessel, ligure 5,14
	BLEED RING. 2.7.1, figure 2.60, chart 5.7 BLEED VALVE, 3.1.11, figure 2.60	CLEANOUT. Arrangement for cleaning out a line	Socket-welding, FULL, 2.4.1, figure 2.21	DIRECTION OF FLOW LINE, See 'Flow files' 5.2.3
	BLENDER, 3.3.2. table 3.7	Or vessel	Socket-welding, HALF-, 2.4.3, figure 2.31	DISCHARGE VALVES, 3.1.9
	BLINU FLANGE, 2,7.1, 2,7.2, figure 2.61, Ftanne	CLEARANCE, 6.1.1, table 6.1 Orifice plate assembly, figure 6.38	Socket-welding, REDUCER, 2.4.1, figure 2.22	DISHED HEAD. 2.3.3
	with no central opening used for cinque of	CLOSING DOWN LINES, 6.1.3	CHASH PANEL. Breakable panel thru which per-	Vulume, chart T-2
	tianged terminations. Rated similarly to other	CLOSURES, Permanent, figure 2 20	sonnel may escape from a hazard in a building CROSS	DISTILLATION COLUMN, 3,3,3, table 3.6
	types of flange—see tables F BLOCK VALVE, 3,1,11	Butt-welding, 2.3,3	Butt-welding, 2.3.2, figure 2.17	Piping. 6.5.2 DIVERTING VALVE, 3.1.8
i	BLOWDOWN VALVE, 3.1.11	Screwed, 2.5.4	Screwed. 2.5.2. figure 2.48	DOUBLE-BLOCK-AND-BLEED, 27.1, floure 2.60.
		Socket-welding, 2,4,4	Socket-welding, 2.4.2, figure 2.30	See 'Make maintenance safe' 6,1,3

	DOUBLE EXTRA STRONG, 2.1.3.Manufacturers'	ELEVATIONS
	standard for wall thickness of pipe and fittings DOWNCOMER, A line which conveys fluid down-	Dimensions, 5.3.2. table 5.2 Views, 5.2.6. See 'Elevations (sections) & details'
	ward DOWTHERM. 6.9.2. See 'Jacketing' 6.8.2	5.2.8 ELL. See ELBOW
	DRAFTING Control stations, 6.1.4, chart 5,7	EJECTOR. A type of pump in which a partial vacuum is created by passing steam or other
	Materials: 4,4 Piping. 5.2.8	fluid under pressure thru a neck or venturi with a branch at the narrowest part. A suction
	Symbols, 5.1	is created in the branch
	DRAFTING MACHINES, 4,4,8 DRAFTSMAN, 4,1,2	EQUIPMENT Identifying on flow diagram, 5.2.3
	DRAIN	Identifying on P&ID, 5.2,4 List, 4,2,2
	Location, 6.1.1, figure 6,47 On P&ID, 5.2.4	 EQUIPMENT ARRANGEMENT DRAWING, 5.2.7
	On nump, 6.3.1 Symbol, chart 5,7, chart 5,28	EQUIPMENT INDEX. 4,2.2 ERASING. 4,4,4
	DRAIN HUB, Funnel fitted in floor and connected	EVAPORATOR. 3.3.3. table 3.8 EXPANDER FLANGE. 2.3.1. figure 2.9
	to a drain fine DRAIN VALVE, 3,1,11	EXPANSION, Thermal movement, 6,1.1
	DRAINAGE. (1) System of drains, (2) Act or process of draining	Of steel, chart 6.1 Loop, figure 6.1
	DIVINING	EXPANSION JOINT, 2.9.1. figures 2.63 thru 2.66 'EXTRA HEAVY', Traditional term used for 250
	Air line, 6.11.4 Steam line, 6.10.4, 6.10.9	PSI cast-fron fittings and 300 PSI malleable-iron
	DRAWING NUMBER, 4,2,4	fittings. These pressure ratings are for 'working steam pressure' (WSP)
	DRAWING PAPER, 4-4,1 Sirm, 4,4,1	EXTRA-STRONG. Manufacturers' standard for wall thickness of pipe and littings, 2.1,3
	DRAWING REGISTER, See 'Drawing control' 4.2.4	EXTRUDED NOZZLE. Hot formed outlet made
	DRAWINGS	In pipe or vessel by pulling shaped dies thrue a hole made in the wall
	Breaking lines to show 'hidden piping' on draw- ings, ligure 5.10	
	Elevation, 5,2.6. 5,2.8. figures 5,5 & 5,7 Figure lines on flow diagram, 5 2,3	_
	Flow lines on P&ID, 5.2.4	F .
	Grid system, See 'P&ID layout' 5.2.4 Instrument connections on piping drawings.	FAN. table 3.3
	5.2.8	FIELD. (1) Construction site ('job site'), where plping is erected. (2) Field engineering office
	Iso: 5.2.6. figures 5:15, 5,7 & 5,6 Isoung, 5,4,3	FIELD WELD. Weld made at the time of erection of piping at the site
	Key µlan, 5,2,7, figure 5,8 Ohlique, 5,2,6, figure 5,7	Symbol for, chart 5.3, figure 5.15
	Orthographic, 5.2.6	FILING DRAWINGS, 4.3. 4.4.10 FILLET WELD, chart 5.9
	Fix torist, 5,2,6 Figure and instrumentation diagram, 5,2,4	FINISHED GRADE. 5.3.1 FIREFIGHTING.
	Plan, 5,2,6, 5,2,8 Plot plan, 5,2,7	Station, 6.1.2
	Process flow diagram, 5-2.3	FIREWATER, Independent supply of water for firefighting
	Matchilire, See 'Frocess & service lines on piping drawings' 5,2.8, figure 5.8	FIRST-AID STATION, Location, 6.1.2 FITTING MAKEUP
	Numbering, 4.2.4, 5.2.9 Site plan, 5,2,7	Dimensioning for, 5.3.5 Fitting makeup, 5.3.3
	Schematic diagram, 5.2.2	FITTINGS, 2.2.4
	Symbols 5,1 Vessil, 5,2,7, figure 5,14	Butt-welding, 2.3. chart 2.1 Ordering, 5.6.3
	DRESSER COUPLING, 2.8.2 DRIP VALVE, 3.1.11, A drain valve used on drip-	Screwed, 2.5, chart 2.3
	legs Sizes on driplegs, table 6.10	Socket-welding, 2.4, chart 2.2 FLAG. To identify an Item on a drawing by means
	DRIPLEG. 2.10.5. figure 2.70	of a flag, panel or other mark FLAME ARRESTOR. A device to prevent a flame-
	On P&ID. 5.2,4 On piping drawings, 5.2.8	front from moving upstream in a line or vessel.
	Sizes, table 6.10 DRIPSHIELD, 6.1.3	For small lines, may consist of a wire screen. For larger lines, arrangements of multiple paraf-
	DRY STEAM, 6,9,1, chart 6,3	lef plates or tubes are used. Principally used on vent lines to tanks, Symbol, chart 5.7
	DRYER, 3.3.3, 6.10.3, table 3,8 DRYSEAL, 2.5.5	FLAMMABLE LIQUID. Safety guidelines, 6.14
	DUMMY LEG, 2,12,2, figure 2,72A, table 6,3 DYELINE, 4,4,11	FLANGE, 2.2.3. 2.3.1, figures 2.6 thru 2.10 Bolt and studbolt for, 2.6.3, figure 2,57,tables F
	W. C.	Bolt hole, 2.6.2, tables F Expander, 2.3.1, figure 2.9
	E	Facing. 2.6.1. figure 2.56
•	_	Gasket. 2.6.4. figure 2.56. table 2.5 Lap joint. 2.3.1. figure 2.10
	EDUCTOR, 3,3,2, tehte 3,7 EFFLUENT, 6,13	Reducing, 2.3.1, figure 2.8 Screwed, 2.5.1, figure 2.45
	ELBOILET Butt welding 2.3.2. figure 2.14	Slip-on, 2,3,1, figure 2,7
	Screwed, 2.5.3. figure 2.51	Socket-welding, 2.4, 1. figure 2.27 Welding-neck, 2.3.1, figure 2.6
	Sorket welding, 2,4,3, figure 2,33 ELBOW-EII	FLAP VALVE, 3.1.11 FLARESTACK. A stack located away from the
	Butt-welding, 2,3,1, figure 2,2 Mitered, 2,3,1 figure 2,5, table M-2	processing area, to which relief headers may be
	Screwed, 2.5 1, figure 2.44	fun for burning waste hydrocarbons or other flammable vapors, 6,11,3
	Sincket weiteling. 2.4:1 ligies 7, 28	FLASH STEAM, 6.9.1

VATIONS	Fl
imensions, 5.3.2, table 5.2	
iews. 5.2.6. See 'Elevations (sections) & details' 5.2.8	
See ELBOW	
See ELBOW TOR. A type of pump in which a partial	FL
cuum is created by passing steam or other	
uld under pressure thru a neck or venturi- ith a branch at the narrowest part. A suction	•
created in the branch	
IPMENT	
lentifying on flow diagram, 5.2.3 lentifying on P&ID, 5.2.4	FL
st. 4.2.2	FL
IPMENT ARRANGEMENT DRAWING, 5.2.7	
IPMENT INDEX. 4,2,2 SING. 4,4,4	FL
PORATOR, 3.3.3, table 3.8	FL
ANDER FLANGE, 2.3.1. figure 2.9	FL
ANSION, Thermal movement, 6,1,1 I steel, chart 6,1	
pop. figure 6.1	FL
pop. figure 6.1 ANSION JOINT, 2.9.1, figures 2.63 thru 2.66	
RA HEAVY', Traditional term used for 250 St cast-fron fittings and 300 PSI malleable-iron	
itings. These pressure ratings are for 'working	FL
eam pressure' (WSP)	FÖ
RA-STRONG, Manufacturers' standard for all thickness of pipe and fittings, 2,1,3	
RUDED NOZZLE. Hot-formed outlet made	FO
pipe or vessel by pulling shaped dies thru	FR
hole made in the wall	
	FR
	FU
table 3.3	C
D. (1) Construction site ('job site'), where	G
ping is erected. (2) Field engineering office	GΑ
D WELD. Weld made at the time of erection	GA
piping at the site mbol for, chart 5.3, figure 5.15	GA
mbol for, chart 5.3, figure 5.15 NG DRAWINGS, 4.3, 4.4.10	
ET WELD, chart 5.9 SHED GRADE, 5.3.1	GA
FIGHTING.	GA
ation. 6.1.2	- 1
WATER, Independent supply of water for efighting	GA
T-AID STATION, Location, 6.1.2	GII
ING MAKEUP	
mensioning for, 5.3.5 Iting makeup, 5,3.3	GL
INGS, 2.2.4	
tt-welding, 2.3, chart 2.1	ا ـــا
dering, 5.6.3 rewed, 2.5, chart 2.3	GL
cket-welding. 2.4, chart 2.2	GL
3. To identify an item on a drawing by means	GR
a flag, panel or other mark AE ARRESTOR, A device to prevent a flame	GR
int from moving upstream in a line or vessel.	GR
r small lines, may consist of a wire screen. r larger lines, arrangements of multiple paral-	
r larger lines, arrangements of multiple paral- plates or tubes are used. Principally used on	GR
nt lines to tanks, Symbol, chart 5.7	GR
AMABLE LIQUID. Safety guidelines, 6.14	- 1
IGE, 2.2.3. 2.3.1, figures 2.6 thru 2.10 It and studbolt for, 2.6.3, figure 2.57, tables F	
Ithnia 262 tships E	i
pander, 2.3.1. figure 2.9 clng, 2.6.1. figure 2.56 sket, 2.6.4. figure 2.56. table 2.5	GU
cing. 2.6.1. figure 2.56 skat 2.6.4 figure 2.56 sable 2.5	Gυ
0 IOBIT. Z1. 1. 1MILITA Z IV	
ducing. 2.3.1. figure 2.8	Н
rewed, 2.5.1, figure 2.45 p-on, 2.3.1, figure 2.7	НА
cket-welding, 2.4,1, figure 2,27	
klinn-neck 231 figure 26	
VALVE, 3.1.11 IESTACK. A stack located away from the	HA

FLASHING	HEADER.
Steam, 6.10,8 Building construction, A piece of metal or other	return
material used to cover or protect certain joints,	HEADER HEAT EX
such as where a chimney joins a roof	Data sh
FLASHPOINT, Of flammable liquid, Temperature at which the amount of vapor given off is	Piping (
at which the amount of vapor given off is	
sufficient to form a flammable mixture with air over the surface, so that a momentary flash	HIGH PO
will occur when a source of ignition is applied.	referen
Hazardous liquids have low flashpoints	HOLDING is held
FLAT FACE, Flange, 2.6,1 FLEXIBILITY, figure 6,1	is held HOMOGE
FLEXIBILITY, figure 6.1	HOSE CO
FLEXIBLE PIPING, 2,9,2 Expansion joint, 2,9,1	HOSE VA
FLOTATION TANK, table 3.8	HOT TAP
FLOOR STAND, See 'Stem' 3.1,2	the line
FLOW DIAGRAM, 5.2.3	HOTWELL
FLOW LINE	holding
On flow diagram, 5.2.3 On P&ID, 5.2.4	HYDRAU
FLUID. Any material capable of flowing, in the	under p a cyline
Guide, term is used to denote either a liquid or	weight,
a gas. Powders may also be considered fluids	posite s
FLUSH-BOTTOM TANK VALVE, 3.1.9 FOOT VALVE, 3.1.7	as water
FOREIGN MATTER. Any unwanted material that	HYDRAUI Symbol
enters a system from outside	HYDRAUI
FOREIGN PRINT, Print of a drawing originating	6.1.1. ta
in another group, department or company	HYDROST
FRACTIONATION COLUMN, 3,3,3, table 3,8	HYGIENIC
Piping, 6.5.2 FROST LINE. The lowest depth in the ground	and oth and dru
which chills to 32 F (0 C)	which r
FULL-COUPLING. See COUPLING	material
,	non-tox
•	corporat
G	minate. may be
GAGE. A device for measuring or registering level,	,
pressure, temperature, etc.	ı
GAGE GLASS. Glass used to show liquid level,	INCONEL.
usually in the form of a vertical glass tube with end connections	ium and
GALVANIZING. The coating of metal with zinc	rosion
by electroplating or hot-dipping	INCREASE
GASKET. 2.6.4, table 2.5	INSTRUM
Dimensioning, See Dimensioning to Joints' 5.3.3	6,3.2 INSTRUM
GATE VALVE, 3.1.4 GIRT, A horizontal member of a building to which	INSTRUM
the panels forming the sides of the building	INSTRUM
are fitted,	table 7.3
GLAND, A sleeve within a stuffing box fitted over a shaft or valve stem and tightened against	INSTRUM
compressible packing so as to prevent leakage	Coding. Function
while allowing the shaft or stem to move	Mountin
GLASS PIPE. 2.1.4	On flow
Supporting, 6.2,7	On P&IC
GLOBE VALVE, 3.1.5 GRADE, See 'Vertical reference' 5.3,1	Signal le
GRADE BEAM, Beam which is used to support	On P&II
a floor at ground level	Personne
GROUND JOINT, A connection in which two	Thickne
machined metallic surfaces are jointed face-to- face	INTERCOL
	INTERFAC
GROUP LEADER, 4.1.2	INTERFAC ligure 6.
GROUP LEADER, 4.1.2 GROUT, A thin concrete poured on a set concrete foundation, between the foundation and the	ligure 6. INVERT E
GROUP LEADER, 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on	ligure 6. INVERT E the bott
GROUP LEADER. 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the	figure 6. INVERT E the bott pipe, tab
GROUP LEADER. 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the	ligure 6. INVERT E the bott pipe. tab
GROUP LEADER, 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the	figure 6. INVERT E the bott pipe, tab INVENTOR of hardw
GROUP LEADER. 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the	ligure 6. INVERT E the bott pipe. tab
GROUP LEADER, 4,1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout after it has hardened GUIDE, 2,12,2, 6,2,8, figure 2,72A GUTLINE, See Tracing 6.8.2	ligure 6. INVERT E the bott pipe, tab INVENTOR of hardw IRON PIPE IRON PIPE ISO=Isomet
GROUP LEADER. 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout after it has hardened GUIDE. 2.12.2. 6.2.8. figure 2.72A GUTLINE. See 'Tracing' 6.8.2	ligure 6. INVERT E the bott pipe, tab INVENTOF of hardw IRON PIPE ISO=Isomet Checking
GROUP LEADER, 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout after it has hardened GUIDE, 2.12.2, 6.2.8, figure 2.72A GUTLINE. See Tracing 6.8.2 H HALF-COUPLING	ligure 6. INVERT E the bott pipe. tab INVENTOR of hardw IRON PIPE IRON PIPE ISO=Isomet Checking Numberi
GROUP LEADER, 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout after it has hardened GUIDE, 2.12.2, 6.2.8, figure 2.72A GUTLINE, See 'Tracing' 6.8.2 H HALF-COUPLING Screwed, 2.5.3, figure 2.49	ligure 6. INVERT E the bott pipe. tab INVENTOR of hardw IRON PIPE IRON PIPE ISO=Isomet Checking Numberi ISOLATING
GROUP LEADER. 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout after it has hardened GUIDE. 2.12.2. 6.2.8. figure 2.72A GUTLINE. See 'Tracing' 6.8.2 H HALF-COUPLING Screwed. 2.5.3. figure 2.49 Socket-welding. 2.4.3. figure 2.31	ligure 6. INVERT E the bott pipe. tab INVENTOR of hardw IRON PIPE IRON PIPE ISO=Isomet Checking Numberi ISOLATING ISSUING D
GROUP LEADER, 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout after it has hardened GUIDE, 2.12.2, 6.2.8, figure 2.72A GUTLINE, See 'Tracing' 6.8.2 H HALF-COUPLING Screwed, 2.5.3, figure 2.49 Socket-welding, 2.43, figure 2.31 HANDRAIL, See RAILING	ligure 6. INVERT E the bott pipe. tab INVENTOR of hardw IRON PIPE IRON PIPE ISO=Isomet Checking Numberi ISOLATING
GROUP LEADER, 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout after it has hardened GUIDE, 2.12.2, 6.2.8, figure 2.72A GUTLINE, See 'Tracing' 6.8.2 H HALF-COUPLING Screwed, 2.5.3, figure 2.49 Socket-welding, 2.4.3, figure 2.31 HANDRAIL, See RAILING HANGER, 2.12.2	ligure 6. INVERT E the bott pipe. tab INVENTOR of hardw IRON PIPE IRON PIPE ISO-Isomet Checking Numberi ISOLATING ISSUING D
GROUP LEADER. 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly botted down on the level surface of the grout after it has hardened GUIDE. 2.12.2. 6.2.8, figure 2.72A GUTLINE. See 'Tracing' 6.8.2 H HALF-COUPLING Screwed. 2.5.3, figure 2.49 Socket-welding. 2.4.3, figure 2.31 HANDRAIL. See RAILING HANGER. 2.12.2 Constant-load hanger. 2.12.2 Spring hanger. 2.12.2	ligure 6. INVERT E the bott pipe. tab INVENTOR of hardw IRON PIPE IRON PIPE ISO=Isomet Checking Numberi ISOLATING ISSUING D
GROUP LEADER. 4.1.2 GROUT. A thin concrete poured on a set concrete foundation, between the foundation and the baseplate of the equipment which will rest on it. The baseplate is firmly bolted down on the level surface of the grout efter it has hardened GUIDE. 2.12.2. 6.2.8. figure 2.72A GUTLINE. See 'Tracing' 6.8.2 H HALF-COUPLING Screwed. 2.5.3. figure 2.49 Socket-welding. 2.4.3. figure 2.31 HANDRAIL. See RAILING HANGER. 2.12.2 Constant-load hanger. 2.12.2	ligure 6. INVERT E the bott pipe. tab INVENTOP of hardw IRON PIPE IRON PIPE ISO=Isomet Checking Numberii ISOLATING ISOUNG D J JACK SCR

HEADER. A pipe serving as a principal supply or
return line HEADER VALVE, 3.1.11 HEAT EXCHANGER, 3.3.5. (Igure 6.32, chert H-1
Data sheet, 6,6,1 Piping to, 6,6
HEXAGON BUSHING, 2,5,1, liqure 2,42
HIGH POINT FINISHED GRADE. See 'Vertical reference' 5.3.1
HOLDING TANK, Tank in which liquid (or gas) is held pending further processing or treatment
HOMOGENIZER, 3,3.4 HOSE CONNECTOR, 2,8,1
HOSE VALVE. 3.1.11
HOT TAP. This is a technique for branching into a line under pressure without having to close the line down
HOTWELL. A sump, tank, or other receptacle for holding discharges of hot flouids, 6,10,4
HYDRAULIC ACCUMULATOR, Stores liquid
under pressure. Typically a device consisting of a cylinder and piston which is actuated by a
weight, spring, or compressed gas. On the op- posite side of the piston, the driven fluid, such
as water or oil, is stored
HYDRAULIC DAMPENER, 2,12,2 Symbol, chart 5,2B
HYDRAULIC RESISTANCE of pipe and fittings. 6.1.1. table F-10
HYDROSTATIC TESTING. 6.11.2 HYGIENIC CONSTRUCTION, Pipe, valves, pumps
and other equipment used to handle foodstuffs
and drugs should be hygienically constructed which means that all surfaces contacting the
material must be corrosion-proof, smooth, and non-toxic. Plastics and rubbers should not in-
corporate (as fillers) substances that may conta-
minate. Materials free from such contaminants may be referred to as 'white' rubber, etc.
1
INCONEL, A high-nickel alloy containing chrom- lum and iron. Resistant to oxidation and cor-
INCHEASER=Swage or reducer
INSTRUMENT AIR, See 'Compressed-air usage' 6.3.2
INSTRUMENT CONNECTION, 6.7, chart 6.2 INSTRUMENT LOOP, 5.5.3
INSTRUMENT SOCIETY OF AMERICA, 5.5.1. table 7.3
INSTRUMENTATION, 5.5 Coding, table 5.3
Function, 5.5.2
Mounting, 5,5,4 On flow diagram, 5,2,3
On P&ID, 5.2.4 Signal lead, 5.5.6, chart 5.1
INSULATION, Thermal On P&ID, 5.2.4
Personnel protection. 6.8.1
Thickness, 6,8,1, tables 6,7 & 6,8 INTERCOOLER, 3,2,2
INTERCONNECTING P&ID. 5.2.4 INTERFACE. Boundary common to two systems.
figure 6.3 points (10) & (14) INVERT ELEVATION ('IE') is the elevation of
the bottom of the internal surface of a buried pipe, table 5.2
INVENTORY. A listing of pipe and other items
of hardware maintained in stock IRON PIPE, 2.1.4
IRON PIPE SIZE, 2,1,3, table P-1 ISO=Isometric, 5,2,6, 5,2,9, figures 5,15 & 5,16
Checking, 5.4,4 Numbering, 5.2.9
ISOLATING VALVE, 3.1.11 ISSUING DRAWINGS, 5.4.3
JACK SCREW Scrow provided in willow thenese
JACK SCREW. Screw provided in orifice flanges and sometimes flanges for line blinds. Two
screws are provided (one per flange) placed

JACKETING. 6.8.2 MATERIAL TAKEOFF, Estimated quantities for pH. A measure of the acid or alkaline strength PLUG GATE VALVE, 3,14 JOB FUNCTIONS, 4.1.2 of solutions. Neutral solutions have a pH of 7. materials, taken from drawings PLUG VALVE. 3.1.4 JOB NUMBER, Company account number to The pH falls below 7 with increasing acidity, MILL, Symbol, chart 5.2A PLUMBING, 1.1 which work is charged. Appears on all paper-MITER, 2.3.1, figure 2.5 and rises above 7 with increasing alkalinity PHOTOGRAPHIC AIDS, 4,4,13 POCKETING, In lines, 6.2.6. work for the project POLYMERIZATION. Generally, chemical reaction MIXER, 3.3.2, table 3.7 JUMPOVER, table A-2, 6.8.2 MIXING. 3.3.2 PICTORIAL VIEWS, 5.2.6 in which molecules combine to give larger PIECEMARK+mark number. See 'Numbering Isos. MIXING VALVE, 3.1.11 molecules. Term mostly applied to reactions spool sheets, & spools' 5.2.9 MODEL of plant, 4,4,12 giving giant molecules from small molecules, as in the production of plastics. PINCH VALVE. 3.1.6 Κ MONEL. Alloys consisting mainly of nickel and POP SAFETY VALVE. 3.1.9 copper, which have good resistance to corro-PIPE Data, table P-1 POTABLE WATER-Drinking water sion, abrasion and heat **KEY PLAN. 5.2.7** MONUMENT, 5.3.1. figure 5.12 Definition, 2.1.1 PORT of valve. Refers to the seet aperture of KNIFE-EDGE VALVE, 3.1.11 KNOCK-OUT DRUM or POT. A stream of gas MULTIPORT VALVE, 3,1,8 Diameters of, 2.1.3, table P-1 a valve, but sometimes to the valve's ends Fittings, 2.2.4. tables D MYLAR FILM, 4.4.1 PRESSURE, ABSOLUTE, Pressure expressed rate containing drops of liquid is passed thru a Hanger, 2,12 tive to absolute vacuum. British unit, pound knock-out drum in order to slow down the How to specify, 6.6.3 per square Inch absolute, abbreviated PSIA. Normal atmospheric pressure is taken as 14.7 flow and allow the liquid to separate and Joints for, 2.2 Lengths of, 2.1.2 KINETIC ENERGY. Energy pertaining to the NEEDLE VALVE, 3.1.5 velocity of material Linings, 2.1.4 PRESSURE, GAGE, Gigo promire is expressed as NIPOLET, Integral nipple/weldolet Lucs welded onto, 2,12,3 pressure in excess of named strougheric pres-Plain, 2.4,3, figure 2.35 Materials, 2,1,4 sure. British unit, pound per square inch gage, Screwed, 2.5.3, figure 2.53 Steels, table 2.1 abbreviated PSIG, normally taken as 14.7 PSI PRESSURE REGULATOR. 3.1.10 NIPPLE Ordering, 5.6.3 Screwed. 2.5.1, figure 2.39 Piperack, 6.1.2, floure 6.3 PRESSURE SEAL, Valve, Sou Bonnet' 3.1.2 PRESSURE VESSEL, 6.b.I LADDER, chart P-2 Shaped, 2.3.2, figure 2.19 Pressure limits, 2.1.5 LAND on beveled end. chart 2.1 NON-RETURN VALVE, 3.1.7. 3.1.11 Schedule number, 2,1,3 PRIMARY VALVE. 3.1.11 LANTERN RING. See 'Bonnet' 3.1.2 LAP-JOINT FLANGE, 2.3.1. figure 2.10 Sizes. 2.1.2. table P-1 PRIME-Printing water, etc.
PROCESS EQUIPMENT, Equipment by which NON-RISING STEM, See 'Stem' 3.1.2. Type of Sleeve, 5 2 R valve stem which rotates but does not rise LATERAL Spacing, table A-1 when valve is operated (or in which) is effected a physical or chemical Spans. table S-1, charts S-2 Butt-welding, 2.3.2, figure 2,18 Screwed, 2,5.2, figure 2,47 NORTH, Plant & true, See 'Horizontal reference' change in process material, 3.3 PROCESS PIPING. 1.1
PROCESS WATER. Water that is added to the Support, 6.2, 2.12 5.3.1 & 'Allocating space on the sheet' 5.2.8. Socket-welding, 2.4.2, figure 2.29 Temperature limits, 2.1.5 figure 5.11 Threads, 2.5.6 LATROLET NOZZLE, A protruding port of a vessel, tank, pump, etc., to which piping is connected process stream Butt-welding, 2.3.2, figure 2.15 Screwed, 2.5.3, figure 2.52 Wall thickness, 2.1.3 PROJECT GROUP, chart 4.1 Welding to, 2,12,3 PROPERTY LINE, Boundary of the sale Column 652 PROPORTIONING PUMP 3.32 table 47 Socket-welding, 2.4.3, figure 2.34 PIPE DOPE. Sealing compound used for making Heat exchanger, 6.6.2 screwed pipe connection PIPE SUPPORT, 6.2. 2.12 **LEROY. 4.4.6** PHOPORTIONING VALVE, 3.3.2 Links J./ Pump, See Typical piping for centrifugal **LETTERING. 4.4.6** oumos' 6.3.1 PUMP. 3.2.1 LEVEL GAGE, 6.7.4 LINE BLIND, 2.7.1, figure 2.59 Calculations, 6.2.4 Piping. 6.3.1 Supporting pipe at, 6.2.8 Design functions, 6.2.1 Selection, chart 3.3 Vessel, 6.5.1 Symbol, chart 5.6 Expansion, 6.2.5 PUMP PIPING, 6.3.1 NUB, Spacer (protrusion) on a backing ring or Loading, 6.2.2, table S-1, charts S-2 PURGING. The flushing out of unwanted material LINE BLIND VALVE, 2.7.1. 3.1.4 Spring hanger and support, 6.2.5 PIPE-TO-TUBE CONNECTOR, figure 2.41 LINE DESIGNATION SHEET, 4.2.3. 6.2.5 NUMBER OF LINE. See 'Flow lines on P&ID's' from a system. Example, floading piping with LINE NUMBER 5.2.4 nitrogen to remove atmospheric oxygen PIPERACK. 6.1.2. figure 6.3 P&ID. 5.2.4 PURLIN. A longitudinal member fixed externally PIPEWAY, 6.1.2 Plping drawing. See 'Process & service lines on to the roof frame of a building to which the piping drawings ' 5,2,8 Iso, 5,2,9 PIPING 0 roofing panels are fitted PYROMETER. A device used for measuring high-Butt-welded, 2.3, chart 2.1 Screwed 2.5. chart 2.3 Spool, 5.2.9 **OBLIQUE DRAWING, 5.2.6** er temperatures Socket-welded, 2.4, chart 2.2 LINEN, Drafting sheet, 4,4,1 ON-PLOT, Refers to the area of a particular PIPING & INSTRUMENTATION DIAGRAM. LININGS for pipe, 2.1.4 LIST OF EQUIPMENT, 4.2.2 plant unit, or complex. There can be more 5.2.4 PIPING DRAWINGS, 5.2.7, 5.2.8 than one on-plot area in the same manufactur-Q ing site, See BATTERY LIMIT LIST OF MATERIEL, 5.6.1 Background, 5.2.8 OFF-PLOT. Refers to area outside the on-plot QUICK-ACTING OPERATORS, For valves, 3.1.2 LOAD CELL. Weighing mechanism installed in Centerline, 5.3.2, chart 5.1 the supports of tanks, etc. area, or to area between on-plot areas. See QUICK CONNECTOR, 2.8.1 Checking, 5.4.2 LOW-PRESSURE HEATING MEDIA. 6.9.2 BATTERY LIMIT QUICK COUPLING, 2.8.2 Dimensioning, 5.3 ON-SITE=In the field. Operations carried out at LUG. Projecting piece on a vessel, frame, etc., Identifying sections. See 'Elevations (sections) by which it may be held or lifted the construction site are termed on-site oper-& details' 5.2.8. chart 5.8 R ations Instrument connections, chart 6.2, 5.2.8 OPERATOR for valve, 3.1.2 Issuing. 5.4.3 RAILING OPERATING HEIGHTS FOR VALVES. 8.1.3. М Line number. See 'Flow tines on P&ID' 5.2.4. Dimensioning, table 6.1, chart P-2 table 6.2, table P-2 5.2.8 Symbol, chart 5.8 RAISED FACE (of (lange), 2.6.1 ORIFICE PLATE ASSEMBLY, 6.7.5, figure 6.36 Points to check, 5.4.4 MAIN. A principal section of pipe supplying Clearance around, figure 6.38 Presentation, figure 5.5 service or process fluid RANDOM LENGTH OF PIPE. 2.1.2 ORIFICE PIPE RUN. table 6.6 Title block, 5.2.8, figure 5.9 Ring main. The fluid is continuously circulated RAPIDOGRAPH, Pan. 4.4.6 ORIFICE TAP. See 'Piping to flange taps' 6.7.5 **PIPING FABRICATION DRAWING, 5.2.9** around a closed loop of piping and may be RATINGS OF FITTINGS. Lable 2.2 ORTHOGRAPHIC DRAWING, 5.2.6 drawn off at any point. Useful for slurries PIPING GROUP. 4.1 **REACTION VESSEL. 3.3.1 OUTSIDE SCREW, See 'Stem' 3.1.2** PIPING LAYOUT. Design notes. 6.1 and other fluids that may settle or separate REACTOR, Apparatus in which reaction of process OUTSIDE SCREW & YOKE=OS&Y, See 'Stem' MAKEUP WATER. Water is lost in many processes PIPING SPECIFICATION. 4.2.1 chemicals is carried out and operations. Water inventory is restored by PIPING USES, 1.1 REBOILER, See 'Column operation' 6.6.2 RECEIVER, 3.2.2 PLAN, View for drawing, 5.2.6, 5.2.8 adding makeup water. MALLEABLE IRON, A ductile cast Iron produced PLANIMETER, 4.4.8 REDUCER by controlled annealing of white cast iron. PLANT. Building of. 1.2. chart 1.1 Butt-welding, 2.3.1, figure 2.3 Screwed, 2.5.1, figure 2.38 Socket-welding, 2.4.1, figure 2,22 REDUCING ELBOW, 2.3.1, figure 2.2 MANHOLE, table 6.1 PLANT AIR. See Compressed air usage 6.3.2 P&ID=Piping and Instrumentation diagram. 5.2.4 In column, 6.5.2 PACKING. Compressible material held in the stuf-PLANT CONSTRUCTION, chart 1.1 MANIFOLD. A chamber or pipe (header) having PLANT NORTH, See 'Horizontal reference' 5.3.1. fine hex of a seal REDUCER INSERT, 2.4.1, figure 2.23 several branches PACKLESS VALVE, See 'Seals' 3.1.2 figure 5.11 PLASTIC PIPE. 2.1.4 REDUCING FLANGE 23.1. figure 2.8 MANOMETER, See 'Orifice plate assembly' 6.7.5 PANTOGRAPH, 4.4.8 MANUFACTURERS' WEIGHT, 2.1.3. PAPER. 4.4.1 Supporting, 6.2.7 REDUCING TEE. How to order, 2,3.2. table D-8 MATCHLINE. See 'Process & service tines on PLENUM. Distribution component of a mechan-**REGULATING VALVE. 3.1.11** Copying papers, 4.4.1 PAPER STOCK VALVE, 3.1.11 REFERENCE DRAWING. Any drawing made by plping drawings' 5.2.8. figure 5.8 ical system of ventilation. Fresh air is forced MATERIAL BALANCE, A detailed tabulation of PARTS LIST, 5.6.1 into a box or chamber ('plenum') for distributhe design groups for a company 'standard' process material flowing into, thru and out of PENCIL, For drafting, 4.4.2 tion in a building drawing) to which reference is made. His com-PENSTOCK. A channel leading water to a turbine PLOT PLAN, 5,2,7 plete list of reference drawing numbers is best the process, showing the distribution of all

significant components, including impurities

or waterwheel

PLUG. Barstock. figure 2.66

written on the main arrangement drawing

REFERENCE POINT, 5.3.1, figure 5,11	SET PRESSURE. Pressure at which a pressure
REFLUXING, See 'Column operation' 6.5.2	controller or valve is set to operate
REINFORCEMENT, 2.11	SETTLEMENT STRAIN. 6.1.1. figure 6.1
Symbols, chart 5.3	SETTLING TANK. Tank in which process stream
REINFORCING RING, Shaped metal ring for	or effluent can be held to allow solids to
strengthening stub-ins, vessel nozzles, etc.	separate. 3.3.3. table 3.8
REI.IEF HEADER, 6.12.1, figure 6.3 point (7)	SEWAGE, Wastes from plant operations, commer-
RELIEF VALVE, 3,1,9, 6,1,3	claf buildings, etc., sometimes including ground
RELIEVING PRESSURE. Of liquids. 6.12 ,	or surface water
REMOVABLE SPOOL, 2.7,1, figure 2,61 RESISTANCE TO FLOW, Of piping, 6,1,1	SEWERAGE. The collection and/or disposal of
RETURN, 2.3.1, figure 2.2	sewage
REVAMP. Re-working or modifying an existing	SHOE. Device welded to or clamped to a pipe
installation, 4,4,13	which provides a bearing for support, 2.12.2.
REVISION. Of drawings. See 'Issuing drawings'	6.2.8
5.4.3	SHUTOFF VALVE, 3.1.11
RING JOINT, 2.6.1, figure 2.56	SIGHT GLASS. Window in a line or vessel
Spacing & Numbers, table R-1	SITE. Area of plant construction
RING MAIN, figures 6.22 & 6.50, See MAIN	SITE PLAN. 5.2.7
RISER. A line which conveys fluid upward	SKELP. Metal in strip form that is fed into rolls to form pipe
ROLLED ELL/ROLLED TEE. See 'Plan view	
plping drawings' 5.2.8	SLIP-ON FLANGE. 2.3.1, figure 2.7
ROOT GAP, 5.3.5, chart 2.1	SLEEVE (for pipe), Usually a large-diameter pipe around which concrete is poured. Reinforces
ROOT PENETRATION. Depth to which a groove	such openings as those in walls, floors, etc.
(butt) weld extends into the 'root joint' (either	SLOPING LINES. 6.2.6. 6.10.4
side of root gap)	SLURRY VALVE. 3.1.11
ROOT VALVE, 3.1.11,	SNUBBER. 2.12.2
ROTAMETER, 6.7.5, figure 6.35	SOCKET-WELDED PIPING, 2.4
ROTARY BALL VALVE. 3.1.6	SOCKET-WELDING FLANGE, 2.4.1, figure 2,27
ROUNDHEAD PLUG, figure 2,55	SOCKOLET. 2.4.3, figure 2.32
RUNUNDER, table A-3	SOUR WATER. Water that has an acid content.
RUPTURE DISC. 3.1.9	Term may refer to an acidic effluent
	SPARGER. A steam pipe with holes in it to disperse
	steam into water, etc. figure 6.45
\$	SPATTER. The metal particles thrown off during
•	arc or gas welding
SADDLE. (1) Shaped metal piece used for rein-	SPECIFICATION
forcement, 2,11, figure 2,71, chart 5,3	Change of. See 'Process & service lines on piping
(2) Shaped metal piece attached to insulated	drawings . 5.2.8. figure 5.15
pipe as a bearing surface for supporting, 2,12.2.	Piping, 4.2.1
6.2.8. figne 2.72A&B	SPECTACLE PLATE, 2.7.1, figure 2.59, chart 5.6
SAFETY	SPIRAL SOCK VALVE, 3.1,11
Guidelines for flammable liquids, 6,14	SPOOL E 2 E
Valve placement R.1.3, table 5.2, chart P-2	Dimensioning, 5.3.5
SAFETY-RELIEF VALVE, 31.9. 6.1.3	Drawing, 5.2.9, figure 5.17 Number, 5.2.9
SAFETY VALVE, 3.1.9. 6 1.3	Shipping size, 5.2.9
SAGGING OF PIPE, 628	Spool sheet, figure 5,17
SAMPLE POINT. It is uften necessary to take a	SPRING HANGER, 2,12.2, figures 2,728 & 6,16
sample of material from a product line, Usually	SPRING SUPPORT. 2.12.2. figures 2.728 & 6.16
e small branch line with sampling valve is all that	SOUEEZE VALVE. 3.1,5
in required. However, If a high-pressure line has	STAINLESS STEEL. 2.1.3
to be sampled it is best to run the sample line to a small drum or vessel which has a vent	Comparable european steels, table 2.1
to atmosphere. To sample a high-pressure, high-	STAINLESS STEELS are iron-based alloys in-
temperature line, it is necessary to provide a	corporating 11.5 to 24% chromium, 6 to 15%
sultable cooler, usually a vessel with cold water	nickel, up to 0.2% carbon, and small amounts
circulating around a coil which is to be connect-	(in certain alloys) of other elements STAIRWAY, charts S-3 & P-2
ed to the sample pump	STANCHION, 6.1.2
SAMPLING VALVE, 3.1.9, 3.1.11	STANDARDS. 7
SANITARY CONSTRUCTION, See HYGIENIC	Fabricated piping, table 7.6
CONSTRUCTION	Fittings. table 7.9
SATURATED STEAM. 6.9.1.	Flanges, table 7.7
SCHEDULE NUMBER. 2.1.3	Gaskets. table 7.8
SCHEMATIC DIAGRAM, 5.2.2	Hangers and supports, table 7.5
SCREEN. 2.10.4	Heat exchangers, table 7.14
SCREWED PIPING. 2.5. Most-used term for	Instrumentation.
assembly of components and pipe, employing threaded ends for attachment	ISA S5.1 for instrumentation, table 5.3
	Pipe production and testing, table 7.4
SCRUBBER, 3.3.3. tehte 3.8 SEAL WELD. Term used for circumferential fillet	Pumping machinery, table 7.10
weld, chart 2,3	Screw threads, table 7.15 Symbols and drafting, table 7.3
SEALING WATER, Water used for sealing	Unfired vessels and tanks, table 7.13
SEAMLESS. Pipe formed by rolling and piercing	Valves, table 7.11
a solid billet is termed 'seamless'	STANDBY EQUIPMENT on flow diagram, 5.2.3
SEARCHING. Term usually refers to penetrating	STANDPIPE. See 'Closing down lines' 6,1,3
sbility of a thin liquid	STEAM. 6.9. chart 6.3
SECTION. See 'Elevations (sections) & details'	Air in steam. 6.9.1. 6.10.1
5.2.8. chart 5.8	Draining & trapping lines, 6.10
SECTION LEADER, chart 4.2	Dry. 6.9.1
SECURITY, 5.2.1	How formed, 6.9.1
SEPIA, 4.4.1	Flash. 6.9.1
SEPARATOR, 2.10.2. 6.10.3	Saturated, 6.9.1
SEPARATION, 3.3.3	Separator, 6.10.3, figure 2.67
SERVICE PIPING: 1 1	

SA

SC

SC

SC

SE

SEL

TH PAID, 5.2.4

Trap on piping drawing, 5.2.8 Venting air from steam lines, 6,10,1 Wet. 6.9.1 STEAM PIPING. 6.10 STEAM TRACING, 6.8.3, figure 6.40, chart 5.7 STEAM TRAP PIPING, figures 6.43 & 6.44 STEEL EQUIVALENTS, table 2.1 STEELS FOR PIPE, 2,1,4 STICK FILE, 4.3, 4.4.10 STOP VALVE, 3.1.11 STOP-CHECK VALVE, 3,1,7 STRAIN. Reaction, such as elongation or compression, to stress. See STRESS STRAINER. 2.10.3. figure 2.68 STREET ELL. table D.9 STRESS. Force applied to material. Common stresses on pipe are due to pressure of contained fluid, and loading (self- or applied) causing bending of pipe. Ratio of stress/strain is termed the 'modulus' STRESS RELIEVE, Removal of internal strains in a metal part by heating and controlled conting STRESSES ON PIPING. 6.1.1 STRIPPER, 3.3.3, table 3.8 STRONGBACK. Pipe spool connected externally to vessel, on which instruments are mounted." figure 6.34(c) STRUT. Any of various structural-steel members (such as make up trusses) primarily intended to resist longitudinal compression STUB. Short length of pipe sometimes with shaped STUB-IN. 2.3,2, figure 2,11 STUDBOLT, 2.6.3, tables F STUFFING BOX. Recess in body or casing of a valve, pump, expansion joint, etc., containing packing material under pressure so as to form a seal about a sliding or rotating part SUBHEADER. A header which is a branch from a larger header SUPPORTING PIPING, 6.2 Spring support, 2,12,2, figures 2,72B & 6,16 SUPERHEATED STEAM. 6.9.1. chart 6.3 SWAGE=Swaged nipple SWAGED NIPPLE Butt-welding, 2.3.1, figure 2.4 Screwed, 2.5.1, figure 2.43, table 2.4 Socket-welding, 2.4.1, figure 2.25, table 2.3 SWAY BRACE, 2,12,1 SWEEPOLET, 2,3,2, figure 2,16 SYMBOL. 5.1 Butt-welded piping, chart 5.3 Control station, chart 5.7 General, for drawings, chart 5.8 Joints for pipe. 5.1.1 Line, chart 5.1 Miscellaneous, chart 5.7 P&ID. charts 5.1, 5.2 & 5.7 Pipe support, chart 5.7 Process, chart 5.2 Screwed piping, chart 5.4 Socket-welded piping, chart 5.5 Utility station, 6.1.5 Valve, chart 5.6 Valve operator, chart 5.6 Welding. 5.1.8, chart 5.9

Trap on P&ID, 5.2.4

TACK WELD. Initial small separate weld made to position parts before welding fully TAG. An identifying number or code applied to TANK NIPPLE, 2.5.1, (igure 2.39(d) TANK CAR. Railroad car for transporting liquids TANKER. Road vehicle for transporting liquids Of dases TECHNOS PEN. 4.4.6

Butt-welding, 2,3,2, figure 2,12 Dimensions, tables D Screwed. 2.5.2. figure 2.46 Socket-welding, 2.4.2, figure 2,28 TEMPLATES FOR DRAFTING 447 TEMPORARY STRAINER, See 'Screen' 2.10.4 THERMAL MOVEMENT, Changes in length (expansion or contraction) occuring in piping with variation of temperature THERMAL STRESS. 6.1.1 THERMINOL, 6.9.2. See 'Jacketing' 6.8.2 THERMON. See 'Getting heat to the process line' 6.8.2 THERMOWELL. A pocket, either screwed into a line fitting (such as a coupling or thredolet) or welded into a pipe, to accommodate a thermocouple or thermometer bulb. 6.7.3 THREAD, For pipe and fittings, 2.5.5 THREDOLET, 2.5.3, figure 2.50 THROAT TAP. A tepped pressure connection made in the neck of a welding-neck flange as an alternative to using an orifice flange THROTTLING. Close regulation of flow thru a valve in the just-open position THROTTLING VALVE, 3.1.11 TIE, 2,12,2 **TILTING-DISC VALVE, 3,1,7** TITLE BLOCK, 4.4.6. See 'Allocating space on the sheet' 5.2.8 TOLERANCES ON PIPING DRAWINGS, 5.3.2 **TOWER PIPING, 6.5.2** TRACING (Thermal), 6.8.2, figure 6.40, chart 5.7 On P&ID, 5.2.4 TRANSPORTATION PIPING. 1.1 TRAP. 3.1.9. 6.10.7 On P&ID. 5.2.4 Piping to. 6.10.11, figures 6.43 & 6.44 TRAPPING STEAM LINES, 6,10,11 TRIM. Critical internal surfaces of a valve body are sometimes made of special material such as stainless steel. These parts may include the disc and seat, stem, or other internal surfaces TRIM PIPING. 6.3.1 TRUSS. Structural frame based on the geometric rigidity of the triangle, composed of compression and tension members termed struts and TURBINE PIPING. 6.4

U

UNIFIED SCREW THREAD, 2.6.3 UNITRACE. See 'Tracing' 6.8.2 UNION Screwed, 2.5,1, flaure 2.40 Socket-welding, 2.4.1, figure 2.24 UNION BONNET. Valve construction allowing quick coupling and uncoupling of valve body and bonnet UNION FITTING. A fitting with a union at one or more ends UNLOADING, 3.2.2 **USASI. 7.3** US DEPARTMENT OF COMMERCE, Coast and Geodetic Survey. 5.3.1 UTILITY PIPING. 1.1 UTILITY STATION, 6.1.5, figure 6.12 Symbol, 6.1,5

TURNKEY PLANT. A plant constructed and

made ready for client's immediate operation

VACUUM, in processing, only partial vacuums are met with. The degree of vacuum can be quoted in PSIA, but more often either the pressure or the removed pressure is quoted as a 'head' (usually mercury column-normal atmospheric pressure = 29.9 inches, or 760 mm mercury (symbol for mercury is 'Ha'l)

Trap. 6.10.7. 3.1.9. figures 6.43 & 6.44

```
VACUUM BREAKER, 3.1.11
VALVE. 3.1
  Arranging, 6.1.3, 6.1.4
  Access. 6.1.3
  Below grade, See 'II there is no P&ID' 6.1.3
  Body, 3.1.2
  Bonnet, 3.1.2
  Chain operator, 3.1.2, charts 5.6 & P-2
  Disc. 3.1.2. chart 3.1
  Gear, 3,1.2
  Handwheel, 3.1.2
  On flow diagram, 5.2.3
  On P&ID. 5.2.4
  Operators, 3.1.2
  Parts. 3.1.2
  Placement, 6.1.3
  Port. 3.1.2
  Seal. 3.1.2
  Seat. 3.1.2
  Selection, 3.1.3, chart 3.2
  Size. 6.1.3
VALVE STEM. 3.1.2
  Arranging. See 'Orientation of valve stems' 6.1.3
  Non-rising, 3.1.2, figure 3.3
  Operating height, 6.1.3. table 6.2. chart P-2
  Piping safety & relief valves. 6.1.3
  Rising, with outside screw & yoke, figure 3.1
  Rising with outside screw. figure 3.2
VAN STONE FLANGE, 2.3.1. figure 2.10
VARIABLE SPRING HANGER OR SUPPORT.
  2.12.2. figures 2.728 & 6.16
  Location, See 'Piping arrangement' 6.1.1, figure
     647
  On lines and vessels. 6.11
  On piping, 6.11, figure 6.47
  On P&ID, 5.2.4
  On tank, Symbol, chart 5.7
  Symbol, chart 5.7
VESSEL CONNECTION, 6.5.1
VESSEL DRAWING, 5.2.7. figure 5.14
VESSEL PIPING. 6.5.1
VICTAULIC COUPLING. A 'quick connect' meth-
```

of joining pipe, fittings, valves, and equip-

ment: manufactured by the Victaulic Company

WATERHAMMER, A concussion due to: (1) Pres-

of America, 2.8.2, figure 2.62

W

sure waves traveling in piping and meeting with obstructions. A valve closing too rapidly will create a pressure wave. (2) Condensate hurled against obstructions by high-velocity steam. See 6102 6108 WELD GAP. 5.3.5. charts 2.1 & 2.2 WELDING NECK FLANGE. See 'Flanges' 2.3.1. figure 2.6 WELDING SYMBOL, 5.1.8, chart 5.9 WELDING to pipe. 2.12.3 WELDOLET. 2.3.2. figure 2.13 WET STEAM, 6.9.1, chart 6.3 WINTERIZING. The provision of insulation, tracing, jacketing or other means to prevent freezing of equipment and process or other fluids exposed to low temperatures Insulation, 6.8.1, tables 6.7 & 6.8 Jacketing, 6.8.2. figure 6.39, chart 6.7 Tracing, 6.8.2, figure 6.40, chart 5.7 WIRE DRAWING. Term describing the erosion of valve seats, usually due to the outting action of foreign particles in high-velocity fluids occurring when flow is throttled WORK POINT. An arbitary reference from which

Y

dimensions are taken

YARD PIPING, Piping within the site and external to buildings.
YOKE, See 'Stem' 3.1.2

REFERENCES

- (1) 'American oas handbook', (Amer Gas J: New York)
- (2) 'The Armstrong steam trap book: Catalog L-1'. 1966 (Armstrong Machine Works, Three Rivers, MI 49093)
- (3) 'ASRE refrigerating data book' (American Society of Refrigerating Engineers: New York)
- (4) Barton E. & Williams E.V. 1957. British Chemical Engineering. Nov
- (5) 'Bending seamless steel tubing' (Seamless Steel Tube Institute, Pitteburgh, PA)
- (6) 'Cameron hydraulic data'. (Ingersoll-Rand Co)
- (7) 'Centrifugal pumps', Kerassik I.J. & Carter R. 1960 (McGraw-Hill)
- (8) 'Chemical engineers' handbook'. Parry, Chilton & Kirkpatrick (Eds) (McGraw-Hill)
- (9) Ciancia & Steymann, 1965. Chemical Engineering. Aug 30, 114
- (10) 'Compressed air data'. (Compressed Air Magazine, New York)
- (11) 'Costs:reinforced plastics vs stainless steel', Smith T.J. 1967. Chemical Engineering, Jan 2, 110-3
- (12) 'Crane valves & fittings', Catalog 60 (Crane Company)
- (13) "Crane valves, fittings, pipe and fabricated piping". Catalog-53-(Crane Company)
- (14) Crocker S. See 'Piping handbook'
- (15) 'Defects & failures in pressure vessels & piping'. Thielsch H. 1965
- (16) 'Design of piping for flexibility with flex-anal charts', Wert E.A. & Smith S. (Blaw-Knox Co, Pittsburgh, PA)
- (17) 'Dictionary of mechanical engineering abbreviations, signs & symbols'. Polon D.D. (Ed) 1967 (Odyssey)
- (18) 'Drainage of water and oil from compressed-air lines' Bulletin 251 (Armstrong Machine Works)
- (19) 'Economic piping of paralleled equipment', Volkin R.A. 1967 (Chemical Engineering, Mar 27, 148-52
- (20) 'Engineering manual', Perry R.H. (Ed) (McGraw-Hill)
- (21) "Estimators" manual of equipment & installation costs", 1963, "Estimators" piping manhour manual", 1958, Page J.S. (Gulf Publishing, Houston, TX1)
- (22) 'Flow of fluids thru valves, fittings & plpe', Technical paper 409. (Crane Company)
- (23) 'Flow of fluids thru valves, fittings & pipe'. Technical paper 410. (Crane Company)
- (24) 'Fluid meters: their theory & application', Report of ASME Research Committee on Fluid Meters. (ASME)
- (25) 'Handbook of welded steel tubing'. (Formed Steel Tube Institute, Cleveland, OH)
- (26) 'How to design tower piping'. Kern R, 1958. Petroleum Refiner. Vol 37 (3) 135-42
- (27) 'Industrial piping', Littleton C.T. 1962. (McGraw-Hill)
- (28) 'Instrument symbols—a new approach', Conison J. 1966. Hydrocarbon Processing, Vol 45 (9) 297-301

- (29) 'Jenkins forged-steel velves', Catalog 68FS (Jenkins Bros)
- (30) 'Keeping piping hot-part 1'. Chepman F.S. and Hulland F.A. 1966. Chemical Engineering, Dec 20
- (31) 'Keeping piping hot-part II'. Chapman F S. and Holland F.A. 1966. Chemical Engineering. Jan 17
- (32) King R.C. See 'Piping Handbook'
- (33) 'Ladish controlled quality fittings'. Causing 65. (Ladish Co. Cudahy,
- (34) 'Pipe friction manual', (The Hydraulic Institute, 122 East 42nd St. New York 17)
- (35) 'Pipe tracing & Insulation', House F.F. 1968. Chemical Engineering. Jun 17
- (36) 'Piping design & engineering'. 2nd edn. (Grinnet Co. Providence,RI)
- (37) 'Piping design for process plants'. Rase H.F. 1983 (John Wiley)
- (38) 'Piping engineering', 1947 (Tube Turns Inc., Louisville, KY)
- (39) 'Piping stress calculations simplified'. Spietvoyal S.W. (McGraw Hill)
- (40) 'Practical piping layouts, nos. 26-50 & 51-75' (Jenkus Bros, NY)
- (41) 'Project engineering', Gordon D. 1950, Chernkal Engineering, Mar. 125-36
- (42) 'Pump selection & application'. Hicks T. 1957 (McGraw-Hill)
- (43) 'Piping handbook', King R.C. (Ed) 1967 (McGraw-Hill)
- (44) "Screens in the chemical process industries". (Chemical Engineering
- (45) 'Seamless steel tube data'. (Seamless Steel Tube Institute, Pittsburgh, PA)
- (46) 'Selecting materials for process piping'. Aldrich C.K. 1960, Chemical Engineering. Vol 67 (23) 183-222
- (47) 'Stainless steel reference book', (Earle M. Jorgensen Co)
- (48) 'Standard manual on pipe welding'. 2nd edn. (Heating, Piping & Airconditioning Contractors' National Association, New York)
- (49) "Standard marking system for valves, fittings, flanges & unions", SP-26 (Manufacturers' Standardization Society)
- (50) 'Standards of the Hydraulic Institute'. 1965. 11th edn (The Hydraulic Institute, 122 East 42nd St, New York 17)
- (51) 'Steam trap service guide', Bulletin 300 (Armstrong Machine Works)
- (52) 'Technical data manual'. Bulletin 169R (Platecoil Div, Tranter Mig Inc, Lansing, MI)
- (53) 'Welding fittings & flanges'. Catalog 311 (Tube Turns Div of Chemetron, Corp. Louisville, KY 40201)
- (54) "Welding fittings & forged flanges". Catalog 61 (Midwest Fitting Div. of Crane Company)
- (55) 'Welding handbook', (American Walding Society, New York)
- (66) Winterizing chemical plants', House F.F. 1967, Chemical Engineering. Sep 11
- (57) "Valves'. Catalogs SS-102, GCS & SEB-4 (Pacific Valves Inc., 3201 Walnut Ave, Long Beach, CA 90807)
- (58) 'Valves', Catalog 54 (Wm Powell Co, Cincinetti 14, OH)

THE 'PIPING GUIDE'

A COMPACT REFERENCE FOR THE DESIGN AND DRAFTING OF INDUSTRIAL PIPING SYSTEMS

David R. Sherwood Member, American Society of Mechanical Engineers Member, Institution of Production Engineers (UK)

Dennis J. Whistance B.Sc., M.A.Sc.

Copyright © David R. Sherwood and Dennis J. Whistance 1973

All rights reserved. Printed in the United States of America.

Softcover set: ISBN 0-914082-00-0 Hardcover book: ISBN 0-914082-03-5

ARRANGING LINES SPACING IN PIPEWAYS

LINES WITHOUT FLANGES-DIMENSION

8 9

9 10

11

13

3

6

9 9 10 11

10 10

11 11 12 13 14

12 13 14 15 16

16 17 18 19 20 21 21 22 23

13 13 14 15 16 17 18

14

11 12

14 15 16

NOMINAL PIPE SIZE (INCHES)

3

4

6

10

12

14

16

18

20

NOMINAL PIPE SIZE (INCHES)

10

11 12

9

12 13 14 15 16 17 18 20

14

10

8 10 12 14 16 18 20 24

11 11 12

13 14

16

15 16 16 17 18

17 17 18

18_19

10 11 12 13

12 13 14, 15

15

17 18 19 19 20

13 14

15

17 18

19 20 22

20 21 23

13 14

14 15

16 17

16 18

19 21

21, 22 24

17

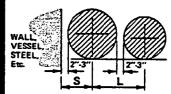
19

TABLES GIVE THE MINIMUM SPACING. INCREASE THESE DIMENSIONS:

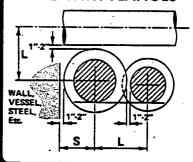
(1) FOR INSULATION (2) IF THERMAL MOVEMENT WOULD REDUCE CLEARANCE

TABLES A-1

PIPE CENTER-TO-SURFACE DIMENSION 'S'


CLEARANCE

2 10 5 IIV.	1102114
PIPE WITHOUT	FLANGE RATING
FLANGES	PSI


****	. .								
FLANG	ES		PSI						
	*	150	300	600					
2	4	4	5	5					
₂₆ 3	4 5	5 6	6	6					
(INCHES)	5	6	6	7					
2 6	6	7	8	8					
<u>ш</u> 8	7	8	9	10					
ZZ 10	8	9	10	11					
NOMINAL PIPE SIZE (INCHES)	9	11	12	12					
<u></u>	9	12	13	13					
₹ 16	10	13	14	15					
喜 18	11	14	15	16					
₹ 20	12	15	17	17					

24 14 17 19 20

PIPE WITHOUT FLANGES

PIPE WITH FLANGES

INSULATION

FIGURES IN THE TABLES ARE SPACINGS FOR BARE PIPES. FOR INSULATED LINES, ADD THE THICKNESS OF INSULATION AND COVERING TO THESE FIGURES.

LINES WITH FLANGES-DIMENSION 'L

150 & 150 PSI, FLANGED

"Piping Guide", PO Box 277, Cotati, CA 94928, USA

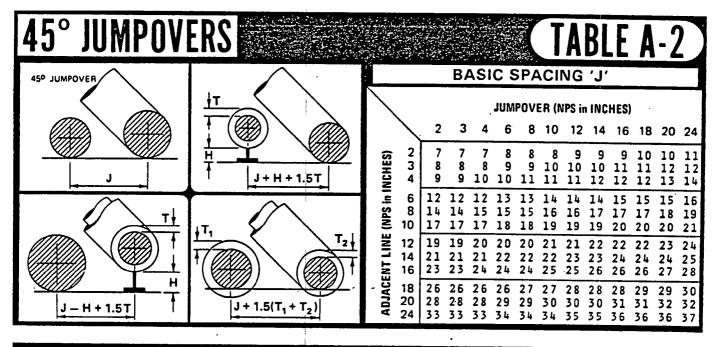
U CK	130	ГЭ	I, F	IGED	

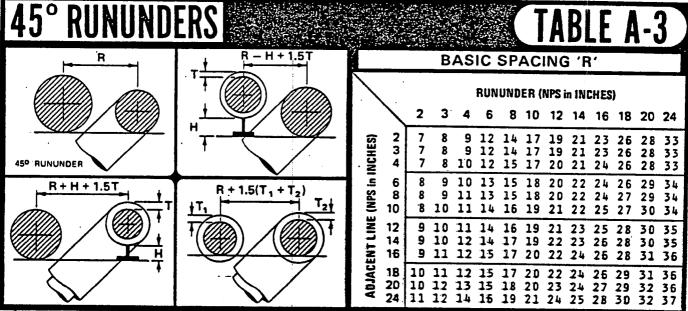
	15	0		N	IMDI	NAL	PIPE	SIZE	(INC	CHES)		•
150	1	2	.3	4	6	8	10	12	14	16	18	20	24
	ر 2	6					T -				П	Π	T
<u> </u>	3	6	7		1	-]	1				
픐	4	7	8	8		J		1	1		İ		1
Ξ	6	8	9	9	10			1	1			1	
끮	8	9	10	10	12	13		1	1	1			
22	10	11	11	12	13	14	15		J			1	
풀	12	12	13	13	14	15	16	17				1	Ä
7	14	13	14	14	15	16	17	18	19		1	1	1
¥	16	14	15	15	17	18	19	20	20	21		j	
NOMINAL PIPE SIZE (INCHES)	18	15	16	16	17	18	19	20	21	22	23	_	
ž	20	16	17	17	19	20	21	22	22	23	24	25	
	24	119	19	20	21	22	23	24	2 L	25	26		70

300 & 300 PSI, FLANGED

	30	0		N	OMI	NAL	PIPE	SIZE	(IN	HES)		
300	1	2	3	4	6	8	10	12	14	16	18	20	24
	2	· 6			1			I		Π			П
တ္တ	3	7	7		1	1			1	1	1	1	1
3	4	8	B	9		1		İ		l	1		
NOMINAL PIPE BIZE (INCHES)	6	9	9	10	11	-			1		ł		
9	8	10	11	11	12	13		l	1			1	1
28	10	11	12	12	14	15	16	•	1	1	1	1	1 1
PE	12	13	13	14	15	16	17	18					
4	14	14	15	15	16	17	18	19	20	•			1 1
Z	16	15	16	16	18	19	20	21	21	22	•		
\$	18	17	.17	18	19	20	21	22	22	23	24	_	
Ž	20	18	18	19	20	21	22	23	24	25	26	27	`
	24	21	21	22	23	24	25	26	26	27	28	29	31

		15	50	& 3	00	PS	i, f	LA	NO	EC)				• .	30	00	& 6	00	PS	SI, i	FLA	NO	BEC)	•	
	[15]	<u>)</u>		N	OMI	VAL	PIPE	SIZE	(INC	HES)				30	0		N	OMI	NAL	PIPE	SIZE	(INC	HES)		
300	1	2	3	4	6	8	10	12	14	16	18	20	24	600	$) \setminus$	2	3	4	6	8	10	12	14	16	18	20	24
	2 3 4	6 7 8	6 7 8	7 8 9	8 9 10	9 10 11	11 11 12	12 13 13	13 14 14	14 15 15	15 16 16	16 17 17	19 19 20		2 3 4	6 7 8	7 7 9	8 8 9	9 9 10	10 11 11	11 12 12	13 13 14	14 15 15	15 16 16	17 17 18	18 18 19	21 21 22
NOMINAL PIPE SIZE (INCHES)	6 8 10	9 10 11	9 11 12	10 11 12	11 12 14	12 13 15	13 14 16	14 15 17	15 16 17	17 18 19	17 18 19	19 20 21	21 22 23	NOMINAL PIPE SIZE (INCHES)	6 8 10	10 11 13	10 11 13	11 12 14	12 13 15	13 14 16	14 15 17	15 16 18	16 17 18	18 19 20	19 20 21	20 21 22	23 24 25
IAL PIPE	12 14 16	13 14 15	13 15 16	14 15 16	15 16 18	16 17 19	17 18 20	18 19 21	19 20 21	20 21 22	21 22 23	22 23 24	24 25 26	VAL PIPE	12 14 16	14 15 16	14 15 17	15 16 17	16 17 18	17 18 19	18 19 20	19 20 21	19 20 22	21 21 23	22 22 24	23 24 25	26 26 27
NOMIN	18 20 24	17 18 21	17 18 21	18 19 22	19 20 23	20 21 24	21 22 25	22 23 26	22 24 26	23 25 27	24 26 28	25 27 29	27 29 31	NOM!	18 20 24	17 19 21	18 19 22	18 20 22	19 21 23	20 22 24	21 23 25	22 24 26	23 24 27	24 25 28	25 26 29	26 27 30	28 29 32
SERVICE AND IN	N-EX	اله شناي و	ing est	Elivery)		0.00	433 M	25.5°		******		E Mark	351		*			Minie		don't					<u> </u>	arke)	
													100														
			OU	& t	UU	PS	oi, I	- L/	INC	iEL)			\vdash	_	$\overline{}$	UU	& 6	00	1 12	SI,	- L /	AN (jEl			- 2
	15		<u> </u>			NAL							2		60	$\overline{}$	00		-		<u>-</u> -	SIZE					
600	7/_		3						(IN	HES		20	24	600	7	$\overline{}$		N	-		PIPE	-	(1N	CHES	5)	20	24
CHES)	7/_	0				NAL	PIPE	SIZE	(IN	HES)	20 16 17 17	24 19 19 20	CHES) 009	7	0		N	IMOI	NAL	PIPE	SIZE	(1N	CHES	5)	20	24
		2 6 7	3 6 7	7 8	OMI 6 8 9	NAL 8 9	PIPE 10	12 12 13	14 13 14	16 14 15	18 15 16	16 17	19 19		2 3	2 6 7	7	1 4	IMOI	NAL	PIPE 10	SIZE	(1N	CHES	5)	20	24
	234 68	2 6 7 8 10 11	3 6 7 9 10 11	7 8 9 11 12	6 8 9 10 12	9 10 11 13	PIPE 10 11 11 12 14 15	12 12 13 13 15	14 13 14 14 15	16 14 15 15 17	18 15 16 16 17	16 17 17 19 20	19 19 20 21 22		2 3 4 6 8	2 6 7 8 10 11	7 9	9 11 12	12 13	NAL 8	17 18	SIZE	(1N	CHES	5)	20	24
NOMINAL PIPE SIZE (INCHES)	2 3 4 6 8 10 12 14	2 6 7 8 10 11 13 14	3 6 7 9 10 11 13	7 8 9 11 12 14	6 8 9 10 12 13 15	NAL 8 9 10 11 13 14 16 17 18 19 20 22	PIPE 10 11 11 12 14 15 17 18 19	12 12 13 13 15 16 18 19 20 21 22 24	14 13 14 14 15 17 18	16 14 15 15 17 18 19 20 21 23 24 25	18 15 16 16 17 19 20 21 22	16 17 17 19 20 21 22 23	19 19 20 21 22 23 24 25	OMINAL PIPE SIZE (INCHES)	2 3 4 6 8 10 12 14	2 6 7 8 10 11 13 14	7 9 10 11 13	9 11 12 14	12 13 15 16	14 16 17 18	177 18 19 20 21 23	12 19 20	14 20	23 24	5)	20	24


When the order of lines, line sizes, pressure ratings (for lines with flanges) and insulation thicknesses have been decided, determine pipeway width from tables A-1 thru A-3, adding 25% for the final design to include 20% of the distributed space for future piping.


To obtain a <u>preliminary estimate</u> of the pipeway width required for a selection of lines without flanges, in the size range 2- thru 8-inch NPS, either of the following factors may be used (the first is preferable):—

- If all pipe sizes are known, add nominal sizes in inches together and multiply by 0.34 to estimate the width in feet.
- (2) If only the number of lines is known, multiply this number by 1.43 to estimate the width in feet.

Either factor gives a pipeway width which includes insulation for 25% of lines, allows 20% of the width for the addition and re-sizing of lines, and allocates a further 20% of the width for future piping.

"Piping Cuide", PO Box 277, Cotati, CA 94928, USA

NOTES FOR TABLES A-2 & A-3

- (1) SPACINGS SHOWN IN THE DIAGRAMS ALLOW 2 TO 2.7 INCHES CLEARANCE
- (2) IN TABLES A-2 & A-3, 'H' IS THE EFFECTIVE SHOE HEIGHT, AND 'T' IS THE THICKNESS OF INSULATION (WITH COVERING)
- (3) FOR SIMPLICITY, THE FACTOR 1.5 HAS BEEN SUBSTITUTED IN ALL EXPRESSIONS FOR THE FACTOR 21/2 (=1.414....

(}	O PSI BUTT-WELDED PIPINI	G DI	MEN	ISIO	NS						TA	BLE	D-1
L	八一						A SOLE	NCLUO	E 1/4-11	NCH R	AISEO (N FLAN	
	1	NOMINAL PIPE SIZE (IN.)	2	3	4	6	8	10	12	14	16	18	20	24
		STRAIGHT TEE DIMENSIONS OF REDUCING TEES ARE IN TABLE D	2 ½	33	418	5 %	7	31/2	10	11	12	131	15	17
1	1	WELDOLET FULL] 9	1 7	21	21/2	2 15	31/4	3 9 16	3 11	34	41/4	413	5 18
	Y Y	STANDARD WEIGHT DIMENSIONS ARE ROUNCED UP TO 1716 INCN. AND INCLUDE ROOT GAP	1 9 16	17	2 1/8	2 ½	2 15	31/4	3 9	3 11	3 7	4	43	43
- C - C - C - C - C - C - C - C - C - C	FFS	REDUCERS CONCENTRIC NPS NPS	SWAGE: TABLE D-5	31/2	4	5 1	6	7	8	13	14	15	20	20
	UFACTU	90° LR ELLS REBULAR & O NPST	3	41/2	6	9	12	15	18	21	24	27	30	36
GS	AND MANU	90° SR ELL	2	3	4	6	8	10	12	-14	16	18	20	24
Ž	16.8, AR	45° ELL (LR)	13	2	2 1 /2	3 3	5	61	71/2	83	10	1114	121/2	15
E	ANSI 816.5, 816.9,	OFFSET A	. 1 <u>15</u>	2 13	3 %	5 <u>5</u>	7 1	8 13 18	10 5	123	141	15语	17 116	21 3
표	A ANSI	(TWO 45° ELLS) B B	4 <u>11</u>	6 13 16	8 9	1213	1716	21 5	25 \$	29년	34 है	38 7	42 11 16	51급
	SFROM	90° OFFSET BEND	3 1	45	6	9	12	15	181	21 1	24 1/16	27 1	30 16	36 1 6
	DIMENSIONS	(45° ELL + 90° LR ELL)	41/2	6 5	8 1	123	17	214	25 ⁹ 18	29 13 16	34 1 16	38 5	42 ⁹ 16	51 16
	ā	90° LR ELLE	6 1 8	8	101	137	171	214	24 3	273	314	34 1	37 3	441
		+ WELDING-NECK G F	6 1	81/4	103	14	161	20	22	234	27	29 1	32	37
	Ц	RAISED-FACE FLANGE F G	31/8	3 1	41/4	47	5 <u>1</u>	61/4	6 3	63	71/4	71/2	7 3	81/4
	DATA	PLUG REGULAR PATTERN: 2"-10" VENTURI TYPE: 6"-24"	111/2	14	17	22	26	31	33	35	39	43	47	55
	ACTURERS'	GATE (OPEN)	9	12	16	22	24	28	30	36	38	38	42	42
ြ	۱٤I	DIMENSIONS ALSO APPLY H	20등	25 3	33	46½	53	65 1	73	80 13 16	9216	981	106 ³	126
VE	AND MAN	TO GATE VALVES WITH BUTT-WELDING ENDS	1112	14	17	22	26	31	33	35	39	43	47	55
1	B16.10 A	BALL (OVER 6", CRANE VALVES)	1112	14	17	22	26	31	33	35	39	43 .	47	55
VA	즟	GLOBE (OPEN)	12	14	18	24	36							
	IS FROM A	DIMENSIONS ALSO APPLY K	20½	27	32 3	44	46 <u>5</u>							
	DIMENSIONS	BUTT-WELDING ENDS	1112	14	17	22	26	31	33					
270		CHECK TILTING: 2"-12" SWING: 2"-12" LIFT: 2"-12"	11 1	14	17	22	26	31	33	-				
	V	IOMINAL PIPE SIZE (IN.)	2	3	4	6	8	10	12	14	16	18	20	24
		'H'. 'I'. 'K'. AND 'L' DIMENSIONS		107		MENICIO	us sos	MARILL						

'H', 'I', 'K', AND 'L' DIMENSIONS ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEEL VALVES FROM THE FOLLOWING MAKERS: CHAPMAN, CRANE, GRINNELL, HANCOCK, JENKINS, LUNKENHEIMER, PACIFIC, POWELL, STOCKHAM, VOGT, AND WALLWORTH/ALLOYCO

"Piping Cuido", PO Box 277, Cotati, CA 94928, USA

3	0	O PSI BUTT-WELDED PIPI				SIOI	السحد	ABLE II	VCLUD		NCH R			BLE N FLAN	D-2
	1	NOMINAL PIPE SIZE (IN.)	2		3	4	6	8	10	12	14	16	18	20	24
		STRAIGHT TEE DIMENSIONS OF REDUCING TEES ARE IN TABLE D-6		21/2	3 3	41	5 §	7	81/2	10	11	12	131/2	15	17
		WELDOLET NPS FU		1 9	1%	2 1	2 ½	2 15 16	31/4	3 9 16	311	37	41/4	4 13	5 9 16
	DATA	STANDARD WEIGHT DIMENSIONS ARE ROUNDED UP TO 1/16 INCH, AND INCLUDE ROOT GAP	D.	1 9	17	2 1 /8	21/2	2 15	31/4	3 9 16	311	37	4	4 <u>3</u>	43
	RERS" O	REDUCERS CONCENTRIC NPS NPS	SWA TAE D-5	BLE	31/2	4	5 1	6	7	8	13	14	15	20	20
	DIMENSIONS FROM ANSI B18.5, B16.9, AND MANUFACTURERS	90° LR ELLS REGULARS CONST		3	41/2	6	9	12	15	18	21	24	27	30	36
S5	D MAN	90° SR ELL		2	3	4	6	8	10	12	14	16	18	20	24
FITTINGS	16.9, AN	45° ELL (LR)		녆	2.	21/2	334	5	61/4	7 1 2	83	10	1114	12.1	15
11	818.5, 8	OFFSETA		115	2 13 16	3 16	5 <u>5</u>	716	8 13	10 5	123	143	15 15	1711	21 3
ᇤ	H ANS!			4116	6 13	8 16	12 13	1716	21 5	25 5	29%	341	38 7	42 11	5176
	NS FRO	, , , , , , , , , , , , , , , , , , ,	- -	31	45	6	9	12	15	181	2116	241	271	301	36 1
	AENSIO	(45° ELL + 90° LR ELL)	-	4 🖠	6 3	81/2	124	17	217	25 16	29끊	3416	38 5	42급	51급
	ä	90° LR ELL	= -	54	7 🖁	. 9급	127	163	19	231	26 🖁	293	334	367	42章
		+ MELDING-NECK G T	- →	61/2	81	10	121/2	15	17½	201	23	251/2	28	301	36
			<u> </u>	2 4	31	3 🖁	37	43	45	51	5 €	54	64	63	65
	S DATA	PLUG SHORT PATTERN: 2"-12".			113	12	157	161	18	197	30	33	36	39	45
	TURER	GATE TOPEN	<u>n '</u>		10	12	16	20	24	24	28	28	32	36	36
S	NUFAC	DIMENSIONS ALSO APPLY H	- 1 +		243	283	381	481	581	667	75 }	81	911	10115	1221
VE	BILIS AND MANUFACTURERS' DATA	BATT WELDING ENDS			111	12	15%	161	18	197	30	33	36	39	45
AL	11.5	UMLL (OVER 6", CRANE VALVES)	., -	- +	111	12	15%	197	22 ह	25½	30	33	36	443	45
>	H ANS	I L 11	<u>, </u>		24	14			26 48 1	30					
	RS FRO	DIMENSIONS ALSO APPLY K			121	26½	31 1	40 3	241	48 1 28		;		į.	
	DIMENSIONS FROM AN		102		121	14	172	21	241	28		;			
Spare.	<u> </u>	CHECK SWING: 2"-12" Z] NOMINAL PIPE SIZE (IN.)	- ↓-		3			8	-		14	16	10	20	20
		ADIAIIIAME LILE SIZE (IIV.)	44		3	4	6	0	10	14	14	10	10	20	24

"H", "I", "K" AND "L" DIMENSIONS ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEE. VALVES FROM THE FOLLOWING MAKERS: CHAPMAN, CRANE, GRINNELL, HANCOCK, JENKINS, LUNKENHEIMER, FACIFIC, POWELL, STOCKHAM, VOGT, AND WALLWORTH/ALLOYCO

141

	I	O PSI BUTT-WELDED PIPIN	G D	ME	NSIO	NS						TA	BLE	D-3
		NOMINAL PIPE SIZE (IN.)	2	1	1		1	NCFNO	E 1/16-	INCH R	AISED	FACE	ON FLAN	IGES
	T	STRAIGHT TEE PROJECTIONS OF TEDUCING TEES		3	4	6	8	10	12	14	16	18	20	24
		THE IN TABLE DIG	21/2	3#	41	5 š	7	81/2	10	11	12	131	15	17
	₹	WELDOLET STANDARO WEIGHT DIMENSIONS ARE ROUNDED UP TO 1/16 INCN. AND INCLUDE ROOT GAP	1 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	178	2 1 2 1	21/2	2 15	31/4	3 %	318	3 8	41/4	4 13	5 18
	BIG.S, BIG.S, AND MANUFACTURERS' DATA	REDUCERS CONCENTRIC NPS NPS	SWAGE TABLE	3 ¹ / ₂	4	2½ 5½	2 15 6	3 1/2	3 18	3 16	3 ਵ	4	43/16	43
	ACTUR	90° LR ELLS REGULAR & PST	D-5 3	41/2	6	9	12	15	18	13	14	15	20	20
Si	MANUF	90° SR ELL	2	3	4	6	8	10	12	14	16	18	30	36
FITTINGS	B. AND	45° ELL (LR)	13/8	2	21/2	334	5	61	71/2	83	10	1114	12 1/2	15
E	18.5, 81	OFFSET TA A	1 15 16	2 13 16	3 9 16	5 5	7 1/16	8 13	10 ⁵	12 3	141	15뜮	17 17 11	21 3
	ANS	(TWO 45° ELLS) B B	411	6 13	8 9	1213	1716	215	25 5	297	34 1	387	42 11/16	51 3
	DIMENSIONS FROM	90° OFFSET BEND	3 1	45	6	9	12	15	181	211	24 1/16	27 16	30 1	36 1
	ENSIO	(45° ELL + 90° LR ELL)	41/2	6 5	81/2	123	17	214	25 9	29 13	341	38 <u>5</u>	42 9	51 1
	O	90° LR ELL	5 1	7 1	9	121	16	19	22 1 /2	26	29	32 ½	35 11	42
		+ WELDING-NECK G F	6	71/2	9	11	131	16	19	21	23 1	25	27 1 /2	32
		RAISED-FACE FLANGE F G	21/2	23/4	3	3 ½	4	4	41/2	5	5	5 1 /2	5 11	6
	Y DATA	PLUG SHORT PATTERN: 2"-12" VENTURI TYPE: 14"-24"	7	8	9	101/2	1112	13	14	27	30	34	36	42
	CTUREAS	GATE (OPEN)	8.	10	12	14	16	18	20	24	26	30	30	36
S	ANUFAC	REFER TO TABLE V-1 FOR DIMENSIONS OF GATE VALVES WITH	183	22급	27 8	36 3	46½	52 ½	60½	70 ¹ / ₄	79 3	89	97 1	1123
>	S -	BUTT-WELDING ENDS DAIL DIMENSIONS FOR FULL-PORT VALVES	7	8	9	101	1112	13	14	15	16	17	18	20
	<u></u>	BALL DIMENSIONS FOR FULL PORT VALVES	7 -	8	9	15½	18	21	24	27	30	34	36	42
>	ROM ANS	GLOBE (OPEN)	8	10	12	16	18	24	24					
	S	DIMENSIONS ALSO APPLY K	14 5 8	185	21	25 16	321/8		37					
	2 J-	CHECK TILTING: 2"-12"	8	9½ 9½	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	19½		27½					
_	٠.	OMINAL PIPE SIZE (IN.)			1112		_				36]
	. ,	SIMILAL III L SIZE (IIV.)	2	3	4	6	8	10	12	14	16	18	20	24

NOTE

'H', 'I', 'K', AND 'L' DIMENSIONS ARE THE LARGEST DIMENSIONS FOR MANUALLY-OPERATED CAST-STEEL VALVES FROM THE FOLLOWING MAKERS: CHAPMAN, CRANE, GRINNELL, HANCOCK, JENKINS, LUNKENHEIMER, PACIFIC, POWELL, STOCKHAM, VOGT, AND WALLWORTH/ALLOYCO

「Piping Guide", PO Box 277, Cotati, CA 94928, USA)が何からない。

<u> </u>			ELBO	II FT	DIMEN	SIONS				· Kuspi		Z T	ABLE	D-4
			LLD	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NOM			IZE O		N RU			ADLL	U-4
<u> </u>	4		2	3	4	6	8	10	12	14	16	18	20	24
		1/2	3.57	5.98	7.29	10.04	12.70	15.42	18.07	20.17	22.79	25.45	28.11	33.39
PANY		3/4	4.86	6.26	7.57	10.32	12.98	15.70	18.36	20.45	23.07	25.73	28.39	33.67
SSS CONTRACT	E ES)	1	5.17	6.57	7.89	10.64	13.29	16.01	18.67	20.76	23.39	26.04	28.70	33.98
GE D	SIZE CHES)	11/4	5.36	6.76	8.07	10.82	13.48	16.20	18.86	20.95	23.57	26.23	28.89	34.17
700	_	11/2	5.61	7.01	8.32	11.07	13.86	16.45	19.11	21.20	23.82	26.48	29.14	34.42
RAL	=	2	6.17	7.57	8.89	11.64	14.29	17.01	19.67	21.76	24.39	27.04	30.01	34.98
HE BUST	INAL	3		8.24	9.56	12.31	14.96	17.68	20.34	22.43	25.06	27.71	30.37	35.65
P T N	N A	4			10.24	12.99	15.65	18.37	21.03	23.12	25.74	28.40	31.06	36.34
STER	NOMINAL F BRANCI	6				14.70	17.36	20.08	22.73	24.83	27.45	30.11	32.77	38.05
7.00 4.00	NO	8					18.36	21.08	23.73	25.83	28.45	31.11	33.77	39.05
DATA PROVIDED BY THE BONNEY FORCE DIVISION OF GULF + WESTERN INDUSTRIAL PRODUCTS COMPANY		10						22.89	25.55	27.64	30.27	32.92	35.58	40.86
		12							26.55	28.64	31.27	33.92	37.05	41.86

				<u> </u>				 							
	.•				ı	٠.							•		
									•						
					į				•						
SWAGES *	The state of the s	SEAMLESS	SWAGE	D NIPPLE	S-ALL W	EIGHTS	1988				Y. (7)		2	TABLE	D.
NOMINAL PIPE SIZE	LARGER END	2	2%	3	4	6	7	8	10	12	14	16	18	20	24
(INCHES)	SMALLER END	24-1%	%-2	¥-2%	%3%	% 5	2-6	2–7	2-8	2-10	2-12	2-14	2-16	2-18	2-20
END-TO-END LENGTHS	REGULAR SWAGE	6%	7	8	9	12	13	13	15	16	17	18	20	22	24
(INCHES)	VENTURI TYPE		8	8%	9	12		14	16	18					

^{*}Dimensions in this table are for Mills fron Works Inc. sweets, which are evailable with ends threaded, beveted, out square, Victaulio-grooved, and any combination of these terminations

_m	400	Α,	RED	UCII	NG B	ידדי	WEL	DING	TEES	7.77	T I	ABLE	D-6
Tage 1	10	ホ				NO	MINAL	PIPE SIZ	E OF RL	(IN.)			
Ø	LA	"	3	4	•		10	12	14	18	18	20	24
DIME	NSION	1.V.	3.38	4.13	5.63	7.00	8.50	10.00	11.00	12.00	13.50	15.00	17.00
	Z		3.00	3.50	4.63								
2	3			3.88	4.88	6.00	7.00						•
ž	4				5.13	6.13	7.25	8.25	i				
¥	6					6.63	7.63	8.63	9.38	10.38			
)F 8!	8	jo P					P.00	9.00	9.75	10.75	11.75	12.75	
) 3Z (10	DIMENSION						9.50	10.13	11.13	12.13	13.13	15.13
PE \$	12	IME					4		10.63	11.63	12.63	13.63	15.63
1	14	٥							i	12.00	15.00	14.00	16.00
NOMINAL PIPE SIZE OF BRANCH (IN.)	16						:				23.00	14_00	16.00
2	18											14.50	16.50
	-20				l	!	1	!	1				17.00

BONNEY	FORGE FIT	TINGS 🎉	公門石景 [1	ABLE D-7
TYPE OF BRANCH	TYPE OF CONNECTION	WEIGHT		HEADER SIZ
WELDOLET, Reducing	Butt-welding	STD XS SCH 160, XXS	1/8-3C 1/3-26 1/2-10	3/8-36 3/8-35 1/2-12
WELDOLET, Full-size	Butt-welding	STD XS SCH 180, XXS	1/2-30 1/2-26 1/2-12	1/2-30 1/2-26 1/2-12
SOCKOLET, Reducing	Socket-welding	STD XS SCH 160, XXS	1/3-10 1/3-4 1/2-2	3/8-36 3/8-36 3/4-36
SOCKOLET, Full-eize	Sacket-welding	STD XS	1/2-10 1/2-2	1/2-10 1/2-2
THREDOLET, Reducing	Threaded		5-10 1.0-4 1/4-2	6-36 3/8-32 1/2-36
THREDOLET, Full-size	Threeded		5-10 1.3-4	5-10 1/2-4
ELBOLET	Butt-welding	STD, XS SCh 160 XXS	1.4-8 1.4-6 1.4-2)
	Socket-welding	STD, XS XXS	1/4-2 1/4-15	14-36
	Threaded	3000 PSI 6000 PSI	1:4-2 1:4-1%)
LATROLET, 45 degree	Butt-welding	57.0. XS SCH 166 XXS	*:4-12 *:/4-6 1:4-2	13-36 14-17 13-17
	Section-welding	STD, YS	144-2 1/3-75	1'4-3t 15-12
	Trendel	\$100 PS	1'4-2 8'4-1"	7%—36 13-17
NIPOLET	Torences, or	3000, 6300 PM	٠ , ٿي ۽ ۽ اپن	2-12

SI	CKET-WELD	ED ST	EEL	PIPIN							I	ABLE	D-8
	PRESSI	JRE R	ATIN	IG (F	'SI)		30	00			6C	00	
	NOMIN	IAL P	IPE S	IZE (IN.)	1/2	3/4	1	11/2	1/2	3/4	1	11/2
	45° ELL		*	4	A	0.88	1.00	1.13	1.38	1.00	1.13	1.31	1.69
	.0 222		-1 9]	8	1.31	1.50	1.81	2.44	1.50	1.81	2.19	3.00
	90° ELL	В	EP	· 1	B	1.13	1.31	1.50	2.00	1.31	1.50	1.75	2.38
	(Also, center-to-end dime	rsions for CRC	551 4		AA	1.13	1.31	1.50	2.00	1.31	1.81	1.75	2.38
	TEE STRAIGH		в		^ B	1.31	1.50	1.81	2.44	1.50	1.81	2.19	3.00
		•	A.c		A	3.00	3.56	4.13	5.38	3.56	4.13	4.81	6.44
SS	LATERAL		ŶŽ	В	B	1.50	1.75	2.00	2.69	1.75	2.00	2.38	3.56
Ž		ļ.	A	<u> </u>	C	2.13	2.56	3.00	3.94	2.56	3.00	3.50	4.75
FITTINGS	UNION	<u></u>	}	BACRO	ss A	2.25	2.44	2.69	3.13	2.88	3.38	3.63	4.19
三	· ·	AGONAL-	<u>لوات</u>	PLAT	D	1.81	2.19	2.56	3.44	2.19	2.56	3.06	4.13
	COUPLING	HALF-	<u> </u>		BA	1.38	1.50	1.75	2.00	1.38	1.50	1.75	2.00
		FULL. 2-		<u> </u>	B	1.25	1.50	1.81	2.50	1.50	1.75	2.25	3.00
	SWAGE 27-2		2.75	3.00	3.50	4.50	2.75	3.00	3.50	4.50			
	REDUCER	A	1.38	1.50	1.75	2.00	1.38	1.50	1.75	2.00			
	WEDOOFIL	NPS à	-		D	1.25	1.50	1.81	2.50	1.50	1.75	2.25	3.00
	REDUCER	<u> </u>	7	REDUCI	1/2		1.50	1.31	1.44		1.88	2.13	2.00
	INSERT NPS		1-1	NOMINA PIPE SIZ (INCHES	3/4			1.63	1.44			2.25	2.00
	MOLITI								1.44				2.63
	NOMINAL PIPE S	IZE (IN.)	1/2 3.50	3/4 3.88	4.25	11/2 5.50	PIPE	INSER	RTION L		7		
A		EATE .	6.31	7.69	8.75	11.44	NOMINA	L PIPE S	SIZE (IN.)	RD GAP -	3/4	1	11/2
PSI VAL	D D D D D D D D D D D D D D D D D D D	W	3.50	3.50	4.75	5.75	BONN		2000	0.44	0.50	0.56	0.69
S	Ope H	5.00	7.00	FORG FITTI	E (2 8000 2 3000	0.50	0.56	0.63	0.81			
		7.81	10.00	سا ي	CONVE	NTIONAL	0.63	0.63	0.56	0.94			
800	SMITH VALVE CORP, DATA		3.50	3.50	4.00	4.75	SMITH VALVES	FULL P	ORT	0.75	0.81	0.75	1.19
8		CHECK L	3.25	3.50	5.00	7.00	~ > (LOBE,	CHECK	0.44	0.50	0.56	0.69
	OIMENSIONS FOR FITTING DIMENSIONS GRINNELL, L	FOR SOCKET	WELDING VOGT. SO	LARGEST (UNIONS A CKET DEPI	TO THE NE QUOTED BY RE BASED 'H VARIES	: ANSI 816 ON THE L WITH SIZE	Bth INCH. U L11, BONNE ARGEST O	EY FORGE NOTED B' FITTING	, GRINNELL	LADISH,		_	

FRACTIONAL	0.06	0.13	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.63	0.69	0.75	0.81	0.88	0.94
EQUIVALENTS	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

MALLEABLE-IRON FITTINGS TABLE D-9 (DIMENSIONS FOR BANDED FITTINGS) 150 (STANDARD) (EXTRA 300 PRESSURE RATING (PSI HEAVY) PIPE 3 1/2 3/4 11/2 1/2 3/4 3 11/2 2 45° ELI 0.88 1.00 1.13 2.19 1.00 1.31 1.44 1.69 1.13 1.69 2.00 2.50 90' ELI 1.13 1.31 1.50 1.94 2.25 3.13 1.25 1.44 1.63 2.13 2.50 3.38 1.13 1.31 1.50 1.94 2.25 3.13 1.25 1.44 1.63 2.13 2.50 3.38 90' STREET ELL 1 1.63 1.88 2.19 2.69 3.31 4.56 2.00 2.19 2.56 3.13 В 3.69 5.13 1.00 1.25 1.50 2.19 2.63 3.00 1.75 4.00 CLOSE RETURN BEND 1.25 1.50 1.88 2.50 3.00 2.50 MEDIUM 3.50 6.00 1.50 2.00 2.50 3.50 4.00 5.00 3.00 6.00 **OPEN** 8.00 STRAIGHT TEE apply to the center-to-and dimension to straight cross. 1.13 1.50 1.94 1.31 2.25 1.25 3.13 1.44 1.63 2.13 2.50 3.38 2.38 7.31 2.81 5.19 3.31 4.38 2.75 3.25 4.25 5.81 5.75 LATERAL FLAGG C 1.75 2.06 2.44 3.94 5.63 2.38 3.31 2.00 3.25 4.56 4.50 ALL-MALLEABLE-IRON, GROUND-JOINT UNIONS 1.81 2.00 2.19 2.63 3.06 3.88 2.13 2.31 2.56 3.06 3.44 4.31 BACROS UNION R 2.44 1.63 1.88 2.06 3.00 4.94 1.81 2.25 2.56 3.38 4.06 5.69 OCTAGONAL 1 COUPLING 1.38 1.56 1.69 2.19 2.56 3.19 1.88 2.13 2.38 2.88 3.63 4.13 1.13 1.38 1.50 1.75 **CLOSE NIPPLE** 2.00 2.63 1.13 1.38 1.50 1.75 2.00 2.63 AVAILABILITIES OF SHORT AND CARBON-STEEL AVAILABLE IN 2, 2%, 3, 3%, 4, 4%, 5, 5%, 6, 7, 8, 9, 10, 11, & 12-INCH LENGTHS LONG NIPPLES (1/2- and 3/4-inch nipples are also available 11/2 inches long) (TANK NIPPLES ARE 6-IN. LONG) SWAGE WORKS 2.75 3.00 REGULAR 4.50 6.50 8,00 2.75 3.00 3.50 4.50 6.50 8.00 NPS **VENTURI** 7.00 8.25 7.00 8.25 CARBON-STEEL REDUCER 1.25 1.69 2.31 2.81 3.81 1.69 1.75 2.00 2.69 3.19 4.06 THREAD ENGAGEMENT TAPER 0.69 0.50 0.56 0.69 0.75 1.00 0.50 0.56 0.69 0.69 0.75 1.00

NOTES

DIMENSIONS IN THIS TABLE ARE ROUNDED UP TO THE NEAREST 1/18th INCH. UNLESS THE MAKER IS STATED, DIMENSIONS FOR BANDED MALLEABLE-IRON FITTINGS ARE BASED ON THE LARGEST QUOTED BY: ANSI BIG., CRAME, FLAGG, GRINNELL, AND STOCKHAM, DIMENSIONS FOR ALL-MALLEABLE-IRON GROUND-JOINT UNIONS ARE BASED ON THE LARGEST QUOTED BY: DART, FLAGG, AND STOCKHAM.

56", PO Box 277, Cotati, CA 94928, US

FRACTIONAL	0.06	દ.13	C.19	0.25	0.31	0.38	0.44	9.50	0.56	0.63	10.888	8.75	a.m	0.22	0.94
EQUIVALENTS	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/15	5/8	11/15	34	13/16	7/%	15/75

	Gedenien G	TEEL DININ	<u> </u>		1		e be			a i					13
	SCREWED S	ICCL FIFIN	U									AB	LE	D-1	
	PRESSURE	RATING (PSI)	1.	20	00			30	000		T	60	000	
	NOMINAL	PIPE SIZE (IN	1.)	1/2	3/4	1	11/2		3/4	1	11/2	1/2	3/4		11/2
	45° ELL	*	A	0.88	1.00	1.13	1.38	1.00	1.13	1.31	+	+	+	÷	_
			B	1.31	1.50	1.81	2.44	1.50	1.81	2.19	3.00	1.81	2.19	+	
	90° ELL	*ĒĤ	B	1.13	1.31	1.50	2.00	1.31	1.50	-	+	1.50	1.75	2.00	2.50
	IAISD, CERTEF-TO-end dimensions for TEC STRAIGHT TEE &	CROSS) A	A	1.13	1.31	1.81	2.44	1.50	1.81	1.75	-	1	+	+	1
	ILL REDUCING TEE	B A	B	1.31	1.50	1.81	2.44	1.50	1.81	2.19	3.00	1	2.19	+	2.50
	IATERAL	X	A	3.56	4.13	4.81	6.44	3.56	4.13	4.81	6.44	4.13	+	5.38	6.00
	LATERAL	В	B	1.50	1.81	2.19	3.00	1.50	1 .81	2.19	3.00	1.81	2.19	2.44	3.56
	BUON	 A 	C	2.56	3.00	3.5C	4.75	2.56	3.00	3.50	4.75	3.00	3.50	3.94	4.38
GS	UNION E	B ACTOR	B					1.81	2.44	2.69	3.13	2.88	3.38	3.63	4.19
Ž	HALF-COUPLING	A	Ā	0.94	1.00	1.19	1.56	0.94	1.00	1.19	1.56	2.25 0.94	1.00	1.19	1.56
FITTINGS		<u> </u>	B	1.13	1.38	1.75	2.50	1.13	1.38	1.75	2.50	1.50	1.75	2.25	3.00
	FULL-COUPLING	A	A	1.88		2.38	3.13	1.88	2.00	2.38	3.13	1.88	2.00	2.38	3.13
		CLOSE NIPP	B	1.13		1.75	2.50	1.13	1.38	1.75	2.50	1.50	1.75	2.25	3.00
	NIPPLE OF	AVAILABILI	TIES			1.50 E IN 2.	1.75 2%, 3. 3	3%, 4, 4%	1.38	1.50	1.75	1.13	1.38	1.50	1.75
	Older OF Mills room	OF SHORT LONG NIPPL	ES		<u> </u>	(1/2- a	nd 3/4-	inch nipp	les are	also ava	ilable 1	½ inche	2-INCH s long)	LENG'	THS
	SWAGE MILLS IRON WE 2"-24" SIZES: REFER TO TAB	NPC III		2.75	3.00	3.50	4.50	2.75	3.00	3.50	4.50	2.75	3.00	3.50	4.50
	REDUCER NO.	A	A	1.88	2.00	2.38	3.13	1.88	2.00	2.38	3.13	1.88	2.00		
	(REDUCING COUPLING)	В	В	1.13	1.38	1.75	2.50			1.75	2.50	1.50	1.75	2.38	3.13
	HEXAGON	A C	A									0.56	0.75	0.81	0.94
	BUSHING NPS	B ACROSS	B									0.88	1.06	1.44	2.00
		TAPER Thread Engagement	C						- 1			0.19	0.25	0.25	0.38
	THREAD ENGAGEMENT	TAPER Engagement	3	0.50	0.56	0.69	0.69	0.50	.56	0.69	0.69	0.50	0.56	0.69	0.69
ES	FORGED-STEEL W	NOMINAL PIPE SIZE (I	N.) I	/2 3,	4 1	1	1/2								-
VALVE	Career 1			.50 3.			.50			N	ОТ	ES	5		
8	. DAT	<u> </u>		.31 7.	69 8.	75 11	.44	DIME	NSION	S IN T	HIS TAI	BLE AR	E ROU	NDED	JP
SI	Open	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		50 3.		 -	.75	MAKE	RISS	TATED	T 1/16: , DIME THE L	NSIONS	H. UNL	ESS TI	ŧΕ
ا ۵	SMITH VALVE CORP. DATA	GLOBE		25 3.		_	.00	LADIS	BIO.I SH, AN	D VOG	INNEY T. TAB	FORGI LED DI	E, GR Mensi	INNEL	L,
800		arnot 1		19 6.: 50 3.!			.00 .75	ON T	HE LA	URGE!	STEE!	L UNIO	NS AR	E BASE	D
æ	L	CHECK	3.	25 3.9	50 5.0	0 7	.00	CLAT	IONM	IARK, (SRINNI	ELL, KE	MPER	& VOG	τ.
	the property of the second	*Piping G	uide", P	O Box 27	7. Cotati	CA 94	928. U	A BOOK							

A STATE OF THE PARTY OF THE PAR

FLANGE DATA: 150-2500 PSI FROM ANSI B16.5-1968 & TABLES F

REFER TO NOTES FOLLOWING TABLE F-9

BUTT-WELDING FLANGES	TABLES F-1-F-6
LAP-JOINT STUB ENDS	TABLE F-7
SMALL SOCKET-WELDING FLANGES	TARLE F-R
SMALL SCREWED FLANGES	TABLE F-9

	PSI FLANGE DA	A Control of the Cont	17.45	A GA A STOR	right left.	2.7	5. A. 25. C.	10.00	4.46.67.7	3.34.2			TABLE	. r.
NOMIN	AL PIPE SIZE (INCHES)		_2	3	4	6	8	10	12	14	16	18	20	24
4.	OUTSIDE DIAMETER		6	7.5	8	11	13.5	16	19	21	23.5	25	27.5	32
A A A	LENGTH THRU HUB	WELDING-NECK	2.5	2.75	3	3.5	4	4	4.5	5	5	5.5	5.69	6
لگي .	Including 1/16" RF	LONG WELDING-NECK	9	9	12	12	12	12	12	12	12	12	12	12
	DIAMETER OF BORE	- see Note (3)			Orde	er to ma	tch pipe	e (other	wise ID	matche	STD o	ipe)		<u> </u>
6	BOLT HOLES PER FL	ANGE	4	4	8	8	8	12	12	12	16	16	20	20
80 M.	DIAMETER OF BOLT		0.63	0.63	0.63	0.75	0.75	0.88	0.88	1.00	1.00	1.13		1.25
Ø,	STUDBOLT THREAD LENGTH	RAISED FACE	3	3.5	3.5	3.75	4	4.5	4.5	5	5.25	5.75		6.75
	(Except lap-joint)	RING JOINT	3.5	4	4	4.25	4.5	5	5	5.5	5.75	6.25		7.25

300 P	SI FLANGE DAT	TA)		No.		W.7.						T	ABLE	F-2
NOMIN	AL PIPE SIZE (INCHES)		.2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIDE DIAMETER		6.5	8.25	10	12.5	15	17.5	20.5	23	25.5	28	30.5	36
364	LENGTH THRU HUB	WELDING-NECK	2.75	3.13	3.38	3.88	4.38	4.63	5.13	5.63	5.75	6.25	6.38	6.63
A SUN SUN SUN SUN SUN SUN SUN SUN SUN SUN	Including 1/16" RF	LONG WELDING-NECK	9	9	12	12	12	12	12	12	12	12	12	12
	DIAMETER OF BORE	- see Note (3)			Ord	er to ma	tch pip	e (other	wise ID	matche	STDp	ipe)		
	BOLT HOLES PER FLA	ANGE	8	8	8	12	12	16	16	20	20	24	24	24
N. S.	DIAMETER OF BOLT		0.63	0.75	0.75	0.75	0.88	1.00	1.13	1.13	1.25	1.25	1.25	1.50
BOLTING	STUDBOLT	RAISED FACE	3.25	4	4.25	4.75	5.25	6	6.5	6.75	7.25	7.5	- R	9
•	THREAD LENGTH (Except lap-joint)	RING JOINT	4	4.75	5	.5.5	6	6.75	7.25	7.5	В	8.25	8.75	10

600 I	PSI FLANGE DA	TA STATE	and the same of									T	ABLE	F-3
NOMIN	AL PIPE SIZE (INCHES)		2	3	4	6	8	10	12	14	16	18	20	24
	OUTSIDE DIAMETER		6.5	8.25	10.75	14	16.5	20	22	23.75	27	29.25		37
A A A	LENGTH THRU HUB	WELDING-NECK	3.13	3.5	4.25	4.88	5.5	6.25	6.38	6.75	7.25	7.5	7.75	8.25
[2 ³	including 1/4" RF	LONG WELDING-NECK	9	9	12	12	12	12	12	12	12	12	12	12
	DIAMETER OF BORE	- see Note (3)					Orde	r to ma	sch pipe	ID.				
(5	BOLT HOLES PER FLA	ANGE	. 8	8	8	12	12	16	20	20	20	26	24	24
BOLYMC	DIAMETER OF BOLT		0.63	0.75	0.88	1.00	1.13	1.25	1.25	1,38	1.5	1.63	1.63	1.88
%	STUDBOLT THREAD LENGTH	RAISED FACE	4	4.75	5.5	6.5	7.5	8.25	8.5	9	9.75	10.5	11.25	12.75
	(Except lap-joint)	RING JOINT	4.25	5	5.75	6.75	7.75	8.5	8.75	9.25	10	10.75	11.5	13.25

FLANGE DATA: 150-2500 PSI

TABLES F

900	PSI FLANGE DA	ATA SERVICE				in decision	Billington.	Selection					•	
	NAL PIPE SIZE (INCHES)	The same of the sa										T	ABLE	F-4
l . '	OUTSIDE DIAMETER		+==	3		6	8	10	12	14	16	18	20	24
A. A. A. A. A. A. A. A. A. A. A. A. A. A	LENGTH THRU HUB	WELDING-NECK	8.5	9.5	11.5	15	18.5	21.5	24	25.25	27.75	31	33.75	
25	Including 1/4" RF	LONG WELDING-NECK	4.25	4.25	4.75	5.75	6.63	7.5	8.13	8.63	8.75	9.25	10	
	DIAMETER		3	12	12	12	12	12	12		12	12		11.75
			<u> </u>				Orde	r to mate	rh nine		<u></u>		12	12
80	BOLT HOLES PER FLA		8	8	8	12	12	16						
	DIAMETER OF BOLT		0.88	0.88	1.13	1.13			20	20	20	20	20	20
		RAISED FACE	5.5	5.5			1.38	1.38	1.38	1.5	1.63	1.88	2	2.5
		RING JOINT	5.75		6.5		8.5	9	9.75	10.5	11	12.75	13.5	17
			5.75	5.75	6.75	7.5	8.75	9.25	10	11	11.5			17.75
												_		

OUTSIDE DIAMETER 8.5 10.5 12.25 15.5 19 23 26.5 29.5 32.5 36 38.75 46 LENGTH THRU HUB Including 1/4" RF LONG WELDING-NECK 9 12 12 12 12 12 12 12 12 12 12 12 12 12	NOMIN	IAL PIPE SIZE (INCHES)	ATA	2			Act of Sec.	SELECTION OF	李素·森斯				TA	ABLE	F-5
LENGTH THRU HUB Including 1/4" RF LONG WELDING-NECK	4.	OUTSIDE DIAMETER		+		4	<u> </u>	8	10	12	14	16	18	20	24
DIAMETER OF BORE - see Note (3) BOLT HOLES PER FLANGE BIAMETER OF BOLT DIAMETER OF BOLT DIAMETER OF BOLT DIAMETER OF BOLT RAISED FACE RING JOINT PAGE 12 12 12 12 12 12 12 12 12 12 12 12 12	30	LENGTH THRU HUR	WELDING-NECK	 			15.5	19	23	26.5	29.5	32.5	36		
DIAMETER OF BORE - see Note (3) BOLT HOLES PER FLANGE BIAMETER OF BOLT DIAMETER OF BOLT DIAMETER OF BOLT DIAMETER OF BOLT RAISED FACE RING JOINT PAGE 12 12 12 12 12 12 12 12 12 12 12 12 12	r.S.	Including 1/4" RF		 		5.13	7	8.63	10.25	11.38	12	12.5			
BOLT HOLES PER FLANGE 8 8 8 12 12 12 16 16 16 16 16 16 16 16 16 16 16 16 16			- see None (2)	1 9	12	12	12	12	12	12	12	12			
DIAMETER OF BOLT 0.88 1.13 1.25 1.38 1.63 1.88 2 2.25 2.5 2.75 3 3.5 STUDBOLT THREAD LENGTH (Except lap-joint) RAISED FACE RING JOINT 5.75 7 7.75 10.05 the second seco								Orde	r to mat	ch pipe	ID			12	12
(Except lap-joint) RING JOINT 5.75 7 7.75 10 05 44-75 16 17.5 19.25 21 24	30		INGE	8	8	8	12					16			
(Except lap-joint) RING JOINT 5.75 7 7.75 10 05 44-75 16 17.5 19.25 21 24	5	(T)		0.88	1.13	1.25	1.38	1.63	1.88					16	16
RING JOINT 5.75 7 7.75 10.05 13.25 14.75 16 17.5 19.25 21 24	8	THREAD LENGTH !		5.5	6.75	7.5	10						2.75	3	3.5
		(Except lap-joint)	RING JOINT	5.75	7	7.75	10.25	11.75	13.25	15.25	16	17.5	19.25	21	24

NOMIN	AL PIPE SIZE (INCHES						IA	BLE	F-6
	OUTSIDE DIAMETER		2	3	4 .	6.	8	10	12
y.	- The state of the		9.25	12	14	19	21.75	26.5	30
A WORK	LENGTH THRU HUB	WELDING-NECK	5.25	6.88	7.75	11	12.75		
Ø.		LONG WELDING-NECK	9	12	12	12	12	12	
.	DIAMETER OF BORE			(Order to	match	pipe ID		12
13go	DIAMETER OF BOLT		8	8	8	8	12	12	12
ATRIC STREET	STUDBOLT	RAISED FACE	1	1.25	1.5	2	2	2.5	2.75
1	THREAD LENGTH (Except lap-joint)		6.75	8.5	9.75	13.5	15	19	21
	Joing	RING JOINT	7	8.75	10.25	14	15.5	20	22

WHEN USING TABLES F FOR SLIP-ON AND SOCKET-WELDING FLANGES, REFER TO NOTES (4) and (5)

FRACTIONAL	0.06	0.13	0.19	0.25	0.31	0.38	0.44	0.50	0.55	T						
EQUIVALENTS	1/16	1/8	2/00		-			4.30	0.56	0.63	0.69	0.75	0.81	0.88	0.94	7
Series and the series of	.,	1/0	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/10	040				<i>!</i> !
						Pipero Gu	-de", PO 6	los 277, Ca		929, US4	11/16	3/4	13/16	7/8	15/16	A 1
						_				1029, USZ					<u> </u>	¥ :-

FRACTIONAL EQUIVALENTS

FLANGE DATA: 150-2500 PSI

TABLES F

LA	AP-JOINT STUE	ENDS : ANSI B1	6.9 & MSS SP-43	£	1,3%	4.6			and Mil		YPAK.	14. 67	建築	TABL	E F-7
	1	NOMINAL PIPE S	SIZE (INCHES)	2	3	4	6	8	10 .	12 ·	14	16	18	20	24
П	OVERALL	STD, XS, XXS, 40S, 80S, 160S	ANSI B16.9 STUB ENDS, for use with lap-joint flange	6	6	6	8	8	10	10	12	12	12	12	12
묇	LENGTH	5S and 10S	MSS SP-43 STUB ENDS, for use with slip-on flange	2.5	2.5	3	3.5	4	5	6		23 300 T			₹**\$5 £X\$Z\$
STUB	OUTSIDE DI END, ANSI 8	AMETER AT WE	LDING	2.38	3.5	4.5	6.63	8.63	10.75	12.75		16	18	20	24
S	THICKNESS ANSI & MSS				NOM	IINAL P			CKNESS es P-1 fo					type)	
E				FLA	NGE (OMBIN	IATION		PSI RAT	ING		REASE II			
읾	STUDBOLT FOR LAP JO			1.0	nned t	o non-la	nned		150 or 3	00		Thic	kness of	lap	
STUDBOL	Refer to Note		·	"	ihhen r	UNITE	ippeu		Over 30	0	Thi	ckness (of lap m	inus 1/	4 in.
[2				1	Lapped	to lapp	ed	15	50 thru 2	500		Thickne	ess of to	vo laps	

NOMIN	AL PIPE SIZE (INCHES		*	*	1	1%	l x	K.	1	1%		*	1	1%		*	1	136	1	4.	1	116	<u> </u>		1	136
	PRESSURE RATING			88	0		 	30	•	-	<u> </u>	66	×		-	90	•	•	<u> </u>	15	~		<u> </u>	25	90	
	OUTSIDE DIAMETER		2.5	3.80	4.25	5	2.75	4.63	4.88	6.13	3.75	4.63	4.86	6.13	4.75	8.13	5.86	7	4.75	5.13	5.00	7	5.25	6.5	6.25	•
. 3 80	PIPE END TO FLANG Including 1/18th-Inch	E FACE (RF)	0.31	0.25	0.25	اقبة	0.56	0.63	0.63	0.63	0.81	0.06	0.00	0.04	1.19	1.25	1,44	1.44	1,19	1,25	1,44	1,44	1.5	1.56	1.00	2.0
	DIAMETER OF BORE		Orde	r to me	ach pip	e 10 (ost	ruin 10	mesch	STO	أعجاد				_		•	0-		مخود ريسه	ID.						
	BOLT HOLES PER FL	ANGE	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Z.	DIAMETER OF BOLT		0.6	0.5	0.6	0.5	0.5	0.63	0.63	0.75	0.5	0.63	0.63	0.75	0.75	0.75	0.88	1	0.76	0.75	0.86	i	0.75	0.76	0.86	1.1
\$	STUDBOLT	RAISED FACE	2.26	2.25	2.5	2.75	2.5	2.75	3	3.5	3	3.25	2.5	4	4	4.25	4.75	6.25	4	4.25	4.75	5.25	4.75	4.75	5.25	6.5
-	THREAD LENGTH	RING JOINT	-		3	3.25	3	1.25	35	4	•	3.75	35	4	4	4.25	4.75	8.25	A	425	4.76	5.25	4.75	4.75	5.25	6.7

SMA	LL SCREWED FLANGE DAT	A) f	7	1, 11,	. 14		4	ا. شر		4		$\gamma^2 \omega$	F/W / 1	Æ.		L.	7. 5 A		- 41	1		1	7	ABLE	F-9
NOMINA	LL PIPE SIZE (INCHES)	16	*	1	1%	36	K	1	1%	3	*	1	176	16	*	1	136	16	*	1	1%	*	*	,	136
	PRESSURE RATING (PSI)		11	0			30	0			•	•			98	•			196	10			254	6	
300	OUTSIDE DIAMETER	3.6	3.89	4.26	5	3.75	4.63	4.00	6.13	1.76	4.63	4.80	6.13	476	8.13	3.00	7	4.75	£13	5.00	7	8.25	5.4	6.25	-
₩.	PIPE END TO FLANGE FACE (RF)	0.13	0.08	۰	0.19	0.30	0.44	0.30	0.5	0.63	0.60	0.63	0.61	1.60	1.08	1.19	1.31	1.00	1.08	1.79	1.31	1.31	1.36	1,44	1,94
_	BOLT HOLESPER FLANGE	4	4	4	4	4	4	4 ;	4	4	4	4	4	1	4	4	4	4	•	4	4	4	4	4	4
AZ TABLE	DIAMETER OF BOLT	0.5	0.5	0.5	0.5	0.5	0.63	0.63	0.76	0.5	0.63	0.63	0.75	0.75	0.76	0.86	1	0.75	0.76	0.86	1	0.76	0.75	0.00	1.13
•	STUDBOLT THREAD LENGTH For raised-feet florge	2.26	2.25	2.5	2.75	2.5	2.75	3	3.5	3	3.26	3.5	4	•	4.25	4.75	\$.25	4	43	4.75	L25	4.75	4.76	5.25	6.3

stablished by tests made under working conditions, with through maphined gistur to AMSI standard or to the API standard for line pipe throad

NOTES

- 1 DIMENSIONS IN TABLES F-1 thru F-9 ARE IN INCHES.
- 2 DATA FOR FLANGE OUTSIDE DIAMETER, NUMBER OF BOLTHOLES PER FLANGE, AND BOLT DIAMETER GIVEN IN TABLES F-1 thru F-6 APPLY TO WELDING-NECK, SLIP-ON, SCREWED, LAP-JOINT AND BLIND FLANGES.
- 3 'DIAMETER OF BORE' DATA APPLY ONLY TO WELDING-NECK AND SOCKET-WELDING FLANGES. LONG WELDING-NECK FLANGES ARE BORED TO THE NOMINAL PIPE SIZE.
- 4 SLIP-ON FLANGES IN 2500 PSI RATING ARE NOT DEFINED BY ANSI B16.5-1988.
- 5 SOCKET-WELDING FLANGES ARE DEFINED BY ANSI B16.5-1968 IN THE FOLLOWING SIZES AND RATINGS ONLY: 1/2 in thru 3 in. (150, 300 and 600 PSI), 1/2 in. thru 2/2 in. (1500 PSI). DATA IN TABLES F-1 thru F-6 APPLY TO THESE AND OTHER SOCKET-WELDING FLANGES; REFER TO MANUFACTURERS FOR AVAILABILITY.
- 6 ANSI B16.5-1968 DOES NOT DEFINE LONG WELDING-NECK FLANGES, 'LENGTH THRU HUB' DIMENSIONS DIFFERENT FROM THOSE LISTED ARE ALSO AVAILABLE.
- 7 STUDBOLT THREAD LENGTHS GIVEN IN TABLE F-7 ARE CALCULATED ACCORDING TO THE METHOD SPECIFIED IN ANSI B16.5-1968.

Francia Summ. PO Birt PF (Carlos Careborn Jos

STRAIGHT TEE	10		DI	TA				€ 熊	VS	/ A I	2 V	5	MG	771	FI	OF	ANCE	OW RESIST	FI
39° LORICA-RAGIUS ELBOW Germen: 23 25 32 35 35 55 68 90 11 13 15 17 19 22 23 23 23 23 23 24 24				_	_						_			1	3,	11/2	IZE (IN	VINAL PIPE S	VO
SOF SHORT-RADIUS Street		†	-				-				 	:	1 / 2			-		7	7
Separation 1.00 1	+	+		 	 	 	}	+	+			-	1.2	3.3	4.3	2.3	,	90° SHORT-RACIUS ELBOW	1
RETURN, LORG-RADIUS Screend: 1.3 2.9 3.6 4.9 5.1 7.5 3.8 15 19 24 29 32 36 41 43 43 43 43 43 43 43				+					-			 	2.3	0.3	1.6	2.1	rewed: Regular patterni	450 ELBOW (LONG RADIUS)(Sen	100
Note Control Property patterns 1.1 2.0 2.5 3.9 5.0 6.3 7.5 7.8 8.9 100 110 140			 	 	 				1	+	ļ	 	1	+			(Second)	RETURM, LONG-RADIUS	
SPECE		110	 		 		-	7		 	20	13	4.9	3.5	2.3	,		RETURN, SHORT-RADIUS	
SPECE		140			88	80	63	47	34	21							TECE		: =
SPECE		43.	38	34	30	27	23	18	14	9.3	1 6	1					TECE	1 1 341	ျပ
Section September Septem		39	35	31	27	25	21	17	13	8.5	27.		1	.54			TECE	(90° Change in	
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.	35	29	25	23	20	19	16	13	9.5	6.3	1.72			13.50	3.2	250	HECE	direction) 5-P(
OUTLET, Flush with Wall (Vessal-to-line) O.8 O.8 O.8 O.8 O.9 O.8 O.8 O.9 O.9	270	390	330	240	270	130	79	48	21	22	9.0	11	2.8	3.1	2.1		e listed NPS reduction		0
OUTLET, Flush with Wall (Vessal-to-line) O.8 O.8 O.8 O.8 O.9 O.8 O.8 O.9 O.9	3	100	43	47	46	28	54	45	33	23	14	9.4	_		200	1.1			၂၀
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.	建設	49	25	21	17	21	12	8.3	5.2	4.7	3.0	2.7	1,000	35	7-9-12	¥			ଅ
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.	.4 9.1	8.4	7.8	6.9	6.3	5.9	5.0	4.2	3.6	2.6		1.6	-	2.1	 			STRAIGHT TEE	S
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.		49	45		100 Towns	35	29	23		13		6.6	 	1	 	_			19
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.	F COVE		St. A Page		VE I						A CONTRACTOR					NA CHAPAG			
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.	.4 12	9.4	8.4	7.1	6.2	5.8	4.4	-				-		_		12, Lose		REDUCING FLANGE	
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.	1875	11	4.1	4.1								-							三
OUTLET, Firsh with Wall (Vessel-to-line) O.8 O.8 O.8 O.8 O.8 O.8 O.8 O.		6.0					-												
GATE VALVE O.4 O.4 O.5 O.8 C.2 C.8 C.8 C.9 C.8 C.9 C.8 C.9 C.9 C.8 C.9 C.9 C.9 C.9 C.9 C.9 C.9 C.9 C.9 C.9	150	120						-									-line)	OUTLET, Flush with Wall (Vessel-to-	
SLOBE VALVE Composition Clise 15 18 20 29 70 94 120 170 230 300 380 Phy-type Clise Swring 5.2 5.7 8.7 100 140 170 250 330 440 560 Figure Physics Swring 5.2 5.7 8.7 100 16 27 37 59 83 110 140 160 190 270 3600 4600 5100 6000 7000 780 Tilding-dise Tilding-dise 82 140 190 300 420 560 710 780 930 1100 1200 ROTARY. BALL VALVE Regular Pettern, (Walworth Aloyeo) 4.0 5.9 1.2 1.3 5.6 4.0 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 16 17 18 18 18 18 18 18 18 18 18	75	60	54																
GLOBE VALVE Composition Disc 15 18 20 29 70 94 120 170 230 300 380 Phy-type Disc Phy-type Disc Swing 5.2 5.7 8.7 100 16 27 37 59 83 110 140 160 190 270 360 440 560 700 780 780 780 780 780 780 7	50 000 a second	3.0	3.3	3.1						-			1.2.22	2		1672	ular Dise	Regu	
ROTARY. Regular Pettern, (Walworth Aloyco) 4.0 5.9 1.2 5.3 5.6 4.0 15 10 35 56 48 REconstric Pattern (DeZarik) 1.6 1.7 2.2 5.9 3.7 5.7 8.0 15 21 28 40 38 45 49 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	S 74.62.05	\$ \$ CAT			dailt ar					-		-	29	20	18		nposition Cisc	SLOBE VALVE Com	
ROTARY. BALL VALVE Regular Pettern. (Walworth Aloyco) 4.0 5.9 1.2 3.3 5.6 4.0 15 10 35 56 48 COUNTERED VALVE COUNTERED VALVE Regular Pettern. (Walworth Aloyco) 4.0 3.9 1.2 3.3 5.6 4.0 15 10 35 56 48 COUNTERED VALVE RECORDING Pattern. (DaZarik) 1.8 1.7 2.2 3.9 3.7 5.7 8.0 15 21 28 40 38 45 49 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	i 6300	STATE OF THE STATE		13 (31) 27 (M)							-		2.2262.623				-type Disc		15
ROTARY. BALL VALVE Regular Pettern. (Walworth Aloyco) 4.0 5.9 1.2 3.3 5.6 4.0 15 10 35 56 48 COUNTERED VALVE COUNTERED VALVE Regular Pettern. (Walworth Aloyco) 4.0 3.9 1.2 3.3 5.6 4.0 15 10 35 56 48 COUNTERED VALVE RECORDING Pattern. (DaZarik) 1.8 1.7 2.2 3.9 3.7 5.7 8.0 15 21 28 40 38 45 49 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0			SECTION (100	135 142 1500						27	16	10	8.7	5.7	5.2	ng	Swin	17
ROTARY. BALL VALVE Regular Pettern. (Walworth Aloyco) 4.0 5.9 1.2 3.3 5.6 4.0 15 10 35 56 48 COUNTERED VALVE COUNTERED VALVE Regular Pettern. (Walworth Aloyco) 4.0 3.9 1.2 3.3 5.6 4.0 15 10 35 56 48 COUNTERED VALVE RECORDING Pattern. (DaZarik) 1.8 1.7 2.2 3.9 3.7 5.7 8.0 15 21 28 40 38 45 49 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	9800	7800	7000			-						530	320	220	190	170		CHECK VALVE Ball	15
ROTARY		1200				-			300	190	140	82					ing-disc	Tild	2
O SUTTEREL VALUE (U.S. COLUMN 1.6 1.7 2.2 3.9 3.7 5.7 8.0 15 21 28 40 38 45 49 4		/ 20 M			****		56	35	10	15	4.0	5.6	3.3	1.2	3.9	4.0	(Walworth Aloyeo)		Ш
O DITTEDELY VALVE MELLON DE LA COLONIA DE LA	57	47	49	45		40	28	21	15	8.0	5.7	3.7	3.9	2.2	1.7	1.6	n (DeZarik)	DALL VALVE Eccentric Patters	
			1			16	11	8.4	8.3	5.5	6.1	8.8				E 1			
PLUG VALVE 1-12" Regular pattern (W.K.M. (ACF)	170	160	120		2000	140	100	96	56 .	14	8.2	5.5		2.7	4:24	100	tern (W-K-M 'ACF')	PLUG VALVE 14"-12": Regular patt	

NOTES

(1) Hydraulic resistances are for turbulent flow and are given as lengths of SCH 40 pipe having the same resistance. For pipe with a thicker wall, use the resistance value for SCH 40 pipe having the closest internal diameter.

(2) Numbers in italics are resistances for screwed valves and fittings. Upright numbers relate to flanged valves and butt-welding fittings.

(3) For reducing and increasing fittings, flow resistance is based on the nominal pipe size at the inflow end.

(4) The tabulated flow resistances are approximate and have been selected from several sources which do not always give comparable values. These sources include the Hydraulic Institute's "Pipe Friction Manual", the Crane Company's "Technical Paper 410", the "Reactor Handbook, Volume 4" (Interscience), the "Chemical Engineer's Handbook",

"Piping Guide", PO Bas 277, Colett, CA 94929, USA).

FRACTIONAL	0.06	0.13	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.63	0.69	0.75	0.81	0.88	0.94
EQUIVALENTS	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16

FLOV	V OF	W	ATE	RT	HRL	JSI	CH 4	10	PIP	E		I	ABI	E	F-11
FLOW	RATE				PR	ESSUR	E DRO	P (PSI)	PER 10	o ft SC	H 40 PI	PE			
GPM ,	Cu.ft/sec	Ft/Sec		F1/Sec		F1/Sec	p : psi	Ft/Sec	p psi	Ft/Ser	p c psi	Ft/Se	P c psi	Ft/Se	P C psi
.1 .2	.00022 .00045	.56 1.14	.677 2.48	.62	/4" 548	3	% **	,	/2°°	:					
.3 .4 .5 .6	.00067 .0089 .00111 .00134	1.70 2.26 2.82 3.38 4.52	5.26 9.00 13.58 19.12 32.62	.93 1.24 1.55 1.85 2.47	1.16 1.98 3.00 4.22 7.17	.50 .67 .84 1.01	.255 .436 .656 .925 1.58		.136 .205 .290 .494	.30 .36 .48	.050 .071 .121	1	1"	,	14"
1 2 3 4 5	.00223 .00446 .00668 .00891		1/2"	3.09 6.18	10.91 39.60	1.68 3.36 5.04 6.72	2.39 8.68 18.46 31.55	1:06 2:11 3:17 4:22	.749 2.72 5.77 9.86	.60 1.20 1.80 2.40	.183 .665 1.41 2.42	.30 .37 .74 1.11 1.49	.036 .055 .199 .424 .724	.21 .43 .64 .86	.107 .183
6 8 10 15 20	.01337 .01782 .02228 .03342	1.26 1.58 2.36	.308 .466 .992	1.43	.285		1744	6.33	14.92 20.95	3.61 4.81 6.01	3.64 5.13 8.76 13.28	1.86 2.23 2.97 3.71: 5.57	1.09 1.54 2.62 3 3.97 8.46	1.07 1.29 1.71 2.14; 3.21	.276 .390 .667 2 1.01 2.14
25 30 35 40	.04456 .05570 .06684 .07798 .08912	3.15 3.94 4.73 5.51 6.30	1.69 2.54 3.60 4.79 6.14	1.91 2.39 2.37 3.35 3.82	.486 736 1.03 1.37 1.76	2.01 2.35 2.68	.424 .566 .724		3″			7.43	14.42	5.36 6.43 7.50 8.57	3.66 5.54 7.79 10.38 13.28
50 60 70 80 90	.1114 .1337 .1560 .1782 .2005	7.88 9.45	9.31 13.08	5.74 6.70 7.65 8.60	2.67 3.75 4.99 6.40 7.96	3.35 4.02 4.70 5.37 6.04	1.10 1.54 2.05 2.63 3.28	2.17 2.61 3.04 3.47 3.91	.371 .520 .693 .890 1.10	2.27 2.59 2.92	.335 .430 .535		4"		
125 150 175 200 225	.2785 .3342 .3899 .4456		6"	9.56	9.69	8.38 10.1 11.7 13.4	3.98 6.03 8.46 11.3 14.4	5.43 6.52 7.60 8.69 9.77	1.34 2.01 2.86 3.81 4.89 6.09	3.24 4.05 4.87 5.68 6.49 7.30	.650 .984 1.38 1.84 2.36	3.15 3.78 4.41 5.04	.523 .734 .978 1.25	2.81 3.21	5" .316 .405
250 275 300 350 400	.5570 .6127 .6684 .7798 .8912	2.78 3.06 3.33 3.89 4.44	.245 .292 .344 .457 .587	2.57	.149		į	10.9 11.9 13.0 15.2	7.41 8.84 10.4 13.8	8.11 8.92 9.73 11.4 13.0	2.94 3.58 4.27 5.02 6.87 8.58	5.67 6.30 6.93 7.56 8.82	1.56 1.90 2.27 2.67 3.55	3.61 4.01 4.41 4.81 5.62	.505 .616 .734 .863 1.15
450 500 550 600 650	1.003 1.114 1.225 1.337 1.449	5.00 5.55 6.11 6.66 7.22	.731 .887 1.07 1.25 1.45	2.89 3.21 3.53 3.85 4.17	.185 .225 .270 .316 .367	2,65	.118			14.6 16.2 17.8 19.5	10.7 13.0 15.5 18.2	11.3 12.6 13.9 15.1 16.4	4.56 5.66 6.89 8.25 9.68	6.41 7.22 8.02 8.82 9.62	1.47 1.83 2.23 2.67 3.13
700 750 800 850 900	1.560 1.671 1.782 1.894 2.005	7.78 8.33 8.89 9.44 10.0	1.66 1.89 2.13 2.38 2.66	4.49 4.81 5.13 5.45 5.77	.420 .480 .540 .605	2.85 3.05 3.26 3.46 3.66	.135 .154 .173 .194	12 2.58				17.6 18.9 20.2 21.4 22.7	11.2 12.9 14.7 16.5 18.5 20.6	10.4 11.2 12.0 12.8 13.6	3.62 4.16 4.75 5.35 5.98
950 1000 1100 1200 1300	2.117 2.228 2.451 2.674 2.896	10.6 11.1 12.2 13.3 14.4	2.93 3.23 3.85 4.53 5.26	6.09 6.41 7.06 7.70 8.34	.744 .817 .975 1.15 1.33	3.87 4.07 4.48 4.88 5.29	238 262 313 368 427	2.72 2.87 3.15 3.44 3.73	.099 .109 .130 .153 .178	2.85 3.08	.096 .111	23.9	22.8	14.4 15.2 16.0 17.6 19.2 20.8	7.36 8.10 9.66 11.4
1400 1500 1600 1800 2000	3.119 3.342 3.565 4.010 4.456	15.6 16.7 17.8 20.0 22.2	6.01 6.84 7.73 9.64 11.6	8.98 9.62 10.3 11.5 12.8	1.53 1.74 1.96 2.46 2.97	5.70 6.10 6.51 7.32 8.14	.490 .556 .628 .782 .953	4.01 4.30 4.59 5.16 5.73	.204 .232 .262 .329 .396	3.32 3.54 3.79 4.77 4.74	.127 .145 .163 .203	2.91 3.27 3.63	.084 .104 .127	22.4 24.1	13.2 15.1 17.2
2500 3000 3500 4000 4500	5.570 6.684 7.798 8.912 10.03	27.8	17.6	16.0 19.2 22.4 25.7 28.9	4,49 6,30 8,41 10,8 13,4	10.2 12.2 14.2 16.3 18.3	1.44 2.02 2.70 8.46 4.31	7.17 8.60 10.0 11.5 12.9	.601 - .842 1.72 1.44 1.76	5.93 7.11 8.30 9.48 10.7	.374 .525 .700 .896 1.12	4.34 5.45 6.36 7.26 8.17	.192 .270 .358 .459	4.30 5.02 5.74 6.45	.149 .199 .255 .317
5000 6000 7000 8000 9000	11.14 13.37 15.60 17.82 20.05					20.4 24.4 28.5	5.23 7.35 9.80	14.3 17.2 20.1 22.9 25.8	2.18 3.06 4.08 5.22 6.51	11.9 14.2 16.6 19.0 21.3	1.36 1.91 2.54 3.25 4.06	9.08 10.9 12.7 14.5 16.3	.695 .977 1.30 1.67 2.08	7.17 8.60 10.0 11.5 12.9	.386 .542 .723 .926 1.15
10000 12000 14000 16000 18000 20000	22.28 26.74 31.19 35.65 40.10 44.56					:		28.7	7.91	23.7 28.5	4.92 4.92	18.2 21.8 25.4 29.1 32.7	2.53 3.55 4.72 6.06 7.55	14.3 17.2 20.1 22.9 25.8 28.7	1.40 1.97 2.62 3.36 4.18 5.08

Reproduced by courtesy of the Lunkenheimer Company. Data are seed on the Saph and Schoder formula: p = LQ1-86/1435 D5

HEAT-EXCHANGER NOMENCLATURE CHART H-1 THREE LETTERS, SUCH AS AEW, BGP, etc. DESIGNATE THE BASIC CONSTRUCTION OF THE EXCHANGER. REFER TO 6.6.1, 'DATA NEEDED TO DESIGN EXCHANGER PIPING' REPRODUCED BY PERMISSION OF THE TUBULAR EXCHANGER MANUFACTURERS ASSOCIATION **REAR END** FRONT END STATIONARY HEAD TYPES SHELL TYPES HEAD TYPES E FIXED TUBESHEET "A" STATIONARY HEAD ONE PASS SHELL CHANNEL AND REMOVABLE COVER FIXED TUBESHEET LIKE "B" STATIONARY HEAD B TWO PASS SHELL WITH LONGITUDINAL BAFFLE FIXED TUBESHEET LIKE "C" STATIONARY HEAD **BONNET (INTEGRAL COVER)** REMOVAB SPLIT FLOW OUTSIDE PACKED FLOATING HEAD TURE BUNDLE ONLY FLOATING HEAD WITH BACKING DEVICE FIXED DOUBLE SPLIT FLOW TUBESHEET ONLY PULL THROUGH FLOATING HEAD CHANNEL INTEGRAL WITH TUBE-SHEET AND REMOVABLE COVER DIVIDED FLOW U-TUBE BUNDLE PACKED FLOATING TUBESHEET WITH LANTERN RING SPECIAL HIGH PRESSURE CLOSURE KETTLE TYPE REBOILER "Piping Cuide", PO Box 277, Cotati, CA 94928, USA

MEASUREMENTS

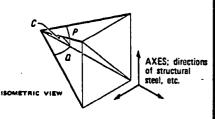
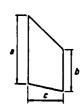

ALL ANGLES IN THESE FORMULAS ARE EXPRESSED IN DEGREES OF ARC

CHART M-1

COMPOUND ANGLES

& VOLUMES **AREAS**


PRISM

Compound angle, C, is given by:

 $(\tan C)^2 = (\tan P)^2 + (\tan Q)^2$

TRAPEZOID

TRIANGLE

Trapezoid: A four-sided figure with two parallel sides, and the other two sides at any angle. Termed 'trapezium' in UK.

AREA = c(a + b)/2

If a = b, this formula applies to any parallelogram or rectangle.

CIRCLE

and areas of full circles

SEGMENT OF CIRCLE DIAMETER = $a + (b^2/4a)$ RADIUS = $r = (a/2) + (b^2/8a)$

Refer to table M-3 for numerical values of circumferences

FULL CIRCLE

CIRCUMFERENCE = 2 Tr

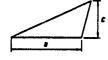
- 6.2831853 r

= 3.1415927 -

SECTOR (as shown)

LENGTH OF ARC = !=

= #/Q/180


= 0.0174533r@ AREA = $\pi r^2 Q/360$ = 0.00872664 $r^2 Q$

LENGTH OF ARC *= / = $(\pi r/90)$.arccos[1 – (a/r)] = $(\pi r/90)$.arcsin[b/2r] where $\pi/90$ = 0.03490659

AREA * = (rl-rb+ab)/2 NOTE: arccos[Q] = "angle in degrees whose cosine is Q", and arcsin[Q] = "angle in degrees whose sine is Q".

"Valid for a positive and less than 2r.

ELLIPSE

AREA = ac/2

AREA = (= /4)(ab) = 0.7853982(ab) CIRCUMFERENCE = $\pi[(s^2 + b^2)/2]^{1/2}$ approximately

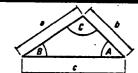
BASE OF ANY SHAPE; UPRIGHT OR SLOPING

AREA OF SECTION = A DISTANCE BETWEEN PARALLEL SECTIONS 'A' AND 'A' = A VOLUME . AA

NOTE: THIS FORMULA MAY BE APPLIED TO CYLINDRIC AND RECTANGULAR TANKS.

CONE

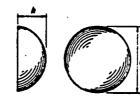
BASE OF ANY SHAPE; UPRIGHT OR SLOPING


AREA OF BASE = A HEIGHT (measured at right angles to base) = hVOLUME . hA/3

FRUSTUM OF CONE SECTION OF ANY SHAPE; UPRIGHT OR SLOPING

AREAS OF PARALLEL FLAT SURFACES 'A' AND 'B' = A and B. respectively DISTANCE BETWEEN SURFACES VOLUME = (h/3).[A+B+(AB)*]

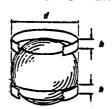
TRIANGLES



THESE FORMULAS MAY BE USED FOR ALL (FLAT) TRIANGLES

If Φ is between 90° and 180° , $\sin \Theta = \sin(180^{\circ} + \Theta)$, $\cos \Theta =$

		, , , , , , , , , , , , , , , , , , ,
KNOWN	REQUIRED	SOLUTION
Two angles	Third angle	A = 180° - (B + C)
Three sides	Any angle	$\cos A = (b^2 + c^2 + a^2)/2bc$
I III de SIOCS	Area	Area = $[s(s-a)(s-b)(s-c)]^{ta}$, $s = (a+b+c)/2$
Two sides	Third side	c = (a ² + b ² - 2ab cosC) ¹⁴
and included	Third angle	tan A = (a sinC)/(b - a cos C)
angle	Area	(ab sin C)/2
Two sides and	Third side	c = bcos A ± (a2 - b2 sin2 A) 5
excluded angle (ambiguous)	Area	(b/2) sin A [b cos A ± (s² - b² sin² A)4]
One side and	Adjacent side	c = a sin C / sin (B + C)
adjacent angles	Area	a ² .sin B.sin C / [2s-n (B + C) '


SPHERE

RADIUS = r DIAMETER = d = 2r SURFACE AREA = # d2 = 3.14159265 d2 VOLUME = # d3/6 = - 0.5235988 d3

VOLUME OF SEGMENT OF DEPTH $h = (\pi h^2/3)(3r - h)$ $=(1.0471976h^2)(3r-h)$ where h is positive and less than 2c.

AREA OF SPHERICAL CAP OR SLICE

The area of the curved surface into area of the curved surface of the cap or the slice equals the area of the cylindric band of the same depth, h; that is, v hd, no matter where the slice or cap is.

MEASUREMENTS TABLES M-2 711 HYPOTENUSE FOR 45° TRIANGLES VALUES COMPUTED TO NEAREST 1/16-th INCH SIDE HYPOTENUSE SIDE HYPOTENUSE HYPOTENUSE SIDE HYPOTENUSE 8-15/16 9-1/8 9-1/8 9-3/10 9-3/10 9-3/8 9-7/16 9-5/8 9-3/4 9-15/16 9-7/3 10 10-1/16 10-5/16 10-5/16 10-1/4 0-1/16() 0-1/8 0-3/16 0-3/16 1-3/8 0-7/16 0-1/2 0-1/2 0-1/2 0-1/16 0-1/16 0-3/16 0-3/16 0-3/16 0-1/4 0-13/16 0-1/16 4-1/2 4-5/8 4-11/16 S-5/1G 5-3/3 6-7/16 6-1/2 6-3/1G 6-5/8 6-11/16 6-3/4 6-13/1G 6-13/1G 6-15/16 7-1/2 7-1/4 7-5/16 7-1/2 7-3/16 7-1/2 7-3/16 7-1/2 7-3/16 7-1/2 7-3/16 7-1/2 7-3/16 7-1/2 7-3/16 7-1/2 7-3/16 7-1/4 8-3/16 3-3/16 0-1/4 0-1/4 0-1/4 0-1/16 0-1/2 0-11/16 0-1/8 1 1-1/8 1-1/8 1-1/8 1-1/8 1-1/16 1-1/2 1-1/2 1-1/2 1-1/2 1-1/2 1-1/2 1-1/2 1-1/2 1-1/3 1-1/4 1-1/5/16 2-1/16 3-1 3-7/16. 1-3/6 HYPOTEMUSE in Andreas Soft 0000000000000000 . R HYPOTENUSE) 3-5/1:3 3-3/8 3-7/16 3-1/2 3-1/16 3-5/8 3-11/16 3-7/8 3-15/16 4-1/8 4-1/8 4-1/4 4-5/16 4-1/4 4-5/16 4-3/8 9-1/2 9-9/16 9-5/8 1-7/16 1-1/2 1-5/8 1-11/16 1-7/8 1-13/16 1-7/8 1-15/15 2-1/2 2-1/4 2-5/16 2-1/2 2-9/16 2-11/16 2-11/16 2-11/16 2-11/16 2-15/16 5-5/8 4-7/8 4-7/8 4-5/16 5-1/16 5-1/16 5-5/16 5-3/18 5-11/16 5-3/4 5-11/16 5-13/4 6-3/16 6-1/4 6-3/8 6-7/16 6-5/8 6-1/8 6-3/8 6-7/16 6-1/8 6-1/8 0000000 9-5/3 9-11/15 9-3/4 9-13/16 9-7/8 9-15/16 0000000000000 SIDE (-.0.7071... 0 10 1/16 0 10-1/18 0 10-1/18 0 10-3/16 0 10-1/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 10-5/16 0 11-1/16 0 11-1/16 0 11-1/16 0 11-1/16 0 11-3/16 00000 SIDE (-0.7071... x HYPOTENUSE) L-I/IG L-I/8 L-3/16 L-1/4 L-5/16 1-5/8 L-7/16 I-1/2 1-3/16 I-13/4 I-15/16 I-7/8 I-15/16 I-7/8 I-15/16 I-7/8 I-15/16 I-15/16 0 FEET STOPPER a 0 10-1/2 0 10-5/8 0 10-11/16 0 10-15/16 0 10-7/8 0 10-15/16 0 11-1/16 0000000000 SIDE HYPOTENUSE 2-15/16 3-1/8 3-3/16 3-5/16 3-7/16 3-9/10 3-5/8 3-3/4 8 8 8 8 8 8 8 4-7/16 4-1/2 4-9/16 4-5/1 4-1/3/1 4-13/1 4-13/1 4-15/16 5-1/8 5-1/8 5-1/8 5-1/8 5-1/16 5-3/8 5-7/16 5-3/16 5-1/2 5-3/16 5-1/16 5-5/4 5-5/16 5-7/8 6-1/16 6-1/16 6-3/16 1 4-31/32 2 9-15/16 4 2-29/32 5 7-7/8 7 0-27/32 8 5-13/16 9 10-25/32 11 3-3/4 12 8-3/4 14 1-23/32 15 6-11/16 0 0 0 00000000 11-1/16 11-1/8 11-1/8 11-1/4 11-5/16 11-1/2 11-3/4 11-11/16 11-3/4 11-7/3 11-15/16 0-1/8 0-3/16 6-13/10 6-7/8 7 7-1/10 7-3/16 7-1/4 7-5/10 7-1/2 7-5/8 10 11 12 0000 3-13/16 3-15/16 14 1-23/32 15 6-11/16 16 11-21/32 18 4-5/8 19 9-19/32 21 2-9/16 00000000000000000 4-1/16 4-3/16 4-1/4 4-3/8 4-7/16 13 14 15 2-1/8 2-3/10 0000000000 2-5/16 2-5/16 2-5/8 2-7/16 2-1/2 0 000000000 0 8-1/2 1 4-31/32 2 1-15/32 2 9-15/16 3 6-7/16 4 2-29/32 4 11-13/32 5 7-7/8 6 4-3/8 7 0-27/32 7-5/8 7-11/16 7-3/4 7-7/8 7-15/16 8-1/16 8-1/8 8-1/4 8-5/16 8-3/8 8-J/15 8-5/8 8-11/16 8-3/4 8-13/16 8-7/8 8-15/16 9-1/16 9-1/8 9-3/16 9-1/4 9-5/16 9-3/8 4-7/16 4-1/2 4-5/3 4-11/16 4-13/16 4-7/8 000000000000 0-1/8 0-3/16 0-5/16 0-3/8 0-7/16 0-9/16 0-5/8 0-3/4 0-13/16 2345678910 2-1/2 2-3/16 2-5/8 2-11/16 2-3/4 2-13/16 2-7/8 5-1/16 5-1/8 3-7/8 4-1/16 4-1/8 4-1/4 4-5/16 4-7/16 0 0-1/16 0-1/8 0-3/16 0-1/4 0000 1 1 1 1 1 1 1 1 1 1 1 1 1 5-1/4 5-5/16 5-7/10 5-1/2 5-1/15 5-11/10 4-3/8 0-27/32 9-11/32 5-13/16 2-5/16 10-25/32 8-1/2 3-3/16 8-11/16 0-13/1 0-7/8 1 1-1/16 1-3/16 1-1/4 0 -15/16 000 0-5/16 0-3/8 0-7/16 0-1/2 1 1 1 1 0 6-3/1 0 8-3/4 8-13/16 3-1/8 0 7-9/32 15 ā CONSTRUCTION OF MITERS TANGENT LENGTHS FOR BENDS 3-PIECE 4-PIECE 5-PIECE t 22%0 150 11%0 33%0 67%0 t 56%0 A450 600 7840 A = Angle of bend 1/2×NPS GENERAL FORMULA 1½×NPS 1½×NPS t = r. tan[A/2]• NPS = NOMINAL PIPE SIZE (INCHES) (Valid for 'A' less than 1800) the territory of the property and "Piping Guide", PO Box 277, Cotati, CA 94928, USA

CIR	CLES:	DIAM	ETER	, CIRO	UMFE	REN	CE &	AREA				I	ABLE	M-3
DIAM. IN.	CIRCUM. IN.	AREA SQ. IN.	DIAM. IN.	CIRCUM. IN.	AREA SQ. IN.	DIAM. IN.	CIRCUM. IN.	AREA SQ. IN.	DIAM. In.	CIRCUM. IN.	AREA SQ. IN.	DIAM. In.	CIRCUM. IN.	AREA SQ. IN.
. X. X.	.04909 .09818	.00019 .00077	21/4 21/4	9.0321 9.2284	6.4918 6.7771	7% 7%	23.955 24.347	45.664 47.173	21 21½	65.973 66.759	346.36 354.66	37 37½	116.239 117.024	1075.2 1089.8
% % %	.14726 .19635 .29452	.00173 .00307 .00690	3 3¼ 3¼	9.4248 9.6211 9.8175	7.0686 7.3662 7.6699	7½ 8 8½	24.740 25.133 25.525	48.707 50.265 51.849	21½ 21¾ 22	67.544 68.330 69.115	353.05 371.54 380.13	37½ 37¾ 38	117.810 118.596 119.381	1104.5 1119.2 1134.1
У6 %	.39270 .49087	.01227 .01917	3¾ 3¼	10.014 10.210	7.9798 8.2958 8.6179	8½ 8½ 8½	25.918 26.311 26.704	53.456 55.088 56.745	22½ 22½ 22½	69.900 70.686 71.471	388.82 397.61 406.49	38¼ 38¼ 38¾	120.166 120.951 121.737	1149.1 1164.2 1179.3
光 <u>光</u> 7	.58905 .68722 .78540	.02761 .03758 .04909	3% 3% 3%	10.407 10.603 10.799	8.9462 9.2806	8¾ 8¾	27.096 27.489	58.426 60.132	23 23¼	72.257 73.042 73.827	415.48 424.56 433.74	39 39¼	122.522 123.308	1194.6 1210.0
% %	.88357 .98175 1.0799	.06213 .07670 .09281	31/4 31/4 31/4	10.996 11.192 11.388	9.6211 9.9678 10.321	87/ ₆ 9 91/ ₆	27.882 28.274 28.667	61.862 63.617 65.397	23½ 23½ 24	74.613 75.398	443.01 452.39	39½ 39¾ 40	124.093 124.878 125.664	1225.4 1241.0 1256.6
% 1% %	1.1781 1.2763 1.3744	.11045 .12962 .15033	31/4 32/4 31/4	11.585 11.781 11.977	10.680 11.045 11.416	9½ 9¾ 9½	29.060 29.452 29.845	67.201 69.029 70.882	24½ 24½ 24¾	76.184 76.969 77.754	461.86 471.44 481.11	40½ 40½ 40%	126.449 127.235 128.020	1272.4 1288.2 1304.2
1% ₁ 1% 1%	1.4726 1.5708 1.6690	.17257 .19635 .22166	31/4	12.174 12.370 12.566	11.793 12.177 12.566	9% 9% 9%	30.238 30.631 31.023	72.760 74.662 76.589	25 25¼ 25⅓	78.540 79.325 · 80.111	490.87 500.74 510.71	41 41½ 41½	128.805 129.591 130.376	1320.3 1336.4 1352.7
% 1%	1.7671 1.8653	.24850 .27688	4% 4%	12.763 12.959	12.962 13.364	10 10½	31.416 32.201 32.987	78.540 82.516 86.590	25¾ 26 26¼	80.896 81.681 82.467	520.77 530.93 541.19	413/ ₄ 42 421/ ₄	131.161 131.947 132.732	1369.0 1385.4
% % %	1.9635 2.0617 2.1598	.30680 .33824 .37122	4½ 4½ 4%	13.155 13.352 13.548	13.772 14.186 14.607	10½ 10½ 11	33.772 34.558	90.763 95.033	261/4 261/4 27	83.252 84.038 84.823	551.55 562.00 572.56	421/2	133.518 134.303	1402.0 1418.6 1435.4
<u>%</u> % %	2.2580 2.3562 2.4544	.40574 .44179 .47937	4% 4% 4%	13.744 13.941 14.137	15.033 15.466 15.904	11½ 11½ 11½	35.343 36.128 36.914	99,402 103,87 108,43	271/4 271/4 271/4	85.608 86.394 87.179	583.21 593.96 604.81	43 43½ 43½	135.088 135.874 136.659	1452.2 1469.1 1486.2
% % %	2.5525 2.6507 2.7489	.51849 .55914 .60132	4% 4% 4%	14.334 14.530 14.726	16.349 16.800 17.257	12 12½ 12½	37.699 38.485 39.270	113.10 117.86 122.72	28 28¼ 28¼ 28¼	87.965 88.750 89.535	615.75 626.80 637.94	43½ 44 44½	137.445 138.230 139.015	1503.3 1520.5 1537.9
% % %	2.8471 2.9452 3.0434	.64504 .69029 .73708	4¾ 4¾ 4¾ 4¾	14.923 15.119 15.315	17.721 18.190 18.665	12½ 13 13½	40.055 40.841 41.626	127.68 132.73 137.89	28¾ 29	90.321 91.106	649.18 660.52	44½ 44½ 45	139.801 140.586 141.372	1555.3 1572.8 1590.4
11%	3.1416 3.3379	.7854 .8866	413/ ₄	15.512 15.708	19.147 19.535	13½ 13½	42.412 43.197	143.14 148.49	29¼ 29¼ 29¾	91.892 92.677 93.462	671.96 683.49 695.13	45½ 45½ 45½	142.157 142.942 143.728	1508.2 1626.0
11/4 11/4	3.5343 3.7306 3.9270	_9940 	5¼ 5¼ <u>5¾</u>	15.904 .16.101 16.297	20.129 20.629 21.135	14 14½ 14½	43.982 44.768 45.553	153.94 159.48 165.13	30 30¼ 30¼	94.248 95.033 95.819	706.85 718.69 730.62	46 46½	144.513 145.299	1643.9 1661.9 1680.0
1% 1% 1%	4.1233 4.3197 4.5160	1.3530 1.4849 1.6230	51/4 51/4 53/4	16.493 16.690 16.886	21.648 22.166 22.691	143/ ₄ 15 15/ ₄	46.338 47.124 47.909	170.87 176.71 182.65	30¾ 31 31¼	96.604 97.389 98.175	742.64 754.77 766.99	461/4 463/4 47	146.084 146.869 147.655	1698.2 1716.5 1734.9
1½ 1½ 1½	4.7124 4.9087 5.1051	1.7671 1.9175 2.0739	51/4 51/4 51/4	17.082 17.279 17.475	23.221 23.758 24.301	151/4 153/4 16	48.695 49.480 50.265	188.69 194.83 201.06	31½ 31½ 32	98:960 99:746 100:531	779.31 791.73 804.25	47½ 47½ 47½	148.440 149 <u>.22</u> 6 150.011	1753.5 1772.1 1790.8
1% 1% 1%	5.3014 5.4978 5.6941	2.2365 2.4053 2.5802	51/4 51/4 53/4	17.671 17.868 18.064	24.850 25.406 25.967	161/4 161/4 163/4	51.051 51.836 52.622	207.39 213.12 220.35	32¼ 33¼ 32¾	101.316 102.102 102.887	816.86 829.58 842.39	48 48½ 48½	150.796 151.582 152.367	1809.6 1828.5 1847.5
11/4 11/4	5.8905 6.0868	2.7612 2.9483	51% 5%	18.261 18.457	26.535 27.109	17 17½	53.407 54.192	226.98 233.71	331/4	103.673 104.458	855.30 868.31	48% 49 49%	153.153 153.538 154.723	1866.5 1885.7 1905.0
2 234 236	6.2832 6.4795 6.6759	3.1416 3.3410 3.5456	51% 6 6%	18.653 18.850 19.242	27.688 28.274 29.465	17% 17% 18	54.978 55.763 56.549	240.53 247.45 254.47	33½ 33½ 34	105.243 106.029 106.814	881.41 894.52 907.92	491/4	155.509 156.294	1924.4 1943.9
21/4 21/4 21/4	6.8722 7.0686 7.2649	3.7583 3.9761 4.2000	61/4 63/4 63/4	19.635 20.028 20.420	30.680 31.919 33.183	18½ 18½ 18¾	57.334 58.119 58.905	261.59 268.80 276.12	31½ 31½ 31¾	107.500 108.385 109.170	921.32 934.62 948.42	50 50% 50%	157.080 157.865 158.650	1963.5 1983.2 2003.5
236 216 216	7.4613 7.6576 7.8540	4.4301 4.6664 4.9087	6% 6% 6%	20.813 21.265 21.558	34.472 35.785 37.122	19 19½ 19½	59.690 60.476 61.261	283.53 291.0: 298.53	3514 3514	109.956 110.741 111.527	962.11 975.91 989.80	50% 51 51%	159.436 160.221 161.007	2022.8 2042.8 2062.9
2% 2% 2%	8.0503 8.2467 8.4430	5.1572 5.4119 5.6727	7 7% 7%	21.99: 22.384 22.776	38.485 39.871 41.282	193, 20 2014	62.832 63.617	306.35 314.16 322.0€	35½ 36 36½	112.312 113.097 113.883	1003.80 1017.90 1032.10	5114 5114 52	161.752 162.577 163.363	2083.1 2103.3 2123.7
23/4 29/4	8.6394 8.8357	5.9396 6.2126	73/ _{73/3}	23 165 20 562	42.718 44.179	2014 2014	64.403 65.188	330.06 338.76	36½ 36½	114.668 115.454	1045.30 1060.70	52½ 52½	164.148 164.934	2144 <i>2</i> 2164.8

									& INCHES				H		到台	TA	BLES	M-4
7 000	s thru	800 mm	<u> </u>						all control			स्थान	ATTACA		3/64 in	. thru	2 ft, T-	1/2 in.
1		0 3/69	101	j ft.	in.	201	0 7 29/12	301	ft, in.	men	ft, in,		t, n.	men	tt, in.	mm	ft,	in,
86 87 88 90 91 92 93 95 97 98	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 5/49 3 1/49 3	102 103 103 103 103 103 103 103 103 103 103		1/164 1/164 1/164 1/164 1/164 1/186	203 204 204 204 204 204 204 204 204 204 204	9 7 51/64 9 7 51/64 9 7 51/64 9 7 51/64 9 8 1/12 0 8 1/12 0 8 1/14 0 9 1/16 0 10 1/16 0 10 1/16 0 10 1/16 0 10 1/16 0 10 1/16 0 10 1/16 0 11 1/16	023456789012313456789012333333333333333333333333333333333333	0 11 27/32 0 11 27/32 1 0 1/49 0 11 59/49 1 0 1/49 1 1 1/	4775 477789 477789 4887 4887 4887 4887 4887	1 7 17/32 1 7 9/16 1 7 39/64 1 7 41/64 1 7 11/16	\$109 \$109 \$109 \$109 \$109 \$112 \$113	1 7 20732 1 7 47/39 1 7 57/48 1 7 57/48 1 7 57/48 1 7 57/48 1 7 57/48 1 8 3/49 1 8 15/49 1 8 25/69 1 9 1/16 1 1 0 1/16 1 1 1 1 1/16 1 1 1 1 1 1/16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	692 693 694 695 696 697 698	1 11 21/32 1 11 47/49 1 11 27/32 1 11 37/49 1 11 37/49 1 11 37/49 1 11 37/49 1 11 37/49 1 11 37/49 1 11 37/49 2 1 1/49 2 0 1/49 2 1 1/49 2	701 102 103 103 103 103 103 103 103 103 103 103	222222222222222222222222222222222222222	19/324 91/349 91/349 923/39 93/49 23/39 93/49 23/39 91/49 23/39 91/49 23/39 91/49 23/39 15/49 15/49 15/49 15/49 15/49 11

	DIR	ECT	CONV									INCHES	*							1		TAI	BLES	M-4
_	_		1600 m	mm			400 th			的特殊	_	C) espec	de ye	_		1. 18	9.	1	2 ft	. 7-1	7/32 in. 1	hru 5 (1, 2-6	3/64 in.
-				mm	<u> </u>		mm	<u> </u>		mm	<u> </u>	in.	ROM		in.	mm	ft,	in.	mm.	ft,	in.	mm	ft,	in.
源 在 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00200000111111111111111111111111111111	2 100 100 100 100 100 100 100 100 100 100	17/6 3/32 7/69 11/69 11/69 11/69 21/69 31/69 11/32 21/69 11/32 41/69 41/69	_	## 2 111 11 12 2 2 11 11 12 2 2 2 11 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	in. 15/32 33/649 15/32 33/649 15/32 53/649 15/32 53/649 15/32 15/164 17/32		1	im. 13/32 29/44 31/44 17/32 31/44 17/32 31/44 11/32 31/44 11/46 1	_	***************************************	in. 7 11/32 7 25/44 7 15/22 7 25/44 7 15/32 7 15/44 7 15/32 7 15/46 7 15/32 7 15/46 7 17/32 6 1/44 8 1/46		## 33333333333333333333333333333333333			tt	in. 3 7/32 3 17/69 3 17/69 3 17/69 3 11/69 3 11/32 3 27/69 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 3 17/20 4 17/20 4 17/20 4 17/20 4 17/20 4 17/20 4 17/20 4 17/20 4 17/20 4 17/20 4 17/20 4 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 5 17/20 6	_		in. 7 5/32 7 13/64 7 15/64 7 15/64 7 15/64 7 15/64 7 7 5/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 8 17/64 9 1	mm 1501 1502 1503 1504 1505 1506 1507 1508 1507 1508	÷	im. 1 3/32 1 17/49 1 11/49 1 11/49 1 11/49 1 11/49 1 11/49 1 11/49 1 13/49 1

CONTRACE

										_	INCHES					-					TAI	BLES	M-4
_	_									•	is to a sign				_	_		_	_	4 in. thru	•	_	
5601	18.	in. 4 33/64	5701	ft, 18	in. 8 29/64	mm 5801	19	in. 0 25/44	5901	ft.	in.	6001	ft. 19	in. 8 17/64	6101	20 20	in. 0 13/69	6201	20 20	in.	6301	ft. 20	in. 8 5/69
5602 5603 5604	18 18 18	4 35/64 4 19/32 4 5/8	5702 5703 5704		8 31/64 8 17/32 8 9/16	5802 5803 5804	19	0 27/44 0 15/32 0 1/2	5902 5903 5904	19	4 23/64 4 13/32 4 7/16	6002 6003	19 19	8 19/64	6103	20 20	0 15/64	6202 6203	20 20	4 11/44 4 7/32	6302 6303	20 20	8 7/44 8 5/32
5605 5606	18	4 45/64	5705 5706	18 16	8 39/64	5805 5806	19	0 35/64	5905 5906	19	4 31/64	4004 4005 4006	19	8 3/8 8 27/69 8 29/69	6109 6105 6106	20 20 20	0 5/16 0 23/64 0 25/64	6209 6205 6206		4 1/4 4 19/64 4 21/64	6304 6305 6306	20 20 20	8 3/16 8 15/69 8 17/69
5607 5608 5607	18 18 18	4 3/4 4 25/32 4 53/64	5707 5708 5709	18	8 11/16 8 23/32 8 49/64	5807 5808 5809		0 5/8 0 21/32 0 45/64	5907 5908 5909	19	4 9/16 4 19/32 4 41/64	4007 4008 4009	19 19 19	8 1/2 8 17/32 8 37/64	6107 6108 6109	20 20 20	0 7/16 0 15/32 0 33/64	6207 6208 6209	20 20 20	4 3/8 4 13/32 4 29/64	6307 6308 6309	20 20 20	6 11/32
5610 5611	18	4 55/64	5710 5711	18	8 51/64 8 27/32	5810 5811	19 19	0 47/64	5910 5911	19 19	4 43/64	6010	19	8 39/64	6110	20 20	0 35/64	6210	20 20	4 31/64	4310 4311	20 20	8 27/64 8 15/32
5613 5614	16 16 16	4 15/16 4 63/64 5 1/32	5712 5713 5714	18 18 18	8 7/8 8 59/64 8 61/64	5012 5013 5814	19	0 13/16 0 55/64 0 57/64	5912 5913 5914	19 19 19	4 3/4 4 51/64 4 53/64	6012 6013	19 19 19	8 11/16 8 47/64 8 49/64	6112	20 20 20	0 5/8 0 43/64 0 45/64	6212 6213 6214	20 20 20	4 9/16 4 39/64 4 41/64	6312 6313 6314	20 20 20	8 1/2 8 35/64 8 37/64
5615 5616	18 18	5 7/64	5715 5716	18 18	9 3/64	5815 5816	19 19	0 15/16	5915 5916	19 19	9 7/8 9 29/32	6015 6016	19	8 13/16 8 27/32	6115	20 20	0 3/4 0 25/32	6215	20 20	4 11/16 4 23/32	6315 6316	20 20	8 5/8 8 21/32
5617 5618 5619	18 18 18	5 9/69 5 3/16 5 7/32	5717 5718 5719	18 18 18	9 5/64 9 1/8 9 5/32	5817 5818 5819	19 19 19	1 1/64 1 1/16 1 3/32	5917 5918 5919	19 19	4 61/64 4 63/64 5 1/32	6017 6018 6019	19 19 19	8 57/69 8 59/69 8 31/32	6117	20 20 20	0 53/64 0 55/64 0 29/32	6217 6218 6219	20 20 20	4 49/64 4 51/64 4 27/32	6317 6318 6319	20 20 20	8 45/64 8 47/64 8 25/32
5620 5621	18 18	5 17/64	5720 5721	18 18	9 13/64 9 15/64	5820 5821	19 19	1 9/64	5920 5921	19	5 5/64	6020 6021	19 19	9 3/64	6120	20 20	0 15/16	6220 6221	20 20	4 7/8	6320 6321	20 20	8 13/16
5622 5623 5624	18 18 18	5 11/32 5 3/8 5 27/64	5722 5723 5724		9 9/32 9 5/16 9 23/69	5822 5823 5824	19 19 19	1 7/32	5922 5923 5924	19 19	5 5/32 5 3/16 5 15/64	6022 6023 6024	19 19 19	9 3/32 9 1/8 9 11/69	6122 6123 6124	20 20 20	1 1/32 1 1/16 1 7/64	6222 6223 6224	20	4 61/64 5 5 3/64	6322 6323 6324	20 20 20	8 57/64 8 15/16 8 31/32
5625	18 18	5 29/64 5 1/2	5725 5726	iš	9 25/64	5829 5826	19	1 3/6	5925 5926	19	5 17/69 5 5/16	6025 6026	19	9 13/64	6125	20 20	1 3/14	6225 6226	20 20	5 5/64 5 1/8	6325 6326	20 20	9 1/64
5627 5628 5629	16 18 18	5 17/32 5 37/64 5 39/64	5727 5728 5729	18	9 33/64 9 35/64	5827 5828 5829	19 19	1 13/32 1 29/44 1 31/64	5927 5928 5929	19	5 11/32 5 25/64 5 27/64	6027 6028 6029	19 19 19	9 9/32 9 21/64 9 23/64	6127 6128 6129	20 20 20	1 7/32 1 17/64 1 19/64	6227 6228 6229	20	5 5/32 5 13/64 5 15/64	6327 6328 6329	20 20 20	9 3/32 9 9/64 9 11/64
5630 5631 5632	18 18 18	5 21/32 5 11/16 5 47/64	5730 5731 5732	18	9 19/32 9 5/8 9 43/64	5830 5831 5832	19 19 19	1 17/32 1 9/16 1 39/64	5930 5931 5932	19 19 19	5 15/32 5 1/2 5 35/64	6030 6031 6032	19 19 19	9 13/32 9 7/16 9 31/64	6130 6131 6132	20 20 20	1 11/32 1 3/8 1 27/64	6230 6231 6232	20 20 20	5 9/32 5 5/16 5 23/64	6330 6331 6332	20 20 20	9 7/32 9 1/4 9 19/64
5633 5634	18 18	5 49/64 5 13/16	5733 5734	18	9 45/64	5833 5834	19 19	1 41/64	5933 5934	19	5 37/64 5 5/8	6033 6034	19	9 33/64	6133	20 20	1 29/64	6233 6234	20 20	5 25/64 5 7/16	6333	20 20	9 21/64
5635 5636 5637	18 18 18	5 27/32 5 57/64 5 59/64	5735 5736 5737	iĕ	9 25/32 9 53/64 9 55/64	5835 5836 5837	19 19 19	1 23/32 1 49/64 1 51/64	5935 5936 5937	19	5 21/32 5 45/64 5 47/64	6035 6036 6037	19 19 19	9 19/32 9 41/64 9 43/64	6135 6136 6137	20 20 20	1 17/32 1 37/64 1 39/64	6235 6236 6237	20 20 20	5 15/32 5 33/64 5 35/64	6335 6336 6337	20 20 20	9 13/32 9 29/69 9 31/69
5638 5639	18	5 31/32 6 1/64	5738 5739	18 18	9 29/32 9 15/16	5838 5839	19 19	1 27/32 1 7/8	5938 5939	19	5 25/32 5 13/16	6038 6039	19	9 23/32	6138 6139	20 20	1 21/32	6238 6239	20 20	5 19/32 5 5/8	6338 6339	20 20	9 17/32
5640 5641 5642	18 18 18	6 3/64 6 3/32 6 1/8	5740 5741 5742		9 63/64 0 1/32 0 1/16	5840 5841 5842	19 19 19	1 59/64 1 61/64 2	5940 5941 5942	19	5 55/64 5 57/64 5 15/16	6040 6041 6042	19 19 19	9 51/64 9 53/64 9 7/8	6141	20 20 20	1 47/64 1 49/64 1 13/16	6240 6241 6242	20 20 20	5 43/64 5 45/64 5 3/4	6340 6341 6342	20 20 20	9 39/64 9 41/64 9 11/16
5643 5644	18	6 13/64	5743 5744	18 1	0 7/64	5843 5844	!!	2 3/64 2 5/64	5943 5944	19	5 31/32 6 1/64	6043 6044	17	9 29/32	6143	20 20	1 27/32	6243 6244	20 20	5 25/32 5 53/64	6343 6344	20	23/32 49/44
5645 5646 5647	18 18 18	6 1/9 6 9/32 6 21/69	5745 5746 5747	16 1 16 1	0 7/32	5845 5846 5847	19 19	2 1/6 2 5/32 2 13/64	5945 5946 5947	19 19	6 1/16 6 3/32 6 9/69	4045 6046 4047		9 43/64 10 1/32 10 5/64	6146	20 20 20	1 59/64 1 31/32 2 1/69	6245 6246 6247	20 20 20	5 55/69 5 29/32 5 15/16	6345 6346 6347	20 20 20	51/64 27/32
5648 5649	18	6 23/64 6 13/32	5748 5749	18 1	0 19/67	5848	19	2 15/64	5948 5949 5950	19	6 11/64 6 7/32	6048	19	10 7/64 10 5/32	6148	20 20	2 3/64 2 3/32	6248	20 20	5 63/69 6 1/32	6348 6349	20	59/69
5650 5651 5452	16	6 7/16 6 31/69 6 33/69	5750 5751 5752	18 1 18 1 18 1	0 27/64	5850 5851 5852	19	2 5/16 2 23/64 2 25/64	5951 5952	19	6 174 6 19769 6 21769	6050 6051 6052	19 1	10 3/16 10 15/64 10 17/64	6150 6151 6152	20 20 20	2 1/8 2 11/64 2 13/64	6250 6251 6252	20 20 20	6 1/16 6 7/49 6 9/69	6350 6351 6352	20 10 20 10 20 10	
5453 5454 5455	16 16 16	6 9/16 6 19/32 6 91/69	5753 5754 5755		0 17/32	5853 5854 5855	19	2 7/16 2 15/32 2 33/64	5953 5954 5955	19 19 19	6 3/8 6 13/32 6 29/64	4053 4054	19	10 5/14	6153	20	2 1/4	6253 6254	20 20 20	6 3/16 6 7/32	6353 6354	20 1	1/8 5/32
5654 5657	18	6 23/32	5754 5757	16 1	0 39/69	5856 5857	i ;	2 35/64 2 19/32	5956 5957	19	6 31/64 6 17/32	4055 4054 4057	19 1	10 25/64 10 27/64 10 15/32	6155 6156 6157	20 20 20	2 21/64 2 23/64 2 13/32	6255 6256 6257	20	6 17/69 6 19/69 6 11/32	6355 6356 6357	20 10 20 10 20 10	15/64
5458 5459 5460	18	6 3/9 6 51/69 6 53/69	5758 5759 5740	16 1 16 1	0 47/64	5858 5859 5840	19	2 5/8 2 43/69 2 45/64	5958 5959 5960	19	6 9/16 6 39/69 6 31/69	4058 4057 4040	19	10 1/2 10 35/64 10 37/64	6158 6159 6160	20 20 20	2 7/16 2 31/64 2 33/64	6258 6259 6260	20 20	6 3/8 6 27/69 6 29/69	4358 4359 4340	20 10	5/16 23/64 25/64
5661 5662	18	6 7/8 6 29/32	5761 5762		0 13/16 0 27/32	5861 5862	19	2 3/4 2 25/32	5961 5962	19	4 11/16 4 23/32	4061 4062	19	10 5/8 10 21/32	6162	20 20	2 9/16 2 19/32	6261 6262	20 20 20	6 1/2 6 17/32	6361 6362	20 10	7/16 15/32
5663 5669 5665	10	6 63/69 7 1/32	5763 5764 5765	16 1 16 1 18 1	0 59/64	5863 5864 5865	19	2 53/44 2 55/44 2 29/32	5963 5964 5965	19 19	6 49/64 6 51/69 6 27/32	4063 4064 6065		10 45/64 10 47/64 10 25/32	6163 6169 6165	20 20 20	2 41/44 2 43/44 2 23/32	6263 6264 6265	20 20 20	6 37/69 6 39/69 6 21/32	6363 6364 6365	20 10 20 10 20 10	35/64 35/64 19/32
5666 5667 5668	18	7 5/64 7 7/64 7 5/32	5766 5767 5768		1 3/64	5846 5847 5848	19 19 19	2 15/16 2 63/64 3 1/32	. 5966 5967 5968	19	6 7/8 6 59/69 6 61/69	4044	19	10 13/14	6166	20 20	2 3/4 2 51/64	6266 6267	20 20	6 11/16 6 47/44	4344 4347	20 10	43/44
5669 5670		7 3/16 7 15/64	5769 5770	18 1	1 1/64	5869 5870	19	3 1/16	5949 5970	19	7 3/69	8404 6404 0704	19	10 57/44 10 15/16 10 31/32 -	6168 6167 6170	20 20 20	2 53/64 2 7/8 2 29/32	6268 6269 6270	20	6 49/69 6 13/16 6 27/32	6369 6370	20 10	25/32
5671 5672 5673		7 17/69 7 5/16 7 11/32	5771 5772 5773			5871 5872 5873	19 19 19	3 9/64 3 3/16 3 7/32	5971 5972 5973	19	7 5/64 7 1/8 7 5/32	4071 4072	19	11 1/64	6171		2 41/44	6271 6272	20 20	6 57/64 6 59/64 6 31/32	4371 4372 4373	20 10	53/69 55/69 29/32
5674 5675	18	7 25/49 7 27/69	5774	18 1	1 21/64	5874 5875	19	3 17/64 3 19/64	5974 5975	19	7 13/69	4073 4074 4075	19	1] 3/32 1] 9/64 1] 11/64	6173 6174 6175	20 20	3 5/64	6273 6274 6275	20	7 3/64	4374 4375	20 10 20 10	43/44
5474 5477 5478	18	7 15/32 7 1/2 7 35/64	5776 5777 5778		1 13/32 1 7/16 1 31/69	5876 5877 5878	19	3 11/32 3 3/4 3 27/44	5974 5977 5978	19 19 19	7 9/32 7 9/14 7 23/49	6076 6077	19	11 7/32 11 1/4 11 19/44	6176 6177 6178	29	3 5/32 3 3/16 3 15/64	4274 4277 4278	20	ו אנענ ז דור ד	4376 4377 4378	20 11 20 11 20 11	1/72
5479 5480	i 8 1 8	7 37/64 7 5/8	5779	18 1	1 33/69 1 9/16	5877 5880	19	3 27/44	5979	19	7 25/64	4072 4079 4080	19 1	11 21/64 11 3/0	4179	20 20	3 17/44	628D	20	7 11/64 7 13/64 7 1/4	4377 4380	20 11	3/14
5682 5683	18	7 21/32 7 45/44 7 47/64	5781 5782 5783	10 1	1 19/32 1 41/64 1 43/64	5881 5882 5883	19 .	3 17/32 3 37/69 3 39/69	5981 5982 5983	19 19 19	7 15/32 7 33/44 7 35/44	4081 4082 4083	19 1	11 13/32 11 29/49 11 31/64	6181 6182 6183	20 20 20	3 11/32 3 25/64 3 27/44	6261 6262 6283	20 20 20	7 9/32 7 21/64 7 23/64	1383 1383 1383		7/32 17/44 19/44
5484	10	7 13/14	5789 · 5785 5786		1 23/32 1 3/4	5884 5885 5886	19	3 21/32 3 11/16 3 47/64	5989 5985 5984	19	7 19/32 7 5/8 7 43/64	6084 6065	19	11 17/32	6185	20 28	3 15/32	6284 6287	21	7 7/16	4397	20 33 20 13	11/32
548+ 5487 5488	- ; i	7 55/69 7 57/69 7 15/16	5787 5788	16 1	51/64 53/64 57/8	5887 5888	19	3 49/64 3 13/16	5987 5988	19	7 45/64	4084 4087 4088	19 1	11 39/64 11 41/64 11 11/16	418. 418. 6188	20 20	3 37/60	6286 6287 6288	20	7 31/44 7 31/44 7 3/16	4384 4387 4388	20 11 20 11	27/44 29/44 1/2
5489 5490 5491	18 18	7 31/22 8 1/6+ 8 1/6+	5789 5790 5791	16 1		5889 5890 5891	17	3 27/32 3 57/49 3 59/69	5989 5990 5991	19	7 25/32 7 53/44 7 55/44	4029 4090 4091	19	13 23/32 13 44/64 13 51/64	6189	20 20 20	3 21/32 3 45/64 3 47/64	6299 6290 6291	20	7 11/32 7 41/44 7 43/44	4387 4390 4391	20 11	17/32 37/44 39/44
5672	13	8 9/44	5792	3.0	0 1/32 0 5/69	5892 5893	19.	3 31/32	5992 5993	19	7 29/32 7 15/16	409Z	17 1	li 27/32 11 - 7/8	6193	20 20	3 25/32 3 13/14	6292 6293	20	7 23/32	6392 6393	20 11	21/32
5474 5475 5474	1.0	8 11/64 8 7/22 8 1/9	5794 5795 5796	10	0 7/44 0 5/32 0 3/16	5894 5895 5894	14	9 3/69 9 3/32 9 1/8	5994 5995 5994	19	7 43/44 8 1/32 8 1/16	6094 6095 6096	19 1	1] 59/64 1] 6/44 6	6199 6195 6196	20 26 28	3 55/64 3 57/64 3 15/10	6294 6295 6296	20	7 51/64 7 53/64 7 7/8	4399 4395 6394	29 11	47/44 49/44 13/16
5417 5417	18	8 19/69 8 21/69	5792	19	0 15/64	5897	14 17	4 13/64	5997 5998	19	8 7/64	4097	20 20	8 5/09	4192	20 20	3 31/32	42°7	20	7:29/32 7:6:764	4397	20 JJ 20 JJ	27/32 51/49
569° 5701		8 3/8 6 13/32	5799 5800		0 5/16	5900		4 1/4 4 9/32	6000	19	3/14 6 7/32	4100 9000	20	\$ 1/6 \$ 5/32	9500 9144	36 50	4 3/32	4300	20	7 43/64 · 8 ·1/32	6399 6190	29 31	37/22

DE	CIMAL	<u>S 0</u>	FAI	INCH	&	OF A	FOOT		T	ABLE	M-5
FRAC- TIONS OF AN INCH	DECIMAL EQUIVALENTS	FRAC- TIONS OF A FOOT	FRAC- TIONS OF AN INCH	DECIMAL EQUIVALENTS	FRAC- TIONS OF A FOOT	FRAC- TIONS OF AN (NCH	DECIMAL EQUIVALENTS	FRAC- TIONS OF A FOOT	FRAC- TIONS OF AN INCH	DECIMAL EQUIVALENT	FRACTIONS OF A
	.0052 .0104	/s //s		.2552 .2604	31/4" 31/4		.5052 .5104	61/s		.7552 .7604	91/4
1/4	.015625 .0208 .0260	71s 1/4 71s	1764	.265625 .2708 .2760	31/4 31/4 31/4	1764	.515625 .5208 .5260	61/4 61/4 63/16	4%4	.765625 .7708 .7760	93/4 91/4 93/4
½	.03125 .0365 .0417	⅓ 1%4 1/2	% 2	.28125 .2865 .2917	3% 3% 3%	17/22	.53125 .5365 .5417	6% 6% 6%	2 1/32	.78125 .7865 .7917	93/6 93/6 91/2
¾.	.046875 .0521 .0573	%4 % 1%4	1%4	.296875 .3021 .3073	3% 3% 31%	²⁵ /84	.546875 .5521 .5573	6%6 6% 611/16	31/64	.796875 .8021 .8073	9% 9% 91%
1/16	.0625 .0677 .0729	3/4 13/6 3/8	₹14	.3125 .3177 .3229	3¾ 31¾ 3¾	%6	.5625 .5677 .5729	6¾ 61¾ 6½ 6%	13/16	.8125 .8177 .8229	93/4 913/4 93/8
% 4	.078125 .0833 .0885	15/16 1 11/14	21/64	.328125 .3333 .3385	315/16 4 41/16	37/64	.578125 .5833 .5885	61% 7 71%	53%4	.828125 .8333 .8385	915/10 10 101/16
1/2	.09375 .0990 .1042	1 1/2 1 1/4 1 1/4	11/22	.34375 .3490 .3542	4 1/8 43/16 4 1/4	1%2	.59375 .5990 .6042	71/8 73/16 71/4	27/32	.84375 .8490 .8542	101/s 103/6 101/4
% 4	.109375 .1146 .1198	1 % 1 % 1 % 1 %	23/64	.359375 .3646 .3698	43/16 43/8 47/16	3%4	.609375 .6146 .6198	73/6 73/8 73/6	55%4	.859375 .8646 .8698	10% 10% 10%
1/8	.1250 .1302 .1354	1 ½ 1 % 1 %	3∕8	.3750 .3802 .3854	4½ 4%6 45/8	5/2	.6250 .6302 .6354	7½ 7% 7%	· 7/8	.8750 .8802 .8854	10½ 10% 10%
%4	.140625 .1458 .1510	1 1 1/6 1 3/4 1 13/16	²⁵ %4	.390625 .3958 .4010	411/16 43/4 413/16	41/64	.640625 .6458 .6510	711/16 73/4 713/16	57%4	.890625 .8958 .9010	1011/6
% 2	.15625 .1615 .1667	1 1/8 1 15/16 2	13/52	.40625 .4115 .4167	47/8 413/16 5	21/52	.6562.5 .661.5 .6667	7% 71% 8	29/32	.90625 .9115 .9167	10% 101% 11
11/64	.171875 .1771 .1823	21/16 21/2 23/16	2764	.421875 .4271 .4328	51/6 51/2 53/6	4364	.671875 .6771 .6823	81/6 81/8 83/4	59%4	.921875 .9271 .9323	111/16
⅓ 16	.1875 .1927 .1979	21/4 25/6 23/8	7/16	.4375 .4427 .4479	5¼ 5¾ 5¾	11/16	.6875 .6927 .6979	81/4 81/6 83/8	15/16	.9375 .9427 .9479	111/4
13/64	.203125 .2083 .2135	2 1/2 2 1/2 2 1/6	2%4	.453125 .4583 .4635	5%6 5½ 5%6	45/64	.703125 .7083 .7135	8% 8½ 8%	61/64	.953125 .9583 .9635	111/16 111/2 111/16
%2	.21875 .2240 .2292	25/8 211/16 23/4	15/32	.46875 .4740 .4792	5	23/32	.71875 .7240 .7292	8 1 1/16 8 1 1/16 8 3/4	31/22	.96875 .9740 .9792	115/2 1111/16 113/4
1564	.234375 .2396 .2448	213/16 23/8 215/16	31/64	.484375 .4896 .4948	513/16 57/8 513/16	4764	.734375 .7396 .7448	813/16 87/2 815/16	63/64	.984375 .9896 .9948	1113/16 117/2 1115/16
1/4	.2500	3	1/2		6	3/4	.7500	9	1	1.000	12

Reproduced by courtesy of the Hydrodynamic Division, Chicago Pump (FMC Corporation).

°F/°C TEMPERATURE CONVERSION TABLE M-6

		ببحسي			صنجي										
	-459.4 TO	0		0 TO				110 TC	· · · · · ·		<u> </u>		0 3000		
	Given		Given		Given	i i	Give		1	Given	•	Given		Given	
•C.	Temp.	•F.	°C. Temp		°C. Temp.	◆F.	*C. Tem		 	Temp. *F.		Temp. °F.	+	Temp.	
-273	-459.4		-17.8 0	32		122.0	43 110		321	610 1130		1120 2048	. 888		
-268	-450	-	-17.2 1	33.8		123.8	49 120		327	620 1148		1130 2066	893	1640	
-262	440 420	-	-16.7 2	35.6	•	125.6 127.4	54 130 60 140		332 338	630 1166 640 1184		1140 2084 1150 2102	899 904	1650 1660	
-257 -251	-430 -420	_	-16.1 3 -15.6 4	37.4 39.2		127.4	66 150		343	650 1202		1160 2102	910		3038
-251 -246	_420 _410		-15.0 5	41.0		131.0	71 160		349	660 1220		1170 2138	916		
-246 -240	<u>-410</u>	_	-14.4 6	42.8		132.8	77 170	338	354	670 1238	638	1180 2156	921	1690	3074
-234	-390	_	—13.9 7	44.6	13.9 57	134.6	82 180	356	360	680 1256		1190 2174	927		
-229	-380	-	—13.3 8	46.4		136.4	88 190		366	690 1274		1200 2192	932		
-223	<u> —370</u>		—12.8 9	48.2		138.2	93 200		371	700 1292	-	1210 2210	938		3128
-218	—360	-	-12.2 10	50.0		140.0	99 210		377	710 1310		1220 2228	943		3146
-212	-350	-	-11.7 11	51.8		141.8 143.6	100 212 104 220		382 388	720 1328 730 1346		1230 2246 1240 2264	949		3164 3182
-207 -201	340 330	_	-11.1 12 -10.6 13	53.6 55.4		145.4	110 230		393	740 1346	677	1240 2284	960		3200
-201 -196	-330 -320	_	-10.6 13 -10.0 14	57.2		147.2	116 240		399	750 1382	682	1260 2300	966		3218
-190	<u>-320</u>		- 9.4 15	59.0		149.0	121 250		404	760 1400	688	1270 2318	971		
-184	-300	_	- 8.9 16	60.8	18.9 66	150.8	127 260	500	410	770 1418	693	1280 2336	977	1790	3254
_179	—290	_	- 8.3 17	62.6	19.4 67	152.6	132 270	518	416	780 1436	699	1290 2354	982		
—173	-280		- 7.8 18	64.4		154.4	138 280		421	790 1454	704	1300 2372	988	1810	
169	<u>–273</u>	<u>-459.4</u>	<u>- 7.2 19</u>	66.2		156.2	143 290		427	810 1472		1310 2390	993		
-168	270	-454 435	- 6.7 20	68.0)	158.0	149 300		432 438	810 1490 820 1508	716	1320 2408 1330 2426	999	1830 1840	
-162	-260 260	<u>-436</u>	- 6.1 21 - 5.6 22	69.8 71.6	1	159.8 161.6	154 310 160 320		443	820 1508 830 1526		1340 2444	1010		
-157 · -151	-250 -240	-418 -400	- 5.6 22 - 5.0 23	73.4		163.4	166 330		449	840 1544	2	1350 2462	1016		
-146	-240 -230	_382	- 3.0 23 - 4.4 24	75. 2		165.2	171 340		454	850 1562		1360 2480	1021		
-140	-220	-364	- 3.9 25	77.0		167.0	177 350		460	860 1580	743	1370 2498	1027	1880	
-134	-210	-346	- 3.3 26	78.8	24.4 76	168.8	182 360	680	466	870 1598	749	1380 2516	1032		
-129	200	-328	- 2.8 27	80.6		170.6	188 370		471	880 1616	1	1390 2534	1038	1900	
-123	-190	-310	- 2.2 28	82.4	4	172.4	193 380		477	890 1634 900 1652	760 765	1400 2552	1043	1910	
-118	<u>-180</u>	<u>-292</u>	<u>- 1.7 29</u>	84.2		174.2	199 390 204 400		482	900 1652 910 1670	1	1410 2570 1420 2588	1049		3488 3506
-112 107	170	-274 -256	- 1.1 30 - 0.6 31	86.0 87.8		176.0 177.8	204 400		488 493	910 1670	771	1420 2588	1054		
-107 -101	160 150	-256 -238	0.0 32	89.6		179.6	216 420		499	930 1706	782	1440 2624	1066		
-101	-130 -140	-230 -220	0.6 33	91.4		181.4	221 430		504	940 1724	788	1450 2642		1960	
_ 90	-130	-202	1.1 34	93.2	28.9 84	183.2	227 440		510	950 1742	793	1460 2660	1077	1970	3578
- 84	-120	-184	1.7 35	95.0	1	185.0	232 450		516	960 1760	799	1470 2678.	1082		
- 79	_110	-166	2.2 36	96.8		186.8	238 460		521	970 1778	804	1480 2696	1088	1990	
– 73	-100	-148	2.8 37	98.6		188.6	243 471		527	980 1796	810	1490 2714	1093	2000	
- 68 - 62	90 80	-130 -112	3.3 38	100.4		190.4 192.2	249 480 254 490		532 538	990 1814 1000 1832			1121 1149	2050 2100	
$\frac{-62}{-57}$	<u> </u>	<u>-112</u> - 94	3.9 39 4.4 40	102.2 104.0		194.0	260 500			1010 1850		1520 2768		2200	
- 5/ - 51	- 70 - 60	- 94 - 76	5.0 41			195.8	266 511		549	1020 1858		1530 2786		2250	
_ 46	_ 50 _ 50	_ 58	1	107.6	33.3 92	197.6	271 521	D 968	554	1030 1886	838	1540 2804	1260	2300	4172
- 40	- 40	— 40	6.1 43	109.4		199.4	277 53			1040 1904		1550 2822		2400	
- 34	<u> </u>	22	6.7 44		,	201.2	-	0 1004		1050 1922		1560 2840	7	2500	
- 29	– 20	- 4 - 14	7.2 45			203.0 204.8	288 551			1060 1940 1070 1958		1570 2858 1580 2876		2600	
- 23 - 17.8	_ 10 8 _ 0	+ 14 + 32	7.8 46 8.3 47	114.8 116.6		204.8 206.6	293 56 299 57			1070 1958		1580 2876 1590 2894		2700 2750	
1	. – v	+ 32 -	8.9 48	118.4		208.4	304 58			1090 1994		1600 2912		2800	
-	_	_	9.4 49				310 59	0 1094	593	1100 2012	877	1610 2930	1593	2900	5252
L -				· ·	37.8 100	212.0	316 60	0 1112	500	1110 2030	882	1620 2948	1649	3000	5432
toppe.	A STATE OF	de.	* "FL" (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Pipi	ng Guide".	PO B	ox 277. C	otati, C	A 949:	28, USA)	124	A Section	21	W	

Reproduced by courtesy of Jenkins Bros., valve manufacturers. Find the temperature it is required to convert in the center column. If this temperature is in degrees F, the centigrade equivalent is in the left column; if this temperature is in degrees C, the temperature is in the right column.

PIPE DATA: DIMENSIONAL DATA & TABLE P-1

REPRODUCED BY PERMISSION FROM CATALOG 61, MIDWEST FITTING DIVISION OF THE CRANE COMPANY

KEY TO PIPE DESIGNATIONS:

WALL

AMERICAN NATIONAL STANDARDS INSTITUTE* XXS = Double-extra-strong pipe; XS = Extra-strong pipe; STD = Standard pipe; L = Light-wall pipe (= 'Light-gage')

AMERICAN PETROLEUM INSTITUTE API = 'Line pipe' to 5L or 5LX designation

*Oefined in ANSI 836.10 and 836.19. Numbers in Table P-1 are Schedule Numbers for gipe, also defined in these ANSI Standards.

Nem.		HICKNE	ss	٥	IMENSION	(S	WE	IGHTS		A	REAS			PROPERTI	ES	Approx
Pipe	•		1	Outside	Inside	Well	Plain	Water	Sui	face	Cross-	Sectional	Moment	-	Redius	Weight of:
	Pipe	Sch. No.	Other	Diem.	Dlam.	Thkn	End Pipe	in Pipe	Outside	Inside	Flow	Metal	of inertia	Section Modulus	of Gyration	Welding Rods
in.	Size			in.	in.	in.	lb. per ft.	lb. per ft.	ft. ² per	ft.² per	in.²	in.2	in.4	in.3	in.	
1,		105		. 405	.307	.049	. 186	.032	.106	.0804	.0740	.0548	.0009	.0044		lb.
1/8	STD	40	API	. 405	. 269	.068	.244	.025	.106	.0705	.0568	.0720	.0011	.0044	. 1270 . 1215	_
	XS	80	API	. 405	.215	. 095	.314	.016	106	.0563	. 0364	. 0925	0012	.0060	.1146	
1/4	STD	105	API	. 540 . 540	.410	.065	. 330	.057	.141	. 1073	. 1320	.0970	.0028	.0103	. 1695	_
/4	xs	80	API	. 540	.364	.088 .119	. 424	.045	.141	.0955	. 1041	.1250	.0033	0123	. 1628	
		105		475			 -			 	.0716	. 1574	.0038	.0139	. 1547	_
3/8	STD.	40	API	. 675 . 675	.545 .493	.065 .091	. 423 . 567	. 101 . 083	.177	.1427	. 2333	. 1245	.0059	.0174	. 2160	_
, 6	xs	80	API	. 675	423	. 126	.738	.061	.177 .177	.1295	. 1910	. 1670	.0073	.0216 .0255	. 2090	_
		55		. 840	.710	.065	. 538	. 171	.220						. 1991	.04
		105		.840	.674	.083	. 671	.154	.220	. 1859 . 1 <i>7</i> 65	3959 3568	. 1583	0120	0285	. 2750	
1/2	STD	40	API	. 840	. 622	. 109	. 850	.132	. 220	. 1637	.3040	. 2503	.0143 .0171	.0340 .0407	. 2693 . 2613	-
12	xs	80	API	. 840	. 546	.147	1.087	. 101	. 220	. 1433	. 2340	.3200	.0201	.0478		40
	xxs	160		. 840	.464	.188	1.311	. 073	. 220	.1215	. 1691	.3856	.0222	.0528	. 2505 . 2399	.0 5 .1
	***		API	. 840	. 252	. 294	1.714	. 022	. 220	. 0660	. 0499	. 5043	.0242	. 0577	.2192	.2
		55 105		1.050	. 920	.065	. 684	. 288	. 275	. 2409	. 6648	. 2011	.0245	.0467	. 3490	
	STD	40	L API	1.050 1.050	. 884 . 824	.083	.8 <i>57</i> 1.130	. 266	. 275	. 2314	. 6138	. 2522	. 0297	.0566	.3430	_
3/4	xs	80	API						. 275	. 2168	. 5330	. 3326	0370	.0705	. 3337	_
	~	160	Ari	1.050	.742 .612	.154	1.473	. 187 . 127	275	.1948	4330	. 4335	.0448	.0853	.3214	.05
	xxs		API	1.050	.434	308	2.440	.063	. 275 . 275	.1602 .1137	. 2942 . 1479	. <i>5</i> 717 .7180	.0528	.1005	.3038	.1
		55		1.315	1.185	.065	868	478	344					.1103	. 2840	. 2
		105	L	1.315	1.097	.109	1.404	409	.344	.3102 .2872	1 1029 9448	. 2552 . 4129	0500	.0760	. 4425	-
1	STD	40	API	1.315	1.049	. 133	1.678	. 374	.344	. 2740	. 8640	4939	.0738	.1150	. 4282	.08
	xs	80	API	1.315	. 957	. 179	2.171	.311	.344	. 2520	. <i>7</i> 190	. 6388	. 1056	.1606		
	xxs	160		1.315	.815	. 250	2.840	. 226	.344	.2134	. 5217	. 8364	1252	.1903	. 4066` . 3868	.1 .3
	^^3		API	1.315	. 599	. 358	3.659	. 122	. 344	. 1 <i>5</i> 70	. 2818	1.0760	.1405	.2136	.3613	.4
		5S		1.660	1.530	.065	1.107	.796	.434	4006	1.8381	.3257	.1037	.1250	. 5644	
	STD	40	- 1		1.442	.109	1.806	.708	.434	.3775	1.6330	. 5314	. 1606	. 1934	.5499	_
11/4	xs	80							. 434	. 3620	1.4950	. 6685	. 1947	. 2346	. 5397	_1
[^3	160	API	1.660	1.278	. 191	2.996 3.764	. 555	.434	.3356	1.2830	.8815	. 2418	.2913	. 5237	.2
	xxs			1.660	. 896		5.214	. 273	.434	.3029	1.0570 .6305	1.1070	. 2833	.3421	.5063	.3
		55		1.900	1.770	.065	1.274	1.066	. 497						.4716	. 5
		105		1.900	1.682		2.085	963	.497	.4634	2.4610 2.2219	. 3751	. 1579	.1662	.6492	-
1/2	STD	40	API	. 900	1.610	. 145	2.717	. 882	. 497	.4213	2.0361	.8001	.3099	. 2599 . 3262	.6344	.1
- / -	xs	80			1.500	. 200	3.631	.765	.497	. 3927	1.7672	1.0689	.3912			
l	xxs	160		1	1.338		4.858	. 609	. 497		1.4060	1.4299	4823	.4118	. 6052 . 5809	.2
	77.5				1.100		6.408	.412	. 497	. 2903	9502	1.8859	. 5678	. 5977	5489	
					e*. ::	"Pipine	Guide",	PO Box 2	277, Colat	CA 949	28, USA	the state of the				

^{*}These 'iron pipe size' dimensions are for steel pipe, and are referred to in the Piping Guide (Part I) as 'manufacturers' weights'-see 2.1.3

CONTINUE

<u>.</u> . :		WALL				N - 1				- ,	EAS				ABLE	
Nom.		HICKNE	5\$		MENSION		<u> </u>	HTS						PROPERTI		Approx - Weight
Pipe Size	iron Pipe	Sch. No.	Other	Outside Diam.	inside Diom.	Woll Thkn.	Plain End Pipe	Water In Pipe	Outside	Inside	Flow	Metal	Mement of::: Inertia-	Section Modulus	Redius of Gyration	of · Welding Rods
in.	Size		26	i di en e di e e ina	la.	. in.	ib. per	lb. per	ft.² per ft.	ft. ² per	in. ³	in.1	inde	~ in.³ €	in.	in the contract of the contrac
		5\$		2.375	2.245	. 065	1.60	1.71	. 622	. 588	3.958	. 472	.315	. 265	.817	_
	STD	105	API,L API	2.375	2.1 <i>5</i> 7 2.067	. 109 . 154	3.65	1.58	.622	.565 .540	3.654	1.075	.500	.421	. 803 . 787	
2	xs	80	API	2.375	1.939	.218	5.02	1.28	. 622	. 507	2.953	1.477	. 868	.731	.766	.3
		160	API	2.375	1.875	.250	7.46	1.20	.622	.492	2.761	2.195	1.164	.805	.756	.6
	xxs		API	2.375	1.503	. 436	9.03	.77	. 622	. 393	1.774	2.656	1.312	1.104	.703	.8
		5\$ 10\$	API L	2.875 2.875	2.709 2.635	.083 .120	2.47 3.53	2.50 2.36	.753 .753	.709 .690	5.764 5.453	.728 1.038	.710 .988	.494	.988 .976	
21/2	STD	40	API	2.875	2.469	.203	5.79	2.07	.753 .753	.646	4.788 4.238	1.704 2.254	1.530	1.064	.947	.3
- , 2	XS	80 160	API	2.875 2.875	2.323	.276 .375	7.66 10.01	1.83	.753	.556 .463	3.547 2.464	2:945 4.028	2.353 2.871	1.339	.924 .894 .844	.5 7
	xxs	55	API	2.875 3.500	1.771 3.334	.552	3.03	3.78	.753	.873	8.730	.891	1.301	1.997	1.208	1.3
		105	L	3.500 3.500	3.260 3.250	.120	4.33 4.52	3.62 3.60	.916	.853 .851	8.346 8.300	1.272	1.821	1.041	1.196	=
		<u> </u>	API	3.500	3.188	.156	5.58	3.46	.916	.835	7.982	1.639	2.298	1.313	1.184	.2
3	STD	40	API API	3.500 3.500	3.124 3.068	.188 .216	6.65 7.58	3.32 3.20	.916 .916	.818 .802	7.665	2.228	3.017	1.538 1.724	1.173 1.164	.3 .4
		1	API	3.500 3.500	3.000 2.938	.250 .281	8.68 9.65	3.06 2.94	.916 .916	.785 .769	7.184 6.780	2.553 2.842	3.388 3.819	1.936 2.182	1.152 1.142	.5 .6
	XS	160	API	3.500	2.900 2.624	.300	10.25	2.86	.916	.687	5.407	3.016 4.214	3.892 5.044	2.225	1.136	1.2
	xxs	ļ	API	3.500	2.300	.600	18.58	1.80	.916	.601	4.155	5.466	5.993	3.424	1.047	1.8
		5S 10S	L	4.000	3.834 3.760	.083 .120	3.47 4.97	5.00 4.81	1.047	1.004	11.545	1.021	1.960 2.754	1.377	1.385	=
		<u> </u>	API -	4.000	3.750	.125	5.18	4.79	1.047	.982	11.044	1.522	2.859 3.485	1.430	1.371	-3
31/2	STD	40	API API	4.000 4.000	3.624 3.548	.188 .226	7.71 · 9.11	4.48 4.28	1.047	.950 .929	10.31 <i>5</i> 9.886	2.251 2.680	4.130 4.788	2.065 2.394	1.350 1.337	.4 .5
			API API	4.000 4.000	3.500 3.438	.250 .281	10.02 11.17	4.17 4.02	1.047	.916 .900	9.621 9.283	2.945 3.283	5.201 5.715	2.601 2.858	1,329	.6 .7
	XS	80	API	4.000 4.000	3.364 2.728	.318 .636	12.51 22.85	3.85 2.53	1.047	.880 .716	8.888 5.845	3.678 6.721	6.280 9.848	3.140 4.924	1.307 1.210	.8 2.4
		55	1	4,500	4.334	.083	3.92	6.39	1.178	1.135	14.752	1.152	2.810	1.249	1.562	-
		105	L API	4.500 4.500	4.260 4.250	.120 .125	5.61 5.84	6.18 6.15	1.178	1.115	14.253	1.651 1.718	3.962 4.115	1.761 1.829	1.550 1.548	=
			API	4.500 4.500	4.188 4.124	.156 .188	7.24 8.56	5.97 5.80	1.178	1.096	13.775 13.357	2.129	5.029 5.850	2.235	1.537 1.525	.5
	STD	- 40	API	4.500	4.062	.219	10.02	5.62	1.178	1.063	12.730	2.945 3.174	7.231	3.008	1.516	.6
4	""		API API	4.500 4.500	4.000 3.938	.250	11.35 12.67	5.45 5.27	1.178 1.178	1.049	12.566 12.180	3.338 3.724	7.560 8.332	3.360 3.703	1.505 1.495	7
	xs	-	API API	4.500 4.500	3.876 3.826	.312 .337	14.00	5.12 4.98	1.178	1.013	11.799	4.105 4.407	9.045 9.610	4.020	1.482	.9
		80 120	API	4.500	3.624	.43B	18.98	4.47	1.178	.949	10.315	5.589	11.648	5.177	1,444	1.5
	xxs	160	API	4,500 4,500 4,500	3.500 3.438 3.152	.500 .531 .674	21.36 22.52 27.54	4.16 4.02 3.38	1.178 1.178 1.178	.916 .900 .826	9.621 9.283 7.803	6.283 6.621 8.101	12.771 13.275 15.284	5.676 5.900 6.793	1.425 1,416 1.374	1.8 2.0 3.0
		55		5.563	5.345	.109	6.35	9.72	1,456	1_399	22.438	1.868	7.126	2.562	1.929	_
		105	L API	5.563 5.563	5.295 5.251	.134 .156	7.77	9.54 9.39	1.456 1.456	1.386 1.375	22.021	2.285 2.650	8.422 9.699	3.028 3.487	1.920 1.913	.4
e			API API	5.563 5.563	5.187 5.125	.188	10.80	9.16 8.94	1.456 1.456	1,358 1,342	21.131 20.629	3.175 3.677	11,485 13,145	4.129 4.726	1.902	.£
5	STD	40	API	5.563 5.563	5.047	.258	15.86	8.52	1.456	1.321	19.643	4.663	15.162	5.451 5.862	1.878	.B
<i>.</i>	1		API API	5.563 5.563	4,976	.312	17.51	8.31	1.456	1.293	19.159 18.666	5.147 5.640	17,807	6.402	1.86C 1.849	1.0
	xs	120	API	5.563 5.563	4.8 : . 4.56 :	.375 .537	2G 78 27.04	7.87	1.456	1.260	18.194	6.112 7.953	20.6e¢ 25.737	7.431 -9.253	1.839	1.4
	 	160	API	5.563	4.313	.675	22.96	1 6.32	1.456	1.129	14.510	9.694	30.046	10.800	1740	3.1

[&]quot;These 'Iron pipe size' dimensions are for steel pipe, and are referred to in the Piping Guide (Part E) as "manufacturers" weights'-see 2.1.3

PI	PE	DATA	REPRO MIDWE	DUCED BY ST FITTIN	PERMISS G DIVISIO	ION OF T	HE CRAN	E COMPA	NY,		17		Title		ABLE	P.1
		WAL THICKN			IMENSIO	NS	WE	GHTS.			REAS			PROPERTI		77
Nom. Pipe Size	lror Pipe		Other	Outside Diam.	inside Diam.	Well	Plata End	Water		rface .	7	Sectional	Mament	T	Radius	Approx Weight of Welding
in.	Siz			in.	in.	Thkn.	lh. per	Pipe ib. per	Outside ft. ² per ft.	ft. ² per	Flow in.2	Metal	Inertia	Modulus	Gyration	Rods
		55 105	API	6.625	6.407	.109	7.59	14.0	1.73	1.68	32.24	2.23	in.4	3.57	2.30	16.
	<u> </u>	103	API	6.625	6.357	.134	9.29 12.93	13.7	1.73	1.66	31.75 30.70	2.73 3.80	14.38 19.71	4.34 5.95	2.29 2.28	.4
			API ,	6.625 6.625 6.625	6.187 6.125 6.071	.219 .250 .277	15.02 17.02 18.86	13,1 12.8 12.6	1.73 1.73 1.73	1.62 1.61 1.59	30.10 29.50 28.95	4.41 5.01 5.54	22.66 25.55 28.00	6.84 7.71 8.46	2.27 2.26 2.25	.8 1.0 1.1
6	STD	40	API API API	6.625 6.625 6.625	6.065 6.001 5.937	.280 .312 .344	18.97 21.05 23.09	12.5 12.3 12.0	1.73 1.73 1.73	1.59 1.57 1.55	28.90 28.28 27.68	5.58 6.19 6.79	28.14 30.91 33.51	8.50 9.33 10.14	2.24 2.23 2.22	1.1
	xs	80	API API	6.625 6.625 6.625	5.875 5.761 5.625	.375 .432 .500	25.10 28.57 32.79	11.8 11.3 10.8	1.73 1.73 1.73	1.54 1.51 1.48	27.10 26.07 24.85	7.37 8.40 9.63	36.20 40.49 45.60	10.90 12.22 13.78	2.21 2.19	1.6 1.8 2.2
	xxs	120 160	API API API	6.625 6.625 6.625	5.501 5.187 4.897	.562 .719 .864	36.42 45.34 53.16	10.3 9.2 8.1	1.73 1.73 1.73	1.47 1.36 1,28	23.77 21.13 18.83	10.74 13.34 15.64	49.91 59.03 66.33	15.07 17.82 20.02	2.16 2.15 2.10 2.06	3.0 3.2 5.1
		55 105	L API	8.625 8.625 8.625	8.407 8.329 8.249	.109	9.91 13.40	24.0 23.6	2.26 2.26	2.20 2.18	55.51 54.49	2.92 3.94	26.44 35.45	6.13 8.22	3.01 3.00	5.8
			API API	8.625 8.625	8.219 8.187	.188 .203 .219	18.30	23.2	2.26	2.16	53.43	5.00 5.38	44.42 47.65	10.30	2.98	.8
	ļ	20 30	API API	8.625	8.125	.250	19.64 22.36	22.9 22.5	2.26 2.26	2.15 2.13	52.63 51.85	5.80 6.58	51.32 57.74	11.90 13.39	2.97 2.96	1.0
	STD	40	API API	8.625 8.625 8.625	8.071 8.001 7.981	.277 .312 .322	24.70 27.72 28.55	22.2 21.8 21.6	2.26 2.26 2.26	2.12 2.10 2.09	51.17 50.28 50.03	7.26 8.1 <i>5</i> 8.40	63.35 70.60 72.49	14.69 16.37 16.81	2.95 2.94 2.94	1.3 1.6 1.7
8		60	API API	8.625 8.625 8.625	7.937 7.875 7.813	.344 .375 .406	30.40 33.10 35.66	21.4 21.1 20.8	2.26 2.26 2.26	2.08 2.06 2.04	49.49 48.69 47.95	8.94 9.74 10.48	76.81 83.10 88.75	17.81 19.27 20.58	2.93 2.92 2.91	1.9 2.1 2.3
	xs	80 100	API API	8.625 8.625 8.625	7.749 7.625 7.437	.438 .500 .594	38.33 43.39 50.93	20.4 19.8 18.8	2.26 2.26 2.26	2.03 2.01 1.95	47.16 45.67 43.44	11.27 12.76 14.99	94.75 105.70 121.48	21.97 24.51 28.17	2.90 2.88 2.85	2.7 3.6 4.6
		120 140	API	8.625 8.625 8.625	7.375 7.187 7.001	.625 .719 .812	53.40 60.69 67.79	18.5 17.6 16.7	2.26 2.26 2.26	1.93 1.88 1.83	42.72 40.57 38.50	15.71 17.86 19.93	126.49 140.67 153.74	29.33 32.62 35.65	2.84 2.81 2.78	5.1 6.7 7.3
	xxs	160	API	8.625 8.625	6.875 6.813	.875 .906	72.42 74.71	16.1 15.8	2.26 2.26	1.80 1.78	37.13 36.46	21.30 21.97	161.98 165.94	37.56 38.48	2.76 2.76	8.0 8.2
		5S 10S	L API	10.750 10.750 10.750	10.482 10.420 10.374	.134 .165 .188	15.19 18.65 21.12	37.4 36.9 36.7	2.81 2.81 2.81	2.74 2.73 2.72	86.29 85.26 84.56	4.47 5.50 6.20	62.94 76.81 86.54	11.71 14.29 16.10	3.75 3.74 3.74	.6 .8
		20	API API API	10.750 10.750 10.750	10.344 10.312 10.250	.203 .219 .250	22.86 24.63 28.04	36.5 36.2 35.9	2.81 2.81 2.81	2.71 2.70 2.68	84.05 83.52 82.50	6.71 7.24 8.26	93.26 100.46 113.52	17.35 18.69 21.12	3.73 3.72 3.71	1.0 1.1 1.2 1.4
		30	API API API	10.750 10.750 10.750	10.192 10.136 10.062	.279 .307 .344	31.20 34.24 38.26	35.3 35.0 34.5	2.81 2.81 2.81	2.66 2.65 2.63	81.58 80.69 79.51	9.18 10.07 11.25	125.88 137.44 152.27	23.42 25.57 28.33	3.70 3.69 3.68	1.7 2.0
10	STD XS	40 60, 80S	API API API	10.750 10.750 10.750	10.020 9.874 9.750	.365 .438 .500	40.48 48.28 54.74	34.1 33.2 32.3	2.81 2.81 2.81	2.62 2.58 2.55	78.85 76.57 74.66	11.91 14.91 16.10	160.71 188.82 211.94	29.90 35.13 39.43	3.67 3.65 3.63	2.4 2.7 3.6 4.5
		80 100	API	10.750 10.750 10.750	9.562 9.312 9.250	.594 .719 .750	64.40 77.00 80.10	31.1 29.5 29.1	2.81 2.81 2.81	2.50 2.44 2.42	71.81 68.10 67.20	18.95 22.66 23.56	245.21 286.43 296.16	45.62 53.29 55.10	3.60 3.56 3.54	6.0 8.3
	xxs	120 140	ŀ	10.750 10.750 10.750	9.062 9.000 8.750	.844 .875 1.000	89.27 92.28 104.13	27.9 27.6 26.1	2.81 2.81 2.81	2.37 2.36 2.29	64.49 63.62 60.13	26.27 27.14 30.63	324.54 333.46 367.81	60.38 62.04 68.43	3.52 3.50	9.0 9.8
FANGE 1		160		10.750 10.750	8.500 8.250	1.250	115.65	24.6 23.2	2.81 2.81	2.22	56.75 53.45	34.01 37.31	399.42	74.31	3.43 3.39	13 15 17

^{*}These 'iron pipe size' dimensions are for steel pipe, and are referred to in the Piping Guide (Part I) as 'manufacturers' weights'—see 2.1.3

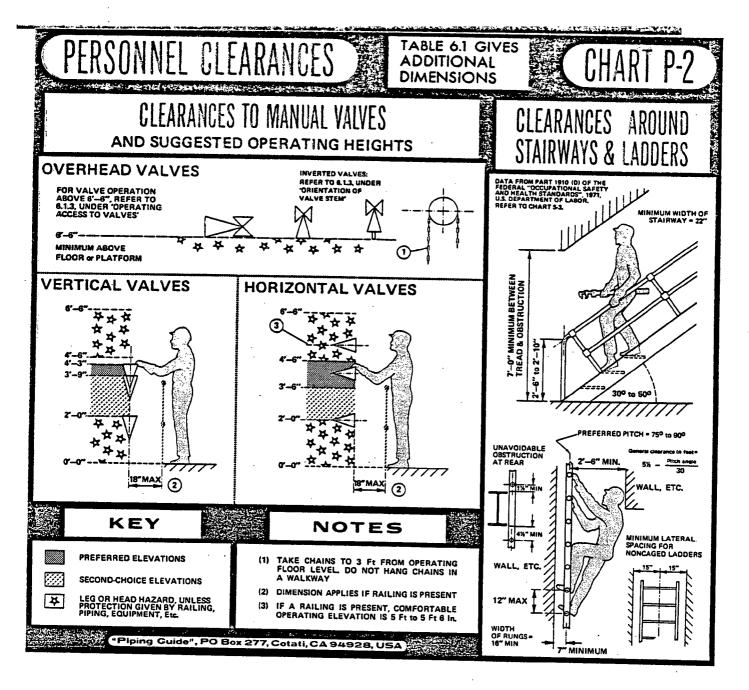
11	E D			T FITTING					1986	与れ他 湯	શ્રાસ્ત્ર ફિલ્લ	The state of the			ABLE	
Į		HICKN	ESS 12 - 21		MENSIONS		WEI	OHTS -	. 11.	AR	EAS		,	ROPERTI	\$ 7.	Appres
m. 	iren · Pipe	Sch. No.	Other	Outside Diam.	inside Diem.	Well Thkn.	Plain End Pipe	Water in Pipe	Suri	Inside	Cross-1	Metal	Moment ef Inertia	Section Modulus	Radius of Gyration	Weigh of Weldin Rods
	Sixe			in.	in.	in.	lb. per	lb. per	ft. ² per	ft. ² per	in. ²	in. ²	in.4	In.3	in.	Ib.
	T	5\$ 10\$	L API	12,750 12,750 12,750	12.438 12.390 12.344	.156 .180 .203	21.0 24.2 27.2	52.6 52.2 52.0	3.34 3.34 3.34	3.26 3.24 3.23	121.5 120.6 119.9	6.17 7.11 7.99	122,4 140,4 157,2	19.2 22.0 24.7	4.45 4.44 4.43	.8 1.0 1.3
		20	API API API	12.750 12.750 12.750	12.312 12.250 12.188	.219 .250 .281	29.3 33.4 37.4	51.7 51.3 50.6	3.34 3.34 3.34	3.22 3.21 3.19	119.1 118.0 116.7	8.52 9.84 11.01	167.6 192.3 214.1	26.3 30.2 33.6	4.43 4.42 4.41	1.4 1.7 2.0
Ī		30	API API API	12.750 12.750 12.750	12.126 12.090 12.062	.312 .330 .344	41.5 43.8 45.5	50.1 49.7 49.7	3.34 3.34 3.34	3.17 3.16 3.16	115.5 114.8 114.5	12.19 12.88 13.46	236.0 248.5 259.0	37.0 39.0 40.7	4.40 4.39 4.38	2.4 2.6 2.8
Ì	STD	405 40	API API API	12.750 12.750 12.750	12.000 11.938 11.874	.375 .406 .438	49.6 53.6 57,5	48.9 48.5 48.2	3.34 3.34 3.34	3.14 3.13 3.11	113.1 111.9 111.0	14.58 15.74 16.95	279.3 300.3 321.0	43.8 47.1 50.4	4.37 4.37 4.35	3.0 3.5 4.3
2	xs	80S 60	API API	12.750 12.750 12.750	11.750 11.626 11.500	.500 .562 .625	65.4 73.2 80.9	46.9 46.0 44.9	3.34 3.34 3.34	3.08 3.04 3.01	108.4 106.2 103.8	19.24 21.52 23.81	361.5 400.5 438.7	56.7 62.8 68.8	4.33 4.31 4.29	5.3 6.4 7.5
ļ		80	API API API	12.750 12.750 12.750	11.374 11.250 11.062	.688 .750 .844	88.6 96.2 107.3	44.0 43.1 41.6	3.34 3.34 3.34	2.98 2.94 2.90	101.6 99.4 96.1	26.07 28.27 31.57	475.7 510.7 562.2	74.6 80.1 88.2	4.27 4.25 4.22	8.6 10
	xxs	120 140		12.750 12.750 12.750	11.000 10.750 10.500	.875 1.000 1.125	110.9 125.5 139.7	41.1 39.3 37.5	3.34 3.34 3.34	2.88 2.81 2.75	95.0 90.8 86.6	32.64 36.91 41.08	578.5 641.7 700.7	90.7 100.7 109.9	4.21 4.17 4.13	12 15 18
ŀ		160		12.750 12.750	10.250 10.126	1.250 1.312	153.6 160.3	35.8 34.9	3.34 3.34	2.68 2.65	82.5 80.5	45.16 47.14	755.5 781.3	118.5 122.6	4.09 4.07	20 22
Ì				12.750 12.750	10.000 9.750	1.375 1.500	167.2 180.4	34.0 32.4 ·	3.34 3.34	2.62 2.55	78.5 74.7	49.14 53.01	807.2 853.8	126.6 133.9	4.05 4.01	24 28
		<i>5</i> S 10S	API API	14.000 14.000 14.000	13.688 13.624 13.580	.156 .188 .210	23.0 27.7 30.9	63.7 63.1 62.8	3.67 3.67 3.67	3.58 3.57 3.55	147.2 145.8 144.8	6.78 8.16 9.10	162.6 194.6 216.2	23.2 27.8 30.9	4.90 4.88 4.87	.9 1.1 1.4
		10	API API,L API	14.000 14.000 14.000	13.562 13.500 13.438	.219 .250 .281	32.2 36.7 41.2	62.6 62.1 61.5	3.67 3.67 3.67	3.55 3.54 3.52	144.5 143.0 141.8	9.48 10.82 12.11	225.1 256.0 285.2	32.2 36.6 40.7	4.87 4.86 4.85	1.8 1.8 2.2
	STD	20 30	API API API	14.000 14.000 14.000	13.376 13.312 13.250	.312 .344 .375	45.7 50.2 54.6	60.9 60.3 59.7	3.67 3.67 3.67	3.50 3.48 3.47	140.5 139.2 137.9	13.42 14.76 16.05	314.4 344.3 372.8	44,9 49,2 53,2	4.84 4.83 4.82	2.6 3.1 3.6
	xs	40	API API API	14.000 ⁻ 14.000 14.000	13.124 13.062 13.000	.438 .469 .500	63.4 67.8 72.1	58.5 58.0 57.4	3.67 3.67 3.67	3.44 3.42 3.40	135.3 134.0 132.7	18.66 19.94 21.21	429.6 456.8 483.8	61.4 65.3 69.1	4.80 4.79 4.78	4.5 5.2 5.8
4		60 80	API API	14.000 14.000 14.000	12.812 12.750 12.500	.594 .625 .750	85.0 89.3 106.1	55.8 55.3 51.2	3.67 3.67 3.67	3.35 3.34 3.27	128.9 127.7 122.7	25.02 26.26 31.22	563.1 588.5 687.5	80.4 84.7 98.3	4.74 4.73 4.69	7.6 8.2 9.4
		100		14.000 14.000 14.000	12.250 12.124 12.000	.875 .938 1.000	122.7 130.8 138.5	51.1 50.0 49.0	3.67 3.67 3.67	3.21 3.17 3.14	117.9 115.4 113.1	36.08 38.49 40.84	780.1 825.1 868.0	111.4 117.9 124.0	4.65 4.63 4.61	13 15 76
		120 140 .		14.000 14.000 14.000	11.812 11.750 11.500	1.094 1.125 1.250	150.8 154.7 170.2	47.5 47.6 45.0	3.67 3.67 3.67	3.09 3.08 3.01	109.6 108.4 103.9	44.36 45.50 50.07	930.2 950.3 1027.5	132.9 135.8 146.8	4.51 4.53	63. 20 22
		160		14.000 14.000 14.000	11.250 11.18£ 11.000	1.375 1.406 1.500	185.4 189.1 200.2	43.1 42.6 41.2	3.67 3.67 3.67	2.94 2.93 2.88	99.4 98.3 95.0	54_54 55.63 58.90	1099.5 1116.9 1166.5	157.1 159.6 166.6	4.49 4.48 4.45	26 27 3:
				14.000 14.000	10.000 9.750	2.000 2.125	256.3 269.5	34.0 32.3	3.67 3.67	2.62 2.55	78.5 74.7	75.40 79.28	1394.9 1442.1	199.3 206.0	4.30 4.26	5C 55
				14.00C 14.000	9.60%	2.210 2.500	277.3 307.1	31.4 27.4	3.67 3.67	2.5! 2.36	72.4 63.4	81.56 90.32	1468.8 1563.7	209.0	4,24 4,1 6	38

[&]quot;These 'iron pipe size' dimensions are for steel pipe, and are referred to in the Piping Guide (Part I) as 'manufacturers' evelgins'-see 2.1.1

711	LU	ATA	MIOWES	T FITTING				20		图 和 级	MXX IV				ABLE	r ·1
Nom.	,	HICKH		D	MENSION	S.	WEI	GHTS		A	REAS		ŀ	ROPERTI	s	Approx
Pipe Size	a iron	Seh.		Outside	:nside	Wall	Plain End	Water in	Suri	ace	Cross-	Sectional	Moment	Section	Radius	Weight
	Pipe Size	No.	Other	Diem.	Diam.	Thun.	Pipe Ib. per	Pipe	Outside ft. ² per	Inside ft. ² per	Flow	Metal-	inertia	Modulus	Gyration	Welding Rods
in.				în.	in.	in.	ft.	ib. per ft.	ft.	ft.	ln.²	in.²	in.	in.³	In.	lb.
		5S 10S		16.000	15.670 15.624	.165 .188	28 32	83.5 83.0	4.19 4.19	4.10 4.09	192.9 191.7	8.21 9.34	257 292	32.2 36.5	5.60 5.59	1.1
			API	16.000	15.562	.219	37	82.5	4,19	4.07	190.2	10.86	338	42.3	5.58	1.7
		10 20	API,L API API	16.000 16.000 16.000	15.500 15.438 15.376	.250 .281 .312	42 47 52	82.1 81.2 80.4	4.19 4.19 4.19	4.06 4.04	189.0 187.0	13.90	38.5 430	48.1 53.8	5.57 5.56	2.0 2.5
			API	16.000	15.312	.344	57	80.0	4.19	4.03	185.7 184.1	15.38	473 519	59.2	5.55 5.54	2.9 3.5
	STD	30	API API	16.000 16.000	15.250 15.124	.375 .438	63 73	79.1 78.2	4.19 4.19	4.00 3.96	182.6 180.0	18.41 21.42	562 650	70.3 81.2	5.53 5.51	4.2 5.1
	xs	40	API API	16.000	15.062 15.000	.469	78 83	77.0 76.5	4.19	3.94 3.93	178.2 176.7	22.88	691	86.3	5.49	5.9
16			API	16.000	14.750	.625	103	74.1	4.19	3.86	170.9	24.35 30.19	732 893	91.5 111.7	5.48 5.44	6.7 9.4
		60	API	16.000 16.000	14.688	.656 .750	108 122	73.4 71.5	4.19 4.19	3.85 3.80	169.4 165.1	31.62 35.93	933 1047	116.6 130.9	5.43 5.40	11
		80		16.000	14.312	1.000	137	69.7 66.7	4.19	3.75 3.66	160.9	47.12	11 <i>57</i>	144,7	5.37	14
		100 120		16.000 16.000	13.938 13.562	1.031	165 192	66.0 62.6	4.19 4.19	3.65 3.55	152.6 144.5	48.49 56.60	1366 1556	166.4 170.7 194.6	5.31 5.30 5.24	18 20 25
		140		16,000	13.500	1.250	197	62.1	4,19	3.53	143.1	57.92	1586	198.3	5.23	26
		140		16.000	13.124	1.438	224	58.6 57.4	4.19	3.44	135.3 132.7	65.79 68.33	1761	220.1	5.1 <i>7</i> 5.1 <i>5</i>	31
		160	,	16.000	12.812	1.594	245	55.8	4.19	3.35	129.0	72.14	1894	236.8	5.12	37
		5S 10S	API	18.000 18.000	17.670	.165	31	106.2	4.71	4.63	245.2	9.24	348	40.8	6.31	1.2
		10	API,L	18.000	17.624 17.500	.188 .250	36 47	105.7 104.6	4.71 4.71	4.61 4.58	243.9 241.0	10.52 13.96	41 <i>7</i> 550	46.4 61.1	6.30 6.28	1.5 2.2
		20	API API	18.000 18.000	17.438 17.376	.281 .312	49 59	104.0 102.7	4,71 4,71	4.56 4.55	240.0 237.1	14.49 17.34	570 678	63.4 75.4	6.27 6.25	2.8 3.3
	STD		API	18.000	17.312	.344	65 71	102.0	4.71	4.53	235.4	19.08	744	82.6	6.24	3.9
	3.0	30	API API	18.000	17.188 17.124	.406 .438	76 82	101.2 100.6 99.5	4.71 4.71 4.71	4.51 4.50 4.48	233.7 232.0 229.5	20.76 22.44 24.95	807 869 963	89.6 96.6 107.0	6.23 6.22	4.8 5.3
			API	18.000	17.062	.469	88	99.0	4.71	4.47	228.6	25.83	993	110.3	6.21	5.8 6.6
18	XS	40	API API	18.000 18.000	17,000 16.876	.500 .562	93 105	98.2 97.2	4.71 4.71	4.45 4.42	227.0 224.0	27.49 30.85	1053 1177	117.0 130.9	6.19 6.17	7.5 8.9
		60	API API	18.000 18.000	16.750 16.500	.625 .750	116 138	95.8 92.5	4.71 4.71	4.39 4.32	220.5 213.8	34.15 40.64	1290 1515	143.2 168.3	6.14 6.10	11 15
		80		18.000	16.124	.938	171	88.4	4.71	4.22	204.2	50.28	1835	203.9	6.04	19
		100		18.000 18.000 18.000	16.000 15.688 15.500	1.000 1.156 1.250	182 208 224	87.2 83.7 81.8	4,71 4,71 4,71	4.19 4.11	201.1 193.3	53.41 61.18	1935 2182	215.0 242.3	6.02 5.97	20 26
		120		18.000	15.250	1.375	244	79.2	4.71	4.06 3.99	188.7 182.7	65.78 71.82	2319	257.7 277.5	5.94 5.90	29 33
		140		18.000	15.000	1.500	265	76.6	4.71	3.93	176.7	77.75	2668	296.5	5.86	38
		140		18.000 18.000	14.876 14.438	1.562 1.781	274 309	75.3 71.0	4.71 4.71	3.89 3.78	173.8 163.7	80.66 90.75	2750 3020	305.5 335.5	5.84 5.77	41 49
20		58		20.000	19.634	.188	40	131.0	5.24	5.14	302.4	11.70	574	57.4	7.00	1.7
ZU		10S 10	API,L	20.000 20.000	19.564 19.500	.218 .250	46 53	130.2 130.0	5.24 5.24	5.12 5.11	300.6 299.0	13.55 15.52	663 759	66.3 75.9	6.99 6.98	2.1 2.5
			API API	20.000 20.000	19.438 19.376	.281 .312	59 66	128.6 127.7	5.24 5.24	5.09 5.07	296.8 294.9	17.41 19.30	846 935	84.6 93.5	6.97 6.96	3.2
d on Be)			API	20.000	19.312	.344	72	127.0	5.24	5.06	292.9	21.24	1026	102.6	6.95	3.9 4.6
(Continued on next page)	STD	20	API API	20.000	19.250	.375 .406	79 85	126.0 125.4	5.24 5.24	5.04 5.02	291.1 289.2	23.12 24.99	1113 1200	111.3 120.0	6.94	5.0 6.0
Co Le			API	20.000	19.124	.438	92 98	125.1	5.24 5.24	5.01 4.99	288.0	26.95 28.78	1290	129.0 137.3	6.92	6.8
	XS	30 40	API	20.000 20.000	19.000 18.812	.500	104 123	122.8 120.4	5.24 5.24	4.97 4.92	283.5 277.9	30.63 36.21	1457 1706	145.7 170.6	6.91 6.90 6.86	7.6 8.3
·			· · · · · · · ·	J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e di e		!						ide Note			

^{*}These 'iron pipe size' dimensions are for steel pipe, and are referred to in the Piping Guide (Part 1) as 'manufacturers' weights'—see 2.1.3

		WALL			MENCIO					A		1 42: 1			ABLE	
Nom. Pipe Size	è. Iron	Sch.		Outside	Inside	Well	Plain End	Water	3.55	ace A	Asses	Sectional	Moment	Section	Redius:	Appres Weigh of Weldin
in	Pipe Sixe	No.	Other	Diam.	Diom.	Thkn.	Pipe ib. per	Pipe:	Outside ft. ² per	Inside ft. ² per ft.	Flow In. ²	Metal	Inertia	Modulus in. ³	Gyration	Rods
20		60	API API	20.000 20.000	18.750 18.376	.625 .812	129 167	119.5 114.9	5.24 5.24	4.91 4.81	276.1 265.2	38.04 48.95	1787 2257	178.7 225.7	6.85 6.79	1b. 12 17
(Continued from preceding page)		80		20.000 20.000 20.000 20.000	18.000 17.938 17.500 17.438	1.000 1.031 1.250 1.281	203 209 250 256	110.3 109.4 104.3 103.4	5.24 5.24 5.24 5.24	4.71 4.70 4.58 4.56	254.5 252.7 240.5	59.69 61.44 73.63	2702 2771 3249	270.2 277.1 324.9	6.73 6.72 6.64	24 26 31
(Contin		120 140 160		20.000 20.000 20.000	17.000 16.500 16.062	1.500 1.750 1.969	296 341 379	98.3 92.6 87.8	5.24 5.24 5.24 5.24	4.45 4.32 4.20	238.8 227.0 213.8 202.6	75.34 87.18 100.33 111.54	3755 4217 4587	331.7 375.5 421.7 458.7	6.63 6.56 6.48 6.41	32 43 54 64
		5S 10S 10	API,L	22.000 22.000 22.000	21.624 21.564 21.500	.188 .218 .250	44 51 58	159.1 158.2 157.4	5.76 5.76 5.76	5.66 5.65 5.63	367.3 365.2 363.1	12.88 14.92 17.18	766 885 1010	69.7 80.4 91.8	7.71 7.70 7.69	1.8 2.4 3.0
			API API API	22.000 22.000 22.000	21.438 21.376 21.312	.281 .312 .344	65 72 80	156.5 155.6 154,7	5.76 5.76 5.76	5.61 5.60 5.58	361.0 358.9 356.7	19.17 21.26 23.40	1131 1250 1373	102.8 113.6 124.8	7.68 7.67 7.66	3.6 4.3 5.0
	STD	20	API API API	22.000 22.000 22.000	21.250 21.188 21.124	.375 .406 .438	87 94 101	153.7 152.9 151.9	5.76 5.76 5.76	5.56 5.55 5.53	354.7 352.6 350.5	25.48 27.54 29.67	1490 1607 1725	135.4 146.1 156.8	7.65 7.64 7.62	5.8 6.6 7.5
22	xs	30	API API	22.000 22.000 22.000	21.062 21.000 20.750	.469 .500 .625	108 115 143	150.9 150.2 146.6	5.76 5.76 5.76	5.51 5.50 5.43	348.4 346.4 338.2	31.72 33.77 41.97	1839 1953 2400	167.2 177.5 218.2	7.61 7.61 7.56	8.4 9.3 13
		60	API	22.000 22.000 22.000	20.500 20.250 20.000	.750 .875 1.000	170 197 224	143.1 139.6 136.2	5.76 5.76 5.76	5.37 5.30 5.24	330.1 322.1 314.2	50.07 58.07 65.97	2829 3245 3645	257.2 295.0 331.4	7.52 7.47 7.43	18 21 27
		80 100	•	22.000 22.000 22.000	19.750 19.500 19.250	1.125 1.250 1.375	251 277 303	132.8 129.5 126.2	5.76 5.76 5.76	5.17 5.10 5.04	306.4 298.6 291.0	73.78 81.48 89.09	4029 4400 4758	366.3 400.0 432.6	7.39 7.35 7.31	32 38 45
		120		22.000 22.000	19.000 18.750	1.500 1.625	329 354	122.9 119.6	5.76 5.76	4.97 4.91	283.5 276.1	96.60 104.02	5103 5432	463.9 493.8	7.27 7.23	52 58
		140		22.000 22.000	18.250 17.750	1.875 2.125	403 451	113.3 107.2	5.76 5.76	4.78 4.65	261.6 247.4	118.55 132.68	6054 6626	550.3 602.4	7.1 <i>5</i> 7.07	74 90
		55 10, 105	APLL API	24.000 24.000 24.000	23.564 23.500 23.438	.218 .250 .281	55 63 71	188.9 187.9 186.9	6.28 6.28 6.28	6.17 6.15 6.14	436.1 435.0 431.5	16.29 18.67 20.94	1152 1320 , 1472	96.0 110.0 122.7	8.41 8.40 8.38	2.6 3.0 3.9
	STD	20	API API API	24.000 24.000 24.000	23.376 23.312 23.250	.312 .344 .375	79 87 95	185.9 184.9 183.9	6.28 6.28 6.28	6.12 6.10 6.09	430.0 426.8 424.6	23.20 25.57 27.83	1630 1789 1942	136.0 149.1 161.9	8.38 8.36 8.35	4.7 5.5 6.0
			API API API	24.000 24.000 24.000	23.188 23.124 23.062	.406 .438 .469	102 110 118	182.9 181.9 180.9	6.28 6.28 6.28	6.07 6.05 6.04	422.3 420.0 417.7	30.09 32.42 34.67	2095 2252 2401	174.6 187.7 200.1	8.34 8.33 8.31	7.2 8.2 9.2
24	xs	30	API API API	24.000 24.000 24.000	23.000 22.876 22.750	.500 .562 .625	125 141 156	180.0 178.0 176.1	6.28 6.28 6.28	6.02 5.99 5.96	416.0 411.0 406.5	36.90 41.40 45.90	2550 2840 3137	213.8 237.0 261.4	8.31 8.21 8.27	10 12 15
76.		40	API API	24.000 24.000 24.000	22.624 22.500 22.126	.688 .750 .937	171 166 231	174.1 172.1 166.6	6.28 6.28 6.28	5.92 5.89 5.79	402.0 397.6 384.5	50.39 54.78 67.89	3426 3705 4521	285.5 308.8 376.8	4.25 4.22 8.34	18 21 24
		60 80		24,000 24,000 24,000	22.062 22.000 21.562	.969 1.000 1.219	238 246 297	165.6 164.8 158.2	6.28 6.28 6.28	5.78 5.76 5.64	382.3 380.1 365.2	70.11 72.26 87.24	4657 4788 5676	388.1 399.0 473.0	8.15 6.14 8.07	25 29 37
		100		24,600 24,600 24,000	21,500 21,000 29,938	1.250 1.500 1.531	304 361 367	157,4 150,2 :49,3	6.28 6.28 6.28	5.63 5.50 5.48	363.1 346.4 344.3	89.34 106.03 108.07	5797 6740 6847	483.0 561.7 570.6	8.05 7.97 7.96	3° 5 52
		120 140 160		24.600 24.000 24.000	20.376 19.876 19.312	1.812 2.062 2.344	436 483 542	141,4 134,4 125.9	6.28 6.28 6.28	5.33 5.20 5.06	326.1 310.3 292.9	126.30 142.10 159.47	7823 8627 9458	o51.5 718.7 788.2	7.5° 7.3° 7.3°	67 Az 0115


[&]quot;These 'Iron pipe size' dimensions are for steel pipe, and are referred to in the Piping Guide (Part II) as 'menufacturers' exciptes'—eas 2.1.3

		WA THICK			DIMENSIC				T						ABLE	
Non Mp	tre	• Sch		Outsid		T	Plain		50	riace :	Cros	a-Sectional	Momen	PROPERT	-	Appro Weig
	- Pip		Othe				Pipe	in- Pipe	Outsid		Flow		of Inertie	Section Modulu		Weldi
in.	+	+	-	in.	in.	In.	lb: pe	lb. per	ft.2 per	ft.² pe ft.	in.2	in.²	in.	in.3		
	e (description)	10	API API API	26.000 26.000 26.000	25.438	.281	77	221.4 220.3 219.2	6.81 6.81 6.81	6.68 6.66 6.64	510.7 508.2	22.70	1646 1877	126.6	9.10 9.09	3.5 4.2
	STD		API API API	26.000 26.000 26.000	25.250	.375	94 103 111	218.2 217.1 216.0	6.81 6.81 6.81	6.63	505.8 503.2 500.7	27.73 30.19	2076 2280 2478	159.7 175.4 190.6	9.08 9.07 9.06	5.0 6.0 6.9
26	XS.	20	API API API	26.000 26.000 26.000	25.062	.469	120 128 136	214.9 213.7 212.8	6.81	6.59 6.58 6.56	498.3 495.8 493.3	35.17 37.62	2673 2874 3066	205.6 221.1 235.8	9.05 9.04 9.03	7.8 8.8 9.9
20			API API API	26.000 26.000 26.000		.562 .625 .750	153 169 202	210.5 208.6 204.4	6.81 6.81	6.54 6.51 6.48	490.9 486.0 481.1	40.06 44.91 49.82	3635 4013	250,7 279.6 308.7	9.02 9.00 8.98	11
				26.000 26.000 26.000	24.250 24.000 23.750	.875 1.000 1.125	235 267 299	200.2 196.1 192.1	6.81 6.81 6.81	6.41 6.35 6.28	471.4 461.9 452.4	59.49 69.07 78.54	4744 5458 6149	364.9 419.9 473.0	8.93 8.89 8.85	16 22 25 32
				26.000 26.000 26.000	23.500 23.250 23.000	1.250 1.375 1.500	330 362 393	187.9 184.1 180.1	6.81 6.81 6.81	6.22 6.15 6.09 6.02	443.0 433.7 424.6 415.5	97.19 106.37	6813 7461 8088	573.9 622.2	8.80 8.76 8.72	38 46 53
		10	API API API	28.000 28.000 28.000	27.500 27.438 27.376	.250 .281 .312	74 83 92	257.3 256.1 255.0	7.33 7.33 7.33	7.20 7.18 7.17	594.0 591.3 588.6	21.80 24.47	2098 2350	149.8 167.8	9.81 9.80	3.8 4.6
	STD		API - API API	28.000 28.000 28.000	27.312 27.250 27.188	.344 .375 .406	102 111 120	253.8 252.6 251.5	7.33 7.33 7.33	7.15 7.13 7.12	585.9 583.2 580.6	27.14 29.89 32.54 35.20	2601 2858 3105 3351	185.8 204.1 221.8	9.79 9.78 9.77	5,4 6,4 7,4
28	xs	20	API API API	28.000 28.000 28.000	27.124 27.062 27.000	.438 .469 .500	129 138 147	250.3 249.2 248.0	7.33 7.33 7.33	7.10 7.08 7.07	577.8 575.2 572.6	37.93 40.56 43.20	3602 3844 4085	239.4 257.3 274.6 291.8	9.76 9.75 9.74	9.5 11
		30	API API	28.000 28.000 28.000	26.750 26.500 26.250	.625 .750 .875	183 218 253	243.4 238.9 234.4	7.33 7.33 7.33	7.00 6.94 6.87	562.0 551.6 541.2	53.75 64.21 74.56	5038 5964 6865	359.8 426.0 490.3	9.72 9.68 9.64	17 23
				28.000 28.000 28.000	26.000 25.750 25.500	1.000 1.125 1.250	288 323 357	230.0 225.6 221.2	7.33 7.33 7.33	6.81 6.74 6.68	530.9 520.8 510.7	84.82 94.98 105.05	7740 8590 9417	552.8 613.6 672.6	9.60 9.55 9.51	34 41
				28.000 28.000	25.250 25.000	1.375 1.500	391 425	216.9 212.6	7.33 7.33	6.61 6.54	500.7 490.9	115.01	10219	729.9 785.5	9.47 9.43 9.38	57 66
-		5S 10, 10S	API API API	30.000 30.000 30.000	29.500 29.438 29.376	.250 .281 .312	79 89 99	296.3 295.1 293.7	7.85 7.85 7.85	7.72 7.70 7.69	683.4 680.5 677.8	23.37 26.24 29.19	2585 2897 3201	172.3 193.1 213.4	10.52	4.1
-	STD		API API API	30.000 30.000 30.000	29.312 29.250 29.188	.344 .375 .406	109 119 130	292.6 291.2 290.7	7.85 7.85 7.85	7.67 7.66 7.64	674.8 672.0 669.0	32.04 34.90 37.75	3524 3823 4132	235.0 254.8 275.5	10.50 10.49 10.48 10.46	5.8 6.9 8.0
o	xs	20	API API	30.000 30.000 30.000	29.124 29.062 29.000	.438 .469 .500	138 148 158	288.8 287.3 286.2	7.85 7.85 7.85	7.61	666.1 663.4 660.5	40.68 43.51 46.34	4442 4744 5033	296.2 316.3 335.5	10.45 10.44 10.43	9.0 10 11 13
F	_		API	30.000 30.000 30.000	28.750 28.500 28.250	.625 .750 .875		276.6	7.85	7.46	649.2 637.9 620.7	57.68 68.92 80.06	6213 7371 8494	414.2° 491.4 566.2	10.39 10.34 10.30	18 25 29
-	_	_		30.000 30.000	28.000 27.750 27.500	1.000 1.125 1.250	347	262.2	7.85	7.26	615.7 604.7 593.9	91.11 102.05 112.90	9591 10653	539.4 710.2 778.8	10.26 10.22 10.17	36 44
				30.000 30.000	27.250 27.000	1.375	457	2482 .	706 I •	707	583.1 572.5	123.65	12694	846.2 911.5	10.17	62

*These 'iron pipe size' dimensions are for steel pipe, and are referred to in the Piping Guide (Part I) as 'manufacturers' weights'—see 2.1.3

PIP	ב ט	ATA		T FITTING			E CRANE	. :							ABLE	r·!
lom.	1,200	THICKNE	SS 💝	Di	MENSION	:	WEIG	HTS.		AR	EAS	. 1	!	PROPERTIE	\$	Approx Weigh
Pipe:	tron Pipe	Sch. No.	Other	Outside Diam.	inside Diam.	Wali Thkn.	Plain End Pipe	Water In Pipe	Suri Outside	ace Inside	Cross-S Flow	ectional Metal	Moment of Inertia	Section Modulus	Radius of Gyration	of Weldin Rods
in.	Sixe		<u>:</u> .	in.	In.	in.	lb. per ft.	lb. per ft.	ft.² per ft.	ft. ¹ per	in.²	in.²	in.4	in. ³	in.	lb.:
		10	API API API	32.000 32.000 32.000	31.500 31.438 31.376	.250 .281 .312	85 95 106	337.8 336.5 335.2	8.38 8.38 8.38	8.25 8.23 8.21	779.2 776.2 773.2	24.93 28.04 31.02	3141 3525 3891	196.3 220.3 243.2	11.22 11.21 11.20	4.3 5.2 6.2
	STD		API API API	32.000 32.000 32.000	31.312 31.250 31.188	.344 .375 .406	116 127 137	333.8 332.5 331.2	8.38 8.38 8.38	8.20 8.18 8.16	770.0 766.9 764.0	34.24 37.25 40.29	4287 4656 5025	268.0 291.0 314.1	11.19 11.18 11.17	7.4 8.5 10
32	xs	20	API API API	32.000 32.000 32.000	31.124 31.062 31.000	.438 .469 .500	148 158 168	329.8 328.2 327.2	8.38 8.38 8.38	8.1 <i>5</i> 8.13 8.11	760.8 757.8 754.7	43.43 46.46 49.48	5407 5775 6140	337.9 360.9 383.8	11.16 11.15 11.14	11 12 14
	ļ	30 40	API API API	32.000 32.000 32.000	30.750 30.624 30.500	.625 .688 .750	209 230 250	321.9 319.0 316.7	8.38 8.38 8.38	8.05 8.02 7.98	742.5 736.6 730.5	61.59 67.68 73.63	7578 8298 8990	473.6 518.6 561.9	11.09 11.07 11.05	20 23 27
				32.000 32.000 32.000	30.000 29.500 29.000	1.000 1.250 1.500	331 410 489	306.4 296.3 286.3	8.38 8.38 8.38	7.85 7.72 7.59	706.8 683.5 660.5	97.38 120.76 143.73	11680 14398 16752	730.0 899.9 104.70	10.95 10.88 10.80	39 56 76
		10	API API API	34.000 34.000 34.000	33.500 33.438 33.376	.250 .281 .312	90 101 112	382.0 380.7 379.3	8.90 8.90 8.90	8.77 8.75 8.74	881.2 878.2 874.9	26.50 29.77 32.99	3773 4230 4680	221.9 248.8 275.3	11.93 11.92 11.91	4.6 6.1 6.6
•	STD		API API API	34.000 34.000 34.000	33.312 33.250 33.188	.344 .375 .406	124 135 146	377.8 376.2 375.0	8.90 8.90 8.90	8.72 8.70 8.69	871.6 867.8 865.0	36.36 39.61 42.88	5147 5597 6047	302.8 329.2 355.7	11.90 11.89 11.87	7.8 9.0 10
34	xs	20	API API API	34.000 34.000 34.000	33.124 33.062 33.000	.438 .469 .500	1 <i>5</i> 7 168 - 179	373.6 371.9 370.8	8.90 8.90 8.90	8.67 8.66 8.64	861.7 858.5 855.3	46.18 49.40 52.62	6501 6945 7385	382.4 408.5 434.4	11.86 11.86 11.85	12 13 14
		30 40	API API API	34.000 34.000 34.000	32.750 32.624 32.500	.625 .688 .750	223 245 266	365.0 362.1 359.5	8.90 8.90 8.90	8.57 8.54 8.51	841.9 835.9 829.3	65.53 72.00 78.34	9124 9992 10829	536.7 587.8 637.0	11.80 11.78 - 11.76	21 25 28
				34.000 34.000 34.000	32.000 31.500 31.000	1.000 1.250 1.500	353 437 521	348.6 337.8 327.2	8.90 8.90 8.90	8.38 8.25 8.11	804.2 779.2 754.7	103.67 128.61 153.15	14114 17246 20247	830.2 1014.5 1191.0	11.67 11.58 11.50	42 60 81
		10	API API API	36.000 36.000 36.000	35.500 35.438 35.376	.250 .281 .312	96 107 119	429.1 427.6 426.1	9.42 9.42 9.42	9.29 9.28 9.26	989.7 986.4 982.9	28.11 31.49 34.95	4491 5023 5565	249.5 279.1 309.1	12.64 12.63 12.62	4.8 5.9 7.0
	STD		API API API	36.000 36.000 36.000	35.312 35.250 35.188	.344 .375 .406	131 143, 154	424.6 423.1 421.6	9.42 9.42 9.42	9.24 9.23 9.21	979.3 975.8 972.5	38.56 42.01 45.40	6127 6664 7191	340.4 370.2 399.5	12.60 12.59 12.58	8.2 9.5 11
36	xs	20	API API API	36.000 36.000 36.000	35.124 35.062 35.000	.438 .469 .500	166 178 190	420.1 418.2 417.1	9.42 9.42 9.42	9.19 9.18 9.16	968.9 965.5 962.1	48.93 52.35 55.76	7737 8263 8785	429.9 459.0 488.1	12.57 12.56 12.55	12 14 15
	<u></u>	30 40	API API API	36.000 36.000 36.000	34.876 34.750 34.500	.562 .625 .750	213 236 282	413.8 411.1 405.3	9.42 9.42 9.42	9.13 9.10 9.03	955.3 948.3 934.7	62.57 69.50 83.01	9825 10872 12898	545.8 604.0 716.5	12.53 12.51 12.46	19 22 30
				36.000 36.000 36.000	34.000 33.500 33.000	1.000 1.250 1.500	374 464 553	393.6 382.1 370.8	9.42 9.42 9.42	8.90 8.77 8.64	907.9 881.3 855.3	109.96 136.46 162.58	16851 20624 24237	936.2 1145.8 1346.5	12.36 12.29 12.21	64 86
. –—			AP! API	42.000 42.000 42.000	41.500 41.250 41.000	.25C .375 .500	112 167 222	586.4 579.3 572.3	10.99 10.99 10.99	10.86 10.80 10.73	1352.6 1336.2 1320.2	32.82 49.08 65.18	7126 10627 14037	339.3 506.5 668.4	14.73 14.71 14.67	5.7 11 18
42			API API	42 000 42.000 42.000	40,750 40,500 40,000	.625 .750 1.000	276 330 438	565.4 558.4 544.8	10.99 10.99 10.99	10.67 10.60 10.47	1304.1 1288.2 1256.6	81.28 97.23 128.51	17373 20689 27080	827.2 985.2 1289.3	14.62 14.59 14.50	26 25 52
				42.000 42.000	39.500 39.000	1.250 1.500	544 649	531.2 517.9	10.99	10.34	1225.3	160.03 190.85	33233 39181	1582.5 1865.7	14.41	9.

[&]quot;These 'iron pipe size' dimensions are for steal pipe, and are referred to in the Piping Guide (Part I) as 'manufacturers' weights'—see 2.1.3

RI	NG-JOINT DATA	RING OF R	NUMB	ERS AI	ND GA ANGES	PS BET	WEEN R NOF	OPPOS	ING RA	AISED ESSION	FACES					TAB	IF I	R-1
PSI	NOMINAL PIPE SIZE (IN.)	1/2	3/4	1	11/2	2	21/2	3	4	6	8	10	12	14	16	18	20	
150	RING NUMBER GAP (INCH)		•	R15 5/32	R 19 5/32	R22 5/32	R25 5/32	R29 5/32	R36 5/32	R43 5/32	R48 5/32	R52	R56	R59	R64	R68	R72	24 R76
300	RING NUMBER GAP (INCH)	R11 1/8	R13 5/32	R16 5/32	R20 5/32	R23 7/32	R26 7/32	R31 7/32	R37 7/32	R45	R49	5/32 R53	5/32 R57	1/8 R61	1/8 R65	1/8 R69	1/8 R73	1/8 R77
600	RING NUMBER GAP (INCH)	R11 1/8	R13 5/32	R16 5/32	R20 5/32	R23 3/16	R26 3/16	R31 3/16	R37	7/32 R45	7/32 R49	7/32 R53	7/32 R57	7/32 R61	7/32 R65 ₀	7/32 R69	7/32 , R73	1/4 R77
900	RING NUMBER GAP (INCH)	R12 5/32	R14 5/32	R16 5/32	R20 5/32	R24 1/8	R27 1/8	R31	3/16 R37	3/16 R45	3/16 R49	3/16 R53	3/16 R57	3/16 R62	3/16 R66	3/16 R70	3/16 R74	7/32 R78
1500	RING NUMBER GAP (INCH)	R12 5/32	R14 5/32	R16 5/32	R20 5/32	R24	R27	5/32 R35	5/32 R39	5/32 R46	5/32 R50	5/32 R54	5/32 R58	5/32 R63	5/32 R67	3/16 R71	3/16 R75	7/32 R79
2500	RING NUMBER GAP (INCH)	R13 5/32	R16 5/32	R18 5/32	R23 1/8	1/8 R26 1/8	1/8 R28 1/8	1/8 R32 1/8	1/8 R38 5/32	1/8 R47 5/32	5/32 R51 3/16	5/32 R55 1/4	3/16 R60 5/16	7/32	5/16	5/16	3/8	7/16

SPANS OF HORIZONTAL PIPE

THESE TABLES GIVE SPANS SUITABLE FOR PIPE ARRANGED IN PIPEWAYS, AND APPLY WHEN THE SPAN IS PART OF A STRAIGHT PIPE, WITH TWO OR MORE SPANS AT EACH END.

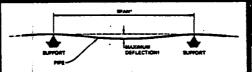


TABLE S-1

FOR VALUES OF BENDING STRESS & MODULUS, REFER TO CHARTS S-2

STEEL PIPE, SCHEDULE 160

NOMINAL PIPE SIZE	Pi	PE SPAN•	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION*
	FL	ln.	(Lb)	(in.)
1.0-INCH	15	8.77	48	0.234
1.5-1NCH	19	3.28	105	0.243
2.0-1NCH	21	6.79	182	0.243
2.5~1NCH	23	9.87	275	0.245
3.0-1NCH	26	3.66	438	0.245
4.0-INCH	29	9.30	793	0.245
6.0-1NCH	36	2.01	1,970	0.245
8.0-INCH	41	2.89	3,732	0.245
10.0-INCH	45	11.75	6,465	0.244
12.0-INCH	50	0.40	9,801	0.244
14.0-INCH	52	4.67	12,185	0.243
16.0-INCH	56	0.99	16,875	0.244
18.0-INCH	59	5.13	22,582	0.244
20.0-INCH	62	8.17	29,266	0.244
24.0-1NCH	68	7.74	45,923	0.244

STEEL PIPE, SCHEDULE 80

NOMINAL PIPE BIZE			WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION*
	FL	in.	(Lb)	(ta.)
1:0-INCH	16	1.05	40	0.244
1.5-! NCH	19	4.29	8.5	0.245
2.0-1 NCH	21	6.49	136	0.243
2.5-INCH	23	9.02	225	0.244
3.0-INCH	26	0.66	342	0.241
4.0-INCH	29	3.07	584	0.236
6.0-1NCH	35	0.22	1,396	0.230
8.0-INCH	39	4.67	2,489	0.223
10.0-INCH	43	8.21	4,172	0.220
12.0-!NCH	47	5.26	6,290	0.219
14.0-INCH	43	9.95	7,883	0.220
16.0-1NCH	52	10.78	10,934	0.217
18.0-INCH	56	0.58	14,545	0.217
20.0-1NCH	59	0.02	18,786	0.216
24.0-1NCH	64	5.48	29,341	0.215

STEEL PIPE, SCHEDULE 40

NOMINAL PIPE SIZE	P1	PE SPAN•	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTIONS
	PL	in.	(Lb)	(la.)
1.0-1NCH	16	1.07	33	0.244
1.5-INCH	1 19	0.49	69	0.237
2.0-1 NCH	20	11.53	107	0.230
2.5-1 NCH	23	3.20	183	0.234
3.0-1NCH	25	3.65	273	0.227
4.9-1NCH	28	1.01	458	0.218
6.0-INCH	32	10.37	1,035	0.202
8.0-INCH	36	7.40	1,836	0.193
19.0-INCH	40	0.55	2,987	0.185
12.0-INCH	42	11.48	4,386	0.180
14.0-INCH	44	11.52	5,463	0.173
16.0-! HCH	47	10.83	7,640	0.178
18.0- NCH	50	10.€5	10,289	0.179
20.0-1NCH	52	11.02	12,880	0.174
24.0-INCH	57	5.84	19,844	0.171

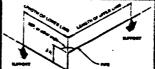
STEEL PIPE, SCHEDULE 20

NOMINAL PIPE SIZE	Pi	PE SPAN•	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION*
	FL	· In.	(Lb)	(in.)
8.0-1NCH	34	6.46	1,551	0.172
10.0-INCH	36	4.22	2,324	0.152
12.0-INCH	37	9.18	3,199	0.139
14.0-1NCH	41	0.64	4,385	0.149
16.0-INCH	42	4.07	5,593	0.139
18.0-INCH	43	2.92	6,984	0.129
20.0-1NCH	46	7.22	9,553	0.135
24.0-1NCH	48	2.35	13,437	0.120
30.0-INCH	54	11.58	24,415	0.125

STEEL PIPE, SCHEDULE 10

NOMINAL PIPE SIZE	PI	PE SPAN+	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM DEFLECTION*
	FL	· In.	(Lb)	(in.)
1.0-INCH	15	11.14	29	0.240
1.5-INCH	18	5.62	56	0.223
2.0-INCH	19	11.77	84	0.209
2.5-INCH	21	7.24 .	127	0.202
3.0-INCH	22	10.63	182	0.186
4.0-1 NCH	24	5.31	288	0.164
6.0-1 NCH	27	5.75	632	0.141
8.0-1NCH	29	9.72	1,103	0.128
10.0-INCH	32	0.93	1,782	0.119
12.0-INCH	33	11.37	2,592	0.112
14.0-INCH	38	5.23	3,809	0.131
16.0-INCH	39	4.50	4,886	0.120
18.0-INCH	40	1.82	. 6,087	0.111
20.0-INCH	40	8.77	7,454	0.103
24.0-INCH	41	9.43	10,530	0.090

ALUMINUM PIPE, SCHEDULE 80


NOMINAL PIPE SIZE	•	IPE SPAN•	WEIGHT OF WATER-FILLED PIPE SPAN	MAXIMUM BEFLECTION		
	Ft.	in.	(Lb)	(fm.)		
1.0-1 NCH	17	4.67	18	0.414		
1.5-INCH	20	2.26	41	0.386		
2.0-1 NCH	22	0.19	66	0.367		
2.5-INCH	24	5.26	110	0.374		
3.0-INCH	26	4.25	169	0.357		
4.0-INCH	28	11.94	295	0.336		
5.0-INCH	33	11.69	719	0.314		
8.0-INCH	37	6.31	1,306	0.294		
10.0-INCH	39	8.42	1,936	0.264		

ALUMINUM PIPE, SCHEDULE 4

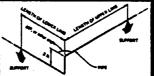
SIOMINAL PIPE SIZE	74	PE SPAN*	WEIGHT OF WATER-FILLED PUT STAN	MAXIMUM DEFLECTION
	FL	ła.	(LA)	(lq.)
1.0-1NCH	16	8.12	15	0.381
1.5-1NCH	18	11.07	34	0.339
2.0-INCH	20	3.81	55	0.313
2.5-1NCH	22	10.19	93	0.327
3.0-1 NCH	24	4.06	142	0.305
4.0-INCH	26	4.45	244	0.278
6.0-INCH	29	10.15	569	0.242
8.0-INCH	32	E. 17	1 1,029	0.223
10.G-INCH	35	3.12	1,695	0.208

"Piping Cuiste", PO Sec 277. Cutall, CA 9×928, US-

CHARTS S-2

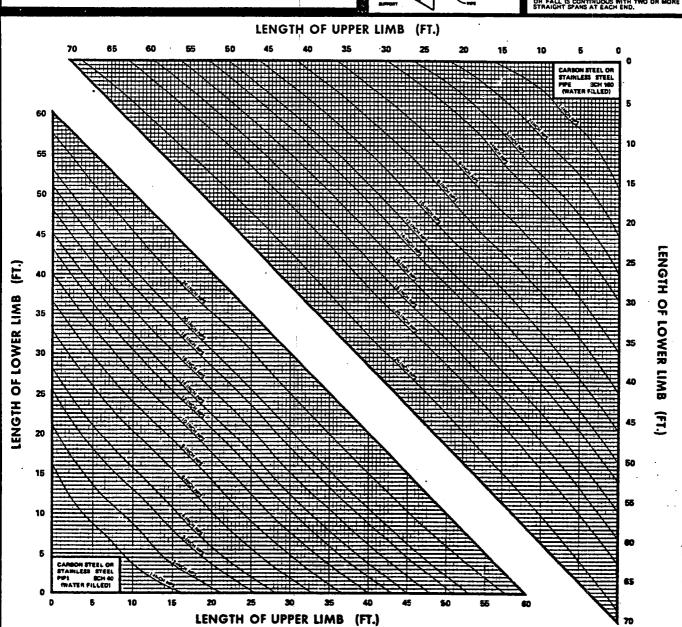
MESE CHARTS GIVE THE MAXIMUM LENGTH FRMISSIBLE FOR EITHER HORIZONTAL LIMB I THE PIPING ARRANGEMENT SHOWH, AND PPLY WHEN THE SPAN INCLUDING THE RISE R FALLIS CONTINUOUS WITH TWO OR MORE

LENGTH OF UPPER LIMB (FT.)


LOWER CHART: SCH 40, ALUMINUM

Data for water-filled steel pipe are based on a maximum bending stress of 4000 PSI, occurring at supports and due to bending by the weight of pipe plus water: applied stresses may increase the resultant tensile stress. These data apply to carbon-steel and stainless-steel pipe having a tensile modulus of elasticity of 29,000,000 PSI. For water-filled aluminum pipe, spans are similarly based on a stress of 2000 PSI and a modulus of 10,000,000 PSI.

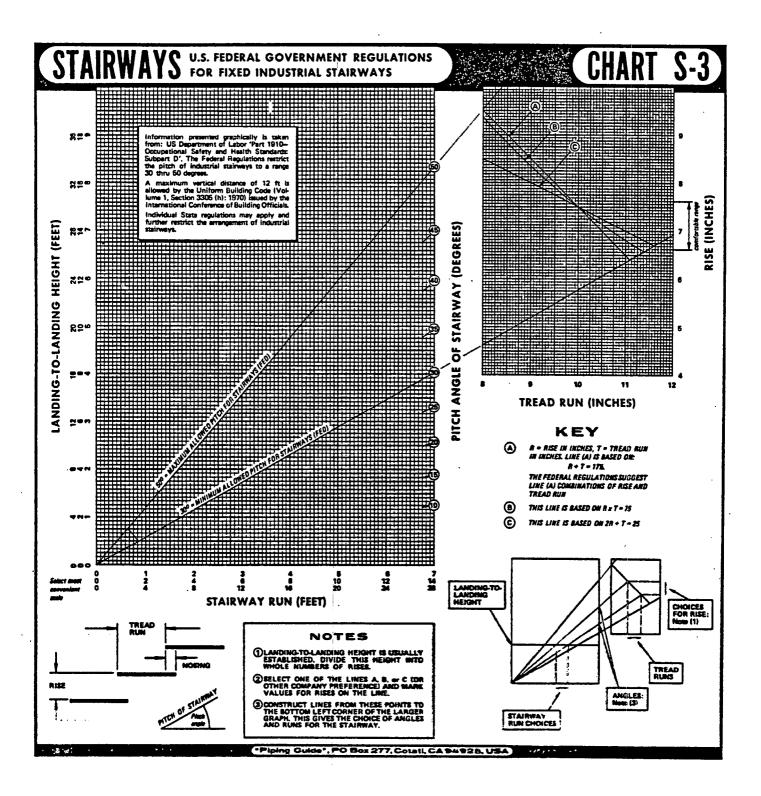
"Piping Guide", PO Box 277, Cotati, CA 94928, USA

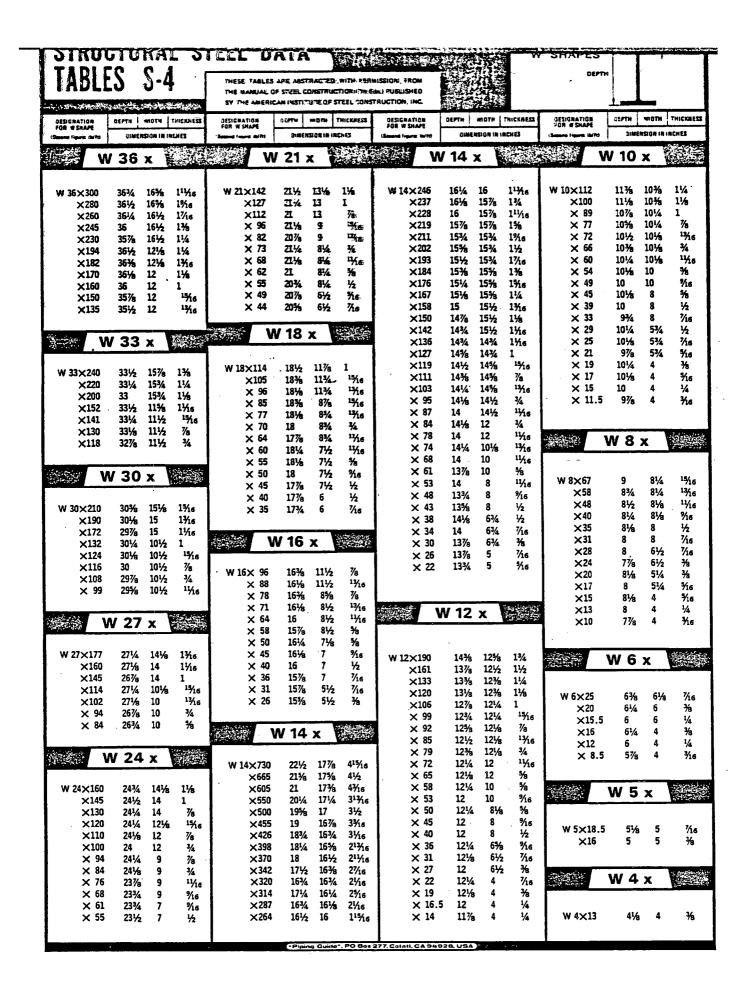

UPPER CHART: SCH 80, ALUMINUM

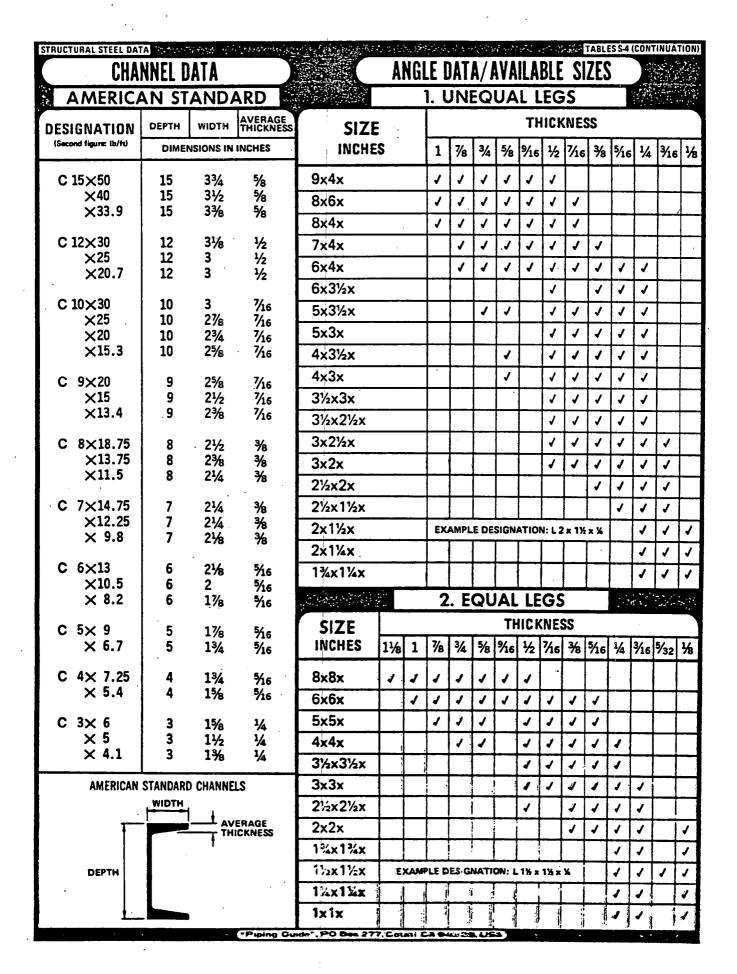
SPANS OF HORIZONTAL PIPE WITH 3-FT. RISE OR FALL

(CHARTS S-2)

THESE CHARTS GIVE THE MAXIMUM LENGT PERMISSIBLE FOR EITHER HORIZONTAL LIM IN THE PIPING ARRANGEMENT SHOWN, AN APPLY WHEN THE EPAN INCLUDING THE RAY OR FALL IS CONTINUOUS WITH TWO OR MOR OR FALL IS CONTINUOUS WITH TWO OR MOR


SCH 40, STEEL


Data for water-filled steel pipe are based on a maximum bending stress of 4000 PSI, occurring at supports and due to bending by the weight of pipe plus water: applied stresses may increase the resultant smalle stress. These data apply to carbon-steel and stainless-stee pipe having a tensile modulus of elasticity of 29,000,000 PSI. For water-filled aurimum p-pic spans are similarly based on a stress of 2000 PSI and a modulus of 10,000,000 PSI.


"Pipino Guido", PO Box 277. Cotati, CA 94925 USF

UPPER CHART: SCH 160, STEEL

TABLE T-1 COPPER TUBE FOR STEAM & WATER SERVICES REPRODUCED BY COURTESY OF STOCKHAM VALVES & FITTINGS

The following dimensional data covering copper water tubing conform to ASTM B251-58T (tentative) specification for general requirements for Wrought Seamless Copper and Copper Alloy Pipe and Tube.

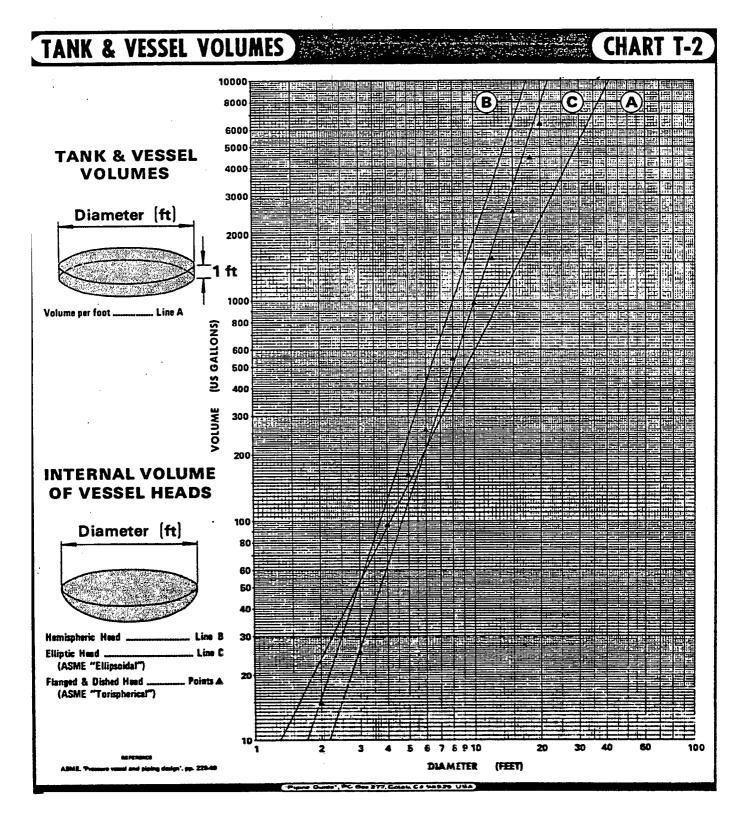
TYPE K TUBING

Heavy wall thickness, hard or soft, is furnished for interior plumbing and underground service; steam and hot water heating systems; fuel oil lines; industrial process applications carrying liquids, air and gases; air conditioning, refrigeration, and low pressure hydraulic lines. Hard copper tube is used for gas service lines because its rigidity eliminates traps caused by sagging lines.

	NO	MINAL DIMENS	IONS		THEORETICAL AREAS BASED ON NOMINAL DIMENSIONS						
Nominal Size	Outside Diameter (Inches)	Inside Diameter (Inches)	Wall Thickness (Inches)	Cross Sectional Area of Bore (Sq. Inches)	External Surface (Sq. Ft. Per Lin. Ft.)	Internal Surface (Sq. Ft. Per Lin. Ft.)	Theoretical Weight (Pounds Per Foot)				
1/4 1/8 1/2 3/4 1			.500 .402 .049 .127 .625 .527 .049 .218 .875 .745 .065 .436			.080 .105 .138 .195 .261	0.145 0.269 0.344 0.641 0.839				
1¼ 1½ 2 2½ 3	1.375 1.625 2.125 2.625 3.125	1.245 1.481 1.959 2.435 2.907	.065 .072 .083 .095 .109	1.22 1.72 3.01 4.66 6.64	.360 .425 .556 .687 .818	.326 .388 .513 .638 .761	1.04 1.36 2.06 2.93 4.00				

TYPE L TUBING

Medium wall thickness, hard or soft, is used for medium pressure interior plumbing and for steam and hot water house-heating systems, panel heating, plumbing vent systems, industrial and process applications.


	NOI	MINAL DIMENSI	ons	THEOR ON N			
Nominal Size	The state of the s		Thickness	Cross Sectional Area of Bore (Sq. Inches)	External Surface (Sq. Ft. Per Lin. Ft.)	Internal Surface (Sq. Ft. Per Lin. Ft.)	Theoretical Weight (Pounds Per Foot)
1/4 3/8 1/2 3/4 I			.078 .145 .233 .484 .825	.098 .131 .164 .229 .294	.082 .113 .143 .206	0.126 0.198 0.285 0.455 0.655	
1½ 1½ 2 2½ 3	1.375 1.625 2.125 2.625 3.125	1.265 1.505 1.985 2.465 2.945	.055 .060 .070 .080 .090	1.26 1.78 3.09 4.77 6.81	.360 .425 .556 .687 .818	.331 .394 .520 .645 .771	0.884 1.14 1.75 2.48 3.33

TYPE M TUBING

Light wall thickness, hard only, furnished for applications requiring little or no pressure or tensions on the lines.

	NO	MINAL DIMENSI	ons	THEOR ON N			
Nominal Size	Size Diameter (Inches) Diameter (Inches) Thickness (Inches)		Cross Sectional Area of Bore (Sq. Inches)	External Surface (Sq. Ft. Per Lin. Ft.)	Internal Surface (Sq. Ft./ Per Lin, Ft.)	Theoretical Weight (Pounds Per Foot)	
1½ 1½ 2 2½ 3	1.375 1.625 2.125 2.625 3.125	1.291 1.527 2.009 2.495 2.981	.042 .049 .058 .065 .072	1.31 1.83 3.17 4.89 6.98	.360 .425 .556 .687 .818	.338 .400 .526 .653 .780	0.682 0.940 1.460 2.030 2.680

"Piping Guide", PO Box 277, Cotati, CA 94928, USA

						e e e e e e e	30 m	4 15 M	ing (vg:	77 1978			9545 F	ger en	3. July 1		
	IAL	VE D	ATA									TA	BLI	<u> </u>	-1		
			:			1	IMON	HAL	PIPE	SIZE	(IN.)					
3	SWING CHECK VALVES SOLID WEDGE & DOUBLE-DISC (SPLLIT-WEDGE) SOLID WEDG	PSI	2	21/2	3	4	6	8	10	12	14	20	24				
		150 FLANGED	7	7 1	8	9	10½	$11\frac{1}{2}$	13	14	15	16	17	18	20		
~	T-WED	150 SEVELED	8 <u>1</u>	9 <u>1</u>	11 1	12	15 7	15 <u>1</u>	18	19 3	22 1	24	26	28	32		
AIVE	(SPL)	300	8 1	9 <u>1</u>	11 1 8	12	15 7	16½	18	19 3	30	33	36	39	45		
) 1	LE-DIS	400	$\coprod_{\frac{1}{2}}^{\frac{1}{2}}$	13	14	16	19 1	$23\frac{1}{2}$	26½	30	32 1	35½	38 <u>1</u>	41½	48		
3	BOOD	600	$11\frac{1}{2}$	13	14	17	22	26	31	33	35	39	43	47	55		
TEF	DGE &	900	141/2	16½	15	18	24	29	33	38	40 <u>1</u>	44 <u>1</u>	48	52	61		
	LID WE	1500	141/2	16 <u>1</u>	18 1	21 1 /2	27 3	32 <u>3</u>	39	44 <u>1</u>	49 <u>1</u>	54 1 /2	60 <u>1</u>	65 <u>1</u>	76		
	SO	2500	17 3	20	22 3	26½	36	40 <u>1</u>	50	56			**				
		150	8	81/2	9 <u>1</u>	$11\frac{1}{2}$	16	19 1	24 1	27 1		D.L.	\ T				
	GLOBE	150 BEVELED	8	8 1	91/2	$11\frac{1}{2}$	16	19 ¹ / ₂	24 1	27 1 /2	NOTES						
ILVE:		300	101/2	$11\frac{1}{2}$	$12\frac{1}{2}$	14	$17\frac{1}{2}$	22	241/2	28	DIMENSIONS IN THIS TABLE A FROM ANSI B16.10 AND APPLY FLANGED VALVES AND VAL WITH ENDS BEVELED FOR WELD						
35		400	$11\frac{1}{2}$	13	14	16	19 1	23 1	26½	30		HOWN:-	DEAEFED	run NEL	DING		
99		600	$11\frac{1}{2}$	13	14	17	22	26	31	33	l ,	آ رُ	1 1 (٠^٠	`\		
田田	1 1	900	141/2	16½	15	18	24	29	33	38					4		
S		1500	141/2	16½	18 1	$21\frac{1}{2}$	27 3	32 3	39	44 <u>1</u>		TAB	LED DIMEN	ISION	 -∤		
		2500	17 3	20	22 3	26½	3 6	40 1	50	56				S THE TAI			
	ટ	150 Flanged	8	8 <u>1</u>	9 <u>1</u>	$11\frac{1}{2}$	14	19 1	24 1	27 1	FOF VAI VAI	R BOTH I VE. FOR VES, 1/1	RAISED F 1 150 PSI 16 INCH I	ACES OF AND 301 HAS BEEN	THE O PSI N IN-		
S	ALVI	150 BEVELEO	8	8 <u>1</u>	9 <u>1</u>	$11\frac{1}{2}$	14	19 1	241/2	27 1 /2	. CLU Ani	DED FO	R EACH I	RAISED F F RATING	ACE, 3 400		
AVE	CK	300	10 ¹ / ₂	$11\frac{1}{2}$	$12\frac{1}{2}$	14	$17\frac{1}{2}$	21	24 1	28	INC	LUDED F	OR EACH	RAISED F	ACE.		
3		400	$11\frac{1}{2}$	13	14	16	19 1	23 1	26 1	30	LIF	T-CHECK	VALVES,	AND AND TO OB	THE		
害	DISC	600	$11\frac{1}{2}$	13	14	17	22 -	26	31	33				MENSION			
8	E S	900	141/2	16½	15	18	24	29	33	38	· 1-	<u>[[]</u>	r	-4-			
S		1500	141/2	16½	18 <u>1</u>	$21\frac{1}{2}$	27 3	32 3	39	44 1	Ĺ	 - 1 2	₹ [J		
		2500	17 3	20	22 3	26 1	36	40 1	50	56		HALF T	ABLED OIM	MENSION			
Section .		"Piping C	uide", P	O Box 2	277, Co	ati, CA	94928	,USA	(Attornation)	· (本)							

 $48\frac{1}{2}$

 $76\frac{1}{2}$

WEIGHTS OF PIPING

TABLES W-1

REPRODUCED BY COURTESY OF BERGEN-PATERSON PIPESUPPORT CORPORATION

NOTES

A step in the design of piping supports is calculation of the weight of the piping to be supported. This will necessarily include weight of pipe, water or other fluid being transported, fittings, flanges, valves, insulation and any other related items the weights of which are also to be supported as part of the piping system.

PIPE & INSULATION

Pipe material weights are shown in boldface type in tables W-1. These weights are subject to tolerances of applicable manufacturing specifications.

To determine weights of insulation to be added to weights of flanges, valves and fittings, multiply weight per foot of pipe covering by appropriate factor shown lightface.

Weights of insulation are shown for both calcium silicate and for conventional 85% magnesia alone or in combination with diatomaceous silica. Weights are based on the density of 11 pounds per cubic foot for calcium silicate and 85% magnesia and on 21 pounds per cubic foot for diatomaceous silica. Weights shown include approximate weights of canvas, cement, paint, wire and bands but not weatherproof or other special protection. Weights of other compositions of pipe covering will vary and should be obtained from the insulation manufacturer. Add weight of weatherproof protection where specified. Weights shown for insulation are related to conventional thickness recommendations by insulation manufacturers and do not necessarily agree with insulation specifications for a particular job. Insulation specifications should be reviewed prior to development of final weights of piping.

VALVES

Valve weights vary between particular manufacturer's designs. Weights shown herein are approximate only and do not include weights of electric motor operators or other devices which may be specified for particular valves. It is suggested that wherever possible, valve weights should be obtained from the manufacturer of the particular valves which are to be installed in the piping.

Weights of 125 and 250 pound cast iron valves are for valves with standard flange ends. Weights of steel valves are for welding end type. To calculate weights of flanged end steel valves, add tabulated weight of valve to weight of two corresponding slip-on flanges.

BUTT-WELDING REDUCERS

Weights shown for butt welding reducers are for one pipe size reduction.

"Piping Guide", PO Box 277, Cotati, CA 94928, USA

"Piping Guide", PO Box 277, Cotati, CA 94928, USA

TA	DIF WITE		Ä.				WEI	GHT	s OF	PIP	ING	M	ATE	RIA	LS					
IA	BLE W-1			1	" PI	PE	SIZE							1!	4" P	IPE	SIZ			
	Schedule No.		10		30		160	1				40			80		150			
	Hail Designation	S 1	TO		x \$				XX.	;		STD)		XS				ХX	s
PIPE	Thickness-inches	.1	33		179		.250		.35	3		.140)	.191			.250		.38	2
•	Pipe-Lbs./Ft.	1.	.68		2.17	1	2.84		3.66		Г	2.27			3.00		3.76		5.22	
	Water-Lbs./Ft.		37	\dagger	.31	+	.23		.12			.65			.56		.46		.2	7
			.0		1.0		2.3	$\neg \uparrow$	2.0	,		1.5	;	t	1.6		3.0		3.	3
	90° Elbow		.3		.3		.3		.3		L	.3			.3		.3		.3	
NE.	45° Elbow		1.0 .2		1.0 .2		2.0 .2		2.: .2			1.3 .2	1		1.4		2.5 .2		2. .2	
WELDING SOCKET FITTINGS	Tee		1.3 .4		1.4		3.2 .4		3.: .4			2.0)		2.2 .5		3.8 .5		4. .5	
¥E.			.4 1.1		.6 1.1	+	.1.4	$\neg \uparrow$	1.	5		1.0)		1.1		1.4		1.	
Š	Couplings	1	1.1		1.1		1,1		1.	1	<u>_</u>	1,2			1.2	_	1.2		١.	
	Сар		.5 .3	.5 .3			1.2		1 .3		1	.9 .3			.9 .3	Ì	1.0		1. .3	
		100	200	300	400	500	600	700	800	1000	10	2	00	300	400	500	600	700	800	1000
	Temp. Range. °F.	to 199	to 299	to 399	to 499	to 599	10 699	10 799	10 999	1199	19		99	10 399	to 499	10 599	to 699	10 799	10 999	1199
9	Thickness—Inches Calcium Silicate	1	1	1½	2	2	21/2	21/2	3	3	T	T	1	1½	2	2	21/2	21/2	3	3
ER	Weight Lbs./Fr.	.7	.7	1.2	1.9	1.9	2.8	2.8	3.7	3.7	.7		.7	1.5	1.8	1.8	2.7	2.7	3.6	3.6
COVERING	Thickness—Inches High Temp. Comb.						2½	21/2	3	3							21/2	21/2	3	3
	Thickness-Inches 85% Magnesia	1	1	11/2	2	2					1		1	1½	2	2				
	Total Wt./Ft.	.7	.7	1.2	1.9	1.9	3.3	3.3	4.7	4.7			.7	1.5	1.8	1.8	3.2	3.2	5.8	5.8
	Pressure Rating	Castiron					Steel		1500 2500		-	stir		1.50		100	Steel	000	1,500	2500
	psi	125	250	150	300	400	600	900	1500	14	12		5	150	300 4	400	600	900	1500	22
Š	Screwed or Slip-On	1.5	1.5	1.5	1.5		1.5		1.5	1.5	Įį.		1.5	1.5	1.5		1.5		1.5	1.5
FLANGES	Welding Neck			3 1.5	1.5		. 1.5		11	15 1.5				3 1.5	6 1.5		1.5		11	1.5
Œ	Lap Joint			2 1.5	1.5		1.5		11.5	1.5		.		3 1.5	1.5		1.5		1.5	23 1.5
	Blind	2.5 1.5	1.5	3	5 1.5		1.5		11	16 1.5	3.	5 5	5.0 1.5	3 1.5	6 1.5		1.5		13 1.5	1.5
	S.R. 90° Elbow	6 3.6	1,10	112			14 3.7		30 3.8		3				16 3.7		18 3.8		32 3.9	
ED IGS	L.R. 90° Elbow	8					† <u>**</u>		"		1	0		· · -	18		1			
FLANGED	45° Elbow	3.8	 	-			13		26		3	,			14		15		30	-
교교	ļ	3.2	-		-	-	3.4	<u> </u>	3.6	-		.3			3.4		3.5		3.7 50	
	Tee	5.4				<u> </u>	5.6		5.7			4			5.6		5.7		5.9	-
	Flanged Bonnet Gate				<u> </u>		8.5 1.5		67 4.3						3.8		18 4.0	<u> </u>	95 4.4	-
S	Flanged Bonnet Globe or Angle						13		70 4.3								20 4.0		105	
VALVES	Flonged Bonnet Check									·		7			21 4					
>	Bonnetless-Gate						8.5 1.5		20 0.9								16 2.2		33 1.1	
	Bannetiess-Globe								28 1.2										38 1.1	
BOLTS	One Complete Flanged Joint	1	2	1	2		2		6	6	Γ		2	1	2		2		6	9

CONTINUED

TA	DIE W 1						WE	GHT	rs o	F PI	ΡI	NG	MAT	ERI	ALS			-) ;	ji je zaže
IA	BLE W-1			1	<i>}</i> 2"	PIPE	SIZ	E							2" P	IPE	SIZ	E .		
	Schedule No.		40		80		160						40		80		160			
	Wall Designation	S	TD		x s				X	(\$		s	TD		xs				X	KS
PIPE	Thickness-Inches		145		.200		.281		.4	00		.1	54		.218		.343		.4	36
	Pipe-Lbs./Ft.	2	.72		3.63		4.87		6.	41		3	.65		5.02		7.45		9.	03
	Water-Lbs./Ft.		.88		.77		.61		.4	(1		1	.46		1.28		.97		.;	77
	90° Elbow		2.0 .4		2.5 .4		5.5 .4			.0 4			3.3 .5		3.8 .5		.5 .5			.4 5
WELDING SOCKET FITTINGS	45° Elbow		1.7 .2	-	2.0 .2		4.2 .2			.8 2			2.7 .2		2.9		5.0 .2			.9 2 .
FT FIT	Tee		2.7 .6		3.0 .6		6.5 .6			.8 6			3.8 .6		4.4 .6		7.8 .6			.7 6
SOCK	Couplings		1.2 1.3	<u> </u>	1.3		2.0 1.3			.0 .3			2.0 .4		2.2 1.4		3.9 1.4			.8 .4
	Сар		1.2 .3		1.8		2.2 .3			. 5 3			1.8 .4		2.0 .4		3.6 .4	- 1	4.	.0 4
	Temp. Range. °F.	100 • to 199	200 to 299	300 to 399	400 to 499	500 to 599	600 to 699	700 to 799	800 to 999	1000 to 1199		100 to 199	200 to 299	300 to 399	400 to 499	500 to 599	600 to 699	700 to 799	800 to 999	1000 1000
ပ္ဆ	Thickness—Inches Calcium Silicate	1	1	11/2	2	2	21/2	21/2	3	3		1	1	11/2	2	2	21/2	21/2	3	3
COVERING	Weight Lbs./Ft.	.8	.8	1.4	2.5	2.5	3.5	3.5	4.5	4.5	lt	1.0	1.0	1.7	2.5	2.5	3.5	3.5	4.2	4.2
CO	Thickness—Inches High Temp. Comb.						2½	2½	3	3							21/2	21/2	3	3
	Thickness—Inches 85% Magnesia	٦	1	1,1/2	2	2						1	1	11%	2	2				
	Total Wt./Ft.	.8	.8	1.4	2.5	2.5	4.2	4.2	5.6	5.6		1.0	1.0	1.7	2.5	2.5	4.3	4.3	5.9	5.9
	Pressure Rating	125	250	150	300	400	Steel 600	900	1500	2500	╽┟	Cost	Iron 250	150	300	400	Steel	000	1500	12522
	Screwed or	3.5	6	3	7	400	8	700	20	30	┞	5	9	5	8	400	600	900	1500 33	2500 50
GES	Slip+On	1.5	1.5	1.5	1.5		1.5	<u> </u>	1.5	1.5 32	┞	1.5	1.5	1.5	1.5		1.5		1.5	1.5
FLANGES	Welding Neck			1.5	1.5		1.5		1.5	1.5				1.5	1.5		1.5		31 1.5	50 1.5
u.	Lap Joint			3 1.5	7 1.5		8 1.5		18 1.5	32 1.5		:		5 1.5	10 1.5		11		30 1.5	47 1.5
	Blind	4.0 1.5	7 1.5	4 1.5	8 1.5		9 1.5		20 1.5	32 1.5		6 1.5	10 1.5	5 1.5	11 1.5		12 1.5		33 1.5	52 1.5
	S.R. 90° Elbow	10 3.7		13 3.7	24 3.8		28 3.9		50 4			16 3.8	24 3.8	19 3.8	28 3.8		42 4		80 4.2	
IGED	L.R. 90° Elbow	12		14	26 4							18 4.1	28 4.1	23 4,1	31 4.1					
FLANGED	45° Elbow	9 3.4		12 3.4	20 3.5		24 3.5		44 3.7			15 3.4	23 3.5	17 3.4	25 3.5		35 3.7		70 3.9	
	Tee	18 5.6		21 5.6	33 5.7		37 5.8		7D 6			24 5.7	38 5.7	28 5.7	40 5.7		50 6		120 6.3	
	Flanged Bonnet Gate	27 6.8			50 4		70 4.2		115 4.5			37 6.9	52 7.1	43 3.9	65 4.1		83 4.4		155	
.	Flanged Bonnet Globe or Angle				40 4.i		46 4.2		110 4.5			30 7	64 7.3	42	58 4.2		80		160	
VALVES	Flonged Bonnet Check				32 4.ì		33 4.2		80 4.5		l	26 7	51 7.3	27 4	55 4.3		47 4.4		110	
>	Bonnetless-Gate	<i></i>					24 2.0		40 1.2								42 2.3		50 1,4	
	Bonnetiess-Globe								44								1	 !	55	
BOLTS	One Complete Flanged Joint	1	2.5	1	3.5		3.5		9	12	T	1.5	25	7.5	•	į	4.5	ļ	72.5	20
REPROD	UCED BY PERMISSION OF TH	IE BERG	ENPATE	RSON P	PESUPP	ORT CO	PERAT	IDN:		·: '	, , ;	×	. سو ۱۰	PIPI	NE COLD	E',#C 8	DX ETT.	TATE	LA SEE	D. '055

_						:		۶ ٦		4 ::							-					
	¥	Des Canalais				-	,							. 7	1	2.0	Y	· .	313000	· #4	S 55: (2 Ken 300
٠,	BOLTS	One Complete Florged Joint MCIB IN FERRISHE		. 1	2.5	•	4.6	a-A	1.0	-	-16		٠,		,	75 - 15	المراضون ما		S - 5	1	3.1	3
4	- 42 3 9	sales heres.		:	٠		17.51		ر حدد		7.			- T.		1275		10 77 . Sud.			447	A. TORE
ş	THE RESERVE		-				نحسب	- ·						1-2	2.5	1.5	. 1					200
. 2		CE W CENTER	(D) 78			THE P	9 60 1	ent co	704.41	23	Dr. Charles	-	_1_	7		30.00	prom to	-	4-3		12.5	2
•		*** * * * * * * * * * * * * * * * * *						S. 1 3 40	-	-				18 1 to	Section 1		_			2		
		•••			.,					-		7	100	Official and			DITE.	T. PU A	78 727 7	divin.		

TA	DIE W 1						WE	GHT	s o	F PI	Ρį	NG	MAT	ERIA	LS	7				
HI	BLE W-1			2	1½" F	PIPE	SIZ	E				,			3" P	PE	SIZE	:		
	Schedule No.		40		06		160	į					40		30		150			
	Wail Designation	_	TD	-	X \$	<u> </u>			X X				TD	ļ	:<5				XX	S
d d	Thickness -Inches		203	-	.276		.375		.5				216	-	.300	-	.438		.60	
	Pipe-Lbs./Ft. Water-Lbs./Ft.		.79	- 	7.66 1.84		10.0	_	13				.58	-	10.3	+	14.3		18.	
			2.9	╁	3.9		1.54 5.2		1.9	-			.20	+	2.86		2.34		1.8	
1	L.R. 90° Elbow		.6		.6		.5	1		.o	П		4.6 .8		6. 1 .3		8.4 .8		10. 8.	
S	S.R. 90° Elbow		2.0 .4		. 2.6 .4								3.0 .5		4.0 .5					
NET	45° Elbow		1.6 .3		2.1 .3		2.6 .3			.5 3			2.4 .3		3.2 .3		4.4 .3		5.	
15 17 17	Tee		5.9 .8		6.8 .8		7.9 .8		10	.0			7.4 .8		9.5 .8		12.2 .8		14.	.8
BUTT WELDING FITTINGS	Lateral		9.2 1.5		13.5 1.5								7.0 1.8		24.0					
×	Reducer		1.7 .3		2.2		2.9 .3		4.	.0 3			2.2 .3		2.9		3.7 .3		4.	
	Сар		.8 .4	1.	1.0		2.0		2.				1.4 .5		1.8	\top	3.5 .5	\neg	3.	.7
	_	100	200	300	400	500	600	700	800	1000		100	200	300	400	500	600	700	800	1000
-	Temp. Range. °F.	to 199	to 299	10 399	10 499	to 599	10 699	to 799	10 999	to 1199		ta 199	to 299	to 399	to 499	to 599	to 699	to 799	to	to
. g	Thickness—Inches Calcium Silicate	1	1	11/2	2	2	21/2	21/2	3	31/2		177	1	11/2	2	2	21/2	3	999	1199
	Weight Lbs./Ft.	1.1	1.1	2.3	3.2	3.2	4.3	4.3	5.5	6.9		1.3	1.3	2.1	3.0	3.0	4.1	5.2	5.2	6.7
COVERING	Thickness-Inches High Temp. Comb.						21/2	21/2	3	31/2		1.5			3.0	3.0	21/2	3.2	3.2	31/2
	Thickness-Inches 85% Magnesia	1	1	11/2	2	2						1	1	11/2	2	2				
÷	Total Wt./Ft.	1.1	1.1	2.3	3.2	3.2	5.2	5.2	7.4	9.6	П	1.3	1.3	2.1	3.0	3.0	5.1	6.9	6.9	9.2
	Pressure Rating	Cas	tiron				Steel				П		Iron				Steel			
·	psi	125	250	150	300	400	600	90.0	1500	2500		125	250	150	300	400	600	900	1500	2500
ES	Screwed or Slip-On	7 1.5	13 1.5	8 1.5	13 1.5		17 1.5		45 1.5	67 1.5		9 1.5	16 1.5	9 1.5	16 1.5		20 1.5	35 1.5	60 1.5	100 1.5
FLANGES	Welding Neck			9 1.5	14		19 1.5		43 1.5	60 1.5				9 1.5	17 1.5		23 1.5	33 1.5	59 1.5	105
u.	Lap Joint			9 1.5	15 1.5		19 1.5		46 1.5	67				9 1.5	18 1.5		21 1.5	35 1.5	61 1.5	103
	Blind	8 1.5	14 1.5	. 9 1.5	15 1.5		19 1.5		46 1.5	68 1.5		9.5 1.5	18 1.5	10 1.5	19 1.5		23 1.5	37 1.5	61 1.5	105 1.5
	S.R. 90° Elbow	21 3.8	35 3.9	29 3.8	42 3.9		53 4.1		120 4.4			28 3.9	45 4	36 3.9	54 4		66 4.1	90	150 4.6	
GED	L.R. 90° Elbow	27 4.2	40 4.2	33 4.2	47 4.2							33	50	40	60		7	7.0	1.0	
FLANGED FITTINGS	45° Elbow	20	35	23	37		45		110			4.3 25	4.3	4.3 27	4.3		60	90	130	
<u></u>	Tee	3.5	3.6 52	3.5 43	3.6 55		3.8 78		3.9 160			3.5 40	3.6 66	3.5 52	3.6 82		3.8	3.9 150	225	
		5.7	5.8	5.7	5.9		6.2		6.6			5.9	- 6	5.9	6		6.2	6.5	6.9	1
	Flanged Bonnet Gate	50 7	82 7.1	53 4	83 4.1		108		220 5.1			66 7	110 7.4	77 4	120 4.4		153 4.8	225 4.9	338 5.3	
S.	Flanged Bonnet Globe or Angle	43 7.1	90 7.4	50 4.1	85 4.4		100		250 5.1			56 7.2	120 7.6	80 4.2	100 4.6		132 4.8	240 4.9	340 5.3	
VALVES	Flanged Bonnet Check	36 7.1	71 7.4	32 4.1	70 4.4		70 4.6		175 5.1			46 7.2	100 7.6	50 4.2	100		90 4.8	145	235 5.3	
>	Pressure Seal Bonnet-Gate						70 2.2	100 1.7	100		П	- ••		7.4	7.0		85 2.5	170	180 2.5	
	Pressure Seal						80	120	120		П						91	180	260	
BOLTS	Bonnet-Globe One Complete	1.5	6	1.5	7	•	2.4	2.3	2.3			, .		, -			2.5	2.5	2.5	
	Flanged Joint					1007.5			19	27	Ц	1.5	6	1.5	7.5		8	12.5	25	37
HEPHUL	D''110 BY PERMISSION OF TI	NE BEH	EN-PAT	KSUN	rirESUPI	OHT CO	HPORAT	HON E		و المحتمد	4.4	ar ser	57.87	'PIP	NG GUI	DE', PO	80X 277.	COTAT		928, USA

TA	DIE W 1	4.3					WEI	GHT	s OF	PII	119	1G	MAT	ERIA	LS					多色素
IA	BLE W-1			3	½" P	IPE	SIZ	E						4	ı" Pi	PE	SIZE			
	Schedule No.	40	80									40	80	120	160		•			
_ w	Wall Designation	STD	ХS	XXS							1	STD	XS			XXS				
PIP	Thickness-Inches	.226	.318	.636							-	.237	.337	.437	.531	.674			<u> </u>	
	Pipe-Lbs./Ft.	9.11	12.51	22.85							 -	10.8	15.0 4.98	19.0	22.5	27.5 3.38				
	Water-Lbs./Ft.	4.28 6.4	3.85 8.7	2.53 15.4								5.51 8.7	11.9	4.4/	4.02 17.6	21.2		-		<u> </u>
	L.R. 90° Elbow	.9	.9	.9	·						L		1		1	ï			<u> </u>	
165	S.R. 90° Elbow	4.3 .6	5.8 .6									5.8 .7	7.9 .7		-	ļ			<u> </u>	
T. X.	45° Elbow	3.3 .4	4.4 · .4	7.5 .4						4		4.3 .4	5.9 .4		8.5 .4	10.1 .4				
SUT.	Tee	9.9	12.6 .9	20 .9	:		:					12.6	16.4		23 1	27				
BUTT WELDING FITTINGS	Lateral	19.2 1.8	25.6 1.8								Ī	30 2.1	45 2.1							
WE	Reducer .	3.1	4.1	6.9								3.6 .3	4.9 .3		6.6 .3	8.2 .3				
	Сар	2.1	2.8	5.5								2.6	3.4 .6		6.5 .6	6.7				
		100	200	300	400	500	600	700	800	1000		100	200	300	400	500	600	700	800	1000
	Temp. Range. °F.	10 199	16 299	10 399	to 499	10 599	10 699	.to 799	999	10 1199		to 199	10 299	10 399	10 499	10 599	10 699	10 799	999	10 1199
2	Thickness-Inches Calcium Silicate	,	1	135	2	21/2	21/2	3	3½	3½		1	1	11/2	2	21/2	21/2	3	31/2	31/2
COVERING	Weight Lbs./Ft.	1.8	1.8	2.8	3.7	4.9	4.9	6.4	7.8	7.8		1.6	1.6	2.6	3.6	4.7	4.7	6.1	7.5	7.5
ò	Thickness—Inches High Temp. Comb.						21/2	3	31/2	3½							21/2	3	31/2	31/2
	Thickness-Inches 85% Magnesia	1	1	11/2	2	21/2						1	1	11/2	2	21/2				
	Total Wt./Ft.	1.8	1.8	2.8	3.7	4.9	6.5	8.7	10.8	10.8		1.6	1.6	2.6	3.6	4.7	6.1	8.3	10.6	10.6
	Pressure Rating	1-	tiron				Steel		T			Cost			r		Steel			
!	pel Screwed or	125	250	150	300	400	600	900	1500	2500	ŀ	125 15	250 25	150	300	400 32	600 42	900	1500 92	
Si .	Slip-On	12 1.5	20 1.5	13	25 1.5		27 1.5					1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	155 1.5
FLANGES	Welding Neck			13 1.5	26 1.5		27 1.5							15 1.5	27 1.5	38 1.5	42 1.5	58 1.5	80 1.5	157 1.5
<u>.</u>	Lap Joint			14	23 1.5		27 1.5							16 1.5	28 1.5	34 1.5	45 1.5	68 1.5	92 1.5	154 1,5
	Blind	13 1.5	22 1.5	16 1.5	27 1.5		35 1.5					17 1.5	29 1.5	18 1.5	32 1.5	38 1.5	48 1.5	67 1.5	94 1.5	160
	S.R. 90° Elbow	36 4	58 4.1	48 4			80 4.3					50 4.1	75 4.2	58 4.1	85 4.2	100 4.3	130 4.4	180 4.5	240 4.8	
FLANGED FITTINGS	L.R. 90° Elbow	45 4.4	63 4.4	54 4.4								56 4.5	80 4.5	70 4.5	92 4.5			·		
FLA	45° Elbow	31 3.6	52 3.7	37 3.6			78 3.9					44 3.7	60 3.8	50 3.7	75 3.8	90 3.9	118 4	160 4.1	210 4.2	
	Tee	60	84 6.2	68		·	140					74 6.1	110 6.3	84 6.1	124 6.3	153 6.4	195 6.6	250 6.8	350 7.2	
	Flanged Bonnet Gate	82 7.1	143 7.5	88 4.1			200 4.9					109 7.2	188 7.5	115 4.2	173 4.5	210 5	275 5.1	370 5.3	570 5.7	
	Flonged Bonnet Globe or Angle	74 7.3	137 7.7	99 4.3			160 4.9					97 7.4	177 7.8	127 4,4	168 4.8	194 5	220 5.1	380 5.3	550 5.7	
VALVES	Flonged Bonnet Check	71 7.3	125 7.7	54 4.3			120 4.9					80 7.4	146 7.8	104 4,4	146	180 5	160 5.1	256 5.3	350 5.7	
	Pressure Seal Bonnet-Gate																165 2.5	230 2.8	250 3	
	Pressure Seal Bonnet-Globe																175 2_5	260 2.£	375 3	
BOLTS	One Complete Flanged Joint	3.5	6.5	3.5			12					4	6.5	4	7,5	12	12.5	25	34	61
REPRO	DUCED BY PERMISSION OF T	HE BER	GEN-PAT	ERSON	HPESUP	PORT CO	RPORAT	ION	gail in	y , 46	6,4	·	***	PIPI	ислепн	PC :	31.27	DETAT	CA ME	AZU:, E

CONTRACTO

	BLE W-1							GHT	5 0	F PI	_	MA							35
8 7	IDLL II I	<u> </u>	,		5. 61	PE :	SIZE	,	, 				4	6" PI	PE :	SIZE			,
	Schedule No.	40	80	120	160		1				40	30	120	160			1	<u> </u>	
ш	Wall Designation	STO	XS			XXS			<u> </u>		ST	+			XXS		<u> </u>		_
PIP	Thickness-Inches	.258	.375	.500	.625	.750			-		.28		.562	.718	.864			<u> </u>	↓
	Pipe-Lbs./Ft.	14.5 8.66	7.89	7.96	6.33	38.6	-		-	-	19. 12.	+	+	45.3 9.15	53.2 8.14			}	-
	L.R. 90° Elbow	14.7	21	7.30	32	37			ļ		22.	_	10.3	53	61.8		-	-	╫
	L.R. 70" E188W	3.3	1.3		7.3	1.3					1.	1.5		1.5	1.5				<u> </u>
	S.R. 90° Elbow	9.8 .8	13.7								15.	2 22.6		İ	•			Ì	
NG\$	45° Elbaw	7.3 .5	10.2 .5		15.6 .5	17.7 .5					11.	16.7		26 .6	30 .6				
FITT	Tee	19.8	26 1.2		39 1.2	43 1.2					29. 1.4			60	68				
32	Lateral	49 2.5	70 2.5								79	101							
BUTT WELDING FITTINGS	Reducer	6	8.3 .4		12.4	14.2					8.3 8.3	12.6	+	18.8	21				-
_	Сар	4.2	5.7		111	11		-			6.	9.2	 	17.5	.5 17.5		 		-
	Cap	.7	.7		.7	.7	1.				.9	.9	ļ	.9	.9				lacksquare
	Temp. Range. °F.	100 to 199	200 to 299	300 to 399	400 to 499	500 to 599	600 to 699	700 to 799	800 to 999	1000 to 1199	100 to	to	300 to 399	400 10 499	500 to 599	600 to 699	700 10 799	800 to 999	100 to
9 <u>X</u>	Thickness-Inches Calcium Silicate	1	135	11/2	2	21/2	21/2	3	31/2	4	1	11/2	2	2	21/2	3	3	31/2	4
COVERING	Weight Lbs./Ft.	1.9	2.9	2.9	4.1	5.4	5.4	6.9	8.4	10.4	2.1	3.3	4.6	4.6	6.1	7.6	7.6	9.8	11.
9	Thickness-Inches High Temp. Comb.						21/2	3	31/2	4						3	3	31/2	4
	Thickness-Inches 85% Magnesia	1	11/2	1%	2	21/2					1	11/2	2	2	21/2				
	Total Wt./Ft.	1.9	2.9	2.9	4.1	5.4	7.0	9.3	11.8	14.9	2.1	3.3	4.6	4.6	6.1	10.3	10.3	13.4	16.
	Pressure Rating	Cast					Steel				_	tiron	 			teel	,		
	psi Screwed or	125	250 31	150 18	300 32	400 38	600 74	900	1500	2500 250	12:		150	300	400	600	900	1500	250
GES	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	55 1.5	95 1.5	115	1.5	40
FLANGES	Welding Neck			21 1.5	34 1.5	44 1.5	78 1.5	96 1.5	165 1.5	295 1.5			24	42 1.5	54 1.5	95 1.5	130	200	40
u.	Lap Joint			18 1.5	32 1.5	45 1.5	73 1.5	103	170	250 1.5			24	48	54 1.5	93 1.5	130	210 1.5	40
	Blind	21 1.5	35 1.5	23 1.5	39 1.5	48 1.5	79 1.5	103 1.5	173 1.5	275 1.5	28	50 1.5	29 1.5	55 1.5	70 1.5	100	135 1.5	200	42
	S.R. 90° Elbow	60 4.3	98 4.3	80 4.3	113 4.3	135 4.5	212 4.7	266 4.8	400 5.2		80	130	90 4.3	155 4.4	190 4.6	280 4.8	360 5	550 5.3	
NGS	L.R. 90° Elbow	78 4.7	110	90 4.7	130	4.0	4	7.0			97	145	125	190	4.8	4.8	3	3.3	
FLANGED	45° Elbow	54	84	62	105	120	190	240	340		70	147	80	135	155	250	320	450	
	Tee	3.8 91	3.8 145	120	3.8 173	200	4.2 310	4.3	620		117	200	145	3.9 225	290	4.3	4.3 550	4.6 750	-
	Flanged Bonnet	140	6.5 200	6.4 150	6.4 250	310	400	7.2 510	7.8 850		6.5	+	6.5 210	6.6 375	6.9 400	7.2 550	7.5 780	8 1230	_
	Gate Flanged Bonnet	7.3 140	7.9 250	170	4.9 240	5.3 275	5.5 275	5.8 658	6.3		7.3	8	4.3	5 350	5.5 365	5.8 465	6 840	6.6	
VALVES	Globe or Angle Flanged Bonnet	7.6 120	8 210	4.6 140	5 200	5.3 250	5.5 244	5.8 325	530		7.8	8.2	4.8	5.2 275	5.4 340	5.8	6	075	
VAL	Check	7.6	8	4.6	5	5.3	5.5	5.8	6.3		7.8		4.8	5.2	5.4	5.8	6	875 6.5	_
	Pressure Seal Bannet-Gate						285 2.9	450 3.1	400 3.4							395 3.9	540 3.5	600 3.8	
	Pressure Seal Bonnet-Globe						300 2.9	500 3.1	550 3.4							415 3.9	600 3.5	700 3.8	
OLTS	One Complete Flanged Joint	6	6.5	6	8	12.5	19.5	33	60	98	6	10	6	11.5	19	30	40	76	14.

TA	DIE W 1		M				WEI	GHT	s or	PIF	91	NG	MAT	ERIA	LS					3.3.
IA	BLE W-1			8	3" PI	PE	SIZE				:			1	0" P	IPE	SIZ	E		
	Schedule No.	30	40	60	80	100	120	140		160		30	40	60	80	100	120	140	160	
w	Wall Designation		STD		xs				XXS				STD	X5						
PIPE	Thickness-Inches	.277	.322	.406	.500	.593	.718	.812	.875	.906	1	.307	.365	.500	.593	.718	.843	1.000	1.125	
		24.70	28.55	35.64	43.4	50.9	60.6	67.8	72.4	74.7 15.8		34.24 34.98	40.5	54.7 32.3	64.3 31.1	76.9 29.5	89.2 28.0	104.1	115.7 24.6	
	Water-Lbs./ft.	22.18	21.69 46	20.79	19.8	18.8	17.6	16.7	16.1	13.8		34.76	81.5	109	31.1	27.3	20.0	20.1	226	
	L.R. 90° Elbow		2		2				2	2			2.5	2.5					2.5	
SS	S.R. 90° Elbow		30.5 1.3		45.6 1.3								54 1.7	. 73						
TTIN	45° Elbow		22.8 .8		.8				.8	.8			40.4	54					109	
LTU G FI	Tee		53.7		76.4				118	120 1.8			91.2 2.1	118 2.1					222 2.1	
BUTT WELDING FITTINGS	Lateral		155 3.8		216 3.8								238 4.4	335 4.4						
¥	Reducer		13.9 .5		20 .5				32 .5	33 .5			23 .6	31 .6					58 .6	
	Сар	1	11.3		16.3				31	32 1			20	26 1.3					54 1.3	
		100	200	300	400	500	600	700	800	1000		100	200	300	400	500	600	700	800	1000
	Temp. Range. °F.	10 199	10 299	10 399	to 499	10 599	10 699	10 799	10 999	to 1199		10 199	10 299	10 399	10 499	10 599	10 699	10 799	10 999	10 1199
S Z	Thickness—Inches Calcium Silicate	1 1/2	135	2	2	21/2	3	31/2	4	4		11/2	1 }2	2	2!5	21/2	3	31/2	4	4
2	Weight Lbs./Ft.	4.1	4.1	5.6	5.6	7.9	9.5	11.5	13.8	13.8		5.2	5.2	7.1	8.9	8.9	11.0	13.2	15.5	15.5
COVERING	Thickness-Inches High Temp. Comb.						3	3½	4	4							3	31/2	4	4
	Thickness—Inches 85% Magnesia	135	11/2	2	. 2	21/2						1 1/2	115	2	2%	21/2				
	Total Wt./Ft.	4.1	4.1	5.6	5.6	7.9	12.9	16.2	20.4	20.4		5.2	5.2	7.1	8.9	8.9	15.4	19.3	23.0	23.0
	Pressure Rating		t Iron	1.50	1 200	T 400	5tee1	900	1500	2500		125	250	150	300	400	Steel 600	900	1500	2500
	Psi	125 32	250	150 34	300	400 82	135	205	320	600	l	52	98	52	101	117	210	295	530	1150
23	Screwed ar Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
FL ANGES	Welding Neck			34 1.5	75 1.5	89 1.5	140 1.5	210 1.5	335 1.5	700 1.5				60 1.5	110	1.5	1.5	1.5	550 1.5	1300
L.	Lap Joint		_	36	1.5	85 1.5	130	1.5	345 1.5	590 1.5	l			52 1.5	110 1.5	136	210 1.5	325 1.5	580 1.5	1130
	Blind	43 1.5	80 1.5		91 1.5	115	160		360 1.5	645 1.5		70 1.5	137 1.5	77 1.5	145 1.5	184 1.5	266 1.5	340 1.5	600 1.5	1250 1.5
	S.R. 90° Elbow	125 4.5				320 5	440 5.2		1000 5.7			210 4.8	340 4.9	240 4.8	350 4.9	475 5.2	700 5.6	1000 5.8		
GED	L.R. 90° Elbow	160 5.3	240	205	+							260 5.8	400 5.8	310 5.8	430 5.8					
FLANGED	45° Elbow	102 3.9		125 3.9	200	235 4.1	360 4.4	530 4.5	900 4.8			170 4.1	280 4.2	185 4.1	300 4.2	385 4.3	570 4.6	750 4.7		
	Tee	182	300	225 6.8	350 7.1	465 7.5			1500 8.6			290 7.2	495 7.4	340 7.2	570 7.4	630 7.8	1000 8.4	1500 8.7		
	Flanged Bonnet Gate	250 7.5	580		550 5.1		1000					470 7.7	900 8.3	500 4.7	890 5.3	1200 6.3	1575 6.9	2500 7.1		
_	Flanged Bonnet Globe or Angle	320 8.4			•							540 9.1	946 5,1		1000 6.1	1075 6.8	1350 6.9	2600 7.1	<u> </u>	
VALVES	Flanged Bonnet Check	300 8.4	450									450 9.1	750 9.1	400 6	580 6.1	725 6.3	750 6.9			
>	Pressure Seal Bonnet-Gate		1				700 4.2			1							1000 5.0	1400	1800 5.2	
ne disense	Pressure Seal Bonnet-Globe				L		690 4.2						-				1100 5.0	1800 4.9	2400 5.2	
BOLT	One Complete Flanged Joint	6.5	16	6.5	18	30	46	59	121	232		15	33	15	33	52	72	95	184	445
REPRO	DUCED BY PERMISSION OF T	THE BEF	RGEN-PA	TERSON	PIPESU	PORT C	ORPORI	170h	~ j= j;	,	•	٠,٠	وجثاؤه	2 9:17	ing Eu	DE". PO	BOX:277	COTAT		23, 25A

Sonnet-Globe					Ī	690 4.2	1100	1300				. 3 .			1100 5.0	1800	2400		
BOLTS One Complete Planged Joint	5.5	16 ELMI	6.5	18	. 30	40	69	121	232	15	33	15	38	. 52	72	95	184	445	
The state of the s	******			- C-20-	OMT ED	RPORAY	nos 💥			d s	e e e e	777	es son	0E, PO 1	IOX 277.	COTAIL	, CA 9462		

Ta	DIE W1	.					WEI	GHT	5 01	= Pi	P	NG	MAT	ERIA	LS					
IA	BLE W-1			13	2" P	IPE	SIZ	E						1	1., b	IPE	SIZ	E		
	Schedule No.	30		40		30	100	120	140	160		20	30	10		80	100	120	140	160
	Wail Designation		STD		ХS								STD		ХS					
P.E.	Thickness-Inches	.330	.375	.406	.500	.687		1.300		1.312		.312	.375	.437	.500	.750	.937	1.093		
e e	Pipe-Lbs-/Ft.	43.8	49.6	53.5	65.4			125.5		160.3		45.7	54.6	63.4	72.1	106.1	130.7	150.7		
	Water-Lbs./Ft.	49.7	49.0	48.5	47.3	44.0	41.6	39.3	37.5	34.9		50.92		58.7	57.5	53.2	50.0	47.5	45.0	42.6
	L.R. 90° Elbow		119		157					375 3			154 3.5		202 3.5					
ے	S.R. 90° Elbow		79.5		104								102 2.3		135					
JN L	45° Elbow		60 1.3		78 1.3					181			1.5		100					
발	Tea		132 2.5		167 2.5					360 2.5			159 2.8		203 2.8					·
BUTT WELDING FITTINGS	Lateral		337 5.4		556 5.4								495 5.8		588 5.8					
WEL	Reducer		33 .7		44 .7					94 .7			63 1.1		83 1,1					
	Сар		30 1.5		38 1.5					89 1.5			35 1.7		46 1.7					
	Temp. Range. ° F.	100 to 199	200 to 299	300 to 399	400 to 499	500 to 599	600 to 699	700 to 799	800 to 999	1000 to 1199		100 to 199	200 to 299	300 to 399	400 to 499	500 to 599	600 to 699	700 to 799	800 to 999	1000 to 1199
ş	Thickness—Inches Calcium Silicate	11/2	11/2	2	21/2	3	3	31/2	4	5		11/2	1½	2	21/2	3	3	31/2	4	5
2	Weight Lbs./Ft.	6.0	6.0	8.1	10.5	12.7	12.7	15.1	17.9	23.8		6.2	6.2	8.4	10.7	13.1	13.1	15.8	18.5	25.5
COVERING	Thickness-Inches High Temp. Comb.						3	3½	4	5							3 ,	31/2	4	5
	Thickness-Inches 85% Magnesia	11/2	11/2	2	21/2	3						1½	11/2	2	21/2	3				
1	Total Wt./Ft.	6.0	6.0	8.1	10.5	12.7	17.7	21.9	26.7	35.2		6.2	6.2	8.4	10.7	13.1	18.2	22.8	27.5	37.7
	Pressure Rating	Casi	lron				Steel					Cas	tiron				Steel			
	psi	125	`250	150	300	400	600	900		2500		125	250	150	300	400	600	900	1500	2500
SES	Screwed or Slip-On	70 1.5	135 1.5	72 1.5	140	165 1.5	250 1.5	390 1.5	740 1.5	1410		93 1.5	185	100 1.5	195	230 1.5	300 1.5	480 1.5		<u> </u>
FLANGES	Welding Neck	<u> </u>		88 1.5	165	210 1.5	270 1.5	390 1.5	840 1.5	1840 1.5				120 1.5	210 1.5	245 1.5	400 1.5	480 1.5		· .
-	Lap Joint			72 1.5	165 1.5	185 1.5	250 1.5	440 1.5	780 1.5	1410 1.5				115 1.5	220 1.5	260 1.5	310 1.5	495 1.5		
	Blind	96 1.5	180 1.5	120 1.5	210 1.5	260 1.5	345 1.5	475 1.5	840 1.5	1600 1.5		126 1.5	240 1.5	150 1.5	280 1.5	350 1.5	415 1.5	600 1.5		
	S.R. 90° Elbow	300 5	470 5.2	345 5	550 5.2	700 5.5	850 5.8	1500 6.2				400 5.3	620 5.5	500 5.3	640 5.5	670 5.7	950 5.9	1550 6.4		
GED	L.R. 90° Elbow	390 6.2	550 6.2	480 6.2	650 6.2			1600 6.2				520 6.6	770 6.6	620 6.6	770 6.6					
FLANGED	45° Elbow	250 4.3	400 4.3	280 4.3	450 4.3	550 4.5	725 4.7	1130				300 4.3	500 4.4	380 4.3	580 4.4	640 4.6	880 4.8	1250 4.9		
	Tee	400 7.5	670 7.8	500 7.5	800	950 8.3	1300	2000				600	950 8.4	690 8	1000	1150	1700	2400 9.6		
	Flanged Bonnet Gate	690 7.8	1300 8.5		1350 5.5		·					950 7.9	1800 8.8	850 4.9	1875 6.3	2000	3100 7,4	4000 8.1		ļ
	Flanged Bonnet	800	1200	1	1400	1500	/	/				1175	***	4.7	0.3	7.1	/· *	0.1		
VALVES	Globe or Angle Flanged Bonnet	675	9.5	700	875	1100						9.9						 		
*	Check Pressure Seal	9.4	9.5	6.5	6.5	6.8		2100	2500			9.9				_		-		
	Bannet-Gate Pressure Seal	 			-		5.2 1750		5.9 3000			-	<u> </u>			<u> </u>	<u> </u>		-	<u> </u>
BOLTS	One Complete	15	44	15	49	69	5.2 91	5.5 124	5.9 306	622		22	57	22	62	88	118	159		
	Flanged Joint		1 44		. 47	. 97	71	144	' JAO.	1 042		. 22	. 2/	1 22	. 02	. 68			1	ı

TA	DIE W 1	1,1750	4104				WEI	GHT	S 01	F PI	PI	NG	MAT	ERIA	LS					de la
I I A	BLE W-1			1	6" P	IPE	SIZ				-					IPE	SIZ	E		
	Schedule No.	20	30	40	80	100	120	140	160			20		30		40	60	80	120	160
ш	Wall Designation		STD	XS							1		STD		X5			- 50	1.20	1.00
PIPE	Thickness-Inches	.312	.375	.500	.843	1.031	1.218	1.437	1.593			.312	.375	.437	.500	.563	.750	.937	1.375	1.781
	Pipe-Lbs./Ft.	52.4	62.6	82.8	136.5	1648	192.3	223.6	245.1			59.0	70.6	82.1	93.5	104.8	138.2	170.8	244.1	308.5
	Water-Lbs./Ft.	80.5	79.1	76.5	69.7	66.1	62.6	58.6	55.9			102.8	101.2	99.9	98.4	97.0	92.7	88.5	79.2	71.0
	L.R. 90° Elbow		201 4	265 4									256 4.5	 	338 4.5					
Ş	S.R. 90° Elbow		135 2.5	177 2.5									171 2.8		225 2.8					
BUTT WELDING FITTINGS	45° Elbow		1.7	132 1.7									1.9		168					
BU1 ING F	Tee		202 3.2	257 3.2									258 3.6		328 3.6					
#ELD	Lateral		650 6.7	774 6.7									798 7.5		984 7.5			·		
	Reducer		78 1.2	102	,		:						94 1.3		123					
	Cap		.1.8	58 1.8									57 2.1		75 2.1					
	Temp. Range. • F.	100 to	200 to	300 to	400 to	500 to	600 to	700 • to	800	1000 to		100 to	200	300 to	400 to	500 to	600	700	800	1000
	Temp. Kange. 7.	199	299	399	499	599	699	799	999	1199		199	299	399	499	599	699	10 799	999	1199
9NG	Thickness—Inches Calcium Silicate	11/2	11/2	2	21/2	3	3	31/2	4	5		1½	1 1/2	2	21/2	3	3	31/2	4	5
E E	Weight Lbs./Ft.	6.9	6.9	9.3	12.0	14.6	14.6	17.5	20.5	28.1		7.7	7.7	10.4	13.3	16.3	16.3	19.3	22.6	30.8
COVERING	Thickness-Inches High Temp. Comb.						3	31/2	4	5							3	3½	4	5
	Thickness-Inches 85% Magnesia	1½	11/2	2	21/2	3						11/2	11/2	2	21/2	3				
	Total Wt./Ft.	6.9	6.9	9.3	12.0	14.6	20.3	25.2	30.7	41.6		7.7	7.7	10.4	13.3	16.3	22.7	28.0	33.8	45.6
	Pressure Rating		Iron	150	200	400	Steel		1.500	10500		Cost		160	300		Steel		1,	
	Screwed or	125 120	250 235	150	300 230	400 300	600 410	900 525	1500	2500		125	250 290	150 150	300	400 360	600 550	900 770	1500	2500
GES	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	<u>. </u>			1.5	1.5	1.5	1.5	1.5	1.5	1.5		
FLANGES	Welding Neck			155	290 1.5	355 1.5	1.5	1.5						170 1.5	370 1.5	430 1.5	650 1.5	830 1.5		
•	LapJoint			155 1.5	290 1.5	330 1.5	440 1.5	570 1.5						180 1.5	350 1.5	385 1.5	550 1.5	800 1.5		
	Blind	175 1.5	308 1.5	195 1.5	340 1.5	440 1.5	580 1.5	700 1.5				210 1.5	400 1.5	240 1.5	450 1.5	525 1.5	750 1.5	1100		
	S.R. 90° Elbow	550 5.5	830 5.8	660 5.5	950 5.8	1000	1400 6.3	1900 6.7				650 5.8	1100 6	710 5.8	1150 6	1300 6.2	1800 6.6	2800 7		
FLANGED	L.R. 90° Elbow	725 7	1050 7	780 7	1100 7							980 7.4	1400 7.4	950 7.4	1450 7.4					
FLA	45° Elbew	425 4.3	700 4.6	480 4.3	700 4.6	850 4.7	1200 5	1600 5				490 4.4	880 4.7	520 4.4	900 4.7	1050 4.8	1550 5	2300 5.2		
	Tee	750 8.3	1280 8.7	980 8.3	1400 8.6	1700 9	2150 9.4	37 50 10				930 8.6	1650 9	10 00 8.6	1400 9	1900 9.3	2700 9.9	435 0 10.5		
	Flonged Bonnet Gate	1250 8	2350 ç	1350 5	2500 7.1	2700 7.5	3700 7.9					1650 18.2	2600 9.3		3200 7.5	3600 7.8	5700 8.4			
22	Flanged Bonnet Globe or Angle														 					
VALVES	Flanged Bonnet Check	1200 10,5										1371 10.5							i	
	Pressure Seal Bonnet-Gate																			
	Pressure Seal Banner-Globe				1			<u> </u>								i				
BOLTS	One Complete Flanged Joint	31	76	31	83	114	152	199				47	- 1	41		139	193	299		
REPROD	UCED BY PERMISSION OF TO	HE BERG	EN-PAT	ERSON F	IPESUPF	ORT CO	APORA:	IDM	** 3	£ 1	87.	, · · · · ·		7787	RE ETT	Œ , PO (102 277,	CSTATE		ZI, L'SA

CONTINU

	Bonnet-Giobe	•		<u> </u>		A la	{	{	\neg		T	_					,	1	7
BOLTS	One Complete Flanged Joint	31	°á.		83 114	152	199		ヿ	41	9)3	41	101	139	193	299		
REPROD	UCEO BY PERMISSION OF TH	e Pergi	eig-pa i	ASUN P	PESUPPORT CO	ЯРСВАТ	ION 🚡			Contra		No. of	'P!PI	VG GUIC	E', 90 B		1	. CA 949:	28, USA

TABLE W-1 WEIGHTS OF PIPING MATERIALS 20" PIPE SIZE 24" PIPE SIZE **50** 🖁 Schedule No 20 30 40 80 100 | 120 | 140 160 20 100 40 50 30 120 140 160 **Wall Designation** STC ХS STD XS .375 .500 | Thickness-Inches .593 .312 | 1.031 | 1.281 | 1.500 | 1.750 | 1.968 .375 .500 .687 .968 1.218 1.531 1.812 2062 2.343 Pipe-Lbs./Ft. 78.6 104 T 122.9 166.4 208.9 256.1 296.4 341.1 379.0 94.6 125.5 171.2 238.1 296.4 367.4 429 484 541 Water-Lbs./Ft. 126.0 122.8 120.4 115.0 109.4 103.4 98.3 92.6 87.9 183.8 174.3 165.8 158.3 149.3 180.1 141 134 127 317 419 458 606 L.R. 90° Elbow 212 278 305 404 S.R. 90° Elbow BUTT ING FITTINGS 3.4 3.7 3.7 158 208 45° Elbow 229 302 2.1 2.1 2.5 **32** F 407 445 563 Tee 4.9 4.9 1024 1221 1482 1769 Lateral 8.3 8.3 10 10 142 186 167 220 Reducer 1.7 1.7 1.7 1.7 72 94 102 Сар 134 2:8 100 200 300 400 500 600 700 800 1000 100 200 300 400 500 600 700 800 1000 Temp. Range, °F. to 199 to 399 499 10 599 299 999 399 499 599 699 799 1199 199 299 699 799 999 1199 Thickness-Inches 9 11/2 11/5 2 21/5 3 3 31/2 4 5 11/2 11/2 2 21/2 3 3 31/5 5 Calcium Silicate 4 COVERI Weight Lbs./Ft. 8.5 8.5 11.6 14.6 17.7 17.7 21.1 24.6 33.6 10.0 10.0 13.4 17.0 21.0 21.0 24.8 28.7 39.0 Thickness-Inches 3 31/2 5 4 31/2 4 5 High Temp. Comb. Thickness-Inches 11/2 11/2 2 21/2 3 11/2 11/2 2 21/2 3 85% Magnesia Total Wt./Ft. 8.5 8.5 11.6 14.6 17.7 24.7 30.7 37.0 49.7 10.0 10.0 13.4 17.0 21.0 29.2 36.0 43.1 57.5 **Pressure Rating** Cast Iron Castiron Steel Steel 125 600 250 150 300 400 900 1500 2500 125 250 400 1.50 300 600 900 1500 2500 Screwed or 175 350 190 370 450 650 950 250 540 250 560 1000 1800 FLANGES Slip-On 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 210 450 510 810 1010 Welding Neck 300 660 750 1150 1900 1.5 1.5 1.5 1.5 1.5 1.5 1.5 235 430 475 700 980 310 630 750 1000 Lap Joint 1900 1.5 1.5 1.5 1.5 1.5 1.5 1.5 275 540 310 550 700 950 1300 400 750 470 Blind 850 10.50 1400 2500 1.5 1.5 1.5 1.5 790 1350 930 1400 1700 2300 3600 1250 2050 1700 S.R. 90° Elbow 2200 2500 3500 6200 6 6.3 6.3 6.5 6.7 6.9 6.7 6.8 7.1 8.1 1300 1800 1350 1700 1850 L.R. 90° Elbow 2700 1850 2900 7.8 7.8 7.8 8.7 8.7 8.7 8.7 590 1100 650 1100 1400 1900 2900 920 1650 45° Elbow 1150 1630 2000 2800 5200 4.6 4.8 4.9 4.6 4.8 5.2 5.4 4.8 5.1 5.5 6 1100 2100 1400 3500 1900 2400 5500 1850 3100 2300 3200 5200 Tes 3800 9400 9.5 9.5 9.7 10.1 11 10.2 10 10 10.2 10.6 11.4 12.1 Flanged Bonnet 2000 3850 4450 4750 6500 3100 6500 7000 7100 9300 Gate 8.3 9.5 7.9 8.2 8.9 9.8 8.5 8.7 9.1 9.9 Flanged Bonnet Globe or Angle Flanged Bonnet 1772 3000 Check 11 12 Pressure Seal Bonnet-Gate Pressure Seal Bonnet-Globe One Complete BOLTS 52 95 52 105 180 242 361 71 174 71 Flanged Joint 174 274 360 687 REPRODUCED BY PERMISSION OF THE BERGEN-PATERSON PIPESUPPORT CORPORATION 'PIPING GUIDE', PO BOX 277, COTATI, CA 94928, USA

Sign	$\int \overline{a}$
Porqu	
911	A
1/0/	

WEIGHTS O	MATERIALS					TAI	BLE Y	V-2
	MATERIAL	specific gravity	lb in ³	ib ft ³	1b ft ² -in	. <u>Kg</u> m ³	US gal	lb imp gal
METALS & ALLOYS	Aluminum (2S) Aluminum bronze Brasses: %Cu %Zn Red brass 85 15 Low brass 80 20 Cartridge brass 70 30 Muntz metal 60 40 Bronze, %Cu=80-95, %Sn=20-5 Copper Iron, gray-cast malleable wrought Lead Monel Nickel Steel, carbon stainless, %Cr=18,%Ni=8	2.71 7.70 8.75 8.67 8.52 8.39 8.84 8.91 7.21 7.34 7.69 11.37 8.83 8.87 7.85 7.93	0.0978 0.278 0.379 0.376 0.369 0.364 0.319 0.322 0.260 0.267 0.278 0.411 0.319 0.321 0.284 0.286	169 481 546 541 532 524 552 556 450 461 480 710 551 551 490 495	14.1 40.1 45.5 45.1 44.3 43.7 46.0 46.3 37.5 38.4 40.0 59.2 45.9 46.2 40.8 41.3	2710 7700 8750 8670 8520 8390 8840 8900 7210 7380 7690 11370 8830 8870 7850 7930		
LIQUIDS	Fuel oil Gasoline Lube oil Jet fuel Water, fresh salt (seawater)	0.95 0.67 thru 0.75 0.90 0.82 1.00	0.034 0.024 thru 0.027 0.032 0.030 0.036 0.037	59 42 thru 47 56 51 62.3			7.9 5.6 thru 5.3 7.5 6.8 8.33 8.6	9.5 6.7 thru 7.5 9.0 8.2 10.0
INSULATING MATERIALS	Abestos Cork Fiberglas (Owens/Corning "Kaylo") Magnesia (85%) Plastic foam	2.45 0.24 0.176 0.18 0.08 thru 0.10	0.0885 0.0087 0.0064 0.0064 0.0029 thru 0.0038	153 15.0 11.0 11.0 5.0 thru 6.5	12.8 1.25 0.92 0.92 0.42 thru 0.54	2450 240 176 176 80 thru 104		
MATERIALS OF CONSTRUCTION	Brick, common Concrete, plain reinforced Earth, dry, loose dry, packed moist, loose moist, packed Glass Gravel, dry wet Sand, dry wet Snow, loose	1.92 2.31 2.40 1.22 1.52 1.54 2.50 1.60 1.92 1.60 1.92 0.13	0.069 0.083 0.088 0.044 0.055 0.045 0.056 0.090 0.058 0.069 0.058 0.069	120 144 150 76 95 78 96 156 100 120 120 8	10.0 12.0 12.5 6.3 7.9 6.5 8.0 13.0 8.3 10.0 0.7	1920 2310 2400 1220 1520 1550 1540 2500 1600 1920 1920 130		

NOTES

NOTES

The 'PIPING GUIDE' can be ordered by mail. Complete the order form below and send it to:

Syentek Books Co., PO Box 277, Cotati, CA 94928 (USA)

together with a company or personal check, moneyorder, or bank draft: no other form of payment can be accepted. Payment must be in US dollars.

For the continental USA, allow up to 5 weeks for clearance of a personal check and for delivery by surface mail: elsewhere, allow up to 14 weeks, unless the order is to be sent by air. Rising costs may necessitate increases in the prices of books, and the publisher's right to change prices without prior notice is reserved. However, if you do not wish to purchase immediately, retain this order form, as the prices quoted are guaranteed up to the date printed on it.

List prices , surfa	ce mail (these include 4th-class postage	Softcover Set (2 volumes)	Hardcover Book (1 volume)
within the USA, territories and possessions, and "Printed matter—book rate" elsewhere)		\$14.50	\$22.50
Additional handling & postal charges	USA, APO, FPO, Canal Zone, Puerto Rico, other US territories and possessions, the Caribbean, and Central America	\$3.10	\$3.40
	Canada, South America, Europe, and Mediterranean Africe	\$6.90	\$8.75
cnarges	Asia, the Pacific, Africa (except Mediterranean), and the USSR	\$9.80	\$12.50

ORDER FORM		your package, address to whi sent The ZIPC	bel will be used for PRINT carefully the ch books are to be 100E is essential for sithin the USA.
Please send the following books, for which payment is enclo	sed:	2 g	
copies of the PIPING GUIDE softcover set (2 volumes), at \$14.50 per set	\$	his package to	
copies of the PIPING GUIDE hardcover book:: (1 volume) at \$22.50 per book:	\$	se return this	
TOTAL FOR BOOKS	•	i i i i i i i i i i i i i i i i i i i	
PEUS Californian salés tax (es) on above total IF book (s) to be sent to an address in California	•	e made, CA 9492	
PLUS additional handling and postal charges for air mail (as listed above) if required	s .	Cotati,	
TOTAL ENCLOSED	\$.	delivery of Box 277,	
		PO Bo	
FOR ORDERS RECEIVED ON THIS FORM, T PRICES QUOTED ARE GUARANTEED UNTI SEPTEMBER 30, 1976, SHOULD A PRICE INCREASE BECOME NECESSARY BEFORE THIS DATE.		POSTMASTER: 11 Syentek Books, P	
	*		