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Preface

A novel partnership between surgeons and machines, made possible by advances
in computing and engineering technology, could overcome many of the limitations
of traditional surgery. By extending surgeons’ ability to plan and carry out surgical
interventions more accurately and with less trauma, computer-integrated surgery
(CIS) systems could help to improve clinical outcomes and the efficiency of health
care delivery. CIS systems could have a similar impact on surgery to that long
since realized in computer-integrated manufacturing. Mathematical modeling and
computer simulation have proved tremendously successful in engineering. Compu-
tational mechanics has enabled technological developments in virtually every area
of our lives. One of the greatest challenges for mechanists is to extend the success
of computational mechanics to fields outside traditional engineering, in particular to
biology, the biomedical sciences, and medicine.

Computational Biomechanics for Medicine Workshop series was established in
2006 with the first meeting held in Copenhagen. The fifth workshop was held in con-
junction with the Medical Image Computing and Computer Assisted Intervention
Conference (MICCAI 2010) in Beijing on 24 September 2010. It provided an op-
portunity for specialists in computational sciences to present and exchange opinions
on the possibilities of applying their techniques to computer-integrated medicine.

Computational Biomechanics for Medicine V was organized into two parts:
“Computational Biomechanics of Soft Tissues, Flow, and Injury Biomechanics” and
“Computational Biomechanics of Musculoskeletal System and Its Tissues. Gen-
eration of Patient-Specific Finite Element Meshes.” The application of advanced
computational methods to the following areas was discussed:

• Medical image analysis
• Image-guided surgery
• Surgical simulation
• Surgical intervention planning
• Disease prognosis and diagnosis
• Injury mechanism analysis

After a rigorous review of manuscripts (8–12 pages), we accepted 13 papers which
are included in this volume. The proceedings also include abstracts of two invited

v
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lectures by world-leading researcher Professor Ming Zhang from The Hong Kong
Polytechnic University, and Tsuyoshi Yasuki, General Manager of Advanced CAE
Division at Toyota Motor Corporation, Japan.

Information about Computational Biomechanics for Medicine Workshops,
including proceedings of previous meetings is available at http://cbm.mech.uwa.
edu.au/.

We thank the MICCAI 2010 organizers for help with administering the work-
shop, the invited lecturers for deep insights into their research fields, the authors for
submitting high quality work, and the reviewers for helping with paper selection.

Crawley, WA Karol Miller
Auckland, New Zealand Poul M.F. Nielsen
Crawley, WA Adam Wittek
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H. Köstler Lehrstuhl Informatik 10, Universität Erlangen-Nürnberg,
Cauerstraße 6, 91058 Erlangen, Germany,
harald.koestler@informatik.uni-erlangen.de

Jennifer A. Kruger Auckland Bioengineering Institute, The University
of Auckland, Auckland, New Zealand, j.kruger@auckland.ac.nz

K.C. Li Department of Radiology, Xuanwu Hospital, Capital Medical University,
Beijing, China, likuncheng1955@yahoo.com.cn

Yixun Liu Computer Science Department, College of William and Mary,
VA 23187, USA
and
Computer Science Department, Old Dominion University, Norfolk, VA 23529,
USA, yxliuwm@gmail.com

Z. Liu Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP),
Chinese Academy of Science, Changchun, China, zhenyu ciomp@hotmail.com

M. Loch Lehrstuhl Informatik 10, Universität Erlangen-Nürnberg, Cauerstraße 6,
91058 Erlangen, Germany, lochmartin84@aol.com

Jiajie Ma Intelligent Systems for Medicine Laboratory, School of Mechanical
and Chemical Engineering, The University of Western Australia, 35 Stirling
Highway, 6009 Crawley/Perth, WA, Australia, jiajie@civil.uwa.edu.au

M. Markl Department of Diagnostic Radiology – Medical Physics, University
Hospital, Freiburg, Germany, michael.markl@uniklinik-freiburg.de

Stephen McAnearney Intelligent Systems for Medicine Laboratory, School
of Mechanical and Chemical Engineering, The University of Western Australia,
35 Stirling Highway, 6009 Crawley/Perth, WA, Australia,
s.mcanearney@gmail.com

Dimitris Metaxas Department of Computer Science, Rutgers University,
New Brunswick, NJ, USA, dnm@cs.rutgers.edu



Contributors xi

Karol Miller Intelligent Systems for Medicine Laboratory, School of Mechanical
and Chemical Engineering, The University of Western Australia, 35 Stirling
Highway, 6009 Crawley/Perth, WA, Australia, kmiller@mech.uwa.edu.au

Albert Montillo GE Global Research Center, Niskayuna, NY, USA
and
Department of Computer Science, Rutgers University, Piscataway, NJ, USA,
montillo@ge.com

Martyn P. Nash Department of Engineering Science, Auckland Bioengineering
Institute, The University of Auckland, Auckland, New Zealand,
martyn.nash@auckland.ac.nz

Poul M.F. Nielsen Department of Engineering Science, Auckland Bioengineering
Institute, The University of Auckland, Private Bag 92019, Auckland 1142,
New Zealand, p.nielsen@auckland.ac.nz

Jaykumar Puthran Auckland Bioengineering Institute, The University of
Auckland, Auckland, New Zealand, j.puthran@auckland.ac.nz

Vijay Rajagopal Auckland Bioengineering Institute, The University of Auckland,
Auckland, New Zealand, v.rajagopal@auckland.ac.nz

Hayley M. Reynolds Auckland Bioengineering Institute, The University
of Auckland, Auckland, New Zealand, h.reynolds@auckland.ac.nz
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Part I
Computational Biomechanics of Soft

Tissues, Flow and Injury Biomechanics





Development of Total Human Model for Safety
Version 4 Capable of Internal Organ Injury
Prediction

Tsuyoshi Yasuki

Abstract Although internal organ injury in car crashes occurs at a relatively lower
frequency compared to bone fracture, it tends to be ranked higher in terms of injury
severity. A generalized injury risk can be assessed in car crash tests by evaluating
abdominal force and viscous criterion (VC) using a crash test dummy, but the injury
risk to each organ cannot be estimated with current dummies due to a lack of parts
representing the internal organs. Recently, human body modeling research has been
conducted introducing organ parts. It is still a challenge to simulate the impact be-
havior of organ parts and their injury, based on an understanding of the differences
in structure and material properties among the organs.

In this study, a next generation human body FE model named Total Human
Model for Safety (THUMS) version 4 has been developed to predict internal or-
gan injury. The model represents the geometry of organ parts, their location in a
living human body, and their connections to surrounding tissues. The features of
each organ part were taken into account in modeling, so that compressive material
was assumed for hollow organs while incompressive material was applied to solid
organs. Besides the major organ parts, other soft tissues such as membranes and
fatty tissues were also incorporated in order to simulate relative motions among or-
gans. The entire model was examined comparing its mechanical response to that in
the literature. The study confirmed that the force-deformation response of the torso
against anterior loading showed a good correlation with that of tested subjects.

T. Yasuki (�)
Toyota Motor Corporation, 1 Toyota-cho, Toyota, Aichi, 471-8572, Japan
e-mail: yasuki@giga.tec.toyota.co.jp

A. Wittek et al. (eds.), Computational Biomechanics for Medicine: Soft Tissues
and the Musculoskeletal System, DOI 10.1007/978-1-4419-9619-0 1,
c© Springer Science+Business Media, LLC 2011
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Investigation of Brain Trauma Biomechanics
in Vehicle Traffic Accidents Using Human Body
Computational Models

Jikuang Yang

Abstract This chapter aimed to study the biomechanical response and injury mech-
anisms of brain in passenger car-to-pedestrian collision event. The kinematics of
head impact to a passenger car was reconstructed using multibody dynamics (MBD)
models. The brain injury biomechanics was investigated by using an FE model of
human body head (HBM-head). The HBM-head model was developed in accor-
dance with human head anatomy. The model consists of scalp, skull, dura mater,
cerebrospinal fluid, pia mater, cerebrum, cerebellum, ventricle, brain stem, falx,
tentorium, etc. The existing data from cadaveric head impact tests were used to val-
idate the head FE model. The kinematic and kinetic responses of the head were
determined by using MBD model. The brain injury-related physical parameters
and the distribution of the intracranial pressure were calculated from simulations
of head impact to the windscreen and A-pillar by using the HBM-head model. It is
proved that the head FE model has good biofidelity and can be used to study head–
brain trauma and injury mechanisms in vehicle collisions.

Keywords Traffic injury · Brain trauma · Head FE model · Pedestrian MBD
model · Impact biomechanics

1 Introduction

The serious and fatal brain injuries are observed frequently in vehicle traffic acci-
dents, which is a public health issue worldwide. It resulted in a large number of
social and economic problems due to head trauma-related deaths, treatment and in-
surance compensation. To minimize the risk of brain injury in the accident, there is a
need of advanced tools to get good knowledge about the kinematics of the accidents

J.K. Yang (�)
Research Center of Vehicle Traffic Safety/SKLVB, Hunan University, Changsha, China
and
Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden
e-mail: jikuang.yang@chalmers.se

A. Wittek et al. (eds.), Computational Biomechanics for Medicine: Soft Tissues
and the Musculoskeletal System, DOI 10.1007/978-1-4419-9619-0 2,
c© Springer Science+Business Media, LLC 2011
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and the causation of brain trauma as well as the correlation of brain injuries with the
physical parameters in a vehicle crash environment.

In the past years, the head injury mechanisms and technology of injury
prevention have been extensively studied by medical doctors and researchers in
vehicle traffic safety field all over the world. Many studies on head–brain injury
biomechanics were carried out by using physical and mathematical models. The fi-
nite element (FE) technique is an effective method for the prediction of human body
injuries and analysis of injury mechanisms from vehicle traffic accidents. The finite
element method was therefore developed rapidly and applied in the research field
of head–brain injury biomechanics in recent two decades. These include the work
of Ueno [1], Lighthall [2], Nagashima et al. [3], Chu [4], Trosseille [5], Bandak [6],
Chu et al. [7], DiMasi et al. [8], Mendis et al. [9], Willinger et al. [10], Ueno
et al. [11], Nishimoto and Murakami [12], Anderson et al. [13], Huang et al. [14],
Willinger et al. [15], and Bradshaw et al. [16]. A number of the 3D head models
have been presented and used to study human head response. For example, the
head–brain FE model WSUBIM [17] was developed in Wayne State University
in the USA, the ULP model [18] in Université Louis Pasteur, and the HUMOS
model in EU 5th framework program (Human Models for Safety), THUMS model
in Japan.

At the same time, these models have been used to study the trauma from vehi-
cle traffic and sport accidents. The application of the validated FE models indicated
that the FE models play an important role in the studies of mechanism of brain in-
juries by analyzing the intracranial pressure and the stress and strain of brain tissues.
In order to accurately reflect the biomechanical response and injury mechanism of
human head trauma in different crash accidents, it is necessary to further develop
the brain FE model with the improved characteristics of human head in both the
anatomy structure and the material models of biological tissues. It is also vital for
researcher to evaluate the validity of the models using available biomechanical data
from experimental studies. These issues have attracted an increasing attention in the
simulation study on the human brain FE models.

The aim of this chapter is to investigate the mechanism of brain injury in vehi-
cle collision by using a developed FE model of human body head (HBM-head) in
accordance with human head–brain anatomy.

2 Method and Materials

The FE model of HBM-head was developed based on 3D anatomical image data
[19]. The preprocessing and meshing of head brain 3D anatomy image data was
carried out using Hypermesh software. The computations of brain biomechanics
responses were carried out using nonlinear explicit dynamics finite element algo-
rithm in LS-DYNA 3D code. The effectiveness of the head model was verified by
comparing the results of the Nahum’s impact experiment [20] using human head
specimen. The sensitivity and biofidelity of the FE model for predicting brain injury
were detected through parameter analysis at different impact speeds.
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Fig. 1 An FE model of head was developed based on human head anatomy. The model consists
of scalp, skull, cerebrospinal fluid (CSF), cerebrum, cerebellum, ventricle, brain stem, falx, and
tentorium, etc.

2.1 Description of the HBM-Head FE Model

The HBM-head model consists of the scalp, skull, dura mater, cerebrospinal fluid
(CSF), pia mater, cerebrum, cerebellum, ventricle, brain stem, falx, tentorium, etc.
as shown in Fig. 1. The head is modeled using 66,624 nodes, 49,607 solid elements
of eight-noded hexahedron, and 11,514 shell elements. The mass of the head model
is 4.4 kg, which was based on the anthropometry size of a 50th male adult hu-
man body.

The thickness of scalp is defined as 5–7 mm [21] and it is described with
two-layer solid elements. Skull was modeled with a hierarchical structure in the
sandwich form of cortical bone and cancellous bone. The thickness of skull is about
5–7 mm. The two-layer solid element was used to simulate accurately the anatom-
ical geometry of both sides of the skull. Dura mater is simulated with one layer of
shell elements. The CSF of subarachnoid space is described using solid elements
with a low shear modulus. The relative motion between the skull and brain is sim-
ulated by the relative sliding between the dura mater and CSF. The outer surface
of CSF is defined to simulate arachnoids. The structure under the CSF is pia mater
that closes the brain surface. The inner surface of CSF is defined to simulate the pia
mater. The falx between the two hemispheres of the brain and the tentorium between
the cerebrum and cerebellum are represented by solid elements. The overall quality
of mesh was controlled in the process of modeling as shown in Table 1.

2.2 Material Parameters

Bio-tissue materials show typical viscoelastic properties related to load and speed.
Viscoelastic material model is widely used to describe the material properties of
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Table 1 Quality control
parameters of elements

Quality control parameters Threshold

Warpage <35.20
Aspect ratio <10.70
Skew <64.00
Min. size >0.70
Jacobian >0.47
Min. angle quad >16.69
Max. angle quad <160.65

Table 2 Material definition of model components
Part Material property aE/ak(MPa) Poisson ratio G0(kPa) G∞(kPa) β (s−1)
Falx Elastic 31.5 0.45
Tentorium Elastic 31.5 0.45
Cortical bone Elastic 15,000 0.21
Cancellous bone Elastic 4,600 0.05
Scalp Elastic 16.7 0.42
Cerebellum Viscous Elastic 2,190 10 2 80
Cerebrum Viscous Elastic 2,190 12.5 2.5 80
CSF Viscous Elastic 1,050 1 0.9 80
Brain stem Viscous Elastic 2,190 22.5 4.5 80
Dura mater Elastic 31.5 0.45
Pia mater Elastic 11.5 0.45

aE = Young’s modulus, k = bulk modulus

brain tissue [17–19]. Researches have shown that water accounts for nearly 78% in
brain tissue that result in incompressible characteristics. For the HBM-head model,
a linear viscoelastic material was selected in this study, as the maximal strain of the
head model is 0.1965 at an impact speed of 12 m/s in this study, which is based
on Bathe [22]. The shear elasticity behavior of this material was obtained from the
follow equation:

G(t) = G∞ +(G0−G∞)e−β t

where G0: short-term shear modulus, G∞: long-term shear modulus, β : decay con-
stant, t: time.

The bulk modulus of brain tissue was defined as 2.19 GPa, and the shear modulus
was changed between 680 Pa and 268 kPa. The material parameters in literature
[17–19] were used in HBM-head model as shown in Table 2. In order to obtain an
accurate simulation of the relative motion between brain and skull during impact, the
shear modulus and bulk modulus of CSF were lower than brain tissue. The material
of cortical bone and cancellous bone were defined in reference to the skull material
properties of the ULP model [18].
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2.3 Contact Interface

During an event of vehicle crash, the cerebral meninges and CSF between the skull
and brain will lead to a relative sliding between the skull and brain due to effect of
inertial loading of the translation and rotation acceleration. There is very thin space
filled with CSF between the dura mater and arachnoid preventing these structures
sticking together. The CSF plays an important role for energy absorption and damp-
ing during an impact. This effect has been investigated by using finite element (FE)
model of craniocerebral. There is space between arachnoid and pia mater and the
space is filled with CSF. Some of blood vessel are going into the brain tissue. Some
thin filament structures called arachnoid trabeculation in subarachnoid extend to pia
mater from arachnoid. They play a role of fixing the pia mater to arachnoid. Based
on the above knowledge of anatomy, a HBM-head FE model was developed using
solid and shell elements. The dura mater is a layer attached to the inner surface of
skull. The inferior of dura mater is a layer arachnoid. The pia mater is the membrane
that is closely attached to the surface of brain tissue. Elements simulating pia mater
are attached to the surface of brain. Outside of brain are elements representing CSF.
The arachnoid is simulated by the outer surface of CSF. The contact algorithm was
defined between dura mater and arachnoid in the HMB-head model. The solid ele-
ments between ventricle and brain tissue were connected using the common nodes.

2.4 Model Validation

The model was validated with the data from head impact experiments by Nahum
[20]. The experimental samples were human cadavers without antiseptic treatment.
The head was loaded at a certain speed using a rigid impactor with padding. The
experiments were divided into two groups. The samples used in the first group have
the numbers of 36–38, 41–44, and 54. The mass of impactor was defined from 5.23
to 23.09 kg. The velocity was from 4.36 to 12.95 m/s. The numbers of the second
group were 46–52. These experiments were carried out at different speeds to the
same sample and the speed changed from 4.42 to 8.69 m/s. And the mass of impactor
was 5.23 kg. Different padding materials of impactor were used to obtain the proper
impact duration.

The contact force between the impactor and head, the centroid acceleration of
head and the pressure in five different positions from the Nahum experiments [20]
were used in the validation of the model. The five positions were brain tissue region
near the impact location on the frontal bone; the brain tissue of the side of parietal
bone located in the upper of the juncture of coronal suture and squamous suture;
the inferior part of the lambdoid suture of occipital bone; and the nucleus fastigii
of cerebella of occipital. The detail curve data of NO 37 experiment was showed in
Nahum’s paper [20]. So the results of this experiment were selected to validate the
simulation model. The mass of the cylinder impactor is 5.59 kg and the speed of
impact is 9.94 m/s in the experiment.
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Fig. 2 Configuration for
model validation

Fig. 3 The comparison of time history curve between Nahum experiment [20] and simulation

Figure 2 illustrates the configuration for simulation of the head impact test. The
boundary conditions of simulation were defined based on test configurations. As the
impact time was so short that the neck has little effect on head response in such
short time. We assumed that the boundary condition of head is free. Referring to the
Nahum experiment [20], the head was forward incline in order to make the Frank-
furt plane to horizontal plane at an angle of 45◦. The model of impactor with the
padding materials was developed simulated by using foam material in the front end.
In order to obtain the impact characteristic of padding materials, pre-analysis of dif-
ferent foam material were carried out with the stress–strain curves of corresponding
material. According to the experiment method of Willinger et al., the mass of the
cylinder impactor was set to 6.8 kg and the speeds of impact changed from 6 to
9.94 m/s.

Analysis of simulations indicated that the calculated contact force agreed well
with the Nahum experiment at 6.8 m/s. The impact contact force is shown in Fig. 3.

Figure 3a illustrated a comparison of the impact forces between results from
the simulation and the experiment. The accelerations of center of mass from the
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Fig. 4 The comparison of intracranial pressure time history curves between experiment and
simulation

simulation, Nahum’s experiment [20] and Kang’s study [15] are given in Fig. 3b.
The comparison among the intracranial pressure is shown in Fig. 4 in terms of results
from simulation of this model and the experiment, as well as simulation curves by
Kang’s using ULP model and Belingardi, etc. [23].

3 Investigation of Brain Injury in Vehicle Collisions

In passenger car-to-adult pedestrian accidents, the head injuries attract particular at-
tention due to the severe or fatal consequences. Many studies have been carried out
in this area but the injury mechanisms and the tolerances of brain remain controver-
sial. A study of the skull–brain injury mechanisms was conducted by using a MBD
pedestrian model [24] and the HBM-head FE model (Fig. 5).

Head trauma accident data were selected from IVAC accident database [25]
which was developed based on in-depth investigations of vehicle accidents in
Changsha, China. A passenger car-to-pedestrian impact at 45 km/h was recon-
structed using multibody dynamic (MBD) models to acquire the head impact
conditions for the head impact velocity, head position, and head orientation. The
HBM-head FE model was used for the reconstruction of skull fracture and brain in-
juries via a virtual test of head impact against windscreen and A-pillar (Fig. 5).
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Fig. 5 A computational study of brain injury biomechanics based on accident data by using MBD
and FE models

A stress analysis was conducted to determine the correlation of the stress and
pressure distributions of the brain model with the injuries observed in the head–
windscreen collisions.

From head–windscreen impact, the received contact force of the HBM-head
model is 4.4 kN and the intracranial pressure maximum 250 kPa. From head–A-
pillar impact, the received contact force of the HBM-head model is average 16 kN
and the intracranial pressure maximum 815 kPa.

The skull fracture appeared in A-pillar impact, and there is no fracture in
windscreen impact. The intracranial pressure maximum 250 kPa from windscreen
impact could correlate with minor coup/countercoup injuries. The intracranial
pressure maximum 815 kPa from A-pillar impact could correlate with severe
coup/countercoup injuries.

It is necessary to point out that the approach used for calculation of the physical
parameters for brain injuries in car-to-pedestrian impact will result in certain devia-
tion. This could be due to the difference of the effective head mass between the FE
head impact modeling and the head impact modeling with MBD pedestrian model
in which a neck constraint force applied to the head [26].

The reconstruction results indicated that coup/countercoup pressure, Von Mises
and shear stress were important physical parameters to evaluate the brain injury risk.
The relationship between skull fracture and the predicted physical parameters can
be determined. Thereby, we can finally obtain reasonable advices to improve safety
design of car frontal structure for minimizing the risk of pedestrian head injuries.
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4 Conclusions

Using both the MBD and HBM-head FE models is a valuable approach for recon-
struction of vehicle-to-pedestrian collisions and analysis of the dynamic responses
and injury-related physical parameters. For further study of the brain parameters, it
is important to get an effective head mass in the simulations.

The brain injury-related parameters such as the head acceleration, stress, strain,
contralateral intracranial pressure can be obtained, which indicate that the model
can be used to study typical traffic injuries and the injury mechanism. Furthermore,
the acquired knowledge can be used to improve the car safety design for protection
of pedestrian head injuries.
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Blood Flow Simulation in a Giant Intracranial
Aneurysm and Its Validation by Digital
Subtraction Angiography

Harvey Ho, Jian Wu, and Peter Hunter

Abstract In this study we simulate the blood flow in a giant aneurysm using com-
putational fluid dynamics (CFD) techniques and validate the results using the 2D
X-ray image sequence generated from digital subtraction angiography (DSA). The
3D geometry of the aneurysm was retrieved from a computed tomography an-
giography (CTA) image. The pulsatile blood flow was numerically solved, and the
hemodynamic quantities such as the wall shear stress (WSS) and flow velocity field
were analyzed at four instants of a cardiac cycle. The computed intra-aneurysm
flow velocity was validated using a DSA sequence over several time frames. The
time-averaged flow velocity (∼0.2 m/s) agreed with the flow velocity estimated
from the DSA. We further compared the Newtonian blood model with a non-
Newtonian (Carreau) model and found that the Newtonian model overestimated the
flow velocity and WSS.

Keywords Blood flow · Giant aneurysm · Digital subtraction angiography ·Model

1 Introduction

In recent years, many image-based patient-specific computational fluid dynamics
(CFD) models have been constructed for cerebral aneurysms (e.g., in [1–3]). These
models provide an economic way to evaluate important hemodynamic quantities
such as the wall shear stress (WSS) which are otherwise difficult to determine in
vivo, or expensive to measure in vitro. The computed flow quantities may be further
used for pathophysiological analysis and therapeutic planning [1, 4].

One of the main problems of patient-specific CFD models, however, is that they
are difficult to validate in vivo. Indeed, many of the patient-specific CFD models
were performed in the absence of in vivo validations. Although non-invasive val-
idation methods, such as the phase contrast MR angiography (PC MRA) and the
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transcranial Doppler sonography (TCD), do provide the possibility of measuring
blood flow velocities, their current spatial and temporal resolutions have restricted
their use in small intracranial arteries [5].

Hence, it is useful to explore other validation methods. In clinical practices, dig-
ital subtraction angiography (DSA) has been a “gold standard” in vascular disease
diagnosis [1]. This procedure uses a catheter, which is inserted into a puncture site
(usually the femoral artery) and advanced to a target location. By releasing a radio-
opaque contrast agent, the anatomy of vascular lesions is revealed in X-ray images
[1]. Although the main purpose of DSA is to yield the anatomic information of
diseased vessels, it can also be used to estimate blood flow velocities from the move-
ments of the contrast agent, and can thus be used for CFD validation purposes [1,6].

The DSA sequence reported in [1, 6] was of low temporal resolution (2 Hz) and
was not able to capture the dynamic intra-aneurysmal flow path. The purpose of
this work is twofold: first, we present a computational pipeline from patient-specific
vascular structure extraction to CFD simulation; second, we use a DSA sequence
with a higher frequency (10 Hz) to quantitatively validate the CFD results for a
giant intracranial aneurysm.

2 Method

2.1 Image Scanning

We retrospectively studied a CT angiography (CTA) image (GE Lightspeed VCT,
GE Healthcare, Waukesha, Wisconsin) in which a giant cerebral aneurysm was
found (Fig. 1a). The resolution of the CTA image was 0.432× 0.432× 0.625 mm.
A DSA (Infinix Celeve VS; Toshiba, Tokyo, Japan) scanning was further performed
to gain a whole picture of the cerebral vasculature, using a temporal frequency of
10 Hz. The giant aneurysm and other blood vessels are shown in Fig. 1b.

Fig. 1 (a) A giant intracranial aneurysm revealed in CTA image; (b) the anatomy of the aneurysm
and blood vessels in its vicinity; (c) the size of the giant aneurysm
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The aneurysm arises from the distal end of the right inner carotid artery (ICA)
before it bifurcates into the right middle and anterior cerebral arteries (MCA and
ACA). The size of this aneurysm is 34.2 and 27.5 mm along the long and short axis,
respectively (Fig. 1c). This size is larger than the dimensional definition of giant
intracranial aneurysms (fundus diameter≥25 mm) [7].

2.2 Surface Model Construction and Computational
Grid Generation

Based on the CTA image, the giant aneurysm was segmented and digitized into a
surface mesh (Fig. 2a) using a MIMICS 10.0 software (Materialise, Leuven, Bel-
gium). Note that the two efferent vessels (MCA and ACA) are much smaller than
the afferent vessel (ICA).

To enable flow simulation to be properly carried out, the inlet, i.e., the ICA and
the outlets, should be extruded so that the boundary flow effects will have a mini-
mum influence on the intra-aneurysmal flow. This was performed using @neuFUSE,
an imaging/visualization tool developed by @neurIST, as follows: (1) a 3D skele-
ton was extracted from the 3D vascular structure (Fig. 2b); (2) the inlet and outlet
vessels were cropped at proper locations along the skeleton; and (3) the vessel ends
were extruded (Fig. 2c).

Another essential CFD preprocessing procedure is the computational grid gener-
ation, whereby the flow domain (i.e., the volume contained inside the surface mesh)
was discretized into numerous small elements. We used a grid generator ICEM
(ANSYS Inc., Canonsburg, PA) and the resulting grid contains 618,000 tetrahedral
elements (Fig. 3).

Fig. 2 Aneurysm model construction and boundary treatment: (a) surface mesh of the aneurysm;
(b) a 3D skeleton was extracted and a cut position was defined; (c) the end vessel was extruded to
facilitate CFD analysis
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Fig. 3 Computational grid generation: (a) computational mesh generation; (b) a closer look at the
computational elements (control volumes)

2.3 Flow Simulation

2.3.1 Governing Equations

Since the aneurysm size (27.5–34.2mm) is much larger than the size of blood cells
(∼5 μm), the blood can be modeled as a continuum. The governing Navier–Stokes
equation can be expressed in a vector form:

∇ ·v = 0 (1)

ρ
(

∂v
∂ t

+ v ·∇v
)

=−∇p + ∇ · τ (2)

where v represents the flow velocity in 3D space, ρ is the blood density, p is the
pressure, and τ is the shear stress.

2.3.2 Newtonian vs. Non-Newtonian Blood Models

For a Newtonian fluid, the shear stress (τ) has a linear relationship with the shear
rate (γ̇) and its viscosity (μ) is a constant. However, blood is a non-Newtonian fluid
and it exhibits shear-thinning properties, especially at low shear rates (<100 s−1)
[8]. The question now is: what is the range of blood shear rates in this giant
aneurysm? Figure 4a answers this question: the shear rate in a large portion of the
giant aneurysm surface is under 100s−1. For this reason, non-Newtonian models are
more suitable for hemodynamics modeling for this aneurysm.

Various non-Newtonian models exist, e.g., the Carreau, Casson, and Power Law
models [8]. In this work, we adopt the Carreau model which is expressed as:

μ = μ∞ +(μ0− μ∞)[1 +(λ γ̇)2](n−1)/2 (3)
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Fig. 4 (a) The shear rate in a large portion of aneurysm is under 100 s−1; (b) Viscosity–Shear rate
curves of the Newtonian and Carreau blood models

where μ0, μ∞ are blood viscosities when the shear rate is zero (μ0) and when the
shear rate is high enough so that blood can be treated as a Newtonian fluid (μ∞). The
parameters n and λ are obtained by fitting (3) with experimental data. We adopt their
values from [8]: λ = 3.313s, n = 0.3568, μ0 = 0.056Pas and μ∞ = 0.00345Pas.

Based on (3), we plot the viscosity–shear rate (μ-γ̇) curves for the blood as a
Newtonian fluid as well as a non-Newtonian fluid (Fig. 4b). Note that the blood
viscosity decreases with an increased shear rate, especially in low shear rates (hence
the term “shear-thinning”). The viscosity tends to be equivalent to the Newtonian
viscosity (μ∞) in high shear rates.

2.3.3 Flow Solver

To solve the governing equations, (1) and (2) were integrated over each of the small
elements (also known as control volumes) of Fig. 3 to yield discretized equations.
A commercial finite-volume-based flow code CFX 11.0 (ANSYS Inc., Canonsburg,
PA) was used to solve these equations numerically [9].

Since blood flow in the middle cerebral region is pulsatile, we adopted the flow
velocity waveform of ICA from our previous 1D model [10] (shown in Fig. 5a)
and applied it as the inflow boundary condition. The zero pressure was used as
the outflow boundary condition to allow free flow. Since the wall deformation of
intracranial arteries is small [1, 2], the aneurysmal wall was simplified as rigid and
no-slip condition was applied.

In the actual CFD simulation, a cardiac cycle was assumed to be 1 s. The temporal
step was set as 0.01 s, and within each time step ten iterations were performed for
numerical convergence.
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3 Results

3.1 CFD Simulation

The transient flow over four cardiac cycles took about 16.5 h to compute on a desk-
top computer (Pentium Dual-Core 2.39 GHz), and the result at the last cycle was
used for hemodynamic analysis. The computational results were post-processed at
four time instants (t = 0.25, 0.5, 0.75, and 1.0 s) spanning both systole and diastole.
Figure 5b visualizes the WSS at the aneurysm wall, and Fig. 5c shows the velocity
streamline constructed from the flow field.

The CFD results suggest that the flow velocities (and hence the WSS yielded
from radial velocity gradient) in the two small efferent arteries (MCA and ACA) are
much higher than that in the aneurysm and the afferent artery (ICA): the mean flow
velocity in MCA and ICA is about 2 m/s, while in ICA it is 0.3 m/s. This is due to
the conservation law of mass: the inflow from the large ICA must be equal to the
outflow from the much smaller MCA and ACA over a cardiac cycle.

Inside the aneurysm, the highest WSS (∼2.1 Pa at systole, see Fig. 6) occurs at
the region along the blood flow path and close to the ICA, whereas the WSS at
the lateral wall is lower (0–0.5 Pa). The flow velocity streamlines, shown in Fig. 6,
indicate that the highest flow velocity is about 0.7 s−1, while the flow is stagnant at
the center of the aneurysm.
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Fig. 5 CFD results of the giant aneurysm at four instants (0.25, 0.5, 0.75, and 1.0 s): (a) the
velocity waveform (adopted from [10]) as the inflow boundary condition; (b) the WSS distribution
at the aneurysm; (c) the velocity streamline (using 50 seed points) of the aneurysm
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Fig. 6 The WSS and flow streamline at systole (T 1 = 0.25 s)
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Fig. 7 Comparison of Newtonian and non-Newtonian blood models: the WSS for the new-
Newtonian model is slightly lower at low shear rate regions (t = 0.8 s)

3.2 Effects of Non-Newtonian Blood Model

In the above simulation, the blood was modeled as a Newtonian fluid which is a
good approximation when the shear rate is high (e.g., >100 s−1) [11]. However,
the shear rate and shear stress in the giant aneurysm are low in a large portion of
aneurysm (as shown in Fig. 4a). Therefore, a non-Newtonian model is more suitable
especially at low shear regions.

In order to observe the difference between the Newtonian and non-Newtonian
models, a comparison of their WSS distributions (t = 0.8s, i.e., in diastole) is shown
in Fig. 7. It can be seen that the low WSS regions is slightly larger in the Carreau
model than the Newtonian model. We further check the flow velocity profile on a
slice plane of the aneurysm (Fig. 8). Comparisons between the two models were
made when t = 0.3 s (systole) and 0.8 s (diastole). In both instants, the velocity
profiles of the Carreau model are more flattened than the Newtonian model.
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Fig. 8 Comparison of Newtonian and non-Newtonian blood models: the velocity profiles of the
slice plane for the Carreau model is more flattened than the Newtonian model

This phenomena can be explained from the fact that higher blood viscosities
occur in low shear rates (see the graph of Fig. 4b). Thus, a higher resistance or “drag
force” slows blood flow down and leads to a more flattened profile. This observation
is consistent with that reported in [8] and [11].

3.3 Validation

3.3.1 WSS Magnitude

The WSS results were compared with published data of MCA aneurysms in Shojima
et al. [2] and Chien et al. [3], using the same 6-region method, i.e., WSS were
evaluated from three sections crossing the aneurysm neck, middle, and top, and
three other sections from the parent artery. The comparison, shown in Table 1, sug-
gests that the computed WSS values are consistent with the results of other research
groups.
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Table 1 Comparison of WSS with literature. Unit: Pa(=N/m2)

Time step Our model Shojima et al. [2] Chien et al. [3]

Highest WSS 9.2 14.39± 6.21 15.0
Mean WSS 5.7 10.3± 5.2 11.7± 3.6

Fig. 9 DSA sequence showing the flow path of the contrast agent at t = 1.2, 1.6, 2.0, 2.4, and
2.8 s, respectively

3.3.2 Intra-aneurysmal Flow Velocity

The intra-aneurysmal flow velocity may be estimated directly from the DSA
sequence upon careful examination of the distance and time which the contrast
agent had traveled. For instance, in Fig. 9 the front of the contrast agent arrived at
the neck of the aneurysm at instant 1 (t = 1.2 s); at instant 2 (t = 1.6 s) the agent
front reached the middle lateral wall. Since the diameter of the aneurysm is about
35 mm (see Fig. 2c), the distance traveled by the contrast agent was approximately
55 mm. The travel time between instants 1 and 2 was 1.6 s− 1.2 s = 0.4 s, and
the flow velocity therefore was 55÷ 0.4≈ 138 (mm/s). The mean flow velocities
of four instants (visualized in Fig. 5c), on the other hand, is about 190 mm/s. We
deem the difference is within an acceptable range. This difference may be further
minimized by adopting the actual in vivo inflow velocity waveform using Doppler
ultrasonography, which was not taken for this patient.

3.3.3 Flow Path Shape

A comparison was also made between the DSA sequence and CFD results regarding
the shape of the flow path. This is shown in Fig. 10: the blood diverged after entering
the aneurysm (indicated by black arrows), and the blood flow adhesively along the
aneurysmal wall (indicated by the white arrows). These flow phenomena are seen in
both DSA imaging and CFD results. It is also notable that the band width/thickness
of the flow path is similar between the DSA and CFD results.
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Fig. 10 Blood flow patterns: a comparison between DSA and CFD

4 Discussion

Clinical treatment of giant intracranial aneurysms remains as a daunting challenge
for neurosurgeons and interventional radiologists alike [7]. Among the many factors
that lead to the poor prognosis of giant aneurysms, hemodynamics is suggested to
play an important role. Clearly, CFD can be used in the quantification of hemody-
namic factors involved in giant aneurysms, given a suitable model is used. In this
work, we compared the Newtonian model with a non-Newtonian (Carreau) blood
model. We found that the Newtonian model overestimated the flow velocity and
WSS, and that the velocity profiles of non-Newtonian flow are more flattened than
Newtonian flow. This is a good example showing that computational results must
be carefully validated to reliably interpret flow-induced effects such as vessel wall
remodeling and growth.

There is no “standard” in vivo method for validating hemodynamic data. In this
work, we used a series of DSA images to validate the CFD-derived flow velocities.
Compared with other methods such as PC-MRA, this technique has the advantage
that it can show the contrast agent movement hence the blood flow patterns, as
evidenced in Fig. 9.

Estimating blood flow velocity information from 2D X-ray images is not new.
Researchers have suggested different techniques such as transient measurement
and optic flow for the estimation of flow velocities [12]. Also, the qualitative
“reality check” type of flow streamline comparison between CFD and DSA
(similar to Fig. 10) has been described in [1, 6]. However, applying a quantitatively
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estimated blood flow velocity (from X-ray images) directly to CFD validation, to
our knowledge, has not been reported.

The drawback of using DSA as a validation method, however, is that it is an
invasive procedure. There are complication possibilities associated with the vascular
access procedures, i.e., inserting a catheter into a puncture site. The manipulation of
catheters may also cause injuries to the vessel lumen. On the other hand, since our
study was performed in a retrospective manner, such kind of validation causes no
extra pain/complication to patients but rather better utilizes the available data.

5 Conclusion

In this work, we performed a CFD simulation for the blood flow in a giant intracra-
nial aneurysm digitized from a CTA image. The WSS results were compared with
literature, and the CFD-derived velocities were compared with the flow velocity es-
timated from a DSA image sequence. We have shown that DSA can be a useful tool
for CFD validation.
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Patient Specific Hemodynamics: Combined 4D
Flow-Sensitive MRI and CFD

A.F. Stalder, Z. Liu, J. Hennig, J.G. Korvink, K.C. Li, and M. Markl

Abstract Both 4D flow-sensitive MRI and computational fluid dynamics (CFD)
have successfully been applied to analyze complex 3D flow patterns in the car-
diovascular system. However, both modalities suffer from limitations related to
spatiotemporal resolution, measurement errors, and noise (MRI) or incomplete
model assumptions and boundary conditions (CFD). The aim of this study was to
directly compare the results of 4D flow-sensitive MRI and CFD in a simple model
system in vitro and in complex models of the thoracic aorta in vivo. By compar-
ing both modalities within a single framework, discrepancies were observed but the
overall patterns were coherent. If adequate methods are used (e.g., patient-specific
boundary conditions, fine boundary layer mesh), CFD can compute very accurate
flow and vessel wall parameters, such as wall shear stress (WSS). The combination
of 4D flow-sensitive MRI and CFD can be used to refine both methodologies, which
may help to enhance the assessment and understanding of blood flow in vivo.

Keywords 4D flow-sensitive MRI · CFD · Hemodynamics · Blood flow

1 Introduction

The study of local hemodynamics within anatomically complex regions of the
human vascular system is of high interest since these sites are predisposed to vascu-
lar diseases. Many studies have shown a correlation between disturbed flow patterns
and the development of vascular disease (e.g., atherosclerosis, aneurysms) [1].
In this context, magnetic resonance imaging (MRI) offers the unique advantage
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Fig. 1 (a) 3D flow-sensitive MRI includes anatomy and three-directional velocities over a 3D
volume. (b) Combination of 4D flow-sensitive MRI and CFD: arterial geometry and blood veloci-
ties are extracted from 4D flow data and are eventually used for the boundary conditions for CFD.
The combined information of blood flow hemodynamics from 4D flow-sensitive MRI and CFD
can be used to validate the CFD or to assess the error of flow-sensitive MRI

to simultaneously assess the morphology and function in vivo. In particular, 4D
flow-sensitive MRI presents a complete 3D coverage as well as an intrinsic sensi-
tivity to flow in all the three directions (Fig. 1a).

Limitations of flow-sensitive MRI (or PC-MRI) include the relatively long
imaging time and limited spatiotemporal resolution. In addition, several sources of
errors affect flow-sensitive MRI and result in limited signal-to-noise ratio (SNR).
2D flow-sensitive imaging is now widely used in the clinical routine but due to
its additional complexity, 3D flow-sensitive imaging is not yet part of the standard
clinical methods.

An alternative approach to 4D flow-sensitive MRI is provided by CFD models
with realistic boundary conditions (i.e., vascular geometry and inflow provided by
computed tomography (CT), MRI, or ultrasound) as reported in a number of previ-
ous studies [2–4]. In this approach, the blood velocities are not directly measured
over the complete arterial structures but are calculated based on fluid mechanics
laws. However, blood flow in the arteries is particularly complex, including phenom-
ena such as non-Newtonian rheology, compliant and moving arteries, and fluid–wall
interactions. It is still debated how restricting assumptions on blood rheology, vessel
properties, or blood-vessel interactions may affect the accuracy of the results. Due
to limited knowledge on those phenomena and/or high complexity of computational
models, those aspects are often neglected.

The aim of the presented method was to combine 4D flow-sensitive MRI and
CFD into a single framework in order to enhance blood flow estimations. Conse-
quently, 4D flow-sensitive MRI was used for the finite element model definition
(geometry and boundary conditions) as well as for verification of the CFD solution.
This integration allows the CFD solution and the MR measurements to be compared
against each other in the same environment and coordinate system. In addition, the
combination of both modalities in a single framework allows the initialization of
the solver for the finiteelement model using the 3D velocities measured with MRI.
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This combination has the potential to refine the assessment of blood flow in vivo
by correcting the MR velocities based on flow models and refining the CFD models
based on MR velocities.

2 Methods

2.1 4D Flow-Sensitive MRI

Data were acquired on a 3T MR system (Magnetom TRIO, Siemens, Germany,
Gmax = 40 mT/m, rising time = 200 μs, eight-channel receive coil) with a 4D flow-
sensitive MRI sequence in a flow model in vitro and a healthy volunteer in vivo.

The flow model consisted in a rigid PVC tube with 3.4 cm inner diameter
connected to a clinical bloodpump-system (Deltastream DP2, Medos, Stolberg,
Germany), which produced a constant (nonpulsatile) flow of contrast agent (Gd-
BOPTA, Multihance, Bracco) doped distilled water at 37◦ C. The 3D flow-sensitive
MRI acquisition parameters were voxel size = 0.4×0.4×0.6mm3, venc = 0.5m/s,
TE/TR = 4.62/8ms, bandwidth = 440Hz/pixel, α = 13◦.

The thoracic aorta of a young healthy volunteer (age: 26, male) was imaged
after injection of a blood pool contrast agent (MS325, Vasovist; Schering AG)
using a respiration-controlled and ECG-gated 4D flow-sensitive MRI sequence (3)
(spatial resolution = 2.82 × 1m.67 × 3.5mm3, temporal resolution = 48.8ms,
venc = 1.5m/s, TE/TR = 3.67/6.1ms, bandwidth = 480Hz/pixel, α = 13◦).

2.2 MR-Based CFD

The underlying principle of this approach is illustrated in Fig. 1b. On one hand,
4D flow-sensitive MRI is used to generate a 3D geometry. On the other hand, the
velocity information is used for the boundary conditions for CFD. 4D flow-sensitive
MRI and CFD results are then combined in a single framework to provide optimal
estimation of hemodynamics in vivo.

2.2.1 Geometry Reconstruction

Based on the 4D flow-sensitive MRI data, a phase-contrast angiography (PC-MRA)
was first calculated [5]:
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where ti represent the time frames from 1 to Nt ; Imag
ti (�k) is the normalized anatomy

intensity magnitude at the time frame ti.
∣∣∣vti(�k)

∣∣∣ is the magnitude of the velocity

vector at the time frame ti. �k = (k1, k2, k3) ∈ Z3 represents the discrete spatial
coordinates.

The segmentation of the arteries was performed on the 3D PC-MRA data using
level-set active contours (ITK-SNAP, Penn Image Computing and Science Lab,
University of Pennsylvania, USA [6]). The initialization of the active contour was
performed by manually positioning at least one seed sphere within the artery. The
algorithm was evolved until segmentation of the complete arterial structure was
achieved (Fig. 2).

The active contour segmentation generated a level-set volume which was further
processed in order to generate an unstructured surface mesh (Paraview, Kitware Inc.,
NY, USA) (Fig. 3a−a). The unstructured mesh was then cleaned, simplified (quadric
edge collapse decimation), and smoothed (Laplacian filter) using MeshLab (Visual
Computing Lab – ISTI – CNR) (Fig. 3a−c). The resulting surface (with subvoxel
resolution) was used for a geometry reconstruction based on Non-Uniform Rational
B-Spline (NURBS, Fig. 3a−d) (Geomagic Studio 9, Geomagic Inc., NC, USA;
Fachhochschule Nordwestschweiz, R. Kaiser).

Fig. 2 3D active contour segmentation based on 3D PC-MRA: a single sphere used as initial-
ization in the aortic arch (image 1) resulted in the segmentation of the complete thoracic aorta
(image 4) after 2,500 iterations (approximately 3 min on a desktop computer)

Fig. 3 (a) Processing of the arterial wall geometry for the descending aorta model. a: Unstructured
surface mesh of the thoracic aorta. b: Selection of the descending part of the aorta. c: Surface
after Laplacian filtering and with closed boundaries. d: Reconstructed geometry based on NURBS.
e: Subdomain mesh. (b) Boundary layer mesh of the thoracic aorta model: the mesh is constructed
of 1.9 × 106 elements including the mesh elements in the six boundary layers
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The meshing was realized using a free mesher that automatically created an un-
structured mesh of the subdomain with tetrahedral and prism elements (Fig. 3a−e).
In order to reliably assess shear stresses at the surface boundaries, boundary layer
meshes were used in one model. The boundary layers consisted of triangular
elements over six layers, with an initial layer thickness of 10 μm and a stretching
factor of 1.2 [7, 8] (Fig. 3b).

2.2.2 CFD Solver

The measured flow-sensitive 4D MRI data was used to define inflow and outflow
boundary conditions which matched the in vivo situation. In order to map MR-
velocities onto the knots of the mesh and at the time step required by the CFD solver,
interpolation schemes were used in the spatial (tri-linear interpolation) and temporal
(cosine interpolation) domains. In addition, the temporal domain was extended by
periodicity (according to the cardiac period).

The Navier–Stokes equations for a Newtonian and incompressible fluid formed
a partial differential equation (PDE) system:⎧⎨

⎩
ρ
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∂ t
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=−∇p + ∇ ·
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with density ρ , velocity�v, pressure p, viscosity η , and an external force �f .
In practice, it was assumed that no external force was applied on the model (thus

neglecting gravity) and the force �f was set to zero.
The PDE problem (2) was solved using the PARallel sparse DIrect linear SOlver

(PARDISO). For the time-dependent models, the CFD models were solved over sev-
eral cardiac cycles to allow for stabilization. The 3D MR flow measurements were
used for initialization as well. When the exact MR velocities (with some measure-
ment errors) were used as boundary conditions, a stabilization algorithm (isotropic
or anisotropic diffusion) was used.

CFD was performed using a commercial finite element solver (Comsol Multi-
physics v3.4, Comsol Inc., Burlington, MA, USA, www.comsol.com). Blood was
assumed to be incompressible with a density of 1,050 kg/m3 and a dynamic viscos-
ity of 0.0045 Pa s [9]. Newtonian approximation is supposed to be acceptable in
large arteries where relatively high shear rates occur [4, 10].

2.2.3 CFD Models

Tube Model

The experimental model of stationary laminar flow in a straight rigid tube was
used as a validation model. The mesh elements for this model were defined on the
subdomain and it was solved using an adaptive mesh refinement technique resulting
in 163 × 103 subdomain elements.
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Descending Aorta Model

In this model, only a small part of the descending aorta of the volunteer was recon-
structed and meshed for CFD (see Fig. 3a). The exact 4D flow dataset was used for
the boundary condition at the inflow and a zero pressure reference (and no viscous
stress) was defined at the outflow. The mesh elements for this model were defined
on the subdomain only and it was solved over four cardiac cycles.

Thoracic Aorta Model

In this model, the complete thoracic aorta of the volunteer was reconstructed and
meshed. This model was originally designed to produce an experimental model by
rapid prototyping and hence presented nonphysiologic connection systems at its in-
let/outlets (e.g., the left common carotid and the left subclavian artery were merged
together). Due to the processing for rapid prototyping, this model was realized from
a contrast-enhanced angiography dataset. This model used paraboloids scaled to the
instantaneous flow of the flow-sensitive MRI data for the boundary conditions. Con-
sidering the rigid wall and the incompressibility assumptions, the net flow balance
of the model was adjusted to be zero at every instant. The shape of the time-curve
at the inflow was used for all inlet/outlets but the amplitude of every inlet/outlet
was scaled to the measured flow volumes. In addition, the measured flow volumes
at the outlets were slightly corrected in order to exactly match the flow volume at
the inlet. This model was meshed with a very fine mesh over the subdomain and on
boundary layers (242 × 103 elements, 1.9 × 106 degrees of freedom). This model
was first solved as if it was stationary during mid-diastole (where the flow fluctua-
tions over time are the smallest) and then the pseudo-stationary solution was used
as initialization for the time-resolved solver (solved over five cardiac cycles).

3 Results

3.1 Tube Model

The velocity in the tube model simulated using CFD and measured using
flow-sensitive MRI are shown in Fig. 4a. While the velocities measured using
flow-sensitive MRI were generally noisy, the velocities based on CFD were very
regular and presented parabolic-like shapes. It is visible that the velocities from
flow-sensitive MRI were used for the boundary condition for the inflow of the CFD
model as the CFD inlet appears noisy and irregular. However, those fluctuations
were not propagated through the CFD simulation and the velocity field rapidly
changed into a parabolic shape with increasing distance from the inflow. Despite
the fluctuations in the flow-sensitive MRI velocity field, the overall correlation be-
tween CFD and flow-sensitive MRI were good. The flow-sensitive MRI velocities
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Fig. 4 (a) Flow velocities in the tube model calculated by CFD (�vCFD) and measured using flow-
sensitive MRI (�vPC−MRI). The magnitude of the velocities and velocity difference |�vCFD−�vPC−MRI|
is given on the axial plane. In addition, the red arrowheads depict the local direction and ampli-
tude of the velocities. (b) CFD vs. flow-sensitive MRI (PC-MRI) velocities in the tube model:
Bland–Altman plot

demonstrated a near parabolic shape although zero-velocities could not be observed
at the geometry edges. While the velocity was axially oriented for the CFD simula-
tion, the direction of the velocity presented some fluctuations for the flow-sensitive
MRI measurements.

A systematic voxel-wise analysis of the velocities between flow-sensitive MRI
and CFD is shown in Fig. 4b with a Bland–Altman plot. It reveals a small average
velocity difference of 0.004 m/s between flow-sensitive MRI and CFD, indicat-
ing thus that there was no systematic bias. This was expected considering that the
flow-sensitive MRI data were used for the boundary condition. By looking at the dis-
tribution, it appears that low velocities were overestimated by flow-sensitive MRI
while larger velocities were underestimated. This corresponds to the effects of a
spatial low-pass filter and is thus consistent with what can be expected at limited
resolution.

3.2 Descending Aorta Model

As shown in Fig. 5a, moderate spatial agreement was observed at peak systole
between CFD and flow-sensitive MRI. The flow velocities computed from CFD
were progressively regularized along the vessel from the inflow (top) to the outflow
(bottom). At the outflow of the CFD model the velocity repartition seemed to be
parabolic. In contrast, the velocities measured using flow-sensitive MRI presented
a more irregular aspect with fluctuations throughout the model. In both cases, the
velocities tended to increase toward the lower part of the aorta as the diameter is
reduced.

The systematic voxel-wise analysis of the velocities between flow-sensitive
MRI and CFD (Fig. 5b) was similar to the results found in the tube model
(Fig. 4b). The Bland–Altman plot revealed again a small average velocity difference
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Fig. 5 (a) Systolic blood flow velocities in the descending aorta: CFD vs. flow-sensitive MRI.
A: Section of the descending aorta geometry used in the model. B: Velocity calculated by CFD and
measured using flow-sensitive MRI (PC-MRI) at ten transversal planes. The inflow (velocities from
MRI taken for the boundary conditions for CFD) is at the top of the model while the outflow (open
boundary for the boundary condition) is at the bottom. (b) CFD vs. flow-sensitive MRI (PC-MRI)
velocities in the descending aorta model at peak systole: Bland–Altman plot

(0.008 m/s) validating that there was no systematic bias. The lower velocities
were as well overestimated by flow-sensitive MRI while larger velocities were
underestimated. Nevertheless, the differences were substantially larger for this
model with a 95% confidence interval of [−0.573;0.589] m/s.

3.3 Thoracic Aorta Model

The flow–time curves for the thoracic aorta model are given in Fig. 6a. The time
curve of plane 1 was taken for the boundary condition for the CFD and is thus
identical for CFD and PCMRI. Considering that the CFD model assumes a non-
compressible fluid and rigid walls, the relative shape of the flow-curve is the same
for all planes of the CFD model. It only changes by a scaling factor that compensates
for the flow to the supra-aortic arteries. The flow-curves for flow-sensitive MRI at
planes 3, 6, and particularly 8, appeared delayed compared to the flow curve of CFD
(and of previous planes). This effect is likely due to compliance (i.e., deformation
due to elasticity of the arterial wall) in vivo which is expected to delay flow wave
propagation.

The time-averaged WSS [11] and the oscillatory shear index (OSI, estimator of
the temporal-variations of WSS) of the model are depicted in Fig. 6b. The distri-
bution of time-averaged WSS revealed large WSS values in the right side of the
ascending aorta as well as moderate WSS in the right side of the ascending aorta, in
the aortic arch, and in the distal descending aorta. The contrast of WSS between the
left and right side of the ascending aorta was particularly important. There were as
well spatial fluctuations of WSS in the vicinity of the supra-aortic arteries. The prox-
imal descending aorta presented relatively lower WSS. The OSI demonstrated a
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Fig. 6 (a) Blood flow in the thoracic aorta model derived from flow-sensitive MRI and CFD. Time
resolved blood flow curves are given for the planes 1, 3, 6, and 8 as measured from flow-sensitive
MRI (PC-MRI) and calculated using CFD. (b) CFD-based time-averaged Wall Shear Stress (WSS)
and Oscillatory Shear Index (OSI, estimator of the temporal-variations of WSS) in the thoracic
aorta model. Note that the connections at the inlet and outlets of the flow model have modified
diameter compared to the original anatomy in vivo

sensibly different pattern with large values at the inflow of the ascending aorta and
moderate levels in the aortic arch and proximal descending aorta. Those patterns
presented yet substantial spatial fluctuations. Nevertheless, it seems that OSI was
more important in the inner-curvature part of the aorta. The regions of highest OSI
were observed at the base of the supra-aortic arteries and at the inner-curvature part
of the proximal descending aorta. The distal descending aorta presented low levels
of OSI. Interestingly, locations of high WSS often matched location of low OSI and
locations of low WSS often matched locations of high OSI. It is somehow logical
considering that low flow regions are more likely to be subject to retrograde flow as
well. Nevertheless, the patterns of high OSI and low WSS at the base of the supra-
aortic arteries as well as at the inner-part of the aortic arch and proximal descending
aorta corresponded well to typical plaque locations [12–14]. With the exceptions
of the particular hemodynamics at the inflow/outflow due to the connections, the
measured WSS was about [0.5–1.5] N/m2 throughout the aorta.

4 Discussion

The results of this study showed a direct comparison of 4D flow characteristics
simulated by CFD and measured by flow-sensitive MRI in vivo based on an inte-
gration of both modalities into the same framework. This approach was motivated
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by the complementarity of both approaches. On one hand, flow-sensitive MRI can
directly measure hemodynamics in vivo but suffers from measurement errors and
limited resolution. On the other hand, CFD can compute very accurate flow fields
based on modeled arteries but depends on the validity of the hemodynamics models
and boundary conditions.

Among the errors affecting flow-sensitive MRI, eddy currents, gradient field
inhomogeneities, or concomitant gradients may be corrected or reduced. Never-
theless, even after these corrections, a certain level of error (e.g., the intrinsic
measurement error) will still remain. In addition, the spatiotemporal resolution of
MRI remains a limitation of 4D flow-sensitive MRI. CFD may introduce errors by
using approximate models such as simplified boundary conditions, rigid and/or no-
slip walls, or Newtonian rheology. Combination of 4D flow-sensitive MRI and CFD
may be used to refine both methodologies and enhance the assessment of blood flow
in vivo.

The integration of both modalities revealed a fair agreement between flow-
sensitive MRI and MR-based CFD. Although some discrepancies could be ob-
served, the overall qualitative agreement for flow velocities and directions between
both modalities was good (Figs. 4a, 5a, and 6a). The systematic quantitative com-
parison of velocities based on CFD and flow-sensitive MRI (Figs. 4b, 5b, and 6a)
revealed some slight discrepancies that could be explained by the different reso-
lutions between the two modalities. In a study where both modalities were subse-
quently registered [15], such differences were not observed after artificially reducing
the CFD resolution to match the MRI resolution. The partial volume effect (i.e., ef-
fect of limited spatial resolution) from MR measurements is likely to be one source
of error of flow measurements using flow-sensitive MRI. However, some discrep-
ancies in flow volume are likely to be due to geometry simplifications in the CFD
model as well. Several small branches flowing out of the aorta were neglected in the
flow models. In addition, errors in the flow–time curves (but not in the overall flow
volume) may have been introduced in the CFD flow models by assuming the blood
to be incompressible and the vessel walls to be rigid. While the incompressibility of
blood is a reasonable and accepted simplification [16], assuming rigid vessel walls
is likely to be a source of errors. Indeed, it is widely known that the blood vessels
are changing their volume during the pulsatile pressure changes within the cardiac
cycle. This effect, known as compliance, has an important role in the regulation of
pulsatile blood flow in arteries and is responsible for delaying flow wave propaga-
tion (Fig. 6a). Furthermore, high Reynolds number can be present in the aorta and
blood flow in vivo could be near to the onsets of turbulence [17] that would affect
CFD calculations. Nevertheless, in the tube model in vitro (Fig. 4), where the CFD
assumptions matched the reality (e.g., rigid wall), CFD was effective at removing
the errors from the flow-sensitive MRI velocity field.

While flow-sensitive MRI data consists in the velocity information on a grid, the
CFD model includes the velocity information in a much finer mesh and with a sec-
ond order model. In addition, the CFD model contains information on the pressure
and can be used to accurately derive parameters such as the viscous shear stress on
the boundaries (when using very small boundary layer mesh). The shear stress at the
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wall (WSS) and its oscillations (OSI) could be calculated using CFD and revealed
patterns of pro-atherosclerotic low and oscillating WSS at the base of the supra-
aortic arteries and at the inner-curvature of the aortic arch and proximal descending
aorta (Fig. 6b) that coincided with the typical location of plaque in the thoracic aorta
[12–14].

5 Conclusion

A methodology combining 4D flow-sensitive MRI and CFD into a single framework
was presented. While numerous studies have presented CFD simulations based on
realistic boundary conditions from CT and/or flow-sensitive MRI, the novel com-
bination of both methodologies in three dimensions and over time opens up new
opportunities for cross-validation and refinement of CFD models with MR measure-
ments. Results in vitro and in vivo demonstrated the feasibility of this approach and
showed the potential of the MR-based CFD approach to correct MR flow velocities
and to provide detailed secondary flow parameters such as WSS.

The combination of flow-sensitive MRI and CFD in a single framework could
be further used to refine the CFD models. Parameters such as viscosity, density, or
vessel wall elasticity could potentially be optimized by comparing the CFD velocity
field with the velocity field measured using MRI.
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The Effects of Young’s Modulus on Predicting
Prostate Deformation for MRI-Guided
Interventions

Stephen McAnearney, Andriy Fedorov, Grand R. Joldes, Nobuhiko Hata,
Clare Tempany, Karol Miller, and Adam Wittek

Abstract Accuracy of image-guided prostate interventions can be improved by
warping (i.e., nonrigid registration) of high-quality multimodal preoperative mag-
netic resonance images to the intraoperative prostate geometry. Patient-specific
biomechanical models have been applied in several studies when predicting the
prostate intraoperative deformations for such warping. Obtaining exact patient-
specific information about the stress parameter (e.g., Young’s modulus) of the
prostate peripheral zone (PZ) and central gland (CG) for such models remains an
unsolved problem. In this study, we investigated the effects of ratio of Young’s
modulus of the central gland ECG to the peripheral zone EPZ when predicting
the prostate intraoperative deformation for ten cases of prostate brachytherapy.
The patient-specific prostate models were implemented by means of the special-
ized nonlinear finite element procedures that utilize total Lagrangian formulation
and explicit integration in time domain. The loading was defined by prescribing de-
formations on the prostate outer surface. The neo-Hookean hyperelastic constitutive
model was applied to simulate the PZ and CG mechanical responses. The PZ to CG
Young’s modulus ratio ECG:EPZ was varied between 1:1 (upper bound of the liter-
ature data) and 1:40 (lower bound of the literature data). The study indicates that
the predicted prostate intraoperative deformations and results of the prostate MRIs
nonrigid registration obtained using the predicted deformations depend very weakly
on the ECG:EPZ ratio.
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1 Introduction

Magnetic resonance imaging (MRI) provides unique and versatile capabilities in
visualizing the normal structures of the prostate and in localizing the disease [1].
MRI can therefore be valuable in aiding image-guided prostate interventions,
e.g., image-guided biopsy, brachytherapy, or prostatectomy. The procedure planning
is typically done using high-quality preprocedural MRI obtained using differ-
ent imaging techniques. However, during the therapy, the prostate deforms as a
result of intervention, imaging protocols, and changes to the patient’s position
[2]. Consequently, the clinical target volume, such as tumor and critical healthy
areas, determined from the preoperative MRIs needs to be updated to the new
position/shape in the intraoperative images. This is typically done by warping (i.e.,
nonrigid registration, as in [3, 4]) of the pre-operative images to the intraoperative
prostate geometry, which requires information about the prostate intraoperative de-
formations. A very promising solution for obtaining such information is predicting
the intraoperative prostate deformations using models that rely on the principles
of continuum mechanics [5]. Such models [3–7] are typically implemented using
the finite element method that makes it possible to accurately represent the organs’
geometry and has been extremely successful in various engineering applications [8].

Obtaining the patient-specific information about the prostate tissues constitutive
properties (such as, e.g., Young’s modulus and other stress parameters) remains an
unsolved problem. Therefore, the effects of uncertainties in determining such prop-
erties on the results of nonrigid registration using the deformations predicted by
means of biomechanical models have been investigated in several studies. For in-
stance, Zhang et al. [9] found that the Young’s modulus (E) significantly affects
the accuracy of the model, while the Poisson’s ratio does not. On the other hand,
Wittek et al. [10] indicated that prediction of brain deformation due to craniotomy-
induced brain shift very weakly depends on the tissue constitutive model when
the appropriate nonlinear (i.e., taking into account finite deformations) formula-
tion of continuum mechanics is used and the loading is defined by prescribing the
deformation on the boundary. This finding forms the basis for the present inves-
tigation in which we analyze the effects of the ratio of prostate central gland and
peripheral zone Young’s modulus when predicting the prostate deformations due to
brachytherapy.

2 Methods

2.1 Patients and Image Acquisition

Ten retrospective image sets of patients who received MR-guided brachytherapy
were provided by the Department of Radiology, Brigham and Women’s Hospital
(Harvard Medical School, Boston, MA, USA). The patient entry requirements for
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this therapy have been previously described in [11]. The patients were chosen as per
the policy described in [11], which include only those with American Joint Com-
mission on Cancer clinical stage T1cNXM0 prostate cancer.

A detailed description of the preoperative and intraoperative imaging proto-
cols used in image acquisition is given in [3]. Relevant details to this investiga-
tion are as follows. Preoperative images were acquired using 1.5T MR-imaging
(Signa LX, GE Medical Systems, Milwaukee, WI) with patient in supine position
with endorectal coil fitted (4–6 cm in diameter). The preoperative image voxel size
was 0.469 × 0.469 × 3 mm.

The intraoperative images were acquired using 0.5T MR-imaging (Signa SP, GE
Medical Systems, Milwaukee, WI) with the patient in the lithotomy position, with
the rectal obturator (diameter 2 cm) used to fix the perineal template in place. The
intraoperative voxel size was 0.938 × 0.938 × 5 mm.

For further analysis and contrasting of computational grids for biomechanical
models, the central gland and peripheral zone of the prostate were traced manually
by two independent operators at Brigham and Women’s Hospital (Harvard Medical
School, Boston, MA, USA). Analysis of inter- and intraoperator variability has been
performed, with no significant differences identified [3]. A representative example
(case 1) is provided in Fig. 1. The segmentation was done using 3D Slicer [12], a
surgical simulation and navigation tool.

Fig. 1 Segmented preoperative (right) and intraoperative (left) images showing prostate substruc-
tures, central gland (CG), peripheral zone (PZ). Physical prostate deformation is influenced by the
presence of the imaging coil (preoperative) or obturator (intraoperative), bladder filling, and patient
position among other factors [2]
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2.2 Biomechanical Modeling

2.2.1 Problem Formulation and Finite Element Algorithms Used

Following [9], the image registration was treated as a “displacement-zero-problem”
(for definition see [13]) in which the loading is prescribed by the deforma-
tion of the boundary. In this study, the boundary deformation was defined by
prescribing the displacements at every node of the prostate models outer surfaces.
These displacements were determined from the triangulated (i.e., discretized using
triangles) surfaces recovered from the manually traced contours of the total prostate
gland, see Fig. 1. We used the conformal mapping approach by Haker et al. [4] to
recover the surface displacements. In this method, the triangulated surfaces defin-
ing the pre- and intraoperative organ boundary are mapped to a unit sphere and
retriangulated in a consistent manner, which results in point correspondence. Given
such correspondence, the two surfaces are aligned affinely, so that the sum of the
squared distances between the corresponding points is minimized, and the residual
displacements are then used to initialize the surface displacements for modeling 3D
deformations. The accuracy of this method was examined visually and determined
acceptable for these cases. The aim of this study was to investigate the effect of
varying Young’s modulus under the same initial conditions. This comparison is
made possible as the same registration procedure is used for each value of Young’s
modulus. Although important, the evaluation of the absolute accuracy of the surface
matching and registration processes is outside the scope of this chapter. The distri-
butions of surface displacement magnitudes for each case are summarized in Fig. 2.
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Fig. 3 Example of the
prostate finite element mesh
used in this study (Case 2.
Red: PZ, Blue: CG)

For numerical integration of the equations of continuum mechanics, we used
a suite of nonlinear finite element algorithms developed by Joldes et al. [14, 15]
previously validated for brain shift computation [15,16]. The algorithms utilize total
Lagrange formulation for stress update [17] and dynamic relaxation combined with
explicit integration in time domain for steady-state computation. As indicated in
[16] the algorithms by Joldes et al. [14, 15] facilitate computations within the real-
time constraints of image-guided surgery on a standard personal computer.

2.2.2 Computational Grids (Finite Element Meshes)

The tetrahedral finite element meshes for the analyzed geometries were constructed
as part of the procedure used for recovering the surface displacements, as described
in [4]. The unit sphere that we used to establish correspondence between the surface
points was meshed with tetrahedra. The inverse mapping of the geometry to this
sphere allows warping the unit sphere mesh to each of the geometries. The mesh
regions of CG and PZ were assigned based on the location of the tetrahedra with
respect to the CG/PZ tracings. 13,744 tetrahedrons and 2,858 nodes were used in
each mesh (see Fig. 3).

To prevent volumetric locking, the average nodal formulation as implemented by
Joldes et al. [18] was used for tetrahedral elements.

2.3 Investigation of the Effects of Young’s Modulus

A very wide range of Young’s modulus E values has been reported in the litera-
ture for both normal and “cancerous” prostatic tissue. It has been hypothesized that
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Table 1 Summary of the literature data of prostate Young’s modulus E

Study Method Prostate tissue type Young’s modulus E (kPa)

Zhang et al. [19] Unconstrained
stress-relaxation tests
on 8 mm samples.
Eight samples. In
vitro.

PZ healthy 15.9 ± 5.9

Unconstrained
stress-relaxation tests
on 8 mm samples.
Nine samples. In
vitro.

PZ cancerous 40.4 ± 15.7

Crawling wave
sonoelastography.
One sample. In vitro.

PZ healthy 19.2

Crawling wave
sonoelastography.
One sample. In vitro.

PZ cancerous 62.9

Phipps et al. [20] Mechanical cyclic
probing using
electromechanical
shaker. Four samples.
In vitro.

TG cancerous
(treated)

118 ± 50

Mechanical cyclic
probing using
electromechanical
shaker. five samples.
In vitro.

TG cancerous
(untreated)

110 ± 2

Kemper et al. [21] Dynamic sinusoidal
elastography (7
samples). In vivo.

CG healthy 2.2 ± 0.3

Dynamic sinusoidal
elastography (7
samples). In vivo.

PZ healthy 3.3 ± 0.5

Krouskop et al. [22] Mechanical testing at
differing strain rates.
32 samples. In vitro.

CG healthy 63 ± 18

Mechanical testing at
differing strain rates.
32 samples. In vitro.

PZ healthy 70 ± 14

Mechanical testing at
differing strain rates.
21 samples. In vitro.

PZ cancerous 221 ± 32

Mechanical testing at
differing strain rates.
28 samples. In vitro.

PZ benign
prostatic
hyperplasia

36 ± 11

Yang et al. [23] Macro- and
micromechanical
testing using
electromechanical
shaker. Six samples.
In vitro.

PZ benign
prostatic
hyperplasia

200



Predicting Prostate Deformation for MRI-Guided Interventions 45

this variation is to large extent due to differences in measurement techniques and
experimental conditions between various studies [19]. A summary of the Young’s
modulus values for the total gland (TG), central gland (CG), and peripheral zone
(PZ) available in the literature is given in Table 1. The table covers both the
“healthy” and “cancerous” prostatic tissue.

It is seen from Table 1, that the cancerous prostatic tissue is “stiffer” (i.e., is
characterized by larger Young’s modulus) than the healthy tissue. This is consistent
with the data for prostate by Kemper et al. [21] and breast cancer determined by
Sinkus et al. [24].

When determining the ratio of Young’s modulus of the PZ and CG for the present
investigation, we used the information reported in [25] that 70% of prostate cancers
occur in the PZ. We therefore increased the Young’s modulus of the peripheral zone
EPZ while keeping the Young’s modulus of the central gland constant at ECG = 5 kPa
(approximate lower bound for ECG from Table 1). ECG = 5 kPa was used rather
than the actual lower bound of 2.2 kPa to facilitate investigation of the ECG:EPZ

ratio. From Table 1, the highest value of cancerous EPZ was found to be 221 kPa.
Thus, to investigate the “worst case” scenario, the ratio ECG:EPZ was increased from
1:1 (homogeneous prostate) to 1:40 which yields (for EPZ = 200 kPa), ECG:EPZ =
5:200 kPa. Ratio of 1:40 should be interpreted as an extreme one. For instance,
Sinkus et al. [24] reported the average ratio of Young’s modulus of healthy and
cancerous (for breast cancer) tissue of around 1:2.

We use two measures to assess the impact of changing the Young’s modulus.
First, we consider the magnitude of the difference vector between the mesh vertex
displacements obtained using 1:1 ratio and the displacements obtained using the
studied ratio. Second, we calculate the dice similarity coefficient (DSC) [26] for
the CG and PZ between the registered and intraoperative images which is a mea-
sure of overlap between these structures in pre- and intraoperative images. DSC
is one of the metrics that is commonly used in the assessment of the registration
quality.

3 Results

Changing the ECG:EPZ ratio from 1:1 to 1:40 resulted in up to 4.5 mm difference
in nodal displacement, which is within the voxel size (0.938 × 0.938 × 5 mm3) of
the intraoperative images used in this study (Table 2). It should be noted, however,
that in majority of the nodes this difference was much smaller as indicated by the
median difference of up to only 0.4 mm.

A very clear pattern of the spatial distribution of differences in the calculated
nodal displacements due to varying of ratio was observed: the largest differences
were at the interface between the PG and CG, as seen in Fig. 4.

The results obtained when comparing the registered (using the deformations pre-
dicted by means of the finite element prostate models) segmented pre-operative
images with the intraoperative ones are consistent with those obtained for the nodal
displacements. Varying the ECG:EPZ ratio exerted a very weak effect on the DSC
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Table 2 Displacement difference (mm) when changing the ECG:EPZ ratio from 1:1 to 1:40

Patient
Mean
(mm)

Minimum
(mm)

Maximum
(mm)

Median
(mm)

1st Quartile
(mm)

3rd Quartile
(mm)

1 0.54 0 3.32 0.42 0 0.83
2 0.28 0 2.41 0.21 0 0.45
3 0.38 0 2.94 0.28 0 0.65
4 0.42 0 2.71 0.31 0 0.71
5 0.56 0 3.97 0.32 0 0.94
6 0.43 0 4.05 0.31 0 0.64
7 0.75 0 4.56 0.56 0 1.23
8 0.19 0 2.44 0.07 0 0.29
9 0.33 0 2.38 0.27 0 0.55
10 0.28 0 1.92 0.23 0 0.44
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Fig. 4 Relationship between nodal displacement difference when changing the ECG:EPZ ratio
from 1:1 to 1:40 and the node distance from the CG–PZ interface

for these two sets of images. The DSC appears to decrease as the ratio is decreased,
which corresponds to reduced quality of the registration. We did not find statistically
significant differences (CG: p = 0.125 and PZ: p = 0.0625 at 0.05 significance level)
between the DSC values for 1:1 and 1:40 ratios with the paired Wilcoxon’s signed
rank test.

4 Discussion

The results indicate that the predicted prostate intraoperative deformations very
weakly depend on the ratio of Young’s modulus of the peripheral zone and central
gland. Despite increasing this ratio from 1:1 to the extremely small value of 1:40
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Table 3 DSC values for CG for the segmented intraoperative and registered
preoperative images

Case 01 Case 02 Case 03 Case 04 Case 05 Mean

ECG:EPZ = 1:1 0.828 0.881 0.892 0.720 0.753 0.815
ECG:EPZ = 1:5 0.818 0.882 0.884 0.710 0.746 0.808
ECG:EPZ = 1:40 0.813 0.882 0.880 0.705 0.741 0.804

Table 4 DSC values of PZ for the segmented intraoperative and registered
preoperative images

Case 01 Case 02 Case 03 Case 04 Case 05 Mean

ECG:EPZ = 1:1 0.685 0.827 0.770 0.687 0.685 0.731
ECG:EPZ = 1:5 0.666 0.826 0.757 0.674 0.673 0.719
ECG:EPZ = 1:40 0.656 0.825 0.751 0.668 0.665 0.713

(which implies that the Young’s modulus of the cancerous tissue is 40 times larger
than that of the healthy prostate), the maximum differences in the calculated nodal
displacements was within the voxel size of prostate intraoperative MRIs (Table 2).
The effects on the actual image registration, as measured by the Dice coefficient for
the registered (using the predicted prostate deformations) and the actual intraopera-
tive MRIs, were negligible for practical purposes (Tables 3 and 4).

The results obtained here indicate also that the spatial distribution of the effects
of ECG:EPZ on the predicted deformation field within the prostate is nonuniform.
The effects accumulate near the interface between the peripheral zone and central
gland. Therefore, as tumors often occur near this interface, caution is required when
formulating any clinical recommendations based on the results of this study.

The significance of our results for the clinical decision making requires addi-
tional investigation. One of the limitations of our study is the use of DSC as the
measure of alignment, which does not allow studying the local error distribution.
We observe that the distribution of the displacement difference at the fixed distance
from the interface between the central gland and peripheral zone is not uniform.
Since accurate targeting is critical for image-guided procedures, additional investi-
gation is warranted to quantify the differences in the local region (e.g., suspected
tumor site) near the interface.

In this study, following [15] and [10], prostate image registration was treated
as a displacement-zero-traction problem of continuum mechanics, i.e., the load-
ing was defined by prescribing deformations on the prostate boundary. It has been
previously indicated that for such formulation, the predicted organ intraoperative
deformations (and results of image registration obtained using the predicted de-
formations) very weakly depend on the tissue constitutive model. However, the
conclusions derived from our results may not apply to situations when the loading is
prescribed through natural boundary conditions (i.e., forces, pressure acting on the
boundary).
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On the Effects of Model Complexity
in Computing Brain Deformation
for Image-Guided Neurosurgery

Jiajie Ma, Adam Wittek, Benjamin Zwick, Grand R. Joldes,
Simon K. Warfield, and Karol Miller

Abstract Intra-operative images acquired during brain surgery do not provide
sufficient detail to confidently locate brain internal structures that have been identi-
fied in high-resolution pre-operative images. However, the pre-operative images can
be warped to the intra-operative position of brain using predicted deformation field.
While craniotomy-induced brain shift deformation can be accurately computed us-
ing patient-specific finite element models in real-time, accurate segmentation and
meshing of brain internal structures remains a time-consuming task. In this chapter,
we conduct a parametric study to evaluate the sensitivity of the predicted brain shift
deformation to model complexity, which includes the effects of disregarding the dif-
ferences in properties between the parenchyma, tumour and ventricles and applying
different approaches for representing the ventricles (as a very soft solid or cavity) to
minimise segmentation and meshing effort for model generation. The results sug-
gest that the difference in brain shift deformation predicted by models due to such
variation is not significant. Segmentation of brain parenchyma and skull seems suf-
ficient to build models that can accurately predict craniotomy-induced brain shift
deformation.

Keywords Model complexity · Neuroimage segmentation · Non-linear finite
element model · Brain shift deformation

1 Introduction

Intra-operative images that can be acquired during image-guided brain surgery do
not provide sufficient contrast and resolution to confidently locate the abnormali-
ties (such as tumour) and critical healthy regions [1]. This problem can be solved
by warping the high-quality pre-operative images to the current (intra-operative)

J. Ma (�)
Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical Engineering,
The University of Western Australia, 35 Stirling Highway, 6009 Crawley/Perth, WA, Australia
e-mail: jiajie@civil.uwa.edu.au

A. Wittek et al. (eds.), Computational Biomechanics for Medicine: Soft Tissues
and the Musculoskeletal System, DOI 10.1007/978-1-4419-9619-0 6,
c© Springer Science+Business Media, LLC 2011

51



52 J. Ma et al.

position of the brain. Accurate alignment between the pre- and intra-operative
anatomies requires taking into account the craniotomy-induced brain shift deforma-
tion, which implies non-rigid registration. Traditionally, non-rigid registration relies
on image processing-based methods, such as optical flow [2,3], mutual information-
based similarity [4], entropy based alignment [1] and block matching [3]. However,
these methods do not take into account mechanical properties of the anatomi-
cal features depicted in the images and may result in non-physical deformation
fields [5]. To ensure the plausibility of the predicted deformation field, biome-
chanical models are used to complement image-based methods. Patient-specific
models implemented using nonlinear finite element procedures are used to predict
the craniotomy-induced brain shift deformation [5–8]. As the craniotomy-induced
brain surface deformation can exceed 20 mm [9], geometrical non-linearity should
be included in the model for accurate prediction. The choice of brain tissue con-
stitutive model, when used with an appropriate modelling approach, has negligible
effect on the accuracy of computed brain deformation [8–10].

Recent developments in specialised nonlinear finite element algorithms and
solvers enable real-time computation of soft organ deformation [11, 12]. For
instance, such algorithms and solvers have been used by Joldes et al. [13] to
accurately predict brain deformation in five cases of craniotomy-induced brain shift
with a computation time of less than 4 s on a graphics processing unit.

Despite the progress in algorithm development, construction of patient-specific
models, in particular segmentation and meshing of brain internal structures
such as tumour and ventricles still poses a significant challenge. Commonly
accepted tools for automatic segmentation of brain internal structures are not
established yet. Meshing of the segmented brain internal structures such as tu-
mour and ventricles using hexahedra elements (which are less expensive in
terms of computation) is also a time-consuming task [13]. A straightforward
approach for reducing the time required for segmentation and meshing would
be to ignore the difference between brain internal structures such as tumour and
ventricles, which have typically been included in craniotomy-induced brain shift
models [5, 13].

In this chapter, using five patient-specific brain shift models developed and val-
idated by Joldes et al. [13], we performed a parametric study to determine how
the predicted brain shift deformation is affected by model complexity. As fast and
reliable segmentation and meshing of tumour and ventricles present itself as a
formidable challenge, we investigated the effects of excluding the tumour and ven-
tricles from the model as well as simulating the ventricles as either a very soft solid
or cavity.

The subsequent sections present the following topics: Sect. 2 describes the inves-
tigation of the effects of model complexity including the approaches for modelling
and evaluation of the studied effects. Section 3 presents comparisons of the pre-
dicted brain shift deformation obtained using models with different complexity. The
discussion and conclusions are given in Sect. 4.



Effects of Model Complexity in Computing Brain Deformation 53

2 Methods

2.1 Model Complexity

In this study, we use five patient-specific craniotomy-induced brain shift models
originally developed and validated by Joldes et al. [13] as the starting point. These
cases represent different situations that may occur in neurosurgery as characterised
by tumours located in different parts of the brain: anteriorly (Cases 1 and 2), laterally
(Case 3) and posteriorly (Cases 4 and 5) (see Fig. 1).

For each case, the model developed by Joldes et al. [13] (referred to as the com-
plete model, Model A, see Fig. 2), consisting of the parenchyma, skull, tumour and
ventricles is a geometrically accurate representation of the clinical case. The brain
shift deformations predicted by these models were used as a reference point. To in-
vestigate the effects of model complexity, the complete models were simplified to
create models of decreasing complexity as follows.

Fig. 1 Preoperative MRIs (inferior view) showing tumour location in the cases analysed in this
study. Tumours are labelled and highlighted with a white contour line
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Fig. 2 The complete model (A, left) and homogeneous one (D, right) for the five cases of cran-
iotomy induced brain shift analysed here. In the complete model, the parenchyma, tumour and
ventricles were simulated. In the homogeneous model, the tumour and ventricles were included in
the parenchyma
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Model B. Simplified model consisting of the parenchyma, skull, and tumour. The
ventricles were modelled as an empty cavity. This was realised by excluding the ven-
tricle elements from the complete model (A). This simplification removes the need
for conducting meshing of the ventricles.

Model C. Simplified model consisting of the parenchyma and skull. The tumour
was excluded from the model and its volume was amalgamated with the
parenchyma. The ventricles were modelled as an empty cavity. This simplifica-
tion further removes the need to segment and mesh a tumour.

Model D. Homogenous model consisting of the parenchyma and skull. The tumour
and ventricles were not modelled and were instead included in the parenchyma.
This was realised by assigning parenchyma properties to tumour and ventricle ele-
ments. This simplification further removes the need to segment the ventricles. For
this model, segmentation of the brain parenchyma and skull is sufficient (Fig. 2).

2.2 Boundary Conditions, Loading and Brain Tissue
Constitutive Model

Following Joldes et al. [13], the craniotomy-induced brain shift model was loaded by
prescribing nodal displacements to a set of nodes under the craniotomy determined
from the segmented pre- and intra-operative cortical surfaces [14]. The maximum
brain surface deformation varies from 4 mm (Case 1) to 7 mm (Case 2). The bound-
ary conditions for the model were defined as a contact interface between the rigid
skull and remaining nodes of the brain surface. This interface prevents the brain sur-
face from penetrating the skull while allowing for frictionless sliding and separation
between brain and skull.

Following Joldes et al. [13], the neo-Hookean hyperelastic constitutive model
[15] was used for tumour and parenchyma, with a Young’s modulus of 6,000 and
3,000 Pa and a Poisson’s ratio of 0.49 for both. Following Wittek et al. [5], the
ventricles were modelled as a very soft compressible elastic solid with Young’s
modulus of 10 Pa and Poisson’s ratio of 0.1 to account for volume decrease due to
fluid leakage.

The specialised nonlinear finite element solver developed by Joldes et al. [12, 16]
and Miller et al. [11] for real-time computation of soft organ deformation was used
to calculate the craniotomy-induced brain shift deformation.

2.3 Evaluation of the Effects of Model Complexity

We compare the intra-operative geometries of the tumour and ventricles obtained
by registration of the pre-operative data using the deformation fields predicted by
different models. Following Joldes et al. [13], the bounds of tumour and ventricles
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Fig. 3 The vertices P1 and P2 define a cuboidal box bounding the tumour or ventricles. The X, Y,
Z coordinates of the vertices provide a quantitative measure of the predicted brain shift

Table 1 Differences in the X, Y, Z coordinates of vertices P1 and P2 defining the bounds of the
tumour and ventricles (Fig. 3) between the complete model (A) and the simplified ones (C, D)

Tumour Ventricles

X Y Z X Y Z

Unit: mm P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Model C: Tumour modelled as parenchyma, ventricles as a cavity
Case 1 0.02 0.04 0.06 0.01 0.09 0.01 0.00 0.00 0.00 0.00 0.02 0.00
Case 2 0.09 0.02 0.23 0.74 0.13 0.12 0.01 0.02 0.00 0.05 0.07 0.02
Case 3 0.00 0.14 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.01 0.01 0.01
Case 4 0.00 0.00 0.00 0.04 0.03 0.03 0.01 0.00 0.02 0.01 0.02 0.00
Case 5 0.01 0.02 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Model (D): Homogenous mesh, tumour and ventricles modelled as parenchyma
Case 1 0.01 0.10 0.16 0.10 0.02 0.01 0.16 0.07 0.06 0.05 0.05 0.14
Case 2 0.09 0.01 0.25 0.85 0.15 0.09 0.02 0.02 0.01 0.09 0.12 0.06
Case 3 0.00 0.14 0.01 0.02 0.02 0.02 0.04 0.05 0.02 0.03 0.01 0.01
Case 4 0.00 0.00 0.00 0.04 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.00
Case 5 0.00 0.02 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.00

The numbers in bold indicate the maximum differences in the X , Y , and Z directions

are used to provide quantitative information about the shape and position of tumour
and ventricles. The bounds can be interpreted as the X , Y , Z coordinates of vertices
P1 and P2 defining cuboidal boxes bounding the tumour and ventricles (Fig. 3).

To provide a comparison of the brain shift deformation prediction from the finite
element modelling perspective, nodal displacements of the nodes defining the tu-
mour and ventricles are compared one-by-one, between the complete model (A)
and Model (D) in which homogenous constitutive properties were used for the en-
tire brain. The homogenous models (D) were selected here because the maximum
differences in the tumour and ventricles bounds (Table 1) were observed between
them and the complete models (A).
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3 Results

The differences in X , Y , Z coordinates of the bounds of the tumour and ven-
tricles (Fig. 3) between the complete model (A) and model (B) (i.e. the one
with the ventricles simplified as an empty cavity) were not observable up to
0.01 mm. Given that the resolution of intra-operative MRIs used in this study
was 0.86 × 0.86 × 2.5 mm3, these differences are relatively very small and their
values are not reported here. The differences between the intra-operative bounds
of ventricles and tumour predicted by the complete model (A) and the simplified
ones (C, D) are listed in Table 1. The maximum differences were observed be-
tween the complete model (A) and the homogeneous one (D): 0.85 mm in the Y
(anterior–posterior) direction for the tumour (Case 2) and 0.16 mm in the X (lateral)
direction for the ventricles (Case 1). These differences are within the resolution of
the intra-operative images (0.86 × 0.86 × 2.5 mm3).

Table 2 lists the maximum and median differences in nodal displacement in the
X , Y , Z directions (Fig. 3) for each case. Please note that the maximum differences
in the X , Y , Z directions may not have been observed from the same node. For the
tumour, the single largest difference (0.95 mm) and the highest median difference
(0.26 mm) was observed in the Y (anterior–posterior) direction in Case 2. For the
ventricles, the single largest difference (0.90 mm) and the highest median differ-
ence (0.15 mm) was observed in the Y (anterior-posterior) direction in Case 1. The
maximum differences are close to the resolution (0.86 × 0.86 × 2.5 mm3) of the
intra-operative images used in this study.

The absolute resultant differences of nodal displacements predicted by models
(A) and (D) for tumour and ventricles are shown in Fig. 4. The difference is indicated
using a colour code. It is clear from Fig. 4 that for most of the nodes, the difference
is well below the resolution (0.86 × 0.86 × 2.5 mm3) of the intra-operative images
used in this study.

To visualise the differences of the predicted brain shift deformation obtained
using models with different complexity, the registered (deformed using the calculate

Table 2 Maximum and median differences in nodal displacements in X , Y , Z directions of nodes
defining the tumour and ventricles between the complete model (A) and the homogenous one (D)

Tumour Ventricles

X Y Z X Y Z

Unit: mm Max Mdn Max Mdn Max Mdn Max Mdn Max Mdn Max Mdn

Model D: Homogenous model, tumour and ventricles modelled as parenchyma
Case 1 0.16 0.05 0.40 0.17 0.18 0.05 0.50 0.12 0.90 0.15 0.56 0.15
Case 2 0.28 0.08 0.95 0.26 0.31 0.10 0.61 0.14 0.62 0.12 0.44 0.09
Case 3 0.24 0.06 0.17 0.04 0.15 0.02 0.12 0.04 0.07 0.02 0.07 0.01
Case 4 0.07 0.02 0.23 0.04 0.10 0.02 0.03 0.01 0.04 0.02 0.03 0.01
Case 5 0.04 0.01 0.04 0.01 0.03 0.01 0.05 0.01 0.03 0.01 0.04 0.00

The numbers in bold indicate single largest difference and highest median difference in tumour
and ventricles
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Fig. 4 The absolute resultant differences of nodal displacements predicted by model (A) and (D)
in tumour and ventricles in (a) Case 1 and (b) Case 2. The difference is indicated by a colour code

brain deformation field) contours of ventricles and tumour predicted by the complete
model (A) and homogenous one (D) are imposed on the intra-operative MR images
for Cases 1 and 2 in Fig. 5. The MR images corresponding to the XY (transverse)
and YZ (sagittal) planes (as shown in Fig. 4) were selected to visualise the maximum
differences in nodal displacement predictions. The images are enlarged and cropped
to highlight the area of interest. Figure 5 shows the contours overlap except for some
minor misalignments.

4 Discussion and Conclusions

In this chapter, a parametric study was performed to investigate how the brain shift
deformation prediction is affected by the difference in model complexity. Five cases
of craniotomy-induced brain shift [13] were investigated. For each case, a complete
model (A) consisting of parenchyma, skull, tumour and ventricles was used as the
starting point. This model was simplified to create models of decreasing complexity
(i.e. B, C and D, see Sect. 2.1). The craniotomy-induced brain shift deformation cal-
culated using models with different complexity is compared in terms of the bounds
indicating the intra-operative geometries of tumour and ventricles, and of nodal dis-
placements on one-by-one basis.

The results of this study show that the difference in brain shift deformation
prediction obtained using models with different complexity is not significant. The
differences in the bounds of tumour and ventricles predicted using the complete
model (A) and simplified ones (B, C and D) were negligible. They did not exceed
0.85 mm (Table 1), which is within the resolution (0.86 × 0.86 × 2.5 mm3) of
intra-operative MR images. Good agreement of brain shift deformation predictions
obtained using models with different complexity is confirmed by the comparison of
the nodal displacements. The maximum difference in nodal displacements predicted
using the complete model (A) and the homogeneous one (D) is 0.95 mm (Table 2),
which is very close to the resolution (0.86 × 0.86 × 2.5 mm3) of intra-operative
MR image. For most of the nodes, the difference is well below the resolution of the
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Fig. 5 The registered contours of ventricles in Case 1 and tumour in Case 2 predicted by the com-
plete model (Model A, continuous line) and homogenous one (Model D, dash line) are imposed
on the intra-operative MR images. The MR images corresponding to the XY and YZ planes in
Case 1 and Case 2 were selected to show the maximum differences in nodal displacements. The
images are enlarged and cropped to highlight the area of interest: (a) ventricles in Case 1 (XY
plane), (b) ventricles in Case 1 (YZ plane), (c) tumour in Case 2 (XY plane), (d) tumour in Case 2
(YZ plane)

intra-operative images (Fig. 4). The contours of ventricles and tumour registered us-
ing the deformation fields predicted by the complete model (A) and the homogenous
one (D) also suggests good agreement (Fig. 5).

From the results, it is clear that the predicted brain shift deformation is very
weakly affected by the change in model complexity, with the largest difference ob-
served between the complete model (A) and the homogenous one (D) in which
homogenous material properties was used for the entire model. The magnitudes
of the difference suggest that an exact modelling of tumour and ventricles is not
needed to predict the brain shift deformation to an acceptable accuracy (within
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the resolution of intra-operative images). This parametric study suggests that a
segmentation of brain parenchyma alone seems to be sufficient to build models that
can accurately predict craniotomy-induced brain shift deformation. As accurate seg-
mentation and meshing of brain internal structures is the most time-consuming step
when preparing patient-specific models, the amount of time, cost and expertise re-
quired for generating the patient-specific model can be greatly reduced.

It must be stated that these results are only valid for computation of craniotomy-
induced brain shift using the modelling frameworks [5] developed for medical image
registration in which the loading was defined through essential boundary conditions
(i.e. prescribing cortical surface deformation) determined from intra-operative MR
images. The conclusion may not apply to modelling frameworks in which the load-
ing was defined through natural boundary conditions (e.g. loading by gravity force
and/or pressure caused by interactions between the brain and cerebrospinal fluid).

Furthermore, the validity of this conclusion is confined as only five cases of
craniotomy-induced brain shift were investigated. The difference induced by change
of model complexity varies from case to case. The maximum difference occurs in
Case 2 in which the maximum brain surface deformation (up to 7 mm) is observed.
As the brain surface deformation due to craniotomy can exceed 20 mm [9], a study
of more cases with larger displacements at the craniotomy site is required.
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Total Lagrangian Explicit Dynamics-Based
Simulation of Tissue Tearing

Kumar Vemaganti, Grand R. Joldes, Karol Miller, and Adam Wittek

Abstract This study presents an approach to modeling the tearing of tissue in two
dimensions taking into account both material and geometrical nonlinearities. The
approach is based on the total Lagrangian explicit dynamics (TLED) algorithm and
realigns edges in the mesh along the path of the tear by node relocation. As such,
no new elements are created during the propagation of the tear. The material is
assumed to be isotropic, and the tearing criterion is based on the maximum node-
averaged principal stress. Preliminary results show that the approach is capable of
handling both isotropic and anisotropic tears.

Keywords Tissue tearing · Tissue cutting · Total Lagrangian · Explicit dynamics
· Soft tissue

1 Introduction

Simulations of tearing and cutting of tissue for use in computer-integrated surgery
often pose significant challenges not only because of material and geometrical non-
linearities, but also due to the need to modify the mesh in real-time.

Much of the literature on cutting and tearing of soft tissue and other soft materials
has focused on the geometrical aspects of the problem. Broadly, three approaches
have been put forth: element deletion (e.g., [1]), mesh division (e.g., [2]), and mesh
adaptation (e.g., [3–5]). While the first approach violates mass conservation princi-
ples, the second leads to an increase in the number of elements and nodes, a decrease
in the size of the smallest element, and, consequently, a decrease in the time step size
for explicit methods. The last approach, in which nodes are relocated to align ele-
ment edges with the tear or cut, also leads to a decrease in the size of the smallest
element but no new elements are introduced. A hybrid of the latter approaches has
also been proposed [6].
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Most published works use a spring-mass model or isotropic linear elastic
model to represent the material response of soft tissue and completely ignore
its well-known nonlinear response. Also often ignored is the large deformation
undergone by soft tissue. A recent exception to this trend is the anisotropic tear-
ing model investigated by [7]. Nonetheless, tearing/cutting approaches that fully
account for material and geometrical nonlinearities are not currently available.

In this study, we develop an approach to modeling tissue tearing based on the total
Lagrangian explicit dynamics (TLED) algorithm developed by Miller et al. [8]. The
TLED algorithm is an efficient numerical algorithm for computing deformations of
very soft tissues and easily handles both geometrical and material nonlinearities. It
is based on the total Lagrangian formulation, where stresses and strains are mea-
sured with respect to the original configuration. This allows for the pre-computation
of certain spatial derivative quantities and thus speed up computation. The current
implementation is two-dimensional and uses linear triangular elements. The mate-
rial is assumed to be isotropic, nonlinearly elastic, and capable of undergoing large
deformations.

Tissue is assumed to undergo tearing when the node-averaged maximum princi-
pal stress exceeds a certain threshold. The tear is assumed to propagate perpendicu-
lar to the eigen-direction corresponding to the maximum principal stretch. Element
edges are aligned with the direction of the tear, and the tear is allowed to propagate
through the mesh.

The rest of the chapter is organized as follows. In Sect. 2, we briefly review
the TLED algorithm introduced in [8]. We then present the details of the two-
dimensional tearing algorithm and show results from its implementation. The chap-
ter ends with a discussion of the results and some concluding remarks.

2 Review of the TLED Algorithm

The TLED algorithm is now summarized. The notation used here is adopted from
[9] and [8], where the left superscript represents the current time and the left sub-
script the reference configuration.

The global system of equations to solve at time step n may be written as:

Mün + K(un)un = Rn, (1)

where u is the vector of global displacements, M is the global mass matrix, K is the
global (nonlinear) stiffness matrix, and R is the vector of global nodal forces.

The TLED algorithm updates the displacements at the end of each time step using
(

1
Δ t2 M

)
un+1 = Rn−∑

i
F(i)

n − 1
Δ t2 M(un−1−2un), (2)

where

∑
i

F(i)
n = K(un)un = ∑

i

∫
V (i)

BT
nS̃n dV. (3)
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Here, F(i)
n is the nodal reaction force vector at step n, S̃n the second Piola–Kirchhoff

stress tensor, BT
n the strain–displacement matrix, and V (i) the volume of the ith

element.
If a diagonal mass matrix is used, as is the case in this work, then this is a fully

explicit step. Material nonlinearites are taken into account by computing the second
PK stress S̃n using the appropriate nonlinear constitutive model.

The overall algorithm may be stated as follows:

1. Load information about mesh, boundary conditions, material properties, etc.
2. For each element, precompute the area, determinant of the Jacobian, spatial

derivatives of shape functions ∂h, and strain–displacement matrices t
0BL0.

3. Compute diagonal mass matrix 0M.
4. Initialize nodal displacements 0u = 0, −Δtu = 0.

5. Apply prescribed forces and displacements for the first time step: ΔtR(k)
i ←

R(k)(Δ t) and Δ tu(k)
i ← d(Δ t).

6. At each time step, obtain net nodal reaction forces F as follows:

a. For each element in the mesh, compute reaction forces as follows:

i. Compute the deformation gradient t
0X using nodal displacements from

previous time step.
ii. Calculate the full strain–displacement matrix:

t
0B(k)

L = t
0B(k)

L0
t
0XT (4)

iii. Compute the second PK stress tensor t
0S̃ at integration points.

iv. Compute nodal reaction forces for the element:

tF(m) =
∫

0V

t
0BT

L
t
0S̃ d 0V (5)

b. Explicitly compute displacements:

t+Δtu(k)
i =

Δ t2

Mk

(
tRi− tF (k)

i

)
+ 2 tu(k)

i − t−Δt u(k)
i (6)

c. Apply loads for next step:

t+Δ tR(k)
i ← R(k)(t +Δ t); t+Δt u(k)

i ← d(t + Δt) (7)

3 The Tearing Algorithm

The proposed cutting algorithm is based on the idea of moving nodes to align ele-
ment edges with the path of the tear. It is assumed that this path can be determined
from knowledge of the current state of stress, strain, etc., in the domain. Because the
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underlying formulation is total Lagrangian, all mesh modifications are done in the
reference configuration. This in particular means that the tear direction determined
from the current state of stress must be mapped back to the reference configuration
to align element edges with the tear. This is easily accomplished since the mapping
is done through the inverse deformation gradient.

In the present work, the tearing condition is taken to be based on the maximum
principal stress at a node:

f = σpr,max−σtol ≥ 0. (8)

If the condition f ≥ 0 is satisfied at a node, then the node is marked as a candidate for
the tear to pass through it, and appropriate mesh modifications are made as discussed
below.

The tearing condition is checked and the mesh modifications are carried out at
the end of step 6b in the TLED algorithm shown in the previous section.

3.1 Mesh modification

If it is determined that the tear condition is satisfied at an interior node, then the
following modifications are made to the mesh.

• Of the edges passing through the node, find the two that are closest to the tear
direction.

• Move relevant nodes to align these edges with the tear direction.
• Update by interpolation the displacements, etc., associated with moved nodes.
• Recompute element-specific quantities such as area, B, etc.
• Introduce new node at the location of the critical node and new edges along the

tear path.
• Update element connectivity and other data structures.

Figure 1 shows a schematic of these modifications.
Similarly, if the tear condition is satisfied at a boundary node, then the mesh is

modified accordingly. In this case, generally but not always, only one of the edges
around the node needs to be realigned. This is shown in Fig. 2.

Finally, if the tear condition is satisfied at a node that is the only connection be-
tween two parts of the domain, then the mesh is modified by introducing a duplicate
node at that location and separating the parts. This is illustrated in Fig. 3.

Because we use an explicit scheme to solve equations of motion, the time step
used in the algorithm has a significant effect on stability. The critical time step is
equal to the ratio of the smallest characteristic length of an element (Le) to the
dilatational wave speed c

Δ t ≤ Le

c
. (9)
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Direction
of tear

cba

Fig. 1 Mesh modification for interior nodes. (a) After determining the edges closest to the tear
direction, (b) nodes are moved to align the edges with tear. (c) A new node and two new edges are
then introduced

Boundary

Direction
of tear

a b

c

Fig. 2 Mesh modification for boundary nodes. (a) After determining the edge(s) closest to the tear
direction, (b) node(s) are moved to align the edge(s) with tear. (c) One new node and one or two
new edges are then introduced, depending on the tear direction
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Boundary

Direction
of tear

a b

Fig. 3 Mesh modification for domain separation. (a) If a tear passes through a node connecting
two masses, (b) a new node is introduced

For triangular elements, the characteristic length is

Le =
A

hmax
, (10)

where A is the element area and hmax is the tallest side. In the proposed approach, the
realignment of element edges leads to a reduction of Δ t by a factor of 2 at the most.

4 Results

As a model problem, we consider the tearing of a notched rectangle of size
4 cm× 10 cm shown in Fig. 4. The material is assumed to be Neo-Hookean with
Young’s modulus (in the reference configuration) 3,000 Pa and Poisson’s ratio 0.49.
The material’s mass density is 1,000 kg/m3. The left edge of the rectangle is held
fixed and the right edge displaced by 2 cm with the following profile:

d(t) = (10−15t + 6t2)t3, (11)

where t is the relative time varying from 0 to 1.
A relatively coarse mesh is used to model the region. It is assumed that tissue

tearing occurs when the maximum principal stress reaches or exceeds 1,100 Pa. The
displacement loading on the right edge is applied in 1,000 steps.

The results of the simulation are shown in Fig. 5, where the contour levels indi-
cate the maximum nodal principal stress, and the red circle represents the location
of its highest value in the domain. At step 750, the maximum principal stress at
the tip of the notch is just below the tolerance for tearing. The tearing criterion is
met at step 772 at the notch tip, and the node there is treated as a boundary node.
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Fig. 4 Schematic of a notched rectangle undergoing 20% strain loading in the horizontal direction
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Fig. 5 Contour plot of maximum (nodal) principal stress at various stages of tearing for a notched
rectangle undergoing 20% strain
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Fig. 6 Contour plot of maximum (nodal) principal stress at various stages of tearing for a notched
rectangle undergoing 20% strain. The tear is assumed to have a preferred direction of π/3 with the
horizontal

After the tear is introduced, 100 steps of dynamic relaxation (DR) are carried out,
during which time there are no changes in the loading. The dynamic relaxation steps
help diffuse the disturbances that emanate from the sudden introduction of a cut in
the domain [10]. The number of DR steps is ad hoc at present and chosen based on
testing.

The process is repeated and further tearing occurs at steps 785 and 786, at the
end of which the domain is on the verge of splitting into two parts. At step 787,
the two parts finally separate. The simulation concludes at step 1000, resulting in
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the domain partition shown. Because the simulation is completely based on explicit
dynamics, the separation of the domain into two parts poses no problems in the
updating scheme.

Next, the simulation is repeated assuming that the tear has a preferential direction
of π/3 with the horizontal. This time, the simulation proceeds as before and the
mesh modification proceeds smoothly leading to the partition shown in Fig. 6.

5 Concluding Remarks

In the literature, there are few simulations of tissue tearing. Some of the existing
approaches include element subdivision and remeshing. In this work, we adopt an
approach whereby no new elements are created, but the mesh is modified on the
fly by aligning element edges along the tear path. Because the approach is built on
top of the TLED algorithm, material and geometrical nonlinearities are taken into
account fully.

We have made some simplifying assumptions in our work. First, we have as-
sumed the material response to be isotropic. A more interesting and challenging
simulation would involve tearing of fibrous materials, where a preferred direction of
tearing is dictated by the material’s anisotropy. Our approach can be easily adapted
to such a case if a reasonable tear criterion can be formulated; see, for instance, [7].
Second, we have only investigated a hyperelastic Neo-Hookean response. Experi-
ments with other hyperelastic materials as well as viscohyperelastic materials are
planned.

A major test of the proposed approach will be its extension to three spatial
dimensions. While the results from our 2D experiments are encouraging, 3D im-
plementations are typically orders of magnitude more complex. Nonetheless, we
believe that our TLED-based approach is feasible in three dimensions considering
the fact that much work has already been published on tetrahedra-based cutting and
tearing [2, 4, 5].
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Real-Time Nonlinear Finite Element
Computations on GPU: Handling of Different
Element Types

Grand R. Joldes, Adam Wittek, and Karol Miller

Abstract Application of biomechanical modeling techniques in the area of medical
image analysis and surgical simulation implies two conflicting requirements: ac-
curate results and high solution speeds. Accurate results can be obtained only by
using appropriate models and solution algorithms. In our previous papers, we have
presented algorithms and solution methods for performing accurate nonlinear fi-
nite element analysis of brain shift (which includes mixed mesh, different nonlinear
material models, finite deformations and brain–skull contacts) in less than 5 s on
a personal computer using a Graphics Processing Unit (GPU) for models having
up to 50,000 degrees of freedom. In this chapter, we compare several approaches
for implementing different element types on the GPU using the NVIDIA Compute
Unified Device Architecture. Our results can be used as a guideline for selecting
the best GPU implementation approach for finite element algorithms which require
mixed meshes or even for meshless methods.

Keywords Finite element method implementation · Graphics Processing Unit
· CUDA ·Mixed meshes

1 Introduction

Researchers in the surgical simulation community commonly use mathematical
models based on linear elasticity because of their computational efficiency [1–3].
These models are not capable of providing realistic predictions of finite defor-
mations of the tissue because of the assumptions of very small deformations and
linear material response. Years of experience accumulated by researchers working
on the theory of elasticity and the finite element method have shown that the linear
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elasticity assumptions cannot be used for systems undergoing large deformations.
Many examples of the limitations of linear theory were published, see, e.g. [4, 5].
Therefore, an efficient finite element algorithm that accounts for both geometric and
material nonlinearities is needed.

For real-time intraoperative applications very high computational efficiencies are
required. Highly nonlinear 3D finite element models with more than 50,000 degrees
of freedom need to be solved in less than 1 min.

To alleviate the problems mentioned above we developed at the Intelligent
Systems for Medicine Laboratory a Total Lagrangian Explicit Dynamics (TLED) fi-
nite element algorithm [6]. This algorithm accounts for both geometric and material
nonlinearities, and allows near-real-time computations on a standard PC. The key
idea behind TLED is to use the Total Lagrangian formulation of the finite element
method, where all variables are referred to the original configuration of the system.
Second Piola–Kirchhoff stress and Green strain are used. The decisive advantage is
that all spatial derivatives are calculated with respect to the original configuration
and therefore can be precomputed. Our numerical experiments show that TLED is
approximately three times faster than algorithms based on Updated Lagrangian for-
mulation used by all commercial finite element packages and the great majority of
researchers [7–9].

An explicit dynamics algorithm can be easily transformed into a Dynamic
Relaxation algorithm with the inclusion of a mass proportional damping [10]. Such
an algorithm allows the iterative computation of the final, deformed configuration
of an organ without the need of solving any large system of equations [11–14].

Like every other FE algorithm, TLED requires the creation of finite element
meshes. Explicit finite element algorithms work efficiently when eight-noded hex-
ahedral elements are used [4, 5]. As human organs have very irregular shapes,
meshing them using hexahedra presents itself as a very significant problem. One
needs to create the mesh for each patient undergoing surgery, based on her/his ra-
diological images. Over the years, despite significant research effort (see, e.g. [15])
there has been little success in the development of automatic (or semiautomatic)
methods for creation of hexahedral meshes, suitable for nonlinear, finite deforma-
tion computations, from medical images. Recently popular voxel-based meshing
methods cannot be used in near-real-time applications because they produce meshes
with too many degrees of freedom and with many elements of poor quality requiring
labor-intensive corrections [15]. Therefore mixed meshes, containing both hexahe-
dral and tetrahedral elements, are normally used.

With the latest developments in technology, graphics processing units (GPU)
have been adapted for general purpose scientific computations. Although the po-
tential of using GPU for general purpose computations has been known for some
time, developing software for GPU was difficult, as the GPU could only be pro-
gramed through a graphics interface, imposing a high learning curve to the novice
and the overhead of an inadequate interface to the nongraphics application. Only
recently the major GPU manufacturer NVIDIA has developed the Compute Unified
Device Architecture (CUDA) which offers a complete development environment
(with a C-like compiler and a software development kit) that can be used in order
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to fully benefit from the GPU capabilities [16]. A GPU implementation of the
TLED algorithm can perform a brain shift simulation in less than 4 s for mod-
els having more than 50,000 degrees of freedom [17] on an NVIDIA Tesla C780
GPU, which is more than 20 times faster than a CPU implementation of the same
algorithm.

The GPU is used as a coprocessor for CPU to perform operations that can be
executed in parallel. The GPU performs best for algorithms that perform the same
operations on multiple data structures. In the case of a finite element implementa-
tion, each element can be considered a data structure. When the algorithm has to
handle different types of elements, the computations cannot be done in parallel, as
the data structures and the operations required are different. In this chapter, we dis-
cuss and compare four approaches to the implementation of different finite elements
on GPU. We use mixed meshes containing two types of elements (under-integrated
hexahedral elements with hourglass control and linear tetrahedral elements) but the
implementation approaches can be extended to other types of elements as well.
The results can be used as a guideline for selecting the best GPU implementa-
tion approach for finite element algorithms which require mixed meshes or even
for meshless methods.

The chapter is organized as follows: the four approaches to implementing differ-
ent finite elements on GPU are presented in the next section, timing comparisons
are presented in Sect. 3 and the last section contains discussions and conclusions.

2 GPU Implementation Approaches for Different
Finite Elements

The GPU has a highly parallel, multithreaded, multicore processor architecture. This
is well suited for problems that can be expressed as data-parallel computations with
high arithmetic intensity, where the same program is executed on many data ele-
ments in parallel. CUDA is a general purpose parallel computing architecture that
allows the development of application software that transparently scales with the
number of processor cores in the GPU.

The code executed on GPU is called a kernel. When a kernel is invoked (from the
CPU), it is executed N times in parallel by N different CUDA threads (N is specified
during the kernel invocation). Threads are organized into a grid of blocks, with each
block identified by a block index, while each thread within the block is identified by
a thread index. Threads within a block can cooperate among themselves by sharing
data through shared memory and synchronizing their execution to coordinate mem-
ory accesses. The number of threads per block is restricted by the limited memory
and register resources of a processor core. Thread blocks are required to execute
independently, therefore they cannot cooperate among themselves.

The CPU running the program that launches the kernels is called the host,
while the GPU acts as a coprocessor running the CUDA threads, called the device.
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The host and the device maintain their own DRAM, referred to as the host memory
and the device memory (global, constant, and texture memory are implemented in
the device memory).

For a finite element algorithm implementation on the GPU, each element can be
considered as a data structure. When assembling global vectors (such as the nodal
force vector), the contributions from each element in the mesh is required. In an ex-
plicit code the nodal force vector computation is the most computationally intensive
part of the solution algorithm. While on the CPU the elements are treated sequen-
tially (e.g., in a “for” loop), on the GPU all elements can be treated in parallel (each
element is handled by a CUDA thread), as long as the same code is executed. If
some elements require the execution of different code, this code must be handled by
a different kernel.

Our first GPU finite element implementation, presented in [17], used a different
kernel for implementing each element type (the “multiple kernels” approach). In
this approach the elements are grouped based on their types, and the nodal force
computation is organized as follows:

CPU GPU

For each element type
in the mesh:

Compute nodal forces for all elements
belonging to this element type

Apart from this approach, we consider three other approaches that can be used for
implementing different element types. The common characteristics of all these ap-
proaches is that they use the same code to handle different element types, therefore
only one kernel is needed to handle all elements in the mesh, reducing the number
of kernel invocations on CPU. The nodal force computation is then organized as
follows:

CPU GPU

Invoke kernel for nodal force
computation:

Compute nodal forces for all
elements in the mesh

(a) The “parametric elements” approach
This approach uses parameters to describe each element. These parameters have
different values for different element types. Examples of such parameters are
the number of nodes, whether or not hourglass control is used, the number of
hourglass control shape vectors, etc. Therefore, the computations inside each
kernel have different results for different element types because of the use of
different parameters.

(b) The “degenerated elements” approach
In this approach, element degeneration is used to create elements with lower
number of nodes from more complicated elements, by merging of nodes. For



Real-Time Nonlinear Finite Element Computations on GPU 77

example, all linear tetrahedral, pyramidal, and prismatic elements can be treated
as linear hexahedral elements with merged nodes. The merging of nodes is eas-
ily done by pointing the location indexes for different nodes toward the same
location. Using this technique, all elements in the mesh that can be obtained
from a linear hexahedron can be treated as linear hexahedrons.

(c) The “fat kernel” approach
A “fat kernel” is a combination of multiple independent kernels that are ex-
ecuted in one invocation. For example, considering Kernel 1 that must be
invoked with N 1 number of threads and Kernel 2 that must be invoked with
N 2 number of threads, a “fat kernel” Kernel 1 2 that invokes both these
kernels can be constructed as follows:

Kernel 1 2 (invoked with N 1 + N 2 threads):
// check to which kernel the current thread belongs to
if (thread ID < N 1)

execute Kernel 1 for thread ID;
else

execute Kernel 2 for (thread ID – N 1);

In the case of finite element implementation, all kernels from the “different kernels”
approach can be combined in a “fat kernel” – which can handle all elements in the
mesh at once – because they are independent (they work on independent data – the
elements). This reduces the hardware and software overhead associated with kernel
invocations from the CPU, as only one kernel invocation is needed.

For all these approaches, it is important that the different type of elements are
grouped together when assigned to GPU threads, so that threads which are handled
concurrently on the same processor execute the same code most of the time (the
code paths from these threads that diverge will be executed sequentially).

3 Timing Comparison

The different approaches presented above were implemented in our TLED algo-
rithm [6, 12, 17]. We meshed a cylinder using hexahedral and tetrahedral elements
in different proportions (as presented in Table 1 and Fig. 1) and performed compres-
sion experiments using the same number of explicit steps (4,000). The computations
were performed on an Intel Core 2 Quad CPU at 2.83 GHz with an NVIDIA C1080
GPU. The computation times are presented in Table 2.

From Table 2, it is clear that the computation time increases as the proportion
of tetrahedral elements in the mesh increases, irrespective of which approach is
used for implementing the elements. This is expected, as one hexahedral element is
replaced by at least five tetrahedral elements (for the same number of nodes in the
mesh). Therefore, to minimize the computation time, it is advisable to have as many
hexahedral elements in the mesh as possible.
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Table 1 Meshes used for timing comparison

Mesh Total elements Hexas Tetras

Mesh 1 (majority hexas) 54,050 46,800 7,250
Mesh 2 (hexas ≈ tetras) 96,400 38,400 58,000
Mesh 3 (majority tetras) 223,450 13,200 210,250

Fig. 1 Deformed cylinder shape for Mesh 2

Table 2 Computation times for the different element implementation approaches
(4,000 explicit steps were executed, computation time is in seconds)

Implementation approach

Computation time (s)
Multiple
kernels

Parametric
elements

Degenerated
elements Fat kernel

Mesh 1 (majority hexas) 4.34 4.84 4.82 4.11
Mesh 2 (hexas ≈ tetras) 5.28 5.84 8.45 4.94
Mesh 3 (majority tetras) 7.5 10.07 20.36 7.34

The “multiple kernels” approach performed better than expected compared with
the other approaches, demonstrating that the kernel invocation from the NVIDIA
driver is very efficient. Nevertheless, the performances are expected to degrade as
the number of kernel invocations increase (as the mesh contains more different types
of elements), because each kernel invocation introduces a small hardware and soft-
ware overhead.

The “fat kernel” approach outperformed all the other approaches in terms of com-
putation time. This happens because the kernels for each element type can be written
very efficiently and then combined in the “fat kernel,” so that the GPU does not have
to perform unnecessary operations. It is important to note that the kernels that are
combined in a “fat kernel” should have similar needs in terms of shared memory and
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registers, as this determines the number of threads that can be executed in parallel
on a GPU multiprocessor. If one of the kernels requires a much higher number of
registers or a lot of shared memory, it can reduce the number of threads that can be
executed in parallel for all the other kernels, therefore degrading the performance.

The “degenerated elements” approach performed the worst, especially as the pro-
portion of tetrahedral elements in the mesh increased. This is a consequence of
treating all elements as hexahedral elements, which leads to a lot more supplemen-
tary operations that have to be executed for the tetrahedral elements.

The performance of the “parametric elements” approach is somewhere in the
middle. The use of parameters to define each element leads to additional operations
that the GPU has to perform. Nevertheless, if the number of different element types
in the mesh is increased, this could become the preferred option. Looking beyond
the finite element method, this could be especially the case for a meshless method
implementation with variable number of nodes associated to each integration point,
as it would be difficult to implement different kernels for each possible combination.

We performed the same tests on meshes with increased number of elements
(about eight times more elements than the meshes presented in Table 1). The compu-
tation times increased linearly with the number of elements (around eight times), but
the relative performances of the analyzed implementation methods were the same.

4 Discussion and Conclusions

GPUs are a cost effective and efficient method of accelerating code execution, es-
pecially for algorithms that are easily parallelizable, such as explicit finite element
algorithms. Using such algorithms implemented on GPU, real time surgery simula-
tions are possible using complex and accurate biomechanical models.

The GPU architecture and internal organization is relatively complex. When
algorithms are developed for a GPU there are a number of rules that have to be ob-
served in order to get the maximum performance [16,17]. Apart from these rules, the
structuring of the software and the communication between CPU and GPU can have
a great influence on the performance. In this chapter, we present four approaches that
can be used to implement different finite element types on the GPU.

We implemented the presented approaches and performed timing measurements
to compare their performances. The “fat kernel” approach, in which different kernels
that can be executed in parallel are combined in a single kernel, provided the best
performance.

There are cases when the number of different kernels that have to be imple-
mented is too large, especially for meshless methods with variable number of nodes
per integration points. In such cases, the “parametric elements” would be the best
implementation approach.

Acknowledgments The financial support of the Australian Research Council (Grants DP0664534,
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Mapping Breast Cancer Between Clinical
X-Ray and MR Images

Hayley M. Reynolds, Jaykumar Puthran, Anthony Doyle, Wayne Jones,
Poul M.F. Nielsen, Martyn P. Nash, and Vijay Rajagopal

Abstract Characterizing a breast lesion can involve comparing X-ray and magnetic
resonance (MR) images of a patient’s breast. Tracking a lesion between these imag-
ing modalities is nontrivial because of the different types of deformation the breast
undergoes during these imaging procedures. We present a retrospective clinical val-
idation study to assess the performance of a biomechanical modeling framework
for mapping lesion locations between clinical MR images and cranio-caudal X-ray
mammograms. MR images from four patients were used to create customized finite
element models. The unloaded configuration of each breast was then determined,
and mammographic compression was simulated using finite deformation elasticity
coupled with contact mechanics. The predicted location of each patient’s tumor(s)
in the simulated compressed breast was compared with the true tumor locations on
the mammogram as identified by clinicians. The degree of overlap between the true
lesion area and the predicted lesion area, estimated using the Jaccard coefficient,
ranged between 14 and 75%. The results indicate that biomechanical modeling can
provide reliable co-location of lesions between MR images and mammograms.

Keywords Biomechanical modeling · Breast cancer · Contact mechanics · Finite
deformation elasticity

1 Introduction

X-Ray mammography is the gold-standard imaging technique for early detection
of breast cancer. Mammograms alone cannot be used to identify and characterize
all cancers, partly because of their 2D representation of a 3D compressed breast,
and also because of their limited applicability to women with dense breasts. Hence,
mammography is often used in conjunction with other 3D imaging modalities such
as ultrasound (US) and magnetic resonance (MR) imaging to reliably characterize
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the nature of a suspicious lesion. For example, contrast-enhanced MR imaging
provides a 3D view of the blood supply to a suspicious region, which provides a
measure of malignancy.

It is not always trivial, however, to match the location of lesions between X-ray
mammograms and other imaging modalities. During MR imaging, the breasts
typically hang prone under the effect of gravity in a breast coil, while during
mammography the breast is forced into a highly compressed shape between two
mammography plates to acquire an image with sufficient contrast at low X-ray
dosage. As a result, these imaging procedures deform internal tissues significantly
and in different ways, making point to point correspondence between images a
nonlinear problem.

Biomechanical models have been investigated as a possible method to aid in
reliable co-location of suspicious lesions between different imaging modalities [8].
Ruiter et al. [9] performed one of the first studies on the use of biomechanical mod-
els to map information between X-ray mammograms and MRI. The study used
biomechanical models of six patients’ breasts and incorporated details regarding the
heterogeneity in tissue properties (e.g., skin, fat, and fibrous tissue) using estimates
from published literature. The study showed promising results and concluded that a
homogeneous model would be sufficient for the application. However, a number of
assumptions in the models remain untested. Considering the significant variability
in breast tissue properties across individuals, the validity of using estimates of tis-
sue stiffness from ex vivo experimental studies must be examined. The simulations
also used displacement boundary conditions on model surface nodes to match the
mammogram skin contour. Such modeling assumptions are inappropriate, because
it is not possible to determine displacement of the skin within its tangent plane from
the images. Thus, these models may overconstrain the in-plane motion of the skin
and produce unreliable results.

Hipwell et al. [3] also use a biomechanical model to map information from
MR images onto 2D mammograms, but only used the model as a gold-standard
to validate other nonrigid registration algorithms for this application. As such, the
biomechanical model was not created with a specific case in mind, and thus did not
require validation. It is also important to note that the use of nonrigid registration
algorithms for MR to X-ray mapping can permit physically implausible transforma-
tions, which limit their reliability.

Recently, Rajagopal et al. [7] presented a method for determining the 3D location
of microcalcifications from two X-ray mammograms using the modeling framework
of Chung et al. [2]. This method did not make assumptions regarding the move-
ment of the skin surface during compression and used patient-specific mechanical
property estimates. The study validated the technique quantitatively on silicon gel
phantoms, but only demonstrated its potential use for mapping mammography in-
formation onto a 3D MR dataset with one clinical case.

This chapter presents a quantitative assessment of the performance of the Chung
et al. modeling framework for tracking breast tumor movement from clinical
MR images to cranio-caudal X-ray mammograms. The study highlights how an
individual-specific breast model can assist in performing the nonlinear mapping
of information from MRI to X-ray mammograms. It demonstrates how the use of
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realistic representations of loading and boundary conditions alone can simulate
the significantly large compressions that the breast undergoes (over 50%) during
mammography that has not been reported in the literature to date [10]. Limitations
of the adoptability of these biomechanical modeling techniques within the clinical
environment are discussed.

2 Methods

2.1 Clinical Data

Clinical data from four female patients treated at Auckland City Hospital, New
Zealand, have been used in this study. Patients ranged in age from 33 to 57 years,
and each had a visible cancerous lesion in their mammogram and MR images.

During MR imaging, patients were oriented in the prone position, with their
breasts hanging under gravity in a breast coil. Axial MR images using a T1-weighted
sequence were collected, where three patients were imaged using a 1.5T Siemens
MRI scanner (Magnetom Avanto System), while the fourth patient was imaged
using a Philips Intera Achieva 3.0T MRI scanner. Table 1 gives the MR image de-
tails for each patient. The digital mammography images were collected using a GE
Healthcare Senograph mammography system. These images had pixel dimensions
1,914× 2,294 which measured 180.09×215.84 mm.

2.2 Finite Element Modeling

A finite element (FE) model was created for each breast, by first segmenting the MR
images to identify the skin, rib, and tumor boundaries (as shown in Fig. 1a) using
CMGUI software1. The tumors were located by trained radiologists to ensure that
the entire tumor was encircled.

A tricubic Hermite hexahedral FE mesh using 98 nodes and 36 elements (2352
geometric degrees of freedom) was created to represent the breast geometry for

Table 1 MR image dimensions for each patient

Resolution Field of view Slice thickness
Patient (pixels) (mm) # Slices (mm)

1 512× 512 340× 340 192 0.75
2 512× 512 360× 360 208 0.75
3 448× 448 340× 340 104 1.5
4 560× 560 330× 330 50 3

1 http://www.cmiss.org/cmgui
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Fig. 1 Patient-specific breast models were created by (a) segmenting the MR images to identify
tissue boundaries for the skin (skin color), rib (green) and tumor (gold), and (b) fitting a 3D finite
element model to the skin and rib data

each patient. Six elements were defined in the mediolateral direction, six elements
in the inferior-superior direction, and one element in the anteroposterior direction.
The mesh extended in the mediolateral direction to the axilla to ensure adequate
breast tissue was accounted for. A mesh node was positioned at the nipple to provide
a landmark point to use for subsequent alignment with the mammogram.

The mesh was then fitted to the segmented data points using a nonlinear least-
squares fitting process [1]. This process minimized the Euclidean distance between
the skin and rib data points and their orthogonal projections onto the mesh. The fitted
models (Fig. 1b) had root-mean-squared (RMS) errors between the fitted meshes
and the segmented data that ranged from 1 to 2 mm. The tumor volumes for each
patient were 13,040, 1,812, 1,468 and 8,210 mm3, respectively.

2.3 Modeling Mammographic Compression

We then simulated mammographic compression for each breast model based on
finite elasticity theory coupled with contact mechanics boundary constraints. Details
of the techniques used in this study can be found in [2, 5]. All simulations were
carried out using the software package CMISS2.

The breast tissue was assumed to be incompressible, homogenous and isotropic,
as described by the neo-Hookean constitutive relation Ψ = c1(I1 − 3), where I1

is the first principal invariant of the Lagrangian deformation tensor, and c1 is
the material stiffness parameter. Incompressibility was enforced by introducing
kinematic constraints and defining a hydrostatic pressure field as a Lagrangian
multiplier. Before applying compression, the unloaded configuration of the breast
was determined (to remove the effect of gravity) using established methods [6].

2 http://www.cmiss.org
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In the absence of available data, the material stiffness of each breast was manually
chosen; so the contour of the compressed breast model best matched the contour of
the cranio-caudal mammogram.

The unloaded breast model was refined to ensure that adequate degrees of free-
dom were available to capture the breast deformation during compression, and also
to ensure solution convergence of the model. The ribs and the compression pads
were modeled using tricubic-Hermite elements, and the pads were curved at the
edge that came into contact with the breast. Frictionless contact was applied be-
tween the breast and compression pads, while tied contact was used between the
back of the breast model and the rib [5].

Nodes located at the sternum (i.e., the medial edge of the breast model) were
fixed in the mediolateral direction during compression. The derivatives at the sternal
face were fixed in the sagittal plane. Nodes at the axilla (i.e., the lateral edge of the
breast model) were fixed in the anteroposterior direction to restrict the movement of
breast tissue around the side of the body. The derivatives of the axillary nodes were
also fixed in the anteroposterior plane. In addition, all patients had the inferior and
superior nodal derivatives fixed in the axial plane.

The breasts were then compressed in the cranio-caudal direction until the
thickness of the breast matched the breast thickness measurement given in the
mammogram DICOM header (see Fig. 2). The compression pads were displaced
simultaneously, giving two-sided compression. The compression pads were placed
at an angle (rotated in the axial direction) to each of the patients, which was verified
with clinicians, to ensure that all the breast tissue was captured between the pads.

Fig. 2 Each patient’s prone breast model (a) was compressed to match the breast thickness in the
mammogram’s DICOM header (b)
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2.4 Mammogram Alignment and Model Validation

To evaluate the accuracy of our biomechanical modeling framework, the tumor
locations in each breast model were compared with the actual tumor locations in
the cranio-caudal mammograms. In order to test the tumor co-location accuracy,
each mammogram image was aligned with each of the breast models.

As shown in Fig. 3, the nipple landmark on each breast model was first aligned
with the nipple location on the mammogram. For each compressed breast model,
the skin contour on the mammogram image was automatically segmented, and the
RMS error calculated between these segmented data points and their orthogonal
projections on the breast model surface. The RMS error was found for a range
of mammogram image orientations by rotating the mammogram about the nipple
landmark. The orientation that minimized the distance between the model and X-
ray skin contours, from the nipple point to the sternum and the nipple point to the
axilla, was taken as the optimal position.

The skin contour for the uncompressed prone models was visually aligned with
the mammograms to best match the model and X-ray skin contour, reproducing
what radiologists currently do in the clinic by eye.

Once the mammogram alignments were determined, the tumor locations in the
breast models were quantitatively compared with the actual tumor locations in the
mammogram images. This was done by calculating the Jaccard coefficient, which is
the ratio of the area of intersection to the total area of the two overlapping areas [4],
to give a similarity measure between the tumor areas in the models and the actual
tumor areas given in the mammogram images.

Fig. 3 The alignment of the cranio-caudal mammogram to the compressed breast model. The nip-
ple landmark on the compressed model (dot) was first aligned with the nipple in the mammogram,
and then rotated about the nipple point (curved arrow) to minimize the distance (straight arrows)
between the mammogram skin contour and the compressed model skin contour
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3 Results

Each patient’s breast required a significant amount of compression to match the
breast thickness in the mammogram, as detailed in Table 2. For the first patient, the
distance between the compression pads reduced from 126.2 to 32.0 mm to give 75%
compression. The other three patients required 52, 72%, and 57% compression to
mimic the breast thickness during mammography. These significantly large com-
pression simulations have not been possible before as noted by Tanner et al. [10],
and is attributed to a more realistic representation of the boundary condition between
the breast and rib surfaces.

Figure 4 shows the tumor location in the uncompressed prone model (Fig. 4a)
and the compressed model (Fig. 4b) relative to the mammogram image. It is clear
that even though the tumor location in the prone model overlays the tumor in the
mammogram, the compressed model has provided a more reliable prediction of its
location. For this model, the Jaccard coefficient increases from 43 to 75%.

The other three patients also showed an improvement in the tumor location pre-
dicted by the compressed models. Figure 5 shows the tumor locations in each model
relative to that identified by clinicians in the mammograms. Table 3 details the tu-
mor areas for each model and the corresponding Jaccard coefficients. Based on these
similarity measures, it is evident that the compressed models provide a more reliable
estimate of the tumor location.

Table 2 The amount of compression applied during mammography
for each patient

Patient 1 2 3 4

Uncompressed dimension (mm) 126 133 88 111
Compressed dimension (mm) 32 64 25 48
% Compression 75 52 72 57

Fig. 4 The tumor locations (dots) (a) segmented from the uncompressed prone MR images and
(b) predicted in the compressed breast compared with the tumor location identified by a clinician
in the mammogram (lines)
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Fig. 5 Each patient’s tumor location in the uncompressed prone model (dots in a, c, e) and the
tumor location in the corresponding compressed model (dots in b, d, f), shown relative to the tumor
locations in the corresponding cranio-caudal mammogram (lines)

Table 3 Tumor areas and Jaccard coefficients for each patient

Patient 1 2 3 4

Tumor area (mm2)
– Uncompressed prone model 2,230 245 108 342
– Compressed model 2,981 260 115 466
– Mammogram 2,569 126 118 286

Jaccard coefficient (%)
– Before compression 43 0 5 40
– After compression 75 14 15 55
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4 Discussion

This study quantitatively demonstrates the applicability of the modeling framework
of Chung et al. for mapping tumor locations between clinical MR images and X-ray
mammograms.

MR images obtained in the prone position were used to construct customized
FE models of the patients’ breasts, which simulated breast compression during
cranio-caudal X-ray mammography. The models used realistic representations of
the external loading conditions (i.e., plate-to-skin contact conditions, and lack of
kinematic constraints at the skin surface) and the breast tissue interactions with the
rib surface, and were able to simulate very high levels of compression (between 50
and 70%) as experienced by women during X-ray mammography. As such, this is
the first demonstration in the literature of a modeling framework that has been able
to simulate breast compression at these levels.

Comparison of the predicted region with the true location of the identified lesions
in the MRI and mammograms has shown that the biomechanical models provided a
better correspondence between the two images than a straight overlay of the uncom-
pressed breast MRI on the X-ray mammogram. Although the increase in the Jaccard
coefficient for the last three patients may be perceived as small, there was no overlap
for the second patient before compression was applied, while after compression, it
increased to 14%, which is a significant increase considering the two tumors were
small. The last two patients had tumors near the center of the breast (close to the
rib cage), thus the tumors did not move significantly during compression. Hence,
even this modest increase in the Jaccard coefficient is also a marked improvement
over the uncompressed images, which are what clinicians presently use for matching
purposes.

While results are encouraging, there are a number of assumptions that require
further investigation before the models can be used in a seamless fashion in the
clinic. Since this is a retrospective study, we were limited to estimating the material
stiffness parameter and the angle of the plates relative to the patient’s body. We aim
to develop techniques to more accurately estimate the angle of the plates during a
mammography session using combinations of image processing and/or instrumenta-
tion. In future, we also aim to implement quantitative optimization methods to more
accurately estimate the material stiffness parameter.

Another limitation is the assumption of a homogeneous, isotropic constitutive
behavior of the internal breast tissues. We are currently developing techniques to
estimate heterogeneous material properties in vivo in an effort to improve simulation
predictions. In addition, we have recently developed techniques to combine nonrigid
registration techniques to biomechanical model predictions of the breast [11]. In
future, we intend to test this technique as a mammogram alignment method.

Nevertheless, despite current limitations, this study shows the use of an entirely
biomechanical modeling approach (without assistance from nonrigid registration
techniques or prescribed skin surface node displacements) to reliably map tumor
locations. With additional developments to incorporate more anatomical detail, this
modeling framework will be a useful tool in the clinic.



90 H.M. Reynolds et al.

Acknowledgments We gratefully acknowledge financial support from the Foundation for
Research Science & Technology. Martyn P. Nash is supported by a James Cook Fellowship
administrated by the Royal Society of New Zealand on behalf of the New Zealand Government.
Dr. Ralph Highnam provided valuable discussions.

References

1. Bradley, C.P., Pullan, A.J., Hunter, P.J.: Geometric modeling of the human torso using cubic
Hermite elements. Annals of Biomedical Engineering, 25, 96–111 (1997)

2. Chung, J.H., Rajagopal, V., Nielsen, P.M., Nash, M.P.: Modelling Mammographic Compres-
sion of the Breast. MICCAI 11(2), 758–765 (2008)

3. Hipwell, J.H., Tanner, C., Crum, W.R., Schnabel, J.A., Hawkes, D.J.: A New Validation
Method for X-ray Mammogram Registration Algorithms using a Projection Model of Breast
X-ray Compression. IEEE Transactions on Medical Imaging, 26(9), 1190–1200 (2007)

4. Klein A., Andersson J., Ardekani B.A., Ashburner J., Avants B., Chiang M.C., Christensen
G.E., Collins D.L., Gee J., Hellier P., Song J.H., Jenkinson M., Lepage C., Rueckert D.,
Thompson P., Vercauteren T., Woods R.P., Mann J.J., Parsey R.V.: Evaluation of 14 nonlinear
deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802
(2009)

5. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)
6. Rajagopal, V., Chung, J.H., Bullivant, D., Nielsen, P.M., Nash, M.P.: Determining the finite

elasticity reference state from a loaded configuration. International Journal for Numerical
Methods in Engineering, 72(12), 1434–1451 (2007)

7. Rajagopal, V., Nielsen, P.M.F., Nash, M.P.: Modeling breast biomechanics for multi-modal im-
age analysis - successes and challenges. WIRES Systems Biology and Medicine, 2(3), 293–304
(2009)

8. Rajagopal, V., Chung, J., Highnam, R.P., Warren, R., Nielsen, P.M.F., Nash, M.P.: Mapping
Microcalcifications Between 2D Mammograms and 3D MRI Using a Biomechanical Model
of the Breast. Computational Biomechanics for Medicine, Part 1, 17-28. Springer, New York
(2010)

9. Ruiter, N.V., Stotzka, R., Müller, T., Gemmeke, H., Reichenbach, J.R., Kaiser, W.A.: Model-
Based Registration of X-Ray Mammograms and MR Images of the Female Breast. IEEE
Transactions on Nuclear Science, 53(1), 204–211 (2006)

10. Tanner, C., Hipwell, J.H., Hawkes, D.J.: Statistical Deformation Models of Breast Compres-
sions from Biomechanical Simulations. In: Krupinski, E.A. (ed) Lecture Notes in Computer
Science: IWDM, 5116, 426–432. Springer, Berlin (2008)

11. Lee, A., Schnabel, J.A., Rajagopal, V., Nielsen, P.M.F., Nash M.P.: Breast Image Registra-
tion by Combining Finite Elements and Free-Form Deformations. Lecture Notes in Computer
Science, 6136, 736–743 (2010)



Cardiac Strain and Rotation Analysis
Using Multi-scale Optical Flow

H.C. van Assen, L.M.J. Florack, F.F.J. Simonis, J.J.M. Westenberg,
and G.J. Strijkers

Abstract Tagging MRI enables analysis of the local contractility of the cardiac
left ventricle. It permits reliable assessment of local contractile dysfunction related
to various cardiomyopathies. We present a multi-scale optical flow method, with
Gabor filtering, for the extraction of dense motion fields from cardiac MR tag-
ging. It is based on a multi-scale first order extension of the classical optical flow
constraint equation enabling the extraction first order parameters like rotation and
strain. A quantitative validation study based on the phantom proposed by Young
et al. showed excellent performance. Furthermore, strain patterns are presented for
one ischemic patient case with known wall motion abnormalities, and two volun-
teers. Patient circumferential strain abnormalities colocalize with enhanced areas
in late-enhancement MRI. Rotation patterns are presented for the same patient and
four volunteers. The rotation pattern described in the patient is strikingly different
from that describing the volunteers.

Keywords Cardiac function · Strain · Optical flow · MR tagging · Medical image
analysis

1 Introduction

Detailed analysis of regional left ventricular (LV) dynamic function is important
in the diagnosis and characterization of various cardiomyopathies. In this chapter,
we will focus on the analysis of LV strain and rotation from MR images with spa-
tial modulation of magnetization (SPAMM, a.k.a. tagging) [2]. Tagging provides
sufficient information to analyze disturbances in myocardial contractility, which
have been identified as early signs in pathologies [7], and which remain hidden in
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surface-based analysis techniques [5]. For tagging image analysis, we follow the
rationale of [14] by the application of the optical flow constraint equation (OFCE),
which was brought to the multi-scale framework by Florack et al. [10].

Since the OFCE assumes constant brightness of a pixel along its path, and
SPAMM data typically suffer from tag fading due to the spin-lattice relaxation (ex-
pressed by T1), our proposed method incorporates harmonic filtering in the Fourier
domain using Gabor filters [12], similar to [6]. Thus, intrinsically conserved tag-
phase information is used instead of brightness information. However, we take the
sine of the tag-phase rather than the phase itself, to avoid spatial discontinuities in
gray values.

Once the detailed motion information has been obtained, strain (Sect. 3.3) can be
calculated. We use Stokes’ theorem (Sect. 3.4) to calculate rotation in the cardiac
slices robustly from dense first-order motion information.

This chapter is organized as follows. Section 2 briefly summarizes previous work.
Section 3 explains our proposed method. Section 4 presents motion extraction eval-
uation based on a phantom data set, and strain and rotation results for a number of
volunteers and a patient data set. Finally, Sect. 5 discusses the method and results
and concludes the chapter.

2 Background

Tagging (SPAMM) patterns are inherent in the tissue, i.e., they deform along with
the tissue, allowing analysis of the regional myocardial movement of the LV. This is
to be contrasted to the imaging of the cardiac surfaces (e.g., with Cine MRI), which
focuses mainly on global function (ejection fraction, cardiac output, etc.).

Suinesiaputra et al. [20] applied the multi-scale generalization [10] of the OFCE
to track human hearts. Their method suffers from the fact that flow components tan-
gential to iso-surfaces cannot be retrieved from data evidence, which was formalized
in a “normal flow constraint.” Dougherty et al. [8] also applied optical flow. They
estimate global and local cardiac motion in a coarse-to-fine model-based tech-
nique. This technique encompasses a Laplacian filter to compensate for intensity
and contrast loss in myocardial tags. Prince and McVeigh [17] developed an optical
flow-based method that requires extensive prior knowledge of the relaxation times
T1, T2, and the spin density D0 of the myocardium. Sühling et al. [19] applied an
optical flow-based technique to cardiac motion estimation from B-Mode echocar-
diograms. Their approach is moment-based and multi-resolution, and is similar to
the one we propose algorithmically. However, their point of departure is the optical
flow approach by Lucas and Kanade [15], while ours is [14].

For a review of MRI motion analysis protocols, the reader is referred to [3].
The HARP technique, which uses tagging combined with spectral filtering in

Fourier space, overcomes tag fading by directly measuring phase information of
the MR signal [16]. We choose to use a harmonic filtering method using Gabor
filters [12] on sinusoidal tag profiles, and first-order Taylor expansion of multi-scale
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optical flow. Thus, instead of tag-brightness information, tag-phase information is
used which does not suffer from fading. We propose to extract the motion field
by simultaneous analysis of perpendicularly encoded line tagged image sequences,
assuming equal 2D motion in both.

3 Method

We aim for a regularization-free solution, but one that is not hampered by missing
data evidence (i.e., the aperture problem of standard application of the optic flow
constraint equation). The usual way to circumvent the aperture problem is to com-
plement data evidence with prior knowledge, or by stipulating some smoothness
hypothesis about the true motion field. However, there is no guarantee that a regu-
larized solution is everywhere close to the physical motion field, and hypotheses are
often unrealistic or not feasible.

It would be desirable if the tangential flow could be retrieved by adding further
intrinsic evidence to the existing evidence. This is possible if one is in possession of
a second independent recording of the same spatiotemporal region of interest. This
can be achieved with the help of suitably chosen MR tagging patterns, i.e., with
independent encoding directions.

3.1 Zeroth-Order Polynomial Expansion of the OFCE

Following this new rationale, we exploit the strength of the multi-scale OFCE by
Florack et al. [10], while at the same time removing its shortcomings. The opera-
tional scheme for optical flow extraction makes use of a local polynomial expansion
of the flow field (at each point).

Let f be shorthand for f (x, y, t; σ , τ), the scalar spatiotemporal image sequence
as a function of position (x, y), time t, isotropic spatial scale σ > 0, and tempo-
ral scale τ > 0. We denote its partial derivatives with respect to x, y, and t by
self-explanatory subscripts. These are obtained by convolving the raw image se-
quence f 0(x, y, t)= f (x, y, t; 0, 0) with a corresponding derivative of a normalized
Gaussian,

φ(x, y, t; σ , τ) =
1

2πσ2

1√
2πτ2

exp

[
−x2 + y2

2σ 2 −
t2

2τ2

]
.

For a zeroth-order polynomial expansion scheme, and with f and g the indepen-
dently encoded MR tagging image sequences, we must consider the following single
system for both components of the physical motion field (u, v) simultaneously

{
fxu + fyv + ft = 0

gxu + gyv + gt = 0.
(1)
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3.2 First-Order Polynomial Expansion of the OFCE

We propose to use a first order polynomial expansion scheme, where U(x, y, t) =
u + uxx + uyy + utt, respectively, V (x, y, t) = v + vxx + vyy + vtt , in which
u, ux, uy, ut , v, vx, vy, vt are eight local parameters (unknowns) of the horizon-
tal, respectively, vertical local optical flow field approximation U(x, y, t) and
V (x, y, t).

The relevant first order OFCE is then given by a nontrivial linear system (see [11]
for details). Collsecting the unknowns in an 8-entry column vector v, and indicat-
ing the 8 × 8 coefficient matrix by A, and the inhomogeneous term by the 8-entry
column vector a, we have

Av = a . (2)

For details of A, v, and a, see below. Optimal scales (σ ,τ) are selected by minimiz-
ing w.r.t. the condition number for matrix A. Optimality should be interpreted in the
sense of yielding maximally stable, not necessarily maximally accurate solutions;
so experimental validation will be necessary (cf. Sect. 4).

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fx fy fxtτ2 fytτ2 fxxσ 2 fxyσ 2 fxyσ 2 fyyσ 2

fxt fyt fx+ fxttτ2 fy+ fyttτ2 fxxtσ 2 fxytσ 2 fxytσ 2 fyytσ 2

fxx fxy fxxt τ2 fxyt τ2 fx+ fxxxσ 2 fy+ fxxyσ 2 fxxyσ 2 fxyyσ 2

fxy fyy fxyt τ2 fyyt τ2 fxxyσ 2 fxyyσ 2 fx+ fxyyσ 2 fy+ fyyyσ 2

gx gy gxt τ2 gyt τ2 gxxσ 2 gxyσ 2 gxyσ 2 gyyσ 2

gxt gyt gx+gxttτ2 gy+gyttτ2 gxxt σ 2 gxyt σ 2 gxyt σ 2 gyyt σ 2

gxx gxy gxxt τ2 gxytτ2 gx+gxxxσ 2 gy+gxxyσ 2 gxxyσ 2 gxyyσ 2

gxy gyy gxyt τ2 gyytτ2 gxxyσ 2 gxyyσ 2 gx+gxyyσ 2 gy+gyyyσ 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

v =
[

u v ut vt ux vx uy vy

]T
and a =−

[
ft ftt fxt fyt gt gtt gxt gyt

]T
.

3.3 Calculation of Strain from a Flow Field

To calculate strain (a 2× 2 tensor) as a measure of tissue deformation, we start
with the construction of the velocity gradient tensor, using the first-order derivative
structure of the motion field (u,v)

L =
[

ux uy

vx vy

]
. (3)

By virtue of the chain rule, the relation between deformation and velocity gradient
tensors is given by a first-order ODE

Ḟ = LF , (4)
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subject to an initial condition, viz. F(t = t0,t0) = I. The solution to (4) induces an
expansion known as the matricant [9, 13]:

F(t,t0) = I+
∫ t

t0
L(ξ )dξ +

∫ t

t0
L(ξ )

∫ ξ

t0
L(σ)dσdξ + · · · (5)

Splitting the interval [t0,t] into n parts (frames in the MRI sequence), and using the
property that

F(t,t0) = F(t,t1)F(t1,t0) (t0 < t1 < t) , (6)

for an infinitesimally narrow interval [tk−1,tk] yields the following approximation

F(tk,tk−1) = I+ L(t∗k )Δ tk + h.o.t.(Δ tk) tk−1 ≤ t∗k ≤ tk, (7)

where “h.o.t.” means higher order terms. Equations (6) and (7) lead to a representa-
tion in terms of a so-called multiplicative integral [13]:

F(t,t0) =∼
∫ t

t0
(I+ L(ξ )dξ ) def= (8)

lim
Δ tk→0

(I+ L(t∗n)Δtn) . . .(I+ L(t∗1)Δ t1) . (9)

Finally, given the deformation tensor F obtained pointwise via the discretization
scheme outlined above, we construct the Lagrange strain tensor:

E =
1
2
(F†F− I). (10)

For rigid deformations we have F†F = I, yielding E = 0; thus, E captures the non-
rigid part of tissue deformation. By pre- and postmultiplication of E with the unit
vector êr in the radial or êc in the circumferential direction, or using both, one can
extract the radial (Err), circumferential (Ecc), and shear (Ecr) strain components:

Err = êT
r Eêr ,

Ecc = êT
c Eêc ,

Ecr = êT
c Eêr . (11)

To analyze part of the rigid motion, myocardial rotation may be calculated [1],
as will be described in the next subsection.
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3.4 Calculation of Rotation from a Flow Field

We invoke the generalized Stokes’ theorem [18]: If R is an oriented piecewise
smooth n-dimensional manifold (in our case n = 2), with oriented boundary ∂R,
and ω is a smooth (n−1)-form on R, then

∫
R

dω =
∮

∂R
ω . (12)

Take ω = udx+vdy, with (u,v) the motion field, i.e., dω = (vx−uy)dx∧dy (∧ being
the wedge product). Take R to be a ring, i.e., the interior of two concentric circles
∂R = ∂Rint∪∂Rext, the orientation of which is deduced from the outward normal of
the region R. Stokes’ theorem then reduces to the so-called Green’s theorem:

∫
R
(vx−uy)dxdy =

∮
∂ R

udx + vdy . (13)

For our disconnected boundary parts, this yields:

∫
R
(vx−uy)dxdy =

∮
∂ Rext

udx + vdy−
∮

∂ Rint

udx + vdy . (14)

The interpretation of this result is net rotation of the vector field (u, v) inside region
R, or equivalently net circulation of the vector field along its boundary. It can easily
be shown that this yields twice the average rotation angle of the region R, which
was also noted in [19]. The advantage of using Stokes’ theorem is that boundary
integrals (r.h.s. of 12–14) are computed in terms of more robust volume integrals
(l.h.s. of 12–14).

4 Experiments and Results

4.1 Image Data

In order to evaluate the proposed method, a phantom inspired by Young et al. [21]
was used, which consists of two concentric cylinders with gel in between. The inner
cylinder is rotated in a controlled fashion (max. approximately 20◦), and it describes
a back and forth going sinusoidal rotation due to a crank in the set up. The outer
cylinder is fixed (see Fig. 1). Gelatin was used as the medium between cylinders,
5.7 wt% standard cooking gelatin in water was used, which sticks to both cylinders,
and thus deforms elastically. Phantom images were made on a 6.3T Bruker scanner
using a C-SPAMM sequence, resulting in 12 frames describing a complete cycle.
Scan parameters were: TE 2.4 ms, TR 40 ms, flip angle 15◦, field-of-view 40 mm,
slice thickness 1 mm, number of averages 4, tag distance 2 mm.
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Fig. 1 Phantom imaging setup

Short-axis MR tagging data were acquired with a Philips Intera 1.5T scanner
(Philips Healthcare, Best, Netherlands) from four healthy volunteers and one patient
in a basal slice. The patient had a history of severe stenoses, and small infarc-
tion areas confirmed with late-enhancement MRI. A 2D multi-shot gradient-echo
with Echo Planar Imaging (EPI factor 9) with breath-holding in end-expiration was
used. Scan parameters were: TE 4.4 ms, TR 19 ms, flip angle 10◦, field-of-view:
300 mm, scan matrix 128, acquisition voxel size 2.34×2.68×8 mm3 reconstructed
into 1.17× 1.17×8 mm3. Tagline spacing was 8 mm.

4.2 Results

For both the phantom and in vivo data, motion was extracted using (2). A rectangular
grid was put on top of the undeformed phantom data, and lines were drawn on the
undeformed in vivo data. Both the grid and the lines were automatically deformed
along the extracted motion fields (see Figs. 2a and 3). From the phantom results,
errors were quantified as angular error εφ and norm error ε‖:

εφ = arccos

(
vest ·vtrue

‖vest‖‖vtrue‖
)

, (15)

ε‖ =
( ‖vest‖
‖vtrue‖ −1

)
×100% , (16)

where vtrue is the known true velocity and vest the estimated velocity resulting from
our method. Errors were calculated per pixel of the phantom and the quantitative
values were color-coded in Fig. 2b.
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Fig. 2 (a) Overlay of rectangular grid on the first frame (top) and the grid deformed with the
motion field on the eighth frame (bottom) of the gelatin phantom. (b) Angle error (radians, top)
and norm error (%, bottom) distributions of a frame close to maximal deformation

Figure 3 shows the motion fields applied to straight lines (defined on the first
frame) during systole for all subjects. Consequently, these lines move according
to the extracted motion fields. This allows a visual assessment of the quality of
the motion fields found. The lines in all frames show a good agreement with the
underlying tagging patterns.

From the in vivo data, strain and rotation as a function of cardiac phase were
calculated. Circumferential and radial strains are presented in Fig. 4 and rotation
plots in Fig. 5. Both figures show a lack of rotation in the early systolic phase for
the patient. The circumferential strain pattern of the patient exhibited abnormalities
that strongly correlated with enhanced areas in late-enhancement MRI.

5 Discussion and Conclusion

Cardiac motion and myocardial deformation analysis is a promising method by
which abnormalities in both active and passive tissue function can be found. We
presented a novel multi-scale first-order optical flow method for detailed cardiac
motion extraction. We have shown that with the generalized Stokes’ theorem, one
can robustly calculate myocardial rotation, an important parameter for early diagno-
sis of ischemic heart disease. Furthermore, our method was able to show a difference
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Fig. 3 Motion extraction results. Lines indicate myocardial deformation. Straight lines are defined
on the first frame of five different subjects (rows). Next, the lines are deformed with the motion
field of each subject extracted using (2). This allows visual assessment of the quality of (a sparse
subset within) the (dense) motion field. Rows 1–4: Four different volunteers. Row 5: Patient data.
Phases shown are {5, 9, 13} (systole), basal slice

in rotation between a healthy heart and one with a history of small infarction areas
and suffering from ischemia. Finally, it showed abnormal locations in strain patterns
corresponding to bright areas in late-enhancement MRI. Therefore, our method is a
promising step toward cardiac function analysis without the use of contrast agents,
currently used for, e.g., delayed-enhancement imaging of infarction areas.

From the quantitative evaluation with the phantom setup (see Fig. 2b), it can be
seen that both εφ and ε‖ under 0◦, 90◦, 180◦, and 270◦ are larger at the endocar-
dial border than at other locations. This is possibly due to the discontinuity in the
tags (transition from gel to air) and due to the fact that in those locations motion is
parallel to one of the tag directions, making the system A in 2 conditioned worse.
A solution to this may be incorporation of more image sequences with more inde-
pendent tag directions, e.g., separated by only 45◦ instead of 90◦. The results shown
in Fig. 3 show minor errors at a few locations at the endo- and/or epicardial border.
This is due to the discontinuity in the tags at the myocardial borders. Tagging data
are less reliable at these borders. A solution could be the combination of tagging
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Fig. 4 Circumferential strains (Ecc) and radial strains (Err) of two volunteers (a, b) and the patient
(c) of a frame close to end systole. Overlays are trajectories of the points since end diastole. These
clearly show presence of rotation in the volunteers and lack of rotational motion in the patient data
(see also Fig. 5). Ellipses (c, top) indicate locations with both enhancement in late-enhancement
MRI and deviations in circumferential strain. The septum of the patient remains stationary, which
was confirmed by a cardiologist (A anterior; S septal; L lateral; I inferior)

5 10 15 20
Frame

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Rotation rad
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volunteer 4
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Fig. 5 Rotation (rad) of the basal slices for four healthy volunteers (dashed/dotted) and a patient
(solid). As can be seen in Fig. 4, the patient heart lacks rotation in the early contraction phase

analysis for internal myocardial motion and deformation, and cine analysis (seg-
mentation) for the assessment of myocardial surface motion.

Cardiac LV motion is complex and intrinsically 3D. By analyzing 2D short-axis
images, the through-plane motion component cannot be determined. Taking into
account the third dimension will lead to more reliable results. However, true 3D
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MR tagging acquisition is a topic of ongoing research itself, and not widely avail-
able yet. From an implementation point of view, the extension of our method to
3D is straightforward. However, this would result in a system of 15 equations, and
the unknowns would span a 15-entry column vector. Computationally this would
become much more expensive though, as extra scale parameters would enter the
system, resulting in many more combinations of spatial and temporal scales to be
explored for an optimal set, and a series of much larger data volumes would form
the input instead of the series of frames used now. Parallelization and possibly im-
plementation on dedicated hardware may become mandatory to limit computation
time. This is a current topic of further research. In earlier work though, we presented
the analysis of 3D MR tagging using sparse sets of multi-scale feature points [4].
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Computational Foot–Ankle–Knee Models
for Joint Biomechanics and Footwear Design

Ming Zhang

Abstract Understanding complex human musculoskeletal systems requires an
enormous amount of experimental and computational studies. The computational
modeling combining anatomic, physiologic and engineering analyses can create a
virtual human body to study various activities in a normal and pathological condi-
tion. Combining the virtual human body with some kinds of mechanical analyses
showed strong potentials in understanding of musculoskeletal biomechanics.

Modeling of human joints, such as foot–ankle–knee are most challenging, due
to very complex structures. Information on the internal structures as well as foot-
support interfacial load transfer during various activities is useful in enhancing our
biomechanical knowledge for foot support design and surgical planning. We de-
velop computational models as a digital foot-ankle, which can be used to understand
joint biomechanics and design proper foot supports and implant. Three-dimensional
geometrically accurate finite element (FE) models of the human foot–ankle–knee
structures were developed from 3D reconstruction of MR images of subjects. The
foot FE model consists of 28 separate bones, 72 ligaments and the plantar fascia,
embedded in a volume of encapsulated soft tissue. The main bone interactions
were simulated as contact deformable bodies. The analyses took into considera-
tion the nonlinearities from material properties, large deformations, and interfacial
slip/friction conditions. A series of experiments on human subjects and cadavers
were conducted to validate the model measurements on in terms of plantar pressure
distribution, foot arch and joint motion, plantar fascia strain under different simu-
lated weight-bearing, and orthotic conditions of the foot. The validated models can
be used for parametrical studies to investigate the biomechanical effects of tissue
stiffness, muscular reaction, surgical and orthotic performances on the foot–ankle
complex.
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Segmentation of Skeletal Muscle Fibres
for Applications in Computational Skeletal
Muscle Mechanics

O. Röhrle, H. Köstler, and M. Loch

Abstract We present a semi-automatic method to segment single muscle fibres
from skeletal muscle cross-section images. As a pre-processing step we apply differ-
ent filters depending on the type of the manually selected image region to obtain an
edge image. Then we detect circles within the image by a circular Hough transform
as initial rough approximation to the muscle fibre slices. This approximation is im-
proved by active contours, where the circles are deformed to fit to the specific shape
of the muscle fibres. The implementation of the segmentation method was done in
Matlab. We show qualitative and quantitative results for different image regions and
also outline a straight-forward method to combine several slices to obtain a 3D piece
of a muscle fibre, which forms the input to an electro-mechanical skeletal muscle
model.

Keywords Skeletal muscle · High-resolution imaging · Segmentation of skeletal
muscle fibres · Active contour

1 Introduction and Motivation

A skeletal muscle is a complex and hierarchical construct of connective tissue and
muscle fibres. Each of the muscle fibres consists of sarcomeres connected in series,
which are the contractile machinery of a skeletal muscle. Further, each muscle
fibre is surrounded by a thin layer of connective tissue called endomysium. Groups
of muscle fibres (sometimes thousands – depending on size and function of the
muscle) are wrapped within a thin layer of connective tissue called the perimysium
to form a muscle bundle, or fascicle. One skeletal muscle can then be defined as
the amalgamation of fascicles joining into a tendon at each end. There have been
many mathematical models developed for skeletal muscles in the past. Mathematical
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models of skeletal muscles can generally be categorised into models (a) that were
specifically developed to represent and investigate electro-physiological cellular
properties, e.g. [1, 2], (b) task-specific models that aim to represent mechanical
function based on generalised parameters, e.g. [3], (c) and models that focus on
the kinematics and the mechanical aspects of the musculoskeletal system, e.g.
1D models Hill-type models, e.g. [4], or continuum-based three-dimensional mod-
els, e.g. [5–10]. The model proposed by Röhrle et al. [9, 10] captures the electro-
mechanical principles of skeletal muscle tissue and is currently the most advanced
3D continuum-mechanical skeletal muscle model. This model couples a detailed
biophysically based electro-physiological cell model, [2], with a 3D continuum-
based FE model of muscle mechanics and accounts for the unique manner in which
skeletal muscles are activated, specifically the fact that neighbouring fibres are elec-
trically isolated and can act independently of each other.

As the fibre distribution and the knowledge gain based on a skeletal muscles
micro-mechanical structure and function (on the level of a few interconnected fibres)
have many implications for the overall mechanical behaviour of skeletal muscle
tissue, there is a great need for building up a detailed and anatomically accurate
micro-structural FE model. The great challenge is to perform a segmentation process
that would allow obtaining the skeletal muscle fibres from high-resolution images.
The data of such a segmentation process leads to many seminal applications in the
field of skeletal muscle mechanics.

For example, generating a full 3D FE model of a part of the muscle tissue allows
one to perform a detailed FE analysis in order to investigate the mechanisms of inter-
force transduction and its implication on macroscopic constitutive behaviour on the
scale of the entire muscle or musculoskeletal systems. This is of particular impor-
tance as 3D continuum-based FE skeletal muscle models have many advantages as
they can include complex anatomical or physiological properties like the muscle
fibre distribution. One of the drawbacks of 3D (continuum-mechanical) models is
the lack of research on proper constitutive laws. This applies likewise to the pas-
sive (inactive) and contractile (active) components describing the overall material
behaviour of skeletal muscles. While the passive constitutive laws can be improved
by fitting its parameters to data obtained, e.g. from indention or shear tests, experi-
ments aiming to obtain experimental data for the active component are much more
challenging, if feasible at all. This is mainly due to a skeletal muscle’s complex
way of independently activating single fibres and its ability to fatigue. Therefore,
the active component in state-of-the-art continuum-mechanical-based skeletal mus-
cle models is achieved by adding an additional active stress component just to
the along-the-fibre component of the passive stress tensor (e.g. [7–10]). This mod-
elling limitation applies for the mechanical and electro-mechanical models likewise.
Further, extracting the midlines of the segmented muscle fibres provides muscle fi-
bre distribution data of a specific muscle that can then be used, in a straight-forward
manner, as anatomically realistic input to electro-mechanical frameworks of skeletal
muscle modelling, e.g. the one proposed in [9] and [10].

This chapter focuses on the creation of a detailed skeletal muscle replication.
The main task consists of reliable and automatic segmentation using circular Hough
transformation and active contours for detecting muscle fibres. A very important
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aspect is hereby to recognise fibres, which are placed very close to each other, based
on a sequence of cross-sectional images of a skeletal muscle. Therefore, various
filter methods and suitable segmentation processes are used in order to depict the
contours of the muscle fibre contours and to prepare them for further computational
procedures. The results of such a segmentation processes are analysed for practical
exertion, quality, error ratio and computational time, as well as its potential to extend
it to the third dimension. The chapter concludes with future prospect, limits and
improvements of the proposed segmentation method.

2 Extended Volume Imaging

To obtain accurate fibre distributions and to build up a detailed micro-mechanical
model, high-resolution micro-structural images of an entire extensor digitorum
longus (EDL) of a mouse were obtained. After dissecting the EDL and stretch-
ing it to its optimal length, the entire muscle was embedded within resin before
it was imaged using the Welcome Trust extended-volume imaging system devel-
oped at the Auckland Bioengineering Institute at The University of Auckland, New
Zealand. The imaging process resulted in high-quality cross-sectional images of the
entire muscle (see Fig. 1 for an example of a representative cross-sectional image).
The images have a 1-μm in-plane resolution. In the longitudinal direction, cross-
sectional images have been taken at least every 50 μm. In the middle section of the
muscle, cross-sectional images were obtained at a much higher density, viz. a 1-μm

Fig. 1 Muscle slice with marked regions



110 O. Röhrle et al.

slice distance. This was achieved over a length of 350 μm. Hence, one obtains for
the middle section a 1-μm3 voxel resolution (compared to about 2.4 μm sarcomere
length and a 10–100-μm fibre diameter) while still obtaining enough information
to structurally reconstruct the remaining parts of the entire muscle. The imaging
protocol and the extended-volume imaging setup is essentially the same as it has
previously been used by Sands et al. [11] for cardiac muscle tissue.

3 Segmentation Process

The segmentation of biological tissue is especially difficult, because most stan-
dard segmentation methods rely on sharp contrasts at the edges of objects which
are often not present in micro-structural images. In our context, a clear bound-
ary between neighbouring muscle fibres is, at times, not visible. There are several
ways to circumvent this problem. Either one improves the images/imaging, e.g.
by colouring the cells or by increasing the resolution during image acquisition, or
one pre-processes the images to enhance its quality and include additional a priori
knowledge on size and shape of objects. We will follow the latter approach and
apply a semi-automatic method to segment the skeletal muscle fibres within cross-
sectional images.

The three main steps of our segmentation process are pre-filtering (Sect. 3.1),
circle detection as initial rough approximation to the shape of a fibre (Sect. 3.2),
and finding the final contours of the muscle fibres by the method of active contours
(Sect. 3.3). We demonstrate this segmentation method in three representative regions
exhibiting different image quality.

3.1 Pre-Filtering

In the first step, pre-filtering is used to reduce noise and to produce a gradient image
required to control the active contours. The quality of the pre-filtering is therefore
essential for the next steps. While for Region 1 a standard Sobel-filter [12] and
thresholding is enough for an acceptable result, we need to apply an additional
dilatation, Canny Edge Filter, and a median filter to the other two regions. The re-
sults of the pre-filtering process are depicted in Fig. 2. While Region 1 gives very
good results, Region 2 presents a greater challenge as one can hardly separate dif-
ferent cells due to their weak boundaries.

3.2 Hough Transform

The circle detection is done by a circular Hough transform [13]. Figure 3 shows the
circles detected by this method. They serve as input for the initialisation step of the
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Fig. 2 Pre-filtering results for the three marked regions from Fig. 1

active contours method. Ideally, the number of circles should be equivalent to the
number of cells and the center of the circles should approximately correspond to the
center of the cells. Again, good results are obtained for Region 1, while the results
in the other two regions are not fully satisfying.

3.3 Active Contours

Active contours [14] or snakes describe the contour of an object by an explicit de-
formable curve c. In an iterative process, the initial curve, in our case the detected



112 O. Röhrle et al.

Fig. 3 Results of circle detection for the three marked regions from Fig. 1

circle, is deformed until a certain stopping criterion is reached. Mathematically, this
can be formulated as a minimisation problem that minimises the energy term

E(c) =
1
2

∫ 1

0
w1

∣∣∣∣∂c

∂ s

∣∣∣∣
2

+ w2

∣∣∣∣∂ 2c

∂ s2

∣∣∣∣
2

ds
︸ ︷︷ ︸

S(c)

+
∫ 1

0
P(c(s))ds

︸ ︷︷ ︸
P(c)

consisting of an inner energy S(c) and an outer energy P(c) [15]. The inner energy,
S(c), describes the shape of the active contour using information on the contour’s
length and curvature, the positive coefficients w1 and w2 control the elasticity and
stiffness of the snake. P(c) holds a priori information about the image itself, e.g.
image edges. In order to compute the deformation corresponding to the minimal
energy, we compute the Euler–Lagrange equations corresponding to E by varia-
tional calculus, which are then discretised by finite volumes and solved numerically
[16, 17].

Figure 4 visualises the computed contours for the three marked regions from
Fig. 1. Since the deformation process of the initial circles stops at image edges, the
quality of the segmentation highly depends on the quality of the gradient images as
previously mentioned.

3.4 Post-Processing

In a post-processing step, we apply an additional thresholding to the detected muscle
fibres. This enables us to remove detected non-fibre cells like the black areas in the
lower right of Region 1 (Fig. 5).
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Fig. 4 Segmented muscle fibres after applying active contours for the three marked regions from
Fig. 1

Fig. 5 (Left) Result mapped to original image; (middle) result with marked non-fibre regions;
(right) result after removing non-fibre regions
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4 Results and Discussion

4.1 Quantitative Segmentation Error

During the segmentation process several error types occur. The different filters lead
to a loss of information, the centres of the circles are not detected without a certain
error and also the active contours only approximate the real contour. To obtain a
quantitative measure for the segmentation error, we select in Fig. 6 one single mus-
cle fibre and compute its area by manually segmenting it and counting the number
of pixels within it (1,304 pixels). After pre-filtering, the same fibre consists of 1,050
pixels in the gradient image resulting in a loss of 19.5% of the area. The contour
found by the active contours method has 1,273 pixels. This equals to 97.6% of its
initial area. This result of course differs for other fibres, but provides a certain mea-
sure and confidence for the applicability of our proposed segmentation process.

4.2 Runtime of the Algorithm

All algorithms within the segmentation process have linear complexity, i.e. the
algorithm requires a constant number of operations per pixel (also the active con-
tours if one uses a suitable multigrid solver). Due to our MATLAB implementation
of the entire segmentation process, we do expect a significant speed-up once this
algorithm is implemented using a parallel and optimised C or C++ code. Never-
theless, the MATLAB runtimes are measured on an Intel Core2Duo processor with

Fig. 6 Marked fibre for measurement of segmentation error
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2.1 GHz and 2 GB RAM. The whole segmentation took for Region 1 (263 × 143
pixels) 12.76 s. Hereby, 95% of the total time was spent on computing the active
contour. The pre-filtering process took 0.36 s and the circle detection 0.27 s. Similar
results are obtained for the other two regions (Region 2: 181 × 161 pixels, 8.22 s;
Region 3: 180 × 154 pixels, 6.24 s, respectively). If one assumes an optimised im-
plementation on current hardware then it is surely possible to segment an image in
less than 1 s.

4.3 Extension to 3D

To extract the 3D muscle fibre contour we simply run our algorithm on several 2D
cross-section images and then merge the results. The whole process took 36.7 s for
a total of ten images. A cut-out of three of the ten images showing the initial circle
and the final contour for the muscle fibre can be seen for each of the respective
cross-sectional images in Fig. 7.

4.4 Discussion

As previously mentioned, the quality of the segmentation process depends on sev-
eral factors. Currently, the user has to adapt parameters for each of the steps
(pre-filtering, circle detection, and active contours) in order to achieve the best possi-
ble result. However, the problem of low contrast at edges remains in certain regions
and prevents a proper segmentation of the corresponding muscle fibres.

Nevertheless, the data obtained through the segmentation process can have a sem-
inal impact on skeletal muscle modelling. For example, based on the midpoints of
the segmented cells in a sequence of images, one is able to construct a detailed and
anatomically accurate description of the skeletal muscle fibre distribution within

Fig. 7 Initial and final contours for three of the ten cross-sections used to segment a 3D muscle
fibre
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the EDL. This combined with an electro-mechanical framework of skeletal muscle
modelling and principles of muscle fibre recruitment, provides a unique important
set of data to carry out basic research on many application-driven problems, e.g.
applications in the field of functional electrical stimulation.

Moreover, the segmentation provides the necessary data for computational mod-
els using micro-structurally based models on the skeletal muscle fibre scale. Such
models could be used to generate in silico data or to provide a deeper understand-
ing of mechanical properties of inter-fibre force transmission during contraction.
These would be a first model that could take into account micro-structural arrange-
ments in order to investigate the well-accepted hypothesis that muscle fibres are a 3D
mechanical constructs transferring forces in longitudinal and transverse directions
(see, e.g. [18, 19]). This is of particular interest as current (continuum) mechani-
cal skeletal muscle models do only consider the (active) force transmission in the
along-the-fibre direction. The goal of micro-mechanical models, which are based on
segmented data, is to gain new insights of micro-mechanical structure and function
and their implication on the whole muscle or organ level.

5 Conclusions and Future Work

This work is only a first step towards the fully automatic segmentation of muscle
fibres. The results are promising, but have to be further improved. Besides a straight-
forward extension of the whole method to 3D, one could also guide, e.g. the active
contours result by interacting with the algorithm manually and adding constraints
during segmentation. Another way would be to apply statistical methods based on
learning algorithms.
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A Quantitative Description of Pelvic Floor
Muscle Fibre Organisation

Xiani Yan, Jennifer A. Kruger, Martyn P. Nash, and Poul M.F. Nielsen

Abstract The levator ani (LA) muscles play an important role in pelvic floor
function. With the aid of computer models and mechanics simulations, the in-
jury mechanism of LA muscles can be better understood to prevent pelvic floor
dysfunction. However, the lack of quantitative description of pelvic floor muscle
organisation may compromise the accuracy of the models and simulations. The
aim of this work was to establish a quantitative model of the pelvic floor mus-
cle fibre organisation utilising the Visible Human Project R© dataset. An anatomical
finite element model of the pelvic floor muscles (levator ani and external sphinc-
ter) was constructed from the Visible Woman (VW) dataset. Fibre orientations were
detected from the VW images using a structure tensor method and principal com-
ponent analysis. Fibre orientation data were embedded within the geometric model
using nonlinear finite element fitting. The fitted fibre field was qualitatively com-
pared with the literature. Future work will include cadaver dissections for clearer
classification of different muscles, and the creation of a generic pelvic floor fibre or-
ganisation model using DT-MRI data from living subjects and cadavers. The models
will be used for pelvic floor mechanics studies such as modelling the second stage
of labour during vaginal delivery.

Keywords Pelvic floor anatomy · Image processing · Structure tensor method
· Finite element modelling · Vaginal delivery

1 Introduction

The levator ani (LA) is a dome-shaped muscular sheet that plays an important role
in pelvic floor muscle function. It maintains urinary and anal continence, generates
intra-abdominal pressure, and participates in the second stage of labour [1, 2]. The
LA is subdivided into three muscles of various thicknesses: the pubococcygeus and
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iliococcygeus in the posterior compartment, and the puborectalis at the inferior of
the pelvic floor [3]. These muscles are attached to the inner surface of the pelvis and
close off the bony pelvis, forming a large portion of the pelvic floor [2, 4].

Previous studies have demonstrated a clear association between LA muscle
trauma and a difficult vaginal childbirth, although the exact mechanism of this
trauma is not clear [5, 6]. The damage often manifests as a complete or partial
detachment of the LA muscle from the pubic bone, resulting in pelvic floor dys-
function with an associated increase in pelvic organ prolapse and urinary stress
incontinence [6–8]. In light of this, it is clear that methods need to be developed
to assess those women most at risk in order to prevent possible subsequent pelvic
floor disorders [9].

Over the last two decades, there has been significant improvement in the under-
standing of the LA muscles in terms of their anatomy and physiology. With the aid
of modern imaging modalities including ultrasound, computer-aided tomography
(CAT) scanning, and magnetic resonance imaging (MRI), researchers and engineers
have been able to create computer models of LA muscles to better visualise their
3D morphology, and to conduct mechanics simulations. However, there is a lack of
quantitative data on the fibre architecture of the LA muscles, due to their relative
inaccessibility and limitations in the in vivo resolution that can be achieved by the
available imaging modalities. Janda et al. [10] qualitatively described the arrange-
ment of the major LA muscle bundles from an embalmed cadaver, measured with
a palpator and strings. However, these data are not available in a quantitative form
and information on the muscle contractility and fibre-related material anisotropy,
required for mechanical analysis (e.g. injury mechanism), remains unknown.

The majority of studies that have conducted childbirth simulations have made
assumptions about the fibre organisation of the LA muscles. In these studies, mus-
cle fibre bundles were either assumed to align with the directions of origin-insertion
pairs established in the literature [11], or simplified so that the muscles’ mechani-
cal properties were considered to be passive and isotropic [12]. These simplifying
assumptions are likely to impact on the accuracy of the models and simulations.
A quantitative description of the fibre architecture is crucial to establish a more re-
liable anatomical model of the LA muscles during childbirth simulations. This will
ultimately provide a better understanding of the mechanical response of the mus-
cles and the possible mechanism of birth-induced trauma that result in pelvic floor
dysfunction.

To construct models on muscle fibre organisation, researchers have recently used
data from either high-resolution anatomical images with clearly distinguishable
muscle bundles, or diffusion tensor MRI. Two studies in the past used the Visible
Human Project R© dataset to retrieve information on skeletal muscle fibre orientations
of limbs, using a range of image processing techniques [13–15]. This study utilises
the anatomical images of the pelvic floor region from the Visible Woman dataset
to generate a quantitative description on the pelvic floor muscle fibre architecture,
using a structure tensor method.



A Quantitative Description of Pelvic Floor Muscle Fibre Organisation 121

2 Method

The analysis was performed using the Visible Human Project R© dataset provided by
the National Library of Medicine, Bethesda, ML, USA (Fig. 1). The dataset includes
250 anatomical cross-section images of the Visible Woman (VW) in the pelvic floor
region. The resolution of the images is 0.33 × 0.33 mm per pixel in-plane, with a
0.33-mm interval between two successive images [15].

On the VW images, the muscles (red) could be distinguished from the surround-
ing adipose (cream) and connective (white) tissues; the anisotropic information
of the spatial distribution of colour and texture within the images could therefore
be used to infer fibre orientations. Since the fibre orientations of LA muscles do
not necessarily run in plane with the images, a three-dimensional structure ten-
sor method was used to capture both in-plane and out-of-plane variations of fibre
orientation. The images were converted into grey-scale intensity maps for ease of
computation.

In addition to quantifying the fibre architecture of the LA muscles, the superior
part of the external sphincter (ES) muscle was also analysed for fibre orientations,
due to its close association with the LA muscles [4].

2.1 Computation of Colour Gradients

A structure tensor approach and principal component analysis were used to extract
the 3D fibre organisation [16]. To do this, colour gradients were computed in three
fundamental directions along the width (Gx), length (Gy) and thickness (Gz) of
the image stack, by applying the derivative of Gaussian low-pass filter. To improve
computational efficiency, the Fourier transform was used to convert both the image
stack and the filter kernel into their frequency space representations, so that the

Fig. 1 Anatomical cross-sectional image (2,619th slice) of visible woman (a) and an enlarged
region of the pelvic floor muscles (b)
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convolution between them could be performed as a set of simple multiplications. As
a result, three smoothed gradients (Gxs, Gys and Gzs) were obtained at each voxel,
and these gradients were subsequently used for construction of the structure tensors.

2.2 Structure Tensors

The structure tensor is a measure of local coherence of structures [17]. The symmet-
ric 3 × 3 structure tensor at each voxel was constructed as:

T = ∇Uσ ⊗∇Uσ = ∇Uσ ∇UT
σ (1)

where ∇Uσ is the texture field. Hence,

T =

⎡
⎢⎣

Gx2
s GxsGys GxsGzs

GysGxs Gy2
s GysGzs

GzsGxs GzsGys Gz2
s

⎤
⎥⎦ (2)

where Gxs, Gys and Gzs are the smoothed gradients in three fundamental directions
at a voxel.

2.3 Principal Component Analysis

Eigen-analysis on each structure tensor was used to extract the direction in which
least colour change took place, which was assumed to align with the fibre orienta-
tion. For each voxel, eigen-decomposition was performed on the structure tensor,
and the eigen-vector with the smallest corresponding eigen-value was taken as the
fibre direction (associated with the least colour change). As a result, a volume of
fibre orientations was obtained from the image stack, with one orientation vector
for each voxel. Figure 2c shows the fibre orientation results, for clarity, in 2D and at
a low-spatial frequency.

To eliminate irrelevant information from the surrounding tissues and structures,
a 3D mask, created by manual segmentation of the same image stack, was imposed
on the results to only highlight the pelvic floor muscles (Fig. 2a, b). As a result,
the continuous dark-red muscle bundles together with their orientations could be
extracted from the VW images. For the segmentation, the LA muscles were treated
as a single entity and only the outermost boundary with the connective tissues was
outlined. This is because the LA exists as a continuous composite muscle, and the
boundaries were not clearly identifiable on the VW images due to their limited res-
olution [2, 3, 18].
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Fig. 2 A mask was created from manual segmentation data, which was imposed on the orientation
results to highlight only the muscles

2.4 Post-Processing of Orientation Results

In order to fit the orientation results appropriately into a geometric model, the orien-
tations needed to be directed in consistent directions since they were only unique
within a principal angle range of π . Since the muscles approximately adopted
a circumferential shape, the orientation results were converted from Cartesian
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Fig. 3 Fibre orientation results were corrected according to their polar coordinates, so that dis-
crepancy in orientations was removed

Fig. 4 Geometric model of the levator ani and external sphincter muscles. The encircled element
is enlarged in (b) to illustrate the element coordinates and the fibre angle. Gold, coccygeus and
iliococcygeus; dark-red, pubococcygeus and puborectalis; green, external sphincter

coordinates (x, y, z) into polar coordinates (r, θ , z), and corrections were made
so that − π

2 < θ ≤ π
2 was satisfied for each computed direction. Figure 3 illustrates

the difference that this correction process made to the results. The discrepancy in
fibre orientations, as highlighted in the white circle in Fig. 3a, was eliminated by the
correction process as shown in Fig. 3b.

2.5 Fitting of Fibre Orientations

A finite element model (Fig. 4a) of the LA and ES muscles, interpolated by a tri-
cubic Hermite scheme, was created by fitting surface data of the muscles from the
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segmentation to a modified existing trilinear mesh constructed by Noakes [19].
Fitting of the geometry and the fibre angles were both performed using a nonlin-
ear least-squares optimisation algorithm, which was implemented in the CMISS
software [20]. In the finite element geometric model, in addition to the spatial co-
ordinates (x, y, z), finite element coordinates (ξ 1, ξ 2, ξ 3) were defined that moved
with the deforming elements. The orientation results were embedded into the geo-
metric model, quantified using a fibre angle α with respect to the axial anatomical
plane and interpolated trilinearly with respect to the element coordinates.

3 Results and Discussion

3.1 Muscle Geometry

The LA and ES muscles were collectively represented using a single continuous
finite element model, since their fibre architectures were not visibly distinct on the
VW dataset. Moreover, some fibres of the puborectalis blend into that of the ES
muscle, thus their boundaries were difficult to locate. The relative positions of the
muscles could only be approximately differentiated as shown in Figs. 4 and 5, due
to the finite discretisation of the model. Muscles in relative proximity (e.g. the pub-
ococcygeus and puborectalis) are represented by the same colour. The anatomical
position of the LA and ES with respect to the pubic bone and coccyx is illustrated
in Fig. 5.

A small amount of Sobelov smoothing was applied during the geometric fitting
procedure, so that excessive curves due to the scattered data were penalised and a
geometric model with smooth surfaces was obtained. The root mean square error
(RMSE), a measure of accuracy of the fitting, was 0.86 mm and sufficiently small
for the fitted model to represent the variations of the model surface morphology. The
accuracy of the fitting was comparable with that in another study using finite element

Fig. 5 The pelvic floor muscle finite element geometric model in a global perspective. Bone Pubic
bone; silver, coccyx; gold, coccygeus and iliococcygeus; dark-red, pubococcygeus and puborec-
talis; green, external sphincter
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modelling of the pelvic floor (RMSE = 0.939 mm for the LA muscle model) [19].
The spatial resolution of the model is 16 elements in the ξ 1 direction and 8 elements
in ξ 2 direction, with 7,152 degrees of freedom.

Since the VW dataset was obtained post-mortem, there was a loss in muscle tone,
which likely resulted in a difference in muscle morphology compared to that of a
living woman. Such differences may be corrected by 3D registration with images
captured from living subjects, where landmark points on a mesh created from in
vivo data are mapped with the target point at the same anatomical positions on the
mesh with the lost muscle tone [21].

3.2 Muscle Fibre Field

The fibre organisation of the LA and ES muscles are shown in Fig. 6. The orientation
vectors are plotted for a mid-line across the muscle wall thickness, with spatial dis-
tributions illustrated on the external surfaces of the model for ease of visualisation.
Only one layer of fibre orientations are shown, since the transmural variation of fibre
orientations across the muscle walls is relatively small compared to the longitudinal
variation, whilst most muscle fibres lie in the surface tangent plane.

The overall RMSE of the fibre angle fitting was approximately 40◦, indicating
that the orientation results used for fitting were somewhat scattered. The dispersion
of orientation results was due to the low level of smoothing applied during the image
colour gradient computation, which aims to retain maximal information on texture
anisotropy. In addition, since the geometry and fibre organisation of the muscles
were very irregular, the finite discretisation of the geometric model imposed restric-
tions on the details and variations that could be captured by the model, which in turn
contributed to the large fitting errors.

Due to a lack of quantitative studies of the fibre organisation in the pelvic floor
muscles, the orientation results obtained here could only be compared with literature
on LA muscle anatomy. Superiorly in the pelvic floor, the iliococcygeus is described
to arise from a reinforced facial band attached to the inner surface of the ischial
spines and inserts into the coccyx [2,4,22]. The fibres of iliococcygeus in the model
run from the point lateral to ischial spine to the point of coccyx in a descending
course (Fig. 6a), which is consistent with the description in the literature.

The pubococcygeus, connected to the iliococcygeus anteriorly in the model, orig-
inates from the inner surface of superior pubic ramus and inserted into the coccyx
(Fig. 6a, c), which is also consistent with the muscle architecture described by
Carrière et al. [4]. However, the fact that some fibres of the iliococcygeus blend
into that of pubococcygeus made it difficult to identify muscles on the VW dataset.
Therefore, the boundary between the iliococcygeus and pubococcygeus was only
approximated in the model [2,4,23]. Dissections of pelvic floors of human cadavers
would help with the muscle identification and construction of a generic pelvic floor
muscle model. Our group is presently piloting such research.
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Fig. 6 Fibre orientation distribution of the levator ani and external sphincter muscles in side view
(a), posterior view (b) and top view (c). C coccygeus, IC iliococcygeus, PC pubococcygeus, PR
puborectalis, ES external sphincter, IS ischial spine, CX coccyx, SPR superior pubic ramus, PS
pubic symphysis
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Table 1 Means and standard deviations of fibre angles in the different
muscle groups of the pelvic floor

Fibre angle ( ˚ ) Left lateral Central Right lateral

Coccygeus and iliococcygeus −8 ± 27 −3 ± 27 10 ± 32
Pubococcygeus and puborectalis −6 ± 25 2 ± 20 7 ± 43
External sphincter (ES) 23 ± 15 −7 ± 15 −25 ± 25

The puborectalis is continuous with the pubococcygeus caudally and arises on
the inner surface of the pubic bone, forming a sling around the vagina. It connects
the ES muscle that anchors in the connective tissue of the perineal body [3, 4]. Our
results show that the fibres of the puborectalis originate from the position of the
pubic bone and run almost horizontally to form a semicircle (Fig. 6b). These fibres
can be distinguished from those of the ES, which insert into the anococcygeal body
in an ascending course in the model (Fig. 6a) [4].

A statistical analysis was performed on the fitted fibre fields for the different
muscle groups (Table 1). It is clear that the fibres of iliococcygeus run in a descend-
ing manner, since the position of their origin (lateral to the ischial spines) is slightly
more superior to that of their insertion (coccyx). In contrast, the fibres of the ES in-
sert superiorly into the coccyx by the anococcygeal body and therefore they follow
an ascending course. In addition, the fibres in the central-anterior region seem to run
more horizontally than they do in the lateral-posterior region, since medially almost
all muscles insert into the coccyx and the anococcygeal body [4, 22].

3.3 Model limitations

First, the resolution of VW dataset imposes restrictions on the level of detail that
could be captured by the model. Second, since the structure tensor method is based
on image analysis, the anisotropy of the colour texture field in the VW dataset was
assumed to represent the fibre architecture. Whilst this approach has been validated
for determining the fibre architecture of cardiac muscle, this method is not based
on intrinsic properties of muscles [24]. On the other hand, diffusion tensor MRI
constructs a tensor based on the dominant molecule diffusions in the direction of
continuous fibres. In the future, we plan to use DT-MRI data from cadavers’ pelvises
and living volunteers to investigate the spatial organisation of fibre structure in the
pelvic floor muscles.

4 Conclusions

A fitted finite element model of the pelvic floor muscles, with embedded fibre field,
was obtained from the cross-sectional anatomical images of the VW dataset, using
the structure tensor approach and principal component analysis. The model can be
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directly used for biomechanical modelling, such as simulations of the second stage
of labour. With quantitative knowledge of the muscle fibre organisation, the contrac-
tility of the pelvic floor muscles as well as their injury mechanism during vaginal
delivery can be further explored and better understood. The model has the poten-
tial to be customised specifically to individual patients and help with prediction and
prevention of possible childbirth-induced pelvic floor trauma.
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An Evaluation of Tetrahedral Mesh Generation
for Nonrigid Registration of Brain MRI

Panagiotis A. Foteinos, Yixun Liu, Andrey N. Chernikov,
and Nikos P. Chrisochoides

Abstract In this chapter, we assess the impact of mesh generation on nonrigid
registration of brain MR images. The solution accuracy and the speed of finite
element solvers depend on how well the underlying mesh approximates the sur-
face of the biological object (fidelity), and how well the elements of this mesh are
shaped (quality). Fidelity and quality, however, are two contradicting requirements,
as increased fidelity usually implies poor quality and vice versa.

In this chapter, we evaluate three public mesh generators and examine how this
quality-fidelity trade-off affects the accuracy and the speed of nonrigid registration
solvers for brain images.

Keywords Mesh generation · Finite element method · Non-rigid registration

1 Introduction

In computer-aided surgery (CAS) and specifically in image-guided neurosurgery,
magnetic resonance images (MRI) obtained before the procedure (preoperative) pro-
vide extensive information which can help surgeons to plan a resection path. Careful
planning is important to achieve the maximal removal of malignant tissue from a pa-
tient’s brain, while incurring the minimal damage to healthy structures and regions
of the brain. However, current practices of neurosurgical resection involve the open-
ing of the scull and the dura. This results in a deformation of the brain (known as the
brain shift problem), which creates discrepancies between the preoperative imaging
data and the reality during the operation. A correction is possible using nonrigid
registration (NRR) of intraoperative MRI with preoperative data.

In this chapter, we target finite element (FE)-based approaches for the nonrigid
registration [6]. These methods use real-time landmark tracking across the
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entire image volume, which makes the nonrigid registration more accurate but
computationally expensive, as compared to similar methods that use surface
tracking [8]. The nonrigid registration problem should be solved fast enough,
so that it can be usable in clinical studies [2, 3].

Real-time Image-to-Mesh (I2M) conversion is a critical component of FE-based
nonrigid registration of brain images. Moreover, its solution in N dimensions (with
N ≥ 4) is important for handling geometric uncertainties caused by respiratory mo-
tion, which complicates planning and treatment.

A mesh is characterized by its fidelity and quality. Fidelity measures how well
the mesh boundary resembles the surface of the biological object. Quality assesses
the shape of mesh elements; the higher the minimum dihedral angle of the mesh
elements is, the higher the quality.

It is well known that the quality of the mesh affects both the accuracy and the
speed of the solver [14], because the angles of the elements influence the condition
number of the stiffness matrix. In the literature, a good deal of effort has been put
toward high-quality mesh generation [5, 9, 10, 16].

It is not clear, however, what the impact of fidelity on the accuracy and speed
of the solver is. The reason is because there is a complicated trade-off between
quality and fidelity. The need for a better surface approximation always implies a
deterioration of mesh quality, simply because well-shaped elements cannot fill the
space formed by sharp surface creases or by surface parts of high curvature. Also,
higher fidelity usually results in an increase in the number of mesh elements which
in turn affects both the mesher’s and the solver’s speed.

In this chapter, we evaluated the impact of three public mesh generators [9,11,15]
on the accuracy and speed of NRR. The meshers were chosen carefully to cover a
wide range of mesh generation approaches. The Delaunay mesh algorithm in [9]
offers simultaneous meshing of the surface and the volume of the object. The
algorithm in [15] is Delaunay but requires the surface of the object as input. Finally,
the algorithm in [11] is an optimization-based technique which compresses an ini-
tial body-centered cubic lattice (BCC) to the surface (see Sect. 3 for more details).
For each mesher, we conducted an extensive series of experiments controlling the
fidelity of the output mesh used for the subsequent NRR [6].

We concluded that meshes with very bad fidelity do not affect the accuracy dras-
tically. On the contrary, meshes with very good fidelity hurt the speed of the mesher
due to the poor quality they exhibit. We also observed that the speed of the solver is
very sensitive to mesh quality rather than to fidelity. For these reasons, we think that
mesh generation should first try to produce high quality meshes, possibly sacrificing
fidelity.

2 Registration

As our target application, we used the nonrigid registration method described by
Clatz et al. [6] which is shown to be robust enough to be usable to clinical studies.
Below, we outline the main aspects of this NRR method.
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Fig. 1 The nonrigid registration procedure

The method consists of three steps, namely, feature points selection, block
matching, and system solution. See Fig. 1 for an illustration. During feature points
selection, a sparse set of points is chosen from the preoperative image. These points
are called registration points. Then, the correspondence of these points into the in-
traoperative image is found via a block matching scheme. Specifically, for a given
registration point r, a small window around it in the intraoperative image is searched;
the corresponding point r′ reported is the one that maximizes the correlation coeffi-
cient between r′ and r.

Having computed the deformation vector D on the registration points (as a result
of the block matching step), the deformation vector on the mesh vertices U (the
unknowns) is calculated so that the following energy is minimized:

W = (HU−D)� (HU−D)︸ ︷︷ ︸
Error energy

+ U�KU︸ ︷︷ ︸
Mechanical energy

(1)

In the above equation, K is the |U |× |U | mechanical stiffness matrix. H is the
linear interpolating matrix of size |D|× |U |; this matrix contains the measurements
of the linear shape functions on every registration point. The contributing shape
functions for each registration point ri are those defined over the mesh nodes whose
forming mesh element includes ri.
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The block matching deformation di of a registration point ri affects the deforma-
tion of a mesh node v j, only if v j is incident upon a mesh element e that contains r j.
In fact, if the minimization of the error energy (also known as matching energy) in
(1) was perfect (i.e., if it vanished), then the linear interpolation (of the solution of
the mesh nodes of e) on ri would give the value di. As Clatz shows in [6] (and as we
can see from (1)), this method tries to minimize this exact error energy E:

E =
√

(HU−D)� (HU−D) = ||HU−D|| (2)

which is the interpolation error on the registration points r1,r2, . . . ,r|D|.
The mechanical energy in (1) is used to model the deformation of the brain as a

physical body based on FEM. This, in turn, is used to discover and discard the outlier
registration points, i.e., points whose deformation estimation from block matching
contradicts the physical properties of the brain. For information about the construc-
tion of the mechanical stiffness matrix K, see Delingette and Ayache [7].

The deformation vector U, over which energy W is minimized, is computed
through the following iterative equations:

F0 = 0 ,(
K + H�H

)
Ui = H�D+ Fi−1, i = 1,2, . . . ,

Fi = KUi, i = 1,2, . . .

In [6], it is proved that the system above converges. Also, observe that K + H�H is
the matrix responsible for the robustness of NRR; its condition number affects both
the accuracy and the speed of the solution.

3 Mesh Generation

In this chapter, we tested the influence of three meshers on NRR, namely, High
Quality Delaunay mesher (HQD) [9], Tetgen [15], and Point-Based Matching
mesher (PBM) [11]. Below, we briefly describe each of them.

HQD meshes both the surface and the volume of the object at the same time with-
out an initial dense sampling of the object surface, as is the case in other Delaunay
volume techniques [12, 13]. As a result, the number of elements of the output mesh
is small.

Tetgen is a Delaunay mesh generator as well. However, it assumes that the
surface of the object is already meshed and represented as a polyhedron. This poly-
hedron is also known as a Piecewise Linear Complex (PLC). Tetgen requires a PLC
of the object surface as its input. We used the algorithm in [4] for the PLC genera-
tion, implemented in the Computational Geometry Algorithms Library (CGAL) [1].
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PBM is an optimization-based approach. It starts with a triangulation of a regular
grid, i.e., a body-centered cubic lattice (BCC), and then it compresses the outer
nodes closer to the object surface as a result of energy minimization. In fact, the
smaller the energy achieved, the better the fidelity of the output mesh. This method
is able to recover the surface of multi-tissue objects. In this chapter, only the single-
tissue version of PBM is considered.

4 Evaluation

4.1 Methodology

As mentioned in Sect. 2, registration computes the deformation on the mesh nodes,
so that the error energy E = ||HU−D|| is minimized. Mesh generation affects how
accurately the error energy is minimized. Therefore, we assess the accuracy of reg-
istration by keeping track of this error E . For every run, we let the system iterate for
ten times.

Observe, however, that the outcome of the registration depends on the accuracy
of the block matching step (vector D). Also, note that the mesh does not affect the
result of block matching (see Fig. 1). Since we are interested in evaluating the im-
pact of mesh generation on registration, we wanted to make registration independent
of block matching. For this reason, we synthetically deformed the preoperative im-
age according to the biomechanical properties of the brain. More specifically, we
initially ran the registration procedure to register the preoperative with the intraop-
erative image as shown in Fig. 1, but at that time we did not focus on the behavior
of the mesh. We just wanted the solution on the mesh nodes. Then, by (linearly) in-
terpolating the solution of the mesh nodes on any point of the image, we obtained a
synthetically deformed (intraoperative) image. After this initial registration, all the
other registrations (aiming at evaluating mesh generation) are performed between
the preoperative and the synthetically deformed image; that is, the real intraopera-
tive image is replaced by the deformed one. In this way, we achieve two things:

• We know the “true” deformation on any point, and therefore we know the “true”
block matching result on any set of registration points

• We do not simulate an arbitrary deformation, but rather a realistic one, because
the deformed image was obtained taking into account the elasticity properties of
the brain through the stiffness matrix K of 1

For the initial registration procedure used to synthetically deform the preoper-
ative image, we set the parameters to the same values as described in [6] with
parameter λ assigned to 1.0. In this way, we obtained a set of 4,000 registration
points.

Since we want to measure the influence of mesh generation, only the mesh
changes in every experiment. That is, for all the various meshes, the preoperative
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image and the set of registration points (together with their deformation D of course)
remain fixed. Note that for these subsequent registration procedures, we do not reject
registration points as potential outliers, simply because the synthetic deformation
implies that there are no outliers (this is not the case for the initial registration).
For the same reason, we do not weight vector D according to the confidence of the
registration points deformation. For all the experiments, parameter λ was set to 1.0.

4.2 Measuring and Varying Fidelity

As mentioned above, we wish to have control over the fidelity of the output mesh
produced by the different meshers. In this chapter, we use the two-sided Hausdorff
distance H to measure fidelity.

In our case, metric H is defined upon two finite sets A,B as follows:

H (A,B) = max{h(A,B) ,h(B,A)}, where

h(A,B) = max
a∈A

min
b∈B
||a−b||

The lower the value of H (A,B), the more similar sets A,B are. In fact, H (A,B) is
equal to 0 if and only if sets A,B are identical.

Fidelity of a mesh is measured as the two-sided Hausdorff distance H of the
following sets:

• set A: a densely sampled point set on the surface of the biological object
• set B: a densely sampled point set on the boundary facets of the mesh

Note that the mesh boundary point set B does not consist of only boundary mesh
vertices. The reason is because otherwise, at least one side of the Hausdorff distance
of the meshes produced by HQD would always be 0 (or very close to 0), since
this method guarantees that the boundary mesh vertices lie precisely on the object
surface.

Having defined fidelity, we proceed by explaining how we control fidelity for
each mesher.

For HQD, this is possible through the parameter δ (see [9] for a more detailed
explanation). Low values of δ increase the sampling on the object surface which
yields better fidelity. High values of δ produce meshes whose boundary crudely
approximates the real surface.

For Tetgen, we had to change the fidelity of the PLC given by CGAL. We,
therefore, had to adjust two parameters responsible for the PLC’s fidelity. The first
imposes an upper bound on the circumradius of the Delaunay balls, and the second
forces an upper bound on the distance between the circumcenter of the boundary
facets and the corresponding center of their Delaunay balls. More information can
be found in [4].

For PBM, controlling fidelity is accomplished by adjusting the parameter λ . This
parameter defines the trade-off between quality and fidelity: high values of λ make
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the optimization more sensitive to good fidelity, while low values do not change
a lot the position of the initial (high-quality) BCC. However, we observed that λ
does not offer a very flexible control over flexibility. Therefore, to get meshes of
substantially different fidelity, we had to change not only λ but also the density of
the initial BCC.

4.3 Results

Table 1 presents the results obtained by various meshes produced by HQD. Each row
corresponds to a singe mesh. Column H contains the Hausdorff distance between
the mesh and the object surface. The table illustrates meshes ordered in increas-
ing fidelity (i.e., in decreasing Hausdorff distance). It also shows the minimum and
the average minimum dihedral angle of the mesh, as well as the total number of
tetrahedra and vertices of the mesh. The condition number depicted is of the matrix
K + H�H which is responsible for the accuracy and speed of the NRR solver (see
Sect. 2). Finally, the last column reports the NRR error – as defined in (2) – obtained
after the end of the registration process.

We observe that the error does not fluctuate considerably. All the errors are about
less than half the size of a voxel (the size of the voxel is 1 × 1 × 1), even when the
H distance is very large. Figure 2 illustrates the meshes obtained by HQD for the
best and the worst fidelity.

Table 2 shows the results for Tetgen. Similarly, fidelity does not seem to affect the
error considerably. Also, although the minimum dihedral angles are larger than those

Table 1 Meshes with varying fidelity obtained by HQD

Minimum Average minimum Condition
H dihedral angle dihedral angle #Tetrahedra #Vertices number Error

22.81 8.68 39.92 40 23 35,205.00 0.40
20.22 5.86 35.73 52 27 37,988.00 0.36
19.94 2.73 30.99 96 41 93,179.00 0.47
17.92 4.10 31.81 89 38 62,404.00 0.52
17.52 5.46 33.74 61 30 31,352.00 0.49
16.57 4.10 31.39 77 34 24,984.00 0.32
16.15 6.17 31.83 148 61 99,449.00 0.30
15.28 7.70 37.53 168 71 40,350.00 0.27
13.49 4.08 33.39 297 113 46,260.00 0.40
9.86 2.46 34.05 228 89 26,399.00 0.38
9.23 3.61 36.15 425 157 51,487.00 0.25
9.09 6.01 35.95 578 200 37,427.00 0.26
8.72 2.36 33.63 385 137 53,977.00 0.28
8.47 4.07 36.10 771 261 292,370.00 0.21
7.11 1.27 36.18 1,157 367 319,850.00 0.27
6.24 0.34 35.71 1,681 521 594,820.00 0.24
5.84 0.92 35.93 2,746 814 1,559,500.00 0.25
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Fig. 2 Meshes produced by HQD. (a) H equal to 5.84 (best fidelity). (b) H equal to 22.81 (worst
fidelity)

Table 2 Meshes with varying fidelity obtained by Tetgen and CGAL

Minimum Average minimum Condition
H dihedral angle dihedral angle #Tetrahedra #Vertices number Error

23.23 5.60 24.09 262 104 292,820.00 0.25
20.03 5.60 24.21 264 105 92,234.00 0.41
18.84 3.61 20.51 371 142 4,175,200.00 0.36
17.33 7.36 24.51 207 82 123,670.00 0.41
16.25 4.92 28.11 179 148 211,360.00 0.40
14.98 6.97 26.84 141 59 17,882.00 0.50
14.36 4.02 22.16 609 224 1,098,800.00 0.33
13.53 4.92 28.49 156 143 298,850.00 0.36
12.43 6.88 26.72 320 185 1,209,500.00 0.39
11.47 5.77 25.83 227 88 58,552.00 0.42
10.22 3.76 21.82 1,052 377 1,715,700.00 0.46
9.74 4.51 21.11 946 337 4,400,400.00 0.37
8.54 2.20 21.58 1,500 531 2,418,900.00 0.41
7.92 2.29 21.54 2,010 710 28,992,000.00 0.45
7.35 1.88 20.77 2,539 878 6,459,100.00 0.43
6.02 1.52 21.17 7,006 2424 1,941,500,000.00 n/a
5.88 1.33 20.65 4,547 1585 205,230,000.00 n/a

in HQD, the average minimum dihedral angles are 10–15◦ less than those in HQD.
This results in generally higher error than the error in HQD, but still the differences
in accuracy are not very obvious. However, the much larger condition numbers af-
fect the speed of the solver a lot. Actually, for the bottom two runs (corresponding to
the meshes with the two best fidelity values and with the two higher condition num-
bers), the solver could not even converge. Figure 3 illustrates the meshes obtained
by Tetgen for the best and the worst fidelity.

Table 3 presents the results for the PBM mesh. We observe that the quality is
very good: the minimum and the average minimum dihedral angles reach perfection.
This results in much lower condition numbers and generally lower error than HQD
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Fig. 3 Meshes produced by Tetgen and CGAL. (a) H equal to 5.88 (best fidelity). (b) H equal to
23.23 (worst fidelity)

Table 3 Meshes with varying fidelity obtained by PBM

H
Minimum
dihedral angle

Average minimum
dihedral angle #Tetrahedra #Vertices

Condition
number Error

21.02 60.00 60.00 465 139 122,470.00 0.19
19.56 60.00 60.00 1,144 303 203,230.00 0.53
18.30 60.00 60.00 2,126 519 223,540.00 0.50
15.39 41.21 54.43 465 139 19,711.00 0.17
14.25 35.54 54.48 1,144 303 23,405.00 0.35
13.94 31.68 53.83 1,144 303 21,213.00 0.29
13.58 19.41 53.09 1,144 303 18,980.00 0.27
12.61 39.27 53.81 465 139 16,897.00 0.18
12.02 35.77 53.55 465 139 15,978.00 0.19
10.39 34.13 54.78 2,126 519 29,397.00 0.17
9.88 31.92 54.22 2,126 519 25,926.00 0.17
9.39 30.04 53.63 2,126 519 23,485.00 0.17
7.01 59.99 60.00 18,780 3811 367,690.00 0.06
6.42 14.28 55.15 5,764 1277 21,300.00 0.15
5.25 35.61 56.83 18,780 3811 101,700.00 0.09
4.99 31.92 56.47 18,780 3811 78,449.00 0.09
4.94 27.50 56.13 18,780 3811 76,065.00 0.09

and Tetgen. Again, we observe that fidelity does not play that important role in the
accuracy of the NRR. Even meshes with very bad fidelity yield an error less than
half the size of the voxel. Figure 4 illustrates the meshes obtained by PBM for the
best and the worst fidelity.

As you can see in the last two rows of Table 2 (where the error is n/a), the low av-
erage minimum dihedral angles seem to substantially affect the speed of the solver:
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Fig. 4 Meshes produced by PBM. (a) H equal to 4.94 (best fidelity). (b) H equal to 21.02 (worst
fidelity)

Table 4 Timings (in seconds) for various meshes obtained by different methods. Both the mesh
and the solver execution times are reported

HQD Tetgen PBM

H Mesher Solver Total Mesher Solver Total Mesher Solver Total

15–16.5 6.89 0.04 6.93 0.01 0.06 0.07 132.34 0.05 132.39
14–15.5 6.4 0.05 6.45 0.01 0.17 0.18 165.02 0.06 165.08
13–14.5 10.23 0.06 10.29 0.02 0.16 0.18 164.93 0.06 164.99
8.5–9.5 21.57 0.08 21.65 0.09 4.88 4.97 189.19 0.09 189.28
7–8 17.62 0.46 18.08 0.13 45 45.13 263.39 0.19 263.58

in these two specific runs the solver did not even converge. Also, see that in these
two rows the condition number is extremely large. We wanted to look into the tim-
ings of both the meshers and the solver in more depth, and see what the merit of
fidelity to speed is.

We selected five meshes from each method of approximately the same fidelity
and measured the time for meshing and the time for solving the registration problem.
For each case, the solver has been running until the error becomes less than 0.5 (half
the size of the voxel). Table 4 summarizes the results.

We observe that the meshing time of PBM is extremely large: more than 2 min
in all cases. Actually, most of this time is spent for the initial BCC creation. On the
other hand, the CGAL+Tetgen scheme is very fast: less than 2 s in all cases, even
for the bottom mesh that consists of 2,539 elements.

As far as the solver’s time is concerned, PBM yields the best meshes. Over-
all, however, the registration process is much slower than the other methods due
to the time consuming mesh generation time. For Tetgen, the solver took much
time, when the Hausdorff distance dropped below 8.5 (see bold entries). As Table 2
shows, the minimum dihedral angle for this fidelity is more than 1◦, but the very low
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average minimum dihedral angle (the lowest among all the methods) seems to affect
the condition number a lot and consequently the speed of the solver. Although the
HQD meshes have elements with very small angles, the average minimum angle is
much better than Tetgen (10–15◦ larger). This is why when the solver ran on HQD’s
meshes, its execution time was less than 2 s in all cases, yielding a good overall
execution time, even when the H distance drops below 8.5.

5 Conclusions

In this section, we summarize our findings. The two Delaunay meshes (i.e., HQD
and Tetgen) exhibit low quality when the fidelity increases substantially (when
the Hausdorff distance drops below 8 units approximately, in our case studies). As
Tables 1 and 2 show, this quality deterioration yields a very large condition number
which affects the execution time of the solver (see Table 4). We also observe that
not only the minimum but also the average minimum dihedral angle plays an im-
portant role to the solver’s speed. To see it, compare the solver’s speed of HQD to
the solver’s speed of Tetgen when the Hausdorff distance of the meshes is between
7 and 8 units. When Tetgen’s mesh was used, the solver was 45 times slower. For
these values of fidelity, Tetgen meshes have better minimum dihedral angles than
HQD meshes, but they also have much lower average minimum dihedral angles
(15◦ smaller), which is likely to be the reason for a much worse condition number
and the consequent large execution time of the solver.

The accuracy of the solver on the meshes produced by the two Delaunay meshers
does not fluctuate significantly by the different fidelity values (see Tables 1 and 2).
That means that the need for good surface approximation does not seem to affect the
accuracy of the solver. Meshes approximating very crudely the object surface (see
Figs. 2b and 3b for an illustration) yielded an error less than half the voxel size.

The main characteristic of the optimization-based mesher (i.e., PBM) is the high
minimum and average dihedral angles, even in the case of very good fidelity. The
reason is because relatively dense initial BCCs can easily capture the object surface
without so much compression, thus preserving the good angles of the BCC triangu-
lation. Of course, the number of elements increases significantly, which makes the
mesh generation time extremely slow (see Table 4). We also observe that the solver
on PBM’s meshes exhibits the least error, which in fact is achieved when fidelity is
very good (less than 5 units approximately). This is reasonable because, as Table 3
suggests, good fidelity does not deteriorate the quality as much as is the case for the
two Delaunay meshes. Note, however, that even when the PBM meshes have very
bad fidelity (see Fig. 4b, the error does not increase significantly.
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Incompressible Biventricular Model
Construction and Heart Segmentation
of 4D Tagged MRI

Albert Montillo, Dimitris Metaxas, and Leon Axel

Abstract Most automated methods for cardiac segmentation are not directly
applicable to tagged MRI (tMRI) because they do not handle all of the analysis
challenges: tags obscure heart boundaries, low contrast, image artifacts, and radial
image planes. Other methods do not process all acquired tMRI data or do not ensure
tissue incompressibility. In this chapter, we present a cardiac segmentation method
for tMRI which requires no user input, suppresses image artifacts, extracts heart
features using 3D grayscale morphology, and constructs a biventricular model from
the data that ensures the near incompressibility of heart tissue. We project landmarks
of 3D features along curves in the solution to a PDE, and embed biomechanical
constraints using the finite element method. Testing on normal and diseased subjects
yields an RMS segmentation accuracy of ∼2 mm, comparing favorably with man-
ual segmentation, interexpert variability and segmentation methods for nontagged
cine MRI.

Keywords Incompressible biventricular model ·Mesh construction · FEM · tMRI

1 Introduction

In most developed countries, cardiovascular disease kills more men and women than
any other disease. An automated characterization of myocardial deformation may
lead to improved patient diagnosis and treatment. Tagged MRI (tMRI) [1,2] induces
an intramyocardial magnetic tag (line) pattern throughout the heart and can image
the tagged soft heart tissue through bone noninvasively, making it a gold standard
for measuring regional myocardial deformation abnormalities. However, tracking
the deformation requires the dynamic segmentation of the outer (epicardial) and
inner (endocardial) heart boundary surfaces, and tracking the tags.

A. Montillo (�)
GE Global Research Center, Niskayuna, NY, USA
and
Department of Computer Science, Rutgers University, Piscataway, NJ, USA
e-mail: montillo@ge.com

A. Wittek et al. (eds.), Computational Biomechanics for Medicine: Soft Tissues
and the Musculoskeletal System, DOI 10.1007/978-1-4419-9619-0 15,
c© Springer Science+Business Media, LLC 2011

143



144 A. Montillo et al.

Dynamic segmentation of these boundary surfaces is important for many reasons.
First, it can facilitate a wide variety of tag tracking methods. Tag tracking meth-
ods based on tag sheet tracking, including [3–5] optical flow and HARP [3], rely
upon manually segmented boundaries to improve performance by restricting the
tags tracked to just those within the myocardium. This manual segmentation is
tedious and operator dependent. Second, if the boundaries can be segmented, in-
terpolating the 3D motion throughout the myocardium with a finite element method
(FEM) model becomes possible, even in thin-walled structures, such as the right
ventricle (RV) [3, 7], where there is a sparsity of tags. Third, segmenting the walls
also provides a necessary boundary condition to study the distribution of myocar-
dial stress [8]. The fourth reason is that the heart boundaries from tMRI can be used
to calculate classical descriptors of heart function at the same accuracy as those
obtained through nontagged MRI [9].

The most desirable tMRI segmentation must not only handle the arduous pro-
cessing challenges specific to tMRI, but also be fully automated, perform 3D
biventricular segmentation, and impose the near incompressibility constraint of real
myocardial tissue. Full automation is essential to provide the response time and
objectivity necessary for routine clinical use. Most previous tMRI segmentation
methods are either manually driven or tend to require manual editing, e.g. [4, 10].
More recent methods, e.g. [11–16], have one or more of these limitations: they pro-
vide only a 2D analysis [12], segment only one surface of one ventricle [13], or
only segment one ventricle and require manually drawn initial contours or land-
marks [14–16], or do not impose incompressibility [11]. 3D analysis is required to
handle cases in which the heart appears to change topology as portions of the heart
move into and out of the 2D image planes. Incompressibility should be imposed to
ensure physiologically sound segmentation throughout systole.

Many segmentation methods have been proposed for imaging modalities other
than tMRI such as cardiac ultrasound, CT, and nontagged cine MRI, including
[17–20]. However, segmentation results are not shown for tagged MRI, primarily
due to the arduous processing challenges of tMRI: (1) image artifacts including in-
tensity inhomogeneity and intersubject intensity variation must be suppressed, (2)
tag lines that obscure heart boundaries must be removed, (3) boundary-delineating
features must be extracted despite low image contrast, and (4) the inherently 5D
data (3D + time + tag line orientations) must be fused into a single coherent
interpretation.

Our objective is to develop a method that segments the 3D biventricular my-
ocardium in tMRI throughout the heart’s contraction without requiring user input.
We construct a volumetric biomechanical model with the near incompressibility
constraint of real myocardial tissue in order to (1) yield physiologically sound seg-
mentation and (2) so that epicardial (epi) and endocardial (endo) walls do not merge
together, a common failure mode that plagues many surface-based segmentation
methods.

In Sect. 2, we present four steps of our method: (1) image artifact suppression, (2)
feature extraction, (3) volumetric biomechanical model construction, and (4) model
fitting. We present our segmentation results in Sect. 3 and provide discussion and
conclusions in the final section.
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2 Methods

Each time frame of our tMRI consists of three sets of image planes: two short axis
(SA) sets and one long axis (LA) set. The SA sets differ with tags running in vertical
or horizontal directions (Fig. 1a). Several challenges we face are also illustrated: in
Fig. 1a, the use of surface coils can cause intrasubject intensity inhomogeneity; in
Fig. 1b, images with 1 mm2 in-plane resolution come in sparse parallel planes with
8 mm spacing and sparse radially planes with 20◦ separation; and in Fig. 1c, the lack
of intrinsic baseline for MR, can cause intersubject intensity variation at the same
windowing level.

2.1 Artifact Suppression

Previous intensity inhomogeneity correction methods assume a priori segmentation,
intensity distribution, or are not suited for radially arranged images. To solve, we it-
erate the following steps (Fig. 2) until the set of sampling points is constant: (1)
compute scale at every pixel, where scale is defined as the radius of the largest
ball, centered at the pixel, for which pixel intensity homogeneity measures are
preserved including the pixel intensities and the gradient magnitude of the inten-
sities in the neighborhood around the pixel, (2) find largest connected component
with maximum scale, (3) fit a Gaussian to its intensity distribution, and define field
sampling points as those with intensities within 1σ of the mean of this Gaussian,
(4) estimate inhomogeneity by fitting second degree polynomial to sampling point
intensities, and (5) divide current image intensities pixel-wise by inhomogeneity es-
timate. Step 2 estimates a region likely to belong to the same tissue. To better sample
the inhomogeneity, step 3 extends this region to include nonconnected points which
have similar intensities. For further details and performance on noncardiac images
see [21].

To suppress intersubject variations, previous methods, such as [22] map zero
crossings (zc) in a test image to those in a high contrast reference standard image,
IHC. However, in tMRI, zero crossings are unreliable, as foreground and background
histogram peaks tend to merge (Fig. 3a). To solve, we characterize the cumulative

Fig. 1 Raw tMRI: (a) 3-tag orientations, (b) sparse images, (c) intersubject variation
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Fig. 2 From left to right, the iterative intensity inhomogeneity correction steps
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Fig. 3 (a, b) Intersubject variation suppresion. (c, d) Features for epi and endo surfaces

tMRI histogram by its intensities x̃1, . . . , x̃16 at a uniform distribution of percentiles,
p1,. . . , p16 (Fig. 3b). We then map original intensities to those of IHC using linear
interpolation to make all images have the high contrast of IHC.

2.2 Feature Extraction

Segmenting the biventricular myocardium requires locating the heart and delineat-
ing the boundaries of the epicardial surface and the RV and LV endocardial surfaces.
To find epicardial boundary features, we perform a grayscale morphological closing
with a linear structuring element whose length is equal to tag separation distance,
dsep (a known MR pulse sequence parameter), noise suppress, and then perform
edge detection (Fig. 3c). To find endocardial boundary features, we observe that the
whole image is tagged except for blood because the motion of the blood washes
away the tags (Fig. 3d).

Therefore, to isolate blood regions, we apply a 3D grayscale opening operation
with a cylinder-shaped structuring element whose radius is 2dsep and whose height
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spans four parallel image planes. We threshold the output to form blood regions and
prune them to just the ventricular blood regions (Fig. 3d, third and fourth columns).
We do this by finding the regions with highest spatial–temporal consistency score.
This score is measured by the overlap with regions in the same frame but in different
image planes through the heart, and in the same image plane but over time. The
LV and RV blood is the pair of regions that appears most consistently over space
and time.

2.3 Model Construction

2.3.1 Early Systolic Heart Shape Estimate

We form an estimate of the pose, size, and shape of the heart’s ventricles by com-
bining the blood region features from the early part of systole, i.e., from the first 1/3
of time frames. In the images of this early part of systole, we automatically deter-
mine the most superior SA image to use to form our model, by identifying the most
superior SA image for which the RV blood region features found in Sect. 2.2 have
not bifurcated into inflow and outflow tracks. We include this image and all inferior
images in the following model construction step. For these early systolic images,
we interpolate each stack of region features over space using 2.5D shape interpola-
tion [23] which forms a 2.5D distance transform (DT). This is the same pixel from
which each SA image is spline interpolated to form intensities between our sparse
image planes. We then compute true 3D DTs representing the blood shapes (denoted
DRVB,DLVB) by the Euclidian distance to the zero surface (Fig. 4, step 1). Then we
form a robust estimate of the early systolic ventricles by averaging the 3D DTs from
both SA tag orientations and all early systolic frames (Fig. 4, step 2).

We form the epicardial surface from two components. The first component, the
LV epi surface (zero surface of DLVEpi), is formed by dilating the LV endocardial
surface by an estimate of the LV thickness, αLVThickness by subtracting a fixed dis-
tance from its 3D (signed) DT representation.This is estimated from the separation
of LV and RV endo features. The 2nd component, the RV epi surface, is the zero

Fig. 4 Region features are fused to form early systolic estimate of endo surface shape
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Fig. 5 (a) Blood surfaces are joined to form epi surface. Circumferential and longitudinal (b) and
transmural (c) coordinate curves enable mesh construction (d)

surface of DRVEpi which is formed by combining the dilated RV blood shape, DRVB,
and the LV blood shape, DLVB, using an energy representation with exponentiation
operator:

DRVEpi = exp

(
−DRVB−αRVThickness

αRVThickness

)
+ exp

(
−DLVB−0.5(αLVThickness)

1.5(αLVThickness)

)
(1)

where αRVThickness = (1/2)αLVThickness. This forms a surface surrounding the RV
endo as shown in 2D cross-sectional view in Fig. 5a. The portion of this implicit
surface outside the LV epi (i.e., DLVEpi > 0) is retained as RV epi and joined to the
LV epi.

2.3.2 Mesh Construction

Constructing a finite element model requires a mesh for the volume between the
epicardial surface and endocardial surfaces. To form the mesh we create coordinate
curves that map where mesh element vertices will be. Circumferential coordinates
are evenly distributed on the combined epi surface according to arc length, starting
at the line of insertion (blue) of the RV epi into LV epi as shown in Fig. 5b. Longitu-
dinal coordinates are distributed evenly from apex to base. Transmural coordinates
are distributed along curves running from outer to inner wall which are formed by
computing the characteristic curves through the solution, ν̄∗, that minimizes the 3D
version of gradient vector flow (GVF) [24] equation:

ν̄∗ = argmin
ν̄

E(ν̄)

= argmin
ν̄

∫ ∫ ∫
μ

(
u2

x + u2
y + u2

z + v2
x + v2

y + v2
z + w2

x + w2
y + w2

z

)

+ |∇ f |2 |(ν̄−∇ f )|2 dxdydz (2)

where μ balances smoothing and data fidelity. The gradient is taken on the function
f which is a discrete grayscale labeled volume with dark intensity pixels outside the
heart, medium gray between the walls, and bright white ventricular blood pixels.
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For all our subjects, μ = 0.15. To minimize this functional, we use the calculus of
variations to derive the necessary condition: ν̄t = μ∇2ν̄−|∇ f |2 (ν̄−∇ f ) and iterate
until the equilibrium solution, ν̄∗. Starting from each epicardial node formed along
the circumferential directions, we traverse the characteristic curve in ν̄∗ until we
reach an endocardial surface. We then evenly divide each projection curve by arc
length. Example characteristic curves are shown as thin blue lines in Fig. 5c for the
LV. We also apply this for transmural RV curves. Connecting neighboring points
along the coordinate curves forms mesh elements (Fig. 5d).

2.3.3 Biomechanical Model

For segmentation, we model the myocardial tissue as an elastic material character-
ized by Young’s modulus E , and Poisson ratio, ν . We denote the strain-displacement
matrix as B and the material property matrix as P, and use: Kel(P(E,ν)) =∫∫∫

BTPBdV [25] as the formulation of the stiffness matrix for each mesh element.
We assemble the global stiffness matrix K from Kel [26] using the finite element
method. Our model’s internal forces are then Kq where q is the vector of mesh
nodes positions. As the myocardium is nearly incompressible, we use ν = 0.4 while
we empirically choose E = 0.1 megapascals (MPa), a value that provides realistic
smoothness for the quality of the images we acquired. The value of Eis less critical
and can be varied while still producing similar overall segmentation results.

2.4 Fit Model to Dynamically Segment Patient-Specific Anatomy

Image forces guide the fitting of our model to patient anatomy for each frame. Inner
walls are attracted to forces from blood features and the outer wall to the edge fea-
tures that we extracted in Sect. 2.2 for each image plane. We compute the gradient
of these feature images and employ GVF to increase their capture range. We do
not apply a 3D gradient operator to an interpolated isotropic voxel volume because
the widely spaced image planes make isotropic voxel volumes less representative
of anatomy. Instead, we compute the intersection of our model’s edges with the
image planes. The 2D image force acting on each edge intersection point is affine
distributed to the edge’s two endpoints (i.e. the model’s nodes) based on the dis-
tance of the intersection point to each endpoint. This forms our model’s external
forces, fext.

We formulate model fitting as force balance equation in which internal and ex-
ternal forces compete to explain the data. The motion of model’s nodes is governed
by a second order Lagrangian equation: Mq̈ + Dq̇+ Kq = fext. Setting M = 0 and
D = identity leaves q̇ + Kq = fext. We solve this with numeric integration, which
we iterate until the forces equilibrate or vanish.

To track the heart’s shape change throughout systole, we begin by fitting the
model to the first frame, tn, in which the motion of the blood has washed away the



150 A. Montillo et al.

tags. To fit subsequent time frames (t > tn) we propagate the previous frame solu-
tion and fit the model in the new frame. To fit earlier time frames, (e.g. tn−1), we
propagate the solution from tn and fit the model but we do not apply forces to the
endocardial walls because the insufficient blood–myocardium contrast yields unre-
liable blood regions features, however, both the epicardial and endocardial surfaces
are recovered because of (1) the incompressibility constraint, (2) the equilibrium
model fit at tn, and (3) reliable epicardial features at tn and tn−1.

3 Results

We acquired tMRI data from ten subjects: eight normal and two with right ventric-
ular hypertrophy. Each sequence contains 12–15 frames; each frame contains three
volumes (2D img. sets) with one set in each of three orthogonal tag orientations.
In total, we collected 1,160 2D images. Two (2) expert physicians segmented the LV
and RV endocardial boundaries, and the epicardial boundary providing the ground
truth for evaluation purposes. We form expert surfaces from expert contours using
a process similar to the one described in Sect. 2.3 for converting 2D blood region
features into 3D surfaces, only now we form 3D distance transforms from stacked
expert contoured regions. For each expert, this produces one 3D DT for each of fea-
ture (i.e., LV endo, RV endo, and combined LV and RV epi) whose zero isosurface
defines an expert surface.

3.1 Artifact Suppression Results

During acquisition, surface coils are placed on the subject’s chest, Sc, and back,
Sb (Fig. 6a). Coils improve SNR but cause pixels in coil vicinity to be brighter
than those in the deep thoracic region, labeled DpTh. When we suppress the inten-
sity inhomogeneity artifact in the raw input tMRI (Fig. 6a, first column) it causes

Fig. 6 Examples of intrasubject (a) and intersubject (b) intensity variation suppression. Database-
wide reduction in intensity variations (c) also increases (d) boundary edge strength
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DpTh region contrast to be visibly increased (Fig. 6a, second column). Additionally,
MR lacks an intrinsic baseline signal level causing intersubject intensity variations
shown in Fig. 6b first column (also Fig. 1c). Our histogram standardization creates
more consistent image contrast across subjects (Fig. 6b, second column). Statistical
analysis of the 1,160 images (Fig. 6c) shows our intrasubject intensity inhomogene-
ity suppression yields 33.0% reduction in the normalized standard deviation (NSD)
of the (tag removed) myocardial pixel intensities. The intersubject intensity vari-
ation suppression yields a 13.5% reduction in the standard deviation of the mean
myocardial pixel intensity (σintersubj) across the subjects in our database.

We measured the cumulative effect of our artifact suppression methods by
computing the mean magnitude of the image gradient orthogonal to the expert
boundaries at points distributed evenly on the boundary. Figure 6d shows our artifact
suppression caused all-boundary edge strengths to increase. The epicardial bound-
ary edge strength increased by 75.0%, RV endo by 68%, and LV endo by 92.8%.

3.2 Segmentation Results

Figure 7 is representative of the physiologically sound segmentation from our
method. The model’s outer surface is transparent here to view the mesh and inner
surfaces. The 3D model is intersected by a 2D LA image. From this perspective, we
can see (1) the model’s near incompressibility constraint maintains sound surface-
to-surface separation even of the intervening septal wall and (2) the contraction of
the LV endocardial surface from early to end systole (left to right).

Figure 8 shows solid curves for the intersection of our 3D model with an im-
age plane, and dashed curves for the expert’s boundaries. Representative results
from one subject are shown in (a) and from another subject in (b). High correspon-
dence between segmented and expert boundaries is evident throughout contraction
in both the SA and LA images, the latter of which is not handled by other methods
such as [12, 27].

We also perform a quantitative validation of our method to measure its accu-
racy. Specifically, we compute the distance between points on each model surface,
(denoted by A), and points on the corresponding expert surface, (denoted by B)

Fig. 7 3D model intersected by images during systole. LV endo (red) and RV endo (purple)
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Fig. 8 (a) shows the image plane curves in early to end systole (from left to right), with green =
RV endo, red = LV endo, blue = epi. Model (solid); experts (dashed), (b) is another subject

Table 1 Distance errors across subjects, Man = inter-expert, Auto = method-to-expert distance

Error measurement Method LV endocardial RV endocardial Epicardial All surfaces

RMS Man 1.78 ± 0.39 1.88 ± 0.63 1.35 ± 0.54 1.58 ± 0.46
Auto 2.00 ± 0.41 2.58 ± 0.63 2.51 ± 0.12 2.38 ± 0.36

Median Man 1.51 ± 0.32 1.41 ± 0.45 1.03 ± 0.48 1.19 ± 0.40
Auto 1.63 ± 0.26 2.18 ± 0.54 2.06 ± 0.02 1.94 ± 0.25

using: d(a,B) = minb∈B ‖a−b‖ for all points a on the model surface. In Table 1,
the first error measure is the average root mean squared (RMS) distance across sub-
jects; the second is the average median error across the subjects. For each error
measure the first entry (Man) is the distance between the experts’ manual delin-
eations, while the second entry (Auto) is the distance between our method and the
corresponding expert surface. The errors are computed for each surface and for all
surfaces combined. Overall our method’s RMS error is only ∼1 mm more than the
interexpert distance. Our RMS error varies from 2.0 mm for the LV endo to 2.58 mm
for the RV endo. The average median error across subjects is the second entry which
is slightly lower than RMS error. Standard deviation is small for all measures, indi-
cating we are consistently locating the boundary surfaces well across the subjects.
Previous methods [12, 27] reporting ∼1 mm accuracy require as input the expert’s
contours in the first frame. Our method does not require this input as it solves heart
localization automatically as part of the segmentation task.

4 Discussion and Conclusions

It is insightful to compare our method to a single statistical atlas approach.
A challenge for our model from data-fusion (MFDF) approach is building ade-
quate acquisition postprocessing to suppress image artifacts, while a challenge for
a single statistical atlas is acquiring enough representative data of all patient varia-
tions. When the data is of high quality or when image examples are scarce (e.g. due
to a substantially new MR pulse sequence, or lack of patients with a particular
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condition), MFDF may be preferable. Another potential advantage of MFDF is that
it may be applicable to a range of myocardial diseases since the method does not
depend on the similarity of the test subject to samples in a training dataset. For
example, MFDF may be adaptable for congenital heart disease (CHD). In CHD
anatomical abnormalities such a hole in the septal wall can occur. In such cases,
MFDF may be able to discover the topological variation (i.e., a hole) and construct
a patient-specific model. Other methods that impose a defect-free model onto the
diseased heart may be less able to segment the boundaries and abnormal motion.
In such cases MFDF might be used to seed the statistical atlas with the required
training segmentations, and this is an area of future work.

We have chosen not to incorporate muscle fiber orientations into our cardiac
model for two reasons. The first is that we use the model for two distinct model
fitting phases. In phase 1 we fit the early systolic approximate shape model to the
specific patient anatomy in the first systolic frame in which the tags are not visible in
the blood. In this case, the model adapts to the patient anatomy from an average and
adding fiber orientations may over constrain. In phase 2, the model is propagated
to earlier and later time frames. Here, it may make sense to add fiber orientations
to further regularize, however, most clinics are currently not equipped to acquire
patient-specific fiber orientation data in vivo, and assuming a standard orientation
may add bias.

Our successful segmentation of low blood–myocardium contrast tMRI with spa-
tially sparse 2D image samples suggests good potential applicability to segment
higher contrast SSFP tMRI [28] and densely sampled true 3D tMRI [29]. In addi-
tion, our method is likely adaptable to still other types of tMRI. For example, for
2D grid tagging, our blood feature extraction (the most critical task) should work
well since there are fewer bright pixels to suppress with the morphological opening.
Epicardial features may be extracted, in part, through a slight modification: applying
a closing with two orthogonal linear structuring elements and is a topic for future
testing. Also, our method does not require perfect intersection of LA image planes;
as long as the pose of each image plane is provided, then our region and edge fea-
tures can be added to the overall set of features that guide modeling fitting.

There are several limitations of our method which are areas for our future work.
First, our incompressible model does not yet follow the longitudinal descent of the
valves toward the apex. For this, tag motion in LA images might be used to further
guide model fitting. Second, the problem of papillary muscles is not fully addressed.
We have chosen to include the parts of the papillary muscles that are clearly visible
in tMRI (the papillary buds) with the myocardium. This was done for two reasons:
(a) we are now in good position to exploit motion data visible from the papillary
tags for future 3D motion recovery and (b) we do introduce additional uncertainty.
Third, there are artifacts which we do not yet handle including (a) RF interference,
(b) images that self-overlap (wrap-around) from aliasing, and (c) distortion from
metal implants. The second and third artifacts can make the images difficult to in-
terpret even by expert radiologists. Fourth, “slice misalignment” can be caused by
respiratory-induced heart motion. Suppression methods proposed in the literature
include breath-hold acquisition, respiratory gating, slice-following, and true 3D
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MRI. Breath-hold and respiratory gating are the methods we use. However, breath-
hold is not viable for some subject and respiratory gating can lengthen scan time.
True 3D MRI is promising but requires the most advanced acquisition hardware
and pulse sequences. If none of the methods for mitigating slice misalignment are
available another motion correction is required and this remains an open research
problem. Lastly, many methods do not attempt to segment either the apex of the LV
or RV [12,13,20,27]. Our method attempts both, and does a good job at segmenting
the LV apex but tends to truncate the RV apex. Causes include (1) our data samples
the LV more densely than the RV, (2) RV apex tends to be narrower, (3) in some
cases, RV apex is smaller than the opening structure element which works well to
locate the remainder of the RV blood. Future work includes refining the features
from this region.

In conclusion, we have presented a MFDF-based biventricular segmentation of
the full complement of tMRI data, which required no user input. The model fitting
consumes <3 min of CPU time to fit all frames on a dual core desktop, and obviates
the interactive contouring task that requires up to 3 h/subject.
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