
Lecture Notes in Computer Science 3701
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mario Coppo Elena Lodi
G. Michele Pinna (Eds.)

Theoretical
Computer Science

9th Italian Conference, ICTCS 2005
Siena, Italy, October 12-14, 2005
Proceedings

1 3

Volume Editors

Mario Coppo
Università di Torino, Dipartimento di Informatica
C. Svizzera 185, 10149 Torino, Italy
E-mail: coppo@di.unito.it

Elena Lodi
Università di Siena
Dipartimento di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy
E-mail: lodi@unisi.it

G. Michele Pinna
Università di Siena
Dipartimento di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy
and Università di Cagliari
Dipartimento di Informatica e Matematica
Via Ospedale 72, 09124 Cagliari, Italy
E-mail: gmpinna@unica.it

Library of Congress Control Number: 2005933156

CR Subject Classification (1998): F, E.1, G.1-2

ISSN 0302-9743
ISBN-10 3-540-29106-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29106-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11560586 06/3142 5 4 3 2 1 0

Preface

The 9th Italian Conference on Theoretical Computer Science (ICTCS 2005) was
held at the Certosa di Pontignano, Siena, Italy, on October 12–14 2005. The
Certosa di Pontignano is the conference center of the University of Siena; it is
located 8 km away from the town and it is in the Chianti region. The Certosa is
a place full of history (founded in the 15th century, it was set on fire a century
later and reconstructed) and of valuable artworks, like frescoes of the Scuola
Senese.

Previous conferences took place in Pisa (1972), Mantova (1974 and 1989),
L’Aquila (1992), Ravello (1995), Prato (1998), Turin (2001) and Bertinoro (2003).

The conference aims at bringing together computer scientists, especially young
researchers, to foster cooperation, exchange of ideas and results. Great efforts
have been made to attract researchers from all over the world. The main top-
ics of the conference cover all the fields of theoretical computer science and
include analysis and design of algorithms, computability, computational com-
plexity, cryptography, formal languages and automata, foundations of program-
ming languages and program analysis, foundations of artificial intelligence and
knowledge representation, foundations of web programming, natural computing
paradigms (quantum computing, bioinformatics), parallel and distributed com-
putation, program specification and verification, term rewriting, theory of con-
currency, theory of data bases, theory of logical design and layout, type theory,
security, and symbolic and algebraic computation.

The Program Committee, consisting of 16 members, considered 83 papers and
selected 29 for presentation. These papers were selected, after a careful review-
ing process, on the basis of their originality, quality and relevance to theoretical
computer science. In keeping with the previous conferences, ICTCS 2005 was
characterized by the high number of submissions and by the number of differ-
ent countries represented. These proceedings contain the revised versions of the
29 accepted papers together with the invited talks by Luca Cardelli (Biological
Systems as Reactive Systems, abstract), Giuseppe Castagna (Semantic Subtyp-
ing: Challenges, Perspectives, and Open Problems) and Nicola Santoro (Mobile
Agents Computing: Security Issues and Algorithmic Solutions).

Due to the high quality of the submissions, paper selection was a difficult
and challenging task. Each submission was reviewed by at least three reviewers.
We thank all the Program Committee members and the additional reviewers for
their accurate work and for spending so much time in the reviewing process. We
apologize for any inadvertent omission in the list of reviewers.

Following the example of the last ICTCS edition, we encouraged authors
to submit their papers in electronic format. Special thanks are due to Simone
Donetti for setting up a very friendly Web site for this purpose.

VI Preface

Finally, we would like to thank all the authors who submitted papers and all
the conference participants.

October 2005 Mario Coppo
Elena Lodi

G. Michele Pinna

ICTCS 2005
October 12–14, Certosa di Pontignano,

Siena, Italy

Program Co-chairs

Mario Coppo Università di Torino
Elena Lodi Università di Siena

Program Committee

Michele Bugliesi Università di Venezia
Mario Coppo Università di Torino (Co-chair)
Pierluigi Crescenzi Università di Firenze
Giulia Galbiati Università di Pavia
Luisa Gargano Università di Salerno
Giorgio Ghelli Università di Pisa
Roberto Grossi Università di Pisa
Benedetto Intrigila Università di L’Aquila
Nicola Leone Università di Cosenza
Elena Lodi Università di Siena, (Co-chair)
Flaminia Luccio Università di Trieste
Andrea Masini Università di Verona
Giancarlo Mauri Università di Milano-Bicocca
Corrado Priami Università di Trento
Geppino Pucci Università di Padova
Davide Sangiorgi Università di Bologna

Organizing Committee

G. Michele Pinna Università di Cagliari (Chair)
Sara Brunetti Università di Siena
Elisa Tiezzi Università di Siena

Sponsoring Institutions

European Association for Theoretical Computer Science (EATCS)
Dipartimento di Matematica e Informatica “R. Magari”, Università di Siena
Dipartimento di Informatica, Università di Torino
Università degli Studi di Siena
Monte dei Paschi di Siena

VIII Organization

Referees

Tetsuo Asano
Vincenzo Auletta
Benjamin Aziz
Paolo Baldan
Anindya Banerjee
Stefano Baratella
Franco Barbanera
Massimo Bartoletti
Marie-Pierre Béal
Stefano Berardi
Marco Bernardo
Alberto Bertoni
Daniela Besozzi
Chiara Bodei
Paolo Boldi
Hanifa Boucheneb
Linda Brodo
Sara Brunetti
Francesco Buccafurri
Pasquale Caianiello
Tiziana Calamoneri
Felice Cardone
Dario Catalano
Marco Cesati
Federica Ciocchetta
Valentina Ciriani
Antonio Cisternino
Dario Colazzo
Andrea Clementi
Carlo Combi
Paolo D’Arco
Ottavio D’Antona
Christophe Decanniere
Pierpaolo Degano
Giuseppe Della Penna
Gianluca Della Vedova
Gianluca De Marco
Maria Rita Di Berardini
Pietro Di Giannantonio
Susanna Donatelli
Riccardo Dondi
Claudio Eccher
Wolfgang Faber
Riccardo Focardi

Paola Flocchini
Andrea Frosini
Clemente Galdi
Dora Giammarresi
Paola Giannini
Laura Giordano
Gianluigi Greco
Massimiliano Goldwurm
Stefano Guerrini
Giovambattista Ianni
Amos Korman
Ruggero Lanotte
Paola Lecca
Alberto Leporati
Renato Locigno
Fabrizio Luccio
Veli Mäkinen
Alessio Malizia
Stefano Mancini
Alberto Marchetti

Spaccamela
Radu Mardare
Luciano Margara
Ines Margaria
Carlo Mereghetti
Alberto Martelli
Donatella Merlini
Filippo Mignosi
Alberto Momigliano
Manuela Montangero
Elisa Mori
Ian Munro
Aniello Murano
Venkatesh Mysore
Matthias Neubauer
Monica Nesi
Mitsunori Ogihara
Linda Pagli
Beatrice Palano
Luigi Palopoli
David Peleg
Paolo Penna
Simona Perri
Carla Piazza

Adolfo Piperno
Nadia Pisanti
Katerina Pokozy
Roberto Posenato
Davide Prandi
Giuseppe Prencipe
Orazio Puglisi
Paola Quaglia
Sven Rahmann
Adele Rescigno
Antonio Restivo
Simone Rinaldi
Lorenzo Robbiano
Simona Ronchi

della Rocca
Gianluca Rossi
Alehandro Russo
Giancarlo Ruffo
Ivano Salvo
Francesco Scarcello
Debora Schuch
Roberto Segala
Andrea Sgarro
Riccardo Silvestri
Maria Simi
Robert Spalek
Renzo Sprugnoli
Frank Christian Stephan
Giorgio Terracina
Elisa Tiezzi
Mauro Torelli
Andrea Torsello
Emilio Tuosto
Ugo Vaccaro
Leonardo Vanneschi
Stefano Varricchio
Maria Cecilia Verri
Bob Walters
Damiano Zanardini
Claudio Zandron
Nicola Zannone

Table of Contents

Invited Contributions

Semantic Subtyping: Challenges, Perspectives, and Open Problems
Giuseppe Castagna . 1

Biological Systems as Reactive Systems
Luca Cardelli . 21

Mobile Agents Computing: Security Issues and Algorithmic Solutions
Nicola Santoro . 22

Technical Contributions

Efficient Algorithms for Detecting Regular Point Configurations
Luzi Anderegg, Mark Cieliebak, Giuseppe Prencipe 23

Pickup and Delivery for Moving Objects on Broken Lines
Yuichi Asahiro, Eiji Miyano, Shinichi Shimoirisa 36

A Static Analysis of PKI-Based Systems
Benjamin Aziz, David Gray, Geoff Hamilton . 51

Subtyping Object and Recursive Types Logically
Steffen van Bakel, Ugo de’Liguoro . 66

The Language X : Circuits, Computations and Classical Logic
Steffen van Bakel, Stéphane Lengrand, Pierre Lescanne 81

Checking Risky Events Is Enough for Local Policies
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari 97

The Graph Rewriting Calculus: Confluence and Expressiveness
Clara Bertolissi . 113

Safe Object Composition in the Presence of Subtyping
Lorenzo Bettini, Viviana Bono, Silvia Likavec . 128

Reachability Analysis in Boxed Ambients
Nadia Busi, Gianluigi Zavattaro . 143

X Table of Contents

Error Mining for Regular Expression Patterns
Giuseppe Castagna, Dario Colazzo, Alain Frisch 160

Reconstructing an Alternate Periodical Binary Matrix from Its
Orthogonal Projections

Marie-Christine Costa, Fethi Jarray, Christophe Picouleau 173

Inapproximability Results for the Lateral Gene Transfer Problem
Bhaskar DasGupta, Sergio Ferrarini, Uthra Gopalakrishnan,
Nisha Raj Paryani . 182

Faster Deterministic Wakeup in Multiple Access Channels
Gianluca De Marco, Marco Pellegrini, Giovanni Sburlati 196

Weighted Coloring: Further Complexity and Approximability Results
Bruno Escoffier, Jérôme Monnot, Vangelis Th. Paschos 205

Quantum Algorithms for a Set of Group Theoretic Problems
Stephen A. Fenner, Yong Zhang . 215

On the Computational Complexity of the L(2,1)-Labeling Problem
for Regular Graphs

Jǐŕı Fiala, Jan Kratochv́ıl . 228

A Polymerase Based Algorithm for SAT
Giuditta Franco . 237

Laxity Helps in Broadcast Scheduling
Stanley P.Y. Fung, Francis Y.L. Chin, Chung Keung Poon 251

Enforcing and Defying Associativity, Commutativity, Totality, and
Strong Noninvertibility for One-Way Functions in Complexity Theory

Lane A. Hemaspaandra, Jörg Rothe, Amitabh Saxena 265

Synthesis from Temporal Specifications Using Preferred Answer Set
Programming

Stijn Heymans, Davy Van Nieuwenborgh, Dirk Vermeir 280

Model Checking Strategic Abilities of Agents Under Incomplete
Information

Wojciech Jamroga, Jürgen Dix . 295

Improved Algorithms for Polynomial-Time Decay and Time-Decay
with Additive Error

Tsvi Kopelowitz, Ely Porat . 309

Table of Contents XI

A Theoretical Analysis of Alignment and Edit Problems for Trees
Tetsuji Kuboyama, Kilho Shin, Tetsuhiro Miyahara,
Hiroshi Yasuda . 323

A Complete Formulation of Generalized Affine Equivalence
Marco Macchetti, Mario Caironi, Luca Breveglieri,
Alessandra Cherubini . 338

A New Combinatorial Approach to Sequence Comparison
Sabrina Mantaci, Antonio Restivo, Giovanna Rosone,
Marinella Sciortino . 348

A Typed Assembly Language for Non-interference
Ricardo Medel, Adriana Compagnoni, Eduardo Bonelli 360

Improved Exact Exponential Algorithms for Vertex Bipartization
and Other Problems

Venkatesh Raman, Saket Saurabh, Somnath Sikdar 375

A Typed Semantics of Higher-Order Store and Subtyping
Jan Schwinghammer . 390

Two Variables Are Not Enough
Rick Statman . 406

Author Index . 411

Semantic Subtyping:
Challenges, Perspectives, and Open Problems

Giuseppe Castagna

CNRS, École Normale Supérieure de Paris, France

Based on joint work with: Véronique Benzaken, Rocco De Nicola,
Mariangiola Dezani, Alain Frisch, Haruo Hosoya, Daniele Varacca

Abstract. Semantic subtyping is a relatively new approach to define subtyping
relations where types are interpreted as sets and union, intersection and nega-
tion types have the corresponding set-theoretic interpretation. In this lecture we
outline the approach, give an aperçu of its expressiveness and generality by ap-
plying it to the λ-calculus with recursive and product types and to the π-calculus.
We then discuss in detail the new challenges and research perspectives that the
approach brings forth.

1 Introduction to the Semantic Subtyping

Many recent type systems rely on a subtyping relation. Its definition generally depends
on the type algebra, and on its intended use. We can distinguish two main approaches
for defining subtyping: the syntactic approach and the semantic one. The syntactic
approach—by far the more used—consists in defining the subtyping relation by ax-
iomatising it in a formal system (a set of inductive or coinductive rules); in the semantic
approach (for instance, [AW93, Dam94]), instead, one starts with a model of the lan-
guage and an interpretation of types as subsets of the model, then defines the subtyping
relation as the inclusion of denoted sets, and, finally, when the relation is decidable,
derives a subtyping algorithm from the semantic definition.

The semantic approach has several advantages (see [CF05] for an overview) but it
is also more constraining. Finding an interpretation in which types can be interpreted
as subsets of a model may be a hard task. A solution to this problem was given by
Haruo Hosoya and Benjamin Pierce [HP01, Hos01, HP03], who noticed that in order
to define subtyping all is needed is a set theoretic interpretation of types, not a model
of the terms. In particular, they propose to interpret a type as the set of all values that
have that type. So if we use V to denote the set of all values, then we can define the
following set-theoretic interpretation for types �t�V = {v ∈ V | � v : t} which induces
the following subtyping relation:

s ≤V t
def⇐⇒ �s�V ⊆ �t�V (1)

This works for Hosoya and Pierce because the set of values they consider can be de-
fined independently from the typing relation.1 But in general in order to state when a
value has a given type (the “� v : t” in the previous definition) one needs the subtyping

1 Their values are XML documents, and they can be defined as regular trees. The typing relation,
then, becomes recognition of a regular tree language.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 1–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 G. Castagna

relation. This yields a circularity: we are building a model to define the subtyping re-
lation, and the definition of this model needs the subtyping relation. This circularity is
patent in both the examples we discuss below: in λ-calculus (Section 2) values are λ-
abstractions and to type them (in particular, to type applications that may occur in their
body) subtyping is needed; in π-calculus (Section 3) the covariance and contravariance
of read-only and write-only channel types make the subtyping relation necessary to type
channels.

In order to avoid this circularity and still interpret types as set of values, we re-
sort to a bootstrapping technique. The general ideas of this technique are informally
exposed in [CF05], while the technical development can be found in [FCB02, Fri04].
For the aims of this article, the process of defining semantic subtyping can be roughly
summarised in the following steps:

1. Take a bunch of type constructors (e.g., →, ×, ch(), . . .) and extend the type alge-
bra with the following boolean combinators: union ∨∨∨, intersection ∧∧∧, and
negation¬¬¬.

2. Give a set-theoretic model of the type algebra, namely define a function ��D :
Types → P (D), for some domain D (where P (D) denotes the powerset of D).
In such a model, the combinators must be interpreted in a set-theoretic way (that
is, �s∧∧∧ t�D = �s�D ∩ �t�D , �s∨∨∨ t�D = �s�D ∪ �t�D , and �¬¬¬t�D = D \ �t�D), and the
definition of the model must capture the essence of the type constructors.

There might be several models, and each of them induces a specific subtyping re-
lation on the type algebra. We only need to prove that there exists at least one model
and then pick one that we call the bootstrap model. If its associated interpretation
function is ��B , then it induces the following subtyping relation:

s ≤B t
def⇐⇒ �s�B ⊆ �t�B (2)

3. Now that we defined a subtyping relation for our types, find a subtyping algorithm
that decides (or semi-decides) the relation. This step is not mandatory but highly
advisable if we want to use our types in practise.

4. Now that we have a (hopefully) suitable subtyping relation available, we can focus
on the language itself, consider its typing rules, use the new subtyping relation to
type the terms of the language, and deduce Γ�B e : t. In particular this means to use
in the subsumptionrule the bootstrap subtyping relation ≤B we defined in step 2.

5. The typing judgement for the language now allows us to define a new natural set-
theoretic interpretation of types, the one based on values �t�V = {v ∈ V | �B v : t},
and then define a “new” subtyping relation as in equation (1). This relation might
be different from ≤B we started from. However, if the definitions of the model,
of the language, and of the typing rules have been carefully chosen, then the two
subtyping relations coincide

s ≤B t ⇐⇒ s ≤V t

and this closes the circularity. Then, the rest of the story is standard (reduction re-
lation, subject reduction, type-checking algorithm, etc . . .).

The accomplishment of this is process is far from being straightforward. In point 2 it
may be quite difficult to capture the semantics of the type constructors (e.g., it is quite

Semantic Subtyping: Challenges, Perspectives, and Open Problems 3

hard to define a set-theoretic semantics for arrow types); in point 3 defining a model may
go from tricky to impossible (e.g., because of bizarre interactions with recursive types);
point 4 may fail for the inability of devising a subtyping algorithm (cf. the subtyping
algorithm for �π in [CNV05]); finally the last step is the most critical one since it may
require a consistent rewriting of the language and/or of the typing rules to “close the
circle” . . . if possible at all. We will give examples of all these problems in the rest of
this document.

In the next two sections we are going to show how to apply this process to λ-like
and π-like calculi. The presentation will be sketchy and presuppose from the reader
some knowledge of the λ-calculus, of the π-calculus, and of their type systems. Also,
the calculi we are going to present are very simplified versions of the actual ones whose
detailed descriptions can be found in [FCB02] and [CNV05], respectively.

2 Semantic λ-Calculus: �Duce

As a first example of application of the semantic subtyping 5-steps technique, let us
take the λ-calculus with products.

Step 1. The first step consists in taking some type constructors, in this case products
and arrows, and adding boolean combinators to them:

t ::= � | � | t →→→ t | t××× t | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

where � and � correspond, respectively, to the empty and the universal types. For more
generality we consider also recursive types. Thus, our types are the regular trees gen-
erated by the grammar above and satisfying the standard contractivity condition that
every infinite branch has infinitely many occurrences of the ××× or of the →→→ constructors
(this rules out meaningless expressions such as t∧∧∧ (t∧∧∧ (t∧∧∧ (. . .)))).

Step 2. The second step is, in this case, the hard one as it requires to define a set-
theoretic interpretation ��D : Types → P (D). But, how can we give a set theoretic
interpretation to the arrow type? The set theoretic intuition we have of t →→→ s is that
it is the set of all functions (of our language) that when applied to a value of type t
either diverge or return a result of type s. If we interpret functions as binary relations
on D, then �t →→→ s� is the set of binary relations in which if the first projection is in
(the interpretation of) t then the second projection is in (the interpretation of) s, namely

P (�t�× �s�), where the overline denotes set complement.2 However, setting �t →→→ s� =
P (�t�× �s�) is impossible since, for cardinality reasons, we cannot have P (D2) ⊆ D.
Note though, that we do not define the interpretation �� in order to formally state what
the syntactic types mean but, more simply, we define it in order to state how they are
related. Therefore, even if the interpretation does not capture the intended semantics of
types, all we need is that it captures the containment relation induced by this semantics.
That is, roughly, it suffices to our aims that the interpretation function satisfies

�t1 →→→ s1� ⊆ �t2 →→→ s2� ⇐⇒ P (�t1�× �s1�) ⊆ P (�t2�× �s2�) (3)

2 This is just one of the possible interpretations. See [CF05] for a discussion about the implica-
tions of such a choice and [Fri04] for examples of different interpretations.

4 G. Castagna

Note that Pf (X) ⊆ Pf (Y) if and only if P (X) ⊆ P (Y) (where Pf denotes the finite

powerset). Therefore, if we set �t →→→ s� = Pf (�t�× �s�), this interpretation satisfies (3).
In other words, we can use as bootstrap model B the least solution of the equation
X = X2 + Pf (X2) and the following interpretation function3 � �B : Types → P (B):

���B =∅ ���B = B �s∨∨∨ t�B = �s�B∪ �t�B �s∧∧∧ t�B = �s�B∩ �t�B

�¬¬¬t�B = B\�t�B �s××× t�B = �s�× �t� �t →→→ s�B = Pf (�t�B× �s�B)

The model we have chosen can represent only finite graph functions, therefore it is not
rich enough to give semantics to a λ-calculus (even the simply typed one). However
since this model satisfies equation (3), it is able to express the containment relation
induced by the semantic intuition we have of the type t → s (namely that it represents

P (�t�× �s�), which is all we need.

Step 3. We can use the definition of subtyping as given by equation (2) to deduce some
interesting relations: for instance, according to (2) the type (t1 → s1)∧∧∧ (t2 → s2) is a
subtype of (t1 ∧∧∧ t2) → (s1 ∧∧∧ s2), of (t1 ∨∨∨ t2) → (s1 ∨∨∨ s2), of their intersection and, in
general, all these inclusions are strict.

Apart from these examples, the point of course is to devise an algorithm to decide
inclusion between any pair of types. Deciding subtyping for arbitrary types is equivalent
to decide whether a type is equivalent to (that is, it has the same interpretation as) �:

s ≤B t ⇔ �s�B ⊆ �t�B ⇔ �s�B ∩ �t�B =∅⇔ �s∧∧∧¬¬¬t�B =∅⇔ s∧∧∧¬¬¬t = �.

By using the definition of B��, we can show that every type is equivalent to a finite
union where each summand is either of the form:

(
∧∧∧

s×××t∈P

s××× t)∧∧∧ (
∧∧∧

s×××t∈N

¬¬¬(s××× t)) (4)

or of the form
(

∧∧∧

s→→→t∈P

s→→→ t)∧∧∧ (
∧∧∧

s→→→t∈N

¬¬¬(s →→→ t)) (5)

Put s∧∧∧¬¬¬t in this form. Since it is a finite union, then it is equivalent to � if and only
if each summand is so. So the decision of s ≤B t is reduced to the problem of decid-
ing whether the types in (4) and (5) are empty. The subtyping algorithm, then, has to
work coinductively, decomposing these problems into simpler subproblems where the
topmost type constructors have disappeared. In particular, in [Fri04] it is proved that the
type in (4) is equivalent to � if and only if for every N′ ⊆ N:⎛

⎝ ∧∧∧

(t×××s)∈P

t ∧∧∧
∧∧∧

(t′×××s′)∈N′
¬¬¬t ′

⎞

⎠ � � or

⎛

⎝ ∧∧∧

(t×××s)∈P

s ∧∧∧
∧∧∧

(t′×××s′)∈N\N′
¬¬¬s′

⎞

⎠ � �; (6)

while the type in (5) is equal to zero if and only if there exists some (t ′ →→→ s′) ∈ N such
that for every P′ ⊆ P:

⎛

⎝t ′ ∧∧∧
∧∧∧

(t→→→s)∈P′
¬¬¬t

⎞

⎠ � � or

⎛

⎝ ∧∧∧

(t→→→s)∈P\P′
s∧∧∧¬¬¬s′

⎞

⎠ � �. (7)

3 For the details of the definition of the interpretation in the presence of recursive types, the
reader is invited to consult [Fri04] and [FCB02]. The construction is also outlined in [CF05].

Semantic Subtyping: Challenges, Perspectives, and Open Problems 5

By applying these decompositions the algorithm can decide the subtyping relation. Its
termination is ensured by the regularity and contractivity of the types.

Step 4. We have just defined a decidable subtyping relation for our types. We now want
to apply it to type the terms of a language. We do not present here a complete language:
the reader can find plenty of details in [CF05, FCB02]. Instead, we concentrate on the
definition and the typing of the terms that are the most interesting for the development
of this article, namely λ-abstractions. These in the rest of this paper will have the form
λ∧∧∧i∈I si→→→tix.e, that is we index them by an intersection type. This index instructs the type
checker to verify that the abstraction is in the given intersection, namely, that it has all
the types composing it, as implemented by the following rule:

t≡(
∧∧∧

i=1..n si→→→ti)∧∧∧(
∧∧∧

j=1..m¬¬¬(s′j→→→t′j)) �=�
(∀i) Γ,x : si �B e : ti

Γ �B λ∧∧∧i∈I si→→→tix.e : t
(abstr)

To understand this rule consider, as a first approximation, the case for m = 0, that is,
when the type t assigned to the function is exactly the index. The rule verifies that the
function has indeed all the si → ti types: for every type si →→→ ti of the intersection it
checks that the body e has type ti under the assumption that the parameter x has type
si. The rule actually is (and must be) more general since it allows the type checker to
infer for the function a type t strictly smaller than the one at the index, since the rule
states that it is possible to subtract from the index any finite number of arrow types,
provided that t remains non-empty.4 This is necessary to step 5 of our process. But
before moving to the next step, note that the intersection of arrows can be used to type
overloaded functions. Indeed, our framework is compatible with overloading, since the
following containment

�(t1∨∨∨ t2)→→→ (s1∧∧∧ s2)�� �(t1 →→→ s1)∧∧∧ (t2 →→→ s2)� (8)

is strict. So the semantic model authorises the language to define functions that return
different results (e.g. one in s1�s2 and the other in s2�s1) according to whether their
argument is of type t1 or t2. If the model had instead induced an equality between the
two types above then the function could not have different behaviours for different types
but should uniformly behave on them.5

Step 5. The last step consists in verifying whether the model of values induces that
same subtyping relation as the bootstrap one. This holds only if

�B v : t ⇐⇒ ��B v :¬¬¬t (9)

which holds true (and, together with the fact that no value has the empty type, makes the
two subtyping relations coincide) thanks to the fact that the (abstr) rule deduces negated
arrow types for lambda abstractions. Without it the difference of two arrow types (which

4 Equivalently, it states that we can deduce for a λ-abstraction every non-empty type t obtained
by intersecting the type indexing the abstraction with a finite number of negated arrow types
that do not already contain the index.

5 Overloading requires the addition of a type-case in the language. Without it intersection of
arrows can just be used to give more specific behaviour, as for λOdd→Odd∧∧∧Even→Evenx.x which
is more precise than λInt→Int x.x.

6 G. Castagna

in general is non-empty) might be not inhabited by a value, since the only way to deduce
for an abstraction a negated arrow would be the subsumption rule. To put it otherwise,
without the negated arrows in (abstr) property (9) would fail since, for instance, both
�� λInt→Intx.(x+3) :¬¬¬(Bool→Bool), and �� λInt→Int x.(x+3) : Bool→Bool would hold.

3 Semantic π-Calculus: �π

In this section we repeat the 5 steps process for the π-calculus.

Step 1. The types we are going to consider are the following ones

t ::= � | � | ch+(t) | ch−(t) | ch(t) | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

without any recursion. As customary ch+(t) is the type of channels on which one can
expect to receive values of type t, ch−(t) is the type of channels on which one is allowed
to send values of type t, while ch(t) is the type of channels on which one can send and
expect to receive values of type t.

Step 2. The set-theoretic intuition of the above types is that they denote sets of channels.
In turn a channel can be seen as a box that is tightly associated to the type of the objects
it can transport. So ch(t) will be the set of all boxes for objects of type t, ch−(t) the
set of all boxes in which one can put something of type t while ch+(t) will be the set
of boxes in which one expects to find something of type t. This yields the following
interpretation

�ch(t)� = {c | c is a box for objects in �t�}
�ch+(t)� = {c | c is a box for objects in �s� with s ≤ t}
�ch−(t)� = {c | c is a box for objects in �t� with s ≥ t}.

Given the above semantic interpretation, from the viewpoint of types all the boxes of
one given type t are indistinguishable, because either they all belong to the interpretation
of one type or they all do not. This implies that the subtyping relation is insensitive to
the actual number of boxes of a given type. We can therefore assume that for every
equivalence class of types, there is only one such box, which may as well be identified
with �t�, so that the intended semantics of channel types will be

�ch+(t)� =
{
�s� | s ≤ t

}
�ch−(t)� =

{
�s� | s ≥ t

}
(10)

while the invariant channel type ch(t) will be interpreted as the singleton {�t�}. Of
course, there is a circularity in the definitions in (10), since the subtyping relation is not
defined, yet. So we rather use the following interpretations �ch+(t)� = {�s� | �s� ⊆ �t�},
�ch−(t)� = {�s� | �s� ⊇ �t�}, which require to have a domain that satisfies {�t� | t ∈
Types} ⊆ D. This is not straightforward but doable, as shown in [CNV05].

Step 3. As for the λ-calculus we can use the definition of the model given by (10) to
deduce some interesting relations. First of all, the reader may have already noticed that

ch(t) = ch+(t)∧∧∧ ch−(t)
thus, strictly speaking, the ch constructor is nothing but syntactic sugar for the inter-
section above (henceforth, we will no longer consider this constructor and concentrate
on the covariant and contravariant channel type constructors). Besides this relation, far

Semantic Subtyping: Challenges, Perspectives, and Open Problems 7

C

BBBB

A

s

t

Fig. 1. Deciding atomicity

C

A

DB

s∧∧∧ t

t

s∨∨∨ t

s

Fig. 2. Some equations

more interesting relations can be deduced and, quite remarkably, in many case this can
be done graphically. Consider the definitions in (10): they tell us that the interpretation
of ch+(t) is the set of the interpretations of all the types smaller than or equal to t. As
such, it can be represented by the downward cone starting from t. Similarly, the upward
cone starting from t represents ch−(t). This illustrated in Figure 1 where the upward
cone B represents ch−(s) and the downward cone C represents ch+(t). If we now pass
on Figure 2 we see that ch−(s) is the upward cone B+C and ch−(t) is the upward cone
C+D. Their intersection is the cone C, that is the upward cone starting from the least
upper bound of s and t which yields the following equation

ch−(s)∧∧∧ ch−(t) = ch−(s∨∨∨ t) . (11)

Similarly, note that the union of ch−(s) and ch−(t) is given by B+C+D and that this is
strictly contained in the upward cone starting from s∧∧∧ t, since the latter also contains
the region A, whence the strictness of the following containment:

ch−(s)∨∨∨ ch−(t)� ch−(s∧∧∧ t) . (12)

Actually, the difference of the two types in the above inequality is the region A which
represents ch+(s∨∨∨ t)∧∧∧ch−(s∧∧∧ t), from which we deduce

ch−(s∧∧∧ t) = ch−(s)∨∨∨ ch−(t)∨∨∨ (ch+(s∨∨∨ t)∧∧∧ch−(s∧∧∧ t)) .

We could continue to devise such equations, but the real challenge is to decide whether
two generic types are one subtype of the other. As in the case for λ-calculus we can
reduce the problem of subtyping two types to the decision of the emptiness of a type (the
difference of the two types). If we put this type in disjunctive normal form, then it comes
to decide whether

∧∧∧
i∈P ti∧∧∧∧∧∧

j∈N¬¬¬t ′j =�, that is whether
∧∧∧

i∈P ti ≤∨∨∨
j∈N t ′j. With the type

constructors specific to �π this expands to
∧∧∧

i∈I ch+(ti
1)∧∧∧

∧∧∧
j∈J ch−(t j

2)≤
∨∨∨

h∈H ch+(th
3)∨∨∨

∨∨∨
k∈K ch−(tk

4). Since intersections can always be pushed inside type constructors (we
saw it in (11) for ch− types, the reader can easily check it for ch+), then we end up with
checking the following inequality:

8 G. Castagna

ch+(t1)∧∧∧ ch−(t2) ≤
∨∨∨

h∈H

ch+(th
3)∨∨∨

∨∨∨

k∈K

ch−(tk
4) . (13)

This is indeed the most difficult part of the job, since while in some cases it is easy
to decide the inclusion above (for instance, when t2 �≤ t1 since then the right-hand side
is empty), in general, this requires checking whether a type is atomic, that is whether
its only proper subtype is the empty type (for sake of simplicity the reader can think
of the atomic types as the singletons of the type system6). The general case is treated
in [CNV05], but to give an idea of the problem consider the equation above with only
two types s and t with t � s, and let us try to check if:

ch+(s)∧∧∧ ch−(t) ≤ ch−(s)∨∨∨ ch+(t) .

Once more, a graphic representation is quite useful. The situation is represented in
Figure 1 where the region A represents the left-hand side of the inequality, while the
region B+C is the right hand side. So to check the subtyping above we have to check
whether A is contained in B+C. At first sight these two regions looks completely disjoint,
but observe that they have at least two points in common, marked in bold in the figure
(they are respectively the types ch(s) and ch(t)). Now, the containment holds if the
region A does not contain any other type besides these two. This holds true if and only
if there is no other type between s and t, that is if and only if s�t (i.e. s∧∧∧¬¬¬t) is an atomic
type.

Step 4. The next step is to devise a π-calculus that fits the type system we have just
defined. Consider the dual of equation (12):7

ch+(s)∨∨∨ ch+(t)� ch+(s∨∨∨ t) (14)

and in particular the fact that the inclusion is strict. A suitable calculus must distinguish
the two types above. The type on the left contains either channels on which we will
always read s-objects or always read t-objects, while the type on the right contains
channels on which objects of type s or of type t may arrive interleaved. If we use a
channel with the left type and we can test the type of the first message we receive on
it, then we can safely assume that all the following messages will have the same type.
Clearly using in such a context a channel with the type on the right would yield a run-
time type error, so the two types are observationally different. This seems to suggest
that a suitable calculus should be able to test the types of the messages received on a
channel, which yields to the following definition of the calculus:

Channels α ::= x | ct

Processes P ::= α(α) | ∑i∈I α(x : ti)Pi | P1‖P2 | (νct)P | !P

The main difference with respect to the standard π-calculus is that we have introduced
channel values, since a type-case must not be done on open terms. Thus, ct is a physical
box that can transport objects of type t: channels are tightly connected to the type of
the objects they transport. Of course, restrictions are defined on channels, rather than

6 Nevertheless, notice that according to their definition, atomic types may be neither singletons
nor finite. For instance ch(�) is atomic, but in the model of values it is the set of all the
synchronisation channels; these are just token identifiers on a denumerable alphabet, thus the
type is denumerable as well.

7 To check this inequality turn Figure 2 upside down.

Semantic Subtyping: Challenges, Perspectives, and Open Problems 9

channel variables (since the latter could be never substituted). The type-case is then
performed by the following reduction rule

cs
1(c

t
2) ‖ ∑i∈I cs

1(x : ti)Pi → Pj[ct
2/x] if ch(t) ≤ t j

This is the usual π-calculus reduction with three further constraints: (i) synchronisation
takes place on channels (rather than on channel variables),(ii) it takes place only if the
message is a channel value (rather than a variable), and (iii) only if the type of the
message (which is ch(t)) matches the type t j of the formal parameter of the selected
branch of the summation. The last point is the one that implements the type-case. It is
quite easy to use intersection and negation types to force the various branches of the
summation to be mutually exclusive or to obey to a first match policy. We leave it as an
exercise to the reader.

As usual, the type system assigns a type to messages (i.e. channels) and checks
well-typing of processes. It is very compact and we report it below

Γ � ct : ch(t)
(chan)

Γ � x : Γ(x)
(var)

Γ � α : s ≤B t
Γ � α : t

(subsum)

Γ � P
Γ � (νct)P

(new) Γ � P
Γ �!P

(repl)
Γ � P1 Γ � P2

Γ � P1‖P2
(para)

t ≤∨∨∨
i∈Iti

ti∧ t �= �

Γ � α : ch+(t) Γ,x : ti � Pi

Γ � ∑i∈I α(x : ti).Pi
(input)

Γ � β : t Γ � α : ch−(t)
Γ � α(β)

(output)

The rules are mostly self explaining. The only one that deserves some comments is
(input), which checks that the channel α can be used to read, and that each branch is
well-typed. Note the two side conditions of the rule: they respectively require that for
every t message arriving on α there must be at least one branch able to handle it (thus
t ≤ ∨∨∨

i∈Iti forces summands to implement exhaustive type-cases), and that for every
branch there must be some message that may select it (thus the ti∧ t �= � conditions
ensure the absence of dead branches). Also note that in the subsumption rule we have
used the subtyping relation induced by the bootstrap model (the one we outlined in the
previous step) and that in rule (new) the environment is the same in the premise and the
conclusion since we restrict channels and not variables.

Step 5. The last step consists in verifying whether the set of values induces the same
subtyping relation as the bootstrap model, which is indeed the case. Note that here the
only values are the channel constants and that they are typed just by two rules, (chan)
and (subsum). Note also that, contrary to the λ-calculus, we do not need to explicit
consider in the typing rule intersections with negated types. This point will be discussed
in Section 4.6.

4 Challenges, Perspectives, and Open Problems

In the previous sections we gave a brief overview of the semantic subtyping approach
and a couple of instances of its application. Even though we have done drastic sim-
plifications to the calculi we have considered, this should have given a rough idea of

10 G. Castagna

the basic mechanisms and constitute a sufficient support to understand the challenges,
perspectives, and open problems we discuss next.

4.1 Atomic Types

We have shown that in order to decide the subtyping relation in �π one must be able
to decide the atomicy of the types (more precisely, one must be able to decide whether
a type contains a finite number of atomic types and, if this is the case, to enumerate
them). Quite surprisingly the same problem appears in λ-calculus (actually, in any se-
mantic subtyping based system) as soon as we try to extend it with polymorphic types.
Imagine that we embed our types with type variables X ,Y, Then the “natural” (se-
mantic) extension of the subtyping relation is to quantify the interpretations over all
substitutions for the type variables:

t1 ≤ t2
def⇐⇒ ∀s.�t1[s/X]� ⊆ �t2[s/X]� . (15)

Consider now the following inequality (taken from [HFC05]) where t is a closed type

(t,X) ≤ (t,¬¬¬t)∨∨∨ (X , t). (16)

We may need to check such an inequality when type-checking the body of a function
polymorphic in X where we apply a function whose domain is the type on the right to
an argument of the type on the left.

It is easy to see that this inequality holds if and only if t is atomic. If t is not atomic,
then it has at least one non-empty proper subtype, and (15) does not hold when we
substitute this subtype for X . If instead t is atomic, then for all X either t ≤ X or t ≤
¬¬¬X : if the second case holds then X is contained in ¬¬¬t, thus the left hand type of the
inequality is included in the first clause on the right hand type. If X does contain t, then
all the elements on the left except those in (t, t) are included by the first clause on the
right, and the elements in (t,t) are included by the second clause.

Note that the example above does not use any fancy or powerful type constructor,
such arrows or channels: it only uses products and type variables. So the problem we
exposed is not a singularity but applies to all polymorphic extensions of semantic sub-
typing where, once more, deciding subtyping reduces to deciding whether some type is
atomic or not.

Since these atomic types pop out so frequently a first challenge is understanding
why this happens and therefore how much the semantic subtyping technique is tightened
to the decidability of atomicity. In particular, we may wonder whether it is reasonable
and possible to study systems in which atomic types are not denotable so that the set of
subtypes of a type is dense.

4.2 Polymorphic Types

The previous section shows that the atomic types problem appears both in �π and in
the study of polymorphism for �Duce. From a theoretical viewpoint this is not a real
problem: in the former case Castagna et al. [CNV05] show atomicity to be decidable,
which implies the decidability of the subtyping relation; in the functional case Hosoya
et al. [HFC05] argue that the subtyping relation based on the substitution interpretation
can be reduced to the satisfiability of a constraint system with negative constraints.

Semantic Subtyping: Challenges, Perspectives, and Open Problems 11

However, from a practical point of view the situation is way more problematic, probably
not in the case of �π, since it is not intended for practical immediate applications, but
surely is in the case targeted by Hosoya et al. since the study performed there is intended
to be applied to programming languages, and no practical algorithm to solve this case
is known. For this reason in [HFC05] a different interpretation of polymorphic types
is given. Instead of interpreting type variables as “place holders” where to perform
substitutions, as stated by equation (15), they are considered as “marks” that indicate
the parametrised subparts of the values. The types are then interpreted as sets of marked
values (that is, usual values that are marked by type variables in the correspondence of
where these variables occur in the type), and are closed by mark erasure. Once more,
subtyping is then set containment (of mark-erasure closed sets of marked values) which
implies that the subtyping relation must either preserve the parametrisation (i.e. the
marks), or eliminate part of it in the supertype. More specifically, this requires that the
type variables in the supertype are present in the same position in the subtype. This
rules out critical cases such as the one of equation (16) which does not hold since no
occurrence of X in the type on the left of the equation corresponds to the X occurring
in the type on the right.

Now, the marking approach works because the only type constructor used in [HFC05]
is the product type, which is covariant. This is enough to model XML types, and the
polymorphism one obtains can be (and actually is) applied to the XDuce language.
However, it is still matter of research how to implement the marking approach in the
presence of contravariant type constructors: first and foremost in the presence of arrow
types, as this would yield the definition of a polymorphic version of �Duce; but also, it
would be interesting to study the marking approach in the presence of the contravariant
ch− type constructor, to check how it combines with the checks of atomicity required by
the mix with the ch+ constructor, and see whether markings could suggests a solution
to avoid this check of atomicity.

On a different vein it would be interesting to investigate the relation between para-
metricity (as intended in [Rey83, ACC93, LMS93]) and the marking approach to poly-
morphism. According to parametricity, a function polymorphic (parametric) in a type
variable X cannot look at the elements of the argument which have type X , but must
return them unmodified. Thus with respect to those elements, the function is just a re-
arranging function and it behaves uniformly on them whatever the actual type of these
elements is. Marks have more or less the same usage and pinpoint those parts of the
argument that must be used unchanged to build the result (considering the substitu-
tion based definition of the subtyping relation would correspond to explore the seman-
tic properties of the type parameters, as the example of equation (16) clearly shows).
However, by the presence of “ad hoc” polymorphism (namely, the type-case construc-
tion evocated in Footnote 5 and discussed in Section 4.5) the polymorphic functions
in [HFC05] can look at the type of the parametric (i.e. marked) parts of the argument,
decompose it, and thus behave differently according to the actual type of the argument.
Therefore, while the marking approach and parametric polymorphism share the fact
that values of a variable type are never constructed, they differ in presenting a uniform
behaviour whatever the type instantiating a type variable is.

12 G. Castagna

Another direction that seems worth pursuing is to see if it is possible to recover part
of the substitution based polymorphic subtyping as stated by equation (15), especially
in �π where the test of atomicity is already necessary because of the presence of the
covariant and contravariant cones.

Finally, one can explore a more programming language oriented approach and check
whether it is possible to define reasonable restrictions on the definition of polymorphic
functions (for instance by allowing polymorphism to appear only in top-level functions,
by forbidding a type variable to occur both in covariant and in contravariant position,
by constraining the use of type variables occurring in the result type of polymorphic
functions, etc.) so that the resulting language provides the programmer with sufficient
polymorphism for practical usage, while keeping it simple and manageable.

4.3 The Nature of Semantic Subtyping

The importance of atomic types also raises the question about the real nature of the
semantic subtyping, namely, is semantic subtyping just a different way to axiomatise
a subtyping relation that could be equivalently axiomatised by classic syntactic tech-
niques, or is it something different? If we just look at the �Duce case, then the right
answer seems to be the first one. As a matter of facts, we could have probably arrived to
define the same system without resorting to the bootstrapping technique and the seman-
tic interpretation, but just finding somehow the formulae (6) and (7) and distributing
them at the premises of some inference rules in which the types (4) and (5) are equated
to �. Or alternatively we could have arrived to this system by looking at the axiomati-
sation for the positive fragment of the �Duce type system given in [DCFGM02], and
trying to extend it to negation types.

But if we consider �π, then we are no longer sure about the right answer. In Sec-
tion 3 we just hinted at the fact that checking subtyping involves checking whether some
types are atomic, but we did not give further details. The complete specification can be
found in Theorem 2.6 of [CNV05], and involves the enumeration of all the atomic types
of a finite set. Looking at that definition, it is unclear whether it can be syntactically ax-
iomatised, or defined with a classical deduction system. Since the relation is proved to
be decidable, then probably the answer is yes. But it is clear that finding such a solution
without resorting to semantic techniques would have been very hard, if not impossible.
And in any case one wonders whether in case of a non decidable relation this would be
possible at all.

As a matter of facts, we do not know whether the semantic subtyping approach is an
innovative approach that yields to the definition of brand new type systems or it is just a
new way to define old systems (or rather, systems that could be also defined in the good
old syntactic way). Whichever the answer is, it seems interesting trying to determine the
limits of the semantic subtyping approach, that is, its degree of freedom. More precisely,
the technique to “close the circle” introduced in [FCB02] and detailed in [CF05] is
more general than the one presented here in the introduction. Instead of defining a
particular model it is possible to characterise a class of models which are those that
induce the same containment relation as the intended semantics (that is, that satisfy an
equation such as (10) but customised for the type constructors at issue). This relies on
the definition of an auxiliary function—called the extensional interpretation [FCB02]—

Semantic Subtyping: Challenges, Perspectives, and Open Problems 13

which fixes the intended semantics for the type constructors. So a more technical point
is to investigate whether and to which extent it is possible to systematise the definition of
the extensional interpretation. Should one start with a given model of values and refine
it, or rather try to find a model and then generalise it? And what are the limits of such
a definition? For instance, is it possible to define an extensional interpretation which
induces a containment where the inequality (14) is an equality? And more generally is
it possible to characterise, even roughly, the semantic properties that could be captured
by a model? Because, as we show in the next section, there are simple extensions of the
type systems we met so far for which a model does not exist.

4.4 Recursive Types and Models

As we said at the end of the introduction, to complete the 5 steps of the semantic sub-
typing approach is far from being trivial. One of the main obstacles, if not the main
one, may reside in the definition of a model. Not only that the model may be hard to
find, but also that sometimes it does not exist. A simple illustration of this can be given
in �π. In the first step of the definition of �π in Section 3 we carefully specified that
the types were not recursive: as pointed out in [CNV05], if we allow recursion inside
channel types, then there does not exist any model. To see why, consider the following
recursive type:

t = int∨∨∨ (ch(t)∧∧∧ ch(int)) .

If we had a model, then either t = int or t �= int hold. Does t = int? Suppose it does,
then ch(t)∧∧∧ ch(int) = ch(int) and int = t = int∨∨∨ ch(int), which is not true since
ch(int) is not contained in int. Therefore it must be t �= int. According to our se-
mantics this implies ch(t)∧∧∧ ch(int) = �, because they are interpreted as two distinct
singletons (whence the invariance of ch types). Thus t = int∨∨∨�= int, contradiction.
The solution is to avoid recursion inside channel types, for instance by requiring that
on every infinite branch of a regular type there are only finitely many occurrences of
the channel type constructors. Nevertheless, this is puzzling since the natural extension
with recursion is inconsistent.

It is important to notice that this problem is not a singularity of�π: it also appears in
�Duce as soon as we extend its type system by reference types, as explained in [CF05].
This raises the problem to understand what the non-existence of a model means. Does
it correspond to a limit of the semantic subtyping approach, a limit that some different
approach could overcome, or does it instead characterise some mathematical properties
of the semantics of the types, by reaching the limits that every semantic interpretation
of these types cannot overcome?

Quite remarkably the restriction on recursive types in �π can be removed, by mov-
ing to a local version of the calculus [Mer00], where only the output capability of a
channel can be communicated. This can be straightforwardly obtained by restricting the
syntax of input processes so that they only use channel constants (that is, ∑i∈I ct(x : ti)Pi

instead of ∑i∈I α(x : ti)Pi), which makes the type ch+(t) useless. Without this type, the
example at the beginning of this section cannot be constructed (by removing ch+(t) we
also remove ch(t) which is just syntactic sugar) and indeed it is possible build a model
of the types with full recursion. The absence of input channel types makes also the
decision algorithm considerably simpler since equation (13) becomes:

14 G. Castagna

ch−(s) ≤
∨∨∨

k∈K

ch−(tk) (17)

and it is quite easy to check (e.g. graphically) that (17) holds if and only if there exists
k ∈ K such that tk ≤ s. Last but not least, the types of the local version of of �π are
enough to encode the type system of �Duce (this is shown in Section 4.7). However, as
we discuss in Section 4.6, new problems appear (rather, old problems reappear). So the
approach looks like too a short blanket, that if you pull it on one side uncovers other
parts and seems to reach the limits of the type system.

4.5 Type-Case and Type Annotations

Both �Duce and �π make use of type-case constructions. In both cases the presence of
a type-case does not look strictly necessary to the development, but it is strongly sup-
ported, if not induced, by some semantic properties of the models. We already discussed
these points while presenting the two calculi.

For �Duce we argued that equation (8) and in particular the fact that the subtyping
inequality it induces

(t1∨∨∨ t2)→→→ (s1∧∧∧ s2)� (t1 →→→ s1)∧∧∧ (t2 →→→ s2) (18)

is in general strict, suggests the inclusion of overloaded function in the language to dis-
tinguish the two types: an overloaded function can have different behaviour for t1 and
t2, so it can belong to the right hand side, and not to the left hand side where all the
functions uniformly return results in the intersection of s1 and s2. Of course, from a
strict mathematical point of view it is not necessary for a function to be able to distin-
guish on the type of their argument in order to be in the right hand side but not in the
left one: it suffices that it takes, say, a single point of t1 into s1/s2 to be in the difference
of the two types. If from a mathematical viewpoint this is the simplest solution from
a programming language point of view, this is not the easy way. Indeed we want to
be able to program this function (as long as we want that the model based on values
induces the same subtyping relation as the bootstrap model). Now imagine that t1 and
t2 are function types. Then a function which would have a different behaviour on just
one point could not be programmed by a simple equality check on the input (such as “if
the input is the point at issue then return a point in s1/s2 otherwise return something in
s2”) as we cannot check equality on functions: the only thing that we can do is to apply
them. This would imply a non trivial construction of classes of functions which have a
distinguished behaviour on some specific points. It may be the case that such construc-
tion does not result technically very difficult (even if the presence of recursive types
suggests the contrary). However constructing it would not be enough since we should
also type-check it and, in particular, to prove that the function is typed by the difference
of the two types in (18): this looks as an harder task. From a programming language per-
spective the easy mathematical solution is the difficult one, while the easy solution, that
is the introduction of type-cases and of overloaded functions, has a hard mathematical
sense (actually some researchers consider it as a mathematical non-sense).

For �π we raised a similar argument about the strictness of

ch+(s)∨∨∨ ch+(t)� ch+(s∨∨∨ t)

Semantic Subtyping: Challenges, Perspectives, and Open Problems 15

The presence of a type-case in the processes is not strictly necessary to the existence of
the model (values do not involve processes but just messages) but it makes the two types
observationally distinguishable. One could exclude the type-case from the language, but
then we would have a too restrictive subtyping relation because it would not let values
in the right type to be used where values of the left type are expected, even if the two
types would not be operationally distinguishable: it would be better in that case to have
the equality hold (as in the system defined by Hennessy and Riely [HR02] where no
type-case primitive is present).

These observations make us wonder how much the semantic subtyping approach
is bound to the presence of a type-case. We also see that if for instance in �Duce we
try to provide a language without overloading, the formal treatment becomes far more
difficult (see Section 5.6 of [Fri04]). Therefore one may also wonder whether the seman-
tic subtyping approach is unfit to deal with languages that do not include a type case.
Also, since we have a type-case, then we annotated explicitly by their type some values:
λ-abstractions in �Duce and channel constants in �π. One may wonder if any form of
partial type reconstruction is possible8, and reformulate the previous question as whether
the semantic subtyping approach is compatible with any form of type reconstruction.

The annotations on the λ-abstractions raise even deeper questions. Indeed all the
machinery on λ-calculus works because we added these explicit annotations. The point
is that annotations and abstractions constitute an indissociable whole, since in the pres-
ence of a type-case the annotations observably change the semantics of the abstrac-
tions: using two different annotations on the same λ-abstraction yields two different
behaviours of the program they are used in. For instance λOdd→Odd∧∧∧Even→Evenx.x will
match a type-case on Odd → Odd while λInt→Int x.x will not. We are thus deeply chang-
ing the semantics of the elements of a function space, or at least of the λ-terms as usu-
ally intended. This raises a question which is tighten to—but much deeper than—the
one raised by Section 4.3, namely which is the mathematical or logical meaning of the
system of �Duce, and actually, is there any? A first partial answer to this question has
been answered by Dezani et al. [DCFGM02] who showed that the subtyping relation
induced by the model of Section 2 restricted to its positive part (that is arrows, unions,
intersections but no negations) coincides with the relevant entailment of the B+ logic
(defined 30 years before). However, whether analogous characterisations of the system
with negation exist is still an open question. This seems a much more difficult task since
the presence of negation requires deep modifications in the semantics of functions and
in their typing. Thus, it still seems unclear whether the semantic subtyping technique
for λ-calculus is just a syntactic hack that makes all the machinery work, or it hides
some underlying mathematical feature we still do not understand.

4.6 Language with Enough Points and Deduction of Negations

We have seen in step 4 of Section 2, that lambda abstractions are typed in an unorthodox
way, since the rule (abstr) can subtract any finite number of arrow types as long as the
type is non-empty. In step 5 of the same section we justified this rule by the fact that
we wanted a language that provided enough values to inhabit all the non-empty types.

8 Full type reconstruction for �Duce is undecidable, since it already is undecidable for the λ-
calculus with intersection types where typability is equivalent to strong normalizability.

16 G. Castagna

This property is important for two reasons: (i) if the bootstrap model and the model of
values induce the same subtyping relation, then it is possible to consider types as set
of values, which is an easier concept to reason on (at least for a programmer) than the
bootstrap model, and (ii) if two different types cannot be distinguished by a value than
we would have too a constraining type system, since it would forbid to interchange the
values of the two types even though the types are operationally indistinguishable.

The reader may have noticed that we do not have this problem in �π. Indeed given
a value, that is a channel ct , it is possible to type it with the negation of all channel types
that cannot be deduced for it. In particular we can deduce for ct the types ¬¬¬ch+(s1) and
¬¬¬ch−(s2) for all s1 �≥ t and s2 �≤ t, and this is simply obtained by subsumption, since it is
easy to verify that all these types are supertypes of the minimum type deduced for ct that
is ch+(t)∧∧∧ch−(t). For instance if s1 �≥ t then ch−(t)≤¬¬¬ch+(s1) and so is the intersection.

But subsumption does not work in the case of �Duce: to deduce by subsumption
that λInt→Intx.(x + 3) : ¬¬¬(Bool → Bool) one should have Int → Int ≤¬¬¬(Bool → Bool),
which holds if and only if Int → Int∧∧∧ Bool → Bool is empty, which is not since it
contains the overloaded functions of the corresponding type.

Interestingly, the same problem pops up again if we consider the local version of
�π. In the absence of covariant channels it is no longer possible to use the same rules to
deduce that ct has type¬¬¬ch−(s) for s �≤ t. Indeed we can only deduce that ct : ch−(t) and
this is not a subtype of ¬¬¬ch−(s) (since ch−(t)∧∧∧ ch−(s) is non-empty: it contains cs∨∨∨t),
thus subsumption does not apply and we have to modify the rule for channels, so that is
uses the same techniques as (abstr):

ti �≤ t

Γ � ct : ch−(t)∧∧∧¬¬¬ch−(t1)∧∧∧ . . . ∧∧∧¬¬¬ch−(tn)
(chan)

Having rules of this form is quite problematic. First because one loses the simplicity
and intuitiveness of the approach, but more importantly because the system no longer
satisfies the minimum typing property, which is crucial for the existence of a typing
algorithm. The point is that the minimum “type” of an abstraction is the intersection
of the type at its index with all the negated arrow types that can be deduced for it.
But this is not a type since it is an infinite intersection, while in our type system only
finite intersections are admitted.9 In order to recover the minimum typing property and
define a type algorithm, Alain Frisch [Fri04] introduces some syntactic objects, called
schemas, that represent in a finite way the infinite intersection above, but this does not
allow the system to recover simplicity and makes it lose its set-theoretic interpretation.

Here it is, thus, yet another problematic behaviour shared between �Duce and �π.
So once more the question is whether this problem is a limitation of semantic subtyping
or it is implicit in the usage of negation types. And as it can be “solved” in the case case
of �π by considering the full system instead of just the local version, is it possible to
find similar (and meaningful) solutions in other cases (notably for �Duce)?

9 Of course the problem could be solved by annotating values (channels or λ-abstractions) also
with negated types and considering it as the minimum type of the value. But it seems to us an
aberration to precisely state all the types a term does not have, especially from a programming
point of view, since it would require the programmer to forecast all the possible usages in
which a function must not have some type. In any case in the perspective of type reconstruction
evocated in the previous section this is a problem that must be tackled.

Semantic Subtyping: Challenges, Perspectives, and Open Problems 17

Finally, it would be interesting to check whether the semantic subtyping type system
could be used to define a denotational semantics of the language by relating the semantic
of an expression with the set of its types and (since our type system is closed by finite
intersections and subsumption) build a filter model [BCD83].

4.7 The Relation Between �π and �Duce

There exist several encodings of the λ-calculus into the π-calculus (see part VI of
[SW02] for several examples), so it seems interesting to study whether the encoding of
�Duce into �π is also possible. In particular we would like to use a continuation pass-
ing style encoding as proposed in Milner’s seminal work [Mil92] according to which a
λ-abstraction is encoded as a (process with a free) channel that expects two messages,
the argument to which the function must be applied and a channel on which to return
the result of the application. Of course, in the �Duce/�π case a translation would be
interesting only if it preserved the properties of the type system, in particular the sub-
typing relation. In other terms, we want that our translation {{}} : Types�duce →Types�π
satisfies the property t = � if and only if {{t}}= � (or equivalently s ≤ t iff {{s}} ≤ {{t}}).

Such an encoding can be found in a working draft we have been writing with Mar-
iangiola Dezani and Daniele Varacca [CDV05]. The work presented there starts from
the observation that the natural candidate for such an encoding, namely the typed trans-
lation used in [SW02] for λV→ (the simply-typed call-by-value λ-calculus) and defined
as {{s → t}}= ch−({{s}}×ch−({{t}})) does not work for �Duce/�π (from now on we will
omit the inner mapping parentheses and write ch−(s×ch−(t)) instead). This can be seen
by considering that the following equality holds in �Duce

s → (t∧∧∧u) = (s → t)∧∧∧ (s → u) (19)

while if we apply the encoding above, the translation of the left hand side is a subtype
of the translation of the right hand side but not viceversa. Once more, this is due to
the strictness of some inequality, since the translation of the codomain of the left hand
side ch−(t∧∧∧u), contains the translation of the codomains of the right hand side ch−(t)∨∨∨
ch−(u) (use equation (11) and distribute union over product) but not viceversa.

So the idea of [CDV05] is to translate s → t as ch−(s×chλ(t)) where chλ(t) is a type
that is (i) contravariant (since it must preserve the covariance of arrow codomains), (ii)
satisfies chλ(t ∧∧∧ u) = chλ(t)∨∨∨ chλ(u) (so that it preserves equation (19)) and (iii) is a
supertype of ch−(t) (since we must be able to pass on it the channel on which the result
of the function is to be returned).

Properties (i) and (ii) can be satisfied by adding a double negation as for¬¬¬ch−(¬¬¬t):
the double negation preserves the contravariance of ch− while the inner negation by
De Morgan’s laws yields the distributivity of the union. For (iii) notice that ¬¬¬ch−(¬¬¬t)\
ch−(t) = ch(�), so it suffices to add the missing point by defining chλ(t) =¬¬¬ch−(¬¬¬t)∨∨∨
ch(�). With such a definition the translation ch−(s× chλ(t)) has the wanted properties.
Actually, in [CDV05] it is proved that the three conditions above are necessary and
sufficient to make the translation work, which induces a class of possible translations
parametric in the definition of chλ (see [CDV05] for a characterisation of the choices
for chλ). chλ(t) is a supertype of ch−(t) but the latter is also the greatest channel type
contained in chλ(t). So there is gap between chλ(t) and ch−(t) which constitutes the def-
inition space of chλ(t). What is the meaning of this gap, that is of chλ(t)\ch−(t)? We do

18 G. Castagna

not know, but it is surely worth of studying, since it has important consequences also in
the interpretation of terms. The translation of terms is still work in progress, but we want
here hint at our working hypotheses since they outline the importance of chλ(t)\ch−(t).
We want to give a typed translation of terms, where the translation of a term e of type t is
a process with only one unrestricted channel α of type ch−({{t}}) (intuitively, this is the
channel on which the process writes the result of e). We note this translation as {{e}}α.
Consider the rule (abstr) for functions and note that the body of an abstraction is typed
several times under several assumptions. If we want to be able to prove that the trans-
lation preserves typing, then the translation must mimic this multiple typing. This can
be done in �π by using a summation, and thus by translating λ∧∧∧i∈I si→ti x.e into a process
that uses the unrestricted channel α : ch−({{∧∧∧i∈Isi → ti}}) = ch−(ch−(∨∨∨i∈I(si × chλ(ti))))
as follows:

{{λ∧∧∧i∈I si→ti x.e}}α = (ν f∨∨∨i∈I(si×chλ(ti)))(α(f) ‖ !∑i∈I f (x : si,r : ch−(ti)){{e}}r)

Unfortunately, the translation above is not correct since it is not exhaustive. More pre-
cisely, it does not cover the cases in which the second argument is in chλ(ti)\ ch−(ti): to
type {{e}}r the result channel r must have type ch−(ti) (since the only types the �Duce
type system deduces for e are the ti’s), but the encoding of arrow types uses chλ(ti) in sec-
ond position. Thus, it seems important to understand what the difference above means.
Is it related to the negation of arrow types in the (abstr) rule? Note that in this section
we worked on the local version of �π, so we have recursive types (Section 4.4) but also
negated channels in the (chan) typing rule (Section 4.6). If for local �π we use the rule
without negations then chλ(t)\ch−(t)=∅, so the encoding above works but we no longer
have a consistent type system. We find again that our blanket is too short to cover all the
cases. Is this yet another characterisation of some limits of the approach? Does it just
mean that Milner’s translation is unfit to model overloading? Or does it instead suggest
that the encoding of �Duce into �π has not a lot of sense and that we had better study
how to integrate �Duce and �π in order to define a concurrent version of �Duce?

4.8 Dependent Types

As a final research direction for the semantic subtyping we want to hint at the research
on dependent types. Dependent types raise quite naturally in type systems for the π-
calculus (e.g. [YH00, Yos04]), so it seems a natural evolution of the study of �π. Also,
dependent types in the π-calculus are used to check the correctness of cryptographic
protocols (see the research started by Gordon and Jeffrey [GJ01]) and unions, intersec-
tions, and negations of types look very promising to express properties of programs.
Thus, it may be worth of study the definition of an extension of Gordon an Jeffrey sys-
tems with semantic subtyping, especially in the light of the connection of the latter with
XML and the use of this in protocols for webservices.

Also quite interesting would be to study the extension of first order dependent type
theory λΠ [HHP93]. As far as we know, all the approaches to add subtyping to λΠ
are quite syntactic, since the subtyping relation is defined on β2 normal forms (see
for instance [AC96] or, for an earlier proposal, [Pfe93]). Even more advanced subtype
systems, such as [CC01, Che99], still relay on syntactic properties such as the strong
normalisation of the β2-reduction, since the subtyping rules essentially mimic the β2-
reduction procedure. It would then be interesting to check whether the semantic sub-

Semantic Subtyping: Challenges, Perspectives, and Open Problems 19

typing approach yields a more semantic characterisation of the subtyping relation for
dependent types.

5 Conclusion

The goal of this article was twofold: (i) to give an overview of the semantic subtyping
approach and an aperçu of its generality by applying it both to sequential and concur-
rent systems and (ii) to show the new questions it raises. Indeed we were much more
interested in asking questions than giving answers, and it is in this perspective that this
paper was written. Some of the questions we raised are surely trivial or nonsensical,
some others will probably soon result as such, but we do hope that at least one among
them will have touched some interesting mathematical problem being worth of pursu-
ing. In any case we hope to have interested the reader in this approach.

Acknowledgements. Most of this work was prepared while visiting Microsoft Re-
search in Cambridge and it greatly benefited of the stimulating and friendly environ-
ment that I enjoyed during my stay, a clear break with respect to my current situation.
In particular, I want to warmly thank Nick Benton (Section 4.5 results from a long dis-
cussion I had with him), Gavin Bierman, Luca Cardelli, and Andy Gordon. I want also
to thank Mario Coppo, Mariangiola Dezani, and Daniele Varacca for their suggestions
on various versions of this work. All my gratitude to Microsoft Research and all its
personnel for their warm hospitality.

References

[AC96] D. Aspinall and A. Compagnoni. Subtyping dependent types. In 11th Ann. Symp.
on Logic in Computer Science, pages 86–97, 1996.

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. The-
oretical Computer Science, 21:9–58, 1993. Special issue in honour of Corrado
Böhm.

[APP91] Martín Abadi, Benjamin Pierce, and Gordon Plotkin. Faithful ideal models for
recursive polymorphic types. International Journal of Foundations of Computer
Science, 2(1):1–21, March 1991. Summary in Fourth Annual Symposium on
Logic in Computer Science, June, 1989.

[AW93] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and
type inference. In Proceedings of the Seventh ACM Conference on Functional
Programming and Computer Architecture, pages 31–41, Copenhagen, Denmark,
June 93.

[BCD83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940,
1983.

[CC01] G. Castagna and G. Chen. Dependent types with subtyping and late-bound over-
loading. Information and Computation, 168(1):1–67, 2001.

[CDV05] G. Castagna, M. Dezani, and D. Varacca. Encoding �Duce into �π. Working
draft, February 2005.

[CF05] G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In
Proceedings of PPDP ’05, the 7th ACM SIGPLAN International Symposium on
Principles and Practice of Declarative Programming, Lisboa, Portugal, 2005.
ACM Press. Joint ICALP-PPDP keynote talk.

20 G. Castagna

[Che99] G. Chen. Dependent type system with subtyping. Journal of Computer Science
and Technology, 14(1), 1999.

[CNV05] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the π-
calculus. In LICS ’05, 20th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 2005.

[Dam94] F. Damm. Subtyping with union types, intersection types and recursive types II.
Research Report 816, IRISA, 1994.

[DCFGM02] M. Dezani-Ciancaglini, A. Frisch, E. Giovannetti, and Y. Motohama. The rele-
vance of semantic subtyping. In Intersection Types and Related Systems. Elec-
tronic Notes in Theoretical Computer Science 70(1), 2002.

[FCB02] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyp-
ing. In Proceedings, Seventeenth Annual IEEE Symposium on Logic in Computer
Science, pages 137–146. IEEE Computer Society Press, 2002.

[Fri04] Alain Frisch. Théorie, conception et réalisation d’un langage de programmation
fonctionnel adapté à XML. PhD thesis, Université Paris 7, December 2004.

[GJ01] A. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In
CSFW 2001: 14th IEEE Computer Security Foundations Workshop, pages 145–
159, 2001.

[HFC05] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML.
In POPL ’05, 32nd ACM Symposium on Principles of Programming Languages.
ACM Press, 2005.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, January 1993.

[Hos01] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The University
of Tokyo, 2001.

[HP01] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for
XML. In The 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2001.

[HP03] H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117–148, 2003.

[HR02] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

[LMS93] Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. The genericity theorem
and parametricity in the polymorphic λ-calculus. Theor. Comput. Sci., 121(1-
2):323–349, 1993.

[Mer00] Massimo Merro. Locality in the pi-calculus and applications to distributed ob-
jects. PhD thesis, Ecole des Mines de Paris, Nice, France, 2000.

[Mil92] R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

[Pfe93] F. Pfenning. Refinement types for logical frameworks. In Informal Proceedings
of the 1993 Workshop on Types for Proofs and Programs, May 1993.

[Rey83] J.C. Reynolds. Types, abstractions and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing ’83, pages 513–523. North-Holland, 1983.

[SW02] D. Sangiorgi and D. Walker. The π-calculus. Cambridge University Press, 2002.
[YH00] N. Yoshida and M. Hennessy. Assigning types to processes. In Proc. of the 15th

IEEE Symposium on Logic in Computer Science, pages 334–348, 2000.
[Yos04] Nobuko Yoshida. Channel dependent types for higher-order mobile processes.

In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 147–160. ACM Press, 2004.

Biological Systems as Reactive Systems

Luca Cardelli

Microsoft Research

Systems Biology is a new discipline aiming to understand the behavior of bi-
ological systems as it results from the (non-trivial, ”emergent”) interaction of
biological components. We discuss some biological networks that are charac-
terized by simple components, but by complex interactions. The components
are separately described in stochastic pi-calculus, which is a ”programming lan-
guage” that should scale up to description of large systems. The components
are then wired together, and their interactions are studied by stochastic simu-
lation. Subtle and unexpected behavior emerges even from simple circuits, and
yet stable behavior emerges too, giving some hints about what may be critical
and what may be irrelevant in the organization of biological networks

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, p. 21, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mobile Agents Computing:

Security Issues and Algorithmic Solutions

Nicola Santoro

School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. The use of mobile agents is becoming increasingly popular
when computing in networked environments, ranging from Internet to
the Data Grid, both as a theoretical computational paradigm and as a
system-supported programming platform.

In networked systems that support autonomous mobile agents, the
main theoretical concern is how to develop efficient agent-based system
protocols; that is, to design protocols that will allow a team of identical
simple agents to cooperatively perform (possibly complex) system tasks.

The computational problems related to these operations are definitely
non trivial, and a great deal of theoretical research is devoted to the study
of conditions for the solvability of these problems and to the discovery
of efficient algorithmic solutions.

At a practical level, in these environments, security is the most press-
ing concern, and possibly the most difficult to address. Actually, even
the most basic security issues, in spite of their practical urgency and of
the amount of effort, must still be effectively addressed.

Among the severe security threats faced in distributed mobile com-
puting environments, two are particularly troublesome: harmful agent
(that is, the presence of malicious mobile processes), and harmful host
(that is, the presence at a network site of harmful stationary processes).
The former problem is particularly acute in unregulated non-cooperative

settings such as Internet (e.g., e-mail transmitted viruses). The latter not
only exists in those settings, but also in environments with regulated ac-
cess and where agents cooperate towards common goals (e.g., sharing of
resources or distribution of a computation on the Grid). In fact, a local
(hardware or software) failure might render a host harmful.

In this talk I will concentrate on two security problems, one for each
type: locating a black hole, and capturing an intruder; I will describe
the recent algorithmic solutions and remaining open questions for both
problems.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, p. 22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Algorithms for Detecting Regular
Point Configurations

Luzi Anderegg1, Mark Cieliebak1, and Giuseppe Prencipe2

1 ETH Zurich
{anderegg, cieliebak}@inf.ethz.ch

2 Università di Pisa
prencipe@di.unipi.it

Abstract. A set of n points in the plane is in equiangular configuration
if there exist a center and an ordering of the points such that the angle
of each two adjacent points w.r.t. the center is 360◦

n
, i.e., if all angles

between adjacent points are equal. We show that there is at most one
center of equiangularity, and we give a linear time algorithm that de-
cides whether a given point set is in equiangular configuration, and if so,
the algorithm outputs the center. A generalization of equiangularity is
σ-angularity, where we are given a string σ of n angles and we ask for a
center such that the sequence of angles between adjacent points is σ. We
show that σ-angular configurations can be detected in time O(n4 log n).

Keywords: Weber point, equiangularity, σ-angularity, design of algo-
rithms, computational geometry.

1 Introduction

We study how to identify geometric configurations that are in a sense gener-
alizations of stars: a set of n distinct points P in the plane is in equiangular
configuration if there exists a point c �∈ P — the center of equiangularity — and
an ordering of the points such that each two adjacent points form an angle of
360◦

n w.r.t. c (see Figure 1(a)).
Obviously, if all points have the same distance from the center, then they form

a regular star. Note that we exclude the special case that any of the given points
is at center c. Furthermore, observe that the number of points in equiangular
configurations can be odd or even, and that any set of two points is always in
equiangular configuration. In the remainder of this paper, we will consider only
point sets with at least three points.

There is a strong connection between equiangular configurations and Weber
points, which are defined as follows: a point w is a Weber point of point set P if
it minimizes

∑
p∈P |p − x| over all points x in the plane, where |p − x| denotes

the Euclidean distance between p and x [8]. Hence, a Weber point minimizes
the sum of all distances between itself and all points in P . The Weber point for
an arbitrary point set is unique except for the case of an even number of points
which are all on a line [3]. We will show that the center of equiangularity, if it

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 23–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 L. Anderegg, M. Cieliebak, and G. Prencipe

p5

p1

p2

p372◦

p4

(a)

p8

p5

p4

p6

p7 p9

p1

p3

p2

(b)

p4

p1

p8

p2

p3β

α

p7

p6

p5

(c)

Fig. 1. Example of (a) equiangular configuration with n = 5; (b) σ-angular config-
uration with n = 9, where σ = (31◦, 45◦, 14◦, 31◦, 49.5◦, 68.5◦, 76◦, 31◦, 14◦); and (c)
biangular configuration with n = 8.

exists, is a Weber point; thus, there is at most one center of equiangularity for
n ≥ 3 points that are not on a line. Obviously, we could check easily whether a
given set of points is in equiangular configuration if we could find their Weber
point. Unfortunately, no efficient algorithms are known to find the Weber point
in general; even worse, it can be shown that the Weber point cannot even be
computed using radicals [2]. Hence, other algorithms are necessary, which we
will develop throughout this paper. The algorithm we will present for identifying
equiangularity has an interesting implication on Weber points: If n points are
in equiangular configuration, then we can use our algorithm to compute their
Weber point. This is rather surprising, since such results are known for only few
other patterns (e.g. all points are on a line), whereas this does not hold in general
for many easy–looking geometric pattern: for instance, it has been shown that
it is hard to find the Weber point even if all points are on a circle [5].

A generalization of equiangularity is σ-angularity, where we are given a string
σ = (σ1, . . . , σn) of n angles and we ask whether there exists a center c and
an ordering of the points such that the sequence of angles between each two
adjacent points w.r.t. the center is σ (see Figure 1(c)).Observe that the center of
σ-angularity is not necessary unique. Obviously, equiangularity is equivalent to
σ-angularity with σ = (360◦

n , 360◦

n , . . . , 360◦

n). The case of two alternating angles
α and β, i.e., σ = (α, β, α, . . . , β), is referred to as biangular (see Figure 1(c)).

σ-angular configurations have been applied successfully in robotics, namely
in solving the Gathering Problem, which – informally – can be defined as
follows: given is a set of autonomous mobile robots that cannot communicate
at all and that can only observe the positions of all other robots in the plane.
The task is to gather the robots at an arbitrary point in the plane that is
not fixed in advance. One of the main difficulties of this problem is to deal
with configurations that are totally symmetric, for instance where the robots’
positions form a regular1 n-gon. Recently, an algorithm solving the Gathering

Problem has been proposed which uses – among other techniques – the center
1 Note that a regular n-gon is a special case of equiangular configuration.

Efficient Algorithms for Detecting Regular Point Configurations 25

of equiangularity or biangularity to gather the robots there [4]. Hence, efficient
algorithms are needed to find the centers of such configurations.

In this paper, we present algorithms that decide whether a point set is in
σ-angular configuration, for a given string σ, and if so, the algorithms output a
corresponding center. To our knowledge, there is no treatment of equiangularity
in the vast amount of literature on computational geometry. Only very distantly
related, if at all, are for instance star-shaped polygons and star–graphs [7].

For the general case of σ-angularity, we will present in Section 2 an algorithm
with running time O(n4 log n). For the special cases of biangular and equiangular
configurations, this algorithm runs in cubic time, if the two angles are given. In
Section 3, we will give another algorithm that allows to detect equiangular con-
figurations even in linear time. All algorithms are straightforward to implement.

2 σ-Angular Configurations

In this section, we present an algorithm that detects σ-angularity in running
time O(n4 log n), and we show how to simplify this algorithm for biangular and
equiangular configurations, yielding running time O(n3). Our algorithms rely on
the notion of Thales circles, which we introduce below.

2.1 Thales Circles

Given two points p and q and an angle 0◦ < α < 180◦, a circle C is a Thales
circle of angle α for p and q if p and q are on C, and there is a point x on C such
that �(p, x, q) = α, where �(p, x, q) denotes the angle between p and q w.r.t. x.
In the following we will denote such a circle also by Cpq. An example of a Thales
circle2can be found in Figure 2(a). It is well-known from basic geometry that
all angles on a circle arc are identical, i.e., given a Thales circle C of angle α for
points p and q such that �(p, x, q) = α for some point x on C, then �(p, x′, q) = α
for every point x′ on the same circle arc of C where x is.

Lemma 1. Given two points p and q and an angle 0◦ < α < 180◦, the Thales
circles of angle α for p and q can be constructed in constant time.

The lemma can be proven using basic geometry.
Observe that for two points p and q, there is exactly one Thales circle of

angle 90◦, and there are two Thales circles of angle α �= 90◦. However, in the
remainder of this paper we will often speak of “the Thales circle”, since it will
be clear from the context which of the two Thales circles we refer to.

The connection between Thales circles and σ-angular configurations is the
following (see Figure 2(b)): Assume that a point set P is in σ-angular configu-
ration with center c, for some string of angles σ = (σ1, . . . , σn). For two points
p, q ∈ P , let α be the angle between p and q w.r.t. c, i.e., α = �(p, c, q). Then

2 The name ”Thales circle” refers to Thales of Miletus, who was one of the first to
show that all angles in a semi-circle have 90◦.

26 L. Anderegg, M. Cieliebak, and G. Prencipe

Cpq

α

x

p q

(a)

Cp3p9

Cp7p8

p4

p3

p2

p1

p5

p6

p7
p8 p9

c

(b)

Fig. 2. (a) A Thales circle of angle α < 90◦. (b) Cp3p9 is Thales circle for p3 and p9

with α = σ9 + σ1 + σ2, and Cp7p8 is Thales circle for p7 and p8 with α = σ7.

α =
∑j

k=i σk for two appropriate indices i, j (taken modulo n). Let C be the
circle through p, q and c. Then C is a Thales circle of angle α for p and q. Since
this holds for any pair of points from P - with appropriate angles - this yields
the following:

Observation 1. The center of σ-angularity must lie in the intersection of Thales
circles for any two points from P of appropriate angle.

We will use this observation in our algorithms to find candidates for the
center of σ-angularity.

2.2 Algorithm for σ-Angular Configurations

We now present an algorithm that detects σ-angular configurations in time
O(n4 log n); before, we observe basic properties of σ-angular configurations that
we apply in our algorithm.

Let σ be a string of angles and P be a point set that is in σ-angular con-
figuration with center c. First, observe that the angles in σ must sum up to
360◦; thus, there can be at most one angle in σ that is larger than 180◦. Let
αmax be the maximum angle in σ. Then the following holds (cf. Figure 3): If
αmax > 180◦, then center c is outside the convex hull of P ; if αmax = 180◦ and
there is no other angle of 180◦ in σ, then center c is on the convex hull; if there
are two angles of 180◦ in σ, then all other angles in σ are of 0◦, and the points in
P are on a line; and, finally, if αmax < 180◦, then center c is strictly inside the
convex hull of P . Furthermore, observe for the last case – where c is inside the
convex hull – that the ordering of the points in P that yields σ, if restricted to
the points on the convex hull of P , corresponds to the ordering of these points
along the convex hull.

Our algorithm to detect σ-angularity will distinguish these four cases. For
each case, the algorithm will generate few candidate points that might be a
center of σ-angularity. Then we test for each candidate c whether it is indeed a
center as follows: We compute the angle between a fixed point on the convex hull,
say x, and every other point p ∈ P w.r.t. c. We sort these angles and compute

Efficient Algorithms for Detecting Regular Point Configurations 27

p6

p1

p5

p4

p2

c

p3

p7

α

(a)

p6

p2

c

p1

p4

p5

p3

α

p7

(b)

p1

p7

p5

p3 p4

p6

c

α
p2

p8

(c)

Fig. 3. σ-angular configurations with (a) αmax > 180◦, (b) αmax unique angle of 180◦,
and (c) αmax < 180◦ (dashed lines show the convex hull of {p1, . . . , pn}).

sequence τ by subtracting each angle from its successor. Then candidate c is a
center of σ-angularity if sequence τ or its reverse is a cyclic shift of σ. This test
requires time O(n log n).

Theorem 1. Given a point set P of n ≥ 3 distinct points in the plane and a
string σ = (σ1, . . . , σn) of n angles with

∑
i σi = 360◦, there is an algorithm

with running time O(n4 log n) that decides whether the points are in σ-angular
configuration, and if so, the algorithm outputs a center of σ-angularity.

Proof. The algorithm consists of different routines, depending on whether the
largest angle in σ is greater than, equal to, or less than 180◦. We present the
algorithm for the case that all angles are less than 180◦. The other cases are
solved similarly.

Case All angles less than 180◦. In this case, a center of σ-angularity, if it exists,
is strictly inside the convex hull of P (see Figure 3(c)). Moreover, if we fix three
points from P and compute the Thales circles for these points with appropriate
angles, then the center of equiangularity lies in the intersection of these circles
(cf. Observation 1). This idea is implemented in Algorithm 1.

To see the correctness of the algorithm, note that α and β are two consecutive
range sums of σ′ that sum over at most n angles. Thus, the algorithm has a loop
for each angle α that might occur between x and y according to σ.

If for some angle α all points from P are on the Thales circle Cxy, then α
cannot be the angle between x and y, since the center of σ-angularity would
have to be both on circle Cxy and inside the convex hull of the points, which is
not possible (recall that the center cannot be a point from P by definition).

The running time of Algorithm 1 is O(n4 log n). ��

We now show how to simplify the previous algorithm to test in only cubic
time whether a point set is in biangular configuration, presumed we know the
two corresponding angles:

28 L. Anderegg, M. Cieliebak, and G. Prencipe

Algorithm 1 Algorithm for all angles less than 180◦.
1: If the points in P are on a line Then
2: Return �not σ-angular�
3: σ′ = (σ1, . . . , σn, σ1, . . . , σn)
4: x, y = two arbitrary neighbors on convex hull of P
5: For i = 1 To n Do
6: For j = i To i + n − 1 Do
7: α =

∑j
l=i σ′

l

8: Cxy = Thales circle of angle α for x and y
9: If at least one point from P is not on Cxy Then

10: z = arbitrary point from P that is not on Cxy

11: For k = j + 1 TO j + n Do
12: β =

∑k
l=j+1 σ′

l

13: Cxz = Thales circle of angle β for x and z
14: If Cxy and Cxz intersect in two points Then
15: c = point in intersection that is not x
16: If c is a center of σ-angularity Then
17: Return �σ-angular with center c�
18: Cyz = Thales circle of angle β for y and z
19: If Cxy and Cyz intersect in two points Then
20: c = point in intersection that is not y
21: If c is a center of σ-angularity Then
22: Return �σ-angular with center c�
23: Return �not σ-angular�

Corollary 1. For two given angles α and β with 0◦ ≤ α, β ≤ 180◦, biangular
configurations can be detected in time O(n3).

Proof. First observe that the special case where either α or β is of 180◦ is easy
to solve: In this case, the other angle has to be 0◦, the point set P consists of
exactly 4 points, all points are on a line, and the center of biangularity is every
point between the two median points in P .

In the following, we assume that α, β < 180◦, and adapt Algorithm 1 from
above for this special case: First, we pick two neighbor points x and y on the
convex hull of P . If the points in P are in biangular configuration, then the
angle between x and y is γ = k · (α + β) + δ, for some value k ∈ {0, . . . , n

2 }
and some angle δ ∈ {0◦, α, β}. For each of these possibilities, we compute the
corresponding Thales circle Cxy of angle γ. Like in Algorithm 1, if for some k
and δ all other points are on Cxy, then these values cannot be the right choice.
Otherwise, we pick a point z that is not on Cxy. The angle between y and z is
γ′ = k′ · (α + β) + δ′, for appropriate values k′ ∈ {0, . . . , n

2 } and δ′ ∈ {0◦, α, β}.
We then compute all corresponding Thales circles Cyz of angle γ′ and check for
each of the (at most) two points in the intersection between Cxy and Cyz whether
it is a center of biangularity. The correctness follows from Observation 1.

The running time of this algorithm is O(n3), instead of O(n4 log n) for Algo-
rithm 1. This improvement results from two facts: First, instead of considering
all combinations of two consecutive range sums of σ in Algorithm 1, we consider

Efficient Algorithms for Detecting Regular Point Configurations 29

only all combinations of k(α+β)+ δ and k′(α+β)+ δ′, where k, k′ ∈ {1, . . . , n
2 }

and δ, δ′ ∈ {0◦, α, β}. This reduces the number of executions of the inner loop
from O(n3) to O(n2).

Second, within the loop, we can test a candidate c in linear time (instead
of O(n log n)) as follows: we compute all angles between x and p w.r.t. c for
all points p ∈ P . If any of these angles is not of the form k(α + β) + δ with
k ∈ {0, . . . , n

2 } and δ ∈ {0◦, α, β}, then c cannot be a center of biangularity.
Otherwise, we use three arrays of length n

2 to store the points from p, each
corresponding to one possible value of δ. More precisely, if the angle between x
and p is k · (α + β) + δ, then we store point p in position k of the corresponding
array. This process resembles a kind of bucket counting sort (see e.g. [6]). The
points are in biangular configuration with center c if and only if the following
three conditions hold: 1. in the array corresponding to δ = 0◦ there is exactly
one entry in each position; 2. one of the other two arrays is empty; and 3. in the
remaining array there is exactly one entry in each position. ��

Observe that if the configuration is biangular, then we can immediately de-
termine the corresponding ordering of the points from the values in the three
arrays from the algorithm above. Furthermore, note that the previous corollary
yields immediately an algorithm for equiangularity with running time O(n3),
since in this case α = β = 360◦

n . In the next section we will give an algorithm
that identifies equiangular configurations even in linear time.

3 Equiangular Configurations

In this section, we first show that there is at most one center of equiangularity.
Then we give a linear time algorithm that detects equiangular configurations.

Lemma 2. Given a point set P of n ≥ 3 distinct points in the plane that are in
equiangular configuration with center c, the following holds:

1. Center c is invariant under straight movement of any of the points towards
to or away from c, i.e., the points remain in equiangular configuration with
center c.

c

p2

p6

p7

p8

p3

p1

45◦

p5

p4

Fig. 4. Equiangular configuration and its “shifted” points

30 L. Anderegg, M. Cieliebak, and G. Prencipe

Mx
x

(a)

pu

Up

pl
Lp

p

Conex

(b)

Fig. 5. (a) Median line Mx. (b) Median cone Conex.

2. Center c is the Weber point of P .
3. The center of equiangularity is unique.

Proof. The first claim is trivial. For the second claim, assume that we move
the points in P straight in the direction of c until they occupy the vertices of
regular n-gon centered in c (cf. Figure 4). These “shifted” points are rotational
symmetric, with symmetry center c. It is straightforward to see that the Weber
point for these shifted points is c, since it must be at the center of rotational
symmetry. Since the movements were in the direction of c, and the Weber point
is invariant under straight movement of any of the points in its direction [1], c
must be the Weber point of P . The third claim of the lemma follows immediately
from the previous one and from the fact that the Weber point is unique if the
points are not collinear [3] (observe that more than two points in equiangular
configuration cannot be collinear). ��

A similar argument can be used to show that the center of biangularity, if
it exists, is unique. We now present an algorithm that identifies equiangular
configurations in linear time.

Theorem 2. Given a point set P of n ≥ 3 distinct points in the plane, there
is an algorithm with running time O(n) that decides whether the points are in
equiangular configuration, and if so, the algorithm outputs the center of equian-
gularity.

Proof. We handle separately the cases of n even and n odd, where the first case
turns out to be much easier. Both algorithms can be divided into two steps: First,
they compute (at most) one candidate point for the center of equiangularity; then
they check whether this candidate is indeed the center of equiangularity.

1. Case: n is even. The main idea for n even is as follows: assume for a moment
that the points in P are in equiangular configuration with center c. Since n is
even, for every point p ∈ P there is exactly one corresponding point p′ ∈ P on the
line from p through c (there cannot be more than one point on this line, since
this would imply an angle of 0◦ between these points and p w.r.t. c). Hence,

Efficient Algorithms for Detecting Regular Point Configurations 31

the line through p and p′ divides the set of points into two subsets of equal
cardinality n

2 − 1. We will refer to such a line as median line (cf. Figure 4(a)).
Obviously, center of equiangularity c must lie in the intersection of the median
lines of all points in P . We will use this observation in the following algorithm by
first computing two median lines and then checking whether their intersection
is the center of equiangularity.

Algorithm 2 Algorithm for n even.
1: x = arbitrary point on the convex hull of P
2: Mx = median line of x
3: If |Mx ∩ P | > 2 Then Return �not equiangular�
4: y = clockwise neighbor of x on the convex hull of P
5: My = median line of y
6: If |My ∩ P | > 2 Then Return �not equiangular�
7: If Mx ∩ My = ∅ Then Return �not equiangular�
8: c = unique point in Mx ∩ My

9: If c is the center of equiangularity Then Return �σ-angular with center c�
10: Else Return �not equiangular�

Correctness. To see the correctness of Algorithm 2, observe the following:

For a point on the convex hull of P , the median line is unique. (This does
not necessarily hold for inner points.) If there are more than two points from
P on Mx, then the configuration cannot be equiangular. To see this, recall that
the center of equiangularity, if it exists, will lie on Mx. If there are at least three
points from P on Mx, then two of them will have angle 0◦ w.r.t. the center,
which is impossible for equiangular configurations.

If the two median lines Mx and My are equal, then the configuration cannot
be equiangular. To see this, first observe that in this case x and y are the only
points from P on Mx. Since x and y are adjacent points on the convex hull of
P , all points from P are on one side of Mx. On the other hand, since Mx is a
median line, by definition the number of points from P on both sides of Mx is
equal. Hence, n = 2, in contradiction to the assumption of the theorem.

On the other hand, if the two median lines Mx and My do not intersect, then
the points are not in equiangular configuration. This is obvious, since the center
of equiangularity will lie in the intersection of the median lines of all points
from P .
Finally, if the points are in equiangular configuration with center c, then c must

lie in the intersection of Mx and My.

Time Complexity. We now show how to implement each step of Algorithm 2 in
linear time.

In order to find point x on the convex hull of P , we could just compute the
entire convex hull, but this would take time Θ(n log n). Instead, we take as x an
arbitrary point from P with a minimal x-coordinate. This is always a point on
the convex hull of P and can be found in linear time.

32 L. Anderegg, M. Cieliebak, and G. Prencipe

We can find Mx in linear time as follows. First, we compute the slopes of
all lines from x to any other point p ∈ P − {x} and store these slopes in an
(unsorted) array. Then we pick the line with the median slope. This requires
only linear time, since selecting the k-th element of an unsorted array - and
consequently the median as well - can be done in linear time [6].

Using the unsorted array from the previous paragraph, we can choose y ∈ P
such that the line through x and y has maximal slope amongst all lines through
x and a point in P , using the unsorted array from the previous step. If there is
more than one candidate for y, then we take the one closest to x. Then y is a
point on the convex hull of P .

Finally, the test whether c is the center of equiangularity can be done in linear
time as follows, analogous to the test in the proof of Corollary 1: Let α = 360◦

n .
We compute all angles between x and p w.r.t. c for all points p ∈ P, p �= x. If
any of these angles is not a multiple of α, then the points are not in equiangular
configuration. Otherwise, we store the points from P in an array of length n−1,
where we store point p in the array at position k if the angle between x and p is
k · α. This process resembles again a kind of bucket counting sort (see e.g. [6]).
If there is exactly one point in each position of the array, then c is the center of
equiangularity; otherwise, the points in P are not in equiangular configuration.

2. Case: n is odd. For the odd case, we need to relax the concept of median line,
and introduce that of cone.

The basic idea of the algorithm for this case is similar to the case “n is even”,
but slightly more sophisticated, since we have to relax the concept of median
lines: assume for a moment that the points are in equiangular configuration with
center c. For every point p ∈ P , there is no other point on the line from c to p,
since n is odd and no angle of 0◦ can occur. Hence, such a line divides the set of
points into two subsets of equal cardinality n−1

2 . If we pick two points pl, pu ∈ P
that are ”closest” to this line, in the sense that the slope of the line from p to
c is between the slopes of lines Lp and Up from p to pl and pu, respectively,
then these two points define a cone with tip p (cf. Figure 4(b)). We will refer
to this cone as median cone, since the number of points from P on each side of
the cone (including lines Lp and Up, respectively) equals n−1

2 . Observe that the
median cone is unique for points on the convex hull of P , and that the center of
equiangularity, if it exists, lies in the intersection of all median cones of points
on the convex hull of P . Moreover, for two points x and y on the convex hull of
P , every point that is between x and y in the ordering of the points that yields
equiangularity is a point in the area “between” Conex and Coney (bold points
in the upper left area in Figure 4(b)). We denote this number by kxy. Notice
that the angle between x and y w.r.t. c would be (kxy + 1) · α.

The complete algorithm is shown in Algorithm 3, and illustrated in Figure 5.
Its main idea is to elect three points x, y, z on the convex hull of P ; to use the
median cones of these points to determine the angels between the points w.r.t.
the center of equiangularity (if it exists); to find one candidate center in the
intersection of Thales circles for these points of appropriate angles; and, finally,
to check whether this candidate is indeed the center of equiangularity.

Efficient Algorithms for Detecting Regular Point Configurations 33

Algorithm 3 Algorithm for n odd.
1: x = arbitrary point on the convex hull of P
2: Conex = median cone with tip x
3: y = clockwise neighbor of x on the convex hull of P
4: Coney = median cone of y
5: kxy = number of points from P − {x, y} that lie between the cones Conex and

Coney, including the boundaries
6: α = 360◦

n

7: βxy = (kxy + 1) · α
8: Cxy = Thales circle for x and y of angle βxy

9: Arc = circle arc Cxy ∩ Conex ∩ Coney

10: g = line through the starting and ending point of Arc
11: H = halfplane defined by g that does not contain x and y
12: S = H ∩ P
13: If S = ∅ Then Return �not equiangular�
14: z = point from S with maximal perpendicular distance from g over all points in P
15: If z ∈ Cxy Then Return �not equiangular�
16: kyz = number of points from P − {x, y, z} that lie between the cones Coney and

Conez, including the boundaries
17: βyz = (kyz + 1) · α
18: Cyz = Thales circle for y and z of angle βyz

19: If |Cxy ∩ Cyz| = 1 Then Return �not equiangular�
20: c = unique point in Cxy ∩ Cyz − {y}
21: If c is the center of equiangularity Then Return �σ-angular with center c�
22: Else Return �not equiangular�

Correctness. To see the correctness of Algorithm 3, observe the following:

By definition, no point from P can be strictly inside cones Conex or Coney.
The center of equiangularity, if it exists, is inside the convex hull of the

points. Thus, it is straightforward which of the two Thales circles for x and y is
appropriate, since x and y are points on the convex hull. The same holds for the
Thales circle for y and z.

After picking x and y, we need to find another point z on the convex hull
such that the intersection of the two corresponding Thales circles yields a candi-
date for the center of equiangularity. For the choice of z we have to be careful: if
we simply took z as the next point on the convex hull (after x and y), it might
happen that the corresponding Thales circle Cyz coincides with Cxy, and, conse-
quently, we do not obtain a single candidate for the center of equiangularity in
their intersection. Therefore, we have to chose z such that it is on the convex hull
and such that it does not lie on Cxy. This is done in Lines 9–15, and discussed
in the following (see Figure 5(b)).

If S is empty, then the points are not in equiangular configuration. To see
this, observe that the center of equiangularity, if it exists, must be on Arc, with
Arc as computed in Line 9. On the other hand, if S = ∅, then Arc is completely
outside the convex hull of P , in contradiction to the fact that the center of
equiangularity must be inside the convex hull.

34 L. Anderegg, M. Cieliebak, and G. Prencipe

x

xu

yu

Uy

y

Ux

xl

Ly

yl

Lx

(b)(a)

Cxy

x

Arc

y
g′

zConex

Coney

Fig. 6. (a) Determination of kxy = 5 between Ux and Ly. (b) Determination of g′.

Point z computed in Line 15 is on the convex hull of P : since, by construction,
all points from P are on one side of the line through z that is parallel to g (line
g′ in Figure 5(b)).

If point z is on Cxy, then the points in P are not in equiangular configuration.
To see this, assume that z ∈ Cxy. Then z ∈ Arc by construction, hence, z ∈
Conex ∩Coney. By definition, no point from P can be strictly inside any median
cone; thus, z has to be at one of the two endpoints of Arc. Moreover, no point
from P can be strictly inside H, since H is delimited by g, and z is the point
from P furthest away from g. This implies that points on Arc are on or outside
the convex hull of P . On the other hand, only points on Arc might be a center of
equiangularity, since such a center must lie in the intersection of Conex, Coney

and Cxy. Since the center of equiangularity, if it exists, must be strictly inside
the convex hull of P (otherwise there would be an angle of 180◦), the points
cannot be in equiangular configuration.

The two circles Cxy and Cyz are different, since z �∈ Cxy. Thus, they either
intersect in one or two points. If |Cxy ∩ Cyz| = 1, then y is the unique point in
the intersection, and the points in P cannot be in equiangular configuration. On
the other hand, if the center of equiangularity exists, then it is in Cxy ∩ Cyz, and
thus found in Line 20.

Time Complexity. We now show how to implement each step of Algorithm 2 in
linear time.

Points x and y can be found in linear time like in the algorithm for the case
“n is even”.

To find the median cone Conex, we proceed analogous to the search for the
median line in algorithm for the case “n is even”: First we compute the slopes
of all lines from x to every other point p ∈ P , and store them in an (unsorted)
array. Let Lx and Ux be the two lines such that their slope is the 	n/2
-th and

Efficient Algorithms for Detecting Regular Point Configurations 35

the �n/2�-th largest, respectively, among all stored slopes. These two lines define
Conex, and can be found in linear time using like before an algorithm to select
the k-th element of an unsorted list [6]. Analogous, we can find Coney.

To determine value kxy, let p be the point in the intersection of Ly and Ux,
the two lines that delimit cones Conex and Coney (cf. Figure ??(a)). Then kxy

is the number of points from P − {x, y} that lie inside or on the convex angle
in p with edges Ly and Ux. This number can be obtained in linear time by
comparing the position of every point in P against Ly and Ux. Value kyz can be
found analogous.

Finally, the test whether c is the center of equiangularity can be done in
linear time like in the algorithm for the case “n is even”. ��

4 Conclusions

We have given an algorithm that decides in time O(n4 log n) whether n points
are in σ-angular configuration, and if so, the algorithm outputs a center of σ-
angularity. The adaption of this algorithm for biangular configurations runs in
cubic time, if the corresponding two angles are given. Finally, for the case of
equiangularity, we have given an algorithm that runs even in time O(n).

While the algorithm for equiangularity is already asymptotically optimal,
we believe that the running time of the algorithm for σ-angularity allows to be
significantly improved.

As already stated, our algorithm for equiangularity allows to find the Weber
point for such configurations, and this is a rather surprising result, since algo-
rithms to compute the Weber point (in finite time) are known for only few other
patterns. We are not aware of any general characterization of patterns where the
Weber point is easy to find; this might be an interesting line of future research.

References

1. L. Anderegg, M. Cieliebak, G. Prencipe, and P. Widmayer. When is Weber Point
Invariant? (Manuscript).

2. C. Bajaj. The Algebraic Degree of Geometric Optimization Problem. Discrete and
Computational Geometry, 3:177–191, 1988.

3. R. Chandrasekaran and A. Tamir. Algebraic optimization: The Fermat-Weber lo-
cation problem. Mathematical Programming, 46:219–224, 1990.

4. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gathering
problem. In Proceedings of ICALP 2003, pages 1181–1196, 2003.

5. E. J. Cockayne and Z.A. Melzak. Euclidean constructibility in graph-minimization
problems. Math. Magazine, 42:206 – 208, 1969.

6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

7. J. E. Goodman and J. O’Rourke. Handbook of Discrete and Computational Geom-
etry. CRC Press LLC, Boca Raton, FL, 1997.

8. E. Weiszfeld. Sur le Point Pour Lequel la Somme Des Distances de n Points Donnés
Est Minimum. Tohoku Mathematical, 43:355–386, 1936.

Pickup and Delivery for Moving Objects

on Broken Lines

Yuichi Asahiro1,�, Eiji Miyano2,��, and Shinichi Shimoirisa3

1 Department of Social Information Systems, Kyushu Sangyo University,
Fukuoka 813-8503, Japan

asahiro@is.kyusan-u.ac.jp
2 Department of Systems Innovation and Informatics, Kyushu Institute of

Technology, Fukuoka 820-8502, Japan
miyano@ces.kyutech.ac.jp

3 Products Development Center, Toshiba Tec Corporation, Japan

Abstract. We consider the following variant of the Vehicle Routing
Problem that we call the Pickup and Delivery for Moving Objects
(PDMO) problem, motivated by robot navigation: The input to the prob-
lem consists of n products, each of which moves on a predefined path with
a fixed constant speed, and a robot arm of capacity one. In each round,
the robot arm grasps and delivers one product to its original position.
The goal of the problem is to find a collection of tours such that the robot
arm grasps and delivers as many products as possible. In this paper we
prove the following results: (i) If the products move on broken lines with
at least one bend, then the PDMO is MAXSNP-hard, and (ii) it can be
approximated with ratio two. However, (iii) if we impose the “straight
line without bend” restriction on the motion of every product, then the
PDMO becomes tractable.

1 Introduction

The Vehicle Routing Problem (VRP for short) or Vehicle Scheduling Problem is
one of the best known routing problems (see for a survey [1] and the references
contained therein). In the VRP we have scarce capacitated vehicles, their home
depot, and a large number of customers who request the vehicles to transport
their products to the depot. A typical VRP can be described as the problem of
designing as short routes from the depot to the customers as possible in such
a way that each customer is visited only once by exactly one vehicle, all routes
start and end at the depot, the total demand of all customers on one particular
route cannot exceed the capacity of the vehicle, and all the products have to be
collected to the depot. The VRP has received considerable attention especially in
the operations research literature for its wide applicability to practical situations
and thus a lot of its variants have been introduced, such as the VRP with Time
� Supported in part by Grant-in-Aid for Young Scientists 15700021, and Research on

Priority Areas 16092223.
�� Supported in part by Grant-in-Aid for Research on Priority Areas 16092223.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 36–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pickup and Delivery for Moving Objects on Broken Lines 37

Windows (VRPTW) and the VRP with Backhauls (VRPB) (see, e.g., [2,3,4]).
In the VRPTW, each customer has a release time and a deadline, and the goal is
to visit as many customers as possible within their “time-windows.” The VRPB
involves both a set of customers to whom products are to be delivered and a set
of vendors whose products need to be transported back to the depot, and the
critical assumption is that all deliveries must be made on each route before any
pickups can be made.

In this paper, we consider a new extension of the classical VRP motivated by
a real-world routing situation, called the Pickup and Delivery for Moving Objects
(PDMO) problem: Given manufacture products initially located on numbers of
convey belts in arbitrary positions, the robot arm must grasp and deliver the
products to the fixed position (depot). That is, the input to the problem consists
of n objects (products), each of which moves on a predefined broken-line path
with a fixed constant speed, and a robot arm of capacity one. In each round, the
robot arm grasps and delivers one object to the depot. If some object can move
faster than the robot in the opposite direction from its current position, then
the robot is not able to collect the object. Therefore, the goal of the problem is
to find a collection of tours such that the robot arm grasps and delivers as many
objects as possible.

1.1 Our Contributions

Since the original VRP and its variants are not only practically but also theoreti-
cally interesting, and not at all easy to solve, it is important to study the PDMO
from both the complexity and the algorithmic viewpoints. Hence it follows that
a fundamental question is the complexity status of the PDMO, especially with
respect to approximation. In this paper, we prove that the PDMO is MAXSNP-
hard in the general case, and moreover it is still true for the case where all objects
move on broken lines with only one bend. That is, unfortunately, we cannot ob-
tain a polynomial-time approximation scheme (PTAS) for the PDMO under the
assumption P �= NP even if every motion of the object is highly restricted. On
the other hand, we provide a simple greedy algorithm that obtains a solution
with a value of at least 1

2 times the value of an optimal solution. Finally, as a
straightforward step towards tackling this intractable problem, we slightly im-
pose one restriction on the motion of every object; we assume that every object
moves on an individual straight line with no bend. Then, under this assumption,
we show that there is an O(n log n)-time algorithm which maximizes the number
of objects collected by a robot arm.

1.2 Related Work

The VRP includes the Traveling Salesperson Problem (TSP) as a special case,
i.e., only one vehicle is available at the depot and no additional operational
constraints are imposed, which is probably the best important in the field of
complexity theory and combinatorial optimization (see, e.g., the classical book
edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys [5]). Similarly to the prob-
lem of this paper, very recently, kinetic versions of the TSP, called the Dynamic

38 Y. Asahiro, E. Miyano, and S. Shimoirisa

k-Collect TSP problem [6], the Moving-Target TSP problem [7], or the Kinetic
TSP problem [8], have been introduced: Given n objects, each j moving with a
constant speed vj , and a robot arm R with capacity k and with the maximum
speed vR > vj for all j’s, we ask for the robot arm’s tour that collects all the
n moving objects and whose length is as short as possible. It is important to
note that the goal of the problem is to minimize the total completion time, not
to maximize the so-called profit. Chalasani, Motwani, and Rao [6] proved that
the problem can be approximated in polynomial time within a constant factor if
k = ∞, and can be solved in polynomial time if k = 1 and the robot and the ob-
jects move on a single track-line. Helvig, Robins, and Zelikovsky [7] showed that
there is a (1+α)-approximation algorithm if k = ∞ and at most O(log n

log log n) ob-
jects are moving, where α denotes an approximation factor of the best heuristic
for the classical TSP. In [8] Hammar and Nilsson showed that there is a PTAS if
k = ∞ and all objects have the same speed. Although there hardly appears to be
any prior work on the profit maximization, Asahiro, Horiyama, Makino, Ono,
Sakuma, and Yamashita [9] provided a couple of first-step results for several
special cases, and Asahiro, Miyano and Shimoirisa [10] for the time constrained
version; only a few approximable results are known for a very restricted case,
and non-approximable results have not been shown.

One can notice that there is a close connection between the PDMO and
some class of time constrained job scheduling problems, such as the sequencing
problems [11,12] and the job interval selection problems [13]. In the job scheduling
model, the input is a set of jobs, each of which has its constant processing time.
The objective is to schedule as many jobs as possible to a single machine (or,
several machines). Note, however, that in the PDMO the processing time for
each moving object, i.e., the period between the robot’s departure time and its
arrival time at the depot is variable, which makes the PDMO harder. The job
scheduling model also contains a large number of intractable cases, and hence a
great deal of effort has been devoted to the design of approximation algorithms
with small constant performance ratios [14,15,16].

1.3 Organization

The rest of this paper is organized as follows: We begin with more precise def-
initions of our problems and then summarize our results in Sect. 2. Then we
give a 2 factor approximation algorithm for the general problem, followed by
a polynomial time algorithm for moving objects on straight lines in Sections 3
and 4, respectively. In Sect. 5, we prove the MAXSNP-hardness of the PDMO.
Finally, we conclude in Sect. 6.

2 Problems and Results

Let B = {b1, b2, · · · , bn} be a set of moving objects in the xy-plane with the
Euclidean metric. The speed of each object bi is v(bi). As illustrated in Fig. 1,
a path of each object bi is a broken line given as a sequence of line segments,
or vertices labeled as C0(bi) = (x0(bi), y0(bi)), C1(bi) = (x1(bi), y1(bi)) through

Pickup and Delivery for Moving Objects on Broken Lines 39

O x

y

b i C (b)0 i
C (b)1 i

C (b)2 i C (b)3 i

v(b)i

b j

C (b)0 j

C (b)1 j

C (b)2 j

C (b)3 j

Fig. 1. Moving objects and their paths

Cm(bi)+1 = (xm(bi)+1(bi), ym(bi)+1(bi)). That is, the broken line has m(bi) bends.
Also, let m = maxbi∈B m(bi). Every bi starts from C0(bi) at time 0 and moves to-
wards the next point C1(bi) with speed v(bi). Then, at time |C1(bi)C0(bi)|/v(bi),
bi arrives at C1(bi), changes the direction there, and moves towards C2(bi), and
so on.

We now can formulate the problem of this paper, Pickup and Delivery for
Moving Objects on Broken Lines (PDMO), as follows:

PDMO:
Instance: A set B = {b1, b2, · · · , bn} of moving objects and their paths, where

each bi is initially placed on C0(bi).
Question: Find a longest scheduling of a robot arm R with speed vR, that is rep-

resented as a sequence of triples (s1, bi1 , g1), (s2, bi2 , g2), · · ·, for i1, i2, · · · ∈
{1, · · · , n}, such that for any j, k, bij �= bik

and each of (sj , bij , gj)’s satisfies
the following three conditions:
(i) R is at the origin O at time sj .
(ii) (Pickup) R can start from O at time sj , move onto the path of bij , and

then grasp bij . Namely, bij arrives at the point where R is waiting for
bij to come.

(iii) (Delivery) R can move back to O at time gj , and gj ≤ sj+1 (except for
the last one).

We simply call a turn of pickup and delivery of an object, collect the object.
A scheduling is valid if the three conditions (i), (ii), and (iii) are satisfied. We
assume that the robot arm can stop only at the origin and makes no detour to
move to any position, because a general scheduling can be transformed easily
to such a scheduling without decreasing the number of objects to be collected.
This assumption yields that gj is uniquely determined by sj and bij . If it is not
ambiguous in the context, we often abbreviate, for example, C0(bi) and v(bi) as
C0 and v, respectively. Without loss of generality we set vR = 1. Since an object
whose speed is slower than vR can be collected at any time, we focus only on
the case that all the objects move with faster or same speeds compared to the

40 Y. Asahiro, E. Miyano, and S. Shimoirisa

robot arm. We say an algorithm ALG is an r factor approximation algorithm
for a maximization problem if for any instance I, OPT(I)/ALG(I) is bounded
above by r, where OPT(I) is the objective function value of an optimal solution
for I and ALG(I) is that of a solution ALG obtains.

In this paper we mainly prove the following three theorems:

Theorem 1. The PDMO is MAXSNP-hard even if m(bi) = 1 for all i’s.

Theorem 2. There exists a 2 factor approximation algorithm for the (general)
PDMO that runs in O(mn2).

Theorem 3. If ∀i, m(bi) = 0 (i.e., all the objects move on straight lines), then
there exists an O(n log n)-time algorithm that maximizes the total number of the
moving objects collected by a robot arm.

In the following sections, we shall give the proofs of Theorems 2, 3 and 1, in
that order.

3 A 2-Approximation Algorithm

In this section, we present the 2 factor approximation algorithm of Theorem 2,
but before describing it, we first show a lemma. Let the completion time Ti(t)
of an object bi be the smallest td where the robot arm starts at time t or later
from the origin O, grasps the object bi, and delivers it at time td back to O.

Lemma 1. For any object bi and time t, Ti(t) can be computed in O(m) time.

Proof. Consider an object b with speed v > 1 (= vR). First we argue only
about the first line segment of its path. Let the first two vertices of its path be
C0 = (x, y) and C1 = (x1, y) (x1 < x and y > 0), i.e., b horizontally moves left.
Note that when we focus on one object, we can adjust the axes to meet this
condition by rotation and symmetry in O(1) time. If b can be collected on this
segment, x > 0 holds; otherwise, b cannot be collected since in the case where
x ≤ 0, it moves away from the origin and is faster than the robot arm.

Consider a point M = (ex, y), where x1/x ≤ e ≤ 1. If the robot arm R grasps
b on M and delivers it to the origin O, then the time t(e) that the robot arm
delivers b is given as summation of time that the object reaches M and that the
robot arm moves back to the origin from M :

t(e) =
(1 − e)x

v
+

√
y2 + e2x2.

This takes minimum by setting

e =
y

x
√

v2 − 1
,

and hence the point Mmin on which the robot arm grasps b is

Mmin = (
y√

v2 − 1
, y). (1)

Pickup and Delivery for Moving Objects on Broken Lines 41

Then the minimum completion time Tmin that the robot arm grasps b on C0C1

is obtained as
Tmin =

x

v
− y

v
√

v2 − 1
+

vy√
v2 − 1

.

Also, b arrives at Mmin at time

tmin =
(1 − e)x

v
=

x

v
− y

v
√

v2 − 1

and the distance |OMmin| is equal to vy/
√

v2 − 1. Therefore, to minimize the
completion time, R starts at time

t0 = tmin − vy√
v2 − 1

from O (if it can), moves to Mmin, grasps b, and finally returns back to O.
However, since the above t0 depends on the location (x, y) of C0, it is possibly
to be negative that implies that the robot arm cannot start from the origin at
t0. Therefore, in summary, if x > 0, t0 ≥ 0 and 0 ≤ t ≤ t0, the robot arm R can
accomplish the motion and then Ti(t) = Tmin holds since R can stay at O until
time t0, moves to the point Mmin, grasps and eventually delivers b.

For the other case t0 < 0 or t > t0, suppose that R starts at time t from O
and grasps b on (x−vt′(v, x, y, t), y) at time t′(v, x, y, t) ≤ |C0C1|/v = (x−x1)/v.
Let t1 in the following satisfy t1+|OC1| = (x−x1)/v. The time T that R delivers
b is

t′(v, x, y, t) +
√

(x − vt′(v, x, y, t))2 + y2.

Since t′(v, x, y, t) = t +
√

(x − vt′(v, x, y, t))2 + y2,

T = t + 2
√

(x − vt′(v, x, y, t))2 + y2, and

t′(v, x, y, t) =
(vx − t)2 +

√
(vx − t)2 − (v2 − 1)(x2 + y2 − t2)

v2 − 1
.

This motion can be done when (vx− t)2− (v2−1)(x2 +y2− t2) ≥ 0, that derives

x − √
2x2 − (v2 − 1)y2

v
(def= t2) ≤ t ≤ x +

√
2x2 − (v2 − 1)y2

v
(def= t3).

As a result,

T (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

v
− y

v
√

v2 − 1
+

vy√
v2 − 1

, if x > 0, t0 ≥ 0, and 0 ≤ t ≤ t0,

t + 2
√

(x − vt′(v, x, y, t))2 + y2,

if x > 0 and max{t0, t2} < t ≤ min{t1, t3}, and

undefined, otherwise.

42 Y. Asahiro, E. Miyano, and S. Shimoirisa

All the above t0, t1, t2, t3, t
′(v, x, y, t) and so T (t)’s can be computed from x, x1, y,

v and t in O(1) time. By “undefined” we mean that the object cannot be collected
on the line segment in that situation.

Now we look at a line segment CjCj+1 of the path (j ≤ m(b)). Similarly we
can compute the minimum completion time T (j)(t) with regard to CjCj+1 in
O(1) time: Let the time that b arrives at Cj be

sj =
j−1∑

k=0

|CkCk+1|
v

.

Only by replacing the above symbols, e.g., x with xj , one can see that the
following holds:

T (j)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj

v
− yj

v
√

v2 − 1
+

vyj√
v2 − 1

, if xj > 0, t0 ≥ 0, and 0 ≤ t ≤ sj + t0

t + 2
√

(xj − vt′(v, xj , yj, t))2 + y2
j ,

if xj > 0 and sj + max{t0, t2} < t ≤ sj + min{t1, t3}, and

undefined, otherwise.

Since the domain of T (j)(t) for CjCj+1 overlaps the others, to obtain the true
completion time at t, we have to compute the above T (j)(t)’s for all the line
segments CjCj+1’s, and then select the minimum value among them, which
requires O(m) time.

As for the case v(b) = vR, similar but rather simpler discussion can be done
that proves the statement of the lemma. We omit it here. �	

The following is a description of the algorithm. The operator ◦ denotes con-
catenation of a sequence and a triple which represents a tour of collecting an
object.

Algorithm Iterated Greedy:
Stage 0. Set the current time t = 0, and initial scheduling S = NULL.
Stage 1. The following operations are executed while some of objects are pos-

sible to be collected, i.e., the completion time for an object is defined.
1-1. Set j = argmini{Ti(t)}.
1-2. Grasp and deliver bj : S = S ◦ (t, bj, Tj(t))
1-3. Update t = Tj(t), and return to the beginning of Stage 1.

Stage 2. Output S and exit.

Proof of Theorem 2. First of all, we estimate the running time of the above
Iterated Greedy. From Lemma 1, Stage 1-1 is executed in O(mn) time since
each completion time Ti(t) for bi is obtained in O(m) time and the number of
objects is n. Stages 1-2 and 1-3 can be done in O(1) time. Since the num-
ber of iterations of Stage 1 is at most n and Stage 2 is done in O(n) time,
Iterated Greedy runs in O(mn2) time.

Pickup and Delivery for Moving Objects on Broken Lines 43

Next we prove that Iterated Greedy is a 2 factor approximation algo-
rithm. Suppose that given an instance, Iterated Greedy collects p moving ob-
jects, u1, u2, · · · , up, in this order. Also, suppose that for the same instance
an optimal algorithm OPT collects v1, v2, · · · , vq (q > p) in this order. Let
the scheduling SA of Iterated Greedy be (s1(A), u1, g1(A)), (s2(A), u2, g2(A)),
· · ·, (sp(A), up, gp(A)) and also let SOPT of OPT be (s1(OPT), v1, g1(OPT)),
(s2(OPT), v2, g2(OPT)), · · ·, (sq(OPT), vq, gq(OPT)). We divide the time inter-
val [0, Tm], where Tm = max{gp(A), gq(OPT)}, into [0, g1(A)), [g1(A), g2(A)),
· · ·, [gp(A), Tm].

Consider the first interval [0, g1(A)). Since Iterated Greedy first collects
an object whose completion time is minimum, in this interval, OPT delivers
no objects and g1(OPT) ≥ g1(A) holds. In the second interval [g1(A), g2(A)),
Iterated Greedy delivers one object u1. Assume that g2(OPT) < g2(A), i.e.,
OPT delivers two objects v1 and v2 in this interval. If v2 ∈ B−{u1, v1}, then this
contradicts the fact that g2(A) is the minimum among the completion times of
B −{u1}, since g1(A) ≤ g1(OPT) ≤ s2(OPT) < g2(OPT) < g2(A) that implies
the completion time of v2 is less than that of u2. Therefore, in this case, v2 is
only possible to be identical to u1. Therefore within the interval [g1(A), g2(A))
in which A delivers one object, OPT can deliver at most two objects. Similarly
for the other interval [gi(A), gi+1(A)), if the number of objects OPT collects in
this interval is more than one, then the additional objects collected belong to
{u1, · · · , ui}, because ui+1’s completion time is minimum among B−{u1, · · · , ui}
at time gi(A). By induction, the number of objects OPT collects in [0, gi+1(A))
is at most 2i, while A collects i objects u1, · · · , ui in this interval, in which the
increase i comes from {u1, · · · , ui}. This concludes the proof. �	

Although the above analysis is rather simple, the factor 2 is best possible for
Iterated Greedy; there is a tight example that Iterated Greedy can collect
only half of objects that an optimal solution does.

Proposition 1. There exists an instance for which the number of objects col-
lected by Iterated Greedy is 1/2 of an optimal solution.

Proof. See Fig. 2. The initial points of objects b1 and b2 are respectively (l, l)
and (l + ε,−(l + ε)), where l is some constant and ε is small positive. The angle
∠C1 is set to, say, 60◦. Suppose that the speeds of the objects and the robot
arm are all 1. Since the minimum completion time 2l is obtained by grasping b1

on the point D at time l, Iterated Greedy collects b1 first. However, at time
2l or later, b2 cannot be collected, so that the number of objects collected by
Iterated Greedy is one. On the other hand, the optimal solution is collecting
b2 and b1 in this order. When b2 is delivered at time 2l + 2ε, b1 already passed
through D but there is another chance to collect it on the point E at time
(1 +2

√
3)l. Therefore, the optimal number of objects to be collected is two, and

is twice of that by Iterated Greedy. �	

This worst case example intuitively shows the intractability of the problem,
and is based on the proof of MAXSNP-hardness in Sect. 5. On the other hand,

44 Y. Asahiro, E. Miyano, and S. Shimoirisa

object

O

C 1
b1

C 0

object b2

D

E

F

l

εl+

l

l

εl+

Fig. 2. A worst case example for Iterated Greedy

we can obtain optimal solutions if all the paths of objects are straight lines,
which is shown in the next section.

4 An O(n log n)-Time Algorithm for No Bend

Assuming that all the paths of the objects are straight lines, we shall give an
algorithm mentioned in Theorem 3. At first, we show the following lemma on
Iterated Greedy in this setting:

Lemma 2. Iterated Greedy obtains an optimal solution when all the paths of
objects are lines.

Proof. Look again at the discussion of the proof of Theorem 2 in the previous
section. The main reason why the approximation ratio rose up to two was that,
say, in the interval [g1(A), g2(A)), OPT could collect an object u1 after the
time g1(A) at which Iterated Greedy delivered u1. However, if u1 moves on
a straight line, this cannot happen: Recall that we assume the speed v of an
object is faster than or equal to the speed vR(= 1) of the robot arm. We explain
the situation by using Fig. 2 again. Suppose that Iterated Greedy grasps b2

on a point Z (not shown in Fig. 2) at time t. Then, the time Iterated Greedy
delivered b2 is t + |OZ|/vR. |OZ|/vR > |ZF |/v holds since |OZ| > |ZF | and
vR ≤ v. Let us consider any algorithm that has not collected b2 until time
t + |OZ|. Such an algorithm cannot collect b2 starting from O at time t + |OZ |
or later, whatever |OZ| is, since at that time b2 passed through F and the speed
vR of the robot arm is less than or equal to that of b2 in this situation. This
implies that any algorithm can collect at most one object in a divided interval
described in the proof of Theorem 2, except the first interval [0, g1(A)) that no
algorithm can collect any object. Therefore the number of objects collected by
Iterated Greedy is optimal. �	

Iterated Greedy calculates all the completion times and selects the min-
imum one iteratively in Stage 1. However, we show that by obtaining once
the completion time functions Ti(t)’s of all the objects for an arbitrary time
t at the beginning and by using the lower envelope of those functions, the run-
ning time can be improved. Now, let T = {T1(t), T2(t), · · · , Tn(t)} be a collec-
tion of completion time functions. The lower envelope of T is now defined as
ET (t) = min1≤i≤n Ti(t).

Pickup and Delivery for Moving Objects on Broken Lines 45

Algorithm Envelope:
Stage 1. For each object bi, compute its completion time function Ti(t) for an

arbitrary time t.
Stage 2. Compute the lower envelope ET (t) of T = {T1(t), T2(t), · · · , Tn(t)}.
Stage 3. Set t = 0 and S =NULL initially.
Stage 4. Execute the following operations while the lower envelope is defined

at time t:
4-1. Select the lowest function Tj(t) at time t by using the lower envelope

ET (t). Then, grasp and deliver the object bj : S = S ◦ (t, bj, Tj(t)).
4-2. Update t = Tj(t) and return to the beginning of Stage 4.

Stage 5. Output S and exit.

Proof of Theorem 3. First we shall note the correctness of the algorithm
Envelope. This algorithm essentially executes the same greedy strategy used in
Iterated Greedy, and so runs correctly. Next, we show that Envelope runs in
O(n log n) time. Stage 1 needs O(n) time based on Lemma 1, since only one seg-
ment exists for each object and so its completion time function can be obtained
in O(1) time. In Stage 2, the lower envelope is obtained by a divide-and-conquer
method [17]. Its running time is dependent of the number of intersections be-
tween a pair of completion time functions. Since all the objects move on straight
lines at constant speed, a completion time function intersects only once with the
other completion time function, so that the required time to obtain the lower
envelope is O(n log n). Stages 3 and 5 are done in O(1) time and O(n) time,
respectively.

The rest is analysis for Stage 4 that takes O(n) time in an amortized sense:
The lower envelope is assumed to be given as pairs of an time interval and an
index that indicates which object yields the minimum completion time within
the interval. By definition of the paths of the objects, each completion time
function for an object appears only once as a part of the lower envelope, hence
the number of the pairs of time interval and an index is at most n. Suppose
that at an iteration of Stage 4, the current time is t and bk is the one whose
completion time is minimum among all. Then as stated above in the proof of
Lemma 2, for time Tk(t) which is used as t for the next iteration, the completion
time for the object bk is undefined. Therefore, each time-interval of the lower
envelope is under consideration at most once in Stage 4. Since Stage 4-2 can
be done in O(1) time, Stage 4 takes O(n) time in total. In summary, the time
complexity of Stage 2 is the largest among all the stages, and then the running
time of Envelope is O(n log n) in total. �	

5 MAXSNP-Hardness

We shall show the proof of Theorem 1. In [13], the following restricted version of
Job Interval Scheduling Problem, called JISP2, is shown to be MAXSNP-hard.
We reduce the JISP2 to a restricted version of the PDMO in which all m(bi)’s
are equal to one, i.e., all the moving objects turn only once.

46 Y. Asahiro, E. Miyano, and S. Shimoirisa

JISP2:
Instance: A set J = {1, 2, · · · , n} of n jobs, two intervals of length 2 associated

with each job j: Ij,1 = [rj,1, rj,1 +2], and Ij,2 = [rj,2, rj,2 +2], where rj,1 and
rj,2 are integers, rj,1 ≥ 0 and rj,1 + 2 < rj,2 holds.

Question: Find a longest sequence S of intervals Ij1,k1 , Ij2,k2 , · · · , Ijh,kh
that

satisfies the following two conditions:
– Either Ij,1 or Ij,2 can be included in S for any j. (Neither may be in-

cluded.)
– For 1 ≤ i ≤ h − 1, rji,ki + 2 ≤ rji+1,ki+1 (i.e., no interval overlaps any

others in S.)

We show an L-reduction from the JISP2 to the PDMO. The definition of the
L-reduction from problem A to problem B is as follows [18]:

An L-reduction is a pair of functions R and S, both computable in
logarithmic space, with the following two additional properties: First, if
x is an instance of A with optimal cost OPT (x), then R(x) is an instance
of B with optimal cost that satisfies OPT (R(x)) ≤ α · OPT (x), where
α is a positive constant. Second, if s is any feasible solution of R(x),
then S(s) is a feasible solution of x such that |OPT (x) − c(S(s))| ≤
β · |OPT (R(x)) − c(s)|, where β is another positive constant.

For a job j of the JISP2 which has parameters r1 and r2 as its starting times
of intervals, we construct an object bj with speed v = 2 and its path for the
PDMO: As illustrated in Fig. 3, bj is initially placed on a point A, and its path
is bended at a point C. We determine (i) the radius l (and so F), (ii) the location
of D, (iii) the location of C that determines E and G, (iv) the location of A,
and finally (v) the location of B, in this order. The reason why the speed v is
set to two is presented at the almost end of this proof.

We first set

l =
√

v2 − 1
v

=
√

3
2

,

and then AC and CB are tangential lines of a circle whose center is at O and
radius is l. In addition to that, AC is parallel to the horizontal x-axis. We
now determine the exact location of D. Let the points at which T (t) gives the
minimum on AC (and CB) be D (and E) that can be obtained by (1) in the
proof of Lemma 1,

D =
(

l√
v2 − 1

, l

)
=

(
1
v
,

√
v2 − 1
v

)
=

(
1
2
,

√
3

2

)
,

by which |OD| = 1 holds.
Next we determine the location of C. Note that |OC|2 = l2 + |FC|2 holds.

Then, we choose the location of C such that (|DC| + |CE|)/v = r2 − (r1 + 2)
which is the gap between the first and the second intervals of the job j. Since

Pickup and Delivery for Moving Objects on Broken Lines 47

object

O

C D

E

F

G

A

B

l

Fig. 3. Reduction from the JISP2 to the PDMO

|DF | = |GE| and hence |DC|+|CE| = |FC|+|CG| = 2|FC|, we set the location
of C such that

|OC|2 = l2 +
(

v(r2 − (r1 + 2))
2

)2

=
3
4

+ (r2 − (r1 + 2))2.

We can always determine the location of C that satisfies the above equation.
Then the location of G is determined in straightforward, and also E is determined
based on the location of C as D above.

The remainder of the points, A and B are to be determined. The location of
A is the point such that |AD| = (r1 + 1)v, i.e.,

A =

(
1
v

+ (r1 + 1)v,

√
v2 − 1

v

)
=

(
1
2

+ 2(r1 + 1),
√

3
2

)

holds. Then we extend the line segment CG to some arbitrary position labeled
as B. This ends the reduction that can be done in logarithmic space. Note
that D and E can be always located on AF and CG, respectively, because
|DF | = |EG| = 1/v = 1/2 and the above configuration gives |AF | > v = 2
and |CG| ≥ v/2 = 1. By this reduction, the minimum completion time for bj is
obtained by starting from O at time r1 (or r2), then grasps it on D (or E) at
time r1 + 1 (or r2 + 1), and finally delivers it at time r1 + 2 (or r2 + 2).

For an instance X of the JISP2, we show the first condition of the L-reduction
in a stronger form OPT (X) = OPT (R(X)), where R(X) is an instance of the
PDMO given as the above reduction from X . Let a feasible solution S of JISP2
be I1,k1 , I2,k2 , · · ·, where ki ∈ {1, 2}. For all i’s, if ki = 1, then we choose as
the robot arm’s motion (ri,1, bi, ri,1 + 2) in which the robot arm starts from O
at time r1, grasps bi on D, and delivers it at time r1 + 2. Otherwise (ki = 2),
(ri,2, bi, ri,2+2) that grasps bi on E is chosen as well. Since ∀i, ri,ki +2 ≤ ri+1,ki+1

in S, the scheduling of the robot arm chosen is valid, and then the number of
objects collected is equal to the number of jobs done in S for the JISP2. At this
point, we can only say that OPT (R(X)) ≥ OPT (X).

We call the robot arm’s scheduling S is canonical if it includes only these
two kinds of triples (ri,1, bi, ri,1 +2) and (ri,2, bi, ri,2 +2). Also we call a triple or
motion (s, b, g) is canonical if it is either of them. In the above, we transformed
a feasible solution of the JISP2 to a canonical scheduling of the PDMO with the
same objective value. Next we will show that any scheduling of the robot arm

48 Y. Asahiro, E. Miyano, and S. Shimoirisa

can be transformed into a canonical one without changing the objective value
(the number of collected objects). This implies that it is sufficient to consider
canonical schedulings only, and then concludes that OPT (R(X)) = OPT (X)
since canonical schedulings can preserve the objective value.

Suppose that a scheduling S of the PDMO is not canonical. S includes (i) a
motion starts before ri,1(or ri,2) and grasps an object bi on AD (or CE), and (ii)
a motion starts after ri,1(or ri,2) and grasps an object bi on DC (or EB). See
Fig. 3. As for (i), since the motion (ri,1, bi, ri,1+2) for object bi has the minimum
completion time, the motion (s, bi, g) of (i) meets the conditions s < ri,1 and
ri,1 + 2 < g. Then, if S is valid, replacement of (s, bi, g) to (ri,1, bi, ri,1 + 2) in
S also gives a valid scheduling and the number of collected objects does not
change. As for the case considering the motion (ri,2, bi, ri,2 + 2), it is similar.

Let S′ be another scheduling which is obtained by replacing all the motions
of (i) in S with canonical ones. That is, S′ includes canonical motions and the
motions of (ii). Consider the first motion (s, bi, g) of (ii) in S′. It satisfies ri,1 < s
and ri,1 + 2 < g (or, ri,2 < s and ri,2 + 2 < g). Suppose that s− ri,1 ≤ tmax < 1
(which is shown later) where tmax denotes the maximum latency of time to start
and grasp bi compared to the canonical motion. Let us consider the case the
robot arm collects bj by a canonical motion (rj , bj , rj + 2), and next collects
bi by a motion (s, bi, g) of (ii), i.e., rj + 2 ≤ s. The intervals corresponding to
the jobs of the instance X for the JISP2 are supposed to be [rj , rj + 2] and
[ri, ri + 2]. (We do not have to care about whether they are Ij,1 or Ij,2, and Ii,1

or Ii,2.) Then, rj +2 ≤ s ≤ ri + tmax holds. There are the following two cases: (a)
ri ≥ rj +2 and (b) ri < rj +2. The case (a) implies that [rj , rj +2] and [ri, ri +2]
do not overlap, and therefore, the canonical motion (ri, bi, ri +2) can be adopted
instead of the motion (s, bi, g). In the case (b), since rj and ri are both integers,
ri < rj + 2 implies that ri + 1 ≤ rj + 2. Then s ≤ ri + tmax < ri + 1 ≤ rj + 2,
and this contradicts the assumption that the robot arm collects bi starting at
time s from the origin after it delivers bj at time rj + 2. From the cases (a)
and (b), therefore, the first motion of (ii) in S′ can be also replaced with a
canonical motion. Since this replacement can be done iteratively, as a result all
the motions of (ii) can be replaced with canonical ones without changing the
number of collected objects.

Next we prove the assumption tmax < 1 in the above discussion. Suppose
that the robot has to start from O at time t to grasp an object b on the point
D, which yields minimum completion time. Since D = (1/2,

√
3/2), at time t+1

the object b arrives at D. Consider the motion of the robot arm that starts at
time t + tw(z) and grasps b at the point on DC whose distance from D is z,
so that maxz tw(z) = tmax. See Fig. 3 again. Since at that point, the object b
arrives at time t + 1 + z/v, and so

tw(z) = t + 1 +
z

v
−

⎛

⎝t +

√

l2 +
(

1
v
− z

)2
⎞

⎠ = 1 +
z

2
−

√
z2 − z + 1.

z

2
−

√
z2 − z + 1 < 0

Pickup and Delivery for Moving Objects on Broken Lines 49

always holds, and then tw(z) < 1 for any z that we would like to show. This ob-
servation is also true for the point E and the other objects. The rest of the proof
for the L-reducibility is to show how to obtain a feasible solution S(sR) of X , the
instance of the JISP2, from a feasible solution sR of R(X), the instance of the
PDMO. Simply we need to transform sR to a canonical one. The corresponding
sequence of jobs is set as the feasible solution S(sR) for X . According to the
above discussion, since the transformation of a scheduling of the robot arm to
a canonical one does not change the number of collected objects, the number
of collected objects in a canonical scheduling corresponds to the number of jobs
executed in a solution for the JISP2, c(S(sR)) = c(sR). In conjunction with
OPT (R(x)) = OPT (x), this implies the second condition of the L-reducibility
in a stronger form, |OPT (x) − c(S(sR))| = |OPT (R(x)) − c(sR)|. �	

6 Conclusion

In this paper we introduced a kinetic extension of the VRP, which is formulated
as the robot grasp and delivery problem: Given moving objects, the objective is
to find a collection of tours such that the robot arm grasps and delivers as many
objects as possible. Then, we proved its MAXSNP-hardness, and gave a 2 factor
approximation algorithm assuming that there is one robot arm with capacity
one. An apparent remaining problem is to develop a better approximation al-
gorithm with a performance ratio less than 2. Another direction for complexity
and algorithmic research is to consider more general cases, for example, several
robots move simultaneously, and/or each can collect the larger number of mov-
ing objects in one round. Especially, the case the capacity of the robot arm is
a more general, for example, positive constant such as three, is an interesting
variation to be considered. Two types of the problem in such a case are possible:
The robot arm has to consume its capacity, i.e., collects exactly three objects, in
each tour, or it can deliver only one or two objects to the origin if needed. For
the former problem, the similar idea of Iterated Greedy in Sect. 3 may work
with additional polynomial time, though we have not yet obtained non-trivial
results for the latter.

References

1. P. Toth and D. Vigo. An overview of vehicle routing problems, In The Vehicle
Routing Problem, P. Tosh and D. Vigo (Eds.), SIAM, 2001.

2. N. Bansal, A. Blum, S. Chawla, A. Meyerson. Approximation algorithms for
deadline-TSP and vehicle routing with time-windows. In Proc. ACM Symposium
on Theory of Computing , pp.166–174, 2004.

3. A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, M. Minkoff. Approximation
algorithms for orienteering and discounted-reward TSP. In Proc. IEEE Symposium
on Foundations of Computer Science, pp.46–55, 2003.

4. M. Desrochers, J. Desrosiers, M.M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40, pp.342–354,
1992.

50 Y. Asahiro, E. Miyano, and S. Shimoirisa

5. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.). The traveling
salesman problem, Wiley, Chichester, UK, 1985.

6. P. Chalasani, R. Motwani, A. Rao. Approximation algorithms for robot grasp and
delivery. In Proc. International Workshop on Algorithmic Foundations of Robotics,
pp.347–362, 1996.

7. C.S. Helvig, G. Robins, A. Zelikovsky. Moving target TSP and related problems.
In Proc. European Symposium on Algorithms, pp.453–464, 1998.

8. M. Hammar and B.J. Nilsson. Approximation results for kinetic variants of TSP.
In Proc. International Colloquium on Automata, Languages and Programming ,
pp.392–401, 1999.

9. Y. Asahiro, T. Horiyama, K. Makino, H. Ono, T. Sakuma, M. Yamashita. How
to collect balls moving in the Euclidean plane. Electronic Notes in Theoretical
Computer Science, 91, pp.229–245, 2004.

10. Y. Asahiro, E. Miyano, S. Shimoirisa. K-collect tours for moving objects with
release times and deadlines. To appear in Proc. Systemics, Cybernetics and Infor-
matics, 2005.

11. J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1, pp.343–362, 1977.

12. J.M. Moore. An n job, one machine sequencing algorithm for minimizing the num-
ber of late jobs. Management Science, 15, pp.102–109, 1968.

13. F.C.R. Spieksma. On the approximability of an interval scheduling problem. Jour-
nal of Scheduling, 2, pp.215–227, 1999.

14. D. Karger, C. Stein, J. Wein. Scheduling algorithms. In Handbook of Algorithms
and Theory of Computation, M.J. Atallah (Eds), CRC Press, 1997.

15. A. Bar-Noy, S. Guha, J. Naor, B. Schieber. Approximating the throughput of
multiple machines under real-time scheduling. SIAM Journal on Computing, 31
(2), pp.331-352, 2001.

16. J. Chuzhoy, R. Ostrovsky, Y. Rabani. Approximation algorithms for the job interval
selection problem and related scheduling problem. In Proc. IEEE Symposium on
Foundations of Computer Science, pp.348–356, 2001

17. P.K. Agarwal, M. Sharir. Davenport-Schinzel sequences and their geometric appli-
cations. In Handbook of Computational Geometry , J. Sack and J. Urutia (Eds.),
Elsevier Science, 1999.

18. C.H. Papadimitriou. Computational Complexity, Addison-Wesley, 1994.

A Static Analysis of PKI-Based Systems

Benjamin Aziz1, David Gray2, and Geoff Hamilton2

1 Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2AZ, U.K

baziz@doc.ic.ac.uk
2 School of Computing, Dublin City University, Dublin 9, Ireland

{dgray, hamilton}@computing.dcu.ie

Abstract. This paper presents a non-uniform static analysis for SPIKY,
an extension of the spi calculus with capabilities for PKI operations. The
analysis, which follows a denotational framework, captures the property
of term substitutions resulting from communications, cryptographic and
PKI capabilities. The results of the analysis are used to formalise def-
initions of two security properties: the term secrecy and (un)certified
peer-entity participation.

1 Introduction

In [7], an extension of the spi calculus [1] called the SPIKY language was intro-
duced to clarify some of the issues related to key usage in spi calculus protocol
specifications, like the validity of key-user bindings and users’ ownership of pro-
cesses, by making use of special primitives for performing Public-Key Infrastruc-
ture (PKI) key-retrieval operations. These included primitives for the retrieval
of private and public parts of key pairs belonging to PKI users registered in
the domain of the underlying PKI state. The primitives express both certified
and uncertified public key-user bindings. Uncertified bindings are necessary for
the modelling of protocols designed to run over devices with relatively limited
computational power, e.g. handheld PDAs.

In this paper, we construct a non-uniform static analysis for the SPIKY
language that captures the property of term substitutions occurring in PKI
systems. In particular, the analysis captures PKI users sending and obtaining
the substituted terms. Based on this information, it is possible to formalise
security properties like for example, whether a user is capable of learning a term,
and whether a user can (possibly) confirm that another user has participated
in an instance of some protocol. To demonstrate this latter property, consider
the following simple protocol between A and B, assuming they both know each
other’s public keys, K+

A and K+
B , and NA, NB are fresh nonces:

Message 1 A → B : A,NA

Message 2 B → A : B,NB , [{NA}]K−
B

Message 3 A → B : [{NB}]K−
A

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 51–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

52 B. Aziz, D. Gray, and G. Hamilton

A specification of this protocol in the spi calculus will necessarily make the
assumption that the public key K+

B (respectively K+
A) must be validly bound

to B (respectively A), and that the partial correctness property of the protocol
terminating will ensure that B (respectively A) participated in the protocol,
even in the presence of middle-man attacks. Using the key retrieval capabilities
of SPIKY, it is possible to assert this binding formally. Moreover, our static
analysis will formally detect the fact that (un)certified public keys were used to
arrive at the fact that B (respectively A) participated in the protocol, and that
the private keys used in the signatures were not leaked to third parties.

The static analysis presented in this paper is directly related to previous
analyses [3,4,5,6], which were designed to capture the term substitution property
for systems specified in the π-calculus and the spi calculus. The main novelty
about the current analysis is that it can deal with systems equipped with key
retrieval capabilities over the underlying PKI state.

The rest of the paper is organised as follows. In Section 2 we review the
syntax of the SPIKY language. In Section 3 we extend the domain model of [4]
to SPIKY processes and we build a denotational semantics for the language. In
Section 4, we give an extended semantics that captures the property of term
substitutions in SPIKY language. This semantics is safely abstracted in Section
5. In Section 6, we formalise the security properties based on the results of
the previous section and in Section 7, we review a simple example of a mobile
authentication protocol. Finally, in Section 8, we conclude the paper.

2 The SPIKY Language

We review here the syntax of the SPIKY language introduced in [7]. The syntax
consists of terms, processes, systems and protocols , as shown in Figure 1. The
syntax of terms and processes is mostly similar to that of the spi calculus, except
for the following differences, which occur in the syntax of processes:

– The signature with recovery validation process, case L of [{x}]N in P , is sim-
ilar to its counterpart in the spi calculus, whereas the signature with appendix
validation process, [[{L,M}]N]P , behaves as P only if L is the signature
[{M}]K− and N is the public key K+, otherwise, the process will block.

– Abstraction instantiations, A(M), substitute x in the definition, A(x) � P ,
where x is bound to P , by the term M yielding a process P [M/x]. In order
to simplify our static analysis, we consider only non-recursive definitions.

– The processes, let x = private(M) in P , let x = public(M) in P and
let x = certified(M) in P , attempt to retrieve the private, uncertified and
certified public keys, respectively, of the PKI user, M . If successful, the re-
trieved key, k, substitutes x, and the process continues as P [k/x], otherwise,
the process blocks. The success or failure of these key-retrieval processes
depends on the identity of the owner of that process.

In addition to terms and processes, systems formalise the idea of the ownership
of a user, N , to a process, P , written as �P �N , where N must reduce to an

A Static Analysis of PKI-Based Systems 53

L, M, N ::= terms
a, b, c, k, m, n ∈ N names
x, y, z, v, w ∈ V variables
A, B, C, U ∈ AG agents
{M}N symmetric encryption
{[M]}N public-key encryption
[{M}]N digital signature
(M, N) pair
M+ public key component
M− private key component

P, Q, R ::= processes
M〈N〉.P output
M(x).P input
P | Q parallel composition
(ν n)P restriction
!P replication
[M is N]P match
0 null
let (x, y) = M in P pair splitting
case L of {x}N in P symmetric decryption
case L of {[x]}N in P public-key decryption
case L of [{x}]N in P signature with recovery validation
[[{L, M}]N]P signature with appendix validation
A(M) abstraction instantiation
let x = private(M) in P private key retrieval
let x = public(M) in P public key retrieval
let x = certified(M) in P certified public key retrieval

E, F, G ::= systems
E | F parallel composition
(ν n)E restriction
�P�N process ownership

Prot ::= protocols
(θ, E) (PKI state, system) pair

Fig. 1. The syntax of the SPIKY language

agent’s name. Systems can also be composed in parallel and new names can be
introduced within the scope of a system. Finally, a protocol is a pair consisting
of a PKI state, θ : AG → N , and a system, E. A PKI state maps distinct
names of PKI users (agents) to their corresponding key pairs. The details of the
actual binding of users to key pairs are abstracted, as well as the mechanisms
for revocation. In general, θ is assumed to be up to date when a protocol is run.

In the following sections, we assume that the notions of α-conversion and term
substitution as well as free and bound names and variables of terms and processes
all apply as usual. We also assume that there are no occurrences of homonymous
bound names and variables. Finally, in any protocol, we assume that there are
only finitely many agents, possibly with replicated process behaviour.

3 A Domain-Theoretic Model

We introduce here a domain-theoretic model for closed processes in the SPIKY
language that is an extension of the model originally given in [4] for the spi
calculus. Our model is based on the following predomain equations:

54 B. Aziz, D. Gray, and G. Hamilton

Spiky ∼= 1 + P(Spiky⊥ + In + Out) (1)
In ∼= N × (T → Spiky⊥) (2)

Out ∼= N × (T × Spiky⊥ + N → . . . N → (T × Spiky⊥)) (3)
T ∼= N + Sec + Pub + Sig + Pair (4)

Sec ∼= T × N (5)
Pub ∼= T × N (6)
Sig ∼= T × N (7)

Pair ∼= T × T (8)

Where Spiky⊥ is the domain of processes, In and Out are the predomains of
input and output actions, respectively. Input actions are modelled as pairs; a
name, N (the channel), and a function, T → Spiky⊥, that can be instantiated
with a term, T , yielding a process in Spiky⊥. Output actions are divided into
free and bound output actions. These are pairs consisting of the channel, N ,
and either another pair, T × Spiky⊥, denoting the message, T , and the residue
Spiky⊥ (free outputs), or composed functions, N → . . . N → (T × Spiky⊥),
that introduce new names to the message, T , and the residue, Spiky⊥ (bound
outputs). P(−) is Plotkin’s powerdomain [8] applied to the disjoint union of in-
put, output and silent actions (the latter represented by Spiky⊥) to construct
Spiky . The one-element predomain, 1, representing terminated (deadlocked)
processes is adjoined as in [2, Def. 3.4]. The flat predomain of closed terms,
T , is defined as the disjoint union of the predomains of names, N , secret-key
ciphers, Sec, public-key ciphers, Pub, digital signatures, Sig , and pairs, Pair .
The predomains Sec, Pub and Sig are represented as pairs, T × N , where the
term, T , is encrypted/signed using the key, N . There is no predomain of vari-
ables as part of the definition of T since we only deal with closed semantic
terms.

The following functions are also defined, leading into Spiky⊥ [2, Def. 3.3]:

∅ : 1 → Spiky⊥ (9)
{| − |} : (Spiky⊥ + In + Out)⊥ → Spiky⊥ (10)

� : (Spiky⊥ × Spiky⊥) → Spiky⊥ (11)
new : (N → Spiky⊥) → Spiky⊥ (12)

The empty set, ∅, is required to represent inactive processes. The singleton
map, {| − |}, creates elements of Spiky⊥ from elements of input, output and
silent actions, and �, is the standard multiset union operator representing non-
determinism. Finally, new is used to interpret the effects of restriction.

Concrete elements of t ∈ T include names, a, b, c, secret-key ciphers, sec(t, k),
public-key ciphers, pub(t, k), digital signatures, sig(t, k), and pairs, (t, t′). Ele-
ments p ∈ Spiky⊥ include the bottom element, {|⊥|}, the empty set, ∅ (where
{|⊥|} 	 ∅), input actions, {|in(a, λy.p)|}, free output actions, {|out(a, t, p)|}, bound

A Static Analysis of PKI-Based Systems 55

new(λn.∅) = ∅
new(λn.{|⊥|}) = {|⊥|}
new(λn.{|in(a, λx.p)|}) =

{ ∅, if a = n
{|in(a, λx.new(λn.p))|}, otherwise

new(λn.{|out(a, t, p)|}) =

⎧
⎪⎨

⎪⎩

∅, if a = n
{|out(a, λn.(t, p))|}, if n ∈ n(t)

and n
= a
{|out(a, t, new(λn.p))|}, otherwise

new(λn.{|out(a, λm1 . . . λmk.(t, p))|}) =⎧
⎨

⎩

∅, if a = n
{|out(a, λn.λm1 . . . λmk.(t, p))|}, if n ∈ n(t) and n
= a
{|out(a, λm1 . . . λmk.(t, new(λn.p)))|}, otherwise

new(λn.{|tau(p)|}) = {|tau(new(λn.p))|}
new(λn.(p1 � p2)) = new(λn.p1) � new(λn.p2)

Fig. 2. The concrete definition of new over elements p ∈ Spiky⊥

output actions, {|out(a, λn1 . . . λnm.(t, p))|} silent actions, {|tau(p)|} and sums,
p � q. The effects of restriction are interpreted by defining new as in Figure 2.
These effects lead to the blocking of processes attempting to communicate over
fresh, non-extruded channels and the transformation of free outputs to bound
outputs whenever the message of communication is a fresh name. Otherwise,
new has no effect and it is simply distributed over �.

The denotational semantics for the SPIKY language is given as a semantic
function, S([E]) ρ φS θ ∈ Spiky⊥, defined by the set of rules of Figure 3. The
θ environment is defined as the PKI state of some protocol, such that θ(U) is
a name representing the key pair associated with the user, U , where θ(U)+ is
the public part of that key pair and θ(U)− is the private part. The multiset,
ρ, is used to hold systems composed in parallel with the analysed system and
{| − |} and � are overloaded from their definitions in (10),(11) to deal with ρ.
Furthermore, rule (R0) is used to interpret the contents of ρ. The environment,
φS : V → T , where V is the flat predomain of variables, captures any term
substitutions that occur in the semantics1. The special function, ϕS , returns the
semantic value of a term:

∀φS ,M : ϕS(φS ,M) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φS(M), if M ∈ N ∧ M ∈ V
sec(ϕS(φS ,M ′), ϕS(φS , N)), if M = {M ′}N

pub(ϕS(φS ,M ′), ϕS(φS , N)), if M = {[M ′]}N

sig(ϕS(φS ,M ′), ϕS(φS , N)), if M = [{M ′}]N
(ϕS(φS , N), ϕS(φS , L)), if M = (N,L)

Rules (S0A) and (S0B) interpret parallelism and restriction between two sys-
tems by joining the parallel systems to ρ and using the new operator, respec-
tively. Rules (S1)–(S16) deal with process ownership by cases. Rule (S1), deals
with output actions taking into consideration any communications that may
occur between the output channel and appropriate input channels guarding
processes in ρ. The φS is updated appropriately with the substituted seman-
tic elements. Rules (S2) deals with input functions leaving out communica-
tions since these are considered in (S1). Rule (S3) interprets directly parallel

1 Note that initially, ∀u ∈ V + N : φS0(u) = u.

56 B. Aziz, D. Gray, and G. Hamilton

(S0A) S([E | F]) ρ φS θ = R([{|E|} � {|F |} � ρ]) φS θ
(S0B) S([(ν n)E]) ρ φS θ = new(λn.R([{|E|} � ρ]) φS θ)
(S1) S([�M〈L〉.P�U]) ρ φS θ =

(
⊎

�M′(z).P ′�U′ ∈ρ

{|tau(R([{|�P�U |} � ρ[�P ′�U′
/�M ′(z).P ′�U′

]]) φ′
S θ|})

� {|out(ϕS(φS , M), ϕS(φS , L),R([{|�P�U |} � ρ]) φS)|}
where, φ′

S = φS [z �→ ϕS(φS , L)]
and, ϕS(φS , M) = ϕS(φS , M ′) ∈ N

(S2) S([�M(y).P�U]) ρ φS θ = {|in(ϕS(φS , M), λy.R([{|�P�U |} � ρ]) φS θ)|}
where ϕS(φS , M) ∈ N

(S3) S([�P | Q�U]) ρ φS θ = R([{|�P�U |} � {|�Q�U |} � ρ]) φS θ

(S4) S([�(ν n)P�U]) ρ φS θ = new(λn.R([{|�P�U |} � ρ]) φS θ)
(S5) S([�!P�U]) ρ φS θ =

⊔ F
where, F = {{|⊥|},S([�∏

i
P [bnvi(P)/bnv(P)]�U]) ρ φS θ | i = 0 . . .∞}

and, bnvi(P) = {xi | x ∈ bnv(P)}
(S6) S([�[M is N]P�U]) ρ φS θ ={

R([{|�P�U |} � ρ]) φS θ, if ϕS(φS , M) = ϕS(φS , N)
∅, otherwise

(S7) S([�0�U]) ρ φS θ = ∅
(S8) S([�let (x, y) = M in P�U]) ρ φS θ ={

R([{|�P�U |} � ρ]) φS [x �→ t, y �→ t′] θ, if ϕS(φS , M) = (t, t′)
∅, otherwise

(S9) S([�case L of {x}N in P�U]) ρ φS θ ={
R([{|�P�U |} � ρ]) φS [x �→ t] θ, if ϕS(φS , L) = sec(t, k) and ϕS(φS , N) = k
∅, otherwise

(S10) S([�case L of {[x]}N in P�U]) ρ φS θ ={
R([{|�P�U |} � ρ]) φS [x �→ t] θ, if ϕS(φS , L) = pub(t, k+) and ϕS(φS , N) = k−

∅, otherwise
(S11) S([�case L of [{x}]N in P�U]) ρ φS θ =⎧

⎨

⎩

R([{|�P�U |} � ρ]) φ′
S θ, if ϕS(φS , L) = sig(t, k−) and ϕS(φS , N) = k+

where, φ′
S = φS [x �→ t]

∅, otherwise
(S12) S([�[[{L, M}]N]P�U]) ρ φS θ =⎧

⎨

⎩

R([{|�P�U |} � ρ]) φS θ, if ϕS(φS , L) = sig(t, k−) and ϕS(φS , N) = k+

and ϕS(φS , M) = t
∅, otherwise

(S13) S([�A(M)�U]) ρ φS θ ={
R([{|�P�U |} � ρ]) φ′

S θ, where A(x) � P and φ′
S = φS [x �→ ϕS(φS , M)]

∅, otherwise
(S14) S([�let x = private(M) in P�U]) ρ φS θ ={

R([{|�P�U |} � ρ]) φS [x �→ θ(U)−] θ, if ϕS(φS , M) = ϕS(φS , U)
∅, otherwise

(S15) S([�let x = public(M) in P�U]) ρ φS θ =⎧
⎨

⎩
R([{|�P�U |} � ρ]) φS [x �→ θ(U)+] θ, if ϕS(φS , M) = ϕS(φS , U)⊎

U′∈dom(θ)
R([{|�P�U |} � ρ]) φS [x �→ θ(U ′)+] θ, otherwise

(S16) S([�let x = certified(M) in P�U]) ρ φS θ = R([{|�P�U |} � ρ]) φS [x �→ θ(M)+] θ
(R0) R([ρ]) φS θ =

⊎
E∈ρ

S([E]) (ρ\{|E|}) φS θ

Fig. 3. The standard denotational semantics of the SPIKY language

composition by the addition of the parallel subprocesses to ρ. Rule (S4) uses
new to interpret the meaning of a restriction. Rule (S5) interprets a replica-
tion, �!P �U , as the least upper bound of the infinite poset F . This least upper
bound represents the least fixed point meaning of !P . Due to the fact that the
semantic domain, Spiky⊥, is infinite, the calculation of this least fixed point may
not terminate within finite limits. The rule also uses a labelling mechanism to

A Static Analysis of PKI-Based Systems 57

(E0A) E([E | F]) ρ φE θ = R([{|E|} � {|F |} � ρ]) φE θ
(E0B) E([(ν n)E]) ρ φE θ = R([{|E|} � ρ]) φE θ

(E1) E([�M〈L〉.P�U]) ρ φE θ =
⋃

φ

�M′(z).P ′�U′ ∈ρ

φ′
E ∪φ φE

if, ϕE(φE , M) = ϕE(φE , M ′) ∈ N

where, φ′
E = R([{|�P�U |} � ρ[�P ′�U′

/�M ′(z).P ′�U′
]]) φ′′

E
and, φ′′

E = φE [z �→ {(ϕE(φE , L), U, U ′)}] θ

(E2) E([�M(y).P�U]) ρ φE θ = φE
(E3) E([�P | Q�U]) ρ φE θ = R([{|�P�U |} � {|�Q�U |} � ρ]) φE θ

(E4) E([�(ν n)P�U]) ρ φE θ = R([{|�P�U |} � ρ]) φE θ

(E5) E([�!P�U]) ρ φE θ =
⊔ F

where, F = {⊥D⊥ , E([�∏
i

P [bnvi(P)/bnv(P)]�U]) ρ φE θ | i = 0 . . .∞}
and, bnvi(P) = {xi | x ∈ bnv(P)}

(E6) E([�[M is N]P�U]) ρ φE θ ={
R([{|�P�U |} � ρ]) φE θ, if ϕE(φE , M) = ϕE(φE , N)
φE , otherwise

(E7) E([�0�U]) ρ φE θ = φE
(E8) E([�let (x, y) = M in P�U]) ρ φE θ ={

R([{|�P�U |} � ρ]) φE [x �→ {(t, U, U)}, y �→ {(t′, U, U)}] θ, if ϕE(φE , M) = (t, t′)
φE , otherwise

(E9) E([�case L of {x}N in P�U]) ρ φE θ =⎧
⎨

⎩

R([{|�P�U |} � ρ]) φE [x �→ {(t, U, U)}] θ, if ϕE(φE , L) = sec(t, k)
and ϕE(φE , N) = k

φE , otherwise
(E10) E([�case L of {[x]}N in P�U]) ρ φE θ =⎧

⎨

⎩

R([{|�P�U |} � ρ]) φE [x �→ {(t, U, U)}] θ, if ϕE(φE , L) = pub(t, k+)
and ϕE(φE , N) = k−

φE , otherwise
(E11) E([�case L of [{x}]N in P�U]) ρ φE θ =⎧

⎨

⎩

R([{|�P�U |} � ρ]) φE [x �→ {(t, U, U)}] θ, if ϕE(φE , L) = sig(t, k−)
and ϕE(φE , N) = k+

φE , otherwise
(E12) E([�[[{L, M}]N]P�U]) ρ φE θ =⎧

⎨

⎩

R([{|�P�U |} � ρ]) φE θ, if ϕE(φE , L) = sig(t, k−) and ϕE(φE , N) = k+

and ϕE(φE , M) = t
φE , otherwise

(E13) E([�A(M)�U]) ρ φE θ ={
R([{|�P�U |} � ρ]) φE [x �→ {(ϕE(φE , M), U, U)}] θ, where A(x) � P
φE , otherwise

(E14) E([�let x = private(M) in P�U]) ρ φE θ ={
R([{|�P�U |} � ρ]) φE [x �→ {(θ(U)−, U, U)}] θ, if ϕE(φE , M) = ϕE(φE , U)
φE , otherwise

(E15) E([�let x = public(M) in P�U]) ρ φE θ =⎧
⎨

⎩

R([{|�P�U |} � ρ]) φE [x �→ {(θ(U)+, U, U)}] θ, if ϕE(φE , M) = ϕE(φE , U)⋃
φ

U′∈dom(θ)

R([{|�P�U |} � ρ]) φE [x �→ {(θ(U ′)+, U, U)}] θ, otherwise

(E16) E([�let x = certified(M) in P�U]) ρ φE θ =
R([{|�P�U |} � ρ]) φE [x �→ {(θ(M)+, U, U)}] θ

(R0) R([ρ]) φE θ =
⋃

φ
E∈ρ

E([E]) (ρ\{|E|}) φE θ

Fig. 4. The non-standard semantics of the SPIKY language

rename all the bound variables and names, bnv(P), of the spawned processes by
subscripting those variables and names with a number signifying process copy.

Rule (S6) resolves the meaning of two terms using ϕS . Rule (S7) interprets
the meaning of a null system as the empty set mapping, ∅. Rule (S8) splits the el-
ements of a pair term. Rules (S9)–(S12) deal with cryptographic systems for the
decryption of symmetric and public-key ciphertexts and signatures with recovery

58 B. Aziz, D. Gray, and G. Hamilton

and appendix validations. A residual system, �P �U , signifying the success of the
operation is added to ρ, else, if the operation fails, ∅ is returned instead. Rule
(S13) interprets the meaning of abstraction instantiations directly by adding the
definition to ρ and updating φS with the substituted term. Rules (S14)–(S16)
deal with PKI operations for retrieving private, uncertified and certified public
keys. This is done using the PKI state, θ, and the user owning the system, U .
The uncertified public key operation offers less guarantees (if the owner of the
process requires other users’ keys), therefore, it may return the public key of
any PKI user, U ′, in dom(θ). On the other hand, the certified version is always
guaranteed to return a valid public key, regardless of the owner’s identity.

4 Non-Standard Semantics

We extend here the standard semantics of the previous section to a non-standard
semantics that captures the property of term substitutions. Hence, the meaning
of a system is now given as a special environment, φE : V → ℘(T × AG × AG),
which maps each variable of a closed system to a set of triples representing se-
mantic terms that may substitute the variable, and names of PKI users that
instantiate and own that variable. Note that AG here represents the flat pre-
domain of agent names corresponding to the set AG. Since the non-standard
semantics is precise (copies of bound names and variables are always distinct),
each variable will be mapped to a singleton set per choice of control flow.

A non-standard semantic domain, D⊥ = V → ℘(T × AG × AG), can be
constructed, ordered by subset inclusion as follows:

∀φE1, φE2 ∈ D⊥ : φE1 	D⊥ φE2 ⇔ ∀x ∈ V : φE1(x) ⊆ φE2(x)

with the bottom element, ⊥D⊥ , being the null environment, φE0, that maps each
variable to the empty set. The union of environments operation, ∪φ, can also be
defined as follows:

∀φE1, φE2 ∈ D⊥, x ∈ V : (φE1 ∪φ φE2)(x) = φE1(x) ∪ φE2(x)

The non-standard semantics of the SPIKY language is defined using the seman-
tic function, E([E]) ρ φE θ ∈ D⊥, as illustrated in Figure 4. The definitions of ρ
and θ are as in Section 3. The definition of the special function, ϕE allows for
the meaning of a closed term to be computed under some φE :

ϕE(φE ,M)2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t, if M ∈ V ∧
φE(M) = {(t, U, U ′)}

M, if M ∈ N
sec(ϕE(φE ,M ′), ϕE(φE , N)), if M = {M ′}N

pub(ϕE(φE ,M ′), ϕE(φE , N)), if M = {[M ′]}N

sig(ϕE(φE ,M ′), ϕE(φE , N)), if M = [{M ′}]N
(ϕE(φE ,M ′), ϕE(φE ,M ′′)), if M = (M ′,M ′′)

2 Note that the case where M ∈ V ∧ φE(M) = {} will never occur for closed terms.

A Static Analysis of PKI-Based Systems 59

The main difference in this semantics as compared to the standard semantics of
the previous section is the fact that the meaning of a process is a φE environment
rather than an element of Spiky⊥. Note again the difference in performing uncer-
tified versus certified public key retrieval in rules (E15) and (E16), respectively.
In the former case, the owner of a process may obtain any public key stored in
θ when asking for some other user’s public key without any guarantees as to the
validity of the key-user binding (unless the owner asks for its own public key).
In the latter case, this requirement is always guaranteed to return a public key
that is validly bound to its user.

5 Abstract Semantics

One problem with the non-standard semantics of the previous section is that it is
not guaranteed to terminate due to the possibility of infinite behaviour resulting
from the presence of replication. Therefore, it is necessary to introduce a safe
abstraction that limits the size of the semantic domain. This abstraction is a
variation of the abstraction used in [3,4,6].

We begin first by assuming a predomain of tags, Tag , ranged over by t, ṫ, ẗ,
where t is the tag of a generic term, ṫ is the tag of a name or a variable, and ẗ is
the tag of a complex term (ciphertext, signature, pair). Next, we appropriately
tag M , M ′ in N〈M〉.P , let (x, y) = (M,M ′) in P , case {M}N of {x}N ′ in P ,
case {[M]}N of {[x]}N ′ in P , case [{M}]N of [{x}]N ′ in P , A(M), and tag each
of private(M), public(M) and certified(M) in the syntax. Furthermore, the
following functions are defined over tags and systems:

– value of ({t1, . . . , tn}) = {M1, . . . ,Mn}, which when applied to a set of tags,
{t1, . . . , tn}, returns the corresponding set of terms, {M1, . . . ,Mn}.
– tags of (E) = {t1, . . . , tn}, which when applied to a system, E, returns its set
of tags, {t1, . . . , tn}.

We now introduce the αk,k′ abstraction function, which keeps to a finite level,
the number of copies of bound variables, bound names and tags.

Definition 1. Define αk,k′ : N× N× (V + N + Tag) → (V � + N � + Tag�):

∀M ∈ (V +N+Tag), i, k, k′ ∈ N : αk,k′(M) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṫk, if M = ṫi ∈ Tag and i > k
ẗk′ , if M = ẗi ∈ Tag and i > k′

xk, if M = xi ∈ V and i > k
ak, if M = ai ∈ N and i > k
M, otherwise

The resulting abstract predomains, V �, N � and Tag�, can be defined as V � =
V \{xj | j > k}, N � = N\{aj | j > k} and Tag� = Tag\({ṫj | j > k} ∪ {ẗi |
i > k′}). Informally, k constrains the number of bound variables and names, and
tags of primitive terms, whereas k′ constrains the number of tags of complex
terms. In effect, constraining the tags of primitive terms implies limiting the
copies of bound names and variables carrying the tags, whereas constraining the
number of tags of complex terms means limiting the depth of data structures.

60 B. Aziz, D. Gray, and G. Hamilton

For example, in the process !(νn)a〈nṫ〉 | !a(x), it is possible to spawn infinite
copies of each replication, (ν n1)a〈nṫ1

1 〉 | a(x1) | (ν n2)a〈nṫ2
2 〉 | a(x2) |

It is clear that ṫ is an indicator to the number of copies n has after spawning
each process. On the other hand, the process !a(x).a〈{x}ẗ

k〉 | a〈b〉, which also
spawns a(x1).a〈{x1}ẗ1

k 〉 | a(x2).a〈{x2}ẗ2
k 〉 | a〈b〉 | . . . demonstrates the role of

ẗ as an indicator to the number of times the ciphertext, {x}k, is applied to b.
Using αk,k′ , we construct φA : V � → ℘(Tag� × AG × AG), with a meaning

similar to φE in the previous section. Furthermore, a domain, D�
⊥ = V � →

℘(Tag� × AG × AG) is formed as follows:

∀φA1, φA2 ∈ D�
⊥, x ∈ V � : φA1 	D�

⊥
φA2 ⇔ φA1(x) ⊆ φA2(x)

with a bottom element, ⊥D�
⊥
, representing the null environment, φA0. Taking

D�
⊥ as the abstract semantic domain, we can define the abstract semantics of

the SPIKY language using the function, A([E]) ρ φA θ ∈ D�
⊥, as shown in Figure

5. The definitions of ρ and θ are as in the previous sections. The special func-
tion, ϕA, returns a set of terms corresponding to a term, M , given substitutions
captured by φA, as follows:

ϕA(φA,M) = ϕ′
A(φA,M ′){},

where, M ′ = M [αk,k′(t)/t][αk,k′(x)/x][αk,k′(n)/n], for all tags, t, names, n, and
variables, x, of M ,
and ϕ′

A(φA,M)s = if M ∈ s then {} else
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
L∈value of(fst(φA(M)))

ϕ′
A(φA, L)s∪{M} if M ∈ V

{M}, if, M ∈ N
{{N ′}t

L′ | N ′ ∈ ϕ′
A(φA, N)s∪{M}, L′ ∈ ϕ′

A(φA, L)s∪{M}}, if, M = {N}t
L

{{[N ′]}t
L′ | N ′ ∈ ϕ′

A(φA, N)s∪{M}, L′ ∈ ϕ′
A(φA, L)s∪{M}}, if, M = {[N]}t

L

{[{N ′}]tL′ | N ′ ∈ ϕ′
A(φA, N)s∪{M}, L′ ∈ ϕ′

A(φA, L)s∪{M}}, if, M = [{N}]tL
{(L′

1, L
′
2)

t | L′
1 ∈ ϕ′

A(φA, L1)s∪{M}, L′
2 ∈ ϕ′

A(φA, L2)s∪{M}},
if, M = (L1, L2)t

We describe a few rules here. Rule (A1) deals with the case of output actions,
dealing with possible communications with appropriate input actions in ρ. The
tag of the output message is registered in φA as a value for the input variable.
The semantics is imprecise, since φA only captures an abstract tag as a value
for an abstract variable. Rule (A5) introduces the functions:

ren(x, i) = fold subi (fold subi x bnv(x)) tags of (x)
fold f e {x1, . . . , xn} = f(xn, . . . , f(x1, e) . . .)
subi x y = y[xi/x]

which are used in the definition of the least fixed point meaning of a replicated
process. This meaning is defined as the least upper bound of the set F , which

A Static Analysis of PKI-Based Systems 61

(A0A) A([E | F]) ρ φA θ = R([{|E|} � {|F |} � ρ]) φA θ
(A0B) A([(ν n)E]) ρ φA θ = R([{|E|} � ρ]) φA θ

(A1) A([�M〈Lt〉.P�U]) ρ φA θ =
⋃

φ

�M′(z).P ′�U′ ∈ρ

φ′
A ∪φ φA

if, ϕA(φA, M) ∩ ϕA(φA, M ′) ∩ N
= {}
where, φ′

A = R([{|�P�U |} � ρ[�P ′�U′
/�M ′(z).P ′�U′

]]) φ′′
A θ

and φ′′
A = φA[αk,k′ (z) �→ φA(αk,k′ (z)) ∪ {(αk,k′ (t), U, U ′)}]

(A2) A([�M(y).P�U]) ρ φA θ = φA
(A3) A([�P | Q�U]) ρ φA θ = R([{|�P�U |} � {|�Q�U |} � ρ]) φA θ

(A4) A([�(ν n)P�U]) ρ φA θ = R([{|�P�U |} � ρ]) φA θ

(A5) A([�!P�U]) ρ φA θ =
⊔ F

where, F = {⊥
D

�
⊥

,A([
∏
i

ren(P, i)]) ρ φA θ | i = 0 . . .∞}
(A6) A([�[M is N]P�U]) ρ φA θ ={

R([{|�P�U |} � ρ]) φA θ, if ϕA(φA, M) ∩ ϕA(φA, N)
= {}
φA, otherwise

(A7) A([�0�U]) ρ φA θ = φA
(A8) A([�let (x, y) = M in P�U]) ρ φA θ =⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⋃
φ

(Lt,Nt′)∈ϕA(φA,M)

R([{|P |} � ρ]) φ′
A θ, if ∃(Lt, Nt′

) ∈ ϕA(φA, M)

where, φ′
A = φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {αk,k′ (t), U, U},

αk,k′ (y) �→ φA(αk,k′ (y)) ∪ {αk,k′ (t′), U, U}]
φA, otherwise

(A9) A([�case L of {x}N in P�U]) ρ φA θ =⎧
⎪⎪⎨

⎪⎪⎩

⋃
φ

{Mt}n∈ϕA(φA,L)

R([{|P |} � ρ]) φ′
A θ, if, n ∈ ϕA(φA, N)

where, φ′
A = φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]

φA, otherwise
(A10) A([�case L of {[x]}N in P�U]) ρ φA θ =⎧

⎪⎪⎨

⎪⎪⎩

⋃
φ

{[Mt]}
n+∈ϕA(φA,L)

R([{|P |} � ρ]) φ′
A θ, if, n− ∈ ϕA(φA, N)

where, φ′
A = φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]

φA, otherwise
(A11) A([�case L of [{x}]N in P�U]) ρ φA θ =⎧

⎪⎪⎨

⎪⎪⎩

⋃
φ

[{Mt}]
n− ∈ϕA(φA,L)

R([{|P |} � ρ]) φ′
A θ, if, n+ ∈ ϕA(φA, N)

where, φ′
A = φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]

φA, otherwise
(A12) A([�[[{L, M}]N]P�U]) ρ φA θ =⎧

⎨

⎩

R([{|�P�U |} � ρ]) φA θ,
if ∃n+ ∈ ϕA(φA, N), [{Bt}]n− ∈ ϕA(φA, L) ∧ Bt ∈ ϕA(φA, M)
φA, otherwise

(A13) A([�A(Mt)�U]) ρ φA θ = R([{|�P�U |} � ρ]) φ′
A θ where, A(x) � P

and φ′
A = φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]

(A14) A([�let x = private(M)t in P�U]) ρ φA θ =⎧
⎨

⎩

R([{|�P�U |} � ρ]) φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}] θ,

if U ∈ ϕA(φA, M), where, private(U) = θ(U)−

φA, otherwise
(A15) A([�let x = public(M)t in P�U]) ρ φA θ = R([{|�P�U |} � ρ]) φ′

A θ
where, φ′

A = φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}]
and, value of ({t}) =

{ {θ(U)+}, if U ∈ ϕA(φA, M)
{θ(U ′)+ | U ′ ∈ dom(θ)}, otherwise

(A16) A([�let x = certified(M)t in P�U]) ρ φA θ =
R([{|�P�U |} � ρ]) φA[αk,k′ (x) �→ φA(αk,k′ (x)) ∪ {(αk,k′ (t), U, U)}] θ,

where, certified(M) = θ(M)+

(R0) R([ρ]) φA θ =
⋃

φ

�P �U ∈ρ

A([�P�U]) (ρ\{|�P�U |}) φA θ

Fig. 5. The abstract semantics of the SPIKY language

62 B. Aziz, D. Gray, and G. Hamilton

can only be finite in this semantic. As a result, the termination of the least fixed
point is formalised as follows.

Theorem 1 (Termination of the least fixed point calculation)
The calculation of rule (A5) terminates.

Proof Sketch. To prove the termination property, it is necessary to satisfy two
requirements. First, the semantic domain must be finite. This is satisfied by the
definition of D�

⊥, where Tag� and AG are both finite. The second requirement is
that A([�

∏
i

P �U]) ρ φA θ must be monotonic over P , i.e. A([�
∏
i

P �U]) ρ φA θ 	D�
⊥

A([�
∏
i+1

P �U]) ρ φA θ. �

We can state the safety of the abstract semantics by the following theorem.

Theorem 2 (Safety of the abstract semantics)
∀P, ρ, φE , φA, k, k′, E([�P �U]) ρ φE θ = (p, φ′

E),A([�P �U]) ρ φA θ = φ′
A :

(∃M,x : ϕE(φE ,M) ∈ φE(x) ⇒
∃t ∈ φA(αk,k′(x)) : M � ∈ value of ({t}) ∧ M � = fold subk,k′ M nv(M))

⇒
(∃M,x : ϕE(φ′

E ,M) ∈ φ′
E(x) ⇒

∃t ∈ φ′
A(αk,k′(x)) : M � ∈ value of ({t}) ∧ M � = fold subk,k′ M nv(M))

where, subk,k′ x y = y[αk,k′(x)/x]
and, nv(M) is the set of names and variables of M

Proof Sketch. The proof is by induction over the structure of the abstract se-
mantics and relies on first proving the safety of the ∪φ operation. �

The theorem states that for any term, M , captured in the non-standard se-
mantics by including its ϕE(φ′

E ,M) value in the value of a variable, φ′
E(x), then

that corresponds to capturing a tag, t, in the abstract semantics, by φ′
A(αk,k′(x)).

The appropriateness of t is expressed by the ability to obtain (by folding) an
abstract form, M � = fold subk,k′ M nv(M), of the concrete term, M , by evalu-
ating t using value of . More concisely, every concrete term, M , captured in the
non-standard semantics is also captured in the form of the corresponding ab-
stract tag, t, in the abstract semantics. From now on, we shall use the following
predicate, to denote the property that a term, M , is captured by an agent, B,
sent by another agent, A, given the results of an abstract semantics, φA, and
the constraints, k and k′:

captured(M,A,B, φA, k, k′) def=
∃t ∈ Tag�, x ∈ dom(φA) : (t, A,B) ∈ φA(x) ∧ M � ∈ value of(t)

6 Security Properties

In this section, we formalise two security properties that can be checked by the
static analysis of the previous section. These properties are the term secrecy and
the peer-entity participation.

A Static Analysis of PKI-Based Systems 63

6.1 Term Secrecy

We formalise the property that a term, M , is never leaked to some agent, U ,
with respect to the results of the abstract semantics, φA, and using the captured
predicate defined in the previous section, as follows.

Property 1 (Secrecy of the term M w.r.t. U)
�U ′ ∈ AG : captured(M,U ′, U, φA, k, k′)

From now on, we write the predicate, secret(M,U), to indicate that M remains
secret with respect to U .

6.2 Peer-Entity Participation

Peer-entity participation means that an agent, A, knows to a certain degree of
certainty that another agent, B, has participated in a session of some protocol
in which A is also a participant. In reality, there are many scenarios that this
property could be established, both in its one-way and two-way forms. In this
section, we discuss one such scenario, where A creates a nonce, N , and N is signed
by B, then, provided that only B has the knowledge of its own private key, A
knows that B has just participated in the protocol if it receives back the signature
and is able to verify it. The degree of certainty to which A may establish the
property depends on whether A performs a certified or an uncertified retrieval
of the public key of B. In the uncertified case, A may still be able to raise its
degree of certainty by relying on trusted third parties to perform the certified
public key retrieval.

Based on this, we define the certified peer-entity participation and the uncer-
tified peer-entity participation, as follows.

Property 2 (Certified peer-entity participation of B by A)
captured(θ(B)−, B,B, φA, k, k′) ∧
(∃t ∈ Tag�, x ∈ dom(φA) : φA(x) = {(t, A,A)} ∧ θ(B)+� ∈ value of(t)) ∧
(∃U,L : captured([{L}]θ(B)− , U,A, φA, k, k′)) ∧
(∀U ′ : U ′ �= B ⇒ secret(θ(B)−, U ′))

Property 3 (Uncertified peer-entity participation of B by A)
captured(θ(B)−, B,B, φA, k, k′) ∧
(∃t ∈ Tag�, x ∈ dom(φA) : (t, A,A) ∈ φA(x) ∧ θ(B)+� ∈ value of(t)) ∧
(∃U,L : captured([{L}]θ(B)− , U,A, φA, k, k′)) ∧
(∀U ′ : U ′ �= B ⇒ secret(θ(B)−, U ′))

7 Example

We consider here an example of mobile protocol authentication taken from [7].
In this example, we have that agent A is running on a small device with com-
putational power insufficient for performing the full certification of the public
key of B, therefore it relies on a trusted server with much more computational
power to complete the verification process and forward its signed nonce to B:

64 B. Aziz, D. Gray, and G. Hamilton

INIT (a, b, s, ch, ch′) � (ν na)ch〈a, na〉.ch(b′, nb, sig).
[b is b′] let kb = public(b) in

[[{sig, na}]kb] let ka = private(a) in
let ks = certified(s) in ch′〈{[[{nb}]ka , b, kb]}ks〉.0

RESP (b, a, ch) � ch(a′, na).
[a is a′] let kb = private(b) in

(ν nb)ch〈b, nb, [{na}]kb〉.ch(sig).
let ka = certified(a) in [[{sig, nb}]ka].0

SERV (a, s, ch1, ch2) � let ks = private(s) in
ch′(c).case c of {[p]}ks in
let (sig, b, key) = p in
let kb = certified(b) in [key is kb]ch〈sig〉.0

SY ST � (ν ch)(ν ch′)(�INIT (A, B, S, ch, ch′)�A |
�RESP (B, A, ch)�B | �SERV (A, S, ch, ch′)�S)

Fig. 6. SPIKY definition of the mobile authentication protocol [7]

(1.) A → B : A,NA

(2.) B → A : B,NB , [{NA}]KB
−

(3.) A → S : {[[{NB}]KA
− , B,KB

+]}KS
+

(4.) S → B : [{NB}]KA
−

The specification of this protocol in the SPIKY language is given in Figure 6.

7.1 Analysis Results

Applying A([SY ST]) ρ φA θ, for the uniform case, where k = k′ = 1, we find that
Property 3 is satisfied for agent A, since captured([{na}]kb

, B,A, φA, k, k′) and A
can only verify the signature with uncertified public key for B. Obviously, A later
relies on the server, S, to compare the uncertified key of B with a certified version
that S is capable of retrieving. On the other hand, we find that Property 2 is
satisfied for agent B, since captured([{nb}]ka

, S,B, φA, k, k′) is true and B can
verify the signature with a certified public key of A. Finally, we also note that
Property 1 is satisfied for the term, {[[{nb}]ka

, B, kb]}ks
with respect to all the

agents in the second protocol except the server, SERV (A,S, ch, ch′).

8 Conclusion

In this paper, we have presented a novel static analysis of PKI-based systems
that captures the property of term substitutions in SPIKY-based specifications.
The analysis was used to formally define the security properties of term secrecy
and peer-entity participation. For the future, we hope to implement the analysis
in some functional language, like SML or OCAML, and we plan then to use the
implementation to verify a number of protocols that use PKIs.

A Static Analysis of PKI-Based Systems 65

References

1. Mart́ın Abadi and Andrew Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proceedings of the 4th ACM Conference on Computer and Communi-
cations Security, pages 36–47, Zurich, Switzerland, April 1997. ACM Press.

2. Samson Abramsky. A domain equation for bisimulation. Information and Compu-
tation, 92(2):161–218, June 1991.

3. B. Aziz. A Static Analysis Framework for Security Properties in Mobile and Crypto-
graphic Systems. PhD thesis, School of Computing, Dublin City University, Dublin,
Ireland, 2003.

4. B. Aziz, G.W. Hamilton, and D. Gray. A denotational approach to the static analysis
of cryptographic processes. In Proceedings of International Workshop on Software
Verification and Validation, volume 118, pages 19–36, Mumbai, India, December
2003. Electronic Notes in Theoretical Computer Science.

5. Benjamin Aziz and Geoff Hamilton. A privacy analysis for the π-calculus: The de-
notational approach. In Proceedings of the 2nd Workshop on the Specification, Anal-
ysis and Validation for Emerging Technologies, number 94 in Datalogiske Skrifter,
Copenhagen, Denmark, July 2002. Roskilde University.

6. Benjamin Aziz, Geoff Hamilton, and David Gray. A static analysis of cryptographic
processes: The denotational approach. Journal of Logic and Algebraic Programming,
64(2):285–320, August 2005.

7. David Gray, Benjamin Aziz, and Geoff Hamilton. Spiky: A nominal calculus for
modelling protocols that use pkis. In Proceedings of the International Workshop on
Security Analysis of Systems: Formalism and Tools, Orléans, France, June 2004.

8. Gordon Plotkin. A powerdomain construction. SIAM Journal on Computing,
5(3):452–487, September 1976.

Subtyping Object and Recursive Types Logically
(Extended Abstract)

Steffen van Bakel1,� and Ugo de’Liguoro2,��

1 Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, UK

svb@doc.ic.ac.uk
2 Dipartimento di Informatica, Università di Torino,

Corso Svizzera 185, 10149 Torino, Italy
deliguoro@di.unito.it

Abstract. Subtyping in first order object calculi is studied with respect to the
logical semantics obtained by identifying terms that satisfy the same set of pred-
icates, as formalized through an assignment system. It is shown that equality in
the full first order ς-calculus is modelled by this notion, which on turn is included
in a Morris style contextual equivalence.

1 Introduction

Subtyping is a prominent feature of type-theoretic foundation of object oriented pro-
gramming languages. The basic idea is expressed by subsumption: any piece of code
of type A can masquerade as a code of type B whenever A is a subtype of B, written
A<:B.

In typed calculi equations are among terms of the same type; since terms may have
several types because of subsumption, it is commonly postulated that if a = b : A and
A<:B then a = b : B (but not viceversa): call this equational subsumption. In the
realm of object calculi, object types are essentially interfaces, and subtyping interface
extension; therefore subsumption is justified by the intuition that any object which is
able to react to messages mentioned in A a fortiori will answer correctly to messages in
the smaller interfaces represented by its supertypes. Similarly equational subsumption is
understood on the ground of contexts separability: a and b are contextually equivalent
at type A if both typeable by A and no context with a hole of type A can take them
apart. This provides an interpretation of subtyping: A<:B should hold if any pair of
terms contextually equivalent at type A cannot be separated at B.

Semantically this is understood in two ways according to the existing literature (see
[10] ch. 10 for a gentle introduction to these approaches): either by means of coercions
[4], or by inclusion of partial equivalence relations as in [5,6] and [1] ch. 14. But coer-
cion semantics does not reflects the actual implementation practice of object-oriented

� Partially supported by the MIKADO project of the IST-FET Global Computing Initiative, no
IST-2001-32222.

�� Partially supported by EU within the FET - Global Computing initiative, project DART ST-
2001-33477.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 66–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Subtyping Object and Recursive Types Logically 67

languages; on the other hand PER semantics is quite complex to use for reasoning about
programs, and suffers of technical problems which are still open.

We propose a third approach which, in our view, can lead to a simpler logical frame-
work for reasoning about object oriented programs. It is based on the ideas of logical
semantics and domain logic. In the latter perspective the meaning of a term is deter-
mined by the set of the predicates it satisfies, so that two terms are equivalent if they
are indiscernible. To account for equivalence “at” a certain type A we relativize this
form of absolute indiscernibility to sets of predicates indexed over types, calling them
languages. Hence a and b are logically equivalent at type A if they satisfy the same set
of predicates form the language LA associated to A.

For equational subsumption to be sound in our framework, it is needed that some
relation between LA and LB exists whenever A<:B. Were we about a calculus of
pure objects, such a relation would be simply LA ⊇ LB , and this is clearly enough.
However, since in the present paper we consider a richer calculus with functions and
recursive types, called FOb1<:µ in [1], this is no longer true in general, and is replaced
by a more complex inclusion relation.

The logical equivalence is indeed the theory of a model. Such a model can be ob-
tained by the filter model construction as in [3], with a more complex structure due
to the presence of types (see [8] and [12]). Here we live aside the investigation of the
model and concentrate on the theory itself, establishing two results: first if � a ↔ b : A
is derivable in the equational theory of system FOb1<:µ, then a and b are logically
equivalent at type A; second two terms logically equivalent at type A are contextually
equivalent at the same type. The latter result is a consequence of the characterization of
convergence in terms of derivability of non trivial predicates in LA much as in the case
of λ-calculus and intersection types (see e.g. [11]). A similar result was proved for the
type-free ς-calculus in [7].

Because of the limited space available, proofs are omitted: see [13].

1.1 Related Work

The present paper follows some previous works by the authors in [7,8,12]. The novelty
is subtyping of object and recursive types, while subtyping polymorphism was con-
sidered in [8] for a λ-calculus with function and record types only. The idea of using
languages to model types in a filter model originates from [2]: however in Abramsky’s
work the modeling of polymorphism was left out. In this case the predicate languages
cannot be disjoint; moreover they need to have a structure reflecting the subtyping rela-
tion, as stressed above, a topic which has not been addressed in the literature. The theory
of objects in [1] is a natural environment of investigation for the themes we are about
here; Morris style contextual equivalence for first order object calculi is introduced and
studied in [9], where system FOb1<:µ is considered: this is the reason for the choice of
the same calculus in the present paper.

2 The System FOb1<:µ

To keep the present exposition self-contained, we recall the definition of the system
FOb1<:µ of [1]. As usual for polymorphic calculi, we will introduce type and term

68 S. van Bakel and U. de’Liguoro

syntax in two steps: first by defining type expressions (pre-types) and pre-terms, namely
terms decorated by pre-types; types and terms are then defined together with the the type
derivation system as well-formed pre-types and well-typed pre-terms respectively.

Definition 1 (Pre-types and Pre-terms). Let K be a set of type constants, ranged over
by K, and V a set of type variables, ranged over by X , {�i | i∈N} a denumerable set
of labels, I and J finite subsets of N . The set of types T , ranged over by A,B,C, . . .
is defined by the following grammar:

A,B ::= K | X | [�i:Bi
(i∈I)] | A→B | µX.A

The pre-terms of FOb1<:µ are defined through the following grammar, where c ranges
over constants:

a, b ::= x | c | λxA.a | a(b) | [�i = ς(xA
i)bi

(i∈I)] | a.�
| a.�↼↽ς(x)b | fold(A, a) | unfold(a)

A type expression of the shape [�i:Bi
(i∈I)] is used for an object type; A→B is

the usual functional type and µX.A is a recursive type: in the latter the type variable X
is bound in A. In the expressions ς(xA)b and λxA.b, x is bound in b; free and bound
variables are defined as usual. Types and pre-terms are considered equal modulo α-
conversion, i.e. up to renaming of bound variables.

In [1] the system is defined as the union of several fragments, which we subdivide
into two parts; the first one concerns contexts, types and terms formation1:

Definition 2. A context for a type judgement is just a finite set E of type-decorated
variables, of the shape x:A.

The system ∆K ∪∆x ∪∆Ob ∪∆→∪∆X ∪∆µ is given in Figure 1.
E is a well-formed context if E � � is derivable, and A is a type for a if there exists

E with E � a:A.

The second one is about sybtyping:

Definition 3. The system ∆<: ∪∆<:Ob ∪∆<:→∪∆<:X ∪∆<: µ can be found in
Figure 2.

It is understood that such unions produce a set of inductive clauses generating a
unique system where contexts and types in the rules from the first part can be formed
according to the rules of the second part and vice-versa. There is also a certain redun-
dancy: the context E,X is the same as E,X <: Top. In what follows we will use the
generic notation · {·← ·} for substitution both of type variables by type expressions and
of term variables by terms, implicitly replacing all occurrences of the first parameter of
{·← ·} by the second in the preceding expression; as usual the replacements occur up
to α-congruence to avoid variable clashes.

1 As in [1], we will use a short-hand for rules, and write for example

E, xi:A �Σ bi:Bi (∀i∈I)

E �Σ [�i = ς(xA
i)bi

(i ∈ I)]:A
for

E, x1:A �Σ b1:B1 . . . E, xn:A �Σ bn:Bn

E �Σ [�i = ς(xA
i)bi

(i∈ I)]:A

assuming here that I = {1, . . . , n}.

Subtyping Object and Recursive Types Logically 69

(Env ∅) :

∅ � �

(Env x) :
E � A

(x �∈ dom(E))
E, x:A � �

(Val x) :
E′, x:A, E′′ � �

E′, x:A, E′′ � x:A

(Type Const) :
E � �
E � K

(Type Object) :
E � Bi (∀i ∈ I)

E � [�i:Bi
(i∈ I)]

(Val Object) :
E, xi:A � bi:Bi (∀i∈I)

E � [�i = ς(xA
i)bi

(i∈ I)]:A

(Val Select) :
E � a:[�i:Bi

(i ∈ I)]
(j ∈I)

E � a.�j :Bj

(Val Update) :
E � a:A E, x:A �Σ b:Bj

(A ≡ [�i:Bi
i ∈ I], j ∈I)

E � (a.�j ↼↽ς(xA)b):A

(Type Arrow) :
E � A E � B

E � A→B

(Val Fun) :
E, x:A � a:B

E � λxA.a:A→B

(Val Appl) :
E � a:A→B E � b:A

E � a(b):B

(Env X) :
E � �

(X �∈ dom(E))
E, X � �

(Type X) :
E′, X, E′′ � �
E′, X, E′′ � X

(Type Rec) :
E, X � A

E � µX.A

(Val Fold) :
E � a:A{X ← µX.A}

E � fold(µX.A, a):µX.A

(Val Unfold) :
E � a:µX.A

E � unfold(a):A{X ← µX.A}

Fig. 1. Fragments ∆K ∪∆x ∪∆Ob ∪∆→∪∆X ∪∆µ

Definition 4 (Reduction). Evaluating contexts are term expressions with a hole [], and
are generated by the grammar:

E [] ::= | E [].� | E [].�↼↽ς(xA)b | E [](a) | unfold(E []) | fold(A, E []).

We will wrire E [a] for the replacement of by a in E .
The one-step reduction relation on terms is the binary relation defined by the fol-

lowing rules:

[�i = ς(xAi
i)bi

(i∈I)].�j → bj{xj ← [�i = ς(xAi
i)bi

(i∈I)]}
[�i = ς(xAi

i)bi
(i∈I)].�j ↼↽ς(xA)b → [�i = ς(xAi

i)bi
i∈I\j , �j = ς(xAj)b]

(λxA.a)(b) → a{x← b}
unfold(fold(X, a)) → a

a → b ⇒ E [a] → E [b]

The relation
∗−→ is the reflexive and transitive closure of → .

The one-step reduction is from [9]. In [1], Ch. 6 the operational semantics of the
object calculi is defined by means of a bigstep predicate a � v, where a is a closed
term, v is a value as it is defined by the grammar:

v ::= c | λxA.a | [�i : ς(xA
i)bi

i∈I] | fold(A, v).

70 S. van Bakel and U. de’Liguoro

(Sub Refl) :
E � A

E � A<: A

(Sub Trans) :
E � A<: B E � B<: C

E � A<: C

(Val Subsumption) :
E � a:A E � A<: B

E � a:B

(Type Top) :
E � �

E � Top

(Sub Top) :
E � A

E � A<: Top

(Sub Object) :
E � Bi (∀i ∈ I)

(J ⊆ I)
E � [�i:Bi

i ∈ I]<: [�i:Bi
i ∈ J]

(Sub Arrow) :
E � A′ <: A E � B<: B′

E � A→B<: A′→B′

(Env X<:) :
E � A

(X �∈ dom(E))
E, X <: A � �

(Type X<:) :
E′, X <: A, E′′ � �
E′, X <: A, E′′ � X

(Sub X) :
E′, X <: A, E′′ � �

E′, X <: A, E′′ � X <: A

(Type Rec<:) :
E, X <: Top � A

E � µX.A

(Sub Rec) :
E � µX.A E � µY.B E, Y <: Top, X <: Y � A<: B

E � µX.A<: µY.B

Fig. 2. Fragments ∆<:∪∆<:Ob ∪∆<:→∪∆<:X ∪∆µ

It is easy to see that a � v if and only if a
∗−→ v. The reduction relation is more general

since it is defined for any term (possibly with free variable occurrences); it is even true
that normal forms are not necessarily values. However it is easy to adapt the arguments
in [1] to establish the following theorem:

Theorem 5 (Subject reduction property of FOb1<:µ). If E � a:A is derivable in the
system FOb1<:µ and a → b, then E � b:A is derivable as well.

We just stress that, consistently with the definition of � in [1], in the clause:

[�i = ς(xAi
i)bi

(i∈I)].�j ↼↽ς(xA)b → [�i = ς(xAi
i)bi

i∈I\j , �j = ς(xAj)b]

a renaming of the self type of the bound variable xA into xAj occurs. This is immaterial
in the fragments of the ς-calculus without subtyping, but it is needed in the presence
of rule (Val Subsumption) since if A = [�i:Bi

i∈I], and A<: C, then we can give type
C to any term of type A and therefore update a method in an object of type A with
ς(xC)b; but the result of (naively) performing the update saving the self type C is no
longer typeable, as the selves of the methods now have different types, so that rule
(Val Object) will not apply.

The reduction relation is trivially confluent. Even relaxing Definition 4 and taking
the closure of → under arbitrary contexts would not destroy confluence, as can be
shown e.g. by adapting the Martin-Löf technique for proving the Church-Rosser theo-
rem for the λ-calculus. As for typed λ-calculi with recursion (e.g. PCF), typed terms do
not necessarily have a normal form: ΩB ≡ [� = ς(xA)x.�].� is typeable by B if A is
any object type [�:B, . . .], and it is such that ΩB → ΩB .

Subtyping Object and Recursive Types Logically 71

3 Predicates and Assignment

In this section we will introduce the syntax of the predicates and an assignment sys-
tem to syntactically derive judgements associating predicates to typed terms under the
assumption of similar judgements about a finite set of typed variables.

Predicates are transparently intersection types for a λ-calculus with records, and
come from [7]. The essential difference is that the set of predicates is stratified into
languages (see [8,12]), in such a way that whenever a predicate can be deduced for a
term a, it belongs to the language LA associated with A.

Much in the style of [11], in this section we will present a notion of strict inter-
section types, called strict predicates here; this is a technical choice and a departure
from [12], making the proof theory of the system more manageable, without loss in the
expressivity. Using these, we will define a notion of predicate assignment, which will
consists basically of associating a predicate to a typed term.

Definition 6 (Predicates). PS, the set of strict predicates, and the set P of intersection
predicates, both ranged over by σ, τ, . . ., are defined through:

PS ::= κ | (P → PS) | 〈�:PS〉 | µ(PS)
P ::= (PS1∧ . . . ∧PSn) (n ≥ 0)

where κ ranges over a countable set of atoms. We will write ω for an intersection of
zero strict types, and write ∧nσi for σ1∧ . . . ∧σn, where we assume that each σi ∈PS.
Also, rather than 〈�:σ1〉∧ · · · ∧〈�:σn〉 we will write 〈�:σ1∧ · · · ∧σn〉 or 〈�:∧nσi〉, where
n = {1, . . . , n}; also, rather than 〈�1:σ1〉∧ · · · ∧〈�n:σn〉 where the �i are distinct, we
will write 〈�i:σi

i∈n〉 or 〈�i:σi
(i∈I)〉.

Atomic predicates κ are intended to describe elements of atomic type in the do-
main of interpretation; σ→τ is the property of functions sending element satisfying σ
into elements satisfying τ ; 〈�:σ〉 is the property of records having values that satisfy
σ associated with the field �. Predicates ω and σ∧τ mean ‘truth’ and ‘conjunction’ re-
spectively. It should be noted that arbitrary intersection predicates like (σ→τ)∧〈�:ρ〉
are allowed by the above definition.

To build a logic of predicates we need a notion of implication, written σ ≤ τ , which
is a reflexive and transitive relation on predicates, defined below.

Definition 7 (Predicate pre-order). On predicates a pre-order ≤ is inductively defined
by:

σ≤σi
(∀i≤n ≥ 0)

σ≤∧nσi

(∀i≤n ≥ 1)
∧nσi ≤σi

ρ≤σ τ ≤µ

σ→τ ≤ρ→µ

σ≤ τ ≤ρ

σ≤ρ

σ≤ τ

〈�:σ〉≤ 〈�:τ〉
σ≤ τ

µ(σ)≤µ(τ)
Finally σ = τ ⇐⇒ σ≤ τ ≤σ. A predicate is trivial if equivalent to ω.

Lemma 8. The following rules are admissible

〈�i:σi
i∈I〉∧〈�j :τj

j∈J〉≤ 〈�k:ρk
(k∈I ∪J)〉, where

⎧
⎨

⎩

ρk = σk∧τk, if k∈I∩J,
ρk = σk, if k∈I\J,
ρk = τk, if k∈J\I

72 S. van Bakel and U. de’Liguoro

(J ⊆ I)
〈�i:σi

(i∈I)〉≤ 〈�j :σj
j∈J〉

Lemma 9. 〈�i:σi
i∈I〉∧〈�j :τj

j∈J〉 = 〈�k:ρk
(k∈I ∪J)〉, provided σi = τi for i ∈ I ∩J .

Although predicates are basically properties of untyped terms (resulting from typed
terms essentially by erasing type decorations), types are quite relevant in the equational
theory of the FOb1<:µ calculus; this was accounted for in [8,12] by means of the notion
of predicate languages, whose definition easily extends to the present richer syntax.

Definition 10 (Languages). The set of all predicates L is stratified into a family {LA}A

of sets of predicates called languages, indexed over closed types such that:

1. for every κ, there exists exactly one K ∈K such that κ ∈ LK ;
2. LA is the least set (including atoms if A ≡ K) such that

σi ∈LA (∀i∈n)
(n ≥ 0)

∧nσi ∈LA

σ∈LA τ ∈LB

σ→τ ∈LA→B

σ∈LA{X ← µX.A}
(σ∈PS)

µ(σ)∈LµX.A

σ∈LA→Bj (A = [�i:Bi
(i∈I)], j∈I, σ∈PS)〈�j :σ〉∈LA

The intuition behind languages is the following. Properties in LA give some infor-
mation about values of type A; to be a value of type A should then imply to enjoy at
least a non-trivial property in LA. That two values are logically equivalent at type A
means that they satisfy the same set of properties in that language; consistently LTop
is the set of trivial types. A natural question is whether there exists a relation between
languages and the subtyping relation, which is partly answered in the following propo-
sition, for which we recall the definition of the Egli-Milner preorder over the powerset
of any preordered set (X,≤): if U, V ⊆ X then

U �� V ⇐⇒∀u ∈ U ∃v ∈ V. u ≤ v & ∀v ∈ V ∃u ∈ U. u ≤ v.

Proposition 11. Let A and B be closed type expressions not including recursion and
such that � A<: B then:

1. if A and B are object types then LB ⊆ LA;
2. if A and B are either object or arrow types then LA �� LB .

We say that LB is a restriction of LA when LA �� LB . Note that, since ω ∈ LB

for any B (take n = 0 in the rule about intersection in Definition 10) and σ ≤ ω for
all σ, we have that LB ⊆ LA implies LA �� LB . If LA �� LB then LB is weaker than
LA: we speak of restriction, since its discriminating power is less than the power of LA,
as it is immediately clear when LB ⊆ LA. This makes languages and restriction good
candidates for modelling types and subtyping relation respectively.

The proof of Proposition 11 is by induction on the derivation of � A<: B and does
not need to take the context into account at any step because of the assumptions; this is
no longer true when recursive types are considered.

Subtyping Object and Recursive Types Logically 73

Definition 12. A map η from type variables to closed types is called a type-environment.
For E a well-formed context, we say that η respects the context E if for any X <: A ∈ E
(if X ∈ E then it is read as X <: Top ∈ E) it is the case that Lη(X) �� Lη(A), where
η(A) is the value of application to A of the obvious extension of η to the set of types.

Theorem 13. If E � A<: B, then for any type-environment η that respects E we have
Lη(A) �� Lη(B).

We are now in place to introduce the main tool in the present work, namely the
assignment system. It is a formal system to derive judgments of the form a:A :σ, whose
intended meaning is: the denotation of a satisfies the property σ when seen as a value
of type A (here a “value” could be the undefined object in the domain of interpretation:
we shall see that in such a case σ has to be trivial).

Definition 14 (Statements, bases, compatibility).

1. A statement is an expression of the shape a:A :σ, where a is a term, A is a type for
a, and σ is a predicate, and a is called the subject of this statement.

2. A basis Γ is a finite set of statements with only (distinct) term variables as subject.
3. For a basis Γ , we say that E fits into Γ , written E�Γ , if x:A:σ∈Γ implies x:A∈E.

We write Γ̂ for the largest context that fits into Γ .
4. We say that two bases Γ0, Γ1 are compatible if there exists a context E including

all variables occurring in both Γ0 and Γ1, fitting into both of them.
5. We say that Γ preserves languages if σ∈Lη(A) whenever x:A:σ∈Γ and η is a

type-environment respecting Γ̂ .
6. We extend ≤ to bases by: Γ ′≤Γ if and only if for every x:A:σ∈Γ there exists

x:A:σ′∈Γ ′ such that σ′ ≤ σ.

Definition 15 (Predicate Assignment). The predicate assignment system to
derive judgments of the form Γ � a:B :σ where Γ is a basis preserving languages,
a a term, A a type and σ a predicate is defined in figure 3.

Lemma 16. 1. The rules

Γ � a:A :σ σ ≤ τ

Γ � a:A :τ
and

Γ � a:A :σ σ ≤ τ Γ̂ � A<: B
(τ ∈ LB)

Γ � a:B :τ

are admissible.
2. If Γ̂ � a:A, Γ̂ � A<: B and Γ � a:B :τ , then there exists σ ∈ LA such that σ ≤ τ

and Γ � a:A :σ.

4 Subject Reduction and Expansion

A minimal requirement for soundness of the assignment system is that predicates are
invariant under reduction. This is established through the following result.

74 S. van Bakel and U. de’Liguoro

(Val x) :
(x:B:τ ∈Γ, τ ≤ σ)

Γ � x:B :σ

(<:) :
Γ � a:B :σ Γ̂ � B<: C

(σ∈LC)
Γ � a:C :σ

(Val Fun) :
Γ, x:A:τ � a:B :σ

Γ � λxA.a:A→B :τ→σ

(Val Appl) :
Γ � a:A→B :τ→σ Γ � b:A :τ

Γ � a(b):B :σ

(Val Fold) :
Γ � a:A{X ← µX.A} :σ

Γ � fold(µX.A, a):µX.A :µ(σ)

(Val Unfold) :
Γ � a:µX.A :µ(σ)

Γ � unfold(a):A{X ← µX.A} :σ

in the next rules A ≡ [�i:Bi
(i ∈ I)]

(Val Select) :
Γ � a:A :〈�j :τ→σ〉 Γ � a:A :τ

Γ � a.�j :Bj :σ

(Val Object) :
Γ, xi:A:τi � bi:Bi :σi (∀i∈I)

(j ∈ I)
Γ � [�i = ς(xA

i)bi
(i ∈ I)]:A :〈�j :τj→σj〉

(Val Update1) :
Γ � a:A :σ Γ, y:A:ρ � b:Bj :τ

Γ � (a.�j ↼↽ς(yA)b):A :〈�j :ρ→τ〉

(Val Update2) :
Γ � a:A :〈�j :σ〉 Γ, y:A:ρ � b:Bi :τ

(i �= j)
Γ � (a.�i ↼↽ς(yA)b):A :〈�j :σ〉

(ω)
E � a:B

(E 	 Γ)
Γ � a:B :ω

(∧I)
Γ � a:B :σi (∀i∈n)

(n ≥ 1)
Γ � a:B :∧nσi

Fig. 3. Predicate Assignment

Theorem 17 (Subject Reduction). If Γ � a:A :ρ, and a → a′, then Γ � a′:A :ρ.

Example 18. To better appreciate the importance of this standard result in the present
setting, we review an example given in [12].

Suppose that A ≡ [�0:Int, �1:Int] and a ≡ [�0 = ς(xA)1, �1 = ς(xA)x.�0] (using a
constant 1 of type Int), so that in FOb1<:µ we have � a:A. Then

x:A:ω � 1:Int :O

(Val x)
x:A:〈�0:ω→O〉 � x:A :〈�0:ω→O〉

(ω)
x:A:〈�0:ω→O〉 � x:A :ω

(Val Select)
x:A:〈�0:ω→O〉 � x.�0:Int :O

(Val Object, ∧I)
� a:A :〈�0:ω→O, �1:〈�0:ω→O〉→O〉

where �0 is a field, �1 is the method get�0, and O ∈ LInt is the predicate of be-
ing an odd integer. Using rules (Val Update1), (Val Update2) and (∧I) one can derive
(the seemingly incorrect):

Subtyping Object and Recursive Types Logically 75

�
��

�
��

� a:A:〈�0:ω→O, �1:〈�0:ω→O〉→O〉 y:A:ω � 2:Int :E

� (a.�0 ↼↽ς(yA)2):A :〈�0:ω→E, �1:〈�0:ω→O〉→O〉

where E ∈ LInt is the predicate of being an even integer. This makes sense, how-
ever, since it simply states that if the value at �0 is an odd integer, then the method �1
will return an odd integer; it also states that this is vacuously true of the actual object
a.�0 ↼↽ς(yA)2, since it has an even integer at �0. As a consequence of Theorem 17 we
also know that this is harmless: indeed (a.�0 ↼↽ς(yA)2).�1

∗−→ 2 and we clearly as-
sume that �� 2:Int : O, so by contraposition �� (a.�0 ↼↽ς(yA)2).�1:Int : O. As a matter
of fact, rule (Val Select) is not applicable, since �� (a.�0 ↼↽ς(yA)2):A : 〈�0:ω→O〉.

On the other hand, the following odd-looking assignment is legal as well, this time
by rule (Val Object) and (∧I):

x:A:ω � 1:Int :O

x:A:〈�0:ω→E〉 � x:A :〈�0:ω→E〉 x:A:〈�0:ω→E〉 � x:A :ω

x:A:〈�0:ω→E〉 � (x.�0):Int :E

a � A:〈�0:ω→O, �1:〈�0:ω→E〉→E〉

In the last case, however, the apparently odd predicate we deduce is of use to con-
clude as before:

�
��

�
��

� a:A :〈�0:ω→O, �1:〈�0:ω→E〉→E〉 y:A:ω � 2:Int :E

(a.�0 ↼↽ς(yA)2) � A:〈�0:ω→E, �1:〈�0:ω→E〉→E〉

which is what we expected.

The invariant property of predicates w.r.t. reduction is stronger as they are preserved
even by expansion, as is the case for standard intersection type assignment systems (see
e.g. [3,11]). However we have to be careful, since the simply typed λ-calculus is a sub-
calculus of FOb1<:µ, for which it is known that subject expansion does not hold. In fact
we can prove � (λxA→A.x)(λxA.x):A→A :σ→σ, but Γ �� yy{y ← (λxC .x)}:A→A :
σ→σ, since there is no way to derive a type for yy for any choice of Γ and C.

As a matter of fact, subject expansion does hold for predicates whenever it is the
case for types, and this suffices for giving semantics to typed terms consistently with
the restriction of convertibility relation to terms of the same type.

Theorem 19 (Subject Expansion). If Γ � a:A :τ , and a′ is such that Γ̂ � a′:A and
a′ → a, then Γ � a′:A :τ .

5 The Logical Equivalence

The assignment system of Definition 15 induces a logical notion of equivalence, ac-
cording to which a and b are equal at A if they can be assigned the same set of

76 S. van Bakel and U. de’Liguoro

predicates from LA. By extending this notion to open terms, we arrive at the following
definition.

Definition 20 (Logical Equivalence).
Let a and b be terms such that E � a:A and E � b:A; we define

[[a:A]]E = {σ ∈ LA | ∃Γ.Γ̂ = E & Γ � a:A :σ}.

We then say that a and b are logically equivalent at A and environment E if

E � a:A,E � b:A and [[a:A]]E = [[b:A]]E ,

and write a �L
E b : A.

Notice that, if the basis Γ respects languages, the requirement σ ∈ LA in the above
definition is clearly redundant. Logical equivalence is the theory of a model built out of
predicates, where the denotation of a term is exactly the set of its properties: i.e. the fil-
ter model [3]. It can be constructed along the lines of [12], even if the type interpretation
cannot be the same, because retractions do not model subtyping. We leave this investi-
gation to further study, and concentrate here on the properties of logical equivalence.

A notion of equivalence among terms of the FOb1<:µ is defined via a system deriv-
ing statements of the shape a ↔ b : A, meaning that terms a and b are equal at type A;
the system ∆= ∪∆=x ∪∆=<: ∪∆=→∪∆=Ob ∪∆=µ is shown in Figure 4, where with
respect to the original system in [1], we have omitted the obvious rules, like (Eq Appl),
and extensionality rules (called (Eval Eta) and (Eval Fold), respectively).

Such a notion includes (typed) convertibility but it does not coincide with it: in
fact ‘↔’ is a congruence whereas ‘ → ’ is not closed under arbitrary contexts; more
importantly, this is a consequence of subtyping and precisely of rule (Eq Sub Object)

(Eval Beta) :
E � λxAb:A→B E � a:A

E � (λxAb)(a) ↔ b{x← a} : B

(Eq Subsumption) :
E � a ↔ a′ : A E � A<: B

E � a ↔ a′ : B

(Eq Top) :
E � a:A E � b:B

E � a ↔ b : Top

(Eq Select) :
E � a ↔ a′ : [�i:Bi

i∈I]
(j ∈ I)

E � a.�j ↔ a′.�j : Bj

(Eq Update) where A ≡ [�i:Bi
(i ∈ I)] :

E � a ↔ a′ : A E, x:A � b ↔ b′ : Bj
(j ∈ I)

E � a.�j ↼↽ς(xA)b ↔ a′.�j ↼↽ς(xA)b′ : A

(Eval Select) where I ∩ J = ∅, A ≡ [�i:Bi
i∈I], A′ ≡ [�i:Bi

i∈I∪J], a ≡ [�i = ς(xA′
i)bi

i∈I] :
E � a:A

(j ∈ I)
E � a.�j ↔ bj{xj ← a} : Bj

(Eval Update) where I ∩ J = ∅, A ≡ [�i:Bi
i∈I], A′ ≡ [�i:Bi

i∈I∪J], a ≡ [�i = ς(xA′
i)bi

i∈I] :
E � a:A E, x:A � b:Bj

(j ∈ J)
E � a.�j ↼↽ς(xA)b ↔ [�j = ς(xA′

)b, �i = ς(xA′
)bi

(i ∈ I∪J\{j})] : A

Fig . 4. The equation system ∆=∪ ∆=x∪ ∆=<: ∪ ∆=→∪ ∆=Ob ∪ ∆=µ

Subtyping Object and Recursive Types Logically 77

(see the next example). Therefore, from the subject reduction and expansion theorems
it does not follow that equality implies logical equivalence.

Example 21. Consider the terms (where A ≡ [�0:Int, �1:Int])

a ≡ [�0 = ς(xA
1)1, �1 = ς(xA

1)1], b ≡ [�0 = ς(xA
0)1, �1 = ς(xA

1)x.�0].

In [1], Section 7.6.2 it is argued that they cannot be equated at A. Indeed, they are
not logically equivalent at A since, if we assume that 1 is the predicate expressing the
property of “being the number 1”, so 1 ∈ LInt, and � 1:Int :1, then � a:A :〈�1:ω → 1〉
but �� b:A:〈�1:ω → 1〉. Indeed (omitting some parts of the derivation for readability):

x1:A:ω � 1:Int :1
(Val Object)

� a:A :〈�1:ω→1〉

Replacing a by b would not yield a valid derivation. The best we can do in the case of b
is instead:

x1:A:〈�0:ω→1〉 � x1:A :〈�0:ω→1〉 x1:A:〈�0:ω→1〉 � x1:A :ω
(Val Select)

x1:A:〈�0:ω→1〉 � x1.�0:Int :1
(Val Object)

� b:A :〈�1:〈�0:ω→1〉→1〉

To express this in natural language, what we have proved is that the value of a on calling
method �1 is 1, and that this is a “field”, in that it does not depend on other parts of a;
on the other hand, for b the value returned by �1 depends on the actual value of �0 in b:
the predicate 〈�1:〈�0:ω→1〉→1〉 expresses this.

However, in [1] paragraph 8.4.2 is observed that the equality � a ↔ b : [�0:Int] is
derivable since both

� [�0 = ς(xB
0)1] ↔ a : [�0:Int] and � [�0 = ς(xB

0)1] ↔ b : [�0:Int]

can be obtained by rule (Eq Sub Object); this clearly shows that ‘↔’ is not convert-
ibility, since a, b and [�0 = ς(xB

0)1] are distinct normal forms and the reduction is
confluent.

In our setting, we can show that a �L
∅ b : [�0:Int] as well, and this is the effect of

restricting to the language L[�0:Int]: in fact the only non-trivial predicates in L[�0:Int]
that we can derive for either a or b are 〈�0:ω→1〉 (or greater than this w.r.t. ≤).

Theorem 13 is a first evidence of the consistency of the predicate assignment system
with respect to the subtyping relation. It is however not enough, and we need to establish
the following.

Corollary 22. If a �L
E b : A and E � A<:B then a �L

E b : B.

We conclude this section by establishing that equality in FOb1<:µ system implies
logical equivalence, proving that what we have seen in the Example 21 actually holds
in general.

Theorem 23. If E � a ↔ b : A then a �L
E b : A.

78 S. van Bakel and U. de’Liguoro

6 Observational Semantics and Adequacy

Observational semantics for the FOb1<:µ calculus has been defined in [9] in Morris-
style, called there “contextual equivalence”. In the same paper it has been shown that
it coincides with a notion of bisimulation which is stronger than ‘↔’. We will adopt a
slightly more general definition (we will write aA for a closed term a such that � a:A).

Definition 24 (Convergence). Given any (well formed) closed term aA we say that it
converges to value v, written a ⇓ v, if a

∗−→ v. Moreover we say that aA is convergent
(a ⇓) if there exists a value v such that a ⇓ v.

We will write :A � C[]:B to express that the closed context C[] is well typed
with type B, under the assumption that the “hole ” has type A; C[a] is the result of
replacing ‘ ’ by a in C[].

Definition 25 (Observational Equivalence). Two closed terms a and b are called ob-
servationally equivalent at type A, written a �O

A b, if both aA and bA, and for any
ground type K and value vK it is the case:

∀C[]. :A � C[]:K ⇒ (C[a] ⇓ vK ⇐⇒ C[b] ⇓ vK).

This differs from definition of contextual equivalence in [9] in some respect. First,
we consider contexts of any ground type as an “experiment”; moreover, we do not
consider reduction rules for constants as “if then else”; as a consequence we cannot
discriminate between different constants like true and false. It is for that reason that we
use in Definition 20 the predicate a ⇓ v instead of a ⇓ .

We claim that, when restricted to closed terms, logical equivalence is included in
observational equivalence. To this aim we establish an adequacy result of the logical
semantics w.r.t. convergence, by means of a realizability interpretation of predicates,
proving that the characterization results of [7] are preserved in the typed context of the
calculus FOb1<:µ.

In the next definition the set of labels of A is defined as Label(A) = {�i | i ∈ I}
only for A ≡ [�i:Ai

(i∈I)]; it is empty in all other cases. If aA for some object type
A, �j ∈ Label(A) and a ⇓ [�i = ς(xA

i)bi
(i∈I)], then, for any cA, a.�(c) abbreviates

bj{xj ← c}.

Definition 26 (Realizability Interpretation). The realizability interpretation of the
predicate σ is a set [[σ]] of closed terms defined by induction over the structure of pred-
icates as follows:

1. [[κ]] = {aK | κ ∈ LK & ∃v. � v : K : κ & a ⇓ v},
2. [[σ→τ]] = {aA→B | ∃x, b. a ⇓ (λxA.b) & ∀cA ∈ [[σ]]. b{x← c} ∈ [[τ]]},
3. [[〈�:σ→τ〉]] = {aA | a ⇓ & � ∈ Label(A)&∀cA ∈ [[σ]]. a.�(c) ∈ [[τ]]},
4. [[µ(σ)]] = {aµX.A | a

∗−→ fold(µX.A, b) & bA{X ← µX.A} ∈ [[σ]]},
5. [[ω]] = {aA | A is a type},
6. [[σ∧τ]] = [[σ]] ∩ [[τ]].

The next lemma says that [[σ]] is closed under reduction and expansion for any σ.

Subtyping Object and Recursive Types Logically 79

Lemma 27. If aA ∈ [[σ]] then for any bA if a
∗−→ b or b

∗−→ a then bA ∈ [[σ]].

Lemma 28. If σ ≤ τ then [[σ]] ⊆ [[τ]].

Theorem 29 (Realizability theorem). Let ϑ be any closed substitution, and aϑ be
the effect of applying ϑ to a (with usual conventions to avoid free and bound variable
clashes) . If Γ � a:A :σ and for all x:B:τ ∈Γ it is the case that ϑ(x) ∈ [[τ]], then
aϑ ∈ [[σ]].

It is easily seen that values v can be assigned non-trivial predicates, so that a ⇓ v
implies that the same predicates can be derived for a because of Theorem 19; on the
other hand a straightforward induction shows that if σ is non trivial, then any aA ∈ [[σ]]
converges: by this and Theorem 29 we obtain a proof of the following corollary.

Corollary 30 (Characterization of convergence). Let aA be any closed term: then a ⇓
if and only if � a:A :σ for some non trivial σ.

Theorem 31 (Logical Equivalence and Observational Equivalence). Suppose that
for any value v of ground type K we have exactly a non trivial predicate κ ∈ LK , that
this predicates are distinct for different values and that � v : K : κ is assumed for each
v. Then for any aA and bA, if a �L b : A then a �O

A b.

7 Concluding Remarks

By using bisimulation and its coincidence with observational equivalence, in [9] it is
shown that, taking a and b as in example 21, a �O

[�1:Int] b. This is intuitively clear: the

only way to separate a from b is to change the value of �0, since then the fact that b.�1
depends on such a value while a.�1 does not, becomes apparent; but the overriding of
�0 is inhibited in contexts with the hole of type [�1:Int], where �0 is hidden.

It is not true, however, that a �L b : [�1:Int], because the predicate 〈�1:ω→1〉 is in
L[�1:Int], it is derivable for a even at type [�1:Int] but cannot be derived for b at any type.

That language inclusion is not sufficient to account for subtyping of object types,
while it is for record types (see [8]) is the essential reason for the presence of rule
(Val Select) in our system. It is reasonable to think that the failure of equivalences like
a �L b : [�1:Int] from example 21 depends on the fact that no rule accounts for the
hiding effect of subtyping in the case of object types. One possibility for coping with
such a limitation is the following rule:

I ∩ J = ∅, A ≡ [�i:Bi
i∈I∪J], A′ ≡ [�i:Bi

i∈J], 〈� : τ→ρ〉 ∈ LA′ :
Γ � a:A :〈� : 〈�i:σi

i∈I〉∧τ→ρ〉 Γ � a:A :〈�i:σi
i∈I〉

Γ � a:A′ :〈�:τ→ρ〉

This rule formalizes the idea that when A<: A′ and A and A′ are object types, the
methods of any object of type A not mentioned in A′ are hidden: therefore if a satisfies
the premise of any arrow predicate concerning the hidden part, this will never change
in contexts of type A′, in such a way that the latter premise can be discharged. Clearly,

80 S. van Bakel and U. de’Liguoro

with reference to the example 21, by this rule one can derive � b:[�1:Int]:〈�1:ω→1〉,
which makes a and b logically indiscernible at type [�1 : Int].

The soundness with respect to observational equivalence of the system resulting by
adding such a rule to the predicate assignment system can be proved by means of a
modified realizability interpretation of predicates, but at the time of writing we do not
know to what extent it actually solves the problem.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
2. S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 51:1–77,

1991.
3. H. P. Barendregt, M. Coppo, and M. Dezani. A filter lambda model and the completeness of

type assignment. Journal of Symbolic Logic, 48:931–940, 1983.
4. V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as implicit coer-

cion. Information and Computation, 93:172–221, 1991.
5. K. B. Bruce and G. Longo. A modest model of records, inheritance and bounded quantifica-

tion. Information and Computation, 87:196–240, 1990.
6. K. B. Bruce and J. C. Mitchell. Per models of subtyping, recursive types and higher-order

polymorphism. In Proc. of POPL, 1992.
7. U. de’Liguoro. Characterizing convergent terms in object calculi via intersection types. Lec-

ture Notes in Computer Science, 2004:315–328, 2001.
8. U. de’Liguoro. Subtyping in logical form. In ITRS’02, ENTCS 70. Elsevier, 2002.
9. A. Gordon and G. Rees. Bisimilarity for first-order calculus of objects with subtyping. In

Proc. of POPL’96, pages 386–395, 1996.
10. J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
11. S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science,

151(2):385–435, 1995.
12. S. van Bakel and U. de’Liguoro. Logical semantics of the first order sigma-calculus. Lecture

Notes in Computer Science, 2841:202–215, 2003.
13. S. van Bakel and U. de’Liguoro. Subtyping object and recursive types logically.

www.di.unito.it/∼deligu/papers/, July 2005.

The Language X : Circuits, Computations
and Classical Logic

(Extended Abstract)

Steffen van Bakel1,�, Stéphane Lengrand2, and Pierre Lescanne3

1 Department of Computing, Imperial College London,
180 Queen’s Gate London SW7 2BZ, U.K

svb@doc.ic.ac.uk
2 School of Computer Science, University of St Andrews, North Haugh, St Andrews

Fife KY16 9SS, Scotland
SL@dcs.St-Andrews.ac.uk

3 École Normale Supérieure de Lyon, 46 Allée d’Italie,
69364 Lyon 07, France

Pierre.Lescanne@ens-lyon.fr

Abstract. We present the syntax and reduction rules for X , an untyped language
that is well suited to describe structures which we call “circuits” and which are
made of parts that are connected by wires. To demonstrate that X gives an expres-
sive platform, we will show how, even in an untyped setting, that we can faithfully
embed algebraic objects and elaborate calculi, like the naturals, the λ-calculus,
Bloe and Rose’s calculus of explicit substitutions λx, and Parigot’s λµ.

1 Introduction

In the past, the study of the relation between computation, programming languages and
logic has concentrated mainly on natural deduction systems. In fact, these carry the
predicate ‘natural’ deservedly; in comparison with, for example, sequent style systems,
natural deduction systems are easy to understand and reason about. This holds most
strongly in the context of non-classical logics. For example, the relation between Intu-
itionistic Logic and the Lambda Calculus (with types) is well-studied and understood,
and has resulted in a vast and well-investigated area of research, resulting in, amongst
others, functional programming languages. In an other direction, the deep study of se-
quent calculus resulted in Linear Logic.

Expressing classical logic in a natural deduction system comes with handicaps. This
can be observed by looking at [20], where Gentzen commented that even his intuition-
istic Natural Deduction calculus “lacks a certain formal elegance”, while its Classical
counterpart fares still worse, breaking the symmetry between the introduction and elim-
ination rules. Because of these technical difficulties, Gentzen found that to achieve the
main results of [19], “I had to provide a logical calculus especially suited to the purpose.
For this the natural [deduction] calculus proved unsuitable.”

� Partially supported by École Normale Supérieure de Lyon, France.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 81–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 S. van Bakel, S. Lengrand, and P. Lescanne

In this paper, we will try and break a spear for the sequent-style approach, and make
some further steps towards the development of a programming language based on cut-
elimination for the sequent calculus for classical logic. Essentially following [17], we
will present a language called X that describes circuits, and its reduction rules that
join circuits. The logic we will consider contains only implication, but that is mainly
because we, in this initial phase, aim for simplicitly; cut-elimination in sequent calculi
is notorious for the great number of rules, which will only increase manifold when
considering more logical connectors.

To break with the natural deduction paradigm comes with a price, in that no longer
abstraction and application (corresponding to introduction of implication and modes
ponens) are the basic tools of the extracted language. In fact, the language we obtain is
more of a continuation style, that models both the parameter as well as the context call.
However, abstraction and application can be faithfully implemented, and we will show
how X can be used to describe the behaviour of functional programming languages at
a very low level of granularity.

X as a Language for Describing Circuits. The basic pieces of X can be understood
as components with entrance and exit wires and ways to describe how to connect them
to build larger circuits. Those component will be quickly surveyed in the introduction
and receive a more detailed treatment in Section 2. We call “circuits” the structures we
build, because they are made of components connected by wires.

X as a Syntax for the Sequent Calculus. Starting from the proof of Dragalin [12],
Herbelin proposed in his PhD [15] a Curry-Howard correspondence; this was more
elaborated in [9] leading to the definition of the language λµµ̃. Among other approaches
we need to mention [14,10,11,7]; more generally, this work has connections with linear
logic [13]. The relation between CBN and CBV in the context of λµµ̃ was studied in
detail in [23].

The origins of the language X we discuss in this paper lie in an observation made
on the structure of derivations in λµµ̃ in [9]. This that was picked up by Lengrand [17],
who introduced X and investigated in-depth the relation between X and λµµ̃. Later it
became apparent that X also has strong connections with the notations for the sequent
calculus as presented first by Urban in his PhD thesis [22]. With respect to [22] an
improvement of this paper is to make the notation more intuitive and readable by mov-
ing to an infix notation, and to insist on the computational aspect. This is achieved by
studying X in the context of the normal functional programming languages paradigms,
but, more importantly, to cut the link between X and Classical Logic, in that we also
consider circuits that do not correspond to proofs.

This main step forward with respect to previous work is achieved by moving to an
untyped language (both [17] and [22] consider only well-typed objects) which serves
as an expressive framework for representing the untyped lambda calculus, the untyped
calculus of explicit substitutions and the untyped language λµµ̃. In particular, in our
setting we can model infinite computations.

In the future, we aim to study X outside the context of Classical Logic in much the
same way as the λ-calculus is studied outside the context of Intuitionistic Logic.

The Language X : Circuits, Computations and Classical Logic 83

X as a Fine Grained Operational Model of Computation. When taking the the λ-
calculus as a model for programming languages, the operational behaviour is provided
by β-contraction. As is well known, β-contraction expresses how to calculate the value
of a function applied to a parameter. In this, the parameter is used to instantiate occur-
rences of the bound variable in the body via the process of substitution. This description
is rather basic as it says nothing on the actual cost of the substitution, which is quite high
at run-time. Usually, a calculus of explicit substitutions [8,1,18,16] is considered better
suited for an accurate account of the substitution process and its implementation. When
we refer to the calculus of explicit substitution we rather intend the calculus of explicit
substitution with explicit names λx, due to Bloo and Rose [8]. λx gives a better account
of substitution as it integrates substitutions as first class citizens, decomposes the pro-
cess of inserting a term into atomic actions, and explains in detail how substitutions are
distributed through terms to be eventually evaluated at the variable level.

In this paper, we will show that the level of description reached by explicit substitu-
tions can in fact be greatly refined. In X , we reach a ‘subatomic’ level by decomposing
explicit substitutions into smaller components. At this level, the calculus X explains
how substitutions and terms interact.

The calculus is actually symmetric [5] and, unlike λx where a substitution is ap-
plied to a term, a term in X can also be applied to a substitution. Their interaction
percolates (propagates) subtly and gently through the term or substitution according to
the direction that has been chosen. We will see that the these two kinds of interaction
have a direct connection with call-by-value and call-by-name reduction, that both have
a natural description in X .

A notion of principal contexts for X has been defined in [4]; a tool [3,4] to study
X has been developed (see http://www.doc.ic.ac.uk/∼jr200/X) that allows to
input circuits from X and have fine control over reduction.

The Ingredients of the Syntax. It is important to note that X does not have variables1

–like the λ-calculus or λµµ̃– as possible places where terms might be inserted; instead,
X has wires, also called connectors, that can occur free or bound in a term. As for the
λ-calculus, the binding of a wire indicates that it is active in the computation; other
than in the λ-calculus, however, the binding is not part of a term that is involved in the
interaction, but is part of the interaction itself.

There are two kinds of wires: sockets and plugs (corresponding to variables and co-
variables, respectively, in [23]) that are reminiscent of values and continuations. Wires
are not supposed to denote a location in a term like variables in the λ-calculus. Rather,
they can be connected with wires in other components.

One specificity of X is that syntactic constructors bind two wires, one of each kind.
In X , bound wires receive a hat, so to show that x is bound we write x̂ [24,25]. That a
wire is bound in a term implies, naturally, that this wire is unknown outside that term,
but also that it ‘interacts’ with another ‘opposite’ wire that is bound into another term.
The interaction differs from one constructor to another, and is ruled by basic reductions
(see Section 2). In addition to bound wires an introduction rule exhibits a free wire, that
is exposed; this can correspond to the creation of the wire, which is then connectable.

1 We encourage the reader to not become confused by the use of names like x for the class of
connectors that are called plugs; these names are, in fact, inherited from λµµ̃.

http://www.doc.ic.ac.uk/~jr200/X

84 S. van Bakel, S. Lengrand, and P. Lescanne

Contents of this Paper. In this paper we will present the formal definitions for X , via
syntax and reduction rules, and will show that the system is well behaved by stating a
number of essential properties. We will define a notion of simple type assignment for
terms in X , in that we will define a system of derivable judgements for which the terms
of X are witnesses; we will show a soundness result for this system by showing that a
subject-reduction result holds.

We will also compare X with a number of its predecessors. In fact, we will show
that a number of well-know calculi are easily, elegantly and surprisingly effectively im-
plementable in X . For anyone familiar with the problem of expressibility, in view of
the fact that X is substitution-free, these result are truly novel. With the exception of
the calculus λµµ̃, the converse is unobtainable. This can easily be understood from the
fact that the vast majority of calculi in our area is confluent (Church-Rosser), whereas
X is not.

2 The X -Calculus

The circuits that are the objects of X are built with three kinds of building stones, or
constructors, called capsule, export and mediator. We define an operator cut, which is
handy for describing circuit construction, and which will be eliminated eventually by
rules. In addition we give congruence among circuits.

2.1 The Operators

Circuits are connected through wires that are named. In our description wires are di-
rected: we know in which direction the ‘ether running through our circuits’ moves, and
can say when a wire provides an entrance to a circuit or when a wire provides an exit.
Thus we make the distinction between exit wires which we call plugs and entry wires
which we call sockets; we will use the word connectors for either sockets or plugs.

When connecting two circuits P and Q by the operator we may suppose that P
has a plug α and Q has a socket x which we want to connect together to create a flow
from P to Q. After the link has been established, the wires have been plugged, and the
names of the connectors are forgotten; in fact, those names are bound in the link. We
use the “hat”-notation to express binding, writing x̂ to say that x is bound, keeping in
line with the old tradition of Principia Mathematica [24]. The notion of free and bound
connectors is defined as usual. We will normally adopt Barendregt’s convention (called
convention on variables by Barendregt, but here it will be a convention on names). An
exception to that convention is the definition of natural numbers in Section 3.

Definition 1 (Syntax). The circuits of the X -calculus are defined by the following
grammar, where x, y, . . . range over the infinite set of sockets, and α, β, . . . over the
infinite set of plugs.

P, Q ::= 〈y.β〉 | x̂P α̂·β | Pα̂ [y] x̂Q | Pα̂ † x̂Q

Notice that, using Barendregt’s convention, for example, the connector α in Pα̂ [y] x̂Q
is supposed not to occur free in Q.

The Language X : Circuits, Computations and Classical Logic 85

Diagrammatically, we represent the basic circuits as:

�y β� �x P �α �β P �α [] x�Q�y P �α x Q

2.2 The Reduction Rules

The calculus, defined by the reduction rules below, explains in detail how cuts are dis-
tributed through circuits to be eventually erased at the level of capsules.

It is important to know when a connector is introduced, i.e. is connectable, i.e. is
exposed and unique; this will play an important role in the reduction rules. Informally,
a circuit P introduces a socket x if P is constructed from subcircuits which do not
contain x as free socket, so x only occurs at the “top level.” This means that P is either
a mediator with a middle connector [x] or a capsule with left part x. Similarly, a circuit
introduces a plug α if it is an export that “creates” α or a capsule with right part α. We
say now formally what it means for a terms to introduce a connector.

Definition 2 (Introduction).

P introduces x: P = 〈x.β〉 or P = Rα̂ [x] ŷQ, with x �∈ fs(R, Q).
P introduces α: P = 〈y.α〉 or P = x̂Qβ̂ ·α with α �∈ fp(Q).

We first present a simple family of reduction rules, that specify how to reduce a cut with
sub-circuits that both introduce the connectors mentioned in the cut.

Definition 3 (Logical Reduction). Assume that the terms of the left-hand sides of the
rules introduce the socket x and the plug α.

(var) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ
(med) : 〈y.α〉α̂ † x̂(Qβ̂ [x] ẑR) → Qβ̂ [y] ẑR

(ins) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷP β̂ † ẑR

The diagrammatical representation of these rules is given in Figure 1

Notice that, in rule (ins), in addition to the conditions for introduction of the con-
nectors that are active in the cut (α �∈ fp(P) and x �∈ fs(Q, R)) we can also state that
β �∈ fp(Q)\{γ}, as well as that y �∈ fs(R)\{z}, due to Barendregt’s convention.

Still in rule (ins) the reader may have noticed that we did not put parenthesis in
the expression Qγ̂ † ŷP β̂ † ẑR, which therefore is officially not a circuit. Instead, we
should have given both the circuits (Qγ̂ † ŷP)β̂ † ẑR and Qγ̂ † ŷ(P β̂ † ẑR) as result of
the rewriting. However there is, in fact, a kind of associativity at play which means that
we can omit the parenthesis; this will be made more clear in the next section.

We now need to define how to reduce a cut when one of its sub-circuits does not
introduce a connector mentioned in the cut. This requires to extend the syntax with two
new operators that we call activated cuts:

P ::= . . . | Pα̂† x̂Q | Pα̂ † x̂Q

86 S. van Bakel, S. Lengrand, and P. Lescanne

�y α� �α x �x β� → �y β�

�y P �β �α �α x �x γ� → �y P �β �γ

�y α� �α x Q �β [] z�R�x → Q �β [] z�R�y

�y P �β �α �α x Q �γ [] z�R�x → Q �γ y
P �β z R

Fig. 1. The diagrammatical representation for the logical rules

Definition 4 (Activating the cuts).

(act-L) : Pα̂ † x̂Q → Pα̂† x̂Q, if P does not introduce α

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if Q does not introduce x

Notice that both side-conditions can be valid simultaneously, thereby validating both
rewrite rules at the same moment. This gives, in fact, a critical pair or superposition
for our notion of reduction, and is the cause for the loss of confluence. This notion of
activation is related to the notion of colour in [11].

Circuits where cuts are not activated are called pure (the diagrammatical represen-
tation of activated cuts is the same as that for not activated cuts). Activated cuts are
propagated through the terms, to reach a position where a logical rule can be applied.

Definition 5 (Propagation). The rules of propagation are given in Figure 2.
We will now define how to propagate a cut through sub-circuits. The direction of

the activating shows in which direction the cut should be propagated, hence the two sets
of reduction rules.

We will subscript the arrow that represents our reduction to indicate certain sub-
systems, defined by a sub-reduction: for example, we will write →A for the reduction
that uses only rules in Left propagation or Right propagation. In fact, →A is the reduc-
tion that pushes † and † inward.

The rules (L2) and (R3) deserve some attention. For instance, in the left-hand side
of (L2), α is not introduced, hence α occurs more than once in ŷQβ̂ ·α, that is once after
the dot and again in Q. The occurrence after the dot is dealt with separately by creating
the new name γ. Note that the cut associated with that γ is then unactivated; this is
because, after the activated cut has been pushed through ŷ(Qα̂† x̂P)β̂ ·γ (so leaves a
circuit with no activated cut), the resulting term (ŷRβ̂ ·γ)γ̂ † x̂P needs to be considered
in its entirety: although we now that now γ is introduced, we do not know if x is. So, in
any case, it would be wrong to activate the cut before the result of Qα̂† x̂P (i.e. R) is
known. The same thing holds for x in (R3) and a new name z is created and the external
cut is unactivated.

The Language X : Circuits, Computations and Classical Logic 87

Left propagation

(dL) : 〈y.α〉α̂† x̂P → 〈y.α〉α̂ † x̂P

(L1) : 〈y.β〉α̂† x̂P → 〈y.β〉, β �= α

(L2) : (ŷQβ̂ ·α)α̂† x̂P → (ŷ(Qα̂† x̂P)β̂ ·γ)γ̂ † x̂P , γ fresh

(L3) : (ŷQβ̂ ·γ)α̂† x̂P → ŷ(Qα̂† x̂P)β̂ ·γ, γ �= α

(L4) : (Qβ̂ [z] ŷR)α̂† x̂P → (Qα̂† x̂P)β̂ [z] ŷ(Rα̂† x̂P)

(L5) : (Qβ̂ † ŷR)α̂† x̂P → (Qα̂† x̂P)β̂ † ŷ(Rα̂† x̂P)

Right propagation

(dR) : Pα̂ †x̂〈x.β〉 → Pα̂ † x̂〈x.β〉
(R1) : Pα̂ †x̂〈y.β〉 → 〈y.β〉, y �= x

(R2) : Pα̂ †x̂(ŷQβ̂ ·γ) → ŷ(Pα̂ †x̂Q)β̂ ·γ
(R3) : Pα̂ †x̂(Qβ̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ †x̂Q)β̂ [z] ŷ(Pα̂ † x̂R)), z fresh

(R4) : Pα̂ †x̂(Qβ̂ [z] ŷR) → (Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R), z �= x

(R5) : Pα̂ †x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷ(Pα̂ † x̂R)

Fig. 2. The propagation rules

2.3 Structural Congruences

By viewing X as a calculus, a natural questions to ask, and which has not been ad-
dressed in the past, is that if certain terms could be considered to be equivalne. To that
purpose, we will define two congruences for † that look like associativity and commu-
tativity.

Definition 6.

(†-assoc): (Pα̂ † x̂Q)β̂ † ŷR
X= Pα̂ † x̂(Qβ̂ † ŷR) if β �∈ fp(P) & x �∈ fs(R)

(left-comm): Pα̂ † x̂(Qβ̂ † ŷR) X= Qβ̂ † ŷ(Pα̂ † x̂R) if x �∈ fs(Q) & y �∈ fs(P)

(right-comm): (Pα̂ † x̂Q)β̂ † ŷR
X= (P β̂ † ŷR)α̂ † x̂Q if α �∈ fp(R) & β �∈ fp(Q)

Rule (†-assoc) allows us to write Pα̂ † x̂Qβ̂ † ŷR (provided the side-condition is
fulfilled) since the order of the applications of cuts is irrelevant. Notice that the side-
condition for this rule is the one we have indicated for (ins), and comes from the vari-
able convention. This is consistent with the parenthesis-free notation we have used for
the right-hand side of (ins). Notice that now writing Pα̂ † x̂Qα̂ † x̂R is licit. The second
rule is left-commutativity and the third rule is right-commutativity.

There is another rule asserting the associativity of the mediators, given by:

(med-assoc) : Pα̂ [z] x̂(Qβ̂ [u] ŷR) X= (Pα̂ [z] x̂Q)β̂ [u] ŷR

if β �∈ fp(P)\{α}, x �∈ fs(R)\{y}
Observe that, unsurprisingly, the side-condition is the same as for the cut. We will freely
write Pα̂ [z] x̂Qβ̂ [u] ŷR.

88 S. van Bakel, S. Lengrand, and P. Lescanne

2.4 Call-by-Name and Call-by-Value

In this section we will define two sub-systems of reduction, that have a strong con-
nection to call-by-value (CBV) and call-by-name (CBN) reduction. Notice that this is
essentially different from the approach of [23], where, as in λµµ̃, only one notion of
reduction is defined; the CBN-CBV result there was obtained via different interpretation
functions from CBN/CBV calculi.

As mentioned above, when P does not introduce α and Q does not introduce x,
Pα̂ † x̂Q is a superposition, meaning that two rules, namely (act-L) and (act-R), can
both be fired which can lead to different irreducible terms: → is not confluent. The sub-
systems of reduction we will introduce explicitly favour one kind of activating whenever
the above critical pair occurs; these were shown to be confluent in [17] when restricted
to typeable terms, and we conjecture that this result can be extended to untyped terms.

Definition 7. – We write P →V Q for the sub-reduction system that only activates a
cut via (act-L) when it could be activated in two ways.

– Likewise, we write P →N Q for the sub-reduction system that only activates such a
cut via (act-R).

The reason to use the names CBV and CBN in fact comes from the fact that these
systems successfully implement their counterparts in the λ-calculus (see Theorem 23).
And, in fact, the use of the terminology CBV is justifiable, when at the same time calling
values those circuits that introduce a plug. But, in contrast to the case for the λ-calculus,
our two systems are really dual, and we actually should use a terminology like ’call-by-
∗’, where ‘∗’ is a name for those circuits that introduce a socket. At the moment, there
is no clear idea on what ‘∗’ should be, so we will use the (misnomer) CBN.

We will now state some basic properties, which essentially show that the calculus is
well behaved. Recall that a term is pure if it contains no activated cuts.

Lemma 8 (Cancellation).

1. Pα̂ † x̂Q→V P if α �∈ fp(P) and P is pure.
2. Pα̂ † x̂Q→N Q if x �∈ fs(Q) and Q is pure.

We will now show that a cut with a capsule leads to renaming.

Lemma 9 (Renaming).

1. P δ̂ † ẑ〈z.α〉 → P [α/δ], if P is pure.
2. 〈z.α〉α̂ † x̂P → P [z/x], if P is pure.

These results motivate the extension (in both sub-systems) of the reduction rules, for-
mulating new rules in the shape of the above results.

3 Expressing the Natural Numbers in X
The example of expressing natural numbers into X that we will give in this section is
interesting in two respects. Firstly, it shows how a basic structure can be embedded in
X . Secondly, it shows many features and among them α-conversion.

The Language X : Circuits, Computations and Classical Logic 89

A natural number is represented in X by a sequence of capsules connected by me-
diating sockets, i.e., with the same used names.

We assume that natural numbers have two free sockets x and f and one free plug α,
with x as entry socket, α as exit plug and f as mediating socket. We define 0 as 〈x.α〉
and succ(N) as Nα̂ [f] x̂〈x.α〉 where N itself is a natural number (which violates
Barendregt’s convention and should be removed in actual use). By induction it follows
that x and α have both a unique occurrence in each natural number.

Lemma 10. If N is a natural number, then Nα̂ [f] x̂〈x.α〉 = 〈x.α〉α̂ [f] x̂N .

Lemma 11. If N1 and N2 are natural numbers, then (→S is either →V or →N)

1. (N1α̂ [f] x̂〈x.α〉)α̂ † x̂N2 →S N1α̂ [f] x̂N2

2. N1α̂ † x̂(N2α̂ [f] x̂〈x.α〉) →S N1α̂ [f] x̂N2

Definition 12 (Addition and multiplication).

add(N1, N2) = N1α̂ † x̂N2 times(N1, N2) = (x̂N1α̂·β)β̂ † f̂N2

Using this definition, we can show that the normal properties for addition hold.

Lemma 13 (Properties of add).

add(〈x.α〉, N) →A N

add(N, 〈x.α〉) →A N

add(N1α̂ [f] x̂〈x.α〉, N2) →A add(N1, N2)α̂ [f] x̂〈x.α〉
add(N1, N2α̂ [f] x̂〈x.α〉) →A add(N1, N2)α̂ [f] x̂〈x.α〉

From Lemma 13 we get, by induction:

add(0, N) = N

add(N, 0) = N

add(succ(N1), N2) = succ(add(N1, N2))
add(succ(N1), N2) = succ(add(N1, N2)).

From them we can prove: add(N1, N2) = add(N2, N1)
add(N1, add(N2, N3)) = add(add(N1, N2), N3).

The key point of the definition of times is that the ins rule copies N2 into N1 at each
of the occurences of f .

Lemma 14 (Properties of times).

times(N, 0) →A 0
times(N1, succ(N2)) →A add(times(N1, N2), N1)

4 Typing for X
The notion of type assignment on X that we present in this section is the basic implica-
tive system for Classical Logic (Gentzen system LK). The Curry-Howard property is
easily achieved by erasing all term-information.

90 S. van Bakel, S. Lengrand, and P. Lescanne

Definition 15 (Types and Contexts).

1. The set of types is defined by the grammar: A, B ::= ϕ | A→B . The types con-
sidered in this paper are normally known as simple (or Curry) types.

2. A context of sockets Γ is a mapping from sockets to types, denoted as a finite set
of statements x:A, such that the subject of the statements (x) are distinct. When we
write Γ1, Γ2 we mean the union of Γ1 and Γ2 when Γ1 and Γ2 are coherent (if Γ1

contains x:A1 and Γ2 contains x:A2 then A1 = A2).
Contexts of plugs ∆ are defined in a similar way.

Definition 16 (Typing for X).

1. Type judgements are expressed via a ternary relation P ··· Γ � ∆, where Γ is a
context of sockets and ∆ is a context of plugs, and P is a circuit. We say that P is
the witness of this judgement.

2. Type assignment for X is defined by the following sequent calculus:

(cap) : 〈y.α〉 ··· Γ, y:A � α:A, ∆ (med) :
P ··· Γ � α:A, ∆ Q ··· Γ, x:B � ∆

Pα̂ [y] x̂Q ··· Γ, y:A→B � ∆

(exp) :
P ··· Γ, x:A � α:B, ∆

x̂Pα̂·β ··· Γ � β:A→B, ∆
(cut) :

P ··· Γ � α:A, ∆ Q ··· Γ, x:A � ∆

Pα̂ † x̂Q ··· Γ � ∆

We write P ··· Γ � ∆ if there exists a derivation for this judgement.

Γ and ∆ carry the types of the free connectors in P , as unordered sets. There is no
notion of type for P itself, instead the derivable statement shows how P is connectable.

We can now provide the type naturals.

– The type of natural numbers in X is N ··· x:A, f :A → A � α:A.

The soundness result of simple type assignment with respect to reduction is stated
as usual:

Theorem 17 (Witness reduction).

1. If P ··· Γ � ∆, and P → Q, then Q ··· Γ � ∆.

2. If P ··· Γ � ∆, and P
X= Q, then Q ··· Γ � ∆.

Theorem 18 (Strong normalisation [22]). If P ··· Γ � ∆, then P is strongly normal-
ising.

5 Interpreting the λ-Calculus

In this section, we illustrate the expressive power of X by showing that we can faithfully
interpreted the the λ-calculus [6], and in the following sections we will show a similar
result for λx and λµ. Using the notion of Curry type assignment, we will show that
assignable types are preserved by the interpretation.

The Language X : Circuits, Computations and Classical Logic 91

In part, the interpretation results could be seen as variants of similar results obtained
by Curien and Herbelin in [9]. Indeed, we could have defined our mappings using the
mappings of the λ-calculus and λµ into λµµ̃, and concatenating those to the mapping
from λµµ̃ to X , but our encoding is more detailed and precise than that, and deals with
explicit substitution as well. In fact, we will show that our interpretation encompasses
CBV and CBN reduction, something that has not been achieved in [9], and will argue
that X in fact does more than that, like expressing explicit substitution.

One should notice that for [9] the preservation of the CBV-evaluation and CBN-
evaluation relies on two distinct translations of terms. For instance, the CBV- and CBN-
the λ-calculus can both be encoded into CPS [2], and there it is clear that what accounts
for the distinction CBV/CBN is the encodings themselves, and not the way CPS reduces
the encoded terms.

So, when encoding the λ-calculus in λµµ̃, the distinction between CBV and CBN

mostly relies on Curien and Herbelin’s two distinct encodings rather than the features
of λµµ̃ (the same holds for [23]). Whereas there the CBN-translation seems intuitive,
they apparently need to twist it in a more complex way in order to give an accurate inter-
pretation of the CBV-the λ-calculus, since the CBV-interpretation of a term M reduces
to its CBN-interpretation. This is a bit disappointing since the CBN-encoding turns out
to be more refined than the CBV-encoding, breaking the nice symmetry.

In contrast, in X we have no need of two separate interpretation functions, but will
define only one. Combining this with the two sub-reduction systems →V and →N we
can encode the the CBV- and CBN-the λ-calculus. We can compare this to what is done
by Danos, Joinet, Shellinx, when they write (before section 3.1.2: “Note that choosing
colours has nothing to do with imposing a strategy. We don not select redexes, but rather
the way we want to reduce them . . . ”

We first define the direct encoding of the λ-calculus into X :

Definition 19 (Interpretation of the λ-calculus in X).

��x		α
λ = 〈x.α〉

��λx.M		α
λ = x̂��M		β

λ
β̂ ·α

��MN		α
λ = ��M		γ

λγ̂ † x̂(��N		β
λβ̂ [x] ŷ〈y.α〉)

Observe that every sub-term of ��M		α
λ has exactly one free plug.

Definition 20 (Curry type assignment for the λ-calculus).

(Ax) :
Γ, x:A �λ x : A

(→I) :
Γ, x:A �λ M : B

Γ �λ λx.M : A→B

(→E) :
Γ �λ M : A→B Γ �λ N : A

Γ �λ MN : B

We can now show that typeability is preserved by ��·		α
λ:

Theorem 21. If Γ �λ M :A, then ��M		α
λ ··· Γ � α:A.

92 S. van Bakel, S. Lengrand, and P. Lescanne

��∆∆		β
λ

=
∆ ��λx.xx		γ

λ
γ̂ † ẑ(��λx.xx		γ

λ
γ̂ [z] ŷ〈y.β〉) =

∆

(x̂��xx		α
λ
α̂·δ)δ̂ † ẑ(��λx.xx		γ

λ
γ̂ [z] ŷ〈y.β〉) → (ins)

��λx.xx		γ
λ
γ̂ † x̂(��xx		α

λ
α̂ † ŷ〈y.β〉) → (9-??)

��λx.xx		γ
λ
γ̂ † x̂��xx		β

λ
=
∆

��λx.xx		γ
λ
γ̂ † x̂(〈x.δ〉δ̂ [x] ŷ〈y.β〉) → (act-R)

��λx.xx		γ
λ
γ̂ † x̂(〈x.δ〉δ̂ [x] ŷ〈y.β〉) → (R3)

��λx.xx		γ
λ
γ̂ † ẑ((��λx.xx		γ

λ
γ̂ † x̂〈x.δ〉)δ̂ [z] ŷ(��λx.xx		γ

λ
γ̂ † x̂〈y.β〉)) → (L1)

��λx.xx		γ
λ
γ̂ † ẑ((��λx.xx		γ

λ
γ̂ † x̂〈x.δ〉)δ̂ [z] ŷ〈y.β〉) → (dR & 9-??)

��λx.xx		γ
λ
γ̂ † ẑ(��λx.xx		δ

λ
δ̂ [z] ŷ〈y.α〉) =

∆ ��∆∆		α
λ

Fig. 3. Reduction of the interpretation of the lambda term (λx.xx)(λx.xx)

When encoding the CBV-the λ-calculus, we also use the ��·		α
λ interpretation. And,

in contrast to λµµ̃, we can get an accurate interpretation of the CBV-the λ-calculus into
X by using the →V system, which we can reformulate as the reduction system obtained
by replacing rule (act-R) by:

(act-R′) : Pα̂ † x̂Q → Pα̂ † x̂Q, if P introduces α and Q does not introduce x

Lemma 22. ��N		δ δ̂ † x̂��M		α →A ��M [N/x]		α.

Theorem 23 (Simulation of the λ-calculus).

1. If M →V N then ��M		γ
λ→V ��N		γ

λ.

2. If M →N N then ��M		γ
λ→N ��N		γ

λ.

Now notice that (λx.M)(PQ) is not an redex in the CBV-λ-calculus. We get

��(λx.M)(PQ)		α
λ → (��P 		σ

λ
σ̂ † t̂(��Q		τ

λ
τ̂ [t] û〈u.γ〉))γ̂ † x̂��M		α

λ

In particular, γ is not introduced in the outer-most cut, so (act-L) can be applied.
What the call-by-value reduction should block, however, is that (act-R′) can be applied;
then the propagation of ��P 		σ

λ
σ̂ † t̂(��Q		τ

λ
τ̂ [t] û〈u.γ〉) into ��M		α

λ is blocked (which
would produce ��M [(PQ)/x]		α

λ). Notice that we can only apply rule (act-R′) if both
��P 		σ

λ
σ̂ † t̂(��Q		τ

λ
τ̂ [t] û〈u.γ〉) introduces γ and ��M		α

λ does not introduce x. This is
not the case, since the first test fails.

On the other hand, if N is a λ-value (i.e. either a variable or an abstraction) then
��N		α

λ introduces α (in fact, N is a value if and only if ��N		α
λ introduces α). Then

��N		γ
λ
γ̂ † x̂��M		α

λ cannot be reduced by rule (act-L), but by either rule (act-R) or a
logical rule. This enables the reduction

��N		γ
λ
γ̂ † x̂��N		α

λ →V ��N [M/x]		α
λ
.

So CBV-reduction for the λ-calculus is respected by the interpretation function, using
→V .

The Language X : Circuits, Computations and Classical Logic 93

It is worthwhile to notice that the interpretation function ��·		α
λ does not generate a

confluent sub-calculus. Indeed, we have both

��(λx.xx)(yy)		α
λ → 〈y.β〉β̂ [y] x̂(〈x.γ〉γ̂ [x] v̂〈v.α〉) and

��(λx.xx)(yy)		α
λ → 〈y.β〉β̂ [y] â((〈y.γ〉γ̂ [y] b̂〈b.δ〉)δ̂ [a] ĉ〈c.α〉)

both normal forms. This is of course not surprising, seen that (λx.xx)(yy) has different
normal forms with respect to CBN and CBV reduction.

To conclude this section, and illustrate the expressive power of X as abstract ma-
chine for reduction, Figure 3 shows an infinite reduction sequence in X .

6 Interpreting λx

We will now interpret a calculus of explicit substitutions, namely λx [8], where any β-
reduction of the λ-calculus can be split into several more atomic steps of computation.
In this section we show that X has a fine level of atomicity as it simulates each reduction
step by describing how the explicit substitutions interact with terms.

We briefly recall here the calculus λx.

Definition 24 (λx). The syntax of λx is an extension of that of the λ-calculus:

M ::= x | λx.M | M1M2 | M 〈x= N〉
The reduction relation is defined by the following rules

(λx.M)P → M 〈x=P 〉 (B)
(MN)〈x=P 〉 → M 〈x=P 〉N 〈x=P 〉 (App)

(λy.M)〈x=P 〉 → λy.(M 〈x=P 〉) (Abs)

x〈x=P 〉 → P (VarI)
y〈x=P 〉 → y (VarK)

M 〈x=P 〉 → M, if x �∈ fv(M) (gc)

Notice that the notion of reduction λx is obtained by deleting rule (gc), and the
notion of reduction λxgc is obtained by deleting rule (VarK). The rule (gc) is called
‘garbage collection’, as it removes useless substitutions. We will write →X for either
reduction system.

Definition 25 (Interpretation of λx in X). We define ��·		α
X as the interpretation ��·		α

λ,
by adding:

��M 〈x= N〉		α
X = ��N		β

X
β̂ † x̂��M		α

X
.

Now we show that the reductions can be simulated, preserving the evaluation strat-
egies. Our notion of CBV-λx is naturally inspired by that of the λ-calculus: in a CBV-
β-reduction, the argument must be a value, so that means that when it is simulated by
CBV-λx, all the substitutions created are of the form M 〈x= N〉 where N is a value,
that is, either a variable or an abstraction, just as in the λ-calculus. Hence, we build the
CBV-λx by a syntactic restriction:

M ::= x | λx.M | M1M2 | M 〈x= λx.N 〉 | M 〈x= y〉.
Now notice that, again, N is a value if and only if ��N		α

X introduces α.

94 S. van Bakel, S. Lengrand, and P. Lescanne

Theorem 26 (Simulation of rule (B)).

CBN: ��(λx.M)N		α
X →N ��M 〈x= N〉		α

X

CBV: ��(λx.M)N		α
X →V ��M 〈x= N〉		α

X iff N is a value.

Theorem 27 (Simulation of the other rules). Let M → N by any of the rules (App),
(Abs), (VarI), (VarK), (gc), then ��M		γ

X →V ��N		γ
X and ��M		γ

X →N ��N		γ
X.

We can now state that λx-reduction is preserved by interpretation of terms into X .

Theorem 28 (Simulation of λx).

1. If M →V N then ��M		γ
X →V ��N		γ

X

2. If M →N N then ��M		γ
X →N ��N		γ

X

7 Interpreting λµ

Parigot’s λµ-calculus [21] is yet another proof-term syntax for classical logic, but
expressed in the setting of Natural Deduction. Curien and Herbelin [9] have shown
how the normalisation in λµ can be interpreted as the cut-elimination in λµµ̃. Using
that mapping, and the interpretation of λµµ̃ into X from [17], we can generate the
following:

Definition 29 (Interpretation of λµ in X). We define ��·		α
λµ as the interpretation ��·		α

λ,
by adding:

��µδ.[γ]M		α
λµ = ��M		γ

λµδ̂ † x̂〈x.α〉
Similarly to the previous sections, we can add:

��M [N/x]		α
λµ = ��N		β

λµ
β̂ † x̂��M		α

λµ

��(µδ.[γ]M)[N ·δ/δ]		α
λµ = ��M		γ

λµ
δ̂ † x̂(��N		β

λµ
β̂ [x] ŷ〈y.α〉)

Notice that the last alternative is justified, since

Lemma 30. The following rule is admissible:

��(µδ.[γ]M))N		α
λµ → ��M		γ

λµ
δ̂ † x̂(��N		β

λµ
β̂ [x] ŷ〈y.α〉)

Notice also the striking similarity between ��MN		α
λµ and the result of running

��(µδ.[γ]M))N		α
λµ; the difference lies only in a bound socket.

The main result for this interpretation now becomes:

Theorem 31 (Simulation of λµ in X).

1. If M →V N then ��M		α
λµ→V ��N		α

λµ.
2. If M →N N then ��M		α

λµ→N ��N		α
λµ.

The Language X : Circuits, Computations and Classical Logic 95

8 Conclusions and Future Work

We have seen that X is a continuation-style formal language that provides a Curry-
Howard-de Bruijn isomorphism for a sequent calculus for implicative classical logic.
But, of more interest, we have seen X is very well-suited as generic abstract machine
for the running of (applicative) programming languages, by building not only an inter-
pretation for λ, λµ (for λµµ̃, see [17]), but also for λx.

A wealth of research lies in the future, of which this paper is but the first step, the
seed. We intend to study normalisation, and confluence of the CBN and CBV strategies,
to extend X in order to represent the other logical connectives, study the relation with
linear logic, proofnets (both typed and untyped), the relation with π-calculus, how to
express recursion, functions, etc, etc.

Acknowledgements

We would like to thank Alexander Summers, Daniel Hirschkoff, Dragisa Zunic, Harry
Mairson, Jamie Gabbay, Jayshan Raghunandan, Luca Cardelli, Luca Roversi, Maria
Grazia Vigliotti, Mariangiola Dezani-Ciancaglini, Philippe Audebaud, and Simona Ronchi
della Rocca for many fruitful discussions on the topic of this paper.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Func-
tional Programming, 1(4):375–416, 1991.

2. A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In POPL’89, pages
293–302, 1989.

3. S. van Bakel and J. Raghunandan. Implementing X . In TermGraph’04, ENTCS, 2005.
4. S. van Bakel, J. Raghunandan, and A. Summers. Term Graphs, α-conversion and Principal

Types for X , 2005.
5. F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction.

Information and Computation, 125(2):103–117, 1996.
6. H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, 1984.
7. H. P. Barendregt and S. Ghilezan. Lambda terms for natural deduction, sequent calculus and

cut-elimination. Journal of Functional Porgramming, 10(1):121–134, 2000.
8. R. Bloo and K.H. Rose. Preservation of strong normalisation in named lambda calculi with

explicit substitution and garbage collection. In CSN’95, pages 62–72, 1995.
9. Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP’00, pages

233–243, 2000.
10. Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Computational isomorphisms in

classical logic (extended abstract). ENTCS 3, 1996.
11. Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive logic:

Linear logic. The Journal of Symbolic Logic, 62, 1997.
12. A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 67 of

Translations of Mathematical Monographs. American Mathematical Society, 1987.
13. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
14. J.-Y. Girard. A new constrcutive logic: classical logic. Mathematical Structures in Computer

Science, 1(3):255–296, 1991.

96 S. van Bakel, S. Lengrand, and P. Lescanne

15. H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme
calcul de λ-termes et comme calcul de stratégies gagnantes. Thèse d’université, Université
Paris 7, 1995.

16. S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersec-
tion types for explicit substitutions. Information and Computation, 189(1):17–42, 2004.

17. Stéphane Lengrand. Call-by-value, call-by-name, and strong normalization for the classical
sequent calculus. In ENTCS, volume 86. Elsevier, 2003.

18. P. Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions. In POPL’94,
pages 60–69. ACM, 1994.

19. G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift,
39:176–210 and 405–431, 1935. English translation in [20], pages 68–131.

20. M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1969.

21. M. Parigot. An algorithmic interpretation of classical natural deduction. In LPAR’92, LNCS
624, pages 190–201, 1992.

22. Christian Urban. Classical Logic and Computation. PhD thesis, University of Cambridge,
2000.

23. Philip Wadler. Call-by-Value is Dual to Call-by-Name. In ICFP’03, pages 189 – 201, 2003.
24. A N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 1925.
25. A. N. Whitehead and B. Russell. Principia Mathematica to *56. Cambridge University

Press, 1997.

Checking Risky Events Is Enough
for Local Policies

Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. An extension of the λ-calculus is proposed to study history-
based access control. It allows for parametrized security policies with
a possibly nested, local scope. To govern the rich interplay between lo-
cal policies, we propose a combination of static analysis and dynamic
checking. A type and effect system extracts from programs a correct
approximation to the histories obtainable at run-time. A further static
analysis over these approximations determines how to instrument code
so to enforce the desired security constraints. The execution monitor,
based on finite-state automata, runs efficiently the instrumented code.

1 Introduction

Access control is crucial for securing the execution of mobile applications. Access
control policies specify which operations can be executed by possibly untrusted
components on sensible resources such as files, communication channels, and so
on. Indeed, an attacker may gain full control over a system by getting improper
access to critical resources.

Current software technologies enforce access control policies by exploiting
different mechanisms. In the Java Virtual Machine, as well as in the .Net Com-
mon Language Runtime, stack inspection computes the run-time access rights
of code by examining the stack of method invocations. Code includes special
time-consuming instructions, called local security checks, that guard access to
critical resources. Methods are associated with a static set of permissions, to re-
flect the trustedness of code. At run-time, a resource access is granted whenever
all methods in the call stack have the required permission.

Stack inspection and local security checks offer a pragmatic setting for access
control, with a strong bias towards implementation. However, they suffer from
two main shortcomings. First, it is difficult to place the needed checks at the
relevant points in the code, and even more difficult is guaranteeing that they
suffice for enforcing the intended security policy. Second, stack inspection may
fail to enforce some security constraints, because it relies on the call stack only.
Indeed, the access rights of a certain method are no longer affected by the execu-
tion of an untrusted one, after it has been popped from the call stack. This may
be harmful, e.g. when trusted code depends on the results supplied by untrusted
code [12]. In other words, stack inspection and local security checks are not an
appropriate abstraction for security.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 97–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

98 M. Bartoletti, P. Degano, and G.L. Ferrari

Some alternatives to stack inspection have been explored. In history-based
access control, the actual access rights of a piece of code depend on (a suitable
abstraction of) the whole execution. This approach has been receiving major
attention, at both levels of foundations [2,4,11,19] and of language design and
implementation [1,9]. Another paradigm proposes to encapsulate code within
wrappers that enforce local security policies [18]. A wrapper monitors the exe-
cution and aborts it when about to violate some active local policy.

We have recently proposed λ[] , an extension of the λ-calculus that reconciles
history-based access control with local policies [4]. Local security properties are
regular properties of histories and have a possibly nested, local scope. A policy
framing ϕ[e] indicates that the program e is protected by the local policy ϕ, i.e.
the history must always respect ϕ while evaluating e.

In [4] we have verified local security policies through a static analysis, based
on a type and effect system [20]. The effect approximates the run-time behaviour
of a program. Model checking the effect ensures that there will be no security
violations at run-time. The static approach avoids the need for an execution
monitor to enforce local policies. Also, it avoids keeping track of the whole exe-
cution history, which may grow unbound.

Because of the static approximation, some programs may be discarded even
though they would be secure, possibly just by adding a limited amount of run-
time checking. We propose here a mixed approach to access control, that effi-
ciently combines static analysis and run-time checking. Our technique discards
no programs while keeping security. Intuitively, we compile a program with pol-
icy framings into an equivalent one without framings, but instrumented with
local checks. Our static analysis determines which checks are needed and where
they must be inserted to obtain a program respecting the given security require-
ments. The execution monitor is essentially a finite-state automaton associated
with the relevant security policies.

Technically, we define a novel type and effect system; the types are mostly
standard and the effects are history grammars. These are context-free grammars
representing all possible execution histories, including the scopes of the local poli-
cies. A further static analysis over history grammars, called risky events analysis,
determines the program points where security violations may occur. The risky
events analysis is then exploited to generate the set of checks needed to safely
instrument the original code at the right points. The original and instrumented
programs indeed satisfy the same security constraints. It is worthwhile noting
that the execution monitor controlling the instrumented program only needs a
finite amount of information. More precisely, it suffices to record the states of
the finite-state automata associated with checks on risky events.

2 A Motivating Example

To illustrate our approach, consider a simple web browser that runs applets.
Each applet must obey a general usage policy ϕ: only open files can be read.
Moreover, a user can supply the browser with his own security policy, to be

Checking Risky Events Is Enough for Local Policies 99

enforced on all applet executions. In this example, the user policy says that,
after having read a local file, an applet can no longer connect to the network.

The browser is a function that processes the applet x and the user policy ϕ′.
Since policies are not first class expressions in our calculus, the parameter ϕ′ is
rendered as a closure p = λy. ϕ′[y ∗], where ∗ stands for the unit value.

Browser = λx . λp. ϕ[p x];Browser

We consider a simple editor applet, that accesses a local file y and may save it
on a given site, identified by a URL u:

Editor = λy. λu. open(y); read(y); ∗;
(
if b then connect(u)

)
; ∗; close(y)

Note that our editor is overly simplified, because we are only interested in the
security-relevant events it can generate; the unit value ∗ indeed represents the
sequences of operations that do not affect security.

We also have an attacker applet, that tries to spoof the browser by execut-
ing it with a very liberal user policy λy. y∗ which imposes no constraints. The
attacker attempts to force the editor reading the secret password file pwd and
then saving it on the attacker site evil.org.

Attacker = λw . Browser
(
λz .Editor pwd evil.org

)
(λy. y∗)

The following trace illustrates the behaviour of the attacker applet, sandboxed
with the user policy ϕ′ by the browser. The program states are pairs, whose first
component is a history (a sequence of access events – ε denotes the empty one)
and the second component is the program continuation.

ε, Browser Attacker (λy.ϕ′[y∗])
→ ε, ϕ[(λy. ϕ′[y ∗])Attacker];Browser
→ ε, ϕ[ϕ′[Attacker ∗]];Browser
→ ε, ϕ[ϕ′[Browser (λz .Editor pwd evil.org) (λy. y ∗)]];Browser
→ ε, ϕ[ϕ′[ϕ[(λy. y ∗) (λz.Editor pwd evil.org)];Browser]];Browser
→ ε, ϕ[ϕ′[ϕ[Editor pwd evil.org)];Browser]];Browser
→ ε, ϕ[ϕ′[ϕ[open(pwd); read(pwd); ∗; if b then connect(evil.org); · · ·] · · ·
→ open(pwd), ϕ[ϕ′[ϕ[read(pwd); ∗; if b then connect(evil.org); · · ·] · · ·
→ open(pwd)read(pwd), ϕ[ϕ′[ϕ[if b then connect(evil.org); ∗; close(pwd)] · · ·

If b evaluates to true, then a security exception is thrown, because the history:

open(pwd) read(pwd) connect(evil.org)

would violate the active policy ϕ′. Note however that the connect event in the
editor is the only program point where the policy ϕ′ is violated. Instead, all
possible runs obey the file usage policy ϕ. These observations suggest us to
implement the access control mechanism by inserting local checks just before

100 M. Bartoletti, P. Degano, and G.L. Ferrari

risky events, i.e. the program points about to violate policies. In our example,
the original editor will be transformed into the equivalent:

Editor ′ = λx . λu. open(x); read(x); ∗;
(
if b thencheck ϕ′ in connect(u)

)
; ∗; close(x)

Furthermore, all the policy framings are removed, and expressions are instru-
mented to record the set of active policies. Our goal is finding therefore the risky
program points and the involved policies.

3 The Language λ[]

We consider a call-by-value λ-calculus enriched with access events and local
security policies. This language is called λ[], and has been first introduced in [4].
We present here an extension of the calculus that features parametrized access
events, and a new type and effect system that is suitable for instrumentation with
local checks. An access event α�(c) abstracts from a security-relevant operation.
The symbol α ∈ Act stands for an action (e.g. reading a file), while the parameter
c ∈ Res is the resource upon which the action is taken (e.g. a file name). The
label � ∈ Lab uniquely identifies an access event in an expression. We assume
the sets Act, Res and Lab to be pairwise disjoint.

Sequences η of access events are called histories. Security policies ϕ ∈ Π are
regular properties of histories, universally quantified over resources. An instan-
tiated policy ϕ(c) can be phrased as a regular expression, and enforced by a
finite state automaton (see below for details). A policy framing ϕ[e] localizes the
scope of the policy ϕ to the expression e; framings can be arbitrarily nested. To
enhance readability, our calculus comprises conditional expressions and named
abstractions (z in e′ = λzx.e stands for e′ itself within e). We omit the definition
of guards b, as they are not relevant for the subsequent technical development.

λ[] expressions

e, e′ ::= x variable
c constant
α�(r) access event
if b then e else e′ conditional
λzx. e abstraction
e e′ application
ϕ[e] policy framing

Variables, constants, abstractions, and failures are the values v of λ[] . A
failure fail �,ϕ(c) represents a computation that is about to violate the policy ϕ(c)
by generating an event α�(c′). We assume that, for any expression e, label � and
policy ϕ(c), e fail �,ϕ(c) = fail �,ϕ(c) e = ϕ′[fail �,ϕ(c)] = fail �,ϕ(c). We write ∗ for a
fixed, closed, event-free, non-failure value, and λ. e for λx. e, for x �∈ fv(e). The
following abbreviation is standard: e; e′ = (λ. e′) e. Also, we write α instead of

Checking Risky Events Is Enough for Local Policies 101

α(c) when the resource parameter c is immaterial. Without loss of generality, we
assume that each framing has an opening event, i.e. for all ϕ[e], the expression e
is of the form α(c); e′, for some α, c and e′. This opening event can be a dummy
event with no influence on security. Note that we also allow for parametrized
events α�(r), where r ranges over resources and variables.

We define the behaviour of λ[] expressions through the following small-step
operational semantics. The configurations are pairs η, e, where e may denote
both expressions and failures. A transition η, e → η′, e′ means that, starting
from a history η, the expression e may evolve to e′, possibly extending η to η′.
We write η |= ϕ(c) when the history η satisfies the policy ϕ(c). We assume as
given a total function B that evaluates the guards in conditionals, and a function
lab(η) that returns the last label �k from a history η = α�1

1 (c1) · · ·α�k

k (ck). Notice
that there is no need to define �(ε), because of the assumed opening event.

Operational semantics of λ[]

η, e1 → η′, e′1
η, e1e2 → η′, e′1e2

η, e2 → η′, e′2
η, ve2 → η′, ve′2

η, (λzx.e)v → η, e{v/x, λzx.e/z}

η, α�(c) → η α�(c), ∗ η, if b then e0 else e1 → η, eB(b)

η, e → η′, e′ ∀c. η′ |= ϕ(c)

η, ϕ[e] → η′, ϕ[e′]

η, e → η′, e′ ∃c. η′ �|= ϕ(c)

η, ϕ[e] → η, fail lab(η′),ϕ(c)

η, ϕ[v] → η, v

The rules above are mostly standard, except for those governing evaluation
within policy framings. An expression ϕ[e] can evolve to ϕ[e′], provided that the
resulting history η′ satisfies all the possible instantiations ϕ(c); a failure occurs
when ϕ(c) is violated for some c. Eventually, values leave the scope of policies.
More concrete operational semantics could reduce the number of instantiated
policies, e.g. by looking only at the constants occurring in η′, or by selecting
constants with a suitable type, like file, memory region, etc.

A security policy ϕ(c) is specified by a deterministic finite-state automaton
Aϕ(c) = (Σ, Q, q0, δ), where Σ = Act × Res is the input alphabet, Q is the set of
states, q0 ∈ Q is the start state, and δ : Q × Σ → Q is the transition function.
Without loss of generality, we assume a distinguished state qs ∈ Q which is the
only non-accepting state and is a sink, i.e. δ(qs, β) = qs for any β ∈ Σ. Note
that η |= ϕ(c) actually means that δ(q0, η) �= qs in the automaton Aϕ(c).

Example 1. To keep small the size of our example, it is convenient to slightly
simplify the browser/applet system considered in Section 2.

B = λzx. ϕ′[x ∗]; z x

A = λ. if b thenαread(c) elseαconnect

e = ϕ[αopen(c); BA; αclose(c)]

102 M. Bartoletti, P. Degano, and G.L. Ferrari

Let � be the label of the event αconnect , and assume first that b is true. The
evaluation of e goes as follows (for readability, the event labels are omitted):

ε, e → αopen(c), ϕ[BA; αclose(c)]
→ αopen(c), ϕ[ϕ′[A ∗]; B A; αclose(c)]
→ αopen(c), ϕ[ϕ′[if b thenαread(c) elseαconnect]; B A; αclose(c)]
→ αopen(c), ϕ[ϕ′[αread(c)]; B A; αclose(c)]
→ αopen(c)αread(c), ϕ[ϕ′[∗]; B A; αclose(c)]
→ αopen(c)αread(c), ϕ[∗; B A; αclose(c)]

Assume now that b becomes false. Then, the computation proceeds as follows:

· · · → αopen(c)αread(c), ϕ[B A; αclose(c)]
→ αopen(c)αread(c), ϕ[ϕ′[A ∗]; B A; αclose(c)]
→ αopen(c)αread(c), ϕ[ϕ′[if b thenαread(c) elseαconnect]; B A; αclose(c)]
→ αopen(c)αread(c), ϕ[ϕ′[αconnect]; B A; αclose(c)]
→ fail �,ϕ′(c)

The computation fails, because generating the event αconnect would make the
history αopen(c)αread(c)αconnect violate the policy ϕ′(c).

Figure 1 displays the universally quantified automata for the usage policy ϕ
and the user policy ϕ′ introduced in Section 2. We only draw the arcs labelled
with actions relevant to the policy in hand, while the other actions are intended
to originate self-loops, omitted in the figure. The actual security automata are
obtained by instantiating the parameter x to a resource c. The sink state qs is
shared by both automata, while q0 and q′0 are the start states.

β ∈ Σqs β ∈ Σ qs

q0 q1

αread(x)

αclose(x)

αopen(x)
q′0 q′1

αread(x)

αread(x)

αconnect

αread(x)
αconnect

Fig. 1. Security automata Aϕ(x) (left) and Aϕ′(x) (right)

Checking Risky Events Is Enough for Local Policies 103

4 Extracting History Grammars

We now introduce a type and effect system for λ[] , that we shall use for approx-
imating the aspects of the expression behaviour relevant to security.

Given an expression e, it is convenient to label each of its subexpressions.
For simplicity, we shall use injective labellings only, and we coherently extend
the labelling of an event α�(r) to α�(r�′

). To keep track of the framings, we shall
use the special framing events [ϕ and]ϕ that stand respectively for opening and
closing the scope of the policy ϕ. We denote with Frm the set { [ϕ,]ϕ | ϕ ∈ Π }.

Types τ and type environments Γ are defined as follows, where R ⊆ Res.
Types and Type Environments

τ ::= unit | R | τ
H−→ τ Γ ::= ∅ | Γ ; x : τ (x �∈ dom(Γ))

The types are much the same of the implicitly-typed λ-calculus (the set type
R is used for resources), while the effects are our history grammars. These are
context-free grammars H = (T, N, �, P), where T = Act ∪ Res ∪ Frm is the set
of terminal symbols, N = Lab is the set of non-terminals, � ∈ N is the start
symbol, and P ⊆ N × (T ∪ N)∗ is the set of productions. We shall use the
following standard notation: (�, P) for H , ⇒ for the derivation relation, L(H)
for the language generated by H , and ε for the empty string.

The effect H of an expression e represents all the possible run-time histories
of e, and also records entering and exiting from the scope of security policies.

Example 2. Consider the following (labelled) expression:

e0 = α1(c2); ϕ
[(
if b thenα′ 5(c′ 6) else ∗7)4]3

The history grammar extracted from e is as follows (the underlined label stands
for the start symbol).

0 → 1 3 4 → 5 | 7
1 → α c 5 → α′ c′

2 → ε 6 → ε

3 → [ϕ 4]ϕ 7 → ε

We compare below a computation of e (left) with a derivation of H (right),
assuming b true and ϕ always respected.

ε, e → α(c), ϕ[if b thenα′(c′) else ∗] 0 ⇒ 1 3 ⇒ α c 3
→ α(c), ϕ[α′(c′)] ⇒ α c [ϕ 4]ϕ ⇒ α c [ϕ 5]ϕ
→ α(c)α′(c′), ϕ[∗] ⇒ α c [ϕ α′ c′]ϕ

The framing events in α c [ϕ α′ c]ϕ mean that the policy ϕ is active when the
event α′(c′) is generated, so the history α(c)α′(c′) must obey ϕ, otherwise the
computation fails.

104 M. Bartoletti, P. Degano, and G.L. Ferrari

A typing judgment Γ, H � e : τ means that the expression e evaluates to a
value of type τ , and produces a history represented by the effect H . The history
grammar H in the functional type τ

H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in L(H) is generated when applying
that abstraction to a value. The relation Γ, H � e : τ is the least one closed
under the following rules. For brevity, we shall omit immaterial labels, and we
shall write � → γ, P for (�, {� → γ}∪P), and � → γ | γ′ when � → γ and � → γ′.

Type and Effect System for λ[]

R ⊆ Res

Γ, � → ε � c� : {c} ∪ R

Γ, (�′, P) � r : R

Γ, {� → α c : c ∈ R}, P � α�(r�′
) : unit

Γ, � → ε � x� : Γ (x)

Γ ; x : τ ; z : τ
(�′,P)−−−−→ τ ′, (�′, P) � e : τ ′

Γ, � → ε � (λzx.e)� : τ
(�′,P)−−−−→ τ ′

Γ, � → ε � ∗� : unit

Γ, (�0, P0) � e0 : τ
(�2,P2)−−−−→ τ ′ Γ, (�1, P1) � e1 : τ

Γ, � → �0�1�2, P0 ∪ P1 ∪ P2 � (e0e1)� : τ ′

Γ, (�0, P0) � e0 : τ Γ, (�1, P1) � e1 : τ

Γ, � → �0 | �1, P0 ∪ P1 � (if b then e0 else e1)� : τ

Γ, (�′, P ′) � e : τ

Γ, � → [ϕ �′]ϕ, P ′ � ϕ[e]� : τ

Γ, H � e : τ

Γ, H ′ � e : τ
L(H ′) ⊇ L(H)

Typing judgments are standard, and allow for weakening of both resource
types (in the first rule) and effects (in the last rule). The effects in the rule
for application are concatenated according to the evaluation order of the call-
by-value semantics (function, argument, latent effect). The actual effect of an
abstraction is the empty language, while the latent effect is equal to the actual
effect of the function body.

Example 3. To clarify the role of weakening, consider the following expressions:

e1 =
(
(λx. α3(x4))2 (if b then c6 else c′ 7)5

)1

e2 =
(
if b then (λx. α13(c14))12 else (λy. α′ 16(c17))15

)11

For e1, let Γ = {x : {c, c′}}. The typing derivation needs weakening the set
types associated with the constants c and c′. For readability, we often omit labels,
the environment Γ , and we only show the last productions added to effects.

Checking Risky Events Is Enough for Local Policies 105

4 → ε � x : {c, c′}
3 → αc | αc′ � α(x) : unit

2 → ε � λx. α(x) : {c, c′} 3−→ unit

6 → ε � c : {c} ∪ {c′} 7 → ε � c′ : {c′} ∪ {c}
5 → 6 | 7 � if b then c else c′ : {c, c′}

1 → 2 5 3 � e1 : unit
For e2, let Γ = {x : τ, y : τ}. The typing derivation weakens the effects to unify
the types in the rule for conditionals (note the introduction of the new label �).

14 → ε � c : {c}
13 → αc � α(c) : unit

� → 13 | 16 � α(c) : unit

12 → ε � λx. α(c) : τ
�−→ unit

17 → ε � c : {c}
16 → α′c � α′(c) : unit

� → 13 | 16 � α′(c) : unit

15 → ε � λy. α′(c) : τ
�−→ unit

11 → 12 | 15 � e2 : τ
�−→ unit

Example 4. Consider the browser and the applet defined in Example 1. After
labelling all subexpressions, we obtain:

e0 = ϕ[
(
α2

open(c3); (B10A20)4; α5
close(c

6)
)1]

B10 = λzx.
(
ϕ′[

(
x14 ∗15)13]12;

(
z17 x18)16

)11

A20 = λy.
(
if b thenα22

read(c23) elseα24
connect

)21

Let Γ = {x : unit
�,P−−→ unit , y : τ, z : τ ′ �′,P ′

−−−→ unit}, for some �, �′, P, P ′, τ, τ ′.
For the expression A, we have the following typing derivation:

23 → ε � c : {c}
22 → αread c � αread(c) : unit

24 → αconnect � αconnect : unit

21 → 22 | 24 � if b thenαread(c) elseαconnect : unit

20 → ε � A : τ
21,PA−−−−→ unit

where PA collects all the productions generated in the previous deduction:

21 → 22 | 24 23 → ε

22 → αread c 24 → αconnect

The following typing derivation is possible for the body of B (we here shortcut
typing, by assuming the abbreviation for ; introduced above).

14 → ε � x : unit
�,P−−→ unit 15 → ε � ∗ : unit

13 → 14 15 � � x ∗ : unit
12 → [ϕ′13]ϕ′ � ϕ′[x ∗] : unit

...

16 → 17 18 �′ � z x : unit

11 → 12 16 � ϕ′[x ∗]; z x : unit

106 M. Bartoletti, P. Degano, and G.L. Ferrari

Let PB be the following set of productions:

11 → 12 16 15 → ε

12 → [ϕ′13]ϕ′ 16 → 17 18 �′

13 → 14 15 � 17 → ε

14 → ε 18 → ε

To apply the rule for abstraction, we equate τ ′ to unit
�,P−−→ unit , and unify

(�′, P ′) with (11, PB), obtaining HB = (11, PB{11/�′}). Then, we have:

{x : unit
�,P−−→ unit , z : (unit

�,P−−→ unit) HB−−→ unit}, HB � ϕ′[x ∗]; z x : unit

10 → ε � B : (unit
�,P−−→ unit) HB−−→ unit

To apply B to A, we solve the constraint unit
�,P−−→ unit = τ

21,PA−−−−→ unit . This
yields τ = unit , � = 21, and P = PA, so enabling the following judgement:

B : (unit
21,PA−−−−→ unit)

HB{21/�}−−−−−−→ unit A : unit
21,PA−−−−→ unit

4 → 10 20 11 � BA : unit

We can eventually reconstruct the type and effect of e (notice that we cheat again
and solve two sequential compositions in one step, here and in the labelling).

3 → ε � c : {c}
2 → αopen c � αopen(c) : unit

...

4 → 10 20 11 � BA : unit
· · ·

1 → 2 4 5 � αopen(c); (BA); αclose (c) : unit

0 → [ϕ 1]ϕ � e : unit

Summing up, the history grammar of e is:

0 → [ϕ 1]ϕ 10 → ε 20 → ε

1 → 2 4 5 11 → 12 16 21 → 22 | 24
2 → αopen c 12 → [ϕ′13]ϕ′ 22 → αread c

3 → ε 13 → 14 15 21 23 → ε

4 → 10 20 11 14 → ε 24 → αconnect

5 → αclose c 15 → ε

6 → ε 16 → 17 18 11
17 → ε

18 → ε

Now it is convenient to introduce the following definition. Given w ∈ T ∗,
let w� be the string obtained from w by pruning all the framing events, and by
replacing each substring αc with α(c). Back to Example 2, if w = α c [ϕ α′ c′]ϕ
then w� = α(c)α′(c′). The next theorem ensures that our type and effect system
indeed approximates the actual run-time histories.

Checking Risky Events Is Enough for Local Policies 107

Theorem 1 (Correctness). Let Γ, H � e : τ and ε, e →∗ η, e′. Then, there
exist w ∈ T ∗

H and γ ∈ (TH ∪ NH)∗ such that H ⇒∗ w γ, and w� = η.

5 The Risky Events Analysis

In this section we exploit history grammars to determine the program points
where security violations may occur. This paves us the way for gaining effi-
ciency by discarding policy framings. Actually, we instrument programs with
local checks, guarding risky events with those policies that may be violated.
Formally, an event α�(c) of an expression e is risky for the policy ϕ(c′) when
there exists a computation ε, e →∗ η, fail �,ϕ(c′). Below, we define a static analysis
that extracts an over-approximations of the risky events of e from the history
grammar H of e.

Our static analysis takes the form of a transition system, whose configurations
are quadruples γ, σ, Φ, ζ. The component γ is a string derivable from H , σ is a
mapping from policies to security automata states, Φ is a sequence of (universally
quantified) policies, and ζ is a mapping from event labels to policies. The start
configuration is �, σ0, ε, ζ0, where � is the start symbol of H , σ0 maps, for all ϕ
and c′ occurring in e, the policy ϕ(c′) to the start state of Aϕ(c′), and ζ0 maps
each event label to the empty set. Intuitively, σ mimics the evolution of the
security automata, Φ records the active policies, and ζ accumulates the risky
events, i.e. whenever α�(c) is risky for ϕ(c′), then eventually ϕ(c′) ∈ ζ(�).

The transition relation � is the least one closed under the following rules.

Risky Events Analysis

[ϕγ, σ, Φ, ζ �H γ, σ, Φϕ, ζ]ϕγ, σ, Φϕ, ζ �H γ, σ, Φ, ζ

� → α c ∈ H Φ′ = { ϕ(c′) | ϕ ∈ Φ ∧ δ(σ(ϕ(c′)), α(c)) = qs }
�, σ, Φ, ζ �H ε, δ(σ, α(c)), Φ, ζ{� �→ ζ(�) ∪ Φ′}

� → γ ∈ H γ �= α c

�, σ, Φ, ζ �H γ, σ, Φ, ζ

�, σ, Φ, ζ �H γ′, σ′, Φ′, ζ′

�γ, σ, Φ, ζ �H γ′γ, σ′, Φ′, ζ′

The first axiom appends the policy ϕ in the sequence Φ upon a framing event [ϕ;
the second deals with the symmetric case]ϕ. The central rule considers an event
α�(c), and checks whether an automaton Aϕ(c′) enters the (non-accepting) sink
state, for some active ϕ ∈ Φ. In that case, the mapping ζ records the association
of � with ϕ(c′), i.e. that α�(c) is possibly risky for ϕ(c′). The mapping σ is
updated to reflect the change of state in the automata upon the event α(c): the
next state of the (deterministic) automaton Aϕ(c′) is the one reachable through
α(c). For notational convenience, δ maps homomorphically on σ, i.e. on the
states of the automata, that are all disjoint except for qs. The last two rules
simply carry over the above on strings γ.

108 M. Bartoletti, P. Degano, and G.L. Ferrari

Below we define the set of policies act(e) active in an expression e. The
intuition is that a policy ϕ is active if reducing the current redex involves checking
ϕ. Notice that no policy is active for values, because they cannot be further
reduced, and for conditionals, because evaluating a guard requires no check.

act(α(r)) = ∅ act(ϕ[e]) = {ϕ} ∪ act(e) act(if b then e else e′) = ∅
act(v e′) = act(e′) act(e e′) = act(e) (e �= v) act(λx. e) = ∅

The following theorem establishes the soundness of the risky events analysis,
by connecting each computation in → with one in �. In particular, when the
first leads to a failing history η, at least one of the security automata used in
the second reaches the sink state, and ζ associates the violated policy with the
offending event. In any case, the active policies in the configurations of → are
precisely recorded by the component Φ in the configurations of �.

Theorem 2. Let Γ, H � e�
0 : τ , and ε, e�

0 →n ηn, en. Then, there exist γ, σ, Φ, ζ
such that �, σ0, ε, ζ0 �∗

H γ, σ, Φ, ζ, and:

(2a) if en = fail �′,ϕ(c) then ϕ(c) ∈ ζ(�′) and δ(σ(ϕ(c)), η) = qs

(2b) otherwise, σ = δ(σ0, η), and { ϕ | ϕ occurs in Φ } = act(en−1).

We now show that the an over-approximation to the risky events of a program
can be computed in a finite amount of time. More precisely, there exists a bound
on the length of the computations needed to stabilise ζ.

Theorem 3. Let Γ, H � e : τ , for e closed. For each n ≥ 0, define:

Zn = { ζ | �, σ0, ε, ζ0 �n
H γ, σ, Φ, ζ }

Then, there exists k such that, for all i ≥ 0, Zk+i = Zk.

Given the set Zk of the above theorem, we hereafter denote with RE the
mapping such that � �→ {ϕ(c) ∈ ζ(�) ∈ Zk}. Call � H-risky for ϕ(c) whenever
ϕ(c) ∈ RE(�). Theorems 1, 2 and 3 allow us to establish the correctness of the
risky events analysis: if α�(c′) is risky for ϕ(c), then � is H-risky for ϕ(c).

Example 5. Consider the browser/applet system analysed in Example 4. The
following computation discovers that 24 is a risky event for ϕ′(c).

0, σ0, ε, ζ0 �∗ 22]ϕ′ 16 5]ϕ, σ1 = δ(σ0, αopen(c)), ϕϕ′, ζ0

�∗ 24]ϕ′ 16 5]ϕ, σ2 = δ(σ1, αread(c)), ϕϕ′, ζ0

�]ϕ′ 16 5]ϕ, δ(σ2, αconnect), ϕϕ′, ζ0{24 �→ ϕ′(c)}

6 Instrumentation with Local Checks

We eventually exploit the risky events analysis to obtain an expression with local
checks only, equivalent to a given expression with local policies. The syntax and
operational semantics of the target language λcheck follow.

Checking Risky Events Is Enough for Local Policies 109

The target language λcheck

e, e′ ::= x variable
c constant
check Φ in α(r) guarded event
if b then e else e′ conditional
λzx. e abstraction
e e′ application
enter ϕ in e activate policy

The configurations of the operational semantics are pairs σ, e. A transition
Φ � σ, e � σ′, e′ means that the expression e reduces to e′ and the state σ of
the security automata evolves to σ′, provided that Φ is the set of active policies.
Note that it suffices to record in σ the states of those automata Aϕ(c) such that
ϕ(c) ∈ RE(�), for some �. Remarkably, the size of the configurations is bounded,
unlike those of λ[] , where histories η could grow unbound.

Operational semantics of λcheck

Φ � σ, e1 � σ′, e′1
Φ � σ, e1e2 � σ′, e′1e2

Φ � σ, e2 � σ′, e′2
Φ � σ, ve2 � σ′, ve′2

Φ � σ, (λzx.e)v � σ, e{v/x, λzx.e/z} Φ � σ, if b then e0 else e1 � σ, eB(b)

{ ϕ(c′) ∈ Φ′ | ϕ ∈ Φ ∧ δ(σ(ϕ(c′)), α(c)) = qs } = ∅
Φ � σ, check Φ′ in α(c) � δ(σ, α(c)), ∗

Φ ∪ {ϕ} � σ, e � σ′, e′

Φ � σ, enter ϕ in e � σ′, enter ϕ in e′
Φ � σ, enter ϕ in v � σ, v

The first four rules are straightforward. The rule for an event α(c) guarded
by Φ′ requires that any policy ϕ(c′) ∈ Φ′ such that ϕ is active, does not lead to
the sink state upon α(c). The statement enter ϕ in e is similar to a block in
programming languages: the policy ϕ is active while reducing e, and its scope is
left when e eventually becomes a value.

We are now ready to instrument an expression e in λ[] and obtain an equiv-
alent expression instrRE(e) in λcheck . In the definition below, we use the risky
events collected in RE by the analysis on history grammars. The first rule dis-
cards all the policy framings, but records entering the scope of a policy. The
other interesting rule is that for instrumenting events: an event α�(c), H-risky
for Φ, becomes guarded by a check on all the policies in Φ.

110 M. Bartoletti, P. Degano, and G.L. Ferrari

Instrumentation of λ[] expressions

instrRE(ϕ[e]) = enter ϕ in instrRE(e) instrRE(∗) = ∗ instrRE(x) = x

instrRE(c) = c instrRE(α�(r)) = check RE(�) in α(r)

instrRE(λzx. e) = λzx. instrRE(e) instrRE(e0 e1) = instrRE(e0) instrRE(e1)

instrRE(if b then e0 else e1) = if b then instrRE(e0) else instrRE(e1)

The correctness of instrumentation is stated by the following theorem: each
execution step of e in λ[] corresponds exactly to one step of instrRE(e) in λcheck.

Theorem 4. For all histories η, non-failure expressions e, e′, and integers n:

ε, e →n η, e′ ⇐⇒ ∅ � σ0, instrRE(e) �n δ(σ0, η), instrRE(e′)

7 Conclusions

We have proposed a mixed approach to history-based access control. To this
aim, we have exploited λ[], an extension of the λ-calculus that allows for security
policies with possibly nested, local scopes [4].

We have defined a type and effect system to extract from a given program
a history grammar that approximates its run-time behaviour, as far as secu-
rity is concerned. A history grammar is a context-free grammar that generates
execution histories while recording the scope of local policies.

Dynamic checking history-based policies is in general unfeasible, because his-
tories may grow unbound. We have been able to transform programs to record
just the abstraction of the history needed to guarantee security, i.e. where and
which policies have to be checked. This relies on a (polynomial-time) static
analysis on history grammars, which detects the events that are risky, and the
policies they may violate. Local checks of risky events can then replace local
policies, thus making the dynamic control of accesses feasible.

Colcombet and Fradet [8] and Marriot, Stuckey and Sulzmann [15] mixed
static and dynamic techniques to transform programs and make them obey a
given global policy. The approach of [8] abstracts a program into a control flow
graph, which is then instrumented with some annotations, to track the state
of the finite-state automaton that enforces the global property. A minimization
phase follows, to remove the unnecessary tracking. Finally, the optimized control
flow graph is converted back to a program, that is guaranteed to abort just before
violating the property. The approach of [15] is based on over-approximating the
run-time behaviour of a program through a context-free grammar. A finite-state
automaton models the permitted resource usages. If the language generated by
the grammar is not included in the language accepted by the automaton, the

Checking Risky Events Is Enough for Local Policies 111

program is instrumented with the local checks and tracking operations needed
to make it obey the policy. Compared to [8,15], our programming model allows
for local policies and access events parametrized over resources, while the others
only consider global policies and no parametrized events.

Igarashi and Kobayashi proposed in [13] a unified framework for analysing
the usage of resources. This is based on an extension of the λ-calculus that
features primitives for creating and accessing resources, and for defining their
permitted usage patterns. The resource usage problem requires to approximate
the use function that maps expressions to the sequences of possible usage pat-
terns. An execution is resource-safe when the possible patterns are contained in
the permitted ones. A type system guarantees that well-typed expressions are
resource-safe. Compared to the calculus of [13], λ[] has no primitive for resource
creation, but we plan to introduce it in future work. Indeed, the programming
model of [13] is even too powerful: as a result, no complete algorithm exists to
verify that inferred usages conform to the permitted ones. Instead, in [4] we
provided λ[] with a static technique to verify when a program is secure.

Skalka and Smith proposed λhist [19], a λ-calculus with local security checks
that enforce linear µ-calculus properties [7,14] on the past history. A type and
effect system approximates the possible run-time histories. Type safety ensures
that a typable expression will not go wrong if its effect is valid, i.e. all the histories
it represents always pass the local security checks. The validity of effects can
be statically verified by model checking µ-calculus formulae over Basic Process
Algebras [6,10]. Compared to Skalka and Smith’s λhist , our λ[] features a different
programming construct for access control: while in λhist the access control tests
are dictated by local checks inserted into programs, we have policy framings,
that localize the time intervals where safety policies must be enforced.

Walker [21] explored an alternative approach to access control, that mixes
static and dynamic techniques with proof-carrying code [16]. Security proper-
ties are specified by security automata [5,17]. When a security-unaware program
is compiled, a centralized security policy tells where to insert local checks, in
order to obtain provably-secure compiled code. An optimization phase follows:
whenever a security check is removed, it is replaced by a proof that the opti-
mized code is still safe. This is done through typed compilation schemata: types
encode assertions about program security, ensuring that no run-time violation
of the security properties will occur. Before executing a piece of code, a certi-
fied verification software ensures that it respects the centralized security policy.
Thus, compilers are no longer required to belong to the trusted computing base.

Our previous work [4] has a type and effect system, similar to the present one,
whose effects are instead history expressions, equivalent to Basic Process Alge-
bras. These effects are model checked with specially-tailored Büchi automata, to
detect whether the program under analysis never goes wrong. In [3] we further
refined this model to include liveness properties and call-by-contract service in-
vocation, thus providing a framework for secure service composition. Compared
with [4,3], the present paper never rejects programs that possibly go wrong, by
mechanically adding the necessary run-time checks only.

112 M. Bartoletti, P. Degano, and G.L. Ferrari

Acknowledgments. We wish to thank the anonymous referees for their insightful
comments. Research partially supported by the Project FET-GC II Sensoria.

References

1. M. Abadi and C. Fournet. Access control based on execution history. In Proc. 10th
Annual Network and Distributed System Security Symposium, 2003.

2. A. Banerjee and D. A. Naumann. History-based access control and secure in-
formation flow. In Workshop on Construction and Analysis of Safe, Secure and
Interoperable Smart Cards (CASSIS), 2004.

3. M. Bartoletti, P. Degano, and G. L. Ferrari. Enforcing secure service composition.
In Proc. 18th Computer Security Foundations Workshop (CSFW), 2005.

4. M. Bartoletti, P. Degano, and G. L. Ferrari. History based access control with
local policies. In Proc. Fossacs, 2005.

5. L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Foun-
dations of Computer Security (FCS ’02), 2002.

6. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77–121, 1985.

7. J. C. Bradfield. On the expressivity of the modal mu-calculus. In Proc. Interna-
tional Symposium on Theoretical Aspects of Computer Science, 1996.

8. T. Colcombet and P. Fradet. Enforcing trace properties by program transforma-
tion. In Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2000.

9. G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control for mobile
code. In Secure Internet Programming, 1999.

10. J. Esparza. On the decidability of model checking for several µ-calculi and Petri
nets. In Proc. 19th Int. Colloquium on Trees in Algebra and Programming, 1994.

11. P. W. Fong. Access control by tracking shallow execution history. In IEEE Sym-
posium on Security and Privacy, 2004.

12. C. Fournet and A. D. Gordon. Stack inspection: theory and variants. ACM Trans-
actions on Programming Languages and Systems, 25(3):360–399, 2003.

13. A. Igarashi and N. Kobayashi. Resource usage analysis. In Proc. 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2002.

14. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

15. K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification. In Proc.
First Asian Programming Languages Symposium, 2003.

16. G. C. Necula. Proof-carrying code. In Proc. 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 1997.

17. F. B. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security (TISSEC), 3(1):30–50, 2000.

18. P. Sewell and J. Vitek. Secure composition of untrusted code: box-π, wrappers and
causality types. Journal of Computer Security, 11(2), 2003.

19. C. Skalka and S. Smith. History effects and verification. In Asian Programming
Languages Symposium, 2004.

20. J.-P. Talpin and P. Jouvelot. The type and effect discipline. In Proc. 7th IEEE
Symposium on Logic in Computer Science, 1992.

21. D. Walker. A type system for expressive security policies. In Proc. 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2000.

The Graph Rewriting Calculus:
Confluence and Expressiveness

Clara Bertolissi

LORIA & UHP, BP 239 54506, Vandoeuvre-lès-Nancy, Cedex, France
clara.bertolissi@loria.fr

Abstract. Introduced at the end of the nineties, the Rewriting Calcu-
lus (ρ-calculus, for short) is a simple calculus that uniformly integrates
term-rewriting and λ-calculus. The ρg-Calculus has been recently intro-
duced as an extension of the ρ-calculus, handling structures with cycles
and sharing. The calculus over terms is naturally generalized by using
unification constraints in addition to the standard ρ-calculus matching
constraints. This leads to a term-graph representation in an equational
style where terms consist of unordered lists of equations. In this paper we
show that the (linear) ρg-Calculus is confluent. The proof of this result
is quite elaborated, due to the non-termination of the system and to the
fact that we work on equivalence classes of terms. We also show that
the ρg-Calculus can be seen as a generalization of first-order term-graph
rewriting, in the sense that for any term-graph rewrite step a correspond-
ing sequence of rewritings can be found in the ρg-Calculus.

1 Introduction

Term rewriting is a general framework for specifying and reasoning about compu-
tations that combines elements of automated theorem proving, universal algebra
and functional programming. It provides very efficient methods for reasoning
with equations and it can be regarded as a powerful abstract computational
model. In particular, term rewriting systems can be used for software verifica-
tion: the behavior of a functional or rewrite-based program can be described by
analyzing some properties of the associated term rewriting system. For example,
the confluence property ensures that the output of the program, if it exist, is
unique for any given input data.

In this framework, the rewriting calculus (ρ-calculus, for short) has been in-
troduced in the late nineties as a natural generalization of term rewriting and
of the λ-calculus [9]. The rewrite rules, acting as elaborated abstractions, their
application and the obtained structured results are first-class objects of the cal-
culus. The evaluation mechanism, generalizing beta-reduction, strongly relies on
term matching in various theories. Several variants of the calculus have been
already studied, such as typed versions [5], extensions with explicit substitu-
tions [8] or with imperative features [15].

In the term rewriting setting, terms are often seen as trees but in order to
improve the efficiency of the implementation of functional languages, it is of
fundamental interest to think and implement terms as graphs [4]. In this case,

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

114 C. Bertolissi

the possibility of sharing subterms allows one to save space and time during
the computation. Moreover, the possibility to define cycles leads to an increased
expressive power that allows one to represent naturally regular infinite data
structures. Cyclic term-graph rewriting has been widely studied from different
points of view: operational [4], categorical [11] or equational [1] (see [18] for a
survey on term-graph rewriting).

Following the last approach, we proposed in [7] a system, called ρg-Calculus,
that generalizes the standard ρ-calculus in order to deal with higher-order cyclic
terms. The first contribution of this paper shows that the ρg-Calculus, under
some linearity assumptions, is confluent. In the ρg-Calculus terms can have an
associated list of constraints which is composed of recursion equations, used to
express sharing and cycles, and matching constraints, arising from the fact that
computations related to the matching are made explicit and performed at the
object-level. The order of constraints is irrelevant and therefore the conjunction
operator is considered to be commutative and associative, with the the empty
constraint as neutral element. Moreover, the idempotence axiom is used to avoid
the duplication of constraints.

The fact that reductions take place over equivalence classes of terms rather
than over single terms must be considered when proving the confluence of the
calculus, and this makes the result more difficult to achieve. The proof method
generalizes the proof of confluence of the cyclic λ-calculus [2] to the setting of
rewriting modulo an equational theory [16] and moreover it adapts the proof to
deal with terms containing patterns and matching equations. More precisely, the
proof, which is only sketched in the paper, uses the concept of “developments”
and the property of “finiteness of developments” as defined in the theory of
classical λ-calculus [3]. The interested reader can find the complete proof in [6].

The ρg-Calculus is an expressive formalism that has already been shown to
be a generalization of both the plain ρ-calculus and the λ-calculus extended with
explicit recursion, providing an homogeneous framework for pattern matching
and higher-order graphical structures. In this paper we show how the ρg-Calculus
can be naturally seen also as an extension of term-graph rewriting. More specifi-
cally, we prove that matching in the ρg-Calculus is well-behaved w.r.t. the notion
of homomorphism on term-graphs and that any reduction step in a term-graph
rewrite system can be simulated in the ρg-Calculus.

The paper is organized as follows. In Section 2 we describe the syntax and
the small-step semantics of the ρg-Calculus. In Section 3 we outline the proof
of confluence for the ρg-Calculus. In Section 4 we review first-order term-graph
rewriting in the equational approach, showing that term-graph reductions can
be simulated in the ρg-Calculus. We conclude in Section 5 by presenting some
perspectives of this work.

2 The ρg-Calculus: Syntax and Semantics

The syntax of the ρg-Calculus presented in Fig. 1 extends the syntax of the
standard ρ-calculus and of the ρx-calculus [8], i.e. the ρ-calculus with explicit

The Graph Rewriting Calculus: Confluence and Expressiveness 115

matching and substitution application. As in the plain ρ-calculus, λ-abstraction
is generalized by a rule abstraction P � G, where P is in general an arbitrary
term. There are two different application operators: the functional application
operator, denoted simply by concatenation, and the constraint application oper-
ator, denoted by as “ []”. Terms can be grouped together into structures built
using the operator “ ; ”. Depending on the theory behind this operator a struc-
ture can represent, e.g., a multi-set (when “;” is associative and commutative)
or a set (when “;” is associative, commutative and idempotent) of terms.

In the ρg-Calculus constraints are conjunctions (built using the operator
“ , ”) of match equations of the form P � G and recursion equations of the
form X = G. The empty constraint is denoted by ε. The operator “ , ” is sup-
posed to be associative, commutative and idempotent, with ε as neutral element.

We assume that the application operator associates to the left, while the
other operators associate to the right. To simplify the syntax, operators have
different priorities. Here are the operators ordered from higher to lower priority:
“ ”, “ � ”, “ ; ”, “ []” , “ � ”, “ = ” and “ , ”.

The symbols G, H, P . . . range over the set G of terms, x, y, . . . range over
the set X of variables, a, b, . . . range over a set K of constants. The symbols
E, F, . . . range over the set C of constraints. We call algebraic the terms of the
form (((f G1) G2) . . .) Gn, with f ∈ K, Gi ∈ X ∪K or Gi algebraic for i = 1 . . . n,
and we usually denote them by f(G1, G2, . . . , Gn).

We denote by • (black hole) a constant, already introduced in [1] using the
equational approach and also in [11] using the categorical approach, to give a
name to “undefined” terms that correspond to the expression x [x = x] (self-
loop). The notation x =◦ x is an abbreviation for the sequence x = x1, . . . , xn =
x. We use the symbol Ctx{�} for a context with exactly one hole �. We say
that a ρg-term is acyclic if it contains no sequence of constraints of the form
Ctx0{x0} �� Ctx1{x1}, Ctx2{x1} �� Ctx3{x2}, . . . , Ctxm{xn} �� Ctxm+1{x0} ,
with n, m ∈ N and ��∈ {=, �}. A sequence of this kind is called a cycle.

For the purpose of this paper we restrict to left-hand sides of abstractions and
match equations that are acyclic, algebraic terms, with all their subterms alge-
braic and not containing constraints. The set of all these terms, called patterns,
is denoted by P . For instance, the ρg-term (f(y) [y = g(y)] � a) is not allowed
since the abstraction has a cyclic left-hand side. We call a ρg-term well-formed
if each variable occurs at most once as left-hand side of a recursion equation. All
the ρg-terms considered in the sequel will be implicitly well-formed.

Terms
G, P ::= X (Variables)

| K (Constants)
| P � G (Abstraction)
| G G (Functional application)
| G; G (Structure)
| G [C] (Constraint application)

Constraints
C ::= ε (Empty constraint)

| X = G (Recursion equation)
| P � G (Match equation)
| C, C (Conjunction)

Fig. 1. Syntax of the ρg-Calculus

116 C. Bertolissi

The notions of free and bound variables of ρg-terms take into account the
three binders of the calculus: abstraction, recursion and match. Intuitively, vari-
ables on the left hand-side of any of these operators are bound by the operator.
The set of free variables of a ρg-term G is denoted by FV(G). Moreover, given
a constraint C we will refer to the set DV(C), of variables “defined” in C. This
set includes, for any recursion equation x = G in C, the variable x and for any
match P � G in C, the set of free variables of P . For a formal definition, see [7].

We work modulo α-conversion and we use Barendregt’s “hygiene-
convention”, i.e. free and bound variables have different names [3]. Note that
the scope of a recursion variable is limited to the ρg-terms appearing in the list
of constraints where such variable is defined and the ρg-term to which this list is
applied. For example, in f(x, y) [x = g(y) [y = a]] the variable y defined in the
recursion equation binds its occurrence in g(y) but not in f(x, y). In fact, the
term does not satisfy the naming conditions since y occurs both free and bound.
This naming convention allows us to apply replacements (like for the evaluation
rules in Fig. 2) quite straightforwardly, since no variable capture is possible.

We define next an order over variables bound by a match or an equation.
This order will be later used in the definition of the substitution rule of the
calculus, which will allow one only upward substitutions. As we will see later,
this is essential for obtaining the confluence of the calculus. We denote by ≤ the
least pre-order on recursion variables such that x ≥ y if x = Ctx{y}, for some
context Ctx{�}. The equivalence induced by the pre-order is denoted ≡ and we
say that x and y are cyclically equivalent (x ≡ y) if x ≥ y ≥ x (they lie on a
common cycle). We write x > y if x ≥ y and x �≡ y.

Example 1 (Some ρg-terms).

1. In the rule (2 ∗ f(x)) � ((y + y) [y = f(x)]) the sharing in the right-hand
side avoids the copying of the object instantiating f(x), when the rule is
applied to a ρg-term.

2. The ρg-term x [x = cons(0, x)] represents an infinite list of zeros.
3. The ρg-term f(x, y) [x = g(y), y = g(x)] is an example of twisted sharing

that can be expressed using mutually recursive constraints (to be read as a
letrec construct). We have that x ≥ y and y ≥ x, hence x ≡ y.

The complete set of evaluation rules of the ρg-Calculus is presented in Fig. 2.
As in the plain ρ-calculus, in the ρg-Calculus the application of a rewrite rule to a
term is represented as the application of an abstraction. A redex can be activated
using the ρ rule in the Basic rules, which creates the corresponding matching
constraint. The computation of the substitution which solves the matching is
then performed explicitly by the Matching rules and, if the computation is
successful, the result is a recursion equation added to the list of constraints of
the term. This means that the substitution is not applied immediately to the
term but it is kept in the environment for a delayed application or for deletion
if useless, as expressed by the Graph rules.

More precisely, the first two rules ρ and δ come from the ρ-calculus. The rule
δ distributes the application over the the structures built with the “;” operator.

The Graph Rewriting Calculus: Confluence and Expressiveness 117

Basic rules:
(ρ) (P � G2) G3 →ρ G2 [P � G3]

(P � G2) [E] G3 →ρ G2 [P � G3, E]
(δ) (G1; G2) G3 →δ G1 G3; G2 G3

(G1; G2) [E] G3 →δ (G1 G3; G2 G3) [E]

Matching rules:
(propagate) P � (G [E]) →p P � G, E if P �= x
(decompose) K(G1, . . . , Gn) � K(G′

1, . . . , G
′
n) →dk G1 � G′

1, . . . , Gn � G′
n

with n ≥ 0
(solved) x � G, E →s x = G, E if x �∈ DV(E)

Graph rules:
(external sub) Ctx{y} [y = G, E] →es Ctx{G} [y = G, E]
(acyclic sub) G [P �� Ctx{y}, y = G1, E] →ac G [P �� Ctx{G1}, y = G1, E]

if x > y, ∀x ∈ FV(P)
where ��∈ {=, �}

(garbage) G [E, x = G′] →gc G [E]
if x �∈ FV(E) ∪ FV(G)

G [ε] →gc G
(black hole) Ctx{x} [x =◦ x, E] →bh Ctx{•} [x =◦ x, E]

G [P �� Ctx{y}, y =◦ y,E] →bh G [P �� Ctx{•}, y =◦ y, E]
if x > y, ∀x ∈ FV(P)

Fig. 2. Small-step semantics of the ρg-Calculus

The rule ρ triggers the application of a rewrite rule to a ρg-term by applying the
appropriate constraint to the right-hand side of the rule. For each of these rules,
an additional rule dealing with the presence of constraints is considered.

The Matching rules and in particular the rule decompose are strongly
related to the theory modulo which we want to compute the solutions of the
matching. In this paper we consider the syntactical matching, which is known to
be decidable, but extensions to more elaborated theories are possible. Due to the
assumptions on the left-hand sides of rewrite rules and of constraints, we only
need to decompose algebraic terms. The goal of this set of rules is to produce a
constraint of the form x1 = G1, . . . , xn = Gn starting from a matching equation.
Some replacements might be needed (as defined by the Graph rules) as soon
as the terms contain some sharing. The propagate rule performs a flattening
of a list of constraints which are propagated to the top level. The rule solved
transforms a matching constraint x � G into a recursion equation x = G. The
proviso asking that x is not defined elsewhere in the constraint is necessary in
the case of matching problems involving non-linear constraints. For example,
the constraint x � a, x � b should not be reduced showing that the original
(non-linear) matching problem has no solution.

The Graph rules are inherited from the cyclic λ-calculus [2]. The first two
rules make a copy of a ρg-term associated to a recursion variable into a term
that is inside the scope of the corresponding constraint. This is important to
make a redex explicit (e.g. in x a [x = a � b]) or or to solve a match equation
(e.g. in a [a � x, x = a]). As already mentioned, the substitution rule allows one
to make the copies only upwards w.r.t. the order defined on the variables of

118 C. Bertolissi

ρg-terms. In the cyclic λ-calculus this is needed for the confluence of the system
(see [2] for a counterexample) and it will be one of the key ingredients also for
the confluence of the ρg-Calculus. The garbage rules get rid of recursion equa-
tions that represent non-connected parts of the term. Matching constraints are
not eliminated, keeping thus the trace of matching failures during an unsuccess-
ful reduction. The black hole rules replace the undefined ρg-terms, intuitively
corresponding to self-loop graphs, with the constant •.

Note that all the evaluation steps are performed modulo the underlying the-
ory associated to the “ , ” operator, as we will detail in the next section.

Example 2. [A simple reduction]
(f(a, a) � a) (f(y, y) [y = a])

	→ρ a [f(a, a) � f(y, y) [y = a]] 	→p a [f(a, a) � f(y, y), y = a]
	→dk a [a � y, a � y, y = a] = a [a � y, y = a] (by idempotency)
	→ac a [a � a, y = a] 	→dk a [y = a] 	→→gc a

3 Confluence of the ρg-Calculus

The confluence for higher-order systems dealing with non-linear matching is
difficult to get since we usually obtain non-joinable critical pairs as shown in [14]
in the setting of the λ-calculus. Klop’s counterexample can be encoded in the
ρ-calculus [19] to show that ρ-calculus is not confluent if no evaluation strategy
is used. The counterexample is still valid when generalizing the ρ-calculus to the
ρg-Calculus. For this reason, we restrict in the following to a linear ρg-Calculus.

Definition 1 (Linear ρg-Calculus). A pattern is called linear if it does not
contain two occurrences of the same variable. We say that a constraint [P1 ��
G1, . . . , Pn �� Gn] is linear if all patterns are linear and if

⋂n
i=1 FV(Pi) = ∅.

The linear ρg-Calculus is the ρg-Calculus where all the patterns in the left-
hand side of abstractions and all constraints are linear.

As mentioned before, the “ , ” operator is supposed to be associative, com-
mutative and idempotent, with ε as a neutral element. However, in the lin-
ear ρg-Calculus, idempotency is not needed since constraints of the form x �
G, x � G are not allowed (and cannot arise from reductions). Therefore, in the
ρg-Calculus, rewriting must be thought of as acting over equivalence classes of
ρg-terms with respect to ∼ACε , the congruence relation generated by the asso-
ciativity and commutativity axioms for the “ , ” operator, and the neutrality
axiom for ε. If ρg denotes the rewrite system in Fig. 2, then the relation in-
duced over ACε-equivalence classes is denoted 	→ρg/ACε

and formally defined by
T1 	→ρg/ACε

T2 if T1 ∼ACε Ctx{σ(L)} and T2 ∼ACε Ctx{σ(R)} with L → R any
rule in ρg and σ a substitution.

Concretely, in most of the proofs we will use the notion of rewriting modulo
ACε à la Peterson and Stickel [17], denoted 	→ρg,ACε . In this case rewrite rules
act on terms instead than on equivalence classes of terms, and matching modulo
ACε is performed at each step of the reduction. Formally T1 	→ρg,ACε T2 if

The Graph Rewriting Calculus: Confluence and Expressiveness 119

·�
R

��

�
R

�� ·�
R

��
· �

R
�� · ∼ACε ·

·�
R

����

�
R

�� �� ·�
R

����
· �

R
�� �� · ∼ACε ·

·�
R1

����

�
R2

�� �� ·�
R2

����
· �

R1

�� �� · ∼ACε ·

·�
R

��

∼ACε ·�
R

��
· ∼ACε ·

Diamond Confluence Commutation Compatibility

Fig. 3. Properties of rewriting modulo ∼E

T1 = Ctx{T } with T ∼ACε σ(L) and T2 = Ctx{σ(R)}. On one hand, this notion
of rewriting is more convenient, from a computational point of view, than ACε-
class rewriting. In fact in the latter case the entire (possibly infinite) class must
be explored looking for reducible terms. On the other hand, as we will see later,
to prove the confluence of the ρg, ACε relation is sufficient to get the confluence
for the ρg/ACε relation.

Notation. In pictures and in the rest of the section, 	→R denotes the one step
reduction and 	→→R its reflexive and transitive closure, with R any subset of rules
of the ρg-Calculus. We often simply write ACε for ∼ACε and 	→R for 	→R,ACε .

In Fig. 3 we give a graphical representation of some properties of the ρg, ACε

relation that will be referred to in the sequel. Their general definition can be
found in [16]. The first three are ordinary properties from term rewriting, with
the difference that the diagrams are closed with a step of equivalence modulo
ACε. The last one says that if there exists a rewrite step from a term T , then
the same step can be performed starting from any term ACε-equivalent to T .

The confluence proof, detailed in [6], is quite elaborated. This is mainly due
to the non-termination of the system and to the fact that equivalence modulo
ACε on terms has to be considered. We prove first a lemma showing the com-
patibility (see Fig. 3) of ρg, ACε with ACε and thus ensuring that this relation is
particularly well-behaved w.r.t. the congruence relation ACε. Then, we proceed
by proving a number of lemmas that lead to the confluence of ρg, ACε and fi-
nally we conclude on the confluence of ρg/ACε using the mentioned compatibility
lemma stated next.

Lemma 1 (Compatibility of ρg, ACε). Compatibility with ACε holds for any
rule in ρg.

We point out that since compatibility holds for any rule of the ρg-Calculus,
then it also holds for any subset of evaluation rules of the ρg-Calculus and, in
particular, for the entire ρg-Calculus semantics.

In order to prove the confluence of ρg, ACε, we proceed using a proof technique
inspired from [2], but the larger number of evaluation rules of the ρg-Calculus
and the explicit treatment of the congruence relation on terms make the proof
for the ρg-Calculus more complex. The main idea is to split the rules into two
subsets, to show separately their confluence and to prove the confluence of the
union using a commutation lemma for the two sets of rules.

In the ρg-Calculus the first subset, called the Σ-rules, consists of the two sub-
stitution rules external sub and acyclic sub, plus the δ rule. The second subset

120 C. Bertolissi

of rules, called the τ -rules, consists of all the remaining rules of the ρg-Calculus.
The substitution rules represent the non-terminating rules of the ρg-Calculus.
The δ rule is included in the Σ-rules, although it could be added to the τ -rules
keeping this set of rules terminating. This choice is due to the fact that, because
of its non-linearity, adding the δ rule to the τ -rules would have caused relevant
problems in the proof of the final commutation lemma.

An important role in this part of the proof is played by the following propo-
sition which follows immediately from [16].

Proposition 1. 1. A terminating relation locally confluent modulo ACε and
compatible with ACε is confluent modulo ACε.

2. The union of two relations commuting modulo ACε, both confluent modulo
ACε and compatible with ACε, is confluent modulo ACε.

We start by showing the confluence modulo ACε of the τ -rules. This is done
using Proposition 1.1). To prove the termination of the τ -rules classical but
not trivial rewriting techniques are applied [12]: the lexicographic product of
a polynomial interpretation on the ρg-terms and a path ordering induced by a
given precedence on the operators of the ρg-Calculus syntax is used. The local
confluence modulo ACε is rather easy to prove by analysis of the critical pairs.

Proposition 2. The relation τ is confluent modulo ACε.

Secondly, we show the confluence modulo ACε of the Σ-rules and this is
the most elaborated part of the proof. The difficulties arise from the fact that
the rewrite relation induced by the Σ-rules is not strongly normalizing. Thus
proving local confluence is not sufficient to get confluence. In particular, both
substitution rules are not terminating in the presence of cycles:

x [x = f(y), y = g(y)] →ac x [x = f(g(y)), y = g(y)] →ac . . .

y [y = g(y)] →es g(y) [y = g(y)] →es . . .

The idea is to prove the confluence of the relation Σ by applying the com-
plete development method of the λ-calculus, which consists first in defining a
new rewrite relation Cpl with the same transitive closure as Σ and secondly in
proving that the relation Cpl satisfies the diamond property modulo ACε (see
Fig. 3). Intuitively, a step of Cpl rewriting on a term G consists in the complete
reduction of a set of redexes fixed initially in G. In other words, some redexes are
marked in G and a complete development of these redexes is performed by the
Cpl relation. Concretely, an underlining function is used to mark the redexes
and reductions on underlined redexes are then performed using the following
underlined version of the Σ-rules:

(external sub) Ctx{y} [y = G, E] →es Ctx{G} [y = G, E]
(acyclic sub) G [G0 �� Ctx{y}, y = G1, E] →ac G [G0 �� Ctx{G1}, y = G1, E]

if x > y, ∀x ∈ FV(G0)
(δ) (G1;G2) G3 →δ G1 G3; G2 G3

(G1;G2) [E] G3 →δ (G1 G3; G2 G3) [E]

The Graph Rewriting Calculus: Confluence and Expressiveness 121

The term x [x = f(y), y = g(y)], for example, reach the Σ normal form x [x =
f(g(y)), y = g(y)] in one step. The Cpl rewrite relation is then defined as follows.

Definition 2. Given the terms G1 and G2 in the Σ-calculus, we have that
G1 	→Cpl G2 if there exists an underlining G′

1 of G1 such that G′
1 	→→Σ G2 and G2

is in normal form w.r.t. the relation Σ.

For example, we have G1 = x [f(x, y) � f(z, z), z = g(w), w = a] 	→Σ

x [f(x, y) � f(z, z), z = g(a), w = a] 	→Σ x [f(x, y) � f(g(a), g(a)), z =
g(a), w = a] = G2 and thus G1 	→Cpl G2.

To ensure that for every choice of redexes in G1 there exists a Cpl reduction,
we prove that Σ is weakly normalizing, by defining an appropriate reduction
strategy. This property, in addition to the confluence property modulo ACε for
Σ which can be proved using Proposition 1.1), allows us to prove the diamond
property modulo ACε of the Cpl relation.

Lemma 2. The relation Cpl satisfies the diamond property modulo ACε.

Notice that if the relation Cpl has the diamond property modulo ACε, so
does its transitive closure. The confluence of the Σ relation then follows easily
by noticing that the Σ relation and the Cpl relation have the same transitive
closure, that is 	→Σ⊆	→Cpl⊆ 	→→Σ . The first inclusion can be proved by underling
the redex reduced by the Σ step. The second inclusion follows trivially from the
definition of the Cpl relation.

Proposition 3. The relation Σ is confluent modulo ACε.

Finally, we consider the union of the subsets of rules τ and Σ. General con-
fluence holds by the previous results and by the fact that we can prove the
commutation of the τ -rules with the Σ-rules (see Proposition 1.2)).

Theorem 1 (Confluence of ρg, ACε). The rewrite relation ρg, ACε is conflu-
ent modulo ACε.

As mentioned at the beginning, what we aim at is a more general result
about rewriting on ACε-equivalence classes of ρg-terms. This can be achieved
using the confluence of ρg, ACε (Theorem 1) and the compatibility property of
ρg, ACε with ACε (Lemma 1).

Corollary 1 (Confluence of ρg/ACε). The linear ρg-Calculus is confluent.

4 Term-Graph Rewriting in the ρg-Calculus

The standard ρ-calculus can be seen as a natural generalization of both term
rewriting and λ-calculus, integrating the pattern matching capabilities of the
first formalism, with the abstraction mechanism of the second one. This fact
has been formalized by showing that term rewriting can be simulated in the
ρ-calculus [9,10].

122 C. Bertolissi

The ρg-Calculus has been already shown to be a quite expressive formalism
which allows one to simulate both the plain ρ-calculus and the cyclic λ-calculus
providing an homogeneous framework for pattern matching and higher-order
graphical structures [7]. The possibility of representing structures with cycles
and sharing naturally leads to the question asking whether first-order term-
graph rewriting (TGR) can be simulated in this context. In this section we give
a first positive answer. The complete proofs can be found in [6].

Several presentations have been proposed for TGR (see [18] for a survey).
Here we consider an equational presentation in the style of [1], which is closer
to the approach used in the ρg-Calculus. Given a set of variables X and a first-
order signature F with symbols of fixed arity, a term-graph over X and F is a
system of equations of the form G = {x1 | x1 = t1, . . . , xn = tn} where t1, . . . , tn
are first-order terms over X and F and the recursion variables xi are pairwise
distinct. The variable x1 on the left represents the root of the term-graph. We
call the list of equations the body of the term-graph and we denote it by EG, or
simply E, when the graph G is clear from the context. The empty list is denoted
by ε. The variables x1, . . . , xn are bound in the term-graph by the associated
recursion equation. The other variables occurring in the term-graph G are called
free and the set of free variables is denoted by FV(G). A term-graph without
free variables is called closed. We denote the collection of variables appearing
in G by Var(G). Two α-equivalent graphs, i.e. two graphs which differ only for
the name of bound variables, are considered equal. Cycles may appear in the
system and degenerated cycles, i.e. equations of the form x = x, are replaced by
x = • (black hole). A term-graph is said to be in flat form if all its recursion
equations are of the form x = f(x1, . . . , xn), where the variables x, x1, . . . , xn

are not necessarily distinct from each other. In the following we will consider
only term-graphs in flat form and without useless equations (garbage) that we
remove automatically during rewriting. A term-graph in flat form can be easily
interpreted and depicted as a graph taking the set of variables as nodes. We will
use the graphical interpretation to help the intuition in the examples.

Rewriting is done by means of term-graph rewrite rules. A term-graph rewrite
rule is a pair of term-graphs (L, R) such that L and R have the same root, L
is not a single variable and FV(R) ⊆ FV(L). We say that a rewrite rule is
left-linear if L is a tree. In the sequel we will restrict to left-linear rewrite rules.

Definition 3 (Substitution). A substitution σ = {x1/G1, . . . , xn/Gn} is a
map from variables to term-graphs. Its application to a term-graph G, denoted
σ(G) is defined as follows:

σ(x) �=

{
Gi if x = xi ∈ {x1, . . . , xn} σ(f(G1, . . . , Gn)) �= f(σ(G1), . . . , σ(Gn))
x otherwise

σ({x1 | x1 = G1, . . . , xn = Gn}) �= {σ(x1) | σ(x1) = σ(G1), . . . , σ(xn) = σ(Gn)}

A rewrite rule can be applied to a term-graph G if there exists a match
between its left-hand side and the graph. Formally, a homomorphism (matching)
from a term-graph L to a term-graph G is a substitution σ such that σ(L) ⊆ G

The Graph Rewriting Calculus: Confluence and Expressiveness 123

where the inclusion means that all the recursion equations in σ(L) are present
also in G. Notice that in case of term-graphs in flat form, the homomorphism σ
is simply a variable renaming.

A redex in a term-graph G is a pair ((L, R), σ) where (L, R) is a rule and σ
is an homomorphism from the left-hand side L of the rule to G. If x is the root
of L, we call σ(x) the head of the redex.

Definition 4 (Path, position). A path in a closed graph G is a sequence of
function symbols interleaved by integers p = f1i1f2 . . . in−1fn such that fj+1 is
the ij-th argument of fj, for all j = 0 . . . n. The sequence of integers i1 . . . in−1
is called the position of the node labeled fn and still denoted with the letter p.
By the context notation G�EG′�p

we specify that G contains the body of a graph
G′ at the position p.

The notions of path and position are used to define a rewrite step. Let
((L, R), σ) be a redex occurring in G at the position p. A rewrite step consists
in removing the equation specified by the head of the redex and in replacing it
by the body of σ(R), with a fresh choice of bound variables. Using a context
notation we write G�σ(x)=t�p

→ G�σ(ER)�p
.

The set of term-graphs of a TGR is a strict subset of the set of terms of the
ρg-Calculus, modulo some obvious syntactic conventions. By abuse of notation,
in the following we will consider equivalent the two notations {x | E} and x [E]. A
rewrite rule (Li, Ri) ∈ R is translated into the corresponding ρg-term Li � Ri.
The application of a substitution σ = {x1/G1, . . . xn/Gn} to a term-graph L
corresponds in the ρg-Calculus to the addition of a list of constraints to the term
L, that is L [E] where E = (x1 = G1, . . . , xn = Gn).

A ρg-term is, in general, more complex than a flat term-graph, i.e. it can
have garbage and nested lists of constraints. We define next the canonical form
of a ρg-term G containing no abstractions and no match equations.

Definition 5 (Canonical form). Let G be a ρg-term containing no abstrac-
tions and no match equations. We say that G is in canonical form, denoted G, if
it is in flat form and it contains neither garbage equations nor trivial equations
of the form x = y.

To reach the canonical form, we first perform the flattening and merging of
the lists of equations of G and we introduce new recursion equations with fresh
variables for every subterm of G. We obtain in this way a ρg-term in flat form,
where the notion of flat form is similar to the one defined for term-graphs. The
canonical form can then be obtained from the flat form by removing the useless
equations, by means of the two substitution rules and the garbage collection
rule of the ρg-Calculus. We point out that the canonical form of a ρg-term is
unique, and a ρg-term in canonical form corresponds to a term-graph in flat form.
Before proving the correspondence of rewritings, we need a lemma showing that
matching in the ρg-Calculus is well-behaved w.r.t. the notion of homomorphism.

Lemma 3 (Matching). Let G be a closed term-graph and let (L, R) be a
rewrite rule, with Var(L) = {x1, . . . , xm}, such that L is homomorphic to G
using the variable renaming σ = {x1/x′

1, . . . , xm/x′
m}.

124 C. Bertolissi

add

����
��

��

s

��
y1 y2

−→ s

��
add

�� ���
��

�

y1 y2

(a) rewrite rule: L → R

s

��
add

��

��

s

��
0

−→ s

��
s

��
add

�� ��
0

(b) rewrite step: G → G′

Fig. 4. Example of rewriting

Let E = (x1 = x′
1, . . . , xn = x′

n, EG) with {x1, . . . , xn} = FV(L). Then in
the ρg-Calculus we have L � G 	→→ρg E and L [E] is homomorphic to G.

This result guarantees the fact that if there exists an homomorphism, i.e. a
variable renaming, between two term-graphs, in the ρg-Calculus we obtain the
variable renaming (in the form of a list of recursion equations) as result of the
evaluation of the matching problem generated from the two graphs. In other
words, this means that if a rewrite rule can be applied to a term-graph, the
application is still possible when passing to the ρg-Calculus side.

Example 3 (Matching).
Consider the two term-graphs L = {x1 | x1 = add(x2, y1), x2 = s(y2)} and

G = {z0 | z0 = add(z1, z2), z1 = s(z2), z2 = 0} (see Figure 4). Then the
substitution σ = {x1/z0, x2/z1, y1/z2, y2/z2} is an homomorphism from L to
G. We show how the substitution can be obtained in the ρg-Calculus starting
from the matching problem L � G. We use the notation 	→→r,s to express two
steps 	→r 	→s, where r and s are two ρg-rules.

L � G 	→p L � z0, EG

	→→es,gc add(s(y2), y1) � z0, EG

= add(s(y2), y1) � z0, z0 = add(z1, z2), z1 = s(z2), z2 = 0
	→ac add(s(y2), y1) � add(z1, z2), z0 = add(z1, z2), z1 = s(z2), z2 = 0
	→dk s(y2) � z1, y1 � z2, z0 = add(z1, z2), z1 = s(z2), z2 = 0
	→→ac,dk y2 � z2, y1 � z2, z0 = add(z1, z2), z1 = s(z2), z2 = 0
	→→s y2 = z2, y1 = z2, EG

We can verify then that L [y2 = z2, y1 = z2, EG] is homomorphic to G. In
fact, the transformation into the canonical form leads to the graph x1 [x1 =
add(x2, z2), x2 = s(z2), z2 = 0] and it is easy to see that the substitution τ =
{x1/z0, x2/z1} makes this graph homomorphic to G.

We next prove that any term-graph rewrite step can be simulated in the
ρg-Calculus. Since in the ρg-Calculus the rule application is at the object-level,
we need to define a ρg-term encoding the position of the redex in the given
term-graph.

Definition 6 (Position trace graph). Let p = f i p′ be a path in a graph G
and x0, . . . , xj , . . . be a set of fresh dinstinct variables. The position trace graph
Pp(G) is recursively defined as Pε(G)=x0 and Pp(G)=f(x1, . . . , Pp′(G), . . . , xn)

The Graph Rewriting Calculus: Confluence and Expressiveness 125

where f is of arity n and has Pp′(G) as i-th argument. We assume that every
variable xj is used only once in the construction of Pp(G).

The position trace graph is then used to build a ρg-term H that pushes the
rewrite rule down to the correct application position, according to the given
term-graph rewrite step.

Lemma 4 (Simulation). Given a term-graph G and a rewrite rule (L, R) such
that G�σ(z)=t�p

→ G�σ(ER)�p
= G′. Let H

�= y � (Pp(G)�x�p
� Pp(G)�y x�p

),

then in the ρg-Calculus we have the reduction (H (L � R) G) 	→→ρg G′′ with G′′
homomorphic to G′.

The final ρg-term we obtain is not exactly the same as the term-graph result-
ing from the ρg-reduction in the TGR, and this is due to some unsharing steps
that may occur in the reduction. In general, we have an homomorphism between
the two graphs and this corresponds to the fact that, in presence of cycles, the
ρg-term is possibly more “unraveled” than the term-graph G′.

Example 4 (Addition). Let (L, R), where L = {x1 | x1 = add(x2, y1), x2 =
s(y2)} and R = {x1 | x1 = s(x2), x2 = add(y1, y2)}, be a rewrite rule describing
the addition of natural numbers. We apply this rule to the term-graph G =
{z | z = s(z0), z0 = add(z1, z2), z1 = s(z2), z2 = 0} using the variable renaming
σ = {x1/z0, x2/z1, y1/z2, y2/z2}. We obtain G′ = {z | z = s(z0), z0 = s(z′1), z

′
1 =

add(z2, z2), z2 = 0}. For a graphical representation see Fig. 4.
The corresponding reduction in the ρg-Calculus is as follows. First of all,

since the rule is not applied at the head position of G, we need to define the
ρg-term H = y � s(x) � s(y x) that pushes down the rewrite rule to the right
application position, i.e. under the symbol s. We obtain the reduction

(y � s(x) � s(y x)) (L � R) G
	→→ρg s(x) � s((L � R) x) G

	→ρ s((L � R) x) [s(x) � G]
	→p s((L � R) x) [s(x) � z, EG]
	→→ρg s((L � R) z0) [EG]
	→ρ s(R [L � z0]) [EG]
	→→ρg s(R [y1 = z2, y2 = z2]) [EG]
= s(x1 [x1 = s(x2), x2 = add(y1, y2)] [y1 = z2, y2 = z2]) [EG]
	→→ρg s(x1 [x1 = s(x2), x2 = add(z1, z2)]) [EG] = G′′

The canonical form of G′′ is then obtained by removing the useless recursion
equations in EG and merging the lists of constraints. We get G′′ = x [x =
s(x1), x1 = s(x2), x2 = add(z1, z2), z0 = 0]. The graph G′′ is homomorphic (in
this case even equal up to variable renaming) to the term-graph G′.

5 Conclusions

The ρg-Calculus is an extension of the ρ-calculus that allows one to represent
and compute over regular infinite entities. It represents a common framework

126 C. Bertolissi

where higher-order capabilities, graphical structures and matching are primi-
tive features, leading to a quite expressive calculus. The ρg-Calculus terms are
grouped into equivalence classes defined according to the theory specified for
the constraint conjunction operator, which in general is the associative, com-
mutative, idempotent theory with neutral element ε. If we restrict to a linear
ρg-Calculus, since all constraints are linear and this property is obviously pre-
served by reduction, we do not need to work modulo the idempotency axiom.
We have shown here that, choosing this underlying theory for the conjunction
operator for constraints, the linear ρg-Calculus enjoys the confluence property
on equivalence classes of terms.

In [7] the ρg-Calculus has been shown to be an expressive formalism able
to simulate both the standard ρ-calculus and the cyclic λ-calculus. We have
shown in this paper that also term-graph rewrite systems can be encoded in the
ρg-Calculus. More precisely we have shown that for every rewriting step in a
TGR we can build a ρg-term which simulates such rewriting as a sequence of
reductions in the ρg-Calculus. We have not investigated here the conservativ-
ity issue, but we believe that a positive result can be obtained exploiting the
confluence property of the ρg-Calculus. The main difference between the two
systems lies in the fact that rewrite rules and their control (application position)
are defined at the object-level of the ρg-Calculus while in the TGR the reduc-
tion strategy is left implicit. The possibility of controlling the application of
rewrite rules is particularly useful when the rewrite system is not terminating.
It would be certainly interesting to define in the ρg-Calculus iteration strate-
gies and strategies for the generic traversal of terms in order to simulate TGR
rewritings guided by a given reduction strategy. A similar work has already been
done for representing first-order term rewriting reductions in a typed version of
the ρ-calculus [10]. Intuitively, the ρ-term encoding a first-order rewrite systems
is a ρ-structure consisting of the corresponding term rewrite rules wrapped in
an iterator that allows for the repetitive application of the rules. We conjecture
that this approach can be adapted and generalized for handling term-graphs and
simulate term-graphs reductions.

References

1. Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamenta
Informaticae, 26(3-4):207–240, 1996.

2. Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Information
and Computation, 139(2):154–233, 1997.

3. H. P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in
Logic and the Foundation of Mathematics. Elsevier. 1984. Second edition.

4. H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In Proc. of PARLE’87,
vol. 259 of LNCS, pp. 141–158, Eindhoven, 1987. Springer-Verlag.

5. G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Pattern Type Systems.
In Proc. of POPL’03, pp. 250–261. ACM Press, 2003.

6. C. Bertolissi. The graph rewriting calculus: proof of confluence and simulation of
TGRs. Technical report, INRIA-LORIA, 2005.

The Graph Rewriting Calculus: Confluence and Expressiveness 127

7. C. Bertolissi, P. Baldan, H. Cirstea, and C. Kirchner. A rewriting calculus for cyclic
higher-order term graphs. In Proc. of TERMGRAPH’04, vol. 127(5) of ENTCS,
pp. 21–41, 2005.

8. H. Cirstea, G. Faure, and C. Kirchner. A ρ-calculus of explicit constraint applica-
tion. In Proc. of WRLA’04, vol. 117 of ENTCS, pp. 51–67, 2004.

9. H. Cirstea and C. Kirchner. The rewriting calculus — Part I and II. Logic Journal
of the Interest Group in Pure and Applied Logics, 9(3):427–498, 2001.

10. H. Cirstea, L. Liquori, and B. Wack. Rewriting calculus with fixpoints: Untyped
and first-order systems. In Proc. of TYPES’03, vol. 3085 of LNCS, pp. 147–171,
2003.

11. A. Corradini. Term rewriting in CTΣ . In Proc. of TAPSOFT’93, vol. 668 of LNCS,
pp. 468–484, 1993.

12. N. Dershowitz. Termination of rewriting. Journal Symbolic Computation, 3(1-
2):69–116, 1987.

13. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. In Proc. of POPL’84, pp. 83–92. ACM Press, 1984.

14. J. W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, 1980.
15. L. Liquori and B. Serpette. iRho: an Imperative Rewriting Calculus. In Proc. of

PPDP’04, pp. 167–178. ACM Press, 2004.
16. E. Ohlebusch. Church-Rosser theorems for abstract reduction modulo an equiva-

lence relation. In Proc. of RTA’98, vol. 1379 of LNCS, pp. 17–31. Springer, 1998.
17. G. Peterson and M. E. Stickel. Complete sets of reductions for some equational

theories. J. ACM, 28:233–264, 1981.
18. M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, eds. Term graph

rewriting: theory and practice. Wiley, London, 1993.
19. B. Wack. Klop counter example in the ρ-calculus. Draft notes, LORIA, Nancy,

2003.

Safe Object Composition in the Presence of Subtyping�

Lorenzo Bettini1, Viviana Bono2, and Silvia Likavec2

1 Dipartimento di Sistemi ed Informatica, Università di Firenze, Viale Morgagni 65,
50134 Firenze, Italy

bettini@dsi.unifi.it
2 Dipartimento di Informatica, Università di Torino, C.so Svizzera 185,

10149 Torino, Italy
{bono, likavec}@di.unito.it

Abstract. Object composition arises as a natural operation to combine objects in
an object-based setting. In our incomplete objects setting it has a strong meaning,
as it may combine objects with different internal states. In this paper we study
how to make object composition safe in the presence of width subtyping, we
propose two solutions, and discuss the alternative ones.

1 Introduction

Object composition is often advocated as an alternative to class inheritance, in that it is
defined at run-time and enables dynamic object code reuse by assembling the existing
components: “Ideally, you shouldn’t have to create new components to achieve reuse.
You should be able to get all the functionality you need just by assembling existing
components through object composition.” [9].

This paper is about combining safely object composition and width subtyping on
objects, as their co-existence introduces run-time conflicts between methods that might
have been hidden by subsumption, in situations where statically there would be no
conflict. Suppose we have two objects O1 and O2 that we want to compose. Object O1

has a method m1 that calls a method m, which might be hidden by subsumption (i.e.,
its name does not appear in the type of the object O1). Object O2 has a method m2

that calls a method m, also possibly hidden by subsumption. (Notice that it is enough
if the method m is hidden in at least one of the objects.) When these two objects are
composed, there is no explicit name clash at the type level, but methods m1 and m2

both call a method with the same name m and it is necessary: (i) to ensure that, after
object composition, methods m1 and m2 continue calling the method m they were calling
originally, before the composition; (ii) to guarantee that if one of the m’s is not hidden,
we expose the reference to the right one in the resulting object’s “public interface”. Note
that if both m’s were hidden by subsumption, none of them would be available to the
external users anymore, and if none were hidden there would be a true conflict, ruled
out statically.

This situation is an instance of the “width subtyping versus method addition” prob-
lem (well known in the object-based setting, see for instance [8]). This kind of name
clash (named dynamic name clash, as opposed to the above mentioned true conflict)

� This work has been partially supported by MIUR project EOS.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 128–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Safe Object Composition in the Presence of Subtyping 129

should not be considered an error, but we must make sure that we solve all ambiguities,
in such a way that accidental overrides do not occur.

We tackle this problem in Bono et al.’s calculus of classes and objects [4] setting,
enriched with abstract classes (i.e., classes that can declare some methods without pro-
viding their implementation) and incomplete objects. In our calculus, abstract classes
can be seen as incomplete classes, and their instances are incomplete objects that can
be completed in an object-based fashion (by providing the bodies for the abstract meth-
ods). On the one hand, since our primary goal is to model object composition in the
presence of subtyping (on complete objects only), we decided not to model any form of
class-based inheritance, this being an orthogonal issue. On the other hand, we decided
to work on a hybrid calculus, instead of on a pure object-based calculus, because: (i)
abstract classes give rise to a natural notion of incomplete objects; (ii) this is a study we
would like to incorporate in the work presented in [1,2], where we introduced a hybrid
mixin-based calculus, with the aim to integrate flexible inheritance mechanisms both at
the level of classes and of objects. The present calculus is simpler than the mixin-based
one, but the conflict composition-subtyping we introduce and solve is the same as in
the mixin-based one.

Incomplete objects can be completed in an object-based fashion via method addi-
tion and/or object composition (that composes an incomplete object with a complete
one), thus providing a form of object-based inheritance. Our form of method addition
does not introduce any problems with respect to subtyping, as we can add one by one
only those methods that are required explicitly by the incomplete object, that is, we
have total type information about the methods to be added (coming directly from the
corresponding well-typed classes) before the actual addition takes place (see Sections
4 and 5). The conflict arises, instead, with object composition where the complete ob-
ject may have more methods than the ones required by the incomplete object, and these
methods may clash with some of the methods defined in the incomplete object. Notice
that this problem is exactly the same as the one introduced by the general object compo-
sition example described above. Our approach to solving this problem is based on the
idea of preserving the object generator together within each object. In order to avoid
undesired interactions between methods while allowing the expected rebinding, every
object carries the list of its methods and the list of the methods that it is still expecting.

One of the possible approaches to solving the problem seemed to be exploiting the
dictionaries of Riecke and Stone [11]. Unfortunately, their mapping “internal label-
external label” does not solve completely the ambiguities introduced by object compo-
sition in the presence of subtyping described above. In particular, there is still an am-
biguity when only one of the m’s is hidden by subsumption. It has to be said, however,
that the original dictionaries setting is stateless, therefore method composition can be
simulated by successive method additions, and dictionaries would be sufficient to model
object composition. In our setting, instead, all objects (complete and incomplete) have a
state (i.e., an initialized field), and object composition cannot be linearized via any form
of repeated method additions. On a side note which will be useful later, we would like
to recall that the calculus of [11] is “late-binding”, i.e., the host object is substituted to
self (in order to solve the self autoreferences) at method-invocation time, whereas our
calculus is “early-binding”, i.e., the host object is bound to self at object-creation time.

130 L. Bettini, V. Bono, and S. Likavec

Table 1. Syntax of the core calculus: expressions and values

e : : = const | x | λx.e | e1 e2 | fix
| ref | ! | := | {xi = ei}i∈I | e.x | H h.e
| class

method m j = vmj ;
(j∈M)

abstract mi; (i∈A)

constructor vc

end
| classval〈Genc,M,A〉| new e
| obj〈vg,M,A〉
| obj〈vg,M,{mi = vmi}i∈M〉
| e1 ←+ mi = e2| e1 ←+ e2

v : : = const | x | λx.e | fix | ref| !
| := | := v | {xi = vi}i∈I

| classval〈Genc,M,A〉
| obj〈vg,M,A〉
| obj〈vg,M,{mi = vmi}i∈M〉

To the best of our knowledge, it is not possible to remove all the ambiguities without
either carrying along the additional information on the methods hidden by subsumption,
or restricting the width subtyping. We discarded immediately the solution of re-labelling
method names at object composition time, as this is untidy from a semantical point
of view and impractical from an implementation one. (By re-labelling we mean the
actual physical renaming of method names, and therefore all method invocations within
method bodies.)

In this version of the calculus, we decided to allow width subtyping only on com-
plete objects, and we present two solutions for the object composition problem. The
first one is an “early-binding” version of the dictionaries approach, where the notion of
“privacy-via-subsumption” of [11] is completely implemented (see Sections 4 and 5).
The second one solves the conflict “method composition versus width subtyping” by
relaxing the above mentioned notion (see Section 6). We argue that the first solution
is more elegant formally, while the second solution is less restrictive from the point of
view of the typing, and it might give better performances if implemented. In Section 7
we hint to other possible solutions of the conflict “method composition versus width
subtyping”.

2 Syntax

Starting from the imperative calculus of classes and objects of [4], we add the constructs
to work with incomplete objects. The lambda-calculus related forms in Table 1 are
standard. We describe below the other forms:

– ref, !, := are operators1 for defining a reference to a value, for dereferencing a
reference and for assigning a new value to a reference, respectively.

– {xi = ei}i∈I is a record and e.x is the record selection operation.
– h is a set of pairs h :: = {〈x,v〉∗}, where x is a variable and v is a value (first com-

ponents of the pairs are all distinct). The set of pairs h is the store, or heap, found
in the expression form Hh.e, where it is used for evaluating imperative side effects.

1 Introducing ref, !, := as operators rather than standard forms such as refe, !e, :=e1e2, simpli-
fies the definition of evaluation contexts and proofs of properties. As noted in [12], this is just
a syntactic convenience, as it is the curried version of :=.

Safe Object Composition in the Presence of Subtyping 131

In the expression H〈x1,v1〉 . . .〈xn,vn〉.e, H binds variables x1, . . .xn in v1, . . . ,vn and
in e.

– class
method m j = vm j ;

(j∈M)

abstract mi; (i∈A)

constructor vc

end
is a class written directly by the programmer. It contains two sorts of method dec-
larations: methods m j are the methods implemented in the class and methods mi

are the names of abstract methods introduced by the class. Each method body vm j

is a function of a private field, field , and of self , which will be bound to the newly
created object at instantiation time. Notice that the field does not appear explicitly
in the syntax, as we model it as a lambda-abstracted variable in method bodies. For
the sake of simplicity, we consider only one (private) field for each class, but this
is not a restriction, as the field could be a tuple. Also, the calculus does not enforce
the field to be available to all the methods of the class, but this is easily obtained by
declaring it to be of type ref. If so, the field behaves like a proper instance variable
(it is non-accessible, not only non-visible). To understand fully how, we refer the
reader to [12]. The constructor value vc is a function of one argument that returns
the initialization value f for the private field (see Section 4 for its usage).

– classval〈Genc,M,A〉 is a class value, the result of evaluating a class expression. The
function Genc is the generator used to generate its instances, the set M contains the
indices of the methods defined in the class, and the set A contains the indices of the
class’ abstract methods. In our calculus method names are of the shape mi, where i
ranges over an index set. They are univocally identified by the index, i.e., mi = m j

if and only if i = j. Therefore, method names are identified with their indices.
– new e creates a function that returns a new incomplete object.
– obj〈vg,M,A〉 is an incomplete object, where vg is a generator function, M contains

the indices of the methods defined in the class, and the set A contains the indices of
the class’s abstract methods. If the set A is empty the incomplete object becomes a
complete object.

– obj〈vg,M,{mi = vmi}i∈M〉 is a fully-fledged object that is obtained by completing
an incomplete object or by reducing an object obtained via instantiation of a class
that does not contain abstract methods. Its first component is a generator function
(kept also for complete objects, since they can be used to complete the incomplete
ones), the second component M contains the indices of the methods of the object,
and the third component is the record of invocable methods.

– e1 ←+ mi = e2 is the method addition operation: it adds the definition of method
mi with body e2 to the (incomplete) object to which e1 evaluates. It associates to
the left.

– e1 ←+ e2 is the object composition operation: it composes the (incomplete) object
to which e1 evaluates with the complete object to which e2 evaluates. It associates
to the right.

Class values and object forms are not intended to be written directly, but are used to
define the semantics of programs.

132 L. Bettini, V. Bono, and S. Likavec

3 Examples

In this section, we provide some examples to show how incomplete objects, and object
completion via method addition and object composition, can be used to design complex
systems.

For readability, we will use here a slightly simplified syntax with respect to the cal-
culus presented in Section 2: (i) the method parameters are listed in between “()”; (ii)
e1;e2 is interpreted as let x = e1 in e2, x �∈ FV (e2), coherently with a call-by-value se-
mantics; (iii) references are not made explicit, thus let x = e in x.m() should be intended
as let x = refe in (!x).m(); (iv) method bodies are only sketched. Finally, x ←+ e should
be intended as x:=(x ←+ e).

In the first example, we present a scenario where it is useful to add some function-
alities to existing objects. Let us consider the development of an application that uses
widgets such as graphical buttons, menus, and keyboard shortcuts. These widgets are
usually associated to an event listener (e.g., a callback function), that is invoked when
the user sends an event to that specific widget (e.g., one clicks the button with the mouse
or chooses a menu item).

The design pattern command [9] is useful for implementing these scenarios, since
it allows parameterization of widgets over the event handlers, and the same event han-
dler can be reused for similar widgets (e.g., the handler for the event “save file” can
be associated with a button, a menu item, or a keyboard shortcut). However, in such
a context, it is convenient to simply add a function without creating a new class just
for this aim. Indeed, the above mentioned pattern seems to provide a solution in pure
class-based languages that normally do not supply the object method addition
operation.

Within our approach, this problem can be solved with the language constructs for
method addition and completion (in order to provide further functionalities needed by
the prototype). For instance, we could implement the solution as in Table 2. The in-
complete object button expects a method onClick that is internally called when the
user clicks on the button (e.g., by the window where it is inserted, in our example
the dialog mydialog). The incomplete object is then completed with the event listener
ClickHandler (by using method addition). This listener is a function that has the pa-
rameter doc already bound to the application main document. At this point the object
is completed and we can call methods on it. Notice that the added method can rely on
methods of the host object (e.g., setEnabled). The same listener can be installed (by
using method addition again) to other incomplete objects, e.g., the menu item "Save"
and the keyboard shortcut for saving functionalities. Moreover, since we are able to
act directly on instances here, our proposal enables customization of objects at run-
time.

Another way to implement the same functionalities is via object composition. For
instance, if saving the document requires further and complex operations, instead of
including all of these in a method, it can be more convenient to include them in an object
(with other methods than the one requested by the incomplete object). In particular, the
incomplete object only requires the method onClick: the object used for completion
can have more methods (hidden by subsumption). Moreover, the additional methods
will be hidden in order to avoid name clashes.

Safe Object Composition in the Presence of Subtyping 133

Table 2. Widgets and event handler

let Button =
class
method display = . . .
method setEnabled = . . .
abstract onClick;
. . .

end in

let MenuItem =
class
method show = . . .
method setEnabled = . . .
abstract onClick;
. . .

end in

let ShortCut =
class
method setEnabled = . . .
abstract onClick;
. . .

end in

let ClickHandler =
(λ doc. λ self doc.save() . . . self .setEnabled(false)) mydoc
in
let button = new Button("Save") in
let item = new MenuItem("Save") in
let short = new ShortCut("Ctrl+S") in
button ←+ (OnClick = ClickHandler);
button.display();
button.setEnabled(true);
mydialog.addButton(button); // now it is complete
item ←+ (OnClick = ClickHandler);
item.setEnabled(true);
mymenu.addItem(item);
short ←+ (OnClick = ClickHandler);
short.setEnabled(true);
system.addShortCut(short);

For instance, we can define the class:

let SaveDocument =
class
method onClick = λdoc.λ self
method format = λdoc.λ self
method save = λdoc.λ self
method compress = λdoc.λ self
method display = λdoc.λ self
constructor λdoc.ref doc

end in

If we instantiate this class we obtain a complete object (since there are no abstract meth-
ods), that can be used to complete the incomplete objects in Table 2. In particular, the
method display in the complete object type will be hidden by subsumption, therefore
it will not interfere with the method display of the class Button (indeed, they perform
different operations). Notice that the constructor of SaveDocument returns a reference
to the passed document instance; this is the private field that all the methods in the class
can use.

4 Operational Semantics

Our approach is the one of giving the calculus a semantics as close as possible to an
implementation. This has the advantage of minimizing the gap between the formal se-

134 L. Bettini, V. Bono, and S. Likavec

Table 3. Reduction rules for standard expressions and heap expressions

const v → δ (const,v) (δ) refv → H〈x,v〉.x (ref)
if δ (const,v) is defined H〈x,v〉h.R[!x] → H〈x,v〉h.R[v] (deref)

(λx.e) v → [v/x] e (βv) H〈x,v〉h.R[:=xv′] → H〈x,v′〉h.R[v′] (assign)
fix (λx.e) → [fix(λx.e)/x]e (fix) R[H h.e] → H h.R[e], R �= [] (lift)

{. . . ,x = v, . . .}.x → v (select) H h.H h′.e → H h h′.e (merge)

Table 4. Reduction contexts

R : : = [] | R e | v R | R.x | new R | R 	 e | v 	 R| R ←+ m = e | R ←+ e | v ←+ m = R | v ←+ R
| {m1 = vm1 , . . . ,mi−1 = vmi−1 ,mi = R,mi+1 = emi+1 , . . . ,mn = emn}1≤i≤n

mantics and the actual implementation, thus reducing the risk of introducing errors
caused by implementation issues. In fact, with this semantics, a direct implementation
of our calculus in a functional programming language is quite straightforward (we are
working on the implementation in OCaml).

The formal operational semantics is a set of rewriting rules including some standard
rules for a lambda calculus with store, and some rules that evaluate the object-oriented
related forms to records and functions, according to the object-as-record approach and
Cook’s class-as-generator-of-object principle. This operational semantics can be seen
as something close to a denotational description for objects and classes, and this “iden-
tification” of implementation and semantical denotation is, in our opinion, a good by-
product of our approach. The semantics is also intuitive since it is based on functions
and records.

The operational semantics extends the one of the core calculus of classes and objects
[4], therefore exploits the Reference ML of Wright and Felleisen [12] treatment of side-
effects. To abstract from a precise set of constants, we only assume the existence of a
partial function δ : Const × ClosedVal ⇀ ClosedVal that interprets the application of
functional constants to closed values and yields closed values.

In Table 3, R’s are reduction contexts [5,6,10] and their definition can be found in
Table 4. Reduction contexts are necessary to provide a minimal relative linear order
among the creation, dereferencing and updating of heap locations, since side effects
need to be evaluated in a deterministic order. We assume the reader is familiar with the
treatment of imperative side-effects via reduction contexts and we refer to [3,12] for a
description of the related rules.

The meaning of the class related rules in Table 5 is as follows. The rule (class)
turns a class expression into a class value (notice that objects are created by instantiat-
ing class values). Given the parameter x for the constructor vc of the class expression,
the class generator returns a (partial) object generator that passes to the private field of
the method bodies vm j the value f (returned by the constructor vc). Recall that method
bodies take parameters field and self . The record returned by the object generator has
“dummy” method bodies for abstract methods, in such a way the generator is thus
a function from self to self . Also, for all the methods in all generator functions, the
method bodies are wrapped inside λy. · · ·y to delay evaluation in our call-by-value cal-
culus. The above generator is called “partial” since it returns an object that contains

Safe Object Composition in the Presence of Subtyping 135

Table 5. Reduction rules for class related forms

class
method m j = vmj ;

(j∈M)

abstract mi; (i∈A)

constructor vc

end

→ classval〈Genc,M,A〉 (class)

where

Genc
�
= λx.let f = vc(x) in λ self .

{
m j = λy.vmj f self y (j∈M)

mi = λy. self .mi y (i∈A)

}

new classval〈Genc,M,A〉 → λw.obj〈(Genc w),M,A〉 (new class)

Table 6. Reduction rules for object manipulation

obj〈vg,M,{. . . ,mi = vmi , . . .}〉.mi → vmi (obj sel)

obj〈vg,M,A〉 ←+ (ml = vml) →

let incgen = λ self .

⎧
⎨

⎩

m j = λy. (vg self).m j y (j∈M)

ml = λy. vml self y
mi = λy. self .mi y (i∈A−{l})

⎫
⎬

⎭ in

obj〈incgen,M∪{l},A−{l}〉 where l ∈ A

(meth add)

obj〈vg,M,A〉 ←+ obj〈v′
g,P,{mi = vmi}i∈P〉 →

let incgen = let gen1 = λ s1.λ s2.

{
ml = λy. (v′

g s2).ml y (l∈P−A)

mr = λy. s1.mr y (r∈P∩A)

}
in

λ self .

{
m j = λy. (vg self).m j y (j∈M)

mi = λy. (v′
g fix(gen1 self)).mi y (i∈A)

}
in

obj〈incgen,M∪A,fix(incgen)〉

(obj comp)

obj〈vg,M, /0〉 → obj〈vg,M,fix(vg)〉 (completed)

abstract methods that cannot be invoked (present as “dummy” methods). The actual im-
plementation of these methods can be provided by (meth add), and/or (obj comp) given
in Table 6.

The rule (new class) creates incomplete objects from class values. First, it applies
the class generator Genc to an argument w, thus initializing the private field in the
methods defined in the class and providing access to the object generator, that is a
function from self to a record of methods. The application of the fixpoint operator
to the object generator will create a recursive record of invokable methods (when the
object is complete, see rule (completed) in Table 6).

The rules in Table 6 are the basic rules for manipulating objects. The rule (obj sel)
performs method invocation on a complete object. The rules used on incomplete objects
enable completing them with the method definitions they need. The rule (meth add)
adds to an incomplete object a method ml not yet present in the object (but required).
The newly created generator function incgen (incremental generator) maps self to a
record of methods, where concrete method definitions are taken from the object gen-

136 L. Bettini, V. Bono, and S. Likavec

erator vg, the abstract methods (excluding ml) remain “dummy”, and the method ml is
added. The incgen function is part of the reduct because it must be carried along in the
evaluation process, in order to enable future method additions and/or object composi-
tions. The only requirement for ml is that the body vml must be a function of self .

The rule (obj comp) combines two objects in such a way that the object o2 (which
must be already complete) completes the incomplete object o1 and makes it fully func-
tional. After completion, it will be possible to invoke all the methods that were in the
interface of the incomplete object, i.e., those in M∪A. The record of methods in incgen
is built by taking the concrete methods from the incomplete object o1 and by taking
the concrete version of the abstract methods from the complete object o2. During this
operation we must make sure that:

(i) methods from the complete object o2 that are requested by the incomplete object
o1 get their self rebound to the new resulting composed object (this is the reason
why we need to keep the generator also for complete object values).

(ii) methods of o2 that are not requested by o1 (we call these methods additional) are
not subject to accidental overrides.

The second point, in particular, is crucial in our context, where additional methods in
the complete object, “hidden” because of subsumption, may clash with methods already
present in the incomplete object (i.e., those in M). The above two goals are achieved
altogether using the generator component gen1 inside incgen. This generator compo-
nent builds a record where the additional methods (i.e., the ones belonging to P−A)
are correctly bound, once and for all, to their implementation in the complete object
(through s2 that will be propagated with the auto-binding of self via fixpoint). The other
methods (those requested by the incomplete object, i.e., belonging to P∩A) rely on the
rebound self , which, in turns, uses s1 as a “handle” to hook onto the complete object
method implementations. This gen1 is therefore exploited to supply to v′

g (the generator
of the complete object o2) the “self” record, obtained by passing the new self to gen1
and then applying the fixpoint. This realizes the main idea that the method bodies of the
complete object will use as implementations of the additional methods the ones from
the complete object and not possibly accidental homonyms from the incomplete object.

The rule (completed) transforms an incomplete object, for which all the missing
methods are provided, or which is created by instantiating the class without abstract
methods, into a corresponding complete one. Since at this stage the object is complete
(i.e., it does not contain any abstract methods) we can apply the fixpoint operator to
obtain the recursive record of methods invokable on that object. Notice that also in the
complete object value the generator is still present since it can be used in further object
compositions.

It might be tempting to argue that object composition is just syntactic sugar, i.e.,
it can be derived via an appropriate sequence of method additions, but this is not true.
In fact, when adding a method, the method does not have a state, while a complete
object used in an object composition has its own internal state (i.e., it has a private field,
properly initialized when the object was created via “new” from the class). Being able
to choose to complete an object via composition or via a sequence of method additions
(of the same methods appearing in the complete object used in the composition) gives
our calculus an extra bit of flexibility.

Safe Object Composition in the Presence of Subtyping 137

4.1 An Example of Reduction

Let us show how the object completion works through an example. Suppose we have
the following objects (for simplicity we leave out the parameter of the methods, the
private field, λy. . . .y, and dummy methods):

o1 = obj〈v1
g,M = {1},A = {2}〉

o2 = obj〈v2
g,M = {1,2},{m1 = λ self . (self .m1),m2 = λ self . (self .m1)}〉

o = o1 ←+ o2

where m1 in o2 is “hidden” (i.e., the type for o2 will not contain the type of the method
m1 because of subsumption, see Section 5 for types). The object o1 has m2 as abstract,
and it uses m2 inside m1 (with definition m1 = λ self . (self .m2), visible in v1

g below).
The program o loops infinitely, by first calling m1 of o1 (we recall that only methods
belonging to the incomplete object interface are made accessible once completion has
been performed). From rules (new class) and (class) we obtain the following generator
for o1 (we recall that m2 is abstract in o1):

v1
g = λ self .

{
m1 = (λ self . (self .m2)) self
m2 = self .m2

}

By applying rule (obj comp), o has the shape obj〈incgen,{1,2},fix(incgen)〉, where
incgen is as follows:

let incgen =
let gen1 = λ s1.λ s2.

{
m1 = (v2

g s2).m1
m2 = s1.m2

}
in λ self .

{
m1 = (v1

g self).m1

m2 = (v2
g fix(gen1 self)).m2

}

In the following we use the notation oi::m j to refer to the (fully qualified) implementa-
tion of m j in object (or incomplete object) oi. If we invoke m1 on o we want that o1::m1

is executed, then o2::m2, then o2::m1 (i.e., no accidental override take place), which will
then loop on itself. We make explicit the reduction steps performed upon the invocation
of the method m1 on object o. (we denote gen1fix(incgen) by gg):

o.m1 → fix(incgen).m1 → (v1
g fix(incgen)).m1 → (λ self . (self .m2))fix(incgen) o1::m1: OK

→ fix(incgen).m2 → (v2
g fix(gen1 fix(incgen))).m2 → (v2

g fix(gg)).m2 →
(λ self . (self .m1))fix(gg) o2::m2: OK
→ fix(gg).m1 → (v2

g fix(gg)).m1 → (λ self . (self .m1))fix(gg) o2::m1: OK
→ fix(gg).m1 → (v2

g fix(gg)).m1 → (λ self . (self .m1))fix(gg) o2::m1: OK
. . .

We can see that each time the right implementation of the method was invoked and
no accidental override took place, due to the usage of the additional generator gen1.

5 Type System

Besides functional, record, and reference types, our type system has class types and
object types (both for complete and incomplete objects):

τ : : = ι | τ1 → τ2 | τ ref | {mi : τmi}i∈I | class〈τ,ΣM,ΣA〉 | obj〈Σ〉 | obj〈ΣM,ΣA〉

138 L. Bettini, V. Bono, and S. Likavec

Table 7. Typing rules for expressions

typeof (const) = τ

Γ � const : τ
(const)

Γ ,x : τ � x : τ
(proj)

Γ ,x : τ � e : σ

Γ � λx.e : τ → σ
(λ)

Γ � e1 : τ → σ Γ � e2 : τ

Γ � e1 e2 : σ
(app)

Γ � fix : (σ → σ) → σ
(fix)

Γ � e : τ Γ � τ <:σ

Γ � e : σ
(sub)

Γ � ei : τi

Γ � {xi = ei}i∈I :{xi : τi}
(record)

Γ � e :{x : σ}

Γ � e.x : σ
(lookup)

Γ � ref : τ → τ ref
(ref)

Γ � ! : τ ref → τ
(!)

Γ � := : τ ref → τ → τ
(assign)

Γ ′ = Γ ,x1 : τ1 ref, . . . ,xn : τn ref Γ ′ � vi : τi Γ ′ � e : τ

Γ � H〈x1,v1〉 . . .〈xn,vn〉.e : τ
(heap)

where ι is a constant type, → is the functional type operator, τ ref is the type of locations
containing a value of type τ . Σ (possibly with a subscript) denotes a record type of the
form {mi : τmi}i∈I , I ⊆ N. If mi : τmi ∈ Σ we say that the label mi occurs in Σ (with type
τmi). Labels(Σ) denotes the set of all the labels occurring in Σ .

Typing environments are defined as Γ : : = ε | Γ ,x : τ | Γ , ι1 <: ι2 where x ∈ Var,
τ is a well-formed type, ι1, ι2 are constant types, and x, ι1 �∈ dom(Γ). Typing judgments
are the following: Γ � τ1 <:τ2 (τ1 is a subtype of τ2), Γ � e : τ (e has type τ).

Typing rules for lambda expressions, rules for expressions dealing with imperative
side-effects via stores and rules for typing records are given in Table 7. We do not need
any form of recursive types because we do not use a polymorphic MyType to type self
(see, for instance, [7]). This prevents typing binary methods, but it still allows to type
methods that modify self , which can be modelled as “void” methods.

Typing rules for class related forms are given in Table 8. In rule (T class val),
class〈γ,{m j : τm j} j∈M,{mi : τmi}i∈A〉 is the class type where γ is the type of the gener-
ator’s argument. The two record types represent types of defined methods and abstract
methods respectively. Thus, {mi : τmi}i∈M∪A is a record type representing the interface
of the objects instantiated from the class. Rules (T class val) and (T class) assign the
same type to their respective expressions, although deduced in a different way.

Table 9 shows the typing rules for manipulating objects. Incomplete objects are
typed with the record type of defined methods and the record type of abstract methods
(rule (T inc obj)). Notice that the type assigned to an incomplete object is similar to
the one of the class the object is the instance of, but it does not contain information
about the constructor. This is consistent with the fact that the constructor has already
been called when an incomplete object has been created. We recall now the “dummy”
methods introduced in Section 4, to justify their existence according to the typing rules:
when typing an incomplete object value, “dummy” methods allow us to assign the type
Σ → Σ to the generator vg (the generator being a function from self to self). In fact, we
recall that the body of “dummy” methods is a simple call to the homonym method on
self , so the type inferred for abstract methods is consistent with the types of “dummy”

Safe Object Composition in the Presence of Subtyping 139

Table 8. Typing rules for class related forms

For j ∈ M: Γ � vmj : η → {mi : τmi}i∈M∪A → τmj Γ � vc : γ → η

Γ �

class
method m j = vmj ;

(j∈M)

abstract mi; (i∈A)

constructor vc

end

: class〈γ,{m j : τmj } j∈M,{mi : τmi}i∈A〉

(T class)

(T class val) (T class inst)
Γ � Genc : γ → {mi : τmi}i∈M∪A → {mi : τmi}i∈M∪A

Γ � classval〈Genc,M,A〉 : class〈γ,{m j : τmj } j∈M,{mi : τmi}i∈A〉

Γ � e : class〈γ,ΣM,ΣA〉

Γ � new e : γ → obj〈ΣM,ΣA〉

Table 9. Typing rules for object-related forms

Γ � vg :{mi : τmi}i∈M∪A → {mi : τmi}i∈M∪A

Γ � obj〈vg,M,A〉 :obj〈{m j : τmj } j∈M,{mi : τmi}i∈A〉
(T inc obj)

Γ � {mi = vmi}i∈M :{mi : τmi}i∈M

Γ � vg :{mi : τmi}i∈M → {mi : τmi}i∈M

Γ � obj〈vg,M,{mi = vmi}i∈M〉 :obj〈{mi : τmi}i∈M〉
(T obj)

Γ � e :obj〈Σ〉 mi : τmi ∈ Σ

Γ � e.mi : τmi

(T sel)

Γ � e :obj〈ΣM,ΣA〉 ml : τml ∈ ΣA Γ � vml : Σ1 → τml Γ � (ΣM ∪ΣA)<:Σ1

Γ � e ←+ (ml = vml) :obj〈ΣM ∪{ml : τml },ΣA −{ml : τml }〉
(T meth add)

Γ � e1 :obj〈ΣM,ΣA〉 Γ � e2 :obj〈ΣP〉 Γ � ΣP <:ΣA Labels(ΣP)∩Labels(ΣM) = /0

Γ � e1 ←+ e2 :obj〈ΣM ∪ΣA〉
(T obj comp)

method bodies. Dummy methods appear only in the run-time semantics and are invisible
to the programmer, thus they cannot be invoked.

Rule (T obj) says that the type of a complete object is the record of its method
types. Notice that complete objects do not have a simple record type Σ , but an object
type obj〈Σ〉. This is useful for distinguishing standard complete objects, which can be
used for completing incomplete objects, from their internal auto-reference self , that has
type Σ (in particular, this is to avoid self-inflicted object completions, unsound in our
calculus). Note also that in the object expression, the first component vg is a function
from self to self (therefore typed with Σ → Σ), because it works on the third component
of the object, which is the record of object’s methods. The only operation allowed on
complete objects is method selection and it is typed as a record component selection
(rule (T sel)).

A method ml can be added to an incomplete object (rule (T meth add)), only if this
method is expected by the incomplete object (abstract method). Method addition in this

140 L. Bettini, V. Bono, and S. Likavec

Table 10. Subtyping for objects

Γ , ι1 <: ι2 � ι1 <: ι2

(<: proj)
Γ � τ <:τ

(<: refl)

Γ � τ1 <:τ2 Γ � τ2 <:τ3

Γ � τ1 <:τ3

(<: trans)
Γ � τ ′ <:τ Γ � σ <:σ ′

Γ � τ → σ <:τ ′ → σ ′
(<: arrow)

J ⊆ I

Γ � {mi : σi}i∈I <:{m j : σ j} j∈J
(<: record)

Γ � Σ <:Σ ′

Γ � obj〈Σ〉<:obj〈Σ ′〉
(<: cobj)

case presents a sort of symmetry: the added method completes the functionalities of
some already present methods, and may invoke some of them as well. Therefore, ml’s
self type Σ1 imposes some constraints on the type of the incomplete object that ml is
supposed to complete. Hence, the incomplete object must provide all the methods listed
in Σ1, on which the added method is parameterized. Σ1 is inferred from ml’s body.

In the rule (T obj comp), ΣP contains the type signatures of all the methods sup-
ported by the complete object (which may have more methods than those that are
abstract in the incomplete object). The condition ΣP <:ΣA ensures that the complete
object contains at least all the methods needed to complete the incomplete object, and
Labels(ΣP)∩Labels(ΣM) = /0 guarantees statically that there is no explicit name clash,
i.e., there is no true conflict, as described in the Introduction. The type system does
not rule out hidden conflicts introduced by subsumption, as these are not considered
errors as long as they are taken care of dynamically, which is the goal of our run-time
semantics. The resulting complete object contains the signatures of all the methods of
the incomplete object.

The subtyping relation for record and object types is given in Table 10. For uni-
formity with respect to object types, we define only width subtyping on record types
as well. However, modifying the subtyping rules in order to allow depth subtyping on
record types only would be just a technicality and an orthogonal issue with respect to
the subject of the paper, therefore we leave this modification out for the sake of clarity.

6 A More Flexible Solution

In the solution presented so far, the interface of an object resulting from an object com-
position is dictated by the incomplete object only, in the sense that, in the resulting
composed object, only the methods of the incomplete object are invocable by an ex-
ternal user. Such a restriction on object composition was not present in the previous
versions of the incomplete objects [1,2] and it is not necessary to solve the problems
of dynamic name clashes, although it actually simplifies its treatment, and it allows to
implement an “early-binding” version of the “privacy-via-subsumption” notion of [11].

In this section, we present an alternative solution that removes this restriction and
is thus more flexible (in the sense that the interface of the composed object will contain
more methods). From the point of view of typing, all we have to do is to change the
typing rule for object composition in order to include all these object methods, see rule
(T obj comp) in Table 11 (which mirrors the original rule of [2]). Now, the semantic

Safe Object Composition in the Presence of Subtyping 141

Table 11. The typing and reduction rule to change

Γ � e1 :obj〈ΣM,ΣA〉 Γ � e2 :obj〈ΣP〉 Γ � ΣP <:ΣA Labels(ΣP)∩Labels(ΣM) = /0

Γ � e1 ←+ e2 :obj〈ΣM ∪ΣP〉
(T obj comp)

obj〈vg,M,A〉 ←+ obj〈v′
g,P,{mi = vmi}i∈P〉 →

let incgen =

let gen1 = λ s1.λ s2.

{
ml = λy. (v′

g s2).ml y (l∈P∩M)

mr = λy. s1.mr y (r∈P−M)

}
in

λ self .

{
m j = λy. (vg self).m j y (j∈M)

mi = λy. (v′
g fix(gen1 self)).mi y (i∈P−M)

}
in

obj〈incgen,M∪A,fix(incgen)〉

(obj comp)

rule for object composition must be changed, since we do not hide all the additional
methods: those that do not clash with methods defined by the incomplete object must
be visible in the resulting object (while those that clash are obviously hidden). All we
have to do is to modify slightly the rule (obj comp), obtaining the one given in Table 11.
Notice that all of the above is enough to obtain a fully-fledged second solution.

7 Conclusions

In this paper we presented two possible solutions to solve the “method composition
versus width subtyping” conflict. We remark that the high-level ideas underpinning our
solutions are general. In particular, the idea of having self basically “split” into two
parts when composing two objects, one taking care of the statically bound methods,
the other one dealing with the dynamically bound ones, can be applied within any set-
ting presenting the same problem. We would also like to stress the flexibility of our
approach, i.e., giving the incomplete object-calculus an ML-like based operational se-
mantics: working directly with class-as-generator-functions and objects-as-records (and
their respective types) allows us to alternate between one version of the calculus and
another with minimal changes, both in the typing rules and in the semantics. In partic-
ular, since the operational semantics is a set of rewriting rules into functions, we can
manipulate functions to achieve our goals, instead of using ad-hoc changes to the se-
mantics. Moreover, with respect to the dictionaries of [11] in the late-binding setting
(where the host object is substituted for self in order to solve the self autoreferences at
method-invocation time), our early-binding setting (where the host object is bound to
self at object-creation time) allows a corresponding solution that is more oriented to an
implementation and, in particular, would not suffer from overheads due to dictionary
management and lookups, as the original calculus does, as pointed out in [11] itself.
This is true also for the alternative solution.

The approach we chose here was to allow width subtyping on complete objects
only. It is possible to have width subtyping on incomplete objects as well, if hidden
method names are carried along: (i) in the type of the object; (ii) in the object itself.
Solution (i) would imply a more restrictive typing rule for object composition, to also
check the possible conflicts among non-hidden and hidden methods, and rule out such

142 L. Bettini, V. Bono, and S. Likavec

conflicts completely. We think, though, that such a solution is too restrictive, as we
think this kind of name clash is not an error. Hidden method name information in the
object (solution (ii)) would solve all possible ambiguities at run-time, but it would be
less standard, as the subsumption rule would act on the object expression, not only on
its type. Nevertheless, we think this solution has the advantage of being quite general,
even though it might be considered not elegant, and it will be presented as future work.

As a future work plan, we are also considering the integration of a form of object-
based override with a form of depth subtyping on object types, and we will study solu-
tions to deal with the conflicts arising. In particular, an incomplete object could redefine
a method that is provided through method addition or object composition. This opera-
tion is the concept of method redefinition/overriding of class-based inheritance adapted
to an object-based setting. This kind of method override will enhance dynamic com-
positionality and flexibility and will allow the programmer to implement rather easily
a chain of method invocation established at run-time (see, e.g., decorator and chain of
responsibilities patterns [9]). Furthermore, we will study a composition operation be-
tween two complete objects (e.g., no abstract methods).

Acknowledgements. The authors would like to thank the anonymous referees.

References
1. L. Bettini, V. Bono, and S. Likavec. A core calculus of mixin-based incomplete objects. In

Proc. FOOL 11, pages 29–41, 2004.
2. L. Bettini, V. Bono, and S. Likavec. Safe and Flexible Objects. In Proc. SAC ’05, OOPS

track, pages 1258–1263. ACM Press, 2005.
3. V. Bono, A. Patel, and V. Shmatikov. A core calculus of classes and mixins. In Proc. ECOOP

’99, pages 43–66. LNCS 1628, Springer-Verlag, 1999.
4. V. Bono, A. Patel, V. Shmatikov, and J. C. Mitchell. A core calculus of classes and objects.

In Proc. MFPS ’99, volume 220, 1999.
5. E. Crank and M. Felleisen. Parameter-passing and the lambda calculus. In Proc. POPL ’91,

pages 233–244, 1991.
6. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control

and state. Theoretical Computer Science, 103(2):235–271, 1992.
7. K. Fisher, F. Honsell, and J. C. Mitchell. A lambda-calculus of objects and method special-

ization. Nordic J. of Computing, 1(1):3–37, 1994.
8. K. Fisher and J. C. Mitchell. A delegation-based object calculus with subtyping. In Proc.

10th International Conference on Fundamentals of Computation Theory (FCT ’95), pages
42–61. LNCS 965, Springer-Verlag, 1995.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

10. I. Mason and C. Talcott. Programming, transforming, and proving with function abstractions
and memories. In Proc. ICALP ’89, pages 574–588. LNCS 372, Springer-Verlag, 1989.

11. J. G. Riecke and C. A. Stone. Privacy via subsumption. Information and Computation,
172(1):2–28, 2002. A preliminary version appeared in FOOL5.

12. A. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

Reachability Analysis in Boxed Ambients

Nadia Busi and Gianluigi Zavattaro

Department of Computer Science, University of Bologna,
Mura A.Zamboni 7, 40127 Bologna, Italy

{busi, zavattar}@cs.unibo.it

Abstract. The decidability of reachability for pure public Mobile Am-
bients (i.e. without communication and restriction) has been recently
investigated in [5], where a characterization of a maximal deacidable
fragment is provided. A peculiar feature of such a fragment is the ab-
sence of the open capability for ambient dissolution. In this paper we
analyse reachability in Boxed Ambients [2], the most relevant variant of
Mobile Ambients in which the open capability is dropped and replaced
by a sophisticated parent/child form of communication.

The main novelties with respect to [5] are: (i) the definition of a more
general notion of reachability (called target reachability); (ii) the proof of
the decidability of target reachability for a richer calculus also comprising
parent/child communication.

1 Introduction

Mobile Ambients (MA) [7] is a well known formalism exploited to describe dis-
tributed and mobile systems in terms of ambients. An ambient n[P] is a collection
named n of active processes and nested sub-ambients P . In the pure (i.e., with-
out communication) version of MA only three mobility primitives are used to
permit ambient and process interaction: in and out for ambient movement,
and open to dissolve an ambient boundary. More precisely, a process performs
an inm primitive to instruct its surrounding ambient to move inside a sibling
ambient named m, outm to exit its parent ambient named m, and openm to
dissolve the boundary of an ambient named m located at the same level of the
process.

In a recent paper [5] we have investigated the decidability of reachability for
public MA, i.e. the version of the calculus without name restriction. Reachability
analysis consists in verifying, given two processes P and Q, whether there exists
a computation that starts from P and leads to Q. The main contribution in [5]
is the proof of decidability of a generalized form of reachability (that we have
called spatial reachability) for a fragment of pure public Mobile Ambients.

Spatial reachability permits to specify a class of possible target processes
characterized by a common structure of ambient nesting and a minimal number
of processes that should be hosted inside those ambients. As an example of the
use of spatial reachability consider the system

trojan[virus|P]|notebook[Q]

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 143–159, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 N. Busi and G. Zavattaro

in which a trojan containing a virus program, and running program P , attacks
a notebook running the program Q. One may be interested in checking whether
the process

notebook[trojan[virus|P ′] | Q′]

can be reached for any possible P ′ and Q′. Observe that virus is a program for
which it is necessary to check the actual presence inside the ambient trojan in
the target process (a trojan that does not contain a virus is not dangerous).

The fragment for which we have proved the decidability of spatial reachability
is obtained by removing the open capability and by limiting the use of replication
to guarded processes only (e.g., !n[] is not a valid process for this fragment).
This fragment is maximal because we prove that if one of these two restrictions
is not taken into account reachability is no longer decidable. Clearly, the most
significant restriction is the elimination of the open capability. This mobility
primitive has been eliminated also in Boxed Ambients (BA) [2], one of the most
relevant dialects of MA. For this reason, it is worth to continue our analysis of
reachability moving to this more general calculus.

BA is a non-pure, i.e. with communication, dialect of MA. Communication
is asynchronous: messages can be spawn and stored within ambients, and pro-
cesses can subsequently consume them performing a message input operation.
In BA, in order to cope with the impossibility to dissolve ambient boundaries,
processes can read (beyond the messages which reside in the same ambient) also
the messages which are inside the parent or a child ambient.

In [2] several examples are reported in order to justify the choice of the au-
thors to substitute the open capability with parent/child communication. Most
of these examples are concerned with access control systems. Here, we consider
a slight variation of one of those examples. Let us consider two agents a and b
and a resource r.

P = a[Pa] | b[Pb] | r[R | 〈M〉]

The processes Pa and Pb control the behaviour of agents a and b, respectively.
Process R is a monitor controlling the access to the resource r which contains a
message 〈M〉. Assume that agent a has the right to consume the messages inside
the resource r, while b has not.

Formally, this means that it could happen that the configuration

Q′ = b[Pb] | r[R′ | a[P ′
a]]

can be reached from P for any processes P ′
a and R′ such that R′ does not contain

any message 〈M〉. Observe that we assume that the agent b is not involved in
the computation

Moreover, we want to avoid the possibility to reach, starting from P , a con-
figuration

Q′′ = a[P ′′
a] | r[R′′ | b[P ′′

b]]

for any processes P ′′
a , P ′′

b , and R′′ such that R′′ does not contain any message
〈M〉.

Reachability Analysis in Boxed Ambients 145

Similarly to the example of the trojan ambient previously discussed, we have
a universal quantification of the processes inside the ambients a and b. However,
in this example we have a more constrained characterization for the processes
R′ and R′′: we want that no message 〈M〉 is inside these two processes. Spa-
tial reachability is not enough expressive to cope with these kind of constraints.
Indeed, spatial reachability permits to specify only lower bounds about the pro-
cesses or messages inside the ambients (i.e. processes and ambients that must be
available), while the absence of a message is an upper bound (i.e. an indication
of a maximal amount of instances of specific processes or messages).

In this paper we introduce a more general notion of reachability that permits
to express also upper bounds. We call this new property target reachability. We
prove that target reachability is decidable for the calculus BA− that corresponds
to the public fragment of the Boxed Ambients [2] in which replication is guarded
and in which variables cannot be used to compose more complex messages. In
this way, we avoid the possibility to produce messages of unbounded length that
can be obtained in standard BA simply by recursively consuming a message, and
re-emitting a new message obtained extending the previously read one.

In order to prove the decidability of target reachability in BA− we proceed
as in [5] by resorting to a Petri net semantics. Namely, in [5] the Petri net
semantics reduces reachability on processes into coverability on Petri nets, which
is a decidable property for the class of Petri nets we have exploited. Beyond
having to adapt the Petri net semantics in order to deal with communication,
the main technical problem is that it is not possible to use standard coverability.
This because the upper bounds of target reachability requires to put also some
upper bounds on the number of tokens in specific places of the corresponding net;
these upper bounds are not compatible with the standard notion of coverability.
In order to solve this problem, we first define a new decidable property for Petri
nets which is a generalization of both coverability and reachability; then we
show how to reduce target reachability on processes to this new property for
Petri nets.

The paper is structured as follows. In Section 2 we report the syntax and
semantics of BA−, the fragment of BA that we consider, and we define formally
the new notion of target reachability. In Section 3 we prove that target reacha-
bility is decidable in BA−. Finally, in Section 4 we discuss the related literature
and report some conclusive remark.

2 Public Boxed Ambients

In this section we introduce a fragment of Boxed Ambients, called BA−, for
which we prove the decidability of reachability.

Definition 1. – BA – Let Name, ranged over by n, m, . . . , be a denumerable
set of ambient names and V ar, ranged over by x, y, . . . , be a denumerable set
of variables, such that Name ∩ V ar = ∅. The set of sequences of capabilities is
defined as follows:

C ::= inn | outn | inx | outx | C.C

146 N. Busi and G. Zavattaro

The set of expressions is defined by the following grammar:

e ::= n | x | C

The set of locations, ranged over by η, is Name∪V ar∪{↑, �}. The set of processes
is defined by the following grammar:

P ::= 0 | M.P | P |P | !M.P | n[P] | x[P]
M ::= C | x | (x)η | 〈e〉η

We use
∏

k P to denote the parallel composition of k instances of the process P ,
while

∏
i∈1...k Pk denotes the parallel composition of the indexed processes Pi.

Boxed Ambients considers two possibile capabilities: inn to enter a sibling
ambient named n and outn to exit an outer ambient named n. The capabil-
ities in a sequence are either on a fixed ambient name or on a variable, that
will be subsequently instantiated by a communication. Expressions, represent-
ing the contents of messages, comprise ambient names, variables and sequences
of capabilities.

The set of processes comprises the following terms. The term 0 represents
the inactive process (and it is usually omitted). M.P is a process guarded by a
mobility or a communication primitive: after the execution of the primitive the
process behaves like P . The processes M.P are referred to as guarded processes
in the following. A process may be also the parallel composition P |P of two
subprocesses. The guarded replication operator !M.P is used to put in parallel
an unbounded amount of instances of the process M.P . Finally, the term n[P]
denotes an ambient named n containing process P , while the term x[P] denotes
an ambient whose name will be instantiated by a communication.

In a guarded process M.P the prefix M can be a sequence of capability,
or a variable or a communication primitive. Communication primitives make
use of locations: location n denotes communication with a process in a child
ambient with name n, location x will be instantiated with an ambient name by
a communication, location ↑ denotes communication with a process in the parent
ambient, and location � (often omitted) denotes local communication. The input
process (x)η.P and the output process 〈e〉η.P permit to model communication
where η denotes the location. Both input and output processes are guarded
processes, and (x)η acts as a binder for the occurrences of variable x in P . The
notions of free and bound variables (denoted by fv(P) and bv(P)), of alpha-
conversion and of closed process are defined as usual. In the following we assume
that processes are closed.

The calculus BA− corresponds to the public fragment of the Boxed Ambi-
ents [2] with the following restrictions:

– Replication is guarded, i.e. it can be applied only to prefixed processes with
the form !M.P .

– A constrained use of variables in sequences of capabilities. Namely, in Boxed
Ambients it is possible to include variables in a sequence of capabilities. As

Reachability Analysis in Boxed Ambients 147

illustrated in the following example this permits to produce sequences of
capabilities of unbounded length:

〈inn〉 | !(x).〈inn.x〉

In BA− a variable cannot be a proper subsequence of a sequence of capabil-
ities, thus excluding from the calculus the above process.

Moreover, for the sake of simplicity we consider a monadic version of the calculus.
The operational semantics is defined in terms of a structural congruence plus

a reduction relation.

Definition 2. – Structural congruence – The structural congruence ≡ is the
smallest congruence relation satisfying:

P | 0 ≡ P P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R !M.P ≡ M.P | !M.P

Definition 3. – Reduction relation – The reduction relation is the smallest
relation → satisfying the following axioms and rules:

(1) n[inm.P | Q] | m[R] → m[n[P | Q] | R]

(2) m[n[outm.P | Q] | R] → n[P | Q] | m[R]

(3) (x)P | 〈e〉Q → P{e/x} | Q

(4) (x)nP | n[〈e〉Q | R] → P{e/x} | n[Q | R]

(5) n[(x)↑P | Q] | 〈e〉R → n[P{e/x} | Q] | R

(6) n[(x)P | Q] | 〈e〉nR → n[P{e/x} | Q] | R

(7) (x)P | n[〈e〉↑Q | R] → P{e/x} | n[Q | R]

(8)
P → Q

P | R → Q | R

(9)
P → Q

n[P] → n[Q]

(10)
P ′ ≡ P P → Q Q′ ≡ Q

P ′ → Q′

With P{e/x} we denote the process obtained by substituting each free occurrence
of x in P with e (as usual, alpha-conversion is used when necessary, to avoid
name capture).

As usual, we use →+ to denote the transitive closure and →∗ for the reflexive
and transitive closure of →. If P →∗ Q we say that Q is a derivative of P .

148 N. Busi and G. Zavattaro

Axioms (1) and (2) describe the semantics of the movement primitives in and
out . A process inside an ambient n can perform an inm operation in presence
of a sibling ambient m; if the operation is executed then the ambient n moves
inside m. If inside an ambient m there is an ambient n with a process performing
an outm action, this results in moving the ambient n outside the ambient m.

Axiom (3) describes local communication. The input prefix (x)nP in axiom
(4) represents a request to read a datum sent by a process located into one of
the child ambients n. In axiom (5), (x)↑P is a request to read a datum sent by a
process located in the parent ambient. Dually, 〈e〉nP in axiom (6) (resp. 〈e〉↑P
in axiom (7)) is a request to send e to a process located into the child ambient
n (resp. the parent ambient). Note that a direct remote communication between
sibling ambients is not possible: either mobility or the intervention of the parent
of the sibling ambients is required.

Rules (8) and (9) are the contextual rules that respectively indicate that a
process can move also when it is in parallel with another process and when it
is inside an ambient. Finally, rule (10) is used to ensure that two structurally
congruent terms have the same reductions.

2.1 Target Reachability

Classical reachability analysis consists in checking if P →∗ R for two given
BA− processes P and R. In this paper we consider a more general notion of
reachability. The main novelty is that we permit a partial description of the
target process. More precisely, it is possible to impose constraints on the number
of occurrences of guarded processes inside an ambient. Such constraints are both
lower bounds (e.g. there must be at least one instance of the guarded process
M.P in a given ambient) and upper bounds (e.g. there can be at most two
occurrences of message 〈n〉 in a given ambient).

We need to introduce some additional notation to denote the partial descrip-
tion of target processes.

We introduce a notion of normal form for process that forbids the presence of
both the unreplicated and the replicated version of a guarded term in a parallel
composition. Any process can be transformed in a structurally congruent process
in normal form by using the monoidal axioms for parallel composition and by
applying the axiom for replication from right to left (i.e., M.P | !M.P →!M.P).

Definition 4. – Normal form – A process P is in normal form if P =∏
i Mi.Pi |

∏
j !M

′
j .P

′
j |

∏
k nk[P ′′

k] and the following conditions hold:

– Pi, P
′
j , P

′′
k are in normal form for all i, j, k;

– if Mi = M ′
j then Pi 	= P ′

j.

Proposition 1. Let P be a process. Then there exists a process Q in normal
form such that P ≡ Q.

Reachability Analysis in Boxed Ambients 149

Definition 5. – Target – The set of targets is defined by the following gram-
mar:

T ::= 0 | any | q ≤ M.P ≤ q′ | T |T | !M.P | n[T] | x[T]
M ::= C | x | (x)η | 〈e〉η

where q ∈ IN and q′ ∈ IN ∪ {∞} 1.

A target any requires the presence of zero or more occurrences of any process,
while q ≤ M.P ≤ q′ requires the presence of k occurrences of process M.P , with
q ≤ k ≤ q′ (if q′ = ∞ there is no upper bound to the number of occurrences). A
target !M.P requires the presence of one or more occurrences of process !M.P .
As the behaviour of processes

∏
k!M.P is the same for any k ≥ 1, we prefer to

require just the presence – or the absence – of a replicated process instead of
providing upper and lower bounds to the number of its occurrences. Targets can
be composed in parallel, and can be nested in ambients.

As an example, consider the target n[1 ≤ inn.P ≤ 2] | m[!(x).Q] | k[any | 3 ≤
〈m〉 ≤ ∞]. This target requires that ambient n contains one or two occurrences of
process inn.P , ambient m contains only occurrences of of process !(x).Q (at least
one occurrence is required), and ambient k contains at least three occurrences
of message 〈m〉, as well as any other process. Moreover, this target also requires
that there is no process at top level.

We consider only a proper subset of well formed targets defined as follows.
Basically, a target is well formed if the upper and lower bounds on guarded

terms are satisfiable (i.e., target 3 ≤ (x).0 ≤ 2 is not well formed) and if the
presence of a replicated version of a guarded process prevents the occurrence
of the nonreplicated version of the same process in a parallel composition (i.e.,
target (x).0 | !(x).0 is not well formed). We also require that at most one oc-
currence of a replicated process is present in a parallel composition (i.e., target
!(x).0 | !(x).0 is not well formed).

Definition 6. – Well formed target – A target T is well formed if there
exists a target S =

∏
i qi ≤ Mi.Pi ≤ q′i |

∏
j !M

′
j .P

′
j |

∏
k nk[T ′′

k] such that the
following conditions hold:

– processes Pi, P
′
j are in normal form for all i, j;

– either T ≡ S or T ≡ S | any;
– qi ≤ q′i for all i;
– if Mi = M ′

j then Pi 	= P ′
j;

– if M ′
i = M ′

j and P ′
i = P ′

j then i = j.
– T ′′

k is well formed for all k.

We define the set of processes set(T) that satisfy the constraints imposed
by a target T . Basically, we require the presence of the required number of
occurrences of a prefixed process in each ambient; if the upper bound is ∞, then
also the presence of a replicated version of the process satisfies the target (i.e.,

1 IN denotes the set of natural numbers and we assume that q ≤ ∞ for all q ∈ IN .

150 N. Busi and G. Zavattaro

process n[!inn.0] satisfies the target n[3 ≤ inn.0 ≤ ∞]). If the target any is
present, then further (different) processes may be present. As already discussed,
with a replicated process in the target we just require the presence of at least
one occurrence of such a replicated process.

Definition 7. – set(T) – Let T be a well formed target. A process P is in
set(T) if P ≡

∏
h Lh.Ph |

∏
g!L

′
g.P

′
g |

∏
k nk[P ′′

k] and there exists a target S =∏
i qi ≤ Mi.Qi ≥ q′i |

∏
j !M

′
j .Q

′
j |

∏
k nk[T ′′

k] such that the following conditions
hold:

– either T ≡ S or T ≡ S | any;
– for all i, either qi ≤ |{h | Lh.Ph = Mi.Qi}| ≤ q′i or q′i = ∞ and there exists

g such that L′
g.P

′
g = Mi.Qi;

– for all j there exist g such that L′
g.P

′
g = M ′

j .Q
′
j;

– if T ≡ S then for any h there exists i such that either Lh.Ph = Mi.Qi or
Lh.Ph = M ′

i .Q
′
i

and for any g there exists j such that L′
g.P

′
g = M ′

j .Q
′
j;

– for any k, P ′′
k ∈ set(T ′′

k).

It is worth to note that set(T) is compatible with the structural congruence
relation as formalized by the following Proposition.

Proposition 2. Let T be a target and P and Q two processes such that P ≡ Q.
Then, P ∈ set(T) if and only if Q ∈ set(T).

We are now ready to formalize the notion of target reachability.

Definition 8. Let P be a process and T be a target. We say that T is a target
reachable from P (denoted by TReach(P, T)) if there exists a process Q such
that P →∗ Q and Q ∈ set(T).

Note that target reachability is a generalization of both standard and spatial
reachability. Standard reachability analysis is obtained using targets that do not
contain any and such that each lower bound qi is equal to the corresponding
upper bound q′i. Spatial reachability, on the other hand, is obtained by putting
all the upper bounds to ∞, as well as any in each ambient.

We conclude this section showing how to use target reachability to analyse
the access control system described in the Introduction. We simply recall that
the system is initially modeled by the process

P = a[Pa] | b[Pb] | r[R | 〈M〉]

where a is an agent which has access rights to the messages stored in the resource
r, while the agent b has not. Formally, we accept that TReach(P, T ′) with

T ′ = b[Pb] | r[any | 0 ≤ 〈M〉 ≤ 0 | a[any]]

while we assume that TReach(P, T ′′) does not hold with

T ′′ = a[any] | r[any | 0 ≤ 〈M〉 ≤ 0 | b[any]]

Reachability Analysis in Boxed Ambients 151

Observe that we formalize the absence of message 〈M〉 using the upper bound
〈M〉 ≤ 0, and that we add any in the specification of the contents of those
ambients for which we used a universal quantification in the corresponding spec-
ification reported in the Introduction. The unique ambient in which we do not
make use of any is the ambient b in the target T ′, because we assume that the
agent a should be able to access the resource r without any intervention from
the agent b.

3 Deciding Target Reachability in BA−

The target reachability problem for BA−processes consists in checking if, given
a target T and a process P , the target T is reachable from P . In this Section
we show that target reachability is decidable for BA−processes. The proof is
basically an adaptation of the proof of decidability of reachability for the open
free, pure and public fragment of MA presented in [5]. The main differences
are due the presence of (father/child) communication in BA−and to the new
notion of target reachability introduced in the present work. In [5] we reduced
reachability on the MA fragment to reachability on Place/Transition Petri nets.
As reachability is decidable on such class of Petri nets [10], we got the decidability
result for reachability on the MA fragment. To deal with target reachability,
we introduce target marking reachability – a generalization of the notion of
reachability on Place/Transition Petri nets – and we sketch the decidability
of generalized reachability by reduction to standard reachability. Then, we show
how to reduce target reachability on BA−to target marking reachability on Petri
nets.

We start recalling some basic definitions on Petri nets, then we define target
marking reachability and we provide a sketch of the reduction result. Finally,
we show how to construct the Petri net that can be used to solve the target
reachability problem on BA−.

3.1 P/T Nets

We recall Place/Transition nets with unweigthed flow arcs (see, e.g., [11]). Here
we provide a characterization of this model which is convenient for our aims.

Definition 9. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) 	= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The set of all finite sets over S is denoted by
℘fin(S).

Given the multiset m and m′, we write m ⊆ m′ if m(s)≤m′(s) for all s ∈ S
while ⊕ denotes their multiset union: m ⊕ m′(s)=m(s) + m′(s). The operator \
denotes multiset difference: (m \ m′)(s) = if m(s) ≥ m′(s) then m(s) − m′(s)
else 0. The scalar product, j ·m, of a number j with m is (j ·m)(s) = j · (m(s)).

152 N. Busi and G. Zavattaro

To lighten the notation, we sometimes use the following abbreviation. If m is a
multiset containing only one occurrence of an element s (i.e., dom(m) = {s} and
m(s) = 1) we denote m by only s. Multiset union is represented also by comma,
i.e., m,m′ = m⊕m′. Let m be a multiset over S and m′ a multiset over S′ ⊇ S,
such that (m′(s′) = 0) for each s′ ∈ S′ \S; with abuse of notation, we sometimes
use m in place of m′, and vice versa.

Definition 10. A P/T net is a pair (S, T) where S is the set of places and
T ⊆ Mfin(S) × Mfin(S) is the set of transitions.

Finite multisets over the set S of places are called markings. Given a marking
m and a place s, we say that the place s contains m(s) tokens.

A P/T net is finite if both S and T are finite.
A P/T system is a triple N = (S, T,m0) where (S, T) is a P/T net and m0

is the initial marking.
A transition t = (c, p) is usually written in the form c → p. The marking c,

usually denoted by •t, is called the preset of t and represents the tokens to be
consumed; the marking p, usually denoted by t•, is called the postset of t and
represents the tokens to be produced.

A transition t is enabled at m if •t ⊆ m. The execution of a transition
t enabled at m produces the marking m′ = (m \ •t) ⊕ t•. This is written as
m

t→ m′ or simply m → m′ when the transition t is not relevant. We use σ, τ
to range over sequences of transitions; the empty sequence is denoted by ε; let
σ = t1, . . . , tn, we write m

σ→ m′ to mean the firing sequence m
t1→ · · · tn→ m′.

We say that m′ is reachable from m if there exists σ such that m
σ→ m′.

We say that m′ covers m if m ⊆ m′.

Definition 11. Let N = (S, T,m0) be a P/T system.
The reachability problem for marking m consists of checking if m0 →∗ m.
The coverability problem for marking m consists of checking if there exists

m′ such that m0 →∗ m′ and m′ covers m.

3.2 Target Marking Reachability on P/T Nets

We introduce a generalization of both the notions of reachability and coverability
on P/T nets. The idea essentially consists in providing a lower and an upper
bound to the number of tokens in each place of the net, and in checking if it is
possible to reach a marking that satisfies such constraints.

Definition 12. – target marking – Let N = (S, T) be a P/T net. A target
marking of N is a pair of functions (inf, sup) ∈ (S → IN) × (S → IN ∪ ∞) such
that, for all s ∈ S, inf(s) ≤ sup(s).

Definition 13. – target marking satisfiablity – Let N = (S, T) be a P/T
net. A marking m of N satisfies a target marking (inf, sup) of N if, for all
s ∈ S, inf(s) ≤ m(s) ≤ sup(s).

Definition 14. – target marking reachability – Let N = (S, T,m0) be a
P/T system. A target marking (inf, sup) is reachable if there exists a marking
m such that m0 →∗ m and m satisfies (inf, sup).

Reachability Analysis in Boxed Ambients 153

We note that reachability and coverability are special cases of target marking
reachability. Checking reachability of marking m is equivalent to check reacha-
bility of the target marking (m,m), while checking coverability of m is equivalent
to reachability of the target marking (m, {(s,∞) | s ∈ S}).

Now we reduce the target marking reachability problem for a system N
and a target marking (inf, sup) to standard reachability on the P/T system
TMSys(N, (inf, sup)) defined below.

Definition 15. Let N = (S, T,m0) be a P/T system and (inf, sup) be a target
marking of N . The P/T system TMSys(N, (inf, sup)) = (S′, T ′,m′

0) is defined
as follows. Let normal, ending 	∈ S.

S′ = S ∪ {normal, ending}
T ′ = {(c ∪ normal, p ∪ normal) | (c, p) ∈ T}∪

{(normal, ending)}∪
{(s ∪ ending, ending) | sup(s) = ∞}

m′
0 = m0 ⊕ normal

The set of markings TMMark(N, (inf, sup)) is defined as follows:

TMMark(N, (inf, sup)) = {m | ∀s ∈ S : (sup(s) = ∞ ⇒ m(s) = inf(s))∧
(sup(s) �= ∞ ⇒ inf(s) ≤ m(s) ≤ sup(s))}

Proposition 3. Let N = (S, T,m0) be a P/T system and (inf, sup) be a target
marking of N . The set of markings TMMark(N, (inf, sup)) is finite.

Proposition 4. Let N = (S, T,m0) be a P/T system and (inf, sup) be a tar-
get marking of N . The target marking (inf, sup) is reachable in N iff one
of the markings in the set TMMark(N, (inf, sup)) is reachable in TMSys
(N, (inf, sup)).

As a consequence of the two propositions above and of the decidability of
reachability on P/T systems, we get the following:

Corollary 1. Target marking reachability is decidable for P/T systems.

3.3 Reducing Target Reachability on Processes to Target Marking
Reachability on P/T Nets

Now we show that target reachability on processes can be reduced to target
marking reachability on Petri nets; by decidability of target marking reachability
on Petri nets, we get the following:

Theorem 1. Let P be a BA− process and T be a target. The target reachability
problem TReach(P, T) is decidable.

Given a process P and a target R, we outline the construction of a (finite)
Petri system SysP,R satisfying the following property: the check of TReach(P, T)

154 N. Busi and G. Zavattaro

is equivalent to check target marking reachability of a (finite set of) target mark-
ings on SysP,R. The technical details concerning the construction of the net are
quite similar to the ones for deciding reachability in the pure, public, open free
MA fragment in [5,6], and thus omitted. Here we only recall the basic ideas.

The intuition behind this result relies on a monotonicity property of BA−:
because of the absence of the open capability, the number of “active” ambi-
ents in a process (i.e., ambients that are not guarded by any capability) cannot
decrease during the computation. Moreover, as the applicability of replication
is restricted to guarded processes, the number of “active” ambients in a set of
structurally equivalent processes is finite (while this is not the case in , e.g., the
MA process !n[0]). Thanks to the property explained above, in order to check
target reachability it is sufficient to take into account a subset of the derivatives
of P : namely, the P -derivatives whose number of active ambients is not greater
than the number of active ambients in R.

Unfortunately, this subset of P -derivatives is, in general, not finite, as the
processes inside an ambient can grow unlimitedly. Consider, e.g., the process P =
m[!inn.outn.Q] | n[]: it is easy to see that, for any k, m[

∏
k Q | !inn.outn.Q] | n[]

is a derivative of P .
On the other hand, we note that the set of guarded and replicated terms

that can occur as subprocesses of (the derivatives of) a process P (namely, the
subterms of kind M.P or !M.P) is finite. The idea is to borrow a technique
used to map (the public fragment of) a process algebra on Petri nets. A process
P is decomposed in the (finite) multiset of its guarded and replicated subpro-
cesses that appear at top-level (i.e., occur unguarded in P); this multiset is then
considered as the marking of a Place/Transition Petri net. The execution of
a computational step in a process will correspond to the firing (execution) of
a transition in the corresponding net. Thus, we reduce the target reachability
problem for BA− processes to reachability of a finite set of target markings in
a Place/Transition Petri net, which we have shown to be a decidable problem.
However, differently from what happens in process algebras, where processes can
be faithfully represented by a multiset of subprocesses, BA− processes have a
tree-like structure that hardly fits in a flat model such as a multiset.

The solution is to consider BA− processes as composed of two kinds of com-
ponents; the tree-like structure of ambients and the family of multisets of prefixed
and replicated subterms contained at top level in each ambient. As an example,
consider the process

inn.P | m[inn.P | outn.Q | n[0] | k[0] | inn.P] | n[inn.P]

having the tree-like structure m[n[] | k[]] | n[]. Moreover, there is a multiset
corresponding to each “node” of the tree: the multiset {inn.P} is associated
to the root, the same multiset is associated to the n-labelled son of the root,
the multiset {inn.P, inn.P, outn.Q} is associated to the n-labelled son of the
m-labelled son of the root, and so on.

The Petri net we construct is composed of the following two parts: the first
part is basically a finite state automaton, where the marked place represents the

Reachability Analysis in Boxed Ambients 155

current tree-like structure of the process; the second part is a set of identical
subnets: the marking of each subnet represents the multiset associated to a
particular node of the tree. To keep the correspondence between the nodes of
the tree and the multiset associated to that node, we make use of labels. A
distinct label is associated to each subnet; this label will be used in the tree-like
structure to label the node whose contents (i.e., the set of prefixed and replicated
subprocesses contained in the ambient corresponding to the node) is represented
by the subnet.

The set of possible tree-like structures we need to consider is finite, for the
following reasons. First of all, the set of ambient names in a process is finite.
Moreover, to verify target reachability we need to take into account only those
processes whose number of active ambients is limited by the number of ambients
in the process we want to reach.

The upper bound on the number of nodes in the tree-like structures also
provides an upper bound to the number of identical subnets we need to decide
target reachability (at most one for each active ambient). In general, the number
of active ambients grows during the computation; hence, we need a mechanism to
remember which subnets are currently in use and which ones are not used. When
a new ambient is created, a correspondence between the node representing such
a new ambient in the tree-like structure and a not yet used subnet is established,
and the places of the “fresh” subnet are filled with the marking corresponding to
the prefixed and replicated subprocesses contained in the newly created ambient.
To this aim, each subnet is equipped with a place called unused, that contains
a token as long as the subnet does not correspond to any node in the tree-like
structure.

For example, consider the process n[outm] | m[inn.k[!out k]]. The relevant
part of the net is depicted in Figure 1: a subset of the places, representing the
tree-like structure, is depicted in the left-hand part of the figure, while the sub-
nets are depicted in the right-hand part. We only report the subnets labelled
with l2 and l3, and omit the two subnets labelled with l0 (with empty marking)
and with l1 (whose marking consists of a token in place l1 : outm). The com-
putation step n[outm] | m[inn.k[!out k]] → n[outm | m[k[!out k]]] corresponds
to the firing of transition t in the net.

Now we are ready to describe the net that will be used to decide reachability
of a target T starting from a process P .

The set of places of the net is constructed as follows. The part of the net
representing the tree-like structure contains a place for each tree of size not
greater than the number of active ambients in T . Each of the subnets contains a
place for each prefix and replicated subprocess of process P , and a place named
“unused”, that remains filled as long as the subnet does not correspond to any
node in the tree-like structure. Moreover, we associate a distinct label to each
subnet, and all the places of the subnet will be decorated with such a label.

The net has three sets of transitions: the first set permits to model the exe-
cution of the in and out capabilities, the second set is used deal with commu-
nication, and the third set to cope with replication.

156 N. Busi and G. Zavattaro

t

l0

n

m

l1

l2

l3

k

l0

n m

l1 l2

l3: out m l3: out k l3: !out kl3: in n.k[!out k] l3: unused

l2: out m l2: out k l2: !out k l2: unusedl2: in n.k[!out k]

Fig. 1. A portion of the net corresponding to process n[outm] | m[inn.k[!out k]]

We concentrate on the first set of transitions. A capability, say, e.g., inn, can
be executed when the following conditions are fulfilled: the tree-like structure
must have a specific structure and a place corresponding to a prefixed subpro-
cess inn.Q is marked in a subnet whose label appears in the right position in
the tree-like structure. Moreover, the number of active ambients created by the
execution of the capability, added to the number of currently active ambients,
must not exceed the number of active ambients in the target T . This condition
is checked by requiring that there exist a sufficient number of “unused” places
that are currently marked. The execution of the capability causes the following
changes to the marking of the net: the place corresponding to the new tree-
like structure is now filled and the marking of the subnet performing the inn
operation is updated (by adding the tokens in the places corresponding to the
active prefixed and replicated subprocesses in the continuation Q). Moreover, a
number of subnets equal to the number of active ambients in the continuation
Q become active: their places will be filled with the tokens corresponding to
the active prefixed and replicated subprocesses contained in the corresponding
ambient, and the tree-like structure is updated accordingly.

The second set of transitions deal with communication and are quite simi-
lar to the rules for ambient movement. A local communication can be executed
when a two places, corresponding to the prefixed processes (x).Q1 and 〈e〉.Q2,
are marked in a subnet, and the number of active ambients created by the exe-
cution of the communication, added to the number of currently active ambients,
must not exceed the number of active ambients in the target T . The execution
of the local communication causes the following changes to the marking of the
net: the place corresponding to the new tree-like structure is now filled and the
marking of the subnet performing the communication is updated (by adding the
tokens in the places corresponding to the active prefixed and replicated subpro-
cesses in the continuations Q1 and Q2). Moreover, a number of subnets equal to

Reachability Analysis in Boxed Ambients 157

the number of active ambients in the continuations Q1 and Q2 become active.
Nonlocal communication is more involved, because the two communicating pro-
cesses reside in two different ambients and it is necessary to check that such two
ambients are located in the right place in the tree like structure.

The third set of transitions deals with replication. For all replicated processes
!M.Q occurring in P , we add to each subnet the transitions !M.P →!M.P,M.P ,
!M.P,M.P →!M.P and !M.P, !M.P →!M.P , respectively permitting to spawn a
new copy of a replicated process, to absorbe a process that also appears in a repli-
cated form in the marking, and to remove multiple occurrences of a replicated
process in a marking. These transitions are used to reduce target reachability
on BA−to target marking reachability on the net system. An instance of such
transitions is depicted in the subnet l2 of Figure 1.

The reachability of target T is reduced to reachability of a target marking
(infT , supT) constructed as follows. We require that a token is contained in
the place corresponding to the tree-like structure of T (and that the places
corresponding to the other tree-like structures are empty). Moreover, for any
active ambient in T ,

– for any target q ≤ M.P ≤ q′ at top level in the active ambient, we require
that infT (l : M.P) = q and supT (l : M.P) = q′, where l is the label of the
subnet corresponding to the active ambient;

– for any target !M.P at top level in the active ambient, we require that
infT (l :!M.P) = supT (l :!M.P) = 1;

– for any guarded or replicated process Q not occurring at top level in the
active ambient, we require that infT (l : Q) = 0; if the target any occurs at
top level in the active ambient, then we require supT (l : Q) = ∞, otherwise
we impose supT (l : Q) = 0.

4 Related Work and Conclusion

Since its introduction, the calculus of Mobile Ambients [7] attracted widespread
interest, and it has been used as a starting point for investigating the foun-
dations of a great variety of mobile computing models. An interesting line of
research on Mobile Ambients and its dialects is concerned with the analysis of
Turing completeness and (un)decidability of properties such as divergence or
termination (see, e.g., [8] and [4]). In [1] and [5] the decidability of reachability
is investigated. In [1], Boneva and Talbot prove that reachability is undecidable
even in a minimal fragment of pure Mobile Ambients in which both the restric-
tion operator and the open capability are removed. A similar fragment (with
the unique difference that replication can be applied to guarded processes only)
is considered by Maffeis and Phillips in [8], where they show that in such a small
fragment termination is undecidable while the decidability of reachability is left
as on open problem. This open problem was closed in [5] where reachability is
proved to be decidable.

In this paper we extend this line of research on reachability for Mobile Am-
bients following two intertwined directions. On the one hand we define a more

158 N. Busi and G. Zavattaro

general notion of reachability, called target reachability, which permits to specify
lower and upper bounds on the possible processes within each ambient in the
target process. On the other hand, we consider a richer calculus comprising also
a sophisticated form of communication borrowed from Boxed Ambients [2]. As
done in [5], we resort to a Petri semantics in order to prove that target reach-
ability is decidable for a significant fragment of Boxed Ambients. With respect
to the proof in [5], here we need to introduce an enhanced Petri net semantics
that models also (parent/child) communication and, moreover, in order to deal
with the upper bounds of target reachability we need to define a new notion of
generalized reachability for Petri nets and prove that it is actually decidable for
any finite Petri net.

As future work we plan to investigate the applicability of our results to recent
dialects of Boxed Ambients. For instance, we intend to take under consideration
the calculus in [3] where messages can be decorated with a label indicating that
the message can be actually consumed only by processes residing in the same
ambient, or only by processes inside the parent ambient, or only by processes
stored in some child ambient.

We also plan to investigate the possibility to extend our results to BioAmbi-
ents – a calculus for the description of compartments biological systems inspired
by Mobile Ambients and containing a form of parent/child interaction. We also
plan to study the relationship among our results on reachability analysis and
the static analysis techniques developed for Mobile Ambients and its variants.

References

1. I. Boneva and J.-M. Talbot. When Ambients Cannot be Opened. In Proc. FOS-
SACS’03, volume 2620 of Lecture Notes in Computer Science, pages 169-184.
Springer-Verlag, Berlin, 2003. Full version to appear in Theoretical Computer Sci-
ence, Elsevier.

2. M. Bugliesi, G. Castagna and S. Crafa Access Control for Mobile Agents: The
Calculus of Boxed Ambients. ACM Transactions on Programming Languages and
Systems, 26(1):57-124. ACM Press, 2004.

3. M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and Mobility
Control in Boxed Ambients. To appear in the Journal of Information & Compu-
tation. Academic press.

4. N. Busi and G. Zavattaro. On the Expressive Power of Movement and Restriction
in Pure Mobile Ambients. in Theoretical Computer Science, 322:477–515, Elsevier,
2004.

5. N. Busi and G. Zavattaro. Deciding Reachability in Mobile Ambients. In Proc.
ESOP’05, volume 3444 of Lecture Notes in Computer Science, pages 248-262.
Springer-Verlag, Berlin, 2005.

6. N. Busi and G. Zavattaro, Deciding Reachability in Mobile Ambients - Extended
version. Available at http://www.cs.unibo.it/~busi/papers/MA05.pdf

7. L. Cardelli and A.D. Gordon. Mobile Ambients. Theoretical Computer Science,
240(1):177–213, 2000.

8. S. Maffeis and I. Phillips. On the Computational Strength of Pure Mobile Ambi-
ents. To appear in Theoretical Computer Science, Elsevier.

Reachability Analysis in Boxed Ambients 159

9. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients:
An Abstraction for Biological Compartments. Theoretical Computer Science,
325(1):141–167, Elsevier, 2004.

10. C. Reutenauer. The Mathematics of Petri Nets. Masson, 1988.
11. W. Reisig. Petri nets: An Introduction. EATCS Monographs in Computer Science,

Springer, 1985.

Error Mining for Regular Expression Patterns

Giuseppe Castagna1, Dario Colazzo2, and Alain Frisch3

1 CNRS, Ecole Normale Supérieure de Paris, France
2 LRI, Université Paris Sud, Orsay, France

3 INRIA, Rocquencourt, France

Abstract. In the design of type systems for XML programming languages based
on regular expression types and patterns the focus has been over result analysis,
with the main aim of statically checking that a transformation always yields data
of an expected output type. While being crucial for correct program composition,
result analysis is not sufficient to guarantee that patterns used in the transforma-
tion are correct. In this paper we motivate the need of static detection of incorrect
patterns, and provide a formal characterization based on pattern matching opera-
tional semantics, together with locally exact type analysis techniques to statically
detect them.

1 Introduction

Current type systems for query and transformation languages for XML data, such as
those of XQuery [DFF+05], CDuce [BCF03], Cω [BMS05], XDuce [Hos00] mainly
aim at result type analysis, that is at statically inferring the output type of a query
or transformation function, starting from its structural requirements (XPath paths or
ML-like patterns) and theinput type.

Result analysis has a crucial importance as by statically knowing the output type,
we can check if it is included in the input type required by some other application.
Hence, being the output type an upper bound for values resulted by the query/function
(type soundness), result type analysis constitutes a powerful tool for sound system
composition.

Unfortunately, while result analysis is often sufficient for programming languages
that deal with simple data structures, this is no longer true for languages manipulating
complex data structures as it is the case for XML.

Working on XML trees requires two different powerful language primitives: (i)
iterator primitives in order to navigate XML trees and (ii) deconstructing primitives
(usually called patterns or templates) in order to capture subparts of their structure.
The result analysis is often sufficient to verify correctness of iterators, but it is use-
less to spot errors hidden inside the deconstructing primitives. In the context of XML
processing languages two different classes of deconstructing primitives can be found:
path expressions (usually XPath paths, but also the “dot” navigation of Cω) and regular
expression patterns.

Path expressions are navigational primitives that finger where to capture data sub-
structures. They closely resemble the homonymous primitives used by OQL in the con-
texts of OODB query languages with the difference that they return sets or sequences

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 160–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Error Mining for Regular Expression Patterns 161

of elements, those that can be reached by the paths they define. These are at the basis
of standard languages such as XSLT or XQuery.

More recently a new kind of deconstructing primitives was proposed, regular ex-
pression patterns [HP01], which extends by regular expressions the pattern match-
ing as popularized by functional languages such as ML and Haskell. Regular expres-
sion patterns were first introduced in the XDuce [HP00] programming language and
then adopted by other projects such as CDuce [BCF03] and its query language
CQL [BCM05], Xtatic [GP03], Scala [OAC+04], XHaskell [LS04] as well as the ex-
tension of Haskell proposed in [BFS04].

As we said result analysis is not sufficient to spot errors a programmer would have
done in defining or writing paths or regular expressions patterns (from now on, “pat-
terns” for short): indeed with the current technology a program containing errors in
paths/patterns can (and in the absence of other errors, will) type check. In general, it is
difficult to precisely characterize the class of wrong patterns or paths. An approximation
is to consider as wrong those patterns/paths which contains subparts that are meaning-
less that is, roughly, that they are never be used whatever the input of the path/pattern is.

The problem of characterizing and detecting correctness of XPath expressions has
been recently tackled by Colazzo et al. [Col04, CGMS04]. The authors provide quite
a precise type analysis technique that, by checking the absence of matching between
paths and input types, statically detects empty sub-queries of XQuery queries.

In this work we study the same problem for the other family of deconstructing
primitives, that is regular expression patterns. In particular, we show how to formally
define and statically detect patterns that contain subpatterns which are “never used”. We
develop our approach for the pattern algebra of theCDuce programming language since
this algebra is the most general among those of the cited languages: the pattern algebras
of the other languages are subsumed by the one of CDuce, therefore our technique can
be straightforwardly adapted to them with few or no modifications.

To that end we study how such a kind of local errors can be (i) formally charac-
terised in terms of operational semantics (hence, independently from a particular set of
type rules) and (ii) statically detected by means of some improvements of the existing
type systems. In particular, before defining the extended type system, we give several
examples of practical and theoretical motivations of our study and, then, we give a for-
mal characterization of the class of errors we want to mine. As we will see, the problem
is not obvious to solve, due to possible high irregularities in types and patterns. How-
ever, the rich type algebra of CDuce will ensure a sound and complete analysis for
a single pattern matching. The analysis reports a set of sub-patterns which are never
used considering a given input type for the pattern. This analysis can be added to the
CDuce type-checker. Of course, the analysis is then only locally exact (it is exact as-
suming that the type-checker gives the argument of the pattern matching a type which
exactly denotes all the possible values of this argument at run-time), but globally sound
(if it reports an unused sub-pattern, this sub-pattern is really useless and hence probably
wrong).

Overview. The article is organized as follows. In the next section we provide some prac-
tical examples of the kind of errors we want to statically detect and that elude current
type checkers technology. We also show the relevance of such errors and the importance

162 G. Castagna, D. Colazzo, and A. Frisch

to detect them when programming XML transformations. In Section 3 we formally de-
fine the class of errors we are interested in, together with a sound a complete analysis
to statically detect them. In Section 4 we discuss the characteristic of our analysis and
show how to embed it in existing type checkers.

2 Motivating Examples

In writing programs that process typed XML data, programmers are very likely to spec-
ify in their patterns, only the part of the schema that is strictly necessary to recover
desired data. This is almost always the case when writing programs that query XML
data, but even in the context of XML transformation programs, very often, only a sub
part of the input structure must be matched and processed.

Partial specification of structural requirements can be specified in regular expression
patterns by using the wildcard pattern “_” which matches every value. This is of crucial
importance as it enormously simplifies coding of programs and makes them more robust
to possible evolutions of the data schemas. However, at the same time, the extensive use
of the wildcard patterns is an important (but not exclusive) source of the kind of errors
that we target in this paper: the common practise of a massive use of wildcard patterns,
thus, makes the presence of undetected errors very likely, whence the importance of our
analysis.

As we will explain, the presence of incorrect patterns may strongly compromise
quality of system behavior, as incorrect patterns never match data, and, as a conse-
quence, some desired data may end up to not contribute to partial and/or final results,
without having the possibility of becoming aware of this problem at compile time. So,
negative effects of this problem may be visible only by careful observing the results of
the programs. This makes error detection quite difficult and the subsequent debugging
very hard.

Let us see all of this on a standard example, and use it to introduce CDuce patterns.
Consider the following schema:

type Bib = <bib>[Book*]
type Book = <book year=String>[Title (Author+|Editor+) Price?]
type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

The declarations above should not pose any problem to the reader familiar with XML,
DTD, and XML Schema. The type Bib classifies XML-trees rooted at tag bib that
delimits a possibly empty list of books. These are elements with tag book, an attribute
year, and containing a sequence formed exactly by one element title, followed by either
a non empty list of author elements, or a non empty list of editor elements, and ended by
an optional element price. Title elements are tagged by title and contain a sequence of
characters, that is, a string (in XML terminology “parsed character data”, i.e. PCDATA).
The other declarations have similar explanations.

Error Mining for Regular Expression Patterns 163

The declarations above give a rather complete presentation of CDuce types: there
are XML types, that are formed by a tag part and a sequence type (denoted by square
brackets). The content of a sequence type is described by a regular expression on types,
that is, by the juxtaposition, the application of *, +, ? operators, and the union | of
types. Besides these types there also are: (i) values which are considered singleton
types, so for instance "Colazzo" is the type that contains only the string "Colazzo",
(ii) intersection of types, denoted by s&&&t that contains all the values that have both type
s and type t, (iii) difference “\” of types, so that the type

<book year=String"1999">[Title (Author+|Editor+) Price?]

is the type of all books not published in 1999, (iv) the Any type, which is the type of
all values and which is often denoted as “_”, especially in patterns, and its complement
the Empty type.

Patterns are just types enriched with capture variables. For instance the pattern
<bib>[(x::Book)*] captures in x the sequence of all books of a bibliography. In-
deed, the * indicates that the pattern x::Book must be applied to every element of the
sequence delimited by <bib>. When matched against an element, the pattern x::Book
captures this element in the sequence x, provided that the element is of type Book.
Patterns can then be used in match expressions:

match biblio with <bib>[(x::Book)*] -> x

This expression matches biblio against our pattern and returns x as result, thus it
makes nothing but stripping the <bib> tag from biblio. Note that if we knew that
biblio has type Bib, then we could have used the pattern <bib>[(x::Any)*] (or its
syntactic sugar <bib>[(x::_)*] since we statically know that all elements have type
Book.

Besides capture variables there is just one further difference between patterns and
types, namely the union operator | is commutative for types while it obeys a first match
policy in patterns. So for instance the following expression returns the sequence of all
the books published in 1999:

match biblio with <bib>[((x::<book year="1999">_) | _)*] -> x

Again, the pattern ((x::<book year="1999">_) | _) is applied to each element
of the sequence. This pattern first checks whether the element has the tag
<book year="1999"> whatever its sequence of elements is, and if it is so it captures
it in x; otherwise it matches the element against the pattern “_”, which always suc-
ceeds without capturing anything (in this way it discards the element). Note that, if we
had instead used <bib>[(x::<book year="1999">_)*] this pattern would have
succeeded only for bibliographies composed only by books published in 1999.

After this brief introduction to regular expression patterns, let us show the pattern errors
we target in this work. Suppose that, for each book, we need to extract all titles, together
with relative authors or editors. In CDuce we can write the following function:1

1 This is not the best way to write this function in CDuce but it serves to outline the problem.

164 G. Castagna, D. Colazzo, and A. Frisch

let extract(x : [Book*]) : [(Title (Author+|Editor+))*] =
transform x with

<book>[z::<title>_ y::(<author>_ |<editor>_)+ _*] -> z @ y

The function extract takes a possibly empty sequence of books and returns a pos-
sibly empty sequence where a title alternates with a non-empty uniform sequence of
authors or editors. The expression transform applies the pattern to each element of
the sequence x and returns the concatenation of all the results of the patterns that have
succeeded. The pattern captures the title in the sequence variable z, the sequence of
authors or editors in the sequence variable y, and returns the concatenation of z and y.

Imagine now that the programmer had put a typo in the pattern, writing instead:

<book>[z::<tite>_ y::(<author>_ |<editor>_)+ _*] -> z @ y

then the CDuce compiler would signal an error (actually, a warning), since no book
starts with a <tite> element, so this pattern cannot ever match. But if the typo had
been in the author (or in the editor) pattern:

<book>[z::<title>_ y::(<autor>_ |<editor>_)+ _*] -> z @ y

then no error would be signalled since the pattern can still match editors. However, all
the books with authors would be filtered out from the result, which would then be of
type [(Title Editor+)*]. If we had used a weaker pattern

<book>[z::<title>_ y::(<autor>_ |<editor>_)* _*] -> z @ y

in which we traded a + for a *, then the transform would return all the titles but only the
editor lists (the author lists being matched by the final _* pattern), yielding a result of
type [(Title Editor*)*]. In this case an error would be signalled but just because
we used a very precise type for the function: had we specified a less precise type such as
[(Title (Author|Editor)*)*], then the error would have passed unnoticed again.

This kind of errors is very frequent when using patterns to code XPath-like expres-
sions. For instance in CDuce it is possible to write a XPath-like expression of the form
e/t, which is syntactic sugar for

transform e with <_>[(x::t|_)*] -> x

Thus for instance the following query extracts all titles from the database biblio of
type Bib:

[biblio]/<book>_/<title>_

If we replace title with tite, thus introducing an incorrect pattern, CDuce type sys-
tem correctly rises a warning stating that the pattern never matches, as emptiness of a
whole expression can be directly checked by result analysis. However, if we want to
extract each title together with the relative price, we can write

[bib]/<book>_/(<title>_ | <prize>_)

which contains an error, as prize occurs instead of price. But since the result is not
empty no warning is raised. Here, the error is hidden by the fact that the pattern is

Error Mining for Regular Expression Patterns 165

partially correct : it does find some match, even if, locally, <prize>_ never matches,
hence is incorrect. Note that, as price is optional, by looking at the query output, when
seeing only titles, we do not know whether prices are not present in that database or
something else went wrong This further motivates improvements of the type system
in order to check at static time that each sub pattern will match in at least one evaluation.
The subpattern <prize>_ does not meet this property.

As previous examples showed, undetected wrong sub-patterns are mainly intro-
duced by the pattern _ (i.e. Any), which always matches and, thus, covers surrounding
failures. However, this is far from being the only case. The error in the last version
of extract function was covered by the final _* which captured all the authors, and
possibly the price, of a book. However, the error would have been hidden even in the
absence of _*. Indeed, if we had written

<book>[z::<title>_ y::(<autor>_ |<editor>_)* Price?] -> z @ y

then all the books with authors would have been filtered out, yielding a result of type
[(Title Editor+)*]. But again no type warning would be issued.

Finally, note that even if we used typos to introduce errors, other errors are possible,
as well, of more conceptual nature. Imagine we want to select all books in which one
author is either “Frisch” or “Colazzo”, here is an example of hidden errors without any
typo

let extract(x : [Book*]) : [Title*] =
transform x with

<book>[z::Title _*
(<author>[<last>"Colazzo"]
| <author>[<last>"Frisch" _]) _*] -> z

in this case no book with Colazzo as author will be selected since, contrary to the pattern
for “Frisch”, there is no pattern to match the <first>_ element. But again no error is
signalled.

The technique to detect these errors will be presented in next section. We will work
on binary trees to stay as close as possible to the implementation level (as these are
the structures actually used in XDuce and CDuce to encode regular expressions) but
also because the presentation will result far simpler. The whole theory can be then
easily extended to general cases. As we will see, thanks to powerful type combinators
of CDuce (union, negation, and intersection) the type rules that we provide are quite
intuitive and simple. Also, the efficient implementation of CDuce type system ensures
good performance of the newly introduced analysis, which relies on the same basic
operators.

3 Error Mining

Let us start by defining a simplified data model and type/pattern algebra. We are going
to work with binary trees whose leaves are taken from a set of constants C. We use the
meta-variable c to range over constants. In CDuce, leaves can also be functions, and the
trees have other kind of nodes (to deal with XML attributes and records).

166 G. Castagna, D. Colazzo, and A. Frisch

Definition 1. A value is a finite term produced by the following grammar:

v ::= c | (v1,v2) ��

Now let us define the type and pattern algebra. For what concerns the contribution of
this paper, namely the detection of useless sub-patterns, we do not need capture vari-
ables. This simplification allows us to give a common definition for types and patterns.
However, we need an explicit way to localize sub-patterns. To do this, we annotate rel-
evant sub-patterns with marks ranged over by the meta-variable ι. These marks can be
thought as locations in the source code kept during the parsing phase and used to dis-
play error messages and warnings. Basic types are ranged over by the meta-variable b.
A basic type denotes a set of constants. We write (c : b) if the constant c belongs to the
basic type b (the same constant can belong to many basic types).

Definition 2. A pattern is a possibly infinite term produced by the following grammar:
p ::= b | (p1, p2) | p1|||p2 | p1&&&p2 | ¬¬¬p | 0 | 1 | pι

with two additional requirements:

1. (regularity) the term must be a regular tree (only but a finite number of different
sub-terms);

2. (contractivity) any infinite branch must contain an infinite number of pair nodes
(p1, p2). ��

Where b ranges overs basic types and 0 and 1 respectively represent the Empty and
Any types. The infiniteness of patterns accounts for recursive types. Of course these
types must be machine representable, therefore we impose a condition of regularity.
The contractivity instead rules out meaningless terms such as p =¬¬¬p (that is, an infinite
unary tree where all nodes are labeled by ¬¬¬). Both conditions are standard when dealing
with recursive types (e.g. see [AC93]).

Note that these patterns are more than enough to encode all the types we used in
Section 2: sequences can be encoded à la Lisp by pairs, pairs can also be used to encode
XML types, while regular expression types are encoded by recursive patterns . So for
instance if we do not consider attributes, the type

type Book = <book>[Title (Author+|Editor+) Price?]
can be encoded as Book = (‘book,(Title,X |Y)), X = (Author,X |(Price, ‘nil)|‘nil) and
Y = (Editor,Y |(Price, ‘nil)|‘nil), where ‘book and ‘nil are singleton (basic) types. For
more details about the encoding, also in the presence of attributes and capture variables,
see [BCF03].

We can now give the semantics for patterns. Intuitively, a pattern (without capture
variable) applied to a value can succeed or fail. Since we want to identify useless sub-
patterns, we will directly introduce an instrumented semantics which keeps track of sub-
patterns that have indeed be used. Given a value v and a pattern p, the result of matching
v against p is a pair v/p = (ε, I) where ε = 0 denotes failure and ε = 1 denotes success,
and I collects all the used ι marks. The definition is given by the following equations:

Error Mining for Regular Expression Patterns 167

c/b = (1,∅) if (c : b)
c/b = (0,∅) if ¬(c : b)
(v1,v2)/b = (0,∅)
c/(p1, p2) = (0,∅)
(v1,v2)/(p1, p2) = (ε, I1 ∪ I2) if v1/p1 = (1, I1),v2/p2 = (ε, I2)
(v1,v2)/(p1, p2) = (0, I1) if v1/p1 = (0, I1)
v/(p1|||p2) = (1, I1) if v/p1 = (1, I1)
v/(p1|||p2) = (ε, I1 ∪ I2) if v/p1 = (0, I1),v/p2 = (ε, I2)
v/(p1&&&p2) = (0, I1) if v/p1 = (0, I1)
v/(p1&&&p2) = (ε, I1 ∪ I2) if v/p1 = (1, I1),v/p2 = (ε2, I2)
v/¬¬¬p = (1− ε, I) if v/p = (ε, I)
v/0 = (0,∅)
v/1 = (1,∅)
v/pι = (0, I) if v/p = (0, I)
v/pι = (1, I ∪{ι}) if v/p = (1, I)

There are no overlapping cases in this definition, and it is well-founded. Indeed, the
values in the right-hand side are smaller than or equal to the value in the left-hand side;
when they are equal (which happens for the patterns p1|||p2, p1&&&p2 and pι), the size of
the patterns get strictly smaller, where the size of a pattern is defined by considering
pair patterns as leaves (the size is finite because of the contractivity condition).

This instrumented semantics for pattern matching captures marks of sub-patterns
which yield a successful match. A sequential traversal order has been chosen: the left
sub-pattern in (p1, p2), p1&&&p2, p1|||p2 is first considered, and the right sub-pattern is
considered only when needed. For the alternation p1|||p2, this corresponds to a natural
naive implementation of a first-match policy; for (p1, p2) and p1&&&p2, this choice is
arbitrary. In all cases, this sequential traversal order is just a way to formalize what are
the used sub-patterns - and thus where to raise warnings for unused sub-patterns - and
does not give any constraint on the actual run-time implementation of pattern matching.

Since patterns do not have capture variable in this presentation, they can be identi-
fied with types. We use the meta-variable t to range over types. The semantics of a type
t is the set of values defined as:

�t� = {v | v/t = (1, I)}

Note that the set of marks I is discarded in this definition. This semantics for types
induces a natural equivalence relation: t1 � t2 ⇐⇒ �t1� = �t2�. From now on, we will
identify types modulo this equivalence. Efficient algorithms have been developed to
check inclusion between types; they obviously provide an effective and efficient way to
check equivalence as well.

The pattern matching operation is intended to be used as a basic block in a program-
ming language (such asCDuce). The type system for the language provides a static type
for the argument of the pattern matching, which is an upper bound for the set of values
that can actually flow to the pattern. The question we are interested in is to determine
whether some part of the pattern is left unused for any value in this type.

Definition 3. Let t be a type and p a pattern. The set of used marks when matching t
against p is defined as:

168 G. Castagna, D. Colazzo, and A. Frisch

I(t, p) =
⋃

v∈�t�,(ε,I)=v/p

I

In words, a marked subpattern of p is used with respect to t if there exists a value v of t
for which the marked subpattern is used when matching v against p.

We will now give an algorithm to compute this set I(t, p). First, we define a rewriting
relation � over type/pattern pairs:

(t,(p1, p2)) � (π1(t), p1)
(t,(p1, p2)) � (π2(t ∧∧∧ (p1,1)), p2)
(t, p1|||p2) � (t, p1)
(t, p1|||p2) � (t ∧∧∧¬¬¬p1, p2)
(t, p1&&&p2) � (t, p1)
(t, p1&&&p2) � (t ∧∧∧ p1, p2)
(t, pι) � (t, p)
(t,¬¬¬p) � (t, p)

The type operators πi() are defined by the equation: �πi(t)� = {vi | (v1,v2) ∈ �t�}.
It has been shown in previous work [Fri04] how to compute these operators effectively.
The theory developed in this work also shows that, starting from a pair (t, p), the set
of pairs (t ′, p′) which are reachable under the reflexive and transitive closure of � is
finite. This comes from the regularity of types and patterns. This set is thus effectively
computable. If we collect all the marks ι such that (t ′, p′ι) is in this set, and such that
some value in t ′ makes the pattern p′ succeed, we obtain exactly the set I(t, p).

Theorem 1. Let t be a type and p a pattern. Then:

I(t, p) = {ι | (t, p) �
� (t ′, p′ι), t ′ ∧∧∧ p′ �� 0}

4 Discussion

4.1 Characteristics of the Analysis

In the previous section we defined the set I(t, p) of all the pattern marks that are used
when matching the pattern p against values in t. We also showed that it is possible
to compute this set by saturating the pair (t, p) with a rewriting that is assured to ter-
minate by the regularity of patterns. Actually, the saturated set can be computed quite
efficiently, by using the very same algorithms implemented in the CDuce type checker.

The computation of this set allows us to detect all the unused subparts of a pattern.
Indeed if we mark all the occurrences of p, then a mark ι of p is not in I(t, p) if and
only if for all values v of type t the sub-pattern marked by ι is not used when matching
v against p. In other words, there is no value in t for which this sub-pattern is useful.

The “if and only if” states that our analysis is exact: we cannot refine it further.
Of course, as usual, it is just “locally” exact since its global precision depends on the
precision of the host type system in inferring the t at issue. For instance, consider the
expression:

match e with p -> e′

Error Mining for Regular Expression Patterns 169

to check whether p is correct the type system will mark all the occurrences of p, deduce
the type t of e, and check whether all the marks of p are in I(t, p). Thus the precision
of the deduction of the correctness of p depends on the precision of the type system
in inferring t: a more precise inference for the type of e might detect more errors in p,
so the analysis is not globally complete, although globally sound (a pattern detected as
wrong is indeed wrong).

Local soundness and completeness were not easy to obtain. Our first attempt to
define correctness of sub-pattern was based on Empty substitutions. According to that
attempt a sub-pattern of a pattern p was considered wrong with respect to an input type
t if for every value v of t there was no difference between matching v against p, or
matching v against the same p in which the sub-pattern is replaced by 0 (i.e. the Empty
type). Now, such a characterization captures all the examples we gave in Section 2 but
it is not sound with respect to all possible wrong patterns since it signals as wrong
some sub-patterns that should not be considered as such. The most trivial example is
the pattern Int|||3: for an input type 3 it signals the pattern Int as wrong. But that is a
trivial case in which the right hand side of | is contained in the left hand-side. A subtler
example where the two branches of the “|” pattern are independent (no inclusion) is
(Even,_)|(Int,Bool). With input type (Even,Bool)|(Odd,Int) the subpattern
(Even,_) is considered wrong according to Empty substitution characterization, while
the analysis of Section 3 correctly fingers as wrong the sub-pattern Bool.

It is important to stress that our definition of “used mark” hardcodes the intuition we
have about errors. We already stressed in the previous section that our definitions reflect
a sequential transversal order for the tree. So for instance if the pattern Int|Int is used,
our analysis fingers as wrong the rightmost occurrence of Int; an analysis signalling
the leftmost occurrence as wrong would be equally correct but, in our opinion, less
intuitive. The same left to right analysis is applied to intersections and pairs, as well.

Also we wondered whether to consider as wrong a pattern such as Int & Int.
Indeed, in our left to right perspective the rightmost Int is useless. Note however that
here it is not the matter of being not used, but of being redundant (for instance, the
Empty substitution argument does not apply). Thus it was clear to us that redundancy
must not considered as an error since it would go against a common programming
practise: programmers prefer to use redundant patterns so as to reuse previous type
definitions and make the code simpler and more readable rather than to write the exact
pattern that ensures the absence of any redundancy: we must not force her/him to use
this second option.

4.2 Extension to CDuce and Other Languages

The analysis developed in Section 3 applies directly to the cited languages based on reg-
ular expression patterns. Xtatic and recent versions of XDuce, however, require a slight
modification to the definition of used sub-patterns since they use a non-deterministic
semantics for the | pattern. This is very simple as it suffices to replace the two cases for
v/(p1|||p2) by

v/(p1|||p2) = (ε1 || ε2, I1 ∪ I2) if v/pi = (εi, Ii)

where || denotes the logical or. The algorithm to compute used sub-patterns is simple to
adapt as well. The rewriting rules for the | pattern are changed to:

170 G. Castagna, D. Colazzo, and A. Frisch

(t, p1|||p2) � (t, p1)
(t, p1|||p2) � (t, p2)

For what concerns the capture variables, we have to modify the definition of matching,
since v/p must not only return a zero/one result but, in case of success, it also must
return a substitution for the variables of the pattern. However, the analysis of Section 3
needs no change, since capture variables technically behaves the same as intersections
with the type Any, as such they do not affect the analysis.

What it really remains to do in order to embed our analysis in the various languages
at issue is to extend its definition to the other patterns present in these languages (for
instance, in CDuce there also is a pattern for records), and to customize the typing rules
of the languages so that they use the analysis. Let us discuss this last point for CDuce.
We already hinted at how the typing rule for match expressions must be modified for
taking into account the analysis. Formally this corresponds to having the following
typing rule:

(for ti ≡ t \���p1 ���\ . . . \���pi−1���)
t ≤ ���p1 ��� | . . . | ��� pn ��� I(t1, pi) = (ε, Ii) ∆′

i = marks(pi)\ Ii

Γ � e : t � ∆ Γ,(ti/pi) � ei : si � ∆i

Γ � match e with p1➞e1 | . . . | pn➞en :
⋃

{i|ti ��Empty} si � ⋃
i=1...n ∆i ∪∆′

i ∪∆

���pi��� denotes the exact type of all values that successfully match pi (namely ���p��� =
{v | v/p succeeds}), while Γ � e : t � ∆ means that, in the type environment Γ, e has
type t and the labels in ∆ denote unused sub-patterns in e; hence ∆ is the error set com-
puted by the type analysis (an expression is correct if the inferred error set is empty).
The condition t ≤ ���p1 ��� | . . . | ��� pn��� ensures that patterns are exhaustive with respect
to all possible values e may produce. This ensures that well-typed terms never get stuck
at run-time (at least one branch matches). (ti/pi) denotes the set of type assignments of
pi variables, computed by matching the pattern against the type ti (see [FCB02]). Each
ti is computed by taking into account the first-match policy, so the ei is typed in an en-
vironment in which each pi is matched over values that cannot be matched by previous
branches. Incorrect sub-patterns in pi’s are computed by subtracting from all marks of
each pi, denoted by marks(pi), the set of used patterns I(ti, pi).

Error mining for iterators is not so straightforward, due to typing based on case
analysis over the argument type. For example, if e is proved to have type [S|U], then
the with part of

transform e with p -> e′

is typed twice, once under the assumption that the argument has type S and once under
the assumption that the type for the argument is U , thus inferring two types TS and TU ,
together with two errors sets ∆S and ∆U . The final inferred type is [TS|TU], while the
final errors set is ∆S ∩ ∆U . This is because a sub-pattern in p is incorrect (unused) if it
is so for both alternatives S and U (or, equivalently, it is correct if it is correct (used)
with respect to at least one alternative among S and U). This technique was introduced
and proved to be correct in [Col04, CGMS04]. Thus the complete formalization of error
mining rules for iterators such as transform, follows those established for the XQuery

Error Mining for Regular Expression Patterns 171

iterator for in the cited papers, relying on the technique of Section 3 to infer incorrect
fragments of patterns.

A similar technique must be used for overloaded functions: inCDuce an overloaded
function is a function whose type is an intersection of arrows and the body of the func-
tion is typed once for each type in the intersection; of course are wrong only those
occurrences of patterns that result unused in all these type deductions; once more an
intersection applies. To implement this just a slight modification of the original typing
rule is required, since we only need to add error sets to judgements and opportunely
combine them in a way that strictly resembles error mining for iterators:

Γ,(x : ti),(f :
∧∧∧

i=1..n ti →→→ si) � e : si � ∆i i = 1..n

Γ � fun f (t1 →→→ s1; . . . ; tn →→→ sn)(x) = e : (
∧∧∧

i=1..n ti →→→ si) � ⋂
i=1..n ∆i

The extension of other rules is even simpler, and omitted for space reasons.
It is worth observing that the presented error mining technique preserves the typing

discipline in the hosting language, since error-mining depends on type-inference but
not viceversa. In other words, the technique we have described is not intrusive and can
be seen as an add-on of the hosting type system. However, in order to make error-
mining more precise, that is to increase the number of errors detected at static time,
one may consider to change the type discipline of the language. This may be needed
when the type system infers a not-empty sequence type for expressions that instead
always evaluate to the empty sequence. This can raise from an interaction between /
and transform: for an example see [Col04] where the problem has been solved for
XQuery. At this stage, we did not investigate this problem in the context of languages
based on regular expression patterns, and we postpone this to future work.

Acknowledgments. This work was partially supported by the RNTL project "Graph-
Duce" and by the ACI project "Transformation Languages for XML: Logics and Appli-
cations".

References

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transac-
tions on Programming Languages and Systems, 15(4), September 1993.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general pur-
pose language. In ICFP ’03, 8th ACM International Conference on Functional
Programming, pages 51–63, Uppsala, Sweden, 2003. ACM Press.

[BCM05] V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for XML
query processing. In PADL 05, 7th International Symposium on Practical Aspects of
Declarative Languages, number 3350 in LNCS, pages 235–252. Springer, January
2005.

[BFS04] Niklas Broberg, Andreas Farre, and Josef Svenningsson. Regular expression pat-
terns. In ICFP ’04: Proceedings of the ninth ACM SIGPLAN international confer-
ence on Functional programming, pages 67–78, New York, NY, USA, 2004. ACM
Press.

[BMS05] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data access in
Cω. In ECOOP 2005, LNCS, 2005. To appear.

172 G. Castagna, D. Colazzo, and A. Frisch

[CGMS04] Dario Colazzo, Giorgio Ghelli, Paolo Manghi, and Carlo Sartiani. Types for Path
Correctness for XML Queries. In Proceedings of the ACM International Conference
on Functional Programming (ICFP), Snowbird, Utah, USA, 2004.

[Col04] Dario Colazzo. Path Correctness for XML Queries: Characterization and Static
Type Checking. PhD thesis, Dipartimento di Informatica, Università di Pisa, 2004.

[DFF+05] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra, Kristoffer
Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery 1.0 and XPath
2.0 Formal Semantics. Technical report, World Wide Web Consortium, February
2005. W3C Working Draft.

[FCB02] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyping.
In Proceedings, Seventeenth Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 137–146. IEEE Computer Society Press, 2002.

[Fri04] Alain Frisch. Théorie, conception et réalisation d’un langage de programmation
fonctionnel adapté à XML. PhD thesis, Université Paris 7, December 2004.

[GP03] Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In European Con-
ference on Object-Oriented Programming (ECOOP), Darmstadt, Germany, 2003.
A preliminary version was presented at FOOL ’03.

[Hos00] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The University of
Tokyo, Japan, December 2000.

[HP00] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing lan-
guage. In Proceedings of Third International Workshop on the Web and Databases
(WebDB2000), 2000.

[HP01] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for
XML. In The 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2001.

[LS04] K. Zhuo Ming Lu and M. Sulzmann. An implementation of subtyping among reg-
ular expression types. In Proc. of APLAS’04, volume 3302 of LNCS, pages 57–73.
Springer-Verlag, 2004.

[OAC+04] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming lan-
guage. Technical Report IC/2004/64, École Polytechnique Fédérale de Lausanne,
2004. Latest version at http://scala.epfl.ch.

Reconstructing an Alternate Periodical Binary

Matrix from Its Orthogonal Projections

Marie-Christine Costa, Fethi Jarray, and Christophe Picouleau

Laboratoire CEDRIC, 292 rue Saint-Martin, 75003 Paris, France
{costa, fethi.jarray, chp}@cnam.fr

Abstract. This paper deals with the reconstruction of an alternate pe-
riodical binary matrix from its orthogonal projections. For a fixed vector
(p, q), a binary matrix A is alternate periodical when Ai,j +Ai+p,j+q = 1.
For vectors (p = 1, q = 1), (p, 0) and (0, q) we propose polynomial time al-
gorithms to reconstruct an alternate periodical binary matrix from both
its vertical and horizontal projections if such a matrix exists.

Keywords: binary matrix, alternate periodicity, discrete tomography,
polynomial time algorithm.

1 Introduction

Discrete tomography deals with the reconstruction of discrete homogenous ob-
jects regarded as binary matrices from their projections. The problem of recon-
structing a m × n binary matrix from its orthogonal projections H and V is
the following : given H = (h1, . . . , hm) and V = (v1, . . . , vn) two nonnegative
integer vectors find a binary matrix A such that the number of ones in every row
i (resp. column j) equals hi (resp. vj). The reader can find results about this
basic problem in the seminal work of Ryser [8] and in the paper of Brualdi [2].
The reader is also referred to the book of Hermann and Kuba [7] for an overview
on discrete tomography.

In many applications such as image processing and electron microscopy, the
only orthogonal projections are not sufficient to uniquely determine matrices.
Fortunately, objects that occur in practical applications usually exhibit certain
properties. Hence we seek to reconstruct binary matrices under additional con-
straints like connectivity or convexity for instance. Some special problems such as
the reconstruction of polyominoes (connected sets) are NP-hard (see [1] and [9]).
Other cases such as the reconstruction of hv-convex polyominoes are polynomial
(see [1] and [4]).

The problem of reconstructing periodical objects arises especially on the
reconstruction of crystalline structures. Del Lungo and al. [5] studied the (p, q)-
periodical matrices reconstructing problem. A binary matrix A is said to be
(p, q)-periodical if Ai,j = Ai+p,j+q for 1 ≤ i ≤ m − p and 1 ≤ j ≤ n − q. From
the orthogonal projections and the (p, q)-periodicity, they define the “boxes” of
the matrix and they establish some properties of these boxes. In the case of

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 173–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 M.-C. Costa, F. Jarray, and C. Picouleau

(1, 1)-periodical matrix, these boxes are reduced to single cells and it is possible
to determine the value of some boxes and propagate these values into the matrix
using the (1, 1)-periodicity. Then the cells with an undermined value constitute
“cycles” and the assignment of the values to these cycles is performed using
the algorithm of Ryser [8] that reconstructs a binary matrix from its orthogonal
projections. Hence the case (1, 1)-periodicity is solved in polynomial time. In the
sequel of their paper, the authors solve in polynomial time a particular case of
the (1, q)-periodicity problem.

In this paper, we will focus on the binary alternate periodical matrices re-
construction problem because on the crystalline structures the atoms may be
disposed in a periodical or an alternate periodical manner. Given two nonnega-
tive integers p and q, a binary matrix A is a (p, q) alternate periodical matrix if
Ai,j + Ai+p,j+q = 1 for 1 ≤ i ≤ m − p and 1 ≤ j ≤ n − q.

The paper is organized as follows. Section 2 introduces the problem and
develops general properties of alternate periodical matrices. In section 3, we
solve the (1, 1)-alternate periodical matrices reconstruction problem. Section 4
is devoted to the case of (p, 0) or (0, q)-alternate periodical matrices.

2 (p, q)-Alternate Periodical Matrix

Let A be a m × n binary matrix. The horizontal projection of A is the vector
H = (h1, . . . , hm) such that hi =

∑n
j=1 Aij is the sum of the elements lying

on row i. The vertical projection of A is defined analogously as the vector V =
(v1, . . . , vn) where vj =

∑m
i=1 Aij is the sum of the elements on column j. Both

projections H and V constitute the orthogonal projections of A.

Definition 1. A is a (p, q)-alternate periodical matrix if Ai,j +Ai+p,j+q = 1 for
i = 1, . . . , m − p and j = 1, . . . , n − q, i.e. the entries (i, j) and (i + p, j + q) of
A have opposite values.

Given vectors H = (h1, . . . , hm) and V = (v1, . . . , vn), our problem con-
sists in finding a (p, q)-alternate periodical matrix with H and V as orthogonal
projections.

Now, we give a property of the orthogonal projections H and V of a (p, q)-
alternate periodical matrix.

Proposition 1. i) |hi + hi+p − n| ≤ q, i = 1, . . . , m − p;
ii) |vj + vj+q − m| ≤ p, j = 1, . . . , n − q.

Proof. We have hi =
∑n

j=1 Ai,j =
∑n−q

j=1 Ai,j +
∑n

j=n−q+1 Ai,j . So, taking into
account the (p, q)-alternate periodicity, we get :
hi =

∑n
j=1+q(1 − Ai+p,j) +

∑n
j=n−q+1 Ai,j = n − hi+p − ∑q

j=1(1 − Ai+p,j) +∑n
j=n−q+1 Ai,j for 1 ≤ i ≤ m − p. Hence |hi + hi+p − n| = |∑n

j=n−q+1 Ai,j −∑q
j=1(1 − Ai+p,j)| ≤ q.
Proceeding in the same way for the vertical projection we obtain ii). ��

Reconstructing an Alternate Periodical Binary Matrix 175

It is convenient to introduce the definitions of boxes (see Figure 1):

Definition 2. RHboxi is the set of entries {(i, n− q +1), . . . , (i, n)}; its weight
is wRHi = Σn

j=n−q+1Ai,j

LHboxi is the set of entries {(i, 1), . . . , (i, q)}; its weight is wLHi = Σq
j=1Ai,j

UV boxj is the set of entries {(1, j), . . . , (p, j)}; its weight is wUVj = Σp
i=1Ai,j

DV boxj is the set of entries {(m − p + 1, j), . . . , (m, j)}; its weight is wDVj =
Σm

i=m−p+1Ai,j

Remark 1. For an alternate periodical matrix A we have wRHi + wLHi+p =
hi + hi+p − n + q and wDVj + wUVj+q = vj + vj+q − m + p.

0 0 0

1

1

0

10

11

0

0 0

0 1 11

0

1

1

00

1 0

10

10

11

0011

0

1 0 03

4

4

5

3

5

4 5 4 3

10

1

0

0 0 01

1

1 1

1

1

10

3

1

5

0

3

1

34

hi

vj

RHbox2

DV box1

UV box4

LHbox4

Fig. 1. A (2,3)-alternate periodical matrix and its boxes

3 (1, 1)-Alternate Periodical Matrix

In this section, we will study the case where (p, q) = (1, 1).

Definition 3. Let A be a binary matrix, Ai,j is a border entry if i = 1 or i = m
or j = 1 or j = n. The four entries A1,1, A1,n, Am,1 and Am,n are the corners.

Here each box is reduced to a singleton, thus its weight is either one or zero.
So the previous remark can be written as:
For 1 ≤ i ≤ m − 1:
• if hi + hi+1 = n + 1 then Ai,n = Ai+1,1 = 1,
• if hi + hi+1 = n − 1 then Ai,n = Ai+1,1 = 0,
• if hi + hi+1 = n then Ai,n + Ai+1,1 = 1.

For 1 ≤ j ≤ n − 1:
• if vj + vj+1 = m + 1 then Am,j = A1,j+1 = 1,
• if vj + vj+1 = m − 1 then Am,j = A1,j+1 = 0,
• if vj + vj+1 = m then Am,j + A1,j+1 = 1.

176 M.-C. Costa, F. Jarray, and C. Picouleau

Thus any border entry Ai,j that is not a corner is “matched”with another
border entry and the corner A1,n (resp. Am,1) is matched with both A2,1 and
Am,n−1 (resp. A1,2 and Am−1,n). Moreover, for any couple, the knowledge of the
value of one entry is sufficient to determine the value of the second one.

As in [5], we introduce the function mod[n] which slightly differs from the
well known modn function.
mod[n] : IN → IN

x mod [n] =
{

x mod n if x mod n �= 0
n else

Definition 4. Two entries Ai,j and Ai′,j′ are two neighbors if i′ = i+1 mod [m]
and j′ = j + 1 mod [n].

This definition of neighborhood induces a graph G(X, E) where the nodes of
X correspond to the entries of A and the edge set E represents the neighborhood
relation : [Ai,j , Ai′,j′] ∈ E iff Ai,j and Ai′,j′ are two neighbors. Since each entry
has two neighbors exactly, G is a collection of cycles. The nodes of a cycle are
{A(i+k) mod [m],(j+k) mod [n], k ∈ ZZ}. By convention, we say that the cycle cj

begins on its upper left most entry A1,j (see Figure 2). Note that from the (1, 1)-
alternate periodicity of A and the remark above, the value of every entry of a
cycle is determined by the knowledge of the value of one of its entries.

Proposition 2. The length of the cycles is LCM(m, n).

Proof. We have (i+k) mod [m] = i and (j+k) mod [n] = j only if k is a multiple
of both m and n. So i = (i + k)mod m and j = (j + k) mod [n] only if k is a
multiple of LCM(m, n) and the length of every cycle is LCM(m, n). ��

In matrix A, a set of positions/entries c is said to be an (1, 1)-alternate
cycle if Ai,j + A(i+1) mod [m],(j+1) mod [n] = 1 for each Ai,j of c except for the
entries A1,1 and Am,n. Despite the cycle containing the entries A1,1 and Am,n

is not properly a cycle according to the terminology of graph theory (from our
definition A1,1 and Am,n and are not adjacent), we make no distinction between
this (1, 1)-alternate cycle and the others.

.
..

.
.

.

. .
. .

.

.

����� c1 ��������� 	� A1,1

Fig. 2. The cycles of an (1, 1)-alternate periodical matrix

Reconstructing an Alternate Periodical Binary Matrix 177

3.1 Reconstruction of an (1, 1)-Alternate Periodical Matrix

We will design a polynomial time algorithm that reconstruct an (1, 1)-alternate
periodical matrix from vectors H and V , if such a matrix exists.

In a first step, using the values of hi +hi+1, 1 ≤ i ≤ m−1, and vj +vj+1, 1 ≤
j ≤ n−1, we determine the border entries for which we can assign the value 0 or
1. Then for every entry of a cycle containing such an entry we can also assign the
value 0 or 1. At this step, we verify the consistency, i.e. there is no entry taking
both values 0 and 1. If an inconsistency emerges then there is no (1, 1)-alternate
periodical matrix with projections H and V . If the values of all the entries of A
are determined then the problem is solved.

In a second step, we suppose that there are some entries of A for which the
value is not fixed. From the matching between the border entries, all these entries
are covered by some (1, 1)-alternate cycles.

We denote by xj the value of the entry A1,j where the (1, 1)-alternate cycle
cj begins. For an (1, 1)-alternate cycle beginning on A1,j , we can determine the
number of 1’s per row and column of A according to the value of xj (see Table
1). The values a, a′, b and b′ may be considered as the projections of cj .

Table 1. Projections of cj and values of a, a′, b and b′

xj = 1 xj = 0

Odd row a a′

Even row a′ a

Column j′ : j′ = j mod [2] b b′

Column j′ : j′ = 1 + j mod [2] b′ b

m even m odd n even n odd

a LCM(m,n)
m

�LCM(m,n)
2m

� - -

a′ 0 �LCM(m,n)
2m

� - -

b - - LCM(m,n)
n

�LCM(m,n)
2n

�
b′ - - 0 �LCM(m,n)

2n
�

′ ′

We denote by h′
i (resp. v′j) the number of 1’s that remains to be placed on

row i, i = 1, . . . , m, (resp. column j, j = 1, . . . , n) after the first step. The (1, 1)-
alternate cycles with undetermined values should have H ′ and V ′ as projections.

Since the orthogonal projections of a cycle cj depend only on xj and on the
parity of j, we introduce the variables x =

∑
j, even xj and y =

∑
j, odd xj . Ie

and Io count the number of cycles starting on even columns and odd columns
respectively and which should be placed after the first step. Then we have to
consider the following linear system:

S

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ax + ay + a′(Ie − x) + a′(Io − y) = h′
1 (1)

a′x + a′y + a(Ie − x) + a(Io − y) = h′
2 (2)

b′x + by + b(Ie − x) + b′(Io − y) = v′1 (3)
bx + b′y + b′(Ie − x) + b(Io − y) = v′2 (4)
x ≤ Ie, y ≤ Io

The constraint (1) ensures the satisfaction of the horizontal projections of the
odd rows and the constraint (2) ensures those of the even rows. The constraints
(3) and (4) ensure the satisfaction of the projections of the columns.

178 M.-C. Costa, F. Jarray, and C. Picouleau

We deduce from S the following necessary conditions for an (1, 1)-alternate
periodical matrix to exist :

h′
1 + h′

2 = (a + a′)Ie + (a + a′)Io =
LCM(m, n)

m
(Ie + Io)

v′1 + v′2 = (b + b′)Ie + (b + b′)Io =
LCM(m, n)

n
(Ie + Io).

Moreover, an (1, 1)-alternate cycle has LCM(m,n)
m 1’s on the first two rows and

LCM(m,n)
n 1’s on the the first two columns. We suppose that these conditions

hold. Then S can be simplified by eliminating (2) and (4):

S′

⎧
⎨

⎩

(a − a′)(x + y) = h′
1 − a′Ie − a′Io (1′)

(b′ − b)(x − y) = v′1 − bIe − b′Io (2′)
x ≤ Ie, y ≤ Io

Three cases can be distinguished according to the values of a, a′, b and b′:

• if a �= a′ and b �= b′ then S′ admits the unique solution

x =
(h′

1 − a′Ie − a′Io)(b − b′) − (v′1 − bIe − b′Io)(a − a′)
2(a − a′)(b − b′)

y =
(v′1 − bIe − b′Io)(a − a′) + (h′

1 − a′Ie − a′Io)(b − b′)
2(a − a′)(b − b′)

whenever x and y are integer and x ≤ Ie, y ≤ Io.
• if a = a′ then (see Table 1) m is odd and a = a′ = �LCM(m,n)

2m � =
	LCM(m,n)

2m
, and since LCM(m, n) is even, n is even and then b �= b′ and
b′ = 0. Equation (1’) becomes h′

1 = a(Ie + Io) which is satisfied by the defi-
nitions of Ie, Io and a. Thus the system S′ is : y − x = v′

1
b − Ie with x ≤ Ie

and y ≤ Io and has solutions:

{(x = Ie − k, y =
v′1
b

− k) : k ≤ min(Ie,
v′1
b

), k ∈ IN} if Io >
v′
1

b

{(x = Ie + Io − v′1
b

− k, y = Io − k) : k ≤ min(Io, Ie + Io − v′1
b

), k ∈ IN} else.

• if b = b′ then by the same way, S′ has the following solutions :

{(x =
h′

1

a
− k, y = k) : k ≤ min(Io,

h′
1

a
), k ∈ IN} if

h′
1

a
≤ Ie

{(x = Ie − k, y =
h′

1

a
− Ie + k) : k ≤ min(Ie, Ie + Io − h′

1

a
), k ∈ IN} else.

Reconstructing an Alternate Periodical Binary Matrix 179

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
�����
��
��
��

3

1

2

2

2 3 1

Solution Boxes with determined value

�

�

�

�

� �

� � �

� � �

� � �

�

�

� �

h′
i

v′
j

�

�

� �

� � � � �

� � � �

� � � �

� � � �

hi

�

�

�

�

� � � �� vj

hi

vj

�����	
�� �����

Fig. 3. Reconstruction of an (1, 1)-alternate periodical matrix

Finally, when S′ has a solution, xj ’s are obtained by setting the value 1 to
x variables xj such that j is even and to y variables xj such that j is odd. The
other xj ’s are set to 0.

Example 1. We will illustrate our algorithm by an example: the goal is to re-
construct an (1, 1)-binary alternate periodical matrix with projections H =
(3, 1, 2, 2) and V = (2, 2, 3, 1) (see Figure 3). The entries (boxes) A2,4 and A3,1

receive the value 0 because h2 + h3 −n + q = 0. Propagating along the direction
(1, 1), the entries A1,3 and A4,2 are set to 1. Thus we obtain H ′ = (2, 1, 2, 1)
and V ′ = (2, 1, 2, 1) and we are concerned with three (1, 1)-alternate cycles c1,
c2 and c4. The length of these ci’s is LCM(4, 4) = 4. We have Ie = 2, Io = 1,
a = b = 1 and a′ = b′ = 0.

A solution to S′ is (x, y) = (1, 1) (in our example S′ has an unique solution)
and we have x1 = 1 and x2 + x4 = 1. Choosing x2 = 0 and x4 = 1 we have that
c2 begins with an entry with the value 0 and c1 and c4 begin with an entry with
value 1 (see Figure 3). One can remark that for x2 = 1 and x4 = 0, we obtain a
second (1, 1)-alternate periodical matrix with the same orthogonal projections.

Proposition 3. The time complexity of the reconstruction of an (1, 1)-alternate
periodical binary matrix is O(mn).

Proof. It takes at most O(m + n) operations to determine the matching of the
border entries and the weight of any box. The determination of the ci’s and
the propagation along the (1, 1) direction take O(mn). The system S′ is solved
in constant time. Thus, the total computational complexity of the proposed
algorithm is O(mn). ��

4 (p, 0)-Alternate Periodical Matrix

In this section we consider the case where the matrices are (p, 0)-alternate peri-
odical, i.e. the rows have a p-alternate periodicity and the columns don’t have
any periodicity. Using symmetry the case of (0, q)-alternate periodical matrices
is solved as well.

180 M.-C. Costa, F. Jarray, and C. Picouleau

r

r

r

p − r

2p2p

���� � � m = 2kp + r ���� � � m = (2k + 1)p + r

Fig. 4. The (p, 0) case: Partition of rows

Remark 2. It’s important to note that due to the (p, 0)-alternate periodicity, on
each column, the sum of 2p consecutive elements is exactly p.

We distiguish two cases according to m and p (see Figure 4) :

4.1 Case 1 m = 2kp + r, r ≤ p

We make the following partition of the rows : the first block contains the rows
{1, . . . , r}, the k following blocks have 2p rows {2pi+ j + r, 1 ≤ j ≤ 2p}, 0 ≤ i ≤
k − 1. We denote by v′j , j = 1, . . . , n, the vertical projection of the first block.
By the remark above, we have v′j = vj − kp, j = 1, . . . , n. This gives us a way
to reconstruct a solution :

1. Using the algorithm of Ryser [8], reconstruct a r×n binary matrix respecting
the horizontal projection h1, . . . , hr and the vertical projection v′1, . . . , v

′
n, for

the first block
2. For each row i = r + 1, . . . , p, set hi entries to 1
3. Propagate with (p, 0)-alternate periodicity the values of the first p rows.

4.2 Case 2 m = 2kp + p + r, r ≤ p

We use the following partition of the rows : the first block has rows {1, . . . , r},
the second block contains the rows {r + 1, . . . , p}, the third block has r rows
{p+1, . . . , p+ r}; the k following blocks have 2p rows {(2i+1)p+ j + r, 1 ≤ j ≤
2p}, 0 ≤ i ≤ k − 1. We denote by v′j , j = 1, . . . , n, the vertical projection of the
second block. We note that there are r elements equal to 1 and r elements equal to
0 per column on the first and third blocks (rows {1, . . . , r} and {p+1, . . . , p+r}).
So we get v′j = vj − kp − r, j = 1, . . . , n. The algorithm proceeds according to
the following steps :

Reconstructing an Alternate Periodical Binary Matrix 181

1. Using the algorithm of Ryser [8], reconstruct a (p − r) × n binary matrix
respecting the horizontal projection hr+1, . . . , hp and the vertical projection
v′1, . . . , v′n, for the second block

2. For each row i = 1, . . . , r, set hi entries to 1
3. Propagate with (p, 0)-alternate periodicity the values of the first p rows.

5 Conclusion

In this paper we have established general properties of (p, q)-alternate periodical
matrices and we have proposed polynomial time algorithms to reconstruct such
matrices from their orthogonal projections in the cases where (p, q) = (1, 1) and
p = 0 or q = 0. As far as the authors know, this paper is the first study of
reconstructing binary matrices under alternate periodicity constraints. Several
future research extensions of this research could be considered. Examples of these
extensions include the following considerations, for a given (p, q), each line with
direction (p, q) is either (p, q)-periodical or (p, q)-alternate periodical.

References

1. Barcucci, E., Del Lungo, A.: Reconstructing convex polyominoes from their horizon-
tal and vertical projections. Theoretical computer science 155(1) (1996) 321-347.

2. Brualdi, R.A.: Matrices of zeros and ones with fixed row and column sum. Linear
algebra and its applications 3 (1980) 159-231.

3. Chrobak, M., Dürr, C.: Reconstructing Polyatomic Structures from X-Rays: NP
Completness proof for three Atoms. Theoretical computer science, 259(1) (2001)
81-98.

4. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal pro-
jections. Information Processing Letters, 69 (1999) 283-289.

5. Del Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Reconstruction under Periodicity
Constraints. ICALP 1 (2002) 38-56.

6. Kuba, A., Hermann, G.T.: Discrete Tomography: a historical overview. Discrete
Tomography: Foundations, Algorithms and Applications. Birkhauser (1999) 3-33.

7. Kuba, A., Hermann, G.T.: Discrete Tomography: Foundations, Algorithms and Ap-
plications. Birkhauser (1999).

8. Ryser, H.J.: Combinatorial Properties of Matrices of Zeros and Ones. Canad. J.
Math 9 (1957) 371-377.

9. Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projec-
tions. Information Processing Letters 77(5-6) (2001) 225-229.

Inapproximability Results for the Lateral Gene
Transfer Problem�

Bhaskar DasGupta1, Sergio Ferrarini2, Uthra Gopalakrishnan1,
and Nisha Raj Paryani1

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7053

{dasgupta, ugopalak, nparyani}@cs.uic.edu
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza Leonardo da Vinci 32 20133, Milano, Italy
sferrarini@gmail.com

Abstract. This paper concerns the Lateral Gene Transfer Problem.
This minimization problem, defined by Hallet and Lagergren [6], is that
of finding the most parsimonious lateral gene transfer scenario for a given
pair of gene and species trees. Our main results are the following:

(a) We show that it is not possible to approximate the problem in poly-
nomial time within an approximation ratio of 1+ε, for some constant
ε > 0 unless P=NP. We also provide explicit values of ε for the above
claim.

(b) We provide an upper bound on the cost of any 1-active scenario and
prove the tightness of this bound.

1 Introduction

A fundamental problem in the field of evolutionary molecular biology is that
of inferring information on the evolutionary relationships between taxa from a
given set of gene trees (i.e., an evolutionary model for a set of gene families). The
underlying assumption is that gene families evolve in the same way as species;
therefore a gene tree should determine the species tree. Unfortunately, there
are a number of biological events, such as gene duplications, gene losses and
lateral gene transfers (also called horizontal gene transfers) (e.g., see [5, 9]) that
may occur during evolution and that generate “differences” between a gene and
a species tree. For these reasons, a single gene tree is usually not sufficient to
reliably build the species trees, but it is necessary to consider a set a gene families
to perform the construction. Since the gene trees may contain contradictory
information, a natural problem that arises is that of reconciling the different gene
trees into a single species tree. Such a reconciliation process can be naturally
formulated as an optimization problem where the goal is to minimize the number

� This research was supported by NSF grants CCR-0296041, CCR-0206795, CCR-
0208749 and IIS-0346973.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 182–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inapproximability Results for the Lateral Gene Transfer Problem 183

of biological events necessary to explain the “disagreements” between the gene
trees and the species tree.

Several models have been proposed to solve the reconciliation problem. Each
of these models is based on the assumption that only a restricted class of genomic
events may occur. Here we focus on the so-called lateral gene transfer model
defined by Hallett and Lagergren [6]. According to this model, all differences
between the gene and the species trees are explained in terms of lateral gene
transfer events. A lateral gene transfer is an event that causes some portion of
the evolution represented by an arc in the gene tree to occur along one arc in
the species tree, and the remaining portion of evolution to occur along another
arc of the species tree. We say that the lateral transfer occurs between these
two arcs of the species tree and involves the arc from the gene tree. Given a
gene tree T and a species tree S (which we assume to be correct), an interesting
optimization problem is that of identifying a scenario that is able to explain the
differences between the two trees with the minimum number of lateral transfers.
We refer to this problem as the Lateral Gene Transfer Problem, in short
as the LGT Problem.

In this paper we investigate efficient approximability issues of the LGT

Problem. We consider both the special case of activity level one and the gen-
eral case of activity level some α ≥ 1, and establish hardness of efficient ap-
proximation for both cases. More specifically, we will prove that, unless P=NP,
no algorithm can achieve an approximation ratio smaller than 1 + ε for some
constant ε > 0. By easy calculations we also provide explicit values of ε for the
above claim. We also show that an upper bound on the cost of any 1-active
lateral transfer scenario is given by n − 2 where n is the number of leaves in the
gene tree, and show that this upper bound is tight by explicitly giving a pair of
species and gene trees with this cost.

1.1 Basic Definitions and Notations

In the remaining sections we consider just rooted binary trees, i.e., trees where
all vertices have out-degree at most two and all arcs are directed from the root
to the leaves. Given a rooted tree T , we denote with V (T) the set of vertices
and with A(T) the set of arcs. The leaves of T are denoted by L(T) and the root
by r(T). We say that two distinct vertices v, v′ are children of u in T if 〈u, v〉,
〈u, v′〉 ∈ A(T). We denote the left son of a vertex u ∈ V (T) as lsT (u), the right
son as rsT (u), and the parent of u as pT (u).

Let F be a rooted forest, that is, a union of disjoint rooted trees. If two
vertices u, v ∈ V (F) are connected by a directed path from u to v, then v is a
descendent of u in F , and we write v ≤F u (note that every node is a descendent
of itself). If u �= v, then v is a proper descendent of u in F (<F). Similarly, we
can define ancestors (≥F) and proper ancestors (>F). Moreover, let T be a
rooted tree and X ⊂ V (T). Then T [X] denotes the forest of subtrees induced
by X.

Let {ti : 1 ≤ i ≤ n} be a forest of non-empty rooted directed trees over a
label set L. We use the notation T =≺ t1 · t2 · . . . · tn 	 to represent the tree built

184 B. DasGupta et al.

t1 t2

tn-1

tn

T

Fig. 1. The tree T =≺ t1 · t2 · . . . · tn �

by connecting the subtrees ti as shown in Figure 1. As a shorthand, we allow
the notation ≺

∏n
i=1 ti 	 to mean ≺ t1 · t2 · . . . · tn 	.

A mixed graph G is a graph where arcs may be both directed and undirected.
We denote the set of directed arcs as A(G) and the undirected arcs, or edges,
as E(G). ε(A) indicates the set of edges underlying A(G). Given a set of arcs A
and a mixed graph G, we denote by G∪A the mixed graph with arcs A(G)∪A,
egdes E(G), and vertices V (G). Similarly is defined G ∪ E, where E is a set
of edges. A directed mixed cycle is a cycle on a mixed graph that may contain
both arcs and edges, and where the cycle can be traversed so that the direction
of the arcs that are part of the cycle is respected. Given a graph G and an arc
〈x, y〉 ∈ A(G), we say that we subdivide arc 〈x, y〉 if we replace it with a path
from x to y that doesn’t traverse any vertex in V (G) \ {x, y}. We say that a
graph H is a subdivision of a graph G, if H is obtained from G by subdividing
some of the arcs in A(G) and adding new arcs between vertices in V (H) \V (G).

Finally, a (1 + ε)-approximate solution (or simply an (1 + ε)-approximation)
of a minimization problem is a solution with an objective value no larger than
1+ε times the value of the optimum, and an algorithm achieving such a solution
is said to have an approximation ratio of at most 1 + ε.

1.2 Basic Concepts of the Evolutionary Model

In this section we define some basic concepts for the evolutionary model we
consider. We will first briefly introduce the concepts of a gene tree and a species
tree. We will then present the concept of least common ancestor mapping and
define a reconciliation model based on lateral gene transfer events.

Consider a set I of N biological taxa. The model for their evolutionary history
is a rooted full binary tree S, where each of the N leaves is uniquely labeled by
one element from I, and each internal node is unlabeled. Such tree S is called a
species tree. An internal node in a species tree is equivalently treated as a subset
(or cluster), which contains the labels of all leaves of the subtree rooted at that
node. Thus, we can express the relation ”m is a descendant of n” in set theory
notation by m ⊂ n.

A gene tree T is a model for the evolution of a gene family. It is a rooted
full binary tree where the internal nodes are unlabeled and the leaves are la-
beled by elements from I. As opposed to a species tree, labels in a gene tree
may not be unique. In this case, internal nodes are represented by a multiset

Inapproximability Results for the Lateral Gene Transfer Problem 185

{xi1
1 , xi2

2 , . . . , xim
m }, where ij is the number of leaves labeled with xj , among those

reachable from the node. The cluster of an internal node is defined as the set
{x1, x2, . . . , xm}.

Let Y be a rooted tree and L(Y) the set of its leaf labels. The least common
ancestor (LCA) of X ⊆ L(Y), denoted by lcaY (X), is defined as the node y ∈ Y
such that X ⊆ y and X �⊆ w for every proper descendent w of y. Given a gene tree
T and a species tree S such that L(T) ⊆ L(S), we define λT,S : V (T) −→ V (S)
as a correspondence between nodes of the gene tree T and nodes of the species
trees S. For any node t ∈ T , λT,S(t) is the least common ancestor of t in S, i.e.,
λT,S(t) = lcaS(t). The function λT,S is known as the LCA mapping from T to S.

1.2.1 The Lateral Gene Transfer Model
We are now ready to introduce the evolutionary model based on the concept of
lateral gene transfers. This model was developed by Hallet and Lagergren [6]. It
assumes a simplified evolutionary process where the only biological events that
can occur are the so-called lateral gene transfers. In this framework, a natural
problem is that of finding the most parsimonious scenario that explains in a
biologically meaningful way how, via these events, the differences between the
gene tree and the species tree arose. The definition of lateral transfer scenario is
based on the concept of lateral transfer scheme.

Definition 1. A lateral transfer scheme for a species tree S is a pair (S′, A′)
where S′ is a subdivision of S and A′ ⊆ {〈x, y〉 : x, y ∈ V (S′) \ V (S), x �= y}
such that:

1. the mixed graph S′ ∪ ε(A′) does not contain a directed mixed cycle.
2. the tail of each arc in A′ has in-degree 1 and out-degree 2 in S′ ∪ A′.
3. the head of each arc in A′ has in-degree 2 and out-degree 1 in S′ ∪ A′.

A lateral transfer scheme shows where the lateral transfers have occurred during
evolution. The arcs in A′ represent the set of lateral transfers. Note that the first
condition in Definition 1 ensures that the scheme for a species tree S respects
the partial order of evolution implied by S. Clearly, this is a required property
for the model.

A lateral transfer scheme is meaningful when combined to the notion of
scenario. A scenario is a mapping of a gene tree into a subdivision of a species
tree. This mapping describes how the gene tree has evolved by showing at which
point of evolution lateral gene transfers have occurred. In order for a scenario to
be biologically meaningful, it must satisfy the conditions stated in the definition
below.

An important parameter for this model is the activity level α. The parameter
α measures the number of genes that are allowed to be simultaneously active in
the genome of a taxa. Roughly speaking, an α-active scenario permits at most α
copies of a gene to be mapped to the same ancestral taxon. In previous models,
the presence of multiple copies of a gene was always assumed to be caused by a
gene duplication event. The notion of acitivity level in a lateral transfer scenario

186 B. DasGupta et al.

overcomes this restriction, by postulating that this multiplicity may be generated
by lateral transfer events alone.

We will first give the definition for the special case of 1-activity, and then
state the definition for the general α-active case where α ≥ 1.

Definition 2. A 1-active lateral transfer scenario (or 1-active scenario) for a
species tree S and a gene tree T is a triple (S′, A′, g) where (S′, A′) is a lateral
transfer scheme for S and g : V (S′) → V (T) is a function such that:

1. g(r(S′)) = r(T).
2. if v1 and v2 are distinct children of v0 in T, then there exists x0 with distinct

children x1 and x2 in S′ ∪ A′ such that vi ∈ g(xi) for i ∈ {0, 1, 2}, and xi is
the ≤s′-maximal vertex such that vi ∈ g(xi) for i ∈ {1, 2}.

3. for each v ∈ V (T), the vertices {x ∈ V (S′) : v ∈ g(x)} induce a directed path
in S′.

4. g(l) = l, for all l ∈ L(S).

The cost of a 1-active scenario (S′, A′, g) w.r.t. T is given by |A′|.

Definition 3. A lateral transfer scenario (or scenario) for a species tree S and
a gene tree T is a triple (S′, A′, g) where (S′, A′) is a lateral transfer scheme for
S and g : V (S′) → 2V (T) is a function such that:

1. T [g(r(S′))] is connected and r(T) ∈ g(r(S′)).
2. if v1 and v2 are distinct children of v0 in T and v1, v2 �∈ g(r(S′)), then there

exists x0 with distinct children x1 and x2 in S′ ∪ A′ such that vi ∈ g(xi)
for i ∈ {0, 1, 2}, and xi is the ≤S′-maximal vertex such that vi ∈ g(xi) for
i ∈ {1, 2}.

3. if v1 and v2 are children of v0 in T , v1 ∈ g(r(S′)) and v2 �∈ g(r(S′)), then
there exists a child x of r(S′) in S′ such that v2 ∈ g(x).

4. for each v ∈ V (T), the vertices {x ∈ V (S′) : v ∈ g(x)} induce a directed path
in S′.

5. g(x) is a ≤T -antichain for each x ∈ V (S′) \ {r(S′)}.
6. g(l) = {l}, for all l ∈ L(S).

A scenario (S′, A′, g) is α-active iff maxx∈S′ |g(x)| = α. The cost of a α-active
scenario (S′, A′, g) w.r.t. T is given by:

∑

〈x,y〉∈A′

|{〈u, v〉 ∈ A(T) : u ∈ g(x), v ∈ g(y)}| + |V (T [g(r(S′))]) \ L(T [g(r(S′))])|

Let (S′, A′, g) be a scenario for S and T . We say that an arc of T is invloved
into a lateral transfer if it belongs to the following set:

F = {〈u, v〉 ∈ A(T) : u ∈ g(x), v ∈ g(y), where 〈x, y〉 ∈ A′}

Inapproximability Results for the Lateral Gene Transfer Problem 187

1.3 Problem Definitions

In this paper we investigate the following optimization problems:

1-active LGT Problem

Instance: A species tree S and a gene tree T , such that L(T) ⊆ L(S).
Goal : Find a 1-active lateral transfer scenario for S and T with minimum

cost.

α-active LGT Problem

Instance: A species tree S and a gene tree T such that L(T) ⊆ L(S), a
constant α ≥ 1.

Goal : Find an α-active lateral transfer scenario for S and T with minimum
cost.

Note that one can easily convert the above optimization problems into their
decision version by having an extra integer τ as input and requiring the minimum
cost to be ≤ τ . We call the decision versions of these problems the 1-active τ -
LGT Problem and α-active τ -LGT Problem respectively. It was shown in [7]
that the α-active τ -LGT Problem is NP-complete.

1.4 Inapproximability Reductions: Key Concepts and Results

In [10] Papadimitriou and Yannakakis defined the class of MAX-SNP optimiza-
tion problems and a special approximation-preserving reduction, the so-called
L-reduction, that can be used to show MAX-SNP-hardness of an optimization
problem. The version of the L-reduction that we provide below is a slightly
modified but equivalent version that appeared in [4].

Definition 4. [4, 10] Given two optimization problems Π and Π ′, we say that
Π L-reduces to Π ′ if there are three polynomial-time procedures T1,T2, T3 and
two constants a and b > 0 such that the following two conditions are satisfied:

1. For any instance I of Π, algorithm T1 produces an instance I ′ = f(I) of Π ′

generated from T1 such that the optima of I and I ′, OPT (I) and OPT (I ′),
respectively, satisfy OPT (I ′) ≤ a · OPT (I).

2. For any solution of I ′ with cost c′, algorithm T2 produces another solution
with cost c′′ that is no worse than c′, and algorithm T3 produces a solution
of I of Π with cost c (possibly from the solution produced by T2) satisfying
|c − OPT (I)| ≤ b · |c′′ − OPT (I ′)|.

An optimization problem is MAX-SNP-hard if any problem in MAX-SNP L-
reduces to that problem. If this problem is also in MAX-SNP, then it is MAX-
SNP-complete. The importance of proving MAX-SNP-hardness results comes
from a result proved by Arora et al. [1] which shows that, assuming P�=NP,
for every MAX-SNP-hard problem there exists a constant ε > 0 such that no
polynomial time algorithm can achieve an approximation ratio better than 1+ε.

188 B. DasGupta et al.

1.5 Precise Statements of Our Results

Theorem 1
(a) For some constant ε > 0, it is not possible to approximate in polynomial
time the 1-active LGT PROBLEM within an approximation ratio of 1+ε unless
P=NP.
(b) The constant ε in (a) is at least (3/370024) − κ for any κ > 0.

Theorem 2
(a) For some constant ε > 0, it is not possible to approximate in polynomial
time the α-active LGT PROBLEM within an approximation ratio of 1+ε, where
α ≥ 1, unless P=NP.
(b) The constant ε in (a) is at least (3/378068) − κ for any κ > 0.

Lemma 1. The minimum number of lateral transfers necessary to build a 1-
active lateral transfer scenario for any pair of gene and species trees, uniquely
labeled over the same set of labels L, is precisely n − 2 where n = |L|. That is,
there is a procedure to build a 1-active scenario of cost n − 2 and there exists a
pair of a gene tree and a species tree that require at least n − 2 lateral transfers
for any 1-active scenario.

2 Hardness of Approximation of 1-Active LGT
PROBLEM (Proof of Theorem 1(a))

In the following we will show that Max-2Sat-B L-reduces to the 1-active LGT

Problem. Max-2Sat-B is the variation of Max-2Sat where the number of
occurrences of each variable is bounded by a constant B. It is known from [2]
that Max-2Sat-B is MAX-SNP-complete for B ≥ 3; thus the existence of an
L-reduction will imply the result.

Let X = {X1, . . . , Xn} be a set of n variables and let Φ = (C1, . . . , Cm)
be a formula in 2-CNF, where each clause Ci is on two variables from X and
where the number of occurrences of each variable is bounded by a constant B.
We will refer to the jth variable in the ith clause as literal Ci,j . The goal of
Max-2Sat-B is to find a truth assignment on X that maximizes the number of
satisfied clauses. Given an instance of Max-2Sat-B, we will now exhibit how to
build an instance of the 1-active LGT Problem such that Conditions 1 and 2
of Definition 4 are satisfied. In other words, we will construct a gene tree T and
a species tree S from Φ and prove that this transformation is an L-reduction.

Our construction of T and S from Φ is taken from the NP-completeness proof
given in [7]. The only difference is that in our case the index j in Ci,j ranges
between 1 and 2, rather than 1 and 3 (their reduction is from 3Sat). A detailed
description of this procedure is here omitted.

An important parameter used in the following proof is τ , defined as τ =
9m + 6k, where

k =
∣∣{〈i, j, i′, j′〉 | Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , 1 ≤ i < i′ ≤ m, 1 ≤ j, j′ ≤ 2}

∣∣ .

Inapproximability Results for the Lateral Gene Transfer Problem 189

Notice that k ≤ nB(B−1)
2 , since the maximum number of occurrences is bounded

by B for each variable in Φ; hence, τ ≤ γm, where γ = 9 + 6B(B − 1). Also, let
τ+ = τ +m+1. To ease our presentation, we will adopt the same notation used
in [7] throughout the rest of the proof.

Let Ψ be a truth assignment on the variable set X, i.e. Ψ :Xi −→ {true, false},
for every i = 1, . . . , n. We show that there is a correspondence between truth
assignments on Φ and scenarios for T and S. The proof of the following claim is
omitted due to page limits.

Claim 1. Given a truth assignment Ψ on Φ that satisfies ρ clauses, ρ ≤ m, it
is always possible to build in polynomial time a 1-active lateral transfer scenario
for T and S with cost τ + (m − ρ).

It is now easy to show that the first condition of Definition 4 is satisfied.
Starting from an optimal truth assignment ΨOPT that satisfies OPTΦ clauses
from Φ, by Claim 1 we can build a 1-active scenario of cost τ + (m − OPTΦ).
If we denote by OPTT,S the cost of the optimal scenario on T and S, then
OPTT,S ≤ τ + (m − OPTΦ) ≤ (γ + 1)m. Moreover, it is not hard to see that a
random truth assignment satisfies each clause with probability 3/4, and hence
it is not hard to find (even deterministically) an assignment OPTΦ that satisfies
3m/4 clause (e.g., see [8]). Thus, without loss of generality we may assume that
OPTΦ ≥ 3m/4. By combining the two inequalities we have OPTT,S ≤ a ·OPTΦ,
where a = 4(γ+1)

3 . This completes the first part of the proof.
Lets now verify the second condition. Suppose we are given a 1-active lateral

transfer scenario for T and S of cost c′. We can assume without loss of generality
that c′ ≤ τ + m, otherwise we could choose any scenario built from an arbitrary
assignment to replace the given one. Observe that Claims 1-8 in [7] are true
for the given scenario, while Claim 9 in [7] must be slightly modified to fit our
construction. This is the modified result:

Claim 2. [7] In any 1-active scenario for T and S, at least one element of
Xi = {r(Ti,j) : 1 ≤ j ≤ 2} is the tail of an arc involved in a lateral transfer, for
every i. This requires ≥ m lateral transfers.

Proof. Follows from the observation that, by the 1-activity conditions, only
one element from Xi may be mapped to r(BSi

). ❑

Note that Claims 1-8 in [7] together with Claim 2 imply that a lower bound
on the cost of any lateral transfer scenario for T and S is equal to τ . We now
show that, starting from the given scenario, it is always possible to build in
polynomial time a new scenario of cost ≤ c′, which induces a consistent truth
assignment on Φ. This new scenario and its induced truth assignment will satisfy
Condition 2 of Definition 4 with b = 1.

Let Xv be a variable from the variable set X and Ωv = {Ci,j | Xv

appears in Ci,j}, ωv = |Ωv|. Let T̃i,j =≺≺ ai,j · ci,j 	 · ≺ bi,j · di,j 		
and Fv be a forest of subtrees of T defined as Fv = {T̃i,j | Ci,j ∈ Ωv} ∪
{ε′i,j,i′,j′ | Ci,j , Ci′,j′ ∈ Ωv}. Moreover, let kv = |{〈i, j, i′, j′〉 | Ci,j , Ci′,j′ ∈

Ωv and i < i′}| and define τ̃v = 2ωv + 4kv.

190 B. DasGupta et al.

We say that a literal Ci,j is well-assigned if the corresponding gene subtree
T̃i,j has exactly two arcs involved in lateral transfers. This implies that either
lcaT (ci,j , di,j) ∈ g(lcaS(ci,j , di,j)) or lcaT (ci,j , di,j) ∈ g(lcaS(ai,j , bi,j)).

We also say that literal Ci,j is inconsistent with respect to Ci′,j′ if one of the
two following conditions holds:

– Ci,j = Ci′,j′ , and i) lcaT (ci,j , di,j) ∈ g(lcaS(ci,j , di,j) and lcaT (ci′,j′ , di′,j′)
�∈ g(lcaS(ci′,j′ , di′,j′) or ii) lcaT (ci,j , di,j) ∈ g(lcaS(ai,j , bi,j) and lcaT (ci′,j′ ,
di′,j′) �∈ g(lcaS(ai′,j′ , bi′,j′).

– Ci,j = Ci′,j′ , and i) lcaT (ci,j , di,j) ∈ g(lcaS(ci,j , di,j) and lcaT (ci′,j′ , di′,j′)
�∈ g(lcaS(ai′,j′ , bi′,j′) or ii) lcaT (ci,j , di,j) ∈ g(lcaS(ai,j , bi,j) and lcaT (ci′,j′ ,
di′,j′) �∈ g(lcaS(ci′,j′ , di′,j′).

Let Ii,j be the set of all literals that are inconsistent w.r.t. Ci,j and ii,j = |II,J |.

Claim 3. If no Ci,j ∈ Ωv is well-assigned, then at least τ̃v + ωv arcs in Fv are
involved in lateral transfers. If there exists a well-assigned Ci,j ∈ Ωv, then at
least τ̃v + ii,j arcs in Fv are involved in transfers.

Proof. By Claims 7 and 8 in [7], τ̃ is a lower bound on the number of arcs
in Fv that are involved in lateral transfers. The first part of the claim follows
immediately from the fact that for each non well-assigned literal Ci,j at least
three transfers are required for T̃i,j , that is an additional transfer for every literal
w.r.t. the minimum scenario.

Now suppose that Ci,j ∈ Ωv is well-assigned, and assume that lcaT (ci,j , di,j)
∈ g(lcaS(ci,j , di,j)), i.e. Ci,j is true. Consider a second literal Ci′,j′ ∈ Ωv that
is inconsistent w.r.t. Ci,j , and assume for example that Ci,j = Ci′,j′ . If Ci′,j′ is
not well-assigned, then T̃i′,j′ has at least three arcs involved in lateral transfers.
Conversely, if Ci′,j′ is inconsistent and well-assigned, it is straightforward to
verify that lcaT (ci′,j′ , di′,j′) ∈ g(lcaS(ai′,j′ , bi′,j′)), since any different mapping
would require more than two arcs from T̃i,j involved in transfers. Moreover, the
path from pT (bi′,j′) to ai′,j′ in T blocks the path from pS(βi′,j′,i,j) to αi′,j′,i,j in
S, where by blocks we mean that at least one vertex belonging to the path on
T is mapped to a vertex from the path on S. Equally, the path from pT (di,j) to
ci,j in T blocks the path from pS(δi,j,i′,j′) to γi,j,i′,j′ in S. Now, since both paths
are blocked, for any valid scenario built under these assumptions at least three
arcs in the subtree ε′i′,j′,i,j must be involved in lateral transfers. An example of
this case is given in figure 2.

For the symmetric case where lcaT (ci,j , di,j) ∈ g(lcaS(ai,j , bi,j)) and lcaT

(ci′,j′ , di′,j′) ∈ g(lcaS(ci′,j′ , di′,j′)), i.e. Ci,j is false and Ci′,j′ is true, a similar
argument shows that T̃i′,j′ or ε′i,j,i′,j′ require at least three lateral transfers.

We can therefore conclude that in both cases at least seven arcs from the
subtrees T̃i′,j′ , ε′i,j,i′,j′ and ε′i′,j′,i,j are involved in lateral transfers; that is, the
given scenario requires on these subtrees at least one transfer more than the
minimum scenario, which reaches the lower bound of six implied by Claims 7-
8 in [7]. A similar reasoning establishes the same result for the cases where
Ci,j = Ci′,j′ .

Inapproximability Results for the Lateral Gene Transfer Problem 191

a1,1 b1,1c1,1 d1,1 e1,1

T1,1

a2,1 b2,1c2,1 d2,1 e2,1

T2,1

α1,1,

2,1

γ2,1,

1,1

β1,1,

2,1

δ2,1,

1,1

α2,1,

1,1

γ1,1,

2,1

β2,1,

1,1

δ1,1,

2,1

ε′1,1,2,1

ε′2,1,1,1

(i)

Bs1,1

d1,1

a1,1

b1,1

c1,1

r1,1,τ+

r1,1,1

α1,1,

2,1

β1,1,

2,1

γ1,1,

2,1

δ1,1,

2,1

Bs2,1

d2,1

a2,1

b2,1

c2,1

r2,1,τ+

r2,1,1

α2,1,

3,1

β2,1,

3,1

γ2,1,

3,1

δ2,1,

3,1

a2,1, c2,1 ∈ f(x)

a2,1, c2,1 ∈ f(y)

c1,1, a1,1 ∈ f(v)
c1,1, a1,1 ∈ f(w)

(ii)

Fig. 2. Consider the formula Φ= (X1 ∨ X2)(X1 ∨ X2). (i) depicts the twister gad-
gets (T1,1, T2,1) and enforcement gadgets (ε′

1,1,2,1, ε
′
2,1,1,1) corresponding to the literals

(C1,1, C2,1) which are instances of X1 ∈ X. (ii) represents a partial scenario where lit-
erals C1,1 and C2,1 are well-assigned and inconsistent. The dashed lines are the lateral
transfers. Notice that both paths from pS(δ1,1,2,1) to γ1,1,2,1 and from pS(β2,1,1,1) to
α2,1,1,1 are blocked by {c1,1, a1,1} ,{a2,1, c2,1} ∈ T respectively. Thus, an additional
transfer from arc 〈pS(δ1,1,2,1), δ1,1,2,1〉 to 〈pS(γ1,1,2,1), γ1,1,2,1〉 is necessary.

Hence, for every literal not consistently assigned w.r.t Ci,j , at least one ad-
ditional lateral transfer is required. Thus, ≥ τ̃v + ii,j arcs of Fv are involved in
transfers. ❑

We will now describe a simple procedure to build a new scenario of cost
≤ c′ that is based on the given scenario as a starting point. Construct a truth
assignment Ψ : X −→ {true, false} on Φ in the following way. For each variable
Xv, v = 1, . . . , n, check if there exists (can be done in linear time) some literal
Ci,j ∈ Ωv which is well-assigned. If this is the case, assign to Xv the truth
value read from Ci,j , i.e. Ψ(Xv) = true if lcaT (ci,j , di,j) ∈ lcaS(ci,j , di,j) and
Ψ(Xv) = false if lcaT (ci,j , di,j) ∈ lcaS(ai,j , bi,j). If no literal in Ωv is well-
assigned, then assign to Xv an arbitrary truth value. Now follow the procedure
described in Claim 1 and build a scenario from Ψ . As a shorthand, call LTSI

the given scenario and LTSF the new scenario built from Ψ .
We say that a clause Ci is satisfied by a lateral transfer scenario on T and

S if exactly one element from the set {r(Ti,j) | 1 ≤ j ≤ 2} is the tail of an arc
involved in a lateral transfer. Clearly, this is true only if ∃j s.t. lcaT (ci,j , di,j) ∈
lcaS(ci,j , di,j).

LTSF has cost ca = τ + (m − ρ), where ρ is the number of clauses that
Ψ satisfies. In other words, LTSF has a minimum number of transfers on all
subtrees of S, except on the subtrees BSi

corresponding to those clauses Ci that
are not satisfied by Ψ , where an additional lateral transfer (w.r.t. the minimum
cost scenario on this tree) is required. Claims 1-8 in [7] and Claim 2 establish
that τ is a lower bound for any valid scenario, hence c′ ≥ τ . Moreover, a clause
that is not satisfied in LTSF can be satisfied by LTSI only by a non well-
assigned literal Ci,j (in the case where Ci,j ∈ Ωv and Xv is arbitrarily assigned)

192 B. DasGupta et al.

or by a literal which is inconsistent w.r.t. the chosen assignment Ψ(Xv). By
Claim 3, this implies that LTSI has at least one lateral transfer more than the
minimum scenario for each clause that is true in LTSI and false in LTSF . Hence,
c′ ≥ τ + (m − ρ).

Therefore, given any scenario on S and T , we are able to build in polynomial
time a new scenario of cost τ + (m − ρ) ≤ c′ which corresponds to a valid truth
assignment on Φ that satisfies ρ clauses. The theorem follows.

3 Hardness of Approximation of the α-Active LGT
PROBLEM (Proof of Theorem 2(a))

Once again, we L-reduce from Max-2Sat-B. Let T ∗ and S∗ respectively be the
gene and species tree of the α-active LGT Problem instance. Build T ∗ and
S∗ by following the procedure given in [7]. The details on this construction are
here omitted. Starting from an optimal truth assignment ΨOPT that satisfies
OPTΦ clauses from Φ, first create a 1-active scenario on T and S by applying
the construction described in Claim 1. Use this scenario to construct an α-active
scenario for T ∗ and S∗ as shown in [7]. The cost of this scenario is τ∗ + (m −
OPTΦ), where τ∗ = τ +(α−1), and hence OPTT ∗,S∗ ≤ τ∗ +(m−OPTΦ). From
Theorem 1, we know that τ ≤ γm, where γ = 9+6B(B − 1). For all sufficiently
large values of m, we have τ∗ ≤ (γ + 1)m and OPTT ∗,S∗ ≤ (γ + 2)m. Thus, the
the first condition from Definition 4 is satisfied, with a = 4(γ+2)

3 .
Consider now an α-active scenario for T ∗ and S∗ of cost c∗. We can assume

w.l.o.g. that c∗ ≤ τ∗ + m; if this were not the case, any scenario built from an
arbitrary truth assignment would do better, and we could use this scenario as a
starting point. Notice that any α-active scenario requires at least α − 1 lateral
transfers for subtrees T 1, . . . , Tα−1 and S∗. Therefore, at most τ + m transfers
are involved in the partial scenario for T and S∗. By Claim 11 of [7], the α-active
scenario for T and S∗ induces a 1-active scenario for T and S of cost ≤ τ + m.
It has been shown that any 1-active scenario for T and S of cost c′ induces a
truth assignment on Φ that satisfies ρ clauses, where ρ is s.t. c′ ≥ τ + (m − ρ).
It follows that c∗ = c′ + (α − 1) ≥ τ∗ + (m − ρ). Thus, the the second condition
of Definition 4 is satisfied with b = 1. This concludes our proof.

4 Hard Inapproximability Bounds (Proofs of
Theorem 1(b) and Theorem 2(b))

Berman and Karpinski [3] proved that it is NP-hard to approximate Max-2Sat-
3 to within a factor 2012/2011−κ, for every κ > 0. The following result from [10]
allows us to compute approximation ratios that are NP-hard to achieve for the
1-active and α-active LGT Problem from that of Max-2Sat-3.

Proposition 1. [10] Let Π and Π ′ be two optimization problems. If Π L-reduces
to Π ′ , and there is a polynomial time approximation algorithm for Π ′ with

Inapproximability Results for the Lateral Gene Transfer Problem 193

worst-case error ε, then there is a polynomial time approximation algorithm for
Π with worst-case error abε, where a and b are the constants of the L-reduction.

Proposition 1 can be stated equivalently as follows: if approximating Π to
within an approximation ratio smaller than 1 + ε is NP-hard, then achieving an
approximation ratio for Π ′ smaller than 1 + ε/(ab) is also NP-hard.

Consider the L-reduction for the 1-active case. We have a = 40+24B(B−1)
3 ,

which implies a = 184/3 for B = 3, and b = 1. It follows that, for the 1-active
LGT Problem it is NP-hard to achieve an approximation ratio of
370027/370024 − κ, for every κ > 0.

Similarly, for the α-active case, a = 44+24B(B−1)
3 , which implies a = 188/3

for B = 3, and b = 1. This shows that it is NP-hard to approximate the α-active
LGT Problem to within a factor of 378071/378068 − κ, for every κ > 0.

T:

b1 b2 b3 b4 b5
b1 b2

b3b4
b5

x1 x2

x3

x4 x5

x6

x7S:

(i) (ii)

Fig. 3. An example of scenario built from the construction procedure illustrated below.
(i) is the gene tree and (ii) the scenario built on the species tree. The dashed arcs are the
lateral transfers. Here, {b1b2} ∈ g(x1), {b3b4} ∈ g(x2), {b1b2b3b4} ∈ g(x3) and g(x4),
{b5} ∈ g(x5) and g(x6), r(T) ∈ g(r(S)). Note that this isn’t the minimum scenario.

5 Upper Bound of Cost of 1-Active Scenario (Proof of
Lemma 1)

We first describe a procedure to build a 1-active scenario of cost n − 2 for any
given gene and species trees. Let T be a gene tree and S be a species tree that
satisfy L(T) = L(S). We order the internal vertices (i.e. all vertices except the
leaves) of T , by imposing the ordering produced by a post-order traversal on the
subtree of T containing the internal nodes only. Recall that a post-order traversal
processes all vertices of a tree by recursively visiting all subtrees, then finally
processing the root. Let {a1, a2, . . . , an−1} be the ordered sequence of internal
vertices, where an−1 is the root of T .

In the following description we will slightly abuse of notation, by applying
the concepts of parent and children to nodes of S′. In this context, pS′(v), where
v ∈ V (S′) has in-degree one, denotes the tail of v’s unique incoming arc; lsS′(v)
and rsS′(v), where v ∈ V (S′) ∩ V (S), respectively refer to the nodes of S′ that

194 B. DasGupta et al.

a1
a2

a3

a4

a5

a6 a1

a2

a3

a4

a5a6

T: S:

{a1a2a3a4a5a6} ∈ g(xi), i = 5,6,7,8,9
{a1a2a3a4a5} ∈ g(x4)

{a1a2a3a4} ∈ g(x3)
{a1a2a3} ∈ g(x2)

{a1a2} ∈ g(x1)

x1

x2

x3

x4

x5

x6

x7

x8

x9

(i) (ii)

Fig. 4. An example of gene tree T (i) and the species tree S (ii) with n = 6. The
dashed arcs in (ii) represent the lateral transfers. Note that 4 transfers are necessary
for any scenario.

are first in the paths from v to lsS(v) and from v to rsS(v). We will now build
a scenario (S′, A′, g) for T and S by creating the following lateral transfers:
– from arc 〈pS′(g−1(lsT (ai))), g−1(lsT (ai))〉 to arc

〈pS′(g−1(rsT (ai))), g−1 (rsT (ai))〉, involving 〈ai, rsT (ai)〉 from T,

for every i from 1 to n − 2. Note that the post-ordering ensures that both chil-
dren of ai have been processed when vertex ai is considered, hence g−1(rsT (ai))
and g−1(rsT (ai)) are defined. Also, observe that all lateral transfer in this
scenario are incident on arcs of S that connect parents to leaves. Now, let
b = lcaS′(g−1(lsT (r(T)), g−1(lsT (r(T))), and for all vertices vi belonging to
the path connecting lsS′(b) to g−1(lsT (r(T)), place lsT (r(T) ∈ g(vi). Similarly,
for all vertices ui belonging to the path connecting rsS′(b) to g−1(rsT (r(T)),
place rsT (r(T) ∈ g(ui). Finally, map all vertices in the path from the root of S
to b, to the root of T .

It is straightforward to verify that the resulting scenario does not contain
mixed cycles, since all transfers are non-intersecting by construction. In addition,
all conditions from Definition 2 are satisfied, hence the procedure yields a valid
1-active scenario. It is also easy to see that the running time of this algorithm
is linear in the size of the trees.

We now show that this upper bound is tight by giving a simple example of a
gene tree and a species tree that require at least n − 2 lateral transfers for any
1-active scenario.

Let L be the set of labels {ai : 1 ≤ i ≤ n}, where n is a positive constant.
Consider the gene tree T and species tree S shown in figure 4, both over the
same set of labels L:

T =≺
n∏

i=1

ai 	

S =≺
1∏

i=n

ai 	

Inapproximability Results for the Lateral Gene Transfer Problem 195

We will show that any 1-active scenario for T and S requires at least n−2 lateral
transfers. The result follows from the following Claim.

Claim 4. Let X = {pT (ai) : 1 < i < n}, that is, X is the set all internal nodes
of T except the root. In any 1-active lateral transfer scenario for T and S, every
element of X is tail of an arc involved in a lateral transfer.

Proof. Assume that a node x ∈ X is not tail of an arc of T involved in a
lateral transfer. This means that x �∈ g(v), for all nodes v ∈ V (S′) \V (S), which
implies that there exists a node y ∈ S such that x ∈ g(y), where y ≥S lcaS(x).
But lcaS(x) = r(S) for all x ∈ X, hence y = r(S). This is a contradiction, since
r(T) ∈ g(r(S)), by Condition 1 of Definition 2, and x �= r(T). It follows that x
must be involved in a lateral transfer. ❑

Therefore, any 1-active scenario for T and S has at least |X| = n − 2 lateral
transfers.

References

1. Arora, S., Lund, C., Motwani, R. Sudan, M. and Szegedy M. (1998), Proof verifica-
tion and hardness of approximation problems. Journal of the ACM, 45(3): 501-555.

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti Spaccamela, A., and
Protasi, M. (1999), Complexity and Approximation. Combinatorial Optimization
Problems and their Approximability Properties, Springer-Verlag, Berlin.

3. Berman, P., and Karpinski, M. (1998), On some tighter inapproximabil-
ity results, further improvements, Technical Report TR98-065, Electronic
Colloquium on Computational Complexity (ECCC); available online from
http://eccc.uni-trier.de/eccc-reports/1998/TR98-065/index.html.

4. Berman, P. and Schnitger, G. (1992), On the complexity of approximating the
independent set problem, Information and Computation, 96, 77-94.

5. Brown, J. R. (2003), Ancient horizontal gene transfer, Nature Reviews, Genetics,
4, 121-132.

6. Hallett, M. and Lagergren, J. (2001), Efficient algorithms for lateral gene transfer
problems, Proc. 5th Annual International Conference on Computational Molecular
Biology (RECOMB), Montreal, Canada, 141-148.

7. Hallett, M. and Lagergren, J. (2004), Identifying lateral gene transfer
events, submitted to SIAM Journal of Computing (available online from
http://www.mcb.mcgill.ca/~hallett/Lateral.pdf)

8. Johnson, D.S. (1974), Approximation algorithms for combinatorial problems, Jour-
nal of Computer and System Sciences, 9, 256-278.

9. Page, R. D. M. and Charleston, M. A. (1997), From gene to organismal phylogeny:
Reconciled tree and the gene tree/ species tree problem, Molecular Phylogentics
and Evolution, 7, 231-240.

10. Papadimitriou, C. H. and Yannakakis, M. (1991), Optimization, approximation,
and complexity classes, Journal of Computer and System Sciences, 43(3): 425-440.

Faster Deterministic Wakeup in Multiple
Access Channels�

Gianluca De Marco1, Marco Pellegrini2, and Giovanni Sburlati2

1 Dipartimento di Informatica e Applicazioni,
Università di Salerno, 84081 Baronissi (SA), Italy

demarco@dia.unisa.it
2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche,

via Moruzzi 1, 56124 Pisa, Italy
{marco.pellegrini, giovanni.sburlati}@iit.cnr.it

Abstract. We consider the fundamental problem of waking up n pro-
cessors sharing a multiple access channel. We assume the weakest model
of synchronization, the locally synchronous model, in which no global
clock is available: processors have local clocks ticking at the same rate,
but each clock starts counting the rounds in the round in which the cor-
respondent processor wakes up. Moreover, the number n of processors is
not known to the processors. We propose a new deterministic algorithm
for this problem, which improves on the currently best upper bound.

Keywords: Algorithms, clock, synchrony, wakeup problem, multiple ac-
cess channel.

1 Introduction

We consider the following model of multiple access channel, taken as the basis
for theoretical studies on radio networks, satellite channels, serial bus communi-
cation networks. There are n processors (stations) sharing a common communi-
cation channel. The communication system is synchronous, in the sense that the
processors send messages in rounds. Once a message is written on the channel,
the message is broadcast to all other processors. Unfortunately, since the channel
is shared by all processors, a collision among several processors attempting to
write in the same round might occur. Precisely, the channel has the following
property: a message is written successfully on the channel in a given round (and
therefore heard by all processors) if and only if exactly one processor sends a
message in that round.

Moreover we assume that the processors have no possibility of collision detec-
tion, that is, if more than one processor (or no processor at all) send in the same
round, then nothing is heard by the other processors, so making it impossible to
distinguish between multi-transmission and absence of transmission. Formally,
if δ is the number of processors that transmit in a given round, three cases may
happen:
� Work supported in part by the European RTN Project under contract HPRN-CT-

2002-00278,COMBSTRU.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 196–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Faster Deterministic Wakeup in Multiple Access Channels 197

� � � � � � �

���
channel

Fig. 1. A multiple access channel with n = 7 processors

1. δ = 0: in this case, of course, no message is written on the channel;
2. δ = 1: the message is written successfully on the channel and therefore heard

by every processor;
3. δ > 1: in this case, the δ simultaneous transmissions interfere with one

another (a collision occurs) and therefore no message is written successfully
on the channel.

It is clear that when no collision detection mechanism is available to the
processors, cases 1. and 3. are completely undistinguishable.

A central issue is the measurement of time. Usually two extreme models are
considered: the globally synchronous and the locally synchronous model. In the
first model all the processors have access to a global clock. This implies that
when a processor wakes up, it can see the current round number ticked by the
clock. In the weaker locally synchronous model, each processor has its own local
clock. This means that although the communication is synchronous (i.e. all the
clocks tick with the same rate) there is no global round number. Each clock
starts counting the rounds in the round in which the correspondent processor
wakes up, without knowing anything about the other round numbers. In this
paper, we adopt the weaker locally synchronous model.

Finally a crucial assumption is whether the processors using the shared
channel are aware of the total number n of processors sharing the channel, or
some polynomially related upper bound to such number. When such number
n is known, much faster algorithms are possible. In keeping the line of using
the weakest possible model, we assume such number to be unknown to the
processors.

1.1 The Problem

One of the major problems in distributed computing is the wakeup problem
that consists of having a subset of processors that spontaneously awakes and
has to inform all the other processors about the beginning of the computation.
This problem assumes particular importance in the locally synchronous model.
Indeed, as already mentioned, once one of the processors manage to send success-
fully its message on the channel, the message is heard by all other processors.
This characteristic can be exploited to allow the processors of a locally syn-
chronous model to switch to the often more desirable globally synchronous one.

198 G. De Marco, M. Pellegrini, and G. Sburlati

In fact, assume that at a given round all processors hear the message sent by
one of them. Starting from this round, all processors can begin to count the
successive rounds with the same numbers 1, 2, ... That means a global clock has
been created. This allows the processors to use simple communication collision-
free protocols such as time division multiplexing TDM, in which the principle is
to assign each processor a round in which the processor can transmit (which is
possible only if a global clock is available).

An algorithm for the wake up problem is a collection of n transmission sched-
ules, one for each processor, such that one of the processors eventually transmits
successfully to the channel, therefore waking up every processor. This will hap-
pen in the first round at which exactly one processor sends a message.

The problem is to design an algorithm that wakes up the system as fast as
possible. The difficulty comes from the fact that the algorithm has no control
on the processors that spontaneously can wake up at any moment during the
execution, therefore disturbing the communication. In other words, we assume
to be playing against an adversary who controls which processors wake up and
when. The time complexity is measured by the time elapsed from the round
in which the first processor woke up to the round in which a processor sends
successfully on the channel, therefore waking up all the system.

The wakeup problem addressed in this paper, as will be discussed in the next
subsection, has been introduced in [13] and can be stated formally as follows.

Definition 1 ((Wakeup Problem)). We are given a multiple access channel
with n processors, where the parameter n is not known by the processors. Assume
there is no global clock (locally synchronous model) and no collision detection
mechanism. Suppose that processors spontaneously and independently can wake
up at any moment. Let τ0 be the first time slot such that some processor is
woken up. Assign n transmission schedules, one for each processor, such that
there exists a time slot τ1 such that exactly one processor (among the awaken
processors at τ1) sends a message at τ1. The aim is to assign the transmission
schedules in such a way to minimize τ1 − τ0.

1.2 Related Work

Multiple access channels includes many network systems such as Aloha multi-
access systems, local area Ethernet networks, satellite communication systems,
packet radio networks that have been studied extensively in the literature [2,22].
In some of these models it is frequently assumed that a collision detection mecha-
nism is available. As already mentioned, such a tool allows the transmitting pro-
cessors to detect if its message has collided and therefore simplifies the wakeup
problem. When collision detection is not available, the collisions must be resolved
(collision resolution) by establishing a schedule of access to the shared communi-
cation channel that allows messages to be successively sent on the channel with
as little delay as possible.

Collision detection and resolution, and access management algorithms were
studied mainly assuming a known probability distribution on the arrival rate

Faster Deterministic Wakeup in Multiple Access Channels 199

of messages at the different processors (see e.g. [11,12,16]). Moreover, in these
contexts the wakeup problem, as defined in this paper, is not considered.

As already anticipated, when collision resolution is not available, but there
is a global clock, one of the simplest schedule to resolve conflicts is the time
division multiplexing protocol. This means that when there are n processors,
then n time slots will be needed. This becomes very inefficient when the number
of awaken processors is very small compared to n.

Komlós and Greenberg [20] were the first to considered a typical situation
when a subset of k among n processors are awaken and have messages, and all
of them need to be sent to the channel successfully as soon as possible. The fact
that in their case all of the messages must be sent on the channel (contrasted
with our wake up problem) does not mean a real difference with our situation,
since their algorithm, stopped at the first successful message sent, is actually a
wake up algorithm. On the other hand, there are strong differences with our case
given by the fact that in [20] the number k of awaken processors is fixed and a
global clock is available. They showed how to solve the problem deterministically
in time Ω(k + k log(n/k)), where either n or k is known. A lower bound of
Ω(k(log n)/(log k)) was then proved by Greenberg and Winograd [14].

The work of [20] is, to the best of our knowledge, the first that shows how to
exploit deterministically the fact that any processor that has already transmitted
successfully its message on the channel, will not transmit in the subsequent time
slots, therefore avoiding to interfere with the other processors that still have to
transmit.

The issues discussed in [20] are also important for their relations with Cod-
ing Theory, in particular with combinatorial structures like superimposed codes
[10,21] and its applications to combinatorial group testing. The reader interested
can refer to the excellent book of Du and Hwang [8] (specially Chapter 4 and 5)
for a more detailed study of the implications involved, and to the works of Indyk
[17] and De Bonis and Vaccaro [6] for recent developments and generalizations.

Ga̧sieniec, Pelc and Peleg [13] were the first to consider the problem of waking
up a multiple access channel with n processors in the synchronous setting when
the number of awaken processors is not fixed, but can be any non-decreasing
function of the time. In [13] many variations of synchrony and knowing assump-
tions are studied.

The authors of [13] considered both deterministic and randomized algorithms.
For the deterministic case, which is the topic of the present paper, their result
can be summarized as follows. In the globally synchronous model, when the size
n is known to processors, they show an optimal deterministic algorithm that in
time n solves the wakeup.

In case of unknown n, they construct a deterministic wakeup algorithm work-
ing in time 4n in the worst case.

Under the locally synchronous model with known n, they provide a deter-
ministic O(n2 log n) algorithm. They also show that even when n is known, every
deterministic algorithm requires time at least (1 + ε)n, for some ε > 0, in the

200 G. De Marco, M. Pellegrini, and G. Sburlati

worst case. In the locally synchronous model when n is unknown, they propose
a deterministic algorithm working in time O(n4 log5 n).

As for the randomized solutions (not discussed here), recent important im-
provements have been provided by Jurdiński and Stachowiak [19].

The wake up problem has been studied also in multi-hop radio networks,
i.e. networks such that collisions can occur at any node in the communication
graph (the multiple access channel models a single-hop radio network). Recent
developments for the wakeup in multi-hop radio networks can be found in [3,4,5],
where the authors consider the locally synchronous model when the nodes know
the size n of the network (or a linear upper bound on it), but the topology is
unknown. Again, knowing n is critical for the performance of such mechanisms
in multi-hop networks.

1.3 Our Result

We consider the wakeup problem on multiple access channel in the weakest
model for the deterministic setting: locally synchronous model with unknown
n. We propose a new deterministic algorithm that completes the wakeup in
time O(n4 log3 n) in the worst case. This is an improvement over the previous
O(n4 log5 n) algorithm presented in [13] and it is based on a different approach.
Since the bound O(n4 log3 n) depends on a result in Number Theory (Theorem
3 below) which probably is not tight (see our remark at the end of Section 4),
actually the bound provided by our new algorithm might be improved.

2 Preliminaries

In this section we recall some well known results in Number Theory that will
be used in the analysis of our algorithm. Throughout the paper the ith prime
number will be denoted pi. The prime counting function π(n) is the function
giving the number of primes ≤ n.

The Prime Number Theorem gives an asymptotic form for the prime counting
function.

Theorem 1 ((Prime Number Theorem)).

π(n) ∼ n

ln n
.

(Equivalently, pn ∼ n ln n). �
We have used the asymptotic notation ∼ as defined in [15]: in other words,

the Prime Number Theorem tells us that the limit of the quotient of the two
functions π(n) and n/ ln(n), as n approaches to infinity, is 1.

The theta function θ(n) is defined as follows:

θ(n) =
π(n)∑

i=1

ln pi = ln

⎛

⎝
π(n)∏

i=1

pi

⎞

⎠ .

Chebyshev [15, p. 341] gave the following bound for θ(n).

Faster Deterministic Wakeup in Multiple Access Channels 201

Theorem 2 ((Chebyshev’s bound on θ(n))).

θ(n) < 2n ln 2 for all n ≥ 1. �

Jacobsthal’s problem is to estimate, for a given r, the maximum length of
a sequence of consecutive integers, each divisible by one of r arbitrarily chosen
primes. For references and history on this problem, see [9]. Iwaniec [18] proved
the following important result.

Theorem 3 ((Iwaniec, 1978)). For any positive integer r, let C(r) denote
the maximal length of a sequence of consecutive integers each divisible by at least
one of r arbitrarily fixed primes. Then

C(r) ∈ O(r2 ln2 r) (r → +∞). �

We will also use the following well known result.

Theorem 4 ((Chinese Remainder Theorem)). Let m1, . . . , mr be pairwise
relatively prime positive integers. Let M = m1 · · · mr and let a1, . . . , ar, A be
integers. Then there is exactly one integer a such that A ≤ a < A+M satisfying

a ≡ ak (mod mk) ∀ k, 1 ≤ k ≤ r. �

3 Wakeup in the Locally Synchronous Model with
Unknown n

Here we consider the weakest model: there is no global clock available and the
size n of the system is not known; each processor knows its own ID number, all
ID numbers are distinct.

3.1 The New Upper Bound

Algorithm. Fast Wakeup: For each j ∈ INI, let pj be the j-th prime number.
Each processor i transmits immediately when it is woken up, and successively it
transmits exactly pi time units after its last transmission.

Theorem 5. Algorithm Fast Wakeup wakes up a system of n processors in
time O(n4 ln3 n).

Proof. In order to measure the time necessary to wake up the system, we will
often refer our calculation to a global time t to mean the tth time unit after the
first processor has woken up. Of course, this time (unknown to the processors)
does not have to be confused with the local times. For each integer i with 1 ≤
i ≤ n, ai is the time at which the processor labelled i wakes up (ai = +∞ if the
i-th processor does not wake up during the whole process).

We call W the set of the labels of the processors that wake up in the process
(i.e. W = {i : (1 ≤ i ≤ n) ∧ (ai < +∞)}).

202 G. De Marco, M. Pellegrini, and G. Sburlati

Following the algorithm, it is easy to verify that any processor i transmits at
a generic time x ≥ ai if and only if x ≡ ai (mod pi).

Let ak (with 1 ≤ k ≤ n) be a generic time unit at which some processor k
wakes up; let m be the maximal label among the processors that are awake at
time ak, that is, m = max{i : (1 ≤ i ≤ n) ∧ (ai ≤ ak)}. We want to find a time
unit x ≥ ak at which processor k transmits and for any i ∈ W, i
= k, 1 ≤ i ≤ m
processor i does not transmit. A sufficient condition for this to happen is

{
x ≡ ak (mod pk),
x
≡ ai (mod pi) ∀ i ∈ W, i
= k, 1 ≤ i ≤ m.

Let us set N = p1p2...pm. From Theorem 2 it follows that
∑

1≤i≤m ln pi <
pm ln 4. Therefore, N < 4pm and, since by Theorem 1 pm ∈ O(m ln m), we
must have N ∈ 4O(m ln m). By Theorem 4 there exists at least a y in the range
1 ≤ y ≤ N satisfying

y ≡ ak − ai (mod pi) ∀ i ∈ W, 1 ≤ i ≤ m; (1)

in particular for i = k we obtain y ≡ ak − ak ≡ 0 (mod pk).
Consider the integer y′ = y/pk; by theorem 3 there exists a non-negative

�′ ∈ O(m2 ln2 m) such that y′ + �′ is an integer, say r, which is co-prime to N .
We can then write

y/pk + �′ = r, with �′ ∈ O(m2 ln2 m) and gcd(r; N) = 1. (2)

Let � = pk�′, multiplying the two members of (2) by pk gives y + � = pkr.
Since pk ≤ pm, pk lies in O(m ln m). Therefore,

� ∈ O(m ln m) · O(m2 ln2 m) = O(m3 ln3 m).

Since y satisfies all the congruences of system (1), from the equality y + � = pkr
we can deduce that

∀ i ∈ W with 1 ≤ i ≤ m, ak − ai + � ≡ pkr (mod pi),

i.e.
∀ i ∈ W with 1 ≤ i ≤ m, ak + � ≡ ai + pkr (mod pi). (3)

Recalling that gcd(r; N) = 1 (and then pi does not divide r for any i with
1 ≤ i ≤ m), the congruences in (3) imply

{
ak + � ≡ ak (mod pk),
ak + �
≡ ai (mod pi) ∀ i ∈ W, i
= k, 1 ≤ i ≤ m.

This means that, once processor k wakes up at time ak, it transmits successfully
within � time units (where 0 ≤ � ∈ O(m3 ln3 m) ⊆ O(n3 ln3 n)), unless in the
meantime another processor has been woken up after it. Since at most n proces-
sors can be woken up, it follows that a successful transmission will be definitely
produced within n · O(n3 ln3 n) = O(n4 ln3 n) time units after any processor
wakes up. �

Faster Deterministic Wakeup in Multiple Access Channels 203

4 Conclusion and Further Research

In this paper, we have showed an upper bound of O(n4 ln3 n) on the time for
waking up deterministically a locally synchronous multiple access channel of n
processors, when n is unknown to the processors. The best lower bound for this
problem is (1 + ε)n, for some ε > 0, proved in [13].

Hence, the main question left open by the present paper is to narrow the (still
huge) gap between upper and lower bound. To this aim it is useful to remark
that our O(n4 ln3 n) upper bound given in Theorem 5 depends essentially on
the O(r2 ln2 r) upper bound of Theorem 3. Such an upper bound probably is
not optimal: in [18] Iwaniec cites the open question raised by Jacobsthal about
the validity of the stronger upper bound O(r2). If this latter bound holds, the
arguments used in the proof of Theorem 5 would lead to the result O(n4 ln n)
instead of O(n4 ln3 n).

Acknowledgements

We wish to thank Jean-Louis Nicolas for his guidance on the literature about
Jacobstahl’s problem.

References

1. R. Bar-Yehuda, O. Goldreich and A. Itai, On the Time-Complexity of Broadcast
in Multi-hop Radio Networks: An Exponential Gap between Determinism and Ran-
domization. Journal of Computer and System Sciences Vol. 45, 1992, pp. 104-126.

2. D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1991.
3. M.Chrobak, L.Gasieniec and D.Kowalski The Wake-Up problem in multi-hop ra-

dio networks, In Proceedings of 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2004), pp. 992-1000.

4. B. Chlebus, L. Gasieniec, D. Kowalski and T. Radzik On the Wake-up Problem in
Radio Networks, to appear in the proceedings of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP 2005).

5. B. Chlebus and D. Kowalski A better wake-up in radio networks, Proceedings of
the twenty-third annual ACM symposium on Principles of distributed computing
(PODC 2004), pp. 266-274.

6. A. De Bonis and U. Vaccaro, Efficient Constructions of Generalized Superimposed
Codes with Applications to Group Testing and Conflict Resolution in Multiple Ac-
cess Channels, Theoretical Computer Science, vol. 306, Issue 1-3, pp. 223-243,
2003.

7. G. De Marco and A. Pelc, Faster broadcasting in unknown radio networks, Infor-
mation Processing Letters Vol 79, 2001, pp. 53-56.

8. D.Z. Du and F.K. Hwang, Combinatorial Group Testing and its Applications,
World Scientific, 2000.

9. P. Erdös, On the Integers Relatively Prime to n and on a Number-Theoretic Func-
tion Considered by Jacobsthal, Math. Scand. 11 (1962), pp. 163-170.

10. P. Erdös, P. Frankl and Z. Füredi, Families of Finite Sets in Which no Set Is
Covered by the Union of r Others, Israel J. Math., vol. 51, 1985, pp. 75-89.

204 G. De Marco, M. Pellegrini, and G. Sburlati

11. R. Gallager, A Perspective on Multiaccess Channels, IEEE Trans. on Information
Theory 31 (1985), pp. 124-142.

12. J. Goodman, A.G. Greenberg, N. Madras, P. March, On the stability of Ethernet,
17th ACM symposium on Theory of computing, STOC, 1985, pp. 379-387.

13. L. Ga̧sieniec, A. Pelc and D. Peleg, The Wakeup Problem in Synchronous Broadcast
Systems. SIAM J. Discrete Math., Vol 14, No. 2, 2001, pp. 207-222.

14. A.G. Greenberg and S. Winograd, A Lower Bound on the Time Needed in the
Worst Case to Resolve Conflicts Deterministically in Multiple Access Channels. J.
ACM, 32 (1985), pp. 598-596.

15. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 4th ed.
Oxford, England: Clarendon Press, 1975.

16. J. Hastad, T. Leighton, B. Rogoff, Analisys of Backoff Protocols for Multiple Access
Channels, 19th ACM symposium on Theory of computing, STOC, 1987, pp. 241-
253.

17. P. Indyk, Deterministic Superimposed Coding with Application to Pattern Match-
ing, 38th Symposium on Foundations of Computer Science, FOCS, 1997, pp. 127-
136.

18. H. Iwaniec, On the problem of Jacobstahl, Demonstratio Mathematica, 11 (1978),
225-231.

19. T. Jurdziński and Stachowiak Probabilistic Algorithms for the Wakeup Problem in
Single-Hop Radio Networks, ISAAC 2002, LNCS 2518, pp.535-549, 2002.

20. J. Komlós and A.G. Greenberg, An Asymptotically Optimal Nonadaptive Algorithm
for Conflict Resolution in Multiple-Access Channels, IEEE Trans. on Information
Theory, vol. 31, (2), (1985), pp. 302 - 306

21. W.H. Kautz and R.C. Singleton, Nonrandom binary superimposed codes, IEEE
Trans. Inform. Theory, vol. 10, 1964, pp. 363 - 377.

22. A.Tannenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, NJ, 1981.

Weighted Coloring: Further Complexity
and Approximability Results

Bruno Escoffier, Jérôme Monnot, and Vangelis Th. Paschos

LAMSADE, CNRS and Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny,

75775, Paris Cedex 16, France
{escoffier, monnot, paschos}@lamsade.dauphine.fr

Abstract. Given a vertex-weighted graph G = (V, E; w), w(v) ≥ 0 for
any v ∈ V , we consider a weighted version of the coloring problem which
consists in finding a partition S = (S1, . . . , Sk) of the vertex set V of G
into stable sets and minimizing

∑k
i=1 w(Si) where the weight of S is

defined as max{w(v) : v ∈ S}. In this paper, we keep on with the in-
vestigation of the complexity and the approximability of this problem
by mainly answering one of the questions raised by D. J. Guan and
X. Zhu (”A Coloring Problem for Weighted Graphs”, Inf. Process. Lett.
61(2):77-81 1997).

Keywords: Approximation algorithm; NP-complete problems; weighted
coloring; interval graphs; line graph of bipartite graphs; partial k-tree.

1 Introduction

A k-coloring of G = (V,E) is a partition S = (S1, . . . , Sk) of the vertex set V of G
into stable sets Si. In the usual coloring problem, the objective is to determine a
vertex coloring minimizing k. A natural generalization of this problem is obtained
by assigning a strictly positive integer weight w(v) for any vertex v ∈ V , and
defining the weight of stable set S of G as w(S) = max{w(v) : v ∈ S}. Then, the
objective is to determine a vertex coloring S = (S1, . . . , Sp) of G minimizing the
quantity

∑p
i=1 w(Si). This problem has several applications. For instance in [8]

this problem is motivated by a problem of transmission of real-time messages in
a metropolitan network or a problem related to dynamic storage allocation. It is
interesting to notice that in these two applications, graphs of a special kind are
used: the interval graphs. Others examples of applications in different contexts
can be found in [2,5].

In this paper, we continue the investigation of the complexity and the ap-
proximability of the Weighted Coloring problem by mainly answering one of the
questions raised by Guan and Zhu [8].

Given an instance I = (G,w), W denotes the set of different weights used in
the instance, i.e., W = {w(v) : v ∈ V }, opt(I) denotes the weight of an optimal
weighted coloring of I and χ(I) denotes the minimum number of colors used
among the optimal weighted colorings of I. As indicated in [4,8], this number
may be very high, even in trees, although it is always bounded above by ∆(G)+1.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 205–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

206 B. Escoffier, J. Monnot, and V.Th. Paschos

Moreover, we can obtain a bound related to the quantities χ(G) and |W | where
χ(G) is the chromatic number of G and |W | is the number of different weights
used in I. Precisely, in [4] it is proved that we have χ(I) ≤ 1+ |W |(χ(G)−1) and
that this bound is tight for any q = χ(G) and r = |W | for a family of instances
Iq,r where the graphs are chordal.

Let’s recall some standard definitions about some class of graphs, see [9] for
more details. A graph G is chordal iff any cycle C of G of length at least 4 has
a chord. There are several characterizations of chordal graphs; one of them uses
the notion of perfect elimination order (peo. in short) of G = (V,E). An order
v1, . . . , vn of the vertex set V is a peo. if the neighborhood of vi in the subgraph
induced by {v1, . . . , vi} is a clique; a graph is chordal iff it has a peo. When a
graph G has a peo., we can easily find an optimal coloring of G by applying
the greedy algorithm (take recursively a vertex not colored yet and color it with
the smallest color) following the peo. of the vertices. A graph G = (V,E) is
a split graph iff one can partition V into V1, V2 such that V1 is a stable and
V2 is a clique (there may be some edges linking V1 to V2). A split graph is in
particular a chordal graph since it has a peo. A graph is a k-tree iff G has a
peo. v1, . . . , vn such that v1, . . . , vk is a clique and the neighborhood of vi in
the subgraph induced by {v1, . . . , vi} has a size k for i > k (a 1-tree is also
called a tree). A graph G is a partial k-tree if G is a partial graph of a k-tree. A
graph G is a comparability graph iff G has a direct orientation −→

G = (V,E) such
that −→

G is acyclic (there is no circuit) and −→
G is transitive (that is if (x, y) ∈ E

and (y, z) ∈ E, then (x, z) ∈ E). A direct acyclic transitive orientation of G
is also called a poset. As previously, we can prove that the coloring problem is
polynomial in posets. A graph G is a co-comparability graph iff the complement
of G is a comparability graph. A graph G = (V,E) is an interval graph if it is
the intersection graph of a family of open intervals. For graph-theoretical terms
not defined here, the reader is referred to [1].

This paper is organized as follows. In Sect. 2, we answer a question raised in
[8] by proving that Weighted Coloring is (strongly) NP-hard in interval graphs.
In Sect. 3, we deal with polynomial approximation of Weighted Coloring, pro-
viding mainly approximation algorithms for graphs colorable with a few number
of colors and for partial k-trees.

2 Interval Graphs

The interval graphs are a kind of graphs very used in practice, in particular
when dealing with scheduling problems. A well known characterization of interval
graphs is the following: G is an interval graph iff G is a chordal graph and G
is a co-comparability graph. Although the coloring problem is polynomial in
interval graphs (since an interval graph is a chordal graph), in [4], it is proved
that the Weighted Coloring problem is strongly NP-hard in split graphs and
thus strongly NP-hard in chordal graphs, since the split graphs is a subclass of
chordal graphs. Moreover, it is shown in [5] that the Weighted Coloring problem
is polynomial in complements of interval graphs. In this section, we prove that
the Weighted Coloring problem is strongly NP-hard in interval graphs.

Weighted Coloring: Further Complexity and Approximability Results 207

Theorem 1. Weighted Coloring is strongly NP-hard in interval graphs. More-
over, the problem of finding χ(G,w) is also NP-hard in interval graphs.

Proof. We reduce the Circular Arc Coloring problem to our problem. A circular
arc graph is the intersection graph of arcs of a circle. Garey et al. [6] proved
that the Circular Arc Coloring problem, i.e., the problem of finding a minimum
size coloring in circular arc graphs, is NP-complete. Let G be the intersection
graph of the n-tuple of circular arcs A = (Aj)j∈{1,···,n}, and let k ∈ {1, · · · , n}.
Assume, wlog., that the intervals Aj are open. We transform this instance of
Circular Arc Coloring in an instance I ′ = (G′, w) of Weighted Coloring as fol-
lows. Let a be any point on the circle, and J0 = {j : a ∈ Aj}. For simplicity,
assume wlog. that point a belongs to some arcs and that J0 = {1, · · · , j0}, for
some j0 ≥ 1. For any j ≤ j0, we split interval Aj = (cj , dj) in A′

j = (cj , a) and
A′′

j = (a, dj). For j > j0, we define A′
j = Aj . Set A′ be the (n + j0)−tuple of

intervals (A′
j)j∈{1,···,n} and (A′′

j)j≤j0 . Let G′ be the intersection graphs of A′.
We set the weights w of G′ in the following way: w(v′

j) = w(v′′
j) = 2k(j0 +1− j)

if j ≤ j0 and w(v′
j) = 1 for j > j0. The description of instance I ′ = (G′, w′) of

Weighted Coloring is now complete.
Note that {vj , j ≤ j0} is a clique in G. We can suppose k ≥ j0 (other-

wise G is trivially not k-colorable). We claim that χ(G) ≤ k if and only if
opt(G′) ≤ kj0(j0 + 1) + k − j0 = B.

Suppose that S = (S1, · · · , Sk) is a coloring of G. Then, set S ′ = (S′
1, · · · , S′

k)
where S′

i = Si \ {vj : j ≤ j0} ∪ {v′
j , v

′′
j : vj ∈ Si, j ≤ j0}. One can eas-

ily see that S ′ is a coloring of G′. Furthermore, we have opt(G′) ≤ w(S ′) =
2k

∑j0
j=1 j + (k − j0) = B.

Reciprocally, let S ′ = (S′
1, · · · , S′

l) be a coloring of G′ with opt(I ′) = w(S ′) ≤
B. Assume that w(Si) ≥ w(Sj) for any j ≥ i. Note that {v′

1, v
′′
1 } ∈ S′

1, otherwise
opt(I ′) = w(S ′) ≥ 2kj0 + 2kj0 + 2k

∑j0−2
j=1 j = kj0(j0 + 1) + 2kj0 > B. With

an analogous argument, we can show that {v′
j , v

′′
j } ∈ S′

j for any j ≤ j0. Conse-
quently, w(S ′) = kj0(j0 +1)+ (l − j0), and then l ≤ k. Set Si = S′

i \ {v′
i, v

′′
i }∪ vi

for i ≤ j0 and Si = S′
i for i > j0. S = (S1; · · · , Sl) is a l-coloring of G, and

χ(G) ≤ l ≤ k.
The NP-hardness of computing χ(I ′) follows easily from the previous proof.

Indeed, if G′ is not k-colorable, then obviously χ(I ′) > k. Otherwise, let S ′ be an
optimal coloring. Since χ(G) ≤ k iff opt(I ′) ≤ B, w(S ′) ≤ B and, as we have seen
above, w(S′) = kj0(j0 +1)+ |S ′|−j0 = B + |S ′|−k. Hence, χ(I ′) ≤ |S ′| ≤ k. ��

Using Theorem 1 and the characterization of interval graphs, we deduce that
the Weighted Coloring problem is strongly NP-hard in co-comparability graphs.

3 Approximation Results

3.1 k-Colorable Graphs

We study in this section, the approximability of the Weighted Coloring problem
in natural classes of graphs colorable with a few number of colors. We first

208 B. Escoffier, J. Monnot, and V.Th. Paschos

focus ourselves on subfamilies of k-colorable graphs where the minimum coloring
problem is polynomial. Our objective is to prove the following theorem.

Theorem 2. Let G be a class of k-colorable graphs, where a k-coloring is com-
putable in polynomial time. Then, in any G ∈ G, Weighted Coloring is approx-
imable within ratio k3/(3k2 − 3k + 1).

Proof. Consider some graph G = (V,E) ∈ G of order n, and assume that any
vi ∈ V has weight wi = w(vi). Suppose that w1 ≥ w2 ≥ · · · ≥ wn. Consider
an optimal weighted coloring S∗ = (S∗

1 , · · · , S∗
l), with w(S∗

1) ≥ · · · ≥ w(S∗
l) and

denote by i∗k, the index of the heaviest vertex in color S∗
k (hence, w(S∗

k) = wi∗
k
),

by Vi the set of vertices {v1, · · · , vi} (hence, Vn = V) and by G[V ′] the subgraph
of G induced by V ′ ⊆ V .

We compute several colorings of G and choose as final solution the best one
among the colorings computed. We first compute a k-coloring S0 of G. Clearly:

w
(
S0) ≤ kw1 = kw (S∗

1) (1)

Then, for j = 2, · · · , n + 1, we do the following:

– if G[Vj−1] is bipartite then:
• consider the best weighted 2-coloring (Sj

1, S
j
2) among the 2-colorings of

G[Vj−1] (Sj
2 may be empty);

• color the remaining vertices vj , · · · , vn with k colors (Sj
3, S

j
4, · · · , S

j
k+2),

thus obtaining a coloring Sj = (Sj
1, S

j
2, · · · , S

j
k+2) of G.

Note that the first step is easily polynomially computable (merge optimally the
unique 2-colorings of any connected component).

Consider now the iterations where j = i∗2 and j = i∗3. For j = i∗2, Vj−1 is an
independent set; hence, Sj

1 = Vj−1. We get in this case:

w(Sj) ≤ w1 + kwj = w (S∗
1) + kw (S∗

2) (2)

On the other hand, for j = i∗3, G[Vj−1] is bipartite; hence, w(Sj
1) + w(Sj

2) ≤
w(S∗

1) + w(S∗
2). In this case:

w(Sj) ≤ w (S∗
1) + w (S∗

2) + kw (S∗
3) (3)

Recall that the algorithm returns the best coloring among those computed. Note
also that if the number l of colors in S∗ is smaller than 2, then this algorithm
computes an optimal coloring. Combination of equations (1), (2) and (3) with
coefficients (k − 1)2/k3, k(k − 1)/k3 and k2/k3 = 1/k, respectively, concludes
that the output coloring S is such that: w(S) ≤ (k3/(3k2 − 3k + 1))w(S∗) and
the result follows. ��

Note that this improves a (4 − 3/k)-approximation algorithm given in [15]
(see the note on related works at the end of the paper), for k ≤ 10.

Weighted Coloring: Further Complexity and Approximability Results 209

Corollary 1. Weighted Coloring is approximable within ratio 27/19 < 1.42 in
polynomially 3-colorable graphs.

It is well known that the coloring problem is polynomial in planar triangle-
free graphs ([10]) and that the chromatic number in these graphs is bounded
by 3. Moreover, it is proved in [3] that on the one hand the Weighted Coloring
problem is strongly NP-hard and, on the other hand, the Weighted Coloring
problem cannot be approximated with performance ratio better than 7

6 − ε for
any ε > 0 unless P	=NP, in the planar triangle-free graphs, even if the maximum
degree is bounded by 4. Using Theorem 2, we obtain:

Corollary 2. Weighted Coloring is 27/19-approximable in planar triangle-free
graphs.

As another corollary of Theorem 2, Weighted Coloring is approximable within
ratio 64/37 in polynomially 4-colorable graphs. On the other hand, note that
minimum coloring is not (4/3 − ε)-approximable in planar graphs, that these
graphs are polynomially 4-colorable and that the Weighted Coloring problem is
a generalization of the coloring problem. Putting all this together, we obtain:

Theorem 3. Weighted Coloring is approximable within ratio 64/37 < 1.73 in
planar graphs, but it is not (4/3 − ε)-approximable in these graphs.

Note that the result of Theorem 2 can be applied also to line graphs of bipartite
graphs of degree at most ∆. A weighted coloring on I = (L(G), w) where L(G) is
the line graph of G can be viewed as a weighted edge-coloring on (G,w). In fact,
in [4], it is shown that the Weighted Coloring problem is strongly NP-complete
in line graphs of regular bipartite graphs of degree ∆ and that the Weighted
Coloring problem is not (2∆

2∆−1 − ε) approximable unless P=NP, for any ∆ ≥ 3.
Besides, the NP-completeness also holds for the line graphs of complete bipartite
graphs. More recently, in [3] this lower bound is tightened up to 7

6 when ∆ = 3.
Furthermore, it is proved that this bound is the best possible since in [3] is also
provided a 7/6-approximation algorithm.

Now, we generalize the technique used in Theorem 2 to get an approximation
algorithm in line graphs of bipartite graphs of degree at most ∆, for any fixed
∆ ≥ 3, since using König’s theorem ([12]) we know that the coloring problem is
polynomial in line-graphs of bipartite graphs. More precisely, we can show the
following theorem:

Theorem 4. For any ∆ ≥ 3, Weighted Coloring in line graphs of bipartite
graphs of maximum degree at most ∆ is approximable within approximation ratio
ρ∆, where ρ1 = ρ2 = 1 and:

ρ∆ =
∆

∑∆
j=1

∏∆−1
l=j (1 − ρl/∆)

Proof. Let ρ1 = ρ2 = 1 and ρj be a ratio guaranteed by some polynomial
algorithm for 3 ≤ j ≤ ∆ − 1 on line graphs of bipartite graphs of maximum
degree at most j. Then, on an instance I = (G,w) where G = L(H) and H is

210 B. Escoffier, J. Monnot, and V.Th. Paschos

a bipartite graph of maximum degree ∆. Let us consider an optimal solution
S∗ = (S∗

1 , · · · , S∗
l). We have l ≥ ∆ by construction. As previously, set i∗k the

index of the heaviest vertex of S∗
k . Then, as in the proof of Theorem 2, we

can compute three colorings of value at most ∆w(S∗
1), w(S∗

1) + ∆w(S∗
2) and

w(S∗
1)+w(S∗

2)+∆w(S∗
3), respectively. Moreover, for any k ∈ {4, · · · ,∆}, consider

the graph G[Vi∗
k−1] induced by the vertices Vi∗

k−1 = {v1, · · · , vi∗
k−1}. This graph

is a line graph of a bipartite graph of maximum degree at most k − 1 (since it
is k − 1 colorable). Hence, by applying our approximation algorithm with ratio
ρk−1 on Ii∗

k−1 = (G[Vi∗
k−1], w), we can get a coloring of Ii∗

k−1 of value at most
ρk−1opt(Ii∗

k−1) ≤ ρk−1
∑k−1

j=1 w(S∗
j) and then, a coloring of I of value at most

ρk−1
∑k−1

j=1 w(S∗
j) + ∆ × w(S∗

k). If we take the best coloring S among all these
colorings, we get:

w(S) ≤ ∆ × w(S∗
1)

w(S) ≤ ρ1w(S∗
1) + ∆ × w(S∗

2)
· · ·

w(S) ≤ ρ∆−1

∆−1∑

m=1

w(S∗
m) + ∆ × w(S∗

∆)

Let β =
∆∑

j=1

∆−1∏

l=j

(1 − ρl/∆) (note that by convention
∏∆−1

l=∆ (1−ρl/∆) = 1). Then,

take the convex combination of these ∆ inequalities with coefficients α1, · · · , α∆,
where αi =

∏∆−1
l=i (1−ρl/∆)

β . We have αi ∈ [0, 1], α∆ = 1
β and

∑∆
i=1 αi = 1.

We get w(S) ≤ ρ∆(
∑∆

m=1 w(S∗
m)) ≤ ρ∆w(S∗) where ρ∆ = ∆/β. Indeed, the

contribution of weight w(S∗
i) in the convex combination is ∆αi +

∑∆
j=i+1 αj ×

ρj−1. If we denote Ai =
∑∆

j=i+1 αj × ρj−1, then we can easily prove that Ai =
∆(α∆ − αi). ��

The following table gives the approximate value of ratio ρ∆ for some ∆.

∆ 4 5 10 50 100 200 400 700 1000
ρ∆ 1.61 1.75 2.16 2.97 3.25 3.51 3.73 3.89 3.99

Note that this improves a (4 − 3/∆)-approximation algorithm given in [15]
(see the note on related works at the end of the paper), for ∆ ≤ 1025.

We end this section by improving the lower bound obtained in [4] for the
Weighted Coloring problem in line graphs of regular bipartite graphs of degree ∆.

Theorem 5. For any ∆ ≥ 3, ε > 0, the Weighted Coloring problem is not
(1+ 2

∆ − 2
∆+1 −ε) approximable unless P=NP, in line graphs of regular bipartite

graphs of degree ∆.

Proof. For simplicity, we consider the edge model, i.e., we study the Weighted
Edge-Coloring problem in regular bipartite graphs of degree ∆. We prove the

Weighted Coloring: Further Complexity and Approximability Results 211

following result by induction: it is NP-complete to distinguish between opt(I) ≤
∆(∆+1)

2 and opt(I) ≥ ∆(∆+1)+2
2 in regular bipartite graphs of degree ∆, where

the weights used are in W = {1, . . . , ∆} and there exists at least one vertex of
degree ∆ whose incident edges have different weights (i.e. are weighted by 1, 2,
... , and ∆).

For ∆ = 3 the result is proved in [3]. Assume that the result holds for
∆ = k − 1 and let us prove the result for ∆′ = k.

Let I = (G,w) be an instance with ∆ = k −1 (in other words, G = (L,R;E)
is a regular bipartite graphs of degree k − 1). We construct an instance I ′ =
(G′, w′) of the case ∆′ = k as follows: we duplicate G as G1 = (L1, R1;E1) and
G2 = (L2, R2;E2) and we add two matchings M1 and M2 between G1 and G2
such that Mi links the vertices of Li to the vertices of R3−i. The weights of
the edges of G′ are assigned as follows: if e ∈ E1 ∪ E2, then w′(e) = w(e); if
e ∈ M1 ∪ M2, then w′(e) = ∆′.

It is clear that the instance I ′ = (G′, w′) verifies the required hypothesis. We
claim that opt(I) ≤ ∆(∆+1)

2 iff opt(I ′) ≤ ∆′(∆′+1)
2 .

If opt(I) ≤ ∆(∆+1)
2 , then by duplicating this edge coloring to Gi and by

adding a new color to M1 ∪ M2, we obtain an edge coloring of G′ and opt(I ′) ≤
opt(I) + ∆′ ≤ ∆′(∆′+1)

2 .
Conversely, assume that opt(I ′) ≤ ∆′(∆′+1)

2 . Then the edges of M1 ∪M2 have

the same color. Otherwise, opt(I ′) ≥ ∆′ + ∆′ +
∑∆′−2

i=1 i > ∆′(∆′+1)
2 since in

I ′ there are ∆′ edges e1, . . . , e∆′ with w′(ei) = i adjacent to the same vertex.
Thus, the restriction of this solution to G1 is an edge coloring verifying opt(I) ≤
opt(I ′) − ∆′. ��

3.2 Partial k-Trees

A k-tree is a graph that can be reduced to a clique of size k by deleting iteratively
some vertices the neighborhood of which is a clique of size k. A partial k-tree
is a subgraph of a k-tree. There are several characterizations of partial k-trees.
One of them is the following: G is a partial k-tree iff G is a subgraph of a chordal
graph G′ with a clique number equal to k + 1 (i.e., ω(G′) = k + 1). k-trees are
(polynomially) k + 1-colorable, and we can get a ρk+1-approximation, but we
can improve this result.

Let us define the List Coloring problem, where we want to answer the fol-
lowing question: given a graph G = (V,E) with, for any v ∈ V , a set L(v)
of admissible colors, does there exist a (proper) coloring of G with colors from
L(V) = ∪v∈V L(v) such that any vertex v is colored with a color from L(v)? The
complexity of List Coloring has been studied in [13,11].

Theorem 6. If G is a class of t-colorable graphs (where t is a constant) where
List Coloring is polynomial, then Weighted Coloring admits a PTAS in G.

Proof. Let G such a class of graphs, a graph G ∈ G and ε > 0. Let k =⌈
(t − 1)(1 + 1

ε)
⌉
.

212 B. Escoffier, J. Monnot, and V.Th. Paschos

Consider the following algorithm. For any k′ ≤ k:

– consider any k′-tuple (x1, · · · , xk′) ∈ W k′
;

– find a k′-coloring (S1, · · · , Sk′) of G such that w(Si) ≤ xi, i = 1, · · · , k′, if
such a coloring exists;

– output the best coloring among those found in the previous step.

To achieve the second step, we use the fact that List Coloring is polynomial in
G. Indeed, given (x1, · · · , xk′) ∈ W k′

, we can define an instance of List Coloring
on G: vi can be colored with color Sj for all j ∈ {1, · · · , k′} such that w(vi) ≤ xj .
One can easily see that a coloring is valid for this instance of List Coloring, if
and only if this coloring is such that w(Si) ≤ xi, i = 1, · · · , k′.

We claim that the solution computed by this algorithm is 1+ε-approximate,
for any ε > 0.

Indeed, consider an optimal solution S∗ = (S∗
1 , · · · , S∗

l), with w(S∗
1) ≥ · · · ≥

w(S∗
l). If l ≤ k, then we found, by our exhaustive search, a coloring (S1, · · · , Sl)

such that w(Si) ≤ w(S∗
i) for all i, hence an optimal solution.

If l > k, then consider the k-tuple (w1, · · · , wk) where wi = w(S∗
i) for i ≤

k + 1 − t and wi = w(S∗
k+1−t) for i ≥ k + 1 − t. If we consider the k − t colors

S∗
i , i = 1, · · · , k − t, and any t-coloring Sj , j = k + 1 − t, · · · , k of the remaining

vertices (the graph is polynomially t-colorable), then w(Sj) ≤ w(S∗
k+1−t) for

j = k + 1 − t, · · · , k. So, the algorithm finds a coloring for this particular tuple
(w1, · · · , wk). Consequently, the solution S given by the algorithm is such that:

w(S)
w(S∗)

≤
∑k+1−t

i=1 w(S∗
i) + (t − 1)w(S∗

k+1−t)∑l
i=1 w(S∗

i)

≤ 1 +
(t − 1)w(S∗

k+1−t)∑k+1−t
i=1 w(S∗

i)
≤ 1 +

t − 1
k + 1 − t

≤ 1 + ε

Since we use less than |W k+1| ≤ nk+1 times the algorithm for List Coloring as
a subroutine, our algorithm is polynomial, hence we get the expected result. ��

Since List Coloring is polynomial in partial k-trees ([11]), then we have the
following corollary:

Corollary 3. Weighted Coloring admits a PTAS in partial k-trees (hence, in
particular, in trees).

Although we have proposed an approximation scheme in partial k-trees, the
complexity of the Weighted Coloring problem remains open for these graphs.

We now focus ourselves on the case where the input graph is a chain, or a
collection of chains. Guan and Zhu proposed in [8] a polynomial time algorithm
with complexity O(n4) to solve (optimally) Weighted Coloring in chains (as a
particular case of a more general result). We can improve this result in the
following way:

Theorem 7. Weighted Coloring is polynomially solvable in O(n|W |) ≤ O(n2)
in chains.

Weighted Coloring: Further Complexity and Approximability Results 213

Proof. Consider a graph G which is a set of k disjoint chains C1, · · · , Ck. Note
that ∆(G) ≤ 2 hence any optimal Weighted Coloring has at most 3 colors. As
we have seen previously, the best 2-coloring is easily computable (in O(n)). To
compute an optimal 3-coloring, we compute, for any w ∈ W , the smallest number
nw ≤ w for which there exists a 3-coloring (S1, S2, S3) with w(S1) = wmax,
w(S2) ≤ w and w(S3) ≤ nw (nw = ∞ if such a coloring does not exist). Remark
first that every vertex v with weight w(v) > w must receive color 1. Consider
now two consecutive such vertices vi, vj in a chain Cl. If there exists an odd
number of vertices between vi and vj , we can color these vertices with colors
1 and 2. Otherwise, one must use 3 colors, and one can do it by coloring with
color 3 only the lightest vertex vij between vi and vj . Hence, nw is the heaviest
among these vertices vij . Given w ∈ W , we can find nw (and the corresponding
coloring) in O(n), hence the result follows. ��

3.3 Note on Related Works

During the time between submission and the current version, we have learnt that
some results obtained here also appear in papers [14,15]. In these papers, the
authors deal with the same problem that they call maximum coloring. In [14],
the authors proved that this problem is NP-complete in interval graphs and
gave constant polynomial approximation. However, the proof used for the NP-
completeness is completely different. In [15], the authors proposed a PTAS for the
case of trees. Moreover, they also provide a (4 − 3/k)-approximation algorithm
in hereditary classes of k-colorable graphs where the usual coloring problem is
polynomial. In particular, this gives a (4 − 3/∆)-approximation algorithm for
line graphs of bipartite graphs with maximum degree ∆.

References

1. C. Berge. Graphs and Hypergraphs. North Holland, Amsterdam, 1973.
2. M. Boudhar and G. Finke. Scheduling on a batch machine with job compatibilities.

Special issue ORBEL-14: Emerging challenges in operations research (Mons, 2000).
Belg. J. Oper. Res. Statist. Comput. Sci., 40(1-2):69–80, 2000.

3. D. de Werra, M. Demange, B. Escoffier, J. Monnot and V.Th. Paschos. Weighted
coloring on planar, bipartite and split graphs: complexity and improved approxi-
mation. Proc. ISAAC’04, LNCS 3341, 896–907, 2004.

4. D. de Werra, M. Demange, J. Monnot and V.Th. Paschos. Weighted node coloring:
when stable sets are expensive. Proc. WG’02, LNCS 2573:114–125, 2002.

5. G. Finke, V. Jost, M. Queyranne, A. Seb and X. Zhu. Batch
Processing With Interval Graph Compatibilities Between Tasks.
Cahiers du laboratoire Leibniz, 108, 2004, (available at http://www-
leibniz.imag.fr/NEWLEIBNIZ/LesCahiers/index.xhtml.)

6. M.R. Garey, D.S. Johnson, G.L. Miller and C.H. Papadimitriou. The complexity of
coloring circular arcs and chords. SIAM J. Algebraic Dicrete Methods, 1:216–222,
1980.

7. M. R. Garey and D. S. Johnson. Computers and intractability. a guide to the
theory of NP-completeness. CA, Freeman, 1979.

214 B. Escoffier, J. Monnot, and V.Th. Paschos

8. D. J. Guan and X. Zhu. A Coloring Problem for Weighted Graphs. Inf. Process.
Lett., 61(2):77-81 1997.

9. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

10. H. Grotzsch, Ein dreifarbensatz fur dreikreisfreie netze auf der kugel, Wiss. Z.
Martin Luther Univ. Halle-Wittenberg, Math. Naturwiss Reihe 8 (1959), 109-120.

11. K. Jansen and P. Scheffler: Generalized coloring for tree-like graphs. Discrete
Applied Mathematics, 75:135-155, 1997.

12. D. König. ber graphen und iher anwendung auf determinantentheorie und men-
genlehre. Math. Ann., 77:453-465, 1916.

13. J. Kratochvl and Z. Tuza. Algorithmic complexity of list colorings. Discrete Applied
Mathematics, 50(3): 297-302, 1994.

14. S. V. Pemmaraju, R. Raman and K. R. Varadarajan. Buffer minimization using
max-coloring. SODA 562-571, 2004.

15. S. V. Pemmaraju and R. Raman. Approximation algorithms for the max-coloring.
ICALP, (to appear) 2005.

Quantum Algorithms for a Set of Group
Theoretic Problems�

Stephen A. Fenner and Yong Zhang

University of South Carolina Columbia,
SC 29208, USA

{fenner, zhang29}@cse.sc.edu

Abstract. This work introduces two decision problems, StabilizerD

and Orbit CosetD, and gives quantum reductions from them to the
problem Orbit Superposition (Friedl et al., 2003), as well as quantum
reductions to them from two group theoretic problems Group Inter-

section and Double Coset Membership. Based on these reductions,
efficient quantum algorithms are obtained for Group Intersection and
Double Coset Membership in the setting of black-box groups. Specif-
ically, for solvable groups, this gives efficient quantum algorithms for
Group Intersection if one of the underlying solvable groups has a
smoothly solvable commutator subgroup, and for Double Coset Mem-

bership if one of the underlying solvable groups is smoothly solvable.
Finally, it is shown that Group Intersection and Double Coset

Membership are in the complexity class SZK.

1 Introduction

This paper makes progress in finding connections between quantum computation
and computational group theory. We give results about quantum algorithms
and reductions for group theoretic problems, concentrating mostly on solvable
groups.

Many problems that have quantum algorithms exponentially faster than the
best known classical algorithms turn out to be special cases of the Hidden Sub-

group problem for abelian groups, which can be solved using the Quantum
Fourier Transform [1,2]. The non-abelian Hidden Subgroup problem remains
a very interesting open problem since it has as its special case the Graph Iso-

morphism problem. Recently Friedl et al. [3] made progress on the non-abelian
case by introducing Stabilizer and Orbit Coset, both of which generalize
Hidden Subgroup, and showing that they can be solved efficiently on quan-
tum computers for a family of smoothly solvable groups. They introduced in the
same paper the problem Orbit Superposition as a useful tool. In this paper
we further investigate the relationship among Stabilizer, Orbit Coset, and

� This work was supported in part by the National Security Agency (NSA) and Ad-
vanced Research and Development Activity (ARDA) under Army Research Office
(ARO) contract number DAAD 190210048.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 215–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 S.A. Fenner and Y. Zhang

Orbit Superposition. We introduce two problems StabilizerD and Orbit

CosetD, which are the decision versions of Stabilizer and Orbit Coset. We
show that in bounded error quantum polynomial time StabilizerD reduces to
Orbit Superposition over solvable groups and Orbit CosetD reduces to
Orbit Superposition over any finite groups.

These reductions to Orbit Superposition suggest that the difficulty in
StabilizerD and Orbit CosetD resides in the construction of uniform quan-
tum superpositions over orbits (in a group action). This is in general not a
surprise. Very often, solving a problem with a quantum algorithm can be re-
duced to preparing the right quantum superposition. For example, if one can
prepare a uniform superposition over all graphs isomorphic to a given graph,
then one can solve the Graph Isomorphism problem easily via a simple swap
test [4,5]. What makes orbit superpositions interesting in our case, however,
is their unexpected utility for solving a variety of different problems that may
at first seem unrelated, including not only StabilizerD and Orbit CosetD

but also Group Intersection and Double Coset Membership, described
below.1

Our results on StabilizerD and Orbit CosetD help us to obtain effi-
cient quantum algorithms for two well studied problems in computational group
theory, Group Intersection and Double Coset Membership. No efficient
classical algorithms are known for these two problems. Watrous [6] first used
quantum computers to help solve problems in computational group theory. He
constructed efficient quantum algorithms for several problems on solvable groups,
such as Order Verification and Group Membership. Based on an algo-
rithm of Beals and Babai [7], Ivanyos, Magniez, and Santha [8] obtained efficient
quantum algorithms for Order Verification as well as several other group
theoretic problems. Watrous asked in [6] whether there are efficient quantum
algorithms for problems such as Group Intersection and Coset Intersec-

tion. Here we study Group Intersection and Double Coset Membership

where Double Coset Membership generalizes Coset Intersection as well
as Group Membership and Group Factorization. We show that for solv-
able groups, there are efficient quantum algorithms for Group Intersection

and Double Coset Membership under certain conditions. We obtain these
results by showing that these two problems reduce to StabilizerD and Orbit

CosetD, respectively. Our results also imply that for abelian groups, Group

Intersection and Double Coset Membership are in the complexity class
BQP. Combined with Fortnow and Rogers’ result [9] that any problem in BQP
is low for the counting class PP, we obtain an alternative proof that they are
low for the class PP. Arvind and Vinodchandran first proved this result [10].

Finally, motivated by a similar result in Aharonov and Ta-Shma [5], we show
that Group Intersection and Double Coset Membership have honest-
verifier zero knowledge proof systems, and thus are in SZK. This is an improve-
ment of Babai’s result [11] that Group Intersection and Double Coset

1 Watrous’s order-finding algorithm for solvable groups [6] also works by explicitly
constructing a certain orbit superposition.

Quantum Algorithms for a Set of Group Theoretic Problems 217

Membership are in AM ∩ coAM. While Watrous [12] showed that Group

Nonmembership is in the complexity class QMA, another implication of our
results is that Group Nonmembership is in SZK.

Our results and other known reducibility relationships between these and
other various group theoretic problems are summarized in Figure 1.

Fig. 1. Known reducibilities between various group theoretic problems. Thick lines
represent nontrivial reducibilities shown in the current work.

2 Preliminaries

Background on general group theory and quantum computation can be found in
the standard textbooks [13,14].

2.1 The Black-Box Group Model

All of the group theoretic problems discussed in this paper will be studied in the
model of black-box groups. This model was first introduced by Babai and Sze-
merédi [15] as a general framework for studying algorithmic problems for finite
groups. It has been extensively studied (see [6]). Here we will use descriptions
similar to those in [10].

We fix the alphabet Σ = {0, 1}. A group family is a countable sequence
B = {Bm}m≥1 of finite groups Bm, such that there exist polynomials p and q
satisfying the following conditions. For each m ≥ 1, elements of Bm are encoded
as strings (not necessarily unique) in Σp(m). The group operations (inverse,
product and identity testing) of Bm are performed at unit cost by black-boxes (or
group oracles). The order of Bm is computable in time bounded by q(m), for each
m. We refer to the groups Bm of a group family and their subgroups (presented
by generator sets) as black-box groups. Common examples of black-box groups are
{Sn}n≥1 where Sn is the permutation group on n elements, and {GLn(q)}n≥1
where GLn(q) is the group of n × n invertible matrices over the finite field
Fq. Depending on whether the group elements are uniquely encoded, we have

218 S.A. Fenner and Y. Zhang

the unique encoding model and non-unique encoding model, the latter of which
enables us to deal with factor groups [15]. In the non-unique encoding model an
additional group oracle has to be provided to test if two strings represent the
same group element. Our results will apply only to the unique encoding model. In
one of our proofs, however, we will use the non-unique encoding model to handle
factor groups. For how to implement group oracles in the form of quantum
circuits, please see [6].

Definition 1 ([10]). Let B = {Bm}m≥1 be a group family. Let e denote the
identity element of each Bm. Let k ≥ 2 be any integer. Let 〈S〉 denote the group
generated by a set S of elements of Bm. Below, g and h denote elements, and
S1 and S2 subsets, of Bm.

Group Intersection := {(0m, S1, S2) | 〈S1〉 ∩ 〈S2〉 = 〈e〉},
Multiple Group Intersection := {(0m, S1, . . . , Sk) | 〈S1〉∩ . . .∩ 〈Sk〉=〈e〉},

Group Membership := {(0m, S1, g) | g ∈ 〈S1〉},
Group Factorization := {(0m, S1, S2, g) | g ∈ 〈S1〉〈S2〉},

Coset Intersection := {(0m, S1, S2, g) | 〈S1〉g ∩ 〈S2〉 �= ∅},
Double Coset Membership := {(0m, S1, S2, g, h) | g ∈ 〈S1〉h〈S2〉}.

Multiple Group Intersection is a generalized version of Group In-

tersection. Also, it is easily seen that Double Coset Membership gener-
alizes Group Membership, Group Factorization, and Coset Intersec-

tion. Therefore in this paper we will focus on Double Coset Membership.
All our results about Double Coset Membership will also apply to Group

Membership, Group Factorization, and Coset Intersection. (Actually,
Coset Intersection and Group Factorization are easily seen to be the
same problem.)

2.2 Solvable Groups

The commutator subgroup G′ of a group G is the subgroup generated by elements
g−1h−1gh for all g, h ∈ G. We define G(n) such that

G(0) = G,

G(n) = (G(n−1))′, for n ≥ 1.

G is solvable if G(n) is the trivial group {e} for some n. We call G = G(0) �G(1) �
· · · � G(n) = {e} the derived series of G, of length n. Note that all the factor
groups G(i)/G(i+1) are abelian. There is a randomized procedure that computes
the derived series of a given group G [16].

The term smoothly solvable is first introduced in [3]. We say that a family of
abelian groups is smoothly abelian if each group in the family can be expressed
as the direct product of a subgroup with bounded exponent and a subgroup of
polylogarithmic size in the order of the group. A family of solvable groups is

Quantum Algorithms for a Set of Group Theoretic Problems 219

smoothly solvable if the length of each derived series is bounded by a constant
and the family of all factor groups G(i)/G(i+1) is smoothly abelian.

In designing efficient quantum algorithms for computing the order of a solv-
able group (Order Verification), Watrous [6] obtained as a byproduct a
method to construct approximately uniform quantum superpositions over ele-
ments of a given solvable group.

Theorem 1 ([6]). In the model of black-box groups with unique encoding, there
is a quantum algorithm operating as follows (relative to an arbitrary group or-
acle). Given generators g1, . . . , gm such that G = 〈g1, . . . , gm〉 is solvable, the
algorithm outputs the order of G with probability of error bounded by ε in time
polynomial in mn + log(1/ε) (where n is the length of the strings representing
the generators). Moreover, the algorithm produces a quantum state ρ that ap-
proximates the state |G〉 = |G|−1/2 ∑

g∈G |g〉 with accuracy ε (in the trace norm
metric).

2.3 A Note on Quantum Reductions

In Sections 3 and 4 we describe quantum reductions to various problems. Quan-
tum algorithms for these problems often require several identical copies of a
quantum state or unitary gate to work to a desired accuracy. Therefore, we will
implicitly assume that our reductions may be repeated t times, where t is some
appropriate parameter polynomial in the input size and the logarithm of the
desired error bound.

3 StabilizerD and Orbit CosetD

Friedl et al. [3] introduced several problems which are closely related to Hidden

Subgroup. In particular, they introduced Stabilizer, Hidden Translation,
Orbit Coset, and Orbit Superposition. Stabilizer generalizes Hidden

Subgroup. In fact, the only difference between Stabilizer and Hidden Sub-

group is that in the definition of Stabilizer the function f can be a quantum
function that maps group elements to mutually orthogonal quantum states with
unit norm. Orbit Coset generalizes Stabilizer and Hidden Translation.
Orbit Superposition is a relevant problem, which is also of independent in-
terest. The superpositions Watrous constructed in Theorem 1 can be considered
as an instance of Orbit Superposition.

We would like to further characterize the relationship of these problems. First
we define and study the decision versions of Stabilizer and Orbit Coset,
denoted as StabilizerD and Orbit CosetD. The original definitions of Sta-

bilizer and Orbit Coset concerns about finding generating sets of certain
stabilizer subgroups. In the decision version, we simplify the problems by only
asking whether the stabilizer subgroups are trivial. We also give the definition
of the problem Orbit Superposition.

Let G be a finite group. Let Γ be a set of mutually orthogonal quantum
states. Let α : G × Γ → Γ be a group action of G on Γ , i.e., for every x ∈ G the

220 S.A. Fenner and Y. Zhang

function αx : |φ〉 → |α(x, |φ〉)〉 is a permutation over Γ and the map h from G to
the symmetric group over Γ defined by h(x) = αx is a homomorphism. We use
the notation |x · φ〉 instead of |α(x, |φ〉)〉, when α is clear from the context. We
let G(|φ〉) denote the set {|x · φ〉 : x ∈ G}, and we let G|φ〉 denote the stabilizer
subgroup of |φ〉 in G, i.e., {x ∈ G : |x · φ〉 = |φ〉}. Given any positive integer
t, let αt denote the group action of G on Γ t = {|φ〉⊗t : |φ〉 ∈ Γ} defined by
αt(x, |φ〉⊗t) = |x · φ〉⊗t. We need αt because the input superpositions cannot be
cloned in general.

Definition 2. Let G be a finite group and Γ be a set of pairwise orthogonal
quantum states. Fix the group action α : G × Γ → Γ .

– Given generators for G and a quantum state |φ〉 ∈ Γ , StabilizerD is to
check if the subgroup G|φ〉 is the trivial subgroup {e}.

– Given generators for G and two quantum states |φ0〉, |φ1〉 ∈ Γ , Orbit

CosetD is to either reject the input if G(|φ0〉) ∩ G(|φ1〉) = ∅ or accept
the input if G(|φ0〉) = G(|φ1〉).

– Given generators for G and a quantum state |φ〉 ∈ Γ , Orbit Superposi-

tion is to construct the uniform superposition

|G · φ〉 =
1√

|G(|φ〉)|
∑

|φ′〉∈G(|φ〉)
|φ′〉.

Next we show that the difficulty of StabilizerD and Orbit CosetD may
reside in constructions of certain uniform quantum superpositions, which can be
achieved by the problem Orbit Superposition.

We will use the following result which is easily derivable from Theorem 7 in
Ivanyos, Magniez, and Santha [8]:

Theorem 2 ([8]). Assume that G is a solvable black-box group given by gener-
ators with not necessarily unique encoding. Suppose that N is a normal subgroup
given as a hidden subgroup of G via the function f . Then the order of the factor
group G/N can be computed by quantum algorithms in time polynomial in n,
where n is the input size.

Please note that we can apply Theorem 2 to factor groups since it uses the
non-unique encoding black-box groups model.

Theorem 3. Over solvable groups, StabilizerD reduces to Orbit Superpo-

sition in bounded-error quantum polynomial time.

Proof. Let the solvable group G and quantum state |φ〉 be the input for the
problem StabilizerD. We can find in classical polynomial time generators for
each element in the derived series of G [16], namely, {e} = G1 � · · · � Gn = G.
For 1 ≤ i ≤ n let Si = (Gi)|φ〉, the stabilizer of |φ〉 in Gi. By Theorem 1 we
can compute the orders of G1, . . . , Gn and thus the order of Gi+1/Gi for any
1 ≤ i < n. We will proceed in steps. Suppose that before step i+1, we know that
Si = {e}. We want to find out if Si+1 = {e} in the (i+1)st step. Since Gi �Gi+1,

Quantum Algorithms for a Set of Group Theoretic Problems 221

by the Second Isomorphism Theorem, GiSi+1/Gi
∼= Si+1. Consider the factor

group Gi+1/Gi, we will define a function f such that f is constant on GiSi+1/Gi

and distinct on left cosets of GiSi+1/Gi in Gi+1/Gi. Then by Theorem 2 we can
compute the order of the factor group Gi+1/Gi over GiSi+1/Gi. The group
oracle needed in the non-unique encoding model to test if two strings s1 and
s2 represent the same group elements can be implemented using the quantum
algorithm for Group Membership, namely, testing if s−1

1 s2 is a member of Gi.
The order of this group is equal to the order of Gi+1/Gi if and only if Si+1 is
trivial.

Here is how we define the function f . Using Gi and |φ〉 as the input for
Orbit Superposition, we can construct the uniform superposition |Gi · φ〉.
Let Γ be the set {|gGi · φ〉|g ∈ Gi+1}. We define f : Gi+1/Gi → Γ be such
that f(gGi) = |gGi · φ〉. What is left is to verify that f hides the subgroup
GiSi+1/Gi in the group Gi+1/Gi. For any g ∈ GiSi+1, it is straightforward to
see that |gGi · φ〉 = |Gi · φ〉. If g1 and g2 are in the same left coset of GiSi+1,
then g1 = g2g for some g ∈ GiSi+1 and thus |g1Gi · φ〉 = |g2Gi · φ〉. If g1
and g2 are not in the same left coset of GiSi+1, we will show that |g1Giφ〉
and |g2Giφ〉 are orthogonal quantum states. Suppose there exists x1, x2 ∈ Gi

such that |g1x1 · φ〉 = |g2x2 · φ〉, then x−1
1 g−1

1 g2x2 ∈ Si+1. But x−1
1 g−1

1 g2x2 =
x−1

1 x′
2g

−1
1 g2 for some x′

2 ∈ Gi. Thus g−1
1 g2 ∈ GiSi+1. This contradicts the

assumption that g1 and g2 are not in the same coset of GiSi+1.
We need to repeat the above procedure at most Θ(log |G|) times. For each

step the running time is polynomial in log |G| + log(1/ε), for error bound ε. So
the total running time is still polynomial in the input size.

We can also easily reduce Orbit CosetD to Orbit Superposition in
quantum polynomial time. In this reduction, we don’t require the underlying
groups to be solvable. The proof uses similar techniques that Watrous [12] and
Buhrman et al. [4] used to differentiate two quantum states.

Theorem 4. Orbit CosetD reduces to Orbit Superposition in bounded-
error quantum polynomial time.

Proof. Let the finite group G and two quantum states |φ1〉, |φ2〉 be the inputs of
Orbit CosetD. Notice that the orbit coset of |φ1〉 and |φ2〉 are either identical
or disjoint, which implies the two quantum states |G · φ1〉 and |G · φ2〉 are either
identical or orthogonal. We may then tell which is the case using a version of
the swap test of Buhrman et al. [4].

4 Quantum Algorithms for Group Intersection and
Double Coset Membership

In this section we use results in the previous section to make progress in finding
quantum algorithms for Group Intersection and Double Coset Member-

ship.
We will need the following results which are easily derivable from Friedl et

al. [3].

222 S.A. Fenner and Y. Zhang

Theorem 5 ([3]). Let G be a finite solvable group having a smoothly solv-
able commutator subgroup. Let α be a group action of G. StabilizerD can
be solved in G for αt in quantum time poly(log |G|) log(1/ε) with error ε when
t = (logΩ(1) |G|) log(1/ε),

Theorem 6 ([3]). Let G be a smoothly solvable group and let α be a group
action of G. When t = (logΩ(1) |G|) log(1/ε), Orbit CosetD can be solved in
G for αt in quantum time poly(log |G|) log(1/ε) with error ε.

First we show that with the help of certain uniform quantum superpositions
over group elements, Group Intersection can be reduced to StabilizerD.

Theorem 7. Group Intersection reduces to StabilizerD in bounded-error
quantum polynomial time if one of the underlying groups is solvable.

Proof. Given an input (0m, S1, S2) for Group Intersection, without loss of
generality, suppose that G = 〈S1〉 is an arbitrary finite group and H = 〈S2〉
is solvable. By Theorem 1 we can construct an approximately uniform super-
position |H〉 = |H|−1/2 ∑

h∈H |h〉. For any g ∈ G, let |gH〉 denote the uni-
form superposition over left coset gH, i.e., |gH〉 = |H|−1/2 ∑

h∈gH |h〉. Let
Γ = {|gH〉|g ∈ G}. Note that the quantum states in Γ are (approximately)
pairwise orthogonal. Define the group action α : G × Γ → Γ to be that for every
g ∈ G and every |φ〉 ∈ Γ , α(g, |φ〉) = |gφ〉. Then the intersection of G and H is
exactly the subgroup of G that stabilizes the quantum state |H〉.

Corollary 1. Group Intersection over solvable groups can be solved within
error ε by a quantum algorithm that runs in time polynomial in m + log(1/ε),
where m is the size of the input, provided one of the underlying solvable groups
has a smoothly solvable commutator subgroup.

Proof. Follows directly from Theorems 7 and 5.

We observe that a similar reduction to StabilizerD holds for Multiple

Group Intersection.

Proposition 1. Multiple Group Intersection reduces to StabilizerD in
bounded-error quantum polynomial time if all but one of the underlying groups
are solvable.

Proof. Without loss of generality, we illustrate the proof for the case k = 3.
Suppose we have three input groups G, H, and K, where H and K are solvable.
We let Γ be the set {|gH〉 ⊗ |gK〉|g ∈ G} and the group action α : G × Γ → Γ
be that for every g ∈ G and every |φ〉 ⊗ |ψ〉 ∈ Γ , α(g, |φ〉 ⊗ |ψ〉) = |gφ〉 ⊗ |gψ〉.
Then G∩H ∩K is the stabilizer subgroup of G that stabilizes the quantum state
|H〉 ⊗ |K〉.

It is not clear if a similar reduction to StabilizerD exists for Double Coset

Membership. However, Double Coset Membership can be nicely put into
the framework of Orbit CosetD.

Quantum Algorithms for a Set of Group Theoretic Problems 223

Theorem 8. Double Coset Membership over solvable groups reduces to
Orbit CosetD in bounded-error quantum polynomial time.

Proof. Given input for Double Coset Membership S1, S2, g and h, where
G = 〈S1〉 and H = 〈S2〉 are solvable groups, we construct the input for Orbit

CosetD as follows. Let Γ = {|xH〉|x ∈ 〈S1, S2, g, h〉}. Define group action
α : G × Γ → Γ to be α(x, |φ〉) = |xφ〉 for any x ∈ G and |φ〉 ∈ Γ . Let two
input quantum states |φ0〉 and |φ1〉 be |gH〉 and |hH〉, which can be constructed
using Theorem 1. It is not hard to check that G(|φ0〉) = G(|φ1〉) if and only if
g ∈ GhH.

Corollary 2. Double Coset Membership over solvable groups can be solved
within error ε by a quantum algorithm that runs in time polynomial in m +
log(1/ε), where m is the size of the input, provided one of the underlying groups
is smoothly solvable.

Proof. Given input for Double Coset Membership S1, S2, g and h, suppose
that G = 〈S1〉 is smoothly solvable and H = 〈S2〉 is solvable. Let S1, |gH〉, |hH〉
be the input for Orbit CosetD, the result follows from Theorem 6. If instead
H is the one which is smoothly solvable, then we modify the input by swapping
S1 and S2 and using g−1, h−1 to replace g, h. Note that this modification will
not change the final answer.

5 Statistical Zero Knowledge

A recent paper by Aharonov and Ta-Shma [5] proposed a new way to generate
certain quantum states using Adiabatic quantum methods. In particular, they in-
troduced the problem Circuit Quantum Sampling (CQS) and its connection
to the complexity class Statistical Zero Knowledge (SZK). Informally speak-
ing, CQS is to generate quantum states corresponding to classical probability
distributions obtained from some classical circuits. Although CQS and Orbit

Superposition are different problems, they bear a certain level of resemblance.
Both problems are concerned about generation of non-trivial quantum states. In
their paper they showed that any language in SZK can be reduced to a family
of instances of CQS. Based on Theorem 3 and Theorem 4, we would like to ask
if there are connections between SZK and the two group-theoretic problems
discussed in section 4.

Our results are that Group Intersection and Double Coset Member-

ship have honest-verifier zero knowledge proofs, and thus are in SZK. This is an
improvement of Babai’s result [11] that these two problems are in AM∩ coAM.
One of our proofs shares the same flavor with Goldreich, Micali and Wigderson’s
proof that Graph Isomorphism is in SZK [17].

For standard notions of interactive proof systems and zero knowledge inter-
active proof systems, see Vadhan’s Ph.D. thesis [18]. Here we only use honest-
verifier zero knowledge proof systems. Let 〈P, V 〉 be an interactive proof system
for an language L. We say that 〈P, V 〉 is honest-verifier perfect zero knowledge

224 S.A. Fenner and Y. Zhang

(HVPZK) if there exists a probabilistic polynomial-time algorithm M (simu-
lator) such that for every x ∈ L the output probability distribution of V (af-
ter interacting with P) and M , denoted as 〈P, V 〉(x) and M(x), are identical.
Similarly, we say 〈P, V 〉 is honest-verifier statistical zero knowledge (HVSZK) if
〈P, V 〉(x) and M(x) are statistically indistinguishable. It is clear that HVPZK ⊆
HVSZK. Goldreich, Sahai, and Vadhan showed that HVSZK and SZK are ac-
tually the same class [19]. Some complexity results concerning SZK (HVSZK)
include that BPP ⊆ SZK ⊆ AM ∩ coAM, and SZK is closed under comple-
ment, and SZK does not contain any NP-complete language unless the polyno-
mial hierarchy collapses (see [18]).

The following theorem due to Babai [20] will be used in our proof. Let G be
a finite group. Let g1, . . . , gk ∈ G be a sequence of group elements. A subproduct
of this sequence is an element of the form ge1

1 . . . gek

k , where ei ∈ {0, 1}. We call a
sequence h1, . . . , hk ∈ G a sequence of ε-uniform Erdős-Rényi generators if every
element of G is represented in (2k/|G|)(1 ± ε) ways as a subproduct of the hi.

Theorem 9 ([20]). Let c, C > 0 be given constants, and let ε = N−c where N
is a given upper bound on the order of the group G. There is a Monte Carlo algo-
rithm which, given any set of generators of G, constructs a sequence of O(log N)
ε-uniform Erdős-Rényi generators at a cost of O((log N)5) group operations. The
probability that the algorithm fails is ≤ N−C . If the algorithm succeeds, it per-
mits the construction of ε-uniform distributed random elements of G at a cost
of O(log N) group operations per random element.

Basically what Theorem 9 says is that we can randomly sample elements from
G and verify the membership of the random sample efficiently. Given a group G
and a sequence of O(log N) ε-uniform Erdős-Rényi generators h1, . . . , hk for G,
we say that e1 . . . ek where ei ∈ {0, 1} is a witness of g ∈ G if g = he1

1 . . . hek

k .

Theorem 10. Group Intersection has an honest-verifier perfect zero knowl-
edge proof system.

Proof. Given groups G and H, the prover wants to convince the verifier that the
intersection of G and H is the trivial group {e}. The protocol is as follows.

(V1) The verifier randomly selects x ∈ G and y ∈ H and computes z = xy. He
then sends z to the prover.

(P1) The prover sends two elements, denoted as x′ and y′, to the verifier.
(V2) The verifier verifies if x is equal to x′, and y is equal to y′. The verifier

stops and rejects if any of the verifications fails. Otherwise, he repeats steps
from (V1) to (V2).

If the verifier has completed m iterations of the above steps, then he accepts.
If G ∩ H is trivial, z will be uniquely factorized into x ∈ G and y ∈ H.

Therefore the prover can always answer correctly. On the other hand, if the
G ∩ H is nontrivial, the factorization of z is not unique, thus with probability
at least one half the prover will fail to answer correctly. For a honest verifier V ,
clearly this protocol is perfect zero-knowledge.

Quantum Algorithms for a Set of Group Theoretic Problems 225

We observe that the above zero knowledge proof does not apply to Mul-

tiple Group Intersection. If there are more than two input groups, the
factorization of z will not be unique even if the intersection of input groups is
trivial.

Theorem 11. Double Coset Membership has a honest-prover statistical
zero knowledge proof system.

Proof (sketch). Given groups G, H and elements g, h, the prover wants to con-
vince the verifier that g = xhy for some x ∈ G and y ∈ H. Fix a sufficiently
small ε > 0. The protocol is as follows.

(V0) The verifier computes ε-uniform Erdős-Rényi generators g1, . . . , gm and
h1, . . . , hn for G and H. The verifier sends the generators to the prover.

(P1) The prover selects random elements x ∈ G and y ∈ H and computes
z = xgy. He then sends z to the verifier .

(V1) The verifier chooses at random α ∈R {0, 1}, and sends α to the prover.
(P2) If α = 0, then the prover sends x and y to the verifier, together with

witnesses that x ∈ G and y ∈ H. If α = 1, then the prover sends over two
other elements, denoted as x′ and y′, together with witnesses that x′ ∈ G
and y′ ∈ H.

(V2) If α = 0, then the verifier verifies that x and y are indeed elements of G
and H and z = xgy. If α = 1, then the verifier verifies that x′ and y′ are
indeed elements of G and H and z = x′hy′. The verifier stops and rejects if
any of the verifications fails. Otherwise, he repeats steps from (P1) to (V2).

If the verifier has completed m iterations of the above steps, then he accepts.
It is easily seen that the above protocol is an interactive proof system for

Double Coset Membership. Note that z is in the double coset GhH if and
only if g is in the double coset GhH. If g /∈ GhH, then with probability at least
a half the prover will fail to convince the verifier. If g ∈ GhH, let g = ahb for
some a ∈ G and b ∈ H. Then it is clear that x′ = xa and y′ = by are also random
elements of G and H, thus revealing no information to the verifier. Therefore, to
simulate the output of the prover, the simulator simply chooses random elements
x ∈ G and y ∈ H and outputs z to be xgy if α = 0 and xhy if α = 1 in the step
P1. Given sufficiently small ε, the two probability distribution are easily seen to
be statistically indistinguishable.

6 Future Research

A key component in our proofs is to construct uniform quantum superpositions
over elements of a group, which is addressed by the problem Orbit Superpo-

sition. Watrous [6] showed how to construct such superpositions over elements
of a solvable group. We would like to find new ways to construct such super-
positions over a larger class of non-abelian groups. Aharonov and Ta-Shma [5]
used adiabatic quantum computation to construct certain quantum superposi-
tions such as the superposition over all perfect matchings in a given bipartite

226 S.A. Fenner and Y. Zhang

graph. An interesting question is whether adiabatic quantum computation can
help to construct superpositions over group elements.

Besides the decision versions, we can also define the order versions of Stabi-

lizer and Orbit Coset, where we only care about the order of the stabilizer
subgroups. In fact, the procedure described in the proof of Theorem 3 is also a
reduction from the order version of Stabilizer to Orbit Superposition. An
interesting question is to further characterize the relationship among the deci-
sion versions, the order versions, and the original versions of Stabilizer and
Orbit Coset.

Acknowledgments

We would like to thank George McNulty, Frédéric Magniez, John Watrous,
Variyam Vinodchandran, Derek Robinson, Scott Aaronson, and Dorit Aharonov
for many useful discussions.

References

1. Mosca, M.: Quantum Computer Algorithms. PhD thesis, University of Oxford
(1999)

2. Jozsa, R.: Quantum factoring, discrete algorithm and the hidden subgroup problem
(2000) Manuscript.

3. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and
orbit coset in quantum computing. In: Proceedings of the 35th ACM Symposium
on the Theory of Computing. (2003) 1–9

4. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys-
ical Review Letters 87 (2001) 167902

5. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical
zero knowledge. In: Proceedings of the 35th ACM Symposium on the Theory of
Computing. (2003) 20–29

6. Watrous, J.: Quantum algorithms for solvable groups. In: Proceedings of the 33rd
ACM Symposium on the Theory of Computing. (2001) 60–67

7. Beals, R., Babai, L.: Las Vegas algorithms for matrix groups. In: Proceedings of
the 34th IEEE Symposium on Foundations of Computer Science. (1993) 427–436

8. Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some in-
stances of the non-abelian hidden subgroup problem. In: Proceedings of 13th ACM
Symposium on Parallelism in Algorithms and Architectures. (2001) 263–270

9. Fortnow, L., Rogers, J.: Complexity limitations on quantum computation. Journal
of Computer and System Sciences 59 (1999) 240–252

10. Arvind, V., Vinodchandran, N.V.: Solvable black-box group problems are low for
PP. Theoretical Computer Science 180 (1997) 17–45

11. Babai, L.: Bounded round interactive proofs in finite groups. SIAM Journal on
Computing 5 (1992) 88–111

12. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: Proceed-
ings of the 41st IEEE Symposium on Foundations of Computer Science. (2000)

13. Burnside, W.: Theory of Groups of Finite Order. Dover Publications, Inc (1955)

Quantum Algorithms for a Set of Group Theoretic Problems 227

14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

15. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In:
Proceedings of the 25th IEEE Symposium on Foundations of Computer Science.
(1984) 229–240

16. Babai, L., Cooperman, G., Finkelstein, L., Luks, E., Seress, A.: Fast Monte Carlo
algorithms for permutation groups. Journal of Computer and System Sciences 50
(1995) 296–307

17. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38 (1991) 691–729

18. Vadhan, S.: A study of statistical zero knowledge proofs. PhD thesis, M.I.T. (1999)
19. Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-knowledge

equals general statistical zero-knowledge. In: Proceedings of the 30th ACM Sym-
posium on the Theory of Computing. (1998) 399–408

20. Babai, L.: Local expansion of vertex-transitive graphs and random generation in
finite graphs. In: Proceedings of the 23rd ACM Symposium on the Theory of
Computing. (1991) 164–174

On the Computational Complexity of the
L(2,1)-Labeling Problem for Regular Graphs�

Jǐŕı Fiala and Jan Kratochv́ıl

Institute for Theoretical Computer Science��

and Department of Applied Mathematics,
Charles University, Prague

{fiala, honza}@kam.mff.cuni.cz

Abstract. An L(2,1)-labeling of a graph of span t is an assignment of
integer labels from {0, 1, . . . , t} to its vertices such that the labels of
adjacent vertices differ by at least two, while vertices at distance two are
assigned distinct labels.

We show that for all k ≥ 3, the decision problem whether a k-regular
graph admits an L(2,1)-labeling of span k+2 is NP-complete. This answers
an open problem of R. Laskar.

1 Introduction

Motivated by models of channel assignment in wireless communication [7,6],
generalized graph coloring and in particular the concept of L(2,1)-labeling have
drawn significant attention in the graph-theory community in the past decade [1].

Besides the practical aspects, also purely theoretical questions became very
intersting. Among other we shall highlight a long-lasting conjecture of Griggs
and Yeh that the span of any optimal L(2,1)-labeling is upperbounded by ∆(G)2,
where ∆(G) is the maximum degree of the given graph G [6]. So far this conjec-
ture is still open, though it has been verified for various classes of graphs (e.g.,
for chordal graphs [11,8] or for graphs of diameter at most two [6]).

We focus our attention on the computational complexity of the decision prob-
lem whether a given graph G allows an L(2,1)-labeling of span at most λ. If λ
is a part of the input, the problem becomes NP-complete by a reduction from
the Hamiltonian path problem [6]. If λ is a fixed constant (i.e., the parameter
of the problem), the computational complexity was settled in [3], by construct-
ing a polynomial time algorithm for λ ≤ 3 and by showing that the problem is
NP-complete otherwise. The core argument of the NP-hardness proof is based
on the fact that vertices of high degree may allow only extremal labels (i.e., 0 or
λ) of the given spectrum.

In response to this fact, R. Laskar asked at the DIMACS/DIMATIA/Rényi
Workshop on Graph Colorings and their Generalizations (Rutgers University,
� The authors acknowledge support of grant Kontakt 525 Dimacs-Dimatia-Renyi.

�� Supported by the Ministry of Education of the Czech Republic as project
1M0021620808.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 228–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Computational Complexity of the L(2,1)-Labeling Problem 229

2003) what is the computational complexity of the L(2,1)-labeling problem when
restricted to regular graphs, hoping that the restriction might provide new ideas
for a general proof of hardness results on distance constrained labelings. In this
note we settle the computational complexity of the L(2,1)-labeling problem on
regular graphs in the following sense:

Theorem 1. For every integer k ≥ 3, it is NP-complete to decide whether a
k-regular graph admits an L(2,1)-labeling of span (at most) λ = k + 2.

The result is the best possible in terms of the span, since no k-regular graph
(for k ≥ 2) allows an L(2,1)-labeling of span k + 1 (see e.g. a paper by Georges
and Mauro [5] on labelings of regular graphs). Though our result is not totally
unexpected, the reduction (namely the garbage collection) is surprisingly uneasy
to design. It utilizes so called multicovers introduced in [10].

The paper is organized as follows: The next section provides necessary defini-
tions and facts used latter. In Section 3 we prepare tools used in the construction
and discuss their properties. The main result is then proven in Section 4.

2 Preliminaries

All graphs considered in this paper are finite and simple, i.e., with a finite vertex
set and without loops or multiple edges. A graph G is denoted as a pair (VG, EG),
where VG stands for a finite set of vertices and EG is a set of edges, i.e. unordered
pairs of vertices. The distance distG(u, v) between two vertices u and v of a graph
G is the length (the number of edges) of a shortest path connecting u and v. If
two vertices belong to different components, we let their distance be unspecified.

The set of vertices adjacent to a vertex u is called the neighborhood of u
and it is denoted by NG(u). The degree of a vertex u is the cardinality of its
neighborhood, i.e., deg(u) = |NG(u)|. A graph is called k-regular if all its vertices
are of degree k.

A vertex labeling by nonnegative integers f : VG → Z
+
0 is called an L(2,1)-

labeling of G if |f(u) − f(v)| ≥ 2 holds for any pair of adjacent vertices u and v,
and the labels f(u) and f(v) are distinct whenever dist(u, v) = 2.

The span of an L(2,1)-labeling is the difference between the largest and the
smallest label used. The parameter λ(2,1)(G) is the minimum possible span of an
L(2,1)-labeling of G. Such a labeling will be called optimal, and we may assume
that it uses labels from the discrete interval [0, . . . , λ(2,1)(G)].

With an optimal labeling f we associate its symmetric labeling f ′, defined
by f ′(u) = λ(2,1)(G) − f(u). Clearly the symmetric labeling is also optimal.

L(2,1)-labelings are closely related to graph covers: A full covering projection
from a graph G to a graph H is a graph homomorphism h : VG → VH such
that the neighborhood NG(u) of any vertex u ∈ VG is mapped bijectively on the
neighborhood NH(h(u)) of h(u).

Similarly, if the mapping is locally injective, i.e., if NG(u) is mapped injec-
tively into NH(h(u)), we call h a partial covering projection. Obviously every
full covering projection is also a partial covering projection.

230 J. Fiala and J. Kratochv́ıl

The relationship between L(2,1)-labelings and (partial) covering projections
was discussed in [2]:

Proposition 1. Every L(2,1)-labeling of a graph G of span λ corresponds to a
partial covering projection G → Pλ+1, and vice versa.

In particular, Cλ+1 ⊂ Pλ+1, hence every partial covering projection to Cλ+1
is also an L(2,1)-labeling of span at most λ.

Kratochv́ıl, Proskurowski and Telle [10] gave an explicit construction of a
special multicover graph allowing many extensions to full covering projections.
We will use it in our gadgets.

Proposition 2 ([10]). For any regular graph F , there exists a graph H (called
a multicover of F) with a distinguished vertex u ∈ VH such that any locally
injective homomorphism h′ : NH(u)∪u → F can be extended to a locally bijective
homomorphism h : H → F .

3 Gadgets

3.1 Polarity Gadget

Let k ≥ 3 be a positive integer. Consider the graph Fp on k + 5 vertices
v1, . . . , vk−1, u1, . . . , u4, x, y, with edges defined as follows:

E(Fp) = {(vi, vj) | 1 ≤ i, j ≤ k − 1, |i − j| ≥ 2}
∪ {(vi, uj) | 1 ≤ i ≤ k − 1, j = 1, 2, 3}
∪ {(vi, u4) | 2 ≤ i ≤ k − 2, }
∪ {(u1, u2), (u3, u4), (u4, x), (u4, y)}

See Fig. 1 for an example of such a graph. Observe also that each vertex
except x and y is of degree k.

Lemma 1. In the graph Fp, the pair of vertices x and y are labeled by 0 and λ
(or vice versa) under any L(2,1)-labeling f of span λ = k + 2.

Proof. The edge (u1, u2) participates in k − 1 triangles. If both u1 and u2 were
labeled by labels different from 0 and λ, then at most λ−4 < k −1 labels would
remain for v1, . . . , vk−1, which is insufficient. So without loss of generality we
may assume f(u1) = 0, and then u2 may get only two possible labels: 2 or λ.
The latter would, however, exclude all possible choices for u3.

Now up to a symmetry of labelings we have f(u1) = 0, f(u2) = 2 and for
the vertices v1, . . . , vk−1 remain the labels 4, 5, . . . , λ. Since Fp restricted onto
these vertices is the complement of a path on k − 1 vertices, only two possible
labelings exist: either f(vi) = i + 3 or f(vi) = λ + 1 − i. In both cases (they are
equivalent under an automorphism of Fp) only one possible label remains for the
vertex u3, namely f(u3) = 1. We deduce by similar arguments that f(u4) = 3.

Finally, since u4 is adjacent to vertices labeled by 1, 5, . . . , λ−1, its remaining
neighbors x and y must be labeled either one by 0 and the other one by λ as
claimed.

On the Computational Complexity of the L(2,1)-Labeling Problem 231

u4

vk−1v1

u3

u1 u2

yx

... λ

1

0

λ

...4

2

30

Fig. 1. The polarity gadget Fp and its L(2,1)-labeling

3.2 Swallowing Gadget

In our construction we involve multicovers allowing two different L(2,1)-labelings
as follows. Let H,u be a multicover of the k-regular graph Ck+3. For the swal-
lowing gadget we take two copies H1,H2 of the graph H (with the notation that
the copy of vertex v in Hi is denoted by vi, i = 1, 2), insert two new vertices x, y
and modify the edge set as follows:

E(Fs) = (E(H1) ∪ E(H2) \ {(u1, v1), (u2, v2)}) ∪ {(x, v1), (y, v2), (u1, u2)}

where v is an arbitrary neighbor of u in H. Observe that again all vertices except
x and y are of degree k. The construction of the swallowing gadget is illustrated
in Fig. 2.

Lemma 2. The graph Fs allows two L(2,1)-labelings f and f ′, such that f(v1) =
f ′(v1) = λ − 1, f(v2) = f ′(v2) = 1, while f(x) = 0, f ′(x) = 1 and f(y) = λ,
f ′(y) = λ − 1.

Proof. We label the vertices of Ck+2 by integers [0, λ], in a usual sequential way.
For the construction of f we choose the covering projection from H1 to [0, λ]

...

...
...

u

H v
...

...

0

0

λ

λ

1

λ − 1

λ − 1

1 λ − 1

1

λ − 2

2

λ

0

. . . , 3

. . . , λ − 3

λ − 1

1

λ − 2

2

λ − 2

2

Fig. 2. The swallowing gadget Fs and the two of its L(2,1)-labelings

232 J. Fiala and J. Kratochv́ıl

where u is mapped on 0 and v on λ − 1. The remaining neighbors of u are
mapped onto 2, 3, . . . , λ − 1. On H2 we use the symmetric labeling and get a
valid L(2,1)-labeling of Fs, since the “central” vertices u1 and u2 got labels 0 and
λ which are sufficiently separated for the desired L(2,1)-labeling f .

Similarly f ′ can be obtained in a similar way from an L(2,1)-labeling of H
where u is mapped on 1, the vertex v on λ − 1 and the remaining neighbors of
u are mapped on the set 3, 4, . . . , λ − 2, λ.

Both labelings are schematically depicted in Fig. 2.

3.3 Coupling Gadget

Let a be an integer in the range [1, λ − 1]. Set T = {1, 2, . . . , a − 1, a + 1, . . . , k}.
We construct the following graph (called the coupling gadget) F a

c on k2 + 2k + 1
vertices {vt

i : i = 0, 1, . . . , λ, t ∈ T} ∪ {u1, u2, x, y} by setting the edges as
follows:

E(F a
c) = {(vt

i , v
t
j) | 0 ≤ i, j ≤ λ, |i − j| ≥ 2, t ∈ T}

\ {(vt
t , v

t
λ), (vt

λ−t, v
t
0) | t ∈ T}

∪ {(u1, v
t
t), (u2, v

t
λ−t) | t ∈ T}

∪ {(u1, x), (u2, y)}

An example of the coupling gadget for a particular choice λ = 5, a = 2 is
depicted in Fig 3. Observe that similarly as above all vertices except x and y are
of degree k.

Lemma 3. The graph F a
c allows an L(2,1)-labeling f of span λ such that f(x) =

a, f(y) = λ − a, f(u1) = λ and f(u2) = 0.

Proof. Set f(vt
i) = i for i = 0, 1, . . . , λ, t ∈ T . (See Fig. 3 for an example.) An

easy check shows that it is a valid L(2,1)-labeling.

x yu1 u2

v3
0 v3

5

v1
5v1

0

v1
1

v1
2 v1

3

v1
4

v3
1

v3
2 v3

3

v3
4

0

2

4

5

4

2 5 0 3
5

32

1

0

1

3

Fig. 3. The coupling gadget F 2
c for λ = 5 and its L(2,1)-labeling

On the Computational Complexity of the L(2,1)-Labeling Problem 233

4 Main Result

Theorem 2. For every integer k ≥ 3, it is NP-complete to decide whether a
k-regular graph admits an L(2,1)-labeling of span (at most) λ = k + 2.

Proof. The problem is clearly in NP. Moreover, no k-regular graph admits an
L(2,1)-labeling of span less than k + 2 (as long as k ≥ 1), so we can restrict our
attention only to labelings of span exactly k + 2.

We prove the theorem by a reduction from the Not-All-Equal 3-Satisfi-

ability problem. The input of this problem is a Boolean formula Φ in con-
junctive normal form with exactly three literals in each clause and the ques-
tion is whether it is NAE-satisfiable, i.e, if a truth assignment exists such that
each clause contains at least positively and at least one negatively valued lit-
eral. Determining whether Φ is NAE-satisfiable has been shown NP-complete by
Schaefer [12] (see also [4, Problem LO3]).

Without loss of generality we may assume that with each clause C the formula
Φ contains also its complementary clause C ′ consisting of the complements of all
literals in C. In particular, each variable has then the same number of positive
and negative occurrences.

From such a formula Φ we construct a k-regular graph G such that G allows
an L(2,1)-labeling f of span k + 2 if and only if Φ is NAE-satisfiable. The graph
G is constructed by local replacements of variables and clauses by variable and
clause gadgets described below. (Consult Fig. 4 for details of the construction.)

Variable gadgets: Assume first that k �= 4. For each variable with t positive
and t negative occurrences, we insert in G 2t copies of the polarity gadget Fp,
arranged in a circular manner, i.e., the vertex yi of the i-th gadget will be
identified with the vertex xi+1 of the consequent gadget. (The last and the first
gadgets are joined accordingly as well.)

The vertices xi with odd indices will represent positive occurrences of the
associated variable, while even indices will be used as negated occurrences of
the variable. For k ≥ 5, we conclude the construction of each variable gadget by
inserting t(k + 1) new vertices vs

i , i = 1, . . . , k + 1, s = 1, . . . , t, and t triples of
coupling gadgets F 1

c , F 3
c and F 3

c linked by the following edges:

– (vs
i , v

s
j) if |i − j| ≥ 2, i.e., each (k + 1)-tuple with the same upper index

induces the complement of a path on k + 1 vertices
– (vs

i , x2s−1), (vs
i , x2s) if i �= 1, 3, λ − 3, λ − 1

Moreover, for each s = 1, . . . , t the vertices vs
1 and vs

λ−1 are identified with
the x, y vertices of its uniquely associated coupling gadget F 1

c , and similarly vs
3

and vs
λ−1 are merged with the x, y of a pair of F 3

c s.
When k = 4, we join polarity gadgets in a similar way: Use t copies of the

polarity gadget, the x-vertices represent positive occurrences and the y-vertices
negations. Now with a help of the t(k + 1) new vertices v1

1 , . . . , v
t
k+1, we define

the remaining edges as:

234 J. Fiala and J. Kratochv́ıl

– (vs
i , v

s
j) if |i − j| ≥ 2, i.e., each (k + 1)-tuple with the same upper index

induces the complement of a path on k + 1 vertices
– (vs

i , ys), (vs
i , xs+1) for i = 2, 4

As above, two coupling gadgets F 1
c , F 3

c are joined to vertices vs
1 and vs

5 (gadget
F 1

c) and to vs
3 (gadget F 3

c); both connections terminate in vs
3). See Fig 4 (right)

for a detail of this construction.
Observe that at this moment vertices of variable gadgets are of degree k − 1

(the xi’s) or of degree k (all others).

Clause gadgets: Each clause gadget consists of k +3 vertices z1, z2, z3, w1,. . . ,
wk, and of the following edges:

– (wi, wj) if |i − j| ≥ 2, inducing the complement of a path on k vertices
– (zi, wj) if i = 1, 2, 3 and 2 ≤ j ≤ k − 2

Clause gadgets of complementary clauses C and C ′ are joined by use of
– three swallowing gadgets Fs where for each i = 1, 2, 3, the vertices x, y are

identified with zi and z′i. (Both z vertices must represent the same variable
— one a positive occurrence, the other one a negated occurrence),

– two coupling gadgets F k
c where both x’s are merged with wk and both y’s

with w′
k,

– a coupling gadget F 1
c between w1 and w′

1,
– the edge (w1, w

′
1).

Completing the construction: Finally, all variable and clause gadgets are
composed together as follows: The x-vertices of variable gadgets are linked in
one-by-one manner to the z-vertices of clause gadgets such that edges between
gadgets represent the variable-clause incidence relation in Φ between the asso-
ciated variables and clauses. As was already noted above, vertices xi with odd
i indicate positive occurrences of the associated variable, while those with an
even i represent negations. (Formally, if a variable v occurs positively in a clause
c, we pick a unique xi, i odd, of the gadget representing v and a unique zj of
the clause gadget representing c and insert into G the edge (xi, zj). Similarly
for a negated variable we choose xi with an even index i.) This concludes the
construction of the graph G, see Fig. 4 for an illustration.

Clearly G is k-regular. It remains to be shown that G admits an L(2,1)-
labeling of span k + 2 if and only if Φ is NAE-satisfiable. In particular, we prove
that the NAE-satisfying Boolean assignments φ are in one-to-one correspondence
with valid labelings f of G via the equivalence:

(*) φ(v) = TRUE ⇔ f(x1) = 0 for x1 of the variable gadget representing v.

Assume first that Φ is NAE-satisfied by an assignment φ. Then the partial of
x1’s can be extended to all variable gadgets such that each xi is inside the gadget
incident with vertices 2, 3, . . . , λ − 2. (Just set f(vs

i) = i and extend it to the
polarity and coupling gadgets.) Consider a clause C and its gadget. Without loss
of generality we may assume that C contains one positively and two negatively
valued literals, i.e., (up to an permutation of indices) z1 is adjacent to a variable

On the Computational Complexity of the L(2,1)-Labeling Problem 235

F 1
c

F 1
c

F 3
c

F k
c

F 1
c

...

z2 z3z1

F k
c

Fs

Fs

Fs

...

z′
1z′

2z′
3

Fp

F 3
c

F 3
c

vs
k+1

x2s−1 x2s

...vs
1 vs

1 vs
5

ys
Fp

xs+1

wk w′
k w′

1w1

when k = 4

Fig. 4. Construction of G, variable gadgets in the upper part, two complementary
clause gadgets at the bottom. The different construction of the variable gadget for
k = 4 shown on the right side.

vertex labeled by λ, and z2, z3 to vertices labeled by 0. We extend f onto the
clause gadget by letting f(z1) = 0, f(z2) = λ − 1, f(z3) = λ and f(wi) = i. For
the complementary clause C ′, we label its gadget symmetrically and extend f
to the remaining swallowing and coupling gadgets to get a valid labeling of the
entire graph G.

In the opposite direction, it is easy to observe that in a valid L(2,1)-labeling
f of G of span k + 2 the following arguments hold:
– Up to symmetry the polarity gadgets allow only one possible labeling, where

in each variable gadget f(xi) �= f(xi+1), f(xi) ∈ {0, λ}.
– For k ≥ 5, the k − 3 common neighbors {vs

2, v
s
4, v

s
5, . . . , v

s
λ−4, v

s
λ−2} of x2s−1

and x2s must be labeled by the set {2, 4, 5, . . . , λ − 4, λ − 5} regardless the
labeling of x2s−1 and x2s. (Note that each xi gets neighbors labeled 3 and
λ − 3 inside the polarity gadgets.)
Similarly for k = 4, it holds that f(ys) �= f(xs+1) and f(zs

2), f(zs
4) ∈ {2, 4}.

– If xi is labeled 0, then its neighbor zj is labeled either λ or λ − 1 and
symmetrically if f(x1) = λ then f(zj) ∈ {0, 1}.

– In each clause gadget the labels of z1, z2 and z3 must be distinct since they
share a common neighbor (e.g., the vertex w1). Then from both sets {0, 1}
and {λ − 1, λ} at least one label is used on {z1, z2, z3}.
Then φ defined by (*) is a NAE-satisfying assignment for Φ, i.e., each clause

contains some positively as well as also some negatively valued literals. This
concludes the proof of NP-hardness of the problem. Membership in NPis obvious.

236 J. Fiala and J. Kratochv́ıl

5 Conclusion

We have shown NP-hardness of determining the minimum span of L(2, 1)-
labelings of regular graphs by proving that for every k ≥ 3, the decision prob-
lem whether λ(2,1)(G) ≤ k + 2 is NP-complete for k-regular graphs G. Note
that the bound k + 2 is the minimum possible, no k-regular graph allows an
L(2, 1)-labeling of span less than k + 2.

We conjecture that for every k ≥ 3, there exists a constant ck (depend-
ing on k) such that the decision problem λ(2,1)(G) ≤ λ restricted to k-regular
graphs is NP-complete for every fixed λ ∈ {k+2, k+3, . . . , ck} and polynomially
solvable for all other values of λ. The latter is certainly true for small λ (i.e.,
λ ≤ k + 1). The upper bound is more interesting. In particular, if our conjec-
ture is true, it still remains a question how far is the ck from λk = max{c :
∃k-regular G s.t. λ(2,1)(G) > c}. We conjecture that ck �= λk, i.e., that in the
upper part of the spectrum there will be space for nontrivial polynomial time al-
gorithms. Note finally that λk ≤ k2 +k−2 follows from [9], and that λk ≤ k2 −1
if the conjecture of Griggs and Yeh is true.

References

1. Calamoneri, T. The L(h, k)-labeling probelm: a survey. Tech. Rep. 04/2004,
Dept. of Comp. Sci, Univ, of Rome - ”La Sapienza”, 2004.

2. Fiala, J., and Kratochv́ıl, J. Partial covers of graphs. Discussiones Mathe-
maticae Graph Theory 22 (2002), 89–99.

3. Fiala, J., Kratochv́ıl, J., and Kloks, T. Fixed-parameter complexity of λ-
labelings. Discrete Applied Mathematics 113, 1 (2001), 59–72.

4. Garey, M. R., and Johnson, D. S. Computers and Intractability. W. H. Freeman
and Co., New York, 1979.

5. Georges, J. P., and Mauro, D. W. On regular graphs optimally labeled with
a condition at distance two. SIAM Journal of Discrete Mathematics 17, 2 (2003),
320–331.

6. Griggs, J. R., and Yeh, R. K. Labelling graphs with a condition at distance 2.
SIAM Journal of Discrete Mathematics 5, 4 (1992), 586–595.

7. Hale, W. K. Frequency assignment: Theory and applications. Proc. of the IEEE
68, 12 (1980), 1497–1514.

8. Král’, D. Coloring powers of chordal graphs. SIAM J. Discrete Math. 18, 3
(2004), 451–461.

9. Král’, D., and Škrekovski, R. A theorem about the channel assignment prob-
lem. SIAM J. Discrete Math. 16, 3 (2003), 426–437.

10. Kratochv́ıl, J., Proskurowski, A., and Telle, J. A. Covering regular graphs.
Journal of Combinatorial Theory B 71, 1 (Sept 1997), 1–16.

11. Sakai, D. Labeling chordal graphs: distance two condition. SIAM Journal of
Discrete Mathematics 7, 1 (1994), 133–140.

12. Schaefer, T. J. The complexity of the satisfability problem. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (1978), ACM, pp. 216–226.

A Polymerase Based Algorithm for SAT

Giuditta Franco1,2

1 Dept of Computer Science, University of Verona, Italy
franco@sci.univr.it

2 Dept of Mathematics, University of South Florida, USA
gfranco@cas.usf.edu

Abstract. A DNA algorithm based on polymerase extension and cut-
ting operations is proposed to solve an instance of SAT with significant
dimension. It suggests a combination of efficient DNA operations follow-
ing the schema of the extract model. Its generating step is performed by
a variant of a recently introduced technique called XPCR, while the ex-
traction of the solutions is implemented by a combination of polymerase
extension and restriction endonuclease action.

Keywords: DNA Computing, Polymerase, Restriction Enzymes, SAT,
XPCR.

1 Introduction

Solving NP-Complete problems in linear time is one of the goals of DNA Com-
puting, where information is stored in bio-polymers, and enzymes manipulate
them in a massively parallel way according to strategies that can produce com-
putationally universal operations [6]. The massive parallelism and the non deter-
minism of the DNA computations allow to attack hard problems even by using
the brute force search of the solutions.

After the seminal Adleman’s experiment, where the solution of an instance of
Hamiltonian Path Problem was found within DNA sequences [1], Lipton showed
that the satisfiability problem can be solved by using essentially the same bio-
techniques [9]. The schema of the Adleman-Lipton extract model consists of
two main steps: the combinatorial generation of the solution space (a test tube
containing the pool of DNA strands encoding all the possible solutions) and the
extraction of (the strands encoding) the true solutions.

The more recent method to generate a solution space is called mix-and-split
and was introduced in [3] to generate an initial RNA pool for the knight problem,
that is a combinatorial library of binary numbers. It was used in [2] to generate
the initial pool for a 20-variable 3-SAT problem, the biggest instance solved in
lab so far. It combines a chemical synthesis of DNA sequences and an enzymatic
extension method; in fact, two half libraries are combined by primer extension
while each of them was synthesized chemically on two columns by repetitive
mixing and splitting steps. This method takes the advantages of an extension
method but performs a big part of the work by chemical synthesis, that is quite
sophisticated and expensive.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 237–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 G. Franco

The extraction of DNA strands including a given sequence of bases has
been the critical step in the Adleman-Lipton paradigm. The traditional meth-
ods for separating the strands containing given substrands from the other ones
by Watson-Crick complementarity were showed to be not complete, that is,
some solutions could be lost [8]. More recently micro-fluid devices for separating
strands were introduced [15], and an automated mix of thermo-cycler and gel-
electrophoresis was developed in [2] in order to extract the strands encoding the
satisfying assignments of a formula from a large pool of molecules.

Here we present a DNA algorithm solving SAT in linear time and based on
polymerase extension, enzymatic cuts, and electrophoresis, that are considered
standard cheap easy and efficient methods to perform DNA computations.

The generation step of this algorithm is going to be implemented by a partic-
ular application of the XPCR, that is a polymerase-based technique introduced
in [4] as extraction tool1 and then used in [5] as generation tool. Lab experi-
ments were carried on for testing the technique in different situations. Also, the
implementation of the generation and the extraction XPCR-based procedures
resulted to be convenient with respect to the standard methods, in terms of
efficiency, speed and feasibility [4,5].

The XPCR generation algorithm proposed in [5] starts from four specific
DNA sequences and generates the whole SAT solution space of 2n different
sequences (where n is the number of boolean variables) in linear time, in fact
it performs 2(n − 1) recombinations. Here an improved generation procedure is
proposed, which starts from two specific DNA sequences and performs �log2 n�
recombinations.

The extraction step is going to be implemented by a suitable combination of
enzymatic operations. In particular it needs a polymerase extension and ‘blunt’
cuts of a restriction enzyme, we use for example the SmaI endonuclease. The
restriction enzymes are known as molecular scalpels because of their cut preci-
sion, and they perform DNA computations with an efficiency of 100%. Usually
the problem for using enzymes in DNA computing is that there exists only a
limited number of them in nature, so we are able to perform a limited number
of different cuts. However, in our algorithm only one kind of cut is required,
regardless the dimension of the problem.

The idea of this extracting step was inspired by [13], where hairpin forma-
tions of single strands were used as test of inconsistent assignments of variables
and destroyed by a restriction enzyme. But here totally different algorithmic
procedure is used, where polymerase extension is an important feature to select
the ‘good’ strings. Also, we manipulate a solution space with 2n elements instead
of one with 3m elements, where m is the number of clauses of the considered
SAT instance.

In the following section we describe the DNA computing background neces-
sary to understand the algorithm proposed in the section 4. The SAT problem

1 Invention covered by a patent from U.S. Department of Commerce, Docket number:
BUCH-001PRV.

A Polymerase Based Algorithm for SAT 239

with a DNA encoding is described in the section 3, while some final remarks in
the last section conclude the paper.

2 DNA Computing Background

In this section we recall the notions related to electrophoresis, to the polymerase
action that is basic for describing traditional PCR and XPCR techniques, to
splicing rules and to restriction enzymes.

All the operations are performed on a test tube containing many copies of
each DNA sequence. In the following we say pool P such a test tube; formally
it is a multiset of strings (over a given alphabet), that is a set of strings having
positive multiplicity. The union operation P1 ∪ P2 produces the pool resulting
after a mix (called also merge) of the two pools P1 and P2.

There is a natural association between a DNA sequence and the number of
its bases, that number is called the length of the sequence. Electrophoresis is a
standard gel-based technique that selects DNA sequences with respect to their
length. Its precision depends on the kind of gel, and even sequences that differs
of one basis can be separated. We indicate with Elr(P) the pool containing all
the sequences of P having length exactly r, or, in other words, the pool obtained
from P after an electrophoresis where the sequences r long were selected.

PCR is one of the most important and efficient tool in biotechnological ma-
nipulation and analysis of long DNA molecules. The main ingredients of this
reaction are polymerase enzymes which implement a very simple and efficient
duplication algorithm on double oriented strings. The PCR procedure is based
on: i) templates, ii) a copy rule applied to templates, iii) initial short strings
(primers) that say where the copying process has to start. Polymerase enzyme
‘writes’ a string step by step, in the 5′ − 3′ direction, by coping (in complemen-
tary form) the bases of the template which drives the copy process (as in the
Figure 1).

The three parts of the Polymerase Chain Reaction are carried out in the
same pool, but at different temperatures. The first part of the process separates
the two DNA chains and this is done simply by heating the pool to 90-95 de-
grees centigrade; we indicate this operation on the pool P with H(P). Since the
primers cannot bind to the DNA strands at such a high temperature, the pool is
then cooled to 55 degrees. At this temperature, the primers bind to their com-
plementary portions along the DNA strands. We denote this step of priming, or
cooling down, with C(P).

The final step of the reaction is intended to make a complete copy of the
templates. The temperature of the pool is raised at around 75 degrees (to allow
only primers to be annealed) in which the Taq polymerase works well (this is the
temperature of the hot springs where the bacterium was discovered). It begins
adding nucleotides to elongate the primer and eventually makes a complementary
copy of the template. If the template contains an A nucleotide, the enzyme adds
a T nucleotide to the primer. If the template contains a G, it adds a C to the
new chain, and so on to the end of the DNA strand. We indicate this step

240 G. Franco

Fig. 1. Polymerase extension

as Taq(P), where a polymerase extension is performed by elongating all the
annealed primers of P .

The three steps in the Polymerase Chain Reaction - the separation of the
strands, annealing the primer to the template, and the synthesis of new strands -
take less than two minutes. We indicate with PCR(α,β)(P) a standard PCR with
primers α and β applied on the pool P; it amplifies all the portions having as
prefix the sequence α and as suffix the sequence β (because the sequences are
considered, as usual, in the 5′ − 3′ orientation).

Starting from an heterogeneous pool of DNA double strands sharing a com-
mon prefix α and a common suffix β, and given a specified string γ, by means
of XPCRγ(P) we recombine all the strings of the pool P that contain γ as
substring. In particular, the procedure XPCRγ(P) implements the following
version of null context splicing rule rγ introduced in [7]:

rγ : α φ γ ψ β, α δ γ η β −→ α φ γ η β, α δ γ ψ β, α φ γ ψ β, α δ γ η β

where αφγψβ and αδγηβ are elements of P.

The procedure XPCRγ(P) consists of the following steps.

input pool P of strings having α as prefix and β as suffix

– split P into P1 and P2 (with the same approximate size)
– P1 := PCR(α,γ)(P1) and P2 := PCR(γ,β)(P2) (cutting step2, Figure 2)

2 In order to implement these PCRs in parallel, the encodings of primers must be such
that their melting temperatures is approximately the same.

A Polymerase Based Algorithm for SAT 241

– P := P1 ∪ P2
– P := PCR(α,β)(P) (recombination step, Figure 3).

output P .

After the cutting step we find in the test tubes P1 and P2 an exponential
amplification of the double stranded DNA strings α . . . γ and γ . . . β respectively
(see Figure 2), that are shorter than the initial molecules.

Since products linearly amplified keep the initial length, an electrophoresis
could be performed after the cutting steps for eliminating the longest strands; it
would clean the signal from the noise caused by these amplifications and would
decrease the production of unspecific matter.

PCR

α γ β α

α γ

_ _ _ _

_

α γ β

γ

γ

α γ β

_ _ _ _

_

α γ β

PCR

γ

β

γ β

β

Fig. 2. Cutting step of XPCRγ

In the recombination step, left parts α · · ·γ and right parts γ · · · β of the
initial sequences having γ as subsequence are recombined in all possible ways,
regardless to the specificity of the sequences between α and γ, or γ and β.
Therefore, not only the whole sequences containing γ are restored but also new
sequences are generated by recombination (see Figure 3).

The recombination of strings having a specific common substring γ is per-
formed in nature by some restriction enzymes. They cleave the double helix at
the end of γ wherever they find the sequence, in such a way that (after a cut) a
common overhang γ allows the recombinations of different DNA molecule along
it. The recombining behaviour of restriction enzymes is perfectly modeled by
splicing rules, that are widely investigated in literature from a formal language
theory viewpoint [7,12]. Generally the restriction enzymes will bind to DNA at
a specific recognition site and then cleave DNA mostly within, but sometimes
outside of this recognition site.

This operation is very useful in biological situations (as mutagenesis) and
in DNA Computing, but the limited number of enzymes stops the scale up of
such computations to solve problems with high dimension. While the procedure
XPCRγ has no limit regarding the choice of (the primer) γ, and it was tested
working as expected [4].

Some enzymes perform a blunt cut, that is straight both strands (no over-
hang). Here we use just one of this enzyme, called SmaI. It is a restriction

242 G. Franco

α γ γ βα

_
β

α

α γ γ β

α γ β

α γ

_ _ _ _

_

_ _ _ _

_ _ _

_ _

α γ γ β

β

α γ γ β

β

γ β

α γ

Melting + hybridization

Polymerase action

Fig. 3. Recombination step of XPCRγ

SmaI

GGG
CCC CCC

CCC
GGG

GGG
GGG
CCC

CCC
CCC

CCCGGG
GGG

GGG
GGG CCC

Fig. 4. Cut operation of the enzyme SmaI

endonuclease, thus it cuts only double stranded molecules, and in particular it
has the restriction site CCCGGG. It means that, when we put this enzyme in
a pool P , all the double strands containing CCCGGG are cut between the last
C and the first G (as in Figure 4). We indicate with SmaIcut (P) the pool
containing the products of SmaI acting on P .

Now we choose the number of variables and clauses of an instance of SAT
and briefly present the encodings of the initial data within DNA sequences.

3 SAT and DNA Encodings

Propositional satisfiability (or SAT) is the problem of deciding if it is possible
to assign truth values to the variables in a propositional formula to make it
true, using the standard interpretation for logical connectives. We consider SAT
problems in conjunctive normal form (CNF): a formula in CNF is a a conjunction
of clauses, where a clause is a disjunction of literals, and a literal is a variable or a
negated variable. A k-SAT (n, m) problem, in particular, can be seen as a boolean

A Polymerase Based Algorithm for SAT 243

system of m disjunctive equations on n variables x1, . . . , xn and their negations
¬x1, . . . , ¬xn (that are literals li, where i = 1, . . . , n and li ∈ {xi, ¬xi}), where
each equation (clause) has length smaller than or equal to k. If there exists an
assignment satisfying a given formula or system we say it is satisfiable, and it
belongs to the SAT class, otherwise we say it is unsatisfiable.

SAT was the first problem shown to be NP-complete (Cook, ’71), and it is
nowadays one of most studied NP-complete problems. A remarkable consequence
of the theory of NP-completeness is that a large collection of problems (several
thousand) from many different fields can be represented as instances of the k-
SAT problem. If k ≥ 3 then any instance of k-SAT can be reduced to an instance
of 3-SAT at the cost of linearly increasing the size of the problem, therefore in
the following we will consider only the 3-SAT problem, just to facilitate the
explanation.

In terms of what is known theoretically about the probability of satisfiability
for random 3-SAT, the threshold conjecture [11] is that there is some specific ratio
of clauses to variables above which the probability of satisfiability approaches
1, and below which it approaches 0. In general NP-complete problems exhibit
‘phase transition’ phenomena, analogous to those in physical systems, with the
hardest problems occurring at the phase boundary: across the phase dramatic
changes occur in the computational difficulty, and the problems become easier
to solve away from the boundary [14]. Experimental evidence strongly suggests
a threshold with m

n ≈ 4.2.
Therefore as a suggestion for an experiment we consider for example a sig-

nificant instance of a 30-variable 3-SAT problem with 126 clauses. We have the
variables x1, x2, . . . , x30 and the clauses C1, C2, . . . , C126 that are the disjunction
of at most three literals.

As usual [9], we encode the variables with the DNA sequences X1, X2, . . . ,
X30 respectively, and their negations ¬x1, ¬x2, . . . , ¬x30 with the sequences Y1,
Y2, . . . , Y30 respectively. For the sake of simplicity, we say that the literal li is
encoded by the DNA sequence Li, meaning that, if li = xi then Li = Xi, and if
li = ¬xi then Li = Yi.

We consider the following two initial sequences, where the sequence γ con-
tains3 the restriction site of SmaI, while α and β are two fixed sequences (long
18) necessary to perform the XPCR procedure

Z1 = αX1γX2γX3 · · ·γX30β and Z2 = αY1γY2γY3 · · ·γY30β.

We assume that each Li has length 20, as it is a better choice for a primer
length, and may not contain CCCGGG as subsequence. The sequences encoding
the literals have to be ‘very different’ to each other, to avoid mismatches during
the running of the algorithm described in the next section. The main encoding
requirements here are that the elements of the set {X1, . . . , X30, Y1, . . . , Y30}
have no common subwords at least ten long that are complementary to each
other, do not begin with sequences of G and do not end with sequences of C
long more than five.
3 More precisely, we choose to take γ = CCCCCCCCGGGGGGGG. It has length 16.

244 G. Franco

These conditions avoid mismatches in the pools involved by the operations
of the algorithm, in fact such kind of properties are preserved by concatenation
and splicing [10].

The length of the initial sequences Z1 and Z2 is 1100, resulting from the
thirty literals twenty long, the twenty nine occurrences of γ, the prefix and suffix
eighteen long. Note that the 230 elements of the solution space αξ1 γ ξ2 · · · γ ξ30β
with ξi ∈ {Xi, Yi} have all length 1100.

4 Algorithm for Solving SAT

input: P = {Z1, Z2}

begin

p := 1, q := 1

1. (Generation step)
for p = 1, . . . , 5

begin

P := XPCRγ(P)

P := El1100(P)

p := p + 1
end

2. (Extraction step)
for q = 1, . . . , 126
Consider Cq = l

(q)
i ∨ l

(q)
j ∨ l

(q)
k and set Pq := {L

(q)
i , L

(q)
j , L

(q)
k }

begin

P := P ∪ Pq

P := H(P)

P := C(P)

P := Taq(P)

P := SmaIcut(P)

P := El1100(P)

P := PCR(α,β)(P)
end

end
output: P

The output pool P contains the solutions, if there exist, otherwise it is empty
(and the instance is not in SAT). In general, the generation (first) step is per-
formed �log2 n� times and the extraction (second) step m times. In fact, the

A Polymerase Based Algorithm for SAT 245

general form of the algorithm is obtained simply by substituting 5 with �log2 n�,
where n is the number of variables, 1100 with the length of the initial sequences,
and 126 with the number m of clauses.

4.1 Generation Step

Firstly we analyze the first cycle of the operation for of the generation step.
All the recombinations along the common substring γ are performed by

means of XPCR over the initial pool. In each of the initial strings of our ex-
ample there are twenty nine occurrences of γ. The primer γ in the cutting step
of the XPCR (see the details of the XPCR steps in section 2) anneals with one
of these occurrences, chosen randomly. If we denote with γ1, γ2, . . . , γ29 the oc-
currences of the same sequence γ, after the cutting step we obtain from P the
two pools P1 and P2 respectively:

{αX1γ1, αY1γ1, αX1γ1X2γ2, αY1γ1Y2γ2, . . . , αX1 · · · X29γ29, αY1 · · · Y29γ29}

and

{γ1X2γ2X3 · · ·β, γ1Y2γ2Y3 · · · β, γ2X3 · · ·β, γ2Y3 · · ·β, . . . , γ29X30β, γ29Y30β}

The recombination step of the XPCR procedure on P1 ∪ P2 produces a pool
with sequences of different lengths (the shorter ones are of kind αX1γY30β and
the longest ones of kind αY1γ · · ·Y29γX2γX3 · · · X30β) where only the sequences
1100 long contain just one of each literal (in the sound order).

Therefore, after the operation El1100(P) we have a pool with sequences that
are product of (only) one recombination of the initial sequences, by means of a
null context splicing rule rγ . The pool includes all the sequences of the following
type

αXγ · · · γXγY γ · · ·γY β, αY γ · · · γY γXγ · · ·γXβ.

Note that after the first cycle for all the possible couples LiγLi+1 with
i = 1, . . . , 29 are present in the pool as subsequences.

After the cutting step of the XPCR in the second cycle, we have analogously
two pools P1 and P2 containing respectively:

{αX1γ1X2 · · · XiγiYi+1 · · ·Yjγj , αY1γ1Y2 · · ·YiγiXi+1 · · · Xjγj}j>i

for i = 1, . . . , 28 and j = 2, . . . , 29, and

{γiXi+1γi+1 · · · XjγjYj+1 · · ·Y30β, γiYi+1γi+1 · · · YjγjXj+1 · · ·X30β}j>i+1

for i = 1, . . . , 28 and j = 3, . . . , 30.
After the recombination step and the electrophoresis selecting the sequences

1100 long, all the possible sequences of the following type are present in the pool:

246 G. Franco

αX · · · XγY · · · Y γX · · · XγY · · · Y β, αY · · ·Y γX · · ·XγY · · · Y γX · · · Xβ

In other words, there are all the recombinations where, for at most three
different values of i, the ‘crossing points’ XiγiYi+1 or YiγiXi+1 occur as subse-
quences.

Note that, in the pool resulting after the second cycle for, all the possible
recombinations LiγLi+1γLi+2γLi+3 with i = 1, . . . , 27 are present as subse-
quences.

For example, we obtain the subsequence X4Y5X6Y7 as product of the first
two cycles in the following way:

– the first cycle produces αX1...X4γY5...Y30β and αX1...X6γY7...Y30β by
means of XPCR application on the initial sequences along the fourth and
the sixth occurrences of γ respectively.

– the XPCR of second cycle recombines the sequences of the pool previously
obtained also with respect to the fifth occurrence of γ, so producing:

αX1 · · ·X4γ4Y5γ5Y6 · · ·Y30β, αX1 · · · γ5X6γ6Y7 · · ·Y30β

↓

. . . , αX1 · · · X4γ4Y5γ5X6γ6Y7 · · · Y30, . . .

At this point it is clear how after the k-th cycle for, all the possible recombi-
nations of 2k consecutive literals are present in the pool as subsequences. Since
after the generation step all the possible recombinations of n literals have to be
present, then �log2 n� cycles suffices to produce the solution space.

4.2 Extraction Step

Once obtained the solution space, in the extraction step the (sequences encoding
the) true solutions are selected from (those encoding) the possible solutions. Its
implementation combines a polymerase extension with a cut of the restriction
endonuclease SmaI, and after an electrophoresis the sequences of interest are
amplified by a standard PCR.

The key process consists of the first three steps, which recall those of a
standard PCR but produce a different result depending on the choice of ‘primers’.
Here we have three primers instead of two, and overall they are designed to anneal
with a same side of the double strands.

To each step of the cycle for is associated a different clause, and after that
step all the sequences satisfying that clause have been extracted. The iteration
of such a cycle for all clauses on a same pool allows the final pool to contain
only the sequences that satisfy all the clauses.

We explain the computation of the extraction step with an example, by
considering the process which corresponds to the first cycle for related to the
clause C1 = x10 ∨ ¬x27 ∨ x15. It starts on the pool P containing the solution
space, and firstly it sets P1 = {X10, Y27, X15} as indicated by C1.

A Polymerase Based Algorithm for SAT 247

1. P := P ∪ P1

Many copies of literal primers, that are the elements of P1, are added to
the pool (also free nucleotides if necessary, but this is not relevant from an
algorithmic point of view).

2. P := H(P)
When the pool is heated then the two strands of all the molecules present
in the pool come apart4, see the Figure 5.

X X

X
X

X

X15

1010

15

15
10

Y

Y

Y

Y
Y

27
27

27

27

27

Y10 X15 X27

Y10 Y15 X27

Y27X15X10

X15

Y10 X15 Y27

X15

YY27

Y10 15X

XY Y15 2710

X27

Y10 X15 27Y

X10 X15 Y27Y

27

27

X10

Fig. 5. Denaturing of all the molecules

3. P := C(P)
By cooling down the pool, literal primers bind to their complementary
strands, see the Figure 6.

4. P := Taq(P)
A polymerase extension elongates the literal primers wherever they are at-
tached, see Figure 7.

5. P := SmaIcut(P)
Since the restriction site of the SmaI is contained (only) in γ, which is uni-
formly distributed in the molecules, and since the enzyme cuts only double
stranded molecules, after this step only the single strands have length 1100.
They encode assignments satisfying the clause C1 because contain at least
one of the literal primers in P1. The algorithm extracts them by means of
the operation El1100(P), and then amplifies them with the PCR(α,β)(P)
which restores their double stranded form.

The sequences selected by the first step are filtered by the second step in
such a way that only those satisfying also the clause C2 are retained, and so on
for all the m = 126 clauses.
4 This process is called denaturation.The complementary of a strand α is denoted by

α.

248 G. Franco

10 Y15 X27

Y27X15X10

Y10 X15 Y27

10Y X15 Y27

15X Y27

Y10 X15 X27

X15

Y10 15Y X27

YY10 X15 X27

X10 X15 Y27

X10 X15 Y27

Fig. 6. Selecting by literal primers

10 Y15 X27

Y27X15X10

Y10 X15 Y27

10Y X15 Y27

15X Y27

Y10 X15 X27

X15

YY10 X15 X27

X10 X15 Y27

X10 X15 Y27

Y10 Y15 X27

Fig. 7. Detecting of the ‘good’ assignments as single strands

From a theoretical viewpoint, every solution is present in the final pool since
a primer eventually binds to its complementary, thus the algorithm is complete.

While, from an experimental viewpoint, the correctness depends on the en-
codings. In fact, when mismatches due to ‘wrong’ encoding occur, a literal primer
anneals in a wrong location and that sequence is selected as good assignment
even if it is not. On the other side, this case is quite rare, because it should
happen that there exists an assignment that satisfies all the clauses but one, and
that the error occurs just for that clause. That is, since each solution is filtered
m times, to have a non-solution assignment in the final pool, mismatch errors
should occur on that assignment for all the clauses which it does not satisfy, and
we can consider it having low probability.

A Polymerase Based Algorithm for SAT 249

5 Conclusion

The main result of the paper is the design of a non-implemented yet DNA
algorithm for solving a SAT instance. It is described for an instance of significant
size in order to suggest a prompt implementation, but its generalization to any
number n of variables and m of clauses is indicated.

The algorithm essentially consists of enzymatic operations, that result con-
venient with respect to the other methods in terms of efficiency and precision.
The implementation of the first part of the algorithm would improve the results
obtained by the last lab experiment carried on for testing the XPCR technique
on a generation process. While the lab implementation of the second part would
show that the extraction step can be performed by using only the polymerase
extension and a restriction enzyme, that are notoriously cheap and simple to
implement biotechnologies.

It seems to us that this algorithm could be significant in DNA Computing
area, because it improves noteworthly the existing methods for performing the
generating and extracting steps of the traditional extract model. With respect
to [2] for example, no chemical synthesis and ad hoc automated thermocycler
are required.

Acknowledgment

The author deeply thanks Prof. Vincenzo Manca of Department of Computer
Science of the University of Verona, for his important suggestions, the interesting
discussions, and his support in the whole idea of this paper.

References

1. L. M. Adleman, Molecular Computation of solutions to combinatorial problems,
Science 266, pp 1021-1024, 1994.

2. R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, L. M. Adleman,
Solution of a 20-variable 3-SAT problem on a DNA computer, Science 296, pp
499-502, 2002.

3. D. Faulhammer, A. R. Cukras, R. J. Lipton, L. F. Landweber, Molecular com-
putation: RNA solution to chess problems, Proc. Natl. Acad. Sci. USA 98, pp
1385-1389, 2000.

4. G. Franco, C. Giagulli, C. Laudanna, V. Manca, DNA Extraction by XPCR, C.
Ferretti G. Mauri C. Zandron et al. eds, Proceedings of DNA 10, LNCS 3384,
Springer-Verlag Berlin Eidelberg, pp 106-114, 2005.

5. G. Franco, V. Manca, C. Giagulli, C. Laudanna, DNA Recombination by XPCR,
Proceedings of DNA11, London, Ontario, June 2005, to appear.

6. R. Freund, L. Kari, G. Păun, DNA Computing Based on Splicing: The Existence of
Universal Computers, Theory of Computing Systems 32 (1), Springer-Verlag New
York, pp 69-112, 1999.

7. T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology 49, pp 737-759,
1987.

250 G. Franco

8. D. Li, Is DNA computing viable for 3-SAT problems?, TCS 290, pp 2095-2107,
2003.

9. R. J. Lipton, DNA solutions of hard computational problems, Science 268, pp 542-
544, 1995.

10. N. Jonoska, K. Mahalingam, Languages of DNA based code words, J Chen and J.
Reif eds, Proceedings of DNA9, LNCS 2943, pp 61-73, 2004.

11. S. Kirkpatrick, B. Selman, Critical behaviour in the satisfiability of random Boolean
expressions, Science 264, pp 1297-1301, 1994.

12. V. Manca, A Proof of Regularity for Finite Splicing, Aspects of Molecular Comput-
ing: Essays Dedicated to Tom Head on the Occasion of His 70th Birthday, LNCS
2950, Springer-Verlag, pp 309-318, 2004.

13. K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, M.
Hagiya, Molecular Computation by DNA Hairpin Formation, Science 288, pp 1223-
1226, 2000.

14. Selman Bart, Mitchell David G., Levesque Hector J., Generating hard satisfiability
problems, Artificial Intelligence 81, pp 17-29, 1996.

15. D. van Noort, F. Gast, J. S. McCaskill, DNA computing in microreactors, N.
Jonoska N. C. Seeman eds, Proceedings of DNA7, LNCS 2340, Springer, pp 44-53,
2002.

Laxity Helps in Broadcast Scheduling�

Stanley P.Y. Fung1, Francis Y.L. Chin1, and Chung Keung Poon2

1 Department of Computer Science, The University of Hong Kong, Hong Kong
{pyfung, chin}@cs.hku.hk

2 Department of Computer Science, City University of Hong Kong, Hong Kong
ckpoon@cs.cityu.edu.hk

Abstract. We study the effect of laxity, or slack time, on the online
scheduling of broadcasts with deadlines. The laxity of a request is de-
fined to be the ratio between its span (difference between release time
and deadline) and its processing time. All requests have a minimum
guaranteed laxity. We give different algorithms and lower bounds on the
competitive ratio for different ranges of values of laxity, which not only
represents a tradeoff between the laxity and the competitive ratio of the
system, but also bridges between interval scheduling and job scheduling
techniques and results. We also give an improved algorithm for general
instances in the case when requests can have different processing times.

1 Introduction

The application of broadcasting in networks has been receiving much attention
recently. Broadcasting has an advantage over point-to-point communication in
that it can satisfy the requests of different users, who are requesting the same
piece of information, simultaneously by a single broadcast. The advantage is
more clearly seen when most of the requests are asking for common information
like popular movies and weather information. Broadcasting is of even greater
importance with the growing popularity of wireless and satellite networks which
are inherently broadcasting in nature. There are some commercial systems that
make use of broadcasting technology. For example, in the DirecPC system [1],
clients make requests over phone lines and the server broadcasts the data via a
satellite. In this paper, we study algorithms for the online scheduling of broad-
casts with deadlines.

The Model. In the literature on broadcast scheduling, there are many different
research work based on different assumptions of the network model. Here, we
focus on the model in which the server holds a number of pages while requests
come in and ask for pages (pull-based model). At any time, the server is allowed
to broadcast only one page and all the requests asking for the same page can
be satisfied simultaneously. Note that the server is not allowed to break down a
� The work described in this paper was fully supported by two grants from the Re-

search Grants Council of the Hong Kong SAR, China [CityU 1198/03E and HKU
7142/03E].

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 251–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 S.P.Y. Fung, F.Y.L. Chin, and C.K. Poon

page into different parts and send them over the network simultaneously. Also,
we assume the receiver does not have any buffer to cache part of a page previously
broadcasted by the server. This is an online problem, meaning that the server
does not know the requests of the clients until they arrive, and the server have
to determine which page to broadcast without knowing future requests.

Past Work. Broadcast scheduling was first studied for the case where requests do
not have deadlines, and the objective is to minimize the maximum or the average
flow time (also called response time, the time between arrival and completion of
requests). Broadcast scheduling with deadlines is first studied in [11] and [12].
Each request is associated with a deadline, and the objective is to maximize
the total profit of satisfied requests (completed before their deadlines). The two
papers, however, considered different models in relation to how broadcasts can
be preempted.

The preemptivity of online scheduling in general (and broadcasting in par-
ticular) can be classified into three different models. (For example see [8].) In
the nonpreemptive model, a job that gets started must run to completion with-
out interruption. In the preemption-resume model, jobs can be preempted and
later resumed at the last point of execution. In the preemption-restart model,
a job can be preempted, but its partial progress will be lost; hence, it must
be restarted from the beginning if it is to be processed again later. In this
case preemptions can also be called abortions. Note that the nonpreemptive and
preemption-restart models are identical in the offline case.

While the preemption-resume and nonpreemptive models have been widely
studied, there seems to be comparatively few results for the online scheduling of
jobs in the preemption-restart model. Hoogeveen et al. [8] considered the case in
which jobs have no weights (i.e. the objective is to maximize the utilization of
processor), and Chrobak et al. [4] considered the case where in addition all jobs
have equal length.

These three models have also been considered in online broadcast schedul-
ing. Kalyanasundaram and Velauthapillai [11] considered the preemption-resume
model, and Kim and Chwa [12] considered the preemption-restart model. The
nonpreemptive broadcast model is also considered in a different context called
batching with incompatible job families [9]. We consider the preemption-restart
broadcasting model in this paper.

We distinguish between the case where all pages have the same length (the
unit-length case), and the case where pages can have different lengths (the
variable-length case). For the unit-length case, a 4.56-competitive algorithm is
given in [14], while a lower bound of 4 follows from an interval scheduling problem
[13]. For the variable-length case, there is a (e∆ + e + 1)-competitive algorithm
[14] where ∆ is the ratio of maximum to minimum page lengths and e ≈ 2.718.
There is also a lower bound of

√
∆ [2].

Laxity. The power of broadcasting lies in its ability to combine multiple requests
and serve them together by a single broadcast. For this to be effective, requests
should have a certain amount of laxity, where the laxity of a request is defined
to be the ratio of its span (the length of time interval between its deadline

Laxity Helps in Broadcast Scheduling 253

and release time) and its processing time (the length of the page it requests).
This allows the system to delay processing a request and to serve it together
with some other requests for the same page that arrives later. If a request has
no laxity, it must be scheduled immediately or else it is lost, and hence the
power of broadcasting is not utilized. In fact, in all of the above-mentioned
lower bounds, all requests are tight (with no laxity). To actually analyze the
effect of broadcasting, we assume all requests have a minimum laxity α > 1.
Intuitively, with larger laxity, the system will be able to schedule more requests
together. However a large laxity may be unsatisfactory to users. In this paper we
analyze the relation between the laxity of requests and the total profit obtained.

The issue of laxity has been considered in the unicast (i.e. non-broadcast)
context. It is also called slack, patience [7] or stretch factor [5]. Online job (uni-
cast) scheduling with laxity is widely studied, for example by Kalyanasunaram
and Pruhs [10] in the preemption-resume model, and by Goldman et al [6] and
Goldwasser [7] in the nonpreemptive model. The assumption of minimum laxity
has also been used in preemption-resume broadcast scheduling with deadlines
[11], and in nonpreemptive broadcast (or batching) problems [9].

Interestingly, the effect of laxity also allows this problem to bridge between
interval scheduling and job scheduling. In most previous results on broadcast
scheduling, the techniques used are similar to interval scheduling in which the
most important concern is whether a broadcast should be preempted. When a
broadcast is completed without being preempted, for example, the next broad-
cast is usually the one with the most pending requests. However our results
indicate that as laxity increases, the problem has more job scheduling flavor,
which involves selection of jobs based on both weights and deadlines. We will
bring techniques from job scheduling into this problem.

Our results. In this paper we consider the effect of laxity in the preemption-
restart broadcasting model. In Section 3 we first give an algorithm when the
laxity is smaller than 2. It adapts an abortion criteria which varies with laxity
and how much the current broadcast has been completed. It achieves a tradeoff
in the competitive ratios, with smaller competitive ratios for larger laxity. Next
we give a simple 2.618-competitive algorithm for the case where the laxity is
at least 2. It does not use preemption and thus also applies to the nonpreemp-
tive case. Unlike previous algorithms which only consider abortion conditions,
our algorithm also considers how to select broadcasts after another broadcast is
completed. In Section 4 we give lower bounds on the competitive ratio for differ-
ent ranges of laxity α: for example, 8/3 for 1 < α < 4/3, 12/5 for 4/3 < α < 1.4,
2 for 1.4 < α < 3/2, and max(1 + 1/�α�, 5/4) for α ≥ 2. For α < 2 we extend
the technique of Woeginger’s lower bound of interval scheduling, while for α ≥ 2
we make use of job scheduling results. The lower bound does not approach 1
even with arbitrarily large laxity. Finally in Section 5 we consider the variable
page length case, giving a (∆ + 2

√
∆ + 2)-competitive algorithm for general in-

stances, which improves the previous bound of e∆+e+1. This algorithm makes
use of a simple observation and its analysis is significantly simpler than earlier
algorithms. We also state a lower bound result with laxity.

254 S.P.Y. Fung, F.Y.L. Chin, and C.K. Poon

2 Notations

There are a number of pages in a server, each having a possibly different length.
Requests arrive to the server online, i.e. no information about the request is
known until it arrives. Each request j has a release time r(j), a deadline d(j),
the page p(j) that it requests, and a weight w(j). All r(j), d(j) and w(j) are real
numbers. We define the processing time of a request, l(j), to be the length of the
page it requests. A request j fully completed before its deadline gives a profit
of w(j) × l(j). For the unit length case we assume all pages have length 1, and
hence weights and profits are equivalent. Define α = minj{(d(j) − r(j))/l(j)} to
be the minimum laxity of all requests. We assume there is a pool that contains
all pending requests. Requests that cannot be completed by their deadlines even
if started immediately will be automatically removed from the pool.

A broadcast of a page J serves all pending requests of J simultaneously. We
consider the preemption-restart model, in which a broadcast can be preempted
(aborted) at any time, but must be restarted from the beginning if it is to be
broadcast again. Let |J | =

∑
p(j)=J w(j) × l(j) denote the profit of a page J ,

i.e. the total profit of all pending requests j for the page J at a particular time.
This is the profit obtained of broadcasting J . Our objective is to maximize the
total profit of requests completed before their deadlines. We sometimes abuse
the terminology and use ‘page’, ‘broadcast (of a page)’, and ‘set of requests (for
a page)’ interchangeably. A schedule is specified by a sequence of broadcasts
J1, J2, . . . where each broadcast Ji starts at time s(Ji). If s(Ji)+ l(Ji) > s(Ji+1),
Ji is aborted by Ji+1, otherwise it is completed.

We measure the performance of online algorithms by their competitive ratios.
Let OPT denote the offline optimal algorithm. An online algorithm A is R-
competitive if, for any instance I, the profit A(I) obtained by A is at least 1/R
times the profit OPT (I) obtained by OPT .

3 Unit Length Pages: Upper Bounds

3.1 Minimum Laxity α < 2

We first consider the unit-length case where the minimum laxity is less than 2.
We only consider those α that are rational. Let α = 1 + p/m for integers p,m
where p < m and m is the minimum possible. Intuitively, our algorithm uses an
‘abortion ratio’ which increases with time while a page is being broadcast.

Algorithm MultiLevel. Let β > 1 be the unique positive real root of β−β1/m−1 =
0. Suppose a page J starts being broadcast at time t. Then for i = 1, 2, . . . ,m,
a new request for page J ′ arriving at [t + (i − 1)/m, t + i/m) (together with
pending requests for J ′ in the pool 1) will abort J if and only if |J ′| ≥ βi/m|J |.
1 It is possible that J ′ = J ; we also consider requests currently being served by

broadcast J to be in the pool if they can still be completed before their deadlines if
restarted.

Laxity Helps in Broadcast Scheduling 255

When a broadcast completes, the page with the maximum profit (for all pending
requests) will be broadcast next.

The following table lists the choice of β for different values of laxity and the
competitive ratios. Note that some of these ratios are larger than the 4.56 upper
bound for the case of arbitrary instances given in [14].

α 1.2 1.25 1.33 1.4 1.5 1.6 1.67 1.75 1.8
β 2.164 2.221 2.325 2.164 2.618 2.164 2.325 2.221 2.164
R 4.714 4.638 4.510 4.448 4.236 4.221 4.08 4.04 4.026

Theorem 1. For laxity 1 < α < 2 where α = 1 + p/m, MultiLevel is (β
β−1 +

β2−α + 1)-competitive, where β is the root of β − β1/m − 1 = 0.

Proof. Let M denote the schedule produced by MultiLevel. Divide M into a
set of basic subschedules, where each basic subschedule consists of zero or more
aborted broadcasts followed by one completed broadcast. We charge the profits
obtained by OPT to the basic subschedules in M . If every basic subschedule
with a completed broadcast J receives charges at most R times that of |J |, then
the algorithm is R-competitive. The general idea of the proof is to consider, for
a fixed basic subschedule, the maximum-profit OPT schedule that is ‘consistent’
with the basic subschedule. For example, OPT cannot serve requests with profit
much higher than that being served by M at the same time, unless it is already
completed in M , because M will not ignore this request if it is still pending.

Without loss of generality we can assume all broadcasts made by M are
of one of the lengths (time units) 1/m, 2/m, . . . , 1, since otherwise lengthening
them to the closest length listed above will not decrease the profit obtained by
OPT . Since the last broadcast in a basic subschedule must be completed, it must
be of length 1. Note that all broadcasts of OPT must be of unit length since
they are completed. (We can assume OPT will not make aborted broadcasts.)

Let r = β1/m. We first consider the case that all basic subschedules sat-
isfy two assumptions: (1) All broadcasts except the last one are of length 1/m.
(2) For any two consecutive broadcasts J and J ′ in the basic subschedule,
|J | = |J ′|/r. We will remove these assumptions later. Consider a basic sub-
schedule. The maximum-profit OPT subschedule corresponding to this basic
subschedule occurs when the total number of broadcasts in the basic subsched-
ule is a multiple of m plus 2, with the OPT broadcasts as in Fig. 1. (The reason
of this will become clear later in the proof.) Hence, let the basic subschedule
be (J0, J1, . . . , Jm, . . . , Jkm, Jkm+1) for any k ≥ 0. For those requests that are
satisfied in an OPT broadcast started at time t and which are completed by M
before time t, we charge their profits to the basic subschedule in M where it is
completed. Let Oi be the set of requests in a broadcast started by OPT within
Ji that are not completed by M before s(Oi), i.e., they are still pending in M .

Consider the last broadcast Okm+1 made by OPT . It consists of two parts:
O1

km+1 which are those requests arriving on or before s(Jkm+1) + 1 − p/m, and
O2

km+1 which are those requests arriving after this time. For O1
km+1 we have

|O1
km+1| < rm−p|Jkm+1| since otherwise they would abort Jkm+1. For O2

km+1,

256 S.P.Y. Fung, F.Y.L. Chin, and C.K. Poon

m 2m 3m 3m+1

3m+1

J0 timeJ J J J J

O

1

Fig. 1. A basic subschedule with k = 3, m = 4. Each rectangle represents an aborted
or completed broadcast, and the height of a rectangle represents its profit. Empty
rectangles are those of MultiLevel, shaded rectangles are those of OPT .

they must still be pending in M after Jkm+1 completes due to their laxity, and
hence the broadcast after Jkm+1 must have profit at least as large as |O2

km+1|.
We charge their profits to the next basic subschedule. Similarly, this basic sub-
schedule may also receive a charge of profit at most |J0| from the previous basic
subschedule. For Oi where i = 0,m, 2m, . . . , km, we have |Oi| < r|Ji|. Finally,
requests in Jkm+1 may be satisfied in OPT in some future time, and their profits,
which are at most |Jkm+1| in total, are also charged to this basic subschedule.
Without loss of generality we normalize the profits so that |Jkm+1| = 1. Then
the total OPT profits charged to this basic subschedule is at most

|J0| + r(|J0| + |Jm| + |J2m| + · · · + |Jkm|) + rm−p|Jkm+1| + |Jkm+1|
≤ 1/rkm+1 + r(1/rkm+1 + · · · + 1/r) + rm−p + 1

=
1

rkm+1 +
1 − 1/rkm+m

1 − 1/rm
+ rm−p + 1

=
1

rkm+1 − 1
rkm+m(1 − 1/rm)

+
1

1 − 1/rm
+ rm−p + 1

=
1
βk

(
1

β1/m
− 1

β − 1

)
+

β

β − 1
+ β1−p/m + 1.

By choosing β1/m = β − 1, the first term in the above expression is zero, i.e.,
the expression is invariant of the value of k. In this case the competitive ratio is

R ≤ β

β − 1
+ β1−p/m + 1 =

β

β − 1
+ β2−α + 1.

We now remove assumptions (1) and (2). For any basic subschedule that
does not satisfy the assumptions, we apply the following transformations to all
broadcasts except the last one. First, for any two consecutive broadcasts J, J ′ in

Laxity Helps in Broadcast Scheduling 257

a basic subschedule, if � is the length of J served in the schedule (not the length
of the page), we increase the profit of J to |J ′|/β� if it is not already so. The
schedule remains valid (all abortion ratios are satisfied) and the profits of OPT
will not decrease, since the maximum possible profits of OPT broadcasts at any
time (w.r.t. the basic subschedule) will not be decreased. Next, a broadcast of
length i/m and profit |J | for i > 1 is transformed to i broadcasts of length 1/m,
with profits |J |, r|J |, r2|J |, . . . , ri−1|J |. Again the schedule remains valid, and
the maximum possible OPT profits are not decreased. The transformed sched-
ule satisfies the two assumptions, and the transformation can only increase the
competitive ratio. ��

3.2 Minimum Laxity α ≥ 2

Next we consider the case when the laxity is at least 2, i.e. the span of a request
is at least twice its length. In this case we use a simple algorithm that never
aborts, but is more careful in selecting a page to broadcast after a broadcast
completes:

Algorithm EH. When a broadcast completes at time t, set H to be the page
with the maximum profit among pending requests, E to be the page with the
maximum profit among those pending requests with deadlines before t+2. Note
that although E is chosen based on those requests with early deadlines, it may
also contain requests with late deadlines. Let E′ denote the subset of requests
for page E with deadlines before t + 2. Let β = (

√
5 + 1)/2. If |H| ≥ β|E′|,

broadcast H, else broadcast E. A page being broadcast is never aborted.

Theorem 2. For α ≥ 2, EH is (
√

5 + 3)/2 ≈ 2.618-competitive.

Proof. We charge the profits obtained by OPT to the broadcasts in EH. Consider
a completed broadcast J in EH. Let O be the single page started being broadcast
by OPT when EH is broadcasting J . For requests in O that are completed by
EH in or before J , we charge their profits to those earlier broadcasts made by
EH. Below we only consider requests in O that are still pending in EH. We
separate O into two parts: O1 which are those requests in O having deadlines
before s(J) + 2, and O2 which are the remaining requests. We distinguish the
following cases.

Case 1: J = H 	= E. For O1, they must be released before s(J) by the laxity
assumption. We have |O1| ≤ |E′| since E is chosen to be the highest-profit page
among those requests with deadlines before s(J) + 2. So |O1| ≤ |E′| ≤ |J |/β by
the choice of EH. For O2, since they remain pending in EH when J completes,
we charge their profits to the next broadcast after J . Similarly, this J receives a
charge C from the previous broadcast, where |C| ≤ |J |. Also, requests in J may
be satisfied later by OPT , which we also charge their profits to this J in EH.
Thus the total profits charged to J is at most |C|+|O1|+|J | ≤ |J |+|J |/β+|J | =
(2 + 1/β)|J |.

Case 2: J = E. Similar to Case 1 we have |O1| ≤ |E′| and O2 is charged
to the next broadcast. J also receives a charge C from the previous broadcast,

258 S.P.Y. Fung, F.Y.L. Chin, and C.K. Poon

where |C| ≤ |H| ≤ β|E′| ≤ β|E|. Requests in E′ cannot be started by OPT
after s(J) + 1 since their deadlines is earlier than s(J) + 2, so J may receive a
‘future’ charge only from requests in E − E′. Thus the total charge to J is at
most |C| + |O1| + |E − E′| ≤ β|E| + |E′| + |E − E′| = (1 + β)|J |.

By setting β = (
√

5 + 1)/2, the total charge to a broadcast J in any case is
at most

√
5+3
2 |J |. Hence the algorithm is (

√
5 + 3)/2-competitive. ��

Remark: Note that EH is a non-preemptive algorithm. Since OPT does not use
abortions, EH also applies with the same competitive ratio in the nonpreemptive
case. This nonpreemptive broadcast problem is also studied in [9] where a 3-
competitive algorithm is given.

4 Unit Length Pages: Lower Bounds

4.1 Minimum Laxity α < 3/2

We first describe our lower bounds for the unit-length case when the minimum
laxity α is smaller than 3/2. Let R = 4 − ε for some arbitrarily small ε > 0.
Define lax = α − 1. Choose a small positive number d
 1 − lax, and another
small positive δ. Define δi = δ/2i. These are small constants we need to use
later. We divide the proof into two steps.

(1) Description of instance construction. The proof is based on a modification
of Woeginger’s lower bound construction for interval scheduling [13]. In the fol-
lowing each request is asking for a different page. For 0 < v ≤ w and d, δ > 0,
define SET(v, w, d, δ) to be a set of requests {j1, j2, . . . , jq} with the following
properties:

– The weights w(ji) of the requests fulfill w(j1) = v, w(jq) = w and w(ji) <
w(ji+1) ≤ w(ji) + δ for 1 ≤ i ≤ q − 1.

– The release time r(ji) and deadline d(ji) of the requests fulfill 0 = r(j1) <
r(j2) < · · · < r(jq) < d, 1 + lax = d(j1) < d(j2) < · · · < d(jq) < 1 + lax + d.

– All requests have length 1 and laxity α.

Since d(jq) − r(j1) < 1 + lax + d < 2, any algorithm can complete at most
one request in each set.

Fix an online algorithm A. At t = 0, SET(v0, w0, d0, δ0) = SET(1, R, d, δ)
arrives. Define LST0 = lax+d; this is the latest time that A must fix its decision
and start broadcasting a page, or else it will fail to meet the deadline of any
request. Let t0 ≤ LST0 be the earliest time such that during the time interval
[t0, LST0], A is broadcasting the same page. That means A fixed its decision
at time t0. Without loss of generality we can assume that A will not switch to
broadcast other requests in the same set after this time. Let b0 be the page being
broadcast by A at time LST0. If w(b0) = 1, no more request arrives. Otherwise,
a shifted copy of SET(v1, w1, d1, δ1) arrives, where v1 = w(b0), w1 = Rv1 − v1,
d1
 d is smaller than the time between d(b0) and d(a0), and a0 is the request
immediately preceding b0 in the set. The first and last request in this set arrive

Laxity Helps in Broadcast Scheduling 259

at times r1 and r′1 respectively, where t0 + 1 − lax − d1 < r1 < r′1 < t0 + 1 − lax.
Define LST1 to be the latest time when A must fix its decision on which request
in the second set to broadcast. It is given by LST1 = r′1 + lax.

The numbers are defined so that they have the following two properties:

– r1 > LST0: this is because r1 > t0 + 1 − lax − d1 ≥ 1 − lax − d1, and
LST0 = lax + d, as long as d1 < 1 − 2lax − d the property holds. Since
lax < 1/2, d and d1 can always be chosen small enough.

– LST1 < t0 + 1: this is because LST1 = r′1 + lax < (t0 + 1 − lax) + lax.

The first property ensures that the adversary can decide the weights of the
requests in the new set after A fixed its choice of broadcast. The second property
ensures that A cannot serve a request in both sets. Hence, if A completes the
broadcast of page b0, it cannot serve any more requests, and no more requests
are released. Otherwise, A aborts b0 and starts a new page in the new set. Then
the same process repeats.

In general, suppose A is broadcasting a page in the (i+1)th SET(vi, wi, di, δi).
Let LSTi be the latest time A must fix its decision to broadcast a page in this
set; it is given by LSTi = r′i + lax. Let ti be the earliest time such that in
[ti, LSTi], A is broadcasting the same page. Call this page bi. If w(bi) = vi, no
more requests are released. Otherwise, a new (i+2)th SET(vi+1, wi+1, di+1, δi+1)
is released, where vi+1 = w(bi), wi+1 = max(Rvi+1 −

∑i+1
j=1 vj , vi), di+1 is the

time between d(bi) and d(ai), and ai is the request immediately preceding bi.The
first and last request in this new set arrive at times ri+1 and r′i+1 respectively,
where ti + 1 − lax − di+1 < ri+1 < r′i+1 < ti + 1 − lax (see Fig. 2).

Again we have the following two properties:

– ri+1 > LSTi: since ri+1 > ti + 1 − lax − di+1 ≥ ri + 1 − lax − di+1, and
LSTi ≤ ri + di + lax, as long as di+1 < 1 − 2lax − di this property holds.

– LSTi+1 < ti + 1: this is because LSTi+1 < (ti + 1 − lax) + lax = ti + 1.

ti
bi

ai

lax

lax i+1LSTdi+1

1 laxri

laxd ir’ iLST
i

Fig. 2. SET(vi, wi, di, δi) and SET(vi+1, wi+1, di+1, δi+1)

260 S.P.Y. Fung, F.Y.L. Chin, and C.K. Poon

A either completes bi and no more requests are released, or aborts and broad-
casts a page in the new set, and then the same process repeats. In the beginning,
we have wi = Rvi −

∑i
j=1 vj > vi, and vi < vi+1 ≤ wi, so that the vi’s form

an increasing sequence satisfying the recurrence vi+1 ≤ Rvi −
∑i

j=1 vj , and it
is shown in [13] that this sequence cannot be an infinite increasing sequence for
R < 4. Therefore, eventually we have wi = vi > Rvi −

∑i
j=1 vi after a finite

number of steps. At this final step the set contains only one request with profit
vi. No matter how A chooses, it obtains a profit of vi. We conclude that A can
only serve one request in total.

(2) Profits by the optimal offline algorithm. We now consider the OPT schedule
for the instance. Ideally, we want OPT to schedule a request in each set (as in
the original construction in [13]), but it may not be possible due to the earlier
arrival of the sets (in the original construction a new set only arrives just before
the deadlines of the previous set). Recall bi is the request chosen by A in the
(i+1)-th set, and ai is the request that just precedes bi. Suppose A completes a
broadcast of page bi−1 in the i-th set, of profit vi, while attempted to broadcast
but aborted b0, b1, . . . , bi−2 in all earlier sets. OPT broadcasts a0, a1, . . . , ai−1
together with wi, assuming that is feasible. (If A is forced to serve the single
request in the last set the analysis is similar.) Then similar to [13] the total
profit by OPT is at least (4 − 2ε)vi, so OPT obtains a profit arbitrarily close
to 4 times what A obtains. Below we consider how OPT schedules a subset of
these requests.

We resort to figures and defer the formal proof to the full paper. For any
two consecutive sets, OPT can serve ai in the first set together with any request
in second set. However, for any three consecutive sets, OPT can only choose
requests from two sets (see Fig. 3).

If α < 4/3, we can partition the sets into groups of three, and choose the heav-
ier two requests from each group without interfering other groups. (see Fig. 3).
Thus OPT obtains a 2/3 of the profits of those requests.

For 4/3 ≤ α < 3/2, this is not always possible, but we can divide the sets
into larger groups and apply the same idea. For example, when α = 1.4, we
divide the sets into groups of five, and it is always possible to serve requests
in the second, fourth and fifth set (see Fig. 3). Although we are not selecting

0.4 1

1/3
0 0.6 1.4 2.4 3.4

(b)

time time

(a)

1/3

1

Fig. 3. Each rectangle represents a set. (a) when lax < 1/3, choose two sets out of
every three. (b) when lax < 0.4, choose three sets out of every five.

Laxity Helps in Broadcast Scheduling 261

the heaviest three requests, we can still guarantee a 3/5 fraction of profits, by
the following simple observation: for any 0 ≤ v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5, we have

v2+v4+v5
v1+v2+v3+v4+v5

≥ 3
5 . Hence, we have a lower bound of 4 × 3/5 = 2.4. Similarly

we can obtain a lower bound of 16/7 when α < 10/7, and a lower bound of 2
when α < 3/2. In general we have:

Theorem 3. For any integer k ≥ 1 and α < 1 + k/(2k + 1) < 3/2, no deter-
ministic algorithm is better than 4(k + 1)/(2k + 1)-competitive.

4.2 Minimum Laxity α ≥ 2

Next we consider the case where the minimum laxity is at least 2.

Theorem 4. For α ≥ 2, no deterministic algorithm is better than (1 + 1/�α�)-
competitive.

Proof. We only consider the case where α is an integer; otherwise we round it up
to the nearest integer to obtain the result. All requests in this proof have weight
1 and laxity exactly α. At time 0, α requests each asking for a different page
arrive. Without loss of generality assume the online algorithm A broadcasts a
page J . Just before it finishes (at time 1 − ε) another request for J arrives. No
matter A aborts the current broadcast or not, it can satisfy at most α requests.
OPT can broadcast J at time 1 and some other page at time 0, satisfying all
α + 1 requests. ��

In [3] we considered an s-uniform unit job scheduling problem in which each
job arrives at integer time, is of unit length, has span exactly s (an integer) and no
broadcasting is allowed. We gave a lower bound of 5

4 − Θ(1
s) for the competitive

ratio of this problem.2 Since the case of broadcast with laxity at least α is a
generalized case of unicast with laxity exactly s, where s ≥ α, which are s-
uniform instances, the lower bound carries to the broadcast problem. (Since all
time parameters are integers and jobs are of unit length, the ability of abortion
in broadcasting needs not be used.) For s sufficiently large the lower bound is
arbitrarily close to 5/4. We therefore have:

Theorem 5. For any laxity α, no deterministic or randomized algorithm can
be better than 5/4-competitive.

The theorem implies that even with arbitrarily large laxity, the competitive-
ness cannot approach 1. This bound is stronger than that in Theorem 4 for
sufficiently large α.

5 Variable Length Pages

Without laxity assumptions, there is a (e∆ + e + 1)-competitive algorithm [14]
for the variable-length case, where ∆ = �maximum page length/minimum page
2 The conference version does not contain this result.

262 S.P.Y. Fung, F.Y.L. Chin, and C.K. Poon

length�, and e ≈ 2.718 is the base of the natural logarithm. In this section we
give an improved algorithm ACE (for ‘Another Completes Earlier’), which makes
use of a simple observation: if the broadcast of a page for a newer request has
the same or larger profit and an earlier completion time than the page currently
being broadcast, we should abort the current page in favour of the newer page.

Algorithm ACE. Let β = 1 +
√

∆. Let J be the page currently being broadcast.
A new request for page J ′ (together with all pending requests for J ′ in the
pool) will abort J if either one of the following holds: (1) |J ′| ≥ β|J |, or (2)
|J ′| ≥ |J | and the completion time of J ′ (if we start J ′ now) is earlier than
the completion time of J (if we continue to broadcast J). When a broadcast
completes, broadcast a page with the maximum profit among pending requests.

Theorem 6. ACE is (∆ + 2
√

∆ + 2)-competitive.

Proof. (Sketch) Without loss of generality assume the shortest page is of length
1 and the longest is of length ∆. Let A be the schedule produced by ACE. As
before we divide the schedule into a set of basic subschedules, and we focus on
a single basic subschedule. We can assume that all abortions in A are due to
condition (1) of the algorithm, and further we assume that all broadcasts made
in A are ∆ units long (we omit the details in this version of the paper).

Consider a basic subschedule (J1, . . . , Jk). We have |Ji| ≤ |Jk|/βk−i since
all abortions are due to condition (1). Consider the broadcasts started by OPT
within the broadcast of Ji. There can be at most ∆ such broadcasts. If the re-
quests in these broadcasts are completed in A before they are started in OPT ,
we charge their profits to those earlier broadcasts in A. Now consider those re-
quests that are not completed in A before. For any OPT broadcast O completed
before Ji is completed or aborted, we have |O| < |Ji| since otherwise they would
abort Ji in A. For an OPT broadcast O that is completed after Ji is completed
or aborted, we have |O| < β|Ji| or else it would also abort |Ji| in A. In this case
no more OPT broadcasts after this O are charged to this Ji.

Therefore, in the worst case, OPT schedules at most (∆−1) length-1 broad-
casts each of profit at most |Ji|, followed by a length-1 broadcast of profit at
most β|Ji|. Therefore, the total OPT profit corresponding to Ji is at most
(∆−1+β)|Ji|. Summing over all Ji’s, and considering that Jk may be served in
OPT later and will be charged to this basic subschedule, we have that the total
OPT profits charged to this basic subschedule is at most

k∑

i=1

(∆−1+β)|Ji|+|Jk| ≤ (∆−1+β)
k∑

i=1

|Jk|
βk−i

+|Jk| <

(
β(∆ − 1 + β)

β − 1
+ 1

)
|Jk|.

Hence the competitive ratio is β(∆−1+β)
β−1 + 1. By setting β = 1 +

√
∆, this ratio

is minimized and is equal to ∆ + 2
√

∆ + 2. ��

In the variable-length case, without assumptions on laxity, there is a lower
bound of

√
∆ on the competitive ratio. Here we note that laxity may not help

much in this case.

Laxity Helps in Broadcast Scheduling 263

Note that laxity is related to resource augmentation using a faster proces-
sor, as discussed in [10]. If the online algorithm has a speed-s processor, then
the laxity of all jobs become at least s (for the online algorithm). Thus any
algorithm for laxity-s instances can be applied. Since OPT does not have this
laxity advantage, the competitive ratio in this case will be even smaller (or the
same) compared with the case where both the offline and online algorithm re-
ceive jobs with laxity (which is the standard case). Therefore the existence of
an R-competitive online algorithm for laxity-s instances implies an s-speed R-
competitive algorithm for general instances. On the other hand, a lower bound
of R on s-speed online algorithm on general instances implies the same lower
bound on laxity-s instances.

In [12] it was shown that using resource augmentation does not drastically
improve the competitive ratio: no deterministic online algorithm with a constant
speedup (can broadcast a constant number of pages more than the offline algo-
rithm) can be constant competitive. In fact, the proof shows something stronger,
that no deterministic online algorithm can be better than O(

√
∆)-competitive

with constant speedup.
Therefore, the lower bound for faster processor implies a lower bound of

competitiveness with laxity:

Theorem 7. For constant α, any deterministic online algorithm has competi-
tive ratio Ω(

√
∆).

References

1. DirecPC Homepage, http://www.direcpc.com.
2. W.-T. Chan, T.-W. Lam, H.-F. Ting and P. W. H. Wong, New results on on-

demand broadcasting with deadline via job scheduling with cancellation, in Proc.
10th COCOON , LNCS 3106, pages 210–218, 2004.

3. F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall and T. Tichý, Online
competitive algorithms for maximizing weighted throughput of unit jobs, to appear
in Journal of Discrete Algorithms, a preliminary version appeared in Proc. 21st
STACS, 2004.

4. M. Chrobak, W. Jawor, J. Sgall and T. Tichý, Online scheduling of equal-length
jobs: randomization and restarts help, in Proc. 31st ICALP , LNCS 3142, pages
358–370, 2004.

5. B. DasGupta and M. A. Palis, On-line real-time preemptive scheduling of jobs with
deadlines on multiple machines, Journal of Scheduling, 4:297–312, 2001.

6. S. A. Goldman, J. Parwatikar and S. Suri, Online scheduling with hard deadlines,
Journal of Algorithms, 34(2):370–389, 2000.

7. M. H. Goldwasser, Patience is a virtue: the effect of slack on competitiveness for
admission control, Journal of Scheduling , 6:183–211, 2003.

8. H. Hoogeveen, C. N. Potts and G. J. Woeginger, On-line scheduling on a sin-
gle machine: maximizing the number of early jobs, Operations Research Letters,
27(5):193–197, 2000.

9. R. Y. S. Hung and H. F. Ting, Online scheduling a batch processing system with
incompatible job families, 2005, manuscript.

264 S.P.Y. Fung, F.Y.L. Chin, and C.K. Poon

10. B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance, Journal
of the ACM , 47(4):617–643, 2000.

11. B. Kalyanasundaram and M. Velauthapillai, On-demand broadcasting under dead-
line, in Proc. 11th ESA, LNCS 2832, pages 313–324, 2003.

12. J.-H. Kim and K.-Y. Chwa, Scheduling broadcasts with deadlines, Theoretical
Computer Science, 325(3):479–488, 2004.

13. G. J. Woeginger, On-line scheduling of jobs with fixed start and end times, Theo-
retical Computer Science, 130(1):5–16, 1994.

14. F. Zheng, S. P. Y. Fung, F. Y. L. Chin, C. K. Poon and Y. Xu, Improved on-line
broadcast scheduling with deadlines, Submitted for publication.

Enforcing and Defying Associativity,
Commutativity, Totality, and Strong

Noninvertibility for One-Way Functions
in Complexity Theory�

Lane A. Hemaspaandra1,��, Jörg Rothe2,� � �, and Amitabh Saxena3,†

1 University of Rochester, USA
2 Heinrich-Heine-Universität Düsseldorf, Germany

rothe@cs.uni-duesseldorf.de
3 La Trobe University, Australia
asaxena@cs.latrobe.edu.au

Abstract. Rabi and Sherman [RS97,RS93] proved that the hardness of
factoring is a sufficient condition for there to exist one-way functions
(i.e., p-time computable, honest, p-time noninvertible functions) that
are total, commutative, and associative but not strongly noninvertible.
In this paper we improve the sufficient condition to P �= NP.

More generally, in this paper we completely characterize which
types of one-way functions stand or fall together with (plain) one-way
functions—equivalently, stand or fall together with P �= NP. We look at
the four attributes used in Rabi and Sherman’s seminal work on alge-
braic properties of one-way functions (see [RS97,RS93]) and subsequent
papers—strongness (of noninvertibility), totality, commutativity, and
associativity—and for each attribute, we allow it to be required to hold,
required to fail, or “don’t care.” In this categorization there are 34 = 81
potential types of one-way functions. We prove that each of these 81
feature-laden types stand or fall together with the existence of (plain)
one-way functions.

Keywords: Computational complexity, complexity-theoretic one-
way functions, associativity, commutativity, strong noninvertibility.

� Work supported in part by the NSF under grant NSF-CCF-0426761 and by the
DFG under grant RO 1202/9-1. Work done in part while the first two authors were
visiting Julius-Maximilians-Universität Würzburg and while the second author was
visiting the University of Rochester.

�� Department of Computer Science, University of Rochester, Rochester, NY 14627,
USA.

� � � Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf,
Germany.

† Department of Computer Science and Computer Engineering, La Trobe University,
Bundoora, VIC 3086, Australia.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 265–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

266 L.A. Hemaspaandra, J. Rothe, and A. Saxena

1 Introduction

1.1 Motivation

In this paper, we study properties of one-way functions, i.e., properties of func-
tions that are easy to compute, but hard to invert. One-way functions are impor-
tant cryptographic primitives and are the key building blocks in many crypto-
graphic protocols. Various models to capture “noninvertibility” and, depending
on the model used, various candidates for one-way functions have been proposed.
The notion of noninvertibility is usually based on the average-case complexity
model in cryptographic applications, whereas noninvertibility for complexity-
theoretic one-way functions is usually defined in the worst-case model. Though
the average-case model is very important, we note that even the challenge of
showing that any type of one-way function exists in the “less challenging” worst-
case model remains an open issue after many years of research. It is thus natural
to wonder, as a first step, what assumptions are needed to create various types
of complexity-theoretic one-way functions. In this paper, we seek to characterize
in terms of class separations this existence issue.

Complexity-theoretic one-way functions of various sorts, and related no-
tions, were studied early on by, for example, Berman [Ber77], Brassard,
Fortune, and Hopcroft [BFH78,Bra79], Ko [Ko85], and especially Groll-
mann and Selman [GS88], and have been much investigated ever since;
see, e.g., [AR88,Wat88,HH91,Sel92,RS93,HRW97,RS97,HR99,BHHR99,HR00,
HPR01,RH02,FFNR03,HT03,Hom04]. The four properties of one-way functions
to be investigated in this paper are strongness, totality, commutativity, and as-
sociativity. Intuitively, strong noninvertibility—a notion proposed by Rabi and
Sherman [RS97,RS93] and later studied in other papers as well [HR99,HPR01,
Hom04]—means that for a two-ary function, given some function value and one
of the corresponding arguments, it is hard to determine the other argument. It
has been known for decades that one-way functions exist if and only if P �= NP.
But the Rabi-Sherman paper brought out the natural issue of trying to un-
derstand what complexity-theoretic assumptions characterized the existence of
one-way functions with certain algebraic properties. Eventually, Hemaspaandra
and Rothe [HR99] proved that strong, total, commutative, associative one-way
functions exist if and only if P �= NP. (As mentioned earlier, one-way func-
tions with these properties are the key building blocks in Rabi, Rivest, and
Sherman’s cryptographic protocols for secret-key agreement and for digital sig-
natures (see [RS97,RS93]).)

This paper provides a detailed study of the four properties of one-way func-
tions mentioned above. For each possible combination of possessing, not pos-
sessing, and being oblivious to possession of the property, we study the question
of whether such one-way functions can exist. Why should one be interested in
knowing if a one-way function possesses “negative” properties, such as noncom-
mutativity? On one hand, negative properties can also have useful applications.
For example, Saxena, Soh, and Zantidis [SS05,SSZ05] propose authentication
protocols for mobile agents and digital cash with signature chaining that use as

One-Way Functions in Complexity Theory 267

their key building blocks strong, associative one-way functions for which com-
mutativity in fact is a disadvantage. More generally, it seems natural to try to
catalog which types of one-way functions are created by, for example, simply
assuming P �= NP.

1.2 Summary of Our Results

This paper is organized as follows. In Sections 2 and 3, we formally define the
notions and notation used, and we provide some basic lemmas that allow us
to drastically reduce the number of cases we have to consider. We will state
the full definitions later, but stated merely intuitively, a function is said to be
strongly noninvertible if given the output and one argument one cannot effi-
ciently find a corresponding other argument; and a function is said to be strong
if it is polynomial-time computable, strongly noninvertible, and satisfies the nat-
ural honesty condition related to strong noninvertibility (so-called s-honesty). In
Section 4, we prove that the condition P �= NP characterizes all 27 cases in-
duced by one-way functions that are strong. As a corollary, we also obtain a
P �= NP characterization of all 27 cases where one requires one-way-ness but is
oblivious to whether or not the functions are strong. In Section 5, we consider
functions that are required to be one-way but to not be strong. We show that
P �= NP characterizes all of these 27 cases. Thus, P �= NP characterizes all 81
cases overall.

Table 1 summarizes our results for the 16 key cases in which each of the
four properties considered is either enforced or defied.1 Definition 2.4 provides
the classification scheme used in this table. The left column of Table 1 has 16
quadruples of the form (s, t, c, a), where s regards “strong,”, t means “total,”
c means “commutative,” and a means “associative.” The variables s, t, c, and
a take on a value from {Y, N}, where Y means presence (i.e., “yes”), and N
means absence (i.e., “no”) of the given property. The center column of Table 1
states the conditions characterizing the existence of (s, t, c, a)-OWFs, and the
right column of Table 1 gives the references to the proofs of the results stated.

1.3 General Proof Strategy

We do not attempt to brute-force all 81 cases. Rather, we seek to turn the cases’
structure and connectedness against themselves. So, in Section 3 we will reduce
the 81 cases to their 16 key cases that do not contain “don’t care” conditions.
Then, also in Section 3, we will show how to derive the nontotal cases from the
total cases, thus further reducing our problem to 8 key cases.

As Corollary 4.6 and, especially, much of Section 5 will show, even among
the 8 key cases we share attacks, and find and exploit implications.

Thus, the proof in general consists both of specific constructions—concrete
(and in some cases rather difficult to discover) realizations forcing for the first
time given patterns of properties—and the framework that minimizes the number
of such constructions needed.

1 In light of the forthcoming Lemma 3.2, those cases in which one is oblivious to
whether some property holds follow immediately from the cases stated in Table 1.

268 L.A. Hemaspaandra, J. Rothe, and A. Saxena

Table 1. Summary of results

Properties Characterization References/Comments
(s, t, c, a)

(N, N, N, N) P �= NP Lemma 5.2 + Lemma 3.4
(N, N, N, Y) P �= NP Lemma 5.5 + Lemma 3.4
(N, N, Y, N) P �= NP Lemma 5.1 + Lemma 3.4
(N, N, Y, Y) P �= NP Lemma 5.5 + Lemma 3.4
(N, Y, N, N) P �= NP [HPR01]; see also Lemma 5.2
(N, Y, N, Y) P �= NP Lemma 5.5
(N, Y, Y, N) P �= NP Lemma 5.1
(N, Y, Y, Y) P �= NP Lemma 5.5
(Y, N, N, N) P �= NP Lemma 4.5 + Lemma 3.4
(Y, N, N, Y) P �= NP Lemma 4.4 + Lemma 3.4
(Y, N, Y, N) P �= NP Lemma 4.3 + Lemma 3.4
(Y, N, Y, Y) P �= NP Lemma 4.2 + Lemma 3.4
(Y, Y, N, N) P �= NP Lemma 4.5
(Y, Y, N, Y) P �= NP Lemma 4.4
(Y, Y, Y, N) P �= NP Lemma 4.3
(Y, Y, Y, Y) P �= NP [HR99]; see also Lemma 4.2

2 Preliminaries and Notations

Fix the alphabet Σ = {0, 1}. The set of strings over Σ is denoted by Σ∗. Let ε
denote the empty string. Let Σ+ = Σ∗−{ε}. For any string x ∈ Σ∗, let |x| denote
the length of x. Let 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ be some standard pairing function,
that is, some total, polynomial-time computable bijection that has polynomial-
time computable inverses and is nondecreasing in each argument when the other
argument is fixed. Let nat : Σ∗ → N be the standard bijection between Σ∗

and N, the set of nonnegative integers, i.e., nat maps the lexicographically ith
string in Σ∗ to the integer i − 1. Let FP denote the class of polynomial-time
computable functions (this includes both total and nontotal functions). This
paper focuses completely on mappings from Σ∗ ×Σ∗ to Σ∗ (they are allowed to
be many-to-one and they are allowed to be nontotal, i.e., they may map many
distinct pairs of strings from Σ∗ × Σ∗ to one and the same string in Σ∗, and
they need not be defined for all pairs in Σ∗ × Σ∗). (The study of 2-argument
one-way functions of course is needed if associativity and commutativity are to
be studied.) For each function f , let domain(f) denote the set of input pairs on
which f is defined, and denote the image of f by image(f).

Definition 2.1 presents the standard notion of a (complexity-theoretic, many-
one) one-way function, suitably tailored to the case of two-ary functions in the
standard way; see [RS93,RS97,HR99,HPR01,Hom04]. (For general introductions
to or surveys on one-way functions, see [Sel92], [BHHR99], and [HO02, Chap-
ter 2]. For general background on complexity see, e.g., [HO02,BC93].) Our one-
way functions are based on noninvertibility in the worst-case model, as opposed

One-Way Functions in Complexity Theory 269

to noninvertibility in the average-case model that is more appealing for crypto-
graphic applications. The notion of honesty in Definition 2.1 below is needed in
order to preclude functions from being noninvertible simply due to the trivial
reason that some family of images lacks polynomially short preimages.

Definition 2.1 (One-Way Function). Let σ be a function (it may be either
total or nontotal) mapping from Σ∗ × Σ∗ to Σ∗.

1. We say σ is honest if and only if there exists a polynomial p such that for each
z ∈ image(σ), there exists a pair (x, y) ∈ domain(σ) such that σ(x, y) = z
and |x| + |y| ≤ p(|z|).

2. We say σ is (polynomial-time) noninvertible if and only if there exists no
function f in FP such that for all z ∈ image(ρ), we have σ(f(z)) = z.

3. We say σ is a one-way function if and only if σ is polynomial-time com-
putable, honest, and noninvertible.

The four properties of one-way functions that we will study in this paper
are strongness, totality, commutativity, and associativity. A function σ mapping
from Σ∗ ×Σ∗ to Σ∗ is said to be total if and only if σ is defined for each pair in
Σ∗ × Σ∗, and is said to be nontotal if it is not total. We say that a function is
partial if it is either total or nontotal; this says nothing, but makes it clear that
we are not demanding that the function be total.

We now define the remaining three properties. Rabi, Rivest, and Sherman
(see [RS97,RS93]) introduced the notion of strongly noninvertible associative
one-way functions (strong AOWFs, for short). Rivest and Sherman (as attributed
in [RS97,RS93]) designed cryptographic protocols for two-party secret-key agree-
ment and Rabi and Sherman designed cryptographic protocols for digital sig-
natures, both of which need strong, total AOWFs as their key building blocks.
They also sketch protocols for multiparty secret-key agreement that required
strong, total, commutative AOWFs. Strong (and sometimes total and commu-
tative) AOWFs have been intensely studied in [HR99,BHHR99,HPR01,Hom04].

Though Rabi and Sherman’s [RS97] notion of associativity is meaningful
for total functions, it is not meaningful for nontotal two-ary functions, as has
been noted and discussed in [HR99]. Thus, we here follow Hemaspaandra and
Rothe’s [HR99] notion of associativity, which is appropriate for both total and
nontotal two-ary functions, and is designed as an analog to Kleene’s 1952 [Kle52]
notion of complete equality of partial functions.

Definition 2.2 (Associativity and Commutativity). Let σ be any partial
function mapping from Σ∗ × Σ∗ to Σ∗. Extend Σ∗ by Γ = Σ∗ ∪ {⊥}, where ⊥
is a special symbol indicating, in the usage “σ(x, y) = ⊥,” that σ is not defined
for the pair (x, y). Define an extension σ̂ of σ, which maps from Γ × Γ to Γ , by

(2.1) σ̂(x, y) =
{

σ(x, y) if x �= ⊥ and y �= ⊥ and (x, y) ∈ domain(σ)
⊥ otherwise.

1. We say σ is associative if and only if for each x, y, z ∈ Σ∗, σ̂(σ̂(x, y), z) =
σ̂(x, σ̂(y, z)).

2. We say σ is commutative if and only if for each x, y ∈ Σ∗, σ̂(x, y) = σ̂(y, x).

270 L.A. Hemaspaandra, J. Rothe, and A. Saxena

Informally speaking, strong noninvertibility (see [RS97,RS93]) means that
even if a function value and one of the corresponding two arguments are given, it
is hard to compute the other argument. It is known that, unless P = NP, some
noninvertible functions are not strongly noninvertible [HPR01]. And, perhaps
counterintuitively, it is known that, unless P = NP, some strongly noninvertible
functions are not noninvertible [HPR01]. That is, unless P = NP, strong non-
invertibility does not imply noninvertibility. Strong noninvertibility requires a
variation of honesty that is dubbed s-honesty in [HPR01]. The notion defined
now, as “strong (function)” in Definition 2.3, is in the literature typically called
a “strong one-way function.” This is quite natural. However, to avoid any possi-
bility of confusion as to when we refer to that and when we refer to the notion of
a “one-way function” (see Definition 2.1; as will be mentioned later, neither of
these notions necessarily implies the other), we will throughout this paper sim-
ply call the notion below “strong” or “a strong function,” rather than “strong
one-way function.”

Definition 2.3 (Strong Function). Let σ be any partial function mapping
from Σ∗ × Σ∗ to Σ∗.

1. We say σ is s-honest if and only if there exists a polynomial p such that the
following two conditions are true:
(a) For each x, z ∈ Σ∗ with σ(x, y) = z for some y ∈ Σ∗, there exists some

string ŷ ∈ Σ∗ such that σ(x, ŷ) = z and |ŷ| ≤ p(|x| + |z|).
(b) For each y, z ∈ Σ∗ with σ(x, y) = z for some x ∈ Σ∗, there exists some

string x̂ ∈ Σ∗ such that σ(x̂, y) = z and |x̂| ≤ p(|y| + |z|).
2. We say σ is (polynomial-time) invertible with respect to the first argument

if and only if there exists an inverter g1 ∈ FP such that for every string
z ∈ image(σ) and for all x, y ∈ Σ∗ with (x, y) ∈ domain(σ) and σ(x, y) = z,

σ(x, g1(〈x, z〉)) = z.

3. We say σ is (polynomial-time) invertible with respect to the second argu-
ment if and only if there exists an inverter g2 ∈ FP such that for every string
z ∈ image(σ) and for all x, y ∈ Σ∗ with (x, y) ∈ domain(σ) and σ(x, y) = z,

σ(g2(〈y, z〉), y) = z.

4. We say σ is strongly noninvertible if and only if σ is neither invertible
with respect to the first argument nor invertible with respect to the second
argument.

5. We say σ is strong if and only if σ is polynomial-time computable, s-honest,
and strongly noninvertible.

In this paper, we will look at the 34 = 81 categories of one-way functions that
one can get by requiring the properties strong/total/commutative/associative to
either: hold, fail, or “don’t care.” For each, we will try to characterize whether
such one-way functions exist.

We now define a classification scheme suitable to capture all possible combi-
nations of these four properties of one-way functions.

One-Way Functions in Complexity Theory 271

Definition 2.4 (Classification Scheme for One-Way Functions). For
each s, t, c, a ∈ {Y, N, ∗}, we say that a partial function σ : Σ∗ × Σ∗ → Σ∗

is an (s, t, c, a) one-way function (an (s, t, c, a)-OWF, for short) if and only if

1. σ is a one-way function,
2. if s = Y then σ is strong,
3. if s = N then σ is not strong,
4. if t = Y then σ is a total function,
5. if t = N then σ is a nontotal function,
6. if c = Y then σ is a commutative function,
7. if c = N then σ is a noncommutative function,
8. if a = Y then σ is an associative function, and
9. if a = N then σ is a nonassociative function.

For example, a function is a (Y, Y, Y, Y)-OWF exactly if it is a strong, total,
commutative, associative one-way function. And note that, under this definition,
whenever a setting is ∗, we don’t place any restriction as to whether the corre-
sponding property holds or fails to hold—that is, ∗ is a “don’t care” designator.
For example, a function is a (∗, Y, ∗, ∗)-OWF exactly if it is a total one-way
function. Of course, all (Y, Y, Y, Y)-OWFs are (∗, Y, ∗, ∗)-OWFs. That is, our
81 classes do not seek to partition, but rather to allow all possible simultaneous
settings and “don’t care”s for these four properties. However, the 16 such classes
with no stars are certainly pairwise disjoint.

3 Groundwork: Reducing the Cases

In this section, we show how to tackle our ultimate goal, stated as Goal 3.1
below, by drastically reducing the number of cases that are relevant among the
81 possible cases.

Goal 3.1. For each s, t, c, a ∈ {Y, N, ∗}, characterize the existence of (s, t, c, a)-
OWFs in terms of some suitable complexity-theoretic condition.

Since ∗ is a “don’t care,” for a given ∗ position the characterization
that holds with that ∗ is simply the “or” of the characterizations that hold
with each of Y and N substituted for the ∗. For example, clearly there exist
(Y, Y, Y, ∗)-OWFs if and only if either there exist (Y, Y, Y, Y)-OWFs or there
exist (Y, Y, Y, N)-OWFs. And cases with more than one ∗ can be “unwound”
by repeating this. So, to characterize all 81 cases, it suffices to characterize the
16 cases stated in Table 1.

Lemma 3.2. 1. For each t, c, a ∈ {Y, N, ∗}, there exist (∗, t, c, a)-OWFs if and
only if either there exist (Y, t, c, a)-OWFs or there exist (N, t, c, a)-OWFs.

2. For each s, c, a ∈ {Y, N, ∗}, there exist (s, ∗, c, a)-OWFs if and only if either
there exist (s, Y, c, a)-OWFs or there exist (s, N, c, a)-OWFs.

3. For each s, t, a ∈ {Y, N, ∗}, there exist (s, t, ∗, a)-OWFs if and only if either
there exist (s, t, Y, a)-OWFs or there exist (s, t, N, a)-OWFs.

4. For each s, t, c ∈ {Y, N, ∗}, there exist (s, t, c, ∗)-OWFs if and only if either
there exist (s, t, c, Y)-OWFs or there exist (s, t, c, N)-OWFs.

272 L.A. Hemaspaandra, J. Rothe, and A. Saxena

It is well known (see [BDG95] and Proposition 1 of [Sel92]) that P �= NP if
and only if (∗, ∗, ∗, ∗)-OWFs exist, i.e., P �= NP if and only if there exist one-way
functions, regardless of whether or not they possess any of the four properties.
So, in the upcoming proofs, we will often focus on just showing that P �= NP
implies the given type of OWF exists.

Lemma 3.3. For each s, t, c, a ∈ {Y, N, ∗}, if there are (s, t, c, a)-OWFs then
P �= NP.

Next, we show that all cases involving nontotal one-way functions can be eas-
ily reduced to the corresponding cases involving total one-way functions. Thus,
we have eliminated the eight “nontotal” of the remaining 16 cases, provided we
can solve the eight “total” cases.

Lemma 3.4. For each s, c, a ∈ {Y, N}, if there exists an (s, Y, c, a)-OWF, then
there exists an (s, N, c, a)-OWF.

Proof. Fix any s, c, a ∈ {Y, N}, and let σ be any given (s, Y, c, a)-OWF.
For each string w ∈ Σ∗, let w+ denote the successor of w in the standard
lexicographic ordering of Σ∗, and for each string w ∈ Σ+, let w− denote the
predecessor of w in the standard lexicographic ordering of Σ∗.

Define a function ρ : Σ∗ × Σ∗ → Σ∗ by

ρ(x, y) =
{

(σ(x−, y−))+ if x �= ε �= y
undefined otherwise.

Note that ρ is nontotal, since it is not defined on the pair (ε, ε). It is a matter of
routine to check that ρ is a one-way function, i.e., polynomial-time computable,
honest, and noninvertible. It remains to show that ρ inherits all the other prop-
erties from σ as well. To this end, we show the following proposition. The proof
of Proposition 3.5 can be found in the full version of this paper [HRS04].

Proposition 3.5. 1. σ is commutative if and only if ρ is commutative.
2. σ is associative if and only if ρ is associative.
3. σ is strong if and only if ρ is strong.

This completes the proof of Lemma 3.4.

Lemmas 3.2, 3.3, and 3.4 imply that it suffices to deal with only the
“total” cases. That is, to achieve Goal 3.1, it would be enough to show
that if P �= NP then each of the following eight types of one-way functions
exist: (Y, Y, Y, Y)-OWFs, (Y, Y, Y, N)-OWFs, (Y, Y, N, Y)-OWFs, (Y, Y, N, N)-
OWFs, (N, Y, Y, Y)-OWFs, (N, Y, Y, N)-OWFs, (N, Y, N, Y)-OWFs, and
(N, Y, N, N)-OWFs. In the following sections, we will study each of these cases.

4 Strongness and Being Oblivious to Strongness:
(Y,t, c, a)-OWFs and (∗, t, c, a)-OWFs

In this section, we consider the “strong”-is-required cases and those cases where
the property of strongness is a “don’t care” issue. We start with the 27 “strong”

One-Way Functions in Complexity Theory 273

cases. Theorem 4.1 below characterizes each of these cases by the condition
P �= NP. The proof of Theorem 4.1 follows from the upcoming Lemmas 4.2
through 4.5, via Lemmas 3.2, 3.3, and 3.4.

Theorem 4.1. For each t, c, a ∈ {Y, N, ∗}, there exist (Y, t, c, a)-OWFs if and
only if P �= NP.

Lemma 4.2 is already known from Hemaspaandra and Rothe’s work [HR99].

Lemma 4.2. If P �= NP then there exist (Y, Y, Y, Y)-OWFs.

Using Lemmas 3.3 and 4.2, we can exploit the equivalence of P �= NP and
the existence of (Y, Y, Y, Y)-OWFs in the upcoming proofs of Lemmas 4.3, 4.4,
and 4.5. That is, in these proofs, we start from a strong, total, commutative,
associative one-way function.

Lemma 4.3. If P �= NP then there exist (Y, Y, Y, N)-OWFs.

Proof. By Lemmas 3.3 and 4.2, the condition P �= NP is equivalent to the
existence of some (Y, Y, Y, Y)-OWF, call it σ. Recall from the proof of Lemma 3.4
that, in the standard lexicographic ordering of Σ∗, w+ denotes the successor of
w ∈ Σ∗ and w− denotes the predecessor of w ∈ Σ+. We use the following
shorthand: For w ∈ Σ∗, let w2+ = (w+)+, and for w ∈ Σ∗ with w �∈ {ε, 0}, let
w2− = (w−)−. Define a function ρ : Σ∗ × Σ∗ → Σ∗ by

ρ(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε if x = y = 0
0 if x = y = ε
ε if (x = ε ∧ y = 0) ∨ (x = 0 ∧ y = ε)
ε if {x, y} ∩ {ε, 0} �= ∅ ∧ {x, y} ∩ (Σ∗ − {ε, 0}) �= ∅
(σ(x2−, y2−))2+ otherwise.

It is easy to see that ρ is one-way, strong, total, and commutative. This fact
can be seen to follow from the construction of ρ and from σ having all these
properties. However, ρ is not an associative function, since ρ(ε, ρ(ε, 0)) = 0 �=
ε = ρ(ρ(ε, ε), 0).

Thus, ρ is a (Y, Y, Y, N)-OWF.

Lemma 4.4. If P �= NP then there exist (Y, Y, N, Y)-OWFs.

Proof. Assuming P �= NP. By Lemma 4.2, let σ be a (Y, Y, Y, Y)-OWF.
Define a function ρ : Σ∗ × Σ∗ → Σ∗ by

ρ(x, y) =

⎧
⎨

⎩

y if x, y ∈ {0, 1}
(σ(x3−, y3−))3+ if x �∈ {ε, 0, 1} ∧ y �∈ {ε, 0, 1})
ε otherwise,

where we use the following shorthand: Recall from the proof of Lemma 3.4 that,
in the standard lexicographic ordering of Σ∗, w+ denotes the successor of w ∈ Σ∗

and w− denotes the predecessor of w ∈ Σ+. For w ∈ Σ∗, let w3+ = ((w+)+)+,
and for w ∈ Σ∗ with w �∈ {ε, 0, 1}, let w3− = ((w−)−)−.

274 L.A. Hemaspaandra, J. Rothe, and A. Saxena

It is easy to see, given the fact that σ is a (Y, Y, Y, Y)-OWF, that ρ is a
strongly noninvertible, s-honest, total one-way function. However, unlike σ, ρ is
noncommutative, since

ρ(0, 1) = 1 �= 0 = ρ(1, 0).

To see that ρ, just like σ, is associative, let three arbitrary strings be given,
say a, b, and c. Distinguish the following cases:

Case 1: Each of a, b, and c is a member of {0, 1}. Then, associativity follows
from the definition of ρ:

ρ(a, ρ(b, c)) = ρ(a, c) = c = ρ(b, c) = ρ(ρ(a, b), c).

Case 2: None of a, b, and c is a member of {ε, 0, 1}. Then the associativity of
ρ follows immediately from the associativity of σ. That is,

ρ(a, ρ(b, c)) = ρ(a, (σ(b3−, c3−))3+)
= (σ(a3−, σ(b3−, c3−)))3+

= (σ(σ(a3−, b3−), c3−))3+

= ρ((σ(a3−, b3−))3+, c)
= ρ(ρ(a, b), c).

Note here that both (σ(a3−, b3−))3+ and (σ(b3−, c3−))3+ are strings that are
not members of {ε, 0, 1}.

Case 3: At least one of a, b, and c is not a member of {0, 1}, and at least one of
a, b, and c is a member of {ε, 0, 1}. In this case, it follows from the definition
of ρ that

ρ(a, ρ(b, c)) = ε = ρ(ρ(a, b), c).

Thus, ρ is a (Y, Y, N, Y)-OWF.

Lemma 4.5. If P �= NP then there are (Y, Y, N, N)-OWFs.

Proof. Assume P �= NP. By Lemma 4.2, let σ be a (Y, Y, Y, Y)-OWF. Define
a function ρ : Σ∗ × Σ∗ → Σ∗ by

ρ(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε if x = y = 0
0 if x = y = ε
ε if x = ε ∧ y = 0
0 if x = 0 ∧ y = ε
ε if {x, y} ∩ {ε, 0} �= ∅ ∧ {x, y} ∩ (Σ∗ − {ε, 0}) �= ∅
(σ(x2−, y2−))2+ otherwise.

Again, it follows from the properties of σ and the construction of ρ that ρ is
one-way, strong, and total. However, ρ is not commutative, since

ρ(ε, 0) = ε �= 0 = ρ(0, ε).

One-Way Functions in Complexity Theory 275

Furthermore, ρ is not associative, since

ρ(ε, ρ(ε, 0)) = 0 �= ε = ρ(ρ(ε, ε), 0).

Thus, ρ is a (Y, Y, N, N)-OWF.

Next, we note Corollary 4.6, which follows immediately from Theorem 4.1
via Lemmas 3.2 and 3.3. That is, in light of Lemmas 3.2 and 3.3, Theorem 4.1
provides also a P �= NP characterization of all 27 cases where one requires one-
way-ness but is oblivious to whether or not the functions are guaranteed to be
strong.

Corollary 4.6. For each t, c, a ∈ {Y, N, ∗}, there are (∗, t, c, a)-OWFs if and
only if P �= NP.

5 Nonstrongness: (N, t, c, a)-OWFs

It remains to prove the 27 “nonstrong” cases. All 27 have P �= NP as a necessary
condition. For each of them, we also completely characterize the existence of
such OWFs by P �= NP.

First, we consider two “total” and “nonstrong” cases in Lemmas 5.1 and 5.2
below. Note that Hemaspaandra, Pasanen, and Rothe [HPR01] constructed one-
way functions that in fact are not strongly noninvertible. Unlike Lemmas 5.1
and 5.2, however, they did not consider associativity and commutativity. Note
that, in the proofs of Lemmas 5.1 and 5.2, we achieve “nonstrongness” while
ensuring that the functions constructed are s-honest. That is, they are not “non-
strong” because they are not s-honest, but rather they are “nonstrong” because
they are not strongly noninvertible.

Lemma 5.1. If P �= NP then there exist (N, Y, Y, N)-OWFs.

Proof. Assuming P �= NP, we define an (N, Y, Y, N)-OWF that is akin to the
one constructed in Theorem 3 of [HPR01]. Define a function σ : Σ∗ × Σ∗ → Σ∗

by

σ(x, y) =
{

1ρ(x) if x = y
0 min(x, y)max(x, y) if x �= y,

where min(x, y) denotes the lexicographically smaller of x and y, max(x, y) de-
notes the lexicographically greater of x and y, and ρ : Σ∗ → Σ∗ is a total one-ary
one-way function, which exists assuming P �= NP. Note that σ is polynomial-
time computable, total, honest, and s-honest. Clearly, if σ could be inverted in
polynomial time then ρ could be too. Thus, σ is a one-way function. However,
although σ is s-honest, it is not strong. To prove that σ is not strongly non-
invertible, we show that it is invertible with respect to each of its arguments.
Define a function f1 : Σ∗ → Σ∗ by

f1(a) =

⎧
⎪⎪⎨

⎪⎪⎩

y if (∃x, y, z ∈ Σ∗) [a = 〈x, 0z〉 ∧ z = xy ∧ x <lex y]
y if (∃x, y, z ∈ Σ∗) [a = 〈x, 0z〉 ∧ z = yx ∧ y <lex x]
x if (∃x, z ∈ Σ∗) [a = 〈x, 1z〉]
ε otherwise,

276 L.A. Hemaspaandra, J. Rothe, and A. Saxena

where x <lex y indicates that x is strictly smaller than y in the lexicographic
ordering of Σ∗. Note that f1 is in FP and that f1 inverts σ with respect to the
first argument. Although this is already enough to defy strong noninvertibility
of σ, we note that one can analogously show that σ also is invertible with respect
to the second argument.

To see that σ is commutative, note that if x = y then σ(x, y) = 1ρ(x) =
σ(y, x), and if x �= y then σ(x, y) = 0 min(x, y)max(x, y) = σ(y, x). To see
that σ is nonassociative, note that σ(σ(1, 0), 001) = σ(001, 001) = 1ρ(001) �=
0100001 = σ(1, 00001) = σ(1, σ(0, 001)).

Thus, σ is an (N, Y, Y, N)-OWF, which completes the proof.

Lemma 5.2. If P �= NP then there exist (N, Y, N, N)-OWFs.

The proofs of Lemmas 5.2 and 5.3 are omitted here; they can be found in the
full version of this paper [HRS04].

Next, we observe that the two remaining “total” and “nonstrong” cases are
connected: Lemma 5.3 shows that, given an (N, Y, Y, Y)-OWF, one can construct
an (N, Y, N, Y)-OWF. Thus, by Lemma 3.4, characterizing via P �= NP just
the case of (N, Y, Y, Y)-OWFs will suffice to solve all the four remaining cases
(namely, NYYY, NYNY, NNYY, and NNNY) at once.

Lemma 5.3. If there exist (N, Y, Y, Y)-OWFs, then there exist (N, Y, N, Y)-
OWFs.

We now turn to completely characterizing the existence of (N, Y, Y, Y)-
OWFs. A transformation from the literature that might seem to come close
to establishing “if P �= NP, then (N, Y, Y, Y)-OWFs exist” has been shown to be
flawed unless an unlikely complexity class collapse occurs.2 However, the follow-
ing result of Rabi and Sherman does provide evidence that (N, Y, Y, Y)-OWFs
indeed exist.

Theorem 5.4. [RS97,RS93] If factoring is not in polynomial time, then there
exist (N, Y, Y, Y)-OWFs.

We now improve that sufficient condition to P �= NP.
2 In more detail: Rabi and Sherman [RS93,RS97], assuming P �= NP, constructed a

nontotal, commutative, associative (in a slightly weaker model of associativity for
partial functions that completely coincides with our model when speaking of total
functions) one-way function that appears to fail to possess strong noninvertibility.
They also proposed a construction that they claim can be used to transform every
nontotal AOWF whose domain is in P to a total AOWF. However, their claim does
not provide an (N, Y, Y, Y)-OWF, due to some subtle technical points. First, Rabi
and Sherman’s construction—even if their claim were valid—is not applicable to
the nonstrong, nontotal, commutative AOWF they construct, since this function
seems to not have a domain in P. Second, it it is not at all clear that their above-
mentioned “construction to add totality” has the properties they assert for it. In
particular, let UP as usual denote Valiant’s [Val76] class representing “unambigu-
ous polynomial time.” Hemaspaandra and Rothe show in [HR99] that any proof
that the Rabi–Sherman claim about their transformation’s action is in general
valid would immediately prove that UP = NP, which is considered unlikely.

One-Way Functions in Complexity Theory 277

Lemma 5.5. If P �= NP then there exist (N, Y, Y, Y)-OWFs and (N, Y, N, Y)-
OWFs.

Proof. By Lemma 5.3, it suffices to handle the case of (N, Y, Y, Y)-OWFs.
So, assume P �= NP. This implies that there exists a total, one-way function
f : Σ∗ → Σ∗. Define the function g : Σ∗ × Σ∗ → Σ∗ by

g(x, y) =
{

0f(a) if x = 1a and y = 1a
ε otherwise.

Clearly, g is a one-way function that is total and commutative. Also, g is asso-
ciative since it is not hard to see that

(∀a, b, c)[g(a, g(b, c)) = g(g(a, b), c) = ε].

Though g is easily seen to be s-honest, g fails to be strongly noninvertible, and
so is not strong. In particular, given the output and a purported first argument,
here is how to find a second argument consistent with the first argument when
one exists. If the output is ε and the purported first argument is z, then output
ε as a second argument. If the output is 0y and the purported first argument
is 1x, then if f(x) = y a good second argument is 1x. In every other case, the
output and purported first argument cannot have any second argument that
is consistent with them, so we safely (though irrelevantly, except for achieving
totality of our inverter if one desires that) in this case have our inverter output ε.

Theorem 5.6. For each t, c, a ∈ {Y, N, ∗}, there exist (N, t, c, a)-OWFs if and
only if P �= NP.

The proof of Theorem 5.6 follows immediately from Lemmas 5.1, 5.2, and 5.5,
via Lemmas 3.2, 3.3, and 3.4.

In conclusion, this paper studied the question of whether one-way functions
can exist, where one imposes either possession, nonpossession, or being oblivious
to possession of the properties of strongness, totality, commutativity, and asso-
ciativity. We have shown that P �= NP is a necessary and sufficient condition in
each of the possible 81 cases.

Acknowledgments. This work was done in part while the first two authors were
visiting Klaus Wagner’s University of Würzburg group, and while the second
author was visiting the University of Rochester. We thank the hosts for their
hospitality.

References

[AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Com-
puting, 17(6):1193–1202, 1988.

[BC93] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity.
Prentice Hall, 1993.

278 L.A. Hemaspaandra, J. Rothe, and A. Saxena

[BDG95] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, second
edition, 1995.

[Ber77] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis,
Cornell University, Ithaca, NY, 1977.

[BFH78] G. Brassard, S. Fortune, and J. Hopcroft. A note on cryptography and
NP ∩ coNP − P. Technical Report TR-338, Department of Computer
Science, Cornell University, Ithaca, NY, April 1978.

[BHHR99] A. Beygelzimer, L. Hemaspaandra, C. Homan, and J. Rothe. One-way
functions in worst-case cryptography: Algebraic and security properties
are on the house. SIGACT News, 30(4):25–40, December 1999.

[Bra79] G. Brassard. A note on the complexity of cryptography. IEEE Transac-
tions on Information Theory, 25(2):232–233, 1979.

[FFNR03] S. Fenner, L. Fortnow, A. Naik, and J. Rogers. Inverting onto functions.
Information and Computation, 186(1):90–103, 2003.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryp-
tosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

[HH91] J. Hartmanis and L. Hemachandra. One-way functions and the nonisomor-
phism of NP-complete sets. Theoretical Computer Science, 81(1):155–163,
1991.

[HO02] L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion.
EATCS Texts in Theoretical Computer Science. Springer-Verlag, Berlin,
Heidelberg, New York, 2002.

[Hom04] C. Homan. Tight lower bounds on the ambiguity in strong, total, asso-
ciative, one-way functions. Journal of Computer and System Sciences,
68(3):657–674, 2004.

[HPR01] L. Hemaspaandra, K. Pasanen, and J. Rothe. If P �= NP then some strongly
noninvertible functions are invertible. In Proceedings of the 13th Interna-
tional Symposium on Fundamentals of Computation Theory, pages 162–
171. Springer-Verlag Lecture Notes in Computer Science #2138, August
2001.

[HR99] L. Hemaspaandra and J. Rothe. Creating strong, total, commutative,
associative one-way functions from any one-way function in complexity
theory. Journal of Computer and System Sciences, 58(3):648–659, June
1999.

[HR00] L. Hemaspaandra and J. Rothe. Characterizing the existence of one-way
permutations. Theoretical Computer Science, 244(1–2):257–261, August
2000.

[HRS04] L. Hemaspaandra, J. Rothe, and A. Saxena. Enforcing and defying asso-
ciativity, commutativity, totality, and strong noninvertibility for one-way
functions in complexity theory. Technical Report TR-854, Department
of Computer Science, University of Rochester, Rochester, NY, December
2004. Revised in April, 2005. Also appears as ACM Computing Research
Repository (CoRR) Technical Report cs.CC/050304, April 2005.

[HRW97] L. Hemaspaandra, J. Rothe, and G. Wechsung. On sets with easy certifi-
cates and the existence of one-way permutations. In Proceedings of the
Third Italian Conference on Algorithms and Complexity, pages 264–275.
Springer-Verlag Lecture Notes in Computer Science #1203, March 1997.

[HT03] C. Homan and M. Thakur. One-way permutations and self-witnessing
languages. Journal of Computer and System Sciences, 67(3):608–622, 2003.

One-Way Functions in Complexity Theory 279

[Kle52] S. Kleene. Introduction to Metamathematics. D. van Nostrand Company,
Inc., New York and Toronto, 1952.

[Ko85] K. Ko. On some natural complete operators. Theoretical Computer Sci-
ence, 37(1):1–30, 1985.

[RH02] J. Rothe and L. Hemaspaandra. On characterizing the existence of par-
tial one-way permutations. Information Processing Letters, 82(3):165–171,
May 2002.

[RS93] M. Rabi and A. Sherman. Associative one-way functions: A new paradigm
for secret-key agreement and digital signatures. Technical Report CS-TR-
3183/UMIACS-TR-93-124, Department of Computer Science, University
of Maryland, College Park, Maryland, 1993.

[RS97] M. Rabi and A. Sherman. An observation on associative one-way functions
in complexity theory. Information Processing Letters, 64(5):239–244, 1997.

[Sel92] A. Selman. A survey of one-way functions in complexity theory. Mathe-
matical Systems Theory, 25(3):203–221, 1992.

[SS05] A. Saxena and B. Soh. A novel method for authenticating mobile agents
with one-way signature chaining. In Proceedings of the 7th International
Symposium on Autonomous Decentralized Systems, pages 187–193. IEEE
Computer Society Press, April 2005.

[SSZ05] A. Saxena, B. Soh, and D. Zantidis. A digital cash protocol based on addi-
tive zero knowledge. In Proceedings of the 3rd International Workshop on
Internet Communications Security, pages 672–680. Springer Verlag Lecture
Notes in Computer Science #3482, May 2005.

[Val76] L. Valiant. The relative complexity of checking and evaluating. Informa-
tion Processing Letters, 5(1):20–23, 1976.

[Wat88] O. Watanabe. On hardness of one-way functions. Information Processing
Letters, 27(3):151–157, 1988.

Synthesis from Temporal Specifications Using Preferred
Answer Set Programming

Stijn Heymans, Davy Van Nieuwenborgh�, and Dirk Vermeir��

Dept. of Computer Science, Vrije Universiteit Brussel,
VUB Pleinlaan 2, B1050 Brussels, Belgium

{sheymans, dvnieuwe, dvermeir}@vub.ac.be

Abstract. We use extended answer set programming (ASP), a logic program-
ming paradigm which allows for the defeat of conflicting rules, to check satisfi-
ability of computation tree logic (CTL) temporal formulas via an intuitive trans-
lation. This translation, to the best of our knowledge the first of its kind for CTL,
allows CTL reasoning with existing answer set solvers.

Furthermore, we demonstrate how preferred ASP, where rules are ordered ac-
cording to preference for satisfaction, can be used for synthesizing synchroniza-
tion skeletons of processes in a concurrent program from a temporal specification.
We argue that preferred ASP is put to good use since a preference order can be
used to make explicit some of the decisions tableau algorithms make, e.g. declar-
atively specifying a preference for maximal concurrency makes synthesis more
transparent and thus less error-prone.

1 Introduction

Temporal logics [7] are widely used for expressing properties of nonterminating pro-
grams. Transformation semantics, such as Hoare’s logic are not appropriate here since
they depend on the program having a final state that can be verified to satisfy certain
properties. Temporal logics on the other hand have a notion of (infinite) time and may
express properties of a program along a time line, without the need for that program to
terminate. E.g., formulas may express that from each state a program should be able to
reach its initial state: AGEFinitial .

Two well-known temporal logics are linear temporal logic (LTL) [7,20] and compu-
tation tree logic (CTL) [7,9,4], which basically differ in their interpretation of time: the
former assumes that time is linear, i.e. for every state of the program there is only one
successor state, while time is branching for the latter, i.e. every state may have different
successor states, corresponding to nondeterministic choices for the program.

Another knowledge representation framework is answer set programming (ASP)
[11,3], a logic programming paradigm with a stable model semantics for negation as
failure. A logic program corresponds to knowledge one wishes to represent, or, more

� Supported by the FWO.
�� This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 280–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Synthesis from Temporal Specifications 281

specifically, to an encoding of a particular problem, e.g. a planning problem [17,6]; the
answer sets of the program then provide its intentional knowledge, or the solutions of
the encoded problem, e.g. a plan for a planning problem.

Under the open answer set, there are some programs that do not have any solutions.
There are cases, however, where it is not a feasible strategy to have no answer sets at
all, e.g. in large modular programs where different modules are contributed by different
parties, there could be only 2 modules that contradict each other, although a majority
does not. One would then still like to deduce knowledge that is not related to this contra-
diction (if one module says a and another one says ¬a, but both say b, it is reasonable to
keep b as a conclusion, while being unsure about a or ¬a – the normal answer set seman-
tics, however, would yield no answers at all). The extended answer set semantics [24]
solves this by defeating rules with competing rules, and thus extracts as much knowl-
edge from the program as possible, while providing alternatives for conflicting rules.

We relate the temporal logic CTL to extended ASP by reducing satisfiability check-
ing of CTL formulas to satisfiability checking of predicates w.r.t. a logic program under
the extended answer set semantics. To the best of our knowledge, this is the first account
of a translation of CTL reasoning to answer set programming. The translation allows
for CTL reasoning through existing answer set solvers.

A related approach, i.e. reasoning with temporal logics through ASP, is taken in
[12], where bounded model checking of asynchronous concurrent systems is simulated
by computing (normal) answer sets of programs. These results are generalized in [13]
where bounded model checking for LTL is translated to ASP. Since LTL and CTL are
incomparable, i.e. there are LTL formulas for which no equivalent CTL formula exists,
and vice versa, the translation in [13] from LTL to ASP is not applicable to the CTL
case that we consider here. Another translation of LTL reasoning to ASP can be found
in [22,21] in the context of planning with, among others, temporal constraints or goals.

We take the application of ASP to temporal reasoning a step further by considering
ASP as a vehicle for the synthesis of synchronization skeletons of processes in concur-
rent programs, given a CTL specification. In the literature, synthesis from a temporal
logic specification is usually done by tableau-like algorithms, e.g. in [8,1] for a CTL
specification or in [18] for a LTL specification, or by a reduction to automata as in [16].
We argue that preferred ASP, i.e. ASP where there is a preference on the satisfaction of
rules as defined in [24], can make declaratively explicit some implicit decisions made
by those tableau algorithms, resulting in a more transparent synthesis method. More
specifically, we discuss how to obtain, using preferred ASP, concurrent programs that
are as concurrent as the temporal specification allows.

A preferred ASP approach to synthesis has the further advantage that an implemen-
tation is available: in order to illustrate the theoretical results, we use the OLPS solver
[19], available for download from http://tinf2.vub.ac.be/olp, to synthesize
the well-known mutual exclusion problem.

The remainder of the paper is organized as follows. In Section 2, we present the
extended and preferred answer set semantics. The simulation of CTL reasoning with
extended ASP, as well as its complexity, is discussed in Section 3. Before concluding
and giving directions for further research in Section 5, we present in Section 4 a syn-
thesis method from a CTL specification using preferred ASP.

http://tinf2.vub.ac.be/olp

282 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

2 Preferred Answer Set Programming

We introduce the extended answer set semantics as in [24]. A term is a constant or a
variable, where the former will be written lower-case and the latter upper-case. An atom
is of the form p(t1, . . . , tn) where p is an n-ary predicate name and ti, 1 ≤ i ≤ n, are
terms. A literal is an atom a or a classically negated atom ¬a; an extended literal is a
literal l or a literal preceded with the negation as failure symbol not: not l. A program
is a finite set of rules α ← β where α is a set of literals with |α| ≤ 1, i.e. α is empty
or a singleton, and β is a finite set of extended literals. We usually denote a rule as
a ← β or ← β, and we call the latter a constraint. The positive part of the body
is β+ = {l | l ∈ β, l literal}, the negative part is β− = {l | not l ∈ β}, e.g. for
β = {a, not ¬b, not c}, we have that β+ = {a} and β− = {¬b, c}.

For compactness, we assume that the rule a({x1, . . . , xn}) ← is equivalent with
rules a(x1) ←, . . . , a(xn) ←. We may type arguments as in the rule p(a : t) ← which
stands for p(a) ← t(a).

A ground atom, (extended) literal, rule, or program does not contain variables. Sub-
stituting every variable in a program P with every possible constant in P yields the
ground program gr(P). All following definitions in this section assume ground pro-
grams and ground (extended) literals; to obtain the definitions for unground programs,
replace every occurrence of a program P by gr(P), e.g. an extended answer set of an
unground P is an extended answer set of gr(P).

The Herbrand Base BP of a program P is the set of all atoms that can be formed
using the language of P . For a set X of literals, we take ¬X = {¬l | l ∈ X} where
¬¬a is a; X is consistent if X ∩ ¬X = ∅. Let LP be the set of literals that can be
formed with P , i.e. LP = BP ∪ ¬BP . An interpretation I of P is any consistent subset
of LP . For a literal l, we write I |= l, if l ∈ I , which extends for extended literals
not l to I |= not l if I �|= l. In general, for a set of extended literals X , I |= X if
I |= x for every extended literal x ∈ X . A rule r : a ← β is satisfied w.r.t. I , denoted
I |= r, if I |= a whenever I |= β, i.e. r is applied whenever it is applicable. A con-
straint ← β is satisfied w.r.t. I if I �|= β. The set of satisfied rules in P w.r.t. I is the
reduct PI .

For a simple program P (i.e. a program without not), an interpretation I is a model
of P if I satisfies every rule in P , i.e. PI = P ; it is an answer set of P if it is a
minimal model of P , i.e. there is no model J of P such that J ⊂ I . For programs
P containing not, the GL-reduct w.r.t. an interpretation I is P I , where P I contains
α ← β+ for α ← β in P and β− ∩ I = ∅. I is an answer set of P if I is an answer
set of P I . A rule a ← β is defeated w.r.t. I if there is a competing rule ¬a ← γ that
is applied w.r.t. I , i.e. I |= {¬a} ∪ γ. An extended answer set I of a program P is
an answer set of PI such that all rules in P \PI are defeated. An n-ary predicate p is
satisfiable w.r.t. a program P iff there is an extended answer set M of P with some
p(x1, . . . , xn) ∈ M .

Example 1. The knowledge that one either likes karaoke or not (rules r1 and r2), that
the karaoke bar is on a boat (r3), that one is afraid of water (r4), unless there is a boat,
and that a boat is usually, but not necessarily, on the water (r5), can be represented by
the following program:

Synthesis from Temporal Specifications 283

r1 : karaoke ← not ¬karaoke r2 : ¬karaoke ← not karaoke
r3 : boat ← karaoke
r4 : ¬water ← r5 : water ← boat

We have the extended answer sets M1 = {karaoke, boat ,water}, M2 = {karaoke ,
boat , ¬water}, M3 = {¬karaoke , ¬water}, with reducts PM1 = P \{r4}, PM2 =
P \{r5}, and PM3 = P . One sees that in M1 the rule r4 is defeated by r5.

Resolving conflicts by defeating rules leads to different alternative extended answer
sets, as in Example 1. Usually however, a user may have some particular preferences
on the satisfaction of the rules. As in [24], we impose a strict partial order1 < on the
rules in P , indicating these preferences, which results in an ordered logic program
(OLP) 〈P, <〉.This preferential ordering will induce an ordering � among the possi-
ble alternative extended answer sets as follows: for interpretations M and N of P , M
is “more preferred” than N , denoted M � N , if ∀r2 ∈ PN \PM · ∃r1 ∈ PM \PN ·
r1 < r2. Intuitively, for every rule that is satisfied by N and not by M , and which
thus appears to be a counterexample for M being better than N , there is a better
rule that is satisfied by M and not by N , i.e. M can counter the counterexample
of N . We have that M is “strictly better” than N , M � N , if M � N and not
N � M . An extended answer set is a preferred answer set of 〈P, <〉 if it is mini-
mal w.r.t. � among the extended answer sets. An n-ary predicate p is preferred sat-
isfiable iff there is a preferred answer set M of P with some p(x1, . . . , xn) ∈ M .

Example 2. Considering Example 1, the knowledge that one is afraid of water may
result in the preference relation, r4 < r5. We have then, using r4 < r5, that M2 � M1,
and M3 � M1 and M3 � M2 since M3 satisfies all rules, such that M3 is the preferred
answer set.

3 CTL Reasoning with Extended Answer Set Programming

Let AP be the finite set of available proposition symbols. Computation tree logic (CTL)
formulas are defined as follows:

– every proposition symbol P ∈ AP is a formula,
– if p and q are formulas, so are p ∧ q and ¬p,
– if p and q are formulas, then EXp, E(p U q), AXp, and A(p U q) are formulas.

The semantics of a CTL formula is given by (temporal) structures. A structure K is
a tuple (S, R, L) with S a countable set of states, R ⊆ S × S a total relation in S,
i.e. ∀s ∈ S · ∃t ∈ S · (s, t) ∈ R, and L : S → 2AP a function labeling states with
propositions. Intuitively, R indicates the permitted transitions between states and L
indicates which propositions are true at certain states.

A path π in K is an infinite sequence of states (s0, s1, . . .) such that (si−1, si) ∈ R
for each i > 0. For a path π = (s0, s1, . . .), we denote the element si with πi. For a
structure K = (S, R, L), a state s ∈ S, and a formula p, we inductively define when K
is a model of p at s, denoted K, s |= p:

1 A strict partial order on X is an anti-reflexive and transitive relation on X.

284 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

– K, s |= P iff P ∈ L(s) for P ∈ AP ,
– K, s |= ¬p iff not K, s |= p.
– K, s |= p ∧ q iff K, s |= p and K, s |= q.
– K, s |= EXp iff there is a (s, t) ∈ R and K, t |= p,
– K, s |= AXp iff for all (s, t) ∈ R, K, t |= p,
– K, s |= E(p U q) iff there exists a path π in K with π0 = s and ∃k ≥ 0 · (K, πk |=

q ∧ ∀j < k · K, πj |= p),
– K, s |= A(p U q) iff for all paths π in K with π0 = s we have ∃k ≥ 0 · (K, πk |=

q ∧ ∀j < k · K, πj |= p).

K, s |= EXp (K, s |= AXp) can be read as “there is some neXt state where p holds” (“p
holds in all next states”), and K, s |= E(p U q) (K, s |= A(p U q)) as “there is some
path from s along which p holds Until q holds (and q eventually holds)” (“for all paths
from s, p holds until q holds (and q eventually holds)”).

Some common abbreviations for CTL formulas are EFp = E(true U p) (there is
some path on which p will eventually hold), AFp = A(true U p) (p will eventually
hold on all paths), EGp = ¬AF¬p (there is some path on which p holds globally), and
AGp = ¬EF¬p (p holds everywhere on all paths). Furthermore, we have the standard
propositional abbreviations p ∨ q = ¬(¬p ∧ ¬q), p ⇒ q = ¬p ∨ q, and p ⇔ q = (p ⇒
q) ∧ (q ⇒ p).

A structure K = (S, R, L) satisfies a CTL formula p if there is a state s ∈ S such
that K, s |= p; we also call K a model of p. A CTL formula p is satisfiable iff there is a
model of p.

Example 3. Consider the expression of absence of starvation t ⇒ AFc [4] for a process
in a mutual exclusion problem (more about mutual exclusion in Section 4). The formula
demands that if a process tries (t) to enter a critical region, it will eventually succeed in
doing so (c) for all possible future execution paths.

s2

t t c

s0 s1

Fig. 1. Example Structure t ⇒ AFc

We will usually represent structures by diagrams as in Figure 1, where states are
nodes, transitions between nodes define R, and the labels of the nodes contain the
propositions true at the corresponding states. The structure K defined by Figure 1 does
not satisfy t ⇒ AFc at s0 since on the path (s0, s0, . . .) c never holds. We have how-
ever, K, s1 |= t ⇒ AFc and K, s2 |= t ⇒ AFc, where the latter holds trivially since
t �∈ L(s2).

From a synthesis viewpoint, we are mainly interested in finite structures and thus in
n-satisfiability, where a CTL formula p is n-satisfiable iff there exists a model K =
(S, R, L) of p with |S| = n, n a non-negative integer. Note that for sufficiently large n,
satisfiability is equivalent to n-satisfiability.

Theorem 1 (Small Model Theorem for CTL [7]). Let p0 be a CTL formula. Then p0
is satisfiable iff p0 has a finite model of size ≤ exp(length(p0)).

Synthesis from Temporal Specifications 285

N -satisfiability of CTL formulas can be reduced to satisfiability of predicates w.r.t. pro-
grams under the extended answer set semantics. In order to keep the treatment simple,
we will assume that the only allowed temporal constructs are EG, EU, and EX. They
are actually adequate in the sense that other temporal constructs can be equivalently, i.e.
preserving satisfiability, rewritten using only those three [15]. Before giving the trans-
lation of a CTL formula to a program we define the closure of a formula, identifying its
subformulas. For a formula p, the closure of p is the minimal set clos(p) such that

– p ∈ clos(p),
– if ¬q ∈ clos(p), then q ∈ clos(p),
– if q ∧ r ∈ clos(p), then {q, r} ⊆ clos(p).
– if EGq ∈ clos(p), then q ∈ clos(p),
– if E(q U r) ∈ clos(p), then {q, r} ⊆ clos(p),
– if EXq ∈ clos(p), then q ∈ clos(p).

For a formula p and a non-negative n, we then construct a program consisting of two
parts: a generating part Gn and a defining part Dn

p . The program Gn creates n state
constants with rule (g1). The rules (g2) allow to introduce transitions between states
and the rules (g3) enable any proposition P ∈ AP to be true at a state or not:

state({s0 , . . . , sn−1}) ← (g1)

next(S : state,N : state) ← ¬next(S : state,N : state) ← (g2)

[P](S : state) ← ¬[P](S : state) ← (g3)

where [P] is the predicate corresponding to the proposition P . Finally, in order to make
the resulting transition relation total, it imposes the restriction that every state should
have a successor: succ(S) ← next(S ,N) and ← state(S),not succ(S) (g4). The pro-
gram Dn

p introduces for every non-propositional CTL formula in clos(p) the following
rules (we write [q] for the predicate corresponding to the CTL formula q ∈ clos(p)):

[¬q](S) ← not [q](S) (d1)

[q ∧ r](S) ← [q](S), [r](S) (d2)

[EGq](S) ← [q](S),next(S ,N), [EGq]1 (N) (d1
3)

[EGq]1 (S) ← [q](S),next(S ,N), [EGq]2 (N) (d2
3)

...

[EGq]n−1 (S) ← [q](S),next(S ,N), [q](N) (dn
3)

[E(q U r)](S) ← [r](S) (d4)

[E(q U r)](S) ← [q](S),next(S ,N), [E(q U r)](N) (d5)

[EXq](S) ← next(S ,N), [q](N) (d6)

The rules (d{1,2,6}) are direct translations of the CTL semantics. Rules (di
3) ensure there

is a finite path of at least n + 1 nodes along which q holds; there must be a duplicate si

on this path which can be used to expand the path into an infinite one.

286 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Rules (d4) and (d5) are in accordance with the characterization E(q U r) ≡ r ∨ (q ∧
EXE(q U r)) [7], and make implicit use of the minimality of answer sets to eventually
ensure realization of r.

Combining the two programs, we can reduce n-satisfiability checking for CTL for-
mulas to satisfiability of predicates.

Theorem 2. Let p be a CTL formula. p is n-satisfiable iff [p] is satisfiable w.r.t. Gn ∪
Dn

p .

We call satisfiability checking of a CTL formula using the reduction in Theorem 2, ASP
satisfiability checking.

Example 4. Consider the formula t ⇒ AFc from Example 3. We have that Gn is the
program

state({s0 , . . . , sn−1}) ←
next(S : state,N : state) ← ¬next(S : state,N : state) ←

[t](S : state) ← ¬[t](S : state) ←
[c](S : state) ← ¬[c](S : state) ←

succ(S) ← next(S ,N)
← state(S),not succ(S)

To obtain the defining part of the program, we first rewrite t ⇒ AFc such that it
contains only ¬, ∧, EG, EU, and EX using the equivalences: t ⇒ AFc ≡ ¬t ∨ AFc ≡
¬t ∨ ¬EG¬c ≡ ¬(t ∧ EG¬c). The closure of this last formula is {¬(t ∧ EG¬c), t ∧
EG¬c, t, EG¬c, ¬c, c} such that Dn

¬(t∧EG¬c) is the program

[¬(t ∧ EG¬c)](S) ← not [t ∧ EG¬c](S)
[¬c](S) ← not [c](S)

[t ∧ EG¬c](S) ← [t](S), [EG¬c](S)
[EG¬c](S) ← [¬c](S),next(S ,N), [EG¬c]1 (N)

[EG¬c]1 (S) ← [¬c](S),next(S ,N), [EG¬c]2 (N)
...

[EG¬c]n−1 (S) ← [¬c](S),next(S ,N), [¬c](N)

We then have that the CTL formula t ⇒ AFc is n-satisfiable iff the predicate [¬(t ∧
EG¬c)] is satisfiable w.r.t. Gn ∪ Dn

¬(t∧EG¬c).

Satisfiability checking of CTL formulas is in general EXPTIME-complete [7]. Using the
ASP-translation yields a NEXPTIME decision procedure.

Theorem 3. Let p be a CTL formula. ASP satisfiability checking of p is in NEXPTIME

w.r.t. the size of p.

Proof. We can reduce reasoning with extended answer sets to the normal answer set
semantics by replacing rules a ← β with a ← β,not ¬a . Intuitively, if the body is
true and the rule cannot be defeated, because the negated head is false, one must apply
the rule. Define E(Gn ∪ Dn

p) as such a transformed program. From Theorem 4 in

Synthesis from Temporal Specifications 287

[24] we have that the extended answer sets of Gn ∪ Dn
p are exactly the answer sets of

E(Gn ∪ Dn
p).

Thus [p] is satisfiable w.r.t. Gn ∪ Dn
p iff there exists an answer set of E(Gn ∪ Dn

p)
containing some [p](si) iff there exists an answer set of gr(E (Gn ∪ Dn

p)) containing
[p](si). By [3], the latter can be done by a nondeterministic Turing Machine in time
polynomial in the size of gr(E (Gn ∪ Dn

p)).
The size of E(Gn ∪ Dn

p) is exponential w.r.t. the size of p. Indeed, the number of
constants n in E(Gn ∪ Dn

p) may be exponential w.r.t. the size of p: by Theorem 1, one
may need to introduce an exponential number of states to have equivalence of satisfi-
ability and n-satisfiability. Not considering the rules (g1) that introduce the constants,
and taking |AP | constant, one can see that the size of E((Gn ∪Dn

p)\g1) is linear in the
size of p, as is the size of the closure of p.

Grounding does not yield extra complexity, i.e. the size of gr(E (Gn ∪ Dn
p)) is

polynomial in the size of E(Gn ∪ Dn
p)2, resulting in a decision procedure that is in

NEXPTIME w.r.t. the size of p. ��

Provided EXPTIME �= NEXPTIME, this result would be less optimal than theoretically
attainable for satisfiability checking of CTL formulas. As for Description Logics [2],
for which rather efficient solvers, such as FACT [14], exist despite the high theoretical
complexity, practical cases can be handled by answer set solvers such as DLV [10],
SMODELS [23], or OLPS [19]. Note that the translation in [13] of LTL model checking
to ASP is essentially in NEXPTIME as well, since only an exponential bound guarantees
that [13]’s bounded model checking coincides with model checking.

Another reasoning problem for CTL is the Branching-Time Model Checking Prob-
lem [7], which involves checking, given a finite structure K = (S, R, L), whether for
each state s ∈ S, K, s |= p; if this is the case we call K a branching-time model of
p3. As was the case for satisfiability checking, model checking can also be reduced to
computing extended answer sets of a program.

For a structure K = (S, R, L), let MK be the program

state({s0 , . . . , sn−1}) ← for S = {s0, . . . , sn−1} (m1)

next(si , sj) ← for (si, sj) ∈ R (m2)

[P](si) ← for P ∈ L(si) (m3)

i.e. MK adds the facts defining K .

Theorem 4. Let K = (S, R, L) be a finite structure and p a CTL formula. K is a
branching-time model of p iff MK ∪Dn

p ∪{ ← not [p](si) | si ∈ S} has an (extended)
answer set, for n = |S|.

The component { ← not [p](si) | si ∈ S} ensures that, for each state si ∈ S, [p](si) is
in every answer set, such that p is satisfied at each state.

2 In general [5], grounding a program may result in an exponential blow-up, however, E(Gn ∪
Dn

p) is such that every rule contains at most 2 different variables and thus contributes to at
most n2 ground rules.

3 Not to confuse with a model of p, which satisfies only one state.

288 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Satisfiability checking of CTL formulas is EXPTIME-complete, but branching-time
model checking for CTL can be done in deterministic polynomial time [7]. Similarly,
branching-time model checking for CTL via ASP is one exponential level lower than
satisfiability checking via ASP, i.e. in NP.

4 Synthesis from a CTL Specification

We recall some definitions and terminology, see e.g. [8]. A concurrent program P =
P1 ‖ . . . ‖ Pk consists of k processes Pi, 1 ≤ i ≤ k, that run in parallel, where the
parallelism is, typically, simulated by a nondeterministic interleaving of atomic actions
of the processes. We represent processes as synchronization skeletons, thereby ignoring
any details that are irrelevant to the problem of synchronizing the processes. For exam-
ple, a process may have a state where it executes some critical code. In synchronization
problems, we are then not interested in the actual code that is being executed, but more
in the questions whether it is allowed, depending on the state of other processes, to enter
the critical section, whether the process is executing the critical section, or whether it is
not.

Formally, a synchronization skeleton is a finite state diagram consisting of uniquely
labeled states, transitions, and guarded commands on the transitions. A guarded com-
mand is of the form B → A, where the guard B is a predicate over states or shared
variables and A is the command to be executed. Usually, states are subscripted by the
index of the process that is in that particular state, e.g. c1 indicates that process 1 is in
the critical section. For example, the following skeleton

c1t1
¬c2 ∧ x = 1 → x := 2

may indicate that process 1 can enter the state c1 from state t1 if process 2 is currently
not in state c2 and x = 1 for the shared variable x; upon entering the state it executes
the command by setting x to 2.

The global computation of the concurrent program can then be seen as a flowgraph
system [8], where each state (s1, . . . , sk, x1, . . . , xm) encodes the states si its consti-
tuting processes are currently in, as well as the value xj of the m shared variables.
For a state (s1, . . . , si, . . . , sk, x1, . . . , xm), a possible next state in the computation
of the program is (s1, . . . , s

′
i, . . . , sk, x′

1, . . . , x
′
m) if the i-th process has a transition

si → s′i labeled by B → A such that B is true for (s1, . . . , si, . . . , sk, x1, . . . , xm) and
x′

1, . . . , x
′
m represent the values of the shared variables after executing A. Intuitively, a

computation step consists of nondeterministically selecting an enabled process (one for
which the guard B is true4), effectively simulating parallelism. A computation of the
program is an infinite path in this flowgraph system.

CTL is used to specify the behavior of the concurrent program, i.e. its flowgraph
system, as well as part of the behavior of the processes of the program. Synthesis is
the task, given a CTL specification, to construct the synchronization skeletons of the
processes, and in particular the guarded commands, such that the flowgraph system
constructed from these processes satisfies the specification.

4 We assume, as in [8], nonterminating processes such that there is always an enabled process.

Synthesis from Temporal Specifications 289

We can distinguish 3 phases in the synthesis method: (1) provide the CTL specifi-
cation, (2) generate a model if the specification is satisfiable, i.e. the flowgraph system,
and (3) define the synchronization skeletons from the flowgraph system. In the sequel,
we use (preferred) ASP for the second phase of the synthesis method, for more details
on the other phases, we refer the reader to, e.g., [8].

We extend the CTL semantics of Section 3 to better suit the concurrent program-
ming paradigm sketched above. As in [8], we define temporal structures as tuples
K = (S, R1, . . . , Rk, L) for programs consisting of k processes. The definition of
satisfaction for such a structure K is as before with R = R1 ∪ . . . ∪ Rk. We introduce
the temporal operator Xi, 1 ≤ i ≤ k, with K, s |= EXip iff there exists a (s, t) ∈ Ri

such that K, t |= p, while K, s |= AXip iff K, s |= ¬EXi¬p. Intuitively, K, s |= EXip if
there is a transition for process i to a state where p holds. The formula EXp is equivalent
with EX1p ∨ . . . ∨ EXkp.

Satisfiability checking of such CTL formulas can be reduced to ASP satisfiability
checking of predicates w.r.t. a program Gn

k ∪ Dn
p,k where Gn

k is the program Gn from
Section 3 with (g2) replaced by k sets of rules (gi

2), 1 ≤ i ≤ k,

nexti(S : state,N : state) ← ¬nexti(S : state,N : state) ← (gi
2)

and rules next(S ,N) ← nexti(S ,N) (g5) added.
The rules (gi

2) enable the introduction of transitions for individual processes; (g5)
defines the union R = R1 ∪ . . . ∪ Rk. The closure of a formula p is modified such that
if EXiq ∈ clos(p), then q ∈ clos(p), and if EXq ∈ clos(p), then {EX1q, . . . , EXkq} ⊆
clos(p). We then obtain the defining part Dn

p,k by replacing (d6) with k rules (di
6)

[EXiq](S) ← nexti(S ,N), [q](N) (di
6)

Theorem 5. Let p be a CTL formula. p is n-satisfiable iff [p] is satisfiable w.r.t. Gn
k ∪

Dn
p,k.

If a CTL formula p is n-satisfiable, we will use the term flowgraph system for both a
model of p and the corresponding answer set obtained with Theorem 5.

Example 5. Consider 2 synchronization skeletons P1 and P2, each modeling the 3
states it can assume: the process can be in the non-critical section of the code (ncsi ,
i ∈ {1, 2}), it can try to access a critical section of code (tryi), and it can execute the
critical section of code (csi).

In the mutual exclusion problem, one searches for the guarded commands of pro-
cesses P1 and P2 such that they cannot both execute the critical section of the code at
the same time. There are many CTL specifications around that model the behavior of
the concurrent program executing both processes in parallel, see e.g. [7,4,1,15,18]. We
repeat the specification of [8]:

1. Initially, both processes are in their non-critical section: ncs1 ∧ ncs2 .
2. Both processes cannot be in the critical section at the same time (mutual exclusion):

AG¬(cs1 ∧ cs2).
3. If a process tries to access its critical section it must always eventually succeed in

doing so (absence of starvation): AG(tryi ⇒ AFcsi) .

290 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

4. Each process is always in exactly one section: AG(ncsi ∨ tryi ∨ csi), AG(ncsi ⇒
(¬tryi ∧ ¬csi)), AG(tryi ⇒ (¬ncsi ∧ ¬csi)), AG(csi ⇒ (¬ncsi ∧ ¬tryi)).

5. If a process is in the non-critical section, it will try to access the critical section
in the next step (and it will do nothing else): AG(ncsi ⇒ (AXitryi ∧ EXitryi)).
Note that EXitryi is necessary to ensure that there is a next state where tryi holds,
AXitryi alone would not be sufficient.

6. If a process is trying to access the critical section, then, if it does a move, it will do
so into the critical section: AG(tryi ⇒ AXicsi).

7. If a process is in the critical section, it will move to the non-critical section (and it
will do nothing else): AG(csi ⇒ (AXincsi ∧ EXincsi)).

8. If process Pj makes a move, process Pi will do nothing, i.e. they are asynchronous
processes: AG(ncsi ⇒ AXjncsi), AG(tryi ⇒ AXjtryi), AG(csi ⇒ AXjcsi).

9. Some process can always move, i.e. the program is nonterminating: AGEXtrue.

Let p be the conjunction of the above CTL formulas, rewritten such that it only contains
the temporal operators EXi, EU, and EG. The program G9

2 ∪ D9
p,2, i.e. with 9 states

and 2 processes, has then, among others, the two answer sets, or flowgraph systems,
in Figure 2 and Figure 3. We listed only propositions in the states, but s4 and s5 are
different, since they satisfy different temporal formulas.

Figure 2 is the flowgraph system (call it Mg) usually found in literature as a solution to
the mutual exclusion problem, but the structure Mb in Figure 3 also satisfies the mutual
exclusion specification. Mb only differs from Mg in the missing of transitions (s1, s3)

s3

ncs1 ncs2
s0

ncs1 try2

s1

try1 ncs2
s2

ncs1 cs2 try1 try2

s4

try1 cs2
s7

try1 try2

s5

cs1 ncs2
s6

cs1 try2

s8

Fig. 2. Maximally Parallel Flowgraph System for Mutual Exclusion

s3

ncs1 ncs2
s0

ncs1 try2

s1

try1 ncs2
s2

ncs1 cs2 try1 try2

s4

try1 cs2
s7

try1 try2

s5

cs1 ncs2
s6

cs1 try2

s8

Fig. 3. Flowgraph System for Mutual Exclusion

Synthesis from Temporal Specifications 291

and (s2, s6). It is then natural to wonder why Mg is preferred over Mb as a flowgraph
system for the mutual exclusion problem.

The answer is fairly simple. Observing model Mb, one sees that when the system is
in the state s1 its only option is to execute a transition of P1. This in contrast with Mg

where the system can choose between P1 and P2. Thus Mg is more nondeterministic,
and, by our model of concurrency, allows for more parallelization. That Mb is less
parallelized has as a side-effect that P2 can only enter the critical section if P1 also tries
to enter its critical section, thus, if P1 decides to do nothing, P2 is blocked as well. The
same scenario cannot occur in Mg since P2 can go, independently from P1, from trying
to enter to actually entering the critical section.

This drive for more parallelization is implicit in most CTL synthesis methods. E.g.,
when constructing a model from a tableau, rule [2.2] in [8] says

Choose C′ to be some Cj ∈ Blocks(Di) such that FRAG[Ci] is of minimal
size. (Choose one with a maximal number of successors among those Cj with
fragments of minimal size, and break ties by choosing the one with lowest index
in a predefined ordering.)

Without going into detail, FRAG[Ci] is a part of the tableau that fulfills eventuali-
ties appearing in a node Ci. The relevant part of rule [2.2] for parallelization, as [8]
indicates, is choosing nodes of maximal outdegree, since this increases the degree of
nondeterministic choice in the model. Instead of leaving this for the model constructing
algorithm to take care of, we make this maximal parallelization property declaratively
explicit.

Definition 1 (Maximal Parallelization Property). Let p be a CTL formula. A model
M1 = (S, R1, . . . , Rk, L) of p is more parallel than a model M2 = (S, T1, . . . , Tk, L)
of p, denoted M1 � M2, if ∀1 ≤ i ≤ k · Ti ⊆ Ri. As usual, we have M1 ≺ M2 if
M1 � M2 and not M2 � M1.

A model M1 = (S, R1, . . . , Rk, L) of p is maximally parallel if it is minimal
w.r.t. ≺. A CTL formula p is maximally (n-)satisfiable iff p is (n-)satisfiable by a maxi-
mally parallel model.

It is clear that � is a partial order with ≺ its strict version. Intuitively, a model M1 is
more parallel than M2 if they have the same states with the same labeling of the states,
but, for each process, the set of transitions of M2 is a subset of the set of transitions
of M1.

Example 6. We have that Mb is indeed not maximally parallel since Mg ≺ Mb. Model
Mg on the other hand is maximally parallel. Every state in a model of the CTL spec-
ification for mutual exclusion has a maximum of 2 outgoing transitions: process Pi,
i ∈ {1, 2}, in a given state has only one possibility, i.e. from ncsi to tryi , from tryi

to csi , and from csi to ncsi . Thus the only candidates in Mg for the inclusion of more
transitions are s4, s7, s5, and s8.

For s4 the only possible addition is a transition to s8. However, this violates the
absence of starvation property, since we then have an infinite path (s1, s4, s8, s1, . . .)
without getting into the critical section for process 2. The transitions going out of s7
can only be extended by a transition to a state [cs1 cs2], violating the mutual exclusion
problem. s5 and s8 can be treated similarly.

292 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

If a CTL formula is satisfiable, it is always maximally satisfiable.

Theorem 6. Let p be a CTL formula. p is maximally satisfiable iff p is satisfiable.

As was the case for normal satisfiability, maximal satisfiability is essentially equivalent
to maximal n-satisfiability. The proof is similar to the proof from Theorem 6.

Theorem 7. Let p be a CTL formula. p is maximally satisfiable iff p is maximally n-
satisfiable for an n exponential in the size of p.

Preferred ASP is well-suited for the expression of such a maximal parallelization prop-
erty. To obtain maximally parallel models, we define the order < on Gn

k ∪ Dn
p,k such

that nexti(S : state, N : state) < ¬nextj(S : state, N : state) for 1 ≤ i, j ≤ k.
Intuitively, the program 〈Gn

k ∪ Dn
p,k, <〉 attempts to introduce as many transitions as

possible with the most preferred nexti(S : state,N : state) ← . It only allows defeat
of such preferred rules with the less preferred ¬nexti(S : state,N : state) ← if the
CTL formula would otherwise be unsatisfiable. Theorem 7 ensures that we can restrict
ourselves to maximal n-satisfiability.

Theorem 8. Let p be a CTL formula. p is maximally n-satisfiable iff p is preferred
satisfiable w.r.t. 〈Gn

k ∪ Dn
p,k, <〉.

Example 7. For the ordered program 〈G9
2 ∪ D9

p,2, <〉 with G9
2 ∪ D9

p,2 as in Example 5
and < defined as in Theorem 8, we obtain the preferred answer set Mg from Figure 2.

For completeness, we briefly describe how [8] obtains synchronization skeletons from
the flowgraph system. One first introduces shared variables for every set of propositions
that appears more than once as a label of a state, and then one gives a different value to
shared variables that represent different states (with the same label), e.g. the label of s4
in Mg from Example 5 is updated with TURN = 1 and s5 with TURN = 2 .

Looking at the flowgraph system in Figure 2, one sees that the state transitions for
P1 are ncs1 → try1 → cs1 → ncs1 → . . . The guards for those transitions are de-
duced from the flowgraph system: P1 goes from try1 to cs1 in the flowgraph system for
global transitions [try1 ncs2] → [cs1 ncs2] or [try1 try2 TURN = 1] → [cs1 try2],
resulting in a guard ncs2 ∨ (try2 ∧ TURN = 1) for the transition try1 → cs1 in the
synchronization skeleton for P1 (with empty command). The complete synchronization
skeleton for P1 is shown in Figure 4.

try1

try2 → TURN := 2 ncs2 ∨ (try2 ∧ TURN = 1) →

ncs2 ∨ cs2 →
ncs2 ∨ try2 →

cs1ncs1

Fig. 4. Synchronization Skeleton for Process P1

Synthesis from Temporal Specifications 293

5 Conclusions and Directions for Further Research

We reduced CTL reasoning to extended ASP, investigated the complexity, and indi-
cated where and how preferred ASP can be a useful aid in the synthesis of concurrent
programs from a CTL specification.

Noting that both LTL [13] and CTL can be caught within an ASP framework, it
is interesting to investigate whether reasoning with the more general temporal logic
CTL∗ can be reduced to ASP. Another promising application of preferred ASP lies in
the debugging of a proposed synthesis for a specification: one can minimally repair the
synthesis by defeating faulty state transitions.

References

1. P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs for an Atomic Read/Write
Model of Computation. ACM Trans. Program. Lang. Syst., 23(2):187–242, 2001.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2003.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-state Con-
current Systems using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst.,
8(2):244–263, 1986.

5. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of
Logic Programming. ACM Comput. Surv., 33(3):374–425, 2001.

6. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under Incomplete Knowl-
edge. In Proc. of CL 2000, volume 1861 of LNCS, pages 807–821. Springer, 2000.

7. E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, pages 995–1072. Elsevier Science Publishers B.V., 1990.

8. E. A. Emerson and E. M. Clarke. Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. Sciene of Computer Programming, 2(3):241–266, 1982.

9. E. A. Emerson and Joseph Y. Halpern. Decision Procedures and Expressiveness in the Tem-
poral Logic of Branching Time. In Proc. of the fourteenth annual ACM symposium on Theory
of Computing, pages 169–180. ACM Press, 1982.

10. W. Faber, N. Leone, and G. Pfeifer. Pushing goal derivation in DLP computations. In
Logic Programming and Non-Monotonic Reasoning, volume 1730 of LNAI, pages 177–191.
Springer Verslag, 1999.

11. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Proc.
of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.

12. K. Heljanko and I. Niemelä. Answer Set Programming and Bounded Model Checking. In
Proceedings of the AAAI Spring 2001 Symposium on Answer Set Programming, pages 90–96.
AAAI Press, 2001.

13. K. Heljanko and I. Niemelä. Bounded LTL Model Checking with Stable Models. In Proc. of
LPNMR 2001, volume 2173 of LNAI, pages 200–212. Springer, 2001.

14. I. Horrocks. The FaCT system. In Proc. of Tableaux’98, volume 1397 of LNAI, pages 307–
312. Springer, 1998.

15. M. R. A. Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2000.

16. O. Kupferman and M. Vardi. Synthesis with Incomplete Information. In Proc. of ICTL 1997,
1997.

294 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

17. V. Lifschitz. Answer Set Programming and Plan Generation. Journal of Artificial Intelli-
gence, 138(1-2):39–54, 2002.

18. Z. Manna and P. Wolper. Synthesis of Communicating Processes from Temporal Logic
Specifications. ACM Trans. Program. Lang. Syst., 6(1):68–93, 1984.

19. D. Van Nieuwenborgh, S. Heymans, and D. Vermeir. An Ordered Logic Program Solver. In
Proc. of PADL 2005, LNCS. Springer, 2005. To Appear.

20. A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal Logics. J.
ACM, 32(3):733–749, 1985.

21. T. C. Son and E. Pontelli. Planning with Preferences Using Logic Programming. In Proc. of
LPNMR 2004, volume 2923 of LNCS, pages 247–260. Springer, 2004.

22. T.C. Son, C. Baral, and S. A. McIlraith. Planning with Different Forms of Domain-
Dependent Control Knowledge - An Answer Set Programming Approach. In Proc. of LP-
NMR 2001, volume 2173 of LNCS, pages 226–239. Springer, 2001.

23. T. Syrjänen and I. Niemelä. The smodels system. In Proc. of LPNMR 2001, volume 2173 of
LNCS, pages 434–438. Springer, 2001.

24. Davy Van Nieuwenborgh and Dirk Vermeir. Preferred Answer Sets for Ordered Logic Pro-
grams. In Proc. of JELIA 2002, volume 2424 of LNAI, pages 432–443. Springer, 2002.

Model Checking Strategic Abilities of Agents
Under Incomplete Information

Wojciech Jamroga and Jürgen Dix

Department of Computer Science, Clausthal University of Technology,
Julius Albert Str. 4, D-38678 Clausthal, Germany

{wjamroga, dix}@in.tu-clausthal.de

Abstract. In this paper we introduce and study the complexity of model
checking alternating-time temporal logic (atl) with imperfect informa-
tion, using a fine-structured complexity measure. While atl model check-
ing with perfect information is linear in the size of the model when the
number of agents is considered fixed, this is no longer true when the
number of agents is considered parameters of the problem (fine struc-
ture).

Combining it with results from our previous papers, we get the sur-
prising result that checking strategic abilities of agents under both per-
fect and imperfect information belong to the same complexity class: both
problems are ΣP

2 -complete.

Keywords: Computational complexity, multi-agent systems, temporal
logic, strategic ability, games with incomplete information.

1 Introduction

The logic of atl [2,3,4] was originally invented to capture properties of open com-
puter systems (such as computer networks), where different components can act
autonomously, and computations in such systems are effected by their combined
actions. Alternatively, atl can be seen as a logic for systems involving multiple
agents, that allows one to reason about what agents can achieve in game-like sce-
narios. atl can be understood as a generalisation of the well-known branching
time temporal logic ctl [10,9], in which path quantifiers E (“there is a path”)
and A (“for every path”) are replaced by cooperation modalities 〈〈A〉〉 that express
strategic abilities of agents and their teams.

In atl, model checking is linear in the size of the models and formulae (i.e.
in m, l, where m is the number of transitions in the model and l is the length
of the formula). This seems to be a very good property, but unfortunately it
guarantees less than one could expect. While it is well-known that the number
of states in a model can be exponential in the size of a higher-level description of
the system, it also turns out that the size of an atl model is usually exponential
in the number of agents, even when no higher level description is considered.

In previous work [14], we have shown that this problem is ΣP
2 -complete for

the atl semantics based on concurrent game structures, and NP-complete for

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 295–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

296 W. Jamroga and J. Dix

alternating transition systems. In this paper we consider atl with imperfect (or
incomplete) information and extend our results. Since no satisfying semantics
based on alternating transition systems has been proposed so far for strategic
abilities under incomplete information, we present our results for an extension
of concurrent game structures only.

We show that (1) model checking an atl formula with incomplete informa-
tion is NP-complete in the number of transitions and the length of the formula
(i.e. m, l), (2) model checking atl with incomplete information is ΣP

2 -complete
in n, d, k, l (k being the number of agents, n number of states, and d maximal
number of available decisions per agent per state).

The paper is organised as follows. In Section 2 we introduce atl and its
semantics, based on concurrent game structures. Several variants of atl are
considered and the notions of perfect and imperfect information in these sys-
tems are precisely defined. Section 3 contains our main results: Theorems 1, 2
and Propositions 3, 4. They show, rather surprisingly, that there is no major dif-
ference in the complexity between games of perfect and imperfect information.
We conclude with Section 4.

2 Strategic Ability for Perfect and Imperfect Information

atl [2,3,4] is a modal logic that combines the approach of temporal logic (es-
pecially the branching-time logic ctl) with elements of game theory. atl intro-
duces so called cooperation modalities 〈〈A〉〉, parameterised with a set of agents A.
Formula 〈〈A〉〉ϕ expresses the fact that agents A can play collectively to enforce
temporal property ϕ. atl formulae include temporal operators: “ �” (“in the
next state”), � (“always from now on”) and U (“until”). Additional operator �

(“sometime”) can be defined as �ϕ ≡ � Uϕ. Like in ctl, every occurrence of a
temporal operator is preceded by exactly one cooperation modality. The broader
language of atl*, in which no such restriction is imposed, is not discussed in
detail here.

Formally, the recursive definition of atl formulae is:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ

A number of different semantics and model classes have been defined for
atl, most of them equivalent (cf. [11,12]). Among these, concurrent game struc-
tures [4] are probably the most natural and easiest to come up with when mod-
elling concrete problem domains. Moreover, they are the easiest to extend to
the incomplete information case, because actions have global identity in them
(cf. [13]).

We begin with a short presentation of the atl semantics based on concur-
rent game structures (Section 2.1). Then we discuss, in Section 2.2, extending
the scope of atl with the possibility that some agents have incomplete informa-
tion about the current state of the world. The research on this subject is far from
complete, yet a number of atl extensions have already been proposed to cope
with such systems: from the logics of atel [19,20] and “atl with incomplete

Model Checking Strategic Abilities 297

information” [4] to more sophisticated approaches like atol and atel-r* [15],
atlir and atliR [18], and etsl [21]. Among these, atlir seems to stand out
for its simplicity and conceptual clarity; also (unlike “atl with incomplete in-
formation”, atel-r* and atliR), its model checking procedure is decidable. We
believe that atlir – while probably not the definitive atl extension for games
incomplete information (atol, for example, is strictly more expressive with the
same model checking complexity) – includes constructs that are indispensable
when addressing such games. Thus, we treat atlir as a kind of “core” atl-
based language for strategic ability under incomplete information, and present
its syntax and semantics in Section 2.3.

2.1 Strategic Abilities with Concurrent Game Structures

Models for atl, concurrent game structures (cgs), can be defined as:

M = 〈Agt, Q, Π, π, Act, d, o〉

where Agt = {a1, ..., ak} is the set of all agents or processes (the “grand coalition”
of agents), Q is the set of states, Π the set of atomic propositions, π : Π →
P(Q) a valuation of propositions, and Act the set of (atomic) actions; function
d : Agt × Q → P(Act) defines actions available to an agent in a state, and
o is the (deterministic) transition function that assigns the outcome state q′ =
o(q, α1, . . . , αk) to state q and a tuple of actions 〈α1, . . . , αk〉 that can be executed
by Agt in q.1

A strategy of agent a is a conditional plan that specifies what a is going to
do in every possible situation (state).2 Thus, a strategy can be represented with
a function sa : Q → Act, such that sa(q) ∈ d(a, q). A collective strategy for a
group of agents A = {a1, ..., ar} is simply a tuple of strategies, one per each
agent from A. A path in M is an infinite sequence of states that can be effected
by subsequent transitions, and refers to a possible course of action (or a possible
computation) that may occur in the system. Function out(q, SA) returns the set
of all paths that may result from agents A executing strategy SA from state
q onward. Now, the semantics of atl formulae can be given via the following
clauses:

M, q |= p iff p ∈ π(q) (where p ∈ Π);
M, q |= ¬ϕ iff M, q �|= ϕ;

1 This variant of concurrent game structures differs slightly from the original cgs [4]:
we represent agents and their actions with symbolic labels, whereas they are repre-
sented with natural numbers in the original version.

2 This is an important deviation from the original semantics of atl [4], where strate-
gies assign agents’ choices to sequences of states, which suggests that agents can
recall the whole history of each game. In this paper, on the other hand, we employ
“memoryless” strategies. While the choice of one or another notion of strategy af-
fects the semantics of the full atl*, and most atl variants for games with incomplete
information, it should be pointed out that both types of strategies yield equivalent
semantics for “pure” atl [18].

298 W. Jamroga and J. Dix

M, q |= ϕ ∨ ψ iff M, q |= ϕ or M, q |= ψ;
M, q |= 〈〈A〉〉 �ϕ iff there is a collective strategy SA such that, for every path

λ ∈ out(SA, q), we have M, λ[1] |= ϕ;
M, q |= 〈〈A〉〉�ϕ iff there exists SA such that, for every λ ∈ out(SA, q), we have

M, λ[i] |= ϕ for every i ≥ 0;
M, q |= 〈〈A〉〉ϕUψ iff there exist SA and i ≥ 0 such that, for every λ∈ out(SA, q),

we have that M, λ[i] |= ψ, and M, λ[j] |= ϕ for every 0 ≤ j < i.

It is worth pointing out that the ctl path quantifiers A and E can be ex-
pressed in atl in the following way: Aϕ ≡ 〈〈∅〉〉ϕ and Eϕ ≡ 〈〈Agt〉〉ϕ.

2.2 Complexity of Model Checking

The model checking problem asks, given model M , state q in M , and formula
ϕ, whether ϕ holds in M, q. Model checking is usually computationally cheaper
than satisfiability checking or theorem proving, while often being at least as
useful because the designer, user etc. of a system can come up with a precise
model of the system behaviour (e.g. a graph with all the actions that may be
effected) in many cases. One of the main results concerning atl states that its
formulae can be model-checked in deterministic polynomial time.

Proposition 1. [3,4] The complexity of atl model checking problem is ptime-
complete, and can be done in time O(ml), where m is the number of transitions
in the model and l is the length of the formula.

While the result is certainly attractive, it should be kept in mind that it is
only relative to the size of models and formulae, and these can be very large for
most application domains. Indeed, it is well known that the number of states
in a model is usually exponential in the size of a higher-level description of the
problem domain (Boolean variables, for example) for both ctl and atl mod-
els. Moreover, for higher-lever system descriptions, the computation of 〈〈A〉〉 �

may require PSPACE or even NEXPTIME [7,8]. Finally, as we have already
pointed out in [14], the complexity of O(ml) includes a potential intractability
even on the model level if the number of agents is a parameter of the problem
rather than a fixed value.

Remark 1. [4,14] Let n be the number of states in an atl model M . The number
of transitions in M in not bounded by n2, because transitions are labelled with
tuples of agents’ choices. Let k denote the number of agents, and d the maximal
number of available decisions per agent per state. Then, m = O(ndk).

Proposition 2. [14]atl model checking is ΣP
2 -complete when n, k, d, l are pa-

rameters of the problem.

2.3 Strategic Abilities Under Incomplete Information

atl and its models include no way of addressing uncertainty that an agent or a
process may have about the current situation; moreover, strategies in atl can

Model Checking Strategic Abilities 299

define different choices for any pair of different states, hence implying that an
agent can recognise each (global) state of the system, and act accordingly.

Thus, it can be argued that the logic is tailored for describing and analyz-
ing systems in which every agent/process has complete and accurate knowledge
about the current state of the system. This is usually not the case for most
application domains, where a process can access its local state, but the state
of the environment and the (local) states of other agents can be observed only
partially.

One of the main challenges, when a logic of strategic abilities under incom-
plete information is addressed, is the question of how agents’ knowledge should
interfere with the agents’ available strategies. It has been argued that only uni-
form strategies should be considered; it was also argued that, when reasoning
about what an agent can enforce, it seems more appropriate to require the agent
to know his winning strategy rather than to know only that such a strategy
exists [15,18,16]. In this paper, we treat Schobbens’ atlir and atliR [18] as
“core”, minimal atl-based languages for strategic ability under incomplete in-
formation. The first logic enables reasoning about agents that have no implicit
memory of the game (i.e., they use “memoryless” strategies), while the lat-
ter is underlain by the assumption that agents can always memorise the whole
game. As agents seldom have unlimited memory, and logics of strategic ability
with incomplete information and perfect recall are believed to have undecidable
model checking, we use atlir as the logic of strategic ability under uncertainty
here.

atlir includes the same formulae as atl, only the cooperation modalities
are presented with a subscript: 〈〈A〉〉ir to indicate that they address agents with
imperfect information and imperfect recall. Models of atlir, imperfect informa-
tion concurrent game structures (icgs), can be presented as concurrent game
structures augmented with a family of indistinguishability relations ∼a⊆ Q×Q,
one per agent a ∈ Agt, that describe agents’ uncertainty: q ∼a q′ means that,
while the system is in state q, agent a considers it possible that it is in q′ now.
Every ∼a is assumed to be an equivalence. It is required that agents have the
same choices in indistinguishable states: if q ∼a q′ then d(a, q) = d(a, q′).

Again, a strategy of agent a is a conditional plan that specifies what a is going
to do in every possible state. A feasible (deterministic) plan must prescribe the
same choices for indistinguishable states. Therefore atlir restricts the strategies
that can be used by agents to the set of so called uniform strategies. A uniform
strategy of agent a is defined as a function sa : Q → Act, such that: (1) sa(q) ∈
d(a, q), and (2) if q ∼a q′ then sa(q) = sa(q′). A collective strategy for a group
of agents A = {a1, ..., ar} is a tuple of strategies SA = 〈sa1 , ..., sar〉, one per
each agent from A. A collective strategy is uniform if it contains only uniform
individual strategies. A path in M is an infinite sequence of states that can be
effected by subsequent transitions, and refers to a possible course of action (or a
possible computation) that may occur in the system. Again, function out(q, SA)
returns the set of all paths that may result from agents A executing strategy SA

from state q onward.

300 W. Jamroga and J. Dix

out(q, SA) = {λ = q0q1q2... | q0 = q and for every i = 1, 2, ... there exists a tuple
of agents’ decisions 〈αi−1

a1
, ..., αi−1

ak
〉 such that αi−1

a = SA(a)(qi−1) for each
a ∈ A, αi−1

a ∈ d(a, qi−1) for each a /∈ A, and o(qi−1, α
i−1
a1

, ..., αi−1
ak

) = qi}.

The semantics of cooperation modalities in atlir is defined as follows:

M, q |= 〈〈A〉〉ir
�ϕ iff there is a uniform collective strategy SA such that, for

every a ∈ A, q′ such that q ∼a q′, and path λ ∈ out(SA, q′), we have
M, λ[1] |= ϕ;

M, q |= 〈〈A〉〉ir�ϕ iff there exists a uniform SA such that, for every a ∈ A, q′

such that q ∼a q′, and λ ∈ out(SA, q′), we have M, λ[i] for every i ≥ 0;
M, q |= 〈〈A〉〉irϕUψ iff there exist a uniform strategy SA and a natural number

i ≥ 0 such that, for every a ∈ A, q′ such that q ∼a q′, and λ ∈ out(SA, q′),
we have that M, λ[i] |= ψ, and M, λ[j] |= ϕ for every 0 ≤ j < i.

That is, 〈〈A〉〉irϕ if A have a uniform strategy, such that for every path that
can possibly result from execution of the strategy according to at least one agent
from A, ϕ is the case.

Remark 2. The ctl universal path quantifier A can be expressed in atlir in the
following way: Aϕ ≡ 〈〈∅〉〉irϕ. The existential path quantifier E, however, is not
expressible when cooperation modalities quantify over uniform strategies only
(cf. [15], Remarks 4.3 and 4.4).

3 Model Checking Strategic Abilities Under Incomplete
Information

Schobbens [18] proved that atlir model checking is intractable: more precisely,
it is NP-hard and ∆P

2 -easy (i.e., can be solved through a polynomial number of
calls to an oracle for some problem in NP) when the size of the model is defined
in terms of the number of transitions. He also conjectured that the problem is
probably ∆P

2 -complete.
The NP-hardness follows from a reduction of the well known SAT prob-

lem: we construct an imperfect information concurrent epistemic game struc-
ture M with states representing clauses and literals inside those clauses. At
every “clause” state, the “clause” agent c chooses a transition to a state that
represents literal li (i.e., either formula pi or ¬pi) that appears in this clause.
“Literal” states for li are governed by agent ai who can declare the underlying
proposition pi true or false. If it makes li false then we end up in a “sink” state
qlose; if it makes li true then the system proceeds to the next “clause” state
(or, after the last clause, to state qwin). All the states referring to proposition
pi (or its negation) are indistinguishable for agent ai, and therefore ai has to
make the same decision in all of them. Now, checking satisfiability of the set of
clauses is equivalent to model checking of formula 〈〈a1, ..., ak〉〉�win in the initial
state of M , where win is a proposition that holds only in state qwin. Note that
M is turn-based, i.e. at every state there is a single agent that decides upon the

Model Checking Strategic Abilities 301

next transition. Moreover, it is easy to see that all the “literal” can be in fact
governed by the same “literal” agent a: then the SAT problem reduces to model
checking of formula 〈〈a〉〉ir�win. Thus, the model checking problem for atlir is
NP-hard even for turn-based models with at most two agents.

The ∆P
2 -easiness can be demonstrated through the following observation. If

the formula to be model checked is of the form 〈〈A〉〉irϕ (ϕ being �ψ, �ψ or
ψ1 Uψ2), where ϕ contains no more cooperation modalities, then it is sufficient
to guess a strategy for A, “trim” the model by removing all transitions that will
never be executed (according to this strategy), and model check ctl formula
Aϕ in the resulting model. Thus, model checking an arbitrary atlir formula can
be done by checking the subformulae iteratively, which requires a polynomial
number of calls to an NP algorithm.

Our contribution is twofold. First, we show that atlir model checking is in
fact NP-complete in the number of transitions in the model and the length of
the formula. Second, we prove that the problem is ΣP

2 -complete in the number
of states, agents and decisions (per agent and state) in the model, and the length
of the formula, and therefore sits in the same complexity class as model checking
strategic abilities in perfect information games with respect to these parameters.

3.1 NP-Completeness: Processing All Transitions

In [18], it was shown that an atlir formula can be model-checked via a poly-
nomial number of calls to an NP oracle: as the size of a (collective) strategy
is O(m), it is sufficient to process the formula recursively, “guessing” the right
strategy every time a cooperation modality is encountered. We use a simple trick
to show that it is enough to call the oracle only once: all the necessary strategies
can be guessed beforehand. Note that the size of the witness is still polynomial
in this case: more precisely, it is O(ml).

Theorem 1. Model checking atlir is NP-complete in the number of transitions
in the model and the length of the formula.

Proof. A nondeterministic algorithm that checks formula ϕ in model M is pre-
sented in Figure 1. Calls to mcheck

CTL
refer to any established ctl model-

checker (e.g. [6]). As for the time necessary to carry out the procedure: guessing
the strategies can be done in time O(ml), while “trimming” the model, checking
ctl formulae, and getting rid of the states in which agents may not know that
the strategy is successful, can all be done in time O(m) (recursively for subfor-
mulae). Thus, the algorithm terminates in time O(ml). Combining it with the
NP-hardness result [18], we obtain the theorem.

Note that the exhaustive deterministic algorithm that checks all possible
strategies runs in time O(ndknl) = O(n(m/n)nl).

3.2 The Complexity Refined

One of the problems with model checking formulae of atl is that the number of
transitions m in a model is not bounded by n2, and can be very large: more pre-
cisely, m = O(ndk) where n is the number of states, k the number of agents, and

302 W. Jamroga and J. Dix

function mcheck(M, ϕ);
Returns the set of states in M , in which formula ϕ holds.

� assign cooperation modalities in ϕ with subsequent numbers 1, ..., c;
// note that c ≤ l

// we will denote the coalition from the ith cooperation modality in ϕ as ϕ[i]

� for every i = 1, ..., c, assign the agents in ϕ[i] with numbers 1, ..., kc;
// note that kc ≤ k and kc ≤ l

// we will denote the jth agent in A with A[j]

� guess an array choice such that, for every i = 1, ..., c, q ∈ Q, and j = 1, ..., kc, we
have that choice[i][q][j] ∈ dϕ[i][j](q), and for every q′ ∈ Q such that q ∼ϕ[i][j] q′

we have choice[i][q][j] = choice[i][q′][j];
// at this point, the optimal choices for all coalitions in ϕ are guessed

// note that the size of choice is O(ml)

// by choice|i, we will denote the array choice with rows 1, ..., i − 1 removed

� return eval(M,ϕ, choice);

function eval(M,ϕ, choice);
Returns the states in which ϕ holds, given choices for all the coalitions from ϕ.

case ϕ ∈ Π : return {q | ϕ ∈ π(q)};
case ϕ = ¬ψ : return Q \ eval(M,ψ, choice);
case ϕ = ψ1 ∨ ψ2 : return eval(M, ψ1, choice) ∪ eval(M,ψ2, choice);
case ϕ = 〈〈A〉〉Tψ, where T = �or � :

Q1 := eval(M, ψ, choice|2); M ′ := trim(M, choice[1]);
add to M ′ new proposition p with π(p) = Q1;
Q2 := mcheckCT L(M ′, AT p);
return {q ∈ Q | ∀a, q′ . a ∈ A ∧ q ∼a q′ ⇒ q′ ∈ Q2};

case ϕ = 〈〈A〉〉ψ1 Uψ2 :
c′ := the number of cooperation modalities in ψ1;
Q1 := eval(M, ψ1, choice|2); Q2 := eval(M,ψ2, choice|c′+2);
M ′ := trim(M,choice[1]);
add to M ′ new propositions p1, p2 with π(p1) = Q1, π(p2) = Q2;
Q3 := mcheckCT L(M ′, Ap1 Up2);
return {q ∈ Q | ∀a, q′ . a ∈ A ∧ q ∼a q′ ⇒ q′ ∈ Q3};

end case

function trim(M, thischoice);
Returns the ctl model, which includes exactly the transitions that can occur
when A execute choices from thischoice.

� R := ∅; // the ctl transition relation (contains pairs of states)

� for each q ∈ Q and tuple resp of choices from Agt\A, such that resp[a] ∈ d(a, q):
− q′ := o(q, thischoice[q], resp);
− R := R ∪ {〈q, q′〉};

� return 〈Q,R, Π, π〉;

Fig. 1. Nondeterministic algorithm for model checking formulae of atlir

d the maximal number of decisions per agent per state. Thus, m is exponential
in k unless the model is turn-based or the number of agents is fixed. As it turns
out, atl model checking is ΣP

2 = NPNP-complete when n, k, d, l are consid-

Model Checking Strategic Abilities 303

ered parameters of the problem [14] (i.e. it can be solved by a nondeterministic
algorithm that makes calls to an NP oracle).

We observe that atlir model checking is also ΣP
2 -complete when the number

of agents is a parameter. To demonstrate that the problem is ΣP
2 -hard, we point

out that:

Lemma 1. atl is semantically subsumed by atlir.

Proof. In order to transform a concurrent game structure M to a corresponding
imperfect information concurrent game structure M ′, we fix the indistinguisha-
bility relations as the minimal total reflexive relations, (i.e. ∼a= {〈q, q〉 | q ∈ Q}
for all a ∈ Agt), which means that the agents can distinguish between any two
states. Let ϕ be a formula of atl, and ϕ′ the result of adding subscript ir in
every cooperation modality in ϕ. Then, M, q |= ϕ iff M ′, q |= ϕ′. Thus, atl

model checking can be seen as a special case of atlir model checking.

To show that the problem is ΣP
2 -easy, we present a refinement of the algo-

rithm from Section 3.1 in Figures 2 and 3.

Theorem 2. Function mcheck defines a nondeterministic Turing machine that
runs in time O(n2kl), making calls to an NP oracle. The oracle itself is a non-
deterministic Turing machine that runs in time O(n + k). The size of witnesses
is never more than O(nkl).

Proof. The main idea is as follows. First, we guess nondeterministically all
the strategies for the cooperation modalities that occur in formula ϕ (we do
it beforehand, as in Section 3.1). The strategies must be uniform, so setting
sa(q) fixes automatically sa(q′) for all q ∼a q′. Then we model check ϕ re-
cursively: for every subformula 〈〈A〉〉irψ, we assume the respective strategy and
check the formula 〈〈∅〉〉irψ. To do so, we take atl formula 〈〈A〉〉ψ as input,
and employ the standard atl model checking algorithm from [4] with one im-
portant modification: every time function Pre(A, Q1) is called, it assumes the
respective A’s choices, and checks whether q ∈ Pre(A, Q1) by calling an NP
oracle (“is there a response from the opposition in q that leads to a state out-
side Q1?”) and reversing its answer. Note that the latter amounts to checking
M ′, q |= 〈〈∅〉〉 �Q1, where M ′ is model M with A’s actions fixed accordingly,
and Q1 is a formula that holds exactly in states Q1. Finally, we get rid of the
states that have indistinguishable counterparts for which the assumed strat-
egy is not successful. Note that, in the middle part of the algorithm, we use
an adaptation of the atl model checking procedure, which iterates over states
of the system. This kind of iterative solution is possible because 〈〈∅〉〉irψ ≡
〈〈∅〉〉ψ (although, of course, the analogous property does not hold for 〈〈A〉〉ir in
general).

The detailed algorithm is shown in Figures 2 and 3. The procedure is very
similar to the atl model checking algorithm from [14] which was used to demon-
strate that the problem was ΣP

2 -easy for atl. Analogous complexity analysis
applies: first, the number of iterations within one single call of function eval, as

304 W. Jamroga and J. Dix

function mcheck(M, ϕ);
Returns the set of states in M , in which formula ϕ holds.

� assign cooperation modalities in ϕ with subsequent numbers 1, ..., c;
// note that c ≤ l

// we will denote the coalition from the ith cooperation modality in ϕ as ϕ[i]

� for every i = 1, ..., c, assign the agents in ϕ[i] with numbers 1, ..., kc;
// note that kc ≤ k and kc ≤ l

// we will denote the jth agent in A with A[j]

� guess an array choice such that, for every i = 1, ..., c, q ∈ Q, and j = 1, ..., kc, we
have that choice[i][q][j] ∈ dϕ[i][j](q), and for every q′ ∈ Q such that q ∼ϕ[i][j] q′

we have choice[i][q][j] = choice[i][q′][j];
// at this point, the optimal choices for all coalitions in ϕ are guessed

// note that the size of choice is O(nkl)

// by choice|i, we will denote the array choice with rows 1, ..., i − 1 removed

� return eval(M,ϕ, choice);

function eval(M,ϕ, choice);
Returns the states in which ϕ holds, given choices for all the coalitions from ϕ.

case ϕ ∈ Π : return {q | ϕ ∈ π(q)};
case ϕ = ¬ψ : return Q \ eval(M,ψ, choice);
case ϕ = ψ1 ∨ ψ2 : return eval(M, ψ1, choice) ∪ eval(M,ψ2, choice);
case ϕ = 〈〈A〉〉 �ψ :

Q1 := pre(A, eval(M,ψ, choice|2), M, choice[1]);
return {q ∈ Q | ∀a, q′ . a ∈ A ∧ q ∼a q′ ⇒ q′ ∈ Q1};

case ϕ = 〈〈A〉〉�ψ : Q1 := Q; Q2 := Q3 := eval(M,ψ, choice|2);
while Q1
⊆ Q2 do Q1 := Q1 ∩ Q2; Q2 := pre(A,Q1, M, choice[1]) ∩ Q3 od;
return {q ∈ Q | ∀a, q′ . a ∈ A ∧ q ∼a q′ ⇒ q′ ∈ Q1};

case ϕ = 〈〈A〉〉ψ1 Uψ2 : c′ := the number of cooperation modalities in ψ1;
Q1 := ∅; Q2 := eval(M,ψ1, choice|2); Q3 := eval(M, ψ2, choice|c′+2);
while Q3
⊆ Q1 do Q1 := Q1 ∪ Q3; Q3 := pre(A,Q1, M, choice[1]) ∩ Q2 od;
return {q ∈ Q | ∀a, q′ . a ∈ A ∧ q ∼a q′ ⇒ q′ ∈ Q1};

end case

function pre(A,Q1, M, thischoice);
Returns the set of states, for which the A’s choices from thischoice enforce that
the next state is in Q1, regardless of what agents from Agt \ A do.

� Q2 := ∅;
� for each q ∈ Q: if oracle(A, Q1, M, thischoice, q) = yes then Q2 := Q2 ∪ {q} fi;
� return Q2;

Fig. 2. The model checking algorithm refined (main part)

well as the number of calls to Pre, is O(n); next, function Pre runs in O(n)
steps, including calls to the oracle; removing the states for which a member of
the coalition can have any doubts can be done in time O(n2k); finally, eval is
called at most O(l) times. In consequence, we get a nondeterministic polynomial
algorithm that makes calls to an NP oracle.

Model Checking Strategic Abilities 305

function oracle(A,Q1, M, thischoice, q);
Returns yes if, and only if, the A’s choices from thischoice in q enforce that
the next state is in Q1, regardless of what agents from Agt \ A do.

� guess an array resp such that, for every a ∈ Agt \ A, we have resp[a] ∈ d(a, q);
// at this point, the most dangerous response from the opposition is guessed

// note that the size of resp is O(k)

� if o(q, thischoice[q], resp) ∈ Q1 then return yes else return no fi;

Fig. 3. The model checking algorithm refined: the oracle

This gives us the following

Corollary 1. Model checking atl formulae over cgs is ΣP
2 -complete.

The result has been somewhat surprising to us, since it turns out that a
finer grained analysis puts checking strategic abilities of agents under imperfect
information in the same complexity class as for perfect information games –
while the first case appears strictly harder than the latter when we approach
it from a more “distant” perspective (i.e. when the input parameters are less
detailed). Let us recall from [14] that the hardness of model checking atl is due
to simultaneous actions of agents, and can be demonstrated even for scenarios
that consist of a single step. It turns out that restricting agents’ strategies to
uniform strategies only does not increase model checking complexity enough to
shift it to a higher complexity class. Even the size of witnesses is the same in
both cases.

What is different then, that makes model checking of atlir harder than atl

in relation to the number of transitions?
Definitely not the number of transitions itself, since cgs can be seen as a

special case of icgs. Comparison of model checking complexity for turn-based
structures (i.e. structures in which at every state there is a single agent who
decides upon the next transition; this can be modelled by requiring that d(a, q)
is a singleton for all but one agent) can give us a hint in this respect. Note that, for
such structures, m = O(nd) and we can use the model checking algorithms from
Section 3.1 and from [4] to model-check formulae of atlir and atl, respectively.

Proposition 3. Model checking atlir over turn-based icgs is NP-complete,
while model checking atl over turn-based cgs can be done deterministically in
time O(ndl). Since d ≤ n for turn-based structures, the latter bound can be
replaced by O(n2l).

The result can be generalised to systems in which only a fixed (or bounded)
number of agents is acting in each state: we call such systems semi-turn-based
concurrent game structures. Note that systems with a fixed (or bounded) number
of agents are a special case of semi-turn-based cgs.

Proposition 4. Model checking atlir over semi-turn-based icgs is NP-
complete, while model checking atl over semi-turn-based cgs can be done de-
terministically in time O(n2l).

306 W. Jamroga and J. Dix

Moreover, the exhaustive model checking of atl formulae can be done in
time O(ndkl), while, for atlir formulae, it can be done in O(ndknl) steps.
This is due to the fact that 〈〈A〉〉�ϕ ≡ ϕ ∧ 〈〈A〉〉 �〈〈A〉〉�ϕ and 〈〈A〉〉ϕUψ ≡
ψ ∨ ϕ ∧ 〈〈A〉〉 �〈〈A〉〉ϕUϕ in atl, whereas analogous properties do not hold for
atlir. Thus, successful atl strategies can be computed incrementally, state by
state. Contrary to this, uniform strategies must be considered as a whole, which
requires much more backtracking if we check the possibilities exhaustively.

Nevertheless, we believe that the result, presented in this section, sets a glim-
mer of hope for agent logics that include incomplete information in their scope.
If atl formulae can be feasibly model-checked then agents with incomplete in-
formation are not that far away. And there already exist running model-checkers
for atl [5,1], based on Ordered Binary Decision Diagrams. Also, new model
checking techniques, based on the idea of Unbounded Model Checking, are under
development [17].

4 Conclusions

This paper contains two main results:

– model checking of atlir formulae is in NP and hence NP-complete (closing
a gap in previous work of Schobbens);

– model checking of atlir formulae is ΣP
2 -complete in the number of states,

agents and decisions (per agent and state) in the model, and the length of
the formula.

In other words, checking strategic ability under imperfect information falls
in the same complexity class as checking strategic ability for perfect information
agents, when a more refined analysis is conducted – which we consider somewhat
surprising. This sets a glimmer of hope for agent logics that include incomplete
information in their scope: if atl formulae can be feasibly model-checked (and
there already exist model-checkers for atl [5,1]), then agents with incomplete
information are not that far away.

Finally, we point out that the difference between the perfect and imperfect
information case lies in modularity of strategies with respect to the property
that the agents may want to enforce. For perfect information games, potential
successfulness of sub-strategies is more independent and they can be computed
(or guessed) incrementally, while imperfect information strategies refuse incre-
mental analysis.

The first author would like to thank Rafa�l Somla for the discussions about
model checking atl and its various extensions.

References

1. R. Alur, L. de Alfaro, R. Grossu, T.A. Henzinger, M. Kang, C.M. Kirsch, R. Ma-
jumdar, F.Y.C. Mang, and B.-Y. Wang. jMocha: A model-checking tool that ex-
ploits design structure. In Proceedings of ICSE, pages 835–836. IEEE Computer
Society Press, 2001.

Model Checking Strategic Abilities 307

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
In Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS), pages 100–109. IEEE Computer Society Press, 1997.

3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Lecture Notes in Computer Science, 1536:23–60, 1998.

4. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713, 2002.

5. R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran.
MOCHA user manual. In Proceedings of CAV’98, volume 1427 of Lecture Notes in
Computer Science, pages 521–525, 1998.

6. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

7. L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. The control of synchronous sys-
tems. In Proceedings of CONCUR 2000, volume 1877 of Lecture Notes in Computer
Science, pages 458–473, 2000.

8. L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. The control of synchronous sys-
tems, part II. In Proceedings of CONCUR 2001, volume 2154 of Lecture Notes in
Computer Science, pages 566–580, 2001.

9. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, pages 995–1072. Elsevier Science
Publishers, 1990.

10. E.A. Emerson and J.Y. Halpern. ”sometimes” and ”not never” revisited: On
branching versus linear time temporal logic. In Proceedings of the Annual ACM
Symposium on Principles of Programming Languages, pages 151–178, 1982.

11. V. Goranko. Coalition games and alternating temporal logics. In J. van Benthem,
editor, Proceedings of TARK VIII, pages 259–272. Morgan Kaufmann, 2001.

12. V. Goranko and W. Jamroga. Comparing semantics of logics for multi-agent sys-
tems. Synthese, 139(2):241–280, 2004.

13. W. Jamroga. Some remarks on alternating temporal epistemic logic.
In B. Dunin-Keplicz and R. Verbrugge, editors, Proceedings of FAMAS
2003, pages 133–140, 2003. Updated version. Available at http://
www.in.tu-clausthal.de/$^\sim$wjamroga/papers/atelremarks03FAMAS.pdf.

14. W. Jamroga and J. Dix. Do agents make model checking explode (computa-
tionally)? In Proceedings of CEEMAS 2005, Lecture Notes in Computer Science.
Springer Verlag, 2005. To appear.

15. W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta
Informaticae, 63(2–3):185–219, 2004.

16. G. Jonker. Feasible strategies in Alternating-time Temporal Epistemic Logic. Mas-
ter thesis, University of Utrecht, 2003.

17. M. Kacprzak and W. Penczek. Unbounded model checking for Alternating-time
Temporal Logic. In Proceedings of AAMAS-04, 2004.

18. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2), 2004.

19. W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic
goals. In C. Castelfranchi and W.L. Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-02), pages 1167–1174. ACM Press, New York, 2002.

http://
www.in.tu-clausthal.de/$^sim $wjamroga/papers/atelremarks03FAMAS.pdf

308 W. Jamroga and J. Dix

20. W. van der Hoek and M. Wooldridge. Cooperation, knowledge and time:
Alternating-time Temporal Epistemic Logic and its applications. Studia Logica,
75(1):125–157, 2003.

21. S. van Otterloo and G. Jonker. On Epistemic Temporal Strategic Logic. In Pro-
ceedings of LCMAS, pages 35–45, 2004.

Improved Algorithms for Polynomial-Time
Decay and Time-Decay with Additive Error

Tsvi Kopelowitz and Ely Porat

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
{kopelot, porately}@cs.biu.ac.il

Abstract. We consider the problem of maintaining polynomial and ex-
ponential decay aggregates of a data stream, where the weight of values
seen from the stream diminishes as time elapses. This type of aggre-
gation was first introduced by Cohen and Strauss in [4]. These types
of decay functions on streams are used in many applications in which
the relative value of streaming data decreases since the time the data
was seen. Some recent work and space efficient algorithms were devel-
oped for time-decaying aggregations, and in particular polynomial and
exponential decaying aggregations. All of the work done so far has main-
tained multiplicative approximations for the aggregates. In this paper we
present the first O(log N) space algorithm for the polynomial decay under
a multiplicative approximation, matching a lower bound. In addition, we
explore and develop algorithms and lower bounds for approximations al-
lowing an additive error in addition to the multiplicative error. We show
that in some cases, allowing an additive error can decrease the amount
of space required, while in other cases we cannot do any better than a
solution without additive error.

1 Introduction

In many recent applications the need to manage systems with high speed commu-
nication and massive data sets arises. In such applications it is more appropriate
to use the data stream model in which data arrives rapidly and needs to be
processed by an algorithm that lacks the needed space in order to store all of the
streaming data. The algorithm stores a synopsis or summary of the data using
space that is much less than the amount of data arriving from the stream. Us-
ing the synopsis the algorithm can answer queries regarding the data. However,
generally there is a tradeoff between the size of the synopsis and the precision
of the answers.

Consider the problem of maintaining the sum of all data seen by a stream.
This can be answered exactly using Θ (log S) bits, where S is the value of the
sum. Morris in [12] showed how to approximate the sum using O (log log S) bits.

However, in many applications the weight of data diminishes with time, and
therefore should weigh less towards the sum of a stream. In some applications
we might be interested in the sum over some recent time frame. We can use a

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 309–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 T. Kopelowitz and E. Porat

decay function, dependent on elapsed time, in order to determine the weight of
each item. A decayed sum is a weighted sum of the data in accordance to the
decay function.

1.1 Applications

We list some applications in which the decayed aggregation or averages (that
are essentially the same) are used. Many other applications that use the data
stream model can conceivably use the decayed sum scheme for their purpose.

– Detecting Fraud Transactions by Credit Cards. Credit card compa-
nies use recent behavior of costumers in order to detect whether a particular
transaction deviates considerably from a pattern of transaction history of a
given costumer [6].

– Patterns of AT&T Telecom Costumers. As mentioned in [5], AT&T
has an application in which they maintain statistics of approximately 100
million costumers. It is vital to balance the weight of information and avail-
able storage space in such an application.

– The Random Early Detection (RED) Protocol. Many routers on the
internet use the RED protocol for avoiding congestions and controlling paths
of data. In order to estimate the congestion, RED uses a weighted average
of previous queue lengths [10,7].

– Selecting Internet Gateways. In the internet there are many paths to
each destination. When selecting a path according to reliability a decayed
average of previous reliability measures can be used as an estimate.

1.2 Related and Previous Work

As mentioned by Cohen and Strauss in [4], one of the most intuitive and common
decay is the exponential decay that can be easily maintained in Θ (log N) space
(throughout this paper we assume that N is the amount of time elapsed) by the
formula C ← (1 − w)x+wC where x is the value of the new data and 0 < w < 1
determines the decay.

Datar et al in [6] considered sliding window decays where for a given W we
are interested in the sum of data seen in the last W time units. They showed an
algorithm and a matching lower bound of Θ

(
log2 N

)
bits needed for approximat-

ing sliding windows. A more detailed explanation of their techniques is in Sect. 3.
Gibbons and Tirthapura in [8] extended sliding windows for distributed streams.

Cohen and Strauss in [4] presented an O
(
log2 N

)
space algorithm for main-

taining general decay functions. This showed that sliding window decay is the
hardest decay function, in some sense. They also presented an O(log N log log N)
space algorithm for polynomial decay, and showed a lower bound of Ω(log N).

In addition, Cohen and Strauss in [4] argue that the exponential decay and
sliding window decay are insufficient for many applications in the sense that they

Improved Algorithms for Polynomial-Time Decay 311

both strongly disregard old data. One expects the weight of data to diminish with
time, however, for severe events we don’t want the value to diminish entirely.
We present an example from [4] that illustrates this.

We wish to measure the availability of network links using a time decay
function. Consider two links, L1 and L2. Assume that L1 fails for the duration
of five time units between time units 5 and 10, while L2 fails for the duration of
half a time unit, starting from time unit 34. In addition assume no more failures
occur in either of the links. As time progresses we expect L2 to be considered a
more reliable link as opposed to L1.

If we use sliding window decay, we might miss out on the failure of L1 (if
the window size is too small), and assume L1 is a more reliable link. If we use
exponential decay we notice that the ratio between the weight of L1’s failure
and the weight of L2’s failure remains fixed as time progresses. This means that
whatever was considered more reliable at time unit 35 (that can be either one
of the links) will be considered more reliable forever.

Ultimately, neither the sliding window decay nor the exponential decay can
provide us with a view in which we can guarantee that L1 will be considered more
reliable. However, polynomial decay has the property that as time progresses,
items seen in the same time vicinity are given approximately the same weight.
Using Polynomial decay we can obtain a view in which L1 will be considered
more reliable as time progresses. We also add that polynomial decay functions
enhance our ability to tune the rate of decay. This gives a strong motivation for
studying polynomial decay aggregates

1.3 Our Results

In this paper we present the following. We show the first O(log N) space al-
gorithm for polynomial decay. This matches the bound obtained by Cohen
and Strauss in [4]. We explore another model of approximation that allows
an additive error in addition to the multiplicative one. We show that in this
model, the amount of space necessary in the Exponential decay can be re-
duced due to the additional slackness we get from the additive error. Finally,
we show that generally, in Polynomial decay, the amount of space required can-
not be reduced (we prove a lower bound of Ω(log n) space), unless the values
of the stream are bounded by a constant, and the sum of the decay function
converges.

The paper is structured as follows. In Sect. 2 we provide the definitions for
the decay functions that we will use throughout the paper. In Sect. 3 we present
some known data structures used for approximating decay sums. In Sect. 4 we
present a new data structure that we use to achieve an O(log N) space algorithm
for a polynomial decay. In addition, we reprove in Sect. 4 the lower bound from [4]
due to a (very) slight error in the original proof, and in order to introduce it
for the lower bound in Sect. 5. In Sect. 5 we define the model that allows more
slackness of an additive error, and we analyze the exponential and polynomial
decays under the model presented including a lower bound for some cases of the
polynomial decay.

312 T. Kopelowitz and E. Porat

2 Preliminaries

We begin by formally defining the problems we will be solving in this paper.

2.1 Decay Functions

We represent the definitions given by Cohen and Strauss in [4] for the decay
functions we are interested in. Consider a stream of data where f(t) ≥ 0 is the
item value of the stream obtained at time t. For sake of simplicity we assume
our stream only receives values at discrete times, and therefore, t is integral.
We define a decay function g(x) ≥ 0 defined for x ≥ 0 to be a non-increasing
function. At time T the weight of the item that arrived at time t ≤ T is g(T − t)
and the decayed value is f(t)g(T − t). We are interested in obtaining the decayed
sum of f(t) under the decay function g(x) that is defined as follows:

Problem 1. Decayed Sum Problem (DSP). Given a stream f(t) and a decay
function g(T − t) estimate at any time T the decayed sum that is given by:

Vg(T) =
∑

t≤T

f(t)g(T − t). (1)

When f(t) has binary values, we refer to the DSP as the Decayed Count Problem
(DCP).

We will be interested in two types of decays. The first one is known as
the Exponential Decay (ExpD) where for a given parameter λ > 0 we have
g(t) = 1/λt. The other type of decay is the Polynomial Decay (PolyD) where for
a given parameter α > 0 we have g(t) = 1/tα. Cohen and Strauss in [4] argue
that often PolyD is a better choice than ExpD because in many applications the
decay should not keep a constant ratio between two different decay values as
time progresses (as was shown in the example in the introduction) .

2.2 Sliding Windows

Sliding windows are also a family of decay functions introduced by Datar et al
in [6]. For a window of size W we have the decay function g(x) such that for
x ≤ W , g(x) = 1, and zero otherwise. All of the data in the recent time frame
of size W have equal weight, while all of the data not in this time frame has no
weight at all. Datar et al in [6] show an algorithm that achieves an approximation
of (1 + ε) in O(log2 W) space. We refer to the decayed sum of a sliding window
of size W as VSLIWINW .

3 Exponential Histograms for Polynomial Decay

We now present the data structures we will use in this paper. We first review
Exponential Histograms that were originally introduced by Datar et al in [6],
and then continue on with a review on Weight-Based Merging Histograms, that
were introduced in [4].

Improved Algorithms for Polynomial-Time Decay 313

3.1 The Exponential Histogram

The Exponential Histogram (EH) was originally introduced in [6] in order to
approximate sliding windows. For a given constant k we define the EH for a
binary stream f(t) as a collection of buckets that are formed as follows. When
the first non-zero value arrives we open a bucket and insert that value into it.
Each bucket is immediately sealed. We continue creating buckets in the same
manner until we receive the (k+1)’th non-zero value. At this point we merge the
first two buckets arrived into one bucket of size two, and create a new bucket for
the newly arrived non-zero value. We continue in this manner so that whenever
we have k +1 buckets of size 1 we merge the earliest two buckets of size 1 to one
bucket of size 2. Recursively, whenever we have k+1 buckets of size 2i we merge
the two least recent ones to one bucket of size 2i+1. This gives a total of O(log N)
buckets. For each bucket we maintain a timestamp that is the time elapsed since
the latest value in the bucket arrived. The timestamp requires O(log N) space
per bucket. We also maintain the size (the number of ones) of each bucket using
one bit per bucket - because for each bucket we just need to know whether it
is the same size as the previous one, or double the size. This gives a total of
O(log2 N) space.

When approximating sliding window decay, we sum up the counts for all of
the buckets with timestamp inside the window. In case there is a bucket with
some values inside the window and some outside, we add only half the count for
that bucket. The absolute error in the estimate for the sliding window decay is
half the size of the last bucket. As proven by Datar et al in [6], the approximation
for the sliding window decay using the EH is (1 + 1/k), so letting k = 1/ε we
can get our desired approximation.

3.2 Weight-Based Merging Histogram

The Weight-Based Merging Histogram (WBMH) was originally introduced by
Cohen and Strauss in [4]. Like the EH, the WBMH also aggregates values into
buckets. However, the boundaries of the buckets are only dependent on the
decay function at hand, and not on a particular stream. This means that the
timestamps do not need to be stored. They are set by the decay function that
is assumed to be known.

The WBMH utilizes the fact that if a decay function has the property that
the ratio g(x)/g(x + ∆) is non-increasing with x for any time frame ∆ then
the ratio of two items remains fixed, or approaches one as time advances. The
meaning of such a property is that as time progresses, items in larger vicini-
ties have the same value up to a multiplicative factor, so we can group those
values together. For convenience we let b0 = 1. We let b1 be the maximum
value such that (1 + ε′)g(b1 − 1) ≥ g(1). In the same manner, let bi be the
maximum value such that (1 + ε′)g(bi − 1) ≥ g(bi−1). The values of bi are de-
pendent on the decay function, and therefore (as we previously mentioned) they
do not need to be stored. The i’th bucket starts at time bi−1 and ends at time
bi − 1.

314 T. Kopelowitz and E. Porat

One family of decay functions with the above property is PolyD in which we
have s = O(log N) different bi’s for each function. For each bucket we hold an
approximate counter of size O(log log N) (as described in [12], and mentioned
in the introduction) that counts the number of bits in that bucket. Cohen and
Strauss in [4] proved that the WBMH gives an approximation for DCP of PolyD
using O(log N log log N) space.

4 Polynomial Decay

In this section we present a new algorithm for maintaining PolyD aggregation us-
ing O(log N) space. In addition we reprove the matching lower bound of Ω(log N)
space (this is done due to a very minor error in the original proof, and for the
lower bound in Sect. 5 that utilizes the same idea).

4.1 DCP Under PolyD

Cohen and Strauss in [4] used the EH in order to get an approximation for gen-
eral decay functions using O(log2 N) space. In addition, [4] used another type
of histograms – the Weight Based Merging Histograms (WBMH) - in order to
maintain PolyD in O(log N log log N) space. We combine both of those method-
ologies, and alter the EH in order to achieve an upper bound of O(log N) space.
This new data structure will be referred to as the Altered Exponential Histogram
(AEH).

We start of with the following equation for general decay functions taken
from [4]:

Vg(T) = g(N)VSLIWINN +
N−1∑

i=1

(g(N − i) − g(N + 1 − i))VSLIWINN−i . (2)

What this means is that maintaining exact sliding windows allows maintaining
exact decayed counts for general decays. However, when allowing an approxima-
tion we notice that some decayed functions do not need to be able to calculate
all of the T different sliding windows. Instead of holding an exact sliding window
for each t < T , we can hold sliding windows for all of the times bi (defined in
the previous section). This gives us the following approximation for Vg(T):

V̄g(T) = g(N)VSLIWINN +
s∑

i=2

(g(N − bi) − g(N − bi−1))VSLIWINN−bi
. (3)

Using equation (3) and the same arguments as in [4] for WBMH we get a
(1 ± ε′) approximation per sliding window - for a total of (1 ± ε′) approximation
for functions that have the non-increasing ratio property, such as PolyD.

The problem with this solution is that maintaining the sliding windows with
EHs requires O(log2 N) space. So, we will now alter the EH in order to save
space in approximating each of our O(log N) sliding windows. For each of the

Improved Algorithms for Polynomial-Time Decay 315

O(log N) buckets in the EH that are formed as in [6], we round the timestamp
down to the nearest bi. When approximating a sliding window that ends at some
bi, we can sum the sizes of all buckets with a timestamp smaller than bi. However,
for the last bucket we count only half of the size. Using the same arguments as
in [6] this gives us a (1 ± ε′′) approximation per sliding window. Combining our
two approximations, we get a (1 ± ε′)(1 ± ε′′) approximation, so all we need is
that ε ≥ ε′ + ε′′ + ε′ε′′, and we can set ε′ = ε′′ = ε/3 in order to get our desired
approximation. In order to save space, instead of maintaining the timestamp for
each bucket, we can maintain the index of its bi in O(log log N) bits per bucket.
This would take O(log N log log N) space. We can further decrease the space if
for each bucket we maintain the difference in indexes between its timestamp and
the timestamp from the preceding bucket. We can then find the index of the
timestamp of a given bucket by summing the differences from the first bucket,
till the bucket we are interested in. The total space needed for this is O(log N)
(because we have that the sum of the offsets in O(log N), and each offset oj

needs O(log oj) bits, so the sum of bits needed to store all of the offsets is∑
log oj ≤

∑
oj = O(log N)). There are some details regarding how we update

the timestamps or offsets that we have skipped. We leave this for the journal
version. Finally we have:

Theorem 1. There exists an algorithm that can estimate DCP within a multi-
plicative factor using O(log N) space.

4.2 DSP Under PolyD

When dealing with general streams (we assume general streams are still re-
stricted to integral values) a reasonable assumption is that for some constant β
the values given by the stream are bounded by O(Nβ). In such a case, we can
use the same method for DCP in order to maintain the decayed aggregation in
the following manner.

Assume that at time t we receive the value m = f(t). We can treat the
value m as m bits of value one, all arriving at the same time from the stream.
Therefore, it is as if we inserted m bits to the AEH at the same time. We can
use the method from the previous section that will give the same approximation,
and the space required is bounded by O(log Nβ+1) = O(log N).

However, when using this method it takes O(m) time to insert the value m
to our AEH. For many applications this is far too much time. For example, a
router on the internet must be able to process data quickly before the next piece
of data arrives, so lowering the amount of time it takes to insert a value m is
crucial. One possible solution would be to insert the value of m in O(log m) time
by calculating the presentation of m in the appropriate base, and immediately
create the appropriate buckets (this will give us O(log m) buckets, which we
can then insert one by one taking O(log m) time). However we would like to do
better than O(log m) as well, as we do not want the time to be dependant on
the possible values arriving in the data stream, and rather, spend a constant
amount of time no matter what is the value arrived. The rest of this subsection

316 T. Kopelowitz and E. Porat

shows how we can solve this problem in order to achieve O(1) time for insertion
of a value.

In addition to our AEH, we add two WBMHs, referred to as W1 and W2, each
for a time frame of size log N . In each one of the WBMHs there are O(log log N)
buckets. This is because the length of the stream is k = logN , so we need
log k = log log N buckets. Each bucket has a counter of size O((log log N)2).
this is because the total sum of a stream of length k is bounded by kNβ =
Nβ log N , so each bucket needs a counter of size log kNβ = O(log log N). There-
fore, we require another O((log log N)2) space, that we can afford within our
O(log N) upper bound. We note that because the WBMH uses approximate
counters, we need to take that extra approximation into consideration when
choosing the constants for operation. The first log N items that arrive are in-
serted into W1. Each of these inserts takes O(1) time because all of the bits
fall in the same bucket (recall that we treat the value m as m bits arriv-
ing at the same time). This is because the beginning and end of each bucket
does not depend on the values arrived, but rather on the time the value ar-
rived, so each item that arrives at some time goes into only one bucket. This
means that we only need to update one counter every time a new item ar-
rives. After log N items arrive, we insert the next log N items into W2, and
concurrently, we insert the values from W1 to the AEH (we will soon show
how to do this efficiently). We continue switching between W1 and W2 as time
progresses.

Now we need to show how inserting the values from a WBMH to an AEH
can be done efficiently. For sake of convenience, we will assume we want to insert
the values from W1. The number of bits in W1 is bounded by Nβ+1, hence the
amount of buckets to be added to the AEH is O(log N). We also need to merge
the appropriate buckets that were already in the AEH and update their times.
Using an O(log N) sized counter we can exactly count the sum of the counters in
W1. From this number we can calculate how many buckets will be added to the
AEH, and update it accordingly. In O(log N) time we can update the buckets
already inside the AEH, and in O(log N) time we can insert the new buckets
into the AEH. This gives a total of O(log N) time to insert the values in W1 into
the AEH, which is amortized O(1). In order to obtain a worst case time of O(1)
we can take a lazy approach, and spread our operations on the log N insertions
made into W2.

The last thing we need to take care of is answering a query while inserting the
values from W1 to AEH. Specifically, in the lazy approach we need to wait till we
are done with the whole process of merging W1 with the AEH before answering
a query. To avoid this problem we keep two copies of the AEH and two copies
of each WBMH. When joining W1 with the AEH, we will join a copy of each,
while answering queries from the duplicates. Of course, we also need to query
W2 due to items already inserted into it. This completes our data structure and
provides the following:

Theorem 2. There exists an algorithm that can estimate DSP within a multi-
plicative factor using O(log N) space.

Improved Algorithms for Polynomial-Time Decay 317

4.3 Lower Bound for DCP and DSP Under PolyD

Due to a (very) minor error in [4] for proving the lower bound, we present a
corrected version of the proof, similar to the original one. We will reuse the idea
in this proof again in order to prove another lower bound in the Sect. 5.

Theorem 3. A logarithmic number of bits is necessary in order to approxi-
mately maintain decay by g(x) = 1/xα, within a multiplicative factor (in elapsed
time).

Proof. We will first prove for decayed sums (with non-binary values), and then
extend the proof to the binary case using communication complexity and a
reduction to the subset problem. We show that if there exists an algorithm A
that uses less than Ω(log N) bits in order to approximately maintain decay by
the given function, then we can use algorithm A in order to distinguish between
two subsets of a set of size Ω(log N) using o(log N) space, contradicting the
lower bound from [13].

Consider the decay function as stated in the theorem. Let k be some positive
value to be determined later. In addition, assume we have two parties, A and B,
and a set of size r = �(α/(2 log k)) log(N/2)�. B wants to know which subset A
has, and then determine whether it is the same subset that B has. A sends to B
some bits of information in order to determine this. A can use algorithm A on
the following stream.

We consider a time interval from -N/2 till N/2. For i ≤ r, at time t =
−(kN−α/2)2i/α we receive a value Ci = δi(kN−α/2)i, where δ = 1 if i is a
member of the set, and δ = 2 otherwise. No data arrives after t = −1. Let
k′ = kN−α/2. At time t = 0, A sends the bits currently stored by algorithm A
to B. B continues running algorithm A assuming nothing arrives on the stream
for the rest of the interval. We will now show how by using algorithm A, B can
reproduce Ci for every i ≤ r, and hence can reproduce the subset that A has.

The decayed value Vg(t) at time ti = k′2i/α is

Vg(ti) =
r∑

j=1

g(k′2i/α + k′2j/α
k′jδi). (4)

We can therefore compute upper bounds for the contribution of the prefix and
suffix of this sum (in the original proof, there was a slight algebraic error that
carries on throughout - here we correct this slight error, also showing how the
rest of the proof can be made to adhere to the correction). For the prefix we
have

i−1∑

j=1

g(k′2i/α + k′2j/α
k′jδi) ≤ 2

i−1∑

j=1

g(k′2i/α)k′j (5)

= 2
i−1∑

j=1

k′j−2i = 2k′−i
i−1∑

j=1

k′−j ≤ 2k′−i
∞∑

j=1

k′−j ≤ 2k′−i
/(k′ − 1).

318 T. Kopelowitz and E. Porat

For the suffix we have
r∑

j=i+1

g(k′2i/α + k′2j/α
k′jδi) ≤ 2

r∑

j=i+1

g(k′2j/α)k′j (6)

= 2
r∑

j=i+1

k′−j = 2k′−i
r−i∑

j=1

k′−j ≤ 2k′−i
∞∑

j=1

k′−j ≤ 2k′−i
/(k′ − 1).

In addition, the difference between the two possible values for the i’th term
is

2g(2k′2i/α)k′i − g(2k′2i/α)k′i = g(2k′2i/α)k′i = 2−αk′−i
.

The contribution of the prefix and the suffix to the total value is at most
22+α/(k′ − 1) of a fraction of the difference between the two possible values of
the i′th term. We can have this fraction be less than 1 if we have k′ > 22+α + 1,
which would then mean that we can distinguish between the two values of δi,
as the gap between the case where δi = 1 and δi = 2 is large enough although
the approximation. So we can reproduce whether A has the i’th member in its
set or not. This mean that B can reproduce the set held by A, although A sent
o(log N) bits, contradicting [13].

We now extend our proof for a binary stream. We will show that if there
exists an algorithm A′ for the binary stream scenario that uses o(log N) bits of
space, then in the same problem as above, B can reproduce A’s subset using
o(log N) space. We first note that for α < 2 the proof is basically the same,
because we can simply spread a value of Ci = Θ(k′i) at time −k′2i/α to Ci ones,
contradicting the proof for DSP (the beginning of the proof of this theorem). The
reason is that all of the ones that come from some value occur around the same
time; therefore they essentially have the same weight (in regard to the decay
function). If α ≥ 2, we cannot spread all of the ones, because we don’t have
enough room between consecutive values in the stream. However, if we would
like to solve the DSP problem using A′ that solves the DCP problem, we could
divide all of the values in our stream some predetermined value, and in the proof
from above, the ratios between the suffix, prefix, and i’th value will remain the
same. We divide the values of the Cis by N1/α, and use only the slots for which
the value given is at least one, and at most 2ε(k′)2i/α/α. We note that when
spreading the ones to the past, the values of the suffix and prefix only decrease,
and the value of the i’th term (if the value is within the right boundaries) is
between g(2k′2i/α) and g(2k′2i/α + 2ε(k′)2i/α/α). This means that the weight of
the i’th term can decrease by a factor of 1/(1+ ε/α)α, which for α ≥ 2 (as is our
case) is approximately (1 − ε). This minor loss is one that we can easily afford.

Recall that we only use the slots for which the value given is at least one,
and at most 2ε(k′)2i/α/α. This gives us two constraints regarding the possible
range for i that we can reproduce. However, we will show that the range is still
Ω(log n). From the constraint that k′i/N1/α ≥ 1 we get that i ≥ logk′ N/α, and
from the constraint that k′i/N1/α ≤ 2ε(k′)2i/α/α we get that i ≤ logk′ N/(α −
2)+α log(2ε/α)/(α−2) = i ≤ logk′ N/(α−2)−Θ(1), being that α ≥ 2. If we let

Improved Algorithms for Polynomial-Time Decay 319

k be a small enough value such that it is not much larger than (4/ε + 1)N2/α,
or is even equal to it, then we have that log k ≥ log(4/ε + 1) + (α log N)/2 and
therefore logk′N = log N/(log k − log(4/ε + 1)) = log N/c for some constant
c. This means that the number of slots that B can reproduce is Ω(log n), as
required. ��

5 Adding Additive Error – Another Model

Until now all of the approximation models used in maintaining values for the
DCP and DSP problems looked into 1 ± ε approximations. We present a new
view where we allow an additive error as well. In other words, we want to be
able to approximately answer the DCP and DSP problems allowing values of
(1 ± ε1)RV ± ε2, where RV stands for the real value of the answers to the
problems.

The motivation for such an approximation comes from realizing that when
dealing with massive data sets, we are often not interested in answers with small
values. This is because small decayed sums generally occur when we have been
receiving zero or very small valued items for an extended period of time - a
scenario that is uncommon in many applications. Specifically for binary streams
there are many such applications. Interestingly, allowing this extra relaxation,
we can answer the DCP and DSP problems using much less space under some
decay functions, while in other decay functions the extra relaxation doesn’t help
at all.

We now explore the PolyD and ExpD decay functions, when allowing an
additive error.

5.1 Exponential Decay for DSP

In order to maintain ExpD for the DSP problem we note that in ExpD, every
time a new value arrives in the stream, the new decayed aggregate has the value
of the previous aggregate divided by the base, plus the new arrived value. Using
this observation, we can maintain the O(log log N) most significant digits of our
decayed aggregate. When a new number arrives, we divide the previous aggregate
by the base, and add the appropriate most significant O(log log N) digits from
the new value. Regarding the rest of the least significant digits, we take the value
of the ignored digits, and divide that value by our additive approximation. We
use the fraction we receive as the probability of adding 1 to our O(log log N)
bits. The probabilistic analysis is deffered to the journal version.

5.2 Exponential Decay for DCP

For a binary stream it is enough to maintain the last O(log 1/ε2) bits seen by
the stream, and using the AEH from we can do this in O(log log 1/ε2) space.
This of course is a great improvement in space, as it is independent of N .

320 T. Kopelowitz and E. Porat

5.3 Polynomial Decay

When considering the polynomial decay, we differentiate between the case in
which α > 1 and the stream is binary, to the case in which 1 ≥ α > 0 or the
stream can receive general polynomial sized values. When α > 1 we show how
to further reduce the amount of space used, while in the 1 ≥ α > 0 case we
have a lower bound showing that we cannot do better in space used then in the
previous model where we allowed only a multiplicative error. The intuitive reason
for separating the two cases comes from the well know fact that

∑
j≤T g(t) with

1 ≥ α > 0 diverges, while the sum with α > 1 converges. As we will show, the
lower bound follows this intuition.

Binary Polynomial Decay with α > 1. In this case we only need to maintain
the last 1/ε2 seen by the stream, and again we can use the AEH to do this in
O(log 1/ε2). We note that it is easily possible to extend this to any stream with
values bounded by some constant.

A Lower Bound for Polynomial Decay

Theorem 4. A logarithmic number of bits is necessary in order to approxi-
mately maintain decay by g(x) = x−α, within a multiplicative factor and an ad-
ditive error (in elapsed time), unless α > 1 and the stream’s values are bounded
by a constant.

Proof. We provide a sketch of the proof, as the proof here follows the proof of
Theorem 3. We also note that by proving that for α > 1 and a binary stream one
can do better than logarithmic space, we can easily extend this to any stream
with values bounded by some constant.

We start off with general stream, and show how we can extend the proof from
Theorem 3 to an additional additive error. Let m be some positive valued number
to be determined later. We multiply all of the values of the stream that A creates
by mα+1, and spread the times so that the values arrive at times −mk′2i/α for
i ≤ r. This increases the decay value by a factor of m, while the ratio between
the sum of the prefix and suffix, and the i’th term remains unchanged. We can
always choose an m large enough to swallow the additive error, and because
the ratio is unchanged, the multiplicative factor does not affect B’s ability to
reproduce the set.

For binary streams where either α ≤ 1, or the values of the stream or not
bounded by a constant, we use the same extension as in the proof of Theorem
3. The reason this proof does not work when α > 1 for the binary (or constant)
case is that we have stream values of size δim

αk′2i/α that we need to spread
between times −mk′2i/α and time −mk′(2i+2)/α, and there simply isn’t enough
room for all of the bits between consecutive times. Therefore, the proof doesn’t
apply in such a case. ��

6 Conclusions

We discussed polynomial and exponential decay in data streams, extending re-
cent work by [6] and [4]. We present the tightest space-efficient algorithm for

Improved Algorithms for Polynomial-Time Decay 321

PolyD using O(log N) space when allowing approximations up to a multiplica-
tive factor. We do this by presenting a new data structure, the AEH, that is an
extension of the EH from [6] and the WBMH from [4].

In addition, we presented and analyzed our decay functions when allowing
an approximation with an additive error in addition to the multiplicative one.
We find that in ExpD for general streams O(log log N) space suffices, while in
binary streams a constant (depending on the approximation) amount of space
is all we need. For the PolyD we prove that unless the exponent is larger than
one, and the stream values are bounded by some constant, we cannot hope to
do better than in the multiplicative only approximation. We also show that one
can use the AEH in order to achieve a constant-space algorithm for PolyD when
the exponent is larger than one, and the stream values are bounded by some
constant.

The need to analyze other decay functions such as the chordal decay, poly-
exponential decay, etc. ([4]) still exists. We strongly feel that the AEH can be
used in some of the other decay functions, and in many other applications as
well.

Acknowledgments

We would like to thank an anonymous referee for some useful comments.

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proc. Of the 2002 ACM Symposium on Principles of
Database Systems (PODS 2002), ACM, 2002.

2. A. Bremler-Barr, E. Cohen, H. Kaplan, and Y. Mansour. Predicting and bypassing
internet end-to-end service degradations. In Proc. 2nd ACM-SIGCOMM Internet
Measurement Workshop., ACM, 2002.

3. E.cohen H.Kaplan, and J.D. Oldham. Managing TCP connections under persistent
HTTP. In Computer Networks, 31:1709-1723, 1999.

4. E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates. In Proc.
Of the 2003 ACM Symposium on Principles of Database Systems (PODS 2003),
ACM, 2003.

5. E. Cohen and M. Strauss. Giga-mining. In Proc. Of KDD, New York, August
1998.

6. M. Datar, A.Gionis, P.Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. In Proc. 13th ACM-SIAM Symp. On Discrete Algorithms. , ACM-
SIAM, 2002.

7. S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid-
ance. In IEEE/ACM Transactions on Networking, 1(4), 1993.

8. P. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows.
In Proc. Of the 14th Annual ACM Symp. On Parallel Algorithms and Architectures,
Pages 63-72. ACM, 2002.

9. Warren Gilchrist. Statistical Forecasting. Wiley, 1976.

322 T. Kopelowitz and E. Porat

10. V. Jacobson. Congestion avoidance and control. In Proc. Of the ACM-
SIGCOMM’88 conference, August 1988.

11. S. Keshav, C.Lund, S. Phillips, N. Reingold, and H. Saran. An empirical evaluation
of virtual circuit holding time policies in IP-over-ATM networks. In IEEE J. on
Selected Areas in Communication, 13, 1995.

12. R. Morris. Counting large numbers of events in small registers. In CACM, 81:840-
842, 1978.

13. A. C. Yao. Some complexity questions related to distributed computing. In Proc.
of the 11th ACM STOC, 209:213, 1979.

A Theoretical Analysis of Alignment and Edit
Problems for Trees�

Tetsuji Kuboyama1, Kilho Shin2, Tetsuhiro Miyahara3, and Hiroshi Yasuda2

1 Center for Collaborative Research, University of Tokyo, Japan
4-6-1 Komaba Meguro, Tokyo 153-8505, Japan

kuboyama@ccr.u-tokyo.ac.jp
2 Research Center for Advanced Science and Technology, University of Tokyo, Japan

4-6-1 Komaba Meguro, Tokyo 153-8904, Japan
{kilho shin, yasuda}@mpeg2.rcast.u-tokyo.ac.jp

3 Faculty of Information Sciences, Hiroshima City University, Japan
3-4-1 Ozuka-Higashi, Asaminami, Hiroshima 731-3194, Japan

miyahra@its.hiroshima-cu.ac.jp

Abstract. The problem of comparing two tree structures emerges across
a wide range of applications in computational biology, pattern recogni-
tion, and many others. A number of tree edit methods have been pro-
posed to find a structural similarity between trees. The alignment of trees
is one of these methods, introduced as a natural extension of the align-
ment of strings, which gives a common supertree pattern of two trees,
whereas tree edit gives a common subtree pattern. It is well known that
alignment and edit are two equivalent notions for strings from the com-
putational point of view. This equivalence, however, does not hold for
trees. The lack of a theoretical formulation of these notions has lead to
confusion. In this paper, we give a theoretical analysis of alignment and
edit methods, and show an important relationship, which is the equiva-
lence between the the alignment of trees and a variant of tree edit, called
less-constrained edit.

1 Introduction

A tree structure plays a significant role in the efficient organization of infor-
mation. In particular, the problem of comparing tree structures emerges across
a wide range of applications in computational biology [1], image analysis [2],
pattern recognition [3], natural language processing, information extraction [4]
from Web pages, and many others.

Edit-based approaches provide a general framework in comparing trees, mea-
suring similarities, finding common tree patterns, and merging trees. Tree edit dis-
tance [5,6] and alignment of trees [7] were both introduced as natural generaliza-
tions of string edit distance [8]. It is well known that alignment and edit are two
equivalent notions in strings [9], whereas both are completely different in trees [7].
� This work is partly supported by Grant-in-Aid for Scientific Research No. 17700138,

and No. 16016275 from the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 323–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 T. Kuboyama et al.

Although a dozen of tree edit methods have been proposed [10] in various
fields, no comprehensive mathematical analysis of these methods has been avail-
able. Consequently, the relationship among various tree edit methods has hardly
been studied, and essentially equivalent algorithms of tree edit methods have
been independently proposed. In fact, an important equivalence between two
methods, the alignment of trees and the less-constrained edit has remained un-
noticed. We believe that providing a framework in abstract mathematical terms
is vital to understand various aspects of edit-based approaches, and to facilitate
their efficient implementations.

Towards this goal, in this paper, we propose a new formulation of the notions
of alignment and edit for trees, and investigate the relationship among these two
notions based on our mathematical formulation. Specifically, our contributions
are as follows. (1) We show that the alignment of trees is essentially equivalent
to a variant of tree edit, called the less-constrained edit [11]. (2) We give the
mapping condition for the alignment of trees. The mappings provide definitions
of various tree edit methods in a declarative way, in contrast to an operational
way of conventional definitions. To the best of our knowledge, the mapping
condition for the alignment of trees has been unknown, and the alignment of trees
was defined only in an operational way in [7]. (3) We show that the condition of
the less-constrained mapping given by Lu et al. [11] does not relax the condition
of the constrained mapping due to Zhang [12]. In fact, we show that the condition
due to Lu et al. [11] is identical to that of the constrained mapping. We revise
it and give an originally intended condition of less-constrained mapping.

In Sect. 2, we review the previous work on tree edit methods. In Sect. 3, we
give a new formulation of alignment and edit for trees based on the notion of tree
mapping. In Sect. 4, we show the main result of this paper that the alignment
of trees is equivalent to the less-constrained edit in the mapping condition. In
Sect. 5, we conclude this paper.

2 Edit-Based Approach in Trees

In this section, we briefly review some tree edit problems.
Trees we consider in this paper are labeled rooted trees, in which each node

is labeled from a finite alphabet Σ. An ordered tree is a tree in which the left-
to-right order among siblings is given. An unordered tree is a tree with no order
among siblings. We refer to unordered trees as trees unless otherwise stated.

We denote by r(T) the root of a tree T , and by T (x) the maximum subtree
of T rooted at a node x. An ancestor of a node is recursively defined as follows:
an ancestor of a node is either the node itself, or an ancestor of the parent of the
node. We denote by x ≤ y that a node y is an ancestor of a node x, by lca(X)
the least(or nearest) common ancestor of all nodes in a set of nodes X , and by
x�y the least common ancestor of x and y.

In an ordered tree, we say that a node x is to the left of a node y if x�y is
a proper ancestor of both x and y, and the child of x�y on the path to x is to
the left of the child of x�y on the path to y.

A Theoretical Analysis of Alignment and Edit Problems for Trees 325

2.1 Tree Edit Problem

A tree edit problem is the problem of calculating distance between two trees, and
finding a common subtree pattern of two trees. A tree edit distance is defined as
the minimum cost of elementary edit operations to transform one tree into the
other [5,6].

Let l be a labeling function which assigns a label from a set Σ = {a, b, c, . . .}
to each node. Let λ denote the unique null symbol not in Σ. Let d be a cost
function of edit operations.

The edit operations on a tree T are the followings:

relabeling of the label of a node x in T with the label of a new node y in T ;
the cost is denoted by d(l(x) → l(y)),

insertion of a new node x into T as a child of a node y in T , moving a subset (a
consecutive subsequence in the case of ordered trees) of y’s children and their
descendants right under the new node x; note that this is the complementary
operation of deletion; the cost is denoted by d(λ → l(x)), and

deletion of a non-root node x from T , moving all children of x right under the
parent of x; the cost is denoted by d(l(x) → λ).

We assume, without loss of generality, that the root of a tree is not to be deleted
or inserted. We refer to each cost factor as its edit operation when there is no
confusion; i.e., α → β, λ → β, and α → λ for α, β ∈ Σ are referred to as the
edit operations of relabeling, insertion, and deletion, respectively.

The cost function d is defined to be a metric; i.e., for any α, β, γ ∈ Σ ∪ {λ},
(1) d(α → β) ≥ 0, d(α → α) = 0; (2) d(α → β) = d(β → α); and (3) d(α →
γ) ≤ d(α → β) + d(β → γ).

If a sequence of edit operations E transforms a tree T into a tree U , there
exists a sequence of trees 〈T0, . . . , Tn〉 (n ≥ 1) such that T0 = T , Tn = U , and
the i-th edit operation ei = (αi → βi) transforms Ti−1 into Ti for i ∈ {1, . . . , n}.
The cost function d for an edit operation is generalized to that for a sequences
of edit operations E = 〈e1, . . . , en〉 by letting d(E) = Σn

i=1d(ei).
Let E be the set of all possible sequences of edit operations to transform T

into U . The edit distance δ between two trees T and U is defined as δ(T, U) =
minE∈E{d(E)}.

2.2 Tree Mapping

The effect of a sequence of edit operations is reduced to a structure called tree
mapping, which is introduced by Tai [5] and simply referred to as mapping.
We also refer to the tree mapping as mapping if there is no confusion. A tree
mapping depicts node-to-node correspondences between two trees according to
the structural similarity, or shows how nodes in one tree are preserved after
transformed to the other (See Fig. 2(a)).

Definition 1 (Tai 1979 [5]). A tree mapping from a tree T to a tree U is a
set M ⊆ V (T) × V (U) such that, for all (x1, x2), (y1, y2) ∈ M ,

326 T. Kuboyama et al.

T1
U1

x1
y1

z1 x2
y2

z2
x1

y1 z1 x2
y2

z2

M1
M2

T2
U2

x1
y1

z1 x2
y2

z2

M3

T3 U3

x1
y1 z1 x2

y2
z2

U4T4
M4

Fig. 1. Examples of tree mappings: each shaded region illustrates how the subtree
rooted at x1 � y1 is mapped to the other by each mapping Mi (i ∈ {1, 2, 3, 4}). Only
M1 is constrained, and the others are not. M1, M2, and M4 are less-constrained, and
M3 is not.

1. x1 ≤ y1 ⇔ x2 ≤ y2, and
2. (only for ordered trees) x1 is to the left of y1 ⇔ x2 is to the left of y2.

The original definition of the tree mapping by Tai [5] includes the condition
x1 = y1 ⇔ x2 = y2 for all (x1, x2), (y1, y2) ∈ M . We omit this condition since it
is implied by the condition (1).

For a tree mapping M from T to U , let VD = V (T) \ {x|(x, y) ∈ M}, and
VI = V (U) \ {y|(x, y) ∈ M}. The cost of M is defined as

d(M) =
∑

(x,y)∈M

d(l(x) → l(y)) +
∑

x∈VD

d(l(x) → λ) +
∑

y∈VI

d(λ → l(y)).

Let M be the set of all possible tree mappings from T to U . Tai [5] showed
that the edit distance δ between T and U is given in the following two ways:
δ(T, U) = minE∈E{d(E)} = minM∈M{d(M)}. This equation plays the role of
a bridge between an operational definition and a declarative definition for the
edit distance. For example, Fig. 1 shows examples of tree mappings, in which all
nodes connected with dashed lines preserve the tree mapping condition.

2.3 Constrained Mapping

The constrained mapping [13] originated from the structure-preserving mapping
due to Tanaka and Tanaka [14]. Zhang gave a succinct condition of the tree
mapping instead of the condition by Tanaka and Tanaka, and presented an
efficient algorithm for unordered trees [12].

Definition 2 (Zhang 1996 [12]). A tree mapping M is constrained if the
following condition holds: for all (x1, x2), (y1, y2), (z1, z2) ∈ M , z1 < x1 � y1 if
and only if z2 < x2 �y2.

For a tree mapping M from T to U , let M1 and M2 be two arbitrary subsets
of M . Let Xi = {x|(x, y) ∈ Mi}, and Yi = {y|(x, y) ∈ Mi}, for i ∈ {1, 2}. An

A Theoretical Analysis of Alignment and Edit Problems for Trees 327

implication of the constrained mapping is that if T (lca(X1)) and T (lca(Y1)) are
disjoint, then U(lca(X2)) and U(lca(Y2)) must be disjoint as well, and vice versa.

As shown in Fig. 1, two disjoint subtrees T1(x1 � y1) and T1(z1) (note that
lca({z1}) = z1) are mapped to two disjoint subtrees U1(x2 � y2), and U1(z2).
And the other arbitrary disjoint trees are mapped to disjoint trees by M1. Thus,
M1 is constrained. On the other hand, two disjoint subtrees U2(x2 � y2) and
U2(z2) are mapped to two non-disjoint subtrees T2(x1 �y1) and T2(z1). In fact,
T2(x1 �y1) includes T2(z1). Thus, M2 is not constrained.

2.4 Structure-Respecting Mapping

Richter independently introduced the structure-respecting mapping [15] with the
same intention of the constrained mapping.

Definition 3 (Richter 1997 [15]). A tree mapping M is structure-respecting
if the following condition holds: for all (x1, x2), (y1, y2), (z1, z2) ∈ M such that
none of x1, y1, and z1 is an ancestor of the others, x1 �y1 = x1 �z1 if and only
if x2 �y2 = x2 �z2.

In [11], Lu et al. pointed out, without proof, that both the concepts of constrained
mapping and structure-respecting mapping are equivalent. We give the proof in
Sect. 3.2.

2.5 Less-Constrained Mapping

The less-constrained mapping was introduced by Lu et al. [11], which is intended
to relax the condition of the constrained mapping [13,12] so that in Fig. 1, both
M1, M2 and M4 are less-constrained, whereas M3 is not less-constrained.

Definition 4 (Lu et al. 2001[11]). A tree mapping M is less-constrained if
the following condition holds: for all (x1, x2), (y1, y2), (z1, z2) ∈ M such that
none of x1, y1, and z1 is an ancestor of the others, x1 � y1 ≤ x1 � z1 and
x1 �z1 = y1 �z1 if and only if x2 �y2 ≤ x2 �z2 and x2 �z2 = y2 �z2.

This definition, however, does not formulate the concept of the less-constrained
mapping correctly. In fact, for example, the definition excludes the case x1 �
y1 = x1 � z1 = y1 � z1 and x2 � y2 > y2 � z2, x2 � y2 = x2 � z2 (See M4 in
Fig. 1). Note that the condition in Definition 4 should hold for any combinations
of (x1, x2), (y1, y2), (z1, z2). We give a correct definition in Sect. 3.2.

2.6 Alignment of Trees

The alignment of trees was introduced by Jiang et al. [7] as a natural extension
of the alignment of strings. In contrast to the tree edit problem, the alignment
of trees is viewed as the problem of finding a common supertree pattern of two
trees. The definition of the alignment has been given in an operational way [7,16]
as follows.

328 T. Kuboyama et al.

b
e

c
d

aT

U

g

f

d h

a U’

g f

d h

a

b e

c d

aT’

(b,λ)

(e,λ)

(c,g)

(d,d)

(a,a)

(λ, f)

(λ,h)

insertion
of

null nodes
overlay

Alignment of T and U

(b)

a

b e

c d

a

T U

g f

d h

(a)

Fig. 2. Example: (a) a tree mapping from T to U : relabeling the node labeled c with
g, deleting the two nodes labeled with b and e, and inserting the two node labeled
with f and h; (b) An alignment of trees between T and U ; the tree mapping in (a)
corresponds to this alignment.

Definition 5 (Jiang et al. 1995[7]). Let T and U be two trees. An alignment
of T and U is obtained by first inserting nodes labeled with the null symbol λ
into T and U so that the two resulting trees T ′ and U ′ have the same structure
(i.e., they are identical if the labels are ignored), and then overlaying T ′ on U ′.

Figure 2(b) illustrates an alignment of trees. As shown in Fig. 2(a), we can
consider the tree mapping corresponding to the alignment of trees in Fig. 2(b)
as well as the tree edit. As for the alignment of trees, however, the tree mapping
condition has been unknown in prior work.

From the point of view of tree mapping, it is easy to show that the alignment
of tree is different from the tree edit defined by Tai [5]. For example, in Fig. 1,
if each pair of nodes in the tree mapping M3 should be overlaid, then it is
impossible to obtain the same tree structure by inserting null nodes into each
tree. In fact, the tree mapping M3 inevitably leads to a directed acyclic graph,
not a tree if overlaid.

3 A New Formulation of Tree Edit Problems

We give a new formulation of the tree edit problem to analyze the relationship
among edit-based approaches for trees.

3.1 Rooted Trees

We adopt a standard notation < to denote a strict partial order, that is, for a
non-empty finite set V , (1) ∀x, y, z ∈ V [x < y ∧ y < z ⇒ x < z], and (2)
∀x ∈ V [x < x]. We denote by x ≤ y that x < y or x = y for all x, y ∈ V . We
say that two elements x, y ∈ V are comparable if x < y, x = y or y < x holds.

Definition 6. A rooted tree T = (V, <) is a nonempty, finite, and strict partially
ordered set with the maximum element r(T) ∈ V called the root, and such that
{y ∈ V |x ≤ y} is a totally ordered set for every x ∈ V .

A Theoretical Analysis of Alignment and Edit Problems for Trees 329

Unless otherwise stated, all trees we consider in this paper are labeled, rooted
and unordered trees. Although all the definitions, propositions, lemmas and the-
orems stated in this paper also hold for the ordered tree with no or slight mod-
ification, this paper does not state all of them.

We call the elements of V the nodes of T , and denote the set of all nodes in
T by V (T). An ancestor of x is a node y such that x ≤ y. In particular, if x < y,
then y is called a proper ancestor. The parent of a node x is the minimum node
of the proper ancestors of x in T , and denoted by p(x). For a node x ∈ V (T), we
denote by ch(x) the set of nodes {y ∈ V (T)|y < x and �z ∈ V (T) such that y <
z < x}, and refer to the elements of ch(x) as the children of x. A leaf of a tree
T is a minimal node in V (T).

We redefine the notion of least common ancestor as follows.

Definition 7. For any tree T = (V, <), a common ancestor of a set of nodes
V ′ ⊆ V is an element x ∈ V such that y ≤ x for all y ∈ V ′. A common ancestor
x of V ′ is the least common ancestor of V ′ if, for any common ancestor x′ of
V ′, x ≤ x′ holds. We denote the least common ancestor of V ′ by lca(V ′), and
lca({x, y}) by x�y.

Lemma 1. The following properties hold in terms of the least common ancestor:
1. x�x = x, 2. x�y = y�x,
3. (x�y)�z = x�(y�z), 4. x ≤ y ⇔ x�y = y,
5. x�y < x�z ⇒ y�z = x�z, and 6. x�y = x�z ⇒ y�z ≤ x�y.

Proof. (1) to (4) are all easy to prove, and we omit these proofs.
(5): Since y < x�z by the premise, we have y�z ≤ x�z. On the other hand,
if x�y < y�z, then we have x < y�z, therefore, y�z ≥ x�z. If y�z ≤ x�y,
then z ≤ x�y, therefore, x�z ≤ x�y, as is contradictory to the premise.
(6): The assertion immediately follows from x ≤ x�z and y ≤ y�z. ��

3.2 Less-Constrained Mapping Revised

Definition 4 due to Lu et al. [11] does not relax that of the constrained mapping.
In fact, it is easy to show that the definition ends up with that of the constrained
mapping as follows.

Definition 4 is reduced to a more succinct form of condition by Lemma 1 (6);
i.e., xi �yi ≤ xi �zi is implied by xi �zi = yi �zi for i ∈ {1, 2} in Definition 4.
Therefore, it is shown that the condition due to Lu et al. is equivalent to that
of the structure-respecting mapping in Definition 3. Hence, by the following
proposition, the condition due to Lu et al. ends up with that of the constrained
mapping.

Proposition 1. For any tree mapping M , M is structure-respecting if and only
if M is constrained.

Proof. (only-if part) Assume that z1 < x1 � y1. If z2 and x2 � y2 are com-
parable, then z2 < x2 � y2 holds by Definition 1. (i) If any two of x1, y1, z1
are comparable, i.e., z1 is comparable to x1 or y1 (because if x1 ≤ y1, then

330 T. Kuboyama et al.

z1 < x1 � y1 = y1), z2 and x2 � y2 are also comparable by Definition 1. (ii)
Suppose that any of x1, y1, z1 is not an ancestor of any of the others. Since we
may assume that x1 � y1 = x1 � z1 without loss of generality, x2 � z2 = x2 � y2
holds by Definition 3. Therefore, z2 and x2 �y2 are comparable, too.

(if part) We show the contraposition of x2 �y2 = x2 �z2 ⇒ x1 �y1 = x1 �
z1. If x1 � y1 = x1 � z1, we may assume x1 � y1 < x1 � z1 since x1 � y1 and
x1 � z1 are comparable. If z2 = x1 � y1, then x2 ≤ z2. Therefore x1 ≤ z1 holds.
Moreover, if z2 < x2 � y2, then z1 < x1 � y1 by Definition 2. Hence, we have
z2 ≤ x2 � y2. Since x2 � y2 < x2 � z2 follows, we have the contraposition. By
symmetry, x1 �y1 = x1 �z1 ⇒ x2 �y2 = x2 �z2 also holds. ��

We give a correct definition of the less-constrained mapping as follows.

Definition 8. A tree mapping M is less-constrained if the following condition
holds: ∀(x1, x2), (y1, y2), (z1, z2) ∈ M [x1 �y1 < x1 �z1 ⇒ y2 �z2 = x2 �z2].

Proposition 2. The condition in Definition 8 is equivalent to the condition:
∀(x1, x2), (y1, y2), (z1, z2) ∈ M [x2 �y2 < x2 �z2 ⇒ y1 �z1 = x1 �z1].

3.3 Tree Homomorphism

The rest of this section is devoted to define the alignment of trees in a formal
manner. We first introduce the notion of tree homomorphism to represent struc-
tural similarities between trees. Most of proofs are omitted because of the space
limitation.

Definition 9 (Homomorphism). Let T and U be two trees. A homomorphism
from T to U is a mapping ϕ : V (T) → V (U) such that ϕ(x) ≤ ϕ(y) if x < y for
all x, y ∈ V (T). When a mapping ϕ : V (T) → V (U) yields a homomorphism of
trees, we simply denote it by ϕ : T → U .

Definition 10. For a homomorphism ϕ : T → U , the image of ϕ is a tree
�(ϕ) = (V (�(ϕ)), <�(ϕ))) such that V (�(ϕ)) = {x ∈ V (U)|x ≤ ϕ(r(T))}, and
for all x, y ∈ V (�(ϕ)), x <�(ϕ) y ⇔ x < y.

Definition 11 (Isomorphism). Let T and U be two trees. An isomorphism
from T to U is a bijection ϕ from V (T) to V (U) such that (x, y) is an edge of T
if and only if (ϕ(x), ϕ(y)) is an edge of U .

It is obvious from these definitions that a composition of homomorphisms is a
homomorphism, and an isomorphism ϕ and its inverse ϕ−1 are both homomor-
phisms.

Proposition 3. Let T and U be two trees. Suppose that a homomorphism ϕ is
a bijection from V (T) to V (U). Then the following two properties are equivalent:
(1) ϕ is an isomorphism, and (2) ∀x, y ∈ V (T) [ϕ(x) < ϕ(y) ⇒ x < y].

A Theoretical Analysis of Alignment and Edit Problems for Trees 331

3.4 Embedding

We introduce an important subclass of the tree homomorphism, called embed-
ding, which is a mapping from a tree T to a tree U such that it preserves the
tree mapping condition, and V (T) ⊆ V (U).

Definition 12 (Embedding). Let T and U be two trees. A homomorphism
ϕ : T → U is an embedding if the following conditions are satisfied: ϕ is injective,
and ∀x, y ∈ V (T) [ϕ(x) < ϕ(y) ⇒ x < y].

We refer to red(ϕ) = |V (�(ϕ)) \ ϕ(V (T))| as the redundancy of ϕ : T → U .
Figure 3(a) shows an example of an embedding.

Proposition 4. For an embedding ϕ : T → U and x, y ∈ V (T), the minimum
node ϕ(z) in U such that ϕ(x) � ϕ(y) < ϕ(z) is identical to ϕ(x � y). Fur-
thermore, the following are equivalent: (1) ϕ(x) � ϕ(y) < ϕ(x � y), and (2)
ϕ(x)�ϕ(y) ∈ ϕ(V (T)).

Proof. Suppose that ϕ(x) � ϕ(y) ≤ ϕ(z). By Definition 12, we have x � y ≤ z.
Hence ϕ(x�y) ≤ ϕ(z). This implies that ϕ(x�y) is the minimum ϕ(z) such that
ϕ(x) � ϕ(y) ≤ ϕ(z). The equivalence between (1) and (2) follows immediately
from this property. ��

An embedding is uniquely determined except for the isomorphism as shown
in the following.

Corollary 1. Let S, T , and U be three trees. Let ϕ : S → U and ψ : T → U be
two embeddings with ϕ(V (S)) = ψ(V (T)). There exists a unique isomorphism
η : T → S such that ψ = ϕ ◦ η.

Corollary 2. For an embedding ϕ : T → U , if x � y < x � z, then ϕ(x) �
ϕ(y) < ϕ(x)�ϕ(z).

Proof. ϕ(x) � ϕ(y) ≤ ϕ(x � y) < ϕ(x � z) holds. ϕ(x � y) and ϕ(x) � ϕ(z) are
comparable since both are ancestors of ϕ(x). If ϕ(x) � ϕ(z) = ϕ(x � z), then
there is nothing to prove. If ϕ(x)�ϕ(z) ≤ w < ϕ(x� z), then w ∈ ϕ(V (T)) by
Proposition 4. Therefore, we have ϕ(x�y) < ϕ(x)�ϕ(z). ��

T U UT

(a) (b)

Fig. 3. Example: (a) an embedding ϕe, and (b) a degeneration ϕd

332 T. Kuboyama et al.

We introduce a useful expression for filtering nodes of trees. For a tree T ,
let π(x) : V (T) → {true, false} denote a unary predicate with a predicate
variable x. By T [π(x)] = (V [π(x)], <π), we denote that V [π(x)] = {x|x ∈
V (T) and π(x) = true}, and ∀x, y ∈ V [π(x)] [x <π y ⇔ x < y]. For exam-
ple, T [x ≤ x] is equivalent to T (x). Note that T [π(x)] is not necessarily a tree
since it may not have a root.

By Eπ(x), we denote a natural inclusion Eπ(x) : V (T [π(x)]) → V (T).

Proposition 5. For x, y ∈ V (T [π(x)]), x<y if and only if Eπ(x)(x)<Eπ(x)(y).

Note that if T [π(x)] is a tree, then Eπ(x) is an embedding with red(Eπ(x)) =
|{x ∈ V (T)|π(x) = false}|.

Now we are ready to give a formal definition of the insertion operation.

Definition 13 (Insertion). Let T and U be two trees. An embedding ϕ : T →
U with red(ϕ) = 1 is called an insertion. In particular, if ϕ(V (T)) = V (U) \ {x}
for x = r(U), the insertion ϕ is called an x-insertion.

Proposition 6. For any x ∈ V (T) such that x = r(T), there exists an x-
insertion ϕ into T . Furthermore, an x-insertion is unique up to an isomorphism.

Proof. Let π(x) be x = x. Then, Eπ(x) : T [π(x)] → T is an x-insertion into T
by Proposition 5. By Corollary 1, an x-insertion is uniquely determined up to
an isomorphism. ��

We denote the unique x-insertion by Ix.

Proposition 7. Let T and U be two trees. For x ∈ V (U), Ix : T → U satisfies
the following properties:

1. for any y ∈ ch(x), Ix : T (I−1
x (y)) → U(y) is an isomorphism, and

2. Ix : T [
∧

y∈ch(x) x ≤ I−1
x (y)] → U [x ≤ x] is an isomorphism.

Proof. Without loss of generality, we may assume that T = U [x = x]. It fol-
lows from Proposition 5 that U [x = x ∧ x ≤ y] = U(y), and U [x = x ∧∧

y∈ch(x) x ≤ I−1
x (y)] = U [x ≤ x]. Hence, we obtain the assertions. ��

The following theorem shows that the insertion in Definition 13 is equivalent
to the operational definition of the insertion.

Theorem 1 (Decomposition of embedding). Let ϕ be an embedding from
T to U with V (�(ϕ)) \ ϕ(V (T)) = {x1, . . . , xn}. There exist a sequence of trees
T0, T1, . . . , Tn, and a sequence of insertions ϕi : Ti → Ti−1 (i ∈ {1, . . . , n})
such that T0 = U , Tn = T , ϕ1 ◦ · · · ◦ ϕi(V (Ti)) = V (�(ϕ)) \ {x1, . . . , xi}, and
ϕ = ϕ1 ◦ · · · ◦ ϕn;

��

�

��

���

�� ����

����

��
���

��
� � �

��

���

�� ��

��

���

�� ��

�

�

�
�� � �

A Theoretical Analysis of Alignment and Edit Problems for Trees 333

3.5 Degeneration

We introduce the complementary notion of embedding, called degeneration as
follows.

Definition 14 (Degeneration). Let T and U be two trees. A homomorphism
ϕ : T → U is a degeneration if the following conditions are satisfied: ϕ is sur-
jective onto V (�(ϕ)), ∀x, y ∈ V (T) [ϕ(x) = ϕ(y) ⇒ ϕ(x � y) = ϕ(x)], and
∀x, y ∈ V (T) [ϕ(x) < ϕ(y) ⇒ ∃z ∈ V (T) [ϕ(y) = ϕ(z) ∧ x < z]].

We refer to Dup(ϕ) = {x ∈ V (T)|ϕ(x) = ϕ(p(x))} as the duplication of the
degeneration ϕ : T → U . Figure 3(b) shows an example of a degeneration.

Lemma 2. Let T and U be two trees. For any degeneration ϕ : T → U , there
exists a unique embedding ψ : �(ϕ) → T such that ϕ ◦ ψ is the identity mapping
on V (�(ϕ)) and ψ ◦ ϕ is the identity mapping on V (T) \ Dup(ϕ).

Proposition 8. For any degeneration ϕ : T → U , ϕ(x�y) = ϕ(x)�ϕ(y).

Definition 15 (Deletion). Let T and U be two trees. A degeneration ϕ : T →
U is called a deletion from T if |Dup(ϕ)| = 1. In particular, if a deletion ϕ is
surjective and Dup(ϕ) = {x}, ϕ is called an x-deletion and denoted by Dx.

Proposition 9. Let T and U be two trees. For x ∈ V (T), Dx : T → U satisfies
the following properties:

1. for any y ∈ ch(x), Dx : T (y) → U(Dx(y)) is an isomorphism, and
2. Dx : T [x ≤ x] → U [

∧
y∈ch(x) x ≤ Dx(y)] is an isomorphism.

The following theorem shows that Definition 15 of the deletion is equivalent
to the operational definition of the deletion.

Theorem 2 (Decomposition of degeneration). Let ϕ be a degeneration
from T to U with Dup(ϕ) = {x1, . . . , xn}. There exist a sequence of trees T0, T1,
. . . , Tn, and a sequence of deletions ϕi : Ti → Ti+1 (i ∈ {0, . . . , n− 1}) such that
T0 = T , Tn = U , Dup(ϕi−1 ◦ · · · ◦ ϕ0) = {x1, . . . , xi}, and ϕ = ϕn−1 ◦ · · · ◦ ϕ0.

3.6 Duality Between Embedding and Degeneration

In Lemma 2, we see that, for a given degeneration ϕ, there exists an embedding
ψ such that ϕ ◦ ψ is an identity mapping. In fact, its reverse also holds.

Theorem 3. Let T and U be two trees. The following two properties hold:

1. For any degeneration ϕ : T → U , there exists a unique embedding ψ : �(ϕ) →
T such that ϕ◦ψ is the identity mapping on V (�(ϕ)) and ψ◦ϕ is the identity
mapping on V (T) \ Dup(ϕ).

2. For any embedding ψ : U → T , there exists a unique degeneration ϕ : �(ψ) →
U such that ϕ ◦ ψ is the identity mapping on V (U) and ψ ◦ ϕ is the identity
mapping on V (�(ψ)) \ Dup(ϕ).

This theorem is to the effect that there exists a unique degeneration ψ̄ (an
embedding ϕ̄, resp.) if an embedding ψ (a degeneration ϕ, resp.) is given.

334 T. Kuboyama et al.

3.7 Characterization of Alignment of Trees

Now we are ready to give a definition of the alignment of trees in a formal
manner.

Throughout in this section, S and T are trees, and M ⊆ V (S) × V (T) is a
tree mapping from S to T .

Definition 16. A tree mapping M from S to T is an alignable if and only if
there exists a triplet (U, ϕ, ψ) such that
1. ϕ : S → U is an embedding,
2. ψ : T → U is an embedding, and
3. ϕ(x) = ψ(y) for all (x, y) ∈ M ;

We call (U, ϕ, ψ) a union on M .

�

�

�
��

�
����������

� �

�
����������

Lemma 3. Let M be an alignable mapping with a union (U, ϕ, ψ). For any
(x, y) ∈ M , the equation (x, y) = (x, ψ̄(ϕ(y))) holds, where ψ̄ is the degeneration
such that ψ̄ ◦ ψ is the identity mapping of T .

Proof. The assertion is obvious since ψ̄ ◦ ψ is the identity mapping of T . ��

Proposition 10. Let S and T be two trees. Any singleton tree mapping M =
{(x, y)} from S to T is alignable.

Proof. By Definition 16, this assertion is intuitively obvious. (We omit this proof
due to the space limitation.) ��

Lemma 4. Let η : S → S̄ is an embedding. For a tree mapping M , M is
alignable if and only if M̄ = {(η(x), y)|(x, y) ∈ M} is alignable.

Proof. By Definition 16, the if-part of this lemma is obvious, and the proof of
the only-if-part is omitted due to the space limitation. ��

This lemma implies that if M is alignable after inserting nodes, it is also alignable
without the insertion.

Lemma 5. Let M ′ be a subset of M . If M is alignable, then M ′ is also alignable.

Proof. A union on M is also a union on M ′. ��

By the definition of tree mapping, for (s, t) ∈ M , if s = r(S), then t = r(T).

Lemma 6. Let (U, ϕ, ψ) be a union on M . Then, there exist ϕ′ and ψ′ such
that (U, ϕ′, ψ′) is also a union on M and ϕ′(r(S)) = ψ′(r(T)). In particular, M
is alignable if and only if M ∪ {(r(S), r(T))} is also alignable.

Proof. Let (s, t) ∈ M . ϕ(r(S)) and ψ(r(T)) are comparable, since they are
ancestors of ϕ(s) = ψ(t). If ϕ(r(S)) = ψ(r(T)), there is nothing to prove.
Without loss of generality, we may assume that ϕ(r(S)) < ψ(r(T)). Define
ϕ′ : V (S) → V (U) by ϕ′(x) = ϕ(x) if x = r(S) and ϕ′(r(S)) = ψ(r(T)). In
the following, we see that ϕ′ is an embedding. First, let x, y ∈ V (S) satisfy

A Theoretical Analysis of Alignment and Edit Problems for Trees 335

x < y. If y = r(S), ϕ′(x) < ϕ′(y) holds since ϕ is a homomorphism. If y = r(S),
ϕ′(x) = ϕ(x) < ϕ(r(S)) < ϕ′(r(S)) holds. Thus, ϕ′ is a homomorphism. The
property x < y if ϕ′(x) < ϕ′(y) is also easily proved. Consequently, we see that
ϕ′ is an embedding.

Since the if-part of this lemma follows from Lemma 5, it suffices to show
the only-if-part. As shown in the first part, if (U, ϕ, ψ), we have another union
(U, ϕ′, ψ′) such that ϕ′(r(S)) = ψ′(r(T)). Therefore, M ∪ {(r(S), r(T))} is
alignable. ��
Lemma 7. Let Si denote the tree S(σi) for ch(r(S)) = {σ1, . . . , σm}, Ti the
tree T (τi) for ch(r(T)) = {τ1, . . . , τn}. By symmetry, we assume that m ≤ n.
By Mi ⊂ V (Si)× V (Ti) for i ∈ {1, . . . , m}, we denote the tree mapping {(s, t) ∈
M |s ∈ V (Si) and t ∈ V (Ti)}. If M =

⋃m
i=1 Mi and each Mi is alignable, then

M is also alignable.

4 Equivalence Between Alignable Mapping and
Less-Constrained Mapping

Now we are ready to prove our main theorem.
Theorem 4. For any tree mapping M , M is alignable if and only if M is less-
constrained.
Proof. (only-if part): Let (U, ϕ, ψ) be a union on M . Hence, ϕ : S → U and
ψ : U → T are embeddings such that ϕ(s) = ψ(t) for any (s, t) ∈ M . Further, ψ̄
denote the degeneration such that ψ̄◦ψ is the identity mapping of T (Theorem 3).
Suppose that (s1, t1), (s2, t2), and (s3, t3) are any three elements of M such that
s1 � s2 < s1 � s3. We have ϕ(s1) � ϕ(s2) < ϕ(s1) � ϕ(s3) by Corollary 2, and
therefore ϕ(s2) � ϕ(s3) = ϕ(s1) � ϕ(s3). Also, we have ψ̄(ϕ(s2)) � ψ̄(ϕ(s3)) =
ψ̄(ϕ(s2) � ϕ(s3)) = ψ̄(ϕ(s1) � ϕ(s3)) = ψ̄(ϕ(s1)) � ψ̄(ϕ(s3)) by Proposition 8.
Since ψ̄(ϕ(s1)) = t1, ψ̄(ϕ(s2)) = t2 and ψ̄(ϕ(s3)) = t3 hold by Lemma 3, we
conclude that t2 � t3 = t1 � t3. Derivation of s2 �s3 = s1 �s3 from t1 � t2 < t1 �
t3 is shown in the same way.

(if part): The assertion in the case of |M | = 1 directly follows from Proposi-
tion 10.

Let |M | ≥ 2 for the induction step. Let M be the set of node pairs {(s1, t1),
. . . , (sn, tn)}, X ⊆ V (S) denote the set of nodes {s1, . . . , sn}, and Y ⊆ V (T)
denote the set of nodes {t1, . . . , tn}.

It suffices to prove the assertion of the theorem under the hypothesis that
lca(X) = r(S) and lca(Y) = r(T). In fact, for the embeddings α = Ex≤lca(X) :
S[x ≤ lca(X)] → S and β = Ex≤lca(Y) : T (lca(Y)) → T , by Lemma 4, if
M ′ = {(α−1(s), β−1(t))|(s, t) ∈ M} is alignable, then M is alignable. We may
also assume that M does not contain (r(S), r(T)), since, if M contains it, it
suffices to eliminate it by Lemma 6.

We now choose Xk = {s1, . . . , sk}, by reordering si’s if necessary, such that
(1) k ≥ 1, (2) lca(Xk) is not the root of S, and (3) for any x ∈ X \ Xk,
lca(Xk ∪ {x}) = r(S).

336 T. Kuboyama et al.

Note that k < n. Let us denote by Yk the set of nodes {t1, . . . , tk} corre-
sponding to Xk.
Claim 1. For any i ≤ k and j > k, si �sj is the root of S.

Proof. The two nodes si � sj and lca(Sk) are comparable since si ∈ Xk. Now
assume that si � sj ≤ lca(Xk). It follows that lca(Sk ∪ {sj}) = lca(Xk). This
contradicts the definition of Xk. Hence lca(Xk) < si � sj , and in particular
si �sj = lca(Xk ∪ {sj}). This implies that si �sj is the root of S. ��
Let A = {x ∈ ch(r(S))|∃i[1 ≤ i ≤ k ∧ si ≤ x]} and B = {x ∈ ch(r(S))|∃j[k <
j ≤ n ∧ sj ≤ x]}. We have A ∩ B = ∅, since, if x ∈ A ∩ B, we have si �sj ≤ x
for 1 ≤ i ≤ k and k < j ≤ n, as is contradictory to Claim 1.

Thus, by inserting nodes as children of r(S) if necessary, we may assume the
following properties: (1) the children of r(S) are only two nodes a and b, (2)
lca(Sk) ≤ a, and (3) lca(X \ Sk) ≤ b.

Now, to apply similar proof to Yk, we claim the following.
Claim 2. For any i ≤ k and j > k, ti � tj is the root of T .
(This proof is similar to Claim 1. So, we omit this proof.)

Therefore, in the same way as the case of S, by inserting nodes as children
of r(T) if necessary, we may assume the following properties by Lem 4: (1)
the children of r(T) are only two nodes α and β, (2) lca(Yk) ≤ α, and (3)
lca(Y \ Yk) ≤ β.

By the induction hypothesis, Mk={(s1, t1), . . . , (sk, tk)} is an alignable map-
ping from S(a) to T (α), and M \ Mk is alignable from S(b) to T (β). Then, by
Lemma 7, M is alignable from S to T . ��

The size of a tree T is the number of nodes in T , denoted by |T |. We denote
the maximum number of children for all nodes in a tree T by deg(T). For ordered
trees, an algorithm for computing a less-constrained edit distance was presented
by Lu et al.[11]. The time complexity of the algorithm is, for two trees T and
U , O(|T | · |U | · deg(T)3 · deg(U)3 · (deg(T) + deg(U))). By Theorem 4, we can
immediately improve this algorithm because there is a more efficient algorithm
for computing an alignment of trees by [7]. The time complexity is O(|T | · |U | ·
(deg(T) + deg(U))2).

Recall that Jiang et al. showed that the alignment problem for two unordered
trees is MAX-SNP hard [7]. Furthermore, we obtain a more negative result for
the alignment of trees because Lu et al. showed that the less-constrained edit
distance problem for unordered trees has no polynomial-time absolute approxi-
mation algorithm [11], i.e., the solution is not within an additive constant of the
optimum, unless P = NP. Then we immediately have the next corollary.

Corollary 3. The alignment problem for two unordered trees has no polynomial-
time absolute approximation algorithm, unless P = NP.

5 Conclusion

In this paper, we have presented a new theoretical formulation of tree edit prob-
lems in approximate tree matching as a unifying framework. This framework

A Theoretical Analysis of Alignment and Edit Problems for Trees 337

enables us to describe distinct semantics for approximate tree matching, and
study the matching properties of tree edit methods. We have mainly focused
on two tree edit methods, the alignment of trees and the less-constrained edit,
which have been independently proposed, but the relationship between them
remained unnoticed. By using our formulation, we have clarified the semantics
of these notions. We then revised the definition of less-constrained edit in the
original work. Finally, we have proved an important relationship between these
two notions. That is, we have showed that the alignment of trees is essentially
equivalent to the less-constrained edit. This result implies that finding a common
supertree pattern is a subclass problem of finding a common subtree pattern.

References

1. Sakakibara, Y.: Pair hidden markov models on tree structures. Bioinformatics 19
(2003) 232–240

2. Torsello, A., Hancock, E.R.: Matching and embedding through edit-union of trees.
In: Proc. of ECCV 2002. Volume 2352 of LNCS. (2002) 822–836

3. Ferraro, P., Godin, C.: A distance measure between plant architectures. Annals of
Forest Science 57 (2000) 445–461

4. Hogue, A., Karger, D.: Thresher: Automating the unwrapping of semantic content
from the world wide web. In: Proc. of WWW 2005. (2005) 86–95

5. Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM 26 (1979)
422–433

6. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing 18 (1989) 1245–1262

7. Jiang, T., Wang, L., Zhang, K.: Alignment of trees — an alternative to tree edit.
Theoretical Computer Science 143 (1995) 137–148

8. Wagner, R., Fischer, M.: The string-to-string correction problem. Journal of the
ACM 21 (1974) 168–173

9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

10. Bille, P.: A survey on tree edit distance and related problems. Theoretical Com-
puter Science 337 (2005) 217–239

11. Lu, C.L., Su, Z.Y., Tang, G.Y.: A new measure of edit distance between labeled
trees. In: Proc. of COCOON 2001. Volume 2108 of LNCS. (2001) pp. 338–348

12. Zhang, K.: A constrained edit distance between unordered labeled trees. Algorith-
mica 15 (1996) 205–222

13. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled
trees and related problems. Pattern Recognition 28 (1995) 463–474

14. Tanaka, E., Tanaka, K.: The tree-to-tree editing problem. International Journal
of Pattern Recognition and Artificial Intelligence 2 (1988) 221–240

15. Richter, T.: A new measure of the distance between ordered trees and its appli-
cations. Technical Report 85166-CS, Dept. of Computer Science, Univ. of Bonn
(1997)

16. Wang, J.L., Zhang, K.: Finding similar consensus between trees: an algorithm and
a distance hierarchy. Pattern Recognition 34 (2001) 127–137

A Complete Formulation of Generalized
Affine Equivalence

Marco Macchetti, Mario Caironi, Luca Breveglieri, and Alessandra Cherubini

Politecnico di Milano, Milan, Italy
{macchett, caironi, brevegli}@elet.polimi.it, aleche@mate.polimi.it

Abstract. In this paper we present an extension of the generalized lin-
ear equivalence relation, proposed in [7]. This mathematical tool can be
helpful for the classification of non-linear functions f : F m

p → F n
p based

on their cryptographic properties. It thus can have relevance in the de-
sign criteria for substitution boxes (S-boxes), the latter being commonly
used to achieve non-linearity in most symmetric key algorithms. First,
we introduce a simple but effective representation of the cryptographic
properties of S-box functions when the characteristic of the underlying
finite field is odd; following this line, we adapt the linear cryptanalysis
technique, providing a generalization of Matsui’s lemma. This is done in
order to complete the proof of Theorem 2 in [7], also by considering the
broader class of generalized affine transformations. We believe that the
present work can be a step towards the extension of known cryptanalytic
techniques and concepts to finite fields with odd characteristic.

Keywords: Boolean functions, generalized linear equivalence, linear
cryptanalysis, S-boxes.

1 Introduction

Symmetric key cryptographic algorithms play a crucial role in today’s secure com-
munication protocols and secure storage applications, due to their high efficiency
and key-agility. The class of block ciphers has recently known a flourishing of pro-
posals, also due to the Advanced Encryption Standard establishment process.

Block ciphers are usually characterized by an iterative nature: a constant
set of transformations, called round or more generically step, is applied several
times to the plaintext block in order to obtain the corresponding ciphertext.
The round transformation must necessarily possess several properties in order
to enforce the robustness of the whole algorithm, and to maximize efficiency: it
must be key-dependent, it should be highly non-linear and it should guarantee
a high level of diffusion of information.

These constraints must be satisfied regardless of the block cipher struc-
tural scheme, e.g. they are valid for Feistel networks [1], Lai-Massey [13] and
Substitution-permutation networks [8]. A common and well-studied method to
implement the non-linear step is to use bricklayer functions composed by S-
boxes. These are usually defined over the binary domain, i.e. S : Fm

2 → Fn
2 and

they are chosen such that their cryptographic characteristics are optimal.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 338–347, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Complete Formulation of Generalized Affine Equivalence 339

Several works have been focused on the characterization of the non-linear
properties of S-boxes, some examples being [3],[16],[17],[18], and on the possi-
bility of partitioning them into equivalence classes [14],[11],[12]; recent papers
propose efficient algorithms that can be used to decide if two S-boxes [6] or two
Boolean functions [10] are linearly equivalent. This research activity is moti-
vated by the relevant link between the properties of S-boxes and the security
and efficiency of block ciphers.

Two attacks that are particularly relevant for block ciphers are linear crypt-
analysis [15],[4] and differential cryptanalysis [5], thus most of the efforts have
been directed to the problem of finding S-boxes with optimal differential and
linear characteristics.

In [7], Breveglieri, Cherubini and Macchetti proposed an extension of the
criterion of functional linear equivalence called generalized linear equivalence;
it has been shown that generalized equivalence classes result from merging of
classical equivalence classes and that linear and differential characteristics are
indeed invariant under this broader class of transformation.

The aim of this paper is double fold. First, we elaborate more on the theoret-
ical basis of the original formulation of generalized equivalence; in fact, although
it has been proved that the linear characteristics of S-boxes are invariant in the
context of these transformations, the proof, as it is, is rigorously valid only for
fields of even characteristic. No formalization of the linear cryptanalysis tech-
nique over fields with odd characteristic can be found in the scientific literature.
This is provided in this paper, along with the corresponding generalization of
Matsui’s lemma. The original proof of invariance is then completely and coher-
ently derived.

A second contribution is the introduction of generalized affine transforma-
tions; these are indeed the natural extension of classical affine transformations
and complete the results of [7]. The proof of invariance for S-box cryptographic
robustness is thus obtained within the largest possible context.

This paper is organized as follows: in Section 2 we define and analyze the
linear characteristics of S-boxes defined over finite fields of odd characteristic. In
Section 3 we extend the linear cryptanalysis technique, providing a generaliza-
tion of Matsui’s lemma. In Section 4 we give a complete proof for the invariance
of cryptographic robustness of S-boxes, also considering generalized affine trans-
formations. Section 5 concludes the paper.

2 Linear Biases over F m
p

Broadly speaking, the goal of symmetric-key cryptanalysis is to distinguish a
block cipher from a set of random permutations, and to get information on key
material faster than it could be done via a trivial brute-force attack.

In the case of differential cryptanalysis1, the suggested distinguisher is the
probability of finding certain differences in the ciphertext blocks, given certain
1 We assume here that the reader has some basic familiarity with the ideas beyond

differential and linear cryptanalysis.

340 M. Macchetti et al.

differences in the corresponding plaintexts. If this probability deviates signifi-
cantly from what would be expected from a random permutation, the attack is
successful and information about the key can be found.

Differential characteristics for N rounds of a block cipher can be constructed
starting from differential characteristics of the single S-boxes; these in fact are
usually the only non-linear component of a symmetric key algorithm. Conven-
tional algorithms are defined over the finite field F2 for evident reasons of effi-
ciency. However, it is easy to extend the differential cryptanalysis technique to
finite fields of odd characteristic; this extension is of theoretical interest as it
may be used to test the cryptographic robustness of basic arithmetic operations,
such as multiplication, inversion, and power functions defined over a field Fpm .
Recent work has been done by Dobbertin [9] regarding the problem of finding
power monomials in such fields with optimal differential characteristics.

For a given S-box function f : Fm
p → Fn

p with p prime and m, n > 1 the
Difference Distribution Table (DDT) is built by computing the number δf (a, b)
of solutions x of the equation

f(x ⊕ a) � f(x) = b a ∈ Fm
p , b ∈ Fn

p (1)

where ⊕ and � respectively indicate sum over Fpm , the finite field associated
with the vector space Fm

p , and difference over Fpn . The lower the value of the
maximum entry in the table, ∆f = maxa�=0,b(δf (a, b)), the more robust function
f is versus differential cryptanalysis, since the differential characteristics δf (a, b)
of S-boxes located in different rounds of the cipher are, roughly speaking, con-
nected to form a multi-round characteristic. The amount of plaintext-ciphertext
block pairs needed to highlight a hypothetical differential bias is inversely pro-
portional to its magnitude.

The linear cryptanalysis technique is built upon a very similar concept,
namely that of linear distinguisher. The objective of linear cryptanalysis is to
build linear (over F2) equations involving plaintext, ciphertext and key bits that
hold with a probability significantly different from 50%. If this is possible for a
high number of rounds, then the attack may reveal information about the key
bits faster than brute-force attacks (this indeed is the case for the DES cipher).
Again, linear characteristics for a full cipher are built starting from those of the
single S-boxes.

More formally, the Linear Approximation Table (LAT) of an S-box function
f : Fm

2 → Fn
2 is built by counting the number λf (a, b) of solutions x of the

equation
a • x = b • f(x) a ∈ F2

m, b ∈ F2
n (2)

where the inner product over Fm
2 and Fn

2 is indicated with • and gives a value
in F2. The robustness to linear cryptanalysis is measured with the maximum
value Λf = maxa,b�=0(||λf (a, b) − 2m−1||). In fact, the event when the number
of solutions of (2) is always very near to 2m−1 is the best case for the designer
and the worst case for the attacker; this is because a random Boolean function is
expected to be equal to any linear Boolean function for roughly half of the points

A Complete Formulation of Generalized Affine Equivalence 341

of its domain, i.e. 2m−1 times in the specific context2. The attacker can then
infer nothing about the function, apart from the fact that it behaves randomly,
a thing which does not help in distinguishing the block cipher from a random
permutation.

Several extensions of linear cryptanalysis are known, see for instance [2] which
contains also a very good survey. An extension of linear cryptanalysis to finite
fields of odd characteristic may be beneficial for the same motivations outlined
above for the differential case.

We start by defining the affine biases for an S-box over Fp. Let f : Fm
p → Fn

p

be an S-box function, then we introduce the Affine Approximation Table (AAT)
of f , which is built by counting the number λf (a, b, c) of solutions x of the
equation

a • x ⊕ b • f(x) = c a ∈ Fp
m, b ∈ Fp

n, c ∈ Fp (3)

The constant c in (3) is introduced to take into account the fact that the
inner product now gives a value in Fp, and for this reason it is not sufficient
to compare f to all the linear functions, and in fact all affine functions must
be taken into consideration. Another way of looking at (3) is to say that we
count the number of times that function b • f(x) is equal to the affine function
(−a) • x ⊕ c, hence the name AAT.

Each cell of the AAT of f is indexed by the triplet {a, b, c} and the AAT
is indeed a three-dimensional array rather than a table, still we keep the old
terminology for clearness. The value of interest to the cryptanalyst becomes in
this case λf (a, b, c) − pm−1; the reason is that a random function over the range
Fp is expected to be equal to any affine function in roughly one case out of p, and
since the cardinality of the domain of f is pm a simple division gives the expected
result pm−1. The overall robustness of the function can then be characterized
with the parameter Λf = maxa,b�=0,c(||λf (a, b, c) − pm−1||).

In the binary case there is no need to consider affine functions, because the
number of solutions of equation

a • x ⊕ b • f(x) = c a ∈ F2
m, b ∈ F2

n, c ∈ F2 (4)

is equal to the number of solutions for the pair {a, −b} in (2) when c = 0 and is
equal to the difference between 2m and the previous number when c = 1. In a
sense, in fields of even characteristic, affine distinguishers are totally redundant
and give no advantage to the attacker in addition to linear distinguishers.

Even in the odd characteristic case a partial redundancy is present, because
it must hold that

p−1∑

c=0

λf (a, b, c) = pm (5)

and this implies that one value out of p in the AAT is redundant. At this point
it is useful to give a visual representation of the AAT, since this will also be

2 The functions for which Λf = 2
m
2 −1 are called Bent, and exist only under additional

hypotheses on the number of input/output variables.

342 M. Macchetti et al.

columna

b

c

layer

Fig. 1. A graphical representation of the Affine Approximation Table

useful in the following Sections to understand what is the concrete effect of
generalized linear and affine transformations. Figure 1 depicts the AAT of a
generic S-box function f ; the values of the three parameters a, b, c vary along
the three different axes of the table. We call layers the set of cells with constant
index c, and columns the set of cells with constant a, b indexes; these structures
are highlighted in the Figure.

Elaborating on these definitions, we can say that one out of the p layers is
then redundant, because essentially all the information is already contained in
the remaining p − 1 ones. The choice of the redundant layer is arbitrary, thus
in the following discussion we will assume that all the layers are maintained. It
is clear that the number of possible biases for S-boxes defined over Fp is higher
than that of S-boxes defined over the field F2; the latter only have two layers
in the AAT. This means that more computational effort is in general required
to calculate the AAT versus the LAT, but also that the cryptanalyst may have
more freedom in the choice of the biases to be used in an affine attack.

In the next Section we will see how the AATs can be used in such a gener-
alization of the linear cryptanalysis attack.

3 Extending Linear Cryptanalysis

The next step towards a complete formulation of linear cryptanalysis on fields
with odd characteristic is the extension of Matsui’s Piling-Up Lemma [15]; this
is classically used to obtain the bias of a sum of linearly biased variables, even
if it is rigorously valid only if the variables are strictly uncorrelated.

An extension of Matsui’s Lemma has been proposed in [2], in the context
of a specific variant of linear cryptanalysis: the input/output Boolean sums are

A Complete Formulation of Generalized Affine Equivalence 343

substituted with linear (and non-linear) projections over F l
2. The formulation

is indeed quite complex; our goal here is rather to obtain a simple formula,
involving only the affine biases, which is the direct extension of that of Matsui.

Let X1 be a variable with values over Fp; the affine bias εi
1 is defined via the

following equation:

Pr(X1 = i) =
1
p

+ εi
1 i ∈ Fp (6)

Thus a vector of affine biases Ξ1 =< ε01, . . . , ε
p−1
1 > is associated with X1. Now,

we want to be able to compute the affine bias vector of a sum of two such
variables starting from the two single bias vectors; this is done in the following
calculations, where all the sums performed over Fp are indicated with ⊕.

Pr(X1 ⊕ X2 = k) =
∑

i⊕j=k

(
1
p

+ εi
1)(

1
p

+ εj
2) =

=
∑

i⊕j=k

1
p2 +

1
p

∑

i⊕j=k

εi
1 +

1
p

∑

i⊕j=k

εj
2 +

∑

i⊕j=k

εi
1ε

j
2 =

=
1
p

+
∑

i⊕j=k

εi
1ε

j
2 (7)

By re-writing the last passage using only the affine biases we obtain:

εk
1,2 =

∑

i⊕j=k

εi
1ε

j
2 (8)

which is a direct generalization of Matsui’s formula for the sum of two variables;
moreover, the link between the affine bias vectors is given by:

Ξ1,2 = Ξ1 � Ξ2 (9)

where � stands for a variant of the discrete convolution operation where the sum
and differences of vector indexes are computed over Fp. We note that both (8)
and (9) could be easily extended to a number n > 2 of variables, and that they
reduce to the well-known formula for linear cryptanalysis if p = 2.

In the proposed extension of linear cryptanalysis the variables Xi are indeed
approximations of the non-linear components of the algorithm under considera-
tion, typically the active S-boxes, i.e. they will have the form of (3). Thus, the
affine bias vector Ξi is indeed nothing but a column of the AAT of f , indexed
by the specific values of a, b. We think that the name affine cryptanalysis could
be effectively used to identify the extension of linear cryptanalysis to fields of
odd characteristic.

An outline of Matsui’s algorithm 2 targeting a cryptographic algorithm which
operates on the base field Fp is roughly as follows:

1. The attacker chooses an affine characteristic over N −1 rounds of the cipher;
the affine distinguishers of the active S-boxes are calculated and stored in
the AATs.

344 M. Macchetti et al.

2. The attacker chooses the affine approximations for all active S-boxes, i.e. the
values of the parameters a, b are selected for each active S-box.

3. Equation (9) can then be used to calculate the affine bias vector of the global
characteristic, ΞT .

4. Last-round decryptions of the ciphertexts will eventually reveal the bias of
the affine approximation under the correct key hypothesis.

We underline a difference with regard to the case of even characteristic. The
maximum affine bias inside ΞT must always be searched for and identified; this
happens because the position of the εi

T with maximum (minimum) value depends
on the key material which is added along the affine trail. This has the effect of
changing the i in a key-dependent way, and roughly increases the complexity of
the attack by a factor of p compared to standard linear cryptanalysis.

An anonymous referee has pointed out that in the case of composite fields
Fpmn , the field Fpm can be taken as a base field in place of Fp and all equations
could be re-written properly to obtain affine approximations at a higher level.
The constant c would in this case belong to Fpm , and the inner product in (3)
would be modified accordingly. This leads to an interesting formulation of the
affine biases that may have practical applications in the case of composite fields
with even characteristic.

4 A Complete Formulation of Generalized Equivalence

4.1 An Extended Proof

Given the previous background, it is now possible to give a coherent proof of
Theorem 2 in [7]. The need for a formal extension basically derives from the
fact the original formulation of generalized linear equivalence does not take into
account the differences between linear cryptanalysis and affine cryptanalysis.
The part about differential characteristics remains unchanged and will not be
repeated here (it will be expanded when generalized affine transformation are
considered).

We summarize here the basics of the approach outlined in [7]. It is possible
to associate a particular geometric representation to any completely specified
function f : Fm

p → Fn
p . Let S be a linear space of dimension k = m + n, where

the vector components are defined over Fp; consider the set F of pm vectors,
belonging to S, formed by the rows of the truth-table of f (each vector belonging
to F is the concatenation of an input vector of f and its corresponding output
vector). We refer to F as the implicit embedding of f in the linear space S.

If an invertible linear transformation of coordinates is applied to S, the es-
sential information contained in F is not changed. Every such invertible linear
transformation is governed by a non-singular (m + n)× (m + n) matrix over Fp.
The non-singularity of this matrix, while providing the possibility to invert the
transformation, also assures that we do not loose information while transforming
the coordinates. The extended Theorem follows.

A Complete Formulation of Generalized Affine Equivalence 345

Theorem 1. Given two functions f, g : Fp
m → Fp

n and a non-singular (m +
n) × (m + n) matrix T over Fp, if g = T (f) then the distributions of values in
the AATs of f and g are equal.

Proof. A cell of the AAT table of f indexed by {a, b, c} contains the number of
input vectors x such that aT •x⊕ bT • f(x) = c, where, for sake of clearness, the
transposed of vector v is indicated with vT .
Thus, if we consider the geometric representation for function f we have that
the cell contains the number of vectors w belonging to the implicit embedding of
f such that kT • w = c where k = (a)|(b) (the concatenation of vectors a and b);
note that a ∈ Fp

m, b ∈ Fp
n and k ∈ Fp

m+n. The merged index k is unique for
every column in the AAT of the two functions.
These vectors will be transformed by the change of basis into other vectors w′

belonging to the implicit embedding of function g such that w′ = Tw. We can
rewrite the equation as:

kT • Tw = c ⇔ (T T k)T • w = c ⇔ (k′)T • w = c

Since matrix T is non-singular, there is a bijection between the values of k and
those of k′ = T T k, i.e. the cells of the AAT of g are just a (linear) rearrangement
of the cells of the AAT of f . ��

Note that the cells belonging to a given layer cannot be shifted to different layers;
indeed the cells of all the layers are reordered in a uniform way, given only by
matrix T. The question if there are even more general transformations can thus
arise, and we positively answer in the following Section.

4.2 Generalized Affine Transformations

We introduce the following functional equivalence relation.

Definition 1. Two functions f, g : Fm
p → Fn

p are called generally affine equiv-
alent if and only if the implicit embedding of g can be obtained from the implicit
embedding of f as

G = T (F) ⊕ e (10)

where T is a non-singular (m + n) × (m + n) matrix over Fp and e is a vector
belonging to Fm+n

p .

This is the natural and most elegant definition of generalized equivalence. A
proof of invariance for the cryptographic characteristics of functions f, g is given
in the following theorem.

Theorem 2. Given two functions f, g : Fm
p → Fn

p , a non-singular (m + n) ×
(m + n) matrix T and a constant vector e ∈ Fm+n

p , if g = T (f) ⊕ e then the
distributions of values in the AATs and DDTs of f and g are equal.

Proof. We first prove the relation regarding the DDTs of f and g.
A cell of the DDT of f located in the i-th row and in the j-th column contains

the number of the input vector pairs (x, y) such that y = x⊕i and f(y) = f(x)⊕j.

346 M. Macchetti et al.

Thus, if we consider the geometric representation for function f we have that the
cell contains the number of vector pairs (w, z) belonging to the implicit embedding
of f such that w = z ⊕ k where k = (i)|(j); note that i ∈ Fm

p , j ∈ Fn
p and

k ∈ Fm+n
p . These pairs will be transformed by the change of basis into other pairs

(w′, z′) belonging to the implicit embedding of function g such that w′ = Tw ⊕ e,
z′ = Tz ⊕ e. If we define k′ equal to w′ − z′, we obtain that k′ = Tk and the
relation w′ = z′ ⊕ k′ holds. Since matrix T is non-singular, there is a bijection
between the values of k and those of k′: this means that the cells of the DDT of
g are just a rearrangement of the cells of the DDT of f .

Now we prove the relation between the AATs.
A cell of the AAT of f located in the column indexed by a, b and in the c− th

layer contains the number of input vectors x such that aT • x ⊕ bT • f(x) = c.
Thus, if we consider the geometric representation of function f we have that the
cell contains the number of vectors w belonging to the implicit embedding of f
such that kT •w = c where k = (i)|(j); note that a ∈ Fm

p , b ∈ Fn
p , k ∈ Fm+n

p and
c ∈ Fp. These vectors will be transformed by the change of basis into other vectors
w′ belonging to the implicit embedding of function g such that w′ = Tw ⊕ e. We
can rewrite the equation as:

kT • (Tw ⊕ e) = c ⇐⇒ (T T k)T • w = c � kT • e ⇐⇒ (k′)T • w = c′ (11)

Given the non-singularity of matrix T , we have a bijection between the values
of k and k′; moreover, for fixed k the values of c and those of c′ are bound by
a permutation. Thus (11) states that the cells of the AAT of g are an (affine)
rearrangement of the cells of the AAT of f . ��

The reordering of the cells in the AAT is now more complex than in the
preceding case, because here the cells can also migrate among the different layers
due to the presence of e; actually the columns of the AAT of f are permuted,
and the cells inside each column are also re-ordered in a column-specific way.

The nature of the transformation defined in (10) is quite general; an open
question is if this is indeed the most general instance of affine functional equiv-
alence relation.

5 Conclusions

In this paper we have given an extension of the generalized equivalence relation
between functions defined over finite fields; the generalized affine transformations
are the most general instance of equivalence relations proposed so far in the
scientific literature.

As a side result, we have derived an extension of the linear cryptanalysis
technique that is applicable to finite fields of odd characteristic; this may be
practically useful to test the cryptographic robustness of arithmetic operations
(and cryptographic algorithms) defined over such fields. The extension has been
named affine cryptanalysis.

A Complete Formulation of Generalized Affine Equivalence 347

References

1. Announcing the Standard for DATA ENCRYPTION STANDARD (DES). FIPS
Publication 46-2, NIST, 1993.

2. Baignéres, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Crypt-
analysis? Proceedings of ASIACRYPT 2004, 432-450, 2004.

3. Beth, T., Ding, C.: On Almost Perfect Nonlinear Permutations. Proceedings of
EUROCRYPT ’93, 65–76, 1994.

4. Biham, E.: On Matsui’s Linear Cryptanalysis. Proceedings of EUROCRYPT ’94,
341–355, 1994.

5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology, 4(1):3–72, 1991.

6. Biryukov, A., De Canniere, C., Braeken, A., Preneel, B.: A Toolbox for Crypt-
analysis: Linear and Affine Equivalence Algorithms. Proceedings of EUROCRYPT
2003, 33–50, 2003.

7. Breveglieri, L., Cherubini, A., Macchetti, M.: On the Generalized Linear Equiv-
alence of Functions over Finite Fields. Proceedings of ASIACRYPT 2004, 79–91,
2004.

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer-Verlag, 2002.

9. Dobbertin, H., Mills, D., Muller, E.N., Pott, A., Willems, W.: APN functions in
odd characteristic. Discrete Mathematics, 267(1-3):95–112, 2003.

10. Fuller, J., Millan, W.,: Linear Redundancy in S-Boxes. Proceedings of FSE 2003,
74–86, 2003.

11. Harrison, M.A.: The Number of Classes of Invertible Boolean Functions. Journal
of ACM, 10:25–28, 1963.

12. Harrison, M.A.: On Asymptotic Estimates in Switching and Automata Theory.
Journal of ACM, 13(1):151–157, 1966.

13. Junod, P., Vaudenay, S.: FOX : A New Family of Block Ciphers. Proceedings of
SAC 2004, 114–129, 2004.

14. Lorens, C.S.: Invertible Boolean Functions. IEEE Transactions on Electronic Com-
puters, EC-13:529–541, 1964.

15. Matsui, M.: Linear Cryptanalysis method for DES cipher. Proceedings of EURO-
CRYPT ’93, 386–397, 1994.

16. Nyberg, K.: Differentially Uniform Mappings for Cryptography. Proceedings of
EUROCRYPT ’93, 55–64, 1994.

17. Nyberg, K.: Perfect Nonlinear S-Boxes. Proceedings of EUROCRYPT ’91, 378–386,
1991.

18. Nyberg, K., Knudsen, L. R.: Provable security against differential cryptanalysis.
Proceedings of CRYPTO ’92, 566–574, 1992.

A New Combinatorial Approach
to Sequence Comparison

S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino

University of Palermo, Dipartimento di Matematica ed Applicationi,
Via Archirafi 34, 90123 Palermo, Italy

{sabrina, restivo, mari}@math.unipa.it, giovyros@virgilio.it

Abstract. In this paper we introduce a new alignment-free method for
comparing sequences which is combinatorial by nature and does not use
any compressor nor any information-theoretic notion. Such a method is
based on an extension of the Burrows-Wheeler Transform, a transforma-
tion widely used in the context of Data Compression. The new extended
transformation takes as input a multiset of sequences and produces as
output a string obtained by a suitable rearrangement of the characters of
all the input sequences. By using such a transformation we define a mea-
sure to compare sequences that takes into account how the characters
coming from different input sequences are mixed in the output string.
Such a method is tested on a real data set for the whole mitochondrial
genome phylogeny problem. However, the goal of this paper is to in-
troduce a new and general methodology for automatic categorization of
sequences.

Introduction

The recent developments in sequencing genomes have given a new direction to
bioinformatic research. Actually, the possibility of sequencing the whole genome
has raised the question of discovering common features between biological se-
quences corresponding to different species, reflecting on common evolutionary
and functional mechanisms. This reason has led researchers to look for a defini-
tion of a distance measure on sequences able to capture these common mecha-
nisms. Most of the traditional methods for comparing biological sequences were
based on the technique of sequence alignment. Nevertheless, sequence alignment
considers only local mutations of the genome, therefore it is not suitable to mea-
sure events like segment rearrangements, that involve longer genomic sequences.
For this reason some alignment-free distance measures have been recently in-
troduced (see [25] for a survey). Most of them are based on the concept of
information theory and data compression (cf. [23,13,4,6,1]). Such measures are
more suitable to deal with the problem of whole genome phylogeny. The intuitive
idea is that the more similar two sequences are, the more effective their joint
compression is than their independent compression.

We introduce a new alignment-free method for comparing sequences that,
differently from other ones, is combinatorial by nature and does not make use of

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 348–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Combinatorial Approach to Sequence Comparison 349

any compressor nor any information theoretic notion. Our method is based on
an extension of the Burrows-Wheeler Transform recently given in [18,19]. The
Burrows-Wheeler Transform (denoted by BWT) is a well founded mathemati-
cal transformation on sequences introduced in 1994 (cf. [2]), widely used in the
context of Data Compression ([20,7]) and recently studied also from a combina-
torial point of view ([17]). It has been remarked (cf. [5]) that there exists a close
relation between BWT and a technique, used by Gessel and Reutenauer in [8]
for stating a correspondence between finite words and a set of permutations with
a given cyclic structure and a given descent set (cf. also Chapter 11 of [14]).

Loosely speaking, BWT is a transformation that produces a permutation
BWT (w) of an input sequence w, such that we can easily retrieve w from
BWT (w), i.e. the transformation is reversible, and, at the same time, BWT (w)
is much easier to compress than w.

The new transformation introduced in [18,19] and denoted by E, works anal-
ogously to BWT , but takes as input a multiset S of sequences. Such a transfor-
mation has been also inspired by the above mentioned technique of Gessel and
Reutenauer.

A fundamental step in the computation of E(S) consists in sorting all the
symbols occurring in the sequences in S, using as a sort key for each symbol
its context, i.e. the segment following it in the sequence. Such a step is realized
by sorting the conjugates of all sequences in S according to an order relation
different from the lexicographical one.

We use the transformation E in order to define a new method for comparing
sequences. Such a method is based on the following idea: when E is applied to
S = {u, v}, if the same segment s occurs both in u and v, then the conjugates of
u and v starting by s are likely to be close in the sorted list of conjugates. This
implies that the greater is the number of segments shared by u and v, the greater
is the mixing of the conjugates of u and v in the sorted list. The comparison
method based on transformation E will measure how similar u and v are, by
taking into account how their conjugates are mixed. This intuition has different
possible formalizations. In [16] we introduced a distance measure that computes
the number of alternations in the above list between the conjugates of u and
those of v. In this paper we propose a new measure that takes into account also
the characters in the output of the transformation.

The computation of our distance is simple and efficient, and it is particularly
advantageous in the case of a multiple sequences comparison. We also test our
method by applying the distance here introduced to a data set for the whole
mitochondrial genome phylogeny problem. The results we have obtained are very
close to the ones derived, with other approaches, in most of the papers in which
the considered species are the same. Remark that, however, the goal of this paper
is not to confirm or refute previous phylogenetic studies but rather to introduce a
new methodology for automatic categorization of generic sequences of characters.
Actually, such a methodology can also be applied to natural language processing,
for instance in order to obtain languages phylogenies, authorship attributions,
classifications of texts.

350 S. Mantaci et al.

1 Preliminaries: the BWT and Its Extension

1.1 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT from now on) was introduced in 1994
by Burrows and Wheeler [2] and represents an extremely useful tool for textual
lossless data compression. The idea is to apply a reversible transformation in or-
der to produce a permutation BWT (w) of an input sequence w, defined over an
ordered alphabet A, so that the sequence becomes easier to compress. Actually
the transformation leads to group characters together so that the probability of
finding a character close to another instance of the same character is substan-
tially increased. BWT transforms a sequence w = a0a1 · · · an−1 by constructing
all n cyclic shifts of w, sorting them lexicographically and extracting the last
character of each cyclic shift. The sequence BWT (w) consists of the sequence
of these characters. Moreover the transformation computes the index I, that is
the row containing the original sequence in the sorted list of cyclic shifts.

For instance, suppose we want to compute BWT (w) where w = abraca.
Consider the matrix M in Figure 1, which consists of all cyclic shifts of w,
lexicographically sorted.

F L
↓ ↓

0 a a b r a c
I → 1 a b r a c a

2 a c a a b r
3 b r a c a a
4 c a a b r a
5 r a c a a b

Fig. 1. The matrix M of all cyclic rotations of the sequence w = abraca

The last column L of the matrix represents BWT (w) = caraab and I = 1
since the original sequence w appears in row 1. The first column F , instead,
contains the sequence of the characters of w lexicographically sorted.

In [2] the following properties concerning BWT have been proved:

1. For all i = 0, . . . , n − 1, i �= I, the character L[i] is followed in the original
string by F [i];

2. for each character z, the i-th occurrence of z in F corresponds to the i-th
occurrence of z in L.

From above properties it follows that the Burrows-Wheeler transform is re-
versible in the sense that, given BWT (w) and the index I, it is possible to
recover the original string w. Actually, according to Property 2, we can define
a function τ : {0, 1, . . . , n − 1} → {0, 1, . . . , n − 1} giving the correspondence be-
tween the positions of characters of the first and the last column of the matrix
M . The function τ represent also the order in which we have to rearrange the

A New Combinatorial Approach to Sequence Comparison 351

elements of F to reconstruct the original sequence w. Hence, starting from the
position I, we can recover the sequence w as follows:

ai = F [τ i(I)] , where τ0(x) = x, and τ i+1(x) = τ(τ i(x)).

We show, for instance, how the reconstruction works for the example in
Figure 1:

τ =
(0 1 2 3 4 5

1 3 4 5 0 2
)

,

a0 = F [1] = a
a1 = F [3] = b
a2 = F [5] = r
a3 = F [2] = a
a4 = F [4] = c
a5 = F [0] = a.

1.2 An Extension of the BWT to k Sequences

In [18,19] it was defined a new transformation that works analogously to the
BWT , but it takes as input a multiset of k sequences, with k ≥ 1. Such a
transformation has also been inspired by a Gessel and Reutenauer result on
Combinatorics of Permutations (cf. [8]). We need to introduce a new order re-
lation between sequences that differs from the usual lexicographical order when
one sequence is a prefix of the other one.

Let A be a finite ordered alphabet. We denote by A∗ the set of sequences
over A.

A sequence v ∈ A∗ is primitive if v = wn implies v = w and n = 1. In this
paper we take into account only primitive sequences. Note that this hypothesis
is not restrictive, since any string can be transformed into a primitive string
just by adding an end-of-string symbol. Recall that two sequences x, y ∈ A∗ are
conjugate if x is a cyclic shift of y i.e. x = uv and y = vu for some u, v ∈ A∗.
Note that a sequence v is primitive if and only if all its conjugates are distinct.
If u is a sequence in A∗, we denote by uω the infinite sequence obtained by
infinitely iterating u, i.e. uω = uuuuu Remark that if u and v are two distinct
primitive sequences, then uω �= vω . On infinite sequences, the lexicographic
ordering is naturally defined , that is, given two infinite sequences x = x1x2 . . .
and y = y1y2 . . ., with xi, yi ∈ A, we say that x <lex y if either x = y, or there
exists an index j ∈ N such that xi = yi for i = 1, 2, . . . , j − 1 and xj < yj .

Let u, v be two primitive sequences. We say that

u �ω v ⇐⇒ uω <lex vω

It is easy to verify that �ω is a total order. We also remark that this order
relation is different from the lexicographic one. In fact for instance ab <lex aba
but aba �ω ab. Although the �ω order of u and v is defined by using infinite
sequences, the following proposition shows that it is possible to decide their
mutual �ω-ordering by extending them up to the length |u| + |v| − gcd(|u|, |v|).

352 S. Mantaci et al.

Such a bound is a consequence of a well known result of Periodicity on Words,
the Fine and Wilf theorem. We will denote by prefk(u) the prefix of length k of
a finite or infinite sequence u. In [18,19] the following proposition is proved.

Proposition 1. Given u and v two primitive sequences,

u �ω v ⇐⇒ prefk(uω) <lex prefk(vω),

where k = |u| + |v| − gcd(|u|, |v|).

We can also remark that the bound given in Proposition 1 is tight. This is a
consequence of the tightness of such a bound in the Fine and Wilf Theorem (cf.
[22]).

Example 1. We can consider the sequences u = abaab and v = abaababa. One
can see that v �ω u and uω and vω differ for the character in position 12=5+8-1.
However remark that u <lex v.

u︷ ︸︸ ︷
abaab

u︷ ︸︸ ︷
abaab

u︷ ︸︸ ︷
ab · · ·

abaababa︸ ︷︷ ︸
v

abaa · · ·︸ ︷︷ ︸
v

Since we are interested in the �ω-sorting of k sequences, it could be useful to
have a common bound for all strings to be sorted. This can be derived from an
extension of the Fine and Wilf Theorem to more than two periods (cf. [24,10]).

Let S = {u1, . . . uk} be a multiset of k primitive sequences of A∗. We define
the Extended Burrows-Wheeler Transform (denoted by E) as follows:

– Let w1, w2, . . . , wm be the list of conjugates of elements of S, sorted according
to the order �ω, that is wi �ω wj for 1 ≤ i < j ≤ m.

– We denote by I the set of indices representing the positions in the list {wi}m
i=1

of the original sequences u1, . . . , uk in S.
– We denote by E(S) the word obtained by concatenating the last character

of the each sequence wi, for i = 1, . . . , m.
– The output of the transformation is the couple (E(S), I),

If we arrange the sorted list of the conjugates of elements of S in a table, the
sequence E(S) is obtained by concatenating the last elements of each row in the
table.

Example 2. Let S = {abac, cbab, bca, cba}. We represent below on the left side
the <lex-ordered list of all wω , where the w’s are the conjugates of elements in
S, and on the right side the final table with the �ω-ordered rows:

Remark 1. Notice that in case of k = 1, that is S = {u}, one has that E(S) =
BWT (u). Moreover, remark that if S = {u1, . . . , uk}, then if E(S) is an element
of the shuffle of BWT (u1), BWT (u2), . . . , BWT (uk), since the conjugates of a
single word in S are relatively sorted in the sorted list of all conjugates. For the
same reason, if S = X ∪ Y , E(S) belongs to the shuffle of E(X) and E(Y).

A New Combinatorial Approach to Sequence Comparison 353

a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

Fig. 2. The output is the couple (E(S),I) where E(S) = ccbbbcacaaabba and I =
{1, 9, 13, 14}.

Let us denote by M the table of the �ω-sorted conjugates of the elements of
the multiset S. Analogously to the case of BWT , in [16] the following properties
have been proved:

1. For every i �∈ I, the first character of the i-th row of M , follows the last
character of the same row in one of the sequences in S.

2. For any character, its occurrences in the first column of M appear in the
same order as in E(S).

As a consequence of the above properties, in [16] it has been proved that the
transformation E is reversible in the sense that given an output (E(S), I) of E,
the original multiset S of primitive sequences over A can be recovered.

From an algorithmic point of view, as well as for the Burrows-Wheeler trans-
formation (cf. [20,2]), the time complexity of the extended transformation de-
pends on the sorting step. The problem of sorting the list of all conjugates can
be reduced to the sorting of all suffixes of these sequences. This problem has
been widely studied and it can be solved in linear time by building a suitable
data structure (cf. [9,21,15,11]).

2 New Sequence Distance Measures

The transformation E can be used in order to define a class of distance measures
between two sequences. Such measures are based on the remark that, when E
is applied to a pair of sequences u, v, if the same segment s appears both in u
and in v, then the conjugates of u and v starting by s are likely to be close in
the �ω-sorted list of conjugates. This implies that the greater is the number of
segments shared by u and v, the greater is the mixing in the sorted list of the
conjugates of u and v. A distance measure based on transformation E will take
into such a mixing. This intuition has different possible formalizations. In this
section we first recall a distance measure introduced in [16] that computes the
number of alternations in the above list between the conjugates of u and those of

354 S. Mantaci et al.

v. Then, we propose a new measure that takes into account also the characters
in the output of the transformation.

Let S = {u, v} and let w1, w2, . . . , wm be the sorted list of the conjugates of
u and v obtained in the first step of the computation of E(u, v). Consider the
new alphabet Σ = {U, V }: the coloring of E(u, v) is the map γ: {1, 2, · · · , m} →
{U, V } defined as:

γ(i) =
{

U if wi is a conjugate of u
V if wi is a conjugate of v

If we say that U and V are the colors associated to u and v respectively, then
γ associates to each conjugate of u the color U .

The distance measure δ introduced in [16] uses the map γ. We report here
the definition:

Definition 1. Let u, v ∈ A∗ be two sequences and let Γ (u, v) = γ(1)γ(2) · · ·
γ(m) = Un1V n2Un3 · · ·V nk , for some n1, n2, . . . , nk ∈ N. Then

δ(u, v) =
k∑

i=1,
ni �=0

(ni − 1)

In the Example 3 below, the computation of the distance δ on two words is
shown. Notice that distance δ(u, v) considers the size of the blocks in Γ (u, v)
having the same color, independently from the corresponding letter in E(u, v).
That is, it takes into account the alternation of conjugates of u and v in the
output of the extended transformation, but does not consider the characters in
the same colored block. In [16] several properties of such a distance measure
are proved. In particular, if u and v are conjugates, then δ(u, v) = 0, but the
converse is not always true, that is δ(u, v) = 0 does not imply that u and v are
conjugates. We note also that the triangle inequality does not hold for δ.

In this section we are going to define a different distance measure, that cap-
tures a different aspect of similarity between strings. Such a new distance takes
into account at the same time the output of the transformation E and the colo-
ring γ of its elements.

In order to introduce the new measure we need some notations.
Given a sequence x = x1x2 · · · xn ∈ A∗, we denote by xi,j , with 1 ≤ i ≤ j ≤ n,

the subsequence of x starting at position i and ending at position j, that is
xi,j = xixi+1 · · ·xj . A monotonic block of x is a subsequence xi,j constituted
by equal characters and that is maximal with respect to this property, that is
xi,j = aj−i+1 for some a ∈ A and xi−1, xj+1 �= a. Notice that every word can be
decomposed in a unique way as concatenation of monotonic blocks.

Let E(u, v) be the output of E on the words u and v and let γ be its coloring.
Let B1B2 · · · Bk be the monotonic block decomposition of E(u, v). Let us suppose
that for some h ∈ {1, 2, . . . , k}, Bh = E(u, v)i,j . Then we define ch(u) the number
of characters colored by U in the block Bh, that is

ch(u) = card{l | i ≤ l ≤ j and γ(l) = U}.

A New Combinatorial Approach to Sequence Comparison 355

Analogously ch(v) is the number of characters colored by V in the block Bh,
that is

ch(v) = card{l | i ≤ l ≤ j and γ(l) = V }.

The distance we are going to define takes into account how many symbols col-
ored by U and V can be found inside each monotonic block in E(u, v). Formally
we define our distance measure as follows:

Definition 2. Let u and v be two words over A, E(u, v) the output of E, γ its
coloring and B1B2 · · · Bk its monotonic block decomposition. We define:

�(u, v) =
k∑

i=1

|ci(u) − ci(v)|.

Example 3. Consider the words u = aaabbbb and v = abaabbb. Then

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14
E(u, v) b b a b a a b a b b b b a a

γ U V U V V U U V V U V U V U
|ci(u) − ci(v)| 0 1 1 0 1 1 0 0

Here we have distinguished the different monotonic blocks by writing in bold-
face the ones corresponding to the character b and leaving with the normal
face the ones corresponding to character a. We write the value |ci(u) − ci(v)|
at the end of the corresponding i-th monotonic block. Then we can see that
�(u, v) =

∑8
i=1 |ci(u) − ci(v)| = 4. Regarding to distance δ, since Γ (u, v) =

UV UV 2U2V 2UV UV U then δ(u, v) = 3.

Remark 2. Notice that � is a distance measure for conjugacy classes. Actually,
if u′ is a conjugate of u and v′ is a conjugate of v, then �(u, v) = �(u′, v′).

Proposition 2. Let u, v ∈ A∗. Then �(u, v) = 0 if and only if u is a conjugate
of v.

Proof. If u is a conjugate of v, then in the sorted list w1, w2, · · ·wm, for all odd
i, wi and wi+1 are equal and they are conjugates of u and v respectively. That
is, for each monotonic block Bh of E(u, v) we have an even number of elements,
alternatively colored U and V , that is ch(u) = ch(v). Then �(u, v) = 0.

Conversely, if �(u, v) = 0, then for each monotonic block Bh of w, ch(u) =
ch(v). Since in each monotonic block we have the same number of characters
coming from u and v and since E(u, v) is an element of the shuffle of BWT (u)
and BWT (v) (cf. Remark 1), we derive that BWT (u) = BWT (v). So, we can
deduce that u is a conjugate of v.

Nevertheless, we can not state that � is a distance under the mathematical
point of view. In fact � does not satisfy the triangle inequality, as shown in the
following example:

Example 4. Consider the words u = aaabbbb, v = abaabbb and z = abababb. We
have that �(u, z) = 4, �(u, v) = 12 and �(v, z) = 6.

356 S. Mantaci et al.

2.1 Multiple Sequence Comparison

A particular feature of our method is that it can also be applied in order to com-
pare k different sequences, with k > 2. More formally, let S = {u1, u2, . . . , uk}
be a set of sequences and let w1, w2, . . . , wm be the sorted list of the conjugates
of the elements of S obtained in the first step of the computation of E(S). Con-
sider the new alphabet Σ = {U1, U2, . . . , Uk}. The coloring of E(S) is the map
γ: {1, 2, . . . , m} → Σ defined, for as:

γ(i) = Uj if wi is a conjugate of uj

Notice that the coloring γ allows to recover the transformation of a subset
of S. In fact, suppose that X = {x1, x2, . . . , xh} ⊂ S and let X1, . . . , Xh be the
colors associated to x1, . . . , xh, respectively. Then E(X) is obtained from E(S)
by deleting the characters having colors not associated to elements of X .

Example 5. Let S = {u, v, z}, where u = aaabbbb, v = abaabbb and z = abababb.
Let U, V, Z be the colors associated, by the map γ, to u, v, z, respectively:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
E(u, v, z) b b a b b b b a a b a b b a a b b a b a a

γ U V U V Z Z Z V U U V V Z Z Z U V Z U V U

It is easy to see how this output allows us to compute the transformation
applied to all pairs of words in S. In fact E(u, v) = bbabaababbbbaa, E(u, z) =
babbbabbaababa and E(v, z) = bbbbbaabbaabaaa. Moreover we can also easily
compute �(u, z) = 4, �(u, v) = 12 and �(v, z) = 6

The previous example shows how we can compute the distance � of all pairs
taken out of a set S of k sequences of length n by simultaneously applying
the transformation E to the entire set S. Such a technique is very useful from
a computational point of view, for instance in order to construct phylogenetic
trees (see Section 3). Actually, in order to obtain the k × k distance matrix,
we can compute E(S) and its coloring γ by performing a single sorting of kn
sequences of length n instead of O(k2) sortings of 2n sequences of length n.

From a theoretical point of view, such a method allows to define, in a natural
way, a notion of distance between multisets of sequences. Actually, given two
multisets S and T , we denote by w1, w2, . . . , wm the sorted list of the conjugates
of the elements of S and T obtained in the first step of the computation of
E(S ∪ T). We can consider the new alphabet Σ = {U, V } and the coloring map
γ: {1, . . . , m} → Σ defined as follows:

γ(i) =
{

U if wi is a conjugate of an element of S
V if wi is a conjugate of an element of T

Let E(S ∪ T) be the output of E, γ its coloring map and B1B2 · · · Bp its
monotonic block decomposition. We denote by ci(S) the number of characters
in the monotonic block Bi colored by U . Then we can define

A New Combinatorial Approach to Sequence Comparison 357

�(S, T) =
p∑

i=1

|ci(S) − ci(T)|.

Such a measure provides a further tool for the classification of data.

3 Experiment on Biological Sequences

The distance introduced in this paper measures the dissimilarity between two
conjugacy classes of sequences, i.e. two circular sequences (cf. Remark 2)1. So, in
order to test our method, we applied a normalized version of our distance to the
whole mitochondrial genome phylogeny, since a mitochondrial DNA sequence
can be considered as a circular sequence. We used several groups of mtDNA
genomes and the results we have obtained are very close to the ones derived,
with other approaches, in most of the papers in which the same dataset is con-
sidered. Actually, in this section we report an experiment in which we construct
a phylogeny of the Eutherian orders using complete unaligned mitochondrial
genomes. We choose our group of sequences by using the mtDNA genomes of the
following 20 mammals from GenBank : human (Homo sapiens, V00662), chim-
panzee (Pan troglodytes, D38116), pigmy chimpanzee (Pan paniscus, D38113),

0.250.30.350.40.450.50.550.60.650.7

GreySeal

HarborSeal

Cat

WhiteRhino

Horse

FinbackWhale

BlueWhale

Cow

Rat

HouseMouse

Gibbon

Gorilla

Human

Chimpanzee

PygmyChimpanzee

Orangutan

SumatranOrangutan

Opossum

Wallaroo

Platypus

Fig. 3. The evolutionary tree built from complete mammalian mtDNA sequences of
the 20 species analyzed in (Cao et al., 1998)

1 Recall that in order to consider not circular sequences, it suffices to add an end-of-
string symbol # to the sequences.

358 S. Mantaci et al.

gorilla (Gorilla gorilla, D38114), orangutan (Pongo pygmaeus, D38115), gibbon
(Hylobates lar, X99256), sumatran orangutan (Pongo pygmaeus abelii, X97707),
horse (Equus caballus, X79547), white rhino (Ceratotherium simum, Y07726),
harbor seal (Phoca vitulina, X63726), gray seal (Halichoerus grypus, X72004),
cat (Felis catus, U20753), finback whale (Balenoptera physalus, X61145), blue
whale (musculus, X72204), cow (Bos taurus, V00654), rat (Rattus norvegicus,
X14848), house mouse (Mus musculus, V00711), opossum (Didelphis virginiana,
Z29573), wallaroo (Macropus robustus, Y10524), and platypus (Ornithorhyncus
anatinus, X83427). Note that the rodent species are kept to murids only and
that marsupials and monotremes are also added. The dendrogram (see Figure 3)
is generated by using a single linkage clustering.

The phylogeny here obtained is very close to the ones obtained in most of the
papers in which the species considered are almost the same (cf. [23,3,12,13]). Our
resulting phylogeny proposes the following grouping of the placental mammals:
(Primates, (Ferungulates, Rodents)).

Nevertheless, the goal of this experiment is not to confirm or refute previous
phylogenetic studies but rather to introduce new methods and tools to the com-
parative genomics research community. Actually, the phylogeny here obtained
by using the proposed distance shows that our method can successfully construct
evolutionary trees using whole genome sequences.

Acknowledgments

We wish to thank Cenk Sahinalp for his useful suggestions that led to the defi-
nition of the � distance.

References

1. D. Benedetto, E. Caglioti, and V. Loreto. Zipping out relevant information. Com-
puting in Science and Engineering, pages 80–85, 2003.

2. M. Burrows and D.J. Wheeler. A block sorting data compression algorithm. Tech-
nical report, DIGITAL System Research Center, 1994.

3. Y. Cao, A. Janke, P. J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada,
S. Pääbo, and M. Hasegawa. Conflict among individual mitochondrial proteins in
resolving the phylogeny of eutherian orders. J. Mol. Evol., 47:307–322, 1998.

4. R. Cilibrasi and P. Vitányi. Clustering by compression. IEEE Trans. Information
Theory, 51(4):1523–1545, April 2005.

5. M. Crochemore, J. Désarménien, and D. Perrin. A note on the Burrows-Wheeler
transformation. Theoret. Comput. Sci., 332:567–572, 2005.

6. F. Ergun, S. Muthukrishnan, and C. Sahinalp. Comparing sequences with segment
rearrangements. Lecture Notes in Comput. Sci, pages 183–194, 2003. Proc. of the
FSTTCS’03, Bombay, India.

7. P. Fenwick. The Burrows-Wheeler transform for block sorting text compression:
principles and improvements. The Computer Journal, 39(9):731–740, 1996.

8. I. M. Gessel and C. Reutenauer. Counting permutations with given cycle structure
and descent set. J. Combin. Theory Ser. A, 64(2):189–215, 1993.

A New Combinatorial Approach to Sequence Comparison 359

9. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

10. L. Ilie and S. Constantinescu. Fine and Wilf’s theorem for any number of periods.
TUCS (Turku Center for Computer Science) General Pubblication, 25:65–74, 2003.
proc. WORDS 2003.

11. N. J. Larsson and K. Sadakane. Faster suffix sorting. Technical Report LU-CS-
TR:99-214, LUNDFD6/(NFCS-3140)/1-43/(1999), Department of Computer Sci-
ence, Lund University, Sweden, 1999.

12. M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang. An informa-
tion based sequence distance and its application to whole mitochondrial genome
phylogeny. Bioinformatics, 17:149–154, 2001.

13. M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi. The similarity metric. IEEE Trans.
Inform. Th., 12(5):3250–3264, 2004.

14. M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,
2002.

15. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

16. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An Extension of the Burrows
Wheeler Transform and Applications to Sequence Comparison and Data Compres-
sion. In Alberto Apostolico, Maxime Crochemore, and Kunsoo Park, editors, Com-
binatorial Pattern Matching, 16th Annual Symposium, CPM 2005, Jeju Island,
Korea, June 19-22, 2005, Proceedings, volume 3537 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2005.

17. S. Mantaci, A. Restivo, and M. Sciortino. Burrows-Wheeler transform and Stur-
mian words. Informat. Proc. Lett., 86:241–246, 2003.

18. S. Mantaci, A. Restivo, and M. Sciortino. An extension of the Burrows-Wheeler
Transform to k words. Technical Report 267, University of Palermo, Dipartimento
di Matematica ed Appl., December 2004.

19. S. Mantaci, A. Restivo, and M. Sciortino. An Extension of the Burrows Wheeler
Transform to k Words (Extended Abstract). In 2005 Data Compression Conference
(DCC 2005), 29-31 March 2005, Snowbird, UT, USA, page 469. IEEE Computer
Society, 2005.

20. G. Manzini. The Burrows-Wheeler transform: Theory and practice. In Proc. of the
24th International Symposium on Mathematical Foundations of Computer Science
(MFCS ’99), pages 34–47. Springer-Verlag LNCS n. 1672, 1999.

21. E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262–272, 1976.

22. F. Mignosi and A. Restivo. Periodicity. In M. Lothaire, Algebraic Combinatorics
on Words, chapter 8, pages 237–274. Cambridge University Press, 2002.

23. H.H. Otu and K. Sayood. A new sequence distance measure for phylogenetic tree
construction. Bioinformatics, 19(16):2122–2130, 2003.

24. R. Tijdeman and L.Zamboni. Fine and Wilf words for any periods. Indag. Math.,
14(1):135–147, 2003.

25. S. Vinga and J. Almeida. Alignment-free sequence comparison – a review. Bioin-
formatics, 19(4):513–523, 2003.

A Typed Assembly Language for Non-interference

Ricardo Medel1, Adriana Compagnoni1, and Eduardo Bonelli2

1 Stevens Institute of Technology, Hoboken NJ 07030, USA
{rmedel, abc}@cs.stevens.edu

2 LIFIA, Fac. de Informática, Univ. Nac. de La Plata, Argentina
eduardo@sol.info.unlp.edu.ar

Abstract. Non-interference is a desirable property of systems in a multilevel se-
curity architecture, stating that confidential information is not disclosed in public
output. The challenge of studying information flow for assembly languages is
that the control flow constructs that guide the analysis in high-level languages
are not present. To address this problem, we define a typed assembly language
that uses pseudo-instructions to impose a stack discipline on the control flow of
programs. We develop a type system for checking that assembly programs enjoy
non-interference and its proof of soundness.

1 Introduction

The confidentiality of information handled by computing systems is of paramount im-
portance. However, standard perimeter security mechanisms such as access control
or digital signatures fail to address the enforcement of information-flow policies. On
the other hand, language-based strategies offer a promising approach to information
flow security. In this paper, we study confidentiality for an assembly language using a
language-based approach to security via type-theory.

In a multilevel security architecture information can range from having low (pub-
lic) to high (confidential) security level. Information flow analysis studies whether an
attacker can obtain information about the confidential data by observing the output of
the system. The non-interference property states that any two executions of the same
program, where only the high-level inputs differ in both executions, does not exhibit
any observable difference in the program’s output.

In this paper we define SIF, a typed assembly language for secure information flow
analysis with security types. This language contains two pseudo-instructions,cpush L
and cjmp L, for handling a stack of code labels indicating the program points where
different branches of code converge, and the type system enforces a stack policy on
those code labels. Our development culminates with a proof that well-typed SIF pro-
grams are assembled to untyped machine code that satisfy non-interference.

The type system of SIF detects explicit illegal flows as well as implicit illegal flows
arising from the control structure of a program. Other covert channels such as those
based on termination, timing, and power consumption, are outside the scope of this
paper.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 360–374, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Typed Assembly Language for Non-interference 361

2 SIF, a Typed Assembly Language

In information flow analysis, a security level is associated with the program counter (pc)
at each program execution point. This security level is used to detect implicit informa-
tion flow from high-level values to low-level values. Moreover, control flow analysis is
crucial in allowing this security level to decrease where there is no risk of illicit flow of
information.

Sec. level of pc
low if x=0
high then y:=1
high else y:=2
low z:=3

(a) High-level program

L1 : bnz r1, L2 % if x �=0 goto L2
move r2 ← 1 % y:= 1
jmp L3

L2 : move r2 ← 2 % y:= 2
L3 : move r3 ← 3 % z:= 3

(b) Assembly program

Fig. 1. Example of implicit illegal information flow

Consider the example in Figure 1(a), where x has high security level and z has low
security level. Notice that y cannot have low security level, since information about x
can be retrieved from y, violating the non-interference property. Since the execution
path depends on the value stored in the high-security variable x, entering the branches
of the if-then-else changes the security level of the pc to high, indicating that
only high-level variables can be updated. On the other hand, since z is modified after
both branches, there is no leaking of information from either y or x to z. Therefore,
the security level of the pc can be safely lowered.

A standard compilation of this example to assembly language may produce the
code shown in Figure 1(b). Note that the block structure of the if-then-else is
lost, and it is not clear where it is safe to lower the security level of the pc. We address
this problem by including in our assembly language a stack of code labels accessed by
two pseudo-instructions, cpush L and cjmp L, to simulate the block structure of
high-level languages.

The instruction cpush L pushes L onto the stack while cjmp L first pops L from
the stack if L is already at the top, and then jumps to the instruction labelled by L. The
extra label information in cjmp L allows us to statically control that the intended label
is removed, thereby preventing ill structured code.

The SIF code for the example in Figure 1(a) is shown below. The code at L1 pushes
the label L3 onto the stack. The code at L3 corresponds to the instructions following the
if-then-else in the source code. Observe that the code at L3 can only be executed
once, because the instruction cjmp L3 at the end of the code pointed to by L1 (then
branch), or at the end of L2 (else branch), removes the top of the stack and jumps to
the code pointed to by L3 . At this point it is safe to lower the security level of the pc,
since updating the low-security register r3 does not leak any information about r1.

Moreover, as in HBAL [1], the type-checking of the program is separated from the
verification of the safety of the machine configuration where the program is assembled.
Thus, following the schema shown below, a type-checker can verify if a program is safe

362 R. Medel, A. Compagnoni, and E. Bonelli

cpush % set junction point
bnz % if x goto
arithi % y:= 1, with =0
cjmp

arithi % y:= 2
cjmp

arithi % z:= 3
halt
eof

for execution on any safe memory configuration, and the runtime environment only
needs to check that the initial machine configuration is safe before each run.

Eval

No

Unsafe Code

Typechecker

Unsafe Memory.

No

Yes Yes
Compiler Assembler Is machine safe?

The assembler removescpush L and translates cjmp L into jmp L, an ordinary
unconditional jump, leaving no trace of these pseudo-instructions in the executable code
(See the definition of the assembly function Asm(−) in section 2.4).

2.1 The Type System

We assume given a lattice Lsec of security labels [8], with an ordering relation �, least
(⊥) and greatest (�) elements, and join (�) and meet (�) operations. These labels assign
security levels to elements of the language through types. The type expressions of SIF
are given by the following grammar:

security labels l ∈ Lsec

security types σ ::= ωl

word types ω ::= int | [τ]
memory location types τ ::= σ × . . . × σ | code

Security types (σ) are word types annotated with a security label. The expression
LABL(σ) returns the security label of a security type σ. A word type (ω) is either an
integer type (int) or a pointer to a memory location type ([τ]). Memory location types
(τ) are tuples of security types, or a special type code. We use τ [c], with c a positive
integer, to refer to the cth word type of the product type τ . Since the type code indicates
the type of an assembly instruction, our system distinguishes code from data.

A context (Γ ‖ Λ) contains a register context Γ and a junction points stack Λ. A
junction points stack (Λ) is a stack of code labels, each representing the convergence
point of a fork in the control flow of a program. The empty stack is denoted by ε. A

A Typed Assembly Language for Non-interference 363

register context Γ contains type information about registers, mapping them to security
types. We assume a finite set of registers {r0, . . . , rn}, with two dedicated registers: r0,
that always holds zero, and pc, the program counter.

We write Dom(Γ) for the domain of the register context Γ . The empty context is
denoted by {}. The register context obtained by eliminating from Γ all pairs with r as
first component be denoted by Γ/r, while Γ, Γ ′ denotes the union of register contexts
with disjoint domains. We use Γ, r : σ as a shorthand for Γ, {r : σ}, and Γ [r := σ] as
a shorthand for Γ/r, {r : σ}.

Since the program counter is always a pointer to code, we usually write pc : l
instead of pc : [code]l, and Γ (pc) = l if pc : l ∈ Γ .

2.2 Syntax of SIF Programs

A program (P) is a sequence of instructions and code labels ended by the directive
eof. SIF has standard assembly language instructions such as arithmetic operations,
conditional branching, load, and store, plus pseudo-instructions cpush and cjmp to
handle the stack of code labels.

program P ::= eof | L; P | p; P
instructions p ::= halt | jmp L | bnz r,L

| load r ← r[c] | store r[c] ← r
| arith r ← r � r | arithi r ← r � i
| cpush L | cjmp L

operations � ::= + | − | ∗ | /

We use c to indicate an offset, and i to indicate integer literals. We assume an infinite
enumerable set of code labels. Intuitively, the instruction cpush L pushes the junction
point represented by the code label L onto the stack, while the instruction cjmp L
behaves as a pop and a jump. If L is at the top of the stack, it pops L and then jumps to
the instruction labeled L.

2.3 Typing Rules

A signature (Σ) is a mapping assigning contexts to labels. The context Σ(L) contains
the typing assumptions for the registers in the program point pointed to by the label L.
The judgment Γ ‖ Λ �Σ P is a typing judgment for a SIF program P , with signature
Σ, in a context Γ ‖ Λ. We say that a program P is well-typed if Ctxt(P) �Σ P , where
Ctxt(P) is the partial function defined as: Ctxt(L; P) = Σ(L), Ctxt(eof) = {} ‖ ε.

The typing rules for SIF programs, shown in Figures 2 and 3, are designed to prevent
illegal flows of information. The directive eof is treated as a halt instruction. So,
rules T Eof and T Halt ensure that the stack is empty.

Rule T Label requires that the current context be compatible with the context ex-
pected at the position of the label, as defined in the signature (Σ) of the program. Jumps
and conditional jumps are typed by rules T Jmp and T CondBrnch. In both rules the
current context has to be compatible with the context expected at the destination code.
In T CondBrnch, both the code pointed to by L and the remaining program P are con-
sidered destinations of the jump included in this operation. In order to avoid implicit

364 R. Medel, A. Compagnoni, and E. Bonelli

Γ ′ ⊆ Γ l � l′

ST RegBank
(Γ, pc : l ‖ Λ) ≤ (Γ ′, pc : l′ ‖ Λ)

Ctxt(P)
Σ P
T Halt

Γ ‖ ε
Σ halt ; P

T Eof
Γ ‖ ε
Σ eof

(Γ ‖ Λ) ≤ Σ(L) Σ(L)
Σ P
T Label

Γ ‖ Λ
Σ L; P

(Γ ‖ Λ) ≤ Σ(L) Ctxt(P)
Σ P
T Jmp

Γ ‖ Λ
Σ jmp L; P

(Γ, r : int l′ , pc : l � l′ ‖ Λ) ≤ Σ(L) Γ, r : int l′ , pc : l � l′ ‖ Λ
Σ P
T CondBrnch

Γ, r : int l′ , pc : l ‖ Λ
Σ bnz r, L; P

Fig. 2. Subtyping for contexts and typing rules for programs (1st part)

flows of information, the security level of the pc in the destination code should not
be lower than the current security level and the security level of the register (r) that
controls the branching.

In T Arith the security level of the source registers and the pc should not exceed the
security level of the target register to avoid explicit flows of information. The security
level of rd can actually be lowered to reflect its new contents, but, to avoid implicit in-
formation flows, it cannot be lowered beyond the level of the pc. Similarly for T Arithi,
T Load and T Store. In T Load, an additional condition establishes that the security
level of the pointer to the heap has to be lower than or equal to the security level of the
word to be read.

The rule T Cpush controls whether cpush L can add the code label L to the stack.
Since L is going to be consumed by a cjmp L instruction, its security level should not
be lower than the current level of the pc. The cjmp L instruction jumps to the junction
point pointed to by label L. Furthermore, to prevent ill structured programs the rule
T Cjmp forces the code label L to be at the top of the stack, and the current context
has to be compatible with the one expected at the destination code. However, since a
cjmp instruction allows the security level to be lowered, there are no conditions on its
security level.

2.4 Type Soundness of SIF

In this section we define a semantics for the untyped assembly instructions operating on
a machine model, we give an interpretation for SIF types which captures the way types
are implemented in memory, and finally we prove that the execution of a well-typed
SIF program modifies a type-safe configuration into another type-safe configuration.

Let Reg = {0, 1, . . . , Rmax} be the register indices, with two dedicated registers:
R(0) = 0, and R(pc) is the program counter. Let Loc ⊆ Z be the set of memory lo-

A Typed Assembly Language for Non-interference 365

Γ (rd) = ωld rd, rs, rt �= pc
Γ (rs) = int ls l � ls � lt � ld
Γ (rt) = int lt Γ, pc : l ‖ Λ
Σ P

T Arith
Γ, pc : l ‖ Λ
Σ arith rd ← rs � rt; P

rd, rs �= pc
Γ (rd) = ωld l � ls � ld
Γ (rs) = int ls Γ, pc : l ‖ Λ
Σ P

T Arithi
Γ, pc : l ‖ Λ
Σ arithi rd ← rs � i; P

Γ (rs) = [τ]ls rd, rs �= pc
Γ (rd) = ωld l � ls � lc � ld
τ [c] = ωlc

c Γ, pc : l ‖ Λ
Σ P
T Load

Γ, pc : l ‖ Λ
Σ load rd ← rs[c]; P

Γ (rd) = [τ]ld rd, rs �= pc
Γ (rs) = τ [c] = ωls l � ld � ls
τ is code-free Γ, pc : l ‖ Λ
Σ P

T Store
Γ, pc : l ‖ Λ
Σ store rd[c] ← rs; P

l � Σ(L)(pc) Γ, pc : l ‖ L · Λ
Σ P
T Cpush

Γ, pc : l ‖ Λ
Σ cpush L; P

Σ(L) = Γ ′ ‖ Λ Γ ′
/pc ⊆ Γ/pc Ctxt(P)
Σ P

T Cjmp
Γ ‖ L · Λ
Σ cjmp L; P

Fig. 3. Typing rules for programs (2nd part)

cations on our machine, Wrd be the set of machine words that can stand for integers or
locations, and Code be the set of machine words which can stand for machine instruc-
tions. To simplify the presentation, we assume that Wrd is disjoint from Code; so, our
model keeps code separate from data.

A machine configuration M is a pair (H, R) where H : Loc ⇁ Wrd
 Code is
a partial function defining a heap configuration, and R : Reg → Wrd is a register
configuration.

Given a program P , a machine assembled for P is a machine configuration which
contains a representation of the assembly program, with machine instructions stored
in some designated contiguous portion of the heap. Supposing P = p1; . . . ; pn, the
assembly process defines a function PAdr : 1, . . . , n → Loc which gives the destination
location for the code when assembling the typed instruction pu, where 1 ≤ u ≤ n. For
each of the locations 	 where P is stored, H() ∈ Code. The assembly process also
defines the function LAdr(L), which assigns to each label in P the heap location where
the code pointed to by the label was assembled.

Given a machine configuration M = (H, R), we define a machine transition rela-
tion M −→ M ′, as follows: First, M ′ differs from M by incrementing R(pc) according

366 R. Medel, A. Compagnoni, and E. Bonelli

to the length of the instruction in H(R(pc)); then, the transformation given in the table
below is applied to obtain the new heap H ′, or register bank R′. The operations on r0
have no effect.

jmp L R′ = R[pc := LAdr(L)]

bnz r, L R′ =
{

R, if R(r) = 0
R[pc := LAdr(L)], otherwise

arith rd ← rs � rt R′ = R[rd := R(rs) � R(rt)]
arithi rd ← rs � i R′ = R[rd := R(rs) � i]
load rd ← rs[c] R′ = R[rd := H(R(rs) + c)]
store rd[c] ← rs H ′ = H [R(rd) + c := R(rs)]

Asm(pu) stands for the sequence of untyped machine instructions which is the result

of assembling a typed assembly instruction pu:

Asm(L) = ε Asm(eof) = halt
Asm(cpush L) = ε Asm(cjmp L) = jmp L
Asm(pu) = pu, otherwise

Notice that the sequence has at most one instruction. We write M
Asm(pu)−→ M ′, if M

executes to M ′ through the instructions in Asm(pu), by zero or one transitions in M .
The reflexive and transitive closure of this relation is defined by the following rules.

Refl
M =⇒ M

M1
Asm(pu)−→ M2

Incl
M1 =⇒ M2

M1 =⇒ M2 M2 =⇒ M3
Trans

M1 =⇒ M3

2.5 Imposing Types on the Model

A heap context ψ is a function that maps heap locations to security types. A heap
context contains type information about the heap locations required to type the registers.
Dom(ψ) denotes the domain of the heap context ψ. The empty context is denoted by
{}. We write ψ[:= τ] for the heap context resulting from updating ψ with 	 : τ .
Two heap contexts ψ and ψ′ are compatible, denoted compat(ψ, ψ′), if for all 	 ∈
Dom(ψ)∩Dom(ψ′), ψ() = ψ′(). The following rules assign types to heap locations:

H(�) ∈ Code
T HLocCode

H ; {� : code} |= � : code hloc

H(�) ∈ Wrd
T HLocInt

H ; {� : int l} |= � : int l hloc

H(�) ∈ Wrd compat(ψ, {� : [τ]l}) H ;ψ |= H(�) : τ hloc
T HLocPtr

H ;ψ ∪ {� : [τ]l} |= � : [τ]l hloc

compat(ψ, ψ′) H ; ψ |= � : τ hloc
W HLoc

H ; ψ ∪ ψ′ |= � : τ hloc

mi = size(σ0) + . . . + size(σi−1)
H ; ψ |= � + mi : σi hloc for all 0 ≤ i ≤ n

T HLocProd
H ; ψ |= � : σ0 × . . . × σn hloc

A Typed Assembly Language for Non-interference 367

In order to define the notion of satisfiability of contexts by machine configurations,
we need to define a satisfiability relation for registers.

r �= pc
T RegInt

M |={} r : int l reg

H ;ψ |= R(r) : τ hloc
T RegPtr

(H,R) |=ψ r : [τ]l reg

(H,R) |=ψ r : σ reg compat(ψ, ψ′)
W Reg

(H, R) |=ψ∪ψ′ r : σ reg
A machine configuration M satisfies a typing assignment Γ with a heap typing con-

text ψ (written M |=ψ Γ) if and only if for each register ri ∈ Dom(Γ), M satisfies the
typing statement M |=ψi ri : Γ (ri) reg, the heap contexts ψi are pairwise compatible,
and ψ = ∪∀iψi.

A machine configuration M = (H, R) is in final state if H(R(pc)) = halt . We
define an approximation to the execution of a typed program P = p1; . . . ; pn by relating
the execution of the code locations in the machine M with the control paths in the
program by means of the relation pu � pv, which holds between pairs of instructions
indexed by the set:

{(i, i + 1) | pi �= jmp, cjmp, and i < n}
∪
{(i, j + 1) | pi = jmp L, bnz r,L, or cjmp L, and pj = L}.

We use pu
∗� pv to denote the reflexive and transitive closure of pu � pv.

2.6 Type Soundness

In this section we show that our type system ensures that the reduction rules preserve
type safety. The soundness results imply that if the initial memory satisfies the initial
typing assumptions of the program, then each memory configuration reachable from the
initial memory satisfies the typing assumptions of its current instruction.

The typing assumptions of each instruction of a program can be obtained from
the initial context by the typechecking process. The derivation Ctxt(P) �Σ P
of a well-typed program P = p1; . . . pu; . . . ; pn determines a sequence of contexts
Γ1 ‖ Λ1, . . . , Γn ‖ Λn from sub-derivations of the form Γu ‖ Λu �Σ pu; pu+1; . . . ; pn.

A machine configuration is considered type-safe if it satisfies the typing assump-
tions of its current instruction. Given a well-typed program P = p1; . . . pu; . . . ; pn and
a heap context ψ, we say M = (H, R) is type safe at u for P with ψ if M is assembled
for P ; R(pc) = PAdr(u); and M |=ψ Γu.

We prove two meta-theoretic results Progress and Subject Reduction. Progress (The-
orem 1) establishes that a non-final-state type safe machine can always progress to a
new machine by executing a well-typed instruction, and Subject Reduction (Theorem 2)
establishes that if a type safe machine progresses to another machine, the resulting ma-
chine is also type safe.

Theorem 1 (Progress). Suppose a well-typed program P = p1; . . . pu; . . . ; pn and a

machine configuration M type safe at u. Then there exists M ′ such that M
Asm(pu)−→ M ′,

or M is in final state.

368 R. Medel, A. Compagnoni, and E. Bonelli

Theorem 2 (Subject Reduction). Suppose P = p1; . . . pu; . . . ; pn is a well-typed pro-

gram and (H, R) is a machine configuration type safe at u, and (H, R)
Asm(pu)−→ M ′.

Then there exists pv ∈ P such that pu � pv and M ′ is type safe at v.

The proof of this theorem proceeds by case analysis on the current instruction pu,
analyzing each of the possible instructions that follow pu, based on the definition of
program transitions. See the companion technical report [13] for details.

3 Non-interference

Given an arbitrary (but fixed) security level ζ of an observer, non-interference states
that computed low-security values (� ζ) should not be affected by high-security input
values (�� ζ). In order to prove that a program P satisfies non-interference one must
show that any two terminating executions fired from indistinguishable (from the point
of view of the observer) machine configurations yield indistinguishable configurations
of the same security observation level.

In order to establish what it means for machine configurations to be indistinguish-
able from an observer’s point of view whose security level is ζ, we define a ζ-indistingui-
shability relation for machine configurations.

The following definitions assume a given security level ζ, two machine configura-
tions M1 = (H1, R1) and M2 = (H2, R2), two heap contexts ψ1 and ψ2, and two
register contexts Γ1 and Γ2, such that M1 |=ψ1 Γ1 and M2 |=ψ2 Γ2.

Two register banks are ζ-indistinguishable if the observable registers in one bank are
also observable in the other, and the contents of these registers are also ζ-indistinguishable.

Definition 1 (ζ-indistinguishability of register banks). Two register banks R1 and
R2 are ζ-indistinguishable, written �H1:ψ1,H2:ψ2R1 : Γ1 ≈ζ R2 : Γ2 regBank, if for
all r ∈ Dom∪(Γ1, Γ2)1, with r �= pc:

LABL(Γ1(r)) � ζ or LABL(Γ2(r)) � ζ implies

⎧
⎨

⎩

r ∈ Dom∩(R1, R2, Γ1, Γ2),
Γ1(r) = Γ2(r), and
�H1:ψ1,H2:ψ2R1(r) ≈ζ R2(r) : Γ1(r) val

Two word values v1 and v2 of type ωl are considered ζ-indistinguishable, written
�H1:ψ1,H2:ψ2v1 ≈ζ v2 : ωl val, if l � ζ implies that both values are equal. In case of
pointers to heap locations, the locations have to be also ζ-indistinguishable.

Two heap values 	1 and 	2 of type τ are considered ζ-indistinguishable, written
�H1:ψ1,H2:ψ2	1 ≈ζ 	2 : τ hval, if 	1 ∈ H1, 	2 ∈ H2, and either the type τ is code and
	1 = 	2, or τ = σ1 × . . . × σn and each pair of offset locations 	1 + mi and 	2 + mi

(with mi as in rule T HLocProd) are ζ-indistinguishable, or τ is a word type with a
security label l and l � ζ implies that both values are equal.

The proof of our main result, the Non-Interference Theorem 3, requires two notions
of indistinguishability of stacks (Low and High). If one execution of a program branches
on a condition while the other does not, the junction points stacks may differ in each
of the paths followed by the executions. If the security level of the pc is low in one

1 We use Dom⊕(A1, . . . , An) as an abbreviation for Dom(A1) ⊕ . . . ⊕ Dom(An).

A Typed Assembly Language for Non-interference 369

LowAxiom
�Σε ≈ζ ε Low

Σ(L)(pc) � ζ �Σ Λ1 ≈ζ Λ2 Low
LowLow

�ΣL · Λ1 ≈ζ L · Λ2 Low

Σ(L1)(pc) �� ζ Σ(L2)(pc) �� ζ �Σ Λ1 ≈ζ Λ2 Low
LowHigh

�ΣL1 · Λ1 ≈ζ L2 · Λ2 cstackLow

�ΣΛ1 ≈ζ Λ2 Low
HighAxiom

�ΣΛ1 ≈ζ Λ2 High

Σ(L)(pc) �� ζ �Σ Λ1 ≈ζ Λ2 High
HighLeft

�ΣL · Λ1 ≈ζ Λ2 High

Σ(L)(pc) �� ζ �Σ Λ1 ≈ζ Λ2 High
HighRight

�ΣΛ1 ≈ζ L · Λ2 High

Fig. 4. ζ-indistinguishability of junction points stacks

execution, then it has to be low in the other execution as well, and the executions must be
identical. The first three rules of Figure 4 define the relation of low-indistinguishability
for stacks. In low-security executions the associated stacks mus be of the same size, and
each code label in the stack of the first execution must be indistinguishable from that of
the corresponding element in the second one.

If the security level of the pc of one of the two executions is high, then the other
one must be high too. The executions are likely to be running different instructions, and
thus the associated stacks may have different sizes. However, we need to ensure that
both executions follow branches of the same condition. This is done by requiring that
both associated stacks have a common (low-indistinguishable) sub-stack. The second
three rules of Figure 4 define the relation of high-indistinguishability for stacks. Also
note that, as imposed by the typing rules, the code labels added to the stack associated
to high-security branches are of high-security level.

Finally, we define the relation of indistinguishability of two machine con from the
point of view of an observer of level ζ.

Definition 2. Two machine configurations M1 = (H1, R1) and M2 = (H2, R2) are
ζ-indistinguishable, denoted by the judgment

�P M1 : Γ1, Λ1, ψ1 ≈ζ M2 : Γ2, Λ2, ψ2 mConfig,

if and only if

1. M1 |=ψ1 Γ1 and M2 |=ψ2 Γ2,
2. M1 and M2 are assembled for P at the same addresses,
3. �H1:ψ1,H2:ψ2R1 : Γ1 ≈ζ R2 : Γ2 regBank, and
4. either

(a) Γ1(pc) = Γ2(pc) � ζ and R1(pc) = R2(pc) and �ΣΛ1 ≈ζ Λ2 Low, or
(b) Γ1(pc) �� ζ and Γ2(pc) �� ζ and �ΣΛ1 ≈ζ Λ2 High.

Note that both machine configurations must be consistent with their corresponding
typing assignments, and they must be executing the code resulting from assembling P .

370 R. Medel, A. Compagnoni, and E. Bonelli

We may now state the non-interference theorem establishing that starting from two
indistinguishable machine configurations assembled for the same program P , if each
execution terminates, the resulting machine configurations remain indistinguishable.

In the following theorem and lemmas, for any instruction pi in a well-typed program
P = p1; . . . ; pn, the context Γi ‖ Λi is obtained from the judment Γi ‖ Λi �Σ pi; pn,
which is derived by a sub-derivation of Ctxt(P) �Σ P .

Theorem 3 (Non-interference). Let P = p1; . . . ; pn be a well-typed program, M1 =
(H1, R1) and M2 = (H2, R2) be machine configurations such that both are type safe
at 1 for P with ψ and

�P M1 : Γ1, ε, ψ ≈ζ M2 : Γ1, ε, ψ mConfig.

If M1 =⇒ M ′
1 and M2 =⇒ M ′

2, with M ′
1 and M ′

2 in final state, then

�P M ′
1 : Γv, ε, ψ1 ≈ζ M ′

2 : Γw, ε, ψ2 mConfig.

The technical challenge that lies in the proof of this theorem is that the ζ-indistin-
guishability of configurations holds after each transition step. The proof is developed in
two stages. First it is proved that two ζ-indistinguishable configurations that have a low
(and identical) level for the pc can reduce in a lock step fashion in a manner invariant
to the ζ-indistinguishability property. This is stated by the following lemma.

Lemma 1 (Low-PC Step). Let P = p1; . . . ; pn be a well-typed program, such that pv1

and pv2 are in P , M1 = (H1, R1) and M2 = (H2, R2) be machine configurations.
Suppose

1. M1 is type safe at v1 and M2 is type safe at v2, for P with ψ1 and ψ2, respectively,
2. �P M1 : Γv1 , Λv1 , ψ1 ≈ζ M2 : Γv2 , Λv2 , ψ2 mConfig,
3. Γv1(pc) � ζ and Γv2(pc) � ζ,

4. M1
Asm(pv1)−→ M ′

1, and
5. there exists pw1 in P such that pv1 � pw1 , and M ′

1 is type safe at w1 with ψ3.

Then, there exists a configuration M ′
2 such that:

(a) M2
Asm(pv2)−→ M ′

2,
(b) there exists pw2 in P such that pv2 � pw2 , and M ′

2 is type safe at w2 with ψ4, and
(c) �P M ′

1 : Γw1 , Λw2 , ψ3 ≈ζ M ′
2 : Γw2 , Λw2 , ψ4 mConfig.

When the level of the pc is low, the programs execute the same instructions (with
possibly different heap and register bank). They may be seen to be synchronized and
each reduction step made by one is emulated with a reduction of the same instruction
by the other. The resulting machines must be ζ-indistinguishable.

However, a conditional branch (bnz) may cause the execution to fork on a high
value. As a consequence, both of their pc become high and we must provide proof that
there are some ζ-indistinguishable machines to which they reduce. Then, the second
stage of the proof consists of showing that every reduction step of one execution whose
pc has a high-security level can be met with a number of reduction steps (possibly
none) from the other execution such that they reach indistinguishable configurations.
The High-PC Step Lemma states such result.

A Typed Assembly Language for Non-interference 371

Lemma 2 (High-PC Step). Let P = p1; . . . ; pn be a well-typed program, such that pv1

and pv2 are in P , and M1 = (H1, R1) and M2 = (H2, R2) be machine configurations.
Suppose

1. M1 is type safe at v1 and M2 is type safe at v2, for P with ψ1 and ψ2, respectively.
2. �P M1 : Γv1 , Λv1 , ψ1 ≈ζ M2 : Γv2 , Λv2 , ψ2 mConfig,
3. Γv1(pc) �� ζ and Γv2(pc) �� ζ,

4. M1
Asm(pv1)

−→ M ′
1, and

5. there exists pw1 in P such that pv1 � pw1 and M ′
1 is type safe at w1 with ψ3.

Then, either the configuration M2 diverges or there exists a machine configuration M ′
2

such that

(a) M2 =⇒ M ′
2,

(b) there exists pw2 in P such that pv2

∗� pw2 and M ′
2 is type safe at w2 with ψ4, and

(c) �P M ′
1 : Γw1 , Λw1 , ψ3 ≈ζ M ′

2 : Γw2 , Λw2 , ψ4 mConfig.

The main technical difficulty here is the proof of the case when one execution does
a cjmp instruction that lowers the pc level. In this case, the other execution should,
in a number of steps, also reduce its pc level accordingly. This is guaranteed by two
facts. First, high-indistinguishable stacks share a sub-stack whose top is the label to
the junction point where the pc level is reduced and both executions converge. Second,
well-typed programs reach final states only with an empty stack, having visited all the
labels indicated by the junction point stack.

4 Related Work

Information flow analysis has been an active research area in the past three decades [18].
Pioneering work by Bell and LaPadula [4], Feiertag et al. [9], Denning and Denning
[8,7], Neumann et al. [17], and Biba [5] set the basis of multilevel security by defining
a model of information flow where subjects and objects have a security level from a
lattice of security levels. Such a lattice is instrumental in representing a security policy
where a subject cannot read objects of level higher than its level, and it cannot write
objects at levels lower than its own level.

The notion of non-interference was first introduced by Goguen and Meseguer [10],
and there has been a significant amount of research on type systems for confidentiality
for high-level languages including Volpano and Smith [20], and Banerjee and Nau-
mann [2]. Type systems for low-level languages have been an active subject of study
for several years now, including TAL [14], STAL [15], DTAL [21], Alias Types [19],
and HBAL [1].

In his PhD thesis [16], Necula already suggests information flow analysis as an
open research area at the assembly language level. Zdancewic and Myers [22] present
a low-level, secure calculus with ordered linear continuations. An earlier version of
our type system was inspired by that work. However, we discovered that in a typed
assembly language it is enough to have a junction point stack instead of mimicking

372 R. Medel, A. Compagnoni, and E. Bonelli

ordered linear continuations. Moreover, their language has an if-then-else con-
structor that guides the information flow analysis, while SIF has pseudo-instructions
(cpush L and cjmp L) for the same purpose. However, while the if-then-else
constructor remains part of their language after typechecking, cpush and cjmp are
eliminated.

Barthe et al. [3] define a JVM-like low-level language with a heap and an operand
stack. The type system is parameterized by control dependence regions, and it is as-
sumed that there exist functions that obtain such regions. In contrast, SIF allows such
regions to be expressed in the language by using code labels and its well-formedness to
be verified during type-checking. Crary et al. [6] define a low-level calculus for informa-
tion flow analysis, however, their calculus has the structuring construct
if-then-else, unlike SIF that uses typed pseudo-instructions that are assembled
to standard machine instructions.

5 Conclusions and Future Work

We defined SIF, a typed assembly language for secure information flow analysis. Be-
sides the standard features, such as heap and register bank, SIF introduces a stack of
code labels in order to simulate at the assembly level the block structure of high-level
languages. The type system guarantees that well-typed programs assembled on type-
safe machine configurations satisfy the non-interference property: for a security level
ζ, if two type-safe machine configuration are ζ-indistinguishable, then the resulting
machine configurations after execution are also ζ-indistinguishable.

An alternative to our approach is to have a list of the program points where the secu-
rity level of the pc can be lowered safely. This option delegates the security analysis of
where the pc level can be safely lowered to a previous step (that may use, for example,
a function to calculate control dependence regions [12]). This delegation introduces a
new trusted structure into the type system. Our type system, however, does not need to
trust the well-formation of such a list. Moreover, even the signature (Σ) attached to SIF
programs is untrusted in our setting, since, as we explained in section 2.3, its informa-
tion about the security level of the pc is checked in the rules for cpush and cjmp in
order to prevent illegal information flows.

Currently we are implementing the type system proposed in this paper. We already
developed a compiling function from a very simple high-level imperative programming
language to SIF and the typechecker for SIF programs. We intend to make the software
available upon completion of the system.

We are also developing a version of our language that includes a runtime stack,
in order to define a stack-based compilation function from a more complex high-level
language to SIF.

Acknowledgments. We are grateful to Pablo Garralda, Healfdene Goguen, David Nau-
mann, and Alejandro Russo for enlightening discussions and comments on previous
drafts. We want to thank Nicholas Egebo and Haifan Lu, two undergraduate students
at Stevens, for their help with the implementation of SIF. This work was partially sup-
ported by the NSF project CAREER: A formally verified environment for the production
of secure software – #0093362 and the Stevens Technogenesis Fund.

A Typed Assembly Language for Non-interference 373

References

1. David Aspinall and Adriana B. Compagnoni. Heap bounded assembly language. Journal of
Automated Reasoning, Special Issue on Proof-Carrying Code, 31(3-4):261–302, 2003.

2. A. Banerjee and D. Naumann. Secure information flow and pointer confinement in a java-
like language. In Proceedings of Fifteenth IEEE Computer Security Foundations - CSFW,
pages 253–267, June 2002.

3. G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. In Proceedings of
VMCAI’04, volume 2937 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

4. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations and model.
Technical Report Technical Report MTR 2547 v2, MITRE, November 1973.

5. K. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-
76-372, USAF Electronic Systems Division, Bedford, MA, April 1977.

6. Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of information flow
security with mutable state. Technical Report CMU-CS-03-164, Carnegie Mellon University,
September 2003.

7. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Communications of the ACM, 20(7):504–513, July 1977.

8. Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–242, May 1976.

9. R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a system design.
In 6th ACM Symp. Operating System Principles, pages 57–65, November 1977.

10. J. A. Goguen and J. Meseguer. Security policy and security models. In Proceedings of the
Symposium on Security and Privacy, pages 11–20. IEEE Press, 1982.

11. Daniel Hedin and David Sands. Timing aware information flow security for a javacard-like
bytecode. In Proceedings of BYTECODE, ETAPS’05, to appear, 2005.

12. Xavier Leroy. Java bytecode verification: an overview. In G. Berry, H. Comon, and A. Finkel,
editors, Proceedings of CAV’01, volume 2102, pages 265–285. Springer-Verlag, 2001.

13. Ricardo Medel, Adriana Compagnoni, and Eduardo Bonelli. A typed
assembly language for secure information flow analysis. http://
www.cs.stevens.edu/˜rmedel/hbal/publications/sifTechReport.ps,
2005.

14. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly Lan-
guage. ACM Transactions on Programming Languages and Systems, 21(3):528–569, May
1999.

15. Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly lan-
guage. In Second International Workshop on Types in Compilation, pages 95–117, Kyoto,
March 1998. Published in Xavier Leroy and Atsushi Ohori, editors, Lecture Notes in Com-
puter Science, volume 1473, pages 28-52. Springer-Verlag, 1998.

16. George Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, September
1998.

17. Peter G. Neumman, Richard J. Feiertag, Karl N. Levitt, and Lawrence Robinson. Software
development and proofs of multi-level security. In Proceedings of the 2nd International Con-
ference on Software Engineering, pages 421–428. IEEE Computer Society, October 1976.

18. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21(1), 2003.

19. Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Gert Smolka, edi-
tor, Ninth European Symposium on Programming, volume 1782 of LNCS, pages 366–381.
Springer-Verlag, April 2000.

374 R. Medel, A. Compagnoni, and E. Bonelli

20. Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. In
TAPSOFT, pages 607–621, 1997.

21. Hongwei Xi and Robert Harper. A dependently typed assembly language. Technical Report
OGI-CSE-99-008, Oregon Graduate Institute of Science and Technology, July 1999.

22. S. Zdancewic and A. Myers. Secure information flow via linear continuations. Higher Order
and Symbolic Computation, 15(2–3), 2002.

Improved Exact Exponential Algorithms for
Vertex Bipartization and Other Problems

Venkatesh Raman, Saket Saurabh, and Somnath Sikdar

The Institute of Mathematical Sciences, Chennai, India, 600113
{vraman, saket, somnath}@imsc.res.in

Abstract. We develop efficient exact algorithms for several NP-hard
problems including Vertex Bipartization, Feedback Vertex Set,
4-Hitting Set, and Max Cut in graphs with maximum degree at most
4. Our main results include:

– an O∗(1.9526n) 1 algorithm for Vertex Bipartization problem in
undirected graphs;

– an O∗(1.8384n) algorithm for Vertex Bipartization problem in
undirected graphs of maximum degree 3;

– an O∗(1.945n) algorithm for Feedback Vertex Set and Vertex

Bipartization problem in undirected graphs of maximum degree 4;
– an O∗(1.9799n) algorithm for 4-Hitting Set problem;
– an O∗(1.5541m) algorithm for Feedback Arc Set problem in tour-

naments.

To the best of our knowledge, these are the best known exact algo-
rithms for these problems. In fact, these are the first exact algorithms
for these problems with the base of the exponent < 2. En route to these
algorithms, we introduce two general techniques for obtaining exact al-
gorithms. One is through parameterized complexity algorithms, and the
other is a ‘colored’ branch-and-bound technique.

1 Introduction

In recent years there has been a growing interest in designing exact algorithms for
NP-hard problems. Fast exponential-time algorithms lead to practical algorithms
for at least moderate instance sizes. Furthermore, there is a wide variation in
the time complexities of exact algorithms for NP-complete problems. Classical
complexity theory cannot explain these differences. The study of exact algo-
rithms may lead to a finer classification, and hopefully a better understanding,
of NP-complete problems. For a recent survey on exact algorithms by Woeginger,
see [16].

Parameterized complexity is a recently developed approach devised by Dow-
ney and Fellows for dealing with hard computational problems arising from in-
dustry and applications. The theory of parameterized complexity is based on
1 The O∗ notation suppresses polynomial terms. Thus we write O∗(T (x)) for a time

complexity of the form O(T (x) · poly(|x|)) where T (x) grows exponentially with |x|,
the input size. See the survey by Woeginger[16] for a detailed discussion on this.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 375–389, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

376 V. Raman, S. Saurabh, and S. Sikdar

the observation that many hard problems are associated with a parameter that
varies within a small or moderate range. By taking advantage of small parameter
values many hard problems can be solved practically. A parameterized problem
consists of a tuple (π, k) where π is the problem instance and k is the parameter.
A parameterized problem is said to be fixed parameter tractable if there exists an
algorithm for the problem with time complexity O(f(k) · |π|O(1)), where f is a
function of k alone and |π| represents the size of the input instance. For an intro-
duction to parameterized complexity see the book by Downey and Fellows [3].
For recent developments see the survey by Downey and Fellows [4].

The Vertex Bipartization problem is to find, given an undirected graph
G on n vertices, the minimum number of vertices whose removal makes the
graph bipartite. This problem has numerous applications, for instance, in VLSI
design [2], computational biology [13], and register allocation [17]. The Ver-

tex Bipartization problem is known to be NP-Complete even for graphs with
maximum degree 3 [2]. This problem has been studied extensively from different
algorithmic paradigms. An approximation algorithm with factor log n is known
for the problem [5]. The parameterized version of this problem has been recently
shown to be fixed parameter tractable by Reed et al [12]. Their algorithm runs
in time O(3k · kmn), where k is the parameter, n is the number of vertices
and m is the number of edges. The (optimization) problem can be solved ex-
actly by exhaustively looking at all possible subsets of vertices in time O∗(2n).
So far there has been no exact algorithm better than this trivial brute-force
algorithm.

In this paper we describe a generic technique that allows us to construct effi-
cient exact algorithms for a problem using a parameterized algorithm for it. Let
Q be an NP-optimization problem such that for every instance I of Q there is
a polynomial time computable universe U of size, say n, such that an optimum
solution of I is a subset of U . All the optimization problems considered in this
paper satisfy this condition. The parameterized version of an NP-optimization
problem Q consists of pairs of the form 〈π, k〉, where π is an instance of Q and
k is a positive integer. Here the question is: does Q have a solution of size k ?
We show that if the parameterized version of Q has a fixed parameter algorithm
with time complexity O∗(ck) then its optimization version has an exact algorithm
with time complexity O∗(dn), where d < c, and n = |U |. Using this technique
we obtain an exact algorithm for the Vertex Bipartization problem that
runs in time O∗(1.9526n), where n is the number of vertices. We devise another
technique which is a modified form of the branch-and-bound method and obtain
an exact algorithm with time complexity O∗(1.8384n) for the Vertex Bipar-

tization problem in maximum degree 3 graphs. We extend this technique to
obtain exact algorithms for the Feedback Vertex Set and Vertex Bipar-

tization problems in maximum degree 4 graphs. The Feedback Vertex Set

problem is to find the minimum number of vertices whose deletion makes the
given graph acyclic. The Feedback Vertex Set problem is polynomial time
solvable in maximum degree 3 graphs [14], but is NP-complete for maximum
degree 4 graphs.

Improved Exact Exponential Algorithms for Vertex Bipartization 377

The paper is organized as follows. In Section 2, we present exact algorithms
for the Vertex Bipartization problem in graphs with maximum degrees 3 and
4, and the Feedback Vertex Set problem in graphs with maximum degree 4.
These algorithms use a ‘colored’ branch and bound technique. In Section 3, we
develop a general technique by which we can convert a parameterized algorithm
of time complexity O∗((4− ε)k), ε > 0 to an exact algorithm of time complexity
O∗((2 − η)n), η > 0 where n = |U |. In Section 3.1, we give several applications
of this result. In particular, we give the best known exact algorithms for

1. Vertex Bipartization problem in general undirected graphs;
2. 4-Hitting Set problem; and
3. Feedback Arc Set problem in tournaments.

Furthermore, we give simple efficient exact algorithms for the Max Cut prob-
lem in graphs with average vertex degree 3 and 4 and for the 3-Hitting Set

problem; these are not the best known exact algorithms for these problems but
are stated in this paper to highlight the applicability of our technique. In Sec-
tion 4, we conclude with some remarks and open problems. All graphs in this
paper are undirected with n vertices and m edges unless stated otherwise.

2 Exact Algorithms for Vertex Bipartization and
Feedback Vertex Set in Graphs with Maximum
Degree 4

In this section, we give improved exact algorithms for the Vertex Biparti-

zation problem in graphs of maximum degrees 3 and 4, and the Feedback

Vertex Set problem in graphs of maximum degree 4.
The main idea behind these algorithms is to use the techniques of prepro-

cessing and branching. Typical branch-and-bound algorithms (for Independent

Set, Vertex Cover) build a solution by either picking a vertex or excluding it
from the solution. When they exclude a vertex from the solution they typically
delete it and work on the resulting smaller graph. For the problems we work on,
when we exclude a vertex from the solution we cannot delete it, because we need
to identify and cover cycles passing through it.

To overcome this, we resort to coloring the vertices. All vertices are colored
good initially. When we branch on a good vertex, we either include it in our
solution and delete it, or exclude it and color it bad. Coloring a vertex bad
decreases the number of good vertices. As we always branch on good vertices
we end up reducing the graph size in both cases. Just doing this gives us an
O∗(2n) algorithm. Our main contribution is in pushing this idea to get an O∗(cn)
algorithm where c < 2. In all the algorithms to follow Col is a function from the
vertex set of the input graph to the set {good, bad}.

2.1 Vertex Bipartization in Graphs with Maximum Degree 3

The Vertex Bipartization problem is to find a minimum set of vertices whose
removal makes the graph bipartite. The algorithm first preprocesses the graph

378 V. Raman, S. Saurabh, and S. Sikdar

using a preprocessing algorithm P (see Figure 2) and then either does a brute-
force enumeration or finds a path xyz of length two consisting only of good
vertices and branches on z. The algorithm is depicted in Figure 1.

Algorithm VBP-D3(G = (V, E), S, Col)
Input: An undirected multigraph G = (V, E) with maximum degree 3, whose vertices
have been colored. Here n is the number of vertices in the input graph. Initially the
algorithm is called with S ← ∅ and Col(v) = good for all vertices v ∈ G(V).
Output: A minimum vertex bipartization set of G.

Step 1 Call P (G, S, Col). If P returns NO then return NO.
Step 2 Apply the first step which is applicable:

Step 2a Let n′ be the number of good vertices in the current graph. If n′ ≤ 0.6n
or if every path of length 2 has at least one bad vertex then try all possible
solutions S ∪ T , where T is a some subset of the remaining good vertices, and
return the one with minimum size.

Step 2b Pick a path xyz in G where all of x, y, and z are good. Call the algorithm
on the following instances and return the smaller solution.
– S ← S ∪ {z} and call VBP-D3(G − {z}, S, Col).
– Set Col(z) = bad and call VBP-D3(G, S, Col).

Fig. 1. Algorithm VBP-D3

Correctness. Step 2a of the algorithm VBP-D3 simply does a brute-force enu-
meration. In Step 2b, the algorithm branches on a good vertex z and constructs
two solutions: one containing z and one not containing z and returns the one
with minimum size. Both these steps do not need any further justification. We
only need to justify the steps of the preprocessing algorithm P .

In Step 1 of the preprocessing algorithm, we recursively remove vertices of
degree ≤ 1. Such vertices cannot be part of any minimum solution and can
be safely removed. In Step 2, we check whether the subgraph G[B] induced by
the bad vertices contains an odd cycle. If this is the case, then there cannot
be a minimum solution containing good vertices only. Thus P returns NO. The
correctness of Step 3 is obvious.

We next consider Step 4 in detail. In this step, we look for a vertex vi of
degree 2 which does not have a self-loop. Such a vertex must be part of some
path uv1 . . . vi . . . vkw, where u and w are of degree 3 and are possibly identical.
There are two broad cases to handle:

Case 1: At least one of u or w is colored good. Without loss of generality
assume that Col(u) = good. Every odd cycle that passes through vi also passes
through u and w. Thus if there is a good vertex vj that is part of some minimum
solution S, then (S \ {vj}) ∪ {u} is also a minimum solution. Therefore we can
label all the vertices vj bad, (1 ≤ j ≤ k). We would also like to maintain the
parity of all cycles passing through u (and w). Thus if the path length is even
we retain only one of the vertices vj and add the edges (u, vj) and (vj , w); if the
path length is odd we delete all the vertices v and add an edge between u and w.

Improved Exact Exponential Algorithms for Vertex Bipartization 379

Preprocessing Algorithm P (G, S, Col)
Input: A multigraph G whose vertices have been colored good or bad along with a
partially constructed solution S.
Output: A (possibly smaller) colored multigraph along with a (possibly larger) solution
or NO signifying that there does not exist a solution containing good vertices only.
Let B be the set of bad vertices of G. Perform the following steps as long as possible.

1. If G has a vertex of degree ≤ 1, remove it along with the incident edge.
2. Check whether G[B] is bipartite. If not then return NO.
3. Check whether any connected component of G is a cycle. Remove all connected

components that are even cycles; if a connected component C is an odd cycle, include
any good vertex of C in S and remove this cycle.

4. If G has a vertex vi of degree 2 (which is not a self-loop) then it must be that vi is
part of some path of the form uv1 . . . vi . . . vkw where each vj 1 ≤ j ≤ k is a degree
2 vertex and degree of u and w are ≥ 3. Here u and w could be the same vertex.
(a) Case 1: At least one of the u and w is colored good. If the path length (k + 1

above) between u and w is odd then delete all the vertices vj and add the edge
(u, w) (although u and w might already have an edge between them). If the path
length between u and w is even then delete vertices v2, v3, . . . , vk and add an
edge between v1 and w and color v1 bad.

(b) Case 2: Both u and w are colored bad. Suppose the path length (k +1 above) is
even and there is at least one vi colored good, then replace the path uv1v2 . . . vkw
by uviw. If no vertex vi is colored good then replace the path uv1v2 . . . vkw by
uv1w. Next suppose the path length is odd. If there is a good vertex vi then
replace the path uv1v2 . . . vkw by uvivjw, where i �= j and color vj bad if it is
not already so. If there are no good vertices then replace the path uv1v2 . . . vkw
by the edge uw (See Figure 3.)

5. Include all vertices with self loops in S and remove them from the graph. Also
remove degree 2 vertices from all cycles of length 2. Find all triangles ∆uvw with
Col(u) = good, Col(v) = bad, Col(w) = bad. Set S ← S ∪{u} and remove u from the
graph.

Fig. 2. The preprocessing algorithm for the Vertex Bipartization problem

Case 2: Both u and w are colored bad. If the path P1k = v1 . . . vk does not
have any good vertex then we only need to worry about maintaining the parity
of the cycles passing through it and hence this case is similar to Case 1. But
if P1k has a good vertex, say vi, then not only do we need to maintain parity
of the cycles passing through it but we also need to retain at least one good
vertex from this path. This is because the good vertices on P1k could be the
only good ones on the odd cycles passing through it. We retain exactly one good
vertex since any optimal solution contains at most one good vertex from this
path. Hence if P1k is an odd length path then we retain vi and another vertex
vj and add the edges (u, vi), (vi, vj), and (vj , w), and we color vj bad. Else, we
retain only vi and add the edges (u, vi), (vi, w).

In Step 5, we add vertices having self-loops in our solution. This is because
vertices with self-loops represent an odd cycle in the original graph and there-

380 V. Raman, S. Saurabh, and S. Sikdar

Fig. 3. Step 4 of the Preprocessing Algorithm P . The black vertices are bad and the
shaded ones are good.

fore must be included in any minimum solution. A similar argument holds for
triangles containing only one good vertex. A degree 2 vertex which is part of a
length 2 cycle can be safely removed from the graph since such a vertex cannot
be part of the solution as it is not part of any odd cycle in the current graph.

Time Complexity. Let G = (V, E) be the input graph of maximum degree 3
with n vertices and m edges. Since the graph is of maximum degree 3, m ≤ 3n

2 .
First we will show that if we reach Step 2a of the algorithm the number of

good vertices n′ in the current graph is at most 0.6n. To do this we partition
the set of good vertices into following three types.

Type 1: Degree 2 good vertices.
Type 2: Degree 3 good vertices with one good neighbor.
Type 3: Degree 3 good vertices with all bad neighbors.

Step 4 of the preprocessing routine ensures that any degree 2 good vertex u
has both its neighbors bad. Also observe that a good vertex of degree 3 can
have at most one good neighbor; for if not then there exists a path of length 2
containing only good vertices. Thus any good vertex will be of one of the three
types mentioned above. Let n1, n2, and n3 be the number of vertices of Type 1,
Type 2, and Type 3 respectively. We obtain an upper bound on the number of
good vertices by counting the number of edges between good and bad vertices.
Define ng = n1 +n2 +n3. Define a good-bad edge to be one with one end point
labelled good and the other labelled bad. Similarly define a good-good edge.
The number of good-bad edges in the current graph is 2n1 + 2n2 + 3n3 and the
number of good-good edges is n2/2. Moreover the graph has maximum degree
3. We therefore have the following inequalities.

2n1 + 2n2 + 3n3 ≤ 3(n − n1) + 2n1

2
− n2

2

2.5(n1 + n2 + n3) ≤ 3n

2
⇒ ng ≤ 0.6n.

Improved Exact Exponential Algorithms for Vertex Bipartization 381

In Step 2b, we find a path xyz of length 2 consisting of good vertices only. Here
we have two situations to deal with. If we include the vertex z in the solution, we
remove it from the graph which results in at least one good vertex y with degree
at most 2 having a good neighbor x. But the preprocessing algorithm will either
delete y or label it bad. In either case, the number of good vertices reduces by at
least 2. If we don’t pick z in our solution, then we label it bad, and this reduces
the number of good vertices by 1. Thus the time complexity of the algorithm is
bounded by the recurrence below:

T (ng) ≤ T (ng − 1) + T (ng − 2)
T (0.6ng) = 20.6ng .

Here T (ng) is bounded by (1.62)0.4ng ·20.6ng which is O∗(1.8384ng). Moreover on
any path in the recursion tree, the algorithm takes polynomial space. Initially
ng = n and therefore we have the following.

Theorem 1. Let G = (V, E) be an undirected graph with maximum degree 3
with n vertices and m edges. Then Vertex Bipartization problem on G can
be solved exactly using polynomial space and in time O∗(1.8384n).

2.2 The FVS and VBP Problems in Graphs with Maximum
Degree 4

In this subsection, we extend the ideas described in previous section for the Ver-

tex Bipartization problem to graphs with maximum degree 4. We also give
an exact algorithm for Feedback Vertex Set problem on graphs with max-
imum degree 4. Again both algorithms in this subsection rely on preprocessing
and branching. We will use the same preprocessing algorithm for the Vertex

Bipartization problem. The preprocessing algorithm for Feedback Vertex

Set is almost the same and is described in Figure 4.
The main strategy of the Feedback Vertex Set algorithm is to find a

good vertex with a sufficient number of good neighbors so that on the branch
where we include a good vertex v in the solution, we can either delete at least
one good neighbor of v or color the neighbor bad without making any further
branches. The detailed algorithm is described in Figure 5.

Correctness. The argument for correctness closely follows the one given for the
Vertex Bipartization problem in the previous section and is omitted.

Time Complexity. We claim that in Step 2a, the number of good vertices
is bounded by 2n/3. If we reach Step 2a then either n′ ≤ 2n/3 or every good
vertex of degree three has at most one good neighbor and every good vertex
of degree four has at most two good neighbors. In the case when n′ ≤ 2n/3,
our claim follows trivially since the number of good vertices is ≤ n′. As for the
second case, we can bound the number of good vertices by counting the number
of edges between good and bad vertices. We can have following types of good
vertices:

382 V. Raman, S. Saurabh, and S. Sikdar

Preprocessing Algorithm P1(G, S, Col)
Input: A multigraph G whose vertices have been colored good or bad along with a partially
constructed solution S.
Output: A (possibly smaller) colored multigraph along with a (possibly larger) solution
or NO signifying that there does not exist a solution containing good vertices only.
Let B be the set of bad vertices of G. Perform the following steps as long as possible.
1. If G has a vertex of degree ≤ 1, remove it along with the incident edge.
2. Check whether G[B] is acyclic. If not then return NO.
3. Check whether any connected component of G is a cycle. If a connected component

C is a cycle, include any good vertex of C in S and remove this cycle.
4. If G has a vertex vi of degree 2 (which is not a self-loop) then it must be that vi is

part of some path of the form uv1 . . . vi . . . vkw where each vj 1 ≤ j ≤ k is a degree 2
vertex and u and w are vertices of degree ≥ 3. Here u and w could be the same vertex.
(a) Case 1: At least one of the vertices u and w is colored good. Then delete all the

vertices vj and add the edge (u, w) (although u and w might already have an edge
between them).

(b) Case 2: Both u and v are colored bad. Suppose there is at least one vi colored
good, then replace the path uv1v2 . . . vkw by uviw. If no vertex vi is colored good
then replace the path uv1v2 . . . vkw by the edge uw.

5. Include all vertices with self loops in S and remove them from the graph. Find all
cycles of length 2 with a good vertex and include it in S and remove it from the
graph. Find all triangles ∆uvw with Col(u) = good, Col(v) = bad, Col(w) = bad. Set
S ← S ∪ {u} and remove u from the graph.

Fig. 4. The preprocessing algorithm for the Feedback Vertex Set problem

Type 1. Degree 2 good vertex (with both its neighbors bad).
Type 2. Degree 3 good vertex with one good neighbor.
Type 3. Degree 3 good vertex with all its neighbors bad.
Type 4. Degree 4 good vertex with two good neighbors.
Type 5. Degree 4 good vertex with one good neighbor.
Type 6. Degree 4 good vertex with all its neighbors bad.

It should be clear that any good vertex at this stage falls in one of the types
mentioned above. Let ni represent the number of good vertices of Type i and
let ng be the total number of good vertices. Then ng =

∑6
i=1 ni.

We will now count the number of good-bad edges in the graph. The total
number of good-bad edges is 2n1 + 2n2 + 3n3 + 2n4 + 3n5 + 4n6. It is easy to
see that the quantity n2 + 2n4 + n5 counts every good-good edge twice. Thus
number of good-good edges is (n2 + 2n4 + n5)/2. Hence,

2n1 + 2n2 + 3n3 + 2n4 + 3n5 + 4n6 ≤ 4(n − n1 − n2 − n3) + 3(n2 + n3) + 2n1

2

−n2

2
− 2n4

2
− n5

2

A simple calculation shows that 3ng ≤ 2n from which it follows that ng ≤ 2n
3

This shows that number of good vertices in Step 2a is bounded by 2n/3.

Improved Exact Exponential Algorithms for Vertex Bipartization 383

Algorithm FVS-D4(G = (V, E), S, Col)
Input: A multigraph G = (V, E) with maximum degree 4, whose vertices have been colored.
Here n is the number of vertices in the input graph. Initially the algorithm is called with
S ← ∅ and Col(v) = good for all vertices v ∈ G(V).
Output: A minimum feedback vertex set of G.

Step 1 Call P1(G, S, Col). If P1 returns no then return NO.
Step 2 Apply the first step which is applicable:

Step 2a Let n′ be the size of the current graph. If n′ ≤ 2n/3 or if every good vertex
v of degree 3 has at most one good neighbor and if every good vertex v of degree 4
has at most two good neighbors, then use brute-force and try all possible solutions
S∪T , where T is some subset of the good vertices of the current graph, and return
the one with minimum size.

Step 2b Find a vertex u of degree 3 with at least two good neighbors, say v and w.
Call the algorithm on following instances and return the smaller solution.
– Set S ← S ∪ {v} and call FVS-D4(G − {v}, S, Col).
– Set Col(v) = bad and call FVS-D4(G, S, Col).

Step 2c Find a vertex u of degree 4 with at least 3 good neighbors, say v, w and
z. Here we consider three cases and branch accordingly: 1. v is not part of the
solution, 2. both v and w are part of the solution, and 3. v is part of the solution
but w isn’t and return the smallest solution.
– Set Col(v) = bad and call FVS-D4(G, S, Col).
– Set S ← S ∪ {v, w} and call FVS-D4(G − {v, w}, S, Col).
– Set S ← S ∪ {v} and Col(w) = bad and call FVS-D4(G − {v}, S, Col).

Fig. 5. Algorithm FVS-D4

In Step 2b, we have a good vertex u of degree 3 that has at least two good
neighbors v and w. When we include v in the solution, the degree of u becomes
2 and since it has a good neighbor w it is either removed or labelled bad by the
preprocessing step. Thus we end up eliminating at least two good vertices from
the graph. If we do not include v in the solution, we label it bad and end up
decreasing the number of good vertices by one. Then we have

T (ng) ≤ T (ng − 1) + T (ng − 2).

In Step 2c, we have a vertex u of degree 4 with at least three good neighbors
v, w and z. We branch on three cases:

1. v is not in the solution,
2. v and w are in the solution, and
3. v is in the solution but w isn’t.

In the first case, v is labelled bad and the number of good vertices reduces by
at least 1. When both v, w are part of the solution then, on removing them, u
has degree 2 and since it has a good neighbor z it is either removed or labelled
bad by the preprocessing step. Thus we eliminate at least 3 good vertices in this
case. In the last case, v is removed from the graph and w is labelled bad, which
reduces the number of good vertices by at least 2. Thus we have the following
recurrence on the number of good vertices.

384 V. Raman, S. Saurabh, and S. Sikdar

T (ng) ≤ T (ng − 1) + T (ng − 2) + T (ng − 3).

Combining the above, we get the following recurrence for the problem in the
worst case, modulo the polynomial time used at every node to find the vertex of
required type.

T (ng) ≤ T (ng − 1) + T (ng − 2) + T (ng − 3)

T (2ng/3) = 22ng/3

T (ng) is bounded by (1.8393)ng/3 · 22ng/3 which is O∗(1.945ng). As initial value
of ng is n we get the following theorem.

Theorem 2. Let G = (V, E) be an undirected graph with maximum degree 4
with n vertices and m edges. Then the Feedback Vertex Set problem on G
can be solved exactly using polynomial space and in time O∗(1.945n).

We can modify our algorithm for the Feedback Vertex Set presented above
for the Vertex Bipartization problem in graphs of maximum degree 4. The
only modification we need to do is to call the preprocessing algorithm for Vertex

Bipartization problem in Step 1. This gives us following theorem.

Theorem 3. Let G = (V, E) be an undirected graph with maximum degree 4
with n vertices and m edges. Then the Vertex Bipartization problem on G
can be solved exactly using polynomial space and in time O∗(1.945n).

3 Using FPT Algorithms to Design Exact Algorithms

In the last section, we gave efficient algorithms for Vertex Bipartization and
Feedback Vertex Set, but they critically used the fact that the maximum
degree of the graphs is 3 or 4. Here we give a general technique of designing exact
algorithms using parameterized algorithms as a subroutine and apply it to several
problems. Let Q be an NP-optimization problem such that for every instance I
of Q there is a polynomial time computable universe U of size, say n, such that
an optimum solution of I is a subset of U and suppose that its parameterized
version (Q, k) (given an instance of Q, does it have a solution of size k?) is
fixed parameter tractable having an algorithm A with time complexity O∗(ck).
This algorithm A immediately gives us an exact algorithm for Q with time
complexity O∗(cn), where n is an upper bound on the optimum solution size.
What is interesting is that the FPT algorithm can actually give us an exact
algorithm for Q with time complexity O∗(dn), where d < c. Moreover, if c < 4
then we will show that d < 2.

This fact has an interesting consequence. There are many optimization prob-
lems such as Max Independent Set, Min Vertex Cover, Min Feedback

Vertex Set which have trivial brute-force enumeration algorithms of time com-
plexity 2n. If the parameterized versions of any of these problems is solvable in
time O∗(ck), where c < 4 then we immediately obtain exact algorithms for these

Improved Exact Exponential Algorithms for Vertex Bipartization 385

Algorithm Exact(Q,A ,c)
(Q is a minimization problem and A is the FPT algorithm that solves its parameterized
version in time O∗(ck), where c is a constant and k is the parameter. Here n is the size
of the universe U .)
Compute the largest λ such that c�nλ� ≤

(
n

n−�λn�
)
.

for i = 1 to �λn	
use the FPT algorithm A for Q to check whether there is solution of size i; if yes
output i and halt.

for i = �λn	 + 1 to n
try all subsets of size i of U to check whether there exists a solution of size i; if yes,
then output i and halt.

Fig. 6. Algorithm Exact()

problems which are better than the trivial brute-force algorithms. We will show
that this technique simplifies exact algorithms for many optimization problems
and for some (e.g. Vertex Bipartization) gives the best known exact algo-
rithm.

Our algorithm makes clever use of the FPT algorithm A and brute-force enu-
meration. Consider a problem such as Vertex Bipartization. Had we used
brute-force throughout, the time complexity would have been O∗(

∑i=n
i=0

(
n
i

)
)

= O∗(2n). It is well known that the function
(
n
i

)
increases with increasing i,

attains a maximum at i = n/2, and then decreases. Brute-force pushes the time
complexity to O∗(2n) because it is costlier to search exhaustively when i is near
n/2, since

(
n

n/2

)
≈ 2n. Therefore, if we adopt the strategy of using brute-force

only for those values of i which are far removed from n/2 and using the FPT
algorithm A for the remaining i values (that is, those near n/2), then we might
end up with an exponential time complexity better than that of A . And indeed
we do. Our algorithm is given in Figure 6. For simplicity the algorithm consid-
ers minimization problems only. For maximization problems we can modify the
algorithm to output the largest i for which there exists a solution.

Suppose the FPT algorithm A for Q takes O∗(ck) time, where c is some
constant. Then from the description of Algorithm Exact, it is easy to observe
that its time complexity is upper bounded by following:

O∗
(
max

{
cλn,

(
n

n−�λn�
)})

.

The trivial brute-force algorithm for Q (enumeration of subsets of U) has time
complexity O∗(2n). We show that if we want Algorithm Exact to beat this trivial
time bound then we must have c < 4. We need a lemma.

Lemma 1. Let 1
2 < λ < 1. Then

(
n

n−λn

)
is bounded by dn, where d is some

constant < 2.

Proof. We know that
(

n
n−λn

)
=

(
n

λn

)
≤ nn

(λn)λn((1−λ)n)(1−λ)n =
((1

λ

)λ
(

1
1−λ

)1−λ
)n

386 V. Raman, S. Saurabh, and S. Sikdar

One can easily verify using calculus that the function

h(λ) =
(1

λ

)λ
(

1
1−λ

)1−λ

(0 < λ < 1)

attains a maximum of 2 at λ = 1/2. At other points in the interval (1
2 , 1) it has

a value less than 2. This proves the claim. ��

Equating cλ and h(λ) = d we get c = {h(λ)}1/λ < 21/λ. Since 1/2 < λ < 1 we
see that c < 4. Also note that d = cλ < c. We thus have the following theorem.

Theorem 4. Let Q be an NP-optimization problem such that for every instance
I of Q there is a polynomial time computable universe U of size, say n, such
that an optimum solution of I is a subset of U . Suppose that the parameterized
version of Q is FPT with time complexity O∗(c k) then there is an exact algorithm
for Q with time complexity O∗(dn), where d = cλ and λ (< 1) is the largest value
such that c�nλ� ≤

(
n

n−�λn�
)
. In particular c < 4 implies d = cλ < 2.

3.1 Applications

In this section, we apply Theorem 4 to obtain exact algorithms with nontrivial
worst-case time bounds for several problems.

Vertex Bipartization Problem : The Vertex Bipartization problem in
general undirected graphs can be solved exactly in O∗(2|V |) time. Reed, Kaleigh,
and Vetta [12] have recently given an FPT algorithm for the parameterized ver-
sion of this problem with running time O(3kkmn). If we use their FPT algorithm
directly to solve the optimum version of the problem we will take time O∗(3n)
which is worse than that taken by the trivial exponential time algorithm. How-
ever, if we use the algorithm of Theorem 4 then with c = 3, we obtain λ = 0.6091
and get a running time of O∗(1.9526n). We therefore have the following theorem.

Theorem 5. Let G = (V, E) be an undirected graph with n vertices then Ver-

tex Bipartization problem can be solved in time O∗(1.9526n).

3- and 4-Hitting Set Problems: The Hitting Set (HS) problem is defined
as follows:

Instance A finite family of sets S1, S2, . . . , Sm comprised of elements from a
universal set U .

Goal Find a minimum sized subset T ⊆ U such that Si ∩T �= ∅ for all i.

The 3- and 4-HS problems are special cases of the Hitting Set problem. In
the 3-HS problem |Si| (1 ≤ i ≤ m) is bounded by 3 and in the 4-HS problem
by 4. The parameterized versions of these problems have been shown to be fixed
parameter tractable by Neidermeier et al [8]. The main results in [8] can be
summarized in the following theorem.

Theorem 6. [8] The parameterized version of the 3-HS and the 4-HS problem
can be solved in time O∗(2.27k) and O∗(3.3k) respectively.

Improved Exact Exponential Algorithms for Vertex Bipartization 387

Using the parameterized algorithm of Theorem 6, we get λ = 0.72 with c = 2.27
for the 3-HS problem and λ = 0.5721 with c = 3.3 for the 4-HS problem. This
gives us the following theorem.

Theorem 7. The 3- and 4-Hitting Set problems can be solved exactly in time
O∗(1.80933)n and O∗(1.9799n), where n = |U |.

Recently Wahlström [15] proposed an exact algorithm for the 3-HS problem
with time complexity O∗(1.6316n). The algorithm for the 3-HS problem in [15]
does not directly generalize to the 4-HS problem. To the best of our knowledge
our algorithm is the first exact algorithm for the 4-HS problem with the base of
the exponent less than 2.

Feedback Set Problems in Tournaments: The Feedback Arc (Vertex)

Set problem in directed graphs is defined as follows:

Instance A directed graph G = (V, E).
Goal Find a minimum sized subset F ⊆ E (F ⊆ V) such that G′ =

(V, E − F) (G′ = (V − F, E′)) is acyclic.

Raman and Saurabh [10] give an O∗(2.27k) algorithm for the Feedback Ver-

tex Set problem. For the Feedback Vertex Set we get λ = 0.72 with
c = 2.27. Then using Theorem 4 we obtain the following theorem.

Theorem 8. Let G = (V, E) be a tournament with n vertices and m arcs. Then
the feedback vertex set can be found in time O∗(1.80933n).

For Feedback Arc Set, c is 2.415 by [10]. We get λ = 0.696 with c = 2.415.
Observe that in any directed graph, the size of the minimum feedback arc set is
at most m/2. This fact ensures that algorithm in Theorem 4 will never use brute-
force as m

2 ≤ 0.696m. Hence the time complexity of the algorithm is bounded
by O∗((2.415)m/2) and therefore we get the following theorem.

Theorem 9. Let G = (V, E) be a tournament with n vertices and m arcs. Then
the minimum feedback arc set can be found in time O∗(1.5541m).

Max Cut in Graphs of Average Degree 3 or 4: An instance of the Edge

Bipartization problem is an undirected graph G = (V, E) and the question
is to find a minimum set of edges that needs to be deleted from G to make it
bipartite. The relationship between this problem and the Max Cut problem is
straightforward. The maximum cut in a graph is:

E − {the minimum set of edges to make the graph bipartite}.
Thus solving the Edge Bipartization problem is equivalent to solving the Max

Cut problem. The parameterized algorithm for Edge Bipartization presented
in [7] has time complexity O∗(2k).

Poljak et al in [9] give a lower bound of m
2 + 1

2

⌈
n−c

2

⌉
for maximum cut, where

c is number of connected components and m and n are, respectively, the number
of edges and vertices in the graph. If G is a connected graph on n vertices and
m edges with average degree 3, then m = 1.5n. The minimum number of edges
to be removed from G to make it bipartite is then

388 V. Raman, S. Saurabh, and S. Sikdar

m − |max cut| ≤ m −
(

m

2
+

n − 1
4

)
=

3n

2
−

(
3n

4
+

n − 1
4

)
=

n

2
+

1
4
.

We use the parameterized algorithm in [7] to solve the Edge Bipartization

problem. Since λ = 0.773 for c = 2, algorithm in Theorem 4 will never use
brute-force when the input graph has average degree 3, since in this case the
solution size is bounded by n/2 as shown above. Because of the upper bound
on the number of edges needed to be removed, we achieve a time complexity
of O∗(2n/2) = O∗(1.414n). Had G been of average degree 4, then the upper
bound on the number of edges to be deleted would be 3n/4 + 1/4. This upper
bound is also less than 0.773m and hence algorithm in theorem 4 will never use
brute-force. So the time complexity of solving the Edge Bipartization problem
would be O∗(23n/4) = O∗(1.6818n). We thus have the following theorem.

Theorem 10. The Max Cut problem can be solved exactly in time O∗(1.4141n)
in graphs with average degree 3 and in time O∗(1.6818n) in graphs with average
degree 4. Both of these algorithms take polynomial space.

Neidermeir et al [6] achieve the same time bound for graphs with maximum
degree 3 and a better time bound of O∗(1.5871n) for graphs with maximum
degree 4.

4 Conclusion

We have obtained improved exact algorithms for several problems including
Vertex Bipartization in general undirected graphs, 4-Hitting Set, Feed-

back Vertex Set in graphs with maximum degree at most 4, and Feedback

Arc Set in tournaments. We introduced two general techniques to obtain effi-
cient exact algorithms. One of these is a modified version of the general branch-
and-bound technique and the other one is based on parameterized complexity
algorithms. Further reduction in the base of the exponent of all these algorithms
remains open.

It would be interesting to investigate the practical performance of these algo-
rithms. Another major open problem is to devise an exact algorithm with time
complexity less than O∗(cn), c < 2 for the Feedback Vertex Set problem in
general undirected graphs.

After submitting this paper, we learnt about an exact algorithm on Vertex

Bipartization by Byskov [1], with time complexity O∗(1.8631n). An improve-
ment to this result along with several other results are presented in the full
version of the paper [11].

References

1. J. M. Byskov. On the Number of Maximal Bipartite Subgraphs of a Graph.
Journal of Graph Theory 48 (2): 127-135, 2005.

2. H. Choi, K. Nakajima and C. S. Rim. Graph Bipartization and Via Minimiza-
tion. SIAM Journal of Discrete Mathematics 2 (1): 38-47, 1989.

Improved Exact Exponential Algorithms for Vertex Bipartization 389

3. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
4. R. Downey and M. Fellows. Parameterized Complexity for the Skeptic. In the

Proc. of 18th CCC : 147-169, 2003.
5. N. Garg, V. Vazirani and M. Yannakakis. Approximate Max-Flow Min-

(Multi) Cut Theorems and Their Applications. SIAM Journal on Computing 25
(2): 235-251, 1996.

6. J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith Worst-case
upper bounds for MAX-2-SAT with an application to MAX-CUT. Discrete Applied
Mathematics 130 (2): 139-155, 2003.

7. J. Guo, J. Gramm, F. Hüffner, R. Neidermeier and S. Wernicke. Improved
Fixed-Parameter Algorithms for Two Feedback Set Problems. To appear in the pro-
ceedings of 9th Workshop on Algorithms and Data Structures (WADS). Springer
Verlag, Lecture Notes in Computer Science, 2005.

8. R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm for
3-Hitting Set. Journal of Discrete Algorithms 1 (1): 89-102, 2003.

9. S. Poljak and D. Turzik. A Polynomial Algorithm for Constructing a Large
Bipartite Subgraph, with an Application to a Satisfiability Problem. Canad. J.
Math 34 (3): 519-524, 1982.

10. V. Raman, and S. Saurabh. Improved Parameterized Algorithms for Feedback
Set Problems in Weighted Tournaments. In the Proc. of 1st International Workshop
on Exact and Parameterized Algorithms (IWPEC): 260-270, 2004.

11. V. Raman, S. Saurabh, and S. Sikdar. Exact Algorithms for Odd Cycle
Transversal and Other Problems. Technical Report, IMSC-2005-06-16, The Insti-
tute of Mathematical Sciences, 2005.

12. B. Reed, K. Smith and A. Vetta. Finding Odd Cycle Transversals, Operations
Research Letters 32: 299-301, 2004.

13. R. Rizzi, V. Bafna, S. Istrail and G. Lancia. Practical Algorithms and Fixed-
Parameter Tractability for the Single Individual SNP Haplotyping Problem. In the
Proc of WABI: 29-43, 2002.

14. S. Ueno, Y. Kajitani and S. Gotoh. On the Nonseparating Independent Set
Problem and Feedback Set Problem for Graphs with no Vertex Degree Exceeding
Three. Discrete Mathematics 72: 355-360, 1988.

15. M. Wahlström. Exact algorithms for finding minimum transversals in rank-3
hypergraphs. Journal of Algorithms 51(2): 107 - 121, 2004.

16. G. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combina-
torial Optimization—Eureka! You shrink! Springer LNCS 2570: 185-207, 2003.

17. X. Zhunag and S. Pande. Resolving Register Bank Conflicts for a Network
Processor. In Proc. of 12th PACT: 260-278, 2003.

A Typed Semantics of Higher-Order Store
and Subtyping

Jan Schwinghammer

Informatics, University of Sussex, Brighton, UK
j.schwinghammer@sussex.ac.uk

Abstract. We consider a call-by-value language, with higher-order func-
tions, records, references to values of arbitrary type, and subtyping. We
adapt an intrinsic denotational model for a similar language based on
a possible-world semantics, recently given by Levy [14], and relate it to
an untyped model by a logical relation. Following the methodology of
Reynolds [22], this relation is used to establish coherence of the typed
semantics, with a coercion interpretation of subtyping. We obtain a
typed denotational semantics of (imperative) object-based languages.

1 Introduction

Languages such as Standard ML and Scheme allow to store values of arbitrary
types, including function types. Essentially the same effect is pervasive in object-
based languages (see [1,21]), where objects are created on-the-fly and arbitrary
method code needs to be kept in the store. This feature is often referred to
as higher-order store or general references, and complicates the semantics (and
logics) of such languages considerably: Besides introducing recursion to the lan-
guage [13], higher order store in fact requires the semantic domain to be defined
by a mixed-variant recursive equation. So far, only few models of (typed) lan-
guages with general references appeared in the literature [4,5,14], and most of
the work done on semantics of storage does not readily apply to languages with
higher-order store.

In a recent paper, Paul Levy proposed a typed semantics for a language
with higher-order functions and higher-order store [14]. This is a possible worlds
model, explicating the dynamic allocation of new (typed) storage locations in the
course of a computation. We recall this model below, and extend it to accommo-
date subtyping by using coercion maps. In the terminology of Reynolds [22], we
obtain an intrinsic semantics: Meaning is given to derivations of typing judge-
ments, rather than to terms, with the consequence that

– ill-typed phrases are meaningless,
– terms satisfying several judgements will be assigned several meanings, and
– coherence between the meaning of several derivations of the same judgement

must be established.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 390–405, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Typed Semantics of Higher-Order Store and Subtyping 391

Due to the addition of subtyping to Levy’s model, derivations are indeed no
longer unique and we must prove coherence. A standard approach for such proofs
is to transform derivations into a normal form while preserving their semantics.
This can be quite involved, even for purely functional languages (see, e.g., [7]).

In contrast to intrinsic semantics, an extrinsic semantics gives meaning to all
terms. Types (and typing judgements) are interpreted as, e.g., predicates or par-
tial equivalence relations over an untyped model. Usually, the interpretation of
subtyping is straightforward in such models. In [22], Reynolds uses a logical rela-
tion between intrinsic and extrinsic cpo models of a lambda calculus with subtyp-
ing (but no state) to prove coherence. The proof essentially relies on the fact that
(the denotations of) all derivations of a judgement Γ �e : A are related to the de-
notation �e� of e in the untyped model underlying the extrinsic semantics, via the
basic lemma of logical relations. A family of retractions between intrinsic and ex-
trinsic semantics is then used to obtain the meaning of �Γ � e : A� in terms of Γ ,
�e� and A alone, i.e., independent of any particular derivation of the judgement.

We apply the same ideas to obtain a coherence proof for the language consid-
ered here. Two modifications have to be made: Firstly, because of the indexing
by worlds we use a Kripke logical relation [16] to relate intrinsic and extrinsic
semantics — this is straightforward. Secondly, due to the mixed-variant recur-
sion forced by the higher-order store we can no longer use induction over the
type structure to establish properties of the relations. In fact even the existence
of the logical relation requires a non-trivial proof — we use the framework of
Pitts [18] to deal with this complication.

While the combination of higher-order storage and subtyping is interesting
in its own right, we see the current work as a step toward our longer-term goal of
investigating logics for languages involving higher-order store. In particular, we
are interested in semantics and reasoning principles for object-oriented programs,
and it should be noted that a number of object encodings used a target language
similar to the one considered here [2,11]. Some evidence that the model of this
paper can indeed serve as basis for such logics is provided, by giving a semantics
to the object calculus [1]. This is done using a typed variant of Kamin and
Reddy’s “closure model” [11]. To the best of our knowledge this is the first
(intrinsically typed) domain-theoretic model of the imperative object calculus.

In summary, our technical contributions here are (1) we present a model of
a language that includes general references and subtyping, (2) we successfully
apply the ideas of Reynolds [22] to prove coherence, and (3) we provide the first
(typed) model of the imperative object calculus, based on cpos.

Structure of the Paper. In the next section, language and type system are in-
troduced. Then, typed and untyped models are presented (Sects. 3 and 4). The
logical relation is defined next, and retractions between types of the intrinsic
semantics and the untyped value space are used to prove coherence in Sect. 6.
In Sect. 7 both a derived per semantics and an interpretation of objects in the
model are discussed.

Complete proofs, further examples and discussions can be found in the tech-
nical report [23].

392 J. Schwinghammer

2 Language

We consider a single base type of booleans, bool, records {mi : Ai}i∈I with

labels m ∈ L, and function types A ⇒ B. We set 1
def
= {} to be the empty

record type. Finally, we have a type ref A of mutable references to values of type
A. Term forms include constructs for creating, dereferencing and updating of
storage locations. The syntax of types and terms is given by the grammar:

A, B ∈ Type ::= bool | {mi : Ai}i∈I | A ⇒ B | ref A

v ∈ Val ::= x | true | false | {mi = xi}i∈I | λx.e

e ∈ Exp ::= v | let x=e1 in e2 | if x then e1 else e2 | x.m | x(y)

| newA x | deref x | x:=y

The subtyping relation A � B is the least reflexive and transitive relation closed
under the rules

Ai � A′
i ∀i ∈ I ′ I ′ ⊆ I

{mi : Ai}i∈I � {mi : A′
i}i∈I′

A′ � A B � B′

A⇒B � A′⇒B′

Note that there is no rule for reference types as these need to be invariant, i.e.,
ref A � ref B only if A ≡ B. A type inference system is given in Table 1, where
contexts Γ are finite sets of variable-type pairs, with each variable occurring
at most once. As usual, in writing Γ, x:A we assume x does not occur in Γ . A
subsumption rule is used for subtyping of terms.

Table 1. Typing

Γ � e : A A � B

Γ � e : B

x:A ∈ Γ

Γ � x : A

Γ � e1 : B Γ, x:B � e2 : A

Γ � let x=e1 in e2 : A Γ � true : bool

Γ � x : bool Γ � e1 : A Γ � e2 : A

Γ � if x then e1 else e2 : A Γ � false : bool

Γ � xi : Ai ∀i ∈ I

Γ � {mi = xi}i∈I : {mi : Ai}i∈I

Γ � x : {mi : Ai}i∈I

Γ � x.mj : Aj

(j ∈ I)

Γ, x:A � e : B

Γ � λx.e : A ⇒ B

Γ � x : A ⇒ B Γ � y : A

Γ � x(y) : B

Γ � x : A

Γ � newA x : ref A

Γ � x : ref A

Γ � deref x : A

Γ � x : ref A Γ � y : A

Γ � x:=y : 1

A Typed Semantics of Higher-Order Store and Subtyping 393

3 Intrinsic Semantics

In this section we recall the possible worlds model of [14]. Its extension with
records is straightforward, and we interpret the subsumption rule using coercion
maps.

Worlds. For each A ∈ Type let LocA be mutually disjoint, countably infinite sets
of locations. We let l range over Loc

def
=

⋃
A∈Type LocA, and may use the notation

lA to emphasize that l ∈ LocA. A world w is a finite set of locations lA ∈ Loc. A
world w′ extends w, written w′ ≥ w, if w′ ⊇ w. We write W = (W , ≤) for the
poset of worlds.

Semantic Domain. Let pCpo be the category of cpos (not necessarily contain-
ing a least element) and partial continuous functions. For a partial continuous
function f we write f(a) ↓ if the application is defined, and f(a) ↑ otherwise.
Let Cpo be the subcategory of pCpo where the morphisms are total continuous
functions.

Informally, a world describes the shape of the store, i.e., the number of lo-
cations of each type allocated in the store. In the semantics we want a cpo Sw

of w-stores for each w ∈ W , and a cpo �A�w of values of type A. In fact, we
require that each �A� denotes a co-variant functor from W to Cpo, formalising
the intuition that values can always be used with larger stores. We write the
image of w ≤ w′ under �A� as �A�

w′

w .
The cpo of w-stores is defined as Sw =

∏
lA∈w �A�w. For worlds w ∈ W ,

�bool�w = BVal denotes the set {true, false} of truth values considered as discrete
cpo, and similarly, �ref A�w = {lA | lA ∈ w} is the discretely ordered cpo of A-
locations allocated in w-stores. Further, �{mi : Ai}i∈I�w = {|mi : �Ai�w |}i∈I is
the cpo of records {|mi = ai|}i∈I with component mi in �Ai�w, ordered pointwise.

On morphisms w ≤ w′, �bool�w′

w = idBVal is the identity map, and �ref A�
w′

w
is the inclusion �ref A�w ⊆ �ref A�w′ . Records act pointwise on the components,
�{mi : Ai}�

w′

w = λr.{|mi = �Ai�
w′

w (r.mi)|}. The type of functions A ⇒ B is the
most interesting since it involves the store S,

�A ⇒ B�w

def
=

∏
w′≥w(Sw′ × �A�w′ ⇀

∑
w′′≥w′(Sw′′ × �B�w′′)) (1)

This says that a function f ∈ �A ⇒ B�w may be applied in any future (larger)
store w′ to a w′-store s and value v ∈ �A�w′ . The computation fw′(s, v) may
allocate new storage, and upon termination it yields a store and value in a yet
larger world w′′ ≥ w′. For a morphism w ≤ w′, �A ⇒ B�

w′

w (f) = λw′′≥w′fw′′ is
the restriction to worlds w′′ ≥ w′.

Equation (1) clearly shows the effect of allowing higher-order store: Since
functions A ⇒ B can also be stored, S and �A ⇒ B� are mutually recursive. Due
to the use of S in both positive and negative positions in (1) a mixed-variant
domain equation for S must be solved. To this end, in [14] a bilimit-compact
category C is considered, i.e.,

394 J. Schwinghammer

– C is Cpo-enriched and each hom-cpo C(A, B) has a least element ⊥A,B s.t.
⊥ ◦ f = ⊥ = g ◦ ⊥;

– C has an initial object; and
– in the category CE of embedding-projection pairs of C, every ω-chain ∆ =

D0 → D1 → . . . has an O-colimit [24], i.e., a cocone 〈ei, pi〉i∈N : ∆ → D in
CE s.t.

⊔
i ei ◦ pi = idD in C(D, D).

It follows that every locally continuous functor F : Cop × C → C has a minimal
invariant, i.e., an object D in C s.t. F (D, D) = D (omitting isomorphisms) and
idD is the least fixed point of the continuous endofunction δ : C(D, D) → C(D, D)

given by δ(e)
def
= F (e, e) [18].

Following [14] the semantics of types can now be obtained as minimal invari-
ant of the locally continuous functor F : Cop × C → C (derived from the domain
equations for types by separating positive and negative occurrences of the store)
over the bilimit-compact category

C =
∏

w∈W pCpo ×
∏

A∈Type[W, Cpo] •→ [W,pCpo] (2)

Here, [W ,Cpo] •→ [W ,pCpo] denotes the category where objects are functors
A, B : W → Cpo and morphisms are partial natural transformations µ : A

.→ B,
i.e., for A, B : W → Cpo the diagram

Aw

Aw′
w ��

µw � Bw

Bw′
w��

Aw′
µw′

� Bw′

(3)

commutes. The first component of the product in (2) is used to define Sw
def
= DSw

from the minimal invariant D = 〈{DSw}w, {DA}A〉, and the second component

yields �A�
def
= DA. In fact, D gives isomorphisms F (D, D)A = DA in the category

[W ,Cpo] of functors W → Cpo and total natural transformations.

Semantics. Each subtyping derivation A � B determines a coercion, which is
in fact a (total) natural transformation from �A� to �B�, defined in Table 2.
We follow the notation of [22] and write P(J) to distinguish a derivation of
judgement J from the judgement itself.

Writing �Γ �w for the set of maps from variables to
⋃

A �A�w s.t. ρ(x) ∈ �A�w
for all x:A ∈ Γ , we define the semantics of (derivations of) typing judgments

�Γ � e : A�w : �Γ �w → Sw ⇀
∑

w′≥w(Sw′ × �A�w′) .

As observed in Levy’s paper, each value Γ � v : A determines a natural transfor-
mation from �Γ � to �A� in [W ,Cpo]. Here this is a consequence of the fact that
(i) values do not affect the store and (ii) coercion maps determine (total) natural
transformations. We make use of this fact in the statement of the semantics. For
example, in the case of records we do not have to fix an order for the evaluation
of the components.

A Typed Semantics of Higher-Order Store and Subtyping 395

Table 2. Coercion maps

�

A � A

�

w

= id�A�w

�

P(A � A′) P(A′ � B)
A � B

�

w

= �P(A′ � B)�w ◦ �P(A � A′)�w

�

I ′ ⊆ I P(Ai � A′
i) ∀i ∈ I ′

{mi : Ai}i∈I � {mi : A′
i}i∈I′

�

w

= λr.{|mi = �P(Ai � A′
i)�w (r.mi)|}i∈I′

�

P(A′ � A) P(B � B′)
A⇒B � A′⇒B′

�

w

= λfλw′≥w λ〈s, x〉.

⎧
⎨

⎩

〈w′′, 〈s′, �P(B � B′)�w′′ x′〉〉
if fw′〈s, �P(A′ � A)�w′ (x)〉 = 〈w′′, 〈s′, x′〉〉↓

undefined otherwise

The semantics of subtyping judgements is used for the subsumption rule,
�

P(Γ � e : A) P(A � B)
Γ � e : B

�

w

ρs =

⎧
⎨

⎩

〈w′, 〈s′, �P(A � B)�w′ a〉〉
if �P(Γ � e : A)�w ρs = 〈w′, 〈s′, a〉〉↓

undefined otherwise

As explained above, the semantics of functions is parameterised over extensions
of the current world w,

�

P(Γ, x : A � e : B)
Γ � λx.e : A ⇒ B

�

w

ρs

= 〈w, 〈s, λw′ ≥ wλ〈s′, a〉. �P(Γ, x:A � e : B)�w′ (�Γ �

w′

w ρ)[x := a] s′〉〉
Function application is

�

P(Γ � x : A ⇒ B) P(Γ � y : A)
Γ � x(y) : B

�

w

ρs = fw(s, a)

where 〈w, 〈s, f〉〉 = �P(Γ � x : A ⇒ B)�w ρs and 〈w, 〈s, a〉〉 = �P(Γ � y : A)�w ρs.
The remaining cases are similarly straightforward (see [14,23]).

4 An Untyped Semantics

We give an untyped semantics of the language in pCpo. Let Val satisfy

Val = BVal + Loc + RecL(Val) + (St × Val ⇀ St × Val) (4)

where St
def
= RecLoc(Val) denotes the cpo of records with labels from Loc, ordered

by r1 � r2 iff dom(r1) = dom(r2) and r1.m � r2.m for all m ∈ dom(r1). The
interpretation of terms, �e� : Env → St ⇀ St×Val, is essentially straightforward,
typical cases are those of abstraction and application:

�λx.e� ησ = 〈σ, λ〈σ′, v〉. �e� η[x := v] σ′〉

�x(y)�ησ =
{

η(x)〈σ, η(y)〉 if η(x) ∈ [St × Val ⇀ St × Val] and η(y)↓
undefined otherwise

396 J. Schwinghammer

Table 3. Kripke logical relation

〈x, y〉 ∈ Rbool
w

def⇐⇒ y ∈ BVal ∧ x = y

〈r, s〉 ∈ R
{mi:Ai}
w

def⇐⇒ s ∈ RecL(Val) ∧ ∀i. (s.mi ↓ ∧ 〈r.mi, s.mi〉 ∈ RAi
w)

〈f, g〉 ∈ RA⇒B
w

def⇐⇒ g ∈ [St × Val ⇀ St × Val] ∧
∀w′ ≥ w ∀〈s, σ〉 ∈ RSt

w′ ∀〈x, y〉 ∈ RA
w′

(fw′(s, x)↑ ∧ g(σ, y)↑)
∨ ∃w′′ ≥ w′ ∃s′ ∈ Sw′ ∃x′ ∈ �B�w′ ∃σ′ ∈ St ∃y′ ∈ Val.

(fw′(s, x) = 〈w′′, 〈s′, x′〉〉 ∧ g(σ, y) = 〈σ′, y′〉
∧ 〈s′, σ′〉 ∈ RSt

w′′ ∧ 〈x′, y′〉 ∈ RB
w′′)

〈x, y〉 ∈ Rref A
w

def⇐⇒ y ∈ w ∩ LocA ∧ x = y

with the auxiliary relation RSt
w ⊆ Sw × St,

〈s, σ〉 ∈ RSt
w

def⇐⇒ dom(s) = w = dom(σ) ∧ ∀lA ∈ w. 〈s.lA, σ.lA〉 ∈ RA
w

Compared to the intrinsic semantics of the previous section, there are now many
more possibilities of undefinedness if things “go wrong”, e.g., if x in x(y) does
not denote a function value.

The semantics of newA may be slightly surprising as there is still some type
information in the choice of locations:

�newA x� ησ = 〈σ + {|lA = η(x)|}, lA〉 where lA ∈ LocA \ dom(σ)

if η(x)↓, and undefined otherwise. Informally, the worlds of the intrinsic seman-
tics are encoded in the domain of untyped stores. Although σ with dom(σ) = w
need not necessarily correspond to a (typed) w-store in any sense, this will be
the case for stores being derived from well-typed terms. This is one of the results
of Sect. 5 below. See also the discussion in Sect. 7.1.

5 A Kripke Logical Relation

While in [22] a logical relation between typed and untyped models was used to
establish coherence, here this must be slightly generalised to a Kripke logical re-
lation. Kripke logical relations are not only indexed by types but also by possible
worlds, subject to a monotonicity condition (Lemma 2 below).

In Table 3 such a family of Type- and W-indexed relations RA
w ⊆ �A�w × Val

is defined. The existence of this family R has to be established: There are both
positive and negative occurrences of RSt

w in the case of function types A⇒B.
Thus R cannot be defined by induction on the type structure, nor does it give
rise to a monotone operation (on the complete lattice of admissible predicates).

5.1 Existence of RA
w

To establish the existence of such a relation one uses Pitts’ technique for the
bilimit-compact product category C ×pCpo. Let G : pCpoop ×pCpo → pCpo

A Typed Semantics of Higher-Order Store and Subtyping 397

be the locally continuous functor for which (4) is the minimal invariant, so that
〈D, Val〉 is the minimal invariant of F × G. A relational structure R on the
category C × pCpo, in the sense of [18], is given by the following data.

– For each object 〈X, Y 〉 of C × pCpo, let R(X, Y) consist of the type- and
world-indexed families R of admissible relations, where RA

w ⊆ XAw × Y and
RSt

w ⊆ XSw × RecLoc(Y).
– For morphisms f = 〈f1, f2〉 : 〈X, Y 〉 → 〈X ′, Y ′〉, and relations R ∈ R(X, Y)

and S ∈ R(X ′, Y ′), we define f : R ⊂ S iff, for all w ∈ W , A ∈ Type, for all
x ∈ XAw, y ∈ Y , s ∈ XSw and σ ∈ RecLoc(Y),

〈x, y〉 ∈ RA
w =⇒

{
f1 Aw(x)↑ ∧ f2(y)↑ or
f1 Aw(x)↓ ∧ f2(y)↓ ∧ 〈f1 Aw(x), f2(y)〉 ∈ SA

w

〈s, σ〉 ∈ RSt
w =⇒

{
f1 Sw(x)↑ ∧ RecLoc(f2)(σ)↑ or
f1 Sw(x)↓ ∧ RecLoc(f2)(σ)↓ ∧ 〈f1 Sw(x),RecLoc(f2)(σ)〉 ∈ SSt

w

We define a functional Φ(R−, R+) on R corresponding to the equations
for the Kripke logical relation R above (by separating positive and negative
occurrences of R in the right-hand sides) such that for S ∈ R(X, Y) and
S′ ∈ R(X ′, Y ′) we have Φ(S, S′) ∈ R((F × G)(〈X, Y 〉〈X ′, Y ′〉)). The map Φ
is an admissible action of the functor F × G on R, in the following sense:

Lemma 1. For all e = 〈e1, e2〉, f = 〈f1, f2〉 and R, R′, S, S′, if e : R′ ⊂ R and
f : S ⊂ S′ then (F × G)(e, f) : Φ(R, S) ⊂ Φ(R′, S′).

According to [18], Lemma 1 guarantees that Φ has a unique fixed point fix(Φ)
in R(D, Val), and we obtain the Kripke logical relation R = fix(Φ) satisfying
R = Φ(R, R) as required.

Theorem 1 (Existence, [18]). The functional Φ has a unique fixed point.

5.2 The Basic Lemma

By induction on A and the derivation of A � B, resp., the following monotonicity
properties are established:

Lemma 2 (Kripke Monotonicity). Suppose 〈a, u〉 ∈ RA
w and w′ ≥ w. Then

〈�A�
w′

w (a), u〉 ∈ RA
w′ .

Lemma 3 (Subtype Monotonicity). Let w ∈ W, A � B and 〈a, u〉 ∈ RA
w.

Then 〈�A � B�w (a), u〉 ∈ RB
w .

Lemmas 2 and 3 show a key property of the relation R, which is at the heart
of the coherence proof: For 〈a, u〉 ∈ RA

w we can apply coercions to a and enlarge
the world w while remaining in relation with u ∈ Val.

We extend R to contexts Γ in the natural way. It is not hard to prove
the fundamental property of logical relations which says that the (typed and
untyped) denotations of well-typed terms compute related results.

398 J. Schwinghammer

Table 4. Bracketing maps

φbool
w (b) = b

ψbool
w (v) =

{
v if v ∈ BVal
undefined otherwise

φ
{mi:Ai}
w (r) = {|mi = φAi

w (r.mi)|}

ψ
{mi:Ai}
w (v) =

{
{|mi = ψAi

w (v.mi)|} if v ∈ RecL(Val) and ψAi
w (v.mi)↓ for all i

undefined otherwise

φA⇒B
w (f) = λ〈σ, v〉.

⎧
⎨

⎩

〈φSt
w′′(s), φB

w′′(b)〉 if dom(σ) = w′ ∈ W, ψSt
w′(σ)↓, ψA

w′(v)↓
and fw′ (ψSt

w′(σ), ψA
w′(v)) = 〈w′′, 〈s, b〉〉

undefined otherwise

ψA⇒B
w (g) = λw′≥w λ〈s, a〉.

⎧
⎪⎪⎨

⎪⎪⎩

〈w′′, 〈ψSt
w′′ (σ), ψB

w′′(v)〉〉 if g(φSt
w′(s), φA

w′(a)) = 〈σ, v〉↓
dom(σ) = w′′ ∈ W,
ψSt

w′′ (σ)↓ and ψB
w′′(v)↓

undefined otherwise
φref A

w (l) = l

ψref A
w (v) =

{
v if v ∈ LocA

undefined otherwise

φSt
w (s) = {|lA = φA

w(s.lA)|}lA∈w

ψSt
w (σ) =

{
{|lA = ψA

w(σ.lA)|}lA∈w if ψA
w(σ.lA)↓ for all lA ∈ w

undefined otherwise

Lemma 4 (Basic Lemma). Suppose Γ � e : A, w ∈ W, 〈ρ, η〉 ∈ RΓ
w and

〈s, σ〉 ∈ RSt
w . Then

– either �Γ � e : A�w ρs↑ and �e� ησ↑, or
– there are w′ ≥ w, s′, x′, σ′, y′ s.t.�Γ � e : A�w ρs = 〈w′, 〈s′, a〉〉 and �e� ησ =

〈σ′, u〉 s.t. 〈s′, σ′〉 ∈ RSt
w′ and 〈a, u〉 ∈ RA

w′ .

Proof. By induction on the derivation of Γ � e : A, using Lemmas 2 and 3. ��

5.3 Bracketing

Next, in Table 4, we define families of “bracketing” maps φw, ψw,

�A�w

φA
w �� Val

ψA
w

�� and Sw

φSt
w ��

ψSt
w

�� St

such that ψA
w ◦ φA

w = id�A�w
, i.e., each �A�w is a retract of the untyped model.

As in [22], the retraction property follows from a more general result which
justifies the term “bracketing”, φA

w ⊆ RA
w ⊆ (ψA

w)op, relating the (graphs of the)
bracketing maps and the Kripke logical relation of the previous section.

Theorem 2 (Bracketing). For all w ∈ W and A ∈ Type,

– ∀x ∈ �A�w . 〈x, φA
w(x)〉 ∈ RA

w;

A Typed Semantics of Higher-Order Store and Subtyping 399

– ∀s ∈ Sw. 〈s, φSt
w (s)〉 ∈ RSt

w ;
– ∀〈x, y〉 ∈ RA

w . x = ψA
w(y); and

– ∀〈s, σ〉 ∈ RSt
w . s = ψSt

w (σ).

Proof (Sketch). Compared to Reynolds work, the proof of the theorem is more
involved, again due to the (mixed-variant) type recursion caused by higher-order
store. By a simultaneous induction on n we first prove the properties

– ∀x ∈ �A�w . πAw
n (x)↓ =⇒ 〈πAw

n (x), φA
w(πAw

n (x))〉 ∈ RA
w

– ∀〈x, y〉 ∈ RA
w . πAw

n (x)↓ =⇒ πAw
n (x) = πAw

n (ψA
w (y))

for all n ∈ N, using the projection maps that come with the minimal invariant
solution D of the endofunctor F on C: For δ(e) = F (e, e) we set πAw

n
def
= δn(⊥)Aw,

and similarly πSw
n

def
= δn(⊥)Sw. By definition of the minimal invariant solution,⊔

n πAw
n = (

⊔
n δn(⊥))Aw = (lfp(δ))Aw = idAw follows. Also,

⊔
n πSw

n = idSw.
Now for the first part of the theorem let x ∈ �A�w. Thus, x =

⊔
n πAw

n (x)
entails πAw

n (x)↓ for n sufficiently large. By the above, 〈πAw
n (x), φA

w(πAw
n (x))〉 ∈

RA
w for all sufficiently large n ∈ N. This is a countable chain in �A�w × Val, and

admissibility of RA
w and continuity of φA

w prove the result. The other parts are
similar. ��

6 Coherence of the Intrinsic Semantics

We have now all the parts assembled in order to prove coherence (which proceeds
exactly as in [22]): Suppose P1(Γ � e : A) and P2(Γ � e : A) are derivations of
the judgement Γ � e : A. We show that their semantics agree. Let w ∈ W ,
ρ ∈ �Γ �w and s ∈ Sw. By Theorem 2 parts (1) and (2), 〈ρ, φΓ

w(ρ)〉 ∈ RΓ
w and

〈s, φSt
w (s)〉 ∈ RSt

w . Hence, by two applications of the Basic Lemma, either

�P1(Γ � e : A)�w ρs↑ ∧ �e� (φΓ
w(ρ))(φSt

w (s))↑ ∧ �P2(Γ � e : A)�w ρs↑

or else there exist wi ≥ w, si ∈ Swi , vi ∈ �A�wi
and σ ∈ St, v ∈ Val such that

�P1(Γ � e : A)�w ρs = 〈w1, 〈s1, v1〉〉 ∧ �e� (φΓ
w(ρ))(φSt

w (s)) = 〈σ, v〉
∧ �P2(Γ � e : A)�w ρs = 〈w2, 〈s2, v2〉〉

where 〈si, σ〉 ∈ RSt
wi

and 〈vi, v〉 ∈ RA
wi

, for i = 1, 2. The definition of the relation
RSt

wi
entails w1 = dom(σ) = w2, and by Theorem 2 parts (3) and (4), s1 =

ψSt
w1

(σ) = ψSt
w2

(σ) = s2 and v1 = ψA
w1

(v) = ψA
w2

(v) = v2. Thus we have shown

Theorem 3 (Coherence). All derivations of a judgement Γ � e : A have the
same meaning in the intrinsic semantics.

Note that this result does not hold if the type annotation A in newA was
removed. In particular, there would then be two different derivations of the
judgement

x:{m : bool} � new x; true : bool (5)

400 J. Schwinghammer

one without use of subsumption, and one where x is coerced to type 1 before
allocation. The denotations of these two derivations are different (clearly not
even the resulting extended worlds are equal). It could be argued that, at least
in this particular case, this is a defect of the underlying model: The use of a
global store does not reflect the fact that the cell allocated in (5) above remains
local and cannot be accessed by any enclosing program. However, in the general
case we do not know if the lack of locality is the only reason preventing coherence
for terms without type annotations.

7 Discussion

We consider some aspects in more detail. Firstly, the technical development so
far can be used to obtain an (extrinsic) semantics over the untyped model, based
on partial equivalence relations. Secondly, we show that our simple notion of sub-
typing is useful in obtaining a pleasingly straightforward semantics of the object
calculus [1]. Finally, we demonstrate how to prove (non-trivial) properties of
programs using higher-order store in the model: We consider an object-oriented,
“circular” implementation of the factorial function.

7.1 Extrinsic PER Semantics

Apart from proving coherence, Reynolds used (his analogue of) Theorem 2 to
develop an extrinsic semantics of types in the language [22]. Besides Theorem 2
this only depends on the Basic Lemma, and we can do exactly the same here.
More precisely, the binary relation ||A||w, defined as (RA

w)op ◦ RA
w , is a partial

equivalence relation (per) on Val × Val. We observe that a direct proof of tran-
sitivity is non-trivial, but it follows easily with part (3) of Theorem 2.

This definition induces a per ||w|| ⊆ St×St for every w ∈ W by 〈σ, σ′〉 ∈ ||w||
iff dom(σ) = w = dom(σ′) and 〈σ.lA, σ′.lA〉 ∈ ||A||w for all lA ∈ w. The Basic
Lemma then shows that the semantics is well-defined on ||−||-equivalence classes,
in the sense that if Γ � e : A then for all w ∈ W , for all 〈η, η′〉 ∈ ||Γ ||w and all
〈σ, σ′〉 ∈ ||w||,

�e� ησ↓ ∨ �e� η′σ′ ↓ =⇒
{

�e� ησ = 〈σ1, u〉 ∧ �e� η′σ′ = 〈σ′
1, u

′〉 ∧
∃w′ ≥ w. 〈σ1, σ

′
1〉 ∈ ||w′|| ∧ 〈u, u′〉 ∈ ||A||w′

(6)

The resulting per model satisfies some of the expected typed equations: For
instance, {|m = true, m′ = true|} and {|m = true, m′ = false|} are equal at {m :
bool}. Unfortunately, no non-trivial equations involving store are valid in this
model; in particular, locality and information hiding are not captured. This is
no surprise since we work with a global store, and the failure of various desirable
equations has already been observed for the underlying typed model [14].

However, locality is a fundamental assumption underlying many reasoning
principles about programs, such as object and class invariants in object-oriented
programming. The work of Reddy and Yang [19], and Benton and Leperchey [6],
shows how more useful equivalences can be built in into typed models of lan-
guages with storable references. It would be interesting to investigate if these
ideas carry over to full higher-order store.

A Typed Semantics of Higher-Order Store and Subtyping 401

We remark that, unusually, the per semantics sketched above does not seem
to work over a “completely untyped” partial combinatory algebra: The construc-
tion relies on the partition of the location set Loc =

⋃
A LocA. In particular, the

definition of the pers depends on this rather arbitrary partition. The amount of
type information retained by using typed locations allows to express the invari-
ance required for references in the presence of subtyping. We have been unable
to find a more “semantic” condition.

Further, it is interesting to observe the role the typed “witness” of 〈x1, x2〉 ∈
||A||w play, i.e., the unique element a ∈ �A�w with 〈a, xi〉 ∈ RA

w : Crucially, a
determines the world w′ ≥ w over which the result store and value are to be
interpreted in the case of application.

Previously we have given a denotational semantics for a logic of objects [3],
where an untyped cpo model was used [20]. This logic has a built-in notion
of invariance which makes it very similar to a type system, and the semantic
structure of function types used in [20] closely resembles (6). In fact, in [20] an
ad-hoc construction was necessary to “determinise” the existential quantifica-
tion over world extensions of (6) in order to preserve admissibility of predicates
(corresponding to types and specifications of the logic). Regarding the setting of
the present paper, the tracking of the computation on W is hard-wired into the
witnesses coming from the typed model.

7.2 A Semantics of Objects

Next, we sketch how to give a semantics to Abadi and Cardelli’s imperative
object calculus with first-order types [1], where we distinguish between fields and
methods (with parameters). Fields are mutable, but methods cannot be updated.
The type of objects with fields fi of type Ai and methods mj of type Cj (with
self parameter yj) and parameter zj of type Bj , is written [fi:Ai, mj :Bj⇒Cj]i,j .
The introduction rule is

A ≡ [fi:Ai, mj :Bj⇒Cj]i,j
Γ � xi : Ai ∀i Γ, yj :A, zj :Bj � bj : Cj ∀j

Γ � [fi = xi, mj = ς(yj)λzj . bj]i,j : A
(7)

Subtyping on objects is by width, and for methods also by depth:

Bj⇒Cj � B′
j⇒C′

j ∀j ∈ J ′ I ′ ⊆ I J ′ ⊆ J

[fi : Ai, mj : Bj ⇒ Cj]i∈I,j∈J � [fi : Ai, mj : B′
j ⇒ C′

j]i∈I′,j∈J′
(8)

The following is essentially a (syntactic) presentation of the fixed-point (or clo-
sure) model of objects [11], albeit in a typed setting: Objects of type A ≡
[fi:Ai, mj :Bj⇒Cj]i,j are simply interpreted as records of the corresponding record
type A∗ ≡ {fi:ref A∗

i , mj :B∗
j ⇒C∗

j }i,j. Note that the self parameter does not play
any part in this type (in contrast to functional interpretations of objects, cf. [8]),
and soundness of (8) follows directly from the rules of Sect. 2.

A new object [fi=xi, mj=ς(yj)λzj . bj]i,j of type A is created by allocating
a state record s and defining the methods by mutual recursion (using obvious
syntax sugar),

let s = {fi = newAi(xi)}i∈I in MethA(s)({mj = λyjλzj . bj}j∈J)

402 J. Schwinghammer

where MethA : {fi:ref Ai}i∈I ⇒ {mj :A∗⇒Bj⇒Cj}j∈J ⇒ A∗ is given by

MethA ≡ µf(s).λm. {fi = s.fi, mj = λzj . (m.mj(f(s)(m)))(zj)}i∈I,j∈J

Here µf(x).e is a recursively defined function f ; note that this is meaningful: Us-
ing the fixed-point of the map h �→ �λx.e�w ρ[f := h] in Cpo recursive functions
can be interpreted in the model. The Basic Lemma holds also for the language
extended with recursive functions [23]. Soundness of (7) follows immediately
from this interpretation of objects and object types.

7.3 Reasoning About Higher-Order Store and Objects

In the following program let A ≡ [fac : int ⇒ int], and B ≡ [f : A, fac : int ⇒ int]
(so B � A). The program computes the factorial, making the recursive calls
through the store.

let a : A = [fac = ς(x)λn. n]
let b : B = [f = a, fac = ς(x)λn. if n < 1 then 1 else n × (x.f.fac(n − 1))]
in b.f := b; b.fac(x)

While we certainly do not claim that this is a particularly realistic example, it
does show how higher-order store complicates reasoning. We illustrate a pattern
for dealing with the self-application arising from higher-order store, following
the general ideas of [21]: To prove that the call in the last line indeed computes
the factorial of x, consider the family of predicates P = (Pw)w where w ranges
over worlds ≥ {l:A} and Pw ⊆ �int ⇒ int�w,

h ∈ Pw
def⇐⇒ ∀w′ ≥ w ∀s ∈ Sw′ ∀n ∈ �int�w′ . (s.l.fac ∈ Pw′ ∧ n ≥ 0 ∧ hw′ (s, n)↓)

=⇒ ∃w′′ ≥ w′ ∃s′ ∈ Sw′′ . hw′ (s, n) = 〈w′′, 〈s′, n!〉〉

Note that Pw corresponds to a partial correctness assertion, i.e., if the result
is defined, then it is indeed n!. This example has also been considered in the
context of total correctness, in recent work of Honda et al. [9] (where, rather
different to here, the proof relies on well-founded induction using a termination
order).

Existence of P is established along the lines of Theorem 1. Then, assuming
that l is the location allocated for field f, a simple fixed-point induction shows

�x:int, a : A � [f = a, fac = ς(x)λn. . . .] : B�w ρs = 〈w′, 〈s′, o〉〉

such that w′ is w ∪ {l:A}, and o.fac ∈ Pw′ . Now let ŝ = s′[l := �B � A�w′ (o)].
Thus, ŝ.l.fac = o.fac ∈ Pw′ ; and if ρ(x) ≥ 0 we conclude

�x:int, a:A, b:[f:A, fac:int⇒int] � b.f := b; b.fac(x) : int�w′ ρ[b := o]ŝ

= ŝ.l.facw′ (ŝ, ρ(x))

= 〈w′′, 〈s′′, ρ(x)!〉〉

for some w′′ ∈ W and s′′ ∈ Sw′′ .

A Typed Semantics of Higher-Order Store and Subtyping 403

8 Related Work

Possible worlds models of programming languages were first considered in the
work of Reynolds and Oles on the semantics of local stack-allocated variables [17].
The current work is closer in spirit to the various possible worlds models for
languages with dynamic allocation of heap storage [14,19,25,6].

Apart from Levy’s work [14,15] which we built upon here, we are aware
of only few other semantic models of higher-order store in the literature. The
models [4,12] use games semantics and are not location-based, i.e., the store
is modelled only indirectly via possible program behaviours. They do not ap-
pear to give rise to reasoning principles such as those necessary to establish
the existence of the logical relation, or the predicate used in Sect. 7.3. Ahmed,
Appel and Virga [5] construct a model with a rather operational flavour: The
semantics of types is obtained by approximating absence of type errors in a
reduction semantics; soundness of this construction follows from an encoding
into type theory. Again we do not see how strong reasoning principles can
be obtained. Jeffrey and Rathke [10] provide a model of the object calculus
in terms of interaction traces, very much in the spirit of games semantics.
Apart from Jeffrey and Rathke’s semantics, none of these models deals with
subtyping.

The proof principles applied in Sect. 7.3 are direct adaptations of those pre-
sented in [21] in the context of an untyped model of the object calculus.

9 Conclusions and Future Work

We have extended a model of general references with subtyping, to obtain a se-
mantics of imperative objects. While the individual facts are much more intricate
to prove than for the functional language considered in [22], the overall structure
of the coherence proof is almost identical to loc.cit. It could be interesting to
work out the general conditions needed for the construction.

In a different direction, we can extend the language with a more expressive
type system: Recursive types and polymorphism feature prominently in the work
on semantics of functional objects (see [8]). In [15] it is suggested that the con-
struction of the intrinsic model also works for a variant of recursive types. We
haven’t considered the combination with subtyping yet, but do not expect any
difficulties. In fact, also the extension with ML-like (prenex) polymorphism is
straightforward – essentially because there is no interaction with the store.

Finally, we plan to develop (Hoare-style) logics, with pre- and post-conditions,
for languages involving higher-order store. As a starting point, we would like to
adapt the program logic of [3] to the language considered here.

Acknowledgement. I wish to thank Bernhard Reus for many helpful discus-
sions. Paul Levy pointed out a flaw in an earlier version. Financial support was
provided by EPSRC grant GR/R65190/01, “Programming Logics for Denota-
tions of Recursive Objects”

404 J. Schwinghammer

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
2. M. Abadi, L. Cardelli, and R. Viswanathan. An interpretation of objects and

object types. In Proc. POPL’96, pages 396–409. 1996.
3. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Verification:

Theory and Practice. Essays Dedicated to Zohar Manna on the Occasion of His 64th
Birthday, LNCS, pages 11–41. Springer, 2004.

4. S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for
general references. In Proc. LICS’98, pages 334–344. 1998.

5. A. J. Ahmed, A. W. Appel, and R. Virga. A stratified semantics of general refer-
ences embeddable in higher-order logic. In Proc. LICS’02, pages 75–86. 2002.

6. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proc. TLCA’05, volume 3461 of LNCS, pages 86–101. 2005.

7. V. Breazu-Tannen, T. Coquand, G. Gunter, and A. Scedrov. Inheritance as implicit
coercion. Information and Computation, 93(1):172–221, July 1991.

8. K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Informa-
tion and Computation, 155(1/2):108–133, Nov. 1999.

9. K. Honda, M. Berger, and N. Yoshida. An observationally complete program logic
for imperative higher-order functions. To appear in Proc. LICS’05, 2005.

10. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proc. LICS’02, pages 101–112. 2002.

11. S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented languages.
In Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and
Language Design, pages 464–495. MIT Press, 1994.

12. J. Laird. A categorical semantics of higher-order store. In Proc. CTCS’02, vol-
ume 69 of ENTCS, pages 1–18. 2003.

13. P. J. Landin. The mechanical evaluation of expressions. Computer Journal,
6(4):308–320, Jan. 1964.

14. P. B. Levy. Possible world semantics for general storage in call-by-value. In Proc.
CSL’02, volume 2471 of LNCS. 2002.

15. P. B. Levy. Call-By-Push-Value. A Functional/Imperative Synthesis, volume 2 of
Semantic Structures in Computation. Kluwer, 2004.

16. J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Annals
of Pure and Applied Logic, 51(1–2):99–124, 1991.

17. F. J. Oles. A Category-theoretic approach to the semantics of programming lan-
guages. PhD thesis, Syracuse University, 1982.

18. A. M. Pitts. Relational properties of domains. Information and Computation,
127:66–90, 1996.

19. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, March 2004.

20. B. Reus and J. Schwinghammer. Denotational semantics for Abadi and Leino’s
logic of objects. In Proc. ESOP’05, volume 3444 of LNCS, pages 264–279. 2005.

21. B. Reus and T. Streicher. Semantics and logic of object calculi. Theoretical Com-
puter Science, 316:191–213, 2004.

22. J. C. Reynolds. What do types mean? — From intrinsic to extrinsic semantics. In
Essays on Programming Methodology. Springer, 2002.

A Typed Semantics of Higher-Order Store and Subtyping 405

23. J. Schwinghammer. A typed semantics for languages with higher-order store and
subtyping.Technical Report 2005:05, Informatics, University of Sussex, 2005.

24. M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM Journal on Computing, 11(4):761–783, Nov. 1982.

25. I. Stark. Names, equations, relations: Practical ways to reason about new. Funda-
menta Informaticae, 33(4):369–396, April 1998.

Two Variables Are Not Enough

Rick Statman

Carnegie Mellon University, Dept. of Mathematical Sciences, Pittsburgh, PA 15213
statman@cs.cmu.edu

Abstract. Let n be the smallest integer such that every closed lambda
term beta converts to one with at most n bound variables. We show that
n = 3.

We shall work in the untyped lambda calculus. For the most part we shall adopt
the notation and terminology of [1].

It is well known that every closed lambda term beta converts to one with
only three distinct bound variables. This can be seen by converting each closed
lambda term into an applicative combination of S’s and K’s. It is equally clear
that not every closed term can be beta converted into one with only one bound
variable; since, such terms are closed under beta reduction (without the aid of
alpha conversion). Here we settle the case of two variables in the negative.

As a consequence we conclude the following.
It is easy to see the mini-max principle holds (modulo insertions of K); the

minimum number of bound variables needed to write a closed term equals the
maximum number of free variables in a subterm.Thus any closed term beta
convertible to S must contain a subterm with three distinct free variables.The
same holds true for B, since B, C∗, K, and W ∗ form a basis ([1] pg 210).

We shall define a combinatory logic suitable for discussing terms with at
most two bound variables. To fix ideas we shall fix these variables to be x, y.
The combinatory logic consists of atoms (constants, combinators)

A

together with reduction rules
� .

We call the logic HOT (combinators Hereditarily of Order Two). The atoms
and rules are defined by a simultaneous recursion as follows.

If X is an applicative combination of x’s and y’s then the HOT atom A is
introduced with the reduction rule

Axy � X

and the rank of A is 1.
If X is an applicative combination of x’s, y’s, and HOT atoms of ranks < n

then the HOT atom A is introduced with the reduction rule

Axy � X

and the rank of A is n.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 406–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Two Variables Are Not Enough 407

For convenience below we shall assume that HOT atoms of rank n also have
rank n + 1 (as if the above recursive definitions were not given simultaneously).

Each HOT combination X of x’s, y’s, and atoms corresponds to a lambda
term X∗ by

x∗ = x

y∗ = y.

If A has reduction rule Axy � X then A∗ = λxy.X∗

(XY)∗ = (X ∗ Y ∗).

It will be convenient to use the notation � for beta reduction and ←→←→ for beta
conversion of lambda terms.

Suppose that X is a lambda term using only the variables x, y (possibly both
free and bound). Then there exists a HOT combination H such that H∗ � X .
Define the lambda term X+ by

x+ = x
y+ = y
(XY)+ = (X + Y +)

(λx.X)+ = (λyx.X+)y if y is free in X
(λyx.X+)K if y is not free in X

(λy.X)+ = (λxy.X+)x if x is free in X
(λxy.X+)K if x is not free in X

Then X+ � X and X+ alpha converts (by the use of a third variable) to Xˆ

defined by

xˆ = x
yˆ = y
(XY)ˆ = (XˆY ˆ)
(λx.X)ˆ = (λxy.[x/y, y/x]Xˆ)y if x is free in X

(λxy.[x/y, y/x]Xˆ)K if y is not free in X
(λy.X)ˆ = (λxy.Xˆ)x if x is free in X

(λxy.Xˆ)K if x is not free in X.

From Xˆ we can define H as #Xˆ where
#x = x
#y = y
#(XY) = (#X#Y)
#(λxy.X)) = A where A has the reduction rule Axy � #X .

408 R. Statman

HOT combinators together with � form a regular left normal combina-
tory reduction system ([2]) and therefore satisfy the Church-Rosser theorem and
standardization theorem. >−l� stands for leftmost- outermost reduction ([1] pg.

323). >−head� stands for head reduction ([1] pg 169).
A closed HOT combination M is said to be “head secure” if there is a com-

bination Y containing y such that Mxy �→ xY . The combination X is said to
“unroll” to Y if there are HOT combinators (atoms) A1, ..., An (here we allow
n = 0) such that X >−l� A1(...(AnY)). Such Y are clearly closed under
head reduction.

Lemma: If M is a head secure combination of HOT combinators of rank < n+1
and Mxy >−head� X then X is a combination of y’s, HOT combinators of rank
< n and Y ’s such that Mx unrolls to Y .

Proof: By induction on the length of a head reduction to X . For the basis case
Mx unrolls to Mx. Now suppose that Mxy >−head� X1 >−head→ X2 and the
conclusion is true of X1. We distinguish two cases.

Case 1: X1 = Y Y 1 . . . Y m where Mx unrolls to Y . Since Mxy is head secure
Y is not an atom by Church-Rosser. If Y begins with a head redex then the
conclusion holds for X2. Otherwise Y = AZ and by definition Mx unrolls to Z.
Moreover if A′ appears on the r.h.s of the reduction rule for A then A′ has rank
< n. Thus in this case X2 satisfies the lemma.

Case 2: X1 = AY 1...Y m where rank A < n. As above X2 satisfies the lemma.

Corollary: If M is head secure then Mx has a normal form A1(...(Anx)...).

Proof: Mxy >−head� xY where y belongs to Y . Since Mx does not unroll to
xY it must unroll to x. Define Hn by

H0xy � x(yy)

H(n + 1)xy � x(y(Hn)).

Proposition: There is no combination M of HOT combinators of rank < n + 1
such that M∗ ←→←→ Hn∗.

Proof: By induction on n, the basis case when n = 0 is trivial by definition.
Suppose that n > 0 and that M∗ ←→←→ Hn∗. Then Mxy �→ x(yH(n − 1)∗) and
by the standardization theorem there exists a reduction

M∗xy >−head reduction� xX

X >−head reduction� xY

Y >−standard� H(n − 1)∗.

Two Variables Are Not Enough 409

Thus we have

Mxy >−head reduction� x#X

#X >−head reduction� y#Y.

In particular, M is head secure so Mx has a normal form

A1(. . . (Akx) . . .).

We have then by Church-Rosser and standardization

(@) A1(. . . (Akx) . . .)y >−head� xZ

Z >−head� yW.

where W ∗ � H(n − 1) ∗ . Now W is a combination of HOT combinators of rank
< n, y’s and terms Ai(. . . (Akx)...) for i = 1, ..., k + 1. Put N = [OMEGA/x,
OMEGA/y]W . We distinguish two cases.

Case 1: n = 1. Then Nxy �→ x(yy).
Case 2: n > 1. Then Nxy �→ xX1 �→ x(yY 1)) where Y 1∗ �→ H(n − 2)∗. In
either case N is head secure so Nx has a normal form

A′1(...(A′mx)...).

Now in case 1, each HOT combinator in N appears in function position it-
eratively applied to OMEGA. Thus we have that m = 0 and the reduction
Nxy �→ x(yy) is impossible. In the second case, by similar reasoning, rank
(A′j) < n for j = 1, ..., m. By Church-Rosser and standardization there exists a
reduction

A′1(. . . (A′mx) . . .) y >−head� xX2
X2 >−head� yY 2

where Y 2 ∗ H(n − 2)∗. This reproduces (@) at lower rank.

Corollary: There is no HOT combination M such that M∗ ←→←→ S (or B).

References

[1] Barendregt, The Lambda Calculus, North Holland 1984.
[2] Klop, Combinatory Reduction Systems Math. Centrum Amsterdam 1980.
[3] Statman, Combinators Hereditarily of Order Two CMU Math. Dept. Technical

Report 88-33, August 1988.

Author Index

Anderegg, Luzi 23
Asahiro, Yuichi 36
Aziz, Benjamin 51

Bartoletti, Massimo 97
Bertolissi, Clara 113
Bettini, Lorenzo 128
Bonelli, Eduardo 360
Bono, Viviana 128
Breveglieri, Luca 338
Busi, Nadia 143

Caironi, Mario 338
Cardelli, Luca 21
Castagna, Giuseppe 1, 160
Cherubini, Alessandra 338
Chin, Francis Y.L. 251
Cieliebak, Mark 23
Colazzo, Dario 160
Compagnoni, Adriana 360
Costa, Marie-Christine 173

DasGupta, Bhaskar 182
De Marco, Gianluca 196
de’Liguoro, Ugo 66
Degano, Pierpaolo 97
Dix, Jürgen 295

Escoffier, Bruno 205

Fenner, Stephen A. 215
Ferrari, Gian Luigi 97
Ferrarini, Sergio 182
Fiala, Jǐŕı 228
Franco, Giuditta 237
Frisch, Alain 160
Fung, Stanley P.Y. 251

Gopalakrishnan, Uthra 182
Gray, David 51

Hamilton, Geoff 51
Hemaspaandra, Lane A. 265
Heymans, Stijn 280

Jamroga, Wojciech 295
Jarray, Fethi 173

Kopelowitz, Tsvi 309
Kratochv́ıl, Jan 228
Kuboyama, Tetsuji 323

Lengrand, Stéphane 81
Lescanne, Pierre 81
Likavec, Silvia 128

Macchetti, Marco 338
Mantaci, Sabrina 348
Medel, Ricardo 360
Miyahara, Tetsuhiro 323
Miyano, Eiji 36
Monnot, Jérôme 205

Paryani, Nisha Raj 182
Paschos, Vangelis Th. 205
Pellegrini, Marco 196
Picouleau, Christophe 173
Poon, Chung Keung 251
Porat, Ely 309
Prencipe, Giuseppe 23

Raman, Venkatesh 375
Restivo, Antonio 348
Rosone, Giovanna 348
Rothe, Jörg 265

Santoro, Nicola 22
Saurabh, Saket 375
Saxena, Amitabh 265
Sburlati, Giovanni 196
Schwinghammer, Jan 390
Sciortino, Marinella 348
Shimoirisa, Shinichi 36
Shin, Kilho 323
Sikdar, Somnath 375
Statman, Rick 406

van Bakel, Steffen 66, 81
Van Nieuwenborgh, Davy 280
Vermeir, Dirk 280

Yasuda, Hiroshi 323

Zavattaro, Gianluigi 143
Zhang, Yong 215

	front-matter
	fulltext
	Introduction to the Semantic Subtyping
	Semantic λ -Calculus: CDuce
	Semantic π-Calculus: \cpi
	Challenges, Perspectives, and Open Problems
	Atomic Types
	Polymorphic Types
	The Nature of Semantic Subtyping
	Recursive Types and Models
	Type-Case and Type Annotations
	Language with Enough Points and Deduction of Negations
	The Relation Between \cpi{} and \cduce
	Dependent Types

	Conclusion

	fulltext_001
	fulltext_002
	fulltext_003
	Introduction
	σ-Angular Configurations
	Thales Circles
	Algorithm for σ-Angular Configurations

	Equiangular Configurations
	Conclusions

	fulltext_004
	Introduction
	Our Contributions
	Related Work
	Organization

	Problems and Results
	A 2-Approximation Algorithm
	An O(nlogn)-Time Algorithm for No Bend
	MAXSNP-Hardness
	Conclusion

	fulltext_005
	Introduction
	The SPIKY Language
	A Domain-Theoretic Model
	Non-Standard Semantics
	Abstract Semantics
	Security Properties
	Term Secrecy
	Peer-Entity Participation

	Example
	Analysis Results

	Conclusion

	fulltext_006
	Introduction
	Related Work

	The System \FOBoneSubMu
	Predicates and Assignment
	Subject Reduction and Expansion
	The Logical Equivalence
	Observational Semantics and Adequacy
	Concluding Remarks

	fulltext_007
	Introduction
	The \X-Calculus
	The Operators
	The Reduction Rules
	Structural Congruences
	Call-by-Name and Call-by-Value

	Expressing the Natural Numbers in \X
	Typing for \X
	Interpreting the λ-Calculus
	Interpreting \Lx
	Interpreting $\lambda\mu$
	Conclusions and Future Work

	fulltext_008
	Introduction
	A Motivating Example
	The Language $\lambda^{[]}$
	Extracting History Grammars
	The Risky Events Analysis
	Instrumentation with Local Checks
	Conclusions

	fulltext_009
	Introduction
	The \rhog: Syntax and Semantics
	Confluence of the \rhog-Calculus
	Term-Graph Rewriting in the \rhog-Calculus
	Conclusions

	fulltext_010
	Introduction
	Syntax
	Examples
	Operational Semantics
	An Example of Reduction

	Type System
	A More Flexible Solution
	Conclusions

	fulltext_011
	Introduction
	Public Boxed Ambients
	Target Reachability

	Deciding Target Reachability in BA-
	P/T Nets
	Target Marking Reachability on P/T Nets
	Reducing Target Reachability on Processes to Target Marking Reachability on P/T Nets

	Related Work and Conclusion

	fulltext_012
	Introduction
	Motivating Examples
	Error Mining
	Discussion
	Characteristics of the Analysis
	Extension to CDuce and Other Languages

	fulltext_013
	Introduction
	(p,q)-Alternate Periodical Matrix
	$(1,1)$-Alternate Periodical Matrix
	Reconstruction of an $(1,1)$-Alternate Periodical Matrix

	$(p,0)$-Alternate Periodical Matrix
	Case 1 $m=2kp+r,\quad r\leq p$
	Case 2 $m=2kp+p+r,\quad r\leq p$

	Conclusion

	fulltext_014
	Introduction
	Basic Definitions and Notations
	Basic Concepts of the Evolutionary Model
	Problem Definitions
	Inapproximability Reductions: Key Concepts and Results
	Precise Statements of Our Results

	Hardness of Approximation of 1-Active LGT PROBLEM (Proof of Theorem 1(a))
	Hardness of Approximation of the α-Active LGT PROBLEM (Proof of Theorem 2(a))
	Upper Bound of Cost of 1-Active Scenario (Proof of Lemma 1)
	References

	fulltext_015
	Introduction
	The Problem
	Related Work
	Our Result

	Preliminaries
	Wakeup in the Locally Synchronous Model with Unknown n
	The New Upper Bound

	Conclusion and Further Research

	fulltext_016
	Introduction
	Interval Graphs
	Approximation Results
	k-Colorable Graphs
	Partial k-Trees
	Note on Related Works

	fulltext_017
	Introduction
	Preliminaries
	The Black-Box Group Model
	Solvable Groups
	A Note on Quantum Reductions

	\Stab}$_D$ and {\OC}$_D$
	Quantum Algorithms for {\Gint} and {\DCM}
	Statistical Zero Knowledge
	Future Research

	fulltext_018
	Introduction
	Preliminaries
	Gadgets
	Polarity Gadget
	Swallowing Gadget
	Coupling Gadget

	Main Result
	Conclusion

	fulltext_019
	Introduction
	DNA Computing Background
	SAT and DNA Encodings
	Algorithm for Solving SAT
	Generation Step
	Extraction Step

	Conclusion

	fulltext_020
	Introduction
	Notations
	Unit Length Pages: Upper Bounds
	Minimum Laxity $\alpha < 2$
	Minimum Laxity $\alpha \ge 2$

	Unit Length Pages: Lower Bounds
	Minimum Laxity $\alpha < 3/2$
	Minimum Laxity $\alpha \ge 2$

	Variable Length Pages

	fulltext_021
	Introduction
	Motivation
	Summary of Our Results
	General Proof Strategy

	Preliminaries and Notations
	Groundwork: Reducing the Cases
	Strongness and Being Oblivious to Strongness: (Y, t, c, a)-OWFs and (, t, c, a)-OWFs
	Nonstrongness: (N, t, c, a)-OWFs

	fulltext_022
	Introduction
	Preferred Answer Set Programming
	CTL Reasoning with Extended Answer Set Programming
	Synthesis from a CTL Specification
	Conclusions and Directions for Further Research

	fulltext_023
	Introduction
	Strategic Ability for Perfect and Imperfect Information
	Strategic Abilities with Concurrent Game Structures
	Complexity of Model Checking
	Strategic Abilities Under Incomplete Information

	Model Checking Strategic Abilities Under Incomplete Information
	NP-Completeness: Processing All Transitions
	The Complexity Refined

	Conclusions

	fulltext_024
	Introduction
	Applications
	Related and Previous Work
	Our Results

	Preliminaries
	Decay Functions
	Sliding Windows

	Exponential Histograms for Polynomial Decay
	The Exponential Histogram
	Weight-Based Merging Histogram

	Polynomial Decay
	DCP Under PolyD
	DSP Under PolyD
	Lower Bound for DCP and DSP Under PolyD

	Adding Additive Error -- Another Model
	Exponential Decay for DSP
	Exponential Decay for DCP
	Polynomial Decay

	Conclusions

	fulltext_025
	Introduction
	Edit-Based Approach in Trees
	Tree Edit Problem
	Tree Mapping
	Constrained Mapping
	Structure-Respecting Mapping
	Less-Constrained Mapping
	Alignment of Trees

	A New Formulation of Tree Edit Problems
	Rooted Trees
	Less-Constrained Mapping Revised
	Tree Homomorphism
	Embedding
	Degeneration
	Duality Between Embedding and Degeneration
	Characterization of Alignment of Trees

	Equivalence Between Alignable Mapping and Less-Constrained Mapping
	Conclusion

	fulltext_026
	Introduction
	Linear Biases over Fpm
	Extending Linear Cryptanalysis
	A Complete Formulation of Generalized Equivalence
	An Extended Proof
	Generalized Affine Transformations

	Conclusions

	fulltext_027
	Preliminaries: the BWT and Its Extension
	The Burrows-Wheeler Transform
	An Extension of the BWT to k Sequences

	New Sequence Distance Measures
	Multiple Sequence Comparison

	Experiment on Biological Sequences

	fulltext_028
	Introduction
	SIF, a Typed Assembly Language
	The Type System
	Syntax of SIF Programs
	Typing Rules
	Type Soundness of SIF
	Imposing Types on the Model
	Type Soundness

	Non-interference
	Related Work
	Conclusions and Future Work

	fulltext_029
	Introduction
	Exact Algorithms for Vertex Bipartization and Feedback Vertex Set in Graphs with Maximum Degree 4
	Vertex Bipartization in Graphs with Maximum Degree 3
	The FVS and VBP Problems in Graphs with Maximum Degree 4

	Using FPT Algorithms to Design Exact Algorithms
	Applications

	Conclusion

	fulltext_030
	Introduction
	Language
	Intrinsic Semantics
	An Untyped Semantics
	A Kripke Logical Relation
	Existence of RwA
	The Basic Lemma
	Bracketing

	Coherence of the Intrinsic Semantics
	Discussion
	Extrinsic PER Semantics
	A Semantics of Objects
	Reasoning About Higher-Order Store and Objects

	Related Work
	Conclusions and Future Work

	fulltext_031
	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

