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INTRODUCTION

Guy Sanglerat has taught geotechnical engineering at the ‘‘Ecole Centrale
de Lyon” since 1967. This discipline was introduced there by Jean Costet.
Since 1968 and 1970, respectively, Gilbert Olivari and Bernard Cambou
actively assisted in this responsibility. They directed laboratory work,
outside studies and led special study groups.

In order to master any scientific discipline, it is necessary to apply its
theoretical principles to practice and to readily solve its problems. This holds
true also for theoretical soil mechanics when applied to geotechnical engin-
eering.

From Costet’s and Sanglerat’s experiences with their previously published
textbooks in geotechnical engineering, which contain example-problems and
answers, it became evident that one element was still missing in conveying
the understanding of the subject matter to the solution of practical problems:
problems apparently needed detailed, step-by-step solutions.

For this reason and at the request of many of their students, Sanglerat,
Olivari and Cambou decided to publish problems. Over the years since 1967
the problems in this text have been given to students of the “Ecole Centrale
de Lyon’’ and since 1976 to special geotechnical engineering study groups of
the Public Works Department of the National School at Vaulx-en-Velin,
where Gilbert Olivari was assigned to teach soil mechanics.

In order to assist the reader of these volumes, it was decided to categorize
problems by degrees of solution difficulty. Therefore, easy problems are
preceded by one star (*), those considered most difficult by 4 stars (dk#%),
Depending on his degree of interest, the reader may choose the types of
problems he wishes to solve.

The authors direct the problems not only to students but also to the
practicing Civil Engineer and to others who, on occasion, need to solve geo-
technical engineering problems. To all, this work offers an easy reference,
provided that similarities of actual conditions can be found in one or more
of the solutions prescribed herein.

Mainly, the S.I. (Systeme International) units have been used. But, since
practice cannot be ignored, it was deemed necessary to incorporate other
widely accepted units. Thus the C.G.S. and English units (inch, foot, pounds
per cubic foot, etc.) have been included because a large quantity of literature
is based on these units.

The authors are grateful to Mr. Jean Kerisel, past president of the Inter-
national Society for Soil Mechanics and Foundation Engineering, for having
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written the Preface to the French edition and allowing the authors to include
one of the problems given his students while Professor of Soil Mechanics at
the “Ecole Nationale de Ponts et Chaussées’ in Paris. Their gratitude also
goes to Victor F.B. de Mello, President of the International Society for
Soil Mechanics, who had the kindness to preface the English edition.

The first problems were originally prepared by Jean Costet for the course
in soil mechanics which he introduced in Lyon.

Thanks are also due to Jean-Claude Rouault of “Air Liquide” and Henri
Vidal of “Reinforced Earth” and also to our Brazilian friend Lucien Decourt
for contributing problems, and to Thierry Sanglerat for proofreading manu-
scripts and printed proofs.
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NOTATIONS

The following general notations appear in the problems:

A : Skempton’s second coefficient (sometimes A refers also to
cross-sectional area).
: value of A at failure
: footing width (sometimes B refers also to Skempton’s first
coefficient).
: soil cohesion (undifferentiated)
: effective cohesion
: reduced cohesion (slope stability)
: undrained cohesion
: consolidated-undrained cohesion
: compression index
: uniformity coefficient, defined as d¢o/d |,
: coefficient of consolidation
: soil particle diameter (sometimes: horizontal distance
between adjacent, similar structures, as in the case of sub-
surface drains)
: equivalent diameter of sieve openings in grain-size distri-
bution
D : depth to bottom of footings (sometimes D refers to depth
to hard layer under the toe of a slope).
e : void ratio (sometimes: e refers to eccentricity of a concen-
trated force acting on a footing)
: maximum and minimum void ratios
: Young’s modulus
E, : pressuremeter modulus
FR : friction ratio (static penetrometer test)
: acceleration due to gravity (gravie)
: shear modulus
: hydraulic head
: soil layer thickness (or normal cohesion: H = ¢ cot y)
: hydraulic gradient
: critical hydraulic gradient
: plasticity index
: coefficient of permeability
Rag s Rac : active earth pressure coefficients due to overburden, sur-
charge and cohesion, respectively
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: relative density (€., —€)/(€max — €
: well radius (or polar radius in polar coordinate system)
: end-bearing on the area of a static penetrometer (cone

NOTATIONS

: passive earth pressure coefficients

: active earth pressures perpendicular to a given plane

: passive earth pressures perpendicular to a given plane
: soil reaction modulus

: bulk modulus (K of soil structure, K, of water).

: coefficient of earth pressure at rest

: width of an excavation

: length of an excavation

: coefficient of compressibility

: driving moment

: resisting moment

: bending moment

: porosity

: stability coefficient (slope stability problems)

: bearing capacity factors for foundation design

: concentrated (point) load

: limit pressure (pressuremeter test)

: creep pressure (pressuremeter test)

: uniformly distributed load (or percolation discharge)
: discharge (or load acting upon a footing)

: friction force of pile shaft (total skin friction force)

: end-bearing force of pile (total)

: ultimate bearing capacity of soil under a footing or pile
: allowable bearing capacity of a footing or pile

: radius of a circular footing (or radius of drawdown of a

well)

min)

resistance)

: curvilinear abscissa (or cross-sectional area of a thin wall

tube, or settlement)

: cross-sectional area of a mold or a sample

: specific gravity

: degree of saturation

: time

: shear

: time factor

: porewater pressure

: degree of consolidation (or resultant of pore-water pressure

forces)

: rate of percolation
: volume
: weight of a given soil volume
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XI

: water content or settlement
: liquid limit, plastic limit
: Cartesian coordinates, with Oz usually considered the verti-

cal, downward axis

: angle between orientations, usually reserved for the angle

between two soil faces. Also used to classify soils for the
purpose of their compressibility from static cone penetro-
meter test data C.P.T.

: slope of the surface of backfill behind a retaining wall

(angle of slope)

: unit weight of soil (unspecified)

: soil particles unit weight (specific gravity)

: saturated unit weight of soil

: wet unit weight of soil

: unit weight of water = 9.81 kN/m?.

: dry unit weight of soil

: effective unit weight of soil

: shear strain, twice the angular deformation in a rectangular,

3-dimensional system

: angle of friction between soil and retaining wall surface in

passive or active earth pressure problems, or the angle of
inclination of a point load acting on a footing

: dynamic viscosity of water

: axial strains in a rectangular, 3-dimensional system

: principal stress

: volumetric strain

: angle of radius in polar coordinates system (sometimes:

temperature)

: Poisson’s ratio

: effective normal stress

: total normal stress

: normal stresses in a rectangular, 3-dimensional system
: major principal stresses

. average stress

: shear stress

: average shear stress

: shear stresses in a rectangular, 3-dimensional system

: angle of internal friction (undefined)

: effective angle of internal friction

: reduced, effective angle of internal friction (slope-stability

analyses)

: angle of internal friction, consolidated, undrained
: slope of a wall from the vertical
: auxiliary angles defined by sin wg = sin §/sin ¢ and

sin wg =sin § /sin ¢
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XII

T : 3.1416

I : distance from origin to a point in polar coordinate system
V] : angle of major principal stress with radius vector (plasticity

problems)
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ENGINEERING UNITS

It is presently required that all scientific and technical publications resort
to the S.I. units (Systéme International) and their multipliers (deca, hecta,
kilo, Mega, Giga). Geotechnical engineering units follow this requirement
and most of the problems treated here are in the S.I. system.

Fundamental S.I. units:

length : meter (m)
mass : kilogram (kg)
time : second (s)

S.I. Units derived from the above

surface : square meter (m?)

volume : cubic meter (m?)

specific mass : kilogram per cubic meter (kg/m?)
velocity (permeability) : meter per second (m/s)
acceleration : meter per second per second (m/s?)
discharge : cubic meter per second (m? /s)
force (weight) : Newton (N)

unit weight : Newton per cubic meter (N/m?3)
pressure, stress . Pascal (Pa) 1Pa=1N/m?

work (energy) :Joule(d) 1J=1Nxm
viscosity : Pascal-second™® Pa x s

However, in practice, other units are encountered frequently. Table A
presents correlations between the S.I. and two other unit systems encoun-
tered worldwide. This is to familiarize the readers of any publication with
the units used therein. For that purpose also, British units have been adopted
for some of the presented problems.

Force (pressure) conversions

Force units : see Table B
Pressure units : see Table C
Weight unit : 1kN/m?3 = 0.102 tf/m?

*This unit used to be called the ‘“poiseuille’”, but it has not been officially adopted.
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TABLE A
Correlations between most common unit systems
Systéme International Meter-Kilogram system Centimeter-Gram-
(S.I.) (M.K)) Second system
(C.G.S.)
units common  units common units common
multiples multiples multiples
Length meter (m) km meter (m) km cm m
Mass kilogram (kg) tonne (t) gravie*® — g —
Time second (s) — second (s) — s —
Force Newton (N) kN kilogram force  tf dyne —
(kgf) )
Pressure Pascal (Pa) kPa kilogram force t/m barye bar
(stress) MPa per square kg/cm2 (106 baryes)
meter (kgf/m2 )
Work Joule (J) kd kilogram meter tf.m erg Joule
(energy) (kgm) (107 ergs)

*Note that 1 gravie = 9.81 kg (in most problems rounded off to 10).

The unit weight of water is: v, = 9.81kN/m?3 but it is often rounded off
to: v, = 10kN/m?3.
Energy units:

1 Joule = 0.102kg.m=1.02x10™* t.m
1 kgf.m = 9.81 Joules
1tf.m = 9.81 x 103 Joules

Dynamic viscosity units:

1 Pascal-second (Pa.s) = 10 poises (Po).

British units:

1 inch = 0.0254m 1m = 39.3701in.

1 foot = 0.3048m 1m = 3.280 8 foot
1 square inch = 6.451 6 cm? 1cm? = 0.155sq. in.
1 square foot = 1445sq. in. = 0.092 9 m?

1m? = 10.764 sq. ft.

1 cubic inch = 16.387 cm? 1cm3 = 0.061 O cu. in.
1 cubic foot = 1728cu. in. = 0.028 317 m?

1m3 = 35.314 cu. ft.

1 pound (I1b) = 4.4497 Newton = 0.453 59 kgf

1 Newton = 0.2251b = 0.1124 x 1073 sh. ton. (1 sh. ton. = 2 kip)

=1.003 x 107* ton.
11b/cu. in. = 270.27kN/m?3
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11b/cu. ft. = 0.156 99 kN/m?

1 kN/m?3 = 3.7x1073 Ib/cu. in. = 6.37 Ib/cu. ft.
11b/sq. in. (p.s.i.) = 6.896 55 x 10 Pa

1 Pascal = 14.50 x 107° p.s.i.

100 kPa = 1 bar = 14.50 p.s.i.

XV
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Chapter 7

RETAINING WALLS

*Problem 7.1 Earth pressures on a vertical wall, horizontal backfill, above
the water table

A 4 m high wall serves as a retaining-wall for a mass of horizontal flattened
dry sand (Fig. 7.1). The dry sand’s unit weight is 18.3 kN/m?3 and its internal
angle of friction is 36°.

What is the magnitude of the earth force P on a 1 m wide wall slice, as-
suming that the wall does not deflect? Calculate also the earth force P, if the
wall deflects sufficiently to generate active (Rankine) pressure conditions in
the backfill. Assume that the back face of the wall is frictionless.

£ Dry sand

o =183 kN/_ 3
S 7q= 19 m
< p=3

i

I

Fig. 7.1.

Solution
If no wall deflection occurs, the earth pressure at rest condition prevails,

i.e. that pressure P,, then acting on the wall, may be represented by the
Mohr’s circle equilibrium condition comprised between the Coulomb’s
envelopes (Fig. 7.2). In general, for a sand: 0.33 < K;<0.7. (cf. 6.1.4 in
Costet-Sanglerat, where the values of K, are calculated from empirical
formulas.) The pressure distribution on the inner wall face is triangular and
because it is assumed that the face is frictionless, the pressures act perpen-
dicular to the wall.
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Fig. 7.2.

So, for a 1 m wide wall slice, we have:
Py = }KyyaH?b

where b = 1.00m and 74 = 18.3 kN/m3.
K, calculated by the formula of Jaky gives: K, = 1 — sin ¢'.

Fory' =86°: sing ~0.588 and K, ~0.412.

Then, Py = 0.5 x 0.412 x 18.3 x 4.00% = 60.3 kN (per meter of wall length).

If we assume that K, = (1 —sin ¢')/cos ¢, as proposed by some authors,
cos ' = 0.809 and K, = 0.51. So, Py = 74.6 kN (per meter length of wall).

We finally get: 60 kN <P, < 74 kN.

Let us now assume that the wall will sufficiently deflect at the top to
mobilize a Rankine active pressure (a displacement of the top of the wall
of about 1/1000 of the wall height, therefore about 4 mm, as generally
occurs for unrestrained walls).

In thi P tan? (— — 2 H? b
n this case: = tan®*|{— — = o —
1 4 9 Ya 9
with & =1.00m and v4 = 18.3kN/m3, 7/4 — /2 =27°, tan 27° = 0.509 5,
and: P; = 0.5 x 0.5095%x18.3 x 4.00 % = 38 kN (per meter of wall length).

Summary of answers
60kN/m <P, < 74kN/m; P, = 38kN/m.
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**Problem 7.2 Earth pressure considering the water table on a vertical wall

Assuming the givens of the preceding problem, what is the total resultant
earth pressure acting on the wall and its location with respect to the base of
the wall, if there is a water table at 1 m below the backfill grade (assume a
sand porosity of 0.31) (see Fig. 7.3).

A

By ls.0 0. Water table
—

e
D -
-
-

. |H-h=3.00m -

. - .- . - -
. e, . . - . b

Fig. 7.3.
Solution
From the preceding problem, we have:

k., = tan?(27°) = 0.2596, say 0.26.
The buoyant weight of the sand is:

r

= Ysat — Yw = 74 +n7w —Yw = 7d_(1_n)7w, or:
= 18.3—(1—0.31) x 10.0 = 11.4 kN/m3.

The distribution of the stresses behind the wall is (see Figs. 7.3 and 7.5):
On AB: the distribution is triangular and we have:

r

6p = 0;  0p = kyy xvaxh = 0.26x18.3x1.00 = 476 kN/m?>.

On BC: the distribution is still triangular, but at B the slope of the hy-
potenuse changes: here the buoyant weight and the hydrostatic water
pressure must be taken into account, as well as the weight of dry sand, to be
considered as a uniform surcharge. Therefore:

— pressure due to the buoyant weight of the sand:

01 = 0; 0Ojc = kay x¥' x(H—h) = 0.26x11.4x 3.00 = 8.89 kN/m?

— pressure due to the uniform discharge of the sand (rectangular distri-
bution):

' r ka .
O = Oac = RBgxq = kg xh xvg where: kg Zm (Fig. 7.4)
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Fig. 7.4
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B\ 4.76 kN/m?
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!
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|
|
R> 4' g
. < : e
- - !
T
Ry |
2
| 38.89 kN/m
c ™ hY|
4.76 kN/m2 43.65 kN/m?
Fig. 7.5.

This equation derived from Coulomb’s hypothesis is also valid for Rankine-
conditions (6.24 in Costet-Sanglerat); but:

B=A=0, kg=F

ay»

$O: O = Oy¢ = kay xh X774 = 0p computed previously as = 4.76 kN/m?
— hydrostatic pressure (triangular distribution):
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o35 = 0; 03¢ = (H—h)y, = 30kN/m?.

So we end up with the diagram shown in Fig. 7.5: the total force acting on
the wall is the resultant of the forces R, R, and R; of that Figure, and we
have:
R, = (1/2)x4.76 x1.00 x 1.00 = 2.40kN per meter of wall located at
3.00 + 0.33 = 3.33m from C (1/3 of AB).
R, = 3.00x4.76 x 1.00 = 14.3kN (per meter of wall) acting at 1.5 m dis-
tance of C (middle of BC).
R; = (1/2) x38.9x3.00 x1.00 = 58.3kN (per meter of wall) acting at
1.00 m distance of C (lower 1/3 of BC).

The resultant force thus is: P = R; + R, + R; =~ 75 kN and this force acts
at such a distance d from C that:

Pd = R,d, + R,d, + Ryd;,
2.4 x3.33 +14.3x1.50 + 58.3 x1.00

d= =117m
75.0

Summary of answers
P = 75kN per meter of wall, d=1.17Tm.

**Problem 7.3 Retaining wall with horizontal backfill; overturning stability
and sliding stability

Suppose you are asked to determine the stability of the quay wall shown
on Fig. 7.6. (It is assumed that the steps of the wall are comparable to a
straight line AB because the weight of the soil is not significantly different
from that of the concrete in the small triangular areas.)

The base of the foundation’s upper part is at the level of the water table
and that of the natural soil, in which the footing, completely submerged, is
embedded. The retaining-wall supports the soil above the water table.

Assume the following values:

Concrete : unit weight 23 kN/m?3
Fill : unit weight 18 kN/m3
internal angle of friction ¢; = 30°
cohesion ¢ = 0
earth pressure coefficients on AB (8 =¢, and \=25°)
k.y = 0.474 k,y =0.522
surcharge on fill, ¢ = 10 kPa.
Natural soil: buoyant unit weight 11 kN/m?3
internal angle of friction ¢, = 25°
cohesion ¢ = 0
earth pressure coefficients on BC (§ = % Y1)

Ray = Raq = 0.364
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1.00
_ F
Oy
Fill
@]
n
©
. Water table
<1 \B y
TETEBTIE T | TSI R =
Q o AR . Natural soit
a
D ' c
| 500
e
Fig. 7.6
Wall: hy=650m h,=250m

FA=1m, KB=4m, DC =5m.

As a security precaution, ignore the passive earth pressure on plane ED of
the foundation.
Find:
(1) The eccentricity of the resultant force acting on base CD. Is there tension?
(2) The maximum bearing pressure on the foundation soil.
(3) The safety factor against overturning.
(4) The safety factor against lateral sliding (assume the friction coefficient
between the bottom of the foundation and the soil is tan ¢, ).

Important remark:

As in the Costet-Sanglerat text, k,, and k,, are the coefficients of inclined
earth pressure and K,, and K, the perpendicular acting coefficients (Kay =
k,, cos b).

Solution

(1) Calculation of the eccentricity of the resultant acting forces.

The exterior forces acting on the retaining-wall are:

— the weight of the wall (W):

— the hydrostatic force acting on the submerged portion of the wall IT;



PROBLEM 7.3 7

— the active earth force P increased by the value of the lateral force Q due to
the surcharge imposed by the fill;

— the passive earth force B acting on plane ED of the foundation;

— the foundation soil reaction R.

For the wall to be in equilibrium, the resultant of all these forces must be
zero which allows the calculation of the value of the reaction R.

For the sake of safety, it is general practice to ignore the passive force B
acting on the side of the footing. There are two reasons for this. Firstly, the
wall displacement is generally not sufficiently large to actually mobilize the
passive condition: a displacement of about 0.05 to 0.10h (h being the height
of plane ED) would be needed. In our case, this would mean a displacement
of 12—25 cm, considerably much more than wall movements associated with
the development of active conditions. Secondly, in practice, the possibility
of an excavation being made along ED after construction, always must be
taken into account.

(a) Wall weight and hydrostatic pressure

As indicated above, we assume the back of the wall, AB, to be a straight
line. Then (Fig. 7.7) we have:

wall:  rectangular section AHKF
W, =1.00x6.50 x 23 = 149.5kN (per meter length of wall)
triangular section AHB:
W, =1 x3.00 x 6.50 x 23 = 224.3 kN (per meter length of wall)

h,|=250m
27" |W3—7r 15" Natural soil

-— - L4
3 ) l C (92_25
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footing: BCDE (taking into account the uplift pressure due to hydrostatic
pressure and using the buoyant unit weight of concrete:
7;>eton =13 kN/m3).
W5 =W; —1I1=250x5.00x13 =162.5kN.
In the axes-system (Cx, Cy) (Fig. 7.7) these forces have following action
points:
W;: (x =3.50; y=5.75)
W,: (x = 2.00; y=4.67)
W;: (x = 2.50; y=1.25).
(b) Forces on the plane AB
(b;) Earth pressure force P,

hy  6.50
cosA  cos 25°

So, P, =34 x18 x7.17%x 0.474 = 219.3 kN (per m length of wall).

Horizontal component: Py = P, cos(8 + \) = P; cos 55° = 125.8 kN (per
m length of wall).

Vertical component: Py, = P;sin 55° = 179.6 kN (per m length of wall).

P, = $v41%k,, where k,, = 0.474, ] = =717m.

Remark

Angle 6§ = ¢ has been chosen because when the state of plasticity is
developed, AB is a line of failure. The portions of soil located to the left
of this line and above the steps are not in a plastic equilibrium state. The
shear will be that of soil along AB and therefore § = .

Since the pressure distribution is triangular, the resultant force is located
at 1/3 of the height counted from B and along the axes Cx and Cy, at the
point of coordinates: x = 1.00m, vy = 4.67m.

(b,) Lateral force due to the surcharge of the fill @,
The distribution of the stresses working along the ‘stem’ of the wall is
uniform (rectangular diagram).
We then have:

Qi = q kyg !l =10x0.522 x 7.17 = 37.4 kN (per m length of wall): Q;.
Horizontal component: @ = Q; cos 55° = 21.5kN (per m length of wall).
Vertical component: @,y = Q; sin 55° = 30.6 kN (per m length of wall).

The point through which this force acts is located at half the wall height
from B,oratx = 1.50 andy = 5.75m.

(c) Forces on the back face of the footing
Plane BC is vertical (A = 0) and furthermore, from the givens, we know that:
8 =%¢p,=% x 25° =16°40’
from which cos § = 0.958, and sin §' = 0.287.
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Remark

Angle 8' = % ¢ is the usually assumed value in the case of friction between
soil and concrete. The footing of the wall is below the water table. Since
the hydrostatic pressure acts on both vertical faces of the footing, but
in opposite directions, it does not have to be accounted for.

(c,) Earth pressures: triangular distribution:

P, = 37'hiky,

P, =0.5x11x2.50%x0.364 = 12.5kN (per m length of wall)

Horizontal component: P,y = 12.5 x 0.958 =~ 12 kN (per m length of wall).
Vertical component: P,y = 12.5 x 0.287 =~ 3.6 kN (per m length of wall).

The point through which the force acts is at 1/3 up from C on BC, or, in
our coordinate system, at x = 0.0 and y = 0.83 m.

(c,) Earth pressure due to the surcharge fill and to the mass of earth above
the water table: @,
The surcharge fill is 10 kPa. The weight of the soil above the water table is:
6.50 x 18 = 117 kPa, and the total is: ¢’ = 127 kPa.
Therefore, we have:
Q, =q *hy ky =127 x2.50 x 0.364 = 115.6 kN (per m length of wall).
Horizontal component: @,y = 115.6 x 0.958 = 110.7 kN (per m length of
wall).
Vertical component: @,y = 115.6 x0.287 = 33.2 kN (per m length of wall).
Since the pressure distribution is rectangular, the point of application of
the force is half-way up BC, or x = 0, ¥y = 1.25m. The resultant of all the
forces acting on the wall (with the exception of the soil reaction on the
footing) is F, and its line of action through plane DC (Fig. 7.8) can be de-
termined. At P, the equivalent force F' gives:
M, = moment of F with respect to C = moment of F' at C = Fy x d.
Therefore, point P is defined by: d = M_/Fy , where:
M, = X moments of exterior forces with respect to C
Fy = X vertical components of exterior vertical forces.
The eccentricity of P with respect to the axis of symmetry of the footing
is e =|d —DC/2| and the resultant F goes through the middle third if:

e << DC/6.
Table 7A summarizes the calculations:
Fy = 2f, = 783.3kN, M, = Zm, = 2463.2m"* kN,

d = 2463.2/783.3 = 3.14m
from which e = 3.14m —2.50m = 0.64m.
but DC/6 = 5.00/6 =~ 0.83, then e < DC/6.

Assuming a linear distribution of the pressures acting on the bottom of
the footing, it follows that the distribution must be trapezoidal. This proves
that there are no (uplift) tension forces in the concrete.
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m
¥

F
D H/P c
— —> | d
F'= F hatt-
f._v
1
e
Fig. 7.8.
TABLE 7A
Forces Forces (kN) Lever arm by C Moment by C
(m) (kN*m)
vertical horizontal
Py 125.8 4.67 587.5
Py 179.6 1.00 179.6
@iy 21.5 5.75 123.6
Qv 30.6 1.50 45.9
Poy 12.0 0.83 10.0
Pyy 3.6 0 0
Qoy 110.7 1.25 138.4
Qav 33.2 0 0
W, 149.5 3.50 523.3
W, 224.3 2.00 448.6

Wy =W;—1II 162.5 2.50 406.3
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(2) Calculation of the maximal stress in the bottom of the footing

The stress distribution results in a force R which must be in equilibrium
with F'. The usual calculation is to resolve this force in horizontal and
vertical components.

For the vertical components, the trapezoidal distribution resultant must
equal Fy . Referring to Fig. 7.9, we have:

Omax + Omin

xB = F 1
5 v (1)

1 °B B
7(omax+omin)><B>< _3——5 = Fyxe (2)

from which: 0,,,, = (Fyv/B)(1 + 6e¢/B), and therefore:

783.3 6 x 0.64
Omax = 1+ = 277kPa, or 0, ~ 2.8daN/cm?.
5.00 5.00
- B
e |
FV
l ERBIBRRE
' |
1
Imin
“max )
Fig. 7.9.
Remark

For calculating the allowable bearing capacity for an eccentric, inclined
load, Meyerhof proposes the following formula for the vertical component
of the allowable stress (for sands):

= 1)+1 1 13'(.1—i 2N + D (1—%{5 N, —1
qvad Y F 2 Y kp 0% Y T q
where B' = B — 2e is the decreased width of the footing, e the eccentricity
of the load and & its angle of inclination.

The allowable load then is: Qv = B'qyaq = 310kN/m < Fy,.
The wall will fail by rupture of the foundation soil.

2
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(3) Calculation of the safety factor against overturning of the wall

To estimate the safety factor against overturning of the wall, it is necess-
ary to know the location of the axis of rotation of the wall. If the foun-
dation soil were non deformable, this axis would be through D (Fig. 7.8) at
the toe of the footing. Since the soil deforms, the location of the rotation
axis is not known and may well vary during the overturning process. There-
fore the safety factor varies during the course of the movement.

If it is assumed that the axis of rotation is through point D, we can write:

Moments of stabilizing forces through D:

W, : 149.5x1.50 = 224.3
W, : 224.3x3.00 =672.9
W, : 162.5x 2.50 = 406.3
P,y : 179.6 x4.00 = 718.4
Qiv: 30.6x3.50=107.1
Pyy:  36x500= 180
Q,y:  33.2x5.00=166.0

M, =2313m" kN
Moments of overturning forces through D:

Py : 125.8x4.67=587.5
Q: 21.5x5.75=123.6
Py: 12.0x0.83= 10.0
Quu: 110.7x1.25=1384

T M, = 859.5m kN

The safety factor against overturning for the condition of an undeform-
able foundation soil then is:

M, 2313
F, = = = 2.69~27>1.5.
M, 8595

F, is quite a bit more than 1.5 which is the usually acceptable value of the
safety factor. In practice, it is not necessary to control the overturning
stability safety factor if the resultant of all forces acting on the wall, passes
through the middle third of the foundation. This resultant should, how-
ever, be as close as possible to the footing center, when the softness of the
foundation soil increases.

(4) Safety factor against sliding

Of interest now are the horizontal forces. The horizontal component Fy
of F' must be in equilibrium with the friction force acting against the
bottom of the footing.
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The general equation for the safety factor against sliding is:

aB + Fy tan 6
g FH

’

where a = adherence between soil and footing (|a{<¢) and 6 = friction angle
between them.
For a cohesionless soil, ¢ = 0, thus a = 0 and:

F, = Fy/Fy tan 6
if we take § = ¢, = 25°, then tan § = 0.466, and:
Fy =12568+21.5+12+110.7 = 270kN.

Thus, Fy = (0.466 x 783.3)/270 = 1.35 < 1.5.
This means that the safety factor against sliding F, is too low: the wall
geometry should be changed in order to obtain Fy > 1.5.

Remark

The safety factors against overturning and against sliding were of course
only calculated for learning reasons. In practice, the correct evaluation
of the footing consists in considering that it is subjected to an inclined and
eccentric load.

The calculation shows that the eccentricity and inclination of the load
greatly reduce the allowable bearing pressure. It would be very dangerous
to compare the stress 0., = 277 kPa to the allowable pressure calculated
from a vertically applied load (without eccentricity) because this would lead
to an unrealistic safety factor.

Summary of answers

(1) e = 0.64 m, the resultant passing through the middle 1/3.
(2) 0 = 2.8daN/cm? (280 kPa).

(3) F, =21,

(4) F, = 1.35.

The wall will collapse by punching failure.
*kProblem 7.4 Wall stability without a buttress and with an inclined backfill

Refer to the gravity wall of Fig. 7.6 and assume the back of the wall to be
rectilinear through AB. Calculate P,, Q,, P,, Q, with the same assumptions
as in the preceding problem, but now with a backfill inclined upwards at an
angle 8 = 20° with the horizontal.

Compare the results with those obtained for the horizontal backfill (3 = 0)
condition of problem 7.3.
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Solution

We first must find the earth pressure coefficient of the fill with §/p =1,
Blp =20/30 = 0.67, and \ = 25°.

It will be noticed that for /¢ = 0.6 and /¢ = 0.8, the Caquot and Kerisel
tables do not give the coefficients for the angles of wall A over 15° and 10°
for a ¢ = 30°. This is because we are faced with a steeply inclined plane (as
mentioned in sect. 5.3.3. of Costet-Sanglerat, vol. 1). The Boussinesq-
equilibrium cannot be produced and we therefore must consider the Rankine
equilibrium (sect. 5.2.2, vol. 1).

The earth pressure coefficient (normal component) is given by the formula:

sin 3 cos(8 — f3)

Koy = 1 —si 260 + —B1,
y sin ¢ sin (wg + B)[ s cos “s Bl

where: 6§ = X\ = 25°, = 20° and ¢ = 30°.

sin wg = sinf/sinp = sin 20°/sin 30° = 0.684 in which wg = 43.16°
sin 8 = 0.8342; cos(§ —B) = cos 5° = 0.996

singp = 0.5; sin(wg +B) = sin 63.16° = 0.892

cos(26 + wg + ) = cos(50 + 43.16 —20) = cos 73.16° = 0.290
sin(20 + wz; —B) = sin 73.16° = 0.957,

. 0.342 x 0.996
from which: K,, = [1—0.5x0.290] = 0.653.
0.5x0.892
The angle o of the earth pressure on the wall face is:
si in(26 + — 0.5 x0.957
tano = —npsin@lr w7 a = 0.560,

1-—sinypcos(26 + wz—f) 1—0.5x%x0.290

from which a = 29.23° (« is very close to 30°).
Based on its true inclination, the earth pressure coefficient is:

kay = K,y /cosa = 0.653/cos 29.23° = 0.748.
The force P, (per m length of wall) is equal to:
P, =5v4°1%k,, =4 x18xT7.17*x 0.748 = 346.1kN.
The lateral pressure due to the surcharge may be calculated by taking the
coefficient: k,, = k,,/cos(f —\) = 0.748/cos 5° = 0.750 and thus:
@, =q " kayg - 1=10x 0.750 x 7.17 = 53.8 kN (per m length of wall).

To calculate P, and @, a line parallel to the backfill surface is drawn

through point B and the earth pressure coefficient is given by the Caquot-
Kerisel table:

Blo = 20/25 = 0.8; 8/p = 2/3; ¢ = 25°; A = 0°,
from which k,, ~k,, = 0.546.
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When, as a first approximation, the soil is assumed to be homogeneous
and of unit weight v'; one finds:
P, = v'h3k,, =% x11 x 2.50% x 0.546 = 18.8 kN (per m length of wall).
Q; = q *h, Ry, = 127 x 2.50 x 0.546 = 173.4 kN (per m length of wall).

Conclusion
In the case of an inclined backfill at 8 = 20° the lateral forces increase by
over 50% in comparison to the 8 = 0° condition.

**Problem 7.5 Comparison of lateral forces on a vertical wall with horizon-
tal backfill and different assumptions (Boussinesq equilib-
rium and graphical method of Culmann)

Referring to the givens of problem 7.1 (wall 4 m high), a vertical-face
(\=0) dry sand, an horizontal backfill (3 =0), ¢ =36°, and assuming
5 =3y, find:
— the lateral earth forces by the Caquot-Kerisel method;
— the same by the Culmann graphical method;
— the ratio of the two answers above.

N.B. Caquot-Kerisel tables give:

kay = 0247 forp=85°, B=A=0 6=3¢
Ray = 0.202 foro=40°, B=A=0 §=%¢p

Assume a linear interpolation for the value of k,, corresponding to ¢ = 36°

Solution
By the Caquot-Kerisel method, the tables give:

for ¢ = 35°: k., = 0.247; for p = 40°: k., = 0.202, and Ak,, = 0.045.
For ¢ = 36°, we get: kyy, =0.247—(0.045/5)=0.238, and P, = %kav x Yy x h?.
P, =0.5x0.238 x 18.3 x 4.00%2 = 34.8 kN (per m length of wall).

Calculation by the Culmann method (see Fig. 7.10):

Through point B, draw BD at an angle ¢ = 36° with the horizontal, and BS
at an angle  with BD, the same as the lateral pressure with the vertical, in
this case: ¥ = 90° —%¢ =90° — (3 x 36) = 90 — 24 = 66°.

Then draw random lines BC, BC, , BC,, etc., then Cd, C;d,, C,d,, etc. . ..
parallel to AB and lines de,de;, d,e,, etc. . . . parallel to BS. Measure now
the maximum of the ed-lines, here d e, or 2.35cm. With scale adopted,
this translates into e, d,, = 1.175m from which:

Epax = 2vh x (AD/BD) x epdpy
AD/BD = cos 36° = 0.809. So:
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Scale:2cm=1m

Fig. 7.10.

Eax = 0.5x18.3x4.00 x0.809 x1.175 = 34.8 kN (per m length of wall).

Then we have:

k., Caquot-Kerisel

=~ 1 in this particular case.
kay Culmann

*kProblem 7.6 Detecting errors made in the design of failing retaining

structures (ruptures, collapses, etc.) of reinforced concrete or
masonry

The five walls of Fig. 7.11 all failed. Can you identify the causes of these
failures?

Solution

— Wall 1. No calculation made. Footing width obviously too narrow. Failure
plane at contact face between sand and rock.

— Wall 2. Insufficient drainage of the fill mass and no ‘weep holes’. An angle

of internal friction of 20° indicates a clayey soil, therefore one which would
not easily drain.
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Q.20 Q.55
o3
@ =i
i
o

1.20

- ’\ . Soft ciay

Fig. 7.11.

— Wall 3. Although ‘weep holes’ are indicated, there is no indication of a
drainage blanket in the clay-fill behind the wall.

— Wall 4. Steel reinforcement placed on the compression side of the wall
stem, but no steel on the tension side, leading to ruptures in the wall.

— Wall 5. Failure due to deep slip surface. The overall stability was not
properly evaluated.
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**Problem 7.7 Diagram of stresses behind a gravity wall. Stratified soil and
water table. Uniformly loaded backfill

It is required to draw the distribution of horizontal stress components,
acting on the gravity wall of Fig. 7.12(a), knowing that:

— the inner wall face is straight and inclined 10° with the vertical.

— the backfill of the wall is horizontal and uniformly loaded by 20 kPa.

— the soil behind the wall consists of 4 distinetly horizontal layers having

the properties indicated on Fig. 7.12(a). The lowermost layer is partly sub-
merged to ground water table.

q=20kPa

Ll vy 4
NN N \}\///\\\ AN
g: 1385 kN/m?>

¥, = 35° 3
Yo=16kN/m>

v
Py=20° s
@ <ﬂ3=18kN/m3 // /\w:
s
@ = 35° /
/!

Pu=18 kN/m3 Water

@W 905= 35;

$g= 11 kN/m?
K Yhn(m)
r(m)

{a) Givens ot the problem

A

(b) Direction of tateral stresses

Fig. 7.12.

Solution

The required diagram is shown on Fig. 7.13. The details of the compu-

tation are given in Costet-Sanglerat vol. 1, sect. 6.2.5. From Fig. 7.13 it is

possible to calculate the safety factors a

gainst overturning and against
sliding, as described in problem 7.3, provided that the dimensions of the wall
are known.



PROBLEM 7.8 19

SkPa

1.02[ 203
Ry
O

@ \17 32kPa
—

o——X |
j\‘\\\\\
) SR

A S~
—\ '\ -
h § e 71 kKPa

42

@I
V/

—n 51 kPa

1.52

3.04

Lateral pressure gue to ground water

Fig. 7.13. Lateral pressure distribution.

sxkProblem 7.8 The influence of drainage conditions on the earth pressures
acting on a retaining wall

A retaining-wall, 5m high, supports a horizontal backfill of cohesionless
sand (Fig. 7.14). The inner wall face is rough, so assume 6 = ¢ (assume
k., = 0.308). The internal angle of friction of the sand (y) is 30°. The
void ratio is 0.53 and the specific gravity of the soil grains is 2.7.

Calculate the lateral earth pressure per length of wall under the following
conditions:

(1) The backfill is dry.

(2) Both wall and backfill are completely submerged (quai wall).

(3) The backfill alone is submerged.

(4) The backfill is saturated and drained through a sloping drainage blanket
(Fig. 7.15).

(5) The backfill is saturated and drained through a vertical drainage blanket
(Fig. 7.16).

Impervious soil

Fig. 7.14. Wall with submerged, undrained backfill.
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Drainage blanket

Saturated sand

vvvvv
,,,,,,,,

Fig. 7.16. Wall with backfill against vertical drainage blanket.

Solution
(1) Dry-sand backfill
Vs 27

The unit-weight of sand is: v, = Tte " 1t053 - 17.6 kN/m3.

The lateral earth pressure is:
P = Jk,vsH? = 1 x0.308%x 17.6 x 52 = 67.8kN:
Py, = 67.8x cos30° = 58.7kN; P, = 67.8x sin 30° = 33.9kN.

(2) Both wall and backfill are completely submerged
Here, the submerged or buoyant soil unit-weight must be used:
ey, 5.3

= 17.6 + 7> = 21.1kN/m’
T = 176+ Top = 21L1KkN/m

Yo = Vg T

!

Y = Y~ 7Y = 21.1—10 = 11.1kN/m3.
The lateral earth pressure is:
P =}k, vH? = } x0.308x 11.1 x 52 = 42.7kN:
Pior. = 42.7 x cos 80° = 37kN; P, = 42.7 x sin 30° = 21.4kN.

In this case, the hydrostatic pressures act on both sides of the wall, but in
opposite directions and therefore cancel themselves.
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(3) Backfill alone is submerged
To the calculated buoyant soil pressure must now be added the hydro-
static pressure: Py, = Yo H?/2 = 10 x 5%/2 = 125 kN. Thus:

P, = 37+125 = 162kN; P, = 21.4kN.

(4) Backfill saturated and drained through a sloping drainage blanket (Figs.
7.15,7.17)

In this case, as may occur when a heavy rain falls down, in the backfill
there comes to existence a flow net as shown on Fig. 7.17, where flow
lines are vertical and equipotential lines are horizontal. Assuming that
the drainage blanket is not ‘loaded’, the pore-water pressures in it are zero
as on the free horizontal surface. Therefore the pore pressure is zero
throughout the backfill. The calculation is the same as for the case of the
dry-sand backfill if we replace the dry unit-weight by the saturated unit-
weight.

Flow lines

SN
B

4 m v

\ 1 //
3m
/\ Zero pore pression

in the drainage blanket

2m /

m /
b/ 56

Fig. 7.17. Flow-net due to heavy rainfall over the backfill with a sloping drainage blanket.

Equipotentials <

Thus:
P = 3k, v,H?> = 4 x0.308 x 21.1 x 52 = 81.2kN:
P, = 81.2xcos30° = 70.3kN; P, = 81.2x sin 30° = 40.6kN.

(5) The backfill is saturated, but now drained through a vertical drainage
blanket

For this situation, the flow net is shown on Fig. 7.18. It is impossible to
give a simple mathematical solution. Following the method of Coulomb
several soil wedges are tested in order to find one which yields the maximal
lateral earth pressure. In each case, pore-water pressure must be evaluated
along the failure plane, and the resultant pressure must be calculated by
graphical solution, for example. This pore-water pressure must be taken into
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account in the equilibrium of Coulomb’s wedge to calculate the lateral earth
pressure.

Because there exist pore pressures all along the boundary, the lateral
pressure with a vertical drainage blanket will be larger than that of a sloping
drainage blanket.

Flow line

! Equipotential |
line |
L NANZNZZEn 7 o7 S Sz 7 02 NN

Fig. 7.18. Flow-net for rainwater draining with a vertical blanket.

Fig. 7.19 shows a graphical method to determine pore pressures for a soil

wedge whose boundary conditions correspond to an angle of 45° with the
horizontal.

Consider an equipotential line, such as NM, where the loads at N and M
are equal (hy = hy ). On the other hand, the pore pressure at N is zero (no
hydrostatic head in the drainage blanket). We then have:

hy = Up/Yw T 2u, hy = 2y
where zy — 2y = Uy [Tw

from which each point in the diagram can be analyzed. The resultant of
the pore pressure is U = 60.7 kN. The equilibrium state of the soil wedge
(Fig. 7.20) is then calculated as follows:

W =1x5%2x21.1 = 263.8kN.

'W—Ucosf)tan (§ —p)+ Usin 8

Furthermore, P =
sin § tan (8 — p) + cos §

k4
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pressure diagram

W= 263.8 kN
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N
A

Fig. 7.20. Graphical determination of lateral earth pressure.

where: & = ¢ = 30° and 6 = 45°:
sinf = cosf = 0.707; sind = 0.5, cosd = 0.86,
tan (§ —¢) = tan 15° = 0.268
(263.8 —60.7 x 0.707) x 0.268 + 60.7 x 0.707
0.5 x 0.268 + 0.866
P = 102.1kN, Py, = 102.1 cos 30° = 88.4kN,
P = 102.15sin 30° = 51.1kN.
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The procedure is repeated for other values of 8 and will result in the curve
of Fig. 7.21, which gives P as a function of 8, reaching a maximal value for
6 = 45°. The value calculated above is the one for which the wall should be
designed.

Conclusion

This problem illustrates clearly on the one hand, the importance of
providing a drainage for a backfill subject to saturation and, on the other,
the influence of the type of the drainage. The value of the pressures increases

as follows:

— wall and backfill completely submerged P= 42.7kN
— dry backfill P= 67.8kN
— saturated backfill with sloping blanket P= 81.2kN
— saturated backfill with vertical blanket P=102.1kN
—— saturated backfill without a blanket P=162.0kN
o 102.7 kN

T T T

7

°

45 9

Fig. 7.21. Variation of P as a function of 6.

oxkProblem 7.9 Analysis of the failure of a reinforced concrete retaining-wall
Corrective measure by using rock anchors

A reinforced concrete retaining-wall along a motorway consisted of 21
elements each 6 m in length. Shortly after construction, the wall failed:
several elements were pushed over and in others had developed large diagonal
cracks. It was observed that most of the drain holes in the wall were plugged
up. The wall dimensions are shown on Fig. 7.22.

A review of the construction procedures showed that the excavations for
the wall had been done under adverse conditions:
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— already during the excavations numerous seepages had been observed in
the cuts,
— the graded filter material specified for the drainage blanket had not been
used, but was replaced by excavated material;
— the wall footings were not bearing on solid rock, in particular not at the
toe.

(1) Analyse the wall stability and explain the observed failures.

(2) Recommend a repair method by tie rods (2 rows) anchored in rock.

The backfill material properties were: ¢ = 34°, v, = 19kN/m3, v =
11 kN/m?®. The backfill behind the wall was replaced at an angle 3 = 34°
with the horizontal. Assume that the reinforced concrete unit-weight was
23 kN/m? and the angle of friction between concrete and rock was § = 30°.

Solution
(1) Analysis of wall stability
Assumptions used for calculation

Because of the poor quality of the drainage material, the calculation must
consider the hydrostatic pressure (assuming that the water level is at the top
of the wall).

The earth pressure at the heel of the wall is considered as non-existent
since it is encompassed in the rock. However, the hydrostatic pressure acts
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Fig. 7.22. Failed wall.
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along BC because the rock is fractured. The passive pressure at the toe of the
wall also may be overlooked (poor-quality rock).

Assume that the backfill volume EDCF is part of the wall weight (Fig.
7.22). Thus the lateral and water pressures on the fictive surface BCF which
act on the wall and volume of the soil EDCF must be calculated.

To determine the overturning stability, bending moments can be calcu-
lated with respect to A (at the toe), because the foundation soil can be
assumed to be rigid (rock) and the center of rotation will be at point A. It
also can be assumed that a limit Rankine-equilibrium condition exists on
plane CF.

The stress tensor at depth 2 may be represented by a Mohr’s circle as
shown on Fig. 7.23. The pole of this circle can be easily constructed and
then the failure lines of Rankine equilibrium can be drawn (Fig. 7.24).

T4
P

=3 {

o E .
! c
|
|

7heos B
Fig. 7.23.

Stability calculation

The first failure line which intersects the wall is the line CF. Thus the
Rankine equilibrium condition will be modified only between the back face
of the wall and CF plane. It is therefore justified to calculate the Rankine
earth pressure acting on plane CF. In practice, the lateral earth pressure
calculated as above, is slightly overestimated because the critical failure
wedge intersects the rock zone which cannot slip.

The stress acting on a vertical face along CF is vh cos (3 (see Fig. 7.23).
It is inclined upwards at an angle 8 = 34° with the normal to CF. Thus we
get the earth pressure coefficients:

horizontal: k,, = cos*f = cos?(34°) = 0.687
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Fig. 7.24.
vertical: k,, = cosfBsinf = cos (34°)sin (34°) = 0.463

Overturning stability and sliding stability are studied using results of
Table 7B (calculations are made per one meter of wall length). The stabilizing
moments are assumed to be positive and the overturning moment negative.
Uplift pore pressures are disregarded.

TABLE 7B

Forces (kN) (per m length) Lever arm Moment
about A (m) A (kN * m)
(per m length)

Weight of concrete and soil

p; =6x1x21=126kN 3.20 + 403

pz =05 x1x23=115kN 3.20 + 36.8

p3 =05 X 6.5 X 23 =74.7TkN 2.45 +183

pa =05 X 2.2 X 23 = 25.3kN 1.1 +2738
Earth pressure on CF

Py =% X 11 X (6.67)® X 0.463 = 113kN 3.7 +419

Py =1 %11 x (6.67)% x 0.687 = 168 kN 2.77 —465
Earth pressure on BF

Pwater = 5 X 10 X (7.17)* = 257kN 2.39 —614.2
Overturning stability:

_ Z(M/A>0) 1070 _
T(M/A<0) 1079

0.99.

R
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The safety factor against overturning is less than 1 and thus overturning is
a certainty. In addition, because the footing does not bear entirely on solid
rock, the centre of rotation will shove back to a point under the footing
instead of to point A, and this in turn will still decrease the safety factor.

Sliding stability

The sum of the vertical forces is equal to 350.5 kN (per m of wall length),
the sum of the horizontal forces is 425 kN. The angle of friction between the
concrete and the rock is 30°, therefore: F; = 350.5 x tan (30°)/425 = 0.47:
the wall would also fail in sliding.

To conclude, the lack of drainage behind the wall causes it to be unstable
and creates two modes of failure, namely by overturning and sliding.

The various wall panels underwent important displacements of varying
magnitudes as a consequence of the bedrock quality. This caused the panels
to interact with each other while they, theoretically, were supposed to act
independently of each other. Since no reinforcing was designed to resist the
bending moments, cracks developed in the outer face of the panels.

Remark

Assuming that a proper drainage had been installed and that the rock was
sound, the forces acting on the wall would have been (per meter of wall
length):

py = 1 x19x (6.67)? x 0.463 = 196kN
P = % x 19 x (6.67)? x 0.687 = 290kN
py = 19x6x1 = 114kN

Moment with respect to A due to pyy = 722kN *m
Moment with respect to A due to py; = 803 kN *m
Moment with respect to A due to p; = 365 kN * m.

The safety factor against overturningis: Fr = 1335/803 = 1.7 (acceptable)
and the coefficient against sliding would have been: F; = 420 tan 30°/290 =
0.84, which is too low.

The designer probably assumed the presence of a passive pressure at the
toe. If the rock there had been sound, sliding could not occur. The errors in
the design consisted of: (1) unrealistic appraisal of the rock quality; (2) a
poor construction practice (faulty drainage blanket).

I

(2) Corrective measures

The first step to repair would be, as far as possible, to improve the drainage
of the backfill by clearing out the plugged up drain holes and by adding a
drainage blanket. If this would not be possible, it would be required to set
up for the fortification a calculation, taking into account the water pressure
acting on the wall.
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For instance, two rows of rock anchors may be placed, one located just
above the footing, to prevent sliding, and the other at height z above the
base. Each row of anchors is assumed to equal a tension T (per m length of
wall). To realise a safety factor of 1.5 against sliding and overturning, we
would have:

F, = (201 +2T)/425 = 1.5,

or T = 4[(1.5 x 425)—201] = 218kN

and Fr = (1070 +Tx 0.5+ T x 2)/1079 = 1.5

from which:

z2=[(1.5x1079)— 1070 — (218 x 0.5)]/218: assume z = 2.

In this calculation, it is assumed that the placement (thus: the tension) of
the anchors did not alter the magnitude of the earth pressures. This corrective
method only seeks to avoid further failures and not to replace the wall to
its original design position. (This would engender passive pressures.)

The calculation neither did account for the poor rock quality at the toe of
the wall. It is therefore not possible to determine the point of rotation. This
unknown is partly taken care of by seeking a design yielding a safety factor
of 1.5 which can be dangerous. It could also be taken care of by increasing

Rewnforced
panel >

\ =

Anchor

Whalers |

Rock

300m

Fig. 7.25. Remedial methods of support.
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the load which the upper anchor is designed to take or by increasing the
height of the row.

To conclude, the remedial measure for the wall (Fig. 7.25) would be:
— placing a reinforced concrete panel against the center wall face;
— installing two whalers located just above the footing and 3m above the
base, respectively;
— installing two anchor lines deriving their tension in the bedrock and on
the whalers, designed to withstand a tension of 218 kN per m of length
of wall.

sxkProblem 7.10 Design of a reinforced-earth retaining-wall with horizontal
backfill

A motorway is planned to cross an unstable slope as shown on Fig. 7.26.
It is proposed to construct the pavements on engineered fill placed over the
unstable areas and to support the fill by a retaining-wall.

Two solutions are being considered, one with a conventional reinforced-
concrete wall, the other with a reinforced-earth structure.

(1) List the conditions favorable for the choice of a reinforced-earth
design.

(2)In a general manner, what are the problems that could affect the
performance of such a structure?

(3) The height of the reinforced-earth wall must be H= 20 m. Assume the
wall thickness to be L = 0.8 H (generally accepted value).

Backfill and fill of the wall consist of the same material whose unit-weight
is 18 RN/m3 and angle of internal friction o = 35°. It is assumed that the
backfill is not surcharged.

The earth-reinforcements consist of aluminum strips of 6 cm width and
2mm in thickness. The elastic limit of the aluminum is 2.5 x 10 kPa. In
order to account for the effects of corrosion and for the safety-factor criteria,
(Ooam = 2/3 0. ), only half of the cross-section of each strip is assumed to be
effective which counterbalances the area reduction in the strip connections.

Unstable
rockfill /
¢=35°
7=18 kN/m?
Bed rock
Fig. 7.26.
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The technology of the wall surface elements imposes the following added
restrictions: The strip layers are laid 0.25m apart. The reinforcement can
only be attached every 50 cm to the wall panels.

Design the wall to meet the safety-factor criteria. Assume all backfill and
fill to be sand.

The following assumptions are necessary to determine the internal stability
of the wall:

— the principal stresses near the wall skin are horizontal and vertical;

~— the vertical stresses in the wall mass along any line of elevation h is uniform
over a width L — 2 e, where e is the eccentricity of the resultant of the forces
acting at that elevation. The coefficient of friction between the soil and the
reinforcement is 0.2.

Because of the spacing of the tie points between reinforcing and wall skin
(every 0.50m), it is necessary to attach a larger number of strips than
strictly required. Calculate the corresponding safety factor which, in any
event, cannot be less than 1.5.

Solution

(1) The stability of reinforced-concrete walls would have been very diffi-
cult to guarantee because they would have imposed heavy, concentrated
loads on the foundation soils. It would have been necessary to anchor the
foundation into the underlying bedrock. Small movements in the unstable
soils above would have sheared the anchors. Retaining-structures of rein-
forced earth, however, can be supported directly by unstable masses because
they can withstand small deflections.

(2) There are basically 3 types of problems related to the stability of a
reinforced-earth wall:

(a) The overall wall-mass stability of the slope. This problem is the same
as that encountered with reinforced-concrete walls. It can be analyzed by
the ‘circular slide’ method. For the present problem, it is assumed that this
overall stability has already been assessed.

(b) The wall stability under the lateral pressure of the fill. This is similar
to the classical retaining-wall problem (external stability).

(c) The problem of internal stability of the wall that determines the
dimensions and the spacing of the reinforcements.

(3) External stability. Since we have assumed that the wall has an overall
stability, let us look at its external stability.

Assuming a Rankine equilibrium state behind the wall, the earth pressure
on the vertical face is horizontal. We then have:

Active pressure: P = k, - y(H?/2)

0 =85° & =0, k, = 0.27
0.27 x 18(20%/2) =~ 970kN.

-
Il
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The resultant of the forces applied to the foundation of the wall will have
the following components:

horizontal = 970kN, vertical = y*H*+*L = 5760kN.

The resultant will act at a distance e from the center of the footing so that
e=(970x 6.6)/5750 =1.1m.

Since the resultant falls within the middle third of the wall footing, the
wall is safe against overturning.

If we assume a coefficient of friction of 0.3 between the wall and the
foundation soil, the safety factor against sliding will be:

(5750 x 0.3)/970 = 1.8, which is satisfactory.

A failure through punch is not likely because of the relatively high angle
of internal friction of the foundation soil, ¢ = 35°. The external stability of
the wall is satisfactory.

(4) Internal stability

(a) Tension in the reinforcement. For determining the internal stability,
we have to consider the tension stresses in the reinforcements and the length
of the reinforcing elements. As for the tension stresses, we must first evaluate
the vertical stresses acting at a depth of 2 from the top of the wall (Fig.
7.27). The vertical stress is due to the overburden above h and to the earth
pressure of the fill being retained. The resultant of the forces applied at this
level has the following components (per m length of wall):

R, = W = vhL along the vertical,
R, = P = k,y(h?/2) along the horizontal,
the eccentricity of the resultant is:

_ Rk.h*yhi3  R,h?

2vhL 3x2xL
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In accordance with Meyerhof’s hypothesis, we assume that the stress
distribution is uniform over a width L — 2e. The magnitude of the vertical
stress o, is:

YhL YhL
L—2e L —k,(h?/3L)
If we assume that the soil at the contact with the wall skin is in a state of
active pressure, then the horizontal stress is: ¢, = k,0,. If we now assume
that the line of reinforcement at depth h is designed to withstand all the

horizontal stresses at that level and above height Ak, the tension in the rein-
forcing elements must be equal to:

g, =

Ah
1—(1/3)kq(h/L)?

T = 0, x Ah = k,0,Ah = k,Yh

for a wall length of 1 m.
The maximal reinforcing tensions will occur at the bottom of the wall.
The tensions there are:

h=H=20m, L = 16m, vy = 18kN/m3, k, = 0.27, Ak = 0.25m.

Thus T = 0.27 x 18 x 20 x 0.25/[1 — (0.27/3)(20/16)?] = 28.3kN

For alength of 1 m of wall, it will be necessary to design the reinforcement
to withstand a tensile stress of 28.3 kN.

The cross-sectional area of each reinforcing element, assuming each to be
6 cm wide and 2 mm thick, and taking into account the safety factor, will
be: (6 x 1072 x 2x 1073) =6 x 1075 m?. Each element can resist a tension
of: 6 x 1075 x 250 x 10% = 15kN.

At the bottom of the wall, one element will have to be placed every 50 cm.
Let us now compute the height h, from which only one element per m will
be required.

We have: 15 =0.27 x 18 x h; x 0.25/[1 —(0.27/3)(h, /16)?].

For h less than 16 m, the term (0.27/3)(h,/16)? may be neglected. A
simple calculation leads to: h; = 12.0m.

One reinforcing element per m will suffice for a height of 8 m upward and
one element every 2 m from 14 m and up.

The tension diagram for the entire wall, 1m in length is shown on
Fig. 7.28.

The safety factor obtained with this design is:

F = area ABCDEFGO/area ACEHO:

Area ABCDEFGO =30x 85+ 15x 5.5+ 7.5 x 6 =255+ 83 + 45 = 383,
the area ACEHO varies little from the area of triangle AHO or: 30 x (20/2) =
300.

Therefore the safety factoris: F = 383/300 = 1.28.
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This coefficient is too low. To increase it, it is for instance possible to
place strips at 0.50 m intervals half-way up the wall and at meter intervals in
the upper part of the wall.

The safety factor becomes:

Fo= AIJKG  30x10+15x10 450 15
AOH 300 300 o
which is acceptable.

(b) Length of reinforcing elements. The vertical stress o is very close
to the value of vh. If f is the coefficient of friction between the soil and the
reinforcing element and b is the element width, the adhesion requirement is:
T <2bfyhL,, where T is the tensile force on the strip and L., its length over
which adhesion acts. Therefore we need:

T _ kAR

2bfy-h 2bfn

where n i1s the number of elements per meter.
Usually the value of 0.2 is assumed for the friction coefficient between
soil and strip, and thus:

a

0.27 x 0.25
L, > > = 2.8m
2x6x102x02x1

This length should be added to the width of Coulomb’s edge, at the elevation
h,ie.:
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L. = (H—h) tan (Z—g)

forh = 0: (L )max = 10.4m.

Therefore, the maximum length of the reinforcing elements is: 2.80 + 10.40 =
13.20 m. This condition is fulfilled since the wall’s thickness is 16 m.

Remark

The assumptions made above to calculate the tension in the reinforcing
strips are somewhat arbitrary and other assumptions could be made, in
particular for the calculation of the tensions in the strips (see Fig. 7.29),
where a trapezoidal vertical stress distribution is assumed over the width of
the wall. Force F is the vertical component of the resultant force applied at
the level 2, and is in equilibrium with the stresses of trapezoidal distribution:

F= g Fre =, —o)lxGL—iD)
or: F-e = (0, —0,)L%/12
which gives: 0, + 0, = 2F/L, 0, —0, = 12F -e/L?
from which: ¢, = (F/L)(1 + 6e/L), o0, = (F/L)(1—6e/L).
The vertical component of the resultant, F, is yhL, and its eccentricity:
e = k,h?/6L, from which:
0, = vy h[1+k,(h/L?*] and 0, = v*h[1 —k,(h/L)*].

If we assume, as we did above, that the soil pressure against the skin is active,
then the horizontal pressure:
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Op =ko0, =ka0, =koY ~h[1+ ko(h/L)*],
while the maximum stress at the base of the wall is:
kot v H[1 + Ry (H/L)?]
The tension in a row of strips at the wall base, per meter length of wall is:
Tmax = koY *H*AH[1 + k,(H/L)’]
= 0.27 x 18 x 20 x 0.25[1 + 0.27(20/16)*] = 34.55kN.

The magnitude found on the basis of this assumption, therefore is about 20%
higher than in the previous assumption of uniform stress over width L — 2e:
Thax = 28.3kN.

Calculation of the tension force in the reinforced strips by the method of
‘Coulomb’s wedge’

This method consists in considering the triangle of reinforced earth
bounded by the potential rupture planes AC passing through the basis of the
wall (Fig. 7.30).

It is assumed in the method that the soil between the strips is in a plastic
equilibrium along the potential failure plane.

The forces acting on the prism are:

— the weight of the soil wedge: W = $YH? cot 0;

— reaction R of the soil on plane AC (this reactant is inclined by an angle ¢
with respect to the normal AC);

— the total tension force T, in the strips at the different intersection points
with AC (this force is horizontal).

The equilibrium of the three forces requires that:

T, = yH? cot 6 - tan (0 —¢)

T, is a function of angle 6. This function has a maximum for oT,/d0 = 0,
TP

p _.|_ r

4 X

which gives § =
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from which:

T 1
Timax = Lian? (2=2)qu? = kol
2 4 2 2

One more assumption can be made regarding the distribution of tension
forces in the reinforcing strip, namely that it is triangular. The forces that
undergo the greatest tension are the ones located near the base of the wall.
For a wall length of 1m, the tension in the bottom row of strip is:

T = k,yHAH = 0.27 x 18 x 20 x 0.25 = 24.3kN.

This tension is about 15% less than that calculated with the assumption
of a uniform stress distribution over the width L — 2e: T = 28.3 kN.

sxxProblem 7.11 Design of a reinforced earth retaining-wall with a reinforced
concrete skin and a sloped, surcharged backfill

The dimensions of the reinforced earth structure are shown on Fig. 7.31,
and the skin consists of reinforced concrete slabs of the type shown in
Fig. 7.32. The internal angle of friction of the fill is 35°, its unit-weight is
v, = 20 kN/m3. The horizontal portion of the backfill supports a uniformly
distributed load of 10 kPa.
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Fig. 7.31.
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150
L ! j 1=372cm
50m ‘ ! | ' Minimum slab dimensions
oL 4 150 x 150 m (225 m?)
| I Thickness E=18, 22 or 26¢cm
Fig. 7.32.

The reinforcing strips are smooth and made of galvanized steel, 60 x 3 and
80 x 3mm. For considering corrosion loss, assume thickness of the strips to
be 2mm. The allowable tensile stress o, is less or equal to 2/3 of the elastic
limit or 1.6 x 10° kPa.

To calculate the strip spacings, assume the gross cross-section, taking into
account that experimental results on models and full-size test walls indicate
that the maximum tension in the strips occurs some distance away from the
skin. The coefficient of friction between soil and strips is f = 0.4.

Assume the coefficient of active pressure of the soil backfill is k, = 0.30
and its unit weight v, = 20 kN/m3. Determine:

(1) The stresses imposed on the foundation soils by the reinforced-earth
mass.

(2) The stresses taken by the reinforcing strips at the various rows.

(3) The safety factor F against friction between soil and strips.

(4) The thickness of the reinforced-concrete slabs (skin) assuming, that
the allowable tensile stress in the concrete is 0, = 500 kPa.

Assume that the inclination of the active force behind the wall is 6 = 0
and use Meyerhof’s formula to calculate the vertical stress in the foundation
soil. Verify that the safety factor against adherence is at least 2.

Solution

(1) Stresses transmitted to the foundation soil
The coefficient of earth pressure in the soil behind the retaining-structure
is calculated from the Rankine formula:

K, = k., = tan’ G—‘é) = tan?(45° —17.5°) = 0.27.

Since § = A = 0, Kog =Koy =kyy =kyy =K.

All computations are made for a wall length of 1 m without taking into
account the soil in front of the wall. For the buried section at the toe, the
concrete slabs and strips will be placed as determined by the lowest wall
portion. Using the notations of Fig. 7.33, the horizontal component of the
earth pressure is:
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P,, = 3Ky,H'* + KqH'.
Total vertical load is:
Wo = wy +w, +w, +P,,
= BHy, +$(L —A)H'—H)y, + B—L)[q + (H —H)y,] + P,,

where: L =A + (H' —H)cotf and P,, = the vertical component of the
earth force = P, tan §.

The overturning moment with respect to O is:
M,, =iKy,H'"® + 1KqH'?.

The righting moment with respect to O:

2A +4L — 3B L B
Mso = Wy 6 +w2—2_+Puo_2_’

1 w
M, = 5 |24 +4L—3B)?1+Lw2 + BP,,

from which the resulting moment is: My=M,—M,.
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The eccentricity of the resultant with respect to the middle of the width
of the wall massis: eq = My /W,.

With Meyerhof’s formula, the vertical stress in the foundation soil is:
Om = Wo/(B—2¢e).

The safety factor against sliding of the base depends on the ratio Py, /W, .

(2) Stresses taken by the reinforcing strips

At level z of a row of strips, the weight W of the wall section located
above therowis: W=w +w, +w, +P,:
or:

L—A
W = B(H—2z)y, +

(H' —H)y, + (B—L)x [g + (H' —H)7,] + P,

with P, = P, tan § and where P}, is the horizontal component of the pressure
exerted on this section, or:
P, =3Ky,(H —2)* + Kq(H' —=z)
The positive moment with respect to the middle of the wall base is:
My = {Kv:(H' —2) + {Kq(H' —2)’
and the negative moment is:
IM,| = $[(2A + 4L —3B)3w, + Lw, + BP,],
from which the resulting moment is:
M = M, —|M,]|

with e = M/W, and in accordance with Meyerhof’s formula, the vertical
principal stress in the wall at this level is: 0, = W/(B — 2e).

The horizontal stress, 3 = k,0,, is balanced by the reinforcing strips
located at that level. These strips are in a row containing N strips of width
b for 2.25m? (slab area) or n per m?, in such a manner that tension 7 in
one strip is: T = 03/n = 2.25 03/N per m? and the stress in the strip is:

0, = T/w < &, where w = cross-sectional area and G, = allowable stress.

(3) The safety factor for adherence

This factor, ¥ = B/L,, =2
where L,, = T/2b - ¢ * f (minimal length) and ¢ is the vertical stress in the
strip or:

o=W/Band F= 2bBf(N/2.25)(0/03) > 2.

(4) Thickness of the reinforced-concrete slabs (skin)
The tensile stress in the concrete over a width [ above the strip row which
constitutes the tie of the slab must be calculated (Fig. 7.32).
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Two conservative assumptions are made:

(a) the horizontal stress exerted on the slab is equal to o4 as invalidated by
experimental observations;

(b) the compressive stress due to the weight of the skin is considered equal
to g, , which is less than the weight of the concrete skin, the flexural moment
is:m = 0312/2,
the section modulus is: I/v = E?2/6 (per unit-length of wall)
with E is skin thickness.

o, = mv/l—0, = 30;3(%E% —o0, or:
0, = [3(1%/E*)—(1/0.3)]0; because 0, = 04/0.3.
Take E = 18 cm, when 03 < 52kPa, then:

375V 1
o, = |8|=—=) —— |52 = 508.7kPa =~ 500kPa
18 0.3

or: E = 22cm, when 52kPa < o3 < 92.5kPa

[ (375 1
0, = |3|——) ——192.5 = 498 kPa < 500 kPa
7\ 22 0.3

or: E = 26cm, when 92.5 < 05 < 165kPa

[ (375 1
o, = 3(——) — = [165 = 479.7kPa < 500 kPa.
|\ 26 0.3

Numerical applications are shown on Table 7C.

Remark:

At present, the design of reinforced-earth structures is being modified
with the tendency to reach limit-state conditions. These results are very close
to those obtained by the above described “classical’’ method.

TABLE 7C

1. Givens:

Geometry:

H (m) H' (m) A (m) cot B (m) q (kPa)
9.75 14.00 0.80 1.50 9.00 10

Fill properties:

71 (kN/m?) kg 72 (kN/m?) ) 5 (%) K

20 0.30 20 35.00 0.00 0.27
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TABLE 7C (continued)

11. Loads transmitted to the foundation soil:

Py, (kN) Wy (kN) P, ,W, ep (m) B—2ey (m) 0., (kPa)
(per m (per m

length) length)

567 2199.3 0.26 0.90 7.21 305.2

III. Slab and strip designs:

Level of Horizontal Skin Strips Vertical Safety factor
strip lines stresses thickness — stresses with respect to
z (m) o3 (kPa) E (cm) No. Section o, (kPa) adherence F
0.38 87 22 8 80 x 3 236.8 5.57

1.13 78.6 22 7 80 x 3 221.8 5.06

1.88 70.8 22 7 80 x 3 206.8 5.23

2.63 63.5 22 6 80 x 3 191.8 4.64

3.38 56.7 22 5 80 x 3 176.8 3.99

4.13 50.3 18 5 80 x 3 161.8 4.12

4.88 44.2 18 4 80 x 3 146.8 3.40

5.63 38.5 18 4 80 x 3 131.8 3.51

6.38 33.0 18 4 60 x 3 116.8 2.72

7.13 27.7 18 4 60 x 3 101.8 2.82

7.88 22.7 18 4 60 x 3 86.8 2.93

8.63 17.9 18 4 60 x 3 71.8 3.08

9.38 13.3 18 4 60 x 3 56.8 3.29
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Chapter 8

SHEETPILE WALLS

okProblem 8.1 Design of asheetpile wall. Comparison of two design methods:
the classical method of plasticity, and the design by elasto-

plasticity

The sheetpile wall shown on Fig. 8.1 must be designed. A row of anchors,
not shown on the figure but located between points A and B, should be
incorporated for stability of the upper section. The design of these anchors
and their effect are not to be considered in this problem.

The soil has the following characteristics:

— dry unit-weight: 18 kN/m?

— buoyant unit-weight: 11 KN/m?
— angle of internal friction: ¢ = 33°
— cohesion ¢ = 0.

Active and passive earth pressure coefficients are: K, =k, = 0.296;
K, =k, =6.81;(5 = 0).

Case 1

(quay wall q=10kPa
A
y 040m T R o
— B ‘ N e Woter_‘ table
3.60m
cl T
8.00 : -
400m
Case 2
(cofferdam) e
ol -
Drawn-down line - "¢ .
E

Fig. 8.1.

In addition, the soil behind the wall supports a uniform load of 10 kPa.
Passive forces act at the toe of the wall.

Find: (1) the depth of penetration of the sheets for a safety factor of 2
applied to passive forces; (2) the tension force in the anchor rod, assumed to
be horizontal; (3) the maximum moment in the sheetpile.

Two conditions must be considered: case 1: the water level is the same on
both sides of the sheets (quay-wall situation); case 2: the water table is
drawn down to the dredge level (cofferdam situation).
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Remark
At the end of the solution, the results of the Rido computer program are
presented for the elasto-plastic method.

Solution

Method 1, Plasticity method (classical method): case 1. Water level is the
same on both sides of the sheets.

(1) Firstly, the earth pressure diagram must be determined. Behind the
wall, we have active earth pressure conditions:
-— between A and B:

0, = kRyYah T Ry-q at depth h, for h < 0.40 m,

or, since k, = k, (because § = A = 0):

0p = ka(vah +q)

— between B and E:

0, = 05 +ksy'(h —0.40) at depth h, with h > 0.40 m.

Passive pressures act at the toe of the wall and, with a safety factor of 2,
we get:
— between D and E:
0, = 5kpY'x at distance x from the dredged level.

The hydrostatic pressures on either side of the sheetpile cancel. The
following stresses are calculated, which are shown on Fig. 8.2.
Active pressures:
0,4 = K,°q = 0.296 x 10 = 2.96 = 3.0kPa
Opg = 0,4 T K,vghy = 2.961+0.296 x 18 x 0.40 = 5.09 =~ 5.1kPa
0,p = 0,5 T K,Yh, = 5.09+0.296 x 11 x 7.60 = 29.83 =~ 29.8 kPa
O, = Op,p TK,¥f = 29.8+0.296x 11 x f = 29.8 + 3.26f.
Passive pressures:
Opr = 3K,Yf = 0.5x6.81 x11 x f = 37.46f.

A 3rd-degree equation from the penetration f is obtained by considering
that the resulting moment at point C is zero. Table 8A (counterclockwise
moments are positive) summarizes the moments. The stresses apply to one
unit length of wall.

Therefore, the sought equation, XM; = 0, Iis:
11.4f3 + 53.5f* —119.2f —139.3 = 0.

The only positive root of this equationis: f = 2.275 orsay f = 2.30 m.

(2) The tension in the anchor is: T = ZF;, which is computed from the
data of Table 8A, by taking f = 2.275m.
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A _ 3.0kPa .
v0.40 KKK RXI KK IORIKRKRIARKK
—— { B 51kPa - ——
3.60

4.00 @

29.8 kPa

24.7

O,

E
37.46 fq 29.8 + 3.26 fm
Fig. 8.2.
TABLE 8A
Zone Resultant force F; (kN) Lever Moment with
arm with respect to C
respect to C M; (kN * m)
d; (m)
1 3.0x 0.40 =+1.2 +3.80 +4.56
2 3 X (5.1 —3.0)x 0.40 = +0.42 +3.73 +1.57
3 5.1 X 7.60 =+ 38.76 —0.20 —17.75
4 3 X (29.8—5.1)x 7.60 = +93.86 —1.47 —137.69
5 +298f —4.oo—§f —119.20f — 14.907?
6 1 x826fxf=163f2 —4.00 — 5f —6.52f% —1.097°
7 —3% x 37.46f x f=—18.73f? —4.00—%f  +74.92f% + 12.49/°

T = 1.20 + 0.42 + 38.76 + 93.86 + 29.8 x 2.275 +
+ (1.63 —18.73) x 2.275* =~ 113.5kN
or T = 114 kN per m of length.
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Remark. We would have found T = 112 kN with f = 2.30 m.

(3) We know that the maximal bending moment occurs near the level of
the dredged line, therefore, between C and D (Fig. 8.2). The maximal
moment occurs where shear is zero. The shear diagram is calculated from the
bottom of the sheets and with the notations shown on Fig. 8.3, we have:
Tp, =Fs +F, +F,, and F; =298 xf=+67.80kN, F, =1.63x f* =
+8.44kN, F, =—18.73 x f* = —96.94 kN.

So T, = +67.80 + 8.44 —96.94 = —20.70 kN.

Fs F
— 3
. - | ]
-1 ¢ 41— |
ol |
E
Fig. 8.3. Fig. 8.4.

It is easy to verify that T, is negative, which corresponds to |F,{> F5 + Fg:
the maximal bending moment occurs between C and D as anticipated.

Let Z (Fig. 8.4) be the elevation of the pile section under study above the
dredge level. Then we have, following the notation of Fig. 8.4:

F; = [29.8—(24.7/71.60)Z]-Z = 29.8Z —3.252*
and: F; = $Z-(24.7/7.60)Z = 1.6252?
Therefore: F, + F; =29.8Z —1.625Z%. Condition T(Z)=0 can be

writtenas: Tp, + F3 + F, =0,o0r: —1.625Z% + 29.8Z —20.7=0.
The root of this equation lies between the values 0 and 4:

Z =0.723, say 0.72m.
From this we derive: F3; = 19.90kN, F, =0.86kN and:

M(Z) = |F ﬁ-I-Z —F £+Z —F ﬁ+Z —F'E—ZF'—Z—
()_|7IX3 5(2 63 32 43.

With f=2.275 and Z =0.72, M(Z) = 64.5kN - m (per m of sheetpile
wall) say:
M., =65KkN - m.
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Case 2. Cofferdam-condition.

A cofferdam condition prevails when the water table is drawn down to the
dredge level. The calculation method for this condition is analogous to that
of case 1, but now the hydrostatic pressure must be taken into account since
the water is present on one side of the sheetpiles.

(1) Pressure diagram acting on the wall behind the sheetpiles (Fig. 8.5):
— Between A and B: 0, =K, (y4h +q) for 0<h<0.40m.

— Between B and D: o, =0g + K,v'(h —0.40) + v, (h —0.40).
The term v,, (h — 0.40), represents the hydrostatic pressure.

— Between D and E: o, =0p +K,v'x,

where x is the elevation from the dredge level: x = h —8.00.

In front of the sheet piles, it is not necessary to account for the hydro-
static pressure since it was not accounted for beneath point D behind the
wall.

For a safety factor of 2 against the passive resistance, we have:

— Between D and E: Op = %Kp v'x

where x is the distance from the dredge level.
The following values were obtained for the construction of the pressure
diagram shown on Fig. 8.5 (it was assumed that v,, = 10kN/m?).

OJO

A / v3.0kPu
o.4ojF KRRXTRKXKKXK KX KXXKIKKAK
B 51 kPa =

V4 D 105.8 kPa

©) ' ® ®

37.46 1y 1058 +3.26 1,

Fig. 8.5.
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Active pressures:

Opa = Koq = 0.296 x 10 = 2.96 = 3.0kPa

Opp = Opy T Kovgh, = 2.96 + (0.296 x 18 x 0.40) = 5.09 = 5.1kPa
Opp = Opp + KoY'hy + v,k = 5.09 + (0.296 x 11 x 7.60) + 10 x 7.60
105.8kPa

R

Opr = Opp + K,¥'f = 105.8 + (0.296 x 11 x f) = 105.8 + 3.26f.
TABLE 8B
Zone Resultant force F; (kN) Lever Moment with
arm with respect to C
respect to C M; (kN *m)
d; (m)
1 3.0x 0.40=+1.2 +3.80 +4.56
2 1% (5.1 —3.0)x 0.40 = + 0.42 +3.73 +1.57
3 5.1 x 7.60 = + 38.76 —0.20 —17.75
4 3(105.8 —5.1) x 7.60 = 382.66 —1.47 —562.51
5 +105.8f —4.00—3f —423.20f —52.9f°
6 1x3.26fx f=1.63f2 —4.00 —5%f —6.52f* —1.097°
7 —1 % 87.46fx f= —18.73f? —4.00 —%r +74.92f* +12.49f3

Passive pressure:
ooe = 3K,¥Yf = 0.5x6.81x 11 x f = 37.46f.

Once again a third-degree equation is obtained for the embedment f. The
sum of the moments about point C = 0, gives the value of f.
From Table 8B, the equation for the condition ZM; = 0 is:

11.4f% + 15.5f2 —423.20f —564.13 = 0,
which gives: f = 6.08 m or f = 6.10m.

The embedment in this case is deeper than when the water table is not drawn
down.

(2) The tension force in the anchor is: T = ZF;, which is calculated from
the data of Table 8B, with f = 6.08 m. We get then T = 434.2kN, say T =
434 kN.

So, the tension in the anchor is about 4 times greater than in case 1, where
the water table was the same at both sides.

(3) At the bottom of the excavation, the shear forceis: T, = F; + F¢ + F,
where:

F; = 105.8f = 105.8 x 6.08 = 643.26 kN
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kN
1CI)O

Shear diagrom Moment diagram

kPa

\

Lateral earth pressure Deflection diagram

Elasto-plastic phase 1, excavation 4 m
(Values are calculated for 1m width of wolt)

_Fig. 8.6. Sheet-pile wall (for 1 m width of wall) without water drawdown (embedment
2.30m).

Fy 1.63f2 = 1.63 x 6.082 = 60.26 kN
F, = —18.73f* = —18.73 x 6.082 = —692.38kN,or: Tp = 11kN.

It is quite nil, and the maximal bending moment may be assumed to be at

that elevation.
Its value there is:

M., = —643.26 x (6.08/2)— 60.26 x (2/3) x 6.08 + 692.38 x
x (2/3) x 6.08 = 606.47
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kN.m

Shear diagram
g Moment diagram

Lateral earth pressure

Deflection diagram

Elasto-puastic phase 2, excevatior 8m
(values are calculated for 1m width of wall)

Fig. 8.7. Sheet-pile wall without water drawdown (embedment 2.30 m).

or: M., = 606kN *m (per m of length)

So the maximum bending moment is about 9 times greater than in the
preceding situation, where the water table was not the same on both sides.

Elasto-plastic calculations

These computations are too complex to be carried out by hand. One must
resort to a computer. We may refer here especially to the Rido program
which was developed by Fages in Lyon for the subway construction.
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(Values are calculated for 1m width of wall)

Fig. 8.8. Sheet-pile wall with water drawdown (embedment 6.10 m).

This program, that was conceived for slurry trench walls with several levels
of anchors, takes into consideration deformations caused by partial exca-
vation by slices, where anchors are placed as the excavation progresses. The
program is also applicable to sheetpile walls with anchors, giving for each
slice of excavation the stresses of the soil on the wall, the bending moments,
shear and deflection diagrams as well as the tension in the anchors. Parts of
the results of such an analysis are presented in Figs. 8.6 to 8.9. It will be
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Fig. 8.9. Sheet-pile wall with water drawdown (embedment 6.10 m).

seen that they more closely approximate the real behaviour of the sheet-
piles than those obtained by the above described classical method, which
only considers the final stress conditions, without accounting for the deflec-
tions occurring during the phased excavation.

Remarks

Case 1. Sheetpile wall without water drawdown (Figs. 8.6 and 8.7). In elasto-
plastic condition, the maximal bending moment is developed during the
initial excavation phase made to install the anchors (108.7 kN - m width).
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The tension in the anchor is very close to that computed by the plasticity
method (109.7 kN instead of 114 kN per m of length).

Case 2. Sheetpile wall with water drawdown (Figs. 8.8 and 8.9). Once again
the maximum bending moment is developed during the excavation of the
first upper 4m (388.3kN *m per m length of wall). The tension in the
anchors is very close (Fig. 8.9) to that computed by the plasticity method
(379.1 kN instead of 434 kN per m length). It must be pointed out that the
classical method yields somewhat more conservative results, comparing them
to phase 2.

Summary of answers
Case1: f = 2.30m, T = 114kN (per m length of wall)
M.,.x = 65kN (per m length of wall)

Case 2: f = 6.10m, T = 434kN (per m length of wall)
M,.. = 606KkN (per m length of wall).

*kProblem 8.2 Design of an anchor system

The anchors of problem 8.1 are installed as shown on Fig. 8.10. Their
spacing is 1.60 m.

Find:

(1) Height H of the deadman (assume a safety factor of 1 and that the
groundwater table is at the backfill level).

(2) The location of the tie point of the anchor at the deadman and the
maximal bending moment in the deadman.

. ...9%00m_ L
B[O COTECOCTOCOVCE SO et e e et el -t
‘ 1.00m
t
4.00m —2 b
T H
T
T’ -j# ,J‘
'Q
T
/-HJ/

Fig. 8.10.
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(3) The modulus of resistance of the anchor rod on the deadman.
(4) The cross-sectional area of the anchor rod (for the last two parts,
assume the allowable stress of steel to be 1.6 x 10° kPa).

Solution

(1) The resistance provided by the deadman is equal to the difference
between the passive earth pressure acting on the fore face and the active
pressure acting on the opposite face (Fig. 8.11).

Kpy.7. 1.00I
ARKXXX AKX RIXK
%m o
]/F‘ e}
+
/ Ry +——» T
R é a
Kgy7-D P y = — rd
W—PRe— ] %2 \ 'y
c] 6, d e
Kpr'7'D Kur7' D
Fig. 8.11.

From the givens of problem 8.1, and assuming the water table to be
at the level of the backfill, we have:

YK,, = 11x0.296 = 3.26kN/m® and
YK,, = 11x 6.81 = 74.91kN/m>.

The resultant R may be divided into R, and R, components, with R,
corresponding to rectangle abed and R, to triangle acd (Fig. 8.11). These
horizontal forces have a magnitude of:

R, = 0, xH = [(Kpy —K4y)yx100] x H = 71.65 x H
R, = (1/2)(0, —0,)xH = (1/2)[(K,y — K4y )YH]H = 35.83H?
R =R, +R, = (71.65 + 35.83H)H

Since the deadmen form a continuous wall, the anchors transmit a shear
T’ per unit length whose horizontal component T must be equal to R.

From the preceding problem, T'= 114 kN per meter, therefore we have:
35.83H?% + 71.65H — 114 = 0. Solving for the positive root of the equation:
H =1.045 or:

H = 1.05m.
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Remark

With H =1.05m, we have D = 2.05m or H > D/2. From sect. 7.2.8 of
Costet-Sanglerat, it can be seen that the method yields conservative results,
since for H> D/2, experience shows that the structure behaves as if the
deadman extended to the surface of the fill.

(2) The tie point of the anchor to the deadman must be the same as that
where resultant R is applied. The location of that point is obtained by taking
the moments of R; and R, with respect to the toe of the deadman wall:

R,d, + R,d, = Rd (Fig. 8.11)
d, = 1.05/2 = 0.525; d, = 1.05/3 = 0.35

R, = 71.65x1.05 = 75.23

R, = 85.83x 1.05% = 389.50

R = 11473 and

d = (75.28 x 0.525 + 39.50 x 0.350)/114.73 =~ 0.46
from which: t = H—d = 1.05—0.46 = 0.59m

t = 0.59m.

The maximal bending moment in the deadman is in the section normal
to the anchor point (S). Following the notation of Fig. 8.12, we get:
M= ¢,6, +¢,0,.

The magnitude of the stress developed at the level of section(s) by the
deadman (passive—active pressures) is: 0/1.59 = 71.65/1 (cf. Figs. 8.11,
8.12), and:

0 = 71.65x1.59 = 113.92kPa
¢, = 71.65x 0.59 = 42.27kN
5, = 0.5x 0.59 = 0.295

0.59

1.05

R 13.92

f(s)

0.46

Fig. 8.12.
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0, 0.5(113.92 —71.65) x 0.59 = 12.47kN

6, = (1/3)(0.59) = 0.196

from which M,, = 42.27x 0.295 + 12.47x 0.196 = 14.9kN-m

My.x = 14.9kN - m (per m length)

(3) From the classical hypothesis (see sect. 7.2.5, Costet-Sangletat), the
maximum bending moment of the deadman wall is M,,,, = AL?/10, where
A is the tension force in the anchor for 1 m length of deadman and L is the
spacing of the anchors, or: M, = 114 x 1.602/10 = 29.18 kN *m.

Checking, Mp = I/v 2 M ,.4x/0adm -
Since: 0,4, = 1.6 x 105kPa, My > 29.18/(1.6 x 105) =~ 1.82 x 10~*m?
or Mp > 182cm? (per m of length).

H

From Table 1 of sect. 7.1.1 of Costet-Sanglerat it can be seen that a
Larssen I member would suffice (M = 500 cm?® per m of length).

(4) Referring to Fig. 8.13, we have: tan 6 = (4.00 —1.59)/9.00 = 0.268,
or: cos 8 = 0.966.
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Fig. 8.13.

The force transmitted by the anchors is:
T = T/cos§ = 1.14/0.966 = 118 kN per m of length.

Taking into account the spacing of the anchors of 1.60m, each anchor
transmits a load of: 7" = T’ x 1.60 = 189kN. The allowable steel stress is
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1.6 x 10° kPa. Hence, the cross-sectional area of steel for each anchor is:

s = 189/(1.6 x 10°) = 1.18 x 10 °*m? s = 11.8cm?.

Remark

For the above computation to be valid, one must verify that the active
and passive pressure zones for wall and deadmen do not overlap (see sect.
7.2.5 of Costet-Sanglerat). The assumption is made that the zone behind the
sheetpile wall has an apex where the residual stress on the wall is nil. In
addition, a check should be made that the upper part of the deadman wall is
located below an imaginary line passing through the zero residual stress point
and making an angle ¢ with the horizontal.

Assuming that the zero residual stress point is close to the zero moment
point, we get with graph VII-7 of sect. 7.2.2 of Costet-Sanglerat:

a/d = 0.05 for ¢ = 33° (Fig. 8.14) or:

a =~ 040m; h =d+a = 840m

L, = htan(m/4 —¢/2) = 8.40 x 0.543 = 4.56m
L, Dtan (m/4 + ¢/2) = 2.05 x1.842 = 3.78m
L,+L, = 456+378 = 8.34m < 9.00m

So L, + L, <L;the first necessary condition is met.

. -

. L R -
7! -

X A > > KXKKXX

8.00m

d=

XX 0 = 0.40m |

Fig. 8.14.
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To check the second (see Fig. 8.15), we havea +d = 8.40m,
L, = 8.40/tany = 12.93m, x/(L; —9.00) = tan 33° = 0.649

from which: x = (12,93 —9)x 0.649 =255m and D=H+1=2.05m,
i.e., the second condition is not met because x > D and we should have
x =1.00m. As indicated in sect. 7.2.5 of Costet-Sanglerat, the two above
conditions are too restrictive and the anchors can be shorter. We assume,
therefore, that meeting condition 1 is sufficient to satisfy the needs of the
design.

*xProblem 8.3 Design of a sheetpile wall with anchors by the Blum method

Refer to the givens for the quay wall in the first case of problem 8.1, but
assume the wall to be embedded with passive pressures acting at the toe. By
utilizing Blum’s method, (point of zero bending moment corresponds to
point of zero residual stress).

Find:

(1) the location of the zero moment point, b. the anchor tension, and
c. the total embedment of the sheets (with a safety factor of 1 in passive
pressure);

(2) the bending moment M, at the anchor tie-in location, b. the maxi-
mum bending moment M, between the anchor and the point of zero
moment, and c. the maximal bending moment M5 below the point of zero
moment.

Solution

(1) a. The point of zero residual stress in the sheetpile wall must be deter-
mined. Refer to Fig. 8.2 of problem 8.1 and call elevation a that of the point
sought with respect to the excavation lines. We then have: 29.8 + 3.26a =
2 x 37.46a, where the coefficient 2 of the right side of the equation is due to
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the fact that the safety factor on the passive pressure is 1 in this case and
that of the diagram is 2. We then find: a = 29.8/71.66 =~ 0.416
say a = 0.42m.
Remark
Graph VII-7 of Ch. 7.2.2 of Costet-Sanglerat gives for p = 33°:
a/d = 0.05 or: a = 0.05x8.00 = 0.40 m,
but the rule: a = 0.1d (for 25° < < 35°), gives:a = 0.80m.

For a safety factor of 2 on the passive pressure, the preceding calculation
gives: ¢ = 29.8/34.2 >~ 0.87 m.

b. Anchor tension

Tension T is obtained by summing the moments of force acting on the
sheetpile wall above the point of zero residual stress and equating the sum to
zero. Refer to Fig. 8.16 to make up Table 8C (per meter length).

T
30)<Po/®
- S S S S
0.40 XXX
51kPa - L=
|
1
3.601
!
; T
|
e e
|
4.00.
|
|
NS | 9 247 29.8 kPa &
10 ® 7 298+ 3260 # 312kPa
2x3746a
#312 kPa 10:0.42\» Point of zero residual stress

Fig. 8.16. For the sake of clarity, not to scale.

It is easy to see that tension 7 in the anchor rod, whose lever arm is
4.42m, is given by: 4.42 x T = T M,,

le.,,T=463.23/4.42 = 104.8 kN,

T = 105 kN per m of length.

c. Total embedment of the sheetpiles
Assume (Fig. 8.17) f, =a + b.

Length b is determined by part OO of the wall equated to a simply supported
beam of span, with reaction forces T, at point O and C at point O'. The
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TABLE 8C
Zone Corresponding force Fy (kN) Lever arm Moment
d; (m) with respect to

O (kN * m)

1 3% 0.40=1.2 8.22 +9.86

2 1'% (5.1 —3)x 0.40 = 0.42 8.15 +3.42

3 5.1 X 7.60 = 38.76 4.42 +171.32

4 1 %247 x7.60 =93.86 2.95 +276.89

5 29.8 x 0.42 = 12.52 0.21 +2.63

6 1% 3.26x0.42% =0.29 0.14 +0.04

7 —2x 1% 37.46 x 0.42% =—6.61 0.14 —0.93
M; = 463.23

point of zero moment is assumed to coincide with the point of zero residual
stress. The loads on the beam are distributed over a triangle and therefore we
get: C =2T,. Then follows the calculation of T,:

TOZT0+T:Zl'Fi, TOZZIFZ._T.
With the values of Table 8C:
Z;Fi = 140.44 = 140kN

T = 1056kN

T, 35 kN.

Following further the notation of Fig. 8.17, we get:
p, = 29.8 +3.26a + 3.26b — 2 x 37.46a — 2 x 37.46b.

(The crossed-out terms cancel out in consequence of the definition of a.)

Thus we have: p, = 3.26b —74.92b = —71.66b: lp, | =71.66b.
The moment of the forces applied to beam OO’ is zero at O, so we get:
Tob =4p,b x b/3 or T, =p,b/6 =71.66b%/6

but: T = 35kN,
then: b = /6 x 35/71.66 = 1.71m
and fo = a+b =042+ 171 = 2.13m.
One accepts in general: f = 1.2f,, from which f = 1.2 x 2.13 = 2.55m,

say: f = 2.60m.

(2) Bending moments M, M, and M,
The upper portion of the sheetpile wall (above the point of zero moment)
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is analyzed as a simple beam supported at O and A* where the anchors tie in.

The load diagram is shown on Fig. 8.18.
As for the lower part O'O of the pile wall, it is analyzed as a simply at O

and O’ supported beam (Fig. 8.17).

a. Moment M, at the tie point of anchors is:

1.2 x 3.80 +0.42 x 3.73 + 5.1 x (3.60%/2) + 11.7 x (3.60%/6)

M, =
= 64.45kN *m;
M, = 64.5kN - m per m of length.

*This point 4 corresponds to the old point C of Fig. 8.1 which was changed to avoid
confusion with the passive force C.
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Fig. 8.18.

b.

The load per unit length between O and A is expressed by the following

formulas:
p(§) = (29.8/0.42)¢ = 70.95¢ for 0 < £ < 0.42m
p(¢) = 31.2—3.26¢f for 0.42 < § < 4.42m.

The shear in beam OA is:

Ty — f 70.95¢-df for 0 < x < 0.42m

T(x) =
0
0.42 X

T(x) = Ty — f 70.95¢ - d§ — f (31.2 —3.26&)dE for x > 0.42m.
0 0.42

the value of T'(x) is 0 forx = 0.52m.

The corresponding magnitude of the bending moment is:

Moo, = —Tox 0.52 +1 x 0.42 x 29.8 x((0.42/3) + 0.10) +

+29.5 x (0.10%/2) + 0.3 x (0.20?%/3)

which gives, since T, = 35 kN,
Mys; = —16.55kN for 1 m of length.

This value corresponds to the extreme of the moment diagram between O
and A.
It is the value of M, asked for:
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M, = —16.6kN * m per m of length.

c. The maximal bending moment below the point of zero moment is given
by the simply supported beam OO’ (Fig. 8.17). From the first part of

Problem 8.3, we had: p, = —71.66b and the shear in the wall at level y,
counted positive in the downward direction O, is given by:

~ 71.66

y
T(y) = T, —fpz x%dy =T, y2 or T(y) = 35— 35.83y2.
0

The shear is zero at a point whose elevation is y =+/35/35.83 = 0.99 m.
The bending moment M5 is obtained by integration:

M; = To(y)— 35.83(y3/3) 35x 0.99 —35.83 x (0.993/3)
= 23.06 kN *m
My = 23.1kN * m per m of length.

Summary of answers:
(1)a = 0.42m, T = 105kN, f = 2.60m

(2)M, = 645kN-m, M, = —166kN'-m, M; = 23 1kN'm
all per unit length.

*kProblem 8.4 Design of an anchored sheetpile wall by the method of
Tschebotarioff

The same sheetpile wall, asin Problem 8.1, is to be designed by the method
of Tschebotarioff. Limit the analysis to case 1 (quay wall). Find:
(1) the embedment of the sheets;
(2) the tension in the anchors;
(3) the maximal bending moment.

Solution

(1) Embedment of sheets

Tschebotarioff’s method applies to driven piles on one side of which a
non-cohesive fill is placed. It does not apply to driven sheets and a soil
dredged on one side. The method suggests to assume an embedment of
f = 0.43d. Using the notations of Fig. 8.19, we get: f = 0.43 x 8 = 3.44 m.

(2) Anchor tension
The method also recommends to take the following earth pressure values:

K. = K, (1—0.3(t/d)) = K,(1—0.3x%)
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K. = 0.85K,.

To find K,, it is recommended to use ¢ = 30° and § = 0. The tables in
Caquot-Kerisel give k., = 0.333 from which K, = k, = 0.283 (since § = 0).

The following stresses are then computed which enables us to draw a load
diagram as that of Fig. 8.20.

04 = 0283 x 10 = 2.83kPa

og = 2.83+0.283x 18 x 0.40 = 4.87kPa
4.87 +0.283 x 11 x 3.60 = 16.08 kPa
16.08 + 0.283 x 11 x 4.00 = 28.53 kPa.

To determine the tension in the anchor, we write that the sum of the
moments is zero with respect to point D, from which Table 8D can be made,
for unit lengths of wall. The tension is: T x 4 = 380.89, T = 95.22

say: T = 95 kN per m of length.

Q
Q
]

Q
S
fl

(3) Maximal bending moment
The method of Tschebotarioff assumes that the maximal moment occurs
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TABLE 8D
Zone Corresponding force F; (kN) Lever arm Moment
(m) with respect to D

M; (kN * m)

1 2.8% 0.40=1.12 7.80 8.74

2 3 x2.1x04=0.42 7.73 3.25

3 4.9 X 3.60 =17.64 5.80 102.31

3 4.9 x 4=19.60 2 39.20

4 1 x11.2x%3.60=20.16 5.20 104.83

4 11.2 X 4=44.8 2 89.60

1x12.45%x 4=24.9 1.33 33.12

381.05

in the section of the pile above the dredge line, most likely between C and D.
Let x be the vertical distance of the maximal moment point to C. The shear
then is:

T(x) = —4.9x 360—1x11.2x 3.60—2.8x0.40—1 x 2.1 x0.40 +
124
+ Tanchorage_ 16.1 x _J. . §d§
5 4

which yields: T(x) = 1.55x2 + 16.1x —55.9. T(x) is zero for x = 2.75m,
the corresponding bending moment is:

M.x = 1.12(3.80 + 2.75) + 0.40(3.73 + 2.75) +17.64(1.80 + 2.75) +
2.75

2,75 2.75 12.4
+19.60(1.20 +2.75) + 16.1 x 2.75 x == + == x f LSk
—95.2x2.75 = —22.57kN m

My = —22.6kN -m per meter length.
Conclusion

The magnitude of the moment by the method of Tschebotarioff varies
little from that of Blum (see Problem 8.3), but in the latter’s method, the
moment occurred in the embedded portion and had the opposite direction.
Both methods yield the same size pile requirements and the maximum

bending moments in both cases are at the tie point of the anchor (M, =
6.5 kN *m per m of length) (Compare Problem 8.3).
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Summary of answers
(1) f=3.44m; (2) T=95kN; (3) My, = —22.6kN°m
(T and M,,,, are given by m of length).

dakkProblem 8.5 Design of fender piles

Two identical fender-pile systems must be designed, each composed of a
metal pile with the butt at El. + 8.0. The characteristics of the design are
given in Table 8E.

TABLE 8E
Elevation D (em) e (mm) g, (MPa)
External diameter Thickness Elastic limit
i?’gg 150 15 240
72’95 150 15 470
. 6.90 150 18 600
—10.85 150 25 600
9970 150 26 600
427’ 150 18 600

The piles have varying moments of inertia with depth and are to be placed
in a soil as that illustrated on Fig. 8.21. It is anticipated that the sand layer
from —8.5 to — 13 m will be dredged.

The point is the determination of the lengths of the piles so that they will
be stable under the following loading conditions:

— ship docking loads: the energy applied to the pile, when the ship moves
against it, is 500kN - m, with the centroid of the
applied load acting at El. + 4.75.
Under the impact, the pile deflection at El. + 4.75
must be limited to 1.40 m and the stresses in the pile
cannot exceed the elastic limit of steel.

— ship mooring: a horizontal load of 600 kN is applied to a pile at
El + 8.0. Under the action of this force, the stresses
in the pile cannot exceed 80% of the elastic limit.

Part 1
To simplify the problem, assume the following:
— pile is circular with a constant inertia and an elastic modulus constant.
Take El. = 6.29 x 10°® kPa x m*.
— modulus of soil reaction kg is constant for the depth of embedment.
For the simplified solution solve for the ship docking load only.
(1) Write down the differential equation for the deformation of a fender
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pile for its section below grade. By the method of finite differences, replace
this differential equation by a system of linear equations, taking into account
the limiting conditions imposed by the problem givens (the buried portion
of the pile will be segmented into 4 parts of equal length). Consider the
following 2 cases: (a) the modulus of soil reaction is k;, = 20 kPa/cm and the
tip of the pile is embedded in the gneiss; (b) the modulus of soil reaction is
80 kRPa/cm and the tip of the pile is at a depth of 27 m below grade.

The solution of the linear equations will allow the plotting of the fender
pile deformation over its embedded depth. Determine the deflection at
El. +4.75m under the action of 500 kN -m. Use the method of inter-
polation.

(2) With the above results, draw the moment diagram along the pile and
the normal stress diagram in the soil during ship docking loads, as a function
of depth. What can be concluded?

Part 2

With the givens above (variable pile inertias and elastic limits) is the
differential equation of Part 1 still valid? What can be said about the
modulus of soil reaction kg in the clay?

Assuming the clay to have a plasticity index of 45%, give the equation for
the undrained cohesion as a function of depth.

The solution necessarily requires the use of a computer. For illustration
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purposes, the computation method is presented here for the ship docking
load and mooring conditions, assuming two possibilities for the mechanical
properties of the soil. Results of the more sophisticated approach can be
compared with the simplified method of Part 1.

Solution

Part 1

(1) Let us call § the deflection of the pile at El. + 4.75 during ship
docking loads. Let F be the force exerted by the ship and W be the corre-
sponding energy. These values are related by:

W = iF§ (1)

On the other hand, the horizontal force F applies at El. + 4.75 is equiv-
alent to the system of (F, I') at El. —13.00 (upper limit of the mud) to:
T(F,[),with'=—Fl;, and [, =13.00 + 4.75 = 17.75m.

First, we will determine the deflection of the fender pile below the dredge
line by analogy to an elastic beam (see sect. 9.4.2. Costet-Sanglerat). To
better understand the action of the soil on the pile shaft, let’s first look at
the action on an infinitely rigid screen being translated (Fig. 8.22).

The analysis presented below is two-dimensional. It is the only possible
one for calculation by hand. It is a first approximation to the problem which
in fact is a 3-dimensional one.

Under these conditions, on one side of the screen we have passive pressures

Al
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Fig. 8.22.
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which resist the motion and on the opposite side we have active pressure

conditions.
Under short-term loading (dynamic loads) ¢ = 0, ¢ = ¢, =s, and we have:

active pressure o, = Yz — 2¢,,
passive pressure 0, = Yz + 2¢,,.
The net resulting pressure thusis: 0 = 0, —0, = 4c,.

Assume c, to be constant with depth. The stress distribution is uniform
with depth. In reality, the shaft of the fender pile is flexible, cohesion c,
increases with depth z and the shaft deflections depend on the boundary
conditions at the base of the pile (fixed or free end, Fig. 8.23). The defor-
mations of the shaft are not everywhere large enough to generate full passive
and full active pressures.

The problem is thus very complex. As a simplified analysis, let us assume
that the reaction along the shaft is uniform and that it corresponds to the
modulus of soil reaction k; (constant). Under these conditions, the differ-
ential equation for the deflections of the pile below grade, is, if B is the
width of the pile:

d*v/dz* + (k,B/El)v = 0. (2)
For the following boundary conditions:

(1) at the surface (point O), bending moment M, = I', shear T, = F;

(2) at the lowest point (point B), free-end condition My = Ty =0,

fixed-end condition vy = 0, (dv/dz)y = O,



70 SHEETPILE WALLS

the bending moment is given by

—M/EI = d%*v/dz? (3)
and the shear by:
T/EI = d%v/dz? 4)

Dividing section OB into 4 segments of equal length h (Fig. 8.24) we
assume that function v(z) is given by the numerical values v; at the points
equidistant of elevation z; = z, + ih (axis Oz being positive downward).

The successive derivatives of v may then be approximately calculated by
the following finite-differences equations:

(dv/dz),; = (vi+; —v;)/h

(d%0/d2?),; = (0141 —20; +v;-q)/R?

(d®0/d2’),; = (0,45 — 30541 + 30, —0;-1)/h°
(@%v/d2?),; = (i+g — 404y T 60, — 40 F v;-5)/R*

All that remains to do now is to write the finite-differences equation
(obtained by replacing d*v/dz* by its approximate value) for each point 1, 2
and 3 (Fig. 8.24) and to write the boundary conditions at points O and B
numbered 0 and 4.

We then obtain 3 + 2 x 2 =7 equations with 7 unknowns which can be
reduced to a system of 5 equations with 5 unknowns easily solved by desk-
top computer.

F
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Fig. 8.24.
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(a) Fixed-end condition (tip at —35m)
Finite-difference equations give:

vy —4v, + (6 + K)v; —4vy, +v_; = 0
4 —4v3 +(6+K)v, —4v, tov, =0

with: K = h*k,B/EI
The boundary conditions allow us to write:

v, —2v, tv_y = —Th?/EI

v, —3v, +3vg —v_y = Fh3/EI

vy =0

vs = v, (equivalent to (dv/dz), = 0).

This leads us to the system of 5 equations with 5 unknowns.
3 —4v, + (6 + K)oy —4v, +tov_;y =0

—4v3; + (6 +K)v, —4v, +v, = 0

I (T+K)v; —4v, +v; =0

vy, —2vy tv-, = —Th?/EI

v, —3v, +8vy —v_; = Fh3/EI

With the numerical values of the problem, we get:
h=14=17/4 = 425m, B = 1.50m
k., = 20kPa/ecm = 2 x 10°kPa/m

= 6.29 x 10® kPa x m*
from which: K = (4.25* x 2 x 10 x 1.50)/(6.29 x 10°) = 0.1556.

If we fix a value for F, we get ' = — Fi; and we can then solve system (I)
above, which gives for each point the shaft deformations. Deflection § at
point A of application of force F, whose elevation is +4.75 is (with the

notations of Fig. 8.25) obtained by the first Bresse formula (neglecting the
deflection due to shear):

s

M(z—
5§ = ——wo(z._.zo)+J.M
We thus have:
FF(ly — 1)’ I3F
6 = vy —wyl +f————d = vy, — Wyly +
0 olo £l n 0 oo T apy
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but: w, = (dv/dx), = (v, —v-,)/2h

SHEETPILE WALLS

from which: § = vy —[(v; —v-;)/2h] "1, + I§F/3EI

This is the value of 6 for the selected value of F. The energy applied to the
fender pile during docking action of the ship is W = (1/2) F%.

The solution is obtained by an iterative process starting with the value of

F = (2 x 500)/1.40 =715 kN.
The obtained results are:

For F = 715 kN:
v-; = 0.8366m, v, = 0.216m, v, = 0.103m,

v3 = 0.00bm, v, = 0; 6 = 0.975m and W =

For F = 1000 kN:
v-;, = 0,512m, v, = 0.303m, v, = 0.145m,

v3 = 0.008m, 94 =0, § = 1.366m and W =

By interpolation we get, for W = 500 kN - m:
F = 844kN,say F = 850kN, 6 = 1.18m,
v, = 0.441m, v, = 0.261lm, v, = 0.125m,
v3 = 0.007Tm, v, = 0.

v, = 0.036m,
349 kN * m.

v, = 0.050m,
683 kN - m.

v, = 0.043m,
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Fig. 8.26. Deflection of pile (parameters 1: tip at —35m, fixed-end condition, ship
docking case).

The corresponding diagram is shown on Fig. 8.26.

(b) For the free-end condition (pile-tip in clay at —27m)
The equations of finite differences are:

vy —4v, + (6 +K')v; —4vy +v_; =0
vg —4vy + (6 + K)o, —4v, +v, = 0
v5_4v4+(6+K')v3_4v2 +v1 =0

For K' = h'*k_b/EL the boundary conditions give:
v, —2vy +v.; = —Th'?/EI
v, —3v; +3vy —v-y = Fh'3/EI
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vs —2v4 tv; =0

vs —3vy +3v3 —v, =0

from which the system of 5 equations with 5 unknowns becomes:

4y, —Tvy; + (6 + K')v; —4vy, +v_; =0

~(5+ K'Y, +(8+2K" vy —4v, +vy =0

(ID){ 2v4 + (K'—3)v; +v;, = 0

vy —2v, +v_, = —Th'?/EI

—v, +2v3 —8v, + 3vy +v_; = Fh'3/EI

For the numerical values of the problem:

R =1/4 = 14/4 = 350m, B = 1.50m,

k. = 80kPa/cm = 8 x 103kPa/m, EI = 6.29 x 10° kPa x m*
and: K' = (3.50* x 8 x 10 x 1.50)/(6.29 x 10°%) = 0.2863.

From here on, calculations are identical to the preceding case. The final
solution is:

For F = 715 kN:
vy = 0291m, v, = 0.167Tm, 7v; = 0.069m,
v, = 0.00lm, 93 = —0.053m, v, = —0.106m,

6 = 0941m and W = 336kN *m.

For F = 1000 kN:

v.; = 0.408m, v, = 0.235m, v; = 0.097m,
v, = 000lm, v; = —0.074m, v, = —0.149m,
6 = 1.319m and W = 660kN * m.

By interpolation from W = 500kN-m we get the following values:
F =859kN, say F = 860kN, 6§ = 1.16 m,

v.y = 0.350m, v, = 0.202m, v; = 0.083m,
v, = 0.00lm, 923 = —0.063m, v, = —0.128m.
The corresponding diagram is shown on Fig. 8.27.

(2) The diagram of bending moments along the shaft is obtained from the
preceding calculations from eqn. (3):
d» M
dz*  EI
which is for point i:
M; = (EI/h*)v;41 — 20; + 0;-4)
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Displacement in cm
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Fig. 8.27. Deflection of pile (parameters 2: tip at —27 m in the mud), ship docking case.

The resulting diagrams are presented on Fig. 8.28. The normal stress
developed in the soil at point i has a value of: ¢ = k,v;, from which the
solid-line diagrams of Fig. 8.29 are drawn. The passive pressure being
mobilized in the clay has a value of: ¢, = vz + 2¢, (short-term loading
since it is a dynamic condition).

With ¢, = 30 kPa (assumed constant) and v = 20 kN/m?3, we have:

0, = 20z + 20kPa (z in m).

For the free-end condition at —27 m, assume a cohesion 4 times larger*,
then
0, = 20z + 120 kPa, from which the passive pressure diagram is drawn and
shown in a dotted line on Fig. 8.29, which gives the upper limits of soil
susceptible for mobilization.

By comparing the two diagrams (Figs. 8.28 and 8.29), it is obvious that
the soil reaction relied upon in the simplified method cannot be mobilized
in the upper portion of the mud. The computation must be altered to take

*See p. 78
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Bending moments MN.m
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Fig. 8.28. Diagram of bending moment (simplified method: ship docking conditions).

into account a modulus of the soil reaction k,, which varies with depth and
is limited by the passive pressure available at each level.

Part 2

For the real conditions studied here, the pile inertia varies with depth z.
Although the givens of the problem do not specify it, it is possible that the
modulus of elasticity varies also. We have thus I = I (z) and E = E(z).

As a consequence, the differential equation of Part One is no longer valid
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Fig. 8.29. Soil reaction and passive pressure diagram (ship docking conditions).

since it assumes both E and I to be constant. Furthermore, it was demon-
strated that an increasing modulus of soil reaction k, should be considered.
Finally, the undrained cohesion of the clay, assumed to be normally con-
solidated, is a function of depth and may be related to Skempton’s equation
(see sect. 4.2.2 of Costet-Sanglerat): ¢, /o, = 0.11 + 0.37IP.

With IP = 45%, we get: ¢, /0, = 0.11 + 0.37 x 0.45~=0.27, say: ¢, =
0.270,.

On the other hand, ¢, = 0, since the soil is normally consolidated, there-
fore: 0, =(13—8.50)x 12+10z =54+ 10z kPa,
and: ¢, = 0.27(54 + 10z) == 14.6 + 2.7z kPa (z in m).

Computer calculations in the elasto-plastic method
(1) Method of analysis. This method is that of R. Marche (Ref. 16). The
deformation, bending moments and soil reactions in the pile have been
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calculated by the analogy of a beam supported on an elastic foundation.
The program takes into account the variation of the moment of inertia
of the pile with depth and the elasto-plastic behaviour of the soil. This
behaviour, as well as its defining parameters, are shown on Fig. 8.30.

The soil reaction normal to the section i of the pile is P, = Al x Bx p,,
v =P, /k, where Al = length of pile section (m), B = width of pile (m),
p, = ultimate soil stress, # = modulus of soil reaction (p, and k varying
with’ depth), v = horizontal displacement of pile {m). Vertical loads and
torsion are neglected.

The behaviour of the pile during docking was evaluated by calculating the
energy of deformation associated to different displacements at El. + 5.0.
The deformations, bending moments and soil reactions corresponding to the
energy of 500kN ‘m were obtained by linear interpolation from points
obtained with energy levels above and below 500 kN - m,

(2) Soil parameters. The available givens do not allow a rational evaluation
of strength parameters £ and p, because values of ¢ and ¢ are missing for the
mud. Two sets of parameters were considered for this problem.

The first set was obtained from the assumption that the mud is normally
consolidated with ¢, /o, = 0.25 where o, is the effective overburden stress.
Values of k and p, were then obtained from the values of c,,.

The second set was determined by our experience, that tells us that
calculations based on a two-dimensional analysis seriously underestimate
the results. In order to obtain realistic answers, the values of £ and p, must
be increased by a factor of 4.
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2.1. The parameters of set 1:
(a) The undrained shear resistance of the clay.

We have ¢, /0, = 0.25. This relation is very close to that obtained by
taking the PI = 45% which yields ¢, = 0.270,.

Therefore:

at —13.0m: ¢, = 4.5x12 = 54kPa, and ¢, = 13.5kPa
at —30.0m: o0, = 54 +17.0x 10 = 224kPa, and ¢, = 56kPa.

(b) Modulus of soil reaction of the clay. .
In accordance with the recommendation of Marche, we should use:

kng = kp(By/B) where B, = 30cm, B = 150cm, so kyg = ky,/5.
From the relation of ¢, and k,, proposed by Marche, we get:

k., = 69kPajem for ¢, = 13.5kPa,
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k,; = 183kPa/cm for ¢, = 56kPa
and at —13.0m: ¢, = 13.5kPa, k,z = 69/5 = 14kPa/cm
at —30.0m: ¢, = 56kPa, k,z = 183/5 = 37kPa/cm.

Furthermore, we should consider a reduction in the modulus for depths
less than 3 B. We write:

khg = Cnkus

with: C,, = (2 + 7z/z.)/9 and:

. = 3B = 3x1.5m = 4.5m, from which:

at —13.0m: C,, = 2/9, kn,p = (2/9)x 14 = 3.1kPa/cm
at—17.5m: C,, = 1.0, k., = 20kPa/cm.

(c) The ultimate pressure. The Marche method gives:

at —13.0m: ¢, = 13.5kPa, p, = 2x 13.5 = 27kPa

at —17.5m: ¢, = 24.8kPa, p, = 9x24.8 = 223kPa
at —30.0m: ¢, = 56kPa, Pu 9 x 56 = 504 kPa,

from which is drawn Fig. 8.31.

z

I

2.2. The parameters of set 2. The magnitudes of k and p, are those above
multiplied by 4, from which is drawn Fig. 8.32.
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TABLE 8F

(a) Moments of inertia

Elevation e (mm) I (m*) EI (N/cm®)
+8.0 to —2.95 15 0.01929 405130
—2.95t0 —6.90 18 0.02301 483 237
—6.90 to —10.85 25 0.03151 661790

—10.85 to —22.70 26 0.03271 686 879

—22.70 to —26.65 18 0.02301 483237

Note: I = (1/64)[D* — (D — 2¢)* 1, E = 2.1 x 10° MPa; e = wall thickness D = 150 cm.

(b) Resistance

Elevation g, (MPa)
+8.00to +1.00 240
+1.00to —2.95 470
—2.95 to —26.65 600

2.3. Pile characteristics. The pile characteristics are the moment of inertia
and the elastic limit of steel. Even an important variation of EI has little
effect on the deformation, the bending moments and the soil reactions
(see Table 8F).

(3) Results of the analysis, parameters set 1, pile tip at El. —27m

3.1. Docking. The results of the computer output for the deformations are
presented on Fig. 8.33. The deformation at the pile butt is 5.5 m.

3.2. Mooring. The computer results may be summarized as follows:

Calculation no. 1:

— deformation at El. + 5.0: 6§ =140m

- reaction at El. + 5.0: F = 566 kN

— energy absorbed by the pile: E = 3F§ = 396 kN *m

Calculation no. 2:

— deformation at El. + 5.0: 6 =2.00m

— reaction at El. + 5.0: F =626 kN

— energy absorbed by the pile: E =1F§ =626 kN-m

Interpolation for E = 500 kN * m:
— energy absorbed by the pile: E = 500 kN * m.
— deformation at + 5.0:

=1.40 + (500 — 396)/(626 —396) x (2.0 —1.4) = 1.67m
— reaction at + 5.0: F = (2 x 500)/1.67 = 598 kN.
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Fig. 8.33. Pile displacement during mooring (tip at —27 m, parameters 1).

3.3. Conclusion. The pile deformations during docking and mooring are too
large, so the pile should be embedded in the underlying bedrock.

(4) Results of the analysis, parametersset 1, fixed-end pile at depth—35.0 m

4.1. Assumptions. Assume an embedment of 5.0 m into the rock (= 3 times
the pile diameter). The results of the analysis indicate that a shallower
embedment of about 3m into the rock could be recommended. A pile wall
thickness of 26 mm is justified from El. — 11 to El. — 35.0.

4.2. Docking. The variations of the deformations, the bending moment and
the soil reactions are presented on Figs. 8.34, 8.35 and 8.36.

4.3. Mooring. The variation of the deformation energy of the pile as a
function of the deformation at El. + 5.0 is presented on Fig. 8.37. An
applied energy of 500kN * m corresponds to a displacement of 1.14m at
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Fig. 8.34. Pile displacement during mooring (parameters 1: tip at —35 m).

El + 5.0. The variations of deformation, bending moments and soil reactions
are presented on Figs. 8.38, 8.39 and 8.40.

4.4. Conclusion. The pile deformation and soil reactions during both docking
and mooring conditions are allowable and the stability of the fender pile is
adequate.

(5) Results of the analysis, parameter set 2, free-end pile at depth —27m
The variations of the displacement, the bending moment and soil reaction
are presented on Figs. 8.41,8.42 and 8.43.

5.1. Docking
Calculation no. 1:
— displacement imposed at El. + 5.0: =0.8m
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Fig. 8.35. Bending moment during mooring (parameters 1: tip at —35 m).

— reaction at El. + 5.0: F =814 kN
— energy absorbed by pile: E=31F8 = 330kN 'm.

Calculation no. 2:

— displacement imposed at El. +5.0: § =1.40m
— reaction at El. + 5.0: F =1360kN
— energy absorbed by pile: E=3F5=950kN 'm.

Interpolation for E = 500 kN * m:
— energy absorbed by pile: E =500kN 'm
— deformation at El. + 5.0:

6 =0.80 + (500 — 330)/(950 — 330) x (1.40 —0.80) = 0.96 m
— reaction at El. + 5.0: F = (2 x 500)/0.96 = 1040 kN.
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Fig. 8.36. Soil reaction during mooring (parameters 1: tip at — 35 m).
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Fig. 8.38. Pile displacement during docking (parameters 1: tip at —35m).

Variations of deformation, bending moments and soil reaction are
presented on Figs. 8.44, 8.45 and 8.46.

5.2. Conclusion. Pile deformations and soil reactions during mooring con-
ditions are allowable and the stability of the fender pile for this loading
condition is adequate.

General conclusion

The available information on soil parameters is not sufficient to allow for
a final design of the structure. Because of this lack of information, it was
necessary to assume two sets of conditions:

(1) The first assumption was that of a two-dimensional calculation. The
mud is assumed to be normally consolidated and to have a shear strength
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Fig. 8.41. Pile displacement during mooring (parameters 2: tip at —27 m).

that increases as a function of depth ¢, /0, = 0.25 where ¢, is the effective
overburden pressure. The basis for estimating %k and p, gives values of k& from
0.03daN/cm? at El. —13.0 to 0.37daN/cm® at El. — 27 and gives values of
py from 0.27daN/cm? at El. —13.0 to 5.04 daN/cm? at El. — 27.0. Under
those conditions, it is necessary to provide for an embedment of the pile of
3 m into the underlying bedrock in order to ensure good fender-pile perfor-
mance.

(2) The second assumption is based on practical experience which shows
that the pile behaves as if the values of k and p, were 4 times larger than
those assumed above. Under those conditions, the fender pile performs
satisfactorily with an embedment of 14 m in the clay.

Given the reduced available information of the problem to work with,
only the first assumption guarantees an acceptable behaviour of the fender
pile. The second assumption and its conclusions could only be realistically
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Fig. 8.44. Displacement of pile during docking (parameters 2: tip at —27 m).

considered if a site study confirmed the data. Such a study should consider
two borings with a pressuremeter testing every meter at the location of the
pile, or with recovery of undisturbed samples with laboratory testing of the
soils of various layers. It should be noted that in the case of embedment in
rock, the results obtained by the simplified method are in good accordance
with those obtained by computer calculation.
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*xkProblem 8.6 Uplift of an excavation bottom

It is necessary to determine the short-term stability of the bottom of
an excavation of large length, whose width is B and its depth is H. The
excavation is to be made in a homogeneous, cohesive soil of cohesion c,
and unit weight 1.

The excavation is shored and buttressed so that the sides may be assumed
not to deform. The incipient failure plane therefore can be assumed to be a
plane parallel to the shoring located at a horizontal distance x away from it,
as well as the plane of symmetry with respect to the longitudinal axis of the
excavation (Fig. 8.47).
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Fig. 8.47.

Assume further that the shoring does not extend down beyond the
bottom of the excavation and, therefore, cannot impart any friction resis-
tance to the soil mass it retains and which could become unstable.

(1) Determine the equilibrium of the soil of aa’'bb’ as defined on Fig. 8.47
which could fail along plane a'b’ and assume R to be the reaction of the soil
pressure on bb'.

(2) Evaluate R from the results for the shallow footing design. Find the
limit value of x and determine the value of the safety factor F. Compare
the results (according to the plastic diagrams used by Caquot or Terzaghi, for
example).

(3) Suggest another approach which would not consider the soil mass
aa'bb'. What are your conclusions?

(4) What happens to the safety factor if the soil mass supports a uniform
surface load of magnitude q?

(5) Use the above results for a two-soil-layered system as shown on Fig.
8.48, the shoring being only for the upper layer H, (v, c,,) and the bottom
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of the excavation corresponding to the upper limit of the lower soil layer
(Y2 ¢4z ) whose thickness may be assumed infinite.

(6) Numerical application. Compare the values of the safety factor corre-
sponding to the above conditions for the following case: a two-layer system
with an upper layer of thickness 6.5 m and c,; = 20 kPa and a lower layer
that is infinitely deep with c,, = 25 kPa. The unit weights are both 20 EN/m3.
The bottom of the proposed excavation is at 6.50m and has a width of
15m. Assume the length to be infinite.

(7) Determine the safety factor by the method described above against
uplift of the excavation bottom for the case shown on Fig. 8.49. The exca-
vation is assumed to be rectangular in plan with a length equal to twice the
width.

B=12.00m  (L=28) £
Cloyey gravet:C =10 kPa o
_ZOkN/ Q

S Cy=15kPa |
Clay: 7,1=18kN m

Clay: Cu2_25 kPa

e //
g /// g
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Solution

(1) The excavation is assumed to have an infinite length and therefore the
problem reduces to a two-dimensional solution. We can then consider a
typical 1 m wide slice of trench. Since we are dealing with a purely cohesive
soil, no friction is assumed between the shoring and the soil mass. Further-
more, if we assume that there is no adhesion between them, there is no
vertical force component to consider along plane ab. The earth pressure is
horizontal. The forces which determine the equilibrium of the soil mass are
shown on Fig. 8.50 and are:

— the mass of the soil: W = yHx
— the shear stress along vertical planea'd’: T =c,H
— the reaction of the underlying soil on plane bb’: R (this will be calcu-

lated below in answering question 2.)

For a width x of soil mass, there exists a reaction R which meets the
criteria R + T' = > W, because otherwise failure would occur.

The safety factor is given then by

F = (R+T)W 1)
Terzaghi expresses the safety factor from a slightly different concept, as:
F' = R/(W—T) (2)

which leads to different results. It appears more logical, to adopt formula (1)

Fig. 8.50
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Fig. 8.51.

in which R and T are the resisting forces which keep the soil mass from
falling into the excavation. However, the classical formula encountered in
many books is based on F'.

(2) To calculate R, we may try to transfer the results of the shallow
footing calculations to this particular case, and consider the mass aa'bb’ as
a load acting on the underlying soil as a footing would. Let’s take for
instance, the Caquot plasticity graph (see Fig. 8.50). We can say that R is
equal to the bearing capacity of a strip footing of width x, resting at the
surface of the ground (D = 0) over a purely cohesive soil, since the failure
would occur along the shortest line on the excavation side of the plane.

The bearing capacity for such a condition is:

gq = cyN, with N, =n7+2 = 514
Thus: R = b.14xc,

and:
5.14xc, + He,  5.14c, +c_u

YHx vyH Yx

This shows that the safety factor decreases as x increases, but we must
remember that up to now we have assumed that the imaginary strip-footing
was at the surface and that the failure plane daylighted in the trench bottom.
From the plasticity graph, it is seen that the failure planes daylight in the
trench for 0 <x < B conditions only (see Fig. 8.50). The minimum value of
the safety factor therefore appears when x = B.
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Finally, we have:

5.14
F —_ Cu + & (3a)
YH B
514B+ H ¢,
F=—— (3b)
BH 04
Notes

(1) If we had used the Terzaghi plasticity graph instead of Caquot’s (see
Costet-Sanglerat, vol. 2, p. 152) results would have been different. In that
case, we assume R to be half the bearing capacity of a strip footing of width
2x; the value of N, is that given by Terzaghi:

N, = (37/2)+1 = 5.71
and: R = } x 5.71 x 2x¢, = 5.71xc,

The net of failure lines gives:

\/_

Beos® = BYZ (Fig. 8.51)
X = os— — - 1€. O.
%4 g

or:
5.71¢, 2c,
p o 57ten V2 (4a)
YH YB
5.71B++/2H ¢,
F = __L_ .8 (4b)
BH 04

(2) If, in addition, we consider Terzaghi’s definition of the safety factor
(formula 2)as: F=R/(W—T)

we get:
) 5.71Bc, (4¢)
YHB — H\/2c,
or, with the maximum depth corresponding to F = 1:
Hy = 5.71Bc, 5)

B YB — cu\/§
which is the formula frequently encountered in the technical literature.
(3) A different method of analysis may be considered referring to the
theory of shallow footings.

In the case of a strip footing of width B, embedded to depth D in a
purely cohesive soil, we get:
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Il

gs = YD +c,N, since Ny =1 (¢
For our case, where D = H:

qs = YH + e N,

and q,q = YH + (¢,N,)/F, which may be written as:

e, N,

po = D1+ where p, > p;

In the case of a cut of great length, width B and depth H, the same analysis
could be made with py, <p; (po and p, should be changed in the result). In
the case of pg = 0 we get:

py = p, —Ne _ g

0 b F

from which:

F = ¢,N,/vH (6a)

since we assumed p, = YH.
Assuming a value of N, from Caquot’s theory, we finally get:

F = 5.14c¢,/yH (6b)

Conclusions

If we compare the various theories of the preceding questions, we may
conclude that the safety factor from formula (6) is the greatest. Indeed, in
the first instance, the safety factor is increased by c,/yB or \/2c¢,/vB,
depending on the plasticity net chosen (formulas 3 and 4).

By the same token, if we use Terzaghi’s formula (4) we may write:

5.71Bc,

,  57B, _yHB _F
 yHB— H\/2c, 1_H\/§cu B 1_@
YHB YB

hence F' > F (assuming (/2¢, > 1)/vB).

We note that in this latter method, there is a limit value for B which is
B =c¢,\/2/y below which the analysis has no more significance (we find
that F' < 0 and an upper height-limit which is negative).

According to this method, there could never be a stability for trench
depths less than \/Ecu/'y. This contradiction comes from the bad definition
of the safety factor. With the proposed formula (1), this difficulty disappears.
It also does not exist in the method used for solving question 3.
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Remark

It is normal that the value of the safety factor F of question 3 is the
largest. This is because the shear resistance along the failure planes was not
taken into account between the level of the bottom of the trench and the
upper soil level. Thus, it was assumed that no increase in N, occurred with
depth. We could, however, count on such a linear increase as a function of
depth. For instance, Skempton proposed such an increase in N, with depth
with 5.14 for D/B = 0 and to 7.5 for D/B > 5 or:

N, 5.14 + 0.472D/B for D/B < 5
N, =175 for D/B =2 5
We then have for H < 5B:
c,[5.14 + 0.472(H/B 5.14c¢, Cy
F = [ HIBT _ +0.472 = (7)
YH YH YB

which is comparable to formulas (3) and (4). In spite of this increase of N,
we still get minimum values for the safety factor.

(4) The formulas used above must be modified when the soil mass is acted
upon by a surface uniform surcharge of @ = q x x, which is added to the
weight of the mass aba'd’, if we use the first approach, or to add stress g to
vH for the second one.

For the first instance then we have:

514c, H
+

F = - . Caquot 8a
YH+q B yH+gq (CRauot) (8a)
5.71c, H Cy

F = +/2—=- (Terzaghi) (8b)
vH + ¢q B vH +q

and for the second approach:
cu ° N,

F = (9)
YH +q

(5) For a two-layer system, R is calculated from the cohesion values of the
underlying layer, whereas W and T are those pertaining to the upper layer.
We then have:

5.14c,, Cul
F = + from (3)
Y1 H, v B
5.71Bc,;
F = from (4c)

viHB—H, \/2¢,



PROBLEM 8.6 99

H. = 571w from (5)
lim
71— (cu1 *V2)/B
co N
F o= ¥ ¢ from (6)
11 H,

In this last instance, the upper layer cohesion has no influence.

On the other hand, the increase of N, proposed in question 3 can only be
made unless if c¢,; of the upper layer is higher than ¢,, of the lower layer.
For the opposite case, it is advisable not to increase N, if ¢,; is considerably
lower than ¢,,;.

(6) Numerical application
¢ = 20kPa, c,, = 25kPa, v, = v, = 20kN/m?
B = 15m (infinite length), H = 6.50m

The results are:
— Method 1 (Caquot graph)

514 x 25 + 20
20 x 6.50 20 x 15
— Method 2 (Terzaghi graph):
_517x25+20xv5

= 1.06

= =~ 1.19
20 x 6.50 20 x5
— Method 3 (Terzaghi):
8.71 x 15 x 25
= Ax1ox ~ 1.21
20 x 6.5 x 15— 6.5 x /2 x 20
H 5.71 x 25 7 88
im = T = = 7.88m.
20 2
g — 20X V2
15
— Method 4 (without increasing N, ):
5.14 x 25
= — = (.99
20 x 6.50

In actual fact, even though ¢,; is lower than c¢,, we may increase N,. We
propose the following approach using Skempton’s coefficient:

Cui H
N, = 514 +—x0472x —
Cus B
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Fig. 8.52.

20 6.5
orhere: N, = 514 +—x0.472x — = 5.30
25 15

5. 2
so: F = M =~ 1.02
20 x 6.50

The safety factor thus is very close to 1: the trench bottom is about to
lift up.

(7) Let us adopt method 1 to solve this problem, taking into account the
increase in bearing capacity (1 + 0.2B/L) (see Costet-Sanglerat, Vol. II) due
to the fact that the trench is no longer infinite. On the other hand, there
is a bedrock substratum through which the failure planes will not go. This
limits the value of x to h\/2, as seen on Fig. 8.52.

We have, finally, for a slice of 1 m length:
x = hy/2 = 6.00x+/2 =~ 850m

B 12
R = xcy (1 +0.2 Z)Nc = 8.5x 25 (1 +0.2 x 2—4)>< 5.14 = 1201.5kN

T = 2x10+15x 5.560 = 102.50 kN
Weight of soil mass aba'd":
fill (clayey gravel) = W, = 1(4.50 + 8.50) x 2.00 x 20 = 260 kN
soft clay layer W, = 8.50 x 5.50 x 18 = 841.5kN,
W =W, +W, = 1101.5kN



PROBLEM 8.6 101

and finally:
1201.5 + 102.5
F = = 1.18
1101.5

The safety factor is low. For temporary support design, a safety factor
between 1.5 and 2 is preferred. The finally adopted safety factor depends
onthelevel of confidence of the engineer in evaluating the soil characteristics
and the knowledge of the possible surcharges.

Final remark

There are other approaches but all are based on the same principle. The
essential difference between the methods resides in the plasticity graph
choice. The methods of Bjerrum and Eide (1956), Tschebotarioff (1973),
the NAVFAC DH7 (1971) method mentioned in “Foundation Engineering
Handbook” of H.F. Winterkorn and H.Y. Fang are other possible choices.

As for the remarks made above regarding the safety factor, the most
common method used is that of method 3 (formula 6) with correction for
N,. depending on the depth and shape of the trench. Formulas 4c¢ and 4d,
which correspond to the historical formulas of Terzaghi (1943) should, in
our opinion, be abandoned.

Finally, question 7 shows that in certain instances, a simple plasticity
graph must be chosen if conditions do not match those found in the available
tables or charts.
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Chapter 9

SLURRY WALLS

*kProblem 9.1 Slurry wall stability during construction

A trench for a slurry wall is excavated in a cohesive soil where ¢, =35
kPa/cm?, v, = 20kN/m>. The trench sides are stabilized by filling the
excavation with a bentonite slurry whose unit-weight is vz = 11 kN/m?.
Find the theoretical depth to which the trench may be excavated without
caving. Assume its length to be infinite.

Solution

Short-term loading conditions apply. The cohesive soil is very impervious
and the trench stability is critical for only a short time.

Let us find the height H, of the trench corresponding to the development
of the plastic conditions at the excavation bottom.

At point A (Fig. 9.2) we have: 0, = Hy,,, 05 = Hvyyg for conditions at A
to become plastic, we must have:

01703 = 2¢, = Hp(Ys —7p) (Fig. 9.2).

The height corresponding to this will then be: H, = 2¢,/(Ysar —Vp).
The state of plasticity is reached when large deformations occur. Two
conditions may develop: either there occurs a redistribution of the stresses in

Failure envelope (undrained soil)

Cu

Fig. 9.1.
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the upper soil zones, still in elastic state, or cracks appear in the soil and no
stress redistribution can occur.

Case 1—stress redistribution occurs,

When height H, is exceeded, o, increases but (0;,—03) can no longer
increase (plastic limit). Therefore, the stresses shown in the shaded area
of Fig. 9.3 must be taken into account by an increase in stress in the upper
zone, still in an elastic state of stress.

If the stress redistribution occurs completely, the entire trench height

/—— Slurry bentonite

Added stresses in elastic zone

Stresses vehicle must be supported

G Gz actual insoil

Due to
bentonite

Fig. 9.3.
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can become in a state of plasticity:

Hy = 2H, = 4c¢,/(Ysq —7Y8) oOr: Hy = 140/9 = 15.5m

Case 2—fissures appear
Cracks appear in the soil as soon as the state of plasticity is reached at

trench bottom; then failure occurs, for: H, = 2¢,/(Ysay —7¥8) = 7.8 m.

In reality, slurry wall excavation trenches can reach considerably deeper
than the calculated value above. This is because the trench length is only
a few meters and the boundary conditions do improve the stability and allow
for greater depths (Compare sect. 8.3 in Costet-Sanglerat).

*xkProblem 9.2 Design of a slurry wall with pre-stressed anchors

A prefabricated retaining-wall, as shown on Fig. 9.4, must be designed.
The soil characteristics as well as the active and passive pressure coefficients
are shown on the figure. A row of prestressed anchors is proposed at 2.5 m
depth.

The soil above the wall supports a load of 10kPa. The groundwater
table is at — 4m.

The soil on the excavation side will be grouted from a level of 9 to 11.5m
to avoid uplift of the excavation bottom during dewatering.

(1) A first excavation phase will bring the level to 3m depth, where
anchors will be placed. Draw the passive and active pressure diagrams and
calculate the maximal bending moment in the slab for this first construction
stage.

(2) After tensioning of the anchors, a second excavation phase will follow,
reaching a depth of 7.30 m. Draw the active-passive pressures diagram and
calculate the maximal bending moment in the slab and the tension in the
anchor rods to allow the excavation of phase 2 to take place.

Solution
A. CALCULATION FOR PLASTIC CONDITIONS
(1) Phase 1. Excavation to 3 m depth
1.1. Determination of the active-passive pressure diagram
From 0—3.70 m:
po = 0.41 x10 = 4.1kPa
P-3 = 0.41(10+ 18 x 3) = 26.2kPa

P30+ = 0.41(10 + 18 x 3.70) = 31.4kPa
beesmore) = 3.54x 18 x 0.70 = 44.6 kPa
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. l10kPul’ | . | l _ o
L e (obove
ST T T ’ 7 =18kN/mPwater table)
: L L 9=25° kg040
O T O N ! © €=0  Kke370
' ' Lo 250 m excavation
R o ) o 3m phase1
e . 4]370m 7 = 1BKN/m3
Woter g ~31400m 7= OKN/m? k=027
taple , o -0 @ ¢-35 Kp=800
. y - i - c=0
= Sz el
N \“: ’ Dense sand and Excavation
° . oo gravel e 7 = OKN/m3K = 0.40
. - a P ; - - 7.30 m 9 =25° k=370
- - c=0
o ©© B L S @ Active and passive
o Y. o o . @ pressure coefficient
© e @ - ° ° . ~Zlom are the same as those of
© - - © ° ° o o —— layer—|
© - o ° A ¢ L4 o - ° LT ! . 3 o
o 2 . L @ Medium dense .° -@Grouted fp;g{m/m tA=]|
e g sand and gravel L | SR @ " P
. . © - N B ) 1 soil ¢ =100 kPa
o o = C. cAlusom .-
° . o © o o e o
° ° © c e - e . Pom

"DIVIDAG 32" avery 2 m

Fig. 9.4. Cross-section of wall and soils, as well as their mechanical characteristics.

(b—DP)-3.70+¢y = 13.2KkPa.

From — 3.70 to — 7.30 m:

= 0.27x (10 + 18 x 3.70) = 20.7 kPa
bi-3.70-¢) = 6.51x18x 0.70 = 82kPa
(b—P)-3.70-¢y = 61.3kPa

P4y = 20.7+0.27x18x 0.3 = 22.2 kPa
bay = 82+6.5x18x%x 0.3 = 117.2kPa

(b —p)-4y = 95kPa

Pi730) = 222+ 0.27x10x 3.3 = 31.1kPa
b-730y = 117.2 +6.51 x 10 x 3.30 = 332kPa
(b —P)-7.30) = 300.9 kPa.

P-3.70-¢)

The diagram is shown on Fig. 9.5.

Notes. When a discontinuity occurs due to a change in soil layer, + ¢ indi-
cates that one is immediately in the upper layer and — € indicates that one
is immediately in the lower layer.

From the similar triangles 2 and 3 (see Fig. 9.5) the point of zero stress
is at depth — 3.3 m approximately.
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kN.m Bending moments Active passive pressure diagram (b-p)in kPa
100 50 O 41 100 200 300
. i L M SR | S M ST S PR

99

300.9

Depth(m)

— g

Depth(m)
©

]
Fig. 9.5. Plastic condition, phase 1: excavation to 3m of depth.

1.2. Maximal bending moment

4.1 + 286.
R, = —15&x 3 = 45.5kN (inferior R-numbers correspond to areas
shown on Fig. 9.5)
26.2 x 0.
R, = ————2; 33 _ 43N

T of the active pressures = 49.8 kN

R, = (13.2x0.37)/2 = 2.4kN
3+

R, = §l3—2-g5— x 0.3 = 23.4kN

T of the passive pressures = 25.8 kN

Point of zero shear. At level —4m, it is necessary to find a net-shear
(passive less active) equal to: 49.8 —25.8 = 24 kN.

From —4m:

(b—p) = q = 95+ [(300.9 —95)/3.30] x
where x is the ordinate measured from — 4 m.
(b—p)x = 24and 95x +62.4x% = 24

from whichx = 0.22m.

The point of zero shear is located at —4.22 m. Thus, the maximal bending
moment is:
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221 x 3 26.2 x 0.33
M = 4.1x3x2.72+T—x 2.22+——2—><

(3.7 —3.33) 61.3 + 95
x111—13.2 —————x0.64 ———— X

108.7 + 95
x 0.3(0.15 + 0.22) ————2—-—>< 0.22 x 0.10 = 99 kN.m.

The diagram of bending moments is shown on Fig. 9.5,
(2) Phase 2—excavation to 7.30 m of depth

2.1. Active-passive earth pressure diagram:

From 0 to —3.70 m:
pPo = 0.41x10 = 4.1kPa
DP—250) = 0.41x (10 + 18x 2.50) = 22.6kPa

D(-3.70+e) — 0.41x (10 +18 x 3.70) = 31.4kPa

From —3v.70 to —7.30 m:

P-370-¢y = 0.27x (10 + 18 x 3.70) = 20.7 kPa

P-4y = 20.7T+0.27x18x 0.3 = 22.2kPa

DP-730+¢) = 222+ 027x10x 3.30 + 10 x 3.30 = 64.1kPa

From —7.30 to —9m:

DP-730-¢) — 041 x (10 +18x 4+ 10x 3.30) + 10 x 3.30 = 80.2kPa
Pi-9+ey = 80.2+0.41x10%x1.70 = 87.2kPa

bi9+¢y = 3.54x10x1.70 = 60.2kPa

(®—b)cosey = 2TkPa.

From —9 to —11.50 m.

Since ¢ = 0, the passive pressure is calculated directly from Mohr’s diagram
(see Problem 9.1) and so we get: b = v’z + 2¢, = 10z + 200

where z = depth measured from the bottom of the excavation

bicg_e¢y = 10x1.70 + 200 = 217kPa

P-9-¢y = 60.2kPa

(b—P)-9-¢y = 156.8kPa

biir.sosey = 10(11.50 —7.30) + 200 = 242kPa
Peirsosey = 60.2+0.41 x10 x (11.50 — 9) = 70.5kPa
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Bending moments (kN.m) Active -pressure diagram {(b-p) in kPa

50 © 50 1(})0 1?0 2C‘)O ) 0] 50 100 150
i s f { N

80.2

Fig. 9.6. Plastic condition, phase 2: excavation to 7.3 m of depth.

80.2

64.1

w
-
H

27 @ @ 222
@20.7 }
) : @ 41
l
1.70m 3.30m 0. 30_‘1.20 2.50m
Ra N T
R
9m ®
O+ = X

Fig. 9.7. Loads per unit of length in kN/m.

(b-p)(—11.50+6) = 1715 kPa

From —11.50 to —12m:

b(_“,so ey T 3.41 x 10 x 4.20 = 143.2kPa
p(‘11.50—e) = 70.5kPa

(b—=P)-11.50-¢y = 12.TkPa
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b1y = 143.2+3.54x 10x 0.50 = 160.9 kPa
P-12y = 70.5+0.41 x10x 0.50 = 72.60 kPa
(b—p)-12) = 88.3kPa.
The active-passive pressure diagram is presented on Fig. 9.6.
2.2. Stresses in the slab
A modified method of Blum will be used, (see sect. 7.2, Costet-Sanglerat):

the point of zero bending moment corresponds to the point of zero stress.

2.2.1. The equivalent beam must be computed (shown on Fig. 9.7)

27 + 80.2

R, = —2_><1.70 = 91.1kN
64.1 + 22.2

R, = *z—x 3.30 = 142.4kN
20.7 + 22.2

R; = ——E—x 0.30 = 6.4kN
31.1+4.1

R, = _T x 3.70 = 65.TkN

2R = 305.6kN
Finally, we get:
R, = 151.8kN, Ry = 153.8kN.

The tension in the anchors is then: A = (153.8 x 2)/cos 15° = 318.5kN
for a 2m spacing of the anchors inclined 15° with the horizontal.

Maximal bending moment. This occurs where shear is zero, somewhere
between x = 1.70m and x = 5m (the direction of the x axis is indicated on
Fig. 9.7). Between x = 1.70m and x = 5m (s designates the load per m),
we get:

(64.1 — 22.2)
= q1——(x—1.70
s 64.1 330 (x )
s = 85.7T—12.7x

(856.7—12.7x) + 64.1

T = 151.8—91.1— 5

x{x—1.70) = 0
from which:

12.7x* —171.39x + 376.06 = 0
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the roots of which equation are: x; = 2.76 m, x, = 10.73 m.
The value here to consider isx = 2.76 m, from which s = 50.6 kN.

M = —151.8x2.76 +27x 1.70x 1.91 + 4 x 53.2x 1.70 x 1.63
+ 50.6 x 1.06 x 0.53 + 3 x 13.5x 1.06 x 0.71
M = —224kN.m at level —9 + 2.76 = — 6.24 m.

Moment at anchor point.
M=41x25x2.5/2+(18x 2.5)/2x 2.5/3 =+ 32kN.m.

The diagram of bending moments for phase 2 is presented on Fig. 9.6.

2.2.2. Equivalent lower beam (see Fig. 9.8):

171.5

156.8 /

88.2

/

72.7|
|
|

0.'50|m
2.50m JN
' 3m
Ra R‘c

Fig. 9.8. Load per unit of length in kN/m.

156.8 + 171.5 72.7 + 88.2
—x 250+ ———

R, +R, = x 0.50 = 450.6kN

3R, ~ 156.8x 2.5x 1.25 +4 x 14.7x 2.50 x 1.67 + 4 (72.7 + 88.2) x
x 0.50 x 2.75 = 631.2kN

R, = 210.4kN, R, ~ 240.2kN:

R, > R, : there is to much embedment.

Let us evaluate the order of magnitude of the bending moment (overesti-
mated because of the excess embedment). Assume the load on the beam to
be a uniformly distributed load:
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s = 450.6/3 = 150.2 kN (per m of length):
M., = (150.2x 3?)/8 = 169kN.m

Remark

The minimum required embedment can be calculated: assuming R, =
R,,weget: R, + R, = 2R}, = 303.6 kN.

Assuming further the constant load is ¢ = 157 kPa per m, the passive
pressure is needed over a depth of 303.6/157 = 1.93 m. The embedment is:
f=1.93+1.70 = 3.63 m; the moment is M = (157 x 1.93%)/8 = 73 kN.m.

2.8. Conclusion

Calculation in plasticity condition is a long and drawn-out process, even
when based on simplifying assumptions. Furthermore, the results greatly
differ from reality, because plasticity is only developed when substantial
deformations are allowed to occur, which is not the case for a rigid wall or
slab and even less than for steel sheetpiles.

B. CALCULATIONS IN ELASTO-PLASTIC CONDITIONS

The calculations in elasto-plastic conditions are too complex to be carried
out by hand. A computer must be used. We used the Rido-program developed
in Lyon by Fages for the local subway construction.

This program takes into account deformations caused by progressive
excavation whereas under plasticity conditions each phase had to be
considered independently. For each phase the stresses exerted on the wall

Bending moments ( kN.m) Shear (kN) Deflection mm

o} 50 100 0 50 (0] 10 20
. 7 I e - [t e e eSS
/ s 216
g
4

2
o
Z3
//‘4”1’

SXIDepth (M)
T S

(Ii"_.

Fig. 9.9. Elasto-plastic condition, phase 1: excavation to 3 m of depth.
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by the soil are given, as well as bending moments, shear, deflections and
tension in the anchors.

Results are presented on Figs. 9.9, 9.10 and 9.11. They can be compared
with those obtained for plasticity conditions (part A).

Bending moments (kN.m) Shear (kN) Deflection mm
o) 510 100 -50 0 50 00 0 5 10 15
R L I , - N Ll L 1 L

16.2

200 K S AW N

Depth (m)
O N ik~

Fig. 9.10. Elasto-plastic condition, phase 2: excavation to 3 m of depth (active anchors).

Deflection mm
Q 5 10 15 20

o ada s

Bending moments (kN.m) Shear (kN)

-100 -50 0 50 100 -100 -50 O 50 100 150
s g P I

12.2
1

17.7

8

Fig. 9.11. Elasto-plastic condition, phase 3: bottom at 7.30 m of depth.

Remarks
Phase 1. The maximal bending moment in elasto-plastic conditions

(101.5kN.m) is close to the value found by assuming plastic conditions
(99 kN.m).
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Phase 2 (bottom of excavation at 7.30 m). Here, considerable differences
occur. The maximal bending moment in plastic conditions is 224 kN.m
whereas it is only 147kN.m for elasto-plastic situations. The difference
may be accounted for by the fact that the elasto-plastic method takes
into consideration the deformations which have occurred in the wall after
the completion of Phase I, which causes moments to decrease. Calculations
in elasto-plastic conditions more closely approximate real conditions.

**xProblem 9.3 Self-sustaining slurry wall

Calculate the stability of the wall shown on Fig. 9.12. Is the embedment
sufficient?

In order to limit the horizontal deflection at the top of the wall that
would cause cracking of the adjacent building, assume a low value of passive
pressure.

Although the wall is rough, assume & = 0. This is equivalent to apply
a reduction factor to the passive pressure which would be usually :

6 =—2/3¢.

180 kN
K
x T 7\7\/\ O
_ —F41050m
Water — . 2,
table - :
250m
p=20° va”/
¢ = 10kPa T
7= 18kN/m?
7= 1kN/m?3
S _ o
650 m
Ka= 049
KP:Z.OA

Fig. 9.12. Cross-section of walls and encountered soils with their mechanical charac-
teristics (loads per m of wall length).
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Solution

First we must determine the earth pressure diagram acting on the wall as
well as the stresses due to the footing load. The simplest method to accomplish
this is to assume a rectangular stress distribution as proposed by Graux
(in his “Deep Foundation and Excavations”, Vol. I, p. 196) and shown on
Fig. 9.13.

Fig. 9.13.

The active pressure on the wall is taken equal to that of a uniformly
distributed load of infinite length but whose influence is limited to depth
Z 4, corresponding to the failure wedge below the footing:

Z, = Btan (/4 + ¢/2) = 1x tan (45° +10°) = 1.43m,
say Z; = 1.5m.
Let s represent the surcharge due to the footing, then the lateral earth

pressure on the wall is: p, = K,ys = 0.49 x 180/1 = 88.2 kPa, as is shown
on diagram 1 of Fig. 9.14.

Lateral earth pressures
Take as the origin, the bottom level of the footing. Between that level
and the upper soil surface, the soil acts as a surcharge s’ = 18 x 0.5 = 9 kPa.
At depth & from the bottom of the footing, the lateral pressure then is:
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k,(y*h+s')+ [(ky —1)/tan ¢]c (valid if 6/¢ = 0)

0 = 049 (y*h +9)+ [(0.49 —1)/0.36] x 10

0 = 049vh +44—14.2 = 0.49vh—9.8

For 0<h<0.5m, y=18kN/m?, and 0 = 0.88h — 0.98 <0, so the lateral
earth pressure is zero.
From h = 0.5 m (groundwater level) we get:

0 = 0g.50 + ka 'Y’(h - 0.50)
0 = 88x 0.50—9.8+0.49 x11 (h — 0.50)
0 = 44—98+54h—27 = 54h—8.1,5s0

there are no lateral pressures until depth 2, = 8.1/5.4 = 1.5 m: the situation
is shown by diagram 2 on Fig. 9.14.
For h = 6.5 m, we get 0 = 27 kPa.

o

Water pressure

Between El. —0.5m and the bottom of the excavation at —2.50 m the
pressure due to the wateris o = (h — 0.5)7,, .

From the bottom of the excavation, the residual water pressure due to
the difference in the head on the two sides of the wall remains constant
and is equal to p = 20 kPa, as shown on diagram 3 of Fig. 9.14.

Passive earth pressure from the bottom of the excavation
With /¢ = 0, the passive earth pressure is equal to:

B=1m
la—sf
L
XXX il 0 Diagram 1
v 88 Losm e Diagram 2
N o) 1 —_— Diagram 3
94 L 1.5m : Diagram 4
/ / Resulting diagram
284 | 3.5 ‘ 25m
T o N
|y
l //(2)
|/
/ (4)
/] 20 k
/.
Ll_
27 65 m 71.5 18.5

Fig. 9.14. Stresses in kPa.
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0 = k,y'(h—2.50)+ [(k, —1)/tan p]ec
2.04 x11(h — 2.50) + (1.04/0.36)10
= 22.4(h — 2.50) + 28.9
h = 2.50, o = 28.9kPa
h = 6.50, o = 118.5kPa,

from which is drawn diagram 4 of Fig. 9.14. The resulting net diagram
(diagram 5) is obtained by superposition of all 4 diagrams, with the following
values:

h =0 o = 88kPa

A = 0.50 o = 88kPa

h =150—¢ o = 88+ 10 = 98kPa

h =150+¢ o0 = 10kPa

h =250—¢ o0 = 54+20 = 254kPa

h =250+¢ o =54+20—289 = —3.5kPa
h = 6.50 o = 27+20—118.5 = —71.5kPa,

the latter two being negative stresses due to passive pressure.

The resultant of the active forces, per meter of wall is:

1X10+1x10+1—5—'4§5—1= 132 +5+ 10+ 7.7

P = 88x15+

= 154.7kN (per m)

o] 00 200 200 100 50 0] 50 o B0 10 20 30 40 50 mm

kN

£
e
=
Q
Y
a]

Bending moments Shear Deflection

Fig. 9.15.
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The resultant of the passive forces is: B=3.5x 4 + (68 x 4)/2 =14+
136 = 150 kN (per m).

The passive force just barely counteracts the active force. It is apparent
that there cannot be equilibrium of the moments and therefore the stability
of the wall must be doubted because of insufficient penetration. This
conclusion was confirmed by the elasto-plastic computer method using the
Rido-program. It also indicated that the embedment should go another 2.9 m
(see results obtained on Fig. 9.15 for a wall height of 10.4 m instead of 7m).

*xkProblem 9.4 Wall buttressed by floors

The stability of an excavation for a 4-story deep parking structure was
assured by a wall constructed after the slurry method.

Bracing of the wall was realised by the floors of the structure butting into
the wall and built during the several phases of excavation. The applied tech-
nique therefore, consisted of building the floors on grade and excavating
below them once finished.

The wall, the soil properties and the bracings are shown on Fig. 9.16,
as well as the phases of excavation; assume 6 = 0 (see problem 9.3).

Floor1
y035 ¥ A Ak goe—— O Ak
¥ 185
355 Floor 2
T 4.0 - i 3.35 — il
- 7
3 : Floor 3
7=18 kN/m Re——— 665
7'=11 kN/m3
Ka= 0.27 Floor 4 9.45
K, = 7.34 10 fe—— .
3 !/
c=0
$ =35
1280
Sand and
gravet
Ev 17.05
A 17.05 X ¥
Phase 1 Phase 2 Phase 3
Fig. 9.16.

The elasto-plastic method was used by means of a computer with the
Rido-program. Results are presented on Figs. 9.17, 9.18 and 9.19, while
the method of plasticity was used in accordance with examples of previous
problems. The results of that method are presented on Figs. 9.20, 9.21 and
9.22.

Verify quickly the order of magnitude of the reactions at the floor levels
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Fig. 9.17. Elasto-plastic method, phase 1: excavation at 4,10 m of depth.
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Fig. 9.18. Elasto-plastic method, phase 2: excavation at 10 m of depth,
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Fig. 9.19. Elasto-plastic method, phase 3: excavation at 12.80 m of depth.
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at the end of the construction by using the active pressure diagram of
Terzaghi for a cohesionless soil (see sect. 7.5.2., Costet-Sanglerat).
Compare the results of the various methods. What are your conclusions?

Solution

The simplified diagram is shown on Fig. 9.23. The free wall height is:
H = 12.80—0.35 = 12.45m.
The maximum stress at the bottom of the footing is (plastic calculation):

o = 0.27x [10 +(3.20x18 + 9.25x 11)] = 45.7kPa

-50 0
1
kN.m
253
-75
7€
e ~
£
/‘5
v
&)
SR
i
v Y
Bending moments Active-passive pressure diagram

Fig. 9.20. Plastic condition, phase 1: excavation at 4.10 m of depth.

kKN.m 2
N/cm
300 200 100 O 100 200 300 o 5 0 /
»I . — 1 i+ 1 A

Pres——

Bending moments Active-passive pressure diagram

Fig. 9.21. Plastic condition, phase 2: excavation at 10 m of depth.
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Bending moments ACt:ve-pass.ve
pressure d cgram

Fig. 9.22. Plastic condition, phase 3: excavation at 12.80 m of depth.

Use a trapezoidal diagram (see fig. VII-30 of Costet-Sanglerat) with a
maximum stress equal to: ¢ = 0.8 x 45.7 = 36.6 kPa, to which the water
pressures must be added, leading to results as shown on Fig. 9.23.

For a first approximation, we assume that each floor supports a load
corresponding to each adjacent half-floor height. Then we get:

Floor at level O:

R, = 21.2x (1.8 —0.35)/2 = 15.4kN
Floor at level 3.55:
R, = [(36.6 +21.2)/2] (2.85 —1.8) + [36.6(3.55 — 2.85)] +
[(36.6 + 52.1)/2] (5.1 —3.55) = 30.3 + 25.6 +68.7 = 124.TkN

Floor at level 9.45:
Ry = [(104.1 +81.6)/2] x (10.3 —8.05) + [(104.1 + 92.5/2)] x
x (12.8 —10.3) = 208.9 + 245.8 = 454.7kN.

The resultant of these reactions is B = 792 kN.

Table 9A reviews the values, in kN, for each floor reaction in accordance
with the 3 methods of evaluation used. It is obvious that the plastic method
does not give a true appreciation of the complexity of the rigid wall with
multi-level bracing. On the other hand, the trapezoidal distribution of
Terzaghi corresponds to the envelope of the maximum stresses observed in
flexible walls. For the case of a braced, rigid wall, we could consider a
trapezoidal load distribution with an earth pressure coefficient of K, at
rest to account for the small deflection that occurs (see deformations on
Fig. 9.17). The last entry of Table 9A gives the values of this condition.

The total of the reactions shows that the earth pressure is very close to
that of an at-rest condition.
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Fig. 9.23.

TABLE 9A

Comparison of floor reactions (in kN)

Floor Elasto-plastic Plastic Terzaghi Trapezoidal
condition condition method diagram

No. Level (Rido) (continuous with Ky

(m) beam)

1 0 —47.4 0 15.4 22.8

2 —3.55 + 521.7 109 124.7 220.8

3 — 6.65 0 —1 197.2 289.2

4 —9.45 722.3 657 454.7 563.9

Total

reactions 1196.6 765 792 1102.4
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Chapter 10

SHALLOW FOOTINGS

*Problem 10.1 Allowable bearing capacity of a strip footing on sand

Find the bearing capacity of a strip footing on sand of 1m in width
resting on a sand of unit-weight 16.5 kN/cm?® and having an angle of internal
friction of ¢ = 35°.

What is the allowable stress?

Solution
The bearing capacity of a strip footing is given by:

ga = 37BN, + yDN, + cN,.

For a sand, ¢ =0 and for ¢ = 35°, N, = 47.9 (see Table II in Costet-
Sanglerat).
On the other hand, D = 0, so:

ga = 16.5x0.5x 479 = 395kPa = 3.9daN/cm?.

The last value is the bearing capacity, or the failure load. The allowable
is one third of this value, for a safety factor of 3. Therefore:

qqs = 1.3daN/cm?.

**Problem 10.2 Evaluation of the bearing capacity factor N,

(1) A circular plate of 1.056 m in diameter is placed on a sand of density
1.65 and it is loaded. Failure occurred when the plate was loaded to with-
stand a pressure of 15 daN/cm?. Determine the value of the bearing capacity
factor N,.

(2) The angle of internal friction of the sand was measured in a triaxial
test and found to be ¢ = 39°. Compare this value with the theoretical value
of ¢ corresponding to N, calculated as asked above.

Solution

(1) The bearing capacity of a strip footing is: g4 = 4yBN, + ¥DN, +
¢N,. In this case, it reduces to the first term since both D and c are zero. For
a circular footing, the term N, must be multiplied by a shape factor (equal
to 0.8 according to most authors). We then have:
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ga = 3YBN, x 0.8

with g4 = 15daN/em?, B=105cm and v = 16.5 kN/m® = 1.65 - 1073 daN/

cm? and

N, = (2x15«x 10%)/(105 x 0.8 x 1.65) = 216.

(2) The theoretical value of ¢ corresponding to N, = 216 is about 44°,
The difference between the two values of ¢ is important. For ¢ = 39°, N, is
equal to 83. It may be surprising to find different values for N, based on
experience (N, = 216) and on theory (N, = 83). Four remarks are in order
regarding this question.

(a) The shape factor of 0.8 to N, was determined in a semi-empirical
manner and it only is known as an approximate value.

(b) The plastic criteria of a soil may be represented in the axial system
g,, 0, and 05 by a surface f(g,, 0,, 03) = 0. During triaxial testing, we
impose a condition of 0, = g,, i.e., the plastic criterion then becomes the
intercept of f(o,, g,, 03) =0 and of the plane 0, = 0;. Let this curve
be C; .

For the strip footing of infinite length (for which values of N, are cal-
culated) it can be assumed that the deformation along the footing axis is
zero (plane strain). This condition allows translation into a condition be-
tween 0,, 0, and 05, say g(0,, 05, 03) = 0. The plastic criterion then
becomes the intercept curve of the two surfaces, f(o,, 0,, 03) =0 and
g(o,,0,,03) = 0. Let that curve be C,.

There are no evident reasons why C, and C, should be the same. There-
fore, calculating the factor N, from the angle of internal friction ¢ from a
triaxial test, means introducing a systematic error, which is very important,
especially for compact sands, because it can be shown (Costet-Sanglerat, Ch.
9.3.1.) that N, is highly dependent on values of ¢. The angle of friction
should actually be measured under conditions similar to the field strain
conditions (plain strain). Such tests were performed by Tcheng and Iseux
and showed that the angle of internal friction in plain strain is higher than
found by triaxial tests.

(c) The value of N, given in the tables of Costet-Sanglerat, was calculated
by the method of Caquot and Kerisel which assumes a rigid wedge of soil
acting as a whole on the footing. This assumption does not really represent
the actual field conditions, and so introduces some error in N, (see Table
9.3.1. of Costet-Sanglerat).

(d) Finally, it should be mentioned that it is very difficult to obtain un-
disturbed samples of sand for triaxial testing with a density identical to that
in the field. This method can introduce substantial errors in the evaluation of
the angle of internal friction.

Summary of answers

N, = 216; ¢ = 44°.
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*Problem 10.3 Bearing capacity of a strip footing embedded in sand

A sand’s characteristics are as follows: density = 1.70, ¢ = 30°.
Find the allowable bearing pressure for a strip footing, 1.10 m wide, and
founded at a depth of 1.40m in the soil. Assume a safety factor of 3.

Solution
The allowable bearing capacity under a strip footing with a vertical
and axial load is:

B/2)N, + yD(N, —1) +cN,
_ Y(B/2)N, vF(q )t eNe o

For ¢ = 30°, we get N, = 21.8 and N, = 18.4 (table II, sect. 9.2.1. in
Costet-Sanglerat). Therefore, with ¢ = 0:

Qqq (17x0.55x21.8+17x1.4x17.4)/3+ (17 x 1.4)
doa = 230kPa = 2.3daN/cm?.

Fig. 10.21 and Table 10C, presented at the end of this chapter, give the
detailed values of the coefficients N,, N, and N.. The values are highly
comparable to those in Costet-Sanglerat. Only the values of N, are slightly
lower which, in practice, has little impact.

ad

*Problem 10.4 Bearing capacity of a strip footing embedded in a cohesive
soil

Same problem as 10.3, but now it is assumed that the sand has a small
cohesion of 0.1 daN/cm?.

Solution
We use the same formula of problem 10.3, but now cohesion ¢ is no

longer zero:

y(B/2)N, + YD(N, —1) + ¢cN,
Qoa = o + D

For ¢ = 30°, we get (table II, sect. 9.2.1 of Costet-Sanglerat):
N,=218,N, =184,N, = 30.1
17x0.55x21.8+17x1.4x17.4+10x 30.1

Goa = . +17x 1.4

G.qs = 330kPa = 3.3daN/cm?.



126 SHALLOW FOOTINGS

*Problem 10.5 Bearing capacity of a square footing on a cohesionless or
cohesive soil

Same questions as in 10.3 and 10.4, but now for a square footing, 1.10 m
on the side.

Solution
The allowable pressure under a square footing under a vertical and axial
load is given by:

B 1
dea = | (1 —0.2B/L)Y 51\]7 ++yD(N, —1)+ (1 + 0.2B/L)cN, E+ ~D

For a square footing, B/L = 1. In general, a safety factor of 3 is used.
For ¢ = 30°, we get (table II, sect. 9.2.1. of Costet-Sanglerat):

N, =218, N, = 184, N, = 30.1
For a cohesionless sand, we have:
Qoa = [(0.8x17 x0.55x21.8)+(17x1.4x17.4)]1/3+ (17 x1.4)
Gua = 216kPa = 2.2daN/cm?.
For a sand with slight cohesion, we get:
Qoa = [(0.8x 17x 0.55x 21.8)+(17x 1.4x 17.4)+(10x 1.2x 30.1)]1/3
+ (17 x 1.4)
G, = 336kPa = 3.4daN/cm?.

Notice the important increase due to cohesion.

*%xProblem 10.6 Comparison of footings and mat foundation

Consider a six-storey building over a basement whose faces A, and A,
impart, at the foundation level, loads of 0.29 and 0.36 MN/m, respectively.
Each column in row A, spaced 3.75 m apart, carries 1.1 MN. The building’s
length is 38 m (see Fig. 10.1).

The building rests on a dense gravel bed (v, = 1.657v,,, ¢ =35°, v' =
1.02v,), 9m thick, that is underlain by a soft clay, normally consolidated,
of more than 20m in thickness and whose properties are. ¢ =0, ¢, =
0.3 daN/cm? (30 kPa).

The finish grade of the basement is 2m below the natural grade. The
groundwater table is at —8 m below the natural grade.

Two types of foundations are being considered for the building. Either
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strip footings at B; and B, and square footings at By of 50 cm in thickness,
or a mat foundation of 0.30 m thickness.

Compare the two schemes of foundation for which we have to determine
the width of the footings and of the mat. Specify the width of the mat
lip beyond the building line. Assume the unit weight of concrete to be 2.4.

Solution

(a) Shallow strip and square footings

(1) In order to determine if consideration must be given to the under-
lying clay layer, consider the ratio h/B: gravel thickness/foundation width.

If we assume that the influence of the soft clay is negligible, we could
expect an allowable pressure of the order of 4daN/cm? for a footing on
solid, dense gravel. For a load of 400 kN we get B = 1 m for the strip footing.
For an isolated footing with a load of 1 MN, B is = 1.60 m. In either case,
we would have h/B > 3.5 (load is given by unit of length of building).

Referring to the results obtained by Tcheng (sect. 9.3.7. of Costet-Sanglerat)
the assumption is valid and the structure would behave as if the clay did
not exist.

(2) The bearing capacity of a strip footing is:

44 = 3yBN, +yDN, + ¢N,

which is valid for an embedment which is equal on both footing sides. In this
case, the smallest embedment must be considered which is 0.5 m in the
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Fig. 10.2.

basement. For the sake of safety, assume D to be 0.5m and call it D' (Fig.
10.2). To calculate the allowable stress, use a safety factor of 3 for the
bearing pressure less the overburden pressure at the footing level counted
from the original grade. We will then have:

Qea = YD +%(0.5yBN, +YD'N, —9D + ¢N,).

Remarks

The soil is the same over depth D' and under the footing. This means that
the coefficient N, may be increased (table III, sect. 9.2.2, Costet-Sanglerat).

The groundwater table being at —8.00 m, we must use the dry unit-weight
of gravel in the calculations.

(3) For the isolated footings, use:

Qea = YD +4(0.4vBN, + ¥yD'N, —vD + 1.2¢N,)

taking into account the shape factor (see sect. 9.5.1. of Costet-Sanglerat)
with B = L.
For practical computations, see tables II and III, Ch. 9, of Costet-Sanglerat.
For ¢ = 35°, we get N, = 47.9 and N, = 33.3 x 1.245 = 41.5 since we
have a gravel ¢ = 0.

Footing B, :
Goa = 165 x 2.5+ 5(0.5 x 16.5 x 47.9 x B, +
+16.5x 0.5 x 41.5 —16.5 x 2.50):
Goa = (132B; + 142)kPa
Total load on the footing in kN per m of length:

—superstructure .......... .. ... . i . = 290
— weight of footing: 24 x 0.5 xB;, ................ = 12B,
— weight of soil outside excavation:
200 x 1.65x (B;/2 —0.10) . ...ooiiiiin. = 16.5B, — 3.3
total = 28.5B, + 287.7
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The allowable bearing pressure under the footing is equal to the stress at
the level of the footing: B,(132B, + 142) = 29B, + 287, from which we
get B; =1.10m.

The actual bearing pressure then is g, = 2.9 daN/cm?.

Footing B,
The same method is used and we find B,(132B, + 142) = 29B, + 357 and
B, =127m say B, = 1.25m.

The actual stress is g, = 3.1 daN/cm?.

Footing B,
Qog = 16.5x 25+ 4(0.4x16.5x 47.9x B; +
+ 16.5x 0.5 x 41.5 —16.5 x 2.50)
Qoes = (L05B; + 142)kPa.

Total load on the footing:
— SUPErstruUCtUre . . .. .. e e 1100
— weight of footing: 24 x 0.50 x B3 .................... 12B3

2
So we have: total 12B5 + 1100

B%3(105B; +153) = 12B% + 1100.
The root of this third-degree equation has a value between
B; = 1.80m and B; = 1.85m. Thus B; = 1.85m.

The actual bearing pressure is g; = 3.3 daN/cm?.

Remarks

(1) For the sake of simplicity, it is often assumed that for footings with
unequal embedment on each side, the influence of the large embedment
allows one to neglect the weight of the soil outside of the excavation.

The scattering of the results of bearing capacity calculations depending on
which theory one uses, justifies this simplification.

(2) The spread between q,, g, and g3 being small, there is no reason to be
afraid that differential settlements would be a problem.

(b) Mat foundation

The width, B, of a mat is at least that of the building. It will therefore be
over 9.00 m. The gravel thickness below the mat is only 6.7 m. Therefore,
h/B <1 and the underlying clay layer will feel the building load. The bearing
capacity in this lower soil layer will govern the design.

The mat plan dimensions will be close to those of the building (about
40m by 10m). The dead loads of the structure and the mat will be trans-
mitted to the clay through the 6.7 m of gravel. The vertical stress increase
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Ao at the clay level will not be uniform. It may be estimated to be 0.75¢q
along the axis of the mat from the graph of fig. I1I-8 in Costet-Sanglerat.
For a simple calculation and still being on the conservative side assume
that Ao is uniform and equal to its maximum value, that is: Ac = 0.75q.
Assume the load to be applied uniformly over a rectangular area of width
B’ and length L', so that: L' x B'x 0.75¢ =L x Bx gq,
or: L'B' = BL/0.75 = 1.33BL. We may assume that B/L = B'/L’,
which gives B’ = 1.15B and L' = 1.15L.
The allowable bearing pressure of the clay will then be:

| 514[1 +02(B//L)]e,
F

Gea = YD

The calculation assumes no drainage conditions which is conservative, with
¢=0.SoN=0,N, =1land N, =7+ 2= 5.14, B'/L' = B/L. If we, further-
more, estimate L equal to 40 m, then:
5.14[1 + 0.2(B/40)] x 30

3

Qoa = 165x8+202x1+

205 + 0.26B.

it

Qad

We see that the previously estimated value of B' does not appear in the
equation.

The actual bearing pressure imparted at —9.00 m, keeping in mind the
above assumptions, is:

1100 0.75 707.5
structure loads: | 290 + 360 + = kPa
3.75 | B x1.00 B x 1.00

mat weight: 24 x 0.3 x 0.75 x 1.00 = 5.4kPa
weight of gravel under the mat: (5.70 x 16.5 + 1.00 x 20.2) x 1.00 =
= 114.2 kPa

Assuming that the allowable pressure is equal to the applied pressure, we can
write: 707.5/B + 5.4 + 114.2 = 205 + 0.26B or: 707.5/B = 0.26B + 85.4.
This second-degree equation has a root of: B = 8.06 m which is less than
the building width. Therefore, B will be at least equal to 9.2 m (building
width).
Let us now calculate the distance to the resultant of the loads on face 4, .
Let that distance be x:

x (290 + 360 +1100/3.75) = 5(1100/3.75) + 360 x 9, from which
x = bdm.

The bary center is in line of the column row A;. Therefore, the compu-
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tation of the bearing capacity must consider the load eccentricity, which is:
E=510—9.2/2=0.50m.

Meyerhoff’s theory leads to a uniformly loaded area subjected to a load
g4 applied to an equivalent width B, of:

B, = B—2E = 9.20—2x0.50 = 8.20m and
_ BN~y
gg = (1—2e)7—2— + YDN, + ¢N,

For this example: N, =0 and g4 =¢4.

The rest of the computation remains valid. Since B, > 8.06 m it is not
necessary to increase the width of the mat beyond 9.20 m, at least as far as
the bearing capacity is concerned. If differential settlements could be a
problem, centering the load would present an advantage. An additional
length of 1.10m on side A,, taking into account the 0.10m on side A,
(needed to accommodate forms thickness) would then give a width of the
mat of B =10.40m.

**Problem 10.7 Comparison of settlements of a footing and of a mat
supporting a building over a two-layer system

Take the same givens of Problem 10.6 and calculate settlements of the
two foundation schemes by assuming, on the one hand, that the gravel
causes no settlements and, on the other hand, the properties of the soft clay
deposit are: v, = 2.78v,,, w = 44%, w;, = 48%, v, = 1.87,,.

Solution

(a) Footings

No consolidation test was performed to determine the parameters of the
clay. Empirical correlations, therefore, must be used which relate the liquid
limit w,; with the consolidation characteristics of the soft clay.

We will calculate the settlements for a 20 m thick clay layer. Indeed,
for larger depths, the vertical stresses in the clay are very low (Ao << 10kPa)
and the corresponding settlements would be very small.

The first step is to determine the increase in vertical beneath the footings
at the level of the upper boundary of the clay layer. For the strip footings
B, and B, we will not take into account the stress increase due to the
adjacent footings because its magnitude is small. For the square footings
B; on the other hand, we must take into consideration the proximity
of the strip footings. For the strip footings, at the upper clay boundary, we
get (Giroud’s tables, Vol. 1, I1.4 and Vol. 2, IV.1):
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Ao, = Ao, = 0.4daN/cm?

For the square footings, if we consider the influence of the adjacent strip
footings, we get:

Ag; = 0.17+2x0.18 = 0.53daN/cm?

At the lower boundary of the clay layer, the vertical stress increase is about:
Ao = 0.07daN/cm? (for either strip or square footings).

The variation of the increase of stresses is substantial enough to justify the
consideration of two 10-m thick layers.

Upper 10-m layer. Consider the midpoint of this layer. The stress increases
are:

— strip footings: Ag, = 0.2daN/cm?

— square footings: Aoy = 0.048 + 2 x 0.075 = 0.2daN/cm?

The settlement due to the consolidation of this 10-m layer may be esti-
mated by evaluating the coefficient of compressibility from the correlation
with the liquid limit of Skempton: C, = 0.009 (w,; — 10) which gives:

C. = 0.009 (48 —10) = 0.34.
Settlements due to consolidation are estimated from:
Ah _ _C, _logog +IA0
h 1+eq Og
where 0 is the effective overburden pressure at mid-height of the clay layer
under consideration. It is:

0o = 16.5x8.00+102x1.00+v, x5

the buoyant unit-weight of the clay being y, = v, — 10 = 8 kN/m? (if we
assume, as is logical, that the clay layer is saturated).
Therefore:

0y = 142.2 + 40 ~ 182 kPa ~ 1.8 daN/cm?
The initial void ratio is:

ep = WYs/Yw = 0.44x 2.78 = 1.22

Hence:

Ah 0.34 1.8+ 0.2

— = log 8 = 0.007
h 1+1.22 1.8

For the upper 10.m layer then, Ah = 1000 x 0.007 = 7 cm (for both strip
and square footings).

Lower 10-m layer. At mid-height of this layer, the stress increases are:
— strip footings: Ao, = 0.12 daN/cm?

— square footings: Ao, = 0.12 daN/cm?

and we have:
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A Co o 90+ Ao

h 1+e, g
where 0, = 16.5x8+10.2x1+8x 15

= 142.3 +120 = 262kPa = 2.6daN/cm?
0.34/2.22 - log [(2.62 + 0.12)/2.62] = 0.003

and Ah/h

For the lower 10-m layer, Ak = 3 cm.

The total settlement under the footing loads will be of the order of 10 cm.
It will be clear that, because the settlement was calculated from an empirical
relation, it gives only an order of magnitude of the real settlement.

(b) Mat foundation
The load at the level of the mat is:

Superstructure load: (290 + 360 + 1100/3.75) x 38.00 = 35847 kN
Mat slab weight: 24 x 0.3 x 10.60 x 38.40 = 2931kN
Total weight = 38 778kN

The weight of the excavated soil can now be deducted as:
16.5 x 2.30 x 9.20 x 38 = 13267 kN.
The stress increase at the mat level is:

38778 —13267 _ 2
Ao = 384 % 106 = 62.7kPa = 0.63 daN/cm

As was the case for the footings, we will consider 2 layers each 10 m thick.

Upper layer. Consider a point at mid-height. The stress increase is:

Ac = 0.488 x 0.63 = 0.31 daN/cm?, from which

Ah/h = (0.34/2.22) log [(1.82 + 0.31)/1.82] = 0.010

So, Ah = 10 cm for the upper layer.

Lower layer. Again consider the point at mid-height of this layer. The stress
increment is:

Ao = 0.248 x 0.63 = 0.16 daN/cm?, from which

Ah/h = (0.34/2.22) log [(2.62 + 0.16)/2.62] = 0.004.

So, Ah = 4 cm for the second layer.

The total settlement under the mat foundation thus will be of the order of
14 cm. Note that in this case, the settlement due to the stress increase
of the mat foundation exerting a stress of 0.70 daN/cm? is greater than the
settlement due to pressure of the footings of 2.9 and 3.4 daN/cm?. This may
be called the “bi-layer paradox .
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**Problem 10.8 Settlement of a mat on a two-layered system

Take the givens of problems 10.6 and 10.7 and assume that the gravel
layer is 25 m thick, that the water table is at 1 m below the level of the
natural ground and that the clay properties are:

¢ = 10kPa, vy, = 13kN/m3, w = 60%, w, = 72%
Would the shallow footings present any kind of advantage?

Solution

Preliminary remark. The presence of the groundwater 1 m below the existing
ground surface dictates the choice of a mat foundation. To consider
individual footings would require special design features to decrease the
hydrostatic pressures on the basement floor slab and the water tightness of
the joints between the floor slab and the footings would always be a problem.

The mat foundation in this instance is less expensive and technically more
reliable.

Mat foundation. As for the preceding problem, we will take the mat dimen-
sions as 10.6 m by 38.40 m, which were found to be adequate.
We calculate the increase in vertical stresses at the level of the mat:

building load 32047 kN
mat weight 2930 kN
uplift force 38.4 x 9.2 x 13 —4 590 kN
Net force 30 387 kN

Deduction of the weight of the excavated soil:
(16.5x1+10.2x1.30)x 9.20 x 38 = 10450kN.
The stress increase at the mat level then is:

Ao = (30 387 — 10 450)/(38.4 x 10.6) = 49KkPa:
Ao = 0.49daN/cm?

As for the preceding problem, two 10-m layers of clay will be considered.

Upper layer. The stress increase at the center of this layer is:

Ao = 0.11daN/cm? (see fig. I11.8, sect. 3.2.2, Costet-Sanglerat)
In order to estimate C., we use Skempton’s empiric relation:

C. = 0.009 (w, —10) = 0.009 (72 —10) = 0.56

eg = W(Ys/vw) = 0.60x2.78 = 1.67

The settlement is calculated from:
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Ah C, g, + Ao

e log =

h 1+e gy

o, = effective overburden stress at mid-height in the clay layer before
excavation

0, = (16.5x 1) +(10.2 x 24) + v, x 5,

where the buoyant weight of the clay is v5 = v, — 10 = 6.7 kN/m? (clay is
saturated).

Therefore: 0, = 300kN/m? = 3daN/cm? and
Ah/h = (0.56/2.67)log [(3 + 0.11)/3] = 0.0032
the settlement in the upper layer is Ah; = 3.2 cm.

Lower layer. The stress increase at the center of this layer is:
Ao = 0.06daN/cm?

0, = 367kN/m? = 3.67daN/cm?

and Ah/h = (0.56/2.67)log [(3.67 + 0.06)/3.67] = 0.0014

the settlement in the lower layer is Ah, = 1.4 cm.
The total settlement in both layers of the mat foundation is of the order
of 5 cm.

*kokkProblem 10.9 Elastic and plastic equilibrium in a soil under a strip footing

Take a strip footing of width B, resting at a depth D in a soil whose angle
of internal friction is ¢, cohesion ¢ and of unit weight .

(1) Give the formula for the principal stresses at a point M (0, Z) in the
soil assuming elastic equilibrium, and the state of stresses in the soil is iso-
tropic.

As it will be remembered, the principal stresses developed at point
M6, Z) of a semi-infinite elastic body, due to a uniform load q at the
surface, spread over an infinitely long strip are given by the Boussinesq
formulas with the notations of Fig. 10.3: o, = (q/m) (8 +sin 6),

03 =(q/7) (8 —sin 8).

The values calculated are approximate values applicable to shallow foot-
ings. Why is it necessary to assume isotropic conditions for initial state?

Find the locus (L) of the points in the body where the shear stresses are
highest and determine graphically the faces upon which the maximum shear
acts. By studying Mohr’s circle at locus L, show that the plastic state is
initiated at the edges of the footing.

Determine the orientation of the planes of maximum shear at the corners
of the footing.

(2) From Coulomb’s equation, write the equation Z = f(6) of locus (C) of
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the points in the body that are the boundary between the elastic and plastic
zones. Construct the locus for the following values:

¢ = 30°, ¢ = 0 (cohesionless soil), vy = 16.5kN/m?3,
D = 020m, g = 0.8daN/cm?, and g = 06dN/cm?.

Assume B = 1 m for the graph.
(3) Write an equation for the condition where no point of the body is in
limit equilibrium. Show that this condition prevails under:
qo =7v*D - o+ H(ax—1), (Fronlich’s formula),
where H = ¢ cot ¢

z +
coto —(m/2 — )

Calculate the values of « for ¢ =10°, 20°, 30°, and 45°. Comment on
this formula.

Study the particular case for a footing of zero embedment resting on sand
and resting on clay (purely cohesive soil).

Compare the value of q, (calculated with the numerical values of question
(2) with the bearing capacity qgz of the same footing computed by the
classical formula. Do the same for a footing at the surface on a purely
cohesive soil. What are your conclusions?

(4) Write the equation for the condition that locus (C) intersects the axis
A of the foundation.

Indicate the graphical method which allows to calculate 0 corresponding
to the common points of (C) and A. Let qy,, be the value of q corresponding
to the case where (C) presents a double point on A.

and o = 1
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Calculate qy,, with the numerical data of question 2 and construct curve
Clim .

Compare qy,, With q4 of the preceding question. Indicate on the drawing
the zones which are in elastic and plastic equilibrium and compare this to the
drawing made to establish the classical formula of the bearing capacity for
the plastic condition.

Remark: It is assumed that when plastic zones appear, the stress-field for
elastic conditions does not change.

Solution

(1) For the initial stress state assumed to be isotropic, the stress at a point
M of depth Z under the footing is: 0; = v(Z + D). The footing creates a
stress variation along PP’ which is: Ag, = q¢ —yD.

At point M (8, Z), the new stresses are obtained by assuming two equilib-
rium states exist. From which we have:

Y(Z + D)+ (g —yD)/m (6 + sin §)
Y(Z + D)+ (g —yD)/m (6 —sin 0)

04

|
(1)
0; }

It is necessary to assume isotropic conditions, otherwise the mathematics
would become too complex. When isotropic conditions are assumed, all the
directions of the stress tensors are principal directions, which justifies the
addition of stresses of formula (1). If this assumption is not made, the initial
stress condition would be:

6, = Y(Z+D), and 0, = K,y(Z + D)

and the tensors representing the initial state of stresses and the state of
stresses due to the footing load would not have the same principal directions
at point M. Equation (1) then could not be written.

On the other hand, Boussinesq equations correspond to a condition of a
footing load at the surface acting on a semi-infinite mass. No account is
taken of the embedment of the footing. This leads to acceptable results in
the case of light loads and shallow depths.

Formulas (1) allow us to calculate the radius of Mohr’s circle:

R = (0 —03)/2 = [(g —¥D)/n] sin 0 (2)

We also know that for a given Mohr’s circle, the maximal value of shear stress
is equal to the radius of the circle.

Locus (L) of the points in the soil mass where shear stresses are the largest,
corresponds to 8 = 7/2 from (2). Locus (L) is a half circle whose diameter is
the base of the footing (Fig. 10.4). Formulas (1) allow us also to calculate
the abscissa p of the center of Mohr’s circle:
p=(0; +03)/2=v(Z+ D)+ [(¢g —yD)/n]06.

For 6 = m/2, weget: p=+vZ+4%(q+ D).

As point M conscribes L, Mohr’s circle radius remains constant but its

center translates: Z varies from 0 to B/2 (Fig. 10.5).
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For a given condition of footing size and soil type (y and D) we see that,

according to the magnitude of g, the following 3 cases may be considered:

case 1: q is low: None of the Mohr’s circles intersect the failure envelope.

Elastic equilibrium prevails everywhere in the mass.

case 2: q is high: an infinite number of Mohr’s circles intersect the failure

envelope. These are the circles corresponding to the points of L
whose elevation lies between Dand D + Z'.

case 3: q = q3: only one Mohr’s circle is tangent to the failure envelope; it

corresponds to Z' = 0, therefore to points P and P’ of L located at
the edge of the footing.

This clearly shows that the plastic state is initiated at the edges of the

footing and progresses from there.
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Fig. 10.7.

The maximum shear stresses correspond to the stress vectors whose
extremity lies on S or S’ on Mohr’s circle (Fig. 10.7). The planes’ orientation
corresponds to an angle of 7/4 with the planes of the principal stresses.

According to Boussinesq’s theory (see Fig. 10.3), the latter go through
the edges A and A’ of the vertical diameter of locus L; therefore, the planes
in which the maximum shear stresses act go through the corners P and P’
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of the footing. In particular, when point M coincides with P or P', the
planes correspond to the bottom and vertical faces of the footing (Fig.
10.6).

(2) Coulomb’s criterion (Fig. 10.8) considers the Mohr’s circle tangent to
the failure envelope:

R = (H+p)siny where H = ccoty

— +

or: % 5 93 = (0l 5 KE +H) sin ¢ (3)

1

-] R

hd —
\ 17
H p

Fig. 10.8.

The equation for the locus of the points in the mass which correspond to
the boundary between the elastic and plastic zones is written in equation (3).
Replacing the values of p and R in that equation, we get:

—+D —~D
-7 sin0=('y[Z+D]+g—70+H)singp
m m
which gives:
—~D [sin @ H
zZ = —D+u(.———0)—— 4)
Y sin ¢ 0%

when vy, H and ¢ are known for a given soil. For a particular footing, D is
given.

Hence, the locus of the points of limit equilibrium is a curve C depending
on the value of g whose equation is of the form Z = F (0, q).

Points M(0,Z) of C are constructed by taking the intersection of the
straight horizontal line through Z and of the arc, the locus of the points
from which the footing base PP’ is seen through an angle 6 (only con-
sidering the points inside the mass of course and even to Z > 0 for which
the Boussinesq conditions apply) (Fig. 10.9). C has the same axis of sym-
metry A as the footing. For the graphical construction, note that:

d = (B/2) cot 8.
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Numerical application

¢ = 30°, sing = 0.5;

sandy soil: ¢ = 0, H = ccotp =0
v = 16.5kN/m?3

D = 0.20m
Equation (4) becomes:
Z = F(f,q) = —0.20+ [(¢g —3.3)/51.84] (2 sin O — @)

= —0.2 + k(2sin 6 —8).

Detailed calculations are following for ¢ = 0.6daN/cm? (60kPa) and for
g = 0.8daN/cm? (80kPa):
g = 0.6daN/cm? = 60kPa gives k, (60—3.3)/561.84 = 1.09

g = 0.8daN/cm? = 80kPa gives k, = (80— 3.3)/51.84 = 1.48.

Calculations are summarized on Table 10A.
Fig. 10.10 shows the family of curves (C) for various values of g for the
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TABLE 10A
(¢ =30"5¢=0;7y=16.5kN/m*>;D = 0.20 m)
0° d(inm)= 2sinf —0 g =0.6daN/cm? g = 0.8 daN/em?
(B/2)cot §  (rad) = 60kPa =80 kPa
withB=1m
ki (2sin0—0) 2z ky(2sinf —0) Z
(2, = 1.09) (m) (ks = 1.48) (m)
10 2.84 0.1727 0.188 <0  0.256 0.06
20 1.37 0.3349 0.365 0.17  0.496 0.30
30 0.87 0.4764 0.519 0.32  0.705 0.51
40 0.60 0.5875 0.640 0.44  0.870 0.67
45 0.50 0.6288 0.685 0.49  0.931 0.73
50 0.42 0.6593 0.719 0.52  0.976 0.78
60 0.29 0.6848 0.746 0.55  1.014 0.81
70 0.18 0.6577 0.717 0.52  0.973 0.77
80 0.09 0.5734 0.625 0.43  0.849 0.65
90 0 0.4292 0.468 0.27  0.635 0.44
100 —0.09 0.2243 0.244 0.04  0.332 0.13

case of a cohesionless soil with ¢ = 30° and v = 16.5 kN/m3 for D = 0.20 m.
The graph can be achieved by symmetry.

(3) In order for all the points in the mass to be below the limit equilib-
rium, the lowest point of the curve (C) must have zero elevation. In fact,
we should say “in order that no point at a depth greater than D in the soil
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mass reach the limit equilibrium” etc. . . . Indeed, no statement can be made
regarding what occurs between the surface and the level of the footing,
because in this zone Boussinesq’s formulas are not applicable.

Let us identify points on (C) of maximum elevation. The condition
dZ _g—D (cos@ _1)
dé Y sin ¢
gives: 8 = /2 — ¢

=0

The locus of the points on curve C with a horizontal tangent is an arc of
a circle.

Replacing the value of § thus obtained in eqn. (4), we get:

Zax = —D +12 ;:D (cot¢—72L+ ¢) —g =0
which condition can also be written:
9o = YD(x) + H(a—1) (5)
where o = T +1, i.e. Frohlich’s formula.
cotp — (% - sp)
Values of ¢« are given in Table 10B:
TABLE 10B
¢ 10° 20° 30° 35° 40° 45°
o 1.74 3.06 5.59 7.71 10.85 15.64

The width of footing B does not enter into the equation. For a footing
at the surface (D = 0) on sand (H = 0), formula (5) gives zero stress. For a
footing at the surface on a purely cohesive soil (no angle of internal friction)
we get, on the other hand:

. mc cot
H(ax—1) = lim ~ Tc
@ cot‘p—[(n/z)—‘p]qu

For the numerical values of the second question, we have
g, = 16.5x0.20 x 5.59 = 18.4kPa = 0.18daN/cm?.
The bearing capacity of the footing after the classical formula:
qs = iBYN, + YDN, +cN,
obtained by plastic theory is (¢ = 30°,¢ = 0, N, = 21.8, N, = 18.4):
qq = [(16.5x 1.00/2) x 21.8] + (16.5 x 0.20 x 18.4) = 241kPa =
= 2.4daN/cm?.
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The correction factor of N, was not taken into account to disregard the

layer above the bottom of the footing.
For a footing at the surface on a purely cohesive soil, we know that

gqq = ¢N, = ¢(m+2) = 5.14c.

We thus get: q,/q, = 2.4/0.18 = 13.3 for the cohesionless condition
¢ =30° v=16.5kN/m?® and q,/q, = 5.14/3.14 = 1.64 for a footing at the
surface of a purely cohesive soil.

(4) At a point A of the axis of the footing, we have (Fig. 10.9):
B/2Z = tan (8/2) or Z = iBcot(0/2)

Replacing this value in equation (4), we get an equation for 0, the roots of
which give 0 values corresponding to points on C located on the axis A.
Equation (4) becomes then:

gcotg—z—DJrq—;ﬂi”(%i—e)—g (6)
which can be written:

a(q)0 +b = da'(g)sin 6 + b’ cot (6/2) (6 bis)
with:

a(q) = 2(q—vyD), b = 2mccoty+ 2nyD,

a'(gq) = 2(q —yD)/sing, b = —ynB.

Roots of this equation may be obtained graphically in plane (8, y) at the
intersection of line D, whose equation is: ¥y = a(q)f + b, and of curve (I'),

A,

0 il T Grad
2

{r)

Fig. 10.11.
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whose equation is: y = a'(q) sin 6 + b’ cot (6/2), both equations depending
on parameter q.
Depending on the value of q, equation (6) may have zero, one or two
solutions. (Fig. 10.11).
By a succession of approximations, we can so find the value of g for
which D is tangent to ", which corresponds to a double root of equation (6).
With the numerical values above (¢ = 30°, ¢ = 0, Yy=16.5kN/m?, D =
0.20m and B = 1.00 m) we get:

a(q)
b

2(g —3.3)
27 x 3.3 = 20.73
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Fig. 10.13.

a'(q) = 2(q — 3.3)/sin 30° = 4(q — 3.3)

b’ = —mx16.5 = —51.84
If the angle 0 is in degrees, the equation of D becomes (Fig. 10.12)
y = 2(qg —3.3)(7/180)6° + 20.73

On Fig. 10.12, both lines D and I'" correspond to the values of g: ¢ = 3.3 kPa,
g =83.3kPa and q = 73.3kPa. A good graphical approximation gives
Qum = 75 kPa or 0.75daN/cm?.

If we compare q,;,, and g, obtained from the classical formula for bearing
capacity, we find: q4/qu, = 240/75 = 3.2, which is very close to the value
of the safety factor normally considered in foundation designs.

The shapes of plastic zones and corners under the footing may be com-
pared, on Fig. 10.13, with the classical representation usually considered in
plasticity. In the latter case, the failure lines are developed in a plastic zone
of larger dimension, which could account for the higher values of q,.
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*xkProblem 10.10 Design of a shallow footing based on laboratory test results

A preliminary design is needed for a 10-storey building whose planned
dimensions are 70 m by 12m and whose total weight is 60 MN (6000 tf). A
soil investigation performed at the site shows a plastic clay layer from
0—10m depth overlaying a silt layer. The groundwater table is located at
2.00m below natural grade. Four undisturbed samples were recovered and
tested in the laboratory. The results were:

— sample 1, depth —1m, v; = 15 kN/m?*, w = 23%, consolidated undrained
triaxial test: ¢ = 4 x 10* pascals, ¢ = 10°.

— sample 2, depth —3m, v, = 14.7kN/m3, w = 31%, unconfined com-
pression test (strain rate 1 mm/min), R, = 7.8 x 10* pascals.

—sample 3, depth —5m, v, = 15 kN/m3, w = 30%, consolidated drained
triaxial test: ¢ = 3.8 x 10% pascals, p = 18°.

— sample 4, depth —8m, 7v4 = 15kN/m3, w = 30%, unconfined com-
pression test (strain rate 1 mm/min), R, = 8.2 x 10* pascals.

Only shallow footings are to be considered.

(1) Does each type of test made on the samples appear appropriate? How
should the test results be used?

(2) Design a foundation for the building on strip footings. Two footing
widths are to be considered (1 m and 2m) and for each, determine the
bearing capacity as a function of depth (to 4m). Assume that bearing
capacities are affected by the groundwater table when it is located one and
a half times as deep below the footing as the footing is wide.

What are your conclusions?

(3) Design a mat foundation for the building. What are your conclusions?

Solution
(1) Both short- and long-term stability are to be considered.

Short term stability. We must use the results of the tests under undrained
conditions. The unit-weight of soil to consider in the computations is the
wet unit-weight. Therefore, use the consolidated undrained triaxial test
results (c.u. tests) and the unconfined compression test results (because of
the large strain rate, the test is considered undrained).

The degree of saturation of the samplesis: S, = w/(1/yqs — 1/7s).
for Sample 1: S, =0.78 for Sample 3: S, =1.00
for Sample 2: S, =1.00 for Sample 4: S, = 1.00.

Sample 1 is not saturated; it is therefore necessary to perform a triaxial
test in order to determine the undrained angle of friction.

For the saturated samples 2 and 4, the unconfined compression test
results are acceptable to determine the undrained cohesion, since the
angle of friction is zero.
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Long term stability. The results of drained tests must now be used. The
unit-weight to consider is the buoyant weight and we, therefore, will utilize
the results of the consolidated-drained triaxial test.

To conclude, it appears that the test program was well conceived for a
complete analysis of the proposed foundation schemes.

(2) The short-term bearing capacity is usually the most critical and will
be considered first. The increase of stress corresponding to the limit foun-
dation stress is given by: g, —vyD = %7BN7 +cN, +YyD(N, — 1).

For the soil parameters at a depth between 0 and 2 m, we have:

Yh = v¢(1 tw) = 15x 1.23 = 18.5kN/m?

¢c=4x10%Pa, 9 =10°, N, = 8.3, N, =25, N, =1 (see table II, sect.
9.2.1. of Costet-Sanglerat or Fig. 10.21 and Table 10C at the end of this
chapter).

We have:

94 —¥D = $yBN, +cN, +YD(N, —1)
= 9250B + 3.3 x 105 + 27700D
for B = 1m, g—+vyD = 3.31x 10° +27700D
B = 2m, q —vD 3.48 x 105 + 27 700D

where q is in pascals and D in meters.
For the soil conditions below 2 m depth, we have:

Yo = Ya(1+w) = 148 x1.31 = 19.4kN/m?
¢ = R/2 = 3.9 x 10* pascals, ¢ = 0° (saturated soil)

(1)

Note, however, that for the embedment factor in the bearing capacity
formula, we must take into account the weight of the soil above the level of
the footing bottom.

With ¢ = 0°, we get N, =0,N, = 5.1, N, = 1. The increase of the limit
stress will, therefore, be:

qqs —7YD = 51x%x39x10% = 19.9 x 10*kN/m? (2)

where g is in pascals and D is in m.

We will assume, as do L’Herminier, Tcheng and Obin, that the bearing
capacity of the soil is affected by the proximity of the water table whenever
H = 1.5B or less. (Fig. 10.14).

For a 1m wide foundation, formula (1) above must be considered for
0—0.5m, formula (2) from 2 m depth. For the depth increment between 0.5
and 2m, we will assume a smooth progression as indicated by the curve of
Fig. 10.15.

The presence of the water table only intervenes in the term (q — yD)
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corresponding to the increase of stress in the soil. We thus will draw the
curves ¢ —vD = f(D) corresponding to the increase of the limit stress in the
soil (Fig. 10.14).

The 1 m wide footing allows a higher bearing capacity than the 2 m wide
footing. Under the best conditions and for a 1 m wide footing, we can
count on an increase of ultimate stress of 3.5 x 10° pascals. For a safety
factor of 3, the allowable bearing capacity is ¢,qm = YD + (3.5/3) x 10° Pa,
and for an embedment of 0.5 m, therefore: q,4,, = 1.25 x 10° Pa.

The area of the footing corresponding to an average stress of 1.25 x 10° Pa
is: (60 x 10°)/(1.25 x 10%) = 480 m>.
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The total plan area of the building is 70 x 12 = 840 m?. This solution
would require that the total spread footings area be more than half the plan
area of the proposed building. The strip footing scheme, therefore, is not an
economic solution and involves a risk because no account was made of the
interaction of adjacent footings on each other. The above computations then
are no longer valid. The solution of strip footings should be abandoned.

(3) Because of the large dimensions of the mat, we must consider the soil
conditions below the level of water table. There, we have:
Yo = 19.40kN/m3, ¢ = 8.9x10%Pa, ¢ = 0° (saturated soils).

Note, however, that in the embedment term of the bearing capacity formula,
and for mat depths less than 2 m, we must use the value v, = 18.5 kN/m?>.
Therefore, we get, for D <2m: N, = 5.13, N, =1, N, = 0 (¢ = 0°) and the
stress increase is q; —vD = 3.9 x 5.14 x 10* = 20 x 10* Pa.

The uniform stress corresponding to the weight of the building is:

(60 x 10°%)/(70 x 12) = 7.2 x 10* Pa.

This stress must be less than or equal to the allowable stress, which is:
Qaam = YD + (20‘/3) x 104 = 7.2 x 10 Pa,
HenceyD = 0.5x 10*Pa and D = (0.5x 10%)/18500 = 0.27m.

The foundation may be at 27 cm depth. However, in order to account for
frost action, the mat should be designed for 80 cm embedment. For the
short-term stability, a mat at a depth of 80 c¢m is acceptable.

For the long-term stability, the consolidated-drain triaxial test results
must be used:

c = 38x10%Pa, ¢ = 18°,
Y = [ = Y)Yl xva = 062, v, = 9.3kN/m’
and N, = 3.5, N, = 5.3, N, =131, from which:
4 —yD = (9300 x 6 x 3.5) + (18500 x 0.8 x 4.3) + (3.8 x 10% x 13.1):
Qs — YD = 7.56 x 10° Pa.
If we consider a safety factor of 3, the allowable stress is:

Qaam = YD +(7.56/3) x 105 = 2.7 x 10° Pa.

This stress is larger than that exerted by the building. The mat at 80 cm
depth is an acceptable solution. (This depth will prevent frost heave in
winter, which varies depending on geographical locations).

A complete evaluation of the foundation should incluse an assessment of
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settlements calculated from the results of triaxial or consolidation tests or
from in situ tests with the static penetrometer or the pressuremeter.

Summary of answers
The testing program was good. The strip footings should not be adopted.
A mat foundation is recommended at a depth of 0.80 m.

**Problem 10.11 Shallow footings on a two-layer system
Design a mat foundation 18 m wide and 70 m long for the support of a

building. The depth of embedment is to be 1 m. The upper soil layer consists
of a 6 m thick clay, overlying a silty sand of great depth. (Fig. 10.16).

B=18m

. Sitty sand

Fig. 10.186.

Soil characteristics are as follows:
clay: ¢ = 0.25daN/em?, ¢ = 10°, v, = 19kN/m?
silty sand: ¢ = 0, ¢ = 30°, v, = 18kN/m3.

What is the allowable bearing capacity?

Use the results of Mandel and Salencon which give the correction factors
for Ny, N, and N, for a two-layer system consisting of a compressible layer
over a rock substratum.

For this particular problem, and for ¢ = 10°, B/H = 18/5 = 3.6, the
correction factors are for N,: e€,~1, for N,: €,~13, for N,:
€.~ 1.5. These results are valid if it is considered that friction is totally
mobilized at the two-layer interface.

Solution
It is not possible to theoretically calculate the bearing capacity of a
heterogeneous soil. Computations are made possible through simplifying
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assumptions (Giroud, Obin), but the results should be considered carefully.
Here we will give the upper and lower limits of the results.

First calculation assumption. Let’s assume that the soil is homogeneous and
consists only of clay. We then have: ¢ = 0.25daN/cm?, ¢ = 10°, vy, = 1.9 x
1073 daN/cm?.

Frequently used tables give: N, =1, N, = 2.5, N, = 8.3.

The stress increase corresponding to the ultimate stress will then be:

qa —yD = 3vBN, +YD(N, —1) +¢N,
= (1.9x 1073 x 9 x 102 x 1)+ (1.9 x 1073 x 102 x 1.5)
+(0.26x8.3) = 1.7+029+208 = 4.1 daN/cm?.

This value is the lower limit to take into account for ultimate stress.

Second calculation assumption. Assuming that the soil is homogeneous and

consists of silty sand only, we have: ¢ =0, ¢ = 30°, v, = 1.8 x 1073 daN/

cm?® and N, = 21.8, N, = 18.4,q, —yD = 35.5 + 3.3 = 38.6 daN/cm?.
This value is the upper limit to consider for ultimate stress increase.

Third calculation assumption. We now assume that the clay layer is under-
lain by bedrock, assumed rigid. Then, we have: ¢ = 0.25daN/cm?, p = 10°,
Y» =1.9x 107 daN/m?®*, N, =1, N, =2.5, N, =8.3.

Introducing the correction factors of Mandel and Salengon we can write:

qs —vD = $¥BN,e, + Dy(N,e, —1) + ¢N e,

where: €, =1, €, = 1.3, €, = 1.5 for this soil type and the geometry of the
bi-layer system.
qs —YD =17+ 0.43 + 3.12 = 5.25daN/cm?

This represents another upper limit, closer to the reality, for the increase
of the stress.

Finally, we have: 4.1 daN/cm? <gq, —vD < 5.25daN/cm?.

The upper and lower limits are close to each other and the average value
may be retained, g, — vD = 4.8 daN/cm?, without detriment to the design.

The allowable stress will then be:

Qoq = YD + (4.8/3) = 1.79daN/cm?

Using the graphs of Giroud, Tran Vo Nhiem and Obin for a two-layer
system, the ultimate stress increase is: g; — yD =~ 5.5 daN/cm?. This slightly
higher than the upper limit calculated by the method of Mandel and
Salencgon, because a different plastic zone is considered by either case.

To conclude, it should be remembered that the presence of a sand layer
under the mat only slightly increases the ultimate bearing capacity.

Summary of answers
The allowable stress below the mat foundation is 1.6 daN/cm?.
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*akProblem 10.12 Circular mat design for the support of a stack (shallow
footing with an eccentric, inclined load by the method of
Tran Vo Nhiem)

A smoke stack for a heating plant is to be supported on a circular mat
foundation deriving its bearing from a thick clayey silt layer. The ground-
water table is located at —20m. The stack is 35 m high and weighs about
2MN (200tf). Wind load imparts a horizontal force of 0.18 MN (18 tf) at
mid-height of the stack.

Design a circular mat foundation 0.50 m thick to support the structure.

The clayey silt properties are, between 8 and 20 m depths:

Yo = 19kN/m3, ¢ =1.5x10%Pa(0.15bar), ¢=20°.

Solution

The diameter of the circular foundation must be determined. Assume a
diameter of the order of 8 m. The weight of the footing will then be about
0.60 MN, if the concrete unit-weight is 23 kN/m?3.

Assume further that the bottom of the mat will be located at a depth of
1m for reasons of frost action on the soil. The resultant of forces acting on
the base of the stack then is: V/(2.6)% + (0.18)% =~ 2.6 MN. This force is
inclined by angle o to the vertical, such that tan oo = 0.18/2.6 =~ 0.07 and
a==4°,

Let e be the eccentricity of the resultant on the base. The equilibrium of
forces about the center of the base requires then that 0.18 x d = 2.6 x e x
cos &, where d is the distance between the point of application of the wind
load and the base of the foundation.

We have: d = 18.5 m, from which ¢ = (0.18/2.6) x (18.5/0.997) = 1.30 m.
We must calculate the allowable bearing capacity for a circular footing
supporting an eccentric load where e = 1.3m and inclined at 4° with the
vertical.

No simple theoretical solution exists and only approximations can be
made. We preferred to set up our computations as for the case of a strip
footing, inserting empirical correction factors.

In the case of an inclined, eccentric load acting on a strip footing, only a
portion B’ of the width B of the footing is considered to bear actually on the
soil. B’ is defined as:

B 1+(2/B)

B 1+ (2ey/B)

where e,; is the optimal eccentricity for the given load inclination.

In this instance, e,; /B is of the order of 0.002 and therefore negligible (see
table, in sect. 9.3.3 of Costet-Sanglerat). We may therefore write: B’ =
B * 2e.

Respecting sign conventions, e in this case is negative and e < e;;; we must
therefore consider the + sign in the above formula.

Finally, B'= B + 2(—1.30) = B — 2.60.
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The bearing capacity factor N, must furthermore be corrected by a
coefficient i, which depends on the inclination « of the applied force. The
tables of sect. 9.3.3 of Costet-Sanglerat indicate for i, the value i, = 0.9.
The bearing capacity of a strip footing would then be given by:
qq = v(B'/2)i,N, + yDN, + ¢N,.

Since the footing is circular, shape factors must be introduced for N, , N,
N,.. In agreement with Terzaghi and Peck, Costet and Sanglerat propose as
multipliers 0.8 for N,,, 1 for N, and 1.2 for N,.

We thus have:

q; = Y(B'/2) x 0.8i,N, + YyDN, + 1.2¢N,.
For a safety factor of 3 applied to the stress increase we get:
vB' x 0.4 x iyN, +YD(N, — 1)+ 1.2¢N,
3 .
For ¢ = 20°, the tables give N, =5, N, = 6.4, N, = 14.8. Therefore:
4,q = 11400B’ + 142 000.
Assuming that this stress is applied only over a circle of radius B’, then the

bearing force is: @ = (g,q4 x 7™ x B'?)/2. The actual load is equal to 2.6 x 10° N.
The value of B’ is given by the equation:

2.6 x 10 = [(11400B’ + 142000) x 7 x B'%]/2
or: (1.655 x 10%)/B'> = 114000B’ + 142 000.

This equation can be solved graphically, by drawing in Fig. 10.17 the
curves: y; = 114000B' + 142000, and y, = (1.655 x 10°)/B’?. The inter-
section of the two curves corresponding to B’ > 0 indicates the solution
desired.

Let us calculate a few points of each curve. When B’ = 0, y, —> o; when
B>y, > 0.

Qoa — 7D+

For B' = 2 weget y, = 4.14-10°
B =4 y, = 1.08-10°
B =6 y, = 4.6-10°

For B = 0 y, = 1.42-10°
B = 4 y, = 1.88-10°5.

Therefore, B' = 3.1 m (Fig. 10.17)and B=B' + 2.6 = 5.7.
The smoke stack may be supported on a circular mat 6 m in diameter.

The weight of the mat was originally overestimated (8 m instead of 6 m).
The dimension of 6 m is therefore on the safe side.

Furthermore, the ratio of the mat dimension to the distance to the water
table, which is 3, allows us to justify the values of the soil properties used in
the equations.
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Fig. 10.17.

It should be noted that a complete foundation analysis would require
making an estimate of settlement. Such an estimation would be based on
triaxial or consolidation test results or on results of in situ tests such as of
the static penetrometer or pressuremeter.

Summary of answers
The smoke stack can be supported on a circular, 6 m in diameter mat
foundation located at 1 m below grade.

*hkkProblem 10.13  Design of footings on swelling clay. Evaluation of swelling
pressures and computations of possible differential uplifts

A single storey house is to be constructed on a swelling clay, 3 m thick,
overlying dense, non-swelling substratum. The exterior and interior bearing
walls are 40 cm thick and transmit a load of 40kN and 60 kN (per running
meter) to the foundation. Test results on undisturbed samples of the swelling
clay indicated: v4 = 17kN/m3, w = 11.90%.

The unconfined compression R, = 300 kPa.

A swelling test was made in which the water content of the clay increased
from 11.9% to 256%, when the volume changes, in %, were a function of the
applied loads as follows:

AVIV = 3.9% for o0, = 20kPa
AVIV = 2.8% for 0, = 30kPa
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AV]V = 1.6% for o, = b0kPa
AV)V = 1% for g, = T0kPa.

(1) By drawing a graph, estimate the clay swelling pressure*.

(2) Assuming that swelling cannot occur, design the footings for the
external and internal walls. Is such a solution acceptable if swelling should
occur?

(3) Determine what practical solutions may be considered in the footing
design in order to account for swelling.

(4) Evaluate differential swelling which would occur, should the footing
be designed to have plan dimensions of 40 cm wide by 1 m long, embedded
at 70cm with a center-to-center spacing of 1.80m for both exterior and
interior walls.

Solution

(1) Estimation of swelling pressure

As is done for an oedometric diagram, we can plot the test results on semi-
log paper. Volume variations are plotted against the log of pressure. Fig.
10.18 shows, by extrapolation, that the pressure required to prevent
swelling, is about 130 kPa. So the swelling pressure is 130 kPa.

Load pressure in kPa
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Fig. 10.18. Determination of swelling pressure.

*The swelling pressure is equal to the vertical stress 0 that must be applied on the sample
in a consolidometer to maintain constant volume.



PROBLEM 10.13 157

(2) Footing design

The footings must satisfy 5 conditions: (1) adequate bearing, regardless of
swell; (2) frost prevention; (3) allowable total settlement; (4) allowable
differential settlement; (5) no uplift in case of swell.

(a) As indicated in the givens, we will first assume that no swelling of the
clay can occur. Since frost action varies with geographical regions, we further
assume that an embedment of 0.70 m is sufficient. We will also make a short-
term bearing capacity analysis, which in most instances is unfavourable.
Since the clay is saturated, its undrained cohesion is: ¢, = R./2 or ¢, =
150 kPa.

The bearing capacity of a strip footing, 0.40m wide embedded to
0.70m is: g4 =vD + 5.14¢,, with: D =0.70, and v = v4(1 + w) =17 x
(1 4+ 0.119) ~19kN/m?. So we get:
gqg = (19x 0.70 + 5.14 x 150) ~ 784 kPa
and the allowable bearing pressure will be:

Qe = 19x0.70 + (5.14 x 150)/3 = 270.3 or 270 kPa.

Taking v, = 25 kN/m? for the specific weight of concrete, the stress
applied to the soil under a 0.40 m wide footing at 0.70 m depth is:

g, = 25x0.70 + (40/0.40) = 117.5 or 118 kPa for exterior walls.

g, = 25x0.70 + (60/0.40) = 167.5 or 168 kPa for interior walls.

Both values are considerably less than the allowable stress.

Let us now evaluate the settlement. A resistance to unconfined com-
pression of 300 kPa (3 bars) means that the clay is very stiff (see table VII,
sect. 1.5.5, Costet-Sanglerat). The oedometric modulus E' may be estimated
at a minimum of 6000 kPa (60 bar) (see table I, sect. 3.4.2 of Costet-Sanglerat),
which is certainly inferior to the actual value.

The settlement is calculated from: Ah/h = —AG/E’, the stress increase,
Ao, is obtained from graph III-3 in sect. 3.2.2 of Costet-Sanglerat. Here,
we have z/B = 1.15/0.40 = 2.875, which gives Ao ~ 0.22q".

The stress increases q' at the level of the footings are:

(25 —19) x 0.70 + 40/0.40 == 104 kPa (exterior walls)
(25 —19) x 0.70 + 60/0.40 == 154 kPa (interior walls)

from which: Ag, = 0.22 x 104 =~ 23kPa and: Ao, = 0.22 x 154 == 34 kPa.
So we finally obtain:

[(Ah,)| = 230(23/6000)
[(AR,)| = 230(34/6000)

0.88 cm
1.30 cm.

The differential settlement will thus be: 1.3 —0.88 = 0.42 c¢m.
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Referring to table I, in Ch. 9 of Costet-Sanglerat, it is seen that the total
settlement corresponds to the values presently adopted for masonry walls.
The limit value for differential settlements is Z/1000, which gives L =
0.42 x 1000 = 420cm or 4.2m which is convenient since L represents the
distance between exterior and interior walls.

To conclude, and in the absence of swell, the footings may be placed
directly on the clay at a depth of 0.70 m for both exterior and interior walls,
without having to increase their width, which is 0.40 m.

(b) As for the uplift due to swell, the final footing design also requires that
uplift consequences be evaluated. If the water content of the clay goes from
11.90% to 25%, uplift pressure could be as high as 130 kPa. As a con-
sequence, the buried portion of the footing would undergo an upward lateral
friction due to the surrounding soil uplift (Fig. 10.19). On the other hand,
floor uplift could occur where they are on grade.

According to Fu Hua Chen, the lateral upward friction may be assumed to
be 15% of the swell pressure. The unit friction is: 0.15 x 130kPa = 19.5 or
about 20 kPa. We may also assume that dead loads correspond to 80% of the
total load of 40kN and 60 kN or, 32 and 48 kN, respectively (all loads are
per unit-length).

The strip footings of 0.40m width and at 0.70 m embedment would
undergo, per m of length, an uplift force of (Fig. 10.19):

— uplift at base: 0.40 x 1.00 x 130 = 52 kN

— uplift on sides: 2 x 0.70 x 1.00 x 130 x 0.15 = 27.3kN.

or a total uplift of 52 + 27.3 = 80 kN per linear m. This uplift force is far
superior to the sum of footing weights and dead weights.

3am . Strip footing

o Floor
== W Void

ol
) & / / .
Flexible surface //
’/
—— / 20 cm
Upward lateral === ~T[/"
friction ) -
Uplift pressure L
Swelling clay
TTTTTTT T T T T T T 777777777777

Non-swelling substratum

Fig. 10.19.
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Fig. 10.20.

The footing weight (per m) is only: 0.40 x 0.70 x 1.00 x 25 = 7kN,
which gives 32 + 7 = 39 kN for exterior walls, 48 + 7 = 55 kN for interior
walls. Thus it is certain that in the event of an increase in water content
(raising water table, leak in water drains, leak in sprinkling systems or
excessive watering of lawns) the 0.4m wide footings would be uplifted.
This is not acceptable.

(3) To avoid uplift, the strip footings may be replaced by an isolated
footing of equal width (Fig. 10.20). Let ! be the length of such a footing and
L = k! the wall width supported by the footing.

We will only work on the problem for interior walls. The loads of the
list below are expressed in kilonewtons:

load transmitted by the wall to the footing (48 x kl) = 48kl
weight of footing (0.40 x 0.70 x I x 25) = 71
uplift force under footing (0.40 x I x 130) =521
uplift on vertical sides of footing (2 x 0.70 x I x 130 x 0.15) = 27.31
(2x 0.40 x 0.70 x 130 x 0.15) =10.9

The condition for no uplift is: 48k + 7/ > 521 + 27.31 + 10.9
1(48k —172.3) > 10.9. (1)

In addition, under the maximum load applied, and if the clay should not
swell, the stress cannot exceed the maximum allowable soil bearing pressure:
q < ¢,q- But we have:
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g = (60k[+171)/0.401
and:

5.14(1 + 0.2B/l)c, 5.14(1 + 0.2 x 0.40/1)150
Geg = YD + 3 = 19x 0.70 + 3

or: Q. = 270.3 + 20.6/L

The second condition to meet, thus is:
(60 k! + 71)/0.401 < 270.3 + (20.6)/I or: [(60k —101.1) <8.2. (2)

Condition (1) dictates that %2 > 72.3/48, say: k£ > 1.51. Let us try k = 2.
Condition (1) then gives: [>0.46m, and condition (2): [<0.43m.
These two conditions are not compatible. Let us then try k =1.8:

condition (1) yields: | 2 0.77m and condition (2): [ < 1.19m.

Both conditions are satisfied if we take for instance: | = 1.00. Hence:
L =krI=1.80m. A similar computation for the exterior wall leads to the
following inequalities:

1(32k —172.3) > 10.9 (1)
1(40k —101.1) < 8.2. (2"

These conditions are both satisfied by 2 =2.7, [=1.00m and L =kl =
2.7 m.

Once again, both total and differential settlements must be checked,
which would require making a consolidation test. We will assume here that
settlements are small.

To conclude, the interior wall footings may consist of embedding the
walls in the clay layer in order to obtain masses 40 cm wide and 70 cm high
and of 1.00m length, 1.80m center-to-center spacing for interior walls
and of 2.70m spacing for the exterior walls. These footings must be rein-
forced with vertical steel to prevent rupture under the uplift loads.

Naturally, the base of the footing will also have to be reinforced as well as
the grade beams connecting them. In addition, a 10-cm void should be
provided between the bottom of the grade beam and the underlying soil in
order to prevent uplift pressures acting on the lower face of the beams. By
the same token, all floors will have to be structural types (Fig. 10.19).

An apron will have to be constructed around the house with a slope
inclined outward of about 3m in width in order to drain the surface water
away from the footings.

Remark: In the event where the inequalities of this problem cannot be
resolved, another type of foundation would have to be considered, such as
short piles or drilled cast-in-place piers.



PROBLEM 10.13 161

(4) Since the foundations have been designed so that the dead weights are
larger than the uplift pressure, no danger exists from differential uplift.

Let us assume that the builder decides to construct the exterior footings
with the same spacing as that of the inside footings (1.80 m instead of
2.70 m). He could decide to do so (erroneously for sure) because he reasons
that the footing sizes provide adequate bearing capacity. Let us see what the
consequence would be:

with / =1.00 and & = 1.80 instead of 2.70, the dead weight on each footing
is:

W = 32klI+7T] = 32x1.8x1.00+7x1.00 = 64.6kN

and the uplift pressure is:

(52 + 27.3)1 + 10.9 = 79.3x 1.00 +10.9 = 90.2kN

Uplift could then occur if the water content of the soil increased acciden-
tally from 11 to 25%. Let us try to roughly estimate the uplift. At the end of
the swelling, the generated stresses in the clay are in equilibrium with the
dead weight of the structure or 64.6 kN. Let v’ be the load on the clay.* We
then can write:

0.217'
0.0847'

uplift of the lateral faces = 2 x 0.70 x 1.00 x v’ x 0.15
2x0.40 x 0.70 x »' x 0.15

uplift on the base = 0.40 x 1.00 x v = 0.407'

and: (0.21 + 0.084 + 0.40)0' = 64.6kN

or: v = 64.6/0.694 = 93kPa.

From the diagram of Fig. 10.18, the swell would be of the order of 0.7%
or, for safety’s sake, say 1%. The swelling occurs over the 2.30 m thickness
of the clay between the footing bottoms and the substratum.

The uplift could therefore be of 230 x 1% = 2.30 cm which represents
the differential settlement between two adjacent footings. One could be
wetted whereas the other would not. This shows that even though the
builder meant well, he undertook a considerable risk.

Remark about the Table 10C

Generally, the values of the coefficients N, and N,, proposed by various
authors, are very close to each other, because both have an analytical base
(Costet-Sanglerat, sect. 9.2.2). On the other hand, values of the coefficient N,
vary considerably with the authors. This is due to the fact that the possibility
exists to consider several failure modes under the footings. These correspond,

. . . .
*v is less than the swelling pressure v since a swelling occurred.
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TABLE 10C

Values of bearing capacity factors N.,, Ny and N, as functions of ¢

¥ N, N, N, Ny N,
Terzaghi Caquot Biarez
Kérisel Nhiem
0: 0 0 0 1.00 5.14
1 0.00 1.09 5.38
2 0.01 1.20 5.63
32 0.03 1.31 5.90
4 0.05 1.43 6.19
5° 0.2 0.09 1.57 6.49
6° 0.14 1.72 6.81
7° 0.19 1.88 7.16
8° 0.27 2.06 753
9° 0.36 2.25 7.92
10° 0.546 1.00 0.47 2.47 8.34
11° 0.60 2.71 8.80
122 1.40 0.76 2.97 9.28
13 0.94 3.26 9.81
14° 1.97 1.16 3.59 10.37
152 2.3 1.42 3.94 10.98
16 2.73 1.72 4.34 11.63
17° 2.08 4.77 12.34
182 3.68 2.49 5.26 13.10
19 2.97 5.80 13.93
202 3.44 4.97 3.54 6.40 14.83
21 4.19 7.07 15.81
22° 6.73 4.96 7.82 16.88
23° 5.85 8.66 18.05
242 9.03 6.89 9.60 19.32
25 10.4 8.11 10.66 20.72
26° 12.1 9.53 11.85 22.25
27° 11.2 13.20 23.94
28° 16.4 13.1 14.72 25.80
29 15.4 16.44 27.86
302 18.1 21.9 18.1 18.40 30.14
31 21.2 20.63 32.67
322 29.8 25.0 23.18 35.49
33° 29.4 26.09 38.64
34° 40.8 34.7 29.44 42.16
35, 47.9 411 33.30 46.12
36° 56.8 48.8 37.75 50.59
37 58.2 42.92 55.63
382 79.8 69.6 48.93 61.35
39° 83.4 55.96 67.87
40 102 113 100 64.20 75.31
412 120 73.90 83.86
42° 165 144 85.37 93.71
43 173 99.01 105.1
44° 244 209 115.3 118.4
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TABLE 10C Continued
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¢ N, N, N, N, N,
Terzaghi Caquot Biarez
Keérisel Nhiem
45° 284 299 264 134.9 133.9
46° 369 309 158.5 152.1
47° 379 187.2 173.6
48° 576 467 222.3 199.3
49° 578 265.5 229.9
50° 915 720 319.1 266.9
51° 900 386.0 311.8
59° 1540 1140 470.3 366.7
53° 1450 577.5 434.4
N
[
e
g00
700
00
500
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in particular, to varying values of the angle ¥ which defines the wedge of
rigid soil under the footing (see Fig. IX.5 and IX.7, Costet-Sanglerat). Table
10C gives values proposed by Terzaghi, which suppose that ¢ = ¢, by
Caquot and Kerisel who have adopted Y = 7/4 + /2, and finally by Biarez
and Nhiem who have sought to determine the minimum wedge of passive
pressure. Most geotechnical engineers adopt the values of N, corresponding
to those proposed by Caquot-Kerisel (compare Fig. 10.21).

*kProblem 10.14 Evaluation of the bearing capacity and settlement of a
shallow footing on a cohesive soil from results of a pressure-
meter test

A rectangular shallow footing is 2m by 4 m in plan dimensions and em-
bedded at 1.50 m below grade. It bears on a layer of homogeneous clay of
infinite thickness. The unit weight of the clay is v, = 18 kN/m3. The water
level is sufficiently far below the bottom of the footing that it can be
ignored (Fig. 10.22).

A standard-pressuremeter test was performed in the clay and yielded the
following results: pressiometric modulus =E, = 8.7 x 103 kPa, limit pres-
sure =p; = 7.9 x 10* kPa.

Assuming that the horizontal total pressure p,, at rest at the level of the
footing, is 10 kPa, calculate the bearing capacity of this footing and estimate
its settlement. What should be the allowable bearing pressure that limits the
settlement to 2cm?

G.L ,
7 7 7 7777 . 7777 777777777777 77777777777
S Stiff silty clay
£ e '
o
“O", “’-'a al ,a'l ’ 3
- ;,o"-"",’.o."o' 7:18KN/m
% ® % 0. o .
5 «p,
GW.L |
A v A
= 1[4 B =200m
(L:A.OOm)
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Solution

In the case of a homogeneous soil, the ultimate bearing capacity of a
shallow footing is given by Ménard’s formula, as a function of the limit
pressure p;:
qqa = qo T k(P —Ppo)
where g, and p, are, respectively, the total vertical stress at the footing
periphery after construction, and the total horizontal stress in the soil at
rest at the time of the pressuremeter test.

The coefficient k is the bearing capacity factor, depending on the
shape of the footing and the nature of the soil type.

The net limit pressure is defined as: p; = p; — p,. Finally, for a safety
factor F = 3, the allowable bearing stress would be: g,y = q, + (k/3)pf.

Referring to table II of sect. 12.2.3 in Costet-Sanglerat (Vol. 2) and
Fig. 6.39 of the present book (Vol. 1), we find:

D 1.50
: * 1 . —_ = — = .
silty clay (0 < p;* <12 bar), soil type I: B 200 0.75 or:
h, L 4 )
— =150, — = — = 2, from which: £ = 1.28.
R 2R 2

In this instance, g, = 18 x 1.50 = 27 kPa. The limit stress is then:
qq =27+ 1.28(7.9 —0.1) x 102 = 1025 kPa and the allowable stress is:

1.28
Goa = 27 + Yy x 7.8 x 102 = 360kPa (3.6 bar)

To evaluate the settlement of a shallow footing on a homogeneous soil,
Ménard proposes the following formula:

1.33 RY o
s = — pRol N, —| + —— p\;R,
3Ep0(2R0) P7s

where:

p = average uniform stress due to the footing on the soil: p = g,y — g3

R = half the width of the footing (R > 30 cm);

R, =reference width equal to 30 cm;

E = pressiometric modulus of the homogeneous soil;

o = a coefficient depending on soil type and its state of consolidation (see
Table 6K in Vol. 1);

X, and A; = shape factors of the footing (see Table 6L in Vol. 1).

This formula is applicable for an embedded footing where the depth of
embedment is at least 1 diameter (h > 2 R). If this is not the case, the settle-
ment s should be increased by 10% for h = R and by 20% for h = 0.

Thus, we have: E, /p; = (8.7 x 10%)/(7.9 x 10%) = 11.

The clay is normally consolidated, and « = 2/3, we have also L/2R =
4/2 = 2.
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ThenA, = 1.53 and A\; = 1.2.
On the other hand: p = q,q —q¢ = 360 — 27 = 333 kPa, then:

1.33 x 3.83 x 102 100\*?
s = x 30 x 153 x — +
3x 8.7 x 103 30
0.667 x 3.33 x 102
+ X X i 1.2x10?

4.5 x 8.7 x 103
or: 1.51 +0.68 = 2.19cm.*
But here, since R < h < 2R, we must increase this value by 5%, so we get:
s = 2.19x1.05 = 2.3cm.*

As for the question about the bearing capacity that limits the settlement to
2 cm, we have:

Qatlowed < Goa = aq(2/2.3) = 313kPa (= 3.1 bar).

Summary of answers:
qq = 1025kPa (10.25bar), g,y = 360kPa (3.6bar), s = 2.3cm.
Settlement limits the magnitude of the bearing capacity to 313 kPa (3.1 bar).

*kProblem 10.15 Evaluation of bearing capacity and settlement of a shallow
footing on a cohesionless soil from results of a pressure-
meter test

A square footing, 4m by 4 m in plan dimensions, is located at a depth of
6m in a layer of homogeneous sandy gravel of large thickness. The water
table is at 0.50m below the level of natural grade. The unit weight of the
saturated gravel is 20.2 kN/m>. Above the water table, the moist soil unit
weight is v, = 17.6 kN/m?® (Fig. 10.23).

The coefficient of earth pressure at rest K, is assumed to be 0.5. A
pressuremeter test performed in the gravel yielded the following results:
pressiometric modulus = E, = 1.18 x 10% kPa; limit pressure p,=1.25 x
103 kPa.

Calculate the bearing capacity of the footing and estimate its settlement.
The settlement should not exceed 2.5 cm.

*The 1st and 2nd term in the equation for s represent, respectively, the influence of the
deviator, and the spherical components of the stress tensor.
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Fig. 10.23.
Solution

As indicated in problem 10.14, the ultimate bearing capacity of a footing
on homogeneous soil is given by Ménard’s formula:

dea = 9o t+ (R/3)p}

where p; is the net limit pressure defined by p =p, —Pp,. In this case, we
have:

go = 0.50 x 17.6 + 5.50 x 20.2 = 119.9KkPa, say 120 kPa, or 1.2 bar.
— the effective vertical stress at the bottom level of the footing is:

0y = 4o —Yuh, = 120 —5.50 x 10 = 65kPa.

— the effective horizontal stress at that same level is:

6, = Koo, = 0.5x 65 = 32.5kPa.

and finally:

Po = Oh+ Yuh, = 325+ 55 = 87.5kPa, say 88 kPa or (0.88 bars).

Graph 6.39 (see Volume 1) gives the value of k: L/2R = 1 (square footing),
h/R = 6/2 = 3, from which: k = 1,52,
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p¥ = p,—p, = (1.25—0.088) x 10° = 1.162 x 10> kPa,
dq 120 + 1.52 x 1.162 x 10° = 1.89 x 103 kPa (or 18.9 bar).
de.q = 120 +(1.52/3) x 1.162 x 10° = 0.709 x 103,
say 0.71 x 10% kPa (7.1 bar).

As indicated in Problem 10.14, in a homogeneous soil, the settlement may
be estimated from:

- 138k (x £)a+—a 3R
s bivy 2R0 4‘5EP3

This formula is applicable to footings embedded at least 1 diameter

(h > 2R), which is the case here.
We have, on the other hand:

p,  125x10%

Table 6K gives o = 1/4 for sands and gravels. For a square footing, Table 6L
gives: A, =1.12and A; =1.1.

Finally, p =q,4 —q, = (0.709 — 0.120) x 103 kPa or p = 0.589 x 10° kPa
(5.89 bar).

Settlement is evaluated at:

0.25

1.33 x 5.89 x 10? 200
s = x 30 x[1.12 x —
3x1.18x 104 30

{0.25 x 5.89 x 102
+

1.1 x 200
45x 118 x 10° 1 S

or s = 1.10 + 0.61 = 1.71 cm, which is less than 2.5 cm.

The magnitude of the stress is alright at g, = 7.1 x 10? kPa (7.1 bar),
corresponding to a column load of 7.1 x 10% x 4 x 4 =11 344 kN, say
1134 t.1.)

Summary of answers:
gy = 1.89 x 10° kPa (18.9 bar)
Gea = 7.1 x 102kPa (7.1bar)

Total column load: F = 11 344kN (1134+t.£f.),
settlements = 1.71cm < 2.5cm.
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*kProblem 10.16 Bearing capacity and settlement calculations of a mat
foundation on a two-layer system from pressuremeter test
results

A very long mat foundation of width B = 30m is located at a depth of
0.80m on a two-layer soil consisting of a layer of silt underlain by a silty
sand which overlays a schist bedrock. The groundwater table is at 1.80 m.
(see Fig. 10.24).

A soil exploration was made which included Ménard pressuremeter tests,
the results of which are given on the diagram of Fig. 10.25.

1. Determine the bearing capacity of the mat.

2. Estimate its settlement assuming that the actual loading corresponds
to the allowable load calculated in 1.

Solution
(1) The mat may be considered as a shallow footing of great width. The

bearing capacity is then given by the formula:

qq = qo + k(p;—po) = qo + kD

Taking into account the small embedment of the mat, the vertical over-
burden pressure at the bottom of the foundation level may be ignored, i.e.
9, =0.

Therefore, for a safety factor of 3, we have: q,; = (k/3)pf.

In this instance, p; in the geometric mean of the net values (p, —p, ) over
the whole thickness of the compressible layers, because the layers are thin
with respect to the width of the mat (see rule R, of the general notice in
Ménard D.60).

We then have:

P = v/20x21x20x23x38x39x45 = 2.78bars or 278kPa

B=30m

'

Schists

Fig. 10.24.
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The equivalent embedment %, is equal to the real embedment A, there-
fore: (h, = 0.80/15 = 0.05) from which £ = 0.8 (graph 6.39: notice that the
length of the mat does not enter into the calculation).

Finally: goq = (0.8 x 278)/3 = 74 kPa (or 0.74 bar).

(2) Settlements from consolidation of a two-layer system are computed



PROBLEM 10.16 171

from the following formula (Ménard: rule 15, note D.60):

a(z)B(F)p(z 2 o Bip;
_f a(z)B(F)p(z) )p() e = 3 Bip Az,
E(z) i=1 E;
in which:
p(2) is the vertical stress at depth 2 due to the structural load imposed on the

soil;

E (z) is the pressuremeter modulus at depth z;

«(z) is a coefficient related to the soil type and its state of consolidation
for a layer located at an average depth z (see Table 6K);

B(F) is a coefficient related to the safety factor F chosen. We take usually:

BF) = 2—F tor F<3
(F) =35—1 for

B(F)y =1 for F = 3.

Both layers must be studied.

(a) In the silt layer z varies from 0.80m to 4.40 m. Disregarding the
test results at depth 1 m, the other tests give values of E/p} lower than 14.
Therefore, (see Table 6K) a = 1/2 for this layer.

What would be the value of F if only the silt layer was present? We then
would have:

kpe
F, = & = e G k= o0s.

Qad Qad
So, for the silt layer, we find:
pr = V20x21x20x2.3 = 2.1bar, or 210kPa
0.8 x 210
and: F, = ——— = 2.27
74
from which: S(F) = 2/3x 2.27/(2.27—1) = 1.19.

Finally, because the compressible layers are thin with respect to the width
of the mat, we may assume that stress p(z) over the whole depth of the soil
layer, remains equal to the stress under the mat, that is to g,4.

The settlement obtained for the silt layer, therefore, is:

i aﬁqad

§; =
i=1 E; i=1 E

150 —0.80 1.00 1 +4.40—3.50)

1
= 4119 74(
ST g X 4600 1040  1.240 1660
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s; = 0.108m, say 10.8 cm.

(b) In the silty-sand layer, z varies from 4.40 to 7.50 m and E/p; ranges
from 6 to 8.
Therefore, we take o = 1/3 (see Table 6K). Then

P = V/3.8x39x 4.5 = 4.06bar, or 406 kPa

kpy 0.8 x 406

F, = = 4.39 > 3 therefore, f(F) =1
Qga 74

and we get:
1 550—440 100 1.00

5, = —x1x174 + + = 0.027 m.
3 2400 3000 3400

The total settlement thusis: s =s;, +s, =10.8 + 2.7 =13.5cm.

Summary of answers

(1) gq.q = 7.4 kPa with safety factor of 3.
(2) Settlement s=13.5cm.

Problem 10.17 Bearing capacity of shallow foundations from static pene-
trometer tests

See problems 6.4, 6.8, 6.9, 6.10 and 6.11 in Volume 1.
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Chapter 11

DEEP FOUNDATIONS

*kProblem 11.1 Design of a driven pile in homogeneous sand from static
penetrometer test data

Determine the allowable soil bearing undera driven pile of 1 m in diameter.
The upper soil consists of soft clay and is underlain by a medium dense
sand represented by the penetration diagram of the static test of Fig. 11.1.
The test was performed with the Gouda-penetrometer and a Delft-cone.

Compare the allowable stresses under this pile, when it is driven to levels
A and B.
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B J
20+
25+

Y
Fig. 11.1.
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Solution

The Dutch method of analysis may be used which consists of determining
the average point resistance on 8 pile diameters above the pile base, orgq. ,
and the average over 4 pile diameters below the pile base, or q._.

The ultimate stress is: g4 = (9., * g.,)/2, and the allowable stress Is:

Qaa = 9a/2 = (g, T g.,)/4, for a safety factor equal to 2.

Neglecting the lateral skin friction, we can determine the allowable stress
under the pile tip in the following manner:

— at level A:
e, = (10+10+10+12+16+37+91+95+97)/9 = 378/9 =
= 42daN/cm?

g., = 97daN/cm?
from which: q,, = 139/4 =~ 385daN/ecm? = 3500 kPa.

— at level B:
qe, = 97 daN/cm? = 9700 kPa; q., = 100 daN/em? = 10000 kPa
Qea = q.,/2 = 50daN/em? = 5000 kPa.

Note the large difference of allowable stress depending on the depth to
which the pile is driven into the homogeneous sand layer.

*kProblem 11.2 Design of a pile driven in a heterogeneous soil from static
penetrometer test data

Assume that the soil described in problem 11.1 contains, at a depth of
22m, a loose layer as indicated on the graph of Fig. 11.2. Under this
condition, determine what the allowable stress would be under a 1-m diameter
pile driven to levels A and B, identical to those of problem 11.1.

Solution

If the pile is driven to level A, its bearing capacity is not influenced by
the less compact soil layer at a depth of 22 m. Consequently, as found in
problem 11.1, the allowable soil stress is 3500 kPa.

At level B, however, near the layer of lower resistance, the consequences
of lowering the pile tip must be evaluated to a depth of 3.5—4 meters
below the pile tip.

Following the recommendations of the Dutch, whenever a poor-quality
soil layer is encountered at a depth of 4 diameters below the pile tip, and
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when over this depth n cone-penetrometer test readings were made, then

q., Is:
e, = (@1 tq2 t...%74, + NGmini)/2n
g. = 97daN/cm? = 9700 kPa

1

4e, = [90+ 72+ 54+ 29+ (4x28)]/8 = 357/8 = 44.6 daN/cm?
4460 kPa

qq = 141.6/2 = 70.8daN/cm? = 7080 kPa

from which: gq,; = 35daN/cm? = 3500 kPa

It is apparent that for a condition as shown on Fig. 11.2, lowering the pile
tip to level B does not increase the bearing capacity of the pile. From an

economic view, there is no advantage in driving the pile below level A.
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**Problem 11.3

DEEP FOUNDATIONS

Design of drilled piles from static penetrometer test data
(Andina penetrometer)

At a site along the Mediterranean coast, two static-dynamic penetrometer
tests were performed with the Andina device. Both tests yielded very similar
results as typified by the graph of Fig. 11.3.

Determine the bearing capacity of drilled piles, 50cm or 1 meter in
diameter, driven 13 or 14 m, respectively, below grade.
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Solution

To determine the bearing capacity at the tip, the following formula
is used (Ref. 22): q; = [q., + (9, T+ gc,)/2]/2 where:
¢., = minimum point resistance over a depth of 4 diameters above the base
of the pile;
q., = average over the same depth;
q., = average along the critical embedment (in practice, over 8 pile diameters
above the tip elevation).

(1) 50-cm diameter pile to 13 m
We have:

q., = 68bars = 6800 kPa

q., = (712+75+ 68+ 80+ 92+ 120 + 145+ 130 + 110)/9 = 892/9
>~ 99 bars = 9900 kPa

q., = (72+76 +100+ 126 +100+84+30+62+7+85+85+
+ 14 + 100 + 60 + 45 + 35+ 10.5 + 8)/18 = 946.5/18 = 52.6 bars
= 5260 kPa

from which the allowable stress is:

Q. = [52.6 + (68 +99.1)/2]/4 = 34 bars = 3400 kPa.

However, in the above calculations, skin friction was not taken into
consideration. This friction can be accounted for over a length L-8D-D,
where L is the pile length, D is the pile diameter. (8 D: above the tip, D:
at the pile top).

Considering the value of R; obtained from the Andina penetrometer
test on the cone friction sleeve, we can assume for a first approximation
that the useful friction may be 10kPa (a slice-by-slice evaluation would
yield about the same value).

This friction acts over an area D x 8.50 = 13.35m?, i.e., a total force
of 133.5kN was applied to the net cross-section of the pile of 0.196 m?,
then: g, = 133.5/0.196 = 680 kPa. This means that the allowable stress under
a 50-cm diameter pile, 13 m long, is: q,4 = 3400 + 680 = 4100 kPa.

Taking into account the fact that g, of the diagram (Fig. 11.3) in the
bearing layer is divided by 2, we will not apply for the drilled pile the
usual 30 to 50% reduction of the allowable bearing (g, is the point resistance
measured with the small point of the Andina penetrometer).

(2) 50-cm diameter pile to 14 m depth
For this pile we have:
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q., = 80bars = 8000 kPa
(92 + 120 + 145+ 130 + 110 + 112 + 110 + 96 +102)/9 =
= 1017/9 = 113 bars = 11 300 kPa
9., = (92+80+68+75+72+ 76+ 100+ 126 + 100 + 84 + 30 +
+62+ 7+ 85+ 85+ 14+ 100)/17 = 1103/17 = 65 bars =
= 6500 kPa

qe,

from which the allowable stress is:
Qoa = [65+ (80 +113)/2]/4 = 40.4bars = 4040 kPa.

The surface of the pile on which the lateral friction actsis: 7 x 0.5 x 9 =
14.14 m?. The corresponding load, applied to a pile section of 0.196 m? is:

141 kN, from which: ¢, =141/0.196 = 720 kPa and q,, =~ 4040 + 720 =
4760 kPa.

(3) I-m diameter pile, 14 m long
A computation similar to the one above, gives:

q., = 30 bars = 3000 kPa

9., = (92+ 120+ 145+ 130 + 110 + 112+ 110 + 96 + 102 + 86 +
+ 88+ 80+ 102+ 42+ 30+ 30 + 30)/17 = 1505/17 = 88.5 bars

8850 kPa

q., = (92+80+66+ 75+ 72+ 76 + 100 + 126 + 100 + 84 +
+30+62+7+85+85+ 14+ 100+60+ 45+ 35+ 10.2 +
+8+5+5+4+2+2+2+2+2+2+2+ 2)/33 =

1289.2/33 = 39.1 bars = 3910 kPa, from which

Qea = [39.1+ (30 + 88.5)/2]/4 = 24.6 bars = 2460 kPa.

The lateral friction acts over an area of: 7x1x 5=15.70m?. This
corresponds to a load of 15.7 x 10 = 157kN applied over a pile cross-
section of 0.785m?. So the net stress due to skin friction is o = 157/
0.785 = 200 kPa and q,, = 2460 + 200 = 2660 kPa.

(4) 1-m diameter pile, 14 m long
As before:

9., = 67 bars = 6700 kPa
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q., = (712+75+67+ 80+ 92+ 120+ 145+ 130+ 110 + 112 +
+ 110 + 96 + 102 + 86 + 80 + 102 + 42)/17 = 1621/17 =
= 95.4 bars = 9540 kPa

(72+ 76 +100+ 126 +100+84+30+63+7+85+

+85+14+100+60+45+35+102+8+5+5+4 +

+2+2+2+2+2+2+2+2+2+35+5+5)/33 =

992.7/33 = 30.1 bars = 3010 kPa

[30.1 + (67 + 95.4)/2]1/4 = 27.8 bars = 2780 kPa.

Il

de,

Qad

surface of lateral friction = 4 x 3.14 = 12.5 m?, from which
g, = 125/0.785 = 160 kPa. The total allowable stress is:
Qaa = 2780 + 160 = 2940 kPa.

Conclusion

This problem shows, once again, that in a heterogeneous soil, one should
never recommend an allowable stress beneath a pile without specifying
also the pile diameter, since this stress is dependent upon the diameter.
In this instance, notice that to account for the penetration diagram, it is
logical that:

(1) There is no gain to increase the diameter from 0.5 to 1 m regardless
of the length, 13 or 14 m.

(2) To lengthen the pile from 13 to 14m would be of interest for the
0.5-m diameter pile but would be disadvantageous for the 1-m diameter
pile.

This once more indicates the danger of having pre-conceived ideas on the
length of embedment of piles in heterogeneous soils.

*Problem 11.4 Design of a pile driven into a three soil layer system from
static penetrometer test data

For this problem, refer to problem 6.12
*kProblem 11.5 Design of a driven pile on the basis of static formulae

A preliminary study requires the determination of the bearing capacity
of a driven pile, 82 cm in diameter and 9 m long, in a soil whose geotechnical
profile is shown on Fig. 11.4.

The soils have the following mechanical and physical properties:

— soft silt: wet unit-weight, v = 17 kN/m3, buoyant unit-weight, ¥' = 10
kN/m3.
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— loose clean sand: buoyant unit-weight, v' = 11 kN/m?, angle of internal
friction ¢ = 30°.

— medium to dense clean sand: buoyant unit-weight, ¥' = 11 kN/m3, angle
of internal friction ¢ = 35°.

The groundwater level is 2m below the soft silt grade. Assume that
the upper layer of soft silt will never be loaded and therefore will never
create negative skin friction.

Is the reinforced concrete pile diameter adequate?

0.0
organic silt
igwater table
2.0 e
- " loose sand
50 — — .
R - _dense to medium
RN [~ - dense sand
9.0 e B T
Fig. 11.4.
Solution

The soils being cohesionless, all computations can be based on effective
stresses using drained parameters.

(1) Caquot-Kerisel method

The first order of work is to determine the critical embedment given by
the following formula: D, = (B/4)N23
where B = diameter of the pile, N, = 10~ ®" ¥ and 2.7 <N < 3.7, depending
on pile diameter.

For a 32-cm pile, Caquot and Kerisel propose N = 2.7. Thus, for ¢ = 35°,
N,=1771,D, =15m.

The value of N, corresponding to the shallow footing condition is 33.3
for ¢ = 35°. This indicates that the recommendation of Yves Lacroix (of
Woodward and Clyde, New York, personal communication) that:

N, (pile) = 2N, (shallow footings) is correct and on the safe side.
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Ultimate point resistance of a pile

The ultimate stress at the tip is: g4 = poN,,
where py = effective overburden stress at the level of the pile tip, or:
Po = 17x24+10x1+11x6 = 110 kPa.

The pile embedment into the medium dense to dense sand (h = 4 m) is
greater than the critical embedment D, = 1.5m. So, we can consider the
values of N, = 77.7 and g3, = 110 x 77.7 = 8550 kPa.

The ultimate load on the pile then is: @, = 8550 x 0.08 = 684 kN.*

Ultimate lateral friction along the pile shaft

After the method of Caquot-Kerisel, lateral friction is disregarded along
the critical embedment into the bearing layer.

At depth z, the unit skin friction at failure (Costet-Sanglerat) is:
f=a*y-z where g = k., *sin §.%*

Since the pile is driven, passive pressures in the sand may be assumed to
have developed (this assumption is often contested and at times may be on
the unsafe side).

Ultimate skin friction along the pile length in the loose sand
5.00
Qp =p f oy ztdz
3200
where p = perimeter of the pile, here: 1 m.
To calculate @, we may consider the effective overburden pressure at
mid-height of the layer of loose sand (at 4 m depth):

ohb = 17Tx2+10x1+4+11x1 = 55kPa

Therefore, for a loose sand layer of 2m: Q;, =P x ax 04 x 2, for ¢ = 30°
and 6 = —2¢/3, coefficient ais 1.9, then: @7, =1 x 1.9 x 55 x 2 = 209 kN.

Ultimate skin friction along the pile in the dense sand layer

This friction will only be calculated for a length of 2.5 m because skin
friction is not assumed to act over the depth equal to the critical embedment
depth.

At a depth of 6.25 m, the effective overburden stress is:

0h,s = 1Tx2+10x1+3.25x11 = 79.75kPa
For ¢ = 35° and § = — 2¢/3, coefficient « is 3.3.
Then: @, = 1x 3.3x 79.75x 2.5 = 658kN.

*The method proposed by P. Foray and A. Puech (J. ITBTP, 339, May 1976) gives,
assuming a relative density of 0.7 in the bearing layer and 0.4 in the loose sand layer, an
ultimate bearing value of 675 kPa at the tip and 263 kN skin friction.

**The formula was derived for a homogeneous soil. It remains valid for stratified soils
if kpy =kpg, which is here the case.
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Therefore, the total skin friction along the whole pile length is:

Allowable load on pile
Using a safety factor of 3 to @, and @, :

Quy = Q,/3+ 0,/3 = 684/3 +867/3 = 51TkN, Q.4 = BH17kN.

Remark
If we assume ¢ = 38° instead of 35° for the medium dense to dense sand
layer, we get:

N, =129,D, = 2m,Q, = 110x129x 0.08 = 1135kN,
Qs = 209kN, @, = T39kN, @Q; = 209+ 739 = 948kN.

Allowable load on pile: @,y = 1135/3 + 948/3 = 694 kN.

If we change the value of ¢ by 3° of the bearing layer, the allowable load
rises from 517 kN to 694 kN, so with an increase of some 34%.

Any error on the evaluation of ¢ may have a considerable influence on
the allowable pile load.

(2) Other method (see Fond document 1972)*

Ultimate stress at the pile tip: g4 = Y4 N,

N, is computed from graphs made for shallow footings. It is the minimum
N, referred to in the preceding question (Fig. 10.2 and Table 10C). For ¢ =
35°, N, = 33.30: g4 = 110 x 33.30 ~ 3660 kPa.

Ultimate load at the pile tip: @, = 3660 x 0.08 = 293 kN.

Ultimate skin friction along the pile
At depth z, the unit skin friction at failure is:

7 = K tan ¢,0,

where: K = coefficient depending on the method of installation of the
pile and the compactness of the sand, ¢, = friction angle pile—soil; 0, =
effective overburden stress at z, equal to Zv'z.

If we take Broms coefficient as proposed in the Fond 1972 document
for driven piles, we get: p, =% ¢, K = 1 for loose sand, K = 2 for compact
sand.

Ultimate skin friction over the loose sand layer
5.00

Q; = p-K- tan 22°5 f o, - dz

3.00

*Published by L.C.P.C.-SETRA (French Ministry of Equipment) in Paris.
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To calculate €y, we consider the vertical overburden stress at mid-height
of the loose sand layer, or 4 m depth:

Q@ = 1x1x0.41x55x2 = 45kN.

Ultimate skin friction over the medium to dense sand layer
9.00

Q; = p-K-tan 26° f o, dz.
5200

To calculate Qy, consider the effective vertical overburden stress at mid-
height of this layer, or 7 m depth:

Qr = 1x2x0.49x 88x4 = 345kN
from which the ultimate skin friction over the pile length is:

Qr = 45 + 345 = 390kN.

Allowable load on pile
With this method, a safety factor of 3 is used for the tip ultimate bearing,
and of 2 for the ultimate skin friction:

Q, = @p/3+Q/2, Q, = 293/3 + 390/2 = 293 kN.

With the method of Caquot-Kerisel we obtained for this load: @, = 517 kN.

Note the considerable difference between the two methods.

We see that, when loaded, the compressive stress in the concrete calculated
from Q.4 is acceptable, but it is too high during driving (calculation with
Q@4), so the diameter of the concrete pile should be increased or a steel pipe
pile should be used.

The first result is certainly too optimistic in the evaluation of skin friction,
because it assumes that passive pressures are mobilized along the full length
of the pile. In reality, passive pressure is a seldom reached maximum con-
dition (that depends on the driving method and the sand compactness).

The second result is certainly too pessimistic for the evaluation of the
tip resistance. It is underestimated by using the shallow footing formula.

Conclusion

As a general rule, avoid calculating the bearing capacity of driven piles
from laboratory test results on soil samples, because the design theories
are too uncertain and lead to greatly varying results depending on the
method used.

In addition, for sandy soils, the recovery of an undisturbed sample is
almost impossible, particularly below the water table. Moreover in the case
of highly heterogeneous soils, even good samples may not be representative
of the whole of the various layers affected by the pile. 1t is, therefore, very
difficult to assign correct values of the angle of internal friction ¢. This shows
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the interest in calculating the bearing capacity of piles from the results of
in-situ tests and, in certain cases (driven piles in sands) from the driving
formulas {Costet-Sanglerat, sect. 10.12).

*xProblem 11.6 Allowable bearing capacity of a pile from pressuremeter
test results.

Consider a pile of diameter 2R = 0.60m, drilled to 8 m, as indicated on
Fig. 11.5.

SIS
ST
gravelly clay

| ,
! ’///;7/4////%/47water table
|
|

S

L=8m

7

i

s
/

" dense sandy . 7.

— 1 . gravel’ g, .. . .
D 9‘0 Y R
. 2. oo "l 2R=0.60m Lo

Fig. 11.5.

A pressuremeter testing programme yielded the following data:
— gravelly clay: average limit pressure = 3.5 daN/ecm? (350 kPa)
— sandy gravel: average limit pressure = 12daN/cm? (1200 kPa)
— level of water table: 2 m below grade.

Calculate the allowable soil bearing pressure under the pile, assuming
that the saturated unit-weight of soils is 22 kN/m3. Use the graphs of
Meénard, reproduced on Figs. 11.6 and 11.7 as well as table II, sect. 12.2.3 of
Costet-Sanglerat.

It should also be referred to the notes of Ménard published in 1967 on
the use of the pressuremeter and to the Fond document 72 (LCPC
SETRA) published by the French Ministry of Equipment and Housing.
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Solution

The interpretation of classical pressuremeter tests recommended by
Ménard leads us to consider 3 factors to estimate the allowable load of a
deep foundation: tip resistance, current skin fraction and increased skin
friction.

Tip resistance

This resistance is estimated from the same formula as used for shallow
footings:

gq = 9o T R(p; —Dpo) (ctf. Costet-Sanglerat, 12.2.3)

A safety factor of 3 is used on the bearing capacity factor & which is
calculated from the graph proposed by Ménard, of Fig. 11.6.

Current skin friction

Skin friction is considered over the length of the pile, less the lower
portion over a length of 3 pile diameters and the upper portion: (0.3 m + R),
where R is the pile radius.

It is estimated from the Ménard graph of Fig. 11.7, which gives the unit
skin friction 7, as a function of the limit pressure. It is used with a safety
factor of 2.

Increased skin friction

Over the length of 3 radii near the pile tip, Ménard estimates that the
loading of the pile causes the soil to tightening against the pile shaft and
that, as a consequence, skin friction increases.

The unit skin friction 7, is determined from the graph of Fig. 11.7 and it
is used with a safety factor of 2,

From there, the allowable load on the pile is:

2nR7,
+[L— (3R + 0.3+ R)] —2—+

k
do +E (p; — Do)

with: g, = total vertical stress at the pile tip; p, = total horizontal stress of
the silt at rest at the test elevation (assumed performed at the pile tip).

Go = Ysat X L, po = Kolvew x 2.00 + v'(L — 2.00)] + v, (L — 2.00)

because the clay is saturated by capillarity above the water table.
Now, assuming K, = 0.5:

go = 8x22 = 176kPa,
pPo = 05x22x200+10x6.00+0.5x12x6.00 = 118 kPa,
p, = 12daN/cm? = 12 x 10°kPa = 1200 kPa.
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The embedment length is given by (see Fond. 72): h, = Zh;py;/p,. with
in the case where 2R <1m:

Pl = VDuD1abis = VDPgrave = Pigrave = 12daN/em? (1200 kPa) because
the 3 levels of +1, 0 and —1, at the base, are in the gravel; therefore:

h, = (1.80 x 12 + 6.20 x 3.5)/12 = 3.60 and h,/R = 12

from which, with the aid of the graphs (soil category III, table II, sect.
12.2.3. of Costet-Sanglerat):

B = 49 7, # 0.8daN/cm?® = 80 kPa,
7, ~ 1.2daN/cm? = 120 kPa,
and finally: Q,q =~ 549 + 491 + 102 = 1142kN

This soil allowable pressure is also allowable for the concrete of the pile
since the corresponding concrete stress would be 40 daN/cm?, inferior to
the value of 50 daN/cm? usually considered allowable.

**xProblem 11.7 Design of a pile and pier drilled into a swelling clay

(1) Consider a pile with diameter 2r = 30cm and a total length D =
4.50 m, embedded over a length d = 3m into a non-swelling soil and over
a length D—d in an upper swelling soil layer (Fig. 11.8). Calculate the
minimum stress p that the structural dead load must exert at the tip to avoid
problems due to swelling. Assume that the swell pressure v* of the upper
soil is 1 daN/cm? and that the friction at uplift is 15% of the swell pressure.

Assume also that, in the event that the upper soil layer does not swell,
the properties of the non-swelling soil at depth are good enough to prevent
a bearing failure.

(2) Determine the new value of p in the case where the swelling clay layer
is 6 m thick, but the length of pile remains at 4.50 m.

(3)In Colorado (U.S.A), 39 houses were supported on 10-inch diameter
shafts, embedded 7ft. in swelling clay whose swell pressure was measured
at 10 000 p.s.f. and loaded to 20 kips.

Severe uplift occurred. Explain why. N.B. 1 kip = 1000 pounds, 1p.s.f. =
1 pound per square foot.

Solution

(1) The lower end of the shaft is in a non-swelling soil. The total uplift
force Vis: V = 2nr(D—d)fv where f = 0.15.

Note the similarity between the ratio of f and v and the “friction ratio”
of penetrometer tests (see Refs. 29 and 30); f here corresponds to FR = 15%.

*Swell pressure may be determined in the laboratory in the following manner: submerge
a soil sample in a consolidation mold, measure the vertical stress which must be applied
to maintain constant volume (see Problem 10.13).
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Fig. 11.8.

Let p be the stress at the pile tip due to the weight of the structure, if
we neglect lateral friction over length d (non-swelling soil).
No uplift can occur when:

mrip = 2nrfo(D—d) or p = [2(D—d)fv]/r,
from which: p =2 [2 x (4.50— 3.00) x 0.15 x100]/0.15 = 300kPa =
= 3daN/cm?.

In practice, we can recommend 3 daN/cm? because lateral friction S over
height d (which can be assumed to be half of the cohesion value of the non-
swelling clay) provides a margin of safety. Indeed, if we account for friction,
we get:

2(D—d)fv_ 2nrf,, d

p = 5

r Tr
with f,,, = shear stress at the pile—clay interface or:

p = @2/r)[fo(D—d)— [nd].
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Let us find the value of f,, for which the term in the brackets would become
Zero:

_ fv@=d) _ 0.15x100x1.50 _
d 3.00

Taking = 0.5 (see sect. 10.4.1, Costet-Sanglerat) and ¢’ =0 for the
underlying clay layer, we see that all we need is a cohesion of 15kPa
(0.15daN/cm?) to annul the uplift by embedment into the lower layer. The
pier should, however, have tension steel.

(2) If the pile is embedded over its entire length into a swelling clay,
the total uplift force V is obtained by adding to the uplift friction force
acting on the lateral surface, the uplift force acting under the base, or:

V = 27Terv+7rr2v_

fm 7.5 kPa.

To avoid uplift, we must have:

p = (2Dfv/r) +v

or:p = (2x 4.50x 0.15 x160)/0.15 + 100
or: p = 1000 kPa* (10daN/cm?).

Note that for lightly loaded structures, it is rare that p be so high, which
explains the frequent occurrence of problems in these types of structures
in swelling clays. It should be noted that very often, the height of clay
susceptible tc an increase in moisture content, does not exceed 1.50m.
However, in the case of a water pipe leakage in swelling clays, the zone
of soil affected may reach 4.50 m and even more, exceptionally 6 m. There
is an advantage therefore to resort to belled piers, as discussed in problem
11.8.

(3) From the preceding question, the total uplift pressure is:

V = 2arDfv + nr’v = w¢Dfv + w(¢*/4).

Knowing that 1 ft = 12inches and 1 kip = 1000 pounds (== 4.45 kN):

V = 7x(10/12)x 7x 0.15x 10000 + (7/4) x (10/12)? x10000 =
= 32942 pounds

say: V =~ 33 Kkips.

Since the load on each pier is 20 Kips, uplift occurs. Problems should
have been expected in the 39 houses.

*We will assume, as for the preceding question, that in the event that swelling does
not occur, the soil properties are such that no bearing failure will occur.
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s*kxProblem 11.8 Enlarged base pile design in a swelling clay

A pile has a diameter of 2r = 0.30m and goes through an upper soil
layer consisting of a swelling clay, 2m thick. The pile has an enlarged base
whose diameter is 2R = 0.80m and is 0.2 m thick. It is embedded 1.2m
into the underlying soil layer which has no swell characteristics (Fig. 11.9).
The permanent load on the pile is 83 kN.

The characteristics of the two soil layers are:

— upper layer (swelling clay): unit weight, v = 20kN/m3, swell pressure
v = 500 kPa.

— lower layer (non-swelling clay): unit-weight = 20kN/m3, undrained
cohesion, ¢, = 120kPa, drained cohesion, ¢' = 19kPa, effective angle of
friction, ¢’ = 20°.

Assume the soils are saturated by capillarity and that friction to uplift
is 15 percent of the swell pressure:

(1) Check that diameter and depth of the embedment of the tip are
sufficient to prevent uplift.

(2) Verify the foundation stability in the event that no uplift occurs.
What can be concluded? Neglect the friction to lateral faces of the footing.

Solution

(1) Assume the downward direction positive (Fig. 11.10). Let us define
P, the permanent load applied to the foundation (weight of pile and footing
included), V, the vertical uplift force and P, the weight of the soil cylinder
of diameter 2R above the footing.

‘ P = 83kN

e

swelling clay . ’
h=-200m

I

d=1.00m

EO. 20m




PROBLEM 11.8 191

Fig. 11.10.

Two cases must be considered:

(a) First case (Fig. 11.10a): P + P, + V > 0. The footing behaves in the
classical manner of shallow footings because D/B = 3.20/0.80 = 4.0. We can
then, with adequate safety, apply the theory to this condition.

(b) Second case (Fig. 11.10b): P+ P, + V< 0. In this case, the uplift
force will have a tendency to push up the soil cylinder located above the
footing.

Shear stresses will be developed along the lateral surface of this cylinder,
with a resultant F, opposing this uplift. Taking into account the swelling
of the upper clay, which will cause a displacement upwards of each of its
points, shear stresses cannot be developed in the swelling clay. The resultant
F, corresponds only to the shear stresses generated in the lower layer.
Finally, we have: P+ P, + F, + V+ R =0,
where R’ = soil reaction under the footing, with 0 < R’ < q,4S,

S is the surface area of the footing.

For the first question then, we must consider the mechanism of the
second case.

Let 7,, be the average shear stress (long-term) computed at mid-height
of the lower non-swelling layer:

Tm = ¢ +0otan ¢ = ¢ +y(h +d/2)tan ¢’

The unit weight to consider, is v and not ¥’ because the soil is saturated
by capillarity. We than have:

F, = 27Rdr,,,
P, = n(R* —r*)D'y,
V = 2ar(D' —d)fv.
Replacing with the numerical values of the givens:

Tm = 19+ 20(2.00 + 1.00/2) tan 20° = 37.2kPa
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F, = 27 x 0.40x1.00x 37.2 = 4+ 93.5kN
P, = m(0.40°> — 0.15%) x 3.00 x 20 = + 25.9kN
27 x 0.15x 2.00 x 0.15x 500 = — 141.4 kN.

We will have: P+ P, + V<0 when P<141.4 —25.9 =115.5kN. Since
P = 83 kN, we do indeed have this condition.
Taking a safety factor of 3 against shear strength, we get:

P+P,+1/3F,+V+R =0 or
R' = 83+ 259+ 93.5/3—141.4 = — 1.3kN.

<
il

The reaction R' of the soil on the footing is upward, the action of the
footing on the soil is downward, therefore no uplift occurs and the footing
size is acceptable.

The stress exerted on the soil in this case is:

R’ 1.3x4

q —Tg—— m— 2.6 kPa.

(2) The calculation must consider the short-term (undrained) condition
under the permanent and “living”’ load the longterm (drained) condition
under dead load only. The behaviour of the footing is shown on Fig. 11.10a.

(a) Stresses under the footing
— under permanent dead load:

_P+P, 83+259 _ 108.9

& S 7x080%4 0503 1O-okPa
— under dead and “living”’ loads:
4 = P+P,+ P, — 9165+ P,

S 0.503

(b) Allowable stresses under the footing
— undrained condition, clay saturated (¢ = 0):

1.2¢, N, 1.2x120x 5.14
Qea = YD +—3— = 20x 3.20 + 3 = 310 kPa

— drained condition (clay is still saturated by capillarity):
4a = (0.8/2)vBN, + yDN, + 1.2¢'N,
We have: ¢' = 20°, from which N, = 5, N, = 6.4, N, = 14.8.

Therefore:
qq = (0.5x 0.8x20x 0.80x5)+ (20x 3.20x 6.4) + (1.2x19x14.8) =
~ 779 kPa
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¥vD = 20x 3.20 = 64 kPa from which
Qua = 64 + (779 —64)/3 =2 302 kPa.

(¢) Conclusion

Longterm condition: g,y = 302kPa > 216.5,
short-term condition: 310 = 216.5 + P,/0.503, from which:
P, < (310 —216.5) x 0.503 or P, < 47kN.

The “living” load should not exceed 47 kN, which is about 57% of the
dead load. We are, therefore, far above the 20% usually admissible.

Remarks

(a) The greatest advantage of piles or piers with an enlarged base is
that the resistance against uplift does not run the risk of being affected by
the loss of friction, which could occur for any one of many reasons along
the shaft of the pile in the zone of height d.

On the other hand, load P, is only slightly affected by variations in the
water content.

Piers with an enlarged base are particularly well adapted for high
swelling clays (v > 5daN/cm?) when the substratum is rocky and not too
deep, and if a water table could exist.

(b) A very efficient solution to prevent uplift due to swelling clays is to
provide a layer of vermiculite or glass wool along the shaft, between the
pile and soil, some 3 to 5 cm thick (Fig. 11.11). The pile should have tension
steel to prevent shaft rupture and a void of about 10 cm must be designed
under the beams to allow the soil to swell.

(c) Clays with a plasticity index of over 30 should be suspected of having
swell potential.

|

|

| |1 '
beam B A |

]

![ m - | void
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L ]

swelling clay

fayer of vermiculite or

armatures glass wool {e=3-5cm)

7,

( _—*'ﬁ non-swelling soil

Fig. 11.11.
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*Problem 11.9 Calculation of the bearing capacity of a pile from the S.P.T.
(Standard Penetration Test)

This problem is reported in 6.18.

*%Problem 11.10 Bearing capacity of a driven pile from static-penetration
dynamic-penetration tests and S.P.T. Comparison with in situ
pile load test

During the second European Symposium on Penetration Tests (E.S.O.P.T.
II) held in Amsterdam in May, 1982, the problem of determining the bearing
capacity

Cone resistance a, 1N MN /m? or MPa (MN/m?~10 kgf/cm?)
(e} 10 20 30

+-— Pile

Depth in meters

—20b——-

- —_ — S

Fig. 11.12a. Static cone resistance.
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of a pile from in situ static and dynamic penetration test and S.P.T. tests was
presented. The data came from a site in Amsterdam where a pile had been
driven and on which, in the presence of some of the symposium attendees,
a cyclic loading was applied until failure occurred. The problem is presented
here because of its instructional interest.

Determine the ultimate and allowable bearing capacities of a square pile

Local friction fg in MN/m2 or MPa Friction ratio in %
0] Q.2 04 0.6 08 10 O 5 10

——
—\

Depth 1n meters

Fig. 11.12b. Local friction cone resistance and friction ratio.
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Fig. 11.13. Dynamic penetration.

of 25cm on the side. The pre-fabricated pile was driven to El. — 14 m in
a soil whose cross-section is given in Table 11A.

The evaluation may be made by different methods, based respectively
on:
— static penetration diagram obtained with a simple electric cone (10 cm?
section) with friction sleeve, in accordance with international standards.
Cone resistance, lateral unit friction and friction ratio are indicated on the
diagrams of Fig. 11.12a and 11.12b.
—dynamic penetration of Fig. 11.183, where penetration was obtained in
accordance with international standards DPA, using drilling mud. (Rod
diameters, 40 mm; point diameter, 61.8 mm; 64 kg hammer; drop height
of 73 cm, dynamic resistance computed in accordance with the conventional
Dutch formulae). Ref. [13], [22] and [23].
— 8.P.T. tests, presented on Fig. 11.14.

Compare the results obtained with the pile loading record, shown on Fig.
11.15.
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ESOPT 1l CASE STUDY |
Pile Prediction

TABLE : 11-A Site : AMSTERDAM
Result of boring

=
= & sand
depth | 2 = . .

= H Soil description fraction dgp

= m

2|5 M

1 — /]

1 sand 90 - 420 210
2 sand 90 - 350 210
3 sand 90 - 420 250

4 peat — clayey

5 peat — clayey

6 peat
7 peat
8 clay — some peat

9 sandy clay

10 clayey sand

11 clayey sand

12 clayey sand

13 sand — some clay
14 clayey sand (some organic pieces)
15 organic clay
-1 16 (;:)l:a»;
17 sand — small pieces of clay and peat 60-210 175

_12—
sand — small pieces of clay and peat 60-210 175
sand — slightly silty — some pieces of clay 105 - 250 210
sand — slightly silty — some pieces of clay 75 - 350 210
sand — slightly silty — some pieces of clay 90-710 500

sand — slightly clayey and silty

sand — slightly clayey and silty

sand and some clay

clayey sand
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Depth in meters referred to NAP

Fig. 11.14.
Solution

(a) Cone penetrometer (C.P.T.)

Since the cone resistance decreases greatly 1 m below the driven pile
tip, the bearing capacity must be computed, for safety’s sake, in accordance
with the method indicated in problem 6.12:

Qu = (9, t4q.,)/2.
9, = (@1 + a2+ an +ngp,)/2n,
with 4D = 1 m under the pile tip we get:

9c, = [16.4+21 +25+17+ 17+ 10+ (6 x10)]/12= 166.4/12 =
= 13.8 MN/m?
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Fig. 11.15.
and for 8D = 2 m above the pile tip:
9c, =(164+17+12+8+6+9+5+1.5+1.5)/9 = 85MN/m?

The ultimate pressure at the pile tip would thus be:
qy = (8.5+13.8)/2 = 11.15MN/m?

and the ultimate point bearing capacity @, = 0.25 x 0.25 x 11 150 = 700 kN.
From Fig. 11.12b, the average lateral unit friction may be evaluated as
follows:

from O to 3m, f. = 0.04 MN/m?
3 to 6m, fs = 0.06 MN/m?
6to12m, f; = 0.01 MN/m?
12to 14m, f, = 0.07 MN/m?



200 DEEP FOUNDATIONS

If we let p be the perimeter of the pile and % the height of the layer, the
ultimate capacity due to the friction alone is:

Qs = Zphf, = 4x0.25Zhf,
= 1[3x 40+ 3x 60+ 6x10+ 2x 60] = 490kN
and the ultimate total load is @ = 700 + 480 = 1180 kN.
This must be compared to the ultimate pile load test of 1100 kN (see Fig.

11.15). The allowable load may then be computed as follows: @ = 700/2 +
480/3 = 510 kN. The overall safety factor is 1100/510 = 2.15.

(b) Dynamic penetrometer
From the dynamic penetration test data (Fig. 11.13) the ultimate pile
tip resistance may be computed as for the static cone data, by:

qq, = (20+15+14+14+10+ 5+3+2+2)/9 = 9.4 MN/m?
qq, = (20+ 214+ 20+ 20+ 14+ 8+ 6x 8)/12 = 12.5 MN/m?
qu1 (9.4 + 12.5)/2 = 10.95 MN/m?

from which @, = 684 kN.

This value is very close to that from the static test, because the dynamic
test was performed with mud in the hole, in accordance with the DPA
standards (International Standards). Ref. [8].

On the other hand, the dynamic test yields no useful data for the value
of the lateral friction that thus must be roughly estimated. For a first
approximation, the formula f; = 0.01q4 may be used:

f,
for 0—3m f = 0.04 MN/m?
for 3—6m f = 0.015MN/m?
for 6—12m [ = 0.01 MN/m?
for 12—18m f = 0.04 MN/m?

for 13—14m f = 0.10 MN/m?

= 0.01q4, from which

and, finally:
Q, = 4x025(3x40+3x15+6x10+1x1+1x10)

=120+ 45+ 60+ 11 = 236kN
from which Qy; = 920 kN.
If we were to take into account the soil types as evidenced by the S.P.T.

(see Table 11A) we could possibly, for the cohesive soil layers, accept
a friction ratio higher than 1%. This would increase the value of Q.
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(c)S.P.T.

The bearing capacity of the pile from the S.P.T.-data may be computed as
follows:

According to L. Decourt in his paper ‘‘Prediction of the bearing capacity
of piles based exclusively on N values of the S.P.T.”” (ESOPT II, Amsterdam,
1982) the ultimate bearing capacity (@, ) of a pile is given by: Q, = @, +
Q, were @, is the ultimate point bearing capacity and @, is the ultimate load
capacity due to friction along the shaft.

c.1. Point bearing capacity
To estimate the point bearing capacity an average of the three N values
around the pile tip is taken. In the present case:

N, = (25+ 44 + 31)/3 = 33.33.

The ultimate point stress is given by:

9, = N,K,

where K is the soil coefficient taken from the table below for K-values:
Soil type K(t/m?)

clays 12

clayey silts* 20
sandy silts* 25
sands 40 (After Decourt [9].)

*residual soils
Then: q, = 33.33 x 40 = 1.333¢f/m?, and the point bearing capacity will be:
Q, = g,A, = 1.333x 0.0625 = 83.3tf = 817.1kN

c.2. Shaft friction capacity

There is no need to take into account the soil type (clay, silt, sand, etc.)
met along the shaft. It is enough to consider the average N value along
the shaft. But the N-values taken for the estimation of point bearing capacities
must not be considered for the estimation of shaft friction. N values smaller
than 3 shall be considered as equal to 3 and N values greater than 50 shall
be made equal to 50. In the present case we have assumed that between zero
and 1.12m of depth there was one N value equal to 6. Thus we have:

XN = 74

N = 74/17 = 4.35

The friction along the shaft is given by:
gs = (N/3) + 1(tf/m?),

g, = (4.35)/3+1 = 2.45tf/m®> = 24.03kN/m?, then:
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Q. = A,q, = 4x0.25x14.12x 2.45 = 34.6tf = 339.3kN

The ultimate pile bearing capacity will then be:

Q, = Q, +Q, = 833+346 = 117.9¢f = 1156.5kN

This prediction, made by L. Decourt before the symposium, has been found
to be the best for the bearing capacity calculations of the tested pile.

Summary of answers:

Ultimate pile bearing capacity: C.P.T. = 1180 kN.
Dynamic penetration: 920 kN; S.P.T. = 1156 kN.
Loading test = 1150 kN;

*%xProblem 11.11 Determination of bearing capacity and settlement estimates
of semi-deep foundations based on pressuremeter tests

A drilled pier of 1.2m in diameter and 3 m deep is excavated in a very
thick dense silt, as shown on Fig. 11.16. The groundwater table is at 2m
below the bottom of the pier.

A geotechnical investigation made with the standard pressuremeter gave
results as summarized on the diagram of Fig. 11.17. Assume that at the
bottom of the pier p, = 25 kPa.

1. Determine the allowable soil bearing pressure below the pier and the
net bearing capacity at the top of the pier. 2. Evaluate the settlement of the

ier.
i How are the results affected if we assume that the water table could rise
above the bottom of the pier?

Dense silt

¥=20kN/m3

3.00 m.

P = 25k Pa
-

Fig. 11.16.
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Solution

1. The equivalent limit pressure is calculated from the values of the limit
pressure obtained between depths —3R and + 3R about the bottom of the
pier, that is from —1.20 to —4.80 m since R = 0.60 m.

Pie = /1300 x 1700 x 2400 = 1690 kPa, or 16.9 bars.

(We verify in this case that the differences between the values of p; do not
exceed 30%, as required by Ménard.)

For the calculation of the equivalent embedment depth, k., we should
take, over the initial 50 cm of depth, half of the value of the limit pressure
measured at 1 m, that is: 750 kPa (7.5 bars).

2 pyhi
We then have: h, = SPut
Die
0.5x 750+ 1x 1500+ 1x 1300 + 0.5x 1700
he = 1690 = 2.38m.

and: h,/R = 2.38/0.6 = 3.97 > 3

The bearing capacity factor k is obtained from the graph of Fig. 11.6.

The soil corresponds to category II, a dense silt with p; > 1200 kPa (see
Table II in sect. 12.2.3 of Costet-Sanglerat, Vol. II).
For a drilled pier then: & = 2.3, and finally:

Gaa = k(P —Do)/3 or:

Qaq = 2.3 x (1690 — 25)/3 = 1277 kPa (12.8 bars).
Depth Modulus E (M[pd) limit pressure Py
Soil  Description m 10 50 100 500 5 10 50

0

Dense 25 %‘

2.2 1
Water table M
Silt 2 2.3
6
34 2.5 )]
35 2.5

Fig. 11.17.
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Remarks

The skin friction was neglected, contrary to what would be done for
a pile, because we are dealing with a semi-deep foundation of small embed-
ment. For deeper embedments, skin friction could be considered.

On the other hand, the bearing coefficient is computed from a graph
which applies to deep foundations. That for shallow footing is limited
to a value of k. /R = 3.

The bearing capacity therefore is:

Qaa = TP? /4 x 1277 ~ 1444 kN.
However, at the top of the pier, the weight of the concrete should be
subtracted with y concrete = 24 kN/m?:
Q.a = 1444 — (m¢?/4)x D x v, = 1444 —(m/4) x 1.2*> x 3x 24 =
= =~ 1363 kN, or about 136 tf.

2. For an isolated, semi-deep foundation of radius R < 1 m and for which

he/R <5, Ménard proposed to use the following formula (pressuremeter
rule 4):

! [¢1

R\
§ = Cq Equ 30()\(1%) (for 30em < R < 100 cm)

where g’ = stress on top of the pier, E = pressuremeter modulus of the soil,
o = soil structure coefficient (see Table 6K), A; = shape coefficient of the
foundation (A; = 1 for a circular section and A; = 1.13 for a square section),
¢, = embedment coefficient given by:

1
‘@ T 08401
8+ 0.1(h./R)

For our case then:

r

g = 1277 —3 x 25 = 1205kPa,
E = 250 bars = 25 000 kPa a = 2/3
E/p; = 250/17 > 14 (overconsolidated dense silt) (see Table 6K),
Ag = 1 (circular section),
from which
cq = 1/(0.8+0.1x3.97) = 0.835.

From which: s = 0.835 (1205/2 x 25000) x 30 (1 x 60/30)¥3 = 0.96 cm.

The settlement will be of the order of 1 cm. If the groundwater table rises
above the bottom of the footing, Ménard indicates that for a dry silt soil
with E/p, = 20, the modulus should be reduced by 20 to 40% (the factor
increases with the value of E/p,).
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Let’s assume here a reduction factor of 20% (E/p, =~ 14.7), then conse-
quently s =~ 1.2 cm. This is still within reasonable limits and we can conclude
that the pier design is acceptable.

Summary of answers:
Q.a = 1277kPa (12.8 bar)
Q.q = 1363 kN (136 ¢f)

s =~ 1cm (if the water table rises: s =~ 1.2cm).
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Chapter 12

SLOPES AND DAMS

*xProblem 12.1 Failure of a vertical cut

Consider a vertical cut of height H, in a clayey soil whose undrained
cohesion is ¢, and saturated unit-weight is y,,;.

Evaluate the different possible modes of failure.

(1) Study the hypothesis of failure occurring on a circular arc centered
at mid-height.

(2) Study the hypothesis of a failure occurring on a circular arc at the
top of the cut.

(3) Study the hypothesis of a plane failure occurring through the toe of
the cut.

(4) Compare the above possibilities to the results obtained in Problem 5.7.

Solution

All the following computations are based on short-term conditions; they
therefore, are taking into account ¢, for cohesion and an angle of internal
friction p = 0. Assume the soil to be saturated.

(1) Circular arc failure centered at mid-height
The center of gravity of the semi-circle AMB (Fig. 12.1) is located at point
G in such a way that:

4 sin®(a/2)
2 A

3 a—sina

CG =

where « = 7: the angle at the center of sector AMB. Hence CG = (4/3m)r.
The driving moment due to the weight of a 1 m long slice whose thickness
is limited by the semi-circle AMB will be:

Iy r2 2H H3

m = Ysatm T 7 = Ysat Lo -
Yot o g~ 7=t g
A 7% N
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The resisting moment due to the soil cohesion along the assumed failure

surface is: M, = mc,r? = mc,(H?*/4). The safety factor in this case is equal
to: F=M,/M,, = 3nc,H v H® = 3mcy [Ysat H.

(2) Circular arc failure centered at the top of the cut (Fig. 12.2)
The center of gravity of the portion of the circle (cross-hatched) DMB is

located at point G, so that:
4 sin3(a/2

AG, = 4,50@2)

3 a—sin«

« = DAB = m/2, from which AG, = 4/3r(0.353/0.570) = 0.826r.

A

Fig. 12.2.

The center of gravity of triangle ADB is located at G, so that:

2 2 2
AG;, = —r \-/—— =r [—
3 2 3
The center of gravity of the total section ADMB will then be located at point
G so that:

r? r? r2  r?
AG— = AG, =+ AG,{m———
4 2 4 2

AT V32
AG = —[r§+o.826(§~0.5)r}, then AG = 0.67.
e

The driving moment due to the weight of section ADMB is equal to:

r? oo s
M, = 'ysatTAG sz = 0.337gt" -

The resisting moment due to cohesion along the failure surface is equal to:
M, =c,mr?/2 = 1.57¢c,r?. The safety factor will then be equal to:

M, 1.57 ¢, cy
= — = 4.75

F = = ,
Mm 033 Ysat " 7satH
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E A
‘ .
r
i H
™™ B
B
Fig. 12.3.
(3) Plane failure

Consider the plane failure surface through B, at the toe of the cut. The
weight of triangle AEB (Fig. 12.3) is equal to: W = v, (H?/2) tan 8.
The driving force projected on the sliding plane EB is:

2 2

H
T, = Wcosf = 7sat?tanﬁcosﬁ = 7sat?sinﬁ.

The resisting force in the sliding plane is equal to: T, = (H/cos )¢, . The
safety factor will then be: -

F= T, _ 2Hc, _ 4c,
Tm  YsaH? cosPsinf  vwHsin (26)

The F coefficient will be minimum when sin (20) is maximum, or when
B = m/4. In that case, the safety factor is: F = 4¢, /ve H.

(4) Conclusion

The first observation made on the three calculations of the safety factor
is that the term ¢, /... H appears. This explains why certain graphs for slope
stability analysis are based on this term.

The most unfavourable circle of failure of the two cases considered is the
circle centered at the top in A of the cut. It can be observed that the
expression for the safety factor in that case is slightly higher than that
obtained for the plane failure hypothesis. However, in reality the circle
centered at the top of the cut is certainly not the most unfavourable one: a
more complex method of calculation can prove that the most critical circle
is centered above the top of the cut.

In Problem 5.7, we found that the maximum cut height is H = 4c¢, /Y4
which corresponds to a safety factor of 1 for the case of a plane failure. The
two methods of calculation thus are seen to lead to the same answer.
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Remark
In the case of an excavation, one should consider also the problem of uplift
of the excavation bottom.

**kProblem 12.2 Plane failure

A natural slope has an inclination 6 = 15° with the horizontal. Borings
have indicated the presence of a clayey silt underlain by a fractured lime-
stone layer (Fig. 12.4).

The groundwater table is parallel to the ground surface and 2 m deep.

(1) Assuming a plane failure, show that the most likely failure plane
would occur at a depth of 8 m.

(2) An excavation of slope 1/1 must be made through the silt to the lime-
stone for the construction of a road. Calculate the safety factor against
sliding assuming a plane failure.

The clayey silt properties are:

— unit weights: above the water table: vy, = 18 kN/m?3, below the water
table: vouy = 20 RN/m?3;

— cohesion and angle of internal friction (effective values from drained tri-
axial test): ¢’ = 20kPa, p' = 15°.

(3) In the event that the safety factor is not high enough, recommend a
solution to increase its value.

Solution

(1) Stability calculation must be made in long-term conditions using the
drained soil parameters ¢’ and ¢'. Consider point P at depth z (Fig. 12.5). Let
o be the vertical total stress acting on a face oriented parallel to the free

trench sliope 1/1

fractured
limestone

siope 1/

,\_,} tractured fimestone
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Fig. 12.5.

surface:
0= [7hzw + Vsat (Z _Zw)] CcOos 0
The normal stress to this face, o, is equal to:

Oy = [7hzw + 7sat(z —Zw)] cos?0
and the shear stress acting along this face is:
T = [Yh2w + Va2 —2,)] cos 0 sin 6.

Let us determine the pore-water pressure at P, call it u,. The free ground-
water table line corresponds to a flow line. Therefore, the line MP perpen-
dicular to the flow line is an equipotential line (Fig. 12.5). Therefore:
hy =h, = (Uy/vw) — 2y = (Up/vy) — 2, and since uy, = 0,

Uy = Yoz, —2y) = YuPMcos8 = v, (z—z,)cos?0

This means that the effective normal stress at P on a plane parallel to the free
surface is equal to:

O;V = [7hzw +7sat(z_zw)—(z—zw)7w] cos? 6

oy = [Yn2w +7'(z —2,)] cos?8

v' being the buoyant weight of the clayey silt.
The maximum shear stress allowable in the silt is equal to:

Tm = ¢ +oy tang' = ¢ + [vnz, + 7 (2 —2,)] cos?0 tan .
The safety factor against sliding along the plane is then:
Ta ¢ + [vnzw +7Y'(z —2,)] cos?6 tan o’

F=2=
T [7hzw + 7sat(z 2w )] cos 0 sin 0
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!

c L, 2w $7'(z —2)] tan
[7hzw + 7sat(z —_zw)] COos 9 sin 9 [7hzw + 7sat(z —zw)] tan 9

or: F =

The first term is a decreasing function of z (z is the denominator). The
second term is equally a decreasing function of z because v, > 7', therefore
F decreases when z increases.

So, the most likely failure plane is located at the bottom of the clayey silt
layer, that is to say at —8 m.

(2) When the trench will be excavated, and if we neglect adhesion forces
between the silt and the limestone along plane BC, the value of the safety
factor calculated above remains valid, therefore:

¢+ [vh2w + 7z —2,)] tany’
[7hzw + 7sat(z _zw)] tan ¢

where: ¢ =15° ¢ = 20kPa, 0 =15°,s0 F=1.12..
This safety factor is quite low.

(3) In order to increase the safety against sliding, the silt could be drained
in order to lower the surface of the groundwater table. If the groundwater
is lower by 4m: 2z, = 6m, and the new value for the safety factor is:
F =1.4. Therefore, the safety of the slope against sliding may be increased
by lowering the groundwater table in the silt.

In this example, we only considered a plane failure. In order to com-
pletely assess the problem, the trench slope stability should also be analyzed
by the circular slice method.

In the event that the silt would be completely drained, the safety factor
could be estimated from the graphs XI-12, Sect. 11.2.2 of Costet-Sanglerat.

For §=45° and ¢’ =15° and assuming that the failure circle would pass
through the toe of the slope: ¢”/yH = 0.08. In order to avoid confusion with
the drained parameters ¢’ and ¢’, designate ¢” and ¢” the reduced character-
istics where:

!

tan ¢

” n

= — and tan =
7 2

F

If we take v =1v, = 18kN/m> we obtain the stability for a cohesion
value ¢” equal to: ¢” = 11.5 kPa.

As a result, and for the condition of the silt being completely drained, the
safety factor is 20/11.5 = 1.74, therefore sufficient.

*ikProblem 12.3 Dam stability (global method)

It is proposed to construct a dam for a reservoir to retain water in a
small touristic area. The dike is to be built of homogeneous soil very well
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compacted. Determine the stability of the dam: (1) at the end of con-
struction, (2) after filling the reservoir.
The construction soil consists of a clayey silt whose mechanical properties
are as follows:
— undrained cohesion, ¢, = 0.4 daN/cm?* (40 kPa)
— cohesion and angle of internal (effective) friction (c.d. triaxial test):
¢’ = 0.25daN/cm? (25 kPa), ' = 10°
— saturated unit-weight = 18 RN/m3.
The flow net after filling the reservoir is shown on Fig. 12.6.

T im pool
9m
|
= 30°
2m
ey ///':// 7 //// 22 ? 2 e i Z ZZ /.///// DL T A

substratum of impervious rock

Fig. 12.6. Dam dimensions and flow net after fill of the pool.

Solution

(1) At end of construction

It is obviously the upstream slope which is critical. A short-term com-
putation must be performed because at the end of construction, the pore-
water pressure will not have had time to dissipate.

From the graphs XI-14 of Costet-Sanglerat, we can see that if there is a
deep circular failure, we have:

np = (9+2+1)/(9+1) = 1.20, then: c¢"/yH = 0.15

with¢” cohesion corresponding strictly to the stability ¢” = 0.15 x 18 x 10 =
27 kPa = 0.27 daN/cm?.

The safety factor obtained with the undrained cohesion will then be:
F = 4/27 = 1.5. This is sufficiently high.

(2) After filling the reservoir

Here we must study the downstream slope and the long-term stability
must be considered. Indeed we can assume that excess hydrostatic pressures
due to construction have had time to dissipate.

Graphs XI-13 of Costet-Sanglerat allow us to determine the most critical
failure circle passing at the toe of the dike: § = 20°, o' =10° therefore
o =40°,5=18°.

The graphical construction of the circle results in a radius R = 25.2m
(Fig. 12.7).
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e
<Y
\.(point where failure

circle intersects
saturation line)

Fig. 12.7.

Let us define the safety factor F by: tan ¢" = tan ¢'/F and ¢” = ¢'/F
where ¢” and ¢ are the critical values of cohesion and friction assuring limit
equilibrium condition.

Forces acting on the mass ACBM (Fig. 12.7) are: the weight W, acting
through the center of gravity, G, the resultant U of the forces due to the
pore-water pressure applied to the circle BMA, and the resultant of the
contact forces on the circle ABM.

Consider the sliding face at a point located on the failure circle (Fig.
12.8).

The components of the stress applied to this face are: o5 and 7 = ¢" + oy
tan ¢”. The resultant of the contact forces will then be a force Q such that:

+a +a
Q = f R (c"+ oy tan p")7dé + f Roy dS
a -

where § is an integration variable.
Let C be the force defined by:
+a

IC| = fRC"Tdﬁ =
—Q

+o ] ’ .
¢ R cos d 2¢'R sin «
[ eReosd 5 2eRsing
F F

-

and whose direction is OX, perpendicular to the bissectrix OY of angle OAB.
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X

Qb ——— =

Fig. 12.8.

In addition, let:

+a
Ry = fRoNdS

+a
R, = JR(oN tan ¢")7d$

Ry and Ry are perpendicular and |R;| = |Ry | tan ¢".
Q being the resultant of the contact forces on ABM, we have:

Q = C+Ry +Ry.
For equilibrium condition, we obtain:
W+U+C+Ry +Ry = 0.

We write now down the equation for the sum of the moments with respect
to O, applied to the mass ACBM, is zero.
— moment due to weights W: W x OH, where OH is the lever arm of weight
W with respect to O;
— moment due to the pore-water pressure = 0;
— moment due to the tangential stresses, = My ;
In each point of the circle along the failure line, the tangential stress is:
n + t " ’ + tan Kp’
c Oxn tan = —+oy- .
N ¥ F N F
Let M, be the moment due to the term c¢":
+
* ¢'R? 2¢c'aR?
M, = dé =
= F F

and let M,, be the moment due to the term oy tan¢":
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+o
M, = J. R?loy | tan ¢" d6

+o

., tan ¢’
M, = Rtany f loy|IRdS = R

F

+o
f loy | R dS

-
+o

where: f loy IR dS,
-

corresponding to the distribution of the normal stresses is difficult to deter-
mine, but for which we can write:
+o +o

[1oyIRas < foNRdal = Ry |

- e 4

+a

therefore R is the minimal of J. loy R dS.

M, being a stabilizing moment, we may take a minimum value for M,
(which adds to the safety).
The moment equilibrium with respect to O may be written as:

_ R tan¢|Ry| +20'0<R2

W|-OH 1
Wi P 7 (1)
In addition, the equilibrium of the forces gives:

2¢'R sin «
WHU+——— +Ry Ry =0 (2)

and furthermore, |R;|/|Ry | = tan ¢'/F.

The solution of the simultaneous equations must be made by successive
approximation.

Assume an arbitrary value for F (1 for instance) and solve graphically
equation (2). From this, the value of Ry is obtained which is then trans-
posed into equation (1) which permits the calculation of a new value of F.
If the calculated value is considerably different from the assumed F value,
the procedure may even be repeated with the new value of F.

Numerical application
W =W, +W,.

W, = weight of a unit slice corresponding to the portion of the circle ABM,
W, = weight of the slice of soil corresponding to triangle ACB.
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210 2 40 (25.2)2
W, =—=—sin2«a|—7vy = [2n— —0.985 x 18103 =
180 2 180
= 235 x 10*N.

W, = 30 x 10%N.
W = 265 x 10%N.
The center of gravity of the portion of the circle ABM is G, so that:

2 sind &
0G, = _R—————— = 21.7m.
3 a—(sin 2a/2)
The center of gravity of the total mass is determined from the location of
G, and G, (center of gravity of triangle ACB). OH is the projection of OG
on the horizontal, from which OH = 6.8 m.

Determination of U

The pore-water pressures will give rise to forces acting on the failure surface
between points B and P, (Fig. 12.7).

Divide the arc of the circle BP, in 5 equal segments over the length of
each we will assume that pore-water pressure is constant and equal to that at
the center of the arc length; be it P,, P5, P;, Ps; and P4, the centers of the 5
segments.

The value of u is calculated from the equipotential lines:

u=(h—2z)y,
h = water head
z = level with respect to a reference plane (horizontal plane passing through

B for example).
We will then have:

u(P,) = (7.7 —5.0)y, = 0.27daN/cm? (27 kPa)
u(Py) = 0.55daN/cm? (55 kPa)
u(P;) = 0.615daN/cm? (61.5kPa)
u(P;) = 0.45daN/cm? (45kPa)
u(Pg) = 0.1daN/cm? (10kPa)
the segment on which these pressures act has a length equal to:
P,P; = Tm.
Therefore, the corresponding forces will be:
U, = 189-10*N
U; = 38.5-10*N
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Ry

p'=10°

?

Fig. 12.9. Graphic solution of eq. (2) for Ry.

U, = 43-10*N
Us = 31.5-10*N
Ug = 7-10*N.

The directions of these forces U; are determined by the radius of the
circle ending at P;.
Assuming a value of F =1, we can solve equation (2) graphically (Fig.
12.9).
(W| = 265 x 10* N (vertical direction)
2C'R sin « .
|IC| = 7 = 83 x 10* N (OX direction)

The graphical solution (Fig. 12.9) gives Ry = 116-10%N. Transposing
this value in equation (1), we get:
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P Rtan ¢ |Ry| + 2¢' aR? _
|W|OH
25.2 x 0.176 x 116 + 2.5 x 2 x 0.698 x (25.2)2
267 x 6.8
from which F = 1.50.

Then taking a value of F = 1.50, another diagram is drawn of the forces
similar to the preceding one. We then get R, = 120 x 10% N. Transposing
this new value in the equation:

R tan ¢'|Ry | + 2¢ aR?
|W|OH

F =

we finally obtain: F = 1.51. This value is very close to the preceding one and
may be considered as the solution to both equations. This value near 1.50
may be considered as acceptable for the safety against sliding.

YdkProblem 12.4 Dam stability (method of slices)

Solve Problem 12.3 for the downstream slope stability analysis by the
method of slices (Fellenius® method, for instance).

Solution

Using Fellenius’ method, the failure circle is defined in the same manner
as in Problem 12.3 (Fig. 12.7). The failure zone is now divided into 5 slices,
each of width b. We have:

BA = 2Rsina = 2R sin (40°) = 32.4m
The horizontal projection of BA is then:
BA cos B, = BA cos (18°) = 30.8m

thus we can consider 5 slices each 6.15m long in the horizontal direction
(Fig. 12.10).

In Fellenius’ method, it is assumed that each slice is in equilibrium under
the action of its weight, of the lateral forces (which cancel) and of the
reaction along failure line.

The safety factor is computed solely from the equilibrium of the moments
with respect to the center of the circle.

Considering slice i (Fig. 12.11), the driving moment due to this slice is
equal to: M,,,; = W; sin 0;R.

The resisting moment due to the slice is:

ch
M, = ( + N; tan gp)R
cos 0;


file:///W/OH
file:///Vf/OH
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Fig. 12.10.

Fig. 12.11.
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TABLE 12A
Slice numbers Total
(10*N)
1 2 3 4 5
0; (degrees) —13.5 0 13.5 28 44 -
W; (104 N) 205 56 764 75 @ 412 —
u; (kN/m?) or kPa 0 225 60 525 20 @ —
(W; cos20; —u;b) (10*N) 19.4 42 354 262 9 —
[cb + (W; cos?0; —u;b) tan ] p 19.3 22.8 22.2 227 236 110.6
cos 0;
W;sin 0; (10*N) —4.8 0 17.8 35 28.6 76.6

where N; is the normal component of the reaction on the failure plane, N; =
W, cos 8; —u;(b/cos 0;), u; being the pore-water pressure, normal to the
failure surface, which is computed at the center of the base of each slice.

We then have: u; = (h; + 2;)7, .

Overall, we obtain the formula for the safety factor:

n 1
Y {[eb + (W; cos?8; —u;b) tan p] ——
i=1 cos 0;

n
> W;sin0;
i=1

This factor may be computed from the data of Table 12A where values
of 0; and W; have been graphically determined based on Fig. 12.10.

Finally, we obtain: F = 110.6/76.6 = 1.44.

This value is in good agreement with the value found in Problem 11.3 by
the global method.

The slight difference between the two results is due to the different
hypotheses made for each of the computations and also due to the lack of
accuracy inherent in graphic solutions.

The above safety factor may seem a little low since the allowable lower
limit is usually F = 1.5. Two solutions may be considered to increase the
value of F. The downstream slope could be flattened slightly (1 or 2°) or
use could be made of burrow material whose mechanical properties are
somewhat better than those studied.

*xkProblem 12.5 Stability of a dam with impervious core. Comparison of
results from computer calculation and slice method

Check the stability of a dam with an impervious core as shown on Fig.
12.12 (which gives the geometry and material properties).
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downstream

watertight screen

| 1B5.00m i &

Fig. 12.12. Cross-section of dam (scale 1/670).

Two calculations must be made:
— downstream slope stability with maximum pool;
— upstream slope stability under rapid drawdown condition.

In order to simplify the verification, for each case (illustrated in Figs.
1213 and 12.15) the coordinates of the center and radii of the critical
circlesare given. These were determined by computer. The lines of saturation
are shown also.

All that is required is to determine the safety factors corresponding to
each of these critical circles by the method of Fellenius, and to compare the
results with those of the computer program.

Computer method

The “Lease” IBM-program was used, partly based on the simplified Bishop-
method and partly on the “normal” method.

The advantage of the computer is that a large number of critical circles
can be studied (100 to 200) and thus it is possible to quickly find a very good
approximation of the most critical one.

For the two cases under consideration, the minimal safety factors were
found, being: 1.45 for the upstream slope under rapid drawdown, and 1.69
for the downstream slope at maximum pool.

Solution

(a) Stability of the downstream slope at maximum pool

The dam is heterogeneous and therefore the slice method is best suited for
the stability analysis. The Fellenius method is used which is practical for
calculations by hand.

The portion of the circle in the dam may be divided into 6 slices as indi-
cated on Fig. 12.13. As in the preceding problem, the safety factor is given
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Fig. 12.13. Stability check of downstream slope, maximum pool.
by the formula:
n

1
Y |[eib; + (W, cos?0; —u;b;) tan o] ——
i=1 cos §;

2 W;sin 6,

i=1

We do not dispose over the flow net, we know only the free-water surface
line, but we can make a simplifying assumption and say that the flow lines
are parallel to the free-water surface line. AB is an equipotential line (perpen-
dicular to the free-water surface, Fig. 12.14); the pore-water pressure at a
point A may then be calculated by: hy =h, =2, +u, /v, =25 +Ug/vy;
ugp =0.Thus,uy = (25 —24)7y-

For the slice No. 6, the downstream part of the failure circle has been
neglected, because in this zone the failure surface is very near the ground
surface. In fact, because the failure line is not a perfect circle, it will pass
through the toe of the downstream slope.

The factor F' may be computed from the data of Table 12B, from which
F=264/164 = 1.5.

Taking into account the simplifying assumption, we can say that this value
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TABLE 12B

Slice numbers Total
(10*N)
1 2 3 4 5
b; (m) 2.08 4.18 4.78 6.50 7.16 7.46
0; (degrees) 485 43 35 28.2 17 7
W; (104 N) 6.08 43.22 82.64 110 90 31
u; (10% Pa) 0 0 0.6 0 0 0
W; cos?8; —u;b; (10° N) 2.67 19.35 52.6 85.45 82.30 30.53
[Cibi + (W, COS20,' - uibi) tan d)]
1
X (10%N) 7.3 24.4 458 74 67 26 246
cos U
W; sin 0; (10% N) 4.55 29.47 47.4 52.48 26.3 3.78 164
r1ac®
tree
B8
A
Fig. 12.14.

is in good agreement with the value of F = 1.64 found by computer pro-
gram,

These values of F are sufficient to ensure the stability of the slope
(F = 1.5).

(b) Upstream slope stability under rapid drawdown condition

Once again, because the dam is heterogeneous, the slice method of
Fellenius is used. The portion of the dam in the critical circle may be divided
into 5 slices as indicated on Fig. 12.15.

As for the previous problem, the safety factor is determined from:

n 1
Y |[e;b; + (W; cos?6, —u;b;) tan p] ——
i=1 cos 6;

F =
> W; sin 0,

i=1

Again, the flow net is not available, but only the free-water surface line. The
pressures, after rapid drawdown, may be evaluated from Bishop’s hypothesis,
that is:

u, (after rapid drawdown) = u, (before drawdown) — v, Ak, (Fig. 12.16).
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most critical circle

Fig. 12.16.

We assume that at maximum pool, the pressures in the sandy gravel soil
(3) correspond to the hydrostatic pressures (the material is relatively
pervious: the head losses through the soil are neglected for a first approx-
imation).

Then it is easy to determine the pore-water pressures before and after draw-
down. The global calculation of F is done as before, based on Table 12C that
finally gives: F = 159/123 = 1.29.

The influence of the riprap was overlooked in the above calculation. Its
angle of internal friction is high (60°), so the real safety factor is certainly
greater than 1.29. We may consider it to be F =1.30. A computer analysis
of this condition with assumptions closer to the real conditions showed that
F =1.45.

Taking into account the simplifying assumptions of the manual method,
we may still consider the two values of the coefficient to be close enough.

Usually, it is desirable to work with a safety factor of over 1.5.
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TABLE 12C

Slice numbers Total
(10 N)

1 2 3 4 5

b; (m) 7.46 8.96 7.46 7.31 17.22

0, (degrees) —8 4 18 32 46

W; (10%N) 37.42 109.5 114.6 103 42.7

u; (104 Pa) 3 6.1 7.5 6.9 3

W; cos?8; —u;b; (104N) 14.3 54.3 475 23.9 1.1

[e;b; + (W; cos®8; —u; b;) tan @]

1
X 16 50 44 31.2 17.6 159
cos 01‘
W; sin 6; (10° N) —5.2 7.6 35.4 54.5 30.7 123

In this case, we may be satisfied with a safety factor of the order of 1.3 to
1.45, because the computation is made for a rapid drawdown condition,
which occurs very rarely during the life of a dam. Under these conditions, a
slightly higher risk is acceptable than that for maximal pool conditions. (An
empty pool condition where a slope failure would occur, would cause
considerably less damage.)

Remark
In each of the calculations, the result of the Fellenius-method is inferior
by about 0.15 compared to that of the computer.

*x*xProblem 12.6 Design of a retaining-wall on unstable slope
Consider a natural slope of 0 = 25°, consisting of a clayey silt layer whose

thickness h = 8 m, overlying a bedrock substratum parallel to the ground
surface. The properties of the silt were obtained from laboratory tests and

are:
— wet unit weight: v = 18 kN/m3
— effective maximum angle of internal friction = Q;eak = 20°

— effective maximum cohesion: ¢' = 25 kPa
— residual angle of internal friction ¢,,, = 18°
— residual cohesion c.,; = 10 kPa

A retaining wall must be designed for a proposed highway along the slope.
The wall is to be founded on the bedrock and capable of supporting the
slope. The length L of the slope, measured on the slope from toe to crest is
100m (Fig. 12.17).

(1) Determine the stability of the slope prior to construction.

(2) Since excavations into the slope for the construction of the wall may
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trigger instability, the residual shear strength parameters of the silt must be
used for the stability calculation.

(a) Show that under this condition, the natural slope becomes unstable.

(b) Compute the limit depth z, to which the bedrock should be located
to have a stability with a safety factor of 1. The computation done for this
must overlook the presence of the wall.

(c) Calculate the minimum value of the force @Q,, parallel to the free
surface and applied to an imaginary vertical plane which would restore the
slope stability.

(3) Suppose that the wall construction will mobilize this force Q,, . Show,
by proposing a plastic equilibrium net above the wall, that the limit available
force is a passive pressure B which must be defined. Is the stability insured
regardless of length L? Analyse the different possible cases.

(4) Compute the force exerted by the soil on the wall. What are your
conclusions?

7 - 18kN/m3
silt characteristics § . = 20° c' = 25kPa
pic o
Pres = 18 Creg = 10KkP2
Fig. 12.17.
Solution

(1) Following the steps of Problem 12.2, and without draining conditions
(Zy =2), we get:

¢’ tan ¢’
F = + 1
Yhcosfsinf  tan 6

which, for this case, gives:
25 tan 20°

F = S - + = 1.23
18 x 8 x cos 25 sin 25 tan 25

F > 1.

The natural slope is stable.
(2a) Going back over the calculations with the residual shear strength
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parameters, we get:

10 tan 18°
F = = s + s = 0.88.
18 x 8 x cos 25~ sin 25 tan 25

Since the safety factor is less than 1, the slope is unstable.

(2b) Z, is obtained immediately if we say F = 1 in formula (1), using the
residual shear parameters and Z; = h. We get: Z; = 4.78 m.

Note that by a different analytical method, we again find the value of Z,,
calculated in Problem 5.6.

(2¢) Referring to Fig. 12.18 and writing the equilibrium equation for the
soil volume located upslope from the imaginary plane AC, we have:
— tangential component of weight W of the soil mass likely to slide:
Wr =Wsinf =+« hL cos 8 sin 6
— normal component of weight W:

Wy = Wcos0 =y -hL cos®0
— shear resistance in the soil (assume perfect adherence between soil and
rock, which implies that the sliding plane occurs in the soil mass):

T = ¢L+ Wy tang = ¢'L + vy hL cos?0 tany'.

The overall stability is: T+ Q,, = W, from which:
Q, = y+hLcosfsinf —y-hL cos®0 tanyp’ —c'L
and for this case: @,, =~ 673 kN.

Fig. 12.18.

(3) Preliminary remark

For the following computation, and in order to simplify notations, ¢ and
¢ will stand for ¢,es and Qres-

Let us now consider the initially unstable slope retained by a wall, and let
us study its influence on the mass above it. We assume that the wall stabilizes
the slope. We know that in the case of cohesive soil (¢, ¢) whose free surface
has an angle § > ¢ with the horizontal, the limit equilibrium can only occur if
depth h of the mass is less than the critical depth Z; (see Problem 5.6). In
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ay

Fig. 12.19.

this instance h > Z, (see question 2b), therefore, in the absence of a wall,
equilibrium cannot exist since limit equilibrium can not occurif Z, < Z <h,
To admit that the wall stabilizes the slope, is also to admit that behind the
wall a limit equilibrium can exist (which we suppose to be the Rankine limit
equilibrium) to depth h. Therefore, in all points of a soil mass to depth
Z > Z,, the Mohr’s circle must be tangent to the failure envelope of the
soil. This condition exists if the extremity M of the stress vector f acting on
a face parallel to the ground slope is brought back to M, on the failure
envelope. This amounts then to assume that the influence of the wall
consists of an additional shear stress 7, on the plane considered. (Fig. 12.19).
This stress 7, may be computed by writing the overall equilibrium of the
mass.

The pole method (see Problem 5.1) gives the lines of failure in the mass
in limit equilibrium state.

In the zone Z < Z,;, we have a choice between two possible limit equilib-
rium conditions since in this instance extremity M of the stress vector f
acting on a face parallel to the ground slope is located inside the failure
envelopes,

In view of the fact that large displacements would occur before equilib-
rium condition is developed, we must only consider the upper Rankine
equilibrium (see Fig. 12.10) which corresponds to a passive pressure being
developed behind the wall.

With a similar reasoning as that in Problem 5.6, the failure lines net in zone
Z <Z,;, may be drawn. We find that for Z = 0 the tangents to these lines
make an angle (7/4 —¢/2) with the free surface, and that for Z = Z, one
family of lines has a tangent parallel to the free surface, whereas the other
family of lines has a tangent with an angle /2 — ¢ with the free surface.
(Fig. 12.21).
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case 2 <2, (6) and (8" indicate the

(6") directions of tangents
to the failure lines at
depth Z

Rankine's upper
equilibrium circle

ay

Fig. 12.20. \

In the zone Z > Z,, the pole method shows immediately that the failure
lines are straight lines, one family of lines being parallel to the free surface,
whereas the lines of the second family make an angle (m/2 — ) with the
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free surface (Fig. 12.21). A plastic equilibrium diagram may then be drawn
which consists of 3 zones (Fig. 12.22) which shows, above the wall, a stable
equilibrium zone (zone 1) and two plastic equilibrium zones, the upper
Rankine equilbrium (zone 2) and the limit equilibrium due to the presence
of the wall (zone 3).

Force B mobilized to insure equilibrium may be evaluated by calculating
the resultant of the passive stresses acting on the imaginary vertical plane
ABC drawn in the plastic zone and passing through point C where the first
failure line crosses the substratum (Fig. 12.22). On part AB of the plane,
corresponding to Z << Z,, a passive stress b is developed which is calculated
by considering the upper Rankine equilibrium circle (Fig. 12.23). On part
BC of this plane, corresponding to Z> Z,, a stress q is developed with an
inclination & which is calculated from the Mohr diagram of Fig. 12.24.
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Evaluation of b

Let p and R be the abscissa of the center and the radius of the Mohr’s
circle for passive conditions. By writing that this circle passes through the
extremity M (0,, To) Of the stress vector f acting on a face parallel to the
ground slope, we get an equation of the second degree in p whose largest
root corresponds to the passive circle sought.

The general equation for the passive pressure circle is:

(6 —p)® + 7% = R2.
Coordinates of M are: g, =7y *h cos?f and 7, = *h cos 8 sin §.
Condition for tangency to the failure envelope:

R/(H +p) = sing (with H = ¢ cot p).
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case Z < Z,

Fig. 12.23. Case Z2 < Z ;.

Writing that (C) passes through M:
(0o —p)* +7§ = (H+ p)* sin’y,
then the second-degree equation desired is:
p? costp —2(0, + Hsinp)p + 03 +73 —H? sin¢ = 0
A" = (0, + H sin®¢)? —cos?p[03 + 173 —H? sin’p] = 0.
From which:
0, + Hsinyp +VA'
cos?y
R = (H+ p)sin g,

Note: we can verify that A’ = 0 for Z = Z, (double root).
Finally, we obtain the normal component of the passive stress:

0g = p+ R cosq,
where: m—a = 71—20 —(wp —0) = 71— (6 + wp)
from which: o = 0 + wp,

the auxiliary angle wy being defined by (Fig. 12.23):
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Fig. 12.24. Case Z > Z, .
, . sinf _ psin@ *
Wp = arc sin — = arc sin
sin R

from which: 65 =p + R cos (0 + wp)
and the passive stress is: b = o5 /cos 0.

The following table gives the results of the computation for different
values of Z.

Z (m) 0 1.00 2.00 3.00 4.00 4.78 =7,

b (kPa) 24.9 44 .2 59.1 70.6 77.5 69.5

Evaluation of q
Referring to Fig. 12.24, we get the following relationship:

B=m—20—(n/2—¢) = (1/2) — (20 — )
from which, the components of g are:

0, = qcosd = p—Rcosf = p—Rsin (20 — ),

*In determining wé it must be taken into account that for the values of Z such as Zy <
z<L2Z,, wé, is greater than 7/2. The value Z, corresponds to the minimum of R/p. In this
case Zg =~ 4.50m.
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T = @sind = Rsinf = Rsin (20 — o).

Abscissa p of the center of a Mohr’s circle and its radius R are determined
by writing that it is tangent at M, to the failure envelope, which translates
into:

R/(p + H) = sinyg

p—Rcos (m/2—y) = 0, = v+ hcos?b
or:

R—psing = ccosy

p—Rsing = v+hcos’f

from which:

v +h cos?8 + ¢ cos ¢ sin g

p= cos’y

v +hcos? sing +ccosy

R =
cos?yp

from which: ¢ = V02 +72 and tané = 71,/0,.

Finally, the component of g in the direction parallel to the ground slope,
or g, is given by g9 = g cos (8 —§). The following table (¢ = ¢, = 10 kPa,
¢ = Yres = 18°) summarizes the results of the calculations for various values
of Z.

Z (m) 4.78(Z,) 5.00 6.00 7.00 8.00
g (kPa) 69.5 72.7 86.9 101.1 115.4
5 25° 24°7 23°5 22°6 22°
gy (kPa)  69.5 72.7 86.9 101 115.2

Fig. 12.25 shows the diagram of stresses acting along the imaginary
vertical plane ABC. Integrating the passive force increments, gives the passive
force B:

B=Qs+Qs with Qg = | b+dZ and Q, = | gy -dZ.

O%N
...N%at
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Stresses are in kPa

Fig. 12.25.

249 77.5
Qs = — +44.2 + 59.1 + 70.6 + )X 1.00 +

77.5 + 69.5
+| ———— 0.78 = 282kN

, 69.5 + 72.7
Q = (————

72.7 11
2 x 0.22 + —2—+86.9+101+

)xl.OO =

>~ 298 kN, from which B =~ 580 kN.

We previously saw (question 2) that the required force @,, to establish
equilibrium has a value of 673 kN (this for a slope length of 100 m measured
along the slope).

Force B, therefore, will guarantee equilibrium of slope length L', such
that: L' = 100 x (B/Q,, ) = 100 x (580/673) =~ 86.2m.

But this length L' is to be measured from the intersection C of the first
failure line of zone 3, with the substratum. Distance C, C between the toe
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Fig. 12.26.

of the wall C; and point C, corresponds to the base of zone 1 in stable
equilibrium. The computation of length C,C is done by assimilating the
first failure-line A,B, of the passive equilibrium in zone 2 to an arc of
circle passing through A, at the top of the wall and drawing a tangent at
B, parallel to the free surface. Under these conditions, referring to Fig.
12.26, we get:

BB, = B,B; + B;B,
or ByB, = A, B; (tangents to a circle),
and in the triangle A, B, B;:

A, B; B, B; A B, ¢ hich
= = o)
sin (/2 — 6) sin (/4 + 0 + ¢/2) sin (m/4 — ¢/2) rom whie
cos 6
A1B3 - X AIBI = 1.542Z1

sin (/4 — ¢/2)

B.B. — sin(7r/4+6+gp/2)><A B. ~ 16702
1 sin (/4 — ¢/2) 1o ‘ !

B\B, =~ 3.21Z, = 3.21x 478 = 15.34m.

B,C
and in triangle B, C,C: 22 _ GO

sin (m/2 + ) sin i
where: n = 71— (m/2—0)— (W/2+ ¢) = 80—
in (0 — . .
from which: C,C = §&"L)><B302 = M(h—Zl)
cos @ cos ¥
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C,C = 0.128(8.00—4.78) = 0.41m

c,¢c=c¢¢c,+C,C =B,B, +C,C = 15.34 + 0.41 =~ 15.75m.
Let C,C = Lg.

Thus, Ly + L' = 15.75 + 86.20 = 101.95m > 100m = L.

Then the equilibrium of the unstable slope is hardly obtained in this case.

In general, two cases must be considered: In the case where Ly + L' <L,
equilibrium cannot exist even if the wall is stable and fixed: the soil mass
would flow over the wall.

But, in the case where Ly + L' > L, the mass is stabilized by the wall,
provided that the wall is designed to withstand the forces applied to it.

(4) Let us now calculate the applied force to the wall (for a one meter
length), or F,,. We get F,, by studying the equilibrium of the parellelopipede
A,C,CA. On face A,C,, force-F, acts, on face AC force-B. On face C, C,
force Ty = (T — Tmax ) X Lp acts, which corresponds to the deficit of shear
along plane C,C (part of the weight component W, not being equalized by
the shear stress in the soil along C, C) (Fig. 12.27).

Fig. 12.27

So: |F,| = |Tql + IB|

T, = [y+hcosOsind — (¢’ +v+hcos?d tany')] Ly

T, = [18 x 8 x cos 25° x sin 25° — (10 + 18 x 8 x cos? 25° x tan 18°)] x
x 15.75 = 105.9kN == 106 kN

from which F, =106 + 580 = 686 kN, value greater than the passive
pressure which can be developed by the soil mass.
If slope length L of the unstable side is such that L < (L, + L) the



238 SLOPES AND DAMS

equilibrium of the soil mass behind the wall does not require the total
mobilization of the passive force, and force F, is correspondingly less. It is
computed by considering the overall equilibrium of the slope.

To conclude, we observe that it is not always possible to stabilize an
unstable slope by a retaining-wall, because soil may flow over the wall if
the length of the slope is long enough.

On the other hand, the wall stability must be ensured by calculating force
F, as shown above, considering an adequate safety factor. A serious error
would be made if F, was considered to be the Rankine passive pressure.
Note that the calculation based on the table for earth pressure coefficients
and on the theorem of the corresponding state is not possible here since in
the associated cohesionless soil mass we have 8 > o.

Remark

Blondeau and Virollet reported in special issue II (March 1976) of the
Bulletin de Liaison des Laboratoires des Ponts et Chaussées on a similar
problem, giving a solution in which no account is made of the passive force
which we called Qy acting on BC of the imaginary plane. Their simplifi-
cation we consider not permissible for the case studied where (h —Z,) is
of the same order of magnitude as Z.

*xProblem 12.7 Embankment stability on a compressible soil

An embankment design is being considered for a preliminary study of a
highway. The embankment is proposed to be 7m high, to have side slopes
of 1.5 horizontal to 1 vertical and to consist of a gravelly soil whose
properties are as follows: internal angle of friction: ¢ = 35°, cohesion = 0,
unit weight 19 kN/m?3.

The embankment would be constructed on a soft clay layer of 6 m thick-
ness and having the following characteristics:

average undrained shear strength: ¢, = 20 kPa,
average consolidated undrained angle of friction ¢.,, with tan ¢, = 0.22,
consolidation coefficient ¢, = 4 x 1077 m?/s.

The clay layer is underlain by a fractured pervious bedrock. The ground-
water table is at existing ground surface.

With the charts shown on Fig. 12.28 where ¢ = angle of friction of the
fill material, ¢ = cohesion of the natural clay layer, F = safety factor, N =
stability factor = c/vH, specify the method of construction which would
yield a stability with F = 1.5 (short-term consideration).

Solution
Since the design is preliminary, simplifying assumptions can be made. A
final design would require a more rigorous analysis.
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(1) Short-term stability of the embankment constructed in one phase
With the notations of Fig. 12.29, we have:

D/H = 6/7 = 0.86, N = c/yH = 0.15
From stability charts, we have:
for N = 0.2, F = 1.12,

for N = 0.1, F = 0.6,
sofor N = 0.15, F < 1

The conclusion is that the embankment cannot be stable (short-term) if it
is constructed in one phase.

(2) Analysis of the embankment stability built in various phases, phase one:
(short term)

Assume that the first phase consists of building the embankment to half
its proposed height, then:

D/H = 6/35 = 1.7, N = ¢/yH = 0.30
From the graphs we get:
for N=0.3, F=1.61.

The conclusion here is that the embankment may be constructed to half
its proposed height (F > 1.5).

(3) Analysis of consolidation due to the embankment constructed to half
its planned height

The time required to achieve 99% consolidation of the clay is: t = T, h?/c,.
Since the clay layer is drained over its two boundaries (fractured bedrock),
h =3m (half thickness of clay layer), then t = 2 x (9/4) x 107 = 4.5 x
107 s, or t = 520 days, say 1.5 years.

Taking into account the normal times of construction of a highway, it
does not appear practical to wait that long time for a consolidation to occur.
The time required to achieve 70% consolidation is:

t = T,h*jc, = (0.4/4)x 9x 107 = 0.9 x 107 = 104 days

or 3.5 months. This is acceptable.

Hence, at the end of 3.5 months, we may assume that the clay layer
would be 70% consolidated. The degree of consolidation is not, of course,
uniform throughout the height of the clay layer, but, for finding the increase
of ¢,, the following calculation is based as a first approximation on the
assumption that the degree of consolidation is at any point equal to its
average value say 70%.

The effective stress increment due to the load of the 3.5 m of embank-
ment is: Ao’ = 3.5 x 19 x 0.7 = 46.55 kPa.
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Assume that this stress increment is uniform over the entire clay layer
including where failure circle could occur (a somewhat optimistic assumption).
The increase in the undrained cohesion will then be:

Ac, = Aoy xtanyg,, = 46.55x 0.22 = 10.2kPa

Therefore, at the end of 3.5 months, we may consider that ¢, = 20 +
10.2 = 30.25 kPa.

(4) Analysis of the short-term stability of the second phase (second fill layer
of 2m thickness)

If the balance of the embankment were to be constructed in the second
phase, F would be = 1.2, say too low. Therefore, the second phase should
only consist of placing an additional 2 m of fill. We then would have: D/H =
6/5.5=1.09, N = ¢, /yH = 30.25/(19 x 5.5) = 0.29 which (from the graphs)
gives a safety factor of the order of 1.55, which is acceptable.

As done above, we must wait for about 3.5 months so that the degree of
consolidation will be 70% (assuming that ¢, remains constant).

(5) Analysis of the short-term stability of the third phase (additional 1.5 m

of fill)
At the end of the second phase (additional 2m of fill placed since 3.5
months) the increase of the average effective stress in the clay will be about:

Aoy = 0.7x2x19 = 26.6kPa
Then the increase of the cohesion of the clay is:

Ac, = 26.6 x 0.22 = 5.85kPa

Hence:
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¢, = 30.25+5.85 = 36.1kPa
and therefore D/H = 6/7 = 0.86,

N = ¢, /yH = 36.1/19.7 = 0.271

which gives a safety factor close to 1.5. Once again, this is acceptable.

The method of construction should therefore consist of 3 phases each
allowing a placement of 3.5m, 2m and 1.5 m of fill thickness with consolid-
ation times of 3.5 months between phases.

Remarks

(1) Because of the preliminary nature of the evaluation, numerous simplifi-
cations were made.

(2) Problem only dealt with the embankment stability, the final design
should further evaluate the embankment settlements.

(3) If the calculated time intervals between loadings cannot fit into the
construction schedule, fills with enlarged berms can be applied at reduced
time intervals. Enlarged berm will require more materials.
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Safety factor of reinforcement,
reinforced earth, 7.10; 7.11

— —, wall sliding, 7.3;7.9; 7.10;
12.1;12.2;12.3,12.4;12.5

Sand liquefaction, 2.9; 2.13

Saturation curve, 1.9

—,degree of,1.2;1.9;1.10

Schmertmann’s method, 6.10

Schneebeli’s rods, 1.14

Sedimentometry, 1.11

Sermes penetrometer, 6.6; 6.7

INDEX

Settlements, 3.3; 3.4; 3.6; 3.11;
3.16;3.17; 3.18; 3.20;,6.9;6.10;
6.11;6.13;6.14;6.15;,6.16;6.17;
6.20:6.23;10.7;10.8; 12.7

Shallow footing, 10.14

Shear, resistance, 4.5

— strength test, Casagrande box,
410;4.12;6.19

— stress, diagrams, 8.1;9.2;9.3;9.4

Sheet pile wall, 8.1—8.4

— piles, 8.1—8.4

Short term, calculations for, 6.3;
10.10;11.8

Sieving, 1.5

Simple point, penetrometer, 6.4;
6.11

Skempton’s coefficient A, 4.11

— (Bishop and) coefficients, 4.16

— formula, 3.3; 3.4; 10.7

Slice method, 12.4

Slip circle, 12.1;12.3;12.4;12.5

Slope, drainage in, 2.11

—, failure of,12.2;12.3;12.4;12.5

— stability, 12.2; 12.3;12.4; 12.5

Slurry wall, 9.1; 9.2; 9.3

SPT,6.17,6.18;6.19;11.10

Square footing, 3.5; 3.18; 10.5;
10.6;10.7;10.8

Stability against overturning (of a
wall), 7.3;7.9,7.10

—, internal, reinforced earth, 7.10

Static penetration test, 6.1; 6.2;
6.3;6.4;6.10;6.11;6.12;6.14;
6.15;6.16;6.19; 6.20

— penetrometer, 11.10

Stiffness coefficient, 3.7

Stratified soil, 7.7

Stress path, 4.12; 4.18

—tensors, 4.18;5.1;5.2;5.3; 5.4;
5.5;5.6

Stresses under footings, 3.5; 3.18

Swelling, of clays, 10.13;11.7;11.8

Strip footing, 6.4;6.7;6.10;6.11;
6.13;6.15;6.19;10.1,10.3;



INDEX

Strip footing, 10.4;10.6; 10.7;

10.8;10.9;10.10;10.13
Superposition, limit equilibrium, 5.8
Surface tension, 2.15

Terzaghi’s diagram, 9.4

— equation, 3.19

— formula, 2.3

Terzaghi and Peck’s charts, 6.17

Time of consolidation, 3.8

— factor, 3.8;3.9;3.10; 3.11; 3.16;
3.19

Tip resistance, penetrometer, see
Penetrometer

— —, piles, 11.5;11.6

Total stresses, 4.6

Tran Vo Nhiem, 10.12

Triaxial test, 3.17;4.1; 4.2; 4.3; 4.5;
4.6;4.7;4.9;4.10;4.11;4.12;
4.15;4.17;6.19
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Tri-layer system, 6.12;6.14

Two-layer system, 3.19; 6.9; 10.7;
10.8;10.11

Tschebotarioff’s method, 8.4

Ultimate load, 11.5

Unconfined compression (resistance
to) 4.7;6.19

Uniformity coefficient (Hazen’s) 1.5

Unit weight, 1.1;1.3;1.10;1.14

Void, air, 1.9
—ratio, 1.1;1.2;1.4;1.10;1.12;
1.14;3.15

Water content, 1.1;1.2;1.4;6.19
Weightless material, 5.5
Well, pumping, 2.5

Young’s modulus, 4.8
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