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V 

INTRODUCTION 

Guy Sanglerat has taught geotechnical engineering at the "Ecole Centrale 
de Lyon" since 1967. This discipline was introduced there by Jean Costet. 
Since 1968 and 1970, respectively, Gilbert Olivari and Bernard Cambou 
actively assisted in this responsibility. They directed laboratory work, 
outside studies and led special study groups. 

In order to master any scientific discipline, it is necessary to apply its 
theoretical principles to practice and to readily solve its problems. This holds 
true also for theoretical soil mechanics when applied to geotechnical engin-
eering. 

From Costet's and Sanglerat's experiences with their previously published 
textbooks in geotechnical engineering, which contain example-problems and 
answers, it became evident that one element was still missing in conveying 
the understanding of the subject matter to the solution of practical problems: 
problems apparently needed detailed, step-by-step solutions. 

For this reason and at the request of many of their students, Sanglerat, 
Olivari and Cambou decided to publish problems. Over the years since 1967 
the problems in this text have been given to students of the "Ecole Centrale 
de Lyon" and since 1976 to special geotechnical engineering study groups of 
the Public Works Department of the National School at Vaulx-en-Velin, 
where Gilbert Olivari was assigned to teach soil mechanics. 

In order to assist the reader of these volumes, it was decided to categorize 
problems by degrees of solution difficulty. Therefore, easy problems are 
preceded by one star (*), those considered most difficult by 4 stars (****). 
Depending on his degree of interest, the reader may choose the types of 
problems he wishes to solve. 

The authors direct the problems not only to students but also to the 
practicing Civil Engineer and to others who, on occasion, need to solve geo-
technical engineering problems. To all, this work offers an easy reference, 
provided that similarities of actual conditions can be found in one or more 
of the solutions prescribed herein. 

Mainly, the S.I. (Systeme International) units have been used. But, since 
practice cannot be ignored, it was deemed necessary to incorporate other 
widely accepted units. Thus the C.G.S. and English units (inch, foot, pounds 
per cubic foot, etc.) have been included because a large quantity of literature 
is based on these units. 

The authors are grateful to Mr. Jean Kerisel, past president of the Inter-
national Society for Soil Mechanics and Foundation Engineering, for having 
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written the Preface to the French edition and allowing the authors to include 
one of the problems given his students while Professor of Soil Mechanics at 
the "Ecole Nationale de Ponts et Chaussees" in Paris. Their gratitude also 
goes to Victor F.B. de Mello, President of the International Society for 
Soil Mechanics, who had the kindness to preface the English edition. 

The first problems were originally prepared by Jean Costet for the course 
in soil mechanics which he introduced in Lyon. 

Thanks are also due to Jean-Claude Rouault of "Air Liquide" and Henri 
Vidal of "Reinforced Earth" and also to our Brazilian friend Lucien Decourt 
for contributing problems, and to Thierry Sanglerat for proofreading manu-
scripts and printed proofs. 



IX 

NOTATIONS 

The following general notations appear in the problems: 

B 

c 
c 

n 
C 

Cu 

cc 

d 

D 

E 

FR 

G 
h 
H 
i 

IP 
k 

Skempton's second coefficient (sometimes A refers also to 
cross-sectional area). 
value of A at failure 
footing width (sometimes B refers also to Skempton's first 
coefficient). 
soil cohesion (undifferentiated) 
effective cohesion 
reduced cohesion (slope stability) 
undrained cohesion 
consolidated-undrained cohesion 
compression index 
uniformity coefficient, defined as d 6 0 /d 1 0 
coefficient of consolidation 
soil particle diameter (sometimes: horizontal distance 
between adjacent, similar structures, as in the case of sub-
surface drains) 
equivalent diameter of sieve openings in grain-size distri-
bution 
depth to bottom of footings (sometimes D refers to depth 
to hard layer under the toe of a slope). 
void ratio (sometimes: e refers to eccentricity of a concen-
trated force acting on a footing) 
maximum and minimum void ratios 
Young's modulus 
pressuremeter modulus 
friction ratio (static penetrometer test) 
acceleration due to gravity (gravie) 
shear modulus 
hydraulic head 
soil layer thickness (or normal cohesion: H — c cot <p) 
hydraulic gradient 
critical hydraulic gradient 
plasticity index 
coefficient of permeability 
active earth pressure coefficients due to overburden, sur-
charge and cohesion, respectively 
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^ P 7 > ^ p q 5 ^ p c 

Kpy> *^Pq 5 Kv 

K 
K0 

I 
L 
mv 
Mm 

MR 

M 

N N N 

Pi 
Pi 
Q 
Q 
Qf 

Q P 
9d 
<7ad 

RD 
r 
i?p or gc 

S 
S.G. 
St 
t 
T 
T 
U 

U 

v 
V 

w 

passive earth pressure coefficients 
active earth pressures perpendicular to a given plane 
passive earth pressures perpendicular to a given plane 
soil reaction modulus 
bulk modulus (Ks of soil structure, Kw of water) 
coefficient of earth pressure at rest 
width of an excavation 
length of an excavation 
coefficient of compressibility 
driving moment 
resisting moment 
bending moment 
porosity 
stability coefficient (slope stability problems) 
bearing capacity factors for foundation design 
concentrated (point) load 
limit pressure (pressuremeter test) 
creep pressure (pressuremeter test) 
uniformly distributed load (or percolation discharge) 
discharge (or load acting upon a footing) 
friction force of pile shaft (total skin friction force) 
end-bearing force of pile (total) 
ultimate bearing capacity of soil under a footing or pile 
allowable bearing capacity of a footing or pile 
radius of a circular footing (or radius of drawdown of a 
well) 
relative density (en -e)/(eB i ) 

well radius (or polar radius in polar coordinate system) 
end-bearing on the area of a static penetrometer (cone 
resistance) 
curvilinear abscissa (or cross-sectional area of a thin wall 
tube, or settlement) 
cross-sectional area of a mold or a sample 
specific gravity 
degree of saturation 
time 
shear 
time factor 
porewater pressure 
degree of consolidation (or resultant of pore-water pressure 
forces) 
rate of percolation 
volume 
weight of a given soil volume 
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W 

wuwp 

x,y,z 

P 

7 
7s 
7sat 
7h 
7w 
Td 
7 
7xy » 7yz ? 7z: 

^ x > ^ y ? ^ z 

V 
i 

O 

o 
o* 

om 
r 

' x y ? ' y z ? ' z 

ti 

X 

: water content or settlement 
: liquid limit, plastic limit 
: Cartesian coordinates, with Oz usually considered the verti-

cal, downward axis 
: angle between orientations, usually reserved for the angle 

between two soil faces. Also used to classify soils for the 
purpose of their compressibility from static cone penetro-
meter test data C.P.T. 

: slope of the surface of backfill behind a retaining wall 
(angle of slope) 
unit weight of soil (unspecified) 
soil particles unit weight (specific gravity) 
saturated unit weight of soil 
wet unit weight of soil 
unit weight of water = 9.81 kN/m3 . 
dry unit weight of soil 
effective unit weight of soil 
shear strain, twice the angular deformation in a rectangular, 
3-dimensional system 
angle of friction between soil and retaining wall surface in 
passive or active earth pressure problems, or the angle of 
inclination of a point load acting on a footing 
dynamic viscosity of water 
axial strains in a rectangular, 3-dimensional system 
principal stress 
volumetric strain 
angle of radius in polar coordinates system (sometimes: 
temperature) 

: Poisson's ratio 
: effective normal stress 
: total normal stress 
: normal stresses in a rectangular, 3-dimensional system 
: major principal stresses 
: average stress 
: shear stress 
: average shear stress 
: shear stresses in a rectangular, 3-dimensional system 
: angle of internal friction (undefined) 
: effective angle of internal friction 
: reduced, effective angle of internal friction (slope-stability 

analyses) 
: angle of internal friction, consolidated, undrained 
: slope of a wall from the vertical 
: auxiliary angles defined by sin top = sin j3/sin y and 

sin co 6 = sin 8 /sin $ 
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7T : 3.1416 
p : distance from origin to a point in polar coordinate system 
\p : angle of major principal stress with radius vector (plasticity 

problems) 



XIII 

ENGINEERING UNITS 

It is presently required that all scientific and technical publications resort 
to the S.I. units (Syst&me International) and their multipliers (deca, hecta, 
kilo, Mega, Giga). Geotechnical engineering units follow this requirement 
and most of the problems treated here are in the S.I. system. 

Fundamental S.I. units: 

length 
mass 
time 

meter (m) 
kilogram (kg) 
second (s) 

S.I. Units derived from the above 

surface 
volume 
specific mass 
velocity (permeability) 
acceleration 
discharge 
force (weight) 
unit weight 
pressure, stress 
work (energy) 
viscosity 

square meter (m2) 
cubic meter (m3) 
kilogram per cubic meter (kg/m3 ) 
meter per second (m/s) 
meter per second per second (m/s2) 
cubic meter per second (m3 /s) 
Newton (N) 
Newton per cubic meter (N/m3 ) 
Pascal (Pa) 1 Pa = 1 N/m2 

Joule (J) 1J = 1 N x m 
Pascal-second* Pa x s 

However, in practice, other units axe encountered frequently. Table A 
presents correlations between the S.I. and two other unit systems encoun-
tered worldwide. This is to familiarize the readers of any publication with 
the units used therein. For that purpose also, British units have been adopted 
for some of the presented problems. 

Force (pressure) conversions 

Force units 
Pressure units 
Weight unit 

see Table B 
see Table C 
lkN/m 3 = 0.102 tf/m3 

*This unit used to be called the "poiseuille", but it has not been officially adopted. 
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TABLE A 
Correlations between most common unit systems 

Length 
Mass 
Time 
Force 

Pressure 
(stress) 

Work 
(energy) 

Systeme International 
(S.I.) 

units 

meter (m) 
kilogram (kg) 
second (s) 
Newton (N) 

Pascal (Pa) 

Joule (J) 

common 
multiples 

km 
tonne (t) 
— 
kN 

kPa 
MPa 

kJ 

Meter-Kilogram 
(M.K.) 

units 

meter (m) 
gravie* 
second (s) 
kilogram force 
(kgf) 
kilogram force 
per square 
meter (kgf/m2) 
kilogram meter 
(kgm) 

system 

common 
multiples 

km 
— 
— 
tf 

( t / m 2 

1 kg/cm2 

tf .m 

Centimeter-Gram-
Second system 
(C.G.S 

units 

cm 
g 
s 
dyne 

barye 

erg 

:.) 

common 
multiples 

m 
— 
— 

bar 
(106 baryes) 

Joule 
(107 ergs) 

*Note that 1 gravie = 9.81 kg (in most problems rounded off to 10). 

The unit weight of water is: 7W = 9.81 kN/m3 but it is often rounded off 
to : 7W = 10 kN/m 3 . 

Energy units: 

1 Joule = 0.102 kg.m = 1.02 x 10~4 t . m 
1 k g f . m = 9.81 Joules 
1 t f .m = 9.81 x 103 Joules 

Dynamic viscosity units: 

1 Pascal-second (Pa.s) = 10 poises (Po). 

British units: 

1 inch 
1 foot 
1 square inch 
1 square foot 
l m 2 

1 cubic inch 
1 cubic foot 
l m 3 

1 pound (lb) 
1 Newton 

1 lb/cu. in. 

l m = 39.370 in. 
l m = 3 .2808 foot 

1 cm2 = 0.155 sq. in. 

l c m 3 = 0.061 Ocu. in. 

= 0.025 4 m 
= 0.304 8 m 
- 6 .4516 cm2 

= 144 sq. in. = 0.092 9 m2 

= 10.764 sq.f t . 
= 16.387 cm3 

= 1728 cu. in. = 0.028 317 m 3 

= 35.314 cu. ft. 
= 4.449 7 Newton = 0.453 59 kgf 
= 0.225 lb = 0.112 4 x 10" 3 sh. ton. (1 sh. ton. = 2 kip) 
= 1.003 x l O - 4 ton. 
= 270.27 kN/m3 
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1 lb/cu. ft. = 0.156 99 kN/m3 

1 kN/m3 = 3.7 x 10"3 lb/cu. in. = 6.37 Ib/cu. ft. 
1 lb/sq. in. (p.s.i.) = 6.896 55 x 103 Pa 
1 Pascal = 14.50 x 10"5 p.s.i. 
100 kPa = 1 bar = 14.50 p.s.i. 
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Chapter 7 

1 

RETAINING WALLS 

^Problem 7.1 Earth pressures on a vertical wall, horizontal backfill, above 
the water table 

A 4m high wall serves as a retaining-wall for a mass of horizontal flattened 
dry sand (Fig. 7.1). The dry sand's unit weight is 18.3 kN/m3 and its internal 
angle of friction is 36°. 

What is the magnitude of the earth force P on a 1 m wide wall slice, as-
suming that the wall does not deflect? Calculate also the earth force Px if the 
wall deflects sufficiently to generate active (Rankine) pressure conditions in 
the backfill. Assume that the back face of the wall is frictionless. 

Fig. 7.1. 

Solution 
If no wall deflection occurs, the earth pressure at rest condition prevails, 

i.e. that pressure P 0 , then acting on the wall, may be represented by the 
Mohr's circle equilibrium condition comprised between the Coulomb's 
envelopes (Fig. 7.2). In general, for a sand: 0.33 < K0 < 0.7. (cf. 6.1.4 in 
Costet-Sanglerat, where the values of K0 are calculated from empirical 
formulas.) The pressure distribution on the inner wall face is triangular and 
because it is assumed that the face is frictionless, the pressures act perpen-
dicular to the wall. 

D r y 

u-
if--

sand 
:18.3kN/m3 

36 " 
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Fig. 7.2. 

So, for a i m wide wall slice, we have: 
A> = ?K0ydH

2b 

where b = 1.00 m and 7d = 18.3 kN/m3. 
K0 calculated by the formula of Jaky gives: K0 = 1 — sin y . 

For*//= 36°: sin <p'~ 0.588 and K0 ^0 .412 . 

Then, P0 = 0.5 x 0.412 x 18.3 x O 0 2 = 60.3 kN (per meter of wall length). 
If we assume that K0 = (1 — sin <p')/cos </?', as proposed by some authors, 

cos y = 0.809 and K0 = 0.51. So, P0 = 74.6 kN (per meter length of wall). 
We finally get: 60 kN < P 0 < 74 kN. 
Let us now assume that the wall will sufficiently deflect at the top to 

mobilize a Rankine active pressure (a displacement of the top of the wall 
of about 1/1000 of the wall height, therefore about 4 mm, as generally 
occurs for unrestrained walls). 

In this case: Px = tan2 *P 
Td .01 

2 
with b = 1.00m and 7d = 18.3 kN/m3, ir/4-<p/2 - 27°, tan 27° = 0.5095, 
and: P, = 0.5 x 0.509 52 x 18.3 x 4.00 2 ^ 38 kN (per meter of wall length). 

Summary of answers 
6 0 k N / m < P 0 < 74 kN/m; Pi = 38 kN/m. 
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irkProblem 7.2 Earth pressure considering the water table on a vertical wall 

Assuming the givens of the preceding problem, what is the total resultant 
earth pressure acting on the wall and its location with respect to the base of 
the wall, if there is a water table at 1 m below the backfill grade (assume a 
sand porosity of 0.31) (see Fig. 7.3). 

'. h = 1.00 m'.' :':'• 
• '■: ■'•;•:■'.•-.-Water table 

H-h= 3.00m 

Fig. 7.3. 

Solution 

From the preceding problem, we have: 

fea7 = tan 2 (27°) = 0 .2596, say 0.26. 

The buoyant weight of the sand is: 

1 = Tsat - 7w = 7d + «7w - 7w = 7d — (1 — rc)7v 

7' = 1 8 . 3 - ( 1 - 0 . 3 1 ) x 10.0 = 11.4 kN/m 3 . 
or: 

The distribution of the stresses behind the wall is (see Figs. 7.3 and 7.5): 
On AB: the distribution is triangular and we have: 

= 0; = kayxydxh = 0 . 2 6 x 1 8 . 3 x 1 . 0 0 = 4.76 kN/m2 

On BC: the distribution is still triangular, but at B the slope of the hy-
potenuse changes: here the buoyant weight and the hydrostatic water 
pressure must be taken into account, as well as the weight of dry sand, to be 
considered as a uniform surcharge. Therefore: 

— pressure due to the buoyant weight of the sand: 

fflB 0; nc fca7 xy'x(H-h) = 0 . 2 6 x 1 1 . 4 x 3 . 0 0 = 8.89 kN/m2 

— pressure due to the uniform discharge of the sand (rectangular distri-
bution): 

°2B o2c kqxq = k^xh xyd where: kc 

wa7 

cos(/3 —X) 
(Fig. 7.4) 
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Fig. 7.5. 

4.76 k N / m 2 43.65 kN/m* 

This equation derived from Coulomb's hypothesis is also valid for Rankine-
conditions (6.24 in Costet-Sanglerat); but: 
j3 = X = 0, feq = fea7, 
so: a2B

 = o2C = /ea7 x h x 7d = aB computed previously as = 4.76 kN/m2 

— hydrostatic pressure (triangular distribution): 
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^3B = 0; a3C = (H-h)yw = 30kN/m2 . 
So we end up with the diagram shown in Fig. 7.5: the total force acting on 
the wall is the resultant of the forces Rx, R2 and R3 of that Figure, and we 
have: 
Rx = (1/2) x 4.76 x 1.00 x 1.00 = 2.40kN per meter of wall located at 
3.00 + 0.33 = 3.33 m from C (1/3 of AB). 
R2 = 3 .00x4.76x1.00 = 14.3 kN (per meter of wall) acting at 1.5 m dis-
tance of C (middle of BC). 
R3 = (1/2) x 38.9 x 3.00 x 1.00 = 58.3 kN (per meter of wall) acting at 
1.00 m distance of C (lower 1/3 of BC). 

The resultant force thus is: P = R} + R2 +-R3 — 75 kN and this force acts 
at such a distance d from C that: 

Pd = Rxdx + R2d2 + R3d3, 

2.4 x 3.33 + 14.3 x 1.50 4- 58.3 x 1.00 
d = - 1.17m 

75.0 

Summary of answers 
P = 75 kN per meter of wall, d = 1.17 m. 

++Problem 7.3 Retaining wall with horizontal backfill; overturning stability 
and sliding stability 

Suppose you are asked to determine the stability of the quay wall shown 
on Fig. 7.6. (It is assumed that the steps of the wall are comparable to a 
straight line AB because the weight of the soil is not significantly different 
from that of the concrete in the small triangular areas.) 

The base of the foundation's upper part is at the level of the water table 
and that of the natural soil, in which the footing, completely submerged, is 
embedded. The retaining-wall supports the soil above the water table. 

Assume the following values: 

Concrete : unit weight 23 kN/m3 

Fill : unit weigh 118 kN/m3 

internal angle of friction $x = 30° 
cohesion c = 0 
earth pressure coefficients on AB (8 = <p, and X = 25°) 
kay =0.474 fcaq =0.522 
surcharge on fill, q = 10 kPa. 

Natural soil: buoyant unit weight 11 kN/m3 

internal angle of friction <p2 = 25° 
cohesion c = 0 
earth pressure coefficients on BC (5 = \ <p2 ) 
/ea7 = feaq = 0.364 
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q =10 kPa 

Water table 

Fig. 7.6 

Wall: hx = 6.50m h2 = 2.50m 
FA = lm, KB = 4m, DC = 5m. 

As a security precaution, ignore the passive earth pressure on plane ED of 
the foundation. 
Find: 
(1) The eccentricity of the resultant force acting on base CD. Is there tension? 
(2) The maximum bearing pressure on the foundation soil. 
(3) The safety factor against overturning. 
(4) The safety factor against lateral sliding (assume the friction coefficient 
between the bottom of the foundation and the soil is tan <p2). 

Important remark: 
As in the Costet-Sanglerat text, kay and feaq are the coefficients of inclined 
earth pressure and Kay and Kaq the perpendicular acting coefficients (K&7 = 
kay cos 8). 

Solution 
(1) Calculation of the eccentricity of the resultant acting forces. 
The exterior forces acting on the retaining-wall are: 
— the weight of the wall (W): 
— the hydrostatic force acting on the submerged portion of the wall II; 
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— the active earth force P increased by the value of the lateral force Q due to 
the surcharge imposed by the fill; 
— the passive earth force B acting on plane ED of the foundation; 
— the foundation soil reaction R. 

For the wall to be in equilibrium, the resultant of all these forces must be 
zero which allows the calculation of the value of the reaction R. 

For the sake of safety, it is general practice to ignore the passive force B 
acting on the side of the footing. There are two reasons for this. Firstly, the 
wall displacement is generally not sufficiently large to actually mobilize the 
passive condition: a displacement of about 0.05 to 0.10 ft (ft being the height 
of plane ED) would be needed. In our case, this would mean a displacement 
of 12—25 cm, considerably much more than wall movements associated with 
the development of active conditions. Secondly, in practice, the possibility 
of an excavation being made along ED after construction, always must be 
taken into account. 

(a) Wall weight and hydrostatic pressure 

As indicated above, we assume the back of the wall, AB, to be a straight 
line. Then (Fig. 7.7) we have: 

wall: rectangular section AHKF 
Wx = 1.00 x 6.50 x 23 = 149.5 kN (per meter length of wall) 
triangular section AHB: 
W2 = \ x 3.00 x 6.50 x 23 = 224.3 kN (per meter length of wall) 

q = l O k P a 

F A 

j E 

. 6 .50 m 

"XSX/y^^A^X^/ 

Fill 
</>= 30° 

:2 .50 m 

j^*28^^67Tv2 

W3-7T t^'2 
N a t u r a l s o i l 
</>2 = 25° 

W a t e r 
t a b l e 

Fig. 7.7. 
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footing: BCDE (taking into account the uplift pressure due to hydrostatic 
pressure and using the buoyant unit weight of concrete: 
7;eton = 13kN/m3). 
W3 = W3 - n = 2.50 x 5.00 x 13 = 162.5 kN. 

In the axes-system (Cx, Cy) (Fig. 7.7) these forces have following action 
points: 
Vft:(x = 3.50; y = 5.75) 
W2: (x = 2.00; y = 4.67) 
W3: (x = 2.50; y = 1.25). 

(b) Forces on the plane AB 

(bx) Earth pressure forcePx 

^ i , o , , , ^ . « . hy 6.50 
^i = hdl2kR1 where fea7 = 0.474, / = —*— = = 7.17m. 

cos A cos 25 
So, Px = \ x 18 x 7 1 7 2 x 0.474 = 219.3 kN (per m length of wall). 
Horizontal component: P1H = Px cos(5 + \) = Px cos 55° = 125.8 kN (per 
m length of wall). 
Vertical component: P l v = Px sin 55° = 179.6 kN (per m length of wall). 
Remark 

Angle 8 = (f has been chosen because when the state of plasticity is 
developed, AB is a line of failure. The portions of soil located to the left 
of this line and above the steps are not in a plastic equilibrium state. The 
shear will be that of soil along AB and therefore 5 = <p. 

Since the pressure distribution is triangular, the resultant force is located 
at 1/3 of the height counted from B and along the axes Cx and Cy, at the 
point of coordinates: x = 1.00 m, y = 4.67 m. 

(b2) Lateral force due to the surcharge of the fill Qx 

The distribution of the stresses working along the 'stem' of the wall is 
uniform (rectangular diagram). 

We then have: 
Qi = Q'Kn'l = 10x0.522x7.17 = 37.4 kN (per m length of wall): Qx. 
Horizontal component: QXH = Qx cos 55° = 21.5 kN (per m length of wall). 
Vertical component: Q1V = Qx sin 55° = 30.6 kN (per m length of wall). 

The point through which this force acts is located at half the wall height 
from B, or at x = 1.50 and y = 5.75 m. 

(c) Forces on the back face of the footing 

Plane BC is vertical (X = 0) and furthermore, from the givens, we know that: 
5' = §V?2=§ x 25° = 16°40' 
from which cos 5' = 0.958, and sin 5' = 0.287. 
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Remark 
Angle 5' = \ $ is the usually assumed value in the case of friction between 

soil and concrete. The footing of the wall is below the water table. Since 
the hydrostatic pressure acts on both vertical faces of the footing, but 
in opposite directions, it does not have to be accounted for. 

( c j Earth pressures: triangular distribution: 

Pi = Wh2
2k'ai 

P2 = 0.5 x 11 x 27502 x 0.364 = 12.5 kN (per m length of wall) 
Horizontal component: P2H = 12.5 x 0.958 — 12 kN (per m length of wall). 
Vertical component: P2V = 12.5 x 0.287 — 3.6 kN (per m length of wall). 

The point through which the force acts is at 1/3 up from C on BC, or, in 
our coordinate system, at x = 0.0 and y = 0.83 m. 

(c2) Earth pressure due to the surcharge fill and to the mass of earth above 
the water table: Q2 

The surcharge fill is 10 kPa. The weight of the soil above the water table is: 
6.50 x 18 = 117 kPa, and the total is: q = 127 kPa. 
Therefore, we have: 
Q2 = q'-h2- fc^ = 127 x 2.50 x 0.364 = 115.6 kN (per m length of wall). 
Horizontal component: Q2H = 115.6 x 0.958 = 110.7 kN (per m length of 
wall). 
Vertical component: Q2V = 115.6 x 0.287 = 33.2 kN (per m length of wall). 

Since the pressure distribution is rectangular, the point of application of 
the force is half-way up BC, or x = 0, y = 1.25 m. The resultant of all the 
forces acting on the wall (with the exception of the soil reaction on the 
footing) is F, and its line of action through plane DC (Fig. 7.8) can be de-
termined. At P, the equivalent force F ' gives: 
Mc = moment of F with respect to C = moment of F ' at C = Fv x d. 

Therefore, point P is defined by: d = Mc/Fv , where: 
Mc = S moments of exterior forces with respect to C 
Fv = 2 vertical components of exterior vertical forces. 

The eccentricity of P with respect to the axis of symmetry of the footing 
is e = |d— DC/2| and the resultant F goes through the middle third if: 
e<DC/6. 

Table 7A summarizes the calculations: 

Fv = Xfv = 783.3 kN, Mc = Smc = 2 463.2m-kN, 

d = 2 463.2/783.3 = 3.14 m 
from which e = 3.14m —2.50m = 0.64m. 
but DC/6 = 5.00/6 ^ 0.83, then e < DC/6. 

Assuming a linear distribution of the pressures acting on the bottom of 
the footing, it follows that the distribution must be trapezoidal. This proves 
that there are no (uplift) tension forces in the concrete. 
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Fig. 7.8. 

TABLE 7A 

Forces 

^1H 
^1V 
Qm 
Qiv 
Pm 
PTV 
Q2H 

Qrv 
Wx 
W2 

w3 = w3 - n 

Forces (kN) 

vertical 

179.6 

30.6 

3.6 

33.2 
149.5 
224.3 
162.5 

horizontal 

125.8 

21.5 

12.0 

110.7 

Lever arm by C 
(m) 

4.67 
1.00 
5.75 
1.50 
0.83 
0 
1.25 
0 
3.50 
2.00 
2.50 

Moment by C 
(kN-m) 

587.5 
179.6 
123.6 

45.9 
10.0 

0 
138.4 

0 
523.3 
448.6 
406.3 
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(2) Calculation of the maximal stress in the bottom of the footing 
The stress distribution results in a force R which must be in equilibrium 

with F \ The usual calculation is to resolve this force in horizontal and 
vertical components. 

For the vertical components, the trapezoidal distribution resultant must 
equal Fv . Referring to Fig. 7.9, we have: 

'max ' ^min 

1 
2 \ w max Ho, + a„ 

xB = Fv 

2B B\ 
)xBx\— - - ) = Fvxe 

(1) 

(2) 

from which: an 

783.3 

(Fv/B)(l + 6e/B), and therefore: 

6 x 0.64 . 
= 277 kPa, or ar 2.8daN/cm2 

'max 

Fig. 7.9. 

mm 

Remark 
For calculating the allowable bearing capacity for an eccentric, inclined 

load, Meyerhof proposes the following formula for the vertical component 
of the allowable stress (for sands): 

<7vaa = yD + ^ ^ y B ' { l - ^ Ny + jD 
28 V 

JVq - 1 

where Bf = B — 2e is the decreased width of the footing, e the eccentricity 
of the load and 5 its angle of inclination. 
The allowable load then is: Qv = B'qvad = 310 kN/m < Fv . 
The wall will fail by rupture of the foundation soil. 
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(3) Calculation of the safety factor against overturning of the wall 
To estimate the safety factor against overturning of the wall, it is necess-

ary to know the location of the axis of rotation of the wall. If the foun-
dation soil were non deformable, this axis would be th rough!) (Fig. 7.8) at 
the toe of the footing. Since the soil deforms, the location of the rotation 
axis is not known and may well vary during the overturning process. There-
fore the safety factor varies during the course of the movement. 

If it is assumed that the axis of rotation is through point D, we can write: 

Moments of stabilizing forces through D: 

wl 
w2 
w^ 
Pxv 
Qiv 
?2V 

QlV 

149.5x1.50 = 
224.3 x 3.00 = 
162.5x2.50 = 
179.6 x 4.00 = 

30.6 x 3.50 = 
3.6 x 5.00 = 

33.2 x 5.00 = 

224.3 
672.9 
406.3 
718.4 
107.1 

18.0 
166.0 

2 Mi = 2313 m - k N 

Moments of overturning forces through D: 

Pm 
Q\H 

^2H 

©2H 

125.8 x 4.67 = 
21.5x5.75 = 
12.0 x 0.83 = 

110.7x1.25 = 
2M 2 = 

= 587.5 
= 123.6 
= 10.0 
= 138.4 
= 859.5 m •kN 

The safety factor against overturning for the condition of an undeform-
able foundation soil then is: 

S M 2 2 313 
Fr = = = 2 . 6 9 - 2 . 7 > 1.5. 

2 M 2 859.5 

F r is quite a bit more than 1.5 which is the usually acceptable value of the 
safety factor. In practice, it is not necessary to control the overturning 
stability safety factor if the resultant of all forces acting on the wall, passes 
through the middle third of the foundation. This resultant should, how-
ever, be as close as possible to the footing center, when the softness of the 
foundation soil increases. 

(4) Safety factor against sliding 
Of interest now are the horizontal forces. The horizontal component F H 

of F ' must be in equilibrium with the friction force acting against the 
bot tom of the footing. 
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The general equation for the safety factor against sliding is: 

aB + Fv tan 5 
Fs = ~ , 

where a = adherence between soil and footing ( |a |<c) and 5 = friction angle 
between them. 

For a cohesionless soil, c = 0, thus a = 0 and: 

Fg = Fv/Fu tan 5 

if we take 5 = <p2
 = 25°, then tan 5 = 0.466, and: 

FH = 125.8 + 21.5 + 12 + 110.7 = 270 kN. 

Thus, Fg = (0.466 x 783.3)/270 = 1.35 < 1.5. 
This means that the safety factor against sliding Fg is too low: the wall 

geometry should be changed in order to obtain Fg > 1.5. 

Remark 
The safety factors against overturning and against sliding were of course 

only calculated for learning reasons. In practice, the correct evaluation 
of the footing consists in considering that it is subjected to an inclined and 
eccentric load. 

The calculation shows that the eccentricity and inclination of the load 
greatly reduce the allowable bearing pressure. It would be very dangerous 
to compare the stress amax = 277 kPa to the allowable pressure calculated 
from a vertically applied load (without eccentricity) because this would lead 
to an unrealistic safety factor. 

Summary of answers 
(1) e = 0.64 m, the resultant passing through the middle 1/3. 
(2) o = 2.8daN/cm2 (280 kPa). 
(3 )F r ^ 2 . 7 , 
( 4 ) F g ^ 1 . 3 5 . 

The wall will collapse by punching failure. 

**Problem 7.4 Wall stability without a buttress and with an inclined backfill 

Refer to the gravity wall of Fig. 7.6 and assume the back of the wall to be 
rectilinear through AB. Calculate Pu Qu P2, Q2 with the same assumptions 
as in the preceding problem, but now with a backfill inclined upwards at an 
angle ]3 = 20° with the horizontal. 

Compare the results with those obtained for the horizontal backfill (j3 = 0) 
condition of problem 7.3. 
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Solution 
We first must find the earth pressure coefficient of the fill with 5 /^ = 1, 

fJl<p = 20/30 - 0.67, and X - 25°. 
It will be noticed that for (i/ip = 0.6 and j3/<£ = 0.8, the Caquot and Kerisel 

tables do not give the coefficients for the angles of wall X over 15° and 10° 
for a {p — 30°. This is because we are faced with a steeply inclined plane (as 
mentioned in sect. 5.3.3. of Costet-Sanglerat, vol. 1). The Boussinesq-
equilibrium cannot be produced and we therefore must consider the Rankine 
equilibrium (sect. 5.2.2, vol. 1). 

The earth pressure coefficient (normal component) is given by the formula: 

sin j3 cos(6 -(1) 
K*y = — — [1 - s i n < p c o s ( 2 0 + o jp—0)] , 

sin <p sin (ojp + p) 
where: 6 = X = 25°, |3 = 20° and <p = 30°. 

sin co^ = sinj3/sin<p = sin 20°/sin 30° = 0.684 in which co^ = 43.16° 

sin|3 = 0.342; c o s ( 0 - j 3 ) = cos 5° = 0.996 

s i n ^ = 0.5; sin(oj>^ + |3) = sin 63.16° = 0.892 

cos(2 6 + 03p + (3) = cos(50 + 4 3 . 1 6 - 2 0 ) = cos 73.16° = 0.290 

sin(2 0 + co0- |3) = sin 73.16° = 0.957, 

0.342 x 0.996 
from which: Kay = [1 - 0.5 x 0.290] = 0.653. 7 0 . 5 x 0 . 8 9 2 

The angle a of the earth pressure on the wall face is: 

sin v? sin(2 6 + coB - 0) 0.5 x 0.957 
tan a = = = 0.560, 

1 - s i n ^ c o s ( 2 0 4- ajp— ]3) 1 — 0.5 x 0.290 

from which a = 29.23° (a is very close to 30°). 
Based on its true inclination, the earth pressure coefficient is: 

k&1 = X a 7 /cos a = 0.653/cos 29.23° = 0.748. 

The force Px (per m length of wall) is equal to : 

Px = £7d- /2fca7 = 2 x l 8 x 7 . 1 7 2 x 0.748 = 346.1 kN. 

The lateral pressure due to the surcharge may be calculated by taking the 
coefficient: fcaq = fca7/cos(j3 — X) = 0.748/cos 5° = 0.750 and thus: 
Q\ = Q * feaq ' / = 10 x 0.750 x 7.17 = 53.8 kN (per m length of wall). 

To calculate P2 and Q2 a line parallel to the backfill surface is drawn 
through point B and the earth pressure coefficient is given by the Caquot-
Kerisel table: 

j3/<p = 20/25 = 0.8; 8/<p = 2 /3 ; y = 25°; X = 0° , 

from which k'ay — &aq = 0.546. 
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When, as a first approximation, the soil is assumed to be homogeneous 
and of unit weight j ; one finds: 
?2 = WhlKy = i x 11 x 2^502 x 0.546 = 18.8 kN (per m length of wall). 
Q2 = q'-h2- fcaq = 127 x 2.50 x 0.546 = 173.4 kN (per m length of wall). 

Conclusion 
In the case of an inclined backfill at j3 = 20° the lateral forces increase by 

over 50% in comparison to the j3 = 0° condition. 

irkProblem 7.5 Comparison of lateral forces on a vertical wall with horizon-
tal backfill and different assumptions (Boussinesq equilib-
rium and graphical method of Culmann) 

Referring to the giuens of problem 7.1 (wall 4 m high), a vertical-face 
(X = 0) dry sand, an horizontal backfill fj3 = 0), <p = 36°, and assuming 
5 = §<£, find: 
— the lateral earth forces by the Caquot-Kerisel method; 
— the same by the Culmann graphical method; 
— the ratio of the two answers above. 

N.B. Caquot-Kerisel tables give: 

fea7 = 0.241 for <p = 35°, (3 = X = 0 5 = §<p 

kay = 0.202 for ^ = 40°, (3 = \ = 0 5 = §^ 
Assume a linear interpolation for the value of k^ corresponding to <p = 36°. 

Solution 

By the Caquot-Kerisel method, the tables give: 

for sp = 35°: fca7 = 0.247; for <p = 40°: fca7 = 0.202, and Afea7 = 0.045. 

For yp = 36°, we get: kay = 0.247 - (0.045/5) = 0.238, and Px = \k^ xyxh2. 

Pj = 0.5 x 0.238 x 18.3 x 4l)02 = 34.8 kN (per m length of wall). 
Calculation by the Culmann method (see Fig. 7.10): 

Through point B, draw BD at an angle \p = 36° with the horizontal, and BS 
at an angle i// with BD, the same as the lateral pressure with the vertical, in 
this case: \p = 90° - f <p = 90° - (§ x 36) - 90 - 24 = 66°. 

Then draw random lines BC, BCX, BC2 , etc., then Cd, C1dl, C2 d2 , etc. . . . 
parallel to AB and lines de, dx ex ,d2e2, etc. . . . parallel to BS. Measure now 
the maximum of the ed-lines, here dmem or 2.35 cm. With scale adopted, 
this translates into emdm = 1.175 m from which: 
^max = \lh x (AD/BD) x emdm 

AD/BD = cos 36° = 0.809. So: 
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Fig. 7.10. 

4 a x = 0.5 x 18.3 x 4.00 x 0.809 x 1.175 = 34.8 kN (per m length of wall). 

Then we have: 

kay Caquot-Kerisel 
— 1 in this particular case. 

fea7 Culmann 
**Problem 7.6 Detecting errors made in the design of failing retaining 

structures (ruptures, collapses, etc.) of reinforced concrete or 
masonry 

The five walls of Fig. 7.11 all failed. Can you identify the causes of these 
failures ? 

Solution 
— Wall 1. No calculation made. Footing width obviously too narrow. Failure 
plane at contact face between sand and rock. 
— Wall 2. Insufficient drainage of the fill mass and no 'weep holes'. An angle 
of internal friction of 20° indicates a clayey soil, therefore one which would 
not easily drain. 
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7ZW777777ZK 

Li^J 

Fig. 7.11. 

1.20 

;/;////////////////;////;;/, 

v SoM clay 

© 

— Wall 3. Although 'weep holes' are indicated, there is no indication of a 
drainage blanket in the clay-fill behind the wall. 
— Wall 4. Steel reinforcement placed on the compression side of the wall 
stem, but no steel on the tension side, leading to ruptures in the wall. 
— Wall 5. Failure due to deep slip surface. The overall stability was not 
properly evaluated. 
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**Problem 7.7 Diagram of stresses behind a gravity wall. Stratified soil and 
water table. Uniformly loaded backfill 

It is required to draw the distribution of horizontal stress components 
acting on the gravity wall of Fig. 7.12(a), knowing that: 
- the inner wall face is straight and inclined 10° with the vertical. 
- the backfill of the wall is horizontal and uniformly loaded by 20kPa 
- the soil behind the wall consists of 4 distinctly horizontal layers having 
the properties indicated on Fig. 7.12(a). The lowermost layer is partly sub-
merged to ground water table. 

q = 20kPa 

1 1 1 ,1 I I i * 
f W M ^ 

( 7 ) ^1=35° 
v - y </>1=1&k 

© „. 

IA\ / / ^ \ //AW/AW //'WN 

N/n 

f?\ Y>2=35° 
W y ? = l 6 k N / m 3 y?= 16 kN/ 

^ 3 = 2 0 ° 

18 k N / m 3 

(A) ^ 4 = 3 5 ° 
^4=16 k N / m 3 Water 

</>5 = 35° 

</>5= 11 k N / m 3 

f h (m) 

1 r ( m ) 

(a) Givens of the prob lem (b) D i rec t ion of la te ra l Stresses 

Fig. 7.12. 

Solution 
The required diagram is shown on Fig. 7.13. The details of the compu-

tation are given in Costet-Sanglerat vol. 1, sect. 6.2.5. From Fig 7 13 it is 
possible to calculate the safety factors against overturning and' against 
sliding, as described in problem 7.3, provided that the dimensions of the wall 
are known. 
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Fig. 7.13. Lateral pressure distribution. 

+rk+Problem 7.8 The influence of drainage conditions on the earth pressures 
acting on a retaining wall 

A retaining-wall, 5 m high, supports a horizontal backfill of cohesionless 
sand (Fig. 7.14). The inner wall face is rough, so assume 5 = \p (assume 
kay = 0.308). The internal angle of friction of the sand (<p) is 30°. The 
void ratio is 0.53 and the specific gravity of the soil grains is 2.7. 

Calculate the lateral earth pressure per length of wall under the following 
conditions: 
(1) The backfill is dry. 
(2) Both wall and backfill are completely submerged (quai wall). 
(3) The backfill alone is submerged. 
(4) The backfill is saturated and drained through a sloping drainage blanket 
(Fig. 7.15). 
(5) The backfill is saturated and drained through a vertical drainage blanket 
(Fig. 7.16). 

|^WHN=f^\rMNflWWWy!7 

• v * 
4 

f / > . 4 

S a t u r a t e d sand 

I m p e r v i o u s s o i l 

Fig. 7.14. Wall with submerged, undrained backfill. 
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Drainage blanket 

Imperv ious natural soiL 

Fig. 7.15. Wall with backfill over the drainage blanket. 

royif^»^^finff^>fi»i»iff^^~ 

Drainage blanket 

Saturated sand 

Impervious soi l 

Fig. 7.16. Wall with backfill against vertical drainage blanket. 

Solution 
(1) Dry-sand backfill 

Js 27 

1 +e 1 + 0.53 17.6 kN/m3 The unit-weight of sand is: yd 

The lateral earth pressure is: 

P = \ka-fdH
2 = \ x 0.308 x 17.6 x 52 = 67.8 kN: 

^hor. = 67.8 x cos 30° = 58.7 kN; Pvert. = 67.8 x sin 30° = 33.9 kN. 

(2) Both wall and backfill are completely submerged 
Here, the submerged or buoyant soil unit-weight must be used: 

7h = Id + 
eju 17.6+ 

5.3 
= 21.1 kN/m2 

1 + e 1.53 

7 = Ih-Jw = 2 1 . 1 - 1 0 = 11.1 kN/m3. 
The lateral earth pressure is: 

P = hkay'H2 = \ x 0.308 x 11.1 x 52 = 42.7 kN: 
Phor. = 42.7 x cos 30° = 37 kN; Pv 42.7 x sin 30° = 21.4 kN. 
In this case, the hydrostatic pressures act on both sides of the wall, but in 
opposite directions and therefore cancel themselves. 
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(3) Backfill alone is submerged 
To the calculated buoyant soil pressure must now be added the hydro-

static pressure: Pwater = ywH2/2 = 10 x 52/2 = 125 kN. Thus: 

hor. = 37 + 125 - 162 kN; Pv 21.4 kN. 

(4) Backfill saturated and drained through a sloping drainage blanket (Figs. 
7.15, 7.17) 

In this case, as may occur when a heavy rain falls down, in the backfill 
there comes to existence a flow net as shown on Fig. 7.17, where flow 
lines are vertical and equipotential lines are horizontal. Assuming that 
the drainage blanket is not 'loaded', the pore-water pressures in it are zero 
as on the free horizontal surface. Therefore the pore pressure is zero 
throughout the backfill. The calculation is the same as for the case of the 
dry-sand backfill if we replace the dry unit-weight by the saturated unit-
weight. 

Flow Lines 

h : 5 m 

4 m 

Equipotentials \ 
3 m 

2 m 

1 m 

Zero pore pression 
in the drainage blanket 

Fig. 7.17. Flow-net due to heavy rainfall over the backfill with a sloping drainage blanket. 

Thus: 

P = ?kayhH
2 = \ x 0.308 x 21.1 x 52 81.2 kN: 

Phor. - 81.2 x cos 30° = 70.3 kN; Pv e r t . = 81.2 x sin 30° = 40.6 kN. 

(5) The backfill is saturated, but now drained through a vertical drainage 
blanket 

For this situation, the flow net is shown on Fig. 7.18. It is impossible to 
give a simple mathematical solution. Following the method of Coulomb 
several soil wedges are tested in order to find one which yields the maximal 
lateral earth pressure. In each case, pore-water pressure must be evaluated 
along the failure plane, and the resultant pressure must be calculated by 
graphical solution, for example. This pore-water pressure must be taken into 
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account in the equilibrium of Coulomb's wedge to calculate the lateral earth 
pressure. 

Because there exist pore pressures all along the boundary, the lateral 
pressure with a vertical drainage blanket will be larger than that of a sloping 
drainage blanket. 

Fig. 7.18. Flow-net for rainwater draining with a vertical blanket. 

Fig. 7.19 shows a graphical method to determine pore pressures for a soil 
wedge whose boundary conditions correspond to an angle of 45° with the 
horizontal. 

Consider an equipotential line, such as NM9 where the loads at N and M 
are equal (hN = hM). On the other hand, the pore pressure at N is zero (no 
hydrostatic head in the drainage blanket). We then have: 
hM — uM /yw 4- zM , hN — zN 

where z * uMhu 

from which each point in the diagram can be analyzed. The resultant of 
the pore pressure is U = 60.7 kN. The equilibrium state of the soil wedge 
(Fig. 7.20) is then calculated as follows: 

W = 4 x 52 x 21.1 

Furthermore, P = 

= 263.8 kN. 

W - E 7 c o s f l ) t a n ( f l - i ) + U sin 6 

sin 5 tan (9 — </?) 4- cos 5 
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P o r e w a t e r 
p r e s s u r e d i a g r a m 

P o i n t s u AL u m A L 
10 kPa m 

0 0 0.30 0 .06 
1 0.4 0.40 0.2 4 
2 0.8 0.55 0.50 
3 1 0.60 0.66 
4 1.2 0 .80 1.00 
5 1.3 0.95 1.19 
6 1.2 1.40 1.47 
7 0.9 2.10 0 .95 
8 0 — — 

U = 6.07-10 KN 

M calculated at the center of each segment of length A L ) 

Fig. 7.19. Resultant of forces due to pore pressure for 6 — 45° 

P 

A 

W- 263 .8 kN 

U= 60.7 kN 

Fig. 7.20. Graphical determination of lateral earth pressure. 

where: 5 = <p = 30° and 0 45u 

sin0 = cos0 = 0.707; sin 5 = 0.5, cos 5 = 0.86, 
tan(0-<p) = tan 15° = 0.268 

(263.8 - 60.7 x 0.707) x 0.268 + 60.7 x 0.707 
0.5 x 0.268 + 0.866 

P = 102.1 kN, Phor. = 102.1 cos 30° = 88.4 kN, 

vert. 102.1 sin 30° = 51.1 kN. 
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The procedure is repeated for other values of 0 and will result in the curve 
of Fig. 7 .21, which gives P as a function of 0, reaching a maximal value for 
6 = 45°. The value calculated above is the one for which the wall should be 
designed. 

Conclusion 
This problem illustrates clearly on the one hand, the importance of 

providing a drainage for a backfill subject to saturation and, on the other, 
the influence of the type of the drainage. The value of the pressures increases 
as follows: 
— wall and backfill completely submerged P — 42.7 kN 
— dry backfill P= 67 .8kN 
— saturated backfill with sloping blanket P = 81.2 kN 
— saturated backfill with vertical blanket P = 102.1 kN 
— saturated backfill without a blanket P = 162.0 kN 

102.7 kN 

Fig. 7.21. Variation of P as a function of 6. 

ick+Problem 7.9 Analysis of the failure of a reinforced concrete retaining-wall 
Corrective measure by using rock anchors 

A reinforced concrete retaining-wall along a motorway consisted of 21 
elements each 6 m in length. Shortly after construction, the wall failed: 
several elements were pushed over and in others had developed large diagonal 
cracks. It was observed that most of the drain holes in the wall were plugged 
up. The wall dimensions are shown on Fig. 7.22. 

A review of the construction procedures showed that the excavations for 
the wall had been done under adverse conditions: 
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— already during the excavations numerous seepages had been observed in 
the cuts; 
— the graded filter material specified for the drainage blanket had not been 
used, but was replaced by excavated material; 
— the wall footings were not bearing on solid rock, in particular not at the 
toe. 

(1) Analyse the wall stability and explain the observed failures. 
(2) Recommend a repair method by tie rods (2 rows) anchored in rock. 
The backfill material properties were: ^=34°, yh = 19kN/m3, y' = 

llkN/m3. The backfill behind the wall was replaced at an angle jS = 34° 
with the horizontal. Assume that the reinforced concrete unit-weight was 
23kN/m3 and the angle of friction between concrete and rock was 8 — 30°. 

Solution 
(1) Analysis of wall stability 
Assumptions used for calculation 

Because of the poor quality of the drainage material, the calculation must 
consider the hydrostatic pressure (assuming that the water level is at the top 
of the wall). 

The earth pressure at the heel of the wall is considered as non-existent 
since it is encompassed in the rock. However, the hydrostatic pressure acts 

3.70 m 

Fig. 7.22. Failed wall. 
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along BC because the rock is fractured. The passive pressure at the toe of the 
wall also may be overlooked (poor-quality rock). 

Assume that the backfill volume EDCF is part of the wall weight (Fig. 
7.22). Thus the lateral and water pressures on the fictive surface BCF which 
act on the wall and volume of the soil EDCF must be calculated. 

To determine the overturning stability, bending moments can be calcu-
lated with respect to A (at the toe), because the foundation soil can be 
assumed to be rigid (rock) and the center of rotation will be at point A. It 
also can be assumed that a limit Rankine-equilibrium condition exists on 
plane CF. 

The stress tensor at depth h may be represented by a Mohr's circle as 
shown on Fig. 7.23. The pole of this circle can be easily constructed and 
then the failure lines of Rankine equilibrium can be drawn (Fig. 7.24). 

Fig. 7.23. 

Stability calculation 
The first failure line which intersects the wall is the line CF. Thus the 

Rankine equilibrium condition will be modified only between the back face 
of the wall and CF plane. It is therefore justified to calculate the Rankine 
earth pressure acting on plane CF. In practice, the lateral earth pressure 
calculated as above, is slightly overestimated because the critical failure 
wedge intersects the rock zone which cannot slip. 

The stress acting on a vertical face along CF is jh cos ]3 (see Fig. 7.23). 
It is inclined upwards at an angle |3 = 34° with the normal to CF. Thus we 
get the earth pressure coefficients: 
horizontal: fcah = cos2/3 = cos2(34°) = 0.687 



PROBLEM 7.9 

/? = </>= 3 4 
Fai Lure Lines of 

Rankine equilibriurr 

Fig. 7.24. 

vertical: kav = cosj3sinj3 = cos (34°) sin (34°) = 0.463 

Overturning stability and sliding stability are studied using results of 
Table 7B (calculations are made per one meter of wall length). The stabilizing 
moments are assumed to be positive and the overturning moment negative. 
Uplift pore pressures are disregarded. 

TABLE 7B 

Forces (kN) (per m length) Lever arm 
about A (m) 

3.20 
3.20 
2.45 
1.1 

3.7 
2.77 

Moment 
A (kN • m) 
(per m length) 

+ 403 
+ 36.8 

+ 183 
+ 27.8 

+ 419 
- 4 6 5 

Weight of concrete and soil 
Pi = 6 X 1 X 21 = 126kN 
p2 = 0 . 5 X 1 X 23 = 11.5 kN 
p3 - 0 . 5 X 6.5 X 23 = 74.7 kN 
p 4 = 0.5 X 2.2 X 23 = 25.3kN 

Earth pressure on CF 
p v = | x l l x (6.67)2 X 0.463 = 1 1 3 kN 
pH = h X 11 X (6.67 )2 x 0.687 = 168 kN 

Earth pressure on BF 
Pwater = 2 X 10 X (7 .17) 2 = 257 kN 2.39 -614.2 

Overturning stability: 

2(M/A>0) 
FR = 

1070 

X(M/A < 0 ) 1079 
= 0.99. 
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The safety factor against overturning is less than 1 and thus overturning is 
a certainty. In addition, because the footing does not bear entirely on solid 
rock, the centre of rotation will shove back to a point under the footing 
instead of to point A, and this in turn will still decrease the safety factor. 

Sliding stability 
The sum of the vertical forces is equal to 350.5 kN (per m of wall length), 

the sum of the horizontal forces is 425 kN. The angle of friction between the 
concrete and the rock is 30°, therefore: FG = 350.5 x tan (30°)/425 = 0.47: 
the wall would also fail in sliding. 

To conclude, the lack of drainage behind the wall causes it to be unstable 
and creates two modes of failure, namely by overturning and sliding. 

The various wall panels underwent important displacements of varying 
magnitudes as a consequence of the bedrock quality. This caused the panels 
to interact with each other while they, theoretically, were supposed to act 
independently of each other. Since no reinforcing was designed to resist the 
bending moments, cracks developed in the outer face of the panels. 

Remark 
Assuming that a proper drainage had been installed and that the rock was 

sound, the forces acting on the wall would have been (per meter of wall 
length): 

pv = \ x 19 x (6.67)2 x 0.463 = 196kN 

pH = $ x 19 x (6.67)2 x 0.687 - 290 kN 

px = 19 x 6 x 1 = 114kN 

Moment with respect to A due to pv = 722 kN • m 
Moment with respect to A due to pH = 803 kN • m 
Moment with respect to A due to px = 365 kN • m. 

The safety factor against overturning is: FR = 1335/803 = 1.7 (acceptable) 
and the coefficient against sliding would have been: FG = 420 tan 30°/290 = 
0.84, which is too low. 

The designer probably assumed the presence of a passive pressure at the 
toe. If the rock there had been sound, sliding could not occur. The errors in 
the design consisted of: (1) unrealistic appraisal of the rock quality; (2) a 
poor construction practice (faulty drainage blanket). 

(2) Corrective measures 
The first step to repair would be, as far as possible, to improve the drainage 

of the backfill by clearing out the plugged up drain holes and by adding a 
drainage blanket. If this would not be possible, it would be required to set 
up for the fortification a calculation, taking into account the water pressure 
acting on the wall. 
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For instance, two rows of rock anchors may be placed, one located just 
above the footing, to prevent sliding, and the other at height z above the 
base. Each row of anchors is assumed to equal a tension T (per m length of 
wall). To realise a safety factor of 1.5 against sliding and overturning, we 
would have: 
FG = (201 + 2T)/425 = 1.5, 

or T = \ [(1.5 x 425) - 2 0 1 ] = 218 kN 
and FR = (1070 + T x 0.5 + T x *)/1079 = 1.5 
from which: 
z= [(1.5 x 1 0 7 9 ) - 1 0 7 0 - ( 2 1 8 x 0.5)] /218: assume z = 2. 

In this calculation, it is assumed that the placement (thus: the tension) of 
the anchors did not alter the magnitude of the earth pressures. This corrective 
method only seeks to avoid further failures and not to replace the wall to 
its original design position. (This would engender passive pressures.) 

The calculation neither did account for the poor rock quality at the toe of 
the wall. It is therefore not possible to determine the point of rotation. This 
unknown is partly taken care of by seeking a design yielding a safety factor 
of 1.5 which can be dangerous. It could also be taken care of by increasing 

Reinforced 
panel 

3.00 m 

Fig. 7.25. Remedial methods of support. 
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the load which the upper anchor is designed to take or by increasing the 
height of the row. 

To conclude, the remedial measure for the wall (Fig. 7.25) would be: 
— placing a reinforced concrete panel against the center wall face; 
— installing two whalers located just above the footing and 3 m above the 
base, respectively; 
— installing two anchor lines deriving their tension in the bedrock and on 
the whalers, designed to withstand a tension of 218 kN per m of length 
of wall. 

+++Problem 7.10 Design of a reinforced-earth retaining-wall with horizontal 
backfill 

A motorway is planned to cross an unstable slope as shown on Fig. 7.26. 
It is proposed to construct the pavements on engineered fill placed over the 
unstable areas and to support the fill by a retaining-wall. 

Two solutions are being considered, one with a conventional reinforced-
concrete wall, the other with a reinforced-earth structure. 

(l)List the conditions favorable for the choice of a reinforced-earth 
design. 

(2) In a general manner, what are the problems that could affect the 
performance of such a structure? 

(3) The height of the reinforced-earth wall must be H = 20 m. Assume the 
wall thickness to be L = 0.8 H (generally accepted value). 

Backfill and fill of the wall consist of the same material whose unit-weight 
is 18kN/m3 and angle of internal friction <p = 35°. It is assumed that the 
backfill is not surcharged. 

The earth-reinforcements consist of aluminum strips of 6 cm width and 
2 mm in thickness. The elastic limit of the aluminum is 2.5 x lOkPa. In 
order to account for the effects of corrosion and for the safety-factor criteria, 
(aldm = 2/3 o'e), only half of the cross-section of each strip is assumed to be 
effective which counterbalances the area reduction in the strip connections. 

Fig. 7.26. 
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The technology of the wall surface elements imposes the following added 
restrictions: The strip layers are laid 0.25 m apart. The reinforcement can 
only be attached every 50 cm to the wall panels. 

Design the wall to meet the safety-factor criteria. Assume all backfill and 
fill to be sand. 

The following assumptions are necessary to determine the internal stability 
of the wall: 
— the principal stresses near the wall skin are horizontal and vertical; 
— the vertical stresses in the wall mass along any line of elevation h is uniform 
over a width L — 2e, where e is the eccentricity of the resultant of the forces 
acting at that elevation. The coefficient of friction between the soil and the 
reinforcement is 0.2. 

Because of the spacing of the tie points between reinforcing and wall skin 
(every 0.50 m), it is necessary to attach a larger number of strips than 
strictly required. Calculate the corresponding safety factor which, in any 
event, cannot be less than 1.5. 

Solution 
(1) The stability of reinforced-concrete walls would have been very diffi-

cult to guarantee because they would have imposed heavy, concentrated 
loads on the foundation soils. It would have been necessary to anchor the 
foundation into the underlying bedrock. Small movements in the unstable 
soils above would have sheared the anchors. Retaining-structures of rein-
forced earth, however, can be supported directly by unstable masses because 
they can withstand small deflections. 

(2) There are basically 3 types of problems related to the stability of a 
reinforced-earth wall: 

(a) The overall wall-mass stability of the slope. This problem is the same 
as that encountered with reinforced-concrete walls. It can be analyzed by 
the 'circular slide' method. For the present problem, it is assumed that this 
overall stability has already been assessed. 

(b) The wall stability under the lateral pressure of the fill. This is similar 
to the classical retaining-wall problem (external stability). 

(c) The problem of internal stability of the wall that determines the 
dimensions and the spacing of the reinforcements. 

(3) External stability. Since we have assumed that the wall has an overall 
stability, let us look at its external stability. 

Assuming a Rankine equilibrium state behind the wall, the earth pressure 
on the vertical face is horizontal. We then have: 

Active pressure: P = ka • y(H2/2) 

V = 35°, 5 = 0, ka = 0.27 

P = 0.27 x 18(202/2) - 970kN. 
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The resultant of the forces applied to the foundation of the wall will have 
the following components: 
horizontal = 970 kN, vertical = y-H-L = 5760 kN. 

The resultant will act at a distance e from the center of the footing so that 
e = (970 x 6.6)/5750 = l . l m . 

Since the resultant falls within the middle third of the wall footing, the 
wall is safe against overturning. 

If we assume a coefficient of friction of 0.3 between the wall and the 
foundation soil, the safety factor against sliding will be: 
(5750 x 0.3)/970 = 1.8, which is satisfactory. 

A failure through punch is not likely because of the relatively high angle 
of internal friction of the foundation soil, 0 = 35°. The external stability of 
the wall is satisfactory. 

(4) Internal stability 
(a) Tension in the reinforcement. For determining the internal stability, 

we have to consider the tension stresses in the reinforcements and the length 
of the reinforcing elements. As for the tension stresses, we must first evaluate 
the vertical stresses acting at a depth of h from the top of the wall (Fig. 
7.27). The vertical stress is due to the overburden above h and to the earth 
pressure of the fill being retained. The resultant of the forces applied at this 
level has the following components (per m length of wall): 

Rv = W = yhL along the vertical, 

Rh = P = kay(h2/2) along the horizontal, 

the eccentricity of the resultant is: 
_ kah

2yh/3 _ kah
2 

2yhL 3 x 2 x L 

L =16m 
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In accordance with Meyerhof's hypothesis, we assume that the stress 
distribution is uniform over a width L — 2 e. The magnitude of the vertical 
stress ov is: 

_ yhL _ yhL 

°v ~ L-2e ~ L-ka(h
2/3L) 

If we assume that the soil at the contact with the wall skin is in a state of 
active pressure, then the horizontal stress is: oh = kaov. If we now assume 
that the line of reinforcement at depth h is designed to withstand all the 
horizontal stresses at that level and above height Ah, the tension in the rein-
forcing elements must be equal to: 

Ah 
T = oh x Ah = kaovAh = kayh : 

l-(l/3)ka(h/L)2 

for a wall length of 1 m. 
The maximal reinforcing tensions will occur at the bottom of the wall. 

The tensions there are: 
h = H = 20 m, L = 16 m, y = 18kN/m3, ka = 0.27, Ah = 0.25 m. 

Thus T - 0.27 x 18 x 20 x 0.25/[l - (0.27/3)(20/16)2 ] = 28.3 kN 
For a length of 1 m of wall, it will be necessary to design the reinforcement 

to withstand a tensile stress of 28.3 kN. 
The cross-sectional area of each reinforcing element, assuming each to be 

6 cm wide and 2 mm thick, and taking into account the safety factor, will 
be: ^(6 x 10~2 x 2 x 10~3) = 6 x 10~5 m2. Each element can resist a tension 
of: 6 x 10- 5 x 250 x 106 = 15 kN. 

At the bottom of the wall, one element will have to be placed every 50 cm. 
Let us now compute the height h, from which only one element per m will 
be required. 

We have: 15 = 0.27 xl8xhxx 0.25/[l - (0.27/3)(h1 /16)2 ] . 
For h less than 16 m, the term (0.27/3)(/z1 /16)2 may be neglected. A 

simple calculation leads to: hx = 12.0 m. 
One reinforcing element per m will suffice for a height of 8 m upward and 

one element every 2 m from 14 m and up. 
The tension diagram for the entire wall, 1 m in length is shown on 

Fig. 7.28. 
The safety factor obtained with this design is: 

F = SLYeaABCDEFGO/aieaACEHO: 

Area ABCDEFGO = 30 x 8.5 4- 15 x 5.5 + 7.5 x 6 = 255 + 83 + 45 = 383, 
the area ACEHO varies little from the area of triangle AHO or: 30 x (20/2) = 
300. 
Therefore the safety factor is: F = 383/300 = 1.28. 
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1 Element every 2 meters 

1 Element every meter 

Tension forces inside the wall 

„Capacity of tension 
forces in e lements 

H 30 kN/mL 

Fig. 7.28. 

This coefficient is too low. To increase it, it is for instance possible to 
place strips at 0.50 m intervals half-way up the wall and at meter intervals in 
the upper part of the wall. 

The safety factor becomes: 

F = 
AIJKG _ 30 x 10 + 15 x 10 _ 450 
AOH " 300 ~ 300 

= 1.5, 

which is acceptable. 
(b) Length of reinforcing elements. The vertical stress o is very close 

to the value of yh. Iff is the coefficient of friction between the soil and the 
reinforcing element and b is the element width, the adhesion requirement is: 
T < 2bfyhLa, where T is the tensile force on the strip and Ln its length over 
which adhesion acts. Therefore we need: 

Ln > 
knAh 

2bfyh 2bfn 

where n is the number of elements per meter. 
Usually the value of 0.2 is assumed for the friction coefficient between 

soil and strip, and thus: 

Ln > 
0.27 x 0.25 

2 x 6 x 10"2 x 0.2 x 1 
= 2.8 m 

This length should be added to the width of Coulomb's edge, at the elevation 
h, i.e.: 
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Fig. 7.29. 

Lc = ( t f - ^ t a n ? - | 

for h = 0: (Lc)» = 10.4 m. 

Therefore, the maximum length of the reinforcing elements is: 2.80 + 10.40 = 
13.20 m. This condition is fulfilled since the wall's thickness is 16 m. 

Remark 
The assumptions made above to calculate the tension in the reinforcing 

strips are somewhat arbitrary and other assumptions could be made, in 
particular for the calculation of the tensions in the strips (see Fig. 7.29), 
where a trapezoidal vertical stress distribution is assumed over the width of 
the wall. Force F is the vertical component of the resultant force applied at 
the level h, and is in equilibrium with the stresses of trapezoidal distribution: 

F = ~ T ;> F*e = h(oa-oh)Lx{\L-\L) 
2(o1 + o2) 

or: F-e = (oa-ob)L
2/12 

which gives: oa 4- ob = 2F/L, oa—ob - 12F-e/L2 

from which: oa = (F/L)(l + 6e/L), ob - (F/L)(l - 6e/L). 

The vertical component of the resultant, F, is yhL, and its eccentricity: 
e = kah

2/6L, from which: 
oa = yh[l+ka(h/L2] and ob = j • h[l - ka(h/L)2]. 

If we assume, as we did above, that the soil pressure against the skin is active, 
then the horizontal pressure: 
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OH =kaOv =kaOa =kaj - f t [ l + ka(h/L)2], 

while the maximum stress at the base of the wall is: 

ka-yH[l + ka(H/L)2] 

The tension in a row of strips at the wall base, per meter length of wall is: 

T _ = kay-H-AH[l + ka(H/L)2] I max 
= 0.27 x 18 x 20 x 0.25[1 + 0.27(20/16)2] = 34.55kN. 

The magnitude found on the basis of this assumption, therefore is about 20% 
higher than in the previous assumption of uniform stress over width L — 2e: 
Tmax = 2 8 . 3 k N . 

Calculation of the tension force in the reinforced strips by the method of 
'Coulomb's wedge' 

This method consists in considering the triangle of reinforced earth 
bounded by the potential rupture planes AC passing through the basis of the 
wall (Fig. 7.30). 

It is assumed in the method that the soil between the strips is in a plastic 
equilibrium along the potential failure plane. 

The forces acting on the prism are: 
— the weight of the soil wedge: W = \yH2 cot 0; 
— reaction R of the soil on plane AC (this reactant is inclined by an angle y 
with respect to the normal AC); 
— the total tension force Tt in the strips at the different intersection points 
with AC (this force is horizontal). 

The equilibrium of the three forces requires that : 
Tt = \yH2 c o t 0 • t a n ( 0 - ^ ) 

Tt is a function of angle 0. This function has a maximum for dTt/dd = 0, 

which gives 0 = - 4- - , 

B 

m:mm 
— : 4-: • / ' i ' i ■ i • ■ ' (*;•. w 

Tt /■'./■"■ur 

A 9 

Fig. 7.30. 
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from which: 

Tu = - t an 2 

U 2/ yH2 = -KlH2 

One more assumption can be made regarding the distribution of tension 
forces in the reinforcing strip, namely that it is triangular. The forces that 
undergo the greatest tension are the ones located near the base of the wall. 
For a wall length of l m , the tension in the bottom row of strip is: 
T = kayHAH = 0.27 x 18 x 20 x 0.25 = 24.3 kN. 

This tension is about 15% less than that calculated with the assumption 
of a uniform stress distribution over the width L — 2e: T = 28.3 kN. 

+++Problem 7.11 Design of a reinforced earth retaining-wall with a reinforced 
concrete skin and a sloped, surcharged backfill 

The dimensions of the reinforced earth structure are shown on Fig. 7.31, 
and the skin consists of reinforced concrete slabs of the type shown in 
Fig. 7.32. The internal angle of friction of the fill is 35°, its unit-weight is 
7! = 20kN/m3. The horizontal portion of the backfill supports a uniformly 
distributed load of 10 kPa. 

H'(m) 

H (m) 

mfnTnUmU m t m m 

d = 0.75 

Concrete , 
skin 

Z(m) 

- ' r 72 

(p2 

B(m) 

Fig. 7.31. 
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1.50 

1.50 m 

LA 
Fig. 7.32. 

i i 
i 

i 

37 - cm 

Minimum slab dimensions 
1.50 x 1.50 m (2.25 m2) 

Thickness E= 18, 22 or 26cm 

The reinforcing strips are smooth and made of galvanized steel, 60 x 3 and 
80 x 3 mm. For considering corrosion loss, assume thickness of the strips to 
be 2 mm. The allowable tensile stress o'a is less or equal to 2/3 of the elastic 
limit or 1.6 x 10s kPa. 

To calculate the strip spacings, assume the gross cross-section, taking into 
account that experimental results on models and full-size test walls indicate 
that the maximum tension in the strips occurs some distance away from the 
skin. The coefficient of friction between soil and strips is f = 0.4. 

Assume the coefficient of active pressure of the soil backfill is ka = 0.30 
and its unit weight y2

 = 20 kN/m3. Determine: 
(1) The stresses imposed on the foundation soils by the rein forced-earth 

mass. 
(2) The stresses taken by the reinforcing strips at the various rows. 
(3) The safety factor F against friction between soil and strips. 
(4) The thickness of the reinforced-concrete slabs (skin) assuming, that 

the allowable tensile stress in the concrete is ob = 500 kPa. 
Assume that the inclination of the active force behind the wall is 8 = 0 

and use Meyerhofs formula to calculate the vertical stress in the foundation 
soil. Verify that the safety factor against adherence is at least 2. 

Solution 

(1) Stresses transmitted to the foundation soil 
The coefficient of earth pressure in the soil behind the retaining-structure 

is calculated from the Rankine formula: 

Kay = kay = tan 2 

Since 0 = X = 0, 

7T 

4 
t an 2 (45° -17 .5° ) = 0.27. 

Kn~ — k Lcry ay kaa = K. 
All computations are made for a wall length of 1 m without taking into 

account the soil in front of the wall. For the buried section at the toe, the 
concrete slabs and strips will be placed as determined by the lowest wall 
portion. Using the notations of Fig. 7.33, the horizontal component of the 
earth pressure is: 
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Fig. 7.33. 

Pho = hKl2H'2 +KqH'. 

Total vertical load is: 

W0 = w0 +wx + w2 +Pvo 

= BHyx + | ( L - A ) ( H ' - H ) 7 2 + (B -L)[q + (H' -H)y2] + Pvo 

where: L = A + (H' -H) cot 0 and Pvo = the vertical component of the 
earth force = Pho tan 5. 

The overturning moment with respect to O is: 
Mro=*;Ky2H

f* +\KqH'\ 

The righting moment with respect to O: 
2A + 4L - 3B L_ . B 

2 
Mso = WX '" — + W2 ~+Pvo 

M»=2 
W, (2A + 4L - 3B) — + Lw2 + BPVC 
o 

from which the resulting moment is: MQ = Mso ~Mr{ 

http://PR0BLEM7.il
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The eccentricity of the resultant with respect to the middle of the width 
of the wall mass is: e0 =M0/W0. 

With Meyerhof's formula, the vertical stress in the foundation soil is: 
om =W0/(B-2e0). 

The safety factor against sliding of the base depends on the ratio Pho /W0 . 
(2) Stresses taken by the reinforcing strips 

At level z of a row of strips, the weight W of the wall section located 
above the row is: W = w 4- w1 4- w2 + Pv: 
or: 

W = B(H-z)yx + ^-^(H'-H)y2 4- (B - L) x [q + (H'-H)y2] 4 Pv 

with Pv = Ph tan 5 and where Ph is the horizontal component of the pressure 
exerted on this section, or: 

PH =$Ky2(H'-z)2 + Kq(H'-z) 

The positive moment with respect to the middle of the wall base is: 
Mx = \Ky2{H'-z? +±Kq(H'-Z)2 

and the negative moment is: 

\M2\ = £[(2A + 4L-3B)±wx + Lw2 +BPV], 

from which the resulting moment is: 
M = Mx -\M2\ 

with e=M/W, and in accordance with Meyerhof's formula, the vertical 
principal stress in the wall at this level is: ox = W/(B — 2e). 

The horizontal stress, o3 =kaou is balanced by the reinforcing strips 
located at that level. These strips are in a row containing N strips of width 
b for 2.25 m2 (slab area) or n per m2, in such a manner that tension T in 
one strip is: T = o3/n = 2.25 o3/N per m2 and the stress in the strip is: 
oa = T/u) < Oa where co = cross-sectional area and aa' = allowable stress. 

(3) The safety factor for adherence 
This factor, F = B/Lm > 2 

where Lm = T/2b • o • f (minimal length) and a is the vertical stress in the 
strip or: 

o = W/BandF=2bBf(N/2.25)(o/o3)>2. 

(4) Thickness of the reinforced-concrete slabs (skin) 
The tensile stress in the concrete over a width / above the strip row which 

constitutes the tie of the slab must be calculated (Fig. 7.32). 
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Two conservative assumptions are made: 
(a) the horizontal stress exerted on the slab is equal to a3 as invalidated by 

experimental observations; 
(b) the compressive stress due to the weight of the skin is considered equal 

to a j , which is less than the weight of the concrete skin, the flexural moment 
is: m = a 3 / 2 /2 , 
the section modulus is: I/v = E2 /6 (per unit-length of wall) 
with E is skin thickness. 

ob = mv/I — ol = 3o3(l
2/E2) — ox or: 

ob = [3(l2/E2)- (1/0.3)] o3 because ox = a3/0.3. 

Take E = 18 cm, when a3 < 52 kPa, then: 

oh = 
37.5 

18 

1 

0.3 
52 = 503.7 kPa ̂  500 kPa 

or: E = 22 cm, when 52kPa < a3 < 92.5 kPa 
\2 

Ob = 
37.5 

22 

1 

0.3 
92.5 498 kPa < 500 kPa 

or: E = 26 cm, when 92.5 < a3 < 165 kPa 

Ob = 
37.5 

26 

1 
0.3 

165 = 479.7 kPa < 500 kPa. 

Numerical applications are shown on Table 7C. 

Remark: 
At present, the design of reinforced-earth structures is being modified 

with the tendency to reach limit-state conditions. These results are very close 
to those obtained by the above described "classical" method. 
TABLE 7C 

I. Givens: 

Geometry: 

H(m) 

9.75 

H' (m) 

14.00 

A ( m ) 

0.80 

cotj3 

1.50 

B(m) 

9.00 

q (kPa) 

10 

Fill properties: 

7! (kN/m3) ka 72 (kN/m3) * < ° ) « ( ° ) K 

20 0.30 20 35.00 0.00 0.27 
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TABLE 7C (continued) 

II. Loads transmitted to the foundation soil: 

Pho (kN) 
(per m 
length) 

567 

Wo (kN) 
(per m 
length) 

2199.3 

Pho Wo 

0.26 

e0 (m) 

0.90 

B — 2e0 (m) 

7.21 

om (kPa) 

305.2 

III. Slab and strip designs: 

Level of 
strip lines 
z (m) 

Horizontal 
stresses 
o3 (kPa) 

Skin 
thickness 
E (cm) 

Strips 

No. Section 

Vertical 
stresses 
ov (kPa) 

Safety factor 
with respect to 
adherence F 

0.38 
1.13 
1.88 
2.63 
3.38 
4.13 
4.88 
5.63 
6.38 
7.13 
7.88 
8.63 
9.38 

87 
78.6 
70.8 
63.5 
56.7 
50.3 
44.2 
38.5 
33.0 
27.7 
22.7 
17.9 
13.3 

22 
22 
22 
22 
22 
8 
8 
8 
8 
8 
8 
8 
8 

80 X 
80 X 
80 x 
80 X 
80 X 
80 X 
80 x 
80 x 
60 X 
60 X 
60 X 
60 X 
60 x 

236.8 
221.8 
206.8 
191.8 
176.8 
161.8 
146.8 
131.8 
116.8 
101.8 
86.8 
71.8 
56.8 

5.57 
5.06 
5.23 
4.64 
3.99 
4.12 
3.40 
3.51 
2.72 
2.82 
2.93 
3.08 
3.29 
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SHEETPILE WALLS 

HckProblem 8.1 Design of a sheetpile wall. Comparison of two design methods: 
the classical method of plasticity, and the design by elasto-
plasticity 

The sheetpile wall shown on Fig. 8.1 must be designed. A row of anchors, 
not shown on the figure but located between points A and B, should be 
incorporated for stability of the upper section. The design of these anchors 
and their effect are not to be considered in this problem. 

The soil has the following characteristics: 
— dry unit-weight: 18kN/m3 

— buoyant unit-weight: 11 kN/m3 

— angle of internal friction: <p = 33° 
— cohesion c = 0. 

Active and passive earth pressure coefficients are: Ka 

Kp=kp= 6.81; (8 = 0). 
ka = 0.296; 

Casel 
-— (quay wall 

8.00 

Case 2 
(cofferdam) 

T Drawn- down line 

,0.40 m 

3.60 m 

4.00 m 

e 

wwwxmMbwwn 

q * 10 kPa 

^^ . Water table 

Fig. 8.1. 

In addition, the soil behind the wall supports a uniform load of lOkPa. 
Passive forces act at the toe of the wall. 

Find: (1) the depth of penetration of the sheets for a safety factor of 2 
applied to passive forces; (2) the tension force in the anchor rod, assumed to 
be horizontal; (3) the maximum moment in the sheetpile. 

Two conditions must be considered: case 1: the water level is the same on 
both sides of the sheets (quay-wall situation); case 2: the water table is 
drawn down to the dredge level (cofferdam situation). 
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Remark 
At the end of the solution, the results of the Rido computer program are 

presented for the elasto-plastic method. 

Solution 

Method i , Plasticity method (classical method): case 1. Water level is the 
same on both sides of the sheets. 

(1) Firstly, the earth pressure diagram must be determined. Behind the 
wall, we have active earth pressure conditions: 
— between A and B: 

op = kaydh 4- kQ • q at depth h, for h < 0.40 m, 

or, since kQ = ka (because jS = X = 0): 

op = ka(jdh + q) 

— between B and E: 

Op = oB + kay'(h - 0.40) at depth h, with h > 0.40 m. 

Passive pressures act at the toe of the wall and, with a safety factor of 2, 
we get: 
— between D and E: 

°b — hkpyx a t d is tancex from the dredged level. 
The hydrostatic pressures on either side of the sheetpile cancel. The 

following stresses are calculated, which are shown on Fig. 8.2. 

Active pressures: 

Op A = Kq-q = 0.296 x 10 = 2.96 - 3.0 kPa 

OPB = opA +Kaydhl = 2.96 4 - 0 . 2 9 6 x 1 8 x 0 . 4 0 = 5.09 ^ 5.1 kPa 

opD = opB +Kay'h2 = 5.09 + 0.296 x 11 x 7.60 = 29.83 - 29.8 kPa 

oPE = opD + Kay'f = 29.8 + 0.296 x l l x / = 29.8 + 3.26/. 

Passive pressures: 

obE = hKpy'f = 0.5 x 6.81 x l l x / = 37.46/ . 

A 3rd-degree equation from the penetration / is obtained by considering 
that the resulting moment at point C is zero. Table 8A (counterclockwise 
moments are positive) summarizes the moments. The stresses apply to one 
unit length of wall. 

Therefore, the sought equation, 2M,- = 0 , is: 
11 .4 /* + 5 3 . 5 / 2 - 1 1 9 . 2 / - 139.3 = 0. 

The only positive root of this equation is: / = 2.275 or say / = 2.30 m. 
(2) The tension in the anchor is: T = 2 F f , which is computed from the 

data of Table 8A, by taking / = 2.275 m. 



PROBLEM 8.1 45 

©© 
V0.40" 
_ 

3.60 

j 

4.00 

] 

A 

' B 

! _ C , 

D 

ww™7 

/ E| 

I J 3.0 kPa 
i [Sv, )OOOO00<X>OOOC)OOOCO0C0O<X 

© 

y 5.1 k Pa — = — 

©\ 

24.7 

' © 

L 29.8 kPa 

©\ 
37.46 fm 

Fig. 8.2. 

TABLE 8A 

Zone 

1 
2 
3 
4 
5 
6 
7 

Resultant force Ft (kN) 

3.0 X 0.40 = + 1.2 
i X (5.1 - 3.0) X 0.40 = + 0.42 
5.1 X 7.60 = + 38.76 
5 X ( 2 9 . 8 - 5 . 1 ) X 7.60 = +93.86 
+ 2 9 . 8 / 
\ X 3.26/X / = 1.63/2 

— \ X 37.46/X / = - 1 8 . 7 3 / 2 

T = 1.20 + 0.42 + 38.76 + 93.86 + 29.8 

29.8 + 3.26 1 

Lever 
arm with 
respect to C 
dt (m) 

+ 3.80 
+ 3.73 
- 0 . 2 0 
- 1 . 4 7 
- 4 . 0 0 - 4 / 
- 4 . 0 0 - | / 
- 4 . 0 0 - 1 / 

x 2.275 + 

fm 

Moment with 
respect to C 
M( (kN • m) 

+ 4.56 
+ 1.57 
- 7 . 7 5 
- 1 3 7 . 6 9 
- 1 1 9 . 2 0 / - 14.90/2 

- 6 . 5 2 / 2 - 1 . 0 9 / 3 

+ 74.92/ 2 + 12.49/3 

+ (1 .63-18 .73) x 2.2752 ^ 113.5 kN 
or T = 114 kN per m of length. 
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Remark. We would have found T = 112 kN with f = 2.30 m. 
(3) We know that the maximal bending moment occurs near the level of 

the dredged line, therefore, between C and D (Fig. 8.2). The maximal 
moment occurs where shear is zero. The shear diagram is calculated from the 
bottom of the sheets and with the notations shown on Fig. 8.3, we have: 
TD =F5 +F6 + F 7 , and F5 = 29.8 x f = +67.80 kN, F6 = 1.63 x f2 = 
4- 8.44 kN, Fn = -18 .73 x f2 = -96 .94 kN. 

So7Y + 67.80 + 8.44 - 96.94 = -20 .70 kN. 

Fig. 8.3. Fig. 8.4. 

It is easy to verify that TD is negative, which corresponds to \Fn I > F5 + F6 : 
the maximal bending moment occurs between C and D as anticipated. 

Let Z (Fig. 8.4) be the elevation of the pile section under study above the 
dredge level. Then we have, following the notation of Fig. 8.4: 
F'3 = [29.8 - (24.7/7.60)Z] -Z = 29 .8Z~3 .25Z 2 

and: F* = \Z • (24.7/7.60)Z = 1.625Z2 

Therefore: F* + F'3 = 29.8Z - 1.625Z2. Condition T(Z) = 0 can be 
written as: TD + F^ + F* = 0, or: —1.625Z2 + 29.8Z - 20.7 = 0. 

The root of this equation lies between the values 0 and 4: 
Z = 0.723, say 0.72 m. 
From this we derive: F3 = 19.90 kN, F^ = 0.86 kN and: 

M(Z) = \F7\x\j+Z FAT + Z ■'•lT + * 
,Z ,Z 

F'3 ~-2F'4 - , 
3 2 3 

With / = 2.275 and Z = 0.72, M(Z) - 64.5 kN • m (per m of sheetpile 
wall) say: 
M„ = 65kN-m. 

http://29.8Z~3.25Z2


PROBLEM 8.1 47 

Case 2. Cofferdam-condition. 
A cofferdam condition prevails when the water table is drawn down to the 

dredge level. The calculation method for this condition is analogous to that 
of case 1, but now the hydrostatic pressure must be taken into account since 
the water is present on one side of the sheetpiles. 

(1) Pressure diagram acting on the wall behind the sheetpiles (Fig. 8.5): 
- Between A and B: op = Ka(ydh + q) for 0 < h < 0.40 m. 
- Between B and D: op = oB + Kay'(h - 0.40) + yw (h - 0.40). 
The term yw (h — 0.40), represents the hydrostatic pressure. 
- Between D and E: op = oD 4- Kaj'x, 
where x is the elevation from the dredge level: x = h —8.00. 

In front of the sheet piles, it is not necessary to account for the hydro-
static pressure since it was not accounted for beneath point D behind the 
wall. 
For a safety factor of 2 against the passive resistance, we have: 

Between D and E: ~ 2%P J X 

where x is the distance from the dredge level. 
The following values were obtained for the construction of the pressure 

diagram shown on Fig. 8.5 (it was assumed that yw = 10 kN/m3 ). 

0.40 

3.60 

4.00 

V 

A 

1 B 

i C 

i 

D 
- = = - /rfWXXWVXAXX)*' 

/ ^ ^ © 
^ ^ E | 

Q© 
| / 3.0 kPa 
\ I K W C W ^ W ^ ) ^ ^ v 

© 

\ 5.1 kPa ~^= 

© \ 

• © 

105.8 kPa 

®\ 

105.8 + 3.26 f_ 

Fig. 8.5. 
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Active pressures: 
°PA = Kaq = 0.296 x 10 = 2.96 ^ 3.0 kPa 
°PB = OPA +Kaydhl = 2.96 + (0.296 x 18 x 0.40) = 5.09 - 5.1kPa 
°PD = °PB + Kayh2 +ywh2 = 5.09 + (0.296 x 11 x 7.60) + 10 x 7.60 

- 105.8 kPa 
oPE = oPD +Kay'f = 105.8 + (0.296 x 11 x f) = 105.8 + 3.26/. 

TABLE 8B 

Zone Resultant force Ft (kN) Lever 
arm with 
respect to C 
dt (m) 

1 3 . 0 x 0 . 4 0 = 4-1.2 +3 .80 
2 \ X (5.1 - 3 . 0 ) X 0.40 = + 0.42 + 3 . 7 3 
3 5.1 X 7.60 = + 38.76 - 0 . 2 0 
4 i(105.8 - 5.1) X 7.60 = 382.66 - 1 . 4 7 
5 + 1 0 5 . 8 / - 4 . 0 0 
6 | x 3 .26/x / = 1.63/*2 - 4 . 0 0 
7 - \ X 37.46/ X f= -18.13f2 - 4 . 0 0 

Passive pressure: 
obE = \KPif = 0.5 x 6.81 x 11 x f = 37.46/. 

Once again a third-degree equation is obtained for the embedment f. The 
sum of the moments about point C = 0, gives the value of /. 

From Table 8B, the equation for the condition 2Mt = 0 is: 
11.4/* +15.5f2 -423 .20 /^ -564 .13 = 0, 
which gives: f = 6.08 m or f = 6.10 m. 

The embedment in this case is deeper than when the water table is not drawn 
down. 

(2) The tension force in the anchor is: T = 2F/, which is calculated from 
the data of Table 8B, with / = 6.08 m. We get then T = 434.2 kN, say T = 
434 kN. 

So, the tension in the anchor is about 4 times greater than in case 1, where 
the water table was the same at both sides. 

(3) At the bottom of the excavation, the shear force is: TD = F5 + F6 + Fn 

where: 
F5 = 105.8/ = 105.8x6.08 = 643.26 kN 

Moment with 
respect to C 
M l ( k N ' m ) 

+ 4.56 
+ 1.57 
- 7 . 7 5 
- 5 6 2 . 5 1 

-\f - 4 2 3 . 2 0 / - 5 2 . 9 / 2 

- § / - 6 . 5 2 / * - 1 . 0 9 / 3 

-If + 7 4 . 9 2 / 2 + 12.49/3 
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Shear diagram Moment diagram 

Lateral earth pressure 

ELasto-plast ic phase 1, excavation 4 m 
(Values are calculated for 1m wid th of wa l l ) 

Deflect ion diagram 

Fig. 8.6. Sheet-pile wall (for l m width of wall) without water drawdown (embedment 
2.30m). 

F6 = 1.63f2 = 1.63x6.082 = 60.26 kN 
Fn = - 1 8 . 7 3 / 2 = - 1 8 . 7 3 x ^ 0 8 2 = -692.38 kN, or: TD ^ 11 kN. 

It is quite nil, and the maximal bending moment may be assumed to be at 
that elevation. 

Its value there is: 
Mmax = -643 .26 x (6.08/2) - 60.26 x (2/3) x 6.08 + 692.38 x 

x (2/3) x 6.08 = 606.47 
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Shear cliagra 
Moment d i a g r a m 

Latera l ea r th pressure 

ELasto-plast ic phase 2 , exccva t i o n 8 m 
(va lues are ca l cu la ted for 1m w i d t h of w a l l ) 

Def lec t ion d iagram 

Fig. 8.7. Sheet-pile wall without water drawdown (embedment 2.30 m). 

or: Mmax = 606kN-m (per m of length) 
So the maximum bending moment is about 9 times greater than in the 
preceding situation, where the water table was not the same on both sides. 

Elasto-plastic calculations 
These computations are too complex to be carried out by hand. One must 

resort to a computer. We may refer here especially to the Rido program 
which was developed by Fages in Lyon for the subway construction. 



PROBLEM 8.1 

kN.m 
- 4 0 0 - 3 0 0 -200 -100 0 100 200 300 

107.7 

1 

/ y ' ■• ' 

' .- •"'' y '' ■• '' 

-'' y 

i > > ■ ■ — j — 
r* •■"' X ' 

r' ,•■ '' V" 
t ^ .•' ^ r y y ■■ / 

^V1 0d- y s 

^ .-'* / 

-T 
Moment d iagram 

100 8 0 60 4 0 

\ . 

\ 
7 ^ / y y' y^ 

-- S ■■ y'' ■• y 

S y ''' y ' y '"' y '' y '' 

/
y

' y - ' ' ' y -
y
 ■••''' y

y
'' y 

^ y *''' y '*' S ' y''' y ' 

y^K-yyyy 
y''y''y'*y*'y\ 
y y y y y 

20 
i i 

"y? 
, y \ /* 

-■y y \ 

'' y iof 
y \ 

■y A 
yy\ 

'" 1 5 -

\ 

0 

I ,y"y 
y y 

i y 
\y / 

E y 
c y 

D
ep

th
 

m
 

f 

Late ra l ea r th pressure Def lec t ion d iagram 

E las to - p las t ic phase 1 , excava t ion 4 m 
(Values are c a l c u l a t e d f o r 1m w i d t h of w a l l 

Fig. 8.8. Sheet-pile wall with water drawdown (embedment 6.10 m). 

This program, that was conceived for slurry trench walls with several levels 
of anchors, takes into consideration deformations caused by partial exca-
vation by slices, where anchors are placed as the excavation progresses. The 
program is also applicable to sheetpile walls with anchors, giving for each 
slice of excavation the stresses of the soil on the wall, the bending moments, 
shear and deflection diagrams as well as the tension in the anchors. Parts of 
the results of such an analysis are presented in Figs. 8.6 to 8.9. It will be 
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Elasto-p last ic phase 2 , excavation 8 m 
(Values are calculated for 1m width of wall 

Fig. 8.9. Sheet-pile wall with water drawdown (embedment 6.10 m). 

seen that they more closely approximate the real behaviour of the sheet-
piles than those obtained by the above described classical method, which 
only considers the final stress conditions, without accounting for the deflec-
tions occurring during the phased excavation. 

Remarks 

Case 1. Sheetpile wall without water drawdown (Figs. 8.6 and 8.7). In elasto-
plastic condition, the maximal bending moment is developed during the 
initial excavation phase made to install the anchors (108.7 kN • m width). 



PROBLEM 8.2 53 

The tension in the anchor is very close to that computed by the plasticity 
method (109.7 kN instead of 114 kN per m of length). 
Case 2. Sheetpile wall with water drawdown (Figs. 8.8 and 8.9). Once again 
the maximum bending moment is developed during the excavation of the 
first upper 4 m (388.3 kN • m per m length of wall). The tension in the 
anchors is very close (Fig. 8.9) to that computed by the plasticity method 
(379.1 kN instead of 434 kN per m length). It must be pointed out that the 
classical method yields somewhat more conservative results, comparing them 
to phase 2. 

Summary of answers 

Casel: f = 2.30m, T = 114 kN (per m length of wall) 
Mmax = 65 kN (per m length of wall) 
Case 2: f = 6.10 m, T = 434 kN (per m length of wall) 
Mmax = 606 kN (per m length of wall). 

++Problem 8.2 Design of an anchor system 

The anchors of problem 8.1 are installed as shown on Fig. 8.10. Their 
spacing is 1.60 m. 

Find: 
(1) Height H of the deadman (assume a safety factor of 1 and that the 

groundwater table is at the backfill level). 
(2) The location of the tie point of the anchor at the deadman and the 

maximal bending moment in the deadman. 

4.00 m 

1.00 m 

Fig. 8.10. 
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(3) The modulus of resistance of the anchor rod on the deadman. 
(4) The cross-sectional area of the anchor rod (for the last two parts, 

assume the allowable stress of steel to be 1.6 x 10s kPa). 

Solution 
(1) The resistance provided by the deadman is equal to the difference 

between the passive earth pressure acting on the fore face and the active 
pressure acting on the opposite face (Fig. 8.11). 

Fig. 8.11. 

From the givens of problem 8.1, and assuming the water table to be 
at the level of the backfill, we have: 
yKay = 11x0.296 = 3.26 kN/m3 and 
yKpy = 11x6 .81 = 74.91 kN/m3. 

The resultant R may be divided into Rx and R2 components, with Rx 
corresponding to rectangle abed and R2 to triangle acd (Fig. 8.11). These 
horizontal forces have a magnitude of: 
Rl = ox xH = [(Kpy ~Kay)y x 1.00] xH = 71.65 x H 

R2 = (l/2)(a2 -ox)xH = (l/2)[(Kpy-Kay)yH]H = 35.83U2 

R = Rx +R2 = (71.65 + 35.83H)H 

Since the deadmen form a continuous wall, the anchors transmit a shear 
T' per unit length whose horizontal component T must be equal to R. 

From the preceding problem, T= 114kN per meter, therefore we have: 
35.83H2 4- 71.65# — 114 = 0. Solving for the positive root of the equation: 
if =1.045 or: 

H = 1.05 m. 
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Remark 
With H= 1.05 m, we have D = 2.05 m or H>D/2. From sect. 7.2.8 of 

Costet-Sanglerat, it can be seen that the method yields conservative results, 
since for H>D/2, experience shows that the structure behaves as if the 
deadman extended to the surface of the fill. 

(2) The tie point of the anchor to the deadman must be the same as that 
where resultant R is applied. The location of that point is obtained by taking 
the moments of Rx and R2 with respect to the toe of the deadman wall: 

Rldl +R2d2 = Rd (Fig. 8.11) 

dx = 1.05/2 = 0.525; d2 = 1.05/3 = 0.35 

Rx = 71.65 x 1.05 = 75.23 

R2 = 35.83 x L052 = 39.50 

R = 114.73 and 
d = (75.23 x 0.525 + 39.50 x 0.350)/114.73 ^ 0.46 
from which: t = H — d = 1 .05-0 .46 = 0.59 m 
t = 0.59 m. 

The maximal bending moment in the deadman is in the section normal 
to the anchor point (S). Following the notation of Fig. 8.12, we get: 
M = (j)l81 4- 0 2 5 2 . 

The magnitude of the stress developed at the level of section(s) by the 
deadman (passive—active pressures) is: a/1.59 = 71.65/1 (cf. Figs. 8.11, 
8.12), and: 

a = 71.65x1.59 = 113.92 kPa 

0! = 71.65 x 0.59 = 42.27 kN 

5X = 0.5 x 0.59 = 0.295 

71.65 

1.05 

c 

R 113.92 

Fig. 8.12. 
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02 = 0.5(113.92-71.65) x 0.59 = 12.47 kN 

52 = (l/3)(0.59) = 0.196 

from which Mmax = 42.27 x 0.295 + 12.47 x 0.196 = 14.9 kN • m 

Mmax = 14.9 kN • m (per m length) 
(3) From the classical hypothesis (see sect. 7.2.5, Costet-Sangletat), the 

maximum bending moment of the deadman wall is M'max — AL2/10, where 
A is the tension force in the anchor for 1 m length of deadman and L is the 
spacing of the anchors, or: Mmax = 114 x 1.602 /10 = 29.18 kN • m. 

Checking, MR = I/u > Mmax/oadm . 

Since: aadm - 1.6 x 105 kPa, MR > 29.18/(1.6 x 105) ^ 1.82 x 10"4m3 

or MR > 182 cm3 (per m of length). 

From Table 1 of sect. 7.1.1 of Costet-Sanglerat it can be seen that a 
Larssen I member would suffice (MR = 500 cm3 per m of length). 

(4) Referring to Fig. 8.13, we have: tan 6 = (4.00 -1.59)/9.00 = 0.268, 
or: cosO = 0.966. 

T 
11.59 

f 

;2.41 

1 

Fig. 8.13. 

The force transmitted by the anchors is: 
T = T/cos0 = 1.14/0.966 = 118 kN per m of length. 
Taking into account the spacing of the anchors of 1.60 m, each anchor 
transmits a load of: T" = T' x 1.60 = 189 kN. The allowable steel stress is 

9.00 

4.00 

1.00 

| 0.59 
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1.6 x 105 kPa. Hence, the cross-sectional area of steel for each anchor is: 

s = 189/(1.6 x 105) = 1 . 1 8 x l 0 ~ J m 11.8 cm 2 . 

Remark 
For the above computation to be valid, one must verify that the active 

and passive pressure zones for wall and deadmen do not overlap (see sect. 
7.2.5 of Costet-Sanglerat). The assumption is made that the zone behind the 
sheetpile wall has an apex where the residual stress on the wall is nil. In 
addition, a check should be made that the upper part of the deadman wall is 
located below an imaginary line passing through the zero residual stress point 
and making an angle $ with the horizontal. 

Assuming that the zero residual stress point is close to the zero moment 
point, we get with graph VII-7 of sect. 7.2.2 of Costet-Sanglerat: 

a/d = 0.05 for <p = 33° (Fig. 8.14) or: 

a - 0.40 m; h = d + a = 8.40 m 

Lj = h tan (?r/4 - <p/2) = 8 . 4 0 x 0 . 5 4 3 = 4.56 m 

L2 = D tan (TT/4 + <p/2) = 2 . 0 5 x 1 . 8 4 2 - 3.78 m 

LX-VL2 = 4.56 + 3.78 = 8 .34m < 9 .00m 

So Lj + L2 < L; the first necessary condition is met. 

L 

L2 

)(&m 

Fig. 8.14. 
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Fig. 8.15. 

To check the second (see Fig. 8.15), we have a 4- d = 8.40 m, 

L 3 = 8 .40 / t an^ = 12.93 m, * / (L 3 - 9 . 0 0 ) = tan 33° = 0.649 

from which: x = (12.93 - 9) x 0.649 = 2.55 m and D = H + 1 = 2.05 m, 
i.e., the second condition is not met because x>D and we should have 
x — 1.00 m. As indicated in sect. 7.2.5 of Costet-Sanglerat, the two above 
conditions are too restrictive and the anchors can be shorter. We assume, 
therefore, that meeting condition 1 is sufficient to satisfy the needs of the 
design. 

irkProblem 8.3 Design of a sheetpile wall with anchors by the Blum method 

Refer to the givens for the quay wall in the first case of problem 8.1, but 
assume the wall to be embedded with passive pressures acting at the toe. By 
utilizing Blum's method, (point of zero bending moment corresponds to 
point of zero residual stress). 

Find: 
(1) the location of the zero moment point, b. the anchor tension, and 

c. the total embedment of the sheets (with a safety factor of 1 in passive 
pressure); 

(2) the bending moment MY at the anchor tie-in location, b. the maxi-
mum bending moment M2 between the anchor and the point of zero 
moment, and c. the maximal bending moment M3 below the point of zero 
moment. 

Solution 
(1) a. The point of zero residual stress in the sheetpile wall must be deter-

mined. Refer to Fig. 8.2 of problem 8.1 and call elevation a that of the point 
sought with respect to the excavation lines. We then have: 29.8 + 3.26a = 
2 x 37.46a, where the coefficient 2 of the right side of the equation is due to 
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the fact that the safety factor on the passive pressure is 1 in this case and 
that of the diagram is 2. We then find: a = 29.8/71.66 ^ 0.416 
say a = 0.42 m. 

Remark 

Graph VII-7 of Ch. 7.2.2 of Costet-Sanglerat gives for «p = 33°: 
a/d ^ 0.05 or: a = 0.05x8.00 = 0.40 m, 
but the rule: a = O.ld (for 25° < ^ < 35°), gives: a = 0.80 m. 

For a safety factor of 2 on the passive pressure, the preceding calculation 
gives: a = 29.8/34.2 ^ 0.87 m. 

b. Anchor tension 
Tension T is obtained by summing the moments of force acting on the 

sheetpile wall above the point of zero residual stress and equating the sum to 
zero. Refer to Fig. 8.16 to make up Table 8C (per meter length). 

Y 30kPO//@ 

Fig. 8.16. For the sake of clarity, not to scale. 

It is easy to see that tension T in the anchor rod, whose lever arm is 
4.42 m, is given by: 4.42 x T = SMf, 
i.e., T = 463.23/4.42 = 104.8 kN, 

T = 105 kN per m of length. 

c. Total embedment of the sheetpiles 

Assume (Fig. 8.17) f0 =a + b. 

Length b is determined by part OO' of the wall equated to a simply supported 
beam of span, with reaction forces T0 at point O and C at point O'. The 
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TABLE 8C 

SHEETPILE WALLS 

Zone Corresponding force F^ (kN) Lever arm 
di (m) 

8.22 
8.15 
4.42 
2.95 
0.21 
0.14 
0.14 

Momen t 
with respect to 
0 ( k N - m ) 

+ 9.86 
+ 3.42 

+ 171.32 
+ 276 .89 

+ 2.63 
+ 0.04 
- 0 . 9 3 

1 
2 
3 
4 
5 
6 

3 X 0.40 = 1.2 
\ x (5.1 - 3) X 0.40 = 0 
5.1 x 7.60 = 38.76 
\ X 24.7 X 7.60 = 93.86 
29.8 X 0.42 = 12.52 
\ X 3.26 X 0 .42 2 = 0.29 

0.42 

- 2 x ' x 37.46 X 0.422 -6.61 

Mz- = 463.23 

point of zero moment is assumed to coincide with the point of zero residual 
stress. The loads on the beam are distributed over a triangle and therefore we 
get: C = 2T0. Then follows the calculation of T 0 : 
T0 = T0 + T = Z.-Fi, T0 = 

With the values of Table 8C: 

XiFi = 140.44 ^ 140 kN 

T = 105kN 

2 , F / - T . 

Tn 35 kN. 

Following further the notation of Fig. 8.17, we get: 

p2 = 29.8 + 3.26a + 3 . 2 6 6 - 2 x 33<46a - 2 x 37.466. 

(The crossed-out terms cancel out in consequence of the definition of a.) 
Thus we have: p2 = 3.266 - 7 4 . 9 2 6 = - 7 1 . 6 6 6 : \p2 \ = 71.666. 

The moment of the forces applied to beam OO' is zero at 0\ so we get: 
T0b = {p2b x 6/3 or T0 = p2 6/6 = 71 .666 2 /6 

but: T = 35 kN, 

then: 6 = ^ 6 x 35/71.66 = 1.71m 
and /o = a + 6 = 0.42 + 1.71 = 2.13 m. 

One accepts in general: f = 1.2/Q, from which f = 1.2 x 2.13 = 2.55 m, 

say: f = 2 .60m. 

(2) Bending moments Mu M2 and M3 

The upper portion of the sheetpile wall (above the point of zero moment) 
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Fig. 8.17. 

is analyzed as a simple beam supported at O and ^4* where the anchors tie in. 
The load diagram is shown on Fig. 8.18. 

As for the lower part O'O of the pile wall, it is analyzed as a simply at O 
and O' supported beam (Fig. 8.17). 

a. Moment Mx at the tie point of anchors is: 

Mx = 1.2 x 3.80 4- 0.42 x 3.73 4- 5.1 x (3^602/2) 4- 11.7 x (S\602/6) 
= 64.45 kN -m; 

Mx = 64.5 kN • m per m of length. 

*This point A corresponds to the old point C of Fig. 8.1 which was changed to avoid 
confusion with the passive force C. 
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Fig. 8.18. 

b. The load per unit length between O and A is expressed by the following 
formulas: 

p(£) = (29.8/0.42)£ = 70.95£ for 0 < £ < 0 .42m 

p(£) = 3 1 . 2 - 3 . 2 6 f for 0.42 < £ < 4 .42m. 

The shear in beam OA is: 
X 

T(x) = TQ- \ 70.95£ -d£ for 0 < JC < 0 .42m 
o 
0.42 x 

T(x) = T0 - j 7 0 . 9 5 £ - d £ - f (31.2 - 3.26£)d£ for JC > 0.42 m. 
0 0.42 

the value of T(x) is 0 for x = 0.52 m. 
The corresponding magnitude of the bending moment is: 

MQ.S2 = -T0X 0.52 + £ x 0.42 x 29.8 x((0.42/3) + 0.10) + 

+ 29.5 x (07l02/2) + 0.3 x (O20 2 /3) 
which gives, since T0 = 35 kN, 
Mo.52 = - 1 6 . 5 5 kN for l m of length. 

This value corresponds to the extreme of the moment diagram between O 
and A. 
It is the value of M2 asked for: 

http://31.2-3.26f
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M2 — —16.6 kN • m per m of length. 

c. The maximal bending moment below the point of zero moment is given 
by the simply supported beam 00' (Fig. 8.17). From the first part of 
Problem 8.3, we had: p2 = —71.66b and the shear in the wall at level y, 
counted positive in the downward direction O, is given by: 

f y 71.66 , 
T(y) = T0 - J p2 x-dy = T0 — y2 or T(y) = 3 5 ~ 3 5 . 8 3 y 2 . 

o 

The shear is zero at a point whose elevation is y = ^ 3 5 / 3 5 . 8 3 = 0.99 m. 
The bending moment M3 is obtained by integration: 

M3 = T 0 ( y ) - 3 5 . 8 3 ( y 3 / 3 ) 35 x 0.99 - 35.83 x ((L993/3) 

= 23.06 kN - m 

M3 = 23.1 kN • m per m of length. 

Summary of answers: 

(l)a = 0.42 m, T = 105 kN, f = 2.60 m 

(2)Mj = 6 4 . 5 k N - m , M2 = - 1 6 . 6 k N - m , M3 = 23.1 kN • m 
all per unit length. 

+*Problem 8.4 Design of an anchored sheetpile wall by the method of 
Tschebotarioff 

The same sheetpile wall, as in Problem 8.1, is to be designed by the method 
of Tschebotarioff. Limit the analysis to case 1 (quay wall). Find: 
(1) the embedment of the sheets; 
(2) the tension in the anchors; 
(3) the maximal bending moment. 

Solution 

(1) Embedment of sheets 
Tschebotarioff's method applies to driven piles on one side of which a 

non-cohesive fill is placed. It does not apply to driven sheets and a soil 
dredged on one side. The method suggests to assume an embedment of 
f = 0.43d. Using the notations of Fig. 8.19, we get: f = 0.43 x 8 = 3.44 m. 

(2) Anchor tension 
The method also recommends to take the following earth pressure values: 

K = Ka(l-0.3(t/d)) = X f l ( l - 0 . 3 x | ) 
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2.8 kPa jQ 
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28.5 kPa 

23.6 kPa 

Fig. 8.19. Fig. 8.20. 

K'a = 0.85 Ka. 

To find Ka, it is recommended to use \p = 30° and 5 = 0. The tables in 
Caquot-Kerisel give k'a = 0.333 from which < = k'a = 0.283 (since 5 = 0). 

The following stresses are then computed which enables us to draw a load 
diagram as that of Fig. 8.20. 

0.283 x 10 = 2.83 kPa 

oc 

oD 

= 2.83 + 0.283 x 18 x 0.40 = 4.87 kPa 
= 4.87 + 0.283 x 11 x 3.60 = 16.08 kPa 
= 16.08 + 0.283 x 11 x 4.00 = 28.53 kPa. 

To determine the tension in the anchor, we write that the sum of the 
moments is zero with respect to point D, from which Table 8D can be made, 
for unit lengths of wall. The tension is: T x 4 = 380.89, T = 95.22 
say: T = 95 kN per m of length. 

(3) Maximal bending moment 
The method of Tschebotarioff assumes that the maximal moment occurs 
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TABLE 8D 

65 

Zone 

1 
2 
3' 
3" 
4' 
4" 

Corresponding force Fz- (kN) 

2.8 X 0 .40= 1.12 
\ X 2.1 X 0.4 = 0.42 
4.9 X 3.60 = 17.64 
4.9 X 4 = 19.60 
\ X 11.2 X 3.60 = 20.16 
11.2 X 4 = 44.8 
\ X 12.45 X 4 = 24.9 

Lever arm 
(m) 

7.80 
7.73 
5.80 
2 
5.20 
2 
1.33 

Moment 
with respect to D 
Mt (kN • m) 

8.74 
3.25 

102.31 
39.20 

104.83 
89.60 
33.12 

381.05 

in the section of the pile above the dredge line, most likely between C and D. 
Let x be the vertical distance of the maximal moment point to C. The shear 
then is: 

T(x) = - 4 . 9 x 3.60 - \ x 11.2 x 3 . 6 0 - 2 . 8 x 0 . 4 0 - ^ x 2.1 x 0.40 + 

X 12.4 
' ^anchorage I b . l X I ?df 

which yields: T(x) = 1.55*2 + 16.1* - 5 5 . 9 . T(x) is zero for x = 2.75 m, 
the corresponding bending moment is: 

Mmax = 1.12(3.80 + 2.75)+ 0.40(3.73+ 2.75)+ 17.64(1.80+ 2.75) + 

2.75 2.75 2'}5 12.4 u fc + 19.60(1.20 + 2.75) + 16.1 x 2.75 x - ^ - + —^- x I —— Jdf 
3 J 4 

o 

Mn 

- 9 5 . 2 x 2 . 7 5 = - 22 .57 kN • m 

— 22.6 kN • m per meter length. 

Conclusion 
The magnitude of the moment by the method of Tschebotarioff varies 

little from that of Blum (see Problem 8.3), but in the latter's method, the 
moment occurred in the embedded portion and had the opposite direction. 
Both methods yield the same size pile requirements and the maximum 
bending moments in both cases are at the tie point of the anchor (Mx = 
6.5 kN • m per m of length) (Compare Problem 8.3). 
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Summary of answers 
(1) f = 3.44 m; (2) T = 95 kN; (3) M m a x 

(T and M m a x are given by m of length). 
= - 2 2 . 6 k N - m 

Problem 8.5 Design of fender piles 

Two identical fender-pile systems must be designed, each composed of a 
metal pile with the butt at El. 4- 8.0. The characteristics of the design are 
given in Table 8E. 

TABLE 8E 

Elevation D(cm) 
External diameter 

e (mm) 
Thickness 

oe (MPa) 
Elastic limit 

+ 8.00 
+ 1.00 
-2.95 
-6.90 
-10.85 
-22.70 
-27 

150 
150 
150 
150 
150 
150 

15 
15 
18 
25 
26 
18 

240 
470 
600 
600 
600 
600 

The piles have varying moments of inertia with depth and are to be placed 
in a soil as that illustrated on Fig. 8.21. It is anticipated that the sand layer 
from —8.5 to — 13m will be dredged. 

The point is the determination of the lengths of the piles so that they will 
be stable under the following loading conditions: 
— ship docking loads: the energy applied to the pile, when the ship moves 

against it, is 500 kN • m, with the centroid of the 
applied load acting at El. 4- 4. 75. 
Under the impact, the pile deflection at El. + 4.75 
must be limited to 1.40 m and the stresses in the pile 
cannot exceed the elastic limit of steel. 

— ship mooring: a horizontal load of 600 kN is applied to a pile at 
El 4- 8.0. Under the action of this force, the stresses 
in the pile cannot exceed 80% of the elastic limit. 

Part 1 
To simplify the problem, assume the following: 

— pile is circular with a constant inertia and an elastic modulus constant. 
Take El. = 6.29 x 106 kPa x m 4 . 
— modulus of soil reaction ks is constant for the depth of embedment. 
For the simplified solution solve for the ship docking load only. 

(1) Write down the differential equation for the deformation of a fender 
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/ > = 28 , r = 12kN/m fTo excavate 

. V> = 17.-, 
/•= 10 kN/n 
c = 15 kPa 

Substratum (gneiss) 

Fig. 8.21. 

pile for its section below grade. By the method of finite differences, replace 
this differential equation by a system of linear equations, taking into account 
the limiting conditions imposed by the problem givens (the buried portion 
of the pile will be segmented into 4 parts of equal length). Consider the 
following 2 cases: (a) the modulus of soil reaction is ks = 20 kPa/cm and the 
tip of the pile is embedded in the gneiss; (b) the modulus of soil reaction is 
80 kPa/cm and the tip of the pile is at a depth of 27 m below grade. 

The solution of the linear equations will allow the plotting of the fender 
pile deformation over its embedded depth. Determine the deflection at 
El. + 4.75 m under the action of 500kN-m. Use the method of inter-
polation. 

(2) With the above results, draw the moment diagram along the pile and 
the normal stress diagram in the soil during ship docking loads, as a function 
of depth. What can be concluded? 

Part 2 
With the givens above (variable pile inertias and elastic limits) is the 

differential equation of Part 1 still valid? What can be said about the 
modulus of soil reaction ks in the clay? 

Assuming the clay to have a plasticity index of 45%, give the equation for 
the undrained cohesion as a function of depth. 

The solution necessarily requires the use of a computer. For illustration 
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purposes, the computation method is presented here for the ship docking 
load and mooring conditions, assuming two possibilities for the mechanical 
properties of the soil. Results of the more sophisticated approach can be 
compared with the simplified method of Part 1. 

Solution 

Part 1 
( l )Let us call 5 the deflection of the pile at El. 4- 4.75 during ship 

docking loads. Let F be the force exerted by the ship and W be the corre-
sponding energy. These values are related by: 
W = hFd (1) 

On the other hand, the horizontal force F applies at El. + 4.75 is equiv-
alent to the system of (F, T) at El. — 13.00 (upper limit of the mud) to: 
r (F, T), with T = -Fl0 and l0 = 13.00 + 4.75 = 17.75 m. 

First, we will determine the deflection of the fender pile below the dredge 
line by analogy to an elastic beam (see sect. 9.4.2. Costet-Sanglerat). To 
better understand the action of the soil on the pile shaft, let's first look at 
the action on an infinitely rigid screen being translated (Fig. 8.22). 

The analysis presented below is two-dimensional. It is the only possible 
one for calculation by hand. It is a first approximation to the problem which 
in fact is a 3-dimensional one. 

Under these conditions, on one side of the screen we have passive pressures 

A1 

>S6W^S0W] 7777777^ 

Displacement 

Resulting diagram 

Passive pressures 

Fig. 8.22. 
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Bed rock 

Free end in mud 

which resist the motion and on the opposite side we have active pressure 
conditions. 

Under short-term loading (dynamic loads) ip = 0, c = cu = su and we have: 

active pressure oa — yz — 2c u, 

passive pressure op = jz + 2c u . 

The net resulting pressure thus is: a = op — oa = 4cu. 
Assume cu to be constant with depth. The stress distribution is uniform 

with depth. In reality, the shaft of the fender pile is flexible, cohesion cu 

increases with depth z and the shaft deflections depend on the boundary 
conditions at the base of the pile (fixed or free end, Fig. 8.23). The defor-
mations of the shaft are not everywhere large enough to generate full passive 
and full active pressures. 

The problem is thus very complex. As a simplified analysis, let us assume 
that the reaction along the shaft is uniform and that it corresponds to the 
modulus of soil reaction ks (constant). Under these conditions, the differ-
ential equation for the deflections of the pile below grade, is, if B is the 
width of the pile: 
d*v/dz* +(fe,J3/El.)0 = 0. (2) 

For the following boundary conditions: 
(1) at the surface (point O), bending moment M0 = T, shear T0 = F; 
(2) at the lowest point (point B), free-end condition MB = TB = 0, 
fixed-end condition vB = 0 , (dv/6z)B = 0, 
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the bending moment is given by 

-M/EI = d2v/dz2 (3) 
and the shear by: 
T/EI = d3v/dz3 (4) 

Dividing section OB into 4 segments of equal length h (Fig. 8.24) we 
assume that function v(z) is given by the numerical values vt at the points 
equidistant of elevation zt = z0 + ih (axis Oz being positive downward). 

The successive derivatives of v may then be approximately calculated by 
the following finite-differences equations: 

(dv/dz)zi = (vi + l -vt)/h 

(d2v/dz2)zi = (vi + 1-2vi+vi.l)/h
2 

(d3v/dz3)2i = (vi + 2-3vi + 1 +3vi-vi-1)/h
3 

(d4v/dz4)zi = (vi + 2-Avi + 1 +6vi-4vi-1 +vt-2)/h
4 

All that remains to do now is to write the finite-differences equation 
(obtained by replacing d4z>/d24 by its approximate value) for each point 1, 2 
and 3 (Fig. 8.24) and to write the boundary conditions at points O and B 
numbered 0 and 4. 

We then obtain 3 + 2 x 2 = 7 equations with 7 unknowns which can be 
reduced to a system of 5 equations with 5 unknowns easily solved by desk-
top computer. 
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Fig. 8.24. 



PROBLEM 8.5 71 

(a) Fixed-end condition (tip at —35 m) 
Finite-difference equations give: 
v3 - 4v2 4- (6 4- K)vx - 4v0 + v-x = 0 
z;4 - 4v3 4- (6 4- X)z;2 - 4 ^ 4- v0 = 0 
z;5 - 4z>4 + (6 4- X)z>3 - 4z>2 + vx = 0 

with:i£==ft4fcsB/£/ 
The boundary conditions allow us to write: 

vx ~2v0 + v-x = -Th2/EI 

v2 — 3vx + 3z;0 —v-x = Fh3/EI 

z>4 = 0 
v5 — v3 (equivalent to (dv/dz)4 = 0). 
This leads us to the system of 5 equations with 5 unknowns. 

[ v3 - 4v2 + (6 + K)vx - 4v0 + v-x = 0 
~4v3 + (6 4- K)v2 - 4vx + v0 = 0 

(I) | ( 7 + E > 3 -4v2+vx = 0 
z>! - 2 z ; 0 + z;_! = -Th2/EI 

v2 - 3vx 4- 3z;0 - z>-i = Fh3/EI 

With the numerical values of the problem, we get: 

h = 1/4 = 17/4 = 4.25 m, B = 1.50 m 
ks = 20 kPa/cm = 2 x 103 kPa/m 
£1 = 6.29 x 106 kPa x m4 

from which: K = (4^254 x 2 x 103 x 1.50)/(6.29 x 106) = 0.1556. 
If we fix a value for F, we get F = —Fl0 and we can then solve system (I) 

above, which gives for each point the shaft deformations. Deflection 5 at 
point A of application of force F, whose elevation is +4.75 is (with the 
notations of Fig. 8.25) obtained by the first Bresse formula (neglecting the 
deflection due to shear): 

c , , f M(z— 77) 
5 = v0 -GJ0(Z-Z0) + J — — dr? 

We thus have: 

r F(l0 -r\)2 1%F 
5 = v0 - cVo + J — dr? = v0 - OJ010 + ^ r 
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Fig. 8.25. 

but: oj0 = (dz;/cbc)0 — (vx — v-i)/2h 

from which: 8 = v0 -[(v1 -v.x)l2h] • Z0 + l$F/3EI 
This is the value of 5 for the selected value of F. The energy applied to the 

fender pile during docking action of the ship is W = (1/2)F5. 
The solution is obtained by an iterative process starting with the value of 

F = (2 x 500)/1.40 - 715 kN. 
The obtained results are: 

Fo rF = 715kN: 
v-x = 0.366 m, v0 = 0.216 m, vx = 0.103 m, v2 = 0.036 m, 
v3 = 0.005 m, v4 = 0; 5 = 0.975 m and W = 349kN-m. 
Fo rF = 1000kN: 
z>_! = 0.512 m, v0 = 0.303m, vx = 0.145 m, v2 = 0.050 m, 
v3 = 0.008 m, v4 = 0, 5 = 1.366 m and W - 683kN«m. 

By interpolation we get, for W = 500 kN • m: 
F = 844 kN, say F = 850 kN, 5 = 1.18 m, 
v-x = 0.441m, v0 = 0.261m, vx = 0.125 m, 
v3 = 0.007 m, z;4 = 0. 

Vi = 0.043 m, 
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Displacement in cm 
40 60 80 100 

Fig. 8.26. Deflection of pile (parameters 1: tip at —35 m, fixed-end condition, ship 
docking case). 

The corresponding diagram is shown on Fig. 8.26. 

(b) For the free-end condition (pile-tip in clay at —27m) 
The equations of finite differences are: 
v3 - 4v2 + (6 4- K,)vl - 4v0 + v.x = 0 
v4 - 4v3 + (6 + K')v2 - 4vx + v0 = 0 

v5 - 4v4 + (6 4- K')v3 ~ 4v2 + vx = 0 
For K' = h'*k'sb/E\. the boundary conditions give: 

vx ~2v0 +v-x = -Th'2IEI 

v2-Zvx + 3 2 ; o - ^ - i = Fh'3/EI 
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v5 — 2z;4 + v3 — 0 
v5 — 3z;4 + 3z;3 — v2 = 0 
from which the system of 5 equations with 5 unknowns becomes: 

(Avt ~lv3 +(6+K')vl ~4v0 +v-x = 0 
- ( 5 + K')v4 4- (8 + 2K')v3 -Avl +v0 = 0 
2z;4 + ( iT-3)z>3 +z?! = 0 
^ -2v0 +v-! = -rh'2/EI 

-v* + 2z;3 - 3 ^ + 3z;0 + v.x = Fh'3/EI 

For the numerical values of the problem: 
h' = 1/4 = 14/4 = 3.50 m, B = 1.50 m, 
k'a = 80kPa/cm = 8 x 103 kPa/m, El = 6.29 x 106 kPa x m4 

(II) 

and: K' = (3.504 x 8 x 103 x 1.50)/(6.29 x 106) = 0.2863. 
From here on, calculations are identical to the preceding case. The final 

solution is: 
Fo rF = 715kN: 

v-x = 0.291m, v0 = 0.167 m, vx = 0.069 m, 
v2 ^ 0.001m, v3 = - 0 . 0 5 3 m , z;4 = —0.106m, 

5 = 0.941m and W ^ 336kN-m. 
Fo rF = 1000kN: 
v-x = 0.408 m, v0 = 0.235 m, vx = 0.097 m, 
v2 ^ 0.001m, v3 = - 0 . 0 7 4 m , v4 = - 0 . 1 4 9 m , 
5 = 1.319m and W - 660kN-m. 

By interpolation from W^SOOkN-m we get the following values: 
F = 859 kN, say F = 860 kN, 5 = 1.16 m, 
z>_! = 0.350 m, v0 = 0.202 m, vx = 0.083m, 
v2 = 0.001m, v3 = - 0 . 0 6 3 m , i>4 = - 0 . 1 2 8 m . 
The corresponding diagram is shown on Fig. 8.27. 

(2) The diagram of bending moments along the shaft is obtained from the 
preceding calculations from eqn. (3): 
d2v _ _M_ 
6z2 ~ El 

which is for point i: 
Mt = (EI/h2)(vi + 1-2vi + vi.1) 
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D i s p l a c e m e n t in cm 

6 0 80 100 120 

Fig. 8.27. Deflection of pile (parameters 2: tip at —27 m in the mud), ship docking case. 

op = yz + 2cu (short-term loading 

The resulting diagrams are presented on Fig. 8.28. The normal stress 
developed in the soil at point i has a value of: o = ksvt, from which the 
solid-line diagrams of Fig. 8.29 are drawn. The passive pressure being 
mobilized in the clay has a value of 
since it is a dynamic condition). 

With cu = 30 kPa (assumed constant) and y = 20 kN/m3 , we have: 
op = 20z + 20 kPa (z in m). 

For the free-end condition at —27 m, assume a cohesion 4 times larger*, 
then 
Op = 20z 4- 120 kPa, from which the passive pressure diagram is drawn and 
shown in a dotted line on Fig. 8.29, which gives the upper limits of soil 
susceptible for mobilization. 

By comparing the two diagrams (Figs. 8.28 and 8.29), it is obvious that 
the soil reaction relied upon in the simplified method cannot be mobilized 
in the upper portion of the mud. The computation must be altered to take 

*See p. 78 
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Bending moments MN.m 

800 1200 1600 2000 2400 

Note: negative values for M were obtained-. 
they correspond, in clockwise sense, 
wi th the indicated direction of F. 

: Parameters 1: Fixed end condition 

: Parameters 2: Free end condition 

Fig. 8.28. Diagram of bending moment (simplified method: ship docking conditions). 

into account a modulus of the soil reaction ks, which varies with depth and 
is limited by the passive pressure available at each level. 

Part 2 

For the real conditions studied here, the pile inertia varies with depth z. 
Although the givens of the problem do not specify it, it is possible that the 
modulus of elasticity varies also. We have thus I = I(z) and E — E(z). 

As a consequence, the differential equation of Part One is no longer valid 



PROBLEM 8.5 

8.0, -1000 -500 
Soil reaction ( kPa) 

0 500 1000 1500 2000 
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> Legend: 

(T) Soil reaction , fixed end at -30 m 

@ Soil reaction, free end at -27 m 

(5) Passive pressures 

op= 72 + 2CU , Cu= 30 kPa 

@ Passive pressures with Cu = 4 x 30 = 120 kPa 

1616kPa 

0--4-L 

-100 '0 100 200 300 

Soil reaction in MN/m (B = 1.50m) 

Fig. 8.29. Soil reaction and passive pressure diagram (ship docking conditions). 

since it assumes both E and / to be constant. Furthermore, it was demon-
strated that an increasing modulus of soil reaction ks should be considered. 
Finally, the undrained cohesion of the clay, assumed to be normally con-
solidated, is a function of depth and may be related to Skempton's equation 
(see sect. 4.2.2 of Costet-Sanglerat): cu/oc = 0.11 + 0.37 JP. 

With IP = 45%, we get: cu/oc =0 .11 + 0.37 x 0 . 4 5 - 0 . 2 7 , say: cu = 
0.27ac. 

On the other hand, oc = o'Q since the soil is normally consolidated, there-
fore: oc = (13 - 8.50) x 12 + lOz = 54 4- lOz kPa, 
and: cu = 0.27(54 + lOz) ^ 14.6 + 2.1 z kPa (z in m). 
Computer calculations in the elasto-plastic method 

(1) Method of analysis. This method is that of R. Marche (Ref. 16). The 
deformation, bending moments and soil reactions in the pile have been 
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Hor izonta l stress p 

Al 
u Displacement v 

Fig. 8.30. 

calculated by the analogy of a beam supported on an elastic foundation. 
The program takes into account the variation of the moment of inertia 
of the pile with depth and the elasto-plastic behaviour of the soil. This 
behaviour, as well as its defining parameters, are shown on Fig. 8.30. 

The soil reaction normal to the section / of the pile is Pu = Al x B x pu, 
v — Pu/k9 where Al = length of pile section (m), B = width of pile (m), 
pu — ultimate soil stress, k = modulus of soil reaction (pu and k varying 
with' depth), v = horizontal displacement of pile (m). Vertical loads and 
torsion are neglected. 

The behaviour of the pile during docking was evaluated by calculating the 
energy of deformation associated to different displacements at El. 4- 5.0. 
The deformations, bending moments and soil reactions corresponding to the 
energy of 500 kN • m were obtained by linear interpolation from points 
obtained with energy levels above and below 500 kN • m. 

(2) Soil parameters. The available givens do not allow a rational evaluation 
of strength parameters k and pu because values of c and <p are missing for the 
mud. Two sets of parameters were considered for this problem. 

The first set was obtained from the assumption that the mud is normally 
consolidated with cu/o'0 = 0.25 where o'0 is the effective overburden stress. 
Values of k and pu were then obtained from the values of cu. 

The second set was determined by our experience, that tells us that 
calculations based on a two-dimensional analysis seriously underestimate 
the results. In order to obtain realistic answers, the values of k and pu must 
be increased by a factor of 4. 
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0 10 20 30 4(3 50 60 p,,(N/cm2) 
I 1 1 n r 1 1 *T u / 

0 0_1 Q2 0 3 0.4 kh B(daN/cmycm) 

2.7 0.031 

Fig. 8.31. 

2.1. The parameters of set 1: 
(a) The undrained shear resistance of the clay. 

We have cu/o'0 =0 .25 . This relation is very close to that obtained by 
taking the PI = 45% which yields cu = 0.27 o0. 

Therefore: 
at - 1 3 . 0 m: o'Q = 4 .5x12 = 54kPa, and cu = 13.5 kPa 
at - 3 0 . 0 m : a'0 = 54 + 17.0 x 10 = 224kPa, and cu = 56kPa. 
(b) Modulus of soil reaction of the clay. 

In accordance with the recommendation of Marche, we should use: 
khB = khl(Bi/B) where Bx = 30cm, B = 150cm, so khB = khl/5. 

From the relation of cu and khl proposed by Marche, we get: 
khl = 69kPa/cm for cu = 13.5 kPa, 

-15.0 

£ -17.0 
a; 
<u 
E 
.E -19.0 
c 
o 

o 
I -21.0 
LJ 

-23 .0 
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-27 .0 

-29 .0 
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Fig. 8.32. 

khl = 183kPa/cm for cu = 56kPa 

and at—13.0 m: cu = 13.5 kPa, khB 

a t - 3 0 . 0 m: cu = 56kPa, khB = 
Furthermore, we should consider a reduction in the modulus for depths 

less than 3B. We write: 

khB = CmkhB 

with: Cm = (2 + 7*/*c)/9and: 
zc = 3B = 3 x 1.5 m = 4.5 m, from which: 
a t - 1 3 . 0 m : Cm = 2/9, khB = (2/9) x 14 = 3.1 kPa/cm 
a t - 1 7 . 5 m: Cm = 1.0, khB = 20kPa/cm. 
(c) The ultimate pressure. The Marche method gives: 
a t - 1 3 . 0 m : cu = 13.5kPa, pu = 2 x 1 3 . 5 = 27kPa 
a t - 1 7 . 5 m : cu = 24.8kPa, pu = 9 x 2 4 . 8 = 223kPa 
a t - 3 0 . 0 m : cu = 56kPa, pu = 9 x 56 = 504kPa, 
from which is drawn Fig. 8.31. 

2.2. The parameters of set 2. The magnitudes of k and pu are those above 
multiplied by 4, from which is drawn Fig. 8.32. 
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TABLE 8F 

(a) Moments of inertia 

81 

Elevation e (mm) / ( m 4 ) El (N/cm2) 

+ 8.0 to - 2 . 9 5 
- 2 . 9 5 to - 6 . 9 0 
- 6 . 9 0 t o - 1 0 . 8 5 

- 1 0 . 8 5 t o - 2 2 . 7 0 
- 2 2 . 7 0 t o - 2 6 . 6 5 

15 
18 
25 
26 
18 

0.01929 
0.02301 
0.03151 
0.03271 
0.02301 

405 130 
483 237 
661790 
686 879 
483 237 

Note: I = (TT/64)[D4 

(b) Resistance 

Elevation 

+ 8.00 to +1 .00 
+ 1.00 to - 2 . 9 5 
- 2 . 9 5 t o - 2 6 . 6 5 

-(D- -2e? ] ; E = 2.1 X 105 MPa; e = wall thickness D = 150 cm. 

oe (MPa) 

240 
470 
600 

2.3. Pile characteristics. The pile characteristics are the moment of inertia 
and the elastic limit of steel. Even an important variation of El has little 
effect on the deformation, the bending moments and the soil reactions 
(see Table 8F). 

(3) Results of the analysis, parameters set 1, pile tip at EL — 27 m 

3.1. Docking. The results of the computer output for the deformations are 
presented on Fig. 8.33. The deformation at the pile butt is 5.5 m. 
3.2. Mooring. The computer results may be summarized as follows: 

Calculation no. 1: 
— deformation at El. + 5.0: 
— reaction at El. + 5.0: 
— energy absorbed by the pile: 
Calculation no. 2: 
— deformation at El. + 5.0: 
— reaction at El. + 5.0: 
— energy absorbed by the pile: 

5 = 1.40m 
F = 566 kN 
E = $F8 = 396kN-m 

5 = 2.00 m 
F = 626 kN 
E = \F8 = 626kN-m 

Interpolation for E = 500 kN • m: 
— energy absorbed by the pile: E = 500 kN • m. 
— deformation at + 5.0: 

5 = 1.40 + (500 - 396)/(626 - 396) x (2.0 - 1.4) = 1.67 m 

— reaction at + 5.0: F = (2 x 500)/1.67 = 598 kN. 
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D\ s p l a c e m e n t , m 

2.0 3.0 4.0 5.0 6 0 

<i> - 6 . 0 
E 

12 .0 

-24.0 

-32.0 

Fig. 8.33. Pile displacement during mooring (tip at —27 m, parameters 1). 

3.3. Conclusion. The pile deformations during docking and mooring are too 
large, so the pile should be embedded in the underlying bedrock. 

(4) Results of the analysis, parameters set 1, fixed-end pile at depth—35.0 m 

4.1. Assumptions. Assume an embedment of 5.0 m into the rock (= 3 times 
the pile diameter). The results of the analysis indicate that a shallower 
embedment of about 3 m into the rock could be recommended. A pile wall 
thickness of 26 mm is justified from El. — 11 to El. — 35.0. 
4.2. Docking. The variations of the deformations, the bending moment and 
the soil reactions are presented on Figs. 8.34, 8.35 and 8.36. 
4.3. Mooring. The variation of the deformation energy of the pile as a 
function of the deformation at El. + 5.0 is presented on Fig. 8.37. An 
applied energy of 500 kN • m corresponds to a displacement of 1.14 m at 
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Disp lacemen t , cm 

20 40 6 0 80 100 120 

E _ 

- 2 0.0 

Fig. 8.34. Pile displacement during mooring (parameters 1: tip at — 35 m). 

El. + 5.0. The variations of deformation, bending moments and soil reactions 
are presented on Figs. 8.38, 8.39 and 8.40. 
4.4. Conclusion. The pile deformation and soil reactions during both docking 
and mooring conditions are allowable and the stability of the fender pile is 
adequate. 

(5) Results of the analysis, parameter set 2, free-end pile at depth —27m 
The variations of the displacement, the bending moment and soil reaction 
are presented on Figs. 8.41, 8.42 and 8.43. 
5.1. Docking 
Calculation no. 1: 
— displacement imposed at El. + 5.0: 5 = 0.8 m 
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Bend ing m o m e n t (MN.m) 

6 8 10 12 

- 2 0 . 0 

-24 .0 

36.0 

Fig. 8.35. Bending moment during mooring (parameters 1: tip at — 35 m). 

F = 814kN 
E = ^F8 = 330kN-m. 

— reaction at El. + 5.0: 
— energy absorbed by pile 
Calculation no. 2: 
— displacement imposed at El. 4- 5.0: 5 = 1.40 m 
— reaction at El. + 5.0: F = 1360 kN 
— energy absorbed by pile: E = \Fb = 950 kN • m 
Interpolation for E = 500 kN • m: 
— energy absorbed by pile: 
— deformation at El. + 5.0: 
5 

E = 500kN-m 

= 0.80 + (500 - 330)/(950 - 330) x (1.40 - 0.80) == 0.96 m 

reaction at El. + 5.0: F = (2 x 500)/0.96 = 1040 kN. 
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Soi l react ion ( N, ar, ) 
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Fig. 8.36. Soil reaction during mooring (parameters 1: tip at — 35 m). 

0 1.0 
Displacement, m 

Fig. 8.37. Variation of the energy of pile deformation as a function of imposed defor-
mation (parameters 1: tip at — 35 m). 
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Fig. 8.38. Pile displacement during docking (parameters 1: tip at — 35 m). 

Variations of deformation, bending moments and soil reaction are 
presented on Figs. 8.44, 8.45 and 8.46. 
5.2. Conclusion. Pile deformations and soil reactions during mooring con-
ditions are allowable and the stability of the fender pile for this loading 
condition is adequate. 

General conclusion 
The available information on soil parameters is not sufficient to allow for 

a final design of the structure. Because of this lack of information, it was 
necessary to assume two sets of conditions: 

(1) The first assumption was that of a two-dimensional calculation. The 
mud is assumed to be normally consolidated and to have a shear strength 
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Bending m o m e n t ( M N - m ) 
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Fig. 8.39. Bending moment during docking (parameters 1: tip at —35 m). 
Soil react ion ( N / c m 2 ) 

50 40 30 20 10 0 10 20 30 -12.Or 

Fig. 8.40. Soil reaction during docking (parameters 1: tip at — 35 m). 
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D i s p l a c e m e n t (cm) 

20 40 60 

-8.0 

-20.0 

Fig. 8.41. Pile displacement during mooring (parameters 2: tip at — 27 m). 

that increases as a function of depth cu/o'0 = 0.25 where o'Q is the effective 
overburden pressure. The basis for estimating k and pu gives values of k from 
0.03 daN/cm3 at El. - 13.0 to 0.37 daN/cm3 at El. - 27 and gives values of 
pu from 0.27 daN/cm3 at El. - 1 3 . 0 to 5.04 daN/cm3 at El. - 2 7 . 0 . Under 
those conditions, it is necessary to provide for an embedment of the pile of 
3 m into the underlying bedrock in order to ensure good fender-pile perfor-
mance. 

(2) The second assumption is based on practical experience which shows 
that the pile behaves as if the values of k and pu were 4 times larger than 
those assumed above. Under those conditions, the fender pile performs 
satisfactorily with an embedment of 1 4 m in the clay. 

Given the reduced available information of the problem to work with, 
only the first assumption guarantees an acceptable behaviour of the fender 
pile. The second assumption and its conclusions could only be realistically 
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Fig. 8.42. Bending moment of pile during mooring (parameters 2: tip at —27 m). 
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Fig. 8.43. Soil reaction during mooring (parameters 2: tip at — 27 m). 
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SHEETPILE WALLS 

Fig. 8.44. Displacement of pile during docking (parameters 2: tip at — 27 m). 

considered if a site study confirmed the data. Such a study should consider 
two borings with a pressuremeter testing every meter at the location of the 
pile, or with recovery of undisturbed samples with laboratory testing of the 
soils of various layers. It should be noted that in the case of embedment in 
rock, the results obtained by the simplified method are in good accordance 
with those obtained by computer calculation. 
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Fig. 8.45. Bending moment of pile during docking (parameters 2: tip at —27 m). 
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Fig. 8.46. Soil reaction on the pile during docking (parameters 2: tip at —27 m). 
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irkrkProblem 8.6 Uplift of an excavation bot tom 

It is necessary to determine the short-term stability of the bottom of 
an excavation of large length, whose width is B and its depth is H. The 
excavation is to be made in a homogeneous, cohesive soil of cohesion cu 

and unit weight j . 
The excavation is shored and buttressed so that the sides may be assumed 

not to deform. The incipient failure plane therefore can be assumed to be a 
plane parallel to the shoring located at a horizontal distance x away from it, 
as well as the plane of symmetry with respect to the longitudinal axis of the 
excavation (Fig. 8.47). 

x 
B 
i 

Braces 

7 

'/ sys s 

a1 a'1 

b1 

I- J 

b'1 

U-^—I 
Fig. 8.47. 

Assume further that the shoring does not extend down beyond the 
bottom of the excavation and, therefore, cannot impart any friction resis-
tance to the soil mass it retains and which could become unstable. 

(1) Determine the equilibrium of the soil ofaa'bb' as defined on Fig. 8.47 
which could fail along plane a'b' and assume R to be the reaction of the soil 
pressure on bb'. 

(2) Evaluate R from the results for the shallow footing design. Find the 
limit value of x and determine the value of the safety factor F. Compare 
the results (according to the plastic diagrams used by Caquot or Terzaghi, for 
example). 

(3) Suggest another approach which would not consider the soil mass 
aa'bb'. What are your conclusions? 

(4) What happens to the safety factor if the soil mass supports a uniform 
surface load of magnitude q? 

(5) Use the above results for a two-soil-layered system as shown on Fig. 
8.48, the shoring being only for the upper layer H{ (jiCul) and the bottom 
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of the excavation corresponding to the upper limit of the lower soil layer 
(y2cu2) whose thickness may be assumed infinite. 

(6) Numerical application. Compare the values of the safety factor corre-
sponding to the above conditions for the following case: a two-layer system 
with an upper layer of thickness 6.5 m and cul = 20kPa and a lower layer 
that is infinitely deep with cu2 = 25 kPa. The unit weights are both 20 kN/m3. 
The bottom of the proposed excavation is at 6.50 m and has a width of 
15 m. Assume the length to be infinite. 

(7) Determine the safety factor by the method described above against 
uplift of the excavation bottom for the case shown on Fig. 8.49. The exca-
vation is assumed to be rectangular in plan with a length equal to twice the 
width. 

Clayey gravel:Cu=lO kPa 
I =20kN/n| 

B = 12.00 m (L = 2B) E 
o 
o 

Fig. 8.49. 
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Solution 
(1) The excavation is assumed to have an infinite length and therefore the 

problem reduces to a two-dimensional solution. We can then consider a 
typical 1 m wide slice of trench. Since we are dealing with a purely cohesive 
soil, no friction is assumed between the shoring and the soil mass. Further-
more, if we assume that there is no adhesion between them, there is no 
vertical force component to consider along plane ab. The earth pressure is 
horizontal. The forces which determine the equilibrium of the soil mass are 
shown on Fig. 8.50 and are: 
— the mass of the soil: 
— the shear stress along vertical plane a b : 
— the reaction of the underlying soil on plane bb' 
lated below in answering question 2.) 

For a width x of soil mass, there exists a reaction R which meets the 
criteria R 4- T = > W, because otherwise failure would occur. 

The safety factor is given then by 

F = (R + T)/W (1) 

Terzaghi expresses the safety factor from a slightly different concept, as: 

F' = R/(W-T) (2) 

which leads to different results. It appears more logical, to adopt formula (1) 

T =cuH 
R (this will be calcu-

Fig. 8.50 
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Fig. 8.51. 

in which R and T are the resisting forces which keep the soil mass from 
falling into the excavation. However, the classical formula encountered in 
many books is based o n f ' . 

(2) To calculate R, we may try to transfer the results of the shallow 
footing calculations to this particular case, and consider the mass aa'bb' as 
a load acting on the underlying soil as a footing would. Let's take for 
instance, the Caquot plasticity graph (see Fig. 8.50). We can say that R is 
equal to the bearing capacity of a strip footing of width x, resting at the 
surface of the ground (D — 0) over a purely cohesive soil, since the failure 
would occur along the shortest line on the excavation side of the plane. 

The bearing capacity for such a condition is: 

Qd = cuNc with Nc = 7T 4- 2 = 5.14 

Thus: R = 5.14xcu 

and: 

5.14xcu 4- Hcu 5.14cu cu 

p = ^ - = - H — -
yHx jH yx 

This shows that the safety factor decreases as x increases, but we must 
remember that up to now we have assumed that the imaginary strip-footing 
was at the surface and that the failure plane day lighted in the trench bot tom. 
From the plasticity graph, it is seen that the failure planes daylight in the 
trench for 0 <x < B conditions only (see Fig. 8.50). The minimum value of 
the safety factor therefore appears when x = B. 
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Finally, we have: 

5.14c,. cu / r t x 
F = + — (3a) 

yH yB 
5.14B + H cu 

F = (3b) 
BH y 

Notes 
(1) If we had used the Terzaghi plasticity graph instead of Caquot's (see 

Costet-Sanglerat, vol. 2, p . 152) results would have been different. In that 
case, we assume R to be half the bearing capacity of a strip footing of width 
2x ; t he value of Nc is that given by Terzaghi: 

Nc = (3TT/2) + 1 = 5.71 

and: JR = \ x 5.71 x 2xcu = b.llxcu 

The net of failure lines gives: 

7T y/2 
x = 5 c o s - = B — (Fig. 8.51) 

4 2 

or: 

5.71c„ , y/2cu 

F = + (4a) 
yH yB 

5.11B + y/2H cu 
F = (4b) 

BH y 

(2) If, in addition, we consider Terzaghi's definition of the safety factor 
(formula 2) as: F = R/(W - T) 
we get: 

5.71Ecu 
F' = j=r— (4c) 

yHB-Hy/2cu 

or, with the maximum depth corresponding to F = 1: 

5 .71£c, 
yB-cuy/2 

#iim = — ~J= (5) 

which is the formula frequently encountered in the technical literature. 
(3) A different method of analysis may be considered referring to the 

theory of shallow footings. 
In the case of a strip footing of width B, embedded to depth D in a 

purely cohesive soil, we get: 
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qd = yD 4- cuNc since Nq = 1 (<p = 0) 

For our case, where D = H: 

qd = yH + cuNc 

and qad = yH 4- (cuNc)/F, which may be writ ten as: 
C

UNC . 
Po = P i + —IT" where p 0 > Pi 

In the case of a cut of great length, width B and depth H, the same analysis 
could be made with p0 <Pi (p0 andPi should be changed in the result). In 
the case of p0 = 0 we get: 

cuNc 

Po = Pi — = 0 
F 

from which: 
F = cuNc/yH (6a) 
since we assumed Pi =yH. 
Assuming a value of Nc from Caquot's theory, we finally get: 
F = 5.14cu/yH (6b) 

Conclusions 
If we compare the various theories of the preceding questions, we may 

conclude that the safety factor from formula (6) is the greatest. Indeed, in 
the first instance, the safety factor is increased by cu/yB or >/2cu/yB, 
depending on the plasticity net chosen (formulas 3 and 4). 

By the same token, if we use Terzaghi's formula (4) we may write: 

F' = 
5.11Bcu 

yHB - Hy/2cu 

5.11Bcu 

yHB 
~ i Hs/2cu 

F 

VZCu 

yHB yB 

hence F' > F (assuming (>/2cu > l)/yB). 
We note tha t in this latter method , there is a limit value for B which is 

B = cu\/2/y below which the analysis has no more significance (we find 
that Ff < 0 and an upper height-limit which is negative). 

According to this me thod , there could never be a stability for trench 
depths less than y/2cu /y. This contradict ion comes from the bad definition 
of the safety factor. With the proposed formula (1), this difficulty disappears. 
It also does n o t exist in the method used for solving question 3 . 
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Remark 
It is normal that the value of the safety factor F of question 3 is the 

largest. This is because the shear resistance along the failure planes was not 
taken into account between the level of the bot tom of the trench and the 
upper soil level. Thus, it was assumed that no increase in Nc occurred with 
depth. We could, however, count on such a linear increase as a function of 
depth. For instance, Skempton proposed such an increase in Nc with depth 
with 5.14 for D/B = 0 and to 7.5 for D/B > 5 or: 

Nc = 5.14 + 0A12D/B for D/B < 5 

Nc = 7.5 for D/B > 5 

We then have for H<5B: 

cu [5.14 + 0A12(H/B)] 5.14cu cu 

F = — v ; = + 0.472 — (7) 
yH jH yB 

which is comparable to formulas (3) and (4). In spite of this increase of Nc, 
we still get minimum values for the safety factor. 

(4) The formulas used above must be modified when the soil mass is acted 
upon by a surface uniform surcharge of Q = q x x, which is added to the 
weight of the mass aba'b', if we use the first approach, or to add stress q to 
yH for the second one. 

For the first instance then we have: 

(Caquot) (8a) 

(Terzaghi) (8b) 

yH + q 

(5) For a two-layer system, R is calculated from the cohesion values of the 
underlying layer, whereas W and T are those pertaining to the upper layer. 
We then have: 

5.14cu2
 cu\ 

F = -f- + -— from (3) 
7 i # i JiB 

5.71J5cu2 
F = 7= from (4c) 

y^B-Hi-y/Zcui 

F 

F 

5.14cu 

~ yH + q 

5.71cu 

~ yH + q 

H 
+ -■ 

B 

+ y/2 

Cu 

yH + q 

_H cu 

B yH + 

and for the second approach: 

cu 'Nc 

(C 

Q 
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H,m = 5 ' 7 1 C u V from (5) = 5.71cu2 

1Um 7i ~ ( c B l ->/2)/-B 

F = ^ - ^ from (6) 
7 i # i 

In this last instance, the upper layer cohesion has no influence. 
On the other hand, the increase of Nc proposed in question 3 can only be 

made unless if cul of the upper layer is higher than cu2 of the lower layer. 
For the opposite case, it is advisable not to increase Nc if cul is considerably 
lower than cu2. 

(6) Numerical application 

cul = 20kPa, cu2 = 25kPa, 7 1 = 7 2 = 20kN/m3 

B = 15 m (infinite length), H = 6.50 m 
The results are: 
— Method 1 (Caquot graph) 

5.14 x 25 20 
F = + - 1.06 

20 x 6.50 20 x 15 

— Method 2 (Terzaghi graph): 

5.17 x 25 20 x \ / 2 
F = + — - 1.19 

20 x 6.50 20 x 5 
— Method 3 (Terzaghi): 

8.71 x 15 x 25 
F = 7= ~ 1.21 

20 x 6.5 x 1 5 - 6 . 5 x > / 2 x 20 
5.71 x 25 

20 X A / 2 
Hita = T=T = 7.88 m. 

20 
15 

— Method 4 (without increasing Nc): 

5.14 x 25 
F = — 0.99 

20 x 6.50 
In actual fact, even though cul is lower than cu2 we may increase Nc. We 

propose the following approach using Skempton's coefficient: 
cul H 

Nc = 5.14 + — x 0.472 x -
Cu2 B 
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(L = 2 B ) 

gl^pl^^ 

Fig. 8.52. 

x ^ ? v < < ^ ^ x > w w v < > > w w v 

20 6.5 
or here: 7VC = 5.14 4- — x 0.472 x 

25 15 
5.30 

so: F = 
5.30 x 25 

20 x 6.50 
1.02 

The safety factor thus is very close to 1: the trench bottom is about to 
lift up. 

(7) Let us adopt method 1 to solve this problem, taking into account the 
increase in bearing capacity (1 + 0.2B/L) (see Costet-Sanglerat, Vol. II) due 
to the fact that the trench is no longer infinite. On the other hand, there 
is a bedrock substratum through which the failure planes will not go. This 
limits the value of x to ft\/2, as seen on Fig. 8.52. 

We have, finally, for a slice of 1 m length: 

x = hy/2 = 6.00 xy/2 - 8.50m 

R = xcu2\l + 0.2-jiST, 8.5 x 25 11 + 0.2 x — | x 5.14 - 1201.5 kN 
2 4 / 

T = 2 x 10 + 15 x 5.50 = 102.50 kN 

Weight of soil mass aba'b': 

fill (clayey gravel) = Wx = ^(4.50 + 8.50) x 2.00 x 20 = 260 kN 
soft clay layer W2 = 8.50 x 5.50 x 18 = 841.5 kN, 
W = Wx + W2 = 1101.5 kN 
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and finally: 

1201.5 + 102.5 
F = = 1.18 

1101.5 

The safety factor is low. For temporary support design, a safety factor 
between 1.5 and 2 is preferred. The finally adopted safety factor depends 
on the level of confidence of the engineer in evaluating the soil characteristics 
and the knowledge of the possible surcharges. 

Final remark 
There are other approaches but all are based on the same principle. The 

essential difference between the methods resides in the plasticity graph 
choice. The methods of Bjerrum and Eide (1956), Tschebotarioff (1973), 
the NAVFAC DH7 (1971) method mentioned in "Foundation Engineering 
Handbook" of H.F. Winterkorn and H.Y. Fang are other possible choices. 

As for the remarks made above regarding the safety factor, the most 
common method used is that of method 3 (formula 6) with correction for 
Nc depending on the depth and shape of the trench. Formulas 4c and 4d, 
which correspond to the historical formulas of Terzaghi (1943) should, in 
our opinion, be abandoned. 

Finally, question 7 shows that in certain instances, a simple plasticity 
graph must be chosen if conditions do not match those found in the available 
tables or charts. 
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SLURRY WALLS 

+*Problem 9.1 Slurry wall stability during construction 

A trench for a slurry wall is excavated in a cohesive soil where cu = 35 
kPa/cm\ 7sat = 20kN/m3. The trench sides are stabilized by filling the 
excavation with a bentonite slurry whose unit-weight is yB = llkN/m3. 
Find the theoretical depth to which the trench may be excavated without 
caving. Assume its length to be infinite. 

Solution 

Short-term loading conditions apply. The cohesive soil is very impervious 
and the trench stability is critical for only a short time. 

Let us find the height Hp of the trench corresponding to the development 
of the plastic conditions at the excavation bottom. 

At point A (Fig. 9.2) we have: ax = Hys&u o3 = HyB for conditions at A 
to become plastic, we must have: 

oY-o3 = 2cu = # p (7sa t -7B)(Fig .9 .2) . 
The height corresponding to this will then be: Hp = 2cu /(ySAt — yB). 

The state of plasticity is reached when large deformations occur. Two 
conditions may develop: either there occurs a redistribution of the stresses in 

Failure envelope (undrained soil) 

Fig. 9.1. 
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the upper soil zones, still in elastic state, or cracks appear in the soil and no 
stress redistribution can occur. 

Case 1—stress redistribution occurs, 
When height Hp is exceeded, ox increases but (ox— o3) can no longer 

increase (plastic limit). Therefore, the stresses shown in the shaded area 
of Fig. 9.3 must be taken into account by an increase in stress in the upper 
zone, still in an elastic state of stress. 

If the stress redistribution occurs completely, the entire trench height 

Slur ry bentonite 

:-::'■■■''■!'■ 

; •'' •'• •' • \ ff3__ }?,>. 

f S ^ T O ^ ) ^ ^ X 

H 

,. 

Fig. 9.2. 

Added stresses in elastic zone 

Stresses vehicle must be supported 

0~3 actual in soil 

Fig. 9.3. 
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can become in a state of plasticity: 

HM = 2HP = 4cJ(ysat-JB) or: HM = 140/9 = 15.5m 

Case 2—fissures appear 
Cracks appear in the soil as soon as the state of plasticity is reached at 

trench bottom; then failure occurs, for: Hp = 2cu/(ySSit —yB) = 1.8m. 
In reality, slurry wall excavation trenches can reach considerably deeper 

than the calculated value above. This is because the trench length is only 
a few meters and the boundary conditions do improve the stability and allow 
for greater depths (Compare sect. 8.3 in Costet-Sanglerat). 

irkrkProblem 9.2 Design of a slurry wall with pre-stressed anchors 

A prefabricated retaining-wall, as shown on Fig. 9.4, must be designed. 
The soil characteristics as well as the active and passive pressure coefficients 
are shown on the figure. A row of prestressed anchors is proposed at 2.5 m 
depth. 

The soil above the wall supports a load of lOkPa. The groundwater 
table is at — 4m. 

The soil on the excavation side will be grouted from a level of 9 to 11.5m 
to avoid uplift of the excavation bottom during dewatering. 

(1)A first excavation phase will bring the level to 3 m depth, where 
anchors will be placed. Draw the passive and active pressure diagrams and 
calculate the maximal bending moment in the slab for this first construction 
stage. 

(2) After tensioning of the anchors, a second excavation phase will follow, 
reaching a depth of 7.30m. Draw the active-passive pressures diagram and 
calculate the maximal bending moment in the slab and the tension in the 
anchor rods to allow the excavation of phase 2 to take place. 

Solution 

A. CALCULATION FOR PLASTIC CONDITIONS 

(1) Phase 1. Excavation to 3 m depth 

1.1. Determination of the active-passive pressure diagram 
From 0—3.70 m: 

p0 = 0.41 x 10 = 4.1 kPa 

p (_3 ) = 0.41(10 + 1 8 x 3) = 26.2kPa 

P(_3.70 + e) = 0.41(10 + 1 8 x 3.70) = 31.4 kPa 

&C-3.70 + 6) = 3 . 5 4 x l 8 x 0 .70 = 44 .6 kPa 
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2 .50 m e x c a v a t i o n 
3 m P h a s e l 

" D 1 V I D A G 32" a v e r y 2 m 

© 

© 

® 

© 

A above 
/ = 18 k N / m Jw a t e r table) 
i/>=25° kA=0.40 
c = 0 k.= 3.70 

7 = 1 8 k N / m 3 

/ = 1 0 k N / m 3 k A=0 .27 
y> = 35° k p= 8 . 0 0 

c = 0 

7' = 1 0 k N / m 3k A= 0 . 4 0 
ip = 25° k = 3.70 
c = 0 

A c t i v e and pass i ve 
p r e s s u r e c o e f f i c i e n t 
a r e t h e s a m e as t h o s e of 

l a y e r H 

/ ' = 1 0 k N / m 3k A= 1 
</> = 0 ° kp= 1 
c =100 kPa 

Fig. 9.4. Cross-section of wall and soils, as well as their mechanical characteristics. 

( 6 - p ) ( _ 3 . 7 0 + e) = 13.2kPa. 

F r o m - 3 . 7 0 t o - 7 . 3 0 m: 

P(-3.7o-e) = 0.27 x (10 + 18x 3.70) - 20.7 kPa 

6(-3.?o-e) = 6 .51x18x0 .70 = 82kPa 

(6-p)(-3.70-e) = 61.3 kPa 

p ( - 4 ) = 20.7 + 0.27 x 18 x 0.3 = 22.2 kPa 

6(_4) = 82 + 6 . 5 x 1 8 x 0 . 3 = 117.2 kPa 

(6—p)(_4) = 95kPa 

P(-?.30) = 22.2 + 0 . 2 7 x 1 0 x 3 . 3 = 31.1 kPa 

' (-7.30) 117.2 + 6.51 x 10 x 3.30 = 332 kPa 

(6—p)(-7.30) = 300.9 kPa. 

The diagram is shown on Fig. 9.5. 

Notes. When a discontinuity occurs due to a change in soil layer, + e indi-
cates that one is immediately in the upper layer and — e indicates that one 
is immediately in the lower layer. 

From the similar triangles 2 and 3 (see Fig. 9.5) the point of zero stress 
is at depth — 3.3 m approximately. 
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kN.m Bending moments 
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Fig. 9.5. Plastic condition, phase 1: excavation to 3 m of depth. 

1.2. Maximal bending moment 

4 1-1- 9fi 9 
Ri _ 1±—=^-x 3 = 45.5 kN (inferior R-numbers correspond to areas 

shown on Fig. 9.5) 

R, = 
26.2 x 0.33 - 4.3 kN 

2 of the active pressures = 49.8 kN 

R3 = (13.2 x 0.37)/2 = 2.4 kN 

61.3 + 95 
RA — x 0.3 = 23.4 kN 

2 of the passive pressures = 25.8 kN 

Point of zero shear. At level —4 m, it is necessary to find a net-shear 
(passive less active) equal to: 49.8 — 25.8 = 24 kN. 
From —4 m: 
(b-p) = q = 95 + [(300.9 - 95)/3.30]x 
where x is the ordinate measured from — 4 m. 

(b-p)x = 24 and 95 x +62 .4 x2 = 24 
from which x = 0.22 m. 
The point of zero shear is located at —4.22 m. Thus, the maximal bending 
moment is: 
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22.1 x 3 26.2 x 0.33 
M = 4.1 x 3 x 2.72 + x 2.22 + x 

2 2 

(3 .7 -3 .33 ) 61.3 + 95 
x 1 .11-13 .2 x0.64 x 

2 2 
108.7 + 95 

x 0.3(0.15+ 0.22) x 0.22x0.10 = 99kN.m. 

The diagram of bending moments is shown on Fig. 9.5. 

(2) Phase 2—excavation to 7.30 m of depth 

2.1. Active-passive earth pressure diagram: 

From 0 to—3.70 m: 
p0 = 0.41 x 10 = 4.1 kPa 
P(-2.so) = 0.41 x (10 + 1 8 x 2.50) = 22.6 kPa 
p ( _ 3 . 7 0 + e ) = 0.41 x (10 + 18 x 3.70) = 31.4 kPa 

From-3 .70 t o - 7 . 3 0 m : 

P(-3.?o-e) = 0.27 x (10 + 1 8 x 3.70) = 20.7 kPa 
p(_4 ) = 20.7 + 0 . 2 7 x 1 8 x 0 . 3 = 22.2 kPa 

P(-7.30 + e) = 22.2 + 0 .27x10x3 .30 + 10x3 .30 = 64.1 kPa 
From—7.30 to—9m: 
P(-7.3o-e) = 0.41 x (10 + 18 x 4 + 10 x 3.30) + 10 x 3.30 = 80.2 kPa 
P(-9 + o = 80.2 + 0 .41x10x1.70 = 87.2kPa 
b(_9 + e) = 3 .54x10x1.70 = 60.2 kPa 
( p - 6 ) ( _ 9 + e) = 27kPa. 
From —9 to—11.50 m. 
Since <p = 0, the passive pressure is calculated directly from Mohr's diagram 
(see Problem 9.1) and so we get: b = y'z + 2cu = lOz + 200 
where z = depth measured from the bottom of the excavation 
6(_9_e ) = 10x1.70 + 200 - 217kPa 
P(-9-e) = 60.2 kPa 
(b— p ) ( - 9 - e ) = 156.8 kPa 

Vn.so+e) = 10 (11 .50-7 .30 )+ 200 = 242 kPa 
P<-n.so+o = 60.2 + 0.41 x 10 x ( 1 1 . 5 0 - 9 ) = 70.5 kPa 
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Bending momen ts ( k N . m ) 
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Fig. 9.6. Plastic condition, phase 2: excavation to 7.3 m of depth. 

8 0 . 2 

O t-

Fig. 9.7. Loads per unit of length in kN/m. 

( & - P ) ( - I I . 5 0 + O = 1 7 1 . 5 kPa. 

From —11.50 to —12 m: 
6<-n.so-e> = 3 .41x10x4 .20 = 143.2kPa 

P(-ii.so-e> = 70.5kPa 

( 6 - P ) < - i i . s o - e ) = 7 2 - 7 k P a 
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6(_I2) = 143.2 + 3 .54x10x0 .50 = 160.9 kPa 

p(_1 2 ) = 70.5 + 0 .41x10x0 .50 = 72.60 kPa 

(6—p)(-i2) = 88.3 kPa. 
The active-passive pressure diagram is presented on Fig. 9.6. 

2.2. Stresses in the slab 
A modified method of Blum will be used, (see sect. 7.2, Costet-Sanglerat): 

the point of zero bending moment corresponds to the point of zero stress. 

2.2.1. The equivalent beam must be computed (shown on Fig. 9.7) 

27 + 80.2 
i?, = x l .70 = 91.1 kN 

2 

64.1 + 22.2 
R2 = x 3.30 = 142.4 kN 

2 
20.7 + 22.2 

R3 = x 0.30 = 6.4 kN 
2 

31.1 + 4.1 
R4 = x 3.70 = 65.7 kN 

2 
2R = 305.6 kN 

Finally, we get: 

RA = 151.8 kN, RB = 153.8 kN. 
The tension in the anchors is then: A = (153.8 x 2)/cos 15° = 318.5 kN 
for a 2 m spacing of the anchors inclined 15° with the horizontal. 

Maximal bending moment. This occurs where shear is zero, somewhere 
between x — 1.70m and x = 5m (the direction of the* axis is indicated on 
Fig. 9.7). Between x = 1.70 m and x = 5 m (s designates the load per m), 
we get: 

( 6 4 . 1 - 2 2 . 2 ) , 
s = 64.1 - —— - V - 1 . 7 0 3.30 

s = 8 5 . 7 - 1 2 . 7 x 
(85.7 — 12.7*) + 64.1 

T = 1 5 1 . 8 - 9 1 . 1 - x ( * - 1 . 7 0 ) = 0 

from which: 

12.7x2 —171.39*+ 376.06 = 0 



PROBLEM 9.2 111 

the roots of which equation are: xx = 2.76 m, x2 = 10.73 m. 
The value here to consider is x = 2.76 m, from which s = 50.6 kN. 

M = -151 .8 x 2.76 + 27 x 1.70 x 1.91 + \ x 53.2 x 1.70 x 1.63 

4- 50.6 x 1.06 x 0.53 + \ x 13.5 x 1.06 x 0.71 
M = - 2 2 4 k N . m a t l e v e l - 9 + 2.76 = - 6 . 2 4 m. 
Moment at anchor point. 
M = 4.1 x 2.5 x 2.5/2 + (18 x 2.5)/2 x 2.5/3 = + 32 kN.m. 

The diagram of bending moments for phase 2 is presented on Fig. 9.6. 

2.2.2. Equivalent lower beam (see Fig. 9.8): 

156.8 

171.5 

88.2 

72.7, 

2.50 m 
0J50 

-*W-H 

3 m 

Fig. 9.8. Load per unit of length in kN/m. 

156.8 4- 171.5 72.7 + 88.2 
RA+Re = x 2.50 + x 0.50 = 450.6 kN A 2 2 
3R'C ~ 156.8 x 2.5 x 1.25 + \ x 14.7 x 2.50 x 1.67 + \ (72.7 + 88.2) x 

R' 

x 0.50 x 2.75 
^ 210.4 kN, 

631.2 kN 
R'A ~ 240.2 kN: 

R'A > RA : there is to much embedment. 
Let us evaluate the order of magnitude of the bending moment (overesti-
mated because of the excess embedment). Assume the load on the beam to 
be a uniformly distributed load: 
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s = 450.6/3 = 150.2 kN (perm of length): 
Mmax = (150.2 x 32)/8 = 169kN.m 

Remark 
The minimum required embedment can be calculated: assuming Rf

A = 
R'c,weget:R'A + Rf

c = 2R'A = 303.6 kN. 
Assuming further the constant load is q = 157 kPa per m, the passive 

pressure is needed over a depth of 303.6/157 = 1.93 m. The embedment is: 
f= 1.93 + 1.70 = 3.63 m; the moment is M = (157 x 1.932)/8 = 73kN.m. 

2.3. Conclusion 
Calculation in plasticity condition is a long and drawn-out process, even 

when based on simplifying assumptions. Furthermore, the results greatly 
differ from reality, because plasticity is only developed when substantial 
deformations are allowed to occur, which is not the case for a rigid wall or 
slab and even less than for steel sheetpiles. 

B. CALCULATIONS IN ELASTO-PLASTIC CONDITIONS 

The calculations in elasto-plastic conditions are too complex to be carried 
out by hand. A computer must be used. We used the Rido-program developed 
in Lyon by Fages for the local subway construction. 

This program takes into account deformations caused by progressive 
excavation whereas under plasticity conditions each phase had to be 
considered independently. For each phase the stresses exerted on the wall 

Bending moments ( kN. m) Shear (kN) D e f l e c t i o n mm 

Fig. 9.9. Elasto-plastic condition, phase 1: excavation to 3 m of depth. 
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by the soil are given, as well as bending moments, shear, deflections and 
tension in the anchors. 

Results are presented on Figs. 9.9, 9.10 and 9.11. They can be compared 
with those obtained for plasticity conditions (part A). 

Bending moments (kN.m) Shear (kN) Deflect ion mm 
50 100 - 5 0 0 50 100 0 5 10 15 

Fig. 9.10. Elasto-plastic condition, phase 2: excavation to 3 m of depth (active anchors). 

Bending moments (kN.m) Shear (kN) Def lect ion mm 
-100 -50 0 50 100 -100 -50 0 50 100 150 0 5 10 15 20 

Fig. 9.11. Elasto-plastic condition, phase 3: bottom at 7.30 m of depth. 

Remarks 
Phase 1. The maximal bending moment in elasto-plastic conditions 

(101.5 kN.m) is close to the value found by assuming plastic conditions 
(99 kN.m). 
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Phase 2 (bottom of excavation at 7.30 m). Here, considerable differences 
occur. The maximal bending moment in plastic conditions is 224 kN.m 
whereas it is only 147 kN.m for elasto-plastic situations. The difference 
may be accounted for by the fact that the elasto-plastic method takes 
into consideration the deformations which have occurred in the wall after 
the completion of Phase I, which causes moments to decrease. Calculations 
in elasto-plastic conditions more closely approximate real conditions. 

+++Problem 9.3 Self-sustaining slurry wall 

Calculate the stability of the wall shown on Fig. 9.12. Is the embedment 
sufficient? 

In order to limit the horizontal deflection at the top of the wall that 
would cause cracking of the adjacent building, assume a low value of passive 
pressure. 

Although the wall is rough, assume 8 = 0. This is equivalent to apply 
a reduction factor to the passive pressure which would be usually: 
8 = ~2/3<p. 

</> = 
c = 

7 = 

7 -
6 

KA 
Kp 

20° 

10kPa 

18 k N / m 3 

11 k N / m 3 

0 

= 0 4 9 
= 2.04 

2.50 m 
'wniintnjnmr/ini/tnnnnrnnnfw/ 

•4J 6.50 m 

Fig. 9.12. Cross-section of walls and encountered soils with their mechanical charac-
teristics (loads per m of wall length). 
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Solution 

First we must determine the earth pressure diagram acting on the wall as 
well as the stresses due to the footing load. The simplest method to accomplish 
this is to assume a rectangular stress distribution as proposed by Graux 
(in his "Deep Foundation and Excavations", Vol. I, p . 196) and shown on 
Fig. 9.13. 

-i 

■ T ¥ in If s 

1 L / 7T U> 

/ 4 2 

Pa 

1 

| 
1 

^ = ^ 3 

= V 

Fig. 9.13. 

The active pressure on the wall is taken equal to that of a uniformly 
distributed load of infinite length but whose influence is limited to depth 
Z 3 , corresponding to the failure wedge below the footing: 

Z 3 = S t a n (TT/4 + <p/2) = 1 x tan (45° 4- 10°) = 1.43m, 
say Z3 = 1.5 m. 

Let s represent the surcharge due to the footing, then the lateral earth 
pressure on the wall is: pa = KAs = 0.49 x 180/1 = 88.2 kPa, as is shown 
on diagram 1 of Fig. 9.14. 

Lateral earth pressures 
Take as the origin, the bottom level of the footing. Between that level 

and the upper soil surface, the soil acts as a surcharge s' = 18 x 0.5 = 9 kPa. 
At depth h from the bot tom of the footing, the lateral pressure then is: 
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o = ka(yh + s ' ) + [(ka - l ) / t a n <p]c (valid if 5/<p = 0) 

o = 0.49 (7-ft + 9 ) + [ (0 .49- l ) /0 .36] x 10 

a = 0.49 7^ + 4 . 4 - 1 4 . 2 = 0.49 7 f t - 9 . 8 
For 0 < ft < 0.5 m, 7 = 18 kN/m3, and o = 0.88 ft - 0.98 < 0, so the lateral 
earth pressure is zero. 

From ft = 0.5 m (groundwater level) we get: 

° = ao.50 + kay'(h-0.50) 

a = 8.8 x 0.50 - 9.8 + 0.49 x 11 (ft - 0.50) 
a = 4 . 4 - 9 . 8 + 5 . 4 f t - 2 . 7 = 5 . 4 f t - 8 . 1 , so 
there are no lateral pressures until depth ft0 = 8.1/5.4 = 1.5 m: the situation 
is shown by diagram 2 on Fig. 9.14. 

For ft = 6.5 m, we get o = 27 kPa. 

Water pressure 
Between El. —0.5 m and the bottom of the excavation at —2.50 m the 

pressure due to the water is o = (h — 0.5)yw . 
From the bottom of the excavation, the residual water pressure due to 

the difference in the head on the two sides of the wall remains constant 
and is equal to p - 20 kPa, as shown on diagram 3 of Fig. 9.14. 

Passive earth pressure from the bottom of the excavation 
With 8/<p = 0, the passive earth pressure is equal to: 

B = 1m 

D iag ram 1 

D iagram 2 

Diagram 3 

D iagram 4 

Resul t ing d i a g r a m 

xxxxvxxx 
V 8 8 

04 *■ 

II 
L J 

(1) 1-1 
/ / 

( 3 ) ; / 

1 / 

}' 
j\ 20 
Zi 

0 
1 0-5 m 

L 1.5 m 

3.5 2.5 m 

28.9 W ^ 

\ '"■•■,(4) 

Fig. 9.14. Stresses in kPa. 
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a = kp y'(h - 2.50) + [(kp - l)/tan <p] c 

= 2.04 x ll(h - 2.50) + (1.04/0.36)10 

= 22.4(/i - 2.50) + 28.9 
h = 2.50, o = 28.9 kPa 

h = 6.50, a = 118.5 kPa, 
from which is drawn diagram 4 of Fig. 9.14. The resulting net diagram 
(diagram 5) is obtained by superposition of all 4 diagrams, with the following 
values: 

h = 0 

h = 0.50 

h = 1.50 -e 

h - 1.50 + e 

h = 2.50 - e 

h = 2.50 + e 

h 6.50 

a = 88kPa 

a = 88kPa 

a = 88 + 10 = 98 kPa 

a = lOkPa 

CT = 5.4 + 20 = 25.4 kPa 

o = 5.4 + 20-28.9 = -3.5kPa 

a = 27 + 20-118.5 = -71.5kPa, 
the latter two being negative stresses due to passive pressure. 

The resultant of the active forces, per meter of wall is: 
1 x 1 0 1 5 4 x 1 

P = 88 x 1.5 + ——- + 1 x 10 + -^- = 132 + 5 + 10 + 7.7 

154.7 kN (perm) 

0 100 200 200 100 50 0 50 100 150 10 20 30 40 50 mm 

W$E 

:::':::::; -c 
:::::::x a ;x::;x <b 

T 1 

x: s ;•§§§§ 

lio î':;:';:;: 

iill 

— t —\ »• 
kN m 

WiM259-2 

E 
i l 

a 
0) 
Q 

1 

; / 

/ 
/ - 5 / 

7 
^10 

' 
Bending moments 

Fig. 9.15. 
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The resultant of the passive forces is: B = 3.5 x 4 + (68 x 4)/2 = 14 + 
136 = 150 kN (perm). 

The passive force just barely counteracts the active force. It is apparent 
that there cannot be equilibrium of the moments and therefore the stability 
of the wall must be doubted because of insufficient penetration. This 
conclusion was confirmed by the elasto-plastic computer method using the 
Rido-program. It also indicated that the embedment should go another 2.9 m 
(see results obtained on Fig. 9.15 for a wall height of 10.4 m instead of 7 m). 

+*+Problem 9.4 Wall buttressed by floors 

The stability of an excavation for a 4-story deep parking structure was 
assured by a wall constructed after the slurry method. 

Bracing of the wall was realised by the floors of the structure butting into 
the wall and built during the several phases of excavation. The applied tech-
nique therefore, consisted of building the floors on grade and excavating 
below them once finished. 

The wall, the soil properties and the bracings are shown on Fig. 9.16, 
as well as the phases of excavation; assume 8 = 0 (see problem 9.3). 

70.35 WA 7 0 

\ 
m 

7 - 1 8 k N / m 
7■'= 11 k N / m 3 

K A = 0 . 2 7 
K p = 7.34 
C = 0 o 

V = 35° 

Sand and 
g r a v e l 

1 V 4.10 
1 / / V / V / V / 

7 1-85 \ 

17.05 

jm 
^ 

F l o o r 2 
3.55 

Phase 1 

F l o o r 3 
6.65 

Fig. 9.16. 

The elasto-plastic method was used by means of a computer with the 
Rido-program. Results are presented on Figs. 9.17, 9.18 and 9.19, while 
the method of plasticity was used in accordance with examples of previous 
problems. The results of that method are presented on Figs. 9.20, 9.21 and 
9.22. 

Verify quickly the order of magnitude of the reactions at the floor levels 
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Fig. 9.17. Elasto-plastic method, phase 1: excavation at 4.10 m of depth. 

48.8 
- 3 0 0 -100 0 100 300 kN.m - 2 0 0 -10001100 200kN 0 10 20 30 mm 

React ions - 48 -8 kN 

515.1 kN 

Bend ing momen ts Shear D e f l e c t i o n 

Fig. 9.18. Elasto-plastic method, phase 2: excavation at 10 m of depth. 

47.4 
- 3 0 0 -100 O 0 100 3 0 0 kN.m - 3 0 0 - 1 0 0 1 1 0 0 3 0 0 kN 0 

^ ■ ' " ' X ' ' ' » ■>■■■■ ly»■ iI>'.>.».I.»|' .T■ I....I...—► -* 
10 20 30 mm 47.4 kN 

....I.■■■!...■!... ». Reactions 

521.7 kN 

0 

722.3 kN 

Bending m o m e n t s Shear D e f l e c t i o n 

Fig. 9.19. Elasto-plastic method, phase 3: excavation at 12.80m of depth. 
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at the end of the construction by using the active pressure diagram of 
Terzaghi for a cohesionless soil (see sect. 7.5.2., Costet-Sanglerat). 

Compare the results of the various methods. What are your conclusions'? 

Solution 

The simplified diagram is shown on Fig. 9.23. The free wall height is: 

H = 1 2 . 8 0 - 0 . 3 5 - 12 .45m. 

The maximum stress at the bottom of the footing is (plastic calculation): 

o = 0.27 x [10 4- (3.20 x 18 + 9.25 x 11)] = 45.7 kPa 

Bending m o m e n t s Ac t i ve - passive p ressu re d i a g r a m 

Fig. 9.20. Plastic condition, phase 1: excavation at 4.10 m of depth. 

Bending m o m e n t s A c t i v e - p a s s i v e p ressure d iag ram 

Fig. 9.21. Plastic condition, phase 2: excavation at 10 m of depth. 
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- 3 0 0 - 2 0 0 -100 0 100 2 0 0 kN.m 

Bend ing m o m e n t s A c t i v e - p a s s i v e 
p r e s s u r e d i a g r a m 

Fig. 9.22. Plastic condition, phase 3: excavation at 12.80 m of depth. 

Use a trapezoidal diagram (see fig. VII-30 of Costet-Sanglerat) with a 
maximum stress equal to: o = 0.8 x 45.7 = 36.6 kPa, to which the water 
pressures must be added, leading to results as shown on Fig. 9.23. 

For a first approximation, we assume that each floor supports a load 
corresponding to each adjacent half-floor height. Then we get: 
Floor at level 0: 

R0 = 21.2 x ( 1 . 8 - 0.35)/2 = 15.4 kN 

Floor at level 3.55: 

#3.55 = [(36.6 + 21.2)/2] ( 2 . 8 5 - 1 . 8 ) 4 - [ 3 6 . 6 ( 3 . 5 5 - 2 . 8 5 ) ] + 

[(36.6 4 -52 . l ) /2 ] ( 5 . 1 - 3 . 5 5 ) = 30.3 4-25.6 + 68.7 = 124.7 kN 

Floor at level 9.45: 

#9.45 = [(104.1 + 81.6)/2] x ( 1 0 . 3 - 8 . 0 5 ) + [(104.1 + 92.5/2)] x 

x ( 1 2 . 8 - 1 0 . 3 ) = 208.9 + 245.8 = 454.7 kN. 

The resultant of these reactions is R = 792 kN. 
Table 9A reviews the values, in kN, for each floor reaction in accordance 

with the 3 methods of evaluation used. It is obvious that the plastic method 
does not give a true appreciation of the complexity of the rigid wall with 
multi-level bracing. On the other hand, the trapezoidal distribution of 
Terzaghi corresponds to the envelope of the maximum stresses observed in 
flexible walls. For the case of a braced, rigid wall, we could consider a 
trapezoidal load distribution with an earth pressure coefficient of K0 at 
rest to account for the small deflection that occurs (see deformations on 
Fig. 9.17). The last entry of Table 9A gives the values of this condition. 

The total of the reactions shows that the earth pressure is very close to 
that of an at-rest condition. 
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92.5 kPa 

0.2 H = 12.45 x 0.2 =2.50 m 

(jT) Terzaghi's diagram 

(S) Hydrosta t ic pressure 

(3) Resulting diagram 

Fig. 9.23. 

TABLE 9A 

Comparison of floor reactions (in kN) 

Floor 

No. 

1 
2 
3 
4 

Level 
(m) 

0 
- 3 . 5 5 
- 6 . 6 5 
- 9 . 4 5 

Elasto-plastic 
condition 
(Rido) 

- 4 7 . 4 
+ 521.7 

0 
722.3 

Plastic 
condition 
(continuous 
beam) 

0 
109 
- 1 
657 

Terzaghi 
method 

15.4 
124.7 
197.2 
454.7 

Trapezoidal 
diagram 
with K0 

22.8 
220.8 
289.2 
563.9 

Total 
reactions 1196.6 765 792 1102.4 
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SHALLOW FOOTINGS 

^Problem 10.1 Allowable bearing capacity of a strip footing on sand 

Find the bearing capacity of a strip footing on sand of 1 m in width 
resting on a sand of unit-weight 16.5kN/cm3 and having an angle of internal 
friction of $ = 35°. 

What is the allowable stress? 

Solution 
The bearing capacity of a strip footing is given by: 

qd = {jBN7 + yDNq + cNc. 

For a sand, c = 0 and for <p = 35°, Ny = 47.9 (see Table II in Costet-
Sanglerat). 

On the other hand, D = 0, so: 

qd = 16 .5x0 .5x47 .9 = 395kPa = 3.9daN/cm2. 
The last value is the bearing capacity, or the failure load. The allowable 

is one third of this value, for a safety factor of 3. Therefore: 
qd = 1.3daN/cm2. 

+*Problem 10.2 Evaluation of the bearing capacity factor Ny 

(1) A circular plate of 1.05 m in diameter is placed on a sand of density 
1.65 and it is loaded. Failure occurred when the plate was loaded to with-
stand a pressure of 15 daN/cm2. Determine the value of the bearing capacity 
factor Ny. 

(2) The angle of internal friction of the sand was measured in a triaxial 
test and found to be ip = 39°. Compare this value with the theoretical value 
of $ corresponding to Ny calculated as asked above. 

Solution 
(1) The bearing capacity of a strip footing is: qd = \yBNy + yDNQ + 

cNc. In this case, it reduces to the first term since both D and c are zero. For 
a circular footing, the term Ny must be multiplied by a shape factor (equal 
to 0.8 according to most authors). We then have: 
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qd = \yBNy x 0.8 

with qd = 15 daN/cm2, B = 105 cm and y = 16.5 kN/m3 = 1.65 • 10"3 daN/ 
cm3 and 

N 7 = (2 x 15 x 103)/(105 x 0.8 x 1.65) = 216. 

(2) The theoretical value of <p corresponding to Ny — 216 is about 44°. 
The difference between the two values of <p is important. For $ = 39°, Ny is 
equal to 83 . It may be surprising to find different values for Ny based on 
experience (Ny = 216) and on theory (Ny = 83). Four remarks are in order 
regarding this question. 

(a) The shape factor of 0.8 to Ny was determined in a semi-empirical 
manner and it only is known as an approximate value. 

(b) The plastic criteria of a soil may be represented in the axial system 
o{ , o2 and o3 by a surface f(ox, o2, a 3 ) = 0. During triaxial testing, we 
impose a condition of o2 = a 3 , i.e., the plastic criterion then becomes the 
intercept of f(o{ , o2, a 3 ) = 0 and of the plane o2 = o3. Let this curve 
b e C V 

For the strip footing of infinite length (for which values of Ny are cal-
culated) it can be assumed that the deformation along the footing axis is 
zero (plane strain). This condition allows translation into a condition be-
tween ol9 o2 and a 3 , say g(ox, o2, a 3 ) = 0. The plastic criterion then 
becomes the intercept curve of the two surfaces, f(ox, o2, o3) = 0 and 
g(o{, o2, a3 ) = 0. Let that curve be C2 . 

There are no evident reasons why Cx and C2 should be the same. There-
fore, calculating the factor 7V7 from the angle of internal friction 0 from a 
triaxial test, means introducing a systematic error, which is very important, 
especially for compact sands, because it can be shown (Costet-Sanglerat, Ch. 
9.3.1.) that Ny is highly dependent on values of <p. The angle of friction 
should actually be measured under conditions similar to the field strain 
conditions (plain strain). Such tests were performed by Tcheng and Iseux 
and showed that the angle of internal friction in plain strain is higher than 
found by triaxial tests. 

(c) The value of Ny given in the tables of Costet-Sanglerat, was calculated 
by the method of Caquot and Kerisel which assumes a rigid wedge of soil 
acting as a whole on the footing. This assumption does not really represent 
the actual field conditions, and so introduces some error in iV7 (see Table 
9.3.1. of Costet-Sanglerat). 

(d) Finally, it should be mentioned that it is very difficult to obtain un-
disturbed samples of sand for triaxial testing with a density identical to that 
in the field. This method can introduce substantial errors in the evaluation of 
the angle of internal friction. 
Summary of answers 
Ny = 216; ^ - 44°. 
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^Problem 10.3 Bearing capacity of a strip footing embedded in sand 

A sand's characteristics are as follows: density = 1.70, <p = 30°. 
Find the allowable bearing pressure for a strip footing, 1.10 m wide, and 

founded at a depth of 1.40 m in the soil. Assume a safety factor of 3. 

Solution 
The allowable bearing capacity under a strip footing with a vertical 

and axial load is: 

y(B/2)Ny +jD(Nq -l) + cNc , ^ 
Qad = " + JD. 

For yp = 30°, we get Ny = 21.8 and Nq = 18.4 (table II, sect. 9.2.1. in 
Costet-Sanglerat). Therefore, with c = 0: 

qad = (17 x 0.55 x 21.8 + 17 x 1.4 x 17.4)/3 + (17 x 1.4) 

qad = 230 kPa - 2.3daN/cm2. 

Fig. 10.21 and Table 10C, presented at the end of this chapter, give the 
detailed values of the coefficients Ny, NQ and Nc. The values are highly 
comparable to those in Costet-Sanglerat. Only the values of Ny are slightly 
lower which, in practice, has little impact. 

^Problem 10.4 Bearing capacity of a strip footing embedded in a cohesive 
soil 

Same problem as 10.3, but now it is assumed that the sand has a small 
cohesion of 0.1 daN/cm2. 

Solution 
We use the same formula of problem 10.3, but now cohesion c is no 

longer zero: 

j(B/2)Ny+yD(Nq-l) + cNc 
Qad = + yD 

For <p = 30°, we get (table II, sect. 9.2.1 of Costet-Sanglerat): 
Ny = 21.8, AT, - 18.4, ATC = 30.1 

17 x 0.55 x 21.8 + 17 x 1.4 x 17.4 + 10 x 30.1 
Qad = + 17 x 1.4 

qad = 330 kPa = 3.3 daN/cm2. 
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^Problem 10.5 Bearing capacity of a square footing on a cohesionless or 
cohesive soil 

Same questions as in 10.3 and 10.4, but now for a square footing, 1.10 m 
on the side. 

Solution 
The allowable pressure under a square footing under a vertical and axial 

load is given by: 

Qad 

B 
(1 -0.2B/L)y-Ny +yD(Nq - 1 ) + (1 +0.2B/L)cNc 

1 
- + yD 
F 

For a square footing, B/L = 1. In general, a safety factor of 3 is used. 
For <p = 30°, we get (table II, sect. 9.2.1. of Costet-Sanglerat): 

Ny = 21.8, NQ = 18.4, Nc = 30.1 

For a cohesionless sand, we have: 

Qad = [(0.8 x 17 x 0.55 x 21.8) 4- (17 x 1.4 x 1 7 . 4 ) ] l / 3 + (17 x 1.4) 

qad = 216 kPa = 2 .2daN/cm2. 

For a sand with slight cohesion, we get: 

Qad = [(0.8 x 17 x 0.55x 21.8) + ( 1 7 x 1.4x 17.4) + (10x 1.2x 30.1)] 1/3 

+ (17 x 1.4) 

qad = 336 kPa = 3.4daN/cm2. 

Notice the important increase due to cohesion. 

++Problem 10.6 Comparison of footings and mat foundation 

Consider a six-storey building over a basement whose faces Ax and A2 

impart, at the foundation level, loads of 0.29 and 0.36 MN/m, respectively. 
Each column in row A3, spaced 3.75 m apart, carries 1.1 MN. The building's 
length is 38 m (see Fig. 10.1). 

The building rests on a dense gravel bed (yd = 1.65yw, 0 = 35°, y' = 
1.02yw), 9 m thick, that is underlain by a soft clay, normally consolidated, 
of more than 20 m in thickness and whose properties are: <p — 0, cu — 
0.3daN/cm2 (30kPa). 

The finish grade of the basement is 2 m below the natural grade. The 
groundwater table is at —8 m below the natural grade. 

Two types of foundations are being considered for the building. Either 
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strip footings at B1 and B2 and square footings at B3 of 50 cm in thickness, 
or a mat foundation of 0.30 m thickness. 

Compare the two schemes of foundation for which we have to determine 
the width of the footings and of the mat Specify the width of the mat 
lip beyond the building line. Assume the unit weight of concrete to be 2.4. 

Solution 

(a) Shallow strip and square footings 
(1) In order to determine if consideration must be given to the under-

lying clay layer, consider the ratio h/B: gravel thickness/foundation width. 
If we assume that the influence of the soft clay is negligible, we could 

expect an allowable pressure of the order of 4daN/cm 2 for a footing on 
solid, dense gravel. For a load of 400 kN we get B = lm for the strip footing. 
For an isolated footing with a load of 1 MN, B is = 1.60 m. In either case, 
we would have h/B > 3.5 (load is given by unit of length of building). 

Referring to the results obtained by Tcheng (sect. 9.3.7. of Costet-Sanglerat) 
the assumption is valid and the structure would behave as if the clay did 
not exist. 

(2) The bearing capacity of a strip footing is: 

qd = ±yBNy + yDNQ + cNc 

which is valid for an embedment which is equal on both footing sides. In this 
case, the smallest embedment must be considered which is 0.5 m in the 
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D' 

Fig. 10.2. 

basement. For the sake of safety, assume D to be 0.5 m and call it Df (Fig. 
10.2). To calculate the allowable stress, use a safety factor of 3 for the 
bearing pressure less the overburden pressure at the footing level counted 
from the original grade. We will then have: 

qad = yD + ^ ( 0 . 5 T £ J V 7 + yD'Nq - yD 4- cNc). 

Remarks 
The soil is the same over depth Df and under the footing. This means that 

the coefficient Nq may be increased (table III, sect. 9.2.2, Costet-Sanglerat). 
The groundwater table being at —8.00 m, we must use the dry unit-weight 

of gravel in the calculations. 
(3) For the isolated footings, use: 

Qad = yD + ±(0AyBNy 4 yD'Nq -yD + 1.2cNc) 

taking into account the shape factor (see sect. 9.5.1. of Costet-Sanglerat) 
with B = L. 

For practical computations, see tables II and III, Ch. 9, of Costet-Sanglerat. 
For ip = 35 , we get N1 

have a gravel c = 0. 

Footing Bi : 

qad = 16.5 x 2.5 + J(0.5 x 16.5 x 47.9 x £ j + 

+ 16.5 x 0.5 x 41.5 - 1 6 . 5 x 2.50): 

qad = (132B! + 1 4 2 ) k P a 

Total load on the footing in kN per m of length: 
— superstructure 
— weight of footing: 24 x 0.5 x Bx 

— weight of soil outside excavation: 
200 x 1.65x (BJ2 - 0 . 1 0 ) 

47.9 and NQ = 33.3 x 1.245 = 41.5 since we 

12B1 

1 6 . 5 ^ ! 

290 

3.3 

total 28 .5£ j 4- 287.7 
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The allowable bearing pressure under the footing is equal to the stress at 
the level of the footing: Bx {132BX + 142) = 2 9 ^ + 287, from which we 
get # ! = 1.10m. 

The actual bearing pressure then is qx = 2.9 daN/cm2 . 
Footing B2 

The same method is used and we find B2 (132B2 + 142) = 29B2 + 357 and 
B2 = 1.27 m say£ 2 = 1.25 m. 

The actual stress is q2 = 3.1 daN/cm2 . 

Footing B3 

qad = 16.5 x 2.5 + \(0A x 16.5 x 47.9 x B3 + 

+ 16.5 x 0.5 x 41.5 - 1 6 . 5 x 2.50) 

qQd = (105B3 +142)kPa. 
Total load on the footing: 

— superstructure 
— weight of footing: 24 x 0.50 x B\ 

So we have: 
Bi(105J33 +153) = \2B\ +1100. 
The root of this third-degree equation has a value between 
B3 = 1.80 m and B3 = 1.85 m. Thus B3 = 1.85 m. 
The actual bearing pressure is q3 = 3 . 3 daN/cm2. 

Remarks 
(1) For the sake of simplicity, it is often assumed that for footings with 

unequal embedment on each side, the influence of the large embedment 
allows one to neglect the weight of the soil outside of the excavation. 

The scattering of the results of bearing capacity calculations depending on 
which theory one uses, justifies this simplification. 

(2) The spread between qx,q2 and q3 being small, there is no reason to be 
afraid that differential settlements would be a problem. 

(b) Mat foundation 
The width, B, of a mat is at least that of the building. It will therefore be 

over 9.00 m. The gravel thickness below the mat is only 6.7 m. Therefore, 
h/B < 1 and the underlying clay layer will feel the building load. The bearing 
capacity in this lower soil layer will govern the design. 

The mat plan dimensions will be close to those of the building (about 
40 m by 10 m). The dead loads of the structure and the mat will be trans-
mitted to the clay through the 6.7 m of gravel. The vertical stress increase 

1100 
. . . . 12B\ 

total 12B\ + 1100 
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A a at the clay level will not be uniform. It may be estimated to be 0.75 q 
along the axis of the mat from the graph of fig. III-8 in Costet-Sanglerat. 

For a simple calculation and still being on the conservative side assume 
that Ao is uniform and equal to its maximum value, that is: Ao = 0.75 q. 

Assume the load to be applied uniformly over a rectangular area of width 
B' and length L', so that: L' x B1 x 0.75g = L x B x g, 
or: L'B' = BL/0.75 = 1.33BL. We may assume thatB/L = B'/L\ 
which givesB' = 1.15B and! / = 1.15L. 

The allowable bearing pressure of the clay will then be: 
5.14 [1 +0.2(B'/L')]cu 

Qad = JD + 
F 

The calculation assumes no drainage conditions which is conservative, with 
y = 0. So N = 0, Nq = 1 and Nc = IT 4- 2 = 5.14, B'/L' = B/L. If we, further-
more, estimate L equal to 40 m, then: 

5.14 [1 + 0.2(5/40)] x 30 
qad = 16.5 x 8 + 20.2 x 1 + — — -

3 
qad = 205 + 0.26B. 
We see that the previously estimated value of B' does not appear in the 
equation. 

The actual bearing pressure imparted at —9.00 m, keeping in mind the 
above assumptions, is: 

structure loads: 
1100 

290 + 360 + 
0.75 707.5 

kPa Bx 1.00 Bx 1.00 3.75 

mat weight: 24 x 0.3 x 0.75 x 1.00 = 5.4 kPa 

weight of gravel under the mat: (5.70 x 16.5 + 1.00 x 20.2) x 1.00 = 

= 114.2 kPa 
Assuming that the allowable pressure is equal to the applied pressure, we can 
write: 707.5/E + 5.4 + 114.2 = 205 + 0.26E or: 707.5/B = 0.26J3 + 85.4. 

This second-degree equation has a root of: B = 8.06 m which is less than 
the building width. Therefore, B will be at least equal to 9.2 m (building 
width). 

Let us now calculate the distance to the resultant of the loads on face A l. 
Let that distance be x: 

x(290 + 360 + 1100/3.75) = 5(1100/3.75) + 360 x 9, from which 
x = 5 m. 

The bary center is in line of the column row A3. Therefore, the compu-
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tation of the bearing capacity must consider the load eccentricity, which is: 
£ = 5 . 1 0 - 9 . 2 / 2 - 0 . 5 0 m. 

Meyerhoff's theory leads to a uniformly loaded area subjected to a load 
qd applied to an equivalent width Be of: 
Be = B — 2E = 9 . 2 0 - 2 x 0 . 5 0 = 8.20m and 

BNy 
qd = (1 - 2 e ) 7 — 1 + jDNq + cNc 

For this example: Ny = 0 and qd = qd. 
The rest of the computation remains valid. Since Be > 8.06 m it is not 

necessary to increase the width of the mat beyond 9.20 m, at least as far as 
the bearing capacity is concerned. If differential settlements could be a 
problem, centering the load would present an advantage. An additional 
length of 1.10 m on side A2, taking into account the 0.10 m on side Ax 

(needed to accommodate forms thickness) would then give a width of the 
mat of B = 10.40 m. 

+rkProblem 10.7 Comparison of settlements of a footing and of a mat 
supporting a building over a two-layer system 

Take the same givens of Problem 10.6 and calculate settlements of the 
two foundation schemes by assuming, on the one hand, that the gravel 
causes no settlements and, on the other hand, the properties of the soft clay 
deposit are: ys = 2.78yw, w = 44%, wL = 48%, yh = 1.8yw . 

Solution 

(a) Footings 
No consolidation test was performed to determine the parameters of the 

clay. Empirical correlations, therefore, must be used which relate the liquid 
limit wL with the consolidation characteristics of the soft clay. 

We will calculate the settlements for a 20 m thick clay layer. Indeed, 
for larger depths, the vertical stresses in the clay are very low (Aa < 10 kPa) 
and the corresponding settlements would be very small. 

The first step is to determine the increase in vertical beneath the footings 
at the level of the upper boundary of the clay layer. For the strip footings 
Bx and B2 we will not take into account the stress increase due to the 
adjacent footings because its magnitude is small. For the square footings 
B3 on the other hand, we must take into consideration the proximity 
of the strip footings. For the strip footings, at the upper clay boundary, we 
get (Giroud's tables, Vol. 1, II.4 and Vol. 2, IV.l): 
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Aaj = Ao2 = 0 .4daN/cm2 

For the square footings, if we consider the influence of the adjacent strip 
footings, we get: 

Ao3 = 0.17 + 2 x 0.18 = 0.53daN/cm2 

At the lower boundary of the clay layer, the vertical stress increase is about: 
Ao = 0.07 daN/cm2 (for either strip or square footings). 

The variation of the increase of stresses is substantial enough to justify the 
consideration of two 10-m thick layers. 

Upper 10-m layer. Consider the midpoint of this layer. The stress increases 
are: 
— strip footings: Ao1 = 0.2 daN/cm2 

— square footings: Ao3 = 0.048 + 2 x 0.075 = 0.2 daN/cm2 

The settlement due to the consolidation of this 10-m layer may be esti-
mated by evaluating the coefficient of compressibility from the correlation 
with the liquid limit of Skempton: Cc = 0.009 (wL — 10) which gives: 
Cc = 0 . 0 0 9 ( 4 8 - 1 0 ) ^ 0 . 3 4 . 

Settlements due to consolidation are estimated from: 

Ah Cc , an + Ao 
— = — • log ——-, 

where o0 is the effective overburden pressure at mid-height of the clay layer 
under consideration. It is: 

o'0 = 16.5 x 8.00 + 10.2 x 1.00 + 7 ^ x 5 

the buoyant unit-weight of the clay being y'a = yh —10 = 8 k N / m 3 (if we 
assume, as is logical, that the clay layer is saturated). 

Therefore: 

o'0 = 142.2 + 40 ^ 1 8 2 kPa ^ 1.8 daN/cm2 

The initial void ratio is: 

e0 = wyjyw = 0.44 x 2.78 = 1.22 

Hence: 

Ah 0.34 1.8 + 0.2 „ ^ 
— = log — = 0.007 
h 1 + 1.22 1.8 

For the upper lO.m layer then, Ah = 1000 x 0.007 = 7 cm (for both strip 
and square footings). 

Lower 10-m layer. At mid-height of this layer, the stress increases are: 
— strip footings: Aox = 0.12 daN/cm2 

— square footings: Aox = 0.12 daN/cm2 

and we have: 
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Ah Cc , o'0 4- Ao 

h l + ^ o ao 
where a'0 = 16.5 x 8 4- 10.2 x 1 + 8 x 15 

= 142.3 4-120 = 262 kPa = 2.6daN/cm2 

and Ah/h = 0.34/2.22 • log [(2.62 4- 0.12)/2.62] = 0.003 
For the lower 10-m layer, Ah = 3 cm. 
The total settlement under the footing loads will be of the order of 10 cm. 

It will be clear that, because the settlement was calculated from an empirical 
relation, it gives only an order of magnitude of the real settlement. 

(b) Mat foundation 
The load at the level of the mat is: 

Superstructure load: (290 4- 360 4- 1100/3.75) x 38.00 = 35 847 kN 
Mat slab weight: 24 x 0.3 x 10.60 x 38.40 = 2 931 kN 
Total weight = 38 778kN 
The weight of the excavated soil can now be deducted as: 
16.5 x 2.30 x 9.20 x 38 - 13 267 kN. 

The stress increase at the mat level is: 

38 778 13 267 
Aa = ——-—77T7T- = 62.7 kPa = 0.63daN/cm2 

38.4 x 10.6 

As was the case for the footings, we will consider 2 layers each 10 m thick. 

Upper layer. Consider a point at mid-height. The stress increase is: 

Ao = 0.488x0.63 = 0.31 daN/cm2, from which 

Ah/h = (0.34/2.22) log [(1.82 4-0.31)/1.82] = 0.010 

So, Ah = 10 cm for the upper layer. 

Lower layer. Again consider the point at mid-height of this layer. The stress 
increment is: 
Ao = 0.248 x 0.63 = 0.16 daN/cm2 , from which 
Ah/h = (0.34/2.22) log [(2.62 4- 0.16)/2.62] = 0.004. 

So, Ah — 4 cm for the second layer. 
The total settlement under the mat foundation thus will be of the order of 

14 cm. Note that in this case, the settlement due to the stress increase 
of the mat foundation exerting a stress of 0.70 daN/cm2 is greater than the 
settlement due to pressure of the footings of 2.9 and 3.4 daN/cm2 . This may 
be called the "bi-layer paradox". 
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irkProblem 10.8 Settlement of a mat on a two-layered system 

Take the givens of problems 10.6 and 10.7 and assume that the gravel 
layer is 25 m thick, that the water table is at 1 m below the level of the 
natural ground and that the clay properties are: 

c = lOkPa, ya = 13kN/m3, w = 60%, wL = 72% 

Would the shallow footings present any kind of advantage? 

Solution 

Preliminary remark. The presence of the groundwater 1 m below the existing 
ground surface dictates the choice of a mat foundation. To consider 
individual footings would require special design features to decrease the 
hydrostatic pressures on the basement floor slab and the water tightness of 
the joints between the floor slab and the footings would always be a problem. 

The mat foundation in this instance is less expensive and technically more 
reliable. 

Mat foundation. As for the preceding problem, we will take the mat dimen-
sions as 10.6 m by 38.40 m, which were found to be adequate. 

We calculate the increase in vertical stresses at the level of the mat: 
building load 32 047 kN 
mat weight 2 930 kN 
uplift force 38.4 x 9.2 x 13 - 4 590kN 
Net force 30 387 kN 

Deduction of the weight of the excavated soil: 

(16.5 x 1 + 10.2 x 1.30) x 9.20 x 38 = 10 450kN. 

The stress increase at the mat level then is: 

Ao = (30 3 8 7 - 1 0 450)/(38.4x 10.6) = 49kPa: 
Ao = 0.49daN/cm2 

As for the preceding problem, two 10-m layers of clay will be considered. 

Upper layer. The stress increase at the center of this layer is: 

Ao = 0.11 daN/cm2 (see fig. III.8, sect. 3.2.2, Costet-Sanglerat) 
In order to estimate Cc, we use Skempton's empiric relation: 

Cc = 0.009 (wL-10) = 0 . 0 0 9 ( 7 2 - 1 0 ) = 0.56 

e0 = w(7s/lw) = 0.60x2.78 = 1.67 
The settlement is calculated from: 
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Ah = Cc o'0 + Ao 
h 1 + e0 ° g o'0 

o'0 = effective overburden stress at mid-height in the clay layer before 
excavation 

o'0 = (16.5 x 1) 4- (10.2 x 24) + 7 ^ x 5 , 

where the buoyant weight of the clay is y'0 = yh —10 = 6.7 kN/m3 (clay is 
saturated). 
Therefore: o'0 = 300 kN/m2 = 3daN/cm2 and 

Ah/h = (0.56/2.67) log [ (3+ 0.11)/3] = 0.0032 

the settlement in the upper layer is Ah x =3 .2 cm. 

Lower layer. The stress increase at the center of this layer is: 

Ao = 0.06daN/cm2 

a'0 = 367 kN/m2 = 3.67daN/cm2 

and Ah/h = (0.56/2.67) log [(3.67 + 0.06)/3.67] = 0.0014 

the settlement in the lower layer is Ah2 = 1 . 4 cm. 
The total settlement in both layers of the mat foundation is of the order 

of 5 cm. 

irkirkProblem 10.9 Elastic and plastic equilibrium in a soil under a strip footing 

Take a strip footing of width B, resting at a depth D in a soil whose angle 
of internal friction is ^p, cohesion c and of unit weight y. 

(1) Give the formula for the principal stresses at a point M (8, Z) in the 
soil assuming elastic equilibrium, and the state of stresses in the soil is iso-
tropic. 

As it will be remembered, the principal stresses developed at point 
M(8, Z) of a semi-infinite elastic body, due to a uniform load q at the 
surface, spread over an infinitely long strip are given by the Boussinesq 
formulas with the notations of Fig. 10.3: ox = (q/ir) (6 + sin 6), 
o3 =(q/ir)(6 -sind). 

The values calculated are approximate values applicable to shallow foot-
ings. Why is it necessary to assume isotropic conditions for initial state? 

Find the locus (L) of the points in the body where the shear stresses are 
highest and determine graphically the faces upon which the maximum shear 
acts. By studying Mohr's circle at locus L, show that the plastic state is 
initiated at the edges of the footing. 

Determine the orientation of the planes of maximum shear at the corners 
of the footing. 

(2) From Coulomb's equation, write the equation Z = f(6) of locus (C) of 
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Fig. 10.3. 

the points in the body that are the boundary between the elastic and plastic 
zones. Construct the locus for the following values: 

^ = 30°, c = 0 (cohesionless soil), y = 16.5 kN/m 3 , 

D = 0.20 m, q = 0 .8daN/cm 2 , and q = 0 6 d N / c m 2 . 

Assume B = 1 m for the graph. 
(3) Write an equation for the condition where no point of the body is in 

limit equilibrium. Show that this condition prevails under: 
q0 = 7 • D • a 4- H(a — 1), (Frohlich's formula), 
where H = c cot <p 

and a — 
cot y — (TT/2 —<p) + 1 

Calculate the values of a for <p= 10°, 20°, 30°, and 45°. Comment on 
this formula. 

Study the particular case for a footing of zero embedment resting on sand 
and resting on clay (purely cohesive soil). 

Compare the value of q0 (calculated with the numerical values of question 
(2) with the bearing capacity qd of the same footing computed by the 
classical formula. Do the same for a footing at the surface on a purely 
cohesive soil. What are your conclusions'? 

(4) Write the equation for the condition that locus (C) intersects the axis 
A of the foundation. 

Indicate the graphical method which allows to calculate 6 corresponding 
to the common points of (C) and A. Let qUm be the value of q corresponding 
to the case where (C) presents a double point on A. 
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Calculate qlim with the numerical data of question 2 and construct curve 

Compare qlim with qd of the preceding question. Indicate on the drawing 
the zones which are in elastic and plastic equilibrium and compare this to the 
drawing made to establish the classical formula of the bearing capacity for 
the plastic condition. 

Remark: It is assumed that when plastic zones appear, the stress-field for 
elastic conditions does not change. 

Solution 
(1) For the initial stress state assumed to be isotropic, the stress at a point 

M of depth Z under the footing is: ot = y(Z + D). The footing creates a 
stress variation along PPf which is: Aov = q — yD. 

At point M(d, Z ) , the new stresses are obtained by assuming two equilib-
rium states exist. From which we have: 

ox = y(Z + D) + (q-yD)/ir(Q +sin<9) | 

o3 = y(Z + D) + (q—yD)/ir(e—sind) \ 

It is necessary to assume isotropic conditions, otherwise the mathematics 
would become too complex. When isotropic conditions are assumed, all the 
directions of the stress tensors are principal directions, which justifies the 
addition of stresses of formula (1). If this assumption is not made, the initial 
stress condition would be: 

av = y(Z + D), and oh = K0y{Z+D) 

and the tensors representing the initial state of stresses and the state of 
stresses due to the footing load would not have the same principal directions 
at point M. Equation (1) then could not be written. 

On the other hand, Boussinesq equations correspond to a condition of a 
footing load at the surface acting on a semi-infinite mass. No account is 
taken of the embedment of the footing. This leads to acceptable results in 
the case of light loads and shallow depths. 

Formulas (1) allow us to calculate the radius of Mohr's circle: 

R = (ax - a 3 ) / 2 = [(q-yD)/ir] sin 6 (2) 
We also know that for a given Mohr's circle, the maximal value of shear stress 
is equal to the radius of the circle. 

Locus (L) of the points in the soil mass where shear stresses are the largest, 
corresponds to 6 = TT/2 from (2). Locus (L) is a half circle whose diameter is 
the base of the footing (Fig. 10.4). Formulas (1) allow us also to calculate 
the abscissa p of the center of Mohr's circle: 
p = (ox + a 3 ) /2 = y(Z+D) + [(q -yD)/ir]d. 
For d=7r/2, we get: p = yZ 4- \ (q + yD). 

As point M conscribes L, Mohr's circle radius remains constant but its 
center translates: Z varies from 0 to B/2 (Fig. 10.5). 
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Fig. 10.5. 

For a given condition of footing size and soil type (7 and D) we see that, 
according to the magnitude of q, the following 3 cases may be considered: 
case 1: q is low: None of the Mohr's circles intersect the failure envelope. 

Elastic equilibrium prevails everywhere in the mass. 
case 2: q is high: an infinite number of Mohr's circles intersect the failure 

envelope. These are the circles corresponding to the points of L 
whose elevation lies between D and D + Z \ 

case 3: q = q3: only one Mohr's circle is tangent to the failure envelope; it 
corresponds to Z ' = 0, therefore to points P and P' of L located at 
the edge of the footing. 

This clearly shows that the plastic state is initiated at the edges of the 
footing and progresses from there. 
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The maximum shear stresses correspond to the stress vectors whose 
extremity lies on S or S' on Mohr's circle (Fig. 10.7). The planes' orientation 
corresponds to an angle of 7r/4 with the planes of the principal stresses. 

According to Boussinesq's theory (see Fig. 10.3), the latter go through 
the edges A and A' of the vertical diameter of locus L; therefore, the planes 
in which the maximum shear stresses act go through the corners P and P' 
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of the footing. In particular, when point M coincides with P o r ? ' , the 
planes correspond to the bottom and vertical faces of the footing (Fig. 
10.6). 

(2) Coulomb's criterion (Fig. 10.8) considers the Mohr's circle tangent to 
the failure envelope: 

R = (H + p) sin \p where H = c cot ^ 

or: -*■ - ' — - + H sin <p (3) 

Fig. 10.8. 

The equation for the locus of the points in the mass which correspond to 
the boundary between the elastic and plastic zones is written in equation (3). 
Replacing the values of p and R in that equation, we get: 

q — yD I a— yD \ 
— sin d = \y[Z + D] + — 6 + H sin y 

which gives: 

Z = 
q — yD I sin 6 \ H 

D + - — 6 - -
77r \ sin ^ ] y 

(4) 

when 7, H and if are known for a given soil. For a particular footing, D is 
given. 

Hence, the locus of the points of limit equilibrium is a curve C depending 
on the value of q whose equation is of the form Z = F(6, q). 

Points M(d,Z) of C are constructed by taking the intersection of the 
straight horizontal line through Z and of the arc, the locus of the points 
from which the footing base PP' is seen through an angle 6 (only con-
sidering the points inside the mass of course and even to Z > 0 for which 
the Boussinesq conditions apply) (Fig. 10.9). C has the same axis of sym-
metry A as the footing. For the graphical construction, note that: 
d = (B/2)cot6. 
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Fig. 10.9. 

Numerical application 

<p = 30°, sin<p = 0.5; 
sandy soil: c = 0, H = c cot \p = 0 
7 = 16.5 kN/m3 

D = 0.20 m 
Equation (4) becomes: 
Z = F(6,q) = - 0 . 2 0 + [far-3.3)/51.84] (2 sin 0 - 0 ) 

= - 0 . 2 + fc(2sin<9 - 0 ) . 
Detailed calculations are following for <? = 0.6daN/cm2 (60kPa) and for 
q = 0.8daN/cm2 (80kPa): 

q = 0.6daN/cm2 = 60kPa gives kx - (60-3.3)/51.84 = 1.09 

q = 0.8daN/cm2 = 80kPa gives k2 = (80 - 3.3)/51.84 = 1.48. 

Calculations are summarized on Table 10A. 
Fig. 10.10 shows the family of curves (C) for various values of q for the 
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q = 0.6 

Fig. 10.10 

TABLE 10A 

(0 = 30°;c = 0 ;7 = 16.5 kN/m3 ; D = 0.20 m) 

d° 

10 
20 
30 
40 
45 
50 
60 
70 
80 
90 
100 

d (in m ) = 
(B/2)cot0 

with B = 1 m 

2.84 
1.37 
0.87 
0.60 
0.50 
0.42 
0.29 
0.18 
0.09 
0 

-0.09 

2 sin 6 — 6 
(rad) 

0.1727 
0.3349 
0.4764 
0.5875 
0.6288 
0.6593 
0.6848 
0.6577 
0.5734 
0.4292 
0.2243 

q = 0.6 daN/ 
= 60 kPa 

ki (2 sin 6 -

(*i = 1 

0.188 
0.365 
0.519 
0.640 
0.685 
0.719 
0.746 
0.717 
0.625 
0.468 
0.244 

.09) 

cm2 

0) z 
(m) 

<0 
0.17 
0.32 
0.44 
0.49 
0.52 
0.55 
0.52 
0.43 
0.27 
0.04 

q = 0.8 daN/ 
= 80kPa 

k2(2 sin 6 — 
(k2=l 

0.256 
0.496 
0.705 
0.870 
0.931 
0.976 
1.014 
0.973 
0.849 
0.635 
0.332 

48) 

cm 

0) z 
(m) 

0.06 
0.30 
0.51 
0.67 
0.73 
0.78 
0.81 
0.77 
0.65 
0.44 
0.13 

case of a cohesionless soil with <p = 30° and y 
The graph can be achieved by symmetry. 

16.5 kN/m3 for£> = 0.20 m. 

(3) In order for all the points in the mass to be below the limit equilib-
rium, the lowest point of the curve (C) must have zero elevation. In fact, 
we should say "in order that no point at a depth greater than D in the soil 
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mass reach the limit equilibrium" etc. . . . Indeed, no statement can be made 
regarding what occurs between the surface and the level of the footing, 
because in this zone Boussinesq's formulas are not applicable. 

Let us identify points on (C) of maximum elevation. The condition 
dZ q — yD I cos 6 

1 - 1 = 0 dd yir \ sin \p 
gives: 6 = IT/2 —# 

The locus of the points on curve C with a horizontal tangent is an arc of 
a circle. 

Replacing the value of 8 thus obtained in eqn. (4), we get: 

^-- f l + ^(~t , -H-?- 0 

which condition can also be written: 

q0 = yD(a) + H(a-l) (5) 

where a = 4- 1, i.e. Frohlich's formula. 

Values of a are given in Table 10B: 
TABLE 10B 

V 

a 

10° 

1.74 

20° 

3.06 

30° 

5.59 

35° 

7.71 

40° 

10.85 

45° 

15.64 

The width of footing B does not enter into the equation. For a footing 
at the surface (D = 0) on sand (H = 0), formula (5) gives zero stress. For a 
footing at the surface on a purely cohesive soil (no angle of internal friction) 
we get, on the other hand: 

H(a-1) = hm — — ± - : « TTC 
[ c o t < £ - [ ( 7 r / 2 ) - < p ] J ^ 0 

For the numerical values of the second question, we have 
q0 = 16 .5x0 .20x5 .59 = 18.4kPa = 0.18daN/cm2. 

The bearing capacity of the footing after the classical formula: 
qd = $ByNy + yDNq + cNc 

obtained by plastic theory is (\p = 30°, c = 0, Ny = 21.8, Nq = 18.4): 
qd = [(16.5 x 1.00/2) x 21.8] + (16.5 x 0.20 x 18.4) = 241 kPa = 

= 2.4daN/cm2. 
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The correction factor of NQ was not taken into account to disregard the 
layer above the bot tom of the footing. 

For a footing at the surface on a purely cohesive soil, we know that 

qd = cNc = c(7r + 2) = 5.14c. 

We thus get: qd/q0 = 2 . 4 / 0 . 1 8 = 13.3 for the cohesionless condition 
<p = 30°, 7 = 16.5 kN/m3 and qd/q0 = 5.14/3.14 = 1.64 for a footing at the 
surface of a purely cohesive soil. 

(4) At a point A of the axis of the footing, we have (Fig. 10.9): 

B/2Z = tan (0/2) or Z = \B cot (6/2) 

Replacing this value in equation (4), we get an equation for 6, the roots of 
which give 6 values corresponding to points on C located on the axis A. 

Equation (4) becomes then: 

B o t 0 D + 9 _ Z J l ( ^ l _ d ) ^ ( 6 ) 
2 2 77T \sin \p I 7 

which can be written: 

a(q)0 + b = a(q) sin 6 + b' cot (6/2) (6 bis) 

with: 

a(q) = 2(q— yD), b = 2TTC cot y + 2iryD, 

d(q) = 2(q — 7JD)/sin 0, b' = —JTTB. 

Roots of this equation may be obtained graphically in plane (0, y) at the 
intersection of line D, whose equation is: y = a(q)6 4- b, and of curve (T), 

- * • 
TC TC 0rad 
2 

Fig. 10.11. 
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Fig. 10.12. 

whose equation is: y = a (q) sin 0 + 6 ' cot (6/2), both equations depending 
on parameter q. 

Depending on the value of q, equation (6) may have zero, one or two 
solutions. (Fig. 10.11). 

By a succession of approximations, we can so find the value of q for 
which D is tangent to T, which corresponds to a double root of equation (6). 

With the numerical values above (<p = 30°, c = 0, y = 16.5 kN/m 2 , D = 
0.20 m and B = 1.00 m) we get: 

a(q) = 2 ( 9 - 3 . 3 ) 

b = 2TT x 3.3 = 20.73 
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Plasticity calculation 
(equilibrium of Prandtl) 

Fig. 10.13. 

a'(q) = 2 (<? -3 .3 ) / s i n30° = 4 ( g - 3 . 3 ) 

b' = -7Tx 16.5 = - 5 1 . 8 4 

If the angle 6 is in degrees, the equation of D becomes (Fig. 10.12) 

y = 2(q -3 .3)(7r /18O)0° + 2 0 . 7 3 

On Fig. 10.12, both lines!) and F correspond to the values of q: q = 3.3 kPa, 
<? = 83.3kPa and g = 73.3kPa. A good graphical approximation gives 
<?lim = 75 kPa or 0.75 daN/cm2. 

If we compare qlim and qd obtained from the classical formula for bearing 
capacity, we find: qd/qhm = 240/75 = 3.2, which is very close to the value 
of the safety factor normally considered in foundation designs. 

The shapes of plastic zones and corners under the footing may be com-
pared, on Fig. 10.13, with the classical representation usually considered in 
plasticity. In the latter case, the failure lines are developed in a plastic zone 
of larger dimension, which could account for the higher values of qd. 
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++*Problem 10.10 Design of a shallow footing based on laboratory test results 

A preliminary design is needed for a 10-storey building whose planned 
dimensions are 70 m by 12 m and whose total weight is 60MN (6000 tf). A 
soil investigation performed at the site shows a plastic clay layer from 
0—10m depth overlaying a silt layer. The groundwater table is located at 
2.00 m below natural grade. Four undisturbed samples were recovered and 
tested in the laboratory. The results were: 
— sample 1, depth —1 m, j d = 15kN/m3, w = 23%, consolidated undrained 
triaxial test: c = 4 x 10A pascals, <p = 10°. 
— sample 2, depth —3 m, yd = 14.7 kN/m3, w = 31%, unconfined com-
pression test (strain rate 1 mm/min), Rc = 7.8 x 104 pascals. 
— sample 3, depth —5 m, yd ~ 15 kN/m3, w = 307c, consolidated drained 
triaxial test: c = 3.8 x 104 pascals, <p — 18°. 
— sample 4, depth —8 m, yd=15kN/m3, w = 30%, unconfined com-
pression test (strain rate 1 mm/min), Rc = 8.2 x 104 pascals. 

Only shallow footings are to be considered. 
(1) Does each type of test made on the samples appear appropriate? How 

should the test results be used? 
(2) Design a foundation for the building on strip footings. Two footing 

widths are to be considered (lm and 2 m) and for each, determine the 
bearing capacity as a function of depth (to 4 m). Assume that bearing 
capacities are affected by the groundwater table when it is located one and 
a half times as deep below the footing as the footing is wide. 

What are your conclusions? 
(3) Design a mat foundation for the building. What are your conclusions? 

Solution 
(1) Both short- and long-term stability are to be considered. 

Short term stability. We must use the results of the tests under undrained 
conditions. The unit-weight of soil to consider in the computations is the 
wet unit-weight. Therefore, use the consolidated undrained triaxial test 
results (c.u. tests) and the unconfined compression test results (because of 
the large strain rate, the test is considered undrained). 

The degree of saturation of the samples is: Sr = w/(l/yd — 1/TS). 
for Sample 1: Sr = 0.78 for Sample 3: Sr = 1.00 
for Sample 2: Sr = 1.00 for Sample 4: Sr = 1.00. 

Sample 1 is not saturated; it is therefore necessary to perform a triaxial 
test in order to determine the undrained angle of friction. 

For the saturated samples 2 and 4, the unconfined compression test 
results are acceptable to determine the undrained cohesion, since the 
angle of friction is zero. 
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Long term stability. The results of drained tests must now be used. The 
unit-weight to consider is the buoyant weight and we, therefore, will utilize 
the results of the consolidated-drained triaxial test. 

To conclude, it appears that the test program was well conceived for a 
complete analysis of the proposed foundation schemes. 

(2) The short-term bearing capacity is usually the most critical and will 
be considered first. The increase of stress corresponding to the limit foun-
dation stress is given by: qd — yD = \yBNy + cNc 4- yD(NQ — 1). 

For the soil parameters at a depth between 0 and 2 m, we have: 

7h = 7d(l + M>) = 15x1 .23 = 18.5 kN/m3 

c = 4 x 104 Pa, <p= 10°, Nc = 8.3, NQ = 2.5, Ny = 1 (see table II, sect. 
9.2.1. of Costet-Sanglerat or Fig. 10.21 and Table IOC at the end of this 
chapter). 

We have: 

Qd-7D = hBNy +cNc + yD(NQ-l) 

= 9250B + 3.3 x 105 4- 27 700D 

for B = 1 m, q-yD = 3.31 x 105 + 27 700D 
(1) 

B = 2 m, q-yD = 3.48 x 105 + 27 700D 
where q is in pascals and D in meters. 

For the soil conditions below 2 m depth, we have: 

7h = yd(l + w) = 14.8x1.31 = 19.4kN/m3 

c = 12/2 = 3.9 x 104 pascals, <p = 0° (saturated soil) 
Note, however, that for the embedment factor in the bearing capacity 

formula, we must take into account the weight of the soil above the level of 
the footing bottom. 

With {p = 0°, we get Ny = 0, Nc = 5.1, Nq = 1. The increase of the limit 
stress will, therefore, be: 
qd-yD = 5.1 x 3.9 x 104 = 19.9 x 104 kN/m2 (2) 
where q is in pascals and D is in m. 

We will assume, as do L'Herminier, Tcheng and Obin, that the bearing 
capacity of the soil is affected by the proximity of the water table whenever 
H = 1.5B or less. (Fig. 10.14). 

For a i m wide foundation, formula (1) above must be considered for 
0—0.5 m, formula (2) from 2 m depth. For the depth increment between 0.5 
and 2 m, we will assume a smooth progression as indicated by the curve of 
Fig. 10.15. 

The presence of the water table only intervenes in the term (q —yD) 
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Water t a b l e 

Fig. 10.14. 
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B = 1 m 

2 3 
D ( m ) 

Fig. 10.15. 

corresponding to the increase of stress in the soil. We thus will draw the 
curves q — yD — f(D) corresponding to the increase of the limit stress in the 
soil (Fig. 10.14). 

The 1 m wide footing allows a higher bearing capacity than the 2 m wide 
footing. Under the best conditions and for a i m wide footing, we can 
count on an increase of ultimate stress of 3.5 x 105 pascals. For a safety 
factor of 3, the allowable bearing capacity is qadm = yD 4- (3.5/3) x 105 Pa, 
and for an embedment of 0.5 m, therefore: qadm = 1.25 x 105 Pa. 

The area of the footing corresponding to an average stress of 1.25 x 105 Pa 
is: (60 x 106) /(1.25 x 10 s ) = 4 8 0 m 2 . 
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The total plan area of the building is 70 x 12 = 840 m2. This solution 
would require that the total spread footings area be more than half the plan 
area of the proposed building. The strip footing scheme, therefore, is not an 
economic solution and involves a risk because no account was made of the 
interaction of adjacent footings on each other. The above computations then 
are no longer valid. The solution of strip footings should be abandoned. 

(3) Because of the large dimensions of the mat, we must consider the soil 
conditions below the level of water table. There, we have: 

yh = 19.40 kN/m3, c = 3 . 9x l0 4 Pa , <p = 0° (saturated soils). 
Note, however, that in the embedment term of the bearing capacity formula, 
and for mat depths less than 2m, we must use the value yh — 18.5kN/m3. 
Therefore, we get, for D < 2 m: Nc = 5.13, Nq =l,Ny = 0 (<p = 0°) and the 
stress increase is qd —jD = 3.9 x 5.14 x 104 = 20 x 104 Pa. 

The uniform stress corresponding to the weight of the building is: 

(60 x 106)/(70 x 12) = 7.2 x 104Pa. 

This stress must be less than or equal to the allowable stress, which is: 

<?adm = JD + (20/3) x 104 = 7 . 2 x l 0 4 P a , 

Hence yD = 0.5 x 104 Pa and D = (0.5 x 104)/18 500 = 0.27 m. 
The foundation may be at 27 cm depth. However, in order to account for 

frost action, the mat should be designed for 80 cm embedment. For the 
short-term stability, a mat at a depth of 80 cm is acceptable. 

For the long-term stability, the consolidated-drain triaxial test results 
must be used: 

c = 3.8 x 104Pa, $ = 18°, 

i = [(7s-yw)/ls] X7d = 0.62, yd = 9.3kN/m3 

andiVT = 3.5, Nq = 5.3, Nc = 13.1, from which: 

qd-yD = (9300 x 6 x 3.5) + (18 500 x 0.8 x 4.3) 4- (3.8 x 104 x 13.1): 
qd-yD = 7.56 x 105 Pa. 

If we consider a safety factor of 3, the allowable stress is: 

<?adm = JD + (7.56/3) x 105 = 2.7 x 105 Pa. 

This stress is larger than that exerted by the building. The mat at 80 cm 
depth is an acceptable solution. (This depth will prevent frost heave in 
winter, which varies depending on geographical locations). 

A complete evaluation of the foundation should incluse an assessment of 
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settlements calculated from the results of triaxial or consolidation tests or 
from in situ tests with the static penetrometer or the pressuremeter. 

Summary of answers 
The testing program was good. The strip footings should not be adopted. 

A mat foundation is recommended at a depth of 0.80 m. 

+*Problem 10.11 Shallow footings on a two-layer system 

Design a mat foundation 18 m wide and 70 m long for the support of a 
building. The depth of embedment is to be 1 m. The upper soil layer consists 
of a 6m thick clay, overlying a silty sand of great depth. (Fig. 10.16). 

Silty sand 

Fig. 10.16. 

Soil characteristics are as follows: 

clay: c = 0.25daN/cm2, <p = 10°, yh = 19kN/m3 

silty sand: c = 0, <p = 30°, yh = 18kN/m3. 

What is the allowable bearing capacity? 
Use the results of Mandel and Salenqon which give the correction factors 

for Ny, NQ and Nc for a two-layer system consisting of a compressible layer 
over a rock substratum. 

For this particular problem, and for y = 10°, B/H = 18/5 — 3.6, the 
correction factors are for Ny: e 7 ^ i , for Nq: eq^1.3, for Nc: 
ec~1.5. These results are valid if it is considered that friction is totally 
mobilized at the two-layer interface. 

Solution 
It is not possible to theoretically calculate the bearing capacity of a 

heterogeneous soil. Computations are made possible through simplifying 
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assumptions (Giroud, Obin), but the results should be considered carefully. 
Here we will give the upper and lower limits of the results. 

First calculation assumption. Let's assume that the soil is homogeneous and 
consists only of clay. We then have: c = 0.25 daN/cm2, <p = 10°, yh — 1.9 x 
10"3 daN/cm3. 

Frequently used tables give: Ny = 1, Nq = 2.5, Nc = 8.3. 
The stress increase corresponding to the ultimate stress will then be: 

Qa-JD = hBNy + yD(NQ - 1) + cNc 

= (1.9 x 1(T3 x 9 x 102 x 1) + (1.9 x 1 0 - 3 x 102 x 1.5) 

+ (0.25 x 8.3) = 1.7 4- 0.29 + 2.08 - 4.1 daN/cm2. 

This value is the lower limit to take into account for ultimate stress. 

Second calculation assumption. Assuming that the soil is homogeneous and 
consists of silty sand only, we have: c = 0, <p = 30°, yh — 1.8 x 10~3 daN/ 
cm3 andAf7 =21.8,NQ =18A,qd -yD = 35.5 + 3.3 = 38.6daN/cm 2 . 

This value is the upper limit to consider for ultimate stress increase. 

Third calculation assumption. We now assume that the clay layer is under-
lain by bedrock, assumed rigid. Then, we have: c = 0.25 daN/cm2 , <p = 10°, 
yh = 1.9 x 10"3 daN/m 3 , Ny = 1, Nq = 2.5, iVc = 8.3. 

Introducing the correction factors of Mandel and Salenfon we can write: 

qd-yD = ±yBNye7 + Dy(NQeQ - l ) + cNcec 

where: e7 = 1, eQ — 1.3, ec = 1 . 5 for this soil type and the geometry of the 
bi-layer system. 
Qd -JD = 1.7 + 0.43 + 3.12 = 5.25 daN/cm2 

This represents another upper limit, closer to the reality, for the increase 
of the stress. 

Finally, we have: 4.1 daN/cm2 <qd —yD< 5.25 daN/cm2. 
The upper and lower limits are close to each other and the average value 

may be retained, qd — yD = 4.8 daN/cm2, without detriment to the design. 
The allowable stress will then be: 

Qaa = JD + (4.8/3) = 1.79 daN/cm2 

Using the graphs of Giroud, Tran Vo Nhiem and Obin for a two-layer 
system, the ultimate stress increase is: qd — yD ^ 5.5 daN/cm2 . This slightly 
higher than the upper limit calculated by the method of Mandel and 
Salencjon, because a different plastic zone is considered by either case. 

To conclude, it should be remembered that the presence of a sand layer 
under the mat only slightly increases the ultimate bearing capacity. 

Summary of answers 
The allowable stress below the mat foundation is 1.6daN/cm2. 
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+**Problem 10.12 Circular mat design for the support of a stack (shallow 
footing with an eccentric, inclined load by the method of 
Tran Vo Nhiem) 

A smoke stack for a heating plant is to be supported on a circular mat 
foundation deriving its bearing from a thick clayey silt layer. The ground-
water table is located at —20 m. The stack is 35 m high and weighs about 
2MN (200 tf). Wind load imparts a horizontal force of 0.18MN (18 tf) at 
mid-height of the stack. 

Design a circular mat foundation 0.50 m thick to support the structure. 
The clayey silt properties are, between 8 and 20 m depths: 

yh = 19kN/m3, c = 1.5 x 10* Pa (0.15 bar), <p = 20°. 

Solution 
The diameter of the circular foundation must be determined. Assume a 

diameter of the order of 8 m. The weight of the footing will then be about 
0.60 MN, if the concrete unit-weight is 23 kN/m3. 

Assume further that the bot tom of the mat will be located at a depth of 
1 m for reasons of frost action on the soil. The resultant of forces acting on 
the base of the stack then is: V(2 .6 ) 2 4- (0.18)2 ^ 2 . 6 M N . This force is 
inclined by angle a to the vertical, such that tan a — 0.18/2.6 — 0.07 and 
a ^ 4 ° . 

Let e be the eccentricity of the resultant on the base. The equilibrium of 
forces about the center of the base requires then that 0 . 1 8 x d = 2 . 6 x e x 
cos a, where d is the distance between the point of application of the wind 
load and the base of the foundation. 

We have: d = 18.5 m, from which e = (0.18/2.6) x (18.5/0.997) = 1.30 m. 
We must calculate the allowable bearing capacity for a circular footing 
supporting an eccentric load where e = 1.3 m and inclined at 4° with the 
vertical. 

No simple theoretical solution exists and only approximations can be 
made. We preferred to set up our computations as for the case of a strip 
footing, inserting empirical correction factors. 

In the case of an inclined, eccentric load acting on a strip footing, only a 
portion B' of the width B of the footing is considered to bear actually on the 
soil. B' is defined as: 

B' = 1 ± (2e/B) 
B l±(2eM/B) 

where eM is the optimal eccentricity for the given load inclination. 
In this instance, eM/B is of the order of 0.002 and therefore negligible (see 

table, in sect. 9.3.3 of Costet-Sanglerat). We may therefore write: Bf = 
B± 2e. 

Respecting sign conventions, e in this case is negative and e < eM\ we must 
therefore consider the 4- sign in the above formula. 

Finally, Bf = B + 2 ( - 1 . 3 0 ) =B — 2.60. 
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The bearing capacity factor Ny must furthermore be corrected by a 
coefficient iy which depends on the inclination a of the applied force. The 
tables of sect. 9.3.3 of Costet-Sanglerat indicate for iy the value iy = 0.9. 
The bearing capacity of a strip footing would then be given by: 
qd = y(B'/2)iyNy + yDNq + cNc. 

Since the footing is circular, shape factors must be introduced for Ny,Nq, 
Nc. In agreement with Terzaghi and Peck, Costet and Sanglerat propose as 
multipliers 0.8 for Ny, 1 for Nq and 1.2 for Nc. 

We thus have: 

qd = y(Bf/2) x 0.8i7JV7 + yDNq + 1.2cNc. 

For a safety factor of 3 applied to the stress increase we get: 

yB' x 0.4 x LNy + yD(Nq - 1 ) + 1.2cNc 

Qad = JD + . 

For y? = 20°, the tables give Ny = 5, Nq = 6.4, Nc = 14.8. Therefore: 
qad = 11 400B'.+142 000. 

Assuming that this stress is applied only over a circle of radius B\ then the 
bearing force is: Q = (qad x rr x B ' 2 ) /2 . The actual load is equal to 2.6 x 106 N. 
The value of B' is given by the equation: 

2.6 x lO 6 = [(11400B' + 142 000) x irxB'2]/2 

or: (1.655 x 106)/£'2 = 114 0 0 0 5 ' + 142 000. 

This equation can be solved graphically, by drawing in Fig. 10.17 the 
curves: yl = 114 0005' + 142 000, and y2 = (1.655 x 106)/£ '2 . The inter-
section of the two curves corresponding to B' > 0 indicates the solution 
desired. 

Let us calculate a few points of each curve. When B' = 0, y2 ~+ °°; when 
■B-"°°, y2 -*0. 
For B' = 2 we 

B' = 4 

B' = 6 
For B' = 0 

B' = 4 

get y2 = 4 .14-10s 

y2 = 1.03-10s 

y2 = 4 .6-10 4 

y , = 1.42-10s 

yi = 1.88 -10s 

Therefore, B' = 3.1m (Fig. 10.17) and 5 = Bf + 2.6 = 5.7. 
The smoke stack may be supported on a circular mat 6 m in diameter. 

The weight of the mat was originally overestimated (8 m instead of 6 m). 
The dimension of 6 m is therefore on the safe side. 

Furthermore, the ratio of the mat dimension to the distance to the water 
table, which is 3, allows us to justify the values of the soil properties used in 
the equations. 
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B'= 3.1 m B(m) 
Fig. 10.17. 

It should be noted that a complete foundation analysis would require 
making an estimate of settlement. Such an estimation would be based on 
triaxial or consolidation test results or on results of in situ tests such as of 
the static penetrometer or pressuremeter. 

Summary of answers 
The smoke stack can be supported on a circular, 6 m in diameter mat 

foundation located at 1 m below grade. 

***Problem 10.13 Design of footings on swelling clay. Evaluation of swelling 
pressures and computations of possible differential uplifts 

A single storey house is to be constructed on a swelling clay, 3 m thick, 
overlying dense, non-swelling substratum. The exterior and interior bearing 
walls are 40 cm thick and transmit a load of 40 kN and 60 kN (per running 
meter) to the foundation. Test results on undisturbed samples of the swelling 
clay indicated: yd = 17kN/m3, w = 11.90%>. 

The unconfined compression Rc = 300 kPa. 
A swelling test was made in which the water content of the clay increased 

from 11.9%) to 25%, when the volume changes, in %, were a function of the 
applied loads as follows: 

AV/V = 3.9% for ov = 20kPa 

AV/V = 2.8% for ov = 30kPa 
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AV/V = 1.6% for ov = 50kPa 

AV/V = 1% for ov = 70kPa. 
(1) By drawing a graph, estimate the clay swelling pressure*. 
(2) Assuming that swelling cannot occur, design the footings for the 

external and internal walls. Is such a solution acceptable if swelling should 
occur? 

(3) Determine what practical solutions may be considered in the footing 
design in order to account for swelling. 

(4) Evaluate differential swelling which would occur, should the footing 
be designed to have plan dimensions of 40 cm wide by 1 m long, embedded 
at 70 cm with a center-to-center spacing of 1.80 m for both exterior and 
interior walls. 

Solution 

(1) Estimation of swelling pressure 
As is done for an oedometric diagram, we can plot the test results on semi-

log paper. Volume variations are plotted against the log of pressure. Fig. 
10.18 shows, by extrapolation, that the pressure required to prevent 
swelling, is about 130 kPa. So the swelling pressure is 130 kPa. 

L o a d p r e s s u r e in k P a 

0.1 1 10 

! 
I 

-

1 
K 

a n 

O 
ro 

<u 
" L0 

a; 
a 

<u 

to 

\ 
\ 
\ 

Fig. 10.18. Determination of swelling pressure. 

*The swelling pressure is equal to the vertical stress o that must be applied on the sample 
in a consolidometer to maintain constant volume. 
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(2) Footing design 
The footings must satisfy 5 conditions: (1) adequate bearing, regardless of 

swell; (2) frost prevention; (3) allowable total settlement; (4) allowable 
differential settlement; (5) no uplift in case of swell. 

(a) As indicated in the givens, we will first assume that no swelling of the 
clay can occur. Since frost action varies with geographical regions, we further 
assume that an embedment of 0.70 m is sufficient. We will also make a short-
term bearing capacity analysis, which in most instances is unfavourable. 
Since the clay is saturated, its undrained cohesion is: cu = Rc/2 or cu = 
150 kPa. 

The bearing capacity of a strip footing, 0.40 m wide embedded to 
0.70m is: qd = yD 4- 5.14cu, with: D = 0.70, and y = yd(l + w) = 11 x 
(1 + 0.119) ~ 19 kN/m3 . So we get: 
qd = (19 x 0.70 + 5.14 x 150) ~ 784 kPa 
and the allowable bearing pressure will be: 
qad - 19 x 0.70 + (5.14 x 150)/3 = 270.3 or 270 kPa. 

Taking yb = 25 kN/m3 for the specific weight of concrete, the stress 
applied to the soil under a 0.40 m wide footing at 0.70 m depth is: 

qx = 25 x 0.70 + (40/0.40) = 117.5 or 118 kPa for exterior walls. 

q2 = 25 x 0.70 4- (60/0.40) = 167.5 or 168 kPa for interior walls. 

Both values are considerably less than the allowable stress. 
Let us now evaluate the settlement. A resistance to unconfined com-

pression of 300 kPa (3 bars) means that the clay is very stiff (see table VII, 
sect. 1.5.5, Costet-Sanglerat). The oedometric modulus Ef may be estimated 
at a minimum of 6000kPa (60 bar) (see table I, sect. 3.4.2 of Costet-Sanglerat), 
which is certainly inferior to the actual value. 

The settlement is calculated from: Ah/h = —Ao/E\ the stress increase, 
Aa, is obtained from graph III-3 in sect. 3.2.2 of Costet-Sanglerat. Here, 
we have z/B = 1.15/0.40 = 2.875, which gives Aa ~ 0.22q'. 
The stress increases q' at the level of the footings are: 
(25 - 19) x 0.70 + 40/0.40 ^ 104 kPa (exterior walls) 

(25 - 19) x 0.70 + 60/0.40 - 154 kPa (interior walls) 

from which: Aox = 0.22 x 1 0 4 ^ 2 3 k P a and: Ao2 = 0.22 x 154^34kPa . 
So we finally obtain: 

\(Ahx)\ = 230(23/6000) = 0.88cm 

\(Ah2)\ = 230(34/6000) = 1.30cm. 

The differential settlement will thus be: 1.3 — 0.88 = 0.42 cm. 
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Referring to table I, in Ch. 9 of Costet-Sanglerat, it is seen that the total 
settlement corresponds to the values presently adopted for masonry walls. 
The limit value for differential settlements is L/1000, which gives L = 
0.42 x 1000 = 420 cm or 4.2 m which is convenient since L represents the 
distance between exterior and interior walls. 

To conclude, and in the absence of swell, the footings may be placed 
directly on the clay at a depth of 0.70 m for both exterior and interior walls, 
without having to increase their width, which is 0.40 m. 

(b) As for the uplift due to swell, the final footing design also requires that 
uplift consequences be evaluated. If the water content of the clay goes from 
11.90% to 25%, uplift pressure could be as high as 130 kPa. As a con-
sequence, the buried portion of the footing would undergo an upward lateral 
friction due to the surrounding soil uplift (Fig. 10.19). On the other hand, 
floor uplift could occur where they are on grade. 

According to Fu Hua Chen, the lateral upward friction may be assumed to 
be 15% of the swell pressure. The unit friction is: 0.15 x 130 kPa = 19.5 or 
about 20 kPa. We may also assume that dead loads correspond to 80% of the 
total load of 40 kN and 60 kN or, 32 and 48 kN, respectively (all loads are 
per unit-length). 

The strip footings of 0.40 m width and at 0.70 m embedment would 
undergo, per m of length, an uplift force of (Fig. 10.19): 
- uplift at base: 0.40 x 1.00 x 130 = 52 kN 
- uplift on sides: 2 x 0.70 x 1.00 x 130 x 0.15 = 27.3 kN. 
or a total uplift of 52 + 27.3 = 80 kN per linear m. This uplift force is far 
superior to the sum of footing weights and dead weights. 

3 m S t r i p f oo t i ng 

Vo id 

Upward l a t e r a l 
f r i c t i o n 

3 m 

7777777777777777777777777777777777" 
N o n - s w e l l i n g s u b s t r a t u m 

Fig. 10.19. 
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Fig. 10.20. 

The footing weight (per m) is only: 0.40 x 0.70 x 1.00 x 25 = 7 kN, 
which gives 32 + 7 = 39 kN for exterior walls, 48 + 7 = 55 kN for interior 
walls. Thus it is certain that in the event of an increase in water content 
(raising water table, leak in water drains, leak in sprinkling systems or 
excessive watering of lawns) the 0.4 m wide footings would be uplifted. 
This is not acceptable. 

(3) To avoid uplift, the strip footings may be replaced by an isolated 
footing of equal width (Fig. 10.20). Let / be the length of such a footing and 
L = kl the wall width supported by the footing. 

We will only work on the problem for interior walls. The loads of the 
list below are expressed in kilonewtons: 

load transmitted by the wall to the footing (48 x kl) = 48kl 
weight of footing (0.40 x 0.70 x / x 25) = 7 / 
uplift force under footing (0.40 x I x 130) = 52/ 
uplift on vertical sides of footing (2 x 0.70 x / x 130 x 0.15) = 27.3/ 

(2 x 0.40 x 0.70 x 130 x 0.15) = 10.9 

The condition for no uplift is: 48ftZ + 7/ > 52/ + 27.3/ + 10.9 

Z(48fe-72.3) > 10.9. (1) 
In addition, under the maximum load applied, and if the clay should not 

swell, the stress cannot exceed the maximum allowable soil bearing pressure: 
q < qad. But we have: 
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q = (60ft/ + 7/)/0.40/ 

and: 
^ 5.14(1 + 0.2B/l)cu n a n ^ 5.14(1 +0 .2 x0.40//)150 

<7ad = JD + = 19 x 0.70 + 

or: qad = 270.3 4- 20.6//. 

The second condition to meet, thus is: 

(60fe/ 4- 7/)/0.40/ < 270.3 + (20,6)// or: /(60fc - 101.1) < 8.2. (2) 

Condition (1) dictates that k> 72.3/48, say: ft > 1.51. Let us try ft = 2. 
Condition (1) then gives: l> 0.46 m, and condition (2): / < 0.43 m. 

These two conditions are not compatible. Let us then try ft = 1.8: 

condition (1) yields: / > 0.77 m and condition (2): / < 1.19 m. 

Both conditions are satisfied if we take for instance: / = 1.00. Hence: 
L = ft/ = 1.80 m. A similar computation for the exterior wall leads to the 
following inequalities: 

/ (32f t -72.3) > 10.9 (1') 

/ (40ft-101.1) < 8.2. (2') 
These conditions are both satisfied by ft = 2.7, / = 1.00 m and L = ft/ = 
2.7 m. 

Once again, both total and differential settlements must be checked, 
which would require making a consolidation test. We will assume here that 
settlements are small. 

To conclude, the interior wall footings may consist of embedding the 
walls in the clay layer in order to obtain masses 40 cm wide and 70 cm high 
and of 1.00 m length, 1.80 m center-to-center spacing for interior walls 
and of 2.70 m spacing for the exterior walls. These footings must be rein-
forced with vertical steel to prevent rupture under the uplift loads. 

Naturally, the base of the footing will also have to be reinforced as well as 
the grade beams connecting them. In addition, a 10-cm void should be 
provided between the bottom of the grade beam and the underlying soil in 
order to prevent uplift pressures acting on the lower face of the beams. By 
the same token, all floors will have to be structural types (Fig. 10.19). 

An apron will have to be constructed around the house with a slope 
inclined outward of about 3 m in width in order to drain the surface water 
away from the footings. 

Remark: In the event where the inequalities of this problem cannot be 
resolved, another type of foundation would have to be considered, such as 
short piles or drilled cast-in-place piers. 
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(4) Since the foundations have been designed so that the dead weights are 
larger than the uplift pressure, no danger exists from differential uplift. 

Let us assume that the builder decides to construct the exterior footings 
with the same spacing as that of the inside footings (1.80 m instead of 
2.70 m). He could decide to do so (erroneously for sure) because he reasons 
that the footing sizes provide adequate bearing capacity. Let us see what the 
consequence would be: 
with / = 1.00 and k = 1.80 instead of 2.70, the dead weight on each footing 
is: 
W = 32kl + 7/ = 32 x 1.8 x 1.00 + 7 x 1.00 = 64.6 kN 
and the uplift pressure is: 

(52 + 27.3)/ + 10.9 = 79.3x1.00 + 10.9 = 90.2 kN 

Uplift could then occur if the water content of the soil increased acciden-
tally from 11 to 25%. Let us try to roughly estimate the uplift. At the end of 
the swelling, the generated stresses in the clay are in equilibrium with the 
dead weight of the structure or 64.6 kN. Let v be the load on the clay.* We 
then can write: 

uplift of the lateral faces = 2 x 0.70 x 1.00 x v x 0.15 = 0.21 v 

2 x 0.40 x 0.70 x ^ ' x 0.15 = 0.084z/ 

uplift on the base = 0.40 x 1.00 x u' = 0.40z/ 

and: (0.21 + 0.084 + 0.40)z/ = 64.6 kN 

or: v = 64.6/0.694 = 93kPa. 
From the diagram of Fig. 10.18, the swell would be of the order of 0.7% 

or, for safety's sake, say 1%. The swelling occurs over the 2.30 m thickness 
of the clay between the footing bottoms and the substratum. 

The uplift could therefore be of 230 x 1% = 2.30 cm which represents 
the differential settlement between two adjacent footings. One could be 
wetted whereas the other would not. This shows that even though the 
builder meant well, he undertook a considerable risk. 

Remark about the Table 10C 
Generally, the values of the coefficients NQ and NC9 proposed by various 

authors, are very close to each other, because both have an analytical base 
(Costet-Sanglerat, sect. 9.2.2). On the other hand, values of the coefficient Ny 

vary considerably with the authors. This is due to the fact that the possibility 
exists to consider several failure modes under the footings. These correspond, 

*v is less than the swelling pressure v since a swelling occurred. 
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TABLE IOC 

Values of bearing capacity factors Ny, Nq and Nc as functions of y 

V Ny Ny Ny NQ Nc 

Terzaghi Caquot Biarez 
Kerisel Nhiem 

0° 
1° 
2° 
3° 
4° 
5° 
6° 
7° 
8° 
9° 

10° 
11° 
12° 
13° 
14° 
15° 
16° 
17° 
18° 
19° 
20° 
21° 
22° 
23° 
24° 
25° 
26° 
27° 
28° 
29° 
30° 
31° 
32° 
33° 
34° 
35° 
36° 
37° 
38° 
39° 
40° 
41° 
42° 
43° 
44° 

0 

0.546 

3.44 

18.1 

102 

0 

0.2 

1.00 

1.40 

1.97 
2.3 
2.73 

3.68 

4.97 

6.73 

9.03 
10.4 
12.1 

16.4 

21.9 

29.8 

40.8 
47.9 
56.8 

79.8 

113 

165 

244 

0 
0.00 
0.01 
0.03 
0.05 
0.09 
0.14 
0.19 
0.27 
0.36 
0.47 
0.60 
0.76 
0.94 
1.16 
1.42 
1.72 
2.08 
2.49 
2.97 
3.54 
4.19 
4.96 
5.85 
6.89 
8.11 
9.53 

11.2 
13.1 
15.4 
18.1 
21.2 
25.0 
29.4 
34.7 
41.1 
48.8 
58.2 
69.6 
83.4 

100 
120 
144 
173 
209 

1.00 
1.09 
1.20 
1.31 
1.43 
1.57 
1.72 
1.88 
2.06 
2.25 
2.47 
2.71 
2.97 
3.26 
3.59 
3.94 
4.34 
4.77 
5.26 
5.80 
6.40 
7.07 
7.82 
8.66 
9.60 

10.66 
11.85 
13.20 
14.72 
16.44 
18.40 
20.63 
23.18 
26.09 
29.44 
33.30 
37.75 
42.92 
48.93 
55.96 
64.20 
73.90 
85.37 
99.01 

115.3 

5.14 
5.38 
5.63 
5.90 
6.19 
6.49 
6.81 
7.16 
7.53 
7.92 
8.34 
8.80 
9.28 
9.81 

10.37 
10.98 
11.63 
12.34 
13.10 
13.93 
14.83 
15.81 
16.88 
18.05 
19.32 
20.72 
22.25 
23.94 
25.80 
27.86 
30.14 
32.67 
35.49 
38.64 
42.16 
46.12 
50.59 
55.63 
61.35 
67.87 
75.31 
83.86 
93.71 

105.1 
118.4 
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in particular, to varying values of the angle \jj which defines the wedge of 
rigid soil under the footing (see Fig. IX.5 and IX.7, Costet-Sanglerat). Table 
IOC gives values proposed by Terzaghi, which suppose that \p = <p, by 
Caquot and Kerisel who have adopted \p = 7r/4 4- <p/2, and finally by Biarez 
and Nhiem who have sought to determine the minimum wedge of passive 
pressure. Most geotechnical engineers adopt the values of Ny corresponding 
to those proposed by Caquot-Kerisel (compare Fig. 10.21). 

irkProblem 10.14 Evaluation of the bearing capacity and settlement of a 
shallow footing on a cohesive soil from results of a pressure-
meter test 

A rectangular shallow footing is 2 m by 4 m in plan dimensions and em-
bedded at 1.50 m below grade. It bears on a layer of homogeneous clay of 
infinite thickness. The unit weight of the clay is yh = 18kN/m3. The water 
level is sufficiently far below the bottom of the footing that it can be 
ignored (Fig. 10.22). 

A standard-pressuremeter test was performed in the clay and yielded the 
following results: pressiometric modulus = Ep = 8.7 x 103 kPa, limit pres-
sure = Pi = 7.9 x 102 kPa. 

Assuming that the horizontal total pressure p0, at rest at the level of the 
footing, is lOkPa, calculate the bearing capacity of this footing and estimate 
its settlement. What should be the allowable bearing pressure that limits the 
settlement to 2 cm? 

* 

G.L 
/ / / / / / / / / / / / / %//// r ////// \ 

G.W.L 

/////////////////////////// 
S t i f f siLty c l a y 

B = 2.00 m 

Fig. 10.22. 
(L = 4.00 m) 

y = 18 KNl/n 
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Solution 
In the case of a homogeneous soil, the ultimate bearing capacity of a 

shallow footing is given by MGnard's formula, as a function of the limit 
pressure pt: 

Qa = <?o +fe(Pj -Po) 
where q0 and p0 are, respectively, the total vertical stress at the footing 
periphery after construction, and the total horizontal stress in the soil at 
rest at the time of the pressuremeter test. 

The coefficient k is the bearing capacity factor, depending on the 
shape of the footing and the nature of the soil type. 

The net limit pressure is defined as: p* = pt —p0. Finally, for a safety 
factor F = 3, the allowable bearing stress would be: qad = q0 + (k/3)p*. 

Referring to table II of sect. 12.2.3 in Costet-Sanglerat (Vol. 2) and 
Fig. 6.39 of the present book (Vol. 1), we find: 

silty clay (0 <p* < 12 bar), soil type I: — = -L— = 0.75 or: 
B 2.00 

he L A 
— = 1.50, = - = 2, from which: k = 1.28. 
R 2R 2 

In this instance, qQ = 18 x 1.50 = 27 kPa. The limit stress is then: 
qd = 27 + 1.28(7.9 - 0.1) x 102 = 1025 kPa and the allowable stress is: 

1 28 
Qad = 27 + -=— x 7.8 x 102 = 360 kPa (3.6bar) 

o 

To evaluate the settlement of a shallow footing on a homogeneous soil, 
M6nard proposes the following formula: 

1.33 n / R\a a ^ 

3E \ RJ 4.5£ 3 

where: 
p = average uniform stress due to the footing on the soil: p = qad — q0; 
R = half the width of the footing (R > 30 cm); 
R0 = reference width equal to 30 cm; 
E = pressiometric modulus of the homogeneous soil; 
a =B. coefficient depending on soil type and its state of consolidation (see 

Table 6K in Vol. 1); 
X2 and X3 = shape factors of the footing (see Table 6L in Vol. 1). 

This formula is applicable for an embedded footing where the depth of 
embedment is at least 1 diameter (h > 2R). If this is not the case, the settle-
ment s should be increased by 10% for ft = JR and by 20% for h = 0. 

Thus, we have: Ep/pl = (8.7 x 103)/(7.9 x 102) = 11. 
The clay is normally consolidated, and a = 2/3, we have also L/2R = 

4/2 = 2. 
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ThenX2 = 1.53 and X3 = 1.2. 
On the other hand: p = qad - q0 = 360 — 27 = 333 kPa, then: 

1.33 x 3.33 x 102 / 100\2/3 

s = — x 3 0 x 1.53 x + 
3 x 8.7 x 103 \ 30 / 

0.667 x 3.33 x 102 

+ — x 1.2 x 102 

4.5 x 8.7 x 103 

or: 1.51 + 0.68 = 2.19 cm.* 

But here, since R <h < 2R, we must increase this value by 5%, so we get: 

s = 2.19 x 1.05 = 2.3 cm.* 

As for the question about the bearing capacity that limits the settlement to 
2 cm, we have: 

Snowed < Qad = Qad (2/2.3) - 313 kPa (= 3.1 bar). 

Summary of answers: 

qd = 1025 kPa (10.25 bar), qad = 360 kPa (3.6 bar), s = 2.3 cm. 

Settlement limits the magnitude of the bearing capacity to 313 kPa (3.1 bar). 

irkProblem 10.15 Evaluation of bearing capacity and settlement of a shallow 
footing on a cohesionless soil from results of a pressure-
meter test 

A square footing, 4 m by 4 m in plan dimensions, is located at a depth of 
6 m in a layer of homogeneous sandy gravel of large thickness. The water 
table is at 0.50 m below the level of natural grade. The unit weight of the 
saturated gravel is 20.2 kN/m3. Above the water table, the moist soil unit 
weight is yh =17.6 kN/m3 (Fig. 10.23). 

The coefficient of earth pressure at rest K0 is assumed to be 0.5. A 
pressuremeter test performed in the gravel yielded the following results: 
pressiometric modulus = Ep = 1.18 x 104 kPa; limit pressure px = 1.25 x 
103 kPa. 

Calculate the bearing capacity of the footing and estimate its settlement. 
The settlement should not exceed 2.5 cm. 

*The 1st and 2nd term in the equation for s represent, respectively, the influence of the 
deviator, and the spherical components of the stress tensor. 
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* 

G.L 
tnnn iru i ?t n) t \i > 11) > n> n n n o . 

*. o 
V G.W.L 

Sandy grave l 

7sat=
 2 a 2 k N / m 3 

• o • „ ! » . ■ 

o ■ a • ■ 0 . . o 

B = 4.00 m 

(L = B) 

Fig. 10.23. 

Solution 
As indicated in problem 10.14, the ultimate bearing capacity of a footing 

on homogeneous soil is given by MSnard's formula: 

Qad = Qo + (k/S)pf 

where p* is the net limit pressure defined by pf = Pi—p0. In this case, we 
have: 

q0 = 0.50 x 17.6 + 5.50 x 20.2 = 119.9 kPa, say 120 kPa, or 1.2 bar. 

— the effective vertical stress at the bottom level of the footing is: 

<*v = Qo-^wK = 1 2 0 - 5 . 5 0 x 1 0 = 65kPa. 
— the effective horizontal stress at that same level is: 
a'h = K0o'v = 0 . 5 x 6 5 = 32.5 kPa. 
and finally: 

Po = o'h + ywhw = 32.5 + 55 = 87.5 kPa, say 88 kPa or (0.88bars). 

Graph 6.39 (see Volume 1) gives the value of k: L/2R = 1 (square footing), 
h/R = 6/2 = 3, from which: k = 1,52, 
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Pi = Pi-Po = (1.25 - 0.088) x 103 = 1.162 x 103 kPa, 
qd = 120 + 1.52 x 1.162 x 103 = 1.89 x 103 kPa (or 18.9 bar). 

qad = 120 + (1.52/3) x 1.162 x 103 = 0.709 x 103, 

say 0.71 x 103 kPa (7.1 bar). 

As indicated in Problem 10.14, in a homogeneous soil, the settlement may 
be estimated from: 

1.33 / R 

3E R< + 
a 

4.5E 
p\3R 

This formula is applicable to footings embedded at least 1 diameter 
(h > 2R), which is the case here. 

We have, on the other hand: 

E„ 1.18 x 104 

Pi 1.25 x 103 9.44. 

Table 6K gives a = 1/4 for sands and gravels. For a square footing, Table 6L 
gives: X2 = 1.12 and X3 = 1.1. 

Finally, p = qad—q0 = (0.709 - 0.120) x 103 kPa or p = 0.589 x 103 kPa 
(5.89 bar). 

Settlement is evaluated at: 

s = 
1.33 x 5.89 x 102 

3 x 1.18 x 104 
x 30 x 1.12 x 

200 

30 

0.25 

+ 
0.25 x 5.89 x 102 

4.5 x 1.18 x 104 
x 1.1 x 200 

or s — 1.10 + 0.61 = 1.71cm, which is less than 2.5 cm. 
The magnitude of the stress is alright at qad = 7.1 x 102 kPa (7.1 bar), 

corresponding to a column load of 7.1 x 102 x 4x 4 = 11 344 kN, say 
1134 t.f.) 

Summary of answers: 

qd = 1 .89xl0 3 kPa (18.9 bar) 
qad = 7.1 x 102kPa (7.1 bar) 
Total column load: F = 11 344 kN (1134 t.f.), 
settlements = 1.71 cm < 2.5cm. 
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++Problem 10.16 Bearing capacity and settlement calculations of a mat 
foundation on a two-layer system from pressuremeter test 
results 

A very long mat foundation of width B = 30 m is located at a depth of 
0.80 m on a two-layer soil consisting of a layer of silt underlain by a silty 
sand which overlays a schist bedrock. The groundwater table is at 1.80 m. 
(see Fig. 10.24). 

A soil exploration was made which included M&nard pressuremeter tests, 
the results of which are given on the diagram of Fig. 10.25. 

1. Determine the bearing capacity of the mat. 
2. Estimate its settlement assuming that the actual loading corresponds 

to the allowable load calculated in 1. 

Solution 
(1) The mat may be considered as a shallow footing of great width. The 

bearing capacity is then given by the formula: 

Qd = Qo + ft(Pj—Po) = 9o + kPi 
Taking into account the small embedment of the mat, the vertical over-

burden pressure at the bottom of the foundation level may be ignored, i.e. 
Qo = 0 . 

Therefore, for a safety factor of 3, we have: qad = (k/3)p*. 
In this instance, pf in the geometric mean of the net values (pt —p0) over 

the whole thickness of the compressible layers, because the layers are thin 
with respect to the width of the mat (see rule R4 of the general notice in 
Menard D.60). 

We then have: 

pl = ^/2.0 x 2.1 x 2.0 x 2.3 x 3.8 x 3.9 x 4.5 = 2.78 bars or 278 kPa 

I B = 30 m I 

Fig. 10.24. 
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Fig. 10.25. 

The equivalent embedment he is equal to the real embedment h, there-
fore: (he = 0.80/15 = 0.05) from which k = 0.8 (graph 6.39: notice that the 
length of the mat does not enter into the calculation). 

Finally: qad =(0.8 x 278)/3 = 74kPa (or 0.74 bar). 

(2) Settlements from consolidation of a two-layer system are computed 



PROBLEM 10.16 171 

from the following formula (M6nard: rule 15, note D.60): 
h 

0L(2)P(F)P(Z) , " *tPtPt r a(z)P(F)p(z) d2 = f 
J Eiz\ z h E(z) i~x Et 

Az< 

in which: 
p(z) is the vertical stress at depth z due to the structural load imposed on the 
soil; 
E(z) is the pressuremeter modulus at depth z\ 
<x(z) is a coefficient related to the soil type and its state of consolidation 
for a layer located at an average depth z (see Table 6K); 
j3(F) is a coefficient related to the safety factor F chosen. We take usually: 

F < 3 (3(F) ~-

P(F) --

2 F 
= for 

3F-1 

= 1 for F > 3 

Both layers must be studied. 
(a) In the silt layer z varies from 0.80 m to 4.40 m. Disregarding the 

test results at depth 1 m, the other tests give values of E/pf lower than 14. 
Therefore, (see Table 6K) a = 1/2 for this layer. 

What would be the value of F if only the silt layer was present? We then 
would have: 

Qi kple 

Fx = — = - ^ with k = 0.8. 
Qad Qad 

So, for the silt layer, we find: 

p% = ^ 2 . 0 x 2.1 x 2.0 x 2.3 = 2.1 bar, or 210 kPa 
0.8 x 210 

and: Fx = = 2.27 1 74 
from which: 0(F) = 2 / 3 x 2 . 2 7 / ( 2 . 2 7 - 1 ) = 1.19. 

Finally, because the compressible layers are thin with respect to the width 
of the mat, we may assume that stress p(z) over the whole depth of the soil 
layer, remains equal to the stress under the mat, that is to qad. 

The settlement obtained for the silt layer, therefore, is: 

si - L —— Az, = a(3qad X — 
i = i Et ; = i Et 

1 - ^ / 1 . 5 0 - 0 . 8 0 , 1.00 , 1 , 4 . 4 0 - 3 . 5 0 \ 
x 1.19x74 + + 7 ^ 7 ^ + 

2 ' \ 4600 1040 1.240 1660 
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sx = 0.108 m, say 10.8 cm. 
(b) In the silty-sand layer, z varies from 4.40 to 7.50 m and E/pl ranges 

from 6 to 8. 
Therefore, we take a = 1/3 (see Table 6K). Then 

Pie = 3/3.8 x 3.9 x 4.5 = 4.06 bar, or 406 kPa 

kpfe 0.8 x 406 

and we get: 

= 4.39 > 3 therefore, Q(F) = 1 

s2 = - x 1 x 74 2 3 
5.50-4.40 1.00 1.00 

+ + 
0.027 m. 

2400 3000 3400. 

The total settlement thus is: s = s1 + s2 = 10.8 4- 2.7 = 13.5 cm. 

Summary of answers 

(1) qad = 7.4 kPa with safety factor of 3. 
(2) Settlement s = 13.5 cm. 

Problem 10.17 Bearing capacity of shallow foundations from static pene-
trometer tests 

See problems 6.4, 6.8, 6.9, 6.10 and 6.11 in Volume 1. 
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DEEP FOUNDATIONS 

irkProblem 11.1 Design of a driven pile in homogeneous sand from static 
penetrometer test data 

Determine the allowable soil bearing under a driven pile of 1 m in diameter. 
The upper soil consists of soft clay and is underlain by a medium dense 
sand represented by the penetration diagram of the static test of Fig. 11.1. 
The test was performed with the Gouda-penetrometer and a Delft-cone. 

Compare the allowable stresses under this pile, when it is driven to levels 
A and B. 

0 10 25 50 75 100 t _ 
qc(daN/cm2) 

8 D 

Fig. 11 .1 . 
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Solution 

The Dutch method of analysis may be used which consists of determining 
the average point resistance on 8 pile diameters above the pile base, or qCi, 
and the average over 4 pile diameters below the pile base, or qCj. 

The ultimate stress is: qd = (qCi 4- qCi )/2, and the allowable stress is: 

Qad = Qd/2 = (QCl + Qc2 )/4> f ° r a safety factor equal to 2. 

Neglecting the lateral skin friction, we can determine the allowable stress 
under the pile tip in the following manner: 

— at level A: 

qCi = (10 + 10 + 10 + 12 + 16 + 37 + 91 + 95 4- 97)/9 = 378/9 = 
= 42daN/cm2 

qC2 = 97daN/cm2 

from which: qad = 139/4 ^ 35daN/cm2 = 3500 kPa. 

— at level B: 

qCi = 97daN/cm2 = 9700 kPa; qCi = 100daN/cm2 = lOOOOkPa 

Qad = Qc2/2 = 50daN/cm2 = 5000 kPa. 
Note the large difference of allowable stress depending on the depth to 

which the pile is driven into the homogeneous sand layer. 

+rkProblem 11.2 Design of a pile driven in a heterogeneous soil from static 
penetrometer test data 

Assume that the soil described in problem 11.1 contains, at a depth of 
22 m, a loose layer as indicated on the graph of Fig. 11.2. Under this 
condition, determine what the allowable stress would be under a 1-m diameter 
pile driven to levels A andB, identical to those of problem 11.1. 

Solution 

If the pile is driven to level A, its bearing capacity is not influenced by 
the less compact soil layer at a depth of 22 m. Consequently, as found in 
problem 11.1, the allowable soil stress is 3500 kPa. 

At level B, however, near the layer of lower resistance, the consequences 
of lowering the pile tip must be evaluated to a depth of 3.5—4 meters 
below the pile tip. 

Following the recommendations of the Dutch, whenever a poor-quality 
soil layer is encountered at a depth of 4 diameters below the pile tip, and 
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q c (daN/cm 2 ) 

3.5 - 4 D 

when over this depth n cone-penetrometer test readings were made, then 
is: 

Qc 

Qc 

Qc 

i)/2n 

357/8 = 44.6daN/cm2 

= (9i + Q2 + • • - + Qn +nq 

= 97daN/cm2 = 9700 kPa 

= [90 + 72 + 54 + 29 + (4 x 28)] /8 
= 4460 kPa 

qd - 141.6/2 = 70.8daN/cm2 = 7080 kPa 
from which: qad - 35daN/cm2 = 3500 kPa 

It is apparent that for a condition as shown on Fig. 11.2, lowering the pile 
tip to level B does not increase the bearing capacity of the pile. From an 
economic view, there is no advantage in driving the pile below level A. 
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+*Problem 11.3 Design of drilled piles from static penetrometer test data 
(Andina penetrometer) 

At a site along the Mediterranean coast, two static-dynamic penetrometer 
tests were performed with the Andina device. Both tests yielded very similar 
results as typified by the graph of Fig. 11.3. 

Determine the bearing capacity of drilled piles, 50cm or 1 meter in 
diameter, driven 13 or 14 m, respectively, below grade. 

refusal at 21 m 

Fig. 11.3. 
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Solution 

To determine the bearing capacity at the tip, the following formula 
is used (Ref. 22): qd = [qCo 4- (qCi 4- q^ )/2] /2 where: 
qCi = minimum point resistance over a depth of 4 diameters above the base 

of the pile; 
qCi = average over the same depth; 
qCo = average along the critical embedment (in practice, over 8 pile diameters 

above the tip elevation). 

(1) 50-cm diameter pile to 13 m 
We have: 

qCi = 68 bars = 6800 kPa 
qC2 = (72 + 75 4- 68 + 80 + 92 4- 120 + 145 + 130 4- 110)/9 = 892/9 

^ 99 bars = 9900 kPa 
qCo = (72 4- 76 4- 100 4- 126 4- 100 4- 84 4- 30 4- 62 4- 7 + 8.5 + 8.5 4-

4- 14 4- 100 4- 60 + 45 4- 35 4- 10.5 4- 8)/18 = 946.5/18 = 52.6 bars 

= 5260 kPa 
from which the allowable stress is: 
qad = [52.6 4-(68 4-99.1)/2]/4 = 34 bars = 3400 kPa. 

However, in the above calculations, skin friction was not taken into 
consideration. This friction can be accounted for over a length L-8D-D, 
where L is the pile length, D is the pile diameter. (8D: above the tip, D: 
at the pile top). 

Considering the value of Rf obtained from the Andina penetrometer 
test on the cone friction sleeve, we can assume for a first approximation 
that the useful friction may be lOkPa (a slice-by-slice evaluation would 
yield about the same value). 

This friction acts over an area ITD X 8.50 = 13.35 m2, i.e., a total force 
of 133.5 kN was applied to the net cross-section of the pile of 0.196 m2, 
then: of = 133.5/0.196 = 680 kPa. This means that the allowable stress under 
a 50-cm diameter pile, 13 m long, is: qad = 3400 4- 680 = 4100 kPa. 

Taking into account the fact that qc' of the diagram (Fig. 11.3) in the 
bearing layer is divided by 2, we will not apply for the drilled pile the 
usual 30 to 50% reduction of the allowable bearing (qc' is the point resistance 
measured with the small point of the Andina penetrometer). 

(2) 50-cm diameter pile to 14 m depth 
For this pile we have: 
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qC] - 80 bars = 8000 kPa 

qCz = (92 + 120 + 145 + 130 + 110 + 112 + 110 + 96 +102) /9 = 

= 1017/9 = 113 bars = 1 1 3 0 0 k P a 

qCo = (92 + 80 + 68 + 75 + 72 + 76 + 100 + 126 + 100 + 84 4- 30 + 

+ 62 + 7 + 8.5 + 8.5 + 14 + 100)/17 = 1103/17 = 65 bars = 

= 6500 kPa 

from which the allowable stress is: 

Qad = [65 + (80 + 113) /2] /4 = 40.4 bars = 4040 kPa. 

The surface of the pile on which the lateral friction acts is: n x 0.5 x 9 = 
14 .14m 2 . The corresponding load, applied to a pile section of 0 .196m 2 is: 
141 kN, from which: af = 141/0.196 = 720 kPa and qad ^ 4 0 4 0 + 720 = 
4760 kPa. 

(3) 1-m diameter pile, 14 m long 

A computation similar to the one above, gives: 

qCi = 30 bars = 3000 kPa 

qCi = (92 + 120 + 145 + 130 + 110 4- 112 4- 110 + 96 + 102 4- 86 4-

4- 88 4- 80 4- 102 4- 42 + 30 + 30 4- 30)/17 = 1505/17 = 88.5 bars 

= 8850 kPa 

qC{) = (92 4- 80 4- 66 + 75 4- 72 + 76 + 100 + 126 4- 100 + 84 + 

+ 30 4- 62 4- 7 4- 8.5 4- 8.5 4- 14 + 100 4- 60 4- 45 4- 35 4- 10.2 + 

4-8 + 5 4 - 5 + 4 4 - 2 + 2 + 2 + 2 4 - 2 4 - 2 4 - 2 + 2)/33 = 

= 1289.2/33 = 39.1 bars = 3910 kPa, from which 

qad = [39.1 + (30 + 88.5) /2] /4 = 24.6 bars = 2460 kPa. 
The lateral friction acts over an area of: TT X 1 x 5 = 15.70 m 2 . This 

corresponds to a load of 15.7 x 10 = 157 kN applied over a pile cross-
section of 0.785 m 2 . So the net stress due to skin friction is of = 151/ 
0.785 = 200 kPa and qad = 2460 + 200 = 2660 kPa. 

(4) 1-m diameter pile, 14 m long 
As before: 

qCx = 67 bars = 6700 kPa 
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qCo = (72 + 75 + 67 + 80 + 92 + 120 + 145 + 130 + 110 + 112 + 

+ 110 + 96 + 102 + 86 + 80 + 102 4- 42)/17 = 1621/17 = 

= 95.4 bars = 9540 kPa 

qC2 = (72 + 76 + 100 + 126 + 100 + 84 + 30 + 63 + 7 + 8.5 + 

+ 8.5 + 14 4- 100 + 60 + 45 + 35 + 10.2 + 8 + 5 + 5 + 4 + 

+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3.5 + 5 + 5)/33 = 
= 992.7/33 = 30.1 bars = 3010 kPa 

qad = [30.1 + (67 + 95.4)/2]/4 = 27.8 bars = 2780 kPa. 

surface of lateral friction = 4 x 3.14 = 12.5 m2, from which 

Of = 125/0.785 = 160 kPa. The total allowable stress is: 

qad = 2780 + 160 = 2940 kPa. 

Conclusion 
This problem shows, once again, that in a heterogeneous soil, one should 

never recommend an allowable stress beneath a pile without specifying 
also the pile diameter, since this stress is dependent upon the diameter. 
In this instance, notice that to account for the penetration diagram, it is 
logical that: 

(1) There is no gain to increase the diameter from 0.5 to l m regardless 
of the length, 13 or 14 m. 

(2) To lengthen the pile from 13 to 14 m would be of interest for the 
0.5-m diameter pile but would be disadvantageous for the 1-m diameter 
pile. 

This once more indicates the danger of having pre-conceived ideas on the 
length of embedment of piles in heterogeneous soils. 

^Problem 11.4 Design of a pile driven into a three soil layer system from 
static penetrometer test data 

For this problem, refer to problem 6.12 

++Problem 11.5 Design of a driven pile on the basis of static formulae 

A preliminary study requires the determination of the bearing capacity 
of a driven pile, 32 cm in diameter and 9 m long, in a soil whose geotechnical 
profile is shown on Fig. 11.4. 

The soils have the following mechanical and physical properties: 
— soft silt: wet unit-weight, y = 17kN/m3, buoyant unit-weight, yf = 10 
kN/m\ 
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— loose clean sand: buoyant unit-weight, y' = llkN/m3, angle of internal 
friction \p = 30°. 
— medium to dense clean sand: buoyant unit-weight, y' = 11 kN/m3, angle 
of internal friction <p = 35°. 

The groundwater level is 2 m below the soft silt grade. Assume that 
the upper layer of soft silt will never be loaded and therefore will never 
create negative skin friction. 

Is the reinforced concrete pile diameter adequate? 

Fig. 11.4. 

Solution 

The soils being cohesionless, all computations can be based on effective 
stresses using drained parameters. 

(1) Caquot-Kerisel method 
The first order of work is to determine the critical embedment given by 

the following formula: Dc = (B/4)N%/3 

whereB = diameter of the pile, Nq = 10* t an *, and 2.7 < AT < 3.7, depending 
on pile diameter. 

For a 32-cm pile, Caquot and Kerisel propose N = 2.7. Thus, for <p = 35°, 
NQ =77.7,I?C = 1 . 5 m . 

The value of NQ corresponding to the shallow footing condition is 33.3 
for <p — 35°. This indicates that the recommendation of Yves Lacroix (of 
Woodward and Clyde, New York, personal communication) that: 
Nq (pile) = 2NQ (shallow footings) is correct and on the safe side. 
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Ultimate point resistance of a pile 
The ultimate stress at the tip is: qd = p0Nq, 

where p 0 ~ effective overburden stress at the level of the pile tip, or: 
p0 = 17 x 2 + 10 x 1 + 11 x 6 = 110 kPa. 

The pile embedment into the medium dense to dense sand (h = 4 m ) is 
greater than the critical embedment Dc = 1.5 m. So, we can consider the 
values of Nq = 77.7 and qult = 110 x 77.7 = 8550 kPa. 

The ultimate load on the pile then is: Qp = 8550 x 0.08 = 684 kN.* 

Ultimate lateral friction along the pile shaft 
After the method of Caquot-Kerisel, lateral friction is disregarded along 

the critical embedment into the bearing layer. 
At depth z, the unit skin friction at failure (Costet-Sanglerat) is: 

f = oc'yz where q = kpy -sin 5.** 
Since the pile is driven, passive pressures in the sand may be assumed to 

have developed (this assumption is often contested and at times may be on 
the unsafe side). 

Ultimate skin friction along the pile length in the loose sand 
5.00 

Qfi = P a-yz-dz 
3.00 

where p = perimeter of the pile, here: 1 m. 
To calculate Qfu we may consider the effective overburden pressure at 

mid-height of the layer of loose sand (at 4 m depth): 

o\ = 1 7 x 2 4 - 1 0 x 1 + 1 1 x 1 = 55kPa 

Therefore, for a loose sand layer of 2 m: Qfl = P x a x o'4 x 2, for ^ = 30° 
and 5 = — 2</?/3, coefficient a is 1.9, then: Qfl = 1 x 1.9 x 55 x 2 = 209 kN. 

Ultimate skin friction along the pile in the dense sand layer 
This friction will only be calculated for a length of 2.5 m because skin 

friction is not assumed to act over the depth equal to the critical embedment 
depth. 

At a depth of 6.25 m, the effective overburden stress is: 

a;.25 = 1 7 x 2 + 1 0 x 1 + 3 . 2 5 x 1 1 = 79.75 kPa 

For <p = 35° and 5 - - 2^ /3 , coefficient a is 3.3. 

Then: Qf2 = 1 x 3.3 x 79.75 x 2.5 = 658 kN. 

*The method proposed by P. Foray and A. Puech (J. ITBTP, 339, May 1976) gives, 
assuming a relative density of 0.7 in the bearing layer and 0.4 in the loose sand layer, an 
ultimate bearing value of 675 kPa at the tip and 263 kN skin friction. 
**The formula was derived for a homogeneous soil. It remains valid for stratified soils 
if kpy = kPQ, which is here the case. 
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Therefore, the total skin friction along the whole pile length is: 

Qf = Qn + Qf2 = 209 + 658 = 867 kN. 

Allowable load on pile 
Using a safety factor of 3 to Qf and Qp : 

Qad = Qp/3+Qf/3 = 684/3 + 867/3 - 517 kN, Qad = 517 kN. 

Remark 
If we assume <p — 38° instead of 35° for the medium dense to dense sand 

layer, we get: 

Nq = 129, Dc = 2 m, Qp = 1 1 0 x 1 2 9 x 0 . 0 8 = 1135 kN, 

Qn = 209 kN, Qf2 = 739 kN, Qf = 2 0 9 + 7 3 9 = 948 kN. 

Allowable load on pile: Qad = 1135/3 + 948/3 = 694 kN. 
If we change the value of <p by 3° of the bearing layer, the allowable load 

rises from 517 kN to 694 kN, so with an increase of some 34%. 
Any error on the evaluation of <p may have a considerable influence on 

the allowable pile load. 

(2) Other method (see Fond document 1972)* 

Ultimate stress at the pile tip: qd = ydNq 

NQ is computed from graphs made for shallow footings. It is the minimum 
Nq referred to in the preceding question (Fig. 10.2 and Table 10C). For \p = 
35°, NQ - 3 3 . 3 0 : qd = 110 x 33.30 ^ 3660 kPa. 

Ultimate load at the pile tip: Qp = 3660 x 0.08 = 293 kN. 

Ultimate skin friction along the pile 
At depth 2, the unit skin friction at failure is: 

r = K t an <pao'z 

where: K = coefficient depending on the method of installation of the 
pile and the compactness of the sand, <pa — friction angle pile—soil; o'z = 
effective overburden stress at z, equal to Xy'z. 

If we take Broms coefficient as proposed in the Fond 1972 document 
for driven piles, we get: <pa = | <p, K = 1 for loose sand, K = 2 for compact 
sand. 

Ultimate skin friction over the loose sand layer 
5.00 

Qf = p-K- tan 22°5 | o'z • dz 

3.00 

♦Published by L.C.P.C.-SETRA (French Ministry of Equipment) in Paris. 
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To calculate Qfi we consider the vertical overburden stress at mid-height 
of the loose sand layer, or 4 m depth: 
Qf = 1 x 1 x 0.41 x 55 x 2 = 45 kN. 

Ultimate skin friction over the medium to dense sand layer 
9.00 

Qf = p-K- tan 26° j o'z-dz. 
5.00 

To calculate Qf, consider the effective vertical overburden stress at mid-
height of this layer, or 7 m depth: 

Qf = 1 x 2 x 0.49 x 88 x 4 = 345 kN 
from which the ultimate skin friction over the pile length is: 
Qf = 45 + 345 = 390 kN. 

Allowable load on pile 
With this method, a safety factor of 3 is used for the tip ultimate bearing, 

and of 2 for the ultimate skin friction: 

Qa = Qp/S + Qf/2, Qa = 293/3 + 390/2 = 293 kN. 
With the method of Caquot-Kerisel we obtained for this load: Qa = 517 kN. 

Note the considerable difference between the two methods. 
We see that, when loaded, the compressive stress in the concrete calculated 

from Qad is acceptable, but it is too high during driving (calculation with 
Qd), so the diameter of the concrete pile should be increased or a steel pipe 
pile should be used. 

The first result is certainly too optimistic in the evaluation of skin friction, 
because it assumes that passive pressures are mobilized along the full length 
of the pile. In reality, passive pressure is a seldom reached maximum con-
dition (that depends on the driving method and the sand compactness). 

The second result is certainly too pessimistic for the evaluation of the 
tip resistance. It is underestimated by using the shallow footing formula. 

Conclusion 
As a general rule, avoid calculating the bearing capacity of driven piles 

from laboratory test results on soil samples, because the design theories 
are too uncertain and lead to greatly varying results depending on the 
method used. 

In addition, for sandy soils, the recovery of an undisturbed sample is 
almost impossible, particularly below the water table. Moreover in the case 
of highly heterogeneous soils, even good samples may not be representative 
of the whole of the various layers affected by the pile. It is, therefore, very 
difficult to assign correct values of the angle of internal friction if. This shows 
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the interest in calculating the bearing capacity of piles from the results of 
in-situ tests and, in certain cases (driven piles in sands) from the driving 
formulas (Costet-Sanglerat, sect. 10.12). 

++Problem 11.6 Allowable bearing capacity of a pile from pressuremeter 
test results. 

Consider a pile of diameter 2R = 0.60 m, drilled to 8 m, as indicated on 
Fig. 11.5. 

* 7/ 
r^\ 

m 
f//A 

620m| 

v//. 

l,80r 

0 .'■ 

///// > / >/ ; > >; 

water table 

dense sandy . " '?t 
gravel"^7.' • • • ' 

<%. . & • 
2R = 0 6 0 m ' ' ' • " . ' . 

Fig. 11.5. 

A pressuremeter testing programme yielded the following data: 
— gravelly clay: average limit pressure = 3.5 daN/cm2 (350 kPa) 
— sandy gravel: average limit pressure = 12daN/cm2 (1200 kPa) 
— level of water table: 2 m below grade. 

Calculate the allowable soil bearing pressure under the pile, assuming 
that the saturated unit-weight of soils is 22kN/m3. Use the graphs of 
Menard, reproduced on Figs. 11.6 and 11.7 as well as table II, sect. 12.2.3 of 
Costet-Sanglerat. 

It should also be referred to the notes of Menard published in 1967 on 
the use of the pressuremeter and to the Fond document 72 (LCPC 
SETRA) published by the French Ministry of Equipment and Housing. 
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he = equivalent 

embedment length 

hiPij 
he = X = 

PI. 

slurry walls 

Fig. 11.6. Bearing factors k for deep foundations, (after Menard). 
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Solution 

The interpretation of classical pressuremeter tests recommended by 
Menard leads us to consider 3 factors to estimate the allowable load of a 
deep foundation: tip resistance, current skin fraction and increased skin 
friction. 

Tip resistance 
This resistance is estimated from the same formula as used for shallow 

footings: 

Qd = Qo+k(Pi~Po) (cf. Costet-Sanglerat, 12.2.3) 

A safety factor of 3 is used on the bearing capacity factor k which is 
calculated from the graph proposed by Menard, of Fig. 11.6. 

Current skin friction 
Skin friction is considered over the length of the pile, less the lower 

portion over a length of 3 pile diameters and the upper portion: (0.3 m + i?), 
where R is the pile radius. 

It is estimated from the Menard graph of Fig. 11.7, which gives the unit 
skin friction rc as a function of the limit pressure. It is used with a safety 
factor of 2. 

Increased skin friction 
Over the length of 3 radii near the pile tip, Menard estimates that the 

loading of the pile causes the soil to tightening against the pile shaft and 
that, as a consequence, skin friction increases. 

The unit skin friction ra is determined from the graph of Fig. 11.7 and it 
is used with a safety factor of 2. 

From there, the allowable load on the pile is: 

Qad = *R2 
ad 

2-nRTt 

k 
Qo+-(Pi~Po) 

2TTRTC 
4- [L - (3R + 0.3 + R)] £ + 

+ SR 

with: q0 = total vertical stress at the pile t ip; p 0 = total horizontal stress of 
the silt at rest at the test elevation (assumed performed at the pile tip). 

Qo = Tsat x L, po = # o [Tsat x 2.00 + y'(L - 2.00)] + j w (L - 2.00) 

because the clay is saturated by capillarity above the water table. 
Now, assuming K0 = 0 . 5 : 

q0 = 8 x 22 = 176 kPa, 

Po = 0.5 x 22 x 2.00 4- 10 x 6.00 + 0.5 x 12 x 6.00 = 118 kPa, 

px = 12daN/cm 2 = 12 x 102 kPa = 1200 kPa. 
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The embedment length is given by (see Fond. 72): he = lhipu/ple with 
in the case where 2 R < 1 m: 
Ple = y/PiiPi2Pi3 = \/Pi grave = Pigrave= 12 daN/cm2 (1200 kPa) because 
the 3 levels of + 1, 0 and — 1, at the base, are in the gravel; therefore: 

he = (1.80 x 12 + 6 . 2 0 x 3.5)/12 = 3.60 and he/R = 12 

from which, with the aid of the graphs (soil category III, table II, sect. 
12.2.3. of Costet-Sanglerat): 

k = 4.9, rc =£ 0.8 daN/cm3 = 80 kPa, 

ra ^ 1.2 daN/cm2 = 120 kPa, 

and finally: Qad ^ 549 + 491 + 102 = 1142 kN 

This soil allowable pressure is also allowable for the concrete of the pile 
since the corresponding concrete stress would be 40daN/cm 2 , inferior to 
the value of 50 daN/cm2 usually considered allowable. 

irkProblem 11.7 Design of a pile and pier drilled into a swelling clay 

(1) Consider a pile with diameter 2r = 30 cm and a total length D = 
4.50 m, embedded over a length d — 3 m into a non-swelling soil and over 
a length D—d in an upper swelling soil layer (Fig. 11.8). Calculate the 
minimum stress p that the structural dead load must exert at the tip to avoid 
problems due to swelling. Assume that the swell pressure v* of the upper 
soil is 1 daN/cm2 and that the friction at uplift is 15% of the swell pressure. 

Assume also that, in the event that the upper soil layer does not swell, 
the properties of the non-swelling soil at depth are good enough to prevent 
a bearing failure. 

(2) Determine the new value of p in the case where the swelling clay layer 
is 6 m thick, but the length of pile remains at 4.50 m. 

(3) In Colorado (U.S.A), 39 houses were supported on 10-inch diameter 
shafts, embedded 7 ft. in swelling clay whose swell pressure was measured 
at lOOOOp.s.f. and loaded to 20kips. 

Severe uplift occurred. Explain why. N.B. 1 kip = 1000 pounds, 1 p.s.f = 
1 pound per square foot. 

Solution 

(1) The lower end of the shaft is in a non-swelling soil. The total uplift 
force V is: V = 2nr(D—d)fv where f = 0.15. 

Note the similarity between the ratio of f and v and the "friction ra t io" 
of penetrometer tests (see Refs. 29 and 30); f here corresponds to FR — 15%. 

*Swell pressure may be determined in the laboratory in the following manner: submerge 
a soil sample in a consolidation mold, measure the vertical stress which must be applied 
to maintain constant volume (see Problem 10.13). 
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v swelling clay 

swelling soil 

^ j 2 r : 0.30 m 

Fig. 11.8. 

Let p be the stress at the pile tip due to the weight of the structure, if 
we neglect lateral friction over length d (non-swelling soil). 
No uplift can occur when: 

irr2p > 2irrfv(D-d) or p > [2(D-d)fv]/r, 

from which: p > [2 x (4.50 - 3.00) x 0.15 x 100] /0 .15 = 300 kPa = 

= 3daN/cm 2 . 

In practice, we can recommend 3 daN/cm2 because lateral friction S over 
height d (which can be assumed to be half of the cohesion value of the non-
swelling clay) provides a margin of safety. Indeed, if we account for friction, 
we get: 

> 
2(D-d)fv 2irrfmd 

irr^ 

with fm — shear stress at the pile—clay interface or: 

p > (2/r)[fv(D-d)-fmd]. 
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Let us find the value of fm for which the term in the brackets would become 
zero: 

= fv(D-d) = 0 .15x100x1.50 = 7 5 k P 

d 3.00 ' a ' 

Taking 0 = 0.5 (see sect. 10.4.1, Costet-Sanglerat) and <pf = 0 for the 
underlying clay layer, we see that all we need is a cohesion of 15kPa 
(0.15daN/cm2 ) to annul the uplift by embedment into the lower layer. The 
pier should, however, have tension steel. 

(2) If the pile is embedded over its entire length into a swelling clay, 
the total uplift force V is obtained by adding to the uplift friction force 
acting on the lateral surface, the uplift force acting under the base, or: 

V = 27rrDfv + irr2v. 

To avoid uplift, we must have: 
p > (2Dfv/r) + v 

or: p > (2 x 4.50 x 0.15 x 100)/0.15 + 100 
or: p > 1000 kPa* (10daN/cm2). 

Note that for lightly loaded structures, it is rare that p be so high, which 
explains the frequent occurrence of problems in these types of structures 
in swelling clays. It should be noted that very often, the height of clay 
susceptible to an increase in moisture content, does not exceed 1.50m. 
However, in the case of a water pipe leakage in swelling clays, the zone 
of soil affected may reach 4.50 m and even more, exceptionally 6 m. There 
is an advantage therefore to resort to belled piers, as discussed in problem 
11.8. 

(3) From the preceding question, the total uplift pressure is: 

V = 2irrDfv + irr2 v = ntpDfv + ir((p2/4)v. 

Knowing that 1 ft = 12 inches and 1 kip = 1000 pounds (^ 4.45 kN): 

V = IT x (10/12) x 7 x 0.15 x 10 000 4- (TT/4) X (10/12)2 x 10 000 = 

= 32 942 pounds 
say: V ^ 33 kips. 

Since the load on each pier is 20 kips, uplift occurs. Problems should 
have been expected in the 39 houses. 

*We will assume, as for the preceding question, that in the event that swelling does 
not occur, the soil properties are such that no bearing failure will occur. 
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++*Problem 11.8 Enlarged base pile design in a swelling clay 

A pile has a diameter of 2r = 0.30 m and goes through an upper soil 
layer consisting of a swelling clay, 2 m thick. The pile has an enlarged base 
whose diameter is 2R = 0.80m and is 0.2 m thick. It is embedded 1.2 m 
into the underlying soil layer which has no swell characteristics (Fig. 11.9). 
The permanent load on the pile is 83 kN. 

The characteristics of the two soil layers are: 
— upper layer (swelling clay): unit weight, y = 20kN/m3, swell pressure 
v = 500kPa. 
— lower layer (non-swelling clay): unit-weight = 20 kN/m3, undrained 
cohesion, cu = 120 kPa, drained cohesion, c — 19kPa, effective angle of 
friction, <p' = 20°. 

Assume the soils are saturated by capillarity and that friction to uplift 
is 15 percent of the swell pressure: 

(1) Check that diameter and depth of the embedment of the tip are 
sufficient to prevent uplift. 

(2) Verify the foundation stability in the event that no uplift occurs. 
What can be concluded? Neglect the friction to lateral faces of the footing. 

Solution 

(1) Assume the downward direction positive (Fig. 11.10). Let us define 
P, the permanent load applied to the foundation (weight of pile and footing 
included), V, the vertical uplift force and P0, the weight of the soil cylinder 
of diameter 2R above the footing. 

P= 83 kN 

swelling clary A 

T = 20 k N / m * 
v = 500 kPa 

W8& 
»$ ;c '= 19 kPa 

Fig. 11.9. 

^ F = 2o'kN7m^l;il % £ 
ffi|cu= 120 kPa f ^ A n 

iyyy*yyvy*yxyyxx;<xy*;* 

T 2 r ; 0.30 m 

* 

1 

uu 

h = 2.00 m 

d = 1.00 m 

Ho. .20 m 

2 R : 0.80 m 
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f\ 
_ j ' 

t»-

D'-d 

P + Pft + V > 0 P + Prt + V < O 

Fig. 11.10. 
© © 

Two cases must be considered: 
(a) First case (Fig. 11.10a): P + P0 + V>0. The footing behaves in the 

classical manner of shallow footings because D/B — 3.20/0.80 — 4.0. We can 
then, with adequate safety, apply the theory to this condition. 

(b) Second case (Fig. 11.10b): P + P 0 + V < 0 . In this case, the uplift 
force will have a tendency to push up the soil cylinder located above the 
footing. 

Shear stresses will be developed along the lateral surface of this cylinder, 
with a resultant Fs opposing this uplift. Taking into account the swelling 
of the upper clay, which will cause a displacement upwards of each of its 
points, shear stresses cannot be developed in the swelling clay. The resultant 
Fs corresponds only to the shear stresses generated in the lower layer. 
Finally, we have: P + P 0 + Fs + V + R' = 0, 
where R' = soil reaction under the footing, with 0 < R' < qadS, 
S is the surface area of the footing. 

For the first question then, we must consider the mechanism of the 
second case. 

Let r m be the average shear stress (long-term) computed at mid-height 
of the lower non-swelling layer: 
Tm — c' + o0 tan ipf = c + y(h + d/2) tan <p' 

The unit weight to consider, is y and not y' because the soil is saturated 
by capillarity. We than have: 

Fs = 2irRdrm9 

P0 = TT(R2 -r2)D'y, 

V = 2-nr{D' -d)fv. 

Replacing with the numerical values of the givens: 

r m = 19 + 20(2.00 + 1.00/2) tan 20° = 37.2 kPa 
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Fs = 27r x 0.40 x 1.00 x 37.2 = + 93 .5kN 

P0 = IT(0.W-0.152)X 3.00 x 20 = + 25 .9kN 

V = 2TT x 0.15 x 2.00 x 0.15 x 500 = - 141.4 kN. 

We will have: P + P0 + V<0 when P < 141.4 - 25.9 = 115.5 kN. Since 
P = 83 kN, we do indeed have this condition. 

Taking a safety factor of 3 against shear strength, we get: 

P + P 0 4- 1/3FS + V+R' = 0 or 

R' = 83 + 25.9 + 9 3 . 5 / 3 - 1 4 1 . 4 = - 1 . 3 k N . 

The reaction R' of the soil on the footing is upward, the action of the 
footing on the soil is downward, therefore no uplift occurs and the footing 
size is acceptable. 

The stress exerted on the soil in this case is: 

R' 1 . 3 x 4 
S TTXO.80 2 - 2.6 kPa. 

(2) The calculation must consider the short-term (undrained) condition 
under the permanent and ''living" load the longterm (drained) condition 
under dead load only. The behaviour of the footing is shown on Fig. 11.10a. 

(a) Stresses under the footing 
— under permanent dead load: 

qp = o = n _ 2 ' A = ^ - ^ = 216.5 kPa 
P + P0 _ 83 + 25.9 _ 108.9 

S " TTX 0.802/4 " 0.503 

— under dead and "living" loads: 

P+P0 + Ps Pt 

qs = = 216.5 + 0.503 

(b) Allowable stresses under the footing 
— undrained condition, clay saturated (<p = 0): 

_ , 1.2cuNc 1.2 x 120 x 5.14 
Qad = JD + —- = 20 x 3.20 + ^ 310 kPa 

o o 

— drained condition (clay is still saturated by capillarity): 

qd = (0.8/2) yBNy + yDNq + 1.2c'Nc 

We have: sp' = 20°, from which Ny = 5, Nq = 6.4, Nc = 14.8. 

Therefore: 
qd = (0.5 x 0.8 x 20 x 0.80 x 5) + (20 x 3.20 x 6.4) + (1.2 x 19 x 14.8) 

^ 779 kPa 
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yD = 20x3 .20 = 64 kPa from which 

qad = 64 + ( 7 7 9 - 6 4 ) / 3 ~ 302 kPa. 

193 

(c) Conclusion 

Longterm condition: qad = 302 kPa > 216.5, 

short-term condition: 310 > 216.5 + Ps/0.503, from which: 

Ps < (310 - 216.5) x 0.503 or Ps < 47 kN. 

The "living" load should not exceed 47 kN, which is about 57% of the 
dead load. We are, therefore, far above the 20% usually admissible. 

Remarks 
(a) The greatest advantage of piles or piers with an enlarged base is 

that the resistance against uplift does not run the risk of being affected by 
the loss of friction, which could occur for any one of many reasons along 
the shaft of the pile in the zone of height d. 

On the other hand, load P0 is only slightly affected by variations in the 
water content. 

Piers with an enlarged base are particularly well adapted for high 
swelling clays (v > 5 daN/cm2) when the substratum is rocky and not too 
deep, and if a water table could exist. 

(b) A very efficient solution to prevent uplift due to swelling clays is to 
provide a layer of vermiculite or glass wool along the shaft, between the 
pile and soil, some 3 to 5 cm thick (Fig. 11.11). The pile should have tension 
steel to prevent shaft rupture and a void of about 10 cm must be designed 
under the beams to allow the soil to swell. 

(c) Clays with a plasticity index of over 30 should be suspected of having 
swell potential. 

I I 
beam B A 

^x/wxxxyyxxxxyyxxvxxy 

armatures ■ 

Fig. 11.11. 

.void 

xxYYvyxYXxxxyxxxy^x* 
swell ing clay 

layer of vermicu l i te or 
glass wool (e = 3 - 5 c m ) 

non-swel l ing soil 
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if Problem 11.9 Calculation of the bearing capacity of a pile from the S.P.T. 
(Standard Penetration Test) 

This problem is reported in 6.18. 

++Problem 11.10 Bearing capacity of a driven pile from static-penetration 
dynamic-penetration tests and S.P.T. Comparison with in situ 
pile load test 

During the second European Symposium on Penetration Tests (E.S.O.P.T 
II) held in Amsterdam in May, 1982, the problem of determining the bearing 
capacity 

Cone resistance q c in MN / m 2 or MPa ( M N / m 2 ~ 1 0 k g f / c m 2 ) 

0 10 20 30 

Fig. 11.12a. Static cone resistance. 
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of a pile from in situ static and dynamic penetration test and S.P. T. tests was 
presented. The data came from a site in Amsterdam where a pile had been 
driven and on which, in the presence of some of the symposium attendees, 
a cyclic loading was applied until failure occurred. The problem is presented 
here because of its instructional interest. 

Determine the ultimate and allowable bearing capacities of a square pile 

Local friction fs in MN/m or MPa Friction ratio in % 
0 0.2 0.4 0.6 0.8 10 0 5 10 

0 

L. 

E 
C 

^ 19 
a 
Q 

14 

18 

2 0 

J 

b i 

16 

Fig. 11.12b. Local friction cone resistance and friction ratio. 
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Dynamic cone resistance »-

0 5 10 15 20 25 30 

4 
t 
f 
> 

< 

sH 

\ 
-> 

5^ 

Fig. 11.13. Dynamic penetration. 

of 25 cm on the side. The pre-fabricated pile was driven to El — 14 m in 
a soil whose cross-section is given in Table 11 A. 

The evaluation may be made by different methods, based respectively 
on: 
— static penetration diagram obtained with a simple electric cone (10 cm2 

section) with friction sleeve, in accordance with international standards. 
Cone resistance, lateral unit friction and friction ratio are indicated on the 
diagrams of Fig. 11.12a and 11.12b. 
— dynamic penetration of Fig. 11.13, where penetration was obtained in 
accordance with international standards DP A, using drilling mud. (Rod 
diameters, 40 mm; point diameter, 61.8 mm; 64 kg hammer; drop height 
of 73 cm, dynamic resistance computed in accordance with the conventional 
Dutch formulae). Ref [13], [22] and [23]. 
— S.P. T. tests, presented on Fig. 11.14. 
Compare the results obtained with the pile loading record, shown on Fig 
11.15. 
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TABLE : 11 - A 

ESOPT II CASE STUDY I 

Pile Prediction 

Site : AMSTERDAM 

Result of boring 

depth 

m. 

1 —I 

NAP 

-1 

-2 

-3 — 

-4 — 

- 5 — | 

-6 

-7 -

-8 -

- 9 -

-10-

-11—1 

-12 

-13 

-14—1 

-15 

-16—1 

-17-

-18-

mm 
m 

mm 
wm 

im 
21 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Soil description 

sand 

sand 

sand 

peat — clayey 

peat - clayey 

peat 

peat 

clay — some peat 

sandy clay 

clayey sand 

clayey sand 

clayey sand 

sand — some clay 

clayey sand (some organic pieces) 

organic clay 

clay 
peat 

sand — small pieces of clay and peat 

sand — small pieces of clay and peat 

sand - slightly silty - some pieces of clay 

sand — slightly silty — some pieces of clay 

sand — slightly silty - some piecds of clay 

sand - slightly clayey and silty 

sand - slightly clayey and silty 

sand and some clay 

clayey sand 

sand 

fraction 

90 - 420 

90 - 350 

90 - 420 

60 

60 

105 

75 

90 

210 

210 

250 

350 

710 

175 

175 

210 

210 

500 

n50 

210 

210 

250 
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O 10 20 30 40 50 N 

Values of S.P.T. 

Fig. 11.14. 

Solution 

(a) Cone penetrometer (C.P.T.) 
Since the cone resistance decreases greatly l m below the driven pile 

tip, the bearing capacity must be computed, for safety's sake, in accordance 
with the method indicated in problem 6.12: 

9ui = (qCl +9c2)/2. 

<7c2 = (qi+q2 + qn +^^m i n i ) /2n, 
with 4£> = 1 m under the pile tip we get: 

qCi = [16.4 + 21 + 2 5 + 1 7 + 17 + 10 + ( 6 x l 0 ) ] / 1 2 = 166.4/12 = 
= 13.8 MN/m2 
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0 250 500 
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750 1000 1250 1500 
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15 
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c 

CO 

30 

35 

40 

45 
_]_ 

pile load in kN 

The load-settlement behaviour of the testpile 

Fig. 11.15. 

and for 8D = 2 m above the pile tip: 

QCl = (16.4 + 17 + 12 + 8 + 6 + 9 + 5 + 1.5+ 1.5)/9 = 8.5 MN/m2 

The ultimate pressure at the pile tip would thus be: 

9ui = (8.5 + 13.8)/2 = 11.15 MN/m2 

and the ultimate point bearing capacity Qp = 0.25 x 0.25 x 11150 — 700 kN. 
From Fig. 11.12b, the average lateral unit friction may be evaluated as 

follows: 
from 0 to 3 m, fs = 0.04 MN/m2 

3 to 6 m, fs = 0.06 MN/m2 

6 to 12 m, fs = 0.01 MN/m2 

12 to 14 m, fs = 0.07 MN/m2 
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If we let p be the perimeter of the pile and h the height of the layer, the 
ultimate capacity due to the friction alone is: 
Qs = Zphfs = 4x 0.25 2 hfs 

= l [ 3 x 40 + 3 x 60 + 6 x 1 0 + 2 x 60] = 490 kN 

and the ultimate total load is Qul = 700 + 480 = 1180 kN. 
This must be compared to the ultimate pile load test of 1100 kN (see Fig. 

11.15). The allowable load may then be computed as follows: Q = 700/2 + 
480/3 = 510 kN. The overall safety factor is 1100/510 = 2.15. 

(b ) Dynamic penetrometer 
From the dynamic penetration test data (Fig. 11.13) the ultimate pile 

tip resistance may be computed as for the static cone data, by: 
qdi = (20 + 15 + 14 + 14 + 10 + 5 + 3 + 2 + 2)/9 = 9.4MN/m2 

qd2 = (20 + 21 + 20 + 20 + 14 + 8 + 6 x 8)/12 = 12.5 MN/m2 

qul = (9.4 + 12.5)/2 = 10.95 MN/m2 

from which Qp = 6 8 4 kN. 
This value is very close to that from the static test, because the dynamic 

test was performed with mud in the hole, in accordance with the DP A 
standards (International Standards). Ref. [8] . 

On the other hand, the dynamic test yields no useful data for the value 
of the lateral friction that thus must be roughly estimated. For a first 
approximation, the formula fs = 0.01qd may be used: 

fs = 0.01 qd, 

for 0—3 m 
for 3—6 m 
for 6-12 m 
for 12-13 m 
for 13-14 m 

and, finally: 

from which 
f = 0.04 MN/m2 

f = 0.015 MN/m2 

f = 0.01 MN/m2 

f = 0.04 MN/m2 

f = 0.10 MN/m2 

Qs = 4 x 0.25 (3 x 40 + 3 x 15 + 6 x 10 + 1 x 1 4- 1 x 10) 
= 120 + 45 + 6 0 + 1 1 = 236 kN 

from which Qul = 920 kN. 

If we were to take into account the soil types as evidenced by the S.P.T. 
(see Table 11A) we could possibly, for the cohesive soil layers, accept 
a friction ratio higher than 1%. This would increase the value of Qs. 
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(c)S.P.T. 
The bearing capacity of the pile from the S.P.T.-data may be computed as 

follows: 
According to L. Decourt in his paper "Prediction of the bearing capacity 

of piles based exclusively on N values of the S.P.T." (ESOPT II, Amsterdam, 
1982) the ultimate bearing capacity (Qu) of a pile is given by: Qu = Qp + 
Qs were Qp is the ultimate point bearing capacity and Qs is the ultimate load 
capacity due to friction along the shaft. 

c.l. Point bearing capacity 
To estimate the point bearing capacity an average of the three N values 

around the pile tip is taken. In the present case: 

JVP = (25 + 44 + 31)/3 = 33.33. 
The ultimate point stress is given by: 

qp = NPK, 

where K is the 
Soil type 
clays 
clayey silts* 
sandy silts* 
sands 

*residual soils 
Then: qp = 33.33 x 40 = 1.333 tf/m2

9 and the point bearing capacity will be: 

QP = QpAp = 1.333 x 0.0625 = 83.3 tf = 817.1 kN 

c.2. Shaft friction capacity 
There is no need to take into account the soil type (clay, silt, sand, etc.) 

met along the shaft. It is enough to consider the average N value along 
the shaft. But the AT-values taken for the estimation of point bearing capacities 
must not be considered for the estimation of shaft friction. N values smaller 
than 3 shall be considered as equal to 3 and N values greater than 50 shall 
be made equal to 50. In the present case we have assumed that between zero 
and 1.12 m of depth there was one N value equal to 6. Thus we have: 
XN = 74 
N = 74/17 = 4.35 
The friction along the shaft is given by: 
qs = (N/3) + l(tf/m2), 

qs = (4.35)/3 + l = 2.45 tf/m2 = 24.03 kN/m2, then: 

soil coefficient taken from the table below for K-values: 
K(t/m2) 

12 
20 
25 
40 (After Decourt [9].) 
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Qs = Asqs = 4 x 0 . 2 5 x 1 4 . 1 2 x 2 . 4 5 = 34.6 tf = 339.3 kN 
The ultimate pile bearing capacity will then be: 

Qu = QP + Q S = 83.3 + 34.6 = 117.9 tf = 1156.5 kN 

This prediction, made by L. Decourt before the symposium, has been found 
to be the best for the bearing capacity calculations of the tested pile. 
Summary of answers: 

Ultimate pile bearing capacity: C.P.T. = 1180 kN. 
Dynamic penetration: 920 kN; S.P.T. = 1156 kN. 
Loading test = 1150 kN; 

++Problem 11.11 Determination of bearing capacity and settlement estimates 
of semi-deep foundations based on pressuremeter tests 

A drilled pier of 1.2 m in diameter and 3 m deep is excavated in a very 
thick dense silt, as shown on Fig. 11.16. The groundwater table is at 2 m 
below the bottom of the pier. 

A geotechnical investigation made with the standard pressuremeter gave 
results as summarized on the diagram of Fig. 11.17. Assume that at the 
bottom of the pier p0 = 25 kPa. 

1. Determine the allowable soil bearing pressure below the pier and the 
net bearing capacity at the top of the pier. 2. Evaluate the settlement of the 
pier. 

How are the results affected if we assume that the water table could rise 
above the bottom of the pier? 

G.L. 
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Fig. 11.16. 
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Solution 
1. The equivalent limit pressure is calculated from the values of the limit 

pressure obtained between depths — 3R and + 3R about the bottom of the 
pier, that is from —1.20 to —4.80 m since R = 0.60 m. 
ple = ^/1300 x 1700 x 2400 = 1690 kPa, or 16.9 bars. 
(We verify in this case that the differences between the values of pY do not 
exceed 30%, as required by M6nard.) 

For the calculation of the equivalent embedment depth, /ie, we should 
take, over the initial 50 cm of depth, half of the value of the limit pressure 
measured at 1 m, that is: 750 kPa (7.5 bars). 

We then have: ftP = 
Pie 

0.5 x 750 + 1 x 1500 + 1 x 1300 + 0.5 x 1700 
he = = 2.38 m. 

1690 

and: hJR = 2.38/0.6 = 3.97 > 3 

The bearing capacity factor k is obtained from the graph of Fig. 11.6. 
The soil corresponds to category II, a dense silt with p / > 1 2 0 0 k P a (see 
Table II in sect. 12.2.3 of Costet-Sanglerat, Vol. II). 

For a drilled pier then: k — 2.3, and finally: 

<7ad = ft (Pie - P o ) / 3 or: 
<?ad = 2.3 x ( 1 6 9 0 - 2 5 ) / 3 = 1277 kPa (12.8 bars). 

1 Soil Description 

Dense 

Water 
Silt 

Depth 

m 

0 

2 

4 

table 
V 

6 

8 

Modulus E ( M ft) ' ' m i t Pressure Pi 
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18 

2 Or 
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Fig. 11.17. 
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Remarks 
The skin friction was neglected, contrary to what would be done for 

a pile, because we are dealing with a semi-deep foundation of small embed-
ment. For deeper embedments, skin friction could be considered. 

On the other hand, the bearing coefficient is computed from a graph 
which applies to deep foundations. That for shallow footing is limited 
to a value ofhe/R = 3. 

The bearing capacity therefore is: 

Qad = 7T02 /4 x 1277 ^ 1444 kN. 

However, at the top of the pier, the weight of the concrete should be 
subtracted with y concrete — 24 kN/m3 : 

Qa d = 1444 - (7T02/4) x D x 7 b = 1444 - (TT/4) X 1.22 x 3 x 24 = 

= ^ 1363 kN, or about 136 tf. 

2. For an isolated, semi-deep foundation of radius i ? < l m and for which 
/ z e / R < 5 , Menard proposed to use the following formula (pressuremeter 
rule 4): 

q ( R\a 

s = cq — 30 Xd — ( f o r 3 0 c m < E < 100 cm) 
2JEJ y 30 / 

where q — stress on top of the pier, E = pressuremeter modulus of the soil, 
a — soil structure coefficient (see Table 6K), Xd = shape coefficient of the 
foundation (Xd = 1 for a circular section and Xd = 1.13 for a square section), 
cq = embedment coefficient given by: 

_ 1 
Cq ~~ 0.8 + 0.1(he/R) 

For our case then: 

q = 1 2 7 7 - 3 x 2 5 = 1205 kPa, 

E = 250 bars = 25 000 kPa a = 2/3 

E/p! = 250/17 > 14 (overconsolidated dense silt) (see Table 6K), 

Xd = 1 (circular section), 

from which 

cq = 1/(0.8 4- 0.1 x 3.97) - 0.835. 
From which: s = 0.835 (1205/2 x 25 000) x 30 (1 x 60/30) 2 / 3 = 0.96 cm. 
The settlement will be of the order of 1 cm. If the groundwater table rises 

above the bot tom of the footing, Menard indicates that for a dry silt soil 
with E/pi — 20, the modulus should be reduced by 20 to 40% (the factor 
increases with the value of Ejp{). 
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Let's assume here a reduction factor of 20% (E/px ^ 14.7), then conse-
quently s ^ 1.2 cm. This is still within reasonable limits and we can conclude 
that the pier design is acceptable. 

Summary of answers: 

qad = 1277 kPa (12.8 bar) 
Q^ = 1363 kN (136 tf) 

s ^ 1 cm (if the water table rises: s ^ 1.2 cm). 
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++Problem 12.1 Failure of a vertical cut 

Consider a vertical cut of height H, in a clayey soil whose undrained 
cohesion is cu and saturated unit-weight is ysat. 

Evaluate the different possible modes of failure. 
(1) Study the hypothesis of failure occurring on a circular arc centered 

at mid-height. 
(2) Study the hypothesis of a failure occurring on a circular arc at the 

top of the cut 
(3) Study the hypothesis of a plane failure occurring through the toe of 

the cut. 
(4) Compare the above possibilities to the results obtained in Problem 5.7. 

Solution 
All the following computations are based on short-term conditions; they 

therefore, are taking into account cu for cohesion and an angle of internal 
friction <p = 0. Assume the soil to be saturated. 

(1) Circular arc failure centered at mid-height 
The center of gravity of the semi-circle AMB (Fig. 12.1) is located at point 

G in such a way that: 

CG 
4 sin3(a/2) 
- r 
3 a — sin a 

where a = IT: the angle at the center of sector AMB. Hence CG = (4/37r)r. 
The driving moment due to the weight of a 1 m long slice whose thickness 

is limited by the semi-circle AMB will be: 
r2 2H H3 

7s; 12 

H = 2r 

Fig. 12.1. 
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The resisting moment due to the soil cohesion along the assumed failure 
surface is: Mr = ncur

2 = ITCU(H2I4). The safety factor in this case is equal 
to: F = Mr/Mm = 3ncuH

2/ysatH
3 = 3ircu/ysatH. 

(2) Circular arc failure centered at the top of the cut (Fig. 12.2) 
The center of gravity of the portion of the circle (cross-hatched) DMB is 

located at point G2 so that: 

AG7 = 
4 sin3 (a/2) 
3 a — sin a 

a = DAB = 7T/2, from which AG2 = 4/3r(0.353/0.570) = 0.826r. 

H =r 

CU B 

Fig. 12.2. 

The center of gravity of triangle ADB is located at Gx, so that: 

2 V2 V2 
AGX - -r = r —— 1 3 2 3 
The center of gravity of the total section ADMB will then be located at point 
G so that: 

77T2 r2 l r2 r2 

AG— = AGt - + AG2 U - - -
4 2 \ 4 2 

4 
AG = ~ 

IT 

r — + 0 . 8 2 6 | - - 0 . 5 1 r 
6 \4 / J 

thenAG = 0.6r. 

The driving moment due to the weight of section ADMB is equal to: 

Tir* 
Mm = Tsat— AG sin- = 0 .337»t^ 

The resisting moment due to cohesion along the failure surface is equal to: 
Mr = cunr2/2 = 1.57cur2 . The safety factor will then be equal to: 

F = 
M, 

Mm 

1.57 cu 

0.33 Tsat r 
4.75 

7 s a t ^ 
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Fig. 12.3. 

(3) Plane failure 
Consider the plane failure surface through B, at the toe of the cut. The 

weight of triangle AEB (Fig. 12.3) is equal to: W = 7sat {H212) tan 0. 
The driving force projected on the sliding plane EB is: 

H2 H2 

Tm = W cos j3 = Tsat — tan |3 cos j3 = 7sat — sin 0. 

The resisting force in the sliding plane is equal to: Tr = (H/cos (5)cu. The 
safety factor will then be: " 

F = IJL 2HC» =
 4 c " 

Tm Tsat^2 cos j3 sin 0 Tsat^ sin (2/3)' 

The F coefficient will be minimum when sin (2/3) is maximum, or when 
j3 = 7r/4. In that case, the safety factor is: F = 4cu /jsatH. 

(4) Conclusion 
The first observation made on the three calculations of the safety factor 

is that the term cu/ysatH appears. This explains why certain graphs for slope 
stability analysis are based on this term. 

The most unfavourable circle of failure of the two cases considered is the 
circle centered at the top in A of the cut. It can be observed that the 
expression for the safety factor in that case is slightly higher than that 
obtained for the plane failure hypothesis. However, in reality the circle 
centered at the top of the cut is certainly not the most unfavourable one: a 
more complex method of calculation can prove that the most critical circle 
is centered above the top of the cut. 

In Problem 5.7, we found that the maximum cut height is H — 4cu/7sa t 
which corresponds to a safety factor of 1 for the case of a plane failure. The 
two methods of calculation thus are seen to lead to the same answer. 



210 SLOPES AND DAMS 

Remark 
In the case of an excavation, one should consider also the problem of uplift 

of the excavation bot tom. 

*++Problem 12.2 Plane failure 

A natural slope has an inclination 6=15° with the horizontal. Borings 
have indicated the presence of a clayey silt underlain by a fractured lime-
stone layer (Fig. 12.4). 

The groundwater table is parallel to the ground surface and 2 m deep. 
(1) Assuming a plane failure, show that the most likely failure plane 

would occur at a depth of 8 m. 
(2) An excavation of slope 1/1 must be made through the silt to the lime-

stone for the construction of a road. Calculate the safety factor against 
sliding assuming a plane failure. 

The clayey silt properties are: 
— unit weights: above the water table: yh = 18kN/m3, below the water 
table: ysat = 20kN/m3; 
— cohesion and angle of internal friction (effective values from drained tri-
axial test): c = 20kPa, $ — 15°. 

(3) In the event that the safety factor is not high enough, recommend a 
solution to increase its value. 

Solution 
(1) Stability calculation must be made in long-term conditions using the 

drained soil parameters c and <p'. Consider point P at depth z (Fig. 12.5). Let 
o be the vertical total stress acting on a face oriented parallel to the free 

Fig. 12.4. 
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Fig. 12.5. 

surface: 
o = [7hZw +7sat(z-zw)] cos0. 

The normal stress to this face, oN is equal to: 

oN = [Jh*w +7sit(z—Zw)] c o s 2 0 

and the shear stress acting along this face is: 

r = [7hZw ^IsAz-Zw)] cos 0 sin0. 
Let us determine the pore-water pressure at P, call it up. The free ground-
water table line corresponds to a flow line. Therefore, the line MP perpen-
dicular to the flow line is an equipotential line (Fig. 12.5). Therefore: 
hM =hp = (uM/yw)-zM = (up/yw)-zp and since uM = 0, 
uP = lw(zp-zM) = ywPMcosd = yw (z-zw) cos2 6 

This means that the effective normal stress at P on a plane parallel to the free 
surface is equal to: 

O'N = [lhZw +ysat(z~zw) ~(z-zw)yw] cos26 

o'N = [JhZw +y'(z-zw)] cos20 
y' being the buoyant weight of the clayey silt. 

The maximum shear stress allowable in the silt is equal to: 
rM = c + o'N tan <p' = c 4- [yhzw + y\z — zw)] cos2 6 tan #'. 

The safety factor against sliding along the plane is then: 
T_M c + [yhzw + y\z - zw)] cos2 d tan y 
T [JhZw + ys&t(z-zw)] cos 6 sin 0 
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c' , [yhzw + y'(z-zw)] t a n i ' 
or: F = 1 

[ihZw + Tsat(^ —zw)] c °s 0 sin 6 [yhzw + ysat(z -zw)] tan 6 
The first term is a decreasing function of z (z is the denominator). The 

second term is equally a decreasing function of z because 7sat > y\ therefore 
F decreases when z increases. 

So, the most likely failure plane is located at the bottom of the clayey silt 
layer, that is to say at — 8 m. 

(2) When the trench will be excavated, and if we neglect adhesion forces 
between the silt and the limestone along plane J5C, the value of the safety 
factor calculated above remains valid, therefore: 

c + [yhzw +y'(z-zw)] tan <p' 
F = 

hhZw + 7sat(z ~z w )] tan 6 
where: y = 15°, c = 20 kPa, 6 = 15°, so F = 1.12.. 

This safety factor is quite low. 

(3) In order to increase the safety against sliding, the silt could be drained 
in order to lower the surface of the groundwater table. If the groundwater 
is lower by 4m: zw = 6m, and the new value for the safety factor is: 
F = 1.4. Therefore, the safety of the slope against sliding may be increased 
by lowering the groundwater table in the silt. 

In this example, we only considered a plane failure. In order to com-
pletely assess the problem, the trench slope stability should also be analyzed 
by the circular slice method. 

In the event that the silt would be completely drained, the safety factor 
could be estimated from the graphs XI-12, Sect. 11.2.2 of Costet-Sanglerat. 

For jS = 45° and \p = 15° and assuming that the failure circle would pass 
through the toe of the slope: c"/yH = 0.08. In order to avoid confusion with 
the drained parameters c and <p', designate c" and <p" the reduced character-
istics where: 

c ' A * " t a n ^ c = — and tan <z? = 
F F 

If we take y = yh = 18kN/m3, we obtain the stability for a cohesion 
value c" equal to: c" = 11.5 kPa. 

As a result, and for the condition of the silt being completely drained, the 
safety factor is 20/11.5 = 1.74, therefore sufficient. 

irkrkProblem 12.3 Dam stability (global method) 

It is proposed to construct a dam for a reservoir to retain water in a 
small touristic area. The dike is to be built of homogeneous soil very well 
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compacted. Determine the stability of the dam: (1) at the end of con-
struction, (2) after filling the reservoir. 

The construction soil consists of a clayey silt whose mechanical properties 
are as follows: 
— undrained cohesion, cu = 0.4daN/cm2 (40kPa) 
— cohesion and angle of internal (effective) friction (c.d. triaxial test): 
c = 0.25daN/cm2 (25kPa), <// = 10° 
— saturated unit-weight = 18kN/m3. 

The flow net after filling the reservoir is shown on Fig. 12.6. 

substratum of impervious rock 

Fig. 12.6. Dam dimensions and flow net after fill of the pool. 

Solution 

(1) At end of construction 
It is obviously the upstream slope which is critical. A short-term com-

putation must be performed because at the end of construction, the pore-
water pressure will not have had time to dissipate. 

From the graphs XI-14 of Costet-Sanglerat, we can see that if there is a 
deep circular failure, we have: 

nD = (9 + 2 + l)/(9 + l ) = 1.20, then: c"/yH = 0.15 
withe" cohesion corresponding strictly to the stability c" = 0.15 x 18 x 10 = 
27kPa = 0.27daN/cm2. 

The safety factor obtained with the undrained cohesion will then be: 
F = 4/2.7 = 1.5. This is sufficiently high. 

(2) After filling the reservoir 
Here we must study the downstream slope and the long-term stability 

must be considered. Indeed we can assume that excess hydrostatic pressures 
due to construction have had time to dissipate. 

Graphs XI-13 of Costet-Sanglerat allow us to determine the most critical 
failure circle passing at the toe of the dike: j3 = 20°, </>'= 10°, therefore 
a = 40°,/3 = 18°. 

The graphical construction of the circle results in a radius R = 25.2m 
(Fig. 12.7). 
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saturation line) 

Fig. 12.7. 

Let us define the safety factor F by: tan <//' = tan ip'/F and c" = c IF 
where c" and <p" are the critical values of cohesion and friction assuring limit 
equilibrium condition. 

Forces acting on the mass ACBM (Fig. 12.7) are: the weight W, acting 
through the center of gravity, G, the resultant U of the forces due to the 
pore-water pressure applied to the circle BMA, and the resultant of the 
contact forces on the circle ABM. 

Consider the sliding face at a point located on the failure circle (Fig. 
12.8). 

The components of the stress applied to this face are: oN and T = c" + oN 

tan \p". The resultant of the contact forces will then be a force Q such that: 

+ a +a 

Q = J R {c"+oN tan <p")r d5 + J RoNd8 

where 5 is an integration variable. 
Let C be the force defined by: 

c R cos o |C| = j Rc"rd8 = j dd 
2c R sin a 

-OL -a 

and whose direction is OX, perpendicular to the bissectrix OF of angle OAB. 
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Fig. 12.8. 

In addition, let: 

RN = I RoNd8 
-a 

+ a 

RT = R(oN tany?")rd5 

RN and RT are perpendicular and | RT | = | RN | tan $". 
Q being the resultant of the contact forces on ABM, we have: 

Q — C + RN + R^. 

For equilibrium condition, we obtain: 

W + U + C + RN +RT = 0. 

We write now down the equation for the sum of the moments with respect 
to O, applied to the mass ACBM, is zero. 
— moment due to weights W: W x OH, where OH is the lever arm of weight 
W with respect to O; 
— moment due to the pore-water pressure = 0; 
— moment due to the tangential stresses, = MT ; 

In each point of the circle along the failure line, the tangential stress is: 

c + oN tan <p 
c t a n if 

•" <>N • 

F F 
Let Mc be the moment due to the term c": 

+ a 

Mr -s d5 
2c'aR2 c'R2 

F F 

and let M^ be the moment due to the term oN tan <p": 
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+ a 

M^ = j R2\oN\ tan^'dS 
-a 

r t a n KD f 
M^ = fltarVj \oN\Rd8 = R —— J \oN\Rd8 

where: \oN\Rd8, 
- a 

corresponding to the distribution of the normal stresses is difficult to deter-
mine, but for which we can write: 

= IRA I \oN\Rd8 <\jaNRd8\ 
-a I - a I 

therefore RN is the minimal of \oN IR d5 . 

My being a stabilizing moment, we may take a minimum value for M^ 
(which adds to the safety). 

The moment equilibrium with respect to O may be written as: 

R tan<p' |RN| 2c'(xR2 

|W| • OH = N + (1) 
F F 

In addition, the equilibrium of the forces gives: 

2 c R sin a 
W 4- U 4- + RN + RT = 0 (2) 

and furthermore, |RT \/\RN \ = tan $ IF. 
The solution of the simultaneous equations must be made by successive 

approximation. 
Assume an arbitrary value for F (1 for instance) and solve graphically 

equation (2). From this, the value of RN is obtained which is then trans-
posed into equation (1) which permits the calculation of a new value of F. 
If the calculated value is considerably different from the assumed F value, 
the procedure may even be repeated with the new value of F. 

Numerical application 

w = w{ + w2. 

Wx = weight of a unit slice corresponding to the portion of the circle ABM, 
W2 = weight of the slice of soil corresponding to triangle ACB. 
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(2ira \R2 I 40 \ (25.2)2 

Wx = sin 2a — 7 = 2TT 0.985 x 18 • 103 = 
180 / 2 \ 180 

= 235 x 104N. 

W2 = 30 x 104 N. 

W = 265 x 104N. 

The center of gravity of the portion of the circle ABM is G, so that: 

2 sin3 a: 
OGl = -R = 21.7 m. 

3 a - ( s i n 2 a / 2 ) 
The center of gravity of the total mass is determined from the location of 

Gx and G2 (center of gravity of triangle ACB). OH is the projection of OG 
on the horizontal, from which OH = 6.8 m. 

Determination of U 
The pore-water pressures will give rise to forces acting on the failure surface 

between points B and Px (Fig. 12.7). 
Divide the arc of the circle BPX in 5 equal segments over the length of 

each we will assume that pore-water pressure is constant and equal to that at 
the center of the arc length; be it P2,P3,P4, P5 and P6 , the centers of the 5 
segments. 

The value of u is calculated from the equipotential lines: 
u = (h-z)yw 
h = water head 
z = level with respect to a reference plane (horizontal plane passing through 
B for example). 
We will then have: 

u(P2) = (7.7-5.0)7u, = 0.27daN/cm2 (27 kPa) 
u(P3) = 0.55daN/cm2 (55kPa) 
w(P4) - 0.615 daN/cm2 (61.5 kPa) 
u(P5) = 0.45daN/cm2 (45kPa) 
u(P6) = 0.1 daN/cm2 (lOkPa) 
the segment on which these pressures act has a length equal to: 

P2P3 ^ 7 m. 
Therefore, the corresponding forces will be: 

U2 = 18.9 • 104 N 
U, = 38.5 -10 4 N 
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Fig. 12.9. Graphic solution of eq. (2) for RN. 

C74 = 43 • 104 N 
Us = 31.5 • 104 N 
U6 = 7 • 104 N. 

The directions of these forces U,- are determined by the radius of the 
circle ending at P,. 

Assuming a value of F = 1, we can solve equation (2) graphically (Fig. 
12.9). 

|W| = 2 6 5 x l 0 4 N (vertical direction) 
2C'i?sino! 

|C| = = 8 3 x l 0 4 N (OX direction) 

The graphical solution (Fig. 12.9) gives RN =116*10 4 N. Transposing 
this value in equation (1), we get: 



PROBLEM 12.4 219 

_ R tan \p'\RN\ 4-2c'afl2 

\W\OH 

_ 25.2 x 0.176 x 116 + 2.5 x 2 x 0.698 x (25.2)2 

267 x 6.8 
from which F = 1.50. 

Then taking a value of F = 1.50, another diagram is drawn of the forces 
similar to the preceding one. We then get RN = 120 x 104 N. Transposing 
this new value in the equation: 

R tany'\RN\ + 2c'oJt2 

\Vf\OH 

we finally obtain: F = 1.51. This value is very close to the preceding one and 
may be considered as the solution to both equations. This value near 1.50 
may be considered as acceptable for the safety against sliding. 

+++Problem 12.4 Dam stability (method of slices) 

Solve Problem 12.3 for the downstream slope stability analysis by the 
method of slices (Fellenius9 method, for instance). 

Solution 
Using Fellenius' method, the failure circle is defined in the same manner 

as in Problem 12.3 (Fig. 12.7). The failure zone is now divided into 5 slices, 
each of width b. We have: 
BA = 2R sin a = 2R sin (40°) = 32.4 m 

The horizontal projection of BA is then: 
&4cosj30 = BA cos (18°) = 30.8 m 
thus we can consider 5 slices each 6.15 m long in the horizontal direction 
(Fig. 12.10). 

In Fellenius' method, it is assumed that each slice is in equilibrium under 
the action of its weight, of the lateral forces (which cancel) and of the 
reaction along failure line. 

The safety factor is computed solely from the equilibrium of the moments 
with respect to the center of the circle. 

Considering slice i (Fig. 12.11), the driving moment due to this slice is 
equal to: Mmi = W( sin dtR. 

The resisting moment due to the slice is: 

Mri = l-^- + tytan<p)fl 
\ cos Of I 

file:///W/OH
file:///Vf/OH
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Fig. 12.10. 

Fig. 12.11. 
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TABLE 12A 

di (degrees) 
^ ( 1 0 4 N ) 
ut (kN/m2 ) or kPa 
(Wicos26i-uib)(104lSl) 

[cb + (Wt cos26f — Uib) tan^] 
cos c 

^ • s i n ^ I ( 1 0 4 N ) 

Slice numbers 

1 

- 1 3 . 5 
20.5 

0 
19.4 

19.3 

- 4 . 8 

2 

0 
56 
22.5 
42 

22.8 

0 

3 

13.5 
76.4 
60 
35.4 

22.2 

17.8 

4 

28 
75 
52.5 
26.2 

22.7 

35 

5 

44 
41.2 
20 

9 

23.6 

28.6 

Total 
(104N) 

— 
— 
— 
— 

110.6 

76.6 

where Nt is the normal component of the reaction on the failure plane, Nt = 
Wt cos 61 — ut(b/cos Qt), ut being the pore-water pressure, normal to the 
failure surface, which is computed at the center of the base of each slice. 

We then have: ut = (ht + zt)yw . 
Overall, we obtain the formula for the safety factor: 

n 

I 
i 1 

[co -r (Wi cos Ui UiO) tan <p\ 
cos di J 

I l^sin0f 

F = 

This factor may be computed from the data of Table 12A where values 
of di and Wi have been graphically determined based on Fig. 12.10. 

Finally, we obtain: F = 110.6/76.6 = 1.44. 
This value is in good agreement with the value found in Problem 11.3 by 

the global method. 
The slight difference between the two results is due to the different 

hypotheses made for each of the computations and also due to the lack of 
accuracy inherent in graphic solutions. 

The above safety factor may seem a little low since the allowable lower 
limit is usually F= 1.5. Two solutions may be considered to increase the 
value of F. The downstream slope could be flattened slightly (1 or 2°) or 
use could be made of burrow material whose mechanical properties are 
somewhat better than those studied. 

+*+Problem 12.5 Stability of a dam with impervious core. Comparison of 
results from computer calculation and slice method 

Check the stability of a dam with an impervious core as shown on Fig. 
12.12 (which gives the geometry and material properties). 
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Fig. 12.12. Cross-section of dam (scale 1/670). 

Two calculations must be made: 
— downstream slope stability with maximum pool; 
— upstream slope stability under rapid drawdown condition. 

In order to simplify the verification, for each case (illustrated in Figs. 
12.13 and 12.15) the coordinates of the center and radii of the critical 
circles are given. These were determined by computer. The lines of saturation 
are shown also. 

All that is required is to determine the safety factors corresponding to 
each of these critical circles by the method of Fellenius, and to compare the 
results with those of the computer program. 

Computer method 
The "Lease" IBM-program was used, partly based on the simplified Bishop-

method and partly on the "normal" method. 
The advantage of the computer is that a large number of critical circles 

can be studied (100 to 200) and thus it is possible to quickly find a very good 
approximation of the most critical one. 

For the two cases under consideration, the minimal safety factors were 
found, being: 1.45 for the upstream slope under rapid drawdown, and 1.69 
for the downstream slope at maximum pool. 

Solution 

(a) Stability of the downstream slope at maximum pool 
The dam is heterogeneous and therefore the slice method is best suited for 

the stability analysis. The Fellenius method is used which is practical for 
calculations by hand. 

The portion of the circle in the dam may be divided into 6 slices as indi-
cated on Fig. 12.13. As in the preceding problem, the safety factor is given 
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centre 
J 

fx=10n 
|y = 50n R = 44m 

0 10 m 

Fig. 12.13. Stability check of downstream slope, maximum pool. 

by the formula: 

1 

F = 

I [Cfftf + (Wf cos2di —Uibi) t an^] 
cos di 

I Wt sin dt 
i = l 

We do not dispose over the flow net, we know only the free-water surface 
line, but we can make a simplifying assumption and say that the flow lines 
are parallel to the free-water surface line. AB is an equipotential line (perpen-
dicular to the free-water surface, Fig. 12.14); the pore-water pressure at a 
point A may then be calculated by: hB = hA = zA 4- uA /yu *B + uB/yu 
uB = 0. Thus, uA = (zB ~zA)yw . 

For the slice No. 6, the downstream part of the failure circle has been 
neglected, because in this zone the failure surface is very near the ground 
surface. In fact, because the failure line is not a perfect circle, it will pass 
through the toe of the downstream slope. 

The factor F may be computed from the data of Table 12B, from which 
F= 264/164 = 1.5. 

Taking into account the simplifying assumption, we can say that this value 
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TABLE 12B 

SLOPES AND DAMS 

Slice numbers Total 
(104N) 

bt (m) 
0t (degrees) 
W,(104N) 
Ui (104Pa) 
Wicos2di-uibi(104N) 
[Cibt 4- (Wicos26i-uibi) tan0] 

X (104N) 
COS U i 

Wt sin 6i (104N) 

2.08 4.18 4.78 6.50 7.16 7.46 
48.5 43 35 28.2 17 7 
6.08 43.22 82.64 110 90 31 
0 0 0.6 0 0 0 
2.67 19.35 52.6 85.45 82.30 30.53 

7.3 24.4 45.8 

4.55 29.47 47.4 

74 67 

52.48 26.3 

26 246 

3.78 164 

,or^ce-

Fig. 12.14. 

is in good agreement with the value of F = 1.64 found by computer pro-
gram. 

These values of F are sufficient to ensure the stability of the slope 
(F>1.5). 

(b) Upstream slope stability under rapid drawdown condition 
Once again, because the dam is heterogeneous, the slice method of 

Fellenius is used. The portion of the dam in the critical circle may be divided 
into 5 slices as indicated on Fig. 12.15. 

As for the previous problem, the safety factor is determined from: 

i = i 
[Cfbi 4- (Wj cos20f —Uibi) tan <p] cos dt 

I Wt sin©, 
i = i 

Again, the flow net is not available, but only the free-water surface line. The 
pressures, after rapid drawdown, may be evaluated from Bishop's hypothesis, 
that is: 
uA (after rapid drawdown) = uA (before drawdown) — ywhw (Fig. 12.16). 
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most critical circle 

x = 60 m 

Fig. 12.15. Stability check of upstream slope: rapid drawdown. 

Fig. 12.16. 

We assume that at maximum pool, the pressures in the sandy gravel soil 
(3) correspond to the hydrostatic pressures (the material is relatively 
pervious: the head losses through the soil are neglected for a first approx-
imation). 

Then it is easy to determine the pore-water pressures before and after draw-
down. The global calculation of F is done as before, based on Table 12C that 
finally gives: F = 159/123 = 1.29. 

The influence of the riprap was overlooked in the above calculation. Its 
angle of internal friction is high (60°), so the real safety factor is certainly 
greater than 1.29. We may consider it to be F = 1.30. A computer analysis 
of this condition with assumptions closer to the real conditions showed that 
F= 1.45. 

Taking into account the simplifying assumptions of the manual method, 
we may still consider the two values of the coefficient to be close enough. 

Usually, it is desirable to work with a safety factor of over 1.5. 
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TABLE 12C 

Slice numbers Total 
(104N) 

1 2 3 4 5 

bt(m) 7.46 8.96 7.46 7.31 7.22 
6t (degrees) - 8 4 18 32 46 
W;(104N) 37.42 109.5 114.6 103 42.7 
u; (10 4 Pa) 3 6.1 7.5 6.9 3 
Wicos2di-uibi(104N) 14.3 54.3 47.5 23.9 1.1 
[ctbi + (Wt cos20,- — utbi) t a n ^ ] 

1 
X — 16 50 44 31.2 17.6 159 

cos 61 
WI-sin0,-(lO4N) - 5 . 2 7.6 35.4 54.5 30.7 123 

In this case, we may be satisfied with a safety factor of the order of 1.3 to 
1.45, because the computation is made for a rapid drawdown condition, 
which occurs very rarely during the life of a dam. Under these conditions, a 
slightly higher risk is acceptable than that for maximal pool conditions. (An 
empty pool condition where a slope failure would occur, would cause 
considerably less damage.) 

Remark 
In each of the calculations, the result of the Fellenius-method is inferior 

by about 0.15 compared to that of the computer. 

++++Problem 12.6 Design of a retaining-wall on unstable slope 

Consider a natural slope of 6 = 25°, consisting of a clayey silt layer whose 
thickness h — 8m, overlying a bedrock substratum parallel to the ground 
surface. The properties of the silt were obtained from laboratory tests and 
are: 
— wet unit weight: y = 18 kN/m3 

— effective maximum angle of internal friction = Q'peak = 20° 
— effective maximum cohesion: c — 25 kPa 
— residual angle of internal friction <pres = 18° 
— residual cohesion cres = 10 kPa 

A retaining wall must be designed for a proposed highway along the slope. 
The wall is to be founded on the bedrock and capable of supporting the 
slope. The length L of the slope, measured on the slope from toe to crest is 
100 m (Fig. 12.17). 

(1) Determine the stability of the slope prior to construction. 
(2) Since excavations into the slope for the construction of the wall may 
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trigger instability, the residual shear strength parameters of the silt must be 
used for the stability calculation. 

(a) Show that under this condition, the natural slope becomes unstable. 
(b) Compute the limit depth z, to which the bedrock should be located 

to have a stability with a safety factor of 1. The computation done for this 
must overlook the presence of the wall. 

(c) Calculate the minimum value of the force Qm parallel to the free 
surface and applied to an imaginary vertical plane which would restore the 
slope stability. 

(3) Suppose that the wall construction will mobilize this force Qm. Show, 
by proposing a plastic equilibrium net above the wall, that the limit available 
force is a passive pressure B which must be defined. Is the stability insured 
regardless of length L? Analyse the different possible cases. 

(4) Compute the force exerted by the soil on the wall. What are your 
conclusions? 

Fig. 12.17. 

Solution 
(1) Following the steps of Problem 12.2, and without draining conditions 

(Zw =Z), we get: 
c tan \p 

F = + (1) 
yh cos 6 sin 6 tan 0 

which, for this case, gives: 
25 tan 20° 

F = o o + o = 1-23 

18 x 8 x cos 25 sin 25 tan 25 
F > 1. 

The natural slope is stable. 
(2a) Going back over the calculations with the residual shear strength 
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parameters, we get: 
10 tan 18° 

F = + , = 0.88. 
18 x 8 x cos 25 sin 25 tan 25 

Since the safety factor is less than 1, the slope is unstable. 
(2b) Zx is obtained immediately if we say F = 1 in formula (1), using the 

residual shear parameters and Zx = h. We get: Zx = 4.78 m. 
Note that by a different analytical method, we again find the value of Zu 

calculated in Problem 5.6. 
(2c) Referring to Fig. 12.18 and writing the equilibrium equation for the 

soil volume located upslope from the imaginary plane AC, we have: 
— tangential component of weight W of the soil mass likely to slide: 
WT = W sin 6 = 7 • hL cos d sin 6 
— normal component of weight W: 

WN =Wcosd =yhLcos26 
— shear resistance in the soil (assume perfect adherence between soil and 
rock, which implies that the sliding plane occurs in the soil mass): 
T = c'L + WN tan <p' = c'L + yhL cos20 tan <p\ 

The overall stability is: T + Qm = WT, from which: 
Qm ~ 1 ' hL cos 6 sin 6 — y • hL cos2 6 tan <p — cL 

and for this case: Qm ^ 673 kN. 

Fig. 12.18. 

(3) Preliminary remark 
For the following computation, and in order to simplify notations, c and 

\p will stand for cres and ^res. 
Let us now consider the initially unstable slope retained by a wall, and let 

us study its influence on the mass above it. We assume that the wall stabilizes 
the slope. We know that in the case of cohesive soil (c, <p) whose free surface 
has an angle 6 > <p with the horizontal, the limit equilibrium can only occur if 
depth h of the mass is less than the critical depth Zx (see Problem 5.6). In 
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Fig. 12.19. 

this instance h> Zx (see question 2b), therefore, in the absence of a wall, 
equilibrium cannot exist since limit equilibrium can not occur if Z{ < Z < h. 
To admit that the wall stabilizes the slope, is also to admit that behind the 
wall a limit equilibrium can exist (which we suppose to be the Rankine limit 
equilibrium) to depth h. Therefore, in all points of a soil mass to depth 
Z > Z j , the Mohr's circle must be tangent to the failure envelope of the 
soil. This condition exists if the extremity M of the stress vector f acting on 
a face parallel to the ground slope is brought back to Mx on the failure 
envelope. This amounts then to assume that the influence of the wall 
consists of an additional shear stress TS on the plane considered. (Fig. 12.19). 
This stress rs may be computed by writing the overall equilibrium of the 
mass. 

The pole method (see Problem 5.1) gives the lines of failure in the mass 
in limit equilibrium state. 

In the zone Z <ZX, we have a choice between two possible limit equilib-
rium conditions since in this instance extremity M of the stress vector f 
acting on a face parallel to the ground slope is located inside the failure 
envelopes. 

In view of the fact that large displacements would occur before equilib-
rium condition is developed, we must only consider the upper Rankine 
equilibrium (see Fig. 12.10) which corresponds to a passive pressure being 
developed behind the wall. 

With a similar reasoning as that in Problem 5.6, the failure lines net in zone 
Z <ZX, may be drawn. We find that for Z = 0 the tangents to these lines 
make an angle (ir/4 —<p/2) with the free surface, and that for Z — Zx one 
family of lines has a tangent parallel to the free surface, whereas the other 
family of lines has a tangent with an angle 7r/2 — <p with the free surface. 
(Fig. 12.21). 
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(<5) and (6') indicate the 
d i rec t ions of tangents 
to the fa i lure lines at 
depth Z 

s u b s t r a t u m 

In the zone Z> Zx, the pole method shows immediately that the failure 
lines are straight lines, one family of lines being parallel to the free surface, 
whereas the lines of the second family make an angle (TT/2 ~ ip) with the 
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free surface (Fig. 12.21). A plastic equilibrium diagram may then be drawn 
which consists of 3 zones (Fig. 12.22) which shows, above the wall, a stable 
equilibrium zone (zone 1) and two plastic equilibrium zones, the upper 
Rankine equilbrium (zone 2) and the limit equilibrium due to the presence 
of the wall (zone 3). 

Force B mobilized to insure equilibrium may be evaluated by calculating 
the resultant of the passive stresses acting on the imaginary vertical plane 
ABC drawn in the plastic zone and passing through point C where the first 
failure line crosses the substratum (Fig. 12.22). On part AB of the plane, 
corresponding to Z <,ZX, a passive stress b is developed which is calculated 
by considering the upper Rankine equilibrium circle (Fig. 12.23). On part 
BC of this plane, corresponding to Z > Zx, a stress q is developed with an 
inclination 5 which is calculated from the Mohr diagram of Fig. 12.24. 

Let p and R be the abscissa of the center and the radius of the Mohr's 
circle for passive conditions. By writing that this circle passes through the 
extremity M (o0, r 0 ) of the stress vector f acting on a face parallel to the 
ground slope, we get an equation of the second degree in p whose largest 
root corresponds to the passive circle sought. 

The general equation for the passive pressure circle is: 

(o-p)2 + r 2 = R2. 
Coordinates of M are: o0 = y • h cos20 and r0 = y * h cos 6 sin d. 
Condition for tangency to the failure envelope: 
R/(H + p) = sirup (with H = ccot^p). 
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-r^ 

o n = an = P 

Fig. 12.23. Case Z <ZY. 

Writing that (C) passes through M: 

(o0-p)2 + r2 = (H + p)2 s i n V , 

then the second-degree equation desired is: 

p2 cos2 yp — 2 (a0 + if sin2 <p)p + a2, + r\ — H2 sin2 <p = 0 

A' = (a0 + i / s in 2 ^) 2 - c o s 2 ^ [ a g 4-r2, - H2 sin2<p] = 0. 

From which: 

o0 -\- H sin2 <£ 4- %/A7 

P = 
COS2<£ 

i? = (H + p) sin <p. 

Note: we can verify that A' = 0 for Z — Zx (double root) . 
Finally, we obtain the normal component of the passive stress: 

oB = p 4- R cos a, 

where: TI — a = IT — 2d — (cj'e — 0) = 7r — (0 + cj'd ) 

from which: a — 6 + a?^, 

the auxiliary angle CJ^ being defined by (Fig. 12.23): 
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A T 

|case Z>z"7] 

Fig. 12.24. Case Z>ZX. 

, . sin 6 P sin 6 * 
cjd = arc sin = arc sin 

sin \p R 

from which: oB = p 4- R cos (d + co'e) 
and the passive stress is: b = oB /cos 6. 

The following table gives the results of the computation for different 
values of Z. 

Z(m) 

b (kPa) 

0 

24.9 

1.00 

44.2 

2.00 

59.1 

3.00 

70.6 

4.00 

77.5 

4.78 = Z, 

69.5 

Evaluation of q 

Referring to Fig. 12.24, we get the following relationship: 

]3 = 7 r - 2 0 - ( 7 r / 2 - <p) - ( 7 r / 2 ) - ( 2 0 - < p ) 

from which, the components of q are: 

oq = q cos 8 = p — R cos )3 = p — i? sin (20 — <p), 

*In determining U)Q it must be taken into account that for the values of Z such as Z0 < 
Z < Z i , CO0 is greater than IT 12. The value Z0 corresponds to the minimum oi Rip. In this 
case Z0 — 4.50 m. 
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rq = q sin 5 = R sin |3 = R sin (20 —<p). 

Abscissa p of the center of a Mohr's circle and its radius R are determined 
by writing that it is tangent at Mx to the failure envelope, which translates 
into: 

R/(p +H) = sin<£ 

p — R cos (7r/2 — <p) = ov = 7 • ft cos2 0 

or: 

E — p sin <p = c cos \p 

p — R sin ^ = 7 • ft cos2 0 

from which: 

7 • ft cos2 0 4- c cos <p sin <p 
P = 2 

cos <p 

7 • ft cos2 6 sin ^ + c cos <p 
E = -

cos y 

from which: q — V 'o \ + r 2 and tan 5 = rq/oq. 

Finally, the component of g in the direction parallel to the ground slope, 
or qQ is given by qd = q cos ( 0 — 5 ) . The following table (c = cres = 10 kPa, 
V — ^res = 18°) summarizes the results of the calculations for various values 
o f Z . 

Z(m) 

q (kPa) 
5 
Qe (kPa) 

4.78 (Z,) 

69.5 
25° 
69.5 

5.00 

72.7 
24° 7 
72.7 

6.00 

86.9 
23° 5 
86.9 

7.00 

101.1 
22° 6 

101 

8.00 

115.4 
22° 

115.2 

Fig. 12.25 shows the diagram of stresses acting along the imaginary 
vertical plane ABC. Integrating the passive force increments, gives the passive 
force B: 

Zi h 

B = QB + Q'B with QB = f b • dZ and Q'B = ( qd -dZ. 
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Stresses a re in kPa 

q = q cos(0-<5) 

Fig. 12.25. 

Z24.9 77.5 
QB ^ + 44.2 + 59.1 + 70.6 + | x 1.00 + 

/ 7 7 . 5 + 6 9 . 5 \ 
4-1 | 0.78 ^ 282 kN 

/69 .5 + 7 2 . 7 \ / 7 2 . 7 115.3 \ 
Q'B - I x 0 . 2 2 + + 86.9 + 101 + I x 1.00 ^ 

- 298 kN, from which B ^ 580 kN. 

We previously saw (question 2) that the required force Qm to establish 
equilibrium has a value of 673 kN (this for a slope length of 100 m measured 
along the slope). 

Force B, therefore, will guarantee equilibrium of slope length Z/, such 
that: L' = 100 x (B/Qm ) = 100 x (580/673) ^ 86.2 m. 

But this length L' is to be measured from the intersection C of the first 
failure line of zone 3, with the substratum. Distance C{ C between the toe 
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Fig. 12.26. 

of the wall C{ and point C, corresponds to the base of zone 1 in stable 
equilibrium. The computation of length Cx C is done by assimilating the 
first failure-line A XB2 of the passive equilibrium in zone 2 to an arc of 
circle passing through A { at the top of the wall and drawing a tangent at 
B2 parallel to the free surface. Under these conditions, referring to Fig. 
12.26, we get: 

BXB2 = BXB3 4- B3B2 

or B3B2 — AlB3 (tangents to a circle), 
and in the triangle AlBlB3: 

AXB3 BXB3 AXBX 

sin (IT/2 

A{B3 = 

B,B3 = 

B{B2 

>) sin (TT/4 + 0 + <p/2) 

cos 6 

sin (7r/4 — <p/2) 

sin (TT/4 4- 6 4- <p/2) 

x AXBX 

sin (IT14 — <p/2) 

1.542Zl 

from which 

sin (TT/4 — ip/2) 

S.21Zl = 3.21 x 4.78 

B2C2 

xAxBx ^ 1.610Zl 

and in triangle B2 C2 C 

where: 77 = TT — (IT/2 

15.34m. 

C2C 

sin (IT 12 + (f) sin 77 

- 0 ) - ( T T / 2 + <p) = 0-<p 

from which: C9 C = 
s i n (A ~ l ) D - sin (d - 1) 

x B3C2 = (h 
cos <p cos <̂  

^ 1 ) 
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C2C = 0 .128(8.00-4.78) - 0.41m 

CXC = CXC2 + C2C = BXB2 +C2C = 15.34 + 0.41 ^ 15.75 m. 

Let CXC = LB. 

Thus, LB+L' = 15.75 + 86.20 = 101.95 m > 100 m = L. 
Then the equilibrium of the unstable slope is hardly obtained in this case. 

In general, two cases must be considered: In the case where LB + L' < L, 
equilibrium cannot exist even if the wall is stable and fixed: the soil mass 
would flow over the wall. 

But, in the case where LB + L' > L, the mass is stabilized by the wall, 
provided that the wall is designed to withstand the forces applied to it. 

(4) Let us now calculate the applied force to the wall (for a one meter 
length), or Fp. We get Fp by studying the equilibrium of the parellelopipede 
AXCX CA. On face AXCX, force-Fp acts, on face AC force-B. On face Cx C, 
force Td = (T — r m a x ) x LB acts, which corresponds to the deficit of shear 
along plane Cx C (part of the weight component WT not being equalized by 
the shear stress in the soil along CXC) (Fig. 12.27). 

Fig. 12.27 

So: | F P | = |T d | + |B| 
Td ~ [7 * h c o s 0 sin d — (c + y • h cos2 6 tan if')]LB 

Td = [18 x 8 x cos 25° x sin 25° - (10 + 18 x 8 x cos2 25° x tan 18°)] x 
x 15.75 = 105.9 kN ~ 106 kN 

from which Fp = 106 + 580 = 686 kN, value greater than the passive 
pressure which can be developed by the soil mass. 

If slope length L of the unstable side is such that L < (Lb + L') the 
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equilibrium of the soil mass behind the wall does not require the total 
mobilization of the passive force, and force Fp is correspondingly less. It is 
computed by considering the overall equilibrium of the slope. 

To conclude, we observe that it is not always possible to stabilize an 
unstable slope by a retaining-wall, because soil may flow over the wall if 
the length of the slope is long enough. 

On the other hand, the wall stability must be ensured by calculating force 
Fp as shown above, considering an adequate safety factor. A serious error 
would be made if Fp was considered to be the Rankine passive pressure. 
Note that the calculation based on the table for earth pressure coefficients 
and on the theorem of the corresponding state is not possible here since in 
the associated cohesionless soil mass we have 6 > <p. 

Remark 
Blondeau and Virollet reported in special issue II (March 1976) of the 

Bulletin de Liaison des Laboratoires des Ponts et Chaussees on a similar 
problem, giving a solution in which no account is made of the passive force 
which we called Q'B acting on BC of the imaginary plane. Their simplifi-
cation we consider not permissible for the case studied where (h — Zx) is 
of the same order of magnitude as Z. 

++Problem 12.7 Embankment stability on a compressible soil 

An embankment design is being considered for a preliminary study of a 
highway. The embankment is proposed to be 7 m high, to have side slopes 
of 1.5 horizontal to 1 vertical and to consist of a gravelly soil whose 
properties are as follows: internal angle of friction: $ — 35°, cohesion = 0, 
unit weight 19kN/m3. 

The embankment would be constructed on a soft clay layer of 6 m thick-
ness and having the following characteristics: 

average undrained shear strength: cu = 20kPa, 
average consolidated undrained angle of friction ycu, with tan <pcu = 0.22, 
consolidation coefficient cv = 4 x 10'1 m2/s. 

The clay layer is underlain by a fractured pervious bedrock. The ground-
water table is at existing ground surface. 

With the charts shown on Fig. 12.28 where <p — angle of friction of the 
fill material, c = cohesion of the natural clay layer, F = safety factor, N = 
stability factor = c/yH, specify the method of construction which would 
yield a stability with F> 1.5 (short-term consideration). 

Solution 
Since the design is preliminary, simplifying assumptions can be made. A 

final design would require a more rigorous analysis. 
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(1) Short-term stability of the embankment constructed in one phase 
With the notations of Fig. 12.29, we have: 

D/H = 6/7 = 0.86, N = c/yH = 0.15 

From stability charts, we have: 

for N = 0.2, F = 1.12, 

for N = 0 .1 , F = 0.6, 
so for N = 0.15, F < 1 

The conclusion is that the embankment cannot be stable (short-term) if it 
is constructed in one phase. 

(2) Analysis of the embankment stability built in various phases, phase one: 
(short term) 

Assume that the first phase consists of building the embankment to half 
its proposed height, then: 

D/H = 6/3.5 = 1.7, N = c/yH = 0.30 

From the graphs we get: 

for N = 0 . 3 , F= 1.61. 

The conclusion here is that the embankment may be constructed to half 
its proposed height (F > 1.5). 

(3) Analysis of consolidation due to the embankment constructed to half 
its planned height 

The time required to achieve 99% consolidation of the clay is: t = Tvh
2/cv. 

Since the clay layer is drained over its two boundaries (fractured bedrock), 
h = 3m (half thickness of clay layer), then t = 2 x (9/4) x 107 = 4.5 x 
107 s, or t = 520 days, say 1.5 years. 

Taking into account the normal times of construction of a highway, it 
does not appear practical to wait that long time for a consolidation to occur. 
The time required to achieve 70% consolidation is: 

t = Tvh
2/cv = (0.4/4) x 9 x 107 - 0.9 x 107 = 104 days 

or 3.5 months. This is acceptable. 
Hence, at the end of 3.5 months, we may assume that the clay layer 

would be 70% consolidated. The degree of consolidation is not, of course, 
uniform throughout the height of the clay layer, but, for finding the increase 
of c u , the following calculation is based as a first approximation on the 
assumption that the degree of consolidation is at any point equal to its 
average value say 70%. 

The effective stress increment due to the load of the 3.5 m of embank-
ment is: Aa' = 3.5 x 19 x 0.7 = 46.55 kPa. 
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so f t clay cu = 20 kPa 

Fig. 12.29. 

Assume that this stress increment is uniform over the entire clay layer 
including where failure circle could occur (a somewhat optimistic assumption). 
The increase in the undrained cohesion will then be: 

Acu = Ao\ x t a n ^ c u = 46.55x0.22 = 10.2 kPa 
Therefore, at the end of 3.5 months, we may consider that cu = 20 4-

10.2 = 30.25 kPa. 

(4) Analysis of the short-term stability of the second phase (second fill layer 
of 2 m thickness) 

If the balance of the embankment were to be constructed in the second 
phase, F would be = 1.2, say too low. Therefore, the second phase should 
only consist of placing an additional 2 m of fill. We then would have: D/H = 
6/5.5 = 1.09, N = cu lyH = 30.25/(19 x 5.5) = 0.29 which (from the graphs) 
gives a safety factor of the order of 1.55, which is acceptable. 

As done above, we must wait for about 3.5 months so that the degree of 
consolidation will be 70% (assuming that cv remains constant). 

(5) Analysis of the short-term stability of the third phase (additional 1.5 m 
of fill) 

At the end of the second phase (additional 2 m of fill placed since 3.5 
months) the increase of the average effective stress in the clay will be about: 
Ao'3 = 0.7 x 2 x 19 = 26.6 kPa 
Then the increase of the cohesion of the clay is: 
Acu = 26.6x0.22 = 5.85 kPa 

Hence: 
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cu = 30.25 + 5.85 = 36.1 kPa 

and therefore D/H = 6/7 = 0.86, 

N = cu/yH = 36.1/19.7 = 0.271 

which gives a safety factor close to 1.5. Once again, this is acceptable. 
The method of construction should therefore consist of 3 phases each 

allowing a placement of 3.5 m, 2 m and 1.5 m of fill thickness with consolid-
ation times of 3.5 months between phases. 

Remarks 
(1) Because of the preliminary nature of the evaluation, numerous simplifi-

cations were made. 
(2) Problem only dealt with the embankment stability, the final design 

should further evaluate the embankment settlements. 
(3) If the calculated time intervals between loadings cannot fit into the 

construction schedule, fills with enlarged berms can be applied at reduced 
time intervals. Enlarged berm will require more materials. 
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