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PREFACE

Modern computer technology has provided a dramatic improvement in 
the analysis of complex transport phenomena. However, such methodol-
ogy has not yet been eff ectively integrated into engineering curricula. Th e 
huge volume of literature on a wide variety of transport processes cannot 
be appreciated or mastered without using innovative tools that allow one 
to comprehend and study these processes. Computational methodology is 
the logical basis for such tool development and is the subject of this text.

Transport phenomena include the disciplines of momentum, heat, and 
mass transfer. Th e major improvement in their analyses results from hav-
ing the ability to predict two- and three-dimensional spatial variations of 
these processes. Such analyses involve solving conservation laws which are 
nonlinear partial diff erential equations. Th e physical similarity of various 
transport mechanisms suggests, and practice has proven, that methodol-
ogy for describing one type of process would also be eff ective in describing 
the other transports.

Pertinent conservation equations have been stated by nineteenth cen-
tury scientists such as Reynolds, Navier, and Stokes. However, it was only 
in the late twentieth century with the advent of high-speed computers that 
these equations could be eff ectively solved by numerical methods. Minimal 
eff ort has been devoted to providing instructional material for teaching 
transport phenomena by using the host of numerical solutions available 
in the literature. Th is text is intended as a bridge to connect the basic 
presentations of such books as Bird, Stewart, and Lightfoot’s Transport 
Phenomena and Welty, Wicks, Wilson, and Rorer’s Fundamentals of 
Momentum, Heat, and Mass Transfer to the methodology of numerical 
solutions of the conservation laws.

Th e objective of this text is to describe and provide a computational 
fl uid dynamics code suitable for illustrating transport processes involv-
ing real fl uids. Th is code is termed a computational transport phenomena 
(CTP) code; it is a mature production code which has been in use for 



xx     ■     Preface

20 years. It was developed and owned by the authors. Th e CTP code and 
example problems are supplied in the companion CD to this text. Th e CTP 
code is supplied in Fortran 77 as both object and source code. Th is code 
does not require a lease and is designed to run on an individual’s personal 
computer (PC). More importantly, the source code is also supplied. Our 
contention is that unless the source code is available to the user, the user 
never really knows the strengths and weaknesses of the analysis. Th e CTP 
code is written in Fortran which can be downloaded free, and thus the 
user can make maximum use of a PC. Currently, an individual’s PC is 
vastly underused as an engineering tool. Th e PC will do far more than 
play games and serve as a word processor.

Th e majority of transport phenomena involve the turbulent fl ow of 
various Newtonian fl uids. Th ese are precisely the processes the CTP code 
was designed to simulate. A computational analysis requires two steps: 
(1) the construction of a grid to represent the geometry of the process and 
(2) the numerical solution of the pertinent conservation laws. Th e physics 
and chemistry appropriate for given problems is theoretically described 
and several example problems are presented in detail to explain how the 
CTP code can be used to simulate these phenomena. As these simulations 
are duplicated on a PC, the knowledge and skills necessary to eff ectively 
utilize CTP analyses will be developed. More defi nitive methodology can 
be developed by the individual or obtained by intelligent use of leased 
commercial codes. Th e CTP code is not a universal tool for solving all 
transport phenomena problems. It is rather an engineering tool for solv-
ing a signifi cant number of transport problems on a routine basis and for 
learning what the current possibilities are for obtaining useful answers 
from analyses rather than having to resort to more expensive experimental 
investigations.

Th e scope of transport phenomena, including the simulation of tur-
bulence, chemical reactions, and multiphase fl ow, is immense. Just as 
immense is the variety of methods which have been and are being applied 
to their simulation and theoretical understanding. An introductory sur-
vey of the most prominent of these methodologies is also included herein. 
Again the availability of high-speed computing capability has promoted 
the study and development of many of these methods, sometimes even at 
the expense of common sense. Turbulence modeling, statistical modeling, 
and multiphase fl ow simulation are currently being extensively researched 
and accompanying theoretical understanding developed. Th e potential of 
these studies is reviewed herein. One cannot start from an elementary 
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understanding of these phenomena and appreciate their potential. For the 
three technologies just mentioned, the content of White’s Viscous Flow 
Th eory, 3rd ed., Launder and Sandham’s Closure Strategies for Turbulent 
and Transitional Flow, Pope’s Turbulent Flows, and Faghri and Zhang’s 
Transport Phenomena in Multiphase Systems form the essential basics for 
addressing current transport analyses.

Th e potential of computational methodology for addressing practical 
engineering problems was brought to the attention of one of these authors 
(Farmer) early on when the base heating to the S-II stage was to be 
predicted. Th is second stage of Saturn V utilized a cluster of fi ve hydrogen/
oxygen engines. Th e primary base heating was radiation from the highly 
three-dimensional, supersonic rocket plumes. Radiation could not be 
accurately predicted from subscale model experiments. Th e subsonic 
base fl ow was predicted with a Navier–Stokes solver, and the supersonic 
fl ow was predicted with a three-dimensional method-of-characteristics 
analysis. Heating from various lines-of-sight could then be estimated by 
rigorous radiation analysis for the high temperature and concentration 
gradients along these rays for their actual physical dimensions. Th is work 
was done in about 1965 for NASA’s Marshall Space Flight Center (MSFC) 
by aerospace contractors.

As computers became more effi  cient, the MSFC sponsored an extensive 
program to develop tools for launch vehicle analyses, which involved 
government personnel and many contractor participants. SECA, Inc. was 
founded by Dr. Farmer to be an active player in this development process. 
Dr. Yen-Sen Chen, who originated the FDNS computational fl uid dynam-
ics code, was a principal engineer in producing practical computational 
codes. While at SECA, he worked with Dr. Gary Cheng, Dr. Ten-See 
Wang, and Pete Anderson to produce a notable series of analyses related 
to rocket engines. Th ese analyses and the codes used to make them were 
supplied to MSFC engineers for their use. Th is research was reported in 
NASA conference proceedings to form an integral part of their compu-
tational tool development program. Th is is the genesis of the CTP code 
described and provided herein. Dr. Chen moved on to start another 
small business, Engineering Sciences, Inc., thence to the National Space 
Organization in Taiwan. Dr. Cheng is now an active researcher and pro-
fessor at the University of Alabama in Birmingham. We wish to thank 
Dr. Wang and Anderson for developing the fi nite-rate chemical reaction 
portions of the CTP code and the thermodynamics modules of the code, 
respectively. Dr. Pike and Dr. Farmer have been friends and research and 
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teaching colleagues since graduate school days at Georgia Tech. Th eir long 
interest in transport phenomena has convinced them that learning about 
transport needs to change to master even a small part of what has been 
discovered and practiced during the past half century.

Of course, this type of activity was not supported only by NASA; for 
example, the much larger eff ort by Dr. Joe Th ompson and his research 
team at Mississippi State University developed similar methodology for 
the Air Force and the National Science Foundation. Th e totality of these 
and all other eff orts have raised computational analyses of transport prob-
lems to a level where practical computational engineering analyses for real 
problems have been created. Such tools should not remain solely in the 
hands of graduate students who write and exploit computational codes. 
Th e host of previously developed codes must be spread around to consti-
tute modern engineering tools.

We greatly appreciate the host of colleagues who continuously rejuve-
nate our engineering discipline with research, publications, and techni-
cal discussions. We wish to thank Professors Andy Hrymak of McMaster 
University, Jennifer Curtis of the University of Florida, Rodney Cox of Iowa 
State University, and Chuck Merkle of Purdue University for discussing 
these concerns with us and for providing moral support by acknowledging 
this text as a useful endeavor. Professor John Mathews has been most gen-
erous and helpful in providing the notes on Fortran, which he developed 
while teaching at California State University at Fullerton. We also thank 
Professors Yasushi Ito and Roy Koomullil of the University of Alabama in 
Birmingham for allowing us to use the fi gure illustrating hybrid and overlaid 
grid generation.

We greatly appreciate the obvious enthusiasm demonstrated by Ms. 
Barbara Glunn of the Taylor & Francis Group as she piloted our text 
through the publication process. Th e entire Taylor & Francis editorial 
team and their SPi India associates have been most helpful and profes-
sional in bringing this work to its fi nished form.

Th e enormous size of the current technical literature on transport phe-
nomena cannot be overstated. Eff ective methods for absorbing and evalu-
ating this literature must be developed and made available to practicing 
engineers to avoid unnecessary spending on investigations, the outcome 
of which should already be known.
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1C H A P T E R  

Computational Transport 
Phenomena

1.1 OVERVIEW
Modern computer technology has provided a dramatic improvement in 
the analysis of complex transport phenomena processes. Th is method-
ology has not yet been eff ectively integrated into the engineering com-
munity. Th e huge volume of literature associated with the wide variety 
of transport processes cannot be appreciated or mastered without using 
innovative tools to allow one to comprehend and study these processes. 
Computational methodology is the logical basis for such tool development 
and is the subject of this text.

Transport phenomena include the disciplines of momentum, heat, and 
mass transfer. Th e improvement in their analyses results from now having 
the ability (1) to predict two- and three-dimensional spatial variations 
of these processes and (2) to realistically represent turbulence, real fl uid 
properties, and chemical reactions. Such analyses involve solving con-
servation laws which are nonlinear partial diff erential equations (PDEs). 
Th e physical similarity of the various transport mechanisms suggests, and 
practice has proven, that methodology for describing one type of process 
would also be useful in describing the other transports.

Pertinent conservation equations have been stated by nineteenth century 
scientists such as Reynolds, Navier, and Stokes. However, it has only been 
in the late twentieth century with the advent of high-speed computers that 
these equations could be eff ectively solved by numerical methods. Minimal 
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eff ort has been devoted to providing instructional material for teaching 
transport phenomena by using the host of numerical solutions available 
in the literature. Th is book is intended as a bridge to connect the classical 
presentations of transport phenomena (Welty et al., 2001; Bird et al., 2002) 
to the methodology of numerical solution of the conservation laws.

1.2 TRANSPORT PHENOMENA
Transport phenomenon is a term originated by chemical engineers to 
describe the laminar and turbulent fl ow of momentum, mass, and heat. 
Th e applications which created the need for such knowledge were the unit 
operations of the chemical process industries. Later the aerospace industry 
required the same technology to describe hypersonic fl ow and high-speed 
combustion. Now, environmental and medical applications are becom-
ing numerous. Th e conservation laws, or the equations of change, as they 
are otherwise known, are the fundamental physical laws which describe 
these transport phenomena. But numerous approximate solutions to these 
equations used for describing individual unit operations do not come close 
to realizing the potential of these important physical laws. On the other 
hand, modern numerical solutions yield powerful computational tools 
and the synergism for integrating the multitude of diverse technologies.

Th ree major contributions to the understanding of modern transport 
phenomena are (1) the basic unifi cation of the transport processes as pre-
sented in the classic text of Bird, Stewart, and Lightfoot, (2) the aerospace 
industries’ numerical studies of reacting gases in hypersonic fl owfi eld, 
termed aerothermochemistry (von Karman, 1954), and (3) the immense 
literature on turbulence, as typifi ed in classic texts (Hinze, 1975; Monin 
and Yaglom, 1971, 1975). Th e many thousands of books, journals, papers, 
and available reports which have now supplemented these basic works 
have produced an unmanageable literature.

Flows may be turbulent or laminar, compressible or incompress-
ible, continuum or free molecular, free surface or internal, liquid, gas, 
or multiphase, and a whole bunch more. Th e preponderance of fl ows 
of engineering interest is turbulent. Although laminar fl ows are better 
understood, they are controlled by viscosity, which varies 28 orders of 
magnitude between silica glasses and hydrogen. Not to mention non-
Newtonian fl ows which cannot be described with a simple viscosity coef-
fi cient. A fuller array of these processes is listed in Table 1.1. Th e classes of 
fl ows denoted in this table generally indicate the level of complexity of the 
fl ow. Th e Class I fl ows include a major fraction of important engineering 
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applications of transport phenomena and may be analyzed with existing 
computational codes. Class II fl ows may be analyzed with minor modi-
fi cations and generalizations to such codes. Class III fl ows require codes 
written specifi cally to describe such phenomena. But a starting place for 
developing new educational tools must be chosen, if any approach other 
than studying a myriad of simple examples is to be employed for under-
standing transport phenomena. Th is is not meant to belittle other items 
in the table, as there are certainly important applications involving all of 
these transport phenomena.

TABLE 1.1  Typical Transport Processes

Class I

 1. Molecular diff usion in stationary fl uids
 2. Laminar fl ow and convective heat and mass transfer in simple gases and liquids
 3.  High and intermediate Reynolds number turbulent fl ows including convection of 

heat and mass
 4. Flows with varying physical properties
 5. Multicomponent and reacting fl ows including combustion and explosions
 6. Internal fl ows in pipes, meters, reactors, and turbomachinery
 7. Free surface fl ows in ducts, rivers, and oceans
 8. Conjugate and moving-interfacial heat and mass transfer
 9. Sparse multiphase fl ows
10. Flow through porous media
11. Unsteady fl ows

Class II

 1. Steady and time-varying non-Newtonian behavior
 2. Solidifying fl ows
 3. Flows with complex dependence on multicomponent physical properties
 4. Flows of pure fl uids and mixtures near the critical point
 5. Flows with extreme geometric complexity, i.e., an entire shell-and-tube heat exchanger

Class III

 1. Noncontinuum, free-molecular fl ow
 2. Noncontinuum, unmixedness reaction eff ects
 3. Turbulent fl ows which require very complex turbulence descriptions
 4. Flows on a global scale, i.e., meteorological fl ow predictions
 5. Dense multiphase fl ows, i.e., fl uidized bed reactors
 6. Flows with radiative transport
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Th e term unit operations, the forerunner of transport phenomena, were 
invented to describe the diverse processes which were important to the 
chemical manufacturing industry. Th e chemical and phase changes needed 
to manufacture various chemicals on a large scale were too complex to 
describe the individual transport processes upon which they depended. 
Th is complexity still exists in large part to the fl ows within the mixers and 
reactors being noncontinuum, reacting, and highly three dimensional. 
Th e chemical engineer resorted to empirically describing various pieces 
of separation equipment. Th is equipment was to accomplish evapora-
tion, drying, distillation, absorption, membrane separation, liquid–liquid 
extraction, ion exchange, liquid–solid leaching, crystallization, physical 
phase separations, etc. From the 1920s until the present day, empirical 
data and experience are still the design tools of the chemical industry. As 
more analytical and theoretical capability is developed, a shift  to more 
defi nitive designs using the tools of transport phenomena is being accom-
plished. Today the unit operations are frequently being termed separa-
tion processes, which refl ect the trend toward introducing more analysis 
into the design process. Although computational transport phenomenon 
(CTP) has made enormous progress, it is not yet possible to replace the 
unit operation concept. Such replacement is desirable and will eventually 
be accomplished.

1.3 ANALYZING TRANSPORT PHENOMENA
Th e conservation laws formulated by the scientifi c giants of the nine-
teenth century were stated as nonlinear, PDEs. Such equations could not 
be solved; therefore, for the next 100 years, transport phenomena were 
analyzed by simplifying the analyses until solutions could be obtained. 
Th e closest anyone came to addressing the analysis directly was the classic 
work on heat conduction in solids (Carlsaw and Jaeger, 1959). Th e success 
of these analyses was due to the heat conduction equation being linear so 
that series solutions involving superpositioning to satisfy boundary con-
ditions could be employed. Even so, the series solutions required the use of 
a computer to provide timely computations. Reynolds time averaged the 
equations to provide the fi rst approach to analyzing turbulence (Monin 
and Yaglom, 1971). To describe process analyses to the chemical indus-
try and analyses of basic pipe and channel fl ows, spatial averaging was 
used. Since the spatial averaging lost many of the important features of the 
fl ow, it was combined with empirical test data. A prime example of such 
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technology was the friction factor plot for predicting pressure drop in pipe 
fl ow. Even in the twenty-fi rst century this methodology is used in trans-
port phenomena texts. Numerical solution methodology is documented 
in computational fl uid dynamics (CFD) specialists’ texts. Th ese practices 
do not provide suitable tools for studying and understanding the immense 
fi eld of transport phenomena.

Given the transport equations, one may attempt to fi nd an approximate 
solution by eliminating unnecessary terms. For example, early on it was 
realized that omitting the viscous terms allowed accurate pressure distri-
butions to be calculated about airfoils. However, the drag on the airfoil 
was predicted to be zero. Th is unsatisfactory condition was eliminated by 
Prandtl introducing the boundary layer concept (Schlichting, 1979). Th e 
boundary layer was postulated as being a thin region near a wall which 
was dominated by viscous eff ects. Th is resulted in two solutions: one to 
calculate pressure distributions and a second to calculate the boundary 
layer to evaluate friction. Using CFD methodology, one computation is 
suffi  cient to evaluate both pressure fi elds and friction.

Th e elements of transport phenomena are summarized in Table 1.2. 
Th e solution methods for the various approximations to the fundamental 
conservation equations are also given in this table. Lacking a complete 
statistical theory of turbulence, various types of averaging are used to 
represent turbulent fl ows. Th is practice results in the turbulent conserva-
tion laws being termed semiempirical, which does not imply that they are 
not useful. When radiation is not important, the most general form of 
the conservation laws is a coupled set of nonlinear PDEs. Such equations 
can be solved eff ectively only by computational means. In addition to the 
solver, formulation of the equations, control volumes of the fl ows, grid 
systems, and auxiliary conditions must be specifi ed. Th ese are not trivial 
adjuncts to the conservation laws, if other than trivial analyses are to be 
made. Th ese adjuncts will be described subsequently.

How has computational methodology given us a new, practical tool to 
investigate transport phenomena? Th e short answer is to say that the mod-
ern computer power has provided the means for solving complex conser-
vation laws. To implement such methodology, more insight is needed to 
appreciate how the governing PDEs may be solved. For example, consider 
the hypothetical, hypersonic vehicle powered by a liquid rocket engine 
shown in Figure 1.1. Th is axisymmetric example was chosen because it 
illustrates most important transport processes and how they were ana-
lyzed prior to the development of the computational methods described 
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TABLE 1.2  Transport Phenomena for Multicomponent, Continuum Flows

I. Tools
 A. Physical laws
  1. Conservation of mass: PDEa

  2. Conservation of momentum: PDE
  3. Conservation of energy: PDE
  4. Conservation of species: PDE
  5. Th ermal equation of state: AE
  6. Caloric equation of state: AE
  7. Reaction kinetics: AE

 Results: Dependent variables:
  Density
  Th ree velocity components
  Temperature
  Enthalpy or internal energy
  Concentration of species

 B. Transport properties
  1. Laminar fl ow (all are fl uid properties)
    Diff usion coeffi  cients
    Viscosity
    Th ermal conductivity
    Specifi c reaction-rate coeffi  cients
  2. Turbulent fl ow
    All those of laminar fl ow
    Eddy diff usivity
    Eddy viscosity
    Eddy conductivity
    (All of the eddy properties are fl ow properties)
  3. Radiation: Fluid properties
    Absorption coeffi  cients
    Scattering coeffi  cients
    Emission coeffi  cients

 Results:  An empirical or theoretical defi nition of all properties which are needed in a 
given problem. Usually, empirical descriptions are suffi  cient.

 C. Geometric relationships
  1. Coordinate systems
  2. Vectors
  3. Tensors

 Results: Defi nition of the independent variables.
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TABLE 1.2 (continued)  Transport Phenomena for Multicomponent, Continuum Flows

II. Formulation of the problem
 A. Defi ne the region of interest, i.e., the control volume

 B.   Decide if any dependent variables are constant (to determine the number of 
equations to be solved)

 C.   Decide if gradients in any particular direction or in time are negligible (to 
determine the number of independent variables)

 D.  Choose a coordinate system
 E.   Evaluate the transport properties
 F.    Determine an initial condition for which all dependent variables are known
 G. Determine what is occurring on all sides of the region to fi x boundary conditions
 H. Formulated equations fi t one of these categories
  1. Unsteady:
   i.     Varies in all three space directions
   ii.   Varies in two space directions
   iii. Varies in one space direction
   iv.  No spatial variation: ODE in time

  2. Steady:
   i.     Varies in all three space directions
   ii.   Varies in two space directions
   iii. Varies in one space direction: ODE in space
   iv.  No spatial variation: AE

 Results: A system of equations to represent transport is obtained.

III. Solution methods
 A.  Experimentally determine all variables. Usually possible, but extremely expensive.
 B.    Experimentally determine all variables in scaled-down experiment. Scale-up by 

analysis (usually with algebraic equations) is required. Frequently possible.
 C.   Analytically solve the ODE. Frequently possible.
 D.  Analytically solve the PDE. All but impossible.
 E.   Analytically transform the PDE, then solve analytically. Sometimes possible.
 F.    Numerically solve the ODE. Always possible.
 G. Numerically solve the PDE. Usually possible.

Results: Predictions of all dependent variables, as a function of independent variables.

a Unless otherwise indicated, the solution is for a set of PDEs. Notations are ODE for ordinary diff er-
ential equations and AE for algebraic equations. If radiation is signifi cant, the energy equation is an 
integrodiff erential equation.

herein while avoiding geometric complexity. Th e various regions of the 
indicated fl owfi eld are all described by the conservation equations of 
mass, species, momentum, and energy. Since these equations are PDEs, 
they have diff erent characteristics in the various regions of fl owfi eld. Th e 
various fl ow phenomena indicated by letters in Figure 1.1 are identifi ed in 
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FIGURE 1.1 Hypersonic fl ow about a rocket propelled vehicle (labels refer 
to Table 1.3).

TABLE 1.3  Flowfi elds Denoted by Letters in Figure 1.1

A. Free-stream hypersonic fl ow
B. Bow shock
C. Subsonic nose cap with ablative surface
D. Forward facing step with fl ow separation
E. Subsonic mixing and combustion
F. Boundary layer heat transfer to chamber walls
G. Subsonic/supersonic transition on sonic line
H. Flow separation on backward facing step
I. Supersonic nozzle fl ow with oblique shocks
J. Oblique shocks from continuation of nozzle shocks
K. Supersonic/subsonic transition at Mach disc
L. Oblique shocks within plume
M. Free shear layer with mixing and combustion
N. Shock formed by impingement on plume

Table 1.3. Starting at the nose, the approach fl ow is hypersonic and invis-
cid. Th e shock wave is, for all practical purposes, a discontinuity. Th e sub-
sonic region is viscous, for high altitudes where the atmospheric density 
is very low, this could be laminar fl ow. Th e blunt nose creates a hot region 
which is depicted as being protected by an ablating surface. Th is same hot 
nose cap could produce thermal radiation to the surface. Th e fl ow around 
the body would again be accelerated to become supersonic, except for 
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the boundary layer along the vehicle surface. As the external fl ow moves 
past the vehicle surface to fl ow around the rocket nozzle it separates from 
the surface. Eventually it surrounds and contains the rocket plume. Th e 
rocket itself mixes fuel and oxidizer in the combustion chamber which 
burns to form exhaust products. Th e chamber mixing is not completely 
effi  cient; therefore, striations of diff erent mixture ratios will probably still 
exist. Initial mixing is convective as the propellant jets would be directed 
toward each other. Subsequent mixing would be accomplished by turbu-
lent transport, which is intermediate between convective and laminar in 
magnitude. Turbulent boundary layers would be formed along the interior 
rocket walls. Th e core fl ow would be subsonic, choked at the rocket throat, 
and expanded to supersonic in the diverging nozzle. Th e core fl ow and 
the exiting plume would be supersonic with shock waves to turn the fl ow 
as dictated by the pressure fi eld. Th is fl ow could even contain imbedded 
subsonic regions preceded by normal shock waves. Th e plume would be 
fuel-rich to maximize performance; therefore, as it contacts air in the free 
stream it would undergo mixing and further combustion. Th e hot plume 
would radiate energy into the environment.

If thermal radiation is neglected, all of these fl ow processes could be 
analyzed with the Navier–Stokes form of the conservation laws with suit-
able averaging and an empirical turbulence model. Why then is obtaining 
a computational solution so diffi  cult? And it is. Th e nature of the PDEs 
changes from hyperbolic, to parabolic, to elliptic depending on the posi-
tion in the fl owfi eld. With 1950s and 1960s computer methodology, these 
various fl ow regimes had to be analyzed separately. Th e implication is that 
diff erent numerical algorithms and codes must be used in each type of 
fl ow regime. Even with more advanced computer power the conserva-
tion laws defi ed solution. Th e mixed fl ow regions were still too complex 
to resolve, even the simpler nose cap region. Th is region was successfully 
analyzed by treating the steady-state problem as time dependent and inte-
grating the equations in time until a steady state was reached (Moretti and 
Abbett, 1966). Such a treatment made the equations, all of them, behave 
hyperbolically so that time marching worked! Th is procedure is still used 
in many aerodynamics analyses and is recommended for use in this work 
for general transport phenomena analyses. Furthermore, only one com-
puter code could be written and used to address a wide variety of trans-
port problems. Obviously, all of the code capability would not be required 
for each analysis attempted. Once the use of the code was mastered, a new 
learning curve for each application would not be necessary.
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1.4 A COMPUTATIONAL TOOL: THE CTP CODE
To appreciate and utilize current transport analyses, one needs a com-
putational tool which is very sophisticated. Ideally, the user would write 
his own code, but this is not practical or necessary. Many CFD codes are 
available in the literature and for lease. But the learning curve to eff ectively 
use such codes is prohibitive. Th e purpose of this text is to provide a pro-
duction quality code and a comprehensive users’ manual to serve as an 
introduction to solving transport problems. Th e CTP code and example 
problems are supplied in the companion CD to this text. Th e CTP code is 
supplied in Fortran 77 as both object and source code. Th e example prob-
lems are summarized in Appendix A. Th is code is not touted as the best 
available or the defi nitive CTP solver. It is suffi  ciently general to analyze a 
wide variety of transport phenomena problems. It was developed and uti-
lized by these authors and their colleagues to address a large number of 
problems of interest to NASA, the Air Force, and the aerospace industry. 
Upon mastering the material in this text, the reader will obtain not only an 
introduction to the computational methodology of transport but also will 
have a tool which can be used without additional expense or investment in 
a new learning curve to apply to other industrial problems. It is the further 
contention of these authors that one must have access to the source code to 
eff ectively and wisely use any computational tool.

Th e development of the personal computer (PC) over the last quarter 
century has provided the means to solve the partial diff erential transport 
equations simply because it calculates incredibly fast. However, the com-
putational methodology has not matured to a single accepted technique. 
Most practitioners have been trained by accomplishing highly specialized 
analyses of specifi c problems. Th ere are commercial CFD codes available, 
notably the code off ered by FLUENT, Inc. of Lebanon, New Hampshire. 
But such codes are diffi  cult to use and are extremely expensive to lease as 
source codes. Yet, essentially all undergraduate engineering students have 
extremely powerful PCs. To provide the bridge between the theoretical 
statements of the conservation laws and the solving of practical problems, 
adequate computational methodology designed to run on PCs is desir-
able. Th e numerous simplistic codes found in many current textbooks do 
not serve this purpose. Does an engineer or student really want to learn a 
diff erent code for each problem he investigates? Fortran code is the work-
horse for solving transport problems. Hundreds of millions of dollars have 
been invested in developing such codes. Such an investment is not likely to 
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be repeated to satisfy soft ware entrepreneurs. Furthermore, Fortran com-
pilers are readily available as shareware which operates on PCs.

Th ere is not a universal CTP solver for all possible transport phenomena 
analyses, but the CTP code described herein has a wide range of capabilities. 
Th e CTP code solves two-dimensional planar and axisymmetric and three-
dimensional steady and unsteady, laminar and turbulent conservation equa-
tions for mass, momentum, energy, and species. Rectangular Cartesian, 
orthogonal and nonorthogonal curvilinear coordinates may be employed. 
Constant density, ideal gas, and real fl uid property fl uids may be described. 
Two-equation turbulence models are used for generality and computational 
effi  ciency. Multiphase fl uids are described as ideal solutions. Reacting fl uids 
are described with detailed reaction mechanisms. Euler–Lagrange track-
ing models are used to describe solid/fl uid fl ow interactions and multiphase 
fl ow phenomena. Property data fi les are included as part of the code.

However, more importantly, having access to the source code and data 
fi les allows capabilities needed but not included in the CTP code to be added 
by the individual investigator. Other fl uids may need to be included in the 
databases. Other turbulence models may need to be evaluated. It must 
be realized that without the computational capability inherent in a code like 
the CTP code, one would not be able to compare predictions made with 
diff erent turbulence models. Very dense particle/fl uid fl ows might require 
more elaborated methodology than is currently in the CTP code.

Developing expertise in using the CTP code not only provides educa-
tion in computational methodology, but gives the user a computational 
tool to study and apply transport phenomena methodology.

Th e diffi  culty in mastering and using the CTP methodology is largely 
eliminated by an appropriate users’ manual. Providing such a manual is a 
major objective of this text. Since the output data from a CTP analysis are 
voluminous, another objective is to provide the user with graphics meth-
odology suffi  cient to visualize and study the output.

1.5 VERIFICATION, VALIDATION, 
AND GENERALIZATION

How is one assured that the results obtained from a CTP simulation are 
of suffi  cient value to be used as design criteria or as the explanation and 
solution of problems arising in an industrial process? Th ere is not a simple 
answer to this question as many factors have to be considered. Not the 
least of which is engineering judgment as to whether or not the simulation 
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is reasonable. As defi ned by computational analysts (Roach, 1998), “verifi -
cation” is solving the equations right, and “validation” is solving the right 
equations. We defi ne “generalization” as determining whether or not the 
available code contains all of the essential physics and chemistry for the 
application, or does the code require modifi cation to be appropriate for 
the analysis. Th e assurance provided at this point is essential to making 
CTP analyses a worthwhile endeavor. Roach discusses details of verifi ca-
tion and validation for over 400 pages, yet the bulk of the work considered 
is for constant density and ideal gas fl uids. For transport phenomena, real 
fl uid properties and reacting, phase-changing fl ows have received much 
less attention and numerical analyses. Th e studies made to justify the use 
of the CTP code are discussed in Chapter 10.

1.5.1 VERIFICATION

Th e selections of the diff erencing and integration algorithms are the major 
factors in allowing the CTP code to be verifi ed. Demonstrating the code’s 
grid independence in providing a solution is the major test used to estab-
lish that the conservation equations are indeed solved. Details of this veri-
fi cation procedure are presented in Chapter 8.

1.5.2 VALIDATION

Validation of numerical solutions to the conservation equations is practi-
cally accomplished by comparing simulated results to experimental data. 
Historically, constant density and ideal gas fl ows have been the databases 
which were used for such comparisons. Transport phenomena include the 
prediction of mass diff usion, chemical reactions, and phase change for 
real fl uids. Th e database for such fl ows is much smaller than for the aero-
dynamic and water type fl ows with the associated density restrictions. Th e 
most plentiful database for transport type fl ows is for gaseous combus-
tion. Hence, most of the validation simulations have been made against 
combusting fl ows.

A further handicap in providing validation data for transport pro-
cesses is that many more measurements than those usually reported are 
required to defi ne the fl owfi eld and to establish the boundary conditions 
for the analysis. Usually, a validation comparison is required by the user 
of the simulation. Unfortunately, the experiment is seldom planned in 
coordination with the computational analyst. Th is frequently causes the 
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results of the validation exercise to be inconclusive. Th e proper bound-
ary conditions and the determination of the critical fl owfi eld variables 
must be determined beforehand. Such prior planning is far less critical in 
purely aerodynamic and hydrodynamic fl owfi eld simulation validation. 
Th e absence of carefully planned experimental data collection is partially 
mitigated by conducting many simulations for whatever test data are 
available. For the CTP code supplied herein, the totality of cases analyzed 
will be referenced and selected cases reviewed. However, since the CTP 
source code is also supplied, the reader may augment the validation pro-
cedure by making additional analyses. Validation is a continuing process, 
especially for a code which has many options, all of which have seldom 
been validated.

It cannot be overemphasized that the experiment to be simulated 
should be as close as possible to process of interest. Likewise, the simu-
lation should be as realistic as possible. For example, if the experiment 
has pronounced three-dimensional features, the simulation should not be 
made in two dimensions, so that more numbers could be generated. A 
further example is the tendency to conduct heat and mass transfer experi-
ments with small heat and mass fl uxes so that the fl uid properties can 
be assumed constant and the fl owfi eld can be assumed unaff ected by the 
transport process. Aft er all evaluating such complexities are what make 
the CTP simulation useful.

1.5.3 GENERALITY

Th e CTP code was written to solve multidimensional, reacting, real-fl uid, 
multiphase, laminar, or turbulent fl ows. Th e speed regime of the fl ow may 
be from subsonic to hypersonic. Boundary conditions are such that these 
speed regimes may be accommodated. Wall functions are used as bound-
ary conditions, to allow larger grid spacing. Most CFD codes are not this 
general. Some other CFD codes are better suited for analyzing certain of 
these features, but the code generality is what sets this code apart for sim-
ulating transport phenomena.

Turbulence models are limited to two-equation (K–E) models. More 
elaborate models would reduce the generality of the code. Using wall 
functions allows for the use of better near-wall simulation without chang-
ing the turbulence description far from the wall. But what advantage does 
using such a turbulence model off er?
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1.5.3.1 Example of a Simple Momentum Transport Problem

To determine the essential characteristics which a CTP code must have 
to be useful for analyzing geometrically and physically complex phenom-
ena, an example problem is given. Th is example is purposely chosen to 
be so simple and so basic that even an elementary knowledge of trans-
port phenomena is adequate to understand the conclusions drawn from 
its consideration.

Consider turbulent pipe fl ow of a nonreacting, single phase fl uid with 
heat and mass transfer at the pipe wall. Assume that the transfer rate for heat 
and mass is small, such that the velocity fi eld is uncoupled from the wall 
boundary conditions and that the fl uid properties may remain constant. 
Th e eddy transport of momentum, heat, and mass for fully developed fl ow 
(FDF) in a smooth pipe from an empirical velocity distribution is esti-
mated as follows. Momentum transport will be considered fi rst.

Spalding’s velocity correlation for incompressible, fully developed, 
turbulent pipe fl ow from White (2006) is generally considered valid. It is 
stated as

 
+ +

+ κ + ++ −κ ⎡ ⎤κ κ= + − −κ − −⎢ ⎥
⎣ ⎦

2 3( ) ( )
1

2 6
uB u u

y u e e u  (1.1)

0.41 2 30.1287 1 0.41 0.08405 ( ) 0.01149 ( )uy u e u u u+ + + + + +⎡ ⎤= + − − − −⎣ ⎦  (1.2)

where (κ, B) are (0.41, 5.0), the values recommended by Coles and Hirst 
(1968) and used herein. Th e parameters (κ, B) of (0.40, 5.5) were originally 
used and are also acceptable. Th e velocity and distance from the pipe wall 
are nondimensionalized using the wall shear stress and fl uid density and 
viscosity. Th ese variables are termed the inner law variables. Th e correla-
tion is very good, except near the pipe centerline. Th e correlation yields 
an undesirable slope discontinuity as the predicted profi le intersects the 
pipe centerline. Th ere are another set of variables termed the outer law 
variables which are useful for analyzing boundary layers, but they are not 
needed here. Th e important point is that turbulent, fully developed, pipe 
fl ow of a constant density and viscosity fl uid is correlated with only the 
wall shear stress and density and viscosity.

A specifi c example which has been experimentally studied will be ana-
lyzed. Extensive turbulence measurements for fully developed pipe fl ow 



Computational Transport Phenomena    ■    15

have been reported (Laufer, 1954). Th ese measurements were for Reynolds 
numbers of 5  × 105 (ReH) and 5  × 104 (ReL) based on the centerline velocity. 
Th e fl uid was reported to be incompressible air, but the temperature and 
pressure were not given. Th e pipe was 10/in. nominal diameter (9.72/in. or 
0.2469/m actual diameter). Unfortunately, insuffi  cient data were presented 
in the report to fully describe the experiments. An example close to the 
experimental conditions is used herein to illustrate the desired analysis. 
Th us, the example cannot be considered as being validated by the experi-
ment. Th is is frequently the situation when experiments and analyses are 
not jointly investigated.

To fully specify the example, assume air has a density of 1.18/kg m−3 
and a kinematic viscosity of 1.505  × 10−5/m2 s−1 giving a viscosity of 
1.776  × 10−5/kg m−1 s−2. Th ese conditions give centerline velocities of

− −
−= × = = = =

ν ×
CL5 1 1CL

H CL5

0.2469
5 10 30.48 / ms 100 / ft s

1.505 10
UDU

Re U
 
(1.3)

− −
−= × = = = =

ν ×
CL4 1 1CL

L CL5

0.2469
5 10 3.048 / ms 10.0 / ft s

1.505 10
UDU

Re U
 
(1.4)

Th e wall shear stress and the mean velocity in the pipe are needed to 
utilize the well-established velocity profi les from the literature. Laufer 
reported measured velocity profi les, but did not curve fi t the data. 
Instead of attempting to curve fi t data read from small fi gures, the 
higher Reynolds number velocity was assumed to be represented by a 
1/7.5 power law, and the lower Reynolds number by a 1/7th power law. 
Th ese profi les were consistent with data from the literature (Schlichting, 
1979). Schlichting also off ered an equation for relating mean and center-
line velocities, namely:

 2
av CL 2 ( 1)(2 1)U U n n n= + +  (1.5)

For n = 7.5 and 7, the velocity ratios are 0.827 and 0.817, respectively. 
Th ese values are also consistent with published graphs (Geankoplis, 2003), 
although the graphs are too small to be accurately read. Th e approximate 
corrections should be adequate, since power law models accurately repre-
sent mean turbulent fl ow in pipe fl ow. Th e Reynolds number and mean 
velocities for the two cases become

 
−

−

= × =

= × =

5 1
H av

4 1
L av

4.135 10 ; 25.21/ ms

4.085 10 ; 2.49 / ms

Re U

Re U
 (1.6)
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Th e relationship between the Reynolds number based on mean velocity 
and the Darcy friction factor is given by Prandtl’s correlation (White, 
2006):

 { }− = −0.5 0.5
D D2.0 log 0.8f Re f  (1.7)

For the high Reynolds number, fD = 0.0136
For the low Reynolds number, fD = 0.0219
For ReH = 413,500, fD = 0.0136:
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For ReL = 40,850, fD = 0.0219:
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(1.9)

At the pipe centerline, y = 0.1235 m or y+ = 0.1235 × 1.039/1.505 × 10−5 = 8526 
for the high Reynolds number case, and y+ = 0.1235 × 0.130/1.505 × 10−5 = 
1067 for the low Reynolds number case.

By using the previously defi ned relationships, the distribution of u, y+, 
u+, and their derivatives can be calculated across the pipe. Th e distribu-
tions of u and u+ are shown in Figures 1.2 and 1.3 for the high Reynolds 
number case.

Th e wall shear stress may also be calculated from the velocity gradient 
at the wall as calculated from Spalding’s correlation equation.
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FIGURE 1.2 Dimensionless inner law profi le for fully developed pipe fl ow 
(Equation 1.2, ——, Equation 1.15, …).
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FIGURE 1.3 Dimensional inner law velocity profi le for Laufer’s high Reynolds 
number pipe fl ow experiment (Equation 1.2, ——, Equation 1.15, …).
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Converting this velocity gradient to a dimensional form and evaluating it 
at the wall

 

− − −τ = μ = × × =5 1 2
w

w

d
1.7759 10 71722 1.274/kg m s

d
u
y  

(1.11)

Th is confi rms that the velocity distribution used gives the correct wall 
shear stress, for the high Reynolds number case, as the laminar sublayer 
interacts with the wall.

Also note from Figure 1.3, that the laminar sublayer is very thin. For 
a numerical solution which integrates the conservation equations all the 
way to the wall many grid points would be required. For the high Reynolds 
number example, the layer sublayer which would require resolution is less 
than 1% of the pipe radius. For a multidimensional analysis, the use of 
small grid spacing in one direction would also place limitations on the 
grid sizes that could be used in the other directions. Th is makes treatment 
of the wall region critical in any numerical analysis and provides the moti-
vation for developing the more practical wall function solutions.

But how does the shear stress vary across the pipe? For a momentum 
balance on a cylindrical plug of radius r and a length dx in the FDF section 
of the pipe
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(1.12)

Note that the pressure is not a function of r. On eliminating the pres-
sure gradient, τ = τR (r/R), that is the shear stress varies linearly across 
the pipe.

Using this shear stress variation, an eff ective viscosity (μeff ) can be 
defi ned.

 
R eff t

d d
( / ) ( )

d dr r

u u
r R

r r
⎛ ⎞ ⎛ ⎞τ = τ = μ = μ + μ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  

(1.13)

Th e eff ective viscosity and the eddy viscosity (μt) can be calculated from 
these equations. Th e linear variation of the total shear stress across the pipe 
is assured by the analysis. By using only the eddy viscosity, the turbulent 
shear stress distribution across the pipe is predicted. Th e turbulent and 
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total shear stress as a function of y is shown in Figure 1.4a. Th ese distribu-
tions are shown in an expanded scale near the wall in Figure 1.4b. Th ese 
curves match the shape of those presented by Laufer. Unfortunately, there 
are insuffi  cient experimental data to make this comparison quantitative.

Th e ratio of the turbulent viscosity to the laminar viscosity across the 
pipe in terms of y+ is shown in Figure 1.5a. Figure 1.5b shows this ratio as 
a function of the dimensional position y. Figure 1.5c shows this ratio 
very near the wall. Th is method of evaluating eddy viscosity yields a zero 
value at the pipe centerline. Since the velocity correlation is somewhat 

FIGURE 1.4 (a) Comparison of turbulent (τt, ——) to total shear stress (τtotal, 
…) for fully developed pipe fl ow. (b) Comparison of turbulent (τt, ——) to 
total shear stress (τtotal, …) near the wall for fully developed pipe fl ow.
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erroneous at the centerline, the turbulent viscosity may be subject to this 
same error. Also, the zero eddy viscosity is aesthetically unappealing. 
Based on a limited amount of test data, Reichardt (1961) proposed a dif-
ferent correlation:

 

2
t 1 1 2

6
y r r

R R

+ ⎡ ⎤μ κ ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠μ ⎢ ⎥⎣ ⎦  
(1.14)

Th is correlation has the conceptual advantage that the centerline eddy vis-
cosity is not zero, as shown in Figure 1.5a and b. Wilcox (2006) simulated 

FIGURE 1.5 (a) Ratio of turbulent to laminar viscosity (Calculated, ——; 
Reichardt’s correlation, …). (b) Ratio of turbulent to laminar viscosity 
(Calculated, ——; Reichardt’s correlation, …).
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Laufer’s experiment using a two-equation turbulence model and 
obtained good comparisons to the test data. Wilcox did not calculate 
and compare the eddy viscosity directly. Hinze (1975) reviewed Laufer’s 
data and discusses the use of Equation 1.13 to represent the eddy viscos-
ity. Hinze showed the Laufer data to behave like Equation 1.14 would 
predict, but he did not mention this equation or what eff ect such an 
equation would imply about the velocity profi le. Reichardt’s correlation 
also does not yield good results for predicting wall shear stress, but it 
is qualitatively correct over most of the pipe cross section. Equation 
1.14 can be used to predict the velocity distribution for fully developed 
pipe fl ow. By neglecting the molecular viscosity and assuming the lin-
ear variation of shear stress across the pipe, the velocity profi le which 
results is (Kays et al., 2005)

 
+ +⎡ ⎤= + + +⎣ ⎦

22.44 ln 1.5 (1 / ) (1 2 ( / )) 5.0u y r R r R
 

(1.15)

Th is profi le has zero slope across the centerline. As shown in Figures 1.2 
and 1.3, it exhibits a slight wake similar to what is predicted with an outer 
law profi le for boundary layers. In this case, the profi le deviates from the 
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FIGURE 1.5 (continued) (c) Ratio of turbulent to laminar viscosity (Calculated, 
——; Reichardt’s correlation, …) near the wall.
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inner law above a y+ value of about 1000. Th e y+ values for determining 
such divergence depends somewhat on Reynolds number, since the fric-
tion velocity is used in the defi nition of y+. Th e inner law profi le should 
be used for y+ values below about 100. Since the velocity profi le predicted 
with Equation 1.15 matches the inner law profi le in the overlap region 
and produces a slight wake, it is recommended for use at y+ values above 
several hundreds. Th is implies that the dotted profi les in Figure 1.5a and b 
are the better estimate of eddy viscosity near the pipe centerline. Others 
have proposed similar correlations for the turbulent to laminar viscosity 
ratio (Longwell, 1966; Wilkes, 2006). In general, these correlations agree 
qualitatively, but not quantitatively. Th e velocity profi le near a pipe cen-
terline is not well validated with experimental test data. Th e shear stress 
at the centerline should be zero, and the profi le should have zero slope 
as it crossed the centerline. Notice that eddy viscosity correlations are 
frequently stated in terms of kinematic viscosity ratios; however, since 
these correlations are only for constant density fl ows, such distinctions 
are unnecessary.

Regardless of the accuracy questions arising concerning centerline 
velocity values, the eddy viscosity is seen to increase rapidly from zero 
in the laminar sublayer to a factor of about 650 and then decrease as the 
pipe centerline is approached. Th e low Reynolds number predictions are 
not presented, because they are qualitatively very similar to Figure 1.5a 
through c. Th e maximum eddy viscosity is about an order of magni-
tude lower than that for the high Reynolds number case. Th is is roughly 
the same as the Reynolds number decreases. Extensive investigations of 
boundary layers and fl ows in conduits with noncircular cross sections 
show this same behavior. In fact, the near wall behavior is accurately 
represented with the same correlation equations.

Th e conclusions drawn from this example are that if an eddy viscos-
ity model of reasonable accuracy can be devised for boundary layers and 
internal fl ows in conduits, the wall friction and velocity fi eld can be pre-
dicted fairly well. Such an eddy viscosity model will also predict eddy 
transport of momentum throughout the fl owfi eld. Of course, its valida-
tion further away from the wall must also be established. Th ese issues are 
discussed in detail in Chapter 4. Furthermore, since the wall eff ects are 
controlled by the fl ow very near the wall, wall functions can be devised 
such that numerical fl owfi eld predictions can be made using such func-
tions as boundary conditions in lieu of unreasonably dense grids to satisfy 
zero slip wall conditions. Th e expectation is that geometrically complex 
fl ows can also be so described, as the numerical solutions would provide 
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essentially free-stream conditions with the wall-function boundary condi-
tions accounting for near wall eff ects. Th is is the concept used in the CTP 
code. Its detailed description, verifi cation, and validation are described in 
the remainder of this text.

1.5.3.2 Simple Heat and Mass Transport Problems

Turbulent exchange processes of heat and mass are so similar that profi le 
data and analyses for fully developed temperature and concentration pro-
fi les are interchangeable, provided only that dimensionless parameters are 
utilized. Th e following discussion is mainly in terms of temperature, but 
the results apply equally well to concentrations involving mass transfer.

Fully developed temperature and concentration profi le models and 
experimental data for pipe fl ow, channel fl ow, and boundary layer fl ow 
have been reported (Kader, 1981). Restrictions placed on fl uid properties 
are extreme. Th e heat or mass exchange is assumed to be so small that the 
fl owfi eld and fl uid properties are not aff ected. For boundary layer fl ow, 
temperature (or concentration) profi les can be similar from a surface to 
the edge of the boundary layer. For internal pipe or channel fl ow, “fully 
developed” requires more explanation. If the wall temperature is fi xed, the 
entire fl ow will eventually reach the wall temperature and the profi le will 
be fl at. If wall heat fl ux is specifi ed, the fl ow will eventually become very 
hot or very cold, depending on the sign of the specifi ed heat fl ux. Extensive 
experiments and analyses have been reported which attempt to defi ne a 
fully developed temperature (or concentration) profi le. Stringent limita-
tions must be imposed on the fl owfi eld analyses for such profi les to be 
meaningful. For practical problems, such restrictions must be removed. 
However, to illustrate the importance of turbulent mixing eff ects, this 
body of work is informative.

Th e stringent limitations just mentioned do not apply to velocity pro-
fi les. Th e fully developed velocity profi le is obtained when the wall bound-
ary layers grow to reach the pipe or channel centerline. From that point 
on the profi le remains the same as the static pressure drops in response to 
the wall friction. Th is situation remains the same until the inlet pressure 
is insuffi  cient to maintain steady fl ow in the conduit. Th e role of pressure 
does not serve the same purpose in heat or mass transfer; therefore, addi-
tional restrictions are needed to realize fully developed temperature and 
concentration profi les.

Fully developed temperature profi les can be defi ned as those which exist 
when the fi lm coeffi  cient is independent of position (Arpaci and Larsen, 
1984), thus,
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or for mass transfer
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Tb and Tw are independent of y, but may depend on x. Th ese conditions 
imply that a fully developed temperature or concentration profi le may be 
defi ned as
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If qw = constant,
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If Tw = constant,
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for the Nusselt and Sherwood numbers, respectively.
For turbulent fl ow, the fully developed velocity profi le (which we know) 

is used for the fl owfi eld and the eddy thermal diff usivity (which we do not 
know) must be determined. Kader provided the following correlation to 
determine the eddy transport of heat and mass.

Energy balance (von Karman’s temperature law of the wall):
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where
δ is a boundary layer thickness
Th e subscript “o” denotes the pipe centerline value, i.e., the “boundary-

layer thickness” in fully developed pipe fl ow

To avoid specifying an eddy viscosity throughout the entire normal coor-
dinate direction, piecewise portions of the temperature profi le were speci-
fi ed. Th is is the same procedure that was originally used to establish the 
velocity correlation. Th e temperature profi le was pieced together at diff er-
ent locations than the velocity profi le depending on the Pr.

 1. At the wall ε = 0, therefore

 + +θ = Pr y  (1.23)

 2.1.  For the linear sublayer which ends at y1
+ where ε{y1

+} @ a and for 
the Prandtl number range of 500 ≤ Pr ≤ 40 × 103
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1/ (6 4)( ) and 12 /E y y Pr  (1.24)

 2.2.  An alternative to Equation 1.24 for
 Pr > 1 is θ+ = Pr y+ − (1.5 × 10−4)Pr2 (y+)4

 + +ε ν = − =3 1/3
1/ (6 4)( ) and 9 /E y y Pr  (1.25)

 2.3. For Pr ≈ 1, the temperature and velocity profi les are similar

 1 30y + ≅  (1.26)
 2.4. For Pr << 1,

 + + + −ε ν = ≅ = 1
t 1/ / 0.85/ and 2Pr ky ky y Pr  (1.27)

 3. From y1
+ to δ+ or R+ and for (6 × 10−3) ≤ Pr ≤ (40 × 10−3)
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Putting all the segments of the temperature profi le together: boundary 
layer, pipe fl ow, and channel fl ow, temperature profi les for fully developed 
turbulent fl ow were obtained. Concentration profi les are described with 
the same methodology when analogous dimensionless variables are used. 
Th e fully developed temperature profi le for pipe fl ow is given as
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Kader showed this equation is valid in the range 0.03 < Pr < 170. 
Notice that the friction velocity and kinematic viscosity are needed in 
this correlation to convert the dimensionless coordinate to a dimen-
sional one.

To consider a specific case, assume water f low in a pipe of 7.62/cm 
radius (R) at Re = 2.3 × 104. Assume the f luid is water with a density 
of 1000/kg m−3 and a viscosity of 1.794 × 10−3/kg m−1 s−1, giving a kine-
matic viscosity of 1.794 × 10−6/m2 s−1. For water at ambient tempera-
ture, the Prandtl number is about 7.0. These conditions give a mean 
velocity of
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From Prandtl’s equation for Re = 23,000, fD = 0.02502
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For these fl ow conditions, the fully developed temperature profi le is shown 
in Figure 1.6. Using the same procedure as used to analyze the Laufer data, 
the ratio of eddy viscosity to laminar viscosity was calculated and is also 
shown in Figure 1.6.

A similar analysis using a velocity profi le of
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a turbulent Prandtl number of 1.0, and a wide range of laminar Prandtl 
numbers was reported (White, 2006) for boundary layers. Further analy-
ses with similar methodology, but for a more narrow range of laminar 
Prandtl numbers and a slightly wider range of conduit geometries has also 
been reported (Kays et al., 2005).
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Th ese examples show that the eddy viscosity is much larger than • 
the laminar viscosity, except very near the wall.
Turbulent Prandtl and Schmidt numbers are essentially constant • 
at a value of 0.9.
Only trivially small heat and mass transfer rates can be analyti-• 
cally determined.
Th e eff ects of fl uid property variations cannot be analytically • 
determined.
Th e concept of a fully developed temperature or concentration • 
profi le for turbulent pipe fl ow is valid for a very restricted set of 
conditions, yet an approximate eff ect of Prandtl number, Schmidt 
number, and eddy diff usivity of heat and mass can be established.

Results of this simplistic example are the “theory” upon which many empir-
ical correlations have been developed to produce design information for 
transport phenomena. Average fl ows across the wall region are determined 
to produce Nu and Sh predictions. Since such severe assumptions have been 
placed on the analysis, empirical corrections to these “low” transfer rates 
have been determined to match experimental test data. Th e goal of CTP is 
to predict the corrective eff ects and relate them to the physics of the fl ow.

FIGURE 1.6 Fully developed temperature profi le and ratio of turbulent to 
laminar viscosity for pipe fl ow of water.
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1.5.3.3 Potential Prospects of Computational Analyses

All of the severe restrictions employed in the FDF analysis can be 
removed with computational analysis based on more general solutions 
of the conservation laws. Th e conservation equations contain far more 
information than that derived from subsets of such equations created 
to expedite solution methodology or simulate particular experiments. 
Granted, a defi nitive turbulence model does not exist, reaction kinetics 
data must mainly be derived from experiments, wall geometries must 
be faithfully described with computational grids, and practical wall 
functions must be utilized. A myriad of computational codes have been 
used to perform transport analyses—yielding various levels of rigor 
and accuracy. No one CTP code is capable of treating all of the diverse 
complexities of the chemistry, physics, and geometry involved. But by 
making a reasonable compromise between what is known, what can be 
computed, and what accuracy level is required to provide useful results, 
a fairly general production code has been developed. Th is is the CTP 
code described herein.

Typical restrictions which can be removed from the FDF analy-• 
sis are general two- and three-dimensional steady and unsteady 
fl ows can be analyzed.
Coupled and conjugate eff ects of momentum, heat, and mass • 
transfer can be predicted.
Practical simulations of turbulent fl ows can be made with two-• 
equation turbulence models and appropriate wall function bound-
ary conditions.
Real fl uid thermodynamic properties for gaseous and liquid fl uid • 
mixtures can be described.
Th e extent of fi nite-rate chemical reactions can be determined.• 
Several types of multiphase fl ows can be considered.• 
Flow speeds from slow to hypersonic can be predicted.• 
Mixed subsonic/supersonic fl ows can be predicted.• 
Flows in porous media can be analyzed.• 
Flows in rotating machinery can be predicted.• 

Application of computed simulations to a wider range of situations requires 
extensive validation; much of which has been accomplished and much of 
which remains to be done.
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Th e CTP code is an engineering tool which can be used to provide 
new technical information. Without such a tool, the multitude of techni-
cal literature cannot be eff ectively utilized. It cannot even be realistically 
evaluated.

1.6 SUMMARY
A detailed derivation of the conservation equations is to be presented, the 
necessary mathematics to appreciate these equations will be reviewed, 
methods of applying these equations to specifi c problems will be demon-
strated, and methods of solving these problems with the CTP code will 
be explained. Physical property data and elementary problem examples 
to form an adequate background for using the CTP methodology are 
also presented. A limited, although extensive, class of CTP analyses will 
be addressed. Having become familiar with these examples and the codes 
used to predict such processes, one can use the CTP code to work similar 
problems, modify the source code to extend its capability, or realize the 
problem under consideration is beyond the resources available for further 
code development. In the latter case, one would resort to a commercial code 
which has the required capability or endeavor to develop such a code.

Upon providing the background for analyzing complex transport phe-
nomena, the remainder of the text is devoted to illustrative examples. 
Th ese examples were chosen to represent practical fl ows and to provide 
an acceptance of the computed results. Th e experimental data which were 
used to validate each example are described as appropriate. Th e CTP code 
may be used directly to solve the Class I problems in Table 1.2. With minor 
modifi cations, once the user is familiar with the code, the Class II pro-
cesses may be analyzed with the CTP code. Class III processes should be 
analyzed with special purpose codes designed specifi cally to address these 
phenomena. Th e CTP code is provided as a source code and with a mecha-
nism for producing computational grids. Our experience is that these fea-
tures are essential to the successful use of the CTP (or any other) solver.

1.7 NOMENCLATURE
Nomenclature is a knotty problem. When complicated analyses are per-
formed, many symbols are used to represent the numerous variables. No 
satisfactory standard exists, or is likely to be invented. Because of the many 
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systems already in the literature, one must be fl exible enough to read and 
use any of them. Th is problem is only becoming worse, as the literature is 
exponentially increasing.

In general, variables that can be typed with the Microsoft  Word equa-
tion editor will be used. Th e idea is that another piece of soft ware will not 
be required to duplicate the equations used in this chapter. Th us the bold-
ness of the characters will not be given a mathematical signifi cance. Single 
arrows over the variable will indicate a vector quantity. Double arrows will 
indicate a tensor (usually second order) quantity.

Since the variety of topics covered defeat the purpose of trying to estab-
lish one consistent set of nomenclature, each chapter will be supplied with 
its own nomenclature table. Care must be taken to use the proper table, 
but this practice allows the maximum use of familiar symbols in any given 
discussion.

Th e CTP tool is presented in Fortran. No other language is practical 
since the millions of dollars of CFD code development, study, and docu-
mentation have not been and, in all probability, will never be available for 
duplicating this technology.

1.7.1 LIST OF SYMBOLS

1.7.1.1 English Symbols

a thermal diff usivity
A cross-sectional area of pipe
B  empirical constant in inner law velocity profi le (5.5 or 5.0)
Cp constant pressure heat capacity
D inside pipe diameter
Deff  eff ective diff usion coeffi  cient
E turbulent energy dissipation
fD Darcy friction factor
f, Fn unspecifi ed functions
g, Gn unspecifi ed functions
Gaw mass fl ux of species a at the wall
h heat transfer coeffi  cient
k mass transfer coeffi  cient
K turbulent kinetic energy
n  empirical constant in power-law velocity profi le
Nu = hD/κ Nusselt number
P pressure
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Pr = n/a Prandtl number
Prt = e/a = Cpμt/kt turbulent Prandtl number
qw wall heat fl ux
r radial coordinate
R pipe radius
Re = D Uav/ν Reynolds number
Sh = kD/Deff  Sherwood number
Sc = ν/Deff  Schmidt number
T temperature
T* = qw/ρCp u* characteristic temperature
u local time-averaged velocity
Uav spatial average of time-averaged velocity
UCL centerline time-averaged velocity
u+ = u/u∗ inner law velocity

w w /u∗ = τ ρ  friction velocity
x  axial coordinate in cylindrical coordinates
y = R − r coordinate normal to the wall
y+ = yu∗/ν dimensionless normal from the wall
y1

+  inner law variable at the edge of laminar sublayer

1.7.1.2 Greek Symbols
β  function in turbulent Prandtl number correlation
Γ  function in turbulent Prandtl number correlation
δ boundary layer thickness
ε eddy kinematic viscosity
θ = (Tw − T)/(Tw − Tb) temperature parameter
θ+ = (Tw − T)/T∗ dimensionless temperature variable
θo

+ = (Tw − To)/T∗  dimensionless temperature at pipe centerline
k von Kaman constant (0.40 or 0.41) for the inner 

law velocity profi le, otherwise
k thermal conductivity
kt eddy thermal conductivity
μ molecular viscosity
μt eddy viscosity
ν kinematic viscosity
ρ density
ρi partial density of species i
τ shear stress
ϕ dimensionless concentration variable
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1.7.1.3 Subscripts

a species a
b bulk value
av average value
CL centerline value
eff  eff ective value
H high Reynolds number value
L low Reynolds number value
o centerline or edge condition
p constant pressure quantity
R fl uid value at the wall
t turbulent quantity
w wall property

1.7.1.4 Superscripts

∗ dimensionless variable
+ inner law variable

Acronyms
AE algebraic equations
CFD computational fl uid dynamics
CTP computational transport phenomena
FDF fully developed fl ow
ODE ordinary diff erential equations
PC personal computer
PDE partial diff erential equations
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2C H A P T E R  

The Equations of Change

2.1 INTRODUCTION
Th e equations of change for an open system are a coupled set of partial dif-
ferential equations that describe the transport of mass, momentum, and 
energy at a point in the fl ow fi eld. Th ese equations are integrated to deter-
mine the velocity, temperature, and concentration fi elds in the geometry 
of the vessel using the appropriate initial and boundary conditions. Th ese 
equations represent the conservation of mass, momentum, and energy, 
and they include terms that represent rate equations and equilibrium rela-
tions which also require description.

Th e equations of change are the result of applying three physical laws 
to an open system. Th e laws are the law of conversation of mass, Newton’s 
second law of motion, and the fi rst law of thermodynamics. Th e resulting 
partial diff erential equations are referred to as the continuity equation, 
the equations of motion or the Navier–Stokes equations, and the general 
energy equation. Th e conservation laws are applied to an open system, a 
fi nite control volume fi xed in space with material fl owing through it is 
used, or they are applied to an arbitrary control volume moving with the 
mass average velocity of the fl uid. Unless specifi cally stated to the con-
trary, all of the fl ows described in this chapter are assumed to be laminar. 
Th e treatment of turbulent fl ow is described in Chapters 4 and 5.

A control volume fi xed in space can be a cube where the fl ow of mass, 
momentum, and energy enter three of the faces and leave through the 
other three faces as illustrated in Figure 2.1. Th e dimensions can be fi nite or 
diff erential lengths. Th e fl ows shown in Figure 2.1 represent momentum 
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(ruu), mass fl ux of species i(ni), and energy (q). Th e control volume fi xed in 
space can be an arbitrary shape, and a surface element is used to describe 
the transport in and out of the surface as illustrated in Figure 2.2. In this 
fi gure, ji is the diff usion fl ux of species i and Y is the fl ux of a property. 
An arbitrary shaped control volume can be used that is moving with an 
arbitrary (usually local) fl uid velocity.

Th e advantage of deriving the conservation equations to a cube fi xed in 
space is the visualization of the transport processes through the surfaces. 

q

ni

ni

q

ρυυ
ρυυ

FIGURE 2.1 Control volume as a cube fi xed in space.

FIGURE 2.2 Control volume as an arbitrary body moving with the local 
velocity.
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ρυυ
q
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Th is cube fi xed in space has the disadvantage in that the resulting equa-
tions are in the rectangular coordinate system, and generality to other 
coordinate systems is not obvious. If the cube fi xed in space has fi nite 
dimensions, an average velocity, temperature, and concentration are 
implied at the surfaces of the cube. If diff erential dimensions are used for 
the cube, an argument has to be made that the diff erential dimensions are 
infi nitesimally small but are suffi  ciently large to not invalidate the treat-
ment of the fl uid as a continuum.

Th e advantage of deriving the conservation equations using an arbi-
trary control volume is a specifi c coordinate system is not required. If the 
control volume is moving with the mass average velocity of the fl uid, only 
diff usive transport of mass, momentum, and energy are included in the 
balances. If the fl uid is not treated as a continuum, the motion of the mol-
ecules in the control volume has to be averaged to obtain the local fl uid 
velocity, temperature, and concentration, and this formulation is required 
when the dimensions of the vessel are of the same order of magnitude as 
the mean free path of the molecules as might be encountered in the pores 
of a catalyst. Th e fl uid is treated as a continuum here, and if the equations 
are needed for the case where the fl uid is not a continuum the comparable 
derivations are provided in Chapman and Cowling (1970).

Th e equations of change are derived initially using a cube fi xed in space, 
then a general properties balance is used with a control volume moving 
with the fl uid velocity to demonstrate that the equations of change are 
independent of coordinate systems and of the same form mathemati-
cally. Th is formulation is frequently used in the numerical solution of the 
equations. Th e rate equations and equilibrium relations are described for 
Newtonian and non-Newtonian fl uids. Convenient forms of the equations 
of change are described and tabulated in terms of the rate equations for 
fl uxes of mass momentum and energy and for a Newtonian fl uid in several 
coordinate systems.

2.2 DERIVATION OF THE 
CONTINUITY EQUATION

Th e law of conservation of mass is applied to the control volume shown 
in Figure 2.3. Th e dimensions of the control volume (system) are Dx, Dy, 
and Dz, and it is orientated in the fl ow fi eld such that all of the fl ow enters 
through the three faces touching the point (x, y, z) and leaves through the 
other three faces.
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Th e law of conservation of mass can be expressed in the following mne-
monic representation:

 

Rate of accumulation Mass flow rate Mass flow rate
of mass in the into the from the
control volume control volume control volume

= −

 

(2.1)

Th e fl ow entering the control volume passes through the faces touching point 
(x, y, z), and leaving through faces touching point (x + Dx, y + Dy, z + Dz). 
Th e mass fl ow rate into the control volume consists of the sum of the mass 
fl ow rate entering the three faces DxDy, DxDz, and DyDz. Th e mass fl ow rate 
entering face DyDz is the product of the area, DyDz; the density of the fl uid, r; 
and the component of the velocity vector perpendicular to the face, ux. Th is is 
ruxDyDz|x as shown in Figure 2.3. Similar terms can be obtained for the mass 
fl ow rates entering and leaving the other faces.

Th e accumulation of mass in the control volume is the partial derivative 
with respect to time of the mass in the control volume. Th e mass in the control 
volume is the product of the density, r, and the volume DxDyDz, of the control 
volume. Th e law of conservation of mass, Equation 2.1, can be written as

υyρΔxΔz|y + Δy

υzρΔxΔy|z

υyρΔxΔz|y

υxρΔyΔz|x + Δ xυxρΔyΔz|x

υzρΔxΔy|z + Δz

Δy

(x, y, z)

x

z

y

Flow field

υy

υz

υx

υ

Δx

Δz

FIGURE 2.3 Control volume fi xed in space with fl uid fl owing through the 
volume.
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[ ] +Δ

+Δ +Δ

∂ Δ Δ Δ ρ = υ ρΔ Δ + υ ρΔ Δ + υ ρΔ Δ − υ ρΔ Δ
∂

− υ ρΔ Δ − υ ρΔ Δ

x y z xx y z x x

y zy y z z

x y z y z x z x y y z
t

x z x y
 

(2.2)

Since DxDyDz are fi xed in space and not a function of time Equation 2.2 
can be written as

      

y yy y yx x z zx x x z z z

t x y z
+Δ+Δ +Δ

υ ρ − υ ρυ ρ − υ ρ υ ρ − υ ρ∂ρ− = + +
∂ Δ Δ Δ  

(2.3)

Th e terms on the right-hand side of the Equation 2.3 are in the form of 
the defi nition of partial derivatives. Th e result of letting Dx, Dy, and Dz 
approach zero is

 

yx z

t x y z
∂ρυ∂ρυ ∂ρυ∂ρ− = + +

∂ ∂ ∂ ∂  
(2.4)

which can be written in vector notation in terms of the vector diff erential 
operator Ñ and the velocity vector denoted by an arrow over the symbol as

 t
∂ρ− = ∇⋅ρυ
∂

�

 
(2.5)

Th e term Ñ . ru® is the net mass fl ux per unit volume through the control 
volume. Th e decrease in density with time at a point in the fl ow fi eld is 
equal to the net rate of mass effl  ux per unit volume. Th is equation is given 
in Table 2.1 for rectangular and cylindrical coordinates. Th e equations of 

TABLE 2.1  Continuity Equation in Rectangular and Cylindrical 
Coordinates

Rectangular coordinates (x, y, z)

0yx z

t x y z
∂ρυ∂ρ ∂ρυ ∂ρυ

+ + + =
∂ ∂ ∂ ∂

(A)

Cylindrical coordinates (r, q, z)

1 1
0r zr

t r r r z
θ∂ρ ∂ρ υ ∂ρυ ∂ρυ

+ + + =
∂ ∂ ∂θ ∂

(B)
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change in cylindrical coordinates can be obtained from the coordinate 
transformations given in Appendix B or from any of several texts, for 
example, Bird et al. (1960).

Th e substantial derivative form of the continuity equation is obtained 
by expanding Equation 2.5 and rearranging to give the following equation 
using Ñ . ru

®
 = rÑ .  u

®
 + u

®  . Ñr.

 t
∂ρ− − υ⋅∇ρ = ρ∇⋅υ
∂
� �

 
(2.6)

Th e substantial derivative of the density is Dr/Dt, the term on the left -
hand side of Equation 2.6.

 

D
 

Dt
ρ− = ρ ∇⋅υ

�

 
(2.7)

An important form of Equation 2.7 is for an incompressible fl uid (r = 
constant) which is applicable to the fl ow of most liquids, and Equation 2.7 
becomes

 0∇⋅υ =
�

 (2.8)

2.3 DERIVATION OF THE SPECIES 
CONTINUITY EQUATION

Th e law of conservation of mass is applied to species i of a fl uid of n spe-
cies, some or all of which are undergoing chemical reactions, as shown in 
Figure 2.4. Th e law of conservation of mass for species i can be expressed 
in the following mnemonic representation:

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Rate of accumulation Flow rate of Rate of formation of  Flow rate of
of  in the control  into the by chemical reaction  from the
volume control volume in the control volume

i
i i i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦control volume   

(2.9)

Th e mass fl ow of species i entering the control volume is the mass fl ux 
of species i, ni, times the cross section of the face perpendicular to com-
ponent of the mass fl ux. Th e mass fl ow rate entering the control volume 
is through the faces touching point (x, y, z), and leaving through faces 
touching point (x + Dx, y + Dy, z + Dz) as shown in Figure 2.4. Th e species 
continuity equation can be written as



The Equations of Change     ■      41

 

i ix i ix iyx x x y

iy iz izz z zy y

x y z n y z r x y z n y z n x z
t

n x z n x y n x y

+Δ

+Δ+Δ

∂ ρΔ Δ Δ = Δ Δ + Δ Δ Δ − Δ Δ + Δ Δ⎡ ⎤⎣ ⎦∂
− Δ Δ + Δ Δ − Δ Δ   (2.10)

where ri is the rate of formation of species i by chemical reaction.
Simplifying the above and taking the limit as Dx, Dy, Dz go to zero gives 

the continuity equation for the ith species.

 

∂ρ
= −∇⋅ = =

∂
�

…for 1, 2, ,i
i in r i n

t  
(2.11)

Equation 2.11 is given in Table 2.2 A in rectangular and cylindrical 
coordinates.

Th e sum of Equation 2.11 over n species gives the continuity equation, 
Equation 2.5, using

 = = =

ρ = ρ ρυ = =∑ ∑ ∑� �

1 1 1

, , 0
n n n

i i i
i i i

n r
 

(2.12)

nixΔyΔz|x

nizΔxΔy|z +Δz

niyΔxΔz|y

niyΔxΔz|y + Δ y
nizΔxΔy|z

Δy
nixΔyΔz|x + Δ x

(x, y, z)

x

z

y

Flow field

υy

υx

υ

υz

niy

niz

ni

nix

Mass flux of i

Δz

Δx

FIGURE 2.4 Control volume fi xed in space with mass fl ow rate of species i 
fl owing through the volume.
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Th e mass fl ux of species i is diffi  cult to evaluate except in a one-dimen-
sional system with no convection. Rather, a diff usion fl ux (ji) with respect 
to a mass (or number) average velocity (u) is defi ned and evaluated with a 
diff usion coeffi  cient and a concentration gradient. Also, a diff usion veloc-
ity (uds) could be defi ned by dividing the diff usion fl ux by the partial mass 
(or molar) density, Th e diff usion velocity would therefore be the diff erence 
in the velocity of species i and the mass (or molar) average velocity. Using 
mass-averaged values the following relationships result.

 diDiffusion velocity i= υ = υ − υ
� � �

 (2.13)

Th e diff usion fl ux of component i relative to the mass average velocity is 
related to the mass fl ux of i by

 = ρ υ = ρ υ − υ = − ρυ
� � � � ��

di ( )i i i i i ij n  (2.14)

All of the fl uxes and velocities just defi ned are vectors, which will be 
denoted by an arrow over the symbol.

Using Equation 2.14 and the species continuity equation, Equation 2.11 
can be written in terms of the mass fl ux relative to the mass average velocity.

 
) for 1, 2, ,i

i i ij r i n
t

∂ρ
+ ∇⋅(ρ υ = −∇⋅ + =

∂

��
…

 
(2.15)

TABLE 2.2  Various Forms of the Species Continuity Equation

Continuity equation in terms of the mass fl ux, n

Rectangular coordinates

iyi ix iz
i

nn n
r

t x y z
∂∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂
ρ

(A)

Cylindrical coordinates

( )1 1i i iz
ir

n n
rn r

t r r r z
θ∂ ∂ ∂∂

+ + + =
∂ ∂ ∂θ ∂
ρ

(B)

Species continuity equation for constant r and DAB

Rectangular coordinates
2 2 2

A A A A A A A
AB A2 2 2x y z D r

t x y z x y z
⎛ ⎞∂ρ ∂ρ ∂ρ ∂ρ ∂ ρ ∂ ρ ∂ ρ

+ υ + υ + υ = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (C)

Cylindrical coordinates
2 2

A A A A A A A
AB A2 2 2

1 1
r z D r r

t r r z r r r r z
θ ⎛ ⎞∂ρ ∂ρ υ ∂ρ ∂ρ ∂ ∂ρ ∂ ρ ∂ ρ⎛ ⎞+ υ + + υ = + + +⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂θ ∂ ∂ ∂ ∂θ ∂⎝ ⎠

(D)



The Equations of Change     ■      43

Th e substantial derivative form of Equation 2.15 is obtained by expanding 
the term Ñ. (riu

® ) to obtain

 for 1, 2, ,( )i
i ii

D
j r i n

Dt
ρ

= −ρ ∇⋅ υ − ∇⋅ + =
��

…  
(2.16)

2.3.1 BINARY SYSTEMS

Fick’s fi rst law of diff usion in a binary mixture is the defi nition of the 
binary diff usion coeffi  cient DAB.

 

2

A AB A A B AB A
c

j D m M M D y
⎛ ⎞

= −ρ ∇ = − ∇⎜ ⎟ρ⎝ ⎠

�

 
(2.17)

Th ere are equivalent forms of Equation 2.17 in terms of the mass fl ux n®A 
and molar fl ux, N

®
A, of component A where it must be remembered that 

the use of a mass (or molar) velocity has been implied in the use of these 
fl uxes. Such a velocity must be evaluated before the species equations can 
be combined with the other conservation laws. Some applications are 
so geometrically simple that this step is not necessary. Other forms of 
Equation 2.17 are:

 A A A B AB A( )n m n n D m= + − ρ ∇
� � �

 (2.18)

 A A A B AB A( )N y N N cD y= + − ∇
� � �

 (2.19)

Th e species continuity equation for binary diff usion has Equation 2.17 
substituted into Equation 2.15 to give an equation in terms of the fl uid 
local mass average velocity and concentration gradients.

 
A

A AB A A( ) )D m r
t

∂ρ + ∇⋅ ρ υ = ∇⋅ ρ ∇ +
∂

(�
 (2.20)

Th is equation can be used to compute concentration profi les in binary sys-
tems, steady or unsteady state, with variable total density and diff usivity. 
Restrictions are that thermal, pressure, and forced diff usion must be absent. 
Th e equations to account for these eff ects are described in Chapter 3.

For constant density and diff usivity Equation 2.20 can be simplifi ed 
to the following form using Ñ.rAu® = u®.rA + rAÑ .u®  where Ñ .u® = 0 by 
continuity.

 
2A A

A AB A A
D

D r
t Dt

∂ρ ρ+ υ⋅∇ρ = = + ∇ ρ +
∂

�

 
(2.21)
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Equation 2.21 is given in Table 2.2, Equation B, in rectangular and cylin-
drical coordinates from Bird et al. (1960).

Dividing Equation 2.21 by the molecular weight MA gives an equa-
tion in terms of the molar concentration cA that is used for dilute liquid 
solutions.

 
2A

AB A A

Dc
D c R

Dt
= + ∇ +

 
(2.22)

Equation 2.22 can have the same form as the energy equation with constant 
properties. If the boundary conditions for mass and energy transfer are put 
in the same form, the solution to the energy equation has the same form as 
species continuity equation. It is said that there is an analogy between heat 
and mass transfer. Th is will be illustrated in the description of fl ow in the 
boundary layer involving simultaneous heat and mass transfer.

Th e equation called Fick’s Second Law of Diff usion is obtained from 
Equation 2.22 for diff usion only (u = 0) and no chemical reaction. Th is is

 
2A

AB A

c
D c

t
∂

= + ∇
∂  

(2.23)

Equation 2.23 is used for diff usion in solids and in stationary liquids. It has 
the same form as the equation for heat conduction. If the boundary and initial 
conditions are the same, any solution of Equation 2.23 is a solution to the heat 
conduction equation. Th e text by Carslaw and Jaeger (1959) contains a num-
ber of solutions to this equation for various boundary and initial conditions.

A convenient form of Equation 2.11 in molar units for a binary system 
is obtained by dividing by the molecular weight MA:

 
A

A A
c

N R
t

∂ + ∇⋅ =
∂

�

 
(2.24)

where
cA is the molar concentration
N
®

A is the molar mass fl ux
RA is the reaction rate

To solve binary diff usion problems using Equation 2.24, information 
about the diff usion mechanism or concentration is used in analyzing the 
form of (NA + NB) in Equation 2.19. Several cases are encountered in physi-
cal systems which are summarized below.
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Species • A is slightly soluble in species B, yA = 0, and yA(N
®

A + N
®

B) = 0, 
and Equation 2.19 becomes

 A AB AN cD y= − ∇
�

 (2.25)

and Equation 2.24 has the form

 
( )∂ − ∇⋅ ∇ =

∂
A

AB A A
c

cD y R
t  

(2.26)

Diff usion of species • A through a stagnant fi lm of species B, i.e., 
NB = 0, and Equation 2.19 becomes

 A A A AB AN x N cD y= − ∇
� �

 (2.27)

or

 
= − ∇

−

�
A AB A

A(1 )
c

N D y
x  

(2.28)

and Equation 2.24 has the form

 

⎡ ⎤∂ − ∇⋅ ∇ =⎢ ⎥∂ −⎢ ⎥⎣ ⎦
A

AB A A
A(1 )

c c
D y R

t y
 

Diff usion of species • A through species B with rapid chemical reac-
tion on the surface A ® ½B to have NB = −½NA diff using from 
the surface. For this case yA(NA + NB) = yA(NA − ½NA) = ½yANA. 
Substituting into Equation 2.24 gives

 
A A A AB A

1
2

N y N cD y= − ∇
� �

 
(2.29)

or

 
= − ∇

−

�
A AB A1

A2(1 )
c

N D y
y  

(2.30)

and Equation 2.24 has the form

 

⎡ ⎤∂ − ∇⋅ ∇ =⎢ ⎥∂ −⎣ ⎦
A

AB A A1
A2(1 )

c c
D y R

t y
 

(2.31)
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For a homogeneous, fi rst-order, irreversible reaction in the fl uid • 
A ® B, the reaction rate is RA = −kcA. With species A being slightly 
soluble in species B and cA = yAc, Equation 2.26 has the form:

 

2A
AB A A

c
D c kc

t
∂

= ∇ −
∂  

(2.32)

Th e approach described here can be applied to other binary diff usion prob-
lems with chemical reactions. For example, a surface reaction could occur 
at a fi nite rate rather than instantaneously as shown above. Th ere would be 
a rate equation for the surface reaction that describes the disappearance of 
A at the surface by NA = kcA,surface, where cA,surface is a surface concentration. 
Th e procedure would be the same as used above, and Bird et al. (2002) 
describes this case and some others that have analytical solutions.

2.3.2 MULTICOMPONENT SYSTEMS

In general, a mass fl ux is caused by all of the diff using species. Th ese multi-
component diff usion coeffi  cients mean that coupled solutions for the 
diff using species are required. Th e equations governing this behavior are 
given in Section 3.4.2. Methods of treating such coupling are also dis-
cussed in the same chapter.

In addition to mass fl uxes of diff using components resulting from con-
centration gradients, a mass fl ux of species with respect to the mean fl uid 
motion can be caused by pressure gradients, temperature gradients, and 
external force diff erences. Th ese eff ects also are discussed in Section 3.4.2.

2.3.3  GENERALIZED CHEMICAL REACTIONS 
AND SIMULTANEOUS REACTION RATES

Solution of the continuity equation, Equation 2.11, requires an expression 
for ri to describe the chemical reaction rate. Chemical reactions involving 
n chemical species and m chemical reactions are given by

 

f

r1 1

for 1,2, ,
j

j

n nk

ji i ji i
ki i

r A p A j m
= =

=∑ ∑⇔ …
 

(2.33)

where
Ai represents the chemical symbol of the ith species
rji and pji are the stoichiometric coeffi  cients of the reactants and 

products, respectively
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Based on the nomenclature in Equation 2.33, a general expression can 
be written for the rate of reaction of the ith species for m simultaneous 
reactions.

 
f r

1 11

( ) ji ji
m n n

r p
ij jii j i j i

i ij

p rr k c k c
= ==

⎧ ⎫−= −⎨ ⎬
⎩ ⎭

∑ ∏ ∏
 

(2.34)

where
kfj and krj is the forward and reverse rate constants, respectively
ck is the concentration of component k in appropriate units

Th e rate constants are a function of temperature given by the Arrhenius 
equation (Hirschfelder, 1954).

In Chapter 3, a description is given of chemical equilibrium and reac-
tion kinetics for computational transport computations that employs 
Equation 2.34. Chapter 3 includes methods used to describe equilibrium 
constants to evaluate the reverse rate constant and free-energy minimiza-
tion to predict equilibrium concentrations for very fast reactions.

2.4 DERIVATION OF THE EQUATION 
OF MOTION

Th e result of applying Newton’s second law of motion to an open system—
a control volume fi xed in space with fl uid fl owing through—is referred 
to as the equations of motion or the momentum equation. For a control 
volume fi xed in space, Newton’s second law for an open system can be 
written mnemonically as

 

Sum of forces Rate of momentum Rate of momentum Rate of accumulation
acting on the leaving the entering the of the momentum in
control volume control volume control volume the control volume

= − +

  
(2.35)

Th e equation of motion is a vector equation with x-, y-, and z-components in 
rectangular coordinates. Th e x-component is indicated by

 
cv

out, in,x x x

M
F M M

t
∂

= − +
∂∑

 
(2.36)
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2.4.1 FORCES AND STRESSES

Reviewing the forces or stresses (force per unit area) that act on the control 
volume, they include surface forces and body forces. Body forces are the 
ones that are proportional to the volume or mass of the body and comprise 
those forces that involve action at a distance. Examples are gravitational 
attraction, magnetic forces, and electrodynamic forces.

Surface forces are ones that exert force on the control surface by material 
outside the control volume. Such forces are exerted by pressure and viscous 
eff ects. Normal and shear stresses cause these forces. Pressure is one compo-
nent of the normal stresses. It is taken as positive in compression. Th e normal 
viscous stresses are txx, tyy, tzz; and they are positive in tension with respect to 
the positive normals to the surfaces they act upon. Th e viscous shear stresses 
act parallel to the surfaces they act upon; they have the same sense as the sur-
face they act upon. Th e components of the stress tensor comprise a matrix. 
Th e fi rst subscript on the matrix element indicates the surface being stressed; 
the second is the direction that the normal or shear stress acts. Surfaces are 
vectors; the positive direction of which is the outward normal to the control 
surface of interest. For the unit cube, three of these normals are in the posi-
tive coordinate direction, and three are in the negative coordinate direction. 
If the positive surface normal points are in a negative coordinate direction, 
then all three of the viscous stresses on that surface are also positive in all 
three of the negative coordinate directions. Figure 2.5 indicates the direction 
of these stress components. For pressure to be compressive it must act in the 
negative direction of each of the surface normals. Th is sign convention is cus-
tomary and it results in the following relationships for the normal stresses.

 xx xxPσ = − + τ  (2.37a)

 yy yyPσ = − + τ  
(2.37b)

 zz zzPσ = − + τ  
(2.37c)

where
s will be used to represent total surface stresses
t will be used to represent viscous normal and shear stresses

A diff erent sign convention is to have the normal stresses be positive in 
compression to be consistent with the pressure and have the shear stresses 



The Equations of Change     ■      49

positive on faces in contact with the point (x, y, z) as shown in Figure 2.6. 
For the fl uids at rest or in motion such that the velocity is everywhere the 
same, each normal stress is equal to the pressure. Th e resulting stresses are 
shown in Figure 2.7. Th e argument is that this sign convention is the same 
as that for the convective momentum (ru®u®) and that it gives the same 
form of the equations relating shear stress to shear rate as Fick’s diff usion 
law and Fourier’s heat conduction law. Th ese laws for mass and thermal 
diff usion will be discussed in detail in Chapter 3. Th e users of this sign 
convention are very much in the minority; notably Bird et al. (2002) and 
Brodkey (1967). Th e remainder of this book will use the customary sign 
convention exclusively.

An interesting feature, which may be observed by carefully comparing 
Figures 2.5 and 2.7, is that every component of the stress tensor is exactly 
opposite in sign when the two conventions are compared. Th e proponents 
of the second convention method also carry it a step further by assigning a 
negative value to the coeffi  cient of viscosity. Viscosity will also be discussed 
further, but it is simply the scalar coeffi  cient which relates the shear stress 
to the rate of strain. When this sign change is made and the shear stress is 
eliminated in favor of the rate of strain (which consists of velocity deriva-
tives), the resulting momentum equations become identical.

Shear stress and the rate of strain are second-order tensors. Tensors 
will be discussed at length in Appendix B. However, a working defi nition 

(x, y, z)

τyx|y+Δy

τzx|z

τyx|y

(P + τxx)|x + Δx

τzx|z+Δz

Δx

Δy

Δz

(P + τxx)|x

y

x

z

FIGURE 2.5 Shear and normal stresses acting on the control volume in the 
x-direction.
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is as follows. Vectors are terms which have three scalar components; 
one in each of the three coordinate directions which are defi ned by 
base vectors. Addition and several types of multiplication of vectors are 
defi ned operations. But what is a vector divided by a vector and what is 

(x, y, z)

Δx

Δz

Δy

τyxΔxΔz|y + Δy

τzxΔxΔy|z

(τxxΔyΔz)|x + Δx

τyxΔxΔz|y

(τxxΔyΔz)|x

τzxΔxΔy|z + Δz

x

z

y

FIGURE 2.6 Shear and normal forces acting on a surface in the x-direction.

z

x

τxy

τxz

τxx

y

FIGURE 2.7 Shear and normal stresses using a sign convention which is 
the same as that for the convective momentum fl ux.



The Equations of Change     ■      51

the product of two vectors without a dot or cross multiplication sign. 
Such operations indicate a simplifi cation of the multiplication process. 
Th e division process and a multiplication without the dot or cross sim-
plifi cation produce second-order tensors. Th ese terms have nine scalar 
coeffi  cients multiplied by pairs of base vectors. For the present these 
defi nitions are suffi  cient. Th e rectangular (orthogonal) Cartesian coor-
dinate system will be used to discuss the conservation laws and their 
component parts fi rst because the base vectors are of unit magnitude 
and always point in the same direction. Other coordinate systems do not 
have such a simple construction.

In summary, a stress acts on each face of the control volume and has 
one component normal to the surface and two tangential to the surface, 
as shown in Figure 2.7, for the face in the y–z plane. Th e sign conventions 
are that normal and shear stresses are considered positive when acting on 
control volume surfaces which are positive and negative when the sur-
faces are negative. As shown in Figure 2.5, the fi rst subscript on a stress 
gives the surface on which the stress acts by giving the outward normal 
to that surface and the second subscript gives the direction that the stress 
acts. Stresses with repeated subscripts are normal stresses, and those with 
mixed subscripts are shear stresses.

2.4.2  DERIVATION OF THE X-COMPONENT 
OF THE EQUATION OF MOTION

For the sum of forces term in Equation 2.36, the x-components of the 
shear and normal stresses acting on the surfaces of the control volume are 
shown in Figure 2.5. Th e x-component of the body force is represented by 
årigix, and each chemical species can be acted upon by a diff erent external 
force per unit mass, gxi such as electric fi elds (Chapman, 1969). If gravity 
is the only body force acting on the control volume, then årigix = rgx = rg 
cosb where g is the gravitational constant (9.8066 m/s2) and b is the angle 
between the x axis and the direction that gravity acts.

Th e sum of the forces in the x-direction is the sum of the body, shear, 
and normal forces:

  

( )

( )

x i xi xx yx zx zx
x i

xx x x yx y y zx z z

yF g x y z P y z x y x y

P y z x y x z+Δ +Δ +Δ

= ρ Δ Δ Δ + + − τ Δ Δ − τ Δ Δ − τ Δ Δ

+ − + τ Δ Δ + τ Δ Δ + τ Δ Δ

∑ ∑

  
 

(2.38)
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Rearranging gives

 

+Δ

+Δ +Δ

⎧ ⎫⎡ ⎤− + τ − − + τ⎪ ⎪⎢ ⎥= Δ Δ Δ ρ +⎨ ⎬Δ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
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∑ ∑
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F x y z g

x

x y z
y z

 

(2.39)

In Figure 2.8, the control volume is shown with the convective momentum 
entering and leaving the control volume in the x-direction only. Rate of 
momentum is defi ned as the product of the mass fl ow rate and the velocity 
in the direction of the mass fl ow rate.

 ,in [ ]x x x y z xM W y z x z x y= υ = ρ υ Δ Δ + υ Δ Δ + υ Δ Δ υ  (2.40)

Th e net momentum fl ux through the control volume is

 

,out ,inx x x x x x y xx x x y y

y x z x z xz z zy

M M y z y z x z

x z x y x y

+Δ +Δ

+Δ

− = ρΔ Δ υ υ − ρΔ Δ υ υ + ρΔ Δ υ υ

− ρΔ Δ υ υ + ρΔ Δ υ υ − ρΔ Δ υ υ
  

(2.41)

(x, y, z)
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y

ρΔxΔz υy υx|y +Δy

ρΔxΔy υz υx|z

ρΔyΔz υx υx|x + Δx

ρΔxΔz υy υx|y

Δy

Δz

Δx

ρΔyΔz υx υx|x

ρΔxΔy υz υx|z+Δz

FIGURE 2.8 Th e rate of convective momentum through control volume in 
the x-direction only.



The Equations of Change     ■      53

Rearranging Equation 2.41 gives

 

out in( )
y x y y y x yx x x x x x x

x x

z x z z z x z

x yM M x y z
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+Δ+Δ

+Δ

⎡ ⎤ρυ υ −ρυ υρυ υ −ρυ υ
⎢ ⎥+

Δ Δ⎢ ⎥− = Δ Δ Δ ⎢ ⎥ρυ υ −ρυ υ⎢ ⎥+⎢ ⎥Δ⎣ ⎦   
(2.42)

Th e rate of change of the momentum in the control volume in the x-direction 
is given by

 

( )cv x xx y zM
x y z

t t t
∂ Δ Δ Δ ρυ∂ ∂ρυ

= = Δ Δ Δ
∂ ∂ ∂  

(2.43)

Substituting Equations 2.39, 2.42, and 2.43 into Equation 2.36 and taking 
the limit as Dx, Dy, and Dz go to zero, the result is the x-component of the 
momentum equation.

      

∂τ⎡ ⎤∂τ ∂τ∂ρ + − + + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
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P
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x x y z

x y z t  
(2.44)

Th e same procedure can be used to obtain the y- and z-components of the 
momentum equation shown below.

y-component

     

∂τ ∂τ ∂τ⎡ ⎤∂ρ + − + + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
∂ ∂ ∂ ∂= ( ρ + ( ρ + ( ρ + (ρυ υ υ υ υ υ υ
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(2.45)

z-component
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yzxz zz
i iz

x z y z z z z
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(2.46)
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Th e above three components of the equation of motion can be written in 
the concise form of vector notation as

 
vi ig P

t
∂ρ − ∇ + ∇⋅ τ = ∇⋅ρυυ + ρ
∂∑

�� � �� �

 
(2.47)

Th e fi rst term represents the body force acting per unit volume, the sec-
ond term represents pressure forces per unit volume, the third repre-
sents the viscous shear and normal forces acting per unit volume, the 
fourth represents the rate of change of convective momentum per unit 
volume, and the last term represents the rate of change of momentum 
with time per unit volume. Th e term u®u®  is a dyadic product. Th e terms 
∇⋅ τ
��

 and Ñ.ru®u®  are single dot products of a vector Ñ and tensors τ
��

 and  
u®u®; they are vectors.

Equation 2.47 can be written in terms of the substantial derivative with 
the aid of the continuity equation as follows:

 
i i

D
P g

Dt
υρ = −∇ + ∇⋅τ + ρ∑
� �� �

 
(2.48)

In the language of computational fl uid dynamics (CFD), this form of the 
momentum equation is said to be the nonconservative form of the equa-
tion, because it has already been combined with the continuity equation.

Th e components of Equation 2.48 are given in Table 2.3 in rectangular 
and cylindrical coordinates. A description of the stress tensor, τ

��
, is needed 

to apply the equation of motion.
Th e stress has been termed a tensor, but it has not yet been demon-

strated that it is a tensor. Its tensor character will be demonstrated subse-
quently. To this point, it should be considered only a three by three matrix 
of elements.

2.4.3 RATE OF DEFORMATION

As a fl uid element moves it undergoes: (1) translation, (2) rotation, (3) dila-
tation, and (4) shear strain. Conceptually, a fl uid cube could deform with 
time as shown in Figure 2.9. Translation and rotation moves the fl uid as 
though it were a solid body, so no strain is associated with these motions. 
Dilatation is associated with linear motions which cause expansive or 
compressive strains on the element. Shear strain cause angular distortions 
of the element.
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Using a cube as the fl uid element comparable to the one shown in Figure 
2.9, the normal strain (Sii) is the change in length to the original length of 
a side of the fl uid element as shown in Figure 2.10. Th e strain rate is given 
by the following equations.

 
d d d

dd d d d d
; ;

d d d d d d
yyxx t t t t t t zz t t t

t t t
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+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ − Δ Δ − Δ Δ − Δ= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦   
(2.49)

TABLE 2.3  Momentum Equation in Terms of the Shear and Normal Stresses

Rectangular coordinates

x-component
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z-Component
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(C)

Cylindrical coordinates

r-component (where ruq
2/r is the centrifugal “force”)
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(D)

q-component (where ruruq/r is the Coriolis “force”)
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To determine the normal rate of strain (eii), the limit of Equations 2.49 is 
taken as the time increment approaches zero.
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transition, rotation, and

deformation from time t to t + dt
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FIGURE 2.9 Diagram of a fl uid element undergoing transition, rotation, 
and deformation from time t to t + dt.

Time t Time t + dt 

dt
Δxt + Δt–Δxt

Δxt Δxt+Δt

dt
dεxx =

dtdt
dφxy1 dφxy2

φxy

φxy1

φxy2dt
dφxy +=

FIGURE 2.10 Diagrams illustrating the rates of normal and shearing strain.
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d 0

d
lim

d
t t t z

zz t
t

z z
e

t z z
+Δ

→

⎡ ⎤Δ − Δ ∂υ
= =⎢ ⎥Δ ∂⎣ ⎦  

(2.52)

Th e velocity gradients shown in Figure 2.11 will cause a distortion of the 
fl uid element to a shape like that shown in Figure 2.12. If dFxy2 and dFxy1 are 
in opposite directions, only a rotation of the element would result, thus

υy

υx

dx+υy

dyτxy

xy

τyx

τxy

τyx

dx

 υy
 x

dy+υx
 υx
 y

FIGURE 2.11 Shear stresses from a velocity gradient acting on the fl uid 
element causing shearing strain.

FIGURE 2.12 Shear strain as seen from a observer riding on the fl uid 
element.

dx

dy

dφxy1

dφxy2

dlx

dly

φxy
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2 1

1
d (d d )

2z xy xyΩ = Φ − Φ
 

(2.53)

In terms of velocity gradients:

 

1
2 d 0

d d
limd tan d

d d d

y

y
xy t x

x t
x t

xx x t
x

−

→

∂υ⎛ ⎞⎧ ⎫
⎪ ⎪⎜ ⎟ ∂υ⎪ ⎪∂Φ = =⎜ ⎟⎨ ⎬∂υ ∂⎜ ⎟⎪ ⎪+

∂⎪ ⎪⎝ ⎠⎩ ⎭  

(2.54)
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1 d 0

d d
limd tan d

d d d

x

x
xy t y

y t
y

t
yy y t

y

−

→

⎛ ⎞⎧ ⎫∂υ
⎪ ⎪⎜ ⎟ ∂υ∂⎪ ⎪⎜ ⎟Φ = =⎨ ⎬∂υ ∂⎜ ⎟⎪ ⎪+⎜ ⎟⎪ ⎪∂⎝ ⎠⎩ ⎭  

(2.55)

 

d 1
d 2

yz x

t x y
∂υ⎛ ⎞Ω ∂υ

= −⎜ ⎟∂ ∂⎝ ⎠
 

(2.56)

Th e one-half is used to represent an average value over the incremental 
time step. Th is average value represents the angular rotation of the major 
diagonal of the rhombus shown in Figure 2.12.

By considering a permutation of the coordinates, the other components 
of the angular velocity vector are determined.

 

d 1
d 2

yx z

t y z
∂υ⎛ ⎞Ω ∂υ

= −⎜ ⎟∂ ∂⎝ ⎠
 

(2.57)

 

d 1
d 2

y x z

t z x
Ω ∂υ ∂υ⎛ ⎞= −⎜ ⎟⎝ ⎠∂ ∂  

(2.58)

Th e vorticity vector is defi ned by

 

d
2

d t
Ωω = = ∇ × υ
�

� �

 
(2.59)

If the vorticity is zero, the fl ow is said to be irrotational.
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Th e shear strain is determined with the same angular displacement 
combined in a diff erent manner. From Equation 2.53

 

2 1d d d1
d 2 d d

xy xy xy

t t t
Φ Φ Φ⎛ ⎞

= −⎜ ⎟⎝ ⎠  
(2.60)

 

d 1
d 2

xy y x
xy yxe e

t x y
Φ ∂υ⎛ ⎞∂υ

= + = =⎜ ⎟∂ ∂⎝ ⎠
 

(2.61)

For a permutation of the coordinates the other strain rates become

 

1
2

yz
yz zye e

y z
∂υ⎛ ⎞∂υ

+ = =⎜ ⎟∂ ∂⎝ ⎠
 

(2.62)

 

1
2

x z
zx xze e

z x
∂υ ∂υ⎛ ⎞+ = =⎜ ⎟⎝ ⎠∂ ∂  

(2.63)

To this point, two matrices have been defi ned: the stress matrix (t̂) and 
the rate of strain (also called the rate of deformation) (ê). Th ese matrices 
represent the elements of two second-order tensors, but the proof of this is 
off ered in Section 2.4.4.

 

ˆ
xx xy xz

yx yy yz

zx zy zz

⎡ ⎤τ τ τ
⎢ ⎥τ = τ τ τ⎢ ⎥
⎢ ⎥τ τ τ⎣ ⎦  

(2.64)

 

ˆ
xx xy xz

yx yy yz

zx zy zz

e e e
e e e e

e e e

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦  

(2.65)

2.4.4  RELATIONSHIP BETWEEN STRESS 
AND THE RATE OF STRAIN

To establish that the stress and rate of strain are second-order tensors, 
two criteria need to be met. First, two directions need to be associated 
with each of these terms. Since rectangular Cartesian coordinates are only 
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being considered at this time, the base vectors are of unit magnitude and 
always point in the same direction. Th is means that such vectors can be 
added at the conclusion of our analysis without introducing any complex-
ity. Th e second criterion for the quantity to be a tensor is to demonstrate 
that it remains invariant under a coordinate transformation. Being invari-
ant does not mean that the elements of the quantity remain constant, only 
that the elements defi ned in one coordinate system can be transformed 
into elements in the other coordinate system likely with diff erent values. 
For example, if a pitcher throws a ball toward home plate at 45 m/s, a coor-
dinate system originating at the pitcher’s mound extending toward home 
plate would indicate that the ball was traveling at +45 m/s. From the bat-
ter’s perspective, a coordinate system originating at home plate extending 
toward the pitcher’s mound would indicate that the ball was traveling at 
−45 m/s. Th e ball speed would be invariant in either case.

Th e stress and rate of strain have been defi ned in an x-, y-, z-coordinate 
rectangular system originating at an arbitrary point (x, y, z). Yuan (1967) 
presents this transformation in detail and shows that each element of the 
stress matrix transforms by the same geometric rules as each element of 
the rate of strain matrix. Th is proves that the stress and rate of strain are 
both second-order tensors.

Before considering transforming the matrix elements further, note that 
the eij equals eji. Assume that tij = tji. Th is assumption will be justifi ed subse-
quently. Th is means that both matrices are symmetric. For symmetric ten-
sors, eigenvectors can be defi ned. To accomplish this construct a tetrahedron 
(o–a–b–c) located such that its apex is at the origin (o) of the incremental 
cube for which the stress and rate of strain were defi ned. Denoting the axes 
which form the tetrahedron as (a, b, c), the normals to the surfaces a–b, b–c, 
c–a point in the directions of the eigenvectors, say 1, 2, and 3. Th is coordinate 
system has coordinate lines O–a, O–b, and O–c. Th ese are also called the 
principal axes. For symmetric tensors, there are only normal stresses and 
only normal deformations on the surface a–b–c. Th e axes a, b, c constitute 
a rectangular Cartesian coordinate system. Now consider a transformation 
from (x, y, z) to (a, b, c). Th e stresses on the abc surface are called the princi-
pal stresses and the strain rates are the principal strain rates. Lamb in 1879 
described this analysis and attributed it to Stokes in 1845 (Lamb, 1945). It has 
also been described by Rouse (1959). It was described in the language of ten-
sors by White (2006) and Sokolnikoff  (1964). Th is provides a background for 
relating the stress to the rate of strain, but no relationship.

Since τ
��

 and e
��
 are now second-order symmetric tensors, scalar invariants 

can now be determined. A scalar invariant for a vector is its magnitude. 
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For a second-order tensor, say the rate of strain, three invariants can be 
defi ned as

 1 11 22 33I e e e= + + = ∇⋅υ
�

 (2.66)

 
2 2 2

2 xx yy yy zz zz xx xy yz zxI e e e e e e e e e= + + − − −  (2.67)

 

3

xx xy xz

yx yy yz

zx zy zz

e e e
I e e e

e e e
=

 

(2.68)

For the principal axes:

 1 1 2 3I e e e= + + = ∇⋅υ
�

 (2.69)

 2 1 2 2 3 3 1I e e e e e e= + +  (2.70)

 

1

3 2 1 2 3

3

0 0
0 0
0 0

e
I e e e e

e
= =

 

(2.71)

Th e stress tensor components will be related to the rate of strain compo-
nents by making the following assumptions which are similar in spirit to 
the relationships between stress and strain made to describe elastic solids 
(Daily and Harleman, 1966).

 1. Stress components will be expressed as linear functions of the rate 
of strain components.

 2. Th ese relationships will be invariant with respect to rotation of 
one rectangular Cartesian coordinate system to another. Th is 
means that the fl uid is isotropic such that its properties are inde-
pendent of direction. Th e fl uid being isotropic implies that the 
principal stress axes and the principal rate of strain axes must be 
identical.

 3. Th e stress components will reduce to hydrostatic pressure when 
all velocities are zero.

Linear functions of the rate of strain components are made to represent 
each of the stress components. Negative pressure is added to the normal 
stress component to account for hydrostatic pressure.
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 11 11 11 22 33( )P P A B e Be Beσ = − + τ = − + + + +  (2.72)

 22 22 11 22 33( )P P Be A B e Beσ = − + τ = − + + + +  (2.73)

 33 33 11 22 33( )P P Be Be A B eσ = − + τ = − + + + +  (2.74)

Th e constants A and B must be supplied to complete this analysis. Only two 
constants are needed because the fl uid is assumed to be isotropic. Based 
on experimental test data from the middle nineteenth century, A = 2m. 
Despite the age of the data, there is no indication that this constant needs 
to be changed. To evaluate the constant B, sum Equations 2.72 through 
2.74 and divide the result by three.

 
( )11 22 33 11 22 33 11 22 333 ( )( ) 2 ( ) 3

( 2 3)( )
P B e e e e e e

P B
σ + σ + σ = − + + + + μ + +

= − + + μ ∇⋅υ
�  (2.75)

If the velocity is zero, the pressure is equal to the average of the sum of the 
normal stresses. Since pressure is compressive and the normal stress com-
ponent is in tension, the pressure is correctly represented. Th e right-hand 
side of this equation reduces to −P when the velocity is zero. Equation 2.75 is 
transformed back to the (x, y, z) coordinate system, and B is taken to be −2m/3 
so that the equation would be valid when Ñ.υ® ¹ 0. Th e resulting normal and 
shear stress equations in terms of the rate of strain components become

 
2

2 ( )
3xx xx xx yy zz xxP e e e e P
μσ = − + μ − + + = − + τ

 
(2.76)

 
2

2 ( )
3yy yy xx yy zz yyP e e e e P
μσ = − + μ − + + = − + τ

 
(2.77)

 
2

2 ( )
3zz zz xx yy zz zzP e e e e P
μσ = − + μ − + + = − + τ

 
(2.78)

 

yx
xy yxy x

∂υ⎛ ⎞∂υ
τ = μ + = τ⎜ ⎟∂ ∂⎝ ⎠  

(2.79)

 

y z
yz zyz y

∂υ⎛ ⎞∂υ
τ = μ + = τ⎜ ⎟∂ ∂⎝ ⎠  

(2.80)
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z x
zx xzx z

∂υ ∂υ⎛ ⎞τ = μ + = τ⎜ ⎟⎝ ⎠∂ ∂  
(2.81)

Some experiments have suggested that the constant B = −(2m/3) should be 
changed to B = −[(2m/3) − k] where k is the second coeffi  cient of viscosity 
and B is the bulk viscosity. Be advised, there is no uniformity of the names 
given to these two terms. For monoatomic gases k is zero. For thermal 
nonequilibrium in polyatomic gases and chemically reacting fl ows with 
rapid density changes, k might be signifi cant. For constant density the 
term it multiplies is zero, so its value is immaterial. For bubbly liquid fl ows, 
it might be signifi cant. A single component bubbly mixture possesses a 
very nonlinear speed of sound which has a strong impact on numerical 
solutions. Th is is indirectly related to the second coeffi  cient of viscosity. 
Further discussion of multicomponent speed of sound will be presented 
in Chapter 3. Th e second coeffi  cient of viscosity is believed to be a func-
tion of nonequilibrium density changes and not a fl uid property at all (see 
Landau and Lifshitz, 1959; Bird et al., 2002). When it doubt, leave it out.

Th e viscous stress tensor components are related to the shear rate com-
ponents in an indicial format by

 

2
( )

3
ji

ij ij
j ix x

⎛ ⎞∂υ∂υ⎛ ⎞τ = + κ − μ ∇⋅υ δ + μ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ∂ ∂⎝ ⎠

�

 

(2.82)

or in a tensor format by

 

T 2
( ( ) )

3
I⎛ ⎞τ = +μ ∇ υ + ∇ υ − μ − κ ∇⋅υ ⋅⎜ ⎟⎝ ⎠

�� �� � � �

 
(2.83)

where
Ñu® is the dyadic product of Ñ and u®

(Ñu®)T is the transpose of the dyadic product
I
��

 is the identity tensor

Th e Kronecker delta dij = 1 if i = j and = 0 if i ¹ j. Beware, some authors 
redefi ne the normal viscous stress components to include the pressure term. 
Th e components of the stress tensor for a Newtonian fl uid are given in Table 
2.4 in rectangular and cylindrical coordinates. Th e transformations given 
in Appendix B can be used to convert the stress–strain relationship and the 
momentum equation from rectangular Cartesian coordinates to cylindrical 
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coordinates. Th e transformed equations are also given in many basic texts, 
for example, White (2006), Bird et al. (2002), Kuo (1986), Wilkes (2006), 
etc. Care must be taken to determine which sign convention is used for the 
stress components before using such equations from a given book.

2.4.5 NAVIER–STOKES EQUATIONS

To illustrate the form and complexity of the momentum equation for a 
Newtonian fl uid with varying density and viscosity, the equations for 
the shear and normal stresses given in Table 2.4 are substituted into the 
Equations 2.44 through 2.46 in rectangular coordinates. Th e results are 
the three components of the general equation of motion given below.
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yx x x

z x
i ix

D P
Dt x x x y y x
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z x z
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∂υ ∂υ∂ ⎡ ⎤⎛ ⎞+ μ + + ρ⎜ ⎟⎢ ⎥⎝ ⎠∂ ∂ ∂⎣ ⎦

∑

�

 
(2.84)

TABLE 2.4  Components of the Stress Tensor for a Newtonian Fluid

Rectangular Coordinates (x, y, z) Cylindrical coordinates (r, q, z)
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(2.85)
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(2.86)

Important simplifi cations of Equations 2.84 through 2.86 are the case of 
constant density and viscosity, which yield the Navier–Stokes equations:
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υρ = −∇ + μ∇ υ + ρ∑
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(2.87)

Th ese equations are given in rectangular and cylindrical coordinates in 
Table 2.5.

For the case of t = 0, an ideal (inviscid) fl uid,

 i i
D

P g
Dt

υρ = −∇ + ρ∑
�

�
 

(2.88)

which is the Euler equation or Bernoulli equation if the fl ow is one 
dimensional.

(continued)

TABLE 2.5  Navier–Stokes Equations (Momentum Equation with Constant Properties) 
in Rectangular and Cylindrical Coordinates

Rectangular coordinates

x-component

⎛ ⎞ ⎛ ⎞∂υ ∂υ ∂υ ∂υ ∂ ∂ υ ∂ υ ∂ υ
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z-component
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2.5 DERIVATION OF THE GENERAL 
ENERGY EQUATION

Th e result of applying the fi rst law of thermodynamics to an open system—
a control volume fi xed in space with fl uid fl owing through—is referred to 
as the general energy equation. Th is law of conservation of energy can be 
expressed in the following mnemonic representation:

 

Rate of accumulation Net efflux of internal
of internal and and kinetic energy 

kinetic energy in through the
the control volume control volume
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to the co

⎡ ⎤ ⎡ ⎤
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(2.89)

TABLE 2.5 (continued)  Navier–Stokes Equations (Momentum Equation with Constant 
Properties) in Rectangular and Cylindrical Coordinates

Cylindrical coordinates

r-component (where ruq
2/r is the centrifugal “force”)
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By the usual sign convention work done by the control volume (system) 
on the surroundings is positive. Energy transport by thermal, nuclear, 
and other electromagnetic radiation is not specifi cally described, but an 
energy fl ux term is included. Th e internal energy per unit mass, U, is the 
energy associated with molecular motion and is a function of the material, 
the temperature, and pressure. Th e kinetic energy per unit mass, υ2/2, is 
the energy associated with bulk fl uid motion 22( )υ = υ

� .
To evaluate each term in Equation 2.89 consider the fl uxes shown on 

the control volume of Figure 2.13. For the fi rst term, the rate of accumula-
tion of internal and kinetic energy in the control volume is given by the 
product of the mass of the control volume and the internal and kinetic 
energy per unit mass in the control volume.

 

⎡ ⎤∂ρ + υ⎡ ⎤⎛ ⎞∂ υ ⎣ ⎦+ ρΔ Δ Δ = Δ Δ Δ⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

22 /2
2

U
U x y z x y z

t t  

(2.90)

Th e control volume is orientated in the fl ow fi eld such that the internal and 
kinetic energy associated with the fl ow enters the control volume, passes 
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FIGURE 2.13 Typical components of fl uxes of internal and kinetic energy, 
heat transfer and work done by the control volume on the surroundings.
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through the faces touching point (x, y, z), and leaves through faces touching 
point (x + Dx, y + Dy, z + Dz). Th e internal and kinetic energy entering and 
leaving through faces DyDz are shown. Th e combined net fl ux of internal 
and kinetic energies (second term of Equation 2.89) can be written as
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2 2
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(2.91)

Rearranging the above gives a more convenient form:
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(2.92)

Th e rate of heat addition to the control volume by conduction and diff u-
sion is discussed in Section 3.4.2 and is given by Fourier’s law and the heat 
of mixing according to Equation 2.93.

 = − ∇ + ∑
��

/i i iq k T H j M  (2.93)

where
Hi is the partial molar enthalpy of species i
k is the thermal conductivity

Th e net rate of heat addition by conduction and diff usion is given by

 + Δ + Δ+ Δ
Δ Δ − Δ Δ + Δ Δ − Δ Δ + Δ Δ − Δ Δx x y y z zx x x z z zy y y

q y z q y z q x z q x z q x y q x y
  

(2.94)

Rearranging the above gives a more convenient form

 

y yx x z zy y yx x x z z z
q qq q q q

x y z
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+Δ+Δ +Δ
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(2.95)
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If qr is the heat fl ux by radiation as described in Section 3.5, rate of heat 
addition to the control volume is given by an equation comparable to 
Equation 2.95 as follows:

       

r rr r r ry yx x z zyx y yx x x z z z
q qq q q q

x y z
x y z

+Δ+Δ +Δ
⎡ ⎤−− −⎢ ⎥−Δ Δ Δ + +⎢ ⎥Δ Δ Δ
⎣ ⎦  

(2.96)

Rate of work is force times the velocity in the direction of the force. Th e 
evaluation of the rate of work term in Equation 2.89 consist of two parts—
rate of work done by the control volume against volume forces and rate 
of work done against surface forces. Volume forces are diff erent external 
forces acting on individual species such as the force on an ion from an 
electric fi eld. If only gravity is acting, the rate of work done by the control 
volume per unit volume on the surroundings is given by

 ( )x x y y z zx y z g g g−Δ Δ Δ ρ υ + υ + υ  (2.97)

Th e negative sign arises since work is done against gravity (i.e., on the sur-
rounding) is when υ and g are in the opposite direction. Th is can also be 
thought of as the change in potential energy where the potential energy 
increases when υ and g are opposed.

For diff erent forces acting on individual species, the rate of work is 
given by

 i i i i ix y z g x y z g nΔ Δ Δ ρ ⋅υ = Δ Δ Δ ⋅∑ ∑  (2.98)

In Figure 2.5, the shear and normal forces in the x-direction of the control 
volume are shown to oppose those forces from the surroundings. Th e net 
rate of work done associated with υx for the fl ow fi eld shown is

     
x xx x xx y yx y yxx x x y y y

z zx z zxz z z

y z y z x z x z

x y x y
+Δ +Δ

+Δ

υ τ Δ Δ − υ τ Δ Δ + υ τ Δ Δ − υ τ Δ Δ

+ υ τ Δ Δ − υ τ Δ Δ  (2.99)

which can be rearranged as

 

yx x y y yx x yxx x x x xx x x x zx z z x zx zx y z
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+ Δ+ Δ + Δ
⎡ ⎤τ υ − τ υτ υ − τ υ υ τ − υ τ⎢ ⎥Δ Δ Δ + +

Δ Δ Δ⎢ ⎥⎣ ⎦  
(2.100)

Th ere are terms associated with υy and υz which are comparable to Equation 
2.100.
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For the work done by the control volume against pressure, the following 
result is obtained since pressure is positive in compression.

 

vy y y y yx x x x x z z z z z
P PP P P P

x y z
x y z

+Δ+Δ +Δ
⎡ ⎤υ −υ − υ υ − υ⎢ ⎥Δ Δ Δ + +

Δ Δ Δ⎢ ⎥⎣ ⎦   
(2.101)

All of the terms for Equation 2.95, the fi rst law of thermodynamics, have 
been developed. Each is multiplied by DxDyDz and has been put in the 
form of the defi nition of a derivative. Canceling the DxDyDz coeffi  cients, 
taking the limit as Dx, Dy, Dz go to zero, and performing some rearrang-
ing, the result is the general energy equation for a multicomponent chemi-
cally reacting system.
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Equation 2.102 in vector–tensor notation is

2
2
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U q q g n P
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+ ∇⋅ρ + υ υ = −∇⋅ − ∇⋅ + ⋅ − ∇⋅ τ ⋅υ − ∇⋅ υ
∂ ∑

�� � � �� � � �

  
(2.103)

Th e fi rst term represents the rate of gain in internal and kinetic energy per 
unit volume. Th e second term is the net rate of internal and kinetic energy 
effl  ux per unit volume. Th e third is the rate of heat transfer by conduction 
and diff usion. Th e fourth term is the rate of heat transfer by radiation. Th e 
fi ft h term is the rate of work done by the fl uid on external body forces. Th e 
sixth term is the rate of work done by the fl uid on viscous forces per unit 
volume, and the seventh term is the rate of work done by the fl uid on pres-
sure forces. Bird et al. (2002) obtains the same equation as Equation 2.103, 
except that Equation 2.103 includes a radiation fl ux term.
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Th e rate of work done by the fl uid on external body forces can be writ-
ten in terms of the mass fl ux of component i relative to the mass average 
velocity, ji, using Equation 2.14,

 
( )i i i i ig n g j⋅ = ⋅ + ρ υ∑ ∑
� �� � �

 
(2.104)

Equation 2.103 can be written in terms of the substantial derivative as 
given below by using the continuity equation to simplify the term on the 
left -hand side.
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(2.105)

Th e thermal energy equation can be obtained by subtracting the dot prod-
uct of the momentum equation, Equation 2.48, and using the identity 

: ) (τ ∇υ = ∇⋅ τ ⋅υ − υ⋅ ∇⋅ τ( )
� � �� � � � � �

 with no loss in generality.
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(2.106)

A sometimes more convenient form of this equation is in terms of the 
enthalpy, H = U + P/r. Th e substantial derivative of the defi nition of the 
enthalpy is

 

D PDH DU
Dt Dt Dt

ρ
= +

 
(2.107)

Substituting Equation 2.107 into Equation 2.106, expanding, rearrang-
ing, and using the continuity equation gives

 r :i i
DH DP

q q g j
Dt Dt

ρ = −∇⋅ − ∇⋅ + ⋅ − τ ∇υ +∑
�� � �� � �

 
(2.108)

A convenient and important starting point for analysis is having the 
energy equation with temperature as the dependent variable and the reac-
tion rate appearing explicitly in the equation. Th e following equations are 
used to obtain this form.

Substantial derivative of enthalpy as a function of temperature, pres-
sure, and concentration
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(2.109)
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Species continuity equation
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Continuity equation
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Substituting Equations 2.109 through 2.111 into Equation 2.108 and sim-
plifying gives
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Th e term in the energy equation that is yet to be evaluated is :τ ∇υ
�� �

 which 
represent energy generated by viscous dissipation. Substituting Equation 
2.83 for a Newtonian fl uid gives the viscous dissipation in terms of the 
viscosity and velocity gradients as shown below.
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Th e term :( )τ ∇υ
�� �

 is always positive, and Equation 2.113 serves to defi ne 
the quantities Fv and Y. Th e equation for Fv is given below in rectangular 
coordinates and is the sum of velocity gradients squared.
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(2.114)

Th e equation for Y is
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2( )Ψ = ∇⋅υ
�

 (2.115)

Th ere are several comparable forms of the energy equation that can be 
obtained by various manipulations. Bird et al. (2002) provides several 
tables of such forms for the energy equation along with the continuity, spe-
cies continuity, and momentum equations. In Table 2.6 the energy equa-
tion is given in rectangular and cylindrical coordinates for a pure fl uid in 
terms of the shear and normal stresses from Bird et al. (1960), as modi-
fi ed to refl ect the accepted sign convention on the stress tensor. Assuming 
that the fl uid is of constant density and viscosity and replacing the viscous 
stress terms with the appropriate rate of strain terms, the energy equations 
shown in Table 2.6 become those shown in Table 2.7.

It should be appreciated that while many simplifi ed forms of the equa-
tions of change may be presented for various assumed properties, not all 
of them are useful. For example, to assume that the fl ow reacts but that 
the density is constant is very likely to be a bad assumption. Remember, 
do not throw out the baby with the bath water. Assumptions must be 
justifi ed.

TABLE 2.6  Energy Equation for a Pure Fluid in Terms of the Energy Flux 
and Stress Tensor
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2.6 NON-NEWTONIAN FLUIDS
Rheology is the science of deformation and fl ow, and materials can be clas-
sifi ed as shown in Figure 2.14. On one side of the diagram is an inviscid 
fl uid which has zero viscosity and on the other is an inelastic solid that 

Inviscid
fluids

Viscous
fluids

Many gooey
and gunky
materials

Elastic
solids

Inelastic
solids

Newton’s law of
viscosity

τ = με

τ = f (d )

τ = ke

μ—viscosity
“linear law”

Hook’s law

k—bulk modulus
of elasticity
“linear law” 

Elastico-viscous or non-
Newtonian fluids—more

fluid than solid

Viscoelastic solids—
more solid than fluid

FIGURE 2.14 Classifi cation of materials.

TABLE 2.7  Energy Equation in Terms of the Transport Properties for a Newtonian 
Fluid with Constant Properties and No Chemical Reactions
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ruptures under an applied stress. In an elastic solid, the applied stress is 
proportional to the deformation, e, and the proportionality constant is 
the bulk modulus of elasticity, k. In a viscous Newtonian fl uid the applied 
stress is proportional to the rate of deformation, e, and the proportionality 
constant is the viscosity, m. Between a Newtonian fl uid and an elastic solid 
are “many gunky and gooey materials” according to Professor R. B. Bird 
that are widely used in industrial applications. Th ese include polymer melts 
and solutions, solid suspensions, foods, and body fl uids, among others. In 
Figure 2.14 e is the deformation tensor in Hook’s law, and e is the rate of 
deformation in Newton’s law of viscosity.

As indicated in Figure 2.14, there are many fl uids where the stress ten-
sor is not proportional to the rate of deformation tensor. Many commer-
cially important materials exhibit this non-Newtonian behavior such as 
polymer melts and solutions, solid suspensions, foods and body fl uids, 
among others.

Non-Newtonian fl uids are classifi ed as fl uids with properties that are 
independent of time or rate of shear (simplest) and fl uids with proper-
ties that are a function of the length of time that the shear rate is applied. 
Th e time-independent fl uids are shear-thinning, shear-thickening, and 
a Bingham plastic which has a fi nite yield stress and then fl ows like a 
Newtonian fl uid. Th en there are materials that have many characteristics 
of a solid primarily that of elastic recovery from larger deformations, such 
as jello, silly putty, and napalm.

For shear-thinning or pseudoplastic fl uids, the apparent viscosity, ma, 
decreases with increasing shear rate. Examples include polymer melts and 
solutions, paint, paper pulp, and mayonnaise. A picture of this behavior is 
a fl uid consisting of long slender molecules that are aligned under shear as 
the fl uid layers slide over each other. Th e greater the shear is the greater the 
alignment. Th ese fl uids can be described by a power law model with two 
parameters as discussed below.

For shear-thickening or a dilatant fl uid the apparent viscosity, ma, increases 
with increasing shear rate. Examples are starch solutions, potassium silicate 
solutions, ammonium oleate suspensions, and iron oxide suspensions. A pic-
ture of this behavior is a fl uid consisting of densely packed particles in which 
the voids are small and are fi lled with liquid suffi  cient to fi ll the voids. At low 
shear rates the particles move past on another, and there is suffi  cient liquid to 
act as a lubricant. As the shear rate increases there is not suffi  cient liquid for 
lubrication and have smooth fl ow. As a result there is an increase in apparent 
viscosity. Th ese fl uids can be described by a power law model.
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A Bingham plastic is a fl uid that requires a fi nite stress to initiate fl ow 
but then it fl ows somewhat like a Newtonian fl uid. Examples are drill-
ing mud, suspensions of chalk, sewage sludge, paint, and whole blood. A 
picture of this behavior is a fl uid consisting of a three-dimensional struc-
ture which is able to withstand a fi nite shear stress, to, but crumbles when 
the stress is exceeded. Th ese fl uids can be described by a model with two 
parameters as discussed below.

A thixotropic or time-thinning fl uid has the property that the shear 
stress decreases with time at a constant shear rate. Aft er standing, the orig-
inal viscosity is recovered (thixotropic). A picture of this behavior is that a 
fi nite time is required for alignment of molecules in a shear-thinning fl uid. 
Examples are paint, ketchup, and some polymer solutions. Th ese fl uids can 
be described by a model with three parameters as discussed below.

A rheopetic or time-thickening fl uid has the property that the shear 
stress increases with time at a constant shear rate. A picture of this behav-
ior is that a build-up of structure with time induced by shear or a fi nite 
time is required for the dilatant fl uid eff ect. Th ese fl uids can be described 
by a model with three parameters.

Understanding non-Newtonian fl ow behavior has taken two directions: 
development of design procedures and studies of the phenomena of non-
Newtonian fl ow. Design procedures have been semiempirical methods that 
are based on simple models and are used for scale-up of specifi c systems. 
Studies of the phenomena of non-Newtonian fl ow include rheological 
equations of state, molecular theory, and the constitutive equations of con-
tinuum mechanics that are based on principle of “material indiff erence.”

An evaluation of the simplest form for the stress tensor as a function of the 

rate of deformation tensor, ( )f dτ =
�� ��

, is obtained from an analysis from the 
constitutive equations of continuum mechanics (Brodkey, 1967; Bird et al., 
1960). Th e symbol d will be used in the following discussion instead of e to 
emphasize that the deformation is not like that of a Newtonian fl uid. A linear 
equation relating the stress tensor and the rate of deformation tensor is

 aI bd cd dτ = + + ⋅
� � ��� � � ���

 (2.116)

where
a, b, and c are scalar functions of d

��

I
��

 is the identity tensor

Referring to Equation 2.83 for a Newtonian fl uid:



The Equations of Change     ■      77

 

2
3

a ⎛ ⎞= − μ − κ ∇⋅ υ⎜ ⎟⎝ ⎠
�

 
(2.117)

 b = +μ  (2.118)

 0c =  (2.119)

For this analysis the rate of deformation tensor is for a liquid (constant 
density) and is a simplifi cation of Equation 2.83.

 
T( )( )τ = μ ∇υ + ∇υ

�� � �

 
(2.120)

For a non-Newtonian fl uid, ( ), ( )a d b d
� �� �

, and ( )c d
��

 are scalar functions of d
��

, 
and this requirement limits the functional form to the following:

 : doubledot product of andd I d I
� �� �� �� �

 (2.121)

 : doubledot product of withitselfd d d
� �� �

 (2.122)

 
determinant of dd⏐⏐

�� ��

 
(2.123)

Equations 2.121 through 2.123 are called the invariants of d
��

, and it can be 
seen from Equation 2.69 that

 : 2 0 for an incompressible fluidd I = ∇⋅υ =
�� � �

 (2.124)

and 0d =⏐⏐
��

 for many simple fl ows. Which leaves ( : ), ( : )a d d b d d
� � � �� � � �

, and ( : )c d d
� �� �

 
or

 ( : ) ( : ) ( : )a d d I b d d d c d d d dτ = + + ⋅
� � � � � � � � �� � � � � � � � ��

 (2.125)

A description is provided by Brodkey (1967) that shows ( : ) 0a d d I =
� �� �

 and 

( : )c d d d
� � �� � �

 is small compared to ( : )b d d d
� � �� � �

 and can be neglected. Th is gives 
the fi nal form as the Equation 2.126:

 ( : )f d d dτ =
� � �� � � ��

 (2.126)
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Th e power law model is the two parameter model that is used to describe 
shear-thinning and shear-thickening non-Newtonian fl uids, and it has the 
following form of Equation 2.126.

 

1

1 2( : )
n

m d d d
−⎡ ⎤

⎢ ⎥τ = +
⎢ ⎥⎣ ⎦

� � �� � � ��

 

(2.127)

where m and n are parameters that are determined from experimental data 
(Bird et al., 1960). For a shear-thinning fl uid, n < 1 and for a shear-thick-
ening fl uid, n > 1. Th e equation reduces to Newton’s law of viscosity for 
m = μ and n = 1. Th e double dot product term can be evaluated using 
½d:d = Fv, where T

v ( )( )Φ = ∇υ + ∇υ , Equation 2.83 with the 2
3 )− μ − κ ∇⋅ υ( �

 
term omitted.

Th ere are numerous non-Newtonian fl ow models that describe a vari-
ety of material. Th e text by Bird et al. (1987) provides a comprehensive 
discussion of these models, their development and experimental methods 
to evaluate parameters in the models. One of the more detailed models is 
the Carreau–Yasuda model shown below.

 

( 1)

o

1
n na

a d d
−

∞

∞

⎧ ⎫μ − μ ⎡ ⎤⎪ ⎪⎛ ⎞= + λ :⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠μ − μ ⎣ ⎦⎪ ⎪⎩ ⎭

� �� �

 

(2.128)

Th is model has fi ve parameters: μo is the zero shear rate apparent viscosity, μ∞ 
is the infi nite shear rate apparent viscosity, n is a “power-law region” exponent, 
a is a dimensionless parameter that describes the transition region and the 

power-law region, and l is a time constant. Th e term T: ( ) :( )d d I= ∇υ + ∇υ
� � �� � �� �

 
is a scalar derived from the rate of deformation tensor for a non-Newtonian 
fl uid (liquid, Ñυ®= 0). Oldrod has a six constant model—there are others.

2.7 GENERAL PROPERTY BALANCE
A general property balance to derive the equations of change serves two 
purposes. One is to show that the preceding equations of change are appli-
cable to coordinate systems other than rectangular coordinates. Th e other 
is to show that the equations of change have the same mathematical form 
with diff erent values of the dependent variables. In a general property 
balance, a property is defi ned along with a fl ux of this property and a 
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generation of this property. Th ese defi nitions are used with a conserva-
tion law to obtain the continuity equation, species continuity equation, 
momentum equation, and energy equation. Consider the species continu-
ity equation, Equation 2.15, written in the fl owing form:

 
( )v 0 for 1, 2, ,i

i i ij r i n
t

∂ρ
+ ∇⋅ ρ + ∇⋅ − = =

∂

��
…

 
(2.129)

Th e fi rst term is the accumulation of the property per unit volume (con-
centration of species i) in a control volume. Th e second and third terms 
are the convective and diff usive fl ux of the property (species i) through a 
control volume. Th e fourth term is the generation of the property per unit 
volume (chemical reaction rate of species i) in a control volume.

Th e conservation law used with a control volume moving with the mass 
average velocity of the fl uid, υ®, as shown in Figure 2.2, is stated mnemoni-
cally and mathematically as

 

Accumulation of the Net flux (out-out) Generation of the
property in the across the control property in the
control volume surface control volume

= +

  
(2.130)

 
gV S V

d
d d d

d
V S V

t
ψ = − Ψ⋅ + ψ∫ ∫ ∫

� �
�

 
(2.131)

where
y is the property
Y
®

 is the fl ux of the property
yg is the generation of the property per unit volume (Brodkey, 1967)

Th e general property balance, Equation 2.131, is a scalar equation for 
the continuity, species continuity, and energy equations, and it is a vector 
equation for the momentum equation. Th e surface integral has the sign 
convention of negative for infl ow and positive for outfl ow, and the negative 
sign accounts for the conservation equation using out–in as positive.

To obtain the diff erential form of the general property balance, the order 
of integration and diff erentiation is interchanged on the term on the left -
hand side, and the surface integral is converted to a volume integral. Using 
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Leibnitz’s rule for a multiple integral to change the order of diff erentiation 
and integration gives

 V V S

d
d d d

d
V V S

t t
∂ψψ = + ψυ⋅
∂∫ ∫ ∫

��
�

 
(2.132)

Gauss’ theorem is used for the surface integrals in Equations 2.131 and 
2.132.

 S V
d dS VΨ⋅ = ∇⋅Ψ∫ ∫

��
�  

(2.133)

 S V
d dS Vψυ⋅ = ∇⋅ψυ∫ ∫
�� �

�  
(2.134)

Substituting Equations 2.133 and 2.134 into Equation 2.132 gives

 V V V

d
d d d

d
V V V

t t
∂ψψ = + ∇⋅ψυ
∂∫ ∫ ∫

�

 
(2.135)

Substituting Equations 2.133 and 2.134 into Equation 2.131 gives

 
gV V V V

d d d dV V V V
t

∂ψ + ∇⋅ψυ = − ∇⋅Ψ + ψ
∂∫ ∫ ∫ ∫

��

 
(2.136)

Equation 2.137 can be written as

 
gV

d 0V
t

∂ψ⎡ ⎤+ ∇⋅ψυ + ∇⋅Ψ − ψ =⎢ ⎥∂⎣ ⎦∫
��

 
(2.137)

For the integral to be zero, the term in the brackets must be zero, and the 
resulting partial diff erential equation is the diff erential form of the general 
property balance.

 
g 0

t
∂ψ + ∇⋅ψυ + ∇⋅Ψ − ψ =
∂

��

 
(2.138)

Th e equations of change are obtained by substituting the property, the fl ux 
of the property, and generation of the property for the continuity, species 
continuity, momentum, and energy equations. For the continuity equa-
tion, the property is the density (mass per unit volume). Th ere is no fl ux 
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of the property since the control volume is moving with the mass average 
velocity of the fl uid, and there is no generation of the property from the 
conservation of mass. Substituting the density, r = y, into Equation 2.138 
gives the same equation as Equation 2.5.

 
0

t
∂ρ + ∇⋅ρυ =
∂

�

 
(2.139)

For the species continuity equation, the property is the concentration 
(mass of i per unit volume) ri = y, the fl ux of the property is the mass fl ux 
of species i relative to the mass average velocity 

→
ji = Y

→
, and the genera-

tion of the property is the chemical reaction rate ri = yg. Substituting into 
Equation 2.138 gives the same equation as Equations 2.15 and the follow-
ing equation.

 
( ) 0 for 1, 2, ,i

i i ij r i n
t

∂ρ
+ ∇⋅ ρ υ + ∇⋅ − = =

∂

��
…

 
(2.140)

For the momentum equation, the property is the rate of momentum per 
unit volume, vρ = ψ

��
. Th e fl ux of momentum is the stress tensor τ

��
 and 

pressure written as a tensor PI
��

, i.e., PIΨ = − τ
� � �� � �

. Th e generation of momen-
tum is given by the rate of momentum generated from body forces per 
unit volume, gi xigρ = ψΣ . Substituting into Equation 2.138 gives the same 
equation as Equation 2.103.

 0i iPI g
t

∂ρυ ⎛ ⎞+ ∇⋅ρυυ + ∇⋅ − τ − ρ =⎝ ⎠∂ ∑
� � ��� � � �

 (2.141)

or

 
0i iP g

t
∂ρυ + ∇⋅ρυυ + ∇ − ∇⋅τ − ρ =
∂ ∑
� �� � � �

 
(2.142)

For the energy equation, the property is the internal and kinetic energy 
per unit volume given by 21

2U⎛ ⎞+ υ =⎜ ⎟⎝ ⎠
ρ ψ. Th e energy fl ux is given by q® for

conduction and diff usion and q®r for radiant energy fl ux. Th e generation of 
energy is by work done by the control volume on body and surface (pres-
sure and viscous) forces is g( )i ig n P−Σ ⋅ + ∇⋅ τ ⋅ υ + ∇⋅ υ = ψ

�� � �� �  as described 
in the derivation of these terms in the energy equation. Substituting into 
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Equation 2.138 gives the same equation as Equation 2.103 and using 
( )i i i i ig n g jΣ ⋅ = Σ ⋅ + ρ υ
� �� � �

.

2 2

r2 2

0

( )

( )

i i iU U q q g j
t

P

⎛ ⎞ ⎛ ⎞∂ υ υρ + + ∇⋅ρ + υ + ∇⋅ + ∇⋅ − ⋅ + ρ υ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠

− ∇⋅ τ ⋅υ + ∇⋅ υ =

∑
�� �� �

�� � �

 
(2.143)

Brodkey (1967) obtained the same equation as Equation 2.143 without the 
radiation fl ux term.

In Figure 2.15, the property, fl ux of the property, and generation of the 
property are listed for the continuity, species continuity, momentum, and 
energy equations. Th e equations of change have the same mathematical 
form with diff erent values of the dependent variable. Th is formulation is 
used for the discretization of the conservation equations to aff ect their 
solution. Only the initial and boundary conditions for these equations are 
diff erent. Th ere are other conservation equations that are used to describe 
turbulent transport such as the turbulent kinetic energy, dissipation of 
turbulent kinetic energy, and the Reynolds’s stress equations. Th ese equa-
tions have the same format as the conservation equations, and there is an 
increase in the number of dependent variables, but the format used for 
the solution remains the same. Th ese equations are discussed in detail in 
Chapter 4.

Energy equation

Momentum
equation

Species continuity
equation

00Continuity equation

Generation of the
property ψg

Flux of the
propertyProperty ψ 
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+

=
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∑

τ

ψψ ψg = 0

τ

FIGURE 2.15 Th e general property balance.
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2.8 ANALYTICAL AND APPROXIMATE 
SOLUTIONS FOR THE EQUATIONS OF CHANGE

2.8.1 INTRODUCTION

Th ere are a wealth of analytical and approximate solutions to the equa-
tions of change. Velocity profi les result from the solution of the continu-
ity and momentum equations. For simple geometries the equations of 
change are usually posed as second-order ordinary diff erential equation. 
Most analytical solutions are for incompressible, one-dimensional fl ows. 
Th e concentration and temperature profi les from solutions of the species 
continuity and energy equations posed as partial diff erential equation are 
less abundant since it is necessary to include the convective transport of 
species and energy in the direction of fl ow. DeSouza-Santos (2008) pre-
sented the analytical and approximate solutions to over 70 problems and 
classifi ed them according to the number of independent variables, order 
of the ordinary or partial diff erential equation, and type of boundary and 
initial conditions. Extensive collections of analytical and approximate 
solutions are given by Bird et al. (2002), which are classifi ed by transport 
mechanism: momentum, energy, mass and some simultaneous momen-
tum, heat, and mass transfer.

Some geometries that have analytical and approximate solutions to the 
continuity and momentum equations are shown in Figure 2.16 for a fully 
developed fl ow with constant properties. For fl ow between fl at plates, 
Brodkey (1967) describes the solution of the second-order ordinary dif-
ferential equation from the simplifi cation of the continuity and momen-
tum equations for the cases of the lower plate stationary and moving with 
a velocity V for a negative and positive pressure gradient. Th e diagram in 
Figure 2.16 sketches the velocity profi le with the lower plate moving and 
a positive pressure gradient. Other solutions between fl at plates include 
fl uid injected and removed at the wall which has a nonzero but constant 
velocity component in the vertical direction (approximates membrane 
dialysis) and fl ow of two immiscible liquids (Bird et al., 1960). For fl ow in 
a tube, a parabolic velocity profi le is obtained for steady, laminar fl ow of 
a Newtonian fl uid as discussed below and is given in standard texts. Th e 
solution for start-up of fl ow, stationary liquid in a tube with imposed neg-
ative pressure gradient has the liquid accelerating to steady state, and the 
solution is obtained by the method of separation of variables, as described 
by Brodkey (1967). Flow in the annulus with a rod moving in the cen-
ter with a velocity, V, approximates coating a wire with a polymer, and 
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the solution is logarithmic (Bird et al., 1960). For liquid injected through 
the porous walls of a tube as shown in Figure 2.16 (approximate the fl ow 
associated with transpiration cooling), the solution uses the stream func-
tion to satisfy the continuity equation, and the momentum equation is 
solved by separation of variables (Longwell, 1966). For fl ow in an annulus 
between two circular tubes (approximates fl ow in a heat exchanger) the 
solution for the velocity profi le is given by Bird et al. (1960). For a falling 
fi lm (wetted wall column), the velocity profi le is determined using a no-
shear at the liquid surface boundary condition, and it is the sum of a qua-
dratic and logarithmic terms (Bird et al., 1960). Flow between rotating 
cylinders is used in a viscometer, and the solution for the velocity profi le 
is used to evaluate the viscosity as described by Brodkey (1967) and Bird 
et al. (1960). For radial fl ow between parallel disks, the velocity varies 

Flow in a tube Flow between flat plates

Steady, fully developed

Start-up of flow

V
Rod moving with velocity V

Fluid injected through
porous walls

Falling film on a
tube or flat plate

V

0>dz
dP

Lower plate moving
adverse pressure

gradient

Fluid injected at one wall
and withdrawn at the

other wall

Flow of two miscible liquids

Elliptical ductFlow in a rotating
circular cylinder

Flow between
rotating cylinders

Radial flow between disks

Flow in an annulus

Triangular Rectangular

FIGURE 2.16 Flow geometries with analytical solutions of the continuity 
and momentum equations.



The Equations of Change     ■      85

inversely as the square of the radius, and the radial pressure distribution 
varies inversely as the fourth power of the radius (Bird et al., 1960). Liquid 
rotates as a solid body in a rotating cylinder (beaker), and the shape of the 
liquid surface has the cross section of a parabola (Bird et al., 1960). Flows 
in ducts with triangular and elliptical cross-sections have closed-form 
analytical solutions, and fl ow in a duct with a rectangular cross-section 
has an infi nite series solution (Knudsen and Katz, 1958). Although the 
diagram of a nozzle is not shown, fl ow of a compressible gas through a 
properly designed converging–diverging nozzle is isentropic with sub-
sonic fl ow in the converging section and either subsonic or supersonic 
fl ow in the diverging section. Details of compressible fl ow of an ideal gas 
in nozzle ducts and shock waves are given in the text by Shapiro (1953), 
among others.

Th e above description is not comprehensive, and a large body of litera-
ture is available for solutions of the continuity and momentum equations 
for velocity profi les, volumetric fl ow rates, drag, and friction factors. At 
one point in the history of fl uid dynamics, before the advent of numerical 
solutions, it was said that when a mathematician obtained a new solution 
to a second-order partial diff erential equation, a fl uid dynamicist found a 
geometry and fl ow that matched this new solution.

Two important classes of transport phenomena are not represented by 
the examples just mentioned. Th e fi rst is truly one-dimensional fl ows, like 
those described in basic thermodynamic texts for single component fl uids. 
Th ese processes consist of piping systems where the fl ow passes through 
pumps or turbines, heat exchangers, and chemical reactors and the eleva-
tion may change for diff erent parts of the system. Similar analyses may 
also be made for multicomponent fl uids with variable density and physi-
cal properties. Th ese analyses are referred to as macroscopic balances 
and described very adequately by Bird et al. (2002). Flows are taken as 
average, one-dimensional streams with the processes described generally 
with empirical test data. Such analyses are particularly useful for process 
analysis and for constructing lumped parameter models for control sys-
tems. Th is modeling technology constitutes the bulk of basic transport 
phenomena literature.

Th e second class of transport phenomena which have been studied 
and utilized extensively are inviscid fl ows. All laminar and turbulent 
viscous terms are omitted from the conservation laws and the remain-
ing terms in the laws are solved to represent the fl ow. Historically, such 
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methodology was fi rst used to calculate the lift  from an airplane wing so 
that its airfoil shape could be optimized. Th is practice was very successful; 
however, it lead to the contradiction that if the pressure fi eld around an 
airfoil could be accurately calculated, why was the predicted drag zero? 
Prandtl explained this phenomenon by observing that the eff ect of fric-
tion was limited to a very thin region close to the body surface, i.e., the 
boundary layer. Th is treatment of fl uid mechanics was indeed useful and 
eventually extended to the transfer of heat and mass as well. Furthermore, 
it showed that inviscid fl ow theory was still a useful technology. In addi-
tion to describing pressure forces on bodies moving through fl uids, its 
representation of vortex motions and wave phenomena was worthwhile. 
Methods of analyzing inviscid fl ows produced extensive analytical simu-
lations of these fl ow phenomena as described in Lamb (1945), Kaufmann 
(1963), and Milne-Th ompson (1968). Th is methodology required extensive 
mathematical manipulation, but before ready availability to high-speed 
computers such eff ort was necessary. Th is is no longer the case and invis-
cid fl ow analysis is seldom used.

One-dimensional fl ow with heat transfer requires including the con-
vective transport of energy in the direction of bulk fl ow, and the energy 
equation is a partial diff erential equation. As used herein, one-dimensional 
means that the fl ow is parallel but that velocity gradient between stream-
lines may exist. For constant properties, the solution of the continuity 
and momentum equations are not coupled to the energy equation, and 
the solution of these equations for the velocity profi le can be used in the 
energy equation. One must be aware of this serious restriction on the solu-
tion. Th is approximation is frequently referred to as being limited to small 
heat or mass transfer rates. For fully developed fl ow in a tube and between 
fl at plates, the energy equation can be solved by the method of separation 
of variables. Initial and boundary conditions are uniform temperature 
entering the conduit, and either constant wall temperature (condensing 
steam) or constant heat fl ux at the wall (resistance heating at a constant 
rate). Details of these solutions of the classical problems (Graetz–Nusselt 
problem) are given by Bird et al. (1960).

One-dimensional fl ow with mass transfer and chemical reaction requires 
including the convective transport of mass in the direction of bulk fl ow and 
the species continuity equations. Th e species equations are partial diff er-
ential equations. For chemical reactions, a rate equation is required. For 
constant properties, the velocity profi le can be used from the solution of 
the momentum and continuity equation. Th e initial condition is a uniform 
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entering concentration. Boundary conditions can be constant wall concen-
tration, constant mass fl ux to the wall, and surface reaction at the wall with 
reactants diff using to the wall and products diff using from the wall. A lim-
ited number of solutions are available for binary systems given in Bird et al. 
(2002) and transport in chemical reactors such as DeSouza-Santos (2008).

One must realize that the solutions of the equations of change, before 
the advent on extensive computational solutions, were very restrictive with 
respect to the specifi cation of fl uid properties and the fl ow geometry.

2.8.2  ONE-DIMENSIONAL TRANSPORT 
AND WALL FUNCTIONS

Important insight can be gained by examining analytical solutions to the 
conservation equations, and these solutions are used in developing the wall 
functions described in Chapters 1 and 4. Th ese analytical solutions are 
based on fl ow in a tube of a binary fl uid with constant properties, without 
viscous dissipation. Th e continuity equation and momentum equation in 
terms of the shear stresses can be integrated without having to specify the 
character of the fl ow: laminar or turbulent, Newtonian or non-Newtonian. 
Th en having specifi ed the characteristics, the velocity profi le, volumetric 
fl ow rate, and friction factor are evaluated. Th e energy and species conti-
nuity equation use the velocity profi le in the convective term to obtain the 
temperature and species concentration profi les and corresponding energy 
and mass transferred. To obtain the wall functions, it is necessary but not 
realistic to neglect or make a constant of the convective transport in the 
bulk fl ow to obtain the wall functions, but these functions have proved 
useful in CFD codes when the concept of a laminar sublayer, buff er zone, 
and turbulent core are applied.

Th e use of computational solutions removes the constraints on the con-
vective solution.

2.8.2.1 Fully Developed Transport in a Tube

In Figure 2.17, a diagram is shown of the fully developed velocity profi le in 
a tube. For this case the velocity component υz is a function of r only and 
there is no fl ow in the q and r directions, υz = υr = 0. Th e continuity equa-
tion in cylindrical coordinates (Table 2.1) simplifi es to

 
0z

z
∂υ

=
∂  

(2.144)
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Th e velocity component υz does not change with z, which is described as 
fully developed fl ow as compared to changes of υz with z in the entrance 
region.

For these conditions the momentum equation in terms of the stresses 
for cylindrical coordinates (Equation F in Table 2.3) simplifi es to

 

1
0 ( )rz

P
r

z r r
∂ ∂= − + τ
∂ ∂  

(2.145)

Th e pressure gradient term can be transferred to the left -hand side of 
Equation 2.145 to give an equation that is partially diff erentiated with 
respect to z on one side and partially diff erentiated with respect to r on the 
other side. For the equation to hold, both sides must be equal to a constant, 
and the pressure gradient is said to be uniform which is borne out experi-
mentally. Equation 2.145 can be written as

 0 0

d
d d

d
( )

rzr r

rz
Pr r r
z

τ

τ = +∫ ∫
 

(2.146)

Integrating with a lower limit of r = 0 where trz = 0, no-shear at the center-
line, gives an equation for trz in which it has not been necessary to specify 
if the fl ow is laminar or turbulent, Newtonian or non-Newtonian.
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R

Laminar flow, Newtonian fluid parabolic velocity profile
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z

Laminar flow, non-Newtonian fluid limiting cases of n = 0 and n = ∞ 
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r
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–τR

–τrz

FIGURE 2.17 Tube fl ow for Newtonian and non-Newtonian fl uids.
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d
d 2rz

P r
z

τ = +
 

(2.147)

Evaluating Equation 2.147 at the wall where r = R and trz = tR gives

 

d
d 2R

P R
z

τ =
 

(2.148)

Th e shear stress tR is tending to retard the motion of the fl uid, therefore it is 
negative. Th is is consistent with the fact that the pressure gradient is negative.

Dividing Equation 2.147 by Equation 2.148 gives an equation that shows 
the shear stress varies linearly with the radius. Th is equation is the starting 
point for determining the wall functions discussed in Chapter 1 and the 
velocity profi les, volumetric fl ow rates, and friction factors for Newtonian 
and non-Newtonian fl ows.

 
rz R

r
R

τ = τ
 

(2.149)

For a Newtonian fl uid, Equation 2.147 and the defi nition of the shear stress 
component in terms of the velocity gradient becomes

 

d d
d d 2

z P r
r z

υ⎛ ⎞ ⎛ ⎞μ = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠  
(2.150)

Noting that the pressure gradient is a constant and imposing the bound-
ary condition that υz = 0 at r = R, integration of Equation 2.150 gives the 
parabolic velocity profi le for laminar fl ow in a tube.

 

22 d
1

4 dz
R P r

z R

⎡ ⎤−⎛ ⎞ ⎛ ⎞υ = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠μ ⎢ ⎥⎣ ⎦  

(2.151)

To obtain the volumetric fl ow rate Q, the following integral is evaluated 
which sums all of the diff erential elements of dimensions 2pr dr over the 
tube cross-section for r from 0 to R.
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d
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8 d
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z
R P

Q r r
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π −⎛ ⎞= υ π = ⎜ ⎟⎝ ⎠μ∫
 

(2.152)

Th is equation is called the Hagen–Poiseuille formula for Newtonian, lam-
inar fl ow. One important application of this equation is the measurement 
of viscosity in a Cannon–Fenske viscometer.
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Equation 2.152 is used to evaluate the average velocity υavg = Q/pR2, 
and the Fanning friction factor is defi ned as 21

w avg2f = τ ρυ . Th e wall shear 
stress, tw, is the stress acting on the wall by the fl uid, it is equal to −tR the 
stress on the fl uid by the presence of the wall. By combining Equation 
2.152 with the defi nition of the friction factor, Equation 2.153 is obtained 
for the friction factor in terms of the Reynolds number NRe = Dυavgr/μ.

 

16

Re

f
N

=
 

(2.153)

Th e Fanning friction factor is also called the skin friction coeffi  cient. Th e 
Darcy or Moody friction factor is four times the Fanning factor. Th e defi -
nition in terms of wall shear stress has to be adjusted accordingly.

For laminar fl ow of a non-Newtonian fl uid, the power law model, 
Equation 2.127, has the following form for fully developed fl ow in a tube.
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υ⎛ ⎞τ = ⎜ ⎟⎝ ⎠  
(2.154)

Th e parameter m is the apparent viscosity. For n < 1 the fl ow behavior is 
pseudoplastic, and for n > 1 dilatant.

Combining Equations 2.149 and 2.154, integrating with the no-slip 
lower limit that υz = 0 at r = R gives the velocity profi le for fl ow of a power 
law fl uid in a tube.
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Using the same procedures as was used to obtain Equation 2.154, the volu-
metric fl ow rate for a power law fl uid is
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1/3 d

3 1/ 2 d

nR R P
Q

n m z
π ⎡ ⎤= ⎢ ⎥+ ⎣ ⎦  

(2.156)

Following the same procedure to determine the friction factor, this equa-
tion is
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Additional details about the description of power law models and compa-
rable results for Bingham plastics are given by Brodkey (1967).

Th e conservation equations for energy and mass transport in a fully 
developed, laminar fl ow with constant properties in a tube are partial 
diff erential equations with a convective transport term in the direction 
of fl ow and a conductive transport term in the direction perpendicular 
to the fl ow. Initial and boundary conditions are required, and boundary 
conditions can be constant temperature and concentration at the wall 
or constant heat fl ux and mass fl ux at the wall. Th ese solutions are dis-
cussed below in context of obtaining wall functions for use in numerical 
solutions.

2.8.2.2  Wall-Functions for Momentum, Energy, 
and Mass Transfer

For fully developed, “turbulent fl ow of a Newtonian fl uid” in a tube, 
Equation 2.147 applies; and the total shear stress is the sum of the time-
averaged turbulent and time-averaged laminar stresses as shown in Figure 
2.18 and as discussed in Chapter 1 as given by Equation 2.158.

−τR

−τrz

rR 0 

l−τrz

t−τrz

s = R– r

Laminar
sublayer

Buffer
zone

Turbulent
core

FIGURE 2.18 Laminar and turbulent stresses.



92     ■     Computational Transport Phenomena for Engineering Analyses

 
t l

rz rz rz R
r
R

τ = τ + τ = τ
 

(2.158)

As shown in Figure 2.18, the concept of a laminar sublayer implies a region 
very near the wall where the fl ow is laminar and is described by Newton’s 
law of viscosity. Th ere is a transition region from the laminar sublayer 
to the turbulent core called the buff er zone. In Equation 2.158, the time-
averaged laminar shear stress can be approximated by Newton law of 
viscosity as shown below. A turbulence model is required to describe the 
time-averaged turbulent stress term, and Prandtl’s mixing length shown 
below is one of many models (see Chapter 4).
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(2.159)
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(2.160)

Referring to Figure 2.18 in the laminar sublayer region, the time-averaged, 
laminar stress dominates, and the time-averaged, turbulent stress term in 
Equation 2.158 can be omitted. Equations 2.159 and 2.160 are combined 
to give
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(2.161)

Changing the radius r to the distance from the wall s = R − r and using 
(1 ) 1s R− =�  near the wall, Equation 2.161 can be written as

 0 0

d d
z s

R
z s

υ τ
υ =

μ∫ ∫
 

(2.162)

Th is equation is integrated to give υ−z = (tR/m)s. Defi ning a friction velocity 
as υ*2 = tR/r, dimensionless velocity υ+ = υ−z/υ* and dimensionless dis-
tance as s+ = υ*s/(m/r), the resulting equation is called a “wall function.” 
It is used to describe turbulent fl ow very near the wall as discussed in 
Chapters 1 and 4.

 s+ +υ =  (2.163)
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Referring to Figure 2.18 in the region away from the wall (buff er zone 
and turbulent core), the time-averaged, turbulent stress dominates, and 
the time-averaged, laminar stress term in Equation 2.158 can be omitted. 
Equations 2.158 and 2.160 are combined to give
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(2.164)

Using Equation 2.162 to obtain wall values for a lower limit, Equation 
2.164 can be used to obtain
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(2.165)

A point away from the wall is used as the lower limit where υz = υδ at s = d. 
Equation 2.165 is integrated and put in the following form:

 v

1
ln s B+ +υ = +

κ  
(2.166)

In this equation B = −(1/kv)ln d+ + υ−d
+ and kv are determined from tur-

bulent fl ow measurements in the region away from the wall as discussed 
in Chapters 1 and 4. Values of kv of 0.36 and B of 3.8 have been reported 
by Bird et al. (1960). Over the past 50 years better experimental data and 
improved modeling equations have been developed. Equation 1.2 gives 
currently accepted values of the velocity profi le for incompressible, fully 
developed pipe fl ow. Th e summarized analysis illustrates the use of a 
wall function to develop a velocity profi le at a distance removed from 
the wall.

Equation 2.162 is used to provide a wall function so that Equation 2.164 
can be integrated. Th is concept is used to describe the steep velocity gra-
dient at the wall in turbulent fl ow. Th ese functions are used in place of a 
very fi ne grid that would be required in a numerical solution to have the 
necessary accuracy to describe the fl ow. Th ere are similar equations from 
the solutions of the energy and species continuity equations, and the back-
ground to obtain these wall functions is summarized next.

Th e “energy equation for heating a fl uid” that enters a tube section 
where the velocity profi le is given by Equation 2.151, fully developed lami-
nar fl ow, is obtained by simplifying Equation B in Table 2.7.
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(2.167)

Th e solution of this partial diff erential equation given the velocity υz is called 
the Graetz–Nusselt problem. Note this analysis assumes that the velocity 
profi le is unaff ected by temperature. Also, the viscous dissipation of energy 
is neglected. Initial conditions of a uniform temperature entering the heated 
section are used, and boundary conditions are either a constant wall tem-
perature or a constant heat fl ux at the wall. Jacob (1949) presents a detailed 
solution for both of theses cases which involve a separation of variables to 
obtain two ordinary diff erential equations that require infi nite series solu-
tions. Jacob includes the solution for the case of a uniform velocity profi le.

For turbulent fl ow, the energy equation is written in terms of the time-
averaged laminar and turbulent heat fl ux terms as described in Chapter 4. 
Th e energy equation has a form similar to Equation 2.167 with the convec-
tive transport of energy on the left -hand side, and laminar and turbulent 
transport of energy on the right-hand side (see Equation B in Table 2.7). 
Fourier’s law describes the laminar transport and a turbulence model is 
required to describe the turbulent energy transport.
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To obtain a wall function, it is necessary to consider the convective energy 
transport term on the left -hand side to be a constant A. Equation 2.168 can 
be written as
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(2.169)

Integrating and rearranging gives

 
l t
r r 2

A
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(2.170)

Evaluating Equation 2.168 at the wall (r = R) gives qR = −(A/2)R, the heat 
fl ux at the wall. Equation 2.170 can be written in a form comparable to 
Equation 2.158 for the shear stress.
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Referring to Figure 2.18, Equation 2.171 can be applied to the laminar sub-
layer using Fourier’s law of heat conduction q−r

l = −kdT−/dr = −rCpadT−/dr 
where a = k/rCp and to the buff er zone and turbulent core using Prandtl’s 
equation q−r

t = rCpkν
2s2(dυ−z  /ds)(dT−/ds). With the defi nition of s = R − r and 

T+ = rCpυ*(T− − TR)/qR, the equation for the laminar sublayer is comparable 
to Equation 2.163.

 T s+ +=  (2.172)

Th e equation using Prandtl’s turbulence model is comparable to Equation 
2.166.

 v

1
lnT s D+ += +

κ  
(2.173)

Th e constant D = Td
+ − (1/kv)ln sd

+. Details concerning the manipulations and 
additional wall functions for heat transfer are given in Chapter 1 and Bird 
et al. (1960). Currently accepted values of turbulent fl ow temperature profi les 
which may be used to establish wall functions are discussed in Chapter 1.

Th e procedure described above for the energy equation is applicable 
to the species continuity equation for turbulent fl ow in tube. Th e species 
continuity equation is written in terms of the time-averaged laminar and 
turbulent heat fl ux terms as described in Chapter 4, and has a form similar 
to Equation 2.167 with the convective transport of mass on the left -hand 
side and laminar and turbulent transport of energy on the right-hand 
side. Fick’s law describes the laminar transport, and a turbulence model 
is required to describe the turbulent energy transport. Defi ning rA

+ = υ*

(r−A − rAR)/nA, for the laminar sublayer rA
+ = s+, and Prandtl’s equation for 

the buff er zone and turbulent core is rA
+ = (1/kv)ln s+ + E where E = rd

+ − 
(1/kv)ln sd

+. Again, recent concentration data are discussed in Chapter 1.
Th e procedures outlined above that are used to obtain wall functions 

have required using simplifi cations and approximations to obtain ana-
lytical solutions of the conservation equations. Numerous other methods 
have been used to obtain analytical solutions that attempt to give better 
descriptions of experimental measurements as described in Chapter 1. 
Th is discussion was provided for the background required to select appro-
priate wall functions for the particular transport analysis being performed. 
In general, the better the experimental data for near wall phenomena and 
the closer to the wall the grid points used in the computational solution, the 
more accurate the resulting simulation of the entire fl ow fi eld will become.
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2.8.3  REACTING FLOWS IN POROUS 
MEDIA AND DARCY’S LAW

Transpiration cooling is used to protect surfaces and reduce heat transfer 
when these surfaces are exposed to extremely high or low temperatures. 
Very high temperatures are encountered by heat shield of reentering space 
vehicles, and very low temperatures are encountered in the storage of cryo-
genic liquids. Transportation cooling has a gas fl owing through the walls of 
the container which is a porous medium, and the gas transports heat by con-
vective fl ow in the opposite direction of the conductive transport of heat.

Typical results can be obtained describing the fl ow rate, pressure, and 
temperature distributions, and energy absorbed by considering the trans-
portation cooling of a porous slab of porosity ε and permeability a by 
steady fl ow of an ideal gas with superfi cial velocity υ0. One side is main-
tained at T0 (z = 0) and the other at TL (z = L) as is shown in Figure 2.19.

Th is discussion will illustrate some of the complexities introduced 
when variable fl uid properties are required. Also, the equation of motion 
for fl ow in a porous medium, Darcy’s law, must be used for transportation 
cooling in place of the momentum equation. Darcy’s law defi nes the per-
meability of a porous media, a property of the media.

Th e continuity equation for fl ow in a porous medium is given in terms of 
the porosity of the porous media, ε, and the superfi cial velocity, υ0, which 

FIGURE 2.19 Diagram of fl ow through a porous medium subjected to a 
temperature gradient.
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is based on the total cross-sectional area rather than the cross-sectional 
area of the pores.
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(2.174)

For steady, one-dimensional fl ow in the z-direction, the above reduces to
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(2.175)

Integrating gives

 0 constant zWρυ = = ε = ερυ  (2.176)

where
W is the mass fl ux of the gas in the pores
υz is the mean velocity of the gas in the pores

For fl ow in a porous medium, Darcy’s law is used in place of the equation 
of motion and is

 
0 ( )P g

αυ = − ∇ − ρ
μ  

(2.177)

where the superfi cial velocity (= υzε) and a in the permeability of the 
porous media. Equation 2.177 simplifi es to the following equation for one-
dimensional horizontal fl ow.
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(2.178)

To obtain the pressure distribution for steady fl ow (W = constant), 
Equations 2.176 and 2.178 are combined with the ideal gas law r = PMw/RT, 
and rearrangement gives

 0 w 0

d d
P z

P

W R
P P T z

M
−= μ
α∫ ∫

 
(2.179)

Integrating Equation 2.179 gives Equation 2.180 in a form that shows the 
solution of the energy equation is required.
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To integrate the right-hand side of Equation 2.180, T and dT/dz are needed 
from the solution of the energy equation, and μ may be a function of T 
which requires a correlation equation.

Th e energy equation for an ideal gas is
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For steady, one-dimensional fl ow in the pores neglecting viscous dissipa-
tion, the previous equation is
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(2.182)

At this point one must resort to a simultaneous numerical solution of 
Equations 2.180 and 2.182, as they are coupled.

To continue and obtain an approximate but analytical solution, con-
stant thermal conductivity and viscosity are used. Th e P−V work term is 
neglected which is small compared to the convective term. Th en the energy 
equation for the gas fl owing in the pores, Equation 2.182, combined with 
the continuity equation, Equation 2.176, gives
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Th e energy equation for the solid porous medium with constant thermal 
conductivity simplifi es to
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Th e gas and solid are in intimate contact such that at any cross section 
both are at the same temperature, Equations 2.183 and 2.184 can be com-
bined to give

 

2

g s 2

d d
(1 )

d dp
T T

C W
z z

⎡ ⎤ε = εκ + − ε κ⎣ ⎦  
(2.185)



The Equations of Change     ■      99

Letting ke = ekg + (1 − ε)ks, an eff ective thermal conductivity for the solid 
and gas, Equation 2.185 can be put in the form:
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For constant properties, the solution of Equation 2.186 is
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where N = WCpeL/ke. To integrate Equation 2.187 for variable properties, 
Cp and ke, a numerical solution would be required. Using the above with 
Equation 2.180 the pressure distribution could be obtained.

In the above description of transpiration cooling, the composition of 
the gas fl owing through the porous medium was constant. In cases such as 
the char zone of a charring ablator where the porous medium is subjected 
to a steep temperature gradient, chemical reactions will occur in the gas 
and between the gas and the porous matrix (April 1969). To accurately 
predict the energy absorbed during reentry of a space vehicle (for proper 
heat shield design) an accurate description of the reacting fl ow in a porous 
medium is needed. Most of the reactions that occur in the char zone dur-
ing ablation are endothermic, and the heat absorbed by the gases can be 
bounded by two limiting cases, frozen fl ow and equilibrium fl ow.

Th e results for frozen fl ow (no chemical reaction) are applicable, except 
for the constant properties assumption, to give the minimum energy 
absorbed by the gases fl owing through the porous medium. Th e maxi-
mum energy potentially absorbed by the gases fl owing through the porous 
medium is obtained by predicting the changes in composition from the 
chemical reactions considering the species are in thermodynamic equi-
librium (equilibrium fl ow) at any cross section. Depending on the mass 
fl ux of gas, chemical species present, and the temperature gradient, either 
of these two limiting cases could approximate the energy transferred. To 
predict more precisely the energy absorbed in the region bounded by these 
two limiting cases, the composition changes must be evaluated using the 
kinetics of the reactions (nonequilibrium fl ow). Diff erential equations 
are obtained for the prediction of the energy absorbed in the porous 
medium for all three cases, considering variable physical and thermody-
namic properties. An analytical solution is not feasible, and the results of 
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numerical solutions are presented, that were obtained by simulating the 
fl ow in the char zone of a low-density phenolic-nylon ablative composite 
(April 1969).

Th e same procedure is followed as described above to obtain equations 
to describe the energy absorbed at the heated surface of the porous media. 
Th e conservation equations are simplifi ed for one-dimensional fl ow of a 
reacting gas in the pores of the medium, including the species continuity 
equation. Th e form of Darcy’s law only requires modifi cation. Th e energy 
equation is applied to the porous medium and the gas phase separately, and 
then these two equations are combined to obtain an equation that predicts 
the temperature profi le in the medium. Th e material has suffi  ciently small 
diameter pores that the gas and solid are at the same temperature at any 
cross section normal to the fl ow.

For k gas species, the species continuity equation for the individual spe-
cies from Table 2.2 reduces to the following form for steady, one-dimen-
sional fl ow.
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(2.188)

Th is equation shows that the increase in mass fl ux of component i with 
distance, z, is from the formation of component i by chemical reaction, ri.

For steady fl ow the overall continuity equation (Equation 2.176) is the 
same as that obtained previously, neglecting changes in gas fl ow rate due 
to reaction with the solid. Th e overall continuity equation is the sum over 
the species equations. It can vary with position if there are chemical reac-
tions between the gas and the char.

To predict the pressure distribution, the procedure is the same as that 
discussed above. Th e mass fl ux of gas, W, changes due to reaction with 
the solid phase, and it is included under the integral in Equation 2.180 as 
shown in
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Th e energy equation for steady, one-dimensional fl ow of an ideal gas is
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where 
1

k

i xi iH R
=∑  represents the heat absorbed or released by chemical 

reactions.
Th e simplifi cations omitted potential energy changes, viscous dissipation, 
and internal heat generation. Heat transferred by diff usion in the direction 
of fl ow is very small compared to heat transfer by convection and is not 
included.

For the solid matrix, there is no fl ow and the energy equation is
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(2.191)

where 
1

k

i xi iH R
=∑  represents the heat absorbed or released by reactions 

occurring with the solid.

Multiplying Equation 2.190 by the porosity, ε, Equation 2.191 by (1 − e) 
and adding, the result is an equation that describes the energy transfer at 
any cross section in the z-direction in the solid and gas
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(2.192)

where the overall continuity equation was used along with defi ning an 
eff ective thermal conductivity ke = [ekg + (1 − e)ks]. Th e term 

1

n

i xi iH R
=∑

represents the heat absorbed or released by chemical reactions in the gas 
phase, between the gas and solid, and in the solid phase.

A numerical solution is required to solve Equations 2.189 and 2.192 
with boundary conditions for the temperature, pressure, mass fl ux, and 
composition of the species entering the porous media at z = 0. Th e solu-
tion is the temperature and mass fl ux of the species fl owing through the 
length L of the porous media. Th e pressure distribution is computed from 
the solution of these equations by Equation 2.189.

Th e solution to Equations 2.189 and 2.192 was obtained by using a 
fourth-order Runge–Kutta procedure for the chemical reactions shown 
in Figure 2.20 (April, 1969). Th e surfaces of the porous media were main-
tained at 260°C (500°F) and 1371°C (2500°F). Th e solid matrix (char) was 
pure carbon with a porosity of 0.8 and permeability of 1.02 × 10−8 m−2. 
Th e gas composition entering the porous media was approximately that 
which would result from the degradation of a phenolic-nylon heat shield 
composite. Th e chemical reactions occurring in the char zone are shown 
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in matrix form in Figure 2.21. Th e inlet composition is given in Figure 
2.22. Th e composition of the degradation products leaving the high-
temperature surface for nonequilibrium (fi nite rate) fl ow and equilibrium 
fl ow is also shown in Figure 2.22. Th e equilibrium fl ow case predicted that 
extensive reactions occurred, and the method of computing the composi-
tion of a reacting gas–solid mixture used to predict the equilibrium fl ow 
composition used free-energy minimization and was reported by Del 
Valle (1975). Th e extent that reactions occur predicted by nonequilibrium 

FIGURE 2.20 Chemical reactions occurring in the char zone of a phenolic-
nylon composite.
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FIGURE 2.21 Matrix form of the reaction set.
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fl ow is intermediate between frozen and equilibrium fl ow as shown in 
Figures 2.22 and 2.23.

Comparing the composition changes for equilibrium and nonequilib-
rium fl ow, it is seen in Figure 2.22 that the fl ow is between frozen and equi-
librium fl ow. Due to the porous matrix characteristics the pressure drop is 
very small, and the term neglected in the energy equation could be safely 
ignored. Chemical reactions do take place as is seen by comparing the heat 
fl ux at the surface. Th is is equivalent to the energy absorbed in the char 
zone if there is no heat conducted away from the low-temperature surface. 
In Figure 2.23 the temperature profi les are given for the three cases. Th e 
nonequilibrium fl ow curve is closer to the frozen fl ow curve because most 
of the chemical reactions occur in the range from 2000°F to 2500°F.

Mass fl ux - 0.05 lb per ft 2-s, char characteristics: porosity—0.8, permeability—1 × 10−9 ft 2 

Pyrolysis gas composition (mole percent)

Entering Char at 
500°F

Leaving Front Surface at 2500°F

Nonequilibrium Flow Equilibrium Flow

CH4 56.56 3.24 0.01
C2H6 0 0.16 0
C2H4 0 0.52 0
C2H2 0 13.73 0
H2 1.45 58.27 77.03
H2O 32.49 18.47 0.01
N2 8.06 4.61 4.21
CO2 1.52 0.87 trace
CO 0 0.12 18.65
NH3 0.02 0.01 trace

FIGURE 2.22 Comparison of the high temperature surface heat fl ux, com-
position of degradation products and pressure drop for frozen, equilib-
rium, and nonequilibrium fl ow.

Heat fl ux at surface
(Btu/ft 2-s)

63.12
93.79

271.25

Pressure drop 
(lbf/ft 2)

8.9
18.7

9.8

Frozen fl ow
Nonequilibrium fl ow
Equilibrium fl ow



104     ■     Computational Transport Phenomena for Engineering Analyses

Th e equations for the chemical reactions in the char zone were shown 
in Figure 2.20. To facilitate the numerical solution, they were put in matrix 
form using the format of Equation 2.193 as shown in Figure 2.21

 

f

r1 1

j

j

n nk

ji i ji i
ki i

r A p A
= =
∑ ∑⇔

 
(2.193)

where
rji and pji represent the stoichiometric coeffi  cients of the reactants 

and products for species Ai in reaction j
kfj and krj are forward and reverse reaction rate constants

Using the format of Equation 2.193, the rate of reaction of the ith spe-
cies, ri, is given by

 
f r

1 11
( ) ji ji

m n n
r p

i ji ji j i j i
i ij

r p r k c k c
= ==

⎧ ⎫
= − −⎨ ⎬

⎩ ⎭
∑ ∏ ∏

 
(2.194)

Th ere are 10 reactions and 13 chemical species. Th e matrices are the stoi-
chiometric coeffi  cients rji and pji.
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Dimensionless char distance z/L
0 0.2 0.4 0.6 0.8 1.0

Frozen

Equilibrium

Nonequilibrium

FIGURE 2.23 Comparison of temperature distributions for frozen, equi-
librium and nonequilibrium (finite rate) fl ow in the char zone, 2500°F sur-
face temperature.
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To illustrate the use of Equation 2.194, the rate of reaction of methane 
(component 2) is given by the following:

 

10 13 13

2 2 2 f r
1 11

( ) ji ijr p
j j j i j i

i ij

r p r k c k c
= =−

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∏ ∏

 
(2.195)

or expanding

 

{ } { }
{ }

1 2 1 2 3 2 1 2
2 f1 2 r1 1 3 f 5 2 r5 1 5
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f 6 2 r6 1 6

(0 1) (0 1)

(0 1)

r k c k c c k c k c c

k c k c c

= − − + − −

+ − −
 (2.196)

In Equation 2.196, there are fi ve other terms in the expanded form, but 
these are not included since their coeffi  cients were zero. Modifi cations of 
this general form may be required. For example, the powers on the compo-
sitions for the actual rate expressions can be diff erent than the stoichiomet-
ric coeffi  cients in some cases. In the carbon–water reaction the surface area 
of carbon is used which is not a “concentration” of carbon. To take the sur-
face area of the char into account the reaction rate constant was modifi ed, 
and the exponent on the carbon “concentration” was taken equal to zero.

In summary, this analysis demonstrated the development of the appro-
priate diff erential equation to describe the one-dimensional reacting 
fl ow in a porous medium. Th e equations were suffi  ciently complicated 
to require a numerical solution, and some results were given that applied 
to the char zone of an ablative heat shield. Th ree cases were considered: 
frozen, equilibrium, and nonequilibrium. Computationally, frozen fl ow is 
the easiest to solve, followed by equilibrium fl ow. For equilibrium fl ow the 
compositions were a function to temperature only and were represented 
by algebraic equations. For nonequilibrium fl ow, 13 species continuity 
equations were solved simultaneously with the energy equation to predict 
the mass fl ux, concentration, and temperature which required an order of 
magnitude increase in computations. Complete details are given by April 
(1969) and Del Valle (1975).

2.8.4  SIMULTANEOUS MOMENTUM, HEAT, AND 
MASS TRANSFER IN THE BOUNDARY LAYER

Flow in the boundary layer refers to fl ow past a surface where the changes 
in velocity, temperature, and concentration are confi ned to a very thin 
region near the surface. Th is fl ow was fi rst identifi ed in studies of fl ow 
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around airfoils and other slender bodies. When there is heat and mass 
transfer, temperature and concentration gradients are very thin and steep 
from the wall to the free stream. Th e term thin is relative; the boundary 
layer at the trailing edge of the Saturn V was about 1 m–1. Th ese profi les 
are shown in an exaggerated form in Figure 2.24 for fl ow across a fl at plate. 
An order analysis of the terms in the conservation equations was made to 
obtain the equations that describe this fl ow (Blasius, 1950; Mickley et al., 
1954; Schlichting, 1955).

Th e boundary layer thicknesses for momentum, dυ, heat, dT, and mass, 
dAb, transfer are shown in Figure 2.24. Th e boundary layer thicknesses 
are defi ned as the distances in the y-direction from the surface where the 
values of the velocity, temperature, and concentration reach 99% of their 
free stream values. For example, with air having a free stream velocity of 
25.8 ft /s fl owing over a fl at plate, the momentum boundary layer thickness 
is 0.026 in. thick at 3.6 in. from the front of the plate and grows to 0.322 in. 
thick at 96.4 in. from the front of the plate (Mickley et al., 1954).

Knowing that changes in velocity, temperature, and concentration are 
confi ned to a very thin region near the surface; an order analysis was 
performed on the continuity, species continuity, momentum, and energy 
equations to eliminate terms that are small compared to others. Th is order 
analysis is discussed by Blasius (1950), Mickley et al. (1954), and Schlichting 
(1955); and the result is the following set of partial diff erential equations for 
steady, laminar fl ow of an incompressible binary fl uid across a fl at plate.

 
Continuity: 0yx

x y
∂υ∂υ

+ =
∂ ∂  

(2.197)

υ∞

T∞

mA∞

x

y

υx

T
mA

υy0

δυ = y|υx = 0.99υ∞

δT = y|T = 0.99T∞

δmA = y|mA = 0.99mA∞

FIGURE 2.24 Boundary layer fl ow along a fl at plate with heat and mass 
transfer.



The Equations of Change     ■      107

 

2

2Momentum: yx x
x yx y y

∂υ∂υ ∂ υ
υ + υ = ν

∂ ∂ ∂  
(2.198)

 

2

2Energy: x y
T T T
x y y

∂ ∂ ∂υ + υ = α
∂ ∂ ∂  

(2.199)

 

2
A A A

AB 2Mass: x y

m m m
D

x y y
∂ ∂ ∂

υ + υ =
∂ ∂ ∂  

(2.200)

Th e velocity components, υx and υy , temperature, T, and mass fraction 
mA = rA/r are functions of x and y. Th e coeffi  cient n (= μ/ρ) is the kine-
matic viscosity, a is the thermal diff usivity, and DAB is the mass diff usivity. 
A solution has been obtained to the boundary layer equations using the 
following initial and boundary conditions.

At y = 0 and x > 0 υx = 0 No slip
Surface of plate υy = υy0 Velocity at surface in y-direction

T = T0 Uniform surface temperature
mA = mA0 Uniform surface concentration

At y = ∞ or x ≤ 0 υx = υ∞ Free stream velocity
Far from plate T = T∞ Free stream temperature

mA = mA∞ Free stream concentration
nB = 0 A diff use through stagnant B

Th ese initial and boundary conditions were specifi ed: free stream velocity, 
υ∞; free stream and surface temperatures, T∞ and T0; and concentrations, 
mA∞ and mA0. Th e surface can be porous, and there is fl ow with a velocity, 
υy0, into or from the boundary layer from this surface. Flow to or from the 
boundary layer can be interpreted as condensation or evaporation from 
the surface. Th ere is only mass transfer of component A to or from the 
surface (nB = 0).

Th e solution to Equations 2.197 through 2.200 was fi rst obtained by 
Blasius (1950) for υy|y = 0 = υy0 = 0. Th e solution was obtained by using a 
dimensionless stream function, f(h), to satisfy the continuity equation and 
reduce the momentum equation from a partial diff erential equation to an 
ordinary diff erential equation. Th e following equations are the important 
relations where y(x, y) is the stream function.
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(2.204)

Performing the appropriate partial derivation and substituting into 
Equation 2.198 the following ordinary diff erential equation is obtained.

 2 0ff f+ =′′ ′′′  (2.205)

Blasius (1950) solved Equation 2.205 by the Method of Forbenius to obtain 
the infi nite series solution given below.
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where
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Th e coeffi  cients in the series solution were determined to have the follow-
ing recursion formula.
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(2.209)

Blasius (1950) reported numerical values for the coeffi  cients, and the fi rst 
six coeffi  cients have the following values:
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 c0 = 1; c1 = 1; c2 = 11; c3 = 375; c4 = 27,897, c5 = 3,817,137; c6 = 865,874,115 

Th e value of a in Equation 2.206 was determined using the boundary con-
dition υx = υ∞ at y = ∞ for x ≤ 0 to be 0.332.

Bennett and Myers (1962) give the fi rst four terms in the infi nite series 
solution as follows:

 
2 4 5 6 8 8 11( ) 0.16603 4.5943 10 2.4972 10 1.4277 10f − − −η = η − × η + × η − × η   

(2.210)

A graphical representation of the solution for υx/υ∞ and υy/υ∞ is shown 
in Figures 2.25 and 2.26 using the data reported by Brodkey (1967). Th e 
velocity υx reaches 0.99155 of the free stream velocity at a value of h = 5.0 
which is used as the defi nition of the boundary layer thickness. Th e lim-
iting value for υy(h = ∞) = 0.865υ∞(n/υ∞x)1/2 demonstrates that the plate 
retards the fl ow, and there is a net fl ow in the y-direction.

Th e solution given by Equation 2.210 is applicable to heat and mass 
transfer for the special case where n = a = DAB. Th e Prandtl number, Pr = 
n/a = 1 and the Schmidt number, Sc = n/DAB = 1. Th e momentum, energy, 
and species continuity equations have the same form using the following 
dimensionless temperature and concentration.
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FIGURE 2.25 Blasius solution for fl ow over a fl at plate for velocity υx.
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Th e initial and boundary conditions are the same if the dependent vari-
ables are given by the following equation. Th e velocity, temperature, and 
concentration profi les are the same.

 

0 A A0

0 A A0

( )x T T m m
f

T T m m∞ ∞ ∞

υ − −
= = = η′

υ − −  
(2.213)

Th e initial and boundary conditions are

At y = 0 and x > 0 υx = 0; or υx/υ∞ = fʹ(0) = 0

Surface of plate T = T0; T
—

 = 0

η = 0 mA = mA0; m
—

A = 0

At y = ∞ or x ≤ 0 υx = υ∞ or υx/υ∞ = fʹ(∞) = 1

Far from the surface T = T∞; T
—

 = 1

η = ∞ mA = mA∞; m—A = 1
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FIGURE 2.26 Blasius solution for fl ow over a fl at plate for velocity υy.
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Th ere is the limitation on the mass transfer solution because υy|y = 0 = 
υy0 = 0, and there is mass transfer from the surface by diff usion only. Th is 
implies that the rate of mass transfer from the surface is small.

Th e Blasius solution can be extended to allow for convective trans-
port to or from the solid surface, i.e., υy = υy0, a fi nite velocity at sur-
face in y-direction Th is transport is referred to as sucking or blowing, 
sucking has found application in boundary layer control on the wings 
of high-speed aircraft  to permit them to fl y at low speeds without stall-
ing. It includes having condensation on a surface or vaporization from 
a surface.

To extend the solution for a fi nite value of the velocity, υy0, at the sur-
face, the following boundary condition is used.

 0 at 0( 0)y y yυ = υ = η =  (2.214)

instead of

 0 at 0( 0)y yυ = = η =  (2.215)

is used to evaluate the constants in the series solution used to obtain the 
following equation.

 
2

0 1 2( )f A A Aη = + η+ η +� (2.216)

For υx = 0 and υy0 = 0, Equations 2.215 and 2.216 were used to determine 
that f(0) = A0 = 0 and f ¢ (0) = A1 = 0. For υx = 0 and υy0 = fi nite and constant, 
Equations 2.214 and 2.216 require that f(0) = A0 = constant and f ¢ (0) = A1 
= 0 for the solution given by Equation 2.216 to satisfy the continuity and 
momentum equations (Equations 2.197 and 2.198). Equation 2.216 must 
be modifi ed since A0 = constant and not zero for a fi nite velocity in the 
y-direction at the surface.

Solving for f(0) using Equation 2.208 with f ¢ (0) = 0 gives
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For convective transport from the surface, Equation 2.210 is modifi ed as 
follows:
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Th e fi rst term in the series above is a constant, and this requirement places 
a restriction on υy0. Th e velocity at the surface, υy0, must vary to have the 
product υy0 and 1/x1/2 be a constant.

It is convenient to let f(0) = −K, a constant and solve Equation 2.217 for υy0.
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2

0 2y

K
x

∞

∞

⎛ ⎞υ νυ = ⎜ ⎟υ⎝ ⎠  
(2.219)

If K is positive, then υy0 is positive, and there is mass transfer into the 
stream from the surface (blowing or vaporization). If K is negative, then 
υy0 is negative, and there is mass transfer from the stream to the surface 
(sucking or condensation).

Th e solution of the momentum equation, f(h) is used to obtain the solu-
tion of the energy (Equation 2.199) and species continuity Equation 2.200, 
for Pr and Sc ≠ 1. Th e dimensionless temperature and mass fraction given 
by Equations 2.211 and 2.212 are substituted into the energy and species 
continuity Equations 2.199 and 2.200, along with Equation 2.213 for h to 
obtain Equations 2.220 and 2.221 for energy and species continuity.
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For the case where the Prandtl number and Schmidt number are diff erent 
than one, Equations 2.220 and 2.221 can be formally integrated where f(h) 
is a known function given by Equation 2.208. Numerical integration is 
required. Defi ning T

—
' = dT

—
/dh and integrating Equation 2.220, the result 

is indicated by
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(2.222)

where T
—

'(h = 0) is evaluated using a boundary condition. Equation 2.222 
is written as
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Integration is indicated again by integrating again from T
—

 = 0 at h = 0 to 
T
—

 at h to obtain
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2
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(2.224)

Th e constant T
—

'(h = 0) is evaluated using the boundary condition 
T
—

'(h = ∞) = 1 at h = 0 substituted into Equation 2.224 which gives
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and the solution to the energy equation is
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By the same procedure, the solution to Equation 2.221 is in terms of the 
known function, f(h), and is of the same form.
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where the only diff erence is the Schmidt number replaced the Prandtl 
number.

Th e solutions to Equations 2.226 and 2.227 are present on Figure 2.27, 
where the parameters of the solution of the equations are the Prandtl num-
ber, Pr, or Schmidt, Sc, and K. From this fi gure concentration, tempera-
ture, and velocity profi les can be obtained for values of the Prandtl and 
Schmidt numbers of 0.72, 1.0, and 2.0 and for values of the dimensionless 
mass transfer parameter, K, of 1, 0, and −5. Th e accuracy of these pro-
fi les was confi rmed experimentally with good agreement between theory 
and experiment for air fl owing over a porous fl at plate with air injected or 
withdrawn from the boundary layer (Mickley et al., 1954).
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Just as important as the concentration, temperature, and velocity pro-
fi les are the fl uxes of mass, energy, and momentum at the surface. Th e 
expressions for these are given by Bird et al. (1960) along with tabulated 
values for various values of the dimensionless groups. Th ese results lead 
to correlations for heat and mass transfer for fl ow in the boundary layer. 
Th e reader is referred to this reference for this information or to the origi-
nal work, NASA-TN 3208 (Mickley et al., 1954) for the details of both the 
experimental and theoretical work.

Th e solution obtained for this example was formidable, yet the restric-
tions assumed to solve the problem severe. Th is is precisely the reason that 
computational methods are needed to solve engineering transport phe-
nomena problems.
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FIGURE 2.27 Velocity, temperature, and concentration profi les in the 
laminar boundary layer over a fl at plate. Mass transfer to the surface, con-
densation, sucking (K = −5). Mass transfer from the surface, evaporation, 
blowing (K = 1). No convective mass transfer from the surface (K = 0). 
Prandlt number is 0.72 and the Schmidt number is 2.0 for air. (Modifi ed 
from Mickley, H.S., Ross, R.C., Squyers, A.L., and Stewart, W.E., Heat, 
mass and momentum transfer over a fl at plate with blowing or suck-
ing, NASA-TN 3208, National Aeronautics and Space Administration, 
Washington, D.C., 1954.)
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2.9 SUMMARY
Th e equations of change have been described for variable properties, react-
ing fl ow that are used in computational transport phenomena. A deriva-
tion of these equations was given using a cubic control volume fi xed in 
space to ensure an understanding of the application of the conservation 
of mass, momentum, and energy applied to an open system. Th e apparent 
limitation to a rectangular coordinate system was removed by deriving the 
conservation equations with a arbitrary control volume moving with the 
local mass average velocity of the fl uid using a general property balance. 
Th e general property balance showed the conservation equations were of 
the same mathematical form with diff erent dependent variables for the 
property, fl ux of the property, and generation of the property. Th e integral 
formulation can be used in the numerical solution of the equations or the 
conservation equations in rectangular Cartesian coordinates can be for-
mally transformed into other more appropriate coordinate systems.

An overview of analytical and approximate solutions was described to 
show the limitations of these solutions and when it would be necessary to 
move to a numerical solution of the conservation equations. Th e analytical 
and approximate solutions served to demonstrate the use of an order anal-
ysis to identify important terms and those that could be neglected. Th ey 
provided the basis for wall functions used in the place of fi ne grids near 
the wall in numerical solutions. Th ey provided examples of frozen, equi-
librium, and nonequilibrium chemistry used in computational transport 
phenomena and the concepts associated with simultaneous momentum, 
heat, and mass transfer in the boundary layer. Th e primary limitations of 
the solutions discussed were that they were only appropriate for laminar 
fl ow and simple geometries.

2.10 NOMENCLATURE
2.10.1 ENGLISH SYMBOLS

a, b, c, d  parameters in rate of deformation expression for non-
 Newtonian fl uids

A, a Helmholtz free energy; specifi c Helmholtz free energy
Ai symbol for chemical compound in Equation 2.33
A, B, C, D constants in various property correlations
B  empirical constant in Equation 2.166; bulk viscosity in

 Equation 2.82 and 2.117
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c total molar concentration
cA molar concentration of species A
cn coeffi  cients in Blasius boundary layer solution Equation 
   2.209
Cp constant pressure heat capacity
Cv constant volume heat capacity
dij rate of strain (deformation) tensor component for non-
   Newtonian fl uids
D inside pipe diameter
D empirical constant in wall functions
DAB binary diff usion coeffi  cient
Dij diff usion coeffi  cient of binary pair
Dij

* diff usion coeffi  cient of binary pair in multicomponent 
   mixture
eij rate of strain (deformation) tensor component for 
   Newtonian fl uids
E empirical constant in wall functions
f friction factor
f(h) nondimensional stream function given by Equation 
   2.206
F force
gix external force acting on species i in the x-direction
g gravitational acceleration constant
G, g Gibbs free energy; specifi c Gibbs free energy
H, h enthalpy; specifi c enthalpy
Hxi partial molar enthalpy
I, Ii identity tensor; tensor invariant
ji mass diff usion fl ux of species i
Ji molar diff usion fl ux of species i
k reaction rate in Equation 2.32; bulk modulus for elastic 
   solid
kfi forward reaction rate constant in Equation 2.34
kri reverse reaction rate constant in Equation 2.34
K equilibrium constant; blowing parameter in Equation 
   2.219
Kf, Kb  forward and backward specifi c rate constants
l arc length
L width of porous slab
m parameter in the power law model
m—A  dimensionless mass fraction given by Equation 2.212
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mi,xi mass fraction of species i
Mw molecular weight
M momentum
n number of species
n parameter in the power law model
ni mass fl ux of species i
Ni molar fl ux of species i
NRe = Dvavgr/m, Reynolds number for tube fl ow
N = WCpe L/ke dimensionless parameter in Equation 2.187
pji stoichiometric coeffi  cients for products in Equation 
   2.194
P pressure
Pr Prandtl number
q  heat fl ux by conduction and diff usion, Equation 2.111
qw wall heat fl ux
q→r radiation heat fl ux vector
Q volumetric fl ow rate
r radial coordinate in cylindrical coordinates
ri chemical reaction rate of species i in mass per unit vol-

ume (time)
rji stoichiometric coeffi  cients for reactants in Equation 
   2.43
RA chemical reaction rate of species A in mole per unit vol-

ume (time)
R tube radius
R gas constant
s = R−r coordinate normal to the wall
s+ = v*s/(m/r) inner law coordinate
S  surface of an arbitrarily shaped control volume
Sii normal strain
Sc Schmidt number
T temperature
T * = qw/rCpv * characteristic temperature
T—  dimensionless temperature given by Equation 2.227
T+ = rCpv *(T

—
−TR)/qR

t time
U internal energy; specifi c internal energy
υ local fl uid velocity
υavg averaged velocity for fl ow in a tube
υ0 superfi cial velocity in a porous media
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υy0 velocity at surface of a fl at plate
υ2/2 kinetic energy per unit mass
υds diff usion velocity
υ+ = v/v+ inner law velocity
υ * = w w/τ ρ friction velocity
V control volume
V specifi c volume
W mass fl ow rate or fl ux
x, y, z rectangular coordinates
x, q, z cylindrical coordinates
y coordinate normal to surface
yi mole fraction of i

2.10.2 GREEK SYMBOLS

a = k/rCp, thermal diff usivity
a permeability in Darcy’s law
a constant in Blasius boundary layer solution
d boundary layer thickness
dl

+ wall function variable at edge of laminar sublayer
D diff erence operator
e eddy kinematic viscosity; porosity in Section 2.8.3
f shearing strain; distorsion angle
k second coeffi  cient of viscosity
k thermal conductivity in Equation 2.93 and aft er this 
   equation
ke = ekg + (1 − e)ks eff ective thermal conductivity for a 
   porous media
kv von Karman’s constant in Prandtl’s turbulent model, 
   Equation 2.160
sxx = −P + txx normal stress given by Equation 2.37a
h nondimensional stream function given by Equation 
   2.208
m molecular viscosity
n, u kinematic viscosity
r density
ri concentration mass of species i per unit volume
rA

+ = v∗(r‒A − rAR)/nA

τ
��

 stress tensor
τ
��

rz
l time-averaged, laminar shear stress



The Equations of Change     ■      119

τ
��

rz
t time-averaged, turbulent shear stress

txy shear stress component
tR shear stress at tube radius
Fv viscous dissipation function given by Equation 2.114
y property
y stream function; (∇ ⋅ v→ )2 in Equation 2.115
Y fl ux of a property
yg generation of a property
w vorticity
W rotation of fl uid element

2.10.3 MATHEMATICAL SYMBOLS

Ñ Del operator
DHv heat of vaporization
τ
��

 second-order tensor (t is any tensor)
V
→

 vector (V is any vector)
m− mean value
M matrix (M is any matrix)
C~v column vector (CV is any column vector) )

2.10.4 SUBSCRIPTS

a apparent value
A species A in a binary mixture
B species B in a binary mixture
b bulk value
c critical value
g gas phase property
i specifi c property of species i
ℓ liquid phase
o centerline or edge condition
o boundary layer surface value
o apparent viscosity at zero shear rate
p constant pressure quantity
r reduced quantity
s solid phase property
t turbulent quantity
R tube wall property
v momentum
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w wall property
x, y, z component of vector or tensor
x, q, z component of vector or tensor
∞ boundary layer free stream value; apparent viscosity at 
   infi nite shear rate

2.10.5 SUPERSCRIPTS

* dimensionless variable
* friction velocity
+ wall function variable
g external forces
j concentration
p pressure
T temperature, transpose of a matrix

2.10.6 OVERSTRIKES

u− turbulent time averaged
u
®

 a vector
τ
��

 a tensor
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3C H A P T E R  

Physical Properties

3.1 OVERVIEW
Much of the literature on transport phenomena describes fl uids as being 
of constant density or as ideal gases, in which case the transport coeffi  -
cients are the major physical properties of interest. For multicomponent, 
multiphase fl ows this is not the case. Rigorous thermodynamic and reac-
tion kinetics properties are of critical importance. Yet the full scope of 
such information is too vast and complex to be conveniently analyzed. 
Rather, practical engineering models of these properties must be selected 
and quantitatively described. Th e limitations imposed by using such mod-
els must be identifi ed and accepted to make use of what computational 
analysis currently off ers for transport analysis. Th is methodology is both 
important and nontrivial. Again, this implies an engineering approach 
and utilization of a production quality computational transport phenom-
ena (CTP) code. Th e importance of the myriad of journal papers and ongo-
ing research studies are not to be minimized, but somewhere one needs 
to draw the line and determine the distinction between practical analyses 
and possible future technological improvements.

For modest temperature and pressure levels, single species fl uids may 
be reasonably analyzed as variable density ideal gases or as constant den-
sity liquids. For wide temperature and pressure ranges and for liquid/
vapor coexistent conditions, single species fl uids must be analyzed with 
real-fl uid thermodynamic properties. Multicomponent fl uids may be 
analyzed the same way, if they do not react. If conditions are such that 
the multicomponent fl uids react very fast, a condition of local chemical 
equilibrium may exist in the fl owfi eld. If the chemical reactions occur at 
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a rate comparable to the local residence time in the fl ow, the reactions 
are controlled by fi nite-rate chemical reactions. For the purposes of the 
analyses described herein, multicomponent fl uids are always assumed 
to be intimately mixed at a given location. Th is means that at a given 
point, the convection, diff usion, and reactions of the various species 
are to be predicted, whereas local unmixedness on a molecular scale is 
not considered. At this time unmixedness can only be described with 
experimentally measured or arbitrarily postulated probability distribu-
tion functions, not with the continuum conservation equations.

Radiative transfer requires integro-partial diff erential equations for a 
rigorous analysis. Th is topic is beyond the current capabilities of the CTP 
code. However, an introduction to radiation properties is given so that the 
need for, and a sketch of, such a more comprehensive computational model 
can be appreciated. Also, radiation analysis is an immensely important 
experimental tool for investigating transport processes. Th us the radia-
tion property discussion serves to better connect the computational and 
experimental methodologies.

3.2 REAL-FLUID THERMODYNAMICS
Th ermal and caloric equations of state are needed to solve the energy equa-
tion. Th e Gibbs’ free energy is needed to describe fl ows that are in chemical 
equilibrium and to relate forward and backward reaction rates in revers-
ible reactions. Th e speed of sound is required to select the algorithms in 
the diff erence form of the conservation equations. All of these properties 
are to describe multicomponent mixtures of real fl uids. Th e properties 
must cover a wide range of temperatures and pressures. Empirical correla-
tion equations are best suited for this purpose. Data and correlations from 
the work of Reid et al. (1987) and later editions from Yaws (1999) are best 
suited for this purpose. NIST data are also acceptable if they are avail-
able in other than tabular formats. Handbook data tend to be too sparse 
with respect to the range of conditions for which they are valid and lack 
adequate correlation equations. Lastly, the property data should be in a 
consistent form to expedite numerical computations.

3.2.1 THERMAL EQUATION OF STATE

Th e thermal equation of state (TEOS) defi nes the relationship between the 
pressure (P), molar density (n) or mass density (ρ) specifi c volume, and 
absolute temperature (T) for a given single component fl uid. For the range 
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of conditions of interest, four regions on a plot of pressure vs. specifi c vol-
ume with temperature as a parameter may be identifi ed. Namely,

Region I—gases at all temperatures and density less than the critical 
or saturation density

Region II—high density gases at temperatures and densities above 
their critical values

Region III—liquids at temperatures below critical and pressures 
above saturation

Region IV—two-phase region where vapors and liquids coexist

Solids are not considered in these categories; they will be described sepa-
rately as discrete phases.

Most of Region I fl uids may adequately be described as ideal gases since 
the density will be suffi  ciently low to eliminate molecular interactions. 
Th e ideal gas law is appropriate:

 

ρ= = = =
∀ ∀w w

NRT mRT RT
P nRT

M M  
(3.1)

where
Mw is the molecular weight (i.e., mass)
" is volume
m is mass
R is the gas constant

Some authors make a distinction between ideal and perfect gases by 
defi ning one to also include an assumption that the constant pressure 
heat capacity property is also constant. Since there is no consistency 
between which term is applied to which case, we refer to the aforemen-
tioned equation as either the ideal or perfect gas law. If the heat capacity 
is assumed constant, it will be so stated.

To extend the range of validity of the ideal gas law, a major eff ort to 
collect and correlate experimental data was undertaken by Lydersen
et al. (1955). Remarkably, the data were found to simply correlate with 
temperature and pressure expressed as reduced values and with a very 
weak dependence on a compressibility correction factor (Z). Even this 
weak dependence could be described with a third parameter, which was 
Z evaluated at the critical point (Zc). Th e result is called the law of corre-
sponding states. It is stated as



126     ■     Computational Transport Phenomena for Engineering Analyses

 
{ }= =

∀ r r cwhere  , ,
ZNRT

P Z Z P T Z
 

(3.2)

Braces are used herein to indicate functionality, not multiplication. Other 
third parameters have also been suggested, such as Riedel’s parameter (α) 
and Pitzer’s acentric factor (ω). Th ese produce similar results. But since 
they have been modifi ed by various investigators, they will not be defi ned 
until they are associated with a specifi c TEOS. Th e law of corresponding 
states is very useful, but it has a major drawback for computational use. 
Th e values of the compressibility correction factors are only available as 
tables.

More general analytical TEOS’s have been suggested. Many of them 
have been based on the van der Waals’ equation as

 ( ) 2

RT a
P

b
= −

∀ − ∀  
(3.3)

Notice that the equation is written for one mole of a specifi ed fl uid. Th is is 
a common practice in thermodynamics literature, but care must be taken 
in applying such equations. Th e logic for this formulation is that the 
parameter a is a correction for the attraction between molecules and 
the parameter b accounts for the volume occupied by the molecules in the 
gas. When this equation is used to calculate Z, the resulting equation 
becomes a cubic in Z. Th e cubic puts a curve in the coexistence region. Th e 
curve is a quirk of the equation used that has no physical meaning. Many 
thermodynamicists like to think otherwise. Th ey have assumed some 
signifi cance to describe the coexisting phases. Th ey have also modifi ed 
this curve to fi t experimental data to represent multiple phases and species; 
see Chapter 8 of Sandler (1999). At this point expect no such interpreta-
tion; we will simply consider the cubic equation as an empirical fi t. Th e 
basic cubic equation does not fi t pressure–volume–temperature data well, 
so it has been modifi ed by letting

 { } and { , }a a T b b T= = ∀  (3.4)

A popular example of the cubic TEOS is the Peng–Robinson (PR) EOS 
(Sandler, 1999), which is given as:
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 ( ) ( )= −
∀ − ∀ ∀ + + ∀ −

{ }RT a T
P

b b b b

where

 

2 2
c

c

c

c
2

{ } 0.45724 { }

0.07780

1 1

0.37464 1.54226 0.26992

R T
a T T

P
RT

b
P

T
T

= α

=

⎛ ⎞
α = + κ −⎜ ⎟⎝ ⎠

κ = + ω − ω  

(3.5)

Critical properties and the acentric factor are needed to evaluate the 
parameters in the PR-TEOS.

Th e acentric factor may be estimated by

 

vap

c

1.0 log
P
P

⎡ ⎤
ω = − − ⎢ ⎥

⎣ ⎦  
(3.6)

where Pvap is the vapor pressure at Tr = 0.7. Vapor pressure may be esti-
mated by the Lee–Kesler correlation (Reid et al., 1977):

 { } { }vap (0) (1)
r r rln P f T f T= + ω  (3.7)

where

 

( )0 6
r r

r

(1) 6
r r

r

app

6
c

6

6.09648
5.92714 1.28862 ln 0.169347

15.6875
15.2518 13.4721 ln 0.43577

6.09648
ln 5.92714 1.28862 ln 0.169347

15.6875
15.2518 13.4721 ln 0.43577

f T T
T

f T T
T

P

= − − +

= − − +

αω =
β

α = − − + + Θ − Θ
Θ

β = − − Θ + Θ
Θ

nbp
c cwhere and is in atmosphereT T PΘ =
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If the reduced normal boiling point temperature (Θ) is equal to 0.7, no 
iteration is needed to evaluate ω. Th e superscript “app” indicates that the 
ω is approximate. Th e subscripts “r” and “c” represent a reduced value and 
the critical value, respectively.

Z is computed from the cubic equation:

 
3 2 2 2 3(1 ) ( 3 2 ) ( ) 0Z B Z A B B Z AB B B− − + − − − − − =  (3.8)

where
B = pb/RT
A = ap/R2T2

" = Z RT/P

Th e PR-TEOS is very useful, but it has several computational drawbacks. 
First, if one wished to improve the simulation in any one of the regions, 
the entire EOS would have to be rewritten and revalidated. Second, the 
most accurate thermodynamic property data is vapor pressure. Th is infor-
mation is not directly utilized in the PR-EOS. Lastly, the boundaries of the 
coexistence region are determined by calculating the Gibbs’ free energy 
along an isotherm and locating these boundaries by observing when the 
Gibbs’ free energy is equal for the vapor and liquid. A direct determina-
tion with a vapor pressure correlation is much more accurate and effi  cient 
to evaluate.

Another cubic TEOS was developed by Hirschfelder et al. (1958a,b). 
In order to analyze the eff ects of real-fl uid properties including phase 
changes in spray combustion, this, the HBMS TEOS, was selected for use 
in the CTP code because it treats the gas, dense gas, and liquid regions 
separately and produces reasonable accuracy over a wide range of pressures 
and temperatures. Th e HBMS TEOS is

 

4 6
2 2

r  r r
c c   1    1 c

            ;       ;     = ij
i j

j i

P T
T B T

P T
−−

= =

ρ= =ρ ρ
ρ∑ ∑

 
(3.9)

Bij are the coeffi  cients of the thermal property polynomial for a given spe-
cies for each of three single-phase regions. Th e HBMS TEOS is of acceptable 
accuracy for a wide range of conditions, and its component submodels can 
be easily modifi ed. Th e vapor pressure curve and the liquid phase density 
correlations have been improved over the original HBMS formulation.

The original HBMS paper derives the Bij’s as functions of the 
critical values of pressure, temperature, and specific volume (or Zc) 
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for the three single-phase regions. The HBMS TEOS was developed 
as a generalization of the van der Waals’ equation by the following 
modifications:

 
= − ∀ − ∀′

⎡ ⎤∀ − + ∀′⎣ ⎦

2 3{ } { }//
/

RT
P a T a T

b b  
(3.10)

Note the similarity with the PR-TEOS. Th e functions a and a¢ and the con-
stants b and b¢ were chosen to be consistent with the virial form of the van 
der Waals’ equation, the law of corresponding states, and the requirement 
of a smooth meeting of the saturated liquid and vapor lines. Riedel’s vapor 
pressure (Pvap) equation is used to obtain continuity of the saturated liquid 
and vapor lines at the critical point:

 = + + +vap 6ln ( / ) lnP A B T C T DT  (3.11)

Two points on the saturated liquid line and the normal boiling point 
were also required to evaluate the Bij’s. Th ese considerations result in the 
values of Bij in terms of the critical conditions, which are contained in 
the CTP code.

To obtain the vapor pressure, the previously mentioned Lee–Kesler cor-
relation equation was used (this equation requires the specifi cation of the 
normal boiling point). Using the correlations reported in Reid et al. (1987), 
saturated liquid volumes are calculated with Spencer and Danner’s modi-
fi cation of the Racket method:

 

( )⎡ ⎤+ −⎣ ⎦∀ = = − ω
2/7

r1 1c
c RA RA

c

where 0.29056 0.08775
TRT

Z Z
P  

(3.12)

ZRA may also be obtained from experiments or from the reduced tempera-
ture. Th ompson et al.’s model for compressed liquid volumes may be used 
for Region III:

 
vap

c r{ , , , , and eight constants}s f P T P∀ = ∀ ω�  (3.13)

However, only limited validation data are available. It is interesting to note 
that although the liquid density changes by the least amount (percentage-
wise), more empirical constants are used in its estimation than any other 
thermodynamic property. Carruth and Kobayashi’s extension of Pitzer’s 
method is used to calculate the heat of vaporization (ΔHv) above a reduced 
temperature of 0.6:
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( ) ( )0.354 0.456v

r r
c

7.08 1 10.95 1
H

T T
RT
Δ

= − + ω −
 

(3.14)

Below this limit, Watson’s method is used:

 

0.38

r2
v2 v1

r1

1
1

T
H H

T
⎡ ⎤−Δ = Δ ⎢ ⎥−⎣ ⎦  

(3.15)

Th e saturated vapor density is obtained from the Clapeyron equation:

 ( )
vap

v

sv ss

HP
T T

⎛ ⎞ Δ∂ =⎜ ⎟∂ ∀ − ∀⎝ ⎠ ��  
(3.16)

All of the models are linearly extrapolated below a reduced temperature 
of 0.3.

Th ese models are not necessarily the best or most general, but choices 
are necessary to provide the data needed to estimate suffi  cient property 
information to solve the conservation equations. Correlation equations of 
theoretical or empirical data are preferred over tabular data to expedite 
calculations and modifi cations to refl ect new information.

3.2.2 CALORIC EQUATION OF STATE

Th e caloric equation of state (CEOS) defi nes the relationship between 
enthalpy (H) (or internal energy U), temperature, molar (or mass) specifi c 
volume, and heat capacity (Cp). For a real, single-component fl uid:

 

⎡ ⎤∂∀⎛ ⎞= + + ∀ − ⎜ ⎟⎢ ⎥⎝ ⎠∂⎣ ⎦
∫ ∫

2 2 2 2

1 1 1 1

, ,

REF
, ,

d d
T P T P

p
PT P T P

H H C T T P
T  

(3.17)

HREF must be chosen. For a single-component fl uid, any value is suffi  cient, 
even zero. For multicomponent, reacting fl uids, the standard heat of for-
mation is used as the reference value. If the substance changes phase, the 
enthalpy is a weighed average of each phase. T1 is a convenient low temper-
ature. It is not chosen as zero because entropy is not defi ned when the tem-
perature is zero degrees absolute. Equation 3.17 has meaning only when 
applied to an identifi ed quantity of material. Unless stated diff erently, the 
quantity will be taken as one mole of pure species. As with all thermody-
namic functions, the restrictions placed on a defi ning equation must be 
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carefully stated. For an ideal gas, the pressure term in the enthalpy is zero. 
If HREF is zero, the enthalpy is only a function of the heat capacity and 
temperature. Wilhoit (1975) recognized that gaseous heat capacities are 
essentially constant (Cp{0}) at low temperatures (~10–200 K), where only 
translational and rotational motions are excited, and that at high temper-
atures the rigid-rotor-harmonic-oscillator model predicts the equipartition 
of all energy modes, hence the heat capacity becomes a constant, higher 
value (Cp{∞}). For linear molecules, Cp{0} is 3.5R for linear molecules 
and 4R for nonlinear molecules. Cp{∞} is (3N − 1.5)R for linear molecules and 
(3N − 2)R for nonlinear molecules. N is the number of atoms in the mol-
ecule. Wilhoit represented intermediate values of Cp with a polynomial 
function for 32 compounds. Th is model implies that the heat capacity is 
constant at higher temperatures, although for real gases it is known to 
increase slowly above the high temperature limit.

Over a number of years, NASA scientists at John H. Glenn (formerly 
Lewis) Research Center developed an ideal gas thermodynamics proper-
ties database, with limited liquid and solid species properties included, 
and computer code (Gordon and McBride, 1976, 1994). Th is work, now 
called the CEA code, also includes chemical equilibrium data, transport 
property data, and some additional thermodynamics data. Th e CEOS 
presents and utilizes data correlations as follows:

 
= + + + +

o
2 3 4

1 2 3 4 5
pC

a a T a T a T a T
R  

(3.18)

 
= + + + + +

o
2 3 43 5 62 4

1 2 3 4 5
T a a aH a a

a T T T T
RT T  

(3.19)

 

o
2 3 43 54

1 2 7ln
2 3 4

T a aS a
a T a T T T T a

R
= + + + + +

 
(3.20)

 
( )

o
2 3 43 5 64

1 2 71 ln
6 12 20

T a a aG a
a T a T T T T a

RT T
= − − − − − + −

 
(3.21)

Notice that C op is fi t with a fourth-order polynomial containing fi ve 
constants. Th e enthalpy Ho

T fi t contains a sixth constant and the entropy a 
seventh. Th e Gibbs’ free energy Go

T contains no additional constants as it is 
calculated from the enthalpy and entropy So

T. Th e superscript “o” indicates 
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ideal gas and the subscript “T” emphasizes that the ideal gas properties are 
not a function of pressure. Th e newer versions of the CEA code contain 
two additional terms in each of these functions and extend the range of 
applicability to 20,000 K. Th e old version of the correlations is used in the 
CTP code. Th e functions are fi t such that the enthalpy and Gibbs’ free 
energy at 298.15 K are the heat and free energy of formation, respectively, 
of the species. Th ere are other ideal gas databases, but they do not cover 
the wide range of temperatures and species, they are not as well docu-
mented, and the source code for their use is not as generally available. Th e 
CEA code has another very useful feature. If only the heat of formation 
and elemental composition of a reactant are specifi ed and this reactant 
is not a fi nal product, the equilibrium composition of the mixture can 
be predicted. For example, if a polymer or gasoline were oxidized (under 
other than extremely fuel-rich conditions), intermediate-reaction product 
thermodynamic properties would not need to be known.

Real-fl uid thermodynamics are modeled by adding a correction term 
to the ideal gas property model. For example, if the PR-TEOS is used 
to calculate real-fl uid thermodynamic properties by forming a PR-CEOS, 
the PR-TEOS is used to calculate “departure functions,” which are pressure 
correction factors to convert the ideal gas enthalpy and entropy to real-
fl uid values. Th e ideal gas contribution, including the heat of formation, 
is obtained from the CEA code data. Th e enthalpy equation becomes the 
PR-CEOS:

 =

⎡ ⎤∂∀⎛ ⎞− = ∀ − ⎜ ⎟⎢ ⎥⎝ ⎠∂⎣ ⎦
∫
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Th e entropy form of the PR-CEOS is
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Th e HBMS TEOS is used in the same fashion to calculate real gas 
thermodynamic properties. Slightly diff erent variables are used in the 
HBMS CEOS:
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Th e Gibbs’ free energy is calculated from
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where Z is obtained from either the PR-TEOS or HBMS TEOS.
Note that this standard procedure for calculating departure functions uses 

no experimental or theoretical information on liquid phase heat capacities. 
In general, real-fl uid EOS studies are weak in the Region III liquid-side 
analyses and validation. More detailed comparisons with the empirical cor-
relations of liquid properties reported in Reid et al. (1987) would be valuable.

3.2.3 TEOS AND CEOS FOR MULTICOMPONENT FLUIDS

Chemical potentials are defi ned as
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(3.28)

where A is the Helmholtz free energy. Note that μi º (¶G/¶ni)T,P,nJ 
 º Gi, 

the partial molar Gibbs’ free energy. Th e other chemical potential deriva-
tives are not taken at constant T and P, therefore they are not partial molar 
quantities. Th e other partial molar functions are

 

, , , ,

, , , ,

J J

J J

i i
i iT P n T P n

i i
i iT P n T P n

U H
U H

n n

A
A

n n

⎛ ⎞ ⎛ ⎞∂ ∂≡ ≡⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂∀≡ ≡ ∀⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

(3.29)

Th ese functions are those commonly used in thermodynamics, but these 
functions are redefi ned to put them on a mass basis for most computa-
tional analyses:
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Let ui, hi, gi, ai, and vi be the corresponding thermodynamic functions 
per unit mass, i.e., the specifi c properties. Th ese are the quantities that 
come directly from the TEOS and CEOS when they are divided by the 
appropriate species molecular weight. Th e “excess functions” are defi ned 
to be the diff erence between the partial mass (or molar) property and the 
corresponding pure component specifi c property. Th us the excess functions 
account for a property in a mixture being diff erent from its value in the 
pure state. Several of these functions are
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Th e mass fraction is denoted by xi in these functions.
For ideal fl uid mixtures, the excess functions are all zero. For real fl u-

ids, a useful approximation is to assume that the excess functions are zero. 
Such fl uid mixtures are termed “ideal solutions.” To investigate the validity 
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of such an assumption, consider the example reported by Balzhiser et al. 
(1972). A real-fl uid mixture of a 3:1 molar ratio of hydrogen to nitrogen is 
a feed stream to an ammonia synthesis plant. Th e stream is compressed 
to 400 atm and heated to 300 K. Measurements are reported in Perry et al. 
(1963) for these conditions. Several methods were used to estimate mix-
ture compressibility:

 1. Experimental values:

 ZMIX = 1.155 "MIX = 2.176 ft 3/lb mol

 2. Th e mixture was assumed to consist of ideal gases:

 ZMIX = 1.0 "MIX = 1.884 ft 3/lb mol

 3. Dalton’s law of additive pressures. Component compressibilities 
are based on estimated partial pressures:

 ZMIX = 1.095 "MIX = 2.063 ft 3/lb mol

 4. Amagat’s law of additive volumes. Component compressibilities 
are based on system total pressure:

 ZMIX = 1.16 "MIX = 2.186 ft 3/lb mol

 5. Pseudo-critical constants were used to compute compressibility:

 ZMIX = 1.21 "MIX = 2.280 ft 3/lb mol

Th e use of Amagat’s law is the same as assuming the mixture is an ideal 
solution. Th is is obviously the best model for this example. It is also the 
simplest, since it just weighs the component volumes by the mass fraction, 
a dimensionally consistent calculation. Th e other two real-fl uid estima-
tion methods are pure empiricism, which in this case yield poor results.

Th e PR-EOS uses mixing rules to represent multicomponent systems. 
Th ese rules use average values of the function a and the constant b:
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where
yi is mole fraction
n is the number of components

Th e kij is the “binary interaction parameter.” Th e kij’s are determined 
by experiment. Th e value of the modeling methodology is very dependent 
on the chemical systems of interest. Application to mixtures of more than 
two components is limited. Th is methodology has several drawbacks 
when considered for application to CTP. Th ere are only limited data for 
the binary interaction parameters, and these parameters may infl uence 
the property predictions by as much as 20% for gaseous mixtures. For 
anything other than a binary mixture, the method is very computation-
ally intensive. Th e method has been applied primarily to mixtures in the 
coexistence region, where it has been used as a data fi t by adjusting kij. 
Generally, no consideration has been given to the other three regions, 
as to how the TEOS accuracy is infl uenced by the selection of the binary 
interaction parameter. Using cubic equations of state to represent the 
coexistence region is generally not as eff ective as using activity coeffi  cient 
methods. Th e use of regular solution models, the UNIFAC model, and 
the Wong–Sandler mixing rule (Sandler, 1999) are useful for describing 
mixtures in the coexistence region, but all are too elaborate and system 
dependent to be practical for consideration in a CTP code. At this time 
they also appear to be unnecessary, for ideal solution models can only be 
evaluated and validated for CTP purposes.

Th e HBMS TEOS and CEOS models along with ideal solution assump-
tions are currently included in the accompanying CTP code. Th is approach 
treats the fl ow of a multiphase mixture as the fl ow of a continuum, a 
multicomponent fl uid wherein the local quality determines the relative 
amounts of liquids and gases. Th us, velocity and temperature equilibrium 
are assumed to exist between the phases. For many years, dense spray has 
proved to be too complex to simulate with more elaborate computational 
models and to measure experimentally. Th e development of more com-
plete CTP models must be accompanied by an improved experimental 
methodology. Otherwise, the current modeling techniques are as good as 
can be expected. Th ere are alternatives; a series of more simplifi ed experi-
ments and accompanying analyses could be conducted to improve CTP 
methodology. Such an approach would amount to basic research, which is 
far more diffi  cult to obtain funding for than industrial and military proj-
ects. Th e near term prospect for developing more elaborate mixing models 
for CTP analyses is dim.
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3.2.4 SOUND SPEED IN MULTICOMPONENT FLUIDS

Sound speed is defi ned as
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but this function is diffi  cult to estimate for multiphase, multicomponent 
fl uids, even in a state of equilibrium. For nonequilibrium conditions, heat 
and mass exchange and surface tension must also be considered. Th is 
function is calculated in the HBMS TEOS by its thermodynamic equiva-
lent as
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Th e function was calculated for oxygen at 95.58 K and 1.701 atm, i.e., typi-
cal equilibrium conditions for two-phase oxygen. NBS data (McCarty and 
Weber, 1971) for density and sound speed at the saturated vapor and liquid 
points are ρv = 7.2952 kg/m3, av = 172.26 m/s, ρL = 1112.874 kg/m3, and 
aL = 859.45 m/s. Predicted values of these points are 7.255, 181.31, 1119.8, 
and 896.3, respectively. Th is agreement is considered to be very acceptable. 
But how does the sound speed vary in the two-phase region between the 
saturation points of the vapor and liquid?

Reported analyses and experiments of sound speed in two-phase 
f luids indicate that the presence of the second phase causes a rapid 
decrease in sound speed for small additions of the second phase. Th e 
real-fl uids model simulation for the sound speed of oxygen at the condi-
tions mentioned in the two-phase region are shown in Figure 3.1. Th e 
speed of sound for a gaseous/liquid oxygen (GOX/LOX) mixture cal-
culated with Equation 3.37 is shown as the HBMS curve in this fi gure. 
Assuming that the equilibrium thermodynamic processes are completely 
accounted for, the accepted sound speed for the multiphase mixture is 
given by Brennen (1995) as
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(3.38)

Th e sound speeds predicted with the real-fl uid model agree quite well with 
Brennen’s equation (Equation 3.38) and should be used for CTP analyses.
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3.3 CHEMICAL EQUILIBRIUM 
AND REACTION KINETICS

At near-ambient temperatures and pressures, most multicomponent fl ows 
may be treated as nonreacting. Th ere are exceptions; hypergolic propel-
lants react upon the mixing of their components. In all reacting fl ows, 
if the temperature and pressure are suffi  ciently high, the fl ow will prob-
ably be in local chemical equilibrium. Otherwise, the species continuity 
equations (SCEs) with appropriate reaction rates must be solved simul-
taneously with the other conservation equations. Th e fi nite-rate solution 
would require a system of reactions and rate expressions to complete the 
analysis. Th is chapter describes the methodology required to determine 
the local state of a reacting fl ow in either chemical equilibrium or as gov-
erned by fi nite-rate chemical reactions.

3.3.1 CHEMICAL EQUILIBRIUM

Chemical equilibrium is established when the Gibbs’ free energy is mini-
mized while satisfying the local element balances. Th e local element ratios 
are determined by the solution of the multicomponent conservation equa-
tions. Th e chemical equilibrium relationships are described as follows.

3.3.1.1 Minimization of Gibbs’ Free Energy

Gibbs’ free energy per unit volume for a multicomponent, multiphase 
mixture is

FIGURE 3.1 GOX/LOX sound speed (HBMS  Brennen ••••).
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where
ng is the molar concentration
φi is the quality of the fl uid
P is pressure in atm

Let
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where
bj is the total molar concentration of element j
eij is the number of atoms of element j in species i
noi is the initial value of ni; the “o” denotes initial value
NE is the number of elements

Th e constraint on minimizing the Gibbs’ free energy is that the bj’s 
are constant. Th is is accomplished by defi ning the augmented function:
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where λj are Lagrangian multipliers. Expanding this function as a Taylor 
series:
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where δik is the Kronecker delta.



140     ■     Computational Transport Phenomena for Engineering Analyses

Th e augmented function is minimized by driving its derivatives to zero. 
Th at is,
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for i = 1, NE. If the ith species is a gas,
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Summing on all gases,
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If species ℓ is condensed, then ¶Φ/¶nℓ = 0 yields
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NC is the number of condensed species.
For condensed species, the constraint equation is
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Th ere are NE of these equations. Th ese equations plus Equations 3.46 and 
3.47 form a set of N = NE + 1 + NC equations with unknowns
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Th is set of N equations is solved to obtain values for the unknowns λ, which 
are used to obtain new values for species concentrations. Under-relaxation 
must be used to ensure that species concentrations remain positive and that 
the Gibbs’ free energy is decreasing. Th e iterative process is repeated 
until the free energy is minimized. One of the advantages of this method is 
that only an Nth-order matrix is involved instead of a matrix of the order 
of the number of species presents (NS), which is typically many.
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Th e previously mentioned CEA code uses a minimization of the free 
energy approach to obtain equilibrium compositions. Th e major advantage 
of using the free energy minimization methods is that the species present 
at equilibrium do not have to be specifi ed. Such species are a result of the 
calculation.

3.3.1.2 Equilibrium Constants

If only a small number of species and equilibrium reactions are involved, 
an alternate approach can also be used. Equilibrium constants can be eval-
uated from free energy values and a set of equations solved for equilibrium 
concentrations. For example, the wet-CO mechanism, consisting of eight 
species, may be modeled using three element balances and fi ve reactions:

Ni is the molar density of species i; Ej is the molar density of element j:

 2

1/2
O OO20.5 O  = O     = N NK⇒  (3.50)

 2

1/2
H HH20.5 H  = H     = N NK⇒  (3.51)

 22

1/2 1/2
OH O HO H2 20.5 O  + 0 .5H = OH    = N N NK⇒  (3.52)

 222 2

1/2
H O H OO H2 2 20.5 O  +  H  = H O     = N N NK⇒  (3.53)

 22 2

1/2
CO O2 2 CO COCO+0.5O  = CO     =N NNK⇒

 (3.54)

where
Kj is the equilibrium constant for reaction j
Ni = ραi/Mwi is the molar density of species i, where αi and Mwi are the 

mass fraction and molecular weight of species i, respectively

Th e reaction set is not unique, but all other sets can be derived from 
this set. Th e above equations are solved to obtain equilibrium species 
concentrations.

Th is is an interesting example because it represents the fi nal state of com-
bustion of an oxygen–hydrocarbon system, unless the combustion is so fuel 
rich that unburned hydrocarbons remain as equilibrium products.

Equilibrium constants for a single reaction (I) are obtained from the 
Gibbs’ free energy. Consider the reaction
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 A B C DA B C Dν + ν = ν + ν  (3.55)

Th e ni’s are stoichiometric coeffi  cients and the capital letters represent 
chemical formulas. Assume that the mixture of species forms an ideal 
solution. Otherwise there are too many possibilities to make even a par-
tially general analysis. Unfortunately, the Gibbs’ free energy is represented 
by numerous aliases: partial molar Gibbs free energy, chemical poten-
tial, fugacity ( f ), fugacity coeffi  cient, activity (a), and activity coeffi  cient. 
Using the activity and fugacity, ai = yi fi/fi

o. fi
o is the fugacity of i at a 

standard-state condition. Th is is usually taken to be 1 atm. Th is means 
that it does not appear in any further equations and that all other fugaci-
ties and pressures must also be expressed in atmospheres. Otherwise, it 
must be retained in the following equations. Th e equilibrium coeffi  cients 
are defi ned as
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Th e yi’s are mole fractions. If the reaction does not change the number of 
moles present, the pressure term is eliminated. If the species involved are 
ideal gases, the fugacity term is eliminated. Th e equilibrium constant is 
calculated from the Gibbs’ free energy by
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(3.57)

where the standard-state change in G for this reaction is

 
o o o o o
I C C D D A A B BG g g g gΔ = ν + ν − ν − ν  (3.58)

Th e g’s are standard-state Gibbs’ free energies for the indicated species per 
mole:

 22H H O H OHH = 2  2  N N N NE + + +  (3.59)

 22 2O H O O CO C O  OHO =  2   2 N N N N N NE + + + + +  (3.60)

 2C CO C O =  N NE +  (3.61)
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Given two state variables (P and either T or H), the fi ve equilibrium con-
stants needed in Equations 3.50 through 3.54 can be calculated from 
the standard-state Gibbs’ free energy for a given set of element values. 
Equations 3.50 through 3.54 and 3.59 through 3.61 can then be solved for 
the eight species concentrations. Th is appears to be a simple algebra prob-
lem, but for the range of conditions of interest, the solution is sometimes 
diffi  cult to obtain. Th e free-energy minimization method, even for a small 
chemical system, is an attractive backup solution method.

3.3.2 FINITE-RATE CHEMICAL REACTIONS

Multicomponent fl ows in general involve species that may react with one 
another at a fi nite rate. Treating the fl ow as being in local chemical equi-
librium or as being “frozen,” i.e., nonreacting, is an approximation that 
may be entirely appropriate for a given situation. Reactions occur when 
energetic molecules collide; hence at high temperatures, pressures, and 
densities, the reactions are fast. Otherwise they are slow. In run-away 
and combustion situations the reactions are very fast. Simulations of such 
phenomena require special care. However, these special analyses also 
describe less severe conditions, so that separate computational tools are 
not needed.

Specifi c reaction rates and a reaction mechanism, as well as a descrip-
tion of the convection and diff usion that mix the reactants are needed to 
simulate, i.e., predict, the local species distributions in a fl owfi eld. Th is 
fundamental fact is not appreciated by many who should be in the know. 
In Fogler’s popular chemical engineering textbook on reaction engineer-
ing, a satisfactory distinction between mixing, diff usion, and mass trans-
fer is never made, but chemical reactions are discussed for over 950 pages 
(Fogler, 1999). Chemical reaction rates and mechanisms cannot be accu-
rately predicted; they must be measured. Mechanism, herein, means a set 
of reactions that start with a set of reactants, and for a given set of condi-
tions yield a realistic set of products. Arguments as to which bonds are 
made and broken, which type of intermediate unstable complexes may 
have existed, and which levels of energetic radicals may have taken part 
are not germane here. Chemists can (occasionally) sort these factors out. 
Th is state of aff airs means that the reactions of interest for any specifi c 
chemical system must be determined by experiment.

Th e diffi  culty with determining reaction rates is that transport phenom-
ena get in the way. Because all the important parameters in a laboratory 
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reactor cannot be simultaneously measured, investigators resort to “sim-
plifying” the study to the point where these eff ects are not important. Th e 
result is that a few experiments have emerged which attempt to eliminate 
convection and diff usion to the point that a mass of reactants at a given 
temperature and pressure react unaff ected by fl uid motion until a mass 
of products at a fi nal time, temperature, and pressure result. Well-stirred 
reactors, shock tube experiments with gases, and fl at fl ame experiments 
come close to yielding ideal reactors. Some investigators use a “turbulent” 
fl ow reactor to “instantaneously” mix reactants, implying that because the 
fl ow is turbulent the mixing is instantaneous. Th at data obtained thusly are 
meaningful is wishful thinking. Another example of fl awed data comes 
from fl at-fl ame combustion experiments, which utilize ingenious honey-
combed channels to produce a fl at fl ame and make detailed optical species 
and temperature measurements of the fl ame. Th ese devices use cooling of 
the honeycomb to stabilize and position the fl ame, and oft en the amount 
of this cooling is not reported, or even measured, so much for boundary 
conditions. Nevertheless, if care is exercised in its collection and evaluation, 
suffi  cient data exist to warrant analyzing many transport problems.

Much of the worthwhile reaction rate data are in the fi eld of combustion. 
Because of the importance of this process and the relative ease of mak-
ing gas phase measurements, this was the fi rst fi eld to truly treat reacting 
fl ows as a transport process. Th e voluminous data from the Combustion 
Institute Proceedings and such surveys as Gardiner (1984) can be care-
fully picked over and evaluated to provide useful engineering analyses. 
Trying to construct kinetics mechanisms for fuels such as kerosene, gaso-
line, rocket, and jet fuels, which involve 800 reactions, and considering 
only hydrocarbons up to C8s when the average chain length is C12 is self-
defeating. Even industry specialists can only speciate kerosene to the point 
of identifying 25% of its components. When attempting to construct large 
complex reaction mechanisms, the data processing techniques described 
by Frenklach (Gardiner, 1984) should be conducted rather than simply 
amassing a huge database. Modern computers can integrate large chemical 
systems for lumped reaction systems, but real geometry and other trans-
port processes cannot be simultaneously accounted for. Or, consider dif-
fusion fl ames: for 25 years studies have been performed and conferences 
have been held to measure and develop distribution functions to repre-
sent low Reynolds number fl ames. Professor. R. W. Bilger has measured 
and statistically modeled such fl ames for three decades (e.g., see Kent and 
Bilger, 1972; Bilger et al., 2005). Th e logic behind studying these “lazy” 
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fl ames is that a continuum of species is not maintained, meaning that at a 
given small volume surrounding a point, the molecules are not uniformly 
mixed, such that a local reaction ineffi  ciency in addition to the kinetic rate 
of reaction exists. Probability distribution functions derived from experi-
ments, not engineering solutions to the conservation equations, are needed 
to represent this unmixedness. Where did the engineering models come 
from that were used to design scramjets, which the country has developed 
as a scramjet propulsion system for the X-43-A (Wilson, 2007)? Blowout 
has been measured and the data correlated with one combustion reaction 
(Longwell and Weiss, 1955). Most important industrial chemical processes 
can be described with a few reaction expressions. Th e virtue of doing so is 
clearly illustrated by Edelman and Fortune (1969) with their development 
of quasi-global chemical kinetics models to describe mixing and combus-
tion of hydrocarbon fuels. Applying design quality combustion models 
to the fl ame data from typical experiments of Bilger’s group were studied 
by Edelman and Harsha (1978). Such comparisons are good approxima-
tions, but the models could be improved. Somewhere in between 1 and 
800 reactions, there is surely a middle ground in which reacting fl ows can 
be practically modeled and analyzed for design purposes. In addition to 
design analysis, and probably more importantly, when problems arise in 
complex systems, the comprehensive transport phenomena simulations 
become invaluable for rectifying the problems.

Even when a relatively simple reaction system is to be modeled, such as 
constant pressure or the adiabatic combustion of hydrogen/oxygen, serious 
computational problems arise. Th e problem is termed stiff ness. When going 
from an unreacted to a reacted condition, thousands of computational steps 
are required. Moretti (1965) studied and identifi ed the cause of stiff ness. He 
considered the reaction system.

Reaction Number Species Number

H + O2 = OH + O 1 H 1
O + H2 = OH + H 2 O 2
H2 + OH = H + H2O 3 H2O 3
2OH = O + H2O 4 OH 4
H2 + X = 2H + X 5 O2 5
H2O + X = OH + H + X 6 H2 6
OH + X = O + H + X 7
O2 + X = 2O + X 8
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Let yi be mole fraction of species i and .yij be the rate of change of species i 
by reaction j. X is a catalyst for third body reactions; here it is the sum of all 
six species. Th e change of species 2 by reaction 1 is given by  .y21 = f1 yi y5 + 
b1 y2 y4, where f is the forward rate and b is the backward rate.

Th e total change in .y2 is the sum of the changes by all eight of the reac-
tions. Repeating this for each species gives six ODEs. Th ey can be com-
bined to make two element balances. Th e remaining species balances are 
nonlinear, but they can be linearized (by any of several methods):

 

4 4

1 1
i ij j i

i j

y a y c
= =

= +∑∑�
 

(3.62)

Th ese equations can be solved by fi rst fi nding the four roots of the charac-
teristic equation. Th is is not a computationally effi  cient method of solution, 
but it was used by Moretti (1965) to determine the cause of stiff ness. Th e 
roots of the characteristic equation were found to change rapidly when the 
combustion becomes rigorous. Solution stiff ness occurs when these roots 
are not constant but are changing rapidly, which can be the case for locally 
linearized equations. Such regions must be solved with robust integration 
methods. Th e ignition delay region and the postcombustion region, where 
the roots change slowly, can be solved with large integration steps. Th is 
behavior implies that a solution method which uses local time-adjusting 
computation steps to only employ small steps when they are really needed 
would be the optimum solution strategy.

Now how is the source term to be evaluated for inclusion in the SCE? It 
might appear that much of the recommended technology is old, but there 
is a good reason for this. When these methods were developed, computers 
were much slower and less readily available. Th e numerical methodology 
had to be stronger to make practical calculations. But these techniques are 
still available for our use, and they allow us to solve meaningful problems 
on today’s PCs.

3.3.3  GENERATION TERM IN THE SPECIES 
CONTINUITY EQUATION

Th e conservation equations are perfectly adequate to analyze most reacting 
fl ows. If the reacting system is highly exothermic and both the fl ow and 
reactions are fast, the possibility of the species equations becoming stiff  
must be considered. Certainly for combustion and run-away reactions this 
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would be the case. Solution methodology for solving stiff  equations will 
be described, since a computational code that treats such phenomena can 
equally well be used to analyze a system that does not exhibit stiff ness. Th e 
converse is not true. Currently, practical turbulence models do not address 
unmixedness eff ects, which cannot be treated as continuum phenomena. 
Lazy fl ames, for example, would need more consideration. However, most 
industrial problems would be at a suffi  ciently high Reynolds number that 
the continuum approach would be valid. Furthermore, essentially all 
fi nite rates are determined by experiment. Th e measurement of turbulence 
eff ects on these experimental data are never determined and reported. 
Th is being said, a stiff  system of reacting fl ow equations can be eff ectively 
simulated by the following methods.

For reacting fl ows, the mass, momentum, energy, and species conserva-
tion equations must all be solved. Th e SCE presents special problems due 
to the behavior of the reaction rate term. Th e transport equation of the ith 
species mass fraction (aj) can be written as

 
α

α

μ + μ⎛ ⎞αρ − ∇⋅ ∇ ω⎜ ⎟⎝ ⎠σ
tj

j j
D

       = 
Dt  

(3.63)

where σα represents the Schmidt number for turbulent diff usion. For lam-
inar fl ows, the turbulent viscosity is zero and Sc is the molecular Schmidt 
number. Th e generation rate, ωj , is the production rate of species j, which 
can be expressed as

 w f , b, = ( )  ( )
i ij ijj i i

i

M   R Rν ν′′ ′ω − −∑  
(3.64)

where
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(3.65)

In the above equation, Mwj
 is the molecular weight of species j, Kf,i and Kb,i 

are the forward and backward rates of reaction i, and n ¢ij and n ¢ij are the 
power dependencies of reactants and products, respectively. Th e backward 
reaction rate can be calculated from the forward reaction rate and a chem-
ical equilibrium constant, Ke,i, i.e., Kb,i = Kf,i/Ke,i. Some would argue that 
measurements have been made to show that this relationship is not true. 
Th ere is not enough accurate data to prove this point. More importantly, 
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if the forward and backward rates were independently specifi ed, an insta-
bility would be set up and remain in the calculations such that a solution 
could not be obtained. The specific reaction rates are usually repre-
sented by

 = −f , exp( / )B
iK AT E RT  (3.66)

where the parameters A, B, and E are determined experimentally. Th eoret-
ical attempts to calculate such reaction rates are not practical.

Consider a general system of chemical reactions written in terms of its 
stoichiometric coeffi  cients (n ¢ij and n ij¢¢ ) and the jth chemical species (Mj) of 
the ith reaction as

 

pr

ij j ij j
j j

M M  ′ ↔ ′′ ′′′ ∑∑n n
 

(3.67)

Some empirical reaction rate correlations do not use the power dependen-
cies as the stoichiometric coeffi  cients; rather, they are arbitrary parameters.

Th e stiff ness problem is related to the rapidity with which the chemical 
source term varies in a fl owfi eld. Th e species production rate equation can 
also be expressed in terms of the molar density yj (=ραj/Mwj). Successful 
solutions of a stiff  system of equations have involved two steps: a lineariza-
tion and an implicit solution of the resulting system of equations. Th e source 
term is evaluated as a fi rst step and then inserted into the species equation 
for the coupled solution with all of the conservation equations. Th is two-
step process was developed and proven to be effi  cient by Ferri and Slutsky 
(1965). Subintervals may be used to evaluate the source term to avoid using 
very small steps to solve the full system of conservation equations.

Th e CTP code uses an algorithm called PARASOL to evaluate the chem-
ical source terms. Th is algorithm is developed as follows. Let y and f  be 
vector valued functions (i.e., arrays), as implied by the following equation:

 { }d / d , ,y t f y T= ρ  (3.68)

Expanding this equation through fi rst-order terms,
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(3.69)
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where
y, f, (¶f/¶T), and (¶f/¶ρ) are column vectors
(¶f/¶y) is a species Jacobian matrix
Subscript “o” indicates an initial value
“O{}” indicates the order of the truncation (or round-off ) error caused 

by using only a limited number of terms in the expansion

Th e concept is that one iteration (or time step) is taken to obtain new val-
ues of the species concentrations. Th en the process is reinitialized and the 
next step is taken. Th e density term can be eliminated with an EOS. Th e 
temperature term in the expansion is negligible if the temperature does 
not change signifi cantly through a single iteration step, but it could be 
included (Magnus and Schechter, 1966, 1967). Th e linearized equation 
becomes
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d
y f

y f y T y
t y
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(3.70)

Aft er reinitialization and renaming the terms,

 
ˆ { }y Ay t B= +� ��  (3.71)

where the caret and tilde have been used to emphasize that the terms are 
column vectors and a matrix (n × n). Th is is a system of n-linear ordinary 
diff erential equations with constant coeffi  cients. Integrating over t = h, the 
formal solution is

 
1 1

o
ˆ ˆ ˆ{ } exp{ }( )y h hA y A B A B− −= + −� �� �  (3.72)

Th e matrix exponential cannot be conveniently calculated; it can be 
approximated with polynomials. Th e form of the approximation deter-
mines its accuracy, effi  ciency, and stability.

To obtain a solution compatible with solving the coupled conserva-
tion equations, a one-step integration of the generation term is desired. 
Either Equation 3.70 or 3.72 could be used for this purpose. Also, other 
fi nite-diff erence forms of Equation 3.70 could be used for this purpose.

For reacting gases, the generation term can be implicitly evaluated with 
a single-step integration scheme by any of the following. Th e species pro-
duction/dissipation rate array can be expressed as
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where
ρ is the density
αj and Mj are mass fraction and molecular weight of species j, 

respectively
νij is the stoichiometric coeffi  cient of j-species for the ith reaction
rik¢ and rik¢¢ are the power dependence of k-species for the ith reaction
Kf,i and Kb,i are the forward and backward reaction rates for ith 

reaction, respectively
“ns” and “nr” are the total numbers of involved species and reactions

Equation 3.73 can be rewritten as
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(3.74)

where
P, T, and Ru are the pressure, temperature, and universal gas con-

stant, respectively
yk is the mole fraction of k-species

If Equation 3.74 is calculated directly based on the current value (i.e., 
n-level) of species concentrations, then it is called an explicit scheme; 
whereas, if it is calculated based on the future value (i.e., n + 1 level), then 
it is an implicit method. In order to calculate the species production/dissi-
pation rate using the implicit scheme, Equation 3.74 needs to be linearized 
based on the Taylor series expansion:
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(3.75)

If at t = t0, x = x0 = xn, and at t = t0 + Δt, x = x0 + Δx = xn + 1, then Equation 
3.75 can be expressed as
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(3.76)
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If f = f(x1, x2, x3, . . . , xm), then, Equation 3.76 can be approximated as
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If we let 
d
d

j
j

y
f

t
= , then the species production/dissipation can be linear-

ized as
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Also, from the Taylor series expansion, we can approximate the species 
concentration of the j-species as
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Hence, for the fi rst-order implicit scheme
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Th e second-order implicit scheme can be derived using the Crank–Nicolson 
method:
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Let the Y array represent yj, where j = 1 → ns; then Equation 3.78 can be 
rewritten as
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where
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Let Y = αeλt + β, and substitute it into the above equation. We then can 
obtain λ = A, β = −B/A, and
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By using the Padé approximation
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Hence, the species concentration array at the n + 1 level can be expressed as
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When p = 0 and q = 1, we will have Q = I − AΔt and P = I, where I is the 
unit matrix. Substituting P and Q into Equation 3.87, we can obtain the 
fi rst-order Padé approximation as
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i.e.,
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Th is has the same formulation as the one derived from the fi rst-order 
implicit scheme. When p = 1 and q = 1, we will have 1

2Q I A t= − Δ  and 
1
2P I A t= + Δ . Substituting P and Q into Equation 3.87, we can obtain 

the second-order Padé approximation as
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Th is has the same formulation as the one derived from the second-order 
implicit (Crank–Nicolson) scheme. When p = 2 and q = 2, we will have 

21 1
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2 12 ( )P I A t A t= + Δ + Δ . Substituting P and 
Q into Equation 3.87, we can obtain the fourth-order Padé approximation as
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Either the fi nite-diff erence approximates arising from the Taylor expan-
sions or the Padé expansions give the same equations. Th e Padé meth-
odology gives more information about stability and error propagation. 
Th e truncation error means that the Padé approximation agrees with 
the exponential power series for at least p + q + 1 terms. Diagonal Padé 
approximants are A-stable and have the smallest truncation error. Th e 
approximation of the matrix exponential by the diagonal approximants 
is called the Padé rational approximation. Th e algorithm for applying the 
Padé rational approximation to the formal solution of a chemistry equa-
tions is herein named the Padé rational solution (PARASOL).

Th ere is an additional error called a propagation error that results from 
using repeated integration steps. For the Padé integration method this 
error is represented by

 
1

1 ( )k ke Q P e−
+ =  

(3.94)

(Q−1P) is a matrix called the amplifi cation matrix; it determines the stabil-
ity of the integration. When the eigenvalues of this matrix have negative 
real parts, ek decreases as k increases, which means that the method is 
unconditionally stable. Such is the case when p = q (Varga, 1962).

Th e PARASOL code has three options: (1) the fi rst-order implicit scheme 
is used for a fast calculation for a well-behaved chemical system; (2) the 
second-order Padé scheme is used in general; and (3) the fourth-order 
Padé scheme is used when convergence with the second-order scheme is 
diffi  cult to achieve.

Padé integration is not the only single-step implicit method suitable for 
integrating the linearized source term in the species conservation equation. 
Frey et al. (1968) developed a one-dimensional kinetics, second-order 
implicit kinetics code which has since been incorporated into an axisym-
metric rocket performance analysis code. Note this rocket analysis is not a 
fully computational analysis of transport phenomena because it applies to 
a limited geometry and does not include turbulent transport. Even so, this 
code has been used successfully for many years,

Several other production quality codes have been developed and used 
to describe stiff  reaction systems. Th ese codes do not treat convective and 
diff usive aspects of reacting fl ow problems. Most of them utilize mul-
tistep diff erence algorithms and were designed to handle large systems 
of reactions and species. In general, they are not expected to be appro-
priate for including in a CTP analysis with the other multidimensional 
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conservation equations. One of the most popular algorithms for solv-
ing stiff  systems of ODEs is that of Gear (1971). It was later adapted in 
GCKP (Bittker and Scullin, 1972) to describe fi nite-rate chemistry. Th ese 
schemes employ Adams’ explicit methods of variable order to solve nons-
tiff  equations. GCKP84 (Bittker and Scullin, 1984) is a revised version of 
GCKP that includes an implicit predictor–corrector scheme (Zeleznik and 
McBride, 1984) to analyze stiff  equations. Hindmarsh (1974, 1980, 1982) 
and Hindmarsh and Byrne (1977) generalized the GEAR algorithms and 
developed a series of stiff  ODE solvers, EPISODE, and LSODE. CREK1D 
(Pratt and Radhakrishnan, 1984) developed a two part predictor–corrector
and an exponentially fi tted trapezoidal scheme. CHEMEQ (Young, 1980)
applied a predictor–corrector scheme to nonstiff  ODEs, but used an 
asymptotic integration scheme to equations deemed to be stiff . It was 
previously reported that separating the equations into stiff  and nonstiff  
parts, which were then treated diff erently, resulted in mass conservation 
problems (Lomax and Baily, 1967; Kee and Dweyer, 1981). Th e LENS code 
(Radhakrishnan and Bittker, 1993) used backward diff erences to over-
come reaction stiff ness in analyzing shock tube fl ow and well-stirred reac-
tors. Th e work of Hindmarsh (1974) typifi es the activity at the Lawrence 
Livermore National Laboratory, that of Bittker and Radhakrishnan 
typifi es the activity at NASA’s Glenn Research Center, and that of Oran 
and Boris (1987) at the Naval Research Laboratory is described in their 
comprehensive text.

Th is brief survey is not meant to be a literature survey; rather, it is an 
indication of the vast scope of uncoordinated research that has been done 
on the kinetics stiff ness problem. An effi  cient integration algorithm and 
a carefully selected set of a reasonable number of reactions for the system 
under investigation are essential for solving geometrically complex trans-
port problems.

Th e Padé and the Frey et al. codes were developed specifi cally to be 
included in the system of conservation equations that describe multidi-
mensional transport phenomena. Th ey have proven to be effi  cient and useful. 
Th e PARASOL subroutine includes fi rst-order implicit scheme and the 
two Padé schemes, (p, q) = (1, 1) and (2, 2) as options in the CTP code. 
Both of these codes have automatically adjusting, variable-step integration 
features. Th e variable time step feature is essential to analyze multidimen-
sional reacting fl ow problems. Modest sized chemical kinetics databases 
are included in the CTP code, and methods of enlarging these databases will 
be explained subsequently.
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3.4 MOLECULAR TRANSPORT PROPERTIES
3.4.1 BASIC MOLECULAR TRANSPORT COEFFICIENTS

For laminar and time-averaged turbulent fl ows, momentum, heat, and 
mass are transferred by convection, turbulent and laminar gradient dif-
fusion, and secondary processes. Th e transfer by these processes is char-
acterized by fl uid mixing, which occurs at a decreasing rate in the order 
of the processes named. Convection and turbulence are fl ow properties 
that must be described by the conservation laws. Diff usion of momentum 
can be modifi ed by density changes in the fl ow, which cause additional 
dissipation. Turbulent diff usion can be modifi ed by nongradient eff ects 
resulting from the averaging process; these will be discussed in Chapter 4. 
Laminar or molecular mixing is controlled mainly by local gradients of 
the property being transferred. Additional molecular mixing can also be 
caused by cross-eff ects, i.e., mass transfer by temperature gradients, etc. 
Such diff usion is slower than when driven by the primary gradient. Th e 
cross-eff ects are described as nonequilibrium thermodynamic phenom-
ena. Mass diff usion in binary systems is described with diff usion coef-
fi cients that relate species 1 motion to that of species 2. When more than 
two components are present, a method of averaging the binary coeffi  cients 
to obtain a multicomponent diff usion must be established. To obtain a 
practical CTP analysis, only gradient diff usion will be utilized herein. Th e 
other eff ects mentioned are real and can be quantifi ed, but they are not 
usually signifi cant in analyses of transport phenomena.

Th ere is a similarity between the fl uxes of momentum, heat and mass, 
which is why they are lumped together as transport phenomena. For geo-
metrically simple, essentially constant density systems, these fl uxes can be 
written as the fi rst term on the right-hand side and the more general form 
as the second term:
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Each coeffi  cient of the gradient has a unit of length squared per unit time 
and they are the kinematic viscosity, n; thermal diff usivity, α; and mass 
diff usivity, DAB, in the fi rst term. Th e transport processes are analogous 
for these simple fl ows. Th e analogies cannot be extended to real fl uids or 
to three dimensions since τ

��
 is the stress tensor with nine components and 

qÆ, the heat fl ux, and j
Æ

A, the mass fl ux, are vectors with three components 
each. Th e analogies are useful for approximating the transport coeffi  cients 
and quantitatively evaluating them. Th e transport coeffi  cients are scalars. 
Th e right-hand sides of these equations will change for more complex 
fl ows, but the transport coeffi  cients will retain the same values. Note that 
for a solid, the thermal diff usivity may become a vector by having diff erent 
values in diff erent directions, e.g., thermal wrapping, where conductivity 
along the wrapping and across the wrapping will have diff erent values.

Th e molecular transport properties—viscosity, thermal conductiv-
ity, diff usion coeffi  cients, and surface tension—are required to describe 
laminar fl ows of real fl uids. Empirical correlations of these properties 
for single and multicomponent fl uids are adequate if they cover the 
temperature and pressure range of interest. In general, these transport 
coeffi  cients are small and easily measured (Reid et al., 1987). Th e proper-
ties in the following are excerpted from this reference. Although many 
correlations are available, only one complete set of property data was 
selected for review herein.

3.4.1.1 Viscosity

Uyehara and Watson (1944) proposed a universal viscosity correlation. Th e 
correlation involved defi ning a critical viscosity at the critical temperature 
and pressure values to make a chart of reduced viscosity values as a func-
tion of reduced temperature and pressure. Th is chart is reproduced in Bird 
et al. (2002) and White (2006). Th e reference viscosity is
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Th e chart was constructed from fi tting experimental data. Th e rationale 
for using corresponding states to correlate viscosity data is based on the 
concept that pressure is composed of two factors, one a kinetic pres-
sure and the other a cohesive pressure (Comings and Egly, 1940). Th is is 
refl ected in the various gas laws, even as far back as the van der Waals EOS 
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(Equation 3.3), by the two terms in the equation for pressure. Th e fi rst term 
represents the kinetic pressure, the second the cohesive pressure. Th e cor-
relation chart was developed interpreting the viscosity behavior to be the 
same as the kinetic pressure when expressed in reduced parameters. For 
mixtures, Uyehara and Watson (1944) also recommended using pseud-
ocritical properties to represent the mixture. Its accuracy with respect to 
more recent data and correlations has not been systematically investigated. 
Obviously, experimental data, such as those reviewed in Reid et al. (1987), 
would be more accurate.

Th e most interesting feature of the Uyehara and Watson chart is that it 
correlated viscosity data with the same reduced thermodynamic variables 
as were used to represent P"T data in the method of corresponding states. 
Th is resulted in transport property correlations of this type being termed 
corresponding states methods. Such methods provide tables and fi gures 
depicting the property data but not empirical equations, which would be 
desirable for CTP analyses.

Th e alternative to relying on only correlations of experimental data 
to defi ne transport coeffi  cients is to provide a theoretical model. Kinetic 
theory has been used to provide such a model. Th e original application of 
such a theory was to treat the fl uid molecules as hard spheres of constant 
size all moving at a local mean velocity. Eff orts to make such a model more 
realistic were devised by the Chapman–Enskog theory, which assumed 
that (1) gases are so dilute that only binary collisions occur, (2) classical 
mechanics describe the motion during a collision, (3) only elastic colli-
sions occur, and (4) the intermolecular potential function is spherically 
symmetric. Th is theory was a major advancement, but it was only appli-
cable to low pressure gases. It did introduce some basic understanding and 
defi ned some new variables to predict transport coeffi  cients. Much eff ort 
has been devoted to improve this theory, most of which simply introduced 
correction coeffi  cients based on experimental observations. Nevertheless, 
the basic theory is worth recounting. Chapman and Enskog (Chapman 
and Cowling, 1970) determined that
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Th e molecule is approximated as a hard sphere of diameter σ. Th e collision 
integral Ωυ is determined by a potential function and expressed in terms 
of a dimensionless temperature T ∗ = kT/e . Th e Lennard-Jones (6-12) 
potential function is commonly used:
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Th e collision integral was determined by Neufeld et al. (Reid et al., 1987) 
to be
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Th e distance between molecular centers is r; the minimum in the poten-
tial energy curve is ε. Equations 3.99 through 3.101 allow one to cal-
culate the low pressure viscosity of gases within the limitations of the 
Chapman–Enskog theory. Several new variables are required, but these 
parameters for many species are in the literature (Reid et al., 1987; Bird 
et al., 2002). Th e kinetic theory methodology has been extended by add-
ing more complexity. It is already too complex for effi  cient use in CTP 
codes, and it has not yet been accepted for predicting multicomponent 
liquid viscosities.

Pure component viscosities for gases Lucas corresponding states method 
for low pressures and his pressure correction for high pressures are sug-
gested for transport analyses. As expected, gaseous viscosity is shown to 
increases with both pressure and temperature. Liquid pure component 
viscosities from the polynomial curve fi ts tabulated in Reid et al. (1987) 
are suggested. Liquid viscosity decreases with temperature and increases 
with pressure. Mixture viscosities are determined by Wilke’s correlation.

Lucas’ low pressure viscosity correlation for gases is
1/6
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ξ is an inverse viscosity at the critical point. Th e reduced dipole moment is 
represented by dr and μo is the low pressure viscosity:
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Th e dipole moment, d, is in Debye, and Pc is in bars. Lucas’ high pressure 
viscosity correlation for dense gases is
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Th e curve fi ts for low pressure liquids are given as
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Th e viscosity is taken to be that of saturated liquid at its vapor pressure.
For gas mixtures, Wilke’s correlation is
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For liquids, the viscosity is weighed by mole fractions, unless specifi c data 
are available.

Th ere is an additional viscosity coeffi  cient that needs considering. 
Writing the relationships for two of the stress components,
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Th e bulk viscosity, κ, is associated with the absorption of sound. It is not 
zero for polyatomic molecules, across shock waves, and in bubbly fl uids. It 
is frequently omitted because (1) the fl uid is incompressible, (2) the sum of 
the two-thirds viscosity and negative bulk is assumed zero, or (3) the fl uid 
is assumed to be a monoatomic gas. Th e importance of the bulk viscosity is 
also related to the timescale of the fl ow phenomena (Rowlinson, 1969). Th e 
bulk viscosity will be treated as a constant in the present CTP analyses.

3.4.1.2 Thermal Conductivity

Th ermal conductivity for pure component gases for both low and high 
pressure is determined by the method of Ely and Hanley. Th ermal con-
ductivity is calculated from the reference gas methane:
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Th e functions f and h and the methane values of viscosity and conductiv-
ity (denoted by the subscript “o”) are calculated from Tc, "c, and Tr. High 
pressure conductivity is calculated from
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Th e parameters subscripted with “o” are reference properties for methane. 
Th is method is not very accurate, so experimental data for the specifi c 
fl uids of interest should be sought. Liquid thermal conductivities may be 
calculated by Missenard’s method:

 { }0.7
H L r r r1 where ,( )Q P Q T Pλ = λ +  (3.112)

Mixture thermal conductivities can be evaluated by the method of Mason 
and Saxena, which parallels the method of Wilke for viscosities. Th is 
method is exactly like Wilke’s except the viscosity ratio on the right-hand 
side of Equation 3.112 contains the ratio of thermal conductivities and not 
viscosities.

3.4.1.3 Diffusion Coeffi cients

Th e method of Wilke and Lee was selected to calculate binary diff usion 
coeffi  cients. Th is method is a modifi cation of the standard Chapman and 
Enskog equation:
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where
Ω and σ are parameters of the Lennard-Jones potential function
MAB is an average molecular weight

Th e method uses Neufeld’s equation to evaluate the Lennard-Jones poten-
tial. Pressure eff ects are approximated by assuming that the product of 
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pressure and binary diff usion coeffi  cients is constant. Blanc’s law may be 
used to calculate the diff usion coeffi  cient of each component in a multi-
component mixture, resulting in a mixture diff usion coeffi  cient for each 
component:
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Th is approximation appears reasonable, but lacks substantial validation.
Multicomponent diff usion coeffi  cients may be introduced as described 

in Bird et al. (2002). Th ese representations are very complex as the binary 
coeffi  cients are combined in a coupled fashion. Conceptually, this com-
plexity is reduced in a computational analysis that advances a solution 
by incremental time steps because the coupling may be lagged without 
introducing numerical diffi  culty. Such a refi nement is not suggested for 
initially analyzing mass diff usion.

Liquid diffusion coefficients are about a factor of 105 smaller than 
gaseous diff usion coeffi  cients so they can generally be neglected.

3.4.1.4 Surface Tension

Surface tension for a pure liquid is represented by the method of Block and 
Bird, in terms of the Riedel parameter. Th e eff ect of multiple components 
on surface tension is diffi  cult to predict, since surface eff ects are oft en quite 
diff erent from bulk values. Also, mixture critical points are oft en quite dif-
ferent from pure component critical points. Th e multicomponent surface 
tension may be estimated by the modifi ed Macleod and Sugden method, 
which involves one-fourth powers of the pure component surface tensions.

Th e transport coeffi  cient correlations suggested have been compared 
to oxygen data (McCarty and Weber, 1971), hydrogen data (McCarty and 
Weber, 1972), and water and steam data (Keenan and Keyes, 1963) by these 
authors and found to be reasonable.

3.4.2 SECONDARY TRANSPORT

Up to this point we have indicated that laminar mass fl uxes of diff us-
ing components are a result of a concentration gradient. Pressure gradi-
ents, temperature gradients, and external force diff erences can also cause 
movement of species with respect to the mean fl uid motion; these are the 
cross-eff ects. In a multicomponent system there can be momentum, heat 
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and mass transfer due to velocity, and temperature and concentration gra-
dients. However, there can be a mass fl ux that is the movement of species 
relative to the bulk fl ow, due to pressure gradients, temperature gradients, 
and external force diff erences:
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Pressure diff usion is used in centrifugal separations where the extremely 
large gradients can be obtained that are necessary for movement of the 
species to be separated. Diff usion caused by temperature gradients is 
referred to as the Soret eff ect, and thermal diff usion also requires very 
steep temperature gradients for a signifi cant separation. Forced diff usion 
caused by external force diff erences is important in ionic systems, where 
the force on an ion is the product of the charge of the ion and the strength 
of the electric fi eld. Th e equations giving the mass fl ux of component i 
due to these various gradients are given by Bird et al. (2002) and are 
repeated here.

Diff usion due to concentration gradients:
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In this equation
F is the partial molal free energy (Gibbs’ free energy)
Dij is the multicomponent mass diff usion coeffi  cient

Diff usion due to pressure gradients:
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In this equation Vj is the partial molal volume.
Diff usion due to temperature gradients:

 lnT T
i ij D T= − ∇  

(3.118)

In this equation, Di
T is the multicomponent thermal diff usion coeffi  cient, 

and the transfer of mass due to a temperature gradient is called the Soret 
eff ect.
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Diff usion due to external force diff erences:
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Th e multicomponent mass diff usivities Dij are related by the following 
equation:
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For n < 2, the diff usivity Dij in general is not equal to Dji. Dij is the diff usivity 
of the pair i–j in a multicomponent mixture. D∗

ij is the diff usivity of the pair 
i–j in a binary mixture. For diff usion in a binary mixture Dij =  D∗

ij if i and j 
form an ideal solution, i.e., activity is proportional to mole fraction.

Th e Stephan-Maxwell equations can be used to relate the binary mass 
diff usion coeffi  cients in a multicomponent mixture. It can be shown that 
these are related by the following equation for an n-component ideal gas 
mixture (BSL et al., 2002):
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Th e way N is used, diff usion and convection are lumped together, which 
is not necessary, and it implies that the diff usion is coupled to the mean 
velocity, which is not true.

Th is equation can be simplifi ed for several special cases. First, if there is 
nearly pure ℓ, i.e., only traces of 2, 3,…, n, then
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For systems where all of the diff usivities are equal
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For systems in which all the components but one move with the same 
velocity or are stationary
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Unfortunately, there is not suffi  cient space to delve into the derivations 
and backgrounds of these equations that describe the transfer of mass 
due to concentration, pressure, temperature, and external force gradients 
before energy transfer is discussed. Th e reader is referred to the works of 
Bird et al. (2002) and Merk (1959) for further details.

In a multicomponent system, energy is transferred by mechanisms 
other than conduction. Energy is transferred by interdiff usion and by the 
Dufour eff ect. Th e Dufour eff ect is the inverse phenomena of the Soret 
eff ect and is the formation of a temperature gradient as the result of a 
concentration gradient. Th is eff ect may be described mathematically by 
adding terms proportional to the concentration gradients to Fourier’s law. 
In general, the energy transferred by this method is not large. In fact, it 
has only been observed in gas systems, and as a consequence will not be 
discussed further. However, the energy transferred by interdiff usion can 
be sizeable and is expressed by the following with respect to a fi xed set of 
coordinates and in terms of molar fl uxes:
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where Hxi is the partial molal enthalpy of the ith species. Th e combined 
heat fl ux of conduction and interdiff usion is
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Th ese mass and energy fl uxes will be combined with the general equa-
tions of change for a multicomponent system, to give a set of equations 
that can be applied to almost any situation. In Chapter 6 these general 
equations will be developed, and the equations for the fl uxes will be 
incorporated.

If the fl ow is turbulent, the transport coeffi  cients become larger and are 
a function of the fl ow. Th e laminar coeffi  cients may be further modifi ed 
by an unmixedness eff ect. Th is means that locally the fl uid is no longer a 
continuum because the molecules have not had suffi  cient time to be uni-
formly mixed at a given point. Th ese eff ects are discussed in more detail 
in Chapter 4.
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3.4.3  USE OF DIMENSIONLESS 
TRANSPORT COEFFICIENTS

Th e variation of viscosity, thermal conductivity, and diff usion coeffi  cients 
over a wide range of temperatures and pressures is very similar. Such 
similarity can be used to advantage if dimensionless Prandtl and Schmidt 
numbers are used. Th us, only viscosity variation must be modeled and 
then the dimensionless parameters are used to account for thermal and 
mass diff usion. Th is is the same concept that will be subsequently used to 
describe turbulent transport, hence coding will be simplifi ed to account 
for all three transport mechanisms in both laminar and turbulent fl ows.

 12Prandtl number: /  Schmidt number : /
Lewis number: / Kinematic viscosity : /

pPr C Sc D
Le Pr Sc
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 (3.127)

Prandtl number characterization of fl uids classifi es fl uids by type. Liquid 
metals exhibit low Prandtl numbers like 0.02. Gases have Prandtl numbers 
in the 0.7–1.0 range. Th in fl uids like water have Prandtl numbers from 
3 to 10. Heavy oils range roughly from 500 to 10000. Hence, for a given 
CTP simulation, a single constant value of the Prandtl number might be 
entirely adequate.

By reviewing the tables of viscosity, and Prandtl and Schmidt numbers 
found in several references (Fraas and Ozisik, 1965; Sherwood et al., 1975; 
Bird et al., 2002), it is noted that the dimensionless transport parameters 
vary less with temperature than the viscosity does. Moreover, correlations of 
experimental data for specifi c situations show that the Prandtl and Schmidt 
number enter into the prediction as parameters are raised to powers less than 
unity. Th is further reduces the temperature and pressure sensitivity of the 
property variation on the prediction. Th e main factor in causing property 
variation is the chemical composition of the fl uid itself, which would still 
require defi nition. Apparently, using correlations of viscosity, Prandtl and 
Schmidt numbers would be an advantageous method of analyzing transport 
phenomena where property variation would be important.

Such simplifi cations are immediately apparent by considering mass 
transfer. Th e binary Schmidt number may be estimated for gaseous spe-
cies by the equation
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Th e omega terms are for the Lennard-Jones potentials for diff usion and 
viscosity. Th e sigma terms are for the Lennard-Jones parameters related 
to the critical molar specifi c volumes. From the approximation indicated, 
these ratios are approximately constant at near unity values. Th is relation-
ship is presented by Sherwood et al. (1975), as well as by many molecular 
binary diff usion coeffi  cient values. Th e direct modeling of the dimension-
less transport coeffi  cients is a most eff ective way to make the CTP code 
applicable to both laminar and turbulent fl ows.

3.5 THERMAL RADIATION PROPERTIES
Th ermal radiation is added to the conservation equations for multicom-
ponent reacting fl ows by including the radiation heat fl ux term, qÆr, and a 
scattering function, Φ , to the energy equation.
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Th e radiation heat fl ux term is defi ned by the equation
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Th e radiation heat fl ux defi nition is derived by Siegel and Howell (1992). 
Th e symbols used are basically from that defi nition. Th e l is wavelength 
when used as a subscript or as showing functional dependence. Th e spec-
tral absorption coeffi  cient is a and the spectral scattering coeffi  cient is σs. 
Th e blackbody emissive power is eλ b. Th e phase function for scattering is 
Φ. Th e solid angle is ω; the subscript i indicates direction. Th e radiation 
intensity is i; the prime indicates it is a directional quantity. Th e circum-
fl ex indicates the quantity is averaged over all solid angles.

Obtaining suffi  cient spectral absorption and scattering coeffi  cient data 
for a fl uid mixture and solving the integro-partial diff erential energy equa-
tion is a daunting task. Th e alternative is to simplify this equation until a 
solution can be obtained. Th e general classes of such simplifi cations will be 
presented and referenced. Examples will be given to indicate how gaseous 
and particulate radiation from combustion processes can be estimated.
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3.5.1 APPROXIMATE RADIATION TRANSFER ANALYSES

Radiation is an immense and complicated fi eld. Many solution methods 
are reported, but their accuracy and range of applicability are seldom eval-
uated. Most disappointing of all is that radiative transfer cannot be scaled. 
Convective and conductive heat transfers can be evaluated with subscale 
models and extrapolated to prototype conditions with dimensionless 
parameters. Th e integral nature of the radiation precludes this approach 
to evaluate radiation. Usually, a given problem is analyzed by approximat-
ing the transport process until a solution, analytical or numerical, can be 
obtained. Examples of such simplifying analyses are listed as follows.

Radiation through nonparticipating media within an enclosure is the 
most simple and most common radiant heating analysis that is used. 
Th e enclosure is a control volume wherein the radiation bounces around 
between the control surfaces. View factors between the surfaces and radia-
tion interaction at the walls must be described. Th is usually amounts to a 
geometrically complex problem. Constructing an electrical network ana-
log is a very effi  cient and graphically simplifying method to address the 
analysis. Network analyses are well described by Oppenheim (Hartnett, 
1961) and Holman (1972). Th e network methodology does not eliminate 
the need for determining view factors, but it does provide a systematic way 
for keeping track of them. Th e methodology is very useful for studying the 
eff ects of the radiation properties of the surfaces.

Th e most common radiation analysis problem arising in the process 
industries is combustion gas radiation. Th e fl uid must be hot for radiation 
to be important. Gaseous radiation is diffi  cult to analyze because of its 
spiky spectral character, i.e., the photons that exchange radiant energy are 
emitted and absorbed at discrete frequencies. Th e classical experiments of 
Hottel (McAdams, 1954) and Hottel and Sarofi m (1967) present these data 
in a convenient form. Th e scaling of such data is done by using the experi-
mental heat transfer data without ever attempting to model the spectral 
character of the radiation.

Geometric simplifi cation is achieved, for example, by considering 
radiation between parallel plates. Th e radiating media may have various 
radiation properties, yet the heat transfer between the plates may be deter-
mined. Both absorption and scattering may be considered. Such analyses 
are described by Sparrow and Cess (1966). Other simple geometries may 
be considered, but the limitation inherently is that the eff ects of real geom-
etry are too complex for analysis.
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Th e distance a photon travels before something happens to it is called 
optical depth. Radiation analysis can be described by the limits of this 
parameter. Optically thin fl uids (long photon travel) or optically thick 
fl uids (short photon travel) are the limiting conditions for radiation. Th e 
assumption of nonparticipating media and situations in which energy 
may be emitted from the fl uid but not absorbed are examples of optically 
thin phenomena. For optically thick cases, the radiation is essentially 
emitted and/or absorbed at the fl uid boundaries. Th e diff usion approxi-
mation for the radiation properties is appropriate for such situations. Th e 
limiting radiation analyses methodology is described thoroughly in Siegel 
and Howell (1992). Th ese limits may be used to produce analyses, but the 
intermediate optical thicknesses are the real issue.

Gaseous radiation properties may be described in several levels of sim-
plifi cation. Th e fi rst is to assume that the gas is gray, i.e., the absorption and 
scattering coeffi  cients are not functions of wavelength. Th is allows one to 
simplify the solution of the integral terms in evaluating the radiation heat 
fl ux. Unfortunately, no real gases are gray. Th e major part of radiative heat-
ing through gases is accomplished by the vibration–rotation bands in the 
near infrared. Although the photon transfers are for a distinct transition, 
these lines are broadened so the radiation is not truly monochromatic. 
Radiation of diatomic molecules may be calculated, and the results may be 
represented with band models. However, for polyatomic molecules, there 
are so many lines closely grouped together that band models must be used 
to represent the radiative transfer. Two types of band models, narrow and 
wide, have been used for this purpose. Th e wideband models represent 
the entire band parametrically. Th e narrowband models typically repre-
sent the spectrum in 25 cm−1 wave number increments. In some instances, 
5 cm−1 resolution is used. Th e wideband models have been documented 
extensively (Edwards, 1981; Siegel and Howell, 1992; Modest, 1993). Th e 
expectation is that the narrowband models would average nonisothermal, 
nonisobaric paths more accurately.

Clean fl ames like the blue fl ames used as icons by natural gas companies 
and hydrogen/oxygen fl ames only emit and absorb energy. Integrations 
along lines-of-sight may be used to evaluate radiation from these fl ames. 
Fuel-rich hydrocarbon fl ames generate soot. Although the soot is a par-
ticulate, its small size allows it to behave as a gas and not scatter radiation. 
Larger particulates, like coarsely pulverized coal and the aluminum oxide 
particulates in solid rocket booster plumes, not only emit and absorb 
but also scatter radiation. As can be seen in Equation 3.130, the additional 
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scattering term that must be considered makes the solution of the radia-
tion fl ux much more diffi  cult to evaluate. Radiation along rays cannot be 
simply evaluated and summed to determine the radiation from a fl ame. 
Radiative interchange between the rays must also be accounted for. Such 
analyses may be made for the radiation fi eld between parallel plates with 
gradients of temperature and particulates between the plates. Even slightly 
more complex geometries must be analyzed with statistical Monte Carlo 
methods. Th e simple line-of-sight calculations must be replaced by track-
ing numerous energy bundles through the transport process (Siegel and 
Howell, 1992). Th e method is very general such that emitting, absorbing, 
and scattering media enclosed by arbitrary surfaces can be described. 
Much ingenuity has gone into reducing the number of energy packets that 
must be tracked, but the method is still very computationally intensive. 
Modern computer capability does allow the Monte Carlo method to be 
used—if the application justifi es it.

3.5.2  TRANSPORT PHENOMENA PROBLEM 
COUPLED WITH RADIATION

Finally, consider a transport process with radiation. Kaplan et al. (1992) 
reported an analysis of two unsteady, strongly radiating, buoyant, ethylene 
diff usion-fl ame. Th e Reynolds numbers of the two fl ames were about 
3000 and 6000. Th ese were probably the Reynolds numbers at the jet 
exit, but this was not reported. Th e appropriate set of conservation equa-
tions was solved. Th is was a very daunting task that was accomplished 
only by making severely restrictive assumptions on the important sub-
models necessary to describe the system. Th e solver used was from the 
Naval Research Laboratory’s group, which was a mature production code. 
Th e ethylene jet fl ow was assumed to be co-current with air. Th e simula-
tion was for an axisymmetric fl ow. Th e gases were assumed to be ideal. 
Probably the heat capacity in the CEOS was temperature dependent, but 
this was not specifi ed in the paper. Th e fl ow was simulated as laminar 
with temperature-dependent transport coeffi  cients. Th e method of simu-
lating multicomponent diff usion from the binary diff usion coeffi  cients 
was not specifi ed. Th e ethylene combustion was simulated with a one-step 
reaction, with an unspecifi ed correction constant supposedly to account 
for the fl ame being diff used and not premixed. Although the products of 
combustion were not specifi ed, the reactions were said to be quasi-global, 
yielding carbon dioxide and water. Two ODEs were solved to represent the 
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soot volume fraction and number density. Apparently, soot oxidization 
was not considered. Absorption coeffi  cients for soot and for the mixture 
of carbon dioxide and water were simulated with two algebraic equations. 
Th e discrete-ordinate method was used to evaluate the radiation heat fl ux 
term. Th is method is of variable order; a fourth-order method was used 
for this analysis. Th e fourth order required the solution of 12 simultaneous 
equations. Presumably, all 12 of these equations were solved along with 
the conservation equations at each time step. Th e solution obtained with 
this analysis was discussed at length. However, no evaluation of the limi-
tations imposed by the physical assumptions made was off ered. Th e major 
conclusion drawn from the work was that a simpler, more computationally 
effi  cient method of solving for the radiation term was needed. Th e authors 
did evaluate the radiation to conduction ratio suggested by Grosshandler 
(1993), which indicated that the radiation coupled solution was necessary.

Th e simulation of the ethylene diff usion fl ame was an ambitious eff ort. 
Th e purpose of the study was never clearly stated. Th e eff ort did consider all of 
the submodels needed to address the problem being explored. Unfortunately, 
many of the submodels were too simplistic to result in an acceptable simula-
tion. If one really expected to simulate an unsteady buoyant fl ame, limit-
ing the geometry to being axisymmetric defeated the purpose. Experiments 
would show that the buoyant eddies were not axisymmetric. Th e high 
Reynolds number test case was probably turbulent. Th e kinetics model used 
did not include atomic species and CO, so the predicted temperatures would 
be too high—of about the same order as the temperature eff ects attributed 
to the soot formation. Soot combustion should have been considered. Th e 
absorption coeffi  cients used were overly simplistic. If they were to be used, 
a better justifi cation for their use should have been provided. Since none of 
the particulates (soot) were considered to be scatters (a good assumption), the 
eff ect of leaving the scattering term in the radiation had no meaning. Either 
it was left  out of the discrete-ordinate analysis, or left  in and never evaluated. 
Th e criticisms off ered could not even be addressed with a suitable validation 
experiment. Th ese comments are not meant to demean the work reported, 
but to pose questions that should have been addressed to place the work in 
the proper perspective. Th ese investigators have continued this research, so 
this is a work in progress. Later papers may have eliminated much of this 
criticism. Th e validation of a computational simulation requires experimen-
tal data that test the various assumptions made in the computational model. 
Th e more elaborate the model, the more defi nitive the experimental data 
collected must be. Th is is a tough requirement that is seldom met.
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3.5.3 NARROWBAND MODELS

Th e narrowband radiation model was mentioned in Section 3.5.1 as an 
alternative to the wideband model to represent gaseous radiation. Th e 
narrowband model accounts for more spectral resolution in predicting 
the radiation from rocket exhausts, structural and wild fi res, furnaces, 
and boilers. Th eoretically, the wideband models could also be used for 
this purpose, but they generally are not. Th e increased spectral resolution 
would probably give a more accurate prediction, and it would defi nitely 
be a better tool for interrogating fl ame character. Th e initial impetus for 
developing narrowband radiation models was the NASA conference on 
molecular radiation (Dahm and Goulard, 1967) to stimulate research on 
large rocket plumes. Th e need for improved technology was to provide a 
better tool for describing base heating to the large Saturn launch vehicles. 
Th e primary emitters in the plume were CO2, H2O, and soot. At the time 
the base heat shields weighed about the same as the vehicle payload. Plume 
analysis was needed because subscale model data could not be scaled to 
fl ight conditions. Th e equally important reentry heating problem required 
radiation analysis of a diff erent type since the species in the nose cap 
region primarily emitted line and continuum radiation. More recently, 
this technology has been applied to structural fi res (Grosshandler, 1993) 
and coal fi red combustion facilities (Fiveland, 1987). Military applications 
of this methodology have been extensive but are not generally available.

Th e NASA planning conference resulted in an extensive experimen-
tal program to obtain radiation property data. Th ese data were collected, 
modeled, and reported in a handbook (Ludwig et al., 1973). Few, but 
important, additions have been made to this database in the intervening 
years. Th e following development is given to introduce the parameters and 
terminology used to represent narrowband models. It follows that pre-
sented by Reardon and Lee (1979).

Hydrocarbon and hydrogen fl ames are the primary combustions that 
require radiation analysis. Th e vibration–rotation bands of CO2 and 
H2O are the primary gaseous radiators. Fuel-rich hydrocarbon fl ames 
also soot. Coal fl ames contain not only these gaseous species but also 
pulverized coal particles and ash. Th e ash and coal particles are large 
enough that they scatter the radiation. Th e gaseous species absorb and 
emit radiation in discrete spectral regions. Th e soot particles are usu-
ally very small, such that they too only emit and absorb; unlike gases 
they radiate in the continuum. Solid propellant rocket motors produce 
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plumes, which contain fairly large aluminum oxide particles that scatter 
radiation. Other radiating gaseous species may also be in these plumes. 
Consider fi rst the narrowband radiation model applied to the description 
of hot CO2 and H2O fl ames. Th is is the application that the narrowband 
model was designed to describe.

Th e monochromatic absorption coeffi  cient, k{w, s}, is a basic radiation 
property and is defi ned in terms of the spectral radiance, N{w, s}, by

 d { , } d { , } { } { , }N s s k s s N sω = − ω ρ ω  (3.131)

where
ω is the wave number
ρ is the density of a radiating species per unit length
s is the path length

Th e properties k and ρ depend on the temperature, pressure, and com-
position of the gas. Integrating this property over path length defi nes 
transmissivity:
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If the gas is homogeneous,

 { }τ{ω, } = − {ω} = ρexp whereu k u u s  (3.133)

Th e ρs product is dimensionless and is loosely referred to as concentration.
Spectral lines represent energy transitions in a molecule, and they are 

broadened by collision and the thermal motion of the molecules. Th e resulting 
line shapes are termed Lorentz and Doppler, respectively. Th e line strength (or 
intensity) is the integrated absorption coeffi  cient over the broadened line:
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(3.134)

Do not be alarmed by the wide limits of integration—the absorption coef-
fi cient is zero over most of the spectrum. Th e integrated absorptance is a 
function of both k and u:
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W is also called the equivalent width since it represents the width of an 
equivalent black line. Let g represent the half-width of the broadened 
line.

Th e integration of W with (Su/γ) is termed the curve-of-growth. For 
both Lorentz and Doppler line shapes, the curve-of-growth is linear at 
weak line strengths. Th e shape of the curves diverges at higher values of 
this parameter. Th e Lorentz lines approach a square root dependence; the 
more narrow Doppler lines approach [ℓn{Su/γ}]0.5.

Narrowband models are characterized by the type of lines grouped 
together to constitute the band. A regular (or Elsasser) model considers 
absorption by identical, equally spaced lines. Such a model is a good repre-
sentation of diatomic molecules. A statistical (or random) model assumes 
randomly spaced lines of a specifi ed intensity distribution. Th is model 
represents polyatomic species. A third category used a mixture of these 
two types of models.

Th ree parameters are used to characterize the line structure in a 
small spectral interval—the half-width (γ), the line spacing (d), and the 
absorption coeffi  cient (k-), which is proportional to the line-strength ratio 
(S/d). Data for these parameters are given in Ludwig et al. (1973) and 
Grosshandler (1993). Tables are given for the absorption coeffi  cients and 
reciprocal line widths. Algebraic equations are given for the half-widths. 
Th e half-width expressions are
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Copious other data are in the literature, but these sources are a good basis 
for radiation studies.

From this point on, the discussion will be limited to describing radia-
tion from CO2 and H2O vapor with a statistical band model. To proceed, 
the intensity distribution must be specifi ed. Th e probability functions

 
1{ } exp{ } and { } exp{ }P S S P S S S−∝ − ∝ −  (3.137)

were investigated by studying the curves-of-growth resulting from their 
use. Th ese distributions were deemed useful for in-band models. Th ese 
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approximated functions resulted in the exponential line strengths for 
Lorentz and Doppler lines, respectively:

 = = +( / ) 1 /(4 )/L L LW d X k u k u a  
(3.138)

 = = + 2 0.5( / ) 1.70 ln[1 ( /1.70 ) ]( )D D D DW d X a k u a  (3.139)

Th e subscripts L and D refer to Lorentz and Doppler, respectively. If the 
exponentially tailed-inverse line strength approximation is used,

 = = + −( / ) 2 1 (4 ) 1/( )L L L LW d X a ku a  
(3.140)

 = = + 2/3 1.5( / ) 0.937 ln[1 ( /0.937 ) ]( )D D D DW d X a ku a  (3.141)

where
aL = γL/d
aD = γD/d

Either pair of these equations were found to give acceptable results. 
Th e Lorentz and Doppler components are combined to give the 
transmissivity:
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Radiance along a line-of-sight to a point at s = 0 is
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Th e Plank function is N° evaluated at T and ω. Th e radiant heat fl ux to the 
point at the terminus of the line-of-sight in the direction of s is
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Th e elevation and azimuth angles measured from the surface normal are 
q and j, respectively.
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For moderate inhomogeneity in the hot gas region, the modifi ed 
Curtis–Godson approximation may be use to represent line-of-sight 
radiation. Th is would apply to base heating from a rocket plume or to 
walls heated by a fl ame. If the fl ame is viewed from a long distance away, 
like a chemical plant fl are viewed from afar or a rocket plume viewed by 
a distant observer, corrections are available for modifying the radiation 
prediction. Th e modifi ed Curtis–Godson approximation uses the homo-
geneous band model formulation with eff ective parameters (denoted 
by the subscript “e”) defi ned to account for the inhomogeneity. Th ese 
parameters are
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Th e primes denote a dummy variable of integration. Th e cP product 
denotes the ratio of the radiating species density at s¢ to the density at 
1 atm for the same local temperature. Some data refer k- to reference con-
ditions of 1 atm and a temperature of 273 K. For using such tables, the ρc 
product must be multiplied by the temperature ratio (273/T).

3.5.3.1 Narrowband Models as a Diagnostic Tool

Th e spectral radiance for a nonisothermal path is
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Nω° is the blackbody radiance at the local wave number. Applying the 
radiance expression to a series of increments along a line-of-sight,
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For M = 5 increments of gas and one more, a radiation source impinging 
on the last increment of gas, we have

( ) ( ) ( ) ( ) ( )ω ω1 ω ω ω ω= − τ + τ − τ + τ − τ + τ − τ + τ − τ� � � � �
E 1 2 1 2 3 2 3 4 3 4 5 4 51N N N N N N  

(3.150)

Th e subscript “E” denotes radiance emitted from the gases, and “T”  repre-
sents the radiance impressed on the gas beam:
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Imagine a single isothermal cell of hot gas with an emission and a trans-
mission measurement for a measured applied radiance. Th e partial pres-
sure of the radiating species and the temperature of the gas can then be 
determined. Th is idea has been applied to measuring the species and tem-
peratures in axisymmetric fl ames.

Imagine the cross-section of the fl ame normal to the axis of symme-
try. Conceptually, this cross-section would consist of a series of rings, each 
with a constant partial pressure of a radiating species and temperature. 
Th e species can be made unique by choosing a spectral region where it is 
the only radiator. If a continuum radiator like soot is present, the measure-
ments can be made by correcting the band radiance for the underlying soot 
radiance. By choosing the spatial resolution desired, a number of paired 
emission–absorption measurements can be created. Th is array of measure-
ments can be inverted to produce the desired temperature and species con-
centration values. Th e details of such an experiment and instrumentation 
system required to make the measurements are described by W. Herget 
(Dahm and Goulard, 1967). A number of such experiments have subse-
quently been performed. Such measurements were the fi rst quantitative 
evaluation of the mixing ineffi  ciency in small liquid rocket engines. Th is 
ineffi  ciency revealed the error to be expected in using subscale test data to 
represent prototype engine performance and scale-up.

3.5.3.2 Narrowband Model Applications

To indicate the magnitude and details of the narrowband variables, a 
simple one-cell emission/absorption analysis is presented. Th is example 
is needed because the literature is scattered and the nomenclature is not 
standardized. The data used in this example were taken from Ludwig 
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et al. (1973). Consider CO2 radiating at a wavelength (λ) of 4.45 mm or a 
wave number of 2247 cm−1. Assume a path length (L) of 8 cm. Th e partial 
pressure of the CO2 is 0.23 atm; for the other species CO/0.27, H2O/0.41, 
and H2/0.09. Th e gas temperature is 2400 K.

Th e properties given by Ludwig et al. (1973) are for a reference pressure 
of 1 atm and 273 K. Th e eff ective optical depth of the gas is

 Δ = = =( /1.0) (273/ ) 8(0.23)(273/2400) 0.2093/cmiu s P T  (3.152)

Th e absorption coeffi  cient (k) is 13.66/cm−1 and the line spacing (1/d) is 
502.6/cm from pp. 446 and 457–458, respectively, in Ludwig et al. (1973). 
The data indexed in the tables are on p. 384. The collision (Lorentz) 
half-width from p. 223 is given by
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where
gii for CO2 is 0.01

 gij’s for CO2, H2O, CO, and H2 are 0.09, 0.07, 0.06, and 0.08, 
  respectively

Th e units on these values are reciprocal cm atm. Th e nii is 1.0 and all of the 
nij’s are 1.0. Th us, gLi = 2.481 × 10−2/cm−1. Th e Doppler half-width is
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Th e spatially averaged absorption coeffi  cient for one zone is
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Also,

 ( )22.481 10 502.6 2.859La −= × =  (3.156)

 ( )35.966 10 502.6 2.999Da −= × =  (3.157)
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Th e Lorentz and Doppler line strengths become in these new variables
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Combining these two components and calculating the transmissivity:

 

2 22 2

2 22 2
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2.78 2.666
1 1 1
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336.7 58.8 1 394.5
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− −

− −
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0.5 0.5 0.5 0.5ln (1 ) 2.859(1 394.5 )

ln{ 2.786} or 0.06166 and 1 0.93834

i i i
i

k u y − −τ = − − = − −

= − τ = − τ =

∑
 (3.161)

Th e emitted radiation is
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3
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N N −
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−
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Th e impressed (denoted by subscript “s”) and transmitted radiation are

 
3 3

T s 3.314 10 (0.06166) 0.2043 10  W/cm srN N − −
ω ω= × τ = × = × ⋅�

 (3.163)

Th e radiation detected (denoted by subscript “D”) from hot gas and an 
external source is

 
3

D T E 4.6577 10  W/cm srN N N −
ω ω ω= + = × ⋅  (3.164)

Th e concept of using absorption diagnostics has been extended to study 
three-dimensional nonhomogeneous concentration and temperature 
fi elds. Th e methods are termed optical tomography. Th e technique employs 
multiangular scanning of the nonuniform fi eld. Tomography is the same 
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process as used by x-ray resolution to investigate medical conditions. Santoro 
et al. (1981) demonstrated this technique by studying the mixing regions 
on a cold fl ow methane–air jet. Th e technique was proven feasible and has 
received further use. In addition to investigating fl ames, industrial pollutant 
clouds have been measured. An interesting study was made by W. Herget 
of the EPA, who mounted a spectrometer on the observation deck atop the 
32 story Louisiana state capitol to scan the atmosphere above the two dozen 
odd chemical complexes in Baton Rouge.

Th e plumes from hydrocarbon and hydrogen fueled rocket engines and 
from most structural fi res consist of gaseous species and soot. Th ese sub-
stances emit and absorb radiation, but do not scatter radiation. To analyze 
radiant heating from such media, scattering of the radiation does not have 
to be considered. Base heating of launch vehicles has been predicted for 
design purposes with an analysis by Reardon and Lee (1979). Th e analysis 
evaluated radiation using narrowband models along lines-of-sight from 
the plume to the vehicle, including radiation from hot structural parts 
(like the outsides of rocket nozzles). Grosshandler (1993) made a similar 
analysis to interpret experiments involving fi res in mock residences and 
industrial buildings. Th ese analyses require a solution of the conserva-
tion equations, without radiation, to determine the species, temperatures, 
and pressures along the radiant beams. To date, the calculation has been 
uncoupled. Th e fl owfi eld was assumed not to change by losing its radiant 
energy. Th is allows the integro-diff erential energy equation by solving the 
integral radiation term separately from the PDE for energy. Bhattacharjee 
and Grosshandler (1989) postulated a radiation/convection interaction 
parameter (Ψ) to determine the necessity of including coupling to obtain 
a valid prediction. Th is parameter is a function of the fl ame, surrounding 
wall, and inlet temperatures (Tf, Tw, Ti); the fl ame inlet mass fl ux times its 
heat capacity (ρuCp); the optical thickness; the absorption coeffi  cient (k); 
and a streamwise direction (L). Th e Stefan–Boltzmann constant (σ) also 
appears in the parameter:

 

4 4
f w

f i

( )
( )p

a L T T
u C T T

σ −
Ψ =

ρ −  
(3.165)

If Ψ is less than one, the solution of the energy equation would be inde-
pendent of the radiation loss. Few coupled solutions that are not compro-
mised by oversimplifi cation have been obtained.



Physical Properties       ■    181

3.5.3.3  Radiation Heat Transfer with 
Narrowband Models and Scattering

If the fl ames or hot gases contain moderate-size particulates, the media 
can scatter as well as emit radiation. Scattering complicates the analysis 
drastically. Rather than simply integrating along lines-of-sight, the later 
transfer of radiant scattered has to be admitted. Many approximations to 
solve the integral term have been suggested. Generally, the approximations 
are severe and even at that the computation is very intensive. Everson and 
Nelson (1993) have reported on a fairly rigorous, albeit still computation-
ally intensive, reverse Monte Carlo method for accounting for narrowband 
and soot continuum emission along with particulate emission. Th e reverse 
nature of this analysis allows one to specify an area receiving the radia-
tion and trace the computational ray back into the fl ame. Conventional 
Monte Carlo schemes discharge rays out of the fl ame, and only a fraction 
of these hit the area of interest. Th is statistical method is suffi  ciently com-
putationally intensive without additional ineffi  ciency caused by tracing 
wasted rays.

Reardon and Nelson (1994) used the reversed Monte Carlo method 
to predict base heating to the advanced solid rocket booster (ASRB) 
intended for use on the Space Shuttle. Due to the large base area of 
the shuttle, heating predictions to 1700 locations for six diff erent gim-
bal positions were made. Th e increased aluminum loading in the ASRB 
propellant (16%–19%) exacerbated the heating load due to scattered 
radiation.

Again, this text is intended to extend the application of computational 
analyses to real engineering problems. A survey of the multitude of papers 
in the literature is not a goal of this work.

3.5.4 VALIDATION WITH OPTICAL DATA

Point measurements made with laser scattering, CARS, and fl uores-
cence and laser Doppler velocity measurements are important to the 
validation process. Such methods for local temperature and concentra-
tion measurements have been ably reviewed by Eckbreth (1996). Th e 
instrumentation required for such measurements is complex and frag-
ile. It is diffi  cult to provide such measurements outside of the laboratory 
environment.
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3.6 NOMENCLATURE
3.6.1 ENGLISH SYMBOLS

a absorption coeffi  cient in Section 3.5
a speed of sound; Equation 3.36
a, a¢ TEOS correction factors for molecular attraction
a, b constants in van der Waals EOS
ai empirical constant in Equations 3.18 through 3.21
aij, bi empirical mixing parameters in PR-EOS, Equation 3.35
aij, ci linearized SCE parameters, Equation 3.62
A, a Helmholtz free energy; specifi c Helmholtz free energy
A, B functions in general SCE; Equation 3.84
A, B, C, D, E parameters in various property correlations
bj elemental concentration of j
b, b¢ TEOS correction factors for molecular volume
Bi j parameters in HBMS EOS
B~ column vector in the SCE written in function space
c molar concentration
Ci function defi ned in Equation 3.40
Cp constant pressure heat capacity
Cv constant volume heat capacity
d dipole moment
d line spacing in Section 3.5
Di j diff usion coeffi  cient
D*i j diff usion coeffi  cient of binary pair in a multicomponent 
   mixture
ei elemental concentration of j in species i
ek propagation error in the Padé integration scheme; Equation 
   3.94
eλ b blackbody emissive power
Ei elemental composition
f(i) parameters in vapor pressure correlation
f linearized SCE function
f, b forward and backward reaction rates of the H2/O2 system
f, h methane viscosity and conductivity, respectively
fi function in Equation 3.39
fi partial fugacity
fi

o standard-state fugacity
FT° , FP° , FQ° viscosity correlation functions
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gÆi gravitational acceleration in “i” direction
G, g Gibbs free energy; specifi c Gibbs free energy
Gi º mi = F partial molar Gibbs free energy
H, h enthalpy; specifi c enthalpy
Hxi partial molar enthalpy
I a specifi c reaction
j mass diff usion fl ux
J molar diff usion fl ux
k Boltzmann’s constant
k{ω, s} monochromatic absorption coeffi  cient
K equilibrium constant
Kf, Kb forward and backward specifi c rate constants
kij binary interaction parameter
Le Lewis number
m mass
mi mass of i
M̂ matrix term in the SCE in function space; average solid 
   angle in Section 3.5
Mw , M molecular weight
M¢, M² reactant and product species, respectively
N number of moles; number of equations in equilibrium 
   calculation
N° Planck function
N{ω, s} spectral radiance
Ni molar density of i
N–i mass fl ux vector
n total molar density
ni moles of i
nij parameter in half-width correlation
P pressure
P, p parameters in Padé approximation; Equation 3.85
Pr Prandtl number
Pvap vapor pressure
qÆr radiation heat fl ux vector
Q parameter in Equation 3.112
Q, q parameters in Padé approximation; Equation 3.85
r¢ij, r²ij power dependency of species i in reaction j
R, Ru gas constant
Rf, Rb forward and backward reaction rates
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s path length in Section 3.5
S line strength (or intensity)
S, s entropy; specifi c entropy
Sc Schmidt number
T, T* temperature; dimensionless temperature
t time
u velocity parallel to surface
u pseudo-concentration in Section 3.5
U, u internal energy; specifi c internal energy
U
Æ

 velocity vector
Vj partial molar volume
u velocity normal to surface
W integrated absorptance
x coordinate parallel to surface
x independent variable in linearized SCE
xA mass fraction of A
xi mass fraction of i
Xi molar density of i
XI parameters in transmissivity
y coordinate normal to surface
yi mole fraction of i
Z compressibility factor

3.6.2 GREEK SYMBOLS

α = κ/ρCp, thermal diff usivity
α Riedel’s constant
αj mass fraction; Equation 3.63
γ line half-width in Section 3.5
γ ratio of specifi c heats
Δ incremental operator
e characteristic energy
θ elevation angle in Section 3.5
Θ reduced normal boiling point temperature
κ bulk viscosity in Equation 3.107
κ parameter in function of ω
κ thermal conductivity in Section 3.5
λ wave length in Section 3.5
λ, λ*, λ** thermal conductivities, Equations 3.109 and 3.111
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λj Lagrangian multiplier
μ viscosity
ν kinematic viscosity
νi, νi², ν ′ stoichiometric coeffi  cients
ξ inverse viscosity
ρ density
σ hard sphere diameter; scattering coeffi  cient in Section 3.5
σi partial mass quantity
σq Schmidt number
τ{ω, s} transmissivity
τx y shear stress component
φ parameter in Taylor series expansion
ϕ azimuthal angle in Section 3.5
Φ augmented function; scattering phase function in Section 3.5
ϕ fl uid quality
Φi j mixing function for viscosity; Equation 3.106
ψ, Ψ ratio of radiation to convection; ratio of radiation to convection
ω acentric factor; solid angle in Section 3.5
ωi generation term in SCE
Ωn collision integral

3.6.3 MATHEMATICAL SYMBOLS

dij kronecker delta
", ν volume; specifi c volume
ΔHv heat of vaporization
N  molar volume
τ
��

 second-order tensor (τ is any tensor)
V
Æ

 vector (V is any vector)
M

Ÿ
 matrix (M is any matrix)

C
~

v column vector (CV is any column vector)
k− spectral average (k is any variable)

3.6.4 SUBSCRIPTS

c critical value
D Doppler line; sum of emitted and transmitted radiation in 
   Equation 3.3
e average value for inhomogeneous radiation
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E emitted radiation
i specifi c property of species i
ℓ liquid phase
L Lorentz line in Section 3.5
L, sℓ saturated liquid
o methane value used as a reference
r reduced quantity
RA liquid compressibility
REF, Bo, Bo reference value (B is any variable)
sv saturated vapor
t turbulent value
T property is a function of temperature only: transmitted 
   radiation in Section 3.5
νv saturated vapor

3.6.5 SUPERSCRIPTS

app approximate value
EX excess function
nbp normal boiling point
o ideal gas value
x, P, T, B secondary diff usion fl uxes in Equation 3.115

3.6.6 ACRONYMS

CEA thermodynamics code
CEOS caloric equation of state
CHEMEQ, LENS, CREK1D, PARASOL stiff  ODE solvers
EOS equation of state
GCKP, GCKP84, GEAR. EPISODE stiff  ODE solvers
HBMS Hirschfelder, Buehler, McGee, 
   Sutton EOS
NE number of elements
NS number of species
ODE ordinary diff erential equation
PR Peng–Robinson
SCE species continuity equation
TEOS thermal equation of state
UNIFAC activity coeffi  cient code
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4C H A P T E R  

Turbulence Modeling 
Concepts

4.1 REYNOLDS AVERAGING AND 
EDDY VISCOSITY MODELS

Physically, turbulent fl ow has some meaning to most of us as some sort of 
chaotic fl uid motion. Th ree concepts allow us to begin obtaining a quan-
titative measure of turbulence. In 1883, O. Reynolds observed that a dye 
jet injected cocurrently into water fl owing in a smooth tube retained is jet-
like stream until some critical velocity aft er which the dye stream rapidly 
broke-up and mixed with the water (McKusick and Wiskind 1959). A larger 
pressure drop in the pipe was also observed aft er this critical velocity was 
reached. Pursuing his studies on turbulence, Reynolds (1895) averaged the 
Navier–Stokes equations in time to defi ne mean and fl uctuating properties, 
i.e., the “Reynolds stresses.” Prandtl in 1904 (Schlichting, 1979) explained 
the eff ects of friction as a modifi cation of the mean velocity profi le in the 
near vicinity to the wall, i.e., the boundary layer for laminar and turbulent 
fl ow. Th us, turbulent fl ow mixes more rapidly than laminar fl ow, has fl uc-
tuating fl uid properties imposed on an otherwise laminar-like velocity fi eld, 
and produces more friction when these ragged fl ows are slowed down by a 
wall to produce a no-slip condition. Turbulent fl ow has other characteristics, 
but these are the most important for infl uencing transport phenomena.

Early investigators defi ned turbulence as: “an irregular motion which 
in general makes its appearance in fl uids, gaseous or liquid, when they 
fl ow past solid surfaces or even when neighboring streams of the same 
fl uid fl ow past or over one another.” Taylor and Von Karman initiated the 
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application of statistical theories to describe these irregular motions. 
A collection of their works is compiled in Friedlander and Topper (1961). 
Hinze (1975) gave a more precise defi nition as: “Turbulent fl uid motion is 
an irregular condition of fl ow in which the various quantities show ran-
dom variation with time and space coordinates, so that statistically dis-
tinct average values can be discerned.” An addition to these defi nitions 
attributed to Bradshaw (Wilcox, 2006) is that “turbulence has a wide range 
of scales.” Bradshaw (1972) also noted: “Th e problem faced by an engineer, 
then, is to supply information missing from the time-averaged equations 
(Reynolds equations) by formulating a model to describe some or all of the 
six independent Reynolds stresses.” Evaluating all of the Reynolds stresses 
is not possible, but some partial solutions do exist which are useful for 
analyzing transport phenomena.

Multidimensional convective and diff usive fl ow must be simulated 
to address transport problems. Mass and heat transfer problems require 
describing equilibrium, fi nite-rate chemical reactions, and real fl uid ther-
modynamics. Th e character of the momentum transport demands that 
the interaction of the density and velocity fi elds be satisfactorily resolved 
through compressibility and sonic velocity considerations. When appro-
priate, selections from the multitude of experiments which have already 
been performed will be cited for providing validation of the various tur-
bulent fl ow models reviewed. Historically, most research devoted to statis-
tically describing turbulence has been directed toward describing constant 
density and ideal gas fl ow. As the statistical turbulence models become 
more detailed the chemical description of the fl ow suff ers by continuing 
to be simplifi ed. To obtain a practical simulation of transport phenomena 
processes, a compromise must be reached to use engineering models of all 
of the fl ow and fl uid properties such that real processes and fairly accu-
rate fl owfi elds may be simultaneously predicted. Furthermore, to allow a 
novice to utilize and understand the numerical modeling and the physical 
restrictions of the model it is desirable that much of the analyses can be 
accomplished on ones own personal computer. Today this is possible with 
the eddy viscosity models described in this chapter. More elaborate turbu-
lence models which cannot currently be used to accomplish this goal are 
being actively researched and are described in Chapter 5.

Even though the importance of the Reynolds stresses has long been 
known, models to represent them were limited to very simple fl ows, like 
boundary layers, until the latter part of the twentieth century. Th e simplic-
ity of the models precluded them being made universal for application to 
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a large class of fl ow geometries. With the advent of more computer power, 
more general models were developed. Th e fi rst such models to be rea-
sonably accurate and general were the two-equation models which used 
transport equations to describe the turbulence kinetic energy and energy 
dissipation. Such models were made even more general and computation-
ally effi  cient by developing wall-function boundary conditions to expedite 
their use. Th ese models have proven to be immensely useful to industry 
and government laboratories for the past quarter century. Many wish to 
believe that such technology has been superceded by newer turbulence 
models. Th is is not the case. Th e newer more elaborate models are not 
yet capable of simulating the physics and chemistry of interest, and they 
come at a higher computational and computer resource cost. Th ese more 
elaborate models require a much longer learning curve to use and cannot 
generate suffi  cient analyses to serve as a learning tool for future analysts.

4.2 TURBULENCE CHARACTERISTICS
Time-averaged turbulent velocity, temperature, and concentration profi les 
for fully developed pipe fl ow were shown in Chapter 1. Th ese data were 
obtained primarily with probe measurements. Such profi les are also those 
to be expected from boundary layers without wakes and channel fl ows. 
Th e fl uids considered were mostly air and water. A few other fl uids were 
studied to investigate the eff ects of high and low values of Prandtl and 
Schmidt number fl uids. Multicomponent fl uids have received very little 
fundamental study. Compilations of boundary layer and free shear layer 
data were made for conferences held to compare turbulence model predic-
tions to these data. Th e boundary layer conference was held at Stanford 
University (Coles, 1968) and the shear layer conference was held at NASA 
Langley (Birch et al. 1972). More recent data of this type are reviewed by 
White (2006) and Wilcox (2006).

Turbulent properties are indicated by fl uctuating velocity and pres-
sure measurements by Laufer for air fl ow in pipes and by Klebanoff  for 
boundary layers. Such fl uctuations are always three dimensional. Th ese 
data and additional measurements have been reviewed by Hinze (1975). 
Th ese correlations are measured by hot-wire anemometry. Th e preferred 
technique observes the heat loss from a small fi ne wire by maintaining the 
wire temperature and resistance constant. Th e current required to main-
tain this temperature constant is measured, and the instantaneous veloc-
ity is deduced from a heat transfer analysis. Hinze (1975) reviews some 
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more recent data, but these experiments are costly to perform because 
of frequent breakage of the fi ne wire. In any event, the data show that 
near the wall the three components of the “turbulent intensity,” i.e., the 
root-mean-square of the velocity fl uctuations in each of the three direc-
tions are not equal. If the intensity were constant in all directions the fl ow 
would be termed isotropic. Th e intensities become closer to being equal 
slightly away from the wall. Th is means that the near-wall turbulence is 
“anisotropic.” Th is is very inconvenient because it increases the diffi  culty 
of producing a very accurate turbulence model. Regardless of the intensity 
distribution around a point, if such intensities do not vary from point-to-
point, the turbulence is said to be “homogeneous.”

Turbulence structure consists of coexistent eddies of varying sizes 
which degrade into smaller and smaller eddies until fi nally dissipating as 
heat. Th is cascade involves the transfer of the (specifi c) turbulent kinetic 
energy (k) from the larger eddies to the smaller eddies. Before describ-
ing how such eddies can be quantitatively defi ned, some of their other 
properties will be considered. Kolmogorov’s pioneering work (Hunt et al., 
1991) and reviewed by Wilcox (2006) described the fl ow very near a wall 
as being locally isotropic and describable by the dimensional analysis to 
length (ℓ), time (t), and velocity scales (υ) in terms of the energy dissipa-
tion e = −dk/dt and kinematic viscosity n.

 ≡ ε ≡ ε υ ≡ ε� 1 4 1 2 1 43( / ) ( / ) ( / )K K Ktν ν ν  (4.1)

Taylor (1935) defi ned an integral length scale (ℓ) by
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where ℓmfp is the mean free path of the molecules in the fl uid. Th e ratio of 
large and small length and timescales are
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By using the local length scale, a wave number (α) is defi ned to give the energy 
spectrum function E{a} which is related to the Fourier transform of k.
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Kolmogorov’s universal equilibrium theory states the rate that the small-
est scale eddies receive energy from the larger scale eddies is approxi-
mately equal to the rate that the smallest scale eddied dissipate energy 
into heat. Th is theory results in an inertial subrange of eddy sizes and is 
expressed by his 5/3 power law.

 

2 3 5 3 1 2 1
{ } K

K

E C − πα = ε α << α = <<
λ� �  

(4.5)

Afzal and Narasimha, as reviewed by Wilcox (2006), extend this to create
Inner region (viscous range):

 
1 4 5 4 1 43{ } { } ( / )K KE fα = ε α ≡ ν ε� �n  (4.6)

Outer region (large eddies):

 { } { }E k gα = α� �  (4.7)

Overlapping region (inertial subrange):

 
2 3 5 3{ } KE C −α = ε α  (4.8)

Typical plots of energy spectra are shown in Pope (2000). A specifi c energy 
spectrum is given by the following equations from Pope which contain no 
unspecifi ed functions.
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Assumptions made by Kolmogorov are that the turbulence has a wide sep-
aration of scales and that the smaller eddies are in a state where the rate of 
receiving energy from the large eddies is nearly equal to the rate at which 
the smallest eddies dissipate the energy to heat. Th e motion at the smallest 
scales depends on the rate at which the larger eddies supply energy,

 ε = − d /dk t  (4.10)
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Statistical methods must be used to defi ne a length scale more rigor-
ously. Single-point correlations of turbulent eddies depend on turbulent 
fl uctuations at a given point. Unlike the molecular motion of gases, the 
motion at any point in a turbulent fl ow aff ects the motion at other distant 
points through the pressure fi eld. Meaningful length and timescales can 
be defi ned and measured by using at a minimum, two-point correlations. 
Th ere are two types of such correlations: a temporal separation and a 
spatial separation. Th ese are the

Autocorrelation tensor• 

 ( , ; ) ( , ) ( , )ij i jA r t t u r t u r t t≡ +′ ′ ′ ′
� � �

 (4.11)

Integral timescale• 
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Two-point correlation tensor in terms of the displacement vector • sÆ
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 (4.13)

Integral length scale• 
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Th e use of time-averaged conservation laws does not consider any spatial 
correlations of the fl uctuating parameters. Th is is an especially restrictive 
limitation when one is dealing with environmental transport phenomena. 
Leonard (1974) introduced spatially averaged conservation equations to 
help remedy this problem. Such averaging is also referred to as fi ltering of 
the conservation equations. In essence, spatial averaging allows two lev-
els of viscous dissipation: one larger level for near-wall fl ows and another 
smaller one for large eddies far away from walls. Further discussion of 
spatial averaging will be presented in Chapter 5 as it pertains to other 
turbulence models, particularly to DNS and LES models.

Measurements of the parameters just mentioned are suffi  cient to validate 
turbulence models needed to simulate transport phenomena processes, 
but such data are not generally available for real geometric confi gurations. 
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Such data are essentially nonexistent for reacting and multiphase fl ows. 
Th e result of this shortage is that most computational simulations are 
“validated” by comparison to some experiment which is (hopefully) some-
what similar to the desired phenomena. Th is is not a good situation, but its 
practice still leads to useful insight to the desired goal of CTP analysis—
within acceptable engineering tolerance. Multiyear CFD Working Group 
conferences at NASA MSFC and NASA GRC’s Center for Modeling of 
Turbulence and Transition have produced numerous studies of this nature 
to support their major programs. Th e proceedings of these conferences are 
reported in NASA publications. Numerous similar conferences sponsored 
by other agencies/organizations have also been held. A host of more formal 
publications of similar researches have created an enormous literature.

Th e remainder of this chapter discusses: Reynolds and Favre averag-
ing, two-equation turbulence models, and the importance of wall-function 
boundary conditions. Where appropriate, test data to support model valid-
ity will be cited. However, the objective of this work is to delineate the con-
cepts of the various turbulence modeling methods. A basic computational 
tool for the readers’ use in making their own evaluation of turbulent model-
ing methodology is off ered and its use is explained. A defi nitive validation 
of the methodology with a critique of specifi c data is not the goal.

4.3 REYNOLDS AND FAVRE AVERAGING
A turbulent velocity measured with an instrument with a slow response 
time (like a pitot tube) indicates a time-averaged velocity, V

Æ
 (or velocity com-

ponent), while a measurement with a small detector and a rapid response 
time (like a hot-wire anemometer) measures a highly fl uctuating velocity, 
V
Æ

 + V
Æ  

′. Th e diff erence between the two types of measurements indicates 
the structure of the turbulence. For example, the average of this diff er-
ence squared is termed the intensity of the turbulence. Similar properties 
involving pressure, temperature, and concentration may also be measured. 
Turbulent concentration modeling must be accomplished with caution, 
since most reaction kinetics data are obtained from experiments (possi-
bility turbulent). Th is is especially true for gaseous combustion. Not only 
may meaningful average values of the conserved quantities be defi ned, but 
since the turbulent fl uctuations are rapid, the more slowly varying mean 
fl owfi elds may be determined to describe a transient fl owfi eld. Th e conser-
vation laws must be modifi ed to refl ect these two types of fl owfi eld properties 
in order to analyze turbulent fl ows.
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To defi ne the mean value of some quantity (like a velocity component), 
time- or space-averaging over some small volume or time increment is most 
easily measured. Such averaging is defi ned by Monin and Yaglom (1965):
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 (4.15)

where
xi’s are space coordinates
t is the time
Th e broken brackets indicate an average quantity
Th e braces indicate functionality (brackets are not needed when two 

diff erent symbols (like U and u) are used to indicate mean and 
fl uctuating quantities)

ξi’s are the small displacements from the corresponding xi

t is the small displacement in time.
Weighting function (ω) is chosen to satisfy the normalization 

condition
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If the weighting function is constant over some four-dimensional region 
and zero outside this region, the averaging process is said to be simple. 
Furthermore, if ω = δ, the Dirac delta-function, simple space- or time-
averaging, respectively, is obtained. Reynolds originated the concept of 
time-averaging the conservation equations for a constant density fl uid and 
identifi ed important averages of various fl uctuating quantities. Certain 
general rules result from this analysis when applied to products of fl uc-
tuating quantities. However, to generalize the analysis a method of evalu-
ating the weighting function must be devised. Th is is far from a simple 
requirement. Favre (1961) extended the time-averaging concept to defi ne 
similar functions for variable density fl ows.

Th e three type of averaging techniques most frequently used to describe 
turbulence are: (1) a time average: appropriate for stationary turbulence 
(i.e., on the average the turbulent fl ow does not vary with time),
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(2) the spatial average used for homogeneous turbulence (on the average 
the turbulent fl ow is uniform in all directions),

 
V VV
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(4.18)

and (3) the ensemble average, the most general type of averaging, is espe-
cially useful for representing unsteady fl ow,
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Th e “ergodic hypothesis” states that for turbulence which is both station-
ary and homogeneous, these three averages may be assumed equal.

Th e turbulent fl ow properties are random variables (Φ) which can be 
averaged in a variety of ways. Th e examples just presented represent aver-
ages depending on the defi nition of the weighting function and its inter-
pretation as a probability.

To expedite further discussion of turbulence models, Appendix 4.A 
is included to defi ne basic statistical terms. However, for simple time-
averaging as used by Reynolds:
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where
ϕ is the instantaneous variable
j- is the mean variable
ϕ′ is the fl uctuating variable

Rules for time-averaging:
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If tfl ow of mean fl ow unsteadiness is not much larger than tturb, a time large 
enough to establish a mean for the turbulent fl uctuation, an alternative 
method needs to be used.

Reynolds decomposition consists of applying these rules to the con-
servation equations to generate a set of conservation laws for turbulent 
fl ow. Th e time-averaging rules just stated are restricted to fl ows of con-
stant density fl uids. In the literature, such fl ows are frequently termed 
incompressible. Th is is a misnomer, since compressibility really refers to 
fl ows with density changes due to compression—not due to temperature 
or concentrations changes. However, this practice will be used herein. 
Th e velocity and pressure terms have mean and fl uctuating components 
as shown in Equation A of Table 4.1. Th e continuity and three momen-
tum equations from the Reynolds decomposition are shown as Equations 
B through E in Table 4.1. Th e averages of the fl uctuating velocity com-
ponent paired-products are the only new terms which appear in these 
equations. Such terms are called Reynolds stresses and they represent the 
components of a second-order tensor. Notice, the fl uctuating pressure 
does not appear in these equations. Th e turbulent kinetic energy is deter-
mined by Equation F. Notice that this equation is not closed even if all of 
the Reynolds stress components are known. Th is means that additional 
modeling terms would be needed to solve Equation F. Th e turbulent 
shear-stress is comprised of the nine components shown in Equation G. 
Th e cross-components are equal so that only six products must be evalu-
ated. Th e basic defi nitions of intensity and turbulent kinetic energy are 
given in Equations H and I, respectively. Th ese defi nitions for the Favre-
averaged equations are also shown in these equations for convenience. An 
extra continuity equation results involving the fl uctuating velocity com-
ponents. Th is equation is not used for most turbulent transport process 
analyses. Th e equations in Table 4.1 are for a Cartesian coordinate system 
only. Generalizations to other coordinate systems will be discussed sub-
sequently. Th e Reynolds-averaged conservation equations are referred to 
as the (Reynolds-averaged Navier–Stokes turbulence model [RANS]) tur-
bulence model. Th is is somewhat of a misnomer since species and energy 
conservation equations and variable density fl ows are also included in the 
RANS model.

Favre included density variations and mass-(time-)averaged the 
conservation equations by using the following defi nitions and averaging 
rules.
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ϕ represent the instantaneous variables
ϕ∼ represent the mass–weight mean variables
ϕ² represent the superimposed fl uctuating variables
r- represent the time-mean density
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Th e resulting mass-averaged conservation laws and fl uctuating property 
defi nitions are shown in Table 4.2, as equations for compressible fl ow. 
Equations A through E correspond exactly to the same equations in Table 
4.1, except for the defi nition of the mean fl uctuating terms. Th ese terms 
have been modifi ed to refl ect a variation in density. Th e extra continuity 
equation does not appear in this formulation of the conservation laws. Th e 
Reynolds shear-stress terms now include the variable density, but there 
are still the nine components, six of which must be determined. Since the 
density is now a variable, the species continuity equation (Equation F) and 
the energy variables and the energy conservation law (Equation G) must 
be utilized to complete description of the transport process. Th e modifi -
cations needed to defi ne the variable density turbulent kinetic energy are 
shown in Equation I.

Th e Reynolds stress terms in either the incompressible or compressible 
form of the conservation are known, hence the equations are not closed. 
Th ere are more unknowns than equations in the system.
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Closure problem

Due to the nonlinearity of the Navier–Stokes equation, succes-• 
sively higher moments generate additional unknowns at each 
level.
Th e Reynolds–Favre averaging process is strictly mathematical in • 
nature, and introduces no additional physical principles.
Th e function of turbulence modeling is to devise approxima-• 
tions for the unknown correlations in terms of fl ow properties 
that are known so that a suffi  cient number of equations will be 
generated.

Although these averaging procedures are very useful, they do not use 
probability methodology to analyze the conservation equations. Also, 
much of the experimental hot-wire validation data are averaged elec-
tronically using simple analog circuitry, thus precluding their use for 
validating more elaborate turbulence models. Th is pragmatic approach 
to the study of turbulence continues to be widely and successfully used. 
Th e advantages off ered by the application of probability theory are yet to 
be realized, but are addressed in Chapter 5 to indicate their potential.

4.4 EDDY VISCOSITY MODELS
Both the Reynolds- and Favre-averaged conservation equations contain 
correlations (i.e., averaged values) of scalar quantities which are products 
of fl uctuating velocity components, various energy and concentration 
variables. Th ese correlations cannot be accurately predicted from funda-
mental principles. Studies over the past century measured and analyzed 
increasingly complex fl ows to develop an understanding and modeling 
methodology for these turbulent fl ow properties. Th e fl ow complexity 
evolved from boundary layers, pipe fl ows, and homogeneous wind tunnel 
airstreams and essentially stopped there. More complex fl ows and pro-
cesses were usually studied by performing subscale experiments, in which 
few fundamental turbulent property measurements were ever attempted. 
Much esoteric turbulence research is still being enthusiastically, widely, 
and oft en cleverly pursued by a host of investigators who are far from 
producing practical, effi  cient design tools. Th e problem they address is 
diffi  cult.
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On the other hand the exoteric practitioner needs to produce engi-
neering design information. For turbulent fl ow phenomena, this usually 
means utilizing eddy viscosity fl ow models and gradient-diff usion heat 
and mass transfer for process simulations. Such methodology has been 
much maligned in the literature by those seeking research dollars for a 
livelihood, but its use has been spectacularly successful.

4.4.1  REYNOLDS STRESSES 
AND THE STANDARD k–e MODEL

Th e correlations of fl uctuating velocity component paired-products and of 
the velocity component products with scalar temperature and mass frac-
tion fl uctuations must be evaluated to analyze turbulent transport. Th e 
laminar transport coeffi  cients of viscosity, diff usion, and thermal conduc-
tivity relate the transport processes to the fl owfi eld in a rigorous manner. 
In 1877, Boussinesq suggested a turbulence model which simply assumed 
that laminar-like transport coeffi  cient could be used to describe the tur-
bulence. Before this was done, the velocity fl uctuation correlations were 
recognized as apparent stresses caused by the turbulence. Notice in Tables 
4.1 and 4.2, these terms look like the laminar shear-stress terms and 
employ a minus sign so that they are of the same sign as the laminar shear-
stress components, thus: ′ ′τ = −ρ〈 〉t '( )ij i jV V  or i jV V−〈 ρ ″ ″〉. Th ese are the 
Reynolds stresses for incompressible and compressible fl ow, respectively. 
Th e Reynolds stresses are elements of a second-order tensor. Th is tensor 
is symmetric, so there are only six unknown stresses. However, they are 
unknown and must be modeled, or an alternative found. Utilizing the 
Boussinesq analogy
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where
μt is the eddy viscosity
λt is the eddy conductivity
Dt is the eddy mass diff usivity
Prt is the turbulent Prandtl number
Sct is the eddy Schmidt number

Th e laminar kinematic viscosity as determined by elementary kinetic 
theory is proportional to the molecular velocity times the mean free path 
of the molecules. In 1925, Prandtl took this model to represent the eddy 
viscosity by replacing the molecular velocity with the mean velocity 
of the fl ow and the mean free path with a mixing length. Th is model 
correlated data, but diff erent mixing lengths had to be specifi ed for dif-
ferent fl ow geometries and in boundary layers three such lengths had to 
be used to model the entire boundary layer. Th is does not provide any 
generality in the turbulence model. Kolmogorov in 1941 and Prandtl in 
1945 replaced the average fl uid velocity with the square root of the turbu-
lent kinetic energy (Hunt, Phillips, and Williams 1991). Th e length param-
eter in the two-equation type models has been replaced by the parameters: 
turbulent kinetic energy dissipation (e) or the dissipation rate per unit of 
turbulent kinetic energy (ω). Other second parameters have also been 
suggested. In any event, two-transport equations are solved for the two 
parameters. Th e use of the eddy viscosity to utilize calculated values of 
k and e means that the model simulates only isotropic turbulence. Th e 
“standard k–e model” is that developed by Jones and Launder (1972). 
Th e greatest variation in modifi ed formulations of two-equation models 
is in the choice of the second parameter to be used. Th e choice of which 
two parameters are to be used and the form of the transport equations 
to be solved for the best or most general solution depends mostly on the 
experience and level of eff ort which have been devoted to their study. 
Th e relationships between these parameters are
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Th e Jones and Launder k–e turbulence model is
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Th is model is good for high Reynolds number fl ows except very near walls 
where special treatments are needed. It has been argued that two-equation 
models should be modifi ed to include molecular viscosity terms and the 
steep velocity-gradients near the wall calculated with many grid points 
to create a low-Reynolds number option of this model. Th is is not practi-
cal. A better procedure is to use wall-function boundary conditions. For 
example, local equilibrium of the production rate and dissipation rate 
could be assumed and modeled as follows.
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(4.27)

where
y is the distance normal to the wall
u is the mean velocity at the wall-function point
C, C′, E, κ, and Cμ are empirical constants

Notice that one of these equations is for the wall shear-stress. Th e wall-
function approach is not only computationally effi  cient, but lends itself 
easily to being modifi ed to include other boundary conditions. In this case 
(as is the case for most of the published turbulence modeling simulations), 
the wall is assumed to be smooth. For rough walls and for walls which are 
transferring heat, the appropriate wall shear-stress equation can be modi-
fi ed without changing any of the other modeling functions. Th is allows 
not only more effi  cient but more general solutions.
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Th e standard k–e model does not have to be used. When improvements 
can be identifi ed they can be included in the model. For example, a pro-
duction rate timescale (k/Pk) was added to the e-transport equation to give 
the “extended k–e model.”
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Using the extended k–e model, improved predictions for fl ow over a back-
step (Chen, 1988). Other such modifi cations and improvements will be 
discussed subsequently.

Initial and boundary conditions must be supplied for k and e to utilize 
this turbulence model. It is diffi  cult to provide general values for these 
parameters; each problem should be evaluated to determine the best val-
ues to specify. If no specifi c values can be determined, the following values 
are suggested.
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4.4.2 k–w MODEL

Wilcox (1998) proposed an updated “k–ω turbulence model” as follows. 
Th e model was designed to maintain the same predictions for boundary 
layers and to reduce the jet spreading rate for free-shear layers.
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Wilcox (2006) has been the primary developer of the k–ω turbulence 
model. His continued improvements and generalizations of this model are 
well documented in his text. Th e model with various modifi cations has 
been utilized to describe constant density fl ows involving wall roughness, 
mass injection at the wall, separated fl ows, low-Reynolds number fl ows, 
and compressible fl ows of ideal gases. He concludes that these k–ω models 
are superior to the k–e models because they are more accurate near the 
wall, and also that the k–e models are more accurate further from the 
wall. Notice, that to predict the near-wall eff ects very tight grid spacing is 
required to resolve the near-wall eff ects—this is computationally expen-
sive when wall-function methodology is not used.

4.4.3 SST MODEL AND ITS IMPLICATIONS

Menter (1994) made a logical extension to the e/ω models by blending them 
together to use the k–e model away from walls and the k–ω model near 
the wall. Most turbulence model developers, including Wilcox and Menter, 
have used test data from low speed (incompressible) and high speed (com-
pressible) air fl ow experiments to validate their model development. Th is is 
necessary to have meaningful velocity and velocity fl uctuation data. Such 
limitations are in the same vein as those of heat and mass transfer research-
ers who use small temperature diff erences and small mass transfer rates to 
simplify the process so that constant fl uid properties and unperturbed free 
stream velocities can be assumed in analyzing the test data. Th is does not 
mean that such models are not valuable; it means only that the validation is 
incomplete and that the model generality is undetermined.
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4.4.4  FURTHER EXTENSIONS 
TO THE k–e TURBULENCE MODEL

Th e authors of this text have made many analyses of aerospace-related 
transport processes over the years. Such applications are mainly of high 
Reynolds number and pressure, high-temperature reacting fl uids and 
cryogenic fl uids, speed ranging from subsonic to high supersonic, and 
very complex geometries. Th ese studies were generally performed for 
NASA, the Air Force, and private aerospace companies; all of which were 
the pioneers in developing and using computational fl uid dynamics simu-
lations for engineering design. Th ese authors and most other contempo-
rary investigators used k–e models to describe the turbulent fl ows which 
they studied. Such models were modifi ed as necessary and appropriate 
boundary constructed as needed.

High-speed fl ow analyses required Mach number corrections to the 
standard k–e model. Th e k-transport equation was modifi ed to be (Sarkar 
et al., 1989):
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Th e e-transport equation was modifi ed for high-Mach numbers to be 
(Smith et al., 1989):
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Th e e-transport equation was modifi ed for high temperatures to be (Cheng 
et al., 1994):
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∗ = α =

∑ ∑
22

t
1 2 3

3 3 ref ; 0.4 or 0.6( )/

k
j k

j jj j j

P
V C P C C

t X X X k k k

C C T T

  (4.33)
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Combustion generated turbulence has been reported (Ballal, 1988), pri-
marily for situations where the initial fl ow was low speed. In high-speed, 
high-pressure fl ows, the temperature rise associated with combustion 
drops the density suffi  ciently to suppress the turbulence, as indicated by 
this modifi ed ε-equation.

As previously mentioned, wall-function boundary conditions can be 
used to avoid using an excessive number of grid points to simulate near-
wall fl ow behavior. Th is is a common means of improving computational 
effi  ciency of CFD codes (Craft  et al., 2002; Patel et al., 1985; Viegas and 
Rubesin, 1983). Surface roughness and heat transfer are easily handled in 
this manner. Th is also reduces the advantage of using the k–ω model or 
the blended SST model for near-wall fl ows and allows a more computa-
tionally effi  cient simulation. Depending on what information is available 
or can be best estimated, conjugate heat transfer can be used to replace 
wall/fl uid boundary conditions for simulations. Th is process simply sets 
the velocities of grid points within a solid wall as zero and changes the 
fl uid properties within the wall to be those of the solid structure.

Th e need of special boundary conditions to represent high blowing 
rates can be eliminated by treating the blowing (or sucking) surface as an 
inlet (or exit) for simulation. Th is practice has been used successfully to 
analyze hybrid rocket motor combustion chambers (Cheng et al., 1998) 
and is commonly used to analyze ablative protection systems for space-
craft  reentry heating.

Another example of using inventive boundary condition specifi ca-
tion and turbulent modeling is the experiment and simulation of fl ow 
in a stirred-tank reactor (Ju et al., 1990). Th e turbulence was modeled by 
using the standard k–e model which gives an isotropic eddy viscosity: μt = 
Cμ ρk2/e. Th e Cμ constant was then given diff erent values in the three coor-
dinate direction used to specify the tank geometry. Th e modifi ed constant 
values were evaluated from the experimental data. Similar to the hybrid 
motor analysis, the turbine-impeller fl ow was simulated with infl ow and 
outfl ow boundary conditions.

Th e value of the turbulence model extensions and the nonstandard 
boundary specifi cations just mentioned is illustrated by the following 
examples. First, the slot injection and subsequent combustion of hydro-
gen into an air stream was simulated and compared to experiments. Th e 
reduced fl ame turbulence was necessary in order to correctly simulate the 
wall heating by keeping the cooling jet intact longer. Second, the high-
speed hydrogen/oxygen fl ame was simulated and good agreement was 
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obtained when compared to total temperature and concentration measure-
ments. Th e analyses were conducted with the CTP code and were reported 
by Chen et al. (1992). Th e simulations obtained for these two experiments 
are quite suffi  cient for engineering design purposes and for demonstrating 
the validity of the computational methodology.

4.4.5  SUMMARY OF TWO-EQUATION 
TURBULENCE MODELS

Advantages of using two-equation models:

Using the parameters • k and e (or ω) to model turbulence eliminates the 
need for specifying a length scale which varies with fl ow geometry.
Th e model applies to a wide range of transport phenomena.• 
Solving two-transport equations for the two parameters is com-• 
putationally effi  cient.

Disadvantages of these models:

Further tuning and fi nal selection of the two modeling param-• 
eters requires constant updating and validation.
Th e prediction of the turbulence as being isotropic is not always • 
acceptable.
Additional wall-function boundary conditions are needed.• 

Applications posing concerns which have not been fully evaluated:

Flow with sudden changes in the mean strain rate• 
Flow over curved surfaces• 
Secondary fl ow in curved ducts• 
Flow in rotating fl uids• 
Flow with boundary layer separation• 
Complex three-dimensional fl ows• 

4.5 NOMENCLATURE
4.5.1 ENGLISH SYMBOLS

Aij autocorrelation tensor
B event B
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μ

′
κ

, , ,
,

C C E
C

 empirical constants in wall functions

Ce1, Ce2, Cμ empirical constants in the k–e model
Ce2, Ce3, Ce1

* Mach number correction parameters, Equation 4.32
D, Dt laminar and turbulent diff usion coeffi  cients
e specifi c internal energy
E{a} energy spectrum function
c, f, g empirical functions to fi t the energy spectrum
f{rÆ,t} arbitrary function
f{V} probability distribution function; PDF, f
f12 joint probability distribution function (JPDF), Equation 
   4.A.19
F cumulative probability; cumulative probability function, 
   CDF, F
h specifi c enthalpy
H dummy symbol to indicate mathematical operations
Ii turbulent intensity
k turbulent kinetic energy
ℓ length scale
ℓK Kolmogorov’s length scale
ℓmfp mean free path
L integral length scale
Mt Mach number correction parameter, Equation 4.31
po constant in the energy spectrum model
P = P{B} probability of event B occurring; pressure in Tables 4.1 and 
   4.2
Pk production rate of k
Pr, Prt laminar and turbulent Prandtl numbers
Q function of U
Ret Reynolds number bases on timescale, tK

s eddy size
Sc, Sct laminar and turbulent Schmidt numbers
t time
ti time variable of type i
tK Kolmogorov’s timescale
T temperature
u = U − áUñ variance of U: velocity in wall function
U function; standardized (normalized) function
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u+ dimensionless distance from a wall
ui

′ fl uctuating component about the mean
ut friction velocity
V sample space variable; velocity otherwise
Vij two-point correlation tensor
υK Kolmogorov’s velocity scale
xi, Xi spatial coordinates
y spatial coordinate; distance from a wall
z spatial coordinate

4.5.2 GREEK SYMBOLS

α wave number
αi mass fraction of i
a,TREF high temperature correction parameters, Equation 4.33
e energy dissipation
e turbulent kinetic energy dissipation
λ, λt laminar and turbulent thermal conductivity; wavelength in 
   Equation 45.5
μ, μt laminar and turbulent viscosity
μn the nth central moment
ν kinematic viscosity
νt turbulent kinematic viscosity
ξi small displacement in xi

ρ density
ρ12 correlation coeffi  cient
σk, σe, a empirical constants in the k–e model

u Uσ =  standard deviation
τ small displacement in time; shear-stress otherwise
τw wall shear-stress
ϕ, ψ property to be averaged
ΦE general ensemble average
Φt general time average
Φ∀ general spatial average
Ψ characteristic function, Equation 4.A.19
ω specifi c energy dissipation rate per unit k in Equation 4.25; 
   per unit volume Equation 4.38
ω{} weighting function
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4.5.3 MATHEMATICAL SYMBOLS

eÆ unit vector
2 12 1{ }f V V  conditional probability density function

H′ fl uctuating component
H— time average value
H̆ standardized parameter
H~ Favre average
H² fl uctuating component in Favre averaging
Hi denotes a component
L
Æ

ii length scale
q—t mean specifi c energy fl uctuation
rÆ, sÆ displacement vectors

1 2 1 1{ , }Q U U U V〈 = 〉  conditional mean of Q on V1

ijR
��

 two-point, one-time autocorrelation
u
_

 mean velocity at the wall-function point
áUñ mean or expectation of U

1 2 cov{ , }U U  covariance

U
Æ

 mean velocity vector
V—i time mean of a velocity component
V—i Favre mean of a velocity component

i iV V′ ′  component of the Reynolds stress

i jV V′ ′−ρ〈 〉  Reynolds stress

i jV V″ ″−〈ρ 〉  Reynolds stress in Favre averaging system
d Dirac delta function
τt( )ij  component of the Reynolds stress tensor

4.5.4 ACRONYMS

CDF cumulative distribution function
JPDF joint probability distribution function
PDF probability density function
RANS Reynolds-averaged Navier–Stokes turbulence model

APPENDIX 4.A BASIC PROBABILITY PARAMETERS
Th e chaotic motion of turbulent fl ows is most fundamentally described in 
terms of probability theory. Probability theory is complex, voluminous, and 
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computationally ineffi  cient to analyze. Texts of Monin and Yaglom and of 
Hinze provide an introduction to the terms used, but the defi nitions of these 
terms are obscured in the details of the discussion. Pope (2000) and Fox (2003) 
provide a more lucid discussion, but the many terms with specifi c technical 
defi nitions also make this material diffi  cult to read and understand. A very 
brief introduction to this fi eld is summarized below. Pope’s nomenclature is 
used whenever possible to provide an easier read of his more complete work.

To apply probability theory, the turbulent fl ow is considered to be a sta-
tistical ensemble of similar fl ows created by a fi xed set of external boundary 
conditions. Th e need for such a consideration is illustrated by a fundamental 
diff erence in laminar and turbulent fl ow. For example, consider an experi-
ment involving a cylinder in cross-fl ow. If the fl ow is laminar, a measure-
ment of a fl ow property-like velocity (uÆ{xÆ,t}) at a given point is the same 
every time the experiment is repeated (assuming that there is negligible 
error in making the measurement). For turbulent fl ow, the measurement 
would not be the same (again assuming no error in the measurement). Due 
to the randomly fl uctuating fi eld, the velocity would be oscillating rather 
rapidly, such that no two measurement records would be identical. Th ese 
fl uctuations are due to small uncontrollable disturbances in both the fl ow-
fi eld and the boundary conditions creating the fl ow. If the experiment were 
repeated several times in the same or other laboratories, a database could be 
established. Th e entire data set would constitute an ensemble of all values of 
uÆ{xÆ,t} measured in these experiments. Each data set would be one realization 
of the these values. An arithmetic average of the data would be a probability 
mean of the velocity and is denoted by broken brackets, áuÆ{xÆ,t}ñ. Th is mean-
ing of the broken brackets is applied only to this section or where otherwise 
specifi ed. Th e same type of measurements and averaging procedure could 
be applied to any other of the fl uid dynamic variables. It is to be expected 
that the probability mean determined from several subsets of data would 
not vary substantially, if the data truly represents a statistical ensemble. For 
example, consider that the placement of the cylinder slips once such that 
the cylinder becomes yawed so part of the data would actually be collected 
for one set of boundary conditions and the remainder of the data collected 
for another set of boundary conditions. Probability means calculated from 
such data could vary substantially, indicating that the data no longer created 
a statistical ensemble.

Before defi ning additional statistical parameters, consider an experi-
ment in which one screens a mixture of particles. Th e upper screen has 
openings of 10 μm and a lower one 1 μm openings. Upon screening a sam-
ple would remain between the screens which certainly contained particles 
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smaller than 10 μm and larger than 1 μm. A distribution of particle sizes 
in between these sizes would remain on the bottom screen. If the number 
of particles between 1 and 2 μm were counted, and the procedure repeated 
for each cut of 1 μm. Th e distribution would be by number. Knowing the 
particle density, this distribution could be converted to a mass distribu-
tion. If the cuts were progressively summed, a cumulative distribution 
would be obtained. Various mean sizes could be calculated, depending 
on the defi nition of the mean value used. If we picked out a particle at 
random, we could assign a probability to what that size would be. Now we 
shall formally defi ne what these statistical properties are termed.

Random variables (U) (for example, a velocity component) are charac-
terized by measuring or estimating a series of (sample-space) variables (V) 
in a sample space. Th e sample space is bounded by the largest and smallest 
value of the variables it contains. Th e value of a sample-space variable is a 
realization. Probability is a number between 0 and 1 which expresses the 
likelihood that an event (B) occurs. Expressing this as Equation 4.A.1.

 min max{ } { }p P B P V U V= = ≤ ≤  (4.A.1)

For an impossible event, p is zero; for a certain event p is unity. In the 
example, p is the likelihood that a particle of size which lies between, say 6 
and 7 μm, can be selected from the cut of particles. Th e cumulative distri-
bution function (CFD, F) is characterized by

 

min max{ } 0 { } 1
{ } { } { } 0b a a b

F V F V
F V F V P V U V

= =
− = ≤ ≤ ≥  

(4.A.2)

Th e index a could be –∞ and b could be +∞. Th e CDF states that all the 
particles below, say 7 μm, is greater than all the particles below, say 3 μm, 
for example. Th e probability density function (PDF, f) is the derivative of 
the CDF.

 { } d { } df V F V V=  (4.A.3)

Since the CFD is always increasing, f is always greater than zero. Also

 
{ }d 1 and { } { } 0f V V f f

+∞

−∞

= −∞ = +∞ =∫
 

(4.A.4)

Furthermore

{ }d { { } and { }d { d } { }
b

a

V

b a
V

f V V F V F V f V V F V V F V= − = + −∫
 

(4.A.5)
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Th e PDF is the probability per unit distance in the sample space V, there-
fore it is said to be a density. (OK, this a mathematician’s defi nition of den-
sity.) Th e units on f are the inverse of the units on U. Th e CDF and the 
product f{V}dV are dimensionless.

Th e “mean” or “expectation” of the random variable U is

 
{ }dU Vf V V

+∞

−∞

= ∑
 

(4.A.6)

If Q is a function of U, its mean is

 
{ } { } { }dQ U Q V f V V

+∞

−∞

= ∑
 

(4.A.7)

Th e fl uctuation of U is

 u U U= −  (4.A.8)

Th e variance of U is the mean-square fl uctuation:

 

2 2
var ( ) { }dU u V U f V V

+∞

−∞

= 〈 〉 = − 〈 〉∑
 

(4.A.9)

Th e square root of the variance is the standard deviation:

 
2 1/2

varu U uσ = = 〈 〉
 

(4.A.10)

Th e nth central moment is

 
( ) { }dnn

n u V U f V V
+∞

−∞

μ = 〈 〉 = − 〈 〉∑
 

(4.A.11)

“Standardized random variables” (as denoted by the breve) are defi ned to 
have zero mean and zero variance.

 
( ) uU U U= − 〈 〉 σ

�

 
(4.A.12)

Th e standardized PDF is

 { } { }u uf V f U V= σ 〈 〉 + σ
� � �

 
(4.A.13)

Th e standardized moments are

 
{ }d

n
nn

n n n
u u

u
V f V V

+∞

−∞

μ〈 〉μ = = =
σ σ ∫

�� � ��

 

(4.A.14)
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A summary of the moments and their meaning is

 
2

0 0 1 1 2 21 0 1uμ = μ = μ = μ = μ = σ μ =� � �
 (4.A.15)

Th e moments μ3 and μ4 describe skewness and fl atness, respectively.
Th e characteristic function of U is

 
{ } { } ds siU iVs e f V e V

+∞

−∞

Ψ = 〈 〉 = ∫
 

(4.A.16)

Th e integral in Equation 4.A.16 is an inverse Fourier transform. Th e vari-
ables Ψ and f contain the same information.

Joint random variables are collections of random variables that have 
some common meaning. For example, a two-dimensional turbulent fl ow-
fi eld. Each point in space and time would represent each of the two veloc-
ity components. Say a number of points were measured to create a sample 
space at a given time. Th e CDF would be represented by

 12 1 2 1 1 2 2{ , } { , }F V V P U V U V= < <  (4.A.17)

Th e joint probability distribution function (JPDF) is

 

∂=
∂ ∂

2
12 1 2

12 1 2
1 2

{ , }
{ , }

F V V
f V V

V V  
(4.A.18)

Th e fundamental property of the JPDF is

1 2

1 2

1 1 1 2 2 2 12 1 2 1 2{ , } { , } d d
b b

a a

V V

a b a b
V V

P V U V V U V f V V V V≤ < ≤ < = ∫ ∫
 

(4.A.19)

Th e means áU1ñ and áU2ñ and the variances áu1
2ñ and áu2

2ñ can be determined. 
As can the covariance of U1 and U2:

1 2 cov 1 2 1 1 2 2 12 1 2 1 2{ , } ( ) ( ) { , } d dU U u u V U V U f V V V V
+∞ +∞

−∞ −∞

= 〈 〉 = − 〈 〉 − 〈 〉∫ ∫
  

 (4.A.20)

Th e correlation coeffi  cient is defi ned as

 
1/22 2

12 1 2 1 2[ ]u u u uρ = 〈 〉  (4.A.21)
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A correlation coeffi  cient of zero means the U1 and U2 are not correlated; a 
value of +1 means they are perfectly correlated; and a value of −1 means 
perfectly negatively correlated. A conditional PDF is defi ned by

 2 1 12 1 2 1 12 1{ } { , } { }f V V f V V f V=
 

(4.A.22)

Th is is read as the PDF of U2 conditional on U1 = V1. For a function Q of U1 
and U2, the conditional mean of Q on V1 is:

 
1 2 1 1 1 2 2 1 12 1{ , } { , } { } dQ U U U V Q V V f V V V

+∞

−∞

= =〈 〉 ∫
 

(4.A.23)

Consider a three dimensional, unsteady turbulent fl owfi eld. Th e one-
point, one-time joint CDF may be defi ned as

 { , , } { { , }} for 1,2,3i iF V x t P U x t V i= < =
� � �  (4.A.24)

Th e JPDF is

 

3

1 2 3

{ ; , }
{ ; , }

F V x t
f V x t

V V V
∂=
∂ ∂ ∂

� � �� �

 
(4.A.25)

Th e semicolon is a shorthand to indicate that the variables preceding it 
are in sample-space and those aft er it are the independent variables of the 
random fi eld. Th is JPDF fully characterizes the turbulent velocity fi eld at a 
point, but it provides no information at other times or positions. Th e mean 
velocity is indicated by

 
{ , } { ; , } dU x t Vf V x t V

+∞

−∞

〈 〉 = ∫∫ ∫
� � �� ��

 
(4.A.26)

Th e fl uctuating velocity is described by

 { , } { , } { , }u x t U x t U x t= − 〈 〉
� �� � � �

 (4.A.27)

Th e one-point, one-time covariance of the velocity is

 { , } { , }i j i ju x t u x t u u= 〈 〉〈 〉� �
 (4.A.28)

Th is quantity is also obtained from the Reynolds time-averaging of the 
momentum equations where it is called the Reynolds stress.
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Th e two-point, one-time autocorrelation is defi ned by

 { , , } { , } { , }ij i jR r x t u x t u x r t= +〈 〉
�� � � � � �

 (4.A.29)

Th is correlation may be used to give information about the spatial struc-
ture of the random fi eld by defi ning various length scales, for example:

 

11 11 1
0

11

1
{ , } { , , } d

{0, , }
L x t R e r x t r

R x t

∞

= ∫
�� �� � � �

�� �
 

(4.A.30)

where eÆ1 is a unit vector in the x1-coordinate direction. Th us, an infi nite 
number of length scales may be defi ned depending on how x´ and r´ are 
related.

Evaluating the length scales and the distribution functions to describe 
the structure of the random turbulent fi eld is the goal of applying prob-
ability theory to the description of turbulence.
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5C H A P T E R  

Other Turbulence Models

5.1 MORE COMPREHENSIVE 
TURBULENCE MODELS

Th e eddy viscosity models (EVM) which have become the workhorses of 
engineering turbulence analyses do not describe the eddy structure of 
the turbulent fi elds, anisotropic turbulence, turbulence/chemistry inter-
actions, or transition from laminar to turbulent fl ow. Much research to 
address such issues has been and is being pursued to understand and model 
these eff ects. Solving more complete equations for the Reynolds stresses 
by diff erential second-moment (DSM) closure is expected to remove some 
of the shortcomings of the EVM analyses. Using probability density func-
tions (PDF) to address more of the statistical properties of turbulent fi elds, 
including turbulence/chemistry interactions, is being actively researched. 
Th e Navier–Stokes equations are being integrated directly to provide 
direct numerical simulations (DNS) of turbulence to represent all spa-
tial scales of the turbulent fi eld. Large eddy simulations (LES) treat large 
and small eddy scales separately to provide a model intermediate between 
DNS and PDF models in computational effi  ciency. Models to describe 
transitional fl ow from laminar to turbulent are being researched. All of 
these models are being studied with the goal of providing a better descrip-
tion of turbulent fl ows. Most have provided some interesting insight. None 
have been developed to the point of being used by nonspecialists to ana-
lyze transport phenomena. All are extremely computationally ineffi  cient 
and have no demonstrated performance on other than very simple fl ows. 
Th ese models are not expected to be practical for simulations on personal 
computer systems. Nevertheless, they are tools which will be utilized in 
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future engineering work, as indicated by the active research surveyed by 
Launder and Sandham (2002).

5.2 DIFFERENTIAL SECOND-MOMENT 
CLOSURE METHODS

EVMs approximate the Reynolds stresses with a single eff ective viscosity. 
If transport equations are written for the DSM of the fl uctuating velocity 
products, the resulting equations are not closed. However, if the unknown 
terms are approximated closure can be obtained. Solving these equations 
should provide a more complete and hopefully more accurate descrip-
tion of the turbulent fi eld. Th e second-moment transport equations are 
shown in Table 5.1—Equation A is the Reynolds averaged transport equa-
tion for the Reynolds stresses and Equation B is the Favre averaged trans-
port equation for the Reynolds stresses. Six new equations for either of the 
Reynolds stresses are generated by this operation, but 22 new unknowns 
result. Models for terms needed to close these equations have been devel-
oped by Launder et al. (1975) and are shown below. Th is is the best known 
and most widely tested of the Reynolds-stress models (RSM).
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Th e dissipation for isotropic fl ow is defi ned by

 

2
2 ;

3
ji i i

ij ij
k kk k k k

VV V V
X X X X

∂ ′∂ ∂ ∂′ ′ ′μ με = = δ ε ε =
ρ ∂ ∂ ρ ∂ ∂∑ ∑

 
(5.2)



Other Turbulence Models     ■    227

TA
B

LE
 5

.1
 

 Tr
an

sp
or

t E
qu

at
io

n 
fo

r R
ey

no
ld

s S
tr

es
se

s

⎛
⎞

⎡
⎤

∂
∂

∂
∂

∂
′

′
′

′
′

′
∂

∂
∂

′
′

ρ
+

ρ
=

−ρ
+

+
+

−
μ

′
′

′
′

′
⎢

⎥
⎜

⎟
∂

∂
∂

∂
∂

∂
∂

∂
⎢

⎥
⎝

⎠
⎣

⎦
⎛

⎞
∂

′
′

∂
−

ρ
+

δ
+

δ
−

μ
′

′
′

′
′

′
′

⎜
⎟

∂
∂

⎝
⎠

∑
∑

∑

∑

2
j

i
j

i
j

j
j

i
i

i
k

i
k

j
k

k
k

k
k

k
k

j
i

k
k

i
j

i
j

i
jk

j
ik

k
k

k
k

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
P

t
X

X
X

X
X

X
X

V
V

V
V

V
V

P
V

P
X

X
(A

)

⎛
⎞

⎡
⎤

∂ρ
∂ρ

∂
∂

∂
′′

′′
′′

′′
′′

′′
∂

′′
∂

∂
′′

+
=

−
ρ

+
ρ

+
+

−
μ

′′
′′

′′
′′

′
⎢

⎥
⎜

⎟
∂

∂
∂

∂
∂

∂
∂

∂
⎝

⎠
⎢

⎥
⎣

⎦
⎡

⎤
⎛

⎞
∂ρ

′′
∂

′′
⎢

⎥
−

ρ
+

δ
+

δ
−

ν
′′

′′
′′

′
′′

′
′′

⎜
⎟

∂
∂

⎢
⎥

⎝
⎠

⎣
⎦

∑
∑

∑

∑

�
�

�
2

i
j

i
j

j
j

j
i

i
i

k
i

k
j

k
k

k
k

k
k

k
j

i
k

k

i
j

i
j

k
i

jk
j

ik
k

k
k

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
P

t
X

X
X

X
X

X
X

V
V

V
V

V
P

V
P

V
X

(B
)



228    ■     Computational Transport Phenomena for Engineering Analyses

Th e corresponding term for anisotropic fl ow is
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Hanjalic and Launder (1976) modeled the diff usion term as
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Daly and Harlow (1970) and Mellor and Herring (1973) also off ered mod-
els of this term.

Launder et al. modeled the pressure strain term as
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Speziale et al. (1991) also off ered pressure-strain models. Th e principal dif-
fi culty in these models is in how the pressure-strain term is modeled.

Wilcox (1998) developed a high and a low Reynolds number stress-ω 
model and a multiscale version He demonstrated that these models rep-
resented fl at-plate boundary layers and pipe fl ow well. Th e multiscale ver-
sion represented supersonic fl ow over a compression corner marginally 
better than the more simple single scale model.

Hanjalic and Jakirlic (2002) surveyed various RSMs. Th ey presented 
many examples of relatively simple incompressible fl ow simulations in 
which anisotropy was important. Many of these examples were from 
their own work. Simulations of oscillating and secondary fl ow circu-
lations were particularly interesting. However, the authors own assess-
ment was that
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Th e RSMs off er potential advantages for describing anisotropy, • 
the evolution of the stress fi eld, and streamline curvature eff ects.
Numerical problems exist in applying the model and its complexity • 
requires extensive computational resources.
Th e use of wall function boundary conditions is necessary for • 
reasonable fl ow analyses.
Th e potential of the RSMs cannot be achieved without additional • 
research.

Th e conservation equations shown in Table 4.2 are for compressible fl uids. 
Th e equation for scalar transport of energy and mass (as indicated by the 
generic symbol ϕ) are written as

 
• •

∂〈ϕ〉 + ∇ 〈 〉〈ϕ〉 = ∇ Γ∇〈ϕ〉 − ′ϕ′
∂

〈 〉
��( ) ( )VVt  

(5.6)

Th e laminar transport coeffi  cient is Γ and áV
→

¢ϕ¢ñ is the turbulent transport 
of the scalar.

Very few comparison analyses have been reported for determining the 
level of improvement that can be expected versus the additional cost incurred 
for DSM simulations compared to EVM analyses. None of the simulations 
reviewed account for complex fl uid properties or system geometries.

5.3 PROBABILITY DENSITY FUNCTION MODELS
Th e simple averaging methods just discussed allow analysts to address 
many practical turbulent transport processes. However, even with current 
computational power, these are not trivial or defi nitive simulations. Even 
so, not all of the issues defi ning turbulence can be addressed. Further 
statistical methods must be employed to represent other important tur-
bulence properties. Th e simple averaging methodology must be replaced 
with probability theory.

Turbulent fl ow is ably described with probability theory by Pope (2000), 
Fox (2003), Monin and Yaglom (1965), and Hinze (1975). Th e nomencla-
ture in these references is not the same; therefore, the nomenclature and 
development used by Pope will be used herein. When vectors or tensors are 
used by these authors, they use it for only Cartesian coordinate systems, 
unless specifi cally stated otherwise. Th e summary of probability param-
eters shown as Appendix A to Chapter 4 mainly follows that of Pope.
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5.3.1 PDF DESCRIPTION OF TURBULENCE

Th e mean velocity and the Reynolds stresses are the fi rst and second 
moments of the Eulerian PDF of velocity. An additional transport equa-
tion or an arbitrary specifi cation is needed to defi ne the PDF. However, 
such an analysis is not closed; a value of the turbulent energy dissipation 
or turbulent frequency must also be supplied to provide information on 
the turbulent timescale. An alternative is to utilize a joint PDF for velocity 
and turbulent frequency. If reacting, diff usive fl ows are to be described, 
additional correlations of velocity fl uctuations and scalar variables are 
needed.

Pope derived the transport equation for the Eulerian PDF of velocity for 
incompressible fl ow to be
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i i
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(5.7)

Th e Navier–Stokes equation was used in this derivation. Th e RHS of 
this equation is not closed. Several closures were discussed by Pope. 
For example, the generalized Langevin model (GLM) results in the 
following:
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(5.8)

Gij and Co are coeffi  cients which are functions of áUiUjñ, e and ∂áUiñ/∂xj. 
Terms like e or ω are also needed to close the equations. Th e conditional 
mean turbulence frequency and the normalized turbulent frequency are 
the generalizations needed to defi ne the general velocity–frequency joint 
PDF. Th e fi rst two of these quantities are

 { } { }d dC f f
∞ ∞

Ω ω ω
ω ω

Ω = θ θ θ θ θ∫ ∫  (5.9)

  
2

3 3d d d 2 d( )C t S t C W0.5
ω

∗ ∗ ∗ ∗ω = − ω −〈ω〉 Ω − Ωω + σ 〈ω〉Ωω( )  (5.10)

W is the Wiener process variable which is defi ned by diff usion and drift  
coeffi  cients.
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For the velocity–frequency PDF, the GLM model is used to yield ( –f–)
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Th is PDF along with the inclusion of a scalar reaction parameter was used 
to model a swirling combustion fl ow (Anand et al. 1997). Th e simulation 
was compared to experimental test data and fair agreement was demon-
strated. Th e simplistic chemistry model alone could have accounted for 
several hundred degrees Kelvin discrepancy between the test data and the 
simulation.

For this methodology to realistically be useful for simulating three-
dimensional combusting fl ows, drastic improvement in computational 
time is needed. For a three-dimensional fl ow three position variables, 
three velocity components, and time are the independent variables, this 
makes the methodology computationally prohibitive.

A major step in shortening run time is to utilize notional particles and 
Lagrangian formulations of the PDFs involved. An ensemble of “N” fl uid 
particles is used to represent the fl ow. Th e location and velocity of the par-
ticles, denoted by X

→
; and U

→
, respectively, defi ne the particle properties. 

One-point, one-time Eulerian PDFs for the fl uid (f) and for the particles 
(f ∗) are used to describe the statistics of the fl ow. Since the particles are the 
fl uid, they move with the local fl uid velocity. Particle properties are deter-
mined by solving the Equations 5.12 through 5.14 to represent the evolution 
of these properties in time.

 d { } d { }X t t U t∗ ∗=
� �  (5.12)

 d { } { }, { } , d { }, d{ } { }U t a U t X t t t b X t t W∗ ∗ ∗ ∗= +
� � � ��

 (5.13)

Th is is a stochastic model equation for velocity where a→  and b are the drift  
and diff usion coeffi  cients which will be described subsequently. In this 
case, áa→ |x→ñ = −ÑP/ρ

   
0.51
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 (5.14)

Th e conditional means must be estimated and this is usually done with 
kernel estimation. For example,
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Th e kernel function in Equation 5.15 is defi ned by
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Th e error in this approximation slowly approaches zero, as the number of 
particles approach infi nity.

To analyze reacting fl ows, the conservation equation for species (i.e., 
a reactive scalar) must be satisfi ed.
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 (5.17)

Th e solution of this equation with various accompanying submodels has 
been addressed exhaustively (not by the investigators, but by the readers). 
Th e most informative works are by Pope (1985, 2000), Fox (1996, 2003), 
Corrsin (1974), and Roekaerts (2002).

To apply probabilistic methods to the species equation, a one-point, 
one-time Eulerian PDF denoted by fφ {ψ; x→ , t} is obtained from the evo-
lution equation:
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Th e source term does not appear as an averaged value:

 { } { }S Sφ φ = ψ = ψ  (5.19)

A “turbulent convection fl ux” arises from the fl uctuating velocity fi eld, 
which is evaluated with a gradient-diffusion model and a turbulent 
diffusivity (ΓT):

 Tf u fφ φ− ψ = Γ ∇
�

 (5.20)
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A micro- or molecular-mixing model is also employed; one early example 
of which is

 ( )2 1
2

C
kφ
εΓ∇ φ ψ = − ψ − φ  (5.21)

Several micro-mixing models are discussed by Jones (2002).
Micro-mixing models characteristically reduce the reaction rates in 

very lean or rich regions of non-premixed fl ames. Sometimes this predicts 
a better fi t of laboratory test data; sometimes the fi t is worse.

Combining these submodels the composition-PDF equation becomes

          
( ) { }T

1
2i i

Df f
f C S

Dt x x k
φ φ

φ ϕ

∂⎛ ⎞∂ ∂ ε⎡ ⎤⎛ ⎞= Γ + ψ − ϕ − ψ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠∂ ∂ ∂ψ⎝ ⎠ ⎣ ⎦ 
(5.22)

A turbulence model calculation must be made to predict the mean value 
of U, k, e, and ΓT before this equation may be solved for fφ.

Th ese notional particle models lead to requiring that a large number 
of particles must be tracked. Monte Carlo methods are used to accom-
plish this tracking. Such methods have been developed and used to 
simulate laboratory axisymmetric-burner fl ows (Tang et al., 2000). Th is 
is but one of the many simulations which Pope and his colleagues have 
pioneered and published. Th is work has utilized a wide variety of sub-
models and PDFs which the authors developed during the past decade. 
However, superiority over Reynolds averaged Navier–Stokes (RANS) 
turbulence model methods is claimed. Such claims are not substanti-
ated by one-to-one simulation comparisons of the same experiments. 
All numerical analyses of combustor fl ows off er many opportunities for 
errors and intentional simplifi cations for computational convenience to 
aff ect the predictions. For example, the PDF methodology eff ectively 
modifi es the reaction rates of the chemical system involved. Th ese rates 
were determined by experiment, oft en involving turbulent fl ow. In 
eff ect, corrections for eff ects which are already imbedded in the com-
ponent submodels are being duplicated. Th e PDF models are so much 
more complex, computationally intensive, and expensive that they bet-
ter serve as computational experiments for further testing RANS mod-
els than for practical, day-to-day use. Highly three-dimensional fl ows 
can only be modeled with RANS methodology. Exotic PDF simulations 
are interesting, but they should be an adjunct to the more practical 
RANS models not a replacement.
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5.3.2  COMMENTS ON STATISTICAL 
ANALYSIS OF DIFFUSION

The statistical analysis of diffusion from a point source into a homoge-
neous turbulent fi eld was fi rst addressed by Taylor (1921). A homogeneous 
turbulent fi eld, to a good approximation, is generated by air fl ow through 
screens in a wind tunnel. Th e analysis described diff usion as a Fickian pro-
cess (gradient diff usion) which at longer times took on the character of a 
random walk process. Corrsin (1974) showed that the gradient diff usion 
was obtained as a fi rst-order approximation to a more complete statistical 
analysis of particle (fl uid lump) motion.

Pasquill (1962) gave a similar analysis which he illustrated by describ-
ing the fl ow of a plume of smoke in the atmosphere (the atmosphere is 
approximately a homogeneous turbulent fi eld). Th e plume is fi rst observed 
to spread as the square of the distance from the source and at longer 
distances (or times) the spread rate decreases and becomes linear with the 
distance. Th is behavior is predicted by the statistical analysis. For analyz-
ing transport phenomena in the atmosphere or in river plumes, the eff ect 
of nongradient diff usion could be signifi cant. However, all of the discussion 
to this point has assumed that the turbulent fi eld is of homogeneous 
turbulence. For the large distances required to change the character of 
f luid dispersion, there is a high probability that stronger convective 
currents might have an overriding eff ect on the dispersed fl ow. For most 
process analyses, the gradient diff usion models should be adequate since 
the length scales of the fl ow are rather small.

5.4 DIRECT NUMERICAL SIMULATION
All attempts to analyze turbulent fl ow begin with the laminar conserva-
tion laws. Rather than averaging the conservation equations to create a 
turbulent fl ow model, the unsteady, three-dimensional, constant-density, 
laminar momentum, and continuity equations are solved to represent tur-
bulent fl ow. Analytical solutions are not possible due to the nonlinearity of 
the momentum equation. Th is means that numerical solutions using very 
small temporal and spatial steps are required to produce a DNS of the fl ow. 
Th e idea is to resolve the eddies for unbounded fl ows by using scalers of 
the order of Kolmogorov’s micro-scale (η) and micro-timescale (τ).

 
0.50.253 and( ) ( )η = ε τ = εn n  

(5.23)
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Th e energy dissipation (e) is the rate that the kinetic energy of the turbu-
lent fl uctuations (k) is dissipated as heat by the smallest eddies in the fl ow 
(per unit mass). Or, e = −dk/dt. Actually, smaller timescales are needed 
for stable solutions, and about fi ve times the spatial scales have been 
found acceptable. For wall-bounded fl ows, 10 grid points below y+ of 10 
are desired. Th e largest spatial scale of interest is dictated by the size of 
the region being analyzed. Th e solution is time dependent so statistical 
properties are generated to describe the fl owfi eld. Methods to manage the 
copious amounts of computed data must then be devised to visualize and 
utilize turbulent fl ow properties.

Th e resolution requirements impose a very severe computational bur-
den on DNS analyses. Only small computational domains, low Reynolds 
number fl ows, and simple geometries have been analyzed to date. It is con-
sidered to provide high-accuracy solutions for the fl owfi elds which it pre-
dicts. However, the errors introduced by the boundary conditions imposed 
on the simulations and by the numerical methods used to obtain solutions 
have not been thoroughly evaluated. Simply getting a solution seems to be 
the criteria for getting a good answer. Th e major virtue of this methodol-
ogy is that it provides numerical experiments which generate turbulence 
properties which cannot be experimentally measured. Besides cost of the 
simulations, the virtue is also a major drawback. How can the simula-
tions be validated? Th e meager comparisons available are encouraging, 
but much more research is required to make use of this methodology.

To solve the laminar fl ow conservation equations initial and bound-
ary conditions are needed. Th e pertinent equations require a highly accu-
rate numerical solution over some fi nite domain. It is not a question as 
to whether or not the laminar fl ow equations apply, all of the turbulence 
models assume that this is true even when these equations are averaged. 
Rather, are the solution and the applied boundary conditions suffi  ciently 
accurate to represent the physics of the turbulent fl ow? Th e expectation 
is that all important turbulent eddy scales are to be obtained from the 
DNS solution. So the solution domain size cannot be extremely small to 
expedite the numerical solution, without compromising the evaluation of 
the large-scale eddies. And, since the computational requirements become 
impractical at high Reynolds number, only low Reynolds number fl ow 
may currently be analyzed.

At best, a DNS solution is not a solution of the laminar conservation 
laws; rather it is a solution of the diff erence analog which is used to numer-
ically solve the equations for whatever boundary conditions are imposed 
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on the fl ow. Th is means that high-order numerical methods must be used 
for the solver. Usually, the second- and fourth-order schemes are used. 
Spectral methods are also used to expedite the solutions, even though 
such methods are diffi  cult to apply to nonuniform grids.

DNS methods are described in Rogallo and Monin (1984), Pope 
(2000), and Launder and Sandham (2002). Boundary layer simulations 
by Spalart (1988) for a Reynolds number based on momentum thickness 
up to 1410 show good agreement with Klebanhof ’s experimental data and 
correctly show the anisotropic nature of the fl ow near the wall. Spalart’s 
simulations utilized up to about 107 grid points and a spectral method 
to solve the fl ow equations. Periodic spanwise and streamwise boundary 
conditions were applied. A multiscale procedure was used to approxi-
mate the local eff ects of streamwise growth of the fl ow. Th is was a care-
ful and thoughtful study, but due to its diffi  culty many approximations 
to the idealized DNS theory were required. Th e study was concluded by 
analyzing the spectra deduced from the data and comparing the results 
to experimental measurements.

Further implications from such boundary layer simulations are dis-
cussed by Monin and Mahesh (1998). A major deduction from these com-
puted data was to elucidate the important role played by mean shear rather 
than bursting phenomena in boundary layers. Incompressible channel 
fl ow and the trailing-edge wake of fl ow over a plate have been simulated 
with DNS and the results summarized by Launder and Sandham (2002). 
Other DNS simulations are referenced by these same authors. Such com-
putational experiments are expensive and diffi  cult to conduct with accept-
able accuracy; however, once successfully completed they off er a statistical 
database for testing more computationally effi  cient turbulence models.

In summary, DNS is a useful research tool for investigating fundamental 
turbulence characteristics which is not expected to provide engineering 
design information anytime in the foreseeable future.

5.5 LARGE EDDY SIMULATION
Th e need for simulating large-scale meteorological (Smagorinsky, 1963; 
Deardorff , 1973) and hydrological (Bedford and Dakhoul, 1982) fl ow 
phenomena suggested the desirability of averaging the Navier–Stokes 
equations over space instead of or in addition to over time. Leonard 
(1974) formally performed such averaging by introducing a fi lter func-
tion. Subsequently, this methodology has been recognized as a bridge to 
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construct a hybrid turbulence model to DNS and RANS models to pro-
duce a more computationally effi  cient model. Th e resulting LES models 
have served to represent the large-scale fl ows. Th ey still leave much to be 
desired as practical turbulent fl ow simulators.

5.5.1 LES METHODOLOGY

Th e large eddies are to be resolved by computation. Th e smallest eddies 
are to be modeled with a subgrid scale model (SGS). A spatial fi ltering 
operation is defi ned to decompose an instantaneous quantity into the sum 
of a resolved scale quantity and a subgrid scale quantity. Th e large-scale 
motion is computed explicitly by solving the Navier–Stokes equation, and 
is called resolved scale. Th e SGS terminology is a misnomer because it 
is not necessarily the small-grid spacing, but the spatial-fi lter width that 
dictates when the small eddy models need to be modeled. Th e fi ner the 
grids and fi lters the more of the energy is resolved in the calculations. 
Th e energy is usually produced in the large-scale eddies and dissipated in 
small eddies near a wall.

Th e smallest grid size needed in the LES method is much larger than 
the Kolmogorov scale needed in the DNS methods. Th e diffi  culty in posing 
boundary and initial conditions and in computing the smallest resolved 
eddies incurred in using DNS methods is the same in using LES methods. 
Th e concept is that stress-bearing and dissipative eddies are separated, in 
fact they overlap.

Methodology:

A fi ltering operation is defi ned to decompose an instantaneous • 
quantity φ into the sum of a resolved scale quantity and a subgrid 
scale quantity φ.
Th e large-scale motion is computed explicitly by solving the • 
Navier–Stokes equation, and is called the resolved scale.
Th e small-scale motion, assumed to be nearly universal, is simu-• 
lated by solving the modeled turbulence transport equation with 
the length scale given by the fi lter, and is called the SGS.
Th e fi ner the fi lter and grids are the higher percentage of the • 
energy is resolved.
Th e energy transfer is usually from resolved to SGSs, but may be • 
reversed near solid boundaries, where small productive eddies are not 
resolved and the SGS model must account for the lost production.
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Th e fi ltering operation is performed using a generalized fi lter (Leonard, 
1974)
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Th e overbar denotes a spatial average and the prime the spatial variation 
of the arbitrary property ϕ. Unlike time averaging, the mean value of the 
fi ltered residue ϕ′ is not zero. G is the generalized fi lter and Δ the fi lter 
width. For a three-dimensional velocity fi eld
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In this example the fi lter width is the cube root of the grid volume. For 
Favre fi ltering for compressible fl ow
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Th e fi lter function must satisfy the following conditions:
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 (5.29)

Common fi lter functions are the volume-averaged box fi lter (Deardorff , 
1970),
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the Fourier (spectral) fi lter (Orsag et al., see Ferziger, 1976),
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and the Gaussian fi lter (Ferziger, 1976)
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Th e fi ltered incompressible momentum equation is
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Th e anisotropic residual-stress tensor is τr
ij and kr is the residual kinetic 

energy.
Th e residual stress R

ij i j i jV V V Vτ = − . Terms called stresses which do 
not include the density are stresses per unit mass. If the residual stress is 
defi ned and the fi lter used is spatially uniform, the momentum equation 
will be closed and may be solved. If the isotropic residual stress is included 
in the pressure P− = P− + (2/3)kr, the Poisson equation may be solved for the 
modifi ed pressure.

One evaluation of the residual stress is the Galilean-invariant decom-
position suggested by Germano (Pope, 2000):
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and

 i j i j ij ij ijV V V V L C R= + + +  (5.34)

 Leonard stress: ij i j i jL V V V V= −  (5.35)

 Cross-term stress: ij i j j i i j i jC V V V V V V V V= + − −′ ′ ′ ′  (5.36)

 SGS Reynolds stress: ij i j i jR V V V V= −′ ′ ′ ′  (5.37)
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Th e residual stress is analogous to the Reynolds stress. Th is term removes 
signifi cant energy from the resolvable scales and can be computed directly. 
SGS stress term will be modeled. Th e cross stress tensor also drains sig-
nifi cant energy from the resolvable scales, and can be treated as Lij, or 
modeled as Rij. Alternatively, spectral fi lters can be defi ned and utilized 
for LES analyses.

Smagorinsky in 1963 was the fi rst to propose a residual-stress model 
(SGS).
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Th is resembles a mixing length EVM with the length being CSD. Using the 
grid spacing as D is crude; frequently CS is set at 0.1–0.24 to improve this 
approximation. Th e dynamic SGS model is a modifi cation which reevaluates 
the fi lter during the course of the simulation.

Advantages of the LES model are fi rst that it allows energy transfer 
between the resolved and SGS in roughly the correct magnitude. Compared 
to RANS models, LES models can describe large-scale turbulent struc-
ture, which allows approximations of unsteady aerodynamic loads and 
estimates of sound generation. It is particularly useful for simulating very 
large-scale environmental phenomena.

Disadvantages are that it is computationally ineffi  cient. Run times are 
approximately twice that of using RSMs. Application to high-speed com-
pressible and reacting fl ows will probably require additional development 
and increased complexity.

5.5.2 LES APPLICATIONS

Developing LES methodology is a popular research area. Th e simu-
lations are very computationally intensive and boundary condition 
specifi cation and implementation is diffi  cult. Several major centers for 
computational research are actively pursuing LES development. Sandia 
National Laboratories is conducting advanced engine combustion R&D 
based on LES techniques. Th e laboratory computational eff orts are sup-
ported by two “Beowulf” clusters which were funded by two major DOE 
programs. Progress reports on this eff ort (Oefelein, 2006) indicate that 
the codes being developed and utilized are all inclusive for describing 
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spray combustors. Th e simulations are being validated by accompany-
ing experiments. Th e submodels included to represent spray combustion 
processes and grid resolution reported are impressive. Specifi c numer-
ical issues, for example, the use of staggered grids and precondition-
ing, are not generally good solution methodology, but with the extreme 
computer power they are utilizing it cannot be said that such practices 
impact their work. Hard comparisons to critical combustion properties 
do not yet justify the confi dence placed in or cost of this major research 
program. Justifi cation of LES methods over RANS methods has not been 
justifi ed by one-to-one simulation comparisons. Th e major success of the 
Sandia work is their ability to secure and sustain major research funding 
for computational research.

Th e Building and Fire Research Laboratory of NIST is utilizing LES 
methodology to simulate fi re-driven fl ows in rooms (Mell et al. 1995). 
In such fl ows, the fi re itself is small in comparison to the room size. Like 
applications to meteorological and hydrological problems, the disparity in 
size of the domain to be analyzed to the turbulent interior fl ows is good 
justifi cation for using LES methodology. Also like the Sandia work, a very 
large initial research eff ort was required to develop and validate (with 
nonreacting fl ow simulations) the LES codes used for the desired applica-
tion. Again, continued support by government agencies has been required 
to develop the LES technology to a useful status.

Laurence (2002) addresses the question is “Large Eddy Simulation of 
(for) Industrial Flows?” and concludes “…at present and in the near future, 
industry is not likely to use LES for actual engineering applications, despite, 
or rather because of, the daily use of (RANS) CFD.” He cites examples of 
LES technology in describing acoustics and fl uid–structure interaction 
phenomena. Even in these examples, fi rst the small pressures predicted 
with LES have to be supplemented by using an acoustics program to pre-
dict noise generation. For analyzing a tube bundle in cross-fl ow, a subset 
of the tubes was considered in a two-dimensional simulation. One tube 
surrounded by four-quarter tubes constituted the computational domain. 
LES results for the wake-to-impingement axis were much better than those 
obtained from a RANS analysis. Finally, Laurence concludes that the utility 
of LES is to support, not replace, RANS methodology by analyzing subre-
gions of complex fl ows where the advantages of LES could provide improved 
predictions. Th e small-scale region simulations he reviews are examples of 
the subregions which could be analyzed with LES methodology.
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5.6 LAMINAR-TO-TURBULENT 
TRANSITION MODELS

Since Reynolds observed laminar and turbulent fl ow in a pipe by notic-
ing the diff erent rate of spread of injected dye, analytical attempts have 
been made to describe these fl ows. Further experiments showed that the 
two types of fl ow did not instantly turn from one to the other. Initially, 
laminar fl ow began to fl uctuate and eventually become completely cha-
otic. Th e dye fi lament was noticed to retrain its initial thinness for some 
distance downstream from the injection point. Th e higher the Reynolds 
number the shorter the region of retained thinness. Th e transition region, 
where an unsteadiness in changing from laminar to turbulent fl ow was 
observed, was diffi  cult to analyze. Numerous attempts to describe fl ow 
transition have not yet yielded a universal solution. Because of the analyti-
cal diffi  culty of this phenomenon, boundary layers with simple geometry 
have received the most attention. Despite the many years of experimental 
and analytical eff ort, current modeling methods still depend almost com-
pletely on the fl ow geometry and thus require modifi cation to simulate 
specifi c geometries.

Four classes of transition modeling methodology have been reported. 
Th e numerous variants of these methods have been reviewed by Cheng 
et al. (2009) and Launder and Sandham (2002). Th e classes are (1) linear 
stability theory, (2) models with specifi ed transition onset, (3) practical 
models which predict onset and transition, and (4) models which are still 
under development. Th e classes of models will be described in the follow-
ing. Some of the class 3 models will be shown to be natural extensions of 
the computational transport phenomenon (CTP) code methodology.

5.6.1 LINEAR STABILITY THEORY

Natural transition occurs when a laminar fl ow reacts to small distur-
bances by fl uctuating to a point which does not recover, but becomes 
increasingly chaotic. Parallel fl ows of boundary layers, free shear layers, 
and wakes can be eff ectively analyzed with linear stability theory. When 
this method is applied to incompressible fl ow, the conservation laws are 
linearized and expressed in terms of mean and fl uctuating variables. For 
the simple geometry involved, the equations are reduced to three vari-
ables, the fl uctuating velocity components parallel and normal to the 
main fl ow and the fl uctuating pressure. Th ese are further simplifi ed using 
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complex variables to produce one fourth-order linear homogeneous equa-
tion; the Orr–Sommerfeld equation (White, 2006). Th e resulting solution 
is referred to as the Tollmien–Schlichting waves.

Subsequent analyses have removed some of the highly restrictive 
assumptions made in describing stability in this manner. For example, 
consideration of temperature eff ects on viscosity and pressure gradient 
eff ects on stability have been estimated. Favorable pressure gradients and 
fl uid cooling increase stability. Converse eff ects reduce stability. However, 
the over riding restriction is that the onset of transition is predicted, the 
transition process to fully turbulent fl ow is not.

An application of the linear stability theory to the prediction of the 
onset of transition is given by Smith and Gamberoni (1956). Such pre-
dictions and experiments show that the natural transition of a lami-
nar to a turbulent boundary layer is a slow process involving a long 
induction length. More likely, the main f low will not be quiet enough 
and the wall not smooth enough, for such natural transitions to occur. 
Skipping the initial steps of the natural process results in what is 
termed bypass transition for which surface vortices are assumed to be 
formed immediately. The impact of such an analysis shall be described 
subsequently.

A third cause of the onset of transition is the reattachment of separated 
fl ow. When the fl ow reattaches it immediately forms a turbulent bound-
ary layer. Th is behavior is not only useful for analytical purposes, but is 
the reason that boundary layer trips are used to expedite experimental 
investigations of turbulent boundary layers. Experimentally one does not 
wish to depend on the long run required for natural transition onset to 
occur, followed by the transition region to develop before creating a fully 
turbulent boundary layer for study.

5.6.2  TRANSITION MODELS BASED 
ON A SPECIFIED ONSET VALUE

A transition-onset model (usually that of Smith and Gamberoni, 1956), 
a weighting function (usually an empirical intermittency), and a conven-
tional EVM of any of several correlations is used to predict laminar to 
turbulent transition. Various degrees of success have been reported with 
this methodology. Also, some predictions have been made using modifi ca-
tions to two-equation turbulence models. Th e intermittency correlations 
frequently used are those of Dhawan and Narasimha (1958).
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Th e mechanics of this method are awkward. Th e laminar boundary 
layer is calculated, and the onset of transition points estimated. Th e tur-
bulent boundary layer with the turbulence model of choice is made from 
the onset point onward. Th en a third calculation is made from the onset 
point onward using the blended laminar/turbulent viscosity model. Th us, 
this methodology is not practical for complex geometries, involving other 
than parallel fl ows.

5.6.3 TRANSITION MODELS WITH PREDICTED ONSET

Th e literature review of Cheng et al. (2009) covered several methods of 
modeling transition including its onset. Two of the models deemed to be 
the most promising for coupling to a RANS solver with a two-equation 
turbulence model, for example, the CTP code, were selected for further 
study. Th ese models were one that described both a laminar and a tur-
bulent kinetic energy contribution to fl uctuating velocities (Walters and 
Leylek, 2004) and the second that calculates a vorticity Reynolds number 
to determine the onset and transition of the boundary layer (Langtry and 
Menter, 2005; Menter et al., 2006).

Th e Walters–Leylek model is based on the concept that bypass transi-
tions are caused by very high amplitude laminar streamwise fl uctuations. 
Starting with a low Reynolds number k–ε turbulence model, the source 
term in the k-equation was modifi ed, a second transport equation for lam-
inar kinetic energy, and a dissipation rate equation which included both 
the laminar and turbulent kinetic energies were solved to obtain Walters–
Leylek transition model simulations. For energy transfer, laminar Prandtl 
numbers and turbulent Prandtl numbers based on the turbulent kinetic 
energy are used.

Th e local correlation-based transition model (LCTM) uses the vorticity 
Reynolds number as the measure which controls transition. Th e model 
solves transport equations for the intermittency and for the momentum 
thickness Reynolds number. Th e vorticity Reynolds number is calculated 
from the momentum thickness Reynolds number. If separation occurs, the 
intermittency is increased such that correct reattachment is achieved. Th e 
calculated intermittency is used to modify the production and destruction 
terms in the shear-stress transport (SST) turbulence model to complete 
the model. Critical values of the momentum thickness Reynolds number 
were reexamined to improve the model’s capability for predicting hyper-
sonic fl ows (Cheng et al., 2009).
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Th ese solution methodologies do not require multiple solutions over 
the computation domain. For instance, a laminar fl ow solution and a 
turbulent fl ow solution followed by a blended solution of the two is not 
required. Th is produces a somewhat more effi  cient solution, but, more 
importantly, the methods can be used for more geometrically complex 
process simulations.

5.6.4 VALIDATION CASES

In general, a wealth of information exists describing transitional fl ows. 
However, eff ective simulations with reasonably general, transition models 
have only been successful recently. Few comprehensive benchmark exper-
imental test cases are yet available. Since so many diff erent investigators 
and so many diff erent computational approaches have been reported, a 
defi nitive state of the art has not been established. Th ough successes have 
been reported by various turbulence transition model developers, those 
transition models were only tuned and validated for a limited number 
of test cases, and thus the generality of these transition models are ques-
tionable. Furthermore, essentially all of the models and their validation is 
still more of a research nature than that of a mature technology. Th e work 
reported by Cheng et al. (2009) is a step in remedying this situation.

Cheng et al. (2009) has conducted third-party evaluation of the Walters–
Lelek and the LCTM transition models by comparing simulations to test 
data from three experiments: (1) three subsonic fl ows over a fl at plate, (2) 
hypersonic fl ow over a cylindrical cone, and (3) subsonic fl ow over a tur-
bine stator cascade. Th e general performance of the models was encour-
aging, but additional model development and validation testing were 
recommended. In regard to the latter, the establishment of a database for 
benchmark quality transition experiments was also recommended.

5.6.5 OTHER MODELING APPROACHES

Several other transitional fl ow modeling approaches have been reported, 
mostly by the European community (Launder and Sandham, 2002). Th e 
aforementioned subsonic boundary layer experiments are compiled in 
the ERCOFTAC database (Coupland, 1993). Th ese data were modeled in 
a pragmatic fashion by predicting an onset point followed by an arbitrary 
blending into a fully turbulent boundary layer. Th e data were also ana-
lyzed by directly using a low Reynolds number k–ε turbulence model and 
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by using a Reynolds stress turbulence model. Th ese results are summa-
rized by Savill (2002).

DNS has been performed for some boundary layer fl ows (Durbin et al. 
2002). Due to the large computational domain required of analyzing 
natural transition, only bypass simulations have been conducted. Th ese 
authors estimated that free-stream turbulence levels of 1% were suffi  cient 
to bypass the Tollmien–Schlichting route to transition. As previously 
mentioned, DNS methodology is so computationally intense that only 
numerical experiments for benchmark data are expected to be produced. 
Th e same can be said of possible LES turbulence models.

Additional transitional modeling research has been directed toward 
increasing the applicability of low Reynolds number turbulence models. 
Th ese eff orts have been reviewed by Savill (2002). Th e current conclusion 
is that the near wall region must be described with such a fi ne grid that 
practical simulations are not possible.

Th e research being conducted to describe transitional fl ows is essen-
tially studies of relatively simple geometries with complex turbulent mod-
els. Recommendations for establishment of databases for representative 
are being made. Th e recommendations are generally in line with estab-
lishing benchmark test cases for computational studies. It appears reason-
able to extend this idea to also include experimental data of complex fl ows, 
which could be used for establishing empirical correlations for practical 
applications.

5.7 NOMENCLATURE
b diff usion coeffi  cient in stochastic diff usion equation
bij, fs functions in the anisotropic term for energy dissipation in the 
   RSM model
Co constant in the Langevin equation
CW constant in defi nition of W
C3 constant in defi nition of w∗

Cn constants in the RSM model. n = 1, 2, 3, 4, e, e1, e2

Cij substantial derivative of the Reynolds stress in the RSM
Cs constant in SGS model
Cij cross-stress term
f, f ∗ Eulerian PDF for incompressible fl ow; for notional particles
fj one-time, one-point Eulerian PDF
G generalized fi lter
Gij function ij; the GLM
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h grid spacing
H dummy symbol to indicate mathematical operations
H∗ notional particle
k, kr turbulent kinetic energy; residual kinetic energy
K, D, aD parameters in kernel function
Lij Leonard stress
P pressure
P{B} probability of event B occurring
Pij production term in RSM
Rij SGS Reynolds stress
S{y} source term in species continuity equation (SCE)
Q kernel function
Sij component of the pressure-strain term in the RSM
Sij stress component in SGS model
Sw, S{j} mean source of turbulent frequency; source of property j
t time
tK Kolmogorov’s timescale
U function; standardized (normalized) function
UÆ, UÆ∗ velocity vector; for notional particles
Vi velocity component; sample space variable in Section 5.3
W Wiener process variable
xi, Xi, Xi 

∗ spatial coordinates; ∗for notional particles
Y spatial coordinate; distance from a wall
y + dimensionless distance from the wall
Z spatial coordinate

5.7.1 GREEK SYMBOLS

E energy dissipation
ei j dissipation term in the RSM
m, mt laminar and turbulent viscosity
Γ, Γt laminar, turbulent diff usion coeffi  cients
v laminar kinematic viscosity
Δ fi lter function
Ξ dummy length parameter
H Kolmogorov micro-scale
T Kolmogorov timescale
R density
ϕ, ψ property to be averaged
f subgrid property in LES model
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Pij pressure-strain term in the RSM
W conditional mean turbulent frequency
w turbulent frequency or specifi c dissipation rate
w∗ model for turbulent frequency with sample space q

5.7.2 MATHEMATICAL SYMBOLS

aÆ drift  coeffi  cient in stochastic diff usion equation
Dij component of the pressure-strain in the RSM
Dij diff usion term in he RSM
Dij

t turbulent diff usion term in the RSM
Dij

v laminar diff usion term in the RSM
f– velocity–frequency PDF with the GLM
H ′, H ′′ fl uctuating component
H
Æ

, H—, H~ vector, time or spatial average, Favre average
tr

ij anisotropic residual stress
tR

ij residual stress
tij

SGS subgrid stress

5.7.3 ACRONYMS

DNS direct numerical simulation
DSM diff erential second-moment model
EVM eddy viscosity model
GLM generalized Langevin model
LES large eddy simulation
PDF probability density function
RANS Reynolds averaged Navier–Stokes turbulence model
RSM Reynolds-stress model
SCE species continuity equation
SGS subgrid scale
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6C H A P T E R  

Computational Coordinates 
and Conservation Laws

6.1 OVERVIEW
Th e conservation laws, fl uid properties, and turbulence models presented 
in Chapters 2 through 4 represent a wide class of transport phenomena. 
In general, these equations and models are too complex to solve analyti-
cally. Simple geometries consisting of pseudo-one-dimensional fl ows and 
fl ows which are contained within orthogonal Cartesian or cylindrical 
walls may be solved for a variety of interesting problems by a number of 
approximate methods. However, the most complete solutions to date are 
numerical solutions of the nonlinear partial diff erential form of the gov-
erning laws. Th is is the purview of the computational transport phenom-
enon (CTP). To produce a practical, general-purpose computational tool, 
turbulence will be modeled with a two-equation model and radiation will 
be neglected. Th ese restrictions leave an immense number of challeng-
ing transport problems which may be addressed with the code described 
herein.

Since numerical solutions require a defi ned coordinate system of 
uniquely identifi ed grid points, the geometry issue will be addressed in this 
chapter. Pseudo-one-dimensional fl ows utilize control volumes in which 
convection along one direction is to be evaluated. Rectangular Cartesian 
coordinates and cylindrical coordinates constitute the remaining practical 
control volumes which may be defi ned with algebraic coordinate systems. 
More general geometries require curvilinear orthogonal or nonorthogo-
nal coordinates. Vector and tensor analysis is the mathematical language 
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invented to describe curvilinear geometry. Tensor analysis describes both 
coordinate systems and components of vector and tensor quantities. It 
also serves as a type of shorthand, but this is a trivial consequence. Such 
formalism looks concise on paper, but it introduces considerable unneces-
sary complexity. Th e defi nition of coordinate lines is a necessity, but base 
vectors which change direction within the computational domain cannot 
be conveniently integrated throughout the fl owfi eld. As an alternative, one 
may defi ne curvilinear coordinates as a mathematical transformation of 
independent variables into what is called function space or vector space. 
Th e scalar-dependent variables from a coordinate system which utilizes 
base vectors which are invariant in direction are used without change. 
Th is is a straightforward, although complex, process, which is described 
in this chapter. Be advised! Mathematicians like to generalize, engineers 
do not. Th is causes some confusing literature which, hopefully, will be 
elucidated in this chapter. Th e essentials of these issues are presented in 
this chapter in order to arrive at the discretized equations which are to be 
solved by the CTP code.

Th e objective of this text is to describe and explain the use of the mature 
CTP computer code, and then to illustrate its application to basic trans-
port phenomena analyses. Th e intent is not to teach one how to write such 
a code; there are an abundance of books and thousands of papers available 
for such a purpose. Detailed explanations and derivations will be avoided 
whenever possible to maintain the focus on understanding and using the 
computational tools already available. Appropriate references will be given 
to locate existing back-up material, but where such material is unclear or 
obtuse further explanation will be provided in Appendix B on the basics 
of tensor analysis.

6.2 COORDINATES
Consider a few simple fl ow systems, such as fl ow through a converging 
diverging nozzle, an orifi ce, or an elbow. Th ese fl ows cannot be accurately 
described with simple orthogonal Cartesian or cylindrical coordinates. 
Th ey can be described using body-fi tted coordinates. In fact, very com-
plex fl ows such as the fl ow about an entire aircraft  can now be described 
with such coordinates. Since friction and heat and mass transfer cause 
severe gradients near solid walls, coordinates which increase resolution 
near such walls are also useful. Body-fi tted coordinates allow boundary 
layer resolution. On occasion, one wishes to reposition the coordinates used 
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during the course of a calculation. Th is too is possible using adaptive grid 
generation. Th e grid system used in the CTP code is a structured, multizone 
body-fi tted coordinate system, it is not adaptive. Th ere are other useful 
grid systems with the same, and in some cases even more general, dis-
cretization capability, but in no case are more than three spatial and one 
temporal coordinates needed.

Th e conservation equations contain both dependent and independent 
variables. Th e independent variables are the grid system being used. If the 
grid is adaptive, that is, it is allowed to vary as the computation progresses, 
time (or the iteration number) would also be a variable in defi ning the 
coordinates. For general fl ow domains, body-fi tted curvilinear coordinates 
would be used to describe the geometry. Th e dependent velocity compo-
nents could be transformed to curvilinear values, or remain the scalars 
used in an orthogonal Cartesian system. Scalar variables like pressure, 
temperature, and density would be unaff ected by coordinate transforma-
tions. Th e CTP code utilizes the scalar-dependent variables derived in 
Chapter 2 for orthogonal Cartesian or cylindrical coordinates.

Th e objective of this section is to derive and explain the form of the 
conservation laws which will then be discretized and numerically solved. 
To utilize general nonorthogonal coordinates, two methods of transform-
ing the orthogonal Cartesian coordinates and the conservation equations 
expressed in these coordinates are available. First, the coordinates may be 
considered multivalued functions and linearly transformed by matrix 
operations. Since curvilinear coordinates are a desired result, the transfor-
mation must be applied to diff erential coordinates. Th e relationship between 
the Cartesian coordinates (x, y, z) and the general curvilinear coordinates 
(η, ξ, ζ) is not specifi ed until aft er the transformation is accomplished. Th is 
is the method described by Anderson et al. (1997) and Anderson (1995) 
and is the method which is used in this chapter. Th eir nomenclature will 
also be used wherever possible in order to make comparisons to their work 
easier. Unfortunately, the straightforward matrix methodology is contami-
nated by using terms, specifi cally vectors, to describe an array which has 
no directional property associated with it. Th is contamination is due to 
mathematicians “generalizing” terms for their use. For example, they wish 
to consider a vector to be n-dimensional. Courant and Hilbert (1953, p. 1) 
defi ne n-dimensional vectors, then state “For n > 3 geometrical visualiza-
tion is no longer possible but geometrical terminology remains suitable.” 
Th e mechanics of this matrix transformation will contain no unit or base 
vectors, yet the method is still adequate for our purposes. Herein, when a 
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nongeometrical vector is implied, the term vector will be italicized. Such 
vectors are really one-dimensional arrays or column vectors. When a sym-
bol is needed, a tilde overbar will be used instead of the usual arrow to 
represent vectors. Matrices will be indicated with a caret overbar.

Th e second method for coordinate transformation is to use the meth-
odology of tensor analysis. Th is method is not used here because its 
nomenclature is too awkward and no single text on the subject can be 
recommended. Th e methodology has been “generalized” by mathema-
ticians to the point that its application to three-dimensional geometry 
problems has been obscured. Another problem not encountered with 
the matrix methodology is that base vectors are required which change 
direction from point to point in the fi eld and may even change magni-
tude. Th is means that the integration of vector terms in PDEs would have 
to be considered. Note cylindrical coordinates are orthogonal and utilize 
unit vectors, but these unit vectors change direction throughout the con-
trol volume. Th us, this coordinate system is of intermediate complexity. 
Nevertheless, in order for the equations presented in this chapter to be 
placed in proper perspective with respect to existing literature, curvilinear 
coordinate formulations of the conservation equations will also be derived 
and presented in Appendix B.

6.2.1 COORDINATE TRANSFORMATIONS

Symbolically coordinate transformations and the inverse coordinate 
transformations are represented by

 

{ , , } { , , }
{ , , } and { , , }
{ , , } { , , }

x y z x x
x y z y y
x y z z z

ξ = ξ = ξ η ζ
η = η = ξ η ζ
ζ = ζ = ξ η ζ  

(6.1)

Th is inversion is possible because there is a one-to-one correspondence 
of grid points between the coordinate systems, i.e., the transformation 
is admissible. However, there are several major problems for performing 
this transformation if the curvilinear coordinate system is not analytic. 
Since it is desirable to treat body-fi tted geometries of general shapes, the 
transformations must be made in a convenient form. But even in simple 
analytical boundaries the curvilinear systems are diffi  cult to describe. Th e 
base (or unit) vectors point in diff erent directions at each point in the fi eld. 
Curvilinear coordinates are not linear; hence the curved coordinates must 
be defi ned incrementally. To fi t general shapes, the transformations must 
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be performed numerically. Even then, additional considerations must be 
given to the numerical solution of accompanying transport phenomena 
problems. Th e nonlinear transport equations must be solved numerically 
also. For this numerical solution to be performed effi  ciently, scaling of 
grid lines and both grid metrics and inverse grid metrics are used to form 
the diff erence equations. Th is additional information is needed to produce 
a computational grid. Th ese issues are discussed in the following.

Th e local, diff erential form of the transformation relations are

 

d d d d
d d d d
d d d d

x y z

x y z

x y z

x y z
x y z
x y z

ξ = ξ + ξ + ξ
η = η + η + η
ζ = ζ + ζ + ζ

 

(6.2)

or

 

d d
d d
d d

x y z

x y z

x y z

x
y
z

⎡ ⎤⎡ ⎤ ⎡ ⎤ξ ξ ξ ξ
⎢ ⎥⎢ ⎥ ⎢ ⎥η = η η η⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ζ ζ ζ ζ⎣ ⎦ ⎣ ⎦⎣ ⎦  

(6.3)

where the subscripts indicate partial diff erentiation. Th e inverse transfor-
mations are

 

d d d d
d d d d
d d d d

x x x x
y y y y
z z z z

η ζξ

η ζξ

η ζξ

= ξ + η+ ζ
= ξ + ξ + ζ
= η+ ξ + ζ

  

(6.4)

or

 

d d
d d
d d

x x x x
y y y y
z z z z

η ζξ

η ζξ

η ζξ

⎡ ⎤⎡ ⎤ ⎡ ⎤ξ
⎢ ⎥⎢ ⎥ ⎢ ⎥= η⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ζ⎣ ⎦ ⎣ ⎦⎣ ⎦   

(6.5)

Th e derivative transformations are

 

x x x

y y y

z z z

x

y

z

∂ ∂ ∂ ∂= ξ + η + ζ
∂ ∂ξ ∂η ∂ζ
∂ ∂ ∂ ∂= ξ + η + ζ
∂ ∂ξ ∂η ∂ζ
∂ ∂ ∂ ∂= ξ + η + ζ
∂ ∂ξ ∂η ∂ζ   

(6.6)
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or

 

1

( )
( ) ( )

( )

x y z

x y z

x y z

x x x
y y y
z z z

y z y z x z x z x y x y
J y z y z x z x z x y x y

y z y z x z x z x y x y

−

ξ η ζ

ξ η ζ

ξ η ζ

η ζ ζ η η ζ ζ η η ξ η ξ

ξ ζ ζ ξ ξ ζ ζ ξ ξ ζ ζ ξ

ξ η η ξ ξ η η ξ ξ η η ξ

⎡ ⎤ ⎡ ⎤ξ ξ ξ
⎢ ⎥ ⎢ ⎥η η η =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ζ ζ ζ ⎣ ⎦⎣ ⎦

⎡ ⎤− − − −
⎢ ⎥= − − − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦  

(6.7)

where J is the Jacobian of the transformation and

 

( )
( )

( )
( )

( )
( )

( )
( )

( )

x

y

z

x

y

z

x

y

z

J y z y z
J x z x z

J x y x y
J y z y z

J x z x z
J x y x y

J y z y z
J x z x z

J x y x y

η ζ ζ η

η ζ ζ η

η ζ ζ η

ζ ζξ ξ

ζ ζξ ξ

ζ ζξ ξ

η ηξ ξ

η ηξ ξ

η ηξ ξ

ξ = −
ξ = − −
ξ = −
η = − −
η = −
η = − −
ζ = −
ζ = − −
ζ = −   

(6.8)

 

( , , )
( , , )

x y z

x y z

x y z

J
x y z

ξ ξ ξ
∂ ξ η ζ= = η η η
∂

ζ ζ ζ
  

(6.9)

 

1 ( , , )1 1 1
( , , )

1 ( ) ( ) ( )

x x x
x y zJ J y y y

z z z

x y z y z x y z y z x y z y z

η ζξ
−

μ ζξ

η ζξ

η ζ ζ η η ζ ζ ζ η ηξ ξ ξ ξ ξ

∂= = =
∂ ξ η ζ

⎡ ⎤= − − − − −⎣ ⎦  
(6.10)

Notice that these equations do not contain base or unit vectors. Th e eff ect 
of such vectors must be contained in the coordinate lengths only. Since 
there is not a one-to-one correspondence between curvilinear coordinate 
increments and the rectilinear incremental lengths, another measure must 
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be preserved in the transformation. Th is measure is the incremental dis-
tance between two position (or grid) points. Th is measure is defi ned with 
the metric tensor, as explained in Appendix B. Th e relationships between 
the (x, y, z) and the (ξ, η, ζ) coordinates called “metrics” in the above 
equations are related to but not identical with the elements of the metric 
tensor.

To solve the transformation relationship between the curvilinear and 
rectilinear coordinate systems, a defi nition of the curvilinear system must 
be made. Analytical relationships for orthogonal coordinates have been 
developed to yield cylindrical coordinates, spherical coordinates, etc. For 
nonorthogonal curvilinear coordinates, coordinate lines may be chosen 
as the intersection of two coordinate surfaces (contravariant coordinates) 
or as normals to coordinate surfaces (covariant coordinates). A coordi-
nate surface is one for which two of the three coordinates are constants. 
Th ese various coordinate systems are given specifi c names and character-
ization by the formalism by tensor analysis as described in Appendix B. 
However, analytical relationships are of limited value; therefore, numeri-
cal relationships based on the use of boundary-fi tted coordinates have 
been developed.

6.2.2 BODY-FITTED COMPUTATIONAL COORDINATES

To defi ne body-fi tted and computational coordinates, the length along 
a curvilinear boundary must be evaluated. Ideally this could be accom-
plished by using analytical curves to represent the boundaries, but this 
does not provide a general solution to constructing computational grids. 
Complex grid generation is usually established by numerical methods, 
for which both simple and complex geometries can be described with one 
computer code. Th is is readily accomplished by calculating incremental 
lengths in orthogonal Cartesian coordinates and numerically converting 
them into the general curvilinear coordinates that fi t body surfaces and 
are nonlinearly dispersed to give higher resolution near body (i.e., wall) 
surfaces. Th e grids so generated are frequently structured so that arrays 
spanning the three coordinate directions may be utilized for computa-
tional convenience. Th is is the methodology used in the CTP code.

Other grid generation methodology such as unstructured, adaptive, 
fi nite-element, and very fi ne rectangular Cartesian grids are also used 
(Anderson, 1995). Modern computer speed and storage has largely sup-
planted the use of more elaborate grid generation methods. However, to 
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work CTP problems on personal computers (PCs), the methodology used 
in the CTP code is effi  cient and accurate for many practical applications.

6.2.3 ARC LENGTH AND COORDINATE LINES

Th e control volume within which the transport equations are to be solved 
must be fi lled with a grid system, the nodes of which will be points where 
the equations are numerically solved. For arbitrary curvilinear walls, 
curvilinear coordinates are generated by locating a coordinate line along 
the surface. Th is line may be defi ned by an analytical function, a set of 
specifi ed points which are curve fi t, or results from a computer-aided 
design (CAD) calculation. Th e length of the coordinate line must be deter-
mined. Th e following describes how this is accomplished.

An increment of arc length (ds) in a plane in an orthogonal Cartesian 
coordinate system is given by (Korn and Korn, 1968)

 ( ) ( ) 0.52 2d dd ( )x ys +=   (6.11)

or by

 

0.522 dd d
d d d

d d d
ys x

s t t
t t t

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦   
(6.12)

where t is a parameter. Arc length along a line in a three-dimensional sur-
face described with an orthogonal Cartesian coordinate system is

 
0.52 2 2d (d ) (d ) (d )s x y z⎡ ⎤= + +⎣ ⎦   (6.13)

If x, y, and z are functions of ξ along that line

 

0.52 2 2
dd d d

d d d
d d d d

ys x z
s

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ξ = + + ξ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ξ ξ ξ ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦   

(6.14)

Th erefore, given ξ{x, y, z}, the length along this coordinate line can be cal-
culated. Likewise, the other two curvilinear coordinates (η and ζ) could 
be evaluated.

Had we wished to use this line as the ξ coordinate and have it vary from 
0 to 1.0, a choice would still have to be made as to how the line was to 
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be incremented. Regardless of the method of discretization (linear, expo-
nential, arbitrarily nonuniform), a length scale for the coordinate would 
have to be defi ned. Th e obvious choice would be the physical length of 
the coordinate. Th is means that the length of the line in the (x, y, z) coor-
dinate system would have to be calculated before the ξ coordinate could 
be defi ned. For example, say 10 increments of length were to be used. “s” 
would be calculated fi rst then Δs = s/10. Now the (x, y, z) coordinate posi-
tions along ξ from 0 to 1.0 can be located. Th is is precisely the manner in 
which a boundary-fi tted coordinate system is generated.

An alternative to relating the general curvilinear coordinate system to 
the orthogonal Cartesian system would be to relate it to another type of 
orthogonal system. For example, a cylindrical coordinate system for pipe 
fl ow or for a circular duct of varying cross-section analyses. Such a system 
must allow all of the coordinates to produce linear measures along the 
coordinate lines. Th e transformation required would then be from (ξ, η, ζ) 
to (r, θ, z) or to (x, y, z). If the centerline of the conduit is curved (such 
as for an elbow), the grid generation is more complex. However, analyses 
of such confi gurations are in the literature. An example is described in 
Patankar (1980).

6.2.4 BODY-FITTED COORDINATE SYSTEMS

Consider the two-dimensional region bounded by the x = 0, x = 20, y = 0 
and a quadrant of an elliptic curve:

 
0.5210 1600 4( 40 400)y x x⎡ ⎤= + − − +⎣ ⎦   

(6.15)

Curvilinear coordinates are to be introduced as ξ = 0 along x = 0 and ξ = 1 
along x = 20 and η = 0 along y = 0 and η = 1 along the elliptic segment. 
Twenty-one grid lines are defi ned along the ξ direction and six along the 
η direction. Th e grid lines are to be equally spaced. Th is means that the 
distance along the elliptic segment must be calculated so that it can be 
divided into the equal segments. Since distance has not yet been defi ned 
in the ξ direction along the η = 1 coordinate, the required distance is cal-
culated in the x–y coordinate system.

Th e interior grid lines and node points are calculated by transfi nite 
interpolation (TFI) between the two-boundary coordinates η = 0 and 
η = 1. Th is method of interpolation is described in detail by Shih et al. 
(1991). Th ese investigators described the application of this methodology 
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to parallelepipeds with two-, four-, and six-sides being curvilinear and 
unsteady. Th e extension to adaptive gridding, the inclusion of orthogo-
nal coordinates near walls, and the treatment of stretching was also 
described. Finally, these investigators provided a grid generation code (the 
GRID2D/3D code) for its implementation. Th eir work is an application 
of the basic boundary fi tting methodology fi rst introduced by Th ompson 
et al. (1985).

Th e nonadaptive, two-boundary TFI version of this methodology was 
used to construct the curvilinear grid for this example. Th e X, Y, and Z 
functions are the fi ts of the boundaries. Th e ℓ functions are the interpola-
tion functions. Th ese functions are given by

 

{ } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { }

{ } { }

1 1 2 2

1 1 2 2

1 1 2 2

1 2

, , , ,
, , , ,
, , , ,

where 1 and

x X X
y Y Y
z Z Z

ξ η ζ = ξ ζ η + ξ ζ η
ξ η ζ = ξ ζ η + ξ ζ η
ξ η ζ = ξ ζ η + ξ ζ η

η = − η η = η

� �

� �

� �

� �   

(6.16)

Th e grid for this illustrative problem is shown in Figure 6.1. Th e nodal 
numbers I are associated with the η-grid values, and the nodal numbers J 
correspond to the ξ-grid values. Th us, a structured grid that spans the I–J 
domain was created.

Notice, no unit or base vectors have been defi ned or used in this grid 
generation procedure. Neither has orthogonally between the arbitrarily 

FIGURE 6.1 (See color insert following page 294.) Curvilinear coordinate system.
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scaled curvilinear coordinates been assumed or plotted. Many papers on 
grid generation indicate that such orthogonality results from the trans-
formation, including the two just referenced. Th e relationship between 
the curvilinear coordinates and the orthogonal Cartesian coordinates is 
simply their respective values at the common I–J nodal values of the grid 
line intersections. Th is correspondence is of immense value in establish-
ing structured grid diff erencing analyses. It has no other purpose. Th e 
literature continually refers to these arrays as “rectangular.” Th is descrip-
tion is misleading and unnecessary. Specifi cally, no base vectors which 
indicate orthogonally of the curvilinear coordinate system are specifi ed 
or implied.

6.3 CONSERVATION LAWS IN 
COMPUTATIONAL COORDINATES

6.3.1  FORMULATION OF THE CONSERVATION 
LAWS FOR THE CTP CODE

Th e chemical and physical fl uid properties and the laminar and turbulent 
conservation laws have been discussed in Chapters 3 through 5. Th e CTP 
code was designed as a practical tool for analyzing the transport processes. 
All of the known transport processes could not be included and have the 
code remain practical, much less understandable. In our judgment, the 
basic code should treat multicomponent real, reacting fl uids in laminar 
and turbulent fl ow. In the course of the CTP code development, some 
extensions to these processes were also found to be conveniently included. 
Simple multiphase fl ow and fl uid structural interaction such as conjugate 
heat transfer were included in the code capability. Th ese additions are 
described only as specifi c examples in this work. Other inclusions such as 
dense multiphase fl ow and radiation transfer are not treated as they would 
involve major coding modifi cations. Th e basic code is still a complicated 
model consisting of a discretized set of nonlinear partial diff erential equa-
tions (PDEs) and their numerical solution. Not only must such equations 
be solved, but a computational grid which accurately represents complex 
walls must be used to avoid the need of an excessively dense grid to resolve 
boundary layer eff ects.

Th e evolution of the CTP code development resulted in the HBMS ther-
mal and caloric equations of state being used to describe real multicompo-
nent fl uid properties. Th e Pade’ integration scheme was selected to integrate 
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fi nite-rate chemical reactions. A set of laminar transport property correla-
tions was recommended for use. Turbulent fl ows were modeled with time 
and mass-averaged conservation equations. A two equation k–ε correlation 
was used to close these conservation equations. Eff ective eddy transport coef-
fi cients were determined from the k–ε values to produce an eddy viscosity 
model (EVM) for the turbulence eff ects. Since the k–ε model was developed 
for incompressible fl ow, extensions to the original model to account for more 
realistic fl uid and fl ow properties were included in the CTP code. A gen-
eralized force term is included in the momentum and energy equations to 
account for such eff ects as buoyancy, Coriolis forces, and centrifugal forces.

Th e appropriate conservation equations stated in orthogonal Cartesian 
coordinates are shown in Table 6.1. Th e orthogonal adjective may be 
dropped for convenience, but it is always to be implied herein. Th e solu-
tion involves seven plus i PDEs, a thermal and a caloric equation of state. 
Th is provides one more variable than necessary. Th e extra variable may 
be used for checking the solution to the species continuity equation. Th e 
restrictions implied by these equations have been described in previous 
chapters. However, this set of equations serves to represent an extremely 
wide range of transport phenomena. To utilize these equations, a body-
fi tted curvilinear grid and a numerical algorithm for solving a discretized 
analog of these conservation laws must be available. Th e remainder of this 
and further chapters and the appendices of this work describe the com-
plete computational methodology.

A single eff ective diff usion coeffi  cient was used to represent multicom-
ponent mixtures. Th is is a very good approximation for turbulent fl ow. 
For laminar fl ow, it represents diff usion of a single species in a mixture 
of other species, which is strictly correct for diff usion in a binary mix-
ture. For more species involved, a correction to the single value could be 
made using the generalized Maxwell–Stefan equation by using an explicit 
calculation. Th e explicit calculation would involve evaluating the diff u-
sion fl uxes of all of the species present, which is feasible since the solution 
strategy involves time stepping until all of the conservation equations are 
solved. Th is would be a simple calculation, but it is not in the present code, 
nor has its importance been investigated by these authors. Th e thermal 
energy equation in Table 6.1 is cast in terms of enthalpy. Th e diff usion fl ux 
for enthalpy is given by

 

m
h k k k k

k k

j q j h T D h= + = −κ∇ − ρ ∇ω∑ ∑
� ��

  
(6.17)
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If the Lewis number Le = ρCpDm/κ is unity, ρDm = κ/Cp. Also, k k kh h= Σ ω . 
It follows that j

Æ

h = −(κ/Cp)Ñh
Æ

 = −(μ/Pr)Ñh. Th is relationship is inter-
esting (and a similar one involving the viscosity and Schmidt number) 
because the Prandtl and Schmidt numbers are primarily a function of 
composition; whereas, the viscosity is a strong function of temperature 
and pressure. Practically, a correlation for viscosity in terms of tempera-
ture and pressure for an average composition and the use of constant val-
ues of Prandtl and Schmidt numbers would provide a good approximation 
for the laminar transport properties. Such an approximation is even better 
for turbulent fl ow. Th is explains the logic in using the eff ective viscosity 
model in the transport equations. A further benefi t of using the enthalpy 
form of the energy equation is that real fl uid properties for the enthalpy of 
a multicomponent mixture are easily obtained.

It bears repeating, the intent of this text is to provide the readers a tool 
with which one can use their own PCs to become familiar with compu-
tational solutions of the conservation equations representing transport 
phenomena. In this vain, the CTP code is chosen as the tool. Th e CTP 
code is serial, that is, it runs one computer sequentially until a solu-
tion is obtained. Th is implies that only modest size grid systems should 
be analyzed. Current computational methodology utilizes an ensemble 
of PCs running in parallel to analyze larger problems. The CTP code 
would be typical of an element in a parallel computing environment. 
However, much can be learned and practiced by analyzing more mod-
est simulations. If more ambitious simulations are desired, the paral-
lel processing methodology could be employed or analyses could be 
obtained from leased codes such as Fluent. This work is designed to 
educate one in the use of computational methodology for transport 
phenomena. It is time consuming to write or even use one’s own code, 
but the learning curve for using comprehensive, leased software is even 
more excessive.

6.3.2  VECTOR FORM OF THE CTP CONSERVATION 
EQUATIONS IN CARTESIAN COORDINATES

The multicomponent conservation equations from Table 6.1 are 
expressed in vector form as follows for a Cartesian coordinate system. 
These vectors are column vectors or one-dimensional arrays. This 
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formalism is introduced to expedite discussing the equations and to 
place their development in the proper historical perspective.
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Th e diff usive terms in the conservation equations are now expressed in terms 
of the gradients which drive the processes. For momentum transport
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(6.24)

Th e second coeffi  cient of viscosity (λ) is assumed negligible for the CTP 
equations. However, a parameter, λc, is included to expedite distinguish-
ing between compressible and incompressible fl ows. Herein, compress-
ible is meant to be variable density fl ow and incompressible, constant 
density fl ow.
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For turbulent fl ow replace all μ’s with μe’s and let
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Values for the σi’s are given in Table 6.2. Th e σi’s for k and ε can be consid-
ered infi nitely large for laminar fl ow because the k–ε turbulence parame-
ters are negligible. Th e U~ and S~ vectors are unchanged. Th e others become
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In general, the continuity (conservation of mass) equation may be com-
bined to simplify the appearance of all the other equations, as discussed 
in Chapter 2. When such a formulation is used, it is referred to as the 
nonconservative form of the conservation equations. Such a formulation 
introduces errors in numerical calculations and is, therefore, not generally 
used. Th e form of the equations presented is termed the “strong conserva-
tion” form of the transport equations.

If the fl ow is of a single component fl uid, the species continuity equa-
tion is eliminated from these arrays as it is not needed. If the fl ow is 
laminar, the turbulence model equations are not needed. Some terms of 
the source arrays may be placed in the other arrays and others may be 
assumed negligible, in order to minimize and eliminate the source array. 
When all of the source terms are eliminated, the set of equations becomes 

TABLE 6.2  Values for σi

s sw sm sh sk se

Laminar 1.0 = Sc 1.0 0.72 = Pr — —
Turbulent 0.9 = Sct 1.0 0.90 = Prt 0.8927 1.15
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the strong form of the conservation laws; otherwise they are referred to 
as the weak form of the conservation laws. When wave phenomena, such 
as shock waves, are imbedded in the fl owfi eld, the strong conservative 
form of the conservation laws gives more accurate resolution across the 
shock discontinuity. When fi nite-rate chemical reactions or nongradient 
forces like buoyancy, the fi ctitious Coriolis, or centrifugal forces are to 
be simulated, eliminating all of the source terms is not possible. Th is has 
not proved to be a major impediment to simulating transport problems. 
Usually, shock waves are simply smeared over a few grid points. For 
example, see Wang and Chen’s (1993) analysis of the shock structure in 
rocket plumes. Such smearing causes concern only to aerodynamicists 
interested in very accurate simulations. Even so, other approximations 
in the modeling process may introduce comparable errors, if they are 
introduced solely to expedite the removal of source terms. Specifi cally, 
assuming the fl uid is an ideal gas or the fl uid is not turbulent are such 
approximations. As will be shown, additional terms may be included in 
the source arrays to expedite the numerical solution.

Th e mathematical model represented by the PDEs in Table 6.1 and by 
the vector equations just discussed provides a reasonably accurate and gen-
eral description of many of the physical and chemical processes govern-
ing transport phenomena. Conservation laws formulated in orthogonal 
(rectangular) Cartesian coordinates are inadequate to effi  ciently simulate 
the complex geometry of many transport processes. Introduction of a gen-
eral curvilinear grid which coincides with the geometric boundaries of 
the fl ow to be analyzed is a major advancement in computational tech-
nology. Such grid considerations are developed in the Section 6.3.3. Th e 
curvilinear coordinate system is used to defi ne the independent variables 
of the simulation. Th e dependent variables will be kept as those utilized 
in the Cartesian formulation. Otherwise, more complex tensor analysis 
must be used to transform the dependent variables to the curvilinear sys-
tem. Geometries of intermediate complexity, such as the orthogonal cur-
vilinear coordinates, could be developed. Cylindrical coordinates are the 
most useful of such grids. However, it will be shown that the orthogonal 
curvilinear coordinates can be described with a code written for the more 
general case. Th us, separate computer codes are not needed for interme-
diately complex systems. Th e concept of thinking of the conservation laws 
in terms of vectors and matrices as arrays will be retained, since this is the 
same methodology as that employed in computer instructions for solving 
the conservation equations.
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6.3.3  TRANSFORMING THE VECTOR FORM 
OF THE CTP EQUATIONS

Th e coordinate transformation equations for converting the independent 
variables to curvilinear coordinates given in Section 6.2.1 will be applied 
fi rst to the compressible Navier–Stokes (CNS) equations and then to the 
CTP equations. Not only will the coordinates be transformed, but the equa-
tions will be rearranged to place them in strong conservation form. Th is 
development is similar to that for the CNS equations derived and repre-
sented in general curvilinear coordinates by Anderson et al. (1984, 1997).

6.3.3.1 Transformed CNS Equations

Th e CNS equations will be discussed fi rst because they are somewhat 
simpler, but still contain the basic transformation mechanics. Th e CNS 
equations diff er from the CTP equations by (1) being restricted to a one 
component ideal gas; (2) including the pressure term in the fl ux vectors, 
i.e., the E~, F~, and G~ column vectors; (3) replacing the energy equation with 
one appropriate for the fl uid involved and neglecting external forces. Th e 
total energy (ET) equation becomes

 5 T( ) xx xy xz xE E p u u w q= + − τ − υτ − τ +   (6.35)

 5 T( ) yy yz yx yF E p w u q= + υ − υτ − τ − τ +   (6.36)

 5 T( ) zz zx zy zG E p w w u q= + − τ − τ − υτ +  (6.37)

Although indicial notation is not used, the three equations refl ect cyclic per-
mutation of the indices. Th e vector form of the conservation laws becomes

 
0

U E F G
t x y z

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

�� � �

  
(6.38)

Notice that the source term is zero for this form of the CNS equations. Th e 
transformation equation is

 

η ζ η ζξ ξ

η ζξ

+ ξ + η + ζ + ξ + η + ζ

+ξ + η + ζ =

� � � � � � �

� � � 0
t x x x y y y

z z z

U E E E F F F

G G G   (6.39)

Th e vector form of the conservation equations for ideal gas fl ows is par-
ticularly accurate for calculating fl ows with shock waves. It is termed the 
strong-conservation form of the equations. Th is form is not as useful for 
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fl ows with gravity eff ects or for fl ows with nondiff erentiated source terms 
like chemically reacting and multiphase fl ows. Th e second-derivatives 
associated with viscous, diff usive, and thermally conductive fl ow also 
pose additional problems for realizing the advantages of using the strongly 
conservative form of the transport equations.

When this transformation law is applied source terms are created. 
Vinokur (1974) showed that this is the case even when the fl ow is inviscid. 
Viviand (1974) and Vinokur (1974) rearranged the transformed equation 
and recognized that terms like

 
0x x x

J J Jξ η ζ

⎡ ⎤ξ η ζ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦   
(6.40)

to maintain the strong-conservation form of the equations for ideal gases. 
Th e modifi ed vectors in the conservation equations are expanded as
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(6.41)
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where J is the Jacobian and the contravariant velocities are

 

c

c

c

x y z

x y z

x y z

U u w

V u w

W u w

= ξ + ξ υ + ξ

= η + η υ + η

= ζ + ζ υ + ζ  

(6.46)

Th is is an unfortunate choice of symbols for the contravariant velocity 
components, because they are not associated specifi cally with individual 
Cartesian velocity components. Th ey are the velocity components tangent 
to the curvilinear coordinate directions. Th ey are termed contravariant 
components of velocity (Hawkins, 1963). Notice some literature errone-
ously terms these vectors normal to the coordinate surfaces. Th e U’s and 
u’s, etc., bear no relation to each other; this is what makes this choice of 
symbol confusing. But what is shown is more prevalent in the literature.

Th e inclusion of the Jacobian does convert the transformed CNS 
equations to a strong conservation form. For the inviscid case consid-
ered by Vinokur, the strong conservation feature is obtained; but what 
about the stress terms? Th ese are evaluated with a viscosity and veloc-
ity gradients. Anderson (1995) discusses this issue, but does not clearly 
state that the source terms must be zero for strong conservation. Th e 
implication is that the stress terms would cause a loss of the strong con-
servation feature.

6.3.3.2 Transformed CTP Equations

Th e CTP conservation equations are transformed into general curvilinear 
coordinates for their solution in the CTP code. Th e continuity equation con-
tains terms for accumulation and convection. Th e species continuity equa-
tions, the energy equation, turbulent kinetic energy, and energy dissipation 
equation, contain as expected accumulation, convection, diff usion, and 
generation terms. Th e momentum equations contain not only such terms, 
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but additional terms arising from the more complex stress/rate-of-strain 
relationships. Th e stress terms are expressed in terms of velocity gradients 
and in both laminar and turbulent eddy viscosity. If the diff usion like terms 
from the momentum equations are identifi ed, they may be treated like the 
scalar diff usion terms of species and energy. Th is leaves only extra velocity 
gradient terms for further consideration.

Table 6.3 shows the continuity and species continuity equation trans-
formed to general curvilinear coordinates. Th e accumulation and con-
vection terms in the continuity equation are the same as for all of the 
conserved quantities, once the specifi c conserved quantity (q) is chosen. 
Th e diff usion term is the same in the species equation as in all the remain-
ing equations, once the specifi c conserved property is identifi ed. Th e 
transformed diff usion term contains several second-derivative terms and 
several other mixed second-derivative terms. Th e mixed second-derivative 
terms are moved to the right-hand side (RHS) of the equation along with 
the generation terms. Th e strategy is to evaluate the RHS of the conserva-
tion laws explicitly.

Th e species source term is to be evaluated separately due to the very 
strong nonlinear nature of possibility fast reactions in the fl uid. However, 
the species equation contains no velocity derives in the generation term. 
The source terms of the momentum, enthalpy, turbulent kinetic 
energy, and turbulent dissipation equations contain first and second 
and mixed second-derivative velocity terms. These terms are exces-
sively lengthy, so they are described in Appendix 6.A. The derivation 
of the transformed diffusion terms is also given in Appendix 6.A. The 
transformed source terms in energy equation, exclusive of the diffusion 
terms are in Appendix 6.A. The transformed pressure gradient term 
from the momentum equations are in this appendix also. Th e viscous 
terms in the momentum equations which are not part of the diff usion of 
momentum are all described in terms of transformed velocity gradients in 
Appendix 6.A. Writing the entire momentum equations in terms of trans-
formed coordinates is unwieldy, so the momentum equations and the 
energy equation are summarized with many of the untransformed terms 
on the RHS. In the CTP code, all of the transformed terms are included 
in the solution. Leaving part of these terms untransformed is simply a 
shorthand scheme for summarizing the CTP conservation equations.

To take full advantage of the similarity of the conservation equations, the 
coordinates and velocities will be renamed to fi t an indicial format. Namely,
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Th e contravariant velocities will also be renamed to emphasize that they 
are associated with specifi c transformed coordinate directions.

 
c c c( , , ) ( , , )nU V W W W Wξ ζ⇒  (6.48)

Th e individual terms have been defi ned such that a general form of the 
conservation laws may be stated as

( ) ( )1 i

q ii q ij qq qi i i i j
m

q W q q q
G G S S

J t Z Z Z Z Z
∂ ρ ∂ ρ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞φ+ − = Γ + ≡⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂∑

  (6.49)

where q = ρ, ρU1, ρU2, ρU3, ρh, ρk, ρε, ρωi. Sqq is the part of the source 
term that is not due to the mixed-derivative diff usion terms. For
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i j
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Th e generalized conservation law and the corresponding source terms 
are listed in Table 6.4. Since the CTP code does not utilize adaptive grid-
ding, all of the metric coeffi  cients and the Jacobian calculated from them 
are constants. Even though the code might have such terms under partial 
signs, their exact location is not important for correctly stating the gener-
alized form of the equations.

Part of the reason that the diff usion terms of all of the conserved quan-
tities are complex is that when taking the second derivative of the two 
required, the general diff usion coeffi  cient is placed under this derivative 
operator. If it is placed outside, the equations become much simpler. Th e 
generalized diff usion coeffi  cient would still be evaluated locally. It must 
be varying very rapidly and over a course grid for this not to be a good 
approximation. While the turbulent transport coeffi  cients vary rapidly 
near a wall, both using a fi ne grid and using wall functions suggest that 
the local evaluation of the transport coeffi  cients without including them 
under the second partial operator may be acceptable. Such a procedure 
should be evaluated to simplify the solution algorithm.
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TABLE 6.4  Generalized Conservation Equations
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⎡ ⎤⎡ ⎤∂∂ ∂⎛ ⎞μ −⎢ ⎥⎢ ⎥⎜ ⎟⎝ ⎠∂ ∂ ∂⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤⎛ ⎞⎛ ⎞∂ λ ∂∂ ∂ ⎛ ⎞⎢ ⎥+ μ − μ + ρ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

∑
(D)

2

2

2

2

c

2 2

1
2

3

e iji j
m

X
a a

e e X
a a

U p
JG

Z Z X
S

J U U
g

X X X X

⎡ ⎤⎡ ⎤∂∂ ∂⎛ ⎞μ −⎢ ⎥⎢ ⎥⎜ ⎟⎝ ⎠∂ ∂ ∂⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤⎛ ⎞⎛ ⎞∂ λ ∂∂ ∂ ⎛ ⎞⎢ ⎥+ μ − μ + ρ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

∑
(E)

3

3

3

3

c

3 3

1
2

3

e iji j
m

X
a a

e e X
a a

U p
JG

Z Z X
S

J U U
g

X X X X

⎡ ⎤⎡ ⎤∂∂ ∂⎛ ⎞μ −⎢ ⎥⎢ ⎥⎜ ⎟⎝ ⎠∂ ∂ ∂⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤⎛ ⎞ ⎛ ⎞∂ λ ∂∂ ∂ ⎛ ⎞⎢ ⎥+ μ − μ + ρ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

∑
(F)

•
⎡ ⎤∂ ∂⎡ ⎤⎛ ⎞= φ + + τ ∇⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠∂ ∂⎣ ⎦⎣ ⎦
∑

� ��1
:h h iji j

m

h Dp
S JG U

J Z Z Dt (G)

1
( )k k ij ri j

m

k
S JG P

J Z Z
⎡ ⎤⎡ ⎤∂ ∂⎛ ⎞= φ + ρ − ε⎢ ⎥⎢ ⎥⎜ ⎟⎝ ⎠∂ ∂⎣ ⎦⎣ ⎦
∑ (H)

1 3
2

1 r
ij ri j

m

C C Pk
S JG P C

J Z Zε ε

⎡ ⎤⎡ ⎤⎡ ⎤ +∂ ∂ε ρ ⎛ ⎞⎛ ⎞= φ + − ε⎢ ⎥⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ε ε⎣ ⎦ ⎣ ⎦⎣ ⎦
∑ (I)

For 
i

ji

j

U Z
W

J X
∂

≡
∂

 and 1 i j

ij
m k k k

Z Z
G

J X X
∂ ∂

=
∂ ∂∑∑ . Th e summation m is for ij, if i ≠ j.

In general, repeated indices indicate summations.
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6.4 NOMENCLATURE
6.4.1 ENGLISH SYMBOLS

A, D, Ψ damping parameters
Cp constant pressure heat capacity
D, h, k, ε used as subscripts to indicate type of diff usion: mass, 

enthalpy, turbulent kinetic energy, dissipation of turbulent 
kinetic energy, respectively

gn gravitational acceleration in the direction n
Gij coordinate transformation function
H dummy symbol to indicate mathematical operations
h, hi specifi c enthalpy, specifi c enthalpy of species i
i, j, k nodal indices
I, J, K nodal indices
jmn diff usion fl ux for variable m in direction n
K turbulent kinetic energy
Ki reaction rate
k, ε turbulent kinetic energy and energy dissipation
Le, Let laminar and turbulent lewis numbers
ℓi interpolation function
p pressure
Pk production rate of k
Pr, Prt laminar and turbulent Prandtl numbers
q any conserved quantity
q® heat fl ux vector
Q any conserved quantity
r, θ, z cylindrical coordinates
S distance along a coordinate
Sc, Sct laminar and turbulent Schmidt numbers
s arc length
t coordinate variable which may be time
T temperature
U function; standardized (normalized) function
U c, V c, W c the contravariant velocity components
u, u, w velocity components in Cartesian coordinate system
U1, U2, U3 alternate form of the velocity components in Cartesian 
   coordinates
W ξ, W η, W ζ alternate form of the contravariant velocity components
x, y, z Cartesian coordinates
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X1, X2, X3 alternate form of the Cartesian coordinates
X, Y, Z boundary-fi tted functions
Z1, Z2, Z3 alternate form of the curvilinear contravariant coordinates

6.4.2 GREEK SYMBOLS

ε turbulent kinetic energy dissipation
φ generalized diff usion coeffi  cient
κ thermal conductivity
λ second coeffi  cient of viscosity
λc parameter to indicate compressible fl ow
μ, μt, μe laminar, turbulent viscosity, and eff ective viscosity
ξ, η, ζ nonorthogonal curvilinear coordinates
ρ density
σq parameter to indicate type of diff usive quantity
τij shear–stress component
ωi mass fraction of i

6.4.3 MATHEMATICAL SYMBOLS

H
~

 generalized column vector (U~, E~, F~, G~, or S~) used to write 
   transport equations in a vector form
Ĥ matrix
H * modifi ed version of H

~

Hi denotes a component
Ht turbulent quantity
U
®

 velocity vector
(τt)ij component of the turbulent shear stress

6.4.4 ACRONYMS

CAD computer-aided design
CNS compressible Navier–Stokes
EVM eddy viscosity model
FLUENT commercial computer code
GRID2D/3D computer grid code
HBMS Hirschfelder, Buehler, McGee, Sutton equation of state
PC personal computer
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PDE partial diff erential equation
RHS right-hand side
TFI transfi nite interpolation

APPENDIX 6.A TRANSFORMED TERMS WHICH 
COMPLETE THE SYSTEM OF CONSERVATION LAWS
6.A.1  TRANSFORMATION OF THE DIFFUSION 

TERMS FOR U-MOMENTUM EQUATION

1 1 1 1

1

1

e e e
u u u A B C

J x x J y y J z z J x y z

A A A B B
x x x y y

B C C CJ
y z z z

A B C
J x y z

⎛ ⎞ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞μ + μ + μ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

∂ ∂ξ ∂ ∂η ∂ ∂ζ ∂ ∂ξ ∂ ∂η⎡ ⎤+ + + +⎢ ⎥∂ξ ∂ ∂η ∂ ∂ζ ∂ ∂ξ ∂ ∂η ∂⎢ ⎥=
∂ ∂ζ ∂ ∂ξ ∂ ∂η ∂ ∂ζ⎢ ⎥+ + + +⎢ ⎥∂ζ ∂ ∂ξ ∂ ∂η ∂ ∂ζ ∂⎣ ⎦

⎛ ⎞∂ ∂ξ ∂ξ ∂ξ+ +⎜ ⎟∂ξ ∂ ∂ ∂⎝ ⎠=
I II

III

1

1

A B C
J x y z

A B C
J x y z

⎡ ⎤ ⎡ ⎤⎛ ⎞∂ ∂η ∂η ∂η+ + +⎢ ⎥ ⎢ ⎥⎜ ⎟∂η ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ζ ∂ζ ∂ζ+ + +⎢ ⎥⎜ ⎟∂ζ ∂ ∂ ∂⎝ ⎠⎣ ⎦

��������������������������� ���������������������������

���������������������������

  

(6.A.1)

where

( )

( )

( )

e e e x x x

e e e y y y

e e e z z z

u u u u
A u u u

x x x x

u u u u
B u u u

y y y y

u u u u
C u u u

z z z z

ξ η ζ

ξ η ζ

ξ η ζ

⎛ ⎞∂ ∂ ∂ξ ∂ ∂η ∂ ∂ζ= μ = μ + + = μ ξ + η + ζ⎜ ⎟∂ ∂ξ ∂ ∂η ∂ ∂ζ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ξ ∂ ∂η ∂ ∂ζ= μ = μ + + = μ ξ + η + ζ⎜ ⎟∂ ∂ξ ∂ ∂η ∂ ∂ζ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ξ ∂ ∂η ∂ ∂ζ= μ = μ + + = μ ξ + η + ζ⎜ ⎟∂ ∂ξ ∂ ∂η ∂ ∂ζ ∂⎝ ⎠

  (6.A.2)

Substitute the above equation into the Equation 6.A.1, we can get
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2 2 2

2 2 2

Term I

Term II

Ter

x y z x x y y z z
e e

x x y y z z
e

x x y y z z x y z
e e

x x y y z z
e

u u
J J

u
J

u u
J J

u
J

⎡ ⎤ξ + ξ + ξ ξ η + ξ η + ξ η⎡ ⎤∂ ∂ ∂ ∂= μ + μ⎢ ⎥ ⎢ ⎥∂ξ ∂ξ ∂ξ ∂η⎢ ⎥ ⎣ ⎦⎣ ⎦
ξ ζ + ξ ζ + ξ ζ⎡ ⎤∂ ∂+ μ⎢ ⎥∂ξ ∂ζ⎣ ⎦

⎡ ⎤ξ η + ξ η + ξ η η + η + η⎡ ⎤∂ ∂ ∂ ∂= μ + μ⎢ ⎥⎢ ⎥∂η ∂ξ ∂η ∂η⎢ ⎥⎣ ⎦ ⎣ ⎦
η ζ + η ζ + η ζ⎡ ⎤∂ ∂+ μ⎢ ⎥∂η ∂ζ⎣ ⎦

2 2 2

m III x x y y z z x x y y z z
e e

x y z
e

u u
J J

u
J

ξ ζ + ξ ζ + ξ ζ η ζ + η ζ + η ζ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂= μ + μ⎢ ⎥ ⎢ ⎥∂ζ ∂ξ ∂ζ ∂η⎣ ⎦ ⎣ ⎦
⎡ ⎤ζ + ζ + ζ∂ ∂+ μ⎢ ⎥

∂ζ ∂ζ⎢ ⎥⎣ ⎦
  

(6.A.3)

Hence, the transformed diff usion terms are expressed as

2 2 2 2 2 2 2 2 2
x y z x y z x y z

e e e

x x y y z z x x y y z z
e e

x x y y z z x x y y z z
e

u u u
J J J

u u
J J

u
J

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ξ + ξ + ξ η + η + η ζ + ζ + ζ∂ ∂ ∂ ∂ ∂ ∂μ + μ + μ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
∂ξ ∂ξ ∂η ∂η ∂ζ ∂ζ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ξ η + ξ η + ξ η ξ ζ + ξ ζ + ξ ζ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂+ μ + μ⎢ ⎥ ⎢ ⎥∂ξ ∂η ∂ξ ∂ζ⎣ ⎦ ⎣ ⎦
ξ η + ξ η + ξ η η ζ + η ζ + η ζ⎡ ⎤∂ ∂ ∂+ μ +⎢ ⎥∂η ∂ξ ∂η⎣ ⎦

e

x x y y z z x x y y z z
e e

u
J

u u
J J

⎡ ⎤∂μ⎢ ⎥∂ζ⎣ ⎦
ξ ζ + ξ ζ + ξ ζ η ζ + η ζ + η ζ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂+ μ + μ⎢ ⎥ ⎢ ⎥∂ζ ∂ξ ∂ζ ∂η⎣ ⎦ ⎣ ⎦

  (6.A.4)

To solve the governing equation using a tri-diagonal matrix solver, only 
those terms in the fi rst line of the above equation will stay on the LHS of 
the discretized equation, and the remaining terms will be moved to the 
RHS of the discretized equation as the source term. To represent the dif-
fusion terms for the dependent variable (q) in a compact form, the above 
expression can be written as
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11 22 33

LHS

12 13 21 23

31

q q q

q q q q

q

q q q
G G G

q q q q
G G G G

q
G

⎡ ⎤ ⎡ ⎤⎡ ⎤∂ ∂ ∂∂ ∂ ∂φ + φ + φ⎢ ⎥ ⎢ ⎥⎢ ⎥∂ξ ∂ξ ∂η ∂η ∂ζ ∂ζ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂∂ ∂ ∂ ∂+ φ + φ + φ + φ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥∂ξ ∂η ∂ξ ∂ζ ∂η ∂ξ ∂η ∂ζ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤∂∂ ∂+ φ +⎢ ⎥∂ζ ∂ξ ∂⎣ ⎦

�������������������������������������������

32 q

q
G

⎡ ⎤∂φ⎢ ⎥ζ ∂η⎣ ⎦
  

(6.A.5)

or

 LHS RHS

ii q ij qi i i j
n m

q q
G G

Z Z Z Z
∂ ∂∂ ∂⎡ ⎤ ⎡ ⎤ φ + φ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∑ ∑
������������������� �����������������

  

(6.A.6)

where indicial nomenclature is introduced for the independent 
variables. The position of the index on the variables is explained in 
Appendix B.

6.A.2  TRANSFORMATION OF SOURCE TERMS IN 
THE MOMENTUM AND ENERGY EQUATIONS

For the momentum equations

 

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − ξ + η + ζ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ξ ∂η ∂ζ⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − ξ + η + ζ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ξ ∂η ∂ζ⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − ξ + η + ζ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ξ ∂η ∂ζ⎣ ⎦

1 1 1
( ) ( ) ( )

1 1 1
( ) ( ) ( )

1 1 1
( ) ( ) ( )

x x x

y y y

z z z

p
p p p

x J J J

p
p p p

y J J J

p
p p p

z J J J  

(6.A.7)

For the energy equation
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1 1 1
( ) ( ) ( )

1 1 1
( ) ( ) ( )

1 1 1
( ) ( )

x x x

y y y

z z

Dp p p p p p p
U p u w

Dt t t x y z t

u p p p
J J J

p p p
J J J

w p p
J J J

•
∂ ∂ ∂ ∂ ∂ ∂= + ∇ = + + υ + =
∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ξ + η + ζ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ξ ∂η ∂ζ⎣ ⎦
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+υ ξ + η + ζ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ξ ∂η ∂ζ⎣ ⎦

∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ ξ + η +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ξ ∂η ∂ζ

�

( )z p
⎡ ⎤⎛ ⎞ζ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

(6.A.8)

2
: 2

3

2
2

3

2
2

3

e

e

e

e

e

u u w u
U

x x y z x

w u
y y z x y

w w u w
z z x y z

u u
y x y x

w
z y

⎛ ⎞⎡ ⎤∂ ∂ ∂υ ∂ ∂⎛ ⎞Φ = τ ∇ = μ − + +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
⎛ ⎞⎡ ⎤ ⎛ ⎞∂υ ∂υ ∂ ∂ ∂υ+μ − + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂υ ∂⎛ ⎞+μ − + +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞∂ ∂υ ∂ ∂υ+μ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂υ ∂ ∂υ+μ +⎜ ⎟∂ ∂⎝ ⎠ e

w w u w u
z y x z x z

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + μ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠   
  (6.A.9)

6.A.3  TRANSFORMATION OF REMAINING 
VELOCITY DERIVATIVES

Other velocity derivatives necessary to transform the momentum, 
enthalpy, turbulent kinetic energy, and turbulent dissipation equations are 
given as follows. Th e use of a diff usion-type metric is not convenient for 
these terms, so it is not used.
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( )

( )

( )

( )

( )

e x e x x x

x e x x x

x e x x x

e x e y y y

x e y y y

x e

A u
u u u

x x x

u u u

u u u

B u
u u u

x x y

u u u

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤= μ = ξ μ ξ + η + ζ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠∂ ∂ ∂ ∂ξ⎣ ⎦
∂ ⎡ ⎤+ η μ ξ + η + ζ⎣ ⎦∂η
∂ ⎡ ⎤+ ζ μ ξ + η + ζ⎣ ⎦∂ζ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ⎡ ⎤= μ = ξ μ ξ + η + ζ⎢ ⎥⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ξ⎝ ⎠⎣ ⎦
∂ ⎡ ⎤+ η μ ξ + η + ζ⎣ ⎦∂η
∂+ ζ μ
∂ζ

( )

( )

( )

( )

y y y

e x e z z z

x e z z z

x e z z z

u u u

C u
u u u

x x z

u u u

u u u

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

⎡ ⎤ξ + η + ζ⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤= μ = ξ μ ξ + η + ζ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠∂ ∂ ∂ ∂ξ⎣ ⎦
∂ ⎡ ⎤+ η μ ξ + η + ζ⎣ ⎦∂η
∂ ⎡ ⎤+ ζ μ ξ + η + ζ⎣ ⎦∂ζ  

(6.A.10)

 

( )

( )

( )

( )

( )

e y e y y y

y e y y y

y e y y y

e z e z z z

z e z z z

z e

A u
u u u

y y x

u u u

u u u

A u
u u u

z z x

u u u

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤= μ = ξ μ ξ + η + ζ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠∂ ∂ ∂ ∂ξ⎣ ⎦
∂ ⎡ ⎤+ η μ ξ + η + ζ⎣ ⎦∂η
∂ ⎡ ⎤+ ζ μ ξ + η + ζ⎣ ⎦∂ζ

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤= μ = ξ μ ξ + η + ζ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠∂ ∂ ∂ ∂ξ⎣ ⎦
∂ ⎡ ⎤+ η μ ξ + η + ζ⎣ ⎦∂η
∂+ ζ μ
∂ζ

( )z z zu u uξ η ζ⎡ ⎤ξ + η + ζ⎣ ⎦
 

(6.A.11)
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( )

( )

( )

( )

( )

(

e z e y y y

z e y y y

z e y y y

e x e y y y

x e y y y

x e y y

E
z z y

E
x x y

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η

⎡ ⎤∂ ∂ ∂υ ∂ ⎡ ⎤= μ = ξ μ υ ξ + υ η + υ ζ⎢ ⎥ ⎣ ⎦∂ ∂ ∂ ∂ξ⎣ ⎦
∂ ⎡ ⎤+ η μ υ ξ + υ η + υ ζ⎣ ⎦∂η
∂ ⎡ ⎤+ ζ μ υ ξ + υ η + υ ζ⎣ ⎦∂ζ

⎡ ⎤∂ ∂ ∂υ ∂ ⎡ ⎤= μ = ξ μ υ ξ + υ η + υ ζ⎢ ⎥ ⎣ ⎦∂ ∂ ∂ ∂ξ⎣ ⎦
∂ ⎡ ⎤+ η μ υ ξ + υ η + υ ζ⎣ ⎦∂η
∂+ ζ μ υ ξ + υ η + υ
∂ζ

)yζ
⎡ ⎤ζ⎣ ⎦

 

(6.A.12)

 

( )

( )

( )

( )

( )

e x e z z z

x e z z z

x e z z z

e y e z z z

y e z z z

y e

I w
w w w

x x z

w w w

w w w

I w
w w w

y y z

w w w

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤= μ = ξ μ ξ + η + ζ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠∂ ∂ ∂ ∂ξ⎣ ⎦
∂ ⎡ ⎤+ η μ ξ + η + ζ⎣ ⎦∂η
∂ ⎡ ⎤+ ζ μ ξ + η + ζ⎣ ⎦∂ζ
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7C H A P T E R  

Numerical Methods 
for Solving Governing 
Equations

7.1 OVERVIEW
Th is chapter introduces the basic concepts of various numerical methods 
which have been developed to solve the governing conservation equations 
of transport phenomena. Th ese numerical methods when used to solve the 
governing equations (including the nonlinear Navier–Stokes equations) of 
fl uid motion are oft en called computational fl uid dynamics (CFD). Readers 
who are interested in learning an in-depth description of these numerical 
methods should refer to the references listed at the end of this chapter.

CFD methodology and computers have improved dramatically since 
the late 1980s. As a result, the development of numerical tools and physi-
cal models has become popular not only in academic research but also in 
industry, as CFD tools are increasingly being employed in routine design 
practices. In addition, CFD technology has advanced to a state that fl ows 
with both complicated geometry and complex physics can be analyzed 
with reasonable accuracy. Th ere are numerous methodologies employed 
by CFD analysts. Among these, the two most widely used methods are the 
density- and pressure-based approaches, and each approach has its own 
strengths and weaknesses. Th e basic concepts and diff erences between 
these two methods will be described later.
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For each numerical approach, three popular numerical methods are 
used to discretize and solve the set of governing equations. Th ese three 
numerical methods are fi nite diff erence, fi nite volume, and fi nite element. 
Within each numerical method, the set of discretized governing equations 
can be solved in a fully coupled fashion, or sequentially, or a combination 
of both. For the fully coupled solution scheme, all the dependent vari-
ables are calculated simultaneously. Th is procedure requires a huge com-
puter memory to store and solve the coupled coeffi  cients of the system 
of discretized equations. If the system of discretized equation is solved 
sequentially (also known as the segregated solution scheme), then only 
one dependent variable is calculated at a time. Th us, a smaller computer 
memory is required, but more iterations must be performed to get a con-
verged solution. Some CFD solvers use a combination of both, i.e., solving 
the critical dependent variables in coupled fashion, while calculating the 
others sequentially.

Th e discretized equations are solved in a series of small regions within 
the domain of interest (the so-called computational domain). Th ese numer-
ous small regions are called numerical meshes (or grids or cells). Th ree 
commonly seen grid topologies are used to discretize the computational 
domain: structured, unstructured, and hybrid meshes. Th ese methods are 
described herein. Recently, two new grid topologies have been proposed 
to reduce the diffi  culty of generating good-quality numerical meshes for 
problems with complex geometries. Th ese two grid topologies are the 
meshless method (Löhner and Onate, 1998; Sridar and Balakrishnan, 
2003) and the Cartesian grid method (Russell et al., 1995; Pember and 
Wang, 2003; Marella et al., 2005). Details may be obtained from these 
references.

Despite the success claimed for diff erent numerical methods, diff er-
ent forms of numerical damping still exist in each method. Th e use of 
excessive numerical damping can aff ect the accuracy of numerical results, 
especially in simulating unsteady fl ow. Recently, a space–time conserva-
tion-element/solution-element (CE/SE) framework has been developed 
to address the issue of numerical damping and improve the numerical 
accuracy in solving various partial diff erential equations. Th is numerical 
method will also be introduced at the end of this chapter. It should be noted 
that even though not included here, there are other numerical methods for 
solving the governing equations of fl uid dynamics, such as the bound-
ary element method (Brebbia et al., 1984), the direct simulation Monte-
Carlo (DSMC) method (Bird, 1994), the lattice Boltzmann equation (LBE), 
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or direct Boltzmann equation (DBE) solver. Th ey are more useful for spe-
cifi c groups of problems, and thus are not covered here. For example, most 
of the CFD methods are employed to solve the Navier–Stokes equations 
to model fl uid motion, which is valid for continuum fl ows only where 
the Knudsen number (the ratio of the mean free path of the fl uid to the 
characteristic length of the fl ow) is very small (<0.01). However, when the 
fl ow approaches the slip or free-molecular fl ow regime (Knudsen number 
>0.01) or thermal nonequilibrium regime (where rotational, vibrational, 
and electron energies are not negligible), the use of the Navier–Stokes equa-
tions is inappropriate. Th ough DSMC, LBE, and DBE are valid for simu-
lating noncontinuum and thermally nonequilibrium fl ows, they are very 
computationally expensive, especially for problems involving continuum 
fl ow. Lately, a hybrid numerical approach has been employed to couple the 
DSMC and Navier–Stokes solvers to account for the proper physics with 
good computational effi  ciency (Roveda et al., 1998; Sun et al., 2004; Wu 
et al., 2006). References for these numerical methods are readily available.

7.2 DENSITY-BASED AND 
PRESSURE-BASED METHODS

As discussed in previous chapters, a set of governing equations will be 
solved for a set of dependent variables for each problem of interest. For 
example, for a three-dimensional laminar, compressible, non-reacting 
fl ow problem, seven dependent variables (density, three velocity compo-
nents, pressure, temperature, and energy) need to be calculated from fi ve 
transport equations (continuity equation, three momentum equations, 
and energy equation). Since there are more unknowns than the number 
of transport equations, two equations of state are also required to close 
the system of equations. Th e diff erence between the density-based and 
the pressure-based methods is determined by which dependent variables 
are calculated from the transport equations and which are calculated 
from the equations of state. Details of these two methods are presented 
in the following.

7.2.1 DENSITY-BASED METHOD

Th e density-based method calculates density directly from the continu-
ity equation and pressure from an equation of state. Th e density, three 
velocity components, and energy are calculated as the primary dependent 
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variables by solving fi ve transport equations, and the pressure and temper-
ature, treated as the secondary dependent variables, are calculated from 
the equations of state based on the density and energy. Hence, in solving 
the momentum and energy equations, the values of pressure and energy 
calculated from the previous time step are used. In high-speed fl ows such 
as transonic, supersonic, and hypersonic fl ows, density is a primary vari-
able and is a function of time and space. Th e governing equations for 
such fl ows without viscosity are hyperbolic in nature. A large number of 
numerical schemes have been developed to solve such problems and are 
available in the literature (Yee, 1989; Toro, 1999). Th e wave propagation 
properties of the hyperbolic equations have been taken into consideration 
for the development of these types of schemes. As a rule of thumb, the fl ow 
of air at Mach numbers less than 0.3 can be considered incompressible, 
and the compressible schemes without modifi cations become unsuitable 
for such fl ows (Turkel et al., 1997; Roller and Munz, 2000).

Within the low subsonic region, the magnitude of the fl ow velocity 
becomes very small compared to the acoustic speed. Th is makes the eigen-
values of the system vary in magnitude. Also, the condition number of the 
system becomes very large resulting in stiff ness of the linear system and 
numerical instability. Th e condition number is the ratio of the largest to the 
smallest eigenvalue matrices being solved. One of the methods used to over-
come this problem is the application of preconditioning in which the time 
derivative is premultiplied by an appropriate matrix to rescale the condition 
number (Turkel, 1987; van Leer et al., 1991). One of the drawbacks of precon-
ditioning is the diffi  culty in predicting the transient solution because of the 
introduction of artifi cial transient terms during the preconditioning process. 
Another drawback is the lack of numerical stability at stagnation points. 
Th e second approach for the application of hyperbolic schemes developed 
for compressible fl ows to incompressible fl ows is based on the artifi cial com-
pressibility method, which was developed by Chorin (1967). In this approach, 
an artifi cial time derivative term based on the pressure is added to the con-
tinuity equation to cast the equation in hyperbolic form. Th is method has 
been successfully extended to various applications and has been presented in 
the literature (Taylor, 1991; Sheng et al., 1999; Koomullil and Soni, 2001).

7.2.2 PRESSURE-BASED METHOD

In contrast, for pressure-based methods, which were originally developed for 
incompressible fl ows, the pressure is treated as one of the primary dependent 
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variables and is dependent on space and time. Hence, this method calculates 
the pressure, three velocity components, and energy by solving fi ve transport 
equations. Since the continuity equation involves only the density and 
velocity components as dependent variables, it needs to be reformulated 
and cast in terms of the pressure and velocity components. Th e transport 
equation for pressure is obtained by manipulating the momentum and 
continuity equations to produce an equation for the second derivative 
of pressure correction (or pressure change). Th is equation is termed the 
Poisson equation. Once the primary variables can be calculated from the 
equations of state. Th is numerical approach is called the pressure correc-
tion method. Various pressure correction methods were developed to recast 
the continuity equation and solve the system of equations in an iterative fash-
ion. Among them, a Semi-Implicit Method for Pressure Linked Equations 
(SIMPLE) scheme was fi rst proposed by Patankar and Spalding (1972), and 
then revised by Patankar (1980) (SIMPLER) for the pressure–velocity calcula-
tion procedure on the staggered grid topology (this grid will be explained in 
Section 7.4). Various numerical schemes, such as SIMPLEC by Van Doormal 
and Raithby (1984), and PISO by Issa (1986), were also developed for the 
pressure-based method. Th e basic ideals of the pressure correction method are

 1. To let the velocity vector and density be V
Æ

 = V
Æ

 ∗ + V
Æ ¢ and r = r∗ + r¢, 

respectively, where the superscripts 
 ∗ and ¢ denote the guessed 

and corrected values
 2. To solve the momentum equations in a predictor step to obtain V

Æ ∗ 
where the value of pressure at the previous time step is used

 3. To solve the reformulated continuity equation to obtain the value 
of pressure correction (p¢)

 4. To perform the corrector step to calculate velocity correction 
based on pressure correction

A correlation between the pressure change and density change based on 
either the isothermal or isentropic process is then used to replace the 
density correction with pressure correction in the continuity equation so 
that the pressure-based method can be used to simulate the compressible 
fl ows. With this substitution and mathematical manipulation (details will 
be shown in Chapter 8), the reformulated continuity equation, also known 
as the pressure-correction equation, can be expressed as

 
p p uV V( ) ( ) ( )p

p D p
t t

∗∂ ′ ∂ρ⎡ ⎤∗ ∗∗∗β + ∇⋅ β − ∇⋅ ρ ∇ = − + ∇⋅ ρ′ ′ ⎢ ⎥∂ ∂⎣ ⎦

� �

 
(7.1)
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where
12

up ; V ;/ n+ n =        D p   p  p paγ ≈ − ∇ = −′ ′ ′β
�

where
the superscripts n and n+1 denote the value at the previous and 

current time steps
Du is the inverse of the matrix of the coeffi  cients of the convective terms 

in the fi nite diff erence form of the inviscid equations of motion
a and γ are the speed of sound and the ratio of specifi c heats, respectively

Th is method is valid for both perfect-gas and real-fl uid fl ows (Farmer et al., 
2005; Cheng and Farmer, 2006). With the pressure-based approach, pres-
sure variation remains fi nite regardless of the Mach number, and thus 
avoids the shortcomings of density-based methods. Since the pressure-
based solution method is an iterative predictor–corrector solution proce-
dure, it does not need a large amount of computer memory to resolve a 
huge matrix of the system of equations, thus it is more computer friendly.

7.3 NUMERICAL METHODS
As mentioned earlier, the most commonly reported numerical methods 
used to discretize and solve the governing equations are fi nite diff erence 
(Anderson et al., 1984; Hirsch, 1990; Anderson Jr., 1995), fi nite volume 
(Hirsch, 1990; Toro, 1999; Chung, 2002; Leveque, 2002; Versteeg and 
Malalasekera, 2007), and fi nite element (Chung, 1978, 2002; Baker, 1983; 
Hirsch, 1990). Th e fi nite diff erence method discretizes and solves partial 
diff erential in the form

 
V (( ) ) S

t φ φ
∂ρφ + ∇⋅ ρ φ + ∇⋅ ∇Γ φ =
∂

�

 
(7.2)

where f is the dependent variable. However, the fi nite volume method dis-
cretizes and solves the system of governing equation in the integral form,

 
d V nd nd d( )A A S

t φ φ
∂ρφ ∀ + ρφ ⋅ + ∇Γ φ ⋅ = ∀
∂∫∫∫ ∫∫ ∫∫ ∫∫∫

� � �
� � � �

 
(7.3)

Th e fi nite element method, originated in the fi eld of structural analysis, 
has been used to solve various linear and nonlinear continuous fi eld prob-
lems with good success. Th is method has also been used to solve fl uid fl ow 
problems. Similar to the fi nite volume method, the fi nite element method 
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solves the integral form of the transport equations and discretizes the 
computational domain into numerous elements (cells) of arbitrary shape 
and size. Th e value of the dependent variables is approximated as a sum of 
their values at the vertices of each element, as modifi ed by an interpolation 
function corresponding to the vertex of each element. Various interpolation 
functions have been used, such as spline, Legendre, Chebyshev, or trigono-
metric functions. Th e fi nite element method formulates the integral form 
of the discretized transport equations using either a variational principle 
(where the dependent variable is expressed as the extremum of a functional) 
or the weighted residual method through a weak formulation. Th e latter one 
is more widely used because it can defi ne an equivalent integral formulation 
for various cases including discontinuities such as shock waves.

7.4 GRID TOPOLOGIES
In CFD simulations, a computational domain is divided into numerous 
small subdomains, which are called meshes (or grids or cells or elements). 
Th e vertices of each cell are called nodes (or grid points). A control volume 
is the volume of a fi nite region within a computational domain, where the 
physical conservation laws are imposed and solved to obtain the value of 
dependent variables. Th e control volume is typically the same as a cell, but 
could be diff erent for some numerical methods. Th e dependent variables can 
be calculated at either the grid point (denoted as the node-centered method), 
or the center of a cell (denoted as the cell-centered method). For some cell-
centered CFD solvers, once the dependent variables are calculated, they are 
interpolated or averaged to get their values at each node point so that the 
coordinate and dependent variables are stored at the same location. Figure 
7.1 illustrates the diff erence between these two methods. Th e shaded area is 
the control volume, the fi lled circle denotes the location where the depen-
dent variable is calculated, and the cross symbol indicates the grid point.

Th e control volume is typically set to be that of the cell. In the stag-
gered grid method, the control volume is defi ned diff erently for diff erent 
governing equations. As shown in Figure 7.2a, the scalar variable (such as 
pressure) is calculated at the grid point (denoted as fi lled circle), while the 
vector variable (such as velocity components) is calculated at the midpoint 
between two grid nodes (denoted as open circle). Selection of the control 
volume is diff erent for diff erent conservation equations, such that the 
unknown dependent variable for the corresponding equation is located 
at the center of a control volume and the derivative of scalar variable can 
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be evaluated directly. Control volumes for x- and y-momentum equations 
and for the transport equation for a scalar variable (such as pressure) are 
shown in Figure 7.2b through d, respectively.

 
(b)(a) Cell centeredNode centered

FIGURE 7.1 Control volumes for the node-centered and cell-centered 
topologies.

FIGURE 7.2 Storage locations and control volumes of a staggered grid 
system.
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Th ere are three basic types of mesh systems: structured, unstructured, 
and hybrid (a combination of structured and unstructured meshes). For 
the structured mesh, the nodes are indexed in a certain order, and the 
shape of a cell has to be quadrilateral (2-D), and hexahedral (3-D). As a 
result, the grid connectivity and interface between neighboring cells are 
implicitly defi ned, and there is no need to search and store such informa-
tion. Th e nodes of the unstructured mesh are indexed randomly, and thus 
are not in any order. Hence, the grid connectivity and interface between 
neighboring cells have to be explicitly defi ned (Weatherill, 1988; Marcum 
and Weatherill, 1995) in a database and provided to the CFD code. In 
fi nite element parlance, this is termed the assembly step. Comparisons 
between the structured and unstructured mesh topologies are illustrated 
in Figure 7.3. Th e use of structured meshes is computationally more effi  -
cient and requires less computer memory than the use of unstructured 
meshes. However, structured meshes are diffi  cult to construct for complex 
geometries even when using multiblock grid topology (Th ompson, 1987). 
Th e unstructured mesh topology provides fl exibility, simplicity, and auto-
mation for modeling complex geometries. It is also easier to conduct par-
allel computing with domain decomposition and to achieve computer 
load balance using the unstructured mesh. Grid refi nement for obtaining 
more accurate numerical solutions can also be easily accomplished with 
the unstructured grid. Th e use of unstructured meshes not only requires 
more computer memory and computational time but also has relatively 
poor numerical accuracy due to the presence of skewed triangular (2-D) 
or tetrahedral (3-D) elements in sensitive regions like boundary layers.

FIGURE 7.3 Illustration of structured and unstructured mesh systems.
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In an attempt to combine the advantages of both structured and unstruc-
tured grids, a hybrid grid topology was proposed (Shaw, 1998). In the hybrid 
mesh system, pyramid or prismatic or hexahedral cells are used in the bound-
ary layer region, while the rest of the domain is fi lled with tetrahedral cells 
(Kallinderis, 1998; Shaw, 1998). Figure 7.4 shows an example of the hybrid 
grid system. It has been observed that a hybrid grid in viscous regions creates 
a fewer number of elements than a completely unstructured grid for the same 
resolution. Recently, the idea of using grids of diff erent element-topologies has 
been extended further to give rise to what is called a generalized grid topology 
(Koomullil and Soni, 1999; Th ompson et al., 2000; Cheng et al., 2007). Th e 
generalized grid topology employs polyhedral cells and has no restrictions on 
the number of edges or faces for a cell, which makes it extremely fl exible for 
adapting the mesh to complex geometry and maintaining good grid quality.

FIGURE 7.4 (See color insert following page 294.) Example of a hybrid grid 
system. (Courtesy of Dr. Yasushi Ito, University of Alabama at Birmingham.)
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Th e aforementioned fi xed grid topologies are typically employed to 
model objects which are stationary relative to fl uid fl ows. Transport phe-
nomena of fl uid fl ow involving multiple bodies in relative motion are com-
monly seen in the store/stage separation process, control surface defl ections 
for air vehicles, debris transport, turbomachinery, etc. For the simulation 
of moving body problems, the mesh associated with each body needs to be 
relocated to preserve a body conforming grid; thus, a conventional fi xed 
grid approach cannot be used to simulate such problems. Currently, there 
are two major approaches used to tackle this type of problem. Th e fi rst 
approach utilizes a grid deformation and remeshing strategy to handle 
the relative motion among multiple bodies. In this approach, as diff erent 
bodies move relative to each other, the grid between them is deformed 
using diff erent numerical strategies such as a tension or torsion spring 
analogy (Sing et al., 1995; Farhat et al., 1998), a Laplacian based approach 
(Burg, 2005), or a linear elasticity data interpolation (Gao et al., 2002). 
Th e mesh must be locally or globally regenerated once the mesh quality 
degrades. If the body movement is suffi  ciently small, the grid deforma-
tion can be smoothly transferred to the interior points in such a way that 
it will be dampened at the fi xed outer boundary. Th e advantages of these 
methods provide ease of implementation into a CFD fl ow solver without 
data interpolation, as long as no regeneration of the grid is required. It is 
very diffi  cult to maintain the grid quality (which has a strong eff ect on the 
numerical accuracy) of the deforming grid and is very time consuming 
to check the grid quality during the mesh deformation process. Another 
drawback of this approach is that the mesh quality must be checked at 
each time-iteration. Th is approach is best suited for bodies involving small 
relative motion between diff erent components.

Th e second approach is the use of an overset grid topology (Benek 
et al., 1985; Noack, 2002, 2003; Buning et al., 2004; Fasta and Shelley, 
2004; Cheng et al., 2005, 2007; Koomullil et al., 2008). In this approach, 
individual grids are generated for the objects involved in the problem of 
interest, and they are overlaid with each other to form a complete mesh 
system. An example of overset grid for a wing-store confi guration is dem-
onstrated in Figure 7.5. Th is makes the grid generation less labor intensive, 
and the grid movements associated with each body can be independently 
modeled for the individual mesh systems. Since an overset composite grid 
consists of several overlapping grids, procedures have to be performed to 
interpolate and exchange information between the fl ow variables from dif-
ferent mesh systems. Appropriate algorithms are used to remove the mesh 
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points outside the domain of interest (such as mesh points inside a solid 
object) and to fi nd the regions where the fl ow variables need to be inter-
polated from other meshes. During the time integration of the govern-
ing equations, appropriate information is transferred between diff erent 
meshes for an accurate simulation. As one or more of the objects move 
relative to another, the meshes associated with them also move rigidly 
along with the body. Th e use of overset meshes makes the fl ow simulation 
process more effi  cient and allows mesh motion without deformation or 
remeshing. In addition, the overset grid topology allows the structured 
mesh to easily model complex geometries. However, implementation of 
this approach into a fl ow solver is extremely complicated because (1) the 
grid connectivity between zonal meshes needs to be tracked and updated 
at each time iteration, (2) the grid points that fall into the solid object need 

(a) Overall view

(b) Close-up view

FIGURE 7.5 (See color insert following page 294.) An overset grid system for 
a wing-store confi guration. (Courtesy of Dr. Roy P. Koomullil, University 
of Alabama at Birmingham.)
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to be identifi ed and excluded from fl ow calculations, and (3) interpola-
tions between overlapping grids need to be performed, which can decrease 
numerical accuracy. Th e numerical accuracy in calculating heat transfer in 
a thin boundary layer such as high-speed fl ows is of great concern because 
of the disparity among diff erent mesh systems in that region.

Th e accuracy of numerical solutions is highly dependent on the grid 
spacing employed. However, it is not feasible to use very fi ne grid through-
out the entire computational domain due to the limitation of computer 
power and time. Hence, the common practice of CFD is to use fi ne grid 
only for the region where fl ow variables change rapidly, such as boundary 
layer, fl ow separation, and shock waves. Unfortunately, the exact location 
and the size of the high-gradient regions are unknown until the numerical 
solution is obtained. Trial-and-error can be used to determine the regions 
which require fi ne mesh. Another alternative is to automatically adapt 
the mesh with refi nement or redistribution based on the solution, which 
is called mesh refi nement or mesh adaptation/redistribution. Th e basic 
structure of grid refi nement procedure consists of (a) solving the governing 
equations on the current grid; (b) identifying cells for refi nement or coars-
ening; (c) subdividing the cells identifi ed for refi nement; (d) coalescing the 
cells identifi ed for coarsening; and (e) refi ning additional cells to maintain 
a smooth grid density variation which is required to guarantee the stabil-
ity and accuracy of the solver. Grid adaptation/redistribution has the same 
procedure as grid refi nement, except that step (c)-(e) will be replaced with 
relocation of grid points. For the structured mesh, grid adaptation (Soni 
et al., 1998, 2000) can lead to deterioration of grid quality (skewed mesh), 
and grid refi nement can greatly increase the number of grid points. 
Compared to the structured mesh, unstructured meshes off er more fl ex-
ibility in both grid adaptation and refi nement (Khawaja et al., 2000; Zhang 
et al., 2001; Suerich-Gulick et al., 2004; Shephard et al., 2005).

7.5 SPACE–TIME CONSERVATION-ELEMENT/
SOLUTION-ELEMENT METHODS

In recent years, a growing trend in the fi eld of CFD has been the demand 
for increased accuracy and capability to handle complex fl ows. In particu-
lar, the focus of CFD research has shift ed away from steady-state inviscid 
problems, toward the more complicated regime of unsteady viscous fl ows 
that may involve shocks, combustion, etc. In such regimes, the traditional 
fi nite diff erence, fi nite volume, and fi nite element methods, such as the 
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Lax-Wendroff  scheme or the two-step MacCormack’s scheme, generally 
seem to suff er from numerical wiggles near a discontinuity (Hirsch, 1990). 
Motivated by the idea that this diffi  culty may be overcome by addition of 
artifi cial dissipation, as suggested by von Neumann and Richtmeyer (von 
Neumann and Richtmyer, 1950), many eff ective wiggle-suppressing, shock-
capturing schemes such as Harten’s (1983) high-resolution scheme, Yee’s total 
variation diminishing (TVD) scheme (Yee et al., 1985), and the essentially 
nonoscillatory (ENO) method (Harten et al., 1987) were developed during 
the 1980s. However, these schemes are burdened with additional eff ects 
such as monotonicity, entropy conditions, and TVD properties, which may 
not be consistent with fl ow physics (Chang et al., 1998). Moreover, as rightly 
pointed out by Shu et al. (1992), these methods have diffi  culties in capturing 
small-scale fl ow features due to the excessive damping.

In contrast, there are popular schemes such as spectral methods 
(Gottlieb and Orszag, 1977) and the compact fi nite diff erence scheme with 
spectral-like resolution (Lele, 1992), which on one hand have high accu-
racy and low numerical dissipation and thus can resolve small-scale fl ow 
features. On the other hand, these schemes are handicapped by their lim-
ited capability to handle practical problems, e.g., those involving complex 
geometries and (or) shock waves (Shu et al., 1992). In fact, these schemes 
are not fl ux-conserving, hence making them unsuitable for resolving 
shocks. In general, while solving nonlinear partial diff erential equations, 
stability cannot be maintained without the presence of adequate dissipa-
tion. Hence, schemes such as these, with low numerical dissipation are 
susceptible to numerical instability and may require some ad hoc treat-
ment to maintain stability.

Th e inadequacy of the popular schemes mentioned above can be illus-
trated vividly by their general inability to resolve both strong shocks and 
small disturbances (e.g., acoustic waves) simultaneously. Note that, while 
numerical dissipation is needed for shock capturing, too much of it will 
result in annihilation of small disturbances. By design, these schemes are 
not equipped to overcome this diffi  culty. Another challenge with respect 
to the development of fl ux-conserving fl ow solvers has been the proce-
dure for evaluating the convective fl ux. For most established schemes, this 
procedure is constructed using a characteristics-based approximate solu-
tion to the Riemann problem, drawing motivation from Godunov’s work 
(Godunov, 1969). As the Riemann problem is fundamentally one dimen-
sional, this approach does not allow for a natural extension into multiple 
dimensions. In practice, the extensions are implemented using artifi cial 
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dimensional-splitting techniques (Batten et al., 1997; Chang et al., 1998). 
Not only are these techniques diffi  cult to apply over non-Cartesian meshes, 
they also make it much more complicated to enforce fl ux conservation 
over both space and time (a property required by physics), if it can be 
done at all. Batten et al. (1997) has a good discussion on this issue and 
explores some of the newer approaches in regards to fl ux evaluation pro-
cedures. In addition, because of numerical dissipation being introduced 
in those aforementioned methods through upwind biasing, its strength 
in a stagnation region oft en becomes too low to sustain computational 
stability and even results in spurious solutions such as the so-called car-
buncle phenomenon (Peery and Imlay, 1988). Another thorny issue that is 
overlooked in the established methods is the confl ict between stability and 
accuracy in time-accurate computations, i.e., too much numerical dissipa-
tion would degenerate accuracy, while too little of it may cause numeri-
cal instability. In fact, to meet both accuracy and stability requirements, 
computation must be performed slightly away from the limit of instability, 
without going too far away from it.

Th e space–time conservation element and solution element (CESE) 
method (Chang and To, 1991; Chang, 1995; Chang et al., 1998, 1999) is an 
emerging numerical framework and was developed as an attempt to over-
come the aforementioned numerical diffi  culties. Th is method treats time 
and spatial coordinates in exactly the same manner. It is substantially dif-
ferent, in both concept and approach, from those well-established meth-
ods, such as fi nite diff erence, fi nite volume, and fi nite element methods. 
Th is high-resolution, multidimensional, numerical framework has been 
built from scratch with extensive consideration on physics and rigorous 
mathematical proof, thereby doing away with some of the limitations of 
traditional numerical simulation methods. In addition to being mathe-
matically simple, it has many other attractive features for solving prob-
lems involving fl ow instability or unsteadiness. Th ese features include the 
following

 1. Unifi ed treatment of both space and time
 2. Enforcement of both local and global space–time fl ux conservation
 3. Use of a space–time staggered mesh that allows for evaluation of 

fl uxes at the cell interfaces without solving the Riemann problem
 4. Schemes built from a neutrally stable (i.e., nondissipative) core 

scheme, allowing for control of numerical dissipation (if needed) 
eff ectively and with mathematical justifi cation (not ad hoc)
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 5. Treating mesh values of the fl ow variables and their spatial deriva-
tives as independent unknowns

 6. For fl ows in multiple spatial dimensions, no directional splitting 
is employed, leading to a truly multidimensional scheme

 7. Avoids using ad hoc numerical damping as much as possible

For inviscid fl ow problems (without fl ow discontinuity), the nondissipa-
tive core scheme is a natural fit, because the f low is reversible in time. 
However, the characteristics of viscous f low and inviscid f low problems 
with shocks are irreversible in time, and thus the addition of numeri-
cal dissipation may be required. Since its inception in 1991 (Chang and 
To, 1991), the unstructured-mesh compatible CESE method has been 
successfully adapted to model several different applications (Chang 
et al., 2000, 2005; Qin et al., 2000; Loh et al., 2001; Loh and Zaman, 2002; 
Kim et al., 2004; Zhang et al., 2004; He et al., 2005; Yen and Wagner, 2005) 
in unsteady Euler fl ows, acoustic waves, traveling and interacting shocks, 
detonation waves, cavitation, etc. Batten et al. (1997) in their paper that 
explored several new implicit schemes for the solution of the compress-
ible Navier–Stokes equations, have high praise for the CESE framework 
among the conventional second-order accurate schemes and consider it 
a worthy candidate to model the Navier–Stokes equations. Nevertheless, 
as the CESE framework generates an additional convective f lux of the 
f low variables near the wall, that can diffuse the boundary layer, 
Batten et al. (1997) suggest the need for developing appropriate bound-
ary conditions that can remedy this situation. Zhang et al. (2000) and 
Venkatachari et al. (2008) have proposed unified wall boundary treat-
ment, and show good success for both steady and unsteady viscous 
f low simulations. Unsteady f low problems such as combustion insta-
bility and aeroacoustics have gained a lot of attention in recent times. 
Th e CESE methodology, with its unique feature of enforcing conserva-
tion laws in both space and time, appears to be an ideal fit for simulat-
ing such problems. Hopefully,  this methodology will be more fully 
developed.

7.6 NOMENCLATURE
See Section 6.5, exceptions are the replacement of the symbols: g with f, 
f with G, and p with P.
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8C H A P T E R  

The CTP Code

8.1 GRIDS
Th e CTP code solves the conservation form of the fl uid transport equa-
tions by dividing the fl ow domain into a network of small control volumes 
using a system of grids. Based on this network of cells, the conservation 
equations are integrated for each control volume. Discretization in the 
temporal direction is applied separately based on a specifi ed time-step 
size. Th e result is a system of discretized algebraic equations organized 
in matrix form that can be solved through iterative methods. Solutions 
for each time step are obtained the same way until a required length of 
time is reached for transient solutions or when a converged steady-state 
solution is achieved.

To discretize a computational domain that may be encompassed by 
boundaries with arbitrarily irregular shapes, a system of body-fi tted grids 
can be incorporated to describe the geometry. Th e CTP code utilizes a 
structured grid system where the grid lines run in orderly curvilinear 
directions and can be identifi ed by indices in each direction. A body-fi tted 
grid, or body-conforming grid, as illustrated in Figure 8.1, gives a close 
representation of the boundary shapes of the fl ow domain under investi-
gation. Th is grid is called a single-block structured grid. Clearly, the exact 
boundary shapes is approached, as the mesh size of this grid is continu-
ously refi ned. Th erefore, it is important to note that for boundaries with 
strong curvature or discontinuity in boundary slope, more grid points 
along the boundaries may be needed to predict good solutions of the 
fl owfi eld. Th at is, aside from physical model eff ects, keeping smoothness 
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or minimizing the changes in mesh cell slopes and volumes is a good 
practice in getting good numerical solutions using the CTP code.

For complicated fl ow domains, a system of body-fi tted grids (or mul-
tiblock grids) may be employed to model the geometry in order to give 
smooth representation of the boundaries. Using multiblock grid option 
also allows generation of better grid quality that is measured if the grid 
lines are intersected as close to be orthogonal as possible. Figure 8.2 illus-
trates an example of multiblock grid system. Here, interfaces between grid 
blocks (called block interfaces) are identifi ed such that the discretization 
of the conservation equations at the interface cells, or control volumes, 
can be formulated the same way as for the interior cells of each block.

FIGURE 8.1 Typical body-fi tted grid.

FIGURE 8.2 Multiblock grid system.

1

2

3

5-Block mesh

4

5
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To keep track of the grid system numerically, the grid points on each 
grid line are numbered in an orderly fashion. For a two-dimensional 
(2D) grid, grid lines in two running directions are named as I-line and 
J-line, respectively. Th e right-hand rule is observed in organizing the 
running directions of the grid indices. Since a control volume method 
is adopted to integrate the transport equations, cell-centered locations, 
defi ned as geometric average of the coordinates of the surrounding grid 
points, of grid cells are identifi ed to construct control volumes. Figure 
8.3 shows an example of the grid indices and the defi nition of control 
volumes. Here, cell-centered locations surrounding grid point (i, j) are 
represented as (i − 1/2, j − 1/2), (i + 1/2, j − 1/2), (i − 1/2, j + 1/2), and 
(i + 1/2, j + 1/2). A control volume of grid point (i, j) is then constructed 
by connecting the points of the cell-centered locations. Th is control vol-
ume defi nition can be directly extended to 3D grid systems. For bound-
ary cells, the cell-centered points are pushed to the midpoint locations of 
the boundary surface segments. Th is system of control volumes forms a 
watertight domain representing the fl ow domain geometry. Here, for 
good numerical representation of the geometry and solution accuracy, 
it is assumed that the grid lines are smooth and the grid density is tailored 
to the local curvature of the grid lines.

FIGURE 8.3 Control volumes and the grid index system.
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8.2 DISCRETIZED CONSERVATION EQUATIONS
As described in Chapter 6 and Table 6.1, the transport equations in 2-D 
general curvilinear coordinates can be represented in a general form as
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x y x y
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t J J J J J
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J J J

φ φ
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ξ η + ξ η η ξ + η ξ⎛ ⎞ ⎛ ⎞∂ ∂φ ∂ ∂φ

= + Γ + Γ⎜ ⎟ ⎜ ⎟∂ξ ∂η ∂η ∂ξ⎝ ⎠ ⎝ ⎠  
(8.1)

where
φ represents all fl ow variables of the governing equations, i.e., 1, u, u, 

w, h, k, ε, and (Sω)k for continuity, momentum, energy, turbulence 
kinetic energy, turbulence energy dissipation rate, and species 
equations, respectively

Γφ represents the diff usion coeffi  cient, and can be expressed as

 

2

t
t

,t

for laminar flows

; where 
for turbulent flows

k
Cφ

φ μ

φ φ

μ⎧
⎪ σ⎪Γ = μ = ρ⎨ μμ ε⎪ +
⎪σ σ⎩  

Values of σφ and σφ,t for various governing equations are listed in Table 8.1. 
Th e curvilinear coordinate transformation Jacobian and contravariant 
velocities are defi ned as

TABLE 8.1  Values of σφ and σφ,t for Each Transport Equations

sf sf,t

Momentum equations 1.00 1.00
Energy equation 0.72 0.90
k-equation (standard model) — 1.00
e-equation (standard model) — 1.30
k-equation (extended model) — 0.8927
e-equation (extended model) — 1.15
Species equations 1.00 0.90
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Th e source terms for the transport equations can be expressed as
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(8.3)

where
Φ, Qt, and (Sω)k represent energy dissipation, heat source, and species 

source terms, respectively
λ is the unity for compressible fl ows and zero for incompressible fl ows
NS is the number of chemical species involved

and
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(8.4)

Values of modeling constants are given in Table 8.2.
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Th e fi rst term on the left -hand side of Equation 8.1 is a temporal term, 
the next two terms represent convection terms and the last two terms are 
the orthogonal part of the diff usion terms. Th e fi rst term on the right-hand 
side is a source term and the next two terms represent the nonorthogonal 
part of the diff usion terms. 2-D equations are derived here for simplicity 
in the present numerical formulation. Generalization to 3-D space can be 
done following the same procedures. For planar or axisymmetric 2-D fl ow 
problems, the Jacobian is modifi ed to refl ect the volumetric eff ects as

 

− − ⎧∂ ξ η= = ⎨∂ ⎩
(IAX 1) (2 IAX) 1, for 2-D planar flows( , )

; IAX
2, for axisymmetric flows( , )

J y z
x y  

Next, let us defi ne the grid index systems. Referring to the grid system 
described in Section 8.1, the I- and J-coordinate are coincident with the 
ξ- and η-coordinate in the above equation, respectively. Th e temporal 
coordinate direction is denoted as N-coordinate with discrete grid index 
as n − 1, n, and n + 1 for previous, current, and next time steps, respectively. 
With these coordinates defi ned, it is straightforward to discretize the 
above transport equation term by term. Apply fi rst-order backward diff er-
ence scheme and second-order central diff erence scheme for the temporal 
and convection terms, respectively, these terms can be discretized as

 

+

+ −

+ −

⎛ ⎞ ⎛ ⎞∂ ρφ ∂ ρ φ ∂ ρ φ⎛ ⎞ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ξ ∂η⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ρ φ ρ φρφ ρφ⎛ ⎞ ⎛ ⎞ −⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= +
Δ Δξ

⎛ ⎞ ⎛ ⎞ρ φ ρ φ−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
+

Δη

1 1
2 2

1 1
2 2

c c

c c1

, ,

c c

, ,

n n

i j i j

i j i j

U V
t J J J

U U
J JJ J

t
V V
J J

 
(8.5)

TABLE 8.2  Turbulence Modeling Constants

Cm C1 C2 C3

Standard model 0.09 1.43 1.92 0.00
Extended model 0.09 1.15 1.90 0.25
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Th e last term in the braces of Equation 8.7 is approaching zero and can be 
neglected in steady state applying the mass conservation condition (i.e., 
the continuity equation). Next, the orthogonal part of the diff usion terms 
is discretized using the central diff erencing scheme. Th at is,
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Similarly, central diff erence scheme is also applied to the source terms and 
the nonorthogonal terms of the diff usion terms of the general conservation 
equation. Finally, the discretized conservation equation can be written as
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(8.9)

8.3 UPWIND AND DISSIPATION SCHEMES
Th e left -hand side terms of Equation 8.9 is arranged in matrix form so 
that the variable is solved implicitly using iterative matrix solvers. Th e 
right-hand side terms are evaluated explicitly. This approach makes 
the overall numerical scheme semi-implicit in obtaining a steady-state 
solution. For numerical stability, it is required to have diagonal domi-
nance of the fi nal matrix equation. Th e objective is to have the coeffi  cients 
associated with the central node, (i, j), to be equal or larger than that of 
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its surrounding nodes, i.e., coeffi  cients of the off -diagonal terms. For most 
fl ow problems, the convection terms are the dominant terms in the con-
servation equation and the fi rst-order gradient terms contribute to the 
possibility of off -diagonal dominance of the discrete equation. To achieve 
this stability requirement, one extra term related to the convection term 
is therefore added to both sides of Equation 8.9. Th e net eff ect is to have 
diagonal dominance of the matrix coeffi  cients on the left -hand side and 
keeping the equation essentially the same as the original form. Th is extra 
term takes the form of
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When the above extra term is added to both sides of Equation 8.9, the 
numerical scheme is still keeping its original second-order central diff er-
ence form. For many complex fl ow problems, a relaxation factor between 
zero and unity can be applied to the extra term added on the right-hand 
side of the equation to allow more damping and stability for the numeri-
cal solutions. Th is method is also employed to obtain solutions near fl ow 
regions with large gradients or discontinuities, e.g., across shock waves. 
Also, a relaxation factor, 1-REC, is applied to the term added to the right-
hand side for better stability in solving complex fl ow problems, where REC 
represents a dissipation parameter. A typical value of 0.25 for REC is used 
for turbulent or reacting fl ows. Larger REC can also be used for problems 
with higher stiff ness in obtaining a stable solution. It can be observed that 
when zero value of the relaxation factor is applied, or REC = 1, the scheme 
is essentially a fi rst-order upwind scheme for the convection terms. Since 
only the fi rst-order upwind scheme is stable across shock waves, the fol-
lowing shock monitoring parameter in I-direction is also employed to 
gradually switch-off  high-order terms when second-order pressure deriv-
atives is large.

 

( ){ }
( )

1 1

1 1 1 1

max 0, 1 25max , ,

2 2/
d i i i

i i i i i i ip p p p p p
+ −

+ − + −

α = − ψ ψ ψ

ψ = − + + +  
(8.11)



322   ■     Computational Transport Phenomena for Engineering Analyses

J- and K-direction shock monitoring parameters are formulated in the 
similar way. To formulate other high-order upwind schemes for the con-
vection terms, diff erent form of the extra term is added to the right-hand 
side of Equation 8.9. For example, a high-order upwind scheme or a total 
variation diminishing (TVD) scheme, etc. can be resulted while keeping 
the fi nal convection terms on the left -hand side of the equation retain the 
same diagonal dominant fi rst-order upwind scheme. For a second-order 
upwind scheme, the extra term added to the right-hand side takes the fol-
lowing form:

 

1 1
2 2

1 1
2 2

c c

, 1. 2, 1. 1. 2, 1. ,
, ,

c c

, . 1 , 2 . 1 . 1 , 2 . 1 ,
, ,

( ) (1 )( ) ( ) (1 )( )
2 2

( ) (1 )( ) ( ) (1 )(
2 2

i j i j i j i j i j i j i j i j
i j i j

i j i j i j i j i j i j i j i j
i j i j

U Ua a b b
J J

V Vc c d d
J J

− + + − − +
+ −

− + + − − +
+ −

ρ ρ⎡ ⎤ ⎡ ⎤φ − φ + − φ − φ − φ − φ + − φ − φ⎣ ⎦ ⎣ ⎦

Δξ
ρ ρ⎡ ⎤φ − φ + − φ − φ − φ − φ + − φ − φ⎣ ⎦

+

)⎡ ⎤⎣ ⎦

Δη  
  (8.12)

For a third-order upwind scheme, the extra term added to the right-hand 
side is expressed as
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For a TVD upwind scheme, the extra term added to the right-hand side is 
expressed as
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An upwind switching parameter, IREC, is employed for the user to select 
what high-order upwind scheme to be used to discretized the convection 
terms. Th is is summarized in Table 8.3.
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To provide background smoothing of the solutions while keeping 
second-order accuracy of the baseline numerical schemes, a fourth-
order dissipation term is incorporated as a source term to the transport 
equations. Th is term takes the following form:
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and ad is defi ned in Equation 8.11

8.4 SOLUTION STRATEGY
To obtained solutions of the fl ow variables, discretized conservation equa-
tions in the form described above are solved using iterative matrix solvers 
in sequence. Th e source terms on the right-hand side of the conservation 
equations are calculated explicitly based on known fl ow variables at the 
current time level. Th is constitutes a semi-implicit approach to obtain 
numerical solutions. Th e main advantage of semi-implicit method is in the 
programming simplicity, development effi  ciency, maintenance robustness 
and matrix solver effi  ciency, and stability. Th is approach only suff ers in the 
time-step size limit that cannot be as large as a fully implicit method.

TABLE 8.3  CTP Code Upwind Scheme Options

Second-Order 
Upwind

Th ird-Order 
Upwind

Second-Order 
Central

Second-Order 
Upwind TVD

Th ird-Order 
Upwind TVD

IREC 0 1 2 3 4
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Since the pressure gradient terms in the momentum equations are fi rst 
order, which is the same order as the convection terms, the velocity vectors 
and pressure fi eld tend to decouple as the fl owfi eld solution evolves. One 
way to circumvent the decoupling problem is to store the velocity vectors 
at staggered spatial locations with respect to where the pressure variable 
is stored around a control volume. Th en pressure and velocity corrections 
are made based on a pressure Poisson equation. However, this approach 
makes the programming more complicated, especially for general curvi-
linear coordinates mesh systems.

To use collocated variable approach (i.e., velocity vectors and other fl ow 
variables including pressure are stored at the center of control volumes), for 
solution accuracy and programming consistency, velocity–pressure coupling 
formulation is incorporated at control volume interfaces. First of all, the dis-
cretized momentum equation in algebraic equation form can be written as
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1
V V
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p p n n
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A A p S
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+ = − ∇ +∑
�� �

 
(8.16)

Assuming that velocity perturbations in space is a function of pressure 
perturbations only and can be estimated based on Equation 8.16. Th at is,
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(8.18)

Next, the continuity equation is employed to derive a pressure correction 
equation that is solved to update the pressure and velocity fi elds such that 
the mass conservation condition is enhanced at the end of each time-
marching step. Th e continuity equation can be written as

 
( V) 0

t
∂ρ +∇⋅ ρ =
∂

�

 
(8.19)

Th e density and velocity fi elds are perturbed as ρ = ρ* + ρ′ and V
→

 = V
→ * + V

→
′, 

respectively, where ρ* and V
→ * are density and velocity fi elds of the current 

time level, respectively. Substitute these perturbed fi elds into the continu-
ity equation, the following expression is obtained.
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(8.20)

Th en, by assuming small perturbations and omitting high-order pertur-
bation terms, i.e., the last term on the left -hand side of Equation 8.20
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(8.21)

By substituting the velocity–pressure coupling expression and equation 
of state (EOS) in Equation 8.21, a pressure correction Poisson equation is 
obtained. Th at is,
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(8.22)

Here, to evaluate the last term on the right-hand side of Equation 8.22, the 
velocity vectors at control volume interfaces are calculated based on the 
nodal values and extrapolated to the interface locations. An extrapolation 
scheme is employed based on the discretized momentum equation shown 
above. Th e application of this scheme ends up with a fourth-order pres-
sure dissipation term on the right-hand side of Equation 8.22 and gives 
smooth pressure fi eld solutions. Th at is,
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and
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(8.24)

Th e above pressure corrected contravariant velocities at control vol-
ume interfaces are used for the convection terms of all the conservation 
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equations discussed above. It is clear that the above pressure correction 
equation is also in the form of a general conservation equation and can 
be discretized and solved the same way as other transport equations 
described previously. For good numerical stability in solving the above 
pressure correction equation, a fi rst-order upwind scheme is applied to 
discretize the convection term, i.e., the second term on the right-hand 
side of the equation. It is worth to note that the temporal and convection 
terms of this equation become dominant for high Mach number fl ow 
regions and vanish when local fl ow Mach number is approaching zero. 
Th is property agrees with the gas dynamics of compressible fl ows and 
gives physically correct pressure correction solutions based on the mass 
conservation condition. Aft er the perturbed pressure fi eld is solved, the 
velocity fi elds are corrected using the velocity–pressure coupling expres-
sion. Th is correction cycle can be repeated several times for each time step 
to enhance mass conservation at the end of the solution procedure. Th en, 
other transport equations are solved based on the mass conserved fl ow-
fi eld for good overall conservation solutions.

8.5 TIME-MARCHING SCHEME
For time accuracy, an effi  cient noniterative time-centered time-marching 
scheme with a multicorrector solution algorithm is employed. First of all, 
the governing equations are linearized, by applying the aforementioned 
finite difference discretization schemes to the f lux and source terms. 
A system of linear algebraic equations is obtained as a result of the lin-
earization. A relaxation solution procedure (i.e., the linearized algebraic 
equations are solved sequentially with an iterative full matrix solver) is 
employed for the solutions of the governing equations. For convenience, 
the conservation equation can be written as
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or, in fi nite diff erence form,
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where
superscripts n and n+1 denote the current and the next time levels,

respectively
θ is a time-marching control parameter, which is specifi ed in the input

data fi le
θ = 1 and θ = 1/2 are for an implicit Euler time-marching and a time-

centered time-marching schemes, respectively

Th e following linearization is then incorporated.
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With these relations, a delta form of the time-marching equation can be 
written as
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(8.28)

Th is system of equations is solved numerically, by using the matrix solver 
specifi ed by the user through input data selections.

8.6 BOUNDARY CONDITIONS
Th e CTP code provides options (mostly through input data specifi cations) 
for treating various types of boundaries (e.g., inlet, outlet, symmetry, 
periodic, freestream, singularity lines, and solid-wall boundaries with or 
without blowing) and the location of each boundary. User-defi ned bound-
ary conditions for overriding the specifi ed ones can be provided in one of 
the include fi les (i.e., fmain02) with proper FORTRAN programming. Th e 
input data controlled boundary conditions are described below.

8.6.1 INLET FLOW BOUNDARIES

For incompressible fl ow inlet boundaries, only the pressure waves are 
extrapolated upstream. For subsonic inlet boundaries, two types of inlet 
boundary conditions can be specifi ed. Th ey are (1) fi xed inlet total condi-
tions (i.e., type-1 in the input data); and (2) fi xed mass fl ow rate inlet con-
dition (i.e., type-1 in the input data). Th e second subsonic inlet boundary 
condition (type-1) is usually used for mass injected inlet boundaries such 
as near the propellant burning-surface of a solid rocket motor combustion 
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chamber. For supersonic inlet boundaries, all the fl ow variables are fi xed 
at specifi ed values (i.e., type 0 inlet).

8.6.2 EXIT FLOW BOUNDARIES

For outlet boundaries, all variables are extrapolated downstream in the 
fi rst step. A special adaptive gradient detection extrapolation method is 
employed for the velocity vectors and pressure and temperature fi elds to 
provide smooth wave propagation out of the outlet boundaries. For sub-
sonic or incompressible outlet boundaries, two options are provided: (1) 
outlet velocity vectors are corrected based on the global mass conservation 
conditions (i.e., through an exit boundary condition control parameter, 
PRAT = 0.0 in the input data); and (2) outlet pressure profi le is updated 
such that the ratio of the pressure at an outlet pressure reference point 
(IPEX, JPEX in the input data) to the atmospheric pressure (14.7 psi) is 
kept at a specifi ed value (i.e., PRAT = pressure ratio). IPEX represents the 
global grid number of the selected grid point in zones JPEX. Th e zonal 
and global grid node numbering system used throughout the CTP code is 
calculated using the following formulas, respectively.

Zonal: III = I + (J − 1) × JZS(NZ) + (K − 1) × KZS(NZ), for zone NZ
Global: IJK = IZS(NZ) + III

( )
NZ 1

max max max
1

where IZS(NZ)
i

i

I J K
−

=

= × ×∑
 

and IZS(NZ), JZS(NZ), and KZS(NZ) are the grid index incremental 
counts for zone number NZ, which are calculated based on the input grid 
sizes, Imax = IZT(NZ), Jmax = JZT(NZ), and Kmax = KZT(NZ).

Th e fi rst method is mainly used for incompressible or subsonic internal 
fl ow problems. Th e second method can be used for external and internal 
subsonic outlet boundaries. It is important that for incompressible fl ow 
cases, the global pressure reference point (IPC, JPC) must be an interior 
point (i.e., not a boundary point), where IPC represents the global grid 
number of the selected grid point in zones JPC. For supersonic outlet 
boundaries, only extrapolated conditions are employed (i.e., PRAT = −1.0). 
For scalar variables such as turbulence quantities and species concentra-
tions, two kinds of outlet extrapolation methods are available. Th ey are 
zero gradient extrapolation (i.e., extrapolation control parameter, IEXX = 1); 
and linear extrapolation (i.e., IEXX = 2). Th e zero gradient scalar extrapo-
lation method is recommended for reacting fl ow applications to provide 
better solution stability near the outlet boundaries.
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8.6.3 SYMMETRY BOUNDARIES

For symmetry boundary conditions on symmetry planes, or symmetry 
lines of 2D cases, or inviscid slip boundaries, zero normal gradients for all 
scalar quantities are specifi ed. Special treatments for the velocity vectors 
are provided to refl ect zero mass fl ux condition on the symmetry planes. 
Th e velocity vectors are fi rst projected onto the symmetry planes. Th e sur-
face normal components of the vectors are then assigned to be zero such 
that the resultant vectors are tangent to the symmetry planes.

8.6.4 ZONAL INTERFACE BOUNDARIES

For multizone interface boundary conditions, two methods are available. In 
the fi rst method, grid lines must be continuous across patched zonal inter-
face. Th e zonal patching index specifi cation is given through the input data 
fi le. Th e second zonal method allows the use of noncontinuous patched and 
nonoverlaid mesh systems. In this case, the user needs to implement the sub-
routine INFACE (in f1.f module) to conduct the zonal interpolation index 
identifi cation, grid movement, and zonal interpolation. Th e subroutine 
INFACE is currently empty in the CTP code. For turbomachinery applica-
tions using periodic boundaries, special input data specifi cation must be used 
(i.e., ICYC = 3 and IGEO = 9). Multistage turbomachinery with interstage 
motion or for rocket stage separation applications, special user-defi ned zonal 
boundary conditions can be implemented in subroutine INFACE.

8.6.5 SINGULARITY BOUNDARIES

An averaging procedure along singularity lines is provided in the CTP 
code to circumvent possible numerical diffi  culties for resolving the fl ow-
fi eld near singularity lines. Th e fl ow solutions on the singularity lines are 
assumed to take the averaged values of the surrounding points. Additional 
conditions applied to the singularity lines can then be treated explicitly in 
the include fi le fmain02.

Additional boundary conditions such as freestream inlet fl ow angle 
extrapolation, jet outlet pressure condition updating and time-dependent 
inlet and/or wall boundary conditions can be implemented by adding 
program coding in one of the include fi les (i.e., fmain02) in the main 
program. For fl owfi eld conditions modifi cations during restart of a run, 
another include fi le (i.e., fmain01) of the main program can be utilized to 
implement user-defi ned settings.
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8.6.6 WALL BOUNDARIES

Th e CTP code provides a multiple solid-wall blocking feature within a mesh, 
which allows the user to specify wall blocks/elements anywhere inside the 
fl ow domain. Th e wall surface orientations (direction cosine) are also calcu-
lated and used for turbulence wall functions modeling and wall extrapola-
tion purpose. For viscous fl ow computations, nonslip boundary conditions 
are employed for the momentum equations. A standard wall function 
approach with a modifi ed universal velocity profi le is employed for turbu-
lent fl ow computations. Fixed wall temperature distributions or adiabatic 
wall boundary conditions are the two wall boundary conditions available 
for the energy equation (i.e., IWTM = −1 and 1, respectively). Since the cur-
rent version provides the option of running conjugate heat transfer between 
solid-wall and fl uid, fi xed wall temperature condition (IWTM = −1) is set by 
the code when conjugate heat transfer option is activated (i.e., IWALL = 1 
to activate and IWALL = 0 to deactivate). Pressure along the wall is evalu-
ated by using extrapolation. Since the CTP code is designed for generalized 
coordinate systems, nonorthogonal boundary grid eff ects are also taken 
into account when normal gradients at the solid-wall surface are evaluated. 
Let us consider a wall surface on the i−k plane and at j = 1 with local direc-
tion cosines of the normal vector defi ned as: cos α, cos β, and cos γ. Th e local 
zero normal gradient condition for the fl ow variable q can be written as
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With these relations, the following equation is obtained.
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Th e wall boundary values are calculated using following expression 
derived based on Equation 8.31. Th at is,
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Th e quantities, φξ and φς, are evaluated on the j = 1 plane. Th is method 
is a good approximation providing that the grid variation away from the 
wall surfaces is smooth. Th e above zero normal gradient treatment is per-
formed explicitly at the end of each time step.

8.7 INITIAL CONDITIONS
Th e mesh systems and fl owfi eld initial guesses for running the CTP code 
can be prepared in two ways. Th e fi rst method is used in setting up some 
sample cases that are included in the compact disk (CD) with this book. 
Using this method, grid and initial fl ow generation FORTRAN codes are 
written to generate grid and initial fl owfi eld data fi les (in fi le unit fort.10 
format for reading sample cases). Th ese data fi les are then read in from the 
example include fi le, fexmp01, when the calculation is started using the 
example start option (IDATA = 2). Th e second method involves the prepa-
ration of grid and fl owfi eld restart fi les (fort.12 and fort.13, respectively). 
Th en, the CTP code is started using the restart option (IDATA = 1 or 0). 
To use the second method, the following restart fi le data formats (Tables 
8.4 and 8.5) must be used in preparing the data fi les of grid mesh and the 
initial fl owfi eld.

TABLE 8.4  Data Format of the Restart Grid File

 WRITE(12,1) IZON
 DO IZ=1,IZON
   WRITE(12,1) IZT(IZ),JZT(IZ),KZT(IZ)
 ENDDO
 DO IZ=1,IZON
   I2=IZT(IZ)
   J2=JZT(IZ)
   K2=KZT(IZ)
   WRITE(12,2)( ( (X(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
   WRITE(12,2)( ( (Y(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
   WRITE(12,2)( ( (Z(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 ENDDO
1 FORMAT(15I5)

Notes: IZON: the total number of grid zones; IZT(IZ), JZT(IZ), and KZT(IZ): maximum grid 
numbers in the I-, J-, and K-direction for zone #IZ. (For 2D fl ows, KZT(IZ) = 1); For 2D 
axisymmetric fl ows, Z(I ,J ,K ,IZ) = 1.0; while for 2D planar fl ows, Z(I ,J ,K ,IZ) equals to 
1.0 or the depth of the fl ow domain; If IDATA = 0 (unformatted fi le option), then the 
format in each write statement should be eliminated.
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TABLE 8.5  Data Format of the Restart Flow File

WRITE(13,3) INSO(1),INSO(4),INSO(5),INSO(7),NGAS
DO IZ=1,IZON
 I2=IZT(IZ)
 J2=JZT(IZ)
 K2=KZT(IZ)
 WRITE(13,2)( ( (DEN(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 WRITE(13,2)( ( (U(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 WRITE(13,2)( ( (V(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 WRITE(13,2)( ( (W(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 WRITE(13,2)( ( (P(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 IF(INSO(4) .EQ. 1)
&  WRITE(13,2)( ( (TM(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 IF(INSO(5) .EQ. 1) THEN
  WRITE(13,2)( ( (DK(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
  WRITE(13,2)( ( (DE(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 ENDIF
 IF(AMC.GT.0.)WRITE(13,2)(((AM(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)
 IF(INSO(7).GE.1)WRITE(13,2)(((Q(I,J,K,IZ),I=1,I2),J=1,J2),K=1,K2)

 IF(NGAS.GT.0) THEN
  DO KK=1,NGAS
   WRITE(13,2)( ( (FM(I,J,K,IZ,KK),I=1,I2),J=1,J2),K=1,K2)
  ENDDO
 END IF
 ENDDO
2 FORMAT(5(1P,E16.8) )
3 FORMAT(8I5)

Notes: Defi nitions of NGAS and INSO are detailed in Chapter 3.
DEN, U, V, W, P, TM, DK, DE, AM, Q, and FM are the fl ow density, fl ow velocities in X-, Y- and Z-axis, 

static pressure, static temperature, turbulent kinetic energy and its dissipation rate, local fl ow 
Mach numbers, fl uid qualities, and species mass fractions, respectively. Th e fl ow Mach number 
and quality can have the value of unity as the initial guess. For 2D axisymmetric fl ows, W (azi-
muthal velocity) can have nonzero value if the swirling component exists.

Th e CTP code uses grid systems that follow the right-hand rule for the 
I-, J- and K-line orientations such that the cell volumes are always positive. 

Th e grid cell volumes are calculated and checked in subroutine TRANF. 
On detection of any zero or negative volumes, a warning message is printed 
and the program stops. To avoid this message for singularity lines where 
surfaces collapse into lines, small fi nite radii (1E-06 for instance) must 
be used for generating the singularity line surfaces (e.g., centerlines of pi 
segments). It is also recommended that the grid used should have smooth 
Jacobian variations so that unfavorable grid eff ects can be minimized.
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8.7.1 REFERENCE CONDITIONS

Th e initial fl ow variables should be nondimensionalized by the reference 
conditions specifi ed (depending on the parameter IUNIT which can be 
either 1 or 2) in the input data fi le (fort.11). If the reference quantities were 
chosen to be unity, then the system of the governing equations would be 
solved in dimensional form. Th e user must make sure that the nondimen-
sionalization process is consistent throughout the initial fl ow data prepa-
ration process. Either SI or English units can be used based on the user’s 
preference. Th e reference conditions are defi ned below:

SI unit: (for IUNIT = 1)
Density: kg/m3

Velocity: m/s
Temperature: K
Length: m

English unit: (for IUNIT = 2)
Density: slugs/ft 3

Velocity: ft /s
Temperature: R
Length: ft 

If the compressibility option, AMC, in the input data fi le is specifi ed to 
be greater than zero (e.g., specifi ed as unity), then the compressible fl ow 
option is activated and the fl ow properties of the initial data need to be 
normalized by the thermal properties of air at the reference conditions 
listed as follows, as well as those specifi ed in the input data fi le.

SI unit: (for IUNIT = 1)
Reference temperature (Tref): TREF = 300 K
Reference gas constant (Rref): RMXBAR = 288.5939026 J/kg.K
Reference specifi c heat (Cpref): CPBAR = 1012.790527 J/kg.K
Reference viscosity (mref): VISC = user specifi ed (in N.s/m2)
Reference pressure (Pref): PREF = user specifi ed (in Pa)
Reference density (ρref): DENREF = calculated (in kg/m3)
Reference velocity (Uref): UREF = user specifi ed (in m/s)

English unit: (for IUNIT = 2)
Reference temperature (Tref): TREF1 = 540 R
Reference gas constant (Rref): RMXBAR = 53.62715 ft -lbf/lbm

.R
Reference specifi c heat (Cpref): CPBAR = 188.199 ft -lbf/lbm-R
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Reference viscosity (mref): VISC = user specifi ed (in lbf
.s/ft 2)

Reference pressure (Pref): PREF = user specifi ed (in psi)
Reference density (ρref): DNREF1 = calculated (in slugs/ft 3)
Reference velocity (Uref): UREF = user specifi ed (in ft /s)

Th e corresponding values of other reference variables are calculated in the 
code based on the following relations.

Reference density (ρref) = Pref/(Rref Tref)
Reference Mach number (Mref) = AMC = Uref/aref

aref = reference speed of sound = [γref Rref Tref]0.5; and Rref = (Ru/Mw)ref

where γref (GAMA) = 1.3985, and Ru and (Mw)ref are the universal gas con-
stant and the molecular weight of air, respectively. However, if the reference 
Mach number (AMC) in the input data fi les is set to 0, then the incom-
pressible fl ow calculation will be activated and all the reference properties 
will be set to unity. And, the reference viscosity is set equal to the inverse of 
the reference Reynolds number. In addition, the reference viscosity (mref) is 
used to calculate local fl uid viscosity based on a power Law:

 

0.7

refref

 = 
T

T
μ ⎛ ⎞

⎜ ⎟⎝ ⎠μ  (8.33)

8.7.2 NORMALIZATION OF FLOW VARIABLES

Th e fl ow variables and grid coordinates are nondimensionalized as

Density: Density/rref

Velocity: Velocity/Uref

Pressure: Pressure/(rref U 2
ref)

Temperature: Temperature/Tref

Length: Length/Xref

Viscosity: Viscosity/(rrefUrefXref)
Turbulence kinetic energy (k): k/(U 2

ref)
Turbulence dissipation rate (e): e/(U 3

ref /Xref)

Consistent units (either SI or English unit) must be used throughout 
the nondimensionalization process. For turbulent fl ow applications, the 
turbulence kinetic energy (k) and its dissipation rate (e) can be initial-
ized using the nominal nondimensional values when no measured data 
are available. Th at is,
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k = (4/3) × (turbulence intensity)2

e = 0.09 × k1.5/(0.03 × characteristics length)

where the characteristics length can be a channel width or twice a bound-
ary layer thickness, etc.

Besides the above reference quantities, there are two additional refer-
ence values, HHREF and HHREF1, which are important for calculating 
wall heat fl uxes. Th e wall heat fl uxes are calculated using a nondimen-
sional heat-fl ux variable, HTWN(I), stored at near-wall points (or wall 
function points). Th at is,

Wall Heat Flux = −HTWN(IJLO(J) )*HHREF—for SI unit, Watts/cm2

or
Wall Heat Flux = −HTWN(IJLO(J) )*HHREF1—for English unit, 

Btu/s-ft2

where IJLO(J) is a wall function point indices bookkeeping array.

8.8 CTP CODE FEATURES
Th e CTP code is a fully transparent and user-friendly computational fl uid 
dynamics code which is used to analyze a wide variety of fl uid dynamics-
related engineering problems (e.g., internal and/or external fl ows with 
complex geometries, cases with laminar or turbulent fl ow conditions, and 
fl ows with ideal, real or reacting gas eff ects for all speed range—incom-
pressible to hypersonic fl ow regimes). For programming simplicity and 
computational effi  ciency, all the fl ow variables, except those in the sub-
routines for calculating chemical reaction source terms, are stored using 
COMMON blocks. Th ere are 18 COMMON blocks include fi les: fdns01; 
fdns02; fdns03;…; fdns17; and fl uid.inc. 1D arrays are used for all fl ow 
variables representing 2D or 3D fl ow problems using structured single or 
multiple-block grids. Th e conversion between the (i, j, k) indices and the 
global 1D indices is described in Section 8.6.2.

Before compiling the code, one must make sure that proper array 
dimensions are set in the fi rst COMMON block include fi le, fdns01. An 
example of the fdns01 include fi le is shown below.

<List of fdns01>
PARAMETER (IIQMAX = 110000, IWP = 11000, ISLMAX = 1)
PARAMETER (NSPM = 11, ISPMAX = IIQMAX)
PARAMETER (NPMAX = 1, IJKPMX = 1)
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PARAMETER (NPOROX = 1, IJKVMX = 1, IJKWMX = 1)
PARAMETER (MSP = NSPM, MST = 100, MEL = 10)
PARAMETER (MZON = 200, MBIF = 200, MBIO = 100, MBWA = 200,
& MBSN = 6, MZPO = 20)

In this fdns01 example, the total grid size of the problem is IIQMAX = 
110000, total number of wall function points is IWP = 11000; total num-
ber of grid points for the sliding boundary, ISLMAX, is set to be 1; maxi-
mum number of chemical elements is MEL = 10 (do not change); maximum 
number of chemical species is NSPM = 11; the multispecies thermodynam-
ics data dimension, ISPMAX, must be equal to IIQMAX to activate the mul-
tispecies option; the maximum number of particle trajectories, NPMAX, 
is set to be 1; the particle property dimension, IJKPMX, must be set to be 
IIQMAX in order to activate the Lagrangian particle tracking option; the 
maximum number of porous volumes is NPOROX = 1; the porosity dimen-
sion, IJKVMX, must be set to IIQMAX to activate the porosity option; the 
maximum number of surface porosity is IJKWMX = 1; MST is the maxi-
mum number of chemical reaction steps; MZON is the maximum number of 
blocks (zones); MBIF is the maximum number of zonal interfaces; MBIO is 
the maximum number of fl ow boundaries; and MBWA, MBSN, and MZPO 
are the maximum numbers of wall segments, singularity lines, and porosity 
zones in the input data fi le, fort.11, respectively.

Th e main program of the present code, which is the main driver of other 
subroutines, defi nes input/output units and control parameters, provides 
problem restart modifi cations (through include fi le fmain01), defi nes the 
solution calling sequence, and provides time-marching control and timely 
input of run-time problem modifi cations and data output (through include 
fi le fmain02). Input and output units, IR1, IR2, IR3, IW1, IW2, and IW3, are 
assigned in the main program. Unit IR1 (input data fi le fort.11) is for setting 
up the fl ow domain and problem control parameters. Flow domains sizes, 
zonal interfaces locations, boundaries locations and types, wall block loca-
tions, job control parameters, upwind scheme selections, turbulence model 
selections, setting the reference conditions (viscosity = 1/Re, Mach number, 
reference density, reference velocity, reference temperature, reference length, 
etc.), and thermodynamics and reaction data, are included in unit IR1. Units 
IR2 and IR3 are assigned for restart grid and fl owfi eld data fi les (fort.12 and 
fort.13), respectively. Th e fl ow solutions convergence history and evolution of 
the monitoring point fl ow variables are printed out to unit 6 (fort.6 or nohup.
out). IW1 or unit 21 is not used in the current version. Units IW2 and IW3 
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are used for the grid data and fl owfi eld solutions output. Th e current ver-
sion also provides PLOT3D format grid and fl ow outputs through fi le units 
fort.91, fort.92, and fort.93 for postprocessing. Th ese fi les units are assigned 
to their specifi c fi les names as listed in the main program. Th e fi le unit fort.91 
contains the grid data, fort.92 contains fi ve variables (i.e., density, u-velocity, 
v-velocity, w-velocity, and total pressure), and fort.93 also contains fi ve fl ow 
variables (i.e., density, pressure, temperature, Mach number, and species 1 
concentration). In addition, unit fort.94 contains both grid and fl ow outputs 
(including density, velocities, pressure, temperature, and Mach numbers), in 
the format of commercial graphics soft ware “TECPLOT,” for the purpose of 
postprocessing. For making output of diff erent variables or using diff erent 
data format (e.g., a binary data option is given in the source code), user-defi ned 
specifi c coding can be implemented by modifying the subroutine DATAIO 
(only the PLOT3D section which is located near the end of DATAIO) in f1.f. 
Th e program start or restart status is defi ned by setting IDATA = 2 or IDATA 
= 1 in the input data (fort.11), respectively. When IDATA = 2 is selected, grid 
and initial fl owfi eld data must be created and made available for data read-in 
from one of the include fi les, fexmp01, for a fresh start.

Grid and initial fl owfi eld data fi les can be generated using known pre-
processor grid generation codes such as Gridgen, Umesh or EAGLE, etc., 
and user-developed initial fl owfi eld generation codes. A grid/initial fl ow 
generator included in Appendix C provides an example of how these pre-
processing tools can be constructed. Th e user may follow these examples 
for the generations of other new cases.

To present the fl owfi eld solutions graphically using the output fi les of the 
CTP code, graphics packages using C++ or open-GL utilities such as PLOT3D 
(developed at NASA/Ames Research Center) or a commercial soft ware—
TECPLOT can be used to plot the grid, velocity vectors, and contour lines of 
selected fi eld quantities. Other fl ow parameter outputs such as surface pres-
sure, skin friction distributions, and heat transfer coeffi  cient distributions 
(which are output from the include fi le fmain02) can also be plotted.

Th e basic code structure of the CTP code is further elaborated in the 
following section. Th is section provides a general outline of the code. 
However, it is thought to be detailed enough for the CTP users to perform 
daily engineering analysis applications.

8.8.1 CTP CODE STRUCTURE

Th e CTP code is designed for robustness and user-friendliness. Th e entire 
program is written in standard FORTRAN 77 language. Th e code is 
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generally not machine dependent. It has been successfully tested on the 
personal computers with Windows-XP, Windows-2000, Linux clusters, 
IBM workstation, IBM clustered computers, HP computers, etc.

Besides the main program, there are 91 subroutines and 3 entries in the 
CTP code. Th ey are grouped in seven fi les namely “CTP.f,” “f1.f,” “f2.f,” “f3.f,” 
“f4.f,” “f5.f,” and “f6.f.” In addition, there is a database fi le, “dbase.dat,” which 
contains thermodynamics data of various species for the real-fl uid EOS. Th e 
subroutines’ names and their major functions are summarized below.

< In CTP.f >
CTP  Th e main program which is the main driver for other sub-

routines, defi nes input/output units and control parameters, 
provides problem restart modifi cations (through include fi le 
fmain01), defi nes the solution calling sequence, and provides 
time-marching control and timely input of run-time problem 
modifi cations and data output (through include fi le fmain02).

EXAMP  To allow the user to generate (or read in) grid and prepare 
initial fl owfi eld data using an include fi le, fexmp01, for a 
fresh start.

XISENT  For calculating nozzle Mach number, pressure, density, and 
temperature variations (as a function of local versus throat 
area ratio) based on isentropic relations.

USUBIO  To calculate and store initial fl owfi eld total pressure, total 
enthalpy, and mass fl ux conditions and provide inlet 
boundary conditions based on total conditions or mass 
conservation.

CHOEQ  To calculate equilibrium species concentrations for the wet-
CO mechanism by solving a set of algebraic equations.

< In f1.f >
ZONCHK  To check the grid indices at the zonal interface, to calculate 

as well as exchange the grid spacing between the grid point 
at the zonal interface and its neighboring point, and also to 
compute the angle between cyclic boundaries.

CYCANG  To calculate the angle between each pair of cyclic 
boundaries.

BCCOND  To provide implicit and explicit boundary conditions for all 
fl ow variables that includes mass conservation conditions, 
pressure conditions, and pressure equation boundary condi-
tion setting.
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DATINN  To read in CTP restart grid and fl owfi eld data fi les (IR2—
fort.12 and IR3—fort.13).

DATOUT  To output fi les CTP restart grid and fl owfi eld data fi les 
(IW2—fort.22 and IW3—fort.23).

INFACE  To perform multiple-block, zonal-interface interpolation 
boundary conditions that requires overlaid zonal inter-
faces. Interface identifi cation, interface grid movement, 
and interface interpolations are handled in this subrou-
tine. Make sure that the statement {include ‘inface.inc’} in 
INFACE is activated.

INFINT  Th is is a tool for 2D interpolations using bilinear interpola-
tion scheme.

INIT  To provide initialization of problem control parameters, 
model constants and zero-out fl owfi eld variables (not for 
initial fl ow conditions).

WALLFN  To calculate near-wall velocity profi les, heat fl ux to the 
wall, static enthalpy on the wall, and near-wall turbulence 
quantities by using wall function models for turbulent fl ow 
boundary conditions. Th e heat of pyrolysis model for hybrid 
fuel regression is also evaluated here.

< In f2.f >
SOLVEU  To provide solutions for the momentum and energy equa-

tions using high-order upwind, TVD, or central diff erence 
schemes plus adaptive dissipation terms.

SOLVEQ  To provide solutions for the turbulence model transport 
equations.

SOLVES  To provide solutions for the chemical species mass fraction 
transport equations.

SOLVET  To provide solutions for the thermal conduction equation 
for block of solid-wall points.

SOLVEP  To solve the pressure correction equation and perform pres-
sure, temperature, velocity, and density fi eld updating.

< In f3.f >
AINDEX  To convert the global 1D indices, IJK, into the multiple-zone 

3D indices (NZ, I, J, K).
AREAIO To calculate density-weighted inlet and outlet areas.
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BCCHAR  To provide outlet properties extrapolations and perform 
outlet and symmetry plane velocity vector conditions.

BOUNC  Th is is a driver for wall function points by calling 
WALLFN.

DIRCOS  To register wall element identifi cation and wall func-
tion control parameters and calculate wall surface 
orientations.

FLOWIO  To calculate the mass fl ow rates at the outlet 
boundaries.

LINER0 To perform 1D regular TDMA matrix inversion.
LINER1 To perform 1D periodic TDMA matrix inversion.
LINERA  To perform global point-by-point, L-U iterative, conju-

gate gradient, or GMRES matrix solution.
CGSOLV  A driver for choosing either conjugate gradient or 

GMRES method.
PNTBYPNT  Point-by-point solver in the zone-by-zone matrix 

solver.
PTCR1  Preconditioned zone-by-zone conjugate residual matrix 

solver with DKR and DD factorization.
PGMRES1 Preconditioned zone-by-zone GMRES matrix solver.
PTCR2  Preconditioned multizone conjugate residual matrix 

solver with DKR and DD factorization.
PGMRES2 Preconditioned multizone GMRES matrix solver.
BNDCOEF  To reset the link coeffi  cients of the zonal boundary 

points matrix to zero.
DOTSUM  To calculate inner product of two vector arrays in the 

zone-by-zone matrix solver.
MATRIX  To perform multiplication of matrix in the zone-by-

zone matrix solver.
PRINTN To print out a matrix.
DECOM1  Dupont–Kendall–Rachford (DKR) factorization in the 

zone-by-zone matrix solver.
DECOM2  Double decomposition (DD) in the zone-by-zone matrix 

solver.
INVER1  Inverse LDU for DKR decomposition in the zone-by-

zone matrix solver.
INVER2  Inverse LDU for DD decomposition in the zone-by-

zone matrix solver.
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PTBYPT  Point-by-point solver in the zone-by-zone matrix solver.
IJKXYZ To calculate total grid number in each zone.
DOTSUM2  To calculate inner product of two vector arrays in the 

multizone matrix solver.
MATRIX3  To perform multiplication of matrix in the multizone 

matrix solver.
DECOM3  Dupont–Kendall–Rachford (DKR) factorization in the 

multizone matrix solver.
DECOM4  Double decomposition (DD) in the multizone matrix 

solver.
INVER3  Inverse LDU for DKR decomposition in the multizone 

matrix solver.
INVER4  Inverse LDU for DD decomposition in the multizone 

matrix solver.
PTBYPT2 Point-by-point solver in the multizone matrix solver.
UPBCPT  To update values for boundary conditions and zonal 

interface points.
PRINTM To print out a matrix fi eld.
EQUAL1 To assign a constant to a vector array.
EQUAL2  To assign the values of one vector array to another vector 

array.
DIVID1 To divide a vector array with a constant.
NORM2 To calculate the norm of a vector array.
RVA4 To assign four real constants.
LINKFA  To identify the indices for the grid points at the zonal 

interface boundaries.

< In f4.f >
SOURCE  To evaluate source terms for all transport equations. Multiple-

phase interphase source terms are also calculated here.
SOURCX Th ree entries are included:

 NEWVIS—To calculate turbulence eddy viscosity.
 BBLOCK—To assign wall element identifi cations.

 PROPTY—To calculate thermodynamics data and chemi-
cal reaction source terms (use include fi le propty.inc).

TRANF  To calculate the Jacobian of the coordinate transforma-
tion and grid spacing variations.
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UNEWIO  To perform outlet velocity corrections based on mass 
conservation conditions.

UVCON Th is subroutine is currently null.
WALVAL  For assigning boundary values for the wall surface points, 

inlet planes, outlet planes, symmetry planes, and singu-
larity lines.

HEAT00  A general fl uid thermodynamics subroutines driver which 
calls HEAT2A, HEAT2C, HEAT2D, FLINT, NBSLOX, 
and NBSH2O.

HEAT2A  To calculate the thermodynamics properties and to assem-
ble fi nite-rate chemistry source terms.

SOOTOX  To calculate the reaction rate for the soot oxidation chem-
istry model.

HEAT2B  To fi nd ideal gas temperature (in K) based on the given 
enthalpy and gas species concentrations using Newton’s 
method.

GAUSS  To solve a matrix by using Gaussian elimination with the 
pivoting method.

CPHG  To calculate specifi c heat (Cp), enthalpy (h/R), and Gibb = s 
free energy at a given temperature based on CEC thermal 
data.

HEAT2C  To calculate pressure and enthalpy based on the density 
and temperature for either ideal gas or real fl uid.

HEAT2D  To fi nd ideal gas temperature (in K) based on the given 
enthalpy and gas species concentrations by using Newton’s 
method, and calculate Cp and g.

NBSLOX  To provide table look-up of LOX properties (H–P–T dia-
gram) based on the National Bureau of Standard data.

NBSH2O  To provide table look-up of water properties (H–P–T dia-
gram) for pressure less than 1.5 atm.

< In f5.f >
LPTSD  Th is is a main driver for setting up the particulate phase 

integration scheme that includes the particle initial con-
ditions, Lagrangian integration of the particle trajectories 
and the assembly of the interphase source terms.

HPTDAT  To calculate temperatures of Al2O3 particles based on their 
enthalpy.
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SEARCH  To locate particle inside the computational domain. A 
multiple zone algorithm is included.

PSOURC  To calculate the drag forces and heat transfer rates for the 
particle based on the interphase slip conditions.

POROST Th is is a main driver for a porosity model.
DRAGHT  To calculate the drag forces and heat transfer based on the 

assigned porosity.

< In f6.f >
FLINT Th e interface with real-fl uids model.
ACENF To calculate acentric factor using Lee–Kesler model.
DBASE  Routine containing database for fl uids thermodynamics 

properties (see fi le “dbase.dat” for species represented).
IDMIX Control routine for ideal mixture using HBMS EOS.
 Mode = 1: Initialization
  2:  Solve pressure, enthalpy based on density and 

temperature
  3:  Solve density, enthalpy based on pressure and 

temperature
  4:  Solve temperature, enthalpy based on density 

and pressure
  5:  Solve pressure, temperature based on density 

and enthalpy
  6:  Solve density, temperature based on pressure 

and enthalpy
HBMS  Routine to compute real-fl uid properties using HBMS EOS.
SATLINE To compute saturation line conditions.
THERMAL To calculate ideal gas thermodynamic properties.
VFROMPT  Routine to determine volume from given pressure and 

temperature.
LAGRAN Lagrange interpolation module.

< In io.f >
READ_RESTRAT_RFV  To read in CTP (RFV version format) restart 

grid and fl ow fi les from the working directory 
of each host machine.
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WRITE_RESTART_RFV  To print out CTP (RFV version format) restart 
grid and fl ow fi les to the working directory of 
each host machine.

READ_GRID_RFV  To read in CTP (RFV version format) grid 
fi le.

READ_FLOW_RFV  To read in CTP (RFV version format) fl ow 
fi le.

WRITE_GRID_RFV  To print out CTP (RFV version format) grid 
fi le.

WRITE_FLOW_RFV  To print out CTP (RFV version format) fl ow 
fi le.

CHECK_IIQMAX  To check whether the total number of grid 
points exceeds the maximum memory allo-
cation or not.

READ_PLOT3DG To read in PLOT3D grid fi le.
WRITE_PLOT3DG To print out PLOT3D grid fi le.
READ_PLOT3DQ To read in PLOT3D fl ow fi le.
WRITE_PLOT3DQ To print out PLOT3D fl ow fi le.

< In fl ib.f >
GETWORD  To convert an input character string into a 

character array without blank space.
GETNUM  To get the processor index from an input 

line.
FIND_WORD  To fi nd the key word for an entry in the input 

data fi le.
INUMBER_CNUMBER  To convert a number character to an 

integer.
LENGTH  To obtain the length of a character string not 

including the blank space.
READCARD1  To read in a dummy line from the input data 

fi le.
IVA4 To assign four integer constants.

Th e basic structure of the CTP code is depicted in Chart 8.1, which is basi-
cally a functional fl ow chart for the main program.
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FDNS-RFV/PVM
START

NETINIT(1,...)

INIT(1)
Read input from fort.11 and define constants

NETINIT(2,...)

IDATA < 2DATINN INIT(2)
EXAMP

ZONCHK
TRANF(1)
DIRCOS(0)

NoYes

INIT(3)
Define density, static enthalpy and thermal properties

NEWVIS, if activated
PROPTY, if activated

LPTSD(1)
initialization of particle tracking

POROST(1)
initialization of porosity parameter

TRANF(2)
construct control volumes and Jacobians

INIT(4)
set-up identifiers for inlet, exit, symmetry, wall boundaries,
singularity surfaces, as well as inlet flow and outflow data

USUBIO(1)
calculate inflow conditions for compressible flow

CHART 8.1 Flow chart of the CTP main program.
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Start Time Marching

LPTSD(2), if activated

POROST(2), if activated

SOLVES, if activated

SOLVEU

SOLVET, if activated

SOLVEQ, if activated

SOLVEP

PROPTY, if activated

Print out Residuals, if yes

NEWVIS, if activated

USUBIO(2)
reset inflow conditions based on users’ option

DATOUT, if yes
print out restart file and 

post-processing data files

Converged?

EXITNET

Stop

Yes

CHART 8.1 (continued)
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8.9 USER’S GUIDE

8.9.1 INPUT DATA (FORT.11) DEFINITION

Th e input data fi le (fort.11) of the CTP code consists of 19 card groups and 
2 entries. Defi nitions of these input data are given below. A sample input 
fi le is listed in Appendix A.

Card Group #2  Specifi es zonal information and number of fl ow 
and wall boundaries

Format (1 line)  IZON, IZFACE, IBND, ID, ISNGL
Defi nition  IZON: Number of zones or mesh blocks
 IZFACE: Number of patched interfaces
  IBND:  Number of fl ow boundaries (e.g., inlet, 

outlet, or symmetry planes)
 ID: Number of wall elements (blocks)
 ISNGL: Number of singularity lines/surfaces

Card Group #3  Specifi es zonal grid size and zonal rotational/trans-
lational speeds

Format  IZT, JZT, KZT, CBG1, CBG2, CBG3, CBV1, CBV2 
(1 line*IZON) CBV3
Defi nition  IZT(II): I-max in zone II
 JZT(II): J-max in zone II
 KZT(II): K-max in zone II

Card Group #1  Defi nes the case title and whether the problem is 
2D or 3D

Format (1 line)  Title (Put title of the problem here—maximum 60 
characters)

Format (1 line) IDIM
Defi nition  IDIM = 2:  For 2D planar or axisymmetric fl ow 

problems
 = 3: For 3D fl ow problems
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Card Group #3 (continued)
  CBG1(II):  Coordinate rotation speed (XrefWx/Uref) 

of zone II about X-axis
  CBG2(II):  Coordinate rotation speed (XrefWy/Uref) 

of zone II about Y-axis
  CBG3(II):  Coordinate rotation speed (XrefWz/Uref) 

of zone II about Z-axis
  CBV1(II):  Coordinate translation speed of zone II 

in X-direction
  CBV2(II):  Coordinate translation speed of zone II 

in Y-direction
  CBV3(II):  Coordinate translation speed of zone II 

in Z-direction

(continued)

Card Group #4  Identifi es the zonal interface matching indices
Format  NNBC, IZB1, IZF1, IJZ11, IJZ12, JKZ11, JKZ12,
(2 lines*IZFACE) IZB2, IZF2, IJZ21, IJZ22, JKZ21, JKZ22
Defi nition  NNBC: > = 0, IZFACE counter
 IZB1: Zonal index of interface plane # 1
 IZF1:  Interface plane identifi er for 

plane #1
  = 1: I =  I-max or east 

boundary
 = 2: I = 1 or west boundary
  = 3: J =  J-max or north 

boundary
 = 4: J = 1 or south boundary
  = 5: K =  K-max or top bound-

ary= 6: K = 1 or 
bottom boundary

 IZB2:  Zonal index of interface plane #2
 IZF2:  Interface plane identifi er for 

plane #2
 IJZ11, IJZ12:  Th e starting and ending points 

of the fi rst running index on the 
interface plane #1
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Card Group #4 (continued)
 JKZ11, JKZ12:  Th e starting and ending points 

of the second running index on 
the interface plane #1

 IJZ21, IJZ22:  Th e starting and ending points 
of the fi rst running index on the 
interface plane #2

 JKZ21, JKZ22:  Th e starting and ending points 
of the second running index on 
the interface plane #2

Example:  If IZF1 or IZF2 is either 1 or 2 then IJZ11, IJZ12, 
IJZ21, and IJZ22 are the indices in J-direction, and 
JKZ11, JKZ12, JKZ21, and JKZ22 are the indices in 
K-direction.

  If IZF1 or IZF2 is either three or four then 
IJZ11, IJZ12, IJZ21, and IJZ22 are the indices in 
I-direction, and JKZ11, JKZ12, JKZ21, and JKZ22 
are the indices in K-direction.

  If IZF1 or IZF2 is either fi ve or six then IJZ11, IJZ12, 
IJZ21, and IJZ22 are the indices in I-direction, and 
JKZ11, JKZ12, JKZ21, and JKZ22 are the indices 
in J-direction.

Note:  Th e interface patching surface indices for planes 
#1 and #2 (i.e., IJZ11 ® IJZ12 and IJZ21 ® IJZ22, 
JKZ11 ® JKZ12 and JKZ21 ® JKZ22 must have 
consistent running order). Also, IJZ12 > IJZ11 
and JKZ12 > JKZ11 (but not necessary for IJZ21, 
IJZ22, JKZ21, and JKZ22)
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Card Group #5 Specifi es fl ow boundaries (inlet, outlet, symmetry)
Format  IBCZON, IDBC, ITYBC, IJBB, IJBS, IJBT, IKBS, 

IKBT
(1 line*IBND) 
Defi nition IBCZON Zonal index for the fl ow boundary
 IDBC Boundary facing index:
  = 1: I = I-max or east
  = 2: I = 1 or west
  = 3: J = J-max or north
  = 4: J = 1 or south
  = 5: K = K-max or top
  = 6: K = 1 or bottom
 ITYBC Identifi es boundary type:
   = −2:  Inlet with mass fl ow rate 

and velocities fi xed
   = −1:  Inlet with mass fl ow rates 

conserved (e.g., solid fuel 
blowing surfaces)

   = 0:  Inlet with all variables fi xed 
(e.g., supersonic)

   = 1:  Inlet with constant total 
pressure (compressible fl ow 
only)

  = 2: Outlet boundary
   = 3:  Symmetry plane (can also 

be regarded as slip/inviscid 
wall boundary conditions, 
but should not be combined 
with wall block in Card 
Group #6)

 IJBB  I, J, or K location (depends on IDBC) 
of the boundary

 IJBS, IJBT  Boundary starting and ending indi-
ces (for I or J)

 JKBS, JKBT  Boundary starting and ending indi-
ces (for J or K)



352   ■     Computational Transport Phenomena for Engineering Analyses

Card Group #6 Specifi es wall block indices
Format (1 line*ID)  IWBZON, L1, L2, M1, M2, N1, N2, IWTM, 

HQDOX, IWALL, DENNX, VISWX
Defi nition IWBZON: Zonal index for the wall block
 L1, L2:  Starting and ending indices in 

the I-direction
 M1, M2:  Starting and ending indices in 

the J-direction
 N1, N2:  Starting and ending indices in 

the K-direction
 IWTM:  Solid-wall thermal boundary 

condition options
  = −1:  For fi xed temperature 

wall boundary
  = 1:  For heat-fl ux 

(= HQDOX) wall 
boundary

 HQDOX:  Nondimensional wall heat fl ux 
when IWTM = 1, the value is 
positive if it is from wall to fl uid

  Normalization for Q
.
:

 SI unit  = Q
.
/(rrefUrefCprefTref)

 English units  = Q
.
/(32.174rre

  f1Uref1Cpref1Tref1)
 IWALL: Solid-wall heat conduction option
  = 0: To deactivate
  = 1: To activate
 DENNX:  Nondimensional solid-wall den-

sity (wall density/rref)
 VISWX:  Nondimensional solid-wall ther-

mal conductivity
  = k/(XrefrrefUrefCpref)

Note:  Th e specifi ed values of DENNX and VISWX will be mean-
ingful only when IWALL = 1 is selected, and the program 
will set IWTM = −1, since this is a correct combination



The CTP Code     ■   353

Card Group #7 Specifi es the singularity lines
Format (1 line*ISNGL) ISNZON, ISNBC, ISNAX, ISNBS, ISNBT
Defi nition ISNZON  Zonal index for the singu-

larity lines
  ISNBC  Singularity line boundary 

facing index
  = 1: I = I-max or east
  = 2: I = 1 or west
  = 3: J = J-max or north
  = 4: J = 1 or south
  = 5: K = K-max or top
  = 6: K = 1 or bottom
  ISNAX  Orientation of the singu-

larity line axis
   On I–J plane (ISNBC= 

5 or 6)
   ISNAX = 1 for I-axis
   ISNAX = 2 for J-axis
    On J–K plane (ISNBC = 1 

or 2)
   ISNAX = 1 for J-axis
   ISNAX = 2 for K-axis
   On K–I plane (ISNBC = 3 

or 4)
   ISNAX = 1 for I-axis
   ISNAX = 2 for K-axis
  ISNBS, ISNBT  Starting and ending indi-

ces along ISNAX

Card Group #8 I/O parameters and problem control parameters
Format (1 line)  IDATA, IGEO, ITT, ITPNT, ICOUP, NLIMT, IAX, 

ICYC
Defi nition IDATA Restart options
  = 1:  For regular restart runs. Restart 

grid and f low files, fort.12 and 

(continued)
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Card Group #8 (continued)
  fort.13, must be made available. Th e 

format of the restart fi les can be spec-
ifi ed by IOFINN in Card Group #15

  = 2:  For example start run. Users must 
implement the subroutine EXAMP 
in the fexmp01 include 

  fi le to properly read in the pregen-
erated grid and fl ow data.

 IGEO  Geometry parameter (for user 
applications)

  = 1:  Is specifi cally for problems with-
out inlets and outlets (e.g., cavity 
fl ows)

  = 19:  Is reserved for linear cascades 
applications

 ITT Number of time-steps limit
 ITPNT  Th e frequency on printing out solutions 

(through fi les fort.22, fort.23, fort.91, 
fort.92, fort.93, and fort.94)

 ICOUP  number of pressure correctors (typi-
cally 1 for steady-state applications and 
3–6 for transient or rough initial start 
applications)

 NLIMT = 1: For regular run
  = 0:  For printing out the initial or 

restart fi les without going through 
solution procedures

 IAX = 1: For 2D planar or 3D fl ows
  = 2:  For 2D axisymmetric fl ow 

problems
 ICYC  Cyclic or periodic boundary conditions 

identifi er. Currently, only ICYC = 3 (in 
K-direction) is active for turbomachin-
ery applications, where all fl ow vari-
ables at K = 1 are the same as those at 
K = K-max in the corresponding zones.
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Card Group #9  Time-step size, upwind schemes and time-marching 
scheme selections.

Format (1 line) DTT, IREC, REC, THETA, BETAP, IEXX, PRAT
Defi nition DTT  Nondimensional time-step size, 
  Dt(Uref/Xref)
 IREC Selects upwind scheme options
  = 0: For second-order upwind scheme
  = 1: For third-order upwind scheme
  = 2: For second-order central scheme
  = 3: For second-order TVD scheme
  = 4: For third-order TVD scheme
 REC  Upwind damping parameter (0.1 

recommended)
  = 0.0: For second-order accuracy
  = 1.0: For fi rst-order upwind scheme
 THETA Time-marching scheme parameter
  = 1.0: For steady-state applications
  = .99:  For implicit-Euler transient 

applications
  = 0.5:  For Crank–Nicholson second-

order accurate transient 
applications

 BETAP ≤1.0  Pressure updating under-relax-
ation parameter, typically 1.0; 
small values can be used to reduce 
the amount on pressure correc-
tions for rough start initial runs 
(in this case, choose ISWP ≥ 80 as 
explained in Card Group #12)

  >1.0  Factor for the diagonal term of 
matrix coeffi  cients in the pres-
sure correction equation to main-
tain stability of matrix solver 
(typically 1.01 for incompressible 
fl ows, single species, or premixed 
multispecies fl ows)

(continued)
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Card Group #9 (continued)
 IEXX  Outlet extrapolation parameter for scalar 

quantities
  = 1: For zero-gradient extrapolation
  = 2: For linear extrapolation
 PRAT  Specifi es outlet boundary condition (bc) 

options
  = −1: For supersonic outlet BC.
  = 0.0:  For outlet mass conservation BC.
  > 0:  For outlet fi x pressure BC. Th e out-

let pressure reference point (IPEX, 
JPEX) is used here. Pressure at 
this point is maintained at a value 
of PRAT*PPCN, where PPCN is 
the atmospheric pressure (1 atm).

Card Group #10  Specifi es inlet, outlet pressure points and data 
monitoring point

Format (1 line) IPC, JPC, IPEX, JPEX, IMN, JMN
Defi nition IPC, JPC:  Flowfi eld reference point at the 

grid index of IPC in zone JPC (not 
the global grid index)

 IPEX, JPEX:  Outlet pressure reference point 
(same way of indexing as IPC, 
JPC)

 IMN, JMN: Solution monitoring point
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Card Group #11  Gives reference viscosity, Mach number and 
options of turbulence models

Format (1 line)  VISC, IG, ITURB, AMC, GAMA, CBE, CBH, 
EREXT

Defi nition VISC  Dimensional fl uid viscosity of air at 
the sea level (the unit has to be consis-
tent with that specifi ed by IUNIT)

 IG = 1: For laminar fl ow option
  = 2: For turbulent fl ow option
 ITURB For turbulence model selection
  = 1:  For standard high-Re k–e model
  = 2:  For extended high-Re k–e model
  = 3:  for Lam-Bremhorst low-Re 

k–e model19

  = 4:  for H-G low-Re k–e model
 AMC = 0.0:  For incompressible fl ow 

calculation
  > 0.0:  For compressible fl ow 

calculation
 GAMA  Reference-specifi c heat ratio (not used 

in the code)
 CBE = 0: No buoyancy eff ect
  > 0.5:  Include buoyancy eff ect for 

compressible fl ow
  < 0:  Nondimensional buoyancy force 

parameter for incompressible 
fl ow, |CBE| = Gr/Re2, where Gr 
is the Grashof number and Re is 
the Reynolds number

 CBH  Select compressibility corrections for 
the k–e turbulence model

  = 0.0: No compressibility correction
  = −1.0: For k-corrected model
  = −2.0:  For e-corrected model
  < −3.0:  For T-corrected model where 

C3(T/Ta)l, l = ∗CBH∗-3
 EREXT  Convergence criterion (typically 5.0E-

05 for steady-state solutions)
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Card Group #12  Specifi es number of zonal iterations in the matrix 
solver when (INFACE > 0) is used for overlaid 
grid zonal interface interpolations and indicates 
orthogonal or nonorthogonal grid options

Format (1 line) ISWU, ISWP, ISWK, ISKEW
Defi nition ISWU  For the momentum and energy 

equations
  ≤80  Number of iterations for the over-

laid zonal boundaries by using 
point-by-point matrix solver

  >80  Conjugate gradient matrix solver 
(solving multizones as a whole) is 
used to solve the matrices until its 
residuals drop (ISWU-80) orders

  >85  GMRES matrix solver (solving 
multizones as a whole) is used to 
solve the matrices until its resid-
uals drop (ISWU-85) orders

  >90  Conjugate gradient matrix solver 
(solving zone-by-zone) is used to 
solve the matrices until its resid-
uals drop (ISWU-90) orders

  >95  GMRES matrix solver (solving 
zone-by-zone) is used to solve 
the matrices until its residuals 
drop (ISWU-95) orders

 ISWP For the pressure correction equations
  ≤80  Number of iterations for the over-

laid zonal boundaries by using 
point-by-point matrix solver

  >80 Same as above for ISWU
 ISWK  For the scalar equations (e.g., k, e, and 

species equations)
  ≤80  Number of iterations for the over-

laid zonal boundaries by using 
point-by-point matrix solver

  >80 Same as above for ISWU
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Card Group #12 (continued)
 ISKEW  Nonorthogonal grid viscous fl ux 

option
  = 0: For orthogonal grid
  = 1: For nonorthogonal grid

Card Group #13  Specifi es which equations are to be solved
Format (1 line)  INSO(IEQ): U, V, W, TM, DK, DE, FL, 8, EQ, 

VS, FM, SP
Defi nition  U, V, W = 1:  Solving the momentum 
(0 to deactivate;    equations
1 to activate)   
 TM = 1:  Solving the energy 

equation
 DK, DE = 1:  Solving the turbulence 

model
 FL = 0: For ideal gas fl ow model
  = n > 0:  For real-fl uid fl ow model 

with the quality of the n-th 
species being saved (In this 
case, a “FLUID” entry at 
the end of the input fi le is 
needed to identify the spe-
cies which properties will 
be calculated through real-
fl uid model.)

 8 Not used
 EQ = 0: No equilibrium chemistry
  = 1:  H2/O2 equilibrium 

chemistry
  = 2:  Wet-CO equilibrium 

chemistry
 VS = 1:  For updating the turbulence 

eddy viscosity

(continued)
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Card Group #13 (continued)
 FM = 0:  Deactivate the species 

mass-fraction equations 
(e.g., single species or air 
fl ows)

  = 1:  Activate the species mass-
fraction equations

 SP  For calculating the gas thermal prop-
erties, and selecting various treatment 
for species production term

  = 1:  Explicit chemistry model 
(penalty function)

  = 11 or 12:  Implicit chemistry model 
(fi rst or second-order) 
with pseudotime-step size

  = 21 or 22:  Implicit chemistry model 
(fi rst or second-order) 
with real time-step size

  = 31 or 32:  First or second-order 
implicit chemistry model 
with time integration 
(constant T, P)

  = 33:  Fourth-order PARASOL 
chemistry model with time 
integration (constant T, P)

  = 41 or 42:  First- or second-order 
implicit chemistry model 
with time integration 
(constant H, P)

  = 43:  fourth-order PARASOL 
chemistry model with time 
integration (constant H, P)
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Card Group #14  Specifi es number of gas species and reactions, and 
gives the reference conditions

Format (1 line)  NGAS, NREACT, IUNIT, DENREF, UREF, TREF, 
XREF

Defi nition NGAS  Number of chemical species which 
thermal properties in CEC tables will 
be read in

  = 0:  For single species, ideal gas 
fl ow

  > 0:  For multiple chemical species 
fl ow

  = −1:  For LOX fl ow calculation 
where its thermodynamics 
properties are calculated 
from NBS table look-up

  = −3:  For water fl ow calculation 
where its thermodynamics
properties are calculated 
from table look-up

 NREACT Number on reaction steps to be used
  = 0: For nonreacting fl ow
  > 0:  For fi nite-rate reacting fl ow
 IUNIT = 1:  For SI-unit reference 

conditions
  = 2:  For English-unit reference 

conditions
 DENREF  Reference density      (in kg/m3 or slug/ft 3),

not used in the code
 UREF  Reference velocity (in m/s or ft /s)
 TREF  Reference temperature (in K or R), 

not used in the code
 XREF Reference length (in m or ft )
 PREF Reference pressure (in psi or N/m2)
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Card Group #15  If NGAS > 0, include the CEC thermodynamics 
data here

Format SPECIE, WTMOLE, <==== (1 line)
(4 lines*NGAS) HF(7,2) <==== (3 lines)
Defi nition SPECIE  Name of the chemical species 

(20 characters)
 WTMOLE  Molecular weight of the chemical 

species
 HF(7,2)  Polynomial coeffi  cients of CEC ther-

modynamics data of the species

Card Group #16  If NREACT > 0, specifi es the fi nite-rate reaction 
steps

Format  REACTION: Species names, N = 1, NGAS (only 1 
(2 or 3 lines* line as a title)
NREACT) IREACT, A, B, E/RT, ITHIRD, IGLOB,
 (STOCEF(N, IREACT), N = 1, NGAS),
  (STOCEG(N, IREACT), N = 1, NGAS)* * needed 

if IGLOB = 2
Defi nition IREACT Reaction step counter
 A Reaction rate leading constant
   (A = 0 is designated for the soot-oxi-

dation chemistry)
 B Reaction rate temperature exponent
 E/R  Reaction rate activation energy 

constant
   (if A = 0, then E/R is the assumed 

diameter of the soot particle in meter, 
typically 4 × 10−6 m)

 ITHIRD Th ird-body reaction indicator
 = 0: Deactivated
 = n:  For using the N-th species as third 

body
 = 999: For global (every species) third body
 IGLOB Global reaction model indicator
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Card Group #16 (continued)
 = 0:  Elementary reactions with the rate of 

backward reaction is calculated from 
equilibrium constant and forward 
reaction rate

 = 1:  One-way reaction (either forward or 
backward reaction controlled by the 
sign of STCOEF); need only one input 
line of STCOEF

 = 2:  One-way reaction with power depen-
dency; need input line for STCOEF 
and STCOEG

 STCOEF  Stoichiometric coeffi  cients of elemen-
tary reactions (negative signs apply to 
reactants and positive signs are for the 
products)

 STCOEG Power dependency coeffi  cients

Card Group #17  If IJKPMX= IIQMAX in the parameter specifi -
cation, then read in the following particle input 
control

Format (1 line) IDPTCL, IPREAD
Defi nition IDPTCL  Number on particle initial condition 

input lines
  = 0:  To deactivate particulate phase 

calculation
  = 1:  To activate particulate phase 

calculation
 IPREAD = 0:  Read in particle inlet conditions 

in next card group

(continued)
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Card Group #17 (continued)
  = 1:  For reading in particle data 

(fort.14) from upstream domain 
(this allows transferring the 
outlet particle data from the 
upstream domain solutions to 
the inlet boundary for succeed-
ing domain computations—
especially useful for multiphase 
rocket plume simulations)

Card Group #18  Particle initial conditions (for steady state 
runs only)

Format  IPTZON, IDBCPT, LPTCL1, LPTCL2, 
MPTCL1, MPTCL2, NPTCL1, NPTCL2

(2 lines*IDPTCL)  ITPTCL, DDPTCL, DNPTCL, WDMASS, 
UUPTCL, HTPTCL

Defi nition IPTZON  Zonal index for the particle initial 
position

 IDBCPT I-, J- or K-plane identifi er
  = 1:  For I-plane (plane normal 

to I lines)
  = 2:  For J-plane (plane normal 

to J lines)
  = 3:  For K-plane (plane normal 

to K lines)
 LPTCL1, LPTCL2  I-interval for the particle 

initial position
 MPTCL1, MPTCL2  J-interval for the particle 

initial position
 NPTCL1, NPTCL2  K-interval for the particle 

initial position
 ITPTCL  Number of particle 

groups (trajectories) start-
ing from each grid cell
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8.9.2 USER-DEFINED RUN-TIME MODIFICATIONS

Th ree run-time modifi cation include fi les are used for the current ver-
sion of the CTP code. Th ey are: fmain01, fmain02 in the main program, 
and fexmp01 in the subroutine EXAMP. All these include fi les are entered 
in the CTP.f fi le. Only this fi le needs to be recompiled aft er any of these 
three include fi les are changed. However, if any of the COMMON block 
include fi les, fdns01 through fdns17, and fl uid.inc, is changed, the entire 
code must be recompiled. Samples of the usage of these include fi les for 
given example problems are listed in Appendix C.

8.9.3  MAIN PROGRAM INCLUDE FILES 
(FMAIN01 AND FMAIN02)

Th e include fi le fmain01 is only used aft er the restart fi les are read. Any mod-
ifi cations to the restarted data such as the inlet pressure level setting, inlet 
velocity profi le modifi cation, reinitializing part of the fl owfi eld, and/or wall 
temperature resetting, etc. FORTRAN statement numbers between 7000 and 
7900 can be used in the coding of this include fi le.

Th e second include fi le fmain02 is entered aft er every time step. Any run-
time modifi cation such as boundary condition adjustment, grid modifi ca-
tion (note that DIRCOS and TRANF must be called aft er grid modifi cation), 
and run-time printing of any data of interest (fi le unit numbers between 30 
and 89 are recommended for printing out user’s data) can be added in this 
include fi le. FORTRAN statement numbers between 8000 and 8900 can be 
used in the coding of fmain02.

Card Group #18 (continued)
 DDPTCL Particle diameter in mm
 DNPTCL  Particle density in lbm/ft 3

 WDMASS  Particle mass fl ow rates 
for the current particle 
group and area involve 
the current input line

 UUPTCL  Particle/gas velocity ratio 
at the initial positions

 HTPTCL  Particle initial enthalpy 
in ft 2/s2



366   ■     Computational Transport Phenomena for Engineering Analyses

8.9.4 EXAMPLE SUBROUTINE INCLUDES (FEXMP01)

In the example start include fi le, fexmp01 (which is included in the sub-
routine EXAMP), one can include simple grid generation and initial fl ow-
fi eld specifi cation FORTRAN coding to start a problem. Subroutines IVA4 
and RVA4 are used to simplify the coding and subroutine XISENT can 
be employed to generate initial nozzle fl owfi eld based on 1-D isentropic 
relations. Another way of using the fexmp01 fi le, such as the one used for 
some of the example problems is to write a simple but general grid and 
fl ow data read-in code in the fexmp01 fi le. Th en, a separate grid generation 
and fl owfi eld initialization program is written for generating the grid and 
fl ow data fi le, which is then used by the fexmp01 data input code.

8.9.5  RESTART/OUTPUT FILES (IN MAIN, 
DATINN, AND DATOUT)

Th e grid and fl owfi eld restart input fi les (fort.12 and fort.13) and out-
put fi les (fort.22 and fort.23) are handled in the subroutines DATINN 
and DATOUT. Th e subroutine DATP3D prints out one PLOT3D grid-
fi le (fort.91) and two PLOT3D q-fi les (through fort.92 and fort.93). Th e 
PLOT3D grid data are not rescaled for general cases, and except for 3-D 
pump problems where grid data are normalized by the pump tip diameter. 
Th e fi rst PLOT3D q-fi le, fort.92, includes the following fi ve variables:

q1 Density in lbm/ft 3 or unity
q2  U-velocity in ft /s or normalized by the pump tip speed
q3  V-velocity in ft /s or normalized by the pump tip speed
q4  W-velocity in ft /s or normalized by the pump tip speed
q5  Nondimensional total pressure.

Th e second PLOT3D q-fi le, fort.93, includes the following fi ve variables:

q1 Density in lbm/ft 3 or unity
q2 Pressure in psia
q3 Temperature in EK
q4 Mach number
q5  First species mass-fraction, or quality of the specifi ed species

Units of the PLOT3D outputs can be modifi ed, by editing the DATAIO 
subroutine. Unformatted data are used in DATAIO subroutine. Other 
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formats can be incorporated, by modifying DATAIO. Th e TECPLOT data 
fi le contains both grid coordinates and fl ow variables, which are listed as: 
X, Y, Z (3D only), U, V, W (3D only) for pressure, density, temperature, 
Mach number, quality (if real-fl uid model is activated), and species mass 
fractions, respectively. Th e units of all variables are determined through 
the input fi le (fort.11). Note that in the main program, CTP.f, the names 
of the data fi les described above are assigned according to the following 
defi nitions:

fort.2 → dbase. dat
fort.9 → fl uid.inp
fort.11 → input
fort.12 → restart.x
fort.13 → restart.q
fort.22 → output.x
fort.23 → output.q
fort.91 → plot.x
fort.92 → plot.q1
fort.93 → plot.q2
fort.94 → tecplot.dat

8.10 NOMENCLATURE
See Section 6.5, exceptions are the replacement of the symbols: g with φ 
and φ with Γ. Other symbols are used, but they are not blamed as they only 
have meaning in the equations in which they are used.
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9C H A P T E R  

Multiphase Phenomena

9.1 SCOPE
Multiphase fl ows are important in numerous industrial and environ-
mental situations. Th e chemical process industries, aerospace propulsion 
systems, and sediment transport by rivers and ocean currents generally 
involve dispersed solid particulate and bubbly fl ows in liquid and gas-
eous carrier streams. An equally huge variation of scale is associated with 
these phenomena. From the measurement of single particle fall velocity 
measurements in graduated cylinders, to the transport of tons of sedi-
ment into the Gulf of Mexico by the Mississippi River each year, these 
multiphase fl ows demand our attention. Since the current computational 
power of today’s computers allows investigators to provide high-quality 
approximate solutions to the transient, three-dimensional conservation 
equations, much progress has been made in predicting and understanding 
many of these complex transport processes. Perhaps, the most astounding 
feature of these analyses is that the conservation equation solutions apply 
to laboratory experiments on a scale of a few millimeters to environmental 
fl ows, which extend for hundreds of miles.

Particulate pollutants carried by the atmosphere and sediment carried 
by rivers were among the fi rst multiphase fl ows to receive serious study. 
Such fl ows were rather dilute suspensions and were modeled as such. Th e 
analysis of dilute particulate transport was given a major boost by NASA 
and the Air Force’s interests in the fl ow of aluminum oxide particles in solid 
rocket motors and their plumes. Since the aerospace industry pioneered 
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the use of computers for solving transport phenomena problems because 
laboratory experiments could not duplicate space conditions, more reli-
ance was forced on numerical simulation. Th e process industries utilized 
laboratory experiments, which simplifi ed the fl ow phenomena as much 
as possible to create phase interfaces for which the multitude of chemical 
systems could be studied. Interphase transport was measured primarily 
in falling fi lm devices for which the fl uid velocity fi elds were assumed to 
be known. Practical processes were analyzed by empirical extrapolation 
of such test data. Later, fl uidized bed technology was utilized for reac-
tor design, which forced the process industries into exploring the dense 
suspension fl ows involved in such devices. Environmental scientists had 
the full-scale transport processes at hand and consequently spent their 
eff orts on measuring and collecting experimental data. Once again such 
data were interpreted by empirical correlations and dimensional analy-
sis. Numerical simulations of the large-scale fl ows involved had to await 
the development of more computer power and of innovative averaging 
techniques.

Th ese brief introductory remarks do not do justice to the major eff orts 
that have been undertaken to study multiphase fl ows. Since the intent of 
this work is to introduce the application of computational technology 
to the analysis of transport processes, several examples will be given to 
suggest how multiphase transport may be simulated. Be warned that the 
mechanics of particulate and bubble transport has received far more atten-
tion than the equally important thermodynamic and chemical aspects of 
interfacial phenomena.

Th e examples included in this overview are as follows:

Dilute suspensions of solid particulates and bubbles in liquids. • 
Th e eff ect of dispersed phase properties and several comprehen-
sive analyses will be discussed.
Th e capabilities of the CTP code for analyzing multiphase trans-• 
port will be explained. Th ese capabilities include the use of real-
fl uid chemical and physical properties to treat otherwise extremely 
complex fl ows.
Th e importance and description of interphase transport. Phase • 
boundaries will be described as boundary conditions separating 
the phases and also as an integral part of the solution of the con-
servation equations.
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Dense suspensions typical of fl uidized bed operation will be • 
described. Th e conservation equations which apply to such fl ows 
require extensive modifi cation from those previously mentioned 
in this work. Th ese modifi ed equations will be presented and dis-
cussed herein. Specialized codes capable of solving the transport 
equations for these systems will be illustrated.

9.2 DILUTE SUSPENSIONS
Sediment (Yalin, 1972; Waldrop and Farmer, 1976) and atmospheric par-
ticulate pollutants (Zannetti, 1990; Seinfeld and Pandis, 1998) transport 
has been simulated as fl ow of dilute suspensions for some time. When 
metallized propellants were introduced into rocket motors, a lower com-
bustion effi  ciency was produced than had been previously experienced. 
Kliegel (1963) attributed this eff ect to be solid and/or liquid metal oxide 
particles in the exhaust causing lower volumetric fl owrates than expected. 
By postulating drag and heat transfer coeffi  cients and particle size distri-
butions, the fl owfi eld was calculated and the loss eff ect was explained. A 
similar, but less extensive, modeling study was accomplished by Ishii et al. 
(1989). Over the years, NASA (Smith, 1984) and the Air Force (Simmons, 
2000) have refi ned the analyses of these dilute particulate fl ows extensively 
to better predict the performance and plumes of rocket propulsion sys-
tems. Various subsonic and supersonic gas dynamic analyses were used 
to simulate the carrier fl uid. Th e physical eff ects considered and modeled 
include particle collisions and agglomeration, solidifi cation, crystalliza-
tion, fragmentation, nucleation, condensation, vaporization, sublimation, 
and melting.

Dilute suspensions use an Eulerian analysis for the carrier (contin-
uum) fl uid with a Lagrangian description of the suspended particulates. 
Iteration is performed to couple the two fl ows. Th e Eulerian step solves 
the continuum equations for a fi xed grid. Th e Lagrangian step accounts 
for the energy and momentum exchange with the dispersed phase. A host 
of eff ects other than particle size and drag and heat transfer coeffi  cients 
have been evaluated but few of these are yet to be included in compre-
hensive fl owfi eld codes. A recent review of eff ects such as virtual mass to 
simulate acceleration forces, interaction of condensed phases with the tur-
bulent fi eld, particle shape, mixture sound speed, etc. is given by Brennen 
(2005).
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Th e analyses just mentioned for dilute suspensions have tacitly assumed 
that there is no exchange of mass from the dispersed to the continuum 
phase. Th is is usually an excellent assumption for the examples mentioned. 
However, if condensation or evaporation or chemical reaction occurs, 
interfacial conditions must be specifi ed more completely.

9.3 INTERPHASE MASS TRANSFER
When interphase mass transfer is not important, modeling the exchange of 
heat and momentum and the accompanying swelling or shrinkage of the 
particulates is adequate to describe the process. When mass is exchanged, 
both physical and chemical processes may occur. Such systems defy gen-
eralization. Several specifi c, important phenomena will be described to 
illustrate the level of detail required to simulate a multiphase process.

9.3.1 INTERFACIAL EQUILIBRIUM

Consider a multicomponent gas–liquid. If the phases are separated by 
a simple geometric interface, the following conditions may occur. If the 
liquid is dispersed as droplets, such conditions may apply locally around 
each drop.

Let yi be the mass (or mole) fraction in the gas phase and xi be the 
mass (or mole) fraction in the liquid phase. For example, place a gaseous 
mixture of ammonia and air along with an amount of water in a closed 
container. Shake the container and let it sit. Th e pressure and tempera-
ture will become constant. Th e ammonia will be distributed between 
the gas (air) and liquid (water) phases. Th e amount of air dissolved in 
the water, and the amount of water which humidifi es the air will be and 
are assumed negligible. Th e distribution of the ammonia will constitute 
an equilibrium split in the two phases. Th e thermodynamic statement 
of this equilibrium condition is that the chemical potential (or, equiva-
lently, Gibbs free energy or activity) of the ammonia in the air and in the 
water will be equal.

Now inject additional ammonia, and repeat the experiment. A new set 
of equilibrium values will be obtained. Th e results of these experiments 
can be plotted as an equilibrium curve, i.e., the yA vs. xA values (where A 
represents ammonia). Th e volume of the container and heat exchange to 
or from it is to be adjusted as required to maintain the original tempera-
ture and pressure. In general,
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 1. Equilibrium conditions for other systems can be established in a 
similar manner.

 2. Th ere is no net diff usion (of the solute) for equilibrium condi-
tions, assuming that initially the mixture was shaken suffi  ciently 
to make the concentration uniform in the each phase.

 3. For a static system not in equilibrium, equilibrium will exist at the 
interface and laminar and turbulent diff usion will occur until the 
entire system reaches equilibrium.

 4. For a wetted wall column in either cocurrent or countercurrent 
laminar or turbulent fl ow in which the gas stream and the liquid 
stream are in fully developed fl ow, i.e., there is negligible velocity 
component normal to the wall; conditions are the same as for the 
static system at each elevation in the column.

Statements 3 and 4 are not absolutely true, as some interfacial resistance 
to mass transfer may exist. Such resistance may be estimated with kinetic 
theory by calculating a maximum transfer rate accounting for molecular 
strikes on the gas side and an accommodation coeffi  cient for them stick-
ing to the surface. Not considering this eff ect might introduce errors of the 
order of a few percent, under normal processing conditions. More serious 
deviation from this equilibrium condition may be caused by their being 
signifi cant surface tension eff ects, having turbulent fl ow in the system 
which produces surface ripples, and/or chemical reactions occurring near 
the interface.

9.3.2 TWO-FILM THEORY

For the wetted wall column just described, there is a resistance in either 
phase for producing the interfacial compositions from the bulk composi-
tion in the phases. Whitman introduced this idea in 1923 (Sherwood et al., 
1975) by suggesting

 A AG Ai Ai AL( ) ( )y xN k y y k x x= − = −  (9.1)

where NA is the mass fl ux of A for the condition of no average velocity. Th e 
fully developed fl ow assumption in this system implies no average velocity 
normal to the column wall at each local elevation. Th e fl ux indicated by NA 
is a combination of convection and diff usion. Frequently, it is used when 
the transport eff ect being considered does not change the velocity fi eld 
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(a very severe restriction). Th e k’s are fi lm coeffi  cients which convert the 
concentration diff erence driving forces to fl uxes. Th ey are obtained from 
experiments. Th e subscripts G, i, and L indicate gas, interface, and liquid 
values, respectively. Hence,

 

AG Ai

AL Ai

y

x

ky y
x x k

−
= −

−  
(9.2)

Whitman’s work predated application of boundary layer theory to mass 
transfer, but the concept is still used in the chemical industry. Th e use 
of bulk values implies that boundary layer behavior is not being consid-
ered. Th e analyses using such methodology are referred to as fi lm theo-
ries. Since compositions at the interface are diffi  cult to measure, they are 
usually replaced by assuming equilibrium conditions at the interface. Th e 
superscript asterisk indicates equilibrium conditions corresponding to 
bulk values in the gas or liquid phase.

 A AG A A AL( ) ( )y xN K y y K x x∗ ∗= − = −
 (9.3)

Combining the two resistances is accomplished by defi ning
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(9.4)

Th e overall resistances become
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m
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(9.5)

or based on the liquid side,

 

1 1 1

x y xK m k k
= +

″  
(9.6)

These relationships are used extensively to analyze mass transfer 
process, as described in the texts Treybal (1968) and Sherwood et al. 
(1975).

Th e fi lm concept for predicting mass transfer rates is not directly useful 
in computational analyses of these processes, but the physics and thermo-
dynamics involved indicate how boundary conditions and internal jump 
conditions may be introduced into computational analysis.
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9.3.3 SIMULTANEOUS HEAT AND MASS TRANSFER

To relate humidity to wet- and dry-bulb temperature measurements, the 
following analysis is made. Th e wick around the wet bulb will exchange 
heat and mass with the ambient air until a steady-state equilibrium is 
reached, whereas the dry bulb simply measures the air temperature. Let 
a designate the diff using species water vapor and utilize the defi nitions 
of average velocities and fl uxes for a two-component air–water system:

 c V J Nα α α+ =
� � �

 (9.7)

Assume the diff usion and fl ow are one-dimensional, the total molar con-
centration is constant for this ideal gas mixture of known temperature 
and pressure (c = P/RT).

 
( )c V N J c y W y c W y N Nα α α α β β α β β α α β

β β

= − = = = +∑ ∑
 

(9.8)

Assume Nb is zero for air not diff using into the water contained in the 
wick. Th is means that the water vapor is diff using from the wet surface 
through a stagnant fi lm. Upon replacing the diff usion fl ux with a coef-
fi cient and concentration gradient,
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(9.9)

Integrating over a thickness d
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Also,
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(9.11)

Th e concentrations correspond to the partial pressure of water at the wick 
surface (location 1) and zero at the fi lm edge d where the air stream con-
tains only ambient moisture.
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An analogous equation can be written for energy transfer.

 
( )α α

α α
α α

= − − λ = +
− − / 2 1 sen vap

1 exp ( ){ }T

N C
q T T N q q

N C h  
(9.13)

For the boundary conditions that T = T1 at the interface and T = T2 at the 
edge of the fi lm. Since no heat is added to the wet wick, qT is zero. Th e fi lm 
coeffi  cient for heat transfer is h ; Ca and la are the heat capacity of water 
vapor and heat of vaporization of water, respectively.

Th e problem of determining the simultaneous transfer of mass and 
energy has been solved. Unfortunately, the fi lm thickness is not known 
and the use of the thermal conductivity k, fi lm coeffi  cient h , and diff usion 
coeffi  cient Dab imply that the results apply only to laminar transport. Th e 
analysis shown is crude because the species conservation equation is not 
directly solved, but if it were for the same conditions the answer would be 
the same (see Bird et al., 2002). So much for trying to solve the conserva-
tion equations. Simply resorting to empiricism, let the mass and heat fl ux 
of a diff using into stagnant b be represented by a fi lm coeffi  cient times a 
driving force:

 ( )G 1 2N k p pα α α≈ + −  (9.14)

 { }( )α α

α α

= − ≈ −
− −sen 2 1 G G 11 exp

( )
( )/

N C
q T T h T T

N C h
 

(9.15)

 ( ) ( )G G 1 G 2 1 0Tq h T T k p pα α α≈ − + λ =−  (9.16)

 ( ) ( )α α α− = λ −G 1 G 1 2 GT T k p p h  (9.17)

Th e fi lm coeffi  cients are related to diff usion coeffi  cients for mass and heat 
transfer, respectively:

 / /y Tk cD hαβ= δ = κ δ  (9.18)

Th e fi lm thicknesses must be known to use these equations. Th e kG and hG 
are fi lm coeffi  cients for a low rate of mass and heat transfer and are evalu-
ated from experimental data. Th ey are defi ned such that the fi lm thickness 
does not have to be defi ned. Other nomenclatures for these coeffi  cients are
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for gases

 ( ) ( ) ( )α α α α α α α= − = − = −1 2 G 1 2 1 2c yN k c c k p p k y y  (9.19)

and for liquids:

 ( ) ( ) ( )α α α α α α α= − = − = −1 2 L 1 2 1 2c xN k c c k c c k x x  (9.20)

Using these approximations, and since both heat and mass transfer coeffi  -
cients are included in this heat fl ux equation, one coeffi  cient can be elimi-
nated by the analogy between heat and mass transfer. If the confi guration 
of the wick is cylindrical,
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(9.21)

Cs is the humid heat required to raise one pound of water and whatever 
water vapor it contains to 1°F. Th is correlation gives Cs = 0.24 for air–water 
system compared to measured values of 0.227. For the air–water system, 
the constant Cs is essentially the same as that for the adiabatic saturation 
temperature. Th is is purely fortuitous because the ratio Sc/Pr (i.e., the 
Lewis number) is approximately one. In this example, the Lewis number is 
evaluated for the major species, which is dry air. Th ese approximate mass 
and heat transfer correlations are very satisfactory to explain the opera-
tion of the wet- and dry-bulb temperature determination of humidity.

Correlations for the kG and hG coeffi  cients abound in the literature for 
various binary fl uid mixtures and geometrically simple confi gurations 
(Treybal, 1968; Skelland, 1974; Sherwood et al., 1975; White, 1988; Bird 
et al., 2002; Geankoplis, 2003). For the wet- and dry-bulb system, the ther-
mometer bulb may be cylindrical with cross-fl ow or spherical. Frequently, 
the correlations are given with Colburn’s j-factors.

     
= = = ρ =2/3 2/3{ }; { }( ) ( )/ /D c H pj k V Sc fn Re j h C V Pr gn Re

 (9.22)

It was stated that these approximations are valid if the mass fl ux of the 
diff using species is small. Less obvious is the fact that the bulk velocity has 
been neglected. Consider what the defi nition of Na being constant means. 
For one-dimensional fl ow, the stream moves inviscidly through an imagi-
nary, constant diameter tube. If the fl ux of a species is constant and the 
species concentration decreases along the tube, how is the mass balance 
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satisfi ed? Th is can be only approximately true when the concentration of 
the diff using species is very small. But the diff usion velocity is also very 
small, how can one be sure that the diff usive velocity exceeds the convec-
tive velocity suffi  ciently to make a meaningful analysis?

Nevertheless, extensive use has been made of fi lm theory and mass 
fl ux methodology. Th e literature also refers to mass transfer coeffi  cients 
for “high mass fl ux” conditions. Th ese coeffi  cients are the same as for 
low mass fl ux conditions aft er they have had the driving force modifi ed 
by accounting for the ya Na term. Th is term represents the bulk velocity 
for diff usion through a stagnant fi lm (or other diff usion fl ow analyses). 
Th e use of fi lm theory eliminates the need for defi ning a fi lm thickness 
and linearizes the driving force term. Do both of these factors need to be 
modifi ed to treat high mass fl ux conditions? Consider fi rst the logarithmic 
form of the driving force.

Defi ning log–mean values by
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For example,
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where P = pa1 + pb1 = pa2 + pb2. The manipulations to produce this equa-
tion are as follows:
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It does not appear that much has been accomplished by the introduction 
of the log–mean term, but it preserves the appearance of the linear term 
as the driving force.
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Th e dot exponent on the fi lm coeffi  cient indicates that it is for the high mass 
fl ux conditions. Th e literature suggests that the fi lm coeffi  cient has been 
changed to give high mass fl ux conditions. As is evident by this example, it 
is the driving force that has been redefi ned, not the fi lm coeffi  cient. Th e fi lm 
coeffi  cients are obtained from the low mass fl ux conditions and then modi-
fi ed with the log–mean term. Such corrections might look diff erent depend-
ing on the concentration units used to describe the driving force, but the 
method of making the correction remains the same. Th is also removes the 
confusion resulting from fi nding that the high fl ux fi lm coeffi  cient is smaller 
than the low fl ux coeffi  cient (unless the fl uid properties vary signifi cantly).

9.3.4  TURBULENT FILM COEFFICIENTS 
FOR MASS TRANSFER

Now it is argued that the ratio kG/hG can be evaluated for either laminar or 
turbulent fl ow by using j-factors. Th e log–mean correction factors must be 
used for this interpretation to make any sense. Otherwise, one is assuming 
the fl ow to be turbulent but with a zero bulk velocity. With this proviso, 
turbulent mass transfer is addressed as follows.

In Chapter 1, simple examples were given to relate momentum, heat, and 
mass transfer. Th e examples were simple with respect to geometry; fully 
developed pipe fl ow was described. It was stated that such fl ow was like 
other near wall fl ows such that the variations were local and normal to the 
wall. In this respect they became similar to the mass fl ux analyses presented 
in the previous section. Chapter 1 examples for heat and mass transfer were 
also simple in that they were assumed to be of such small values that the 
velocity profi les were not changed by their presence. Such a prediction is 
only a slight improvement over the mass fl ux analyses which neglect the 
bulk fl ow normal to a wall altogether. Th e next level of improvement would 
be to account for the infl uence of momentum, heat, and mass transport on 
the near wall velocity profi les. To make such analyses, the impact on the 
entire fl owfi eld should be determined. Such accounting must be done with 
a fully coupled CTP solution. However, the empiricism developed from test 
data will be reviewed so that a more rigorous set of boundary conditions can 
be determined for use in numerical solutions.
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For near wall fl ows, a fl uid which is the same composition as the free 
stream can be blown into or sucked from the boundary layer. Practically, 
such fl ows can be used to control friction or heating on a surface. Studies 
of these fl ows were reviewed by White (2006). Th e eff ect of blowing and 
suction on turbulent convective heat transfer boundary layers has been 
frequently measured and is well correlated by the following equation 
(Schetz, 1993). Th e correlation is for a single species, i.e., the injected spe-
cies is the same as that in the free stream.
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Th e Stanton number is c/ pSt h U C= ρ . Th e subscript c represents cen-
terline or free stream value. Th e subscript 0 represents the value without 
injection or suction at the wall. Th e two fl ows involved are to be com-
pared at the same Reynolds number based on momentum thickness, Req. 
Th e Stanton number for heat transfer is related to that for mass transfer 
(denoted by the subscript m) by the Chilton-Colburn analogy:
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Th e discussion has been relative to near wall fl ows. To calculate numeri-
cal values for these correlations, one must utilize data for the specifi c 
geometries of interest from standard texts, for example, those cited at the 
beginning of the discussion on wet- and dry-bulb temperature measure-
ments for the determination of humidity. Th ese correlations give a good 
approximate indication of the interaction of mass, heat, and momentum 
transfer at an interface or wall. More accurate analyses would involve 
detailed predictions within the fl owfi eld using these approximations to 
construct boundary conditions.

To gain more insight into turbulent mass transfer, the analogy between 
the transport processes needs to be reconsidered. Consider the transport 
processes to be described by
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These equations are written for constant density, steady-state, one-
dimensional fl ow in the x-direction, and one-dimensional heat and mass 
transfer in the y-direction. Th e conserved quantities are assumed time 
averaged. Th e turbulent transport properties are described only in terms of 
the eddy diff usion, conductivity, and viscosity. Th e species continuity equa-
tion is written for a diff using into a mixture m. Th ese equations are the 
starting point for most mass transfer analyses (e.g., Sherwood et al., 1975). 
Usually, the statements are made that the analogy between the processes is 
not exact because the shear stress is a tensor. Th is restriction is not precise. 
Usually, the velocity parallel to a surface or interface is much larger than the 
velocity normal to the surface. Hence, the momentum transport is defi nitely 
a two-dimensional process (at least). Worse still, the bulk velocity term (Vz) is 
frequently omitted in the mass transport equation. As previously mentioned, 
this is the reason that the mass transport fi lm coeffi  cients are limited to small 
transfer rates when the driving forces are approximated as linear diff erences 
of concentration gradients. Th ese things being said, we will make the con-
ventional sin and proceed assuming that all of these restrictions apply. Most 
specifi cally, the bulk velocity in the species equation will be assumed zero.

To investigate the description of mass transfer with these restricted trans-
port equations, the fully developed pipe fl ow example from Chapter 1 will 
be revisited. Using inner law dimensionless variables, utilizing the linear 
variation of shear-stress across the pipe, and the mass average velocities,
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Assume that the laminar transport is important only very near the wall, 
that in this near wall region Na is constant and that r = R. It follows that
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Assume that the fl ux equation omits the bulk velocity term, that the con-
centration of a and the velocity equal free stream values at y1

+, and that 
ED = En at y1

+ it follows that
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Now if ED is specifi ed as a function of y+, the function gn can be 
determined:
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(9.37)

Th is equation indicates that if two resistances are present, the fi rst term 
is a resistance outside of the wall layer and second is eff ective inside the 
wall layer where both turbulent and laminar eff ects are present. If the Sc 
is unity, the second resistance is zero and the Reynolds analogy results, 
which is,
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Several attempts have been made to use a diff erent “universal” velocity 
function very near the wall, resulting in various degrees of success. 
Also, diff erent models for representing mass diff usion very near the wall 
have been used. Th ese do not use the analogy in this region. Several 
such functions use ED proportional to y+3 in this region. Skelland (1974) 
reviewed several of these modifi ed velocity profi le approaches and found 
that some of the better ones predicted the mass transfer rates rather well, 
but produced kinks around the point where the wall layer was fi t to the 
inner law region. Skelland reviewed Gowariker and Garner’s velocity 
profi le model which eliminated the kink and gave comparable predictions 
to the other models.
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Such models have been criticized as too complex, but the ready availability 
of PCs has rendered such criticism mote.

A purely empirical attempt to predict better eddy mass transport near 
the wall is
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which yields the Chilton-Colburn analogy. Regardless of all of these 
attempts and numerous publications, the fi lm coeffi  cients for small rates of 
mass and heat transfer are still usually predicted using this 1934 analogy.

Th ese results indicate that the velocity, Sc number, and Pr number pro-
fi les discussed in Chapter 1 apply to conditions where the mass and heat 
transfer rates are small and may be used to evaluate kc and hG fi lm coef-
fi cients. Corrections for turbulent high mass and heat fl ux conditions are 
yet to be described.

To describe high mass transfer from an interface into a turbulent fl ow, 
Equation 9.26 can be used if the fi lm coeffi  cient is evaluated from a tur-
bulent fl ow Reynolds number correlation or if the transfer from the inter-
face is by diff usion only. Th e log–mean correction term in this equation 
accounts for the bulk fl ow in the direction of diff usion.

A further analysis developed by Mickley et al. (1954) and reviewed by 
Sherwood et al. (1975) was described as an air stream passing through the 
porous wall of a pipe into an air stream. Th e interior of the porous surface 
was to be maintained wet with water. Th e water was assumed to vaporize 
and be carried into the main air stream by diff usion. Such conditions can 
almost be duplicated experimentally without physically blowing water off  
of the surface. Th e analysis should be very appropriate for describing the 
injected fl ow to be air with some other gas or vapor component. Th e pri-
mary air stream would then have this additional species fl ow and diff use 
into it. Th e injected mass fl ux (NT) would still be a total value representing 
bulk velocity and set as a boundary condition. Th e mass balance describ-
ing this fl ow is
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 TN N y Jα α α= +  (9.41)

and the species continuity equation is
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Th e solution is
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The driving force is linear in mole fraction, therefore no log–mean 
correction is needed. Th e result is a determination of the diff usion fl ux, 
but it is still in terms of an undefi ned fi lm thickness, d. Th e term involv-
ing the fi ctitious fi lm thickness can be evaluated in terms of the low mass 
transfer rate fi lm coeffi  cient (ky) to completely specify Ja, which is then 
used to determine NT.
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Th e simplifi cation in defi ning the high mass transfer fi lm coeffi  cient arises 
because the total mass fl ux (or in other words bulk velocity) is set as a 
boundary condition.

Th is brief discussion of fi lm coeffi  cients to describe mass transfer 
provides the background to help specify boundary conditions for a CTP 
solution. Th e emphasis herein has been on fi lm coeffi  cients and one-
dimensional transport. Film coeffi  cients for other geometries and two-
way diff usion (usually equal molal counter diff usion) can readily be found 
in mass transfer texts. Th e discussion herein also serves as a primer to 
prepare one for reading such texts. Th is is useful because so many detailed 
summaries of test data and perturbations of the chemical systems involved 
the obscure basic transport mechanisms involved.

For a computational analysis of simultaneous heat and mass transfer, 
the one-dimensional analyses are only used to provide information for 
designing boundary conditions at the interfaces. Temperature and species 
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distributions in the fi eld are calculated with the computational code used. 
An even simpler situation exists when surface reactions occur. Th e energy 
eff ect matching the mass transfer of reaction products into the fl owfi eld is 
specifi ed as a boundary condition. Th is simple calculation is oft en clouded 
by the fact that the surface reaction rate and participating species must be 
determined by experiment. When such data are not available, only poor 
estimates must be used. Sometimes availability of good validation test 
data for other fl owfi eld properties mitigates this problem.

9.4 MULTIPHASE EFFECTS 
INCLUDED IN THE CTP CODE

Th e CTP code was intended primarily for a single phase multicomponent 
fl ow simulator. However, it was found to be capable of simulating several 
multiphase phenomena with little modifi cation and/or with inventive use 
of its single-phase capability.

9.4.1 DILUTE PARTICULATE CLOUD TRACKING

Th e CTP code solves the particle equations of motion and the particle 
energy equation on the Lagrangian framework. Each particle group tra-
jectory is tracked by integrating the particle equations of motion. Th e 
interphase drag forces and heat transfer fl uxes are stored and included in 
the gas phase governing equations. Only steady-state fl ows can be simu-
lated. Th e particle momentum and energy equations are written as (Al2O3 
particle properties are used in the present model)
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9.4.2 CONJUGATE HEAT TRANSFER

Analysis of convective heat transfer to pipe fl ows frequently uses constant 
wall temperature of constant wall heat fl ux as boundary conditions. What 
if neither is appropriate for the problem at hand? Oft en a more realistic 
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solution can be obtained if the wall boundary condition is moved outside 
of the pipe where insulation could make the outside condition adiabatic or 
one of natural convection to the environment. Th is type fl ow can be ana-
lyzed using the CTP code by considering grid points within the wall of the 
pipe as nonfl ow points. Th e code would still solve the energy equation at 
such points; hence, the fl ow along the inside pipe wall would become like 
an interface across which heat could fl ow. Th us, the inside wall tempera-
ture be predicted as part of the simulation.

9.4.3 REACTING WALL BOUNDARY CONDITIONS

Ablating surfaces utilize the endothermic reactions of pyrolizing poly-
mers as a heat sink to protect structures. Hybrid rocket motors fl ow 
oxidizer over polymeric fuel surfaces to provide the working fl uid for pro-
pulsion. In the hybrid motor, the fuel might react at the surface or might 
pyrolize and react in the gas phase. Which case actually occurs is diffi  cult 
to ascertain, but either might be modeled by the assumption that one of 
the processes occurs and set the reaction rates to match overall process 
measurements. Th e CTP code simulates such processes by treating the 
products from the receding surface as fl ow through a fi ctitious inlet 
to the fl owfi eld. Th e calculation is rigorous, but its accuracy depends 
on correctly modeling the surface reactions. Analysis of hybrid three-
dimensional grain geometries has been successfully simulated using 
this procedure. Th e surface reactions were empirically determined by 
calibration with subscale, geometrically simple test motor data (Cheng 
et al., 1998).

9.4.4  REAL-FLUID PROPERTY FOR REACTING 
SPRAY SIMULATIONS

Spray combustion in liquid rocket engines has proven to be very diffi  cult 
to measure or to simulate. Many injector elements are utilized to ensure 
effi  cient mixing of the propellant streams. Th e resulting high tempera-
tures and pressures of the combustion process present too hostile an envi-
ronment to interrogate with probes. Studying a single injector element 
has proven to be likewise diffi  cult to measure. Laser Doppler methods are 
valuable for dilute fl ows, but near the element exit, the liquid stream is too 
dense for the laser beam to penetrate. Even if measurements downstream 
were available, no information is provided on how the initial stream 
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atomizes and spreads. Such information is essential if the injector element 
characteristics are to be coupled to the effi  ciency of the spray formation. 
Much eff ort has been devoted to two-phase fl ow analysis of such spray 
combustion processes. Although the mechanics of the two-phase, non-
reacting portion of the fl owfi eld have been predicted, these simulations 
cannot be matched to the resulting initial spread and droplet formation 
processes.

Th e CTP code was utilized to address this problem by a diff erent 
route. Th e real-fl uid properties in the CTP code allow vapors and liq-
uids to be treated simultaneously by simply accounting for the mix-
ture density of the fl ow. Th e mixing and reactions accompanying the 
cocurrent fl ow of liquid oxygen surrounding by a gaseous (or liquid) 
hydrogen stream could be simulated with the CTP code. Th e combus-
tion would be simulated as an equilibrium or fi nite-rate reaction pro-
cess. Th e mixing would be described with a two-equation turbulence 
model. Such a simulation was conducted (Cheng and Farmer, 2006). 
It was anticipated that a modifi cation to the turbulence model could 
be made to fi t available test data. Surprisingly enough, no modifi ca-
tion was required for the model to fi t available data rather well. Such a 
model is not only fortuitous for subcritical combustion but also should 
be rigorously correct for supercritical combustion simulation. Basically, 
the fl uid mechanics of the spray formation process were overwhelmed 
by the highly exothermic reactions of the propellant combustion. Th e 
conclusion to be drawn from the success of this modeling methodol-
ogy is that all of the process must be considered, one cannot always 
simply solve a succession of simple processes to get to the fi nal result 
desired. Some of the very complex intermediate processes might prove 
to be unnecessary, if the more important steps are addressed fi rst (not 
last) in developing the simulation.

9.5 POPULATION BALANCE MODELS
Th e population balance is a methodology adapted from statistical mechan-
ics which is most useful for describing particulate systems. Hulbert and 
Katz (1964) and Randolph (1964) independently reported the develop-
ment of a Liouville type equation from statistical mechanics to describe 
the number density of particles in phase space. Th e particles in statisti-
cal mechanics are hard spheres or molecules. Th e particulate processes 
likewise modeled become aerosols, comminution products, crystallizers, 



388    ■     Computational Transport Phenomena for Engineering Analyses

granulators, fl occulation systems, combustion, polymerization, biomedi-
cal cell states, and even shrimp distributions in bays. Th e distribution of 
the particulates and the distribution of their properties are the results of 
applying this methodology to a system of interest. Texts which describe 
this modeling methodology are Randolph and Larson (1971), Himmelblau 
and Bischoff  (1968), and Ramkrishna (2000).

The population balance takes the f luid continuum conditions of 
temperature, velocity, and composition and the dependence of par-
ticle nucleation and growth on its local environment as known. Thus, 
the continuum f lowfield and algebraic rate equations must be solved 
concurrently with the population balance. The population balance is 
formulated as a phase space with external geometric coordinates (xi) 
to locate the particle and internal coordinates to describe its interac-
tion with the environment (ri). The xi’s may be taken as the Cartesian 
coordinates (x, y, z). The ri’s are a characteristic of the particles; for 
the present say a characteristic length, like an eff ective radius. Th e 
total phase coordinates are x = {x, r}, which describe the state of the fl uid 
with fi rst-order ordinary diff erential equations (ODEs) as dxi/dt = ui{x, t}. 
Th e particles fl ow with their local velocity. Th e change of any particle 
property (taken here to be particle size) with time is a “velocity” like 
quantity. Here the change is taken to be a growth rate (G), which depends 
on the local concentration (c) and temperature (q), these ODEs may be 
represented by
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Th e particle velocity (V) is related to the local fl uid velocity with a drag 
law. The determination of the xi’s locates the position of the particles. 
It is assumed that there are a sufficient number of particles to form a 
continuum. For convenience, a vector particle phase–space velocity is 
defined by
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Th e deltas are unit vectors all of which are orthogonal to one another. 
Herein, such equations are termed mathematical vectors. Th ey are best 
considered as relationships between arrays of terms. See Appendix B for 
further details.
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Introduce a distribution function for the number density of particles, 
f{x, r, t}. A particle population balance for a control volume moving in 
phase–space, i.e., a Lagrangian viewpoint is
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B − D is the birthrate minus the death rate of particles; a net generation 
type term.
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Since the integration region is arbitrary it follows that
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Alternatively, a function (h) defi ning the net number of particles intro-
duced into the system per unit time and per unit phase–space can be 
defi ned to represent B − D. A diff erential particle balance can be written 
directly:
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Th is is the partial diff erential equation which represents the population 
balance. It will be termed the micro-distributed population balance. Notice 
that this equation contains no unit vectors. Th e independent variables in 
the population balance are one time variable, up to three geometry vari-
ables, and j internal variables. Th is equation along with equations to defi ne 
G and h and the conservation equations for representing the continuum 
phase must be solved to represent the particulate fl ow. Appropriate initial 
and boundary conditions are also needed. Even though only one internal 
variable (usually a length scale) is frequently used to describe the particu-
lates, the number of independent variables is diff erent from that for the 
continuum phase conservation equations. Th e variation in dimensionality 
makes this system of equations much more diffi  cult to solve. Although 
this is the most general form of the population balance, various approxi-
mations to simplify obtaining a solution are frequently made.
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Th e general population balance resembles the basic equation of statisti-
cal mechanics, but there are signifi cant diff erences. In statistical mechanics 
applications:

No distinction is made between the spatial and internal coordi-• 
nates, hence only x is used to indicate the coordinates.
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Th e particles are considered to be molecules which are neither • 
created nor destroyed, so h is zero. Th e divergence of the general-
ized velocity fi eld is assumed to be zero; this is by analogy to the 
incompressible fl ow equations. Th ese conditions result in the sta-
tistical mechanics equations becoming
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Th is equations implies that a cluster of particles that move in • 
phase space always occupy the same volume.

Returning to determining a solution to the micro-population balance, for 
a very simple system, let j = 1 and G and h be defi ned as simple functions. 
Examples of such simplifi cation will be presented subsequently.

If one is not interested in the spatial distribution of particulates within 
a process vessel, i.e., reactor, crystallizer, etc., an average of external coor-
dinates over the vessel volume, ", with inlet and outlet fl ow rates, Qk, the 
macroscopic population balance is
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For a steady-state process, this form of the balance reduces to an ODE. No 
information on the spatial variation within the process vessel is obtained. 
Th e birth and death functions may be very general.

One might be satisfi ed with an approximate description of the particu-
late phase. Th is can be accomplished by describing the particulate dis-
tribution in terms of its moments. An infi nite number of moments must 
be defi ned to describe a function exactly. However, if only the leading 
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moments are used, a practical solution can be obtained. It must be deter-
mined how many “leading moments” are needed to give the accuracy 
desired. To illustrate the procedure, consider a phase space defi ned by only 
one internal coordinate, the particulate size (L), and one particle growth 
rate (G = G0{1 + aL}). Th e jth moment of the distribution is
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Th e population balance becomes
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Th e fi rst two terms are evaluated by reversing the order of integration.
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assuming V
Æ

 ¹ V
Æ

 {L}. Th e B and D functions are described by k-moments, as
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Th e third term in the balance equation is integrated by parts to give
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B0 is the number fl ux entering the internal coordinate region at L = 0. 
Finally, the micro-moment population balance becomes
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Th e micro-moment population balance has the same dimensionality as 
the transport equations for the continuum phase, hence it is easier to solve. 
Th e external coordinates might also be averaged using moments, but this 
is not frequently done.
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Using the same assumptions on G, B, D, and V, the macro-moment 
population balance may be obtained from the micro-moment balance:
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Th is form reduces the balance equation to be an ODE in time. Such a 
model is useful for stability and tracer studies.

Population balance models do not have to be formulated in terms of 
number density. Th e particle volume formulation is very useful when mass 
balances are to be determined. For dN particles in a particle volume range 
of u + du, dN = f{u}du. [B{u} − D {u}]du is the net creation of particles 
of size u, (Gu  f) is the convection in u direction, Gu = du/dt is the rate of 
change of particle volume. dk kQ fΣ υ is the inlet and outlet fl ow of specifi c 
volume du. Th e macro-population balance becomes
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Verkoeijen, Pouw, Meesters, and Scarlett (2002) recommended the vol-
ume formulation because (1) when two particles identifi ed by u1 and u2 
agglomerate, their specifi c volumes are additive. Had the particulates 
been identifi ed by a linear dimension, such dimensions would not be 
additive, and (2) instead of a number distribution function, a mass dis-
tribution function associated with the particle specific volumes will 
convert the population balance to a mass conservation equation for dis-
perse fl ows.

It is argued that the birth and death terms are not rate processes for 
breakage and agglomeration because these are instantaneous events. 
However, if a model is used to represent the process over some average 
period of time, as it usually is, then using rate expressions for the genera-
tion and depletion terms is reasonable and proper.

In general, the population balance is diffi  cult to solve because more 
independent variables are used to describe the system. Not only are tem-
poral and spatial variables used, but internal coordinates are also used. 
Th e simplifi cations mentioned are made to make the solution more 
tractable. However, the method is far more powerful than this implies. 
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Recent examples indicate the extent to which such generalizations have 
been developed. All of these methods use the volume of the particle as its 
measure.

Kumar et al. (2008) investigated two solution methods for solving • 
a system of ODEs to represent aggregation and breakage of a dis-
tribution of particles. Th is is described as a population balance 
equation (PBE) model, but it is limited to a well-mixed process 
with no spatial velocity component. Only calculated values are 
compared and discussed.
Darelius et al. (2006) used the volume-based, matrix representation • 
of a discretized set of particle sizes suggested by Verkoeijen et al. 
(2002) to analyze the coalescence and compaction occurring in 
a wet granulation process. Th e particle properties were the vol-
ume of solid and liquid (both in pores and on the surface). Th ree 
particle sizes were analyzed simultaneously. Rates for the coales-
cence and compaction were specifi ed. Eighty particle size cuts 
were analyzed. Th e particles were saturated such that no air was 
in the pores and a layer of liquid surrounded the particles. Th e 
resulting system of ODEs was stated to be stiff , but no diffi  culty 
was reported in obtaining a solution with MatlabÒ. Th e simula-
tion was for well-stirred conditions, such that fl uid velocity was 
not considered. Th is was a well-conceived and reported study. It is 
typical of what is reported to be PBE model simulations. Th e work 
reported by Verkoeijen et al. was a useful analysis, but no data 
comparisons accompanied it.
Silva, Damian, and Lage (2007) implemented an analysis which • 
coupled a CFD solver and a PBE model to represent two-phase 
fl ow of a particulate suspension. Two fl ow solvers—Th e ANSYS 
CFX code by ANSYS, Inc. and the Open FOAM C + + code (Weller 
et al. 1998)—were used to represent the continuum phase. Th e 
direct quadrature method of moments (DQMOM) code (Fox, 
2003; Marchisio and Fox, 2005) is a quadrature closure approxi-
mation for the integrals of the distribution function for internal 
variables in terms of Dirac delta functions. Th e CFD and PBE 
codes were coupled to describe the laminar fl ow of water in oil 
suspension over a back step (presumably, a two-dimensional anal-
ysis). Break up and coalescence of the water drops were simulated 
with an analytical model. Extensive numerical simulations were 
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compared and reasonable results were obtained. Details of the 
method of coupling the two codes were not discussed in the pub-
lication. No tests were available for comparison. Th is is one of the 
few attempts to utilize a coupled CFD and PBE analysis to solve 
the general PBE equation for particulate fl ow.

Th e article just referred to and the text of Fox is a good fi rst step in pro-
ducing this important simulation technology. Such technology should be 
developed and validated for general purpose use in the near future.

9.6 DENSE PARTICULATE FLOWS
Fluidized bed chemical reactors, sediment transport, boiling heat trans-
fer, crystallizers, pulverized-coal furnaces, and pyroclastic fl ows involve 
dense particulate fl ows. Fluidized bed reactors have received the most 
investigation by computational analysis. Yet the shear scope of interests 
and the wealth of the detailed available information collected to under-
stand and predict these phenomena provide impetus for comprehensive 
synergistic study of the mechanics of dense particulate fl ows. Lagrangian 
analyses of dilute particulate fl ows are adequate if only a modest num-
ber of particulate groups must be tracked and coupled to the carrier fl ow. 
For dense particulate fl ows, the particles can interact with each other and 
form a fl uid-like continuum of their own. For these conditions a diff erent 
modeling strategy must be utilized. Th is methodology is defi ned and its 
application is presented in this section.

9.6.1  LOCAL SPATIAL AVERAGING 
TO DESCRIBE MULTIPHASE FLOWS

A practical approach to describing the mechanics of dense particulate 
fl ow should include no more than a few partial diff erential equations. For 
complex thermodynamics and chemical reactions, more equations may 
be required. Two approaches have been suggested, one by Anderson and 
Jackson (1967) and Jackson (1997, 1998) which modifi ed the single phase 
conservation equations to treat particulate clouds. Th e second used an 
analogy to the Boltzmann equation by approximating the particulates as 
molecules (Murray, 1966). Th ese methods are quite general, and unfor-
tunately contain many defi ned terms which are still lacking in quanti-
tative evaluation. Subsequent review and discussion of these models are 
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available in Drew (1983), Faghri and Zhang (2006), Delhaye (1970), and 
Ishii (1975). Professor J.S. Curtis from the University of Florida and her 
colleagues have made extensive contributions to the application of these 
models by computational analyses.

Th e approach of Anderson and Jackson is termed a two-phase model. 
Th e dense particle cloud is analyzed as a continuum by a local averaging 
process similar to the Reynolds averaging of the turbulent fl ow equations. 
Th eir original derivation is rather lengthy and obscures the simplicity of 
the approach. Whitaker (1969, 1973) presents a clearer derivation by con-
sidering three length scales: d << ℓ << L. Th e particle size is typically d, 
the volume over which the variables in the conservation laws are to be 
averaged is ℓ, and the characteristic size of the process is L. If q represents 
a variable to be conserved for the a or b phase, where these symbols are 
used as subscripts to denote which phase is being considered, three aver-
ages can be defi ned. Broken brackets are used to denote average particle 
quantities.
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where "a can be function of time. Th e fi rst average is for both phases over 
the volume; the second is the a phase averaged over the volume; and the 
third is the a intrinsic phase averaged over the volume occupied by the a 
phase. Gray (1975) reexamined Whitaker’s work to make a clearer distinc-
tion between the convection and diff usion terms. Drew also reviewed this 
methodology and introduced further terms:
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and a weighted space average:
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Whitaker also provided the following defi nitions:
Averages of the velocity property product

 α α α α α α α α= + = =〈 〉 〈 〉 〈 〉〈 〉 〈 〉 〈 〉
� � � �� �� �where 0U q U q U q U q  

(9.66)
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relationship of the phase average to the intrinsic phase average:

 q q
α

α α α= ε  (9.67)

where e is volume fraction; the average of the derivative is related to the 
derivative of the average by
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where Aab is the interfacial area between phases a and b; it may be a func-
tion of time. Whitaker included some additional defi nitions for the pur-
pose of applying the results to chemically reacting fl ow systems.

Anderson and Jackson (1967) and Jackson (1997) utilized these aver-
aged parameters to construct continuity and momentum equations for 
gas–solid multiphase fl ows. Ishii (1975) did the same for liquid–droplet 
gas fl ows. Th e conservation laws resulting from these analyses were not 
closed because constitutive relations for most of the particle–fl uid interac-
tion eff ects were not quantitatively defi ned. Th ere is still controversy over 
their values. An example to show what such eff ects are and some relations 
used for their evaluation is presented in the next section.

9.6.2 MODELS FOR DENSE PARTICULATE FLOWS

A comparative study of dense particle models has been reported by van 
Wachem et al. (2001).

Th e study mainly addresses solid–gas fl ows, but includes some perti-
nent droplet-gas observations. Th e models compared are the two-phase 
analyses of Jackson and Ishii. Since these, as most models are, have evolved 
through the years, the only form reported in this comparison paper will 
be discussed.

Th e averaging function used was
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with an eff ective averaging volume defi ned by
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Th e gas-phase volume fraction and particle number density are
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Th e local mean gas-phase fl ow properties are
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Th e mean value of the solid-phase properties is not averaged like the gas, 
they are averaged by
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Applying these averaging rules to the point-value continuity equations for 
each phase:
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Th e gas-phase momentum equation of Jackson is
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and the solid-phase momentum equation of Jackson is
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Th e gas-phase momentum equation of Ishii is
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and the solid-phase momentum equation of Ishii is
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In the form presented, the two approaches yield very similar equations. 
In Jackson’s solid-phase momentum equation, pressure and shear stress 
terms for both phases are included. In Ishii’s dispersed-phase momen-
tum equation, the volume fraction is taken inside the gradient operator. 
Th ere are some other diff erences in the two approaches not evident in the 
formulated equations. Ishii used a diff erent spatial averaging technique. 
Namely, a phase indicator function was used to which phase was present at 
a specifi c point. Jump conditions were used to cross the phase boundaries. 
Th ese diff erences made the Ishii analysis more appropriate for the simula-
tion of liquid droplets as the condensed phase.

Th e continuity and momentum equations for the dense two-phase sys-
tem are not closed. Constitutive equations are needed to express the solid-
phase stress term as a function of the velocity fi eld. Analogy to kinetic 
theory was used to evaluate the particle collision stress term. A granular 
“temperature” was defi ned to evaluate this eff ect. A transport equation 
for energy is required to evaluate the granular temperature (Q), but this 
equation was approximated as an algebraic balance between the genera-
tion and dissipation terms. Th e result is
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where gs is the dissipation of granular energy. Th e solid-phase pressure is 
given by

 ( )s s s o s1 2 1P e g= ρ ε Θ + + ε⎡ ⎤⎣ ⎦  (9.80)

where
e is the coeffi  cient of restitution
go is the radial distribution function
ds is the particle size

Th e bulk viscosity is

 ( )2
s s s s o4 3 1( ) d g eλ = ε ρ + Θ π  (9.81)
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Several shear/viscosity correlations have been reported; the one suggested is
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Most viscosity expressions fi t available data, but this one produced the 
gas-phase viscosity when no particles were present.

Th e remaining parameters which must be evaluated to complete the 
closure of the momentum equations are as follows. Th e conductivity of 
the granular energy
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Th e dissipation due to particle–particle collisions is approximated as
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Th e dissipation due to the fl uctuating force exerted by the gas through the 
fl uctuating velocity of the particles is

 s s s g s( )J = β 〈υ ⋅υ 〉 − 〈υ ⋅υ 〉
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which is empirically evaluated as
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where
b is the interphase drag coeffi  cient
Rdiss is a fudged drag coeffi  cient to fi t test data
S∗ is an energy source given by
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where Rs represents a mean force acting on the particles; it too is obtained 
by fi tting test data. Th e radial distribution function is

 
11/3

o s s,max1 ( )g
−

⎡ ⎤= − ε ε⎣ ⎦  (9.88)

For very dense particulate fl ows, the kinetic theory analogy is not suf-
fi cient. Th e particles apparently stay in contact with one another long 
enough to cause additional friction. Attempts to model this phenomenon 
have generally used the conventional Newtonian stress rate-of-strain 
equations for a separate solid phase to develop an additional correlation. 
Th e lower dense phase and gas pressure and viscosity is increased by add-
ing additional terms. One model of these additional pressure and viscosity 
terms are
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where F is typically 25°. Th e very magnitude of the powers in the pressure 
term indicates that the prediction would yield results which would vary 
orders of magnitude. Other models for this phenomenon involve even 
more outlandish variation. Th e eff ect is apparently real, but one must con-
clude that a reliable model is not yet available.

Th e article by van Wachem et al. (2001) applies this dense phase model, 
along with variations resulting from other suggested constitutive submod-
els to three fl uidized bed confi gurations: (1) for bubbling fl uidized beds, 
(2) slugging fl uidized beds, and (3) bubble injection fl uidized beds. Gravity 
and drag terms in the momentum equations were found to be the most 
dominating. Th e Jackson vs. Ishii formulations and the other submodel 
variations were found to have only a modest eff ect on the results. Th e fric-
tional stress had a major eff ect on the results for very dense beds. Th is is far 
from surprising, since the predictions of this eff ect varied by many orders 
of magnitude, depending on the submodel chosen to represent it.

Th e review of this article proves that the very comprehensive dense phase 
computational model accounts for many of the factors controlling the 
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bed operation. It shows what parameters are adequately represented and 
which need further improvement. It shows the frictional stress phenom-
ena for very dense beds is not suffi  ciently understood or modeled. Above 
all, it shows that evaluation of the many simultaneously occurring factors 
which control the operation of dense fl uidized beds cannot be reasonably 
evaluated and understood without using computation methodology.

9.7 NOMENCLATURE
9.7.1 NOMENCLATURE FOR SECTIONS 9.1 THROUGH 9.4

9.7.1.1 English Symbols

Bf blowing rate for mass transfer
Bh blowing rate for energy transfer
c driving force in mass transfer coeffi  cients is concentration
ci concentration of i
Cf skin friction
Ci heat capacity of species i
Cp constant pressure heat capacity
Cs humid heat
Dij binary diff usion coeffi  cient
Ek  eddy transport coeffi  cient; k = D, h, n diff usion, heat, and 

 momentum
f Fanning friction factor
G driving force in mass transfer coeffi  cients is partial pressure
hi fi lm coeffi  cient for heat transfer; i indicates phase
H, w dummy variable to indicate mathematical operation
H0 parameter without mass transfer
ji mass diff usion fl ux
jD Colburn’s j-factor for mass transfer
jH Colburn’s j-factor for heat transfer
Ji molar diff usion fl ux
Kx  fi lm coeffi  cient based on bulk and equilibrium liquid composition
kx fi lm coeffi  cient on liquid side
Ky fi lm coeffi  cient based on bulk and equilibrium gas composition
ky fi lm coeffi  cient on gas side
L same as c for liquids
Le Lewis number
m type of heat fl ux
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m¢ slope of operating point and bulk liquid composition
m² slope of operating point and bulk gas composition
Ni one-dimensional mass (or molar) fl ux of i
NT total mass fl ux
P pressure
pi n partial pressure of species i at location n
Pr Prandtl number
qm heat fl ux; m indicates type of exchange
R universal gas constant; pipe radius
Reθ Reynolds number based on momentum thickness
Sc Schmidt number
St Stanton number
T temperature
u+ inner dimensionless variable for velocity
uI velocity; I indicates centerline, free-stream, and average value
Vz z velocity component
w wall value
wi arbitrary property
Wi magnitude of velocity of species i
xi mass (or mole) fraction in liquid phase
y + inner dimensionless variable for distance from the wall
yi mass (or mole) fraction in gas phase

9.7.1.2 Greek Symbols

d fi lm thickness
k thermal conductivity
li heat of vaporization of species i
ν kinematic viscosity
t shear stress

9.7.1.3 Subscripts

A diff using species
G, i, L indicates gas, interface, and liquid conditions
a species is water
b species is air

9.7.1.4 Superscripts
* equilibrium conditions



Multiphase Phenomena     ■    403

9.7.1.5 Mathematical Symbols

 fn{}, gn{} arbitrary functions
F1{}, F2{}  empirical functions of the Reynolds number; Equation 9.39
h  heat transfer coeffi  cient
k

.
G fi lm coeffi  cient for high rate of mass transfer

LM{H} log mean value of H; also indicated by HM 

9.7.2 NOMENCLATURE FOR SECTION 9.5

9.7.2.1 English Symbols

B, D birth and death functions, respectively, of particles
B0 number of particles entering vessel
c concentration
G growth rate
G, a, L growth rate parameters
H dummy variable to illustrate mathematical operation
L particle size
mj the jth moment
N number of particles per volume of particle
Qr mass fl owrate into vessel
R Lagrangian mass of fl uid
ri internal coordinates; such as particle size r
t time
ui solution vector
V particle velocity vector
W particle phase-space velocity
xi external coordinates

9.7.2.2 Greek Symbols

q temperature
xi phase coordinates
u particle specifi c volume

9.7.2.3 Mathematical Symbols

f{xÆ, r, t} number density of particles
h{} function to represent birth and death of particles
H- average value of H
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" volume of process vessel
W

Æ
 velocity in phase space

9.7.2.4 Acronyms

ANSYS name of a company
CFX name of a computer code
DQMOM direct quadrature method of moments
FOAM name of a computer code
PBE population balance equation

9.7.3 NOMENCLATURE FOR SECTION 9.6

9.7.3.1 English Symbols

A, h parameters used to represent Pf

Aa,b interface between phases a and b
d characteristic particle size
e coeffi  cient of restitution
go radial distribution function
Js dissipation fl uctuating force correlation
L characteristic size of process vessel
ℓ grid space over which particles are to be averaged
n particle number density
P, Ps pressure of gas and solid continuum, respectively
Pf pressure eff ect cause by particles rubbing together
q property to be averaged
r particle size
Rdiss fi ctitious drag coeffi  cient to fi t experimental data
Rs fi ctitious force operating on particles obtained by fi tting test data
S* energy source operating on particles
t time
us, us magnitude of velocity components of particle cloud
x, y coordinates within particle cloud

9.7.3.2 Greek Symbols

b interphase drag coeffi  cient
g dissipation of granular energy
e volume fraction
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h parameter to defi ne e
Q grandular temperature parameter
q temperature of solid
k conductivity of grandular energy
ls viscosity of solid phase continuum
mf eff ective viscosity attributed to Pf

F angle that particles rub together—not measurable

9.7.3.3 Mathematical Symbols

 gÆ gravity
H
Æ

 average over particle class
nÆ normal to a surface
g{ rÆ} weighting function
xÆ position vector
xÆ ′ dummy position variable
{x–y} increment of distance to be used in averaging process

τ
��

 shear stress tensor
" volume

9.7.3.4 Subscripts

g, s gas and solid phases, respectively
a, b denote two phases
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10C H A P T E R  

Closure

Th ere are three sources of information available to engineers to aid in 
solving a complex transport phenomena problem. Full-scale experiments, 
subscale or laboratory experiments, and analysis. Computational trans-
port phenomena is now an accepted methodology for providing depend-
able analysis. Production quality computer codes are not something that 
one undertakes to write when a specifi c problem arises. Th ere are sev-
eral companies which provide computational services of a high quality, 
at a price. Th ere are many codes which have been generated and may be 
available as shareware to investigate a particular process. Th is chapter is 
designed to provide one with the background to assess when a computa-
tional analysis would be benefi cial to a project and what type of computa-
tional tool would be appropriate for such an analysis. Finally, mastery of 
the material presented herein would allow one to make an informed deci-
sion as to whether the individual could perform the required computa-
tional analysis, or whether a code or vendor could provide the analysis, or 
whether the problem is so complex that the current state of the art of CTP 
is insuffi  cient to even attempt using such methodology.

Th e CTP code described herein has been used successfully by these 
authors and the supporters of the code development, primarily NASA, 
the Air Force, and various aerospace companies, for the past 20 years. 
Th e validation process involved not only basic fl ows like boundary layers, 
backward facing steps, and round jets, but also analyses of real devices. 
Th e performance of the Space Shuttle Main Engine (SSME) was predicted 
with the CTP code described in Chapter 8 (Wang and Chen, 1993) to be 
well within the accuracy that it could be measured on a test stand. Th is 
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analysis involved calculating the interior fl owfi eld of the SSME and the 
plume emitted by the engine. Similar analyses and performance com-
parisons were also made for hybrid rocket engines under development by 
NASA and Martin-Marietta Corp. and AMROC (Cheng et al., 1994).

Th e major advantage that computational analyses of transport phe-
nomena off ers the engineer is that processes which are highly three-
dimensional may be simulated with good accuracy. High performance 
turbopumps require eff ective and robust analytical tools to optimize 
their operation. Th e complex interaction of the inducer, impeller, and dif-
fuser fl ows were analyzed with early versions of the CTP code (Cheng 
et al., 1993). Another three-dimensional fl ow of critical interest to launch 
vehicle design is the base-fl ow and associated heating caused by the sepa-
rated fl ow region and pumping eff ect caused by the supersonic fl ow from 
the rocket engines. It is not uncommon for the base heat shield to weigh 
as much as the payload of the vehicle. Lacking computational computer 
power and the ability to conduct full-scale ground testing simulations of 
fl ight conditions, base fl ows were estimated from subscale model test for 
the Saturn vehicles (Brewer and Craven, 1969). Twenty-seven years later 
computational analysis and computers had improved suffi  ciently that a 
simulation could be made of this subscale experiment (Wang, 1996). Of 
course, the advantage of the simulation is that numerically the process 
could be scaled-up from subscale to prototype.

Computational analyses of transport phenomena involving chemical 
reactions and the associated heating characteristics can be realistically 
analyzed. Th e predecessors of the CTP code have been used to ana-
lyze a dump combustor of burning hydrogen and oxygen (Wang et al., 
1989). Predictions compared very well to the experimental data obtained 
by Smith and Giel (1980). Many more recent experiments have been 
reported and analyzed which were designed to provide design informa-
tion on single injector elements of rocket engines (Farmer et al., 2000). 
Since the experiments were to study conditions typical of rocket opera-
tion the pressures involved were supercritical and near supercritical. Th e 
concept of such experiments was to relate the geometry of the element 
with the fl owfi eld and combustion effi  ciency of the device. Th e simula-
tions (made with the CTP code methodology) compared well with the test 
data. Unfortunately, detailed fl owfi eld data collected were not defi nitive, 
so comprehensive comparisons were seldom obtained. Th e propellants 
studied were hydrogen and RP-1 and oxygen. Both gaseous and liquid 
propellants were investigated and simulated. Liquid propellant elements 
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are diffi  cult to characterize because initial drop size and droplet spread-
ing have not been successfully measured. A major advantage of the CTP 
code simulations was that the real fl uid characterization and modeling of 
the spray as a multicomponent, single phase consisting of both gaseous 
and liquid components proved to be a good characterization of the spray 
fl ame (Cheng and Farmer, 2006). Describing spray fl ames at near super-
critical conditions computationally has proven to be a most diffi  cult task, 
and the simplicity and accuracy off ered by the CTP approach is a most 
useful engineering analysis.

Accurate simulations of the combustion devices just mentioned also 
imply that the associated heat transfer phenomena could also be accurately 
predicted. Th is indeed proved to be the case. A classic heat transfer experi-
ment for rocket combustion chamber type conditions was conducted by 
Bartz (1965). Subsequent experiments of this type have also been con-
ducted (Elam, 1991) and have been simulated with the CTP code (Wang 
and Luong, 1994). A further test of the computational analysis was con-
ducted for two fi lm cooling tests in which a fi lm of hydrogen was injected 
under a supersonic stream of air (Chen et al., 1992). Th ese simulations 
showed the fi nite-rate combustion reactions had little eff ect at the test con-
ditions, i.e., the combustion was fast and in a near equilibrium condition. 
However, the turbulence model had to be adjusted to match the test data. 
Analyses of these fi lm cooling experiments also provided validation of the 
conjugate heat transfer analysis included in the CTP code. Th is is the basis 
for the temperature corrections in the TKE model which were discussed 
in Chapter 4. Th e CTP code was also used to analyze the heat transfer 
region in the LOX post region of the SSME. Th is region resembles the tube 
side of a shell-and-tube in which there are hundreds of posts (tubes) with 
cross-fl ow entering from two sides. Th e analysis was successfully com-
pleted by assuming the computational fi eld was a porous media (Cheng 
et al., 1995). Th e distribution of posts was used to evaluate the local porosity. 
Th is analysis was then used to estimate the distribution of inlet fl ow rates 
into the combustion chamber through the injector.

Th ese practical reacting, multiphase and highly three-dimensional 
engineering analyses serve as an impressive validation for the CTP code. 
Hundreds of combustion reactions and turbulence models were more com-
plex that the TKE model were not needed to match test data from a variety 
of sources. Turbulence and combustion researchers, prompted mainly by 
the goal of producing publications, constantly suggest that their method-
ology is necessary for analyzing transport phenomena. Such technology 
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is decades away, if ever, from making the type analyses just summarized. 
Also, signifi cant problems can be analyzed with employing huge PC clus-
ters and parallel processing. Th ese comments are not meant to defame 
elaborate computational analysis eff orts, but to emphasize that less elabo-
rate methods can be very educational and useful. Th ere is still nothing 
wrong with making intelligent approximations to expedite a study.

One must always be aware of the capabilities and limitations of com-
putational analysis. Some time ago a major power producer was seeking 
renewal of discharge permits from EPA. Th e power company maintained 
an instrumented boat, a hydraulics laboratory, and computer modeling 
capabilities to monitor the hot water discharges from their power plants. 
Th e estimated worst-case scenarios of maximum power production at 
minimum river stages were estimated with computational solutions of 
transport equations. Th e government offi  cial wanted measurements made 
to verify the CTP predictions for the worst cases which would occur over 
the next 10 years. Th e company was asked to provide this verifi cation 
within the next 30 days. Th e company engineer responded “I will be glad 
to take the instrument boat out and make such measurements. You just 
tell me which day will have the worst conditions for the next 10 years so 
I will know when to make the measurements.” Computational analysis 
must be relied upon to play its proper role as an engineering tool.

Th irty-two years ago, a computational study of the Mississippi River 
fl owing into the Gulf of Mexico was made. Computers were slower and 
computational grids were coarser, but a two-component fresh water/salt-
water analysis was made (Waldrop and Farmer, 1976). Th e analysts took 
their solution to their colleagues who were researchers in coastal studies. 
Th e colleagues remarked upon looking at the computed results: “We made 
a fi eld study to measure the diff usion across the free-shear layer separat-
ing the blue gulf water from the brown river water. Dye was periodically 
injected to be monitored as it crossed the interface. We put the dye in, but 
could not fi nd where it went. Th irty days later aft er repeating the test many 
times, we fi nally discovered that the dye came up 3 miles downstream and 
in the center of the river plume—exactly where your computer simulation 
showed it to be!” Yes, the gulf fl ow was in a westerly direction and the river 
fl ow in a southerly direction. Th e buoyant river plume fl owed over the 
dense gulf water, but it also was turned by the gulf water which pushed on 
the side of the plume. Th e turn caused the curvature which set up a vortex 
that carried the dye down into the standing vortex and fi nally back up to 
surface where it was found. Th e computer simulation was crude by today’s 
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standards, but modest physics even in a coarse grid with a simple turbu-
lence model produced very realistic results. A more elaborate model with 
a fi ne grid would not have produced a solution with the older computers. 
But such refi nements were not necessary to produce a valuable engineer-
ing simulation. Modern computational tools with today’s fast PCs can 
yield amazing results.
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A P P E N D I X  A

Grid Stencils and 
Example Problems

Tutorial example cases for preparing and running the CTP code are 
presented in this section. Th ese example cases cover a wide range of 
applications of internal, external, ideal-gas, real-fl uid, single-species, and 
multispecies fl ow conditions. Th e users can construct their specifi c appli-
cations based on these examples by modifying the grid generation and 
fl ow initialization codes and the input fi les provided. Th ese cases are:

 1. Boundary layer fl ow over a fl at plate (working directory: z01-BL)
 2. Developing and fully developed pipe fl ow (working directory: 

z02-DPF)
 3. Flow over a backstep (working directory: z03-BStep)
 4. A cylinder in cross-fl ow (working directory: z04-Cylinder)
 5. Flow over an airfoil (working directory: z05-Airfoil)
 6. Shell and tube heat exchanger (working directory: z06-HeatEx)
 7. Converging–diverging nozzle fl ow (working directory: z07-Nozzle)
 8. Orifi ce fl ow and an ejector pump (working directory: z08-Orifi ce)
 9. Flow through a pipe elbow (working directory: z09-PipeElbow)
 10. Flow through a pipe tee (working directory: z10-PipeT)
 11. Free-surface fl ow in an open duct (working directory: z11-

FreeSurface)
 12. Flow in a stirred-tank (working directory: z12-StirredTank)
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To test these cases, the user is to open a DOS Command Prompt in a PC 
Windows operating environment and change directory to the specifi c 
working directory. Th e grid generation and fl ow initialization operations 
are performed in a FORTRAN code, grid.f. Th is code generates restrt.x and 
restrt.q for the mesh and fl ow variables. Input parameters that control the 
running options of the CTP code are specifi ed in the input data fi le, input. 
Th e users can refer to the input parameter defi nition section for details. 
Aft er running the CTP code, by executing xctp.exe on the Command 
Prompt, either when the convergence criterion is satisfi ed or the time steps, 
ITT, are completed, output.x and output.q (these output fi les are generated 
for every ITPNT steps) are generated in the working directory. To continue 
running the case, copy output.q to restrt.q, modify input if necessary, and 
execute xctp.exe again. Other output fi les, tecplot.dat, plot.q1, and plot.q2 
are available for plotting graphical representations of the fl ow solutions. 
For running real-fl uid cases, dbase.dat and fl uid.inp (input fi les for the real-
fl uid module) have to be present in the working directory. In CTP code, 
nondimensional time step size, DTT = dt ∗ U-ref/X-ref (where dt is physical 
time step size in second), is specifi ed in the input data fi le. Also, in the input 
data fi le, VISC = viscosity/(Density-ref ∗ U-ref ∗ X-ref). Where Density-ref, 
U-ref, and X-ref are reference density, velocity, and length, respectively.

A.1 BOUNDARY LAYER FLOW OVER 
A FLAT PLATE

Th is example problem simulates a turbulent boundary layer fl ow development 
over a fl at plate. A two-dimensional (2-D) rectangular domain of 5.1 m × 0.1 m is 
used for numerical computation. Th e fl at plate is located at y = 0 and extends 
from x = 0 m to x = 5 m. A uniform fl ow of 1.0 m/s speed enters the domain 
from the left  at x = −0.1 m (with inlet fi xed mass fl ow rate condition) and exits 
at x = 5 m (with outlet mass conservation condition). Th e top boundary at 
y = 0.1 m is assigned as a symmetry boundary. Part of the bottom boundary 
from x = −0.1 m to x = 0 m is also assigned as a symmetry boundary. A mesh 
of 121 × 81 × 1 is generated in grid.f to represent the computational domain. 
Initial fl ow properties are also specifi ed in grid.f. Input parameters of this case 
are provided in an input fi le, input, which is read by the present CFD code at 
startup. Th e following specifi cations are pertinent to this example problem:

Mesh (1 block): 121 × 81 × 1 (wall: • I = 21, 121; J = 1)
Working directory: z01-BL (contains grid generation code, • grid.f, 
and input fi le, input)
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VISC = 1.5E-05, U-inlet = 1.0 m/s, U-ref = 100 m/s, X-ref = 0.1 m, • 
Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 0.09 ∗ 
DK-in1.5/(0.03 ∗ 2.0))
Reynolds number, • Re = (1/VISC) (1/X-ref) (U-inlet/U-ref) = 
6666.7 (1/m)

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.1 shows the predicted 
u-velocity contours of a converged solution of this case. Th e boundary 
layer development is clearly shown.

A.2 DEVELOPING AND FULLY 
DEVELOPED PIPE FLOW

Th is test case is designed to simulate a developing turbulent fl ow in a circu-
lar pipe. A 2-D axisymmetric rectangular domain of 5 m × 0.1 m is used for 
numerical computation. Th e pipe wall is located at y = 0.1 m and extends 
from x = 0 m to x = 5 m. A uniform fl ow of 1.0 m/s speed enters the domain 
from the left  at x = 0 m (with inlet fi xed mass fl ow rate condition) and exits at 
x = 5 m (with outlet mass conservation condition). Th e bottom boundary at 
y = 0 m is assigned as a symmetry boundary. A mesh of 121 × 81 × 1 is gener-
ated in grid.f to represent the computational domain. Initial fl ow properties 
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FIGURE A.1 (See color insert following page 294.) Boundary layer fl ow over a 
fl at plate (working directory: z01-BL).
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are also specifi ed in grid.f. Input parameters of this case are provided in an 
input fi le, input, which is read by the present CFD code at startup. Th e fol-
lowing specifi cations are pertinent to this example problem:

Mesh (1 block): 121 × 81 × 1 (wall: • I = 1, 121; J = 81)
Working directory: z02-DPF (contains grid generation code, • 
grid.f, and input fi le, input)
VISC = 2.0E-05, U-inlet = 1.0 m/s, U-ref = 100 m/s, X-ref = 0.1 m, • 
Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 0.09 ∗ 
DK-in1.5/(0.03 ∗ 2.0))
Reynolds number, • Re = (1/VISC) (0.2/X-ref) (U-inlet/U-ref) = 4000

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.2 shows the predicted 
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FIGURE A.2 (See color insert following page 294.) Developing and fully devel-
oped pipe fl ow (working directory: z02-DPF).



Grid Stencils and Example Problems       ■     419

u-velocity contours of a converged solution of this case. Th e pipe entrance 
fl ow development that reached a fully developed pipe fl ow downstream is 
clearly shown.

A.3 FLOW OVER A BACKSTEP
Th is example case is used to simulate a turbulent recirculating fl ow behind 
a backward-facing step. Th e experimental investigation of this case was 
conducted by Kim et al. (1978). A 2-D backward-facing step domain of 
a 0.4 m × 0.2 m inlet duct (with top and bottom walls) plus a 2 m × 0.3 m 
downstream duct (with top and bottom walls) is used for numerical com-
putation. Th e backward-facing step is located at x = 0 m and extends from 
y = −0.1 m to y = 0.2 m. A uniform fl ow of 10 m/s speed enters the domain 
from the left  at x = −0.4 m (with inlet fi xed mass fl ow rate condition) and 
exits at x = 2.4 m (with outlet mass conservation condition). A two-block 
mesh of 121 × 41 × 1 and 101 × 21 × 1 is generated in grid.f to represent the 
computational domain. Initial fl ow properties are also specifi ed in grid.f. 
Input parameters of this case are provided in an input fi le, input, which is 
read by the present CFD code at startup. Th e following specifi cations are 
pertinent to this example problem:

Mesh (2 blocks): 121 × 41 × 1 and 101 × 21 × 1• 
Working directory: z03-BStep (contains grid generation code, • 
grid.f, and input fi le, input)
VISC = 3.0E-08, U-inlet = 10.0 m/s, U-ref = 300 m/s, X-ref = 0.1 m, • 
Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 0.09 ∗ 
DK-in1.5/(0.03 ∗ 2.0))
Reynolds number, • Re = (1/VISC) (0.2/X-ref) (U-inlet/U-ref) = 
2.2222E + 06

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.3 shows the predicted 
u-velocity contours of a converged solution of this case. Th e recirculating 
fl ow downstream of the backward-facing step shows that the length of the 
recirculation zone is about seven times the step height, which is very close 
to the experimental measurement.



420      ■     Computational Transport Phenomena for Engineering Analyses

A.4 A CYLINDER IN CROSS-FLOW
Th is example case is used to simulate a laminar fl ow past a circular cyl-
inder. Experimental investigations of this type of fl ow are summarized in 
Schlichting (1979) and also studied by Coutanceau and Bouard (1977). 
A 2-D circular domain of 0.2 m radius is used for numerical computation. 
Th e circular cylinder radius is 0.005 m, which is the inner boundary of the 
computational domain. A uniform fl ow of 10 m/s speed is specifi ed at the outer 
boundary (with mass conservation condition). A mesh of 181 × 121 × 1 is gen-
erated in grid.f to represent the computational domain. Initial fl ow properties 
are also specifi ed in grid.f. Input parameters of this case are provided in an 
input fi le, input, which is read by the present CFD code at startup. Th e fol-
lowing specifi cations are pertinent to this example problem:

Mesh (1 block): 181 × 121 × 1 (wall: • I = 1, 181; J = 1)
Working directory: z04-Cylinder (contains grid generation code, • 
grid.f, and input fi le, input)
VISC = 8.3333E-04, U-inlet = 10.0 m/s, U-ref = 300 m/s, X-ref = • 
0.01 m, Laminar fl ow
Reynolds number, • Re = (1/VISC) (0.01/X-ref) (U-inlet/U-ref) = 40

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.4 shows the predicted 
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FIGURE A.3 (See color insert following page 294.) Flow over a backstep.
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u-velocity contours of a converged solution of this case. Th e recirculat-
ing fl ow downstream of the circular cylinder shows that the length of the 
recirculation zone is about 2.2 times the cylinder diameter, which is very 
close to the experimental measurement.

A.5 FLOW OVER AN AIRFOIL
Th is example case is used to simulate a turbulent fl ow past an NACA-
0012 airfoil. A 2-D C-grid domain is used for numerical computation. 
Th e airfoil coordinates are read to form part of the inner boundary of 
the computational domain. A uniform fl ow of 68 m/s speed (about Mach 
number 0.2) is specifi ed at the outer boundary (with mass conservation 
condition). A mesh of 401 × 81 × 1, with airfoil wall located at part of the 
bottom boundary, is generated in grid.f to represent the computational 
domain. Initial fl ow properties are also specifi ed in grid.f. Input param-
eters of this case are provided in an input fi le, input, which is read by the 
present CFD code at startup. Th e following specifi cations are pertinent to 
this example problem:

FIGURE A.4 (See color insert following page 294.) A cylinder in cross-fl ow.
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Mesh (1 block): 401 × 81 × 1 (wall: • I = 81, 321; J = 1)
Working directory: z05-Airfoil (contains grid generation code, • 
grid.f, and input fi le, input), the angle of attack of the airfoil is 2°
VISC = 1.0E-06, U-inlet = 68.0 m/s, U-ref = 300 m/s, X-ref = 1.0 m, • 
Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 0.09 ∗ 
DK-in1.5/(0.03 ∗ 1.0))
Reynolds number, • Re = (1/VISC) (1.0/X-ref) (U-inlet/U-ref) = 
2.2667E + 05

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.5 shows the predicted 
Mach number contours of a converged solution of this case. At 2° angle of 
attack, the fl ow is accelerated along the upper surface and the stagnation 
point is moved toward the lower surface of the leading edge. An oscillating 
wake fl ow is also clearly shown from the solution.
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FIGURE A.5 (See color insert following page 294.) Flow over an airfoil.
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A.6 CROSS-SECTION OF A SHELL 
AND TUBE HEAT EXCHANGER

Th is example case is used to simulate a laminar fl ow in a heat exchanger. 
A 2-D O-grid domain is used for numerical computation. Th e inner and 
outer shells of the computational domain also include the wall thickness. 
Th e initial fl ow is quiescent and is developed into recirculating fl ow pat-
tern due to thermal buoyancy eff ects. A mesh of 121 × 81 × 1, with inner 
and outer wall segments, is generated in grid.f to represent the compu-
tational domain. Initial fl ow properties are also specifi ed in grid.f. Input 
parameters of this case are provided in an input fi le, input, which is read 
by the present CFD code at startup. Th e following specifi cations are perti-
nent to this example problem:

Mesh (1 block): 121 × 81 × 1 (walls: • I = 1, 121; J = 1, 11 and I = 1, 
121; J = 71, 81)
Working directory: z06-HeatEx (contains grid generation code, • 
grid.f, and input fi le, input), turn on buoyancy eff ect (CBE = 1.0) 
and conjugate heat transfer model
VISC = 1.0E-04, U-initial = 0 m/s, U-ref = 300 m/s, X-ref = 1.0 m, • 
Laminar fl ow
Reynolds number, • Re = (1/VISC) (2.0/X-ref) = 20,000

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.6 shows the predicted 
temperature contours of a converged solution of this case. Due to tem-
perature diff erence between the inner and outer shells and the buoyancy 
eff ects, recirculating fl ow pattern is developed to assist the heat exchange 
between the hot inner shell and the cold outer shell.

A.7 CONVERGING–DIVERGING NOZZLE FLOW
This example case is used to compute a turbulent f low inside a chamber 
and conical nozzle. A 2-D domain is used for numerical computation. 
A two-block grid domain is used to describe the geometry. A uniform 
f low of 100 m/s speed is specified at the chamber inlet. The two-block 
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mesh, of 61 × 61 × 1 and 121 × 61 × 1, with outer wall boundaries, is 
generated in grid.f to represent the computational domain. Initial f low 
properties are also specified in grid.f. Input parameters of this case are 
provided in an input file, input, which is read by the present CFD code 
at startup. The following specifications are pertinent to this example 
problem:

Mesh (2 blocks): 61 × 61 × 1 and 121 × 61 × 1• 
Working directory: z07-Nozzle (contains grid generation code, • 
grid.f with data fi le nozzle.dat, and input fi le, input)
VISC = 1.65E-06, U-inlet = 100.0 m/s, U-ref = 300 m/s, X-ref = • 
0.3048 m, Turbulent  fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 
0.09 ∗ DK-in1.5/(0.03 ∗ 0.5))
Reynolds number, • Re = (1/VISC) (0.4/X-ref) (U-inlet/U-ref) = 
8.0808E + 04

3
956.242

TEM

912.473
868.705
824.937
781.168
737.4
693.631
649.863
606.095
562.326
518.558
474.79
431.021
387.253
343.484

2.5

2

1.5

1

0.5

Y

X

0

–0.5

–1

–1.5

–2 –1 0 1 2

FIGURE A.6 (See color insert following page 294.) Shell and tube heat 
exchanger.
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To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to gener-
ate restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, 
examine the input fi le, input, to check that the input parameters are set 
properly. Finally, execute xcpt.exe to solve this case. Figure A.7 shows 
the predicted Mach number contours of a converged solution of this 
case. Sonic fl ow conditions are predicted near the nozzle throat. At the 
nozzle exit, Mach number around 5 is predicted for the present ideal-gas 
model.

A.8 ORIFICE FLOW AND AN EJECTOR PUMP
Th is example case simulates a turbulent fl ow inside an orifi ce and ejector 
pump. A 2D axisymmetric domain is used for numerical computation. A ten-
block grid domain is used to describe the geometry, which is created using a 
separate grid generator. A uniform fl ow of 5 m/s speed is specifi ed at the orifi ce 

FIGURE A.7 (See color insert following page 294.) Converging–diverging 
nozzle fl ow.
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inlet. Th e ten-block mesh, with wall boundaries form the orifi ce and ejector 
pump geometry, is generated in grid.f to represent the computational domain. 
Initial fl ow properties are also specifi ed in grid.f. Input parameters of this case 
are provided in an input fi le, input, which is read by the present CFD code at 
startup. Th e following specifi cations are pertinent to this example problem:

Mesh (10 blocks): 21 × 21 × 1; 31 × 41 × 1; 16 ×21 × 1; 11 × 41 × 1; • 
41 × 21 × 1; 41 × 9 × 1; 41 × 41 × 1; 101 × 21 × 1; 101 × 9 × 1; and 
101 × 41 × 1
Working directory: z08-Orifi ce (contains grid generation code, • 
grid.f with grid data fi le fort12.fmt generated by a separate grid 
generator, and input fi le, input)
VISC = 1.65E-06, U-inlet = 5.0 m/s, U-ref = 300 m/s, X-ref = 0.1 m, • 
Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 0.09 ∗ 
DK-in1.5/(0.03 ∗ 0.1))
Reynolds number, • Re = (1/VISC) (0.01/X-ref) (U-inlet/U-ref) = 1010

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.8 shows the predicted 
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Mach number contours of a converged solution of this case. Th e orifi ce 
fl ow is choked with Mach unity predicted at the orifi ce. Th e pumping 
eff ects due to the orifi ce fl ow are clearly shown from the solution.

A.9 FLOW THROUGH A PIPE ELBOW
Th is example case simulates a turbulent fl ow developing through a 90° cir-
cular pipe elbow. A 3-D pipe elbow domain is used for numerical compu-
tation. A three-block grid domain is used to describe the geometry, which 
represents an inlet pipe section, a 90° turning section and an exit pipe 
section. A uniform fl ow of 100 m/s speed is specifi ed at the pipe inlet with 
mass conservation condition. Outlet mass conservation condition is also 
applied. Th e three-block mesh, with wall boundaries at the lateral bound-
aries of the geometry, is generated in grid.f to represent the computa-
tional domain. Initial f low properties are also specified in grid.f. Input 
parameters of this case are provided in an input file, input, which is 
read by the present CFD code at startup. Th e following specifi cations are 
pertinent to this example problem:

Mesh (3 block2): 41 × 21 × 21; 41 × 21 × 21; and 41 × 21 × 21• 
Working directory: z09-PipeElbow (contains grid generation • 
code, grid.f, and input fi le, input)
VISC = 1.65E-06, U-inlet = 100.0 m/s, U-ref = 300 m/s, X-ref = • 
0.1 m, Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 
0.09 ∗ DK-in1.5/(0.03 ∗ 1.0))
Reynolds number, • Re = (1/VISC) (0.1/X-ref) (U-inlet/U-ref) = 
2.0202E + 05

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to gener-
ate restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, 
examine the input fi le, input, to check that the input parameters are set 
properly. Finally, execute xcpt.exe to solve this case. Figure A.9 shows the 
predicted pressure contours of a converged solution of this case. Th e fl ow 
enters from the lower-left  pipe inlet boundary and going through the 
90° turn section to develop the high and low pressure region along the 
outer and inner pipe surfaces of the elbow, respectively. Th e fl ow then 
exits the pipe vertically from the outlet boundary at the upper-right of 
the domain shown.
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A.10 FLOW THROUGH A PIPE TEE
Th is example case simulates a turbulent fl ow developing through a 
square pipe tee geometry. A 3-D pipe tee domain is used for numerical 
computation. A four-block grid domain is used to describe the geometry, 
which represents an outlet section, a pipe tee midsection, a second out-
let section, and a pipe inlet section. A uniform fl ow of 100 m/s speed is 
specifi ed at the pipe inlet with mass conservation condition. Outlet mass 
conservation conditions are also applied for both outlets. Th e four-block 
mesh, with wall boundaries at the lateral boundaries of the geometry, 
is generated in grid.f to represent the computational domain. Initial 
f low properties are also specified in grid.f. Input parameters of this 
case are provided in an input file, input, which is read by the present 
CFD code at startup. The following specifications are pertinent to this 
example problem:
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Mesh (4 blocks): 41 × 21 × 21; 21 × 21 × 21; 41 × 21 × 21; and 21 × • 
41 × 21
Working directory: z10-PipeT (contains grid generation code, • 
grid.f, and input fi le, input)
VISC = 1.65E-06, U-inlet = 100.0 m/s, U-ref = 300 m/s, X-ref = • 
0.1 m, Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 
0.09 ∗ DK-in1.5/(0.03 ∗ 1.0) )
Reynolds number, • Re = (1/VISC) (0.1/X-ref) (U-inlet/U-ref) = 
2.0202E + 05

To run this case, compile grid.f to create xgrid.exe using a command prompt 
on a PC Windows system. Next, execute xgrid.exe to generate restrt.x for 
the grid fi le and restrt.q for the fl ow variables fi le. Th en, examine the input 
fi le, input, to check that the input parameters are set properly. Finally, exe-
cute xcpt.exe to solve this case. Figure A.10 shows the predicted pressure 
contours of a converged solution of this case. Th e fl ow enters from the lower 
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pipe inlet boundary and going through the pipe tee junction to develop 
the high and low pressure region through the midsection of the pipe tee. 
Th e fl ow then exits the pipe tee horizontally from the outlet boundaries 
at the upper-left  and upper-right of the domain shown in the fi gure.

A.11 FREE-SURFACE FLOW IN AN OPEN DUCT
Th is example case is designed to simulate a laminar free-surface fl ow 
developing through an open duct. A 2-D open duct domain is used for 
numerical computation. A single-block grid domain is used to describe 
the geometry, which represents an outlet section, a midsection with mild 
slope, and a duct outlet section. A uniform fl ow of 1 m/s speed is speci-
fi ed at the duct inlet with mass conservation condition. Gas fl ow enters 
from the upper half of the inlet boundary and liquid water enters from the 
bottom half. Outlet mass conservation conditions are also applied at the 
outlet boundary. Th e real-fl uid model (RF = 2) with two species (nitro-
gen, N2, and water, H2O, NGAS = 2) is employed to simulate the liquid 
water fl ow conditions. Th e single-block mesh, with wall boundaries at the 
bottom boundary of the geometry, is generated in grid.f to represent the 
computational domain. Initial fl ow properties are also specifi ed in grid.f. 
Input parameters of this case are provided in an input fi le, input, which is 
read by the present CFD code at startup. Th e following specifi cations are 
pertinent to this example problem:

Mesh (1 block): 141 × 81 × 1• 
Working directory: z11-FreeSurface (contains grid generation • 
code, grid.f, and input fi le, input)
VISC = 5.0E-06, U-inlet = 1.0 m/s, U-ref = 300 m/s, X-ref = 0.1 m, • 
Laminar fl ow, RF = 2, NGAS = 2 and CEC thermodynamics data 
specifi ed
Reynolds number, • Re = (1/VISC) (0.1/X-ref) (U-inlet/U-ref) = 666.67

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.11 shows the predicted 
density contours of a converged solution of this case. Th e fl ow enters from 
the left  boundary of the open duct and accelerates through the middle sec-
tion with minor slope, then exits from the outlet boundaries at the right 
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side of the domain shown in the fi gure. It is clearly seen that the water 
layer is thinning due to acceleration through the middle section.

A.12 FLOW IN A STIRRED-TANK
Th is example case simulates a turbulent fl ow developing in a stirred-tank 
geometry. A 3-D stirred-tank domain is used for numerical computation. 
A four-block grid domain is used to describe the geometry, which represents 
a circular cylinder stirred-tank section, two rectangular inlet pipes, and a 
square outlet pipe. A uniform fl ow of 10 m/s speed is specifi ed at both rect-
angular pipe inlets (oxygen gas enters from the left  boundary and hydrogen 
enters from the right boundary) with mass conservation condition. Outlet 
mass conservation condition is applied at the outlet boundary. Th e four-
block mesh, with wall boundaries at the lateral boundaries of the geom-
etry, is generated in grid.f to represent the computational domain. Initial 
fl ow properties are also specifi ed in grid.f. Input parameters of this case are 
provided in an input fi le, input, which is read by the present CFD code at 
startup. Th e following specifi cations are pertinent to this example problem:

Mesh (4 blocks): 41 × 41 × 41; 21 × 11 × 11; 21 × 11 × 11; and 15 × • 
21 × 15
Working directory: z12-StirredTank (contains grid generation • 
code, grid.f, and input fi le, input)
VISC = 1.0E-06, U-inlet = 10.0 m/s, U-ref = 300 m/s, X-ref = 1 m/s, • 
Turbulent fl ow (Dk-in = 0.005 ∗ (U-inlet/U-ref)2, DE-in = 0.09 ∗ 

FIGURE A.11 (See color insert following page 294.) Free-surface fl ow in an 
open duct.
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DK-in1.5/(0.03 ∗ 1.0)), reacting fl ow model (SP = 32), NGAS = 6 and 
a single-step reaction
Reynolds number, • Re = (1/VISC) (1.0/X-ref) (U-inlet/U-ref) = 
3.3333E + 04

To run this case, compile grid.f to create xgrid.exe using a command 
prompt on a PC Windows system. Next, execute xgrid.exe to generate 
restrt.x for the grid fi le and restrt.q for the fl ow variables fi le. Th en, exam-
ine the input fi le, input, to check that the input parameters are set properly. 
Finally, execute xcpt.exe to solve this case. Figure A.12 shows the predicted 
oxygen (O2) mass-fraction contours of a converged solution of this case. 
Th e fl ow enters from the lower-left  and lower-right pipe inlet boundaries 
and going through the circular cylinder stirred-tank to provide mixing 
of the oxygen and hydrogen gases. Due to low temperature conditions, 
no apparent reaction occurred in the fl ow domain. Th e fl ow then exits 
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the upper pipe vertically from the outlet boundaries at the upper part of 
the domain shown in the fi gure. Mixing eff ects are shown through the 
fl ow domain.

A.13 ADDITIONAL COMMENTS
A few additional comments on the fi les in the working directory are given 
here. Generally, the fi les found in the working directory (folder) are shown 
in Table A.1. Th e text in this appendix describes most of these fi les. Th e 
output fi le in Tecplot format is the fi nal result of the simulation. If one 
does not have access to the Tecplot code, the following example would 
enable one to read and/or plot the results with another code.

Example of a Tecplot data fi le:
TITLE = PROPERTIES
VARIABLES = “X” “Y” “Z” “U” “V” “W” “PRES” “DEN” “TEM” 

“MACH” “…”
ZONE I = 31, J = 21, K = 11, F = BLOCK
-0.250000E-01 -0.248516E-01 -0.246905E-01 -0.245159E-01 -0.243269E-01

TABLE A.1  Summary of File Types for the CTP Code

File Type Purpose

example name Lists fi les in folder Identify working directory
dbase.dat DAT fi le See text and z12 stierred tank for data format
fl uid.inp INP fi le See text
fort.59 59 fi le User specifi ed output data
grid.f Fortran source See txt
grid.out inter. fi le Provide grid to solver
grid00.f Fortran source A specifi c grid generator
input File Input for case to be run
make.bat MS-DOS Batch Written to work on a variety of computers.
make01 File Th ese make fi les should require no user 

modifi cation
PO.lay tecplot document Prepares data for ploting
restrt.q Q fi le See text
restrt.x X fi le See text
tecplot.dat DAT fi le Output from simulation in tecplot format
tecplot.phy PHY fi le Names fi le of the example
U-01.tif MS-offi  ce imaging Graphics fi gure of results
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-0.241225E-01 -0.239018E-01 -0.236638E-01 -0.234076E-01 -0.231323E-01
…
…
…
ZONE I= 61, J= 41, K = 11, F = BLOCK
-0.250000E-01  -0.248516E-01  -0.246905E-01  -0.245159E-01

     -0.243269E-01
-0.241225E-01 -0.239018E-01 -0.236638E-01 -0.234076E-01 -0.231323E-01
…
…
…

 1. Th e fi rst line is a header. If a key word “TITLE” present then the 
following words will be ignored and used as a record.

 2. Th e second line is also a header. If a key word “VARIABLES,” then all 
the variables contained in this data fi le need to be listed sequentially 
aft er the key word. For 2-D fl ow, the fi rst two variables will be the 
X- and Y-coordinates of the grid points; whereas for 3-D fl ow, the fi rst 
three variables are the X-, Y-, and Z-coordinates of the grid points 
as shown in the example fi le. Th e values of all fl ow variables such 
as velocity components, pressure, temperature, etc. will be written to 
the data fi le in the same sequence as that listed in the second line.

 3. Th e third line is a zone record, which consists a keyword “ZONE” 
followed by a set of numerical data called the zone data, which 
lists the number of grid points in the I-, J-, and K-directions in 
that zone. Th ere are two data formats, “POINTS” or “BLOCK” 
can be specifi ed aft er the record of grid point numbers. In the 
“POINT” format, the values for all variables are given for the fi rst 
point, then the second point, and so on. In “BLOCK” format, all 
of the values for the fi rst variable are given in a block, then all the 
values for the second variable, then all the values for the third 
variable, and so forth.

 4. Th e fourth line and onwards are the values of all variables in either 
the “POINT” or “BLOCK” format.

 5. If multizone mesh system is used, then Items 3 and 4 will be 
repeated for each zones.

For additional details, documentation of a Tecplot data fi le can be found at 
the webpage (http://www.tecplot.com).
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Further details on the fi les in the working directory should be obtained 
by study of the examples described in this appendix. Th e examples and their 
solution and the CTP code can be obtained from the publishers webpage.

A.14 NOMENCLATURE
See Section 6.5 and Chapter 8.
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A P P E N D I X  B

Rudiments of Vector 
and Tensor Analysis

B.1 OVERVIEW
Equations which represent physical processes must be consistent with 
respect to the mathematical operations involved and the units employed. 
Th e partial diff erential equations which describe complex transport 
phenomena must be solved numerically on a computational grid. Both 
vectors and second-order tensors must be used to represent the physi-
cal phenomena of interest. Tensor analysis conveniently describes the 
coordinates and operations which are used to formulate the conserva-
tion equations. Unfortunately, there are several dialects of tensor ter-
minology in use. Scalars, vectors, and tensors may be described from 
a purely geometric viewpoint, or as objects arising from linear trans-
formations of matrix algebra. Th e geometric objects have evolved from 
those described with Cartesian coordinates. Th e approach based on 
linear transformations may have no reference whatsoever to geomet-
ric base vectors or directions. Details of this twofold development of 
tensor analysis are described by Sokolnikoff  (1964) and Lanczos (1961). 
Th is appendix introduces tensor analysis in suffi  cient detail to describe 
industrial transport processes, without addressing the full ramifi ca-
tions of tensor methodology as used in other branches of physics and 
mathematics.
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Th e presentation will proceed in three steps:

Tensor objects in orthogonal Cartesian coordinates will be • 
discussed as it is the simplest methodology.
Tensor objects in curvilinear, nonorthogonal coordinates will be • 
discussed.
Linear transformations without geometric interpretations will be • 
discussed.

Th e order of presentation roughly covers the historical development and 
generalization of the concepts involved. Be advised, there is no standard 
nomenclature in use for describing the various dialects of tensor method-
ology. Also, many authors do not carefully distinguish to which type of 
tensor analysis their work applies.

B.2 CARTESIAN TENSORS
Consider an orthogonal Cartesian coordinate (OCC) system consisting 
of base vectors, coordinates and an origin, such that the position vector is 
defi ned by

 1 1 2 2 3 3R X X X= χ + χ + χ
� � � �

 (B.1)

Th e location of R is given by the three scalar components (Xi) measured 
in length along the three directions (cÆi ). Th e base vectors are of unit 
magnitude. Unless stated otherwise, the coordinate system shall be right 
handed. Th is means that the three, positive-directions denoted by 1, 2, 
and 3 shall point in the direction of the thumb, index fi nger, and middle 
fi nger of the right hand. A plane or surface vector in OCC is identifi ed as 
being directed normal to the surface and positive in the outward direction 
of the volume it encloses.

For two points, R
Æ

{1} and R
Æ

{2} in the χÆ3 plane, R
Æ

{2}−R
Æ

{1} would be a vector. 
If a linear transformation were performed to create a second OCC system, 
the two position points would be invariant. Th at is, a new set of Xi’s (say Xj

.’s) 
to go with the new set of specifi ed χÆi’s (say χÆj

.’s) would produce the same two 
R
Æ

’s. Th e new directions would be chosen by the coordinate transformation; 
the distances along the new directions would be determined such that the 
original points were not moved. Th e straight line between these two points 
would constitute a vector (say A

Æ
); in this case from point 1 to point 2. Th e 

length of the vector, its magnitude, would be
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2 2
2 2 1 1

2 2
2 2 1 1

( {2} {1}) ( {2} {1})

          ( {2} {1}) ( {2} {1})

A A X X X X

X X X X⋅ ⋅ ⋅ ⋅

= = + − + −

= + − + −

�

 (B.2)

Both the magnitude and direction of the vector quantity are invariant with 
coordinate transformations. Note, this example is for a two-dimensional sit-
uation. If the coordinate lengths were scaled to match another variable, say 
velocity, the vector would have the scaled units. Th e vector is defi ned by its 
three scalar components (or elements), once a coordinate system is chosen.

 1 1 2 2 3 3A A A A= χ + χ + χ
� � � �

 (B.3)

Th e position point could also be scaled to represent some nondirectional 
quantity (a scalar) such as temperature. Th e scalar is defi ned to be a single 
value at a point located by the chosen coordinate system.

A second-order tensor in OCC is defi ned by nine scalar components 
associated with two directions simultaneously:

 

11 1 1 12 1 2 13 1 3

21 2 1 22 2 2 23 2 3

31 3 1 32 3 2 33 3 3

T T T T
T T T
T T T

≡ χ χ + χ χ + χ χ
+ χ χ + χ χ + χ χ
+ χ χ + χ χ + χ χ

�� � � � � � �

� � � � � �

� � � � � �
 (B.4)

Th is is the point where complexity enters into the description of tensors. 
Just as with a vector, a coordinate system is fi rst chosen and then nine scalar 
components are specifi ed to defi ne the second-order tensor. If the coordi-
nate system is redefi ned, a new set of nine components must be evalu-
ated to redefi ne the second-order tensor. Th e rules and identities developed 
for defi ning vectors and second-order tensors in OCC must be completely 
changed to defi ne these quantities in curvilinear coordinate systems. 
Furthermore, tensor is a term which has been “generalized” to the point 
where one is not sure of its meaning in a particular instance. Scalars, 
vectors, and tensors have been used to mean zero-, fi rst-, and second-order 
tensors. Second-order tensors have also been termed a dyad or outer prod-
ucts of two vectors. Tensor has been used to indicate a particular type of linear 
transformation, i.e., objects which transform by a certain set of equations 
(rules) are termed certain types of tensors. One must know how the author 
uses the term in its local context. In this appendix, “tensor” shall be used 
exclusively to mean a second-order tensor. Any additional meaning will be 
stated as a modifi cation to the term as it is used.
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B.2.1 SCALAR, VECTOR, AND TENSOR ALGEBRA IN OCC

Physical quantities needed to describe transport phenomena can be placed 
in the following three categories:

Scalars (zero-order tensors)—temperature, pressure, volume• 
Vectors (fi rst-order tensors)—velocity, momentum, force• 
Tensors (second-order tensors)—stress tensor, rate-of-strain tensor• 

Physical laws must be independent of any particular coordinate system 
used to describe them mathematically if they are to be valid. Th e physi-
cal requirements place mathematical restrictions on the elements which 
defi ne vectors and tensors. Th e relationship between these elements and 
the physical and fl ow properties of the fl uid are termed the constitutive 
equations of continuum mechanics. Th ese include the principle of material 
indiff erence which states that the response of a material must be the same 
to all observers, no matter their coordinate system of reference (Brodkey, 
1967). Th is analysis leads to the rheological equations of state. Rheology 
is the science of deformation and fl ow. Turbulence models are required to 
describe the constitutive equations when necessary.

Vectors and tensors will be represented with the component and base 
vector nomenclature introduced in Sections B.2 and B.3. Th is nomencla-
ture was devised by Gibbs during 1881–1884 (Gibbs and Wilson, 1960) 
and is most oft en used to represent engineering equations. Vectors are 
sometimes said to be represented by a 3 × 1 column matrix and tensors by 
a 3 × 3 matrix. Th is is not generally true. Usually, such a statement means 
that the vector and tensor components may be represented by matrix 
nomenclature. Th e usual rules for matrix manipulation apply to such 
components. Occasionally, base vectors are included as components in a 
matrix representation of a vector or tensor manipulation. Such practice is 
legitimate and off ers no complications. Section B.6 will describe the use of 
matrices to describe vectors and tensors as linear transformations.

Algebraic operations involving scalars, vectors, and tensors are sum-
marized in Table B.1. Th e sum of two vectors is a vector whose compo-
nents are the sum of the corresponding components of the two summed 
vectors. Th e dot (·) product of two vectors is a scalar, the product of their 
magnitudes times the cosine of the included angle between them. Th us, 
it is the projection of either of these vectors on the other. Th e cross (×) 
product of two vectors is a vector of magnitude equal to the product of the 



Rudiments of Vector and Tensor Analysis     ■    441

magnitudes of the two vectors times the sine of their included angle. Th is 
magnitude is equal to the area of the parallelogram formed by the two 
product vectors. Th e direction of the vector product is normal to the sur-
face defi ned by the two vectors and is normal to that surface in a positive 
direction indicated by the positive advancement of a screw rotating from 
the fi rst vector toward the second vector. For three vectors, consider fi rst: 
A
Æ . B

Æ
 × C

Æ
. Th is is a scalar of magnitude equal to the volume of the paral-

lelepiped of which A
Æ

, B
Æ

, C
Æ

 coterminous edges. Next consider: A
Æ 

× B
Æ . C

Æ
 = 

A
Æ . B

Æ 
× C

Æ
 which is equal to the determinant formed by the three coeffi  cients 

TABLE B.1  Cartesian Vector and Tensor Algebra

Properties of the unit (base) vectors

1 1 2 2 3 3

1 2 2 3 3 1

1
0

χ ⋅χ = χ ⋅χ = χ ⋅χ =
χ ⋅χ = χ ⋅χ = χ ⋅χ =

� � � � � �

� � � � � �
 

(A)

1 1 2 2 3 3

1 2 3 2 1

2 3 1 3 2

3 1 2 1 3

0χ × χ = χ × χ = χ × χ =
χ × χ = χ = −χ × χ
χ × χ = χ = −χ × χ
χ × χ = χ = −χ × χ

� � � � � �

� � � � �

� � � � �

� � � � �
 

(B)

Vector A
Æ

1 1 2 2 3 3A A A A= χ + χ + χ
� � � �

 (C)

2 2 2
1 2 3A A A A A= = + +

 
(D)

Dot product of two vectors
3

1

cos , cos ,{ } { } i i
i

A B A A B B A A B B A B
=

⋅ = = = ∑
� � � �� � � �

 
(E)

Cross product of two vectors

( ) ( ) ( )
1 2 3

1 2 3 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

1 2 3

where sin ,{ }

A B V A A A A B A B A B A B A B A B
B B B

V A A B B

χ χ χ
× = = = − χ + − χ + − χ

=

� � �
� � � � � �

� �� � �

 

(F)

Vector resolute is the projection of one vector on another

cos )(( )B A A C⏐ ⏐ θ =
� ��

(G)

Scalar resolute is the projection of one vector on the unit vector of another

cos( )B A A B D⋅ = θ =
�� �

(H)

(continued)
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TABLE B.1 (continued)  Cartesian Vector and Tensor Algebra

Tensor 
��
T

11 1 1 12 1 2 13 1 3

21 2 1 22 2 2 23 2 3

31 3 1 32 3 2 33 3 3

    
    

T T T T
T T T
T T T

≡ χ χ + χ χ + χ χ
+ χ χ + χ χ + χ χ
+ χ χ + χ χ + χ χ

�� � � � � � �

� � � � � �

� � � � � �
(I)

Properties of the unit base vectors using cyclic permutations

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 2 1 1 1 2 1 1

2 1 1 2 1 1 2 1 2 1 1 2 1

1 2 2 3 3 1

0

0
repeat for , , ,

j j

χ χ ⋅ χ = χ χ ⋅χ = χ χ ⋅ χ χ = χ ⋅χ χ = χ

χ χ ⋅ χ = χ χ ⋅χ = χ ⋅ χ χ = χ ⋅χ χ = χ

χ χ ⋅ χ = χ χ ⋅χ = χ χ ⋅ χ χ = χ ⋅χ χ =
χ χ ⇒ χ χ ⇒ χ χ

� � � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � �

(J)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 2 1 1 3 1 1 2 1 1 2

2 1 1 2 1 1 1 2 1 1 2 1 3 1

1 2 3 2 3 1 3 1 2

0 0

0

0
repeat for , , , , , ,

χ χ × χ = χ χ × χ = χ × χ χ = χ × χ χ =

χ χ × χ = χ χ × χ = −χ χ χ × χ χ = χ × χ χ =

χ χ × χ = χ χ × χ = χ × χ χ = χ × χ χ = χ χ
χ χ χ ⇒ χ χ χ ⇒ χ χ χ

� � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �

(K)

Th e repetitive substitutions are cyclic permutation.

Dyad, a product of two vectors without a × or . contraction

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

AB A B A B A B
A B A B A B
A B A B A B

≡ χ χ + χ χ + χ χ
+ χ χ + χ χ + χ χ
+ χ χ + χ χ + χ χ

� � � � � � � �

� � � � � �

� � � � � �
(L)

Th e product of two vectors is a dyad, but a dyad is not necessarily the product of two 
vectors, the dyad is a (second-order) tensor.

Properties of unit dyads

( )

3

1

:( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

(

i j k j k i jk i

i j k i j k i jk

i j k i j k ij k

i j k i j k jk i

i j k i j k jkl i

i j k i

=

χ χ χ χ = χ ⋅χ χ ⋅χ = δ δ

χ χ ⋅χ = χ χ ⋅χ = χ δ

χ ⋅χ χ = χ ⋅χ χ = δ χ

χ χ ⋅χ χ = χ χ ⋅χ χ = δ χ χ

χ χ × χ = χ χ × χ = ε χ χ

χ × χ χ = χ ×

∑

� � �

� � �

�
�

� � � � � � � �

� � � � � � �

� � � � � � �

� � � � � � � � � �

� � � � � � � �

� � � � � 3

1

)j k ijk k
=

χ χ = ε χ χ∑ �
�

� � �

(M)

Double dot product of two tensors
3 3

1 1

: : , a scalarij ji
i j

T S T S S T E
= =

= = =∑∑
�� �� �� �

(N)
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from each of the three vectors. Th ese operations are shown in Table B.1, as 
well as other vector functions derived from those just mentioned.

A scalar times a tensor is a new tensor with each component multiplied 
by the scalar.

 where ij ijsT W sT W= =
� �� �

 (B.5)

Th e sum of two tensors is a new tensor whose components are the sum of 
the components of the two individual tensors:

 where ij ij ijT U V T U V= + = +
� � �� � �

 (B.6)

For a tensor dotted with a vector and for a vector dotted with a tensor

 =

⋅ = = =∑
�� �� 3

1

where for 1,2,3ij j i
j

T A B T A B i
 

(B.7)

 

=

⋅ = = =

⋅ ≠ ⋅

∑
��� �

� �� �� �

3

1

where for 1,2,3

note  

j ji i
j

A T C A T C i

A T T A  

(B.8)

TABLE B.1 (continued)  Cartesian Vector and Tensor Algebra
Multiplication Table

Operation Order Contraction Exponent Terms in Product

S 0 0 0 1
V 1 0 0 3
T 2 0 0 9
T ∗ T 4 0 0 81
T ∗ V 3 0 3 27
T × T 4 −1 3 27
T  T 4 −2 2 9
V ∗ V = T 2 0 2 9
V ÷ V = T 2 0 2 9
V × V 2 −1 1 3
V  V 2 −2 0 1
T :T 4 −4 0 1
T V 3 −2 1 3
Notes: Order is the total number of unit vectors or subscripts in the terms being multiplied.
S is a scalar, V is a vector, and T is a tensor.
Th e asterisk used as a multiplication symbol is the same as a blank space.
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Th e T A B⋅ =
�� ��

 expression could be read that the tensor T operates on the 
vector A to produce a new vector B. Th is is the connection that will be 
expanded further in Section B.6 to discuss linear transformations. In 
dealing with tensors, the dot and cross products of the unit vectors are 
also needed. Th ese and other tensor operations are also summarized in 
Table B.1. Symbols-used only to defi ne generic operations included in this 
section are not included in the nomenclature.

A tensor is symmetric if Tij = Tji; it is asymmetric if Tij = −Tji for i ≠ j. 
A tensor may be expressed as the sum of a symmetric part and an asym-
metric part by

 = + = + + −
� � �� � �

s a where ½ ½( ) ( )ij ij ji ij jiT T T T T T T T  (B.9)

B.2.2  SCALAR, VECTOR, AND TENSOR 
DIFFERENTIAL OPERATORS IN OCC

Th e diff erential operator for scalars, vectors, and tensors is denoted by 
the symbol del, ∇. Th ese operations are shown in Table B.2 for OCC. Th e 
substantial derivative operator contains the local fl uid velocity, U

Æ
, and is 

defi ned as

 

D{ } { }
{ }

D
( )U

t t
∂

= + ⋅∇
∂

�

 
(B.10)

Th e substantial derivative operator applied to a scalar a{x, y, z} in OCC 
coordinates gives

 

3

1

D
D

( ) i
i

a a a a
U a U

t t t X
∂ ∂ ∂= + ⋅∇ = +
∂ ∂ ∂∑

�

 
(B.11)

Th e substantial derivative operator applied to a vector A
Æ

{t, X1, X2, X3} in 
OCC coordinates gives

 

3

1

D
D

( ) i
i i

A A A A
U A U

t t t X=

∂ ∂ ∂= + ⋅∇ = +
∂ ∂ ∂∑

� � � �
��

 
(B.12)
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TABLE B.2  Diff erential Operators in OCC

Del operator

{ } { } { }3

1
i

i iXR =

∂ ∂
∇ = = χ

∂∂ ∑ �� (A)

Gradient of a scalar (S)

{ } { } { }3

1
i

i i

S S
S

XR =

∂ ∂
∇ = = χ

∂∂ ∑ �� (B)

Divergence of a vector (A�)

(C)

3

1
i

I i

A
A

X=

∂
∇⋅ = χ ⋅

∂∑
�

� �

31 2

1 2 3

AA A
A

X X X
∂∂ ∂

∇⋅ = + +
∂ ∂ ∂

�

Curl of a vector A
Æ

3 3

1 1

) k

j k
j k j

A
A

X= =

⎛ ⎞∂
∇ × = (χ × χ ⎜ ⎟∂⎝ ⎠

∑∑
� � � (D)

3 32 1 2 1
1 2 3

2 3 3 1 1 2

A AA A A A
A

X X X X X X
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂

∇ × = χ − + χ − + χ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

� � � �

Other operations

{ } { }3 3 3 3

1 1 1 1

andj
i j i j i

i j i ji j

A
A A A

X X= = = =

∂ ∂
∇ = χ χ ∇ = χ χ

∂ ∂∑∑ ∑∑
� �� � � (E)

Tensor operator
2 2 2

1 1 1 2 1 32
1 1 2 1 3

2 2 2

2 1 2 2 2 32
2 1 2 2 3

2 2 2

3 1 3 2 3 3 2
3 1 3 2 3

X X X X X

X X X X X

X X X X X

∂ ∂ ∂
∇∇ ≡ χ χ + χ χ + χ χ

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

+ χ χ + χ χ + χ χ
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ χ χ + χ χ + χ χ

∂ ∂ ∂ ∂ ∂

� � � � � �

� � � � � �

� � � � � �
(F)

Let 
3 3

1 1
i j ij

i j

T T
= =

→
= χ χ∑∑
�� � �

{ } { } { } { }3 3 3

1 1 2 2 3 3
1 1 1

i i i
i i ii i i

T T T T
X X X= = =

→ ∂ ∂ ∂
⋅ ∇ = χ + χ + χ

∂ ∂ ∂∑ ∑ ∑
�� � � �

(G)

3 3 3

1 1 2 2 3 3
1 1 1

i i i
i i ii i i

T T T T
X X X= = =

∂ ∂ ∂
∇⋅ = χ + χ + χ

∂ ∂ ∂∑ ∑ ∑
�� � � � (H)
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B.2.3 INTEGRAL EXPRESSIONS IN OCC

Gauss’ divergence theorem is proven in Sokolnikoff  and Redheff er (1966, 
p. 397) for vectors. Th is theorem is stated to be true for tensors in Morse 
and Feshbach (1953, p. 66, Part I) and in Korn and Korn (1968, p. 560). 
Th ese theorems are stated as

 
∇⋅ ∀ = ⋅∫∫∫ ∫∫
� � �

d d( )A A S
 

(B.13)

 
d dA A S⎛ ⎞∇⋅ ∀ = ⋅⎝ ⎠∫∫∫ ∫∫

� �� � �

 
(B.14)

or

 ( )

⎛ ⎞∂∂ ∂
+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

= + +

∫∫∫

∫∫

31 2
1 2 3

1 2 3

1 2 3 2 3 1 3 1 2

d d d

d d d d d d

AA A
X X X

X X X

A X X A X X A X X  (B.15)

 ( ) ( ) ( )

3 3 3

1 1 2 2 3 3
1 1 1

1 2 3 2 3 1 3 1 2

d

d d d d d d

i i i
i i ii i i

A A A
X X X

Q X X X X X X

= = =

⎛ ⎞∂ ∂ ∂χ + χ + χ ∀⎜ ⎟∂ ∂ ∂⎝ ⎠

⎡ ⎤= ⋅ χ + χ + χ⎣ ⎦

∑ ∑ ∑∫∫∫

∫∫

� � �

�� � � �
 

(B.16)

where

 

= χ χ + χ χ + χ χ + χ χ + χ χ
+ χ χ + χ χ + χ χ + χ χ

�� � � � � � � � � � �

� � � � � � � �11 1 1 12 1 2 13 1 3 21 2 1 22 2 2

23 2 3 31 3 1 32 3 2 33 3 3 
Q A A A A A

A A A A  

Although this expression is lengthy, the fi nal result indicates vectors are 
under the integral signs. Since the OCC unit vectors are constant in direc-
tion and magnitude, they can be factored through the integral signs. Th is 
means that the integrals are vectors, such that three scalar equations can 
be extracted and evaluated.

Several other integral theorems are used in transport phenomena, 
for instance, to change the order of diff erentiation and integration, the 
partial diff erentiation of an integral is given by the Leibnitz formula 
(Brodkey, 1967):

( )( )

( )( )

d d ( ) d ( )( , )( , )d ( , )d ( , )
d d d

b tb t

a ta t

b t a tf x tf x t x f a tx f b t
t t tt

∂= + −
∂∫ ∫

 
(B.17)
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Th e Leibnitz formula for diff erentiating a triple integral with time with a vol-
ume ∀ surrounded by a closed surface S is given by the following equation:

 
1 2 3 s

d
( , , , )d d ( )d

d S

a
a X X X t a U n S

t t∀∀

∂∀ = ∀ + ⋅
∂∫ ∫ ∫

� �

 
(B.18)

where
a{X1, X2, X3, t} is a scalar function
nÆ is the unit normal vector to the surface
U
Æ

s is the velocity of a surface element

Th e above equation has the following form when the velocity, U
Æ

s, is the 
local fl uid velocity, U

Æ
. Th e use of the continuity equation is required to 

obtain this equation.

 
1 2 3

d D
( , , , )d d

d D
a

a X X X t
t t∀ ∀

ρ ∀ = ρ ∀∫ ∫
 

(B.19)

where
the substantial derivative of the scalar, a, appears on the right-hand side
ρ is the fl uid density

Th is form of the theorem is called the Reynolds transport theorem (Bird 
and Stewart, 2002).

Th e line integral of a vector A bounded by a closed curve is related to the 
surface integral of the curl of the vector A by Stokes theorem given below:

 
⋅ = ∇ × ⋅∫ ∫
� � ��
� d ( ) d

SC

A L A S
 

(B.20)

 
⋅ = ∇ × ⋅∫ ∫
� �� � ��
� d ( ) d
C S

A L A S
 

(B.21)

Again the tensor form of this integral equation depends on the unit vector 
being factored through the integral signs to obtain a solution. Th ese relation-
ships are used to determine the strength of a fl uid vortex (Brodkey, 1967).

B.3 SCALARS, VECTORS, AND TENSORS IN 
NONORTHOGONAL CURVILINEAR COORDINATES
B.3.1 OVERVIEW

Cartesian tensors describe only spaces in which the spatial coordinates are 
straight and never change direction. Th e various generalizations of tensors 



448     ■     Computational Transport Phenomena for Engineering Analyses

are useful and should not be a problem. However, when authors are not 
careful, the reader might not be informed when certain stated relation-
ships are only valid in a limited type domain. Th ere are other limitations 
which might be imposed, for example, vector spaces or affi  ne spaces. In 
vector space, coordinates are defi ned so that the diff erence between two 
close position points is an increment of length, i.e., a metric is defi ned. In 
affi  ne space, the diff erence between two close position points may have no 
physical meaning. For example, a P–∀–T plot represents an affi  ne space 
(Brillouin and Brennan, 1964); the diff erence between two points does 
not represent a length. Coordinates in tensor analysis are generalized to 
the point that some coordinates might have linear dimensions and some 
angular dimensions, for example, cylindrical coordinates. Base vectors are 
used to indicate direction. If the base vectors in a coordinate system are 
of unit magnitude, we shall term the coordinates physical. We shall use 
the term mathematical to represent coordinates, vectors, and tensors in 
general. Finally, some literature has generalized the term coordinates to 
mean locations in n-dimensional spaces. We do not need n dimensions to 
describe transport phenomena. Th ree dimensions are adequate, and four 
is the maximum needed when adaptive grids are utilized. Vinokur (1974) 
formally used time to cast the conservation equations as a four-dimen-
sional system, in order to state the equations in a strong conservation 
form. Th is appendix is limited to the description of three-dimensional 
nonadaptive coordinates and tensor relations pertinent thereto.

Th e grid will be considered fi xed relative to an inertial reference. 
Fictitious Coriolis and centrifugal forces will be utilized to approximate 
moving coordinates. Adaptive grids are used to reposition grid points dur-
ing the course of a computational simulation. However, grid locations do not 
need to be coupled in real time or iteration level to provide useful solutions. 
More complicated noninertial fl ow analyses are not considered herein; for 
example, see complex gravitational analysis (Misner et al., 1973).

Many books on tensor analysis do not clearly address the issues and general-
izations just mentioned. Th e texts by Margenau and Murphy (1956), Brillouin 
and Brennan (1964), Hawkins (1963), Sokolnikoff  (1964), and Borisenko and 
Tarapov (1968) are recommended for their clarity and completeness.

B.3.2 TYPES OF COORDINATE SYSTEMS

We have stated that the value of scalars, vectors, and tensors in analyzing 
physical phenomena is that they do not change in magnitude or direction 
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regardless of the coordinate system being used. Obviously, a scalar does 
not change because the coordinates change. Th e transformation of a scalar 
from one coordinate system to another is called an invariant transforma-
tion, i.e., the scalar does not change its value. Vectors indicated with an 
arrow over them or tensors with two arrows over them do not change with 
coordinate transformations. However, we have to play lawyer at this point 
and weasel out of this simple claim. Th e components used to defi ne vectors 
and tensors certainly do change when the coordinate system is changed. 
In fact, for some coordinate systems, some of the coordinates are in angles 
and some are in lengths. To obtain a clear understanding of geometric 
tensors and vectors, six coordinate systems will be defi ned and given their 
individual nomenclature. Th en more complex geometric objects will be 
described. Th ese six coordinate systems are defi ned in Table B.3.

Orthogonal Cartesian and curvilinear coordinates and physical non-
orthogonal curvilinear coordinates are used extensively in solving the 
transport equations. Th e other three types of coordinate systems must be 
understood to read the basic tensor literature. Nonorthogonal Cartesian 
coordinates is another type of coordinate system, but they will not be con-
sidered. Any use of the term Cartesian coordinates herein shall refer only 
to orthogonal Cartesian coordinates.

TABLE B.3  Six Basic Coordinate Systems

Orthogonal (rectangular) Cartesian coordinates (OCC)
3

1

d di i
i

R X
=

= χ ∗∑
� � (A)

Orthogonal curvilinear coordinates (NCC)
3

1

d di i i
i

R H Y
=

= υ ∗ ∗∑
� �

(B)

Mathematical (tangential) general curvilinear coordinates (MTC)
(Covariant base vectors and contravariant coordinate lines)

3 3

1 1

d d di i
ii

i i

R
R Z Z

Z= =

∂
= ∗ = ζ ∗

∂∑ ∑
� ��

(C)

Physical (tangential) general curvilinear coordinates (PTC)
3 3

( ) ( )
( )( )

1 1

( )
( )

d d d

1
where and

i i
ii

i i

i i
i i ii

ii

R
R Z Z

Z

Z g Z
g

= =

∂
= ∗ = ζ ∗

∂

ζ = ζ Δ = Δ

∑ ∑
� ��

�� (D)

(continued)
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B.3.2.1 Distances Associated with dR
→

For OCC system, R
Æ

 = X1 χ
Æ

i + X2 χ 
Æ

2 + X3 χ
Æ

3. For the other coordinate sys-
tems, the integral value of R

Æ
 is not as easy to evaluate, since the base vectors 

R⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

�

�
, where ℓ represents any of the coordinate lines, are not always ori-

ented in the same direction, nor are they necessarily constant. Base vectors 
may be defi ned to have a constant magnitude of one, in which case they 
are termed unit vectors. However, the incremental arc length is the same 
in each coordinate system. Th e strategy is that we know the behavior of 
the OCC system, therefore the other coordinates systems will be defi ned 
in terms of the known OCC system.

Arc length squared is

 

3
2 2

1

(d ) d d d d (d )i i i
i

s R R X X X
=

= ⋅ = = ∑
� �

 
(B.22)

Let

 

3

1

j j
i j ji i i

j

X XR
Z Z Z=

∂ ∂∂ζ = = χ = χ
∂ ∂ ∂∑
�� � �

 
(B.23)

Th is relationship may be described as a transformation of the base vec-
tor in the OCC system to one in the MTC system. Th is form of the 

TABLE B.3 (continued)  Six Basic Coordinate Systems

Mathematical (normal) general curvilinear coordinates (MNC)
(Contravariant base vectors and covariant coordinate lines)

3 3

1 1

d d di
i i

i ii

R
R z Z

Z= =

∂
= ∗ = ζ ∗

∂∑ ∑
� ��

(E)

Physical (normal) general curvilinear coordinates (PNC)
3 3

( )
( ) ( )

1 1( )

( )
( )

d d d

1
where and

i
i i

i ii

i i ii
i iii

R
R Z Z

Z

Z g Z
g

− −

∂
= ∗ = ζ ∗

∂

ζ = ζ Δ = Δ

∑ ∑
� ��

� �
(F)

where ( )
( ) 1 and andi i ii

i i i i iig gχ = υ = ζ = ζ = ζ = ζ =
� � � �� �

Six kinds of coordinate systems are defi ned by the local value of an increment of the position vector. 
Th e asterisk indicates simple multiplication which is neither a dot nor a cross operation.
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transformation law is termed covariant and the ζ
Æ

i are the covariant vector 
components whereas the Zi are the contravariant coordinates. Th e contra-
variant law is an alternative transformation; it reads

 

3

1

i i i
j j

ji j j

Z ZR
Z X X=

∂ ∂∂ζ = = χ = χ
∂ ∂ ∂∑
�� � �

 
(B.24)

Th e ζ
Æ

i are the contravariant vector components and the Zi are the cova-
riant coordinates. Th e superscripts and subscripts used in defi ning the 
MTC and MNC systems are not needed in the OCC system because 
the normals and tangents are in the same directions when the coordinates 
are orthogonal. Returning to the calculation of the arc length,

 

3 3

1 1

d d d di i i
i i i

i i

R
R Z Z Z

Z= =

∂= = ζ = ζ
∂∑ ∑
� � ��

 
(B.25)

 

3 3

1 1

d d d di i
i i i

i ii

R
R Z Z Z

Z= =

∂= = ζ = ζ
∂∑ ∑
� � ��

 
(B.26)

Arc length is

 = =

⎛ ⎞
= ⋅ = ζ ⋅ζ =⎜ ⎟⎝ ⎠

∑∑
� �� � 3 3

2

1 1

(d ) d d d d d di j i j
i j ij

i j

s R R Z Z g Z Z
 

(B.27)

 = =

⎛ ⎞
= ⋅ = ζ ⋅ζ =⎜ ⎟⎝ ⎠

∑∑
� �� � 3 3

2

1 1

(d ) d d d d d di j ij
i j i j

i j

s R R Z Z g Z Z
 

(B.28)

Note, the second dummy index has been changed from i to j which is 
legitimate.

Frequently the summation sign is omitted and the summation is indi-
cated by the repeated subscript, this is termed the Einstein summation 
convention. Also, note that the relationship between the g’s with super-
scripts and subscripts has not yet been established.

B.3.2.2 Metric Tensor

For nonorthogonal coordinate systems, the coordinate surfaces are defi ned 
as surfaces for which one of the coordinates is constant. Th e intersection 
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of two coordinate surfaces defi nes a coordinate line. Two coordinate sys-
tems result from this observation. Th e coordinates may be tangential to 
the coordinate lines (z

Æ

i, Z i) or normal to the coordinate surfaces (z
Æ

i, Zi). 
Th e superscript or subscript position in nonorthogonal coordinates is 
signifi cant and must be properly placed, as this positioning distinguishes 
between these two types of coordinate systems. Th e use of the index posi-
tion to distinguish between coordinate systems is awkward to use, but it 
is the convention employed in the literature. In an orthogonal system, the 
tangential and normal directions are the same so no indicial distinction 
is needed.

For the tangential coordinate system, let z
Æ

i . z
Æ

j = gij and form the matrix

 

11 12 13

21 22 23

31 32 33

ˆ ij

g g g
g g g g g

g g g

⎡ ⎤
⎢ ⎥⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦  

(B.29)

 
3 31 1 2 2 for , 1,2,3ij i j i j i j

X XX X X X
g i j

Z Z Z Z Z Z
∂ ∂∂ ∂ ∂ ∂

= + + =
∂ ∂ ∂ ∂ ∂ ∂  

(B.30)

Note gij = gji. Th e “for i, j =1, 2, k (shorthand for 9 terms) or i, j, k = 1, 2, 3 
(shorthand for 27 terms)” is referred to as indicating “cyclic permutation 
of the indices.”

For the tangential coordinate system, the base vectors are termed 
covariant and the coordinate lines are termed contravariant. Th e ele-
ments gij are of a covariant second-order tensor called the fundamental 
or metric tensor. Notice that it has two directions (i and j) associated 
with each of its components. Due to the defi nitions of the z

Æ

i-vectors, gij 
may be evaluated by a transformation of an increment of arc length from 
a rectangular Cartesian coordinate system to a general (tangential) coor-
dinate system. Th e metric tensor is termed a tensor because of the way 
it is transformed, but it does not include a defi nition of base vectors. A 
more appropriate defi nition would be to term it a transformation matrix 
for diff erential lengths.

Transformation equations are written as

 

3

1

d d , for 1,2,3m
i im

m

X M Z i
=

= =∑
 

(B.31)
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1 1 1
1 2 3

1 1
2 2 2
1 22 23

3 3
3 3 3
1 32

ˆd d

d d
d d
d d

X M Z

X X X
Z Z ZX Z
X X X

X Z
Z Z Z

X Z
X X X
Z Z Z

=
⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥⎛ ⎞ ⎛ ⎞
⎢ ⎥∂ ∂ ∂⎜ ⎟ ⎜ ⎟= ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦

��

 

(B.32)

Mathematicians term the single-subscripted terms “vectors” and the 
double-subscripted terms “matrices.” Th e tilde will be used to denote 
vector-valued functions, and the circumfl ex, matrices. Th ese terms are 
also called arrays. Th e term array is most meaningful since this is the 
manner that it will be treated in a computer code.

Denote J as the determinate of M̂  : J = |M̂  |.
Since curvilinear coordinate systems are only locally linear, diff erential 

rather than integral position vectors are required and defi ned:

 

1 2 3
1 2 3d d d d

R R R
R Z Z Z

Z Z Z
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

� � �
�

 
(B.33)

but R
Æ

 is defi ned in the χÆ, X coordinate system. Hence,

 
31 2

1 2 3 for 1,2,3i i i i

XX XR
i

Z Z Z Z
∂∂ ∂∂ = χ + χ + χ =

∂ ∂ ∂ ∂

�
� � �

 
(B.34)

Since dR
Æ

 . dR
Æ

 must be the same in any coordinate system and it is known 
to be

 ( ) ( ) ( ) ( )22 2 2
1 2 3d d d d d d d dR R X X X R R R⋅ = + + = ∗ =

� �
 (B.35)

 

( )
2

2 1 2 31 1 1
1 2 3

2

1 2 32 2 2
1 2 3

2

1 2 33 3 3
1 2 3

d d d d

           d d d

           d d d

X X X
R Z Z Z

Z Z Z

X X X
Z Z Z

z Z Z

X X X
Z Z Z

Z Z Z

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂⎣ ⎦  

(B.36)
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( )
2 2 2

2 1 2 3 1 21 1 1 1 1
1 2 3 1 2

1 3 2 3 11 1 1 1 2
1 3 2 3 1

d d d d 2 d d

            2 d d 2 d d d

X X X X X
R Z Z Z Z Z

Z Z Z Z Z

X X X X X
Z Z Z Z Z

Z Z Z Z Z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎣

2

2 2
2 3 1 22 2 2 2

2 3 1 2

1 3 2 32 2 2 2
1 3 2 3

13
1

            d d 2 d d

            2 d d 2 d d

            d

X X X X
Z Z Z z

Z Z Z Z
X X X X

Z Z Z Z
Z Z Z Z

X
Z

Z

⎥
⎦

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂

⎡ ∂⎛ ⎞+ ⎢⎜ ⎟⎝ ⎠∂⎣

2 2 2

2 3 1 23 3 3 3
2 3 1 2

1 3 2 33 3 3 3
1 3 2 3

d d 2 d d

            2 d d 2 d d

X X X X
Z Z Z Z

Z Z Z Z
X X X X

Z Z Z Z
Z Z Z Z

⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂⎦ ⎣ ⎦ ⎣ ⎦
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(d ) d d d dm n m n
im in mn

m n i m n

R M Z M Z g Z Z
= = = = =

= =∑∑∑ ∑∑
 

(B.38)

since the M’s do not depend on the dZi’s. Also,

 

3 3 3 3 3
2

1 1 1 1 1

(d ) d d d dm n m ni i
mn m n

m n m n i

X X
R g Z Z Z Z

Z Z= = = = =

⎛ ∂ ∂ ⎞
= = ⎜ ⎟⎝ ∂ ∂ ⎠∑∑ ∑∑ ∑

 
(B.39)

Elements of several ĝ matrices for diff erent coordinate transformations are 
given in Table B.4.

An element of surface, dSi, where Z i being constant is given by

 = − =2d d d for , , 1,2,3( ) j k
i jj kk jkS g g g Z Z i j k  (B.40)

An increment of volume, d∀

 
1 2 3d d d d where det ikg Z Z Z g g∀ = =  (B.41)

Th e Jacobian (J) of the incremental coordinate transformation is equal to 
the square root of g.

Th e relationship between the two types of base vectors is given by

 1 2 3

ζ × ζ ζ × ζ
ζ = =

∀ ζ ζ ζ

� � � �
�

� � �
| | | | | | | |det

( ) ( )
( )( )

j k j ki

jkg
 

(B.42)
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Relationships between physical covariant and covariant base vectors
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Th e physical coordinates are those for which the base vectors have been 
defi ned as unit vectors without changing their direction. M and P in Table B.3 
refer to the coordinates being mathematical with base vectors not necessarily 
unit in length and physical with base vectors of unity, respectively.

For orthogonal curvilinear coordinates (NCC), the metric tensor as 
represented by its matrix components is considerably simplifi ed. Th e met-
ric coeffi  cients for cylindrical coordinates {r, θ, z} are defi ned as
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(B.45)

 ( ) ( ) ( ) ( )2 2 2 22d d d ds r r z= + θ +  (B.46)

For the nomenclature in Tables B.3 and B.5, (y1,y2,y3) Þ (r,θ, z) and 
(H1,H2,H3) Þ (1,r,1) and gii = (Hi)2.

B.3.2.3 Conjugate Metric Tensor

Th e metric tensor was obtained by requiring that a transformation from 
orthogonal Cartesian coordinates to tangential curvilinear coordinates main-
tained an increment of length (ds) as an invariant. Th is was represented as

 
( ) ( )22d d d d m
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i n

s X g Z Z= =∑ ∑∑ �
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(B.47)

Th e last pair of summed terms is called “a homogeneous quadratic form.” Th e 
conjugate metric tensor n̂ will be defi ned such that the homogeneous qua-
dratic form is maintained when a normal curvilinear coordinate system is 
established. No longer will it be assumed that one of the coordinates systems 
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being transformed will be orthogonal and Cartesian. Rather, one coordinate 
system (ζ

Æ

i,Zi) will be transformed to (ζ
Æ

j,Zj) by using the same homogeneous 
quadratic form. Th is line of thought is what leads to identifying covariant 
and contravariant quantities by being determined by how they transform.

Th e normal curvilinear coordinate system is related to the tangential 
curvilinear system by defi ning the conjugate metric tensor as the inverse 
of the metric tensor. New base vectors and coordinates are then named. 
Th e conjugate metric tensor becomes

 

11 12 13

21 22 23 1

31 32 33

ˆ ˆ
g g g

n g g g g

g g g

−

⎡ ⎤
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎣ ⎦  

(B.48)

Taking the inverse of ĝ is accomplished by

 1. Exchange the rows and columns of ĝ to form its transpose ĝT

 2. Compute the cofactors Gi j of the transposed matrix
 3. Th e new matrix elements become

 
or or

ˆdet

ij
ij kj j jk j

ik i ki i
G

g g g g g
g

= = δ = δ
 

(B.49)

where the repeated index k indicates a summation and the Kronecker 
delta is

 1, if 0, ifj j
i ii j i jδ = = δ = ≠  (B.50)

Note, gij = 1/gij only if the curvilinear system is orthogonal. In which 
case the normal and tangential curvilinear systems are identical! Th is is 
the nomenclature of Hawkins (1963) and Borisenko and Tarapov (1968). 
Brillouin and Brennan (1964) uses the ij on G as a subscript to represent 
the cofactors of the transposed matrix.

To this point, the magnitude of the base vectors and the coordinate 
lines have been given a symbol. To proceed further, the coordinate lines 
must be defi ned. If curvilinear lines and surfaces are described analyti-
cally, empirically, or with tables of data points in an orthogonal Cartesian 
coordinate system, the independent variables in the conservation laws can 
be expressed in curvilinear coordinates and the scalar-dependent vari-
ables can be evaluated. Th is is the methodology described in Chapter 6.
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B.3.3 EVALUATION OF BASE VECTORS

Given the components (Ui) of a vector in orthogonal Cartesian coordi-
nates, they may be transformed into contravariant components (Wi) in a 
general curvilinear coordinate system by

 

1 1 1

1 1 2 3
12 2 2

2
2

1 2 33
33 3 3

1 2 3

Z Z Z
X X XW U
Z Z Z

W U
X X X

UW
Z Z Z
X X X

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎛ ⎞ ⎜ ⎟ ⎛ ⎞

∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎜ ⎟∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠  

(B.51)

Vectors which transform in this manner are termed contravariant vectors. 
Such vector components are parallel to the covariant base vectors.

Given the components (Ui) of a vector in orthogonal Cartesian coor-
dinates, these may be transformed into covariant components (Wj) in a 
general curvilinear coordinate system by

 

31 2
1 1 1

1 1
31 2

2 22 2 2

3 3
31 2

3 3 3

XX X
Z Z ZW U

XX X
W U

Z Z Z
W UXX X

Z Z Z

∂∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟∂∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟∂∂ ∂
⎜ ⎟⎝ ⎠∂ ∂ ∂  

(B.52)

Th e normal curvilinear coordinates are related to the tangential coordi-
nates by requiring that the base vectors of the two systems be reciprocal 
to one another, or by transformations similar to Equations B.51 and B.52 
(Hawkins, 1963). Mathematical base vectors are reciprocal if the following 
relations are true.

 
ζ ⋅ζ = ζ ζ ζ ζ = = =
� � � � � �

cos , 1 if otherwise 0{ }j j
i i j i i j

 
(B.53)

Reciprocal base vectors can be used to express multiplication as “raising and 
lowering” the indices. For physical problems using two coordinate systems 
when one is suffi  cient is awkward and unnecessary. Th e alternative is

 
j ki ζ × ζ

ζ =
∀

� �
�

 
(B.54)
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where ∀ is the volume of the parallelepiped spanned by ζ
Æ

1, ζ
Æ

2, and  
ζ
Æ

3. Th is vector is orthogonal to the surface defi ned by the j and k base 
vectors.

B.3.3.1 Covariant and Contravariant Vectors and Tensors

For the general vector

 
( ) ( )

( ) ( )
i i i i

i i i iA A A A A= ζ = ζ = ζ = ζ
� � � ��

 (B.55)

the index in the superscript position indicates that the quantity is con-
travariant; in the subscript position the quantity is covariant. A repeated 
index implies a summation over the three coordinates. Since our interest 
is in applications to transport analyses, only contravariant components 
and covariant base or unit vectors will be needed. Th e other operations are 
defi ned for completeness. Also, the covariant and contravariant label will 
not generally be repeated.

Indices will be used to indicate components of coordinates and depen-
dent variables. Th is produces a problem since both coordinates and coor-
dinate types would each require an indicial symbol. Th e value of vectors 
and tensors is that they are independent of coordinates, but herein diff er-
ent symbols will be used to indicate the coordinate system the variable is 
defi ned in, so that the double index is not needed. Th e double index will 
then be used only for defi ning second-order tensors. Higher order tensors 
will only be defi ned and used as they appear. Now to defi ne the velocity 
vector we could use A

Æ
 and let it represent velocity in any coordinate system, 

but since we frequently need to talk about velocity components in a par-
ticular coordinate system, we shall use the following symbols for clarity:

 

velocity in any coordinate system

velocity in OCC

velocity in NCC

velocity in MTC, PTC, MNC, PNC

A

U

V

W

≡

≡

≡

≡

�

�

�

�
 

(B.56)

Components of these velocities are denoted by Ui, Vi, Wi, W (i), Wi, and W(i).
A tensor in general may have several directions associated with it. For 

example,

 

3 3

1 1

ij
i j

i j

T T
= =

= ζ ζ∑∑
� � ��

 
(B.57)
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for a second-order tensor in a three-dimensional fi eld. Th us a vector is a 
fi rst-order tensor. A zero-order tensor is a scalar. A second-order tensor is 
also referred to as a dyadic.

B.3.4 TENSOR OPERATIONS

Th e del operator is used to defi ne diff erential operators in OCC systems, 
for example,

 = = =

∂ ∂ ∂∇⋅ = χ + χ + χ
∂ ∂ ∂∑ ∑ ∑

�� � � �3 3 3

1 1 2 2 3 3
1 1 1

i i i
i i ii i i

T T T T
X X X  

(B.58)

When curvilinear coordinates are used, allowance must be made for the 
variation of the base vectors and metric coeffi  cients in the fi eld. Th e del 
operations can still be performed, but they do not produce tensors (Wylie, 
1966). Th is situation is illustrated by the following. Let:

 

1 2 3
1 2 3

      

     , , and , ,

and

{ } { }

j i
j i

i i
j j

j j
i i
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ζ = ζ ζ = ζ
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� ��

� � � �
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Repeated indices indicate summations.
Th e partial derivative of this vector with respect to Zk is
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( )j j
j jj
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⎡ ⎤⎧ ⎫∂ ∂= + ζ = ζ = ζ⎢ ⎥⎨ ⎬∂ ∂⎢ ⎥⎩ ⎭⎣ ⎦

� �� �
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Th e Christoff el symbols are introduced as a shorthand representation for 
part of the partial diff erential operation. Two other nomenclature sys-
tems are also shown in Equation B.60. Only the symbols are diff erent, the 
meaning is the same. Th e Christoff el symbol of the fi rst kind is

 
[ ] ∂ ∂⎛ ⎞∂

≡ Γ = + −⎜ ⎟∂ ∂ ∂⎝ ⎠,
1,
2

ij kj ik
j ik k i j

g g g
ik j

Z Z Z  
(B.61)
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and of the second kind (denoted by the indices in braces or gamma) is

          

1
,

2
m mim km ik

ik k i m

g g g
g g i k m

i k Z Z Z
⎧ ⎫ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤≡ Γ ≡ + − =⎨ ⎬ ⎜ ⎟ ⎣ ⎦⎝ ⎠∂ ∂ ∂⎩ ⎭

� � �
�

 

(B.62)

Both the fi rst and second Christoff el symbols are symmetric with respect 
to i and k.

Additional derivatives are obtained from these defi nitions (Hawkins, 
1963) and (Margenau and Murphy, 1956).
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mj

m
i jZ

⎧ ⎫∂ζ
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i k j j k i

Z

∂
⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∂  
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j ig
g g

k kZ
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Th e gradient of ϕ

 

ij
j ig

Z
∂ϕ∇ϕ = ζ
∂

�

 
(B.67)

Th e divergence of A
Æ

 

1 ( )ii
j

i i

i A gA
A A

i jZ Zg

⎧ ⎫ ∂∂∇⋅ = + =⎨ ⎬∂ ∂⎩ ⎭
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Th e Laplacian of ϕ

 

2 1 ij
i jg g

Z Zg
∂ ∂ϕ⎛ ⎞∇ ϕ = ⎜ ⎟⎝ ⎠∂ ∂
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Th e curl of A
Æ

3 32 1 2 1
1 2 32 3 3 1 1 2

1 A AA A A A
A

Z Z Z Z Z Zg
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B.3.4.1 Tensor Operations in Physical Curvilinear Coordinates

Th e following relationships and derivatives are derived by Lee (1997). 
Th e Γ terms appearing in these relationships are Christoff el symbols. As 
shown in Section B.3.4, either of several characters may be used to indicate 
Christoff el symbols. Th ey arise when derivatives of base or general vectors 
and tensors are to be evaluated in nonorthogonal curvilinear coordinates:
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( )
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m ii
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i m
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Also, Γjk
i = Γjk

i  and Γ(jk)
(i) ≠ Γ(kj)

(i)

Th e gradient of a scalar, Φ

 
( )

( )( ) sum on  and ik
ikg i k

Z
∂Φ∇Φ = ζ

∂

�

 
(B.73)

g(ik) are elements of the conjugate metric tensor, nÙ. It is the conjugate met-
ric tensor; it is the inverse of the metric tensor (both being for either the 
physical or mathematical coordinates).

Th e Laplacian of ϕ

 
( ) ∂ Φ ∂Φ∇ Φ = ∇⋅ ∇Φ = − Γ

∂ ∂ ∂
�

� �
2

2 ( ) ( ) ( )
( )( ) ( ) ( ) sum on ,  ,  and ij j i

jj i ig g i j
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(B.74)

Th e gradient of a vector W
Æ
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Th e divergence of the vector W
Æ
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Th e Laplacian of the vector W
Æ
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Th e curl of the vector W
Æ
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Repeated indices are summed, and the permutation symbol is defi ned as

 

1 if are 123, 231, or 312

1 if are 213, 132, or 321

0 if any two indicies are the same

ijk

ijk

ijk

e ijk

e ijk

e

= +
= −
=  

(B.79)

Indices may be superscripts, subscripts, or a combination thereof. Th e 
symbol eijk is used for OCC.

B.3.4.2  Vector and Tensor Operations in Orthogonal 
Curvilinear Coordinates (NCC)

For orthogonal curvilinear coordinates, the gii’s are evaluated as gii = (Hi)2 
and the gij’s as 0’s. Th ese relationships are shown in Table B.5. Th e base 
vectors (υÆi’s) are of unit magnitude.

B.4 VECTOR FORMS OF THE 
CONSERVATION LAWS

Th e Reynolds-averaged Navier–Stokes equations with body forces in OCC is:

 

2 T
T E E

T E2

2
and

3

( ) ( )U
U U P U U U F

t
z

P p k
Fr

∂ ⎡ ⎤+ ∇ = −∇ + ν ∇ + ∇ + ∇ ∇ν +⎣ ⎦∂
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(B.80)
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where
n is the kinematic viscosity
e is the eddy viscosity
nE is the eff ective kinematic viscosity

Other forms of this equation do not show k explicitly, but there is no 
diff erence in these forms.

B.4.1  STATIONARY GENERAL (PHYSICAL) 
(TANGENTIAL) CURVILINEAR COORDINATES

Lee and Soni (1997) converted the scalar form of the incompressible 
conservation equations to
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Th e momentum equation may be written as
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Th e comma in the subscript indicates partial diff erentiation with respect 
to the coordinate defi ned by the subscript.
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Note that both the independent and dependent variables are transformed 
in these equations. As discussed by Lee and Soni (1997), the transformed 
velocity in curvilinear coordinates leads to a more accurate numerical 
solution when the curvilinear coordinates are highly skewed. Th is is not a 
problem if the skewness can be held to a moderate level.

B.4.2  UTILITY OF THE VECTOR FORM 
OF THE CONSERVATION LAWS

Having identifi ed a meaningful average velocity for a fl uid in motion, such 
a velocity can be described by a magnitude and direction. Mathematically, 
this velocity is represented as a vector. Considering only stationary (non-
adaptive), orthogonal Cartesian coordinate system, unit vectors are defi ned 
to indicate direction and such vectors always point in the same direction. 
Th e direction of a vector is then the extent of the quantity (i.e., a velocity) 
which has fi xed components in each of the three unit vector directions. 
Linear momentum conservation laws may be written for each of the three 
coordinate directions. Each of these equations may then be multiplied by 
the corresponding unit vector, and upon summing generate a vector equa-
tion for the momentum balance. Such an equation is neat and compact, 
but it can only be solved by evaluating each of the component balances. 
In curvilinear coordinates the base vectors are not constant; hence, vector 
forms of momentum equations are not used.

Upon writing each of the three momentum equations for a stationary, 
orthogonal Cartesian coordinate system, then multiplying each by the 
appropriate unit vector and adding

 

∂ ρ + ∇⋅ρ = −∇ + ∇⋅τ + ρ
∂
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Further complications also arise because some quantities require more 
elaborate defi nition than vectors. For example, shear-stress and rate-
of-strain must be defi ned in terms of a magnitude and two directions. 
Tensor formalism is necessary for such defi nitions. Th e second complicat-
ing factor is that curvilinear coordinate systems are frequently needed to 
describe the geometry of the region of interest and its boundaries. Th e net 
results are that (1) vector formulation of the conservation equations serves 
only to be a neat, shorthand method of writing the equations, (2) various 
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dialects of “tensor analysis” must be recognized and adhered to, and 
(3) the conservation laws are solved as partial diff erential equations (unless 
geometric idealizations are utilized to simplify the analysis). Th e implica-
tion is that integrals involving vectors which change direction within the 
fl owfi eld do not have to be formally evaluated.

B.5 CONSERVATION EQUATIONS IN 
NONORTHOGONAL COORDINATE SYSTEMS

B.5.1 CONTINUITY EQUATION

Consider the parallelepiped spanned by ζ
Æ

1, ζ
Æ

2, ζ
Æ

3 (see Borisenko and 
Tarapov, 1968, p.24; Margenau and Murphy, 1968, p. 146). Th e volume of 
this parallelepiped is

 1 2 3 2 3 1 3 1 2( ) ( ) ( )ζ ⋅ ζ × ζ = ζ ⋅ ζ × ζ = ζ ⋅ ζ × ζ = ∀
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Th is is the scalar triple product rule. Th e cross products are the surface 
areas of the parallelograms which comprise the faces of the parallelepi-
ped. Th e normals of these areas are directed positively in the direction 
that a right-handed screw would advance if the fi rst vector in the product 
is twisted toward the second vector. Th e contravariant base vectors are 
related to these terms by

 
1 2 32 3 3 1 1 2, ,

ζ × ζ ζ × ζ ζ × ζζ = ζ = ζ =
∀ ∀ ∀
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Compare the continuity equation in orthogonal Cartesian coordinates 
and in general tangential curvilinear coordinates.
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Notice that the velocity components, coordinates, and area vectors are 
colinear in the rectangular Cartesian coordinate system. Th e contravari-
ant velocity components and contravariant coordinates are also colinear, 
but the surface through which the velocity moves the fl uid is directed in 
the covariant coordinate direction. Th is looks odd, so consider it further.
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Th e net volumetric fl ow of fl uid through the ζ
Æ

2, ζ
Æ

3 surface is dW1dZ2dZ3, 
which is into the unit volume 1 2 3d d d dg Z Z Z∀ =  or d∀ = JdZ1dZ 2d Z 3. 
Introducing these terms into the mass balance yields

 

1 2 3 1

1 2 3 1

d d d 1
d d d
W Z Z W

JJ Z Z Z Z
∂=
∂  
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Including the fl ow through the other surfaces yields the fi nal mass balance. Th is 
demonstrates that the fl ow through the parallelepiped is correctly represented 
by the stated continuity equation in tangential curvilinear coordinates.

B.5.2 MOMENTUM EQUATION

Recognizing that an integral form of the momentum equation cannot 
be readily integrated, a diff erential element suitable for use as a fi nite-
diff erence or fi nite-volume representation of a computational element 
can be meaningfully analyzed. Yang and his colleagues have presented 
such a development in a series of papers (Yang and Lloyd, 1990; Yang et al., 
1988, 1994). Th eir development is summarized as follows.

An elemental control volume for physical tangential curvilinear coor-
dinates is shown in Figure B.1. Th is is the control volume analyzed by 
Yang and his colleagues. Th e incremental distance ds in this fi gure is the 
distance which is constructed to be the same between Cartesian coor-
dinates and nonorthogonal curvilinear coordinates. Th e angle between 

B

C

D

E

F
A

G

Hds

W (1)

dZ (3)

Z (1)

S1

dZ (2)

FIGURE B.1 Curvilinear coordinate system.
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S1 and W(1) is the result of the coordinates being nonorthogonal. Point A is 
the local origin. Th e line A–B is the increment dZ(1).

Continuity and Navier–Stokes equations
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To utilize tangential curvilinear coordinates, both the independent and 
dependent velocity variables are transformed.

Th e covariant base vectors in tangential curvilinear coordinates are
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Th e diff erential operators for scalar operations are
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Options for representing the velocity vector are
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Th ese defi nitions imply the additional options:
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Denote the velocity resolute by ω to obtain

 ( ) ( ) ( )ω = ζ ζ⋅
� ��� ( )i i iW
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Th e continuity and momentum equations in curvilinear coordinates become
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Th e continuity equation can be integrated over the diff erential volume (∀) 
surrounding the node point p.
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ΔMf is the net fl owrate through the projected area of each of the cell faces. 
Th e physical velocity component is used to calculate this fl owrate.

To avoid dealing with a vector in the PDEs to be solved, Yang and 
colleagues (1994) noticed that a base vector b

Æ
 could be dotted with the 

vector form of the momentum equation to eliminate vectors appearing 
in the momentum equation. Since the control volume was to be of dif-
ferential dimensions, this vector could be assumed locally constant. Th e 
resulting equation for the unsteady, convection, and pressure terms in the 
inviscid momentum equation become
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Various choices of b
Æ

 resulted in various discretized forms of the momen-
tum equation, many of which had been investigated by others. For instance, 
if b

Æ
 is the unit vector in the OCC system, the velocity components would be 

those from the OCC system. Th ese are the same as those used in the con-
servation equations in Chapter 6 and in the CTP code. Other choices would 
result in various velocity components based on nonorthogonal curvilinear 
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coordinates. Yang and colleagues (1994) presented several simulations 
using diff erent b

Æ
 vectors. General conclusions could not be drawn, although 

some of the test cases showed improved computational performance.

B.6 LINEAR TRANSFORMATIONS
Matrices and column vectors are used to perform linear transformations 
as follows:

Th e matrix is indicated with a diacritic carat and the column vector 
with a tilde diacritic
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Th e use of the term column vector is very unfortunate, as it is frequently 
shortened to just vector. Even worse both vectors and column vectors are 
frequently indicated with bold type so there is no apparent diff erence in 
their appearance. Th en the column vector is confused with the physical 
vectors which were described in the previous sections. Th e matrix, M̂  , is 
said to operate on the (column) vector x to produce the solution vector y. 
Better terminology is that M is a multidimensional-array, and x and 
y are one-dimensional arrays. Unfortunately again, such terminology is 
not used, except in computer codes where such terms are so named and 
computer operations are so treated.

Th e inverse transformation is
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Th e vertical bars indicate the determinant of the enclosed matrix. Th e 
transpose of a matrix is
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Th e Jacobian of the transformation from OCC to TCC was used in Chapter 6. 
In the nomenclature of the coordinates in this appendix,
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In Section B.3, this transformation was used twice since the increment of 
distance was ds2 to obtain the metric coeffi  cients. Since the metric tensor had 
elements of incremental distance, the Jacobian for the metric tensor is the 
product of two transformation matrices for the individual coordinates, 
the metric for the metric tensor is J 2. Or, in terms of the metric tensor 
proper it is det ĝ = g = J 2.

More matrices properties can be found in Margenau and Murphy (1956) 
and Sokolnikoff  et al. (1966), Lanczos (1961), and Gantmacher (1960).

Th e use of linear transformation laws allows the evaluation of vector 
and tensor components, but it does not include base or unit vectors. Th is 
observation should clarify the discussion in texts such as Brodkey’s which 
uses column vectors and vectors interchangeably. Th is is not correct.

Chapter 6 uses these linear transformation laws to describe the con-
servation laws in PTC. Th is methodology also termed the use of linear 
vector spaces or the use of function spaces to represent transformations of 
variables. Notice again that the base or unit vectors are not used in such a 
development. Th is simplifi es the coding necessary to obtain a solution and 
is what is used in the CTP code.

B.7 SUMMARY
Th is appendix presents vector and tensor analysis suitable for describing 
two- and three-dimensional geometries. Th e grids may be updated at inter-
vals during the course of the calculations, but time (or iteration level) are 
not coupled to the grid geometry. More complex grid, vector, and tensor 
operations are discussed herein, but they are not needed to utilize the meth-
odology presented in Chapters 6 and 8. Such discussion is included here so 
that other literature on computational transport analyses may be appreci-
ated and so that a starting point for studying the vast literature on tensor 
analysis is established. Again, one is warned that the tensor literature is not 
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consistent with nomenclature, defi nitions, and/or scope. Th e cited references 
are strongly recommended as a starting point to avoid hopeless confusion.

B.8 NOMENCLATURE
a typical scalars
A, B, C typical vectors
b magnitude of arbitrary base vector
f a function
Fr Froude number
g, J2 determinate of the metric tensor, i.e., a matrix
gij component of the conjugate metric tensor, i.e., a matrix
gij component of the metric tensor, i.e., a matrix
Hi metric coeffi  cients in NCC
J Jacobian of the coordinate transformation matrix
JMT Jacobian of the metric tensor components
k turbulent kinetic energy
p a spatial location
P pressure
R magnitude of position vector
s arc length
S magnitude of surface vector
t time
T temperature
Ti j second-order tensor components
Us surface velocity component
xi, yi arbitrary column matrices
X, χÆ,U

Æ
  orthogonal Cartesian coordinate (OCC), unit vectors, 

 velocities
X•, χ

Æ• a second OCC system
Y,uÆ,V

Æ
  orthogonal curvilinear coordinates (NCC), unit vectors, 

 velocities
Zi,ζ

Æ
i,Wi  mathematical contravariant curvilinear coordinates (MTC), 

 covariant base vectors, contravariant l velocities
Zi,ζ

Æi,Wi  mathematical covariant curvilinear coordinates (MNC), 
 contravariant base vectors, covariant velocities

Z(i),ζ
Æ

(i),W(i)  physical contravariant curvilinear coordinates (PTC), 
 covariant base vectors, covariant physical velocities

Z(i),ζ
Æ(i),W(i)  physical covariant curvilinear coordinates (PNC), contravariant 

 base vectors, covariant physical velocities



478     ■     Computational Transport Phenomena for Engineering Analyses

B.8.1 GREEK SYMBOLS

κ second coeffi  cient of viscosity
μ viscosity
ν kinematic viscosity
ρ density
Φ, ϕ scalar variables
ω velocity resolute

B.8.2 SUBSCRIPTS

a antisymmetric tensor
E eddy transport term
i covariant variable
s symmetric tensor
T a total value
,i denotes partial diff erentiation WRT coordinate i

B.8.3 SUPERSCRIPTS

o reference value

 T
��

 a second-order tensor
V
Æ

 a vector
∀ volume
∀̆ volume of a specifi c system
–1 inverse of a matrix

B.8.4 MATHEMATICAL SYMBOLS

C∼ column vector
eijk permutation symbol
ĝ covariant metric “tensor,” i.e., a matrix
ĝ T transposed matrix
Gij cofactor of transposed metric “tensor”
M̂ coordinate transformation matrix
n̂  conjugate contravariant metric “tensor,” i.e. a 

 matrix
δi

j Kronecker delta; δij is used for OCC
Γ, { } Christoff el symbol of the second kind
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[ ] Christoff el symbol of the fi rst kind
{ }

{ }
R

∂
∇ =

∂
�  del operator

D
D
{ } { }

{ }U
t t

∂
= + ⋅∇

∂
�

 substantial derivative
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A P P E N D I X  C

Fortran Primer

C.1 OVERVIEW
Th e Fortran (Formula translation) system consists of a mathematical lan-
guage and a compiler. Th e mathematical language, called source code, 
allows one to use a set of statements to perform various functions much 
like algebra. Th e compiler converts these statements into machine language 
called the compiled code which runs on a computer. Fortran is about 50 
years old, but it has been and still is very useful. Th is has been the choice 
of the engineers and scientists because of its high precision and other fea-
tures which expedite solving numerical equations. Th ere are literally hun-
dreds of millions of dollars of Fortran codes which have been developed 
and most of them are still useful. Th ese codes will not be replaced simply 
to convert them to another language. No one will provide the fi nancing to 
perform such a task.

Fortran has evolved through the years. Fortran 77 was the major code 
for 25 years. Fortran 90, 95, 2002, etc., have been developed, but these 
codes off er marginal improvements. Fortran 77 can be learned from a 
good text, like Fortran 77 for Engineers and Scientists by L. Nyhoff  and 
S. Leestma, 4th ed. from Prentice-Hall. Tutorials are also available on the 
Internet, for example, http://www.stanford.edu/class/me200c/tutorial_77/. 
Th e Internet is not a dependable source, because what is here today might 
be gone tomorrow. If you fi nd something that you like—SAVE IT! Free 
Fortran 77 compilers are also available on the Internet for both Linux and 
Windows operating systems. Linux is the preferred computational opera-
tion system, but Windows is the most commonly available.
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Th e CTP code described herein is provided as both source code and 
compiled code. Th e purpose of this text is to explain how the CTP code 
can be used to work transport problems; not to teach one how to write 
a Fortran code. One does not need the source code to perform a calcu-
lation. However, frequently one must have access to the source code to 
understand and fi x a problem that arises in a given analysis. Th e more 
complex the analysis the more oft en this is the case. It is anticipated that 
once one masters the material herein, the user will want to know more 
about Fortran. Th e following is a brief outline of the Fortran language. 
Be warned! It does not replace texts and well-written tutorials.

Th e computer is a dumb beast. You must tell it exactly what to do in 
terms of its own rules, one step at a time. Th e language used for identify-
ing the kinds of numbers and words used are called syntax, no exceptions. 
Assignment statements are sentences which instruct the machine to per-
form one specifi c operation. One must use a list of acceptable assignment 
statements to write a Fortran code—such a list amounts to a dictionary 
of terms which the Fortran code understands. Th e assignment statement 
is written on one line in plain text. Th e computer program consists of a 
structured algorithm which is the plan for combining these “one-liners” 
into a strategy for producing the desired analysis. Th e strategy may con-
sist of (1) a sequence of calculations, (2) a selection among several routes 
depending on intermediate results, (3) a repetition of steps, and (4) a com-
bination of these routes to arrive at the desired goal. Th e compilation step 
converts these instructions to machine language.

Th ese restrictions appear severe and they are. But the result is extremely 
useful. Th at was the bad news, the good news is the following. Computers, 
even PCs, perform operations extremely rapidly and can handle and gener-
ate very large volumes of data. File structures of specifi ed format are used 
to input required data and write out calculated data. While the calculation 
is in progress, arrays of data and variables are used to enable the immense 
numbers of calculations to be made in an organized fashion. Not only may 
data fi les become large, but the coding itself may be long and involved. 
Analysts have found it convenient to write and test blocks of code which is 
then collected for use with a “makefi le” command. All of these operations 
are not described in basic Fortran literature, but many of them are used 
in the accompanying CTP source code. Learning and applying Fortran 77 
coding is an evolutionary process. Hopefully, having the CTP source code 
and the examples supplied for its use will provide a “jump-start” for using 
the powerful computational tool.
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Modern computer usage allows clusters of computers like PCs to 
be used simultaneously to analyze very large and complex problems. 
Th is practice is called parallel computing and it is beyond the scope of the 
present discussion.

Th e following is a brief outline of the Fortran language. Be warned! 
It does not replace texts and well-written tutorials. It is meant to give one 
an initial feel for Fortran coding and a convenient reference once one has 
ventured into the programming world.

C.2 LOOK OF FORTRAN 77
Fortran 77 is briefl y described as follows. Dr. John Mathews provided 
the authors this material in a personal communication. Dr. Mathews 
is a retired mathematics professor at the California State University at 
Fullerton. We thank Professor Mathews for the use of this concise and 
informative summary.

FORTRAN  Preliminaries

Specifi ed Columns
  Each line of FORTRAN code must be written using the following column 
conventions.
Column Contents
   1 "C" or "*" for a comment line
  1–5 Statement number or label (non-signed integer).
   6 Blank or character for continuation line.
  7–72 FORTRAN statement
 73–80 Sequence number (usually omitted).

Form of a FORTRAN Program

  PROGRAM <program-name>
      {<specifi cation-statements>}
      {<executable-statements>}
  END

Form of a FORTRAN Subroutine

  SUBROUTINE <subroutine-name>[<actual-argument-list>]
  {<specifi cation-statements>}
  {<executable-statements>}
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  RETURN
  END

Form of a Subroutine call.

  CALL <subroutine-name>[<actual-argument-list>]

Form of a FORTRAN function

  [<type>] FUNCTION <function-name> [(<dummy-assignment list>)]
  {<specifi cation-statements>}
  {<executable-statements>}
  RETURN
  END

Specifi cation Statements (or Type Declaration Statements)

  INTEGER I,J,Row
  REAL A0,B0,Max,X,Y
  DOUBLE PRECISION
  LOGICAL A,B,C
  COMPLEX Z,W0
  CHARACTER*10 Name
  IMPLICIT F,DF
  PARAMETER (Pi=3.1415926535)
  DATA E/2.178281828/
  COMMON A0,B0
  COMMON /BlockA/ A,B,X,Y

Variables

  Variable names can be from one to six characters long.
  Variables beginning with I,J,K,L,M,N are presumed to be integers 
  unless they are declared otherwise.

Assignment Statements

  X = A(1) + 3
  Y = A*X**2 + B*X + C
  Flag = .TRUE.
  Name = ‘Fran’

Warning. Mixed Mode arithmetic might result in some frustrating 
surprises. For example, when two integers are divided the result is an 
unexpected integer value. To avoid errors use explicit decimal points for 
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real numbers and the intrinsic functions REAL, INT, DBLE, and 
CMPLX to get the required type conversion.

Arrays

  DIMENSION A(1:50), M(1:10,1:10)

Arithmetic Operations

  + Addition
  − Subtraction
  * Multiplication
  / Division
  ** Exponentiation

Relational Operators

  .EQ. Equal to
  .NE. Not equal to
  .LT. Less than
  .GT. Greater than
  .LE. Less than or equal to
  .GE. Greater than or equal to

Logical Operators

  .NOT. Complement
  .AND. True if both operands are true
  .OR. True if either (or both) operands are true

Logical Constants

  .TRUE.
  .FALSE.

Remark Statement

  C This is a comment.

Place-holder Statement (or label)

  10 CONTINUE

Unconditional Transfer

  GOTO 10
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Computed Control Statement

Transfers control to a specifi ed statement, depending on the value of an 
integer expression, e.g., <IJUMP>.

  GOTO(100,200,300,400), IJUMP
Warning. Do not use the GOTO statement to transfer into a DO, IF, 
ELSE, or ELSEIF block from outside the block.

IF (Arithmetic) Control Statement

Transfers control to a statement depending on whether the value of the 
(<arithmetic-expression>) is positive, negative or zero.

  IF (<arithmetic-expression>) 100, 200, 300

IF (Logical) Control Statement
  Executes a single statement only if the (<logical-expression>) is true.

  IF (<logical-expression>) GOTO 100
  IF (<logical-expression>) WRITE (*,*) ‘Yes’
  IF (<logical-expression>) X = A+B

IF (Block) Control Statement

Performs the series of {<executable-statement>} following it or transfers 
control to an ELSEIF, ELSE, or ENDIF statement, depending on the 
value of the (<logical-expression>).

  IF (<logical-expression>) THEN
  {<executable-statements>}
  ENDIF

  IF (<logical-expression>) THEN
  {<executable-statements>}
  ELSE
  {<executable-statements>}
  ENDIF

  IF (<logical-expression-#1>) THEN
  {<executable-statements>}
  ELSEIF (<logical-expression-#2>) THEN
  {<executable-statements>}
  ELSEIF (<logical-expression-#3>) THEN
  {<executable-statements>}

  ELSE
  {<executable-statements>}
  ENDIF
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  IF (ABS(P3-P1).LT.ABS(P3-P0) ) THEN
  U=P1; P1=P0; P0=U
  V=Y1; Y1=Y0; Y0=V
  ENDIF

  IF (Df.EQ.0) THEN
  Dp=P1-P0
  P1=P0
  ELSE
  Dp=Y0/Df
  P1=P0-Dp
  ENDIF

  IF (YC.EQ.0) THEN
  A=C
  B=C
  ELSEIF ( (YB*YC).GT.0) THEN
  B=C
  YB=YC
  KR=KR+1
  ELSE
  A=C
  YA=YC
  KL=KL+1
  ENDIF

DO (Block) Control Statement

  DO K = M1, M2
  {<executable-statements>}
  ENDDO

  DO K = M1, M2, Mstep
  {<executable-statements>}
  ENDDO

  DO (M TIMES)
  {<executable-statements>}
  ENDDO
  SUM = 0
  DO K=0,100,2
  SUM = SUM + K
  ENDDO
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  SUM = 0
  DO K=100,-1,1
  SUM = SUM + 1.0/REAL(K)
  ENDDO

  DO J=1,5
  DO K=1,5
   A(J,K) = 1.0/FLOAT(1+J+K)
  ENDDO
  ENDDO

  SUM = 0
  DO K=1,10000
  SUM = SUM + 1.0/REAL(K)
  IF (SUM.GT.5) EXIT
  ENDDO

WHILE (Block) Control Statement

  WHILE (<logical-expression>)
  {<executable-statements>}
  REPEAT
  SUM = 0
  WHILE (K.LT.10000)
  SUM = SUM + 1.0/REAL(K)
  IF (SUM.GT.5) EXIT
  K = K+1
  REPEAT

Input and Output

  READ *,<input-variable-name-list>
  READ <format>,<input-variable-name-list>
  READ <N>,<input-variable-name-list>
  where <N> is a FORMAT statement number, e.g.

111 FORMAT(5X,I10,4F15.5)

  PRINT *
  PRINT *,<output-expression-list>
  PRINT <format>,<output-expression-list>
  PRINT <N>,<output-expression-list>
  where <N> is a FORMAT statement number, e.g.
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999 FORMAT(5X,‘X = ’,F15.5)

  WRITE (*,*)
  WRITE (*,*) <output-expression-list>
  WRITE (*,N) <output-expression-list>
  where <N> is a FORMAT statement number, e.g.

999 FORMAT(5X,‘X = ’,F15.5)

Pause Statement
  PAUSE
Stop Statement
  STOP

Mathematical Functions
 COS(X) cosine (radians)
 SIN(X) sine (radians)
 TAN(X) tangent (radians)
 EXP(X) exponential exp(x)
 ACOS(X) inverse cosine (radians)
 ASIN(X) inverse sine (radians)
 ATAN(X) inverse tangent (radians)
 ALOG(X) natural logarithm base e
 LOG10(X) common logarithm base 10
 SQRT(X) square root
 ABS(X) absolute value
 INT(X) conversion to integer
 FLOAT(I) conversion to real number type
 REAL(I) conversion to real number type
 DBLE(X) conversion to double precision type
 CMPLX(X) conversion to double precision type

C.3 OUTFITTING A PC FOR USING FORTRAN
Th ere are free Fortran 77 compilers available for the three major oper-
ating systems (OS) used by a personal computer (PC): MS-Windows, 
Linux, and Mac OS-X. If you are using the Linux OS, the Fortran com-
piler (g77 or f77) generally comes with the OS. Even if you cannot fi nd 
it on your system (most likely it did not get installed), you can install it 
from the CD-ROM of the OS that you purchased or comes with your 
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system. For Mac OS-X, you can download the Fortran compiler from 
the Apple Web site (http://www.apple.com) under the “Development 
Tools” in the “Downloads” section. For the PC with the MS-Windows 
OS, there are various ways of getting a free Fortran compiler. You can 
go to http://kkourakis.tripod.com/ or http://www.geocities.com/Athens/
Olympus/5564/ to download the Fortran g77 compiler, or http://ft p.g95.
org/ for the Fortran g95 compiler. Another way of obtaining the Fortran 
compiler is to install a soft ware package call “cygwin” (http://sources.
redhat.com/cygwin/), which includes X-Windows (X11) emulator, text 
editors (such as “vi” or “emacs”), Fortran compiler (g77 or f77), networking 
soft ware (“ssh”, “sft p”, …), etc. Aft er downloading the soft ware package 
from any of the above Web sites, you can follow the instruction to install 
the soft ware. Additional sources of free Fortran compilers are listed at: 
http://www.thefreecountry.com/compilers/fortran. shtml
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A

Amagat’s law, 135

B

Blanc’s law, 162
Body-conforming grids, 313–314
Body-fi tted coordinates

curvilinear coordinate system, 
260–261

distance calculation, elliptic 
segment, 259

grid generation, 257
transfi nite interpolation (TFI), 

259–260
Boltzmann equation, 394–395
Boundary conditions, 328–332, 

380, 385–386
Boundary element method, 292
Boundary layer theory, 374
Brennen’s equation, 137

C

CAD, see Computer-aided design
Caloric equation of state (CEOS)

chemical equilibrium and applications 
(CEA) code, 131–132

enthalpy, 130–131
entropy form, 132
Gibb’s free energy, 128
HBMS formulation, 128–129
heat of vaporization (ΔHv), 129–130
real-fl uid thermodynamic properties, 

132–133
rigid-rotor-harmonic-oscillator 

model, 131

single-component fl uid, 130
Cannon–Fenske viscometer, 89
Carreau–Yasuda model, 78
Cartesian coordinates, 200–202
Cartesian grid method, 292
CESE, see Space-time conservation element 

and solution element method
Chapman–Enskog theory, 

158–159
Chilton-Colburn analogy, 383
Christoff el symbols, 465–466
CNS equation, see Compressible 

Navier–Stokes equation
Colburn’s j-factors, 377–378
Column vector, 475
Compressible Navier–Stokes (CNS) 

equation, 272–274
Computational coordinates

arc length and coordinate lines, 
258–259

body-fi tted coordinates
curvilinear coordinate system, 

260–261
distance calculation, elliptic 

segment, 259
grid generation, 257
transfi nite interpolation (TFI), 

259–260
grid system, 253
transformations

analytical relationships, 257
derivative transformations, 

255–256
partial diff erentiation, 255

Computational transport phenomena 
(CTP) code

accuracy, 410
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advantage, 411
boundary conditions

exit fl ow boundaries, 329
inlet fl ow boundaries, 328–329
symmetry and singularity 

boundaries, 330
wall boundaries, 331–332
zonal interface boundary, 330

coarse and fi ne grid, 413
combustion device simulation, 411
computational tool, 10–11
discretized conservation equations

central diff erencing scheme, 
318–320

curvilinear coordinate 
transformation, 316

fi rst-order backward diff erence 
scheme, 318

Jacobian and contravariant 
velocities, 316–317

σφ and σφ, t transport property 
parameters, 316

turbulence modeling constants, 
317–318

features
COMMON blocks, 336–337
CTP.f fi le, 339
f1.f fi le, 339–340
f2.f fi le, 340
f3.f fi le, 340–342
f4.f fi le, 342–343
f5.f fi le, 343–344
f6.f fi le, 344
fl ib.f fi le, 345
functional fl ow chart, 

345–347
grid/initial fl ow generator, 338
input and output units, 337–338
io.f fi le, 344–345

formulation, conservation laws
eddy viscosity model (EVM), 262
HBMS thermal and caloric 

equations, 261
k−ε model, 262
Maxwell–Stefan equation, 262
orthogonal Cartesian coordinate, 

262–264
Pade’ integration scheme, 

261–262

Prandtl and Schmidt numbers, 265
gaseous and liquid propellants, 

410–411
grids

body-fi tted grids, 313–314
control volume method, 315
multiblock grid system, 314
single-block structured grid, 313

grid stencils generation, 415–416
initial fl ow conditions

fl ow variables normalization, 
335–336

reference conditions, 334–335
restart fi le data formats, 

332–333
multiphase fl ows

conjugate heat transfer, 385–386
dilute particulate cloud tracking, 

385
reacting wall boundary conditions, 

386
real-fl uid property, spray 

simulations, 386–387
predecessor, 410
river fl ow, 412
solution strategy

collocated variable approach, 325
continuity equation, 325–326
extrapolation scheme, 326
pressure correction equation, 

326–327
pressure Poisson equation, 325
semi-implicit method, 324

Space Shuttle Main Engine (SSME), 
409–410

time-marching scheme, 327–328
upwind and dissipation schemes

diagonal and off -diagonal 
dominance, 320–321

fi rst-order upwind scheme, 
321–322

fourth-order dissipation term, 324
relaxation factor, 321
second-order upwind scheme, 322
third-order upwind scheme, 

322–323
total variation diminishing (TVD) 

scheme, 323–324
user’s guide
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example start include fi le 
(fexmp01), 366

input data fi le (fort.11), 348–365
main program include fi les 

(fmain01 and fmain02), 365
restart/output fi les, 366–367
run-time modifi cation, 365

validation, 12–13
vector transformation, 274–277
verifi cation, 12
worst-case scenarios, 412

Computer-aided design (CAD), 258
Conservation laws

compressible Navier–Stokes (CNS) 
equations, 272–274

continuity equation, 274–275
diff usion term, U-momentum 

equation, 281–283
formulation, CTP code, 261–265
generalized conservation equations, 

277–278
mass and species equations, 

curvilinear coordinates, 276
momentum and energy equations, 

283–284
nonlinear partial diff erential equation 

(PDE), 1
source term, momentum-energy 

equation, 283–284
species continuity equation

amplifi cation matrix, 154
explicit scheme, 150
fi nite-rate chemical reactions, 

143–146
GEAR algorithms, 155
implicit scheme, 151–152
laminar fl ow, 147
molar density, 148
Padé approximation, 152–154
PARASOL algorithm, 148
practical turbulence models, 147
predictor–corrector scheme, 155
propagation error, 154
Schmidt number, 147
single-step integration scheme, 149
species production/dissipation rate, 

149–150
stiff  equations, 147
Taylor series expansion, 150–151

transport equations, orthogonal 
Cartesian coordinates, 263–264

U-momentum equation, 281–283
vector form, Cartesian coordinate, 

265–271
vector transformation

CNS equation, 272–274
CTP equation, 274–278

velocity derivatives, 284–288
Continuity equation, 471–472
Control volume method, 297–298
Coordinate system

arc length calculation, 450–451
base vector evaluation, 463–465
conjugate metric tensor, 458, 462
Einstein summation convention, 451
metric tensor

arrays, 453
cylindrical coordinates, 458
Jacobian ( J) incremental coordinate 

transformation, 454
properties, 454–457
tangential coordinate system, 452
transformation equations, 452–453

types, 448–450
CTP code, see Computational transport 

phenomenon code
Cumulative distribution function (CDF), 

218
Curtis–Godson approximation, 176
Curvilinear coordinate system, 472
Curvilinear coordinate transformation, 

316–320

D

Dalton’s law, 135
Darcy/Moody friction factor, 90
Darcy’s law

carbon concentration, 105
chemical reactions, 101–102
energy transfer, 101
frozen and equilibrium fl ow, 

99, 102–103
inlet composition, 102–103
mass fl ux, 100
one-dimensional fl ow, 97
pressure distribution, 97–98
rate of reaction, 104–105
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solid matrix, 101–102, 104
stoichiometric coeffi  cients, 104–105
temperature distributions, 103–104
transpiration and transportation 

cooling, 96
DATAIO subroutine, 338, 366
Del operator, 465
Dense particulate fl ows

dense particle models
averaging function, 396–397
dense phase model, 400–401
dissipation, 399–400
momentum equation, 397–398
radial distribution function, 400
shear/viscosity correlations, 

398–399
local spatial averaging method

continuity and momentum 
equations, 396

single phase conservation and 
Boltzmann equation, 394–395

two-phase model, 395–396
Diacritic carat, 475
Direct Boltzmann equation (DBE), 293
Direct simulation Monte Carlo (DSMC) 

method, 292
Discretized conservation equations

central diff erencing scheme, 318–320
curvilinear coordinate transformation, 

316
fi rst-order backward diff erence 

scheme, 318
Jacobian and contravariant velocities, 

316–317
σφ and σφ,t transport property 

parameters, 316
turbulence modeling constants, 

317–318
Discretized momentum equation, 325
2D O-grid domain, 423

E

Eddy viscosity model (EVM)
CFD code, 212
CTP code formulation, conservation 

laws, 262
Eddy viscosity, other

esoteric turbulence research, 205

heat transfer, 212
k–ω model, 210
Mach number, fl ow analysis, 211
Reynolds stresses and standard k–ε 

model, 206–209
shear-stress transport (SST) 

model, 210
two-equation turbulence models, 

213
Einstein summation convention, 451
Equations of motion

forces and stresses
convective momentum fl ux, 

49–50
shear and normal forces, 50
surface and body forces, 48
vector, 50–51
viscosity, 49

Navier–Stokes equations
density and viscosity, 64–65
Euler/Bernoulli equation, 65
rectangular and cylindrical 

coordinates, 65–66
Newton’s second law, 47
rate of deformation

angular velocity vector, 58
shear strain, 54, 57, 59
strain rate, 55–57
stress matrix, 59
velocity gradients, 57–58

second-order tensors
components, 61
hydrostatic pressure, 61–62
matrix transforms, 60
Newtonian fl uid, 63–64
normal and shear stress equations, 

62–63
rectangular Cartesian coordinates, 

59–60
scalar invariant, 60–61
viscous stress tensor components, 63

x-component
body, shear, and normal forces, 

51–52
convective momentum, 52
mass fl ow rate, 52
momentum fl ux, 52–53
rectangular and cylindrical 

coordinates, 54–55
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vector notation, 54
y-component and z-component, 53

Equation of state (EOS), 326
Equations of change

analytical and approximate solutions
duct fl ow, 85
fl ow geometries, 83–84
inviscid fl ow, 84–85
macroscopic balances, 85
negative and positive pressure 

gradient, 83
one-dimensional fl ow, 86–87

arbitrary fl uid velocity, 36–37
binary systems

Fick’s fi rst law of diff usion, 43–44
Fick’s second law of diff usion, 44–46

boundary layer
Blasius solution, 109–110
fi nite velocity, 111–112
infi nite series solution, 108–109
initial and boundary conditions, 

107, 110
mass transfer, 111
partial diff erential equations, 

106–107
Prandtl and Schmidt number, 

112–114
recursion formula, 108
stream function, 107–108
thickness, 106

chemical and simultaneous reaction 
rates, 46–47

continuity equation
law of conservation of mass, 37–38
mass fl ow rate, 38
partial derivatives, 39
rectangular and cylindrical 

coordinates, 39–40
substantial derivative, 40

fully developed transport, tube
cylindrical coordinates, 87–88
friction factor, 90–91
Hagen–Poiseuille formula, 89
laminar fl ow, 89–90
Newtonian and non-Newtonian 

fl uids, 88–89
power law fl uid, 90
pressure gradient, 88
velocity gradient, 89

general energy equation
continuity equation, 71–72
defi nition, 66
enthalpy, 71
fl ux, 68
internal and kinetic energy, 67–68
law of conservation of energy, 66
multicomponent chemical reaction 

system, 70
Newtonian fl uid, 73–74
rate of heat addition, 68–69
rate of work, 69–70
rectangular and cylindrical 

coordinates, 73
thermal energy equation, 71
viscosity and velocity gradients, 72

general features
centerline velocities, 15
computational analysis, 28–29
eff ective and eddy viscosity, 18
heat and mass transport problems, 

23–27
inner law profi le, 22
pipe fl ow, 14–15
Prandtl’s correlation, 16
Reynolds number, 15–16, 22
Spalding’s velocity correlation, 14
turbulence model, 13
turbulent shear stress distribution, 

18–19
turbulent to laminar viscosity ratio, 

19–21
wall function, 13
wall shear stress, 16, 18

general property balance
conservation law, 79
fl ux, 78
Gauss’ theorem, 80
generation, 79
integration and diff erentiation, 

79–80
internal and kinetic energy, 81–82
Leibnitz’s rule, 80
momentum equation, 81

multicomponent systems, 46
non-Newtonian fl uids

Bingham plastic, 76
Carreau–Yasuda model, 78
invariants, 77
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linear equation, 76–77
material classifi cation, 74–75
power law model, 78
scalar functions, 77
shear-thickening and-thinning, 75
thixotropic and rheopetic fl uid, 76

porous media and Darcy’s law
carbon concentration, 105
chemical reactions, 101–102
energy transfer, 101
frozen and equilibrium fl ow, 

99, 102–103
inlet composition, 102–103
mass fl ux, 100
one-dimensional fl ow, 97
pressure distribution, 97–98
rate of reaction, 104–105
solid matrix, 101–102, 104
stoichiometric coeffi  cients, 

104–105
temperature distributions, 103–104
transpiration and transportation 

cooling, 96
wall-functions

defi nition, 92–93
Fick’s law, 95
Fourier’s law, 94–95
fully developed laminar fl ow, 93–94
Graetz–Nusselt problem, 94
laminar and turbulent stresses, 

91–92
Prandtl’s turbulence model, 95

Eulerian analysis, 371
Eulerian PDF, 230, 232
Extended k–ε model, 209

F

Fanning friction factor, 90
Favre fi ltering, 238
Fickian process, 234
Fick’s law, 156
Fluidized bed technology, 370
Formula translation 77, see Fortran 77
FORTRAN

coding, 366, 416
language, 338
programming, 328
statement numbers, 365

Fortran 77
arrays and arithmetic operations, 485
assignment statements, 484–485
compiled code, 481–482
control statement, 486–487
function form, 484
input and output, 488
logical constants and operators, 485
mathematical functions, 489
personal computer (PC) outfi tting, 

489–490
place-holder statement, 485
program form, 483
remark statement, 485
source code, 481–482
stop statement, 489
subroutine form, 483–484
type declaration statements, 484
unconditional transfer, 485
variables, 484

Fourier fi lter, 238
Fourier’s law

energy equation, 68
molecular transport properties, 156
momentum, energy, and mass transfer, 

94–95
Fourier transform, 194
Fundamental physical laws, see 

Conservation laws

G

Gaseous radiation, 168–169
Gauss’ divergence theorem, 446
Gaussian fi lter, 239
Gauss’ theorem, 80
General energy equation

continuity equation, 71–72
defi nition, 66
enthalpy, 71
fl ux, 68
internal and kinetic energy, 

67–68
law of conservation of energy, 66
multicomponent chemical reaction 

system, 70
Newtonian fl uid, 73–74
rate of heat addition, 68–69
rate of work, 69–70
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rectangular and cylindrical 
coordinates, 73

thermal energy equation, 71
viscosity and velocity gradients, 72

Generalized Langevin model (GLM), 
230–231

Governing equations, numerical method
computational fl uid dynamics 

(CFD), 291
density-based method, 293–294
discretized equation, 292
fi nite diff erence method, 296
fi nite element method, 296–297
fi nite volume method, 296
grid topology

control volume method, 
297–298

grid deformation and remeshing 
strategy, 301

hybrid mesh system, 300
numerical accuracy, 303
overset grid topology, 301–303
structured and unstructured mesh 

system, 299
numerical meshes and damping, 292
pressure-based method

Poisson equation, 295
pressure correction method, 

295–296
space-time conservation element/

solution element (CESE) method
features, problem solving, 

305–306
numerical dissipation, 304–305
numerical wiggles, 303–304
Riemann problem, 304
unstructured-mesh compatible 

CESE method, 306
Graetz–Nusselt problem, 94
Grid cell volumes, 333
Grids

adaptation/redistribution, 303
body-fi tted grids, 313–314
control volume method, 315
index system, 315, 318
multiblock grid system, 314
refi nement, 303
single-block structured grid, 313

Grid stencil generation

airfoil fl ow, 421–422
backward-facing step fl ow, 

419–420
converging–diverging nozzle fl ow

Mach number contours, 425
turbulent fl ow, 424

cylindrical cross-fl ow, 420–421
fl at plate boundary layer fl ow, 416–417
open duct free-surface fl ow, 430–431
orifi ce fl ow and ejector pump

Mach number contours, 427
turbulent fl ow, 425–426

pipe elbow fl ow, 427–428
pipe fl ow

turbulent fl ow, 417–418
u-velocity contours, 418–419

pipe tee fl ow, 428–430
shell and tube heat exchanger, 423
stirred tank fl ow

mixing eff ects, 433
turbulent fl ow, 431

H

Hagen–Poiseuille formula, 89
Heat and mass transport

energy balance, 24–25
fully developed temperature profi les

defi nition, 23–24
piecewise portions, 25
pipe fl ow, 25–26
Prandtl number, 26–27
Schmidt number, 27
turbulent fl ow, 24

stringent limitations, 23
Hook’s law, 75
Hybrid mesh system, 300

I

Integro-diff erential energy 
equation, 180

Interfacial resistance, 373
Interphase mass transfer

heat transfer
correlations, Colburn’s j-factors, 

377–378
diff usion fl ux, 375–376
fi lm coeffi  cients, 376–377
log-mean values, 378–379
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two-component air–water 
system, 375

interfacial equilibrium, 372–373
turbulent fi lm coeffi  cients

boundary conditions, 
384–385

description, 379
eddy mass transport, 383
mass average velocity, 381–382
mass balance, 383–384
Stanton number, 380
transport process, 380–381
velocity profi le model, 382–383

two-fi lm theory, 373–374
Iterative matrix solvers, 320
Iterative predictor-corrector 

solution, 296

J

Joint probability distribution function 
(JPDF), 220

K

Kinematic viscosity, 166
Kinetic pressure, 158
Kolmogorov’s universal equilibrium 

theory, 195
Kronecker delta, 139, 462
k–ω turbulence model, 210

L

Laminar fl ow, 420
Laminar-turbulent transition models

linear stability theory, 242–243
transition-onset model, 243–245
validation case, 245

Large eddy simulation (LES)
applications, 240–241
Favre fi ltering, 238
Fourier fi lter, 238
Galilean-invariant decomposition, 239
Gaussian fi lter, 239
residual stress, 239–240
resolved scale, 237
SGS model, 237, 240
spatial fi ltering, 237

Lattice Boltzmann equation (LBE), 292

LCTM, see Local correlation-based 
transition model

Leibnitz formula, 446–447
Leibnitz’s rule, 80
Lennard–Jones potential function, 161
LES, see Large eddy simulation
Lewis number, 166
Linear momentum conservation laws, 470
Liouville type equation, 387
Local correlation-based transition model 

(LCTM), 244
Lucas’ high pressure viscosity correlation, 

159–160
Lucas’ low pressure viscosity, 159

M

Mach number
contours

airfoil fl ow, 422
converging-diverging nozzle 

fl ow, 425
orifi ce fl ow and ejector pump, 427

fl ow analysis, 211
solution strategy, 327

Mass-averaged conservation laws, 
203–204

Maxwell–Stefan equation, 262
Meshless method, 292
Mesh refi nement, 303
Micro-distributed population 

balance, 389
Missenard’s method, 161
Momentum equation, 472–475
Momentum transport

centerline velocities, 15
eff ective and eddy viscosity, 18
inner law profi le, 22
pipe fl ow, 14–15
Prandtl’s correlation, 16
Reynolds number, 15–16, 22
Spalding’s velocity correlation, 14
turbulent shear stress distribution, 

18–19
turbulent to laminar viscosity ratio, 

19–21
wall function, 13
wall shear stress, 16, 18

Monte Carlo methods, 170, 233
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Multicorrector solution algorithm, 327
Multiphase fl ows

conservation equation solution, 369
CTP code

conjugate heat transfer, 
385–386

dilute particulate cloud tracking, 
385

real-fl uid property, spray 
simulations, 386–387

wall boundary conditions, surface 
reaction, 386

dense particle models
averaging function, 396–397
dense phase model, 400–401
dissipation, 399–400
momentum equation, 397–398
Newtonian stress rate-of-strain 

equations, 400
radial distribution function, 400
shear/viscosity correlations, 

398–399
dilute suspensions, 371–372
interphase mass transfer

heat transfer, 375–379
interfacial equilibrium, 372–373
turbulent fi lm coeffi  cients, 379–385
two-fi lm theory, 373–374

local spatial averaging method
continuity and momentum 

equations, 396
single phase conservation and 

Boltzmann equation, 394–395
two-phase model, 395–396

particulate transport analysis, 369–370
population balance models

diff erential particle balance, 389
fl uid continuum conditions, 388
macro-moment population 

balance, 392
micro-moment population 

balance, 391
ordinary diff erential equations 

(ODEs), 388
particle volume formulation, 

392–394
particulate distribution, 390–391
statistical mechanics, 387, 390
vector particle phase–space 

velocity, 388–389

N

Navier–Stokes equations
density and viscosity, 64–65
Euler/Bernoulli equation, 65
momentum equation, 473
rectangular and cylindrical 

coordinates, 65–66
space–time conservation-element/

solution-element methods, 306
turbulence modeling, 191

NCC, see Orthogonal curvilinear 
coordinates

Newtonian stress rate-of-strain 
equations, 400

Newton’s law, 156
Newton’s law of viscosity, 75, 78, 92
Newton’s second law of motion, 35, 47
Non-Newtonian fl uids

Bingham plastic, 76
Carreau–Yasuda model, 78
invariants, 77
linear equation, 76–77
material classifi cation, 74–75
power law model, 78
scalar functions, 77
shear-thickening and-thinning, 75
thixotropic and rheopetic fl uid, 76

Nonorthogonal curvilinear coordinates
adaptive grids, 448
arc length, 450–451
base vector evaluation, 463–465
conjugate metric tensor, 458, 462
conservation equations

continuity equation, 471–472
momentum equation, 472–475

contravariant vector component, 451
metric tensor, 451–458
six basic coordinate systems, 449–450

Numerical meshes, 292
Numerical methods, 291–306

pressure-based methods, 294–296

O

OCC system, see Orthogonal Cartesian 
coordinate system

Optical tomography, 179–180
Orr–Sommerfeld equation, 243
Orthogonal Cartesian coordinate (OCC) 

system
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defi nition, 439
position vector, 438
scalar, vector and tensor

algebra, 440–444
diff erential operator, 444–445
integral expression, 446–447

Orthogonal curvilinear coordinates 
(NCC), 459–461, 468

Overset grid topology, 301–302

P

Padé integration scheme
conservation laws, computational 

coordinates, 261–262
species continuity equation, 154

Padé rational solution (PARASOL), 154
Pause statement, 489
PBE, see Population balance equation 

model
Permutation symbol, 468
Physical properties

approximate radiation transfer 
analysis, 168–170

chemical equilibrium
constants, 141–143
Gibbs’ free energy minimization, 

138–141
dimensionless transport coeffi  cient, 

166–167
gaseous/liquid oxygen (GOX/LOX) 

sound speed, 137–138
integro-partial diff erential equations, 

124
molecular transport coeffi  cients

diff usion coeffi  cients, 161–162
laminar/molecular mixing, 156
surface tension, 162
thermal conductivity, 160–161
viscosity, 157–160

multicomponent fl uid
Amagat’s law, 135
binary interaction parameter, 

135–136
chemical potentials, 133
excess functions, 134
ideal solutions, 134
Wong–Sandler mixing rule, 136

narrowband models
absorption coeffi  cient, 173

applications, 177–180
Curtis–Godson approximation, 176
diagnostic tools, 176–177
intensity distribution, 174
line-of-sight, 176
Lorentz and Doppler lines, 174–175
Plank function, 175
radiation heat transfer, 181
spectral radiance, 173

radiation heat fl ux, 167
reaction rates, 147
secondary transport

diff usion, 163–164
energy transfer, Dufour eff ect, 165
Soret eff ect, 163
Stephan-Maxwell equations, 164

transport process, radiation, 170–171
validation, optical data, 181

PLOT3D q-fi le, 338, 366
Poisson equation, 295
Population balance models

diff erential particle balance, 389
fl uid continuum conditions, 388
macro-moment population 

balance, 392
micro-moment population 

balance, 391
ordinary diff erential equations 

(ODEs), 388
particle volume formulation, 

392–394
particulate distribution, 390–391
statistical mechanics, 387, 390
vector particle phase–space velocity, 

388–389
Prandtl number

boundary layer, 112–114
CTP code, conservation laws, 265
dimensionless transport 

coeffi  cients, 166
heat and mass transport problems, 

26–27
onset transition model, 244

Prandtl’s turbulence model, 95
Preprocessor grid generation codes, 338
Pressure correction equation, 326–327
Pressure correction method, 295–296
Pressure Poisson equation, 325
Probability density function (PDF), 

218–219
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Q

Quasi-global chemical kinetics 
models, 145

R

Radiation models, 169–181
Reference Mach number (AMC), 335
Relational operators, 485
Restart fl ow fi le, 333
Restart grid fi le, 332
Reynolds-averaged Navier–Stokes (RANS)

equations, 468–469
Reynolds-averaged Navier–Stokes 

turbulence model, 200
Reynolds number

airfoil fl ow, 422
backward-facing step fl ow, 419
converging–diverging nozzle fl ow, 

424
cylindrical cross-fl ow, 420
fl at plate boundary layer fl ow, 417
momentum transport problem, 

15–16, 22
one-dimensional transport and wall 

functions, 90
onset transition model, 244–246
open duct free-surface fl ow, 430
orifi ce fl ow and ejector pump, 426
pipe elbow fl ow, 427
pipe fl ow, 418
pipe tee fl ow, 429
shell and tube heat exchanger, 423
stirred tank fl ow, 432

Reynolds stresses and standard 
k–ε model

Boussinesq analogy, 206
extended k–ε model, 209
isotropic eddy viscosity, 212
Jones and Launder k–ε turbulence 

model, 207–208
laminar transport coeffi  cients, 206
molecular viscosity, 207–208
parameters, 207
second-order tensor, 206
wall-function boundary condition, 

208
Reynolds transport theorem, 447
Rheology, 440

S

Schmidt number
boundary layer, 112–114
CTP code, conservation laws, 265
dimensionless transport coeffi  cient, 

166
heat and mass transport problems, 27
species continuity equation, 147

Semi-implicit method, 324
Semi-implicit method for pressure linked 

equations (SIMPLE) scheme, 295
Shear-stress transport (SST) 

model, 210
Shock waves, 271–272
Single-block structured grid, 313
Skin friction coeffi  cient, See Fanning 

friction factor
Space Shuttle Main Engine (SSME), 

409–410
Space-time conservation element/solution 

element method
features, problem solving, 305–306
numerical dissipation, 304–305
numerical wiggles, 303–304
Riemann problem, 304
unstructured-mesh compatible 

CESE method, 306
Spalart’s simulation, 236
Spatial fi ltering, 237
Species continuity equation

binary systems
Fick’s fi rst law of diff usion, 43–44
Fick’s second law of diff usion, 

44–46
chemical reaction rate, 46–47
diff usion velocity and fl ux, 42
law of conservation of mass, 40
mass average velocity, 42
mass fl ow rate, 40–41
multicomponent systems, 46
rectangular and cylindrical 

coordinates, 41–42
substantial derivative, 43

Stefan–Boltzmann constant, 180
Stephan-Maxwell equations, 164
Stokes theorem, 447
Structured mesh system, 299
Subgrid scale model (SGS), 237
Substantial derivative operator, 444
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T

Taylor series, 139
Tecplot format fi le, 433–435
TECPLOT soft ware, 338, 367
Tensor operation

Christoff el symbols, 465–466
del operator, 465
orthogonal curvilinear coordinates 

(NCC), 459–461, 468
physical curvilinear coordinates, 

467–468
TFI, see Transfi nite interpolation
Th ermal buoyancy eff ect, 423
Th ermal equation of state (TEOS)

acentric factor, 127
compressibility correction factor, 

125–126
critical point, 125
HBMS formulation, 128–129
ideal gas law, 125
law of corresponding state, 

125–126
Lee–Kesler correlation equation, 127, 

129
Peng–Robinson (PR) EOS, 126–127
Pitzer’s method, 129
Riedel’s vapor pressure (Pvap) equation, 

129–130
saturated liquid volumes, 129
saturated vapor density, Clapeyron 

equation, 130
van der Waals’ equation, 126
Watson’s method, 130

Tilde diacritic, 475
Time-marching scheme, 327–328
Tollmein–Schlichting route, 246
Total variation diminishing (TVD) 

scheme, 323–324
TRANF subroutine, 333
Transfi nite interpolation (TFI), 

259–260
Transport phenomena

analysis
computational fl uid dynamics 

(CFD) methodology, 5
fl owfi eld letters, 7–8
friction factor plot, 5
heat conduction equation, 4
mixed fl ow region, 9

multicomponent, continuum fl ows, 
5–7

PDE, 5, 7
rocket propelled vehicle, 5, 8
shock wave, 8–9

computational tool, 10–11
conservation laws, 1–2
fuller array, 2–3
laminar and turbulent fl ow, 2
unit operation, 4
validation, 12–13
verifi cation, 12

Transpose matrix, 475
Turbulence models

basic probability parameters
autocorrelation, 222
chaotic motion, 216
correlation coeffi  cient, 220–221
cumulative distribution function 

(CDF), 218
laminar and turbulent fl ow, 217
random variables, 218–221
Reynolds stress, 221
standard deviation, 219

characteristics
autocorrelation tensor and 

displacement vector, 196
energy spectrum function, 194–195
Fourier transform, 194
integral timescale, 196
kinetic energy transfer, 194
Kolmogorov’s universal 

equilibrium theory, 195
multicomponent fl uids, 193

defi nition, 191–192
diff erential second-moment (DSM) 

closure methods
isotropic fl ow dissipation, 226
pressure strain, 228
Reynolds-stress model (RSM), 

226, 228–229
transport equation, Reynolds 

stresses, 226–227
direct numerical simulation (DNS)

boundary layer simulations, 236
pertinent equations, 235
Spalart’s simulation, 236
statistical properties, 235

eddy viscosity model (EVM)
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CFD code, 212
CTP code, 213
esoteric turbulence research, 205
heat transfer, 212
k–ω model, 210
Mach number, fl ow analysis, 211
Reynolds stresses and standard 

k–ε model, 206–209
shear-stress transport (SST) 

model, 210
two-equation turbulence models, 213

laminar-turbulent transition models
linear stability theory, 242–243
transition-onset model, 243–245
validation case, 245

large eddy simulation (LES)
applications, 240–241
Fourier fi lter, 238
Galilean-invariant decomposition, 

239
Gaussian fi lter, 239
residual stress, 239–240
resolved scale, 237
SGS model, 237, 240
spatial fi ltering, 237

Navier–Stokes equations, 191
probability density function (PDF) 

models
Cartesian coordinate systems, 229
generalized Langevin model 

(GLM), 230–231
kernel function, 232
Lagrangian formulations, 231
micro-mixing models, 233
statistical analysis, diff usion, 234
stochastic model equation, 231
transport equation, 230
turbulent convection fl ux, 232
turbulent diff usivity, 232–233
Wiener process variable, 230

Reynolds and Favre averaging
analog circuit usage, 205
Cartesian coordinates, 200–202
conservation laws, 197, 200
ergodic hypothesis, 199
fl owfi eld properties, 197
mass-averaged conservation laws, 

203–204
probability theory, 205
spatial and ensemble average, 199

time averaging concept, 198–199
temporal and spatial separation, 196
Tollmein–Schlichting route, 246
transport phenomena, 192

Turbulent energy dissipation, 207–209, 230
Turbulent fl ow

airfoil fl ow, 421–422
converging–diverging nozzle 

fl ow, 424
fl at plate boundary layer fl ow, 416–417
orifi ce fl ow and ejector pump, 

425–426
pipe fl ow, 417–418
pipe tee fl ow, 428–429
stirred tank fl ow, 431

Turbulent kinetic energy, 207–209
Two-component air-water system, 

375–377

U

Unstructured mesh system, 299
Upwind switching parameter, 323
User’s guide, CTP code

example start include fi le (fexmp01), 
366

input data fi le (fort.11)
case title, 348
CEC thermodynamics data, 362
fi nite-rate reaction, 362–363
fl ow boundaries, 348, 351
gas species and reactions, 361
inlet, outlet pressure points and 

data monitoring point, 356
I/O and problem control 

parameters, 353–354
particle initial conditions, 364–365
particle input control, 363–364
reference viscosity, Mach number 

and turbulence models, 357
singularity lines, 353
solution equation, 359–360
time-step size, upwind schemes 

and time-marching scheme, 
355–356

wall block indices, 352
wall boundaries and zonal grid 

size, 348
zonal interface matching indices, 

349–350
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zonal iterations, 358–359
zonal rotational/translational 

speeds, 349
main program include fi les (fmain01 

and fmain02), 365
restart/output fi les, 366–367
run-time modifi cation, 365

V

Vector and tensor analysis
conservation laws

momentum equation, 469
Reynolds-averaged Navier–Stokes 

equations, 468–469
utility, 470–471

linear transformations, 475–476
nonorthogonal coordinate systems

continuity equation, 471–472
momentum equation, 472–475

nonorthogonal curvilinear coordinates
adaptive grids, 448
arc length, 450–451
base vector evaluation, 463–465
conjugate metric tensor, 458, 462
contravariant vector component, 451
metric tensor, 451–458
six basic coordinate systems, 

449–450
orthogonal Cartesian coordinate 

(OCC)

algebraic operations, 440–444
defi nition, 439
diff erential operators, 444–445
Gauss’ divergence theorem, 446
Leibnitz formula, partial 

diff erentiation, 446–447
Reynolds transport theorem, 447
transport phenomena, 440

tensor operations
Christoff el symbols, 465–466
del operator, 465
orthogonal curvilinear coordinates 

(NCC), 459–461, 468
physical curvilinear coordinates, 

467–468
Velocity–pressure coupling formulation, 

325–326
von Karman’s temperature law, 24

W

Wall shear-stress equation, 208
Walters–Leylek transition model, 244
Wet-and dry-bulb temperature 

measurement, 375–379
Wilke’s correlation, 159–160
Wong–Sandler mixing rule, 136

Z

Zone data, 434



FIGURE 6.1 Curvilinear coordinate system.
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FIGURE 7.4 Example of a hybrid grid system. (Courtesy of Dr. Yasushi Ito, 
University of Alabama at Birmingham.)



FIGURE 7.5 An overset grid system for a wing-store confi guration. (Cour-
tesy of Dr. Roy P. Koomullil, University of Alabama at Birmingham.)

(a) Overall view

(b) Close-up view
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FIGURE A.1 Boundary layer fl ow over a fl at plate (working directory: 
z01-BL).
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FIGURE A.2 Developing and fully developed pipe fl ow (working direc-
tory: z02-DPF).
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FIGURE A.3 Flow over a backstep.
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FIGURE A.4 A cylinder in cross-fl ow.



1

0.5

0

0 1
X

MACH: 0.0184 0.0551 0.0918 0.1285 0.1652 0.2019 0.2386 0.2754

Y

2

–0.5

–1

FIGURE A.5 Flow over an airfoil.
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FIGURE A.6 Shell and tube heat exchanger.
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FIGURE A.7 Converging–diverging nozzle fl ow.
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FIGURE A.8 Orifi ce fl ow and an ejector pump.
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FIGURE A.10 Flow through a pipe tee.
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FIGURE A.11 Free-surface fl ow in an open duct.
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