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Preface

The last decade of the 20th century has witnessed a surge of interest in numer-
ical, computation-intensive approaches to information processing. The lines
that draw the boundaries among statistics, optimization, arti�cial intelligence
and information processing are disappearing, and it is not uncommon to �nd
well-founded and sophisticated mathematical approaches in application do-
mains traditionally associated with ad-hoc programming. Heuristics has be-
come a branch of optimization and statistics. Clustering is applied to analyze
soft data and to provide fast indexing in the World Wide Web. Non-trivial
matrix algebra is at the heart of the last advances in computer vision.
The breakthrough impulse was, apparently, due to the rise of the interest

in arti�cial neural networks, after its rediscovery in the late 1980s. Disguised
as ANN, numerical and statistical methods made an appearance in the in-
formation processing scene, and others followed. A key component in many
intelligent computational processing is the search for an optimal value of some
function. Sometimes, this function is not evident and it must be made explicit
in order to formulate the problem as an optimization problem. The search of-
ten takes place in high-dimensional spaces that can be either discrete, or con-
tinuous or mixed. The shape of the high-dimensional surface that corresponds
to the optimized function is usually very complex. Evolutionary algorithms are
increasingly being applied to information processing applications that require
any kind of optimization. They provide a systematic and intuitive framework
to state the optimization problems, and an already well-established body of
theory that endorses their good mathematical properties. Evolutionary algo-
rithms have reached the status of problem-solving tools in the backpack of
the engineer. However, there are still exciting new developments taking place
in the academic community. The driving idea in the organization of this com-
pilation is the emphasis in the contrast between already accepted engineering
practice and ongoing explorations in the academic community.
After the seminal works of Holland, Goldberg and Schwefel, the �eld of

evolutionary algorithms has experienced an explosion of both researchers and
publications in both the application-oriented and the fundamental issues. It is
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obviously difficult to present in a single book a complete and detailed picture
of the �eld. Therefore, the point of view of this compilation is more mod-
est. Its aim has been to provide a glimpse of the large variety of problems
tackled with evolutionary approximations and of the diversity of evolutionary
algorithms themselves based on some of the papers presented at the Frontiers
on Evolutionary Algorithms Conference within JCIS 2002 and complemented
with some papers by well-known authors in the �eld on topics that were not
fully covered in the sessions. Following the general trend in the �eld, most
of the papers are application-oriented. However, we have made an effort to
include some that refer to fundamental issues as well as some that provide a
review of the state of the art in some sub�eld.
As the subtitle �From industrial applications to academic speculation-

s� suggests, the organization of the compilation follows an axis of nearness
to practical applications. We travel from industrial day-to-day problems and
practice to the more speculative works. The starting collection of papers is
devoted to immediate applications of clear economical value at present.

The chapter by T. Bäck is an example of successful consulting with a
toolbox of computational methods that include evolutionary algorithms
addressing nontrivial industrial problems. Although the emphasis of the
chapter is on Evolutionary Strategies, Bäck�s work is a bright example of
a host of evolutionary solutions to everyday problems being developed at
both universities and the industry RD labs.
The general approach of Deschaine and Francone is to reverse engineer a
system with Linear Genetic Programming at the machine code level. This
approach provides very fast and accurate models of the process that will
be subject to optimization. The optimization process itself is performed
using an Evolutionary Strategy with completely deterministic parameter
self-adaptation. The authors have tested this approach in a variety of aca-
demic problems. They target industrial problems, characterized by low
formalization and high complexity. As a �nal illustration they deal with
the design of an incinerator and the problem of subsurface unexploded
ordnance detection.
Nowadays there is a big industry of 3D computer modeling based on several
3D scanning methods. The rendering of these 3D structures from a cloud
of scanned points requires a triangulation de�ned on them which may be
very costly, depending on the number of scanned points, and subject to
noise. Smooth and efficient approximations are therefore desired. In the
chapter by Weinert et al. we �nd the application of Evolution Strategies
to the problem of �nding optimal triangulation coverings of a 3D object
described by a cloud of points. The authors introduce a special encoding
of the triangulation on a real-valued vector, a prerequisite for the applica-
tion of Evolution Strategies. This encoding consists of the modeling of the
triangulation as grid of springs and masses of varying coefficients. These
coefficients and the Z coordinate of the mass points result in a problem
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encoding that is closed under conventional Evolution Strategy genetic op-
erators.
Another practical application domain of current interest is the exploita-
tion of hyperspectral images, especially those that arise in remote sensing.
The recent advances in hyperspectral sensors and the space programs that
include them in modern and future satellites imply that a large amount
of data will be available in the near future. Fast, unsupervised analysis
methods will be needed to provide adequate preprocessing of these data.
Graña, Hernandez and d�Anjou propose an evolutionary algorithm to ob-
tain an optimal unsupervised analysis of hyperspectral images given by a
set of endmembers identi�ed in the image. The identi�cation is based on
the notion of morphological independence, and Morphological Associative
Memories serve as detectors of this condition.
The processing of digital images is already an exploding application do-
main of computational methods. One of the issues of current interest,
especially in the medical image domain and Magnetic Resonance Imaging
(MRI), is the correction of illumination inhomogeneity (bias). Algorithms
for illumination correction may be parametric or nonparametric. The latter
are more computationally demanding. The formers require an appropriate
modeling framework. Fernandez et al. present a gradient-driven evolution
strategy for the estimation of the parameters of an illumination model
given by a linear combination of Legendre polynomials. The gradient in-
formation is used in the mutation operator and seems to improve the
convergence of the search, when compared with similar approaches.
Job shop scheduling is a classical operations research problem and a recur-
rent problem in many industrial settings, ranging from the planning of a
small workshop to the allocation of computing resources. Varela et al. pro-
pose an encoding that allows the modular decomposition of the problem.
This modular decomposition is of use for the de�nition of new genetic op-
erators that always produce feasible solutions. In addition, the new genetic
operators bene�t from the local/global structural tradeoffs of the problem,
producing an implicit search of local solutions, akin to the local search in
memetic approaches, but carried out in a parallel fashion.

The next batch of chapters includes works that present interesting and
innovative applications of evolutionary approaches. The emphasis is on the
departure of the application from the conventional optimization problems.
Topics range from archeology to mobile robotics control design.

The starting work is a fascinating application of evolution to the creation
of a computational model that explains the emergence of an archaic state,
the Zapotec state. The model is composed of the ontogenies evolved by
speci�c agents dealing with the data about the sites in the Oaxaca valley,
embodied in a GIS developed in the project. One of the basic results is
the search for sites that may have been subject to warfare. A GA-driven
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Rough Set data mining procedure was realized and its results compared
with a decision tree approach.
Phylogenetic is the search of evolutionary pathways between species based
on biological data. The phylogenic relations take the form of trees. Species
are characterized by several attributes, and the construction of phyloge-
netic trees is somehow reminiscent of decision tree construction. Attributes
usually consist of phenotypic data, although recent approaches also use ge-
netic data. Measures of the quality of phylogenetic trees are based on the
parsimony evolutive relation representation. These parsimonious objective
functions have been used to guide heuristic search algorithms applied to
phylogenetic tree construction. C.B. Congdon proposes an evolutionary
approach to their construction. A GA is applied because only binary val-
ued attributes are considered. A canonical tree is introduced to compare
phylogenies, and the genetic mutation and crossover operators are de�ned
accordingly. Besides the comparison of the evolutionary approach with
standard algorithms, the effect of the genetic operators is studied.
An active area in evolutionary robotics is the �eld of evolutionary devel-
opment of robotic controllers. The need to test these controllers on the
real robot to evaluate the �tness function imposes stringent constraints
on the number of �tness evaluations allowable. Therefore, the convergence
problems of conventional evolutionary approaches are worsened because
of the poor sampling of the �tness landscape. Becerra et al. introduce
Macroevolutionary Algorithms for the design of robot controllers in the
domain of mobile robotics. Robot controllers take the form of arti�cial
neural networks and the intended task is robust wall following in food or
poison rewarding environment. The Macroevolutionary Algorithms parti-
tion the population into races that may evolve independently and, some-
times, become extinct. The chapter studies the setting of the colonization
parameters that produce different exploitation/exploration balances.
Parsing based on grammars is a common tool for natural language under-
standing. The case of sublanguages associated with a speci�c activity, like
patent claiming, is that many features of the general language do not ap-
pear, so that simpli�ed grammars could be designed for them. Learning of
grammars from a corpus of the sublanguage is possible. Statistical learning
techniques tend to produce rather complex grammars. Cyre applies evolu-
tion algorithms to the task of �nding optimal natural language context-free
statistical grammars. Because of the obvious difficulties in coding entire
grammars as individuals, Cyre�s approach is a GA whose individuals are
grammar rules, endowed with bucket-brigade rewarding mechanisms as in
the classical Holland classi�er systems. The evolutionary algorithm uses
only mutation in the form of random insertion of wildcards in selected
rules. The discovery of new rules is performed by instantiating the wild-
card and evaluating the resulting rules. The �tness of a rule is the number
of parsed sentences it has contributed to parse. Rules with small �tness
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are deleted in a culling step. Positive results are reported in this chapter
with some large corpora.
Discovering the spatial structure of proteins from their spectral images is
a result that may be in�uential to pharmacological and biological stud-
ies. Gamalielsson and Olsson present the evaluation of protein structure
models with off-lattice evolutionary algorithms. The type of evolutionary
algorithms applied are evolution strategies with and without �tness sharing
for premature convergence avoidance. The encoding of the protein struc-
ture is carried out by means of the angles between the residues. The main
experimental argument of the paper is to study the effect of the �tness
function de�nition. The best results are obtained with a �tness function
that assumes knowledge of the actual spatial structure. This is equivalent
to a supervised training problem. Unsupervised structure discovery is real-
ized by �tness functions de�ned on characteristics of the composing amino
acids.
Classi�cation is the most basic intelligent process. Among the diversity
of approaches, the decision trees and related rule-based systems have en-
joyed a great deal of attention, with some big success. Riquelme presents
the generation of hierarchical decision rules by evolutionary approaches,
comparing it to classical C4.5 decision trees over a well-known benchmark
collection of problems. The hierarchical decision rules possess some nice
intrinsic features, such as the parsimonious number of tests performed
to classify a data pattern. They are in fact a decision list, which is con-
structed incrementally with the evolutionary algorithm serving as the rule
selector for each addition to the list. Individuals correspond to candidate
rules. Continuous-valued attributes are dealt with by the de�nition of in-
tervals that quantize the attribute value range. Crossover and mutation
are accordingly de�ned to deal with interval speci�cations. The �tness
function computation involves the correctly classi�ed examples, the erro-
neously classi�ed examples and the coverage of the problem space by the
rule.
Evolvable hardware is an active �eld of research that aims at the unsu-
pervised generation of hardware ful�lling some speci�cations. A fruitful
area in this �eld is that of evolving designs of gate circuits implement-
ing Boolean functions speci�ed by truth tables, with great potential for
application to circuit design. Hernandez Aguirre reviews the evolutionary
approaches developed to handle this problem, which include classical bi-
nary GA and modi�cations, Ant Colony Systems and variations of the
GP. Future lines of research include the design of appropriate platforms,
because most present work is performed in an extrinsic mode, while the
desired goal would be to perform the evolutionary search embedded in the
hardware being optimized, that is, in an intrinsic way.
System identi�cation is the estimation of the parameters and structure
of a system processing an input signal, on the basis of the observed in-
put/output pairs. It is used in the context of designing control for processes
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whose models are unknown or highly uncertain. Montiel et al. present an
approach to system identi�cation using breeder genetic algorithms, an evo-
lutionary algorithm with features of Genetic Algorithms and Evolutionary
Strategies. They present a learning strategy and experimental results on
the identi�cation of an IIR �lter as the unknown system that show great
promise.

We have clustered under the label of Issues in Evolution Algorithm Foun-
dations a collection of papers that deal with some fundamental aspects of
evolutionary algorithms. Fundamental properties are usually related with con-
vergence properties and domain of application.

The starting work is the state of the art review on multiobjective optimiza-
tion by C.A. Coello et al. This tutorial paper provides a comprehensive
introduction to the history and present state of the �eld, giving a clear
picture of the avenues for future research. A special emphasis is made on
the approaches followed in the literature to introduce elitism in multiob-
jective evolutionary algorithms (MOEA). Elitism poses speci�c problems
in MOEA, because of the need to preserve nondominated solutions, and
the subtleties that appear when trying to combine them with the new gen-
erations of solutions. In addition, a case is made for the use of constrained
single objective optimization problems as benchmarks for MOEAs, and,
conversely, of the power of MOEAs as constraint satisfaction optimization
algorithms.
Premature convergence is one of the key problems in GAs, trapping them
in local optima. Kubalik et al. lead us through a good review of approaches
to avoid premature convergence. They propose and test a GA with Limited
Convergence (GALCO) to solve this convergence problem. The GALCO
imposes a restriction of the difference between the frequencies of ones
and zeros of each gene across the population. The replacement strategy is
designed so as to ensure the preservation of the convergence restriction.
No mutation is performed. Only one crossover operator is applied to each
generation. Empirical evaluations over deceptive functions are provided.
When dealing with dynamic environments, the �tness function driving
the evolutionary algorithm involves probing this environment, a process
that may not result in a steady response. A time-varying �tness function
appears in control-related applications, namely in mobile robotics. Two
questions arise: (1) how much information do we need about the time
evolution of the �tness response to ensure appropriate knowledge of it to
drive the evolutionary algorithm? and (2) how to synchronize the evolu-
tionary algorithm and the environment? That is, how frequent must the
sampling of the environment be to ensure its tracking by the evolutionary
algorithm. Bellas et al. deal with these questions in the setting of evolution
based learning of time-dependent functions by arti�cial neural networks.
Their results provide insights to more complex and realistic situations.
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The closing collection of chapters includes the more speculative approaches
that induce glimpses of the open roads for future developments. Some of the
approaches are loosely related to evolutionary algorithms except for the fact
that they are population-based random global optimization algorithms.

Molecular Computing deals with the realization through molecular inter-
action of complex computational processes. The work of Liu and Shimo-
hara presents a molecular computing method based on the Rho family of
GTPases, that can be realized in situ (on living cells). They apply it at
the simulation level to a 3SAT problem, obtaining linear dependencies of
the execution time and space requirements on the number of clauses and
propositions. The justi�cation lies in the fact that the computational units
are the molecular pathways that grow exponentially with the number of
molecules.
Evolutionary games play a central role in the Arti�cial Life paradigm.
Cases and Anchorena present several developments of the theory of evo-
lutionary games that that try to bridge the conceptual chasm between
Dynamical Systems and Arti�cial Life, two rich research areas that in-
volve divergent modeling of dynamical systems. Among the propositions
in the paper is the formalization as a grammatical model of two-person
evolutionary games.
Al-kazemi and Mohan present a discrete version of the Particle Swarm
Optimization (PSO) that involves the partition of the population of par-
ticles into coherent subpopulations, the de�nition of repulsive and attrac-
tive phases and a greedy local search. PSO is a random, population-based
search algorithm, where particle motion can be assimilated to mutations in
evolutionary algorithms. The results to benchmarck difficult discrete and
continuous functions improve over other enhancements of PSO and GA.

As indicated above, the present compilation started with the FEA�2002
workshop, embedded in the JCIS�2002 celebrated in Research Triangle Park,
NC. Most of the chapters correspond to extended versions of selected papers
presented at the workshop. Some chapters have been requested of the authors
with the aim of obtaining a view of some speci�c issue not present at the
workshop. We want to express our gratitude to the members of the scienti�c
committee that volunteered their time and insights to evaluate the papers
submitted to the workshop:
Jarmo Alander, Enrique Alba, Thomas Bäck, Helio J.C. Barbosa, Hi-

lan Bensusan, Peter Bentley, Maumita Bhattacharya, Stefano Cagnoni, Erick
Cantu-Paz, Yuehui Chen, Carlos A. Coello Coello, Marie Cottrell, Kelly Craw-
ford, Alicia d�Anjou, Dipankar Dasgupta, Kalyanmoy Deb, Marco Dorigo,
Gerry V. Dozier, Richard Duro, Candida Ferreira, Alex Freitas, Max Garzon,
Andreas Geyer-Schulz, Christophe Giraud-Carrier, Robert Ghanea-Hercock,
David Goldberg, Manuel Graña, Darko Grundler, Francisco Herrera, Vas-
ant Honavar, Frank Hoffmann, Spyros A. Kazarlis, Tatiana Kalganova, Sami
Khuri, Hod Lipson, Evelyne Lutton, John A.W. McCall, J.J. Merelo, Jae
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Adaptive Business Intelligence Based on
Evolution Strategies: Some Application
Examples of Self-Adaptive Software

T. Bäck

Summary. Self-adaptive software is one of the key discoveries in the field of evolutionary
computation, originally invented in the framework of so-called Evolution Strategies in Ger-
many. Self-adaptability enables the algorithm to dynamically adapt to the problem charac-
teristics and even to cope with changing environmental conditions as they occur in unfore-
seeable ways in many real-world business applications. In evolution strategies, self-
adaptability is generated by means of an evolutionary search process that operates on the
solutions generated by the method as well as on the evolution strategy’s parameters, i.e., the
algorithm itself. By focusing on a basic algorithmic variant of evolution strategies, the fun-
damental idea of self-adaptation is outlined in this paper. Applications of evolution strate-
gies for NuTech’s clients include the whole range of business tasks, including R & D, tech-
nical design, control, production, quality control, logistics, and management decision
support. While such examples can, of course, not be disclosed, we illustrate the capabilities
of evolution strategies by giving some simpler application examples to problems occurring
in traffic control and engineering.

1.1 Introduction

Over the past 50 years, computer science has seen quite a number of fundamental
inventions and, coming along with them, revolutions concerning the way how
software systems are able to deal with data. Although the special focus is debat-
able, we claim that some of the major revolutions, roughly associated with decades
of the past century, can be summarized as follows:

• 1950s: Von Neumann architecture, simple operating systems, most basic pro-
gramming languages.

• 1960s: Improved operating systems (especially UNIX), structured program-
ming, object-oriented programming, functional and logic programming.

• 1970s: Relational model of Codd, relational database management systems
(RDBMS).

• 1980s: Enterprise resource planning (ERP) systems, production planning
(PPS) systems, reflecting an integrated toolbox on top of the RDBMS-level.
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• 1990s: World Wide Web and Internet programming, facilitating a world-wide
integrating access to ERP- and PPS-systems.

• Now: Semantic exploitation of data by means of computational intelligence
technologies, facilitating adaptive business intelligence applications.

The hierarchy outlined above is meant to be data-oriented, as data are usually the
driving force in business applications. Growing with the pure amount of data, the
universal accessibility of data over the Internet, and the interconnetion of hetero-
genous databases, a pressing need emerged to deal with data not only in a syntactic
way, but also to treat it semantically by new technologies, i.e., to deal with incom-
plete, imprecise, redundant, dynamic, and erroneous data. To mention just a few
examples, consider the problem of identifying relevant information in the set of re-
sults returned by an Internet search engine (INFERNOsearch, developed by
NuTech Solutions, Inc., solves this problem in a fundamentally new way by ap-
plying, among others, rough set technologies), or the problem of eliminating dupli-
cates from enterprise databases, i.e., identifying semantically identical but syntacti-
cally different entries.

Assigning meaning to data, deriving knowledge from data, building the appro-
priate models from and about the data, and deriving optimal management decision
support are the key activitities to support companies in business processes from all
fields of the process chain, including R & D, technical design, control, production,
quality control, logistics, and strategic management. This set of key activities is
summarized under the term adaptive business intelligence and implemented by
means of technologies summarized under the term computational intelligence.
Evolutionary algorithms and, in particular, evolution strategies are one of the
key technologies in the field of computational intelligence. In Section 1.2, we will
explain the concept of adaptive business intelligence. In Section 1.3, we concen-
trate on evolution strategies and explain the basic idea of self-adaptive software.
Section 1.4 then presents some application examples of the concept of adaptive
business intelligence and evolution strategies in particular, and a brief outlook is
given in Section 1.5.

1.2. Adaptive Business Intelligence

The general concept of the adaptive business intelligence approach is outlined in
Figure 1.1. The methodology focuses completely on the business relevant aspects,
i.e., on the business input and the business output. Business input means the prob-
lem to be treated and solved, together with the corresponding data, while business
output is the problem knowledge or problem solution generated by the approach,
which can be turned into business operations to improve desired aspects of the
business.
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The critical tasks on the way from problem and data to an optimal business so-
lution are the data mining/data analysis and optimization tasks. For these tasks,
computational intelligence today offers technologies that allow us to treat problems
of a complexity that could not be treated before, to derive knowledge in a way that
was not accessible before, and to find optimized solutions of much better quality
than before.

In data analysis and data mining [1], the task is to discover hidden knowledge
from large amounts of data (e.g., in financial applications, chemical processes,
marketing data, and many other fields). The term “knowledge” implies that the
output should be compact, readable (i.e., presented in a symbolic way), interpret-
able, and highly relevant to the data, reflecting the fact that one is often more inter-
ested in understandable knowledge (so-called explicative models in terms of sys-
tems analysis) than in mathematical models (so-called descriptive models) but of
course the latter kind of models, mostly derived by statistical methods, also play an
important role. Derived knowledge and mathematical models are also often used
together in a way such that knowledge is incorporated into the model. Technolo-
gies from computational intelligence that support various aspects of the data min-
ing process include especially classifier systems, genetic programming, fuzzy
logic, and rough sets.

Sometimes, knowledge or models derived from data can be used to generate
business output directly by human interpretation in the light of the business proc-
esses of a company, but often an even more intensive exploitation of the knowl-
edge / model combination is possible by adding an additional optimization step.

In the optimization step [7], an objective function Y = f(y1,…,ym) is used, where
y1,…,ym = M(x1,…,xn) denote the model output when the model M is given the in-
put x1,…,xn. Here, x1,…,xn are the influencing factors, i.e., the process variables that
can be controlled by management within a certain process window. The objective
function f typically aggregates the model output y1,…,ym into a criterion such as
product quality, production costs, profit per production unit, etc., or a combination
of them. The goal of the optimization step then is to find a set of values x*1,…,x*n

of the influencing factors, which minimizes or maximizes (mathematically, both

Figure 1.1 Adaptive Business Intelligence.
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problems are equivalent) the objective function value; written usually as
Y ( )min max .

The need for accurate models that reflect all relevant aspects of reality implies
that the optimization task becomes extremely complex, characterized by high-
dimensional, nonlinear dependencies between process variables x1,…,xn and objec-
tive function values Y = f(M(x1,…,xn)). Moreover, the functional dependency is
often discontinuous, noisy, or even time-dependent in case of dynamical optimiza-
tion problems, and it might be very time-consuming to evaluate Y for one set of
values x1,…,xn, such that only a small number of pairs ((x1i,…,xni), Yi) can be gener-
ated. Figure 1.2 illustrates a very simplified 2-dimensional cut from a real-world
minimization problem, where the objective function value Y is plotted as a function
of two real-valued process variables only. As one can see directly, a greedy mini-
mization procedure might easily “get stuck” in a suboptimal “hole” without finding
the sharp peak if the method is not allowed to accept temporarily a worsening of Y
at the benefit of overcoming such a locally optimal hole.

While a large number of special-purpose optimization methods is available for
simplified subclasses of the optimization problem, empirical research of the past
decade has demonstrated that technologies from the field of computational intelli-
gence, so-called evolutionary algorithms, are especially powerful for solving real-
world problems characterized by this one or even by more of the above-mentioned
features. In particular, this includes evolution strategies and genetic algorithms (see
e.g., [3, 2, 7]).

In many business applications, dynamics of the real-world business processes is
of paramount importance as it requires timely adaptation of the process to chang-
ing conditions (consider, e.g., plane and crew scheduling problems of big airlines,
which require adaptations of the schedule on daily, weekly, monthly, quarterly, etc.
time frames). Self-adaptability of software as implemented, e.g., in evolution
strategies, one of the key computational intelligence technologies, is a key technol-

Figure 1.2 A nonlinear objective function
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ogy to guarantee adaptation even under fast-changing environmental conditions
[6].

1.3 Self-Adaptive Software: Evolution Strategies

One of the key features of evolution strategies is that they adapt themselves to the
characteristics of the optimization problem to be solved, i.e., they use a feature
called self-adaptation to achieve a new level of flexibility. Self-adaptation allows a
software to adapt itself to any problem from a general class of problems, to recon-
figure itself accordingly, and to do this without any user interaction. The concept
was originally invented in the context of evolution strategies (see, e.g., [6]), but
can of course be applied on a more general level [5]. Looking at this from the op-
timization point of view, most optimization methods can be summarized by the
following iterative procedure, which shows how to generate the next vector
(x1(t+1),…,xn(t+1)) from the current one:

(x1(t+1),…,xn(t+1)) = (x1(t),…,xn(t)) + st
. (v1(t),…,vn(t)).

 Here, (v1(t),…,vn(t)) denotes the direction of the next search step at iteration t+1,
and st denotes the step size (a scalar value) for the search step length along this di-
rection. Of course, the key to the success of an optimization method consists of
finding effective ways to determine, at each time step t, an appropriate direction
and step size (and there are hundreds of proposals how to do this). An evolution
strategy does this in a self-adaptive way.

The basic idea of an evolution strategy, like other evolutionary algorithms as
well, consists of using the model of organic evolution as a process for adaptation
and optimization. Consequently, the algorithms use a “population of individuals”
representing candidate solutions to the optimization problem, and evolutionary op-
erators such as variation (e.g., recombination and mutation) and selection in an it-
erative way such as it is outlined in Figure 1.3. In evolution strategies, populations
can be rather small, like, e.g., in the example of a (1,10)-strategy. The notation in-
dicates that 10 offspring solutions are generated by means of mutation from one
parent solution, and the best (according to the objective function value) of the off-
spring individuals is chosen as the parent for the next iteration. It should be noted
that discarding the parent is done intentionally, because it allows the algorithm to
accept temporary worsenings in quality to overcome locally optimal solutions (cf.
Figure 1.2). For the mutation operator, the basic variants of evolution strategies use
normally distributed variations z Ni i( )0, where N i 0,( ) denotes a normally

distributed random sample with expectation zero and standard deviation , i.e.,
the mutation operator modifies a solution candidate (x1(t),…,xn(t)) by setting xi(t+1) =
xi(t) + zi, where i = {1,…,n}. The mutation is normally distributed with expected
value zero and variance 2, i.e., step size and direction are implicitly defined by
means of the normal distribution (here, the direction is random while the step size

is approximately n( )1 2/
). The fundamental approach for self-adaptation is to

adapt itself online while optimizing by extending the representation of solutions
by the step size , i.e., ((x1(t),…,xn(t)), ), where now is a component of the in-
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dividual (and different for each individual of a population), and the mutation op-
erator proceeds according to the rule

= ( )( )
= + ( )+( ) ( )

exp , ,

,

N

x x Ni t i t i

0 1

01

forming the new individual ((x1(t),…,xn(t)), ). In other words, is mutated first,
and the mutated step size is then used to generate the offspring. There is no exter-
nal control of step sizes at all. Instead, they are completely controlled by the algo-
rithm itself, based on an autonomous adaptation process using the implicit feed-
back of the quality criterion. A theoretical analysis for an analyzable objective
function has proven that, for this special case, self-adaptation generates an optimal

at any stage of the search process (see, e.g., [4] for a complete introduction to
evolution strategy theory). In the above formulation, the special parameter de-
notes a “learning rate”, which defines the speed of adaptation on the level of stan-
dard deviations .  According to the theoretical knowledge about the process, a

value of = ( )1 2
1 2

n
/

 is a robust and generally useful setting.

The method outlined above is only the most basic version of self-adaptation.
Much more elaborate variants are in use, which allow for the self-adaptation of
general, n-dimensional normal distributions, including correlations between the
variables, and also self-adaptive population sizes are currently under investigation.
The resulting algorithms have no external parameters that need to be tuned for a
particular application.

Figure 1.3. The evolutionary loop.
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1.4 Examples

All adaptive business intelligence solutions provided by NuTech Solutions for its
clients are characterized by applying the most suitable combination of traditional
and computational intelligence technologies to achieve the best possible improve-
ment of business processes. In all cases, the technical aspects of the implementa-
tion and client’s problem are subject to nondisclosure agreements. Concerning the
applications of self-adaptive evolution strategies, the following three examples (see
Figure 1.3) illustrate the capabilities of these algorithms: the optimization of traffic
light schedules at street intersections to dynamically adapt the traffic light control

Figure 1.4. Examples of applications of evolution strategies: traffic light con-
trol (top), elevator control optimization (middle), metal stamping process op-
timization in automobile industry (bottom).
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to the actual traffic situation (executed for the Dutch Ministry of Traffic, Rotter-
dam, The Netherlands). The optimization of control policies for elevator control-
lers to dynamically adapt elevator control to the actual traffic situation (executed
for Fujitec Ltd., Osaka, Japan), and the optimization of the metal stamping process
to improve quality of the resulting car components while minimizing metal losses
(executed for AutoForm Engineering, Zürich, Switzerland). In these examples, the
model is implemented by a simulation software already at the client’s disposal, i.e.,
the optimization part (right part) of Figure 1.1 is executed by NuTech Solutions on
the basis of existing models. The dimensionality n of the model input is in the
small to middle range, i.e., around 20–40, all of them real-valued. The two traffic
control problems are dynamic and noisy, and the evolution strategy locates and
continuously maintains very high-quality solutions in an effective and flexible way
that cannot be achieved by other methods. In the metal stamping simulation, the
evolution strategy is the first algorithm at all that makes the process manageable by
means of optimization, and the method yields strong improvements when com-
pared to hand-optimized processes.

1.5 Outlook

In this chapter, only very little information about the actual industrial impact of
adaptive business intelligence solutions based on computational intelligence tech-
nologies can be disclosed. Much more complex applications, implementing the
whole scenario outlined in Figure 1.1, are presently in use by clients of NuTech
Solutions, with an enormous economic benefit for these companies. In particular,
those applications where data mining, model building, knowledge discovery, opti-
mization, and management decision support are combined yield a new quality in
business process optimization. Adaptation and self-adaptation capabilities of the
corresponding software products play an extremely important role in this context,
as many applications require a dynamic response capability of the applicable solu-
tion software. The modern business environment clearly demonstrates the growing
need for adaptive business intelligence solutions, and computational intelligence
has proven to be the ideal technology to fulfill the needs of companies in the new
century. Adaptive business intelligence is the realization of structured management
technologies (e.g., 6 Sigma, TQM) using technologies of the 21st century.
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Extending the Boundaries of Design Opti-
mization by Integrating Fast Optimization
Techniques with Machine Code Based,
Linear Genetic Programming

L. M. Deschaine, F.D. Francone

2.1 Introduction

Engineers frequently encounter problems that require them to estimate control or
response settings for industrial or business processes that optimize one or more
goals. Most optimization problems include two distinct parts: (1) a model of the
process to be optimized; and (2) an optimizer that varies the control parameters of
the model to derive optimal settings for those parameters.

For example, one of the research and development (R&D) case studies included
here involves the control of an incinerator plant to achieve a high probability of
environmental compliance and minimal cost. This required predictive models of
the incinerator process, environmental regulations, and operating costs. It also re-
quired an optimizer that could combine the underlying models to calculate a real-
time optimal response that satisfied the underlying constraints. Figure 2.1 shows
the relationship of the optimizer and the underlying models for this problem.

The incinerator example discussed above and the other case studies below did
not yield to a simple constrained optimization approach or a well-designed neural
network approach. The underlying physics of the problem were not well under-
stood; so this problem was best solved by decomposing it into its constituent
parts—the three underlying models (Figure 2.1) and the optimizer.

This work is, therefore, concerned with complex optimization problems charac-
terized by either of the following situations.

First: Engineers often understand the underlying processes quite well, but the
software simulator they create for the process is slow. Deriving optimal settings for
a slow simulator requires many calls to the simulator. This makes optimization in-
convenient or completely impractical. Our solution in this situation was to reverse
engineer the existing software simulator using Linear Genetic Programming
(LGP)—in effect, we simulated the simulator. Such “second-order” LGP simula-
tions are frequently very accurate and almost always orders of magnitude faster
than the hand-coded simulator. For example, for the Kodak Simulator, described
below, LGP reverse engineered that simulator, reducing the time per simulation
from hours to less than a second. As a result, an optimizer may be applied to the
LGP-derived simulation quickly and conveniently.
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Figure 2.1  How the optimizer and the various models operate together for the in-
cinerator solution.

Second: In the incinerator example given above, the cost and regulatory models
were well understood, but the physics of the incinerator plant were not. However,
good-quality plant operating data existed. This example highlights the second
situation in which our approach consistently yields excellent results. LGP built a
model of plant operation directly from the plant operation data. Combined with the
cost and regulatory models to form a meta-model, the LGP model permits real-
time optimization to achieve regulatory and cost goals.

For both of the above types of problems, the optimization and modeling tools
should possess certain clearly definable characteristics:

• The optimizer should make as few calls to the process model as possible, con-
sistent with producing high-quality solutions,

• The modeling tool should consistently produce high-precision models that exe-
cute quickly when called by the optimizer,

• Both the modeling and optimizing tools should be general-purpose tools. That
is, they should be applicable to most problem domains with minimal customi-
zation and capable of producing good to excellent results across the whole
range of problems that might be encountered; and

• By integrating tools with the above characteristics, we have been able to im-
prove problem-solving capabilities very significantly for both problem types
above.

This work is organized as follows.  We begin by introducing the Evolution Strate-
gies with Completely Derandomized Self-Adaptation (ES-CDSA) algorithm as our
optimization algorithm of choice. Next, we describe machine-code-based, LGP in
detail and describe a three-year study from which we have concluded that machine-
code-based, LGP is our modeling tool of choice for these types of applications. Fi-
nally, we suggest ways in which the integrated optimization and modeling strategy
may be applied to design optimization problems.
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2.2 Evolution Strategies Optimization

ES was first developed in Germany in the 1960s. It is a very powerful, general-
purpose, parameter optimization technique [25,26,27]. Although we refer in this
work to ES, it is closely related to Fogel’s Evolutionary Programming (EP) [7, 1].
Our discussion here applies equally to ES and EP. For ease of reference, we will
use the term “ES” to refer to both approaches.

ES uses a population-based learning algorithm. Each generation of possible so-
lutions is formed by mutating and recombining the best members of the previous
generation. ES pioneered the use of evolvable “strategy parameters.” Strategy pa-
rameters control the learning process. Thus, ES evolves both the parameters to be
optimized and the parameters that control the optimization [2].

ES has the following desirable characteristics for the uses in our methodology:

• ES can optimize the parameters of arbitrary functions. It does not need to be
able to calculate derivatives of the function to be optimized, nor does the re-
searcher need to assume differentiability and numerical accuracy. Instead, ES
gathers gradient information about the function by sampling. [12]

• Substantial literature over many years demonstrates that ES can solve a very
wide range of optimization problems with minimal customization. [25, 26, 27,
12]

Although very powerful and not prone to getting stuck in local optima, typical ES
systems can be very time-consuming for significant optimization problems. Thus,
canonical ES often fails the requirement of efficient optimization.

But in the past five years, ES has been extended using the ES-CDSA technique
[12]. ES-CDSA allows a much more efficient evolution of the strategy parameters
and cumulates gradient information over many generations, rather than single gen-
eration as used in traditional ES.

As a rule of thumb, where n is the number of parameters to be optimized, users
should allow between 100 and 200(n+3)2 function evaluations to get optimal use
from this algorithm [12].  While this is a large improvement over previous ES ap-
proaches, it can still require many calls by the optimizer to the model to be opti-
mized to produce results.  As a result, it is still very important to couple ES-CDSA
with fast-executing models. And that is where LGP becomes important.

2.3 Linear Genetic Programming

Genetic Programming (GP) is the automatic creation of computer programs to per-
form a selected task using Darwinian natural selection. GP developers give their
computers examples of how they want the computer to perform a task. GP software
then writes a computer program that performs the task described by the examples.
GP is a robust, dynamic, and quickly growing discipline. It has been applied to di-
verse problems with great success—equaling or exceeding the best human-created
solutions to many difficult problems [14, 3, 4, 2].

This chapter presents three years of analysis of machine-code-based, LGP. To
perform the analyses, we used Versions 1 through 3 of an off-the-shelf commercial
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software package called Discipulus™ [22]. Discipulus is an LGP system that oper-
ates directly on machine code.

2.3.1 The Genetic Programming Algorithm

Good, detailed treatments of GP  may be found in [2, 14]. In brief summary, the
LGP algorithm in Discipulus is surprisingly simple. It starts with a population of
randomly generated computer programs. These programs are the “primordial soup”
on which computerized evolution operates. Then, GP conducts a “tournament” by
selecting four programs from the population—also at random—and measures how
well each of the four programs performs the task designated by the GP developer.
The two programs that perform the task best “win” the tournament.

The GP algorithm then copies the two winner programs and transforms these
copies into two new programs via crossover and mutation transformation opera-
tors—in short, the winners have “children.” These two new child programs are
then inserted into the population of programs, replacing the two loser programs
from the tournament. GP repeats these simple steps over and over until it has writ-
ten a program that performs the selected task.

GP creates its “child” programs by transforming the tournament winning pro-
grams. The transformations used are inspired by biology. For example, the GP
mutation operator transforms a tournament winner by changing it randomly—the
mutation operator might change an addition instruction in a tournament winner to a
multiplication instruction. Likewise, the GP crossover operator causes instructions
from the two tournament winning programs to be swapped—in essence, an ex-
change of genetic material between the winners. GP crossover is inspired by the
exchange of genetic material that occurs in sexual reproduction in biology.

2.3.2 Linear Genetic Programming Using Direct Manipulation of Binary
Machine Code

Machine-code-based, LGP is the direct evolution of binary machine code through
GP techniques [15, 16, 17, 18, 20]. Thus, an evolved LGP program is a sequence
of binary machine instructions.  For example, an evolved LGP program might be
comprised of a sequence of four, 32-bit machine instructions.  When executed,
those four instructions would cause the central processing unit (CPU) to perform
operations on the CPU’s hardware registers.   Here is an example of a simple, four-
instruction LGP program that uses three hardware registers:

register 2 = register 1 + register 2
register 3 = register 1 - 64
register 3 = register 2 * register 3
register 3 = register 2 / register 3

While LGP programs are apparently very simple, it is actually possible to
evolve functions of great complexity using only simple arithmetic functions on a
register machine [18, 20].
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After completing a machine-code LGP project, the LGP software decompiles
the best evolved models from machine code into Java, ANSI C, or Intel Assembler
programs [22]. The resulting decompiled code may be linked to the optimizer and
compiled or it may be compiled into a DLL or COM object and called from the
optimization routines.

The linear machine code approach to GP has been documented to be between 60
to 200 times faster than comparable interpreting systems [10, 15, 20]. As will be
developed in more detail in the next section, this enhanced speed may be used to
conduct a more intensive search of the solution space by performing more and
longer runs.

2.4 Why Machine-Code-based, Linear Genetic Programming?

At first glance, it is not at all obvious that machine-code, LGP is a strong candidate
for the modeling algorithm of choice for the types of complex, high-dimensional
problems at issue here.  But over the past three years, a series of tests was per-
formed on both synthetic and industrial data sets—many of them data sets on
which other modeling tools had failed. The purpose of these tests was to assess
machine-code, LGP’s performance as a general-purpose modeling tool.

In brief summary, the machine-code-based LGP software [22] has become our
modeling tool of choice for complex problems like the ones described in this work
for several reasons:

• Its speed permits the engineer to conduct many runs in realistic timeframes on a
desktop computer. This results in consistent, high-precision models with little
customization;

• It is well-designed to prevent overfitting and to produce robust solutions; and
• The models produced by the LGP software execute very quickly when called by

an optimizer.

We will first discuss the use of multiple LGP runs as a key ingredient of this tech-
nique. Then we will discuss our investigation of machine-code, LGP over the past
three years.

2.5 Multiple Linear Genetic Programming Runs

GP is a stochastic algorithm. Accordingly, running it over and over with the same
inputs usually produces a wide range of results, ranging from very bad to very
good. For example, Figure 2.2 shows the distribution of the results from 30 runs of
LGP on the incinerator plant modeling problem mentioned in the introduction—the
R2 value is used to measure the quality of the solution. The solutions ranged from a
very poor R2 of 0.05 to an excellent R2 of 0.95. Our investigation to date strongly
suggests the typical LGP distribution of results from multiple LGP runs includes a
distributional tail of excellent solutions that is not always duplicated by other
learning algorithms.
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Figure 2.2 . Incinerator control data. Histogram of results for 30 LGP runs.

Figure 2.3 Typical  comparative histograms of the quality of solutions produced
by LGP runs (bars) and Neural Network runs (lines). Discussed in detail in [8].

For example, for three separate problem domains, an LGP system produced a
long tail of outstanding solutions, even though the average LGP solution was not
necessarily very good. By way of contrast, and in that same study, the distribution
of many neural networks runs on the same problems often produced a good aver-
age solution, but did not produce a tail of outstanding solutions like LGP [4,8].

Figure 2.3 shows a comparative histogram of LGP results versus neural network
results derived from 720 runs of each algorithm on the same problem. Better solu-
tions appear to the right of the chart. Note the tail of good LGP solutions (the bars)
that is not duplicated by a comparable tail of good neural network solutions. This
same pattern may be found in other problem domains [4,8].

To locate the tail of best solutions on the right of Figure 2.3, it is essential to
perform many runs, regardless whether the researcher is using neural networks or
LGP.  This is one of the most important reasons why a machine-code approach to
GP is preferable to other approaches. It is so much faster than other approaches,
that it is possible to complete many runs in realistic timeframes on a desktop com-
puter. That makes it more capable of finding the programs in the good tail of the
distribution.

Better Solutions
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2.6 Configuration Issues in Performing Multiple LGP Runs

Our investigation into exploiting the multiple run capability of machine-code-
based LGP had two phases—largely defined by software versioning.  Early ver-
sions of the Discipulus LGP software permitted multiple runs, but only with user-
predefined parameter settings.

As a result, our early multiple run efforts (described below as our Phase I inves-
tigation) just chose a range of reasonable values for key parameters, estimated an
appropriate termination criterion for the runs, and conducted a series of runs at
those selected parameter settings. For example, the chart of the LGP results on the
incinerator CO2 data sets (Figure. 2.2) was the result of doing 30 runs using differ-
ent settings for the mutation parameter.

By way of contrast, the second phase of our investigation was enabled by four
key new capabilities introduced into later versions of the LGP software. Those ca-
pabilities were

• The ability to perform multiple runs with randomized parameter settings from
run to run;

• The ability to conduct hillclimbing through LGP parameter space based on the
results of previous runs;

• The ability to automatically assemble teams of models during a project that, in
general, perform better than individual models; and

• The ability to determine an appropriate termination criterion for runs, for a par-
ticular problem domain, by starting a project with short runs and automatically
increasing the length of the runs until longer runs stop yielding better results.

Accordingly, the results reported below as part of our Phase II investigation are
based on utilizing these additional four capabilities.

2.7 Investigation of Machine-Code-Based, Linear Genetic
Programming—Phase I

We tested Versions 1.0 and 2.0 of the Discipulus LGP software on a number of
problem domains during this first phase of our investigation. This Phase I investi-
gation covered about two years and is reported in the next three sections.

2.7.1 Deriving Physical Laws

Science Applications International Corporation’s (SAIC’s) interest in LGP was
initially based on its potential ability to model physical relationships. So the first
test for LGP to see if it could model the well-known (to environmental engineers,
at least) Darcy’s law. Darcy’s law describes the flow of water through porous me-
dia. The equation is

Q=K*I*A, (2.1)
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where Q = flow [L3/T], K = hydraulic conductivity [L/T], I = gradient [L/L], and A
= area [L2].

To test LGP, we generated a realistic input set and then used Darcy’s law to
produce outputs. We then added 10% random variation to the inputs and outputs
and ran the LGP software on these data. After completing our runs, we examined
the best program it produced.

The best solution derived by the LGP software from these data was a four-
instruction program that is precisely Darcy’s law, represented in ANSI C as

Q = 0.0
Q += I
Q *= K
Q *= A

In this LGP evolved program, Q is an accumulator variable that is also the final
output of the evolved program.

This program model of Darcy's law was derived as follows. First, it was evolved
by LGP. The “raw” LGP solution was accurate though somewhat unintelligible. By
using intron removal [19] with heuristics and evolutionary strategies the specific
form of Darcy’s law was evolved. This process is coded in the LGP software; we
used the “Interactive Evaluator” module, which links to the “Intron Removal” and
automatic “Simplification” and “Optimization” functions. These functions combine
heuristics and ES optimization to derive simpler versions of the programs that LGP
evolves [22].

2.7.2 Incinerator Process Simulation

The second LGP test SAIC performed was the prediction of CO2 concentrations in
the secondary combustion chamber of an incinerator plant from process measure-
ments from plant operation. The inputs were various process parameters (e.g., fuel
oil flow, liquid waste flow, etc.) and the plant control settings. The ability to make
this prediction is important because the CO2 concentration strongly affects regu-
latory compliance.

This problem was chosen because it had been investigated using neural net-
works. Great difficulty was encountered in deriving any useful neural network
models for this problem during a well-conducted study [5].

The incinerator to be modeled processed a variety of solid and aqueous waste,
using a combination of a rotary kiln, a secondary combustion chamber, and an off-
gas scrubber. The process is complex and consists of variable fuel and waste in-
puts, high temperatures of combustion, and high-velocity off-gas emissions.

To set up the data, a zero- and one-hour offset for the data was used to construct
the training and validation instance sets. This resulted in a total of 44 input vari-
ables. We conducted 30 LGP runs for a period of 20 hours each, using 10 different
random seeds for each of three mutation rates (0.10, 0.50, 0.95) [3].  The stopping
criterion for all simulations was 20 hours. All 30 runs together took 600 hours to
run.
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Two of the LGP runs produced excellent results. The best run showed a valida-
tion data set R2 fitness of 0.961 and an R2 fitness of 0.979 across the entire data
set.

The two important results here were (1) LGP produced a solution that could not
be obtained using neural networks; and (2) only two of the 30 runs produced good
solutions (see Figure 2.2), so we would expect to have to conduct all 30 runs to
solve the problem again.

2.7.3 Data Memorization Test

The third test SAIC performed was to see whether the LGP algorithm was memo-
rizing data, or actually learning relationships.

SAIC constructed a known, chaotic time series based on the combination of
drops of colored water making their way through a cylinder of mineral oil. The
time series used was constructed via a physical process experimental technique
discussed in [24].

The point of constructing these data was an attempt to deceive the LGP software
into predicting an unpredictable relationship, that is, the information content of the
preceding values from the drop experiment is not sufficient to predict the next
value. Accordingly, if the LGP technique found a relationship on this chaotic se-
ries, it would have found a false relationship and its ability to generalize relation-
ships from data would be suspect.

The LGP was configured to train on a data set as follows:

• The inputs were comprised of eight consecutive values from the drop data; and
• The target output was the next-in-sequence value of the drop data.

Various attempts were tried to trick the LGP technique, including varying pa-
rameters such as the instructions that were available for evolving the solution.

The results of this memorization test are shown on Figure 2.4. The “step” func-
tion shown in Figure 2.4 represents the measured drop data, sorted by value. The
noisy data series is the output of the best LGP model of the drop data. It is clear
that the LGP algorithm was not fooled by this data set. It evolved a program that
was approximately a linear representation of the average value of the data set. But
it did not memorize or fit the noise.

2.8 Investigation of Machine-Code-based, Linear Genetic
Programming—Phase II

Phase II of our investigation started when we began using Version 3.0 of the LGP
software [22]. As noted above, this new version automated many aspects of con-
ducting multiple runs, including automatically randomizing run parameters, hill-
climbing to optimize run parameters, automatic determination of the appropriate
termination criterion for LGP for a particular problem domain, and automatic crea-
tion of team solutions.
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Figure 2.4 Attempt to model a chaotic time series with LGP.
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Figure 2.5 Distribution of 30 best LGP runs using randomized run parameters for 300 runs
on incinerator problem

2.8.1 Incinerator Problem, Phase II

SAIC used the new software version and reran the R&D problem involving CO2
level prediction for the incinerator plant problem (described above). A total of
901,983,797 programs was evaluated to produce the distribution of the best 30
program results shown in Figure 2.5.

The enhanced LGP algorithm modeled the incinerator plant CO2 levels with
better accuracy and much more rapidly than earlier versions. The validation-data-
set, seven-team, R2 fitness was 0.985 as opposed to 0.961 previously achieved by
multiple single runs. The CPU time for the new algorithm was 67 hours (using a
PIII-800 MHz/100 MHz FSB machine), as opposed to 600 hours (using a PIII
533 MHz /133 FSB machine) that was needed in Phase I. It is important to note
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that the team solution approach was important in developing a better solution in
less time.

2.8.2 UXO Discrimination

The preceding examples are regression problems. The enhanced LGP algorithm
was also tested during Phase II on a difficult classification challenge the determi-
nation of the presence of subsurface unexploded ordnance (UXO).

The Department of Defense has been responsible for conducting UXO investi-
gations at many locations around the world.  These investigations have resulted in
the collection of extraordinary amounts of geophysical data with the goal of identi-
fying buried UXO.

Evaluation of UXO/non-UXO data is time-consuming and costly.  The standard
outcome of these types of evaluations is maps showing the location of geophysical
anomalies.  In general, what these anomalies may be (i.e., UXO, non-UXO, boul-
ders, etc.) cannot be determined without excavation at the location of the anomaly.

Figure 2.6 shows the performance of 10 published industrial-strength, discrimi-
nation algorithms on the Jefferson Proving Grounds UXO data—which consisted
of 160 targets [13]. The horizontal axis shows the performance of each algorithm
in correctly identifying points that did not contain buried UXO. The vertical axis
shows the performance of each algorithm in correctly identifying points that did
contain buried UXO. The angled line in Figure 2.6 represents what would be ex-
pected from random guessing.

Figure 2.6 points out the difficulty of modeling these data. Most algorithms did
little better than random guessing; however, the LGP algorithm derived a best-
known model for correctly identifying UXO’s and for correctly rejecting non-
UXO’s using various data set configurations [5, 13]. The triangle in the upper
right-hand corner of Figure 2.6 shows the range of LGP solutions in these different
configurations.
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2.8.3 Eight-Problem Comparative Study

In 2001, we concluded Phase II of our LGP study with a comparative study using
machine-code-based, LGP, back-propagation neural networks, Vapnick Statistical
Regression (VSR) [28], and C5.0 [21] on a suite of real-world modeling problems.

The test suite included six regression problems and two classification problems.
LGP and VSR were used on all problems. In addition, on regression problems,
neural networks were used and on classification problems, C5.0 was used.

Space constraints prevent us from detailing the experimental protocol in detail.
That detail may be obtained in [9]. In summary, each algorithm was trained on the
same data as the others and was also tested on the same held-out data as the others.
The figures reported below are the performance on the held-out, testing data. Each
algorithm was run so as to maximize its performance, except that the LGP system
was run at its default parameters in each case.

2.8.3.1 Classification Data Sets Results
Table 2.1 reports the comparative classification error rates of the best LGP, VSR,
and C5.0 results on the classification suite of problems on the held-out, testing
data.

Table 2.1 Comparison of Error Rates of Best LGP, C5.0, and Vapnick Regression Results
on Two Industrial Classification Data Sets. Reported Results Are on Unseen Data. Lower is
Better.

Problem Linear Genetic
Programming

C5.0 Decision Tree Vapnick Regression

Company H spam filter 3.2% 8.5% 9.1%

Predict income from
census data

14% 14.5% 15.4%

2.8.3.2 Regression Data Sets Results
Table 2.2 summarizes the R2 performance of the three modeling systems across the
suite of regression problems on the held-out testing data.

2.8.3.3 Two Examples from the Eight-Problem Study
This section will discuss two examples of results from the eight-problem compari-
son study—the Laser Output prediction data and the Kodak Simulator data.

Laser Output Problem. This data set comprises about 19,000 data points with
25 inputs. This is sequential data so the last 2,500 data points were held out for
testing. The problem is to predict the output level of a ruby laser, using only previ-
ously measured outputs.
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Table 2.2 Comparison of LGP, Neural Networks, and Vapnick Regression on Six Industrial
Regression Problems. Value Shown is the R2 Value on Unseen Data Showing Correlation
between the Target Function and the Model’s Predictions. Higher Values Are Better.

Problem Linear Genetic
Programming

Neural Network Vapnick Regression

Dept. of Energy, cone
penetremeter,

0.72 0.618 0.68

Kodak, software
simulator

0.99 0.9509 0.80

Company D, chemical
batch process control

0.72 0.63 0.72

Laser output prediction 0.99 0.96 0.41

Tokamak 1 0.99 0.55 N/A

Tokamak 2 0.44 .00 .12

This is an easy data set to do well upon; but it is very difficult to model the
phase with precision. Most modeling tools pick up the strong periodic element but
have a difficult time matching the phase and/or frequency components—they gen-
erate their solutions by lagging the actual output by several cycles. Figures 2.7 and
2.8 show the output of VSR and LGP, respectively, plotted against a portion of the
unseen laser testing data.

Figure 2.7 is the result from the Vapnick tool. It picks up the strong periodic
element but, critically, the predicted output lags behind the actual output by a few
cycles.  By way of contrast, Figure 2.8 shows the results from LGP modeling. Note
the almost perfect phase coherence of the LGP solution and the actual output of the
laser both before and after the phase change. The phase accuracy of the LGP mod-
els is what resulted in such a high R2 for the LGP models, compared to the others.

Simulating a Simulator.  In the Kodak simulator problem, the task was to use
LGP to simulate an existing software simulator.  Past runs of the existing simulator
provided many matched pairs of inputs (five production-related variables) and the
output from [23]. The data set consisted of 7,547 simulations of the output of a
chemical batch process, given the five input variables common to making produc-
tion decisions. Of these data points, 2,521 were held out of training for testing the
model.

The results on the testing or held-out data for LGP, VSR, and neural networks
are reported in Table 2.2. Figures 2.9 and 2.10 graph the LGP and Vapnick models
against the target data.
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Figure 2.7 Best VSR model on laser problem (light gray line) compared to target output
(heavy line) on held-out data.

Figure 2.8 Best LGP model (light gray line) on laser problem compared to target output
(dark line) on held-out testing data.



2 Extending the Boundaries of Design Optimization 25

Figure 2.9  Best Vapnick predictions of Kodak simulator data (light-gray series) vs. the tar-
get data (dark line) on held-out data.

Figure 2.10  Best LGP model of company K simulator problem (light gray series) vs. target
data (dark series) on the held-out data.

The LGP solution (Figure 2.10) so closely models the target output that the pre-
dictions completely obscure the target output line. In fact, for all but six of the
2,521 data points, the agreement between the LGP prediction and the actual value
is very good. The R2 fitness on the applied data set for the best team solution was
0.9889. (A second batch of 232 LGP runs achieved a similar R2 fitness on the ap-
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plied data set of 0.9814, using a team of seven programs. The range of R2 for the
top 30 programs of this second batch was 0.9707 to 0.9585. This demonstrates
analysis repeatability using LGP.)

The Vapnick (Figure 2.9) and neural network solutions were not nearly so
close—the R2 for the Vapnick model was only 0.80, for example.

2.9 Conclusion Regarding Empirical Studies

The key results of the two phases of our empirical studies of the LGP algorithm are
as follows.

First: The LGP software we used consistently produces excellent results on dif-
ficult, industrial modeling problems with little customization of the learning algo-
rithm. Note: LGP did not always produce better results than all other algorithms
studied.  However, on every problem studied, LGP produced a model that was as
good as, or better than, any other algorithm.

The performance of other learning algorithms was decidedly up-and-down. For
example, Vapnick regression did quite well on the cone penetrometer and Com-
pany D data but quite poorly on the laser and Company K problems. Neural net-
works did quite well on the laser and Company K problems but not so well on the
Tokamak and incinerator CO2 data sets. C5.0 did well on the census problem but
not well on the spam filter problem.

We speculate that one important reason behind the consistently good perform-
ance of LGP is that it performs, by default, many runs. Accordingly, it locates the
tail of good performing solutions discussed above. Our comfort level that LGP will
arrive at a good solution to most problems without customization or “tweaking” is
one of the principal reasons we have settled on LGP as our modeling algorithm of
choice for complex and difficult modeling problems.

Second: LGP produces robust models compared to other learning algorithms.
Much less attention had to be paid to overfitting problems with the LGP software
than with other algorithms. This is not to say that LGP will never overfit data.
Given the right data set, it will. But it does so less frequently than the neural net-
work, Vapnick regression, and C5.0 alternatives we studied

The LGP system identifies the important inputs, and which are not. For exam-
ple, we screened a wastewater treatment plant with 54 inputs and identified 7 im-
portant ones. This reduces the number of inputs to monitor, allows assessment of
what will happen if an input goes off-line (for security and contingency planning),
and enhances accelerated optimization by reducing the number of decision vari-
ables, as discussed below.

2.10 Integrated System Analysis

This work is concerned with the building of a system comprised of integrated
modeling and optimization tools. The integrated tool suite, comprised of (1) ma-
chine-code-based LGP for creating predictive models, and (2) ES-CDSA, is ex-
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pected to ably handle a wide range of the complex problems with which we are
concerned.

The remainder of this paper is devoted to discussing two application areas for
the integration of these tools using two of the problems mentioned above—the in-
cinerator R&D problem and the UXO discrimination problem.

2.10.1 Optimizing the Incinerator Model

The incinerator project was conceived from the beginning as a real-time control
project. The models built with LGP predicted CO2 levels in the secondary combus-
tion chamber as a function of (1) The measured state of the plant at several previ-
ous time iterations; and (2) the plant control settings at previous time iterations.

Because plant control settings are part of the evolved LGP models, they may be
optimized in response to each new state of the plant. That optimization may opti-
mize for lowest cost operation, operation with a high probability of regulatory
compliance, or both. Space limitations prevent a detailed description of the opti-
mizer operation. However, details, including screenshots of the optimizer applica-
tion, may be found in [4].

In terms of speed, optimization of these fast LGP models is practical and useful.
The control programs evolved by LGP contain no more than 200 instructions, so
they will execute on a modern Pentium computer in far less than a millisecond. So,
during optimization, each call to the optimizer occupies less than a millisecond.
According to the formula given above for ES-CDSA optimization, 200*(n+3)2

should suffice to derive an optimal setting for a new plant state. So, to optimize
five parameters would take no more than 1.3 seconds—easily enough time to de-
termine a new group of five control settings for the plant (the LGP model predicts
an hour in advance).

2.10.2 Optimizing the LGP-derived UXO Models

The problem of UXO or land mines affects millions of acres worldwide and in-
cludes both training areas and former battlefields. The estimated cost for reme-
diating the U.S. training ranges alone is at least $14 billion, and this number is
likely understated [11]. The very real cost of clean-up (or nonclean-up) is the in-
jury or death to people.

Currently, too large a portion of the resources available for responding to UXO
challenges is expended by digging up sites where UXOs are predicted, but which
turn out to be false alarms—that is, false positives. This, in turn, limits funding
available for remediating genuine UXOs.

Machine-code-based, LGP has derived the most accurate UXO discriminator
among published results to date [Jefferson Proving Grounds 1999] by a wide mar-
gin. This LGP UXO/non-UXO identification success opens up the assessment and
optimization of response to the UXO issue on both the program and the project
levels:

• The presence or absence of UXO can be assessed using remote, non-destructive
technology such as land- or air-based sensors, including geophysics and vari-
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ous wave length sensors. Developed to a high degree of accuracy, wide areas
can be screened and analyzed to reduce the footprint of areas needing further
investigation. This will help manage the sheer size of this challenge.

• Areas of interest identified as requiring further investigation can be prioritized
and ranked using good information on the probability or absence of UXO.
This ranking would integrate the LGP UXO solution with multi-criteria/multi-
objective decision support models; and

• Site-specific remedial action plans, known as “dig sheets,” can be optimally de-
signed to focus efforts on high probability, UXO-containing areas. When the
decreased predicted likelihood of UXO presence and the field verified absence
of UXO are demonstrated, a stopping point for remedial activities, based on
scientific principals and field validation, is provided.

2.11 Summary and Conclusions

We are in the early stages of building a comprehensive, integrated optimization
and modeling system to handle complex industrial problems. We believe a combi-
nation of machine-code-based, LGP (for modeling) and ES CDSA (for optimiza-
tion) together provides the best combination of available tools and algorithms for
this task.

By conceiving of design optimization projects as integrated modeling and opti-
mization problems from the outset, we anticipate that engineers and researchers
will be able to extend the range of problems that are solvable, given today’s tech-
nology.
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Evolutionary Optimization of Approximating
Triangulations for Surface Reconstruction
from Unstructured 3D Data

The aim of surface reconstruction is to transfer the shape of physical
objects, which have been sampled by tactile or optical scanning techniques, into
computer-processable descriptions. Triangulation is the most common surface model
used in CAD/CAM systems. The processing time of a triangulation is decisively in�u-
enced by the number of sampling points. Hence, either the sampling points have to be
reduced or efficient triangulations have to be found. Due to the fact that for interpolat-
ing triangulations the optimal distribution of the sampling points is generally difficult
to �nd, here, self-organizing dynamic meshes are applied. The complex problem to
�nd the best discrete approximation of a surface using a dynamic triangulation and
a simple distance measure is solved by an evolution strategy. A special node-spring
description always encodes valid triangulations.

K. Weinert, J. Mehnen, and M. Schneider

The problem of triangulation can be classi�ed into two possible categories.
The �rst class � and the most commonly known � is piecewise linear interpo-
lation. This class of triangulations interpolates a set of unstructured points
in with a surface consisting of triangular facets. The number of possible
valid triangulations increases drastically with the number of points in . The
task of optimal triangulation is to �nd a representation that renders the true
surface structure as realistic as possible. This problem is algorithmically very
complex [5, 8]. In practical surface reconstruction the number of digitizing
points can reach several million samples. In CAD/CAM systems the respec-
tive triangulations become very large and difficult to handle. In fact, a lot
of digitizing points are redundant (e.g., plane areas) and can be eliminated
from the original point set. In practical applications, to of the orig-
inal points can be eliminated while high-tolerance demands are still met. The
problem of automatic point reduction is to �nd �ltering criteria that efficiently
select relevant sampling points [10].
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3.2 Problem De�nition
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The second triangulation class, called
(also known under the term �mesh optimization�[4 ]), will be the subject mat-
ter of this article. AT avoids the need to preselect sampling points. In fact,
the more sampling points are used for AT, the better. In contrast to interpo-
lating triangulations, the 3D surface of an approximating triangulation �ts a
��exible� triangular surface into a set of sampling points as close as possible.
The number of vertices of the AT is �xed and usually a lot smaller than the
number of sampling points of . In contrast to interpolating triangulations,
where only the graph structure of the edges is changed via edge �ipping, in
the case of the positions of the vertices are varied in 3D space while the
connections in the graph structure remain unchanged. Here, the approxima-
tion problem is solved by an evolutionary optimization algorithm. This class
of probabilistic algorithms is known to be robust and able to �nd good so-
lutions also in cases where deterministic strategies fail. A special encoding
will be introduced which allows us to interpret a triangulation as a vector of
real values. The EA in combination with a simple distance function is able
to �nd triangulations that are automatically adapted to the shape of a sur-
face. This evolutionary approach reduces the in�uence of perhaps misleading
human assumptions about the search problem structure to a minimum and,
hence, allows us to �nd �unbiased� solutions.

Typically, tactile as well as optical digitizing systems generate discrete point
sets that do not have undercuts. Due to technical reasons, in die and mold
making undercuts are not allowed. This restriction is often used in surface
reconstruction and also applied in the following applications.
Let be a set of discrete unstructured points in that describe a func-

tional surface. The number of points in is . Let be a set of points in
with elements ( is arbitrary but �xed and usually a lot smaller

than ). No two points in have the same value.
A triangulation of a set of vertices
in the 3D space is a set
of triangles, where

1. , , are the vertices of a not degenerated (e.g., the
points are not collinear) triangle .

2. Each triangle is de�ned by exactly three vertices of .
3. Each two triangles and of , , do not intersect.
4. The union of all triangles forms the convex hull of .

The problem of is to �nd a triangulation that approximates
best. The vertices of (i.e., the points of ) can be changed arbitrarily in
3D space with the only restriction that has to be a valid triangulation
without undercuts.
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Generally, the de�nition of an adequate quality criterion for triangulations
that yields the best, i.e., highly realistic and efficient, descriptions of the origi-
nal shape, is not easy to �nd [9, 5]. Smoothness criteria like the total absolute
curvature [11] have been optimal for interpolating triangulations. For AT the
simple sum of squared errors (SSE) was successful and yielded structurally
similar results. Of course, only in special cases an AT represents a surface as
exact as an interpolating triangulation. The idea to use an AT is that it gives
hints about selection criteria where to select points for interpolating triangu-
lations rather than to represent a surface with an AT directly. The SSE is
de�ned by the sum of each distance (measured in parallel to the -axis) of
a point to a triangle of :

(3.1)

The SSE is calculated point by point. Because the triangulation always
covers the complete point set , it is always possible to �nd a triangle that
lies above or below a speci�c point. Due to the dynamic structure of the
triangulation , the reverse case must not be true. These triangles with no
corresponding point will not in�uence the SSE. In practice, this case does not
appear very often but can cause problems. These triangles may arrange freely
in the 3D space, because their position does not undergo the selection process.
Due to the fact that the triangles are always interconnected with each other,
the total structure of the AT is only affected locally.

Approximating a triangulation into a point set is an optimization prob-
lem of the type

(3.2)

denotes the space of possible (restricted) positions of the vertices of of
the triangulation . The positions of the vertices of have to be chosen
in a way that the SSE-distance of and is minimized.
In order to map into an real valued space, the trian-

gulation is interpreted as a net of masses and springs (see Figure 3.1).
In order to avoid solving time-consuming dynamic differential equations, the
static equilibrium case is considered. The masses in the system are all zero.
The positions of the inner points (here, , , ) depend uniquely on the

position of the supports (here, ) and the spring coefficients (here,
). A change in one of the spring coefficients implies a change in the

position of all other mass points. Thus, a variation of one of the coefficient
has always a global effect, although the in�uence weakens linearly with the
distance.
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Planar node-spring system (masses all equal zero).

The basic structure of for the optimization process is arbitrary. Here,
the initial triangulation has been calculated by Delaunay�s algorithm [3]. The
structure of mapped into the -plane is uniquely de�ned by the position
of the convex hull of the border vertices and the set of spring coefficients

. Here denotes the number of inner edges
of the triangulation . Due to the fact that undercuts are not allowed, the
-components of the vertices , , of the triangulation
can be chosen arbitrarily in . Thus, can be encoded as follows:

(3.3)

All coefficients can vary arbitrarily in while they always encode valid tri-
angulations. This special mapping from allows us to use real
valued vectors. This is a precondition for the application of an evolution strat-
egy without explicit restrictions. Restrictions in the �tness function are usually
time-consuming and increase the complexity of the optimization problem. The
mapping can also be interpreted as a genotype-phenotype
mapping. The encoding describes all possible triangulations in a

. The vector is manipulated by evolutionary operators. The mapping
transforms the vector into the respective . This
can be evaluated by the �tness function (e.g., the SSE).
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3.4 Deterministic AT Optimization

3.5 Evolutionary AT Optimization

Terzpoulos and Vasilescu [8] use dynamic graphs for triangulations. The au-
thors use a mass-spring system with spring coefficients that are adjusted ac-
cording to the estimated curvature of the point set to be approximated. The
equilibrium state is calculated by solving a differential equation system. In
their experiments a point set of sampling points is approximated
by a triangulation with . Typical for this approach is that it uses
(manmade) assumptions about the correlation between the optimal position
of the vertices and the curvature estimated from the point cloud.
Hoppe [4] uses a deterministic approximation scheme that utilizes least-

square distances as well as varying numbers of edges for a dynamic mass-
spring-based triangulation model. An additional regularization term in the
�tness function generates regular distribution of the vertices. This additional
term supports the search for the minimum of an energy function. The strength
of the spring coefficients is decreased continuously in order to allow triangles
with tapered-off edges. The approach of Hoppe does not make expicit use of a
priori assumptions about curvature properties, etc. It just needs the evaluation
of an unbiased distance function.
Algorri and Schmitt [1] introduce a different mass-spring model. The rela-

tion between the vertices and the sampling points is realized by a connection
between the vertex and its next-nearest sampling point. A nonlinear equation
system models a dynamically oscillating net structure. The spring values of
the system are calculated deterministically after each oscillation step. The de-
�nition of the damping factor is not easy to adjust because on the one hand
the system should remain long enough in oscillation to �nd a good global
solution and on the other hand it should �anneal� fast enough to �nd a good
solution.

All algorithms described in the last paragraph follow deterministic schemes.
These approaches assume that the implemented algorithmic solution leads
directly and without any deterioration to the optimum solution. This implies
that the general criteria to �nd a solution are already known and can be
implemented algorithmically. An evolutionary algorithm does not make any
assumptions about the path to the solution and, thus, is able to �nd the
desired optimum with only very little a priori knowledge.
The evolution strategy (ES) is a special form of the superset called evo-

lutionary algorithms (EA). EA also comprise methods like genetic algorithms
(GA), evolutionary programming (EP), and genetic programming (GP). EA,
fuzzy logic, and neural networks belong to the general set called CI (computa-
tional intelligence) techniques [12]. Evolutionary algorithms are probabilistic
optimization strategies that adopt the paradigms of evolution as introduced
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by Darwin. The surprisingly robust and beautiful solutions of nature are the
motivation to use this sophisticated approach.
The evolution strategy is described in its basic form by the nomenclature

-ES [2]. Here, denotes the number of parents,
the number of offspring, and a coefficient that de�nes the number of
parents involved in recombination. In the special case where two parents mate
to form an offspring, the two commonly known short forms -ES and

-ES are used. The �+� sign denotes that offspring as well as parents are
used by selection. The sign �,� denotes that only the offspring will be used to
form the next parent population. In the case of a -selection the relation

is necessary. An individual consists of a set of real-valued
parameters (so called objective variables), which can be evaluated by an -
dimensional �tness function (generally, ), and to strategy
parameters , of the ES. Two additional global
parameters and characterize the strength of the normal distributed ran-
dom mutation, which is applied to the objective variables of each individual.
If only one step size is used, equals zero. A rotation matrix of correlation
coefficients as elements of the strategic parameters is introduced by Schwefel
[11] but is not used in this context. Each complete individual consisting of
both parameter sets is adapted by the evolutionary process. Hence, an ex-
ternal deterministic adaptation of the step sizes is not necessary, because the
strategy parameters also undergo the selection process. Recombination inter-
changes the genetic data of two or more parent individuals by intermediate
or discrete exchange schemes.

An

(3.4)

is called an - :

individual:
�tness function:
probabilistic genetic operators:

selection:
where in case of selection and

in case of selection.
truncation selection:
The individuals are ordered by their �tness evaluated by .
The best survive.
termination criterion: (e.g., a maximum number of generations)
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The algorithm iterates the following steps:
(A) initialization:
(B) recombination:
(C) mutation:
(D) evaluation:

(E) selection:
(F) test termination criterion: either (B) or end.

Mutation is realized by �rst varying the step size parameters:

(3.5)

In a second step the objective variables are changed:

(3.6)

The vector can be initialized arbitrarily in (e.g., ). The fac-
tors and depend on the dimension of the problem. A classic choice is

and , respectively [13]. denotes the

normal distribution with expectation and variance .
Typically, either discrete or intermediate recombination is used. This op-

erator is applied separately to the objective and the strategic parameters.
Bisexual discrete recombination generates one new offspring individual by
mating two randomly selected parent individuals and . The compo-
nents or of the parents are chosen by chance. Bisexual intermediate
recombination generates a new offspring individual by application of the for-
mula: . From empirical results it is known that
intermediate recombination of the objective parameters and discrete recom-
bination of the step sizes are a good choice.

The ES for optimizing an AT was implemented as follows:

The initial population is formed by triangulations (e.g., by Delaunay
triangulation [3]) of the point set . The individuals are encoded ac-
cording to the description of (see paragraph ). In the
beginning, an equidistant point set in the plane is used to build .
A set of sampling points of arti�cially designed objects is used.
The �tness function (see paragraph )
is applied.
The termination criterion holds if a limiting maximum number of gener-
ations is exceeded.

and . The complete set of step sizes is used, i.e., .
Intermediate recombination of the objective parameters and discrete re-
combination of the step sizes was the best choice during initial experiments
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Reconstruction of a hemisphere.

and, thus, this setting is kept for all experiments. and have been set
according to the dimensions (e.g., , for ).

The experiments have been designed to illustrate the behavior of the algo-
rithm regarding the in�uence of the structure and density of the sampling
points, the exactness of the reconstruction, and time and space complexity of
the algorithm.

A hemisphere was sampled with points. Figure
3.2 shows the reconstruction of the arti�cial object using a set of
vertices.

The initial triangulation started with an equidistant point set. The opti-
mized triangulation shows triangles with nearly equal edge lengths (left-hand
side of Figure 3.2). This result is typical for surfaces with homogenous cur-
vature. The algorithm distributes the vertices equally over the surface. The
border edge between the sphere and the plane is interpolated by a regular lin-
ear polygon. The best �tness measured for 5 runs was ,
the minimum punctiform distance was , and the maximum puncti-
form distance was .

A cylinder lying in the plane has a lateral area with one
constant zero and one constant nonzero curvature. The front and rear faces
stand vertically on the plane and form two sharp circular edges with the lateral
area of the cylinder. Again a set of equally spaced sampling points
has been used to describe the object surface. A subset of vertices
was used for the triangulation.
On the right-hand side of Figure 3.3 the insufficient approximation of the

front face as well as the cut curve of the cylinder and the plane are obvious.
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Delaunay triangulation of a half-cylinder using the initial regular grid.

Optimized reconstruction of a half cylinder.

The triangulation algorithm of Delaunay used for the initial individual tries
to generate triangles with equal edge lengths. On a regular point grid this
yields the typical structures that can be seen in the left-hand side of Figure
3.3.

The optimized approximating triangulation is shown in Figure 3.4. The
vertices are distributed in a more efficient way than during the initialization.
Long triangles are generated automatically only by application of the sim-
ple SSE �tness function. This is especially noteworthy, because interpolating
triangulations often generate small triangles. Even optimized interpolating
triangulations need special �tness functions to be able to evolve long triangles
[9]. The ability of the algorithm to generate nearly vertical triangles should
also be noticed.
The special property of the EA is that it forms optimal structures just by

evaluating the �tness function and selecting the best solutions. It does not
follow �xed deterministic rules.

Sharp edges that do not exactly follow the orientation of the
scanning lines may become problematic for 3D interpolating triangulations.
Due to aliasing effects and the �xed vertex structure, these algorithms some-
times tend to generate harmonica-shaped vertical structures. Leaving the re-
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Evolution of a step structure. Generations (upper left), (upper
right), (lower left) and (lower right).

striction to use only �xed vertices, the surface can adapt better to the surface
structure.
One can see from Figure 3.5 that after only a few generations the evolu-

tionary algorithm was able to generate a rough approximation of the object.
After generations the heights of the vertices are properly set. Then the
structure is modeled by the adaptation of the parameters of the mass-spring
system. After generation the small step in the middle has evolved. Af-
ter generations a maximum distance of and a �tness of

are reached.
Figure 3.6 shows exemplarily the convergence behavior of the optimization

algorithm. The �tness values and the step sizes are displayed. The trend of
the curves is representative for the reconstruction of surfaces with a complex
topology. The best case, linearly (in a logarithmic scale) decreasing �tness
values, can only be achieved for simple structured surfaces. The result of the
automatic adaptation process of the step sizes can be seen in the lower part
of Figure 3.6.

The density of the digitized points
has a direct in�uence on the calculation time because the next-nearest triangle
to a given point has to be identi�ed. This problem can be solved efficiently by
the method of Preparata [6], which has time and
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Fitness function and step sizes.

In�uence of the number of sampling points on the �tness and the run
time.

space complexity ( number inner edges, number of triangles,
number of sampling points).
In the experiments the sample points of the half-cylinder have been used.

The number of the equidistant points is varied from to . The
initial triangulation of the AT has vertices. In order to allow a comparison
of the triangulations, the distance of the resulting surfaces to a
sample point set was calculated. All runs stopped after generations.

Figure 3.7 shows the average distances of 5 runs and the amount of time
(logarithmic scaling). The �gure supports the experience that a non-linear
relation between the amount of time and the number of points exists. It should
be noted that an increasing number of points does not have a relevant in�uence
on the �tness, if the proportion of the number of triangles to the number of
sampling points exceeds a certain limit (here about ). This oversampling
phenomenon is also typical for reconstructions with Non-Uniform Rational
B-Splines (NURBS) [10] and gives a hint about the necessary resolution of an
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In�uence of the vertex density on the �tness and the run time.

AT. For more complex geometries this effect is not so well pronounced but
still exists.

Generally, the higher the number of ver-
tices of an AT, the better the approximations. Therefore, vertex high densities
are desired. Of course, an oversampling effect appears here too if the number
of vertices reaches the number of sample points. The space complexity of the
data structure itself is not affected, because the number of triangles increases
only linearly with the number of vertices.

In the experiment the geometry of the half-cylinder with sampling
points has been used. The number of vertices has been increased from to
. Figure 3.8 shows the �tness and the run time in relation to the number

of vertices. The experiments show that the number of vertices has a cubic
in�uence on the run time. Therefore, the parameter settings for the AT should
be adequately chosen in order to �nd a compromise between run time and
surface quality. Vertex numbers over lead to unreasonable run times.
Furthermore, instability problems may appear. Small vertical triangles evolve
that �t between the scan lines. These triangles do not contribute directly
to the �tness and therefore cannot be adapted. A different encoding of the
-parameters of an individual may help to handle this problem.
Experiments with large objects show that, due to the fact that long trian-

gles should be evolvable, generally it is not possible to split the surface into
smaller patches without losses in the reconstruction quality.

The technique of approximating triangulations is an important tool to �nd
the optimal distribution and density of sampling points. This data can be esti-
mated by the positions of the vertices organized by an evolutionary algorithm.
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4.1 Introduction

4

An Evolutionary Algorithm Based on
Morphological Associative Memories for
Endmember Selection in Hyperspectral
Images

M. Graña, C. Hernandez, A. d�Anjou

In this chapter we are concerned with the de�nition of spectral endmembers
for spectral unmixing of hyperspectral images. We study the application of
evolutionary algorithms combined with a morphological approach that uses
Morphological Associative Memories (MAMs) to detect the endmember spec-
tra in the image.
Passive remote sensing evolution has produced measurement instruments

with ever-growing spectral breadth and resolution. Multispectral sensing al-
lows the classi�cation of pixels. However, the recognition that pixels of interest
are frequently a combination of materials has introduced the need to quanti-
tatively decompose the pixel spectrum into their constituent material spectra.
Hyperspectral sensor measurements in hundreds of spectral bands allow us to
perform such �spectral unmixing� [13]. The reasons for the mixture of several
spectra in a single pixel are (1) the spatial resolution of the sensor implies that

In previous works we have introduced Morphological Autoassociative
Memories (MAM) as detectors of morphologically independent patterns and their
application to the task of endmember determination in hyperspectral images. After
shifting the hyperspectral image data to the mean and taking the signs of the re-
sulting hyperspectral patterns, we obtain a binary representation of the image pixels.
Morphologically independent binary patterns can be seen as representations of the ver-
tices of a convex region that covers most of the data. The MAMs are used as detectors
of morphologically independent binary patterns and the selected binary patterns are
taken as the guides for the selection of endmembers for spectral unmixing between
the image pixels. This process was de�ned in a greedy suboptimal fashion, whose re-
sults depend largely on the initial conditions. We de�ne an Evolutionary Algorithm
for the search of the set of endmembers based on the morphological independence
condition and we compare it with a conventional Evolutionary Strategy tailored to the
endmember detection task over a multispectral image.



46 M. Graña, C. Hernandez, A. d�Anjou

different land covers are included in the area whose radiance measurement re-
sults in an image pixel, and (2) distinct materials are intimately mixed (e.g.,
a beach). The second situation is independent of the sensor spatial resolution
and produces nonlinear mixtures, which are difficult to analyze. The �rst sit-
uation produces mixtures that, often can be adequately modeled by a linear
mixing model. In a previous chapter [10] we assume that the linear model
is correct, and we present an approach to the detection of endmembers for
spectral unmixing in hyperspectral image processing through the application
of MAMs.
Brie�y introduced, Morphological Neural Networks are those that involve

somehow the maximum and/or minimum operators. Some fuzzy approaches
are included in this de�nition. The kind of Morphological Neural Networks
range from pattern classi�ers [5], [15], [23], [28], target detection [7], [9], [17],
[27], to associative memories for image restoration [19], [20], [21]. The MAMs
[19], [20], [21] are the morphological counterpart of the Linear Associative
Memories (LAM) [14] and the well known Hop�eld Autoassociative Memo-
ries [11]. Like the LAMs, MAMs are constructed as correlation matrices but
with the substitution of the conventional matrix product by a min or max
matrix product from Image Algebra [22]. Dual constructions can be made
using the dual min and max operators. In [10] we propose the MAMs as de-
tectors of morphological independent binary patterns and, therefore, as the
endmember selection tool. The described algorithm is a local search process,
highly sensitive to the initial conditions of the process. In this chapter we
explore the de�nition of an Evolutionary Algorithm devoted to the task of
endmember selection from a given image that uses the MAMs as detectors
of morphological independences. This new algorithm is a Genetic Algorithm
[8] that searches the space of binary patterns that correspond to representa-
tions of the endmembers looked for, which must be sets of morphologically
independent patterns. Through the chapter we call this algorithm GA with
Morphological Independence restriction (GA-MI). Mutation is the genetic op-
erator used. We use the MAM to test the morphological independence of the
children. Because mutation does not preserve the morphological independence
and there is not any established procedure for its correction, the children that
do not conform to the morphological independence requisite are discarded. For
comparison we propose an Evolution Strategy [2], [3], [4] for the same task of
endmember design. In both evolutionary approaches, the objective function
to be minimized is the combination of the reconstruction error of the image
pixels and the satisfaction of the properties of a true abundance image: the
full additivity and nonnegativity of all the abundance image pixels.
The structure of the chapter is as follows: In Section 4.2 we review the de�-

nition of the linear mixing model. Section 4.3 provides a review of basic results
of MAMs. Section 4.4 describes our evolutionary algorithm of endmember se-
lection for remote sensing hyperspectral images, and a competing conventional
evolution strategy approach. Section 4.5 presents some experimental results
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of the proposed algorithm and the competing evolution strategy. Section 4.6
gives our conclusions and directions of future work.

The linear mixing model can be expressed as follows:

(4.1)

where is the -dimensional received pixel spectrum vector, is the
matrix whose columns are the -dimensional endmembers is
the -dimensional fractional abundance vector, and is the -dimensional
additive observation noise vector. The linear mixing model is subjected to
two constraints on the abundances. First, to be physically meaningful, all
abundances must be nonnegative Second, to account for
the entire composition the abundances must be fully additive
Often the process of spectral unmixing is performed on transformations

of the data intended to reduce the computational burden [13] or to enhance
some properties of the data [12]. We do not apply any dimension reduction
transformation here. The task of endmember determination is the focus of this
chapter. In an already classical chapter [6], Craig starts with the observation
that the scatter plots of remotely sensed data are tear-shaped or pyramidal
if two or three spectral bands are considered. The apex lies in the so-called
dark point. The endmember detection becomes the search for nonorthogonal
planes that enclose the data, forming a minimum volume simplex, hence the
name of the method. Besides its computational cost the method requires the
prespeci�cation of the number of endmenbers. Another step to the automatic
endmember detection is the Conical Analysis method proposed in [12] and
applied to target detection. The extreme points in the data after a princi-
pal component transformation are the searched for endmember spectra. The
method is geometrically similar to Craig´s one but does not require costly lin-
ear programming. It also requires the prespeci�cation of the desired number
of endmembers. Another approach is the modeling by Markov Random Fields
and the detection of spatially consistent regions whose spectra will be assumed
as endmembers [18]. A quite standard approach to endmember determination
is the use of standard libraries of spectra [13]. This approach requires great
expertise and a prori knowledge of the data. Finally, there are interactive
exploration algorithms that are supported by speci�c software packages.
Once the endmembers have been determined, the last task is the compu-

tation of the inversion that gives the fractional abundance and, therefore, the
spectral unmixing. The simplest approach is the unconstrained least-squared
error estimation given by

(4.2)
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4.3 Morphological Associative Memories
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The abundances that result from this computation do not ful�ll the non-
negative and full additivity conditions. It is possible to enforce each condition
separately, but rather difficult to enforce both simultaneously [13]. As our
aim is to test an endmember determination procedure, therfore we will use
unconstrained estimation (4.2) to compute the abundance images. We will
show intensity scaled and shifted images of the abundances to evaluate our
results. As a measure of the quality of the decomposition obtained it is useful
to introduce the reconstruction error:

(4.3)

The work on MAMs stems from the consideration of an algebraic lattice struc-
ture as the alternative to the algebraic framework for the
de�nition of Neural Networks computation [19] [20]. The operators and
denote, respectively, the discrete and operators (resp., and
in a continuous setting). The approach is termed morphological neural net-
works because and correspond to the morphological dilation and ero-
sion operators, respectively. Given a set of input/output pairs of pattern

, a heteroassociative neural network based

on the pattern�s cross correlation [14], [11] is built up as
Mimicking this construction procedure the works in [19], [20] propose the
following constructions of heteroassociative morphological memories

(4.4)

where is any of the or operators. Here and denote the and
matrix product, respectively, de�ned as follows:

(4.5)

(4.6)

It follows that the weight matrices and are lower and upper bounds
of the max and min matrix products and
therefore the following bounds on the output patterns hold:

that can be rewritten as A
matrix is a -perfect ( -perfect) memory for if (
). It can be proven that if and are -perfect and -perfect memories,
resp., for then and are also -perfect and -perfect, resp.:

. Therefore, Conditions
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Perfect recall of HMM. The matrix is -perfect if and only

if the matrix contains a zero at each row. Similarly,

the matrix is -perfect if and only if the matrix

contains a zero at each row. These conditions are formulated for

as and for as

Perfect recall of AMM. Both erosive and dilative AMMs have
the perfect recall property: , for any .

robust

Robust perfect recall of HMM. Given input/output pairs ,
the equality holds when the following relation holds:

Similarly for the conditions of robust perfect recall for given a noisy
copy of , that is, the equality holds when

Given patterns , the equality holds when the
noise affecting the pattern is erosive and the following relation holds

of perfect recall of the stored patterns are given by the following theorem
[19],[20]:

These results hold when we try to recover the output patterns from the
noise free input pattern. To take into account the noise, a special de�nition
of the kinds of noise affecting the input patterns is needed. Let be a noisy
version of If , then is an eroded version of Alternatively,
we say that is subjected to erosive noise. If , then is a dilated
version of . Alternatively, we say that is subjected to dilative noise. Mor-
phological memories are very sensitive to these kinds of noise. The conditions
of perfect recall for , i.e., the retrieval of given a noisy copy
, are given by the following theorem [19], [20].

(4.7)

(4.8)

The associative memory matrix is robust against controlled erosions
of the input patterns while the associative memory matrix is robust
against controlled dilations of the input patterns. In the case of autoassociative
memories the conditions for perfect recall of noisy patterns are a corollary for
Theorem 3:
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Similarly, the equality

holds when the noise affecting the pattern is dilative and the

following relation holds: .

Morphological independence. Given a set of pattern vectors
, a pattern vector is said to be morphologically indepen-

dent of in the erosive sense if and morphologically
independent of in the dilative sense if The set of pat-
tern vectors is said to be morphologically independent in either sense when
all the patterns are morphologically indenpendent of the remaining patterns in
the set.

Remark 1.

The AMM will fail in the case of noise being a mixture of erosive and
dilative noise. To obtain general robustness, the kernel method has been pro-
posed [19], [21], [25]. A kernel for is de�ned as a set of patterns
that satisfy the following conditions: (1) (2) and (3)

Kernels are, therefore, selective erosions of the input patterns
designed to ensure that the robustness against dilation of the memories
will allow the recovering of patterns from either eroded and dilated ver-
sions of the input patterns, and the memory will produce the desired
output response. That is, for corrupted inputs we are guaranteed
that Note that does not guarantee correct
recall.
In order to characterize kernels and to obtain a constructive de�nition, the

notion of morphological independence and strong morphological independence
is introduced in [21]. Here we distinguish erosive and dilative versions of this
de�nition:

The strong morphological independence is introduced in [21] to give a
construction for minimal kernels with maximal noise robustness. For binary-
valued vectors, morphological independence and strong morphological inde-
pendence are equivalent. For the current application we want to use AMMs
as detectors of the set extreme points, to obtain a rough approximation of
the minimal simplex that covers the data points. We need to establish �rst a
simple fact in the following remark:

Given a set of pattern vectors and the erosive
and dilative memories constructed from it. Given a test pattern
if is morphologically independent of in the erosive sense, then

Also, if is morphologically independent of in the dilative
sense, then

The endmembers that we are searching for are the corners of a high-
dimensional box centered at the origin of the space. They are morphologically
independent vectors both in the erosive and dilative senses, and they enclose
the remaining vectors. The endmember detection process would apply the
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erosive and dilative AMMs constructed from the already detected endmem-
bers to detect the new ones as suggested by the previous remark. Working
with integer-valued vectors, a desirable property is that vectors already in-
side the box de�ned by the endmembers would be detected as such. However,
given a set of pattern vectors and the erosive and
dilative memories constructed from it. A test pattern for some

would give Also, if the test pattern for some
, then Therefore, working with integer-valued

patterns the detection of the morphologically independent patterns would be
impossible. However, if we consider the binary vectors obtained as the sign of
the vector components, then morphological independence would be detected as
suggested by the above remark. Let us denote by the expression the con-
struction of the binary vector if if

In this section we describe both the approach based on the GA with morpho-
logical independence restriction (GA-MI) and the standard Evolution Strategy
de�ned for the problem at hand. The endmembers of a given hyperspectral
image under the linear mixture assumption correspond to the vertices of the
minimal simplex that encloses the data points [6]. The region of the space en-
closed by a set of vectors, simultaneously morphologically independent in both
erosive and dilative senses resulting from the GA-MI, is a high-dimensional
linear convex region (i.e., bounded by hyperplanes). The result of the Evolu-
tion Strategy is also a set of vertices that may de�ne a convex region. It is
difficult to give a quantitative measure of the goodness of a given set of end-
members, which is needed for the de�nition of evolutionary approaches. The
positive and full addition properties are the basic restriction to ful�ll, so that
they are the basis for the de�nition of the �tness function. We have chosen
the reconstruction error in (4.3) as the regularization term. Let us formalize
�rst the �tness function.
Let us denote the hyperspectral im-

age, and the vectors of the mean and standard deviations of each band
computed over the image, the noise correction factor, and the set of
endmembers whose �tness is to be quanti�ed. Let

and be the abundance
estimations and reconstrucion error computed applying (4.2) and (4.3) at
each pixel with as the endmember collection. The �tness function to be
minimized is de�ned as follows:

(4.9)
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Although we have no formal proof of the perfect recall of the HMM when the input
patterns are morphologically independent, it is very likely and �ts nicely to use the
HMM as the endmember identi�er. In practice, we search the set directly

In this equation Both evolutionary approaches have
a population of individuals, each consisting of a set of endmembers of
size . In the GA-MI we have a population of binary individuals

Each one of the individuals corresponds to a set of
endmembers, where each encodes the directions of the convex
region vertices. Each collection is morphologically independent in both
erosive and dilative senses. The GA-MI evolves the population using a con-
ventional mutation operator and a roulette wheel selection. However, each
time a new individual is generated, it is tested for morphological indepen-
dence, and if it fails to pass the test it is rejected and a new individual is
generated. The test for morphological independence proceeds as follows:

1. Consider initially
2. Construct the AMMs based on the morphologically independent binary
signatures: and De�ne orthogonal binary codes for the
endmembers and construct the identi�cation HMM :

3. Consider the next endmember code:
a) Compute the vector of the signs of the Gaussian noise corrections

and
b) Compute
c) Compute
d) If and , then is morphologically independent
in both senses. Go to step 2 adding to and resume the test,
increasing . If not, the test fails and the individual is rejected.

To compute the set of endmembers corresponding to each we need
�rst to consider the zero mean image

(4.10)

Then the endmember pixels are determined as the extreme points in the
directions speci�ed by the The �nal set of endmembers is the set of original
spectral signatures of the pixels selected as members of
The Evolution Strategy follows the conventional de�nition and dynamics

[4]. Population individuals are given by a set of endmember hypothesis and
their mutation variances Initial endmembers are
generated by a random perturbation about the mean spectrum of the image,
and the following generations are produced by the conventional schema of
perturbation and self-adaptation of the mutation variances. A strategy
is used for selection, where the next generation is obtained as the best ones
from the joint set of parents and children.
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Ground truth of the experimental image.

Evolution of the �tness function of the best individual of the GA with
morphological independence restriction and the evolution strategy.

The data used for the experimental work correspond to a multispectral image
of size of pixels which covers a large area including vegetation,
cultivated land areas, and urban areas. This image has been acquired through
a CASI (Compact Airborne Spectrographic Imager) sensor using a general
con�guration of 14 bands, that is, each pixel is represented by a vector of 14
8-bpp gray scale values. From all the 14 bands of the original image, a smaller
region of pixels has been selected (cropped). For the operation of
both the Evolutionary Algorithm and the Evolution Strategy a 8:1 subsampled
version of this region has been used to compute the �tness function value.
However, �nal abundance results were computed over the pixels
region.
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Endmembers found by the EA with the morphological independence
restriction.

Endmembers found by the Evolution Strategy tailored to the endmember
determination task.
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Abundance images corresponding to the endmembers discovered by the
GA with the morphological independence restriction: GA-MI.

The ground truth of the image is composed of the following categories of
land cover: evergreen trees, deciduous trees, brushwoods, meadows
and crops, urban areas. The ground truth is visualized in Figure 4.1 as-
signing an increasing intensity to the land cover categories: black corresponds
to evergreen trees and white to urban areas. Figure 4.2 shows the plot of an
evolution of the �tness value of the best individual for the GA-MI and the
Evolution Strategy. In both algorithms the population size was 10, the number
of endmembers per individual was 5, and the number of mutations allowed
was 30. It can be appreciated that the GA-MI �nally obtains better quantita-
tive results than the ES approach. However, the qualitative assessment of the
results must be done on the abundance images computed from the obtained
endmember spectra.
The monitoring of the evolution of GA-MI shows that, although all the

individuals are collections of morphologically independent binary vectors, the
codi�cations seldom have a corresponding extreme point in the image. There-
fore, GA-MI initially has collections of only one or two endmembers. The
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Abundance images corresponding to the endmembers discovered by the
Evolutionary Strategy.

evolution adds new meaningful endmembers to the best individuals. In the
�nal best individual we have found 4 endmembers, whose spectra are plotted
in Figure 4.3. The Evolution Strategy performs better most of the time ac-
cording to Figure 4.2. However, it stagnates at the end. It gives endmembers
plotted in Figure 4.4. The endmember spectra found are like noisy versions of
the ones found in the image. It is worth noting that the GA-MI is performing
spontaneously a process of selection of the appropriate number of endmem-
bers, always below the upper bound �xed in the simulation. The number of
endmembers was �xed at , like the population size and the
number of children generated
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4.6 Conclusions and Further Work
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The qualitative results are given by the abundance images computed us-
ing the endmember spectra found by both approaches. The abundance images
obtained from the spectral unmixing with the GA-MI endmembers are shown
in Figure 4.5. Figure 4.6 presents the abundance images obtained from the ES
endmembers. We �nd that the results are quite parallel: the abundance image
of endmember #1 found by the GA-MI is similar to the one of endmember
found by the Evolutionary Strategy, and the corresponding endmembers

seem to be good detectors of vegetal cover including crops. Abundance image
#2 of GA-MI is similar to the abundance image #5 of the Evolution Strategy.
However, these images seem of little value. There are no interesting spatial
structures discovered in these images. It seems that the corresponding end-
member spectra are noise detectors. The abundance images and #4 of the
GA-MI correspond to the abundance images #3 and #4 of the Evolutionary
Strategy, respectively. The endmembers seem to correspond to detectors of
arti�cial constructs like buildings and roads.
An interesting result is that the GA-MI has obtained the same qualitative

results with fewer endmembers than the ES. From a dimensionality reduction
viewpoint, the GA-MI has been able to obtain a transformation of the im-
age data from the original 14-dimensional space into a 4-dimensional space,
preserving much of the qualitative information of the image and obtaining an
optimized reconstruction of the original image. We assert that the qualitative
information has been preserved because the main spatial features of the im-
aged scene are detectable in the transformed images, and correspond to cover
classes de�ned in the ground truth. We may say that GA-MI outperforms the
ES in the sense of obtaining a more parsimonious representation of the image
data.

We have proposed an Evolutionary Algorithm that uses the notion of morpho-
logical independence and the Morphological Autoassociative Memory for test-
ing it, for the task of hyperspectral image linear unmixing. Linear unmixing is
both a detection process and a dimension reduction process. It is very efficient
for the detection of small features, which can be blurred by other methods,
like clustering-based unsupervised analysis of the images. The Evolutionary
Algorithm ensures some degree of optimality of the endmembers extracted
from the image, in the sense of minimum unmxing (and reconstruction) error.
We have found that our algorithm improves over an Evolutionary Strategy
tailored to the problem, in the sense of the minimization of the proposed �t-
ness function. We have also found that the GA-MI algorithm spontaneously
performs a selection of the appropriate number of endmembers. An added ap-
peal of the approach proposed is that it uses the spectra found in the image.
Using the actually measured spectra may reduce the interpretation problems
when trying to decide the actual physical materials present in the scene.
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On a Gradient-based Evolution Strategy
for Parametric Illumination Correction

Elsa Fernández, Manuel Graña, Jesús Ruiz-Cabello

Abstract. This chapter deals with the issue of illumination inhomogeneity correction in
images. The approach followed is that of estimating the illumination bias as a parametric
model. The model is a linear combination of Legendre polynomials in the 2D or 3D space.
The estimated bias is, therefore, a smooth function characterized by a small set of
parameters that define a search space of lower dimension than the images. Our work is an
enhancement of the PABIC algorithm, using gradient information in the mutation operator
hence we name it GradPABIC. We apply our algorithm, the PABIC, and a conventional
Evolution Strategy (ES) over a set of synthetic images to evaluate them, through the
comparison of the correlation between the recovered images and the original one. The
PABIC and the EE are allowed the same number of fitness computations, while the  Grad
PABIC number of fitness evaluations is two orders of magnitude lower, because of the
gradient computation added complexity. Finally, we present some results on slices of a
synthetic MRI volume.

5.1 Introduction

Illumination bias correction is a key problem in several domains, above all in
medical imaging and Magnetic Resonance Imaging (MRI). The bias correction is
critical in some cases to obtain meaningful image segmentations, because these
segmentations are usually done on the basis of a known catalog of MR responses
of specific tissues. Pixels are classified according to their intensities and a set of
known values. Besides the partial volume effect, the intensity inhomogeneities are
the main difficulty to obtain precise automatic segmentations. The contribution of
the illumination to the image formation is multiplicative; therefore, its effect
cannot be removed easily through traditional linear filtering algorithms. In this
chapter we will not consider other noise contributions [6]. The classic approach to
solve this problem is the homomorphic filtering [3] that filters out the low-
frequency components of the logarithm image Fourier transform. Illumination
gradients are usually smooth functions. Therefore, it is expected that the lowest
components of the logarithm image will correspond to the illumination bias.
Working over the logarithm image trying to isolate the illumination components of
the image is common to many other illumination correction algorithms. Few
algorithms perform the correction, computing the division of the corrupted image
by the estimated bias. Among them, the straightforward approaches consist of
taking an image of the background and dividing the new images by it.
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There has been broad interest in this problem, which has produced a number of
algorithms. A coarse taxonomy distinguishes between parametric and
nonparametric methods. On the nonparametric class of algorithms, a well-founded
approach is the one applying Bayesian image modeling to the image logarithm and
using some minimization method to estimate the most likely bias field logarithm.
The estimation task [10] applies an EM algorithm, while [4] applies a minimization
of an entropy criterion. These works try to isolate the bias field. On the other hand,
[1] introduces the effect of the bias field inside the classification adding a bias term
into the fuzzy c-means that they apply to the image pixels classification in order to
obtain image segmentations. On the whole, nonparametric methods are computer-
intensive and require huge amounts of memory in some cases. An approach that
gives good results based on the iterative deconvolution with Gaussian kernels is
described in [8].

Parametric methods assume some mathematical model of the illumination bias,
whose estimation becomes fitting the model surface to the image intensity
function. The model surfaces are always very smooth and the fitness criterion
involves the approximation error. In [5] the bias model consists of multiplicative
and additive components that are modeled by a combination of smoothly varying
basis functions. The parameters of this model are optimized such that the
information of the corrected image is minimized while the global intensity
statistics are preserved. In [9] the illumination bias is modeled by a linear
combination of 2D or 3D Legendre polynomials. The coefficients of this
combination are estimated by a random search, called PABIC, that looks like an
oversimplified Evolution Strategy (ES) [2].  The ES are, as all the evolutionary
algorithms, rather sensitive to the population size and the number of mutations.
Small populations lead to premature convergence, and the PABIC is an extreme
case. Therefore, premature convergence may be an issue for PABIC. In fact, this
phenomenon shows itself in the computational experiments by the high variance of
the results of replicating the PABIC search. The application of an ES of equivalent
computational complexity (allowing the same overall number of fitness
evaluations) leads to some improvement and a lower variance of the results.
However, the “single solution per population” approach of PABIC remains
appealing for its simplicity. We have devised a modification of the PABIC that
uses the gradient information in the mutation operator, directing the algorithm to
the search in the directions of greater promise of improvement. We call this
approach GradPABIC. It is a kind of instantaneous memetic algorithm [11]. The
computational experiments show the improvements of GradPABIC both in the
mean accuracy of the recovered image and in the reduction of the result’s variance.

The chapter structure is as follows: Section 5.2 recalls the formal statement of
the illumination correction problem, and the basic homomorphic algorithm.
Section 5.3 presents ES, and the PABIC as a specific instance, as well as the
GradPABIC. Section 5.4 presents experimental results that confirm our discussion.
Finally, Section 5.5 presents some conclusions and lines of further work.
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5.2 Homomorphic Filtering

A classical image model is given by the equation:

f x y i x y r x y n x y( , ) ( , ) ( , ) ( , ).= + (5.1)

The observed (sensed) image f(x,y) is the product of the “real” image r(x,y) and the
illumination field i(x,y). Besides it is perturbed by a random additive noise n(x,y),
which is assumed usually as having zero-mean Gaussian distribution. This model
implies that the effects of the illumination in the frequency space are spread over
all the range of frequencies, because of the duality of product and convolution on
the Fourier transform. Linear filtering is able to remove sections of the frequency
space but not to deconvolve the illumination effect. Early approaches tried to
convert the nonlinear problem into a linear one working on the logarithm of the
image. This is the homomorphic filtering approach [3].

If we discard the Gaussian additive noise, Eq. (5.1) becomes:
),(),(),( yxryxiyxf = . The logarithm of the image is computed to obtain a linear

expression: ),(ln),(ln),( yxryxiyxg += . The Fourier transform of this

expression is ),(),(Iv)G(u, vuRvu += . The linear filtering of the image with a

filter H(u,v) is given by

S u v H u v G u v H u v I u v H u v R u v( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ).= = + (5.2)

From this expression it becomes clear that we can remove the illumination
component by linear filtering of the logarithm image, assuming that the
illumination logarithm is band-limited. A high-pass filter would allow to recover
the real image after exponentiation of the filtered image in Eq. (5.2). If the filter
applied is a low-pass filter, we would obtain the estimation of the illumination
field. A weakness of the method is the assumption that low-frequency components
are only due to illumination effects. This is especially bad in MRI images where
the tissues are assumed to correspond to constant-intensity regions.

5.3 Evolution Strategies and the Illumination Correction
Problem

The initial discussion for any application of evolutionary algorithms is the function
to be minimized. In the case of parametric approaches to illumination
inhomogeneity correction, the objective function will be related to the
approximation error. In [9] the model of the illumination bias is a linear
combination of Legendre polynomials, denoted Pi (.) , where i is the order of the
polynomial. The reason for this choice is that they are orthogonal, thus they
constitute a basis of smooth functions, ideal to model the smooth variations of the
illumination gradient. The 2D bias field is modeled as follows:
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Therefore, the 2D fields P x P yi j( ) ( ) remain smooth and it can be proved that they

are orthogonal. In the case of the 3D volumes, needed for medical imaging, the
generalization is straightforward. The true illumination bias is unknown, so it is
impossible to define the error of approximation related to it. The approach is then
to assume (1) that we know the classes of objects present in the image, (2) that
each region in the image corresponding to an object has the same and constant
intensity, and (3) that we know this intensity value. This is generally true for
medical images where the tissues have a known response to a given imaging
method. A noise term could be needed for model completeness but it is of no use in
the following, so it is neglected. The error is then defined as the approximation to
an image whose pixels have exactly the class-defined intensities.

e valley r x y k

kx y

= ( )(ˆ , ),
,

µ (5.4)

where valley() is an smooth convex function and ˆ ,r x y( ) is the estimated
reflectance obtained after correction. Many of the expressions in the original paper
[9] refer to the modeling of the illumination as an additive term, which can be
explained in the framework of the homomorphic filtering. In this case the
algorithm would be estimating the filter to be applied to the logarithm image. We
have preferred to assume that the Legendre polynomials are multiplicative
modulations of the image. Therefore, they must be normalized in the [0,1] range.
The image correction is performed by dividing the observed image by the
estimated bias: ˆ , , ˆ ,r x y f x y b x y( ) = ( ) ( ) . It must be noted that the corrected image

will have a greater signal-to-noise-ratio (SNR) in the regions of low estimated bias.
The global minima of Eq. (5.4) will be configurations of pixel intensities such that
each one belongs to one of the predefined intensity classes µk . The expression of
the error that we use in the derivation of the gradient is a special case of Eq. (5.4),
when valley is a quadratic function:
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It is easy to deduce an expression of the gradient of the error relative to each
parameter of the linear combination of Legendre polynomials.
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This expression is the basis for the GradPABIC proposed below. Once the error
function has beenidentified, the formulation of an ES needs the definition of the
individuals and the search space. In the present case, the search space is that of the
linear combination parameters of Legendre polynomials, and each individual will
consist of a set of such parameters. We assume that the typical ES [2] is well
known by the reader. We will use a µ +( ) strategy that consists of the selection

of the new population over the set of parents and offsprings. This strategy is elitist
and its convergence is guaranteed. The sensitive parameters of these algorithms are
the number of mutations and the population size. We will not use recombination.
Observe that the number of fitness computations is O Gµ +( ) , with G the number

of generations. That is, the population size is not very influential on the
computation time (unless it grows exponentially).  The PABIC proposed by [9] is
basically an ES with a population of an individual, and a restricted version of the
self-adaptive mutation variance: a (1+1) ES. We reproduce below the expressions
that define the algorithm:
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where xt is the population of the algorithm, given by the set of linear combination
parameters of the Legendre polynomial, rt is a random vector whose components
follow independent normal N(0,1) distributions. The At is the mutation covariance
matrix, which is self-adapted along the evolution. The magnitude of the matrix is
increased or decreased depending on the finding of new optimal solutions. We
have applied the algorithm with the parameters recommended in the paper. The
GradPABIC algorithm has the same outline as the PABIC, but the mutation
operator is given by a random sampling along the gradient of the error function on
the search parameters:
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5.4 Experimental Results

To test the algorithms we have generated several instances of corrupted images
from a chessboard image. We know the original uncorrupted image and the
illumination bias field, and therefore we can compute the correlation between them
and the estimated ones. The goal of the algorithms is to estimate the bias fields and
to recover a clean chessboard image. PABIC parameters were set according to the
nominal values recommended in [9]: c g r o w in the interval [1.01,1.1]
and c cshrink grow= 1 4/ . The number of PABIC iterations is 9000. The maximum order

of the Legendre polynomials was 3. The ES was tested with µ = =100 300, and
the number of generations is 30, which gives the same number of fitness
evaluations of PABIC. The GradPABIC was allowed only 300 fitness evaluations
because of the cost of computing the gradient. We computed 30 replications of the
algorithm on each image. We computed the correlation between the recovered
chessboard images and the original ones, as well as the correlation between the
original illumination bias and the ones estimated by the correction algorithms. The
results are summarized in Figures 5.1, 5.2, 5.3, and 5.4. Figure 5.1 plots the
average correlation between the original image and the recovered one for each
image and algorithm. The results of GradPABIC are better than the PABIC and ES
in all cases. Figure 5.2 plots the standard deviation of the correlation between the
recovered image and the ground truth for each image and algorithm. High standard
deviation implies low confidence in the algorithm results.

Again GradPABIC provides the best results in the sense of lower variance of
the results for each image, but for some images where the ES improves it. The
worst results in terms of variance are the ones provided by the PABIC. The ES is
less variable than PABIC, which is natural because of the improved convergence
properties implied by the larger population. The PABIC, being a single individual
or single-solution algorithm, has a poorer ability to escape bad local optima than
ES. The good results of GradPABIC are more surprising, because it is also a
single-solution algorithm. It seems that the gradient information improves the
convergence of the algorithm.
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Figure 5.1. The correlations between the ground truth chessboard image and the ones
recovered after correction with the different methods from the synthetically corrupted
image. The results are the averages over the 30 replications of the algorithms.
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Figure 5.2. The variances of the correlations between the corrected images and the original
ones, computed over the 30 replications of the algorithm on each image.
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Figure 5.3. The correlations between the ground truth illumination bias images and the ones
estimated by the correction methods. The results are the averages over the 30 replications of
the algorithm.

Correlations Variances

0,00

0,10

0,20

0,30

0,40

0,50

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Images

EE

PABIC

GradPABIC

Figure 5.4. The standard deviations of the different correlations between the obtained bias
images and the original ones over the 30 replications of the algorithms.
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(a) (b) (c) (d)

Figure 5.5. Several instances of the chessboard image experiments. (a) Corrupted image,
and  (b) recovered images by  GradPABIC. (c) Original synthetic illumination bias used to
produce the images in (a) and (d) the illumination bias estimated by GradPABIC.

Figure 5.3 plots the correlation between the ground truth illumination bias and
the estimated ones. The ES and the GradPABIC are competing for the best results,
while the PABIC is clearly worse in almost all the images. The cause of the little
differences between the results is that the illumination biases are very smooth
functions. Figure 5.4 shows the standard deviations of the correlations between the
estimated bias and the ground truth. Again, the PABIC is worse than the ES and
the GradPABIC. There is no significant difference between the ES and the
GradPABIC, which is a good result for a single-solution algorithm. To give a
qualitative appraisal of the algorithm proposed, Figure 5.5 shows several instances
of the corrupted image (Fig. 5.5a) and the recovered clean images that result from
the GradPABIC (Fig. 5.5b). It also shows the original bias field (Fig. 5.5c) and the
ones estimated by the GradPABIC (Fig. 5.5d).
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(a) (b)

Figure 5.6. (a) Slices from a corrupted MRI voume, (b) corresponding slices of the
corrected volume given by the GradPABIC algorithm.
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Figure 5.6 shows the results of the GradPABIC on an MRI synthetic volume of
the brain corrupted with a known illumination bias. The slices correspond to
selected axial, sagital, and coronal cuts of the corrupted and the restored volumes.

5.5 Conclusions

The PABIC algorithm for parametric illumination inhomogeneity correction in
images is a special case of ES. We have proposed GradPABIC as an improvement
that consists in using the gradient information of the error in the mutation operator.
This is similar to an instantaneous memetic algorithm. GradPABIC  gives better
results and a smaller variance on a collection of synthetic images tested. Besides
the improvement in accuracy of the image restoration, the reduction in variance of
the results of the algorithm is very significant. As GradPABIC is a single-solution
evolutionary strategy, equivalent to reducing the population to a single individual,
big variances are to expected. The reduction in variance points to GradPABIC  as
an especially good combination of the local search power of the gradient-based
algorithms and the random search of evolutive algorithms.
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A New Chromosome Codification for
Scheduling Problems

Ramiro Varela, Camino R. Vela, Jorge Puente, David Serrano, Ana Suárez

Summary. In this chapter we confront the Job Shop Scheduling problem by means
of Genetic Algorithms. Our aim is twofold: first to envisage a codification schema
that makes it clear what we consider the basic building blocks of a chromosome,
that is the partial schedules of the set of tasks requiring the same resource; and then
to design a scheduling policy that maintains as long as possible these partial sched-
ules. The expected utility of this new codification is that it allows us to design
knowledge-based operators and initialization strategies. We report results from an
experimental study on a small set of selected problems showing that our proposed
codification and scheduling algorithm layouts produce similar results to other con-
ventional schemas. And at the same time this codification facilitates the design of
genetic operators focused to produce promising building blocks.

6.1 Introduction

The application of GAs to scheduling problems has interested many researchers [1-
4, 8, 11, 13] due to the fact that they seem to offer the ability to cope with the huge
search spaces involved in optimization of constraint satisfaction problems [6]. Be-
cause conventional GAs provide rather poor results for medium- and large-size
problems, a number of enhancements like elitism, local search, and structured
population techniques have been proposed that improve their performance.

In this work we propose a new codification schema and a scheduling strategy for
solving Job Shop Scheduling (JSS) problems. The intuition behind this codification
is that partial schedules, i.e., schedules of the set of tasks requiring the same ma-
chine, are the basic building blocks that contribute to a problem solution. Therefore,
we first codify a chromosome as a set of partial schedules from which a problem
solution is built by the scheduling strategy. Whenever two or more partial schedules
are not compatible, a number of them should be modified in order to restore com-
patibility. To do that we enhance the codification by means of a resource ordering
vector that expresses a priority among resources, so that partial schedules of low-
priority resources are broken first.
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We report experimental results from two implementations of conventional or
genuine GAs to compare our proposed codification against a well-known and
widely used schema: the permutations with repetition proposed by C. Bierwirth in
[1]. What we expect of this new codification schema is that it will allow us to intro-
duce new genetic operators that better cope with issues as epistasis and that facili-
tate the exploitation of heuristic knowledge from the problem domain.

The remainder of this chapter is organised as follows: in Section 6.2 we intro-
duce the JSS problem. Section 6.3 summarizes a conventional approach to JSS
problems based on the permutation with repetition schema proposed in [1]. In Sec-
tion 6.4 we describe our proposed codification schema: the Task and Resource Or-
dering (TRO), and the scheduling algorithm. Section 6.5 reports the results from an
experimental study on a set of well-known problems. Finally, in Section 6.6 we
summarize the main conclusions and propose some ideas for further work.

6.2 The JSS Problem

The JSS requires scheduling a set of jobs {J0,...,Jn-1} on a set of physical resources
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Figure 6.1. A directed graph representation of a JSS problem instance with three jobs. The
resource requirement of every task is indicated within the boxes. Arcs are weighted with the
processing time of the task at the outcoming node.
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Figure 6.2. A solution to the problem of Figure 6.1. The makespan is 14
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or machines {R0,...,Rm-1}. Each job Ji consists of a set of tasks {ti0,...,ti(m-1)} or opera-
tions to be sequentially scheduled. Each task has a fixed duration or processing time
duil and requires the exclusive use of a single resource. The objective is to come up
with a feasible schedule such that the completion time of the whole set of tasks, i.e.,
the makespan, is minimized. Figure 6.1 shows a problem instance in a usual graphic
representation. From this representation a solution to the problem is an acyclic sub-
graph that includes every node as well as every arc from sequential constraints, but
only a Hamiltonian selection from each resource, that is a subgraph that expresses a
linear ordering among the set of tasks requiring the resource. The cost of the solu-
tion is the cost of the longest path from the start node to the end node in the solution
graph. Figure 6.2 shows a solution subgraph to the problem of Figure 6.1.

This representation of the JSS problem suggests that partial schedules of the sub-
set of tasks requiring the same resource are the actual basic building blocks. Hence
we have tried to envisage a codification schema that allows us to design genetic op-
erators to explicitly manipulate partial schedules. The long-term objective is that
these operators can exploit knowledge from the problem domain.

6.3 Conventional Codification Schemas and Scheduling
Algorithms

Here we consider the codification schema proposed by C. Bierwirth [1]: the per-
mutation with repetition schema. According to this representation, a chromosome is
codified by a permutation of the whole set of tasks of the problem at hand. Con-
sider, for example, the problem depicted in Figure 6.1 and the permutation of its
tasks (t31 t11 t12 t32 t01 t33 t13 t02 t03). From this permutation an individual is obtained by
replacing every task identifier by the corresponding job number; therefore we ob-
tain (3 1 1 3 0 3 1 0 0). Consequently, this codification should be understood to
mean the following: the first 2 represents the first task of the second job, the first 3
is the first task of the third job, the second 2 is the second task of the second job,
and so on. One of the main reasons to introduce this codification is that the genetic
operators always produce feasible chromosomes, as we will see in the following
paragraphs. The mutation operator we use in this work is the order-based mutation
(OX) proposed by Syswerda [8]: two tasks are selected at random and their posi-
tions are interchanged. At the same time, we use the generalized position crossover
(GPX) proposed by Bierwirth [1]. In order to clarify how GPX works, consider the
following two parents:

Parent1 (3 1 1 3 0 3 1 0 0) Parent2 (0 3 3 0 1 1 0 1 3).

A substring is selected at random from parent1, for example the underlined sub-
string that includes the second 1, the second and third 3, and the first 0. The off-
spring is constructed by inserting that substring at the position it has in parent1 and
filling the remaining positions with the remaining tasks, in this case maintaining the
ordering they have in parent2. Hence, in this case we obtain the offspring

(3 0 1 3 0 3 1 0 1).
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The intuition behind the GPX operator is that the offspring inherits characteris-
tics from both of the two parents by maintaining the relative ordering and position
of a number of tasks from parent1, and only the relative order of the remaining ones
from parent2. However, the meaning of an allele might change during crossover;
for example, the 0 of the former substring selected from parent1 represents the task
t01, while after being inserted into the offspring it represents t02. This effect is known
as implicit mutation of the crossover operator and in practice makes it difficult to
characterize the effect of the genetic operators on the basic building blocks that in
this codification are considered as the partial ordering of subsequences.

In order to evaluate chromosomes a scheduling strategy must be defined that
translates the chromosome codification into a schedule. The fitness value is, in
principle, the inverse of the makespan of this schedule given that we have a mini-
mization problem. In this work we used the following scheduling algorithm.

for each task in the chromosome from left to right do

set its start time to lowest value compatible with
the assignments made to the previous tasks in the
chromosome;

This algorithm has a complexity that in the worst case is O(N2), N being the total
number of the problem tasks. The start time of a task is calculated as the maximum
value of the completion time of the previous task in the job and the completion
times of the scheduled tasks requiring the same resource. Figure 6.3 shows the
Gantt chart of the schedule produced for this algorithm when it is applied to the
chromosome (3 1 1 3 0 3 1 0 0).

The above fitness function can be adjusted in order to better discriminate be-
tween good and bad chromosomes. Here we consider the scaling. This is a common
technique, as pointed out in [9]. The objective is either to accentuate or to soften the
difference between good and bad chromosomes in order to obtain a more accurate
discrimination. The underlying idea is that small relative differences among the fit-
ness of good and bad chromosomes do not facilitate the selection of the best chro-
mosomes and the elimination of the worse ones, whereas large relative differences

R0 t11 t22 t01

R1 t21 t13 t02

R2 t12 t23 t03

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.3. Solution produced to the problem of Figure. 6.1 by the former scheduling algo-
rithm from the chromosome (3 1 1 3 0 3 1 0 0). The makespan is 14. It is the same solution
represented in the graph of Figure 6.2
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might produce the dominance of semi-optima chromosomes and hence the prema-
ture convergence of the GA. Here, we consider a linear scaling that consists of re-
placing the original fitness f by

f f b' ,= + (6.1)

b being a parameter that may be provided by the user or automatically determined
from the problem. Here we use the following strategy to compute the value of the
parameter b. The objective is to establish a constant relation C among the best and
mean fitness values at each generation. Hence we calculate the parameter b for a
given generation so that

C mean b best b= +( ) +( ) . (6.2)

Consequently, for each generation we will have

b mean best C C= ( ) ( )* 1 . (6.3)

C is the scaling parameter: its value must be greater than 1 and, in principle, is
given by the user as the reminder parameters of the GA.

6.4 The TRO Codification Schema

In principle, a chromosome is represented by a Resource Matrix (RM). This is an
m n× matrix where the jth row represents a partial schedule for the tasks requiring
the resource Rj. From a RM a schedule can be built by merging all of the partial
schedules so that every precedence constraint is also satisfied. Unfortunately,
sometimes this is not possible because of the lack of compatibility among partial
schedules and hence a number of them should be modified. In order to do that, we
take up a priority schema for resources so that partial schedules of low-priority re-
sources are modified first. To represent priorities we include into the chromosome
representation a Resource Priority vector (RP) that codifies a resource ordering,
from high to low rescheduling priority. Figure 6.4a shows an RM representing par-
tial schedules for the problem of Figure 6.1, and Figure 6.4 b shows an RP of pri-
orities among resources.

The genetic operators we have used in this work are a natural extension of the
former GPX and OX. Given two chromosomes we first apply the GPX operator to
the pair composed by the ith row of each RM component, and then to the pair of RP
components. At the same time, the OX operator is applied to the RP component and
to every row of the RM component of the offspring. Nevertheless, the design of ge-
netic operators allows other possibilities, for example we could exploit any heuristic
information about either promising partial schedules or criticality measures of the
resources as an alternative choice of making random crossovers and mutations.
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To evaluate chromosomes we have envisaged a scheduling algorithm that is a
variant of the well-known G&T algorithm proposed in [5] and used, for example, in
[8]. The G&T algorithm selects nondeterministically the next task to be scheduled.
We solve this nondeterminism by taking into account partial schedules of resources,
as expressed in the MR component and the priorities among resources expressed in
the RP. The algorithm tries to preserve the partial orderings of resources with high-
est priority at the cost of breaking the partial schedules of lower-priority ones. The
rationale behind this strategy is that the priority of a resource is a measure of the re-
liance on its partial schedule.

Figure 6.5 shows the scheduling algorithm. This algorithm is a variant of the
well-known G&T algorithm proposed by Giffler and Thomson in [5]. The main dif-
ference is the way of selecting the task t at the beginning. In the G&T algorithm
this task is selected as the one with the lowest completion time possible in case it
was scheduled next. By working in this way, the G&T algorithm constrains the
search to the subset of active schedules, i.e. no matter how the task * is finally
selected from the set B, the resulting schedule is active. A schedule is active if it is
not possible to change the starting of a task toward a lower time, without delaying
another one, requiring in consequence swapping the relative ordering of at least two
tasks. Constraining the search to the set of active schedules is, in principle, a good
idea because it is proved that there is at least an optimal solution belonging to this
set. Even though our proposed algorithm does not constrain the search to the set of
active schedules, we have obtained experimental results a little bit better than the
results obtained with the genuine G&T algorithm.

The algorithm that selects the task * from the set B to be scheduled next needs
some more explanations. This algorithm tries to maintain the partial schedules as
expressed in the rows of the matrix RM. Therefore, if the set B contains a number
of tasks whose ancestors in the partial schedule have been already selected

B TR( ) , one of these task is scheduled next. Moreover, ties are broken in fa-

vor of the most critical resources in order to give a higher chance of maintaining
their partial schedules on further selections. On the other hand, when the set B does
not contain any task whose precedents in the row of matrix RM were already se-
lected B TR =( )at least a partial schedule must be broken. In this situation, the

algorithm tries to select the task in B belonging to the same job as the task in the set

031312

021321

012211

ttt

ttt

ttt

( )210 RRR

a. The Resource Matrix (RM) component b. The vector of Resource Priorities (RP)
component

Figure 6.4. A TRO codification chromosome for the problem of Figure 6.1.



6 Codification for Scheduling Problems     79

TB that requires the most critical resource, hence giving a chance to maintain the
partial schedule of this resource. Finally if there is not any task in the set B TB
with the same resource requirement, the task of B requiring the lowest-priority re-
source is selected, therefore breaking its partial schedule.

S c h e d u lin g  a lg o r it h m 

A  =  { t 0 1 ,. .. ,t 0 ( m- 1 ) } ;  / *  fir st  ta sk  o f e ac h  o f th e j o b s, at  e ach  s tep  A  i s t h e  se t o f 
                                 u n sch ed u l ed  ta sk s w h o se p r ec ede n t s i n  th e j o b  ar e sc h ed u l ed * /

w h il e A d o  { 

D e te rmin e A s u c h  th a t t t A, , w h er e t i s th e l o w est  s ta rt ti m e if 
ta sk   w as  s ch e d u led  n ex t;

L e t M ’  b e  t h e m a ch in e  r eq u ir ed  b y  , an d  B  t h e  su b s et  o f  t ask s in  A  req u ir in g  M ’; 

D e le te  fr o m  B  th o s e t as k s th at  ca n n o t st ar t a t a t im e lo w er  th an  t du+ ;

S e le ct  * f ro m  B to  b e sch ed u le d  n e x t; 

D e le te  *  f ro m  A  a n d  in se rt  th e n ex t ta sk  o f  th e sa m e jo b  a s * i f * i s n o t t h e  la st 
o n e o f  it s jo b ;

}

en d . 

Algorithm to Select *  from B

T R  =  s et o f  u n sc h e d u l ed  ta sk s su c h  th a t al l t h e ir p r ec ed e n t s i n  th e c o r res p o n d in g r o w o f 
         R M  ar e alrea d y  sc h e d u le d ; 

if  B TR( )
th en *=  ta sk  o f  B TR re q u ir in g  t h e m o st  cr it ica l re so u rc e, i. e,  t h e o n e w it h  h ig h e st

                  p ri o r ity  i n  R P ; 
  el se    JB  =  s et o f  jo b s  t o  w h i ch  th e tas k s  o f  B  b elo n g s;
           T R B  =  su b se t o f ta sk s  o f T R  b e lo n g i n g  to  a  jo b  o f JB ;

           if TRB( )
           th en   R *  =  se t o f re so u rc es  re q u ir ed  b y  th e ta sk s  o f T R B ;
                    =  ta sk  o f  T R B  re q u iri n g  to  t h e  m o st  cr it ic al reso u r ce  o f  R *  ( se e R P ) ;
                    J *  = j o b  c o n t ai n in g  th e t as k  ;
                    * =  t as k  o f B  b el o n g in g  to  J* ;
           el se   * =  t as k  o f B  r eq u i rin g  th e  l ea st cr iti ca l res o u rce  ( se e R P ) ;

en d . 

Figure 6.5. Scheduling algorithm. t refers to the start time of task and du to its proc-
essing time.
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6.5 Experimental Study

In this section we report results from an experimental study on a subset of selected
problems from the OR-library comparing our proposed codification and scheduling
algorithm against the permutation with repetition codification and the scheduling
algorithm proposed in Section 6.3. In both cases we implement a genuine GA, that
is, a GA that does not exploit any knowledge from the problem domain and that is
not enhanced with common techniques that contributes to improve the performance,
such as elitism, local search or structured populations. Table 6.1 summarizes the re-
sults of this study. In any case, we run the GA so that a number of about 10,000
chromosomes are evaluated and repeat each experiment 40 times. As we can ob-
serve, our proposed codification presents a little bit better results, but on the other
hand the run time required is higher. For example, solving the FT10 problem re-
quires about of 1.5 sec when using permutations with repetition codification,
whereas it requires about 6 sec when using TRO, on a Pentium III at 750 Mhz.

Table 6.1 Results of an experimental study on 11 selected problems from the OR-
library comparing the permutations with repetition against the TRO codification.
Every experiment was repeated 40 times and shows the best solution found, the
mean solution, and the standard deviation in percent. The size of the problem refers
to the number of jobs (N) and the number of machines (M).

Problem
size

Permutations with
repetition codification

TRO codification

Problem
instance N M

Best
solution
known

Best
found Mean sd%

Best
found Mean sd%

FT10 10 10 930 953 1023 3.1 936 977 1.8
FT20 20 5 1165 1244 1309 2.8 1175 1203 1.4
abz7 20 15 665 728 759 1.7 699 731 1.6
abz8 20 15 670 760 780 1.8 721 747 1.1
abz9 20 15 686 780 802 2.1 745 764 1.0
la21 15 10 1046 1115 1172 2.1 1070 1118 1.9
la24 15 10 935 1002 1047 2.1 970 1004 1.5
la25 15 10 977 1024 1078 2.2 1012 1042 1.3
la27 20 10 1235 1305 1390 2.1 1291 1337 2.3
la29 20 10 1153 1275 1326 2.1 1236 1282 2.6
la38 15 15 1196 1344 1398 2.0 1257 1292 1.8



6 Codification for Scheduling Problems     81

6.6 Final Remarks

In this chapter we proposed both a new chromosome codification and a scheduling
algorithm for JSS problems: the TRO schema, and a variant of the G&T algorithm.
From the experimental results we can assume that the performance of this schema is
similar to the codification of permutations with repetition in conjunction with the
conventional scheduling algorithm proposed in Section 6.2, when both of them are
used with a genuine GA. Even though the reported experimental results are a little
bit better when using our proposed approach, this improvement might be a conse-
quence of the scheduling algorithm. Of course, this algorithm could be used in
conjunction with the permutation schema. On the other hand, the TRO codification
makes the partial schedules of the resources clear and therefore it is expected that it
will allow us to envisage genetic operators and initialization strategies focused to
obtain promising partial schedules. In order to do that we plan to exploit the heuris-
tic proposed in [10] that we have already used to design the initialization strategy
proposed in [12]. Therefore, we expect that the proposed TRO schema and the
scheduling algorithm provide a useful way to hybridize a genetic algorithm by
means of knowledge from any heuristic strategy.
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Evolution-based Learning of Ontological
Knowledge for a Large-scale Multi-agent
Simulation

A. Lazar, R.G. Reynolds

7.1 Introduction

The results of the data mining [1] process can be used in many different ways.
Therefore, the form of the knowledge collected will have a major impact on the ef-
ficiency and effectiveness of its use in a given application. In this paper we exam-
ine the problem of extracting knowledge for use by agents in a large-scale multi-
agent system [2]. Here, the knowledge is ontological knowledge that represents
constraints that the physical and social environments placed upon the agents and
their interactions. The ontological knowledge represents the semantic building
blocks around which the world models are formed. For an agent in a particular
model, only the things in his ontology can exist and it cannot perceive things that
are not represented in the ontology. An ontology [3] is a basic level of knowledge
representation scheme, a formal definition of entities and their properties, interac-
tions, behaviors, and constraints. Each agent’s decisions need to be checked against
these constraints prior to their execution. In a complex multi-agent system, hun-
dreds of thousands of agents may need to check these constraints regularly, which
means that a successful data mining activity will need to produce a relatively small
set of syntactically simple rules for the process to be efficient. Fox et al. [3] have
used data mining techniques to produce corporate ontogenies.

Several factors can influence the nature of the ontological constraints that are
produced: first, the nature of the data collection and measurement process and the
uncertainty induced into the data set by the presence of noise, second, the nature of
the representation used to express the extracted patterns; e.g.,. whether it allows for
uncertainty or not, third, the data mining technique employed and the assumptions
that it makes about the collected data, fourth, how these constraints will be stored,
accessed, and used by the agents involved.

For a given data set one can compare the different data mining techniques in
terms of the syntactic and semantics of the induced constraints. In this application
we are interested in simulating the emergence of the archaic state in the Valley of
Oaxaca, Mexico. A state is among the most sophisticated and powerful structures
that has emerged from the social evolution process. In the modern world these are
termed “nation states” with a government composed of a hierarchical decision-
making structure where the decision-makers are either elected or appointed. States
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are supported by various economies and are able to interact with each other via
warfare, trade, etc. Most states in the ancient world-often called archaic states-were
ruled by hereditary royal families. These archaic states exhibited much internal di-
versity with populations numbering from tens of thousands to millions. They had a
bureaucracy, organized religion, a military presence, large urban centers, public
buildings, public works, and services provided by various professional specialists.
The state itself could enter into warfare and trade-based relationships with other
states and less complex neighbors.

The process by which complex social entities such as the state emerged from
lower level structures and other supporting economies has long been of prime in-
terest to anthropologists and other disciplines as well. This is because the emer-
gence of such a social structure can have a profound impact on the society’s physi-
cal and social environment. However, the task of developing realistic
computational models that aid in the understanding and explanation of state emer-
gence has been a difficult one. This is the result of two basic factors:

1. The process of state formation inherently takes place on a variety of temporal
and spatial scales. The emergence of hierarchical decision-making [4, 5] can be
viewed as an adaptation that allows decision-makers to specialize their decisions
to particular spatial and temporal scales.

2. The formation of the state is a complex process that is fundamentally directed
by the social variables but requiring dynamic interaction between the emergent
system and its environment. Identifying the nature of these interactions is one of
the reasons why the process of state formation is of such interest.

The goal of this project is to produce a large-scale knowledge-based computa-
tional model of the origins of the Zapotec State [6], centered at Monte Alban, in
the Valley of Oaxaca, Mexico. State formation took place between 1400 B.C. and
300 B.C. While archaic states have emerged in various parts of the world, the rela-
tive isolation of the valley allowed the processes of social evolution to be more
visible there. Extensive surveys [7, 8, 9] of the 2,100-square-kilometer valley were
undertaken by the Oaxaca Settlement Pattern Project in the 1970s and 1980s. The
location and features of over 2,700 sites dating from the archaic period (8000 B.C.)
to Late Monte Alban V (just prior to the arrival of the Spaniards) were docu-
mented. Several hundred variables were recorded for each site. In addition, they
surveyed the 6.5-square-kilometer urban center of Monte Alban, a site that con-
tained over 2,000 residential terraces. This site was the focus for early state forma-
tion in the valley.

Both surveys provided the knowledge needed to create our multi-agent simula-
tion model. We then produced a spatial temporal database that contained the results
of both surveys and used data mining techniques from Artificial Intelligence [2] to
produce knowledge about site location, warfare, trade, and economic decisions to
be used for the construction of the multi-agent model. However, in order to do this
we needed to add more data about the spatial and temporal context to both the re-
gional and urban center surveys. Specifically, we had to add variables that allowed
us to locate each site spatially and temporally to a level of precision consistent with
the scale of our simulation. For example, temporal periods are characterized by the
presence of pottery of different styles. That data was available only in text form.
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All of this pottery data, over 130 variables for each residential terrace, was scanned
into the computer, corrected for errors, and added to the Monte Alban data set.
This data allowed us to identify the periods that each terrace was occupied. Pottery
data was also integrated into the regional data set.

In addition, the survey had produced hundreds of pages of hand-drawn maps
for both the Monte Alban and regional surveys that contained the spatial context
for the location of each site. Since our goal was to ask specific questions about the
spatial and temporal context, we needed to tie each site into its mapped location.
We then proceeded to digitize each of the maps and to associate each site object
with its corresponding data record. This allowed us to produce a geographical in-
formation system (GIS) that serves as our “virtual valley of Oaxaca”. This acts as a
vehicle for our data mining activities and as a knowledge base for the multi-agent
simulation and allows the results of the simulation to be displayed and compared
with the actual data in a spatial context. It is envisioned that the resultant GIS sys-
tem will be a useful tool for researchers and students from various fields to study
the emergence of complexity in the future.

In order to perform the data mining activities, we extended traditional data
mining techniques and developed new ones in order to deal with the complexities
inherent in the Oaxaca database. At the regional level we used Utgoff’s incre-
mental decision tree algorithm (IDTI) [10] to generate the decision trees for each
region and phase of the valley. The approach was used to generate decision trees
that discriminated between sites that were targets for warfare and those that were
not for a given period [11, 12].

However, given the many disparate steps under which the data was collected
and organized, it was felt that perhaps some improvements might be made by using
a technique that took into account the presence of uncertainty in the data, espe-
cially in regions and periods when the social and settlement patterns were complex
and prone to data collection error. To test this hypothesis we selected a period of
time just before the emergence of the state, Rosario, where there was evidence of
increased social strife brought about in part by increased population growth. The
part of the valley that exhibited the greatest population at the time, Etla, was also
selected. Since the majority of the data was discrete rather than continuous in na-
ture, we selected rough sets as a vehicle for representing uncertainty here.

We employed an evolutionary technique, Genetic Algorithms [13, 14], to con-
trol the search in this case because Genetic Algorithms had been successfully used
with Rough Sets previously. The decision systems or rule sets produced by both
approaches were then compared in terms of their ability to decide about the loca-
tion of sites that are targets for warfare in this period. We then compared the two
approaches over all relevant phases of social evolution in the valley.

In Section 7.2 we begin with an overview of decision trees and their generation.
Next Section 7.3 discusses the ways in which noise was introduced into the data
here. In Section 7.4 a general framework for the generation and description of de-
cision systems is briefly presented. In Section 7.5 rough sets are introduced and
embedded within an evolutionary search engine based upon Genetic Algorithms.
Section 7.6 provides a comparison of a specific decision system for the Etla region
in the Rosario phase as produced by decision trees and rough sets, respectively.
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Figure 7.1 The decision tree for the locations of sites with evidence of raiding in Ro-
sario phase in the Etla region of the valley.
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Section 7.7 compares the two approaches together over all phases in the Etla re-
gion. The rough set approach appears most useful in those phases with the most
evidence for change in social complexity. Section 7.8 gives our conclusions.

7.2 Decision Tree

Decision tree induction is a very good method for high-dimensional applications. It
is a fast, nonlinear prediction method and employs dynamic feature selection. The
solution complexity is expressed in terms of the number of terminal nodes. The
most complex tree covers all cases in the training data. Pruning the tree and meas-
uring the errors in progressively smaller trees find less complex solutions.

Any decision tree can be rewritten in a form of decision rule set. An implied
decision rule in a tree is a complete path to a terminal node. Because these rules are
not mutually exclusive, the size of the decision rule set can be much larger than the
logic needed for overlapping rules. One rule can combine a large number of terms
or true-false conditions, which takes a lot of time for evaluation, when the rule set
is used in an agent-based simulation.

One of the advantages of logic-based solutions as decision trees and corre-
sponding decision rules is their powerful explanatory capabilities. Table 7.1 gives
all of the relevant periods of social evolution in the valley. Tierras Largas marks
the beginning of early village settlement there. The state emerged at Monte Alban
in period Monte Alban Ia. The valley came under control of the state by Monte Al-
ban II, and Monte Alban IIIa signaled the decline of the state and its succession by
a collection of city-states localized in different parts of the valley.

Table 7.1  Number  of Terminal Nodes for Each Phase

Period Approximate date

Tierras Largas 1400 - 1150 BC

San Jose 1150 - 850 BC
Guadalupe 850 - 700 BC
Rosario 700 - 500 BC
Monte Alban Ia 500 - 300 BC
Monte Alban Ic 300 - 150/100 BC
Monte Alban II 150/100 BC - AD 200
Monte Alban IIIa AD 200 - 500
Monte Alban IIIb AD 500 - 700/750
Monte Alban IV AD 700/750
Monte Alban V AD 1000 - 1521
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For some periods there were several hundred rules produced just for the war-
fare constraint alone.  Adding in the other constraints would produce a knowledge
base of several thousand rules at a minimum. However, since the data were col-
lected over a ten-year period over varying landscapes using different surveyors and
recording equipment, it was felt that a significant amount of noise might be present
in the data. The original technique did not account explicitly for uncertainty in the
measurement data. Thus, it was possible that certain rules or rule conditions were
present only to deal with the specific noise introduced into the process by the sur-
vey methods and data transformation activities.

Table 7.2 Decision Rule Set Induced from the Decision Tree

Rules

1 env_zone<2.5 => decision(0)
2 env_zone>=2.5 and slope<1.5 and water<2.5 => decision(0)
3 env_zone>=2.5 and slope<1.5 and water>=2.5 => decision(1)
4 env_zone>=2.5 and slope>=1.5 and water<2.5 and land<3 and env_zone<3.5

and irrigtype<2 and land<1.5 => decision(0)
5 env_zone>=2.5 and slope>=1.5 and water<2.5 and land<3 and env_zone<3.5

and irrigtype<2 and land>=1.5 and water<1.5 => decision(0) or decision(1)
6 env_zone>=2.5 and slope>=1.5 and water<2.5 and land<3 and env_zone<3.5

and irrigtype<2 and land>=1.5 and water>=1.5 => decision(0) or decision(1)
7 env_zone>=2.5 and slope>=1.5 and water<2.5 and land<3 and env_zone<3.5

and irrigtype>=2  => decision(0)

8 env_zone>=2.5 and slope>=1.5 and water<2.5 and land<3 and env_zone>=3.5 =>
decision(0)

9 env_zone>=2.5 and slope>=1.5 and water<2.5 and land>3 => decision(0)
10 env_zone>=2.5 and slope>=1.5 and water>=2.5 => decision(0)

If this was the case, then by using a representation and associated learning tech-
nique that dealt explicitly with uncertainty it might be that fewer rules would be
needed in periods where the noise is most pronounced.

7.3 Uncertainty in Data

Uncertainty in a data set, which can occur during data collection or data entry, is
referred to as noise in the data. One type of noise is the presence of missing attrib-
ute values. In this case, the objects containing missing attributes values can be dis-
carded or the missing values can be replaced with the most common values. An-
other type of noise occurs because the available knowledge in many situations is
incomplete and imprecise. This means that sometimes the attribute values for a set
of objects are not sufficient and precise enough to differentiate between the desired
classes of objects. In the Oaxaca data set, this may have occurred for many rea-
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sons. The ancient sites may be damaged because of plowing, erosion, pot hunting,
and grazing. Also, human perception is subjective, and many people worked on the
collection of the data. Some errors are also possible due to the scanning process
since much of the data was available only from printed text and hand-drawn maps
as described earlier.

Many different ways of representing and reasoning about uncertainty have been
developed in Artificial Intelligence. These theories include belief networks, non-
monotonic logic, fuzzy sets along with fuzzy logic and rough sets. One approach
based on the rough set theory [15] provides a lower and upper approximation in
terms of a set describing a target concept depending on how the relationship be-
tween two partitions of a finite universe is defined.

Given the discrete nature of the data set we selected the rough sets method for
representing uncertainty here. Since the rough set algorithm is inherently intracta-
ble for large data sets like ours, an evolutionary based approach, here Genetic Al-
gorithms, was employed to guide the search for the appropriate rough set rules.

7.4 Building Decision Systems

A decision rule is an assertion, of the form “if p then s”, denoted by p=>s, where p
and s are logical formulas in the first-order logic. For each object, certain values of
the condition attributes determine the value of the decision attribute. We define a
decision system as a finite collection or set of decision rules. In order to obtain a
decision system with a minimum number of rules, superfluous decision rules asso-
ciated with the same decision class can be eliminated without disturbing the deci-
sion-making process.

The problem of decision system construction is to induce a set of rule descrip-
tors for decision classes from the input set of objects in a decision table. These sets
of descriptors, named decision systems, consist of a set of decision rules. We can
classify the decision system as follows:

1. Decision systems with a minimum set of rules. They are focused on describing
input objects using a minimum number of necessary rules.

2. Decision systems with an exhaustive set of rules. These decision systems con-
tain all possible decision rules.

3. Decision systems with a satisfactory set of rules. This category represents sets of
decision rules, which satisfy given a priori user's requirement for an acceptable
decision system.

One strategy to find a simple decision system with good classificatory capabili-
ties is to first induce an exhaustive set of rules, and then to prune away those rules
that do not lower the decision system's performance significantly. An exhaustive
decision system can be generated from the reducts [16, 17].
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Pruning can be done by identifying and removing components of the decision
system that only explain small parts of the data, thereby preserving general trends
in the underlying data material. In order to find a minimal decision system we can
use a simple greedy heuristic algorithm as described by Lazar and Sethi [18]. This
algorithm computes only one decision system. If more than one decision system is
required, we can use a Genetic Algorithm, which solves the minimal cover set
problem. Agotnes [19] proposed two algorithms for generating satisfactory deci-
sion systems, a quality-based rule filtering algorithm and a genetic rule-filtering al-
gorithm. Rule filtering operates on an existing exhaustive decision system, pruning
it while retaining a high performance. Both of the above solutions make no as-
sumptions about the minimal set cover condition. As a result, the decision system
may not be minimal.

7.5 Rough Set Theory

Pawlak [15] introduced rough set theory in the early 1980s as a tool for represent-
ing imprecise or uncertain information, and for reasoning about it. Based on the
notion of indiscernability, rough set theory deals with the approximation of sets,
using equivalence relations. These approximations can form model hypotheses.
The basic concept of rough set theory is called a reduct [15]. A reduct is a minimal
sufficient subset of features such that it will produce the same categorization of
objects as the set of all features. By definition a reduct represents an alternative
and simplified way of representing a set of objects. Following the rough set meth-

Figure 7.2 Model Construction
Phases
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odology, the full set of reducts is computed, a minimal reduct is chosen, and the
data table is vertically pruned. Then the object-related reducts are computed and
the exhaustive decision rule system is generated.

At the end, a pruning method for the decision rule set is applied in order to ob-
tain a performant decision system that possesses a good balance between the num-
ber of rules and the accuracy of the classifications. The process is shown in Figure
7.2.

7.5.1 Genetic Algorithm for the Reduct Problem

Multisets are unordered collections of elements where an element can occur as a
member more than once. A hitting set [20, 21] for a given multiset, MS, of ele-
ments from P(C) is a set B, B C B C, such that the intersection between B and
every set in MS is nonempty.

HS MS B C B MS MS MSi i( ) = { } for all .     (7.1)

The set B HS(MS) is a minimal hitting set of MS, iff B is no longer a hitting set
whenever any of its elements are removed. The set of minimal hitting sets is de-
noted by minHS(MS).

For the reduct problem using a minimal hitting set, the population for the Ge-
netic Algorithm is a set P of N individuals, each from the space P(C), where C is
the condition attributes set. Each individual is encoded as a binary vector, where
each bit indicates the presence of an attribute in the set.

For this population, the fitness function rewards individuals hitting more sets in
the collection of sets corresponding to the discernibility function.

A possible fitness function proposed by Vinterbo [21] is the following:

f B
C B

C

MSi MS MSi B

MS
( )

{ }
= + .          (7.2)

The first term rewards smaller-sized individuals, and the second is used to ensure
that we reward sets that are hitting sets.

The fitness function is a discrete, multimodal function. The algorithm used by
Vinterbo and Ohrn [20] is the traditional Genetic Algorithm implementation. The
genetic operators crossover, mutation, and inversion are used and selection is done
by the “roulette wheel” process. The same selection of individuals is used in order
to replace the individuals in the fixed-size population in the recombination step.
Elitism and Boltzaman scaling are included. Initialization of the population is done
randomly, and the process stops when no more improvement in the average fitness
of the population is produced over a predefined number of generations. 
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7.6 Decision Trees and Rough Set Rules

Previously [12] computed decision trees from Tierras Largas phase through Monte
Alban IIIa for all regions in the valley using Utgoff’s decision tree algorithm. The
goal was to diferentiate between the sites that are targets for attack and the those
that are not. Three variables were used in order to compute the decision: the pres-
ence of burnt daubt at the site, other evidence of burning, and the presence of de-
fensive walls. The variables used to predict these decisions from positive and
negative examples in the training set  were: Environmental zone, Slope, Hiltop or
Ridge top, Soil Character, On the boundary between the loam and the swampy
reagion, Water source, Depth of Water Table, Type of irrigation, and Land use
type among others.

In section 7.2 we presented a decision tree (Figure 7.1) and a corresponding de-
cision system (Table 7.2) for the Rosario phase (700-500 B.C.) generated by the
decision tree approach. It is the fourth phase of occupation in the study, and at that
time population size and warfare increased substantially [6]. For example, it was
observed that chunks of burnt daub appear on the surface of the villages seven
times more frequently than in the previous phases. There are 36 sites in the Rosario
phase. The archaic state emerged in the period following this phase of increased
warfare.

First, we performed a feature selection using the rough set guided by Genetic
Algorithm with the variables above. The rough set approach extracted the same
five variables as did the decision tree approach. They are: Environmental Zone,
Slope, Hiltop or Ridge Top, Water Source, Type of Irrigation, and Land Use. We
then computed the reducts, and the corresponding decision system is given in Ta-
ble 7.3. This table represents the exhaustive set of rules produced. While it is clear
that several of the rules are so simple that they can be easily combined to produce a
smaller set of rules overall, it is sufficient for comparative purposes here.

Our focus here is on the impact of the use of a technique, such as rough sets,
that explicitly is able to deal with uncertainty in the recognition decision. From this
standpoint there are two basic points of comparison. First, how many of the rules
identify a site for attack unambiguously and, what percentage of the rules that se-
lect sites for attack do they comprise? Second, in those cases in which the rule pro-
duces a split decision we will need to resolve the tie using other means. The ques-
tion is, how much effort do we need to spend in order to find out that we must
contact another source to resolve the question?

In answer to the first question, explicitly dealing with uncertainty using the
rough set representation produced four rules that identify sites for attack as op-
posed to just three rules in the decision tree approach. Of these four rules, two of
the four (11 and 16) result in unambiguous decisions. That is, 50% of the rules that
can conclude that a site can be attacked are unambiguous whereas the other two
need further clarification. The decision trees approach produces 3 rules that can
conclude that a site can be attacked, with only one of them (rule 3) being conclu-
sive. Thus, only 33% of the rules that identify a site for attack are conclusive as
opposed to 50% for the rough set approach. By taking data uncertainty into ac-
count, the rough set approach not only produced more rules for the identification of
the target concept, but also a higher percentage of unambiguous ones.
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Table 7.3 Exaustive Decision System for the Rosario Phase in Etla Region

Rules
1 env_zone(2) => decision(0)
2 water(1) AND land(2) => decision(0) OR decision(1)
3 env_zone(3) AND slope(2) AND water(2) AND

irrig_type(0) AND land(2) => decision(0) OR decision(1)
4 slope(1) and water(2) => decision(0)
5 water(4) => decision(0)
6 land(1) => decision(0)
7 land(4) => decision(0)
8 env_zone(4) => decision(0)
9 irrig_type(3) => decision(0)

10 irrig_type(4) => decision(0)
11 slope(1) and water(3) => decision(1)
12 slope(2) and water(3) => decision(0)
13 water(0) => decision(0)
14 irrig_type(2) => decision(0)
15 irrig_type(1) => decision(0)
16 water(3) and irrig_type(0) => decision(1)

The other question concerns the relative amount of effort expended to produce
an uncertain conclusion. In the decision system produced using Rough Sets, the in-
conclusive rules have fewer conditions to be checked than for those from the deci-
sion trees approach. Specifically, the inclusive rough set rules have 2 and 5 condi-
tions respectively for a total of 7 conditions, one of which is shared between them
(land type =2). In the decision tree system 8 conditions must be checked in the 2
inconclusive rules for a total of 16. However, each shares the same 8 so that the
total number of unique conditions to be tested is 8 as opposed to 6 for the Rough
Set approach. More effort must then be expended in order to check the inconclu-
sive rules in the decision tree approach as opposed to that for Rough Sets.

Since both approaches extracted the same set of condition variables, the differ-
ences are likely to reflect the impact that noise in the data had on the relative per-
formance of the approaches. By allowing for the presence of noise in the system
the number and percentage of conclusive rules have been increased and the amount
of effort spent on evaluating inconclusive rules decreased. This region and phase
combination reflects an increased complexity in the warfare patterning when com-
pared to previous periods. While the complexity isn’t nearly as great in the subse-
quent periods when the state emerges, even in this case specific efficiencies accrue
to the use of approaches that take uncertainty explicitly into account. In the next
section we will investigate this hypothesis by comparing the performance of the
two approaches over all periods of interest in the valley.
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7.7 Results

The two representational approaches were compared over the seven periods that
chronicle the emergence of social complexity in the valley. The decision trees
results are based on the average of the best solution for each of 20 runs with
Utgoff’s Decision Tree algorithm. The Rough Set approach describes the best
solution produced by the Genetic Algorithm-guided Rough Set algorithm using the
performance function described earlier.

DT-#c and RS-#c refer to the number of conditions in an average rule for the
best decision trees and rough sets rule set, respectively. For each of the 7 periods,
the number of conditions in the rough set approach is never greater than that for
decision tree approach. In fact, aside from period II the number of terms in the
rough set representation is less than that for decision trees. Rosario through Monte
Alban Ic correspond to periods of escalating warfare associated with the
emergence of a state centered at the site of Monte Alban in the valley. Period II
corresponds to a period in which the entire valley is under control of the state and
the focus of warfare moves outside of the valley as the Oaxacan state attempted to
subdue neighboring areas. Thus, the amount of warfare present in the valley at that
time is markedly reduced, and the simplicity of its patterns is equally characterized
by both approaches.

During the periods in which warfare patterns were the most complex (Rosario,
Monte Alban Ia, Monte Alban Ic), the rough set representation produced rules with
a total of 143 conditions as opposed to a total of 223 conditions for decision trees,
a significant reduction in complexity. In terms of the simulation, if these rules need
to be checked every time step for each of several thousand sites and several
thousand agents per site, the computational time saved can be significant.

DT-depth and RS-depth correspond to the maximum number of conditions in a
rule in the best rule set. In this case the rough set representation always has fewer
conditions on average than the decision tree representation. The increased number
of conditions in the decision tree representation corresponds to that fact that
explicit sources of noise are included as terms in the rules as opposed to being
removed in the rough set representation. Variation can be produced by different
surveyors and different landscapes and if their charcaterization is not part of our
goal, an approach such as Rough Sets that works to exclude these terms will be
more successful.

Dt-#var and RS-#var correspond to the number of unique variables used as
terms found in the best rule set of each. What is interesting here is that although the
rough set approach produces a rule set with fewer rules and fewer conditions per
rule, the number of variables never differs by more than one between the two
approaches. They are both using the same information to a different effect in each.
This is, in fact, what we observed in the previous section where both approaches
used the same subset of variables for their rule conditions. But, we observed that
the actual behavior of the rules that were produced was different in terms of
identifying the target concept.
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Table 7.4 A comparison of the rules produced by using strict (DT) and rough set
(RS) constraint representations. # is the average number of conditions in each rule
of a rule set. Depth is the maximum length of the rules in the rule set. #var corre-
sponds to the number of different variables used in each of the rules in the rule set.

7.8 Conclusions

In this chapter, the goal was to employ evolution-based techniques to mine a large-
scale spatial data set describing the interactions of agents over several occupational
periods in the ancient valley of Oaxaca, Mexico. Specifically, we want to extract
from the data set spatial constraints on the interaction of agents in each temporal
period. These constraints will be used to mediate the interactions of agents in a
large-scale social simulation for each period and will need to be checked many
times during the course of the simulation.

One of the major questions was how to represent the constraint knowledge.
Popular data mining methods such as decision trees work well with data collected
in a quantitative manner. However, the conditions under which the surface survey
data was collected here introduced some uncertainty into the data. Would  a
representation that explicitly incorporated uncertainty into its structure produce a
more efficient representation of the constraints here that one than did not?  This is
important since the complexity of the constraint set will impact the complexity of
the simulation that uses those rules.

Here, we use Genetic Algorithms to guide the search for a collection of rough
set rules to describe constraints on the location of particular types of warfare in the
valley. Since warfare was a major factor in the social evolution in the valley, the
constraints reflecting its spatial and temporal patterning are important ingredients
in the model. The rules generated are compared sy with those produced by a
Utgoff’s Decision Tree algorithm. In each of the phases examined, the best rule set
that used the rough set representation always had fewer conditions in it, and the
average rule length was less than that for the decision tree approach in every case
but one. In that case they were equal. The differences were most marked in those
periods where the warfare patterns were most complex. It was suggested that the
differences reflect the inclusion of noise factors as explicit terms in the decision
tree  representation and their exclusion in the rough set approach.

Phase
DT

- #c
RS

- #c
DT

- #r
RS

- #r
DT -

Depth
RS -

Depth
DT

- #var
RS

- #var

Tierras Largas 8 6 4 5 3 2 2 2
San Jose 20 11 6 8 5 4 3 4
Rosario 48 25 10 16 8 5 4 5
Monte Alban Ia 80 64 13 34 9 6 6 6
Monte Alban Ic 95 54 16 35 11 6 7 7
Monte Alban II 23 24 7 16 5 4 5 5
Monte Alban IIIa 13 9 5 8 4 2 3 2
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A comparison of two decision systems from the first period where the two
approaches begin to show larger differences in rule and condition number, Rosario,
demonstrates that the rough set approach has a fewer percentage of inconclusive
rules and a larger percentage of conclusive ones than for the decision tree
approach. In addtion, the rough set approach needs to evaluate fewer conditions
relative to the inconclusive ones than the decision tree approach. These differences,
it is argued, result from the explicit consideration of uncertainty into a period that
is more complex and more prone to the introduction of such uncertainty than
previous periods.

The focus of the comparisons here was on the syntactic or structural differences
in the decision systems produced. In future work a comparison of the semantic
differences will be accomplished by using the approaches to produce alternative
ontologies in the agent-based simulation and assess the differences that are
produced. In other words, do the syntactic differences reflect semantic differences
in simulation model performance? And, what impact does the use of uncertainty to
represent ontological knowledge of the agents have on the basic simulation results?
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Summary.

8.1 Introduction

8

An Evolutionary Algorithms Approach to
Phylogenetic Tree Construction

Phylogenetics is an approach used by biologists to investigate the evolu-
tionary relationships among organisms. Typical software packages use heuristic search
methods to navigate through the space of possible hypotheses (phylogenies) in an at-
tempt to �nd one or more �best� hypotheses, as exhaustive search is not practical in
this domain. We have developed a system called Gaphyl, which uses an evolutionary
algorithms approach to search for phylogenies, and an evaluation metric from a com-
mon phylogenetics software package (Phylip). The evolutionary algorithms approach
to search yields improvements over Phylip on the tasks investigated here.

C. B. Congdon

The human genome project and similar projects in biology have led to a
wealth of data and the rapid growth of the emerging �eld of bioinformatics, a
hybrid discipline between biology and computer science that uses the tools and
techniques of computer science to help manage, visualize, and �nd patterns in
this wealth of data. The work reported here is an application to evolutionary
biology, and indicates gains from using evolutionary algorithms (EAs) as the
search mechanism for the task.
Phylogenetics [7] is a method widely used by biologists to investigate hy-

pothesized evolutionary pathways followed by organisms currently or previ-
ously inhabiting the Earth. Given a data set that contains a number of dif-
ferent species, each with a number of attribute values, phylogenetics software
constructs phylogenies, which are representations of the possible evolutionary
relationships between the given species. A typical phylogeny is a tree struc-
ture: the root of a tree can be viewed as the common ancestor, the leaves are
the species, and subtrees are subsets of species that share a common ancestor.
Each branching of a parent node into offspring represents a divergence in one
or more attribute values of the species within the two subtrees. In an alter-
nate approach, sometimes called �unrooted trees� or �networks�, the root of
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A toy example data set, sample phylogeny, and sample network. In this
example, there are four species and three features. The tree formed shows the hypoth-
esis that species B is related to species A, gaining the third feature. Similarly, C and
D are more closely related to B than to A, also acquiring new features.

the tree is not assumed to be an ancestral state, although these hypotheses
are often drawn as trees as a convenience. In this case, the tree represents a
hypothesis about the relationships between the species and does not attempt
to model ancestral relationships.

An example phylogeny for a toy data set is shown in Figure 8.1. In this
example, species A is the common ancestor in the tree, and B is the common
ancestor of the subtree below A (assuming the tree is rooted). The relation-
ships between species is also shown in the network representation, to better
understand the �unrooted tree�.
Phylogenies are evaluated using metrics such as parsimony: a tree with

fewer evolutionary steps is considered better than one with more evolutionary
steps. The work reported here uses Wagner parsimony. Wagner parsimony is
straightforward to compute (requiring only a single pass through the tree) and
incorporates few constraints on the evolutionary changes that will be consid-
ered. (For example, some parsimony approaches require the assumption that
species will only grow more complex via evolution 	 that features will be
gained, but not lost in the process.) Although originally used with pheno-
type data (physical attributes of the species), it is increasingly common to do
genetic studies of related species and construct phylogenies with the genetic
data.
The typical phylogenetics approach uses a deterministic hill climbing

methodology to �nd a phylogeny for a given data set, saving one or more
�most parsimonious� trees as the result of the process. (The most parsimo-
nious trees are the ones with a minimum number of evolutionary changes
connecting the species in the tree. Multiple �bests� correspond to equally
plausible evolutionary hypotheses, and �nding more of these competing hy-
potheses is an important part of the task.) The tree-building approach adds
each species into the tree in sequence, searching for the best place to add the
new species. The search process is deterministic, but different trees may be
found by running the algorithm with different random �jumbles� of the order
of the species in the data set.
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The evolutionary algorithms (EA) approach to problem solving has shown
improvements to hill climbing approaches on a wide variety of problems [25]
[4] [12]. In this approach, a population of possible solutions to the problem
�breed�, producing new solutions; over a number of �generations�, the pop-
ulation tends to include better solutions to the problem. The process uses
random numbers in several different places, as will be discussed later.
This research is an investigation into the utility of using evolutionary al-

gorithms as on the problem of �nding parsimonious phylogenies.

To hasten the development of our system, we used parts of two existing soft-
ware packages. Phylip [6] is a phylogenetics system widely used by biologists.
In particular, this system contains code for evaluating the parsimony of the
phylogenies (as well as some helpful utilities for working with the trees). Using
the Phylip source code rather than writing our own tree-evaluation modules
also helps to ensure that our trees are properly comparable to the Phylip
trees. Genesis [9] is a genetic algorithms (GA) package intended to aid the
development and experimentation with variations on the GA. In particular,
the basic mechanisms for managing populations of solutions and the modular
design of the code facilitate implementing a GA for a speci�c problem. We
named our new system Gaphyl, a re�ection of the combination of GA and
Phylip source code.
The research described here was conducted using published data sets avail-

able over the Internet [5] and was done primarily with the families of the su-
perorder of Lamii�orae data set [1], consisting of 23 species and 29 attributes.
This data set was chosen as being large enough to be interesting, but small
enough to be manageable. A second data set, the major clades of the an-
giosperms [3], consisting of 49 species and 61 attributes, was used for further
experimentation.
These data sets were selected because the attributes are binary, which sim-

pli�ed the tree-building process. As a preliminary step in evaluating the GA
as a search mechanism for phylogenetics, �unknown� values for the attributes
were replaced with 1�s to make the data fully binary. This minor alteration
to the data does impact the meaningfulness of the resulting phylogenies as
evolutionary hypotheses, but does not affect the comparison of Gaphyl and
Phylip as search mechanisms.
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As is the custom in the evolutionary computation community, the author dis-
tinguishes different forms of evolutionary computation and is working speci�cally
within the �genetic algorithms� framework.

There are many variations on the GA approach , but a standard methodology
proceeds as follows:
1. Generate a population of random solutions to the problem. (These are not
assumed to be particularly good solutions to the problem, but serve as a
starting point.)

2. The GA proceeds through a number of �generations�. In each generation:
a) Assign a ��tness� to each solution, so that we know which solutions
are better than others.

b) Select a �parent� population through a biased random (with replace-
ment) process, so that higher �tness solutions are more likely to be
parents.

c) Use operators such as crossover, which combines parts of two par-
ent solutions to form new solutions, and mutation, which randomly
changes part of a solution, to create a new population of solutions.

The algorithm terminates after a predetermined number of generations or
when the solutions in the population have converged within a preset criterion
(that is, until they are so similar that little is gained from combining parents
to form new solutions).
Several factors should be evaluated when considering the utility of GAs

for a particular problem:

1. Is there a more straightforward means of �nding a �best� solution to the
problem? (If so, there is no point in using the GA approach.)

2. Can potential solutions to the problem be represented using simple data
structures such as bit strings or trees? (If not, it may be difficult to work
with the mechanics of the GA.)

3. Can a meaningful evaluation metric be identi�ed that will enable one to
rate the quality of each potential solution to your problem? (Without
such a measure, the GA is unable to determine which solutions are more
promising to work with.)

4. Can operators be devised to combine parts of two �parent� solutions and
produce (viable) offspring solutions? (If the offspring do not potentially
retain some of what made the parents �good�, the GA will not be markedly
better than random trial and error.)

In the phylogenetics task, there is a standard approach to forming the
phylogenies, but that process also has a stochastic element, so the standard
approach is not guaranteed to �nd �the best� phylogenies for a given data set.
In the phylogenetics task, solutions to the problem are naturally represented
as trees. In addition, a standard metric for evaluating a given tree is provided
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An example parent tree for a phylogeny problem with seven species. A
subtree for crossover has been identi�ed.

with the task (parsimony). However, there is a challenge for implementing the
phylogenetics task using the GA approach: devising operators that produce
offspring from two parent solutions while retaining meaningful information
from the parents.

The typical GA approach to doing �crossover� with two parent solutions with
a tree representation is to pick a subtree (an interior or root node) in both
parents at random and then swap the subtrees to form the offspring solution.
The typical mutation operator would select a point in the tree and mutate it
to any one of the possible legal values (here, any one of the species). However,
these approaches do not work with the phylogenies because each species must
be represented in the tree exactly once.
Operators designed speci�cally for this task are described in the following

sections and in more detail in [2].

The needs for our crossover operator bear some similarity to traveling sales-
person problems (TSPs), where each city is to be visited exactly once on a
tour. There are several approaches in the literature for working on this type
of problem with a GA. However, the TSP naturally calls for a string represen-
tation, not a tree. In designing our own operator, we studied TSP approaches
for inspiration, but ultimately devised our own. We wanted our operator to
attempt to preserve some of the species relationships from the parents. In
other words, a given tree contains species in a particular relationship to each
other, and we would like to retain a large degree of this structure via the
crossover process.
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A second example parent tree for a phylogeny problem with seven species.
A subtree for crossover has been identi�ed.

The offspring initially formed by replacing the subtree from parent1 with
the subtree from parent2.

The offspring tree has been pruned to remove the duplicate species F.
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Our crossover operator proceeds as follows:

1. Choose a species at random from one of the parent trees. Select a subtree
at random that includes this node, excluding the subtree that is only
the leaf node and the subtree that is the entire tree. (The exclusions
prevent meaningless crossovers, where no information is gained from the
operation.)

2. In the second parent tree, �nd the smallest subtree containing all the
species from the �rst parent�s subtree.

3. To form an offspring tree, replace the subtree from the �rst parent with
the subtree from the second parent. The offspring must then be pruned
(from the �older� branches) to remove any duplicate species.

4. Repeat the process using the other parent as the starting point, so that
this process results in two offspring trees from two parent trees.

This process results in offspring trees that retain some of the species rela-
tionships from the two parents, and combine them in new ways.
An example crossover is illustrated in Figures 8.2 through 8.5. The parents

are shown in Figures 8.2 and 8.3; Figure 8.4 shows the offspring formed via
the crossover operation and identi�es the subtree that must now be pruned,
and Figure 8.5 shows the resulting offspring (after pruning species F). (Note
that in the phylogenies, swapping the left and right children does not affect
the meaning of the phylogeny.)

The Wagner parsimony metric uses �unrooted� trees, leading to many dif-
ferent possible representations of �the same� phylogeny that are anchored at
different points. Furthermore, �ipping a tree (or subtree) left to right (switch-
ing the left and right subtrees) does not alter the parsimony of a phylogeny
(nor represent an alternative evolutionary hypothesis). Therefore, it soon be-
came clear that Gaphyl would bene�t from a canonical form that could be
applied to trees to ascertain whether trees in the population represented the
same or distinct phylogenies.
The canonical form we instituted picks the �rst species in the data set

to be an offspring of the root and �rotates� the tree (and �ips, if necessary)
to keep the species relationships intact, but to reroot the tree at a given
species. (To simplify comparisons, we followed the default Phylip assumption
of making the �rst species in the data set the direct offspring of the root
of the tree.) Secondly, the subtrees are (recursively) rearranged so that left
subtrees are smaller (fewer nodes) than right subtrees and that when left and
right subtrees have the same number of nodes, a preorder traversal of the left
subtree is alphabetically before a preorder traversal of the right subtree. This
process is carried out when saving the �best� trees found in each generation,
to ensure that no equivalent trees are saved among the best ones. Canonical
form is illustrated in Figure 8.6.
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An illustration of putting a tree into canonical form. The tree starts as
in the top left; an alternate representation of the tree as a �network� is shown at the
bottom left. First, the tree is rotated, so that the �rst species is an offspring of the root.
Second, subtrees are rearranged so that smaller trees are on the left and alphabetically
lower species are on the left.

Trees are put into a canonical form when saving the best trees found in
each generation, to ensure that no equivalent trees are saved among the best
ones.

The typical GA �mutation� operator takes a location in the solution at ran-
dom and mutates it to some other value. Again, the standard operator was
not suited to our representation, where each species must appear exactly once
in the tree. Instead, for our mutation operator, we selected two leaf nodes
(species) at random, and swapped their positions in the tree.
A second mutation operator picks a random subtree and a random species

within the subtree. The subtree is rotated to have the species as the left child
of the root and reconnected to the parent. This second operator is based on
the mechanisms of the canonical form and was found empirically to help the
search process.

Early runs with Gaphyl on the larger data set yielded trees with a parsimony
of 280, but not 279 (lower parsimony is better). Re�ection on the process
and inspection of the population determined that the process seemed to be
converging too rapidly 	 losing the diversity across individuals that enables
the crossover operator to �nd stronger solutions. �Premature convergence�
is a known problem in the GA community, and there are a number of good
approaches for combating it. In Gaphyl, we opted to implement parallel pop-
ulations with immigration. Adding immigration to the system allowed Gaphyl
to �nd the trees of �tness 279.



8.5 Experimental Results

8 Phylogenetic Tree Construction 107

8.5.1 Comparison of Gaphyl and Phylip

The immigration approach implemented here is fairly standard. The popu-
lation is subdivided into a speci�ed number of subpopulations, which, in most
generations, are distinct from each other (crossovers happen only within a
given subpopulation). After a number of generations have passed, each popu-
lation migrates a number of its individuals into other populations; each emi-
grant determines at random which population it will move to and which tree
within that population it will uproot. The uprooted tree replaces the emigrant
in the emigrant�s original population. The number of populations, the num-
ber of generations to pass between migrations, and the number of individuals
from each population to migrate at each migration event are determined by
parameters to the system.

Recall that both Gaphyl and Phylip have a stochastic component, which
means that evaluating each system requires doing a number of runs. In Phylip,
each distinct run �rst �jumbles� the species list into a different random order.
In Gaphyl, there are many different effects of random number generation: the
construction of the initial population, parent selection, and the selection of
crossover and mutation points. For both systems, a number of different runs
must be done to evaluate the approach.

1. With the Lamii�orae data set, the performance of Gaphyl and Phylip is
comparable. Phylip is more expedient in �nding a single tree with the best
parsimony (72), but both Gaphyl and Phylip �nd 45 most parsimonious
phylogenies in about 20 minutes of run time.

2. With the angiosperm data set, a similar pattern emerges: Phylip is able
to �nd one tree with the best �tness (279) quite quickly, while Gaphyl
needs more run time to �rst discover a tree of �tness 279. However, in a
comparable amount of run time, Gaphyl is able to �nd 250 different most
parsimonious trees of length 279 (approximately 24 hours of run time).
Phylip runs for comparable periods of time have not found more than 75
distinct trees with a parsimony of 279. Furthermore, the trees found by
Phylip are a proper subset of the trees found by Gaphyl.

In other words, Gaphyl is more successful than Phylip in �nding more trees
(more equally plausible evolutionary hypotheses) in the same time period.
The �rst task is considerably easier to solve, and Gaphyl does not require

immigration to do so. Example parameter settings are a population size of 500,
500 generations, 50% elitism (the 250 best trees are preserved into the next
generation), 100% crossover, 10% �rst mutation, and 100% second mutation.
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8.5.2 Contribution of Operators

Empirically, it appears that 72 is the best possible parsimony for this data
set, and that there are not more than 45 different trees of length 72.
The second task, as stated above, seems to bene�t from immigration in

order for Gaphyl to �nd the best-known trees (�tness 279). Successful parame-
ter settings are 5 populations, population size of 500 (in each subpopulation),
2000 generations, immigration of 5% (25 trees) after every 500 generations,
50% elitism (the 250 best trees are preserved into the next generation), 100%
crossover, 10% �rst mutation, and 100% second mutation. (Immigration does
not happen following the �nal generation.) We have not yet done enough runs
with either Phylip or Gaphyl to estimate the maximum number of trees at
this �tness, nor a more concise estimate of how long Phylip would have to run
to �nd 250 distinct trees, nor whether 279 is even the best possible parsimony
for this data set. In two days of run time, Phylip runs have not found more
that 100 distinct trees of �tness 279.
The pattern that emerges is that as the problems get more complex,

Gaphyl is able to �nd a more complete set of trees with less work than what
Phylip is able to �nd. The work done to date illustrates that Gaphyl is a
promising approach for phylogenetics work, as Gaphyl �nds a wider variety
of trees on this problem than Phylip does. This further suggests that Gaphyl
may be able to �nd solutions better than those Phylip is able to �nd on data
sets with a larger number of species and attributes, because it appears to be
searching more successful regions of the search space.

To evaluate the contributions of the GA operators to the search, additional
runs were done with the �rst data set (and no immigration). Empirically,
crossover and the second mutation operator had been found to be the largest
contributors to successful search, so attention was focused on the contributions
of these operators.
In the �rst set of experiments, the �rst mutation rate was set to be 0%.

First, the crossover rate was varied from 0% to 100% at increments of 10%
while the second mutation rate was held constant at 100%. Second, the sec-
ond mutation rate was varied from 0% to 100% at increments of 10% while
the crossover rate was held constant at 100%. at each parameter setting 20
experiments were run; each experiment of 500 generations.
Figure 8.7 illustrates the effects of varying the crossover rate (solid line)

and second mutation rate (dashed line) on the average number of generations
taken to �nd at least one tree of the known best �tness (72). Experiments that
did not discover a tree of �tness 72 are averaged in as taking 500 generations.
For example, 0% crossover was unable to �nd any trees of the best �tness in
all 20 experiments, and so its average is 500 generations.
This �rst experiment illustrates that, in general, higher crossover rates are

better. There is not a clear preference, however, for high rates of the second
form of mutation. To look at this operator more closely, the �nal populations
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The effect of varying crossover rate while holding second mutation con-
stant and of varying the second mutation rate while holding the crossover rate constant.
The average generation at which the best �tness (72) was found is illustrated.

of the 20 experiments were looked at to determine how many of the best trees
were found in each run.
Figure 8.8 illustrates the effects of varying the crossover rate (solid line)

and second mutation rate (dashed line) on the average number of best trees
found. Experiments that did not discover a tree of �tness 72 are averaged in
as �nding 0 trees. For example, 0% crossover was unable to �nd any trees of
the best �tness in all 20 experiments, and so its average is 0 of the best trees.
As Figure 8.9 illustrates, runs with a higher second mutation rate tend to

�nd more of the best trees than runs with a lower second mutation rate.
The impact of the �rst mutation operator had seemed to be low based

on empirical evidence. So another set of experiments was done to assess the
contribution of this operator. In both, the crossover rate was set at 100%;
in one, the second mutation rate was set at 0% and in the other, the second
mutation rate was set at 100%.
The results of this experiment clearly indicate that higher rates of this

form of mutation are not bene�cial. Furthermore, this operator is not clearly
contributing to the search.
In the �nal set of experiments, the �rst experiments of varying crossover

rate while holding second mutation rate constant and vice versa were repeated,
but this time with a �rst mutation rate of 10%. The results are illustrated in
Figure 8.10.
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The effects of varying crossover rate while holding second mutation con-
stant and of varying the second mutation rate while holding the crossover rate con-
stant. The average number of best trees (45 max) found by each parameter setting is
illustrated.

The effect of varying the �rst mutation rate while holding crossover and
second mutation constant. The crossover rate is 100% for both graphs; second mutation
rates of 100% and 0% are shown. The average generation at which the best �tness (72)
was found is illustrated.
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The effect of varying crossover rate while holding second mutation
constant and of varying the second mutation rate while holding the crossover rate
constant, this time with a �rst mutation rate of 10%. The average generation at which
the best �tness (72) was found is illustrated.

The population size for each experiment described in Section 8.5.3. When
there are multiple populations, the number shown refers to the number of trees in each
distinct population.

Gens Number of populations
1 2 4 8 16

1600 1024 512 256 128 64
800 2048 1024 512 256 128
400 4096 2048 1024 512 256

An additional set of experiments were designed to assess tradeoffs in terms of
putting a �xed number of trees in one population or distributing them across
a number of populations and tradeoffs between having larger population sizes
or doing more generations, for a �xed number of evaluations in all cases. These
experiments were done using the angiosperms data set.

The base case may be thought of as 1 population of 1024 individuals, and
1600 generations. Then, along one dimension, the population is divided across
2, 4, 8, and 16 populations, a total of �ve variations. Along the other dimension
the number of generations is halved as the population size is doubled, for
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The number of runs that found the best solution found across 20 runs,
varying the number of populations and number of generations, with a constant 1024
trees (split across the speci�ed number of populations).

Gens Number of populations
1 2 4 8 16 sum

1600 1 2 1 2 1 7
800 5 7 2 5 2 21
400 3 3 4 0 0 10

sum 9 12 7 7 3

Average �tness of �nal populations found across 20 runs, varying the
number of populations and number of generations, with a constant 1024 trees (split
across the speci�ed number of populations).

Gens Number of populations
1 2 4 8 16

1600 281.70 281.55 281.10 280.85 280.95
800 280.60 279.95 280.25 279.95 280.15
400 280.45 280.15 280.45 281.15 281.95

a total of three variations. This creates an array of 15 parameter settings,
illustrated in Table 8.1. The horizontal axis shows the number of populations,
the vertical axis shows the number of generations, and each interior cell shows
the population size.
Twenty experiments, with different seeds to the random number genera-

tor, were done for each setting. When multiple populations are used, 5% of
the population immigrates after 25%, 50%, and 75% of the generations have
completed.
The results of these experiments, illustrated in Tables 8.2 and 8.3, show

the best results with 2 populations of 1024 trees run for 800 generations, with
a total of 7 out of the 20 runs �nding trees of the best-known �tness of 279. In
general, it appears that two populations are better than one, but that there
might not be great gains from more than two populations. Further, it appears
that the system bene�ts from a balance between a large population size and
a large number of generations.

We have noted that Phylip is relatively quick to �nd at least one of the best
solutions, but that over a span of time it does not �nd as many of the bests
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Trajectories for the four experiments with seeding the initial population.

as Gaphyl does. Therefore, it seems that investigating the possibility of a
hybrid system would be bene�cial. The hybrid variation explored here is to
use Phylip runs to seed the initial population of the GA run.
In these experiments, the point of comparison is the starting point for the

system. Four variations were explored, using the angiosperms data set:

1. Starting with an entirely random initial population.
2. Starting with an initial population comprised of a random selection of
trees found by running one Phylip jumble.

3. Starting with an initial population comprised of half Phylip trees from
one jumble and half random trees.

4. Starting with an initial population comprised of 20 Phylip trees, one of the
best from each of 20 different jumbles, and the remainder random trees.

We ran 25 experiments for each variation. One population was used, so
as not to confound the effects of multiple populations. The population size
was 2000 trees, run for 1000 generations. Other parameters are as reported
previously.

Of these runs, the 4th variation fared the best, �nding at least one tree
with the 279 �tness in 14 of the 25 runs. Secondly, the �rst variation found
at least one tree with 279 �tness in 5 of the 25 runs. The second and third
variations did not �nd any trees of 279 �tness in the 25 runs. Trajectories of
average �tnesses across all runs are shown in Figure 8.11. The results in the
saturation region are more closely presented in Figure 8.12.
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More detail on the trajectories for the four experiments with seeding
the initial population.

These experiments suggest that while seeding from Phylip runs may help
the progress of the GA, the initial seeds must be sufficiently diverse for this
�jump start� to be helpful. It appears that choosing the seed trees from a
single Phylip jumble is comparable to starting the GA with a population that
has already converged. (Note: This experiment was repeated with �ve distinct
Phylip jumbles, always with similar results.)

The GA search process as implemented in Gaphyl represents an improvement
over Phylip�s search process in its ability to �nd more trees than Phylip in the
same run time. One possible facet of this success is that the Gaphyl search
process is independent of the number of attributes (and attribute values); the
complexity of the search varies with the number of species (which determines
the number of leaf nodes in the tree). Phylip uses attribute information in its
search process.
The �rst mutation operator is perhaps the �obvious� form of mutation to

implement for this problem, and yet its use (at high levels) appears to detract
from the success of the search. This points to the importance of evaluating
the contributions of operators to the search process.
There is obviously a wealth of possible extensions to the work reported

here. First, more extensive evaluations of the capabilities of the two systems
must be done on the angiosperms data set, including an estimate of the max-
imum number of trees of �tness 279 (and, indeed, whether 279 is the most
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Robot Controller Evolution with
Macroevolutionary Algorithms

J. A. Becerra, J. Santos, R.J. Duro

Summary There are certain problems that require using small populations to explore fitness
landscapes that are mostly flat, thus offering very little information, where the solutions
appear as sparsely distributed narrow peaks. This is the case of the evolution of controllers
for many problems in evolutionary robotics. Consequently, for these types of problems it
should be useful to consider the use of evolutionary algorithms that cluster the few
individuals in the surroundings of the local good solutions permitting an adequate trade-off
between exploration and exploitation. Macroevolutionary algorithms cover this need, and
through the appropriate selection of the values for its parameters they perform in general
better than genetic algorithms for the case of very low population values.  In this work we
study the influence of the two main parameters governing the search performed by
macroevolutionary algorithms as well as the influence of dividing populations into races.

9.1 Introduction

Due to the large computational requirements for calculating the fitness of each
solution (possible robot controller), and in order to make computing times
bearable, most processes in evolutionary robotics imply very small populations.
This is because every individual must live its life out in a real or simulated
environment and this life implies complex interactions incurring large
computational costs per individual. It becomes especially critical when the
evolution is carried out in the real robot.

In traditional methods of simulated evolution such as GAs, selective pressure
determines how fast the population converges to a solution. The more pressure, the
faster the convergence, at the cost of increasing the probability of the solution
found being suboptimal. Consequently, in this type of methodologies an
exploration/exploitation dilemma is present whereby a designer can choose to
consider the evaluation of a large number of candidates throughout the search
space or concentrate the search in the direction of a good, possibly suboptimal,
solution. The choice of a good equilibrium between exploration and exploitation is
even more important when the computational requirements of the evaluation of the
individuals are very high as in the case of evolutionary robotics. Obviously, if an
evolutionary roboticist requires reasonable solutions in bearable amounts of time,
populations with a restricted number of individuals must be considered. As a
consequence of the small size of the populations, the evolutionary dynamics for
these systems stray from those established for so-called infinite population
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evolutionary systems, and the convergence properties become more brittle. This
problem becomes even more noticeable when the fitness functions lead to
landscapes that are mostly flat except for a very sparse distribution of peaks where
fit individuals are located. Much research is needed on the interplay of the different
parameters that control the evolutionary process and on the best possible solutions
for this extreme low population, low information fitness function case. What we
will need is to use evolutionary algorithms that cluster the few individuals in the
surroundings of the local good solutions and allow a control of an adequate trade-
off between exploration and exploitation.

One promising avenue out of the exploration/exploitation dilemma is an
intermediate alternative in which the search is concentrated on or covers an
adequate number of candidate solutions, not only one. A first possible
approximation to this objective is the use of parallel evolutionary algorithms,
imposing geographic constraints on the evolutionary search of different
subpopulations. Although it is not the same as concentrating on several candidate
solutions, it can be an approximation, especially if the subpopulations cover
different areas of the search space, at least at the beginning of the evolution
process, as studied in [6]. Obviously, after a few generations, some subpopulations
may contain individuals outside their assigned space due to mutations or
migrations of best individuals from other subpopulations, but, in general, the
procedure implies a more exhaustive search of the solution space and, thus, there is
a tendency to prevent the premature convergence problem.

Another possibility to avoid the problem of ill-convergence is to obtain
selection procedures that produce the desired clustering or concentration of the
search efforts on the different candidate solutions of the fitness landscape. This is
called “niching” in biology. In this biological sense, Goldberg [2] defines a niche
as an organism’s job or role in an environment, and a species as a type of
organisms with similar characteristics. At the computational level it means that
these groups can be formed around each of the local fitness peaks of the solution
space. In most evolutionary methods this effect does not appear due to the way in
which evolutionary pressure is applied in traditional selection schemes such as the
roulette wheel or tournament selection. The most classical solution in this line is to
consider the use of the so-called crowding operator 1: when a new individual is
generated, it replaces the most similar individual of the population, which prevents
the possibility of having many similar individuals (“crowds”) at the same time in
the population. Thus, the key point in this approach seems to take into account
some measure of similarity among the individuals. For example, Menczer et al. [5]
use a local selection scheme for evolving neural networks in problems that require
multicriteria fitness functions. For each individual in the population the authors
consider a solution similar to itself. This individual is evaluated in an environment
with shared resources that are consumed and replenished in time. If the energy of
the new agent, considering the cost of creating it, is higher than a threshold, the
new individual remains in the population with half the energy. In any other case,
the parent and the new individual die. The population is kept constant on average
thanks to an adequate conservation of the total energy in the environment.

Another more formal solution in the same line, which is the one we have
followed in this work, is the one proposed by Marín and Solé [4]. The authors
consider a new temporal scale, the “macroevolutionary” scale, in which the
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extinctions and diversification of species are modeled. The population is
interpreted as a set of species that model an ecological system with connections
between them, instead of a number of independent entities as in classical GAs. The
species can become extinct if their survival ratio with respect to the others is not
higher than a survival coefficient. This ratio measures the fitness of a species with
respect to the fitness of the other species. When species become extinct, a
diversification operator colonizes the holes with species derived from those that
survived or with completely new ones.

This paper deals with the study of several parameters and techniques that are of
interest in order to make the evolutionary processes used to obtain robot controllers
more efficient. This problem must be handled using small populations, and its
fitness landscapes present huge areas with very low values and sparse hyper-
dimensional peaks. This involves delimiting when a Macroevolutionary Algorithm
(MA) performs better on average than a Genetic Algorithm. That is, defining the
best parameters in MAs so as to adequately balance exploration and exploitation,
and how a population should be divided into races in order to optimize the search
for an optimal solution.

9.2 Description of Macroevolutionary Algorithms

Here, we summarize the model proposed by Marín and Solé [4], which explains
the dynamics of an ecosystem based only on the relation between species. Thus,
the individuals in the population are referred to as species. They can survive or
become extinct in each generation of the evolutionary process. The number of
species is a constant.  The relation between them is established by a matrix in
which the term Wi,j(t) represents the influence of species j on species i at time t,
which is a continuous value in a given range. This influence is a measure of the
difference of the relative fitness of the two species, considering the distance
between both in genotypic space:

W
f p f p

p p
i j

i j

i j
, =

( ) ( )
, (9.1)

where pi=(pi
1,…,pi

d) is the genotype of species i, with its parameters in a d-
dimensional space. f represents the fitness of each species. Thus, the influence is
the difference in fitness with a normalization factor that weighs the distance
between the two.

Two operators are applied to each generation:

1 . Selection operator: defines which species survive and which species
become extinct. To determine this, the “state” of each individual is
calculated as
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that is, if the sum of the influences of a species relative to all the other species in
the population is positive, the species survives. Otherwise, it becomes extinct.

2. Colonization operator: it defines how the extinct species are replaced. The
authors define a probability to determine if a new solution pn is generated.
Otherwise exploitation of surviving solutions takes place through colonization.
One of the surviving solutions, pb, is chosen as a base to replace the extinct
solution pi, and the new species that replaces the extinct one is attracted toward pb,
in the following manner:
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Figure 9.1 Different views of the fitness landscape with the variation of four
genes (connection weights in the neural controller) while the others are fixed.
Top-Left: different peaks in a well-defined area. Top right: flat landscape with a
small change in the surface level. Bottom left: another similar area of
concentrated peaks. Bottom right: Another area, viewed from a different
reference point, that denotes a periodic distribution of peaks in a small area.
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where is a random number in [0,1], a random number in [-1,1], both with
uniform distribution, describes a maximum radius around the surviving solution
and controls the percentage of random individuals. This parameter may act as a
temperature, because it can decrease in evolutionary time so as to perform a type of
simulated annealing process. That is, when the temperature is low, the randomness
is low, and, consequently, there is a tendency toward increased exploitation around
the surviving individuals and reduced exploration of new species. Thus, when
using a macroevolutionary algorithm one can tweak with basically two parameters.
On one hand, determines what proportion of the species are randomly generated,
that is, how much exploitation or exploration we perform in a given generation. On
the other, one can modify and thus juggle with the size of the attractor basin
around pb, that is, it permits deciding how the exploitation is carried out.

9.3 Experimental Setup for Testing the MA-based Evolution

As commented before, the comparison between GAs and MAs will be carried out
in a problem where robot controllers, made up of artificial neural networks, are the
end product. This is a very typical problem that implies a sparse fitness function
and a large amount of processing per individual. In particular, all the examples
presented here correspond to the evolution of a wall following controller for a
Pioneer II robot. The fitness is defined with hints in the environment that represent
food or poison. This procedure allows more freedom than many handcrafted fitness
functions for the robot controller evolution to discover good behaviors, at the cost
of a more difficult fitness landscape. The controller is a neural network with a 6-
node hidden layer, 8 inputs, and 2 outputs, which implies a total of 76 genes
representing the connection weights, slope of the sigmoid functions and bias in the
different nodes. Figure 9.1 displays partial views of the fitness landscape where 4
out of the 76 genes that make up the chromosome are modified while the rest are
maintained constant at values corresponding to the best solution obtained. The
chosen genes are two connection weights between the inputs and a node in the
hidden layer, and the two weights between this hidden node and the two output
nodes. It is well known that with genetic encodings of the parameters of distributed
structures such as neural networks, there can be a lot of different parameter sets
that obtain similar input-output mappings. As a consequence, several fitness peaks
can appear in the search space. This is what is shown in Figure 9.1, where the
fitness was obtained testing each individual in 20 different life situations. The axes
x and y correspond to the variation of two of the genes, while the four views
correspond to four different selected combination values on the other two genes
(weights connecting the hidden node with the output nodes), while the rest of the
genes remain fixed. This analysis is similar to the one carried out by Janson and
Frenzel [3], who show slices of the error surface in a neural network with the
variation of only one gene, to demonstrate the difficulty for discovering the global
optimum. Their neural network must predict the optimal transistor width for a
CMOS switch. What the figure demonstrates is that the search space has a lot of
different peaks in a lot of different areas, surrounded by flat surfaces with different
levels.
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With that in mind in the experiments we describe evolution was carried out
using two types of algorithms. One of them was a pure genetic algorithm, with a
0.8 crossover probability and a 0.1 mutation probability. Crossover was a standard
one point crossover and mutation was random. The selection strategy employed
was tournament. The GA used a diagonal distribution for the initial population, as
it has been shown to provide the best usage of resources [6]. This algorithm was
taken as a standard in order to compare different aspects. The other one was a
macroevolutionary algorithm as commented before.

9.4 GA Versus MA

The first consideration one should make is how well GAs and MAs compare when
evolving solutions to a problem such as the one we are tackling, a problem that
must be solved using small populations. In Figure 9.2 we display the results
comparing the performance of a GA and a MA for different population sizes. Two
main characteristics stand out at first sight. On one hand, GAs display the classical
evolution curve for the best individual, that is, very fast fitness increase at the
beginning, when the GA is making use of the genetic material present in the initial
population and recombining it to obtain the best possible individuals from this
material, that is, very fast exploitation of the initial population, and a very slow,
almost flat second part, where evolution is driven by mutation, as new genetic
material is required in order to find new combinations that provide better fitness, in
a sense we have a second stage of exploration. This behavior, as pointed out in [6]
makes GAs very dependent on the distribution of the initial population. This would
not be a big problem when large populations are used, as an initial random
distribution would probably introduce enough genetic elements in the population to
allow the algorithm paths for reaching the optimum, or close to it. When using
small populations, the best possible distribution of the initial population would be a

Figure 9.2. Evolution of the fittest for a GA and a
MA with different population sizes (8 races).
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diagonal, as it maximizes the spread of the gene variety, but it still constrains
evolution and makes it dependent on mutation (basically random search) after a
short period.

In the case of MAs, as mentioned before, exploration takes place first, and
exploitation comes into play slowly throughout the process (when annealing is
used). In fact, due to the way in which exploitation is carried out in this type of
algorithms, new genetic material arises throughout the exploitation phase. This
leads to a slower evolution in the beginning, but it is much more constant as shown
in the figure. In fact, it usually leads to better results than GAs, especially in the
low population cases, such as those with 480 and 800 individuals.

In Figure 9.3 we see the very different behavior in terms of average fitness in
both types of evolutionary algorithms. In the GA, average fitness is far below
maximum fitness and it never converges to it. The search space in this problem
could be described as a flat surface with sporadic high peaks. This particular search
space leads to most of the individuals in the population, resulting from crossover or
random mutation, being quite poor when performing the desired task. In the MA
case, this is very different. Because of the way exploitation is carried out in this
algorithm, individuals tend to concentrate in the high peaks as time progresses.

9.5 Effect of Distribution into Races

Distributing the individuals into subpopulations that evolve independently and only
communicate through a periodic migration of best individuals between them can be
shown to improve the evolution process. From the point of view of implementation
it also permits distributing subpopulations among processors adding a concurrency
level that leads to an acceleration of the process. We have tried this strategy both
for GAs and MAs applied to the current problem. The case of GAs was presented
in [6]. In both cases, the subdivision of the population into races led to

Figure 9.3. Evolution of the average fitness for a
GA and an MA with different population sizes (8
races).
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improvements in the final fitness of the best individuals. The evolution of fitness
for the best individuals and for the average of the whole population in MAs are
shown in Figures 9.4 and 9.5 as we change the number of races for a given
population size.

Obviously, as the number of races increases, the number of individuals in a race
decreases. In fact, when too many races are considered, that is, when each race
reaches a number of individuals below a critical point (related to the selective
pressure in that population), evolution in the case of GAs has very little initial
genetic variety and is mostly driven by mutation, that is, a random walk, and
basically tends to get stuck in a suboptimal individual. In the case of MAs the
behavior is quite similar: too few individuals cannot provide enough genetic
variety for exploitation to work well, as shown in the 16 races case of the figure.
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Figure 9.4. Evolution of the fittest in an MA with 800
individuals for different numbers of races.
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Another important observation that may be extracted from this data is that in
the beginning of MA evolution, every time there is a migration, as shown in the
average fitness graphs of Figure 9.5, it provides new genetic material that helps to
maintain a steady improvement in the fitness of the population. The slope of this
improvement is related to the number of individuals that can combine their genetic
material with the immigrant, i.e., the subpopulation size. After a migration, average
fitness usually increases because the better individuals of other races replace the
worst individuals of each race, but after that, average fitness may decrease. This is
especially notable in MAs at the end of evolution if different races are exploiting
different candidate solutions, because almost all the individuals are quite good and,
when a foreign individual arrives, its descendants with other individuals from the
original race will probably fall to the plain, outside the high peaks.

In general, MAs improve with races in the same way as GAs do, although
evolution is more fluid and usually leads to better results for the same population
sizes, as shown in the previous section.

9.6 Influence of parameters  and  on the MA

From the point of view of exploration vs. exploitation, as we have commented
above, this dichotomy is regulated in MAs through parameter . This parameter
may take any value throughout the evolution process, but in order to study its
effect on problems such as the ones stated above, we have decide to modify it
linearly from all random to no random individuals in the population but keeping a
number of generations with no random individuals at the end of evolution where,
consequently, the MA is performing pure exploitation. This number of generations
was controlled through a parameter we called NR (Non Randomness), that is, the
percentage of generations with no random individuals.

Figure 9.6 shows the fitness results of running the MA with different values for
NR. It can be clearly seen that it seems to be quite useful to let the MA perform
pure exploitation before ending the evolutionary process. It usually leads to better
results due to the landscape of the fitness function. This can be interpreted from the
point of view of a cloud of samplings of the solution space for the MA. Initially,

Figure 9.6. Evolution of fittest individuals for
different values of NR.
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we want the algorithm to explore as much of the solution space as possible so that
it does not miss any possible promising region. Once the main promising regions
have been found, the directional properties of MAs, which lead them to cluster test
points around better solutions, will end up leading to clusters that will tend to
converge to a good solution. Thus, in this second part it is interesting to reduce
randomness and perform more exploitation, that is, better coverage of promising
regions. In particular, for very flat fitness landscapes the initial exploration for
promising regions becomes more a problem of delimiting the important areas
(which is much less costly than covering the whole region). Then, through the
particular exploitation phase of the MA by creating offspring located in between
the parents in the solution hyperspace, a fine-grained search is performed, leading
to the individuals clustering around the peaks.

Finally, we have experimented with parameter , which defines the
neighborhood considered in the exploitation or colonization phase of the MA. The
tests carried out for different values  of this parameter do not  display a clear
tendency in the MA behavior, which agrees with the same results of Marín and
Solé [4] for the search in two landscapes, one with some local maxima of close
heights, and another one with infinite maxima around the global maximum. The
authors conclude that “in most cases simulated annealing seems to be the best
choice, being the specific -value less important. Because of that, the authors
choose in their comparison with GAs a value of 0.5 for the parameter, the same
one we have used in the NR tests.

9.7 Conclusions

In this article we have provided some results on evolving complex controllers with
small populations for fitness functions with flat landscapes where sparse narrow
peaks are distributed. The basic idea is that macroevolutionary algorithms permit
obtaining better results due to the way in which they handle the
exploration/exploitation equilibrium, which, in effect, implies a lower selective
pressure at the beginning than traditional GAs, preventing, in most cases, the
premature convergence effects displayed by GAs. When these algorithms are
combined with the use of races and their NR parameter adjusted to appropriate
values, the results obtained are quite comparable to GAs with much larger
populations. Thus, using macroevolutionary algorithms and a race scheme,
evolutions of systems whose individual fitness is very costly to calculate can be
achieved in reasonable computation times through the use of small populations and
the inherent parallelization level provided by the race scheme.
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Evolving Natural Language Grammars

W. Cyre

10.1 Introduction

Most approaches to natural language understanding depend on a grammar to per-
form the syntactic analysis of sentences.  Manually developing a consistent, con-
text-free grammar that accurately parses a good portion of a natural language re-
quires considerable expertise and diligence and is a tedious task.  Presently,
statistical and machine learning methods are popular.  Statistical grammars may
have over tens of thousands of rules, which results in a high computational cost for
parsing.

The problem of developing a grammar is simplified somewhat when the natural
language documents are limited to a particular domain.  Examples of such re-
stricted domains are medical records, weather reports, patents, and legal reports.  A
language used in a restricted domain is called a sublanguage and tends to have a
limited vocabulary, syntax, and semantics.  For example, the sublanguage of inter-
est to the present author is that used in manufacturer’s data sheets and U.S. patents
that describe microprocessor system components.  These documents have vocabu-
laries limited to a narrow technical domain, and many sentence constructions of
general English (such as questions and imperatives) do not occur.  On the other
hand, sentences tend to be quite complex.  Four examples of sentences from pat-
ents that could not be parsed by an initial grammar, but that were parsed by an
evolved grammar, are reproduced below.

“Once the subsystem controller has been set up, the central processing unit is then free
to carry out other operations in the system while the subsystem device controller itself
controls the transfers between memory and the peripheral device.” (1)
“Another object of the invention is to provide an improved data processing system as
described above and further including a counter in the shared direct memory access
controller; selection means responsive to the address recognition means and an output
instruction from the microprocessor for loading a value on the common data bus into
the counter; and, gating means connecting the counter to the common address bus so
that the contents of the counter may directly address the memory.” (2)
“On the other hand, if the signal RADR-0 is at the low level, then a low level signal on
lead 326 enables counters 322 and 323 so that they are loaded with data from the out-
puts of QUAD MUX's 302 and 303. (3)
“The probe signal is applied to Figure 3A where it enables the decoder 318 controlling
the loading of the address pointer counter, and further controls MUX's 302 and 303 so
as to gate the data on the system data bus 200 through the MUX's to the address pointer
counter.” (4)
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The conventions of a sublanguage may also depart from standard English.  For
example, computer engineers generally nominalize verbs to the infinitive form (“a
memory write”, “generates an interrupt”) rather than a gerund (“a writing to mem-
ory”, “generates an interruption”) as is done in general English.  What is needed
for automated analysis of a sublanguage is a context-free grammar tailored to the
specific sublanguage.  The problem of parsing the sublanguage may be exacerbated
by the need for results that are amenable to later semantic analysis. The semantic
analysis approach in the present example employs verb-centered templates called
case frames [1].  A case frame for a particular verb, such as transfer, has slots for
semantic roles such as the agent, operand, source, and destination.  These slots are
filled by noun phrases, which may include other frames that represent nominaliza-
tions of other verbs.  Semantic analysis is performed by tracing a parse tree from
top to bottom, instantiating a case frame whenever a verb structure is encountered,
and filling the frame’s slots with syntactically related noun phrases. Thus it is im-
portant in this application to develop a context-free, phrase-structured grammar
that focuses on verb structures and noun phrases, as well as their syntactic connec-
tives (subject/object position, prepositions, and subordinating conjunctions).  Un-
fortunately, the manual development of sublanguage grammars is a difficult and
expensive task.  Statistical techniques are not attractive because large, manually
parsed training sets in sublanguages are generally not available and are expensive
to produce.

The approach investigated here is to evolve sublanguage grammars.  The initial
grammar has a small number of manually developed rules with the desired, con-
text-free, phrase-structured style.  But, this grammar parses only a small fraction of
the sublanguage corpus.  These initial rules represent the general rules of the
sublanguage, and the genetic algorithm discovers the more specialized or exception
rules.  In experiments described later, the parsing ability of the evolved grammar
was much greater than that of the initial grammar after a relatively short number of
generations.  In some cases, parsing capability grew from 17% to 90%, and yet, the
number of rules remained relatively small.  In addition, the evolution tends to pre-
serve the style of the initial grammar.

10.2 Related Research

Recently, statistical methods and machine learning for generating grammars have
become popular in natural language understanding [2].  Supervised learning meth-
ods require a large database of manually analyzed sentences (tree bank), from
which the grammar is derived.  A large general database is available from the Lin-
guistic Data Consortium, and one grammar derived from the data is a 14,000-rule
probabilistic grammar [3].  The style of the statistically derived grammars is con-
strained to the manual parsing style used when creating the training corpus, which
in the above case has very shallow trees.  Unsupervised methods [4] have also been
used.  In these cases, the set of all possible grammar rules is constructed (incre-
mentally) and the training algorithm discovers the rule probabilities.  The grammar
growth is made incremental by ordering the training corpus on sentence length.
Without additional constraints,  these methods do not produce consistent results,
even with quite small languages.
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Earlier experiments in grammar evolution focused on very small context-free
grammars.  Wyard [5] evolved a population of context-free grammars for two-
symbol palindromes, and another population for a language with even numbers of
two symbols.  Each grammar of the population was evaluated based on its ability
to distinguish positive and negative strings.  (Negative strings are examples that are
not in the target language.)  The initial grammars were generated randomly.  Elitist
selection from the most fit 10% of grammars was used.  Grammar rules were sub-
ject to mutation with low probability, and the crossover point could occur any-
where in a grammar, except inside the list of constituents of a right-hand side of a
rule.  With populations of 1000 grammars and limited computational resources, the
algorithm found the palindrome grammar 40% of the time but never discovered an
acceptable grammar for the second language. Some early experiments by the pre-
sent author on natural language sentences with a similar approach were not encour-
aging.

Lucas [6] followed a similar path, but developed a binary encoding of his nor-
mal-form grammars.  He evolved grammars that proved 80% to 100% competent
for two- and three-symbol palindromes.  His population was much smaller (40
grammars), and fitness was also evaluated on positive and negative strings.  His
initial grammars were random.

Smith and Witten [7] used a binary and/or tree representation of the grammars.
Their language consisted of several five-word English sentences on a vocabulary
of about eight words.  In their approach, the lexicon (parts of speech of the words)
was evolved at the same time as the grammar rules.  They also used bootstrapping
(actually co-evolution of the evaluation test set) with a population of grammars but
did not require a constant size population.  Their hybrid algorithm used an initial
population of 10 random grammars, each of which could parse one initial sentence.
During each generation, another sentence was added to the test set.  Selection for
reproduction was based on grammar size, since each grammar could parse all cur-
rent sentences.  The selected grammars were either mutated or crossed over using
standard tree operations of genetic programming, and the offspring were immedi-
ately added to the population.  Reproduction proceeded until at least one grammar
could parse all sentences, including the new one.   Then all grammars that could
not parse all sentences were culled from the population.  For the next generation, a
new sentence was added and the cycle repeated.  This approach attempts to solve a
very large problem in discovering the grammar and lexicon simultaneously.  Each
word in the grammar must be represented as a leaf in a tree chromosome for each
of its parts of speech.  In the automatic design problem, this means each tree would
have over 300,000 nodes!  The approach reported here uses a single grammar (the
population consists of rules) and also performs part-of-speech tagging as well as
syntactic analysis.

10.3 The Evolutionary Algorithm

This section describes a genetic algorithm developed for evolution of sublanguage
grammars of English. The population to be evolved by the Genetic Algorithm
(GA) consists of a set of grammar rules (productions) of a context-free, phrase-
structured grammar.  Each grammar rule is a chromosome, so the GA actually op-
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erates on the phenotypes. This GA has some of the features of a classifier system
[8] in that the grammar rules are rewarded by a bucket-brigade, and the GA has
separate rule discovery and  grammar evaluation phases.  First, it is helpful to de-
fine context-free grammars.

A Context-Free, Phrase Structured Grammar (CFPSG) consists of

• a finite set of terminals, T, also called the alphabet,
• a finite set of nonterminals, V,
• a special nonterminal, s, called the start symbol, and
• a finite set of rules or productions, P, of the form R w , where R V

and w V T( ) * .  [9]

For convenience, we will call the nonterminal, R, on the left-hand side of a rule
the result of the rule, and each terminal and nonterminal, wi,  of the sequence, w =
(w1, w2, ... ,wn),  on the right-hand side of the rule will be called a constituent of
the rule.  In this study, a CFPSG that will parse a sublanguage of English is being
sought.  The language for which a grammar is desired is defined by a corpus of
sentences, and the percentage of sentences in the language that the grammar parses
will be called the competence of the grammar.  The corpus in this study was a
collection of descriptive text from patents issued on direct memory access control-
lers for digital computers.  It is well known that a deterministic grammar cannot be
generated from only positive examples (sentences) of a language [10], but statisti-
cal grammars can be.  The present approach evolves grammar rules and with a
small extension can generate the probabilities.

During evolution, rule discovery and fitness evaluation employ a form of bot-
tom-up, parallel chart parser that can find all parses of a sentence simultaneously.
This parsing method also performs part-of-speech tagging, so the initial grammar
formally includes a very large set of rules that map nonterminals onto English
words, such as processor noun .  Parts of speech in this study include noun,
verb, preposition, conjunction, determiner, adjectives, adverbs, and identifiers.
These “rules” are in the form of a dictionary.  In the domain of interest, an identi-
fier is a proper name, an acronym, or any other unknown character string.  To sim-
plify the discussion here, however, we will consider the parts of speech to be ter-
minals of the grammar to be evolved.  Since English words often have more than
one part of speech, the input to the parser is actually graph, called an (initial) chart,
rather than a string.  In an initial chart, each node corresponds to position between
words, and the arcs are labeled by the parts of speech of the words.  Since English
is syntactically ambiguous, grammars to approximate English are also ambiguous
and produce multiple parses for most sentences.  Another goal of grammar evolu-
tion is to minimize the ambiguity of the grammar to the extent it is possible.



10 Evolving Natural Language Grammars    133

Each rule of the grammar may be considered a variable-length chromosome
consisting of the rule’s result, followed by its list of constituents.  However, the
rules are not evaluated individually, but as a cooperating set, and the fitnesses of
the rules are called their strengths, after the tradition of classifier systems.  Evalua-
tion is performed by parsing a collection of sentences (the corpus) using the gram-
mar, and rewarding the rules based on how often they participate in successfully
parsing sentences.  The individual grammar rules are rewarded by tracing each
parse tree from the top down for a successfully parsed sentence.  The leaf nodes are
parts of speech, and each nonleaf node of a parse tree represents a phrase con-
structed by a rule. The top node of the tree receives a fixed reward.  Each rule that
formed a successor node in the tree is awarded a fraction of that node’s reward.  If
for example, if the rule sentence noun phrase predicate was used in a parse
of a sentence, it is given a reward, r, inversely proportional to the number of parse
trees that sentence has.  (This is done to reduce the ambiguity of the grammar.)
Next, the two rules that formed the noun-phase and the predicate constituents are
then each rewarded by k*r, for some constant k.  This constant was determined
empirically.

The genetic algorithm is outlined in Figure 10.1.  Each iteration of Step 1 is a
generation of the algorithm.  It differs from general GAs in the discovery and
culling steps.  The genetic operations are performed during the discovery step.

As mentioned earlier, the initial population is derived manually.  In the present
project, this grammar was derived from several hundred sentences describing mi-
croprocessor products [11].  To facilitate a later step of semantic analysis [12], a
case grammar style was used, so that the major nonterminals included verb se-
quence, nominal (high-level noun phrases), and adverbial.  Other nonterminals
used during analysis include noun phrase, clause, predicate, and prepositional
phrase, as well as the parts of speech. It is very desirable during evolution of the
grammar to maintain this style of analysis, and therefore, no new nonterminals
were added during evolution. The initial grammar used in the present experiment
has 131 rules and is evaluated by the parallel chart parser to determine rule

Figure 10.1.  The algorithm.

Genetic Algorithm for Grammar Evolution

 0. Initialize population.

 1. Repeat until stopping criterion.

a) Add rule schemata.

b) Discover new rules.

c) Replace rule schemata by new rules.

d) Evaluate grammar.

e) Cull unfit rules.
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strengths for later selection of parents.  This initial grammar parses only a small
fraction of the corpus.

During a generation of the algorithm, a set of n rule schemata is added to the
grammar. During the Add step, n “parent” rules are selected with replacement us-
ing a tournament based on rule strengths.  A copy of a parent rule is mutated by in-
serting one wildcard nonterminal at a random position in the constituent list (right-
hand side of the rule).  A wildcard nonterminal will match any nonterminal or ter-
minal of the grammar during parsing, so a rule with wildcards is indeed a schema
for rules.  The wildcard may be inserted at the beginning of the constituent list or
any other position except the end.  (This is a practical matter to speed up evaluation
speed.)  For example, the rule np determiner adjective noun might be mutated
to np determiner wildcard adjective noun, which would allow two adjectives to
modify the noun or an adverb to modify the adjective, as in the phrases “an edge-
triggered synchronous counter” and “a virtually asynchronous counter.”  When the
set of n schemata has been generated, they are temporarily added to the grammar.
Crossover is not used in this algorithm.  First, it would not be reasonable to cross-
over a rule for a noun phrase with a rule for a verb sequence.  Thus, crossover
points should only occur in the constituent lists of rules having the same result
nonterminal type.  Since English does have constraints on word order, crossover
would have some of the same difficulties as found in ordering problems, such as
the traveling salesman problem.  It was felt that crossover would introduce less de-
sirable rules than would the specialized mutation above.  Other possible mutation
techniques such as random nonterminal insertion, exchange, and inversion were
not used either. Random nonterminal insertion would only be a slow version of
wildcard insertion.  Inversion and exchange, like crossover, are reordering opera-
tions, though it would be interesting to experiment with the latter.

Next, the Discover step is performed to generate new, permanent grammar rules
by instantiating the wildcards of schemata.  This is done by parsing the unparsed
sentences of the corpus with a fast version of the chart parser.  When a sentence is
parsed for the first time, a wildcard that was used during that parse is instantiated
to the nonterminal it matched, and a new rule is generated from the schema.  This
new rule is added to a temporary list of new rules.  Note that a single schema may
generate multiple new rules if it matches more than one nonterminal, even in a sin-
gle sentence.  The Discovery step does not reconsider previously parsed sentences,
since it is not desirable to increase the ambiguity of the grammar by finding addi-
tional rules that parse sentences.  For a given set of n schemata, the number of new
rules that are generated can vary from zero to several times n.  For this study, the
number of new rules was artificially limited to 10*n in order to limit the growth
rate of the grammar.

Having discovered a set of new grammar rules, the schemata are then deleted
from the grammar, and the new rules that do not duplicate existing grammar rules
are added in the Replace step.  The list of new rules is then cleared.  Notice that
unlike most GA applications, the population (of grammar rules) is allowed to grow.
We start here with a very small grammar of 131 rules.  Grammars that have been
developed for general English may have tens of thousands of rules, particularly
probabilistic grammars [10], but the grammars evolved here remain relatively
small, as described later.
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Next, the grammar is evaluated by the parallel parser to determine the strengths
of the rules for selection in the next generation.  As mentioned earlier, each sen-
tence-level rule that participates in a successful parse is given a reward that is in-
versely proportionally to the ambiguity of the sentence (number of parse trees).  In
addition, a percentage of the reward is then added to each rule that formed a con-
stituent necessary to satisfy the rule, in a chained bucket-brigade fashion.  Hence
when a sentence is parsed, every rule that participated in forming any parse tree for
it is rewarded.  There is an exception: if the number of parse trees exceeds a preset
threshold, then none of the participating rules is rewarded for that sentence.  This is
done to minimize the growth of ambiguity in the grammar.  Finally, any rules, ex-
cept those in the initial grammar, that have very low strength are deleted from the
grammar in the Cull step.  This prevents the grammar from accumulating rules that
are used very infrequently or that add significant ambiguity.  It is assumed that dis-
covered rules that are essential for parsing some sentence will be rediscovered in a
more general or less ambiguous manner later.

10.4 Experiments

The experiments with a C++ implementation of the algorithm were run on text se-
lected from U.S. patents on a type of digital device called a direct memory access
controller. The text was selected from the summary and detailed description sec-
tions of the patents.  This avoided many of the nonsentential structures in patents
such as numbers, references, names, and legal claims.  The corpora still contained
a small amount of nonsentential structures from tables and headings.  The diction-
ary used to tag tokens with parts of speech included about 5000 words and was de-
veloped manually.  Not all words in the patents were in the dictionary.  The un-
known words plus acronyms and identifiers were classified as identifiers during
preprocessing.  A corpus may have several thousand instances of identifiers. Three
sets of experiments were run, one on some large corpora of several thousand sen-
tences, and two sets of experiments on a small corpus of about 400 sentences.   In
most cases, the experimenter limited the algorithm runs to a relatively small num-
ber of generations to focus on the more interesting period of most rapid growth. In
a few cases the algorithm was run for many generations to demonstrate that a rea-
sonably competent grammar could be evolved from a seriously inadequate gram-
mar.

A limited number of experiments were run on three large corpora having 3557,
3745, and 6943 sentences, respectively. The initial manual grammar parsed only
6% to 9% of the sentences in these corpora, requiring 5 to 7 hours each on a
500MHz Pentium PC for 30 generations of the algorithm.  In each generation, 5
schemata were generated, so that up to 50 new rules could be produced per gen-
eration.

The other sets of experiments were performed on a small corpus of 385 sen-
tences selected from the larger corpus.  This corpus was cleaner than the large ones
and intentionally contained more sentences that could be parsed with the initial
grammar, i.e., 17%, or 69 sentences.  One set of experiments used a constant num-
ber of schemata per generation (n = 5) to determine how repeatably the algorithm
performed.  A different random number generator seed was used in each run to
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provide a different set of schemata.  Another set was run on with a varying number
of schemata per generation to determine the effects of the number of schemata per
generation on grammar growth.  The results of the experiments are described in the
next section.

10.5  Results

10.5.1 Large Corpora Experiments

The evolution of the grammar for one of the large corpora is shown in Figure 10.2.
This corpus has 3745 sentences, of which the initial grammar parses 266, or 7%.
Growth of the grammar and its competence in parsing the sentences is rapid at first
and slows later, with the competence up to at 65% by the 20th generation and lev-
eling to 71% by the 30th generation.

The size of the grammar grew to about 340% of its original size.  Initially, more
new rules were generated than the limit (50 for 5 schemata).  As can be seen, the
number of new rules produced in a generation is rather erratic.  The algorithm per-
formed similarly on one of the other large corpora, but did only half as well on the
third corpus having 6943 sentences.  In that run, the limit on the number of new
rules was reached in nearly every generation.

Figure 10.2  Grammar evolution.
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10.5.2 Performance Variability

Seven experiments run with the same small corpus of 385 sentences and parameter
values were performed to observe how consistently the algorithm performed.

Figure 10.3  Growth of grammar competence.
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Figure 10.4.  Competence versus number of rules.
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Figure 10.5.  New rule discovery.
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Figure 10.3 shows the average, maximum, and minimum percent competence ver-
sus generation of the algorithm.  All the curves display the same growth trend, but
as can be seen the growth rate of competence can vary considerably.  The growth
of the grammar itself is similar, and the sizes of the final grammars vary accord-
ingly.  The relationship between the number of rules in the grammar and the com-

Figure 10.6.  Competence versus number of schemata.
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petence of the grammar is shown in Figure 10.4 for the six runs with five sche-
mata.  The runs seem to have a nearly linear relationship between the number of
rules and competence, but with slightly different slopes.  So, it appears that each
run should eventually reach a desired competence, regardless of the order in which
schemata are introduced, but the final grammars may be different sizes.

Figure 10.5 shows the rate at which new rules are discovered.  Discovery is very
rapid at first and was even truncated to the 10n limit.  Discovery then tapers off.  In
other runs, only an occasional new rule may be discovered in the later generations.
This may result from there being no mechanism for preventing the same schemata
from being introduced in generation after generation.  The discovery peaks may be
due to the occasional introduction of a new and fruitful schema.  The number of
new rules culled from the evolving grammars shows a similar pattern.  While the
number of rules culled was not a fixed percentage of the number of new rules, it
was generally less than 25% but did reach 67% in one case.

10.5.3 Varying the Number of Schemata

The effects of varying the number of schemata was studied with the same corpus of
385 sentences by adding another 9 runs with the number of schemata varying be-
tween 1 and 20.  In each case, the algorithm was run for 20 generations.  The com-
petence of the evolved grammars after twenty generations versus the number of
schemata per generation  is shown in Figure 10.6.  A plot of the number of gram-
mar rules versus the number of schemata has a similar shape. From this sparse
data, it does not appear that the number of schemata per generation has much effect
on evolution.  The runs in which only one schema was used, or where a large num-
ber of schema were used, did not do as well as the intermediate cases.  In some
earlier experiments where only one schema could be introduced per generation, the
grammars generally leveled off at only twice their initial competence values.

10.5.4 Examples of Discovered Rules

A selection of the 568 new rules discovered by the genetic algorithm in the series
of seven runs with 5 schemata appears in Table 10.1.  Rows 1 through 5 show a
single rule that was discovered in five of the seven runs.  Note that the rule has dif-
ferent strengths in the runs. This useful rule allows an identifier to be appended to
the head of a noun phrase.  This accepts constructions such as “Register X” and
“Pin AG4/2”, which often occur in this domain.  Rule 6 occurred in two runs and
allows a modal (can, may, should) to prefix an active verb.  It is surprising that this
rule was not discovered in all runs.  That may be due to other rules that prefixed
predicate structures with modals, such as Rule 7, which was discovered in two
runs.  The discovered rule with greatest strength is shown in row 8 of the table.
This rule forms a sentence from a simple sentence followed by a nominal and a pe-
riod.  Its strength is twice the next-strongest rule and tenfold most other strong new
rules, and yet it was found in only one run.  The rule in row 9 was found in two
runs and forms a predicate with an active verb structure and two nominals.  This
accommodates sentences with both an indirect and direct object (a construct not
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covered by the initial grammar).  Note that Rule 8 serves a similar function pro-
vided the simple sentence contains no adverbials.

Rule 10 allows noun phrases to be strung together, which is useful in parsing
long nominal compounds, such as “the computer multiplexer chip strobe pin of the
processor.” Rule 11 forms a coordinated noun phrase from three noun phrases and
a coordinating conjunction, and allows for the grammatical error of omitting a
comma.  A similar rule was found in another run.   Rule 13 constructs a nominal
from an adjective preceding a noun phrase.  This would appear to be a useful rule,
but most word sequences accepted by this rule are also recognized by a combina-
tion of three rules in the initial grammar.  So, while this rule may accommodate a
few cases, it will also introduce additional ambiguity in the grammar by allowing
multiple parses of some strings. Other rules that can introduce ambiguity were
found among the discovered rules.

Table 10.1  Examples of Discovered Rules

# Runs Strength            Rule

1   0.9  head -->  head  id

2  20.3  head -->  head  id

3   1.8  head -->  head  id

4   0.5  head -->  head  id

5   8.8  head -->  head  id

6 2     -  avs  -->  mod  verb

7 2     -  pred -->  mod  pvs  d

8 1  220.1  s    -->  ss  n .

9 2     -  pred -->  avs  n   n

10 1    4.4  n    -->  np  np  of   n

11 1    1.6  nc   -->  np  np  conj  np

12 2     -  avs  -->  conj  verb

13 4     -  n    -->  adjs  np

14 4     -  np   -->  det  det  head

15 6     -  n    -->  prep  np

The rules mentioned so far are consistent and desirable to the phrase-structured
parsing goals.  Not all discovered rules were desirable.  Some rules introduce
structures that are not attractive candidates for semantic analysis.  For example rule
12 considers a conjunction followed by a verb to be an active verb structure.  This
rule was probably discovered to accommodate coordinated verbs, such as in “the
device clears and loads the register”, which were not accepted by the initial gram-
mar.  Since a wildcard matches only one symbol, there is no mechanism or intro-
ducing conjunctions in a single step.  Mechanisms for accommodating conjunc-
tions are being considered.  The rule in row 14 was discovered in four runs and
accepts a noun phrase with two determiners (a, an, the, this, that) and was probably
generated by word sequences such as “that the register” or possibly by typographi-
cal errors.  The last rule in Table 10.1 is particularly disturbing because it con-
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structs a nominal from a preposition followed by a noun phrase.  Such constructs
are indeed phrases but should be classified as prepositional phrases (that modify
nouns) or adverbials (phrases that directly modify verbs).  Similar rules were dis-
covered that form noun phrases from prepositions and nouns.  This rule may have
been discovered to work with higher-order rules such as Rule 8 above.  Presently, a
simple sentence may have only up to three nominals and adverbials after the verb.
Rule 8 with Rule15 allows one additional adverbial.

Although the competence of the grammar evolves vigorously, and most new
rules appear reasonable, some of the discovered rules do not appear desirable from
the standpoint of conventional English grammar, or because they introduce ambi-
guity in the grammar.  The “ungrammatical” or undesirable rules may be useful,
however, in that they will enable semantic analysis of ungrammatical sentences.
Ambiguity in the grammar is inconvenient because it increases the computation
time for both grammatical and semantic analysis.  Ambiguity is introduced in the
grammar when the result nonterminal they construct can be synthesized by one or
more existing rules. In any case, the manner in which these undesirable rules are
introduced needs to be investigated so that they might be avoided.

10.6 Conclusions

A genetic algorithm has been presented for evolving context-free phrase-structured
grammars from an initial, small, handcrafted grammar.  The algorithm uses distinct
discovery and evaluation steps, as well as a culling step to reduce the ambiguity of
the grammar being evolved.  The algorithm performs surprisingly well on devel-
oping grammars for very complex sentences in a restricted domain of English.  The
algorithm was generally run for a small number of generations to observe the ini-
tial growth of the grammar, but even then, it reached 90% competence in some
cases.

Much remains to be investigated in this area.  First, a method is needed to cull
or avoid rules that form undesirable phrase structures from the semantic analysis
perspective.  This might be done by interaction with a user who affirms desirable
parsings from time to time, as with the occasional environmental rewards in classi-
fier systems.  This interactive feedback could have the effects of negative training
strings.  Alternatively, a semantic analyzer can be run on some of the parse trees
and have the rules that participated in parse supporting a successful semantic
analysis rewarded enthusiastically.  A mechanism needs to be added that will allow
conjunction to be introduced in the form X conj X, rather than in two separate rules.

The competence of the evolving grammars seems to encounter ceilings below
100% competence.   This barrier must be overcome.  It would also be interesting to
increase the number of schemata introduced in a generation as the grammar
evolves.  While this would tend to sustain rapid growth during the later genera-
tions, it would also increase the evaluation time substantially, since that time de-
pends heavily on the size of the grammar.
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Evaluating Protein Structure Prediction
Models with Evolutionary Algorithms

J. Gamalielsson and B. Olsson

Protein structure prediction is the task of predicting the three-dimensional
folded structure of a protein, given information only about its amino acid se-
quence. Computational methods for protein structure prediction have achieved
limited success, due to the immense complexity of the task, and it is well-
known that �nding the lowest free-energy conformation of a protein is an
NP-hard problem [14].
When designing a computational method for protein structure prediction,

there are three main issues to address: ) how to represent candidate solutions,
) what algorithm to use, ) what evaluation function to use. Representation
of candidate solutions includes issues such as what structure elements to model
and whether to use a discrete or a continuous environment.

EAs are competent at solving complex, multimodal optimization prob-
lems in applications with large and badly understood search spaces. EAs are therefore
among the most promising algorithms for solving the protein structure prediction
problem. In this chapter, we use this insight to evaluate, and show the limitations
of, simpli�ed models for protein structure prediction. These simpli�ed models, e.g.,
lattice-based models, have been proposed for their computational efficiency, and it
has been proposed that simpli�ed models will work if only a sufficiently competent
optimization algorithm is developed. However, in this chapter we show that simpli-
�ed models do not contain the biological information necessary to solve the protein
structure prediction problem. This is demonstrated in two steps: �rst, we show that
the EA �nds the correct structure given a �tness function based on information of
the known structure. This shows that the EA is sufficiently competent for accurate
protein structure prediction. Second, we show that the same algorithm fails to �nd
correct structures when any of the simpli�ed models is used. Our main contribution is
to have strengthened the hypothesis that solving the problem of protein structure pre-
diction will require detailed models encoding information at the atomic level. We have
also demonstrated that EAs indeed are promising algorithms for eventually solving
the protein structure prediction problem.
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Lattice environment where structural elements can only be placed at
intersections.

Solution representations that have been used for protein structure predic-
tion can be classi�ed into atomic level models (e.g. [11]) and amino acid level
models (e.g. [13]). Atomic level models represent the individual atoms that
make up each amino acid, while amino acid level models represent each amino
acid as a single entity. An obvious advantage of atomic level models is the
higher accuracy, which on the other hand results in increased computational
complexity. Atomic level models are therefore intractable for large proteins,
unless very efficient heuristics can be developed. It is therefore attractive to
explore amino acid level models, to see if they are sufficiently detailed to at
least allow approximate solutions, which are either useful directly or after
further improvement by applying a more detailed model.
The structural elements that are modeled are spatially positioned in an

environment. A distinction can be made between lattice and off-lattice en-
vironments. Lattice environments use a grid (Figure 11.1) where structural
elements can be positioned only at intersections, whereas off-lattice environ-
ments position elements in a continuous space. There are different types of
lattice environments in two- or three-dimensional space, which all limit the
number of possible conformations of proteins. This reduces the computational
complexity but limits the accuracy since the folding process of real proteins is
not restricted to a gridlike environment. Continuous off-lattice environments
offer a more realistic spatial representation, but give, on the other hand, a
practically in�nite number of possible conformations.
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Generic amino acid structure with dihedral angles and . The struc-
ture of the side chain is unique for each of the 20 amino acids.

Algorithms that have been applied to protein structure prediction include
several versions of EAs. In [12] and [13] a hybrid GA containing Monte Carlo
components is compared with a pure Monte Carlo method on 2D and 3D HP
models, where amino acids are classi�ed as hydrophobic (H) or polar (P) [4].
On test sequences of 27 and 64 residues the hybrid GA was able to reach
the global energy minimum in fewer time steps than the pure Monte Carlo
method. A GA is used also in [8], which is based on [13] but avoid the use of
nonstandard properties (which are used in [13]) and introduces an improved
representation resulting in faster convergence.

In [11] a GA is applied to protein structure prediction using a force �eld
as �tness function and having structures being represented at the atomic level
by dihedral angles (Figure 11.2). The angles and are the main degrees of
freedom when proteins fold, being located between the -carbon atom and
the NH group and between the -carbon and the CO group. In [11], total
energy is calculated as , where is torsion
angle potential, is van der Waals pair interactions, is electrostatic
potential, and is a pseudo-entropic term driving the protein to a globular
state. Simulations using the 46-residue protein 1CRN gave structures with
root mean square deviation RMSD Å from the native fold. Extensions to
the approach reduced RMSD to 4.4Å.
In [2] an EA is applied in an off-lattice environment. Input to the algo-

rithm are the residue sequence and the preferred secondary structural states
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for different residues. The backbone structure of the �ttest solution in the last
generation is compared with the native fold of the protein. Nineteen target
proteins with fewer than 100 residues and mixed secondary structure compo-
sitions are used to test the prediction performance, giving average RMSD =
5.3Å.
An off-lattice environment and amino acid level model is used also in

[9], which introduces a distance matrix representation of residue positions
instead of the commonly used internal coordinate representation (dihedral
angles). A distance matrix contains a distance for every residue pair. The
�tness function has terms for punishment of residue clashes, for enforcement
of correct distance between consecutive residues, and a term ( ) reward-
ing closeness between hydrophobic residues. Residues are only classi�ed as
either hydrophobic or polar. gives optimal interaction potential when
the distance between the interacting residues is 3.80Å. The EA is tested on
three 27-residue sequences, producing conformations with compact hydropho-
bic cores. No comparison with real proteins is made.

We tested the application of EAs (with and without sharing) to simpli�ed,
i.e., amino acid level, off-lattice models for protein structure prediction, with
the purpose of investigating if lattice-based models (e.g., the HP model [4])
can be usefully transferred to off-lattice environments. We also propose and
test extensions to the HP model, using additional information about amino
acid properties.

The EA population at iteration contains solutions .
A solution for a protein containing residues is represented by an array of

angles . To obtain the coordinates of
the residues in 3D space, a transformation to rectangular coordinates is done
using

(11.1)

(11.2)

(11.3)

where . is the distance between consecutive residues.
Residue positions are approximated by their -carbon atom positions, which
are used to represent the shape of the backbone. This is a very simpli�ed
representation where the con�gurations of the sidechains are not taken into
consideration.
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Parameter Values Used in the EA1 Experiments.

Protein Residues

1CRN 46 9000 100 10 0.7 0.0444 1
2ETI 28 5400 100 10 0.7 0.0741 1
1CTI 29 5600 100 10 0.7 0.0714 1
3ZNF 30 5800 100 10 0.7 0.0690 1
1PPT 36 7000 100 10 0.7 0.0571 1

We found empirically that the mean distance between consecutive -
carbon atoms for the proteins used in this work is 3.82Å with = 0.04Å.
The distance between consecutive -carbon atoms was therefore set to unit
distance in the algorithm, corresponding to an actual distance of 3.80Å.
The distance of 3.80Å has also been used, e.g., by [2]. The angular represen-
tation is easy to implement and facilitates the application of genetic variation
operators.

The EA uses a population of 100 solutions, which are initialized as
straight structures, with all angles set to 0 (cf. [13]). Fitness is assigned ac-
cording to one of the evaluation functions in Section 11.2.4. We use standard
tournament selection without replacement and tournament size . After
selection, the new population is divided into pairs of parent solutions,
and standard single-point crossover is applied with . The crossover
point may not split an angle pair for a residue pair. Gaussian muta-
tion is applied to all parameters (angles) of each individual with a probability

, where is the number of parameters. The mutation operator adds
a random number from a normal distribution to a parameter
value.

After reproduction, all solutions in are evaluated and receive a
�tness value , and elitism is applied by replacing the worst solution from
time with the best solution from time if .
The evolutionary cycle is repeated for iterations. The expressions
for calculation of and were determined empirically. It is desirable to ad-
just so that the same number of parameters are likely to be mutated
irrespective of the number of parameters. is proportional to because
a larger number of parameters usually gives a slower convergence rate. Ta-
ble 11.1 shows the parameter settings used in simulations for the �ve different
proteins studied.
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11.2.4 Evaluation Functions
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The standard EA uses no method to ensure that solutions in a population
are diverse, which may cause the algorithm to converge to a point where all
solutions are very similar [6]. Hence, there is a risk for premature convergence
and suboptimal solutions. EA2 is a modi�ed version of EA1 that uses a �tness
sharing strategy. Fitness sharing enforces diversity within a population by
demanding that each solution share its �tness with other solutions that are
within the same region of the search space. The principle of �tness sharing,
as described in [6], is de�ned in Eqs. (11.4) and (11.5). The problem-speci�c
distance measure used in this work is de�ned in equation 11.6.

(11.4)

if
otherwise

(11.5)

(11.6)

In Eq. (11.4), is the shared �tness for solution , is the raw �tness
returned by the evaluation function for solution , is the population size
( ), is the sharing function value for the distance ,
which is the distance between solutions and . Hence, is used during
the selection procedure instead of . In Eq. (11.5) de�nes the size
of the neighborhood around solution and is a scaling parameter. In Eq.
(11.6), is the remainder after dividing parameter of solution
with 360. Hence, Eq. (11.6) is a modi�ed expression for Euclidean distance,

taking into consideration that the remainder from a division encodes the
same position as an angle . The consequence of the sharing function in Eq.
(11.5) is that the closer two solutions are to each other, the more each solution
is penalized. Different parameter values for were tested during initial
simulations and was found appropriate. The parameter was set
to 1.
EA2 was applied to all evaluation functions, but only one target protein

(2ETI) was used. The number of iterations was extended from 5400 to
9000, since the broader exploration done with a more diversi�ed population
may require more time until convergence. The other EA parameters were set
to the same values as described in Table 11.1 for the EA1 algorithm: ,

, , , and .

This section describes the evaluation functions that we de�ned and tested.
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Amino Acid Properties

Amino acid Hydrophobicity Charge Woese Miller

Alanine H H 7.0 -0.20
Arginine P P 9.1 1.34
Asparagine P X 10.0 0.69
Aspartate P N 13.0 0.72
Cysteine P X 4.8 -0.67
Glutamine P X 8.6 0.74
Glutamate P N 12.5 1.09
Glycine P X 7.9 -0.06
Histidine P P 8.4 -0.04
Isoleucine H H 4.9 -0.74
Leucine H H 4.9 -0.75
Lysine P P 10.1 2.00
Methionine H H 5.3 -0.71
Phenylalanine H H 5.0 -0.67
Proline H H 6.6 -0.44
Serine P X 7.5 0.34
Threonine P X 6.6 0.26
Tryptophan H H 5.2 -0.45
Tyrosine P X 5.4 0.22
Valine H H 5.6 -0.61

is an adaptation of the lattice HP model [4] to off-lattice envi-
ronments, using a similar approach as in [15] and [9]. We used the Ras-
mol (http://www.umass.edu/microbio/rasmol/) prede�ned sets �Hydropho-
bic� and �Polar�to classify amino acids, as shown in Table 11.2, in the column
marked �Hydrophobicity�. Table 11.3 shows the potential for the HP en-
ergy function for types of interactions between neighboring residues and
in a lattice environment [10]. The off-lattice version uses a potential function
taking the distance between interacting residues into account. An optimal
interaction potential equivalent to the lattice interaction potential for neigh-
boring hydrophobic residues occurs at unit distance (3.8Å). Smaller distances
are penalized to enforce steric constraints, i.e., to avoid residue clashes. This
approach has been used in both lattice [13] and off-lattice models [9, 15]. Total
energy is calculated using

(11.7)

,

, (11.8)
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Interaction Potential for the HP Evaluation Function.

-1 0
0 0

Off-lattice HP model interaction potential. : pairwise hydropho-
bic interactions (H-H). : all other types of interactions.

where is the total energy of a conformation, is energy potential between
residues and , is the Euclidean distance between residues and , and
are constants, and is the interaction potential according to Table 11.3.

Eq. (11.8) is visualised in Figure 11.3, plotting against . We tested
different values for and before �xing them. Higher makes the penalty
curve steeper. Mutation of a single angle may change dramatically around

because of the steep penalty curve below this point. We found
useful for achieving a high penalty effect to avoid residue clashes while also
avoiding too high sensitivity to mutation. Higher yields a reward curve that
approaches 0 quicker as a function of . We found that must not be too
high ( ) as this results in weak guidance toward globular structures for
long-distance interactions. was found adequate.
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Interaction Potential for the HPNX Evaluation Function.

-4 1 1 0
1 0 -1 0
1 -1 0 0
0 0 0 0

The �tness value returned by the evaluation function is negated total en-
ergy, since EAs strives to maximize �tness and the total free energy of the
native fold is assumed to be at a minimum [1].

is an extension to HP to consider the charge of amino acids [10].
Amino acids are classi�ed as hydrophobic (H), positively (P) or negatively (N)
charged, or neutral (X), using the Rasmol prede�ned sets �Basic�, �Acidic�,
and �Neutral� to subdivide the polar residues. The resulting classi�cation is
shown in the column marked �Charge� in Table 11.2. The interaction po-
tentials in the HPNX function are illustrated in Table 11.4. The energy is
otherwise calculated as in HP (see Eqs. (11.7) and (11.8)).

uses polar requirement values , i.e., different degrees of polar-
ity for different amino acids [16], which vary in the interval . A high
corresponds to a polar residue. The polar requirement values are shown

in the column marked �Woese� in Table 11.2. As this evaluation function is
more detailed than HP it should yield conformations structurally closer to
target conformations. The energy calculation uses Eq. (11.7) and

if

if
(11.9)

where (so that hydrophobic interactions are rewarded),
and .

uses degrees of hydrophobicity , according to the empiri-
cal hydrophobicity scale of [5], where varies in the range
kcal/mol, and where negative values correspond to hydrophobicity. The
values are shown in the column marked �Miller� in Table 11.2. The energy
calculation is de�ned by Eq. (11.9) with and .

uses empirically derived contact potentials for amino acid interac-
tions. A contact potential describes the energy between two residues in prox-
imity (typically, Å). In [7] a contact potential was determined
for all pairs of amino acid types using 1168 known structures. The interaction
between two Leucine residues gives the lowest of -7.37. Leucine is one
of the most hydrophobic amino acids and this supports the assumption that
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hydrophobicity is the driving force in protein folding, largely determining the
backbone structure of the protein [10]. Hence, EMP favors hydrophobic in-
teractions like previous models. The energy calculations are the same as in
Eq. (11.9), but with and .

uses structural information about the target protein, thus being
a way to test if the EA is capable of producing folds structurally close to the
native fold. Minimization of the Distance Matrix Error (DME) [3] between
simulated and target structure, should result in a near-native fold. It is de�ned
as

(11.10)

where is Euclidean distance between atoms and in protein structure
, and is the number of atoms used for the comparison. DME is the sum
of all 2-combinations of interatomic distances between the structures. In the
STRUCT evaluation function �tness it is de�ned as , where
is the simulated structure and is the target structure.

minimizes the greatest inter-residue distance, thus not having any
biological plausibility. It was de�ned here to evaluate the biological relevance
of the other functions. GLOB �tness is de�ned as

(11.11)

if

otherwise
(11.12)

where is the maximum interresidue Euclidean distance for the simulated
conformation and is de�ned according to Eq. (11.7). is the penalty for
the interaction between residues and . The penalty term is necessary in
order to enforce steric constraints.

Table 11.5 shows a summary of EA1 simulations using the �ve example
proteins. Ten simulations were performed for each combination of evaluation
function and protein (only �ve per protein for STRUCT). STRUCT gave near-
native folds for all target proteins, which shows that the EA is competent and
can produce native folds given a suitable evaluation function. This con�rms
our belief that EAs are promising algorithms for eventually solving the protein
structure prediction problem.
The RAND function that is included in Table 11.5 creates randomized

structures with residues being at least one unit distance apart. RAND gave
higher average than all other functions except MILLER, which was an
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DME Results (in Ångstroms) for EA1.

Protein

STRUCT 1CRN
STRUCT 2ETI
STRUCT 1CTI
STRUCT 3ZNF 0.3 0.2 0.4
STRUCT 1PPT 0.5 0.1 0.6 0.5
Avg.
RAND 1CRN 12.6 5.3 25.1 6.1
RAND 2ETI 9.0 2.2 12.9 6.6
RAND 1CTI 9.1 3.5 15.3 5.5
RAND 3ZNF 8.7 3.4 15.8 5.3
RAND 1PPT 9.4 3.0 14.2 4.9
Avg. 9.8 3.5 16.7 5.7
HP 1CRN 7.3 0.4 7.9 6.8
HP 2ETI 4.6 0.2 4.9 4.3
HP 1CTI 7.8 0.5 8.8 7.0
HP 3ZNF 5.0 0.2 5.2 4.6
HP 1PPT 7.2 0.3 7.7 6.9
Avg. 6.4 0.3 6.9 5.9
HPNX 1CRN 7.1 0.3 7.7 6.8
HPNX 2ETI 4.5 0.3 5.2 4.1
HPNX 1CTI 7.9 0.7 9.1 7.2
HPNX 3ZNF 4.8 0.3 5.3 4.4
HPNX 1PPT 7.4 0.1 7.6 7.3
Avg. 6.3 0.3 7.0 6.0
WOESE 1CRN 6.6 0.2 7.0 6.4
WOESE 2ETI 4.5 0.4 5.4 4.0
WOESE 1CTI 5.2 0.5 6.3 4.7
WOESE 3ZNF 4.6 0.2 5.0 4.3
WOESE 1PPT 7.5 0.4 8.1 6.9
Avg. 5.7 0.3 6.4 5.3
MILLER 1CRN 7.6 0.4 8.3 7.0
MILLER 2ETI 5.0 0.3 5.6 4.7
MILLER 1CTI 12.3 7.8 20.3 4.8
MILLER 3ZNF 36.8 0.0 36.8 36.8
MILLER 1PPT 41.3 0.0 41.3 41.3
Avg. 20.6 1.7 22.5 18.9
EMP 1CRN 7.4 0.1 7.6 7.3
EMP 2ETI 4.5 0.2 4.6 4.1
EMP 1CTI 5.1 0.1 5.2 4.9
EMP 3ZNF 5.6 0.2 5.9 5.2
EMP 1PPT 9.1 0.1 9.3 8.9
Avg. 6.3 0.1 6.5 6.1
GLOB 1CRN 6.1 0.3 6.6 5.5
GLOB 2ETI 4.0 0.3 4.5 3.5
GLOB 1CTI 4.4 0.3 4.8 3.7
GLOB 3ZNF 5.2 0.3 5.4 4.4
GLOB 1PPT 8.2 0.2 8.5 7.9
Avg. 5.6 0.3 6.0 5.0
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Hypothesis Con�dence Levels

Protein
Hypothesis 1CRN 2ETI 1CTI 3ZNF 1PPT
GLOB EMP
GLOB HP 0 0
GLOB HPNX 0 0
GLOB WOESE 0 0
WOESE HP 40 0
WOESE HPNX 0 79 0
EMP HP 0 57 0 0
EMP HPNX 0 0 0 0
EMP WOESE 0 0 40 0 0
HPNX HP 63 47 0 79 0

unsuccessful application of the hydrophobicity scale of [5] and did not produce
compact globular structures for all proteins.
The most striking result seen in Table 11.5 is that GLOB, which simply

crumples the protein by minimizing the greatest interresidue distance, is the
most successful function, having Å. Statistical data analysis (see
Table 11.6) shows that the difference between GLOB and both EMP and
MILLER is signi�cant at the 99% level or higher for all �ve proteins. In
addition, GLOB was better at the 98% signi�cance level than HP, HPNX, and
WOESE for three out of �ve proteins. In addition, the average and

are lower for GLOB than for any other function except STRUCT.
In these results, therefore, an evaluation function only rewarding compact
conformations gives better DME values than several functions with presumed
biological relevance.

It is also notable that the average DME for every tested function (except
STRUCT) is too high for useful structure prediction, since a DME above
approximately 5Å can only correspond to weak structural similarities. This
indiates that none of the functions tested is informative enough to guide the
search to correct structure predictions. These functions can therefore at best
be used to �nd approximate solutions to be further re�ned by more exact
methods.
In order to evaluate the accuracy of the evaluation functions, we compared

for each evaluation function the �tness of the best evolved solution with the
�tness assigned by the same �tness function to the native fold. As can be
seen in Table 11.7, evolved structures always have higher or much higher
�tness than the native fold, despite having large DME when compared with
the native fold, and thus being incorrect solutions. This result indicates that
the evaluation functions are misleading, either in the sense that they lead
the EA to incorrect minima in search space regions far away from the native
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fold, or that they lead the EA to "overshoot" the target by overoptimizing
the structure past the correct solution. To further investigate the behavior
of these functions, we measured the correlation between the �tness values
found during the simulations and the DME deviation from the native fold.
Table 11.8 shows this correlation for the HP function. As can be seen, the
correlation is rather strong ( ) for every protein. This indicates that the
function does lead the EA towards the correct region of the search space, but
either misses or overshoots the target. The correlation levels were similar for
all other evaluation functions tested (data not shown).

Table 11.9 shows the results of using �tness sharing in EA2. There is
no clear case of improvement in DME values, and on the contrary �tness
sharing gave worse DME results on the 2ETI protein for the two evaluation
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Fitness results. For each protein, the �rst row shows average �tness of the
best individual in the �nal EA1 population, and the second row shows �tness of the
native fold. The additional row for shows average �tness of the best individual
in the �nal EA2 population.

HP HPNX WOESE MILLER EMP GLOB
107.9 453.6 184.0 168.9 2071.5 0.23
58.4 251.7 145.7 84.0 1446.3 0.13
24.8 95.2 69.4 56.2 815.2 0.29
9.9 51.5 62.0 29.2 643.1 0.20
23.4 92.2 68.3 44.1 792.3 0.28
25.3 77.7 71.0 4.1 896.1 0.30
9.6 38.9 62.3 -28.3 656.6 0.20
10.1 20.0 70.8 -68.8 715.4 0.29
1.7 2.0 59.0 -163.4 536.8 0.16
52.0 183.0 100.3 -30.1 1219.2 0.27
27.5 96.4 76.9 -83.6 805.6 0.12

Correlation Between Fitness ( ) and DME ( ) for EA1 Using the HP
Evaluation Function.

Protein

0.94 0.01 0.96 0.92
0.94 0.01 0.96 0.92
0.95 0.01 0.96 0.94
0.94 0.02 0.95 0.91
0.91 0.01 0.93 0.90
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EA2 versus EA1 on the protein 2ETI. Values within parantheses are
from EA1 simulations and are repeated from Table 11.5 and 11.7 to make comparison
easier.

Function

STRUCT 0.4 ( ) 0.1 (0.2) 0.6 ( ) 0.3 ( )
HP 4.6 (4.6) 0.3 (0.2) 5.2 (4.9) 4.2 (4.3)
HPNX 4.6 (4.5) 0.4 (0.3) 5.4 (5.2) 4.1 (4.1)
WOESE 4.9 (4.5) 0.8 (0.4) 7.0 (5.4) 4.3 (4.0)
MILLER 9.4 (5.0) 5.4 (0.3) 17.7 (5.6) 4.8 (4.7)
EMP 4.4 (4.5) 0.2 (0.2) 4.8 (4.6) 4.2 (4.1)
GLOB 3.9 (4.0) 0.2 (0.3) 4.1 (4.5) 3.5 (3.5)

functions STRUCT and MILLER. One reason for the worse results on these
two functions is the choice of sharing parameter value , which was
nonoptimal for these two functions. This value was suitable for other
functions, but further experimentation to �nd values suitable for STRUCT
and MILLER was not conducted.

Given the lack of improvement when using �tness sharing, it is of interest
to study the structural diversity of the populations. We therefore de�ned the
following measure of structural diversity:

(11.13)

where is the distance between solutions and at iteration step
according to Eq. (11.6). Table 11.10 shows the structural diversity when
different evaluation functions with (EA2) and without (EA1) �tness sharing
are used. The mean diversity is considerably higher for the �tness sharing
simulations for all evaluation functions. This shows that the �tness sharing
strategy works, in the sense that it gives a higher structural diversity in the
population. The fact that this does not result in better DME results (see
Table 11.9) can only be attributed to the �tness functions being misleading.

Our results show that evolutionary algorithms can �nd correct protein struc-
tures given the right �tness function, i.e., the STRUCT function. The problem,
of course, is that this function requires that we already know the native struc-
ture, and is therefore not of any use for structure prediction. It does indicate,
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Structural diversity (protein 2ETI). For each evaluation function, the
�rst row shows average diversity for EA1 simulations, and the second row shows average
diversity for EA2 simulations.

Evaluation function

HP1 505 11 528 490
4509 382 5051 3798

HPNX1 477 6 486 469
5103 672 6167 3961

WOESE1 442 12 462 416
5109 898 7049 3957

MILLER1 446 5 453 439
4204 322 4605 3738

EMP1 952 1084 3183 420
4437 552 5625 3727

DME1 1443 1464 4019 488
10705 5281 17893 5191

GLOB1 612 142 915 524
4034 741 6046 3548

1. An�nsen, C.B. (1973) Principles that govern the folding of proteins chains. Sci-
ence. , 223-230.

2. Dandekar, T., Argos, P. (1996) Folding the main-chain of small proteins with the
genetic algorithm. Journal of Molecular Biology. , 844-861.

however, that EAs are sufficiently powerful search algorithms for eventually
solving the protein structure prediction problem.
Our results also show that the simpli�ed models used in much research on

protein structure prediction do not give �tness functions informative enough
to guide the EA to accurate structure predictions. It is clear from our results
that these models are not fruitful abstractions of the folding process. It was
suggested in [12] that simpli�ed models (e.g., lattice-based HP) �exhibit many
of the features of real folding�. However, according to our results, they are
far from informative enough for useful structure prediction, since no function
gave an average DME below 5Å.

This work was supported in part by a grant to the second author from The
Foundation for Knowledge and Competence Development (grant 1507/97).



�

87

196

256

2

231

55

31

158 J. Gamalielsson and B. Olsson

3. Doucet, J.P., Weber, J. (1996) Computer-Aided Molecular Design. Academic
Press.

4. Lau, K., Dill, K. (1990) Theory for protein mutability and biogenesis. Proceedings
of the National Academy of Sciences of the USA. , 638�642

5. Miller, S., Janin, J., Lesk, A.M., Chothia, C. (1987) Interior and surface of
monomeric proteins. Journal of Molecular Biology. , 641-656.

6. Michalewicz, Z.,Fogel, D.B. (2000) How to Solve It: Modern Heuristics. Springer-
Verlag.

7. Miyazawa, S., Jernigan, R.L. (1996) Journal of Molecular Biology. , 623-644.
8. Patton, A.L., Punch, W.F., Goodman, E.D. (1995) A Standard GA Approach to
Native Protein Conformation Prediction. Proc. of the 6th Annual Intern. Conf.
on Genetic Algorithms. 574-581.

9. Piccolboni, A., Mauri, G. (1997) Application of evolutionary algorithms to protein
folding prediction. Proceedings of ICONIP. Springer.

10. Renner, A., Bornberg-Bauer, E. (1997) Exploring the �tness landscapes of lattice
proteins. Paci�c Symposium on Biocomputing. , 361-372.

11. Schulze-Kremer, S. (1995) Molecular Bioinformatics: Algorithms and Applica-
tions. Walter de Gruyter.

12. Unger, R., Moult, J. (1993) Genetic algorithms for protein folding simulations.
Journal of Mol. Biology. , 75-81.

13. Unger, R., Moult, J. A (1993) Genetic Algorithm for 3D Protein Folding Simula-
tions. Proc. of the 5th Annual Intern. Conf. on Genetic Algorithms, 581-588.

14. Unger, R., Moult, J. (1993) Finding the lowest free energy conformation of a
protein is a NP-hard problem. Bulletin of Mathematical Biology. (6), 1183�
1198

15. Vail, D. (2001) Genetic algorithms as a search strategy and a novel
means of potential punction discovery in the protein folding problem.
Bowdoin College, Department of Computer Science, report available at
www.bowdoin.edu/ dvail2/protein.html

16. Woese, C.R., Dugre, D.H., Dugre, S.A., Kondo, M., Saxinger, W.C. (1966) On
the fundamental nature and evolution of the genetic code. Cold Spring Harbor
Symp. Quant. Biol. , 723�736



Summary.
HI DE R

12.1 Introduction

12

Learning Decision Rules by Means of
Hybrid-Encoded Evolutionary Algorithms

This paper describes an approach based on evolutionary algorithms,
HIDER ( erarchical cision ules), for learning rules in continuous and discrete
domains. The algorithm produces a hierarchical set of rules, that is, the rules are
sequentially obtained and must be therefore tried in order until one is found whose
conditions are satis�ed. In addition, the algorithm tries to obtain more understandable
rules by minimizing the number of attributes involved. The evolutionary algorithm uses
binary coding for discrete attributes and integer coding for continuous attributes. The
integer coding consists in de�ning indexes to the values that have greater probability
of being used as boundaries in the conditions of the rules. Thus, the individuals han-
dles these indexes instead of the real values. We have tested our system on real data
from the UCI Repository, and the results of a 10-fold cross-validation are compared
to C4.5s and C4.5Rules. The experiments show that HIDER works well in practice.

J.C. Riquelme and J.S. Aguilar-Ruiz

Evolutionary Algorithms (EA) are a family of computational models inspired
by the concept of evolution. These algorithms employ a randomized search
method to �nd solutions to a particular problem [25]. This search is quite
different from the other learning methods mentioned above. An EA is any
population-based model that uses selection and recombination operators to
generate new sample examples in a search space [22]. EAs have been used
in a wide variety of optimization tasks [13] including numerical optimization
and combinatorial optimization problems, although the range of problems to
which EAs have been applied is quite broad. The main task in applying EAs
to any problem consists of selecting an appropriate representation (coding)
and an adequate evaluation function (�tness).
Genetic-based searching algorithms for supervised learning, as GABIL [7]

or GIL [11], do not handle easily numeric attributes because the method
of encoding all possible values would lead to very long rules in the case or
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C4.5. HIDER.

real-valued attributes. Concretely, GABIL and GIL are so-called �concept
learners� because they are designed for discrete domains. Other approaches,
as SIA [19], have been motivated by a real-world data analysis task in a
complex domain (continuous and discrete attributes).
The aim of our research was to obtain a set of rules by means of an

evolutionary algorithm to classify new examples in the context of supervised
learning. With our approach, HIDER, we try to handle efficiently continuous
and discrete attributes.
The justi�cation of this method will be discussed in Section 12.2. The

characteristics of our approach are presented in section 12.3, where the coding,
the algorithm, the selected �tness function, and a particular aspect named

, are detailed. Section 12.4 shows the experiments, the results
and the analysis of them. In Section 12.5 the conclusions are summarized,
some of which motivates the future works presented in Section 15.7.

Two arti�cial two�dimensional databases will be used to clarify the motivation
of our approach. The way in which C4.5 splits the space is depicted in Figure
12.1. The �gures within the circles describe the level on the tree where the
tests (nodes) over these attributes are placed. See the region labeled as B on
the bottom left corner of Figure 12.1. C4.5 divides the region into two parts,
however, we thought that the region should be completely covered by only
one rule. This fact motivates us to design an algorithm able to discover such
rule.

HIDER is quite different because it does not divide the space by an at-
tribute, but it extracts sequentially regions from the space. This permits us
to obtain regions, i.e., all examples belong to the same category. As il-
lustrated in Figure 12.2, the region labeled as B on the bottom left corner is
discovered by HIDER.
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decision list

Figure 12.3. Figure 12.4.
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C4.5 HIDER

For another arti�cial two�dimensional database, Figure 12.3 shows the
classi�cation that C4.5 gives. Nevertheless, the quality of the rule set would
be improved if the algorithm �nds rules within others. The most evident
feature, graphically observed in Figure 12.4, is the reduction of the number of
rules because of the rules overlapping. This characteristic motivates us to use
hierarchical decision rules instead of independent (unordered) decision rules.

In short, the obtaining of larger regions (without damaging the prediction
accuracy) and the discovery of regions within others are the two main goals
that have motivated the development of HIDER.

HIDER (HIerarchical DEcision Rules) uses an EA to search for the best solu-
tions and produces a hierarchical set of rules. According to the hierarchy, an
example will be classi�ed by the th rule if it does not match the conditions
of the th preceding rules. The rules are obtained sequentially until the
space is totally covered. The behavior is similar to a [17]. As
mentioned in [6], the meaning of any single rule is dependent on all the other
rules that precede it in the rule list, so that it might be a problem for the
expert in understanding the rules (if there are many).
When we want to learn rules in the context of continuous attributes, we

need to extend the concept of decision list in two ways: �rst, for adapting the
Boolean functions to interval functions; and second, for representing many
classes instead of the true and false values (positives and negatives examples).
For each continuous (real) attribute we obtain the boundaries values, called
and (lower and upper bounds, respectively), which de�ne the space
(range of the attribute ). These intervals allow us to include continuous at-
tributes in a decision list. Our decision list does not have the last constant
function true. However, we could interpret the last function as an unknown
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conditions class
conditions class
conditions class

...............................................
�unknown class�

Hierarchical set of rules.

function, that is, we do not know which class the example belongs to. There-
fore, it may be advisable to say �unknown class� instead of making an erro-
neous decision. From the viewpoint of the experiments, when no induced rules
are satis�ed, �unknown class� will be considered as an error.
The structure of the set of rules will be as shown in Figure 12.5.

As mentioned in [8] one of the primary motivation for using real-coded
EAs is the precision with which attribute values can be represented and an-
other is the ability to exploit the continuous nature of functions of continuous
attributes. We implemented our �rst versions with binary-coded GAs, but we
realized that real-coded EAs were more efficient (time and quality of results).
Before an EA can be run, a suitable for the problem must be de-

vised. We also require a , which assigns a �gure of merit to
each coded solution. During the run, parents are for reproduction and

to generate . These aspects are described below.

In order to apply EAs to a learning problem, we need to select an internal
representation of the space to be searched. These components are critical for
the successful application of the EAs to the problem of interest.
Information on the environment comes from a data �le, where each exam-

ple has a class and a number of attributes. We have to codify that information
to de�ne the search space, which normally will be dimensionally greater. Each
attribute will be formed by several components in the search space, depending
on the speci�c representation. To �nd out an appropriate coding for the prob-
lem is very difficult, but it is almost impossible to get the perfect one. There
exist two basic principles for choosing the coding: the principle of meaningful
building blocks and the principle of minimal alphabets [25].
In our �rst approaches, we studied other EA-based classi�ers [7, 11] with

binary coding. These are generally used as concept learners, where coding
assigns a bit to each value of the attribute, i.e., every attribute is symbolic
(GABIL and GIL are two well-known systems). For example, an attribute
with three possible values would be represented by three bits. A value of one
in a bit indicates that the value of the attribute is present so that several bits
could be active for the same attribute. This coding is appropriate for symbolic
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Continuous (left) and discrete (right) attributes.

Example of coding.

domains. However, it is very difficult to use it in continuous domains, because
the number of elements in the alphabet is very large, prohibiting a complete
search.
Using binary encoding in continuous domains requires transformations

from binary to real for every attribute in order to apply the evaluation func-
tion. Moreover, when we convert binary into real, the precision is being lost,
so that we have to �nd the exact number of bits to eliminate the difference
between any two values of an attribute. This ensures that a mutation of the
less signi�cant bit of an attribute should include or exclude at least one ex-
ample from the training set. Let and be the lower and upper bounds of
an attribute. Let be the least absolute difference between any two values
of the attribute . The allowed for this attribute must be less than .
Thus, the length of an attribute will depend on that .
Nevertheless, the real coding is more appropriate with real domains, sim-

ply because it is more natural to the domain. A number of authors have
investigated nonbinary evolutionary algorithms theoretically [3, 4, 12, 20, 21].
The representation for continuous and discrete attributes is best explained

by referring to Figure 12.6, where and are values representing an interval
for the continuous attribute; are binary values indicating that the value of
the discrete attribute is active or not. A last value (omitted in the �gure) is
for the class.

For example, for a database with two attributes, one continuous and one
discrete, an individual of the population could be as that depicted in Figure
12.7.
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The number of classes determines the set of values to which it belongs,
i.e., if there are �ve classes, the value will belong to the set .
Each rule will be obtained from this representation, but when
or , where is an attribute, the rule will not have that value.
For example, in the �rst case the rule would be and in the second case

, being any value within the range of the attribute (see Figure 12.7).
If both values are equal to the boundaries, then the rule arises for that
attribute, which means that it is not relevant because either of the attribute�s
values will be covered by the whole range of that attribute . Under
these assumptions, some attributes might not appear in the set of rules. In the
same way, when every discrete value is active, that attribute does not appear
in the rule.

The algorithm is a typical sequential covering EA [14]. It chooses the best
individual of the evolutionary process, transforming it into a rule used to
eliminate data from the training �le [19]. In this way, the training �le is
reduced for the following iteration. HIDER searches for only one rule among
the possible solutions, that compared to the algorithms based on the Michigan
and Pittsburgh approaches, reduces the search space, even if several searches
must be performed if several rules are to be learned.
An overview of HIDER is shown in Figure 12.8. The algorithm is divided

in two parts: the procedure HIDER, which constructs the hierarchical set of
rules, and the function EvoAlg, which obtains one rule every time is called.
Initially, the set of rules is empty, but in each iteration a rule is included
(operator ) in ; is the training �le, and is the number of remainder
examples that have not been covered yet (exactly at the begining). In
each iteration the training �le is reduced (operator ), eliminating those
examples that have been covered by the description of the rule ( ), i.e., the
left-hand side of the rule, independently of its class. A parameter , called

, controls the number of examples that will not be
covered during the process (ranging from 0% to 5%). This factor ensures that
rules covering few examples are not generated. Some authors have pointed out
that these rules are undesirable, especially with noise in the domain [6, 10].
The termination criterion is reached when more examples to cover do not
exist, depending on . For the trials, we have set to 0.
The evolutionary algorithm is run each time to discover one rule. The

method of generating the initial population (Initialize) consists of randomly
selecting an example from the training �le for each individual of the pop-
ulation. Afterwards, an interval to which the example belongs is obtained.
For example, in one dimension, let and be the lower and upper bounds
of the attribute ; then, the range of the attribute is ; next, we ran-
domly choose an example from the training �le;

could be an individual of the
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HIDER( , )

EvoAlg( )

HIDER

EvoAlg( )

Initialize()
Evaluation( )

Selection( )
Recombination( )

Evaluation( )

best_of( )
EvoAlg

Pseudocode of HIDER.

population where and are random values belonging to ( is the
size of the training data; is the number of different classes; and is the
same of the example). For discrete attributes, we ensure that the individual
has the same active value as the example. The remainder binary values are
randomly set to 0 or 1.
For example, let the database be the one used in the Figure 12.7. A possible

individual for the initial population is obtained from a randomly selected ex-
ample . The individual could be .
The interval is for the continuous attribute and the values
is for the discrete one. Notice that the value is active and other value
( ) has been randomly set to 1. The individual keeps the same class that
of the example.
Sometimes, the examples very near to the boundaries are hard to cover

during the evolutionary process. To solve this problem, the search space is
increased (currently, the lower bound is decreased by 5%, and the upper bound
is increased by 5%), for continuous attributes.
The evolutionary module incorporates elitism: the best individual of every

generation is replicated to the next one ( , see in Figure 12.8 the loop
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Crossover situation 1. Crossover situation 2.
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controlled by the variable ). A set of children (from to ) is
obtained from copies of randomly selected parents, generated by their �tness
values and using the roulette wheel selection method. The remainder individ-
uals (from to ) are formed by means of crossovers
(recombination). As half of the new population is created by applying the
crossover operator, the probability of selecting an individual for crossing de-
pends on its �tness value. These individuals could be mutated (recombination)
later (only the individual from the elite will not be mutated). The evaluation
function (evaluation) assigns a value of merit to each individual, which will
be further used in the next generation.

Wright�s linear crossover operator [24] creates three offspring: treating two
parents as two points and , one child is the midpoint of both, and the
other two lie on a line determined by and . Radcliffe�s
�at crossover [16] chooses values for an offspring by uniformly picking values
between (inclusively) the two parents values. Eshelman and Schaffer [8] use
a crossover operator that is a generalization of Radcliffe�s which is called
the blend crossover ( - ). It uniformly picks values that lie between two
points that contain the two parents, but it may extend equally on either side
determined by a user speci�ed EA-parameter . For example, - picks
values from points that lie on an interval that extends on either side of
the interval I between the parents. Logically, - is the Radcliffe�s �at
crossover.
Our crossover operator is an extension of Radcliffes�s to parents coded as

intervals. Let and be the intervals of two parents and for
the same attribute . From these parents one children is generated by
selecting values that satisfy the expression: and

. This type of crossover could produce two situ-
ations, which are illustrated in Figures 12.9 and 12.10. When the intersection
of two intervals is not empty, as it is shown in Figure 12.9, the new inter-
val is clearly obtained. However, a different situation is produced when
the intersection is empty, because could be greater than . In this case, the
offspring is rejected.
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When the attribute is discrete, the crossover operator is like uniform
crossover [18].

Mutation is applied to continuous attributes as follows: if the randomly se-
lected location (gen) is or , then a quantity is subtracted or added, depend-
ing on whether it is the lower or the upper bound, respectively (the quantity is
currently the smaller Heterogeneous Overlap-Euclidean Metric (HOEM, [23])
between any two examples). In case of discrete attributes, mutation changes
the value from 0 to 1, or viceversa, and it is applied with low probability. We
introduce a speci�c mutation operator to generalize the attribute when nearly
all values are 1. In this case, the attribute does not appear in the rule.
Mutation is always applied with probabilities 0.1 (individual) and (at-

tribute), where is the number of attributes. If the attribute is discrete, the
probability of mutating a value is , where is the number of discrete
values of that attribute.

Databases used as training �les do not have clearly differentiated areas, so
that to obtain a totally coherent rule system (without error from the training
�le) involves a high number of rules. In [1] a system capable of producing a
rule set exempt from error (with respect to the training �le)is shown; however,
sometimes it is interesting to reduce the number of rules in order to get a rule
set that may be used like a comprehensible linguistic model. In this way, it
could be better to have a system with fewer rules despite some errors than too
many rules and no errors. When databases present a distribution of examples
very hard to classify, it may be interesting to introduce the relaxing coefficient
( ) for understanding the behavior of databases by decreasing the number
of rules [2]. indicates what percentage of examples within a rule can have
a different class than the rule has. behaves like the upper bound of the
error with respect to the training �le, that is, as an allowed error rate. To deal
efficiently with noise and �nd a good value for , the expert should have
an estimate of the noise percentage in its data. For example, if a database
produces too many rules when is 0, we could set to 5 to decrease the
number of rules and, possibly, the error rate might be very similar.
When an individual tries to expand and it always reaches examples of a

different Class, its �tness value cannot be higher, unless a few errors were
allowed. In this case, depending on the �tness function, such a value might
increase. In Figure 12.11 (right) the individual cannot get bigger, unless one
error is allowed, in which case the individual will have four new examples
(left), increasing its �tness value.
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Relaxing coefficient.

Number or rules varying for Pima database.

We have tested that the concept of the coefficient relaxation turns out to
be useful when the number of rules is greater than expected to understand
the information stored in the database.
We used Pima Indians Diabetes database to analyze the in�uence of the

relaxing coefficient on both the error rate and the number of rules. This ex-
ample showed that the error rate ranges from 18% to 34% depending on the
relaxing coefficient (from 0 to 40) and therefore depending on the number of
rules (from 26 to 2; see Figure 12.12). When , HIDER produced only
two rules for the Pima database and the error rate mean was about 30%. The
lower error rate was achieved when . All the experiments reported in
the next tables were obtained using .

The �tness function must be able to discriminate between correct and in-
correct classi�cations of examples. Finding an appropriate function is not a
trivial task, due to the noisy nature of most databases.
The evolutionary algorithm maximizes the �tness function for each in-

dividual. It is given by Eq. (12.1):

(12.1)

where is the number of examples being processed; is the class error,
which is produced when the example belongs to the region de�ned by the
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rule but it does not have the same class; is the number of examples
correctly classi�ed by the rule; and the of a rule is the proportion of
the search space covered by such rule. Each rule can be quickly expanded to
�nd more examples thanks to the coverage in the �tness function. The reason
why is not is as follows: for example,
when and , we will have the same �tness value as when

and (the difference is 2; assuming the same coverage
for both). Therefore, we decided to penalty the second case ( is greater than
) since fewer errors are preferred.
The coverage of a rule is calculated by dividing the volume of the region

de�ned by the rule by the whole volume of the search space. Let be
the interval associated with an attribute of the rule; the number of active
discrete values of an attribute ; the range of a continuous attribute
, and the number of different values of a discrete attribute . Then, the
coverage of a rule is given by

where

if the attribute is continuous
if it is discrete

and
if the attribute is continuous
if it is discrete

The experiments described in this section are from the UCI Repository [5].
The results obtained by HIDER have been compared to that of C4.5 Re-
lease 8 and C4.5Rules. To measure the performance of each method, a -fold
cross-validation was achieved with each dataset (18 databases that involve
continuous and/or discrete attributes). The algorithms were all run on the
same training data and their induced knowledge structures tested using the
same test data, so that the 10 resulting performance numbers for C4.5Rules,
C4.5, and HIDER are comparable. It is very important to note that the ex-
periments were run with the same default settings for all parameters of the
EA: a population size of as little as individuals and generations. In
cases of small data sets, like Iris, the results would have been the same using a
smaller number of generations (it had been enough around 50). There are very
small numbers considering the number of examples and the dimensionality of
some databases. HIDER needed about hours to complete the 10-fold cross-
validation for the databases in a Pentium 400Mhz with 64 Mb of RAM.
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Parameters of HIDER

Parameter Value
Population size 100
Generations 300
Crossover probability 0.5
Individual mutation probability 0.2
Gen mutation probability 0.1

Comparing Error Rates

Database C4.5Rules C4.5 HIDER
Bupa 34.5 34.7 35.7
Breast-C (Wisc) 5.2 6.28 4.3
Cleveland 25.8 26.8 20.5
German 28.8 32.1 29.1
Glass 18.5 32.7 29.4
Heart 20.7 21.8 22.3
Hepatitis 16.9 21.4 19.4
Horse Colic 17.5 19.0 17.6
Iris 4.0 4.77 3.3
Lenses 16.7 29.9 25.0
Mushroom 0.0 0.0 0.8
Pima 26.2 32.1 25.9
Sonar 29.3 30.3 43.1
Tic-Tac-Toe 18.8 14.2 3.8
Vehicle 57.6 30.6 30.6
Vote 5.3 6.2 6.4
Wine 6.7 6.7 3.9
Zoo 29.8 7.0 8.0
Average 20.1 19.8 18.3

However, C4.5 only needed about minutes in the same machine. C4.5 is an
extremely robust algorithm that performs well on many domains. It is very
difficult to consistently outperform C4.5 on a variety of data sets.
Table 12.1 gives the values of the parameters involved in the evolutionary

process. The results of the trials appear in Tables 12.2, 12.3, 12.4, and 12.5.

Table 12.2 gives the error rates (numbers of misclassi�ed examples ex-
pressed as a percentage) for the C4.5Rules, C4.5, and HIDER algorithms on
the selected domains. HIDER outperforms C4.5 and C4.5Rules in 12 out of 18
and 8 out 18 datasets, respectively. If C4.5 produces bad trees, the results from
C4.5Rules will not be very good. We can observe that there are four databases
whose results generated by C4.5 are about 40% worse than those obtained by
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Comparing Number of Rules

Database C4.5Rules C4.5 HIDER
Bupa 14.0 28.6 11.3
Breast-C (Wisc) 8.1 21.9 2.6
Cleveland 11.3 35.2 7.9
German 5.2 181.5 13.3
Glass 14.0 29.0 19.0
Heart 10.5 29.2 9.2
Hepatitis 5.4 13.8 4.5
Horse Colic 4.1 39.3 6.0
Iris 4.0 5.5 4.8
Lenses 3.1 4.1 6.5
Mushroom 17.2 15.7 3.1
Pima 9.8 93.6 16.6
Sonar 5.1 16.8 2.8
Tic-Tac-Toe 10.7 93.9 11.9
Vehicle 3.3 102.3 36.2
Vote 6.6 14.7 4.0
Wine 4.6 5.4 3.3
Zoo 5.3 9.9 7.2
Average 7.9 41.1 9.5

Comparing Global Results (C4.5/HIDER)

Database
Bupa .97 2.53
Breast-C (Wisc) 1.46 8.42
Cleveland 1.31 4.46
German 1.10 13.65
Glass 1.11 1.53
Heart .98 3.17
Hepatitis 1.10 3.07
Horse Colic 1.08 6.55
Iris 1.40 1.15
Lenses 1.20 .63
Mushroom .01 5.00
Pima 1.24 5.64
Sonar .70 6.00
Tic-Tac-Toe 3.69 7.89
Vehicle 1.00 2.83
Vote .96 3.68
Wine 1.70 1.64
Zoo .88 1.38
Average 1.22 4.40



� �

+1
2

er nr

ratio

s

�
�

� � �

s

er

nr er nr

Table 12.5.

172 J.C. Riquelme, J.S. Aguilar-Ruiz

Comparing Global Results (C4.5Rules/HIDER)

Database
Bupa .97 1.24
Breast-C (Wisc) 1.21 3.12
Cleveland 1.26 1.43
German .99 .39
Glass .63 .74
Heart .93 1.14
Hepatitis .87 1.20
Horse Colic .99 .68
Iris 1.21 .83
Lenses .67 .48
Mushroom .01 5.55
Pima 1.01 .59
Sonar .68 1.82
Tic-Tac-Toe 4.95 .90
Vehicle 1.88 .09
Vote .83 1.65
Wine 1.72 1.39
Zoo 3.72 .74
Average 1.36 1.33

HIDER (Breast Cancer, Iris, Tic-Tac-Toe and Wine). It is especially worthy
the error rate of the Tic-Tac-Toe database. C4.5Rules improves the results of
C4.5 for nearly all databases, except three of them (Tic-Tac-Toe, Vehicle and
Zoo). C4.5Rules did not achieve to improve those results generated by C4.5,
quite the opposite, made results worse, particularly for Tic�Tac�Toe and Zoo
databases. As catalogued in the last row of Table 12.2, HIDER is on average
better than the others. In Table 12.4 these results will be analyzed by means
of the measure ( ) used in the Quinlan�s works [15].
Table 12.3 compares the number of rules generated by the three ap-

proaches. In order to count the number of rules generated by C4.5, we could
sum the leaves on the tree or apply the expression , where is the size of
the tree. C4.5Rules improves C4.5 in all databases, except Mushrooms. These
results are very similar to those generated by HIDER. Nevertheless, although
the result for German database is very interesting (5.2 rules), for others data-
bases C4.5Rules reduces the number of rules too much (3.3 rules for Vehicle
and 5.3 rules for Zoo), leading to a high error rate (57.6% for Vehicle and
29.8% for Zoo). Due to that reason, although C4.5Rules on average gener-
ated fewer rules (7.9) than HIDER (9.5), the error rate increased: C4.5Rules
(20.1%) and HIDER (18.3%).
Table 12.4 shows a measure of improvement ( ) for the error rate [second

and fourth columns: ( )] and the number of rules [third and �fth columns:
( )]. To calculate those coefficients ( and , respectively) the error rate
(number of rules) for C4.5 (or C4.5Rules) has been divided by the corre-
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sponding error rate (number of rules) for HIDER. On average, HIDER found
solutions that had less than one fourth of the rules output by C4.5. Surpris-
ingly, C4.5 generated a number of rules �ve times greater than HIDER for
one third of the databases. It is worth noting that applying HIDER, more
than two thirds of the databases produce less than half the rules. C4.5 only
was better with the Lenses database. C4.5 made the error rate better for six
databases, although only three of them improved signi�cantly (Mushrooms,
Sonar and Zoo). In summary, the averaged error rate generated by C4.5 is
22% greater and the averaged number of rules 340%. This reason leads to
us to make a comparison with C4.5Rules, mainly in regard to the number of
rules. The average ratio of the error rate of C4.5 to that of HIDER is 1.22,
while the ratio of the number of rules is 4.40. Although the results in Table
12.3 indicated that C4.5Rules improved on average (7.9 rules) to HIDER (9.5
rules), analyzing the relative increase of the number of rules, we can observe
that those numbers can be deceptive. C4.5Rules generates an averaged num-
ber of rules 33% greater (fourth column), as well as an averaged error rate
36% higher (�fth column), as it is shown in the last row of Table 12.5.
As the overall averages at the bottom of the tables indicate, HIDER is

more accurate than C4.5, and C4.5 is more accurate than C4.5Rules. HIDER
produces fewer rules than C4.5Rules, which also generates fewer than C4.5.

An EA-based supervised learning tool to classify databases is presented in this
paper. HIDER produces a hierarchical set of rules, where each rule is tried in
order until one is found whose conditions are satis�ed by the example being
classi�ed. The use of hierarchical decision rules led to an overall improvement
of the performance on the 18 databases investigated here. In addition, HIDER
improves the �exibility to construct a classi�er varying the relaxing coefficient.
In other words, one can trade off accuracy against understanding. HIDER was
compared to C4.5 and C4.5Rules and the number of rules as well as the error
rate were decreased. To summarize shortly, the experiments show that HIDER
works well in practice.

Evolutionary algorithms are very time-consuming. This aspect is being ana-
lyzed from the viewpoint of the coding. We are designing a new type of coding
that uses natural numbers for both continuous and discrete attributes, so as
the speci�c genetic operators. This encoding method allows us to reduce the
dimensionality of the search space so that the algorithm might converge more
quickly.
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13.1 Introduction

13

Evolvable Hardware Techniques for
Gate-Level Synthesis of Combinational
Circuits

This chapter is about the synthesis of combinational logic circuits using
evolvable hardware. The chapter introduces several approaches recently followed by
a number of researchers to tackle this problem. Research trends, immediate and for
years to come, are presented.

A. Hernández-Aguirre

A combinational circuit is the implementation of some Boolean function. In
real- world applications, the usual goal is to derive that circuit that implements
the function using the smallest number of components. There are several in-
terpretations to this problem because in Boolean algebra there are different
sets of primitives with the �universal generator� property. Sets of primitive
operators with this property are, for instance: {and, or, not },{and, xor, not},
and {nand}. Although any of these sets is sound and complete in Boolean
logic, the circuits they generate differ in size. What they share, though, is the
top-down strategy used to create the circuit. Human designers derive such
minimum circuits by working in a top-down fashion. By a proof process and
lots of human ingenuity, all knowledge about principles and valid operations
in the Boolean domain have been forged into a few axioms and laws. Human
designers repeatedly apply the set of axioms of Boolean logic to a Boolean
formula in order to transform it into an equivalent but shorter expression.
Therefore, the resulting expression is derived or inferred through this deduc-
tive process.
Evolutionary computation techniques are popular design and optimiza-

tion tools that challenge human designers. Inspired in the Darwinian theory
of the evolution of the species, evolutionary techniques mimic the dynam-
ics of a population where the �ttest individuals survive and reproduce, and
their genes prevail in their children that populate the next generation. Any
individual encodes a solution, a Boolean formula in our discussion, which is
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13.2 Basic Concepts in Evolvable Hardware

intrinsic evolvable hardware extrinsic evolv-
able hardware

only a partial solution of the problem. No knowledge other than how well
each individual solves the problem is used during the evolution. Evolutionary
techniques build upon partial solutions to synthesize the solution. As noted,
no knowledge about Boolean domain is precomputed, or axioms used to �nd
equivalent formulas; with no recipes at hand other than surviving, evolution-
ary computation techniques construct or synthesize circuits. The solutions are
quite uncommon since bottom-up mechanisms explore different areas of the
search space [29].
Evolvable Hardware (EHW for short) exploits this unique capacity for the

synthesis of circuits (which is not easily found on the human side). EHW
is, in essence, a combination of evolutionary computation and recon�gurable
hardware. In this nascent �eld there are several approaches that, combined
with new technologies and platforms, have spawn a number of modalities.
This chapter presents the most important current and future research

trends in evolvable hardware for the synthesis of combinational circuits. The
chapter is organized as follows. Section 13.2 deals with different approaches to
evolvable hardware and makes a brief introduction to Boolean circuit synthe-
sis. Section 13.3 introduces seven approaches to extrinsic evolvable hardware.
Finally, Section 13.4 discusses some of the research trends.

The utter goals of any full evolvable hardware system are self-recon�guration
and self-adaptation. Self-recon�guration refers to the ability of a system to
modify its structure in order to tackle different tasks (in some closed domain)
using the best resources available. Self-adaptation means the use of evolu-
tionary techniques to generate the solution using such resources. Most EHW
systems are off-line learning system; therefore, they work in two steps. In step
one a new task is presented to the system; thus, a solution is generated by
recon�guration and adaptation. In step two the system responds to new input
data in the way it has learned to do so. The adaptation algorithm can be ran
in hardware or software. When it runs on hardware the technique is called

, whereas the other case is called
. We could say the difference depends on the place where the

evolutionary algorithm is run. Figure 13.1 shows the modules of any intrin-
sic evolvable hardware platform for combinational circuit design [15, 14, 13].
The adaptation module is a GA embedded in hardware, the �tness evaluator
module also runs in hardware, and the recon�gurable module is a PLA (an
FPGA is frequently used instead of the PLA).
Another issue is the �granularity� level used during the evolutionary

process. Granularity refers to how basic the primitive elements used for the
synthesis of solutions are. For example, �ne granularity evolution could only
use gates, but coarse granularity could combine these primitives
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Intrinsic evolvable hardware system.

Extrinsic evolvable hardware system.

with other components built upon the primitives, say multiplexers and de-
coders. The �ne granularity approach is called �gate-level�, whereas the other
case is called �functional-level�. Granularity must be considered at the time
the representation of the individuals is being de�ned because it has a direct
impact on scalability (or capacity to design bigger circuits without chang-
ing the algorithm). A clear advantage of extrinsic EHW is the better control
of granularity since adjustments are possible at any time. Figure 13.2 shows
the modules of an extrinsic evolvable hardware platform. The evolutionary
algorithm is implemented in software, the �tness evaluator is also a program
tightly coupled with a simulator (HDL, Verilog, or Spice). The simulator �ex-
ecutes� every circuit in the population and the result is used to compute a
�tness value. Notice that in this case everything is modeled in software, but
combinations of intrinsic and extrinsic are also possible and called

[28].

The evolutionary techniques used in EHW are: Genetic Algorithms (GA),
Genetic Programming (GP), and Evolutionary Strategies (ES). Although GA
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A circuit in bidimensional space encoded by a string of triplets.

is preferred for vector optimization, GP for function optimization, and ES for
real function optimization, in EHW the key issue is the representation (again,
due to scalability reasons). Thus, most of intrinsic evolution platforms use
GAs, while extrinsic platforms use any of the three techniques that best cou-
ples with the representation used. Since evolutionary techniques are sensible
to the representation, in the following sections the pros and cons of the chosen
representation combined with the evolutionary technique is discussed.

Louis�s dissertation [ ] is one of the earliest sources that reports the use of
GAs to design combinational logic circuits. The key idea, followed by several
researchers, was to represent a circuit inside a matrix of size . Each matrix
element is a gate that receives its two inputs from any gate at the previous
column. Therefore, each matrix element is a triplet indicating (source of) input
1, input 2, and gate type. The possible gates are chosen from {and, or, not,
xor, wire}, but a good selection would include the �wire� that can bypass one
column (see row 2, column 1, in Figure 13.3). Any circuit can be represented
as a bidimensional array of gates, the same that can be represented as a string
of triplets in the chromosome (the string must be created in column order,
otherwise the problem becomes disruptive, making it very hard for the GA
[ ]). Figure 13.3 shows the string encoding a circuit in bidimensional space.

In his dissertation, Louis focussed , not the optimization
of a 2-Bit adder and 4-5-6-Bits parity checker. He introduced a new crossover
operator called masked crossover (MX) and the use of a case-based reasoning
system (CBR) to assist a GA in the generation of building blocks by reusing
past information. The use of a matrix representation spawns a number of
approaches discussed next. The statement of the problem is the synthesis of
combinational circuits using the smallest number of components.



∑

�
�

dynamic

1 =

1

2 = 1 +

1 2

13 Synthesis of Combinational Circuits 181

f
correct outputs

total number of outputs
.

f

f f WireGates.

f f

13.3.1 Gate-Level Synthesis Using Binary GA

Fitness function.

Louis proposed the use of a matrix to represent a circuit, but several issues
still had to be solved in order to use an evolutionary technique as a design
tool. Coello et al. proposed the Binary Genetic Algorithm (BGA), a standard
GA with binary representation, and a set of strategies to tackle the problem
[1]. Problem statement. Use a GA with binary representation to synthesize
a combinational circuit with the smallest number of components. The set of
primitive gates is: {and, or, not, xor, wire}. The circuit is evolved inside a
matrix, as explained in Section 13.3. The pending issues (not discussed so far)
are

design of a �tness function suitable for both circuit design and optimization
matrix size

The synthesis of circuits optimized in size is a task con-
trolled by the �tness function. The �tness of a circuit is measured by com-
paring the expected values de�ned in the truth table against the real output
values. Therefore, the function counts the number of correct matches and
returns the proportion of matches as the �tness value. The �tness function
works in two stages, therefore called , which are applied at different
times of the evolution.

1. Stage one. The �tness function guides the search until the �rst 100%
functional circuit (that fully complies with the truth table) appears in the
population.

2. Stage two. Once the �rst 100% functional circuit is generated, the �tness
function is switched to one that counts the number of �wire gates� in the
circuit, plus (above). This indirect strategy proved very efficient since
more wires means fewer �real gates�.

Either �tness function is used to measure all the population, that is, it never
happens that some circuits are measured with function and others with
at some generation. Some circuits are harder to design when the truth table
is unbalanced, that is, the number of outputs in 1 (or 0) is much more than
those in 0 (or 1). That kind of circuits presents the �genetic cliff� problem,
which is the case of two individuals that are quite close in phenotypic space
have an uncomparable distance in genotypic space; for example, a truth table
with 15 ones and only 1 zero. The solution is a weighted �tness function that
gives to that zero a reasonable or similar importance of any 1. A good strategy
is the following:

1. Count the number of 1s and 0s in the truth table.
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13.3.2 Mending the Representation Bias: Gate-Level Synthesis
with NGA

2. All 1s found represent 50% of the total.
3. All 0s found represent 50% of the total.
4. Compute the weight of each zero, , and of each one, .
5. .

The matrix serves as a reference for circuit connectivity and
works as an environment for the evolution. Therefore, it is important to use
the proper size for a circuit, but this is not a simple task. The size of the
matrix is determined using the following procedure:

Start with a square matrix of size 5.
If no feasible solution is found using this matrix, then increase the number
of columns by 1.
If no feasible solution is found using this matrix, then increase the number
of rows by 1.
Repeat steps 2 and 3 until a suitable matrix is found.

The BGA design tool has been successfully tested
with several circuit design problems, some of them reported in [1, 5, 6]. BGA
�nds in most cases smaller circuits than those generated by human design-
ers using Karnaugh maps. It also �nds smaller circuits than those generated
by special methods like the one proposed by Sasao that only uses ANDs &
XORs gates [25]. BGA seems to favor the use of XOR gates, generating correct
circuits but hard for the humans to understand. Also, the �evolutionary trans-
formations�that make a functional circuit smaller are hard to understand and
follow no apparent logic. The weakness of the method is the poor scalability.
Bigger problems are almost impossible to solve since evolution is contained
by the matrix, and search space limited to the bidimensional space. Another
issue is the due to the binary representation. There are
two sources of bias, one comes from the triplet representation, and the other
from the matrix size. For instance, when BGA uses 5 primitive gates it needs
3 bits to represent all combinations, thus 3 out of 8 are not used. Similarly, if
the matrix size is , 3 bits are needed to indicate where the input comes
from, but again, 3 combinations are not used.

NGA is a GA with N-cardinality encoding. The purpose of using more than
one alphabet (of any cardinality) in the genotypic string is to encode the
triplets (see Fig. 13.3) in such a way that there are no combinations left with
no use. Coello et al. [2] propose such a strategy in an approach called NGA. In
Figure 13.4 a triplet using two alphabets is shown. Inputs 1 and 2 are any row
out of {1,2,3}. Therefore, by choosing the cardinality of alphabet there
is a one-to-one mapping between the alphabet symbol and the row number.
Same for the speci�cation of the gate type. There are 5 gates, so the alphabet
has cardinality 5.
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13.3.3 Functional-Level Synthesis

Results and discussion.
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A triplet representing a gate and its inputs with two alphabets.

Genetic operators selection, crossover, and muta-
tion are not affected. NGA proved superior than BGA in most circuits, both
in terms of speed of convergence and in terms of total evaluations performed.
The reason seems to be less disruption of the building blocks and better reuse
of the circuit components. Also, because strings are shorter, the evolutionary
algorithm exhibits better behavior.

Miller introduced an extrinsic EHW technique for functional-level design [22,
23, 24]. As noted before, functional techniques are the combination of primitive
gates with other components built over the primitive gates. Miller combines
ANDs, ORs, XORs, and NOTs, with multiplexers and some more Boolean
functions like NANDs, NORs, and the like. His set of 12 Boolean functions
pretends to characterize the activity of any subset of a circuit. The adaptation
mechanism is implemented by a GA. But the most important aspect is the
representation. Using alphabets of cardinality greater than 2, a single gene
encodes one of the 12 Boolean functions. This approach, although similar to
the NGA, has a drawback: the cardinality of the alphabet grows exponentially
with the number of input variables. Miller also models circuit connectivity by
a matrix; thus, evolution is contained by some matrix geometry.

Functional-level synthesis shows good scalability
because the granularity is not restricted to only primitive gates. At the same
time, for the same reason, the circuit size is harder to optimize (some solutions
contrasted with NGA are clearly bigger).
Miller also proposed a special form of Genetic Programming called Carte-

sian Genetic Programming (CPG), to tackle learning Boolean function prob-
lems. Strictly speaking, it must be called GP because it evolves functions,
although individuals are not trees as it is common in GP. CPG uses linear in-
teger chromosomes; the advantage of this representation is the easiness of the
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13.3.4 Bidirectional Incremental Evolution

13.3.5 Multiobjective EHW Optimization: MGA

evaluation of the strings. CPG does not evolve circuits but functional Boolean
function expressions, and its goal is not the optimization of functions.

A re�ection on functional-level and gate-level makes one to think that what we
need is the best of both approaches. When primitive gates are used, scalability
is poor but size optimization is possible. When gates are more complex, then
optimization is poor. Thus, we can ask: could it not be possible to combine
scalability and size optimization in just one method? Kalganova proposes
Bidirectional Incremental Evolution (BIE) to tackle this problem [17, 16].
According to her, extrinsic EHW design of digital circuits (she means
real-world applications) involves the following three major problems:

1. limitation in the chromosome length
2. �stalling� effect in the evolution process
3. restriction of the computation time

BIE solves the three of them by combining two main approaches: Divide-
and-Conquer and Incremental Evolution. The key notion is to break down
a complex task into simpler subtasks, evolve each of the subtasks, and then
merge incrementally the evolved subsystems. In essence, BIE is the sound
combination of top-down and bottom-up methods. The former stage is con-
ducted by a process called �evolution toward a modularized system�, the latter
stage by a second process called �evolution toward an optimized system�. An
alternative way to understand the work of Kalganova is through the work
of Gero [9]. Gero�s Genetic Engineering system also combines top-down and
bottom-up strategies. In the top-down stage, elementary building blocks are
targeted and those more likely to produce designs with the required charac-
teristics are evolved. In the second stage, the proper design goals are focussed
and the solution is generated by using the evolved primitive building blocks.
Several researchers work in this problem, notably Seok, who also proposes a
decomposition strategy for EHW [26].
Kalgnova results are encouraging and promising. Further work needs to be

done to fully develop a BIE platform for circuit evolution.

The �tness function used by BGA and NGA has been called dynamic since
it does change during evolution. The goal is to capture two possible
of the circuit (functional or not functional). Looking at the problem in this
way, a circuit can have many more states. For instance, if the truth table has
three inputs and one output, then there are output values. A circuit is
called in �state 3� if only 3 out of the 8 expected outputs are correct. Thus,
the circuit design can be reformulated as the problem of ��lling all the states
with the correct value�. Since there are many states, then the problem is to
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13.3.6 EHW Using the Ant System (AS)
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design the �tness function able to �ll all the states. A dynamic �tness function
that checks all circuit states is only possible for small circuits. Therefore, the
solution is to use a technique that considers each state as an objective, or
independent goal.
Coello et al. [7] introduced the Multiobjective Genetic Algorithm (MGA)

whose evolutionary algorithm is based on the Vector Evaluated Genetic Al-
gorithm (VEGA) to tackle this problem. The main idea behind the approach
is to use a population-based multiobjective optimization technique, such as
VEGA, . Thus, a cir-
cuit with outputs becomes a problem with 8 restrictions plus a single
objective function, that is, goals. VEGA splits the population into
subpopulations, assigning each subpopulation to a circuit output and giving
to it the mission of matching the correct value speci�ed in the truth table.
The issue is how to handle the different situations (or states) that could arise.
The �tness of a circuit is evaluated as follows:

where refers to the value of output for the encoded circuit ; is
target value for output ; and is the number of outputs that are not matched
by the circuit . The �tness function is calculated as follows:

In this equation, h( ) refers to the number of matches between circuit and
the truth table, and is the number of wires in circuit . Kalganova
also proposed the use of multiobjective optimization techniques based on the
concept of Pareto fronts for the optimization of logic circuits [17].

MGA was tested with similar complexity circuits
used to test BGA and NGA. MGA improves the behavior of NGA, that is,
it requires less number of �tness function evaluations. In several cases the
circuits are even smaller than NGA (recall the NGA also improved BGA
circuits). Another interesting issue is the cooperative effort observed between
subpopulations. The �tness function improves as more restrictions are met,
and at the same time, the �tness function helps the subpopulations to evolve
toward the correct value.

The MGA system considers each circuit output as a restriction and splits the
population into subpopulations, assigning one output to one subpopulation.
As noted, a cooperative effort is observed between subpopulations. MGA dis-
tributes the overall effort among subpopulations, but the cooperation is not
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under control of the algorithm, neither is knowledge of one subpopulation
communicated to either one subpopulation.
Coello et al. used the Ant System (AS) for the �rst time ever for the

design of combinational circuits [3, 4]. The Ant System is a meta-heuristic
inspired by colonies of real ants. Ants deposit a chemical substance on the
ground ( ) that in�uences the behavior of the entire colony: ants will
tend to walk over those paths where there is a larger amount of pheromone.
Pheromone trails can be seen as a communication mechanism among ants.
From the computer science perspective, the AS is a multiagent system where
interactions among low-level agents (ants) results in the complex behavior
of the colony. The AS can be seen as a distributed knowledge system. Local
knowledge collected by the agents (ants) is centralized, analyzed, and redis-
tributed (passed back) to the local agents as an information of the collective
behavior. If the colony gets closer to the goal, then the agents will know they
are �doing well� and their trails will be reinforced. Otherwise, the trails are
abandoned (the pheromone evaporates) and new routes will be inspected. This
is called reinforcement learning, a weaker form of supervised learning.
There are three main ideas from real ant colonies that have been adopted

by the AS:

1. Indirect communication through pheromone trails.
2. Shortest paths tend to have a higher growth rate of pheromone values.
3. Ants have a higher preference (with certain probability) for paths that
have higher amount of pheromones.

The AS was proposed for the traveling salesman problem (TSP), and ac-
cording to Dorigo [8], to apply efficiently the AS, it is necessary to reformulate
the problem as one in which we want to �nd the optimal path of a graph and
to identify a way to measure the distance between nodes. Therefore, in the
TSP, the ants traverse a path and try to �nd the shortest way to the goal.
In the circuit design problem, the goal is to produce a fully functional circuit
by minimizing a certain payoff function, and �shortest� means �fewer number
of gates�. Thus, the colony �nds a trail from the input to the output of the
circuit by assembling local information of low cost paths.

An important aspect of this application is that it
shows the factibility of AS to work in other domains. As noted, the problem
is how to translate or reformulate the problem at hand into a graph searching
procedure. The advantage of the AS is its robustness; it consistently �nds
the smallest known circuit for some truth table, having in this respect better
behavior than the evolutionary techniques NGA and BGA. Its disadvantage
is the performance, which tends to degrade rapidly as the size of the circuit
increases.
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13.3.7 EWH Using GP and Muxes
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Truth table for logic function speci�cation, circuit generated, and its
coding.

All discussed approaches use a matrix to represent circuit connectivity. Al-
though all approaches have tried to improve all sorts of convergence and ro-
bustness problems, the matrix itself is the source of the problem. This is so
because the search space is restricted to the subset imposed by the matrix
representation. In other words, the matrix representation restraints the scal-
ability of the algorithm (it has been told everywhere that the evolutionary
technique used is not as important as the representation).
Hernández-Aguirre [12, 11, 10] proposed gate-level EHW using GP and

multiplexers to improve the scalability problem by giving more freedom for
exploration and exploitation through a representation that could grow and
shrink as needed. Thus, the search space is not restricted by the geometry
of the representation. The approach is a common GP application since indi-
viduals are represented by trees and what is evolved is a function (Boolean).
It is not clear though whether this approach is gate-level or functional-level
because the multiplexer works as a primitive (but it is built by the primitives
{and,or,not}). The problem statement has not changed here: synthesize a cir-
cuit using the smallest number of binary multiplexers using GP. An example
of a synthesized circuit and its representation is shown in Figure 13.5. Note
that entering a multiplexer there are only 1s, 0s, and data from immediate
previous multiplexers.

Many GP applications have been illustrated by Koza [18], but he gen-
erates Boolean functions and multiplexers in symbolic form, not gate-level
(Koza has many proposals similar to gate-level but for electronic circuits [19])
Multiplexers are sound components for the synthesis of circuits because they
are universal logic function generators, thus, an equivalent power shared with
the set of primitives {and,or,not} for the synthesis of circuits. A procedure
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Implementation of a multiplexer of -control lines by means of seven
-control line. Muxes class �A� and class �B�. Functional equivalence between both
classes.

to implement Boolean functions based on multiplexers uses Boolean residues
and Shannon�s expansion [27], de�ned next.
The residue of a Boolean function with respect to a vari-

able is the value of the function for a speci�c value of . It is denoted by
, for and by for .
A Boolean function can then be expressed in terms of these residues in the

form of Shannon�s expansion:

Multiplexers can be �active low� or �active high� devices, a quality simply
called here and . The control line is located on the side of the
input to be propagated when the control is . The active state will be �1�
for all the examples presented in this paper. Circuits can be synthesized using
only one or both mux classes. Figure 13.6 depicts both classes of multiplexers
and the construction of larger multiplexers on simpler elements.

A circuit is represented by binary trees, which are encoded as lists. Es-
sentially, each element of the list is the triplet
that encodes subtrees as nested lists. The tree captures the essence of the
circuit topology, allowing only children to feed their parent node (or 1s and
0s as speci�ed in the problem statement). Crossover operator is implemented
between node-node, node-leaf (node other than root node), and leaf-leaf. Mu-
tation assigns a random value (in the range) to either node or leaf. The �tness
function is also dynamic and works in the same two stages as described in Sec-
tion 13.3.1.
The following Boolean functions, speci�ed by true terms, are samples of

some experiments.
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F1 3 7 5 2
F2 4 15 7 8
F3 5 31 15 16
F4 6 63 21 42

Comparison of the Results Produced by the GP System and the Standard
Implementation

The circuit synthesized for function F2.

.
.

.

.

Table 13.1 condenses the characteristics of the circuits synthesized. Col-
umn �Standard implementation� (see Fig. 13.6) is the number of binary muxes
needed to implement the Boolean function, �GP�is the number of components
in the GP solution, and �Saved� is the difference.

The circuit found by the GP system for the function F2 is depicted in
Figure 13.7. Another set of interesting experiments is the comparison of GP

and Binary Decision Diagramas (BDD). A BDD is a directed acyclic graph
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ROBDD and GP circuit for .

where Shannon�s decomposition is carried out at each node. There are several
classes of BDDs, for instance, Ordered BBDs (OBDD) and Reduced BDDs
(RBDD). In OBDD a variable appears at most once on each path from the
root to a terminal node. An RBDD does not contain isomorphic subgraphs
nor vertices with both edges pointing to the same node.

Extrinsic EHW using GP and multiplexers scales
up nicely for Boolean functions of up to 12 variables. The problem that pre-
dates GP is �bloat�, thus, circuits grow up to contain several hundred nodes
before the functional circuit is found. From there, the circuits begin to shrink
because the �tness function is changed to its second stage which favors smaller
circuits. It is surprising that GP is rather more efficient in shrinking circuits
than in growing them. Nonetheless, �introns� appear in the circuit, making
it hard for GP to eliminate the redundancy. Introns are part of the ADN
chain, and why they are present is not clear, but apparently this redundancy
is necessary for life. Contrasting GP and BDDs circuits is interesting. Circuits
in Figure 13.8 are similar in size, but what is important to note is their re-
semblance in topology and difference in node ordering. The circuit generated
by GP in Figure 13.9 is smaller because the restriction imposed to the order
is not required. Nevertheless, it is not easy for BDD to generate of the GP
circuit. Finally, the �odd-parity� circuit shown in Figure 13.10 has minimum
size when it is implemented with XOR gates. The GP circuit captures the
same topology and matches the smallest possible size.
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ROBDD and GP circuit for .

�Odd-parity� function with XOR gates and GP circuit.
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The Evolutionary Learning Rule in System
Identification

Oscar Montiel, Oscar Castillo, Patricia Melin, Roberto Sepulveda

Summary. In this chapter, we are proposing an approach for integrating evolutionary com-
putation applied to the problem of system identification in the well-known statistical signal
processing theory. Here, some mathematical expressions are developed in order to justify
the learning rule in the adaptive process when a Breeder Genetic Algorithm is used as the
optimization technique. In this work, we are including an analysis of errors, energy meas-
ures, and stability.

14.1 Introduction

The problem of determining a mathematical model for an unknown system by ob-
serving its input-output data pairs is known as system identification, and it is an
important step when we wish to design a control law for a specific system. Real
systems are non-linear and have time variations; hence the best control laws that
we can obtain are those based using real-time data from continuous-time stochastic
processes [1].

Traditionally, system identification has been performed in two ways:

1. Using analytic models, i.e., obtaining mathematically the transfer function.
2. Using experimental input-output data. In this way, the identification can be

achieved in two forms: nonparametric and parametric.

In this chapter we are interested in parametric models. As we mentioned, there
are several well-known techniques to perform the system identification process.
Most of the parametric techniques are gradient-guided and are limited in highly
multidimensional search spaces. The system identification process generally in-
volves two top-down steps, and these are structure identification and parameter
identification. In the first step, we need to apply a priori knowledge about the target
system for determining a class of model within the search for the most suitable
model is going to be conducted [2] [3].

Here, we are using an evolutionary algorithm known as Breeder Genetic
Algorithm (BGA) that lays somehow in between Genetic Algorithms (GAs) and
Evolutionary Strategies (ESs). Both methods usually start with a randomly gener-
ated population of individuals, which evolves over the time in a quest to get better
solutions for a specific problem. GAs are coded in binary forming strings called
chromosomes; they produce offsprings by sexual reproduction. Sexual reproduc-
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tion is achieved when two strings (i.e., parents) are recombined (i.e., crossover).
Generally, the parents are selected stochastically, the search process is mainly
driven by the recombination operation, and the mutation is used as secondary
search operator with low probability, to explore new regions of the search space.
An ES is a random search, which models natural evolution by asexual reproduction
[4]. It uses direct representation, that is, a gene is a decision variable and its allele
is the value of the variable [5] in ES the mutation is used as the search operator,
and it uses the µ,( ) -strategy as a selection method. Thus, the BGA can be seen as

a combination of ESs and GAs, because it handles direct real variables, and trun-
cation selection, which is very similar to µ,( ) -strategy, and the search process is

mainly driven by recombination making BGAs similar to GAs [6] [7] [8] [9] [10].

14.2 The Generic Identification Problem

Figure 14.1 shows the generic problem of system identification. Here, we have a
digital signal input x(n) that is fed to the unknown system and to the adaptive filter
at the same time. In this figure there is a "black box" enclosed by dashed lines; its
output is called the desired response signal and it is represented by d(n). The adap-
tive system will compute a corresponding output signal sample y(n) at time n. Both
signals, d(n) and y(n), are compared subtracting the two samples at time n, to ob-
tain a desired response signal. This concept is expressed in equation form as

e n d n y n( ) = ( ) ( ) (14.1)

This block might have a pole-zero transfer function, an all-pole or auto-regressive
transfer function fixed or time-varying, a nonlinear mapping, or some other com-
plex system. In the dashed “black-box”, we have an additive noisy signal known as
the observation noise signal because it corrupts the observation of the signal at the
output of the unknown system [17]. Thus, the real desired signal d̂ n( ) is contami-
nated with noise; hence the signal d(n) is given by Eq. (14.2):

d n d n n( ) = ( ) + ( )ˆ . (14.2)

In the adaptive system block we could have any system with a finite number of pa-
rameters that affect how y(n) is computed from x(n).  In this work, we are using an
adaptive filter with a Finite Impulse Response (FIR filter), and it is represented by
the equation

y n w n x n ii
i

L

( ) = ( ) ( )
=0

1

(14.3)

or in vectorial form as
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Unknown
System

( )n
( )nx ( )nd

( )nd̂

( )ny

)(ne

Z-1 Z-1 Z-1...

...

w0(n) w1(n) w2(n) wL-1(n)

Adaptive system
x(n-1) x(n-2) x(n-L+1)

Figure 14.1. System identification with noise presence. The adaptive system uses an
adaptive FIR, also known as transversal filter. In this figure z-1 represents the unit
delay element and each wi(n) is a multiplicative gain within the system.

y n W n X n X n W nT T( ) = ( ) ( ) = ( ) ( ), (14.4)

where the coefficient vector W(n) is

W n w n w n w nL( ) = ( ) ( ) ( )[ ]0 1 1, ,..., , (14.5)

where w n i Li( ){ }; 0 1 are the L parameters of the system at time n.  The input
signal vector is given in vector form by,

X n x n x n x n L( ) = ( ) ( ) +( )[ ], ,...,1 1 . (14.6)

In the system identification problem, the adaptive filter has the task of representing
accurately the signal ( )nd̂ at its output. This is the case when y n d n( ) = ( )ˆ . In this

stage, the filter has made its work identifying the portion of the unknown system
driven by x n( ) , but frequently this is an ideal goal, because if we are using a linear
FIR filter, then the unknown system should be a filter of the same structure.  In
real-world problems, the identification is successful if we meet with some criterion
in the error value.  Moreover, in real-world problems, the output of the unknown
system ( )nd̂ is contaminated with noise n( ) . Generally, we do not have direct

access to the uncorrupted output d̂ n( ) of the plant; instead we have a noisy meas-

urement of it; in this case the output is given by Eq. (14.7).  Then, we can say that
the adaptive filter has reached the optimum if we find a value y n d n( ) = ( ). This is

achieved when we find an optimum weight vector’s parameter W(n),
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W n W nOPT( ) = ( ). (14.7)

There are several methods to obtain the optimums values, each having its own ad-
vantages and limitations, but they share the same limitation when the search space
is big and multi-modal because they are gradient-guided local search techniques.

The correction term of the learning rule usually is function of the signal input
x(n), the desired output d(n), and the old weight estimate values wi(n-1). Thus, we
can write the compact expression as follows [11, 12]:

W n W n f X n d n W n( ) = ( ) + ( ) ( ) ( )[ ]1 1, , . (14.8)

Following these concepts, the least-mean-square algorithm (LMS) can be written
as shown in Eq. (14.9).

W n W n X n e n( ) = ( ) + ( ) ( )[ ]1 µ , (14.9)

or, expanding the expression for the error, as

W n W n X n d i X W ni
T( ) = ( ) + ( ) ( ) ( )[ ]1 1µ , (14.10)

where µ is the step-size parameter.
In order to analyze the learning rule for the BGA in a formal way, we are going

to introduce the next notation. We will use W̃ nr ( ) to indicate the actual population
of r individuals of coefficient vectors W nr ( ) . By example, one individual is repre-
sented as

W n w n w n w nL0 0 0 01 0 1( ) = ( ) ( ) ( )[ ], , ,, ,.., , (14.11)

where w0,1(n) belongs to the coefficient 1 of the individual number 0. W nr' ( ) be-
longs to the next generation of coefficient after the evolutionary process. Then we
have

˜

, , ,

, , ,

, , ,

W n

W n

W n

W n

w n w n w n

w n w n w n

w n w n w n

r

r

L

L

r r r L

( ) =

( )
( )

( )

=

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0

1

0 0 01 0 1

1 0 11 1 1

0 1 1

M

K

K

M M O M

L

(14.12)

In the evolutionary process, the learning rule is a several step process.  The evolu-
tionary learning process begins with the evaluation of every coefficient vector of
the population represented in Eq. (14.12)  by W̃ nr ( ) . This process is done using a
specific evaluation function “fi” known as the fitness function. After the whole
population has been evaluated, we need to perform a selection of the best of this
population. Generally, truncation selection is a good choice; with this process we
obtain a pool W̃ nT ( ) . The whole process, from expression (14.13) to (14.16), is re-
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peated until we reached the optimum value.

W T feval W nT r= ( )( )( )% ˜ , (14.13)

W n W n f W n W nr a a b' , ,( ) = ( ) + ( ) ( )[ ] (14.14)

W n Wr r' ' ,( ) = ( ) (14.15)

˜ ˜ ' .W n W nr r( ) = ( ) (14.16)

The fitness function (fi) will guide the search to find the optimum.

14.3 The Breeder Genetic Algorithm

In order to adjust the parameter vector, we used a BGA, which was designed ac-
cording to the methods and theories used in the science of livestock breeding [11]
and is based on advanced statistical methods [12, 13, 14, 15, 16, 17].

The BGA is defined as an eight-tuple

BGA P N T HC F termg= ( )0, , , , , , , , (14.17)

where Pg
0 is the initial population of size N, T is the truncation threshold com-

monly referred as T%, represents the recombination operator, is the mutation
operator, HC is a hill-climbing method (by example: the gradient-guided LMS al-
gorithm), F is the fitness function, and term is the termination criterion. In the
BGA, T% 100

P best individuals at each generation are selected and mated randomly,

until the number of offsprings is equal the size of the population. A basic scheme
of a BGA as shown is described in [5, 14].

Referring the BGA procedure to our problem, we need to generate randomly a
population with P individuals, where each individual consists of n variables, each
of them related with a parameter, i.e., filter’s coefficient. By example, an individ-
ual might consist of 50 floating-point variables; in this case, the adaptive FIR that
we need to use will have 50 coefficients. The whole population is evaluated using a
fitness function, specifically designed to measure the aptitude of each individual.
This evaluation is done applying a specific signal x(n) (Figure 14.1) to both sys-
tems (unknown and adaptive systems) in order to calculate an error signal obtained
from the output of the unknown and adaptive systems.  This error signal is the core
of the fitness function. After each individual of the parent population was evalu-
ated, the best individual should be inserted in the population of the next generation,
P’(t). In order to obtain this new population, which will replace the parent popula-
tion, the BGA uses truncation selection. In truncation selection a percentage of the
best individuals are selected to mate, obtaining offsprings; self-mating is prohibited
[15].
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The mutation operator is applied to each offspring, and the resulting individuals
are inserted in the new population P’(t).  The process is repeated until a termina-
tion criterion is met.  There are several recombination operators, but in this work,
we used Extended Intermediate Recombination (EIR). In order to use this operator,
we have if x =(xi,...xn) and y=(y1,...,yn) are the parents, then the successor
z=(z1,...,zn) is calculated by

z x y x i ni i i i i= + ( ) =,       1,..., , (14.18)

where i d d+[ ],1 is chosen with uniform probability for each i and d 0, a

good choice is d = 0.25, which is the one that we used.  The goal of the mutation
operator is to modify one or more parameters of zi, the modified objects (i.e., the
offsprings) appear in the landscape within a certain distance of the unmodified ob-
jects (i.e., the parents).  In this way, an offspring z', where z'=(z1,…,zn), is given by

z z rangei i i' = ± (14.19)

where rangei defines the mutation range and is calculated as ( )searchintervali .

In the Discrete Mutation operator (DM) is normally set to 0.1 or 0.2 and is very
efficient in some functions [4], but also we can set to 1.  This is the case of the
Broad Mutation Operator (BMO) proposed in [16] to solve problems where the
distance between the optimums and the actual position is larger than the DM op-
erator could reach.  This is the case of Scwefel’s function [16].  We will have in
one step, that the mutation operator can reach points from zi only within the dis-
tance given by ±rangei The sign + or – is chosen with probability of 0.5.  The
variable  is computed by

= [ ]
=

i
i

i

K

i2 0 1
0

1

,    , . (14.20)

Before mutation we set each i equals to 0, then each i is mutated to 1 with
probability p_=1/k, and only i = 1 contributes to the sum.  On the average there
will be just one i with value 1, say i .  Then is given by

= 2 i. (14.21)

In Eq. (14.20), K is a parameter originally related to the machine precision, i.e., the
number of bits used to represent a real variable in the machine we are working
with; traditionally K used values of 8 and 16.  In practice, however, the value of K
is related to the expected value of mutation steps; in other words, the higher K is,
the more fine-grained the resultant mutation operator is [5].
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14.4 Energy and Error Analysis

The objective of an adaptive scheme is to provide a better model for the unknown
system. This is done using the output error sequence given in Eq. (14.1). This error
sequence measures how far d(i) is from y(i), in order to update the coefficient vec-
tor W(n), providing a better model at each iteration.  When the adaptive system is
trying to match the unknown system, there exist different sources of errors.  The
first source is due to the mathematical model that we are using to identify the un-
known system.  By example, if the unknown plant has the model of the Infinite
Impulse Response Filter (IIR) of Eq. (14.22), it is evident that we would need an
infinitely long tapped-delay line, whose realization is practically impossible.
Therefore, when we are using a finite tapped delay line, the modeling errors are in-
evitable.

y n v n x n ii

i

( ) = ( ) ( )
= 0

. (14.22)

In this work, we used as an unknown system an IIR filter specified by the second-
order difference equation given by (14.23).  This problem was taken from [20].

d(n)-d(n-1)+0.9d(n-2)=x(n) n . (14.23)

The adaptive system is an FIR filter with 50 coefficients. As the filter has a higher
degree of freedom, the input-output response characteristic of the adaptive model
will converge to match closely those of the unknown system.

If we have solved the system identification problem, and the model that we are
using is a good one, then we should have a way to measure the parameter errors in
the identification process [21].  If we considered that V(n) represents the coeffi-
cient vector of the unknown system represented by Eq. (14.22), then we have to
measure how far W(n) is from V(n). This quantity, We(n), will be referred to as the
weight error at time n. The weight vector W(n)OPT is the optimal vector that better
will represent V(n).

W n W n W ne OPT( ) = ( ) ( ). (14.24)

Using Eq. (14.25), we can obtain the value known as a priori estimation error (ea),

which measure how far )1(nWX T
i is from the uncorrupted output term

OPT
T
i WX ; hence we have

e i X W na
T

e( ) = ( )1 . (14.25)

If we use the most recent weight vector, we can define the a posteriori estimation
error (ep),

e i X W na
T

e( ) = ( )1 . (14.26)
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A good way to quantify the effect of these errors is the energy and power meas-
ures.  Then the energy E of a signal x(n) is [17].

E x nN

n

= ( )
=

2
.

(14.27)

The energy of a signal can be finite or infinite.  The signal x(n) is called an energy
signal if E is finite, thus is 0 < <E .

We can define the signal energy of the sequence x(n) over the finite interval -
0 n N as [16]

E x nN

n

N

= ( )
=

2

0

1

.
(14.28)

Then we can express the signal energy as [16]

E E
N

Nlim (14.29)

The average power of the signal x(n) is defined as [16]

P
N

E
N

Nlim
1 (14.30)

We will use the definition of power provided in (16) to calculate a short-term aver-
age ASE (Average of Squared Error), which will serve us in two ways; one is to
estimate the convergence rate of the evolutionary algorithm, and the second way is
for using the inverse of this function (1/ASE) as the aptitude function, which will
guide the evolutionary algorithm to get the optimums coefficients. The ASE func-
tion is defined as

ASE m
K

e k
k n

n K

( ) = ( )
= +

+
1 2

1

.
(14.31)

Here, m=n/K=1,2,…. The recommended averaging interval K may be selected to
be (approximately) K=10L [16].

14.5 Stability Analysis

In any practical application, an analysis of system's stability is important, since an
unstable system usually exhibits erratic and extreme behavior and causes overflow
[21]. To prove stability in this work, we used the next theorem, as well as concepts
about causal systems:
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Theorem. An arbitrary relaxed system is said to be bounded input-bounded output
(BIBO) stable if and only if every bounded input produces a bounded output.

Considering the previous theorem, if x(n) is the bounded input, there must be a
constant Mx such that

x n M x( ) < , (14.32)

and, if the output is bounded, there must be a constant My such that

y n M y( ) < . (14.33)

Although we are working with a time-varying system, for analysis purposes we are
considering a window time where the system can be treated as a Linear Time in-
variant system (LTI), and via mathematical induction generalize this result.  Then,
if we take the absolute value of both sides of Eq. (14.3), we obtain

y n w n x n ii

i

L

( ) = ( ) ( )
= 0

1

. (14.34)

Then, we have

y n w n x n ii

i

L

( ) ( ) ( )
= 0

1

. (14.35)

If the input is bounded, there exists a finite number Mx that satisfies Eq. (14.32),
i.e., x n M x( ) , then we can rewrite Eq. (14.35) as

y n M w nx i

i

L

( ) ( )
= 0

1

. (14.36)

From Eq. (14.36), we observe that the output is bounded if the impulse response of
the system is absolutely summable, i.e.,

w ni

i

L

( ) <
= 0

1

. (14.37)

In this work, Eq. (14.36) is easily satisfied since we have a finite number of coeffi-
cients wi(k), and their values also are finite.  This result implies that any excitation
of a finite duration, applied to the input of the system, must produce an output of
nature "transient", this is when the system is stable. The input amplitude will decay
eventually with time. This condition implies that W(z) must contain the unit circle
within its Region of Convergence (ROC). Then,
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In consequence,

H z w k z w k zi
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,
(14.39)

evaluating on the unit circle (i.e., z = 1),

H z h n
n

( ) ( )
=

.
(14.40)

Then, if the system is BIBO stable, the unit circle is contained in the ROC of H(z).
From Eq. (14.2), we can see that the adaptive system is causal because its output at
time n depends only on present and past inputs but not on future inputs. An LTI
system is causal if and only if the ROC of the system function is the exterior of a
circle of radius r < , including the point z = .

14.6 Experimental Results

This algorithm was realized using the procedure BGA explained in Section 14.3.
We selected as the adaptive system an FIR filter (ARMA model), We used as un-
known system an IIR filter specified by the second-order difference equation given
in (14.23); this problem was taken from [20]. A signal sequence called x(n) is used
as the input to the unknown system and the adaptive FIR filter. Then this sequence
is the training signal.  Using the appropriate training signal, it is very important to
be successful in the identification of a system.  A good signal should contain at
least 10 frequency components. For this reason random signals like white noise
and Gaussian white noise are generally used. In this work, we used both signals to
train the system, and both are good enough to find optimized parameters.  With
these signals, we trained the adaptive FIR. In both cases, the tests were made with
a population of 300 individuals.  In the EIR operator, d = 0.25.  We used the DM
operator with = 0 1. , and = 16 .  In order to speed up the processing time we
used only 80 samples to calculate ASE; we chose this number experimentally. We
ran the BGA for 100 generations.

An important point about the development of this algorithm is that if the fitness
function f represents the value of the i-th individual, then

f
ASE mi

i

=
( )

1
, (14.41)
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The training white noise signal x(n) was generated using the Matlab command
x=rand(1,100)*2-1; in Figure 14.2 we show a histogram of this signal.

Figure 14.2. For training the ARMA model we generated a sequence of 100 sam-
ples of white noise at each generation.

The training Gaussian white noise signal x(n) was generated using the Matlab
command x=wgn(100,1,-6); in Figure 14.3 we show a histogram of this signal.

Figure 14.3. Gaussian distribution of 100 samples.

For all the experiments, we analyzed the system response using Bode plots. In the
Bode plots we used normalized frequency expressed in radians per sample
(rad/samp). The normalized frequency f is calculated using Eq. (14.42), where F is
the frequency that we want to normalize and Fs is the sampling frequency.
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f
F

Fs

= .
(14.42)

Hence, if we are sampling at Fs=1000 rad/samp, and the value in the Bode plot is
f=100, then the frequecy F is F=f·Fs=100·1000=1000 rad/samp.  Although we must
fulfill the sampling theorem of Eq. (14.43)

F Fs 2 max . (14.43)

Experiment #1.
In this experiment, the adaptive filter has 50 coefficients. We used a white noise
signal sequence for training the adaptive system.  The maximal fitness value found
was 481.0087, at generation 96. This is shown in Figure 14.4. Then
ASE=1/481.0087 0.0020. In Figure 14.5, we have three graphics; the upper one is
the desired output, d(n), of the unknown system, the one in the middle belongs to
the output of the adaptive system; and the graphic at the bottom corresponds to the
signal error. This graphic represents the value difference at each sample.  Figure
14.6 belongs to the unit step response, and the interpretation is similar to Figure
14.5. Figures 14.7 and 14.8 are the Bode plots; here we can analyze the system re-
sponse in magnitude and phase. In both figures we are using normalized frequency
expressed in rad/seg.

Figure 14.4. Fitness graphic, the “o” belongs to the best fitness found at each
generation, as well as the “x” belongs to an average fitness value of the generation,
and the symbol “*” is for the poorest fitness.
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Figure 14.5. Unit impulse response.  Experiment 1.

Figure 14.6. Unit step response.  Experiment 1.
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Figure 14.7. Behavior of the adaptive system.

Figure 14.8. Fitness function’s values.  Experiment 2.
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Figure 14.9. Unit impulse response. Experiment 2.

Figure 14.10.  Unit step response.  Experiment 2.
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Figure 14.11. Magnitude response. Experiment 2.

Experiment #2.
In this experiment, the adaptive filter has 50 coefficients. The maximal fitness
value found was 695.8930, at generation 95.  Then ASE=1/695.8930 0.00144.

14.7 Conclusions

In this chapter we developed a set of equations in order to explain the learning
process of the adaptive system when we are using a BGA in the system identifica-
tion problem.  We realized several experiments; here we showed the result of four
of them.  In all cases, a full optimization was performed, obtaining low rates of av-
erage error and good magnitude and phase response. Obviously, when we used
more coefficients in the ARMA model we got a lower average error. This is natu-
ral, because the more degrees of freedom the ARMA model has (FIR filter), the in-
put-output response characteristic of the adaptive model will converge to match
closely the unknown system.
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Current and Future Research Trends in
Evolutionary Multiobjective Optimization

http://delta.cs.cinvestav.mx/�ccoello/EMOO
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In this chapter we present a brief analysis of the current research per-
formed on evolutionary multiobjective optimization. After analyzing �rst- and second-
generation multiobjective evolutionary algorithms, we address two important issues:
the role of elitism in evolutionary multiobjective optimization and the way in which
concepts from multiobjective optimization can be applied to constraint-handling tech-
niques. We conclude with a discussion of some of the most promising research trends
in the years to come.

The �rst author maintains an EMO repository with over 900 bibliographi-
cal entries at: , with mirrors at

and .

C.A. Coello Coello, G. Toscano Pulido, E. Mezura Montes

Evolutionary algorithms have become an increasingly popular design and op-
timization tool in the last few years, with a constantly growing development of
new algorithms and applications [1]. Despite this considerably large volume
of research, new areas remain to be explored with sufficient depth. One of
them is the use of evolutionary algorithms to solve multiobjective optimiza-
tion problems.
The �rst reported implementation of a multiobjective evolutionary algo-

rithm (MOEA) dates back to the mid-1980s [45, 46]. Since then, a considerable
amount of research has been done in this area, now known as evolutionary
multiobjective optimization (EMO for short). The growing importance of this
�eld is re�ected by a signi�cant increment (mainly during the last eight years)
of technical papers in Intl. Conf.s and peer-reviewed journals, books, special
sessions in Intl. Conf.s and interest groups on the Internet [13].
Evolutionary algorithms seem also particularly desirable for solving multi-

objective optimization problems because they deal simultaneously with a set
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15.2.1 Pareto Optimality
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of possible solutions (the so-called population), which allows us to �nd several
members of the Pareto optimal set in a single run of the algorithm, instead
of having to perform a series of separate runs as in the case of the traditional
mathematical programming techniques. Additionally, evolutionary algorithms
are less susceptible to the shape or continuity of the Pareto front (e.g., they
can easily deal with discontinuous and concave Pareto fronts), whereas these
two issues are a real concern for mathematical programming techniques [8].
This chapter deals with some of the current and future research trends in

evolutionary multiobjective optimization. The perspective adopted is derived
from our own research experience in the area and therefore the bias toward
certain particular topics of interest. The chapter is organized as follows. Sec-
tion 15.2 presents some basic concepts used in multiobjective optimization.
Section 15.3 brie�y describes the origins of evolutionary multiobjective opti-
mization. Section 15.4 introduces the so-called �rst-generation multiobjective
evolutionary algorithms. Second-generation multiobjective evolutionary algo-
rithms are discussed in Section 15.5, emphasizing the role of elitism in evo-
lutionary multiobjective optimization. Section 15.6 discusses ways in which
multiobjective optimization concepts have been and could be incorporated
into constraint-handling techniques (both for single and for multiobjective
optimization). Finally, Section 15.7 discusses some of the research trends that
are likely to be predominant in the next few years.

The emphasis of this chapter is the solution of multiobjective optimization
problems (MOPs) of the form

minimize (15.1)

subject to the inequality constraints:

(15.2)

and the equality constraints:

(15.3)

where is the number of objective functions . We call
the vector of decision variables. We wish to determine from

among the set of all vectors that satisfy (15.2) and (15.3) the particular
set of values that yield the optimum values of all the objective
functions.

It is rarely the case that there is a single point that simultaneously optimizes
all the objective functions. Therefore, we normally look for �tradeoffs�, rather
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Edgeworth�Pareto optimality
Pareto optimality

Pareto optimal

Pareto optimal set
nondominated

Pareto front

properties

Vector Evaluation
Genetic Algorithm

than single solutions when dealing with multiobjective optimization problems.
The notion of �optimality� is, therefore, different in this case. The most com-
monly adopted notion of optimality is that originally proposed by Francis
Ysidro Edgeworth [21] and later generalized by V. Pareto [39]. Although some
authors call this notion (see, for example, [49]),
we will use the most commonly accepted term: .
We say that a vector of decision variables is if there

does not exist another such that for all and
for at least one .

In words, this de�nition says that is Pareto optimal if there exists no
feasible vector of decision variables which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. Un-
fortunately, this concept almost always gives not a single solution, but rather
a set of solutions called the . The vectors corresponding
to the solutions included in the Pareto optimal set are called .
The image of the Pareto optimal set under the objective functions is called

.

The potential of evolutionary algorithms for solving multiobjective optimiza-
tion problems was hinted as early as the late 1960s by Rosenberg in his Ph.D.
thesis [42]. Rosenberg�s study contained a suggestion that would have led to
multiobjective optimization if he had carried it out as presented. His sug-
gestion was to use multiple (nearness to some speci�ed chemical
composition) in his simulation of the genetics and chemistry of a population
of single-celled organisms. Since his actual implementation contained only one
single property, the multiobjective approach could not be shown in his work.
The �rst actual implementation of what it is now called a multiobjective

evolutionary algorithm (or MOEA, for short) was Schaffer�s
(VEGA), which was introduced in the mid-1980s, mainly

aimed for solving problems in machine learning [45, 46, 47].
VEGA basically consisted of a simple genetic algorithm (GA) with a mod-

i�ed selection mechanism. At each generation, a number of subpopulations
were generated by performing proportional selection according to each objec-
tive function in turn. Thus, for a problem with objectives, subpopulations
of size each would be generated (assuming a total population size of ).
These subpopulations would then be shuffled together to obtain a new pop-
ulation of size , on which the GA would apply the crossover and mutation
operators in the usual way. Schaffer realized that the solutions generated by
his system were nondominated in a local sense, because their nondominance
was limited to the current population, which was obviously not appropriate.
Also, he noted a problem that in genetics is known as �speciation� (i.e., we
could have the evolution of �species� within the population which excel on
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By �middling�, Schaffer meant an individual with acceptable performance, perhaps
above average, but not outstanding for any of the objective functions.

different aspects of performance). This problem arises because this technique
selects individuals who excel in one dimension of performance, without look-
ing at the other dimensions. The potential danger doing that is that we could
have individuals with what Schaffer called �middling� performance in all di-
mensions, which could be very useful for compromise solutions, but which will
not survive under this selection scheme, since they are not in the extreme for
any dimension of performance (i.e., they do not produce the best value for any
objective function, but only moderately good values for all of them). Specia-
tion is undesirable because it is opposed to our goal of �nding Pareto optimal
solutions. Although VEGA�s speciation can be dealt with using heuristics or
other additional mechanisms, it remained as the main drawback of VEGA.
From the second half of the 1980s up to the �rst half of the 1990s, few

other researchers developed MOEAs. Most of the work reported back then in-
volves rather simple evolutionary algorithms that use an aggregating function
(linear in most cases) [33, 54], lexicographic ordering [24], and target-vector
approaches [28]. All of these approaches were strongly in�uenced by the work
done in the operations research community and in most cases did not require
any major modi�cations to the evolutionary algorithm adopted.
The algorithms proposed in this initial period are rarely referenced in the

current literature except for VEGA (which is still used by some researchers).
However, the period is of great importance because it provided the �rst in-
sights into the possibility of using evolutionary algorithms for multiobjective
optimization. The fact that only relatively naive approaches were developed
during this stage is natural considering that these were the initial attempts
to develop multiobjective extensions of an evolutionary algorithm. Such ap-
proaches kept most of the original evolutionary algorithm structure intact
(only the �tness function was modi�ed in most cases) to avoid any complex
additional coding. The emphasis in incorporating the concept of Pareto dom-
inance into the search mechanism of an evolutionary algorithm would come
later.

The major step toward the �rst generation of MOEAs was given by D. Gold-
berg on pages 199 to 201 of his famous book on genetic algorithms pub-
lished in 1989 [25]. In his book, Goldberg analyzes VEGA and proposes a
selection scheme based on the concept of Pareto optimality. Goldberg not
only suggested what would become the standard �rst generation MOEA, but
also indicated that stochastic noise would make such algorithm useless unless
some special mechanism was adopted to block convergence. First-generation
MOEAs typically adopt niching or �tness sharing for that sake. The most
representative algorithms from the �rst generation are the following:



�

( )

( )

i
t
i

i
t
i( ) = 1 +

1

1

x t

p

x , t p .

n M

15 Evolutionary Multiobjective Optimization 217

Nondominated Sorting Genetic Algorithm

Niched-Pareto Genetic Algorithm

Multiobjective Genetic Algorithm

1. (NSGA): This algorithm
was proposed by Srinivas and Deb [48]. The approach is based on several
layers of classi�cations of the individuals as suggested by Goldberg [25].
Before selection is performed, the population is ranked on the basis of non-
domination: all nondominated individuals are classi�ed into one category
(with a dummy �tness value, which is proportional to the population size,
to provide an equal reproductive potential for these individuals). To main-
tain the diversity of the population, these classi�ed individuals are shared
with their dummy �tness values. Then this group of classi�ed individuals
is ignored and another layer of nondominated individuals is considered.
The process continues until all individuals in the population are classi�ed.
Stochastic remainder proportionate selection is adopted for this technique.
Since individuals in the �rst front have the M.imum �tness value, they al-
ways get more copies than the rest of the population. This allows us to
search for nondominated regions and results in convergence of the pop-
ulation toward such regions. Sharing, by its part, helps to distribute the
population over this region (i.e., the Pareto front of the problem).

2. (NPGA): Proposed by Horn et al.
[32]. The NPGA uses the tournament selection scheme based on Pareto
dominance. The basic idea of the algorithm is the following: two individ-
uals are randomly chosen and compared against a subset from the entire
population (typically, around 10% of the population). If one of them is
dominated (by the individuals randomly chosen from the population) and
the other is not, then the nondominated individual wins. When both com-
petitors are either dominated or nondominated (i.e., there is a tie), the
result of the tournament is decided through �tness sharing [27].

3. (MOGA): Proposed by Fonseca
and Fleming [23]. In MOGA, the rank of a certain individual corresponds
to the number of chromosomes in the current population by which it is
dominated. Consider, for example, an individual at generation , which
is dominated by individuals in the current generation.
The rank of an individual is given by [23]

rank (15.4)

All nondominated individuals are assigned rank , while dominated ones
are penalized according to the population density of the corresponding
region of the tradeoff surface.
Fitness assignment is performed in the following way [23]:
a) Sort population according to rank.
b) Assign �tness to individuals by interpolating from the best (rank )
to the worst (rank ) in the way proposed by Goldberg (1989),
according to some function, usually linear, but not necessarily.
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15.5 MOEAs: Second Generation

c) Average the �tnesses of individuals with the same rank, so that all of
them are sampled at the same rate. This procedure keeps the global
population �tness constant while maintaining appropriate selective
pressure, as de�ned by the function used.

The main questions raised during the �rst generation were

Are aggregating functions (so common before and even during the golden
years of Pareto ranking) really doomed to fail when the Pareto front is
nonconvex [16]? Are there ways to deal with this problem? Is it worth
trying? Some recent work seems to indicate that aggregating functions are
not death yet [35].
Can we �nd ways to maintain diversity in the population without using
niches (or �tness sharing), which requires a process , where refers
to the population size?
If we assume that there is no way of reducing the process required
to perform Pareto ranking ( is the number of objectives and is the
population size), how can we design a more efficient MOEA?
Do we have appropriate test functions and metrics to evaluate quantita-
tively an MOEA? Not many people worried about this issue until near
the end of the �rst generation. During this �rst generation, practically all
comparisons were done visually (plotting the Pareto fronts produced by
different algorithms) or were not provided at all (only the results of the
proposed method were reported).
When will somebody develop theoretical foundations for MOEAs?

Summarizing, the �rst generation was characterized by the use of selection
mechanisms based on Pareto ranking and �tness sharing was the most com-
mon approach adopted to maintain diversity. Much work remained to be done,
but the �rst important steps toward a solid research area had been already
taken.

The second generation of MOEAs was born with the introduction of the no-
tion of elitism. In the context of multiobjective optimization, elitism usually
(although not necessarily) refers to the use of an external population (also
called secondary population) to retain the nondominated individuals. The use
of this external �le raises several questions:

How does the external �le interact with the main population?
What do we do when the external �le is full?
Do we impose additional criteria to enter the �le instead of just using
Pareto dominance?
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Strength Pareto Evolutionary Algorithm

Strength Pareto Evolutionary Algorithm 2

Pareto Archived Evolution Strategy

Elitism can also be introduced through the use of a ( )-selection in
which parents compete with their children and those which are nondominated
(and possibly comply with some additional criterion such as providing a better
distribution of solutions) are selected for the following generation.
The previous points bring us to analyze in more detail the true role of

elitism in evolutionary multiobjective optimization. For that sake, we will re-
view next the way in which some of the second-generation MOEAs implement
elitism:

1. (SPEA): This algorithm
was introduced by Zitzler and Thiele [57]. This approach was conceived as
a way of integrating different MOEAs. SPEA uses an archive containing
nondominated solutions previously found (the so-called external nondom-
inated set). At each generation, nondominated individuals are copied to
the external nondominated set. For each individual in this external set, a

value is computed. This strength is similar to the ranking value
of MOGA, since it is proportional to the number of solutions to which a
certain individual dominates. It should be obvious that the external non-
dominated set is in this case the elitist mechanism adopted. In SPEA, the
�tness of each member of the current population is computed according
to the strengths of all external nondominated solutions that dominate it.
Additionally, a clustering technique called �average linkage method� [37]
is used to keep diversity.

2. (SPEA2): SPEA2 has
three main differences with respect to its predecessor [56]: (1) it incorpo-
rates a �ne-grained �tness assignment strategy that takes into account for
each individual the number of individuals that dominate it and the num-
ber of individuals by which it is dominated; (2) it uses a nearest-neighbor
density estimation technique that guides the search more efficiently; and
(3) it has an enhanced archive truncation method that guarantees the
preservation of boundary solutions.
Thefore, in this case the elitist mechanism is just an improved version of
the previous.

3. (PAES): This algorithm was in-
troduced by Knowles and Corne [36]. PAES consists of a (1+1) evolution
strategy (i.e., a single parent that generates a single offspring) in combi-
nation with a historical archive that records some of the nondominated
solutions previously found. This archive is used as a reference set against
which each mutated individual is being compared. Such a historical archive
is the elitist mechanism adopted in PAES. However, an interesting aspect
of this algorithm is the procedure used to maintain diversity, which con-
sists of a crowding procedure that divides objective space in a recursive
manner. Each solution is placed in a certain grid location based on the
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Nondominated Sorting Genetic Algorithm II

Niched Pareto Genetic Algorithm 2

Pareto Envelope-based Selection Algorithm

values of its objectives (which are used as its �coordinates� or �geograph-
ical location�). A map of such grid is maintained, indicating the number
of solutions that reside in each grid location. Since the procedure is adap-
tive, no extra parameters are required (except for the number of divisions
of the objective space).

4. (NSGA-II): Deb et
al. [18, 19, 20] proposed a revised version of the NSGA [48], called NSGA-
II, which is more efficient (computationally speaking), that uses elitism
and a crowded comparison operator that keeps diversity without speci-
fying any additional parameters. The NSGA-II does not use an external
memory as the previous algorithms. Instead, the elitist mechanism con-
sists of combining the best parents with the best offspring obtained (i.e.,
a ( )-selection).

5. (NPGA 2): E.son et al. [22]
proposed a revised version of the NPGA [32] called the NPGA 2. This al-
gorithm uses Pareto ranking but keeps tournament selection (solving ties
through �tness sharing as in the original NPGA). In this case, no external
memory is used and the elitist mechanism is similar to the one adopted by
the NSGA-II. Niche counts in the NPGA 2 are calculated using individ-
uals in the partially �lled next generation, rather than using the current
generation. This is called continuously updated �tness sharing and was
proposed by Oei et al. [38].

6. (PESA): This algo-
rithm was proposed by Corne et al. [15]. This approach uses a small inter-
nal population and a larger external (or secondary) population. PESA uses
the same hypergrid division of phenotype (i.e., objective funcion) space
adopted by PAES to maintain diversity. However, its selection mechanism
is based on the crowding measure used by the hypergrid previously men-
tioned. This same crowding measure is used to decide what solutions to
introduce into the external population (i.e., the archive of nondominated
vectors found along the evolutionary process). Therefore, in PESA, the
external memory plays a crucial role in the algorithm since it determines
not only the diversity scheme, but also the selection performed by the
method. There is also a revised version of this algorithm, called PESA-II
[14]. This algorithm is identical to PESA, except for the fact that region-
based selection is used in this case. In region-based selection, the unit of
selection is a hyperbox rather than an individual. The procedure consists
of selecting (using any of the traditional selection techniques [26]) a hy-
perbox and then randomly select an individual within such a hyperbox.
The main motivation of this approach is to reduce the computational costs
associated with traditional MOEAs (i.e., those based on Pareto ranking).
Again, the role of the external memory in this case is crucial to the per-
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Diagram that illustrates the way in which the micro-GA for multiob-
jective optimization works.

formance of the algorithm.

7. : This approach was introduced by Coello
Coello and Toscano Pulido [11, 12]. A micro-genetic algorithm is a GA
with a small population and a reinitialization process. The way in which
the micro-GA works is illustrated in Figure 15.1. First, a random popula-
tion is generated. This random population feeds the population memory,
which is divided in two parts: a replaceable and a nonreplaceable portion.
The non-replaceable portion of the population memory never changes dur-
ing the entire run and is meant to provide the required diversity for the
algorithm. In contrast, the replaceable portion experiences changes after
each cycle of the micro-GA. The population of the micro-GA at the begin-
ning of each of its cycles is taken (with a certain probability) from both
portions of the population memory so that there is a mixture of randomly
generated individuals (nonreplaceable portion) and evolved individuals
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This is assuming that there are two or more nondominated vectors. If there is only
one, then this vector is the only one selected.

(replaceable portion). During each cycle, the micro-GA undergoes con-
ventional genetic operators. After the micro-GA �nishes one cycle, two
nondominated vectors are chosen from the �nal population and they are
compared with the contents of the external memory (this memory is ini-
tially empty). If either of them (or both) remains as nondominated after
comparing it against the vectors in this external memory, then they are
included there (i.e., in the external memory). This is the historical archive
of nondominated vectors. All dominated vectors contained in the external
memory are eliminated.
The micro-GA uses then three forms of elitism: (1) it retains nondomi-
nated solutions found within the internal cycle of the micro-GA; (2) it
uses a replaceable memory whose contents is partially �refreshed� at cer-
tain intervals; and (3) it replaces the population of the micro-GA by the
nominal solutions produced (i.e., the best solutions found after a full inter-
nal cycle of the micro-GA). Therefore, the micro-GA is another example
of how elitism can play a vital role to improve the performance of an
evolutionary algorithm used for multiobjective optimization.

Second-generation MOEAs can be characterized by an emphasis on effi-
ciency and by the use of elitism (in the two main forms previously described).
During the second generation, some important theoretical work also took
place, mainly related to convergence [43, 44, 29, 30, 53]. Also, metrics and
standard test functions were developed to validate new MOEAs [55, 52].
The main concerns during the second generation (which we are still living

nowadays) are the following:

Are our metrics reliable? What about our test functions? We have found
out that developing good metrics is in itself a multiobjective optimization
problem, too. In fact, it is ironic that nowadays we are going back to trust-
ing more visual comparisons than metrics as during the �rst generation.
Are we ready to tackle problems with more than two objective functions
efficiently? Is Pareto ranking doomed to fail when dealing with too many
objectives? If so, then what is the limit up to which Pareto ranking can
be used to select individuals reliably?
What are the most relevant theoretical aspects of evolutionary multiob-
jective optimization that are worth exploring in the shortterm?

Another research area within evolutionary multiobjective optimization that
has not been explored in enough detail in the current literature is constraint
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The assumption that we have constraints will hold throughout this section.

handling (particularly for single-objective optimization). We believe that it is
important to study the relationship between constraint handling and multi-
objective optimization because of two main reasons: (1) constrained single-
objective optimization problems can be restated as multiobjective optimiza-
tion problems in a natural way; and (2) this sort of constrained single-objective
optimization problems can be used to measure performance of MOEAs on
a more quantitative basis than when using conventional multiobjective test
functions.
The most straightforward approach to use multiobjective optimization

techniques to solve a single-objective optimization problems is to rede�ne
the single-objective optimization of as a multiobjective optimization
problem in which we will have objectives, where is the num-
ber of constraints . Then, we can apply any MOEA to the new vector

, where are the original con-
straints of the problem. An ideal solution would thus have =0 for

and for all feasible (assuming minimization).
However, it should be clear that in single-objective optimization problems

we do not want just good tradeoffs; we want to �nd the best possible solutions
that do not violate any constraints. Therefore, a mechanism such as Pareto
ranking may be useful to approach the feasible region, but once we arrive to
it, we will need to guide the search with a different mechanism so that we can
reach the global optimum. In order to achieve this goal, we should also be able
to maintain diversity in the population. Some of the most representative at-
tempts to use multiobjective optimization techniques (or concepts) to handle
constraints in single-objective optimization problems are the following:

1. : Surry et al. [50] proposed the use of Pareto ranking and
VEGA to handle constraints. In their approach, called COMOGA, the
population is ranked based on constraint violations (counting the num-
ber of individuals dominated by each solution). Then, one portion of the
population is selected based on constraint ranking, and the rest based on
real cost (�tness) of the individuals. COMOGA compared fairly with a
penalty-based approach in a pipe-sizing problem, and was less sensitive to
changes in the parameters, but the results achieved were not better than
those found with a penalty function [50]. It should be added that CO-
MOGA requires several extra parameters, although its authors argue that
the technique is not particularly sensitive to the values of such parameters.

2. : Parmee and Purchase [40] implemented a version of VEGA that
handled the constraints of a gas turbine problem as objectives to allow a
GA to locate a feasible region within the highly constrained search space of
this application. However, VEGA was not used to further explore the fea-
sible region, and instead the authors used specialized operators that would
create a variable-sized hypercube around each feasible point to help the
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GA to remain within the feasible region at all times. It is important to
notice that no real attempt to reach the global optimum was made in this
case. Coello [6] also proposed the use of a population-based multiobjective
optimization technique such as VEGA to handle each of the constraints
of a single-objective optimization problem as an objective. In this case,
however, the goal was to approximate the global optimum. At each gener-
ation, the population is split into subpopulations ( is the number
of constraints), so that a fraction of the population is selected using the
(unconstrained) objective function as its �tness and another fraction uses
the �rst constraint as its �tness and so on. This approach provided good
results in several optimization problems [6]. Its main disadvantage was
related to scalability issues. However, in a recent application in combi-
national circuit design we were able to successfully deal with up to 49
objective functions [7]. Furthermore, the approach showed an important
improvement (in terms of efficiency) with respect to a previous GA-based
approach developed by us for the same task [4].

3. : Camponogara and Talukdar [2]
proposed to restate a single-objective optimization problem in such a way
that two objectives would be considered: the �rst would be to optimize
the original objective function and the second would be to minimize:

M. (15.5)

where is normally 1 or 2. Once the problem is rede�ned, nondominated
solutions with respect to the two new objectives are generated. The solu-
tions found de�ne a search direction , where ,

, and and are Pareto sets. The direction search is intended
to simultaneously minimize all the objectives. Line search is performed in
this direction so that a solution can be found such that dominates
and (i.e., is a better compromise than the two previous solutions

found). Line search takes the place of crossover in this approach, and
mutation is essentially the same, where the direction is projected onto
the axis of one variable in the solution space. Additionally, a process
of eliminating half of the population is applied at regular intervals (only
the less �tted solutions are replaced by randomly generated points). This
approach has obvious problems to keep diversity, as it is re�ected by the
need to discard the worst individuals at each generation. Also, the use of
line search increases the computational cost of the approach and what is
the impact of the segment chosen to search in the overall performance of
the algorithm is not clear.
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4. : Jiménez et al. [34] proposed the use of a Min-Max approach
[3] to handle constraints. The main idea of this technique is to apply a set
of simple rules to decide the (binary tournament) selection process:
a) If the two individuals being compared are both feasible, then select
based on the minimum value of the objective function.

b) If one of the two individuals being compared is feasible and the other
one is infeasible, then select the feasible individual.

c) If both individuals are infeasible, then select based on the M.imum
constraint violation (M. for ). The individual
with the lowest M.imum violation wins.

A subtle problem with this approach is that the evolutionary process �rst
concentrates only on the constraint satisfaction problem and therefore it
samples points in the feasible region essentially at random [51]. This means
that in some cases (e.g., when the feasible region is disjoint) we might land
in an inappropriate part of the feasible region from which we will not be
able to escape. However, this approach may be a good alternative to �nd
a feasible point in a heavily constrained search space. Deb [17] proposed
a similar approach but using tournament selection based on feasibility.
However, niching was required to maintain diversity in the population.

5. : Coello [5] explored the use of selection based on dominance (de-
�ned in terms of feasibility) to handle constraints. In this case, ranking is
performed at three different levels: from two feasible individuals the one
with the highest �tness is preferred; if one is feasible and the other infeasi-
ble, then the �rst is chosen; if both are infeasible, then the individual with
the lowest amount of constraint violation is chosen. This approach uses
stochastic universal sampling so that the selection pressure is not too high
and no extra procedures are required to maintain diversity. Also, adaptive
crossover and mutation rates were adopted as part of the approach.

6. : Coello and Mezura [10] proposed the use of tournaments based
on nondominance (as in the NPGA [32]) to handle constraints. An ad-
ditional parameter, called selection rank ( ), is added to control the
selection pressure of the approach. This parameter makes it unnecessary
to use equivalent class sharing (as in the NPGA) to maintain diversity
and also decreases the (normally high) selection pressure originated from
using tournament selection.

7. : Ray et al. [41] proposed a tech-
nique to handle constraints in which the population is ranked both in
objective function space and in constraint space. The selection strategy
adopted eliminates weaknesses from both spaces and ensures a better con-
straint satisfaction in the offspring produced. The approach uses niches to
maintain diversity with Euclidean distances being the similary measure
adopted. It also incorporates mating restrictions based on the information
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15.7 Where Are We Heading?

that each individual has of its own feasibility (this idea was inspired on an
earlier approach by Hinterding and Michalewicz [31]), so that the global
optimum can be reached through cooperative learning.

Some of the possible trends in this area are the following:

Use of other MOEAs to handle constraints. Some of these techniques may
be rather simple and still remain highly competitive. See, for example, [9].
Use of online and self-adaptation in constraint-handling techniques both
for single- and for multiobjective optimization.
Extraction and reuse of knowledge obtained from the evolutionary process
in order to guide more efficiently the search.
Design (single-objective optimization) test functions that are particularly
difficult for MOEAs to tackle and devise appropriate metrics to measure
their performance in this context.

Once we have been able to distinguish between the �rst and second generations
in evolutionary multiobjective optimization, a reasonable question is: where
are we heading now?
In the last few years, there has been a considerable growth in the number

of publications related to evolutionary multiobjective optimization. However,
the variety of topics covered is not as rich as the number of publications
released each year. The current trend is to either develop new algorithms
(validating them with some of the metrics and test functions available) or to
develop interesting applications of existing algorithms.
We will �nish this section with a list of some of the research topics that

we believe that will keep researchers busy during the next few years:

New metrics with some insightful analysis of their behavior and limitations.
Also, metrics that measure not only offline performance, but also online
performance are expected to arise.
More test functions with more than two objectives and with high dimen-
sionality. Concerns about epistasis, deception, dynamic functions, uncer-
tainty, and noise should also be re�ected in the upcoming work in this
topic.
Development of a theoretical framework that allows us to analyze the
behavior of MOEAs. Topics such as the run-time analysis and bounded
convergence times of an MOEA are expected to be tackled in the next few
years. We should also expect more work on convergence and on modeling
MOEAs using statistical tools.
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Genetic Algorithms with Limited
Convergence

J. Kubalík and L. Rothkrantz, J. Lažansk�

Genetic algorithms (GAs) are probabilistic search and optimization tech-
niques, which operate on a population of chromosomes, representing potential
solutions of the given problem [10]. In a standard GA, binary strings of ones
and zeros represent the chromosomes. Each chromosome is assigned a �tness
value that expresses its quality considering the given objective function. Such
a population is evolved by means of reproduction and recombination opera-
tors in order to breed the optimal solution�s chromosome. The evolution is
running until some termination condition is ful�lled. The best chromosome
encountered so far is then considered as the found solution.
The basic analysis of GA�s behavior is based on a notion of a

[15] as a template, which matches a certain class of chromosomes. As the
population evolves, some good schemata are represented by increasing number
of chromosomes while bad schemata disappear. The �xed positions of those
good schemata constitute so-called building blocks (BBs), which represent
important components of the �nal solution. The optimum solution emerges
when these building blocks are mixed together in an optimal way in some
chromosome.
GAs simultaneously carry out exploitation of the promising regions found

so far and exploration of other areas for potentially better solution. The weak
point of a GA is that it often suffers from so-called premature convergence,
which is caused by an early homogenization of genetic material in the pop-
ulation. This means that no more exploration can be performed. There are
many factors affecting the convergence of a GA: the used population size,
type and rate of application of crossover and mutation operators, encoding
used and many others. Inadequate population size cannot provide the GA
with sufficient amount of genetic material to evolve the optimal chromosome.
Improperly designed and set genetic operators cannot maintain an optimal
balance between exploitation and exploration of the GA.
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This paper introduces a novel approach to protect GAs from getting stuck
in local optima and so extending the search power of GAs. To achieve this
we have proposed a GA where only limited convergence of the population
genotype can take place.
The paper starts with an overview of some recent approaches to the prob-

lems related somehow to prevent premature convergence, preserving the pop-
ulation diversity (or better the multimodal diversity), and improving the per-
formance of GAs in general. The next section introduces the proposed genetic
algorithm with limited convergence and discusses its aspects. Section 16.4
brie�y describes the test problems used for experimental evaluation of the
proposed algorithm. Empirical results presented in Section 16.5 show that the
algorithm performs very well across the representative set of search problems.
Especially its explorative power and the ability to keep useful diversity of the
population are demonstrated there. Section 16.6 summarizes and concludes
the paper and mentions interesting topics to be studied in future in this area.

There are many factors that affect the convergence of a GA. The most in�u-
encing and the most frequently studied are the used reproduction strategy,
the size of the evolved population, the representation, i.e., the mapping of the
problem parameters on a binary string in conventional GAs, and last but not
least the used recombination operators and the frequency with which they are
applied and other problem-dependent parameters. Let us brie�y list some of
the approaches that have been recently proposed to tackle the aspects men-
tioned above.
Dual GAs [3], [4] represent one possible way to introduce some kind of

redundancy into the evolved genetic material. The dual GAs use a standard
binary representation extended with just one bit, called the head bit or meta
bit, which is added to every individual in the population. This bit does not
code any information of the represented solution. Instead this extra bit is
used to determine the way the informative part of the chromosome will be
interpreted. If the value of the head bit is 0, then the rest of the chromosome
is taken as it is. Otherwise if the head bit is 1 the string is interpreted as
its binary complement. This means that two binary complementary strings
represent the same solution. In other words, the population may contain indi-
viduals with completely different genotype but with the same phenotype and
so the same �tness values.
It has been obvious from the very beginning of the GA�s use that the pop-

ulation size plays a crucial role in determining the convergence quality of GAs.
The population should be large enough to provide an adequate initial supply
of BBs. Another aspect of population sizing involves the decision making be-
tween competing BBs. De Jong [5] recognized that the decision making for a
particular BB is strongly affected by contributions of other BBs. There are
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several studies that try to estimate an adequate population size [8], [12], [14].
However, a user should know much information about the problem at hand
like the size of the considered BBs, the number of BBs in the problem, the
average �tness variance of the considered BB, and some other conservative
assumptions in order to be able to use the theoretical estimates.
Another factor that affects the convergence of GA is the selection scheme.

Generally, the selection should work so that the chromosomes representing
better solutions are given a bigger chance to take part in the process of gener-
ating a new and hopefully better population. The extent to which the better
chromosomes are favored is measured by so-called selection pressure. How-
ever, if the selection pressure is too low, then the convergence to the optimal
solution is too slow. In the opposite case, i.e., if the selection pressure is too
high, the population is prone to converge very fast toward some suboptimal
solution. So commensurate efforts have been spent to analyze various selection
schemes and to develop the convergence models of GAs under those selection
schemes [1], [11], [13], [23]. In order to keep the desired distribution of �tness
values in the population during the whole run, a proper scaling technique [22]
might be engaged in GA as well.
GAs are very often engaged in solving multimodal optimization problems.

This implies that the ability of the GA to keep just the "raw" diversity is
not good enough. Instead the multimodal diversity covering many niches of
the search space is required. One early approach to maintain many niches in
the GA was based on utilization of so-called shared �tness values that were
calculated using a sharing function [9]. The general concept of �tness sharing
is based on the idea that each individual�s �tness is divided by the number
of neighbors within the niche to which the given individual belongs. Thus the
goal desired state is such that the population is distributed over a number
of different peaks in the search space, with each peak receiving a fraction
of the population in proportion to the height of that peak. It results in a
situation that the convergence occurs within a niche, but convergence of the
full population is avoided.
Other works dealing with maintenance of the population diversity date

back to the 1970s. Cavicchio [2] and De Jong [5] came up with techniques
called preselection and crowding, respectively. Both are inspired by an ecolog-
ical phenomenon that similar individuals in the natural population compete
against each other for limited resources. Dissimilar individuals tend to occupy
different niches, so they typically do not compete. As a result, the number
of members of a particular niche does not change during the evolution of the
whole population of �xed size. In preselection and crowding this is achieved
so that the newly created individuals, which are to be inserted into the pop-
ulation replace the most similar individuals in the current population. The
two methods differ in that how the individuals to be replaced are found. In
crowding the replacement is found among randomly chosen CF individuals.
Preselection assumes that a parent is one of the closest individuals to the
generated offspring so the parent is replaced if the competing child is bet-
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ter. Mahfoud studied several strategies of crowding and preselection in [20]
and proposed a variation of preselection called deterministic crowding that
processes two parents and two offspring at a time and uses phenotypic simi-
larity measure to determine which offspring competes against which parent.
He shows that his method is better in clustering solutions about all peaks of
the tested problems.
Mengshoel and Goldberg [21] proposed a niching algorithm called prob-

abilistic crowding, which is a successor of the deterministic crowding. The
two core ideas in probabilistic crowding are (1) to hold tournaments between
similar individuals and (2) to let tournaments be probabilistic. Theoretical
analysis and empirical results showed that probabilistic crowding is a simple,
stable, predictable, and fast niching algorithm.
A search performance of the GA can be also measured in terms of the

size of the search space explored during the run. To efficiently sample the
whole search space is the task for recombination operators, i.e., crossover and
mutation operators. In standard genetic algorithms the crossover is considered
to be of the primary role in an exploration process while the mutation is
used to preserve the diversity in the population and to preserve a loss of
information [10], [22]. However, the utility of crossover and mutation changes
with a population size. A mutation can be more useful than crossover when the
population size is small while a crossover is more useful when the population
is large.
A proper use of recombination operators is even harder since there are

many different variants of crossover. The implementations differ between each
other in many aspects. The disruption effect of crossover, �rst analyzed for
1-point crossover in [15], is the probability that the crossover will disrupt long
schemata. This is important to predict how the promising schemata will be
propagated to subsequent populations. De Jong and Spears [6] characterized
recombination in terms of productivity and exploration power. Those char-
acteristics describe the ability of crossover to generate new sample points in
the search space. De Jong and Spears also derived a heuristics that the more
disruptive crossovers (which are also more productive and explorative) are
better when the population is small and less disruptive operators are better
when the population is large relative to the problem size. For more recent
work on the role of recombination operators, see [26].
Another approach is to dynamically adapt the rates of the utilization of

multiple operators during the run. Spears [25] used an extra tag-bit attached
to every individual to store the information about which crossover (1 is 2-point
and 0 is uniform crossover) should be preferred when crossing two parental
chromosomes. So if the parents both have 1 at the tag-bit position, then
the 2-point crossover is used. Similarly, if both have 0, then uniform is used.
Otherwise one of the two operators is chosen with a probability 0.5. Spears
found that this adaptive approach always had a performance intermediate
between the best and worst of the two single recombination operators.
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Srinivas and Patnaik [27] used adaptive probabilities of crossover and mu-
tation to achieve the twin goals of maintaining diversity in the population and
sustaining convergence capacity of the GA. They increased the probability of
crossover and mutation when the population was stuck at local optima and
decreased the probabilities when the population was scattered in the solution
space. They also considered the need to preserve "good" solutions. This was
attempted by having low probabilities for highly �t individuals while poor
solutions will encounter high probability of crossover and mutation rate.
Kubalík and Lažansk� proposed so-called partially randomized crossover

operators (PRX) as an enhancement of the traditional crossover opera-
tors used for binary representation [16], [17], [18]. The enhancement of the
crossover functionality is in a modi�ed treatment of a common schema of the
parents, which are the bits common to both parental chromosomes. Standard
operators work so that both offspring inherit unchanged all the bits of the
common schema. As the population converges, the common schema occupies
a growing portion of the parent chromosomes and so the crossover can pro-
duce only little new. The PRX operators do not strictly preserve the common
schema of the parents, since in one of the two generated offspring, a portion
of the common schema is changed with the probability that evolves during
the run. Thus, the population is not saturated with superior building blocks
but also with their randomly chosen binary complements. The diversity of the
population is permanently maintained, which helps to preserve the SGA from
getting stuck in a local optimum and enhance the exploration of the search
space beyond the limits imposed by the pure evolution.
The PRX operators were engaged in genetic algorithms with permanent

re-initialization of parental common schemata proposed in [19]. The algorithm
forks the search into two directions when creating a new population from the
old one. To do so the main generation cycle consists of two steps. First, the
primary population is evolved for generations with the use of the PRX
crossover in order to produce both the direct and randomized offspring. The
randomized offspring are stored in the secondary population. Since it is derived
from the primary population, it still has much in common with the "main
stream" evolution so it does not represent quite random samples of the search
space. As such the secondary population represents a source of hopefully useful
diverse genetic material. Then the secondary population is re�ned through a
short evolution running for generations. Finally, these two populations are
merged together into one new primary population and the new main iteration
can be launched. The empirical results show that in such a way a diversity of
the population can easily be maintained while converging faster and to better
solutions than with the standard GA.
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16.3 Genetic Algorithms with Limited Convergence
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This section describes a novel approach to improve the performance of GAs.
The main goal of the proposed algorithm, called the

(GALCO), is to maintain the fruitful diversity of the
evolved population during the whole run and so to preserve a GA from get-
ting stuck in local optima. To achieve this a concept of imposing limits on the
convergence of the population is adopted.
The algorithm inherits most of the features from the standard GA working

on a binary representation. In fact it is a type of the incremental GA where
only one crossover operation is performed in each generation cycle (the step
from the old to the new population). As such it uses a standard selection strat-
egy to choose the parents, a classical crossover operator (2-point crossover is
used here, as commented further) for generating new chromosomes, and spe-
cial rule for inserting of the offspring chromosomes into the population. What
makes the GALCO unique is just the way the convergence of the population
is maintained within speci�ed boundaries.
There is a limit imposed on the maximum convergence of every position of

the representation. Let us denote the vector of genes at the th position of the
chromosome over the whole population as the th column of the population.
Then the limit is expressed as a symmetric integer interval [
, ], where is the population size. The parameter
denotes the . Its value is the input parameter to the algorithm
and can be chosen from the range 0 to . Strictly speaking,
de�nes the maximal allowed difference of the frequency of ones and zeros
in every column of the population. So the ratio of ones and zeros must be

during the whole run in the case of or the ratio can change
up to in favor of either ones or zeros for . This
is a principal condition of the algorithm. To keep the condition valid during
the whole run a special insertion rule for incorporating offspring into the
population has been used.
The functional scheme of the GALCO is shown in Figure 16.3. First an

initial population of chromosomes is generated. It is made sure that the dis-
tribution of ones and zeros does not violates the convergence constraint at
any position of the chromosome. In our case the evolution starts from maxi-
mally diverse population, i.e., every column of the population consists of an
equal number of ones and zeros regardless of the chosen conver-
gence range. The body of the algorithm is through steps 2�5, which realizes
the generation cycle of the incremental GA. In step 2 a pair of parental chro-
mosomes is chosen according to the used selection strategy (a tournament
selection is used here). Then the parents are crossed over using the 2-point
crossover to yield two new chromosomes. Note that there is no parameter
specifying the rate of application of the crossover needed since the parents
always undergo this operation. The 2-point crossover was chosen intentionally
since it is the least disruptive recombination operator among the standard
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A functional schema of the GALCO algorithm.

Step 1 Generate initial population of size PopSize
Step 2 Choose parents
Step 3 Create offspring using the 2-point crossover
Step 4 Insert the offspring into the population according

to the following rule
if (max(child1,child2) > max(parent1,parent2))
then replace both parents with the children
else{
find(current_worst)
replace_with_mask(child1, current_worst)
find(current_worst)
replace_with_mask(child2, current_worst)

}
Step 5 if (not finished) then go to Step 2

operators. So it is best suited for preserving the promising building blocks
when mixing genes of two parental chromosomes. It is supposed to be a good
counterpart to the arti�cially maintained rather high diversity in the popula-
tion (as will be shown in Section 16.5, the best performance of the algorithm
is achieved with the convergence rate ). There is no explicit
mutation operator used in the algorithm.
The most important action of the algorithm comes in step 4. Here the

offspring is inserted to the population according to the insertion rule, which
follows two main objectives: (1) to use as much of the genetic material of the
newly generated individuals as possible and (2) not to violate the maximal
allowed convergence rate. In practice this is implemented so that both children
replace their parents iff at least one of the children has better �tness than both
parents. Otherwise the children replace the worst individuals of the current
population using the operator described below.
The effect of replacing the parents with both offspring in the�then part

of the rule� is such that the distributions of ones and zeros do not change
in any column of the population. This is obvious since the genetic mater-
ial of parents and their children is invariant through the application of the
crossover operation. Thus it is ensured that if the old population does comply
with the desired convergence range the new population must comply with the
convergence range as well.
A slightly more complicated situation arises when the children are both of

rather poor quality. Replacing the parents with their offspring irrespectively
of the offspring quality would cause problems with a slow convergence to the
optimal solution. Note that the case the parents produce �tter offspring is
much less frequent than the opposite case, i.e., that both offspring are worse
than the better parent. So the breeding phase (crossover plus replacement
of parents) would be in most cases counterproductive. Moreover the elitism,
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A functional schema of the operator.

for(i=0;i<chrom_length;i++){
change = child.genes[i]-current_worst.genes[i]
if(PopSize/2 - C < conv[i] + change < PopSize/2 + C) then{
convergence[i] = convergence[i] + change
current_worst.genes[i] = child.genes[i]

}
}

i.e., preserving of the best individual in the population could not be ensured.
Apparently if the best individual in the population was selected as a parent
and did not succeed to generate at least the same �t offspring, the best so far
solution would disappear from the population when replaced by the offspring.
On the other hand, the evolution should not be restricted only to those rather
singular moments when the parents breed something better than they are.
Some reasonable way to use the newly generated chromosomes whatever good
they are might be very useful since it would considerably increase the rate of
sampling of the search space.
The tradeoff between exploration power and exploitation ability of the

algorithm is accomplished by placing the generated offspring into the pop-
ulation using the operator. Generally any chromosome
of the population can be replaced. Here, the chromosomes representing the
least-�t solutions are chosen in order to reduce the loss of quality due to the
operation performed on the replaced individual. Note that it is necessary to
start seeking for the worst individual from a randomly chosen position in the
population in order to ensure that any out of the multiple worst individuals
can be chosen with an equal probability. If one did not take care of it, the
�rst or the last (depending on the implementation of the search routine) worst
individual in the population would be chosen all the time that would restrict
the sampling effect of the operator.
The operator works so that it traverses the chromosome of the worst in-

dividual and replaces its th gene with a corresponding gene of the child�s
chromosome if and only if such a change is legal. So the bit is replaced if this
does not make the frequency of ones and zeros of the corresponding column of
the population to exceed the allowed convergence range. Otherwise the orig-
inal gene of the worst chromosome retains in the population. It is apparent
that the role of the operator is twofold: it enables the pair
of offspring, which do not improve the parents� best as well as the worst indi-
vidual in the population to contribute to the population genotype. Note that
usually neither the inserted nor the replaced chromosome remains unchanged
when the operator is applied. Instead the genetic material of the two chromo-
somes is mixed in the resultant chromosome. So the operation should be seen
as a merging of two chromosomes rather than an inserting of a new one in
the population. One should expect that at the beginning of the run the genes
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of the new offspring would dominate in the so-composed chromosome while
in the later stages of the run more and more genes of the old chromosome
would be retained. Particular characteristics depend on many factors such as
the used value of the parameter , the character of the solved problem, etc.
Apparently the greater the is the more of the offspring�s genes are used
in the early phase of the run, and vice versa. An example of how the bias
can change during the run will be shown in Section 16.5 with experiments.
Also the impact of the use of the operator on the performance of the whole
algorithm will be empirically tested there.
From this point of view such an operation of merging of two chromosomes

can be considered as a kind of biased uniform crossover as well, where the bias
is in favor of either the old or the new chromosome. In this sense the whole
algorithm belongs to the class of approaches, which try to pro�t from simul-
taneous utilization of the most and the least explorative crossover operators
uniform and 2-point [25]. Here the 2-point crossover is used as lets say pri-
mary or explicit recombination operator while the form of uniform crossover
appears as a side effect of preventing the population from becoming too ho-
mogenous. Last but not least an implicit elitism embodied in the algorithm
should be mentioned. Any worse individual can replace the best individual of
the current population neither by replacing the parents with their offspring
(since it happens only if the offspring is better) nor by application of the

operator. So the best-so-far �tness value can only improve
during the evolution.
To implement those decision makings performed within the operator

an integer vector convergence is used to store the gene dis-
tribution statistics of all columns of the population. The th vector element
is updated whenever a corresponding gene changes its value. Note that all
vector elements must be from [ , ] during the
whole run. The vector of convergence statistics can be considered as a mask
(this is where the name of the operator is derived from), specifying for each
position of the replaced chromosome whether it can be changed or not.

This section brie�y describes the test problems that were used in the experi-
ments described in the next section. The presented selection of the problems
was made with intention to cover nonlinear function optimizations, deceptive,
royal road, hierarchically decomposable, and multiple-optima problems.
The �rst test problem is based on function F101(x,y) taken from [31]. The

function is de�ned as follows:

where the parameters and are coded on 10 bits and converted to integer
values from the interval (�512, 511).
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Nonlinear and highly multimodal function F101( , ).

The function is used as basic building block of the problem. It is nonlinear
nonseparable, and highly multimodal function of two variables. This means
that the optimal value of one variable cannot be determined independently
of the other parameter. Here the whole problem is constructed in such a way
that it consists of 7 triples , where each one contributes to the
overall �tness with the value F101( , ) + F101( , ). So the parameter
is nonlinearly bound with two other parameters and , which makes
the problem even more difficult. The total length of the chromosome is 210
bits. The �tness of the whole chromosome is calculated as the average value
of those 7 function contributions. The global minimum value of the problem
composed of F101( , ) is �955.96.
The next test problem is a representative of the deceptive problems, i.e.,

problems that are intentionally designed to make GAs converge toward some
local deceptive optimum. Here, the problem is composed of the deceptive
function DF3 taken from [30], which is 4-bit fully deceptive function with
one global optimum in the string 1110 of the �tness 30. The function has a
deceptive attractor 0000 of �tness 10, which is surrounded, in the search space,
by four strings containing just one 1 with quite high �tness values 28, 27, 26,
and 25. The problem is formed as concatenation of 50 DF3 functions resulting
in a 200-bit-long chromosome. Thus the global optimum of the problem is
1500. The de�nition of the search space of the DF3 function is shown in
Figure 16.4.
The used Royal Road problem (RR) is a 16-bit version of the RR1 single-

level royal road problem described in [7]. The problem is de�ned by enu-
merating the schemata, where each schema has assigned its contribution
coefficient . The evaluation of an arbitrary chromosome is given as a sum
of all contributions of those schemata that are covered by the chromosome.
The used RR problem is de�ned as a concatenation of 10 16-bit schemata of
all ones. All building blocks have the equal contribution 16. Only the com-
bination of all ones on the bits pertinent to a given schema contributes to
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Deceptive function DF3. Deb�s periodic function
F1( ).

the �tness with the nonzero value, any other combination has value 0. So the
optimal solution is the string of all ones with its �tness 160.
Another test problem used in our experiments is a representative of hierar-

chically decomposable problems, namely the hierarchical-if-and-only-if func-
tion (H-IFF) proposed in [29]. The hierarchical block structure of the function
is a balanced binary tree. Each block, consisting of two subblocks (a pair of
its children), contributes to the overall �tness by the value, which depends on
its interpretation ( ) and its level in the tree. Each leaf node, corre-
sponding to a single gene, contributes to the �tness by 1. Each inner node
is interpreted as 1 if and only if its children are both 1s, as 0 iff they are both
0s. In such a case the node contributes to the �tness by value , where

is the distance from the node to its antecedent leaves. Otherwise
the node is interpreted as and its contribution is 0. It follows from its
de�nition that the function has two global optima, one consists of all 1s and
one of all 0s. For our purposes the 256-bit H-IFF function with the global
optima of value 2304 was used.
The last test function is the function F1 taken from [20] that was used

to analyze the ability of the GALCO algorithm to maintain multiple optimal
solutions in the population. The function is de�ned in the interval (0.0, 1.0)
as follows:

where the parameter is coded on 30 bits so that the string of all zeros
represents 0.0 and the string of all ones represent 1.0. The function is periodic
with 5 equally spaced maxima of equal height; see Figure 16.5.

This section presents an empirical analysis of the GALCO algorithm and
shows some interesting aspects of this approach. The series of experiments
were carried out to reveal how the factors such as the convergence rate , the
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An Effect of Varying ConvergenceRange on a Performance of the GALCO

F101 DF3 H-IFF RR
225 -918 1480 1344 26
200 -920 1490 1675 37
100 -930 1496 2304 56
50 -941 1500 2304 140
20 150
10 -942 1500 2304 152
5 -942 1500 2304 154
1 -941 1500 2304
0 -927 1498.5 1453 86

The population size 500 was used.

population size , and the utilization of the oper-
ator affect the performance of the algorithm. GALCO is also compared to
the standard form of the incremental genetic algorithm (SIGA). Here, SIGA
always replaces the worst individuals of the population by the generated off-
spring. Contrary to the GALCO, SIGA employs a simple mutation operator.
The comparisons are based upon the quality of the achieved solutions as well
as the convergence characteristics of the algorithms. Both algorithms run for
the same number of �tness function evaluations, which is a commonly used
condition when different evolutionary algorithms are compared. Each experi-
ment were replicated 20 times and the average best-of-run values and average
convergence courses are presented in tables and graphs.
Let us �rst focus on how the performance of the algorithm depends on

the chosen convergence rate . Results achieved with various values of
are in Table 16.1. We can observe that small values of (means that rather
low convergence is allowed) give better results than the bigger ones in general.
This con�rms our assumption that the less the population can get homogenous
the higher the chance that better results will be generated is. However, this
assertion holds just when rather extreme values of are considered. The trend
across the whole interval of is such that starting from big the performance
improves as the decreases until some optimum value of is reached (results
written in bold). Further when the decreases, the quality of the obtained
solutions does not improve any more while the time needed to �nd the optimal
solution increases.

Apparently this is caused by the fact that the more diverse the population
is kept (an extreme case is discussed further) the more the convergence
toward the optimal solution slows down. Thus we can see that the average
best-of-run value achieved with is worse than that achieved with the
optimal in the case of F101. In the case of DF3 and H-IFF problems
the optimal average best-of-run values were achieved even with but it
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Mean convergence curves obtained with the optimal convergence rate
, convergence rate =1 and =0 on the problem F101 ( ), DF3 ( ), H-IFF ( ), and
RR ( ). The population size 500 was used.

took considerably longer time to �nd them. See Figure 16.6, where the average
convergence curves with the optimal and are shown.
Let us have a look at the results on the RR problem now. This is the

problem that requires the least convergence rate to get the best results. This
results from the nature of the benchmark. There are no smaller building blocks
available besides those prede�ned 16-bits ones, which would guide the algo-
rithm toward the complete optimal solution. So the algorithm can only rely
on maximal diversity of individuals that would maximize a chance that all
building blocks will be generated and combined in one optimal chromosome.
It is also interesting to see the effect of the opera-

tor. The results of experiments carried out with disabled replacement op-
erator are in the last row of Table 16.1, where . It is evident that
the operator greatly improves the performance of GALCO if used with a
reasonable frequency. There are considerable differences in average best-of-
run values obtained on problems F101, H-IFF, and especially on RR. In the
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Demonstration of a utilization of the genetic material of the offspring
undergoing the operation. Graphs show an evolution of the ratio of
genes taken from the offspring to the total number of genes, in which the chromosomes
that are merged by the operator (the offspring and the worst
individual in the population), mutually differ. The used population size was 250. The
view of the �rst iterations of the algorithm is provided.

case of the deceptive problem the best-of-run solutions achieved without
operator are quite close to the optimum. However, the two

variants of GALCO algorithm, the one that employs the
operator and the other one that does not, differs in the number of function
evaluations needed to come to the optimum solution. This is shown in Fig-
ure 16.6.
These results con�rm our intuition that not only a crossover operator ap-

plied explicitely to promising parents enables the good building blocks to
combine. Also a mixing of the genetic information of two rather poor chro-
mosomes by the replacement operator is very fruitful. One should see that in
this way the worst individual in the population is given a high chance that its
genes or complete building blocks will be combined with other genetic mater-
ial. Note that without the replacement operator such a chance would be very
small since the worst individual is almost unlikely to be chosen as a parent.
Figure 16.7 shows an evolution of a utilization of genes taken from the

offspring chromosome. We can see that the characteristics differ from each
other in a way one would expect. When a small convergence rate is used (i.e.,

) the proportion of genes taken from the offspring is stable (around the
value 2/3) during the whole run. The bigger is used (situation for
is shown here) the more of the offspring genes can be used in the early stages
of the run. At the beginning of the run the offspring chromosome completely
replaces the worst chromosome of the population. As the population converges
i.e., the distribution of ones and zeros in the population columns reaches the
boundary values (either or ) the utilization of the
offspring genes drops down and then stabilizes around the value 2/3 as in
the former case. Note that the proportion of the worst individual genes is the
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An Effect of Varying Population Size on a Performance of the GALCO

F101 DF3 H-IFF RR
20 -928 1500 2304 68
50 -937 1500 2304 147
100 -943 1500 154
150 2304 159
200 -946 1500 2304 160
250 -945 1500 2304 160
500 -941 1500 2304 160
1000 -928 1500 2304

The convergence range was used in these experiments.

Results of the SIGA Algorithm with Varying Population Sizes

F101 DF3 H-IFF RR
500 -877 1449 1234 149
1000 -907 1464 1348 150
1500 -909 1473 1382 144
2000 147

Other parameters of the SIGA were , , and the number of
�tness function evaluations was 500,000.

complement to 1.0. So a considerable number of genes of the worst individual
are used as well.
Another factor, which strongly affects a performance of GAs, is the size

of the population. General trend in standard GAs is that the bigger the used
population is, the better results can be achieved. This is because the big
population provides better supply of necessary fundamental building blocks
when it is initialized and is less subject to premature convergence. On the other
hand, the evolution of large population toward high-quality solutions may be
too slow and at the expense of more computations performed (measured for
instance by a number of performed �tness function evaluations or crossover
operations).

The results of experiments carried out in order to investigate a sensitivity
of the GALCO to population size are presented in Table 16.2.

There are two important observations. First, the performance of the algo-
rithm depends on the population size in a similar way as other GAs. As the
population size increases, the quality of the obtained results improves until
an optimal population size is reached (the results written in bold). Further
increasing of the size slows down the convergence to the optimal solution.
In the case of F101 much worse solutions were found with population size
1000 than with the population size 150. Similarly, much slower convergence
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16.6 Summary and Conclusions

to optimal solutions were observed when large populations ( )
were used on DF3 and H-IFF problems. Again when solving the RR prob-
lem the best results were achieved with the biggest tested population size. A
strange phenomenon can be observed on the DF3 problem. There, the optimal
solution was found even with a small population of 20 individuals. Such an
unusual success of the algorithm on this benchmark could be easily explained.
Recall that the DF3 function is a fully deceptive function with the deceptive
attractor in the string, which is a binary complement of the global desired
optimum. This means that the deceptive building blocks (those with all 0s or
at most one 1) tend to gradually proliferate in the population. However the
saturation of the population with those building blocks is limited due to the

. So in reaction to the increased number of deceptive building blocks
the number of building blocks composed of all 1s grows as well in order to
keep the balance of 1s and 0s in the population. Obviously such a mechanism
should work whenever a string representing a local optimum is close to the
binary complement of the global optimum string.
The second observation is that the algorithm does not require very large

populations to be able to solve the problems. In fact, rather small populations
(100�200 for our test problems, except the RR problem) can be used with
GALCO to effectively search a complex solution space. This becomes evident
when compared to the results obtained with the standard incremental GA
(SIGA), see Table 16.3. While the SIGA needs a large population to come
up with good solutions, the GALCO pro�ts from its inherent explorative
power described above. A comparison of the GALCO and SIGA in terms of
the average convergence characteristics is shown in Figure 16.8. We can see
that the GALCO outperforms the SIGA on all test problems. An especially
remarkable difference between the two algorithms can be observed on F101,
DF3, and H-IFF problems, where SIGA did not give any comparably good
result even with population size 2000.
As we mentioned in the previous section some experiments were performed

to test the GALCO algorithm on its ability to discover many different global
optima. The plots in Figure 16.9 show how the population samples the solution
space of the F1 function after 50,000 and 500,000 performed �tness function
evaluations. It turned out that the algorithm is able to maintain a number of
samples for each peak of the function. As the evolution goes on the individuals
in the population become better and better. An important observation is that
the proportions of the population are almost stable during this process.

We have introduced a novel approach for preserving population diversity. It
is based on an idea that the population is explicitly prevented from becoming
too homogenous by simply imposing limits on its convergence. This is done
by specifying the maximum difference between frequency of ones and zeros
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Comparison of the convergence characteristics of GALCO and SIGA
on the problem F101 ( ), DF3 ( ), H-IFF ( ), and RR ( ). It shows the convergence
characteristics corresponding to the experiments marked bold in Table 16.2 and Table
16.3, respectively.

The �nal distribution of 100 solutions after 50,000 ( ) and 500,000
( ) �tness function evaluations. Proportions of the population after 50,000 and 500,000
evaluations are 24-18-19-19-20 and 26-16-22-17-19, respectively.
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at any position of the chromosome calculated over the whole population. The
algorithm is of a type of the incremental GA where only one crossover opera-
tion is performed in each generation cycle and the newly created individuals
replace some individuals of the current population.
A speci�c replacement strategy is used to keep the desired distribution of

ones and zeros during the whole run. The pair of newly generated chromo-
somes replace the parents if the best-�t chromosome out of those four ones is
the child. Under such an replacement operation the population genotype stays
invariant. Apparently the evolution of the population would be too limited if
we relied on accepting only those new chromosomes, which improve the �tness
of their parents. To further boost up the exploration power of the algorithm a
special replacement operator was introduced, which is used to insert as much
of the offspring genetic material as possible into the population. Actually the
currently worst-�t chromosome of the population is merged with the new one.
In fact this is just another recombination operation providing a means for
better exploiting of genetic material of the poorly �t individuals.
The proposed algorithm was experimentally tested on a representative set

of test problems. The results revealed several interesting aspects of the algo-
rithm�s behavior. First, the best performance of the algorithm was achieved
with rather low convergence rate ( ). This means that the
distribution of ones and zeros is almost half-to-half in every column of the
population. This is in agreement with the intuition that the more equal the
distribution of ones and zeros is used, the less the algorithm is prone to prema-
turely converge so the better results can be achieved. Due to its replacement�
recombinative component the algorithm is able to go on to generate new sam-
ple points of the search space even after the global optimum has been found.
It was also shown that the algorithm is capable of maintaining multimodal
diversity of the population. So representatives of various optima can co-exist
in the population during the whole evolution.
An interesting aspect of the proposed algorithm is that it does not re-

quire any tuning of the mutation or crossover probabilities. Apparently any
probability of crossover less than 1.0 does not make any sense because once
a pair of parents is chosen they should be crossed over, otherwise the whole
action does not have any effect. There is no explicit mutation operator used
in the algorithm. The variability of the population genotype is maintained
by preservation of the gene distribution combined with the high generative
ability of the recombination crossover and operators. For
the same reason the algorithm works efficiently with rather small populations
in comparison with standard GA. It was shown that from some value of the
population size its further increasing is counterproductive and the process of
�nding the optimum solution slows down.
Concluding this chapter we can say that the GALCO algorithm exhibits

many nice features. However, they were presented and con�rmed only in an
empirical way. Future research in this area should focus on theoretical analysis
of the algorithm. That would help us to better understand its behavior and to
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Evolution with Sampled Fitness Functions

F. Bellas, J. A. Becerra and R. J. Duro

Summary: In this chapter we study the effect of different parameters and algorithmic
strategies on the problem of working with sampled fitness functions in evolutionary proc-
esses. Some results are presented on the effect of the size of the short-term memory and the
number of generations of evolution in between updates. From these results it can be ob-
served that there are some critical points that may be considered in order to define the limits
to which one can simplify the computations when working with sampled fitness functions
while maintaining the same representative power.

We provide a study of different proposals for the construction of short-term memories
and their replacement strategies in order to obtain the maximum information with the mini-
mum use of resources when operating evolutionary algorithms in problems where the fitness
functions cannot be fully known and thus need to be sampled. We provide results for differ-
ent functions and study the effect of the level of randomness of the replacement of a maxi-
mum-minimum replacement strategy.

17.1 Introduction

In the realm of evolutionary computation many applications involve obtaining fit-
ness data from partial samplings of the fitness function [2-8]. This fitness determi-
nation may be carried out through an explicit mathematical function that is par-
tially sampled or some type of environment that provides performance information
for different actions carried out by the entity resulting from the phenotypic repre-
sentation of the genotype. In any case, for every individual and determination of
fitness, the data employed is different, although part of the same function. Conse-
quently, if the required optimal individual must achieve optimality for the whole
fitness function, obtaining it implies the integration of series of partial snapshots of
the fitness function. These snapshots depend on how the evolutionary process is
presented with the information on fitness.

If we translate this into a more formal computational environment, we have a
problem of obtaining a general representation of some type of function through the
presentation of sequences of partial data samples or frames. The traditional ap-
proach to the problem has been to wait until enough frames had been compiled and
use the whole of the information to obtain the representation [3]. This is what we
would call a full (or very close to full) information fitness function. In the case of
the agent-environment interaction, each agent would be made to interact with the
environment for a very long period of time. This is all so well when we have a
simple and static process that does not change, independently of how long it takes
us to gather the information, and where the relevant data that must be considered to
adequately model the process can be gathered and stored in reasonable time and
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space. It does not perform so well when we are working with complex dynamic
processes. In this case, performing evolution with anything close to full informa-
tion fitness functions becomes computationally very expensive, in fact, it becomes
unapproachable.

In this paper we will try to provide some insight into the problem and present
some results that will help to decide how to apply sampled fitness functions in or-
der to obtain results that are often as good as with the complete fitness function.

17.2 Our Problem

The problem we have considered is to obtain world and internal models for
autonomous robots through their online interaction with the world, whether real or
simulated. The information the agent receives from the environment in any given
instant of time and which it must use to evaluate its models is partial and, in many
cases, noisy or irrelevant. Any model it extracts from this instantaneous informa-
tion will, in most cases, be useless for other instants of time. To generalize appro-
priate models the agent will have to consider and relate information obtained in
many different instants of time in an efficient manner.

In more mathematical terms and considering a set of data that define a function,
the fitness of the model is given by how well it fits the whole function and not by
how well it fits the individual point or the subset of points it is considering in a
given instant of time. This is what we have called a Sparse Fitness Function (SFF),
the fitness of the individual is given by its response to several different instantane-
ous local fitness functions, which together conform the desired global one.

In order to illustrate the problems encountered, we have performed tests on
three benchmark functions of increasing difficulty in order to obtain generalizable
indications.

• Sin function: y = sin(x)
• Logistic series: x(t) = 4x(t-1)/1-x(t-1)
• 3D function: z = xsin(x) + ysin(y)

 The idea was to obtain a neural network that would model these functions
through evolution. Each network consisted of one input neuron, two hidden layers
with four nodes, and one output neuron both for the sin and the logistic functions.
In the case of the 3D function we have used a neural network with two input neu-
rons, two hidden layers of six neurons each, and one output neuron. The evolution
was carried out using 350 individuals (700 for the 3D function). The fitness of each
individual was obtained by determining the mean squared error (MSE) between the
output of the network and each one of the points of the signals contained in a
ShortTerm Memory (STM). This STM contains a window of data of the signal that
is fed to the STM replacement mechanism one item per instant of time.
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How big the STM is and how many generations of the evolutionary algorithm we
perform per data input are the main two parameters in terms of computing resource
usage. Each item in the STM must be run through the current model once per indi-
vidual per generation so as to obtain an error term. Obviously, the smaller the
number of individuals in a population, the smaller the STM and the less genera-
tions per data input cycle we run the evolutionary algorithm the better in terms of
resources. The problem regarding population size is that, as commented in [1],
there is a lower limit to the size of the populations we can use before running into
premature convergence problems. Consequently, we will have to concentrate on
the other two terms.

Figure 17.1. MSE of the output of the network after evolution with respect to the real
function for different number of generations of evolution per interaction and STM sizes.
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17.3 Short-Term Memory Size and Number of Generations per
Interaction with the World

Figure 17.1 displays the evolution of the MSE of the output of the network with re-
spect to the real function for different STM sizes and number of generations of
evolution per interaction. The three graphs that make up the picture correspond to
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Figure 17.2. MSE of the output of the network after evolution with respect to the real
function for different STM sizes and number of generations of evolution per interaction.
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the three functions. The MSE is calculated by running the resulting networks over
the whole signal and comparing the result to the original one. It is clear that for
STMs larger than 8 the MSE becomes almost a constant, independently of the
number of generations per update. This implies that for a randomly filled STM on
average, eight points of the signal provide enough information to model the whole
signal. Obviously, if we take, for example, a STM of 10, we will be on the safe
side, no matter how many generations of the evolutionary process we run. This is
not necessarily the optimal solution, just the safest one. If we look at this graph
more closely, we see that for a STM of 4 and running 2 generations per iteration
we obtain almost the same error, but now, the computing required is much less. Let
us take a look at this graph in another way (Figure 17.2). Now we can see that
there are two types of behaviors with the number of generations per interaction
with the world. In the first case, for STMs, smaller than the critical size, if we carry
out few generations per interaction, that is, if we evolve very little with a given
frame of the STM, the results improve with the number of generations up to a
point, in this case about 4 or 6 generations per interaction. More evolution without
changing data items in the STM leads to a problem of overfitting the current STM
frame and not generalizing to the whole fitness function. In short, for these values
of the STM, we have a concave function with a minimum for a given number of
generations per iteration. After the critical STM value is surpassed, there is no
minimum, the function is monotonously decreasing with the number of genera-
tions, implying that it is very difficult to overfit to the current STM as it provides a
good enough representation of the signal to model it correctly without having to
use many frames.

Figure 17.3 displays the variation of the MSE during evolution for six cases.
We have first considered an STM of 2 and have evolved the networks for 2 gen-
erations per interaction. There is a certain improvement, but, as two points is a very
poor representation of the signal, evolution on two points just leads to oscillations
in MSE, with very poor values. The networks never really learn the fitness func-
tion; they tend to evolve toward the contents of the STM in a given instant of time.
This is more marked if we take 100 generations per interaction for a short-term
memory of 2, now the MSE is basically pure noise. The network evolves to predict
the STM contents very well (two points) but not the signal. Consequently, the MSE
with respect to the signal becomes really deficient. As STM increases in size, as in
the case of the second set of graphs for STM 8 (middle graphs), we see that now
the information in the STM starts to be relevant. There is an evolution toward a
reasonable representation of the signal (low MSE). With new interactions with the
world the STM changes, and some oscillations in the behavior of the MSE can be
observed, but, especially in the case where not many generations of the evolution-
ary algorithm are run between interactions, the networks are not overfitted to the
instantaneous contents of the STM but tend to obtain a more general solution. Ob-
viously, the more generations per interaction we run the evolution, the more
marked the overfitting of the instantaneous STM becomes. Finally, in the third
case, we present an STM of 20 (top graphs), well above the critical point for this
function. Now the networks evolve to a good prediction of the whole signal (low
MSE) with very little difference between running many or few generations of the
evolutionary process between interactions with the world. The only appreciable
difference is that with more generations, the process is evidently faster.
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This is all very well for the logistic function, but what happens with other types
of functions? We have considered a simpler and a more difficult function (sin and
3D). If we produce the same representations for these functions as we did for the
logistic one (Figures 17.1 and 17.2, top and bottom), it can be clearly seen that the
behavior is basically the same. On one hand, the sin() function provides represen-
tations that are almost indistinguishable from those of the logistic function except,
maybe, for the fact that they are smoother. This is a surprising result, indicating
that for the network we are using, a sin() function is about as hard, or easy to
model, as a logistic function. Well, if one looks at the state space this is probably
true. Thus, it is good to see that for similar modeling difficulty, we obtain basically
the same results.

On the other hand, if we go to a much harder function to model, such as the 3D
one we indicated above, we see that, although the general behavior is similar, now

Fig ure17.3. Evolution of the MSE for STMs of sizes 2, 8, and 20 using the logistic func-
tion. The top figure shows 2 generation per update of the STM, and the bottom figure
shows 100 generations per update.
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the critical point has changed; it has gone up to an STM of about 20. What is really
interesting about this is that by looking at the slope of the MSE function as a func-
tion of the number of generations per interaction, one knows what side of the criti-
cal STM point one is for a given function. As commented above for the logistic
function, if one is below the critical point, a small number of generations per inter-
action will provide better results in the global error. If one is above the critical
point, two considerations may be made. On one hand, a smaller STM could proba-
bly be used, thus reducing computational load, on the other, the number of genera-
tions per interaction will not really affect the outcome. Consequently, by delimiting
where the critical point is located, one could think of tweaking with parameters
such as the size of the STM, the evolutionary pressure of the process as well as the
number of generations per interaction with the world in order to optimize the com-
putational load and the probability of obtaining a successful evolution. Take into
account that if these parameters are not properly set, two consequences may arise.
If the STM is too small or the evolutionary pressure per interaction too high
(through many generations per interaction or an evolutionary algorithm with a high
pressure), the network will never learn the global function and will overfit the cur-
rent STM frame, thus producing a global oscillating MSE. On the other hand, large
STMs will lead to very long processing times.

17.4 Critical Points

In the previous sections we have seen that when one studies the evolution of the
mean squared error of the model of a signal provided by an evolved ANN when the
fitness function during evolution was sampled, a critical point arises for STM size
whereby the behavior over this critical point is quite different from that below it.
Below, the MSE is very dependent on STM size and evolutionary pressure. Above
it, this dependence disappears. In fact, above it, it seems that no matter how many
generations we evolve on a given frame of the STM, the results remain the same;
there is no overfitting. Consequently, if the STM is above the critical point, why
not just evolve for a very large number of generations on a static STM without in-
troducing any new data?. Well, there are two answers to this. First, this strategy
would provide no capability of dealing with changing environments. Second, the
critical point we are considering is what we would call a dynamic sampling critical
point, this is, the contents of the STM are enough to model the signal if they
change at a reasonable rate.

In fact, one could define three different types of critical STM sizes. On one
hand, we could define what we would call static consecutive sampling critical
point (SCS-CP). This critical size indicates what the minimum size of the STM
must be in order to provide a good enough representation of the signal if the STM
does not input any new data and the data it contains are consecutive samples of the
signal. This point obviously depends on how good a representation of the signal
one desires and on the sampling frequency. For a 63 sample per cycle representa-
tion of the sin() function, in our case it results that an STM of 63 is required as
SCS-CP.
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The second type of critical point is given by the average STM required to relia-
bly represent the signal when this STM is static (no updating) and the points in it
are random samples of the signal. This is what we call the static random sampling
critical point (SRS-CP), For the sin() function, the SRS-CP would be around 20.

Finally, we have the critical point we have derived in Part I, that is, the Dynamic
Sampling Critical Point (DS-CP). In this case, the STM will be updated with some
criterion. As in the case of static critical points, it will also depend on how we
sample the signals or environments. Obviously a DCS-CP (dynamic consecutive
sampling critical point) will in general present a higher value than a DRS-CP (dy-
namic random sampling critical point) given the better probability of a random
sampling of providing a good representation of the signal. In fact, for the sin()
function, the DRS-CP turns out to be about 10 for the same sampling frequency as
above.

From a practical point of view, all of the above comments lead to the considera-
tion that the minimum size necessary for the STM to be able to provide a good
enough representation of the signal to permit obtaining a model within a given er-
ror margin depends on two factors: sampling frequency and dynamicity. Sampling
frequency, if above the frequency established by Shannon’s theorem, is only rele-
vant if the data are taken in a consecutive manner. Any other STM updating strat-
egy will reduce the influence of this factor.

Regarding dynamicity, any evolutionary strategy acting on a dynamic STM, that
is a STM that is updated with new information as new interactions with the func-
tion or environment occur, will see a virtual STM that is larger than the real one
just as long as the evolutionary pressure on a single frame of the STM is not too
large. Thus, for practical use one would think that the optimal usage of an STM
would occur when the maximum information on the signal is introduced in it
through an appropriate update or replacement strategy and when this information
changes with time at a rate compatible with the number of generations and evolu-
tionary pressure of the algorithm in between interactions with the function or envi-
ronment. When evolving between interactions or updates of a dynamically chang-
ing STM, one does not want the population to converge to the current frame of the
STM; otherwise, when the next frame comes in, unless the STM is well above the
static critical point, the performance of the solution evolved will be very poor. The
result of something like this would be to have an algorithm that is constantly con-
verging to the contents of the STMs but never really modeling the underlying
function or environment.

17.5 Replacement Mechanism

One of the most relevant aspects in managing dynamic STMs, as mentioned above,
is the replacement mechanism. The better the replacement strategy, the better the
representative power of each frame. Thus, a good replacement strategy maximizes
the information content of the memory.

To achieve this objective we have studied the effect of introducing a strategy
that maximizes the minimum distance from every item in the STM to every other
item. This approach implies defining a distance between items. In our case we have
just used a standard Euclidean distance taking each item in the STM as an n-
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dimensional vector.
This approach usually results in a very good distribution of the items in the n-

dimensional space conformed by the representations of the items in the short-term
memory. Evidently, this strategy does not imply any relation to the importance of
the items towards the task in hand; it is just a maximization of the coverage of the
n-dimensional space by a limited number of vectors. It is just a geometric property.
Notwithstanding this fact, this type of approach has provided a good selection of
the points to be used for the evolution of representations as shown in Figure 17.7.

The problem with this approach is that after a maximum/minimum distance
configuration of the STM has been achieved, no changes occur in the STM, thus
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Figure 17.4. Model of the sin() function provided by the best network evolved using
different replacement strategies for the STM. It is a size 4 STM with 8 generations of
evolution per update. The strategies considered are static (top), FIFO (middle), and
maximum-minimum replacement (bottom). The functions were sampled randomly.
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obviating the dynamicity principle. We are basically obtaining the best static STM
possible, but we are missing the possibility of taking advantage of the dynamic
properties of the STM in terms of reducing computational load.

To achieve a compromise between the maximum/minimum distance criterion
for the STM and the dynamicity principle, we have introduced some stochasticity
in the replacement algorithm. This level of randomness can be regulated through a
parameter we will call stochastic control of the STM. Basically, a new item has a
certain probability of being introduced in the STM, and if it is introduced, it will
substitute another item that is chosen through a tournament-type selection. The
strength of the contenders in the tournament is given by the inverse of their mini-
mum distance to the other elements in the STM. Depending on how large we make
the tournament window, we can go from an almost FIFO-like STM by setting the
tournament window to STMsize-1 to an almost random replacement strategy by
setting the tournament window to 2.

Figures 17.4 and 17.5 display the model of the sin function obtained by the best
network resulting from evolution under different replacement strategies. In every
case we used a short-term memory of size 4 and 8 generations of evolution be-
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tween updates . For the three models on Figure 17.4, the samples of the function
were taken randomly. For the three of Figure 17.5, the samples were taken con-
secutively. If one is working with real problems, both cases may arise. When an
agent is exploring an environment, what it will perceive will be relatively random
depending on its actions. On the other hand, when a signal is being analyzed, it is
usually received in a consecutive fashion.

The top two graphs in both figures correspond to a static STM, that is, once it is
filled there is no replacement. As we see, in the case of the sequential sampling
strategy, the network learns to model the first points of the sin() function perfectly,
as they are the only ones in the STM. Obviously, the model with respect to the
whole signal is very poor. When a randomly filled static STM is used, the model
improves, but, as it only considers four points of the signal, it is quite sensitive to
the randomness of the points and usually overfits them without really modeling the
signal. This is shown in the top graph of Figure 17.4. In the middle graphs of both
figures, the STM works as a FIFO. The oldest element is substituted by the new
input, without considering if the information provided by the new element is use-
ful. It could be thought that this would be an appropriate strategy in autonomous
robotics, where older information is usually considered less relevant. The results
are not much better than in the previous case. The network tends to overfit the local
contents of the STMs and, as these change continuously, it does not obtain a gen-
eral representation of the signal.

Finally, in the bottom two graphs we display the case of the replacement strat-
egy we introduced above. Now the models obtained are much better, even in the
case of the sequential sampling of the signal. This is mainly due to the fact that
now a new data item has a low probability of being input to the STM if it provides
little information (if it is not different from those present in the STM), but this
probability is not zero, so the STM does not become static after a while.

The same results can be obtained for other functions. In figure 17.6 we display
the evolution of fitness of the best network for a xsin(x)+ysin(y) function. We have
used an STM size of 40. The top figure displays the case of using a FIFO-like re-
placement strategy. For this case the overfit of the current contents of the STM
leads to very large oscillations in the fitness with respect to the global function.

If we consider a maximum-minimum replacement strategy, as shown in the
bottom part of the figure, the fitness of the model in terms of the MSE improves
until it reaches a relatively constant value. If the network is tested, the model it
provides is quite good. As an illustration of the effects of this strategy, in Figure
17.7 we present the final contents of the short-term memory for this last function.
The homogeneity of the distribution of the data points within the [-10,10] interval,
both on the x- and on the y-axes (inputs) is clear. We have also represented the z-
value (output) as bars and it can be seen that when points are close in the x-y-plane,
their z values are quite different. The replacement strategy obviously maximizes
the descriptive power of the STM, and, as it never stops being updated, the process
contemplates a larger virtual STM than the actual real one.
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Figure 17.7. Contents of the STM for the case of Figure 17.6. The points on the x-y-plane
correspond to the two inputs to the network in the interval [-10,10]. The bars provide the z-
values (outputs).

Figure 17.6 Evolution of the fitness of the best individual for the sin(x)+ysin(y) function
using a FIFO (top) and a maximum minimum replacement (bottom) over an STM size of
40.
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17.6 Conclusions

In this chapter we have provided a general view of some aspects to take into ac-
count when designing evolutionary processes that require the use of sampled fit-
ness functions. The study has concentrated on the size and replacement strategy of
the contents of the short-term memory. From these results it can be inferred that by
appropriately choosing STM size, evolutionary pressure of the algorithm and STM
replacement strategies in dynamic STMs, the quality of the results improve drasti-
cally, leading to processes that require much less computational resources for the
same result quality.

Acknowledgments

This work was supported by the FEDER through project PROTECAS N.
1FD1997-1262 MAR. and by the MCYT of Spain through project TIC2000-
0739C0404.

References

1. Santos, J., Duro, R.J., Becerra, J.A., Crespo, J.L., and Bellas F. (2001) Considerations in
the Application of Evolution to the Generation of Robot Controllers, Information Sci-
ences 133:127-148.

2. Beer, R.D. and Gallagher, J.C. (1992) Evolving Dynamical Neural Networks for Adaptive
Behavior, Adaptive Behavior, 1(1):91-122.

3. Cheng, M.Y. and Lin, C.S. (1997) Genetic Algorithm for Control Design of Biped Lo-
comotion, Journal of Robotic Systems, 14(5):365-373.

4. Dain, R. A. (1998) Developing Mobile Robot Wall-Following Algorithms Using Genetic
Programming, Applied Intelligence, 8:33-41.

5. Floreano, D. and Mondada, F. (1998) Evolutionary Neurocontrollers for Autonomous
Mobile Robots, Neural Networks, 11:1461-1478.

6. Gomez, F. and Miikkulainen, R. (1997), Incremental Evolution of Complex General Be-
havior, Adaptive Behavior,  5(3/4):317-342.

7. Jakobi, N. (1997) Evolutionary Robotics and the Radical Envelope of Noise Hypothesis,
Adaptive Behavior, 6(2):325-368.

8. Nolfi, S. and Parisi, D. (1997) Learning to Adapt to Changing Environments in Evolving
Neural Networks, Adaptive Behavior, 5(1):75-98.



18
___ ______ ______ __________________ ______ ______ ______ ______ ______ ______ ______ ____________ 

Molecular Computing by Signaling
Pathways

J.-Q. Liu and K. Shimohara

Summary. To reduce the computing cost (i.e., the molecular number and time) of molecular
computers by using DNA, RNA, and other biomolecules is an important task for enhancing
their computing performance with parallelism obtained by biological implementation. For
this purpose, we propose a new molecular computing method, namely, computing with Rho
family GTPases, which differs from the Adleman-Lipton paradigm of DNA computing [1,9]
and surfaced-based techniques [2]. This method employs the signaling pathways (the path-
ways of Rho family GTPases) of in situ cells that are formalized as a special kind of hyper-
graph rewriting, thus forming “conceptualized pathway objects” that systematically guaran-
tee the rigorousness of massive parallel computing processes.
     The 3-SAT problem is used as  a benchmark for testing the algorithm of our method. The
initial values, the given clauses of the 3-SAT problem, are encoded as signaling molecules
and treated as cell input by means of inter-cell communication. Then, after being transmitted
by the sender molecules of the cells' skeleton, these molecules are accepted by the receptor
molecules within the cells. Consequently, the pathways of the cells are activated to generate
candidate solutions in the reactant molecules' form in parallel. The process of making these
molecules interact in a stepwise manner is carried out recursively based on the implicit con-
straints within the problem solving itself. Depending on the complexity of the biological
mechanism of the molecules for biochemical reactions in the cells, a high degree of auton-
omy, both in computation theory and in biological faithfulness, is obtained by the entire
computing process. By applying our method to solve 3-SAT problems, we have obtained a
space complexity of O m n×( ) and a time complexity of O(m), where m is the number of

clauses and n is the number of variables.
      The experimental results obtained from a corresponding software simulator (impleme n-
tation) of our method show that the algorithm that we have obtained is efficient from the
viewpoint of computing costs and that it also has reasonable biological faithfulness with a
strong potential for further biological implementation by cells in situ.

18.1 Introduction

Biomolecular computing by DNA, RNA, or other biomolecules offers a new and
unconventional computational paradigm and promises strong advantages in appli-
cations for NP problem solving [1-9]. One of the most important challenges in
molecular computing is how to obtain an efficient degree of spatial complexity,
e.g., how to obtain a linear order in space (the number of molecules), while keeping
the merits of the DNA computing in the linear time. For a 3-SAT problem [10],
which is one of the most important benchmarks for testing DNA computing algo-
rithms, two recent advances directly relate to this subject:
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(1) The concurrent version of Schöning's algorithm [7] implemented by a DNA
computation algorithm: Sergio Díaz, Juan Luis Esteban, and Mitsunori Ogi-
hara [8] have realized a space complexity of O((2-2/k)n) and a time com-
plexity of O (kmn+n3), where k is the literal number.

(2) Qinghua Liu et al. [2] have devised surfaced-based DNA computing for a 3-
SAT (4,4) problem. Its time complexity would be O(m) and its space com-
plexity would be O(2n) if their method were scaled. It is well known that
linear time complexity is feasible in most forms of DNA computing [6]. But
with respect to space complexity, M. Ogihara and A. Ray pointed out that in
surface-based DNA computing, the DNA number used for solving a 3-SAT
problem is at least 1015 [3]. In the important work of “DNA computing on
surface” in [2], DNA computing was successful in handling an intractable
problem (3-SAT). However, open problems still remain, such as, from a
theoretical aspect, those described in the comments on surface-based DNA
computing in [3]: “From a computer-science perspective these results are
remarkable, but . . . The most serious remaining issue is the exponentially
increasing number of DNA molecules needed to compute even small 3-SAT
problems…". The motivation for our work is to achieve molecular comput-
ing with biological signaling pathways in cells where the complexity in-
creases by the mechanism itself, so that we can obtain results at a linear cost
both in space and time. Here, parallelism and auto-growing of the molecular
computing mechanisms are the kernels that support this efficiency. Our
concrete target is to explore the internal pathway mechanism in cells and to
construct an efficient algorithm using them. In this paper, we propose a new
model for molecular computing, in which computing is carried out by path-
way objects and related signaling molecules in cells.

The original contributions of our work are

(1) The use of the pathways in cells (functional proteins and kinases) as com-
puting units, focusing our efforts on the Rho family GTPases for potential
implementation.

(2) We obtain an efficient algorithm with linear cost both in space and in time.
(3) Systematic parallelism guaranteed by hypergraph  rewriting  and  a  high

degree  of  autonomy  within  the computing mechanism,  which is used for
the formal reasoning about the ability to guarantee the validity of the theory.

This chapter is organized as follows: Section 18.2 gives an explanation of biologi-
cal faithfulness and potential implementation, Section 18.3 describes a computing
process that includes the representation and formal definition, Section 18.4 presents
experimental results of software simulator implementation, and Section 18.5 out-
lines the main points of our work.
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18.2 Biological Faithfulness

For use as further benchmarks, we have verified the following materials by means
of software simulation for potential implementation by Rho family GTPases of in
situ cells (here, a 23-variable, 8-clause 3-SAT is taken as an example):

(1) The clause of the 3-SAT problem with three variables in the 3-SAT is con-
structed by MLC (Myosin Light Chain) regulated by Rho, Rho-kinase, and
myosin phosphatase. The three literals for variables (e.g., X,Y,Z) are ex-
pressed by MLC-p, MBS-cat-Rho-GTP, and Rho-kinase+Rho+GTP, and
the negative forms of the three variables, e.g., ¬ ¬ ¬( )X Y Z, , , are expressed
by MLC, MBS-cat, and Rho-kinase. The molecular complexes that satisfy
those clauses will be “output” by signaling senders and receptors through
different channels in cells and will transit between different cells by inter-
cell communication.

(2) The pathways of Rho family GTPases are regulated by the targets of the
Rho family GTPases = {Rho, Rac, Cdc42} corresponding to the three liter-
als. The signaling molecules that encode the combined form of the candi-
date solutions for the 3-SAT are {PIP 5-kinase, Rhophilin, Rhotekin, PKN,
PRK2, citron, citron-kinase, Rho-kinase, MBS, MLC, p140mDia, p140 Sra-
1, Por1, PI 3-kinase, S 6-kinase, IQGAP, PAKs, MLK3, MEKK4, MRCKs,
WASP, N-WASP, and Ack}.

(3) Biologically faithful verification of our software simulator that comes from
the experimental samples for cells in situ is based on the objects of rats. Be-
cause the detection of the signaling molecules is feasible by the fluorescent
strength of hippocampal neurons regulated at the CRMP-2/TOAD-
64/Ulip2/DRP-2 level by the Rho effector, Rho-kinase/ROK/ROCK [22].
This is the most appropriate I/O approach for molecular computing by
kinase-regulated pathways.

The I/O interface is different for input and output. The input clauses are regulated
by the target of the Rho family GTPases. The candidates are activated within the
cells in uniform concentrations. We expect that the outputs will be verified by two-
dimensional gel electrophoresis for the proteom (protein sequences/kinases) ex-
pressions.

The main points of the computing processes are
(1) Input: signaling molecules.
(2) Output: signaling molecules.
(3) Information encoded: the alphabetic symbols from (the name of the) mole-

cule complex (e.g., the combined forms of the encoded molecules for the
candidates shown in Figure 18.4). The combined forms of these molecules
for special representations in a specific problem, in a more general sense,
are the program codes for computing where they are carried out as com-
puting programs whose abstract forms are coupled hypergraphs with the
biological faithfulness of signaling pathways.

(4) The computing units: in physical form, they are multicells in a living state,
i.e., in situ cells. The computing principles:

“input -> pathway 0 -> … -> pathway m -> output”.
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In the underlying computing processes, a “computing unit” is a “pathway,” which
is defined as a special kind of hypergraph with a topological constraint in space;
the computing is the rewriting on the hypergraphs with coupled relations among
the objects and interactions. The core mechanisms of computing on structures are
biochemical reactions for structural rewriting. From this, consequently, we can see
that the complexity within the underlying system itself is increased due to the in-
teractions of pathways in the computing processes. Therefore, the computing cost
has been cut into the linear order.  In the 3-SAT, the pathway objects are selected
as candidates of combined forms of variables with assigned truth values (i.e., the
forms in Section 18.3 by formal representation).

Figure 18.1. Autonomous interactions of pathways by kinases.

Figure 18.2. Rho family GTPases pathway in cells.
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The information flow in Rho family GTPases can be expressed in terms of com-
puter science as illustrated in Figure 18.2. The green parts show the reactions, and
the brown parts show the equivalent rewriting relationship in theoretical computer
science. The material that we selected to make our kinase-based pathway mecha-
nism for computing is the Rho-family GTPases of in situ cells, which consist of a
series of biochemical reactions whose output is determined by the input based on
chains of coupled reactions with interactions. Here, the pathways are con-
trolled/regulated by kinases, i.e., Rho family GTPases in our case. The related
computing is carried out by the pathways and signaling molecules in cells, which
here refers to molecular computing by kinases and their related molecules in living
cells (Figure 18.2). Kinase here refers to a phosphorylation enzyme that can acti-
vate the pathway in cells: substrate + ATP --> substrate-O-P + ADP. The kinase
speeds up biochemical reaction by more than 100 times. Also, under the regulation
of kinases, a huge number of pathways can efficiently operate in parallel. More
importantly, the kinases' phosphorylation is closely related to ATP, which is the
core of energy cycling in living cells. This key factor enables the “pathway” archi-
tecture to be autonomous “computing” that consists of kinase-regulated reactions.

18.3 The Computing Process

The basic terms of graph rewriting [18] include:
• A- an alphabet set;
• (a) -  the rank associated to a symbol, a A;
• H - a hypergraph, which consists of vetex set VH and hyperedge set EH, i.e.,

H = < VH, EH >  where V EH H = ;
• labH(e) - the label assigned to a hyperedge e in A;
• (labH(e)) - the length of the sequence of vertices with labH(e).

Now we define the formal system of hypergraph rewriting with topological
constraints [19] based on the relation of a structure and algebraic operators devel-
oped especially for the “pathway” objects. For the object set of pathways, we de-
fine a relation Rp(A) = {paha | a A}, where paha is ( (a)+2)-ary.

The hypergraph H definition is given by the structure

H V E K pah STR R AH H H aH a A p3 : ,= ( ) ( )( ) (18.1)

where we select the index 3 for |H|3 in order to distinguish it from the |H|1 and  |H|2
in [18] defined by Bruno Courcelle. The related predicate becomes

pah (x, y1, …, ym, z1, …, zn) , (18.2)

where x EH, y1, …, ym VH, labH(x) = a, n = (a), z1, …, zn are the controls in KH.
Controls z1, …, zn are contained in the category CagH, and the related functor is
given as F z z i j Nh i j: ; , . Notice that all of the operations are carried out on a

set of pathways that are a special kind of hypergraph under certain topological
conditions that will be defined later in this section. The formal system we propose
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here is a kind of molecular computing operation reflecting the idea of modeling
from pathway to pathway, where pathway rewriting is conceptualized by operators
defined by rules.

Let L be a category, and we define a construct < Ob(L), Mor(X,Y), M >, where
Ob(L) denotes the set of pathway objects, Mor(X,Y) is the morphism of X into Y (X,
Y Ob(L)), and M is the law of composition designed by rule Q here. This is the
core of the formal system. The model can be formalized by the following con-
struct:

Wcells =  < V, T, D, U, E, Y, Z, PTs, Q > (18.3)

where V is the alphabet set; T is the terminal set T V( ) ; D is the set of {0, 1}; U
is the set of vertexes U V( ) ; E is the set of edges; Y is the set of hypergraphs
<HE, U> in which HE is the set of hyperedges in Y, and the corresponding HR
(hyperedge replacement) and VR (vertex replacement) are defined based on HE; Z
is the set of local concentrations (discrete values); Z V( ) ; PTs is the set of
pathways, i.e., the directed graphs that have inputs and outputs in U and contain
hyperedges in HE with interactions that fall into HE. The pathway is designated as
a class of special directed hypergraphs. Each one is defined as

[pathway] ::= [pathway]  [single-hyperedge-with-two-vertexes]             (18.4)

under the operation of Q; Q is the set of operators for operations on hypergraphs in
HE from V and E, i.e., we have the set of Q = { Q1, Q2, Q3, Q4 } for the objects
in PTs. For the interactions in the set of all pathways, the operational processes car-
ried out by the operator set of Q are formalized as the following four rules in terms
of rewriting on hypergraphs that include (1) Rule Q1 (the rule of interaction) for
the interactions of pathways as defined in PTs; (2) Rule Q2 (the rule of feedback-
making) for the addition of feedback in the pathways; (3) Rule Q3 for the addition
of new pathways; and (4) Rule Q4 for pathway deletion. From the above model,
we can derive the following forms of rewriting on “pathways”: (i) PTs(Gh)
PTs(Gh') s.t. the objects of rewriting are limited to pathways obtained by Q, and
(ii) Gh'' Gh''' s.t. the objects of rewriting are limited to hypergraphs by Q, where
Gh, Gh', Gh'' and Gh''' refer to hypergraphs in Y and rewriting is carried out
through executing the Q operators (more details on the operations of Q rules can be
found in [17]).

Our method can conduct the following three forms of computing:

(1) The unified form of abstract computation: In the definition of theoretical
computers [11], the formal model obtained from our method equals the hy-
pergraph rewriting: H  H' s.t. Q rules, where H and H' refer to the hyper-
graph before and after rewriting, respectively. We have proven it to be
equivalent to a Turing machine in [12].

(2) Molecular computing as ALU (Algorithmic and Logic Unit): let the input
and output of the model be encoded by alphabetical symbols as binary
numbers. We have proposed and proven that the model can perform arith-



18 Molecular Computing by Signaling Pathways 275

metic operations such as addition, subtraction, multiplication, and division,
and logic operations such as AND, OR, NOT, and XOR in [13].

(3) Molecular computation for NP problem solving: the application of our
method to the 3-SAT problem is the main topic in this paper as a new para-
digm for NP problem solving.

According to the convention of model description for DNA computing [8], the
model is presented in the following form (a formal definition has been given in this
section):

Let i i i iC C C= 1 2 3 be a clause in a 3-SAT problem (i=1, …, m). The union of
all clauses i{ } takes the form 1 2 ... m . Cij (j=1,2,3) the variables taking
different truth assignments. Here, we define the positive form of the variable as the
signaling molecule Xij with the phosphorylation attached components O-Xij, and the
negative form is with de-phosphorylation N-Xij:

Cij     as

Cij     as

Figure 18.3. Representation of truth assignments to variables.

From the related channel Ch (X,Y,_Z)

Figure 18.4. Representation of candidates.

By the structure of |H|3, the rewriting on hypergraphs can be transferred into the
rewriting on the combined RPO (relative pushout)s,  i.e., RPOsH w.r.t. CagH .

Equivalently, the rewriting on hypergraphs is denoted as GRiT, i.e., G G', where
G, G' refer to the hypergraphs, and transferred into the transductions among the bi-

Xij O-Xij

Xij N-Xij

X

O-X

Y

O-Y

Z

N-Z
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graphs in terms of the following operator QH set on relation structure |H|i (here,
i=3): {QH

Scope, Q
H

Binding, Q
H

Elision} w.r.t. , where refers to topological constraints
such as homotopy and homology.

Let TogH, MogH, and BigH be the categories of topographs, monographs, and bi-
graphs, wherein the bigraph [20] for hypergraphs is given as

GH = G (UH, ctrlH, GT
H, GM

H): I  J, (18.5)

where UH VH EH, ctrlH  KH, G
T

H in TogH, GM
H in MogH, GH in BigH.

Within the equivalent class PATH of pathways, the transductions are exerted on the
topographs:

GT
H = (V, ctrlH, prt ): m n, (18.6)

where prt is the parent of the vertexes in rewriting, m, n N.
Among the different equivalent classes PATsH of pathways, the transductions

are exerted on the monographs:

GM
H = (V, ctrlH, H), (18.7)

where H is the equivalent relationship of PATsH.
Then GRiT becomes the transduction on BigH (KH, reactH), where the interac-

tion reactH in the category of bigraphical reactive systems BRSH is made by the in-
teractions of bigraphs based on the QH

Scope.
We have the following propositions and theorem according to [21]:

Proposition 18.1: GRiT(|H|3, BigH (KH, reactH)) is congruent iff the transductions
on BigH (KH, reactH) are definable by the homotopy group for H.

Proposition 18.2: GRiT(|H|3, BigH (KH, reactH)) is congruent iff the transductions
on BigH (KH, reactH) are definable by the homologous group for H.

Proposition 18.3: GRiT(|H|3, BigH (KH, reactH)) with redex of completeness on
(pahaH)a A is capable of being represented by extended RPL. Here, RPL refers
to Rescher Probabilistic Logic.

Theorem 18.1: Homological GRiT(|H|3, BigH (KH, reactH)) is capable of generating
a recursive enumerable set iff the input and output of the pathways PATsH

satisfies the constraint caused by H.

Here, “homological GRiT(|H|3, BigH (KH, reactH)” is also denoted as hGRiT(|H|3,
BigH (KH, reactH)). Therefore, we obtain that signaling molecules with variant con-
centrations under the robustness constraints are mapped into the set characterized
by the homotopy group and transductions on the pathways GH = G (UH, ctrlH, GT

H,
GM

H): I -> J for hGRiT(|H|3, BigH (KH, reactH)) given in Theorem 18.1.
The input of the model is { i}. Let Ch1, Ch2 ,… , Chm be the signaling mole-

cule channel in the membranes of cells, and Cij = 1 and Cij = 0 are represented as
the phosphorylation and de-phosphorylation forms, respectively. The computation
is carried out by a set of corresponding pathways consisting of biochemical reac-
tants in the cells.  The pathways are interacted and sustained in cells. The output of
the model is the solution of the 3-SAT problem.
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Here, the channel refers to the RECEPTOR molecules in the cells' membrane
that recognize the molecules encoded as clauses in 3-SAT and activate the corre-
sponding pathways in the cells. Pathways refer to the mechanism for cell commu-
nication [14-16] that consists of a series of biochemical reactions and whose output
is determined by the input reactants and kinases used in the related computing
processes. The relationship of molecular names between input and output is deter-
mined by the corresponding concentrations that guarantee the sustaining of the
pathway.

The four basic operations in the computing model are arranged as the following

steps:

Step 0:  Initial pathway for clause input:

The clauses { i} in 3-SAT are encoded as the input of the pathways. Then, based
on the basic set of pathways we made in advance, the channels Ch1, Ch2, …, Chm

work as RECEPTORs RPj(Chi) for SENDERs defined as variables {Xj(Chi)}, where
i = 1, 2, …, m,  j = 1, 2, …, m, and where Xj(Chi) denotes the channel Chi for Xj.
Therefore, it is necessary to initialize the population of the candidates { i}, {Chij}
and {Wcell}v (i, j, v = 0,1…).

Step 1:  Interaction of pathways:

Pathways are generated (to grow in the biological sense) and encoded for candidate
solutions by interactions of the existing pathways under the hypergraph rewriting
rules. Here, the neighboring pathways are selected as the objects for interactions
(the measurement for neighborhood is defined as the minimum Hamming dis-
tance of the variables of candidates).

Let k (k = 0, 1…) and l (l = 0,1, …) be two different RECEPTOR molecules
in cells represented for clauses { i}. They activate the input reactants in pathways

k and l.
Let Wkl be the neighborhood of pathways k and l. The interaction of k and l

in Wkl is made by connecting their pathways to couple the common reactants for
biochemical reactions. This means that k and l activate k and l, respectively, in
Wkl for k = 0,1…, and l = 0,1, … .

Then we apply Q rules (i.e., the four rules that are discussed in this section for
the formalization) on the pathway { k} (k = 0,1,…) in the neighborhood and ac-
tivate the related signaling mechanism of the pathways.

For the quantitative representation, the three main predicates that we define for
GRiT are:

(1) VALPATH() --- To test for valid pathway, i.e.,
VALPATH(pah (x, y1, …, ym, z1, …, zn,))

                            = True        if pah in hGRiT(|H|3, BigH (KH, reactH)),
                            = False       if pah NOT in hGRiT(|H|3, BigH (KH, reactH)).

(2) ELELSN(pah (x, y1, …, ym, z1, …, zn,)) --- This shows the situation of eliminating
elision in pathways in hGRiT(|H|3, BigH (KH, reactH)), i.e.,

           ELELSN(pah (x, y1, …, ym, z1, …, zn,))
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               = True    if sequence {z1, …, zn} is free of elision sequences
                                  in pah(x, y1, …, ym, z1, …, zn,)
               = False   if sequence {z1, …, zn} covers certain elisions
                                  in pah(x, y1, …, ym, z1, …, zn,)

(3) TRANDN() --- This is for transduction, i.e.,
TRANDN(pah (x, y1, …, ym, z1, …, zn,))

                = True   if the sequence {z1, …, zn} can deduce the redexed RPO,
                =  False  else.

For the m n  in GRiT(|H|3, BigH (KH, reactH), H), the formula
TRANDN (pah (x, y1, …, ym, z1, …, zn,))

ELELSN (pah (x, y1, …, ym, z1, …, zn,))
VALPATH (pah (x, y1, …, ym, z1, …, zn,))

guarantees that the arities in BigH (KH, reactH), H) corresponding to sequence
z zn1, ..,{ } are complete in the meaning of the m-recursive function.  For the map-

ping: m n in the GH, the input and output of pathways pah(.) in Rp(A) are defined
in terms of category cag .  The category cag for the BigH (KH, reactH), H) holds
the homology group for the transductions among different hypergraphs and the
homotopy groups for the same hypergraphs with the variant parameters (i.e., con-
centration) under the sustaining constraints with robustness. Let Dom(pah) and
Cod(pah) be the domain of pah(.) and codomain of pah(.), respectively.  The three
basic operations can be derived from QH:

{QH
Scope, Q

H
Binding, Q

H
Elision}     w.r.t. ,

From QH
Elision, the composition infers that

ELELSN (pah (x, y1, …, ym, z1, …, zn-l-k))
ELELSN (pah (x, y1, …, ym, z1, …, zn-k))
ELELSN (pah (x, y1, …, ym, z1, …, zn))

(pah (x, y1, …, ym, z1, …, zn-l-k)
                               -> pah (x, y1, …, ym, z1, …, zn-k))
                                                        AND

(pah (x, y1, …, ym, z1, …, zn-k)
                                   -> pah (x, y1, …, ym, z1, …, zn))
                ------------------- -----------------------------------------

(pah (x, y1, …, ym, z1, …, zn-l-k)
                                  -> pah (x, y1, …, ym, z1, …, zn)).
From QH

Binding, the tensor in cag , becomes that
VALPATH (paha (x, y1, …, ym, z1, …, zn)
VALPATH (pahb (x, y1, …, ym, z1, …, zn)
VALPATH (pahc (x, y1, …, ym, z1, …, zn)

TRANDN (paha_b_c (x, y1, …, ym, z1, …, zn).
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From QH
Scope, we can get that

TRANDN (pah (x, y1, …, ym, z1, …, zp …zq, …, zm))
ELELSN (pah (x, y1, …, ym, z1, …, zp …zq … ,zn))

VALPATH (pah (x, y1, …, ym, z1, …, zp …zq, …, zk)).
          where p,q,m,n,k N.

For GRiT(|H|3, BigH (KH, reactH), H), GRiT(|H|3, BigH (KH, reactH), H) where H is
the equivalence given by the homological group, and the interactions of pathways
are carried out for exploring the potential solutions of the 3-SAT problem.

Step 2: Pathway generation:

Let input node( k) be the input reactant of pathway k, let output node( k) be the
output reactant of pathway k, and let internal node( k) be the internal reactants of
pathway k, where k is in the set of all pathways, e.g., X Y Z¬ implies that
pathway k covers the reactant molecules that correspond to the candidates as the
sets of subpathways. The same parts are kept only once, and these are sustained by
pathway k. Therefore, after the signaling feedback is executed on the pathways,
the remaining parts are the candidates represented by the signaling molecules,
where the reactants are designed to produce the additional chemicals { 's}
(s=0,1,…) to feed the energy (e.g., ATP). The same is also true for another path-
way k'. When k and ’k' interact by the operations of Q rules, different compo-
nents are deleted due to the fact that they cannot be sustained.  Then we get the fi-
nal result. The advantage of this scheme is that the number of candidates has no
relation to the molecules we set in advance. The recursive generation of pathways
is executed to sift out the less suitable candidates. In the meantime, according to
the rules defined in this section for formalization, the common reactants in path-
way k (k = 0,1, … ) with feedback ensure that the related pathways are sustained.
This continues to loop until rewriting stops at the final stage, i.e., biochemical re-
actions do not produce any more new reactants.

At this point, we need to check whether the solution has been obtained accord-
ing to the terminal criterion:
     If yes, the computing process goes to the next step.
     If no, we must update the population and let the computing process go to Step 1.

Step 3: Judging by terminal criterion:

The criterion  to judge the halting of the entire process is that the final variable
form of the candidate is confirmed as the solution to the 3-SAT problem when no
more new pathways emerge. At this point, the existing pathways are identical in all
of the cells.  Finally, after the result is confirmed, the final solution will be decided
as the output.

We have proven that the algorithm can solve the 3-SAT problem with a linear
complexity cost both in time and in space. The full proof can be found in [17].

Theorem 18.2 [17]: Its space complexity is O(m×n) and time complexity is
O(m) when it is applied to solve a 3-SAT problem.
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18.4 Experimental Result

In the sense of biological plausibility supported by real objects, our simulator is
based on feasible biological signaling pathways in cells that are constructed by Rho
family GTPases [15,16,22]. We have verified that our method based on pathways
with interactions is biologically faithful by simulation using biological supporting
software in [16]. Confirmed by the benchworks in biolabs, the kinase-based bio-
chemical systems in living cells are an excellent biomachine for molecular com-

Number of variables

Figure 18.5.  Relationship among the number of molecules to the number of variables
in 3-SAT.

Figure 18.6.  A brief flow chart of the main part of our simulator.
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puting. The engine of this process is the assembly of kinases that keep the in-
formation flowing and energy cycling (e.g., ATP and metabolism) in order to
achieve self-maintenance with robustness in an unknown dynamic environment.
Parallelism for complexity, fine-grained architecture for speed, and robustness for
fault/defect tolerance can be expected by exploring the above-mentioned mecha-
nism.

Figure 18.5 shows the relationship between the molecular number (in vertical
coordinates) and variable number (in horizontal coordinates). Series 1 is our result.

Figure 18.7. The diagrams of computation.

Figure 18.8.  The outline of pathways in cells.
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Series 2 is the number of variables in the 3-SAT. Series 3 is the exponential num-
ber of DNA molecules in surface-based DNA computing (e.g. [2]).

In the pathways and diagrams of the simulator shown in Figure 18.6 , Figure
18.7 and Figure 18.8, respectively, the quantities such as Si = {mi, ki, ni}, S* =
{m*, k*, n*}, and Sg = {g*}, in which ki and g* denote the kinases and k* denotes
the other enzyme, are set as follows:

(i) for the normal pathways in Si:
the number of input reactants is 10;
the number of middle products is 20;

the number of outputs is 10. the connection between M->K is 10 * 20 =
200;

the connection between K ->N: 20 * 10 = 200;
(ii) for the pathways with disturbance in S*:

the number of input reactants is 10;
the number of middle products is 5;
the number of outputs is 10;
the connection between M*->K* is 10 * 5 = 50;
the connection between K* ->N*: 5 * 10 = 50;

(iii) for the graph rewriting in Sg:
the number of input reactants is 10;
the number of middle products is 10;
the number of outputs is 10;
the connection between M->K is 10 * 10 = 100;
the connection between K ->N: 10 * 10 = 100;

But the kinase number given by our simulator is only 6.
The software simulator for our method has been implemented in C++. In the

current stage, our software simulator reaches a size of 10 quadrillion (1016) mole-
cules. Using pathway-based modeling, we have solved the 50-variable, 30-clause
3-SAT problem, (denoted as the 3-SAT (50,30), according to the convention of
theoretical computer science).  For example, among the examples in our experi-
ment, a typical situation for clauses is

X X X X X X X X X0 1 2 3 11 12 13 12 13( ) ( ) ( ) ¬ ¬( )... ,
where 28 clauses use all 7 combined forms in

(X0, X1, X2), (X3, X4, X5), …, (X9, X10, X11)
except ¬ ¬ ¬( ) ¬ ¬ ¬( )X X X X X X0 1 2 9 10 11,..., and the other two clauses
= X X X X12 13 12 13( ) ¬ ¬( )  and . The solution is X0 = X1 = … = X11 = 1 and
{(X12 = 0 and X13 = 1) or (X12 = 1 and X13 = 0)}, and X14, …, X49 takes values
in the set of {1,0}. The number of signaling enzyme molecules is 14.  This small
cost is affordable for molecular computing and the corresponding algorithm is thus
efficient. Furthermore, the robustness of the scalable schemes is achieved in order
to maintain the identity of the pathways when the concentrations vary in the do-
main of thresholds. The cost will fluctuate slightly around the theoretical curve.
Figure 18.9 shows the relationship between the molecular number (vertical coordi-
nates) and the variable number (horizontal coordinates).  It illustrates a perform-
ance comparison, with the best, average, and worst cases given in series 1, series 2
and series 3, respectively.
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Figure 18.9. The relationship between the molecular number and the variable number.

18.5 Conclusion

In this chapter, we have proposed a new method of molecular computing con-
structed by “Rho family GTPases”-based pathways and formalized as hypergraph
rewriting. With regard to biological faithfulness, performance as a formal system,
and the application of its algorithm to the 3-SAT problem, we have discussed our
method by explaining its functional factors. Furthermore, we have confirmed that
the method is actually feasible for reducing the computing costs needed to solve
the 3-SAT problem and for potential biochemical implementation.  Future work
will mainly focus on biologically realizing the method by using in situ cells with
“Rho family GTPases”-regulated signaling pathways.
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19.1 Theory of Games: a Background

19

Strategy-Oriented Evolutionary Games:
Toward a Grammatical Model of Games

We generalize evolutionary games to have strategy oriented payoff: for
each strategy , is the number of survival offspring of the specie pro-
duced by a contest . This minor change allows the natural extension of strategy-
oriented games to a strategy-oriented replicator that extends the classical repli-
cator of evolutionary games. We prove that the extension is strict by modeling
the logistic equation as an replicator. After that, we sketch the de�nition of a
grammatical model of games implementing the logistic replicator.

B. Cases and S.O. Anchorena

In 1944 Von Neumman and Morgenstern [7] elaborated the principles of a
Theory of Games that was conceived as a mathematical theory of human eco-
nomic behavior. They developed a contrast between the �Robinson Crusoe�
model of economy, of an isolated single person, and a social exchange econ-
omy, with a moderate number of participants. Their aim was to establish the
foundation of economy in the rational behavior of agents that play strategy
games performing the optimization of some self-interest criterion.
Since that time [11], the Theory of Games has suffered wide development.

A �rst step was the introduction in 1950 of the concept of Nash equilibrium:
the mathematical characterization of the sets of strategies that drive to the
maximization of pro�ts and the minimization of losses in games. A second
qualitative step was the application of the Theory of Games to study and
simulate the biological evolution of species in 1973 by John M. Smith and Price
[5, 6, 4]. In economy, the players are rational agents in a market competition.
The payoff of games is measured in terms of goods or money. In biology, the
games model pairwise contests between animals in a large population, and
the payoff is measured in terms of Darwinian �tness (the expected number of
surviving offspring).
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In this section, we set the background of Theory of Games following the
precise notation of Weibull [11]. In Subsection 19.1.1 games in normal form
and their pure strategies are introduced. In Subsection 19.1.2 we introduce
mixed strategies and the concepts of best reply and Nash equilibrium. Sec-
tion 19.2 explains the principles of evolutionary games and the approaches
to their study. In subsection 19.2.1 the approach based on mutations brings
to the de�nition of �evolutionarily stable strategy�. In Subsection 19.2.2 the
dynamical approach based on replication and selection is described.
The classical replicator of an evolutionary game determines the

dynamic of concentrations , of a population of individuals
that contest pairwise, following common strategies. The replicator is de�ned
by the equations:

where is the payoff for mixed strategies, represents the pure strategy
vector, and is the matrix of the game.
Our contributions begin in Section 19.3.We generalize the evolutionary

games of M. Smith and Price to have strategy, oriented replicators .
The modi�cation is minor: for each strategy , is the number of
surviving offspring of the specie produced by a contest , represented by
a matrix . For example: modeling the encounter of rabbits and carrots
, the contest produces rabbits and indirectly 2 carrots if the rabbit
transports the seeds to a good substrate. Hence, and
.
This is a re�nement of evolutionary games because the global payoff of

a game , , is identical to the payoff of classical evolutionary
games. Instead of playing a two-person symmetric game de�ned by the matrix
, there is a different payoff, in fact a different game , for each strategy ,
represented by the matrix . The matrix is the global payoff .
The equations of a strategy-oriented replicator become to:

where is the payoff extended to mixed strategies of subgame .
In Sections 19.4 and 19.5 we make a double contribution. First, we prove

that the class of evolutionary games with classical replicators is strictly con-
tained in the class of evolutionary games with strategy-oriented replicators.
Second, we base our proof on the representation of the logistic equation as a
strategy-oriented replicator:

(19.1)

(19.2)
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We represent the logistic equation by an replicator in Section 19.4,
and we prove in Section 19.5 the impossibility of representing it as a classical
replicator .
Finally, in Section 19.6 we describe a grammatical model that �ts exactly

to the notion of strategy-oriented replicator. We implement the logistic repli-
cator of Section of section 19.5 using strategy-oriented grammars.

Following [11] the elements of the Theory of Games are

A set of players, ,
For each player , a set of pure strategies for some
integer
A vector , where is the pure strategy selected by
player , called the pure strategy pro�le.
The pure strategy space is the Cartesian product of pure
strategies sets.
For any pure strategy pro�le and player the payoff function of
th player is The associated payoff to player is .
The combined pure strategy payoff function is such that

gives a payoff to each player .
A game in normal form is, in terms of pure strategies, a triplet

.

The "hawk�dove" game designed by M. Smith and Price [5, 6, 4]
is a model of animals contesting a resource, for example, a territory, of value
, or victory, with a cost . The value is measured in terms of Darwinian
�tness: it means that winning the contest will increase the number of survival
offspring of the winner by . The cost of the �ght (the player gets hurt or
tired) has a value of . Both players have probability of winning the
contest.
Let the set of individuals be . Individuals are birds of the

same specie. The behaviors of the animals in the contest, the pure strate-
gies, are �ght like a hawk, escalating and continuing until injured or un-
til opponent retreats; or �ght like a dove, who displays without injuring
the opponent unless the other escalates and in this case retreats. The sets
of strategies are . The space of pure strategies is

.
When the number of players is two, the game is called a two-person game.

In this cases, the payoff of the game for player is given in a matrix
representing with . Matrix represents the payoff . The
game is symmetric since . Note that symmetry is referred to players
1 and 2.
Matrix represents the combined payoff since the value in row and

column , when . Rows correspond to strategies
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19.1.2 Mixed Strategies Extensions of Games

combined mixed-strategy payoff function
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and of player , while columns represent the strategies and of player
in all the matrices.

, , .

If both players �ght like hawks, the payoff is low
(and even negative if ) for both players. If they both select the strategy
of the dove, the result is positive for the two players, . If
they select different strategies, the result is very good for the hawk and bad
for the player that selects the role of dove.

An alternative to pure strategies are mixed strategies [11]:

Mixed strategies are based on a probability distribution over the set
of pure strategies of player : a vector with

and .
The set of all the mixed strategies of the th player is .
A mixed-strategy pro�le is a vector: .
The set is the mixed-strategy space.

is the expected value of the payoff to the th player
associated to . We call the utility function of player .
The combined mixed-strategy payoff function, or utility function of the
game, is .
The mixed strategy extension of game is the triplet

.

The word �utility� is avoided by Weibull in [11] but is the object of a deep
discussion by Von Neumann and Morgenstern in [7]. We use �utility� here to
abbreviate .

Consider the hawk�dove game in Example 1. The utility function
in a two-player game, where matrix represents the payoff of player 1 and
matrix is the payoff of player 2, is

Note that is a mixed-strategy pro�le, that is a vector of
strategies. Each is a mixed strategy , a vector
of probabilities.

Noncooperative Games Theory haas two main concepts:
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19.2 The Approaches to Study Evolutionary Games

Best reply:

Nash equilibrium:

evolutionarily stable strategies

= ( )

˜ ( ) = : ( ) =

( ) ( ) ˜( ) =
˜ ( ) ˜ ( )

˜( )

=

= ( )
= 1 2 = = = 1
( ) = ( )

=
=

( ) = ( ( ) ( )) = ( )

= ( )

+ = ( + )
( + ) ( + ) = + + +

= ( )
=

=
( ) = = = ( )

( ) = ( ) ( ) =
( )

( ) = ( ) = ( )
2 2

( ) =

i

y y , . . . , y , . . . y �

� y x y , . . . , y , x , y , . . . , y z �

u y u z � y
� y . . . � y .

� �
x x � x

�

G I, S, �
I , S S K , . . . , k
� s , s � s , s s , s S B

� A �
A B

� �
x y

u x, y u x, y , u x, y xAy , xBy ,

s x, y �
xAy A,B

xAy xBy x A B y
x x A y y xAy xAy x Ay x Ay .

r r xAy x r A y
xAy yA x

A B
u x, y xAy yA x u y, x

u x, y u x, y u x, y
u y, x x

u x, x u x, x u x, x
A k

A k k u x, x xAx

The best reply of player to a strategy pro�le

is the set of mixed strategies

and . The combined best reply correspondence is

The set of Nash equilibrium is the set of
mixed-strategy pro�les such that , that is the set of mixed-
strategy pro�les giving optimal results when played against themselves.
Nash proved in 1950 that for any �nite game .

Evolutionary games are symmetric two-person games based on the concept of
. Symmetric two-player games, widely studied

in [7], are an important subset of games. We say, following again the notation
of Weibull [11], that is a symmetric game if the set of players
is , is a common set of pure strategies
and for all , meaning that the matrix
representing is the transpose of the matrix representing the payoff ,
that is .
The space of mixed strategies is . In nonsymmetric, two-person

games the utility of strategy against strategy is denoted

where is a mixed-strategy pro�le.
Notice that is a bilinear form. For any two matrices :

.

For all scalar , .
.

In symmetric games, , the utility functions of the players are
symmetric . Because of this, we identify

. The utility of the second player is denoted
when necessary. Hence, the utility of strategy when played against

itself is .
Consider any matrix (if the common set of strategies has elements

the dimension of is ) the utility is calculated in Eqs.
(19.3) to (19.5).
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(19.3)

(19.4)

(19.5)

The payoff to pure strategy is , where is the
vector that assigns 1 to component and 0 to the resting components.
The set of best replies to any opponent strategy is

.
Finally, a Nash equilibrium is symmetric if . The set

of strategies in Nash equilibrium is
.

Consider the hawk�dove game in Examples 1 and 2.

By de�nition, is in Nash equilibrium iff
iff for all :

The set of strategies in Nash equilibrium for the hawk�dove game is

The �hawk-dove� game is the original reference to explain evolutionary
games. The evolution of populations is simulated from the pairwise (�rst and
second players) interaction and reproduction of the individuals in the interior
of populations. In evolutionary games the mixed strategy of both players
depends on the concentration of individuals in the population accumulated
over time, because the pair of strategists contesting are drawn at random in
the whole population and payoff is made in terms of Darwinian �tness. The
rationality of individuals is limited, without any observation or learning and
without any genetic algorithm.
There are two approaches to the evolution of populations: the approach

based on mutations and the approach based on replication and selection.
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19.2.1 The Approach Based on Mutations

19.2.2 The Approach Based on Selection: The Replicator
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There exists a population of individuals �programmed� to play some pure or
mixed strategy. A small population share of �mutant� individuals
that play a different strategy is injected. The incumbent strategy is evolution-
arily stable if it gets a higher payoff whenever the mutant strategy falls below
a certain limit.
The strategy is an evolutionarily stable strategy (ESS) if for every

strategy , there exists some such that for all :

.
The condition above is equivalent to the following two conditions:

Let be the population of individuals programmed to pure strategy
at time step . The total population is .

The associated population state is the vector where
is the population share programmed to strategy

at time . A population state is formally equal to a mixed strat-
egy: a vector that assigns a probability to each strategy, but in this case the
probability is identi�ed to the frequency of the strategists in the population.
The expected payoff to any pure strategy if the state of the popu-

lation is is denoted . The associated population av-
erage payoff, that is the average of any individual drawn at random, is

.
The dynamic of a population is determined by the iterations :

(19.6)

(19.7)

de�nes the replicator , which determines, starting at any ini-
tial condition the state of the population

at time step by the equations

(19.8)
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= 1

(1) =
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This example extends Example 3. Consider a population of
strategists. The initial number of hawks is and the initial doves

are , where . We will iterate the replicator from
with parameter . As shown in Example 3, is a Nash

equilibrium and for every strategy , .
Hence, the population at step is

,
,

.

The replicator gives the state of the population at step :

,

.

Then, every Nash equilibrium is a �xed point of the
replicator replicator since .
If , the only Nash equilibrium is , a �xed point to the

replicator:
.

It can be easily proved that every game can be reduced to an equivalent
game with nonnegative payoffs. In the following, we assume nonnegative
values for the matrix of the game.

In this section we deal with a generalization of the replicator model of evolu-
tionary games that we call the replicator oriented to strategy. This general-
ization comes from a re�nement of the payoff function inspired in grammars:
consider a population of rabbits, determined by symbol , and car-
rots, symbol . A grammar is basically a set of rewriting rules, for example,

. In a step of derivation one rule is applied to
any symbol in the string matching the left-hand side of the rule, replacing

the symbol by the right-hand side. For example: .
Consider a different grammar de�ned by the rules .
Interpreting a rewriting step as a game, assume that player 1 selects a

grammar, or while player 2 selects a symbol in the string. If the contest
is , the payoff is determined by the rule . Note that each
symbol is like a coin: the payoff is composed of two rabbits and three carrots.
Hence, we need a function that de�nes the payoff of the contest

in �rabbit coins� and means �carrot coins�. In [1] we
present a formalization of the hawk�dove game using Eco-grammar systems
[2].
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is an evolutionary game oriented to
strategy if

The triplet is a symmetric two-person game where
is a common set of strategies, is the pure

strategy space, and the payoff is . We call the global payoff
of .
For each contest and each strategy , is the payoff
of to strategy .
Each triplet is a symmetric two-person game with utility
function called the subgame for strategy .

Let be an evolutionary game oriented
to strategy. The dynamic of populations of is de�ned as the iteration with

:

We say that de�nes the strategy-oriented replicator denoted
or simply . The expression determines, starting at any initial
condition , the state of the population

at time step by the equations:

An evolutionary game oriented to strategy is a
re�nement of the global game that we denote with the same
name without loss of generality. With we denote the classical replicator
de�ned by the global game .
The payoff of the global game is determined by the matrix , which gives

for contest the payoff , the component of row and column
of the matrix of the game .
Matrix represents the payoff to strategy of contest being

the component of row and column of . The matrix

of the game is .
Let be the utility function of subgame , where

are mixed strategies. The utility function of game is
.

(19.9)

(19.10)

(19.11)

Compare Eq. (19.11) to the classical replicator in Section 19.2 Eq. (19.8).
Now, there is a different matrix for each strategy and hence, the polyno-
mial is quadratic. In the classical replicator, is linear
and becomes quadratic when multiplied by .
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Example 5.

Let be an evolutionary game and its classi-
cal replicator. There exists a strategy-oriented game
such that .

Proof.
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c
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u e , x t x t , Ax t x t

x t A x t
v
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x t v x t
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,

x t
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x
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x t
x t

v x, x xA x u e , x x

A
. . .
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Consider the hawk�dove game oriented to strategy:

where represents the payoff to hawks, while

represents the payoff to doves. is the matrix

of the game.
Let where is a mixed strategy

representing the state of population at time step .
By Eq. (19.5):

and

The strategy-oriented replicator is just the �hawk-dove�
game replicator of the global game, considering :

The following proposition proves that the class of strategy-oriented repli-
cators is a generalization of the class of classical replicators. We say that two
replicators of any type ( means classical or strategy oriented) and
are equivalent if for all initial state of the population and for all time
step , .

If is a replicator determining the state dynamic , to build
an equivalent strategy-oriented replicator determining , we identify

, where
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19.4 Modeling the Logistic Equation as a Strategy
Oriented Replicator

0

( + 1) =
+
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=
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( ) =
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+ ( ( ) ( ))
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� u x t , x t

h t
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,

�

G

x t
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A A h
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x t Z x t � t
A A Z G A A Z

h v x t , x t x t A Z x t
x t Z x t x t A x t

u x t , x t x t A Z x t x t Zx t x t Ax t .

t x t x t

z t �z t z t � ,

Let be a strategy oriented replicator where

is the state of the population of strategists at time . There exists an equiv-
alent strategy-oriented replicator that for all time step ,

i.e., produces the same dynamics with .

Proof.

is a matrix of components , except the th row is copied from matrix . By
only this identi�cation the population state dynamics become identical:

The state population dynamics of are determined by

, where is the matrix of the game and is the payoff to strategy .

Consider the matrix ...
. . .
... .

Then for all time step . .
Let be the matrix of the game , and let

be the payoff to strategy . Then,
and

Consequently, for all time step , .

The logistic equation developed by May in 1976 [10, 3] has the form

with (19.12)
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where means the relative frequency of an organism, for example,
a population of rabbits, is the rate of reproduction of rabbits and

is the probability of resources, for example, carrots. This equation
has been widely studied because of its ecological interest and because it is
paradigm of chaotic behavior. In this section we present a strategy-oriented
replicator that models the logistic equation. The logistic equation has values

for all if .
Consider the game in normal form where are the

players, , where and , is the set of pure strategies
common to both players, and is the space
of pure strategy pro�les. The matrix of the game is , and the matrices
representing the payoff to strategies and are and , with

(19.13)

.
By Proposition 2 the equations that govern the state of the population in

the strategy-oriented replicator have , and they are

(19.14)

(19.15)

Notice that is the quotient of two quadratic
polynomials. The only possibility of obtaining Eqs. (19.14) and (19.15) is when

is constant. From Eq. (19.5):

(19.16)

(19.17)

(19.18)

From Eq. (19.18) we conclude that is a matrix:

(19.19)

If the matrix of the game looks like matrices in Eq. (19.19) we ensure
that the whole population evolves in a constant rate . From
the de�nition of the logistic equation Eq. (19.12), the parameters are
bounded by .
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19.5 The Impossibility of Modeling the Logistic
Equation as a Classical Replicator
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Consider and .

Notice that and have the form deduced in
Eq. (19.19). From the matrices we get the logistic equation represented as the
population state of a strategy-oriented replicator, when :

(19.20)

(19.21)

We call to the logistic replicator oriented to strategy
built in this section.

We attempt in this section to model the logistic equation by means of the
classical replicator. The equation that de�nes the concentration of strategy
in a population is

(19.22)

(19.23)

Reasoning like in Section 19.4, the only possibility to obtain that result is
making constant. The parameter has null value
by proposition 2, since Proposition 1 ensures that classical replicators are a
subclass of strategy-oriented replicators.
Hence the matrix of the game is the same of the logistic replicator

oriented to strategy given in section 19.4, Eq. (19.19).
Applying matrix to the Eqs. (19.22) and (19.23) that model concentra-

tions:

(19.24)
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19.6 Towards a Grammatical Model of Games

(19.25)

Equations (19.24) and (19.25) are unsolvable if we look for values
that make the expression true for any population state . Thus, the logistic
equation cannot be obtained as the dynamic of concentrations of a classical
replicator.

The work above has been though related to grammars. Formal language theory
[9] is a branch of theoretical computer sciences that develops abstract models
of computation based on rewriting symbols in strings according to a �nite set
of rules.
In [1] we de�ned a grammatical model of the hawk�dove game using Eco-

grammars systems, but this work attempts to make a more general approach
to a grammatical model of games. Eco-Grammar systems [8, 2] are an abstract
model of computation with universal computation capability proposed as a
formal frame to study systems composed of interdependent agents acting on a
common environment. This model was developed by Csuhaj-Varjú, Kelemen,
Kelemenova and Paŭn [2] as a formal model of ecosystems. The six basic
postulates intended by the authors for the development of EG systems are

1. An ecosystem consists of an environment and a set of agents. The internal
states of the agents and the state of the environment are described by
strings of symbols, called words, over certain alphabets.

2. In an ecosystems there exists a universal clock that sets units of time,
common to the agents and to the environment, and according to them the
development of the agents and of the environment is considered.

3. The agent and the environment have developmental rules that correspond
to context-free Lindenmayer systems, which are applied in parallel to all
the symbols that describe the state of the agents and of the environment.
All the agents and the environment perform a parallel step of derivation
at each unit of time.

4. The environmental rules are independent or the agents and independent
of the state of the environment. Agents� developmental rules depend on
the state of the environment, which determines a subset of developmental
rules that is applicable to the internal state of the agent.
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5. Agents act in the environment (and possible in the internal words of other
agents) according to action rules, which are rewriting rules used in chom-
skyan (sequential) mode. At each instant of time, each agent uses a rule
selected from a set that depends on the internal state of the agent.

6. The action of the agents in the environment has greater priority than the
development of the environment. Only the symbols of the environmen-
tal string that are not affected by the agents will be rewritten by the
environmental rules.

A rewriting grammar scheme is basically a pair formed of an
alphabet (a nonempty and �nite set of symbols) and a set of rewriting
rules with the form , where (the set of nonempty words over
V) and (the set of all the words over the alphabet including the empty
word denoted by ). The set of rules is context-free if all the left-hand sides
of the rules are symbols .
We work in this paper only with context-free rules. A set of rules is

deterministic if there exists at most one rule with left-hand side .
The set is complete if for each there is a rule with left-hand side .
A grammar scheme is CF chomskyan if is a set of context-

free sequential rules. A step of derivation in CF sequential mode is denoted
by the expression , where and iff the rule

is in .
A grammar scheme is if is a set of context-free parallel

rules. The expression is a step of derivation in
mode iff for each the rule is in .

Consider the alphabet , where means a rabbit and
a carrot. A word represents a population of two rabbits and three
carrots. Let be the set of rules and
a grammar scheme.
The expression is a step of derivation in CF chomskyan

mode since and the rule is in . The rule
produces derivation steps and .
The expression is a step of derivation in

mode. Notice that rules , and are
applied each one to one symbol in the word.

Let be a grammar scheme. The number of rules in with
the same left-hand side is denoted . A grammar scheme
is deterministic if , and is complete if for all symbols . In
the following assume that every grammar is deterministic and complete
(denoted or ).
While a grammar scheme is a pair , a grammar is a triplet

where is a word called the axiom representing
an initial population of symbols. A -step derivation is a sequence

of derivation steps starting at the axiom.
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19.7 Strategy-Oriented Game Grammars:
Implementing the Logistic Replicator
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a
a a � q

a
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An interpretation of grammars as games comes immediately. Consider a
game , where , the strategies of the �rst player are
grammars , and the strategies of the second are the
symbols of the alphabet. The rules determine the payoff matrix represented
below. Notice that each entry is occupied by exactly one rule because the
grammars are deterministic and complete.

global

...

The mixed strategies are determined by the state of the derived string.
Each derivation step represents a move in the game. Let

be the vector that counts the occurrences of symbol in
the word , denoted . Let be the length of .
If player 1 selects a grammar (a pure strategy ) and player 2 a symbol
at random in the population, , the probability of is determined

by . The state of the population is , just the mixed
strategy of player two due to the mechanism of selection.
If the selected grammar is DCF, the population at the following step

becomes . If grammars are , then
. Thus, the mixed strategy of the second player varies in the next

step. Notice that a game with only one strategy for the �rst player is simply
a DCF or a grammar. If the number of grammars is greater than one,
the �rst player could elaborate mixed strategies selecting grammar with
probability .
The coefficients of the matrix of payoffs are words composed of different

symbols and consequently the payoff is a natural number. For example, rule
produces rabbits and carrots. This is a

minor problem since we can obtain any real nonnegative payoff using nonde-
terministic and probabilistic sets of -rules (rules with the same left-hand side
), that allow the selection of a rule with probability when there
is more than one rule with left-hand side . The discrete case is enough to
illustrate an approach toward game grammars.

In this section we will specify more our model of a game grammar. For this
purpose, we will represent the logistic game developed in Section 19.4 in gram-
matical terms.
We call a strategy oriented game grammar to a strategy-oriented game

, where , the strategies of the �rst player
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are sequential grammars , and the strategies of the second
player are the symbols of the alphabet. Notation
means the concatenation times of and . The rules determine the
payoff matrix for the logistic game:

(19.26)

The payoff is separated for each strategy :

In strategy-oriented game grammars, each strategy is identi�ed to a
DCF grammar . This makes natural the use of the state of the population
as a mixed strategy: to simulate a move, we interpret every symbol in the
string as an agent while a carrot is the agent . Each agent selects at
random a symbol to combat in the population and applies the corresponding
rule.

This is the step of derivation:

The mechanism of derivation corresponds to the class of reproductive sim-
ple Eco-grammar systems, as will be proved in a different paper. If all the
grammars are equal, , the grammar is formally identical to a

grammar.
The derivation step can be subdivided to see the effect of separating the

payoff of each strategy in a different grammar: each encounter produces
new individuals.
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Interpreting grammars in the free commutative monoid , a word
is equivalent to any permutation , we only are interested

in the number of occurrences of symbols and not in their positions. A step of
derivation starting at can be de�ned as the sequence iff
and .
With respect to the strategies used for each player, they are Indicated by

the matrix of the game in Eq. (19.26). At time step , the probability of a
contest equals the probability of independently selecting at random a
symbol from the string that represents the population at time . The
�rst player becomes to an agent , and the second player (agent is the
second player) selects the passive individual from . This probability is

. The contest produces new rabbits and
new carrots.
At time , the expected survival offspring of rabbits and carrots are

In this paper we extend evolutionary games to strategy-oriented evolutionary
games. We prove that this extension is strict. This approach is different of
the multipopulation models described in [11], based on the increment of the
number of players and the elimination of symmetry.
We generalize the payoff of games to strategies. For each strategy ,

is the number of survival offspring of the specie produced
by a contest . The global payoff is the sum of the payoffs to strategies

. Each de�nes in fact a different evolutionary game
, and the global game is the sum of the partial games. In the extension

to mixed strategies , the utility function of is the
sum of the utilities of the partial games .
We generalize the classical replicators of evolutionary games to strategy-

oriented replicators , such that . We proved that this
replicator is a strict extension of the classical replicator. We based our proof
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Discrete Multi-Phase Particle Swarm
Optimization

B. Al-kazemi, C.K. Mohan

Summary. This chapter proposes the Discrete Multi-Phase Particle Swarm
Optimization (DiMuPSO) algorithm, extending the PSO approach to problems
coded with discrete binary representations. The main features of DiMuPSO are in
utilizing multiple groups of particles with different goals that are allowed to change
with time, alternately moving toward or away from the best solutions found
recently. DiMuPSO also enforces steady improvement in solution quality,
accepting only moves that improve fitness. Experimental simulations show that
DiMuPSO outperforms a genetic algorithm and a previous discrete version of PSO
on several benchmark problems.

20.1 Introduction

The Particle Swarm Optimization (PSO) algorithm is a stochastic population-based
algorithm, derived from bird flocking simulations [8, 17, 19]. This chapter
proposes the Discrete Multi-Phase Particle Swarm Optimization (DiMuPSO)
algorithm, successful in applying the PSO approach to problems coded with
discrete binary representations. The main features of DiMuPSO are in utilizing
multiple groups of particles with different goals that are allowed to change with
time, alternately moving toward or away from the best solutions found recently.
DiMuPSO also enforces steady improvement in solution quality, accepting only
moves that improve fitness.

The rest of this section describes the PSO algorithm.  Section 20.2 presents
the DiMuPSO algorithm.  Section 20.3 presents experimental results comparing
DiMuPSO with a genetic algorithm and with a previous discrete version of PSO
[15], on several deceptive optimization problems.  Section 20.4 describes similar
comparisons for continuous optimization problems whose parameters are encoded
using discrete (binary vector) representations. Section 20.5 presents concluding
remarks.
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20.1.1 Particle Swarm Optimization Algorithm

The PSO algorithm uses a population of individuals called “particles.” Each particle
has its own position and velocity to move around the search space.  When a particle
wants to calculate its new position, it takes into account its own previous best
value, and the best value found so far by all other particles (the global PSO model
[17, 27]) or its neighbors (the local PSO model [10, 15, 28]). Our experiments
presume the global version, believed to offer a faster rate of convergence, though at
greater risk of premature convergence than the local version.

We use the following notation, and assume a discrete-time updating model:
1. N: the maximum number of swarms (generations).
2. M: the number of particles in each swarm.
3. n: the dimension of the problem.
4. Xm(t): the position of the mth particle at time t, a vector whose ith

component is xm,i(t).
5. Vm(t): the current velocity of the mth particle at time t,  a vector whose ith

component is vm,i(t).
6. G(t) : the best of all positions discovered by all particles at time t or

earlier, with components gi(t).
7. Lm(t): best position of particle m discovered at time t or earlier, with

components lm,i(t.)
We use the term “fitness” as synonymous with “solution quality,” not to

imply a proportion of offspring allocated to individuals as in genetic algorithms.
 Each particle moves around in space using the following PSO update

equations:
1. The following equation updates the velocity for each dimension i of the

particle m :
v t v t C rand l t x t

C rand g t x t

m i m i m i m i

m i m i

, , , ,

, ,

* () *

* () * ,

+( ) = ( ) + ( ) ( )( )
+ ( ) ( )( )

1 1

2

(20.1)

where C1 and C2 are two positive constants called acceleration
coefficients, and they affect the maximum size step that each
particle can take in a  single iteration, and rand() is a function that
generates random numbers uniformly from the interval [0,1].

2. The ith component of the position of particle m is updated as follows:

x t x t v tm i m i m i, , , .+( ) = ( ) + +( )1 1 (20.2)

The magnitude of each position component is restricted by a predetermined
problem-specific upper bound (Xmax). Similarly, velocity component magnitudes
are upper-bounded by a parameter (Vmax), which is no greater than Xmax. Even for
unconstrained problems, this approach can be used, successively increasing (perhaps
doubling) these upper bounds and widening the scope of the search.

The PSO algorithm is as follows:
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1. Initialize the population, randomly assigning each particle’s position and
velocity, which also provide initial values for lm,i components; the best
initial particle’s position provides the initial G.

2. Repeatedly calculate the new velocity and then the new position for all
particles, using equations (20.1) and (20.2), and updating G and lm

components until a satisfactory solution G is found or computation limits
are exceeded.

20.2 Discrete Multiphase Particle Swarm Optimization

In several problems, PSO finds the optimum value more quickly than when using
traditional evolutionary algorithms. This is explained by the fact that PSO uses a
combination of local and global searches.  The DiMuPSO algorithm is obtained by
modifying the PSO algorithm in three ways:

1. Dividing particles into multiple groups, increasing the diversity and
exploration of the space.

2. Introducing different phases, between which the direction of particle
movement changes.

3. Moving only to positions that will increase fitness.

To begin with, our research attempts to increase population diversity and
problem space exploration capabilities of PSO, beginning by addressing the
following question: instead of the particles working in one group that flies toward
the best position found so far, what if the particles are divided into groups and each
group searches differently? That is, one group is directed toward the globally best
position found so far, and the other flies in the opposite direction. This was the
first step to developing the DiMuPSO algorithm, dividing the particles into
working groups with different temporary goals.

In addition, we also observed that a considerable amount of computational
effort is wasted by PSO in visiting states of poor fitness values. Although this is
often necessary for a stochastic algorithm to avoid being trapped in local minima,
enlarging the notion of “neighborhood” in the search space is a possible approach
that allows pursuit of global optima using hill-climbing algorithms.  We hence
investigated a variation of the PSO that restricts each particle to move only to a
position with better fitness (than that particle’s current position). Hill-climbing has
been found to be helpful in other evolutionary algorithms such as memetic
algorithms [21].

Another observation was that each particle in PSO often continues to move
roughly in the same direction (toward G) especially when there is no change in G
[3, 9, 14]. This leads to convergence of all particles toward local optima whose
fitness may be low.  Changing direction could lead to a better solution, and this is
done by allowing particles to vary their current goals or directions of search,
depending on the current phase of each particle. If a particle finds no improvement
in fitness for a prespecified period of time, it changes phase and continues search in
a different direction.  
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Directions for particle movement are provided by the global and local best, as
in PSO, except that the hill-climbing strategy implies that the local best is the
same as the current position. These two positions act as opposite poles for the
velocity vector, with one acting as attractor and the other as repellor, depending on
the phase.  A related, but different, diversity improvement scheme is adopted by the
Shepherd and Sheepdog algorithm [24].

20.2.1 Update Equations

In DiMuPSO, the mth particle updates its jth velocity as follows:

vm,j(t+1) = min(Vmax, max(-Vmax,  vm,j(t) + Cm(t) xm,j(t) - Cm(t) gj(t))), (20.3)

where Cm(t) equals either 1 or  -1 depending on the current phase of the particle.
Comparing with Eq. (20.1), we observe the disappearance of lm,i, not needed

since the hill-climbing strategy ensures that the current position of each particle is
also its best local position found so far. Separate memory for storing the best local
position is not needed.

The position update equation is a simple discretized version of Eq. (20.2),
except that it is considered only a tentative position update, not to be accepted if
such an update diminishes a particle’s fitness:

Tentative x t
v t x t

m j
m j m j_

. ,
,

, ,+( ) = +( ) + +( )( ) >1
1 1 1 0 5

0

if

otherwise.

20.2.2 Which Components to Update?

For multidimensional problems, the new position update equation poses a new
issue:

1. Should we iteratively compare the previous fitness with the result of
updating a single component (dimension) of the particle’s position at a
time?   

2. Or should we compare the previous fitness with the result of updating all
the components?

These two choices may be considered the extremes in answering the question of
what constitutes the neighborhood of a position in the search process—note that a
neighborhood in this sense depends on the definition of the moves or operators
used, not just on a predetermined problem space topology. The first choice is
plagued by the problem that the particle can be trapped in local minima of the
problem space topology; this also requires one additional fitness evaluation per
problem dimension, increasing the computational expense significantly. The second
choice leads to the possibility that very large moves are made that lead very far
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away from the previous position, since the problem space is discrete, violating the
paradigm of particles moving to nearby points at each successive instant.  

We address this issue by using a new sublength (sl) parameter in the
DiMuPSO algorithm. The sl parameter will determine how many dimensions are
considered for update at a time before evaluating the fitness of the tentatively
changed particle position. For example, if sl = 3, then the tentative updates to the
particle velocity and the position will be calculated for dimensions i  to i+3. If
fitness is improved by updating the tentative new positions for the calculated
dimensions, the particle will move to its new position, updating sl components at
a time. If no improvement is found, there will be no change of the particles’
position along those dimensions. Similar calculations are performed for other
tuples of sl components of the position vector. In our experiments, sl was chosen
randomly from the interval [1, min(10, n)], where n is the dimensionality of the
search space..  

20.2.3 Phase Changes

In Eq. (20.3), xm,j(t) and gj(t) have opposite signs, so that the particle moves
toward or away  from the current global best position, depending on its current
phase.  Phase change may be enforced after a fixed number of generations (phase
change frequency, pcf). Alternatively, in the adaptive version of this algorithm,
phase is changed when there is no improvement within the current phase for a
prespecified number of generations, referred to as the pcf.

20.2.4 Velocity Change

Many evolutionary algorithms rely on a restart mechanism to reduce the probability
of being stuck in local optima of the objective function. This was done for particle
positions in the random particle approach [6]. A similar idea is applied in the
DiMuPSO algorithm, periodically reinitializing all particle velocities (rather than
positions) after a predetermined number (VC) of generations.  

Figure 20.1 presents details of the DiMuPSO algorithm.  The next two
sections describe experimental results obtained using this algorithm.

20.3 Benchmark Problems and Results

This section describes the application of DiMuPSO algorithm to several discrete
binary benchmark optimization problems. Section 20.3.1 describes each of the
functions, Section 20.3.2 gives details of the experiments, and Section 20.3.3
shows the results. Results are discussed in Section 20.3.4.  
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Figure 20.1. Details of the DiMuPSO algorithm.

20.3.1 Test Functions

Three different deceptive problems, each characterized by a large number of local
optima, were used for evaluation of the DiMuPSO algorithm: Goldberg’s order-3,
Bipolar order-6, and Mühlenbein’s order-5 concatenation problems, described in
detail below.

20.3.1.1 Order-3 Deceptive Problem

Goldberg’s deceptive order-3 problem [12] is presented here. The fitness of each
particle is calculated as follows:

Initialize algorithm parameters such as pcf and N;
Create and initialize positions and velocities of M particles;
Initialize coefficients Cm to 1 for half the particles, and –1 for the rest;
Initialize g to be the position of the particle with highest fitness;

for each swarm t [ 1…N]
If (t is a multiple of VC)
   Reinitialize particle velocities;

For each particle m [1…M]
Reverse the sign of Cm if  Xm (t)= Xm ( t -pc f ) ;

Copy Xm (t) into Temp, the tentative new position vector;
Let sl be a randomly drawn integer from [1, min(10,N)];
for each j in 0...(n/sl –1),

for each i in [j*sl ... min(n, j*sl+sl-1 )],
Update

v m,i(t+1) = min(Vmax, max(-Vmax,
 vm, i(t) + Cm (t) xm, i(t) - Cm (t) gi(t))) ;

and
T e m p i = 1 if (vm, i(t+1) + xm, i(t)) > 0.5,

and 0 otherwise;

If (fitness(Temp) > fitness(Xm ) )
for each i in [j*sl ... min(n, j*sl+sl-1)]

x m,i(t+1) = Tempi;
else for each i in [j*sl ... min(n, j*sl+sl-1)]

Temp i = xm,i(t);

If fitness(Xm ) > f i t n e s s ( g )
Update g=Xm;

Exit if fitness(g) meets prespecified solution quality
c r i t e r i a ;
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where xi denotes the sum of the bits in the 3-bit substring.

20.3.1.2 Bipolar Deceptive Problem

The Bipolar order-6 function [11] computes the fitness of a particle as the sum of
the partial fitness functions obtained by applying a function  f6 to disjoint six-bit
substrings of the particle position.  Function  f6 has two optima with f6(X)=1 if
X=000000 or X=111111. Local optima occur with f6(X)=0.8 if |X|=3. Finally,
these local optima are rendered deceptive by setting f6(X)=0.4 if |X|=2 or 4, and
f6(X)=0.0 if |X|=1 or 5.

20.3.1.3 Mühlenbein’s Order-5 Problem

The last deceptive problem to be tested is Mühlenbein’s order-5 problem [22].  As
in the above two problems, the fitness of a particle is computed as the sum of a
function f5 applied to disjoint five-bit substrings of the particle position. But the
optimization task is rendered much more difficult by setting f5(X)=0 everywhere
except at five positions: f5(00000) = 4,  f5(00001) = 3,  f5(00011) = 2,  f5(00111) =
1, and f5(11111) = 3.5.

20.3.2 Details of Experiments

DiMuPSO was compared to two other algorithms: traditional GA using one-point
crossover and a discrete variation of the standard PSO developed by Kennedy and
Eberhart [2], referred to as KE-PSO here (elsewhere referred to as Q-DiPSO  [1,
20]). Each of the algorithms has special settings for its parameters that are
presented in the following subsections.

20.3.2.1 GA Settings

Table 20.1 shows a summary of parameter settings for GA algorithms used in our
experiments.  The one-point crossover operator was used, along with a bitwise
mutation operator. The mutation probability was set to be the reciprocal of the
bitstring length n (problem dimensionality). The crossover probability (px) was set
to 0.9.
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The population size was increased proportionally to the problem
dimensionality, and the maximum number of generations was limited to 1000.

Binary tournament selection mechanism [7] was used; two individuals are
selected at random and the fittest is selected [25].

20.3.2.2 KE-PSO Settings

Table 20.2 summarizes the parameter settings.  The velocity equation was the same
as Eq. (20.1), with the only difference being in the position calculations (Eq. 20.2):
KE-PSO uses velocity components to compute the probability with which each
position component is determined to be 1. The new equation is as follows:

if ,  then = 1;  else rand e x xv
m i m i

m i( ) < ( )( ) =1 0,
, , , (20.5)

where rand () is a random number generator using the interval [0, 1].
Vmax was set to 5 and both coefficients were set to 2, as in [10, 27, 28].
As with the GA algorithm, the swarm size varies according to the length of the

problem, and the maximum swarm number that can be reached is limited to 1000.

20.3.2.3 DiMuPSO Settings

Table 20.3 is a summary of the following DiMuPSO parameters used in the
experiments.

1. Phase changes were determined adaptively: a particle changes phase if no
improvement in fitness is observed in pcf=50 successive swarms
(generations).

2. Sl was randomly generated for each individual in each swarm, in the range
[1, min (10, n)].

3. VC = 5.
The swarm size is set to 30. The maximum number of swarms is set to 1000,

as in the other algorithms. Vmax is set to 1, since discrete-binary functions are
being tested. Also, Xmax is set to 1.

20.3.3 Results

The results for each of the defined test problems are given in the following
subsections.

20.3.3.1 Goldberg’s  Order-3 Problem

The results obtained were averaged over 20 runs. As shown in Table 20.5, the GA
and the DiMuPSO algorithm reached optimum fitness for the problem’s size equal
to 30, with the DiMuPSO algorithm requiring fewer fitness evaluations. The
DiMuPSO algorithm used fewer fitness evaluations than the GA.
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Table 20.1 GA Parameters

Parameter G A
P m 1/n
P x 0.9
 N 1000

Table 20.2 KE-PSO Parameters

Parameter KE-PSO
Vmax 5
M 100
N 1,000
C1 2
C2 2

Table 20.3 DiMuPSO Parameters

Parameter DiMuPSO

M 30
N 1000
Cm 1 or –1
Vmax 1
S l Randomly generated for each particle in each swarm,

From the interval [1, min(10, M)]
pcf 50 (adaptive)
V C 5

Table 20.4 Population Sizes Used by GA and PSO for the Three Testing Problems.

G o l d b e r g B i p o l a r M ü h l e n b e i n

n G A P S O G A P S O G A P S O
3 0 50 50 50 50 30 30
6 0 50 50 100 50 60 60
9 0 100 100 100 100 90 90
1 2 0 120 120 120 120 120 120
1 5 0 120 120 150 150 150 150
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As the dimensionality of the problem increased, the DiMuPSO algorithm was still
able to reach better fitness than the GA. On the other hand, KE-PSO was unable to
reach optimum fitness for all different problem sizes.

Figure 20.2 shows the performance of each algorithm for a problem size of
150 bits. The DiMuPSO algorithm reached optimum fitness. The GA and the KE-
PSO algorithm were unable to reach optimum fitness.

20.3.3.2 Bipolar Order-6 Problem

The results were averaged over 20 runs. As observed from Table 20.6, the
DiMuPSO algorithm reached optimum fitness for all the dimensions. The GA was
able to reach the best fitness for 30- and 60-bit problems. For a problem size of  30
bits, the GA used fewer fitness evaluations than the DiMuPSO, but for 60 bits the
DiMuPSO algorithm used fewer fitness evaluations than the GA. The KE-PSO was
unable to reach the best fitness for all the different instances of the problem.

Figure 20.3 shows the performance of the three algorithms for the 150-bit
problem. From the figure, and as mentioned earlier, the DiMuPSO algorithm was
the only one that reached optimum fitness. In addition, the population size used by
the DiMuPSO algorithm was much smaller than that used by the GA and the KE-
PSO algorithm. The DiMuPSO algorithm used 30 particles, whereas GA and KE-
PSO used 150 individuals. Even though they used a larger number of individuals,
both were unable to reach optimum fitness.    

20.3.3.3 Mühlenbein’s order-5 Problem

What was observed earlier is true here as well. The DiMuPSO algorithm reached
optimum fitness for all the dimensions. None of the other algorithms was able to
reach the best fitness. Table 20.7 shows the results for all the algorithms for
different dimensions. As before, the DiMuPSO used fewer fitness evaluations to
reach optimum fitness.

Figure 20.4 shows the results obtained for 150 bits.  As mentioned earlier, the
DiMuPSO was the only one that reached optimum fitness.   

Table 20.5 Best Fitness Found Using GA, KE-PSO and DiMuPSO for Goldberg’s
Order-3 Deceptive Problem Instances of Different Dimensionality, Averaged over 20
Trials

G A KE-PSO DiMuPSO

n
B e s t
F i t n e s
s

F i t n e s s
E v a l s

B e s t
F i t n e s s

F i t n e s s
E v a l s

B e s t
F i t n e s s

F i t n e s s
E v a l s

3 0 10 8,800 9.375 49,200 10 5,624
6 0 19.845 43,175 16.725 48,300 20 17,046
9 0 29.515 99,500 23.895 99,100 30 32,988
1 2 0 39.025 120,000 30.78 117,840 40 39,509
1 5 0 47.995 116,640 37.495 111,840 50 60,616
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Table 20.6 Best Fitness Found Using GA, KE-PSO and DiMuPSO for Bipolar order-6
Deceptive Problem Instances of Different Dimensionality, Averaged over 20 Trials.

G A KE-PSO DiMuPSO

n
Best
Fitness

Fitness
Evals

Best
Fitness

Fitness
Evals Best Fitness Fitness

Evals

3 0 5 8,070 4.67 48,450 5 9,310
6 0 10 44,925 8.24 48,800 10 35,118
9 0 14.82 94,745 11.71 99,300 15 68,811

1 2 0 18.97 119,520 14.92 117,840 20 98,406
1 5 0 23.17 149,700 18 145,950 25 136,547

Table 20.7: Best Fitness Found Using GA, KE-PSO, and DiMuPSO for Mühlenbein’s
Order-5 Deceptive Problem Instances of Different Dimensionality, Averaged over 20
Trials.

G A KE-PSO DiMuPSO

n Best
Fitness

Fitness
Evals

Best
Fitness

Fitness
Evals

Best
Fitness

Fitness
Evals

3 0 23.75 12,602 20.875 29,880 24 9,323
6 0 46.675 48,705 33.575 58,200 48 13,248
9 0 70.2 81,990 44.425 89,460 96 39,361
1 2 0 93.5 120,000 55 119,640 120 52,590
1 5 0 116.575 140,000 63.175 144,750 148 55,069

Figure 20.2: Comparison of GA, KE-PSO, and DiMuPSO for Goldberg’s 150-bit
problem over 20 runs.
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Figure 20.4 Comparison of GA, KE-PSO, and DiMuPSO for Mühlenbein’s
150-bit problem using the same maximum generation: 1,000 over 20 runs.

Figure 20.3 Comparison of GA, KE-PSO, and DiMuPSO for Bipolar 150-bit problem over 20
runs.
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20.3.4 Discussion

Experimental results show that DiMuPSO is a very efficient algorithm. It reached
optimum fitness each time it was run, and it used fewer fitness evaluations to reach
optimum fitness each time. As problem dimensionality increased, the algorithm
still used fewer fitness evaluations and managed to reach optimum fitness each
time.

Another observable factor is the time required by DiMuPSO to reach the best
fitness over the 20 runs. Table 20.8 shows the time needed for each algorithm to
finish the execution for the 20 runs for a 30-bit dimension. To be able to compare
results, all these numbers were obtained using a population size equal to 30 and a
maximum generation of 1,000. As observed from the table, the DiMuPSO
algorithm required less time than the other two algorithms.

Table 20.8 Time Needed for Each Algorithm to Be Executed 20 Times in Seconds for
30-bit Problems; Population Size Was Set to 30 and the Maximum Number of
Generations to 1000.

Algor i thm Goldberg Bipolar Mühlenbein
G A 26.718 22.692 32.056
KE-PSO 82.839 180.930 90.209
DiMuPSO 2.213 9.633 5.374

Table 20.9 Time Needed for Each Algorithm to Be Executed 20 Times in Seconds for
120-bit Problems; Population Size Was Set to 120 and the Maximum Number of
Generations to 1000.

Algor i thm Goldberg Bipolar Mühlenbein
G A 425.351 452.660 444.579
KE-PSO 748.438 727.225 711.402
DiMuPSO 27.669 88.887 23.924

In order to observe the difference, the experiments were also conducted for
higher-dimensional problems. In Table 20.9, when the problem dimensionality is
increased to 120, the time needed by the other two algorithms is much more than
the time needed by the DiMuPSO. It is important to note that only DiMuPSO
reached the best fitness for this problem. The population size here was set to 120,
and the maximum number of generations was limited to 1000. Experiments were
performed on a Pentium III machine with 800MHz and 640Mb RAM.

20.4. Discrete Encoding, Continuous Space

The previous section addressed the application of DiMuPSO to discrete binary
functions. In this section, we describe how continuous optimization problems may
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also be solved using DiMuPSO, using a discrete encoding for problem parameters.
The overall methodology is similar to that of Kennedy and Eberhart [16], who
encoded particle position components using binary numbers. The calculations were
carried out using these binary numbers, and results were converted back to real
numbers. The same experimental settings were used as in Section 20.3, except that
the population sizes for GA and PSO were set to 100, and DiMuPSO’s population
size was set to 100 for one of the test functions (Rosenbrock) and 20 for the rest of
the test functions; VC was set to 10 while pcf was set to 5. Section 20.4.1
describes the test functions, and Section 20.4.2 shows the results for the various
functions, discussed further in Section 20.4.3.

20.4.1 Test Functions

Four benchmark problems were used to test the algorithms: DeJong F1 (Sphere
function), DeJong F2 (Rosenbrock), DeJong F5 (Foxholes), and Rastrigin. These
functions were chosen because they represent the common difficulties in
optimization problems. These problems are described in the rest of this subsection.  

20.4.1.1 Sphere Function (DeJong F1)

Sphere function [13] is a continuous, unimodal function generally used to measure
the efficiency of an algorithm. The graph of this function is shown in Figure 20.5
[29]. The function is defined as follows:

f x x xi

i

n

i( ) = < <
=

2

1

100 100, ,      where 

where x is an n-dimensional, real-valued vector and xi is the ith element of that

vector. It has a global minimum of 0 at xi( ) = 0.

20.4.1.2 Rosenbrock Function (DeJong F2)

The Rosenbrock function [26] is a smooth function with a sharp ridge that distracts
ordinary optimization algorithms. This function can be quite difficult for
algorithms that are unable to identify promising search directions with little
information. Algorithms that take good direction for the search will perform well in
this function. The function is depicted in Figure 20.6, and the description is as
follows:

f x x x x xi( ) = ( ) + ( )100 1 2 048 2 0481
2

2
2

1
2, . . where .

The function has a minimum value of 0 at x x1 2 1 1, ,( ) = ( ) .
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20.4.1.3. Foxhole Function (DeJong F5)

The Foxhole function [23] has many nonuniformly distributed local optima, and
many optimization algorithms get stuck at the first peak. Figure 20.7 shows the
function graphically. The function is described as follows:

f x

k f x

f x C x a

j

j

j j i i j

i

n

( ) =
+ ( )

( ) = + ( )
=

=

1

1 1

1

25
1

, ,, where 

where and= =65 536 65 536 500. . , , ,x k C ji j

ai j,

...

...
.[ ] = 32 16 0 16 32 32 0 16 32

32 32 32 32 32 16 32 32 32

The function has a minimum global value of 0.998 at x x1 2 32 32, ,( ) = ( ) .

20.4.1.4 Rastrigin Function

The Rastrigin function [4] has many local optima that are uniformly distributed
through the space. The function is shown in Figure 20.8. Its description is as
follows:

f x x x xi i i
i

n

( ) = ( ) +( )
=

2

1

10 2 10 5 12 5 12cos , . . where 

where x is an n-dimensional real-valued vector and xi is the ith element of that
vector. It has a global minimum of 0 at (xi) = 0.

Figure 20.5. Sphere function (DeJong F1).
Figure 20.6. Rosenbrock function (DeJong

F2).
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Table 20.10 Results for Sphere Function, Averaged over 20 Runs.

G A KE-PSO DiMuPSO

Number of
bits for

encoding

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

5 99,200 129.0 98,000 2281.0 7,641 104.1

1 0 99,100 47.6 86,600 1983.0 12,947 0.096

1 5 97,600 14.3 93,000 2170.2 19,673 0.000093

2 0 98,460 11.1 97,600 2169.3 22,515 0.000014

2 5 99,530 48.4 91,700 2249.2 30,618 0.000017

Table 20.11 Results for Rosenbrock (DeJong F2)  Function, Averaged over 20 Runs.

GA KE-PSO DiMuPSO

Number
of

bits for
encoding

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

5 1,100 0.029 5,700 0.0081 83,100 0.0086

10 4,4400 0.027 94,500 0.00050 87,118 0.00019

15 84,260 0.031 70,030 0.00025 69,160 0.00015

20 91,430 0.046 78,975 0.00034 64,769 0.00012

25 95,180 0.043 64,935 0.00031 63,945 0.00029

Figure 20.7. Foxhole Function (DeJong
F5).

Figure 20.8. Rastrigin Function.
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20.4.2 Results

The results of each of the test problems are given in the following subsections.

20.4.2.1 Sphere Problem

The results obtained here were averaged over 20 runs, and the problem’s
dimensionality was set to 10. When the number of bits used to encode each
unknown was small, not all of the algorithms reached optimum fitness. Comparing
those results, the DiMuPSO reached the best fitness any of them found. When the
number of bits that encodes each unknown increased, it was clearly found that the
DiMuPSO was the best. It managed to reach optimum fitness each time, but not
the GA and the KE-PSO. It was surprising that the GA and the KE-PSO did not
reach a value near the optima, a possible reason being the high range of the  values
for the problem parameters.

Table 20.10 shows the results of the different sizes used to encode the problem
parameters. Figure 20.9 shows the performance of the three algorithms, using 25
bits for encoding.

20.4.2.2 Rosenbrock Problem (DeJong F2)

The results obtained here were averaged over 20 runs. Table 20.11 shows the results
obtained for different encoding lengths. When the encoding length is small (five
bits for each unknown), the KE-PSO reached better fitness than the DiMuPSO
because the DiMuPSO uses the sl parameter to cut hill-climbing’s cost, which for
a small number of bits uses more fitness evaluations than a large number of bits.

For all other encoding lengths, the DiMuPSO was able to reach near the
optimum fitness with fewer fitness evaluations. KE-PSO reached near the optimum
with more fitness evaluations. The GA performed worse than both of these
algorithms. Figure 20.10 shows the performance of the three algorithms for 25 bits
of encoding length.

20.4.2.3. Foxhole Problem (DeJong F5)

For this problem, the DiMuPSO and the KE-PSO were able to reach optimum
fitness each time. For 5-bit encoding, the KE-PSO used fewer fitness evaluations
than the DiMuPSO because, as mentioned earlier, the DiMuPSO incorporated hill-
climbing, which, when using few bits for encoding, tended to require more fitness
evaluations. When the number of bits for encoding increased, the DiMuPSO used
fewer fitness evaluations than the KE-PSO. The GA was unable to reach the
optimum fitness. Table 20.12 shows the results obtained for different encoding
lengths. Figure 20.11 shows the performance of three algorithms for 25-bit
encoding.  
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Table 20.12 Results for Foxhole (DeJong F5) Function Averaged over 20 Runs.

G A KE-PSO DiMuPSO
Number of
bits for
encoding

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

5 2,600 0.999 1,800 0.999 9,866 0.999

1 0 4,920 1.197 9,340 0.998 3,532 0.998

1 5 43,830 1.189 12,595 0.998 5,703 0.998

2 0 52,865 1.189 17,200 0.998 6,561 0.998

2 5 60,395 1.324 12,355 0.998 8,814 0.998

20.4.2.4 Rastrigin Problem

The Rastrigin function with dimensionality 10 was used. Table 20.13 shows the
results obtained for the different sizes used for encoding. When 5-bit encoding was
used, the same observation mentioned earlier applied here. Although DiMuPSO
was unable to reach the optimum fitness, it reached the best fitness among the three
algorithms. When the number of bits used in the encoding increased, the DiMuPSO
was able to reach the optimum fitness. Neither the KE-PSO nor the GA reached the
optimum fitness.

Figure 20.12 shows the performance of the three algorithms using 25 bits for
the encoding and 100,000 as the maximum number of fitness evaluations. The
highest value for the DiMuPSO shown in the graph was equal to 0.178649 for the
best fitness and 86,973 for the fitness evaluations.

Table 20.13 Results for Rastrigin Problem, Averaged over 20 Runs.

G A KE-PSO DiMuPSO

Number of
bits for
encoding

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

Fitness
evals

Best
fitness

5 56,300 52.3 94,000 62.5 27,639 49.5

1 0 97,900 10.9 86,400 49.9 67,006 0.0497

1 5 98,800 10.8 92,000 51.7 54,078 0.000056

2 0 99,900 9.7 98,800 52.0 93,016 0.000012

2 5 99,800 11.0 99,000 51.3 100,332 0.000009
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20.4.3 Discussion

Experimental results show that the DiMuPSO algorithm is much more efficient
than the other two algorithms. The KE-PSO algorithm performed well in two sets
of problems; namely, the Rosenbrock and the Foxhole problems. But even for
these two problems, the DiMuPSO algorithm required fewer fitness evaluations.

Figure 20.9 Comparison of evolution of best fitness values for minimizing sphere
function with parameter values represented using 25 bits over 20 runs.

Figure 20.10 Comparison of evolution of best fitness values for minimizing
Rosenbrock (DeJong F2) function with parameter values represented using 25 bits over
20 runs.



Al-kazemi, Mohan324

Figure 20.11 Comparison of evolution of best fitness values for minimizing
Foxhole (DeJong F5) function with parameter values represented using 25 bits over 20
runs.

Figure 20.12 Comparison of evolution of best fitness values for minimizing
Rastrigin’s function with parameter values represented using 25 bits over 20 runs.

For the Rosenbrock problem, when using only a few (5) bits for the encoding
mechanism, the DiMuPSO algorithm approached (0.1% difference) but did not
reach the level of fitness that the KE-PSO algorithm reached. For the Foxhole
function, both algorithms reached the best fitness when using five bits for the
encoding, but the DiMuPSO required more fitness evaluations, possibly because
DiMuPSO incorporates hill-climbing. When using more bits for encoding, the
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problem is harder, and use of the sl parameter helps reduce the number of fitness
evaluations required instead of degrading the performance.

As described in the previous section, the time used to execute 20 runs was
recorded. DiMuPSO used less time than the two other algorithms. Table 20.14
shows the time needed for each of the algorithms to be executed 20 times using a
population size of 100 and maximum generation of 1,000.

Table 20.14 The Time Needed for Each Algorithm to Be Executed 20 Times in Seconds
for 25-bit Encoding; Population Size Was Set to 100 and Maximum Generation to 1,000

A l g o r i t h m S p h e r e
(DeJong F1)

R o s e n b r o c k
(DeJong F2)

F o x h o l e
(DeJong F5)

R a s t r i g i n

G A 858,574 174,851 162,183 771,249
KE-PSO 1149,332 178,606 39,777 1128,212
DiMuPSO 35,691 132,390 6,789 110,548

20.5 Concluding Remarks

We have presented DiMuPSO, a variation of the particle swarm optimization
algorithm for discrete optimization tasks.  The main features of the new algorithm
are the incorporation of hill climbing, the use of multiple groups of particles with
different search parameters, and the adaptive modification of particle goals as they
cycle through different phases.  Extensive experimental results show that the new
algorithm outperforms traditional GA and PSO algorithms for difficult benchmark
discrete and continuous optimization problems.

The modifications to  PSO proposed in this paper are largely orthogonal to
other improvements to PSO suggested in the literature [5, 18], and we expect that
several of those improvements can also be incorporated into the DiMuPSO
approach.

In related recent work [2], we have shown the applicability of this approach
directly to continuous optimization tasks without discrete encoding, e.g.,
successfully training the weights of feedforward neural networks for classification
problems using a continuous version of DiMuPSO.
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