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P R E F A C E 

by PROF. Dr. VICTOR F.B. De MELLO 

President International Society for Soil Mechanics and Foundation Engineering 1981—1985 

In the cont inuum of persistent change which characterizes the professional 
quest for scientific and engineering solut ions , there is an absolute need for 
pauses and movement by steps. Such a need is felt all the more intensely 
as all social and technological factors have m a d e the cont inuum of change 
more and more accelerated. 

Man, and especially the Engineer, cannot shy away from the discontinuity 
imposed by a yes vs. no decis ion: maybe  does not exist , because its imple-
mentat ion would be as maybe-yes or maybe-no. Bo th right and wrong, 
however arbitrary and nominal , mus t be allowed to s tand long enough to 
permit the experience cycle to c lose , starting with a given set of data, hypo-
theses, calculations and decisions, and reaching a certain set of observations 
on the constructed product under operat ional condit ions . 

Far t o o much of the modern product ion of technical literature is con-
ditioned by the eureka complex , especially in the respected advanced tech-
nological centers . Yet , Man's and Soc ie ty ' s t ime cycle of experience is still 
deeply condit ioned by an animal life cycle , even if somewhat altered by 
physiological and social evolutions. A house is intended to be a h o m e , and 
its life cycle should respect a span roughly between twenty and eighty 
years ; public works should serve a couple of generations. It is not only 
materially but also socially that f rom the solutions of one generation or 
period arise the plagues of a following generation. 

T h e appropriately named book , Practical Problems in Soil Mechanics and 
Foundation Engineering by Sanglerat , Olivari and C a m b o u , c o m e s to fulfill 
a very important need of thousands of practicing engineers in the geotech-
nical profess ion. It sets a modern , practical milestone for reference, and is 
a lmost unique in doing this with its emphasis on calculations, the principal 
working tool of engineers. The analysis and calculation procedures presented, 
which encompass the great propor t ion of geotechnical problems , are simul-
taneously both the indication of accepted practice and the reminder that 
such accepted pract ice is based on hypotheses : both the hypotheses and the 
rules developed from them must a lways be clearly s tated, not only so that 
except ions m a y be distinguished, but also so that the consequences of a 
given pract ice may be used to establish a m o d i c u m statistical universe of 
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case histories for judging the results achieved and for subsequent iterative 
adjustment. 

Solutions in engineering are immediately recognized to be wrong if a 
patent or catastrophic failure ensues. Time, however, reveals the other 
extreme of the histogram of failures of engineering solutions, when they 
conceal a condition of being too safe and relatively less economical than 
desirable or acceptable. The authors are to be thanked for having offered a 
good up-to-date reference for appraising both ends of the spectrum. Engin-
eers should be enjoined to state clearly the design procedures according to 
which their projects of a given period were calculated. This book augurs 
well to stand as a guide for many, many such calculations. 
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I N T R O D U C T I O N 

G u y Sanglerat has taught geotechnical engineering at the " E c o l e Centrale 
de L y o n " since 1 9 6 7 . This discipline was introduced there by J e a n Costet . 
S ince 1 9 6 8 and 1 9 7 0 , respectively, Gilbert Olivari and Bernard C a m b o u 
actively assisted in this responsibil i ty. They directed laboratory work, 
outs ide studies and led special s tudy groups . 

In order to master any scientific discipline, it is necessary to apply its 
theoretical principles to pract ice and to readily solve its problems . This holds 
true also for theoretical soil mechanics when applied to geotechnical engin-
eering. 

F r o m Costet ' s and Sanglerat ' s experiences with their previously published 
t e x t b o o k s in geotechnical engineering, which contain example-problems and 
answers, it b e c a m e evident that one element was still missing in conveying 
the understanding of the subject matter to the solution of practical prob lems : 
problems apparently needed detai led, step-by-step solutions. 

F o r this reason and at the request of many of their s tudents , Sanglerat , 
Olivari and C a m b o u decided to publish problems . Over the years since 1 9 6 7 
the problems in this t ex t have been given to students o f the " E c o l e Centrale 
de L y o n " and since 1 9 7 6 to special geotechnical engineering s tudy groups of 
the Public Works Depar tment of the Nat ional School at Vaulx-en-Velin, 
where Gilbert Olivari was assigned to teach soil mechanics . 

In order to assist the reader of these volumes , it was decided to categorize 
problems by degrees of solution diff iculty. Therefore , easy problems are 
preceded by one star ( * ) , those considered mos t difficult by 4 stars ( * * * * ) . 
Depending on his degree of interest, the reader may choose the types of 
problems he wishes to solve. 

T h e authors direct the prob lems not only to s tudents but also to the 
practicing Civil Engineer and to others who, on occas ion, need to solve geo-
technical engineering problems . T o all, this work offers an easy reference, 
provided that similarities of actual condit ions can be found in one or more 
of the solut ions prescribed herein. 

Mainly, the S .I . (Systfeme International) units have been used. But , since 
practice cannot be ignored, it was deemed necessary to incorporate other 
widely accepted units . Thus the C.G.S . and English units (inch, foo t , pounds 
per cubic foo t , etc . ) have been included because a large quant i ty of literature 
is based on these units . 

The authors are grateful to Mr. J e a n Kerisel , past president of the Inter-
national Soc iety for Soil Mechanics and Founda t ion Engineering, for having 
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written the Preface to the French edition and allowing the authors to include 
one of the problems given his s tudents while Professor of Soil Mechanics at 
the " E c o l e Nationale de Ponts et Chaus see s " in Paris. Their gratitude also 
goes to Victor F . B . de Mello, President of the International Society for 
Soil Mechanics, who had the kindness to preface the English edit ion. 

The first problems were originally prepared by J e a n Costet for the course 
in soil mechanics which he introduced in L y o n . 

Thanks are also due to Jean-Claude Rouaul t of " A i r L i q u i d e " and Henri 
Vidal of "Re in forced E a r t h " and also to our Brazilian friend Lucien Decourt 
for contributing problems, and to Thierry Sanglerat for proofreading manu-
scripts and printed proofs . 
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N O T A T I O N S 
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The following general notat ions appear in the prob lems : 

A : S k e m p t o n ' s second coefficient ( somet imes A refers also to 
cross-sectional area) , 
value o f A a t failure 
foot ing width ( somet imes Β refers also to S k e m p t o n ' s first 
coeff ic ient) . 
soil cohesion (undifferentiated) 
effective cohes ion 
reduced cohesion (s lope stabil i ty) 
undrained cohes ion 
consol idated-undrained cohesion 
compress ion index 
uniformity coeff icient, defined as d60/dl0 

coefficient of consol idat ion 
soil particle diameter ( somet imes : horizontal distance 
between adjacent , similar structures , as in the case of sub-
surface drains) 
equivalent diameter of sieve openings in grain-size distri-
but ion 
depth to b o t t o m of foot ings ( somet imes D refers to depth 
to hard layer under the t o e o f a s lope) , 
void ratio ( somet imes : e refers to eccentricity of a concen-
trated force acting on a foot ing) 
m a x i m u m and min imum void rat ios 
Young ' s m o d u l u s 
pressuremeter m o d u l u s 
friction ratio (static penetrometer test ) 
acceleration due to gravity (gravie) 
shear m o d u l u s 
hydraulic head 
soil layer thickness (or normal cohes ion: Ç = c cot ö) 
hydraulic gradient 
critical hydraulic gradient 
plasticity index 
coefficient of permeabi l i ty 
active earth pressure coefficients due to overburden, sur-
charge and cohes ion, respectively 
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XIV NOTATIONS 

, fepq, fepc : passive earth pressure coefficients 
K*Y > ^ aq > ^ ac : active earth pressures perpendicular to a given plane 
K ^ y , pq , ifpc : passive earth pressures perpendicular to a given plane 
fes : soil react ion modu lus 
Κ : bulk modulus ( X s of soil s tructure , KW of water) 
K0 : coefficient of earth pressure at rest 
I : width of an excavat ion 
L : length of an excavat ion 
m v : coefficient of compressibi l i ty 
Mm : driving m o m e n t 
MR : resisting m o m e n t 
Ì : bending m o m e n t 
ç : poros i ty 
ç¼ : stability coefficient ( s lope stability prob lems) 
Ny, , iVc : bearing capacity factors for foundat ion design 
Ρ : concentrated (point) load 
ñ Õ : l imit pressure (pressuremeter tes t ) 
Pf : creep pressure (pressuremeter test) 
q : uniformly distr ibuted load (or percolat ion discharge) 
Q : discharge (or load acting upon a foot ing) 
Qf : friction force of pile shaft ( total skin friction force) 
Qp : end-bearing force of pile ( tota l ) 
qd : u l t imate bearing capaci ty of soil under a foot ing or pile 
Qad : a l lowable bearing capaci ty of a foot ing or pile 
R : radius of a circular foot ing (or radius of drawdown of a 

well) 
RD : relative density ( e m ax - e ) / ( e m ax - emin) 
r : well radius (or polar radius in polar coordinate sys tem) 
i ? p or qc : end-bearing on the area of a static penetrometer (cone 

resistance) 
s : curvilinear abscissa (or cross-sectional area of a thin wall 

tube , or sett lement) 
S : cross-sectional area of a mold or a sample 
S. G. : specific gravity 
S t : degree of saturat ion 
t : t ime 
Ô : shear 
Tv : t ime factor 
u : porewater pressure 
U : degree of consol idat ion (or resultant of pore-water pressure 

forces) 
í : rate of percolat ion 
V : vo lume 
W  : weight of a given soil vo lume 
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w  : water content or sett lement 
w u w p : l iquid limit, plastic limit 
x,y,z  : Cartesian coordinates , with Oz  usually considered the verti-

cal, downward axis 
a : angle between orientat ions, usually reserved for the angle 

between two crystal faces. Also used to classify soils for the 
purpose of their compressibi l i ty f rom static cone penetro-
meter test da ta C.P.T. 

â : s lope of the surface of backfill behind a retaining wall 
(angle of s lope) 

7 : unit weight of soil (unspecif ied) 
7S : soil particles unit weight (specific gravity) 
7 s at : saturated unit weight of soil 
7 h : wet unit weight of soil 
7 W : unit weight of water = 9 .81 k N / m 3 . 
7 d : dry unit weight of soil 
7' : effective unit weight of soil 
T x y , 7yZ 5 Tz x · shear strain, twice the angular deformat ion in a rectangular, 

3-dimensional system 
δ : angle of friction between soil and retaining wall surface in 

passive or active earth pressure problems , or the angle of 
inclination of a point load acting on a foot ing 

77 : dynamic viscosity of water 
e x , e y , e z : axial strains in a rectangular, 3-dimensional system 
6 j , e 2 , e 3 : principal stress 
e v : volumetric strain 
θ : angle of radius in polar coordinates system ( somet imes : 

temperature) 
í : Poisson's ratio 
σ' : effective normal stress 
ï : tota l normal stress 
σ χ , oy, σ ζ : normal stresses in a rectangular, 3-dimensional system 
σ ι ? σ2 » σ3 : ma jor principal stresses 
om : average stress 
r : shear stress 

: average shear stress 
: shear stresses in a rectangular, 3-dimensional system 

ö : angle of internal friction (undefined) 
ö : effective angle of internal friction 
ö" : reduced , effective angle of internal friction (slope-stability 

analyses) 
<pcu : angle o f internal fr ict ion, consol idated, undrained 
λ : s lope of a wall f rom the vertical 
ùâ, ùä : auxiliary angles defined by sin ùâ = sin β/sin ö and 

sin co δ = sin δ/sin ö 

' m 
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3 .1416 
distance f rom origin to a point in polar coordinate sys tem 
angle of major principal stress with radius vector (plasticity 
problems) 
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E N G I N E E R I N G U N I T S 

It is presently required that all scientific and technical publ icat ions resort 
to the S .I . units ( Sys t&ne International) and their multipliers (deca , hecta , 
ki lo, Mega, Giga) . Geotechnical engineering units fol low this requirement 
and mos t of the problems treated here are in the S . I . sy s tem. 

Fundamental S.I. units: 

length : meter (m) 
mass : ki logram (kg) 
t ime : second (s) 

S.I. Units derived  from the above 

surface 
vo lume 
specific mass 
velocity (permeabi l i ty) 
acceleration 
discharge 
force (weight) 
unit weight 
pressure, stress 
work (energy) 
viscosity 

square meter ( m 2 ) 
cubic meter ( m 3 ) 
ki logram per cubic meter ( k g / m 3) 
meter per second (m/s ) 
meter per second per second ( m / s 2 ) 
cubic meter per second ( m 3 /s) 
N e w t o n (N) 
N e w t o n per cubic meter ( N / m 3 ) 
Pascal (Pa) 1 Pa = 1 N / m 2 

J o u l e ( J ) 1 J = 1 Ν χ m 
Pasca l - second* Pa χ s 

However, in pract ice , other units are encountered frequently. Table A 
presents correlations between the S .I . and two other unit sys tems encoun-
tered worldwide. This is t o familiarize the readers of any publ icat ion with 
the units used therein. F o r that purpose also , British units have been a d o p t e d 
for s o m e of the presented prob lems . 

Force (pressure) conversions 

Force units : see Tab le Β 
Pressure units : see Tab le C 
Weight unit : 1 k N / m 3 = 0 . 1 0 2 t f / m 3 

*This unit used to be called the "poiseuille", but it has not been officially adopted. 
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TABLE A 
Correlations between most common unit systems 

Systeme International Meter-Kilogram system Centimeter-Gram-
(S.I.) (M.K.) Second system 

(C.G.S.) 

units common units common units common 
multiples multiples multiples 

Length meter (m) km meter (m) km cm m 
Mass kilogram (kg) tonne (t) gravie* — g — 
Time second (s) — second (s) — s — 
Force Newton (N) kN kilogram force 

(kgf) 
tf dyne — 

Pressure Pascal (Pa) kPa kilogram force ( t / m 2 barye bar 
(stress) MPa per square 

meter ( k g f / m 2) 
I kg/cm ( 1 0 6 baryes) 

Work Joule (J) kJ kilogram meter t f . m erg Joule 
(energy) (kgm) ( 1 0 7 ergs) 

*Note that 1 gravie = 9.81 kg (in most problems rounded off to 10). 

The unit weight of water is: 7 W = 9 .81 k N / m 3 but it is often rounded off 
t o : 7 W = 10 k N / m 3. 

Energy units: 

1 J o u l e = 0 . 1 0 2 k g . m = 1.02 χ 1 0 " 4 t . m 
1 k g f . m = 9 .81 Jou le s 
1 t f . m = 9 .81 χ 1 0 3 J ou le s 

Dynamic viscosity  units: 

1 Pascal-second ( P a . s ) = 10 poises (Po) . 

British units: 

1 inch 
1 foo t 
1 square inch 
1 square foo t 
l m 2 

1 cubic inch 
1 cubic foo t 
l m 3 

1 p o u n d (lb) 
1 Newton 

1 lb/cu. in. 

= 0 . 0 2 5 4 m 
= 0 . 3 0 4 8 m 
= 6 . 4 5 1 6 c m 2 

= 1 4 4 sq. in. = 0 . 0 9 2 9 m 2 

= 1 0 . 7 6 4 s q . f t . 
= 1 6 . 3 8 7 c m 3 

= 1 7 2 8 cu. in. = 0 . 0 2 8 3 1 7 m 3 

= 3 5 . 3 1 4 cu. ft. 
= 4 . 4 4 9 7 Newton = 0 . 4 5 3 5 9 kgf 
= 0 . 2 2 5 lb = 0 . 1 1 2 4 χ 1 0 - 3 sh. t on 
= 1 .003 x l O " 4 ton . 
= 2 7 0 . 2 7 k N / m 3 

l m = 3 9 . 3 7 0 in. 
l m 

l c m 2 

= 3 . 280 8 foo t 
= 0 . 1 5 5 sq. in. 

l c m 3 = 0 . 0 6 1 Ocu. in. 

(1 sh. ton . = 2 kip) 
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1 lb/cu. ft. 
1 k N / m 3 

1 lb/sq . in. (p.s . i .) 
1 Pascal 
1 0 0 kPa 

0 . 1 5 6 9 9 k N / m 3 

3.7 χ 1 0 - 3 lb /cu . in. = 6 . 37 lb /cu . ft. 
6 . 8 9 6 5 5 χ 1 0 3 Pa 
1 4 . 5 0 χ 1 0 " s p.s . i . 
1 bar = 1 4 . 5 0 p.s . i . 



TABLE Β 

Force units conversions 

Value 
of / 
\ ^ ' e x p r e s s e d 
/ in 

Newton Decanewton Kilonewton Kilogram 
force 

Tonne Dyne 
force 

Newton 
Decanewton 
Kilonewton 
Kilogram 

force 
Tonne force 
Dyne 

1 
10 
1 0 3 

9.81 

9.81 × 1 0 3 

IO"5 

1 0 " 1 

1 
1 0 2 

9 .81 X 10 1 

9 .81 × 1 0 2 

10 6 

1 0 " 3 

IO"2 

1 
9.81 × 1 0 " 3 

9 .81 
10 8 

1.02 × 1 0 " 1 

1.02 
1.02 × 1 0 2 

1 

1 0 3 

1.02 X 10 6 

1.02 × 1 0 " 4 1 0 s 

1.02 X 10 3 1 0 6 

1.02 X 10 1 1 0 8 

1 0 " 3 9 .81 × 1 0 5 

1 9 .81 × 1 0 8 

1.02 × 1 0 " 9 1 

T A B L E C 

Pressure units conversions 

Value y/ 
of / Pa 
i ./expressed 

in -*• 

kPa bar hbar barye kg/cm2 kg /mm2 t / m 2 cm of water atm. 

Pascal 1 10"3 

Kilopascal 103 1 

Bar 10s 102 

Hectobar ΙΟ7 104 

Barye 0.1 10 4 

kg/cm2 9.81 ×  104 9.81 χ 101 

kg /mm2 9.81 x  106 9.81 χ 10"3 

t / m 2 9.81 x 103 9.81 
cm o i water 9.81 ×  101 9.81 ×  10"2 

Atmosphere 1.013 3 X  10s 1.013 3 ÷  102 

10"5 

I O ' 2 

1 
102 

10"6 

0.981 
9.81 × 101 

9.81 × 10"2 

9.81 X 10 4 

1.013 3 

IO"7 

10"4 

I O ' 2 

1 
10 8 

9.81 × 103 

0.981 
9.81 X 10 4 

9.81 X 10 6 

1.013 3 X 10' 

10 
104 

106 

108 

1 
9.81 x 10s 

9.81 × 107 

9.81 × 104 

9.81 × 102 

"2 1.013 3 × 106 

1.02 x 10"5 1.02 × I O -7 

1.02 x I O -2 1.02 X 10 4 

1.02 1.02 x 10 2 

1.02 x 102 1.02 
1.02 × 10"6 1.02 X 10 8 

1 10 2 

102 1 
0.1 10 3 

10"3 10 5 

1.033 1.033 X 10 2 

1.02 x 10"4 1.02 × 10"2 

1.02 x I O -1 10.2 
10.2 1.02 x 103 

1.02 x 103 1.02 X 10s 

1.02 x 10"~5 1.02 x 10 3 

10 i o 3 

i o 3 i o 5 

1 102 

ιο~2 1 
1.033 × 101 1.033 χ 103 

9.869 × 10"6 

9.869 X 10 3 

0.986 9 
9.869 x  101 

9.869 x  10 7 

0.968 1 
9.681 × 101 

9.681 X 10 2 

9.681 × 10"4 

1 

X
X
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Chapter 1 

P H Y S I C A L C H A R A C T E R I S T I C S O F S O I L 

if Pro blem 1.1 Water content 

A saturated clay sample has a mass of 1526 g. After drying, its mass is 
1053g. The solid constituant (soilparticles) has a specific gravity  of 2.7. 
Find: 
— water  content,  w 
— void  ratio, e 
— porosity,  ç 
— wet  unit weight,  yh 

— wet  density,  7 h / T w · 
Takeg = 9.81 m/s2. 

Solut ion 
The weight o f the clay sample is : 1 .526 χ 9 . 8 1 = 1 4 . 9 7 Ν. 
The dry weight is : 1 .053 χ 9 .81 = 1 0 . 3 3 Ν. 
The weight of water conta ined in the sample i s : 1 4 . 9 7 — 1 0 . 3 3 = 4 .64 N . 
The water content : w = weight o f water/weight of dry soil = 4 . 6 4 / 1 0 . 3 3 = 
0 . 4 5 . 

The void ratio is : e = vo lume of water /volume of soil particles. 
S ince the soil is sa turated , the voids between soil particles are filled with 

water and the volume of voids is equal to the volume of water (F ig . 1 .1) . 

Ã Wate r 

Grains 7 W = 9 . 8 1 · 1 0 3 N / m 3 

Fig. 1.1. 

The volume of water is : 

weight of water _ 4 .64 

yl " 9 . 81 χ 1 0 3 
= 0 . 4 7 3 x l 0 _ 3m 3 = 4 7 3 c m 3 . 



2 PHYSICAL CHARACTERISTICS OF SOIL 

The unit weight of the soil grains is : 

= — X 7 w  = 2 . 7 x 9 . 8 1 = 2 6 . 5 k N / m 3 = 2 6 . 5 χ 1 0 3 N / m 3 . 
Tw 

The volume of the soil grains is : 

weight of soil grains 1 0 . 3 3 

Ts 2 6 . 5 χ 1 0 3 
0 . 3 9 0 x l 0 ~ 3 m 3 = 3 9 0 c m 3 . 

4 7 3 
The void ratio is then: e = = 1 .21 . 

3 9 0 

volume of voids 4 7 3 4 7 3 
Porosity ç = = = = 0 . 5 5 . 

total vo lume 4 7 3 + 3 9 0 8 6 3 

The saturated unit weight 7 h , is : 

weight of saturated sample 14 .97 
7h = — : : — = ~ = 1 7 . 3 4 x l O 3 N / m 3 

volume of saturated sample 0 .863 χ 10 3 

= 17 .34 k N / m 3 . 

The saturated density 7 h / 7 w = 1 7 . 3 4 / 9 . 8 1 = 1.77 

Summary of answers 
w  = 0 . 4 5 ; e = 1 . 2 1 ; ç = 0 . 5 5 ; jh = 1 7 . 3 4 k N / m 3 ; 7 h / 7 w = 1.77. 

if Problem 1.2 Water content , degree o f saturat ion 

A soil sample has a mass of 129.1 g and a volume  of 56.4 cm3. Mass of 
the soil grains is 121.5g. The soil grains specific gravity  is 2.7. Find: 
— the water  content,  w 
— the void  ratio, e 
— the degree of saturation, SY. 
Takeg = 9.81 m/s2. 

Solut ion 
The weight of the sample is : 0 . 1 2 9 1 χ 9 .81 = 1 .2665 Ν. 
The weight of the dry soil (soil grains) i s : 0 . 1 2 1 5 χ 9 . 8 1 = 1 .1919 Ν. 
The weight of the water is the difference between the two calculated weights : 
1 .2665 - 1 .1919 = 0 . 0 7 4 6 Ν 
and the water content : 

w = (weight o f water)/(weight of soil) = 0 . 0 7 4 6 / 1 . 1 9 2 ^ 0 . 0 6 3 , or w = 6 .3%. 



PROBLEM 1.2 

The void rat io is : 

e = vo lume of voids (water 4- a ir ) /volume of soil grains 

e 

1 

Air 
Wate r -=~z 

7 

j . · - · . . - ·' 

Grains ·" * 

Fig. 1.2. 

The volume of voids is equal t o the total vo lume less the volume of grains. 
The total vo lume is k n o w n : 56 .4 c m 3 . 

weight of grains 
The volume of the grains is : 

unit weight (ys) 

Since specific gravity 

S .G . = 7 s / 7 w  = 2.7 

where 7 W = pg = 9 .81 k N / m 3 and 7 S = 2.7 χ 9 .81 χ 1 0 3 N / m 3 . 

The volume of grains Vs is : 

V s = 1 .1919 /2 .7 χ 9 . 8 1 x l O 3 = 4 . 5 x l 0 " 5 m 3 = 4 5 c m 3 

and the volume of voids is : 

Vv = 5 6 . 4 - 4 5 = 11 .4 c m 3 . 

The void ra t io : e = 1 1 . 4 / 4 5 = 0 . 2 5 3 , say e = 0 . 2 5 . 
The degree o f saturat ion S r is given b y : 

vo lume of water/volume of voids 

The vo lume of water : Vw = weight of water/density of water 
= 0 . 0 7 4 6 / 9 . 8 1 χ 1 0 3 = 7.6 χ 1 0 " 6 m 3 or V w = 7.6 c m 3 . 
The degree o f saturat ion is : S r = 7 . 6 / 1 1 . 4 = 0 . 6 6 6 , say 6 7 % . 

Summary of answers: 
w = 6 .3%; e = 0 . 2 5 ; S r = 6 7 % . 

3 

= VJVS (F ig . 1.2) 
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^Problem 1.3 Unit weight and density 

A quartzitic  sand weighs, in a dry condition,  15.4 kN/m 3. What  is its wet 
unit weight  (yh) and its wet  density  7 h / 7 w when  it is saturated? 
Assume: specific gravity  of sand: S.G. = 2.66, acceleration due to gravity: 
g = 9.81 m/s2, unit mass of water: ñ = 103 kg/m3. 

Solut ion 
The unit weight of the sand grains is : 

7 S = S .G . χ 7 W = S .G . χ ρ x g = 2 .66 Ί 0 3 · 9 . 8 1 N / m 3 = 2 6 . 1 0 k N / m 3 . 

A cubic meter of dry sand contains 1 5 . 4 0 / 2 6 . 1 0 = 0 .59 m 3 of grains and, 
consequent ly , 1 — 0 .59 = 0 .41 m 3 of voids. 
When this sand is saturated, the voids are complete ly filled with water. The 
weight of the void water is then: 

0 .41 X 7 W = 0 . 4 1 x 9 . 8 1 = 4 . 0 2 k N . 

The weight of a cubic meter of saturated sand is thus 15 .4 4- 4 . 0 2 = 1 9 . 4 2 kN 
or 7 h = 1 9 . 4 2 k N / m 3 . 
The density of sand 7 hA y w = 1 9 . 4 2 / 9 . 8 1 = 1.98. 

Summary of answers: 

7 h = 1 9 . 4 2 k N / m 3 ; T h/ 7 w  = 1.98. 

*Problem 1.4 Unit weight and densi ty ; saturat ion and water content 

A clay sample is placed in a glass container. Total mass of clay sample and 
container is 72.49g. After drying in an oven,  the dry mass of the clay and 
container is 61.28g. The mass of the container is 32.54 g. A specific gravity 
test  by the picnometer  method  has determined  that S.G. of the soil constitu-
ant is 2.69. 

(a) Assume the sample to be saturated, find: 
— the water  content,  w 
— the porosity,  ç 
— the void  ratio, e 
— the wet  density  (jh/Jw) 
— the dry density  (ya/y w) 
— the buoyant density  (y'/y w). 

(b) Before drying the sample, its volume  V was determined  by immersing 
the soil in mercury  (V = 22.31 cm3). What  is the actual degree of saturation 
and what  are the new  values of the densities determined  in (a)? 

Solut ion 
(a) The mass of water contained in the sample is : 7 2 . 4 9 — 6 1 . 2 8 = 1 1 . 2 1 g . 



PROBLEM 1.4 5 

The mass of dry soil particles is : 6 1 . 2 8 — 3 2 . 5 4 = 2 8 . 7 4 # . 
The water content w = weight of water/weight of dry soil = mass of water/ 
mass of dry soil = 1 1 . 2 1 / 2 8 . 7 4 = 0 . 3 9 , w  = 39%. 

Porosity ç = vo lume of voids / tota l vo lume. 

Since the sample is a s sumed to be saturated, the vo lume of voids is equal to 
the volume of water or 1 1 . 2 1 c m 3 ( the unit mass of water is ρ = lg/cm3). 

Vg = mass of dry soil grains/specific gravity of soil = 2 8 . 7 4 / 2 . 6 9 ~ 1 0 . 6 8 c m 3 . 

Therefore , ç = ( 1 1 . 2 1 ) / ( 1 1 . 2 1 4 - 1 0 . 6 8 ) ~ 0 . 5 1 2 , say ç = 0 . 5 1 . 
The void ratio is e = volume of voids /volume of soil grains = 1 1 . 2 1 / 1 0 . 6 8 = 
1 .049, say e~ 1 .05. 

S ince the unit mass of water is 1 g/cm3, densities are of the same numerical 
values as the unit masses . The mass of the wet sample is, therefore : 7 2 . 4 9 — 
3 2 . 5 4 = 3 9 . 9 5 g . 

The total volume of the clay sample is : 1 1 . 2 1 + 1 0 . 6 8 = 2 1 . 8 9 c m 3 . 
The wet unit mass is : 3 9 . 9 5 / 2 1 . 8 9 = 1 . 8 2 5 g / c m 3, say 1.83 £ / c m 3 , and the 

wet density 7 h / T w thus 1.83. 
The mass of the dry soil is 2 8 . 7 4 # . Its dry unit mass is : 2 8 . 7 4 / 2 1 . 8 9 = 

1 . 3 1 3 g / c m 3, say 1 . 3 1 g / c m 3, the dry density yd/y w = 1 . 31 . 
In order to obtain the b u o y a n t density , the weight of water displaced by 

the submerged mass of the soil grains mus t be subtracted f rom the soil 
weight. The volume of the grains is 1 0 . 6 8 c m 3 . Their mass in water will 
then b e : 2 8 . 7 4 - 1 0 . 6 8 = 1 8 . 0 6 g , and the buoyant unit mass is : 1 8 . 0 6 / 
2 1 . 8 9 = 0 . 8 2 5 ^ / c m 3 ; say 0 . 8 3 # / c m 3 . (Another , mos t c o m m o n l y used way 
of determining buoyant unit mass , is f rom the relat ion: 
buoyant unit mass = saturated unit mass — unit mass of water ) . 

(b) The volume of the samples being 2 2 . 3 1 c m 3 proves that the clay is 
not saturated. Part of the voids is filled with air. The air vo lume is: 2 2 . 3 1 — 
2 1 . 8 9 = 0 .42 c m 3 . 
The degree of saturat ion, Sr = volume of water/ tota l void vo lume. 

The vo lume of water calculated in (a) is 1 1 . 2 1 c m 3 , the volume of void = 
1 1 . 2 1 + 0 . 4 2 = 1 1 . 6 3 c m 3 then S r = 1 1 . 2 1 / 1 1 . 6 3 = 0 . 9 6 3 , say Sr = 0 . 9 6 . 

The total soil sample volume is 2 2 . 3 1 c m 3 . The corrected densities are 
thus : for the wet densi ty : yh/y w = 3 9 . 9 5 / 2 2 . 3 1 = 1.79 and for the dry den-
si ty : T d / 7 w  = 2 8 . 7 4 / 2 2 . 3 1 = 1.29. 

Since the concept of b u o y a n t mass is appl icable to saturated soils only, it 
should not be calculated in this instance. 

Summary of answers 

(a) w = 3 9 % ; ç — 0 . 5 1 ; e = 1 . 0 5 ; T h/ T w = 1 . 8 3 ;7d / T w  = 1 . 3 1 ; T ' /TW = 0 .83 . 
( b ) S r = 9 6 % ; 7 h / 7 w  = 1-79; ydlyw = 1 .29. (y'/y w has no meaning in the 
second part of the prob lem because the soil is n o t saturated. ) 
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irProblem 1.5 Grain-size dis tr ibution : effectiv e diamete r and Hazen's 
coefficien t 

A grain-size analysis is performed on 3500g of dry sand from the Saone 
valley.  No soil is retained on the 12.5-mm  openings sieve. A nest of six sieves 
is subsequently  used to separate the various sand sizes. The openings of the 
sieve meshes are, from top to bottom; 5,2,1, 0.5, 0.2 and 0.1 mm. The soil 
masses remaining on each of the six sieves are 217g, 868g, 1095g, 809g, 
444 g, 39 g, and the amount of soil in the bottom  pan is 28 g. 

Draw the grain-size distribution  curve and find the effective  diameter and 
the uniformity  coefficient (Hazen's coefficient) of this sand. 

Solu t ion 
Drawing the grain-size distr ibution curve consists of connect ing the points 

on a graph which represent the cumulat ive mass percentages passing down 
to the sieves size. 

As shown in Fig . 1.3, the soil passing sieve ç = soil passing sieve (ç — 1) 
minus the soil retained on sieve n, or Tn =Tn-x — Rn, where Tn is the 
weight passing sieve n. 

Siev e ç 

Nes t  of sieve s 

Fig. 1.3. A nest of sieves. 

Since the initial sieve (12 .5-mm openings) retained no soil, Tx = 3 5 0 0 g. 
The soil retained on the top sieve of the nest is 2 1 7 g, therefore T2 = 

3 5 0 0 - 2 1 7 g = 3 2 8 3 g, T 3 = 3 2 8 3 - 8 6 8 g = 2 4 1 5 , and so on. 
A table , such as the one shown below, is constructed to give the calculated 

values of the percents passing. The values in the last co lumn are p lot ted on a 
semi-log grid (see Fig. 1.4). 



Fig. 1.4. Grain-size distribution curve. 
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8 PHYSICAL CHARACTERISTICS OF SOIL 

TABLE 1A 

Sieve Sieve openings Soil retained Soil passing Percent passing 
no. (mm) (*) (s) 

1 12.5 0 3500 100 
2 5 217 3283 94 
3 2 868 2415 69 
4 1 1095 1320 37.7 
5 0.5 809 511 14.6 
6 0.2 444 67 1.92 
7 0.1 39 28 0.80 

Rest — 28* — 

The masses retained should always (very nearly) add up to the amount of the whole 
sample tested. 

The Hazen coefficient, or uniformity coefficient is, by definition C u = 
d60/dlQ. F r o m Fig. 1.4, the 10% passing corresponds to a diameter of d 1 0 = 
0 .37 m m (effective diameter) and d 6 0 = 1.60 m m . Therefore , d 6 0/ d 1 0 = 
1 .60/0 .37 = 4 .3 . 

The sand is well-graded since its coefficient is larger than 2. 

Summary of answer 

Effective diameter , dl0 = 0 .37 m m ; Hazen's coefficient d60/dx0 = 4 .3 . 

^Problem 1.6 Classification H.R .B. 

Atterberg  limits and sieve tests were  performed on five soil samples ident-
ified in Table IB as a through e. Classify the soils according to the Highway 
Research Board Classification (H.R.B.). 

TABLE I B 

Sample Atterberg limits Passing (%) Sample 

2 mm 0.4 mm 80 μιη 

a — — 97 59 0.1 
b 24 16 99 93 73 
c 28 17 99 76 57 
d — — 84 8 1 
e 23 16 100 85 28 

Solut ion 
The H .R .B . classification is summarized in Table 1C . 

F r o m this data , the soils can be classified as fol lows. 



TABLE 1C 

Summarized H.R.B-classification 

Less than 35% passing 80-μ sieve More than 35% passing 80-μ sieve 

Aia A i b A 3 A 2-4 A 2- s A 2- 6 A 2- 7 A 4 A 5 A 6 A7-5 A7-6 

Percent passing: 
2-mm sieve 
0.4-mm sieve 
80-μηι sieve 

< 5 0 
< 3 0 < 5 0 
< 1 5 < 2 5 

> 5 1 
< 1 0 < 3 5 < 3 5 < 3 5 < 3 5 >S6 > 3 6 > 3 6 > 3 6 > 3 6 

Characteristics of portions 
passing the 2-mm sieve: 
— plasticity index 
— liquid limit 

< 5 
no test 

no test < 1 0 
< 4 0 

< 1 0 
> 4 1 

> 1 1 
< 4 0 

> 1 1 
> 4 1 

< 1 0 
< 4 0 

< 1 0 
> 4 1 

> 1 1 
< 4 0 

>11 
> 4 1 

> 1 1 
> 4 1 

— group index 0 0 0 < 4 < 8 < 1 2 < 1 6 < 2 0 < 2 0 

— general name cobbles 
gravels 
sands 

fine 
sand 

mixture of silty gravel or 
clayey gravel with silty 
or clayey sand 

silty soils clayey soils 
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Sample a. (1) The percent passing the 8 0 μ π ι = 0 . 1 % , the soil must be 
classified as granular soil. (2 ) The percent passing 0.4 m m is more than half, 
it is 59%. The soil is a fine sand of t y p e A 3 (non plast ic) . 

Sample b. (1) The percent passing the 80 Mm: 73% > 3 5 % ; it is therefore 
a fine-grained soil. (2 ) The plasticity index Ip = w h — w p = 2 4 — 16 = 
8 < 10%: the soil is silty. (3 ) The liquid limit w h = 2 4 < 4 0 % : the classifi-
cat ion is type A 4 : a silt. 

Sample c. (1 ) Percent passing 80 Mm: 57% > 3 5 % : a fine-grained soil. (2 ) 
plasticity index : J p = w h — w p = 2 8 — 17 = 1 1 % : a clayey soil. (3 ) w L = 
28 < 4 0 % ; this soil is o f type A 6 , clay. 

Sample d. (1 ) Percent passing 80 μπι : 1 % < 3 5 % : a coarse-grained soil. 
(2 ) Percent passing the 0.4 m m : 8% < 30%. (3 ) Percent passing the 2 m m : 
84% > 50%: this is the type A l b soil, a gravelly sand. 

Sample e. (1) Percent passing 8 0 Mm: 2 8 % < 3 5 % : a coarse-grained soil ; 
(2 ) Plasticity index J p = w h~wp = 23 - 16 = 7 < 10%. (3 ) L iqu id limit 
u ; L = 23 < 4 0 % : this is a type A 2 - 4 soil, a silty sand. 

Summary of answers 
Samples a: type A 3 , b : type A 4 , c : type A 6 , d : t y p e A l b, e : type A 2 - 4 . 

**Problem 1.7 Atterberg limits 

An Atterberg  limits test  on soil samples gave the results shown in Tables 
ID and IE. 

TABLE I D 

Liquid limits (masses in grams) 

Number of blows 17 21 26 30 34 

Test nr. l a 16 2a 26 3a 36 4a 46 5a 56 

Total wet mass 9.35 9.68 13.69 12 .16 10 .11 9.27 10 .31 11 .08 11 .50 9.59 
(soil + tare) 
Total dry mass 8.79 9.20 11.35 10 .19 8.67 8 .02 8.84 9.42 9.78 8.31 
(soil + tare) 
Tare mass 7.11 7.77 4.05 4.05 4.10 4.07 4 .10 4.10 4.07 4 .05 

TABLE IE 

Plastic limits (masses in grams) 

1st test 2nd test 

Container nr. A Β Ε F 
Total wet mass 6.32 6.56 6.54 6.36 
Total dry mass 5.94 6.15 6.12 5.97 
Tare mass 4.06 4.10 4.07 4.05 
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Calculate the liquid limit  w h and the plastic limit  w p of the soil. What  is 
the plasticity  index? Compare the results of w h with  those given by the 
following  (approximate) mathematical relation: w L = w(N/25) 0A21. 

Classify the soil in accordance with  Casagrande's A-line. 

Solut ion 
By definit ion, 

weight of water mass of water 
w = = 

weight of dry soil mass of dry soil 

The mass of water = total wet mass — total dry m a s s ; the mass of dry soil = 
total dry mass — tare mass . 

The average of two values in each co lumn is taken to make a new tabu-
lation as shown in Table I F . 

TABLE I F 

Liquid limits (w^) 

Number of blows 17 21 26 30 34 

Test nr. l a l b 2a 2b 3a 3b 4a 4b 5a 5b 

Mass of water 0.56 0.48 2.34 1.97 1.44 1.25 1.47 1.66 1.72 1.28 
Mass of soil 1.68 1.43 7.30 6.14 4.57 3.95 4.74 5.32 5.71 4.26 
Water content 33 .30 33 .60 32 .10 32 .10 31 .50 31 .60 31.00 31 .2 30 .10 30 .00 

Averages 33.5 32 .10 31.6 31 .1 30.1 

The average values of the water contents are p lot ted against their corre-
sponding numbers of blows on the graph of Fig . 1.5. By definit ion, the 
liquid limit w L is the water content corresponding to 2 5 blows. S o w L = 
31 .6%, say 3 2 % . 
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N u m b e r o f b l o w s 

Fig. 1.5. Average water contents plotted against number of blows. 
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Fig. 1.6. Casagrande's graph. 
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Table 1 G compares the values of w h obta ined from the laboratory test 
versus those obta ined by the use of the empirical formula w h = w(N/25)° ·121. 

The laboratory determinat ion o f w L entails an error est imated t o be half 
a point of the value of w\  or : 0 . 5 / 3 1 . 6 = 1.6%. 

The empirical m e t h o d yields an average value of 31 .6 with a m a x i m u m 
error of 0 .4 point . The two methods are acceptable to the same degree of 
accuracy for this particular soil . 

F o r the plastic l imits, w p, Table 1H, similar to the previous one , can be 
m a d e u p . 

TABLE 1G 

Ν N/25 (ΛΓ/25) 0· 1 21 w 

17 0.68 0 .954 33.5 ^ 3 2 
21 0.84 0 .979 32.1 31.4 
26 1.04 1.005 31.6 31.7 
30 1.20 1.022 31.1 31.8 
34 1.36 1.038 30.1 31.2 

TABLE 1H 

Plastic limits (wp) 

1st test 2nd test 

Container i.d. A Β Ε F 

Mass of water (g) 0.38 0.41 0.42 0.39 
Mass of dry soil (g) 1.88 2.05 2.05 1.92 
Water content (%) 20.2 20.0 20.5 20.3 

Averages (%) 20.1 20.4 

The plastic limit is 20%, the nearest whole number of the experimental 
results. Therefore : w L = 3 2 % , w p = 20%, Ip = w h — w p = 1 2 % . 

Casagrande's Α-line graph shown in Fig . 1.6 with the results p lo t ted on it 
indicates that the soil is an inorganic clay of med ium plasticity. 

***Problem 1.8 Correct ion o f a grain-size distr ibution curve: scalping and 
mixing of soils 

The sieve analysis of an alluvial gravelly soil sample gave the following  size 

distribution: 

d100 = 1 0 0 d 7 5 = 50 d 4 5 = 20 d 3 8 = 10 d 3 4 = 5 

d 3 0 = 2 d29 = 1 d 2 5 = 0 .5 d 1 0 = 0 .2 d 3 = 0 .08 
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Fig. 1.7. Grain-size distribution for problem 1.8. 
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(1) Determine  whether  this material would  meet  the gradation require-
ment  of an acceptable foundation soil as defined by the limit  curves shown 
in Fig. 1.7. 

(2) It is desirable to reduce the sand content  by 5% between  0.2 and 0.5, 
which  is, in its present quantity,  considered detrimental  for achieving proper 
compaction.  However,  the percentages of sizes over 10 mm should not be 
changed. Recommend  a procedure to correct the grain-size distribution.  All 
values of dy are in millimeters. 

Solut ion 
(1) The grain-size distribution curves for the upper and lower limits as well 

as the averages between them and for the soil sample are shown in Fig. 1.8. 
The curve for the sample is contained entirely within the specified limits. 

The soil is an acceptable material for the foundat ion. It is not iced how-
ever, that its grain-size distribution deviates substantially from the average 
between the upper and lower limits and shows a ' h u m p ' in the sand range 
between d = 0 .2 and d = 2 . This hump is also evident in the histogram 
plot ted in Fig . 1.9, which shows the individual (as o p p o s e d to the cumu-
lative) percentages for each consecutive sieve-size opening range. The average-
curve histogram is also shown. The ' h u m p ' in the sand fraction is seen to 
occur more precisely between sieve sizes 0.2 and 0 .5 . 

(2 ) To reduce the a m o u n t of sand in the range 0.2—0.5 by 5% may be 
interpreted to mean that the quant i ty of the size corresponding to 1 5 % must 
be lowered to 10%. Furthermore , there is the requirement not to change the 
percentages of sizes equal to or greater than 10 m m . In order to achieve this, 
an amount ρ of a soil of an as ye t undetermined grain-size distribution must 
be mixed with the alluvial gravelly soil to bring the 0.2—0.5 range of the 
mixture down to 10%. 

For , let us say, 1 0 0 kg of gravel G, the weight ñ to be added , is: 

15 = 1 0 / 1 0 0 ( 1 0 0 + p) or ñ = 50 kg. 

Since all sizes equal to or greater than 10 m m amount to 2 5 4- 30 4- 7 = 
6 2 % of the weight of the original sample , it is necessary to add a pro-
port ionate part , or 0 .62 χ 50 kg = 3 1 kg of material scalped from the gravel 
retained on sieves 10 m m and above . This only leaves 50 — 3 1 = 19 kg to 
add a material that has the gradation of 'fine gravelly sand ' ( m a x i m u m 
diameter smaller than 10 m m ) but is coarse enough not to have sizes less 
than 0 .5 m m . 

F r o m the histogram of Fig . 1.9, it is evident that the a m o u n t of gravelly 
sand in the range 0.5—5.0 m m is below the average gradation of the two 
allowable limits. One possible solution to lower d 1 5 would be to add 19 kg 
of gravelly sand with a gradation between 0.5 and 5 . Such a sand (with a 
distribution d100 = 5 m m , d90 = 2 m m and d30 = 1 m m ) is p lot ted in Fig . 
1.10 as sand S. Hence Table I I is obta ined . 
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100 50 20 5 2 1 0.5 0.2 0.1 0.08 

S iev e opening s i z e s ( m m ) 

COARSE SAND FINE SAND 

Fig. 1.9. Grain-size histogram of gravel sample G. Cross-hatched areas represent the aver-
age curve between allowable limits. 

Fig. 1.11 shows the corrected curve Gf obta ined on the data o f Table 1 J . 
The boxed-in figures of that Table indicate that the requirements of the 
problem have been met . 

The corrected curve G' (see Fig. 1.11) is based on the following figures. 

TABLE II 

Sieve Percent Constituent Weight for 
size passing part 19 kg of sand S 

5 100 10 1.9 
2 90 60 11.4 
1 30 30 5.7 

0.5 0 Σ = 19.0 
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2 1 0.5 0.2 
S i e ve o p e n i n gs ( m m) 

Fig. 1.10. Grain-size distribution of sand S. 

TABLE 1J 

Sieve 
sizes 

Weight in kg at various 
constituents for 150 kg of G' 

Constituent 
parts (%) passing 

100 

50 

20 

10 

5 

2 

1 

0.5 

0.2 

0.1 

0.08 

25 XI .5 = 

30 X 1.5 = 

7 X 1 . 5 = 

4 + 1.9 = 

1 + 11.4 = 

4 + 5.7 = 

100 
37 .50 25% 

100 

45 .00 30% 
75 

10.50 7% 
45 

4.00 2.6% 
38 

5.90 3.9% 
35.4 

12 .40 8.3% 
31.5 

9.70 6.5% 
23.2 

16.7 

6.7 
15 .00 10% 

16.7 

6.7 
6.00 4% 

16.7 

6.7 

1.00 0.7% 
2.7 

3.00 2% 
2 

0 

The values in Table 1J show that the imposed conditions are verified: 
% of dy > 10 unchanged 
% of 0.2 < dy < 0.5 decrease to 10% 



Fig. 1.11. Grain-size distribution of corrected material. 
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Conclusions. The natural gravel sample has to be scalped on a 10-mm size 
screen. Retained material must be mixed with a gravelly sand soil meeting 
the gradation of material S. 

For each ton of gravel G, 3 1 0 kg of the scalped material and 190 kg of 
sand S will have to be added, to meet requirements . In actual practice the 
solution of the problem could read: add 3 0 0 kg of scalped material for each 
ton of gravel and add 2 0 0 kg of sand S for each ton of gravel G. 

irk+Problem 1.9 Compac t ion , Proctor diagram and saturat ion curve 

(a) A modified  Proctor-test  yielded  the following  values for water  content 
and densities of a clayey  gravel. 

w(%): 3.00 4.45 5.85 6.95 8.05 9.46 9.90 

7 d/ 7 w: 1.94 2.01 2.06 2.09 2.08 2.06 2.05 

Draw the Proctor compaction curve and determine  values at optimum 
condition.  Calculate the degree of saturation corresponding to the optimum 
condition,  assuming the soil specific gravity  to be 2.65. 

(b) Calculate the percentage of air for a given porosity  ç and degree of 
saturation Sr. On the dry density—moisture  content  graph, find the equation 
of the curve connecting points of equal degree of saturation (or equal per-
centage of air voids). From this, determine  the equation of the curve for 
100% saturation. What  are the characteristics of this curve? 

(c) Consider an equilateral triangle ASW whose  height is Aa or Ss or Ww. 
Show that the conditions of a soil regarding the volumes of air, of soil grains 
and of water  can be represented  by a point  Ì located inside the triangle in 
such a manner that the perpendicular distances from point  Ì to each of the 
triangle sides are proportional to three volumes, Va, Vs and Vw. 
— draw in the triangle curves of equal air- void  percentage; 
— what  does the saturation curve of the Proctor-diagram represent? 
— show that the set of straight lines from point  S correspond to the lines 
showing the state of soils for a constant degree of saturation; 
— draw in this diagram the Modified Proctor-compaction  curve of question 
(a) above; 
— on a random curve C, analogous to the test  curve, consider two  points M1 

and Ì2 so that MXM2 is parallel to AW.  What  can be said about the state of 
soils at points Mx and M2 ? 

Solut ion 
(a) The test results may be plot ted directly on a graph such as that of 

Fig. 1.12. With the dry density as ordinate and water content as abscissa. 
The coordinates at m a x i m u m dry density correspond to the o p t i m u m dry 
density and o p t i m u m water content (the so-called modif ied Proctor l ine) , 
are : (7d/7w)oPt = 2 . 0 9 , w opt = 7 .5% 
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 Fig. 1.12. Modified Proctor Test, C.B.R mold. 7dopt = 20·9 kN/m3. W opt = 7.5%. Test made on fraction 0—20 mm. 
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and e = (Ys/Yd) - 1. 

Therefore: - = ~ ~ / ( r ~  -yd).  
1 
e 

At optimum condition the degree of saturation will be: 

= 74% 

(b) Fig. 1.13 is a graphic representation of a unit soil volume, where a = 
volume of air = 1 - nS, - (1 - n )  or a = n (1 - S r ) .  

Fig. 1.13. 

The following relationships exist: a = 1 -volume of grains -volume of water; 
volume of grains = (weight of grains)/y, = Yd/Ys;  

volume of water = weight of water/y, 
weight of grains 

Yw 
= (weight of water)/(weight of grains) x = w ( Y d / Y w )  

Y d  Yd t henu=  1 - - - - w - - .  
Ys Y W  

Since for any soil at a particular moisture content ys and yw are constants, 
all points representing states of soil for a given percentage of air voids are on 

one curve whose equation is 1 - - - w rd = a (constant) Yd 

Y S  Yw 

Yd - ( l - - a ) Y s  or: - - 
Yw YSW + Yw - 
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This is a port ion of a hyperbola with w>0, whose a s y m p t o t e is the w-axis, 
passing through w = 0 , such that 7 d = ( 1 — a)ys (see Fig . 1 . 1 4 ) . 

If a = 0 , the volume of air is zero and the soil is saturated. The saturation 

curve then is represented by the equat ion : 
7 s Td 

Tw 7 s w + 7v 

Note: The same result is obta ined by determining the equat ion of a family 
o f curves of equal saturat ion ST: 

volume of water 

volume of air + vo lume of water 

or, for a unit vo lume : 

volume of water w ( 7 d / 7 w ) 

volume of soil grains ( 7 d / 7 s ) 

(w Sr 

or: 7 d — + — 
\7 w 7 s 

= Sr 

Id 

7w 

S r 7 s 

wjs+ S r 7 w 

The curves are also hyperbolas with the w-axis as an a s y m p t o t e . Only the 
sections corresponding to w > 0 have a physical meaning. 

If w — 0 , all the curves pass through point ys (see Fig. 1 . 1 5 ) . If Sr = 1 in 

Figs. 1.14 and 1.15 
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the above formula , the full saturation equat ion is obtained which is identical 
to the first one. 

(c) A soil is a three-phase system defined by the respective fractional 
volumes of air, water and soil adding up to a unit vo lume, so that : 

Va + Vw + Vs = 1 (Fig . 1.16) 

In general: 0 < V a < 1, 0 < Vw < 1, 0 < Vs < 1. 
If we now consider an equilateral triangle and a point Μ inside that triangle 

(Fig . 1.17) it can easily be shown that the sum of the perpendiculars f rom Ì 

Fig. 1.16 

Fig. 1.17. 
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to the three sides is equal to the height of the triangle. F r o m Fig. 1 .17 : 

Ha — Mma 

Kms = %AK 

PMW — PM + M m w = KM 4- M m w = £A P 

KMS + KM + Mmw = Mms+Mmw = ^ ( A # + A P ) = A i / 

hence : Mms + M m w + Afm a = AH + Ha - Aa = 1. 

If the height o f the equilateral triangle is uni ty , the perpendiculars f rom Ì 
represent the volumes o f the three phases (soil , water and air) . 
— The curves of equal air void vo lume ( V a = constant) are straight lines 
parallel t o the side SW ( for e x a m p l e ×1 X). 
— The saturat ion line of the Proctor-diagram is given by side SW ( V a = 0 ) . 
— L e t Ν be any po int on line SM where the project ions on SW and SA are na 
and nw, respectively, then the similarity of the triangles SMmw and S'Nn^ 
gives: 

VW _ SM V* _ SM 

y ; " SN 3X1 Vi ~ SN' 

B y d e f i n i t i o n s , = V w/ ( V a + ^ w ) . 
The degree of saturat ion represented by point Ν i s : 

, = Κ = (SM/SN)VW = 

Vi + V^ (SM/SN)(Va + Vw) 

The straight lines f rom S are therefore lines of equal degree of saturat ion 
and we have : Vs = yd/y s, Vw = (yd/y w)w,  V& = 1 ~ (V. + Vw). 

Going back to the Modif ied Proctor-test results , Table I K can be m a d e u p : 

TABLE IK 

w% 3.00 
7d/Tw 1-94 
Vs 0.732 
Vw 0.058 
í¢ 0.210 

4.45 5.85 
2.01 2.06 
0.758 0.777 
0.089 0.121 
0.153 0.102 

6.95 8.05 
2.09 2.08 
0.789 0.785 
0.145 0.167 
0.066 0.048 

9.46 9.90 
2.06 2.05 
0.777 0.774 
0.195 0.203 
0.028 0.023 

Fig. 1.18 shows the modif ied Proctor-curve in the ASW triangle. 
Points Ì÷ and M2 correspond to the soil states existing at constant 

dry unit weight (see F ig . 1 .19 ) : (yd)M{ ~ ( T d ) M 2 and, therefore, a constant 
void vo lume. The voids are filled in part by incompressible water and com-
pressible air. However, the proport ionate parts of water and air at Ìl and 
Ì2 are not the s ame : 
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S 

1 

Air 

Wate r 

Air 

Water 1 1 

W/k '///// 

1 

M1 M2 

Fig. 1.19. 

— in order to improve the mechanical propert ies of the soil in condit ion Ìë 

its water content will have to be increased to within a close range around the 
o p t i m u m moisture content , then the soil will have to be c o m p a c t e d to in-
crease its dry unit weight; 

- on the other hand, in order to increase the mechanical propert ies of the 
same soil at point M2, the moisture content should be decreased to a value 
beneath w opt (by drying) and the soil then c o m p a c t e d . 

It will be noticed that the water content at M2 is near 1 0 0 % saturat ion. 
Compact ing this soil at that moisture content would tend to bring the soil 
close to complete saturat ion and would likely lead to pumping , causing 
excessive deformat ions of the soil. It would not be possible to use the com-
pacted material, for instance, for a stable pavement subgrade. 
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**Problem 1.10 Void rat io of an organic soil 

Let us assume that the unit weights  of the soil, ysm ,and organic matters, 
Tso are known.  Then: 

(1) What  is the unit weight  of the combined  dry organic soil whose  organic 
content  is M0(*)? 

(2) What  is the void  ratio of this soil, if it is known  that its water  content 
is w and its degree of saturation is Sr? 

Solut ion 

We use the following definitions (F ig . 1 .20 ) : 

vo lume of voids 
for void rat io : e = 

for degree of saturat ion: Sr = 

for water content : w = 

for organic content : M0 

volume of soil grains ' 

vo lume of water 

vo lume of voids 

weight of water 

weight of dry soil 

_ dry organic matter weight 

total dry sample weight 

(1) 

(2) 

( 3 ) 

( 4 ) 

for a unit weight of dry soil we have: M0 = weight of organic matter , 
1 — M0 = weight of mineral matter , 
M0 /7go = vo lume of organic matter , 
(1 ~ M 0 ) / 7 s m = vo lume of mineral matter . 

i é 
Air 

e 

Wate r 

mmrnm 1 

Organic part 

Soil part 

Fig. 1.20. 

• N o t e : The organic content is the percentage by weight, of the dry organic constituent 
of the total dry weight of sample for a given volume. 
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The total unit weight, 7 S , of the dry soil is the weight of a unit v o l u m e : 

( M 0 / 7 s o ) + l(l-M0)/y m] 

7so X 7sm 
or: 7 S = 

M0(jsm — 7 s o) + ^ so 

7 S is a function of the form Y= a/(bx + c ) , meaning that the curve rep-
resenting Y as a function of M0 is a part of a hyperbola (see Fig . 1 . 2 1 ) . S ince 
7 s m( = 2 6 . 5 k N / m 3) is always a greater value than 7 s o, the curve, which is 
only real for value where 0 < M 0 < 1 0 0 % , decreases and varies between the 
limit values 7 s m , for M0 = 0 , and 7 s o, for M 0 = 1 0 0 % (see Fig. 1 . 2 1 ) . 

1 
7s = 

k 

ï 100 
Mo(%) 

Fig. 1.21. 

The expression for S r can be transformed to give: 

volume of water 
volume of voids = 

but we know also that : 

volume of water 
weight of water (weight of dry matter) 

= w  χ 
7' 

From ( 1 ) : 

w 1 
e = 

S r7 w ( M o/ 7 s o ) + [ ( l - M 0 ) / 7 sm J 
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or: 

 ̂ Tso Tsm 

e — · 

S r7 w  Mo ( T s m ~ T s o ) + Tso 

Summary of answers 

Tso * Tsm 
Ts = 

e = 

Tsc 

 ̂ Tso Tsm 

S r Tw M0 ( 7 s m - Tso) + Tso 

+*Pro blem 1.11 Hydrometer analysis 

A hydrometer  analysis is performed on a 2000 cm3 solution containing 
50g of dry soil. The solution concentration at a depth  of 5 cm is 5g/l after 
a sedimentation  time  of 80 minutes. Find: 

(a) the maximum diameter dy of the particles at that depth  and time; 
(b) the percentage of dry soil of particles having a diameter equal to or 

smaller than dy. 

Assume ç = 1 cPo (dynamic viscosity  of water  at 20°C) and ys/y w = 2.65. 

Solut ion 

(a) The m a x i m u m diameter dy is that of the soil particles which at t ime 
zero were at the surface of the solut ion and at t ime t = 8 0 min. , have trav-
elled 5 cm. 

/18 ç Ç 
dy = V 7 

Ts ~ Tw t 

In the C .G.S . sy s t em: 

t = 8 0 χ 6 0 = 4 8 0 0 s 

Ç — 5 c m 

ç = 1 cPo = 1 · 1 0 " 2 Po 

ys = 2 . 6 5 χ 9 . 8 1 d y n e s / c m 3 

7 W = 1 χ 9 . 8 1 d y n e s / c m 3 

/ 1 8 - 1 0 - 2 χ 5 
v = J r = 3.4 · 1 0 ~ 3 c m (or 34 Mm). 
y ^ 9 . 8 1 ( 2 . 6 5 - 1 . 0 0 ) χ 4 . 8 · 1 0 3 

(b) The density of the solution at 5 c m after 8 0 min. is : 
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5 + 1 1 0 0 0 - - ^ - ) x l 
7 \ 2 . 6 5 / 

r = — = - L = 1.003 

7 W 1 0 0 0 χ 1 
The percentage of weight is: 

V 7 S 7 W 2 0 0 0 2 .65 χ 1.00 
y = ^ H r - 1 ) = χ ( 1 . 0 0 3 - 1) = 0 .19 

ñ 7 ~ 7 w  50 2 . 6 5 - 1 . 0 0 
y = 19% 
where V is the volume of the solution and ñ the weight o f the soil. 

Summary of answers 
dy = 3 . 4 - 1 0 " 3 c m ; y = 19%. 

* * P r o blem 1.12 Relative density (English units) 

Determine  the relative density  of a calcareous sand (ysl = 146.3 Ib/cu. ft) 
and that of a quartzitic  sand (ys2 = 165.6 Ib/cu. ft) whose  void  ratios are: 

— for the calcareous sand: e m ax = 0.89, emin — 0.62; 
— for the quartzitic  sand: e m ax = 0.98, emin = 0.53. 

The measurement of the above void  ratios was made in a Proctor-mold 
(ö = 4 in., Ç = 4.59 in.) filled with  following  weights: Px = 2.868 lb of dry 
calcareous sand, P2 — 3.254 lb of dry quartzitic  sand. 

Solut ion 

^ m a í e 
Relative density is : Dt — IA = 

em a x ^min 

The void ratio of the calcareous sand is : 

ðÇö 2/4 - PJysl ( 3 . 1 4 χ 4 . 5 9 x 4 2/ 4 ) - ( 2 . 8 6 8 / 1 4 6 . 3 ) χ 1 2 3 

= 0 .70 
Pi/y,i  2 . 8 6 8 x l 2 3 / 1 4 6 . 3 

and that of the quartzit ic sand i s : 

_ t t # 0 2 / 4 - P 2 / 7 s 2 _ ( 3 . 1 4 χ 4 .59 χ 4 2/ 4 ) - ( 3 . 2 5 4 χ 1 2 3/ 1 6 5 . 6 ) _ 
â À ~ Pjhs2 ~ 3 . 254 x l 2 3 / 1 6 5 . 6 

It will be noticed that e1 — e2. 

The relative density for each of the sands is : 

0 .89 - 0 . 7 0 
£ ) , . = - 0 .70 calcareous sand 

0 . 8 9 - 0 . 6 2 

0 . 9 8 - 0 . 7 0 
Dt2 — = 0 .62 quartzitic sand. 

0 . 9 8 - 0 . 5 3 
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The two sands, even though they have the same in place void rat io , have 
different relative densities, which indicates that the grains o f the calcareous 
sand are more tightly packed than those o f the quartzit ic sand. This cannot 
be concluded either from the void ratio or from the dry unit weights. 

It is t o be n o t e d that the dry unit weight is greater for the soil with lower 
relative densi ty : 

7 . i 1 4 6 . 3 
(7d)i = = = 8 6 . 1 1 b / c u . f t φ Γ ΐ = 0 . 7 0 ) 
W 1 1 + ex 1 + 0.7 K 11 } 

7 s 2 165 .6 
( T d ) 2 = = = 9 7 . 4 1 b / c u . f t (Dr2 = 0 . 6 2 ) . 

1 + e 2 1 + 0.7 V r2 ' 

Summary of answers 

(ÉΏ)Ι = Φ ã ) é = 0 . 7 0 ; ( / D ) 2 = (Dx)2 = 0 . 6 2 . 

**Problem 1.13 Design of an o p t i m u m grain-size distr ibution by mixing soils 

Three soils are available. One consists of a gravel, another of a sandy gravel 
and the third of a sand. Their individual grain-size distributions  are shown in 
Fig. 1.22 (curves 1, 2 and 3). 

It is desirable to mix the three soils in such a way  that the combined  grain-
size distribution  would  closely approximate the average theoretical  curve 
representing the mean of the upper and lower  acceptable limits (see curve 4 
of Fig. 1.22). 

Calculate the relative parts, in percent,  á, â and y of the three soils in order 
to achieve the average size-distribution. 

Solut ion 
The m e t h o d to use is the least-squares m e t h o d appl ied to the deviations 

between randomly mixed material sizes and the average opt imal curve for 
selected grain diameters . 

Le t T{, tn, t2i, t3i be the accumula ted amount s of opt imal material and 
materials 1 , 2 , 3 passing through sieve number i, and á, â, y the a m o u n t by 
weight of each material in the mix . 

The square of the deviation of the opt imal curve and that actual ly ob-
tained, down to sieve size /, is : 

Δ . = [τß-(ïá ç+âß2ß + 7ΐ 3 ί) ] 2 . 

T h e sum of the squares of the deviations ( sum over the first 1 0 sieves) is 
i = 10 

Δ = Ó Δ,. 
i = 1 

We also know that α + β + 7 = 1 , or 7 = 1 — (α + β ) . 
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 Fig. 1.22. Grain-size distribution curves. 



PROBLEM 1.13 33 

10 
Hence: Δ = Ó [2 \ - (octn 4- 0 t 2 i) - {1 - (α + 0 ) } f 3 i] 2 

ι 

10 

Δ - Ó — i 3i ) — ^ ( ί ΐ ί — ^3i) — β ( ί 2ί — ^3i )] 2 . 
1 

If we let : U{ = 2\ — f3 i, un = i 14 - f 3 i, w 2i = £ 2i - i 3 i, 

10 

we have : Δ = Ó t ^ i a wi i ~~ £ w 2 i] 2 . 
ι 

The sum Δ mus t be a min imum, or its partial derivative with respect to α 
and β, mus t be zero : 

3 Δ J2 
— = Ó 2([/i - a u u — &u2i) x = 0 
3α ι 

3 Δ " 
— = L 2 ( [ / i - a u l i- j 3 u 2 i) x u 2 i = 0 
σρ ι 

or: 

10 10 10 

a I M i i + 0 Z w i i " 2i = Ó r ji wi i 
ι ι ι 

ßï 10 10 

α Ó " ΐ ί " 2À + ί3 Ó " 2ß = Ó UiU2i 
1 1 1 

This is a linear set of equat ions for which α, β, and y m a y be determined 
knowing that : y = 1 — (α 4- â). 

Tables 1 L and 1M summarize the percentages and sizes of the curves 
o f Fig . 1 .22 and the coefficients o f the linear set o f equat ions . F r o m these 
the following equat ions are obta ined : 4 9 , 4 1 3 a + 1 6 , 8 4 6 0 = 3 5 , 3 2 1 ; 1 6 , 8 4 6 a 
+ 8,056j3 = 1 2 , 7 1 5 , resulting in a = 6 2 % , â = 2 9 % , y = 9%. 
Hence the a m o u n t o f m i x e d soil pass ing through sieve number i i s : 

Tl = cxi2i + 0 f 2 i + yt 3i. 

Table I N summarizes the calculat ion for different percentages of soil 
retained in order to construct the grain-size distr ibution curve of the mixed 
soil, curve 5 of Fig . 1 .23. 

If the three soils are m i x e d in the propor t ions shown above , the grain-size 
distribution (curve 5 o f Fig . 1 .23) is obta ined , which corresponds to the first 
ten sieve-sizes. 
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TABLE 1L 

Sieve Opening Percent passing (%) 

number size 
Ά (mm) Ά hi (mm) 

optimum (4) gravel (1) gravel (2) sand (3) 

1 100 100 100 100 100 
2 50 82 85 100 100 
3 20 56 35 100 100 
4 10 44 15 95 100 
5 5 37 8 81 100 
6 2 30 4 59 100 
7 1 24 1 45 100 
8 0.5 18 0 37 89 
9 0.2 11 0 28 44 

10 0.08 4 0 22 20 

TABLE 1M 

i Ui = 
Ά - t 31 " U 

Ui X u2i 

1 0 0 0 0 0 0 0 0 
2 - 1 8 - 1 5 0 4-270 0 + 225 0 0 
3 - 4 4 - 6 5 0 4-2860 0 + 4225 0 0 
4 - 5 6 - 8 5 - 5 + 4 7 6 0 + 280 + 7225 + 25 + 425 
5 - 6 3 - 9 2 - 1 9 + 5796 + 1197 + 8 4 6 4 + 361 + 1748 
6 - 7 0 - 9 6 - 4 1 + 6 7 2 0 + 2 8 7 0 + 9216 + 1681 + 3936 
7 - 7 6 - 9 9 - 5 5 + 7 5 2 4 + 4 1 8 0 + 9 8 0 1 + 3025 + 5445 
8 - 7 1 - 8 9 - 5 2 + 6 3 1 9 + 3692 + 7 9 2 1 + 2704 + 4628 
9 - 3 3 - 4 4 - 1 6 + 1452 + 528 + 1936 + 256 + 704 

10 - 1 6 - 2 0 + 2 + 320 - 3 2 + 4 0 0 + 4 - 1 0 
Σ = 35 ,321 12 ,715 4 9 , 4 1 3 8 0 5 6 16 ,846 

TABLE I N 

i a x f a 7 X * 3i Ti (5) 

1 62 29 9 100 
2 52 .70 29 9 91 
3 21.7 29 9 60 
4 9.3 27 .55 9 46 
5 4 .96 23 .49 9 37 
6 2.48 17 .11 9 29 
7 0.62 13.05 9 23 
8 0 10 .73 8.01 19 
9 0 8 .12 3.96 12 

10 0 6.38 1.80 8 
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**Problem 1.14 S t u d y of a soil structure by means of two-dimensional 
theoretical packing (small-cylinder analogy) 

Let us consider an analogical model  of a soil medium formed by an as-
sembly  of thin cylinders.  The problems to be solved,  are: 

(1) What  regular, stable packing may be made if all the thin cylinders  have 
the same diameter D? Determine  the void  ratio and the dry unit weight  for 
these different assemblies (ys = 27 kN/m 3). 

(2) What  is the maximum diameter d of other cylinders  which  could be 
introduced  in the voids of the D-size  packing? 

For each of the original packing, determine  the grain-size distribution  of 
D- and d-sizes leading to maximum densities. Calculate also the void  ratios 
and the dry unit weights  of the mixtures at maximum compactness. 

Which  combination  leads to maximum packing? In order to draw the 
grain-size curves, assume D = 5 mm. 

Solut ion 
(1 ) The two stable , regular packing arrangements correspond to square 

(2-dimensional) and equilateral triangle configurations as shown in Fig . 1.24. 
Hexagonal packing is very improbable because it is very unstable . 

Square Equilateral triangle 

Fig. 1.24. 

The void ratio for the square arrangement i s : 

£ 2 ( 1 - π / 4 ) 4 - π 
= ~ = = 0 . 2 7 3 . 

π£>2/4 π 
If we assume the unit weight of the cylinders to be ys = 27 k N / m 3, we have: 

(π Ι ) 2/ 4 ) × 7 s π 
7 d = ô—- = 27 χ - = 21 .2 k N / m 3 . 

Dz 4 
F o r the triangular arrangement, the values of e and 7 d a re : 
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(y/3  D2I4) - (ITD2/8) lJZ~-n 
= U£ ' — = = 0 . 1 0 2 

7TD 2/8 7Ã 

(vD2/8)ys π 
7 d = . _ * = 27 χ — = 2 4 . 5 k N / m 3 . 

( V 3 / 4 ) D 2 2 ^ 3 

(2) Arrangement for the square packing: the size o f a cylinder that could be 
introduced in the void will have a diameter d = D(sf2 — 1 ) . 

In order to obta in m a x i m u m packing with cylinders D and d, all the 
elements o f the mass should have the shape o f that shown in Fig . 1 .25 , a. 

Fig. 1.25. a. Square element of mass. b. Triangular element of mass. 

In each element there is one cylinder of d iameter D and one o f d iameter d. 
This corresponds to weight percentages of: 

D2 D2 1 
= 0 . 8 5 

D2+d2 D2[(l + ( v ^ - l ) 2 ] l + i v ^ - l ) 2 

for particle of d iameter D and 

d2 _ ( V 2 - 1 ) 2 

D2 +d2 ~ 1 + (χ/2 - l ) 2 
0 . 1 5 

for the d-size particles. 
The mix ture , therefore , will have the grain-size distribution curve as 

shown in Fig . 1.26. At m a x i m u m c o m p a c t i o n , the mix ture will l o o k exact ly 
like the element of F ig . 1 .25 , a. There fore : 

D 2 ( l - π/4) - D2(s/2 - 1 ) 2( π / 4 ) 

— [ ( 1 + ( V 2 - 1 ) 2 ) ] 
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Fig. 1.26. Grain-size distribution. 
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s 
= 2 4 . 8 k N / m 3 . 7 d = 

D2 

F o r the arrangement of triangular packing, the distance between the 
center of particles D and d is equal t o : (2D/3)(y/li/2)  = DjyfS. The size o f 
the cylinder that can be introduced in the central void will have a m a x i m u m 
diameter of d = 2(D/y/%-D/2)  = £ > ( 2 A / 3 ~ - 1 ) . 

In order to obtain m a x i m u m packing of rods D- and d-sizes, each element 
of mass will have to look like Fig . 1 .25 , b . In each e lement of mass , there will 
be half a particle of size D and one of size d. 

The percentage of weights of the size-D particle is : 

The percentage by weight of the size-d particles is 0 . 0 4 4 . S o : 9 5 . 6 % of 
£)-size and 4 .4% of d-size particles m a k e up the mass . The mix will have a 
grain-size distr ibution as shown by the curve of Fig. 1.26. The mixture will 
have m a x i m u m compactnes s when its mass will have elemental sect ions 
identical to that of Fig . 1 .25 , b and 

D2 

D2 + 2 d 2 l + 2 ( 2 / v ^ 3 - l ) 2 
= 0 . 9 5 6 . 

e = 
(y/3D 2/4) - (ðΡ2/8) - ðΡ2/4(2/^ - l ) 2 

( π ΰ 2 / 4 ) [ 1 / 2 + ( 2 / χ / 3 - 1 ) 2 ] 
= 0 . 0 5 2 

Td = 

The m a x i m u m packing arrangement is that of the equilateral configurat ion. 
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Chapter 2 

W A T E R IN T H E S O I L 

^Problem 2.1 Permeabil ity of sand 

A coarse-sand sample is 15 cm high and has 5.5 cm diameter.  It is placed in 
a constant-head permeameter.  Water  passes through the sample under a con-
stant head of 40 cm and after 6 sec, 40g of water  has been collected.  What  is 
the coefficient of permeability  of the sand? 

Solut ion 
T h e flow of water through a soil is governed by Darcy ' s law 

í = ki (1 ) 

The a m o u n t o f water percolated is q = í χ s , the rate percolat ion is : 

v - 9 L _ l2_ _ 4 χ 4 0 _ Q 2 g c m/ S 

s nd2 6 χ π χ 5 . 5 2 

T h e hydraulic gradient i = h/l = 4 0 / 1 5 = 2 . 6 6 
F r o m equat ion ( 1 ) : k = v/i  = 0 . 2 8 / 2 . 6 6 = 0 . 1 0 5 , say 0 . 1 1 cm/sec . 

Answer 

k = 0 .11 cm/sec . 

itProblem  2.2 Permeabil i ty of clay 

A clay sample is 2.5 cm high and has a diameter of 6.5 cm. It is placed in 
an oedometer  with  a variable-head permeameter.  The water  percolation 
through the sample is measured in a standpipe whose  inner diameter is 1.7 mm. 
The tube is graduated in centimeters  from the top to the bottom.  The top 
graduation is zero and is located 35 cm above the base of the oedometer.  The 
overflow  in the oedometer  is 3 cm above its base. At  the start of the test,  the 
water  level  in the tube is at zero; 6 mins and 35 sees later, the water  level  has 
dropped  to graduation 2. What  is the coefficient of permeability  of the clay? 

Solut ion 
It is a s sumed that after achieving saturat ion of the sample , the f low of 

water is sufficiently s low to apply Darcy ' s law for each t ime increment 
during which the water flows (t, t + dt). 

The hydraulic gradient (see Fig . 2 .1 ) is i = h/l 
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P o r o u s stone : 

 ̂ S e c t i o n A ^ 

Fig. 2 .1 . 

S e c t i o n a 

Since í = ki (Darcy's l aw) , the quanti ty of water is q = Akh/l  , where Λ = 
cross-sectional area of the clay sample . S ince the volume of water permeating 
through the sample is equal to the vo lume of water which left the s tandpipe , 
we have: 

qdt = (Akh/l)  = dt = — adh 

where a = the cross-sectional area of the s tandpipe . 
Then: 

a dh 
kdt  = É-

Á h 

Integrating this value between height h ë and h2 o f the s tandpipe gives: 

kT = ~^llog(h
2
)/h

l
 or : 

2 .3 — — log J j-11, but α = — and A = — 
A Ô 

therefore, k = 2.3(d/D)2 — log (hl/h2). 

Numerical application: d = 0 .17 c m , D = 6 . 5 c m , / = 2 . 5 c m , 
Ô = 6 min 3 5 s = 3 9 5 s, ht = 3 5 - 3 = 3 2 c m , Λ2 = 3 2 — 2 = 3 0 c m , 

s o : fe = 2.3 χ 
Ό . 17 \ 2 2 .5 
, 6 .5 / X 3 9 5 

32 
log — = 2 .8 · 1 0 " 7 cm/s . 

oU 
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Answer 

k = 2 .8 · 1 0 " 7 cm/s . 

^Problem 2.3 Permeabil i ty of sand 

A well  graded sand sample containing well-rounded  grains has a void 
ratio of 0.62 and a coefficient of permeability  of 2.5 · J O " 2 cm/s. Estimate 
the coefficient of permeability  for the same sand with  a void  ratio of 0.73, 
using the Casagrande and Terzaghi formulas. 

Solut ion 
Casagrande's formula is k = 1.4 k0S5 (e)2 , 

therefore : k062 = 1 . 4 f e 0 > 85 0 . 6 2 2 and fc0>73 = 1 . 4 f e 0 # 85 0 . 7 3 2 

0 7 3 2 

Therefore , ^ = ^ „ = 2 . 5 · 1 ( Γ 2 χ ( 1 . 1 8 ) 2 

= 3 .48 · 1 ( Γ 2 - 3 .5 · 1 0 - 2 c m / s . 

Terzaghi's formula i s : 

* - c - filial d W 

ç $1 - n 10 

For specific test condit ions , the ratio k0.73/&ï.62  m a Y be calculated because 
the value of viscosity, 7? would be the same in both instances. 

fco.73 = fop.73 ~ 0 - 1 3 ) 2
 χ \/l - n 0 M 

feo.62 (^0.62 ~ 0 - 1 3 ) 2 s / l - M0.7 3 

where n = e/(l + e ) , hence e = 0 . 6 2 corresponds t o n = 0 . 6 2 / 1 . 6 2 ~ 0 . 3 8 , 
e = 0 .73 corresponds t o n = 0 . 7 3 / 1 . 7 3 ~ 0 . 4 2 

k0 7 3 = 2 .5 · Ι Ο " 2 χ j ° — ) · ^ — = 2.5 · Ι Ο " 2 χ 1 . 3 4 6 χ 1 .022 
0 , 73 , 0 .25 / v0 . 5 8 

&0.73 = 3 .44 · 1 0 " 2 - 3.4 · 1 0 " 2 c m / s . 

Terzaghi 's formula gives a value of permeabi l i ty slightly lower than that of 
Casagrande. 

Summary of answers 

Casagrande's formula fc0.73 = 3.5 · 1 0 " 2 cm/s , Terzaghi 's formula k 0 1 3 = 

3.4 · 1 0 " 2 cm/ s , then 3.4 · 1 0 " 2 cm/ s < fc0.73 < 3 .5 · 1 0 " 2 c m / s . 
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irkProblem 2.4 Average coefficient o f permeabil i ty of a layered sys tem 

A sand deposit  contains three distinct  horizontal  layers of equal thick-
nesses. The coefficient of permeability  of the upper and lower  sand is 10~3 

cm/s. That of the middle  layer is 10~2 cm/s. 
What  are the horizontal  and vertical coefficients of permeability  of the 

three-layered  system,  and what  is their ratio. 

Fig. 2.2. 

Solut ion 
Let us consider first an horizontal flow. It is parallel to the layers. We 

assume that all three layers have the same hydraulic gradient, i, (see Fig . 
2 .2 ) , then : v{ = k1i, v2 — k2i, v3 = k3i. 

Let us consider the a m o u n t o f water passing through an imaginary vertical 
p lane through the three layers, o f unit width; it could be seen that the 
average value o f the rate of seepage is : 

í = ~ ( * > ι # ι + v2H2 +v3H3) = ^ ( f e i # i +k2H2 +k3H3). 

By definit ion; 

õ = kHi, and feH = τ ; ( & ι # ι + k2H2 + k3H3). 

For this particular problem H1 = H2 = H3 = - and kx =k3, therefore : 
ï 

= 7 r ( 2 f ei + f e2 ) o r: feH = 7Γ(2 ' 1 0 ~ 3 + 1 0 " 2 ) = 0 . 0 0 4 , or : 
3 ï 

4 · 1 0 " 3 cm/s . 

For the vertical f low of water, in the perpendicular direction to the three 
beds , the principle of continuity requires that the rate of discharge at each 
layer boundary be the same . 
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Summary of answers 

kH = 4 - 1 0 _ 3c m / s ; kv = 1.4 · 1 0 "3 cm/s ; kH/kv = 2 .9 . 

**Problem 2.5 Coefficien t o f permeabi l i t y de termine d b y pump-ou t tes t 

A pump-out  test  is carried out in a perforated well  of 30 cm in diameter, 
extending into an impervious  zone,  and through an aquifer 17 m thick  from 
the ground surface. The phreatic line is at 4 m below  ground-surface level 
(see Fig. 2.3). After 24 h of continuously  pumping water  out of the well, 
equilibrium has been reached. The discharge of the pump is 5.4 m3/h and the 
drawdown  is 4 m. The effective  porosity  of the soil tested  was estimated 
to be 0.29. 

Determine  the radius of influence R of the well  and the average coeffi-
cient of permeability  k. 

Therefore : v = kvi = k1il =k2i2 =k3i3; thus the hydraulic gradient, i, is 

equal to ~ - — where hu h2i and h3 correspond to the head 

losses across each of the layers and h is the total head loss . 

T h e n : õ 

and : 

S ince : H2 = H3 = - a n d ^ = k3, 
3 

we have : kv 

and: 
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Fig. 2.3. 

Solut ion 
Once flow equilibrium is reached, after 24 h o f pumping , Dupui t ' s equat ion 

becomes appl icable : 

q = irk 
Ç 2 -h2 

In (R/r) 
(1) 

or : 

1.365fe 
H2 h2 

log (R/r) 
d') 

coefficient of permeabil i ty of soil mass , 
height of water in the well, R = radius 

where q = discharge at p u m p , fe 
Ç = thickness of the aquifer, h 
of influence, and r = well radius. 

Equat ion (1) contains two unknowns , namely R and fe. It is valid only for 
t>24h. For £ < 2 4 h there is another formula for the radius R which is 
applicable only to non-equilibrium  condit ion. It i s : 

R - l.byJ{kH/n)t (2) 

where: R — the radius of influence at t ime £, fe = coefficient of permeabil ity 
of the soil mass , Ç = aquifer thickness , and ç = effective porosi ty of soil. 

For t = 24 h both eqs . 1 and 2 are appl icable (see Fig . 2 .4 ) and we dispose 
now of two equat ions with two unknown factors , R and fe. 
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E q u i l i b r i um c o n d i t i o n 

24H 

Fig. 2.4. 

The solution may be either solved graphically or by numerical i teration, 
since one of the equat ions is transcendental . F o r this example , a graphic 
solution has been chosen and is accurate for the purpose . 

Equat ion (2) can be written a s : 

nR2 

k = 
2 .25 tH 

and eqn. ( ΐ ' ) a s : 

log Λ - l o g r = 1.365& 
H2 -h2 

from which: 

ãé(υ2 fa,2) 
log R = 0 .607 — R2 + l o g r (3) 

qtH 

The intersection of the two p lot ted curves (Fig . 2 . 5 ) , one the function 
log R and the other a parabola with an Oy  axis , yields the solut ion. 

Numerical application (see Fig. 2 . 5 ) ; ç = 0 . 2 9 , Ç — 17 — 4 = 13 m, h — 
13 - 4 = 9 m, q = 5 . 4 m 3 / h , t = 2 4 h, r = 0 . 1 5 m, log r = 1 .176 = 0 . 8 2 4 . 
Equat ion (3) may be written a s : 
log R — 0 . 0 0 9 19R2 - 0 . 8 2 4 . The only realistic solution i s : R - 1 5 m . 
Transposing this value of R to calculate k: 

q log (R/r) 5.4 log 1 0 0 
; ~ - = 9 · 1 0 ' 2 m/h = 2 .5x 1 0 - 3 cm/s . 

1 . 3 6 5 ( # 2 -h2) 1 .365x 88 
k = 
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Summary of answers 

R = 1 5 m ; k = 2 .5 · 1 0 " 3 cm/s . 

Remarks 
(a) R should be expected to fall within the range of 1 0 0 r to 3 0 0 r or 

15—45 m, which is the case. 

Fig. 2.5. 

(b) The Sichardt formula for R is : R = 3 0 0 0 ( i / — h\/k 

and would yie ld : 

J? = 3 · 1 0 3 x ( 1 3 - 9 ) > / 2 . 5 · 1 0 " 5 = 1 2 x \ / 2 . 5 · 1 0 6 · 1 0 " 5 = 6 0 m . 

The radius is 4 t imes greater. The large differences can be accounted for 
when considering that the formula R = 1.5y/(kH/n)t  is only valid for the 
logarithmic approx imat ion of the solution of the equat ion . This assumes a 
relatively small drawdown, which  is not the case here (drawdown is 4 m for 
a height of 1 3 m, or 3 0 % ) . In pract ice , the radius of influence would be 
much greater than found in the problem. 

^Problem 2.6 Effective stress in sand 

The ground-water  level  in a thick,  very  fine sand deposit  is located 1.20 m 
below  ground surface. Above  the free ground-water  line, the sand is saturated 
by capillary action. The unit weight  of the saturated sand is 20.3 kN/m 3. 
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What  is the effective  vertical stress on a horizontal  plane located 3.60 m 
below  ground surface? 

Solut ion 
The pore-water pressure at Ì (see Fig . 2 .6) i s : 

u = 7 w ( H - f t ) or u = 1 0 ( 3 . 6 0 - 1 . 2 0 ) = 24 kPa. 

Since the sand is saturated above the water table , due to capillary act ion, 
the total vertical stress at Μ i s : σ ν = 3 .60χ 20 .3 — 73 kPa. 
and the effective stress at Ì i s : σ ν = (σ ν — ý) = 73 — 24 = 49 kPa 

h z 1.20m ' . 

Wate r leve l 

H= a 6 om 

Fig. 2.6. 

if Problem 2.7 Effective stress in a clay 

A submerged clay layer is 15 m thick.  Its water  content  is 54%. The density 
of the soil particles is 2.78. What  is the effective  vertical stress due to the 
weight  of soil at the base of the layer? 

Solut ion 
The effective vertical stress a t Ì (see Fig . 2 .7 ) i s : a = y'h. S ince the clay is 
saturated and submerged, the water content is w = eyw/y s 

h = l 5 m . .' Clay W = 5 4 * ; 

Fig. 2.7. 
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from which e — w — = 0 .54 χ — = 1.50 
7 w  1 

We also know that : 

Ί = ( 7 s " 7 w ) ( 1 _ n) = 
7 s - 7 . 

1 4 - e 
a n d 7 s / 7 w = 2 .78 is given, 

therefore ys = 27 .8 k N / m 3 and 7 W = 10 k N / m 3 . 

Subst i tut ing: yf = 
27 .8 - 1 0 

= 7 .12 k N / m 3 . 
1 + 1.50 

For the total thickness : a = 7 .12 χ 1 5 = 1 0 7 kPa 

Answer 

a ~ 107 kPa. 

^Problem 2.8 Critical hydraulic gradient of sands at various densities 

The specific gravity  of sand particles is 26.6 kN/m 3. The porosity  of the 
sand mass in both its least and maximum compactness is 45% and 37%, 
respectively.  What  are the critical hydraulic gradients in these two  cases? 

The critical hydraulic gradient, / c r i t, corresponds to a condit ion wherein 
the effective vertical stress is zero. 

' ' 7 
o' = ( 7 ' ~ * 7 w) < z , therefore / c r it = — . 

We know that 7' = (1 -~ ç) (γ 8 — 7 W ). F o r the loose sand nx = 0 . 4 5 , y\  = 

(1 ~ 0 .45) (26 .6 - 10) - 9 .13 - 9.1 k N / m 3. 
For the dense sand: n2 = 0 .37 , yf2 = (1 - 0 .37) (26 .6 - 10 ) = 1 0 . 4 5 -
10 .5 k N / m 3. 

Since 7 W = 10 k N / m 3 , we have i l c r it = 0 . 9 1 , i 2 c r it  = 1 .05 . 

ick+Problem 2.9 Blow out and piping 

A large-sized excavation is made in a stiff clay whose  saturated density 
is 1.76. When  the depth  of the excavation reaches 7.5 m, cracks appear and 
water  begins to flow upward to bring up sand to the surface. Subsequent 
borings indicate that the clay is underlain by sand at a depth  of 11 m below 
the original ground surface. 

What  is the depth  to the water  table outside the excavation below  the 
original ground level? 

Solut ion 
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Solut ion 
Making an excavat ion in the clay, creates a hydraulic gradient between the 

t o p of the sand layer and the b o t t o m of the excavat ion. As a consequence, 
water starts seeping in a vertical, upward direction from the sand layer 
towards the excavat ion floor. Because the clay has a very low permeabil i ty , 
f low equilibrium can only be reached after a long t ime per iod. 

The solution mus t be considered over a short t ime interval. T w o phases 
appear successively. 

( J ) First phase: clay fissuration 
The floor of the excavat ion is stable only if the water pressure p , at the 

t o p of the sand layer (see Fig. 2 .8) is counterbalanced by the weight Ρ of 
the clay above it , disregarding shear strength of the clay. Stabil i ty condit ion 
therefore i s : 

yh(H-f) > yw(H-d) 

or: 

( 7 ' + 7 w ) ( H - f l > T w ( H - d ) 

or: 

y'(H-f) > yw(f-d) 

When incipient failure condit ions occur , then: 

y'{H-f) = yw(f-d) 

from which: 

d = 

or: 

d = 7 . 5 0 x 1 - ( 1 1 . 0 0 - 7 . 5 0 ) χ 0 .76 = 4 . 8 4 m . 

Fig. 2.8. 



52 WATER IN THE SOIL 

(2) Second phase: uplift of sand (quick sand) 
A steady flow of water rising vertically through the cracks has been reached, 

the top of the sand layer and the b o t t o m of the excavation being equi-
potential lines (see Fig. 2 .8 ) . Depending on the value of the hydraulic 
gradient, piping may occur. 
The head at point A (Fig. 2 .9) i s : 

w a , (H -d)y w 

hA = — 4 - zA = = H — d 
7 w T w 

and at point Β: 

uB 

hB = h zB - Ç — f, because uB = 0 
T w 

with reference to the t o p of the sand layer. 
The hydraulic gradient is constant from A to Β and is : 
hA ~hB = f-d 

AB ~ H-f 

Its critical value is i c r it = T ' / T W and a b lowout would occur when 

f """  ̂ _ 7 s a t ~ 7 w 

H-f ~ ' T w 

( 7 s at is the unit weight of sand, assumed to be 20 k N / m 3) . 
or : 

7 .50 - d 
- 1, therefore d = 7 .50 - 3 .50 χ 1 = 4 .00 m. 1 1 . 0 0 - 7 . 5 0 

In order to bring up sand through the cracks , the depth , d t o the water 
table must be d = 4.0 m. 

Notes 

(1) In either case the results are the same if the unit weights of the clay and 
the sand are identical. 
~ for the first phase , the shear strength of the clay was not taken into 
account ; 
— for the second phase , shear strength of clay was also implicitly neglected 
and it was assumed that the cracks in the clay would permit passage of the 
sand grains. 
(2) Neglecting the shear strength of clay is reasonable if the width of excava-
tion is large enough with respect to the thickness of the clay layer at the 
b o t t o m of the excavat ion. This layer acts like a slab with a uni form load 
acting upward from beneath and it is in tension, which results in fissures 
through the clay. The fissures eliminate shear-strength considerat ion, (see 
Fig. 2 .9 and 2 . 1 0 ) . 
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irkProblem 2.10 Calculate capillary rise, f rom laboratory test 

A soil sample is placed in a "kh mold"1. Its porosity  is ç — 0.34. The 
volume  of water  absorbed is measured by weighing the sample. The volume 
increases are as follows, as a function of time. 

t (h ) 1 2 4 7 25 49 

y ( c m 3 ) 109 137 176 219 376 509 

(1) Calculate kh. Assume the coefficient of permeability  of the soil is 
10~Ί cm/s (relative to its capillarity). Calculate the capillary rise, h. 

(2) Water  had risen to height æ just before the sample weighing after 49 hs. 

What  is the relative error e made in the formula, 

mold theory? 

( i n — ! — -
\ l-z/h 

z/h  in the kh 

Solut ion 
(1) Plot the experimental data on a graph where the abscissa is the square 

root of t ime , in hours , and the ordinate is volume of water absorbed in c m 3 

(see Fig. 2 . 1 1 ) . Exper imenta l points fall on a straight line and V0 may be 
evaluated at 50 c m 3 from the intersection of this line at t ime 0. 

lV cm 3 

\ / T (hours) 

1 This device is commonly used in France; its diameter is 15 cm. 
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T o obta in a more accurate value, we may write, since the product kh remains 
constant : 

( V 7 - V 0 ) 2 1 (V, - ν0γ 1 
•x = ÷ 

A2 2ntn A2 2ntx 

or: 

γ_ — í j 

— ~ = v ^ 7 * 7 = V 4 9 / 1 = 7 

or : 

V , - V 0 = 7 ( ^ - ^ 0 ) 

then: 

7 V , - V 7 

6 

m, ô,  7 x 1 09 _ 5 0 9 
Therefore : V 0 = = 4 2 . 3 # 4 2 c m 3 . 

6 
Since the diameter o f the m o l d is 1 5 c m : 

π ÷ Ϊ 5 2" 
A = 

4 

f rom which: 

2 ni. 7 

/ 4 6 7 x 4 \ 2 1 ë ï1 2„ 

feft = x = 0 . 2 1 c m 2 / h . 
U x T 5 2 / 2 x 0 . 3 4 x 4 9 

and therefore : 0 . 1 < kh < 1 

This value of feft shows that we have, in this case , a soil with an average 
capillary rise. 

If the coefficient o f permeabi l i ty , relative to capillarity, is 1 0 ~ 7 cm/ s , 
we then have : 

0 . 2 1 
h = = 5 . 8 · 1 0 2 c m 

3 6 0 0 ÷ 1 0 "7 

or: h = 5 . 8 0 m. 
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(2) Let A be equal t o : In æ 

h' 1—z/h 

We are seeking the relative error e = AA/A  m a d e in the kh mold theory. This 
theory assumes z/h  is small and a niperian logarithm series is developed in 
which terms over 2 are not taken into considerat ion. Therefore , the error 
is of the order of the first term not considered of (z/h)3. 
Say t h a t : z/h  = ÷ 

1/(1 ~ ÷) = l + x + x 2 + x 3 + 0(x4) 

f rom which: 

1 
l o g ; 

± -

with: 

R3(x) 

= ÷ + — + Rs(x) 

— + — + 0(x5) = x3 

3 4 

1 ÷ 
- + - + 0 ( * 2 ) 
3 4 ; 

therefore: R3(x)<x3 [l+x + 0(x2)] or : R3 (x) < x3/(l - x). 

On the other hand, we have : R3 (x) > x3 / 3 , and AA  = R3 (x) and A — x2 /2 

therefore : 2 / 3 * < AA/A  < 2x/(l - x). 

In the present example we have : 

- / / 2 x 0 .21 
V η OA 

x 4 9 — 7 .8 cm 
2kh 

t = J-n
 v

 0 .34 

therefore : ÷ = z/h   ̂ 7 . 8 / 5 8 0 ^ 1 .35x 1 0 " 2 ; 0 .9% < AA/A  < 2 .74% 

or, rounding off : 1% < e < 3%. 

Summary of answers: 

kh = 0 .21 c m 2 A ; h = 5 .80 m; 1% < e < 3%. 

^Problem 2.11 Hydraulic gradient and discharge of a subsurface toe drain 

A homogenous slope of infinite length, making an angle â with  the hori-
zontal is composed of a soil with  a permeability  k. Water  seeps through the 
soil in uniform, rectilinear flow inclined at an angle a to the horizontal  near 
the drainage blanket.  The face of the slope intersects the water-free  surface 
at point  Ï ÷ , which  corresponds to a height Ç above the toe of the slope. A 
drainage system consists of a sloped drainage blanket and a subsurface drain 
located at the toe and parallel to the slope face (see Fig. 2.12). 
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(1) What  is the hydraulic gradient of the water  seeping in the soil near 
the drainage blanket? Can this gradient be assumed constant all over the 
flow net? 

(2) What  is the discharge of the drain if it is assumed that the length of the 

slope is 100 meters? (Assume: Ç = 10 m, a 
k = 5x 1 0 - 4 cm/s.) 

2 0 ° , â = 3 4 ° , (slope l\ to 1 ) , 

D r a i n a g e  blanke t 

Drain' : 

Fig .  2.12 . 

Solut ion 
(1) Let A be a point in the flow near the drainage blanket which intersects 

the face of the s lope at point B. The equipotential line through A is the line 
perpendicular to the flow line. It intersects the s lope face at point A' (see 
Fig. 2 . 1 3 ) . The permeabil ity of the drainage blanket facing the s lope is very 
large with respect to that of the soil in the s lope. We can, therefore, assume 
that points A' and Β are at atmospheric pressure and thus : uA> = uB = 0 . 

R e f e r e n c e 

— r ~ — 

(€ )  E q u i p o t e n t i a l 

Fig .  2.13 . 

Since A and A ' are on an equipotential line, the total heads are equal and 
UA' 

hA> = h zA' = zA>, since uA' = 0 . hA' — nA' --r ÝÁ' 
T w 

By the same t o k e n : hB = uB/y w 4- zB = zB with respect to an arbitrary 
horizontal plane through O. 

The head loss between A and Β is thus equal to the difference in elevation 
between A' and B: dh = hA — hB = zA> — zB = BfB. 

The hydraulic gradient at A is therefore : 
dh BB B'B . n 

1 = ~~dT= ~AB b Ut A"B= * É ¿â a nd 

AB/A'B = cos (â — a), and thus i = ^tt-—. 

cos (ρ — a ) 
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Let us now consider a point A of the f low net at a great distance to the 
drainage blanket . The equipotentia l line through A no longer intersects 
the face o f the s lope Ïë 0 2 (see Fig . 2 . 1 2 ) , but the t o p flow line. 

A similar procedure leads t o : 

i — — sin a 

Therefore , it is not poss ible to as sume a uni form, rectilinear f low all over the 
embankment . The real f low net consists o f parabol ic shaped flow lines. 

( 2 ) F r o m continuity of discharge, the computa t ion can only be m a d e 
in the area near the drainage blanket , where the gradient is a s sumed to be 
constant as a first approx imat ion . 

The discharge passing through an imaginary surface perpendicular to 
the flow lines i s : q — vS = k | ί | S. 
F o r a length b of the s lope , the surface is S = b χ OlHlJ 

b u t : 

therefore, Oxi 

The total discharge, Q, which will pass through the toe drain will then b e : 

o r : Q = kLHten (â-a). 

Numerical application: k = 5 · 1 0 4 cm/s = 5 * 10 6 m/s , L = 1 0 0 m, Ç = 
10 m, j3 = 3 4 ° , a = 2 0 ° , therefore tan (â - a) = 0 . 2 4 9 from which Q = 
5 · 1 0 6 · Ι Ο 2 χ 10 χ 0 . 2 4 9 = 1 .245 χ 1 0 " 3 m 3/ s , say 1.251/s. 

***Problem 2.12 F l o w net and discharge of seepage through a dam on a 
homogeneous anisotropic soil foundat ion 

A dam has a width  Β of 50 m. The cross-section is shown on Fig. 2.14. It 
is supported by an alluvial deposit  6 m thick  overlaying on impervious  bed-
rock. The central part of the dam is 12 m wide  at an elevation  of — 2.00 m 
below  the river bed elevation.  Upstream pool elevation  is at + 7.00 m and 
downstream  is + 0.50 m. 

The alluvial material is anisotropic and its coefficients of permeability  in 
the horizontal  and vertical directions are: kH = 1.44 · 10~2 cm/s, kv = 
1.60 · 10~3cm/s. 

(1) Referring to typical  flow nets of Fig. 2.15 and taking into account 
boundary conditions,  draw an approximate flow net applicable to the given 
geometry  of this problem.  The drawing of the flow net can be improved  by 
using the finite difference method. 
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Impermeabl e  substratu m 

Fig. 2.14. Dam on anisotropic soil 

(2) From the flow net, find: (a) the discharge through seepage, and (b) the 
uplift pressure on the bottom  of the dam. What  are the consequences of the 
uplift pressures? 

Solut ion 

For a two-dimensional anisotropic med ium, Darcy ' s law is : 

ν = — k grad h, where k is the tensor of permeabi l i ty , 

Fig. 2.15. Typical flow nets 
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dh 

dx 
therefore / ( 1 ) 

3 h 
dz 

The requirement of the principle of continuity for a two-dimensional system 
is: 

dy* dv7 

— + — = 0 (2) 
dx dz 

therefore, f rom eqn. (1 ) and for an anisotropic soil , we have : 

It is important to note that the latter equat ion is no t similar to a Laplace 
equat ion . The f low net is no longer m a d e up of orthogonal curves. In order 
to solve the prob lem, we must resort to a t ransformed section which is 
obta ined by assuming that the foundat ion alluvium is i sotropic but of a 
different geometry . In order to accomplish this, the ÷ and y directions must 
be t ransformed to new values in accordance with the following relat ionships : 

(x = x^K/K 

[Z = z. 

Therefore : 

dX _ 

dx feh' 

w u d 2h fev d2h  ̂ d2h d2h 
i t e m w h i c h : — ; = - ~ 2 and - T = ~ ~ 2 

Equa t ion (3 ) then b e c o m e s : 

d2h b2h 
— , + — ; = 0 (3 ' ) 
dX2 dZ2 
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Anisotropi c medi a (scal e  1  :  40 0  ) 

Transforme d  sectio n (  r  =- j ) 
Isotropi c mediu m 

Fig. 2.16. 

Conclusion 

The transformed section allows one to consider an isotropic condit ion 
with the ratio V f e v/ f e h. In this case , where fev = 1.6χ 1 0 " 3 c m / s , kh = 1 4 . 4 
χ 1 0 " 3 cm/s and r =\Jkv/k^ =\/l/9 = 1 /3 , F ig . 2 .16 shows the anisotropic 
section at a scale of 1 : 4 0 0 (axes x, z) and the transformed section with a 
ratio of 1 : 3 (axes X , Z ) . 

Drawing the flow net 

Since the transformed section represents a f ictit ious isotropic condit ion as 
far as permeabil i ty is concerned, the orthogonal net exists with equipotential 
and flow lines. 

The net m a y be drawn by reference to the typical nets given in the prob-
lem and by observing the fol lowing: 

(a) The geometry of the soil foundat ion is symmetr ica l with respect to 
axis OOf. Therefore only half of the need be drawn, say to the left o f OO' 
(see Fig. 2 . 1 7 ) . 
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(b) The interface soil-water ups t ream, denoted by line AA ' on Fig. 2 .16 is 
an equipotential l ine. The same is true for line FFr downstream. By symme-
try , the O O ' must also b e an equipotent ia l l ine. 

(c) When meeting an impervious boundary , water cannot f low through it 
and the rate of percolat ion perpendicular to the boundary is zero. If deriva-
tives are taken in the perpendicular and tangential direction at such a bound-
ary then : 

= 0 = - * n , - f = 0 
on ot 

(ö: conjugate function of 0 ) , therefore an impervious boundary is parallel 
t o the f low direct ion. 

/ / / / / / / / / / / / / / / / / / / / / / / I 

Fig. 2.17. 

S o , in this prob lem ABCODEF (F ig . 2 . 1 6 ) is a f low line and PO'P' is a f low 
line. We know that a f low line mus t be perpendicular to an equipotentia l 
l ine, as AA  and O'O. (F ig . 2 . 1 7 ) . These f low lines are progressively de formed 
from the straight line PO'P' to the broken line ABCO (F ig . 2 . 1 6 ) . 

The net should be started to be drawn f rom the axis of symmetry at 
O O ' , choosing an arbitrary number o f f low lines (between 5 and 1 0 ) . It is 
in this zone that the figure between t w o ad jacent f low lines and two adjacent 
equipotentia l lines approx imate s the mos t a square (see Fig. 2 . 1 8 ) . 

'//////}//// 

o' 
r///////////  ////////  /////////////// 

Fig. 2 .18. 

By using the finite-difference m e t h o d the f low net can be improved. The trial 
flow-net (F ig . 2 .19 ) gives the first potent ia l values at the nodes of the grid. 
The computa t ion is m a d e by a successive relaxat ion m e t h o d . Results are 
given in Fig . 2 . 1 9 . 
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Fig. 2 .19. Flow net and grid used for the finite difference method. Note: The potential 
has been arbitrarily chosen equal to 100 along ËÁ! and to zero along OO'. 

Percolation discharge. At any one point of the anisotropic sect ion, we have 

dq = vx dz dy  + vz dx dy 

In the plane of symmetry OO' we have vz = 0 , 
then: 

, dh 
dq = -\/k hkv — · dz  χ 1 

oX 

and the equivalent permeabil i ty k is obta ined : k = y/k hkv 

Earlier, it was shown that feh = 9 fev or k = 3 fev, or k = 4 .8 · 1 0 " 3 c m / s . 

The discharge is given by the formula : q = k χ AH χ ATx/iVH , 
where AH = tota l head loss between the upstream and downstream equi-
potential lines, NT = number of f low channels, Nu = number of equipo-
tential intervals f rom which: 

q = 4 .8 χ 1 0 ~ 5 χ 6 .5 χ ( 6 / 2 0 ) χ 3.6 χ Ι Ο 3 = 3 .37 χ 1 0 " 1 m 3 / h 

or q = 0 .34 m 3 /h for a 1 meter wide slice through the d a m . The d a m width 
is 5 0 m ; therefore , the total percolat ion loss is Q = 17 m 3 /h . 

dh 
dX 
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Remark. Considering a horizontal plane (at the beginning or the end of the 
net ) , we have vx = 0 . 

ö , , 7 dh dh dh 
Then: dg = - 4 , ^ x 1 , ^ = ^ 

and after changing the variable: 

dx 
fev 

d X , then d<? = — k 
dh fk^ dh 

Uplift pressures. L e t the t o p of the foundat ion soil layer be the reference 
plane of F ig . 2 . 2 0 . The head a t any r a n d o m point is ft = u/yw + æ where æ 
is the elevation of the r andom point with respect to the reference plane. 
There are 20 equipotentia l drops . The tota l head loss is : 

AH =hA-hF = 7 . 0 0 - 0 . 5 0 = 6 .50 m 

The head drop between any two consecutive equipotent ia l lines i s : 

Ah = AH/N = 6 . 5 0 / 2 0 = 0 . 3 2 5 m. 

4.30m , 4.70 

Fig. 2.20. Schematic representation of uplift pressures 

At point A: 

uA 7 .00 
Λ A = — +zA = + 6 .00 = 1 3 . 0 0 m , uA = 7 0 k P a . 

Tw  1 
At point Ì (equipotential line number 5 , see Figs . 2 . 1 9 and 2 . 2 0 ) : 

hM = — + z M = — + 6 = hA - 4Ah 
Tw Tv 

= 13 — 4 χ 0 . 3 2 5 = 1 1 . 7 0 m 

"M 
= 1 1 . 7 0 - 6 . 0 0 = 5 .70 m, 57 kPa. 
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for length CD: 

Ι Ο 2 χ I 1 2 . 0 0 χ 1.00 χ Q' 7 1 + ° ' 4 3^ ^ 6 8 0 k N 

for length EF: 

0 / 0 .16 + 0 .14 0 .14 \ 
Ι Ο 2 χ 6 .40 χ 1.00 χ + 2 .60 χ 1.00 χ ^ 1 1 0 k N 

Tota l = 1 3 2 0 k N 

Since the length of dam is 2 χ 9 .00 4- 1 2 = 30 m and assuming a unit 
1 3 2 0 

weight of concrete of 23 k N / m 3 , an average height of at least 
2 3 x 1.00 x 30 

= 1.9 m of concrete is needed t o balance the uplift pressure. 

**Problem 2.13 Ear th d a m : quick-sand condi t ion ; drainage b lanket ; 
discharge by percolat ion 

Consider an earth fill dam supported on a stratified, heterogeneous foun-

At M' (equipotential line number 6 ) : 
ι r 

hM> = — + * M = — + 5 .00 = hA-5Ah = 1 1 . 3 7 5 m 
Tw Tw 

— = 1 1 . 3 7 5 - 5 . 0 0 = 6 . 3 7 5 m , u'M = 6 4 k P a . 
7w 

At point Ï (equipotential line number 1 1 ) : 

hQ = — + z 0 = — + 4 . 0 0 = hA — 1 0 Ah = 1 3 . 0 0 - 3 . 2 5 = 9 . 7 5 m 
Tw Tw 

— = 9 . 7 5 - 4 . 0 0 = 5 .75 m, uQ = 57 .5 kPa. 
Tw 

The uplift pressure (see F ig . 2 .20 ) m a y be c o m p u t e d in this manner for 
each equipotential l ine. Planes BC and ED of the d a m foundat ion are under 
horizontal pressures of oppos i te directions. The resultant of these horizontal 
pressures is a net pressure-acting downstream. 

The vertical uplift pressure resultant for a i m slice of the d a m i s : 
for length AB: 

, . 0 .70 + 0 .57 0 .57 + 0 . 5 4 \ 
1 0 2 x 4 .30 χ 1.00 χ + 4 . 7 0 χ 1.00 χ ^ 5 3 0 k N 
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dation whose  cross-section is shown on Fig. 2.21. (The grain-size distribution 
of the sand is shown on Fig. 2.22 by the curve S.) 

(a) Show that quicksand occurs at the toe of the dam. 
(b) Determine  the thickness of a drainage blanket required to be placed 

over the sand to avoid quicksand. Find also the percolation discharge. 
Assume the gravel permeability  k1 = 1 cm/s and the gravel layer thickness is 
constant throughout.  The unit weight  of sand is yd = 16kN/m 3 and its 
permeability  is k2 = 10~2 cm1 Is. The unit weight  of the drainage blanket in 
place is yd = 19 kN/m 3. 

San d  S 

Fig. 2.21 Dam on stratified soil 

Solut ion 
(a) The flow net for this problem is entirely different than for the pre-

ceding e x a m p l e . The seepage of water is uniform throughout the gravel layer 
between points A and J5. There is also a uni form flow in the upward , vertical 
direction f rom point Β to point C in the sand layer. In the gravel zone be-
tween Β and D, n o flow occurs a l though ground water is present . S ince the 
horizontal distance of 3 .00 m between the ends of the clay layer is equal 
to the thickness of the gravel layer, and by virtue of the principle of conti-
nuity, the rate of percolat ion (or discharge) through the sand layer is equal 
to the rate o f percolat ion of water through the gravel layer. Therefore : 

Ό = k1i1 = k2i2, kl{h1/ll) = k2(h2/l2) 

kx = l c m / s , lx = 50 m, k2 = 1 0 " 2 c m / s , l2 = 4 .00 m 

and 

k2 lx 1 0 " 2 50 
hl = h2 χ — χ — = χ — h 2 = 0 . 1 2 5 h 2. 

kx l2 1 4 

The total head loss Ç = h1 + h2 is equal to 6 . 5 0 m . There fore : 1 . 1 2 5 h 2 = 
6.50 and h2 = 5 .78 m (head loss through the sand layer) . The hydraulic 

h2 5 .78 
gradient is : i2 = — = — - - = 1 .45 . 

l2 4 
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Fig. 2.22 Grain-size distribution curves 
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Quicksand condit ion in the sand would b e : 

ß > icrit = — = ~—— — , b u t : Td = 1 6 k N / m 3 , and 
Tw Ts Tw 

7 S = 2 7 k N / m 3 , hence i c r it ~ 1 . 0 1 , so i2 = 1.45 > 1 .01 , 

i.e. quicksand would occur. 

(b) Consider the sand column element d S of height Æ in F ig . 2 . 2 3 . 
This e lement is being ac ted u p o n , downwardly by its b u o y a n t weight W' = 
y'ZdS and upwardly b y the percolat ion water force F = i.ywZdS. 
We have shown that quicksand occurs , therefore we know that F> W R. In 
order to avoid quicksand, a weight acting downward must be added to the 
sand in order to have q'dS + W' + F> 0 so that the resultant is acting 
downward (positive direct ion) . There fore : 

q'dS + y'ZdS - iywZdS > 0 , or q > (iyw - y')Z. 

•:'f F 
1 Æ 
1 
• W 
1 
• 

ds 
Fig. 2.23 

The m a x i m u m value of Æ mus t be selected, i .e . : Æ = l2 = 4 m, yd s a nd = 
16 k N / m 3 or 7 s a nd = 1 0 . 1 k N / m 3 . 
We need q' > ( 1 4 . 5 - 1 0 . 1 ) ÷ 4 . 00 or q' > 17 .6 k N / m 3 . 

Water will rise u p into the filter b lanket to level + 0 . 5 0 . 
Therefore : q' = y'mter ÷ 0 .50 + ( T d W r x Ç = 1 7 . 6 k N / m 2 . 

(Td)filte r = 1 9 k N / m 3 , 

f rom which: 7; m er = ^ — ^ Td = hlxl9 = 12kPa 

Ts ^· · 

a n d ? = 12 ÷ 0 .50 + 1 9 ÷ Ç = 1 7 . 6 k N / m 3 . Final ly: 

1 7 . 6 - 6 
Ç = = 0 . 6 1 c m . 

1 9 
In view of the simplifying, conservative a s sumpt ions m a d e (constant hy-
draulic gradient in the sand) , a lower safety factor m a y be accepted and 
the value of Ç = 80 cm a d o p t e d . 

The drainage blanket would be c o m p o s e d o f t w o layers in accordance 
with the design criteria for filters. 



6 8 WATER IN THE SOIL 

4 . 5 d 1 5 s u b g r a de ^ disfater ^ 4 .5 d 8 5 s u b g r a de 

The layer immediate ly on t o p of the sand (material Gx on grain-size 
curves of Fig. 2 .22 ) would be 50 cm thick, layer G2 would be 80 cm thick. 

F r o m the grain-size curves of the sand we ge t : d15 = 0 .2 m m and d 8 5 = 
1 m m , giving, for instance, for material Gx: ( < 3 1 5) Fi = 2 m m , ( d 8 5) F l = 

20 m m and for G 2 : 9 m m < ( d 1 5) F2 < 9 0 m m . 
The larger sizes should be placed on the upper s ide of G 2 material (on 

t o p of the filter b lanket ) . 

Percolation discharge: q = vS = k2(h2/l2)S. The cross-sectional area of the 
gravel layer S = 3 .00 χ 1.00 = 3 m 2 per linear meter of d a m length, and 
q = 0 . 4 4 1/s per linear meter of length, but Β = 50 m, hence Q = 50 χ 4 . 3 5 · 
Ι Ο " 4 χ 3 . 6 - 1 0 3 ~ 7 8 . 5 m 3 / h . 

+*Problem 2.14 Capillary rise in a h o m o g e n e o u s soil, effective stresses 

A dense silt layer has the following  properties: void  ratio e — 0.40, effective 
diameter d10 = 10 ìm, capillary constant C — 0.20 cm2. 

Free ground-water  level  is 8.00 m below  surface. Find: 
(1) the height of capillary rise in the silt; (2) the vertical effective  stress at 
depths  of 5 m and 10 m. Assume ys = 26.5 kN/m 3 and that the soil above 
the capillary rise and ground surface is partially saturated at 50%. 

Solut ion 
(1) The capillary rise is calculated f rom the formula h — C/edl0 

where h and d are in cm and C in c m 2 . 

Therefore : d10 = 1 0 Mm = 1 0 " 3 cm, and h = ^ β · 2 β = q 5 χ 1 Q3 
0 .40 χ 10 0 

or h = 5 m. 
(2 ) F o r the vertical effective stress at any depth above the free ground 

water (see Fig . 2 . 2 4 ) , consider a unit area water co lumn. It is in static 
equilibrium, hence : u = ~ywZ. 

We t  soi l ·.·.'•; • 

Capillar y  ;.v / 
r i s e 

3m (oh 

5m 
10m 

Saturate d 
soi l 

5m 

.  Fre e  wate r 
-leve l 

Fig. 2.24. 
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Pore-water pressure is negative above the free ground water table , in the 
capillary rise area. Hence Terzaghi 's equat ion ï — ï + u, can be written as : 
0 = 0 — \u\ or σ'= σ + \u\. 

At a depth of 5 m, the total vertical stress i s : ( σ ν ) 5 = hxyh + (h2 ~~<z)7sat> 
b u t u = —z.7w, f rom which: ( σ ν ) 5 = hxy^ + (h2 -z)y sat + zy w . 

Let us calculate 7 s a t: 7 s at = ys e = 2 . 6 5 w 

( 2 . 6 5 + 0 .40 ) 
and 7 s at = 2 6 . 5 χ - = 2 1 . 8 k N / m 3 . 

2 .65 χ 1.40 

Le t us now calculate 7 h . Above ground water, S r = 50%, so 

S r7 w 0 .40 χ 0 .50 χ 10 
w = e — - = = 7 .5% 

7s 2 6 . 5 
from which: 

1 + w  1 .075 
7h = 7s T — = 2 6 . 5 χ — — = 2 0 . 4 k N / m 3 

1 + e 1.40 

a n d : ( a ; ) 5 = 3 .00 x 2 0 . 4 + 2 .00 x 2 1 . 8 + 3 x 1 0 = 1 3 4 . 8 kPa, 

say 1 3 5 kPa. 

At a depth of 1 0 m , the effective stress ( σ í ) 1 0 = h1yh + h2ysat + \z\y  = 
3.00 χ 20 .4 + 5 .00 χ 2 1 . 8 + 2 .00 χ 1 1 . 8 = 1 9 3 . 8 kPa. 

Summary of answers 

h = 5 . 0 0 m ; ( σ ^ ) 5 ^ 1 3 5 k P a ; (σν) ιο - 1 9 4 k P a . 

k**Problem 2.15 Capillary rise in an analogous soil mode l 

A poorly  graded sand may be idealized by  stacking of spheres of identical 
diameters. Find the capillary rise in this theoretical  model  assuming that the 
spheres are stacked in the loosest packing arrangement (n = 0.48). The 
surface tension of water  is 75 dynes/cm  and assumed acceleration due to 
gravity  is g — 1000 cm/s2. Compare the result with  the result of the em-
pirical formula h = C/ed10. 

So lut ion 
In its loosest s tate , a stacking of spheres looks like the diagram of Fig . 

2 . 2 5 . L e t us s tudy the static forces acting on a co lumn o f capillary water 
as shown in Fig . 2 .26 . L e t us first find the m a x i m u m capillary tension due 
to surface tension at the contact between water and a sphere (at the meniscus) , 
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as shown in Fig . 2 . 27 . This figure makes clear that the contact curve is m a d e 
up of four J circles of radius r. B u t r = R cos â where R is the radius o f one 
of the spheres. 

Fig. 2.26. 

Let a be the wetting angle (between the two tangents of the meniscus and 
of the surface particle s at the point of contac t ) , then the vertical com-
ponent of the capillary force is : T v = 2nrT cos (a 4- â) = 2kRT cos â cos 
(α + â)-

The m a x i m u m value will occur when â = —a/2: 

T r a ax = 2 7 L R T c o s 2a / 2 . 

Plan v i ew Deta il of c o n t a c t 
c i r c le 

Fig. 2.27. 

Plan v i e w E l e v a t i on AA' 

Fig. 2 .25. 

C a p i l l a ry w a t e r 

C o n t a c t 
c u r ve of 
m e n i s c u s 

Contact c irc le 
of m e n i s c us 

V 
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Le t us now assume a = 0 . In this ease the capillary m a x i m u m force 
will occur when the meniscus contacts a row o f spheres along a plane through 
the center of these spheres. The vertical force due t o capillary act ion will be 
balanced by the weight of a water co lumn of height h, whose cross-sectional 
area, Sm, is yet to be determined. L e t us consider one row of spheres of 
height d = 2R. The void rat io , for one element of mass (4 spheres) is calcu-
lated f rom: 

4 , nd3 

volume of vo ids : Vv = Sm χ d, volume of grains: Vs = — KR = , 
3 6 

d3 ôôÜ2 

and : e = Vv/Vg, f rom which: d χ Sm = âð — or S m = e —— 

The weight of the water co lumn of height h and of section S m is then : 
W  = en(d2/6)/i7w . This weight is suppor ted by the capillary force which is, 

d2 

for a = 0 : T v = ðÜÔ.  Therefore : ðÜÔ = eir — hyw or h = 6T/edy w . 6 
If we take Ô = 7 5 d y n e s / c m and £ = 1 0 0 0 c m / s 2 , which gives Y W = 

1 0 0 0 dynes , then : 

6 χ 7 5 0 . 4 5 
h = = . 

1 0 0 0 ed ed 

Since all the spheres have the same diameter , d = d 1 0, the empirical 
formula is proven: h = C/edl0 (h and d 1 0 are in cm) in which C varies be-
tween 0 .1 and 0 .5 c m 2 , depending on the soil t y p e . 

Remark: In reality the wetting of the grain is far f rom ideal , therefore 
angle α is different f rom zero , which y ie lds : 

6 Ô c o s 2 ( a / 2 ) 
h = . 

ed 

The corresponding value of C is lower bu t remains in the range 0.1—0.5 c m 2 . 

irkirProblem 2.16 Water table drawdown b y vertical drains 

(1) Assuming that DupuiVs hypothesis  is applicable to the problem,  find 
the discharge and the equation of the free ground-water  surface of a drainage 
trench of infinite length excavated to an impervious  substratum through a 
soil of permeability  k (assumed to be isotropic) and in which  the static, free 
ground-water  height is Ç above the substratum. Let R be the horizontal  dis-
tance from the side of the trench to a location where  the drawdown  is zero, 
(analogous to the radius of influence of a pump-out  well).  Assume that the 
ground-water  table is replenished by two  infinite sources on each side of 
the trench whose  horizontal  distance from the trench is larger than R. 

(2) Vertical drains consist of tubes of small diameter (from 5 to 8 cm) 
perforated at the base. They are usually installed by jetting,  when  spaced 
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about lm on center.  Assume that one row of drains is equivalent  to a drainage 
trench. The vertical drains are connected  at the surface by a collector pipe 
attached to a pump. 

In order to install a sewerline,  it is necessary to excavate a 4m deep trench 
through a silty  sand of permeability  k = 2x 10~3cm/s. The axis of the 
trench is located parallel to a river bank at 55 m distance. The impervious 
substratum is at 7 m below  the existing ground surface. A row of vertical 
drain is installed 5 m away from the axis of the sewer.  The free ground-
water,  prior to excavation of pumping is at 0.50 m below  ground surface. 
See Fig. 2.28. 

The vertical drains are jetted  to the depth  of the substratum. The length 
of the trench is 150 m. Find the discharge required to draw the water  table 
down  to a depth  of 0.5 m below  the bottom  of the trench. Assume R = 50 m. 

Trench of inf ini te length 

Fig. 2.28 

(3) The silty  sand through which  the water  table is drawn has e = 0 . 6 0 , 
d10 =z15ìm, ysat = 20.4 kN/m 3. Its wet  unit weight,  above the capillary 
rise is estimated  to be yh = 17.6 kN/m 3. Find the change in effective  stress 
during the drawdown,  acting on a horizontal  surface element  located 10 m 
horizontally  from the trench at a depth  of 5 m. What  is to be concluded? 
Assume C = 0.3 cm2 for the capillary rise empirical formula. 

Solut ion 
(1 ) L e t Μ be a point on the free ground-water surface along the drawdown 

curve. The hydraulic gradient at that point is i = — Ah/AL 
Since Ì is at the free water surface, the pore pressure is zero and if M' is 

located an incremental distance away f rom Ì on the free surface , then : 

dz 
Ah = hM —hM> = —dz  and i = 

ds 
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where s is the abscissa a long the curved line of the free surface oriented f rom 
Ì towards Mf. If the direction of orientat ion of the curvilinear abscissa is 
changed towards O x' then i = dz/ds. 

The rate of discharge, according to Darcy ' s L a w is í = k (dz/ds).  The hori-
zontal c o m p o n e n t of this velocity is (see Fig . 2 . 2 9 ) 

dx dz dx dz  /J A 2 

vx = í cos a = í — , vx = k — — = ft — 
d s d s d s dx 

Since the s lope of the free water surface is low, Dupui t ' s hypothes i s is 
appl icable . S o : 

dx a2 1 ldz\  2 , ldx\2 ldz\  2 

— = cos a ^ 1 ^ 1 — and — ^ 1 — — 
d s 2 2 \dx) \ds) \dx) 

(dz\  21 d * 
1 - — c± k — 

\dx] J dx 

if we neglect the third order t e rm. 
Assuming that the water flow is laminar (Dupui t ) vx is the average value 

of the discharge rate across a vertical p lane located a t a d i s t a n c e s . The dis-
charge across that plane passing b y point M, parallel to the trench axis over a 
length b of the trench i s : 

dz 
q = vx. S = vxbz = kbz  — . 

d x 

Since water is incompress ible and a s teady f low is ult imately obta ined , 
this unit discharge is half tha t f lowing f rom both sides of the trench. There-
fore we have the differential equa t ion : qdx = kbzdz,  and, integrating it 
between points Ï and R, we have : 

dz 
f rom which: vx = k — 

dx 

2 
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The discharge p u m p e d out for a unit length of trench (b = 1 ) is: 

(H2 -hl\ 

Q = 2q = (1 ) 

Integrating between Ο and ÷ y ie lds : 

<?x = fe6 and f rom eqn. ( 1 ) : = — n n w 

\ 2 / ' k 2qR 

f rom which: ζ 2 — / ι ^ = (for b = 1 ) 
k 

t h e n : * 2 = +  ̂ (H2 -hi) (2 ) 

(2 ) Numerical application: vertical drains: 

R = 5 0 m , f c = 2 χ 1 0 " 3 cm/s = 2 χ 1 ( Γ 5 m/s , i f = 7 - 0 . 5 0 = 6 .50 m. 

and along the axis of the sewer t rench: 

÷ = 5 .00 m, æ = 7 . 0 0 - 4 . 5 0 = 2 .50 m. 

Equat ion (2 ) gives: 2L502 = hi + ^ - ( 6 J 5 0 2 - hi). 
50 

f rom which ftw ~ 1.50 m. 
Equat ion (1) yields then: 

. 6 ΐ 5 0 2 - Γ 5 0 2 . , 
Q = 2 χ Ι Ο " 5 χ = 1.6 χ 1 0 - 5 m 3 / s 

50 

per meter length of trench. 
For a 1 5 0 m long trench, 

QT = 1.6 χ Ι Ο " 5 χ 1 5 0 χ 3.6 χ 1 0 3 = 8 .64 m 3 /h (or 2.4 1/s). 

(3 ) The capillary rise in the sand, in cm, is calculated f rom h = C/ed10 

for : e = 0 . 6 0 , C = 0.3 c m 2 and d 1 0 = 50 Mm = 5 0 χ 1 0 " 3 m m = 

0 3 
5 ÷ 1 0 " 3 cm, we get : h = ———i——τ = 1 0 0 cm. 

0 .60 χ 5 χ 10 0 

The capillary height above the free ground-water level is 1.00 m. The unit 
weight of soil t o b e applicable to this capillary zone is the saturated unit 
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z\  = ( 1 . 5 0 2) + — ( 6 . 5 0 2 - 1 . 5 0 2 ) f rom which zx = 3 .20 m. 

The tota l stress at 5 m depth and 1 0 m f rom the trench, before the draw-
d o w n , w a s : (σ ν) ΐ = 5 7 s at = 2 0 . 4 χ 5 = 1 0 2 k P a and the pore-water pressure 
was : (u){ = 4 . 5 7 w = 4 5 k P a . 
The effective stress, prior to drawdown was : (σΙ\ = 1 0 2 — 4 5 = 5 7 k P a . 
After equil ibrium has been reached with full d rawdown: 

(ov)f = 7 s a t( 4 . 2 0 - 2 ) + 7 h ( 7 - 4 . 2 0 ) = 2 0 . 4 x  2 .20 + 17 .6 x  2 .8 = 

94 .2 kPa. (u)f = 7 w( 3 . 2 - 2 ) = 1 2 k P a , 

from which (a'v)f = 9 4 . 2 — 1 2 ~ 8 2 k P a . 

Drawing the water down causes an increase in effective stresses Áσ'í = 
2 5 kPa. This is a considerable a m o u n t as it is greater b y : 

Δ σ ; 2 5 
- ~ = — ~ 4 4 % . 
(σ'í)é 57 

This increase in stress is sufficiently large that considerat ion would have to 
be given to sett lements resulting f rom a dewatering operat ion occurring in 
compress ible soils. 

**Problem 2.17 Piping condit ions in a fractured rock mass 

Consider the dam whose  cross-section is shown on Fig. 2.30. An unlined 
drainage gallery was excavated in the rock downstream  of the dam. The 
gallery intersects a fracture filled with  pervious soil. The thickness of rock 
above the center line of the gallery is x, at the location of the fracture. The 
level  difference between  the reservoir pool and the grade where  the fissure 
intersects the ground surface is Z. If we  know  that the unit weight  of the 
fracture fill material is ys = 26.5 kN/m 3, determine  what  values of ÷ and æ 
and of porosity  n, would  cause piping in the fracture. 
Calculate ÷ in terms of z, for ç = 40%. 

weight 7 Sat = 2 0 . 4 k N / m 3 . Above the capillary rise, 7 h = 1 7 . 6 k N / m 3 as 
given in the prob lem. 

L e t us calculate the level of the drawdown at equil ibrium 1 0 m away from 
the t rench : 
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Fig. 2 .30. Piping in fractured rocks. 

Solut ion 
Piping occurs where soil is carried away by water flowing upward and 

exerting a force greater than the buoyant weight of the soil particles . The 
consequence of piping is excessive loss of water and partial caving of foun-
dat ion materials and possibly disastrous damage to the dam structure. In 
the case of rock, as in this prob lem, the only probable consequence would 
be excessive leakage through the foundat ion. 

Piping would occur when at a point in the fracture, the weight of the 
soil is balanced by an upward force of the-water f low. If it is a s sumed that 
the head gradient is constant throughout the length of the fracture, piping 
will occur when the pressure at the b o t t o m of the fracture is u = (z + x)yw , 
and equal to the tota l stress which is σ = xy&u therefore when u — (z + x)yw 

= xJsat = x ( 7 + Tw ) or when zy w = xy'. 

T o avoid piping we mus t maintain the condit ion zy w <xy'. We know 
that the buoyant unit weight of the soil material in the fracture is : y1 — 
(7s " 7 w ) ( l - n) f rom which: x/z > yj(y s -y w)(l~n). 
Condit ions for piping are realized then, when x/z > 1 0 / 1 6 . 5 ( 1 — 0 . 4 0 ) or 
x/z> 1 / 0 . 9 9 - 1 . 

T o avoid piping, the rock thickness above the gallery would have to be 
greater than z. 

**Problem 2.18 Permeabil ity 

A test  is set up as shown in Fig. 2.31. A cylindrical mold of 4 in. in 
diameter (D = 4 in.) is filled to height h2 = 0.2 ft with  silt whose  perme-
ability  is k2 = 5.3 * i 0 "4 ft/min. 

A second coaxial mold is placed on top of the first mold whose  inside 
diameter is d = 1.5in. and whose  height is hx =0.3 ft. Its thickness is 
negligible. The inside of this second mold is filled with  the same silt, but the 
anular ring outside the small tube and outer tube is filled with  sand whose 
permeability  iskx =2 * i 0 "3 ft/min. 

The test  set-up is a permeameter  of constant head. Water  is placed in the 
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mold and maintained at a level  Æ = 1.25 ft above the level  of the outlet. 
It may be considered that altogether the system consists of a fictitious soil 
of thickness Ç = hx + h2 and of permeability  kf. 
(1) Find the value of kf. (2) Determine  the volume  of water  which  perco-
lated after 30 min. 

Wate r 

Ç Q Ç 

k 

Sil t 

. S a n d 

Ç 

i * 

*  Wate r 

P o r o u s s t o n e 

Fig. 2 .31 . 

Solut ion 
(1 ) The radius of frozen soil R1 a round a liquid pipe can be calculated, 

through the anular space qx and through the inner mold q2. The hydraulic 
gradient in both instances is Z/H. F ind q2 f rom Darcy ' s law, where í = ki: 

k2i 
Æ Æ d2 

k7 ôæ f rom which q2 — V2S2 = k2—n — , 
2 Ç Ç 4 

Æ D2-d2 

The same applies t o : qx = kv— π 
Ç 4 

(1) 

but here, kv is the equivalent permeabi l i ty corresponding to the 2-layer 

Ç hx h2 

sys tem, therefore: — = ~ Η — , 
kv ki k2 

f rom which: kv 

klk2H 
and qx = 

kxk2H 

kxh2 + k2hx~ *l klh2+k2hl Ç 

The total discharge at the outlet is q = qx + q>i. 

Æ D2 

We also have: q = kf— χ π — . 
Ç 4 

Æ D2-d2 

χ — χ π . (2) 

(3) 

(4 ) 



78 WATER IN THE SOIL 

Rearranging equations (l), (2) ,  (3) and (4):  
D 2  - d 2  

x--. d 2  k I k 2 H  
k f  = k 2 1  + 

D k l h 2 + k ? ; h ,  D 2  

Therefore: 

2 5.3 x 0.5 42 - 1.52 + x -- 
(1.5)' 

2 ~ l O - ~  x 0.2 + 5.3*10-4 x 0.3 42 
k f  = 5 . 3 ~ 1 0 - ~  

Thus: k f  = 8.9 ftimin or k f  1.06 *lod2 in./min. 

Z .rrD2 1 
(2 )  The total discharge is: q = k f  x - x - ; D = 4 in. = .---ft. H 4  3 

or q 2 0.33 cu. in./min. 
The volume of water collected at the bottom is: V30 = 0.33 x 30 'v 9.9 cu. in. 

Summary o f  answers 
k f  = 8.9 - ftimin (% 4.51 * lob4 cm/s); V30 = 9.9 cu. in. (or 162 cm3 ). 

*++Problem 2.19 Practical application of soil freezing; design of an ice wall 

Let us assume that it is necessary t o  construct a 5-m diameter well in 
sandy soil whose properties are: water content w = 3076, unit wet weight 
Y h  = 20 k N / m 3 ,  specific heat C, = 1400 J/kg/'C (assumption B o f  Fig. 2.32). 

Also given is the radius of freezing as determined from the graph o f  Fig. 
2.23. It is assumed that freezing is 1.5 times slower around a nitrogen gas 
pipe than around a liquid nitrogen pipe. 

(1)  Determine the pipes spacing i f  the freezing f rom one pipe t o  the nex t  
has to  occur in 48 h. 

( 2 )  Estimate the volume o f  soil frozen after 3 days. 
( 3 )  Using the graph o f  Fig. 2.33, determine the average temperature o f  the 

frozen wall. Evaluate the liquid nitrogen consumption per m3 o f  soil frozen, 
assuming an efficiency of 80%. 

(4 )  Determine the diameter of a circle around which the pipes would 
have to  be installed and calculate the consumption per meter of well. Read 
the technical note presented a t  the end o f  this problem before starting the 
solution. 

Solution 
(1) The radius of frozen soil R ,  around a liquid pipe can be calculated, 

in cm, from the following equation, derived from Fig. 2.32: R 1  = 30 + 
0.7(t - 20) valid for any time t larger than 20 (in hours). 
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Liqui d  pip e 

A s s u m p t i o n A on soil ë - 2 - w . m - l _ ° k - 1 

0 s q u a re p ipe , 115 mm s i de W  3 2 0 % 

t e m p e r a t u r e SL 140 Ê C ï P = 1 8 0 0 k g . m~ 3 

SG 1 30 Ê 1 0 0 0 J- k g - 1. ° k 

0 10 20 30 4 0 50 60 70 80 
Time (hours) 

Fig. 2.32. Isotherm 0°C evolution with time along an axis perpendicular to the pipe 
alignment. 

The freezing radius R2 a round a nitrogen gas pipe will be R2 = 20 + 
0.47(£ — 20) and at the end of 4 8 hours : R1 4- R2 = 49 .6 + 33 .2 = 82 .8 cm. 

This distance corresponds to the theoretical spacing because at the end of 
this t ime the two radii would touch and the freezing circles would be tangent. 

(2) A t the end of 72 h, the respective frozen soil radii will be R x = 6 6 . 4 cm 
(circle area = 1 . 3 8 m 2 ) , R2 = 4 4 . 6 c m (circle area = 0 . 6 2 m 2 ) . If the excess 
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freezing, occurring due to the overlap of the two circles, is neglected, the 
total soil volume frozen is 2 .00 m 3 /2 = 1 m 3 for a length of travel of 0 .83 m 
and for a depth of p ipe of l m . The average thickness o f frozen wall is 
therefore 1.2 m. 

(3) With assumption B , from Fig. 2 . 3 3 , at the end of 72 h, the average 
wall temperature is 2 4 0 ° Κ or — 3 3 ° C . The amount of l iquid nitrogen needed 
to lower the soil to that temperature can be calculated: the energy required 

°ê t 

285 

Fig. 2 .33. Average wall temperature (°C = 273° K). 
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to cool 1 m 3 of soil (water exc luded) from + 1 2 ° C to - 3 3 ° C (AT = 4 5 ° C ) is : 
2 0 0 0 kg ÷ 1 4 0 0 J ° C _ 1 k g " 1 ÷ 4 5 = 1 2 6 , 0 0 0 , 0 0 0 J . 

One m 3 of soil with a water content of 30% contains 4 6 0 1 of water. In 
order to freeze the water, the energy required will be 80 ÷ 4 .18 ÷ 4 6 0 , 0 0 0 = 
1 5 3 , 8 2 4 , 0 0 0 J , and the total energy need for both soil and water is: 
2 7 9 , 8 2 4 , 0 0 0 J . 

But 1 1 o f liquid nitrogen has a mass of 8 0 0 g and l g provides 4 0 0 J / g 
when changing phase (vaporizing) to raise its temperature to the ambient one . 
If the efficiency of this process is 80%, then 1 1 of l iquid nitrogen provides 
2 5 6 , 0 0 0 J . Therefore , the liquid nitrogen demand is: 

(4 ) It was shown that the radius of the frozen ground around the liquid 
pipe is 6 6 . 4 cm after 72 h. The minimum radius of a circular layout of pipes 
would then be 5 .00 m Η- 2 ÷ 0 . 6 6 4 = 6 .33 m , giving a perimeter of 19 .87 m 
and a number of pipes of 1 9 . 8 7 / 0 . 8 3 = 2 3 . 9 , say 24 pipes . 

These pipes will be placed along the perimeter of a circle whose diameter 
is 6 .35 m. The frozen ground volume will be , per lineal meter of p ipe : 
6 .35 ÷ 3 .14 ÷ 1.20 = 2 3 . 9 m 3 (thickness of 1.20 m is average frozen thick-
ness already c o m p u t e d ) . 

The construct ion of the frozen wall will require: 23 .9 ÷ 1 0 9 3 = 2 6 , 1 2 3 1 
of liquid nitrogen per meter of well. 

Appendix  of Chapter 2 

Technical no te a b o u t freezing o f soils 

1. Principle of computation 

Usually, the placement of pipes carrying the cooling agent is determined by the 
geometry of the area to be excavated. It is necessary to determine the spacing between 
the pipes. The diameters of the pipes are standard for this type of ground preparation 
and usually consider the following: 
— for large excavations pipe lengths greater than 10 m, the outside pipe diameter is of 
the order of 3 inches; 
— for smaller works, such as in localized areas and for short lengths of pipe, the pipes may 
be of the order of 2 inches (50 to 60 mm). 

The following assumptions can be made: the pipe temperature is fixed at say 0 S, only 
slightly warmer than the temperature of liquid nitrogen along the liquid pipes. It is 
variable along the length of the pipe when nitrogen gas is used. 

If thermal losses through the pipe walls are omitted, the following equations apply: 

2 7 9 , 8 2 4 , 0 0 0 

2 5 6 , 0 0 0 
= 1 0 9 3 1 liquid nitrogen per m 3 of ground to freeze. 

(heat transfer in frozen ground) 
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b0\ / . 30 \ a dr c 
λ — I — — λ — = * p · L · — (freezing at isothermal 0 C) 

br \ br a + 1 0 0 at 

30 _ l ^ l 1_ 90 

bt ~ a n f\ b r 2 + 2 bar 
— = anf ( ^ - γ + — ) (heat transfer in unfrozen ground) 

where: 0 = temperature, f = time, r = radius, r c = freezing radius, λ = conductivity, 
a = X/p c = diffusion, ñ = unit mass, c = specific heat, f = frozen, nf = not frozen, 
L = phase change heat of water (freezing). 
The limit conditions are: 

0 
0 = 0 S (for r — pipe radius) 

0 = 0o initial temperature of the ground (for r > pipe radius) 

r = rc 0 f = O°C 

r = oo θ=θ0. 

A graphic interpretation is best used for the solution of the equations (method of 
Binder-Schmidt) or by computer. 

(a) The following simplifying assumptions may be made: 

tj ^ . 4 . È~θ* l n r/ r s Heat flows according to: ^ 
In r 0/ r s 

where s — pipe subscript; r 0 = radius beyond which temperature changes are negligible; 

r0 = rs exp — l n ( r c/ r s) . 

Instead of mental calculation which would imply too crude an assumption, the previous 
hypothesis allows us to calculate the average temperature of a frozen block as a function 
of two parameters: pipe temperature and freezing radius. From there on it is easy to 
determine the amount of liquid nitrogen which is needed to reach this freezing radius. 

Example 
Consider a 3-in. outside-diameter pipe (D = 88 .9 mm) at a temperature of —133 C 

(140° K). For a 45-cm freezing radius (rc/rs = 10) the average temperature will be —42 C 
(see Fig. 2 .34) . If the soil has the following properties: θ0 = + 1 2 ° C , w = 30%, then L = 

3 0 · 1 0 3 

334 X = 77 ,000 Jou le s /dm 3, ρ = 1.8 k g / d m 3 , C = 1400 J · kg"1 · Κ"1 , the energy 

required to lower the temperature of the ground from + 1 2 to 0°C to freeze it and to 
decrease the temperature from 0°C to —42°C will be: 1 .8 [77 ,000 + 1400(42 + 12 ) ] = 
274 ,000 J per m 3 of ground; this corresponds to a nitrogen demand, at 80% efficiency 
(0-outlet = —70°C) of 1.07 liters per m 3 of ground. (See Fig. 2 .35) . If the nitrogen gas 
pipe, next in line after a liquid nitrogen pipe, has an average between outlet and inlet 
temperature of —100°C, the average temperature of the frozen ground bloc of 45 cm of 
radius will be —32°C (see Fig. 2 .33) . The amount of energy required then is: 
1 .8[77 ,000 + 1 4 0 0 ( 3 2 + 1 2 ) ] = 249 ,000 J per m 3 of ground, or 0.97 liters of nitrogen 
per m 3 of ground. 

By and large, it is seen that nitrogen consumption will be about 1 m 3 of liquid nitrogen 
per m 3 of ground to freeze. 
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Fig. 2.35. 

Fig. 2.34. Average temperature of frozen block (assuming a logarithmic distribution of 
temperatures) as a function of r c/ r s, where r c is the freezing radius and rs is the pipe 
radius. 
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The simplifying assumptions neglect: (1) Cooling of the ground beyond the frozen 
radius, which in fact reduces consumption by 3 to 5%; (2) the effect of alternating liquid 
and gaseous nitrogen pipes which increase nitrogen consumption by about 10% (the 
average temperature is, in fact, higher). 

(b) Soil information. 
Heat conductivity: Heat conductivity of the soil depends primarily on the following 

factors: water content (first of all); grain-size distribution, compactness. 
The value of λ is different for a frozen and a thawed soil (see Fig. 2.36 for this and for 

thermal conductivities). 
Specific heat: We know that C w a t er = 1 cal-g"1 · KT1 = 4 . 1 8 J ' g _1 · K"1 and C i ce = 

0 . 5 c a l * g _1 · KT1 = 2.09 J-g" 1 · K"1. It can be assumed that: 

Cgrain = 0.17 cal · g"1, K"1 = 0.76 J · g"1 · K"1 (average value for any type of soil grains). 

7 S 

The specific heat for unfrozen soil is: C u = 7 d( 0 . 1 7 + w) = (0.17 4- w) 
Ts «> + Tw 

Fig. 2.36. Thermal conductivity of soils (after Kersten). 7 d( l b / c u . ft = 0 .016 g k m 3) ; 
Κ = λ = conductivity ( B T U / f f 1 h"1 OF"1 = 1.73 w m - 1/ 0 ^ 1 ; Ku = conductivity of non-
frozen soil; Kf = conductivity of frozen soil. 
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and for frozen soil: Cf = — (0.17 + 0.5 w). 
Ts  ̂ + Tw 

T s ^ 
Specific heat of soil when changing phase (freezing) is L — ^water, 

T s  ̂ + Tw 
from which Table 2A is made up and on the values of which the curves of Fig. 2.35 were 
based. 

TABLE 2A 

Conductivity of soils 

U)% cu 
cg L U)% 

cal /cm 3/K J /cm 3/K cal /cm 3/K J / cm 3/K ca l / cm 3 J /cm 3/K 

0 0.46 1.92 0.46 1.92 0 0 
10 0.57 2.38 0.47 1.96 17 71 
20 0.65 2.72 0.47 1.96 28 117 
30 0.70 2.93 0.48 2.01 36 150 
40 0.74 3.09 0.48 2.01 42 175 
50 0.77 3.22 0.48 2.01 46 192 

100 0.85 3.55 0.49 2.05 58 242 

2. Example of results from computer application. 

The diameters of the pipes are 80 /88 .9 . Temperatures were chosen to account for the 

actual performance of the first pipe with liquid nitrogen. 
Other givens are: pipe equivalent to square section of 70 mm side; initial temperature 

285° K; liquid nitrogen pipe temperature 95° K; gaseous nitrogen pipe temperature 180° K. 
Other assumptions regarding the soil: 

λ = 2 w m " 1 K"1 

w = 20% 

ρ = 2000 kg m 3 

c p = 1400 J kg"1 K"1 

λ = 2 w m " 1 K"1 

w = 30% 
B{ 

ñ = 2000 kg m 3 

c p = 1400 J kg"1 K"1 

λ = 2 w m _ 1 K"1 

w = 20% 

C -3 

ρ = 1800 kg m 3 

c p = 1000 J kg K " 1. 
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Results are presented on the graphs of Figs. 2 .32, 2.33 and 2.35. Fig. 2.32 gives the 
frozen radius along an axis through a liquid nitrogen pipe and perpendicular to the line of 
pipes. Not only have the curves the same shape, but it will be noticed that they appear 
closely grouped. This means that the rate of freezing does not change much for different 
soil conditions. Also the order of magnitude of R (in cm) is 30 + 0.71 (£— 20) for t 
in hours greater than 20. 

Fig. 2.33 shows the average frozen-wall temperature. This result is in good agreement 
with the curve giving the freezing radius. It should be noted that the average temperature 
varies little in different soil types. The order of magnitude is from —20°C to —28°C after 
60 hours. 
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Chapter 3 

P R A C T I C A L S E T T L E M E N T C A L C U L A T I O N S - C O M P R E S S I B I L I T Y 
A N D T H E O R Y O F C O N S O L I D A T I O N 

**Problem 3.1 Oedometer test on sand 

An oedometer  test  performed on a sand sample gave the following  results: 

loading (in kg) in frame 0 24.52 73.56 171.70 36 7.90 
settlement  (in mm) 0 0.04 0.12 0.25 0.41 

The oedometer  ring area is 38.5 cm2, the sample has an initial height of 

24 mm. 
(a) Draw the compression curve and find the consolidation moduli (in 
(daN/cm) corresponding to the load intervals. 
(b) Calculate the slope of the compression curve for the last two  load in-
crements  and compare it to the compression moduli. 

Solut ion 

The compress ion curve for the sand is p lot ted from the strain values 

Ah 
-— = (h0 — h)/h0 and corresponding load stresses. (F ig . 3 .1 ) . These are 
h0 

presented on Table 3 A . 
The oedometr ic modulus for a load increment Δ σ = o2 ~ ox by definition 

is: 

Ah/h 

TABLE 3A 

h - h 0 
Masses (kg) σ ( d a N / c m 2) h — h0 (mm) Masses (kg) σ ( d a N / c m 2) 

h0 

0 0 0 0 
24 .52 0.64 0.04 0.167 

73 .56 1.91 0.12 0.50 
171 .70 4.46 0.25 1.04 
367 .90 9 .53 0.41 1.71 
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where h is the sample height for σ = σ ΐ 5 Ah is the sett lement of the sample 
under a load of Δ σ . 
Table 3 B summarizes the oedometr ic modul i for each load increment 

TABLE 3B 

σ ( d a N / c m 2) Δ σ ( d a N / c m 2) h (mm) Ah Ah/h (%) E' (daN/cm 2) 

9 0.64 24 .00 0 Q4 Q 1 67 3 83 

™ * 1.27 ll'll 0.08 0 .334 380 

ë ëÉ 2· 5 5 Hit °·13 0545 469 

t S 5· ° 7 23 59 ° · 1 6 ° · 6 75 7 52 

The s lope o f the compress ion curve is : 

Δ σ Δ α _ Δ σ 

h2 —h0 _ h x —hp h2 — hx Ah 

ho hp hp ~J[~o 

and since h0>h, the value of this s lope is slightly greater than the oedo-
metric modulus . 

For the last t w o load increments we have: 

(a) 1.91 < σ < 4 . 4 6 , Δ σ = 2 . 5 5 , 

f rom Table 3 A : 

h2 ~h0 hy —he, 

— = 1.04%, and ~ — - = 0 .50% 
hp hp 

and the s lope is : 
Δ σ 2 .55 2 5 5 0 

= = = 4 7 2 instead of 4 6 9 for Ε 
Ah/hp  0 . 5 4 / 1 0 0 5.4 

(b) 4 .46 < a < 9 . 5 3 , Δ σ = 5 .07 . 

h2 — hp hx — hp 
Similarly: — = 1 .71% and — - = 1.04% 

hp ho 

f rom which the s lope is: 5 0 7 0 / 6 . 7 = 7 5 7 , instead of 7 5 2 for E'. It will be 
not iced that the two values are very close and the difference is less than 
inaccuracies d u e t o test errors. 
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irk Problem 3.2 Consol idat ion test on clay 

A clay sample is tested  in an oedometer  with  the following  results: 

stress (daN/cm2) settlement (mm) 

0 0 
0.1 0.2 
0.2 0.03 
0.4 0.05 
0.8 0.10 
1.6 0.19 
3.2 0.43 
6.4 1.09 

12.8 1.78 
1.6 1.58 
0.4 1.43 
0.1 1.22 

At the start of the test,  the sample height was 25mm and its void  ratio 
was 1.01. Draw the compression curve (e vs 1 g o) and calculate the com-
pression index Cc and the oedometric  modulus corresponding to the load 
increment  6.4 daN/cm2 to 12.8 daN/cm2 (loading). Compare this modulus 
with  the secant modulus for point  load at 6.4 daN/cm2. 

The consolidation pressure oc may be determined  from the classical 
method  on the e — log ï curve and the ln(l +e) — log ï diagram as rec-
ommended  by Butterfield (Fig. 3.2b). 

Solut ion 
Since the volume of soil grains remains constant throughout the test , we 

have: 

Ah_ _ Ae 

h0 l + e0 

for hQ = 2 5 m m and e0 = 1 .01 , and calculating Δ β , if Ah is in m m : 

l + e 0 2 .01 
Ae = Ah = Ah = 8 .04 ÷ Ι Ο " 2 ÷ Ah. 

h0 2 5 

The values of void ratio e change, corresponding to the sett lements ob-
served during the test , and are given in Table 3 C . 

The compress ion index C c is the s lope of the straight line port ion of the 
compress ion curve for σ > oc (see Figs . 3 .2a and 3 .2b) (oc = consol idat ion 
stress) 

c = 
c Δ log σ ' 

The diagram may be approx imated to a straight line for the interval 
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TABLE 3C 

a ( d a N / c m 2) Ah (mm) Ae e 

0 0 0 1.010 
0.1 0.02 16.1 X 1 0 "4 1.008 4 
0.2 0.03 24.1 × 1 0 " 4 1.007 6 
0.4 0.05 40 .2 X 1 0 "4 

1.006 
0.8 0.10 80 .4 X 1 0 "4 1.002 
1.6 0.19 152.8 X 1 0 " 4 0.995 
3.2 0.43 345.7 X 1 0 " 4 0.975 
6.4 1.09 876 .4 X l O "4 0.922 

12.8 1.78 1431.1 X 1 0 " 4 0.867 
1.6 1.58 1270 .3 × 1 0 " 4 0 .883 
0.4 1.43 1149.7 X l O "4 0.895 
0.1 1.22 980 .9 × 1 0 " 4 0 .912 

3 . 2 < σ < 12 .8 d a N / c m 2, and : 

0 . 8 6 7 - 0 . 9 7 5 0 . 1 0 8 0 . 1 0 8 

c = = = 

log 1 2 . 8 - l o g 3.2 log 4 0 . 6 0 2 

0 .18 . 

The oedometr ic modu lus E' corresponding to the stress interval 6.4 to 

Δ σ 
12 .8 d a N / c m 2 is given b y : E' 

Ah/h 

where h is the height of the sample when a = 6.4 d a N / c m 2 and Ah rep-
resents the set t lement occurring when the load is increased from 6 .4 to 
12 .8 d a N / c m 2. 
h = 2 5 . 0 0 - 1.09 = 2 3 . 9 1 m m , Ah = - ( 1 . 7 8 - 1 . 0 9 ) = - 0 . 6 9 m m , Δ σ = 
1 2 . 8 - 6 . 4 - 6 .4 d a N / c m 2 

Δ/ζ 0 .69 , 6 .4 
from whzch: - = - — = - 0 . 0 2 8 8 , Ε = — ^ 2 2 2 d a N / c m . 

The secant modulus at any one point is : Es = 
Ah/h 0 

where /z 0 is the initial height of sample , Ah is the sett lement under σ and 
therefore : 

6 .4 6 4 0 
E' = = = 1 4 7 d a N / c m 2 . 

- ( 1 . 0 9 / 2 5 ) 4 .36 

In this instance, the difference between the two modul i is substantial . 
The consol idat ion pressure of a b o u t 2.4 d a N / c m 2 is obtained by simply 
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0.1 0.5 
Vertical stress ( da Ν / c m 2) 

5 10 5 0 100 

6*  ( log scale) 

Fig. 3.2a. Curve of compression in clay. 
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drawing the intersection of the tangents to the consol idat ion curve on the 
e - log σ graph, as indicated on Fig . 3 .2a . On the other hand, if we use the 
Butterfield construct ion (see Geotechnique,  2 9 : 4 6 9 — 4 7 9 ) , we find a 
consol idat ion pressure of 2 .5 d a N / c m 2 (see Fig . 3 .2b ) . Butterf ield 's con-
struction appears to be simpler and avoids errors of est imating from the 
graphical construct ion. 

Summary of answers 

Cc = 0 . 1 8 , oc ~ 2 .5 d a N / c m 2 

and 

E' = 2 2 2 d a N / c m 2 for 6 .4 < σ < 12 .8 d a N / c m 2 

E' = 147 d a N / c m 2 for σ = 6 .4 d a N / c m 2. 

**Problem 3.3 A p p r o x i m a t e evaluation o f the compress ion index C c and of 
the set t lement o f a normal ly consol idated clay 

Borings were  made for a construction project. They showed  that sub-
surface soils consist of a layer of fine sand 10.60 m thick,  overlaying a soft 
clay layer 7.60 m thick.  The free ground-water  table is at 4.60 m below  the 
ground surface (see Fig. 3.3). 

The buoyant unit weight  is 1.04. The wet  sand density  is 1.76 above the 
water  table. The water  content  of the normally consolidated clay is w =40%, 
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its liquid limit  w h = 45% and the soil particles unit weight  of the soil con-
stituent  is 2.78 kN/m 3. The proposed construction will  impart a net stress of 
1.2 daN/cm2. 

Find the average settlement  of the clay layer (determine  the compression 
index Cc by Skempton's formula and start from the initial vertical stress in 
the middle  of the clay layer). 

Solut ion 
S k e m p t o n ' s formula for the compress ion index is C c = 0 . 0 0 9 ( u ; L — 1 0 ) , 

and for this problem, it is: C c = 9 x l 0 " 3 ( 4 5 — 10) = 9 χ 35 χ Ι Ο " 3 = 
3 1 5 χ 1 0 ~ 3 = 0 . 3 2 . 

The sett lement is given by the formula : 

Ah 

h 1 + e 
log 1 + 

o'J ' 

Since the clay is saturated, its initial void ratio is : 

e = w—  = 0 . 4 0 x 2 . 7 8 = 1 . 1 1 . 
7w 

(This value corresponds to a soft clay.) 
The vertical stress acting at mid-height in the clay layer is : 

7 .60 , 
a = 4 . 6 0 χ 17 .6 + 6 . 0 0 χ 10 .4 + χ y' 

2 

Water table-

Fine sand 
#=10-4 kN/m 3  ."• 

Ë 

ôç 

N o r m a l l y 
c o n s o l i d a t e d ] 
c l a y 

/  /  / 

Fig. 3 .3. 

where y' is the buoyant weight of the c lay : 

7h = 
7 s + eyv 

1 + e 

2 7 . 8 + 1 1 . 1 

2 1 . 1 
1 8 . 4 4 ~ 1 8 . 4 , so γ ' = 8 . 4 k N / m 3 . 
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The vertical stress then is : 

d = 4 .60 x 1 7 . 6 + 6 . 0 0 x 1 0 . 4 + 3 .80 x 8.4 = 1 7 5 . 3 kPa 

Ah 0 .32 / 12 \ 7 . 6 0 x 0 . 3 2 
and — — = - — — log 1 + — — , Ah = log 1 .686 = 0 . 2 6 1 

7 .60 2 .11 \ 1 7 . 5 / 2 .11 

or Ah ~ 26 c m . 

Summary of answers 
Cc = 0 . 3 2 ; set t lement : 26 c m . 

**Problem 3.4 A p p r o x i m a t e evaluation o f set t lements and o f preconsoli-
dat ion pressure for an overconsol idated clay 

An area under consideration is known  to have been a lake at the beginning 
of the Quaternary era. The lake bottom  consisted then of a sand layer 55.70 m 
thick  overlaying a clay layer of 7.6 m in thickness (see Fig. 3.4). With  time, 
the lake disappeared and the lake bottom  became a plateau through which  a 
river eventually  carved a deep valley.  The plateau is now  some 45 m above 
the bottom  of this valley.  The water  in the river is 1.5 m below  the level  of 
the valley  (see Fig. 3.5). 

The sand layer has the following  characteristics: buoyant unit density: 
1.04, wet  density  above the water  table: 1.76. 

Lake 

5S70m , 4 ' * · . * / • " . Sand 

1 '"V///// 
7 6 0 m / / / / / / / 

//////  Sss/ 
/ / / / / / / / c l ay 
/ / / / / / / / / , - / / 

Fig. 3.4. 

The clay layer properties  are: natural water  content  35%, liquid limit  45%, 
specific gravity  of soil particles 2.78. 

(a) Find the pre-consolidation  pressure (neglect the weight  of the clay). 
(b) Evaluate the settlement  range which  could occur due to consolidation 

of the clay if a building is constructed  which  would  impart a stress of 0.9 
daN/cm2 to the clay layer. 
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Fig. 3.5 . 

Solut ion 
(a) B y definition, the pre-consolidation pressure is the largest effective 

vertical stress ever experienced by the soil during its geological history. A t 
the t ime when the lake exis ted, the effective overburden pressure was, a t the 
t o p of the clay layer: σ' = 5 5 . 7 0 χ 10 .4 = 5 7 9 kPa. 

If the water level remained at the ground surface during the erosional 
process , the largest overburden pressure was the one calculated above , 
therefore : oc = 5 8 0 k P a , or oc = 5 . 8 d a N / c m 2. 

Remarks 

F o r the case corresponding to the condit ions summarized in Fig. 3 .6, 
which would correspond to a long dry per iod before the erosional process 
started, the stress a t the t o p of the clay layer would b e : σ' = ( 5 5 . 7 0 —Ç, )yh 

+ ( t f 2 - # i ) 7 « t + # i V . 

If we as sume the following values: H2 = 4 5 . 7 0 m, Hx = 4 5 . 0 0 m , then σ' = 
(55 .7 - 45 .7 ) χ 17 .6 + 0 .70 χ 20 .4 + 4 5 . 0 0 χ 10 .4 = 176 + 14 .3 4- 4 6 8 = 
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6 5 8 . 3 k P a = 6 . 6 d a N / c m 2, which is considerably larger than the preconsoli-
dat ion pressure. 

(b) L e t us calculate the vertical in-situ stress σό at the mid-height of the 
clay layer before construct ion of the building. We must first know the unit 
weight of the clay. 

•We k n o w : 

1 + w 
7h = 7s T — " , e = w(7s/7w) = 0 .35 χ 2 .78 = 0 . 9 7 3 . 

1 + e 

Because the clay is sa turated : yh = 2 7 . 8 ( 1 . 3 5 / 1 . 9 7 3 ) ~ 1 9 k N / m 3 , then 
7'/7w = 0 .9 . 

The unit weight of the saturated sand in the capillary rise zone is 2 0 . 4 k N / m 3 . 
The thickness of this layer is 1.5 m. We then have: σό = 1 . 5 0 x 20 .4 + 
( 5 5 . 7 0 - 4 6 . 5 0 ) χ 10 .4 + 3 .80 χ 9 = 1 6 0 . 5 kPa or σό = 1.6 d a N / c m 2 . 

This stress is smaller than the pre-consolidation pressure (σό < a c ) , so the 
clay is overconsol idated. 

The weight of the structure will increase the stress on the clay layer by an 
a m o u n t o f Δ σ = 0 .9 d a N / c m 2 , but oe — σ'0 = 5.7 —1.6 = 4 .1 d a N / c m 2 , there-
fore : Δ σ = 0 . 9 d a N / c m 2 <\{oc — σό) . 
If we let Ah be the set t lement of a normally consol idated clay layer of equal 
thickness and equal l iquid l imit, we would approx imate ly have, for the 
set t lement , s , of the overconsol idated c lay : Ah/10 <s < Ah/4  and for a 
normally consol idated clay, S k e m p t o n ' s formula for the compress ion index 
gives: C c = 0 . 0 0 9 ( k ; l - 1 0 ) = 0 . 0 0 9 χ 3 5 = 0 . 3 1 5 ~ 0 . 3 2 . 

If the clay were normally consol idated , the sett lement would b e : 

Ah Cr 1 Ao\  0 .32 / 0.9 \ 0 . 3 2 , 
log 1 + — = - — l o g 1 + — U — l o g l . 5 8 h 1+e "°\~ σ ό / 1 .973 ~ ~ ° \ ~ 1 .56/ 1.97 

~ 3 .21 χ 1 0 " 2 

Ah = 7 6 0 χ 3 .21 χ 1 0 " 2 = 24 .4 c m . 

F o r the overconsol idated clay then : Δ / ι / 1 0 ~ 2 .4 c m , Ah/4 = 6 c m hence 
2 . 4 < s < 6 c m . 

Summary of answers 
oc ~ 580 kPa; 2 . 4 < s < 6 c m . 

irk Problem 3.5 S tresses at depth be low shallow foot ings 

A shallow footing is 12 m square and 20 cm thick.  It supports a load 
whose  intensity  is 0.78 daN/cm2. Assume concrete unit weight  to be 2.5. 

Determine  the vertical stresses due to the footing and its load, at a depth 
of 24 m below  the ground surface and on verticals from points A, C, Ε and F 
as shown in Fig. 3.7. Compare these values to those obtained if it were 
asssumed that all loads are concentrated  at point  C. 
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Fig. 3.7. 

Solut ion 
The stress due to the foot ing weight is : 0 .20 χ 1.00 χ 2 5 = 5 kPa or about 

0 .05 d a N / c m 2. The uniform stress below the foot ing is : q = 0 . 7 8 4- 0 . 0 5 = 
0 .83 d a N / c m 2. 

(a) L e t a , c , e and f (Fig . 3.7) be the orthogonal project ions of A , C , Ε and 
F on the horizontal plane at 2 4 m below ground surface. The stress increase 
at a due to the foot ing is obta ined f rom the graph of Fig . 3 .7a. for L/B= 1 . 

Fig. 3.7a. Stress below a corner of a shallow footing. 

We have: z/B = 2 4 / 1 2 = 2 and L/B = 1 , which gives Áσ/q  = 8 .5% there-
fore Δ σ = 0 .83 χ 8 .5% ~ 7 · 1 0 " 2 d a N / c m 2 . 
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The increase in vertical stress at c is obta ined by subdividing the foot ing 
into four equal auxil iary squares . Using Fig . 3 .7a , we have for each of these 
squares : z/B = 2 4 / 6 = 4 ; LIB = 1 f rom which Aojq ~ 3%, hence : 

Áσ { = 0 .83 χ 3% ^ 2 .5 χ 1 0 " 2 d a N / c m 2 

Δ σ = q(Ix +I2 + J 3 + J 4 ) = Aqlx = AAo{ 

Áσ  = 4 χ 2 . 5 · 1 0 " 2 = 1 0 · 1 0 " 2 d a N / c m 2. 

The same procedure is fo l lowed for stresses at e and f, by using auxiliary 
rectangles and squares . T o determine the increase in vertical stress a t e , 
consider the rectangle AEHD and the square GEHB (Fig . 3 .7 ) . F o r rectangle 
AEHD: z/B = 2 4 / 1 2 = 2 , LIB = 2 4 / 1 2 = 2 f rom which Aajq = 1 2 % and 
Áσ { = 0 .83 χ 12% = 10 · 1 0 " 2 d a N / c m 2 . 

F o r square AGBD, using the same m e t h o d as above , Δ σ 2 = 7 · 1 0 " 2 d a N / c m 2 

and Áσ  = q(Ix —12 ) = Áσ ë — Áσ 2 = 3 · 1 0 " 2 d a N / c m 2 . 
T o determine the increase in stress at f, the following auxiliary surfaces 

must be considered: 

square 1 : AEFI coefficient of influence: Ix 

rectangle 2 : GEFJ coeff icient of influence: I2 

rectangle 3 : DHFI coeff icient of inf luence: J 3 = I2 

square 4 : BHFJ coeff icient of inf luence: I4 

Ao = q(I1-2I2 +/4). 

T o calculate Áσ ë: z/B = 2 4 / 2 4 = 1 , L/B = 1 , f rom which: Ix = Aojq ^ 
18% and Aox = 0 .83 χ 18% ~ 1 5 Ί Ο " 2 d a N / c m 2 . 

F o r Δ σ 2 , using the preceding procedures , I2 — 1 2 % : Δ σ 2 = 1 0 · 1 0 ~ 2 

d a N / c m 2. 
F o r Δ σ 4 , / 4 = 8 .5%, Δ σ 4 = 7 - 1 0 ' 2 d a N / c m 2. 
Thus , the total is : Δ σ = ( 1 5 - 2 0 + 7 ) 1 0 " 2 = 2 - 1 0 " 2 d a N / c m 2. 

(b) A s s u m e now that the entire loading is concentrated at po int C , the 
centre of the foot ing. In this ca se : 

3 P 
Δ σ = r  c o s 5 θ , Ρ = 0 .83 χ 12 χ 12 = 1 1 9 . 5 · 1 0 5 Ν, æ = 24 m, 

2ðæ2 

f rom which: 

3 χ 1 1 9 5 · 1 0 s 

Δ σ = — : — c o s 5 θ N / m 2 = 0 .99 Ί Ο 4 χ c o s 5 θ N / m 2 

2π χ 2 4 2 

= 9 .9 χ c o s 5 θ · Ι Ο " 2 d a N / c m 2. 

Table 3 D summarizes the computa t ions . 



1 0 0 PRACTICAL SETTLEMENT CALCULATIONS 

TABLE 3D 

Point r cos θ = z/r c o s 5 (9 Δ σ ( 1 0 2 d a N / c m 2) 

A 25.46 0 .943 0.745 7.4 
C 24 1 1 9.9 
Ε 30.6 0.784 0.296 2.9 
F 35 0.686 0 .152 1.5 

Summary of answers 

TABLE 3E 

Vertical stress increase (in 10" ~2 d a N / c m 2) 

Points Surface loads Concentrated load 

A 7.0 7.4 
C 10.0 9.9 
Ε 3.0 2.9 
F 2.0 1.5 

It is clear that the differences are small. This is due mainly to the fact that 
the depth at which the stresses are calculated is twice the width of the foot-
ing. Had the depth been smaller, the differences would be more significant. 

irk Problem 3.6 Set t lement under a point load in a clay layer 

A load of 3200 kN bears upon a thick  sand layer (assumed incompressible) 
in which  there is a compressible clay layer at a depth  of 8 m from the surface 
(see Fig. 3.8). This clay layer is 4.80 m thick.  The oedometric  modulus of 

Fig. 3.8. 
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the clay is estimated  to be 23 daN/cm2 in the upper half of the clay layer 
and 29 daN/cm2 in the lower  half. Determine  the vertical settlements  of the 
load assumed to be concentrated  at one point. 

Solut ion 
Assume that the load of 3 2 0 0 kN is t ransmitted to the foundat ion soil 

through an isolated foot ing at the surface of the soil mass . T h e stress distri-
but ion in the soil may then be compared to that of a point load at Ρ acting 
on a semi-infinite elastic and h o m o g e n o u s mass . 

Under these condit ions , at depth æ (F ig . 3 .9) on a vertical f rom P , the 
vertical stress on the horizontal plane is determined by Bouss inesq ' s formula : 
σ = (3Ρ/2ðæ 2) c o s 5 θ in which: 0 = 0, therefore : ï = 3 Ρ / 2 π ζ 2 . 

T o determine the sett lement , the clay layer may be divided into two sub-
layers of equal thicknesses. A t mid-height of the upper clay layer, σ is : 

3 χ 3 2 0 0 
(σ) , = = 1 8 . 1 kPa, or 0 .18 d a N / c m 2 . 
1 11 2 π χ ( 8 + 1 . 2 0 ) 2 

A t mid-height of the lower clay layer, σ is : 

= 3 x 3 2 00 = H . 4 k P a , or 0 . 1 1 d a N / c m 2 . 
n 2 π χ ( 8 + 3 . 6 0 ) 2 

L e t 2 h be the thickness of the clay layer, then the set t lement directly under 
point Ρ will b e : 

h , v 2h 

E[ I E2 E[ E'2 

or: 
0 .18 χ 2 4 0 0 . 1 1 χ 2 4 0 

s = + = 2 .79 cm ~ 2 .8 c m . 
23 29 

Remarks 
(1 ) T h e Bouss inesq formula corresponds to a concentrat ion factor of ç = 3. 

Frohlich's formula , with a concentrat ion factor of ç = 4, gives: 

σ = 4 Ρ / 2 π ζ 2 , or: ( σ ) 1 £ = | ( σ ) 1 , (σ)2ß = f ( σ ) 2 

and 

s f = § χ s = 3.7 cm. 

(2) In order to evaluate the accuracy of the hypothes i s ( load a s sumed to be 
concentrated at one po in t ) , it is necessary t o a s sume certain values as shown 
below. Let γ = 17 k N / m 3 and ö = 3 0 ° be the propert ies of the sand. If the 
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Fig. 3.9. 

foot ing is square , and its side is B , the bearing capacity will b e : 

Β Β 
Qd = 0 . 8 γ - Ν Ύ + γΖλ/Vq + 1 . 2 d V c = 0.8 7 — N 7 , b e c a u s e ! ) = 0 a n d c = 0. 

2 2 

Therefore, Ρ = qdB2/3 with a safety factor o f 3 
or: 9 6 0 0 = 0.4 ÷ 17 ÷ 2 1 . 8 ÷ jB 3 , since Ny = 2 1 . 8 for ö = 3 0 ° , 
from which B ~ 4 m , and g a d ~ 2 d a N / c m 2 . 

A t mid-height of the upper clay layer, σ will b e , f rom Fig. 3 .7a : 

6 .5 I æ 9 .20 
( σ ) ! - <?ad = 0 .13 d a N / c m 2 - = = 2.3 
1 1 0 0 ad \B 4 . 00 

At mid-height of the lower clay layer : 

5 „ (z 1 1 . 6 0 
(ah— ^ad = 0 .10 d a N / c m 2 — = = 2.9 

1 0 0 ad \B 4 . 00 

The total sett lement will be : 

0 .13 ÷ 2 4 0 0 .10 ÷ 2 4 0 

= + 
23 29 

2 . 1 8 cm ~ 2 .2 c m . 

In this particular instance, the sett lement is overest imated if the load is 
a s sumed to be concentrated rather than acting as a footing. The overest imate 
is As/s = ( 2 .8 - 2 .2 ) /2 .2 ^ 27%. 

Since the sett lement is overest imated, it is on the safe s ide. 
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Remark. 

It could be expec ted that the difference would depend to a great extent 
on the arbitrarily chosen value of ö o f the sand. We know indeed that the 
coefficient Ny is very sensitive to changes in ö. However, in the formula for 
Β above , this factor appears as a cubic roo t and its effect is therefore greatly 
reduced. As an example , for ö = 2 5 ° , the relative error is As/s = 2 2 % and for 
ö = 3 5 ° the relative error is 40%. The order of magnitude of about 30% 
of error is still maintained. 

Summary of answer 
s = 2.8 cm. 

irk Problem 3.7 Determinat ion of the m o d u l u s of subgrade react ion, fes 

A plate bearing test  was performed on a 45-cm diameter plate. A seating 
load of 0.7 daN/cm2 was applied initially  after which  the load was lowered 
to 0.1 daN/cm2. The strain gages read 55, 103 and 72 hundreds of a mm. 
The load was then increased to 0.7daN/cm2 and the gages read 70, 118 and 
86 hundreds of mm. Determine  the reaction modulus ks for a plate diameter 
of 75 cm. 

So lut ion 
The soil reaction modu lus calculated f rom Westergaard's equat ion is : 

Fig. 3 .10. 
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ks is inversely proport ional to the radius R of the plate . F o r the 75-cm 
radius p late , and expressing σ in d a N / c m 2 , we get : 

0.6 4 5 0 .36 
tfs(075) - Ã 7 ( -

in which s x and s 0 are in cm and ks in d a N / c m 3. 
After the first loading cycle , the average o f three gage readings is : 

55 + 1 0 3 + 7 2 
(so)av  = = 76 .7 hundreds of m m . 

3 
After the second load increment, this average is: 

7 0 + 118 + 86 
(si)av  = ~ 91 .3 hundreds of m m . 

3 
The permanent sett lement is therefore : 91 .3 — 76 .7 = 14 .6 hundreds of 

m m and the modulus is : 

0 .36 
feS(075) = = 24 .6 d a N / c m 3, say 2 4 d a N / c m 2. 

— ÷ 1 0 " 1 

100 
Answer 
ks = 24 d a N / c m 2 . 

*Problem 3.8 T ime of consol idat ion of a clay layer with double drainage 

An 8 m thick  clay layer, which  has two  drainage boundaries is being 
consolidated. The coefficient of permeability  of the clay is 3 ' 10~9 cm/s. 
Its oedometric  modulus is 400 daN/cm2. What  is the time  required to 
achieve a degree of consolidation of 40%, and of 80%? 

So lut ion 
F r o m the Terzaghi and Frohlich theories , the degree of consol idat ion is 

dependent on the t ime factor T v : 

T v = (cv/h2)t. 

TABLE 3F: U(TV) 

T v U T v U T v U 

0.02 0.160 0.3 0 .613 0.8 0.887 
0.06 0 .276 0.4 0.697 0.9 0 .912 
0.10 0.356 0.5 0 .764 1 0 .931 
0.15 0.437 0.6 0 .816 2 0 .994 
0 .20 0 .504 0.7 0 .856 00 1.000 



PROBLEM 3.9 1 0 5 

u 10% 20% 30% 40% 60% 

0.008 0 .031 0 .071 0.127 0.289 

The functions U = f(Tv) and T v = ö(û)  are given in Tables 3 F and 3 G . 
F r o m these tables we get T v = 0 . 1 2 7 for U = 4 0 % , bu t Tab le 3G does not 
show a value for U = 80%. We only know that T v for 8 0 % consol idat ion is 
between 0.5 and 0.6. T h e approx imate relationship of Brinch Hansen gives: 

V *  u -  é  m l U6 0· 8 6 

- — — from which: = = = - = 0 . 1 7 8 
Τ 3 + 0 .5 v 2 ( 1 - U 6 ) 2 ( l - 0 . 8 6 ) ' 

and T v ^ 0 .56 . 

h2 kE' h2y 
Therefore : i 4 0% = 0 . 1 2 7 — and because c v = , i 4 0% = 0 .127 — — 

Cy T w kE 

h2y 
B y the same token , tso% = 0 .56 w 

kE' 

Numerical application: 

h = half thickness of clay layer (open layer) = 4 m 
k = 3 χ 1 0 " 9 c m / s = 3 χ 1 0 " 1 1 m/s 
E' = 4 χ 1 0 2 d a N / c m 2 = 4 χ 1 0 7 Pa 
7 W = 9 .81 x l O 3 N / m 3 

0 . 1 2 7 χ 16 χ 9 .81 x l O 3 

i 4 0% = ~ = 0 . 1 2 7 χ 1 3 . 0 8 x l O 7 sec 
4 0% 3 x l 0 _ 1 1x 4 x l O 7 

1 3 . 0 8 
^40% = 0 . 1 2 7 χ χ 1 0 2 days = 1 9 2 days = 6 months and 1 1 days 

0 . 8 6 4 

1 3 . 0 8 
^80% - 0 .56 χ χ 1 0 2 days = 8 4 8 days = 2 years , 3 months , 27 days . 

0 . 8 6 4 

Summary of answers 

6 months , 1 1 days ; 2 years , 3 months , 27 days . 

*Problem 3.9 Coeff icient of permeabi l i ty 
The void  ratio of clay A decreases from 0.581 to 0.512 when  the applied 

stress is changed from 1.1 to 1.7daN/cm2. That of clay Β decreases from 

TABLE 3G: TV(U) 
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0.609 to 0.596 under the same load transfer. The thickness of sample A 
is 50% greater than that of B. Nevertheless,  sample Β requires 3 times the 
amount of time  needed  for A to reach 50% consolidation under identical 
boundary drainage conditions.  What  is the ratio of coefficients of permea-
bility  of the two  clays? 

Solut ion 
F r o m Terzaghi and Frohlich's theory , the coefficient of consol idat ion of a 

clay is : 

c v = kE'/yw (1 ) 

the t ime factor is: 

T v = (cJH2)t. (2 ) 

For a given degree of consol idat ion, the t ime factor is the s ame for both 
samples , therefore : 

7 71 ^50 A = 7 77 ^50 Β 
^ B 

27 

4 

or: 

( \ 2 2 

^VA fe A Ε A 

F r o m eqn. ( 1 ) , we have: = — 
c v B kBEB 

The oedometr ic modu lus is a function of void ra t io : 

Δ σ Ae , Δ σ ( 1 + β ) 
—- = or Ε = . 
Ε' 1+e Ae 

For a given stress increase, Δ σ , of 1.1 to 1.7 d a N / c m 2 we have : 

J?b _ Δ β Α ( 1 + β Β ) _ 0 . 0 6 9 χ 1 .609 

EA ~ AeB(l+eA) " 0 . 0 1 3 x 1 . 5 8 1 " 5' 4 

kA cVA e b 27 
f rom which: — = — χ — = — χ 5.4 = 36 .4 or kA/kB = 3 6 . 

fee c V R EA 4 

Remark 

The given of U = 50% is redundant . Sample Β t akes 3 t imes as much 
t ime to consol idate than A regardless the value of U. 
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if Problem 3.10 T ime o f consol idat ion 

An oedometer  test  is performed on a 2-cm thick  clay sample. After 5 
minutes, 50% of consolidation is reached. After how  long a time  would 
the same degree of consolidation be achieved in the field where  the clay 
layer is 3.70 m thick? 

Assume the sample and the clay layer have the same drainage boundary 
conditions. 

Solut ion 
The t ime factor function is: T v = c v · t/h 2 where c v = kE'/yw . 
For double drainage condi t ions , h represents half the thickness of the 

layer (drainage path length) . In single drainage condit ion, h would represent 
the total clay layer thickness , (see Fig . 3 . 1 1 ) . L e t h' be the length corre-
sponding to the field condit ion and t' the t ime required for the layer to reach 
U degree of consol idat ion. Since the clay and drainage condit ions are the 
same as those of the laboratory test , the t ime factor for bo th is the s ame as 
is the coefficient of consol idat ion c v . Therefore : 

Cyt 
SO t = 

Fig. 3 .11 . 

Numerical application 
t = 5 minutes = 5 ÷ 6 0 seconds , h' = 3 7 0 c m , h = 2 cm 

/ 3 7 0 \ 2 / 1 
1 day = 8 6 , 4 0 0 seconds and t = 5 ÷ 6 0 ÷ ÷ 

J \ 2 / \ 8 6 4 0 0 

t = 1 1 8 . 8 , say 1 1 9 days or 4 months . 

file:///86400
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Remark: 
The given U = 50% is redundant , the answer is independent of U. 

Summary of answer 
t = 4 months . 

+*+Problem 3.11 Compressibi l i ty and consol idat ion curves; set t lement calcu-
lat ion; preloading requirements 

A highway  embankment  2.40 m high is to be constructed  over a satu-
rated, homogeneous clay of thickness 2H — 4 m. The clay is underlain by a 
sandy gravel which,  for all practical purposes, is incompressible.  The water 
table is at ground surface. The density  of the embankment  is 2.1 (see Fig. 
3.12). 

A sample of clay is recovered  from a depth  of 2 m and a consolidation test 
performed whose  results are summarized in Tables 3H and 31. The initial 
sample thickness is 2h0 = 24.0 mm. The initial water  content  is w = 69% 
and the density  of the soil particles is 2.7. 

(a) Draw the compression (e — log a) curve and the consolidation (e — logt) 
curve. Determine  the approximate value of the preconsolidation pressure, oc, 
and of Cc and c v. 

(b) What  is the total settlement  of the embankment? After how  long a 
time  will  this settlement  be obtained? 

(c) Determine  the total thickness of the embankment  and surcharge to 
attain the expected  total settlement  under the design embankment  height 
after a period of 4 months. 

L>20m. 

Fig. 3 .12. 
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TABLE 3H: Consolidation TABLE 31: Compression 
(each load is maintained for 2 4 h ) (from 0.4 to 0.8 d a N / c m 2) 

Stress Void Time Void 
( d a N / c m 2) ratio (min) ratio 

0.05 1.82 0.1 1.700 
0.2 1.690 

0.1 1.81 0.3 1.683 
0.5 1.675 

0.2 1.80 1 1.650 
2.5 1.600 

0.4 1.74 5 1.550 
10 1.504 

0.8 1.40 20 1.451 
50 1.432 

1.6 0.80 100 1.421 
200 1.418 

3.2 0.16 500 1.409 
1400 1.400 

Solut ion 
(a) Tables 3 H and 31 provide the data to construct the curves. The com-

pression curve is shown on Fig . 3 .13 . The initial void ratio for a saturated soil 
is : e0 = w(yjy w) or e0 = 0 . 69 χ 2.7 = 1.86. 

Table 31 gives the data needed to p lot the compress ion curve as a function 
of t ime (e — l o g i ) for a constant stress of 0 . 8 d a N / c m 2 , after the sample 
has consol idated under the stress of 0 .4 d a N / c m 2. This curve is p lot ted on 
Fig. 3 .14 . 

The preconsol idat ion stress is the m a x i m u m effective overburden stress 
to which the clay was ever submit ted . It can be evaluated from the con-
struction shown on the curve of Fig. 3 . 1 3 ; it is ofc ~ 0 .50 d a N / c m 2 . The 
compress ion index, C c , is the s lope of the straight line BC in Fig. 3 .13 and 
corresponds (after Casagrande's construct ion) t o : 

-Ae 

Cc = 7 

A l o g a 
We have : 

o[ = 0 . 8 0 d a N / c m 2, ex = 1 .40, o2 = 3 . 2 0 d a N / c m 2, e2 = 0 . 1 6 . 

Ae = 0 .16 - 1 . 4 0 = ~ 1 . 2 4 , 

Δ log σ' = log d2 — log o\ = log 0jj 

from which: C c = - ( — 1 . 2 4 / 0 . 6 0 2 ) 

é 3· 2 1  Ë 

l o g — = log 4 

2 .06 , C c = 2 . 1 . 



110 PRACTICAL SETTLEMENT CALCULATIONS 

0.01 0.02 0.05 0.1 0.2 

Fig. 3 .13. 

Stres s ( d a N / c m 2) 
( log scale) 

Consolidation coefficient 

The coefficient of consol idat ion, c v , is determined by the following 
method : 

(1) Determination of the void ratio at 100% consol idat ion. The inter-
section of the two tangents determines e100 corresponding to the end of 
the primary consol idat ion (Fig . 3 . 14 ) . 

(2) Determination of the initial void ratio eQ. The following procedure 
is used (see Fig. 3 . 1 5 ) : Choose a t ime near the origin, in the example tl = 
0.1 min, and another t ime 4 t imes longer so that t2 = 4tl9 = 0 .4 min (in the 
example ) . 
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The consol idat ion curve is drawn on a t-e  graph of arithmetic scale for the 
time axis . 
We have then: ex = 1 .700 for t = tx (direct reading) , e2 = 1 .678 for t = t2 

( interpolated reading) . 
By approx imat ing the curve to a parabola with a horizontal axis near 

the origin and from the geometric propert ies of a parabola , the following 
relationships exis t : e0c — ex — ex — e2 f rom which e0c = 1 . 7 2 1 . 

Fig. 3 .14 gives: exoo = 1 .430, txoo ~ 3 2 . 5 min 
from which: 

e0c + eioo 1-721 + 1 .430 _ ~ o 7 m in 
eso = = - 1 .576 , i 5 0 — 3.7 min. 

The height of the sample at the start of consol idat ion under the 0.8 d a N / c m 2 

load is 2h and we have: 

2h 2hn 

1 + e0c 1 + e0 

f rom which: 

1 + e0c 2 . 7 2 1 
h = h0 = 1 2 . 0 ÷ = 11 .4 m m . 

1 +e0 2 . 8 6 0 

The coefficient of consol idat ion c v i s : 0 .197 h2/t 50, 

s o : c v = 0 .197 ÷ ( 1 . 1 4 ) 2/ ( 3 . 7 ÷ 6 0 ) - 1 . 1 5 ÷ 1 0 " 3 c m 2 / s . 

Total settlement  of embankment 
Because the thickness of the compress ib le clay layer is rather small com-

pared to the width of the embankment (for highways, this width is se ldom 
less than 2 5 m ) , it m a y be a s sumed that the stress distribution in the clay due 
to the load imposed by the e m b a n k m e n t is uniform (Fig . 3 . 1 6 ) . We thus 
have: Δ σ ' = 2 .40 χ 2 1 = 5 0 k P a « 0 . 5 0 d a N / c m 2. 

The vertical, initial stress at point M, at mid-height in the clay layer is : 
σό = Ç X Tclay · 

T o find 7 c i a y> we proceed as fo l lows: 

ι Ts Tw Ts 
τ = ÷ T d , Td = 77— · 

Ts l + ^ o 

Earlier it was found that e0 = 1 . 8 6 , therefore y'/y w — (ys — 7 W) / ( 1 + eo) = 

(2 .70 - 1 . 0 0 ) / 2 . 8 6 = 0 . 5 9 4 and σ'0 = 2 . 0 0 ÷ 5 .94 = 1 1 . 9 k P a # 0 . 1 2 d a N / c m 2. 
We found, in the previous sect ion, that the preconsol idat ion pressure is 
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Fig. 3.16. 

o'c = 0 . 5 0 d a N / c m 2 . The existing effective vertical stress at the mid-height of 
the clay layer is less than the preconsol idat ion pressure: the clay is over-
consol idated. 

After construct ion of the e m b a n k m e n t , the effective vertical stress at 
the mid-height of the layer will be (see Fig. 3 . 1 7 ) : σό + Δ σ ' = 0 .12 4- 0 .50 = 
0 .62 d a N / c m 2 which leads t o : σό + Δ σ ' > a'c. 

F r o m the compress ion curve of Fig. 3 .13 , we have for : 
σό = 0 .12 d a N / c m 2 , e = 1.80 and : σό = 0 .62 d a N / c m 2 , e = 1.56 and f rom: 
Ah/h = Ae/(1  4- e) we get : 

1 . 8 0 - 1 . 5 6 
Ah = 4 0 0 ÷ = 34 .3 cm, say 34 cm. 

2 .80 

It would be necessary, in this case , to check the stability of the embank-
ment for foundat ion failure. The stability is satisfactory if in this case , 
c u = 4 0 kPa. 

Thickness of embankment  surcharge to reach the total settlement  in 
4 months 

What would be the t ime required for the clay layer to consol idate 34 c m ? 

Fig. 3.17. 
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Theoretically, this t ime is infinite, but in pract ice , it is considered that 1 0 0 
percent of the sett lement is obta ined when T v = 2 , which corresponds 
to U = 99 .4%. 

Since T v = (cv/h2)t and since the drainage of the clay layer is in both 
direct ions: h = H/2 

2 χ ( 2 0 0 ) 2 

hence: t = ———rrr^ 
1.15 χ 10 0 

8 . 1 
and : t = χ Ι Ο 7 χ - = 8 0 5 days 

1.15 8 .64 χ 1 0 4 

or 2 years , 2 months , 1 5 days . 
T o decrease the sett lement t ime to 4 months , ( 1 2 0 d a y s ) , the t ime factor 

T v must b e : 

1.15 χ Ι Ο " 3 χ 1 2 0 χ 8 .64 χ 1 0 4 ΟΛ 

Τ = = 0 . 2 9 8 ^ 0 . 3 0 
( 2 0 0 ) 2 

The corresponding U value is U = 0 . 6 1 3 (see Table 3 F ) . This means that the 
sett lement of 34 cm corresponds to 6 1 . 3 % of the sett lement S that would be 
obta ined under a heavier surcharge, which sett lement would b e : 0 . 3 4 / 0 . 6 1 3 — 
0 .55 m. 

The following equat ion for S gives the surcharge needed : 

Cc (σï + Δ σ ' * 

l + e 0 \ oc 

σ'ñ + Δ σ ; * 5 5 χ 2 .86 
If we let ë: = ; , then: log χ = = 0 .187, 

σβ' 4 0 0 x 2 . 1 
and χ = 1 .54 , f rom which 

Δ σ ' * = 1.54 x 0 . 5 0 - 0 . 1 2 ^ 0 . 6 5 d a N / c m 2 

Δ σ ' * = 6 5 k P a ( * ) . 

The corresponding embankment height is : Hf = 6 5 / 2 1 = 3 .10 m, and the 
surcharge needed would b e : AH = 3 .10 — 2 .40 = 0 .70 m. 

This example shows that it is poss ible to quickly stabilize an embank-
ment , if the t ime needed for preconsol idat ion by surcharge is p rogrammed . 
A surcharge of 70 cm, left in place for 4 months and then removed would 
eliminate any significant embankment sett lement thereafter. 

*This value could also have been obtained from the e — log σ' graph. 
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Summary of answers 
(a) see Figs . 3 .13 and 3 . 1 4 : o'c = 0 .5 d a N / c m 2 ; C c = 2 . 1 ; c v = 1.15 χ 1 0 " 3 

c m 2/ s ; (b) s = 34 cm after 2 years , 2 months and 15 days ; (c) about 3 1 0 c m . 

irk Problem 3.12 Oedometr ic modul i : behavior of an overconsol idated clay 

From the givens of problem 3.11: 
(a) Calculate the oedometric  modulus Er of the clay in the section BC of 

the compression curve corresponding to the stress increase due to the em-
bankment  load (Fig. 3.12), at mid-height  in the clay layer. Compare the 
result with  the modulus obtained by the approximate formula: 

1 +e 
Ε = 2.3 σ 

(b) Find the compression index C'c of the linear portion AB of the com-
pression curve corresponding to a stress level  less than 0.20 daN/cm2 (Figs. 
3.13 and 3.19). Find the corresponding oedometric  modulus. 

(c) What  can be inferred about the clay from this? What  are some practical 
conclusions? 

So lut ion 
(a) F r o m the answer of problem 3 . 1 1 , the initial effective stress at mid-

height in the clay layer is : σ^ = 0 .12 d a N / c m 2. The increase in stress due to 
the weight of the e m b a n k m e n t is : Δ σ ' = 0 .92 d a N / c m 2. The pre-consolidation 
stress of the clay was found to be o'c = 0 .5 d a N / c m 2. 

In order to calculate E\ the initial point on the compress ion curve, to 
start f rom, is the pre-consolidation stress σ<!. Therefore : 

Δ σ ' = 0 . 9 2 - 0 . 5 0 = 0 .42 d a N / c m 2 

' - 1 + e Δ σ ' 

E ~ C c l o g ( l + (Áσ'Ê)) 

where e is the void ratio at σ', or e = 1.68 (read on the compress ion curve) , 
a n d : 

1 + 1.68 
Ε = x 0 . 4 2 / [ l o g ( l + ( 0 . 4 2 / 0 . 5 0 ) ] = 1.84 

2 .1 

log 1.84 = 0 . 2 6 5 

E'= ( 2 . 6 8 / 2 . 1 ) χ ( 0 . 4 2 / 0 . 2 6 5 ) = 2 . 0 2 d a N / c m 2 ( * ) or : 2 . 0 0 d a N / c m 2. 

*E' could also be calculated from the compression curve by writing: AH/H = AE/(1 +E) 
a n d E ' = Δσ'/(Δή//ι). 
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The approx imate formula gives: E' = 2.3 ÷ 0 .5 ÷ ( 2 . 6 8 / 2 . 1 ) 
= 1.47 d a N / c m 2. This approximat ion is not very good because Δ σ ' is t o o 
large in comparison to σ^. The value of Ef = 2 . 0 0 d a N / c m 2 corresponds to 
that of a soft clay. 

(b) The compress ion index Cc is found from the relat ion: C'c = —Ae/ 
A log σ', where: ex = 1 .82, σί = 0 . 0 5 d a N / c m 2 , log a[ = 2 . 6 9 9 = - 1 . 3 0 1 ; 
e2 = 1.80, o2 = 0 . 2 0 d a N / c m 2 , log σ2 = 1 .301 = - 0 . 6 9 9 from which: 

- ( 1 . 8 0 - 1 . 8 2 ) 0 .02 
Co = — = ^ 0 . 0 3 3 . 

- 0 . 6 9 9 + 1 .301 0 .602 

E' 

The oedometr ic modulus is: 

- 1 + e Δ σ ' 
C c 1 ï8(1 + ( Δ σ 7 σ ^ ) ) ' 

As an example , we can take Δ σ ' = 0 .10 d a N / c m 2 in order to remain on 
the AB port ion of the curve (Fig . 3 . 18 ) , which corresponds t o stresses less 
than o2. 

a'Q = 0 .10 d a N / c m 2, e0 = 1.81 ( from the given) 

2 .81 0 .10 0 .281 
Ε = ÷ = = 28 .3 d a N / c m 2. 

0 . 0 3 3 log 2 0 . 0 3 3 x 0 . 3 0 1 

This value corresponds with that of a stiff c lay. 
(c) The results show that for small increases in stress Δ σ ' , the clay is stiff 

(see Fig. 3 .18 ) . 

7 \ c 

t 
. 1> 

Fig .  3.18 . 

On the other hand for larger stress increases (o'c + Δ σ ' > o'c) the over-
consol idated clay initially behaves as a stiff clay (as long as the stress is 
smaller than o'c), and as a soft clay as soon as the stress level increases 
beyond the value of o'c. 

The clay behavior in consol idat ion therefore depends on the level of 
stresses. The qualifications ' soft ' or ' s t i f f must be viewed with respect to 
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the imposed loads and cannot be based only on visual inspection in an 
open pit . 

ictckProblem  3.13 Consol idat ion with vertical sand drains 

Referring once again to the geometry  of problem 3.11, it is now desired to 
decrease the settlement  time  by accelerating the clay consolidation with 
vertical sand drains, going through the compressible layer to the underlaying 
gravel (shown in Fig. 3.19). 

Fig. 3.19. Plan view. 

The center to center distance between  the two  adjacent drains is 2 R, the 
drain diameter,  2r. The drains have equal diameters. Under these conditions, 
it can be assumed that the clay drainage during the consolidation consists 
of the superposition of a vertical drainage, characterized by  c v z, kv, Uz and 
T v and of a horizontal,  radial drainage characterized by  c v r, kh, Ux and Tx 

with:  T v = (cvJh2)tand T r = [cJ(2R)2] t. 

The coefficient of radial consolidation c v r is further defined by the 
equation: c^/c  ̂ = kh/kv. 
Under these conditions the degree of consolidation U is given by: 1 — U = 

The degree of radial consolidation Ur, function of Tx and of the geometry 
of the drains, is presented  in Table 3J. 

Assuming that we  have a condition  where  kh = 5kv, recommend  drain 
spacing and drain diameter to obtain all settlements  in 4 months,  taking into 
account current practice i.e. drain diameters vary from 0.3 to 0.8 m and 
spacing goes from 2.5 to 7.5 m. 

Since kh = 5 f c v, we can determine immediate ly : c v r = 5 χ 1.15 · 10 3 — 
5 .75 Ί Ο " 3 c m 2/ s . 

F r o m the previous solution of prob lem 3 .11 we know that Uz = 6 1 . 3 % . 
Since we must realise the set t lement in a period of 4 months , we also know 
U = 99 .4%. 

Therefore : 

D ra ß ð 

(1 - Uz)(l - Ut). 

So lut ion 

1 -
1 -

1 -

0 . 9 9 4 

0 . 6 1 3 
~- 0 . 0 1 6 , then Ut = 1 — 0 .016 

0 . 9 8 4 ~ 0.99.· 



TABLE 3J 

Radial drainage, equal vertical strains (after Leonards) 

Degree of 
consolidation 

Time factor Degree of 
consolidation 

u,(%) R 
- = 5 
r 

10 15 20 25 30 40 50 60 8 0 100 

5 0.006 0.010 0 .013 0 .014 0 .016 0.017 0 .019 0 .020 0 .021 0 .023 0 .025 
10 0.012 0.021 0.026 0 .030 0 .032 0 .035 0 .039 0 .042 0 .044 0 .048 0 .051 
15 0 .019 0.032 0 .040 0 .046 0 .050 0 .054 0 .060 0 .064 0.068 0 .074 0 .079 
20 0.026 0.044 0.055 0 .063 0 .069 0 .074 0 .082 0.088 0 .092 0 .101 0 .107 
25 0.034 0.057 0 .071 0 .081 0 .089 0 .096 0 .106 0 .114 0 .120 0 .131 0 .139 

30 0 .042 0.070 0.088 0 .101 0 .110 0 .118 0 .131 0 .141 0 .149 0 .162 0 .172 
35 0 .050 0.085 0 .106 0 .121 0 .133 0 .143 0.158 0 .170 0 .180 0 .196 0 .208 
40 0 .060 0.101 0.125 0 .144 0 .158 0 .170 0.188 0 .202 0 .214 0 .232 0 .246 
45 0 .070 0.118 0.147 0 .169 0 .185 0.198 0 .220 0 .236 0 .250 0 .291 0 .288 
50 0.081 0.137 0 .170 0 .195 0 .214 0 .230 0 .255 0 .274 0 .290 0 .315 0 .334 

55 0.094 0.157 0.197 0 .225 0.247 0 .265 0 .294 0 .316 0 .334 0 .363 0 .385 
60 0.107 0.180 0 .226 0.258 0 .283 0 .304 0 .337 0 .362 0 .383 0 .416 0 .441 
65 0 .123 0.207 0 .259 0 .296 0 .325 0.348 0 .386 0.415 0 .439 0.477 0 .506 
70 0.137 0.231 0 .289 0 .330 0 .362 0 .389 0 .431 0 .463 0 .490 0 .532 0 .564 
75 0.162 0 .273 0 .342 0 .391 0 .429 0 .460 0 .510 0.548 0 .579 0 .629 0 .668 

8 0 0.188 0.317 0.397 0 .453 0.498 0 .534 0 .592 0.636 0 .673 0 .730 0 .775 
85 0.222 0 .373 0.467 0 .534 0 .587 0 .629 0.697 0 .750 0 .793 0 .861 0 .914 
90 0.270 0.455 0.567 0 .649 0 .712 0 .764 0.847 0.911 0 .963 1.046 1.110 
95 0.351 0.590 0.738 0 .844 0 .926 0 .994 1.102 1.185 1.253 1.360 1.444 
99 0 .539 0.907 1.135 1.298 1.423 1.528 1.693 1.821 1.925 2 .091 2 .219 
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Table 3 J gives the values of T r as a function of C/r and of the geometry of 
the drains (R/r). 

c v r 5 .75 χ 1 0 ~ 3 χ 1.2 χ 8 .64 χ 1 0 6 

On the other hand, we have Tr = - t = : : . 
(2R)2 4R2xl04 

Therefore : T r = 1 . 4 9 / E 2 . 
N o w one has to m a k e a choice between various theoretical solut ions . 

L e t us say , for instance, that R/r = 1 0 . Table 3 J gives then T r = 0 .907 and 
therefore : R2 = 1 . 49 /0 .907 = 1.64 or R = 1 .28 m and r = 0 . 1 2 8 m. 
In this case the distance between t w o drains i s : D = 2 R = 2 .56 m, and drain 
diameter is : ö = 2 r = 2 5 . 6 — 2 6 c m . 

If we take R/r = 5 , then T r = 0 . 5 3 9 , therefore R2 = 1 . 49 /0 .539 = 2 .77 , 
R = 1.66 m and r = 0 .33 m, which corresponds to a distance between 
drains of D = 2R — 3 .30 m and a drain diameter of 0 = 2 r ~ 0 .65 m = 
6 5 cm. 

The latter a s sumpt ion is the better one because it is more in line with 
c o m m o n practice as s tated in the given of the prob lem. The geometry is 
shown in Figs . 3 .20 and 3 . 2 1 . 

Fig. 3 .20. Fig. 3 .21 . Plan view. 

Summary of answers 

drain spacing: D = 3 .30 cm; drain d iameter : ö = 6 5 c m . 

+**Problem 3.14 Consol idat ion o f a multi-layered sys tem, Abs i ' s theory ; 
surcharging 

An embankment  similar to the one of problem 3.11 (see Fig. 3.12) has 
been constructed  on a two-layer  foundation. The characteristics of the two 
layers are: 
— the upper layer consists of clay, 1.50 m thick  having c v l =1.15x10~3 cm2/s. 
— the lower  layer (also clay) is 2.50 m thick: coefficient of consolidation is 
c v 2 = 4.5 χ 1 0 " 4 cm2/s. 

Assuming that both layers have the same oedometric  modulus, what  is the 
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difference between  this condition  and that of problem 3.13. Refer to Absi's 
theory  [1]. 

Solut ion 
If the oedometr ic modul i and densities are the same, the tota l sett lement 

is the same as that of problem 3 . 1 1 , s  ̂ = 0 .34 m. But because of the two-
layer system, the t ime of consol idat ion will be different. 

According to the theory of Absi , the two-layer sys tem may be equated to 
a system of a single layer of thickness H' = 4 . 0 0 m (Ç' = 2h') and with an 
apparent coefficient of consol idat ion c v a such that : 

= H l - H l 

, ft, 
J cv l V Cv 2 

( 4 x l 0 2 ) 2 1.6 
c v a = ; " : — ÃÃ % x l° 

/ 1.50 x l O 2 2 .50 x l O 2 \ 2 1.5 2 .5 + —===— —— + 
Wl . 1 5 x l O " 3 " ë / 4 . 5 0 x l O " 4 / 3 .39 ' 2 .12 

1.6 , , , 
c v a = χ 1 0 " 3 ^ 0 .99 x l 0 " 3 c m 2 / s . 

0 . 4 4 2 + 1 .179 

finally: H' = 2h' = 4 . 00 m, c v a ~ 9.9 χ 1 0 " 4 c m 2 /s . 

T o decrease the sett lement t ime to 4 months , a larger surcharge than 
placed in the case of problem 3.11 will have to be considered here, because : 

c v a 9.9 x l 0 " 4 x l . 2 x 8 .64 x l O 6 Λ ftr/, 
Tv = -^t = = 0 .256 ~ 0 .26 

ft'2 4 - 1 0 4 

T v = 0 .26 which gives, after Terzaghi's approx imat ion , 

£ 7 - 1 .128 V ^ 2 6 = 0 . 5 7 5 . 

Therefore : S = Soo ÷ 1 /0 .575 = 0 . 3 4 / 0 . 5 7 5 = 0 .59 m 

59 χ 2 .86 
l o g x = = 0 . 2 0 1 , from which ÷ = 1 .59; 

4 0 0 χ 2.1 
Δ σ ' = 0 .50 x 1 . 5 9 - 0 . 1 2 = 0 .68 d a N / c m 2 . 

Thus , the total embankment height is : 6 8 / 2 1 = 3 .24 m. 
A temporary surcharge, left in place for 4 months , of wet density equal 

to 7 h = 2 1 k N / m 3 will have a height of 3 .24 - 2 .40 m = 0 .84 m. 
Note.  The theory of Absi is only an approx imat ion . It does no t t ake into 

account the continuity across the two-layer faces. A more accurate but also 
more t ime-consuming solut ion would be the use of the finite-difference 
method (see problem 3 . 1 9 ) . 
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Answer 
In order t o obta in a tota l set t lement in 4 months , a surcharge of 0 .84 m 

must be placed. 

irk Problem 3.15 Consol idat ion test on an overconsol idated clay 

A saturated clay sample obtained from a depth  of 4 m is tested  in the 
oedometer.  The results are summarized in Table 3K. 

At the end of the test,  the sample wet  weight  is 0.8738N and its dry 
weight  0.7399N. 

The density  of the soil constituant is 2.65. 
(a) What  is the final void  ratio after testing? 
(b) Establish a simple relation between  void  ratio and sample thickness h. 
(c) Draw the compression curve, e — log σ'. What  is the compression con-
dition  of the clay ? 

What  can be inferred as to the maximum loading the clay layer has under-
gone in the past? Assume that elevation  of the water  table corresponds to 
ground surface. 

TABLE 3K 

Stress (kPa) Sample height (mm) 

100 11 .99 
200 11.85 
400 11 .63 
800 11.05 

1 6 0 0 10 .40 
4 0 0 10 .54 
100 10 .76 

Solut ion 
(a) At the end of the tes t , the water content of the clay is : 

W-W d . 0 . 8 7 3 8 - 0 . 7 3 9 9 
w = = ^ 0 . 1 8 1 = 1 8 . 1 % . 

W d 0 . 7 3 9 9 

The soil , being saturated , we know the void ra t io , e = w(yjy w), or e = 
0 . 1 8 1 χ 2 . 6 5 — 0 . 4 8 . Thus , a t the end of the test , the final void rat io is : 
ef = 0 . 4 8 . 

(b) The volume of the soil grains within the sample for a unit cross-section 
area has not changed and therefore is ft(l + e). T h u s : h/(l + e) = ftf/(l + e f ) 
where hf = is the height of the sample at the end of the test . The following 
relation then appl ies : 1 + e = h(l + e f )/ftf = 1 .48/10.76ft or 1 + e = 
0.1375ft f rom which: e = 0.1375ft - 1 (ft in m m ) . 
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(c) This relation is the basis for Table 3 L which presents void rat ios as a 
function of the vertical stress applied to the sample . F r o m the data in that 
Table , it is possible to draw the compress ion curve (e — log σ ' ) as presented 
in Fig. 3 .22 . 
The preconsol idat ion pressure σ 0, est imated from this figure, is about 
3 0 0 kPa. 

Now, we have to calculate the effective vertical stress to which the soil 
sample was submit ted in situ. 

0.5 5 

0-50 

0.4 5 

0.40 

" ^ - ^  0-6 5  \ 

\ 
\ 

0 . 6 ^ \ 

\ ° ' >0 

J 

\̂  y Loi. 3d< 

J 

?° 52 

J 

I 

0.4 8 

J n l o a d ec 0.4 5 

J \o.4 - J 

10 lo o  2 0 0 50 0  loo o  2 0 0 0 lo g  cr 

P r e s s u re ( k P a) 

Fig. 3 .22. 

TABLE 3L 

σ (kPa) e 

100 0.65 
200 0.63 
400 0.60 
800 0.52 

1600 0.43 
400 0.45 
100 0.48 

file:///o.4-
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We have : o'0=y'xh with y = 7 s at - yw ; 7 s at = γ β ( 1 + w/1  + e), and 
e = 2 . 6 5 

The in-situ saturated unit weight can be es t imated from 7 s at a t the start of 
the test , and therefore : 

2 .65 + e 2 . 6 5 + 0 . 6 5 
7 s at = Ts Q „ n , , = 10 ÷ — = 2 0 k N / m 3 

2 . 6 5 ( 1 + e) 1.65 
and finally: y = 20 - 10 = 10 k N / m 3 . Then σό = 10 ÷ 4 = 4 0 kPa. This 
stress is considerably less than oc: the clay is overconsol idated. 

S ince the preconsol idat ion pressure corresponds to the highest effective 
stress ever applied to the clay throughout its geologic history, this weight 
m a y have been caused by an overburden since then eroded, or a glacier. 

Because the actual pressure is σό, the difference, o'c — σό, = 3 0 0 — 4 0 = 
2 6 0 kPa is the weight of that pas t overburden. In this case , where soil buoy-
ant density y = 10 k N / m 3 and that of ice, yi = 9 .17 k N / m 3 , the stress differ-
ence may mean a soil erosion thickness of 2 6 0 / 1 0 = 26 m or a glacier ice 
thickness of 2 6 0 / 9 . 1 7 = 2 8 m. 

irk Problem 3.16 Determinat ion o f C c and m v and the sett lements o f a satu-
rated c lay ; degree o f consol idat ion 

An undisturbed clay sample of 20 mm thickness is tested  in an oedometer 
and the following  results are obtained: 

effective  stresses applied (kN/m 2): 50, 100, 200 

sample thicknesses, h(mm): 20, 19.62, 19.24 

The initial water  content  is 40%, the density  of soil grains is 2.7. 
(a) What  is the compression index Cc and the coefficient of volumetric 

compressibility  rav for each of the stress increments? 
(b) The sample was recovered  from a clay layer 4 m thick  located over an 

impervious  rock base and overlain by a sand layer. The average vertical 
effective  stress in the clay layer is 75 kN/m 2. This stress is ultimately  in-
creased to 150 kN/m 2 as a consequence of a surface load placed at the ground 
surface. Calculate the total settlement  of the clay layer due to this new 
condition,  using the appropriate Cc value. 

(c) In practice, some engineers prefer using mv rather than Cc to calculate 
the settlements.  This is because in reality the e—log σ curve may not be 
straight. Can you give another reason? 

(d) During the consolidation test,  90% of the primary consolidation was 
obtained after one hour for the stress interval of 100 to 200 kN/m 2. After 
what  time  would  a degree of 50% consolidation be obtained? 

Solut ion 
(a) F r o m the consol idat ion test it is observed that the 50 k N / m 2 stress did 
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not result in a significant decrease in sample height. Therefore , one m a y 
expect that e0 ~ e50. 

Since the soil is saturated, e0 = w(yjy w) and e0 = e50 = 0 .40 χ 2.7 = 1 .08. 
The variation of void ratio Δ β is proport ional to the sample height change 
Ah. The relation is: Ae/(1 + eQ) = Ah/h 0, f rom which: Ae = [ ( 1 + e)/ 
h0 ] Ah or Ae = [ 2 . 0 8 / 2 0 ] Ah = 0 . 1 0 4 Δ/ζ, where Ah is in mill imeters. 

The compress ion index C c is given b y : C c = — Ae/A  log σ'. S ince the 
load is doubled for each increment, we have : Δ log σ' = l o g ( 1 0 0 / 5 0 ) = 
l o g ( 2 0 0 / 1 0 0 ) = log 2 = 0 . 3 0 1 0 3 . 

Since the sample height change is the same for both load increments , 
Ah = 1 9 . 6 2 — 20 = 1 9 . 2 4 — 1 9 . 6 2 = — 0 .38 m m . The compress ion index is 
the same in both cases and is : C c = - ( 0 . 1 0 4 χ 0 . 3 8 ) / 0 . 3 0 1 0 3 = 0 . 1 3 1 . 

The coefficient of volumetric compressibi l i ty i s : m v = — ( Δ ή / ή ) / Δ σ . 
In the first load increment, then: m v = — ( 0 . 3 8 / 2 0 ) / ( 1 0 0 — 50 ) = 3.8 χ 
1 0 " 4 m 2/ k N = 3.8 x l O " 2 c m 2/ d a N and in the second : m v = - ( 0 . 3 8 / 1 9 . 6 2 ) / 
( 2 0 0 - 1 0 0 ) = 1.9 χ 1 0 ' 4 m 2/ k N = 1.9 χ 1 0 " 2 c m 2/ d a N . 

(b) The effective vertical stress is within the range 50—200 k N / m 2 for 
which we have C c = 0 . 1 3 3 . This value may be used t o calculate the clay 
layer set t lement . 

For σ' = 7 5 k N / m 2, the value of the void rat io is : Ae = Cc l o g [ ( a ' + Áσ)/σ'] 
therefore : e15 — e50 = — 0 . 1 3 1 log ( 7 5 / 5 0 ) = - 0 . 0 2 3 and e 7 5 = 1.08 — 
0 .023 = 1 .057. 

F o r the increase in stress f rom 7 5 t o 1 5 0 k N / m 2 , we have : 

Ae = elS0 -els = — 0 . 1 3 1 log ( 1 5 0 / 7 5 ) = - 0 . 0 3 9 4 and 

Ah/h = Ae/(1 + e15) = - 0 . 0 3 9 4 / ( 1 + 1 .057) . 

The sett lement due to the consol idat ion of the 4-m thick layer will b e : 
Ah = ( 0 . 0 3 9 4 χ 4 χ 1 0 3) / 2 . 0 5 2 = 7 6 . 7 , or 77 m m . 

(c) If the sett lement is ca lcuated f rom rav, it is not necessary to calculate 
the void rat io . 

(d) F r o m the Terzaghi and Frohlich theories , we have : T v = (cv/h2)t. The 
functions U = f(Ty) and Tv = ö(û)  are given in Tables 3 F and 3 G [ 8 ] . 

During the laboratory consol idat ion test , the sample is drained both a t the 
upper and lower faces . The height to consider is that corresponding to the 
shortest drainage path , or half the sample height. Therefore h l = 1 0 m m . 

A degree of consol idat ion U1 = 9 0 % , gives by interpolation (see Table 
3 F ) a t ime factor T v l ~ 0 . 8 5 : 

Tvi = Μ ι / δ ι = 0 . 8 5 . (1 ) 

However, the clay layer in situ is only drained through the t o p surface , 
the drainage path therefore corresponds to the clay layer thickness and 
h2 = 4 m. For a degree of consol idat ion of 50%, the same source [ 8 ] gives 
a t ime factor T v 2 = 0 .20 and therefore : 

T v 2 = cvt2/h22 = 0 .20 . (2 ) 
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The rat io of eqs . (1 ) and (2) el iminates c v which is the coefficient of 
consol idat ion and a s sumed t o b e the same for bo th cases . There fore : 

(t2lh\)l{tllh\) = 0 . 2 0 / 0 . 8 5 = 0 . 2 3 5 

from which, express ing h x and h2 in meters , 

t2 = 0 . 2 3 5 χ tx χ (hl/h\) = 0 . 2 3 5 χ 3 6 0 0 χ ( 4 / 1 0 " 2 ) 2 = 1 .3536 χ 1 0 8 sec = 

4 . 2 9 years . 

Thus , over 4 years would be needed to achieve 50% consol idat ion of the 
clay layer. 
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**•Problem 3.17 Set t lemen t o f shal low foot ing s 

During the preliminary  foundation studies for a proposed steel mill plant, it 
was found necessary to determine  the settlement  of a typical  column of the 
laminating plant expected  to be loaded up to 3920 kN. From the soil investi-
gation, it is known  that sound, gneiss bedrock is at an average depth  of 11 m. 
The alluvial soil profile above the rock consists of, from the surface to the 
gneiss: sandy silt, clay, silt, clayey  and micaceous sand layers. 

10 20 30 40 SO 100 200 300 400 500 

g . ________ _ 

ã _____________^ 

__ù_ 

-®_ 

0 

1 Vertica l stres s (kPa) 
5 10 20 30 40 50 100 200 300 400 500 

( l o g s c a l e ) 
Fig. 3 .24. 
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The average ground surface elevation  is +12.5 m. The bottom  of a square 
footing, 4 by 4 m in plan dimension,  is proposed at an elevation  of 8.50 m. 
The cross-section and the properties  of the soil layers are shown on Fig. 3.23. 
The ground water  table is at the footing level.  Four soil layers have been 
identified  which  are: Dx = 1.00m, Zx = 0.50m; D2 = 2.00m, Z2 = 2.00m; 
D3 = 2.00m, Z3 = 4.00m;Dt = 2.00m, Z 4 = 6.00m. 

Four samples were  recovered  from depths Zx, Z2, Z 3 and Z 4 and were 
tested  by means of a consolidometer  and a triaxial settlement  test. 

(1) From the compression curves of the four samples (see Fig. 3.24) 
define the state of consolidation of the various layers. 

(2) To what  laboratory load stresses should the samples be reconsoli-
dated before being tested  in the triaxial load frame? 

(3) Determine  the stress increase caused by the column at elevation  +8.50, 
assumed that the footing is flexible. Then, determine  the additional stress 
increases Áσ ÷, and Áσ 3, which  will  have to be applied in the triaxial test,  to 
reproduce the in situ condition,  when  the column load is applied. Assume 
í = 0.25. 

(4) With  the triaxial test  under additional stress tensor (Fig. 3.25) curves 
giving settlement  as a function of load stress were  obtained. Determine  the 
total settlement  of the column. What  can be said about the fact that the 
footing is well  below  ground surface? According to the shape of the curves in 
Fig 3.25 compute  the instantaneous (at 10 sec), primary and secondary 
settlements.  Express each settlement  as a percentage of the total settle-
ment. 

(5) Determine  the settlement  of the column from the oedometer  test 
results. Do not apply Skempton's correction. 

Now go through Skempton's correction for the settlement  calculated by 
the oedometric  method.  What  are the conclusions? Tlme (, scale) 

10" 30" Ã 2' 5' 10' 30' lh 8h 24h 48h 

® 

Initial height h = 80 mm 

Fig. 3 .25. 
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(6) What  can be said regarding the two  methods  of settlement  calcu-
lations? Use the data of Fig. 3.26. 

Solut ion 
The buoyant wet unit weights of the soils in the four layers (the upper 

sandy silt layer is no t saturated) are determined b y : 7 h = γ ά ( 1 + w),  γ ' = 
Tsat ~~ Tw  · When expressed in k N / m 3 , they are as tabula ted in Table 3M. 

N o t e that for the upper layer, it is not necessary to calculate the b u o y a n t 
weight. The wet unit weight is used to evaluate the overburden pressure 
(wet because of the capillary z o n e ) . 

(1 ) The effective overburden stresses, act ing a t mid-height of each o f the 
four layers at depths Z1, Z2, Z 3 and Z 4 a re : 

o\ = 4 . 0 0 χ 18 .7 + 0 .50 χ 10 .0 = 79 .8 kPa; 

o2 = o\ + 0 .50 χ 10 .0 + 1.00 χ 11 .0 = 9 5 . 8 kPa; 

σ'3 = σ'2 + 2 .00 χ 11 .0 = 1 1 7 . 8 kPa ; 

o\ = σ'3 4- 2 .00 χ 11 = 1 3 9 . 8 kPa. 

Fig. 3 .26. 
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TABLE 3M 

1 2 9 

Layers No. 7d w 7h 
1 

Ί 

Sandy silt 0 17 10% 18.7 — 

Brown clay 1 15.5 29% 20.0 10.0 
Brown silt 2 16,2 29.5% 21.0 11.0 
Clayey sand 3 17 .3 21.5% 21.0 11.0 
Micaceous sand 4 18 .0 16.5% 21 .0 11.0 
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F r o m Fig. 3 .27 , the pre-consolidation pressures a re : 

(σ;)_ ^ 1 1 7 kPa; (o'c)2 ~ 1 3 2 kPa; ( σ  ̂ ^ 1 5 7 kPa ; (σ^)4 ^ 1 7 7 kPa. 

By comparing these values with those of the overburden pressure, it is 
seen that in each instance o[ < {o'c)i. S o all the layers are over-consolidated. 

( 2 ) Before proceeding with the triaxial testing o f the samples , they will 
have to be reconsol idated under an effective stress equivalent to that under 
which the soils were subjected in situ. The ideal consol idat ion condit ion 
in the lab would be t o apply an anisotropic stress such that ï\/σ' 3 =Ê0(σ'€){ß 

which would require determining the value of K0 for each of the layers. 
In practice an isotropic reconsol idat ion under a spherical tensor o[ could 
be admit ted , so that the following confining pressures should be appl ied : 
8 0 k P a for layer 1 ; 9 6 k P a for layer 2 ; 1 1 8 kPa for layer 3 ; 1 4 0 kPa for 
layer 4 . 

(3 ) The error involved by assuming that the unit weight of concrete (of 
the foot ing) and of the fill material used for seating has the s ame value as the 
soil in p lace , is negligible when considering the magni tude of the expec ted 
co lumn load. 

Since the foot ing is a s sumed to be f lexible, the vertical stress distr ibution 
below it is uni form. The stress increase due to the co lumn load at EL + 8 .5 
is: q = 3 9 2 0 / ( 4 χ 4) = 2 4 5 kPa. 

F r o m graphs of Fig . 3 .27a the stress increases in the various layers can be 
est imated, and they are given in Table 3 N . 
Β 

Fig. 3.27a. 

T o obtain the increments o f horizontal stress Δ σ 3 , corresponding to the 
increase in vertical stress, it is necessary to resort to Fig. 3 .26 . It can be 
used for square footings by letting R = B/2. The results are summarized in 
Table 3 0 . 

(4 ) The shape of the curves of Fig . 3 .25 indicates that there is no t much 
difference between the ul t imate sett lement at t = 00 and that occurring after 
4 8 h. The secondary compress ion occurring after the initial 48 h m a y be 
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TABLE 3N 

Æ Z/B Aojq Aox (kPa) 

0.50 0.125 0 .995 244 
2 .00 0.50 0.70 171 
4 .00 1.00 0 .33 81 
6.00 1.50 0.18 44 

TABLE 3 0 

Æ Z/R Ao3/q (v = 0 .25) Ao3 (kPa) 

0.50 0 .250 0.45 110 
2.00 1.00 0.05 12 
4 .00 2.00 —0.02 (tension) 0 
6.00 3.00 —0.02 (tension) 0 

over looked. S ince the sample height in the triaxial is 8 0 m m , the change in 
sample thickness for each test is: 

sample no . 1 

sample no . 2 

sample no . 3 

sample no . 4 

Ahtoo ~ 1 2 / 1 0 m m ; 

Ahtoo ~ 1 8 / 1 0 m m ; 

Ahtoo ~ 1 3 / 1 0 m m ; 

Ahtoo ~ 8 . 3 /10 m m . 

Thus the tota l sett lement under the foot ing will b e : 

AH 
1 2 1 0 0 1 8 2 0 0 13 2 0 0 8 .3 2 0 0 
— X h — χ 1 χ 1 χ 

1 0 8 1 0 8 1 0 8 1 0 8 

1 1 3 

AH ~ 1 1 3 m m . 

The fact that the foot ing is 4 m below grade does no t greatly influence the 
a m o u n t of total sett lement. Contrary to the outda ted m e t h o d o f determining 
the stresses in a semi-infinite b o d y by the Mindlin theory , the m o r e accurate 
solution t o d a y m a k e s use o f finite e lement m e t h o d which is based more on 
the real condi t ions (F ig . 3 . 2 8 , 3 . 2 9 ) . B y Mindlin's m e t h o d , tensil stresses are 

Fig. 3 .28. Fig. 3 .29. 

developed in the shaded area of F ig . 3 .29 which, we know, cannot exist in 
soils . The calculated set t lement should not be considered conservative and 
therefore the value of AH = 1 1 3 m m should b e repor ted . 
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Instantaneous settlement 
In the given of the problem, it was specified that the sett lement at ten 

seconds should be considered. This is a purely arbitrary considerat ion. 
Based on that , however, we have : 

sample no . 1 : 0 . 1 8 m m ; sample no . 2 : 0 . 3 4 m m ; 

sample no. 3 : 0 . 2 7 m m ; sample no . 4 : 0 . 1 2 m m . 
The initial, instantaneous sett lement of all soil layers will b e : 

1 0 0 2 0 0 2 0 0 2 0 0 
Ä/Zinitia i = 0 . 1 8 ÷ + 0 . 3 4 ÷ + 0 . 2 7 ÷ + 0 . 1 2 ÷ ~ 2 0 m m 

initial 8 8 8 8 

or: Ä / ϊ ω ί ω ^ 1 8 % . 

The 1 0 s considerat ion to es t imate instantaneous set t lement is complete ly 
arbitrary. In fact , it often occurs in the initial two seconds but it is not 
poss ible to determine accurately the durat ion of this phenomenon . 

The reasons for this instantaneous sett lement are numerous . 
In the laboratory they m a y be due t o : 

— incomplete saturat ion of the sample , 
— the porous s tone of the oedometer is not properly seated on the sample 
and penetrates in the sample during the first seconds . 

In the field, this sett lement m a y be due t o : 
— disturbance of the soil immediate ly below the foot ing b o t t o m ; 
— a general de format ion of the soil mass with no change in volume occurring 
prior to the consol idat ion. This t y p e of set t lement cannot be es t imated f rom 
laboratory test results given in this prob lem. 

It should thus be noted that instantaneous sett lements in the field and in 
the laboratory are of different nature , and that the first one cannot be 
es t imated by the second . 

Primary settlement 

The end of the pr imary consol idat ion corresponds to the intersection of 
the two tangents of the curve of sett lement versus t ime obta ined f rom the 
laboratory test . The values thus obta ined are summarized in Table 3 P . 

TABLE 3P 

Sample 
no. 

Δ Η (mm) Primary 
settlement 
(mm) 

Sample 
no. 

Start of primary 
consolidation 

End of primary 
consolidation 

Primary 
settlement 
(mm) 

1 0.18 0.95 0.77 
2 0.34 1.59 1.25 
3 0.27 1.09 0.82 
4 0.12 0.60 0.48 
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The primary set t lement , corresponding to the pr imary consol idat ion of 
all the layers is thus : 

1 0 0 2 0 0 2 0 0 2 0 0 
0 .77 χ + 1.25 χ 4- 0 .82 χ 4- 0 .48 χ = 73 m m 

8 8 8 8 

say ~ 6 5 % of the total set t lement . 

(5 ) Oedometer  method 

We must now refer to the oedometer diagrams and the oedometr ic 
equat ion : AH/H = Ae/(1  4- e ) , on which is based Table 3Q (stresses in kPA) . 

TABLE 3Q 

σ' σ' + Δσ' e(o) e(o' 4 Δσ') Ae 
Ae 

1 4 e 
AH 

78 323 0.749 0.657 0 .092 0 .0526 5.26 
94 265 0 .782 0 .710 0 .072 0 .0404 8.08 

115 198 0.681 0.658 0 .023 0 .0137 2.74 
136 180 0 .580 0 .572 0.008 0.005 1.00 

Therefore •  A w 

• oedomete r 
= 17 cm. Σ - 17.08 cm 

F r o m experimental triaxial curves (Fig . 3 .25 ) the following correlations can 
be ant ic ipated for the oedometer te s t : 

-primar y  ̂ QI=i% ât o t a l ^  atZQr  c2 4 h 
°oedomete r — o o / o  a oedomete r — y j u / o ï  oedomete r 

On the other hand, the soils are slightly overconsol idated. 
We can est imate A t o be 0 .4 . With Ç = 7 m and B = 4 m w e get : Ç IB = 1 .75 , 
and S k e m p t o n and Bjerrum's graph gives: μ = 0 . 5 5 to 0 .60 or : 

0 .55 χ (0 .65 χ 1 7 0 ) ^ 6 0 m m 

and : 

s2 4 h = 60 + ο 35 χ 1 70 = H9.5 or ~ 120 m m 

We then have: 

Ah = 113 m m (triaxial test m e t h o d ) , 

Ah = 170 m m (original oedometer m e t h o d ) , 

Ah = 1 2 0 m m ( S k e m p t o n corrected oedometer m e t h o d ) . 
The agreement between the two methods is acceptable , provided S k e m p t o n ' s 
correction is m a d e . 
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(6 ) The oedometer m e t h o d leaves something to be desired. It does n o t 
account for the horizontal strains. When calculating the sett lements of a 
relatively thin clay layer that is loaded by a large area fill or a wide embank-
ment , this method gives much more sat is factory results . 

In this example , however, where the thicknesses of the layers are large 
with respect t o the loaded area (thickness wider than foot ing dimension) the 
oedometer m e t h o d lacks accuracy. Theoret ical ly , the triaxial test method is 
preferable because it reproduces more realistic the in-situ stress condit ions . 
But the Poisson's ratio of the soil m u s t be known and it is difficult t o deter-
mine this value accurately. Because of this l imitat ion and the complex i ty of 
performing triaxial tests , the theoretical advantage of the m e t h o d is doubt fu l . 

irk Problem 3.18 Set t lement calculat ion with Newmark ' s chart , ef fect o f 
ad jacent foot ings 

A square footing Sx is 2 m wide  and located 2 m below  the ground surface 
in a sandy gravel layer assumed to be incompressible.  This layer is 5.5 m 

F o o t i n g ST 

1 2 

4 
m . 

J.00 ,1.00 

n o t o n n e s 

° ï -Ï 
¼ Ï ï ï .á 

2.00ÃÔΊ 

. Ï Sandy g r a v e l 

ßÃ=19 kN/m 3 

>ι 

ï . ο 
- Ï 

C l ay 

)f= 17.2 kN/ma 

Rock 
/ / 

5 . 5 0 m 

Ρ 

ï . 

Fig. 3 .30. 
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thick.  Below it is a clay layer 3 m thick  which  overlays a sound bedrock 
(see Fig. 3.30). The footing supports a column loaded to 1200kN. The 
in-place density  of the sandy gravel is 1.9 and that of the clay is 1.72. 

The preconsolidation pressure of the clay was found to be oc = 1.29 daN/ 
cm2 from laboratory tests. The oedometric  modulus is E' = 30daN/cm2 

for stresses less than 10 daN/cm2. 
(1) Calculate the settlement  at the center of the footing. 

(2) This footing is surrounded by other footings, S 2 , ^3 and ^4 as shown 
on the plan of Fig. 3.31. All are at the same level  and carry loads of 580, 
435 and 1085 kN, respectively. 

Calculate the settlement  of Sx under the influence of adjacent loads. 
Assume that the unit weights  of concrete  and the surrounding soil are the 
same and that the excavation is filled up after construction.  Use Newmarks 
chart of Fig. 3.32. 

Solut ion 

(1) The sett lement beneath the center o f the square foot ing is : 

Ah/h = -Áσ/Ε'.  (1) 

r 2 00 " ι 

Fig. 3 .31 . 
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The stress increase Δ σ corresponds to the increase at mid-height in the 
clay layer due to the foot ing load . 

T o determine Δ σ , Fig. 3 .26a cannot be used, for the fact that Z/B = 2 .5 
is t o o large (Z = 5 .50 - 2 .00 + 1.50 = 5 m, B = 2 .00 m ) . Therefore , the 
graph shown in Fig. 3 . 2 7 a m a y be used if we consider the four quarters o f 
the square footings as identified in Fig . 3 . 3 1 . 

The stress increase along a vertical passing through the center of the 
square foot ing will b e determined f rom the influence factors Ix = I2 — 13 — 
I4 = I and Δ σ = q χ 4 / . 

F o r a quarter, we have: L/B = 1 (square foot ing) , z/B = 5 /1 = 5 . We find 
that / ~ 2% and 4 / = 8 / 1 0 0 . Also q = 1 2 0 0 / ( 2 χ 2 ) = 3 0 0 kPa ~ 3 d a N / c m 2 

and Δ σ = 8 χ 3 / 1 0 0 = 0 .24 d a N / c m 2 . 

Fig. 3 .32. Newman's chart. The influence of each curvilinear square on the chart, such as 
abed is 0 .001 . OQ (the lateral vertical scale), represents depth Z, at which the stress is 
to be calculated, so that: Δ σ = 0.001 XnXq, where q = vertical stress at the surface of 
the soil below the footing bottom, uniformly distributed, ç = number of squares covered 
by the size of the footing drawn to the same scale a_f Ζ = OQ. 
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The overburden pressure at mid-height in the clay, prior t o the start of 
construct ion, was : σ 0 = 5 .50 χ 1 9 + 1.50 χ 1 7 . 2 = 1 3 0 . 3 kPa ^ 1 . 3 d a N / c m 2 . 

We know that the preconsol idat ion pressure is oc = 1 . 2 9 d a N / c m 2, there-
fore we can say that the clay is normally consol idated . F o r m u l a (1 ) m a y be 
used with E' = 3 0 d a N / c m 2 which we were to ld is valid up to a stress level of 
1 0 d a N / c m 2 . Therefore : Ah = -h(Ao/E')9 \Ah\  = 3 0 0 χ 0 . 2 4 / 3 0 = 2 . 4 c m . 

(2 ) Addit ional sett lement will occur under the square foot ing d u e to the 
loads imposed by ad jacent foot ings S 2 , S 3 , S 4 (F ig . 3 . 3 1 ) . Newmark ' s chart 
is used for calculating these set t lements . The size of the foot ing is drawn on 
the chart and the squares within the foot ing are counted . Here we have 
OQ — 6 .5 cm which corresponds to Æ = 5 .00 m. 

F o r the number of squares (see Fig . 3 . 3 3 ) we have: 

foot ing Sx: n1 = 74 squares 
foot ing S2 - n2 = 1 1 . 5 squares loot ing à2 : n2 = ii.o squares 
foot ing S3 : n3 = 8 .5 squares 
foot ing S 4 : n 4 = 2 2 squares . 
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The respective foot ing areas are : S i : 4 .00 m 2 , S2 : 2 .00 m 2 , S3 : 1.50 m 2 , 
S 4 : 3 .50 m 2 , f rom which: 

qx = 1 2 0 0 / 4 = 3 0 0 kPa = 3 d a N / c m 2 , 

q2 = 5 8 0 / 2 = 2 9 0 kPa = 2 .9 d a N / c m 2 , 

q3 = 4 3 5 / 1 . 5 = 2 9 0 kPa = 2 .9 d a N / c m 2 , 

q4 = 1 0 8 5 / 3 . 5 = 3 1 0 kPa = 3 .1 d a N / c m 2 . 

The total i s : Δ σ ' = 0 . 0 0 1 [ 7 4 x 3 + 1 1 . 5 χ 2 .9 + 8 .5 χ 2.9 + 2 2 χ 3 .1 ] = 
0 . 3 4 8 ~ 0 . 3 5 d a N / c m 2 . 

The sett lement below the center of the square foot ing will therefore b e : 

Ah = 3 0 0 χ 0 . 3 5 / 3 0 = 3.5 cm. 

The adjacent foot ings increase the sett lement of the square foot ing by a 
factor of about 46%. 

Remark 

Newman' s chart may of course also be used to determine the stress for 
the isolated foot ing Sx. If used, it gives a value of Δ σ " = 0 . 0 0 1 χ 7 4 χ 3 = 
0 .22 d a N / c m 2 as o p p o s e d to 0 .24 d a N / c m 2 found in our so lut ion. 

*+rkProblem 3.19 So lut ion o f Terzaghi 's consol idat ion equat ion by the 
finite-difference m e t h o d : appl icat ion to a two-layered 
sys tem 

In order to obtain an approximate numerical solution to Terzaghi's 
consolidation equation, increments  to time  t and depth  Æ will  be given finite 
values At and AZ. Let us adopt the indexes i for depth  and j for time; 
the pore pressure is noted  with  two  indices: uu, and Ì_+_,ß-é means the pore 
pressure at depth  Æ + AZ at time  t — At. 

D r a i n a g e 

.—^ 
·) ·) 

"é ß 
D r a i n a g e 

Fig. 3 .34 . 
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(1) By incremental  changes the two  elements  of Terzaghi's formula, show 
that this equation consists of a linear recurrence relation between 

" i +u and Mi-i,s - L et A = cv(At/AZ 2). For which  value of A is the 
relation very  simple? 

(2) Consider a two-layered  system of compressible soils located between 
pervious boundaries (Fig. 3.34). To solve Terzaghi's equation, layer 1 is 
divided  into nx sub-layers, each of thickness AZX and layer 2 is divided  in n2 

sublayers of thickness AZ2. 
Show that AZ1 and AZ2 are not independent  and determine  what  the 

relation is between  n2 and nx. 

(3) Find the initial and limit  conditions on the upper and lower  faces of 
the two-layered  system which  indicate that drainage is ideal. 

Assume that the initial excess pore-water  pressure is 1 over the entire 
height of the layers, except at the boundaries where  u(0, 0) = u(H, 0) = 0.5. 
At  the boundaries in fact, at t = 0, the excess pore pressure is 1 and become 
zero at t = t + e. 

Give an equation of continuity  at the interface between  the two  layers 
using the principle of continuity  of the flow. 

(4) For the rest of the problem,  assume A = 1/2 to simplify  the compu-
tations. 

Remark 
We  could also assume Á Ö 1/2; the accuracy of the method  depends on its 

value. The smaller the elements,  the longer is the computation  but the better 
is the accuracy. 

For computer  use, it is generally assumed that A = 1/6. Given are: 

h2 = 2.5ft  x ; c v l = 1 . 8 x l ( T 4 c m 2 / s ; c v 2 = 1.62 χ l ( r 3 c m 2 / s ; 

kx = 1.1 χ 10"4 c m / s ; k2 = 2.2 χ Ι Ο " 4 c m / s ; Ç = 7.00 m. 

Based on the equations obtained above, show that it is possible to con-
struct, point  by point,  an isochrone net. Show the computation  in the form 
of tables to the 10th increment  of At.  Take the minimum  whole  values for 
nx and n2. Draw the net corresponding to t = 0, tx = 5 At,  and t2 = 10 At. 

If we  call the degree of consolidation at time  t for depth  Æ by u(t, Z) = 
1 ~u(t, Z)/u0 (u0 = initial excess pore-water  pressure) give the formula for 
the degree of consolidation of the two-layered  system and find its value for 
t = t2 and t = tx. 

Solut ion 

(1) F o r a function f (x) the formula for finite increments is : 

f(a + h) = f{a)Jrhf{a + dh) with O < 0 < 1 . (1) 

Porewater pressure is a function of Æ and t: u(Z,t). Le t ' s fix Æ = Z0, 
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u(Z,t) then becomes a function of t ime a lone : 

u(t) = u(Z0,t), 

u(t +At) = u(t) +At.u'(t + d At)  O < 0 < 1 . 

If Δ ί is sufficiently small , then u'(t + θ At)  ̂ u'(t) u'(t + At)  and 

du u(t + At)-u(t) 
u (t) — — — 

9 ί Δ ί 
x , · 3 " ui i+i ~~ "i i or, using the indices : — — — - — (2) 

dt At  K ' 

b z ~ AZ ' az^ 

(3) 

Similarly, for ί = ί 0: 

AZ AZ \ I 
d2u u i +1 j — 2ui ι + U i - j j 

or — '• '• — . 
3 Z 2 AZ2 

du d2u 
The consol idat ion equat ion — = c v — - m a y be written as : 

ot oZ 

Ui,) + l ~~ ui , j _ + j ~ ^ Ui j + UJ-! j 

Δ ί " ° v AZ2 

letting A = cv(At/AZ 2 ) we get : 

u i J + 1 = (1 — 2 A ) u i fj + A ( u i + 1J + M i - U ) (4 ) 

which is the relation asked for . 

This relation m a y be simplified if A = 1/2, it then b e c o m e s : 

Wij+ i = + " i - l j ) (5 ) 

(2 ) We have A = cvl{AtjAZ\)  = cy2{AtlAZ\)  s ince the same t ime incre-
ment must be chosen for the two layers. Therefore : AZl/AZ2 = V cv i / < ?V2 · 

Therefore we have: Δ Ζ Χ = hl/n1 and Δ Ζ 2 = h2/n27 and 

^ i / c v 2 

= — /— -n2. (6) 

(3a ) The boundary condit ions are : 

(w(0, f ) = 0 
for i ^ O (7) 
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which implies that drainage at the surfaces of the sys tem is ideal. 
(b) The initial condit ions m a y be written: 

i ° 

(u(Z90) = 1 íÆÖ{ 
[Ç (8 ) 

L ( 0 , 0 ) = u(H90) = 0 .5 

(c) Le t us write the condit ion of continuity of flow at the interface 
between the two compress ible layers . L e t us start by determining the head 
ft at a point Ì at elevation Z . S a y H0 is the distance to the water table 
from an arbitrarily chosen reference level (see Fig . 3 . 3 5 ) . 

W a t e r t a b l e 

R e f e r e n c e 

p l a n e 

Ì 

Fig. 3 .35. 

The pore-water pressure at Ì at t ime t is equal t o the sum of the 
excess pore pressure u (Z , t) and of the hydrostat ic pressure (H0 4- Z)yw 

existing at Ì prior to the increase u ( Z , t). The head ft is usually expressed 
by Λ = ( w / 7 w) + Z . 

The posit ive vertical direction is downward and u = (H0 4- Z)yw. Therefore : 

ft = 
(t f 0 + Z)7w + M( 2 > 0 

Ζ = H 0 + u(Z,t). (9 ) 

The continuity of f low at the interface m a y be expressed by the con-
tinuity of rate of percolat ion vx = v2 or kxix = k2i2 or also by taking into 
account eqn. ( 9 ) : k1 (Au/AZ) x = k2(Au/AZ) 2 

t h e r e f o r e b y k x(uKJ — M k _ l f j) = ft2(wk + 1 J - w k > j) ( A Z 1 / A Z 2 ) ( 10 ) 

where index k corresponds the value of index i a t the interface, and if we 
as sume that index i increases f rom b o t t o m to t o p of the compress ible layers . 

(4 ) The numerical appl icat ions give: 

c v 2 1 .62 x l O " 3 

1.8 x l O " 4 
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from which: 

AZX/AZ2 =y/Tj9 = 1/3 from which H= 7 . 0 0 m , h2 = 2 . 5 h x, h x = 2 . 0 0 m , 

h2 = 5 . 0 0 m , 

hx [c  ̂ 1 

ft2 V C vl 2 2 .5 2 

or Ì2 = 5 , ç\ = 6 , finally k2/kx = 2 . 

We then have the following relations: 

" i j + i = + W i - i j ) (5 ) 

" k j ~ " k - i j = 2 x i ( w k - i j ~ W k j ) - ( lObis ) 

The interface between the two layers corresponds to the value 6 of index k 
and since equat ion (10 bis) is valid regardless of i , i n d e x ; is no longer necess-
ary. Therefore, eqn. (10 bis) may be rewritten a s : 

u 6 ~ u s = i(ui -ue) ( lOte r ) 

or u6 = ^(3u5 + 2u7). 

Finally, increment At  is given b y : cvAt/AZ 2 = 1/2. 
For instance, if values applicable to layer 1 are subst i tuted , we have : 

2 x l 0 2 1 / 2 x l 0 2 \ 2 1 

AZX = — - — cm from which Δ ί = — ÷ | — : — I x 
6 2 \ 6 / 1.8 x l O " 4 

Δ ί — 3.09 · 1 0 6 seconds or a b o u t 36 days . 
The initial and boundary condit ions are : u 0 0 = 0 . 5 , w 0 j = 0 , u l l t 0 = 0 . 5 , 

u\i,i = 0? which allow us to calculate by successive approx imat ions with 
eqn. (5 ) . When the value o f 6 is reached for index /, equat ion ( l O t e r ) must 
then be used. 

Calculations are m a d e easier if tabulated with double entry. For instance, 
each column may be made to correspond to a specific index value corre-
sponding to the locat ion of a point in the two-layered sys tem, (i = 0 , 1 , 2 , . . . 
1 1 ) and each line corresponds to a t ime increment 0, Δ ί , 2 Δ ί , . . . , η Δ ί (j = 
0, 1, 2 , . . . ç). As specified in the given of the prob lem, the limit of ; is 1 0 . 

The first line of the table may be filled in immediate ly since it is a s sumed 
that u = 1 , except at the end surfaces (i = 0 and ι = 1 1 ) at which u = 0 . 5 . 

Columns 0 and 1 can also be filled in immediately since u o j = 0 and 
un j = 0 , regardless of L ine 2 is easily filled in for u0 j = 0 and ux x = 

+ 0 .5 ) = 0 . 7 5 . 
The same procedure is used for u 1 0 1, at the right end of the table line 1 . 
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For l i n e ; = 4, we would have: 

*6, 4 

*6, 4 

i ( 3 w 5 )4 + 2u1A) = H ( 3 x l ) + (2 x 0 . 9 6 8 ) ] 

0 . 9 8 7 . 

1 Excess of pore wate r 
Β Bj p r e s s u re 

Fig. 3 .36. 

Table 3Q is filled in f rom the extremities of each line and to be terminated 
in column 6 with equat ion ( l O t e r ) . Each line of the table thus represents a 
point-by-point construct ion of the net . 

The isochrons corresponding to t = 0 , t{ = 5 At  and t2 = 10 At  are pre-
sented in Fig. 3 .36 . 

The degree of consol idat ion at t ime t and depth Æ are defined b y : 

U(t Zj _ ! _ Û Ẑ̂  (u0 = initial excess pore-water pressure) . 

The degree of consol idat ion of the two-layered system is 
Ç , 

'L ""dZ. 
é -

u(t,Z) 

which is the ratio o f the cross-hatched area (.<•) shown in Fig. 3 .37 and the 
rectangle AMNB, oxHu0: 

U(t) = sSIHu0. 
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A Ì 

Ç 

Β 
Fig. 3 .37. 

The area m a y be c o m p u t e d by numerical method (trapezoid m e t h o d ) or 
by planimeter. 

We f ind: U(t1) ~ 0 .34 and U(t2 ) ^ 0 . 49 . 

Fig. 3 .38. Different settlement below a 16th century old building in Lyons, France. 
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Chapter 4 

P L A S T I C I T Y A N D S H E A R S T R E N G T H 

^Problem 4.1 Triaxial test on sand 

A dry sample of sand is tested  in triaxial compression. It is assumed that 
the internal angle of friction is ö = 36°. If the minor principal stress, σ3, 
is 300 kPa, at which  value of maximum principal stress, ox will  the sample 

Fai lure , or plastic deformat ion of the sample , will occur when Mohr's 
circle becomes tangent to the failure envelope. The failure envelope consists 
of two straight lines which, in this case, make an angle of 3 6 ° above and 
below the principal stress axis Οσ. At the beginning of the test, the sample 
is subjected to a confining isotropic stress, σ 3 . For this condit ion, Mohr's 
circle reduces to a single point , which abscissa is σ 3 . 

When the major principal stress ox is appl ied, the diameter of Mohr's 
circle increases by a distance of ox — σ 3 while σ 3 remains constant (see 
Fig. 4-1) . The diameter continues to increase until the circle becomes tan-
gent to the two straight lines. 

fail? 

Solut ion 

0 

cr 

Fig. 4 .1 . 
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Let d be the abscissa of the center, and R the radius of Mohr's circle at 
failure (see Fig. 4 . 2 ) , then: 

R , R „ „ 1 ~ sin ö 
— = sm ö\  σ 3 = α — R = --R = R ; 
d sin ö sin ö 

and: 

o 1 R = d + R= — + R = R 1 + S i n̂ Therefore : 
sm <p sm ö 

O+R _ 1 + sin ι _ (ð_ ö_ 
= t a n 2 - + 

σ 3 1 — sin ^ 14 2 

Numerical application 
With σ 3 = 3 0 0 kPa, ^ = 3 6 ° . We have: π/4 + <p/2 = 4 5 4- 18 = 6 3 ° ; t a n 6 3 c 

1.96; alR = 3 0 0 χ 1 .96 2 = 1 1 5 5 , say 1 1 6 0 kPa. 

Answer 
olR = 1 1 6 0 kPa. 

^Problem 4.2 Triaxial test on sand with cohes ion 

Using the data of problem 4.1, solve for o1R assuming that the sand has a 
cohesion of 12 kPa. 

Solut ion 
The failure envelope, as in problem 4 . 1 , consists of two lines inclined at-
3 6 ° above and below the principal stresses axis . However, the two straight 
lines now no longer cross the axis at the origin but to the left of it at a 
point whose coordinates are σ = 0, r = ± c (see Fig. 4 . 3 ) . 

ζ 

/ 1 R  \ 

Χ* ( \ 1 < 

0 -— - ^ · 
\ .  \  d 

Fig. 4.2. 
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Ç 0 
cr 

Fig. 4 .3 . 

A computa t ion similar to that o f example problem 4 .1 gives: 
Ç = c cot ö (F ig . 4 . 4 ) , σ ι κ + Ç = ( σ 3 + Ç) t a n 2 (π/4 4- ö/2),  σ ι κ = ( σ 3 + 
Ç) t a n 2 (ð/4 + ö/2)-Ç. 

Numerical application 
σ 3 = 3 0 0 kPa, ^ = 3 6 ° , cot ö = 1 .376 , t a n 2 (π/4 4- <ρ/2) = 3 . 8 5 , c = 1 2 kPa, 
i f = c co t ö = 1 6 . 5 , say 17 kPa f rom which σ ι κ = ( 3 0 0 + 1 7 ) χ 3 .85 - 17 = 
1 2 0 3 , say 1 2 0 0 kPa. 

Answer 
a 1 R = 1 2 0 0 kPa. 

Fig. 4.4. 
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^Problem 4.3 Evaluat ion o f c and ö f rom a triaxial test result 

Two triaxial tests are performed on a cohesive soil. In the first test,  the 
confining pressure is 200 kPa and failure occurs when  an increase of 600 kPa 
of the vertical stress is applied. 

In the second test,  the confining pressure is 300 kPa and failure occurs 
when  an increase of 800 kPa is applied (see Fig. 4.5). What  are the values of 
c and ö for this soil? 

Solut ion 
Each of the two tests provides a Mohr's circle tangent to the failure 

envelope. In the preceding example , the equat ion shown below was devel-
oped , which is : 

°IR = (°s + H) tan2 (ð/4 + ö/2)-H. 

Let : Ê = t a n 2 (π/4 + ö/2). 

For the first tes t : σ 3 = 2 0 0 kPa and σ ι κ = 2 0 0 + 6 0 0 = 8 0 0 kPa. 
For the second tes t : σ 3 = 3 0 0 kPa and σ ι κ = 3 0 0 4- 8 0 0 = 1 1 0 0 kPa. 

The following relations therefore exist : 

8 0 0 - 2 0 0 # = H(K-l) (1 ) 

1 1 0 0 - 3 0 0 Κ = H(K - 1) (2 ) 

from which Ê = 3 t a n 2 (π/4 + ö/2)  = 3. 
Therefore π/4 4- ö/2  = 6 0 ° , ö = 3 0 ° . 

Equat ion (1) gives: Ç = 8 0 0 - 200Ê/(Ê - 1) = 1 0 0 or c cot ö = 1 0 0 from 
which: c = 100 tan ö = 100 tan 3 0 ° = 1 0 0 ^ / 3 = 57 .7 kPa, say 58 kPa. 

Fig .  4.5 . 

S u m m a r y o f answers 

c = 5 8 k P a , ö -ö = 3 0 ° . 
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Remark 

Answers can also be obta ined graphically from the diagram of Fig. 4 .5 
showing the t w o Mohr's circles tangent to the failure envelope. 

Problem 4.4. Triaxial compress ion tests per formed under different draining 
condi t ions ; Mohr ' s circles and failure envelopes 

A 40 mm diameter saturated sample is 80 mm high and weighs 1.85N. 
It is tested  in a triaxial compession test.  Specific gravity  of the soil constitu-
ants is 2.75. 

(a) The sample is subjected to a confining pressure of 85kPa without 
allowing any drainage to occur. The pore-water  pressure is measured at 
69kPa. What  was the value of the initial pore-water  pressure u0 after the 
sample was removed  from the borehole but before it was subjected to the 
confining pressure in the laboratory? Why  is the initial pore pressure, u0 not 
equal to zero? 

(b) The sample is now allowed  to drain until the pore-water  pressure is 
zero, indicating that the sample has been fully consolidated. If the volume  of 
the sample has decreased by 10%, what  is the compression index Cc of the 
clay ? 

(c) The same sample, after consolidation in the triaxial cell, is submitted 
to an undrained compression test,  the confining pressure being 85kPa. At 
failure, the pore pressure is 35kPa and the load on the sample is 123 Ν 
(applied to the piston). The height of the resulting sample is 3.6 mm shorter. 
Assuming that during the test  the sample retained the shape of a right 
cylinder,  calculate the deviator  stress (σé —σ3) and from the calculated 
value, the principal effective  stresses o\ and σ 3. 

(d) Another  identical sample is tested  in a drained condition  with  a con-
fining pressure of 85 kPa. At failure, the major effective  principal stress o\ 
is 255 kPa. Draw the Mohr's circles for the two  tests at failure with  effective 
stresses and draw the failure envelope.  What  are the c and ö values? 

So lut ion 
(a) During sample recovery, a stress relief occurs since the soil sample is 

no longer subjected to the overburden pressure. Assuming that the labora-
tory tests are per formed a short t ime after sample recovery, the water losses 
are negligible. S ince water is incompress ible with respect to the soil struc-
ture , the observed volume change will be nil. Fur thermore , the effective 
stresses remain constant since they are linked to the deformat ion of soil 
s tructure, therefore to volume change. 

Under isotropic stress condit ions in the triaxial device we have thus 
°3 = °3 ~u- At atmospheric pressure, just before the test , ( σ ' 3) 0 = ( σ 3 ) 0 — 
u0. Since atmospheric condit ions correspond to the zero total stress con-
dit ion: ( σ 3 ) 0 = 0 , therefore : ( σ 3 ) 0 = — u0. 

The effective stresses are constant , so ( σ 3 ) 0 = σ 3 and : — u0 = σ 3 — u 
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u0 = - (σ 3 - u) = - ( 8 5 - 6 9 ) = - 1 6 k P a 

u0 = - 1 6 k P a 

(b) First , let us calculate the wet unit weight of the clay sample . The weight is 
Ρ = 1.85 Ν, its vo lume is V = nR2h = π χ 2 2 χ 8 c m 3 ^ 1 0 0 . 5 c m 3 . The unit 
weight isP/V = 1 . 85 /100 = 0 . 0 1 8 5 N / c m 3 = 1 8 . 4 k N / m 3 . 

F r o m the relations between 7 h , γ 8 , 7 W and e: 

(1 + e)yh = 7 s + * 7w 

e = ( 7 s - 7 h ) / ( 7 h - 7 w ) . 7 w = 1 0 k N / m 3 . 

Therefore : e = (27 .5 - 1 8 . 4 ) / ( 1 8 . 4 - 1 0 ) ~ 1 .08. 
This is the initial void ratio corresponding to an effective initial stress due 

to overburden pressure of σ 0 = 1 6 kPa. After applying the confining pressure 
of 8 5 k N / m 2 until the pore pressure is zero , the effective stress is equal t o 
σ' = 8 5 k N / m 2 . 

If V is the total volume of the sample and if Vg is the vo lume of soil 
particles as sumed to be constant (soil grains are as sumed incompress ible) , it is 
possible to write : 

initial s tate : V = Vg(l + e ) , 

final s tate : V + AV  = V g ( l + e + Ae) 

f rom which: AV = VgAe, or : AV  = V ( l + e)Ae. 

AVIV = Ae/(1  + e) and \Ae\  = 0 .10 χ (1 + 1.08) ~ 0 .21 
So Δ β = - 0 . 2 1 . 

Stress paths fol lowed during an isotropic triaxial test and that of an 
oedometer test are very similar. It can, therefore, be as sumed that volume 
changes during the test will be control led by the same equat ion : 

-Ae -Ae  0 . 21 
C c = , = — — . S o : Cc = = 0 . 2 9 0 

A l o g a log(aVao) log ( 8 5 / 1 6 ) 

Remark. 
The compress ion index, as defined by an oedometer test was evaluated in 

this example f rom a triaxial test . S ince the stress paths for the two tests are 
not identical (only similar) it m a y be that the calculated value of C c m a y 
vary f rom that obta ined f rom an oedometer test . 

(c) At each point during compress ion, the deviator stress σ1— σ 3 is given 
b y : σ1 — σ 3 = F/S in which S is the actual cross-sectional area of the sample . 
If the sample remained a right cylinder during testing, the following relation-
ship is true since no volume changes occur in an undrained tes t : HQSQ = 
HfSf, where subscripts ο and f represent initial and final values, respectively, 
from which: 
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At failure we have: (σ÷ - σ 3 ) £ = ( 123 ÷ 1 0 ~ 3) / ( 1 3 . 8 1 ÷ 1 0 ' 4 ) ^ 8 9 . 1 kPa. 
The minor effective principal stress i s : 

°3 ~ °3 ~ u = 8 5 — 3 5 = 50 kPa. But o\ — o3 = ox ~ σ3. 

Then the major effective principal stress is: 
o\ = 8 9 . 1 + 50 = 1 3 9 . 1 kPa 

Summary 

a\ = 1 3 9 . 1 kPa ; o'3 = 5 0 k P a . 

(d) In the drained condi t ion, u = 0 and we have: o'3 = o3 = 8 5 k N / m 2 , 
σΊ = 2 5 5 k N / m 2 . 

With this set of values and that obta ined in the preceding paragraph it is 
possible to draw the Mohr's circle for the two samples (see Fig . 4 . 6 ) . The 
failure enevelope of these circles passes through the origin. The mechanical 
properties of the soil, in terms of effective stresses, are : cohesion c = 0 , 
angle of internal friction ö = 3 0 ° . 

irkProblem 4.5 Shear strength o f a c lay ; effective stresses 

A clay layer is 20 ft thick  and covered  by a sandy gravel layer whose 
porosity  ç = 0.30 and which  is 40 ft thick.  The water  table is at 13 ft below 
ground surface (see Fig. 4.7). Triaxial tests are performed on the clay 
samples. These tests are undrained with  pore-water  pressure measurements. 
The following  results were  obtained: cohesion c = 2.9 lb/in2, angle of 
internal friction ö = 24°. 

The dry unit weight  of the sandy gravel is 103 lb/ft 3 and the saturated 
unit weight  of the clay is 112 lb/ft 3. Find: (1) the soil shear strength at mid-
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height of the clay layer, and (2) the effective  and total stresses acting on a 
vertical face of a soil element  at mid-height  of the clay layer. 

Solut ion 

(1) At mid-height in the clay layer, the vertical total stress is (see Fig . 4 . 7 ) : 
ox = dy a + (Hx ~d)ygt + ( t f 2/ 2 ) 7 sAa t . 

H2 

- W a t e r table 

Sandy gravel 
'G 
d  =  10 3  lb/ft 3 

Clay 

$sa t  =11 2  lb/ft 3 

Fig. 4.7. 

The saturated unit weight of the sandy gravel is : 

7sGat = 7 d + " 7 w , 7 w  = 10 k N / m 3 = 6 2 . 5 l b / f t 3, 

7sGat = 103 + 0 .30 x 6 2 . 5 = 1 2 1 . 7 5 l b / f t 3, 

from which: 

σ÷ = 13 χ 103 + (40 - 1 3 ) χ 1 2 1 . 7 5 + 10 χ 1 1 2 = 5 7 4 6 . 2 5 lb / f t 3 = 38 lb / in 2 . 

The corresponding effective stress is : 

o\ = a x - u = σë -y w(H2/2 +HX ~ d) = 5 7 4 6 . 2 5 - 6 2 . 5 (10 + 2 7 ) 

= 3 4 3 3 . 7 5 lb / f t 2 = 2 4 l b / i n 2. 

The shear strength in the middle of the clay layer (Fig . 4 .8 ) will b e : 

s = c +o\ tan ö = 2 .9 + 24 tan 2 4 ° = 2 .9 + 2 4 x 0 . 4 4 5 = 1 3 . 5 8 lb / in 2 

S o s - 1 3 . 6 l b / i n 2. 
Æ 

Fig. 4.8. 
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(2) S ince the clay is sa turated , the coeff icient of earth pressure at rest , K0, 
is 0 . 5 0 . The effective stress acting on a vertical face of a soil e lement at mid-
height in the clay will b e : σ3 = Ê0σ\ = 0 .50 χ 2 4 = 1 2 l b / i n 2 . 

The tota l stress corresponding to this value i s : 

6 2 . 5 χ 37 
o3 = o3+u = 1 2 + ^ 2 8 l b / i n 2 ( * ) . 

1 4 4 

Summary of solutions 

s = 13 .6 l b / i n 2 or 9 4 k P a , σ 3 = 1 2 lb / in 2 or 8 3 k P a , σ 3 = 2 8 lb / in 2 or 

1 9 3 . 5 kPa. 

+***Problem 4.6 Interpretat ion o f various types o f triaxial tests (drained, un-
drained, conso l idated , unconsol idated) 

Several triaxial tests have been performed on identical clay samples. The 
variation in test  procedures for samples X and Y only varied by one factor. 

In each of the following tests, draw the Mohr's circles and failure envel-
opes for both total and effective  stresses. 

For each of the conditions below,  which  sample was subjected to the 
highest value of shear stress? 

(1) Consolidated drained test  (CD. test): consolidation pressure σ 3 ; for 
sample X, rate of strain is 1 mm/min; for sample Y, rate of strain is 
0.005 mm/min. 

(2) Consolidated drained test  (CD. test): consolidation pressure: σ3 = 
0.3MPa; sample X was subjected to a pre-consolidation  pressure of 0.2MPa 
(rate of strain = 0.005mm/min.);  sample Y was subjected to a pre-consoli-
dation pressure of 0.4 MPa (rate of strain = 0.005 mm/min). 

(3) For sample Y the test  was a consolidated drained (CD.) test,  but 
for sample X the test  was a consolidated, then undrained (CU.) test.  The 
consolidation pressure o3 is the same for both samples. 

(4) Both samples are overconsolidated  to 0.6MPa: sample X was drained 
and consolidated to 0.2MPa; sample Y was undrained and consolidated 
to a pressure o3 such that the effective  stress σ3 at failure is equal to σ3 = 
0.2 MPa. 

(5) Consolidated undrained test  (CU. test): the consolidation stress was 
σ3, sample Y was not remolded,  sample X was remolded  and recompacted 
to the same density  as that of Y. The clay was a sensitive  clay. 

So lut ion 

F o r all types of triaxial tests of certain states of stresses, the Mohr's 
circle for effective stresses is obta ined f rom that for tota l stresses by s imply 

*Note: 1 lb / in 2 = 144 l b / f t 2, 1 lb / f t 2 = 48 Pa, 1 lb / in 2 = 6.897 Pa. 
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translating the circle by a value of u (pore-water pressure) . If pore-water 
pressure is zero in all locations in the sample (drained test condi t ion) the 
circles for both effective and total stresses are super imposed. We also know 
the m a x i m u m shear stress (shear strength) that can be applied to a soil, 
corresponds to the radius of the Mohr's circle at failure. 

(1 ) In the first condit ion, a rate of strain of 1 m m / m i n is considered t o o 
fast to represent a drained test condit ion. Because clays have a very low 
coefficient of permeabil i ty, pore-water pressure would increase during this 
test. Let that pressure be u at failure at mid-height of the sample . The test 
on sample X can be assumed to represent drained condit ion. The higher 
shear stress will be applied to sample Y because its effective confining 
pressure will be higher than that of sample X (see Fig. 4 . 9 ) . 

X 

ï 

Fig. 4.9. 

Then the diameter of the Mohr's circle, representing the stress condit ion at 
failure, for sample Y will be larger than that of sample X (see Fig. 4 .9 ) . 

(2) Since sample Y was subjected to a pre-consolidation pressure greater 
than that of sample X, its shear strength is greater (see Fig. 4 . 1 0 ) . 

X 

E f f e c t i ve and 
tota l s t r e s s e s 

E f f e c t i ve and 
tota l s t r e s s e s 

o cr 3 σ 
Fig. 4.10. 

(3) This is the same test condit ion as in case (1 ) . The solut ion is the same . 
(4) We agree with Wroth, R o s c o e and Schofield [Ref . 3 3 ] who have stated 

that the limit state condit ions are the same in their e , ñ (average stresses) and 
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q (deviator) space , regardless of the type of test . Sample Y is undrained, its 
void rat io remains constant at e0 during testing. S ince sample X is drained, 
its void ratio increases during shearing (the clay is overconsol idated) and its 
final condit ion is ef > e0. 

In the space diagram p, q, e, for a constant value of p, q decreases with e 
[Ref . 3 3 ] . The radius of Mohr's circle at failure will therefore be smaller 
for sample X than for sample Y (see Fig . 4 . 1 1 ) . 

Fig. 4 .11 . 

(5) If the clay is sensitive, its shear strength decreases immediately after it 
has been remolded . The m a x i m u m shear stress for sample Y will be higher 
than that for sample X (see Fig . 4 . 1 2 ) . 

Undraine d  tes t 
tota l stresse s 

Fig. 4 .12. 

irk Problem 4.7 Unconf ined compress ive strength f rom a consol idated un-
drained triaxial test 

A consolidated, undrained (C. U.) triaxial test  is performed on a clay 
sample of low  plasticity  whose  dry unit weight  is yd = 1.7 ÷ 10* N/m3. The 
sample was recovered  from a depth  of 8.15 m. The porosity  of the clay is 
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ç = 0.35. The triaxial test  results yielded  the following  values: ö0×1 = 14 , 

ccu =4xl04Pa. 
Determine  the unconfined compressive  strength of a saturated sample of 

this clay from the same depth  (assume that 100% saturation was maintained 
after sample recovery  and during handling). 

Solut ion 
The unconfined compress ion shear strength of the saturated clay sample is 

given by Rc = 2 c u . It is necessary to determine c u f rom the parameters ö0×1 

and c c u. L e t us draw Mohr's circle for tota l stress condit ions (see Fig. 4 . 1 3 ) 
of the consol idated undrained test . The consol idat ion pressure σ 0 is the s ame 
during the test . At the end of consol idat ion, u = 0 since the drainage occurs 
then. S o σ 0 = σ 3 is one of the effective stresses at the start of the test . 
At the end of the test , however, since after consol idat ion of the sample 
no more drainage was al lowed, u Ö 0 and σ 3 = σ 0 is a tota l stress. 

It will be noticed that line O'T (see F ig . 4 . 1 3 ) is not a failure envelope 
during testing, because then two different phases exist , namely a l iquid and a 
solid one . 

Le t r be the radius of Mohr's circle, then : 

Fig. 4 .13. 

cu = (ox — σ 0) / 2 = r and Ω Τ / Ο ' Ω = s i n ^ c u, 

r 
therefore: = sinv?cu o0 + r + c c u co t ö0 

or : c u = ( σ 0 + c u) sin ö0×1 + c c u cos öïç 

and thus : c u ( l — sin <pc u) = σ 0 sin <pcu + c c u cos <£ c u. 

, ï . Ί1 sin ö0×1 cos <£cu 

and finally: c u = σ 0 P ^ — + c c u r ^ — 
1 — sin ö0ë× 1 — sm ö0×1 

The consol idat ion pressure σ 0 corresponding t o the effective overburden 
pressure σν at depth Ç of the sample has ye t t o be determined. It is f ound as 
fol lows: 
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°o = ffv = y'H; i = 7 s at - 7 W 

7sat = 7 d + ^ 7w  = 1.7 + 0 . 3 5 x l x l O 4 = 2 . 0 5 χ 1 0 4 N / m 3 

a'y = 1.05 x l O 4 x 8 . 1 5 = 8 .56 χ 1 0 4 Pa. 

f rom which: c u = 8 .56 χ 1 0 4 8 1 11 1 4 Q + 4 χ 1 0 4 C° S 14 

1 - sin 1 4 ° 1 - sin 1 4 ° 

= 7 . 8 5 x l 0 4 P a 

o r : i 2 c ^ 1 . 5 7 x l 0 5 Pa. 

It can be noted that the soil is a stiff clay. 

**Problem 4.8 Re la t ion between Young ' s m o d u l u s , oedometr ic m o d u l u s and 
Poisson's rat io 

(1) Consider a linearly elastic soil. Find the change in volume  of this 
material when  subjected to isotropic stress loading. What  can be said about 
the Poisson's ratio of this soil. For what  condition  is í = 0.5? 

(2) In an oedometric  test,  assume that for an increase in stress Δ σ ν verti-
cally applied to the sample, the soil shows a linear, elastic behavior. Deter-
mine then the relation between  the oedometric  modulusEf, Young's modulus 
Ε and the Poisson ratio v. What  is the relation for í = 0.33 (usual assumption 
made for soils in general). 

So lu t ion 
(1) L e t σ{ be the i sotropic stress appl ied to the soil with Young ' s modulus 

Ε and Poisson's ratio v. Adopt ing the sign convention usually a d o p t e d in soil 
mechanics , linear elasticity is expressed b y : 

1 a i d -2v) 
€i = --(o i~2voi) = . 

The vo lume change is equal to the first invariant of the strain tensor : 

_ 3 ^ ( 1 - 2 * 0 

V Ε 

If the i sotropic stress is compress ion (σ{ > 0 ) the vo lume change corre-
sponds to a vo lume decrease AV/V<  0 . Therefore , the fol lowing condit ion 
mus t ex i s t : 

l - 2 i > > 0 or : v<l/2. 

T h e case when í = 0 .5 corresponds to AV/V  = 0 , that is t o say , t o a 
material that is incompress ible . 

(2 ) The oedometr ic m o d u l u s is def ined b y : 

Ε' = — Δ σ ν/ ( Δ Λ / Λ ) or Δ σ ν = - £ ' e v . (1 ) 
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The symbol Δ σ ν means that the linear elastic behavior is only valid for a 
small range of stress change. In the oedometer , the vertical load corresponds 
to a ma jor principal stress and ax i symmetry implies σ 2 = σ 3 . Therefore , (1 ) 
we can write : 

Áσ ÷ = —Ere1. (2 ) 

S ince the elastic deformat ions o f the metal mold holding the sample m a y 
be considered negligible compared with those o f the soil , we can formula te : 
e 2 = e 3 = 0 . Linear elasticity condit ion then means t h a t : 

- - [ Δ α , -í(Áσ 2 + Δ σ 3 ) ] = - - [ Δ σ χ — 2íÁσ 3] 

e2 = e 3 = - - [ Δ σ 3 í{Áï ÷ + Δ σ 3 ) ] = 0 

(3 ) 

(4) 

F r o m eqn. ( 4 ) , we have: σ 3 — í{Áσ é + Δ σ 3 ) = 0 or Δ σ 3 = Δ σ ! 

{íÖÉ f rom eqn. 1 ) . 
B y replacing the value of Δ σ 3 in eqn . 3 , we obta in : 

2v2 

e , = 
Δ σ χ 

Ε 
1 -

and by compar ing eqn. (2 ) and ( 5 ) , we have : 

2v2 

Ε = Ε' 

(5) 

1-v 

In the particular instance of í = 0 .33 or 1/3, we have Ε = 2/3Ef. 
The soil appears t o be less compress ible than it is in reality. 

irkProblem 4.9 Evaluat ion o f Poisson's rat io f rom triaxial tes t 

A soil sample is tested  in a triaxial compression test  at small increments  of 
principal stresses: Áσ ÷ and Ao2 = Δ σ 3 . 

Assume that the soil behaves in a linearly elastic manner. Axial strain 
(Ah/h = el) and volumetric  changes AV/V,  corresponding to the drainage of 
pore water  during testing, are measured, (see drained test  set up Fig. 4.14). 

Derive the formula for Poisson's ratio of this soil under the test  conditions. 
For a numerical application, consider the soil to be a loose sand in one case 
and a normally consolidated clay in another. The test  results for both are 
presented  in the graphs of Fig. 4.15. 

So lu t ion 
In the triaxial cell ax i symmetry implies, Δ σ 2 = Δ σ 3 and from the elasticity 
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Fig. 4 .14. 

|̂ -<rr ßï5 p a 

Loose sand 

n = 0-46 

( £ = 2 - 1 . 1 0 5 P a 

Normally consolidate d c lay 

Q~r= 2 . 1 0 5 P a 

A x i a l 
d e f o r m a t i o n 

Loose sand 

ç =  0-4 6  (ÃÃ = 2 · 1 . 1 0 5 P a 

Normally consol ida te d clay 

Q"r=  2 . 1 0 5 P a 

Fig. 4.15. Drained triaxial test results on saturated samples. 
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2 Ao3(AV/V)-e 1(Ao1 + 2 Δ σ 3 ) ' 

Numerical application 

F o r this loose sand, ç = 0 . 46 . F o r small strain increments |€χ | = 1%, 
e1 = — 1% ( shortened) 

σ Γ ( = σ 2 = σ 3 ) = 2 .1 χ 1 0 5 Pa 

σ÷ - σΓ ^ 1.6 χ 1 0 5 Pa; Ä V / V = - 0 . 4 5 % 

from which: Áσ 1 = σë — σΓ = 1.6 χ Ι Ο 5 Pa, Δ σ 3 = 0 and : 

1 - 0 . 0 0 4 5 + 0 .01 
í = - χ = 0 . 2 7 5 ~ 0 . 2 8 . 

2 0 .01 
F o r normally consol idated c lay : 

ex = - 1 % , σΓ = 2 χ 1 0 s Pa, Δ σ ! = ïë~ï÷ = 7 χ 1 0 4 Pa, 

AV/V  = - 0 . 5 5 % , Δ σ 3 = 0 

1 - 0 . 0 0 5 5 + 0 .01 
í = - χ = 0 . 2 2 5 — 0 . 2 3 . 

2 0 .01 

Note.  F r o m Fig. 4 . 1 5 , it is evident that E, jus t as v9 depends on the state of 
stress and the stress pa th . 

equat ions , we have: 

ex = - ^ ( Ä σ é ~2pAo3) (1 ) 
Ε 

e 2 = 6 3 = [ ( Δ σ 3 -v(Ao x + Δ σ 3 ) ] . ( 2 ) 
Ε 

The volumetric strain is equal to the first invariant of the strain tensor 

f rom which: AV/V  = e x + e 2 + e 3 = e x + 2 e 3 

^ = ~ ^ [ Δ σ ι + 2 Δ σ 3 ( 1 - 2 ^ ) (3 ) 

Solving 1/E in eqn. (1 ) and placing it in eqn. (3 ) gives: 

AV _ Ah (Áσ ÷ + 2 Δ σ 3 ) ( 1 -2v) 

V h Aox —2vAo 3 

f rom which: 

1 Áσ ÷ (AV/V)  - e t (Áσ ÷ + 2 Δ σ 3 ) 
í — — χ 
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itkProblem  4.10 Compar i son o f the principal stress rota t ions in a direct shear 
test and in a triaxial test 

Let us assume homogeneous stress and strain conditions.  Determine  the 
changes in the Mohr's circle and in the principal stress directions occurring 
during a direct  shear test  (Casagrande shear box) and during a triaxial test. 
What  are the conclusions? 

(a) Direct shear test . A t the onset o f the test , the major principal stress is 
vertical then σé = σ ν and the minor principal stress is σ 3 =Ê0σ1 since 
lateral strains are nil (rigid-sided b o x ) . The Mohr's circle corresponding to 
this state of stress is identified as C G in Fig . 4 . 1 6 . At failure, the Mohr's 
circle C f is tangent to the failure envelope, the point of tangency then 
corresponds to the peak of the stress—strain curve. Therefore , at failure, the 

So lu t ion 

-it -

ο or 

ο 
Ä É 

Fig. 4 .16. Shear test in Casagrande's shear box 
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stress vector acting on the horizontal shear plane is OM ( σ ν, of) whereas 
initially it was figured by O A . 

Let Ω be the center of Mohr's circle ( C f) . The end of OM rotated clock-
wise at an angle of π/2 4- ö since (ΩΑ' , Ω Μ ' ) = (π/2) + ö. Therefore the 
face on which the major principal stress OA' acts at failure makes an angle 
of 4- (π/4 4 ö 12) with the horizontal . 

(b) Triaxial compress ion test . During the triaxial test , the vertical stress 
acting on a horizontal plane through the sample center remains the major 
principal stress throughout . S ince the sample is cylindrical, any direction 
perpendicular to the vertical is also a principal stress direction. 

In conclusion then, the shear p lane direction in the direct shear device is 
predetermined by the geometry of the test setup. As a consequence , the 
orientation of the major principal stresses undergoes a rotat ion of π/4 4- ö/2 
during the shearing process . In the case of the triaxial test , however, the 
orientation of the principal stresses remains the s ame , the angle o f the shear 
plane is a = π/4 4 ö/2  with the horizontal (Fig . 4 . 1 7 ) . 

I t 

(D (2) 

Fig. 4.17. Triaxial test. 
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trkProblem  4.11 Triaxial tes t : determinat ion o f the pore-water pressure a t 
failure and o f S k e m p t o n ' s ^ l f coefficient 

A mud has the following  properties: ö = 25° and c = 16kPa. A sample 
of this material is tested  in a triaxial compression test  (consolidated, un-
drained). During testing, the pore-water  pressure is measured. If the con-
fining pressure is 50kPa and the deviator  stress at failure is 80kPa, deter-
mine the pore-water  pressure at the moment  of failure. 

What  is Skempton 's Af coefficient? 

The Mohr's circle for effective  stress condi t ions ( C ' ) is tangent to the line 
representing Coulomb ' s equat ion , r = c + σ' tan ö . Fur thermore , f rom 
Mohr's circle, the total stresses are known b y translating the values by — u. 

F r o m Fig. 4 . 1 8 , we see : 

If we let d be the abscissa of the center of the tota l stress circle and R its 
radius , then we have : 

So lu t ion 

ÙÔ/ÁÙ,  = sin ö or R (Hf + d - u) = sin ö. ( Ό 

and, on the other hand, Hr = c cot ö . 
F r o m eqn. 1 we have: 

= ~ [ ( σ ι - σ 3 ) + 2 σ 3 ] 

u — Ç' + d : , = c co t ö + d : 
sm ö sm ö 

Æ 

d 

Fig. 4 .18. Consolidated, undrained test. 

Numerical application 

R = 8 0 / 2 = 4 0 k P a 

d = 1 / 2 ( 8 0 + 2 x  5 0 ) = 9 0 k P a 

http://PR0BLEM4.il
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sin 2 5 ° = 0 . 4 2 3 , cot 2 5 ° 2 . 1 4 5 

f rom which: u = 16 χ 2 . 1 4 5 + 9 0 - 4 0 / 0 . 4 2 3 = 2 9 . 7 kPa 
or : u - 3 0 k P a . 

F o r a saturated sample , Β = 19 and S k e m p t o n ' s relation b e c o m e s : 

Au = Aor + Á (Áσ 1 — Δ σ Γ ) . 

In the s tandard triaxial t e s t : 

AoY = 0 ( σ 3 = constant) and : Af = (Au/Ao x)f. 

Before starting the compress ion , the soil sample is consol idated under a 
confining pressure of 50 kPa (Fig . 4 . 1 9 ) . 

°3 = °3 = (<*i)o = (σ'ι)ο = 5 0 k P a ; u = 0 . 

Consolidation stag e Compress ion s tag e 

j(a,)o=<r3=50kPa |o"i-(o;)0+Aq 

Draining 

u =0 

Fig. 4 .19. 

Non - d r a i n i ng 

u^O 

Then the drainage tube is closed and the compress ion stage starts by 
applying a load , whereas σ 3 = 50 kPa remains constant . Therefore , we have: 

Au = ut - 0 = 30 kPa 

Aox = (ox )f - (ox ) 0 = (σ÷ - σ 3 ) 4- σ 3 - (σ÷ ) 0 = 8 0 + 50 - 50 = 8 0 kPa. 

and finally: Af = 3 0 / 8 0 ^ 0 . 3 8 . 

Note 

This value for A{ corresponds to a saturated clay which is slightly over-
consol idated (0 .3 < Af < 0 .7 after Leonards ) . This is a reasonable conclusion 
for a c = 16 kPa (for normally consol idated clay, c = 0 ) . 

Summary of answers 

u = 3 0 k P a ; At = 0 . 3 8 . 
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irk Problem 4.12 Stress pa ths for various test t y p e s 

The following  tests have been performed: 
— consolidation test 
— direct  shear test  (normal stress = oN) 
— standard CD. triaxial test  (o3 — o2 = constant) 
— isotropic CD. triaxial test  (σ3 = σ2 = o1) 
— triaxial constant average stress test. 

(1) Draw in σÚ9 σ2 and σ3 space the stress paths corresponding to these 

various tests. 

Fig. 4 .20. Stress-paths. 
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(2) Draw in the  p , q plane the stress paths of the tests. Let ñ and q be 
defined by: ñ = 1/3(ïë + σ 2 + o3), q = ï ÷ — σ2 = σ1 — σ 3 . 

(3) Draw on the Mohr-diagram, the circles representing the states of stress 
at the beginning and end of each test.  Determine  for each condition,  if the 
direction  of the principal stress remains constant during the test. 

So lut ion 
(1) Fig . 4 .20 gives the answer to part 1 , and in F ig . 4 . 2 1 each of the test 

stress paths is shown in the bisector p lane π. 
(2 ) In the plane p , q the stress paths Eire: ñ = 1/3(σ1 4- σ 2 + σ 3 ) and q = 

ox — σ 2 — Οχ — Οχ, f rom which Fig . 4 . 2 2 has been drawn. 
The only test wherein principal stresses undergo a rotat ion of orientat ion 

during the test is the direct shear test (see Problem 4 . 1 0 ) . Figs . 4 . 2 3 , 4 .24 

Fig. 4 .21 . Stress paths in bisector plane π. 

Fig. 4 .22. Stress paths in plane p, q. 
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S t a r t 

Fig. 4 .23 . Mohr's circles for the start and the end of the direct shear test. 

S t a r t 

Fig. 4 .24. Mohr's circle for the start and end conditions of the consolidation test. 

and 4 . 2 5 present the Mohr's circles at the start and end of the direct-shear 
test 5 the oedometer test and the various triaxial compress ion tests . 

I s o t r o p ic t r i a x i al 
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Tr iax ial c o n s t a n t a v e r a g e s t r e s s 

Fig. 4 .25. Triaxial constant average stress Mohr's circle at start and end of test. 

+rkrkProblem 4.13 Spherical tensor , deviatoric tensor and volume change 

The following  strain tensor is considered for any orthogonal axes system: 

Ô = 

2 T x y 

2 7 y x 

2 Tz x 2 Tz y 

2 ¾÷ æ 

2 7 y z 

The average strain is defined by: em = (ex + e y 4- ez)/3. 
(1) Show that tensor Ô is equal to the sum of a spherical tensor 

m 0 0 

0 e m 0 

0 0 

and a deviatoric  tensor D. Strains may be considered as the superposition of 
two  sets of strains represented  by S and D. 

(2) Develop  the decomposition  of Ô in the principal axes directions 
and show thatD may be subdivided  into 3 tensorsDlt D2 andD3. 

(3) Consider an elemental  rectangular parallelopiped whose  sides are 
parallel to the principal axes. Formulate an equation for the volume  change 
as a function of invariants of tensor T. As a first approximation, what  is the 
value of the volume  change θ ? 

(4) What  may be said about the strain represented  by S? What  is the term 
for the volume  variation corresponding to this deformation? Same question 
for deviator  D. 

(5) Apply  the above studied decomposition  to the stress tensor in the 
direction  of the principal axes Oox, σ 2, σ 3. 

Let Δ be the trisector of the three axes and a state of stress be represented 
by vector  OM. If we  let OH be the projection of OM on Δ and Om be its 
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projection on plane (II), perpendicular to Δ at 0, analyze the decomposition 

OM = OH+Om. 

So lut ion 
(1 ) We get immediate ly : 

D = 

2 e x e y e z 

2Ty x 

2Tx y 

2 e y e x e z 

έΎζχ 

Ô = S + D 

(2 ) F o r the principal a x e s : 

2 e j - e 2 - e 3 

2  7z y 

D = 

3 

0 
2 e , 

3 

0 

S = 

e j + e 2 + e 3 

3 

0 

0 

ei + e 2 + e 3 

3 

0 

2 Txz 

2 7y z 

2 β Ζ â ÷  6y 

0 

ο 

2 e , 

Fur thermore , it can be s ta ted that : D — D1 + D2 + D3 

with: 

r e i - e 2 

3 

0 

0 

0 0 

e , — e , 
0 

3 

0 0 
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0 0 

o — — -

3 

0 0 

0 

0 

3 

0 

0 

0 

0 

0 

(3 ) The elemental rectangular paral lelopiped has sides AX, AY  and AZ 
which coincide with the principal axes (see F ig . 4 . 2 6 ) . After strains occur , 
the volume remains rectangular. Then , its sides have the following dimen-
s ions : AX(1 + e t ) , AY(1 + e2), AZ(1 + e3) and its vo lume b e c o m e s : 
V2 = AXAYAZ(1  + εΟίΙ + e2)(l + e3). 

The relative volume change θ, i s : 

θ 
AV = V2 - Vt = AXAYAZjl  + ex)(l + e2)(l + e3) 

AXAYAZ V Vi 

or, by simplifying the equat ion : 

θ = ex + e2 + e 3 + 6 ^ 2 + e 2 e 3 + e3e1 + e1e2e3 

the quantit ies 1ã = ex + e2 + e 3 , I2 = e1e2 + e2e3 + e3el, I3 = e , e 2 e 3 are 
the invariants o f the strain tensor. 

As a first-order approx imat ion , we have: 

θ = AV/V^Ii = ej + e 2 + e 3 - e x + e y + e z . 

(4) F r o m the above results , it can b e seen that the deformat ion represented 
by the tensor : 

S = 

0 

corresponds t o a volume change of AV/V  — 3 e m = e x + e y + e z , which 
is the volume change expression represented by tensor T . It is charac-
terized by three equal axial strains and no shear strains. The L a m e quadrat ic 
is a sphere and is the reason why the tensor S is called spherical tensor. 

The deviator D corresponds to a deformat ion where shear strains are 
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ζ 

ÄÆ 

Fig. 4 .26. Elementary parallelopiped. 

different f rom zero but where the vo lume remains constant , s ince: 

θ = I, 
2 e x - e y 

+ 
2 e v e7 — 

+ 
2e7 

Z JL = 0 . 

The deviatoric tensor corresponds to a change of the shape o f the sample 
without vo lume change. 

(5 ) The same applies to the stress tensors : 

Cm 0 0 

a = 0 0 + 
0 0 

2σι — σï 

3 

0 

0 

0 

2 σ 9 

3 

0 
2 σ , 

0 

or : σ = s + d. 
Tensor s corresponds to the spherical s tate of stress (or i sotropic , some-

t imes called hydrostat ic s tate because it corresponds to the stress at any 
point in a l iquid) . Tensor d corresponds to the state of deviatoric stresses. 

In the principal axes of stress Ïïë ,_σ2» 03_ ( s e e Fig. 4 . 2 7 ) the trisector of 
the axes ( Δ ) has a unit vector k ' ( l / \ / 3 > 1 Α / 3> ^ / V3) - L e t Af ( a j , σ 2 , σ 3 ) be 
the point representing a r a n d o m stress condi t ion : 

OM = OH + HM = OH + O m 

|OH| = O M - k ' = lS/3(a1 + σ2 + σ 3 ) . 

or : σ! + σ 2 + σ 3 = 30H2. 
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<r3 

Fig. 4.27. Representation of a random state of stress. 

If we let : 

u then : (σ! + σ 2 + σ 3 ) 2 = 3 χ 3u2 = 9u2 

u 

f rom which: u = (σ 2 + σ 2 + o3 )/3 = om . 
Point m represents the state of stress (σ[, σ 2 , σ'3) so that ( a i 4- σ 2 + σ 3 ) / 

3 = 0 since the project ion of m onto ( Δ ) is at O. Point m then represents a 
deviator. This , once again, expresses the geometric interpretation of the 
analyses found above . Point Ç (or vector OH) represents the isotropic (or 
spherical) tensors . 

Point m (or vector O m ) represents the deviator. 

+**Problem 4.14 Determinat ion o f Henkel ' s coefficients 

On the principal axes Ο σ 1 ? σ 2, σ 3, consider the decomposition  of the stress 
tensor and its geometric  representation of problem 4.12. It is assumed that 
the stresses vary from Ì (σë, σ 2, σ3) to Ν (σé + Áσ À9 σ2 + Δ σ 2 , σ 3 + 
Δσ3Λ 

(1) What  is the geometric  representation of the stress increase Ao? 
(2) If the soil is assumed to be isotropic and homogeneous, to which 

quantities can pore-water  pressure increment  Au which  occurs, be related 
with? 

What  relation similar to that of Bishop and Skempton may be written 
(introduce two  coefficients â and a)? 

Solut ion 
F r o m the solution of problem 4 . 1 3 , and as shown on Fig . 4 . 2 8 , it is seen 

that Δ σ ( Δ σ ΐ 5 Δ σ 2 , Δ σ 3 ) of the stress tensor m a y be represented by the 
vector M N ( M N = M M j + M x N ) which may be divided as : 
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Fig. 4.28. 

Δσΐ = variation of the isotropic part (vector MM1) 

Δ σ ά = variation of the magni tude of the deviator 
Δ Φ = variation of the direction of the deviator j vector ( M N j ) . 

(2 ) The soil is a s sumed to be isotropic and homogeneous . S o there are no 
reasons for Δ Φ to affect the variation in pore-water pressure Au that appears 
when stress increase Δ σ is appl ied t o the soil. Therefore , Au is related to Δσ^ 
and Áσ Ü. B y analogy to the formula of B i shop and S k e m p t o n , we may 
write : 

Au = âÁσ { + áÁσ Ü, and Áσ { = (Áσ ÷ + Δ σ 2 + Δ σ 3 ) / 3 , 

we then have: â = Β. 

L e t us n o w express Aod : 

If we let the increases Δ σ 1 2 3 be sufficiently small, Áö  is low and the 
variation of the deviator magni tude Δ σ ά m a y be as sumed to coincide with 
MXN. 

The general express ion of the deviator magnitude may be derived then as 
shown below. 

F o r the stress tensor ( σ , , σ 2 , σ 3 ) represented by Μ, we have: 

σ÷ +σ2 + σ3 OH = 
χ / 3 

The magni tude of the deviator is then : 

HP 2 — OP2 - OH2 σ2+σ22+ o\ 
{σú + σ 2 + σ 3 ) 2 

= \[o\ + a\ +a23 -{0^2 +σ2σ3 +0^^)} 
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but : 

(o2 -σ3)2 + (σ 3 - σ÷ )2 + (ot - σ 2 ) 2 

= 2[σ\ 4- ï\  4- σ | — - σ 2 σ 3 — a 3 a j 

f rom which: 

HP = W(°2 -O3)2 + ( σ 3 -oxY +(σ÷ ~o2f. 

Let us apply the results to the stress increment vector M N : 

M i N = W ( A a 2 ~Ao3y 4- ( Δ σ 3 - Δ σ ^ 2 + ( Δ σ ! ~ Δ σ 2 ) 2 . 

if the increments Δ σ 1 } 2, 3 a r e small, then we can write : 

Au = âÁσ ß 4- W(&°2 ~ Δ σ 3 ) 2 + ( Δ σ 3 - Δ σ ^ 2 + ( Δ σ χ ~ Δ σ 2 ) 2 . 

This is the Henkel relation, which is a generalized form of that o f Bishop 
and S k e m p t o n . 

+rk*Problem 4.15 Coefficients of Henkel. Compar i son o f two triaxial tests 

A saturated clay is tested  in two  triaxial compression devices.  Both tests 
are undrained and have the following  characteristics: 
— in one test,  the confining pressure is constant throughout the test  and the 
axial load is increased until failure occurs (standard triaxial test); 
— in the other test,  the axial stress is kept  constant and the confining press-
ure is increased until failure occurs. 

Compare the variations of pore-water  pressure occurring during the two 
types  of testing. Use the Henkel coefficients. What  is the conclusion? 

So lut ion : 
In the first test , we have: Δ σ 2 = Δ σ 3 = 0, Áσ ÷ = oL — σ Γ. 

Henkel 's equat ion (see problem 4 .14 ) gives: 

Δ σ ι + Δ σ 2 4- Δ σ 3 
Au = â - - - - -

H 3 

4- a í ( Δ σ χ - Δ σ 2 ) 2 + ( Δ σ 2 - Δ σ 3 ) 2 + ( Δ σ 3 - Δ σ ! ) 2 

from which ( 0 = 1 , for saturated c l ay ) : 
oh — a r 

Au = h a \ / 2 ( a L — σ Γ) 

3 

or: 

Au = (0,-0^(1/3 +ay/2). (1) 

In the second test : Δ σ ! = Δ σ 2 = a L — σ Γ, Δ σ 3 = 0 . 

Henkel 's equat ion here gives: 



PROBLEM 4.16 1 7 5 

Au = 
2 ( a L - a r ) 

+ ay/2 ( a L - σΓ) 
3 

or: 
Au = ( a L - a r ) ( 2 / 3 -hay/2). 

F o r the triaxial compress ion test at constant axial stress the confining 
pressure increases result in a higher pore-water pressure than in the standard 
triaxial test . 

***Problem 4.16 Influence of loading condi t ion on the behavior of a soil. 
B i shop and S k e m p t o n ' s coefficients 

Consider an elemental  volume  AV of a saturated soil in situ. Assume that 
the loading conditions are such that the soil is in a plane strain state (usual 
assumption made in soil mechanics). Within  the range of deformations being 
considered here, the soil structure may be assumed to behave elastically 
with  a Young's modulus of Ε and Poisson's ratio v. 

(1) Find the relation between  the principal stresses σ 1 ? σ 2, and o3 which 
express the plane-strain condition. 

(2) Find the "pseudo" bulk modulus which  relates the volume  change to 
the variation of the average stress of σ1 and o3. 

(3) What  may be concluded about Bishop and Skempton's parameters? 

(1) F r o m elasticity theory , disregarding the second-order terms, we can 
write: 

AV/V=e 1 + e2 + e 3 . 

For plane-strain condit ion, we have e 2 = 0 . 

F r o m the generalized Hooke ' s equat ion , we have: 

e 2 = σ2/Ε-(í/Ε)(σ1 + σ 3 ) . 

But since the plane-strain condit ion is that e 2 = 0 we can write: 

o2 = ñ(σ÷ + σ 3 ) (1) 

(2 ) AV/V  = et + e 2 + e 3 = ex + e 3 since e 2 = 0. Fur thermore : 

So lut ion 

AV/V  = (σ÷ -ôσ3)/Ε-(í/Ε)(2σ2+σ1 + σ 3 ) 

from which: 

AV/V  = (2σðé/Ε)-(í/Ε)[σ1 +2u(0l + σ 3 ) + σ 3 ] 
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from eqn. (1) with: 

om = - ã - · Or. 

AV/V  = (2om/E)-2(v/E)om(l + 2v) = (2om /E)[l - v(l + 2v)} 

AV/V  = (2amIE)(l + p)(l-2v). 

S o we can write: 

om = K'S{AV/V)  (2 ) 

with: 

Ε 

Kl = " p s e u d o " bulk modulus 
2 ( 1 + ι > ) ( 1 - 2 ι ; ) 

(3 ) If the soil structure behaves elastically, we have: 
— in the triaxial condit ion ( ax i symmetry ) : σ1 Ö σ2 = o3 

°m = °i = (°i + °2 + °3 )/3 and : 

Ε 
Ê\ = f rom which: 

3 ( 1 ~2v) 

ι 
Au = ΒÁσ÷  with Β l + n(KJKw) 

— in the case of in-situ plane strain: σ÷ Ö σ2 Ö σ 3 , 

m̂ = (σ1 4- σ 3) / 2 , om Ö σ{ and : 

2 ( 1 + í)(1 ~2í)' 

The volumetric strain AV/V  is independent of σ 2 , thus, as a result, Au 
depends only on Aom , therefore : 

Au = BrAom with B' = 
l + n « / X w ) 

Note that the Bishop and S k e m p t o n ' s parameters , normally measured in a 
triaxial test, cannot , in principle, be applied to the frequent condit ion in 
practice of the plane strain condit ion. 

F o r a numerical example , let 's a s sume í = 0 .33 = 1/3: 

Ε 
Kc = = Ε 
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Thus for the plane strain condit ion, usually found in-situ, the soil would 
deform less than it does in the triaxial test . On the other hand, the values of 
Ks and Ê are relatively close for the usual values of v. This justifies the use 
of Bi shop and Skempton ' s coefficients in plane strain problems and besides, 
the a s sumpt ion that the soil structure behaves elastically, is only an approxi-
mat ion of real condit ions . 

+++Problem 4.17 Measurement of the coefficient of earth pressure at rest K0 

using a triaxial device 

A saturated clay sample is recovered  from a depth  of 12 m. Its unit weight 
is 19kN/m 3. The pore-water  pressure measured with  a piezometer  at that 
depth  was 110kPa. The Atterberg  limits of the clay are: w h = 52%, w p = 
17%. 

The sample is tested  in a triaxial compression test.  Drainage is allowed 
during compression and zero radial deformation conditions are maintained by 
adjusting the confining pressure ox and the axial load σë. When  or reaches a 
value of 50kPa, the deviator  stress is 68kPa. Calculate the coefficient of 
earth pressure at rest, K0. Does this value appear acceptable, knowing  that 
the clay is normally consolidated and that a consolidated drained test 
yielded  values of ö =20° and Af = 1.1.? What  is your estimate of the 
apparent cohesion for this soil? 

Solut ion 
Since no radial deformat ion is al lowed during testing, the sample is in 

the same condit ion in the lab and in situ, provided that the same stresses 
are applied. The test is a drained one , then u = 0. Therefore o\ = ox and 
ofT = ot. 

F o r a ; = 5 0 k P a , we have a l - a i = 6 8 k P a or o\ = 6 8 4- 50 = 
1 1 8 kPa. 

The effective vertical stress in situ is : 

tfv  = JsatH-u = 1 9 x 1 2 - 1 1 0 = 1 1 8 kPa. 
S ince the stress condit ions in the test and in situ are the s ame : o'r — K0o[, 
f rom which K0 = σ'ô/σ\  = 0 . 5 0 / 1 . 1 8 ~ 0 . 4 2 . 

We know that for a normally consol idated clay (c = 0) the parameters c u , 
oc, ö , KQ and Af are not independent , but are related by the following 
equat ion : 

c_± = sin y[Kn+At(l-K0)] 

σ ; l + sin<p'(2A, 

Therefore : 

c u _ sin 2 0 ° ( 0 . 4 2 + 1.1 ÷ 0 .58 ) _ 

σÀ ~ 1 + sin 2 0 ° ( 2 x 1 . 1 - 1 ) ~ 
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Skerxipton has given a good correlation between the ratio cu/o'v and the 
plasticity index of a clay, Ip : 

^7 = 0 .11 + 0 .37 J p 

σ ν 

For this p rob lem: Ip = w h — w p = 0 .52 — 0 .17 = 0 . 3 5 . 
Therefore : cv/o'y = 0 .11 + 0 .37 χ 0 .35 - 0 .24 . 

The agreement between the two results is good . Taking the average of 
the two values, 0 . 2 5 , we have: c u = 0 .25 χ 1 1 8 — 3 0 kPa. 

Summary of answers 

K0 = 0 . 4 2 ; c u = 3 0 k P a . 

irkrkProblem 4.18 Stress paths applied on a soil e lement during the construct ion 
of an earth dam 

It is necessary for the design of a clay core earth dam to specify tests on 
soil samples which  would  give representative  values for the behavior of the 
clay core not only  during construction but also during filling of the reser-
voir and under rapid drawdown  conditions.  The clay core would  be com-
pacted in place at a moisture content  close to the optimum  moisture as 
determined  by the Proctor test  where  the effective  vertical compaction 
pressure is 400 kPa. At  optimum,  the clay exhibits yh = 18 kN/m 3 and, 
when  saturated, yS3Lt = 20 kN/m 3. 

When  the reservoir is filled, pore-water  pressures at two  locations (1 and 
2) are measured: ux — 30 kPa and u2 — 340 kPa. 

(1) Determine  the stress history  at points 1 and 2 (Fig. 4.29). Draw the 
stress path in the principal effective  stress σ\, o2, o'3 space. Draw the stress 
path in the plane p, q. Find in each case if the clay is overconsolidated  or 
normally consolidated. 

(2) Determine  also the test  procedures to subject the clay sample in the 
lab to a stress path similar to that it would  undergo in the dam. 

Fig. 4 .29 
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Solut ion 
(1) Stress history 
(a) During compaction o\ = o\c = 4 0 0 kPa. 

If KQ is the coefficient of earth pressure at rest, we have σ 2 — K0o'lc = o3. 
The stress tensor is complete ly defined by σ 2 , σ'3 in the horizontal plane, o\ 
being vertical. Therefore : 
P = h(o\ + o'2 + o'3)=l3o\{l + 2K0), 

t t t t * i t  ôô- \ 

q = σ÷ — σ2 = σë — σ3 = σë(1 —Ê0). 
(b) At  the end of construction.  Assume that construction progress was 

sufficiently slow to allow for the full diss ipation o f pore-water pressures : 
o'i = 7hZ, 

o\ = o3 = K0yhz, 
where æ is the depth from the crest of the d a m . 

ñ = ^(1 + 2K0) = 2 | - ( 1 + 2 K 0 ) , 

q = o\ -o2 = o\ -o'3 = yhz(l-K 0). 

The soil e lement at locat ion 1 is overconsol idated because at the end of 
construct ion, the vertical stress is o\ = 1 8 0 kPa and it was previously sub-
jected to a compact ion pressure of 4 0 0 kPa. The soil e lement at locat ion 2 
is normally consol idated since at the end of construct ion, it would experi-
ence an overburden pressure of = 1 4 4 0 kPa. 

(c) Filling of the reservoir. Seepage occurs through the core . At each of 
the two locations there will be saturation condit ion and pore-water pres-
sure u. 

We have: o\ = ysat (æ ~ u) and σ 2 = σ3 = K0ysat (æ - u). 
At locat ion 1, the clay will be overconsol idated because o\ = 2 0 0 — 30 = 

1 7 0 kPa. 
At locat ion 2, the clay is still overconsol idated because the overburden 

effective stress is o\ = 1 6 0 0 — 3 4 0 = 1 2 6 0 kPa whereas at the end of con-
struction, σ\ = 1 4 4 0 kPa. 

(d) Rapid drawdown.  The seepage in the core reverses its direction after 
drawdown. The pore-water pressure decreases slowly with t ime. At the start 
of the rapid drawdown, the stress condit ions are the same as those of the 
filling of the reservoir, then, as the pore-water pressure decreases , the ef-
fective stress increases and when u = 0, then: 
o'i = Tsa t* = 2 0 0 kPa, 
o2 =o3 =K0ysat-z  = 1 6 0 0 kPa. 

At locat ion 1, the clay is overconsol idated and at locat ion 2 it is normally 
consol idated. The various stress paths are presented in Figs . 4 .30 and 4 . 3 1 . 

(2) Test procedures to be used in the laboratory. The mos t versatile 
equipment to reproduce the stress condit ions is that of the triaxial com-
pression test . 
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(Ô) Compaction 

(?) Construction 

(3) Filling reservoir 

(4) Draw down 

Fig. 4 .31 . Stress paths in plane p—q. 

Location 1-clay is over consolidated 
Location 2-clay is normally consolidated 

(?) Compaction 
(2) Construction 
(5) Filling reservoir 
(4) Draw down 

Bisector plane 
plane orientation 

Fig. 4.30. Stress paths. 

Trisector 
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(a) For compaction conditions.  The sample should be anisotropically 
consol idated (open drainage) under the effective load of o\ = 4 0 0 kPa, 
σ2 = σ3 = K0ol. 

(b) During construction.  The stress tensor of consol idat ion should be 
increased to the following values: 

σ'é = 7hZ 

°2 = o'3 = K0yhz 

Depending on the locat ion of the sample , there will either be an increase or 
a decrease o f stress. All variation is done with drainage. 

(c) Filling of the reservoir. Then drainage is no more allowed and pore-
water pressure u is applied. Seepage is caused to occur in the sample in order 
to saturate it completely (this is very difficult to do in practice and very 
t ime consuming) . F o r the filling condit ion, the reproduct ion in the lab of 
the field condit ion leaves something to be desired, because in the dam core 
seepage is not interrupted. 

(d) Drawdown.  The drainage is once again open and the pore-water 
pressure al lowed to dissipate s lowly. 

Note 

The various stress paths a s sume that the relation o'3 = K0o\ is always 
true and that K0 remains constant . This is an approx imat ion which is mos t 
likely not fully representative of the complex actual field condit ions . 
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Chapter 5 

P L A S T I C E Q U I L I B R I U M 

**Problem 5.1 T h e po le o f Mohr ' s circle 

In a two-dimensional  space, 

(l)show that Mohr's circle does not sufficiently  define the stress con-
ditions at a point  in a continuous mass; 

(2) assume that the stress tensor at a point  A in a continuous mass is 
known  and defined by the following  data: Mohr's circle and a stress vector  f 
acting on a small faceRR* in direction  Δ . Let Ì be the point  on Mohr's circle 
representing  f, and m be the symmetrical  point  of Ì with  respect to the 
principal stress axis, Oo. From m, a parallel line to the  Δ direction  is drawn 
which  crosses Mohr's circle at a point  P. Show that when  the face RRr 

rotates about A, point  Ρ remains fixed. This point  is called the pole of the 
Mohr's circle. 

(3) Show that, knowing  the pole location enables the determination  of the 
orientation of a face for a given stress vector,  and, inversely,  the stress vector 
for a given orientation of the face. Apply  this method  to find the orientation 
of the principal stresses. 

(1) T h e Mohr's circle only gives the magnitude of the principal stresses, 
but does not define their orientation in space . F o r any given Mohr's circle, 
several equal L a m e ' s ellipses of various orientations (Fig . 5 .2 ) . 

(2 ) L e t the small face RRf (F ig . 5 .3) be rota ted counter-clockwise through 
an angle a. When it reaches the orientation QQ', the stress f', represented by 
M' on Mohr's circle, is known to act . F r o m the propert ies of Mohr's circle, 

(Ä) 

Fig. 5 .1 . 

So lut ion 
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Fig. 5.2. Various Lame's ellipses for one Mohr's circle. 

Fig. 5.3. 

we have: Μ Ω Μ ' = — 2a. Therefore : rafZm' = 4- 2a ( symmetry with respect 
to Ï ï ax i s ) . 

Connect m to point P. We now have fnPm' = a ( inscribed angle). There-
fore m'P is parallel to face QQ' and m'P is colinear with (δ ' ) . 

Consequently , point Ρ is f ixed when the face turns about point A. 
( 3 ) F r o m the above construct ion and if we now consider a stress vector 

of which Ν is the end, we know immediately the orientation of the face 
upon which it acts by simply connecting pole Ρ to the symmetrical point of 
Ν with respect to the principal stress axis Oo (and reciprocal ly) . 

Application: By connecting the pole to points Β and C of the diameter 
of the circle on the principal stress axis Οσ, the directions of the faces upon 
which the principal stresses act are known (see Fig. 5 . 4 ) . 
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D i r e c t i o n o f m a j o r 
p r i n c i p a l s t r e s s 

D i r e c t i o n o f m i n o r 
p r i n c i p a l s t r e s s 

( o r d i r e c t i o n of f a ce 
u p o n w h i c h t h e m a j o r 
s t r e s s a c t s ) 

Fig. 5.4. 

**Problem 5.2 L imi t equil ibriu m of a granular, semi-infinit e b o d y 

Let us assume a point  in a granular, semi-infinite  mass in a state of limit 
equilibrium. Show that if a stress vector  is known  for the face of a given 
orientation,  two  Mohr's circles may be constructed.  What  conditions do 
these two  circles represent? Find also the orientation of the faces upon 
which  the stress is the least favorable (corresponding to the limit  stress 
vectors). 

The propert ies of every circle meeting the above condit ions are : 
— the center is on the axis Oo; 
— it mus t go through point M; 
— it mus t be tangent to the failure envelope (therefore to two lines D and D' 
which are symmetr ica l with respect to Oo) (see Fig. 5 .5 ) . 

The geometric solut ion shows that there are two circles which satisfy the 
above condit ions . 

The construction  of the circles is done in the following manner (see Figs. 
5 .5 . and 5 .6 ) . 

Solut ion 

D 

Ï 

D' 

Fig. 5.5. 
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Fig .  5.6 . 

From point M, draw the perpendicular line to Oo which then intersects D 
at point / . Draw a random circle centered on Oo passing through M. F r o m / , 
draw a tangent IT to this circle. The dashed circle, centered at J the radius of 
which is equal to IT crosses line D at points J and Ê which are the points 
where D contacts the two circles sought. Their centers are at Ù÷ and Ω 2 

(Fig . 5 .6) . 
The interpretation  shows that two limit equilibrium condit ions are poss-

ible for a given granular mass (superior and inferior Rankine equilibria) . 

++Problem 5.3 L imit equilibrium of semi-infinite granular media with an 
inclined free surface 

Consider a semi-infinite,  granular mass, not loaded at the surface which  is 
inclined at an angle â with  respect to the horizontal.  Let us assume that the 
limit  equilibrium corresponds to the lower  Rankine equilibrium. The unit 
weight  of the mass is y and its angle of internal friction is ö. 

(1) Determine  the stress at depth  æ acting on a face parallel to the free 
surface of the mass, x'x. From which  find, by graphical solution, the stresses 
acting at that depth  æ on a vertical face and on a face at an angle θ with  the 
vertical.  What  are the stress conditions when  â = 0? 

(2) With  Mohr's circle, draw the net of slip lines. What  is the conclusion? 
What  is the angle between  the slip lines and the free surface x'x? 
NB. The pole construction is assumed to be known  (see problem 5.1). 

Solution 
(1) For a cylindrical soil e lement with its base on the face under consider-

ation dS (see Fig. 5 .7 ) , Rankine 's theory states that the forces acting on the 
vertical surface of the cylinder cancel each other. The stress acting on face 
dS is therefore: 

cylinder weight yz  dS cos â 
oy = = = yz  cos β. 

dS dS 

F r o m Fig. 5 .7, it is easily seen that the component s of this stress are : 
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c = o 

ζ 

Fig. 5.7. 

j σ = yz  c o s 2 â 

{ ô = yz  cos â sin â. 

Mohr's circle corresponding to this condit ion is drawn in Fig. 5 .8 . It goes 
through point M, which is the end of the stress vector σ ν and it is tangent to 
the failure envelope (Coulomb' s lines) since the soil mass is at limit equi-
l ibrium. 

It was shown in problem 5 .2 . that two circles satisfy the condit ions . 
Since it is a s sumed that the soil mass is at the lower Rankine limit equilib-
rium, the circle representing the stresses is the smaller of the two. F r o m the 
pole construct ion (see problem 5 .1) we know the stress vectors acting on the 
vertical face OM' and on the face making an angle θ with the vertical O M " . 
Note that the point M' is the same as the pole of Mohr's circle. 

ο 
cr 

Fig. 5.8. 
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In the ease where â = 0, the stress σ ν is perpendicular to the face u p o n 
which it acts . It is therefore a principal stress. Because we are assuming lower 
Rankine limit equilibrium it is the major principal stress (Fig. 5 .9 ) . 

é Ε 

θ > 

M'(POLE) 

Ì" 

" × Ρ 

) 

I ^ 

= 0 

Fig. 5.9. 

(2) Net of slip lines. F r o m the construct ion of the po le , we know the 
orientation of the faces upon which the limit stresses O T and O T ' acts (these 
are stresses with m a x i m u m inclination, equal to ö with the perpendicular to 
the face upon which they ac t ) . The directions of these faces are obta ined by 
joining the pole to points Τ and T ' . It will then be not iced that directions PA 
and PB which are the principal directions of the stress vectors , bisect the slip 
faces (because A and Β are at the middle of arcs whose ends are Γ and Ô'). 
As before , ÔÙÁ  = ð/2 + ö, and thus the faces m a k e an angle of ( 1 /2 ) 
( Τ Ω Α ) = π/4 4- ö/2  with the direction of PA, that of the face u p o n which 
the major principal stress acts (or by the same token, the direction of the 
minor principal stress) . 

c 
Ï 

Fig. 5.10. 
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When considering the effect of depth 2 , po int Ì describes a straight line 
D inclined at â on Οσ, since this angle remains constant . The Mohr 's circle 
remains homothet ica l and the direction of the slip faces remains the same. 
Therefore the slip lines, which are the envelops of slip faces , are straight lines 
with an angle of ± (π/4 4- ö/2)  with the direction of the minor principal 
stress. 

It should be not iced that it is not poss ible to have a condit ion wherein â > 
ö because an equilibrium may not exist in such condit ions . 

L e t us now find the angle between the vertical and the direction of the 
minor principal stress. Consider angles ΟΡΩ a n d P Ω A (Fig . 5 . 1 1 ) . In triangle 
Ο Ρ Ω , we have : ùâ = â + 2 γ , and in triangle Ρ Ω Α , we have: a = ð — 2 γ , 
f rom which a = ð — (ùâ — â). 

T o define angle ω^ , we have: sin ùâ = but sin â = Ω / / / Ο Ω and 
sin ö = Λ / Ο Ω . Therefore : sin ùâ = sin |3/sin ö, ùâ = arcsin (sin j3/sin<£>). 

4 * 

Fig. 5.12. 
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F r o m the propert ies of Mohr's circle it is found that σ 3 makes an angle 
with the vertical equal to a/2 or : π/2 — (ω^ — j3)/2 and that σ1 is inclined 
to the vertical by angle (ùâ — â)/2. 

F r o m this, the slip lines and ( & 2 ) m a k e an angle with the free face of 
the mass of : 

ð ö ùâ +â ð ö ùâ + â 
ψ = — + — + — , and Ψ 2 = — 4-

1 4 2 2 2 4 2 2 
with ùâ = arcsin (sin â/sin ö). 

These results are summarized in Fig. 5 .12 . 

**Problem 5.4 Equi l ibr ium o f Rank ine 

Let us consider a semi-infinite  mass with  a free face inclined at â with 
respect to the horizontal.  The mass is cohesionless soil, with  an angle of 
internal friction of ö and unit weight  of y. The purpose is to find the stresses 
acting along a line OL making an angle θ with  the vertical.  Let a be the angle 
of inclination of the stress acting at depth  h on a face whose  center Ì (θ, r) 
is on OL (Fig. 5.13). 

Assume that the mass is at the lower  limit  equilibrium of Rankine. 
(1) Draw Mohr's circle corresponding to the lower  equilibrium at M. Let 

Ω be the center of this circle and m be the point  on the circle representing 
the stress acting on a face parallel to the free boundary and passing through 
M. Om crosses the circle at point  n. Let ùâ be the angleXlnrn which  must be 
expressed by one of its trigonometric  lines as a function of â and ö (see 
Fig. 5.15). 

Let ñ and R be the abscissa of the center and the radius respectively  of the 
Mohr's circle. Express R in terms of ñ and ö and ñ in terms of â and ùâ. 

(2) Construct point  m± of the Mohr's circle associated with  a face whose 
center is Ì in which  lies OL (Fig. 5.13). Calculate the angle a of the corre-
sponding stress and show it is independent  of r. 

(3) Find the magnitude of the normal stress oQ acting on the face of 

Fig .  5.13 . 
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center Ì and direction  OL. Show it is proportional to y and to r and that 
the equation σ0 = Kyr exists. 

Write  Ê as a function of 0, ft ö and of angle ùâ. What  can be said about 
the stress distribution  on segment OL? 

So lut ion 
(1 ) T h e stress on face dS at Ì has a value o f (Fig . 5 . 1 4 ) : 

df = 
weight o f cylinder yh ds cos â 

ds ds 
yh  cos â. 

Fig. 5 .14. 

Hence Mohr's circle passes through po int m , the coordinates of which are : 

j yh  c o s 2 â 
m 

[yh  cos]3 sin]3 (Fig. 5 .15 ) 

ô 

I Lowe r Rankin e  limi t 
/  equ i libriu m 

SI 

Fig. 5.15 
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to find angle ùâ: sin ùâ = ¿,Ç/R 
but : sin â = Ω ίΓ /ΟΩ and sin ö = i i / Ο Ω 
therefore : sin = (Ωϋί /ΟΩ) χ (ÏÙ,/R)  = sin j3/sin γ? 
sin = sin â/sin ö. 

To find R, we have Λ = ρ sin <£. 
T o find p , consider triangle ÏÙ,ôç  (Fig . 5 . 1 6 ) . We have: 

p / s in = Om/sint)£lm:,  but : 

Of2m = — â 4- (π — 2ùâ) = ð ~ (ùâ 4- â), sin üÙôç = sin(ùâ+â) 

from which: 
ρ Om 

- — _ —, but : Om = yh  cos â, 
sm sin (ω^ 4- â) 
hence : 

sin (JUR 

ñ = yh  cos ]3 sin (ùâ 4- 0) 

Fig. 5.16. 

(2) We mus t first construct the pole Ρ of Mohr's circle (see problem 5 .1 
and Fig. 5 .17 ) . Ρ is also the representative po int o f the stress vector acting on 
a vertical plane through M. Hence for a plane at an angle 4- 0 with the 
vertical, the representative po int m1 is obta ined by rotating by — 2È on 
Mohr's circle. L e t m bej the project ion o f m t on axis Οσ. 

We have then : a — m'Om1 or t an a = m1mJOmt. 
Consider now the triangle Q,m'ml; we have : mfilm1 = 2È + ùâ — β. 

Therefore : mxm' = R sin (20 4- ùâ — â), Om' = ñ — R cos (2È 4- ùâ — â). 
F r o m the first part of so lut ion: R = ρ sin ö 

Om' = p [ l — sin ö cos (20 4- ùâ — β) ] 
from which: 

ρ sin sin (20 4- co^ —18 ) 
fall Q{ — " 

p [ l — sin ö cos (20 4- — â)] 

This equat ion shows that tan a is independent of r. Therefore, the incli-
nat ion a o f the stress acting on a face through OL is the same all along the 
line O L . 

(3) 

oQ = Om' = ñ — R cos (20 4- ùâ — â) 

ïθ = ρ [ 1 — sin ö cos (20 4- ùâ — â)]. 
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20/ 
rrv ι SI 

Fig. 5.17. 

Then, f rom the first part of the so lut ion : 

sin ùâ 

ñ = yh  cos â — . 
s m (ω^ + â) 

and from triangle ONM (Fig . 5 .18 ) we also have 

r = h 

sin (π/2 - â) sin [π - θ - (π/2 - â)] 

r _ h 

cos â cos (â —θ) 

Fig. 5.18. Fig. 5 .19. 
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from which: 

h = r 
cos (â — θ) 

COS â 

Therefore we have: oi È = K*yr with: 

Ê = 
cos (θ — â) sin ù â 

sin (ùâ -f â) 
[1 — sin <p cos (20 + ùâ — â)]. 

The stress distr ibution along OL is linear (Fig . 5 .19 ) and t o summar ize : 
Rankine ' s equil ibrium is characterized b y : 

— slip lines which are straight l ines ; 
— triangular stress distribution with constant inclination along a straight line 
through the mass . 

+*+Problem 5.5 Plast icity; limit equil ibrium o f a weightless mass loaded a t the 
surface ; Prandtl corner 

(See pole construct ion of problem 5.1) 

(1) Study the limit  equilibrium of a semi-infinite  cohesionless mass having 
an angle of internal friction of ö, whose  free surface is inclined at an angle â 
with  the horizontal.  It is subjected to a uniform vertical load of q (Fig. 
5.20). What  can be said about the stress tensor? Draw the slip lines. What 
happens when  â = 0? 

(2) Consider the same mass with  a horizontal  free surface and a point  A 
at the surface. Assume that a uniform load p0 is applied to the surface along 
a line to the right of point  A and a uniform load p2 is applied along the same 
line but to the left of point  A. Assume that the mass is at limit  equilibrium. 

(a) Show that it could be assumed that there coexist two  limit  equilibria 
zones. What  are they  and what  are the limit  equilibria which  could exist 
there? What  relation must exist between  p2 and p0 for these equilibria to 
exist? Show, considering the slip lines net, that this solution is not kine-
matically possible. 

mas s 

ds 

Fig. 5 .20. 
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(b) Which  three zones configurations can logically be chosen? What  will 
be the slip lines net in the third zone? What  is the relation between  p0 

and p2 ? 
(c) Compute  the value of the coefficient AT q and Nc of the bearing capacity 

formula for shallow footings from the above mentioned  result. 

So lut ion 
(1) The stresses acting on planes A0A and B0B of the elemental prism of 

base dS cancel two by two . (Fig . 5 . 2 0 ) . 
Since the mass is a s sumed weightless, the stress acting on plane AB is 

equal to q, whatever the depth o f the face . The stress tensor is thus the same 
at all points. 

The stress vector acting on a face parallel to the free surface is known 
(Fig. 5 . 2 1 ) . Mohr's circle mus t pass through the M-end of this vector and 
m u s t be tangent to Cou lomb ' s straight lines. T w o solut ions correspond to 
this equil ibrium (lower and upper Rankine equil ibrium). 

Draw line Om  parallel t o the plane through po int m which is the mirror 
image o f M. The line crosses the circles at points Pl and P2 ( the po le s ) , f rom 
which we obta in the slip lines. 

Indeed, the stress tensor being the same at all po ints , the faces u p o n which 
the least favorable stresses act (stress vectors on the C o u l o m b lines) have 
the same direction at all points of the soil mass . Hence, the slip lines, which 
are the envelope o f these faces , are straight lines. 

In Fig. 5 . 2 1 , it can be seen that the failure planes are straight lines parallel 
to Px T1 and Px T[ for the lower equilibrium and to P 2 T2 and P 2 T 2 for the 
upper equil ibrium. 

F o r the particular case of â = 0 , po int Ì is on the axis Ïσ (M is the end 
point of the stress vector acting on plane AB), because the vertical stress is 
a principal stress. The two limit Mohr ' s circles are tangent at Ì (Fig . 5 . 2 2 ) . 

Lower equilibrium. OM = q, the ma jor principal stress. F r o m Fig. 5 . 2 2 , T1 

and T[ are obta ined f rom rotat ion of Ì o f ± (π/2 4- ö). Hence the face on 
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Fig. 5.22. 

which 0Ôë (or OT\) acts and which coincides with the slip plane orientat ion, 
is obta ined from the horizontal face rota ted by an angle of ± (π/4 4- ö/2). 
Therefore, the slip lines are straight lines inclined at an angle of ± (π/4 4-
ö/2)  with the horizontal , respectively ± (π/4 — ö/2)  with the vertical. 

Upper equilibrium: the results are the same if we change ð/4 + ö/2  to 
π/4 - ö/2. 

(2a) At depth Z0, if we are sufficiently far f rom the vertical AX passing 
through A, it m a y seem acceptable to a s sume that a limit equilibrium would 
develop wherein p2 acts as the load q o f the preceding quest ion for points in 
the mass located to the left (zone II) of A, and that another limit equi-
librium condit ion would exist wherein p0 would act as load q at any point 
in the mass located to the right o f point A (zone I, see Fig . 5 . 2 3 ) . 

P2 

t \ m i n i 

i t 

A 

JL 

X' X 

Fig. 5 .23. 

L e t us as sume that the boundary between the two zones is a straight line 
passing through A. If the boundary is not vertical, such as AX is, an imposs-
ible condit ion occurs , because if we consider two points , such as Ì a n d M ' 
in the same zone, we find from the above results that the stress tensors at 
Ì and Mf are not the same . Therefore , if such a boundary exists , it can 
only be a vertical such as AX. 
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In order for equilibrium to be realized, however, the stress acting on a 
vertical face through AX mus t be the same in the two zones . L e t px be that 
value. It is clear, that we mus t necessarily have p2 > P i > p 0 and that the 
two equil ibrium states are represented by two tangent circles (Fig . 5 . 2 4 ) . 

Fig. 5.24. 

We have already seen that for a limit equilibrium we have: 

o3/o1 = t a n 2 (π/4 — ö/2)  and σ1/σ3 = t a n 2 (π/4 4- ö/2). 

That means in this case : 

p2/Pl = úæç2(ð/4 + ö/2) 

Po/Ρé = t a n 2 (π/4 -ö/2) 

and, therefore : 

p2/p0 = t a n 4 (π/4 + ö/2) (1) 

Thus , for such a s tate to exist , p2 and p0 cannot have any value but mus t 
satisfy the relation (1 ) . 

This scheme mus t also be kinematical ly acceptable , that is t o say, it mus t 
be compat ib le with the continuity of mass and its boundary condit ions . 

P2 
11111II Po 

P 0 < P , < P 2 

ZONE I 

Pi < P2 

Lowe r lin e 
e q u i l i b r i u m 

Uppe r lin e 
equ'il i b r i u m 

Fig. 5.25. 



1 9 8 PLASTIC EQUILIBRIUM 

F o r the case under considerat ion (see Fig. 5 . 2 5 ) , it is obvious that the 
failure planes do not have the same inclination with respect to the vertical. 
Line AX is a line of kinematic d i scont inui ty . * Besides , this line does not 
coincide with a slip line, then this scheme is not kinematical ly acceptable . 
We must therefore consider a three-zone sys tem. 

(b) The simple solution which comes to mind in this context , is to intro-
duce a third zone b o u n d e d by two straight lines passing through A which are 
slip lines, respectively AY  and AZ, for each o f the limit equilibrium states . 
The second set of slip lines in the third zone must m a k e at any point M, 
an angle of (π/2 — ö) with the slip line of the first family, that is with 
the straight line AM (see Fig. 5 . 2 6 ) . But we know that the logarithmic 
spiral is a curve the tangent of which at any point makes a constant angle 
with the radius. Therefore , the two zones m a y be linked by a third zone 
containing logarithmic spirals with a pole at A and whose tangent makes an 
angle o f π/2 — ö with the radius . 

This 3rd zone is called Prandtl 's corner. The slip lines are : —log spirals 
with a po le at A, — straight lines issuing from A. 

P2 

Fig. 5.26. 

The 3-zone condit ion is kinematical ly acceptable . N o w , we mus t determine 
the relation between p0 and p2 with respect to stresses q2 and q1 acting on 
the faces through AZ and AY.  For this purpose , we write that the prism 
ABD o f Fig. 5 .27 is in equil ibrium, by equating to zero the sum of the 
moment s acting on faces AB, BD and AD. The stresses on the port ion BD 
of the spiral act along the straight slip lines and pas s through point A. Their 
m o m e n t arm is zero. Stress q2 acts on face AB. Stress qa acts on face AD 
which makes an angle a with AY.  S ince the mass is weightless, the stress 
distribution is uniform along AB and AD. The m o m e n t equilibrium with 

•Along AX a segment stretches if in Zone I or shrinks if in Zone II. 
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respect t o point A gives: 

AB2 

q2 cos ö = qa cos ö 
AD2 

2 * 2 

from which: 

q* _ A& __ p g e 2 (̂ - g Q > t a n^ 

q2 ~ AD2 ~ p2 e 2 < ^ - e 0 ) t a n ^ 

If we let θ2 and θá be the polar angles corresponding to the radii o f 
AB and AD with respect to an arbitrary origin corresponding to a value p 0 

o f the radius then : qa = ^ 2 e 2 (^ - ^ ) t a n  ̂ = â 2 θ- 2 < * t a n *e 

Fig. 5.27. 

For the relation between q2 a n d p 2 , we have t o show that 
ρ 2 = p 2 tan ( π / 4 - ^ / 2 ) . 

Let us draw Mohr's circle for point Β (F ig . 5 . 2 8 ) 

Fig. 5.28. 

p2 = d + R 
R = d sin <p 

q2 — d cos <p 
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cos ö 

1 4- sin ö 

cos ö 

1 + sin ö 

sin ö 
12 

sin — h sin ^ 
2 

/π γ? 
2 sin I cos 

4 2 

/ π <p 
2 sin I — I — I cos 

y4 2 

sin 
' π 

sin I — 
4 

cos 
π / π <p 

2 14 2 
cos 

= tan I 

We finally get : qa = p2 tan (π/4 - öâ)^2á̂ çö 

By drawing Mohr's circle for po int C (Fig. 5 .29 ) a similar calculation as 
above gives: q1 = p0 tan (π/4 + ö/2). 
B u t : qx = q(a) = p2 t an (π/4 - ö/2)  for a = π /2 . 
Hence p2 and p 0 are related by : 

tan (π/4 + ö/2)âð%*çö 

P 2 = P° tan (π/4 - ö/2)  °* P* = P° tan (π/4 + ^ / 2 ) e — . 

Fig. 5 .29. 

fc^ Coefficients NQ and Nc of the bearing capacity formula for shallow 
footings. The above calculations E i re applicable to determine the depth factor 
Ë/q in the formula referred t o . The as sumpt ion is made that the foot ing does 
not alter the inclination of the failure lines. Under this condit ion the stress 
condit ion under a foot ing is as shown in Fig. 5 .30 . 

The distr ibution p0 corresponds to the weight of the overburden above 
the level of the base of the foot ing x'x, therefore t o p 0 = yD. 

We therefore have: 

from which: 

p2 = d/(l + sin ö) and 

but : 
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F o r a cohesive soil with cohesion c, the uniform vertical f ictitious stress 
Ç = c cot ö is a s sumed to act at the free face of the weightless mass . The 
fictitious bearing capaci ty would b e : 
(q<x)' = qa+H 
and we will also have: (qd)f = Nq(H + yD) 
or : qd + c co t ö — iVq (yD + c cot ö) 
o r: Qd — jDNq + c cot ö(Ν^ — 1 ) 
and : qd = yDN^ + cNc with: Nc = cot ö(Ν(é — 1 ) . 

Nc is the coefficient corresponding to the cohesion factor in the bearing 
capacity formula . The coefficient Ny can o f course not be calculated by this 
method since it mus t consider the weight o f the mass . 

Note on the stress vector  of zone III (Prandtl 's corner ) : When the radius 

Fig .  5.31 . 

from which: 
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rotates through an angle a f rom AB, the direction of the stress q rotates 
through angle a, but since q makes an angle ö — which remains constant — 
with the radius, the principal directions also rotate by a. But at B, the major 
principal stress direction is vertical. Therefore, at D the direction of the 
major principal stress makes an angle a with the vertical. Lamp's ellipse 
rotates and the size of the axes decreases to go from ellipse 1 to ellipse 2 
(see Fig. 5 .31 ) . 

***Problem 5.6 L imi t equil ibrium o f a semi-infinite cohesive mas s with an 
inclined free surface 

Refer to problem 5.3 and assume that the soil has a cohesion c. Two 
cases are then considered in analyzing slip lines, depending  on the value of 
â. The inclination angle of the slip lines with  the free surface x'x and the 
orientation of the asymptotes,  if any, will  be determined.  (Refer to problem 
5.1 for the construction to determine  the pole of the Mohr's circle). 

Solut ion 
(1) This problem is similar to problem 5 .3 , but a dist inction must be 

made between real and fictitious stresses. 
Real stress at depth æ is : σ ν = yz  cos â (Fig . 5 .7 ) . 
It is represented by vector OM of Mohr's diagram (Fig . 5 .32) and its com-

ponents are: 

ï = yz  c o s 2 â. 

r — yz  cos â sin â. 

The fictitious stress, represented by vector O'M is: 

σ' = Ç + yz  c o s 2 â = c cot ö 4- yz  c o s 2 â 

ô = yz  cos â sin â 

therefore: \o'v\ = \Jo'2 4- r ' 2. 

The pole is determined as above (see problem 5 .1 ) , f rom which the real 
and fictitious stresses (ΟΜ', O M " and O'M', O 'M" , respectively) , acting on a 
vertical face and an inclined face at angle θ, are determined (Fig . 5 .32 ) . 

At the free surface, we have: 
real stress : σ ν = 0 , 
fictitious stress: 

( f r 

ï = σ ν 

The fictitious stress is perpendicular to the free surface. 
The condit ion â = 0 , is represented in Fig. 5 .33 . In this case , the pole o f 
Mohr's circle is located on Oo. 
(2) Slip lines. 

Mohr's diagram (Fig . 5 .34 ) shows that two condit ions exist depending 
on the value o f â: 
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Fig. 5 .33 . 

condit ion 1 : if â < ö, drawing Mohr 's circle corresponding t o the limit lower 
equilibrium o f Rankine is a lways poss ib le , 
condit ion 2 : if â > ö9 Mohr's circle can only be drawn if |σν | < ÏÔ'. 

Therefore , the magnitude of the stress vector cannot exceed the limit 
value o f O T , otherwise the equil ibrium is not poss ib le . Hence there is a limit 
depth , æã, for which equilibrium exists (see Fig . 5 . 3 4 ) . 

(a) Condition  of â<ö (Fig. 5.35) 
T o determine the orientation o f the faces upon which the limit stresses 

OT and O T ' act , the procedure is identical to the one in problem 5.3 . It 
will be noted however, that as æ varies, the Mohr's circles are n o longer 
similar because vector OM does not originate f rom the intersection of O' 
of Cou lomb ' s l ines. The orientation of the faces u p o n which the limit 
stresses act , varies with depth z. Therefore the slip envelopes are no longer 
straight lines. The net of the slip lines will then consist of two families of 
curves crossing at an angle π/2 + ö, because we have : 

( Ω Τ ' , Ω Τ ) = 2(PT',PT) 

( Ω Τ ' , Ω Τ ) = 2 ( Ω Α , Ω Τ ) = 2(ð/2 + ö). 
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F r o m which: (ΡΤ' , PT) = π/2 + ö. 

Asymptotic  direction: whenever depth æ becomes infinite, Fig. 5 .35 shows 
that Ì tends toward infinite on line D. But , O'M = Η + OM and Ç remains 
finite, therefore OM O'M when æ - >  ©ï .  The a sympto te s t o the slip lines in 
the case o f a cohesive soil are the straight slip lines o f the cohesionless mass . 
When point Ì is at the surface, Mohr's circle is tangent at Ο to OT (Fig . 
5 .36 ) . We then have: 

(ΩΟ, Ω Τ ) = π(2 + ö) 

(ΩΟ, Ω Τ ' ) = - ( π / 2 + ö). 

Point Ο corresponds to the end of the stress vector O'O acting on the free 
surface. Therefore, f rom the classic property of Mohr's circle, the planes 
on which OT and O T ' act , are inclined to the s lope surface by angles of 
± (π/4 + ö/2). 

Summary: In the case of â < ö the failure lines belong t o t w o families of 

a 

b 
Fig. 5.34. 
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Fig. 5.35. 

0 

σ 

Fig. 5.36. 

curves crossing at a constant angle to (π/2 + ö), the asymptot ive directions 
of which are the straight slip lines of the associated cohesionless mass of 
internal friction angle ö and crossing the free surface at an angle equal to 
[± (ð/4) + ö/2]. 

T h e failure planes orientat ions are shown in Fig . 5 .37 . 

(6 ) Condition  ïßâ>ö (Fig. 5.38) 

Calculate the value of the limit depth zx (F ig . 5 . 3 8 ) . F r o m the law of 
sines: 

a _ b _ c 

sin A sin Β sin C 

applied to triangle Ï'ÏÔ' (Fig . 5 . 3 9 ) , we have: 

σ ν σ' Ç 
sin ö sin â sin (â — ö) 

We have a l so : OK = σ ν cos2â = yz x cos2â. 
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Fig .  5.38 . 

Fig .  5.37 . 
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r' 

0' 0 

TV 

III 1a 
cr 

Fig. 5.39 

Therefore : 

Ç sin ö n 0 _ 
— — c o s j 3 = yz x cos2 â. 
s i n (â - ö) 

from which: 

Ç sin ö c cos ö 

z — = 
γ cos â sin (â —ö) y cos â sin (β — ö)' 

Equil ibrium only exists if the depth of the mass is less than or equal to zY. 
Slip lines: when point Ì is at the surface, there are no changes from the 
preceding analysis . Slip lines cross the free surface at angles ± (π/4 + ö/2). 

When point Ì is at depth zx, OT (on Fig. 5 .39) makes an angle â with Oo 
X 

Fig. 5.40. 
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and one of the two families of curves representing the slip lines is tangent to 
a line parallel t o the free surface at depth zx. 

We also have : (ΩΓ, Ω Τ ' ) = 2a = 2 (π /2 + ö) = π + 2ö 
from which: a = π/2 4- ö and ïß = π — (π/2 + ö) = π/2 — <ρ. 

The second family of curves is tangent to the line making an angle of 
π/2 — ö with the free surface. This result is readily observed since as before , 
the slip lines cross each other at an angle o f π/(2 — ö). 

The shape of the net o f slip lines for the case â > ö is shown in Fig . 5 .40 . 

**Problem 5.7 M a x i m u m height o f an excavat ion in cohesive soil 

Find the maximum height of an unsupported vertical cut in a cohesive 
soil with  a horizontal  surface which  supports no load. Let y, c and ö be the 
unit weight,  cohesion and angle of internal friction respectively.  For a 
numerical application, assume 7 = 20 k N / m 3 , c = 1 0 4 Pa, ö = 1 0 ° . 

A t a point Ì at depth æ in the cut , the total vertical stress is equal to the 
weight of the overburden on a horizontal face through Ì (Fig. 5 . 4 1 ) . The 
total horizontal stress acting on the vertical face through Ì is zero since Ì is 
a t the free face of the cut. 

L e t us find at what depth zl9 Mohr's circle becomes tangent to the failure 
envelope at the lower Rankine limit equilibrium (Fig . 5 .42 ) . 

So lut ion 

crv = £z 

c 

O ' 

cr 

Fig. 5 .41 . Fig. 5 .42. 

L e t R be the radius o f the circle, then: 

from which: R(l — sin ö) = Ç sin ö = c · cot ø sin ö = c · cos ö 
but : R = o1/2 = yz x/2 f rom which: 
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Therefore : 

2c 
zx = — tan (π/4 4- ö/2).  (1) 

7 
Be low depth zx the soil becomes in a plastic s tate . However, because of 

stress relaxat ion, the stresses will redistribute themselves in part to adjacent 
upper zones which are in elastic s tate . It is therefore possible that the maxi-
m u m height m a y be somewhat greater than the calculated value of æë by the 
above formula (1 ) . Terzaghi has p r o p o s e d : z[ = 2 .67 (c/y)  tan (π/4 + ö/2). 

Numerical application: 

y = 2 0 k N / m 3 ö = 1 0 ° , c = 1 0 4 Pa = 1 0 k N / m 2 

tan (π/4 4- ö/2)  = tan 5 0 ° - 1.192·· æë = 1 . 1 9 m and z[ = 1 . 5 9 m . 

*** Problem 5.8 Superpos i t ion o f two limit equilibrium states 

Assume a two-dimensional  configuration. Consider two  limit  equilibria 
at point  Ì in a soil mass with  an internal angle of ö. The two  equilibrium 
states are defined by the Lame's ellipses at M. 

(1) Show that the superposition of the two-limit  states is generally not 
one limit  equilibrium state. Consider the Mohr's circles Cx and C2 cor-
responding to the two  limit  equilibrium states and Mohr's circle C corre-
sponding to the stresses after superposition. 

(2) Evaluate the ratio ñ of the radius of Mohr's circle C to that of Mohr's 
circle at failure centered  at the same point  Ω (let λ be the ratio of the radii 
of the circles Cx and C2). What  conclusion may be drawn? 

(3) Are there particular cases wherein  the superposition leads to an incipi-
ent failure condition? What  other notable conclusions can be drawn? 

So lut ion 
(1) A s s u m e a cohesionless soil. The case of a cohesive soil is solved in the 

same manner but with fictit ious stresses. 
We may consider the minor principal direction of the first equilibrium 

state as vertical without changing the generalized solut ion. The minor princi-
pal direction of the second equil ibrium state is as sumed then to be at an 
angle a with the vertical. A face o f a given orientation Δ will then have an 
angle ax and a2 with the two minor principal directions (Fig. 5 .43 ) . 

Consider the Mohr diagram of Fig. 5 .44 . F o r equilibrium state 1, the stress 
acting on the plane oriented in Δ is O M j so that ÷ý^Ìë = — 2al. The 
equil ibrium state 2 , O M 2 is such that x£l^M2 — — 2a2 to conform to the 
propert ies of Mohr's circle. 

Whatever the direction of the plane may be , we always have áë — a2 = 
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Fig. 5.44 . 

á = constant (for one given locat ion M) because the angle á is the angle of 
the principal stresses of the two states at M. 

T o super impose the limit equilibrium condit ions at Ì, we add vectorial 
stresses acting on each plane. The result is: 
OM = Ï Ì ÷ + O M 2 = Ï Ù ! + Ï Ù 2 + Ù1Ìé 4- Ù 2 Ì 2 = Ï Ù + ÙÌ . 
When the orientation of plane Δ changes, we have: 
Ï Ù ! 4- Ï Ù 2 = Ï Ù = constant 
and : Ù,1Ì1 + Ù 2 Ì 2 = Ù Ì with |ÙÌ | = constant , since á is constant . 

Therefore, the locus of Μ is a circle C. B u t this circle is no t tangent to the 
failure envelopes. Therefore : the superposi t ion of the two equilibrium states 
is generally not an incipient failure condit ion. 

(2) F r o m Fig. 5 .44 , we see : 

2 = Ù Ì 2 = Ù μ Γ + Ù Ì 22 4- 2 Ù Ì ; · Ù Ì 2 cos 2á 
Ρ Ù Ô 2 (ÙÌ Ί + ÙÌ' 2) 2 

but : 

Fig. 5.43 . 
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λ -
Ο Ω ι _ ¿.Ì[ 

Ο Ω 2 ~ ¿,Ì2' 
f rom which: 

Ρ 2 = 
λ 2 + 1 + 2λ cos 2á 

(λ + I ) 2 

We always have ρ < 1 ; hence Mohr's circle is always inside the failure 
envelope. 

The superposi t ion of the t w o limit equilibria results in a stress condit ion 
which can actual ly exist but is generally on the safe side because ρ < 1. 

(3 ) If a = 0 , we have ñ = 1. The directions of the principal stresses are 
the same. We then have Ω Τ = Ω Τ ' and the superposi t ion of the two limit 
states is still a condit ion of limit equil ibrium. In this case , the slip lines 
net can be super imposed . 

If a = π /2 : 

Ω Τ ' _ Ù,1Ì1 - Ω 2 Μ 2 _ ñ2 —Pi 

Ρ " Ω Τ ÙéÌ1 + Ω Μ 2 ñ2 4- ñ ÷ ' 

Furthermore , if ñ2 =ñ÷ (see Fig . 5 . 4 4 ) , then ρ = 0 and the Mohr's circle 
reduces to a point . 

Hence by superimposing two equal stress condit ions whose principal 
directions are at right angle , an isotropic stress condit ion is obta ined. 
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Chapter 6 

I N T E R P R E T A T I O N O F IN-SITU T E S T S 

*Problem 6.1 Interpretat ion of static penetrat ion tests 

A soil investigation  was performed by the static penetrometer  along the 
Rhone river. Test results were  very  uniform and are summarized by the 
diagram of Fig. 6.1. 

Determine  what  the possible types  of foundation are and the allowable 
bearing capacities for a four-storey  building with  basement requiring a 2m 
deep excavation (the sand layer will  therefore be excavated). 

The building will  be 10 by 20 m in plan dimensions. Columns will  be 4 m 
on center.  The total weight  of the structure will  impart an average stress over 
its plan dimensions equivalent  to 40kPa. The ground-water  table is 1.5 m 
below  the surface. 

Soil unit densities: Jh/Jw = 1-8 above the water  table, y' /y w = 1 below 
the water  table. 

Solut ion 
F r o m the penetrat ion diagram of Fig . 6 .1 it can be concluded that the soil 

condit ions consist of a shallow surface sand layer, some 2 m thick, underlain 
by a thick clay layer. 

In fact the ratio oiRf/qc called friction ratio [ 1 9 ] , [ 2 2 ] , [ 2 3 ] for each of 
the layers is less than 2% and over 4%. 

It is not poss ible , however, to determine the foundat ion dimensions 
because one important given for the problem is missing, namely , the type of 
penetrometer used in the investigation. It is not known if the cone of the 
penetrometer is of the Delft type or a s imple cone type [ 2 2 ] , [ 2 3 ] , [ 2 9 ] , 
[ 3 0 ] 

Without addit ional information, a dangerously erroneous interpretation 
could be m a d e due to the low shear strength of the clay. 

irk Problem 6.2 Interpretat ion of a dynamic penetrat ion test 

A dynamic  penetration  test  was performed at a construction site. The 
test  result is shown in Fig. 6.2 in the form of the number of blows  counted 
for 20 cm penetration  at the respective  depth  increments. 

The solutions to this problem are given in problems 6.3 and 6.4. 
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Fig. 6 .1 . Static penetration test. 

What  is the allowable bearing capacity of shallow footings at a depth  of 
3 m for a three-storey  structure with  basement? 

Solut ion 
It is not possible to m a k e a valid evaluation of the diagram of Fig . 6 .2 

because the following needed information is missing to characterize N2o 
[ 2 3 ] , [ 2 9 ] : 

— t y p e of penetrometer and height Ç of fall of the hammer (is the fall 
height cons t an t ? ) ; 

-- weight of the hammer and of the rods ; 
— diameter of the rods , and cross sectional area o f the po int ; 
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— was the hole cased with hol low rods of outer diameter equal to the point 
diameter to eliminate parasitic side fr ict ion? 

— was drilling m u d used t o stabilize the hole? 
— t y p e of soil tes ted; 
— locat ion of the ground water table . 
On the other hand, one test only has no t much meaning. It is necessary to 

perform several tests at various locat ions within a site in order to appreciate 
eventual variat ions. Final ly, it is a lways preferable , for u l t imate users of the 
diagrams of dynamic penetrat ion tests , to draw the p lot values of Rd vs. 
depth , where the resistance value Rd is c o m p u t e d by the Dutch formula and 
a safety factor of 1, shown as Rd = M2H/(M + P)eA where e is defined as 
the average penetrat ion by blow. 

Q 

1 5 f 

Fig. 6.2. 

irk Problem 6.3 Interpretat ion of a Delft-type static cone penetrometer test 
in clay 

The givens are similar to those of problem 6.1, with  the added information 
that the cone penetrometer  test  was performed with  a Delft-type  cone 
pushed at a rate of 2 cm/s penetration  [19, 22, 23, 29]. 
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Determine  the type  of foundation and allowable bearing capacity of the 
soil to support an apartment building, 4 storeys high with  basement located 
2 m below  finished exterior grade. Refer to problem 6.1 for the geometry 
of the building. 

The clay layer is very thick (qc = 4 0 0 kPa, Rf = 2 0 k P a , friction ratio 
FR > 4%) and contains lenses of sand (2A<qc < 7 .2 MPa and FR < 2%) 
[ 2 9 , 3 0 ] . 

The penetration diagrams of Fig. 6 .1 shows that it would not be practical 
to recommend a semi-deep pier-type foundat ion or a pile foundat ion bearing 
on a very dense layer. The diagram shows no g o o d bearing layer at depths 
down to 20 m. A pile foundat ion would have to be designed with friction 
piles whose performance is sensitive to local soil variations and to differential 
sett lements. The only other solution is to r ecommend a shallow foundat ion. 

For clays, the apparent cohesion of the soil may be evaluated f rom the 
penetrat ion diagram. F r o m this value then, the al lowable bearing capaci ty 
of the soil may be calculated for different types of foot ings . 

For a Delft-cone, the correlation between cone resistance and cohesion is 
c u = <?c/15. 

F r o m the average value of the end bearing qc = 4 0 0 k P a = 4 d a N / c m 2 , 
we have c u = 4 0 0 / 1 5 = 26 .7 kPa. 

Let us now first look at strip footings embedded 1 m below grade. For 
a purely cohesive soil (ö = 0) the allowable bearing capacity of the soil is : 
<7ad =JD + 5 .14 c u / 3 . 

For short-term stability, and therefore considering total stresses, and for 
7 = 18 k N / m 3 and D = 1 m, we have g a d = 18 χ 1 + (5 .14 χ 2 6 . 7 ) / 3 ~ 6 4 kPa. 

It must be remembered that in mos t cases, the long-term stability of 
bearing capacity is higher than that of short-term. 

The foundat ion load imposed by the building of 4 stories is, for a spacing 
of footings of 4 m, a b o u t : Q = 4 0 k P a χ 4 = 1 6 0 k N ~ 1 6 1 (per m width) . 
'The width of the strip footing would then b e : Β = Q/q&d = 1 6 0 / 6 4 = 2 . 5 0 m . 

Once the width of a foot ing is larger than half the spacing dis tance, 
it is generally admit ted that a mat-type foundat ion is more economica l . 
The formula to use then for this type of foundat ion is : 

where yD  corresponds to the overall embedment (2 m ) , yD  = 18 χ 2 = 36 kPa, 
Β = 10 m, L = 20 m. 

Solut ion 

<?ad = yD + 
5 .14 (1 + Q.2BIL)c, 

3 
u 

We get: q a d - 3 6 + 
5 . 1 4 [ 1 + (0 .2 χ 1 0 / 2 0 ) ] χ 26 .7 

3 
= 86 .3 

~ 8 6 k P a . 
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But the pressure imparted by the tota l weight of the building is 4 0 kPa; 
furthermore, 2 m of soil were excavated which represent a vertical stress o f 
36 kPa. The net pressure o f the building is only 4 kPa. The raft foundat ion is 
the preferred one for this case . (The buoyant force of the ground water is 
generally not counted upon since the level o f the water m a y vary.) 

An additional advantage of the mat-type foundat ion resides in the ease 
with which the basement f loors m a y be m a d e impervious. 

It should be noted that certain authors use slightly different correlations 
to est imate c u f rom the penetrometer test , such as qc/18 < c u < qc/15 
when measured with the Delft-type cone pushed at 2 cm/s . 

**Problem 6.4 Interpretat ion o f a stat ic penetrometer test with s imple cone 
point in the clay 

Once again consider the givens of problem 6.1 but assume that the pen-
etration diagram of Fig. 6.1 pertains to a test  done with  a simple cone (a 
simple cone is one with  a constant cross-sectional circular area above the 
cone, as opposed to the Delft-cone).  Recommend  the foundation type  and 
allowable bearing capacity of the clay, for the building under consideration. 

Solut ion 
The initial reasoning presented in problem 6.2 is valid here. Therefore 

only shallow foundat ions are considered. 
The apparent cohes ion, c u is determined to calculate the bearing capaci ty . 

Instead o f using the correlation qc/15, it is now necessary to use c u = qc/10. 
For an average value of qc = 4 d a N / c m 2 , this gives c u = 4 / 1 0 = 0 . 4 d a N / 

c m 2 = 40 kPa. 
The importance of knowing the type of penetrometer used is well illus-

trated here if this result is compared with that of problem 6 .3 . 
L e t us consider the strip foot ing with 1 m embedment . F r o m the same 

formula of problem 6 .3 , we have : 

5 .14 χ 4 0 
<?ad = 18 x l + = 8 7 k P a . 

3 

The load carried by interior part it ion is Q = 1 6 0 k N (per meter width) . 
The m a x i m u m width of the strip foot ing would then b e : 

Β = Q/qad = 1 6 0 / 8 7 = 1.84 m. 

In this instance, the width of foot ing is less than half the spacing between 
line loads and this t y p e of foot ing is more economica l than would be a raft 
foundat ion . 

In conclus ion, it is seen that depending on the t y p e of penetrometer used , 
for a given diagram one m a y r e c o m m e n d differing types of foundat ion . This 
illustrates the importance of knowing the type of static-cone penetrometer 
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utilized. The test specification should always be included in the test results 
[ 2 2 , 2 3 , 2 9 , 3 0 ] . 

* Problem 6.5 Interpretation of a dynamic penetrat ion diagram 

On a fairly horizontal  site, dynamic  penetration  tests were  performed. 
The results were  very  closely grouped. The least resistance was encountered 
at one test  location whose  diagram is shown in Fig. 6.3. 

To develop  the site, about 1 m of the upper soil will  have to be excavated. 
Under these conditions,  determine  the allowable bearing capacity for foun-
dations of an industrial building whose  footings bottoms  will  be 1 m below 
finish grade (that is 2 m below  the 0-level  of the penetration  diagram). The 
building will  be supported by steel columns, 10 m on center each way  and 
each supporting an axial load of 1000 kN. 

3 5 ΊÏ . . so lo o  2 0 0 Rd in d a N / c m 2 ^ 
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Fig. 6.3. Dynamic penetration test. 

Solut ion 
As was the case in problems 6 .1 and 6 .2 , it is not truly poss ible to solve 

the problem. F r o m an examinat ion of the diagram, one could conclude that 
no resistance is expected below a low value of 1 8 d a N / c m 2 and f rom the 
usual formula , one would conc lude : qad = Ra/20 (for cohesionless soils) or 
9 0 kPa would be an al lowable bearing pressure. F o r a net load of 6 3 0 k N at 
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the surface, a 7 m 2 foot ing would support the load (or square footings of 
2.6 χ 2.6 m ) . Note that the 1 0 0 0 k N load is not obtained. But it must be 
remembered that it is not possible to interpret a penetrat ion diagram with-
out knowing the t y p e of equipment used in testing, and the soil type . The 
givens of problem 6.5 are not sufficient to be of value. If this conclusion 
appears t o o critical, consider the diagram of Fig . 6.4 on which, in addit ion 
to the dynamic penetrometer diagram, a static-cone diagram obtained with 
the Andina penetrometer has been drawn for compar i son purpose . The 
dynamic penetrat ion da ta were in fact obta ined with a Durmeyer device. 

q c and Rd in d a N / c m 2 

Fig. 6.4. Comparison between static Andina and dynamic Durmeyer penetration tests. 

For a foundat ion level p roposed at 2 m , the point bearing resistance of the 
static-cone penetrometer test is a lmos t zero and the bearing of 9 0 kPa would 
not have been acceptable . 

The main conclusion to be drawn f rom this problem is that it is not 
poss ible to correctly interpret dynamic penetrat ion tests in soft c lays , nor in 
any clay below the water table [ 1 3 , 1 5 ] . 
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*Problem 6.6 Interpretat ion of a dynamic penetrat ion test of the Sermes 
type 

Several Sermes-type  dynamic  penetration  tests were  performed at a site in 
Salies-de-Bearn (France). Assume that the results obtained are represented 
by the diagram of Fig. 6.5, which  show conventional  resistance, Rd, as a 
function of depth. 

Can this test  be interpreted? What  would  be the allowable bearing pressure 
for pier foundations located 4 m deep, having a diameter of 1 m and spaced 
10 m on center? 

Fig. 6.5. Dynamic penetration test (Sermes). 

Solut ion 
It really is not possible to interpret the diagram because we do not know 

the soil t y p e and there are n o indications as t o whether the test was per-
formed with or without drilling m u d . The solution to this problem is pre-
sented in problem 6.7 where all da ta are provided in the givens. 

irk Problem 6.7 Interpretat ion of a dynamic penetrat ion test o f the Sermes-
type in submerged clay soil 

The conditions are similar to those of problem 6.6. We  know  the standard 
procedures for the Sermes-type  test  were  followed,  that is, without  the use 
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of bentonite  mud. We  know  that the soil is clay and that the water  table is 
very  shallow. 

Interpret  the diagram for the foundation type  described in problem 6.6. 

Solut ion 
It is no t a lways poss ible to interpret the diagram correctly because the 

test was per formed without m u d and in clay soil below the water table . 
Under such condit ions , the dynamic penetrometer often gives erroneous 
indications because of parasit ic friction which develops a long the tubes due 
to the squeezing of the clay around them. At the same site, a static-cone 
penetrometer test was also per formed with the Gouda- type penetrometer . 
The diagram is shown on Fig . 6.6 along with that o f the dynamic test . 

The compar i son between the two shows the danger associated with 
interpreting dynamic tests . Note the very large difference between the 
resistances Rd and qc ( the ratio Rd/qc is larger than 1 0 below 5 m depth) . 
The difference is mainly due to the lateral friction of the soil against the 
rods and to a smaller extent due to the instantaneous increase in pore-water 
pressure which is greater during dynamic test ing than in static testing. 

T o further il lustrate the danger, let us interpret the diagrams and calculate 
the a l lowable bearing capaci ty at a depth of 4 m for a long foot ing . 
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Fig. 6.6. Comparison between the static Delft-cone and the dynamic test in clay. 
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Dynamic penetration  test.  A general rule often used to determine al lowable 
bearing pressure for shallow foot ings or semi-deep foundat ion i s : i ? d / 2 0 . At 
4 m, i ? d > 6 0 0 0 kPa (60 d a N / c m 2 ) from which: 
qad = 6 0 0 0 / 2 0 = 3 0 0 kPa (3 d a N / c m 2) . 

Static penetrometer  test.  The Dutch-type penetrometer ( G o u d a ) has a Delft-
t y p e cone . qc is practically constant and equal to 8 0 0 k P a (or 8 d a N / c m 2 ) . 
Cohesion of the clay m a y be est imated a t : 

c u = qjlb = 8 0 0 / 1 5 = 53 kPa (0 .53 d a N / c m 2) 

and the al lowable bearing pressure would then b e : 

5 . 1 4 c u 5 . 1 4 x 5 3 
( ? ad = = = 9 0 k P a ( 0 . 9 d a N / c m 2) 

3 3 
neglecting the depth term yD. 

The al lowable bearing pressure calculated f rom the dynamic penetrometer 
is about equal t o the ult imate bearing capaci ty calculated by the static 
penetrometer . These results speak for themselves. 

if Problem 6.8 Interpretat ion o f a Bevac-type dynamic penetrat ion test in 
submerged clay soil 

The Bevac-type  penetrometer  was used at a site near Nantua (France), 
in a very  thick  layer of soft clay and a water  table at about 1 m depth. 
The results of the test are presented  in Fig. 6.7. 

Can this diagram be interpreted? If so, give the allowable bearing capacity 
of a strip footing of 1 m width  constructed  at 2.5 m depth. 

10 2 0 30 5 0 

R d in d a N / c m 2 

100 2 0 0 

-=Water table 

c 1 

é 
ç 

Rd ( d y n a m i c B E V A C) bfp 

?-
c 

i r 3 

7 

N A N T U A: S o f t  c l a y 

Fig. 6.7. Dynamic penetration test (Bevac). 
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Solut ion 
This t y p e of dynamic test in clay below the water table cannot be inter-

preted for the same reasons as cited in prob lem 6.7 [ 1 3 , 1 5 ] . 
T o confirm this conclusion, two static penetrometer tests were per-

formed at the same site, one with the Gouda- and the other with the Andina-
penetrometers , very near to the dynamic penetrometer test . The results 
are shown in the diagram of Fig . 6 .8 . Once again a large difference between 
Rd and qc is not iceable . The t w o static-cone tes t s , however, agree quite well 
with each other. The difference is due to the same causes as expla ined in 
problem 6 .7 . 
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Fig. 6.8. Comparison between static-cone penetrometer and dynamic penetration test. 

If we t o o k i ? d / 2 0 (as for cohesionless soils) to calculate the allowable 
bearing pressure at 2 .5 m depth , we would get : <?ad = 2 5 0 kPa (2 .5 d a N / c m 2 ) . 
On the other hand, for the static-cone penetrometer te s t : qc = 1 8 0 k P a 
(simple cone) or qc = 3 0 0 kPa (Delft-cone) . 

The Andina penetrometer has a s imple point , therefore : 

c u = qc/10 = 1 8 0 / 1 0 = 1 8 k P a (0 .18 d a N / c m 2) 

and the al lowable bearing pressure for a s m o o t h strip foot ing at 2 .5 m is : 

5 . 1 4 c u 5 .14 χ 18 
<?ad = = 30 kPa ( 0 . 3 d a N / c m 2) 

The al lowable bearing pressure is 8 t imes less with the static penetrometer 
than with the dynamic penetrometer . It should be noted that at this s ite, a 
raft-type foundat ion designed for 3 0 kPa underwent substantial set t lements . 
See problem 6 .16 and Ref . [ 1 4 ] . 

It should be remembered that when < ? c < 1 2 0 0 k P a , it is absolutely 
necessary to recover undis turbed samples for laboratory testing. 
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***Problem 6.9 Set t lemen t calculations from con e penetromete r diagrams in 
th e case of a two-laye r sys te m 

A soil investigation  was carried out using the static-dynamic  Andina-type 
penetrometer  for an industrial complex near Berre Lake, France (cf. [22], 
[23] and [29]). Assume that the diagram of Fig. 6.9 represents the results 
of all tests performed.  Drilling and sampling made at the site confirmed the 
soil profile to be (see Fig. 6.10): from 0 to 4 m: cemented,  very  dense sand 
and gravel; from 4 to 8.5 m: compressible silt; from 8.5 m: dense silty  sand. 

q c and R<j in daN/crrr 

Fig. 6.9. Berre Lake static-dynamic Andina penetrometer test result. 

Fig. 6.10. 
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Consolidation tests were  performed on undisturbed samples of the compres-
sible silt recovered  at locations very  near to those of cone-penetrometer  tests. 

The observed  correlation between  the point  resistance qc and oedometric 
modulus Er indicates that the coefficient a. is equal to 3 and is valid for the 
whole  site (mv = l/ocqc). 

Assuming that the upper sand and gravel and lower  sand layers are incom-
pressible, calculate the settlement  of a strip footing, 2 m wide,  imparting a 
pressure of 400 kPa and located at 0.5 m below  existing grade. 

Could the settlement  be reduced, assuming the same total load if the 
width  of the footing was increased to 4 m, therefore reducing the pressure to 
200 kPa? 

N o t e : It m a y appear n o t logical t o correlate an 'e last ic ' characterist ic , such 
as the modu lus of consol idat ion t o an u l t imate strength of the penetrometer . 
In fact , the soil behavior is a very c o m p l e x p h e n o m e n a which a lways consists 
of s o m e reversible and other irreversible mechanisms . Perfect elasticity 
and plasticity are only approx imat ions . During the two types of tests , bo th 
phenomena occur, which m a y account for the possibi l i ty of empirical 
correlat ion observed between Ef and qc. It should be remembered that the 
various correlations established are only valid for well defined soil t ype s . 

So lut ion 
First method.  Settlement  calculations from the Giroud-tables. The tables 

for the calculat ion of set t lement of J . P. Giroud , give formulas which permit 
direct calculat ion of set t lements for various foot ing types bearing on homo-
geneous soils of finite thickness and whose deformat ion m o d u l u s is known 
and bearing on an unyielding substra tum ( [ 1 0 ] ) . 

Formulas have been developed for the case of foot ings bearing directly on 
the compress ib le layer. However, a t the Berre L a k e s ite , there exists a sand 
and gravel layer overlaying the compress ible layer. The analysis , therefore , 
m a y be as fo l lows. Because the sand and gravel layer is very dense and very 
rigid, the soil stress a t the t o p of the silt layer m a y be calculated by assuming 
a stress distr ibution of 4 5 ° through the cemented sand and gravel layer as 
shown in Fig . 6 . 1 1 . Normal ly , such a distr ibution is a s sumed t o spread over 
a 3 0 ° angle according t o the pressure bulb of Bouss inesq . 

By utilizing the notat ions o f Giroud t a b l e s * , the spread at the t o p of the 
silt layer is: 2a = 2 + 3.5 χ 2 = 9 m and the stress is : ñ = 4 0 0 χ 2 /9 = 
8 9 k P a (0 .89 d a N / c m 2 ) with Ç la = 4 . 5 0 / 4 . 5 0 = 1 and í = 1/3. F r o m the 
Giroud tab le , p . 3 9 9 * we get : p H = 0 . 3 1 . 

2a _ 
The sett lement is given by the formula w = ñ —pn-

•Printed by Dunod, Paris in 1 9 7 2 and 1973 [ 1 0 ] . 
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2a = 9m 

2m 

i0.5Om 

Ç = 4.50m 

3.50m 

Fig. 6 .11 . 

The oedometr ic modulus is obta ined from the static penetrometer tes t : 
E' = aqc =3qc. 

The average value of qc in the silt layer is calculated f rom depth 4—8.5 m, 
and it is qc — 8 0 0 kPa, f rom which: 

Ef = 3 x  8 0 0 = 2 4 0 0 kPa (24 d a N / c m 2) 

and for í = 1/3, Young ' s modu lus is Ε = 2/3 Ε' = 16 d a N / c m 2 . 
Finally, the sett lement is w = ( 0 . 89 χ 9 0 0 / 1 6 ) χ 0 . 3 1 = 1 5 . 5 cm or w = 

16 cm. 
Let us now consider the case of the 4 m wide foot ing , imparting a pressure 

of 2 0 0 kPa. 
We have 2a = 4 + 2 χ 3 .50 = 1 1 m, f rom which a = 5 .50 m . Therefore , 

H/a = 4 . 5 0 / 5 . 5 0 = 0 . 8 2 a n d : p H = 0 . 2 5 , ñ = 2 0 0 χ 4 / 1 1 = 73 kPa (0 .73 d a N / 
c m 2 ) and the sett lement is : w  = ( 0 . 73 χ 1 . 1 0 0 / 1 6 ) χ 0 . 2 5 = 12 .5 cm say 
w  ~ 13 cm. 

The sett lement is decreased very little by doubl ing the width of the 
footing. This is accounted for by the rigidity of the upper layer. It would 
therefore not be advisable to r ecommend an increase of the foot ing width. 
The cemented sand and gravel layer acts like a m a t foundat ion . 

Second method.  A more classical m e t h o d is to determine the stresses and 
then calculate the sett lement layer by layer, using the formula Ah/h = 
-Áσ/Ε'. 

Let us first consider the stress distribution at depth for a f lexible foot ing 
and calculate the stress at mid-height in the silt layer as well as at the upper 
and lower boundar ies of this layer. 

Once again, the Giroud table can be used, and Table 6 A is compi led 
(results along the foot ing ax i s ) . 

The silt layer is divided into two equally thick layers of 2 . 2 5 m. The 
average stress in the upper half-layer is : 

Aox = ( 1 4 0 + 8 8 ) / 2 = 1 1 4 kPa (1 .14 d a N / c m 2) 
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TABLE 6A 

z Averag e æ la k0 Δ σ (kPa) 

3.50 3 .50 0.35 140 
5.75 5.75 0.22 88 
8 8 0 .16 64 

and in the lower half-layer i s : 

Δ σ 2 = (88 + 6 4 ) / 2 = 7 6 k P a (0 .76 d a N / c m 2) . 

Assuming that the m o d u l u s E' is the s ame for bo th half layers ; the settle-

ment is : ÓÁÕé = — j ( A o 1 + A o 2 ) = ( 1 1 4 + 7 6 ) = 1 7 . 8 c m . 
Ε 2 4 0 0 

If we now a s sume the foot ing t o be rigid, and using Giroud ' s table (Vol . I I , 
p . 3 6 5 ) we can m a k e u p Table 6 B . 

The same results are obta ined for all practical purposes in assuming the 
foot ing to be rigid. This is unders tandable because for rat ios of æ /a over 3 
the stress distr ibution for strip foot ings is practically the s ame , regardless of 
the a s sumpt ion on the rigidity of the foot ing . 

TABLE 6B 

z Averag e æ la k0 Δ σ 

3.50 3 .50 0.34 136 
5.75 5.75 0.22 88 
8 8 0.16 64 

The conclus ion would n o t have been the s ame had the foot ing been resting 
directly on the silt layer. 

Comparison between  the two  methods.  Se t t lements c o m p u t e d by the second 
m e t h o d are somewhat higher than those of the first m e t h o d . This is be-
cause in the second m e t h o d stress condit ions are a s sumed which corre-
spond to a homogeneous soil and no account is taken of the high rigidity 
o f the cemented sand and gravel layer. The first m e t h o d therefore is con-
sidered more representative o f reality. 

A third m e t h o d could be used , by referring to the tables o f Bo t te ro and 
T o u z o t for sett lements on a two-layer sys tem. Assuming a value of 1 2 0 0 d a N / 
c m 2 for the modu lus of the cemented sand and gravel layer, a sett lement 
o f 10 .3 cm would be obta ined for the 2 m wide foot ing. This is c lose t o the 
result of the first m e t h o d . 
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**Problem 6.10 Se t t lement calculations based on Schmertmann ' s m e t h o d 
and static penetrometer tests in gravels and sands 

The city  hall of Lyons consists mainly of an administration block sup-
ported  by 4 concrete  columns of 10 by 10 m (see Fig. 6.12) containing stair 
wells,  elevators and utility  shafts. Spacing between  the columns is 20 m. 
Each column rests on a square footing bearing a net load of 70 MN after 
considering an excavation of 10 m of soil from ground level. 

Over  the site of this building, the soil profile is: 
— fill, 1 to 2 m thick; 
— clayey  silt, 1 to 2 m thick; 
— sandy gravels to a maximum thickness of 20 m; 
— sandstone substratum; 
— water  table at about 5 m below  natural grade. 

A penetration  test  was performed at the location of one of the columns 
with  an Andina static-dynamic  penetrometer  after excavation. The test 
results are shown in Fig. 6.13. 

Over  a depth  of about 10 m, dense gravels were  encountered  which  are 
underlain by incompressible sandstone whose  characteristics are well  known 
in the area. 

Assuming a coefficient a = 3, calculate the settlement  of a column from 
the test result, using Schmertmann's method  (cf [35]). 

We  have: y/y w — 2 for the soil above the water  table, and y'/y w — 1 for 
the soil below  the water  table. 

Schmertmann' s m e t h o d is valid only for cohesionless soils . It consists 
of drawing a very simple vertical stress diagram at depths due to a rigid 
foot ing. 

The stress distribution is a s sumed to be triangular and the m a x i m u m stress 
occurs at depth B/2, where Β is the width of the foot ing, and that below 
B/2, no appreciable vertical stresses exist in the soil. (F ig . 6 . 1 4 ) . If Ap is the 
stress increase due to the foot ing , according to Schmer tmann, at depth B/2, 
the stress is 0.6 Ap. Correction factors are needed as indicated below. 

A A 

Solut ion 

Sectio n A - A 

o l 

Fig. 6 .12. City Hall of Lyons: plan and section. 
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Fig. 6 .13 . City Hall of Lyons: static-dynamic penetrometer test result. 

Influence due to embedment:  C1 — 1—0.5 (σ'0/Áñ). 
σ'0 effective stress exer ted b y the weight of overburden above the b o t t o m 

of the foot ing, therefore : 

σο = 20 χ 5 + 10 χ 5 = 1 5 0 kPa = 1.5 d a N / c m 2 

soil above soil below 
the water the water 

table table 

Ap = σ' — σ'0 

where σ' is the stress due to the foot ing at the level of the foot ing . 

7 - 1 0 4 

σ' = = 7 0 0 kPa ^ 7 d a N / c m 2, Ap = 7 - 1 . 5 = 5 .5 d a N / c m 2, 
1 0 x 1 0 

Cy = 1 - 0 . 5 χ ( 1 . 5 / 5 . 5 ) = 0 . 8 6 . 
Time-dependent  settlement.  Taking into account the very dense s ta te of the 
sandy gravel, the t ime-dependent sett lement is not considered and C 2 = 1 
(see [ 3 5 ] ) . 
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Interaction between  columns. F o r two identical foot ings , each 1 0 m wide, 
Β é = Β 2 = 10 m and the distance between the foot ing is known to be 2 0 m. 

We have : 0.6(Β× + B2) = 0 .6 χ 2 0 = 1 2 m , so L> 0.6(Bl + £ 2 ) , and the 
footings behave as isolated foot ings . 

Stress diagrams. The m a x i m u m stress i s : a = Cx χ 0 .6 Δ ρ or σ = 0 .86 χ 0.6 χ 
5.5 — 2 .84 d a N / c m 2 , and the stress diagram is shown on Fig. 6 . 1 4 . 

1 2 3 

Fig. 6.14. 

Settlement  calculation 
A rigid soil layer is encountered at 10 m below the b o t t o m of the foot ing, 

that is at a depth inferior to 2B = 2 0 m. The same triangular distr ibution is 
a s sumed down to the level of the rigid soil layer, but sett lements are only 
c o m p u t e d to a depth of 10 m (Fig . 6 . 1 4 ) . The sandy gravel layer of 1 0 m 
m a y be divided into 10 layers each 1 m thick. The σ-value is determined for 
each layer as well as the average cone resistance qc. Table 6 C is then made 
u p . The total sett lement is c o m p u t e d t o be 17 m m . 

Actual sett lement measurements m a d e on the structure showed : 

5—7 m m for a load of 4 0 MN, 8—10 m m for a load of 6 0 MN. 

This example confirms the validity of sett lement est imates based on cone 
penetrometer test data . 

Level of incompressible substratum 
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TABLE 6C 

Depth 
(m) ° z 2 ( d a N / c m 2) 

q° 2 ( d a N / c m 2) 
OL oz/Sqc 

0-1 0.28 160 3 0 .00058 
1-2 0.85 550 3 0 .00052 
2-3 1.42 6 5 0 3 0 .00073 
3-4 1.99 4 0 0 3 0 .00166 
4-5 2.56 340 3 0 .00251 
5-6 2.75 330 3 0 .00278 
6-7 2.56 200 3 0 .00427 
7-8 2.37 390 3 0 .00203 
8 -9 , 2.18 500 3 0 .00145 
9-10 1.99 740 3 0 .00090 

0 .01743 m 
w — 11 mm 

t * *Proble m 6.11 Se t t lemen t calculat ions of a compress ib l e s lopin g layer , 
based on stati c pene tromete r tes t da t a 

The city  of Annecy  (France) is built in part on thick  lake deposits consist-
ing mainly of compressible silts overlaying a limestone  substratum which  in 
places is overlain by dense morraine deposits. The soil profile shown on Fig. 
6.15 was established from numerous static-dynamic  Andina penetrometer 
tests performed at a particular site in Annecy.  Construction consisted of 
erecting 2 buildings. Building A was to be constructed  over a sloping rock 
substratum while  building Β was planned over the horizontal  portion of the 
bedrock. 

Bui ld Β Bui ld A 

Fig. 6 .15. Longitudinal soil sections. 

http://PR0BLEM6.il
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Two test  results obtained by the Andina-penetrometer  are shown in 
Figures 6.16 and 6.17. Test 2 is assumed to be representative  of the soil con-
ditions throughout the site of building B. The water  table is at a depth  of 
1.5 m. All the buildings have a cellar, excavated to 2.5 m and have 5 stories. 
The stress may be assumed at 70 kPa. The width  of the cellar is 22 m and 
each building is 80 m in length. 

Give recommendations  for the foundation of each building. Calculate the 
settlement  of shallow footings at the locations of the penetrometer  tests, 
assuming a in the silt to be 5 < α < 10 and a = 3 in the gravel layer. We  also 
have: y/y w = 2 above the water  table, y'/y w = 1 below  the water  table. 
What  solution can be chosen for each building? 

Solut ion 
(1) Deep footings. Because of the sloping bedrock for building A, and the 
low consistency of the silt, the first solut ion that comes to mind is to sup-
port the buildings on piles driven to the l imestone or to the dense moraine . 
(qc > 1 0 4 kPa or 1 0 0 d a N / c m 2 ) . 

F r o m the technical s tandpoint , this would be the safest solut ion because 
tota l and differential sett lement problems would be virtually non-existent 
[ 3 0 ] . 
(2) Shallow footings. The deep foundat ion scheme is very cost ly because of 
the great lengths of piles required. It is therefore worthwhile to investigate 
the possibil ity of support ing the structures on shallow foot ings . The allow-
able bearing capaci ty of the silt i s : taking qc = 3 0 0 k P a ( 3 d a N / c m 2 ) , c u = 
qc/10 = 3 0 0 / 1 0 = 3 0 k P a , f rom which g a d = 5 . 1 4 c u/ 3 = (5 .14 χ 3 0 / 3 ) = 
5 1 . 4 k P a (0 .5 d a N / c m 2) . 

F rom the total building weight, the only poss ible shallow foot ing t y p e 
would be a raft-type foundat ion , as should have been expec ted . The problem 
associated with the raft-foundation is that of evaluating set t lements . 

The net pressure due to the new structure at the foundat ion level a t the 
b o t t o m of the raft a t a depth of 2 .5 m is the total building pressure less the 
weight of the soil excavated to a depth o f 2 .5 m, or : 
2 0 χ 1.50 + 1 0 χ 1 = 4 0 k P a 

soil above soil below 
the water the water 

table table 

The net pressure at the b o t t o m of the raft is Δ σ = 70 — 4 0 = 30 kPa — 
0.3 d a N / c m 2 . 

For each penetrometer test , an idealized soil cross section may be drawn 
into a number o f layers which also accounts for the gravel layer encountered 
in C.P.T. no . 1, as shown in Fig. 6 . 1 5 . 

The vertical stress due to the net building load a t mid-height of each layer 
is calculated. Because of the plan dimensions of the buildings, the stresses 
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Fig. 6 .16. Static-dynamic Andina penetrometer test 1. 
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4 8 

Fig. 6.17. Static Andina penetrometer test 2. 

m a y be equated to those generated by a rigid, long narrow footing of 2 2 m 
in width [ 1 1 ] * . 

Tables 6 D and 6 E of vertical stresses are shown below, giving Δ σ the 
increment of vertical stress, oc a dimensionless multiplier, <?c, the average 

*It could be taken into account that the footing is rigid and rectangular by using Kerisel's 
method [ 6 ] which gives settlements of 9 and 1 7 . 2 c m , respectively for C.P.T. no. 1 and 
C.P.T. no. 2, i.e. a differential settlement of 8 cm. According to the hypothesis of non-
rigid footing (which does not correspond to reality in this case) the settlements would be 
3.8 and 7.4 cm respectively. 
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TABLE 6D 

Depth 
below 
mat 

æ 
(average) 

æ la Δ σ 
( d a N / c m 2) 

a 
( d a N / c m 2) 

h 
(cm) 

hAo/aqc 

0 - 3 1.5 0.14 0.64 0.19 3 140 300 0.14 
3 - 5 4 0.36 0.67 0.20 10 15 200 0.27 
5 - 1 0 7.5 0.68 0.69 0.21 10 5 500 2.10 

1 0 - 1 5 12.5 1.14 0.66 0.20 10 3 500 3 .33 
15—17 16 1.45 0.61 0.18 10 8 200 0.45 

Total settlement: 6 . 2 9 c m 

value of the cone resistance and the set t lement due t o each of the layers : 
Ah = hAo/aqc (h = one layer thickness ) . 

F o r C.P.T. no . 1 , Table 6 D summarizes the above values: 
The tota l set t lement , d u e t o all layers a t C.P.T. locat ion n o . 1 is the to ta l 

of the last co lumn or 6 .29 cm. 
Taking α = 5 for cohesive soils , we would calculate a tota l set t lement of 

1 2 . 4 4 cm, but local experience indicates that actual set t lements are better 
evaluated using a value of a: = 1 0 . 

The same procedure for C.P.T. n o . 2 is given in Table 6 E . 

TABLE 6E 

Depth 
below 
mat 

æ 
(average) 

æ/a ko q° 2 ( d a N / c m 2) 
a 

( d a N / c m 2) 
h 
(cm) 

hAo/aqc 

(cm) 

0 - 5 2.5 0.23 0.65 0 .20 10 5.6 500 1.79 
5 - 1 0 7.5 0.68 0.69 0.21 10 3 500 3.50 

1 0 - 1 5 12.5 1.14 0.66 0.20 10 3 500 3 .33 
1 5 - 2 0 17.5 1.59 0.58 0.17 10 9 500 0.94 
2 0 - 2 5 22.5 2.05 0.51 0.15 10 6.5 500 1.15 
2 5 - 3 0 27.5 2.50 0.45 0.14 10 9 500 0.78 
3 0 - 3 5 32.5 2.95 0.38 0.11 10 10 500 0.55 

Total settlement: 12 .04 cm. 

The tota l es t imated set t lement is 1 2 . 0 4 c m . 

Conclusion 

F o r the first group of buildings, to ta l set t lement could be o f the order o f 
6 to 12 cm, f rom one end o f the structures t o the other. The resulting differ-
ential set t lement could present a prob lem for the proper operat ion of the 
buildings. The differential set t lement is caused by the s loping bedrock and 
the presence of a gravel layer. For this reason, it would be r e c o m m e n d e d to 
suppor t the structures of g roup A on piles. For the other group of buildings, 
differential sett lements should be nominal and a raft foundat ion could be 
r e c o m m e n d e d . 
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***Problem 6.12 Pile foundat ion calculat ion f rom static cone test in atr i- layer 
sys tem 

Cone penetrometer  test  data were  performed in the Annecy  (France) area 
at a swampy  site, with  static-dynamic  Andina penetrometer.  The penetration 
record of Fig. 6.18 is representative  of the subsurface soil conditions.  The 
cone point  used in the test  has a diameter of 8 cm. 

The soil cross-section is: 
— 0 to 8 m, peat and soft clay; 
— 8 to 11.5 m, sand and gravel layer; 
— from 11.5 m, soft clay. 

To support the proposed structures, the obvious solution is to resort to 
driven  pile foundation, penetrating to the upper part of the sand and gravel 
layer. 

Estimate the bearing capacity of 0.6 m and 1.0 m diameter piles whose 

q c ( d a N / c m 2 ) 

80 90 10 

Fig. 6.18. Tri-layer system Andina static penetrometer test. 
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tips would  be driven  to a depth  of 8 .5 m, using the following  3 methods: 
the Dutch method,  Geuze's rule, Meyerhofs method  [22, 25]. 

Compare the results. In addition, for the 0.6-m diameter pile, estimate the 
load capacity if the pile is driven  one additional meter  (to —9.50 m). 

Solut ion 
(1) The Dutch method.  This method consists of calculating the average 

cone bearing over a depth increment of 8 diameters above the pile tip (qCi) 
and the average cone bearing resistance to 4 diameters depth below the pile 
t ip cjC2 (tip being at —8.5 m ) . 

The ul t imate bearing pressure at the pile tip is then : qd = ( q Ci 4- qC2)/2 
and the al lowable bearing pressure is qaa = qd/2 = (qCx + QC2 )/4 for the 
safety factor of 2 . 

If a layer of low cone bearing is encountered, with a minimum value of 
<?mini o v er a depth of 4 diameters below the pile t ip , and if ç cone bearing 
readings were m a d e in this soft layer, the value of qP2 is then: 

q » = Vn · 

(a) For the 0.6-m diameter pile ( 80 = 4 .8 m and 4 0 = 2 . 4 m ) the calculated 
average cone bearing values from 3.7 to 8 . 5 m , is qCi ~ 6 d a N / c m 2 ; for 
values f rom 8 .5 to 1 0 . 9 m qC2 ~ 8 0 d a N / c m 2 , and the al lowable bearing 
pressure at the tip of the pile is qad = (6 4- 8 0 ) / 4 = 2 1 . 5 d a N / c m 2, say 
20 d a N / c m 2 . 

(b) For the 1-m diameter pile (80 = 8 m and 4 0 = 4 m ) the average value of 
qCx, between 0 .5 and 8.5 m is qCi — 4 .6 d a N / c m 2. 

For the depth 4 0 below the proposed pile tip elevation the presence of 
a soft layer is encountered. The bearing capaci ty of the soil for the 1 m 0 
pile will have to be decreased to take this into account . The Andina-type 
penetrometer measures qc every 0 .25 m ; over 4 m there are 16 readings. 
The average value of qCi f rom 8.5 to 1 2 . 5 m is equal to 56 d a N / c m 2 and the 
minimal value of qCi is 8 .5 d a N / c m 2. We therefore have: 

56 ÷ 16 + 8 .5 ÷ 16 
qc = 3 2 d a N / c m 2 . 

2 x 1 6 

Hence the al lowable bearing pressure is : 
<7ad = (4 .6 + 3 2 . 2 ) / 4 = 9.2 d a N / c m 2 , say 10 d a N / c m 2 . 

Remark 
Piles of 1 m in diameter have an al lowable tip bearing pressure consider-

ably lower than that of the 0.6-m diameter pile (not quite half) . N o t e : The 
pressure bulb at the t ip of the large-diameter pile is larger than that for the 
small-diameter pile and the bulb extends therefore into the soft underlaying 
clay. Thus it is advantageous to use smaller-diameter piles. However, it does 
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not appear reasonable to use the 20 d a N / c m 2 allowable pressure for the 
0.6-m diameter pile because there is the soft clay layer at depth . In the event 
of accidental overdriving a few of the 0.6-diameter pile below 8 . 5 m depth , 
the bearing capacity of the overdriven piles would be greatly reduced. 

Let us calculate the allowable bearing pressure at the tip of a 0.60-m 
diameter pile driven to 9.5 m depth, instead of the 8.5 m. 

Over a depth of 8 0 = 4 . 8 m above the base , from depth 4 . 7 to 9 . 5 , we have: 
qc ^ 19 .5 d a N / c m 2, for the 4 0 = 2 . 4 m depth below the t ip, from 9.5 to 
11 .9 m, the soft clay layer must be accounted for with q m i ni = 8 .5 d a N / c m 2. 

For 10 readings of qc of an average value of 55 .5 d a N / c m 2, we have: qc — 
( 5 5 . 5 ÷ 10 + 8 . 5 ÷ 1 0 ) / 2 0 = 3 2 d a N / c m 2, qad = ( 1 9 . 5 + 3 2 ) / 4 = 12 .9 d a N / c m 2. 

This is considerably lower than the allowable pressure calculated for a pile 
tip at 8 . 5 m. 

(2) Geuze's rule. This method is summarized in Fig. 6 .19 . 
(a) The 0.6-m ö pile. We have tan a  ̂ 0 . 0 6 2 and tan â* 0 . 0 3 8 (see Fig. 

q c ( d a N / c m ^ ) 

0 10 20 30 40 50 60 70 80 90 100 

Fig. 6.19. Geuze's rule. 
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6 . 1 9 ) . The diameter of the Andina penetrometer cone is 6 = 8 c m , and 
that of the pile Β = 6 0 cm. 

Geuze 's law s tates : tan <xx = B/b tan a = ( 6 0 / 8 ) χ 0 . 0 6 2 = 0 .47 and 
tan ft = B/b tan â = ( 6 0 / 8 ) χ 0 . 0 3 8 = 0 . 2 9 . 

The actual cone resistance o f Fig. 6 .19 is deduced graphically to qc = 
50 d a N / c m 2 and, using a safety factor of 4 , qad = 5 0 / 4 = 12 .5 d a N / c m 2 . 

(b) The 1.0-m ö pile. The same procedure is used for Β = 1 0 0 cm from 
which tan ax = 0 . 0 6 2 χ 1 0 0 / 8 = 0 . 7 8 and tan â÷ = 0 . 0 3 8 χ 1 0 0 / 8 = 0 .48 . 
The corrected cone bearing value is qc 2 1 4 3 d a N / c m 2 and qad = 4 3 / 4 ~ 
1 1 d a N / c m 2 . The allowable bearing pressures for the 2 pile sizes are very 
near the same in this instance. 

(3) Meyerhofs method. 
(a) The 0.6-m ö pile. The tip of the piles at 8.5 m depth is located at a 

distance i f of 3 m above the soft underlaying layer. This is less than the 
critical distance 10J3 = 6 m . The approx imate cone bearing value of the 
soft layer is q~ ~ 10 d a N / c m 2 and that of the sand and gravel layer is 
qc ~ 7 5 d a N / c n r . 

According to Meyerhof, the ul t imate bearing capaci ty of the soil i s : 

(Qc —Qc)H 6 5 χ 3 
Qd = Qc +— £̂sJ— = 10 + = 4 2 . 5 d a N / c m 2. 

d c° 1 0 5 6 

and for a safety factor of 3 (because the method is a little pess imist ic) , we 
have: qad = 4 2 . 5 / 3 = 14 d a N / c m 2 . 

(b) The 1.0-m ö pile. Ç = 3 m < 10B = 1 0 m , = 1 0 d a N / c m 2 and 
qc ~ 7 5 d a N / c m 2 , from which qd = 10 + ( 6 5 χ 3 ) / 1 0 = 2 9 . 5 d a N / c m 2 and 
<7ad =<7d/3 = 10 d a N / c m 2 . 

Conclusion 

The three methods yield closely related results , except for the 0.6-m 
diameter pile at 8 .5 m depth ; however, for practical reasons, it was pointed 
out that the high value of al lowable pressure for this instance was not 
to be recommended . 

An average a l lowable pressure of all the methods may be r ecommended at 
8 .5 m. This would be a b o u t 13 d a N / c m 2 for the 0.6-m diameter pile. N o fill 
should be placed on the ground surface and all ground floors should also be 
suppor ted on piles to avoid differential sett lements between columns , walls 
and f loors . 

irkrkProblem  6.13 Se t t lement est imates of a surcharge fill, f rom static-cone 
penetrometer test data 

In the Cannes region (France), it is not uncommon to have recent alluvial 
deposits of clays and silts over depths  of 40 m above the marly bedrock. 
Cone-penetrometer  tests performed with  the Gouda 100 kN device  have 
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shown that in such soils the cone-bearing value is very  constant and of about 
1000 kPa for these alluvial deposits. The project consists of the construction 
of several relatively  low  buildings one of which  of five storeys. 

In order to reduce the total and differential settlements  of the structures, 
it was decided  to surcharge the sites and consequently,  a 5m high fill was 
placed over a plan dimension of about 40 ÷ 130 m. The vertical cross-section 
of the fill has a trapezoidal shape with  a top horizontal  dimension of 30 m. 
The soil density  is 1.8. 

Calculate the settlement  caused by the surcharge fill along its central 
axis, assuming the following  values of a: 3<a<5 and mv = l/aqc [23, 
27, 28]. 

Solut ion 
The mos t direct m e t h o d of est imating sett lements is t o resort to vertical 

stress distribution and tables of Giroud (vol. II , 6 . 1 1 , p . 4 3 6 ) , formula 2 : 

w = ^-^[(^-(a/aYri)], y = 1 8 k N / m 3 , h = 5 m , 
Ε a—a 

Ε = 2/3 Ε' = 2 /3 aqc with í = 0 . 3 3 , a = 2 0 m , a = 15 m. 

Here, for 3 < a < 6, we get 3 0 0 0 < Ε < 6 0 0 0 kPa and we have : 

H/a' = 4 0 / 1 5 = 2 .67 from which r'n = 1 .142 , 

H/a = 4 0 / 2 0 = 2 from which r h = 0 .983 

with: Ε' = 3 0 0 0 kPa, Ε = 2 0 0 0 kPa, we get : 

18 x 5 4 0 0 / 1 5 \ 1 

w = χ ( 0 . 9 8 3 - — x 1 .142) = 1.23 m, 
2 0 0 0 5 \ 2 0 / 

with Ε' = 6 0 0 0 kPa, Ε = 4 0 0 0 kPa, we get : w = 0 . 6 2 m. 
Thus , the sett lement would be between 6 2 and 1 2 3 cm [ 3 2 ] . 
Remark 

The actual sett lement measured at the end of 4 months of preloading 
was between 30 and 4 2 cm at different observation stat ions . These settle-
ments are smaller than the range predicted f rom penetrometer tests . This 
m a y be due t o : 

— the ul t imate sett lements have not yet occurred at the end of 4 months ; 
— no account was taken of the slight increase in cone-bearing value of the 

silt starting at a depth of 20 m, nor of the presence of a few sand lenses. 
The actual sett lements , however, val idate the m e t h o d of est imating 

sett lements f rom static-penetrometer test da ta . 

**•Problem 6.14 Set t lement calculation o f a surcharge fill f rom the results of 
an Andina penetrometer test 

Two cooling structures were  constructed  near Lyons for the development 
of a nuclear power  plant. Each structure is 127m high and has a diameter of 
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102 m at the base. These structures are rigid and do not tolerate large differ-
ential settlements.  The foundation soil consists of sandy-gravelly  alluvium 
underlain by a thick  compressible clay layer over a sandstone bedrock. 

Assume that the soil conditions are uniform and are represented  by the 
penetration  diagram of Fig. 6.20. 

In order to decrease the total and differential settlements  that the struc-
tures could experience, it was decided  to surcharge the areas of the cooling 
towers.  Two preload fills were  constructed  in the shape of a torus, of trap-
ezoidal cross-section, having an outside diameter of 138 m and an interior 
diameter of 62 m. The fill height was 10 m and the side slopes inclination 
of 3 horizontal  to 2 vertical (see Fig. 6.21). 

Assuming the unit weight  of the surcharge fill to be 20 kN/m 3, find the 
settlement  caused by the fill weight,  along its axis, at the location of the test 
whose  results are shown in Fig. 6.20. 

Take a = 3 in the sandy gravel zones where  qc > 4000 kPa, and a = 10 in 
the deep clay layer and a = 5 in the clay lenses present in the superficial 
alluvium. 

The value of a in the deep clay is high because it has been proven  that this 
clay was overconsolidated  by the weight  of ancient glaciers at the start of the 
Quaternary (Fig. 6.20). 

Solut ion 
In every sett lement prob lem, the initial calculations consist o f determin-

ing the vertical pressure distr ibution variations as a function o f depth. This 
was done in this instance according to Cordary ' s thesis 'Contribution to 
the s tudy o f sett lements of shallow foot ings ' , University of Grenoble 1 9 7 3 . 
It consists o f giving the pressure distr ibution under circular rings. 

The calculations apply to the points located vertically below the axis of 
the surcharge fill. The value of qc chosen for each 1 m depth increment 
corresponds to the average qc values within each interval measured every 
0 . 2 5 m with the Andina quasi static penetrometer . 

The set t lement of an e lement layer of height Ç is: Ah = H(Ap/aqc) and if 
Ç = 1 m, tota l set t lement S = Σ (Ap/aqc). Table 6 F may then be comple ted , 
where the obta ined sett lement is 0 .26 m. 

Remark 

Compare the result with those given by the following two finite element 
methods : 

(1 ) Calculation of the linear elasticity and elasto-plastic behavior of the 
soil and assuming that the fill is rectilinear and of infinite length. 

(2 ) Calculation of the linear elasticity of the soil assuming the axisym-
metry of the fill. N o t e in this case the uneven pressure distribution due to 
the annular configuration o f the fill (F ig . 6 . 2 3 ) . 

N o t e the uneven pressure distr ibution due to the annular configuration 
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Fig. 6.20. Andina static penetrometer test. 
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of the fill (F ig . 6 . 23 ) in this case. The various computat ions do indicate 
that m a x i m u m sett lement occur between 15 and 30 cm. This is in good 
agreement with the result calculated above which is based on the penetro-
meter test result . 

A l l u v i u m 

Fig. 6 .21. Cross-section of surcharge fill. 

TABLE 6F 

Depth Ap 
( d a N / c m 2) 

a Qc 
( d a N / c m 2) 

Ap/aqc 

1 1.98 3 300 900 0 .0022 
2 1.97 3 250 750 0 .0026 
3 1.95 3 150 450 0 .0043 
4 1.92 5 30 150 0 .0128 
5 1.87 3 45 135 0 .0139 
6 1.83 3 50 150 0 .0122 
7 1.78 5 20 100 0 .0178 
8 1.73 5 20 100 0 .0173 
9 1.67 5 15 75 0 .0223 

10 1.62 10 11 110 0.0147 
11 1.56 10 8.5 85 0 .0184 
12 1.50 10 9 90 0.0167 
13 1.45 10 13 1 3 0 χ 0 .0112 
14 1.41 10 11 110 0 .0128 
15 1.36 10 14.5 145 0 .0094 
16 1.31 10 16 160 0 .0082 
17 1.27 10 15.5 155 0 .0082 
18 1.23 10 13 130 0 .0095 
19 1.18 10 14.5 145 0 .0081 
20 1.14 10 14.5 145 0 .0079 
21 1.10 10 16.5 165 0.0067 
22 1.07 10 17 170 0 .0063 
23 1.04 10 17.5 175 0 .0059 
24 1.01 10 18 180 0 .0056 
25 0.98 10 26 260 0 .0038 

ÓÁñ/aqc = 0.26 m. 
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T r i a x i al 

O e d o m e t e r 

ø (2) Rigidi ty of f i l l, sand and gravel n e g t e c t e d 

Fig. 6.22. Settlement under surcharge fill if length is unlimited. Curves 1 and 2 corre-
spond to linear elastic behavior and curve 3 to elastoplastic behavior. 

r = 50 m 

Fig. 6.23. Settlement under surcharge fill in annular configuration (axisymmetry). Curve 
2: rigidity of fill, sand and gravel neglected. 

***Problem 6.15 Set t lement computa t ions based on static penetrometer test 
results 

Static penetrometer  tests of the Parez-type  penetrometer  [23, 29, 30] 
were  performed at the location of a proposed building. Fig. 6.24 shows a 
representative  penetration  record of the tests. The building plan dimensions 
will  be 20 by 20 m. 

The substratum, consisting of Plaisancien mams, is overlain by a silty  clay 
alluvium of about 30 m in thickness [31, 37]. This layer is very  compressible. 
It was resolved to proceed in the following  manner to support the building: 
— excavate the soil to a depth  of 2 m; 
— backfill with  a compacted  selected fill and overfill  laterally by 2 m in all 
directions; 
— design the shallow footings for an allowable bearing pressure on the engin-
eered fill of 150kPa. 
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q c ( d a N / c m 2) 

Ε 

Fig. 6.24. Parez static penetrometer test. 

Assume that if the building were  to be supported on a mat-foundation, 
the uniform soil pressure would  be about 70kPa. In fact spread footings 
are 4 m apart. 

Calculate the settlement  of the structure. Take a — 6 for the silty  clay and 
assume the fill to be incompressible. 

Solut ion 
The replacement of the clay by c o m p a c t e d fill is a c o m m o n m e t h o d of 

foundat ion soil improvement . It does not decrease total set t lements but does 
decrease differential sett lements between spread foot ings . 

The load o n the foot ings is: Q = 70 χ 4 = 2 8 0 kN (per meter length) . 
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The width of the foot ing should therefore be : Β = Q/qad = 2 8 0 / 1 5 0 = 
187 m, say 1.9 m. 

Let us calculate the vertical stress at the b o t t o m of the fill, assuming a 
distribution of 1 horizontal to 2 vertical s lopes , and we obtain the fictitious 
width at 2 m depth : B' = 1.9 + 2 = 3.9 m. 

Since the footings are 4 m apart , the load at the b o t t o m of the fill is equal 
to the load of the building if it were evenly distr ibuted over its entire surface 
at grade. In effect, the fill acts as a mat- foundat ion. 

The overall sett lement of the building can be calculated by assuming 
a uni form pressure acting over a plan area of 2 2 by 2 2 m. The uni form 

70 ÷ 20 ÷ 2 0 
pressure is : ñ = = 5 8 k P a = 0 .58 d a N / c m 2. 

2 2 ÷ 2 2 
T o calculate the sett lement , the subsurface soil is divided into horizontal 

slices for each one of which an average value of the point resistance would 
be calculated, and for each of which the increment of vertical load due 
to the building must be calculated. Since the fill is a s sumed to be incom-
pressible, the vertical stress increase starts at the b o t t o m of the fill, or 2 m 
below grade. The results are tabulated as Table 6 G . The total sett lement is of 
the order of 20 cm but this is an average value because the a s sumpt ion of a 
rigid mat (fill). According to Kerisel ( [ 6 ] , p . 2 7 ) the sett lement on the axis , 
assuming a flexible mat , should be increased by the ratio 2 / 1 . 5 7 = 1 .274, 
from which a sett lement of 2 5 cm is obta ined. 

It should be noted that these two different values — one for a rigid and 
the other for a flexible foundat ion — do not give the maximal and minimal 
boundaries of the solut ion. 
TABLE 6G 

Layer Depth z/B P°z Δ σ a hAo/aqc 

thickness of fill ( d a N / c m 2) ( d a N / c m 2) (cm) 
(m) bot tom 

2-5 1.5 0.07 0.50 0.29 6 5 2.90 
5-10 5.5 0.25 0.53 0.30 6 7 3.57 

10-15 10.5 0.48 0.51 0.29 6 6.5 3.72 
15-20 15.5 0.70 0.38 0.22 6 3 6.11 
20-25 20.5 0.93 0.32 0.18 6 5 3.00 
25-30 25.5 1.16 0.24 0.14 6 15 0.78 

Total settlement 20 .08 cm 

Note: Β = 22 m width of the fictitious mat (fill). 

Remarks 

A direct est imate of sett lement could have been per formed as a first 
approx imat ion by the following m e t h o d , using Giroud ' s tables . The constant 
qc value in the clay is about 5 d a N / c m 2. The clay layer thickness is 30 m 
and the approx imate modulus E' = aqc = 6 x 5 = 3 0 d a N / c m 2 . Therefore , 
£ = 2 / 3 £ ' = 2 0 d a N / c m 2. 
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Assuming that the set t lement of a rigid foundat ion is close to the average 
sett lement of a f lexible foundat ion , f rom Giroud ' s tab les : w m = (pB/E)pUm , 
ñ = 0 . 5 8 d a N / c m 2, L = Β = 2 2 m from which LIB = 1 , Ç = 3 0 m , H/B 
= 3 0 / 2 2 = 1.36, if = 0 . 3 3 . 

F r o m Giroud ' s tables (vol. II , p . 1 6 3 ) , we get pHM = 0.6 and : w m = 
( 0 .58 χ 2 2 0 0 / 2 0 ) χ 0.6 = 38 cm. 

This a p p r o x i m a t e m e t h o d is faster and the result is c lose to the more 
r igorous m e t h o d , only a bit higher. 

**Problem 6.16 Se t t lement evaluation in clay soils f rom stat ic penetrometer 
te s t s ; influence of fills 

A low-rise  building was erected  some 15 years ago on the shore of the 
Nantua lake [28]. The building width  varies as does its total height along 
its main axis. The structural frame is reinforced concrete  supported on a 
mat-foundation.  Its plan dimensions and loads are shown on Fig. 6.25. 

2.5 t / m 2 ( ? )  i .et / r 

O) 3 . 9 t / m 2 

Fi l l | h . 8 t / m 2| 

Fig. 6.25. Nantua-plan view of building (France). 

The building is surrounded by fill of about 1 m in thickness over the adjacent 
natural grade (see Fig. 6.26). 

Four static penetrometer  tests were  performed before the start of con-
struction with  a Gouda-penetrometer  [19, 22, 23, 29]. The results were  very 
similar and can all be summarized by the diagram of Fig. 6.27. The subsurface 
soil consisted of a thick  layer of soft organic clay. 

The structure underwent  substantial settlements.  Show that the settle-
ment  magnitude could have been predicted  from the static-penetrometer  test 
data. What  is the fraction of the settlement  atributable to the weight  of the 
fill? 

Calculate the settlement  at point  Ì (see Figs. 6.25 and 6.26). Assume the 
clay layer thickness to be 30.5 m. 
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R o a d 

Figs. 6.26 and 6.27. 

Solut ion 
The vertical stress distributions due to the building and the fill may be 

evaluated from Newmark ' s chart [see Table 6 H ] . Assume that the cone 
bearing value is constant throughout the clay and equal to 3 d a N / c m 2 . 

TABLE 6H 

h æ Δ σ (total) 
( d a N / c m 2) 

Qc a hAo/aqc 

(cm) 
Δ σ hAo/aqc 

(cm) 

1.50 0.75 0 .233 3 1.5 7.77 0.135 4 .50 
1 2 0 .233 3 1.5 5.18 0 .135 3 
2 3.5 0 .230 3 1.5 10 .22 0.135 6 
2 5.5 0.227 3 1.5 10 .09 0 .135 6 
4 8.5 0 .221 3 1.5 19 .64 0 .132 11.73 
6 13.5 0 .203 3 1.5 27.07 0 .130 17 .33 
6 19.5 0 .184 3 1.5 24.54 0 .123 16.40 
8 26.5 0 .150 3 1.5 26 .66 0 .110 19 .56 

131 .17 84 .52 

a = 1.5 w = 131 cm a = 1.5 w = 85 cm 
a = 4 w = 49 cm 
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Since the clay is organic and has a high water content , a s sume 1.5 < α < 4 . 
The da ta to calculate the set t lement are shown in Table 6 H . 

The tota l set t lement should be of the order of 1.30 m for a = 1.5 and of 
the order of 0 .50 m for a = 4 . 

F o r the former, the sett lement due t o the fill is 0 . 8 5 m or about 6 5 % 
of the tota l sett lement. This shows that p lacement o f fill on compress ible 
soils around a structure significantly contr ibute to sett lements , in this case , 
t o over 50% of the sett lement. 

The actual , measured sett lement o f po int Ì was 1.20 m five years after 
construct ion. This confirms the validity o f the est imate based on penetro-
meter test results . However, the soil m u s t be sampled in order t o determine 
its water content when qc < 1 .200 kPa. 

Problem 6.17 Dimensioning shal low foot ings on sand, based o n S P T 
(S tandard Penetrat ion Tes t ) results 

The results of SPT performed in a sandy layer of 12 m thick  and with  a 
water  table at a depth  of 2 m are shown in Fig. 6.28, as a function of depth, 
in ft. Determine  the allowable bearing values c?ad in pounds per square foot 
(lbs/ft2) for a strip shallow footing of 3 ft width  and embedded  a distance D 
into the sand. Assume D at 0, 1, 5 and 10 ft. 

Draw the curve of qad as a function of D. Use Terzaghi and Peck's graphs 
[(22), pp. 245-247] 

Z ( f t ) Ν (S. R T.) 

5' 
/ / / v / / A / / / 
5 

W a t e r t a b l e ^ 

10' 4 

15' 30 

20' 17 

25' 30 

30' 35 

35' 35 

Fig. 6.28. 

Solut ion 
The prob lem m a y be solved in three different manners . 
(1 ) Evaluate N7 and Nq f rom Ν values of Fig . 6 .28 and determine the 

al lowable pressure f rom the classical fo rmula : 

<7d = ^Ny + yDN^ +cNc 

wherein the unit weights of the soil m u s t be a s sumed, (7 and 7') as a func-
t ion of N. Because the soil is sand, c = 0 . 

F o r s implicity, the five Terzaghi and Peck graphs will hereafter be referred 
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to as A, B, C, D and E , to correspond to the order in which they were 
published [ 2 2 ] . 

(a) D = 0 , Ν = 5 . For this value of N, the sand is very loose . Because of 
the proximity of the water table , a s sume the sand to be saturated by capil-
larity. We can then a s s u m e : 

7 d = 90 lb / f t 3 and 7 h = 1 0 0 l b / f t 3. 

Graph A of Terzaghi and Peck gives, for Ν = 5 ; Ny = 5 and Nq = 8 f rom 
which, with Β = 3 ft : qd = ( 1 0 0 χ 3 χ 5 ) / 2 = 7 5 0 lb / f t 2 . F o r a safety factor 
of 3, <?ad = 2 5 0 lb / f t 2 or 1 2 kPa. 

(b) D = 1 ft , Ν = 5 , we have Ny = 5 and 7Vq = 8 f rom which: qd = 7 5 0 + 
1 0 0 ÷ 1 ÷ 8 = 1 5 5 0 lb / f t 2 and qad = 517 lb / f t 2 = 2 5 kPa. 

(c) D — 5 ft. Because we are now very close to the water table (at 6 ft) its 
influence on the value of Ν mus t be taken into account and corrected b y : 
Ν = 1 5 4- ^(Ν' —15) where Ν' = 4 , no correction is necessary and N7 — 4 
and iVq = 7.N' being the S P T value below water table . 

T o calculate yNy the buoyant weight must be used ; we have: yr = yh — 
7w = ( 1 0 0 - 6 2 . 4 ) = 37 .6 say 3 8 l b / f t 3. 

For the overburden weight, the saturated weight of soil must be cons idered : 

38 ÷ 3 ÷ 4 
qd = + 1 0 0 x 5 x 7 = 2 2 8 + 3 5 0 0 = 3 7 2 8 l b / f t 2, 

2 

<7ad = 1 2 4 2 lb / f t 2 = 0.6 d a N / c m 2. 

(d) D = 1 0 ft. The average value of N' must be calculated from the value 
at the level of the b o t t o m of the foot ing and 5 ft below that . In this case it is : 
N' = (4 + 3 0 ) / 2 = 17 from which: Ν = 1 5 + £ ( 1 7 - 1 5 ) = 16 . 

Table A then gives: Ny = 1 4 , Nq = 1 6 . 
Ν increases between 10 and 1 5 ft, therefore ya and yh increase. S o it can 

be a s sumed that : 7 d = 1 0 0 l b / f t 3, yh = 1 1 5 l b / f t 3 and y' = 53 l b / f t 3. 
F o r embedment the effective stress must be calculated at the foot ing level 

according to the water table (6 f t . ) . F r o m which: 
yD = 6 χ 1 0 0 + 4 χ 53 = 8 1 2 lb / f t 2 

53 χ 3 χ 14 
and<? d = + 8 1 2 x  16 = 1.113 + 1 2 . 9 9 2 = 1 4 . 1 0 5 l b / f t 2, 

qad = 4 . 7 0 0 lb / f t 2 = 2 2 5 kPa. 

Fig. 6 .29 shows the variations of the al lowable soil bearing pressure as a 
function of depth D. 

(2) Evaluation of qad f rom graphs. 
(a) D = 0. Graph Β gives directly qad for D = 0 and for a safety factor of 

3: qad - 0 .1 t o n / f t 2 = 11 kPa. The two methods give identical results. 
(b) D = 1 , Ν = 5 . Graph C gives the increase in bearing pressure as a func-

tion of depth D: qad = 0 .1 + 0 .13 = 0 .23 tons / f t 2 = 2 5 kPa. 
The two methods give identical results. 
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Fig. 6.29. 

(c) D = 5 . If there were no water table , we would have qad = 0 .1 4- 0 .52 = 
0 .62 t o n / f t 2 = 6 6 k P a . Because of the presence of the water-table 1 ft below 
the foot ing b o t t o m , the first term must be divided by (1 + 2 / 3 ) = 1.66. 
T h e n < ? a d = 0 .06 + 0 .52 = 0 .58 t o n / f t 2 = 6 2 k P a . 

(d) Β = 10 ft. F o r N' = 1 7 , it was shown that Ν = 16 . The al lowable 
bearing pressure is, according to graph B : qad = 1 t o n / f t 2, but this pressure 
must be divided by 2 to account for the water table . The increase of the 
stress due to e m b e d m e n t is 2.3 t o n s / f t 2 (see graph C ) . 

Since the e m b e d m e n t is 4 ft below the water table , this increase must be 
divided by (1 + 4 / 1 0 ) = 1.4 or : qad = 1/2 + 2 .3 /1 .4 = 0 .5 + 1.64 = 2 .14 
tons / f t 2 = 2 2 9 kPa. 

A good accordance between the two methods can also be noted . 

Remark 

The al lowable bearing pressures are l imited further to account for settle-
ments . All the above calculated al lowable bearing pressures have a safety 
factor with respect to the ul t imate failure pressure. They must be further 
reduced to account for the sett lements that they could generate. For that 
reason, graph D mus t be used which gives qad for a m a x i m u m sett lement of 
1 inch , assuming the water table at depth Β below the foot ing. If the water 
table is close to the foot ing, qad given by graph D mus t be divided by 2 . 

For Β = 3 ft, graph D gives 
f o r i V = 5 : qad = 0 .5 t o n s / f t 2 = 5 4 k P a , 
for Ν — 1 6 : qad = 1.9 t o n s / f t 2 = 2 0 3 kPa. 
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(3) Al lowable bearing pressures f rom Meyerhof ' s formula [ 2 2 ] . 

q a d = NB(1+D/B)(H30) (1 ) 

for B, expressed in feet , qad in t o n s / f t 2 . The above formula is valid only for 
cohesionless soils above the water table . For c layey sands and submerged 
sands , qad mus t be divided by 2 . 

Meyerhof also p r o p o s e d : qd = N(B 4- D)/C where C = 10 for fine sand, 
6 < C < 8 for coarse sand and gravelly sand, 1 5 < C < 2 0 for silty sand and 
non-plastic silts. 

Equat ion (1) gives respectively: 
(a) D = 0, Ν = 5 : qad = (5 χ 3 ) / 3 0 = 0 .5 t o n s / f t 2 = 53 kPa. 
(b) D = l, Ν = 5 : qad = (5 χ 3 ) ( 1 + 1/3) χ 1/30 = 0 .667 t o n s / f t 2 = 

71 kPa. 
(c) D = 5 , Ν = 4 , if there were no water tab le : qad = 4 χ 3 ( 1 4- 5 /3 ) χ 

1/30 = 1.07 t o n s / f t 2 but because of the water table , the result must be 
divided by 2 and qad = 0 .54 t o n s / f t 2 = 58 kPa. 

(d) £> = 1 0 , Ë Ã = 1 6 : qad = ? [ 1 6 x 3 ( l + 1 0 / 3 ) x 1 /30] = 3 .47 t o n s / f t 2 = 
3 7 0 kPa. 

For cases (a) and (b ) , Meyerhof ' s formula gives al lowable bearing pressures 
considerably higher than the other two methods . F o r cases (c) and (d) it 
gives about the same or slightly higher results . These values should also be 
decreased to limit the foot ing sett lements to 1 inch or less. 

Meyerhof es imates that for Β < 4 ft , qad must be l imited by N/8 or for 
each of the preceding cases : 

case a qad < 0 .62 t o n / f t 2 = 66 kPa (D = 0 ) 

case b qad < 0 .62 t o n / f t 2 = 66 kPa (D = l ' ) 

case c qad < 0 .5 t o n / f t 2 = 54 kPa (D = 5') 

case d qad<2 t o n / f t 2 = 2 1 4 kPa (D = 1 0 ' ) 

Finally, it can be concluded that all the methods give close results , except 
for case a , which is hardly ever encountered in pract ice anyway . 

** Problem 6.18 Pile capaci ty determinat ion in sand f rom S P T 

Assume the same givens as in the preceding problem,  and assume that the 
sand layer overlies bedrock.  Determine  the ultimate  bearing capacity, in tons, 
of a driven  pile of 1 ft diameter at a depth  of 25 ft. 

Solut ion 
The ul t imate pile bearing capaci ty is c o m p o s e d of t w o component s , 

namely end-bearing and skin frictions: Qd = Qa + Qf. 
L e t A be the end area of the pile of diameter B, f rom Meyerhof and for 

the case of s ands : 

ð Β xD -
Qd = ANA 4- — — — xJV (average over pile shaf t ) . (Qd in tons ) 

ou 
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Solut ion 
Soil investigation  A: 
(1) Pressuremeter te s t s : 

The corrected values of Ν because of the water table must first be deter-
mined 

N' 5 4 3 0 17 30 3 5 3 5 

Ν 5 4 2 2 . 5 16 2 2 . 5 2 5 2 5 

The Ν average value for lateral friction along the pile shaft i s : 

- 5 + 4 + 2 2 . 5 + 16 + 2 2 . 5 
^average = = 7 0 / 5 = 14 from which: 

5 

Qd = 4 χ 2 2 . 5 χ (π/4) χ 1 2 + π χ 1 χ 2 5 χ ( 1 4 / 5 0 ) = 70 .7 4- 2 2 = 9 2 . 7 t o n s . 

For a safety factor of 2 , we have : Qad = 46 tons = 4 0 9 k N 

*Problem 6.19 Cost compar i son of soil investigations based on different 
types o f in-situ tests 

Determine  from the unit prices given below  in U.S. dollars 1984 the total 
costs of soil investigations using different types  of in-situ tests, such as 
pressuremeter tests, static-electric  cone-penetrometer  tests and S.P.T. Assume 
sites are readily accessible. 

Soil investigation  A: for the control of vibroflotation  or dynamic  com-
paction (Menard-method)  of a fill, it is proposed to perform 10 tests to 3 m 
depth  and 2 to 7m depth. 

Soil investigation  B: three tests must be performed to a 20 m depth  at the 
site of a proposed building. Assume that both sites are 150 km from con-
tractor office. The unit rates are given below: 

For the pressuremeter: 

Mobilization  and demobilization  US $ 80/hr 
Drilling to 20 m, by  linear meter,  with  a 

pressuremeter test,  each meter  US $ 100/hr 

For the static cone-penetrometer: 

Mobilization  (C.P.T.) demobilization  and penetration  US $ 120/hr 

For the S.P.T: 

Mobilization  and demobilization  US $ 80/hr 
Drilling from 0 to 20 m, with  a test  performed every 

1.50 meter  US $ 80/hr 
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These tests should be performed every meter , therefore : 

Mobilization and demobil izat ion, 6 hrs at $ 80 U S $ 4 8 0 
Drilling and pressuremeter test (44 m) in, say, 44 hrs at $ 1 0 0 U S $ 4 4 0 0 

Total U S $ 4 8 8 0 

(2) Cone-penetrometer tests : 

Mobilization and demobil izat ion, 6 hrs at $ 1 2 0 U S $ 7 2 0 
Static penetrat ion, assume 12 hrs at $ 80 us $ 1 4 40 

Total U S $ 2 1 6 0 

(3) S .P.T. : 

Mobilization and demobil izat ion, 6 hrs at $ 80 U S $ 4 8 0 
Drilling, 4 4 m in, say, 2 8 hrs at S 80 U S $ 2 2 4 0 

Total U S $ 2 7 2 0 

To summarize , for soil investigation A: 
(1) cone-penetrometer U S $ 2 1 6 0 
(2) pressuremeter tests U S $ 4 8 8 0 
(3) S .P.T. U S $ 2 7 2 0 

Because the nature of the fill is known, it is not necessary in this case to 
include drilling and sampling in the cost es t imate . 

Soil investigation  Β 
Three tests to 20 m are p roposed : 

(1) Pressuremeter tests : 

Mobilization and demobil izat ion, 6 hrs at $ 8 0 U S $ 4 8 0 
Drilling with pressuremeter test , every m, 6 0 hrs at $ 1 0 0 U S $ 6 0 0 0 

Total U S $ 6 4 8 0 

(2) Cone-penetrometer test : 

Mobilization and demobil izat ion, 6 hrs at $ 120 U S $ 7 2 0 
8 hrs of penetrat ion at $ 120 U S $ 9 6 0 

Total U S $ 1 6 8 0 
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(3) S .P.T. : 

Mobilization and demobi l izat ion, 6 hrs at $ 8 0 
Drilling, 4 8 hrs (with a test every 1.50 m ) at $ 8 0 

U S $ 4 8 0 
U S $ 3 8 4 0 

Total U S $ 4 3 2 0 

For this example , the summary is : 
(1 ) Cone-penetrometer 
(2) Pressuremeter 
(3) S .P .T. 

U S $ 1 6 8 0 
U S $ 6 4 8 0 
U S $ 4 3 2 0 

However, it should be noted that , unless the site is in a very well known 
geologic and geotechnic area, it would be necessary to include one bore 
hole with soil sampling to the stat ic-penetrometer investigation. The cost of 
this bore hole and sampling must be added to the cost of the cone-penetration 
and this addit ional cost would still m a k e that investigation the cheapest . 
Its added cost would be about one-third of the tota l . 

Often, in pressuremeter investigations, for the purpose of reducing costs , 
tests are m a d e only every 2 , 3, 4 , or even 5 m depth intervals, to the detri-
ment of profile definition. 

It is important to underl ine the fact that the cost of the cone-penetrometer 
investigation is not high, when considering that it is the only one yielding 
cont inuous information throughout the depth of penetrat ion. The more 
expensive alternate of the pressuremeter investigation yields information at 
best every meter . More data is m a d e available at a lower total cost with the 
penetrometer . However, in addit ion to the pf and ñë l imits obta ined by the 
pressuremeter, the pressuremeter modulus Ep is also determined. 

It should also be ment ioned that laboratory testing of soils would be more 
expensive than SPT or pressuremeter measurements because of the cost of 
recovering undis turbed samples ( about U S $ 3 0 each) and the added costs of 
the tests themselves. F o r each sample , the addit ional laboratory testing cost 
would be approx imate ly U S $ 6 0 0 , depending on per formed tests . 

As a general rule, both technical and financial considerations must be 
evaluated because each t y p e of soil investigation has advantages that the 
other two do not present. No single method is a lways the best for all pro-
jects . 

ick+Problem 6.20 Compar i son o f set t lement calculat ion based on static pen-
etrometer tests and consol idometer tests da ta ; determinat ion 
of the value of the coeff icient a 

The following  profile was determined  at a site along the Saone River near 
Lyons (France) with  the Andina, static-dynamic  penetrometer: 

Remarks 
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— from 0 to 3 m: old sandy gravel fill; 
— from 3 to 6.5 m: clayey  silt; 
— below  6.5: sandy-gravelly  alluvium. 

The penetration  diagram of Fig. 6.30 is representative  of the soil resist-
ances at the site. It is proposed to erect a light building consisting of 2 

S c a l e c h a n g e -
Ï 1  2  3  4  5  6  7 8  9  1 0  11  12  13  14  15  16  17  1È 19  2 0  2 5 

Sca l e c h a n g e 
3 5  4 5  5 5  6 5  7 5  8 5 

q c ( d a N / c m 2) 

9510 0  12 5  17 5  22 5  2  7 5  325 _ 

> 
^—' 

——-

r 

Fig. 6.30. Andina static-dynamic penetrometer result. 
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stories, which  would  impart stress of 20 kPa on bearing walls 3 m apart. 
Look at a possible shallow footing support with  an embedment  of 0.5 m 

into the old fill. From the penetrometer  test  results determine  the settle-
ments expected  due to the loading. 

An exploration borehole was made to a depth  of 4.5 m nearby and an 
undisturbed sample of silt was recovered  at that depth.  A consolidation test 
was performed on the sample in the laboratory and the results are plotted  on 
Fig. 6.31. 

Compare the results of the two  methods  of settlement  analysis. Determine 
the value of the coefficient a by the method  suggested by Sanglerat (1972) 

0.65 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

10 <T(daN/cm2) 

Fig. 6 .31 . Consolidation test. 
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[27]. Assume the old fill density  and that of the silt to be 1.8. The water 

table is located at over 6 m depth. 

Solut ion 
F r o m the penetrometer test data , it m a y be concluded that the old fill is 

quite dense (50 <qc < 1 5 0 d a N / c m 2) . Because the building loads are light, 
the fill is adequate t o suppor t the loads . Foot ings separat ion, f rom center to 
center would be 3 m (that of the bearing walls) . The fill thickness below the 
footings would be 2 .5 m. If we as sume a load distribution of 2 to 1 through 
the fill, the stress would be a lmost uni form at the base of the fill and equal 
to 20 kPa or 0.2 d a N / c m 2. The fill layer acts as a mat-type foundat ion . 

(a) Settlement  calculations based on the Andina penetrometer  test  data. 
Sett lements would occur in the silt layer. The average cone-bearing value 

in that layer is qc = 5 d a N / c m 2. If we as sume the silt t o have a low plasticity, 
α will be in the range 3 < a < 6. Ef = aqc or 15 <Ef < 30 d a N / c m 2 . 

The stress increase at the surface of the silt layer is : Δ σ = 0.2 d a N / c m 2 

and over the thickness of the silt layer (H = 3 .5 m ) the sett lement would be 
Ah = HAo/aqc = 3 5 0 χ 0 . 2 / 1 5 = 4.7 cm for a = 3 or : Ah = 3 5 0 χ 0 . 2 / 3 0 = 
2.3 cm for a = 6. 

The expected sett lement would be between 2 c m < Ah < 5 c m . 
It was implicitly a s sumed that the fill and underlying sand-gravel sub-

stratum are incompressible because of their density and the light surface 
building loads . An accurate calculation f rom the static penetrometer would 
give, for a = 3 and qc = 1 0 0 d a N / c m 2 (average value) , in the fill a sett lement 
of about w = 0 .2 c m , which is minimal compared t o that caused by the silt 
layer. 

(b) Settlement  calculation from the consolidation test  result. 
The effective overburden pressure at the depth where the sample was 

recovered must be computed . It is at depth 4.5 m, or jus t at mid-height of 
the compress ible silt layer. 

We have: oc> = 18 χ 4 .5 = 8 1 kPa ^ 0.8 d a N / c m 2. 
The compress ion curve of Fig . 6 .31 indicates that the void ratio at that 

stress level is e0 = 0 . 5 8 6 . 
The load increment due to the building weight over the thickness of the 

silt layer is about Δ σ = 0 .2 d a N / c m 2 . The stress at mid-height would then 
b e : σ = σό + Δ σ = 0 .8 + 0.2 = 1 d a N / c m 2. The corresponding void rat io for 
that stress level i s : e = 0 .576 . 

The void ratio has decreased by Ae = 0 .586 — 0 .576 = 0 . 0 1 0 . Thus the 
consol idat ion of the sample of thickness h is Ah/h = Ae/(1 + e0) 

0 . 0 1 0 
from which the sett lement of the silt layer is : Ah = 3 5 0 χ „ , „ „ ^ = 2 . 2 c m . 

* 1 + 0 .586 
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(c) Comparison of the results of the two  methods. 

The sett lement c o m p u t e d on the basis o f the consol idat ion test is practi-
cally equal to that c o m p u t e d on the basis of the static penetrometer for a 
value o f a = 6 . 

(d) Evaluation of the a coefficient 

T h e compress ion curve shows that the preconsol idat ion stress oc is equal 
to about 0 . 8 d a N / c m 2 . Since this corresponds to the effective overburden 
stress, it is indicative that the silt layer is normally consol idated. It also 
shows that the consol idat ion due to the old fill is comple ted for all practical 
purposes . 

Therefore , the fol lowing formula is appl icable : 

a = 2 .3 — , 
C e o Qc 

where σ'0 = effective overburden stress ; 

eco = void rat io corresponding to σ'0; 
 ̂ _ gc gc o 

c o ~ logd + l/ai) 
e

x
 = void rat io corresponding t o o'

0
 + 1 ( d a N / c m 2) ; 

qc — cone bearing value f rom the penetrometer test at the depth where the 
sample was recovered, that is f rom 4 .5 to 4 .8 m. 

In this case we get qc = 4 d a N / c m 2 at that depth . 

F r o m the compress ion curve we have: 
for o'0 = 0 .8 d a N / c m 2 , eco = 0 . 586 
for σ'0+1 = 1.8 d a N / c m 2 , et = 0 . 5 3 6 

Then: 

0 . 5 8 6 - 0 . 5 3 6 1 + 0 . 5 8 6 0 .8 
C c o = ,„ , Λ ιΛ ox = 0 . 1 4 2 and a = 2 .3 χ χ — = 5 .14 

log (1 + 1/0 .8) 0 . 1 4 2 4 

or, say , a: = 5 . 

Remark 

This value of α is within the range 3 < a < 6 . However, the quest ion arises 
why the value of a = 6 was no t obta ined since the sett lement calculations 
giving an answer of 2 .2 were based on that value. 

The difference is due mainly t o the fol lowing reasons : t o calculate a , an 
increase o f stress o f Δ σ = 1 d a N / c m 2 f rom σ 0 was considered. On the com-
pression curve, it can be seen that for this increment, the s lope o f the curve 
is steeper than that caused by the building load Δ σ = 0 .2 d a N / c m 2. In other 
words , a value of a: = 5 would overest imate the sett lement . 
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***Problem 6.21 Evaluation of the pressuremeter parameters pu pt and Ep 

for clay 

A pressuremeter test  [4, 8] was performed at a depth  Ç of 2.5 ra, in clay. 
The following  results were  obtained: 

Gross pressure Ρ 
(daN/cm 2) 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Volume ( at 15 s 
change at 30 s 
( c m 3) ( a t 6 0 s 

105 138 154 162 182 192 240 307 
107 139 154 163 184 195 245 317 
110 140 155 165 185 198 250 325 

555 
564 
575 

The initial volume  of water  injected  at very  low  pressure at virgin state 
was V{ = 15 cm3 and the probe volume  at virgin state was 593 cm3. The 
probe calibration curve may be plotted  from the following  table-

Pressure Ρ 
(daN/cm 2) 

0 0.160 0.230 0 .320 0 .420 0.510 0.600 0.710 0.750 

Volume change in the 
probe ( cm 3) at 6 0 s 

12 50 73 110 163 233 347 503 700 

Calculate the pressuremeter parameters assuming that the manometer 
was located at a height h —80cm above grade at the borehole location 
(Fig 6.32). 

Solut ion 
To calculate limit pressure pu creep pressure pf and pressuremeter modu-

lus Ep we must consider the actual pressures appl ied to the borehole wall 
(Fig. 6 . 3 2 ) . 

Taking into account the calibration pressure P' at any point , which 

/ M a n o m e t e r 

Ground surface 

P r e s s u re cell 

Fig. 6.32. 
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gives the same volume change as the gross pressure Ρ and the level h of the 
manometer above the ground, the actual pressure to the soil is given by : 

P r = P-P' + (H + h)yw = Ρ — P' + 0 .33 d a N / c m 2 

(a) Limit pressure. The gross limit pressure is the a symptote ' s abscissa 
of the pressiometric curve (ρ, V), i .e. : (pl )r = 4 .6 d a N / c m 2 . 

But for practical purposes the limit pressure is conventially the point 
at which the initial borehole vo lume (at the beginning of the elastic phase) 
has doubled , i .e. : 

AV = 593 + 1 5 4 - 1 4 0 - 7 5 0 c m 3 

Therefore : 

V= 593 + 2 ( 1 5 + 1 4 0 ) ~ 9 0 3 c m 3 . 

At V = 9 0 3 c m 3 , the corresponding value of P' is about 0 .76 d a N / c m 2 on 
the cal ibration curve (Fig . 6 . 3 4 ) . 

F r o m this, the limit pressure is : px = 4 .6 — 0 . 7 6 0 + 0 .33 = 4 .17 d a N / c m 2. 

(b) Creep pressure p f . The pressure at the creep point can be determined 
f rom either: 
- Fig. 6 . 3 5 , which gives (pf)h ~ 2 . 8 d a N / c m 2 ; 

Fig. 6 .33. Limit-pressure curve. 



2 6 2 INTERPRETATION OF IN-SITU TESTS 

V(cm3) 

Ï 0. 5  0.7 6 

Fig. 6.34. Calibration curve. 

1 Ρ (daN/cm2 

— or, more s imply, f rom the pressuremeter curve at the end of the straight 
line sect ion: (Pf) r. = 2 . 7 d a N / c m 2. 

The corrected creep pressure pt is obta ined from the curve of Fig . 6 . 3 5 
and from the calibration curve (Fig . 6 .34 ) at A V = 1 9 0 c m 3 . F r o m this, 
P' = 0 .45 d a N / c m 2 , pf = 2.8 - 0 . 4 5 + 0 .33 = 2 .68 d a N / c m 2 . 
(c) Pressuremetric modulus Ep. The formula for Ep is Ep = Ê χ AP/AV  = 
2(1+ p){V0 + vm) AP/AV. 

The values for AP and AV  correspond to the straight line section of the 
curve on Fig. 6 . 3 3 . 

In this case : VQ = 593 + 15 = 6 0 8 c m 3 and vm is the volume of water 
injected at pressure Ρ at the mid point of the straight-line section of the 
gross curve, i.e., vm = 1 6 5 c m 3 . 

For í — 0 . 33 , we have: 

AP = (Pf), ~ ( P 0) r ^ 2 . 7 - 1 = 1.7 d a N / c m 2 

AV = 1 9 0 - 1 4 0 = 50 c m 3 

V0 + vm = 6 0 8 4- 1 6 5 = 7 7 3 c m 3 

£ p = 70 d a N / c m 2. 

Remark 
The calibration curve should be taken into account : 



PROBLEM 6.22 2 6 3 

20 

15 

10 

5 

0 1 2 Ô 3 4 Ρ (daN/cm*) 
Mr 

Fig. 6 .35. Creep diagram [ Δ ν ] * ™ £ . 

AP = ( 2 . 7 - 0 . 4 4 ) - ( 1 - 0 . 3 8 ) = 1.64 d a N / c m 2 

which yields the very close result for Ep = 6 7 . 5 d a N / c m 2. 
It should be noted that the above method is only correct for the Menard 

pressuremeter and cannot be used for the self-boring pressuremeter. For 
this kind of device, the interpretation p r o p o s e d by Baguelin et al. [ 2 , 3 ] 
should be a d o p t e d . 

++*Problem 6.22 Determinat ion o f a bridge foundat ion based on pressure-
meter test results 

It is proposed to construct a 15 m road bridge across a river. The soil on 
either bank of the river was investigated  by means of boreholes and pressure-
meter  testing. The results are presented  in Fig. 6.36. 

Design the foundations scheme using the following  criteria 
road level: 248 m a.s.l.; 
dead load: 200 kN per meter  width; 
live load: 100 kN per meter  width; 

A cross-section of the project is shown in Fig. 6.37. 

Solut ion 
The retaining walls will be suppor ted on spread foot ings at the level of the 

gravelly clay layer. This will el iminate set t lements which would occur if the 
foot ing was placed on the compress ib le organic silt (see Fig. 6 . 3 7 ) . 

The access fills o f s o m e 3 m in thickness will settle differentially with re-
spect to the retaining wall since they will cause consol idat ion of the organic 
silt layer. It would be advantageous , in this case , t o preload the banks . This 
would require taking undis turbed samples of the silt t o determine the 
o p t i m u m t ime for the appl icat ion of a pre load. The fol lowing planning may 
be a d o p t e d : 

ÄV (cm3) ë 
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Soil p r o f i le 
2 4 5 Q.S.I. 

Bor ing P r e s s u r e m e t r i c modulus 

E p- ( d a N / c m2) 

p t- L i m it p re s sure — ( ä )— 

p f~ C r e ep l i m it 3 — 
(daN/cm 2) 

0  5 0  10 0  2 0 0  4 0 0  80 0  0  5  1 0  2 0  4 0  8 0 

Fig. 6.36. 

— construct the footings and the deck co lumns ; 
— place a preload fill and allow sett lements to occur on the banks ; 
— build the roadway. 

(A) Bearing capacity. T o evaluate the allowable soil-bearing pressure, only 
the vertical loads given will be considered, since the horizontal loads will be 
nominal because of the construct ion method (deck co lumns) . The maxi-
m u m load will be of the order o f 3 0 0 k N per meter width. The limit pressure 
is of the order of (4 .5 + 6 .5 ) /2 = 5.5 d a N / c m 2 at the proposed foundat ion 
level. A foundat ion whose width will distribute the load so that qad — P i /3 ~ 
2 0 0 k N / m 2 must be considered. As a preliminary evaluation, Β = 3 0 0 / 2 0 0 
= 1.50 m. The vertical ult imate bearing pressure, qr, is then: 

Qr = Qo + fe(Pi -Po) 

where: 
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Figs. 6.37 and 6.38. 

• Po — total horizontal earth pressure (on a vertical plane) at the t ime of 
the test . Assuming a coefficient of earth pressure at rest of K0 = 0 .5 and 
Tsat — Th = 20 k N / m 3 we have : 

Po = 2 .5 χ 2 0 χ 0 .5 + 1 χ 10 χ 0 .5 + 10 χ 1 = 4 0 k N / m 2 = 0.4 d a N / c m 2 . 

• Qo  = total vertical overburden stress (on a horizontal plane) at the 
p roposed foundat ion level after construct ion of the fill, or : 

q0 = 3 x 2 0 + 2 .5 x 2 0 + 10 x 2 = 1 3 0 k N / m 2 = 1.3 d a N / c m 2 

(access fill) (backfil l) 

• P i ~ equivalent l imit pressure (the soil at the foundat ion level is hetero-
geneous , see F ig . 6 . 3 8 ) . 

Pie = yPi(-3R)xpl(-2R)xpl(-R)xpl(0)xpi(+R)xpl(+2R)xpl(+3R) 

or: p l e — \/4 ÷ 6 .5 χ 4 .5 χ 5 .5 χ 6 .5 χ 1 1 χ 9 

= ^ 4 1 4 , 0 9 2 . 5 = 6 .4 d a N / c m 2 . 

This value should not be reduced to account for decompress ion of the soil 
which will occur due to excavat ion and groundwater f low, because the 
proposed m e t h o d of construct ion is going t o impose a load to reconsol idate 
the material prior to finalizing the s tructure . 

• k = bearing factor , f rom Menard's curves (Fig . 6 . 3 9 ) which is a function 
of e m b e d m e n t , soil t y p e and the foot ing geometry . 

• The e m b e d m e n t ra t io : he/R 
where R = foundat ion radius = 0 . 7 5 m , ,fte = e m b e d m e n t : 
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For a preliminary evaluation, embedment is only considered in the existing 
soils : 

4 ÷ 1 + 6 .5 ÷ 1 + 0 .5 ÷ 4 .5 2 
he = = 2 m and hJR = = 2 . 7 . 

6.4 0 .75 

• Soil category 
The foundat ion soil type is a clay, for which the limit pressure is less than 
12 d a N / c m 2, therefore the soil category is I (see Table 61). 

• Foot ing geometry 
The length of the foot ing may be as sumed equal to the proposed width of 
the road , or L = 1 5 m, hence : L/2R = 1 0 . 

The k value is calculated from the graph of Fig. 6 . 3 9 for the given example 
hJR = 2.7 and L/2R = 1 0 ; k is found as fo l lows: 
Set off k vertical line f rom hJR = 2 .7 , cutt ing the category / lines for strip 
and square footings at A and B, respectively. Draw lines A0A and B0B t o 
intersect at C. Draw the line L/2R = 10 to C which cuts he/2R = 2 .7 at M, 
then the k value, ordinate of Af, is 1.26. The ult imate vertical bearing pres-
sure will then be : 

qt = 1.3 + 1.26 χ ( 6 . 4 - 0 . 4 ) = 8 . 9 d a N / c m 2 

and the allowable bearing pressure then is: 

qad = 1.3 + 1 . 2 6 / 3 ( 6 . 4 - 0 . 4 ) = 3 . 8 d a N / c m 2 . 

TABLE 61 

Soil type Nature 
Limit 
pressure pl 

(daN/cm 2) 

I clay 0—12 
loam 0 - 7 

II stiff clay and marl 1 8 - 4 0 
loam 1 2 - 3 0 
loose sand 4 - 8 
weak soil 1 0 - 3 0 

III sand and gravel 1 0 - 2 0 
rock 4 0 - 1 0 0 

Illb very dense sand and gravel 3 0 - 6 0 

(After L. Menard) 
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Fig. 6.39. -values for shallow footings (after Menard). 

The allowable load, per meter length of footing, would then be 3.8 χ 1 5 0 = 
5 7 0 kN, which is appreciably higher than the expected load of 3 0 0 k N per 
meter length. 

Remarks 
(a) The analysis of the consol idat ion results of the preload on the silt layer 

would eventually conclude that the bridge foot ing could bear on the com-
pacted access fill. This could be checked by a complementary in situ testing 
investigation with penetrometer tests per formed after unloading. 

(b) Another construct ion method would be to remove the organic silt 

TABLE 6J 

k values (for homogeneous layer) 

D Square footing Strip footing 

Β I II III I l lb I II III I l lb 

0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
0.5 1.3 1.5 1.9 2.1 1.0 1.1 1.2 1.3 
1.0 1.6 1.8 2.5 2.8 1.2 1.3 1.4 1.6 
1.5 1.8 2.1 3.0 3.3 1.2 1.4 1.6 1.8 

(After L. Menard). 

' I I I I I I I 
' s c a le L/2R  is a nomograp h to g ive k  for a r e c t a n g u l ar f o o t i n g by i n t e r p o l a t i o n 
betwee n a s q u a re footing and a s tr ip foot ing _  ̂ . 
E x a m p l e: Find k  f or Ae/ / ? = 1.5 , 1 / 2 / ?= 2 and so il t y p e I E. D r aw t he hne 
h / /? = 15 c r o s s i ng c u r v e s JZT and 4 - 8 . Find t h e o r d i n a t e k,  and Ì so 
t h a t Ì d i v i d e s t h e s e g m e n t AB  in t he s a m e p r o p o r t i o n as MQ and  ̂ Ë 08 0 · 
D r aw A QA and 8 0 8 w h i ch c r o ss C,  and f r om t h e s e points d r aw a l i ne t o M 0. 
A- is t h e o r d i n a te of Ì and is equal to 1.75 | ( 

' i '  2  Ã 3  *~ R 
2.7 
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and replace it by compac ted select material to also allow for the construct ion 
of shallow footings on the fill. 

This method leads to conservatism because : 
(1) a surcharge fill would increase the characteristics of the organic silt 

therefore the value of he. This would m a k e us to t ake this layer into account ; 
(2) the compac ted fill would have a px > 1 5 d a N / c m 2 which would also 

lead to a larger he; 
(b) the allowable bearing capacity will in fact be higher because of the 

consol idat ion of the clay due to the surcharge; 
(c) it was a s sumed that the access fills would not impart horizontal 

pressures. 
(B) Settlement  evaluations. The final sett lement of the footing will be at 
most equal to the sum of the sett lements caused by the fill weight and 
structural dead loads . Live loads applied only for short durat ions can be 
ignored. 

(a) Set t lement due to fills. The following formula m a y b e u sed : 

where: 
• P z = vertical stress increment at depth æ due to the fill. 
Because of the large width o f the fill a t its base ( about 2 5 m ) and the 

thickness of the soil layers ( 1 0 . 2 5 m ) susceptible to consol idat ion, P z may be 
a s sumed constant with æ and equal t o : 

Ρ = h r χ 7 r , 

where hx = fill thickness or 3 m, yx = unit weight of wet soil of the com-
pacted fill or 7 h = 2 2 k N / m 3 . So Ρ = 6 6 k N / m 2 . 

• E(z) = pressuremeter modulus at depth z. 
• a(z) = rheologic coefficient depending on soil t y p e at depth æ (see 

Table 6 K ) : for the organic silt a = 1/2, for the gravelly clay α = 1/2. 
• â (Ã) = 1 if Γ > 2 ( Γ is the ratio of the limit pressure of the soil to the 

actual stress at depth z). 
F o r the silt: limit stress is ~ 0.8pu actual stress is = 6 6 k N / m 2 = 0 .66 

d a N / c m 2 and Γ = 4 / 0 . 6 6 = 6 . 
For the clay, which is stiffer: â(Ã) = 2 /3 χ Γ / ( Γ - 1 ) = 0 .8 . 
Final ly : 

h 

w T = á÷Ρ÷â(Ã) Σ 
i E(z) 

1 1 1 1 
— + — + — + — + 

\ 6 0 8 5 70 4 2 1 0 2 

1 1 
+ — + 

70 

0 .75 

1 8 0 



PROBLEM 6.22 2 6 9 

1 0 0 

0 .27 

1 0 0 

TABLE 6K 

x (1 .7 + 1.17 + 1.43 + 2 .4 + 1 + 1.43 + 0 . 4 2 ) 

( 9 . 5 5 ) , w t = 2 .6 c m . 

Soil 
type Peat Clay Silt Sand 

Sand and 
gravel 

Type Rock 

a E/Pi a ElPi a E/Pi a ΕÉΡ÷ α a 

Over-
consolidated 

— > 1 6 1 > 1 4 2/3 > 1 2 1/2 > 1 0 1/3 slightly 
fractured 

2/3 

Normally 
consolidated 

1 9.16 2/3 8.14 1/2 7 .12 1/3 6.10 1/4 normal 1/2 

Under-
consolidated 
very loose 

7.9 1/2 5.8 1/2 5.7 1/3 highly 
fractured 
highly 
weathered 

1/3 

2 /3 

(b) Settlements  due to structural dead loads. Menard proposes the follow-
ing formula : W  = W x 4- W 2 + W 3, where W x = immedia te set t lement , not 
usual ly cons idered : 

1.33 / R\a . 
W 2 = -Ã7Ã x p x i ? o x ^ 2 X 7 T (sett lement d u e to deviatoric stress) 

3EB \ R0j 

W3 = ( α / 4 . 5 EA) ÷ ñ ÷ λ 3 χ R ( sett lement due to isotropic stress) . 

where : 
• R = half width of a rectangular foot ing or radius of a circular foot ing, 

R = 75 c m ; 
• R0 = 3 0 cm (reference d imens ion) ; 
• ñ — average increase in stress due to the foot ing, with respect to the 

natural stress condit ion, calculated under the permanent structural loads : 
ñ = 2 0 0 / 1 . 5 0 = 1 3 3 kPa = 1.3 d a N / c m 2 ; 

TABLE 6L 

λ 2 and λ 3 coefficients in function of L/2 R 

L/2R I 2 3 5 10 20 

circle square 

λ 2 1 1.12 1.53 1.78 2.14 2.40 2.65 
λ 3 1 1.1 1.2 1.3 1.4 1.46 1.5 

0 .27 
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• λ 2 and λ 3 = shape factors depending on foot ing dimensions . F o r 
L/2R = 1 5 / 1 . 5 = 1 0 . 
Table 6 L gives: λ 2 = 2 .40 and λ 3 = 1 . 4 6 . 

• EA and EB are the pressiometric modul i corresponding to the spherical 
and deviatoric stresses calculated as shown below. 

•  a = rheologic coefficient of the soil : a = 1/2 (Table 6 K ) . 

Determination  of EA: 

EA = E1 harmonic mean of the pressuremeter modul i to a depth R 
beneath the foot ing : 

I = i f l + - i _ 
El 2 \E0 E(-R) 

In this ca se : 

A _ I [/J. + i ) + i . 
Ei 3 [ \ 2 5 6 0 / 6 0 

0 . 0 2 4 

Ei — EA = 4 1 d a N / c m 2. 

Determination  of EB: 

Ex 0 . 85 E2 + • 

E, 

^3 /4 / 5 2 . 5 i J 6 / 7/ 8 2.5E9toi6 

harmonic mean of the modul i at depths — R and — 2R (Fig . 6 . 4 0 ) : 

_1^ 

E2 

_1^ _1 

2 160 8 5 
0 . 0 1 4 . 

E2 
Ε 3/4/5 

Ε 6/7/8 

" _ R j 2R= 1.50m J El 

_ 2 R 

_ 3 R 

- 4 R 

- 5 R 
- 6 R 

- 7 R 
- 8 R 
- 9R 

- 10R 

- 11 R 

- 12 R Ε 9ft 16 

- 1 3 R 

- 1 4 R 

- 1 5 R 

—16 R 

Fig. 6 .40. 
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1 1 / 1 1 \ 1 
— + — + — + — + — 
8 5 7 0 1 7 0 4 2 / 4 2 

= 0 . 0 1 8 . 

£ 3 / 4 / 5 = harmonic mean of modul i in layers 3 t o 5 (Fig . 6 . 4 0 ) : 

1 _ 1_ 

£ 3 / 4 / 5 5 

•2-6/7/8 — harmonic mean of modul i o f layers 6 t o 8. 

1 _ 1 

5 

1 1 1 / 1 1 
— + + — + 1 — + 

4 2 1 0 2 7 0 1 7 0 1 8 0 £6/7 / 8 

£ 9 t o 16 = harmonic mean of modul i of layers 9—16: 

1 1 

= 0 . 0 1 4 . 

£ 9tol 6 1 1 

1 1 \ 1 1 1 / 1 1 \ — + — + — + — + — + — + — + 
\ 7 0 1 8 0 / 1 8 0 3 5 0 5 0 0 \ 5 0 0 7 5 0 / 

1 1 1 1 

+ + + + 7 5 0 1 0 0 0 1 0 0 0 1 0 0 0 
= 0 . 0 0 3 5 

and : 

EB = 
1 1 1 

0 . 0 2 4 + — — χ 0 . 0 1 4 + 0 . 0 1 8 + — ( 0 . 0 1 4 ) + — ( 0 . 0 0 3 ) 
0 .85 z .o 2.Ό 

or EB = 6 1 . 3 d a N / c m 2. 

1.33 
W,  = _ 0 χ 1.3 χ 30 χ 2 .40 χ — 

3 χ 6 1 . 3 \ 3 0 

7 5 
1/2 

~ 0.7 cm 

χ 1.3 χ 1.46 χ 7 5 ^ 0 .4 c m . 
2 χ 4 .5 χ 4 1 

Final ly : W f = W 2 + W 3 = 1 . 1 c m . 

N o t e the soft clay layer between 6 .5 m and 7.5 m of which the pressure-
meter modulus is : Ec = 4 2 d a N / c m 2 . 

In this case , Menard's m e t h o d increases the set t lement W' by a. value W" 
to account for that of the soft layer: 

W" = ac(l/Ec -l/Em)ApcH. 

where: 
• <xc = rheologic coefficient o f the soft layer a c = 1/2, 
• Ec = 4 2 d a N / c m 2. 
• Em = mean modulus of deviatoric s tate calculated without accounting 

for the presence of the soft layer ( subst i tute to Ec the modulus values E'c 

as fo l lows: 



2 7 2 INTERPRETATION OF IN-SITU TESTS 

J _ - 1 / j L JL JL J _ J l_ 1 

E'c ~ 6 \ 6 0 8 5 7 0 1 0 2 70 1 8 0 

and E'c = 8 3 d a N / c m 2 . 

= 0 . 0 1 2 

Going back to the calculations of the pressuremeter modul i in the devi-
atoric s tate , as explained for E, we have: 

1/El = 0 . 0 2 4 , 1/E2 = 0 . 0 1 4 

Ε 3/4/5 

1 

Ε, 6 / 7 / 8 

1 1 1 1 1 
— + — + — + — + — 
8 5 7 0 7 0 83 83 

JL + ^ L +J L + J L + J L 
83 1 0 2 70 70 1 8 0 

= 0 . 0 1 3 

= 0 . 0 1 1 

E, 
= 0 . 0 0 4 

9 t o 16 

and E„ 

0 . 0 2 4 + ^ + 0 . 0 1 3 + 2 ^ 1 + 0 0 0 4 

6 7 d a N / c m 2 . 

0 . 8 5 2 .5 2 .5 

• Apc increment o f the vertical stress in the middle o f the soft layer. The 
Bouss inesq formula est imates this va lue : Apc ~ 0.3 Ap = 0 .3 χ 1.3 = 0.4 
d a N / c m 2. 

• Ç = thickness o f the soft layer : Ç = 1 0 0 cm. 

Final ly : W" = 
1 / 1 

2 \ 4 2 

_ 1 ^ 

6 7 
x 0 . 4 χ 1 0 0 = 0 .2 c m . 

The expected total set t lement o f the foot ing would b e : 
W t = 2.6 + 1.1 + 0 .2 = 3.9 cm. 

T o take into account the m e t h o d of construct ion, the residual foot ing 
sett lements after complet ion of construct ion would be reduced t o those 
caused by the dead loads , or : residual W  = 1.3 c m . This is tolerable for m o s t 
bridge structures . 

Remark 
The tota l set t lement of the fill m a y be es t imated by m e t h o d Β-a. 

W  = - χ 0 .66 χ 1 
2 

1.5 1 1 1 1 1 1 + — + — + —+ — + — + — 
2 5 3 5 2 5 6 0 8 5 7 0 4 2 

6.4 cm 

W  = 6 .4 cm which m a y be divided into that port ion occurring below the 
foot ing (2 .6 c m ) and that occurring above the foot ing (4 .8 c m ) . 
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The preloading of foundat ion soil by p lacement of the fill will have to be 
of sufficient t ime durat ion to al low for the set t lement of 6 .4 cm to occur . 
This m a y be control led by field measurement . 

**•Problem 6.23 Es t imat ion of ins tantaneous set t lement f rom pressuremeter 
test results 

Assume the pressuremeter modulus of a thick  saturated clay layer to be 
Ep = 42 daN/cm2. Estimate the immediate  settlement  of a circular footing 
of diameter 2R=2m supported on the clay and imposing a stress σ = 
1.5 daN/cm2. 

Solut ion 
The instantaneous sett lement corresponds to the initial deformat ion of 

the soil and occurs at ' constant vo lume ' . T h e Poisson's ratio for the un-
drained condit ion is í = 0 . 5 . 

The sett lement evaluation, taking into account Bouss inesq ' s formula is: 

Si = — χ χ ï χ R. 
2 Eu 

A pressuremeter test per formed in a saturated clay m a y be considered to 
an undrained test on the soil. Young ' s modu lus must be considered as the 
constant-volume elastic modulus in the formula for Ep, if the value of 
vu = 0 . 5 . However, Ep = 2 ( 1 + v)V(AP/AV)  is normally calculated for 
υ = 0 . 3 3 . 

If we t a k e vu = 0 . 5 , the corresponding value o f Eu i s : 

_ Ep(l + vu) = 4 2 ( 1 + 0 .5 ) 

1 + í 1 + 0 .33 

or Eu = 4 7 . 4 d a N / c m 2 , and the instantaneous sett lement is : 

3 .14 1 - ( 0 . 5 ) 2 

S i = χ * - x 1 . 5 x 1 0 0 = 3.7 c m . 
2 4 7 . 5 

Problem 6.24 Design a foundat ion f r o m static and dynamic penetrometer 
data and f rom results o f pressuremeter tests 

Various other problems covering the interpretation  of in situ tests are to 
be found in Volume II, in particular: 

Problems 10.14, 10.15, 10.16: Shallow footings designed from pressure-

meter  tests. 
Problem 11.10: Bearing capacity of a pile from static or dynamic pen-

etrometer  or S.P.T. tests. 
Problem 11.11: Bearing capacity of a pile from pressuremeter test. 
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3 . 1 2 ; 3 .15 

Parez, penetrometer , 6 .15 
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8 . 4 ; 9 . 2 ; 9 . 3 ; 9 .4 
Penetrometer , with m u d , 6.6 
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—, Bevac , 6 . 8 ; 6 .9 
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Pier (dril led), 11 .7 
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Piles, 6 . 1 2 ; 6 .19 
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- , driven, 1 1 . 1 ; 1 1 . 2 ; 1 1 . 5 
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Piping, 2 . 9 ; 2 .17 
— condi t ion , 2 .17 
Plane strain, 4 .16 
Plasticity chart , Casagrande graph, 

1.17 
— index, 1.6 
Plate bearing tes t , 3.7 
Poisson's ra t io , 4 . 8 ; 4 .9 
Pole , o f Mohr's circle, 5 .1 
Poros i ty , 1 .1 ; 1.4; 1.9 
Prandtl 's wedge , 5 .5 
Prefabricated wall, 9 .2 
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Preloading, 3 . 1 1 ; 3 . 1 4 ; 6 .13 
Pressure ( l imit) , 6 . 2 1 ; 11 .6 
Pressuremeter, 6 . 1 9 ; 6 . 2 1 ; 6 . 2 2 ; 

6 . 2 3 ; 11 .6 , 
— modulus , 6 . 2 1 ; 6 . 2 2 ; 6 .23 
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, sheet piles, 8 . 1 ; 8 . 2 ; 8 .3 ; 8 .4 
Principal direct ions , 4 . 1 0 ; 5 .1 
Principal stresses, 4 . 1 0 ; 4 . 1 2 ; 4 .18 
Proctor diagram, 1.9 
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Pumping test , 5 .5 

Radius of influence, 2.5 
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Raf t , 10 .16 
Rankine equil ibrium, 5 . 2 ; 5 . 3 ; 5 .4 ; 

5 . 5 ; 7 . 1 ; 7 .9 ; 7 .11 
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Schneebeli ' s rods , 1.14 
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4 . 1 0 ; 4 . 1 2 ; 6 .19 
— stress, d iagrams, 8 . 1 ; 9 . 2 ; 9 . 3 ; 9 .4 
Sheet pile wall, 8.1—8.4 
— piles, 8.1—8.4 
Short t e rm, calculat ions for, 6 .3 ; 

1 0 . 1 0 ; 11 .8 
Sieving, 1.5 
S imple point , penetrometer , 6 .4 ; 

6 .11 
S k e m p t o n ' s coefficient Af, 4 . 11 
— (Bishop and) coeff icients , 4 .16 
- f o r m u l a , 3 .3 ; 3 .4 ; 10 .7 
Slice m e t h o d , 12 .4 
Slip circle, 1 2 . 1 ; 1 2 . 3 ; 1 2 . 4 ; 12 .5 
S lope , drainage in, 2 . 1 1 
- , failure of, 1 2 . 2 ; 1 2 . 3 ; 1 2 . 4 ; 12 .5 
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wal l ) , 7 . 3 ; 7 .9 ; 7 .10 
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6 . 3 ; 6 .4 ; 6 . 1 0 ; 6 . 1 1 ; 6 . 1 2 ; 6 . 1 4 ; 
6 . 1 5 ; 6 . 1 6 ; 6 . 1 9 ; 6 .20 

— penetrometer , 1 1 . 1 0 
Stiffness coeff icient, 3.7 
Stratif ied soil, 7.7 
Stress pa th , 4 . 1 2 ; 4 .18 
— tensors , 4 . 1 8 ; 5 . 1 ; 5 . 2 ; 5 . 3 ; 5 .4 ; 

5 . 5 ; 5.6 
Stresses under foot ings , 3 . 5 ; 3 .18 
Swelling, of c lays , 1 0 . 1 3 ; 1 1 . 7 ; 11 .8 
Strip foot ing, 6 .4 ; 6 . 7 ; 6 . 1 0 ; 6 . 1 1 ; 

6 . 1 3 ; 6 . 1 5 ; 6 . 1 9 ; 1 0 . 1 ; 1 0 . 3 ; 
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1 0 . 8 ; 1 0 . 9 ; 1 0 . 1 0 ; 1 0 . 1 3 

Superpos i t ion, limit equil ibrium, 5.8 
Surface tens ion, 2 .15 

Terzaghi 's d iagram, 9.4 
— equat ion, 3 .19 
— formula , 2 .3 
Terzaghi and Peck's charts , 6 .17 
T ime of consol idat ion, 3.8 
— factor , 3 .8 ; 3 . 9 ; 3 . 1 0 ; 3 . 1 1 ; 3 . 1 6 ; 

3 .19 
Tip resistance, penetrometer , see 

Penetrometer 
, piles, 1 1 . 5 ; 11 .6 

Tota l stresses, 4 .6 
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Ul t imate load , 11 .5 
Unconf ined compress ion (resistance 

t o ) 4 . 7 ; 6 .19 
Uniformity coefficient (Hazen's ) 1.5 
Unit weight, 1 . 1 ; 1.3; 1 .10 ; 1.14 

V o i d , air, 1.9 
- rat io , 1 .1 ; 1 .2 ; 1.4; 1 .10 ; 1 .12 ; 
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Water content , 1 .1 ; 1.2; 1.4; 6 .19 
Weightless material , 5 .5 
Well, pumping , 2 .5 

Young ' s m o d u l u s , 4 .8 
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